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“Whoever is ignorant of the past remains forever a child. For what is the
worth of human life, unless it is woven into the life of our ancestors by the
records of history?”

Marcus Tullius Cicero (106–43 BCE)

∗ ∗∗

“He lives doubly, who also lives the past”.

Marcus Valerius Martial (ca 100 CE)

∗ ∗∗

“Mathematics was born and nurtured in a cultural environment. Without the
perspective which the cultural background affords, a proper appreciation of
the content and state of present-day mathematics is hardly possible”.

Leonhard Euler (1707–1783)

∗ ∗∗

“History is the essence of innumerable biographies”.

Thomas Carlyle (1795–1881)

∗ ∗∗

“To understand a science it is necessary to know its history”.

Auguste Comte (1799–1857)
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“The history of science is science itself”.

Johann Wolfgang von Goethe, 1825

∗ ∗∗

“No subject loses more than mathematics by any attempt to dissociate it from
its history”.

J.W.L. Glaisher (1848–1928)

∗ ∗∗

“Take three hundred men out of history and we should still be living in the
stone age”.

Arthur Keith (1866–1955)

∗ ∗∗

“The history of science is very largely the history of great men”.

George Sarton, 1927

∗ ∗∗

“Without the concepts, methods and results found and developed by previous
generations right down to Greek antiquity, one cannot understand the aims
or the achievements of mathematics in the last fifty years”.

Hermann Weyl, 1950 (1885–1955)
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“There is nowhere else to look for the future but in the past”.

James Burke, 1978

∗ ∗∗

“The genesis of the majority of mathematical theories is obscure and difficult.
Often, today’s presentation of a classical topic, will be much more accessi-
ble and concise than it could even have been when it was developed. Any
scientist’s work, can only be understood within its contemporary scientific
framework”.

Walter K. Bühler



Preface

Many books are published every year on the history of science, but I know of
no comprehensive treatise that blends the essential historical data (chronol-
ogy, biographies, major background political and economical events, etc.) to-
gether with science proper (principles, laws, experiments, observations, theo-
ries, equations, etc.). The present encyclopedic treatise does just that; it tells
the reader not only who did it and when it was done but also precisely what
was done.

The saga of this history of ideas, discovery and invention in the natural
and mathematical sciences – spanning about 100 generations of great thinkers
from Thales to Feynman – unfolds in all its grandeur before the eyes and mind
of the reader. Whether to professional scientists, students, or unassuming
curious laymen, the doors of this shrine are open, inviting them to browse,
linger and study whatever suits them. I believe that every intelligent person
can understand the development of science when properly presented from its
beginnings; The historical method is the best for introducing scientific facts
and ideas to unprepared minds in a thoroughly understandable manner.

The history of science is more than the arithmetical sum of the histories
of all sciences, for it also explains the interrelations of them all. Indeed, our
division of science into many branches is largely artificial. Like the branches
of a living tree which have no separate existence, but grow together – the
progress of each science is dependent upon the progress of all the others.

The main postulate of science is the unity of nature: nature is one; and
therefore, science is one. Finally, the fact that simultaneous discoveries have
been made by different groups of workers, in different settings, organizations
and nations, demonstrate that mankind is one: one mankind through one
science is unfolding the mysteries of one nature.

It follows that the only rational way to subdivide this history is not ac-
cording to the sciences or countries involved, but only according to time; for
each period of time we have to consider at once the whole of science’s histori-
cal and intellectual development. This calls for the marshaling of all scientific
facts, activities and ideas in a definite order; which means that we must try to
assign to each of them a date as precise as possible – not just the date of their
birth or their publication, but also that of their actual incorporation into our
knowledge – often a very difficult thing to do, as the reader will not fail to
appreciate. Such work of erudition is the bedrock upon which this history is
built.

We have also considered some other departments of life which have bearing
on the evolution of science. These are:
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• General natural and human history, especially the history of civilization.

• The history of technology.

• The history of philosophy and religions.

To make this general synthesis possible, we found it expedient to write
a large number of monographs on various subjects which emphasize the in-
terrelations between environmental, economic, social, cultural, political and
scientific ‘events’ (e.g. the history of epidemics is needed to correctly estimate
the evolution of medical ideas).

The history of science is a field of endless complexity and incredible scope.
There are many ways to study it and many points of view, none of which is
exclusive of the others. The chronological order of discoveries is often very
different from their logical sequence. What some people call the logic of
scientific discovery is largely a retrospective construction; it is nevertheless
useful to bring it out. Discoveries are not always made in logical order but it
is worthwhile and helpful to attempt to explain them in such an order: the
actual path of progress is not straight but very crooked, although the general
direction is clear enough.

We have interspersed our history with a narration of general intellectual
climate and of major social, cultural, political, economic and environmental
events: science does not develop in a social vacuum and every man of science
needs a modicum of food and other amenities in order to do his work; if
called to arms and killed in battle his activities come to an end; if he is
an empirical scientist, his opportunities will depend upon the laboratory or
observatory to which he has been admitted or which he was able to fashion,
and his freedom to pursue his work will be limited by the good or bad will of
administrators or fellow workers. Yet nobody can completely control his spirit;
he may be helped or hindered, but his scientific ideas are not determined by
social factors. Honest men of science and mathematics have often continued
activities detrimental to their material interests.

In this treatise, I have tried to draw a map of science, technology and great
ideas that would be as accurate and complete as possible, yet sufficiently free
from unnecessary details and sufficiently condensed so as not to obstruct the
general view.

The book was composed through intensive work during 1991–2008. I had
planned to present it to my readers just at the turn of the millennium, but
unexpected difficulties prevented me from this symbolic gesture.

The diverse sources used in my work are listed in the bibliography and
sometimes in the text itself. Whenever possible, the data was cross-checked
between different sources.

January 2009 Ari Ben-Menahem
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“Whoever is ignorant of the past remains forever a child. For what is the
worth of human life, unless it is woven into the life of our ancestors by the
records of history?”

Marcus Tullius Cicero (106–43 BCE)

∗ ∗∗

“He lives doubly, who also lives the past”.

Marcus Valerius Martial (ca 100 CE)

∗ ∗∗

“Mathematics was born and nurtured in a cultural environment. Without the
perspective which the cultural background affords, a proper appreciation of
the content and state of present-day mathematics is hardly possible”.

Leonhard Euler (1707–1783)

∗ ∗∗

“History is the essence of innumerable biographies”.

Thomas Carlyle (1795–1881)

∗ ∗∗

“To understand a science it is necessary to know its history”.

Auguste Comte (1799–1857)
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“The history of science is science itself”.

Johann Wolfgang von Goethe, 1825

∗ ∗∗

“No subject loses more than mathematics by any attempt to dissociate it from
its history”.

J.W.L. Glaisher (1848–1928)

∗ ∗∗

“Take three hundred men out of history and we should still be living in the
stone age”.

Arthur Keith (1866–1955)

∗ ∗∗

“The history of science is very largely the history of great men”.

George Sarton, 1927

∗ ∗∗

“Without the concepts, methods and results found and developed by previous
generations right down to Greek antiquity, one cannot understand the aims
or the achievements of mathematics in the last fifty years”.

Hermann Weyl, 1950 (1885–1955)
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“There is nowhere else to look for the future but in the past”.

James Burke, 1978

∗ ∗∗

“The genesis of the majority of mathematical theories is obscure and difficult.
Often, today’s presentation of a classical topic, will be much more accessi-
ble and concise than it could even have been when it was developed. Any
scientist’s work, can only be understood within its contemporary scientific
framework”.

Walter K. Bühler



Preface

Many books are published every year on the history of science, but I know of
no comprehensive treatise that blends the essential historical data (chronol-
ogy, biographies, major background political and economical events, etc.) to-
gether with science proper (principles, laws, experiments, observations, theo-
ries, equations, etc.). The present encyclopedic treatise does just that; it tells
the reader not only who did it and when it was done but also precisely what
was done.

The saga of this history of ideas, discovery and invention in the natural
and mathematical sciences – spanning about 100 generations of great thinkers
from Thales to Feynman – unfolds in all its grandeur before the eyes and mind
of the reader. Whether to professional scientists, students, or unassuming
curious laymen, the doors of this shrine are open, inviting them to browse,
linger and study whatever suits them. I believe that every intelligent person
can understand the development of science when properly presented from its
beginnings; The historical method is the best for introducing scientific facts
and ideas to unprepared minds in a thoroughly understandable manner.

The history of science is more than the arithmetical sum of the histories
of all sciences, for it also explains the interrelations of them all. Indeed, our
division of science into many branches is largely artificial. Like the branches
of a living tree which have no separate existence, but grow together – the
progress of each science is dependent upon the progress of all the others.

The main postulate of science is the unity of nature: nature is one; and
therefore, science is one. Finally, the fact that simultaneous discoveries have
been made by different groups of workers, in different settings, organizations
and nations, demonstrate that mankind is one: one mankind through one
science is unfolding the mysteries of one nature.

It follows that the only rational way to subdivide this history is not ac-
cording to the sciences or countries involved, but only according to time; for
each period of time we have to consider at once the whole of science’s histori-
cal and intellectual development. This calls for the marshaling of all scientific
facts, activities and ideas in a definite order; which means that we must try to
assign to each of them a date as precise as possible – not just the date of their
birth or their publication, but also that of their actual incorporation into our
knowledge – often a very difficult thing to do, as the reader will not fail to
appreciate. Such work of erudition is the bedrock upon which this history is
built.

We have also considered some other departments of life which have bearing
on the evolution of science. These are:



xiv Preface

• General natural and human history, especially the history of civilization.

• The history of technology.

• The history of philosophy and religions.

To make this general synthesis possible, we found it expedient to write
a large number of monographs on various subjects which emphasize the in-
terrelations between environmental, economic, social, cultural, political and
scientific ‘events’ (e.g. the history of epidemics is needed to correctly estimate
the evolution of medical ideas).

The history of science is a field of endless complexity and incredible scope.
There are many ways to study it and many points of view, none of which is
exclusive of the others. The chronological order of discoveries is often very
different from their logical sequence. What some people call the logic of
scientific discovery is largely a retrospective construction; it is nevertheless
useful to bring it out. Discoveries are not always made in logical order but it
is worthwhile and helpful to attempt to explain them in such an order: the
actual path of progress is not straight but very crooked, although the general
direction is clear enough.

We have interspersed our history with a narration of general intellectual
climate and of major social, cultural, political, economic and environmental
events: science does not develop in a social vacuum and every man of science
needs a modicum of food and other amenities in order to do his work; if
called to arms and killed in battle his activities come to an end; if he is
an empirical scientist, his opportunities will depend upon the laboratory or
observatory to which he has been admitted or which he was able to fashion,
and his freedom to pursue his work will be limited by the good or bad will of
administrators or fellow workers. Yet nobody can completely control his spirit;
he may be helped or hindered, but his scientific ideas are not determined by
social factors. Honest men of science and mathematics have often continued
activities detrimental to their material interests.

In this treatise, I have tried to draw a map of science, technology and great
ideas that would be as accurate and complete as possible, yet sufficiently free
from unnecessary details and sufficiently condensed so as not to obstruct the
general view.

The book was composed through intensive work during 1991–2008. I had
planned to present it to my readers just at the turn of the millennium, but
unexpected difficulties prevented me from this symbolic gesture.

The diverse sources used in my work are listed in the bibliography and
sometimes in the text itself. Whenever possible, the data was cross-checked
between different sources.

January 2009 Ari Ben-Menahem
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“Whoever is ignorant of the past remains forever a child. For what is the
worth of human life, unless it is woven into the life of our ancestors by the
records of history?”

Marcus Tullius Cicero (106–43 BCE)

∗ ∗∗

“He lives doubly, who also lives the past”.

Marcus Valerius Martial (ca 100 CE)

∗ ∗∗

“Mathematics was born and nurtured in a cultural environment. Without the
perspective which the cultural background affords, a proper appreciation of
the content and state of present-day mathematics is hardly possible”.

Leonhard Euler (1707–1783)

∗ ∗∗

“History is the essence of innumerable biographies”.

Thomas Carlyle (1795–1881)

∗ ∗∗

“To understand a science it is necessary to know its history”.

Auguste Comte (1799–1857)



∗ ∗∗

“The history of science is science itself”.

Johann Wolfgang von Goethe, 1825

∗ ∗∗

“No subject loses more than mathematics by any attempt to dissociate it from
its history”.

J.W.L. Glaisher (1848–1928)

∗ ∗∗

“Take three hundred men out of history and we should still be living in the
stone age”.

Arthur Keith (1866–1955)

∗ ∗∗

“The history of science is very largely the history of great men”.

George Sarton, 1927

∗ ∗∗

“Without the concepts, methods and results found and developed by previous
generations right down to Greek antiquity, one cannot understand the aims
or the achievements of mathematics in the last fifty years”.

Hermann Weyl, 1950 (1885–1955)
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“There is nowhere else to look for the future but in the past”.

James Burke, 1978

∗ ∗∗

“The genesis of the majority of mathematical theories is obscure and difficult.
Often, today’s presentation of a classical topic, will be much more accessi-
ble and concise than it could even have been when it was developed. Any
scientist’s work, can only be understood within its contemporary scientific
framework”.

Walter K. Bühler



Preface

Many books are published every year on the history of science, but I know of
no comprehensive treatise that blends the essential historical data (chronol-
ogy, biographies, major background political and economical events, etc.) to-
gether with science proper (principles, laws, experiments, observations, theo-
ries, equations, etc.). The present encyclopedic treatise does just that; it tells
the reader not only who did it and when it was done but also precisely what
was done.

The saga of this history of ideas, discovery and invention in the natural
and mathematical sciences – spanning about 100 generations of great thinkers
from Thales to Feynman – unfolds in all its grandeur before the eyes and mind
of the reader. Whether to professional scientists, students, or unassuming
curious laymen, the doors of this shrine are open, inviting them to browse,
linger and study whatever suits them. I believe that every intelligent person
can understand the development of science when properly presented from its
beginnings; The historical method is the best for introducing scientific facts
and ideas to unprepared minds in a thoroughly understandable manner.

The history of science is more than the arithmetical sum of the histories
of all sciences, for it also explains the interrelations of them all. Indeed, our
division of science into many branches is largely artificial. Like the branches
of a living tree which have no separate existence, but grow together – the
progress of each science is dependent upon the progress of all the others.

The main postulate of science is the unity of nature: nature is one; and
therefore, science is one. Finally, the fact that simultaneous discoveries have
been made by different groups of workers, in different settings, organizations
and nations, demonstrate that mankind is one: one mankind through one
science is unfolding the mysteries of one nature.

It follows that the only rational way to subdivide this history is not ac-
cording to the sciences or countries involved, but only according to time; for
each period of time we have to consider at once the whole of science’s histori-
cal and intellectual development. This calls for the marshaling of all scientific
facts, activities and ideas in a definite order; which means that we must try to
assign to each of them a date as precise as possible – not just the date of their
birth or their publication, but also that of their actual incorporation into our
knowledge – often a very difficult thing to do, as the reader will not fail to
appreciate. Such work of erudition is the bedrock upon which this history is
built.

We have also considered some other departments of life which have bearing
on the evolution of science. These are:
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• General natural and human history, especially the history of civilization.

• The history of technology.

• The history of philosophy and religions.

To make this general synthesis possible, we found it expedient to write
a large number of monographs on various subjects which emphasize the in-
terrelations between environmental, economic, social, cultural, political and
scientific ‘events’ (e.g. the history of epidemics is needed to correctly estimate
the evolution of medical ideas).

The history of science is a field of endless complexity and incredible scope.
There are many ways to study it and many points of view, none of which is
exclusive of the others. The chronological order of discoveries is often very
different from their logical sequence. What some people call the logic of
scientific discovery is largely a retrospective construction; it is nevertheless
useful to bring it out. Discoveries are not always made in logical order but it
is worthwhile and helpful to attempt to explain them in such an order: the
actual path of progress is not straight but very crooked, although the general
direction is clear enough.

We have interspersed our history with a narration of general intellectual
climate and of major social, cultural, political, economic and environmental
events: science does not develop in a social vacuum and every man of science
needs a modicum of food and other amenities in order to do his work; if
called to arms and killed in battle his activities come to an end; if he is
an empirical scientist, his opportunities will depend upon the laboratory or
observatory to which he has been admitted or which he was able to fashion,
and his freedom to pursue his work will be limited by the good or bad will of
administrators or fellow workers. Yet nobody can completely control his spirit;
he may be helped or hindered, but his scientific ideas are not determined by
social factors. Honest men of science and mathematics have often continued
activities detrimental to their material interests.

In this treatise, I have tried to draw a map of science, technology and great
ideas that would be as accurate and complete as possible, yet sufficiently free
from unnecessary details and sufficiently condensed so as not to obstruct the
general view.

The book was composed through intensive work during 1991–2008. I had
planned to present it to my readers just at the turn of the millennium, but
unexpected difficulties prevented me from this symbolic gesture.

The diverse sources used in my work are listed in the bibliography and
sometimes in the text itself. Whenever possible, the data was cross-checked
between different sources.

January 2009 Ari Ben-Menahem
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J.W.L. Glaisher (1848–1928)

∗ ∗∗

“Take three hundred men out of history and we should still be living in the
stone age”.

Arthur Keith (1866–1955)

∗ ∗∗

“The history of science is very largely the history of great men”.

George Sarton, 1927

∗ ∗∗

“Without the concepts, methods and results found and developed by previous
generations right down to Greek antiquity, one cannot understand the aims
or the achievements of mathematics in the last fifty years”.

Hermann Weyl, 1950 (1885–1955)



∗ ∗∗

“There is nowhere else to look for the future but in the past”.

James Burke, 1978

∗ ∗∗

“The genesis of the majority of mathematical theories is obscure and difficult.
Often, today’s presentation of a classical topic, will be much more accessi-
ble and concise than it could even have been when it was developed. Any
scientist’s work, can only be understood within its contemporary scientific
framework”.

Walter K. Bühler



Preface

Many books are published every year on the history of science, but I know of
no comprehensive treatise that blends the essential historical data (chronol-
ogy, biographies, major background political and economical events, etc.) to-
gether with science proper (principles, laws, experiments, observations, theo-
ries, equations, etc.). The present encyclopedic treatise does just that; it tells
the reader not only who did it and when it was done but also precisely what
was done.

The saga of this history of ideas, discovery and invention in the natural
and mathematical sciences – spanning about 100 generations of great thinkers
from Thales to Feynman – unfolds in all its grandeur before the eyes and mind
of the reader. Whether to professional scientists, students, or unassuming
curious laymen, the doors of this shrine are open, inviting them to browse,
linger and study whatever suits them. I believe that every intelligent person
can understand the development of science when properly presented from its
beginnings; The historical method is the best for introducing scientific facts
and ideas to unprepared minds in a thoroughly understandable manner.

The history of science is more than the arithmetical sum of the histories
of all sciences, for it also explains the interrelations of them all. Indeed, our
division of science into many branches is largely artificial. Like the branches
of a living tree which have no separate existence, but grow together – the
progress of each science is dependent upon the progress of all the others.

The main postulate of science is the unity of nature: nature is one; and
therefore, science is one. Finally, the fact that simultaneous discoveries have
been made by different groups of workers, in different settings, organizations
and nations, demonstrate that mankind is one: one mankind through one
science is unfolding the mysteries of one nature.

It follows that the only rational way to subdivide this history is not ac-
cording to the sciences or countries involved, but only according to time; for
each period of time we have to consider at once the whole of science’s histori-
cal and intellectual development. This calls for the marshaling of all scientific
facts, activities and ideas in a definite order; which means that we must try to
assign to each of them a date as precise as possible – not just the date of their
birth or their publication, but also that of their actual incorporation into our
knowledge – often a very difficult thing to do, as the reader will not fail to
appreciate. Such work of erudition is the bedrock upon which this history is
built.

We have also considered some other departments of life which have bearing
on the evolution of science. These are:
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• General natural and human history, especially the history of civilization.

• The history of technology.

• The history of philosophy and religions.

To make this general synthesis possible, we found it expedient to write
a large number of monographs on various subjects which emphasize the in-
terrelations between environmental, economic, social, cultural, political and
scientific ‘events’ (e.g. the history of epidemics is needed to correctly estimate
the evolution of medical ideas).

The history of science is a field of endless complexity and incredible scope.
There are many ways to study it and many points of view, none of which is
exclusive of the others. The chronological order of discoveries is often very
different from their logical sequence. What some people call the logic of
scientific discovery is largely a retrospective construction; it is nevertheless
useful to bring it out. Discoveries are not always made in logical order but it
is worthwhile and helpful to attempt to explain them in such an order: the
actual path of progress is not straight but very crooked, although the general
direction is clear enough.

We have interspersed our history with a narration of general intellectual
climate and of major social, cultural, political, economic and environmental
events: science does not develop in a social vacuum and every man of science
needs a modicum of food and other amenities in order to do his work; if
called to arms and killed in battle his activities come to an end; if he is
an empirical scientist, his opportunities will depend upon the laboratory or
observatory to which he has been admitted or which he was able to fashion,
and his freedom to pursue his work will be limited by the good or bad will of
administrators or fellow workers. Yet nobody can completely control his spirit;
he may be helped or hindered, but his scientific ideas are not determined by
social factors. Honest men of science and mathematics have often continued
activities detrimental to their material interests.

In this treatise, I have tried to draw a map of science, technology and great
ideas that would be as accurate and complete as possible, yet sufficiently free
from unnecessary details and sufficiently condensed so as not to obstruct the
general view.

The book was composed through intensive work during 1991–2008. I had
planned to present it to my readers just at the turn of the millennium, but
unexpected difficulties prevented me from this symbolic gesture.

The diverse sources used in my work are listed in the bibliography and
sometimes in the text itself. Whenever possible, the data was cross-checked
between different sources.

January 2009 Ari Ben-Menahem
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ble and concise than it could even have been when it was developed. Any
scientist’s work, can only be understood within its contemporary scientific
framework”.

Walter K. Bühler



Preface

Many books are published every year on the history of science, but I know of
no comprehensive treatise that blends the essential historical data (chronol-
ogy, biographies, major background political and economical events, etc.) to-
gether with science proper (principles, laws, experiments, observations, theo-
ries, equations, etc.). The present encyclopedic treatise does just that; it tells
the reader not only who did it and when it was done but also precisely what
was done.

The saga of this history of ideas, discovery and invention in the natural
and mathematical sciences – spanning about 100 generations of great thinkers
from Thales to Feynman – unfolds in all its grandeur before the eyes and mind
of the reader. Whether to professional scientists, students, or unassuming
curious laymen, the doors of this shrine are open, inviting them to browse,
linger and study whatever suits them. I believe that every intelligent person
can understand the development of science when properly presented from its
beginnings; The historical method is the best for introducing scientific facts
and ideas to unprepared minds in a thoroughly understandable manner.

The history of science is more than the arithmetical sum of the histories
of all sciences, for it also explains the interrelations of them all. Indeed, our
division of science into many branches is largely artificial. Like the branches
of a living tree which have no separate existence, but grow together – the
progress of each science is dependent upon the progress of all the others.

The main postulate of science is the unity of nature: nature is one; and
therefore, science is one. Finally, the fact that simultaneous discoveries have
been made by different groups of workers, in different settings, organizations
and nations, demonstrate that mankind is one: one mankind through one
science is unfolding the mysteries of one nature.

It follows that the only rational way to subdivide this history is not ac-
cording to the sciences or countries involved, but only according to time; for
each period of time we have to consider at once the whole of science’s histori-
cal and intellectual development. This calls for the marshaling of all scientific
facts, activities and ideas in a definite order; which means that we must try to
assign to each of them a date as precise as possible – not just the date of their
birth or their publication, but also that of their actual incorporation into our
knowledge – often a very difficult thing to do, as the reader will not fail to
appreciate. Such work of erudition is the bedrock upon which this history is
built.

We have also considered some other departments of life which have bearing
on the evolution of science. These are:
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• General natural and human history, especially the history of civilization.

• The history of technology.

• The history of philosophy and religions.

To make this general synthesis possible, we found it expedient to write
a large number of monographs on various subjects which emphasize the in-
terrelations between environmental, economic, social, cultural, political and
scientific ‘events’ (e.g. the history of epidemics is needed to correctly estimate
the evolution of medical ideas).

The history of science is a field of endless complexity and incredible scope.
There are many ways to study it and many points of view, none of which is
exclusive of the others. The chronological order of discoveries is often very
different from their logical sequence. What some people call the logic of
scientific discovery is largely a retrospective construction; it is nevertheless
useful to bring it out. Discoveries are not always made in logical order but it
is worthwhile and helpful to attempt to explain them in such an order: the
actual path of progress is not straight but very crooked, although the general
direction is clear enough.

We have interspersed our history with a narration of general intellectual
climate and of major social, cultural, political, economic and environmental
events: science does not develop in a social vacuum and every man of science
needs a modicum of food and other amenities in order to do his work; if
called to arms and killed in battle his activities come to an end; if he is
an empirical scientist, his opportunities will depend upon the laboratory or
observatory to which he has been admitted or which he was able to fashion,
and his freedom to pursue his work will be limited by the good or bad will of
administrators or fellow workers. Yet nobody can completely control his spirit;
he may be helped or hindered, but his scientific ideas are not determined by
social factors. Honest men of science and mathematics have often continued
activities detrimental to their material interests.

In this treatise, I have tried to draw a map of science, technology and great
ideas that would be as accurate and complete as possible, yet sufficiently free
from unnecessary details and sufficiently condensed so as not to obstruct the
general view.

The book was composed through intensive work during 1991–2008. I had
planned to present it to my readers just at the turn of the millennium, but
unexpected difficulties prevented me from this symbolic gesture.

The diverse sources used in my work are listed in the bibliography and
sometimes in the text itself. Whenever possible, the data was cross-checked
between different sources.

January 2009 Ari Ben-Menahem
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“The genesis of the majority of mathematical theories is obscure and difficult.
Often, today’s presentation of a classical topic, will be much more accessi-
ble and concise than it could even have been when it was developed. Any
scientist’s work, can only be understood within its contemporary scientific
framework”.

Walter K. Bühler



Preface

Many books are published every year on the history of science, but I know of
no comprehensive treatise that blends the essential historical data (chronol-
ogy, biographies, major background political and economical events, etc.) to-
gether with science proper (principles, laws, experiments, observations, theo-
ries, equations, etc.). The present encyclopedic treatise does just that; it tells
the reader not only who did it and when it was done but also precisely what
was done.

The saga of this history of ideas, discovery and invention in the natural
and mathematical sciences – spanning about 100 generations of great thinkers
from Thales to Feynman – unfolds in all its grandeur before the eyes and mind
of the reader. Whether to professional scientists, students, or unassuming
curious laymen, the doors of this shrine are open, inviting them to browse,
linger and study whatever suits them. I believe that every intelligent person
can understand the development of science when properly presented from its
beginnings; The historical method is the best for introducing scientific facts
and ideas to unprepared minds in a thoroughly understandable manner.

The history of science is more than the arithmetical sum of the histories
of all sciences, for it also explains the interrelations of them all. Indeed, our
division of science into many branches is largely artificial. Like the branches
of a living tree which have no separate existence, but grow together – the
progress of each science is dependent upon the progress of all the others.

The main postulate of science is the unity of nature: nature is one; and
therefore, science is one. Finally, the fact that simultaneous discoveries have
been made by different groups of workers, in different settings, organizations
and nations, demonstrate that mankind is one: one mankind through one
science is unfolding the mysteries of one nature.

It follows that the only rational way to subdivide this history is not ac-
cording to the sciences or countries involved, but only according to time; for
each period of time we have to consider at once the whole of science’s histori-
cal and intellectual development. This calls for the marshaling of all scientific
facts, activities and ideas in a definite order; which means that we must try to
assign to each of them a date as precise as possible – not just the date of their
birth or their publication, but also that of their actual incorporation into our
knowledge – often a very difficult thing to do, as the reader will not fail to
appreciate. Such work of erudition is the bedrock upon which this history is
built.

We have also considered some other departments of life which have bearing
on the evolution of science. These are:
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• General natural and human history, especially the history of civilization.

• The history of technology.

• The history of philosophy and religions.

To make this general synthesis possible, we found it expedient to write
a large number of monographs on various subjects which emphasize the in-
terrelations between environmental, economic, social, cultural, political and
scientific ‘events’ (e.g. the history of epidemics is needed to correctly estimate
the evolution of medical ideas).

The history of science is a field of endless complexity and incredible scope.
There are many ways to study it and many points of view, none of which is
exclusive of the others. The chronological order of discoveries is often very
different from their logical sequence. What some people call the logic of
scientific discovery is largely a retrospective construction; it is nevertheless
useful to bring it out. Discoveries are not always made in logical order but it
is worthwhile and helpful to attempt to explain them in such an order: the
actual path of progress is not straight but very crooked, although the general
direction is clear enough.

We have interspersed our history with a narration of general intellectual
climate and of major social, cultural, political, economic and environmental
events: science does not develop in a social vacuum and every man of science
needs a modicum of food and other amenities in order to do his work; if
called to arms and killed in battle his activities come to an end; if he is
an empirical scientist, his opportunities will depend upon the laboratory or
observatory to which he has been admitted or which he was able to fashion,
and his freedom to pursue his work will be limited by the good or bad will of
administrators or fellow workers. Yet nobody can completely control his spirit;
he may be helped or hindered, but his scientific ideas are not determined by
social factors. Honest men of science and mathematics have often continued
activities detrimental to their material interests.

In this treatise, I have tried to draw a map of science, technology and great
ideas that would be as accurate and complete as possible, yet sufficiently free
from unnecessary details and sufficiently condensed so as not to obstruct the
general view.

The book was composed through intensive work during 1991–2008. I had
planned to present it to my readers just at the turn of the millennium, but
unexpected difficulties prevented me from this symbolic gesture.

The diverse sources used in my work are listed in the bibliography and
sometimes in the text itself. Whenever possible, the data was cross-checked
between different sources.

January 2009 Ari Ben-Menahem
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Why Study the History of Science?

There are a number of compelling reasons for studying the history of sci-
ence:

1. The story of the development of science can be used as a vehicle for
helping teaching science to non-scientists. In students, it awakens their
critical sense; in working scientists and other thinkers, it tempers the
tendency to assume that their original contributions are antecedent-free.

2. From a purely historical perspective, the study of the history of science
helps us analyze the development of civilization, to understand man and
understand the deeper significance of science. The history of ancient and
medieval science is at least as useful as that of modern science. He who
knows only one of these histories does not really know the history of
science, nor does he know the history of civilization.

3. To project into the future, the present is obviously not enough, and
we must depend heavily on historical perspective. This is because the
recapitulation of the work of previous generations puts in context the
present state of science. Moreover, our civilization in particular is essen-
tially different from earlier ones, because our knowledge of the world and
of ourselves is deeper, more precise, and more certain; because we have
gradually learned to disentangle the patterns, structures and forces of
nature, and because we have contrived, by strict obedience to their gov-
erning laws, to capture them and to divert them to the gratification of
our own needs. Thus our civilization, more so than previous ones, cannot
be understood without proper comprehension of the history of science.

4. Geography and history are two necessary bases of man’s education; just
as some knowledge of geography removes his provincialism with regard
to space – that is, teaches him that things are not necessarily better in
his own village, in his own metropolis or in his own country than else-
where – even so, a knowledge of history is the only way of removing this
provincialism with regard to time as well – that is, of making him realize
that things are not necessarily better in his day than in earlier or, maybe,
in later ones. One has to look at things as they really were perceived
in their own time: scientists of the past did not think about their own
work the way we do; e.g. Kepler did not deduce his famous three laws by
merely studying the data of Tycho Brahe; much of the spirit of the Mid-
dle Ages and the Greek World suffused Kepler’s thinking – things that
we now no longer associate with planetary motions, were on his mind.

5. As emphasized by physicist Steven Weinberg, the history of science
shows us that in their final form the laws of nature are culture-free
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and permanent, in spite of the fact that many cultural and psychologi-
cal influences enter into scientific work. In the limit, cultural influences
are refined away. Aside from inessentials like the mathematical notation
we use, the laws of physics as we understand them now – and thus those
of all other sciences, which can be reduced to them in the final analysis
– are nothing but a description of reality. When a “revolution” in sci-
ence replaces one well-verified theory with a better one – e.g. classical
mechanics with relativistic and/or quantum mechanics – the old theory
continues to be both (approximately) valid and useful, within its own,
more restricted domain.
On this view, physical theories are like fixed points, toward which we are
attracted. Starting points may be culturally determined, paths may be
affected by personal philosophies, but the fixed point is there nonethe-
less. It is something toward which any physical theory moves; when we
get there we know it, and then we stop. The final theory toward which
we are moving will be (if reached) a theory of unrestricted validity, a
theory applicable to all phenomena throughout the universe - a theory
that, when finally attained, will be a permanent part of our knowledge
of the world, encompassing all previous successful theories as special
limiting cases.

6. The history of science teaches us that it is those ideas that were most
successful, of which we should be especially wary, i.e. great heroic ideas
of the past can weigh upon us, preventing us from seeing things in a new
light and from a fresh perspective. Pioneers are beginners: they cannot
be expected to complete their task; it is not their business to complete
it. Consider the following example (again due to Weinberg):
In 1915, Einstein, in the formulation of his theory of gravitation, as-
sumed (in addition to the principle of equivalence) that the equations of
the General Theory of Relativity are 2nd order partial differential equa-
tions (PDEs); i.e. involve only rates of change in time and space and
the rates at which these rates change – but no higher order of change
[like the Maxwell equations, the diffusion equation, etc.].
He could have made them 4th order PDEs – but he did not. Today, this
theory of his is regarded a field theory that provides an approximation
valid in the limit of large distances (much larger than the Planck length
of 10−33 cm). If one supposes that there are terms of higher order deriv-
atives, such terms play no significant role at these large distances, and
are thus fairly irrelevant to astronomical (or even most cosmological)
observations. We now realize that there must – for many reasons which
Einstein could not have foreseen – be such corrections, and that they
will be necessary in order to study matter, fields and spacetime at the
Planck scale.



Guide to the Reader

The main body of this multilateral Encyclopedic History consists of bi-
ographies interspersed with essays, articles and events. The biographies are
arranged chronologically, within the domains of six consecutive epochal chap-
ters. There are about 2070 detailed biographies of scientists, thinkers, en-
gineers, explorers, inventors and associated creative minds who, in one way
or another, left their mark on the history of science and technology in the
fields of: mathematics, philosophy, logic, physical and environmental sciences
(physics, chemistry, astronomy, earth and space sciences, cosmology), life sci-
ences (biology, medicine, physiology, botany, zoology, biochemistry), asso-
ciated engineering disciplines, and social sciences (economics, psychology,
sociology, anthropology, linguistics etc.).

The total number of scientists, thinkers and other creative individuals
featured in the treatise is about 3000.

The book includes the names of some 1700 inventors over a period of 2500
years. Of these, 300 belong to the period 350 BCE – 1900 and the rest to the
20th century alone.

The articles (380 in number) summarize the time-evolution of ideas in
the above leading fields of science, technology, mathematics and philosophy.
In addition, I have included historical environmental events that impacted
civilization and also important politico-historical events that affected science,
technology and world-order. The reader will also find many useful tables and
some 20 ‘Science Progress Reports’ (SPR) dealing with scientific setbacks.

The biographies and articles of this encyclopedia are interspersed with
many quotations, gathered from the wit and wisdom of sages, savants and
scholars throughout the ages from antiquity to modern times.

These quotations are to be found within the text in chapter 6 and un-
der the heading “worldviews” where they are attached to some fifty selected
individuals from Socrates to Feynman.

In these quotations, man reflects on himself, his condition, his times and
on science proper through the thoughts of scientists, philosophers, humanists,
poets, theologists, statesmen, and other miscellaneous mortals.

Our list of biographies is arranged in strict chronology. We must however
remember that history is full of uncertitudes. Even when we have managed to
arrange our facts in chronological order, we are not sure that the antecedents
have influenced the consequents. But at any rate, we are sure that the con-
sequents have not influenced antecedents, and historical certainty is so rare
that, when we find it, we must stick to it as closely as possible.
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Chapter 6 is dedicated to the second half of the 20th century. Had I
included here biographies of contemporary scientists together with proper es-
says on their respective research achievements (and considering the exponen-
tial growth of science during 1950–2005), this chapter alone would have grown
into a gigantic size of some 5000 pages. The time needed for the completion of
this task would require me to delay the presentation of the encyclopedia by at
least five years. To circumvent this difficulty, I have decided to present a gen-
eral layout of the major research topics and current front-lines, supplemented
with tables, timelines and a few key essays.

Credits for Originality of Ideas and Inventions

Observations and measurements provide data that accumulate from epoch
to epoch. These form the stuff of hypotheses and theories that in turn suggest
new observations. Ultimately we arrive at a major synthesis. These also
accumulate, building toward the goal of an ever more inclusive and simple
conceptual structure. Connectivity involves the influences of one epoch, one
school, one scholar on others, leading to a significant advance in the science.
It is a sad but true fact that historical relevance accrues not to the originator
of the idea or a fact but to the person providing the connections. e.g. credit
for relevance goes not to Aristarchos of Samos, who first proposed, eighteen
centuries before Copernicus, that the earth moves around the sun, since that
insight was lost. Rather, the connectivity of Copernicus to Galileo, Kepler
and Newton was seminal to eventual progress.

It has been said that: “credit in science goes to the man who convinced
the world, not to the man to whom the idea first occurs”.

My policy in this treatise has been to give credit wherever credit in due,
i.e. also to the originator of an idea or a fact, irrespective of whether he made
the connection or not. In fact, I made it my business, as much as I was able,
to search for the true originators.

Credits for Sources of Information

I have borrowed factual information from a vast number of books, articles
and encyclopedias, but the creative synthesis of all these sources into a final
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mold is mine alone, and the responsibility for accuracy and relevance rests on
my shoulders. I believe that in presenting the finished material to my readers,
I have saved them the trouble and effort of reading libraries of books.

The cited bibliography is sufficient, although no effort was made to make
it complete: first, there is a limit to what a single author can reach and
read. Then, even from his chosen sources, not everything is suitable nor
available to the common reader. However, in this day and age, when the
Internet is within reach of many people, all those who wish to, can update
their knowledge on a particular subject, person or event. The length of my
reviews of a person’s life-work was not intended to be a measure of his or her
greatness and importance.

Selection of Persons

In a work of this kind, it is not easy to know where to draw the line
between inclusions and omissions. While it is relatively easy to determine
the most important scientists and thinkers, it is more difficult to agree upon
personalities of the second and lower orders. Very often, the inclusion of one
scientist entails the admittance of a number of others whose merits were of
the same stature. Thus, while it is impossible that I have overlooked any
really important personality, it is probable that I have included a few whom
it would be better to omit. Clearly, no selection would please everybody. As
a rule, however, I have adhered to the following selection criteria:

• Not to mention a person unless there is something special to say of his
or her activity (discovery, book, etc.).

• Name people who took the first step in the right direction, however
simple it may seem in retrospect.

• Take into consideration the opinion of both contemporaries and later
scholars about the contributor.

• Consider the impact and influence of a person’s actions, writings and
ideas upon the history of science, in both short and long range perspec-
tives.
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It was my original intent to deal only with the history of pure science, but
it is often difficult, if not impossible, to draw the line between pure science
and the applications. Sometimes the applications were discovered first and
the principles deduced from them; sometimes the converse; but in any case
pure and applied science grow together. Yet a line must be drawn somehow,
for while the number of pure scientists is relevantly small, that of physicians,
teachers, engineers, and other practitioners have always been considerable.
My rule is to speak of a physician, an engineer, or a teacher only if he added
something definite to our knowledge, or if he wrote treatises which were suffi-
ciently original and valuable, or if he did his task in such a masterly way as
to introduce new professional standards.

Selection of Data and Evaluation of Scientists

Objective material and scientific facts (equations, laws, rules, discoveries,
inventions etc.) are relatively easy to choose, formulate and explain. Human
facts are not as clear-cut and are often highly capricious and evanescent. It is
thus a difficult mission to choose a few of the achievements amongst a great
many.

My account of each personality has been as brief is possible but it is
sometimes much easier to indicate a great achievement than a much smaller
one, and thus some of the notes devoted to second-rate personalities are much
longer than one would expect. This does not matter in itself, but the reader
is warned not to try to measure the importance of a person by the length of
the note devoted to him or her; there is no relation between the two.

I may have made accidental errors in my choice, by omission or commis-
sion, but I do not believe that I have made systematic errors. Nevertheless, a
certain bias may have been introduced by my linguistic preferences (English,
French, German, Hebrew), my scientific specialization (physics, mathematics,
chemistry, geophysics, history, philosophy), education (Israel, Sweden, USA)
and origins (Eastern Europe, Germany and Israel).

I have tried to be as concrete as possible, that is to say, to indicate the spe-
cific achievements or contribution in the clearest and briefest manner. That
was never easy, often difficult, sometimes impossible. Even as in our own day,
there were a number of people in the Middle Ages who attained considerable
prestige and rendered undeniable services, yet of whom it can not be said
positively who did this or that. In such cases, where the influence was of an
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indefinite nature, I have been obliged to be vague. In a few other cases I have
been reduced to a similar vagueness by my ignorance.

Names of Persons

In the transliteration of names not originally written in the Latin alphabet
(e.g. Japanese, Persian, Greek, Chinese) I have followed Sarton whose motto
was: ‘consistency and simplicity’, and who wrote foreign names in such a form
that the original written form might be easily reconstructed and found in the
dictionary.

Permanent Surnames are of relatively modern origin; they did not exist at
all in the Middle Ages. There are many ways of naming a person, and much
ambiguity is thus caused. I quoted all the names that each person was known
under and selected one of these as the best. When mentioning that person I
have always used that name.

The Muslim names are especially difficult. I have given, whenever I could,
a large part of their names, not necessarily the whole of them, because this
involve a genealogy of indefinite length. In general I have tried to select a
name which would be convenient and as characteristic as possible. The case
of Chinese and Japanese names poses another difficulty, because, according to
their customs, names are not only changed during life, but even after death.
and many men are best known under a posthumous name. Hebrew names
and words were used in accordance with the ‘Jewish Encyclopedia’.

Following George Sarton, I have translated the Greek termination os and
oν by os and on. This has the distinct advantage of distinguishing Greek
from Latin writers: Epicuros, Epictetos – Lucretius. Likewise, we write: Mile-
tos, Herodotos, Nicomachos, Eudoxos, Menaichmos, Appolonios, Heironymos,
Pappos, Herophilos, Aristarchos, Euhemeros, Aratos, Hipparchos, Ctesibios,
Erasistratos, Zenodoros, Diodoros, etc.

Activity Intervals of Scientists

The period of activity is centered in the age of peak creative activity,
usually between 30–50 years of age. There are however many exceptions to
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this rule, especially when the age of greatest prestige is different from that of
greatest activity, or because the person’s life was cut short. Indeed, it takes
a considerable time before the activity of a truly original mind is properly
appreciated.

Apart from the class of outstanding persons, whose biographies are known
in sufficient detail, the exact period of ‘scientific fertility’ of most scientists
is not accurately known prior to the 17th century. Thus, in the absence
of contradictory information, I have considered as a man’s prime the year
when he became 40 years of age, the nearest to the intellectual climax of
most men. It is probable that the greatest scientific discoveries were made,
and the most pregnant resolutions taken by men younger than forty, but the
accomplishment of their work took considerable time and the maturing of
their thought extended over many years.

Classification of Chronology

Every classification has the disadvantage of introducing artificial disconti-
nuities in the flow of life. It must necessarily happen that contemporaries are
dealt with in two successive chapters, because one was active at the end of
one century and the other at the beginning of the following century; they were
flourishing almost at the same time, but at different sides of the cut. This
drawback is unavoidable, but is not really objectionable, unless the reader is
unaware of it.

The efforts of classification are most disadvantageous in the Middle Ages.
Not everyone seems to realize that these ages lasted about a 1000 years,
and that their development, far from being monotonous, was exceedingly
varied. Moreover, brutal political vicissitudes introduced discontinuities in
many countries. Under these conditions, any classification of Middle Ages is
quiet artificial and no natural classification would be applicable to all sciences
and all nations. For that reason the Middle Ages were left undivided and
unclassified between 529 CE–1583 CE.

It should be kept in mind that no epoch in history begins or ends sharply
at a given year and chronological dividing lines are made mostly for the sake
of convenience.
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Background Events

(Wars, Revolutions, Social Upheaval and Natural Disasters)

Although our center of interest is the evolution of scientific facts and ideas,
general history is always in the background. Not only do the different sciences
interact among themselves, but there is also a constant interaction between
science and all other intellectual developments, as well as social, natural and
economic phenomena. These events often interfere with the accomplishment
of science but sometimes stimulate or are even stimulated by it.

Wars and revolutions are not essentially different from natural catastro-
phes such as earthquakes, volcanic eruptions, floods or epidemics; they are
almost as impersonal and uncontrollable. For most men these catastrophes
are by far the most important events, and this is natural enough, since their
welfare is often radically affected by them. Galileo’s or Newton’s discoveries
did not lower the price of food or shelter, at least not with sufficient sud-
denness to be perceptible. For us, on the contrary, these discoveries which
must sooner or later transform man’s outlook and, so to say, magnify both
the universe and himself, are the cardinal events of the world’s history. All
the catastrophes and upheavals, caused either by the untamed forces of na-
ture or by the irrepressible folly of men, are nothing but accidents. They
interrupt, upset and sometimes enhance man’s essential activity but, however
formidable, they do not and cannot dominate it.

∗ ∗∗

To give our history its full heuristic value, it was not sufficient to retrace
the progress of the human mind. It was also necessary to record the regres-
sions, the sudden halts, the mishaps of all kinds that have interrupted its
course. The history of errors is extremely useful: for one thing, because it
helps us to better appreciate the evolution of truth; also because it enables
us to avoid similar mistakes in the future; and lastly, because the errors of
science are, to some extent, of a relative nature. Some of the accepted and
well-established truths of today will perhaps be considered tomorrow as very
incomplete truths; and there are even precedents for the perceived errors of
yesterday eventually becoming approximate or partial truths of today. Similar
rehabilitations frequently occur en route to be the “fixed points” mentioned
above, and the results of historical research often oblige us to admire and
honor people who have been misunderstood and despised in their own time.
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Thus, although we undertook to explain the progress of scientific thought,
it is clear that we cannot properly explain that progress without giving at least
a brief account of the intellectual delusions which often delayed our advance
or threatened to sidetrack it.

Moreover, to correctly appreciate the scientific ideas of any people, we
must consider them not only from our point of view, but also from their
own, however wrong the latter may seem. Thus it is necessary to outline
the development of some pseudo-sciences, such as astrology, alchemy, and
physiognomy.

It should be noted that it is not always easy to distinguish a pseudo-science
from one which is sound but imperfect; in some cases it is almost impossible;
we can do it now with reference to the past, but it is not certain that we can
always do it with regard to the present.

For these reasons I have included in my book a condensed history of as-
trology, alchemy and other delusions. In addition I have included some 20
articles called ‘Science Progress Reports’ in which follies of scientific regres-
sion are expounded.

I have made no attempt to tell that history with any completeness, for
the history of error is, of its very nature, infinite. Besides, as I am bent
upon explaining the progressive – not the regressive – tendencies of human
civilization, I have kept these fallacies in the background where they belong.
Indeed, since they never represented the main current of human endeavor,
but were rather like undertows, it would be equally wrong to ignore them
altogether or to attach too much importance to them.

As the scope of my field of study is immense, both in time and size, errors
are unavoidable; in spite of severe precautions taken by myself and the editors,
some errors will regretfully still be present. I hope that in time, we shall be
able to weed them out.

Ari Ben-Menahem Rehovot, Nov 04, 2008
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∗ ∗∗

In the beginning God created the heaven and the earth.

And the earth was without form, and void;

and the darkness was upon the face of the deep.

And the spirit of God moved upon the face of the waters.

And God said, “Let there be light!” and there was light.

Genesis 1, 1-3

∗ ∗∗

∗ ∗∗

In principio creavit Deus caelum et terram.

Terra autem erat inanis et vacua;

et tenebrae super faciem abyssi;

Et spiritus Dei ferebatur super aquas.

Dixitque Deus, “fiat lux!”, e facta est lux.

(Vulgata)



ca 14,000 Mya 19

ca 14,000 Mya

“Give me matter and motion and I will make the world”

(René Descartes, 1637)

Big Bang A model for the history of the universe stating that it began in
an infinitely dense and hot state and has been expanding ever since a creation
“event”, which took place sometime between 13 and 14 billion years ago. The
theory is now widely accepted since it explains three of the most significant
observations in cosmology: the expanding universe, the cosmic microwave
background radiation and the origin and abundancies of the light elements.

A class of models of the early universe that include a thermodynamic phase
transition (and subsequent re-heating and a brief exponential expansion) at
fraction of second after the Big bang, are known as inflationary universe
models.

This event, if it happened, released enormous energy, stored until then
in the vacuum of space-time. The causal horizon of the universe expanded,
temporarily, much faster than the speed of light. This scenario may be able
to account satisfactorily for the present spatial flatness of the universe and its
uniformity, and some other features.

ca 12,800 Mya Formation of the first stars in the universe.

ca 4700 Mya Our sun is thought to have formed from a small cloud of gas
and dust (produced by earlier stars) which, after lingering for billions of years
in one of the Milky Way’s spiral arms, succumbed to its own gravitational pull
and collapsed. Most of the material in this cloud was drawn into a central
body. Thus, our sun has a composition nearly identical to that of the original
cloud. It contains 99 percent hydrogen and helium, with about 1 percent
comprising the remaining elements.

A small amount of the matter in the cloud ended up in a nebular disk
around the newly formed sun. This material gravitationally aggregated into
planets, moons, asteroids, and comets. The compositions of these objects are
very different from that of the sun. This difference is the result of extensive
chemical and physical differentiation: those elements contained in dust grains
were largely retained through incorporation into the objects making up the
planetary system; those elements in gaseous form were largely driven off by
the particles and radiation streaming forth from the sun thus, most of the
lighter elements (especially hydrogen and helium) not incorporated into the
sun, became part of the larger outer planets.
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In those parts of the disk close to the hot sun (which formed earth and
the terrestrial planets) only the least volatile of the chemical compounds were
in solid form. What little primordial hydrogen survived was locked inside
chemical compounds (most notably water and organics). In the more distant
reaches of the disk, the abundance of elements heavier than helium was low.

Because of this, the comets and planets of the outer solar system have a
chemical composition quite different from that of the asteroids and planets of
the inner solar system.

ca 4600 Mya Earth1 was formed by the accretion of rocky masses. As
this mass increased, the temperature rose dramatically and the rocky solid
material melted and separated. Eventually the dense material, mostly iron
and nickel, sank to form the central core while the lighter, mostly silicate
material rose to the surface to form the planet’s crust.

As earth cooled, it was bombarded by objects from space.2 Perhaps the

1 The third planet from the sun is one of the most geologically active planets in the

solar system, with large volcanoes and great mountain chains. Water is abundant,

as vapor in the atmosphere and as liquid and ice on the surface (and subterranean

liquid as well). Earth is the only planet in the solar system with an average

temperature between the freezing and boiling points of water. Its most unique

characteristic is that it supports an amazing diversity of life.

Oceans cover 70 percent of earth’s surface. It they were spread out evenly, earth

would be under 4 km of water. More than 80 percent of all photosynthesis (the

process by which plants convert sunlight into chemical energy) takes place in the

oceans, making them the principal habitat of life on earth. Ocean water contains

many minerals leached or dissolved out from rocks and soil and carried to the

oceans by rivers. Sodium chloride, or common table salt, composes 3.5 percent

of ocean water.

Fresh water, containing almost no salt, is essential for most living things not found

in the oceans. The sources of fresh water is rain, which comes from pure water

vapor evaporated from the oceans. The proportion of fresh water to ocean water

is small. Only a little over 2 percent of the total amount of water on or near

earth’s surface is fresh water. Of this fresh water, about 80 percent is frozen in

glaciers at the poles.
2 On July 4, 2005, NASA’s spacecraft Deep Impact (launched Jan 12, 2005) plunged

a self-guided copper slug (having a mass of 370 kilograms) into Comet Tem-

ple 1, thus delivering to its nucleus’ surface the equivalent of 4.5 tons of TNT.

Just minutes after the impact the flyby probe passed the nucleus at a close dis-

tance of 500 km, taking pictures of the crater position, the ejecta plume, and

the entire cometary nucleus. The entire event was photographed by earth-based

telescopes and orbital observatories, such as the Hubble, Chandra, Spitzer and
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largest of these objects was the size of Mars, blasting a cloud of debris into or-
bit that would eventually become the moon. Before the bombardment ceased,
about 3.8 billion years ago, 35 impact basins larger than 300 km across were
formed on the moon. The larger and more massive earth probably expe-
rienced hundreds of comparable impacts. Some would have formed gigantic
impact basins with diameters equal to half the width of the continental United
States.

Earth is the only inner planet that has liquid water on its surface, although
Mars and Venus may have surface ice particles now. As earth cooled, a prim-
itive atmosphere was formed through a volcanic process known as outgassing.
This is the release of gases from the interior, including water vapor, hydro-
gen, nitrogen, and carbon dioxide. As the water vapor in the atmosphere
increased, it condensed and fell as rain. Eventually, enough water collected
to form our oceans.

ca 3960 Mya Oldest rocks (discovered 1989 CE).

ca 3900 Mya Advent of life; oldest fossils of primitive cells (simple algae
and other single-celled organisms) have been found in rocks in Greenland,
South Africa and Australia.

ca 3500 Mya Organic carbon compounds; primitive virusoid cells.

ca 3300 Mya Sedimentary rocks already teaming with life.

ca 3000 Mya Organisms capable of photosynthesis.

ca 2600 Mya Evidence for the existence of the geomagnetic field, at that
epoch.

ca 2500 Mya Tectonic plates clash in India (studied by 1989 CE).

XMM-Newton. In addition, the impact was observed by cameras and spectro-

scopes on board Europe’s Rosetta spacecraft, which was about 80 million km

from the comet at the time of impact. Rosetta could then determine the compo-

sition of the gas and dust cloud kicked up by the impact.

Analysis of data from this mission disclosed that comets (formed about 4.5 billion

years ago) probably carried to earth water and organic compounds (the two nec-

essary ingredients of life) early in the planet’s history, when strikes by asteroids,

meteors and comets were common.
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Table 0.1: Geological Time

Millions of years ago
Precambrian Time

Archean Era 4600–2500
Proterosoic Era 2500–570

Phanerozoic Time

Paleozoic Era

Cambrian Period 570–505
Ordovician Period 505–438
Silurian Period 438–408
Devonian Period 408–360
Carboniferous Period 360–286
Permian Period 286–245

Mesozoic Era

Triassic Period 245–208
Jurassic Period 208–144
Cretaceous Period 144–66.4

Cenozoic Era

Tertiary Period
Paleocene Epoch 66.4–57.8
Eocene Epoch 57.8–38.6
Oligocene Epoch 38.6–23.7
Miocene Epoch 23.7–5.3
Pliocene Epoch 5.3–1.6

Quarternary Period
Pleistocene Epoch 1.6–0.01
Holocene Epoch 0.01–0

ca 2000 Mya Free oxygen3, a by-product of photosynthesis by algae4, began

3 Much of earth’s initial atmosphere, and its water were probably outgassed early

in the planet’s history. Carbon dioxide, nitrogen, hydrogen, water vapor, and

other volatile gases (i.e. that evaporate at relatively low temperatures) comprised

earth’s early atmosphere. These elements may have come both from the rocky

material on earth and from the volatiles-rich material from the outer solar sys-

tem.

For the first billion years, oxygen was only a small component of earth’s at-

mosphere. Oxygen accumulated in the atmosphere only after photosynthesis be-

gan producing it faster than it was lost by chemical combination with other gases

and metals. Most of the carbon dioxide in earth’s early atmosphere was removed

not by plant life but by chemical combinations with calcium, hydrogen, and oxy-

gen, forming limestone (calcium carbonate) in the oceans and other compounds.
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to accumulate in the atmosphere.

ca 1600 Mya Primitive plant life.

ca 1300 Mya Eukaryotes cells with nuclei, e.g. amoeba; tremendous pro-
lification and diversification of life.

ca 1000 Mya First multicellular animal phylum: e.g sponges (no nervous
system nor muscle fiber).

ca 750 Mya First ‘Snow-ball earth’ episode. One of four climatic reversals
that ended in ca 580 Mya. (The theory was first suggested in 1964 and
accepted in 1997).

ca 700 Mya Advent of the cycle of disruption and unification of the earth’s
crust known as continental drift ; Remains of the earliest known large-bodied
animals in rocks, most belonging to corals and jelly-fish phylum.

The interaction among the plates of the lithosphere is called plate tecton-
ics. Much of earth’s landscape has been shaped by plate tectonics. As oceanic
plates have been created and subducted and the continents have collided and
broken apart, mountains have been built, rift valleys formed, ocean ridges and
trenches created, and volcanoes constructed.

Most activity occurred along the edges of the plates as they move in rela-
tion to one another. Plate tectonics began with plate recycling and was driven
by convective cooling of earth’s interior. The continental lithosphere was made
largely of rocks such as granite that are less dense than the mantle. So, while
oceanic plates were forced back into the mantle, the continents stayed afloat
and remained at the surface, although they have drifted together and broken
apart many times. By 80 million years ago, most of the continents we know
today were isolated and had begun moving toward their current positions.

In recent times humans have been generating carbon dioxide faster than plants

or the oceans can take it up. At the same time, we are cutting down forests

that use carbon dioxide and burning the wood, releasing more carbon dioxide.

Earth’s atmosphere is now about (by volume) 78 percent nitrogen, 20 percent

oxygen, 1 percent argon, and 1 percent water vapor, with CO2 making up only

385 ppm (seasonally averaged). The average atmospheric surface pressure is about

15 pounds per square inch (1 kg/sq cm).
4 The web of life: In the single-celled algae Emaliana huxlexi, the shield-like struc-

tures on its surface are composed of calcium carbonate, which goes to form chalk

when the cell dies. Blooms of Emaliana cover large areas of the ocean. They per-

form a vital role by removing carbon dioxide from the air and producing dimethyl

sulphide, which acts to nucleate clouds.
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The term “continental collision” conjures up visions of high-speed crashes,
but the continents move only up to 10 cm per year, and it takes millions
of years to build a mountain range. Around 250 million years ago, when
North America collided with Africa, the ensuing large-scale crustal shortening
generated the Appalachian Mountains. Erosion has worn them down, but
they were once comparable to the present-day Himalayas. The Himalayas,
however, were formed only about 35 million years ago when India plowed into
Southern Asia. The large-scale horizontal shortening that resulted built up
the highest mountains on today’s earth.

ca 660 Mya Hard-shelled animals in the sea: organisms large enough
to leave clear fossil evidence started to evolve at this time. Oldest known
multicellular animal fossils.

Collision Events and Geological History

After the earth formed, its bombardment by ‘cosmic bullets’ such as
comets and asteroids (protoplanets) did not cease. Accretion, the process
of planetary building, continued, and to a tiny extent it continues to this day.

The accretion by the early earth of comets through collisions played a key
role in the history of life on earth. The comets brought the water of the oceans
and the carbon-enriched materials that would someday form the biomass of
the planet. Indeed, trillions of comets in the Oort cloud, billions of objects in
the Kuiper belt, and millions in the asteroid belt are reservoirs for potential
earth-crossing objects.

Of all the terrain on earth that underwent the period of heavy bombard-
ment, none has survived the effects of erosion, plate recycling, and plate tec-
tonics. Yet, evidence remained that the earth has been hit by asteroids and
comets: In the last 100 million years, earth has been hit by well near a 1000
objects capable of producing craters with diameters in the range 10–150 km.
About a 100 known impact structures on earth range in diameter from 2 to
over 150 km. Only a few of the largest impact structures are older than 500
million years.
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The earth’s history is divided into periods of time based on the types of

fossils present in sedimentary rocks formed during those times. The time

before 570 million years ago, the Pre-Cambrian era, lacked life-forms with

hard parts that formed fossils easily. All large organisms were soft-bodied

and lived in the ocean. Fossils of primitive cells have been found inside rocks

in South Africa and Australia that are 3500 million years old.

However, organisms large enough to leave clear fossil evidence did not

evolve until about 600 million years ago. During the Paleozoic era, from 570 to

245 million years ago, hard-bodied plants and animals exploded in abundance,

and colonized the land. The first amphibians arose, and ferns and conifers

dominated the forests. The Mesozoic era, from 245 to 65 million years ago,

was the time when dinosaurs were abundant land animals. Mammals also

existed, but were of lesser importance. Later in this era, the first flowering

plants occurred.

The Mesozoic era of the dinosaurs is in turn divided into three periods

based on the dominance of different species: the Triassic (245–180 million

years ago), the Jurassic (180–144 million years ago), and the Cretaceous (144–

66 million years ago). The earth’s continents began to assume a recognizable

configuration only during the Cretaceous period. The continuing processes

of erosion, plate-tectonics, volcanism and cratering created changes in the

surface of the earth.

The fossil record testifies to global mass extinction of species in the oceans

and on land. Such events occurred about 11 million, 35 million, 66 million,

91 million and 250 million years ago, correlating with sedimentary layers that

contain the element iridium, which is 10,000 more abundant in most mete-

orites than in the earth’s crust. The iridium could have come either from

volcanic eruption from deep in the mantle or from an impact of an asteroid.

Other evidence suggests that large impacts threw enormous amounts of

dust into the atmosphere, thus blocking out much of the sunlight for a few

months or even years, and possibly igniting great forest fires.

In the mass extinction about 65 million years ago, 75 percent of the ex-

isting plant and animal species disappeared in less than a few million years,

ending the age of the dinosaurs and ushering in the age of the mammals. The

Cenozoic era, since the extinction of the dinosaurs 65 million years ago, is

the age dominated by mammals. The first grasses developed, and the land-

scape took on its present appearance. In comparison, human civilizations

have developed only during the last six thousand years.
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Some believe that this extinction was triggered by the impact that formed
the Chicxulub Crater5, releasing energy of the order of 108 megatons of TNT
[1 MT = 4.2 × 1022erg]. Others point to the outgassing that accompanied the
formation of the Deccan Plateau about 66 million years ago as the cause of
that mass extinction.

ca 543 Mya The Cambrian evolutionary explosion:

Sudden appearance of complex life6; most of the animal groups now on
earth appeared in the fossil record (and can also be genomically traced today)
a relatively short time; possible causes:

• Level of atmospheric oxygen rose to a critical point so that oxygen dis-
solved in sea-water, finally achieved sufficient levels to support large
arrays of active animal life.

5 It is hidden under the sediments on the coast of the Yucatan Peninsula. The

crater was detected when instruments measuring variations in the earth’s gravi-

tational and magnetic fields showed a circular structure about 180 km wide and

possibly a larger concentric structure 300 km wide. The asteroid that made the

crater is estimated to have been about 10 km across, having an estimated mass

of 1018 g and hitting the earth with geocentric velocity of 40 km
sec

. Its radius of

total destruction was about 5000 km.
6 Until recently, scientists had thought that the so-called “Cambrian explosion”

lasted for 20–30 million years. A new study (1994), however, revealed that the

period probably lasted only about 5 million years, telling us that evolution can

operate extraordinarily rapidly when conditions are right.

The researchers determined the new time scale for the Cambrian explosion by

analyzing volcanic rock from the early Cambrian period; by dating zircon crystals

within these rocks, they were able to determine that the Cambrian period began

about 543 million years ago and the Cambrian explosion began about 530 million

years ago, and terminated about 525 million years ago. The body plans that

evolved in the Cambrian served as blueprints for those seen today. Few new ma-

jor body plans have appeared since that time. All the evolutionary changes since

the Cambrian period have been mere variations on those basic themes. Are these

blueprints truly the optimal solutions to the problems of survival and reproduc-

tion (reached through an early fast bout of natural selection before development

congealed)? Or are they just random combinations of characters assembled by

accidents of history? And just how random is biological evolution? – Science, at

this point, has no answer to these questions.
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• Sunlight radiation on earth reached a critical level, increasing the trans-
parency in oceans and atmosphere.

• It is during this period that the eye evolved: the primitive Cambrian
life-forms were able to process visual imagery for the first time.

ca 420 Mya Earliest life on the land. Life probably originated in the
seas, to which the majority of invertebrate groups are still restricted. Life on
land involved major adaptations for these creatures that originated and lived
in the oceans. The modifications included changes necessary for protection
against dessication, new methods of support in air as opposed to the more
buoyant water, breathing oxygen as opposed to extracting it from the water,
new sources of food and water, and new reproductive mechanisms to ensure
fertilization in the absence of water. Colonization of rivers and lakes was only
slightly less formidable, for it involved development of mechanisms to prevent
dilution of body fluids that, in all animals, contain dissolved salts precisely
adjusted to the osmotic balance of sea water.

Land dwelling, in spite of its problems, offered all the advantages of an
empty environment. Because of the delicate interdependence of all living
things, it is not surprising that both plants and animals seem to have col-
onized the land at about the same time during the Silurian and Devonian.
The invasion of the land almost certainly involved the earlier invasion of fresh
waters. Many living groups, which are essentially marine, contain a few fresh-
water colonists (clams and crustaceans, for example), but only the plants
and three major groups of animals (snails, arthropods, and vertebrates) have
become fully established on the land.

ca 250 Mya A volcanic7 eruption in Hawaii that lasted for a million years.
Some evidence for encounter with a large bolide, which caused mass extinction
of life on earth.

ca 230 Mya Mammal fossils.

ca 200 Mya Breakup of Pangea; opening of the Atlantic.

ca 180 Mya Separation of African and South American continents.

7 Volcanism occurs when magma, or melted rock, beneath the surface of a planet or

satellite breaks through the surface. On earth, an example of a volcanic land-form

is a stratovolcano, a cone-shaped mountain built up by alternating layers of lava

and volcanic ash.
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ca 65 Mya A large object from outer space rammed into the earth. Ex-
tinction of dinosaurs may alternatively be linked to megavolcanic eruptions.

ca 40 Mya Primitive apes.

ca 22 Mya Hominoid primates split from Old-World monkeys to a line
eventually leading to humans.

ca 6–4.5 Mya Our ancestral ape diverged from chimps and gorillas (we
share 98.4 % of our DNA with chimps and 97.7 % with gorillas). Thus, a
full 6 million years of evolution separate the minds of modern humans and
chimpanzees. We know nothing about the environment in which the ancestral
ape lived, as it appears to have left no stone tools.

4.8–4.5 Mya Appearance of the upright bi-pedal hominids, known as Aus-
tralopithecus (A.) ramidus (4.5 Mya), A. anamensis (4.2 Mya), A. afarensis
(3.5 Mya), A. africanus (2.5 Mya), A. robustus (2.2 Mya) and Homo habilis8

(2 Mya).

ca 2 Mya Volcanic eruption (VEI = 8, Energy � 2 × 106 MT) shaped the
Yellowstone landscape. The lava covered more than 2600 km2.

ca 1.8–0.4 Mya Homo erectus – The first large-brained proto-humans
(900–1200 ml); spread out of Africa to explore the Near East and Asia (‘Peking
man’, ‘Java man’); begins to develop local characteristics. By 500,000 ya
the descendants of homo erectus reach Europe and fire is tamed. Ice age
(Pleistocene) began around 1.75 Mya with formation of ice sheets in high
latitudes. Glaciation began about 1.2 Mya.

ca 700,000 ya Latest Geomagnetic field reversal.

8 Modern anthropology has confirmed their existence in Africa through the discov-

eries of the Leaky family. In 1959 Louis Leaky (1903–1972, USA) discovered the

skull of Australopithecus Robustus in Tanzania and the remains of Homo Habilis

(1964). His wife Mary Leaky (1913–1996, USA) found (1976) fossil footprints

of one of our upright ancestors. Homo habilis was confined to East Africa. His

larger brain (700 ml), fueled by eating more meat, may have made room for the

feature known as “Broca’s area” – a region connected with speech perception;

speech enables complex information, history and legends, to be passed and lies

to be told. It encouraged invention of words - an important social tool; enabled

group decisions to be made, intentions to be communicated, memories shared and

passed on.

For further reading, see: Mithen, S.: The Prehistory of the Mind. Phoenix,

Thames and Hudson, 1996. 357 pp.
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ca 400,000–40,000 ya Homo Sapiens: Wooden tools, artifacts and
weapons give evidence of a hunting-gathering life style. This is the earliest
form of our own species.

By 150,000 years ago a new actor had appeared in Europe and the Near
East, Homo neanderthalensis, popularly known as Neanderthal man. He had
the propensity to use tools, and could hunt large game. Like the other char-
acters of this act, the Neanderthals had to cope with frequent and dramatic
changes of scenery: their’s was a period of the ice ages witnessing ice sheets
repeatedly advanced and then retreated across Europe, and with them vege-
tation changed from tundra to forest and back. Yet even with such changes,
the action seems rather monotonous. His tools seem to be very finely crafted,
they are all made of either stone or wood. Although unmodified pieces of
bone and antler were used, no carving of these materials took place.

At first glance, Neanderthal remains appear primitive and crude, rather
like Homo erectus and quite different from modem humans. Their arm and leg
bones were, in fact, approximately twice as thick as ours, suggesting their im-
mense strength and the rugged conditions of their existence. Otherwise, their
bodies were strikingly modern. They had prominent noses, long faces with
sloping foreheads and big skulls. Their average brain capacity (1400–1500 cc)
actually exceeded that of modem humans – although the configuration of
parts of the brain was different. The speech areas of the Neanderthal brain
were not as developed as ours and the forebrain was smaller.

The Neanderthals were the first humans to live in Ice Age conditions,
surviving by hunting the largest and most formidable Pleistocene mammals –
the mammoth, woolly rhinoceros, and wild cattle. They competed with large
wolves and lions in an extremely harsh Ice Age environment.

Neanderthals lived in caves, forming large family groups, and used stone
axes, bone tools, bows and arrows; pregnancy lasted one year; they took care
of their sick and aged.
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Climatic Changes9 in the Earth’s History

The earth has gone through alternate periods of cold and warm climates.
Some changes extended over millions of years, others through a couple of
centuries. The causes of these changes were diverse, the leading phenomena
being:

• Changes in volcanic activity (with diminution of activity leading to rise
of global temperature) modulating the amounts of infrared-trapping of
CO2 and albedo-decreasing volcanic dust in the atmosphere.

• Variation of solar output and activity

Contrast between the zones of low and high pressure is apparently con-
trolled to some extent by variations of solar activity. When sunspots be-
come more numerous, pressure increases in the areas where it is already
high, and decreases in those where it is already low. In the temperate
storm belts, a high sunspot number tends to be associated with low
pressure, great storminess, and heavy rainfall.

Since in the interior of the continents and in tropical regions a good
deal of rain is associated with thunderstorms, this suggests that rainfall
maxima should coincide with maxima of sunspots, and there is other
evidence that on the whole the total rainfall over the land area is great-
est when sunspots are most numerous10. Additionally, the sun overall
light output has varied over its history. Thus it is thought that dur-
ing the Cambrian bio-evolutionary explosion, the sun was significantly
dimmer than it is today, and ‘greenhouse gases’ such as CO2, played an
important role in maitaining life-friendly temperatures on our planet.

9 Further readings:
• Brooks, C.E.P., Climate Through the Ages, Dover Publications: New York,

1970, 395 pp.

• Graedel, T.E. and P.J. Crutzen Atmosphere, Climate and Change, Scientific

American Library: New York, 1995, 196 pp.

• Lamb, H.H., Climate: Present, Past and Future, Methuen: London, 1977.

10 The short record of the low-level stage of the Nile can only be relied upon between

640 and 1400 CE, but during this period it presents considerable similarity to

the sunspot curve (which can be read off ancient tree-rings). Thus we have
Sunspot maxima 620 840 1077 1200 1370 CE

Nile low-level stage 645 880 1100 1225 1375 CE
The maxima of water levels in the low-water stage of the Nile apparently follow

sunspot maxima by intervals of from five to forty years.
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• Bolide impacts (collisions with objects on earth-crossing orbits).

• Astronomical causes (changes in eccentricity of the earth’s orbit, obliq-
uity of the ecliptic, precession of the equinoxes etc.). These may have
caused the succession of glacial and interglacial periods.

Seasonal weather changes on earth are largely a matter of geometry.
Earth follows a nearly circular orbit. The tiny difference of three percent
between its greatest and smallest distance from the sun does not account
for the range of temperatures between the seasons. The explanation lies
in earth’s axis, which is tipped 23.5 degrees off the perpendicular to the
plane of its orbit. When the northern hemisphere tips toward the sun,
the north pole is continuously lighted and days are longer everywhere
north of the equator. There is also more radiative heat generated by
insolation in the hemisphere. The sun’s rays reach the northern hemi-
sphere at less of an angle, with less filtering by the atmosphere, so on
average the surface absorbs more heat each hour. For part of the year
more heat is gained each day than is lost at night through re-radiation.

Seasons change each time earth moves a quarter of the way around its
orbit. The longest day, on about June 21, is called the summer solstice
in the northern hemisphere. Three months later, on about September
23, day and night are of the same length. This is the autumnal equinox.

The obliquity of the ecliptic appears to have reached a maximum et about
8150 BCE and to have decreased steadily since that date. Also, about
8500 BCE the earth was farthest from the sun (aphelion) in the northern
winter, whereas it is now farthest from the sun in the northern summer.
Both these factors would cause an appreciably greater seasonal range of
insolation in the ninth millennium BCE than at present.

Variations in earth’s orbital eccentricity (the degree to which an orbit
deviates from a circle) and in the obliquity of its axis (tilt of the axis
with respect to the plane of orbit) vary on time scales of 10,000 and
40,000 years, respectively. Changes in the orientation of earth’s axis,
called precession, occur over a 25,800-year period.

One of the most dramatic effects of these changes is ice ages. Quasi-
periodic ice ages, during which the polar ice caps advanced halfway
to the equator, occurred over the past million years and dramatically
reshaped landscapes.

Climate changes caused by earth’s orbital and axial characteristics have
also influenced the formation of deserts. Climate models that adjust for
the precession and nutation of the axis suggest that about 10,000 years
ago the Sahara Desert of Africa had ample rainfall, rich vegetation, and
monsoons. But there may be other influences. While earth’s climate
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has been stable since the last ice age 10,000 years ago, analysis of ice
core samples from Greenland shows that some earlier abrupt changes in
climate lasted only decades or centuries: At one time, the average tem-
perature plunged 14 ◦C in a decade, and the cold snap lasted for 70 years.

• Short-range variations [especially variations in rainfall] are due to
changes in the general circulation in the atmosphere which may have
no external cause. They result from the interaction of winds, ocean
currents, and floating ice fields.

The atmosphere, oceans, continents, and glaciers are the principal mo-
tors of the climatic system. They have a stabilizing effect on the tem-
peratures at the surface of the earth: a slightly different distribution of
heat can modify these effects.

Because of the nonlinear nature of these interactions, under favorable
conditions comparably small causes may have disproportionately large
effects.

Climatic changes tend to be synchronized globally, but not generally
in the same sense or magnitude in all places. So there can be damp
weather in Western Europe, but drought in North America.

When warm interglacial climate changes into cold glacial climate, the
precipitation of large areas change from rain to snow. The latter does
not return back to the water of the oceans but stays on the land locked
up in ice sheets. This results in lowered sea levels. In general, any change
in climate that alters the amount of ice on the land will effect the level
of the oceans correspondingly (so called eustatic changes in sea-level).

During the peak of the last glaciation, much water was stored in the form
of ice on Greenland, northern Canada, Antarctica, and high mountain
ranges. As a result, sea levels were far below what they were today.

A rise of sea level may be due to one and more of three causes:

– A decrease in depth of part of the sea floor, compensated by the
decrease in the elevation of part of the land area.

– An increase in the volume of sea water without change of mass,
owning to a decrease in density.

– The actual addition of water to the oceans.

The mean depth of the oceans is approximately 4000 meters. Taking
the coefficient of thermal expansion of water as 0.00015 for one degree
centigrade, we find that an increase of temperature by 1 ◦ would raise
the mean level of the ocean’s surface by 0.55 meters. Thus, a rise of the
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mean temperature of the whole mass of the oceans by 3 ◦ would raise
the general level about 1.7 meters.

The main way in which water can be added to the oceans is through the
melting of the ice sheets in Greenland and the Antarctic. Their area is
about (1.55 × 107) km2 and the average thickness of the ice is nearly
1500 meters. If all this ice were melted it would raise the general level of
the ocean by between 43 and 58 meters. The area occupied by the ocean
is about (3.62 × 108 km2), or 23 times the area occupied by ice, so that
in order to raise the sea level by 3 meters, it would be necessary to melt
off some 70 meters of ice. Because of the difference of density between
glacier-ice and water, we may put the actual figure at 76 meters.

Now, we know that even in the much less intense warm period of the
high Middle Ages, the boundaries of the Greenland ice sheet retreated
appreciably, which implies a corresponding diminution of thickness, so
that in the prolonged warm period of the Climatic Optimum a lowering
of the average level of the ice sheets by 76 m is quite possible. These two
factors, increase of ocean temperature and increase in the mass of water,
appear to be quite competent between them to raise the general level of
the oceans by 3 m, the greater part of this being due to the melting of ice.

We have evidence that sea levels rose at a rate of 1 meter per century
and reached its maximum during the Climatic Optimum between 5500
and 3000 BCE, after which the rate gradually diminished and by 500
BCE it had reached nearly its present level.

At present, the level of the world oceans is rising by 1 millimeter/year
(= one meter per millennium). Scientists have calculated that a com-
plete melting of ice caps would cause sea level to rise 60 meters.

Even if only the ice in the Antarctic will melt (20×106 km3) it will cause
a sea-level rise of 6 meters. Under these conditions, all large coastal cities
will disappear into the ocean, one third of France would be covered by
water, and so would much of England. All these catastrophes could
become a reality if the content of CO2 in the air were to double11.

11 Indeed, a UN panel of climatologists has recently (2006) warned the world sci-

entific community and world governments that a global warming by more than

3 deg is expected within the next century, and they adduced evidence that green-

house gas emission — including human-caused CO2 — were strongly implicated.

The consequent melting of Antarctic ice sheets may then raise the ocean level

by 5–10 m, causing a global flooding catastrophe of unpredictable proportions.

However, these conclusions remain quite controvertial and politicized.
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The Gaia12 Hypothesis13

It often seems obvious that life on earth is at the mercy of powerful non-
biological forces like volcanic eruptions, storms, climatic changes and earth-
quakes. On the other hand, much of the earth’s surface is covered by a layer of
life, and everywhere on earth the influence of living organisms had an effect.

Recently there has emerged a theory, known as the Gaia Hypothesis. It is
based on the idea that, over the long run of geological time, life may control
the powerful physical forces on which it depends for its own good.

The essential idea of the Gaia Hypothesis is analogous to the concept
governing the thermostat in one’s home, or the thermostat in one’s brain.
One’s thermostat at home may be set to 18.5 ◦C in order to keep a comfortable
living environment. When the temperature falls below this, the furnace is
switched on. When the temperature in the house reaches the target, the
furnace is switched off. Something more complicated, but with similar effect,
goes on in our bodies. If our body temperature deviates very far from a
narrow range, we die. The human body has a number of self-regulatory,
or homeostatic, mechanisms, which monitor and stabilize such quantities as:
temperature, acidity, and concentrations of hormones.

The conditions for life as we know it to exist also require a relatively
narrow range of circumstances in our terrestrial environment. How does life
modify the physical and chemical conditions of the earth? Some examples of
regulations of the environment, according to Gaia are:

• Where does the oxygen come from? Small amounts emanate from vol-
canic activity, but usually it is combined with other elements, e.g., the
compounds as CO2 and H2O. The earth’s original atmosphere contained
almost no oxygen, it was the advent of photosynthesis some 2.5 billion
years ago that was responsible for the presence of abundant oxygen in
the atmosphere (presently 20%, by volume). Initially it was the liber-
ated oxygen combined with oxidizable minerals such as iron, leaving a
sedimentary record of red bands that tells us that a new atmospheric
chemistry was being brought about by life. Other geological evidence
suggests that oxygen levels on earth have been, within a factor of roughly

12 Gaia = Greek Goddess of the earth.
13 Originated in the 1970’s by James Lovelock and Lynn Margulis. For further read-

ing, see: Lovelock, J.E., Gaia: A New Look at Life on Earth, Oxford University

Press: Oxford, 1987, 157 pp.
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two, at near-present values for the past billion years, during which com-
plex multi-cellular life arose.

If oxygen were to reach a level of 35% of atmospheric gas composition,
fires would occur whenever a lightening bolt hit humid vegetation. The
planet would be in serious danger of burning up. What has kept oxygen
from building up to dangerous levels? Why has it gone from nearly
zero to 20%, and then stopped? One possible answer is the biological
production of methane by bacteria. A short-lived molecule, methane
can combine with oxygen to produce CO2 and water, thus stabilizing
oxygen concentrations.

• We know that climate has changed a great deal in the past, produc-
ing episodes of glaciation as well as short-term warming and cooling
episodes. However, climate change might have been much more ex-
treme. At least for the past billion years it is unlikely that the earth’s
mean temperature was more than 15 degrees warmer or 5 degrees colder
than it is today. Earlier temperatures are very uncertain.

Astrophysicists calculations suggest that the sun emitted perhaps 25%
less radiant energy some 4 billion years ago, than it does today. Cal-
culations also suggest that under this faint early sun, the earth should
have been a frozen ball. However, life arose under these conditions, and
there is geological evidence of flowing water from this time. It has been
suggested that a kind of greenhouse warming was in effect at that time,
involving such gases as methane, ammonia, and carbon dioxide, and
that this is evidence of a kind of Gaian planetary temperature control
mechanism.

And why hasn’t the planet overheated, since the sun has increased in
luminosity over the past 4 billion years? Lovelock and Margulis argue
that life solved this problem too. A warming earth stimulated greater
plankton production, removing CO2 from the atmosphere. When the
plankton died they sank to the ocean floor, forming sediments, and thus
removed CO2 from the system.

Moreover, a warmer planet has more rain, which means more erosion
and more nutrient runoff to the oceans. This also stimulates phyto-
plankton growth, again removing CO2 from the atmosphere. Thus,
Gaia maintains a fairly constant climate as the sun heats up.

Life exerts other influences over the chemistry of the planet: methane
and ammonia exist in their present abundances because bacteria con-
tinually regenerate them by decomposing organic matter. Perhaps life
regulates the physical and chemical environment of the planet so as to
maintain suitable planetary conditions for the good of life itself. If so,
then the planet can be thought of as a single, integrated, living entity
with self-regulating abilities.
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The adherents of Gaia have offered the following alternative formulations
to their hypothesis:

“The Gaia hypothesis says that the temperature, oxidation state, acidity, and
certain aspects of the rocks and waters are kept constant, and that this home-
ostasis is maintained by active feedback processes operated automatically and
unconsciously by the biota.”

(James Lovelock 1979)

“The Gaia hypothesis states that the lower atmosphere of the earth is an
integral, regulated and necessary part of life itself. For hundreds of millions
of years, life has controlled the temperature, the chemical composition, the
oxidizing ability, and the acidity of the earth’s atmosphere.”

(L. Margulis and J. Lovelock 1976)

“The biota have effected profound changes on the environment of the surface
of the earth. At the same time, that environment has imposed constraints on
the biota, so that life and the environment may be considered as two parts of
a coupled system.”

(Watson and Lovelock 1983)

“The Gaia hypothesis states that the temperature and composition of the
earth’s atmosphere are actively regulated by the sum of life on the planet.”

(Sagan and Margulis 1983)

But perhaps the most succinct observation was made by James Lovelock:
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“People have the attitude that ‘Gaia will look after us’. But that is wrong.

Gaia will look after herself. And the best way for her to do so might be to

get rid of us.”

ca 300,000 ya First appearance of the Neanderthal man.

ca 130,000–11,000 ya Homo Sapiens Sapiens; First seen in South Africa
and the Near East14 and joined a cast that continued to include the Nean-
derthals and archaic Homo Sapiens. He grinded pieces of bones to make
harpoons and made tools from materials other than wood or stone. Around
60,000 ya, Homo Sapiens Sapiens built boats and then made the very first
crossing to Australia. He entered Europe at about 40,000 ya, bringing with
him a host of new tools made of new materials, including bone end ivory.
During the interval 40,000–30,000 ya the Neanderthals of Europe were trying
to mimic the new type of blade tools that Homo Sapiens Sapiens was making,
but the Neanderthals soon faded away, leaving Homo Sapiens Sapiens alone on
the world stage. Modern man (known as Cro-Magnon) immigrated to Siberia
and North America (ca 11,000 BCE) and domesticated the dog (descendant
of the Asian Wolf) at about 9000 BCE.

ca 100,000 ya Homo Sapiens Sapiens developed symbolic thinking mani-
fested in linguistic speech capacity.

ca 75,000 ya Tuba volcano eruption (Indonesia); VEI = 8 (Energy �
6 × 105MT ).

ca 50,000 ya An iron-nickel asteroid about 50 m in diameter hit flat-lying
sedimentary rocks and blasted out a crater about 1200 m wide and about 450
m deep in Arizona USA; known as the Barringer Crater . (Energy ca 20 MT.)

• Oil lamps, made from carved stone and using animal fat as fuel, found
in Mesopotamia and Europe.

• Cave painting made with manganese oxide paints found in Europe, Mid-
dle East and Africa.

14 His traces were discovered in Israel (1988).
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ca 40,000–10,000 BCE Preagricultural Cro-Magnon man lived by hunt-
ing and gathering. He was an excellent artist and craftsman in stone, bone,
wood, and antler. His application of new and innovative technology allowed
him to spread throughout the world.

His achievements were: First blade tools (34,000 BCE); early engravings
(32,000 BCE); Asian hunters cross the Bering Strait land bridge to popu-
late the Americas (30,000 BCE); first tent-like structure constructed with
mammoth bones and tusks; first man-made sculpture (26,000 BCE); first
known spear thrown (20,000 BCE); first sewing needle (20,000 BCE); cave
paintings in France and Spain (18,000 BCE); Dogs (descendants of the Asian
Wolf) domesticated in the Middle East. People inhabiting caves in what
are now Israel and Jordan used notches in bones to record sequences of
numbers.

ca 35,000–20,000 ya Emergence of Proto-Mathematics in Africa. Math-
ematics initially arose from a need to count and record numbers. Proto-
Mathematics existed when no written record was available. It is believed that
there has never been a society without some form of counting or tallying (i.e.
matching a collection of objects with some easily-handled set of marking like
stones, knots or notches on wood or bone).

The earliest evidence of a numerical recording device was found in a cave
in the Lebembo Mountains, on the border of Swaziland in South Africa (ca
35,000 ya). It was a baboon bone with 29 clearly visible tally-mark notches,
used to record the passage of time. Then, archaeological excavations (1962)
on the Shores of Lake Edward (one of the farthest sources of the Nile, on the
borders of Uganda and Zaire) unearthed a bone, ca 20,000 years old known as
the Ishango Bone. The markings on it consist of a series of notches arranged
in three distinct columns. Certain underlying numerical patterns may be
observed in each column. It seems to have been devised by people who had a
number system based on 10, as well as a knowledge of multiplication and of
prime numbers.

It is conjectured that the bone markings represent of a system of sequen-
tial notation – a record of different phases of the moon. This they apparently
needed to maintain their regular lake-shore lifestyle as a hunter-gatherer ne-
olithic society: migration between dry and rainy seasons, festivities, religious
rituals and other activities dictated by their special economic and religious
needs.
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It is now believed that the creation of a complicated system of sequential
notation was well within the inherent capacity of early man to reason and
conceptualize. Moreover, the close link between mathematics and astronomy
was enhanced by the need felt by early man to record the passage of time,
out of curiosity as well as for practical needs. This, in turn, was translated
by him into observations of the changing aspects of the moon.

From the existing evidence of the transmission of Ishango tools (notably
harpoon heads) northward up to the frontiers of Egypt, the Ishango numera-
tion system may have traveled as far as Egypt and influenced the development
of its own number system – the earliest decimal-based system in the world.

Table 0.2: Classification and nomenclature of periods in

the evolutionary track of earth and man; Categories:

Geological (G); Climatical (C); Historical (H);

Archaeological-Anthropological (A)

Pleistocene (G): the last 2 million years (up to 10,000 ya)

Holocene (G): the past 10,000 years

Paleolithic (A): 1,000,000 ya → 8000 BCE

Mesolithic and Neolithic (A): 8000 → 4500 BCE

Chalcholithic (A): 4500 → 3200 BCE

Bronze Age (A): ca 3100 → 1200 BCE (in Middle East)

Iron Age (A): ca 1200 → 500 BCE (in Middle East)

Israelite period (H): ca 1200 → 587 BCE (in Middle East)

Climatic Optimum (C): ca 5500 → 3000 BCE (in Europe)

Ice Ages (C): 1,750,000 ya → 10,000 ya
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Post-glacial world – the dawn of civilization

ca 10,000 BCE End of most recent Ice Age (Pleistocene) and beginning of
the Holocene age: glaciers melted and retreated and climate was stabilizing.
Vegetation began to dry up and water became scarce in the high grasslands,
taking with it the herds on whose survival the hunting nomads depended.
People were moving to the river valleys, planting crops and domesticating
animals. Consequently they created towns and cities. In North Africa, for
example, people were moving to the Nile Valley where African peoples mixed
with people from the East. Thus, these post-glacial climatic changes impacted
the decline and rise of civilizations throughout the Holocene15.

With the rapid development of the postglacial warming, rivers were swollen
enormously, particularly in spring and summer, by the melting ice; gravel and
sand were deposited in great quantities along the river courses, lakes formed
and sometimes quickly burst or rapidly silted up. The landscape was changing
rapidly. But the greatest change for the human population and the animals
they hunted was the disappearance of the open plains, as the forest advanced
north in Europe. Man seems to have adapted himself more successfully than
the animals. The ranges of both moved northward in Europe, Asia and North
America, but some species among the animals were lost, probably due to their
reduction by Man.

Other significant changes in the landscape were brought about by the rise
of sea levels, proceeding over some thousands of years at the rate of about 1 m
a century.

ca 9000 BCE Earliest beginnings of agriculture; domestication of the dog.
Beginning of rapid rise in sea levels. Floods.

ca 9000–8000 BCE Urban culture in the Anatolian highlands founded by
refugees from the flooded lowlands.

ca 8000–7700 BCE Final break up of the Scandinavian Ice Sheet. Highly
organized Neolithic civilizations gradually begin to develop in a number of
river valleys and alluvial plains in latitudes 20 ◦ to 40 ◦ N, where irrigation
could be most easily arranged and provided seemingly reliable intensive crops.

15 F. Hoyle and N.C. Wickramasinge speculated that sometime between 9000

and 8000 BCE, a cometary mass of ca 1010 tons impacted the Tasman and China

Seas, causing a sudden global warming of 10 ◦C. This, they said, abruptly ended

the Ice Age and created the necessary conditions for an advanced human culture.
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Thus Neolithic man changed from food-hunter and food-gatherer into food-
producer, domesticating animals and plants. This agrarian revolution cen-
tered mainly in the Middle East and the lower hills and adjacent plains of the
Zagros Mountains.

• Agriculture in Mesopotamia (Northern Iraq) with farming of wheat and
barley

• Potatoes and beans cultivated in Peru; rice in Indochina.

• Polynesians in the East Indies and Australia begin to spread out over
islands of the South Pacific.

• First city-states appear in Mesopotamia and the Near East, including
Jericho in Israel (population ca 2000, area � 40,000 m2).

• Clay tokens in Mesopotamia used to tally shipments of grain and animals
– the basis of a forthcoming first system of numerals and writing.

• The Maya make astronomical inscriptions and constructions in Central
America.

• Sheep domesticated in Persia (Iran).

• Domestication of the bee.

ca 7000–6000 BCE Rise of temperatures continued and moisture in-
creased. By 6000 BCE all of Western Europe was occupied by a rich forest of
oak, cedar and elm. With the stabilization of the seas and coastlines, mankind
dared to venture forth and seek the fertile valleys. First settlers in Greece (ca
7000 BCE).

The pig and water buffalo domesticated in China and East Asia; the
chicken domesticated in South Asia; Sugarcane cultivated in New Guinea;
Flax was grown in Southwest Asia; Maize, squash and beans were grown in
Mexico; Mortar was used with sun-dried bricks in Jericho; invention of the
potter’s wheel in Asia Minor (ca 6500 BCE) heralded the production of clay
pottery; use of Woven cloth was invented in Anatolia; Cattle was domesti-
cated in Asia Minor (from a wild ox called auroch, now extinct). This ended
the age of the hoe (began 8000–7000 BCE) in agriculture [Genesis, 3, 19].
The earliest direct evidence for water craft (ca 6500 BCE) is a wooden paddle
found at Star Carr, England.

ca 6300 BCE The llama and alpaca domesticated in Peru. Advent of
picture-writing; Copper knives used in the Middle East. An alcoholic drink
was made from grain.
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ca 6000–3000 BCE Age of revolutionary inventions: With the availabil-
ity of cheap tools the way was clear for a rapid expansion of agriculture and
technology. The plow was devised; the wheeled cart was in use on land and
the sailboat on water; the inclined plane and lever were common implements.

Copper ores were smelted; bronze was alloyed; bricks and pottery were fired.
Canals and ditches were dug; grains were fermented; orchards were planted.

At the same time a systematic urban life became clearly outlined. There
was an accurate solar calendar; eclipses were predicted. There were adequate
methods of accounting and measuring. There was a definite recording of
information and transmission of knowledge from one individual to another
and from one generation to the next. Discoveries of that period are unrivaled
in their impact on human progress. Even today’s science cannot match them
in fundamental importance to the basic well-being of man.

ca 5600 BCE The great Mesopotamia flood (Deluge); an uncertain date
for the earliest documented natural catastrophe in the annals of mankind. It
first echoed in the Sumerian story about Ziusudra, who by building an ark
saved himself from the great flood sent by the gods. The narrative (which
derived from folk memories of a giant cataclysm, actually experienced in re-
cent geological times) evolved down the millennia and passed from nation to
nation. Ziusudra became Ut-Napishtim of the Assyrian Gilgamesh Epic16,
Noah of the Hebrew Bible, and eventually the Deukalion of the Greeks.
The most remarkable parallels between the Bible and the entire corpus of
cuneiform inscriptions from Mesopotamia are found in the deluge accounts of
the Babylonians and Assyrians on one hand, and the Hebrews on the other.
It seems that these two versions are independent and refer to an actual event
of some kind. According to the Gilgamesh Epic and the Sumerian source,
the flood was accompanied by a storm of extraordinary magnitude probably
issuing from the Persian Gulf, that ravaged for a week or so. The Biblical
version17, on the other hand, tells about simultaneous torrential downpour

16 Fragments from the Gilgamesh Epic were discovered in the Nineveh library of

King Ashurbanipal and date from ca 700 BCE. However, other examples of

tablets of this epic date from about 1700 BCE. The story was probably composed

at about 2000 BCE. Yet many of the episodes included in the epic have prototypes

in the Sumerian language which are much older than 2000 BCE.
17 The total number of flood legends has been estimated at ca 100. They are found

in India, southern Asia, the East Indies, Mesopotamia, Polynesia, New Guinea,

Australia, China, Europe and North and South America. These widespread

legends of a great flood reflect dim folk-memory of the inundation of former

coastal plains with the rise of world sea-level in the post-glacial period as the ice

age glaciers melted.
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from heaven and a flow of subterranean waters, the whole occurrence lasting
for about a year.

The specific cause of the great flood is uncertain; two competing scenarios
were recently18 suggested:

• Large fragments of a comet crashed into seas around the world. The
resulting impact triggered violent earthquakes and severe flooding of
surrounding coastlines.

• The melting of the Eurasian Ice Sheet (began at ca. 12,500 BCE) raised
the level of the ocean some 115 m above the shoreline of the Black Sea,
eventually causing the sea water to burst through the narrow Bosporus
valley into the lake, racing over beaches and up rivers, destroying or
chasing all life before it19.
The flood rapidly created a human diaspora20 that spread as far as West-
ern Europe, Central Asia, China, Egypt and the Persian Gulf. These
Black-Sea people could well have been the proto Sumerians, who devel-
oped civilization in Mesopotamia. These people could be responsible
for the spread of farming into Europe, and the advances in agriculture
and irrigation in Anatolia and Mesopotamia.
Associated with the Mesopotamian flood is the biblical account of an
Ark, constructed of gofer wood, or cypress, smeared without and within
with pitch, or bitumen, to render it water-tight. Today’s biblical schol-
ars and shipbuilders agree that the Ark was a very suitable device for
shipping heavy cargoes and floating upon the waves without rolling or
pitching.21 It was thus admirably suited for riding out the tremendous
storms in the year of the flood.

18 The astronomer Edmond Halley suggested (1688) that the biblical flood might

have been due to a shock of a comet. Newton’s successor, William Whiston

(1696) supposed that flood was due to the close earth approach of a comet that

broke the earth’s crust via tidal forces and released subterranean waters. With

the help of water released from the comet’s tail and the atmosphere, an enormous

tide was created.
19 W. Ryan and W. Pitman: “Noah’s Flood”, Simon and Schuster N.Y., 1998,

319 pp.
20 Genesis 11, 8: “So the Lord scattered them abroad from thence upon the face

of all the earth: and they left off to built the city” – the advent of civilization!
21 Assuming the cubit to be 45.7 cm long, the Ark would have been 137.2 m long,

22.8 m wide and 13.7 m high. Noah’s Ark was said to have been the largest sea-

going vessel ever built until the late 19th century, when giant metal ships were

first constructed. Its length to width ratio of 6 : 1 provided excellent stability on

the high seas.
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ca 5000 BCE Animal domestication and land cultivation in South-East
China. It spread from there to all of South-East Asia, but stopped short of
Australia where the aborigines continued to be gatherers and hunters. Rice
had a major impact on the mode of living of the peoples of Asia and was a
direct cause of their fast rate of reproduction.

ca 5000 BCE Irrigation invented in Mesopotamia and China; nuggets of
metals (gold, silver, copper) were used as ornaments or for trade; first alphabet
began to develop; Sumerians enter Mesopotamia after the flood.

ca 4895 BCE Crater Lake formed in North America by a volcanic eruption
(V EI = 7, E � 5 × 104 MT).

ca 4800 BCE Sailing boats in Eridu, Sumer.

ca 4400–4200 BCE Neoglaciations and severe climatic depressions on
a global scale. Several episodes of climatic deterioration were manifested
through glacial advance, increased rainfall, decline of average temperatures,
rise of sea level and major flooding.
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Calendars, or the Conquest of Time

Wheels and Numerals

Papyri and Clay

Birth of Science in Ionia

Blossom in Alexandria
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145 · Lao Tsu 150 · Buddha (Siddhartha Gautama) 151 · Anax-
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ras of Samos 159 · Theodoros of Samos 176 · Xenophanes of

Colophon 176 · Eupalinos of Megara 177 · Mandrocles of Samos
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Tarentum 188 · Hanno the Carthaginian 189 · Hippocrates of Chios
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202 · Theodoros of Cyrene 204 · Democritos of Abdera 204 · Theaite-

tos of Athens 206 · Archytas of Tarentum 207 · Plato 207 · Eu-

doxos of Cnidos 213 · Thymaridas 221 · Kiddinu 221 · Aristotle

222 · Menaichmos 230 · Heracleides of Pontos 232 · Xenocrates

of Chalcedon 232 · Alexander the Great 234 · Praxagoras of Cos

267 · Callippos 268 · Deinocrates of Rhodes 268 · Antimenes

268 · Eudemos of Rhodes 268 · Aristaios the Elder 268 · Pytheas
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(Soter) 274 · Herophilos of Chalcedon 279 · Euclid 280 · Eu-

hemeros of Messina 295 · Aristarchos of Samos 295 · Aratos of

Soli 297 · Erasistratos of Ceos 298 · Ctesibios 299 · Archimedes

of Syracuse 299 · Conon of Samos 308 · Eratosthenes of Cyrene

308 · Apollonios of Perga 309 · Dionysodorus 310 · Archagathos

310 · Diocles of Carystos 311 · Zenodoros 312 · Shimon Ben-Sirah

313 · Hipparchos of Nicaea 313 · Carneades of Cyrene 323 · Se-

leucus of Babylon 323 · Hypsicles of Alexandria 324 · Andronicos of

Cyrrhestes 325 · Philo of Byzantium 325 · Zenon of Sidon 325 · Po-

seidonios of Apamea 325 · Asclepiades 326 · Marcus Cicero 327 · Ti-

tus Lucretius Carus 334 · Siculus Diodoros 334 · Marcus Agrippa

338 · Hillel the Elder 339 · Lucius Annaeus Seneca 341 · Marcus

Vitruvius Pollio 346 · Strabo 347 · Philo of Alexandria 350 · Jesus

350 · Saul of Tarsos 352 · Pomponius Mela 357 · Aulus Celsus

357 · Pedanios Dioscorides of Anazarba 357 · Josephus Flavius
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machos of Gerasa 368 · Mary 368 · Marinos of Tyre 369 · Soranos

of Ephesos 369 · Claudios Ptolemy 369 · Zhang Heng 372 · Rabbi

Nehemiah 372 · Marcion of Sinope 380 · Galenus 382 · Marcus

Aurelius Antoninus 383 · Clement of Alexandria 385 · Shmuel the

Astronomer 389 · Diophantos of Alexandria 389 · Plotinos 390 · Por-

phyrios (Malchos) 391 · Iambilichus 392 · Tiahuanaco 394 · Pappos

of Alexandria 395 · Oribasius of Pergamum 408 · Hillel III 408 · Eu-

sebius 425 · Aurelius Augustinus 425 · Pelagius 431 · Martianus

Felix Capella 441 · Proclos of Byzantion 441 · Tsu Ch’ung-Chi
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447 · Aryabhata the Elder 447 · Anthemios of Tralles 454 · An-

icus Boethius 454 · Severus of Antioch 455 · Eutocius of Ascalon

455 · Bodhidharma 455



50 1. Origins – Splendor of the Simple

List of Essays

• The Beginning of Science . . . . . . . . . . . . . . . . . . . . 58

• The Sumerian Heritage . . . . . . . . . . . . . . . . . . . . . 62

• Climate and Civilization . . . . . . . . . . . . . . . . . . . . 65

• Origins of the Egyptian Civilization . . . . . . . . . . . . 74

• Egyptian mathematics . . . . . . . . . . . . . . . . . . . . . . 75

• Mathematics and Astronomy in Mesopotamia . . . . . . . 90

• The Scribes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

• The Hittites . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

• The Iron Age . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

• The Greeks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

• The Hebrews and their Bible . . . . . . . . . . . . . . . . . 134

• Origins of Philosophy and Metaphysics . . . . . . . . . . 148

• Ancient Eastern Philosophy . . . . . . . . . . . . . . . . . . 152

• Myth and Number – Our Pythagorean Heritage . . . . . 164

• The Earth as a Sphere . . . . . . . . . . . . . . . . . . . . . 176

• The Sophists . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

• Plato Versus Democritos . . . . . . . . . . . . . . . . . . . . 212

• The story of Greek Infinitasphobia . . . . . . . . . . . . . 215

• The roots and fruits of Hellenistic philosophy . . . . . 235

• The Alexandrian School . . . . . . . . . . . . . . . . . . . . 275



4200 BCE–529 CE 51

• A Brief History of Geometry . . . . . . . . . . . . . . . . . 284

• Perfect and Amicable Numbers . . . . . . . . . . . . . . . . 288

• The Ancient Maya . . . . . . . . . . . . . . . . . . . . . . . . 293

• ‘Do Not Touch My Circles’ . . . . . . . . . . . . . . . . . . 305

• Lunar Theory, Part I . . . . . . . . . . . . . . . . . . . . . . 317

• The Julian Calendar . . . . . . . . . . . . . . . . . . . . . . . 336

• Comets in the Greco-Roman World – The Advent of

Astrophysics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

• The Silent Century . . . . . . . . . . . . . . . . . . . . . . . 356

• The Astrologers . . . . . . . . . . . . . . . . . . . . . . . . . 373

• The Heritage of Ancient Astronomy . . . . . . . . . . . . 376

• The Origins of Chemistry . . . . . . . . . . . . . . . . . . . . 393

• Avantgarde Chinese Mathematics . . . . . . . . . . . . . . 398

• Mathematics in Ancient India . . . . . . . . . . . . . . . . . 403

• Hebrew Mathematics . . . . . . . . . . . . . . . . . . . . . . . 408

• History of Biology and Medicine, I – Ancient Time . . . 433

• Metallurgy in China – The Missed Opportunity . . . . . 438

• Downfall of the Roman Empire – plague-ridden deca-

dence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

• Origins of the European Civilization . . . . . . . . . . . . 446

• Zero – The Mathematics of Nothing . . . . . . . . . . . . 449



52 1. Origins – Splendor of the Simple

List of Tables

1.1 Prophets, philosophers, poets and scientists in the

Golden Age of Eurasian cultures (800–200 BCE) . . . . 137

1.2 Dating of key events in the Book of Genesis . . . . . . . 142

1.3 Greek Schools of philosophy and their post–

Aristotelian cults and creeds (470 BCE–530 CE) . . . . 240

1.4 Leaders of the five generations of Tannaaim . . . . . . 388

1.5 The Greatest Greek Mathematicians . . . . . . . . . . . . 397

1.6 Leading scholars of the Hebrew Babylonian

academies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

1.7 Leading scholars of the Jerusalem Academy . . . . . . . 428

1.8 Hebrew Astronomers and Mathematicians

(70–365 CE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

1.9 Leading Thinkers in the Life-Sciences

(560 BCE–450 CE) . . . . . . . . . . . . . . . . . . . . . . . . . 435

List of Figures

1.1 Triangular numbers . . . . . . . . . . . . . . . . . . . . . . . 165

1.2 The gnomon sundial . . . . . . . . . . . . . . . . . . . . . . . 167



4200 BCE–529 CE 53

1.3 Gnomons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

1.4 Quantum ‘Gnomon-like’ states . . . . . . . . . . . . . . . . 175

Science ‘Progress Reports’

No. 1: The Earth Becomes Flat Again . . . . . . . . . . . . . . 458

Worldviews

I Socrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

II Aristotle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

III Cicero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

IV Seneca . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343



54 1. Origins – Splendor of the Simple

Environmental Events

that Impacted Civilization

ca 5600 BCE The Great Mesopotamian Flood

2500–2000 BCE Major climatic changes in Afro-Eurasia linked to
encounter of Taurid meteor stream with earth;
Megalithic constructions around the world

ca 2180–2130 BCE Prolonged drought over the Eastern Mediterranean
and adjacent lands

ca 1800 BCE Ecological collapse of the irrigation system in
Mesopotamia

ca 1628 BCE Paroxysmal eruption of Tera Volcano near Crete

ca 1200–850 BCE Major climatic changes in Eurasia; Drought dis-
rupted agriculture in lands of the Eastern Mediter-
ranean. The resulting Indo-European migration
caused the collapse of the Hittite kingdom

ca 400 BCE Malaria epidemic in Greece

79 CE Eruption of Mount Vesuvius

ca 250–550 CE Prolonged drought and epidemics (malaria) hastened
the decline and fall of the Roman Empire. Simulta-
neous drought on the steppes of Central Asia drove
barbarians to seek new lands
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Political and Religious Events that Impacted

Science, Philosophy and World Order

ca 1800 BCE Hebrews conceive the idea of Monoteism

1286 BCE Hittite-Egyptian Battle of Kadesh on the Orontes
River

1230 BCE Emergence of the Hebrew Mosaic laws – mankind first
‘bill of rights’

1200–200 BCE Creation of the Hebrew Bible

853 BCE Battle of Karkar on the Orontes River

583–331 BCE Rise and fall of the Persian Empire

508 BCE Democracy born in Athens

490–479 BCE The Persian Wars – a decisive and permanent influ-
ence upon development of Western culture and civi-
lization

431–404 BCE Peloponnesian Wars

390–220 BCE Celtic-Roman Wars

339 BCE Battle of Amphissa: Greek becomes a Macedonian pro-
tectorate

331 BCE The Greco-Persian battle of Arbela

213 BCE ‘Burning of the books’ in China; construction of the
Great Wall of China (214 BCE)

202 BCE The Scipio-Hannibal Battle of Zama

146 BCE Greece made a Roman province

52 BCE Battle of Alesia, birth of Gallicio-Roman civilization

48 BCE The Roman burn the Alexandrian Library



56 1. Origins – Splendor of the Simple

63 CE Israel comes under Roman rule

391 CE Christian Emperor Theodosas I ordered the burning of
the remnants of the Alexandrian Library

325 CE Council of Nicaea marks the rise to power of the Chris-
tian Church in the Mediterranean World

ca 400–500 CE End of compilation and canonization of the Talmud

451 CE The Hun Invasion

476 CE ‘Official’ end of the Roman Empire

529 CE Emperor Justinian closed the Athenian Academy



57

∗ ∗∗

“Chymystry, or Chemistry is the art of separating metals, see Alchemy”.

(From a glossary, 1670)

∗ ∗∗

“Alchemy was never at any time anything different from chemistry”.

(Justus von Liebig, 1865)

∗ ∗∗

“Do you believe that the sciences would ever have arisen and become
great if there had not beforehand been magicians, alchemists, astrologers and
wizards, who thirsted and hungered after recondite and forbidden powers?”

(Friedrich Nietzsche, 1886)

∗ ∗∗

“Chemistry emerged from alchemy as astronomy from astrology and
physics from philosophy”.

(George Sarton, 1950)
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The Beginning of Science1

“Our forefathers had no other books but the score and the tally”.

William Shakespeare, ‘Henry 6’, pt. 2, iv, 7 (1591)

We shall perhaps never have any adequate information on the most critical
period of man’s history, when he was slowly emerging out of the darkness.

Science began thousands of years before man learned to write. There cer-
tainly was science before there were scientists but no one knows who first
kindled a fire, who invented the earliest stone implements, who invented the
wheel, developed the bow and the arrow, or tried to explain the rising and
setting of the sun. Without articulate language man would have remained
an animal. Without writing, the transmission and preservation of knowledge
were impossible. It is probable that the above-mentioned breakthroughs in-
volved collaboration; thousand of men, each big step forward being finally
secured by exceptional genius. The evolutions leading to each of these funda-
mental discoveries were exceedingly slow – so slow that the people who took
part in them were utterly unaware of them. Genius was then required only
from time to time to clinch the results obtained by the unconscious accumu-
lation of infinitesimal efforts, to secure what was gained and prepare another
slow movement in the same general direction.

These major advances were among man’s first attempts to understand and
control the things he saw around him.

Through careful observations of recurring relationships in their environ-
ment they began to know nature, and because of nature’s dependability, they
found they could make predictions that would give them some control over
their surroundings.

1 Derived from the Latin verb scire = to know, to discern, to distinguish. The word

scientist was coined by William Whewell of Cambridge in 1840. For further

reading, see:

• Sarton, G., Ancient Science and Modern Civilization, University of Nebraska
Press, 1954, 111 pp.

• Clark, G., Space, Time and Man, A Prehistoric Review, Cambridge Univer-

sity Press, Canto edition, 1994, 165 pp.
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When our own particular subspecies, Homo sapiens sapiens, emerged some
40,000 year ago he was already a rather advanced user of tools: spears for
hunting, axes for killing animals and for fashioning wood, knives and scrapers
for working with materials — these were some of man’s earliest tools. He
soon devised tools to help him make tools, something no animal before him
had done.

These first tools, man’s earlies technology, had a great impact on his way
of life; weapons enabled him to change his diet from a mostly vegetable one
to a reasonably steady diet of animal flesh supplemented with fruits and veg-
etables. His tools enabled him to fashion cloths and dwellings, so that he was
able to live in cold climates. Dwelling gave him another alternative to living
in caves or in the open.

Man’s bodily evolution reached its present form about twenty-five thou-
sand years ago. Since then there has been a continuous unfolding of his mental
capacities. Even at that time the Cro-Magnons in France were already paying
attention to life far beyond the bare necessities of food. Spirited inscriptions
of women and animals were being made on the walls of their caves. Expressive
creativity was an early human trait.

For all but the most recent 10,000 years of his existence, man was a hunter-
gatherer; he did not raise plants or animals for his own use, but went out and
got them from the wild, when he needed them. Then — about 10,000 years
ago — came man’s most significant technological discovery: the cultivation of
plants2. In terms of its impact on society, agriculture is undoubtedly the most
far-reaching of all man’s technological innovations. A number of other tech-
nological innovations accompanied agriculture, the domestication and raising
of animals, the making of pottery, and the weaving of cloth.

The elaborate civilizations of Mesopotamia and Egypt depended for their
birth and development on a settled agriculture practiced by Neolithic people in
these regions since 8000 BCE. Without it, they could not have sustained either
the increased population or the specialization of urban life. Once secured,
these societies spawned a remarkable series of technological advances. The
4th millennium BCE saw the invention of the plow, the wheel, the sailing
boat, and methods of writing. Stone tools gave way to those of copper and
bronze, that came into use ca 2500 BCE.

Although yet devoid of the scientific method as we know it, the technical
knowledge of these early societies was rather sophisticated; the pyramids re-
main one of the finest engineering feats of all time and the mathematics used

2 The biblical narrative about man’s expulsion from Paradise (Gen 3, 23) may hint

to his transition from food-gathering to food-producing at the beginning of the

Holocene.
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by priests provided for the development of other sciences. Trade and warfare
were the main stimuli of technological advance in the second millennium BCE.
The greatest technological event was the mastery of iron by Hittite smiths.

After centuries of experience, the annual nature of the river flood created
the need to match human agricultural activity to the natural cycle – irrigation
and ploughing came to pass. This most fundamental innovation in the history
of man brought civilization into being because if was the instrument of surplus.
Communities were capable of supporting those who are not food producers.

In order for early man to change from the primitive hunting and gathering
way of life to a settled agricultural existence he needed to learn the concept of
time: settled farmers needed to understand the movement of the moon and the
sun in order to regulate their agricultural production. Settled farming means
trade, trade means communities (villages or towns) which in turn mean the
specialization of trades, craftsmanship and art, language, laws and a primitive
writing are not far away.

Science, therefore, began with the conquest of time and distance. That is
to say, with the quest of the knowledge needed to keep track of the seasons
and to find man’s whereabouts in the world he inhabited.

We now know that the social achievements of mankind before the begin-
ning of the written record include far more important things than the per-
fection of axes and arrowheads. Several discoveries into which he blundered
many millennia before the dawn of civilization in Egypt and Sumer, are es-
pecially significant: he learned to herd instead of to hunt, he learned to store
grain to consume when there were no fruits to gather and he collected bits
of meteoric iron. The sheep is an animal with seasonal fertility and cereal
crops are largely annual. The recognition of the passage of time now became
a primary necessity of social life.

In learning to record the passage of time, man learned to measure things.
He learned to keep account of past events. He made structures on a much
vaster scale than any of which he employed for purely domestic use.

The arts of writing3, architecture, numbering, and in particular geometry,
which was the offspring of star lore and shadow reckoning, were all by-products
of man’s first organized achievement – the construction of the calendar.

Science began when man started to plan ahead for the seasons, because
this demanded an organized body of continuous observations and a permanent
record of their recurrence.

3 In fact, a symbolic system of notation (primitive writing) seems to have been in

use by prehistoric cave-painters! Ergo, necessary elements of civilized cultures

were in place by 35,000 BCE.
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In the age of satellite communication, atomic clocks, and cheap almanacs,
we take time for granted. Before there were any clocks or even simpler devices
like the hour-glass or the clepsydra for recording the passage of time, mankind
had to depend on the direction of the heavenly bodies (sun by day and stars
by night). He learned to associate changes in vegetation, the mating habits of
animals, and the recurrence of drought or floods, with the rising and setting of
bright stars and star clusters immediately before sunrise or in evening twilight.

When the agrarian revolution reached its climax in the dawn of city-life (ca
8000 BCE), a technique of timekeeping emerged as its pivotal achievement.
What chiefly remain to record the beginnings of an orderly routine of settled
life in cities are the vast structures which bear eloquent witness to the primary
social function of the priesthood as custodians of the calendar: The temple
with its corridor and portal placed to greet the transit of its guardian star
or to trap thin shaft of light from the rising of setting sun; the obelisk or
shadow clock; the Pyramids facing equinoctial sunrise or sunset, the pole
and the southings of the bright stars in the zodiac; the great stone circle of
Stonehenge with its sight-line pointing to the rising sun of the summer soltice
– all these are first and foremost almanacs in architecture.

Nascent science and ceremonial religion had a common focus of social
necessity in the observatory-temple of the astronomer – priest. That we still
divide the circle into 360 degrees, that we reckon fractions of a degree in
minutes and seconds, remind us that men learned to measure angles before
they had settled standards of length or area. Angular measurement was the
necessary foundation of time keeping. The social necessity of recording the
passage of time forced mankind to map out the heavens. How to map the
earth came later as unforeseen result.

Science rests on the painstaking recognition of uniformities in nature. In
no branch of science is this more evidence than in astronomy, the oldest of the
sciences, and the parent of the mathematical arts. Between the beginning of
city life and the time when human beings first began to sow corn or to herd
sheep, ten of twenty thousand years – perhaps more – may have been occupied
in scanning the night skies and watching the sun’s shadow throughout the
seasons. Mankind was learning the uniformities which signalize the passage
of the seasons, becoming aware of an external order, grasping slowly that it
could only be commanded by being obeyed, and not as yet realizing that it
could not be bribed. There is no hard and sharp line between the beginnings
of science and what we now call magic. Magic is the discarded science of
yesterday. The first priests were also the first scientists and the first civil
servants.
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The Sumerian Heritage (ca 4000–1800 BCE)

The first civilizations4 grew up when nomadic hunters and seed-gatherers
began to farm the land, and so were able to form settled communities. Where
the soil was rich, they could grow enough food to support non-producers like
craftsmen and administrators. Probably the earliest civilization grew up in
the fertile region between the rivers Tigris and Euphrates — in the lower part
of an area known as Mesopotamia5.

The first settlers came here about 4000 BCE, soon after the soil deposited
by the rivers had dried enough for farming. The Sumerians were among the
earliest invaders who probably came from the highlands at present day Turkey
and Iran (scholars, however, do not know the exact origin of their racial or
language group). They learned to drain the swamps, and to make bricks
from mud. They farmed, dug canals, and raised livestock. On an agriculture
economy they developed a true city life, so they must have understood the
technique of specialization or division of labor.

Their small settlements grew into cities and city-states. The more powerful
city-states conquered their neighbors and created small kingdoms, including
Kish, Lagash, Nippur, Umma, Uruk and Ur. Each of these had fine buildings,
streets, temples, palaces, fortifications, public water supplies and drainage
over an average area of one square kilometer. They built a great network
of irrigation canals, domesticated animals and their society included priests,
soldiers, tradesmen and engineers. To this end they developed a government
that handled both secular and religious matters, a trained army with armor,
weapons of war, and carts for transportation.

The Sumerian cities were united in a loose league. They shared a common
culture, they spoke similar languages, and they worshiped the same gods. A
typical Sumerian city-state consisted of the city proper and as much of the
surrounding population as the city walls could accommodate in times of crisis.
The focal point of each city was a great platform raised above the surrounding
residential areas. On it were erected the many-storied temples (ziggurates)
which became a hallmark of Babylonian monumental architecture6.

4 From the Latin: civitas for “city-state”.
5 From the Greek: “between the rivers”.
6 Many Sumerian traditions lie behind Bible legends: the Tower of Babel was almost

certainly one of the ziggurates (its height could reach 100 m). The Flood is

described in the Sumerian Epic of Gilgamesh. Archaeologists have shown that a

great flood overwhelmed the area thousands of years ago. For further reading,
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Writing, in the strict sense of the term, was first invented and employed
in Mesopotamia about 3100 BCE. If it was not actually originated by the
Sumerians, it was at any rate very soon taken over by them to represent their
language, and it became one of the most important ancient writing systems.

The Sumerian wrote by pressing a split bamboo reed (stylus) on wet clay
which was then baked until it was hard. The end used was triangular in shape.
The writer did not scratch the lines of his picture, but in making a single line
he impressed one corner of the tip of the stylus into the soft clay, and then
raised it again to impress another line in the same way. Owing to the oblique
tilt of the stylus, as well as its shape, each line thus made was wider at one end
than at the other, and hence appeared triangular or wedge-shaped. Finally,
every picture or sign written with such a stylus came to be made up of a
group of wedge-shaped lines. We therefore call the system cuneiform7 (from
the Latin cuneus = wedge) writing. Pictures made up of these wedge lines
became more and more difficult to recognize, especially as speed of writing
increased. All resemblance to earlier pictures finally disappeared.

Most of the earliest examples of Sumerian writing that we have found
are business records. But school texts appeared almost at once as means
of educating specialists in the new technique. Literary texts and historical
records followed in due course.

The transition from the picture stage to the phonetic stage was early made.
Sumerian writing finally possessed over 560 signs, but each of these signs
represented a syllable or a word, that is a group of sounds; the Sumerian
system never developed an alphabet of letters which made up the syllables.
That is, there were signs for syllables, but no signs for the letters which made
up such syllables.

The Sumerian clay tablets reveal the sophistication of the Sumerian civi-
lization as well as their degree of knowledge of mathematics, astronomy and
medicine. The clay records show us that in measuring time the Sumerian
scribe began a new month with every new moon, and he made his year of 12
of these moon-months. Since 12 such months fall short of making up a year,
the scribe slipped an extra month whenever he found that he had reached the
end of his calendar-year a month or so ahead of the seasons. As in Egypt,

see: Kramer, S.N., History Begins at Summer, Doubleday Anchor Books: New

York, 1959, 247 pp.
7 The decipherment of the cuneiform was pioneered in 1802 by Georg Friedrich

Grotefend (1775–1853, Germany). His work was continued by Henry

Creswicke Rawlinson (1810–1895, England), and by the mid-1800’s the

cuneiform code was broken. Since 1802, several hundred thousands cuneiform

tablets have been recovered and placed in museums.
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the years themselves were not numbered, but each year was named after some
important event occurring in the course of the year.

The Sumerian system of numerals was not based on tens, but had the
unit 60 as a basis. The leading unit of weight which they used was the mina,
divided into 60 shekels (the mina had the weight of a pound).

The Sumerian writing spread to Elam (Iran) and Egypt by 3000 BCE,
to Crete (2200 BCE), India (2000 BCE) and to the Hittites (1500 BCE).
[China invented writing independently by 1300 BCE and the Mayans by 700
CE].

The Sumerian age of small, independent city-states which began at about
3000 BCE, lasted until 2500 BCE. Such cities as Ur, Uruk, and Lagash waged
local wars. Each city ruled its neighboring areas at various times. But the
advantages of civilization could not be contained within the confines of the
Sumerian city-states. By about 2500 BCE, cities on the Sumerian model had
appeared throughout the area from the Tigris-Euphrates Valley to the east-
ern coast of the Mediterranean. The people of these newer cities were not
Sumerian but Semitic. The Semites, a number of different people speaking
similar languages, seem to have originated from the Arabian peninsula where
they had been nomads who lived by breeding animals. As Arabia turned
desert, Semites moved in several waves into the eastern Mediterranean and
the parts of Mesopotamia north of the Sumerians. By 2300 BCE, the old
Sumerian cities were merely the core of a much larger civilization that em-
braced the entire Fertile Crescent and whose population was primarily Se-
mitic. The region first occupied by the Semites north of Sumer was finally
called Akkad and the leading Semitic settlers there bore the name of Akkadi-
ans. Akkad occupied a very strong commercial portion on the main road from
the Two Rivers to the eastern mountains and its trade brought it prosperity.

The Semitic King Sargon I (ca 2300 BCE) was first to unite the city-
states of Mesopotamia into a single empire, and the Sumerian civilization was
gradually absorbed by the Semitic people. By 1800 BCE the Sumerians lost
all political power, but the union of Sumerians and Semites furnished the base
on which the Babylonian civilization developed8.

8 Recent archaeological evidence disclosed that by 1800 BCE the accumulated salin-

ization of the soil due to irrigation reached a level where food production was

insufficient for the growing population. This man-made ecological disaster was

probably one of the major factors in the demise of the Sumerian civilization.
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Climate and Civilization

Climate has been subject to change since the earliest times known to ge-
ologists. Because geology is a relatively young science, however, this fact has
been recognized for only about a century; and at first only the larger fluctu-
ations, the extremes of Ice Ages and Interglacial, were recognized. But soon
geologists found evidence that ice sheets, both in their expansion and reces-
sion, were subject to interruption — that is, neither advances nor retreats
proceeded smoothly and linearly, but each of them from time to time inter-
rupted by a reversal of the primary trend. Thus, paleo-ecological, geological
and archaeological evidence has been accumulated in favor of climatic fluctu-
ations in Europe, in the form of damped oscillations, of gradually diminishing
amplitude and duration, over the past 10 to 15 thousand years.

In the Mediterranean Basin, the Near East and northern and central Africa
the evidence is more subtle and difficult to detect. However, the relation in
time between the subtropical and European climate changes were clarified due
to intensive research in the past four decades. A synchronism was estab-
lished between the period of advance and growth of glaciers in Europe to
glacier advance in central-east African mountains and the pluvial period in
the Mediterranean Basin. It was also found that fluctuations that were too
small to leave clear geological evidence, could still be large enough to produce
highly significant ecological effects, which may be reflected in archaeological
evidence.

The 8000 years between the end of the last ice-age (breakdown of the
Scandinavian ice-sheet) and the time of Christ saw a sequence of substantial
changes, including some thousands of years that were warmer, and in low
latitudes, moister than now. Such shifts in climate may have been manifested
through long summer drought, repeated rains and river floods, damaging gales
and long severe frost. Glaciers may have melted or expanded, blocking moun-
tain passages previously used for traffic. World sea-level rose and fell with the
gain or loss of water from the world’s glaciers. In primitive economies such
effects could be disastrous and may have affected the course of history.

A particularly sharp change seems to have occurred in the interval 1200–
500 BCE. This history overlaps the rise and fall of various civilizations and
migrations of the so-called ‘barbarian’ cultures of Northern and Central Eu-
rope and Asia. The driving forces behind many historical upheavals could
well have been famine, epidemics and wars caused by droughts and floods
and the arrest of naval commerce lines caused by stormy seas.
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At the present time we have more or less a complete record of human
history in South-Western Asia since about 5200 BCE for which we have the
following data sources:

• Instrumental records and old weather journals going back at most for 300
years.

• Literary records: accounts of floods, droughts, severe winters, and great
storms.

• Traditions (such as that of the Deluge which can sometimes be correlated
with other data.

• Fluctuations of lakes and rivers, glaciers and other natural indices of
climate, which can often be connected with historical events or dated by
laminated clays.

• Arguments from migration of people, for which climatic reasons may be
assigned with some determined probability. To this we may add the
waxing and waning of civilizations.

• The rate of growth of trees, as shown by annual rings of tree-growth,
which can be correlated with the annual rainfall.

• Geological evidence — great advances or retreats of glaciers, growth of
peat-bogs, succession of floras, etc., which can sometimes be approxi-
mately dated.

The evidence afforded by racial migrations depends on the principle that
during a period of increased rainfall there is a movement of peoples from
regions which are naturally moist to regions which are naturally dry, while
during the drier periods the direction of movement is reversed.

It has been shown, for example, that emigration from Europe to the United
States depended on the rainfall. In order that this principle may be used to
determine the course of climatic variations, certain conditions are necessary.
First, there must be large areas which are on the borderline between aridity
and complete desert; these areas must be mostly too dry for extensive agri-
culture, but with sufficient resources to support under average conditions a
large nomadic population, while a succession of dry years renders them almost
uninhabitable.

In close proximity to this arid region there must be a fertile well-watered
plain, with a long and accurately dated history. During dry periods the no-
mads are driven from their homes by lack of water, but they find little diffi-
culty in moving from point to point, and the sedentary agriculturists of the
neighboring plain generally find them irresistible. It is only in Asia that these
conditions are fulfilled in perfection, the rich plains of the Tigris and Eu-
phrates, the site of a long succession of civilized states, having on the one
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side the semi-deserts of Arabia and Syria, on the other side a great dry region

extending eastwards and north-eastwards as far as China. We should expect

a period of decreased rainfall to initiate a series of great migrations spreading

out from the dry regions and recorded in the history of the Mesopotamian

states as the invasions of barbarians.

The history of Egypt does not provide such a complete a record, because

the desert on either side of the Nile valley is too dry, even under favorable

conditions, to support a nomadic population sufficiently large to have made

any impression on the might of ancient Egypt. The Hyksos conquest of about

1800 BCE is the main exception, but the Hyksos themselves probably came

out of Asia. The invasions of China from the west provide some evidence of

climatic fluctuations in the east of Asia.

Man’s awareness of the fickleness of climate can be traced back to the dawn

of history and may have existed long before that in tales carefully transmitted

from generation to generation, which even now survive enshrined in myth and

legend. In contrast, the view, regarded as scientific, which was widely taught

in the earlier part of this century, that climate was essentially constant apart

from random fluctuations from year to year, was at variance with the attitudes

and experience of most earlier generations. It has also had to be abandoned

in face of the significant changes that occurred in many parts of the world.

Among the earliest written reports of climatic fluctuations are the inscrip-

tions recording the yearly levels of the Nile flood, some of them from around

3000 BCE. Other inscribed tablets, or steles, show a reasoned awareness of

the liability of the Nile to fluctuations lasting some years.

In numerous ancient writings and legends we may distinguish knowledge

of certain climatic catastrophes, which changed the face of the world and

from which recovery was either long delayed or never fully established. The

commonest of these accounts, usually of the distant past, are those that relate

to a great flood, of which NOAH’s flood is perhaps the best known example.

Climatic oscillations lasting up to 100 years or so, may be due in part

to changes in the general circulation of the atmosphere and in part due to

interaction of ocean currents and floating ice-fields.

Because of the nonlinear nature of these interactions, under favorable con-

ditions, comparatively small causes may have disproportionally large effects.

One must also remember that while major climatic changes tend to be

nearly synchronous globally, they are not generally in the same sense or mag-

nitude in all places: so there can be damp weather in Western Europe, and

simultaneous drought in North America.
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One of the consequences of a short term climatic change which affected and
afflicted mankind during its entire history is the drought condition resulting
from a significant shortage in water storage due to lack of precipitation.

4226 BCE Time-reckoning may have began in Egypt with the institution-
ing of the first calendar with a 365-day year, broken into 12 thirty-day months
plus 5 days for festivals.

4000–3200 BCE Chalcolithic Age: The copper-stone age, just before the
dawn of history, during which man first learned to create metal tools and
ceremonial objects. Emergence of houses, towns and geometric designs on
pottery. This transition from the Prehistoric to the Historic Age was every-
where a slow and gradual one. Civilization slowly appeared in the Near East
while the men of the Late Stone Age in Europe continued to live without
metal, government, writing, large ships and many other creations of civiliza-
tion. Beginning at about 2000 BCE, civilization gradually and slowly diffused
toward Europe via the Aegean world as it received all the above benefits from
the nations of the Near East.

ca 4000 BCE Advent of horseback riding in the uplands between the
Dnieper River and the Carpathian Mountains, first sail-propelled boats; bricks
are fired in kilns in Mesopotamia; first recording of star-constellations. Inven-
tion of the plough. Sea-level rise began to slow down, but the slow rise will
continue to ca 2000 BCE.

4000–3000 BCE First urban civilization in the world appeared in the
region between the Mediterranean and India during the so-called post-glacial
optimum9.

ca 4000 BCE Early metallurgists in the foothills and semiarid plains
of Anatolia10 and Iran discovered sources of copper other than the native
metal. None of these ores superficially resembles copper itself and cover a

9 Caused by cessation of volcanic activity and slight increase in solar radiation in

the middle and high latitudes.
10 Neolithic man was acquainted with various minerals: In the cave painting in

France and Spain, he employed ocher (hydrated Fe2O3) and pyrolusite (MnO2)

as pigments. Women used rouge (Fe2O3) and eye shadow (PbS) before the 6th

millennium BCE. Beads of malachite [Cu2(OH)2CO3] and other minerals and
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wide range of colors: green malachite, blue azurite [Cu3(OH)2(CO3)2], red
cuprite (Cu2O), gray chalcocite (Cu2S) yellow chalcopyrite (CuFeS2), and
purple bornite (Cu2FeS2). The first reduction of malachite to metal must
have been an accidental discovery, probably in a pottery oven. The propa-
gation of copper from sulfide ores was a still more extraordinary discovery,
because a much more sophisticated technique is required.

3784, Oct 20 BCE First record of a solar eclipse was made in India
(according to the Rig Veda). The next four records of solar eclipses in human
history were: 2136, Oct 10 BCE (China); 1375, May 13 BCE (Ugarit); 1178,
April 16, BCE (Homer’s Odyssey, Greece).

ca 3580 BCE Great eruption of mount Vesuvius (VEI=6).

ca 3500 BCE The introduction of the wheel11 in Mesopotamia during the
period of establishment of the city-states. It took two forms: a stone potter’s
wheel and a cartwheel made from a solid piece of wood12. A simple picture of
a solid-wheeled vehicle was found at Uruk. The royal standard of Ur, dating
from 2750 BCE, shows carts with solid wooden wheels.

ca 3500 BCE Indo-European proto language, spread by nomadic horseback
herders from the Eurasian steppes, reached the Near-East. Their language
will give rise to the Indo-European languages, including the branches called
Germanic (English, German), Italic (Latin, French), Slavic (Russian), Indo-
Iranian (Sanskrit), Baltic (Lithuanian), Celtic (Gaelic), and Greek, Albanian,
Armenian, and Anatolian (Hittite). Linguists and anthropologists tend to

pieces of copper and gold were among their items of personal adornment. In the

region from the Anatolian plain to the edge of the Iranian desert, neolithic man

could find nuggets of gold and copper in stream beds, where the native metal was

concentrated by the flowing water. In northern Iraq, copper beads have been

found that date from 8500 BCE. By 6000 BCE, neolithic people in the region

of the Fertile Crescent had abandoned their nomadic life as hunters to become

grain growers and stock raisers. They had also mastered some of the secrets of

fire and clay, for pottery makes its first appearance at this time and the skills of

potter were indispensable to the first metallurgists.
11 Was the invention of the wheel a result of man’s keen observation of the ease

with which the dung-beetle (scarab) was maneuvering the dung ball? We know

that this beetle was once held sacred by the ancient Egyptians.
12 First literary mention in the biblical story of Joseph (Genesis 45, 21, 27), relating

to ca 1650 BCE.
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believe that this mother tongue13 spread into Europe by farmers. Even if
a farmer’s offsprings had moved only 15 km from the family farm to set
up farms of their own, the resulting move of agriculture could have diffused
throughout Europe from Anatolia in about 1500 years, carrying the Indo-
European language with it.

Moreover, cultural anthropologists14 are now able to trace the migration
of people throughout the world in the last 10,000 years as having started with
the growth of population in a location between the Black Sea and the Caspian
Sea.

ca 3500 BCE Earliest known use of Bronze15 in Sumer. The period in
history between the Stone Age and the Iron Age (ca 1100 BCE) became known
as the Bronze Age16. The origin of bronze had been different in different places,
but it is reasonable to suppose that it was first discovered by the accidental
smelting of mixed ores of copper and tin, such as known to occur.

Bronze Age flourished in the Aegean world during 2900–2000 and contin-
ued during 2000–1100 in the Cretan, Minoan and Mycenaean civilizations.

ca 3500–3000 BCE Mesopotamia springs into history with the city-states
of Sumer and Akkad; advent of pictographic writing; emergence of societies
in the Great Valleys with social and material benefits (Egypt, China, India,

13 The Bible (Genesis 11) associates the story of the Tower of Babel with the

confusion of languages and the dispersion of the races throughout the world .

Clay tablets written in Sumerian indicate that Sumerians believed that there

was a time when all mankind spoke one and the same language, and that it was

Enki , the Sumerian god of wisdom, who confounded their speech.
14 Luigi Luca Cavalli-Sforza and Francesco Cavalli-Sforza, The Great Human

Diasporas, Addison-Wesley, 1995.
15 Bronze: an alloy of copper and tin. The oldest alloy known to man. It replaced

stone and soft copper and was used as the primary material for weapons and

cutting tools. It was commonly used to cast containers such as cups, urns, and

vases. Men also shaped bronze into battle-axes, helmets, knives, shields, swords,

and ornaments. In contradistinction, Brass is an alloy of copper and zinc and

was probably discovered later by melting copper ore that also contained a small

amount of zinc.
16 The bronze age is not a particular period of time; some areas had their bronze

age early, others had it late, and some skipped it altogether. The Bronze Age

in any region usually overlapped on earlier Stone Age and a later Iron Age,

because people did not stop using one material all at once. The Biblical reference

to Tuval-cain as a master forger of bronze tools (Genesis 4, 22) is probably

associated with the early Bronze Age III in the Near East (ca 2400 BCE).
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Mesopotamia); introduction of the wheel in Mesopotamia and its use in haul-
ing carts and making pottery (ca 3300 BCE).

Glacier advances around 3000–2800 BCE severely disturbed Neolithic agri-
cultural economy in central Europe and Asia, causing the spread of people to
Western Europe. Climate deteriorated on a global scale and glacier’s move-
ment caused major flooding in Mesopotamia and Egypt.

ca 3400 BCE Development of hieroglyphic writing. Egyptians developed
their number system17 to the point where they could record numbers as large
as 100,000,000. Thus, written numbers preceded any known form of written

17 The invention of hieroglyphics took many years, maybe even centuries. Hiero-

glyphs were carved or “printed.” The hieratic was the first cursive form of
hieroglyphics, developed much later. It was a quicker and more convenient way

of recording an agreement, conveying a message, or making a calculation with

numbers than by drawing hieroglyphs.
As the need for keeping track of large numbers arose, the Egyptians developed

a grouping system in order to perform more complex operations. In this system

some number n is selected for the base and symbols are adopted for 1, n, n2, n3,
and so on. Then any number was expressed by adding these numbers.

Their grouping system had a base of ten. Their symbols were powers of ten:

• 1: The symbol for a staff or rod.

• 10: A heel bone or arc.

• 100: A rope coil or scroll symbol.

• 1,000: The lotus flower.

• 10,000: A pointing finger.

• 100,000: A burbot (fish).

• 1,000,000: An astonished man.

• 10,000,000: A sun on the horizon.

They had no mathematical notation, except the symbol for total. There were

no plus, minus, multiplication, or division signs. No square root signs, zeros, or

decimal points were used. If they wanted to indicate a sign, they had to write it

out in hieroglyphics. Although they didn’t have mathematical notation, there-

twice-times table and two-thirds-table enabled them to do a significant amount

of mathematical problems for their time.
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words. Numerals probably preceded words in the Orient and in the Americas
as well.

ca 3200 BCE Metal-molding were practiced at Sumer to make copper and
bronze axes. Egyptians used papyrus to write on. Sailing ships were used in
Egypt. A ziggurat in Ur (Mesopotamia), 12 m high, shows that the Sumerians
were familiar with columns, domes, arches and vaults.

3200 BCE Earliest evidence of political structuring in Egypt: administra-
tors are appointed to ensure a regular water supply to the fields. Egypt is
developing into a sophisticated centralized civilization. Astronomy, picture-
writing and mathematics evolve and develop as necessities from the demands
of canal-building, regular harvesting, granary building, taxation system and
security (metal weapons).

3300 BCE Evidence for copper industry in the Alps found in 1991 with
the discovery of the Austrian Alps ‘Iceman’ buried in snow. This pushes back
the copper age by some 1000 years.

ca 3200 BCE Egyptians made the earliest recorded sea voyage during
the reign of Pharaoh Sneferu. It was commemorated in a hieroglyphic
inscription which recorded the “bringing of 40 ships of one hundred cubits
with cedar wood from Byblos”. It was the need for timber, for their temples,
palaces and ships, that occasioned the voyage to Byblos, the port for timber
hewn in the great cedar groves of the Lebanon mountains.

ca 3000 BCE The first glass was made by man in the form of a glaze on
ceramic vessels.

ca 3000 BCE Breakup of a large comet produced a zodiacal light18 so
prominent that it was confused with the Milky Way. It is mentioned repeat-
edly in ancient literature.

ca 3000 BCE First large-scale irrigation system in Egypt and Mesopotamia.
It began with the discovery of farmers that they could exploit the natural ir-
rigation afforded by rains and floods in order to raise crops during most of

18 Zodiacal light: sunlight reflected off dust that lies in the ecliptic plane (zodiac).

This dust is believed to be fine debris from long-lost comets and is studied by

astronomers using space-borne telescopes sensitive to infrared (heat) radiation.

Sometimes, when an active comet sheds a great deal of material, the zodiacal

light becomes very bright. Such was the case e.g. on the night of 07 June 1843

in South Africa, when it resulted from debris of comet Encke. It is currently so

faint that it barely even merits mention in textbooks.
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the year. By this means the same patches of land were cultivated repeatedly.
Farmers were then led to invent the plow that oxen could pull. This in turn
helped farmers produce much more food than they needed for their families.
The food surpluses enabled more and more people to give up farming and
more to the cities. Classes of builders, craftsman, merchants priests, clerks,
miners, smelters, transporters and officials began to appear – and systems of
writing were invented.

ca 3000 BCE Earliest written reports of climatic fluctuations in Egyptian
inscriptions, on tablets or steles, recording the yearly levels of the Nile flood.

ca 3000 BCE The Chinese used the binary system in their arithmetic
calculations. Hieroglyphic numerals in Egypt.

ca 2900 BCE Earliest archaeological evidence for the existence of the
city of Yafo19, on the Mediterranean coast of Israel. It was the scene of the
ancient legend of Andromache and Perseus. The part of Yafo is mentioned
in Old Testament (Josh 19, 46; Jonah 1, 3; Ezra 3, 7; Chron. II. 16). The
name is also mentioned in the tribute lists of the Egyptian king Tethmosis III
in the 15th century BCE.

Yafo was probably under the control of the Phoenicians until the Persian
period. It was brought under Israeli control by the Maccabees (164 BCE).
Pompey made it a free city (63 BCE), but Caesar restored it to the Israelis
(47 BCE).

As the only harbor in the Israeli coast between Egypt and Carmel, Yafo
was of great commercial importance throughout history. The modern Tel
Aviv-Yafo with a population of ca 360,000 is the largest city in Israel.

ca 2800 BCE The earliest known book of medicine, the Great Herbal of
Emperor Shen Lung. There is a Babylonian physicians seal of about the
same date.

19 Other names are Joppa (Greek) and Jaffa (Arabic). The Hebrew name could

have originated from the Hebrew word Yafé (= beautiful) or Japeth (= son of

Noah).
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Origins of the Egyptian Civilization

Egyptian civilization did not emerge spontaneously as a full-grown disci-
pline. It had its note in former African civilizations: Carbon dating of the
remains of barley and einkorn wheat found at Kubbaniya, near Aswan in
Upper Egypt, shows the beginning of agriculture that existed around 16,000
BCE, and this evidence is supported by the large concentrations of agricul-
tural implements from around 13,000 BCE.

Moreover, the discovery of recent archaeological artifacts of neolithic com-
munities in Egypt, indicate that they may have belonged to groups from the
once fertile Sahara region who were forced to migrate eastward as the desert
spread. So, the culture and people of Egypt initially originated in the heart-
lands of Africa. This is borne out by the historian Diodorus, who wrote (ca
50 BCE) that the Egyptians “are colonists sent out by the Ethiopians... And
the large part of the customs of the Egyptians are Ethiopian”.
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Egyptian mathematics20 (3100–1250 BCE)

Due to the more advanced economic development of Babylonia, the mathe-
matics of ancient Egypt never reached the level attained by Babylonian math-
ematics: Babylonia was located on a number of great caravan routes, while
Egypt stood in semi-isolation. Nor did the relatively peaceful Nile demand
such extensive engineering and administrational efforts as did the more erratic
Tigris and Euphrates. But the veneration that the Egyptians had for their
dead and the unusually dry climate of the region, led to the preservation of
many papyri and objects that would otherwise have perished.

The origins of the urban revolution that transformed Egypt into one of the
great ancient civilizations are the gradual development of effective methods
of flood control, irrigation and marsh drainage which contributed to a signifi-
cant increase in agricultural yield. Clearly, a prerequisite for such innovations
required organization that sprang out of cooperation among preexisting scat-
tered settlements. Thus, prior to the emergence of the highly centralized
government of Pharaonic Egypt, a form of communal village nucleations may

20 For further reading, see:

• Van der Waerden, B.L., Science Awakening , P. Noordhoff: Groningen, Hol-

land, 1974, 306 pp.

• De Camp, L.S., The Ancient Engineers, Ballantine Books: New York, 1963,

450 pp.

• Gillispie, C.C. and M. Dewachter (Editors), Monuments of Egypt, The Com-

plete Archaeological Plates from the Description De L’Egypt. Princeton Ar-
chitectural Press, 1994.

• David, R.A., The Egyptian Kingdoms, Elsevier: Phaidon, 1975, 152 pp.

• Neugebauer, Otto, The Exact Sciences in Antiquity, Dover, New-York, 1969,
240 pp.

• Joseph, G.G., The Crest of the Peacock, Princeton University Press, 2000,
455 pp.

• Wilson, A.M., The Infinite in the Finite, Oxford University Press, 1995, 524
pp.

• Hogben, L., Mathematics for the Million, W.W. Norton and Company, Lon-
don, 1993, 649 pp.
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have come into existence as an institutional back-up for these agricultural
innovations.

Between 3500 and 3000 BCE, the separate agricultural communities along
the banks of the Nile were gradually united, first to form two kingdoms –
Upper and Lower Egypt – which were brought together (ca 3100 BCE), as
a single unit by Menes, who came from Nubia (part of present-day Sudan).
Menes forced a long line of Pharaohs, 32 dynasties in all, who ruled over a
stable society for the next 3000 years.

Up to 1350 BCE, the territory of Egypt covered not only the Nile valley
but also parts of Israel and Syria. Control over such a wide expanse of land
required an efficient and extensive administrative system. Censuses had to
be taken, taxes collected, and large armies maintained. Agricultural require-
ments included not only drainage, irrigation and flood control, but also the
parceling out of scarce arable land among the peasantry and the construction
of silos for storing grain and other produce.

As Egyptian civilization matured, there evolved other pursuits requiring
practical arithmetics and mensuration: financial and commercial practices
demanded numerical facility. This evolving numerate culture, serviced by a
growing class of scribes and clerks led, in turn, to the construction of calendars
and the creation of a standard system of weights and measures. Finally,
this practical mathematical culture culminated in the construction of ancient
Egypt’s longest lasting legacy – the Pyramids.

It is possible to distinguish three different notational schemes of numer-
ation used in ancient Egypt: hieroglyphic (pictorial), hieratic (symbolic) and
demotic (popular). The hieratic notation was employed in both the Moscow
and Rhind papyri . The demotic variant was a popular adaptation of the hi-
eratic notation and became important during the Greek and Roman periods
of Egyptian history.

The hieroglyphic system of writing was a pictorial script where each char-
acter represented an object. Special symbols were used to represent each
power of 10 from 1 to 107. With these symbols, numbers were expressed in
the decimal system e.g. 17509 = 1(104) + 7(103) + 5(102) + 0(101) + 9(100).
No difficulties arose from not having a symbol for zero or place-holder in this
number system. Addition and subtraction posed few problems: In adding
two numbers, one made a collection of each set of symbols that appeared in
both numbers, replacing them with the next higher symbol as necessary. Sub-
traction is merely the reversal of the process of addition, with decomposition
achieved by replacing a larger hieroglyph with ten of the next lower symbol.

The hieratic representation was similar in that it was additive and based
on powers of ten, but it was far more economical (fewer symbols). While this
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notation was more taxing on memory, its economy, speed and greater suit-
ability for writing with pen and ink (for writing on paper in contradistinction
to hieroglyphs carved on stone or metal) caused the gradual replacement of
hieroglyphs.

These papyri reveal the state of mathematics in Egypt from about 3100
BCE to about 1100 BCE.

One consequence of their numerical system is the additive character of the
dependent arithmetics. Multiplication and division were usually performed by
a succession of doubling operations depending on the fact that any number
can be represented as a sum of powers of 2.

This Egyptian process of multiplication and division eliminated the neces-
sity of learning a multiplication table. It is also so convenient on the abacus
that it persisted as long as that instrument was in use.

Thus, this method required prior knowledge of only addition and “two-
time” table.

In a modern variation of this method, still popular among rural community
in Russia, Ethiopia and the Near East, there are no multiplication tables and
the ability to double and halve numbers (and to distinguish odd from even)
is all that is required.

Whether the Egyptians knew it or not, their method is based on the unique
binary representation of every number.

In modern notation, if N is a positive integer, it can be written as

N = ar2r + ar−12r−1 + · · · + a121 + a0,

where ak = 0 or 1. Suppose that N and M , whole numbers, are to be
multiplied; then NM =

∑

i

2iM , where the sum includes only these terms

for which ai = 1. Then to calculate 2iM , just double M , then double the
result and continue to double until 2iM is reached. Therefore, if we can
add and double numbers, we can also multiply them. The Egyptians (lacking
computers) still faced one little problem: how to find, quickly, the non-zero
coefficients in the binary representation of N . Their ingenious trick was to
half the multiplicand N (to the nearest integer [N

2 ]) and keep halving the
result until unity is obtained. Then, consider only the odd number in this
sequence!

This ancient method of multiplication provides the foundation of Egyptian
arithmetic. It was widely used, with some modifications, by the Greeks and
continued well into the Middle Ages in Europe.
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In the inverse process of division, fractions had to be introduced whenever
the quotient was not an integer. But since their method of writing numerals
did not allow any unambiguous way of expressing fractions, they tackled the
problem in a quite ingenious way.

Modern historians and mathematicians have tried to discover the rules
that the Egyptians actually followed in performing calculations with fractions.
From all cases available in the table of the Papyrus Rhind (ca 2000–1800 BCE),
Neugebauer recorded that the Egyptians actually used simple algebraic rules
such as (in modern notation)

2
n

=
1
2

1
n

+
3
2

1
n

or
2
n

=
1
3

1
n

+
5
3

1
n

to obtain results such as

2
3

=
1
6

+
1
2
,

2
5

=
1
15

+
1
3
.

In general, they were concerned with the representation of a rational numbers
as the sum of unit fractions, i.e.

m

n
=

1
x1

+
1
x2

+ · · · +
1
xk

.

This has suggested numerous problems, many of which are still unsolved, and
continue to suggest new problems, so that interest in Egyptian fractions is
as great as it has ever been. One such problem suggested by Paul Erdös
concerns the Diophantine-like equation

4
n

=
1
x

+
1
y

+
1
z
, n > 1,

where x, y, z and n are positive integers [e.g. n = 4, x = 2, y = 3, z = 6].
Examples of other fractions are

2
7

=
1
5

+
1
13

+
1

115
+

1
10465

,

1 =
1
3

+
1
5

+
1
7

+
1
9

+
1
15

+
1
21

+
1
27

+
1
35

+
1
63

+
1

105
+

1
135

.

A well-known riddle associated with Egyptian fractions is the following:
A dying rich man, who owned 11 cars, willed 1/2 of them to his oldest daugh-
ter, 1/4 to his middle daughter, and 1/6 to his youngest daughter. But the
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problem arose how to divide his 11 cars in strict accordance with the will. A
car-dealer offered his help by lending the heirs a brand-new identical vehicle
so that each daughter could now receive a whole car: the oldest 6, the middle
3 and the youngest 2. After the heirs had driven off, one car remained for the
dealer to reclaim!

The problem really solved here was to express n
n+1 as a sum of three

Egyptian fractions:
n

n + 1
=

1
a

+
1
b

+
1
c
.

In the above story n = 11, a = 2, b = 4, c = 6. Interestingly, for n = 11, there
is another solution (and story) with a = 2, b = 3, c = 12 because two subsets
of the divisors of 12 (1, 2, 3, 4, 6, 12) add to 11 (2+3+6=1+4+6=11). The
inheritance problem is related to pseudo perfect numbers, defined as numbers
equal to a sum of a subset of their divisors.

Thus, the main Egyptian mathematical accomplishment was the invention
of a system of notation that made it possible to express the result of an
arbitrary division of integers. However, this process was cumbersome and did
not result in a unique expression for a fraction, which in turn made it difficult

to compare the size of numbers. They used 17/12 for
√

2 and symbols for
plus, minus, equality and unknowns appeared in their arithmetic.

With this limitation of their calculational capabilities, the Egyptians could
not have solved quadratic equations. Clearly, advances in algebra are depen-
dent on an efficient notation for numbers and on systematic methods for
computing with them.

As opposed to continued fractions, unit fractions are of relatively little use.
In fact, they probably set back the development of Egyptian mathematics.
However, they do provide fertile ground for numerous unsolved problem in
Diophantine analysis.

Operating with unit fractions is a singular feature of Egyptian mathemat-
ics, and is absent from almost every other mathematical tradition.

Egyptian algebra is referred to as ‘rhetorical algebra’: the rules devised by

mathematicians for solving problem about numbers were expressed verbally
and consisted of detailed instructions about what was to be done to obtain
the solution to a problem.

In time, the prose form of rhetorical algebra gave way to the use of syn-
copated algebra where abbreviations for recurring quantities and operations
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were introduced. Traces of such algebra are to be found in the works of Dio-
phantos(ca 250 CE), but it achieved its fullest development in the work of
Hindu and Arab mathematicians during the first millennium CE.

During the past five centuries there has developed ‘symbolic algebra’ where,
with the aid of letters and signs of operation and relation (+, −, ×, ÷, =),
problems are stated in such a form that the rules of solution may be applied
consistently. This evolution had to await the development of a positional num-
ber system which allowed numbers to be expressed concisely and with which
operations could be carried out efficiently.

An ancient mathematical document dated ca 1850 BCE and known as
the “Moscow Papyrus” reveals the state of knowledge of ancient Egyptian
mathematicians.

The papyrus was discovered in 1890 in the Necropolis of Dra Abul Negga
in Egypt and it was acquired in 1912 by the Moscow Museum of Fine Arts.
It consists of 25 mathematical problems and their solutions. The solutions
of the geometrical problems are basically arithmetical, offering no trace of a
proof in the Euclidean sense.

A second document from the same time is the “Rhind Papyrus”, now in
the British Museum. It reveals a highly original procedure for operating with
fractions. The Egyptians used a decimal system of notation, but had no pro-
cedure which was in the nature of a general proof. The geometrical problems
were mensurational. The document was found at Thebes and purchased in
1858 by the English archaeologist Alexander Henry Rhind.

The above sources reveal that Egyptian algebra did not go far beyond linear
equations in one unknown and pure quadratic equations in one unknown.
Their algebra had some symbolism such a symbols for plus, minus and equals.

In geometry they advanced only as far as was required for computing
simple land areas and granary volumes. Thus, the area of a circle was taken
equal to that of a square of side 8/9 of the diameter (leading to the value
π ∼ 3.16). The volume of a right cylinder was obtained as a product of the
base area by the length of the altitude. They also knew that the area of any
triangle is given by half the product of the base and altitude.

An army of some 100,000 laborers working for a period of 30 years built
for them the great pyramid of Gizeh at about 2700 BCE. It undoubtedly
involved some mathematical and engineering problems. Indeed, problem 14
of the Moscow Papyrus reveals that they knew the general formula

V =
1
3
h(a2 + ab + b2),
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giving the volume of a frustum of a square pyramid of the height h and the
sides a and b of the bases.

The geometry of the Egyptians was merely an applied arithmetic in the
sense that areas and volumes were determined according to certain approxi-
mate calculational rules21. However, nowhere does a systematic derivation of
these rules occur. Looking at Egyptian mathematics as a whole, one sees only
rules for calculation without any motivation, but calculation is not the same
as mathematics.

Astrology was, in Egypt, the prelude to astronomy. The stars were ob-
served that they might be duly worshiped. The importance of their first visible
appearances at dawn (for the purposes of both practical life and ritual obser-
vance) caused them to be systematically noted. The length of the year was
accurately fixed in connection with the annually recurring Nile flood, while
the curiously precise orientation of the Pyramids afforded a lasting demon-
stration of the high degree of technical skill in watching the heavens attained
in the 3rd millennium BCE. The constellational system, in vogue among the
Egyptians, appeared to have been of native origin, but they contributed little
or nothing to the genuine progress of astronomy.

The ancient Egyptians bequeathed to us the idea which is at the heart of
our calendar. Unlike the Babylonians, Greeks and early Romans, they based
their calendar upon the sun alone. As the earliest great farming civilization,
Egypt was dependent upon the annual flood of the Nile which brought water
and rich silt to the river’s flood plain. Life in Egypt was controlled by the
seasons, and hence by the sun. The moon played no part in the calendar.

The Egyptian year had 12 months, each of 30 days, plus an extra 5 days
at the end of the year. These 5 days were associated with the birthday of
the greatest gods of the Egyptian Pantheon and were given over to celebra-
tions. Thus the year was 365 days long. The Egyptians made no attempt to
force their calendar to keep step with the actual seasons (as we do by adding
leap-days, or a leap-month). Instead, they accepted that the seasons would
gradually become later and later w.r.t. the calendar, in a cycle that would
take 1460 years to complete. The Egyptian checked the relation of their cal-
endar to the natural year not by observing the equinoxes and solstices but

21 The two major achievements of Egyptian geometry were the approximation to

the area of the circle, and the derivation of the rule for calculating the volume

of a truncated pyramid. Some historian claimed that they also found the correct

formula for the surface area of a hemisphere.
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by the heliacal rising of Sirius, the Dog-star. This was the first sighting each
year of Sirius in the morning sky just before sunrise.

ca 2770 BCE Egyptian introduced the calendar based on a year of 365
days. The Egyptians recognized that the point on their horizon where the
sun rises or sets moves from day to day; in the spring the sunrise and sunset
points move north along the horizon until they reach a northern limit at the
time when daylight last longest. Then they move south until they arrive
at a southern limit when the period of daylight is shortest. By counting
the number of sunrises or sunsets from either one of these points until that
point is next reached they found the number to be about 365. They noted
independently that the Dog star, Sirius, reappeared in the eastern sky just
before sunrise after several months of invisibility.

They also discovered that the annual flood of the Nile river came soon after
Sirius reappeared; again they counted 365 days between two such consecutive
events. So at some point22 they began using this event to fix their calendar
and came to recognize a year of 365 days made up of 12 months, each 30 days
long and an extra 5 days added at the end for festivals. But the year length
is actually 365 days, 5 hours, 48 minutes and 46 seconds (about a quarter of
a day) and so, their calendar slowly drifted into error.

Important observations of the sky were also made by people in other parts
of the ancient world, especially in India, China and Mesopotamia. These early
observers realized that it was easier to describe the location of a particular
object in the night sky if the stars were divided into recognizable groups,
called constellations.

2750 BCE Gilgamesh, legendary king of Uruk, Sumer.

2700–2500 BCE Building of the early big Pyramids23 during the 3rd and
4th Old Kingdom Dynasties in Egypt.

22 The Egyptian calendar is known to have accurately matched the seasons with

dates in 139 CE. Their calendar gradually went into and out of alignment with

the seasons with a period of about 1455 years. Knowing this, astronomers have

speculated that the year of 365 days was institutioned at ca 4226 BCE.
23 The word Pyramid appears for the first time in the Ahmes Papyrus (ca 1630

BCE) and is believed to have originated either from the Egyptian piromi or

pyros = grain, as in “granary”. The Greeks obtained it from the Egyptians.
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At the beginning of the 3rd Dynasty, Imhotep24 (ca 2700 BCE) designed
for King Djoser the first great stone structure built by man – the Step-Pyramid
at Saqqarah [h. 60 m; base: 121 × 109 m2]. This was an experiment, using a
new architectural form and new building materials and construction technique
with dressed stone.

The first smooth-sided Pyramid was built at Meidum at about 2600 BCE
[h. 92 m; base: 144 × 144 m2; inclination: 51 ◦51′].

The Pyramid of Cheops, the largest and most massive of the Pyramids,
stands at Gizah (west bank of the Nile river, outside Cairo). Built by Prince
Hemon, a son of King Sneferu and cousin to Cheops (Khufu), sometimes
during 2600–2500 BCE [originally 146.5 m tall and base of 230.4 m with in-
clination 51 ◦51′. Some 2.5 million stones were used for its construction.]25.
According to Herodotos, some 100,000 workers26 were engaged in the con-
struction at any given time over a period of 30 years.

The great Pyramids were constructed on a common geometrical plan: the
perimeter of the four sides, which face exactly to the north, south, east and

Because of the pyramidal form of a flame, the word was thought by medieval

and Renaissance writers to come from the Greek word pyr for fire (as in “py-

rotechnic”). However, the word prism is from the Greek prizein = to saw, hence

something sawed off.
24 According to Manetho (ca 280 BCE). Imhotep, architect, engineer, writer,

statesman and physician, is honored in medicine as the first physician known by

name. He served as vizier (prime minister), and after his death was elevated to

the status of a god. He was worshiped for his healing powers, the only scientist

ever to have become a god. The Greeks identified him with their own god of

healing, Asclepius: temples were built to Imhotep, and bronze statuettes of him

have been preserved. A statue of him stands today in the Hall of Immortals in

the International College of Surgeons in Chicago.

Imhotep is the first figure of a universal man to stand out clearly from the mists

of antiquity; probably of the caliber of Archimedes and Leonardo da Vinci,

to be produced by nature only once in some 2000 years.

Apart from Manetho’s book there is no real history of Imhotep and his royal

master Djoser. However, a papyrus of Ptolemaic times relate how the kingdom

was afflicted by famine for several years because the Nile failed to rise. Djoser

accordingly took counsel with Imehotep, who explained that Khnum, the god of

the Cataracts, was wrath. So the king deeded lands for temples to the god, and

all was well. This story provides the kernel of the biblical story of Joseph and

the seven lean years.
25 Relative error in the right angle at corners not exceeding 1/27,000.
26 Replaced every 3 months.
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west, has the same ratio to the height as the ratio of the circumference to the
radius of a circle, i.e. 2 × 31

7 or 2π. This was no coincidence: The symbol of
the sun-god Ra was a circle. So, when Ra rose every morning over the land
of Egypt, he was greeted by a shining golden image of himself. The square-
ness and level of the base have an average error that is less than 10−4 of a side.

The rays of Sirius (whose rising announced the Egyptian New Year and the
flooding of the Nile river), were perpendicular to the south face at transit, and
shone down the ventilating shaft into the royal chamber while building was
in progress. The Pyramids, built when α-Draconis was the pole-star27, had
interior passages aligned in the direction of that star as it passed the meridian
of the Pyramid. Thus, the ancients, believing that the motion of the heavenly
bodies held the secret of man’s fate, spared no effort to unlock this secret by
a systematic study of the heavens.

ca 2679 BCE Chinese astronomers record an observation of a Nova.

ca 2600 BCE Egyptians build the first stone-paved highway – a 60 km
long road which carried the materials for the pyramids. At about the same
time they invented the wooden saw to cut granite.

First recorded seagoing voyage. Egyptian sailors travel to Byblos in
Phoenicia (today’s Lebanon) in search of cedarwood.

27 During 4480–2330 BCE the sun rose on the spring equinox in the constellation

Taurus and during 10,970–8810 BCE in the constellation Leo. This led some

scholars to speculate that the Sphinx (Lion-faced!) was built during the age of

Leo. Geological studies of the Sphinx (1991) by a team of American geologists

from Boston University, headed by Robert Schoch, concluded that the Sphinx

would seem to date from around 7000 to 5000 BCE, during the Neolithic rainy

period. This is a direct challenge to Egyptologists who maintain that the Sphinx

was excavated out of solid rock around 2500 BCE at the time of Pharaoh Khafre.

It means that social organization and technology needed to create this Sphinx

had to exist prior to the 1st Dynasty kingdoms – a revolutionary idea unaccepted

by most Egyptologists today.

It is believed that the Gizah-complex pyramids (Khufu, Khafre, Menkaura) were

oriented according to the stars, i.e. the three pyramids were apparently delib-

erately related to each other in a unified geometric design, forming an integral

part of the ritual basis behind the Egyptian understanding of death and the af-

terlife. For example, if a line is drawn linking the center points of the two larger

pyramids then the third and smaller pyramid is off set. The three then seem to

create a pattern on the ground corresponding to the three stars of Orion’s Belt

in the sky.
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ca 2500 BCE Early Minoan civilization in Crete. Indus Valley civilization
founded in India.

Egyptian priests began to develop and codify medical practice, including
primitive surgical procedures. They gain their understanding of the human
body by preparing mummies. Papyri from that time tell how to set bones, the
pumping function of the heart, the pulse and the prescription of medications
and diets. Mummies were in part produced by saponifying the flesh of the
corpse with natron (a mixture of Na2CO3, NaHCO3, NaCl and Na2SO4).
Chinese probably developed practice of acupuncture by this time.

2500 BCE Egyptians and Mesopotamians had developed a sophisticated
society operating with essential tools: civil engineering, astronomical mea-
surement, water lifting machineries, writing and mathematics, primitive met-
allurgy, and the wheel.

ca 2500 BCE The knowledge of agriculture, of the potter’s art, and of the
use of copper reached northern China, by way of Central Asia, either from
Russian Turkestan or from Persia. Thus the initial (Neolithic) civilization of
China came indirectly from the ancient centers in Western Asia – from either
the lower Indus lands or from lower Mesopotamia.

From these areas cultural currents equally passed into Europe. Subse-
quently to this remote phase, however, Chinese civilization seems to have
developed in almost complete independence of influence from the West. Eu-
rope and China developed along independent lines because of geographical
conditions (distance, mountain and desert barriers). Both Europe and China
stood at the terminals of a steep-desert belt where rainfall was sufficient for
cultivation; hence they were geographically equipped to support relatively
dense populations.

ca 2500–2000 BCE Hugh climatic changes in the Aegean, Anatolia, Near
and Middle-East, Egypt, North Africa and large parts of Asia. May be linked
to the encounter of the Taurid meteor stream (including asteroids and active
comets) with earth. This is the age of megalithic constructions around the
world such as the Pyramids of Egypt and the Stonehenge28 in England.

28 For further reading, see:

• Hoyle, Fred, On Stonehenge. W.H. Freeman, 1977, 157 pp.

• Niel, F., The Mysteries of Stonehenge. Avon, 1975, 208 pp.
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ca 2500 BCE The Egyptian sea-expedition to Punt29 (in the reign of the
Pharaoh Sahure) in quest of incenses and cosmetics ingredients.

As the power and luxury of Egypt increased, so did its need for rare,
costly and exotic materials. From the mines on the Sinai peninsula Egyptian
ships brought turquoise, malachite and copper. From equatorial Africa they
brought the incenses frankincense and myrrh, and antimony – an ingredient
of rouge, one of the most highly prized cosmetics of the day.

These products became so prodigiously expensive as they traveled slowly
up the continent, passing through the hands of one entrepreneur after another,
that the Egyptians were eventually impelled to send their own fleets through
the Red Sea to the sources of these goods, in order to trade directly with the
inhabitants.

ca 2500 BCE The final disappearance of the elephant, giraffe and
rhinoceros from Egyptian territory. Elephants continued to exist in Syria
and Mesopotamia up to ca 1000 BCE.

ca 2500 BCE Coastal Indians at Chicama (Peru) engaged in agriculture.

ca 2400 BCE Sumerians develop positional notation for numbers with
base 60.

ca 2400 BCE Bitumen, a form of oil that seeps from the ground, was used
in Mesopotamia to make boats watertight. This is reflected in the Biblical
story of Noah and the Deluge [Gen 6, 14].

ca 2316 BCE Chinese record an observation of a comet.

ca 2300 BCE The earliest surviving map is one inscribed on a baked clay
tablet from Mesopotamia. It is a map of the city-state Lagash.

ca 2300 BCE The observational work of the Chinese resulted in an accu-
rate calendar in which the year was 365 1

4 days long.

29 The Land of Punt, “The Sacred”. Various locations have been suggested: Per-

haps on the borders of Somalia and Ethiopia; could be identical with the Biblical

Ophir (I Kings 9, 28; 10, 11; 22, 49; II Chron 8, 18; 9, 10). Equatorial Africa

was the source of ebony and other rare woods, ivory, gold and silver. Prized above

all were the incenses, frankincense and myrrh. The latter, a gum resin burned in

vast quantities in the temples, and also widely used as an unguent, perfume and

embalming agent. The tree which exudes the myrrh resin, Commiphora myrrha,

grows extensively inland from the port of Zeila.
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ca 2200 BCE The custom of horseback riding finally diffused to the
Middle-East from its origin in the forested uplands between the Dnieper River
and the Carpathian Mountains30.

2180–2130 BCE A Dark Age in the history of ancient Egypt. Earliest
known great famine in Upper Egypt, due to drought caused by a severe failure
of the annual floods of the Nile. A second famine, less severe, occurred between
2002 and 1991 BCE.

This prolonged drought occurred more or less simultaneously over the
entire Eastern Mediterranean and adjacent lands. The dire famine was caused
by failure of the rains over the central and eastern African sources of the
Nile31. The crisis shattered a weakened central government utterly unable to

30 Horseback riding began at ca 4000 BCE in the Cucuteni-Tripolye culture, which

flourished from about 4500 to 3500 BCE in the forested uplands between the

Dnieper River and the Carpathian Mountains.

Horseback riding, by bringing distant cultures into contact, seems to have stim-

ulated both trade and war, and provided a possible mechanism for the dispersal

of early Indo-European dialects.

An eastward dispersion by the first riders would have encountered only small and

scattered human resistance. Dispersal to the west would have been much more

complex because it would have encountered the well-established agricultural so-

cieties of Copper Age Europe.

Archaeological data and theoretical models of migration tend to support the

theory that such movements took place, first to the east, and then to the west,

between 3500 and 3000 BCE. In all these developments the horse played a critical

role.

It took a very long time for the custom of riding to diffuse southward into the

Middle East. When horses finally did appear there around 2200 to 2000 BCE,

they were used first as draft animals attached to battle carts, and eventually, to

drive the war chariots. It was as a chariot animal that the horse trotted onto

the pages of history, two millennia after it had first been broken to the bridle.
31 The volume of water in the Nile depend on the rainfall over Central Africa (White

Nile) and the summer monsoon rains over East-African Highlands (Blue Nile).

Thus the most important source of information as to the variations of rainfall in

Africa is provided by the levels of the River Nile.

As is well known, the Nile commences in Lake Victoria, in Central Africa, and

flows to Lake Albert as the Victoria Nile. From there it continues as the Bahr-el-

Jebel, becoming known as the White Nile after the junction of the Sobat River.

At Khartoum it receives the Blue Nile, and near Berber the Atbara River, both

of which originate in the mountains of Abyssinia. From the junction of the Blue

Nile to the Mediterranean, a distance of 2900 km, it receives no appreciable

accession of water. The level of the Nile passes through an extremely regular
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cope with the problem, decimated the Egyptian people and brought about a
general decline in material culture32.

Outside Egypt, the drought affected civilization throughout the Eastern
Mediterranean Basin: it contributed to the destruction of the Akkadian Em-
pire. The second drought (2002–1991 BCE) contributed to the downfall of
the Third Dynasty of Ur.

2159 BCE According to accounts of the time, the court astronomers in
China, Hi and Ho were beheaded when they failed to predict on eclipse.

2100 BCE Egyptians record star configurations and base upon it a 24-hour
day.

annual variation; the water is at its lowest in April or May, it rises slowly and

irregularly in June and the first half of July, but rapidly and steadily in the latter

half of July and the first half of August, remaining high during September and

commencing to fall rapidly in October.

[Herodotos tells us: “When the Nile overflows, the country is converted into a

sea, and nothing appears but the cities, which look like islands in the Aegean”.]

The regular annual flood is the source of fertility of Egypt, without it the whole

land would be a barren desert, and hence the levels of the flood have been

recorded annually, probably for some thousands of years.

The significance of both high and low levels of the Nile is as follows: The White

Nile drains a large area of equatorial Africa which has a considerable annual

rainfall distributed fairly evenly throughout the year; moreover, it passes through

two large lakes, Victoria and Albert, which further regulate the flow. Hence

the White Nile, above its junction with the Sobat River, discharges an almost

constant volume of water throughout the year .

The Blue Nile, the Atbara, and the Sobat River , on the other hand, originate in

Abyssinia, which receives the greater part of its monsoonal rainfall in the summer

months. It is these rivers which supply most of the waters of the annual flood .

For this reason the level of the Nile during the stage of low water reflects the

general rainfall of equatorial Africa, while the flood levels represent the monsoon

rainfall of the eastern highlands. Since the rainfall in the equatorial belt is

associated with low pressure (which is very closely connected with the intensity

of the general circulation of the atmosphere) it shows a closer relation to the

rainfall of Europe than the monsoon rainfall in the eastern highland (governing

the floods).
32 When a similar situation arose in the middle of the 2nd millennium BCE, it was

met by a stronger and more experienced government which succeeded to manage

the economy through a sequence of 7 years of abundance and 7 lean years that

followed (Gen 41, 29–57).
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2000 BCE Babylonian arithmetic evolved into rhetorical algebra:
quadratic equations are solved and cubic and biquadratic equations were dis-
cussed.

ca 2000 BCE Ziggurates in Mesopotamia serve as platforms for astronom-
ical observations. The shaduf , a device for astronomical observations raising
water from one level to another with a bucket, appears in Mesopotamia.

The palace of Minos in Crete has light and air shafts and interior bath-
rooms with their own water supply.

Mesopotamian traders journey as far east as India. Egyptians trade with
Nubia, Ethiopia, and Crete.
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Mathematics and Astronomy in Mesopotamia33

(ca 3200–300 BCE)

“In Babylon, in Babylon
They baked their tablets of the clay;

And year by year, inscribed thereon
The dark eclipses of their day;

They saw the moving finger write
Its ‘Mene, Mene’, on their sun

A mightier shadow cloaks their light,
And clay is clay in Babylon”.

Alfred Noyes (1922)

The Babylonians34 played a large part in laying the foundations of our sci-
ence. From the beginning of the 2nd millennium BCE they catalogued and
classified with meticulous care everything that came under their observation,
and this body of information was passed on to be recognized or revised by
the generations following.

Archaeological excavations of the ruins of the ancient cities of Babylonia
during 1840–1940, revealed a complex civilization which flourished more than
4000 years ago in the fertile land watered by the Tigris and Euphrates rivers.
It was a civilization characterized by prospering agricultural settlements, criss-
crossed by a network of canals, whose purpose was to reclaim swamps and
feed parched areas. Numerous individuals were occupied with law, religion,
science, art, architecture, trading, teaching and engineering. Large palaces,
sculptures, metal bass-reliefs, copper and bronze figures, painted pottery and
other artifacts of great antiquity were recovered.

33 The data used in this article was assembled form the groundbreaking

works of the Assyriologist Otto Neugebauer (1899–1990) [The Exact Sci-

ences in Antiquity, Dover 1969] and B.L. Van der Waerden (1903–

1996) [Science Awakening, Kluwer 1988]. We have also consulted the

works of the mathematicians Morris Kline (1908–1992) [Mathematical

Thought from Ancient to Modern Times, Oxford Univ. Press 1990] and

H.L. Resnikof and R.O. Wells [Mathematics in Civilization, Dover 1984].
34 “Babylonian” refers to all cultures of the cuneiform users in Mesopotamia, after

the city that was the center of many of the empires that occupied the region

between the Tigris and the Euphrates rivers.
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Most significant of all the finds, however, were the thousands upon thou-
sands of clay tablets unearthed at Nineveh, Assur, Nippur and other cities,
bearing the written records of the economic, juridical, educational and scien-
tific phases of daily life, previously known to us only through Biblical allusions.

Lacking papyrus and having little access to suitable stone, they resorted to
clay as a writing medium. The inscription was pressed into a wet clay tablet
by stylus. The finished tablet was then baked in an oven or sun-dried to a
time-resisting hardness that resulted in a permanent record. The cuneiform
writings incised on the tablets include among a whole gamut of subjects, as-
tronomical observations that were used principally for the timing of religious
festivals.

Underlying the commercial, monetary and astronomical systems employed
by the Babylonians, were their achievements in mathematics, made known to
us through the continuing study and decipherment of the cuneiform inscrip-
tions on the ancient tablets.

Their numerical system was a mixed one: numbers below 60 were written
in the decimal system, but number above 60 were written according to the
sexagesimal system. Thus

1 · 602 + 0 · 60 + 1 · 600 = 101 (sexagesimal),

= 3 · 103 + 6 · 102 + 0 · 101 + 1 · 100 = 3601 (decimal).

Likewise

524, 549(decimal) = 2 · 603 + 25 · 602 + 42 · 60 + 29 = (2 · 25 · 42 · 29).

Fractions could also be represented in this system, e.g.

1
2

= (30)60−1 = 0; 30

1
8

= (7)60−1 + (30)60−2 = 0; 7, 30

532
3
4

= (8)60 + (52)600 + (45)60−1 = 8, 52; 45

1
64

= (56)60−2 + (15)60−3 = 0; 0, 56, 15

1029 = (17)601 + (9)600 = 17, 9.

To divide, say, 1029 by 64 the Babylonians evaluated the product 1029 × 1
64 .

The answer 16; 4, 41, 15 can be converted to the decimal base

16 + 4(60)−1 + (41)60−2 + (15)60−3 = 16.078125.
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As used by the early Babylonians, the sexagesimal number system lacked
two basic features of our modern decimal system: there was no zero and there
was no “sexagesimal point”. The resulting ambiguity (on existing clay tablets)
due to the lack of the zero can often be resolved only by a careful study of
the context. After 300 BCE a special symbol was introduced to denote the
unfilled position. However, the lack of the sexagesimal point did not impede
their computational ability, and this is why their astronomy and algebra were
far superior to that of their Egyptian contemporaries.

Most of the mathematical tablets have been classified either as ‘table texts’
or as ‘problem texts’. The latter appear in many cases to have been school
texts illustrating rules for the solution of problems. The table texts were
ever-present aids both for instructional problems and for practical use. They
include tables of reciprocals, squares, square roots, cubes, cube roots and multi-
plication tables. With these tables at their disposal for the numerical calcula-
tions involved, the Babylonians developed many ingenious rules and methods
for the solution of a wide variety of mathematical problems. These tablets
are cogent evidence of a high degree of skill and originality on the part of the
Babylonian mathematicians.

Their tablets reveal that they knew the Pythagorean theorem more than a
thousand years before the Greeks. Indeed, the Pythagorean triplet

(3456)2 + (3367)2 = (4825)2

was incised on Plimpton 322 (1500–1600 BCE). This example leads us to
believe that they were familiar with the general solution of a2 + b2 = c2 in
integers:

a = 2pq, b = p2 − q2, c = p2 + q2

for which the above triplet is obtained with p = 64, q = 27. They also
prepared numerical tables for cn with

n = 1, 2 ... 10, c = 9, 16, 10, 225.

The Babylonians could solve linear and nonlinear equations with one unknown
[e.g. ax = b, x2 = a, x2 ± ax = b, x3 = a, x2(x + 1) = a], and systems of
equations with 2 unknowns such as

x ± y = a, xy = b;

x ± y = a, x2 + y2 = b.

Furthermore, the following formulae were known to them by 300 BCE:
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(a + b)2 = a2 + 2ab + b2,

(a + b)(a − b) = a2 − b2,

1 + 2 + 4 + · · · + 2n−1 = 2n − 1,

12 + 22 + 32 + · · · + n2 =
1
3
(1 + 2n)(1 + 2 + 3 + · · · + n).

The Babylonians were able to solve different types of quadratic equations,
e.g. (in today’s notation)

x2 + bx = c, b > 0, c > 0 ∴ x =

√(
b

2

)2

+ c − b

2
,

x2 − bx = c, b > 0, c > 0 ∴ x =

√(
b

2

)2

+ c +
b

2
.

To handle the more general case ax2 − bx = c, they multiplied throughout
by a to get (ax)2 − b(ax) = ac and then substituted y = ax, e = ac to obtain
their standard form y2 − by = e, e > 0. They also solved higher order
equations such as ax4 − bx2 = c and ax8 − bx4 = c by treating them as
if they were ‘hidden’ quadratics in x2 and x4, respectively.

Babylonian handled cubic equation of the form x3 = c with the help of
cube root tables, and equations of the form x2(x + 1) = c with help of
(n3 + n2) tables. There are even a few examples in Babylonian algebra of the
solution of a set of equations in three unknowns

x2 + y2 + z2 = 1400, x − y = 10, y − z = 10 (x, y, z) = (30, 20, 10).

Babylonian geometry is intimately related to practical mensuration,
though their geometry was chiefly of algebraic character.

They were familiar with proportionalities arising from parallel lines, the
Theorem of Pythagoras, the area of a triangle and of a trapezoid, volumes
of a prism and of a cylinder. They used the poor approximations 3r2, 6r for
the respective area and perimeter of a circle of radius r, and wrong formulae
for volumes of cone and pyramid frustums.

Of special interest is the value that the Babylonians have assigned to
√

2
in their sexagesimal system, that is equivalent to 1.414 213 562, to 10 decimal
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figures. This again, could not have been achieved without the availability of
some algorithm, probably the same one known to the Greeks35.

The Babylonians could also calculate areas of triangles and quadrilaterals
and volumes of prismatically-shaped canals. Finally, the Babylonians knew
the laws of similarity of triangles and the ensuing rules of proportion, ergo –
they knew the fundamentals of trigonometry.

In ancient times, astronomy was the sole means of regulating the calendar
and thereby determining the proper time for annual agricultural activities
such as crop planting and land irrigation. In addition, stars and other ce-
lestial bodies were worshiped as gods, and the study of their motion formed

35 Babylonians gave approximations to square roots of nonsquare numbers such as
17
12

for
√

2 and 17
24

for 1√
2
. Apparently they were aware of the approximation

formula

a +
h

2a + 1
<

√
a2 + h < a +

h

2a
, 0 < h < a

(used later by Archimedes for his calculation of π). Historians of mathematics
now believe that the Babylonians had an algorithm through which they could

extract square roots accurate to 10 decimal digits. Take 27, for instance. Since

52 = 25 < 27 and 62 = 36 > 27, it is expected that
√

27 will lie somewhere
between 5 and 6. They then noticed that since 5 <

√
27, 27

5
must be greater

then
√

27. They then guessed that a better approximation to
√

27 than either 5

or 27
5

would be the average

√
27 ≈ 1

2

(

5 +
27

5

)

= 5.2,

which yields 5.2 × 5.2 = 27.04. This process can now be repeated, with the next
step giving

√
27 =

1

2

[

5.2 +
27

5.2

]

= 5.19615,

where now (5.19615)2 = 26.99997. Thus, two application of their method yields

a result of better than six-figure accuracy.

With a method as powerful as this, the Babylonians had no fear of square

roots. Nowadays, digital computers use this iterative process (Hero’s algorithm)

yn+1 = 1
2

(
yn + x

yn

)
for a successive approximation of the solution y =

√
x of

y2 − x = 0. The Babylonians could have arrived at the same result through

the following reasoning: Let the positive number a1 be a guess that is too small,

a1 <
√

x. It then follows that a1
√

x < x and consequently a1 <
√

x < x
a1

. The

mean of these estimates, namely a2 = 1
2

(
a1 + x

a1

)
can be shown to be closer to√

x than either a1 or x
a1

. Therefore, a2 can be taken as a new estimate of
√

x.

With a1 = 1, the process has to be repeated just 4 times in the sexagesimal

system to obtain the value for
√

2 found in the Babylonian texts!
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part of the religious duties owed them. In this sense astronomy was initially a
technical branch of religion that served as one of several channels of commu-
nication between the priestly hierarchy and the god they served. Therefore,
the astronomical study of these deified objects was virtually identical with
the study and prediction of their paths of motion through the heavens. As-
tronomy was therefore exclusively mathematical, and mathematics thereby
became the servant of religion which in return fostered its development and
ensured its prestige for thousands of years.

The practical component of religion which applied the achievements of
mathematical astronomy to the welfare of mankind was astrology, the ancient
art of divining the fate of human beings from the configurations and motions
of the planets and stars.

Already in 3200 BCE Sumerian priests made astronomical observations
on watch towers and prepared maps and time tables of star-motions.

In 3000 BCE, astrology was already well developed in Babylonia. It was
founded on the Babylonian’s identification of personal deities with the plan-
ets36 Mercury (Nebo), Venus (Ishtar), Mars (Nergal), Jupiter (Marduk),
Saturn (Ninib), as well as moon (Sin) and the sun (Shamash). The move-
ments of these heavenly bodies, were regarded as representing the activity of
the corresponding gods. If one could correctly ‘read ’ the heavenly motion of
these divinities, one would know what they were aiming to bring about on
earth.

Their astrology was based on the fundamental assumption that all events
on earth are influenced by the stars. In particular we can trace back to them,
by way of the Hebrews, the origin of our present seven-day week associated
with the Sun, Moon and the five planets37 Mars, Mercury, Jupiter, Venus,

36 Before the regular movement of planets about the sun was known, they seemed

to the ancients as stars wandering the heavens. Hence the name (Greek) planan,

to wander. Latin used planetae to mean wandering stars.

We know today that to be called a planet, an object must have a mass less than

about 1
10

of its sun.
37 If at that time there had been any knowledge of the planets Uranus, Neptune

and Pluto, discovered in 1781, 1846 and 1930 respectively, our week might today

consist of 10 days instead of seven!

The planetary week presents a strange combination of ideas from different cul-

tures. From Babylon came the doctrine of the influence of the stars on man’s

destiny, from the Alexandrian Greeks came the mathematical astronomy that

placed the planets in a certain order of distance from the earth, and then on

these foundations the late Hellenistic astrologers, who were familiar with the an-

cient cult of the magical number seven, constructed a purely Pagan week. By the
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and Saturn that they discovered. Indeed, the separation of these planets
from the so-called ‘fixed stars’, was one of their greatest achievements. Many
believe that the week had its origin in the above seven “stars” visible to the
naked eye which traverse the celestial zodiac. (Of these seven, only the sun,
of course, is actually a star in the modern scientific meaning of the word.)

The motion of the bodies in the solar system is viewed against the back-
ground of the fixed stars. From the earliest times the various star formations
were identified with familiar creatures and objects whose forms appeared to
be similar to the patterns traced by the stars. Of principal importance were
those constellations that lie, when viewed from earth, behind the path of mo-
tion of the planets, moon and sun. Since all these bodies move in nearly the
same plane – the plane of the ecliptic38 – their motion against the background
of the stars appears to take place in a relatively narrow band. This imagi-
nary zone of the heavens, bounded by two circles equidistant from the ecliptic
plane and separated by about 18 ◦, is the zodiac39. The zodiac is partitioned
into 12 equal signs40 each comprising 30 ◦ in the ecliptic plane. Each sign

end of the third century CE, the Christians, who had previously adhered to the

Jewish seven-day week in which the days simply had numbers and not names,

began to be influenced by the astrological beliefs of converts from Paganism and

changed over to the planetary week. The stars were no longer regarded as deities

but as demons capable of affecting the fate of man. At the same time, the orien-

tal worship of the Sun-god Mithra was extremely influential in the Roman world.

This led to the substitution by pagans of the dies Solis (the Sun-day) for the dies

Saturnis (the Saturn-day) as the first day of the week. This change appealed to

the Christians, who had long observed Sunday as the first day of the week. All

the names of the days can be traced back to the Roman (or equivalent Norse)

planetary gods: Monday (Moon = Luna); Tuesday (Tiw = Mars, god of war);

Wednesday (Odin = Mercury); Thursday (Thor = Jupiter, god of thunder); Fri-

day (Frigga = Venus); Saturday (Saturn); Sunday (Sun).

In 1901, the following inscription was found scratched on the wall of a

dining-room in Pompei (79 CE): SATVRNI, SOLIS, LVNAE, MARTIS, IOVIS,

VENERIS. This gives the days of the week in the order still adopted at the

present time, with the omission of Wednesday, which is no doubt an accidental

error.
38 Ecliptic – the sun’s apparent path in the heavens, so-called because eclipses can

occur only when the moon crosses it.
39 From the Greek zoon = a living thing.
40 The duodecimal system, based on 12, allows thirds, quarters and sixths to be

expressed very simply, in contradistinction to the decimal system where a third

cannot be represented exactly, but only as a repeating decimal fraction. It is no

coincidence that we have 12 hours of day, 12 hours of night, 12 months in the
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is associated with a constellation that lies in the zodiacal band from which
the sign draws its name. These signs are: Capricorn (Goat), Saggitarius
(Archer), Scorpio (Scorpion), Libra (Balance), Virgo (Virgin), Leo (Lion),
Cancer (Crab), Gemini (Twins), Taurus (Bull), Aries (Ram), Pisces (Fish),
Aquarius (Water bearer).

No one could deny that the Babylonians were the fathers of astronomy.
The little rainfall in Mesopotamia and its clear unpolluted sky enabled almost
continual watch of the motion of the planets by the naked eye over many
centuries on end41. Their astronomers noted every single phenomenon with
such great care that they were able to notice even the changes caused by
the precession of the equinoxes42. Eclipses of the sun, moon, and stars were
so carefully described that part of the ancient chronology has now been
unambiguously determined by just such occurrences.
In fact, the basis for predicting eclipses, which rests on a period of 6585 days
(known as the Saros43), was discovered by the Babylonians.

Through their continuing astronomical observations, the Babylonians
knew that the apparent slow rotation of the heavens (due to the precession
of the earth’s axis), gave rise to an equally slow change in the position at
which the sun appears to rise each year on the vernal equinox relative to the

year and 12 tribes of Israel. Also, the 12 signs of the zodiac divide into 4 groups

of signs associated with fire, air, earth and water respectively. It is as easy to

test a number for divisibility by 2, 3, 4, 6, 8, 12, 16, 24 in base 12 as it is to test

for divisibility in base 10 by 2, 5, 10, 20 etc. These were important advantages

when calculation itself was a subtle art and difficult to learn.

The sexagesimal system, based on 60, has been used for scientific calculations.

Because 60 = 5×12 = 6×10 it has the advantages of bases 10 and 12 combined.

In 1944, the Duodecimal Society was established in New York State as a voluntary

non-profit organization. Its aims were “to conduct research and education of the

public in mathematical science, with particular relation to the use of base twelve

in numeration, mathematics, weights and measures, and other branches of pure

and applied science”. This society proposed to add the letter X to represent 10

and E to represent 11.
41 It is an extraordinary fact that modern astronomers have not yet been able to

accumulate a series of astronomical observations as long as the Babylonians’.

The longest known series of modern observations – those at Greenwich – was

begun in 1750.
42 Although it has not been established that the Babylonian astronomers were

aware of precession as a regular phenomenon.
43 After the lapse of this period, eclipses of the sun and the moon recur under almost

identical circumstances except that they are displaced about 120◦ westward on

the earth.
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zodiacal constellations. This phenomenon, the precession of the equinoxes44,
was viewed as responsible for the catastrophic fall and subsequent rise of suc-
cessive “ages” of the world. When the vernal equinoctial sun passed from one
zodiacal constellation to the next, an Age ended and a new one began. At
this time, (so they believed) violent and cataclysmic events are to be expected
as the transcendental power guiding our world passes from one constellation
to the next.

In the period before 4000 BCE the sun rose in Gemini, during 4000–1800
BCE it remained in Taurus, then in Aries (1800 BCE–400 CE). It will remain
in Pisces until 2740 and then move into Aquarius45.

44 The proximate reason for it and the estimate of nearly 26,000 years for this great

rotation of the heavens was first given by the Greek astronomer Hipparchos

of Nicaea (180–135 BCE). The physical mechanism that actually causes this

precession is due to tidal torques applied upon the earth’s equatorial bulge by

the solar and lunar gravitational fields. This insight, along with a theoretical

explanation of the 26,000 year period, had to await modern science and the age

of Newton.
45 The image of the Bull (Taurus) is repeated in ancient myths and religions, from

the Bull worship of Apis-Osiris in Egypt and Zeus the Bull carrying off Europe, to

Hercules’ defeat of the Cretan bull and Jason’s triumphal capture of the Golden

(ram’s) Fleece. The Hebrew calendar starts at 3760 BCE, the year of the world’s

creation according to the Hebrew tradition. This date was moved by James

Ussher (1650) to the transition zone between the ages of Taurus and Gemini.
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The Scribes

The difficulty of writing on clay necessitated a long period of schooling.
The regular schools were attached to the temples and were therefore at some
distance from one another. However, scribes who could be depended upon
to teach were scattered everywhere, even in the small towns. Just as in the
Middle Ages an expert craftsman would take under his protection some young
boy as an apprentice to whom he taught his trade, so most of the scribes
had some youths who were ambitious to enter the profession. The scribe
“adopted” his apprentice as his own son, and the relationship lasted until the
young man was able to enter the profession as a regular member. Such private
tutoring would be quite sufficient to prepare scribes for a business life. But
only schools that were located in the vicinity of great temples had facilities for
the study of the sciences and literature, and prepare one to become a priest
or a ‘scientist’ (kings usually kept scribes at court to copy manuscripts and
write official letters).

Besides taking dictation, all students in the temple schools had a certain
amount of arithmetic (the four operations). It was follows by instruction in
the higher branches qualifying for the different professions.

In addition to temple libraries, used mainly for instruction, kings kept
their own royal libraries. We see them sending their own scribes throughout
the land for the purpose of collecting all the important works gathered in the
temples. Thus, Assyrian kings collected clay tablets in huge libraries.

The library of Ashurbanipal (reigned 668–627 BCE), discovered at Nineveh
in 1864, contained tablets dealing with religion, literature, medicine, history
and other subjects. Indeed, these kings did more than merely collect, index
and recopy the material found in ancient libraries. After their scribes had
copied texts written in the Sumerian language, they retranslated this whole
mass of material into the vernacular and adopted it to the needs of the time.
It must have required an immense amount of time and a great number of
learned scholars to bring this work to completion.

The royal courts at this time must have been centers of culture as notable
as those of the patrons of science during the Renaissance. Notwithstanding
their great array of learning, the translators must have had trouble of inter-
preting the old texts, for the language had been dead more than a thousand
years. It is an achievement of modern science that we can now correct some
of the translations made in those days. Moreover, scholars put in posses-
sion of such a large number of bilingual texts could immediately tackle the
decipherment of Sumerian.
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2nd Millennium BCE Renewed predominance of warm summers in tem-
perature latitudes. Drier climate; fair sailing weather around the coasts of
Europe even in latitudes 50 ◦ − 65 ◦N , making possible the trading exploits of
the Bronze Age people and later the Phoenicians.

Ships underwent improvement and sea battles took place toward the end
of the millennium.

Glass bottles appeared in Egypt. Chinese bronze urns and vases appeared
under the Shang dynasty. The earliest form of steel appeared in Asia Minor
under the rule of the Hittites.

Water-clocks were invented in Egypt in about 1400 BCE. Around 1200
BCE, the know-how of Hittite iron-smiths (scattered with the destruction of
the Hittite empire, and kept secret by them for hundreds of years) began to
diffuse into Eastern Europe. By 1100 BCE this lore was absorbed by the
Assyrian iron-smiths who developed a technology for mass production of iron
tools, especially iron blades. The subsequent production of effective swords,
axes and iron plowshares led to greater crop yields and boosted the Assyrian
military potential.

Early food technology , including the preservation of fish by drying was
developed by the Phoenicians and the Greeks around 1100 BCE.

2000–1650 BCE The Cretan Age. The peak of the Aegean civilization
centered on the island of Crete.
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The Hittites46 (ca 1900–700 BCE)

There have been many vast movements of populations across and within
Asia Minor. Numerous invasions from East, West and North, made its ter-
ritory the scene of incessant conflicts, and the blending place of diverse cul-
tures, races, and religions. Arian, Mongolian and Semitic masses were either
attracted to Asia Minor by its wealth or driven there by the pressure of
stronger hordes behind.

During 12 centuries the history of Asia Minor was practically the history
of the rise and decline of the powerful Hittites. They left their impressive
monuments from Smyrna to the Euphrates and from Boghaz-Keui to Aleppo.
For centuries they contended on equality with the powers of the Nile and the
Euphrates, and for a thousand years Asia Minor under their leadership held
the balance of power in antiquity. They saved Asia Minor from being com-
pletely Asiaticized so that as a result its history has throughout been bound
up with that of Europe as much as with Asia. They carried oriental (espe-
cially Mesopotamian) culture, technology and art Westward. They overthrew
the Amorite empire of Babylon; they annihilated the Egyptian power in Asia;
they held the dreaded Assyrians in check far centuries; they exercised an im-
portant economic influence by their control of the rich mineral resources of
Asia Minor.

In the 15th century BCE they engaged the attention of the Pharaohs in
several military expeditions. In the 14th century BCE they attained the zenith
of their power in an empire of federated states under their leadership. For
two centuries they were the dominant power in West Asia.

However, these exhaustive wars led to the eclipse of the Hittite Empire: by
the 9th century, a renewed pressure of the Phrygians and the renewal of the
struggle with Assyria rendered the decline of the Hittites irrevocable: they
vanished, scattered by wakes of migrations from Europe.

46 The Hittites mentioned in the Old Testament were probably an offshoot or

remnant of the Anatolian Hittites who became separated from the main body

and had remained in ancient Israel. Abimelech (Sam I, 26, 6) and Uriah

(Sam II, 11) belonged to these Israeli Hittites, and Ezekiel 16; 3, 45 is

to be explained in the same way. The origin of the Hittites is obscure,

but their kingdom was mentioned already in 1900 BCE by a colony of mer-

chants in Capadocia (on the Anatolian plateau) who meticulously recorded

their business transactions in cuneiform writings on clay tablets. The Hit-

tites language, found on clay tablets, was deciphered only in the 1960’s.
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The Hittites were possibly the first people to make iron of superior qual-
ity. Other kingdoms came to the Hittites as supplicants of their proficiency
in iron making (ca 1300 BCE). Nevertheless, the use of iron in the old world
was on a very small and restricted scale until after the downfall of the Hit-
tite Empire, as their metal craftsmen dispersed throughout the Middle East.
Consequently, metal-smiths began to make technical discoveries that led to
the transformation of iron, from a metal inferior to bronze, to one which was
destined to become a universal replacement for it.

ca 1800 BCE Ecological collapse of the irrigation system in southern
Mesopotamia due to salinization of cultivated soils: food supply to the grow-
ing population of the city-states was hampered gradually, leading eventually
to malnutrition, epidemics and mass-migration. This man-made ecological
disaster was probably one of the major factors in the demise of the Sumerian
civilization.

ca 1800 BCE The Hebrews conceive the idea of monotheism: evolutionary
universe of one origin, one and only one supreme cause.

ca 1765 BCE Severe prolonged drought in China.

ca 1750 BCE Invention the war-chariot in China; Due to its shaft and
balance-point, the new chariot gained speed and mobility, thus increasing its
military power. This new weapon revolutionized the art of war with an ef-
fect similar to the appearance of the tank and war-plane in Europe in the
first half of the 20th century. From China, the war-chariot arrived in the
‘Fertile Crescent’ to become a decisive weapon in the armies of Egypt and
Mesopotamia.

ca 1750–1650 BCE Age of the Biblical Patriarchs and Matriarchs: Abra-
ham and Sarah, Isaac and Rebecca, Jacob, Leah and Rachel.

ca 1700 BCE A form of printing with movable type was invented by an
unnamed printer of ancient Crete in the Minoan age: a single baked-clay
disk 15 cm in diameter was found buried deep in the ruins of a palace at
Phaistos on Crete; the disk is covered on both sides with spiraling arrays of
241 symbols constituting 45 different syllabic signs. A decipherment identified
the signs’ language as an ancient form of Greek that predates even Homer.
The symbols were printed by a set of punches, one for each of the 45 signs (and
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not scratched into the clay by hand, as was true of most ancient writing on
clay). The Minoan printing, however, died out because it was syllabary rather
than alphabetic and therefore clumsy and ambiguous; it could be read by few
people and used for only very particular kind of texts, perhaps only tax lists
and royal propaganda. To make if efficient would have required technological
advances that did not occur until later, like the creation of paper, an alphabet,
improved ink, metals and presses.

ca 1700 BCE The neolithic astronomical analog computer that is Stone-
henge, was completed47. It was built from stones weighing as much as 35 tons
each, to keep track of the progress of lunar eclipses. The position of a stone
marked the day of the summer solstice when the sun rises farthest north along
the eastern boundary of the horizon. In contradistinction to the sidereal or
Pyramid year, the Stonehenge year was solar, and corresponds to what is
now called the tropical year . Because of the Precession of the Equinoxes, the
average solar year is not exactly the same as the sidereal year.

By the time Stonehenge was erected, stoneage people had observed the
sky for more than 10,000 years. No doubt they recognized the constellations
and the paths of the sun and the moon. If the religion of these people was
concerned with the worship of the sun and the moon as divinities, eclipses
would be events of great importance. Successful predictions ahead of time
would confer power and prestige to those who understood how the predictions
might be made. Perhaps this is why paleolithic people dragged 35 ton stones
over 300 km to erect this mysterious monument.

The people who built Stonehenge are known today as the Beaker People;
their remains have been found all over Europe and the British Isles. The earli-
est remains from north-west France date from 5500 BCE. They left thousands
of stones in shapes of lines, circles, spirals and ovals covering the Atlantic coast
of Brittany and most of Britain and Ireland. Most of the stones are large,
some gigantic ranging up to 300 tons or more (megaliths). Stonehenge differs
from the stone alignments and circles because it has stones placed on top of
two supports to form 3-stone arches called trilithons. I was discovered in 1974
that the axis of the trilithons points to the first rays of the midsummer sun
in 2045 BCE!

ca 1630 BCE The first phase of the decline and eventual demise of the
Minoan civilization due to the paroxysmal eruption of the Thera volcano

47 Construction began at ca 2500 BCE.
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(Santorini)48, which lies some 100 km north of Crete. It may have been the
site of Plato’s Atlantis as told in the ‘Critias’. This, in turn, is based on
documents passed on to Solon by priests in Egypt on his visit there ca 500
BCE.

This natural disaster changed the whole course of civilization in the East-
ern Mediterranean. The Minoan language and culture and the power of Crete,
which was dominant until then, thereafter gave way to Mycanean civilization
of the Greek mainland.

ca 1630 BCE Ahmes (ca 1680–1620 BCE, Egypt). A scribe who wrote
the Rhind49 Papyrus. Ahmes claims not to be the author of the work, but
only a scribe. He says that the material comes from an earlier work of about

48 The Greek archaeologist Spyridon Nikolaou Marinatos (1900–1974) exca-

vated (1967) an ancient port city on the Island of Thera. Under the pumice

he brought to light a settlement which had close links the Minoan culture. His

findings place Thera alongside with Mycenae and Knossos for our understanding

of the prehistoric people of the Aegean.

The severe drought in Egypt, managed by Joseph (Gen 41, 29-57) may be linked

to the aftereffects of the Thera event. Some historians and Biblical scholars link

the Thera event to the ‘plagues of Egypt ’ and the Exodus of the Hebrews (led

by Moses), which they place at ca 1500 BCE during the reign of Ahmose I (18th

dynasty). Biblical allusions can be found in Exodus 10, 21–22; 13, 21; Psalm

46, 1–8; Jeremiah 47, 2–4.

According to archaeological dating, the Thera explosion (36.25◦N 25.25◦E) oc-

curred sometime between 1450–1500 BCE, whereas dendrochronology and radio-

carbon dating support the earlier time window 1600–1650 BCE for the eruption.

On account of its great intensity (VEI=6), the effects of Thera could have af-

fected the Nile delta at a distance of almost 1000 km. Plume height could have

reached 36 km and the displacement volume is estimated at 30 km3, forming a

caldera of 480 m deep and with an overall area of 83 km2.

After the Thera explosion came a great displacement of the surviving population

in search of arable land. Their exodus took them to Greece, Italy, Sicily, North

Africa, Egypt and the Levant. A remnant of this ‘diaspora’ settled on the south-

ern coastal strip of the Mediterranean and were known as the Philistines. The

Hebrew prophet Amos (fl. 765–750 BCE) refers to this remote migration (Amos

9, 5–7) and links the event with a description of volcanism and inundations

(tsunami).
49 Alexander Henry Rhind (1833–1863, Scotland). Egyptologist, went to

Thebes for health reasons. He then became interested in excavating and pur-

chased the papyrus in Egypt (1858), donating it later to the British Museum

(1863). He died of tuberculosis in the same year.

The papyrus was published in 1927. It is about 6 m long and about 30 cm wide.
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2000 BCE. The papyrus is one of our chief sources of information on Egyptian
mathematics; it contains 87 problems of the four operations, solution of equa-
tions, progressions, volume of granaries and more. Nothing is known of Ahmes
except for his own comments in the papyrus.

Some of the problems that appear in the Rhind did not apply to the real
life in Egypt. This shows a genuine interest in mathematic for mathematics
sake, characteristic of a society made of mathematics oriented minds.

ca 1600 BCE Hammurabi promulgated his famous code in Babylonia.
It includes regulations on medical fees and penalties for malpractice.

ca 1600 BCE A primitive form of the Greek language was inscribed on
fire-baked clay tablets found at Pylos, on mainland Greece, and at Knossos,
on Crete. No other European language comes close to claiming such longevity.

1600–1550 BCE Unknown Egyptian physicians completed the oldest
known medical document: Smith Papyrus contains 48 clinical descriptions
of surgical cases, including injuries to head, spine, and chest.

Egyptian physicians wrote Ebers Papyrus: encyclopedic work that lists
remedies for many diseases, including deformative arthritis, and conjunctivi-
tis.

1600–1100 BCE The Mycenaean Age: As the fleets of Egypt and Crete
pushed their commerce with the mainland of Greece, they naturally entered
the southern bays, and especially the Gulf of Argos. Here, in the plain of
Argos, behind the sheltered harbor, the Cretan nobles, migrating to the main-
land, established their settlements.

1500 BCE The Egyptians invented the well-sweep with counterpoise
(shadoof)50 for irrigating the fields. Introduced later into Assyria.

ca 1500 BCE The first vessels entirely of glass were made in Egypt and
Mesopotamia. Oldest sundial.

50 Usually made by erecting two pillars, some 2 m high, joined near the top by a

short beam. Over this, a long pole is balanced, which has at one end a vessel to

hold water and at the other end a counterpoise. A man standing at the water

edge fills the receptable by dipping, raises it, and empties it into an irrigation

channel. With this device, a man can raise about 2400 liter to a height of 2 m

in a day.
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ca 1500 BCE Appearance of gold ingots in Egypt. Their weight was
certified by the government of the kingdom and represented the maximum
exchange values51.

1500–1100 BCE Origins of the oldest phonetic alphabet in the Sinai penin-
sula52. The Semites who lived in the Land of Israel developed from it an
alphabet writing. They used signs to show the consonants of syllables, just
as the Egyptian did, and invented their own set of characters to stand for
consonants in their language. No direct links with the Egyptian writing were
found.

Egyptian voyagers, at behest of Queen Hatshepsut (d. 1481 BCE), jour-
neyed down Red Sea to Punt (probably present-day Somaliland) in search of
myrrh-trees.

1479 BCE Battle of Megiddo, the first major battle in history. Thutmo-
sis III conquers the Land of Israel, Phoenicia and Syria.

1375 BCE, May 03 Literary evidence from Ras Shamra Ugaritic Tablets
of a total eclipse of the sun observed in Ugarit city-state. This may be the
earliest record of a solar eclipse that we posses.

ca 1350 BCE Emergence of a system of mathematical notation in China
(Shang dynasty) which used nine numerals and the place-value principle. This
was about a 1000 years before the Hindu number system, and was the earliest
instance of the use of the place-value principle, after Babylon.

1350 BCE Multiplication tables appeared in Mesopotamia. (Its develop-
ment lasted some 400 years.) Decimal numerals were used in China.

ca 1350 BCE Great emigration from Arabia due to extended drought.

51 Material symbols of goods exchanged in transactions between individuals or from

an individual to a group, have existed since very early in prehistory. They are

attested by the bronze and iron arrowheads which the inhabitants of Gaul used

for this purpose 5000 years BCE. It was called obeliskos. Other forms of non-

metallic money were found in Africa, Oceania and South America (e.g. feathers

and beaks of birds, shells, etc.).
52 According to Hebrew tradition [as revealed in the book of Ex.: 16 , 14; 24 , 4; 32 ,

15–16; 34 , 28, and the book of Deut.: 10 , 4; 27 , 3; 31 , 9, 22, 34], the protosinaic

version of the Hebrew alphabet was invented by Moses in Sinai. The phonetic

alphabet was based on symbols for sounds, not things or syllables and is the

ancestor of all modern Western alphabets.
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ca 1300 BCE Great eruption of Bronze age people from the Hungarian
plain due to floods.

1286 BCE The Hittite under Muwatallish defeated Egypt under Rame-
ses II in the decisive battle of Kadesh on the Orontes. The following peace
treaty (1271 BCE) determined the final borders of the Land of Israel (Num.
34, 1–12).

ca 1240 BCE Egyptians under Rameses II (1301–1235) dug a proto-Suez
canal from Lake Timsah (the Nile) to the Red Sea.

The first canal at Suez to link the Mediterranean and the Red Sea may
be a case in which climate played a part; it was done approximately when
the world sea-level53 reached its highest post-glacial stand, and the project
may therefore have suggested itself just because it then, for the first time,
looked feasible. It is believed to be during the reign of Sestoris I (ca 1980
BCE) that a fresh water canal was dug from the Nile delta to the Red Sea
near where Suez now stands. The fact that Rameses II was able to build
his canal (or perhaps put the earlier canal in order again), fits the concept of
sea-level being specially high in the latter end of the very long warm epoch.

The canal fell into decay and was restored for the first time by Pharaoh
Necho II (ca 600 BCE), and completed a century later by the Persian con-
queror Darius. It was reopened around 100 BCE by the Roman emperor
Trajan, and again for the last time in 7th century CE. A century later it was
finally abandoned after being blocked for military reasons.

ca 1230 BCE Exodus of the Hebrews from Egypt under the leadership
of Moses (Hebrew: Moshe). According to biblical tradition Moses gave the
Israeli nation a written code of law54 that spelled out the new relationship of
man to man, man to state, and man to God.

The laws of the Torah (the five books of Moses) regarding man’s relation
to man constitute mankind’s first “bill of rights”. These laws boldly assert
that man’s freedom is his supreme right. He has the right to personal liberty,

53 The rise of the sea-level, proceeded over some thousands of years at a rate of 1

meter per century . It continued until about 2000 BCE.

The account of the exodus of the Israelites from ancient Egypt (ca 1230 BCE;

Exodus 13, 17–14, 31) indicates that the isthmus of Suez was narrowed at that

time by an area penetrated by a tongue of the Red Sea, in which the sand of

the desert was awash, sometimes as tidal shallows but sometimes rather more

deeply.
54 The Greeks had no written laws until the time of Lycurgos (ca 700 BCE). A

written judicial code was totally unknown to the Egyptians until 300 BCE.
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free speech, and private property. Charges against him must be made in open
court where he has a right to defend himself. The Torah recognizes no class
distinction before the law. Slaves in ancient Israel were treated more humanely
than slaves in the United States in 1800 CE. Slave-trading, as practiced by
Christians until the 19th century CE was unthinkable to the Jews a millennium
before Jesus.

Although the Mosaic laws pertaining to man’s relations to man and man’s
relations to the state provided the Hebrews with a workable framework to
govern themselves, it was the ideas in the Torah pertaining to man’s relations
to God which assisted the Hebrews most in carrying out their mission; by
making God spiritual instead of material, they were free to speculate of the
nature of God himself. This permitted them to attain a higher concept of
deity than was possible for the Pagan Greeks.

In the history of all other people, first comes the state, and then comes the
law; this held true for the Babylonians, the Greeks and the Romans. With the
Jews – first came the Torah, the law to shape the future state, and 200 years
later came the state. This Mosaic Magna Carta saved the Jews from straying
into detours and oblivion, and prepared them for their special destiny in the
history of mankind.

ca 1220 BCE Bezalel ben Uri. Master craftsman and chief artificer of
the Sanctuary tent and its furnishings. Constructed and built the tabernacle,
ark, altars, and the ephod [Ex 31–39, I Chron 2, 20, II Chron 1, 5]. His brasen
altar survived onto the days of King Solomon55 (ca 950 BCE).

1201–1198 BCE Joshua in Jericho and Gibeon; singular astronomical
and geophysical events over the ancient Near-East56during the Israeli conquest
of Canaan:

55 There is little in the biblical data itself to suggest that ancient Israel has a class

of professional architects. The construction of buildings and monuments appears

to have been the responsibility of craftsmen or master masons. Even these seem

to be of non-Israelian origin, such as Hiram, the Phoenician master craftsman

from Tyre who was in charge of Solomon’s Temple in Jerusalem (I Kings 7, 13;

2 Chron 2, 13-14).
56 Hasegawa, I. (1980) Catalogue of ancient and naked-eye comets, Vistas in As-

tronomy 24, 59–102.

Sekanina, Z. and D.K. Yeomans (1984), Close encounters and collisions of comets

with earth, Astr. J. 89, 154–161.

Ben-Menahem, A. (1992), Cross-dating of Biblical history via singular astronom-

ical and geophysical events over the ancient Near-East, Q. J. Roy. Astr. Soc. 33,

175–190.
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(1) Comet Halley apparition 1198 BCE, May 11, or the apparition of another
comet brighter than the 6th magnitude in 1201 BCE (Josh 5, 13). It may
have been seen by Joshua bin-Nun prior to the assault of the Israelites
on Jericho (Josh 5, 13). Described as bearing the shape of a flaming
sword.

(2) Long day with extra light hours due to “bright nights” phenomenon fol-
lowing a close encounter of Apollo-type asteroid with the earth. This
could explain: “And the sun stood still, and the moon stayed. . .” (Josh
10 , 13).

ca 1200 BCE The Hittite kingdom (began ca 1750 BCE) came to an end
as a result of the great Aegean migration, of which the Homeric War against
Troy was an incident.

ca 1200 BCE Indo-European Invasion was disturbing the entire Eastern
Mediterranean world57. The whole of Asia Minor had been overrun by another
wave of new Indo-European, who came behind the Greeks and crossed the
Hellespont from Europe. The most important of these were the Phrygiens
and the Armenians.

The Hittite Empire, lying directly in their path, was completely crushed
and disappeared. Many of its communities peregrinated beyond the Mediter-
ranean.

The Egyptian monuments of this time reveal these sea-wanderers very
vividly. Besides the Philistines, who were fleeing from Crete, the monuments
show us the sea-roving Achaeans who combined with the other displaced peo-
ple to invade Egypt in the last declining days of the Egyptian Empire. This
was apparently a second group of Achaeans, who had remained in Asia Minor
after the invasion of Greece by their earlier kindred. Forced out by the Indo-
European invasion, this second group of Achaeans joined with other fleeing

57 Modern scholars link this mass-migration to sharp climatic changes during 1200–

850 BCE. A northward displacement of the arid zone in Europe and Asia caused

the rise and fall of civilizations and southward migration of people in Northern

and Central Europe and Asia, even as late as 500 BCE. The ensuing extended

drought was sufficiently severe to disrupt agriculture in Crete, Greece and the

whole Eastern Mediterranean. The Greek countryside was apparently depopu-

lated for a time before the Dorians moved in from the north. Refugees wandered

from the drought-stricken land to Egypt and southwest coasts of Asia Minor.

The atmospheric circulation patterns which caused this drought may have con-

tinued rather prominent until about 850 BCE, e.g., a drought lasting 3 1
2

years

occurred in the days of Ahab (King) (reigned 874–853 BCE; I Kings, 17–18).
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Asia Minor peoples to seek a new home in Egypt. Among these were the Sar-
dinians and the Etruscans. The Cretan Philistines and the Sardinians had
in their possession, for the first time in the ancient world, a long two-edged
bronze-made dagger, to be known henceforth as the sword58. The main body
of the “sea-people”, as the Egyptian monuments call them, kept together for
the purpose of invading and conquering Egypt.

All the great powers of the Ancient Near East were threatened by this vast
Indo-European movement59, which stretched from the Balkan Peninsula east-
ward to the upper Euphrates. Its front had set in motion before it a wave of
fleeing Aegeans and Asia Minor people, who were mostly pre-Indo-Europeans.
It was this wave of refugees that crossed the sea and began to break upon the
shores of the eastern and southeastern Mediterranean, from the Nile Delta to
the harbors of Phoenicia. The onset of these sword bearing northerners shook
the Egyptian Empire to its foundations. Eventually, however, this wave was
driven back by Rameses III.

Consequently, the Cretan Philistines settled on the coast of Israel, some
of the Achaenas migrated to Greece, while the Etruscans sailed far westward
around the heel of Italy. The Sardinians settled in Sicily. Thus the Indo-
European invasion of the Eastern Mediterranean ushered a new age in the
Western Mediterranean.

The Iron Age

Metal forms a large part of the earth on which we live. The earth’s crust
is made up of about 8 per cent aluminum, 5 per cent iron, and 4 per cent
calcium. Potassium sodium and magnesium also occur in large amounts.

58 This elongation of the Egyptian bronze dagger into a heavier weapon took place

in the north after the discovery of tin in Bohemia.
59 The Table of Nations (Genesis 10) provides a schematic arrangement of the

major cultural divisions of mankind, specifying ancient nations and their great

cities. It derives from Mesopotamian sources reflecting the Near-East population

toward ca 1100 BCE. The figure behind the hero Nimrod is the Assyrian Em-

peror Tukulti-Ninurta I (reigned 1234–1200 BCE), known for his conquest of

Babylon and his building projects. The genealogical lists actually reflect political

and economical filiation, as well as cultural affinities.
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Ancient man knew and used many native metals. Some metals, such as
gold, silver, copper and tin60, occur naturally and are easy to work. They
have been used to make object for ornaments, plates, and utensils as early
as 3500 BCE. Thus, gold objects showing a high degree of culture have been
excavated at the ruins of the ancient city of Ur in Mesopotamia. The attached
evolutional timetable reflects the order by which metals were discovered since
the end of the stone age.

As early as the beginning of the Bronze Age (ca 3000 BCE), some people
in the Middle East began to make tools by beating and hammering iron
from meteors. They decorated many of these skillfully made implements.
The oldest pieces of such iron in existence are Egyptian sickle blades and
crosscut saw, thousands of years old. During the Bronze Age, however, most
craftsmen continued to use primitive tools of the late stone age, because metal
was expensive. Only kings and warriors could afford if. Indeed, a dagger,
resurrected (1926) from the tomb of Tutankhamun (ca 2000 BCE) has an
iron blade almost untarnished.

How could Egyptian craftsman, 3000 ears ago, achieve such a startling
feat? Iron was a metal which at that time was hardly used. It was considered
inferior to other metals: it was soft and would not harden. It was also easily
oxidable by the atmosphere. There were few iron objects that survived these
3000 years and those left show severe deformation.

Around 1400 BCE wrought iron was first produced by the Hittites in
Northern Anatolia: they burned iron ore with wood and removed most impu-
rities by repeated hammering. Hittite dominated Asia Minor from ca 1900–
1200 BCE, establishing a great empire.

60 Human history reflects the activity of metals; the fact that metals were discov-

ered in the order: gold, silver, copper, tin, iron is strongly tied to the chemical

properties of metals. One such property is their tendency to loose electrons; This

tendency is greatest for the metals on the lower left side of the periodic table.

Very active metals, such as sodium, lose their electrons easily; they are unlikely

to be found free in nature. In contrast, noble metals, such as gold, are often

found free in nature. The larger pieces of free gold near the surface of the earth

may have been found during “gold rushes”. When heated, compounds of inac-

tive metals yield the free metal. We may imagine, therefore, prehistoric people

discovering free metals when building fires in areas rich in metal ores. Since it

is easier to extract less active elements from ores (oxides of metals) than it is to

extract more active elements, we can see why less active metals were discovered

first. Iron is more active than copper, lead and tin. We have been able to make

stainless steel (80% iron, 12% chromium, 8% nickel) since 1790 CE, when the

even more active metal chromium was discovered. In the early 1800’s very active

metals such as potassium and lithium, were discovered.
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Events were however to confer about iron a new and almost everlasting life:
At the eastern end of the Mediterranean, in the 2nd millennium BCE, trade
in metals thrived between ports like Tyre and Sidon and the ancient Aradus
(Arwad) port on the coast of Syria. Copper and other metals were being
mined in quantities in Cyprus and Anatolia and supplied to metal workers in
the cities of Egypt, Crete and Mesopotamia. But this established order was
suddenly disrupted.

Historically, the Eastern Mediterranean has always been a linking passage
from Europe to India, Central Asia and Afghanistan, through which the cir-
culation of metals had come to have increasing importance. In ca 1200 BCE,
it was invaded by the Sea People-waves of migrating masses from the north –
who disrupted the established trade routes which followed the supplies of tin
from their distant sources.

And without tin there is no bronze! An age which lasted for 2000 years
was strangled and it never revived.

The whole material balance tipped: bronze became scarce and iron, which
had been used until then mainly for ornaments, begun to appear with increas-
ing regularity in the archaeological record.

Out of the ashes of the bronze age cultures there slowly emerged the
cultures of the iron age.

Nevertheless, the use of iron in the old world was on a very small and
restricted scale until after the downfall of the Hittite Empire under the heavy
blows inflicted upon it by the Sea-People. Its iron craftsmen dispersed through
the entire Middle-East and interacted with metal-smiths of other nations.
New technical discoveries were made which led to the transformation of iron,
from a metal inferior to bronze, to one which was destined to become a uni-
versal replacement for it.

The basic technology, successful for a thousand of years in smelting copper,
failed when applied to iron; the melting point of iron is much higher, more
than 1500 ◦C. Such temperatures were unobtainable. At the temperatures
which were possible, iron was reduced from its ore without ever becoming
liquid, or separated from the slag. The result was a spongy mess of slag,
embedded with grains of iron called the bloom. By hammering the bloom
and driving out the slag, a blacksmith could actually obtain a bar of almost
pure wrought iron. To keep the iron meltable enough to work, the smith kept
reheating it in his forge. This produced a subtle but important change – the
repeated contact with white hot charcoal caused small amounts of carbon to
combine with a surface layer of iron. This blend of carbon iron was much
harder then pure wrought iron – it is steel.



113

Having discovered the method of steeling (carburizing) iron, the early
smiths made a further advance – they found that if steeled iron was cooled
suddenly like quenching, it became even harder, or quite brittle. Finally
they found that if this hardened steel was reheated, it lost its brittleness but
retained its hardness – this process came to be called tampering.

These three vital discoveries transformed the properties and potential of
iron. About 1100 BCE true iron working began in the Middle East and from
there spread over much of Asia, Africa and Europe. Iron ores were much more
plentiful than copper and with the diffusion of the techniques of steeling iron
in the first millennium BCE the Iron Age gained momentum. Craftsmen
abandoned the crude tools of the Bronze Age and made wider use of iron,
including plows and weapons. This age continues to the present day.

In Europe the Iron Age began at about 600 BCE at Noricum in the East
Alps: In the village of Halstad in the Austrian Alps, excavations (1864) un-
veiled a cemetery. Buried with the dead was a whole culture of metal, includ-
ing weapons and ornaments made of iron. This iron metallurgy had spread to
Noricum from the Hittite empire. After about 400 years the center moved to
the Celtic lands, and especially to Spain, where the Celtic smiths developed
the Catalan iron furnace61. Soon all of Western Europe was put under the
anvil. In the energetic hands of these creative people, the iron technology laid
the political and economical foundation of European civilization.

Iron is a symbol of the confident positive commitment by man everywhere
to a new metal and to a new age. It is a milepost of that time by which
the making of iron has become a central preoccupation, a determinant of
success or failure of national survival62, and became something not just to

61 The new metal was first used for weapons; then for the hoe and the axe and

pick of the farm and mine; lastly, for improved tools; the iron of early classical

Greece was not suitable for ploughshares, and was evidently a very inferior metal

compared with the properly hardened and tempered material that served the

Roman legions about the beginning of the Christian era.

The best steel known to the Romans was the so-called ‘Seric iron’. It was a

high-carbon crucible steel, made in round cakes, about 10 cm in diameter, which

reached Rome via Abyssinia from Southern India.

The defensive armor and shield of the Greek hoplite were made of bronze, but

his main weapons were a 3 m spear tipped with iron and a short, straight iron

sword.
62 E.g. the word iron is mentioned in the Old Testament 76 times, and duly rep-

resents the impact of this metal in the world of the Hebrews during 1200–500

BCE. Israel became acquainted with it through the Philistines, who had long

known to work the metal. The raw material was brought in by Tyrians, mainly

from Spain, though it was found also in the Lebanon range (Jer 11, 4; Deut 4,
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make but to emulate. It entered all languages as a synonym for strength and
resolution: before the iron age, man was as strong as an oak, now they seek to
become iron-willed! That change in metaphor signalized a further step away
from agriculture and towards industry, and iron changed the quality if not
the form of a vast number of things in both.

It means better tools and better weapons, sharper axes, cut down more
trees to make more fuel. It cleared more forest for more cultivation to support
larger populations and when it came to blood and iron – superior sword won
decisive wars.

Without it there would be no bridges, no engines, no skyscrapers: iron is
the top root of our material civilization.

20; 8, 9; I Kings 8, 51). Out of iron, the blacksmiths made axes, hatches, sickles

knives, swords, spears, bars, chairs, fetters, nails, hoes, pens, plows and sledges.
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Iron metallurgy – signposts of Progress
(4000 BCE–1600 CE)

ca 4000 BCE First reduction of copper in Anatolia and Iran, Egyptians
mine copper ores and smelt them. End of Stone Age and begin of the Copper
Age.

ca 4000–3500 BCE Egyptian and Sumerians smelt silver and gold; Egyp-
tians mine and process iron, used mainly for utensils. Metal mirrors in Egypt.
Egyptians and Babylonians make extensive use of bronze.

ca 3500 BCE Discovery of lead.

ca 3000 BCE End of the Copper Age. Begin of Bronze Age.

ca 2500 BCE Chaldeans in Ur (Mesopotamia) join sheets of gold by sol-
dering.

ca 2000 BCE Copper bar from Nippur (weight 41.5 kg, length 110.35 cm)
is the earliest standard measure.

ca 1500 BCE Gold nuggets in Egypt serve as weight standards.

ca 1400 BCE Hittites of Anatolia first produced wrought iron: they burned
iron ore with wood and removed most impurities by repeated hammering.

ca 1100–800 BCE Begin of Iron Age.

ca 1000 BCE Steel was being made in the Middle-East and India: bars of
iron were steeled by hand labor with hammer and anvil or by roasting with
charcoal. In this way the iron was mixed with small amounts of carbon that
made it harder and stronger.

ca 600 BCE Iron-Age began in Europe at Noricum.

ca 315 BCE The earliest existing treatise on minerals written by the Greek
philosopher Theophrastos.
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ca 300 BCE Chinese first produced cast-iron. Better furnaces produced
higher temperatures which could melt the iron completely. The product was
stronger than wrought iron. Their technique was, however, unknown in Eu-
rope until 1380 CE.

ca 200 BCE Chinese develop form of cast iron.

ca 77 CE Pliny the Elder (Rome) writes about ores in his Historia
Naturalis.

ca 450 CE Chinese learn to make steel by forging together cast and wrought
iron.

ca 800 CE Blast furnaces for making cast iron are built in Scandinavia.

ca 1000 CE Celtic iron technology in Spain; the Catalan iron furnaces.

ca 1262 CE Albertus Magnus (Germany) wrote about minerals in his
treatise De Mineralibus.

1380–1389 CE Cast iron becomes generally available in Europe: Tall
furnaces were built and water-power was harnessed to produce stronger blast
of air than that achieved by hand-operated bellows. Furnaces could now be
operated at temperatures high enough to produce molten iron.

ca 1540 CE Vannocio Biringuccio of Siena (Italy) issued his treatise
Pirotechnica, describing production techniques of brass and bronze in Europe.

1556 CE Georgius Agricola (Germany) published De re metalica, a
systematic treatise on mines and metallurgy.

ca 1200 BCE The quest of Jason and the Argonauts for for the Golden
fleece describes an expedition out beyond the Golden Horn over the Euxine
Sea to present-day Armenia to seize the source of gold. It was extracted by
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the laborious process of washing the river sands through the fleece of sheep,
with gold nuggets left clinging to the oily fibers.

ca 1200 BCE The Phoenicians63, who lived along the coast of the Mediter-
ranean Sea, developed a system of 22 signs to form an alphabet that was struc-
turally related to Semitic and Egyptian. It has signs for consonant sounds, but
not vowel sounds. Early Phoenician writing consists partly of pictographic
forms and partly of geometric or diagrammatic signs. Possibly, the Phoeni-
cians based their alphabet on the earlier Semitic alphabet. The Phoenician
alphabet spread throughout Western Asia along the caravan routes. It passed
down the Euphrates to Persia, and, penetrating to the frontiers of India, even
furnished the East Indian people with their Sanskrit alphabet.

ca 1200–400 BCE Chavin de Huantar . Pre-Inca culture in the central
Andes. Pottery, weavings and impressive stone buildings.

1122 BCE Severe drought in China.

ca 1100 BCE Chou Kung. Chinese statesman and mathematician. He
is accepted as the author of the first dialogue contained in the Chou-Pi, one
of the oldest of the ancient Chinese scientific treatises. It deals principally
with calendrical problems and thus with astronomy and mathematics. We
have evidence here of knowledge of mensurational geometry, the Pythagorean
theorem, elements of trigonometry and some instruments for astronomical
measurements.

Chinese astronomers determined the obliquity of the ecliptic (the angle
between the earth’s orbit and its equatorial plane) to a few minutes of arc.

ca 1000 BCE The Chinese developed the counting board , the forerunner
of the abacus.

ca 1000 BCE Legendary Thule civilization in the Gobi region destroyed
by a natural catastrophe of unknown origin. Survivors migrate to Agarthi and
Shamballah.

ca 1000–700 BCE Beginning of the Iron Age64. Iron was already known to
man in prehistoric days, but it remained a rarity until the Hittites discovered

63 The origin of this alphabet is attributed to the Phoenician Cadmus (son of

Agenor, king of Tyre), who is said to have brought 18 letters to Boetia (ca 1313

BCE).
64 The three ages of metals:

The Copper Age: from the 4th millennium to about 2000 BCE;

The Bronze Age: from about 2000 to 1000 BCE;

The Iron Age: from about 1000 BCE to the modern Age of Steel .
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it in northeastern Asia Minor. From the 13th century onward, the Hittite
kings distributed iron throughout the Near East. It was therefore in the first
centuries of the Age of Iron that the Assyrians were preparing for Western
conquests, and their success was largely due to the use of this metal in warfare.
Thus, the Assyrian forces were the first large armies completely equipped with
weapons of iron. The bulk of the Assyrian army was composed of archers,
supported by heavy-armed spearmen and shield bearers.

Assyria had without doubt learned much from the skillful horsemen of
Mitani. The famous horsemen and chariotry of Nineveh became the scourge
of the East. For the first time, too, the Assyrians employed the battering-
ram and formidable siege machinery. The sun-dried brick walls of the Asiatic
cities could thus be battered down or pierced, and no fortified place could
long repulse the assaults of the fierce Assyrian infantry.

Under the influence from the Hittite art, the sculptors of Assyria learned
to tell the story of the king’s valiant exploits in elaborate stone pictures cut
in flat relief on great slabs of alabaster .

The Assyrian armies had marched westward and had crossed the Eu-
phrates by 1300 BCE. They had looked upon the Mediterranean by 1100
BCE, but for more than 350 years after this the kings of Assyria were un-
able to conquer and hold this western region against the strong alliance of
Arameans, Hebrew and Phoenician kingdoms.

986 BCE, Dec. Perihelion passage apparition of comet Halley. May have
been witnessed by King David in Jerusalem. [Chron I 21, 16; Psa 18, 13–
15].

950 BCE The valued π = 3 was used by the Israelites in constructions as-
sociated with King’s Solomon Temple in Jerusalem. [I Kings 7, 23; Chronicles
II 4, 2].

Chinese chariots had wheels with spokes. Iron mines in Italy.

ca 950 BCE The Queen of Sheba arrives in Jerusalem to visit King
Solomon (ca 984–928 BCE) and establish commercial relations with the He-
brew Kingdom.

ca 900 BCE The Etruscans settled on the western coast of Italy, north
of the Tiber. The earliest of them had arrived in consequence of the break-
down of the Hittite Empire65 and brought with them an oriental civilization.
They introduced the chariot, the arch in building and an alphabet, and were

65 The eastern origin of the Etruscans has been proved (1926) by the discovery of

an Etruscan cemetery on the Greek island of Lemnos.
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therefore not illiterate like their predecessors in Italy. The Etruscans brought
also from the East much skill as craftsmen. In Italy they found copper, and
in the course of time they developed the finest bronze industry in the ancient
world of that period. Their goldsmiths too were unrivaled by any in the older
countries.

The Etruscans invented gladiatorial games, drained the marshes, plied
the seas with commerce, traversed the heartland of Europe with goods, and
founded a religion built on fornication, death and hellfire. The senior trinity
of their gods consisted of a holy father, a virgin mother, and an immaculately
begotten daughter. In Etruscan theology, the dead went first to purgatory, for
judgment, where, if found guilty, their souls were damned to various degrees
of torment, the ultimate punishment being eternal hellfire. [In the 13th cen-
tury CE, these concepts seeped into Christianity via the Divina Commedia of
Dante, who was steeped in Etruscan mythology.]

When the Greeks arrived in Italy to plunder, trade, and colonize, those
Etruscans who survived the encounter acquired Greek culture. The Roman
Kingdom founded by Romulus in the 8th century BCE, was conquered by the
Etruscans in the 6th. Though their rule was brief, the Etruscans did neverthe-
less influence Roman culture more profoundly than the Sumerians influenced
the Babylonian; two and a half centuries of Etruscan rule (ca 750–500 BCE)
left their mark on Rome, always afterwards discernible in architecture, reli-
gion, organization, city planning and roads. Many Etruscans continued to
live in Rome and Latium, and in the days of Roman splendor, some of the
greatest families of Rome were of Etruscan descent and were proud of it.

After their expulsion from Rome, the Etruscan continued as a powerful
and highly civilized federation, although surrounded by dangerous enemies.
They finally lost their territories to Gauls, Samnites and the Romans.

876 BCE A symbol for zero was used in India. The first known reference
to this symbol.

853 BCE The Battle of Karkar ; one of the biggest iron-battles of the an-
cient world through which a grand alliance of Aramean, Hebrew and Phoeni-
cian kingdoms stemmed the advance of the Assyrians along the Eastern
Mediterranean coast to Egypt. The historic military encounter at Karkar
(ca 100 km NNW of Hamah, on the Orontes River; today’s Qarqur) involved
some 200,000 men and 6000 chariots on either side.

After the fall of Mitani , Egypt and the Hittite empires, there still remained
the powerful mercantile civilizations of the Western Semites – the line of
harbor towns on the Phoenician coast, the Aramean city of Damascus under
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Ben Hadad II, and the Israeli kingdom of Ahab66, which blocked their way to
Egypt. When Assyria, under Shalmaneser III were ready to strike, Ahab
and Ben Hadad II were ready and the might of Assyria clashed with the
massed strength of twelve buffer states. When all was over, the Assyrians
were dealt a stunning defeat that set their timetable for conquest back a
hundred years. This battle “bought” Israel an extra century until the kingdom
was finally dissolved and the Ten Tribes dispersed and lost by the Assyrian
deportations of 740–700 BCE.

842–771 BCE Great drought in China.

831 BCE, Aug. 15 A total eclipse of the sun in Southern Judea at midday .
The Hebrew prophet Amos of Tekoa (fl. 765–750 BCE) rendered a vivid
account of this event67 (Amos 8, 9; 5, 8).

ca 800 BCE Egyptians used techniques of tanning hides to make leather
and hardening of leather with alum. They were using sundials with six time
divisions to tell time. The sundial was introduced in Greece by the 6th century
BCE.

ca 800 BCE Phoenicians established trade routes to Gadir, on the Atlantic
coast of Spain. By this time, Phoenician refused to allow ships other than
their own to sail through the strait of Gibraltar to Atlantic coasts of Europe
or Africa.

ca 800 BCE The Greeks borrowed Phoenician symbols and modified them
to form the Greek alphabet . They came into contact with Phoenician traders
and learned from them the idea of writing individual sounds of the lan-
guage. Since the Phoenician alphabet included more consonants than the
Greek needed for their language, they used the extra consonants for vowel
sounds: thus the Phoenician aleph (meaning Ox ) became alpha, the Phoeni-
cian beth (meaning house) became beta, etc. The Greeks later modified the

66 During the reign of King Ahab (874–853), there occurred a drought in Israel

which lasted for 3 1
2

years (I Kings 17–18).
67 The zone of totality fell within the southern boundaries of Judea. The moment

of greatest darkness was almost exactly at midday. Such phenomena are very

rare at any given locality. The partial eclipse of June 15, 763 BCE was not

as impressive in Judea, since it was not total within the borders of Israel and

greatest darkness occurred in the early morning hours.

Amos may have witnessed the 831 BCE event in his early youth or could have

been told of it. [Solar and Lunar Eclipses of Ancient Near East From 3000 BCE

to 0 with Maps Kudlek, M. and E.H. Mickler (eds.), Verlag, Butzon and Bercker

Kevelaer, 1971].
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shapes of these letters, adding and dropping some letters to form the 24-letter
Greek alphabet of today.

8th century BCE Chinese astronomy reaches its peak with outstanding
quality and quantity of observations68. The earliest reliable observation report
a total solar eclipse on July 8, 709 BCE.

776 BCE The first Olympiad celebrated in Olympia, Greece. The Olympic
games took place 292 times, the last occasion being in 393 CE. Their impor-
tance was such that Olympiads were the basis of Greek chronology and their
organization and development were subject to an established and unchanging
ritual and continued for almost 1200 years.

767 BCE First recorded worldwide plague (Amos 4, 10).

ca 720 BCE The Latin alphabet was borrowed by the Romans from that
of the Greeks, probably through the Etruscans (who moved to central Italy
from somewhere in the Eastern Mediterranean sometimes after 1000 BCE,
carrying the Greek alphabet with them). The Romans learned the alphabet
from the Etruscans, and gave it much the same form we use today. The early
Roman alphabet had about 20 letters, and gradually gained 3 more. The
letters J, U and W of the English alphabet were not added until the Middle
Ages.

Capital letters were the only forms used for hundred of years, and were
finally perfected by 114 CE when sculptors carved the inscriptions on a memo-
rial column built in honor of the emperor Trajan. Lower-case letters gradually
developed from capitals by scribes who copied books, using rounded letters
(uncials) that were easier to form than some capitals.

711 BCE, Mar. 14 A partial eclipse of the sun, visible in Jerusalem. The
prophet Isaiah I (fl. 740–685 BCE) and the Judean king Hezekiah (reigned
715–687 BCE) are linked to this event in the unique biblical story that is
threaded in three books [ Kings II 20, 8–11; II Chron 32, 31; Isa 13, 10; 38].

Hezekiah, king of Judea, was a patron of learning and caused great public
works to be undertaken; he fortified Jerusalem and improved its water-supply.

68 About 800 BCE (Homer’s time), the Greeks believed that the mass of the earth,

surrounded by the river Okeanos, filled up the lower half of the sphere of the

universe, while the upper half was out above it, and that Helios (the sun) extin-

guished its flames each evening by bathing in the deep waters of the ocean and

lit them again in the morning.
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To this effect, the Shiloa tunnel69 was chiseled in ca 700 BCE [Chron II 32,
3–4, 30; Kings II 20, 20; Isa 22, 9–11].

700 BCE The Assyrians introduce the aqueduct . Carved bone or ivory
dentures with gold braces worn by Etruscans of Northern Italy.

668 BCE Ashurbanipal, king of Assyria, established a library at his
capital Nineveh (destroyed ca 612 BCE).

ca 650 BCE The Lydians of Asia Minor introduced the first standard
coinage of the Western world.

It has been the custom for centuries in the Egyptian and Babylonian em-
pires to stamp ingots with some mark giving authority of the value of the
metal. This however did not ensure a standard quality to the precious metal,
and therefore did not make the ingots more freely exchangeable. However,
some time in the 8th century BCE someone discovered the touchstone, a flinty
river stone (schist), used to assay the quality of the gold ingot.

Herodotos tells us that the Lydians cut the top surface of the stone flat,
leading it matt. If gold were rubbed on this matt surface it would make
scratch marks. Pure gold would leave yellow marks, gold mixed with silver,
white ones, and gold mixed with copper, red marks. It gave the rulers of
Lydia, starting with King Gyges (685 BCE), the ability to ensure a standard
quality to their money by easily detecting forgery. The mark of the King’s
mint was now evidence of purity, weight and acceptability.

In the 6th century BCE a smaller unit of exchange, the Lydian stater
was produced. It was made of a gold-silver alloy called electrum and punch-
marked by the issuing mint. Within a century a set of coins, each one a

69 An underground S-shaped aqueduct, 513 meters long. The rock was pierced

simultaneously at both ends and the workmen met in the middle – a triumph of

precision engineering.

Herodotos tells us of a similar water project undertaken in Samos by the Greek

engineer Eupalinos of Megara (fl. 520 BCE). He built water conduits during

the rule of Polycrates (ca 530–522 BCE). The remains of the tunnel were found

in 1882; it is about 1000 m long and 1.75 m high and wide, at the bottom of

the tunnel there is a trench, about 60 cm wide and reaching at the south end a

depth of 8.3 m, wherein the clay pipes were embedded.

The Hezekiah and the Eupalinos tunnels were started at both ends . How did

the engineers solve the mathematical problems involved? We may guess that

they had instruments to measure azimuths and difference of levels. The problem

involved was solved theoretically for the first time by Hero in his treatise on

dioptra (ca 50 BCE).
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fraction of the stater, had been issued. When Croesus of Lydia introduced
the first standard imperial coinage (550 BCE), Lydian money was already
known for its high and unchanging standard. When Cyrus conquered Lydia
(546 BCE) he issued the first Persian coins.

The economic revolution following the development of coinage was enor-
mous. Before this, the only money was the bullion weighted out at the time
of a transaction. Small farmers and artisans were forced to barter. The intro-
duction of coins that petty producers could use brought the mass of the pop-
ulation the benefits of money, since the craftsman was no longer condemned
to “eat his wages”. He could buy products with his earnings, opening up new
markets for fellow artisans. The small farmer was free to follow the aristocrats
into specialized farming for an export market.

Money is perhaps man’s most useful discovery, next to fire and the wheel.
As the use of coinage spread, it had two fundamental effects. The first was
political: money issued by a central mint had a unifying effect on the users.
The mark of the government on the coin was present in every transaction.
Its presence defined the boundaries of governmental authority, and its value
mirrored the health of the economy and political stability of the country. The
second was cultural: with the growth of international trade grew the exchange
of technological innovations and scientific ideas.

But money was a mixed blessing, and in its wake followed usury, mort-
gages, and debt slavery . Money was power. Anything could be reduced to
abstract numbers: the value of a pot, a jar of oil, a plot of land, a slave, could
all be expressed by exact number of coins, as could the wealth and worth
of any citizen. Numbers seemed to have magical powers. Money invested at
interest could even multiply itself without any effort on the part of the lender.

As the money economy developed, so did chattel slavery . Such an insti-
tution, based on the sale of slaves, is impossible without the free exchange
of money. Slavery threatened either to enchain the small producers them-
selves or to undercut their livelihood, and so devalued productive activity.
To Greek slaveholders, work was something done by slaves, thus in itself de-
grading. Only detached thought is worthy. As slavery separated thought
from action, so did a new trend in Greek philosophy glorify abstract reason
while denigrating physical observation. Slavery also undercut the develop-
ment of technology that required and fed observation: slave-owners did not
need labor-saving devices.

The Greek philosophers in the 6th century witnessed the effects of money
on the Greek states, and some of them extrapolated from the power of numbers
in society to the idea that numbers rule the universe as well.
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650 BCE Assyrians compile Mesopotamian medical knowledge in collec-
tion of clay tablets at the Royal Library in Nineveh. Over 300 medications and
such diseases as paralytic stroke and rheumatism are described. The diseases
of tuberculosis, gonorrhea and leprosy first described with accuracy.
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The Greeks70

“The isles of Greece, the isles of Greece!
Where burning Sappho loved and sung,
Where grew the arts of war and peace,
Where Delos rose, and Phoebus sprung!

Eternal summer gilds them yet,
But all, except their sun, is set”.

George Gordon Byron (1788–1824)

Originally a shepherd people, the Greeks had migrated to the Greek peninsula
in about 1900 BCE out of central Europe, possibly from the Danube. They
were one of several peoples speaking Indo-European languages who migrated
southward at this time. These include, among others, the Germanic, Celtic,
Latin and Iranian peoples, and the Aryans who in the same millennium in-
vaded and conquered Northern India. The Greeks found their new home too
arid to satisfy their needs and soon turned to the sea for their livelihood,
learning the secrets of navigation, and their metal working skills, from the
Minoans.

By about 1600 BCE, the Greeks were established throughout the Aegean
area in independent city-states and the Mycenaean civilization had begun to
take shape.

70 For further reading, see:

• Bowra, C.M., Classical Greece, Time-Life International: The Netherlands,

1970, 192 pp.

• Wittle, T., The World of Classical Greece, William Heinemann Medical

Books: London, 1971.

• Heath, T., A History of Greek Mathematics, Oxford at the Clarendon Press,

vols I-II, 1921, 446+586 pp.

• Cohen, M.R. and I.E. Drabkin, A Source Book in Greek Science, McGraw-Hill

Book Company: New York, 1948.

• Schrödinger, Erwin, Nature and the Greeks, Cambridge University Press,

1996, 172 pp.
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Imaginative, curious, with an innate appreciation of the beautiful and
a genuine love of adventure they became fishermen, pirates and merchants,
trading with the nearby island of Crete, where the Minoan civilization was
just reaching its peak.

With the decline of the Minoans, following the Thera natural catastrophe,
the westward migration of the Phoenicians and the comeback of the New
Kingdom in Egypt, Mycenaean traders sought new markets in the Black Sea.
During 1150–900 BCE, the Dorians moved into the Greek Peninsula in a series
of destructive waves and wiped out the Mycenaean ruling classes together
with their entire civilization. The centuries preceding and following 1000
BCE witnessed in that part of the world a tremendous upheaval caused by
the introduction of iron, complicated migrations, and widespread turbulence.
This was the Dark Age that preceded the dawn of Greek culture. (In this
respect that Dark Age resembles the Christian Middle Ages; both were periods
of unconscious assimilation and preparation.)

By 800 BCE a new urban society was formed, and during 800–600 BCE,
more than 100 colonies were founded, from the Black Sea, virtually a Greek
lake, to Marseille (Massillia). They controlled the coast of Thrace and the
entire littoral of Asia Minor, where they took over the trade previously en-
joyed by the Phoenicians.

They made Miletos, on the Aegean shore, the richest of their cities, and a
port of departure for expeditions to the Black Sea. They colonized the east-
ern sea-board of the Adriatic, southern Italy, Sicily and Cyrene on the coast
of Libya71.

By the middle of the 7th century, they have established themselves in
Egypt, founding the port of Naucratis at one of the now extinct mouths of
the Nile. To this port, which later became the city of Alexandria, they
brought merchandise which was paid for by Egyptians with gold from Sudan.

During this period of trade and colonization, the small Greek villages of
the Aegean evolved into strong self-sufficient city-states which transformed
from monarchies to aristocracies. It is in these Greek cities of Asia Minor,
particularly Miletos, that western philosophy was born.

Indeed, between 600–400 BCE, there occurred a unique phenomenon in
the annals of mankind: People with Greek names, living in the Greek colonies
on islands and inlets of the Eastern Aegean Sea (Ionia) suddenly decoupled
themselves from the bondage of myths and became aware that the universe

71 In ca 650 BCE, Colaeos, Greek merchant, discovered the Straits of Gibraltar

for Greece. Massillia was founded by Greeks from the Ionian city of Phocaea.
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around them is knowable and exhibits an internal order (“cosmos”). They
began to look for regularities, laws, rules, predictions – science was born.

And they found that everything is made of ‘atoms’, that the earth is only
a ‘planet’ going around the sun, that stars are far away, that light travels with
finite speed, that the earth was a sphere, and more.

Why did this happen in Samos, Miletos, Ephesos, Elea, Abdera and Cnidos
and not in India, Egypt, or in the Maya and Aztec societies?

They lived in an open, free, decentralized, mercantile, pluralistic island
society, situated on the cross roads of Africa, Asia and Europe, under the
influence of the great cultures of Egypt and Mesopotamia. Not far to the
east, roamed the voices of the Hebrew prophets, poets and sages in praise of
unity, law and order in the universe.

Moreover, widespread literacy and writing and the free communication
of thoughts through debates made inquiry and accumulation of knowledge
feasible.

And finally, the umbilical cord to mainland Greece, where art, architecture
and literature have been flourishing since 800 BCE. It is this Greek connec-
tion that finally brought the decline of the Ionian awakening. The complex
amalgam of city-states was inherently unstable: rivalry between individual
states and alliances made each of them vulnerable. With the emergence of
the powerful Macedonian kingdom, the majority of independent city-states
disappeared. Greek culture was carried away to Italy (Tarentum, Syracuse),
Africa (Cyrene) and as far east as the Oxus and Indus rivers, and a new
imperial age, the Hellenistic period, begun.

The Romans (300 BCE–476 CE) did not develop a civilization of seaboard
city-states like the Greek. Rome was a warrior-agricultural community, like
Sparta (the least intellectual of the Greek states). Commerce was forbidden
to the senators of Rome, whilst the merchants submitted to the values of their
society, aspiring to become the owners of farming land.

The Romans therefore lacked the quantitative and spatial thinking of the
merchant-traveler, rendering them weakest in the mathematical sciences. The
spirit of pragmatism and utilitarianism which pervaded the Roman world
was alien to the air of disinterested and free creativity so essential to all
developments of science and art. Thus they did not add a great deal to science.
Their contribution lay in the fields of organization: public medical service,
buildings, roads and aqueducts, Julian calendar, Roman Law, etc. They
had no mathematicians and astronomers of note, and consequently science
declined during their sojourn in history.

Notwithstanding the surpassing brilliance of the Greeks, there occurred
earlier (ca 1800 BCE) a historical event which had a direct bearing on the
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development of science, albeit 3000 years later. It was the intellectual revolu-
tion born with the introduction of the concept of monotheism by the ancient
Hebrews.

It freed men from a fearful subordination to the forces of nature by positing
a supernatural cosmic power; the idea of one God emancipated men from their
terror of many evil demons, apparitions and fiendish hobgoblins.

Apart from fusing religion and morality, monotheism ultimately became a
stimulus to science, because it suggested a unitary, consistent pattern within
which everything in nature functioned. It promoted the idea of order, con-
sistency, and meaning in the universe – all waiting for man to explore and
understand.

The idea of One God contained within itself the concept of a central cause,
a prime reason for things, and the search for that reason in the analyses of
sacred writings, or experimental ventures, or the detached observation of phys-
ical phenomena. For once cosmic unity is accepted, universal consistencies,
regularities, and interrelations follow.

Another major contribution of the ancient Hebrews concerns their appre-
hension of time as a linear cosmic trend; history is presented as a unified
process confirming a master plan of divine significance, which began with the
creation. Prior to the rise of Christianity, with the exception of Philo and
Seneca, only the Hebrews and the Zoroastrian Iranians have thought of his-
tory, man’s fate included, as progressive rather than cyclic. This is made clear
in every Book of the Old Testament (with the exception of Ecclesiastes) and
is rather strongly emphasized in the Book of Daniel.

In contradistinction, all other ancient civilizations, and especially the
Greek scholars Plato, Aristotle, Pythagoras, the Stoics and certain Neopla-
tonic philosophers, believed in the doctrine of eternal recurrence and cyclic
time, in which the world was destined to be destroyed and created anew in a
cyclic pattern. The linear concept of time had a profound effects on western
thought. Without it, it would be difficult to conceive of the ideas of progress
or evolution.

Curiously enough, both Judaism and Christianity, each in its own way, and
for different reasons, did not encourage their believers to develop science for
its own sake, and the world had to wait for the late Renaissance and Spinoza
to continue the intellectual revolution of the Hebrews.

The same source that kindled the spirit of the great natural philosophers
during 600–400 BCE, has earlier endowed humanity with equally great poetry.
As happened thousands of years later, during the European Renaissance, art
preceded science by some 200 years: In Ionia, perhaps on the island of Khios,
Homer sang his great epics, the Iliad and the Odyssey, at ca 750 BCE. [Not
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far away, in Judea, the contemporary Hebrew prophet, Isaiah, was reciting
his Biblical visions72.]

These two great epics bring European literature into existence with a
bang; its echoes are still reverberating. However, there must have been a
long history behind the Homeric poems, since works of such massive scale
and great sophistication do not come out of nothing. The common origins of
Greek science, philosophy and literature are to be sought in the heritage of
the Indo-European family of peoples which later created the corresponding
separate cultures.

Moreover, in the Homeric epics themselves, we can already discern the
buds of later philosophical apprehension of nature and of man: the Greek
people stand before us alive with all their skills, cunning and above all, their
inquisitiveness and ingenuity which later developed into a keen sense for de-
tailed physical observation. The Greek culture, through all of its transforma-
tions, is the manifestation of one and the same spirit.

In Greece, humanity approached for the first time the riddles of nature
and man as problems that can be rationally solved.

We can feel the harmonious equilibrium of these two elements in the fol-
lowing lines from the conclusion of book VIII of the Illiad [in the translation
of Alexander Pope (1688–1741, England), during 1715–1720].

72 Greek literature reflects the vital impact of the stars on the life of an agricultural

and seafaring people. Homer noted the Bears, Bootes, the Pleiads and Hyades,

and the star Sirius, all by the names we use today. [These are also mentioned in

the Bible: Sirius = Hadre Theman; Orion = Kesil ; Venus = Mazzaroth; Hyades

= Ayish; Pleiads = Kimah.] The Greeks in Homer’s time used Ursa Major to

navigate by.
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“The troops exulting sat in order round,
And beaming fires illumined all the ground.

As when the moon, refulgent lamp of night,
O’er heaven’s pure azure spreads her sacred light,
When not a breath disturbs the deep serene,
And not a cloud o’ercasts the solemn scene,
Around her throne the vivid planets roll,
And stars unnumber’d gild the glowing pole,
O’er the dark trees a yellower verdure shed,
And tip with silver every mountain’s head:
Then shine the vales, the rocks in prospect rise,
A flood of glory bursts from all the skies:
The conscious swains, rejoicing in the sight,
Eye the blue vault, and bless the useful light.
So many flames before proud Ilion blaze,
And lighten glimmering Xanthus with their rays.
The long reflections of the distant fires
Gleam on the walls, and tremble on the spires.
A thousand piles the dusky horrors gild,
And shoot a shady lustre o’er the field.
Full fifty guards each flaming pile attend,
Whose umber’d arms, by fits, thick flashes send,
Loud neigh the coursers o’er their heaps of corn,
And ardent warriors wait the rising morn”.

The Greeks themselves declared that they found in Egypt and in Babylonia
the material for their geometry and astronomy73. Thales and Pythagoras,
Democritos and Eudoxos: all of them are reported to have traveled to
Egypt and to Babylonia, in search of elements of value in alien cultures.

From the Egyptians, the Greeks learned their multiplication and their
computations with fractions, which they then developed further. The Greeks
may also have taken from the Egyptians the rules for the determination of
areas and volumes [for the Greeks such rules did not constitute mathematics,
it merely led them to ask: how does one prove this?]

It is, however, on Babylonian science and mathematics that the Greeks
based their own. The two cultures met around 604 BCE, at the beginning

73 In his posthumous dialogue Epinomis, Plato says of the relation of the Greeks

to the old cultures of the Orient: “Whatever Greeks acquired from foreigners is

finally turned by them into something nobler”.
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of the reign of the Chaldean Nebuchadnezzar, when cultural and commercial

communications were opened in both directions. In addition to the mathe-

matical heritage, the Greeks received the sun-dial and the 12 hours of the

day.

The political equilibrium was disturbed in 540 BCE, when Cyrus II, the

Great, subjected the entire Orient to Persian domination. The Ionian cities,

which had come to the aid of his opponent Croesus, had to pay heavy tributes.

Many Ionians left the country: the Phocaens, for example, established the

town of Elea, in Italy, which was destined to play an important part in the

history of philosophy. It was also at this time that Pythagoras migrated from

Samos to Croton. The center of gravity of the world of mathematics and

philosophy moved from Ionia to Italy.

But it was not long before the Persian empire reestablished economic and

cultural links with the Greeks. Ionian artisans and artists took part in the

construction of the palace of Darius. The sculptor Telephanes of Phocia

worked for Darius and for Xerxes. The Greek physician Democedes of

Croton lived at the court of Darius.

The great Persian kings Cyrus and Darius were very tolerant. They did

not interfere with the cultures and the religions of subject peoples (a ref-

erence to the Bible is in order here). Babylonian stellar rituals continued

to exist. The observation of the moon and the planets by the Babylonian

priest-astronomers, were continued systematically during the Persian regime.

Without these carefully dated observations, the later flowering of Babylonian

theoretical astronomy during the era of the Seleucids, the successors of Alexan-

der the Great, would have been impossible. The Greeks also showed interest

in these observations.

Callisthenes, who accompanied Alexander the Great to Babylon, sent

his uncle Aristotle, upon his request, Babylonian observations. Hypsicles,

a Greek astronomer of the 3th century, calculated the times of rising and

setting of the Zodiacs in the Babylonian manner, because Greek geometry of

the sphere was not yet able to solve this problem. Hipparchos (150 BCE)

made use of Babylonian observations and periods of the moon, which Ptolemy

could use 300 years later – practically without corrections.

From all this it is apparent that even during the period of flowering of

their own astronomy, the Greek were glad to learn from the Babylonians in any

respect in which the latter had advanced beyond them. This certainly applied

as well to the initial period of Greek mathematics, when the Babylonians were

already in possession of a highly developed algebra and geometry, which the

Greek had not yet acquired.
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The natural point at which fruitful contacts between East and West could

take place at the beginning of the 6th century BCE, was the flourishing com-

mercial town of Miletos on the coast of Asia Minor, the most important center

of Ionian culture.

The Greeks invented democracy more than 2000 years before any modern

Western nation took the first steps toward it; they invented philosophy and

the theater and organized competitive athletics; they invented political theory,
biology, zoology, and atomic theory74.

The Greeks created philosophy; without philosophy we would have no

science, and the attempt to arrive at truth of any sort would remain largely

a matter of fantasy and whim.

Chinese civilization invented the movable type, gunpowder, the rocket, the

magnetic compass, the seismoscope, and made systematic observations and

chronicles of the heavens. Hindu mathematicians invented the zero – the key

to comfortable arithmetic and therefore to quantitative science. Aztec civi-

lization developed a far better calendar than that of the European civilization;

they were better able, and for longer periods into the future, to predict where

the planets would be.

But non of these civilizations had developed the skeptical and inquiring

method of science. All that came from ancient Greek. The development of

objective thinking by the Greek appears to have required a number of specific

cultural factors. First was the assembly, where men first learned to persuade

one another by means of rational debate. Second was a maritime economy

that prevented isolations and parochialism. Third was the existence of a

wide spread Greek-speaking world around which travelers and scholars could

wander. Fourth was the existence of an independent merchant class that could

hire its own teachers. Fifth was a literary religion not dominated by priests,

and sixth was the persistence of these factors for a thousand years.

Greek mathematics was a brilliant step forward. Greek science, on the

other hand was riddled with error:

74 Yet, in spite of their great achievements in science, art and literature, their

technology stood still through the entire millennium of their creative existence

(the inventions of Archimedes were never applied to the needs of daily life)!

Why?

The answer is quite simple: almost all their manual work was done by slaves.

The Greeks despised work of any kind and therefore lacked the motivation for

the invention and applications of labor-saving tools.
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• Believed that vision depends on a kind of radar that emanates from the
eye, bounces off what we are seeing, and returns to the eye (Ignoring
the fact that we cannot see in pitch darkness!).

• Believed that heredity was carried by semen alone, the woman being a
more passive receptacle (Ignoring the fact children resemble their moth-
ers!).

• Believed that the horizontal motion of a thrown rock somehow lifts it
up, so that it takes longer to reach the ground than a rock dropped from
the same height at the same moment.

• Believed that planetary orbits are exactly circular.

• Did not believe in interrogating nature by doing experiments, (Excep-
tions: Eratosthene’s measurement of the earth’s diameter or Empe-
docles’ experiment demonstrating the material nature of air). In a
society is which manual labor was thought fit only for slaves, the exper-
imental method did not thrive.

What Ionia and ancient Greece provided is not so much inventions or
technology or engineering, but the idea of systematic inquiry, the notion that
nature, rather than capricious gods, govern the world. Water, air, earth, and
fire – all had their turn as candidate “explanations” of the nature and origin
of the world. Each such explanation was deeply flawed in its details. But the
mode of explanation, an alternative to divine intervention, was productive
and new75.

Indeed, in contrast to the static civilizations of the great Eastern river
valleys – Tigris, Euphrates and Nile – the Greeks created in the restless tur-
bulence of their tiny city-states that impatient rhythm of competition and
innovation that has been the distinguishing characteristic of Western civiliza-
tion ever since.

75 This approach of the pre-Socratics was (beginning in about 4th century BCE)

quenched by Plato, Aristotle, and then Christian theologians. If the brilliant

guesses of the atomists about the nature of matter, the plurality of worlds,

the vastness of space and time – had been treasured and built upon, if the

innovation technology of Archimedes had been taught and emulated, if the notion

of invariable laws of nature that humans must seek out and understand had been

widely propagated – we would perhaps be living by now in a different world.
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The Hebrews and their Bible76

Whereas the Greeks were interested chiefly in positive knowledge, the He-
brew’s main concern were morality and apocalypses, though they were also
keen observers of nature. The Hebrews had freed man’s mind from magic by
tying him with ethics to a moral God; the Greeks had freed man’s mind from
magic by tethering him with reason to a relative truth77.

The Hebrews introduced the notion of monotheism, which may be con-
sidered as a scientific hypothesis. The earliest known Hebrew prophet after
Moses, to expound monotheism to the people of Israel in their own land, was
Amos (fl. 765 BCE). The ethical theory of the world and the conception of
a God, unique, conscientious, and just are published under his name in the
Book of Amos. The ethical side of Hebrew monotheism was reinforced by the
prophets Hoshea (fl. 740 BCE), Isaiah (fl. 720 BCE), Micha (fl. 720 BCE),
Zephaniah (fl. ca 630 BCE), Jeremiah (fl. 626–586 BCE), Nahum (fl. 620
BCE), Habakkuk (fl. 615 BCE), Ezekiel (fl. 610–580 BCE), Haggai (fl.
520 BCE), Zachariah (fl. 520 BCE) and Joel (fl. 370–340 BCE).

The Bible is also the main source-book on Hebrew law and history. The
only part of the Pentateuch which can be dated with any precision is the 5th

and last book called Deuteronomy. The kernel of this book was discovered
in Solomon’s Temple in Jerusalem in 621 BCE. It inspired King Joshia’s rev-
olutionary decision to centralize all formal worship in one place, Jerusalem.
The book of Samuel was probably composed around 600 BCE. It deals with

76 For further reading, see:

• Jacobus, M.W. Ed, A New Standard Bible Dictionary, Funk and Wagnalls
Company: New York and London, 1926, 965 pp.

• Thompson, J.A., Handbook of Life in Bible Times, Inter-Varsity Press, Leices-
ter, England, 1996, 384 pp.

• Harper’s Encyclopedia of Bible Life, Castle Books, 1996, 423 pp.

• Bowker, John, The Complete Bible Handbook, Barnes and Noble, New York,

2005, 544 pp.

• Rogerson, John, Atlas of the Bible, Phaidon, Oxford, 1985, 237 pp.

77 Jewish law became tied to religious thought, and Greek law became tied to

philosophical precepts. The Romans went a step beyond the Jews and the Greeks

by totally separating their civil law from both religion and philosophy.
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the history of the early kings Saul and David (fl. 980 BCE). The Books of
Judges and Kings are the product of the 6th century, but were based upon
early manuscripts.

The Jews had two unique characteristics as ancient writers; They were the
first to create consequential, substantial and interpretive history: They were
fascinated by their past from very early times. They believed that they were
a special people who had not simply evolved from an unrecorded past but had
been brought into existence, for certain definite purposes, by a specific series
of divine acts. They saw it as their collective business to determine, record,
comment and reflect upon these acts.

No other people has ever shown so strong a compulsion to explore their ori-
gins. This passion for aetiology, the quest for explanations, broadened into a
more general habit of seeing the present and future in terms of the past. The
Jews wanted to know about themselves and their destiny. They wanted to
know about God and his intention and wishes. Since God, in their theology,
was the sole cause of all events, and thus the author of history, and since they
were the chosen actors in his vest dramas – the record and study of historical
events was the key to the understanding of both God and man.

The Jews developed the power to write terse and dramatic historical nar-
rative 500 years before the Greeks, and because they constantly added to their
historical records they developed a deep sense of historical perspective which
the Greeks never attained. In the portrayal of character, too, the Biblical his-
torians achieved a degree of perception and portraiture which even the best
Greek and Roman historians could never reach. The Jews were not interested
and did not believe in impersonal forces. They were less curious about the
physics of creation than any other literate race of antiquity. They turned their
back on nature and discounted its manifestations except in so far as they re-
flected the divine-human drama. The notion of vast geographic or economic
forces determining history was quite alien to them. There is much natural
description in the Bible, some of astonishing beauty, but it is stage-scenery
for the historical play.

The second unique characteristic of ancient Jewish literature is the verbal
presentation of human personality and its full range of complexity. The Jews
were the first race to find words to express the deepest human emotions,
especially the feeling produced by bodily or mental suffering, anxiety, spiritual
despair and desolation, and the remedies for these evils produced by human
ingenuity – hope, resolution, confidence in divine assistance the consciousness
of innocence or righteousness, pertinence sorrow and humility [e.g. Psalms:
22, 23, 39, 51, 90, 91, 103, 104, 130, 137, 139]. Wisdom texts produced by the
Jews are more observant of human nature and more ethically consistent than
their precursors and models in the entire ancient Near East. Thus Ecclesiastes,
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is quite without equal in the ancient world, with which the Greeks alone could
complete.

This book is counted among the four great skeptical dramas of history
along with Prometheus vinctus (Aeschylos); Hamlet (Shakespeare), and Faust
(Goethe). Yet not even the Greeks produced a document so mysterious and
harrowing as the book of Job, written in Israel in 5th century BCE. This
great essay in theodicy and the problem of evil has fascinated and baffled
both scholars and ordinary people for more than two millennia78, and of all
the books of the Bible it has most influenced other writers.

Job is a formidable work of Hebrew literature, written in a sustained level
of powerful eloquence. Its burden is to show that suffering is not necessarily
retributive and that the justice of God is impenetrable. It is crammed with
natural history in poetic form, presenting a fascinating catalogue of organic,
cosmic and meteorological phenomena. In chapter 28, for instance there is an
extraordinary description of mining in the ancient world. Through this image,
a view is presented of the almost unlimited scientific and technological poten-
tials of the human race, and this is then contrasted with man’s incorrigibly
weak moral capacities79.

The Bible opens to us a window in time that extends from ca 2000 BCE to
ca 300 BCE80. It abounds with detailed descriptions as well as terse allusions
to eclipses, comet apparitions, bolide impacts, paroxysmal volcano eruptions,
major earthquakes, tsunamis, floods, and a host of meteorological81, botanical,

78 Thomas Carlyle called it “one of the grandest things ever written with pen”.
79 The author of Job delivers the following message: There are two orders in cre-

ation – the physical and the moral order. To understand and master the physical

order of the world is not enough: man must come to accept and abide by the

moral order, and to do so must acquire the secret of Wisdom, and this knowl-

edge is something of an altogether different kind from, say, mining technology.

Wisdom came to man, as Job dimly perceived, not by trying to penetrate God’s

reasoning and motives in inflicting pain, but only through obedience, the true

foundation of moral order: “And he said to man: “Behold, the fear of the Lord,

that is wisdom: and to depart from evil is understanding” [Job 28, 28].
80 The Old Testament was canonized gradually , book by book, over a period of ca

1000 years. However, the final stages of canonization of the Pentateuch and most

of the books of the Prophets began at the time of the scribe Ezra (fl. 458 BCE)

and ended ca 200 BCE. The time of canonization of the Writings is uncertain,

but believed to end by the first century BCE. A standard text of the Hebrew

Bible appeared by about 150 CE.
81 Earth’s weather patterns and the hydrological cycle were known to the Hebrews

[Job 26, 8; 28, 23–26; Eccl 1, 6; Psalms 146, 16–17]. Job [38, 19–20] wonders
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Table 1.1: Prophets, philosophers, poets and scientists in the

Golden Age of Eurasian cultures (800–200 BCE)

BCE, ca Hebrews Greeks Eastern

800–750 Isaiah; Amos Homer —

620 Jeremiah — Zoroaster

597–570 Ezekiel Thales Lao Tsu

535–520 Zachariah Pythagoras Buddha

500 Malachi Heraclitos Confucius

440–400 Ezra; Nehemiah Socrates;
Democritos

—

390 — Plato —

340 Jonah; Joel Aristotle —

300 Ecclesiastes Euclid —

230 — Archimedes —
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zoological, medical82, geological, geographical, astronomical and other data

on the nature of light and states that it is an element in a state of motion(!). The

earth is floating in space, surrounded by a thin form-fitted layer – our atmosphere

[Job, 26, 7].
82 Ancient peoples regarded disease as something aside from the regular working of

nature. To them disease was the expression of disfavor or hostility on the part

of the god, and in the nature of punishment . As a consequence, the treatment of

disease in the early days lay in the hand of the priests (Lev 13), whose concern

was to appease the angry Jehovah; diagnosis could be disregarded and medica-

tion naturally played a minor part. Diseases might be averted by repentance,

e.g. Jeroboam’s paralysis cured [I Kings 13, 4–6], Hezekiah’s illness cured [II

Kings 20, 5], Miriam’s leprosy healed [Nu 12, 14], plague checked by Aaron’s

use of incense [Nu 16, 47].

Anatomy known to Biblical writers was a thing of shreds and patches – only

very few parts of the body are mentioned in the Bible, and these references are

vague and general. Something, however, was learned of comparative anatomy

by the examination of animals slaughtered in sacrifice [Deut 18, 3; Lev 3, 10; 8,

17; Ezek 21, 21]. More accurate knowledge of the anatomy of the human body

to be obtained by dissection was totally forbidden [Nu 18 16].

Physicians were recognized as a distinct class [II Chron 16, 12; Job 13, 4], but

their intervention met with the disapproval of the priests. There are several al-

lusions to medical matters in Proverbs [17, 22; 20, 30].

Preventive medicine: The Mosaic laws enforcing public and personal cleanliness

were of great hygienic value [e.g. circumcision, ban upon sexual perversions (Lev

15), sexual inversion (Lev , 18), sanitation of camp life (Deut 23, 13) etc.] These

rules invested the figure of a good and virtuous woman with that peculiar halo

of respect which has been preserved by all highly civilized nations down to the

present time. The institution of the Sabbath day of rest was perhaps the most

distinctive and beneficial of all the Mosaic provisions for the physical and moral

well-being of the Hebrew people.

Medicines were largely used [Prov 17, 22; Jer 30, 13; 46, 11; Ezek 47, 12].

Moses was learned in all the wisdom of the Egyptians, and among the other

branches of this lore, medicine was largely cultivated. Assyria and Babylon were

learned in the medical science of that day. Thus, King Asa had medical treat-

ment for his feet [II Chron 16, 12], King Joram went back to be healed of his

wounds [II Kings 8, 29]. Of details of treatment and materia medica we have:

• Balm used for the treatment of wounds [Jer 8, 22].

• Caperberry and Mandrake [Ec 12, 5; Gen 30, 14] used as aphrodisiac.

• Ointments: Oil was used in dressing wounds, and in anointing the sick [Isa-

iah 1, 6]. Wine was used as a stimulant for gastric disturbances [Pro 31, 6]. A

poultice of figs [II Kings 20, 7].

• Antidotes: An indication to the knowledge of the use of antidotes for poison
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concerning the natural history of the ancient Near East.

No archaeological discovery has ever been made that contradicts or con-
troverts historical statements in the scriptures, and most of the narratives
relating to geophysical and astronomical events, are found today to bear a

is given in II Kings 4, 38–41. Here the bitter fruit of the poisonous colocynth

has been mixed in the pot with the stew. Elisha neutralized its effects by meal

thrown into the pot. In modern times chemists have been able to show the

neutralizing effect of the protein of the meal, when cooked, upon the poisonous

alkaloid of colocynth.

There is no mention in the Bible of any anesthetics or analgesic drug treatment.

Diseases and epidemics are repeatedly mentioned. The great epidemic of the

East are cholera, bubonic plague, small pox, typhoid, typhus, measles, and vene-

real diseases [Ex 9, 9; Deut 28, 27; Nu 11, 33; 14, 37; 16, 47; 21, 27; 25, 1–9].

The plague that followed the capture of the Ark by the Philistines [I Sam 5, 6–6,

21] killed 50,070 of the Hebrews; it would seem that contagion from the Ark was

still possible and it was not without reason that the Ark was quarantined for 20

years.

Of the Assyrian army against Ethiopia 185,000 died in one night [II Kings 19,

35]. Such sudden mortality suggests either cholera or plague. A pestilence of

70,000 mortality is recorded in I Chron 21, 14 and Ps 91, 5–10. Leprosy is

abundantly mentioned [Lev 13, 1–17; Ex 4, 7; Num 12, 10; II Kings 5, 27; 7,

3; 15, 5].

Individual cases of disease cited: Infantile paralysis [II Sam 4, 4]; Dysentery [II

Chron 21, 18]; Homicidal melancholia [I Sam 16, 14; 18, 10–11; 19, 9–24; 20,

33; 22, 17]; Inscaity [Dan 4, 33]; Dwarfism [Lev 21, 29]; Gigantism [Deut 4, 11;

I Sam 17, 1; II Sam 21, 16–20]; Alcoholism [Gen 9, 20; 19, 33; II Sam 11, 13;

I Kings 20, 16 etc.]. Heart disease [Deut 28, 65]; Sunstroke or meningitis or

pernicious malaria [II Kings 4, 18; Ps 121, 6]; Pneumonia [II Sam 12, 15–18].

Circumcision is the only surgical procedure mentioned in the Bible. There is a

reference to the roller bandage in the treatment of fractures [Ezek 30, 22].

Diseases of the eye were common and numerous in the East. This is largely due

to the presence of trachoma and of gonorrheal ophthalmia [Gen 27, 1; I Sam

4; I Kings 14, 4]. Thus, Leah was tender-eyed, probably the result of trachoma

[Gen 29, 17].

Woman’s diseases are mentioned [Lev 15, 19–24; 15, 25–30]. Sterility was re-

garded as a great calamity [Gen 18, 11; 20, 17; 25, 21; I Sam 1, 5; II Sam 6,

23; II Kings 4, 4].

Obstetrics: The suffering of child-birth is the penalty for the sin of Eve [Gen 3,

16]. Midwives in the Near East from the earliest times have conducted deliveries

upon the obstetric chair [Ex 1, 16]. The obstetric chair is mentioned by ancient

Greek authors. Rachel offers the use of her knees in lieu of an obstetric chair, as

a symbol that the child borne by her maid is her own [Gen 30, 3].
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rather exact account of real natural phenomena. Several examples are:

• Volcanism [Ex. 19, 16; 20, 18; Deut 4, 11; Jud 5, 5; Micha 1, 3–4; Psa
97, 3–5]. It is the oldest known description of a volcanic eruption based

on a very careful observation. In addition to the pillars of cloud and fire,

the account contains no fewer than seven features, each characteristic

of a volcanic explosive eruption: noise, flames, smoke, quaking, summit

cloud, electrical discharges and darkness.

• Eclipses. The events: Sept. 30, 1131 BCE [Jud 5, 20], Aug. 15,
831 BCE [Amos 8, 9], June 15, 763 BCE [Amos 5, 8; Isa 24, 19–23],

May 09, 594 BCE [Ezek 8, 14–16], Sept. 21, 582 BCE [Ezek 30,

18; 32, 7–8], Mar. 28, 517 BCE[Zach 14, 6], Mar. 01, 357 BCE
[Joel 3, 3–4], July 04, 336 BCE [Joel 3, 3–4], are among he earliest

documented descriptions.

• Comet apparitions. 1230 BCE [Exod 13, 21], May 11, 1198 BCE
[Josh 5, 13], Dec. 02, 986 BCE [I Chron 21, 16], July 28, 616 BCE
[Ezek 1, 4; Hab 3, 4–12].

• Earthquakes. 2100 BCE, the destruction of Sodom and Gomorrah [Gen
19], ca 1210 BCE, the fall of the walls of Jericho [Psa 114, 3–8], 759
BCE [Amos 1, 1; Zach 14, 4–5; II Chron 26, 16–23].

• Severe climatic changes causing floods, drought (famine), epidemics and

mass-migration [Gen 6–9; I Kings 17–18; Gen 41, 29–57; Jer83 18, 14;

Proverbs 25, 13].

The creation of the universe ex nihilo (from nothing) is described in the

first chapter of Genesis. Genesis tells how God created the universe by or-

ganizing a preexisting chaos, “the waters”: Genesis is silent about where the

initial chaos came from since the priests who wrote the account had no interest

in the question. Their concern was how God created order in the universe.

Next to cosmogony, treated in the first chapter of Genesis, (Table 1.2) the

following two chapters relate to anthropology – the origin of human civiliza-

83 A careful reading of the Bible reveal around 600 BCE more frequent snow than

now and that it lay longer into the summer on the heights of the Lebanon,

possibly throughout the year.
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tion. The story of man’s expulsion from paradise alludes to the transition
from food-gathering to food-producing society84 (ca 10,000–8000 BCE).

The outburst of intellectual energy that characterizes the extraordinary
phenomenon of Hebrew prophecy during 750–350 BCE, had its counterpart in
an akin occurrence in the East: the foundation of new philosophies of religions
by Confucius, Buddha, Lao Tsu and Zoroaster, all of whom flourished
during the 6th century BCE. These spiritual leaders had the capacity to
persuade their fellow-men to adopt new conception of the universe and of
themselves; they thus radically transformed the intellectual atmosphere of
their time.

84 When the glaciers still covered parts of Northern Europe, the whole area extend-

ing from the Atlantic Ocean to Iran was virtually a gigantic garden, providing

ample food for animals and man (‘Paradise’). As climate became drier, abun-

dance of edible plants diminished and man was forced to produce a great part

of his food: domesticate animals and use the plough to cultivate the land in the

valleys of the great rivers.
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Table 1.2: Dating of key events in the Book of Genesis, consistent

with discoveries of modern science up to 2000 CE

Event Thousands

of years

ago

Reference

Origin of the universe ca 14,000,000 “In the beginning...” (1, 1)
Undecoupled mat-
ter and radiation;
light was continually
emitted and screened

“...darkness was on the face of
the deep” (1, 2)

Light – transparent
universe; Decoupling
of matter from radia-
tion; recombination of
plasma to neutral hy-
drogen atoms

ca 13,999,700 “Let there be light.”(1, 3)
“...divided light from dark-
ness.”(1, 4)

Formation of primitive
stars

ca 13,100,000 “Let there be light in the firma-
ment of the heaven” (1, 14)

Primitive plant-life on
earth

ca 1,600,000 “Let the earth bring fourth
grass.” (1, 11)

Primitive life at sea ca 1,000,000 “Let the waters bring forth
abundantly the moving crea-
ture that hath life.” (1, 20)

Evolutionary explosion
of life an earth

ca 540,000 “Let the earth bring forth the
living creature...” (1, 24)

Appearance of ho-
minides

ca 4,500 “Let us make man...” (1, 26)

Branching off of Homo
Sapiens from the Nean-
derthals; The biblical
Eve

ca 200 “And Adam knew Eve his wife;
and she conceived...” (4, 1)

Man’s expulsion from
“Paradise” – past
glacial warming;
advent of agriculture

ca 11 “...sent him forth from the
garden of Eden, to till the
ground...” (3, 23)

The Mesopotamia
Flood

ca 7.6 “...the water of the flood were
upon the earth” (7, 10)

Advent of civilization ca 6.2 “...scattered them abroad upon
the face of all the earth” (11, 8)
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648 BCE, Apr. 06 Archilochos of Pharos. A Greek poet. Described
a solar eclipse on that date, which he may have watched in Pharos on Thasos
(Cycledes Islands).

644 BCE Windmills in Neh, Persia.

630 BCE Zoroaster (Zarathustra, ca 660–583 BCE, Persia). Philosopher
and prophet. Preached ethical monotheism, insisting on moral values, espe-
cially truth, justice and agricultural labor. Founded the Zoroastrian religion.
Cyrus the Great and Darius the Great, spread his religion throughout their
empire. After Alexander the Great conquered Persia, Zoroastrianism began
to die out.

Zoroaster was born in the vicinity of Lake Urmiyah in Azerbaijan, in
northern Persia. At the age of 30 he came out of the wilderness to preach his
new religion.

626–574 BCE Jeremiah (Yirmiahu, 644–574 BCE). The last pre-exilic
Hebrew prophet. Historian and biblical author and editor. Lived at the time
of the decline and fall of the Hebrew monarchy85. He came of a priestly family
descendant from Moses (the Shiloh line).

After the discovery of the Deutronomic Code in the days of King Josiah
(622 BCE), Jeremiah (perhaps with the assistance of his scribe Baruch ben
Neriyah) set forth to compile the final version of Deutronomy on the basis of
ancient texts. It is believed86 that he compiled the books of Joshua, Judges,
Samuel and Kings, and the Book of Lamentations. Jeremiah died in Egypt.

ca 600 BCE Phoenicians sent by the Egyptian King Necho II (d. 593
BCE) sailed around Africa. These voyages took about two years each, going

85 He witnessed six major political events in the Near East; which deeply impacted

his ideology:

• 625 BCE; Scythians overrun Western Asia; Judah escaped serious damage;

• 612 BCE; Nineveh fell to the Babylonians; end of Assyrian Empire;

• 609 BCE; King Josiah killed at Megiddo while attempting to oppose the

northward march of Egypt;

• 605 BCE; Egypt defeated by Babylon in the battle of Carcemish; Judah comes

under Babylonian rule;

• 597 BCE; Babylonian captured Jerusalem and deported King Yehoiachin to

Babylon;

• 587 BCE; Babylonian destroyed Solomon’s Temple, sacked Jerusalem and

deported many Judeans to Babylon; end of Hebrew monarchy in Israel.
86 Freedman, R.E., Who Wrote the Bible, 1987.
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through the Red Sea, around Africa, and back to Mediterranean by way of
Strait of Gibraltar.

600–500 BCE Cooler weather, increase of rainfall and flooding in Europe
and Middle-East. Confirmed by Herodotos’ description of the climate of the
Northern Black Sea. Evidence in the Old Testament.

ca 600 BCE Completion of the Etemenanki Ziggurate Tower87 in the an-
cient city of Babylon88 in honor of Marduk, the Babylonian Jupiter. After
several destructions and rebuilding, it reached its final form under Nebuchad-
nezzar II. Then it towered skyward for nearly 100 meters with seven stages,
pinnacling with a brilliant blue-glazed temple for Marduk. It was covered
with Enameled bricks in colorful patterns, as if it was clothed in the scaly
skin of some monstrous reptile. Some anthropologists believe that the tower
was meant as a landing platform to facilitate the gods’ descent to earth from
the heaven to which they have vanished. Thus the Tower of Babel was built
for communication with the gods.

ca 600 BCE According to Herodotos, Phoenician seamen circumnavigated
Africa from east to west. Their enterprise, however, bore no results; the
opening-up of the oceanic route from Europe to India, the East Indies and
China, awaited the discoveries of Portuguese navigators about 2100 years
later.

600–300 BCE (Thales to Euclid) Development of postulational think-
ing and the foundation of systematic logical structures in mathematics.

Mathematics, as we understand it today encompasses any activity that
arises out of, or directly generates, concepts relating to numbers or spatial
configurations together with some logic.

In trying to understand things of the physical universe, the ancients re-
peatedly encountered certain basic patterns; these were patterns of form (such
as the shapes and paths of the astronomical bodies), patterns of arrangements
(such as the symmetrical arrangements of the limbs of living creatures), or
patterns of relation. To this last group belong the orderings in man’s minds of
sound, which we call music, the ordering in man’s minds of forms and color,

87 Some Biblical scholars connect it to the Tower of Babel (Genesis 11) and the

Confusion of Tongues which may have echoed the labor troubles during the

building of Etemenanki. We know that when Alexander the Great set out to

rebuild the tower, he put 20,000 men to work. It stands to reason that the

original tower must have required many more laborers than that.
88 80 km south of today’s Baghdad.
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which we call art, the ordering in man’s minds of words, which we call poetry,
or the ordering in man’s minds of thought, which we call philosophy. To the
study of these and all other such pattern the Greek called Ta mathémata,
which means: ‘what is learnable’ (manthanein means to learn) and also from
the word mathésis, which means ‘the teaching ’. Thus ‘mathematics’ essen-
tially stands for those things that can be learned and at the same time also
taught. The idea that the Greeks wished to convey by the choice of this word
is that only he who can truly learn can truly teach, i.e. the genuine teacher
differs from the pupil only in that he can learn better and that he more gen-
uinely wants to learn. In the last analysis, in all teaching, the teacher learns
the most.

6th century BCE an important epoch in the history of humanity. It was
an age when Buddha was searching for a path to enlightenment in India,
Confucius was teaching new rules for society in China, Ionian philosophers
were initiating a tradition of scientific thinking in Greece, and when the exiled
Hebrews in Babylon were collecting the messages of their prophets in a holy
scripture. On the other flank of Mesopotamia another religious movement
was initiated by an Iranian prophet, Zoroaster, who preached his message
of cosmic strife between the God of Light and the principle of evil.

ca 585 BCE Thales of Miletos (624–548 BCE). The first known Greek
philosopher, scientist and mathematician. Was the first to attempt an expla-
nation of the world in terms of its observable nature rather than by mythol-
ogy. This meant that his conclusions could be subjected to rational arguments
about whether they were right or wrong.

None of his writing survived, so it is difficult to determine his views and to
be certain about his mathematical discoveries. With him began the study of
geometry and scientific geography and astronomy in Greece. The invention of
geometry as an abstract mathematical theory supported by rigorous deductive
proofs was one of the turning points of scientific thinking. It led to the creation
of mathematical models for physical phenomena.

Thales taught the sphericity of the earth, the obliquity of the ecliptic and
the causes of eclipses. His visit to Egypt and his exposure there to the heritage
of Babylonian astronomy may have aroused his interest in these subjects.

Thales was an Ionian, but possibly had some Phoenician blood in his veins.
During middle life Thales engaged in commercial pursuits, which took him to
Egypt. He resided there and studied the physical sciences with the Egyptian
priests, and upon his return founded the Ionian School of Astronomy and
Philosophy. Thales is credited with the prediction of the year of the solar
eclipse of May 28, 585 BCE. Estimated the height of an Egyptian pyramid by
measuring its shadow when his own shadow was equal to his height.
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Thales noticed that matter comes in three forms – liquid, solid and gas. He
investigated the phenomenon that amber, when rubbed, gained the property
of attracting light objects. He also knew about the power of lodestone to
attract iron89.

His great contribution to mathematics is in fitting the Babylonian and
Egyptian empirical geometrical rules in a logically connected abstract system
through which one advances by means of demonstration from theorem to the-
orem. Specifically, he is credited with five theorems of elementary geometry:

(1) A circle is divided into two equal parts by its diameter;

(2) The base angles of an isosceles triangle are equal.

(3) The angles between two intersecting straight lines are equal.

(4) Two triangles are congruent if they have two angles and one side equal90.

(5) An inscribed angle in a semicircle is a right angle.

Some idea of the advancement in astronomy made by the Greeks can be
gleaned from the fact that Thales taught the sphericity of the earth, the
obliquity of the ecliptic, and the causes of eclipses. According to Diogenes
Laertius91 (fl. 222–235 CE) he was first to determine the length of the year.
It is fair to assume that he borrowed much of his information from Egypt,
though the basis for predicting eclipses rests on a period of 6585 days, known
as the saros, discovered by the Chaldeans. Thales thought that all things are
derived from the single element water and that the solid earth was afloat on
the world-encircling flat ocean.

89 This appears to have been familiar to the Greeks as early as 800 BCE, and is

mentioned by Homer. However, the property of orientation, in virtue of which

a freely suspended magnet points approximately to the geographical north and

south, is not referred to by any. European writers before the 12th century,

thought it is said to have been known to the Chinese at a much earlier period.

The oxide Fe3O4 occurred plentifully in the district of Magnesia near the Aegean

Coast; hence the name magnes or the Magnesian stone given to if by Greeks.
90 He applied this theorem to determine the distance between two ships at sea

through measurements made on board one of them: In general, to find the

distance from A to the inaccessible point B, one erects in the plane a normal AC

to AB, of arbitrary length, and determines the midpoint D. In C one constructs

a line CE perpendicular to CA, in a direction opposite to that of AB, and one

extends it to a point E, collinear with D and B. Then CE has the same length

as AB.
91 Biographer of the Greek philosophers, from the town of Laerte in Cilicia (or the

Roman family of Laertii). Flourished during the reign of Alexander Severus and

his successors. He was an Epicurean.
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His conclusion that water is the original substance may seem fantastic on
the surface, but it becomes far more plausible if one examines it more closely.
Water is the only substance that is known to man without difficulty in the
three states, solid, liquid and gaseous; it is not difficult to connect clouds,
fogs, dew, rain, hail with the ice and snow found in the mountains and the
water of the sea and rivers. Water seems to occur everywhere in one state
or another; would it be overbold to imagine that it may occur also in hidden
forms? Moreover, without water no life is possible, but as soon as water
appears, there may be life.

While the Jews were postulating the moral unity of the cosmos, Ionian
philosophers, of whom Thales was the first, were postulating its material
unity.

While giving the honor of being effectively the first scientist to Thales,
one recognizes that Thales was heir to an intellectual tradition whose origins
are obscure. Strangely enough, his fame rests mainly on an achievement that
we are now obliged to discredit, though its genuineness was accepted as a
cast-iron belief until our own day.

Nevertheless, Thales is the father of a new breed of thinkers who have
taken upon themselves the task of trying to understand the nature of the
physical universe. This endeavor and the various activities arising from it are
collectively labeled as science.

After Thales, philosophy rapidly began to flourish. More philosophers ap-
peared, with a succession of different explanations of the world. The philoso-
phers who belong to this period (ca 550–450 BCE) are generally known as
pre-socratists.

ca 580–320 BCE At Laureion (modern Lávrion) in Southern Attica,
galena rich in silver was mined by the Athenian. The lumps of rock from the
mine were picked over by hand and worthless pieces discarded. The ore was
then crushed in mortars to facilitate further parting of galena from gangue,
and it was washed on sloping trays to effect some separation of placer action.
Only after these preliminary concentration steps was the galena reduced to
metal by heating it with charcoal.

The lead so produced contained 850 g silver per ton and was parted by
cupellation – air blown over the molten metal converted the lead to litharge
(PbO), which was absorbed by a bone ash hearth, leaving a residue of pure
silver.

In the 5th century BCE, the annual yield of silver from Laureion was
about 2.5 tons. Following the battle of Marathon, Themistocles persuaded the
Athenians to use this revenue to build ships for defense against Xerxes. The
mines later provided the silver for the Golden Age of Pericles. Against these
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splendid achievements the balance sheet of history must set the abominable
mistreatment of slaves who worked the mine and smelter.

Origins of Philosophy and Metaphysics

The word ‘philosophy’ 92comes from the Greek, philos = love, sophia = sci-
ence or wisdom. One may loosely define philosophy as a rational method of
examining a body of knowledge that provides us with a reasoned framework
within which to think. “An unusually stubborn attempt to think clearly”
(William James). Plato defined philosophers as those who “are able to grasp
the ethernal and immutable, setting their affections on that which in each
case really exist.”

The fundamental problem of philosophy is that of the relation between
existence and thought. All philosophical tendencies divide up into materialists
and idealists.

Philosophy started as a criticism of religious beliefs, by seeking reasons
for natural phenomena. Two opposed camps sprang up which still persist to
his day: religion on one hand and science on the other. Eventually religion
had to invent some kind of ‘science’ for itself (theology) to justify its exis-
tence. Philosophical ideas are of two kinds: Materialism considers that there
is noting beyond natural things and seeks to explain them on the basis of
science (including even religion). Early form of materialism sought to explain
all natural phenomena by mechanical laws.

Idealism starts by assuming the existence of supernatural and divine
forces. Idealists imagine things and presuppose the existence of ‘spirits’.

Religion is a combination of beliefs and cult-practices which subordi-
nates human life to a divine super-order. Alternatively it can be defined as a
body of knowledge (dogma or revelation) imposed from without (e.g. Bible,

92 The sages of Greece used to be called sophoi (“wise men”), but Pythagoras

thought the word too arrogant and adopted the compound philosophoi (“lovers

of wisdom”), whence “philosopher”, one who courts or loves wisdom.
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Koran, Gita etc.). The believer is expected to accept this revelation without
question.93

The pseudo-science which seeks to give foundation to religion by borrowing
from philosophical argumentation is known as Theology.

Syncretism – The interworking of two or more cultural perspectives into
one system.

Eclectism – Choosing according to taste, without internal framework of
a genuine understanding of function.

Rationalism is a philosophical theory which tends to recognize reason
as the unique source of true knowledge; contrary to empiricism which makes
perception this source of knowledge.

Other related concepts are:

Metaphysics A branch of philosophy that seeks to understand reality
beyond what we know from our sense perception, i.e. to seek answers to the
question of why there are patterns in nature any why they are describable in
mathematical schemes. It lies outside the scope of physics.

Fundamental questions of metaphysics:

• What is real?

• How is knowledge possible?

• How are the mind and body related?

• How can we find truth?

• What is the nature of the universe?

• How can we reconcile personal freedom and scientific determinism?

93 There are exoteric religions (Judaism, Christianity, Islam, Baha’ism, etc.), eso-

teric religions (Sufism, Lurianic Kabbalah, Gnosticism, etc.) and even secular

religions (Marxism). Western religions are more concerned with the “Manifest”

(creation, nature, ultimate purpose of the cosmos and of men). Eastern reli-

gions are more concerned with the “Unmanifest” (transcendental) and how to

attain it.
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Teleology: The study of the evidence of design or purpose in nature
based on the belief that such characteristics exist and are indeed apparent.

Epistemology: The theory of knowledge. A philosophical discipline that
investigates origin, nature, methods, and limits of human knowledge.

The two great founders of modern physics, Albert Einstein and Max
Planck produced by their contributions to epistemology a revolution in the
theories of knowledge that is almost as profound in its impact on philosophy.

System: a set of interrelated structures that may consist of an hierarchic
arrangement of subsets or subsystems.

Essentialism: a “realistic” philosophical position that dates back to the
idealism of Plato and Aristotle, was then placed into religious scholastic argu-
ment by Thomas Aquinas, and finally put into modern methodological form
by Karl Popper (1957). Essentialism is concerned with understanding the
potential, or universal, meaning of the descriptors of a class or set; it takes an
opposite view of that of nominalism, which believes that such descriptors are
only labels of characteristics. The concept of essentialism, as first proposed,
argued that those properties which are common to the many individuals of a
set, a class, a group, have a reality exceeding that of their mere occurrence as
parts of the individual members of such sets, classes, and so on.

This position, then, allows one to search within natural groupings for
common plans, designs, and patterns, with the expectancy that such patterns
will be understandable by analogy. In recent years, essentialism has been
considered somewhat sterile, at least in the natural sciences, because it focused
on universals of meaningless generality. Plato, on the other hand, used this
position to search within nature for order, regularity, and perfection.

Historicism: the approach to science – particularly to science that is his-
torical, as is geology in large part – which assumes that historical prediction
(or retrodiction) is a principal aim, attainable by discovering the patterns,
laws, and trends that underlie the evolution of history.

570 BCE Lao Tsu (604–510 BCE, China). Philosopher. The reputed
founder of the religion called Taoism. In his Book of Tao he preaches non-
assertion, the being without desire, and submission to the universal Tao (the
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way). The Tao represents the characteristic or behavior that makes each thing
in the universe what it is. The word is also used to mean reality as a whole,
which consists of all the individual “ways”. The ideas of Tao were partly a
reaction against Confucianism. According to Confucianism, people can live a
good life only in a well-disciplined society that stresses attention to ceremony,
duty, and public service. The Tao ideal, on the other hand, is a person who
avoids conventional social obligations and leads a simple, spontaneous, and
meditative life close to nature. The Taoist search for knowledge of nature
has led many believers to pursue various sciences, such as astronomy and
medicine.

Lao Tsu was born in Honan and flourished at Lo-Yang, capital of the Chou
dynasty. He died at an unknown place.

ca 563–483 BCE Buddha (Siddhartha Gautama). Founder of Bud-
dhism. Born in southern Nepal to a rich and powerful royal family. At age 29
he became overwhelmed with the conviction that life was filled with suffering
and unhappiness and he abandoned his wife and infant son to seek religious
enlightenment as a wandering monk.

After traveling throughout northeastern India for about six years, Gau-
tama experienced enlightenment. He believed he had discovered a way for
man to escape his unhappy existence. His disciples called him Buddha, which
means Enlightened One.

To break the eternal cycle of death and rebirth, Buddha preached to follow
a code of ethics composed of the Middle Way and the ‘Eightfold Way ’, the
latter consisting of 8 ‘commandments’.

ca 560 BCE Anaximander of Miletos (611–547 BCE). Ionian as-
tronomer94, geographer and philosopher. One of the first to give a naturalistic
rather than a mythological explanation of natural phenomena. He anticipated
the theory of evolution by stating that animals came originally from a moist
environment, and man evolved from aquatic animals. Anaximander taught
(and may have discovered) the obliquity of the ecliptic, and is believed to have
produced the first map of the known world (although he claimed the earth to
be cylindrical in shape).

Anaximander introduced into Greece the gnomon (for determining the
soltices) and the sundial .

He was a citizen of Miletos and a companion or pupil of Thales, both
of them being pioneers of the exact sciences among the Greeks. His pupil,
Anaximenes of Miletos (585–525 BCE) was first to suggest that the moon

94 From the Greek αστρoν = star; νεμειν = to classify or arrange.
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receives its light from the sun, and correctly understood (ca 550 BCE) eclipses
of the moon as being caused by the shadow of the earth, cast by the sun. From
this he inferred that the earth is roughly circular in section (a disc). He went
further than his teacher in completely ignoring the mythical elements in the
natural laws. He taught that, with age, the earth broke down by its own
weight, thus causing the motion of earthquakes.

ca 551–479 BCE Confucius (Kung Chiu). The most influential phi-
losopher in Chinese history. The name Confucius is a Latin form of his title
Kung-fu-tzu, which means Great Master Kung. At his death he was largely
unknown throughout China. His disciples spread his teachings. In a work
referred to as the Annals of Lu, his native state, Confucius has sketched a
history of 242 years from 722 to 481 BCE. Therein he recorded 36 eclipses of
the sun. His description of the 720 BCE eclipse is one of the earliest astro-
nomical publications on record.

Ancient Eastern Philosophy (ca 1500 BCE–500 CE)

Philosophy is the search for knowledge and for the means to express it,
and Eastern philosophy has many forms of both.

Eastern philosophy is a vast collection of philosophical and religious ideas
that derive from the ancient cultures of India, China, Persia, Japan, Korea,
Tibet, etc, and from many different traditions and forms of thought that
shaped the development of the East from earliest recorded times; it is a multi-
faceted set of ideas that reflect the complex societies they grew out of.

Unlike Western philosophy, the Eastern tradition does not attempt to dis-
tinguish clearly between philosophy and religion. While Western philosophy
has always been more concerned with truth, logic, reason and independence,
the search for knowledge in Eastern philosophy has always been more holistic,
and less scientific; where Western science has sought absolute truth in ratio-
nality, Eastern philosophy has sought-complete enlightenment via reflection.

Western philosophy has always tended to over-emphasize the individual and
individual things. In contradistinction, Eastern thought resolutely believes in
the interconnectedness of all things and of the need to escape from the limits
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of individualism, which is connected to materialism and bodily pleasures. In

contrast to the Western idealization of power, money and science, Eastern

traditions have honored the thinker, the sage, the poet and the mystic. They

declare the reality of the unseen world and venerate the call of spiritual life.

In India, history, myth, religion and philosophy interacted within a very

long tradition, dating back to ca 3000 BCE. There are two main schools, Hin-
duism and Buddhism. Hinduism derived from ancient Vedic religions brought

to India by people who called themselves Aryans. They arrived in India in

waves between 2000 and 1000 BCE.

Since there was no written language in India before the 11th century BCE,

the Vedas were transmitted by word of mouth in the form of cryptic poetry.

The Rig-Veda, the oldest of them all, was created during 1500–900 BCE. The

invading Aryans created the cast system.

The main thing about Hinduism and Hindu philosophy is that they do not

claim one master, one truth and one revealed wisdom, but many. This diver-

sity is due to the very mixed ethnic groups and invasions of India throughout

its history, and to its varied climate, geography and customs.

India has been at the crossroads of trade, culture and religion for thousands

of years, continually absorbing, adapting and redefining its own beliefs. As

in other regions of the world, the great spiritual upheaval in India during the

Golden Age 800–200 BCE (see Table 1.1), derived from the fusion of national

cultures with foreign influences.

Developing over many centuries through hymns and texts, the Vedas

(meaning “knowledge”) became a living, unified and complex religion and

philosophy. The fullest philosophical expression of the most dominant strand

within Hinduism are the Upanishads (800–300 BCE). This philosophy was not

a philosophy of the mind but a philosophy of life in which the individual had

to live the problem of trying to find deliverance. It is concerned with seeking

self-enlightenment through the search for identity and salvation through a

higher ultimate reality which lies behind wordly appearances.

Buddhism is opposed to the philosophy of the Vedas. It is less strictly

philosophical, being more concerned with practical liberation from suffering.

Buddhism avoided the ritual and elitism of the Vedic approaches, teaching in

the common languages of the day and supporting an egalitarian approach to

Enlightenment. It is not interested in questions about the ultimate nature of

reality, but simply in the down-to-earth business of achieving nirvana, or the

escape from suffering.
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Unlike Hinduism, Buddhism asserts that there is no unique individual
self 95: the ‘self’ is an illusion created by the combination of mental and phys-
ical activities: meditation is a way of approaching the mind as pure mind to
get past the illusion of self. Consciousness is the combination of the many
forms and states of being which are like a stream of impressions, ideas and
sensations. Mind links these states that are thought of as the ‘person’, but
only mind exist through rebirth.

Buddhism did not fare well in India itself, but became a very important
force in many parts of Asia and the East, particularly China96 and Japan.
However, Chinese culture, although Eastern, is markedly different from Hindu.
What fundamentally distinguishes Chinese culture is its sense of harmony,
interconnectedness, language and continuity. China has a cult of the Old
in which tradition is everything. Also, the Chinese language is much more
allusive and dependent on context than Romance languages and is not easily
amenable to logical philosophy.

Chinese culture is one of the most ancient and self-contained we know of,
and its longevity is one of the key features that mark it out as unique. Its phi-
losophy, rather like Hindu philosophies, shows a complexity and unity which
incorporates many diverse veins and philosophical strategies that stretch over
thousands of years. In philosophical terms, there is a period known as the
time of the hundred Schools (400–200 BCE) in which many different philo-
sophical positions were advanced, but they almost all relied on tradition and
past ideas for authority.

Chinese culture does not depend on the idea of God to whom everyone
is answerable, nor do its original myths talk about a supernatural creation.
Chinese culture is secular and philosophical in the broadest sense.

From the earliest days of Chinese civilization, traditional ways of thinking
were passed from generation to generation. Traditional ideas were treated
with the kind of respect that is often accorded to religion. Also, the language
of ancient China remained unchanged throughout the centuries, so that Con-
fucius can be understood today in much the same way as 2500 years ago.

To sum up, the characteristics of Chinese civilization are these:

95 Western postmodern philosophy often seems to claim that the self is fiction [e.g.

Jacques Lacan, 1901–1981].
96 Buddhism was brought to China by various Hindu missionaries traveling along

the silk route and the channels of trade. The influence of Buddhism began during

the reign of Emperor Ming (58–75 CE).
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• The oldest continuous culture in the world (ca 5000 years old), and
fundamentally a product of an agricultural society.

• Secular and multi-religious civilization.

• Its language is an important unifying factor, and expresses a particular
way of thinking.

• Confucian philosophy, or ethics, underpins most of later Chinese civi-
lization and culture.

• Religion and philosophy are closely interwoven and therefore difficult to
separate out.

• Much Chinese philosophy extolled the virtues of wise rulers and a well-
governed people.

• The family, and familial relations, are the basis of Chinese society, with
women at the bottom of the pile.

The three over-arching philosophies are: Confucianism, Taoism and Bud-
dhism, but they all interact with one other. Chinese philosophy is not about
accumulating facts, but about elevating human nature. It was basically hu-
manistic – it thought of man as being the center of the universe. It is not
divorced from daily ordinary activities, yet it is very concerned with leaving
this world behind in achieving nirvana (Buddhism).

Confucians seem to believe in a predetermined fate. Next to the Confucian
Analects, the Tao Te Ching (the ‘way of the Power’, supposedly by Lao Tsu),
is the most famous work of Chinese philosophy.

Tao (the ‘way’) means the Universal Path. It is the force that governs
the universe, the ultimate reality which cannot be described, but which is
the origin of all things. The Taoists did not think much of Confucius trying
to make the world a better place. Because of their position on the forces of
nature and the ultimately unchanging reality that lay behind all change, the
Taoists generally did not believe in progress and science. Holding that the
conquest of the world, comes invariably from doing nothing, they wanted to
escape from the world, rather than challenging it. Thus Taoists aimed at a
life of simplicity and harmony with Tao, not being ruled by intellect, but by
a natural power, the Te. However, the Confucians held that the paradoxical
sayings of the Taoists did not add up to anything other than the avoidance
of complex realities.

Although Buddhism ideas of no-self, withdrawal from the world and self-
liberation seem to be the very opposite of Confucian social thinking, it man-
aged to implant itself in China, in a culture that was practical, secular and
not very fond of foreign things.
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Perhaps the condition of the Chinese peasantry was seriously grim and
something that promised definite release would seem attractive. Whatever
the reasons, the introduction of Buddhism to China was a cultural revolution
with a long-term impact.

Bodhidharma (ca 460–534 CE) brought Chán (Zen)97 which later be-
came important in Japan. Chán emphasized meditation and study. The
introduction of Buddhism to Japan in the 6th century CE, was the crucial
step in the development of Japanese philosophy. This led eventually to the
formation of the Japanese form of Zen Buddhism, which epitomizes the special
character of the Japanese Way.

Japanese Ways of thinking about the world are concerned with the clarity
and precision of images, rather than with formal logic. Japanese philosophy
can be seen in its art, its calligraphy, its ritual, in the order and interconnect-
edness of its culture. The key ideas of Zen are:

• Genuine Enlightenment is instantaneous. Preparation may be necessary,
but true realization is a total experience.

• Zen involves action through non-action, working towards a result in
which no-self in exercised.

• Enlightenment and ordinary experience are related, but scriptures, texts
and theory do not provide the path to nirvana. One does not have to
retreat to the mountain to find Enlightenment.

• Zen enters into everything, calling for a mastery between mind and body,
a sense of being through doing which transcends the act.

• Meditation leads to the intuitive experience which transcends ordinary
reality. It can be described as finding one’s true nature. One aims for
the losing of ‘body-mind’ to achieve a non-conceptual awareness.

• The enlightened nature of the whole world is that ‘nothingness’ that we
must recognize as the essential emptiness of all things. Things do not
have a meaning in themselves, but only in relation to other things.

97 Zen, the Sanskrit for meditation.
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ca 550 BCE The Temple of Artemis at Ephesos was one of the largest and
most complicated temples built in ancient times. Designed by the architect
Cherisphron and his son, Metagenes in the Greek city of Ephesos (on the
Aegean coast of Asia Minor), and dedicated to the Greek goddess Artemis. It
was entirely marble, except for its tile-covered wooden roof, and its foundation
measured 115×55 m2. It had 106 columns, about 12 meters high, in a double
row around an inner space. Cherisphron invented a new method to transport
the huge columns. His son improved the method of transportation of columns
and of putting them into place.

The temple was burned down in 356 BCE, and another one like it was built
on the same foundation by Deinocrates of Rhodes, the Greek architect of
the age of Alexander the Great. Goths burned down the second temple in 262
CE. Only the foundation and parts of the second temple remain.

The earliest clues, indicating to the existence of Ephesos are found in the
14th century BCE Hittite documents. There, they were mentioning the city
of Apasas around the Miletos region, where some artifacts belonging to the
Mycenaean era were found. The city was colonized by the Ionians in the 11th

century BCE. Its ruins lay today about 80 km south of Izmir. During the 6th

centuries BCE, the city came under control of Croisos, king of Lydia and
later under the rule of the Persian king Cyros.

Artemis, the most sacred goddess in Anatolia, had a long history of evo-
lution going back thousands of years. The earliest forms of Artemis statue
were found in Catalhoyuk and Hacilar, Central Anatolia, where its earlier
name was Kybele. Then, the same goddess earned a wide respect and accep-
tance from Rome to Mesopotamia and even Arabia. Arabs named her Lat,
Egyptians – Iris, Romans – Diana and Ionians – Artemis.

Artemis descended from the primitive Sumerian goddess of nature. She
always remained the virgin-mother of all life and an embodiment of fertility
and production power of the earth. The cult of Artemis survived till the edict
of Theodosius I (394 CE) closed the pagan temples. Consequently, the ma-
terial of the Temple of Artemis was quarried extensively for the construction
of the nearby Cathedral of St. John Theologos. The Ecumenical Council of
Ephesus (431 CE), headed by Emperor Theodosius II, officially replaced
the cult of Artemis by the cult of the Virgin Mary. It was thus elevated from
the rank of mother of the Mesiah to that of god’s mother; thus closing the
cycle of the ancient Sumerian virgin cult one full circle.

During 1866–1874, Ephesos was first excavated for the British Museum by
the British Architect John Turtle Wood in an effort to locate the Temple
of Artemis. After many explorations, Wood struck the actual pavement of
the temple on Dec 31, 1869.
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In 1904–1906 another British mission, directed by David George Hoga-
rth (1862–1927) renewed the excavation. He established the chronology of its
famous shrine from remnants, and on reaching deep levels, found some signif-
icant treasure dating from 650–550 BCE. The ivory and gold objects showed
that Ionian Helenism, from its beginning, had borrowed freely from oriental
traditions.

Of the Temple of Artemis even ruins were not found: there is absolutely
nothing remaining above the ground. When the Byzantic emperors prohibited
Pagan cults, the goddess was dethroned and the temple itself was taken to
pieces. Vestiges from it can be found in the city buildings erected during the
Christian epoch or in St. Sophia in Constantinople, to where many columns
were taken.

The apostle Paul stayed in Ephesos but was driven away by the supporters
of the cult of Arthemis. The apostle John stayed and died there. Alexander
the Great was received by the Ephesonians in 334 BCE and established a
democratic government in the city. During the summer of 33 BCE, Mark
Antony was at Ephesos with Cleopatra, assembling the forces used against
Octavians.

538–331 BCE Rise and fall of the Persian Empire. Cyrus the Great98

(ca 580–530 BCE), a Zoroastrian, conquered Babylonia (539) and founded the
ancient Persian Empire, which extended from the Indus to the Mediterranean,
and from the Caucasus to the Indian Ocean. Good roads, with stations for
royal messengers, made possible regular communications within the empire.
A canal was dug from the Nile to the Red Sea by Darius I, the Great
(reigned 521–486 BCE). A revolt of the Ionion Greeks in Asia ended in the fall
of Miletos (494), but the war against the European Greeks was unsuccessful
(battle of Marathon, 490 BCE). The son of Darius I, Xerxes I (ca 519–465
BCE) ascended to the throne in 485 BCE. In 483 BCE he collected the largest
army that was even known before him, over 180,000 men drawn from all parts
of the empire, with an immense fleet that the Phoenicians had assembled for
him. He used a double line of ships to form two bridges across the Hellenspont,
and cut a canal through the isthmus of Mount Athos Peninsula.

In 480 BCE Xerxes sent his warriors across the Hellenspont and invaded
Greece. He won a victory at Thermopylae, entered Athens and burned all
houses and temples. But his fleet was crushed at the sea battle of Salamis

98 He permitted the Jews to return to Jerusalem (538 BCE) from their captivity

in Babylonia (586 BCE), and rebuild the Solomon Temple. The first wave of ca

50,000 people returned in 537 BCE and the next in 458 BCE (Ezra), and 445

BCE (Nehemiah). The Second Temple in Jerusalem was built during 519–516

BCE.
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(480). A Greek offensive began in 465 BCE, and after the peace treaty of 446
BCE, Persia was on the decline.

In 401 BCE, Cyrus the Younger employed 10,000 Greek mercenaries in
a civil war against his brother. But Cyrus and the Greek commanders were
killed, and the ‘ten thousand’ were stranded in a strange country without a
leader. They chose Xenophon (430–355 BCE) who lead them during a five
month’s retreat (401–400 BCE) from Cunaxa on the Euphrates through Kur-
distan and the highlands of Armenia and Georgia to Trapezus (Trebizond)
on the Black Sea, a trek of 2410 kilometers. Xenophon described this march
in his Anabasis. Although a soldier and a man of action, Xenophon is best
known as an historian and a disciple of Socrates.

ca 535 BCE Pythagoras of Samos (ca 580–500 BCE). A Greek phi-
losopher and mathematician who clothed his wisdom in a mysterious orac-
ular form, and made momentous and lasting contributions to mathematical
knowledge. In particular, he introduced the notions of axiom and proof into
geometry: the very terms mathematics, theory99 and philosophy , as they are
known today, were originated by the Pythagoreans.

Pythagoras, the second person (after Thales) to be mentioned by name in
the history of mathematics, was the founder of the semimystical Pythagorean
brotherhood. First to furnish a logical demonstration to the theorem that was
named after him, although he did not in fact discover it himself. Pythagoras
discerned the role played by numbers in music i.e. that harmony depends
upon numerical ratios.

To Pythagoras the pure relations of numbers in arithmetic and geometry
were the changeless reality behind the shifting appearances of the sensible
world. In contrast to the Ionians, he taught that reality can be known not

99 From the Greek theoria = a viewing, from theoros, from thearos (spectator), from

theasthai (to behold) – whence also thea-tron = place for beholding things (the

theater). It then diffused into Latin as theoria, French: théorie (1496), Spanish:

teoria (1580), English: theory (1597), German: theorie (1700), and Russian:

teoriya (1720).

Pythagoras proclaimed that the pursuit of disinterested knowledge is the greatest

purification, and that the highest kind of life is the theoretical or contemplative.

It is noted that in Greek, theorein is used for the contemplation of a spectacle

such as the olympic games or the contemplation of truth; theorema may mean

a spectacle but also speculations; theoria is a viewing or a theory. However,

our words: theorem, theory, theoretical, have lost the early concrete senses and

preserved only the abstract ones.
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through sensory observation, but only through pure reason, which can inves-
tigate the abstract mathematical forms that rule the world.

Pythagoras was born on the Aegean Island of Samos, not far from Miletos.
According to an old tradition recorded by Aristotle and his pupil Aristoxenes,
Pythagoras had made extensive journeys to practically all Oriental countries,
probably going as far as India. He remained in Babylon for a few years, during
which time he learned from the Magi the theory of numbers, the theory of
music and astronomy, and was initiated by the priests into oriental mysticism.
This lore and wisdom served later as the basis for the teaching and learning
of the Pythagorean school.

Returning home after years of wandering, he found Samos under the
tyranny of Polycrates and much of Ionia under Persian dominion, and accord-
ingly migrated to the Greek port of Crotona, located in the boot of southern
Italy. There he founded a brotherhood of believers among the aristocrats of
that city. In addition to being an academy for the study of philosophy, math-
ematics and natural science, it developed into a closely knit brotherhood with
secret rites and observances100. This order later spread from Croton to a num-
ber of Greek cities in Italy and seemed to have played an important role in
the political life of these cities.

In time, the political power and aristocratic tendencies of the brotherhood
became so great that the democratic forces of southern Italy destroyed the
buildings of the school and caused the society to disperse. Pythagoras fled to
Metapontum, Lucania, where he died, maybe through murder by his pursuers.
The brotherhood, although scattered, continued to exist for at least two more
centuries.

What distinguished the Pythagoreans from other mystery rites is that
mathematics formed a part of their religion. Their doctrine proclaimed that
number was the essence of all things and that God has ordered the universe
by means of numbers. God is unity, the world is plurality and it consists of
contrasting elements. It is harmony which restores unity to the contrasting
parts and which moulds them into a cosmos. Harmony is divine, it consists
of numerical ratios. Whosoever acquires full understanding of this number-
harmony, becomes himself divine and immortal.

100 He preached the immortality and the transmigration of the soul (it is still the

belief of many sects in India). After a testing period and after rigorous selection,

the initiates of this order were allowed to hear the voice of the Master behind a

curtain, but only after some years, when their souls had been further purified

by music and by living in purity in accordance with their regulations, were they

allowed to see him.
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Music, harmony and numbers – these three are indissolubly united, accord-
ing to the doctrine of the Pythagoreans. All three are among the essential
elements of the Pythagorean system of education and of its path for the ele-
vation of the soul. It was from this mystical doctrine that the exact science
of the later Pythagoreans developed.

Not much is known about the true achievements of Pythagoras in theory
of numbers, geometry and astronomy. Our sources are mainly secondary: the
Neo-Pythagoreans Nicomachos of Gerasa (ca 100 CE), Iambilichus (300
CE) and the 3 arithmetical books of Euclid. It is also impossible to separate
the contributions of Pythagoras himself from those of his followers.

The Pythagoreans introduced the perfect numbers [equal to the sum of
their true divisors, e.g. 6, 28, 496, 8128]101, amicable numbers [each of which
equals the sum of the proper divisors of the other, e.g. 284 and 220], fig-
urative numbers [sequences of numbers, each of which is a partial sum of
a certain arithmetical progression102]. Pythagoreans have been given credit
for a rule for determining numerical solutions of the indeterminate equation
x2 + y2 = z2. Apparently Pythagoras adapted from the Babylonians various
remarkable ideas about numbers and about their mystical significance. His
disciples continued the investigations in a more systematic manner and built
them into a logically consistent form103.

101 The general rule of their formation was proved by Euclid: when the sum

1 + 21 + 22 + · · · + 2n−1 = p is a prime number, then 2n−1p is a perfect number.

Thus, 2n−1(2n − 1) is an even perfect number if 2n−1 is a prime (Mersenne

Prime). Euler proved that this formula gives all even perfects.

Euclid’s formula leads to all kind of weired and beautiful properties of perfect

numbers [e.g. the sum of the reciprocal of all divisors of any perfect number

always equals 2]. It is not known if there is an odd perfect number nor if

their number is infinite. The 30th perfect number was discovered in 1985, with

n = 216, 091, having 130,099 digits.

As for amicable numbers, the Pythagorean brotherhood regarded 220 and 284

as symbols of friendship. Indeed, we find in Gen (32, 14) that Jacob gave Esau

a gift of 220 goats as a token of friendship! More than 1000 amicable pairs are

now known, the largest of which has 152 digits in each pair.
102 Triangular numbers 1, 3, 6, 10, 15, . . ., an = 1 + 2 + 3 + · · · + n = 1

2
n(n + 1);

Square numbers 1, 4, 9, 16, 25, . . ., an = 1 + 3 + 5 + · · · + (2n − 1) = n2;

Rectangular numbers 2, 6, 12, 20, . . ., an = 2 + 4 + 6 + · · · + 2n = n(n + 1);

Pentagonal numbers 1, 5, 12, 22, . . ., an = 1+4+7+· · ·+(3n−2) = 1
2
n(3n−1).

The names of these sequences stem from the fact that they can be arranged in

arrays with the corresponding geometrical shapes.

103 It is believed that Pythagoras knew the identity n2 +
(

n2−1
2

)2
=

(
n2+1

2

)2
.

From the writings of later Greek mathematicians we gather that Plato (ca 380
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In geometry, the Pythagoreans were acquainted with the cube, the tetra-
hedron and the dodecahedron. The faces of a dodecahedron are regular pen-
tagons. The diagonals of such a pentagon form a star-pentagon, the penta-
gramma, which served as a distinctive mark among the Pythagoreans. The
construction of the star-pentagon led to the quadratic equation x2 = a(a−x),
associated with the ‘golden section’, which the Pythagoreans knew how to
solve (as did the Babylonians).

However, the greatest contribution of the Pythagoreans to mathematics
was the ‘Pythagoras theorem’104, the first truly great theorem in mathemat-
ics. It occupies a central position in Euclidean geometry, since it governs the
metric of the Euclidean space. This theorem led Pythagoras to the estab-
lishment of the concept of the irrational numbers

√
2,

√
3, . . . etc. and their

incommensurability with the integers105.

BCE) was familiar with (2n)2 + (n2 − 1)2 = (n2 + 1)2 and Proclos (ca 460
CE) with

(2n + 1)2 +

[
(2n + 1)2 − 1

2

]2

=

[
(2n + 1)2 − 1

2
+ 1

]2

.

104 The origins of this theorem are obscure. It is, however, established that the

Egyptians and the Babylonians were familiar with the Pythagorean theorem

as early as 2000 BCE, and were also acquainted with the general parametric

representation for primitive Pythagorean triplets (Plimpton 322). They used

3 1
8

for π [Egyptians used π = 4
(

8
9

)2
]. The Pythagorean triplet (3, 4, 5) was

known to the Egyptians and the Chinese. Moreover, it has recently been claimed

that the Chinese had a geometrical proof of the theorem as far back as 1100 BCE!

Did Pythagoras prove the Theorem? (For further reading, see: Swetz, F.J. and

T.I. Kao, Was Pythagoras Chinese? The Pennsylvania State University Press:

Pennsylvania, 1977, 75 pp.) Although it was attributed to him by various

writers [Proclos (ca 460 CE), Plutarch (1th century CE), Cicero (ca 50

BCE), Diogenes Laertius (2nd century CE), and Athenaeus (ca 300 CE),

no one of them lived within, say, 5 centuries of Pythagoras. Not only are we

not positive that the proof is due to Pythagoras at all, but we are still more in

doubt as to the line of demonstration that he may have followed.
105 The Pythagoreans had an analytic proof by contradiction that

√
2 is irrational.

This proof appears in Aristotle’s Prior Analytics. It goes as follows: Suppose√
2 is rational; then it can be expressed as a fraction in lowest terms, say

n
m

=
√

2, where n and m are integers which have no common factor except 1.

Then n = m
√

2, or if we square both sides of this equation n2 = 2m2. Thus n

is an integer whose square is even and by the identity (2k+1)2 = 4k(k+1)+1,

n is also even. Setting n = 2r and substituting in the above equation we find

(2r)2 = 2m2, or 2r2 = m2. But this shows that m is an integer whose square
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The appearance of the Pythagorean Theorem marks the first known intel-
lectual leap from the confines of empirical speculation to the limitless bounds
of deductive reasoning. This is a milestone of mathematical accomplishment
in the early history of the human race. In fact, it is actually the most profound
such accomplishment, judged by its level of intellectual achievement and its
eventual consequences for mankind.

From the earliest times, man has perceived his environment in terms of
vertical and horizontal – a tree grows vertically to the horizontal plane of
the earth, a person stands vertical to the surface that supports him. These
vertical-horizontal relations were manifestations of the action of gravity on
terrestrial objects. No doubt, man rapidly learned to use this relationship to
his advantage; thus for maximum efficiency and security, the supporting pole
for a shelter should be placed vertically to the ground. While nature supplied
the prime example of perpendicularity, man must have soon realized that ele-
ments of the vertical realm always met with elements of the horizontal realm
in the same visual pattern, forming what we know as a right angle. Once
this concept was grasped, the potential of this union could be utilized in a
wider variety of human endeavors, such as a stringing of an arrow to a bow
or erecting permanent structures of wood and stone.
Perpendicularity could now be translated from the fixed vertical-horizontal
constraints of nature and used to human benefit. Some of the first ‘scientific
instruments’ incorporated in their functioning the use of right angles. With
an understanding of perpendicularity, a pole fixed in the ground could become
a gnomon. The Pyramids of Egypt stand in mute testimony to the surveying
applications of the right angle. Both the construction of the Egyptian plumb
bed level and the rope loop square were based on an understanding of the
right angle and the right triangle.
Eventually, an empirically based formulation of the relationship of perpendic-
ularity emerged in the form of a rule that related the three sides of a right
triangle – the Pythagorean theorem.

Numbers were thought of as made up of units, which was a suitable mea-
sure as long as they were integers. But numbers like

√
2 could not be ac-

counted for in this way and were called irrational, which in Greek meant
measureless rather than bereft of reason. In order to overcome this diffi-
culty, the Pythagoreans invented a method of finding these elusive numbers
through a sequence of approximations where the irrational number aimed at

is even; hence m is even, which contradicts the statement that n and m have

no common factor except one.
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is the limit of the process. This is the construction of continued fractions106

through which we can reach rational approximation as close as we like to the
limit . This feature is indeed the same as that involved in the modern con-
ception of limit. Pythagoras was probably the first to represent number by
length and produce geometric processes to prove identities and solve quadratic
equations. Despite their theoretical disdain for the senses, the Pythagoreans
did in practice make accurate observations of nature. Thus, in astronomy,
Pythagoras himself taught that the earth is spherical, rotates on its axis and
revolves around a central fire. He also believed that the motion of celestial
bodies obey certain quantitative laws. His fantastic theories of the heavens
were based on his very real discoveries of the laws of musical harmonies and
of the regular polyhedra.

Myth and Number – Our Pythagorean Heritage

Greek philosophers, and in particular Pythagoras, endowed natural num-

bers with an almost magical character. They actually believed that the for-

mal statement of facts expressed in terms of natural numbers are natural
laws. Pythagoras singled out the triangular array of 10 points which he called

tetraktys. This pattern is encoded in the 4th in a series of triangular numbers
(Fig. 1.1) an+1 = an + n + 1 (a0 = 0)

106 1 + 1
1

= 2; 1 + 1

1 + 1
1

= 1 1
2
; 1 + 1

1 + 1

1 + 1
1

= 1 2
3
;

1 + 1

1 + 1

1 + 1

1 + 1
1

= 1 3
5
;

1 + 1

1 + 1

+ 1

1 + 1

1 + 1
1+···

= 1+
√

5
2

=

√

1 +

√

1 +
√

1 +
√

1 + · · ·.
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(a)

Fig. 1.1: Triangular numbers

Thus, an = 1, 3, 6, 10, ..., 1
2n(n + 1) are pictured as

(b)

In mythical lore, the natural numbers 1 was called monad, the origin of all
numbers. The dyad 2 was the first feminine number and represented the first
stage of creation. The number 3, the first masculine number, represented
the second stage of creation. The sum of the first feminine and the first
masculine number, 5, represented man, microcosm, harmony, love, and health.
Inanimate life was represented by the number 6. The tetraktys 10, represented
the cosmos and macrocosmos. Two interlocking tetraktys created the “Star of
David” in which 12 evenly spaced dots, representing the signs of the zodiac,
surround a 13th representing the “source of all being”,

(c)

In retrospect, we can deduce that the prescientific mind found, in the
mystical mode of expression, a concise way to convey the kernel of meaning in
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a mass of observations about the natural world. For example, the number 6
does seem to arise most frequently in inanimate forms such as snowflakes and
other crystals. One the other hand, the number 5 characterizes living forms
such as the starfish and certain forms of radiolaria.

Number and geometry also lies at the basis of many sacred structures such
as Stonehenge and the Pyramids. In the latter case the “Egyptian triangle”
3, 4, 5 had sacred significance used in some of the key proportions of the
Pyramid of Cheops. The significance of this triangle arose from the fact
that the celestial sphere can be represented as a circle divided into 12 equal
segments. The line can then be folded up to a 3, 4, 5 right triangle with a
perimeter of 12 units.

In ancient tradition, the square, by its axial geometry symbolizing the
directions of the compass, represented the earth and the dimensions of space
while the circle, symbolizing the celestial sphere, represented the realm of the
heavens and the dimension of time. Thus, ancient mathematics, architecture,
astronomy and music may have been entwined to form a holistic view of the
cosmos.

It can be said that an attempt was made to bring heaven down to earth
and replicate it at all scales and to synchronize space and time. The extant
mathematics of the ancient world and the surviving artifacts and structures
that comprise the archaeological record, serve as evidence for the number
myth of those ancient cultures.

The Pythagorean philosophy, however, went beyond the link of number
and geometry. They studied four subjects which they believed to be different
aspects of one unifying entity: arithmetica (the theory of numbers), geom-
etry, music, and spherics (mathematical astronomy). The unifying theme
was Number, namely positive integers. The relationship between number and
musical intervals was one of their first discoveries.

If a stretched string of length, say, 12, sounds a certain note, the tonic,
then it sounds the octave if the length is reduced to 6. If sounds the fifth (do
to sol) if the length is reduced to 8, and the fourth (do to fa) if reduced to 9.
So Harmony is Number.

There follows a study of means. The fourth is the arithmetic mean of
the tonic and octave, 9 = 1

2 (12 + 6), while the fifth is their harmonic mean,
1
8 = 1

2 ( 1
12 + 1

6 ), since its pitch is half-way between theirs.

There also follows a study of proportion. The fifth is to the tonic as the
octave is to the fourth, and the criterion of such proportionality is found in
8 · 9 = 12 · 6. Since we may write this as 9 · 8 = 12 · 6, we also have that the
fourth is to the tonic as the octave is to the fifth, etc. The study of means
and proportion was an important ingredient of Pythagoreanism.



ca 535 BCE 167

The Pythagorean relationship between music and spherics is less convinc-
ing. The intervals between the seven “planets” – the Moon, the Sun, Venus,
Mercury, Mars, Jupiter and Saturn – correspond to the seven intervals in the
musical scale. This explains the Celestial Harmony, and shows that the Heav-
ens too are essentially Number. However, this mystic nonsense played a most
important role in the history of science, as we shall soon see.

The direct relation between number and spherics, without music as a mid-
dleman, was also known to Pythagoras from his travels in Egypt. The simple
gnomon instrument, which he saw there, exemplifies the Pythagorean synthe-
sis of spherics, geometry and arithmetica.

Fig. 1.2: The gnomon sundial

The gnomon (Fig. 1.2) is an L-shaped movable sundial used for scientific
studies. It rests on one leg; the other is vertical. The length and direction of
the shadow is measured at different times of the day and year. If the shadow
falls directly on the horizontal leg at noon (when the shadow is shortest),
that leg points north. The noon shadow changes length with the seasons –
minimum at summer solstice and maximum at winter solstice. The sunrise
shadow is perpendicular to the horizontal leg during the vernal or autumnal
equinox. Thus the gnomon is a calendar, a compass and a clock.

Pythagoras knew the world was a sphere – the gnomon measures latitude,
it measures the obliquity of the ecliptic, etc. Here we have Solar Astronomy
with Number (measurements) as the basis.

In all such shadow measurements the geometry of similar triangles and of
right triangles is essential. A generation before Pythagoras, Thales of Miletos
(a commercial center near Samos) also went to Egypt, studied mathematics
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and started a school of philosophy. It is sometimes said that Pythagoras was
one of his students. Plutarch tells the story that Thales determined the height
of the Great Pyramid by comparing the length of the shadows cast by the
Pyramid and by a vertical stick of known length.

The Pythagoreans used the word gnomon also in another connection: while
the triangular numbers were important as the sums of consecutive numbers,
the Pythagoreans also loved the squares 1, 4, 9, 16,... being the sum of
successive odd numbers:

Fig. 1.3: Gnomons

16=1+3+5+7 etc. The odd numbers the Pythagoreans called gnomons. It
follows at once that if m is odd, and if m2 is thought of as a gnomon of side
1
2 (m2 + 1), then

m2 +
[
1
2
(m2 − 1)

]2

=
[
1
2
(m2 + 1)

]2

which links number and the gnomon geometry through the Pythagorean The-
orem.

It is irrelevant whether or not Pythagoras “discovered” the Pythagorean
Theorem. He may have actually learnt it from Egyptian “rope stretchers” who
used it in their construction of the Great Pyramid (2700 BCE). It is believed,
however, that he was first to prove it, using the fact that the altitude from the
right-angle vertex divides the hypotenuse into two triangles that are similar
to the original triangle.

Thus, to the Pythagoreans, the right-handed triangle, the squares built
upon its sides, the square numbers and the ‘astronomical shadow’ were all
aspects of the same thing.
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But not all was wine and roses in the kingdom of the Pythagoreans: when
they discovered that 2a2 = c2 has no solution in positive integers107, or equiv-
alently that the hypotenuse and side of a 45 ◦ right-triangle are incommen-
surable, it undermined their entire philosophy. For if number (i.e. positive
integers) cannot even explain a 45 ◦ triangle, what becomes of much more far
reaching claims.

At a late date a new embarrassment arose: the Pythagoreans knew of 4
regular polyhedra, and they associated these with 4 “elements”. The tetrahe-
dron was fire, the cube was earth, the octahedron was air, and the icosahedron,
was water. But Hippasos108 (ca 500 BCE), a member of the society, discov-
ered the 5th regular polyhedron, the dodecahedron.

The “
√

2-crisis” of Greek mathematics lead to paradoxes and contradic-
tions, but it also served as a strong motivation for the transition from naive
mathematics to rigorous mathematics109. The task was left to Eudoxos (ca
370 BCE) and Euclid (ca 300 BCE), who expelled Number from geometry110

placing integers were they belong – in the theory of numbers.

The Pythagorean said that number is everything, but, aside from the
analysis of music, they did not make a good case for this assertion.

If we ask whether modern physical scientists believe that the world can
be best understood numerically, the answer is in the affirmative. But here
“numbers” are no longer confined to integers; they also include real numbers,
vectors, complex numbers, and other generalizations.

The founders of modern physical science at the dawn of the 17th century,
Galileo and Kepler did not have a rigorous theory of real numbers, but
they had the practical equivalent, namely, decimal fractions which the Greek
did not have. The formulation of the laws of nature in terms of ordinary
differential equations [Newton], and in terms of partial differential equations
[Euler; D’Alambert; Fourier; Cauchy; Poisson; Navier; Maxwell], ap-
peared to further weaken the role of integers in nature and to strengthen
that of real numbers. But even here we may note that while the variables
in an equation are continuous, the order of the equation, and the number of
variables in it are integers! Furthermore, the case for Old Pythagoreanism,

107 From a modern point of view,
√

2 is a Dedekind Cut – a class of ordered pairs of

rational numbers. It is totally “man-made” according to L.Kronecker (1861).
108 Supposed to have been drowned for divulging this “secret” of the Pythagorean

brotherhood.
109 A similar situation arose in the 19th century, where the paradoxes of the Fourier

Series motivated a rigorous functional analysis.
110 Restored back to geometry by Fermat (1629) and Descartes (1637).
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namely – the fundamentality of integers (not only mathematically) in nature
is even stronger as the following examples will show:

• Galileo (1590) found that during successive seconds from the time of

which it starts falling, a body falls through distances proportional to
the odd integers and that the total distance fallen is proportional to the

square of time. Here we have square numbers arising as sums of the odd
Pythagorean gnomons.

• Kepler (an avid Pythagorean who really believed in the Harmony of the
Spheres) sought for years to find accurate numerical laws for astronomy.

He finally discovered (1618 CE) his important Third Law, stating that
the squares of the periods of the planets are proportional to the cubes

of their mean distances from the sum.

• Even before Newton’s Principia (1687) it was known to Robert Hooke,

Christopher Wren, and others that the kinematic laws of Galileo and
Kepler imply that each planet has an acceleration toward the sun which

is inversely proportional to the square of distance from the sun. Hence
the power of (-2) in the universal Law of Gravitation.

• Inspired by Newton’s Law of Gravitation, Coulomb111 (1785) deter-
mined, with a torsion balance, that electrostatic forces were also inverse

square. Many years later it was shown by Maxwell that mathemati-
cally, the only law of force which would behave in this way is one whose

divergence in zero – that is, one that falls radially in such a way as to
just compensate for the increase in the area of a spherical shell with its

radius; this area increases with the square of the radius because we live
in a space of three dimensions.

• From a similar inverse-square law due to Ampere (1822), and from
other experimental results, Maxwell (1865) was led to the electromag-

netic wave equations. While the dependent and independent variables
here are both continuous, the number of independent variables (4), and

the number of dependent variables (6) is fundamental, as became clear
from the Einstein-Minkowski space-time structure (1905-1908).

111 Henry Cavendish (1773) had already observed the same law by another

method. The experiment was repeated by Maxwell a hundred years later.

They showed that the field inside a charged hollow conductor is zero. The

Cavendish-Maxwell experiment not only suggested that the exponent(-2) is ex-

act, but that the reason for this is that the dimensionality of space is an integer.
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• Proust’s Law of Definite Proportions (1799) and Dalton’s Law of Mul-
tiple Proportions (1808) in chemistry directly imply an Atomic Theory
of matter. The integral rations in the second law exclude any other in-
terpretation. Further, it appears that chemical affinity involves integers
directly.

• In exact analogy, the Romé de l’Isle (1772) Law of Constant Angles
and Haüy’s Law of Rational Indices (1784) for crystals, directly imply
that a crystal consists of an integral number of layers of atoms. Again,
the integral ratios in the second law exclude any other interpretation.
Further, there is a direct relationship between number and form, e.g.,
the six-sided symmetry of frozen H2O.

• The ratio of the two specific heats of air is 7/5 and of Helium is 5/3.
While phenomenological theory (thermodynamics) cannot explain these
integral ratios at all, the atomic theory explains them easily (Boltz-
mann). By a similar argument Boltzmann explained the Dulong-Petit
Law for the specific heat of solids.

• Faraday’s Law of Electrolysis (1834) states that the weight of the chem-
ical deposited during electrolysis is proportional to the current and time.
If chemical weight is atomic, then this law implies that electricity is also
atomic. Such electric particles were called electrons by Stoney (1891).

• In 1814 Joseph von Fraunhofer invented the diffraction grating. A
glass plate is scratched with a large number of parallel, uniformly spaced
fine lines. This produces an optical spectrum: since parallel beams of
a given wavelength, shining through the successive apertures on the
glass, will be diffracted only into those directions where the successive
beams have path lengths that differ by an integral number of wave-
lengths.

• The simplest spectrum is that of hydrogen. The wavelengths of its
lines have been accurately determined. In 1885 Balmer found that
these wavelengths are expressible by a simple formula involving inte-
gers.

• Pieter Zeeman (1896) discovered that the lines of a spectrum
are altered by a magnetic field, and H. A. Lorentz at once de-
vised an appropriate theory. The radiating atoms contain electrons
whose oscillations produce the spectrum by electromagnetic radia-
tion. The frequency of the oscillations (and therefore also their wave-
length) is changed by the action of the magnetic field upon the elec-
trons.
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• From Maxwell’s Equations and thermodynamics, Ludwig Boltz-
mann (1884) derived Stefan’s Law of Radiation (1879). This states
that a blackbody radiates energy at a rate proportional to the
fourth power of its absolute temperature. Although electromag-
netism and thermodynamics are both theories of continua, the real
point of the law is the exponent. Here again the exponent 4 is
said to be exact and, in fact, even a casual examination of Boltz-
mann’s derivation shows that this exponent equals the number of
independent variables in the wave equation – the three of space
and one of time. Just as 2 = 3 − 1 so does 4 = 3 + 1
here.

• Max Planck (1900) found it necessary to assume that energy is ra-
diated discretely in quanta and Albert Einstein (1905) used them to
explain photoelectricity. Thus discrete matter (atom) implies both dis-
crete electricity (electron) and discrete energy (quantum).

• Emergence of the 4-dimensional space-time continuum of Albert Ein-
stein and Minkowski (1905-1908). In this theory, particular impor-
tance is attached to vectors with four components. One such vector is
a space-time displacement. Another is the momentum-energy vector,
three components of momentum and one of energy. A skew-symmetric
tensor in this four-dimensional world has six components – four things
taken two at a time. The most important example is the electromagnetic
field – three components of electric field, and three of the magnetic field.

Note that the Pythagoreans also considered 4 to be especially important
because it was related both to properties of the tetrahedron and fire.
Tetrahedron has two special properties: it is the smallest polyhedron,
and it has the same number of vertices and faces (i.e. it is self-dual).
Both of the properties follow from the fact than its number of vertices
is one more than the dimensionality of space. If Pythagoras could be
alive today and deeply versed in modern physics, he could argue “I told
you so” on two counts:

(1) The number 4 is as important to me for the same simple reason
that it is important to Albert Einstein, Minkowski, Stefan and
Boltzmann: 4 = 3 + 1.

(2) Fire is radiation heat and light, and that is electromagnetic: your
6 components of this fields are obtained by taking the 4 dimensions
of space-time, 2 at a time. So likewise, my 6 edges of the tetrahe-
dron join the 4 vertices 2 at a time, and also are the intersections
of the 4 faces, 2 at a time.
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• Mendeleev’s Periodic Table of the chemical elements (1869). If the el-
ements are listed in order of their atomic weights, then chemical, spec-
troscopic, and some other physical properties recur periodically. But
there were many imperfections and many questions arose. Tellurium
weighs more than iodine. But if placed in the table in that order these
elements clearly fall into the wrong groups. Again, the position of the
rare earths and the numerous radioactive decay products were not clear.
The rare gases were entirely unanticipated.

Further, the table is not strictly periodic but has periods of length 2, 8,
18, and 32. Why these periods should all be of the form 2n2 was not
clear. Indeed, how could it be – for what can mere weight have to do
with these other properties?

But the experiments of C.G. Barkla (1877-1944, England) by X-ray
scattering (1911) and the experiments of E. Rutherford, in the same
year, by alpha particles, lead to an atomic model – a miniature “solar”
system with the light, negatively charged electrons bound to a heavy,
positively charged nucleus by inverse-square Coulomb forces.

In 1913 Niels Bohr assumed that the hydrogen atom had this (sim-
plest) Rutherford structure – one proton as a nucleus and one electron
as a satellite. With the use of Planck’s E = hν, he deduced the Balmer
formula with great precision. However, he had to assume that the elec-
tron could have a stable orbit only if its angular momentum were an
integral multiple of h/2π. That is,

mvr = nh/2π

with m the electron’s mass, r the orbit’s radius, v the electron’s velocity,
and h Planck’s constant. The integer n, the principal quantum number,
made no sense in the theories then in vogue, but its acceptance was
forced by the remarkable accuracy of the theory’s predictions.

Thus, 1913 was a good year for Old Pythagoreanism. Soddy and Fa-
jans found that after radioactive emission of an alpha particle (charge
+2) the resulting element is two places to the left in the periodic ta-
ble, whereas emission of a beta particle (charge -1) results in a daughter
element one place to the right. Together with the earlier results this Dis-
placement Law makes it clear that atomic number, not atomic weight,
is the important factor. This integer is the positive charge on a nucleus,
the equal number of electrons in that atom, and the true place in the
table of elements.

In 1912 von Laue made the suggestion that a crystal would act like a
diffraction grating for radiation of a very short wavelength.
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Henry Moseley (1913) used von Laue’s suggestion to measure the
(very short) wavelengths of X-rays. Optical spectra, like chemical be-
havior, are due to the outer electrons in an atom, and thus have a pe-
riodic character. But X-ray spectra are due to the inner electrons, and
these electrons are influenced almost solely by the charge on the nucleus.
Moseley’s photographs show a most striking monotonic variation of the
X-ray wavelengths with atomic number.

Atomic number at once cleared up most of the difficulties. But what
about 2n2?

In 1923, L. de Broglie combined relativistic invariance of four-vectors
with Planck’s E = hν. The energy E and the time associated with
the frequency ν are merely single components of two four-vectors. The
remaining three components of momentum and of space, respectively,
must be similarly related. Thus a particle of momentum mv should have
a wavelength λ given by

λ =
h

mv
.

When this is applied to Bohr’s

mvr = nh/2π

one obtains

nλ = 2πr.

Thus the matter wave has exactly n periods around the circumference of
the orbit and the interpretation of the stability of the electron’s discrete
orbitals (quantum orbits) is that it constitutes an azimuthal standing
wave.

This conception was refined in the Schroedinger’s Wave Equation
(1926). Here there are three quantum numbers n, l, and m corresponding
to the dimensionality of space. In polar coordinates the wave functions
corresponding to given l and m are spherical harmonics (not quite “Har-
mony of the Spheres” – but very close to it). It further develops that the
integer l can equal 0, 1, 2, ..., n−1 while m can equal −l, −l+1, ..., l −1, l.

For n = 4, for example, we have 16 possible ‘Gnomon-like’ states
(Fig. 1.4):
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Fig. 1.4: Quantum ‘Gnomon-like’ states

But a fourth quantum number was already waiting in the wings. In 1925
Uhlenbeck and Goudsmit discovered the spin of the electron. This
gives rise to a fourth quantum number ms which can take on two possible
values. When this fourth “integer coordinate” is added, we obtain the
2n2 states which correlate with the periods in the periodic table of the
elements. But we must distinguish two different types of “harmonies”
here. In one atom an electron can transition from state to state; thus
giving rise to the spectrum. This is the first “harmony.” On the other
hand, as we go through the periodic table, adding one new electron each
time, the new electrons will also fill successively available distinct quan-
tum states according to the Pauli Exclusion Principle (1925) combined
with Coulomb energetics criteria resulting from inter-electron repulsion.
This gives rise to the periodic table – the higher-level “harmony.”

Pythagoras, if living today, would be delighted with nuclear “magic”
numbers (Mayer), “strangeness” (Gell-Mann) of quarks, charmed
quarks, the “eightfold way,” all the numerology associated with the ele-
mentary particle Zoo and the strong links of string theory with number
theory.
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The Earth as a Sphere (550–530 BCE)

One may wonder: how did Thales and Pythagoras reach the bold conclu-
sion that the earth is a sphere? They may have observed that the surface of
the sea is not flat but curved, for as a distant ship approaches one first sees
the top of its mast and sail and the rest appears gradually. The circular edge
of the shadow cast in an eclipse of the moon would also suggest a spherical
(or disk) shape of the earth, yet this observation implies an understanding of
eclipses that had not yet been attained in the 6th century BCE.

It is more probable that as soon as the Babylonian hypothesis of a flat
earth (common in the Old Testament) had been rejected, the sphericity of the
earth was postulated, on insufficient experimental grounds. This fundamental
Pythagorean idea was an act of faith rather than a scientific calculation, but
it made the theory of eclipses possible. In turn, the development of that
theory and the observations that suggested it, repeatedly confirmed the initial
assumption. Does not every scientific hypothesis start that way?

The dogma of spherical perfection and its cosmological consequences may
be considered the kernel of early Pythagorean science. It was postulated that
the celestial bodies are of spherical shape and that they move along circular
path in uniform motion.

532 BCE Theodoros of Samos. Greek architect and engineer, to whom
many inventions are ascribed: level, square rule, key. He is said to have
introduced bronze casting from Egypt into Greece. When the foundations of
the Temple of Ephesos were laid down, he used various means to solidify the
marshy ground.

ca 530 BCE Xenophanes of Colophon (ca 580–485 BCE). Greek poet
and philosopher. The first thinker of Greek culture to advance the idea of
one, true, eternal, supreme God (in opposition to the ideas of the gods of the
poets and the popular cults), to whom he attributed the shape of a sphere.
A contemporary of Pythagoras, he relied principally on the Miletian school
and his main concern was in studying the phenomena of nature.

Xenophanes was the first of the early philosophers to focus upon the geo-
logical time scale, recognizing the significance of fossils as remnants of former
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life and correctly inferring that sedimentary rocks originated as sediments
deposited on the sea bottom. Moreover, he concluded that such rocks and
fossils must be of great age, considering them as witnesses of periodical sub-
mergences of the dry land. Xenophanes was not particularly loved by some of
the erudite establishment of Greek philosophers, most of whom had deduced
that there was no beginning and no end to the earth.

Born in Ionia (Asia Minor), his religious rigor caused him to leave his
native country and lead a migratory life: he resided for a time in Sicily, at
Zancle and Catana and afterwards established himself in southern Italy, at
Elea, where he founded the Elean school of philosophy.

The idea of God’s sphericity was later echoed in the words of Aristotle
(354 BCE): “. . .there can only be God, the same from all sides. . . Otherwise

the various parts would be superior and inferior to each other, and this is

impossible. Hence such a universal homogeneity of God implies that he has

the shape of a sphere. . .”.

530–520 BCE Eupalinos of Megara (c. 570–510, Greece). Architect
and engineer. Built an aqueduct and a water-supply system for Megara.
Constructed a tunnel of 1100 m under 300 m high Mount Castro on the island
of Samos to supply water. The tunneling was started from the opposite sides
and driven into the center112.

512 BCE Mandrocles of Samos. Greek civil engineer. The first known
bridgemaker.

When Darius I (king of Persia, 550–486 BCE) made his expedition against
the Scythians (ca 514 BCE), he ordered Mandrocles to build a bridge across
the Bosporos to enable his immense army to pass into Europe. Mandrocles
was able to satisfy him by building a floating bridge of boats . The Greek
borrowed ideas from the Egyptians, the Babylonians, and the Phoenicians,
much as these people in their time had borrowed ideas from each other.

510–507 BCE Darius I conquered northwestern India. He then sent the
Greek Scylax of Caryanda on exploratory voyage down the Indus. Scylax
sailed to its mount and then followed the coast to the Red Sea.

112 As in the case of the Hezekiah Siloam Tunnel in Jerusalem, dug ca 710 BCE by

Hebrew engineers. The tunnel was about 533 m long. An inscription commem-

orating its completion was discovered in 1880 CE, and provides the information

that it was dug from both ends simultaneously [see II Kings 20, 20; 2 Chron

32, 3-4; Neh 3, 16].
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ca 510 BCE Hecataeos of Miletos (ca 550–475 BCE). Greek traveler,
map-maker and historian. Drew the first recognizable map of the Mediter-
ranean world. Wrote Periegesis (tour round the world), widely used by
Herodotos and other writers.

Opposed Ionian revolt (500 BCE) against Persia and, after the Ionians
were defeated (494), was appointed Ionean ambassador to negotiate terms of
peace with Artaphenes.

508 BCE Democracy in the form of isonomia (equality before the law)
was born in Athens. To break the power of the noble clans, which were con-
nected with the old hereditary tribes, Cleisthenes reformed the constitution
of Athens; a new system of government was created, called demokratia (the
people in power). With the economic boom that followed the Persian wars
(490–479 BCE), the nature of the Athenian system of government changed
from conservative democracy based on agriculture into full popular sovereignty
based on commerce.

ca 500 BCE A toy regular dodecahedron of Etruscan origin found in 1885
near Padua.

ca 500 BCE Nabu-rimannu (Naburimanus). Leading Babylonian as-
tronomer. Employed a special sign for a true zero in his astronomical tables
for the calculation of a new moon and eclipses. Known to the Greeks and
mentioned by Pliny and Strabo.

ca 500 BCE Quill pens were introduced in Europe and the Middle East.

ca 500 BCE Heraclitos of Ephesos (ca 540–475 BCE). Ionian philo-
sopher, first to discover the concept of Natural law . To sum his philosophical
system in one sentence is to say that universal law and order, manifests it-
self through a state of perpetual change. His philosophy has three main
themes:

(1) Nothing is permanent except change. All phenomena are in a state of con-
tinuous transition from non-existence to existence and vice versa. Where
there is no strife, there is decay. Things lack identity and possess only
the attributes of becoming but not being . In his own words and letters:
“πάντα ρει̂ και̂ oύδὲν μὲνει̂” (all things flow, nothing abides). One can
discern here a crude form of the principle of Relativity.

(2) The process of change takes place in accordance with a deep Universal
Reason (λoγ́oς = Logos), i.e. a rational principle that dominates nature.
This law is the only constant thing amidst the cosmic motion. This law
was and will be forever: cosmic motion is the eternal reality.
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(3) Cosmic history runs in repeating cycles, each beginning and ending in fire:
from chaos to cosmos and vice versa. Contemporary Buddhist philosophy
taught that the universe is periodically created and destroyed.

ca 500 BCE Alcmaeon of Crotona. Greek Pythagorean philosopher
and writer on medical subjects. A pupil of Pythagoras. He was concerned
with the internal causes of diseases. He divided these causes into disorders
of environment, of nutrition and of lifestyle. His book is lost and only a few
fragments of his writings have remained. He is the first person known to
have dissected human cadavers for scientific purposes. Discovered the optical
nerve, the Eustachian tube113 [two millennia before Bartolomeo Eustachi
(1564)], the origin of sperm, and gave explanations of sleep. He performed
physiological experiments and knew that the brain is the central controlling
organ of the body and the seat of the intellect.

Alcmaeon held that health and disease are respectively an equilibrium and
a rupture of equilibrium of the organism, and that everything in nature is a
conflict between opposites.

490–479 BCE The Persian Wars: A series of military conflicts which had
a decisive and permanent influence upon the development of Western culture
and civilization.

• 490 BCE, Sept. 12. Battle of Marathon: Army of Militiades (11,000 Athe-
nians and Palataeans) defeated much larger Persian force under Darius I
(549–486 BCE), turning back Persia’s second invasion of Greece.

• 480 BCE. Battle of Thermopylae: Small force of 300 Spartans and 700
Thespians led by King Leonides bravely held strategic pass against in-
vading Persian army, 180,000 men strong, under King Xerxes I (519–465
BCE). The Persians burned Athens to the ground, but its citizens fled to
Salamis and the Peloponnese.

– Battle of Salamis: The greatest naval encounter of the ancient world.
Celebrated Greek naval victory in which Themistocle’s (525–460 BCE)
fleet sinked about 200–300 Persian ships in the narrow straits of the Island
of Salamis.

113 Auditory passage (3.8 cm long) made of bone and cartilage, and lined with

mucous membrane. The tube connects the middle-ear to the throat: it allows

air to pass through it. Swallowing helps open the tube and thus equalize the

air pressure on the inner side of the eardrum to the air pressure on the outside.

The tube also allows mucous formed in the middle ear cavity to escape into the

throat.
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• 479 BCE. Battle of Plataea: The Spartan general Pausanios won a
decisive victory over Persian forces led by Mardonias.

– Battle of Cape Mycale: Greeks won a naval victory against Persian fleet.
This ended any further threat of invasion by Persia.

These events, some of the most momentous in the history of the world,
marked the victory of Europe over Asia and enabled Greece to become that
which it had to be.

As soon as the Persian retreated, the Athenian rebuilt their city on an even
grander scale. They used their large navy to bring former Milesian trading
positions (on the Black Sea, in Syria and in Egypt) under their own control
and gradually established a prosperous economic empire. Athenians of the
5th century, not only dominated the Aegean but produced one of the richest
eras in the history of Western civilization. This era is known as the Golden
Age of Greece.

In addition to its most sublime resources of the human intellect, the Greek
civilization also drew its strength from more mundane endorsements. Silver
financed the city-state of Athens, its trade and its commerce. From the mines
at Laureion, at the southern tip of Attica, a stream of silver flew through the
Athenian treasury. The raising up of a commercial power in Greece, able to
throw back the advancing tide of barbarism that threatened to extinguish its
arts, literature and science, was due in some indispensable measure to the
silver mines at Laureion.

ca 480 BCE “Optical telegraph”114operating in Greece; Using two torches
(one in each hand), letters of the alphabet were simulated by various positions
to code plain-language messages transmitted from one hilltop to another in
succession.

114 During the French Revolution (1794 CE), Claude Chappe(1763–1805 CE)

converted this old idea into a reality by establishing a nation-wide semaphore

(a word devised by Chappe from the Greek for “bearing a sign”) visual tele-

graph. With the National Assembly’s backing he built a series of 22 towers

over the distance of 240 km between Lille and Paris. Each tower was equipped

with a pair of telescopes, one pointing in each direction, and with a two-arm

semaphore. Each arm could assume 7 clearly visible angular positions, making

49 combinations that were assigned to the alphabet, numerals and other sym-

bols. It only took 2 to 6 minutes to transfer a message over 240 km whereas

riding couriers would have needed 6 hours. Depressed by illness and by mount-

ing claims of Plagiarism, Chappe committed suicide by throwing himself down

the well in his hotel.
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Greeks also used sound signals (trumpets, drums, shouting), smoke signals,
mirror reflections and beacon fires. At about the same time Persia had a form
of Pony express.

ca 480 BCE Panini (ca 520–460 BCE, India). A Sanskrit grammarian
who gave a comprehensive and scientific theory of phonetics, phonology, and
morphology. In his treatise called Astadhyayi , Panini distinguished between
the language of sacred texts and the usual language of communication. Panini
gave formal production rules and definitions to describe Sanskrit grammar.
The construction of sentences, compound nouns etc. is explained as ordered
rules operating on underlying structures in a manner similar to modern theory.

Panini should be thought as the forerunner of modern formal language
theory used to specify computer languages.

ca 470 BCE Parmenides of Elea (ca 504–456 BCE, southern Italy).
Greek philosopher. Founder of the Elean school and one of the great pre-
Socratic thinkers. Down to recent times, philosophy has accepted fundamental
concepts from Parmenides, notwithstanding considerable modifications and
combinations with other ideas.

He was the originator of the doctrine of being , which he developed in op-
position to the doctrine of becoming of Heraclitos. He also initiated the
distinction between the sensible world (the world known by the senses) and
the intelligible world (the world known by the mind). It was he who first as-
sumed an indestructible substance and used it as a basis for his speculations
(although he did not formulate its concept). He was among the first to distin-
guish between scientific truth and popular opinion. In this way Parmenides
influenced Empedocles, Leucippos and Democritos, the Sophists and
Plato. Hegel was not the last philosopher who followed Parmenides by
founding metaphysics upon logic.

Parmenides shaped a principal characteristic of the Greek mind, which
is significant in Greek philosophy, science and art – his preference for unity,
composure, and the comprehension of limits and contours. His longing for
unity made him suspicious of the senses; his emphasis on composure made
him deny change, and the need of limits made him conceive of the unchanging
world as a spherical form and repudiate the idea of infinite, or empty space.
Specifically he asserted that void was unnecessary for the description of the
world.

Parmenides was born in Elea, a Greek colony in southern Italy; probably
a disciple of Xenophanes and Ameinias, a Pythagorean. He resided for
some years in Athens (ca 450 BCE) where Socrates met him and learned
much from the aged philosopher. He was one of the first Greek philosophers
to express his thoughts in poetry.
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ca 460 BCE Leucippos of Miletos (ca 490–430 BCE). Greek philosopher
and founder of the Abderan school. One of the early mathematicians to
investigate the squaring of the circle. He was founder of the doctrine of
atomism, and all modern physicists may be regarded as the followers of his
way of thinking that led to immense results in science and practical life. His
theory that the Universe is composed of an infinite number of small indivisible
particles (which he called atoms) remained a philosophical idea until 1808 CE.
It has undergone many and important modifications, but has maintained its
validity even after the “indivisible” atoms could be split.

Leucippos maintained that atoms are separated and distinguished from
one another by Non-beings (empty space). He stated that atoms are imper-
ceptible, individual particles that differ only in shape and position. Things
come into existence by virtue of motion of these atoms in space and their
accidental coming together.

All Leucippos’ works, among which the books Megas Diacosmos (the Great
Order of the Universe) and Peri Nou (On Mind), were most famous, are lost.
He was a contemporary of Zeno, Empedocles and Anaxagoras. His fame
was so completely overshadowed by that of Democritos (who subsequently
developed the theory into a system) that his very existence was denied by
Epicuros, but Aristotle expressly credits him with the invention of atomism.

Nothing is known of his life, and even his birthplace is uncertain.

ca 460 BCE Anaxagoras of Clazomenae (500–428 BCE). The last phi-
losopher of the Ionian school. Maintained that nature is a work of design and
order, driven by reason. He assumed that things are made up of an immense
number of tiny “seeds” of different kind of matter. These seeds (today’s
atoms) never change, but they exist mixed together in different combinations;
apparent changes in matter are simply recombinations of the changeless seeds.
For these recombinations to occur, motion is needed. He thus paved the way
for atomic theory. In astronomical history, Anaxagoras is remembered for
correctly explaining eclipses and for his cosmology.

Anaxagoras was first in attempting to give scientific account of celestial
objects and events such as eclipses, meteors, rainbows and the sun which he
described as a mass of blazing metal. The heavenly bodies, according to him,
were masses of stone, formed from the earth and ignited by rapid rotation.
He is known to have made the first attempts to square the circle115.

115 It is thought that Anaxagoras worked on solving it while he was in prison for

having claimed that the sun is a giant red-hot metal rather than a deity, and

that the moon shines by its reflected light.
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Anaxagoras was born at Clazomenae (30 km west of today’s Izmir). He
came to Athens from Ionia in 480 BCE and brought with him the spirit of
scientific inquiry. But the ignorant polytheism of the time could not tolerate
such explanations, and he was imprisoned (450 BCE) on the charge of con-
travening the established dogmas of religion. It required all the eloquence of
Pericles to secure his acquittal. Even so he was forced to leave Athens in
434 BCE. He died in Lampsacos.

Anaxagoras was a contemporary of Euripides and Socrates. The con-
cept of reason in nature was taken up again by Aristotle, on whose scientific
work he exerted much influence.

ca 460 BCE Zeno of Elea (ca 490–430, southern Italy). Philosopher.
Pupil of Parmenides. Expressed eight paradoxes contrasting continuity in
space and time with discreteness. These paradoxes had a profound influence
on the later development of the notion of infinitesimals, and assert that motion
is impossible. The Greeks could not break away from their intuitive notion
that the sum of an infinite number of positive quantities is infinitely large,
even if the quantities become infinitely small, and that the sum of an infinite
numbers of quantities of zero measure is zero. Thus infinitesimals were ex-
cluded from Greek mathematics, and science had to wait another 2000 years
to resolve these paradoxes.

The first paradox is that of the runner of the race track. He can never reach
the end of his course, Zeno tells us, since he must first cover half the remaining
distance, and then after he has done so, half of the remaining distance, and
then half of that, and so on. Each new distance to be covered is half of the
distance just covered, and is therefore a finite distance, and yet there are an
infinite number of these (finite) half-distances. Hence, Zeno concludes, an
infinite time would be required to reach the goal.

The second paradox is the one about Achilles and the tortoise. Achilles is
trying to catch up with the slowly moving tortoise, which he trails by a short
distance. But he can never reach the tortoise, because whenever he comes
to the point where the tortoise was, he will find that the tortoise has moved
ahead some small distance. It will always take Achilles some time to cover the
distance between himself and the tortoise, and the tortoise will always move
some distance ahead during that time, Zeno argued116.

116 Essential fallacies in Zeno’s arguments were exposed by Aristotle in his Physics.

In modern times, an acceptable treatment of the paradoxes has been given along

lines similar to Aristotle’s, but with the benefits of the precision of the mathe-

matical theory of continuity and infinite sums.

It is clear to us today, thanks to well-established mathematical principles, that

the first two paradoxes are based on the misconception by Zeno regarding
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In the third paradox , Zeno claims to prove the impossibility of any motion
whatsoever. He states that if what is moving is always in the now – is always
in the instantaneous present – then motion is impossible. As an example, Zeno
uses an arrow in flight. At a given instant the arrow is in a fixed position and
occupies just the space which corresponds to its physical volume. It occupied
a different region of space in its past, and will occupy a different space in
the future. Hence, at any given instant the arrow is motionless and therefore
indistinguishable from a motionless arrow in the same position. How then
do we know that it is moving? Since any period of time is a sum (albeit
infinite) of its component instants, the arrow is motionless throughout the
period. Zeno concludes from the paradox that all motion is impossible117.

the value of an infinite sum of terms. It can be readily shown that the sum
∑n=∞

n=0 qn, where q is a positive number less than one and n takes the inte-

gral values from zero to infinity, is equal to 1
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by the above formula, since q is 1
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in this case, and the first term, 1
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zeroth power, which is equal to one, is not included in the series. Hence, in this

case the sum of an infinite number of terms is finite, and not infinite as Zeno

supposed.

The solution of the problem of Achilles and the tortoise is similar to that of

the runner. Suppose that Achilles’ and the tortoise’s running speeds are such

that while Achilles runs a given distance the tortoise runs only q times that dis-

tance, and that Achilles is X meters behind the tortoise when we first consider

the two. While Achilles advances X meters, the tortoise advances qX meters.

Then while Achilles covers this distance between them of qX meters, the tor-

toise moves q(qX), or Xq2 meters, and so on. In order to catch up with the

tortoise, Achilles will have to run through an infinite number of intervals; i.e.,

he will have to run X + Xq + Xq2 + Xq3 + Xq4 + · · · meters, which is equal

to X ·
∑n=∞

n=0 qn = X
1−q

meters. Thus, if X is 25, and q is 1
10

, Achilles will

have to run 25
(

1

1− 1
10

)
= 25
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9

)
meters in catching up with the tortoise. Of

course, if q is 1, Achilles is running only as fast as the tortoise, and will never

catch up with him. This is indicated by the fact that 1
1−q

→ ∞ as q → 1.

Incidentally, when q = 1
10

it is easy to see why the sum of an infinite number

of terms,
∑n=∞

n=0

(
1
10

)n
, may be finite in value. Each new term that we add

gives a digit 1, one more decimal place further to the right than its predecessor,

giving us a sum of the form 1.11111. . . . No matter how many terms are added,

we never increase the digit from 1 to 2 in any decimal position.
117 The concept of the continuity of a line, which was introduced into mathematics

by Dedekind in 1872, gives us a solution of the third paradox. According to this

concept a straight line, or generally any continuous region, contains as many
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The argument of the arrow paradox can be further amplified in the fol-
lowing manner. The moving arrow occupies different sets of spatial points at
different instants. Yet, since it must be stationary at any instant, how can it
ever move to the set of points which it occupies at some other instant?

458–428 BCE Ezra ben Seraya ha-Kohen the scribe118. Founder of
the postexilic viable Judaism. Edited and canonized the Five Books of Moses

points in any finite interval as we wish to denumerate. By giving a line this

property of consisting of as many points as desired, it is found that the line will

consistently have the properties of being continuous. In contrast, a discrete line

is one which has a finite number of points between any two given points. Thus,

we ask, if the arrow is at rest now at one point (instant) on the time-axis line,

how does it ever get to the next instant?. The answer is that such a question

is ill-defined, since there is no “next” point. For between the point in question,

and any point that is designated as the “next point”, there can be any desired

number of intervening points. To quote Bertrand Russell’s discussion of the

problem (1929): “The solution lies in the theory of continuous series: we find

it hard to avoid supposing that, when the arrow is in flight, there is a next

position occupied at the next moment; but in fact there is no next position and

no next moment, and when once this is imaginatively realized, the difficulty is

seen to disappear”.
118 At the beginning of the Persian period (538 BCE) the Jewish exiles in Babylon

were free to return to their own land and there was the first exodus of Babylonian

exiles in the days of Cyrus (538–529 BCE). These people built the second Temple

in Jerusalem (ca 515 BCE). The Persian rule lasted until 332 BCE, when it

was overthrown by Alexander the Great. During the two centuries of Persian

domination, the Jewish community in Israel, with its center at Jerusalem, in

spite of varied hindrances, gained new life; the Law was codified, the Temple-

worship fully organized, and the work of collecting and arranging the sacred

books of the Old Testament well begun.

Under the long reign of Artaxerxes I (465–424 BCE), the ‘second return’ of the

Jews (458 BCE) under the aegis of Ezra and Nehemiah during their two visits

to Jerusalem (445 and 432 BCE) took place.

If not for the actions of Ezra and Nehemiah, Judah would have disintegrated,

Jerusalem faded out of Jewish consciousness, and there would be no motivation

for exilic Jews to exist as Jews. Dying memories and tempting assimilation

would hurl them out of Jewish history.

Ezra and Nehemiah created a new age for the Jews; now that the era of prophecy

was over, the time has come to transubstantiate prophetic ideology into practical

policies. Where the function of the prophets has been to universalize the Hebrew

concept of God and give mankind a universal ethic, the function of Ezra and

Nehamiah was to formulate ideas that would preserve the Jews as Jews.
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(Pentateuch), thus fusing the most important of the then-extant Mosaic doc-
uments into what is now known as the Torah. This act of canonization cleared
the way for the compilation of the Old Testament. His exegesis on the Torah
and the major reforms he instituted in Judaic practice may be seen as the
beginning of classical Judaism.

Ezra was a scribe in the court of the Persian King Artaxerxes in his summer
capital city of Susa. It is there that he heard of the plight of the Jews and
the sad state of Judaism in Jerusalem. He successfully petitioned the king
to let him organize a second Zionade, which proved successful beyond all
expectations.

Ezra and Nehemiah introduced three innovations to strengthen the Jewish
identity of the returnees from Babylon: a ban on intermarriage with any
Gentile, a stress on nationalism, and a canonization of scripture. These were
destined to shape the character of the Jews and chart their course through
the next two millennia.

450 BCE Empedocles of Acragas (ca 490–435 BCE). Greek philo-
sopher, statesman, and physician. A scientific thinker, precursor of the phys-
ical scientists. First to try to identify principles of motion. He believed that
light moves in space with a finite velocity.

Empedocles was born in Acragas (Agrigentum) on the south coast of Sicily
of a distinguished family, then at the height of its glory. His grandfather was
victorious in the Olympian chariot race in 496 BCE. Like his teacher Par-
menides, he was steeped in Pythagorean tradition. He tried to combine this
with the more naturalistic philosophy and science of the Milesians. Fragments
of two treatises, one entitled On Nature and the other Purification, are extant.

The doctrine of the four elements: water, fire, air and earth, which domi-
nated the popular thinking about nature for more than 2000 years, was prob-
ably originated by Empedocles. He is credited with founding the first great
medical school. His legendary death is supposed to have taken place by falling
into the crater of Mount Etna (this has been a source of inspiration for many
poets, among them: Mattew Arnold and Friedrich Hölderlin). He has been
celebrated by followers of Mazzini as the democrat of antiquity par excellence.

Empedocles tried to reconcile the doctrine of the permanence of being
(Eleatics) with the doctrine of change and motion (Heraclitos). His four el-
ements are eternally brought into union and eternally part from each other.
The different proportions in which these four indestructible and unchange-
able matters are combined with each other determine the different organic
structures produced. It is in the aggregation and segregation of elements thus
arising that Empedocles, like the atomists, finds the real process which cor-
responds to what is popularly termed growth or decay. Nothing new comes
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or can come into being; the only change that can occur is a change in juxta-
position of element with element.

Empedocles believed that light travels very fast, but not infinitely fast.
Demonstrated that nature does not allow the creation of a macroscopic vac-
uum (“horror vacui”).

450 BCE Herodotos (ca 484–425 BCE). Greek historian119, called the
Father of History . He undertook to write the history of the world up to his own
time, yet he limited his 9 books to the rise of the Persian Empire, the Persian
invasions of Greece in 490 and 480 BCE, the heroic fight of the Greeks against
the invaders, and the final Greek victory. He wholly omitted the histories of
Phoenicia, Carthage and Etruria, three of the most important states existing
in his day. Even the Trojan war is not mentioned in his writings.

Herodotos included many stories which he did not believe120, because they
made his account more interesting. Historians even now cannot disentangle
fact from legend in his work. Yet some of his keen observations are remarkable:
while traveling through the lower Nile River valley, his observations led him
to reason that the Nile delta must have been made from a series of floods. It
then quickly followed, by his reasoning, that if a single flood were to lay down
only a thin layer of sediment, it must have taken many thousands of years to
build up the Nile delta.

He was born at Halicarnassos, today Bodrum, in Asia Minor. During his
youth he traveled widely in Greece, the Middle East and North Africa. The
things he learned in his travels formed the materials of his histories. In about
447 BCE he visited Athens, and three years later settled in the colony of
Thurii which Pericles was then founding in southern Italy. Nothing is known
of the rest of Herodotos’ life.

His visits to the cultural centers of Persia, Babylon, Egypt and Greece,
and his attempts to describe the whole evolution of the non-Greek peoples of
the Persian Empire (including the Egyptian and the Babylonians) make his
books a valuable source of information on the state of science and technology
in the ancient world.

In Herodotos’ writings, the existence of China is recorded for the first time
in the European literature: According to him, a Greek named Aristeas (ca

119 His history was written about 450 BCE; first printed in Latin translation in

1474; the Greek text first printed in 1502; first translated into English in 1709.
120 In Egypt, for example, he was shown a temple in which the priests put out food

for the god every night. The food was always gone in the morning, a fact which

they presented to Herodotos as proof of the god’s existence. “I saw no god”, he

commented, “but I saw many rats around the base of the statute”.
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6th or 7th century BCE) claimed to have journeyed across Central Asia as
far as the Djungarian Basin and the Altai mountains. There he heard of the
Chinese as a settled and prosperous people who dwelt by a never-frozen sea121.

ca 450 BCE Bryson of Heraclea122 Mathematician. Discovered that
the area of a circle is a limit to the increasing areas of inscribed polygons and
to the decreasing areas of the circumscribed polygons, and as the number of
sides of those two series of polygons is increased, their areas approach closer
to the area of the circle on both sides of it. The method was actually applied
by Archimedes, who measured the areas of two inscribed and circumscribed
polygons of 96 sides each and reached the conclusion that

3.141 ≈ 3
10
71

< π < 3
1
7

≈ 3.142.

ca 450 BCE Philolaos of Tarentum (or Croton). Greek mathematician
and philosopher of the Pythagorean school. The first to propound the doctrine
of the motion of the earth. He arrived at this conclusion on the basis of the

121 When Alexander the Great overthrew the Persian Empire (329 BCE) he did not

venture beyond Bukhara and Southern Turkestan and did not attempt further

conquests in Central Asia. The first efforts of China itself to establish relations

with the West were made by the Emperior Wu Ti (of the Han dynasty) in

128 BCE. He sent an embassy to the Yuer-Chi (nomadic people) whose court

lay near Bukhara; it provided China with the geographic knowledge on which it

based the imperialistic policy in Central Asia. It let also to the introduction into

China of the vine which the Greek brought into Bukhara and Samarkand. The

Chinese exchanged this for gold and silk, then unknown in the Greco-Roman

world during the first century BCE. In the second century CE, some Roman

sailors actually reached China directly by sea, by rounding Cape Comorin in

Southern India and passing through the Strait of Malacca.
122 In his book “Ancient Science Through the Golden Age of Greece” (1952),

George Sarton made the observation that the mathematical genius of Greece

manifested itself through the ideas of men who were not mathematicians in the

restricted sense of today; they were philosophers and sophists who realized the

fundamental importance of mathematics and tried to understand it as well as

possible. They came from many parts of the Greek world, widely distributed

across Hellas as was the artistic or literary genius: Zenon hailed from Magna

Grecia, Hippocrates from Ionia, Democritos from Thrace, Hippias from

Peloponnesos, Theodoros from Cyrenaica, Bryson from the Black Sea, An-

tiphon from Athens (the only one from that city) and Archytas from Sicily.

This burst of mathematical creativity was not restricted to any locality – it was

the genius of Greece.



ca 450 BCE 189

following observations: the Sun, Moon, Venus, Mercury, Mars, Jupiter, Saturn
– all travel slowly across the stars from West to East. On the other hand, the
star pattern carries the whole lot daily from East to West.

This reversal, which spoils simplicity, could be removed if the view of the
earth as the static center of the universe is abandoned. The new scheme of
Philolaos was based on two elements:

(1) The earth is revolving around a central fire, making a small circle once
every 24 hours. This accounted for the daily motion of the stars, sun,
moon and planets without the need to assume that the earth was spinning
about its axis (to explain why the fire was not seen from earth, it was
necessary to assume further that its inhabited part was always facing
outward, away from the fire).

(2) Seven spheres, carrying the sun, moon and 5 planets respectively, rotate
slowly in the same direction as the earth around the central fire; the
outermost crystal sphere of the stars is fixed.

This fantastic scheme was revolutionary in the sense that it treated the earth
as a planet.

Philolaos was perhaps the first to suggest the earth’s spherical shape. He
inferred this from the circular shape of the earth’s shadow cast on the moon
during lunar eclipse. Philolaos and the Pythagoreans described the motion
of the heavenly bodies by a rough but simple scheme that could be called a
theory , in contrast with the more accurate working rules that were developed
in Babylon. As a machine for making predictions, this first Greek system of
uniform revolutions was hopelessly inaccurate; but as a frame of knowledge
it was indeed superior: it gave a feeling that the heavenly scheme of things
makes sense.

ca 450 BCE Development of the 12 constellations of the zodiac in
Mesopotamia, recognizing the importance of the plane of the ecliptic.

ca 450 BCE Hanno the Carthaginian. Phoenician navigator and ex-
plorer. Made exploring and colonizing voyage down African west coast, reach-
ing Gambia, Sierra Leone and perhaps Cameroon, or even Gabon. Hanno had
no real successors until the Portuguese in the Middle Ages. They were to take
over 40 years to accomplish what Hanno had achieved in a single voyage of
only a few months.

Hanno described, among other things, the gorilla. Phoenician navigators
are believed to have reached the Atlantic Ocean, sailing as far as Cornwall,
England to the north where they established tin mines. They also circumnav-
igated Africa, to the south.
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About the same time, another Carthagenian, Himilco, sailed out out
Massalia (Marseille). In his voyage, which lasted four months, Himilco sailed
northward round Spain. He reached the coasts of Brittany and Cornwall
and thus firmly established a Phoenician monopoly of the flourishing trade in
Cornish tin between Brittany and the Mediterranean123.

450 BCE Hippocrates of Chios (ca 470–410 BCE). Greek mathemati-
cian and excellent geometer. Among the inventors of the method of ‘reduc-
tio ad absurdum’. Was first to use letters in geometrical figures. Devised a
method for the quadrature of certain lunes. He was the author of the first sys-
tematic treatise in geometry, and proved numerous geometrical theorems124.
Though his work is now lost, it must have contained much of what Euclid
later included in Books 1 and 2 of the Elements. Hippocrates’ book also
included geometrical solutions to quadratic equations and early methods of
integration.

ca 445 BCE Melissos of Samos (ca 480–415 BCE). Philosopher and
statesman. Disciple of Parmenides and a contemporary of Zeno. Commanded
the fleet of Samos in victory over Athens, but after defeating Pericles was
himself defeated (442–440 BCE).

The last member of the Eleatic school of philosophy, differing from Par-
menides in maintaining the spatial infinity of the universe.

The extant fragments of his work defend Eleaticism against Empedocles’
doctrine of the four elements, against the Atomists’ belief in a void, against
Anaximenes’ derivation of the world from its original matter by rarefaction

123 The Phoenicians emerged as a significant maritime power after the collapse of

the Mycenaens in the 12th century BCE, although by this date they had long

been involved in trade between Mesopotamia and Egypt. In the civilized East

Mediterranean they established extensive commercial contacts, but no colonies,

with the possible exception of Kition (Larnaka) in Cyprus.

Indeed, it was only in the central and West Mediterranean outside the areas

directly controlled by the Greeks, that the Phoenicians founded a network of

colonies. The most powerful western colony was Carthage, founded in 814

BCE. The Phoenicians were the most adventurous merchants and explorers of

the ancient world (Ezechiel 27); in the early 6th century BCE a Phoenician fleet

reputedly circumnavigated Africa.
124 Contributed to the old problem of the duplication of the cube, by reducing it

to the finding of two mean proportionals between one straight line and another

twice as long. In modern language we would say that Hippocrates has reduced

the solution of a cubic equation to that of two quadratic equations.
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and condensation, and against Anaxagoras’ assumption of the reality of heat
and cold.

The Sophists

∗ ∗∗

“Man is the measure of all things, of those which are – that they are, of
those which are not – that they are not”.

∗ ∗∗

“As to the gods, I cannot say whether they exist or not. Many things
prevent us from knowing, in the first place the obscurity of matter, then the
brevity of human life”.

(Protagoras of Abdera)

The political and economical unrest in the interim period between the Per-
sian wars (490–478 BCE) and the Peloponnesian wars (431–404 BCE) cre-
ated a social climate of skepticism, disillusionment, uncertainty and despair.
Intellectuals were perplexed by the conflicting doctrines of Heraclitos, Par-
menides, Anaxagoras and Empedocles. Where could the truth be found?
Is there any truth? And if there is any, can mortal man attain it?

The most perplexing question of all was this one – to whom should one
entrust the education of ones growing sons? The need for teachers was felt
acutely, and it was now satisfied by a new class of them who were called
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Sophists125: professional teachers of grammar, rhetoric, dialectics, and elo-
quence who taught young men to behave themselves, to be wise and happy;
the first to require students to pay for instructions.

For nearly a century the sophists held almost a monopoly of liberal edu-
cation and contributed much to advancement of learning and popularization
of science. They practiced their mission in introducing the common man to
a higher standard of culture – imparting to him the values and skills of so-
phisticated philosophical inquiry and communication and tasks enabling him
to live more useful and better life.

The sophists build their philosophy on the doctrine of the relativity of
truth. At first they where influenced mainly by Heraclitos and his followers
who rejected the idea of absolute truth and interpreted reality as a process of
constant change. The leading sophist philosopher, Protagoras applied the
idea of change to epistemology (the study of what knowledge is and how it
is obtained). He concluded that knowledge and truth are both dependent on
judgment by the individual.

The Pythagorean concept of unchanging, mathematical relationships as
the essence of reality and the Eleatic principle that nature obeys laws of
permanent Being, that the laws of physics are fixed and permanent126, were
propositions analyzed critically by the Sophists. They inquired whether such

125 From Greek σoφιστη′ς = man of wisdom; the name given by the Greeks about

the middle of the 5th century BCE to certain teachers of a superior grade who,

distinguishing themselves from philosophers on one hand and from artists and

craftsmen on the other, claimed to prepare their pupils, not for any particular

study or profession, but for civil life. Most of the Sophists were good men, yet

other more conspicuous were moneymakers and hypocrites. As time went by,

the number of bad teachers increased in numbers and the name Sophist acquired

gradually a negative connotation.

For about 2300 years the Sophists have been despised and unjustly discredited as

unscrupulous distorters of facts. It was Friedrich Nietzsche (1883–1887 CE)

who rehabilitated them, and since then their contribution to philosophy can

no longer be disregarded. Their foremost critic and adversary, Socrates, con-

demned their practice of accepting financial remuneration for teaching philos-

ophy, stating that the search for scientific knowledge should never be debased

in this way. Plato and Aristotle followed suite and induced posterity to con-

demn them as dishonest thinkers whose practices degenerated into hair-splitting

of words, frivolous argumentativeness, and heuristic discussions designed to con-

fuse the issue. Consequently the name Sophist which had earlier been applied

to all philosophers (including even Socrates and Plato) became an opprobrious

term.
126 The Greek word for physics means unchanging nature.
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unchanging laws of nature could be accepted as the basis for laws governing
man. In other words: are there genuine moral laws, norms for evaluating
human behavior, comparable to the laws which govern physical nature?

On the basis of their premise that knowledge was at best relative, they
concluded that truth was unattainable. Because of his belief in the unavail-
ability of absolute truth, the sophists turned his concern to the art of debate,
to technique of convincing or converting ones opponent. Instead of trying to
make truth prevail, the Sophist was interested only in winning an argument.
Thus the Sophist’s deep interest in grammar was motivated by the desire to
manipulate it to serve his personal ends.

ca 450–410 BCE Protagoras of Abdera127 (ca 485–410 BCE) Greek
philosopher. Known as the first of the Sophists. One of the creators of Greek
rhetoric and the science of language. He is credited with being first gram-
marian, distinguishing parts of speech, tenses and modes. He wrote numerous
books, of which only four small fragments survived. Protagoras based his en-
tire philosophy on the concept of relativity of truth. His doctrine can be
summarized as follows: “Man is measure of all things...”128

• Sensation is the only source of knowledge. Man is capable of knowing
what his sense tell him about what he perceives, not the thing itself
perceived. Thus, sense knowledge is incomplete and not to be trusted,
and man is wiser to be skeptic about everything.

• The subjectivity of sensation implies not only the relativity of truth
(what is true for you is true only for you and what is true for me is true
only for me) but also the relativity of morals (what is right for me may
be wrong for you). From this follows, a most remarkable corollary, the

127 Abdera, at the northern end of the Aegean Sea, was an ancient flourishing city.

It gave birth to Democritos, Anaxarchos and Protagoras; it was the cradle of

atomic theory.
128 Some philosophers have interpreted this dictum as referring to man as an indi-

vidual, while others have interpreted it as referring to a man in the generic sense,

hence that ethical conduct and justice depend upon the moral codes of groups

instead of the moral practices of individuals. In any case, either point of view

had an enduring impact on the history of philosophy down to contemporary

times.
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doctrine of equal rights for all mankind, including women and slaves: the
doctrine that each individual must decide for himself as to the validity
of any proposition, leads to a principle of social reform, for it places all
persons on an equal footing as judges of the truth. Protagoras therefore
demanded that sweeping social and political reforms be instituted by
democratic means.

• Human character can be improved by education, especially during child-
hood years. This capability is implied by the doctrine of the relativity
of truth.

• God existed for those who wanted to believe in God.

Protagoras was born in Abdera, and when he reached the age of thirty he
set out on his travels all over Greece as well as Sicily, lecturing and teaching.
He lived and taught in Athens and became a friend of Pericles (495–429
BCE). In 411 BCE Protagoras was forced to flee Athens under sentence of
death after having been accused of impiety. His books were publicly burned129

(411 BCE). The ship that was carrying him to freedom was wrecked and he
perished.

Another leader of the sophist school was Gorgias (ca 483–375). Born in
Sicily, he settled in Athens (427 BCE) and supported himself by the practice
of oratory and teaching rhetoric. He died at Larissa in Thessaly. He was the
author of a lost work On Nature or the Non-Existent. Gorgias is the central
figure in the platonic dialogue Gorgias.

440–410 BCE Antiphon the Sophist (480–411 BCE). An Athenian
orator, who flourished at the same time as Socrates. He was a sophist, inter-
ested in many sciences. He made an early attempt to square the circle and
invented a new method for the solution of that old problem – the method of
exhaustion: Antiphon suggested that a simple regular polygon, say a square,
be inscribed in a given circle: Then an isosceles triangle could be built on each
side, its vertex being on the circumference. A regular octagon would thus be
constructed, and continuing in the same manner one would easily construct
regular polygon of 16, 32, 64, . . . sides. Now it is obvious that the areas of
each of those regular polygons approaches in the limit the area of the circle,

129 This is the first recorded example of book burning. It suggests that there was

already an established book trade in Athens at that time. The last event of this

kind is the one ordered by Hitler on May 10, 1933 in the Third German Reich.
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thus exhausting the area of the circle130. Since the area of each polygon can
be exactly expressed in terms of repeated square roots of integers (i.e., the
polygon can be “squared”), and since these areas increase in such a way that
they are bounded by the said limit, the Sophists claimed that the limit itself
is also squareable.

Antiphon was involved in an anti-democratic revolution which failed and,
despite his profession as a writer of defense speeches, his brilliant speech failed
to save his life when he was tried for treason, and he was executed.

440–399 BCE Socrates (469–399 BCE, Greece). Philosopher; One of the
great Greeks who fashioned the traditional Western thinking system. Teacher
of Plato. He embodied the revolt of Greek common sense against the intellec-
tual extravagances of the early philosophers. Although he distrusted science,
few men have contributed more to its development. His method of investi-
gation prepared the elaboration of the method of inductive science. It was
characterized by: insistence upon clear definition, use of induction, incessant
war against vagueness of thought, deep sense of duty, reasoned skepticism (the
very skepticism of the scientist who refuses to believe a thing until it has been
proved to him).

Socrates held that scientific knowledge about the external world is not
enough since it provides us only with universals, principles which hold true
for us all in common. What is needed is self-knowledge, gained through self-
examination; the principal value of scientific knowledge is simply to gain better
understanding of oneself to enable one to live a better life. His question “who
am I?” led him to the secret of self-control “Know thyself” (gnothi-seauton).

He was concerned with putting ethics on a firm basis so that the persua-
sive skills of the Sophists could no longer sway society. Plato, with his strong
totalitarian tendencies, developed the notion of ‘ideal forms’ which was im-
posed on the world of his thinking. Later, Aristotle tightened up the system
and showed its application to science. Plato took over Socrates’ ideas and
methods, reshaped them, added some of his own, and then gave them back to
Socrates in the dialogues: what we call the ‘Socratic method’ is as expressed
in Plato’s writing, when the method is put into the mouth of Socrates by
Plato.

130 In modern notation we would write for a unit circle: S2n = 2n sin
(

π
2n

)
,

n = 2, 3, 4, . . ., with limn→∞ S2n = π. This method was criticized by Aris-

totle on the grounds that no matter how many times the number of sides of

each polygon is doubled, the area of the circle can never be completely used

up. The method of exhaustion was later perfected by Archimedes and led to an

early determination of an approximation for π.
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It consists of the ‘endless search for truth through asking questions ’. To
this we attribute the immense progress of science. This obsession with ‘search’
means that the quest may be more important than the destination itself,
which is why Socrates was not at all bothered when his discourses reached
no conclusion. The ‘endless search’ has a great merit because it means the
sort of divine dissatisfaction which is the essence of progress. The apparent
advance of Western Civilization compared to some others have been due to
this ‘search’ component of intellectual effort.

Socrates wrote nothing of his own. Most of our information about his life
and teachings comes from the writings of Xenophon, Plato and Aristotle.

Socrates was born in a village on the slopes of Mount Lycabettus (20
minutes walk from Athens) and lived in Athens. Upon the outbreak of the
Peloponnesian War (431), Socrates, then 38 years of age, was called to service
as a haplite (private, with shield and sword), and distinguished himself in
battle. He had an enthusiastic following among the young men of Athens, but
the general public mistrusted him because of his unorthodox views on religion
and his disregard of public opinion. Inevitably, Socrates made enemies among
influential Athenians. He was brought to trial, charged with corrupting the
young and showing disrespect for religious traditions.131 Sentenced to death,
he refused several opportunities to escape from prison, and carried out the
sentence by drinking a cup of hemlock poison.

During his youth Socrates said to have met the aging Parmenides and
learned much from him. According to Parmenides, the world as we know
it is merely an illusion; the ever changing multiplicity we observe is merely
the appearance of a static, all-embracing Being. Why them bother with the
working of the world (i.e. science) when they are nothing but an illusion?

Socrates accepted this antiscientific attitude: Reality was an illusion. This
had negative effects on him and his successor Plato. During their lifetime a
few significant advances were made in mathematics, but, only because this
was considered timeless and abstract, and thus thought to be in some way
connected with the ultimate reality of Being. Fortunately their successor
Aristotle drew philosophy back toward reality.

131 The modern political philosopher Leo Strauss (1899–1973) in his book Socrates

and Aristophanes (1966) shockingly admits (contrary to generations of liberal

professors who have taught him as a martyr to the First Amendment) that the

prosecution of Socrates was not entirely without point. Strauss argues that

philosophy cannot really construct a rational basis for ethics and therefore has

a tendency to promote nihilism in mediocre minds and they must be prevented

from being exposed to it. Thus, philosophy (contrary to mythology) — matters.
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It is most ironic that, although Socrates and his followers disdained science
as pointless and considered it a waste of time, the most beneficial effects of his
legacy have in fact been in the field of science. But Socrates, himself, sought
to make ethics, politics and other social matters the subject of his scientific
inquiry. He hoped to discover universal laws and truths (as in mathematics)
which would put these subjects on an absolute basis and so rescue them from
the manipulations of people like the Sophists.

The antiscientific attitude that developed with Socrates was to cast a
blight on philosophy for centuries to come. Largely as a result of Socrates’
antiscientific attitude, the few great scientific mind of the ancient Greek
world worked outside philosophy. Archimedes (in physics), Hippocrates
(in medicine), and to a certain extent Euclid (in geometry) were isolated
from philosophy and thus from any developing tradition of knowledge and
argument.

Ancient Greek scientists knew the earth went round the sun, knew it
was round, and even calculated its circumference. They observed electricity
and were aware that the earth had a magnetic field. Outside the “universal
wisdom” of philosophy, such factual bits of knowledge were isolated oddities.
The fact that philosophy came of age under the aegis of an antiscientist must
count as one of the great misfortunes of human learning. The mental energy
expended in the Middle Ages calculating the number of angels who could stand
an the head of a pin might instead have been directed toward the solution of
real-world problems.
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Worldview I: Socrates

∗ ∗∗

“The unexamined life is not worth living”.

∗ ∗∗

“Only those who have lived an evil life hope that death is the end of everything
for them”.

∗ ∗∗

“Knowing nothing, what could I write down?”

∗ ∗∗

“Do as you please, since whatever you do you will regret it”.

(When someone asked him whether he should be married or not)

∗ ∗∗

“The body is forever wasting our time with its demands”.

∗ ∗∗

“I know that I don’t know”.

∗ ∗∗

“We go our separate ways I to die and you to live. Which one is better God
alone knows”.
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∗ ∗∗

“This discovery of yours will create forgetfulness in the learner’s souls, be-
cause they will not use their memories; they will trust to the external written
characters and not remember of themselves. The specific which you have dis-
covered is an aid not to memory, but to reminiscence, and you give disciples
not truth, but only the resemblance of truth; they will be hearers of many
things and will have learned nothing...; they will have the show of wisdom
without the reality”.

(Lamenting the effects of writing

on the memory and the soul of the learner)

∗ ∗∗
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437 BCE Hospital, possibly earliest, was build in Sri Lanka (Ceylon).

ca 435 BCE The sculpture Pheidias132 (ca 500-430 BCE, Greece) com-
pleted the statue of Zeus at Olympia, Greece, the most famous statue in the
ancient world and one of the seven wonders of the world. The statue, 12 me-
ters high, showed Zeus on his throne. Zeus’ robe and ornaments were made
of gold , and his flesh of ivory ; he had a wreath around his head and held a
figure of victory in his right and a scepter with an eagle in his left. Thousands
who came to Olympia for the Olympian Games admired this gold and ivory
figure.

The statue was toppled during the great earthquake of July 21, 365 CE,
some 800 years after its erection. It was later removed to Constantinople
(ca 429 CE) where it still could be seen for another century until its final
demolition by the Christian authorities.

432 BCE Meton of Athens. Greek astronomer. Discovered 19-year
Metonic cycle of solar years and synodic months.

In 432 BCE, Meton and Euctemon in Athens, made the first accurate
solstitial observations. These observations enabled them to determine the

length of the seasons with greater precision. They introduced in that same
year a new cycle, called the Metonic cycle133, a period of 19 solar years,
equivalent to 235 lunar months; this implied a year of ca 365 5

19 days, that
is 365d6h18m56s. (It is just 30m10s longer than the Mean tropical year of
365d5h48m46s.) In the next 300 years the margin of error was steadily re-
duced, until Hipparchos (130 BCE) arrived at the figure 365d5h55m12s. Thus
the accuracy of Meton was of the order of approximately 1:17,000, and that
of Hipparchos 1:100,000.

431–404 BCE Peloponnesian War . A series of three wars fought between
the city-states of Athens and Sparta.

132 Pheidias son of Charmides, universally regarded as the greatest of Greek sculp-

tures. Born in Athens and studied under Agelades of Argos. According to

Plutarch he was made an object of attack by the political enemies of Pericles,

and died in prison at Athens. Pheidias was commissioned by Pericles to execute

the greatest of the city’s monuments. Among his notable works were sculptures

on the Parthenon and the Propylaea, statue of Athene Parthenos, and statue

of an Amazon at Ephesos.
133 Our knowledge of this observation is obtained from a papyrus (now in the

Louvre) called the papyrus of Eudoxos. It is probably a notebook of a student

who flourished in Alexandria in ca 193–190 BCE.
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The Peloponnesian league, consisting of Sparta and its allies, attacked
the Athenian empire because it feared the growing power of Athens. The
war ended in victory for Sparta which gained the support of Persia, helped
subjects of Athens to revolt and forced the city to surrender.

Sparta was a military nation with good army but no fleet; Athens was
a maritime power with a strong navy and a week army. Since her land de-
fenses were almost invulnerable and ample supplies could be imported by sea,
Athens could neither be brought to battle by land nor starved into submis-
sion. Fighting a defensive battle on land and offensive war at sea, she should
have been able to defeat Sparta without great difficulty. During the first year
of war Athens was successful both on land and sea, but her defensive policy
necessarily led to the Athenians being crowded and besieged within their city
walls.

Disaster struck in 430 BCE: A plague epidemic, starting in Ethiopia and
traveling to Egypt, was carried across Mediterranean by ships to the Piraeus
and Athens. It ravaged the city, killing as much as 2

3 of the population and
breaking the morale. The plague then broke out in the ships, decimating the
naval expedition force and killing Pericles (429 BCE).

The plague of Athens undoubtedly contributed to the downfall of the
Athenian empire. By killing so large a number, by demoralizing the capi-
tal and, above all, by destroying the fighting power of the navy, the plague
prevented Athens from striking a decisive blow at Sparta. It thus provides a
striking example of the effect of disease upon history.

431–400 BCE Thucydides of Athens (460–395 BCE, Greece). One of
the greatest historians of all times. The father of scientific historiology. His
history of the Peloponnesian War (of which he had been a witness, 431–404
BCE), is a literary and scientific classic. His description of the annular solar
eclipse of Athens on August 3, 431 BCE, is the first detailed description of an
eclipse (solar crescent, visibility of certain stars). In his history he described
also the plague which lay waste to Athens in 430–425 BCE.

Thucydides was born in Athens. During the Peloponnesian War he com-
manded part of the Athenian fleet. He failed to relieve the siege of Amphipolis,
and was exiled for 20 years. During his exile, he visited all parts of the Greek
world.

430–420 BCE Hippias of Elis (460–ca 400 BCE). Greek sophist.
Younger contemporary of Socrates. Introduced the first curve beyond the
circle and the straight line later termed quadratrix of Deinostratos. It can be
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used to trisect an angle134 and to square the circle (although Hippias proba-
bly did not know it). The quadratrix is the first curve known that cannot be
constructed with straightedge and compass.

Hippias lectured in Athens on mathematics, music, astronomy, history,
poetry and politics. He traveled all over Greece, giving public lectures and
teaching, being a kind of a wandering sophist whose activities were domi-
nated by love of fame and money. He was ready to discuss any subject but
was especially interested in mathematics and science. His aim was not to
give knowledge, but to provide his pupils with the weapons of argument in
discussions on all subjects alike.

430–380 BCE Hippocrates of Cos (460–377 BCE, Greece). The father
of medicine; one of the greatest clinical physicians of all times. His writings
later provided scientific and ethical basis for modern Western medicine. He
emancipated medicine from superstition, systematized the empirical knowl-
edge which had accumulated in Egypt and in the schools of Cnidos and Cos,
and founded inductive and positive medicine.

Hippocrates introduced the elements of the scientific method : he argued
careful and meticulous observation: “Leave nothing to chance. Overlook noth-
ing. Combine contradictory observations. Allow yourself enough time”.

His principles of medical science formed the basis for the medical theory
developed in the 19th century. The Hippocratic oath, named for him, gave the
medical profession a sense of duty to mankind which it never lost. Hipparchos
maintained that the laws of nature could be discovered by studying facts and
applying reason to them. He showed that disease had only natural causes,

134 The function is r = 2a
π

φ
sin φ

, where r(φ) is the polar equation for a curve with po-

lar coordinates {r, φ}. Consider a Cartesian x–y system, with a circle of radius

a about its origin, and let φ be measured from the positive x-axis counterclock-

wise. From a general point {r, φ} in the first quadrant draw a line normal to

the x-axis; divide the line in the ratio 2:1, with the larger section toward the

curve. Draw a parallel to the x-axis through the point of division of the line.

Connect the origin with the point of intersection of that parallel with the curve.

The angle between this new radius-vector and the x-axis is φ
3
. Deinostratos

was the brother of Menaichmos.

The impossibility of trisecting a general angle with straightedge and compass

tended to direct attention away from problems involving the trisectors of angles.

This helps account for the late appearance of the following delightful theorem:

“The adjacent pairs of the trisectors of the angles of a triangle meet at the

vertices of an equilateral triangle”.

This was discovered only in 1904 by the Anglo-American geometer Frank Mor-

ley (1860–1937) and the theorem now bears his name.
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and took treatment of disease out of the hands of religion. He treated his
patients with proper diet, fresh air, change in climate, and attention to habits
and living conditions.

Before the invention of the thermometer, he charted the temperature
courses of many diseases. He recommended that physicians be able to tell,
from present symptoms alone, the probable past and future course of each
illness. He stressed honestly the limitations of the physician’s knowledge,
(confiding to posterity that more than half of his partners were killed by the
diseases he was treating). His options of course were limited; the drugs avail-
able to him were chiefly laxatives, emetics, and narcotics. He objected to the
use of strong drugs without careful tests of their curative values.

Hippocrates also used surgery, but only as a last resort. His period was
one of great intellectual development, and he certainly brought to bear upon
medicine the same influences which were at work in other sciences by such
contemporaries as Socrates, Herodotos, Democritos, and Plato135.

He was born on the island of Cos of a family of priest-physicians. Dem-
ocritos of Abdera was one of his masters. Hippocrates began his medical
studies at Cos and Cnidos136. He traveled extensively, and taught and prac-

135 Considerable further advances were made in classical times through the fall of

Rome. While the medicine in the Islamic world flourished, what followed in

Europe was truly a dark age. Much knowledge of anatomy and surgery was

lost. Reliance on prayer and miraculous healing abounded. Secular physicians

became extinct. Chants, potions, horoscopes, and amulets were widely used.

Dissection of cadavers was restricted or outlawed, so those who practiced medi-

cine were prevented from acquiring firsthand knowledge of the human body.

Medical research came to a standstill.
136 The great doctors recognized the spiritual side of healing; when all else failed,

they were quite happy for their patients to attend one of the many asclepieia –

temples to the patron god of physicians, Asclepios ( Aesculapis to the Romans

and realy the Egyptian Imhotep in a Greek dress), and his daughters Hygeia

(health) and Panacea (healing). [Asclepios would often be accompanied by a

snake, the dracon – hence the medical symbol of a snake rounding a staff.]

Pilgrims to the temples relaxed among beautiful surroundings and read inscrip-

tions on marble pillars that told of the miraculous cures performed by god. Then

they would bed down for the night in the sacred hall, where Asclepios would

supposedly appear as they slept, to give them a ‘dream drug’ or even perform

‘dream surgery’. These rites were derived from Egyptian models. Thanks to

them, a large number of clinical observations were concentrated in the temples,

especially in Cos and Cnidos.

Without those abundant clinical cases such as were afforded by the Asclepieia,
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ticed his profession at Athens, Thrace, Thessaly, Delos and his native island.
He died at Larissa in Thessaly.

ca 425 BCE Theodoros of Cyrene. (ca 465–399 BCE) Mathematician
and philosopher. Showed that the noninteger roots

√
3 up to

√
17 were irra-

tional. The proof of the irrationality of
√

2 is quoted by Aristotle (384–322
BCE), but its originator is unknown. It is possible that 1

2 (
√

5 − 1), which
is the ratio of a side to a diagonal of a regular pentagon, was the first known
irrational.

Theodoros was born in Cyrene, which was then a flourishing Greek colony
just south of Greece on the North African coast. He was the teacher of both
Plato and Theaitetos, starting his life as a philosopher and then switching
to mathematics.

Plato stated in Theaitetos that Theodoros discussed the irrationality of√
2,

√
3 ... and stopped at

√
17.

ca 420 BCE Democritos of Abdera (ca 460–370 BCE). A Greek physi-
cal philosopher and mathematician. The father of Materialism . Synthesized
the ideas of Parmenides and Heraclitos and is the intellectual forerunner of
the modern philosophers Locke and Descartes. Archimedes claimed that Dem-
ocritos (ca 410 BCE) stated that the volume of pyramid on any polygonal base
is 1/3 that of a prism with the same base and altitude137.

the progress of medicine would have been considerably slower. Thus, the As-

clepieia were the cradles of Greek medicine, and they help to account for the

extraordinary richness of the Hippocratic collection, which themselves inherited

and continued Egyptian tradition.

The Greek believed in the existence of 4 fluids, or humors, within the body, the

balance of which was vital for health. The humors correspond to the 4 elements,

and had the same qualities. They were also associated with particular parts of

the body: Air ↔ blood; Water ↔ brain; Fire ↔ liver; Earth ↔ spleen; the

corresponding humors were: blood, phlegm, yellow bile; black bile.
137 Although Democritos could have hardly render a rigorous demonstration of this

theorem, he still have guessed the result following two logical steps:

1. A prism can be dissected into a sum of prisms all having triangular bases, and,
in turn, a prism of this latter sort can be dissected into 3 triangular pyramids

having, in pairs, equivalent bases and equal altitudes. It follows that the crux

of Democritos’ problem is to show that two pyramids of the same height and
equivalent bases have equal volumes (this was later demonstrated by Eudoxos

of Cnidos, using the method of exhaustion).

2. If two pyramids with equal heights and equivalent bases (same area but not

necessarily same form) are cut by planes parallel to the bases and dividing the
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A pupil of Anaxagoras and Leucippos, a friend of Philolaos, and an ad-
mirer of the Pythagoreans. Studied in Egypt the mathematical and physical
systems of the ancient schools. Diodoros Siculus tells us that he lived to be
ninety years old.

Taught that mechanical relationships (arrangements of atoms) account
for various characteristics of nature i.e. mechanistic causes account for all
phenomena. Even morality, the soul, and all mental life are reducible to
mechanistic terms with physical imperceptible atoms as their basic structure.

Spiritual reality does not exist: mechanistic Materialism is complete, self-
sufficient and self-contained.

Atoms, owing to their non-sensory nature and small size, can only be
thought, not directly observed. Nevertheless, these imperceptible atoms ac-
count for all observable phenomena of nature which are manifest to the senses.
But sense experiment produces multiplicity of options because people receive
and interpret sensory phenomena from different perspectives. Knowledge de-
rived from the senses is therefore relative to the person from whose experience
it originates. Therefore one can never use the senses to attain truth (knowl-
edge of metaphysical reality138).

In his own words: “Opinions say hot and cold, but the reality is atoms and
empty space”. He believed that at every moment stars are colliding and new
worlds are rising out of ‘Chaos’ by the selective aggregation of atoms, that
there is no design and that the universe is a machine. He vaguely anticipated
the notions of conservation of matter and energy and was first to discover the
correct formulae for the volumes of a pyramid and a cone.

Democritos thus stated that all material is built out of indivisible atoms
moving about in the microvacuum. He also believed that space is infinite,
having always existed, and that the number of atoms is infinite. Records
state that Democritos ranked intellectually equal if not superior to Plato and
that his works, now vanished, were as comprehensive as those of Aristotle.

After Democritos, his school rapidly passed into near oblivion and its
followers diverted in into Sophism.

height in the same ratio, then the corresponding sections formed are equiva-

lent. Therefore the pyramids contain the same infinite number of equivalent
plane sections, and hence must be equal in volume.

138 Thus, 2300 years before Planck, Albert Einstein, Bohr, Born and Feynman,

Democritos already foreshadowed the ontological difficulties that quantum

physics posed to 20th century physics.
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ca 400 BCE Magnetic needles were used on Chinese ships. The mariner’s
compass is said to have been known to the Chinese as early as 1100 BCE,
though it was not introduced into Europe until ca 1000 CE. Prior to 1600 CE
nobody knew the true reason for the orientation of the needle.

ca 400 BCE The diseases of malaria and gout first identified or described
with accuracy.

400 BCE Diminished rainfall caused endemic malaria in ancient Greece,
undermining people’s vitality.

400 BCE Oil was drilled on one of the Greek islands.

390 BCE Theaitetos of Athens (ca 415–369 BCE). A mathematician of
great stature of the time of Plato. Studied with Theodoros of Cyrene and at
the Academy. First to study the octahedron and the icosahedron. He fell on
the battlefield (369 BCE) in a war between the Athens-Sparta alliance against
the Theban army. One of Plato’s dialogues is dedicated to his memory.

Theaitetos introduced the exact concept of commensurability in length and
proposed that line segments, which produce a square whose area is an integer,
but not a square number, are incommensurable with the unit of length. He
was the first to write on the 5 regular polyhedra and the first to construct them,
and finally, he formulated the theory of proportions. Since Euclid’s Book X
contains a detailed mathematical development of matters briefly indicated in
Plato’s dialogue, it is believed that a number of Euclid’s propositions on the
subjects of commensurability and proportion were originated by Theaitetos.

390–220 BCE The Celtic-Roman Wars. By about 400 BCE, Etruscan
power had already started to wane, largely as a result of the occupation of
most of Northern Europe by the Celts (ancestors of the Bretons, Welsh, Scots,
Irish and the French). One group of Celts, the Gauls139, crossed the Alps
into Italy and pushed the Etruscans out of the Po Valley. From here they
attacked Etruscan cities further south. The presence of the Celts in Northern
Italy blocked the north-south trade routes and slowly choked the Etruscan
economy. In 391 BCE, the Etruscan asked Rome for help and a military
encounter between the two archenemies of the Etruscans became inevitable.

On July 18, 390 BCE, 70,000 Celts under Brennus defeated the Roman
army at Allia and captured Rome. They sacked and burned the city and held
all of it except the capitol. The Celts could have, there and then, destroyed
the city-state, changing at one fell swoop the course of worlds history, but

139 The origin of the district names of Galicia in Spain, Turkey and Poland derived

from Gaul .
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they sold their victory for ransom gold and withdrew after seven months. This
they would dearly regret 65 years later. Indeed, during that time-interval, the
Romans improved their weapons, military skill, discipline and administration.

In 225 BCE, a grand army of 70,000 Celts was crushed by an equal-sized
Roman army under Marcellus at Telamon. The Battle of Clastidium (220
BCE) finally removed the Celtic treat on Rome and eventually caused the
Celts to leave Italy.

387–360 BCE Archytas of Tarentum (ca 428–347 BCE). Greek phi-
losopher, scientist, mathematician and distinguished in the administration of
civic affairs. Occupies a high place among the versatile savants of the ancient
Greek world. An intimate friend of Plato who quoted him as an example of the
perfect ruler, the philosopher-king who combines practical sagacity with high
character and philosophic insight. It was through him that Plato received his
initiation in the exact sciences and Pythagorean philosophy. Aristotle wrote
a special treatise ‘On the Philosophy of Archytas’.

He is described as the 8th leader of the Pythagorean school, and was a
pupil of Philolaos.

He was elected seven times to command the army. Under his leadership,
Tarentum fought with unvarying success against the Messapii, Lucania, and
even Syracuse. After a life of high intellectual achievement and uninterrupted
public service, he drowned while on a voyage across the Adriatic.

In mathematics, he was the first to draw up a methodical treatment of
mechanics with the aid of geometry and for that reason he is sometimes
called the founder of mechanics. He first distinguished harmonic progression
from arithmetical and geometrical progressions. He contributed many original
theorems to geometry and new ideas to the study of music and acoustics. For,
besides computing the numerical ratios for the new musical scales by means
of systematic applications of the arithmetic and the harmonic means, he also
laid the number-theoretical foundations for the theory of music which is found
in Euclid’s “Sectio Canonics”.

Archytas is said to have been the inventor of a kind of flying machine,
a wooden pigeon, balanced by a weight suspended from a pulley, and set in
motion by compressed air escaping from a valve.

387–347 BCE Plato (427–347 BCE). One of the most influential thinkers
in Western culture. Regarded as a father of traditional Western philosophy,
who gave civilization a powerful thinking method. Philosopher and mathe-
matician. Rejected the experimental method with ardor and contempt. In
his view, no precise study of the ever changing phenomena in the natural uni-
verse was possible, and it was only in the philosophic theory of forms and in
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the science of pure mathematics that absolute knowledge could be attained.
These contemplative disciplines of the intellect dealt with objects timeless
and invariant , known independently of experience and existing logically prior
to the material world, which could at most be merely an approximation to
eternal forms or ideas.

Plato posed the three most basic questions of philosophy:

• How can man discover the truth?

• What is the origin of the Universe?

• What is the purpose of human life?

The answers Plato gave to these questions laid the foundation to a system
of philosophy called ‘Objective Idealism’, according to which all things are
the mere shadows of ideas140. Ideas are eternal, while things are transitory:
true knowledge comes neither through perception nor reason but only via
‘inspiration’ arriving from beyond. We must look on this world as only the
image, the shadow of an invisible system; the universe we see is based on ideal
forms, which are imperfectly embodied in various objects. Since these ideal
forms are ideas, they cannot be perceived by the senses, but only uncovered
by the use of reason, guided by critical use of logic.

In his dialogue Timaeus Plato gave an account of his ideas about the
creation of the universe; he maintained that every theory was of necessity
based on ideas originated by the scorching intellect, Science is never able to
reach any conclusion with absolute certainty. All the phenomena that we can
perceive with our senses, the objects of physical science, provide only a picture
of transcendental world of ideas , which represented for Plato the real world.
Whereas the physical world is subject to continuous changes and consists of
passing phenomena, the actual reality of the world of ideas is permanent.
Plato thus refused to accept the absolute character of science.

Plato admitted in Timaeus that science may have a certain amount of
precision. But in that case it must use mathematics, which was for him the
natural language of science. Deeply influenced by the Pythagorean school,
Plato realized the powerful creative force of mathematical formalism. Mathe-
matics is somehow in the middle between the world of ideas and the observable

140 One of Plato’s strong opponents was Antisthenes of Athens (c. 444-365

BCE), founder of the Cynic school of Greek philosophy. He was a faithful

student of Socrates and was present at the latter’s death. Ridiculing Plato’s

doctrine of Ideas he said: “I am able to see the horse, but I cannot see his

horse-ness”.
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world. His emphasis on the paramount importance of mathematics for science
is widely considered one of the most important and far-reaching contributions
to the development of human thought.141

In the Timaeus Plato formulates a cosmology and creation story consis-
tent with this concept of human knowledge. At the beginning of time, a
beneficent creator used the eternal ideas or forms to mold preexisting, chaotic
matter142 (like Pythagoras, Plato believed that the ultimate basis of these
forms was mathematical143 and geometrical). The creator molded matter into
approximations of these ideal shapes, creating a universe ruled by eternal
mathematical laws, laws which humans can deduce through reason. These
eternal mathematical laws are the true reality , while the changeable universe
we see is mere appearance – the observation of nature is thus unreliable. Ergo
men cannot know truth by means of science.

Plato emphasizes the ethical implication of this distinction: the ideal forms
are the source of all good, while base, earthy matter is the source of the
world’s evil. The mundane, changeable world of everyday life cannot be used
to understand the eternal, perfect, and unchangeable heavens. The most
perfect motion, circular motion, occurs only in heaven, not on earth. Plato
thus developed a new mode of thinking about the universe and creation.
Against the traditional appeal to authority, Plato counterposes the power
of human reason. But he attacks observation as a route to knowledge and
strictly separates the worlds of thinking and doing, the spirit and the flesh,
the heavens and earth. He thereby created a mathematical myth, a formidable
barrier to the development of science.

141 The views of Democritos on the atom were generally accepted as a dogma by

19th century scientists. But Planck’s observations on thermal radiation (1900

CE) where difficult to reconcile with the prevailing notion of the atomic struc-

ture of matter, thereby reviving Plato’s notion in science, with strong emphasis

on the belief that mathematical laws underline the structure of matter.
142 In this sense, Plato’s creation story holds important similarities with the story

of Genesis 1.
143 In Book 5 of his Laws, Plato gives 7! = 5040 as the population of an ideal

city: it has 58 proper divisors (without 1 and 5040), which makes for efficient

division of the population for purposes of taxes, land distribution, war and so

on. (Plato was not aware that 7560 and 9240 have 62 proper divisors each –

the maximum possible number of 4 and fewer digits). In Book 12, Plato cites 3

and 18 as the most difficult sums to roll with three dice: they are the only sums

that can be made in only one way, 1–1–1 and 6–6–6. Since there are 63 = 216

equally probable ways of rolling three dice, the probability of making 3 or 18 is
1

216
.
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Plato conceived his view of the universe as consistent with, and reinforce-
ment for, his concept of the ideal society. In that society, outlined in the
dialogue of The Republic144, all thought is to be done by philosopher-kings,
aided by a small elite of guardians. No one else has political or social rights. As
ideas and matter, heaven and earth, are separated at creation, so guardians
and philosopher-kings must be separated from those who work: slaves are
to work without thinking, and philosopher-kings are to think without work-
ing. As the creator gave eternal mathematical laws to the universe, so the
philosopher-king give laws to society145.

His real name was Aristocles and Plato was a nickname (broad-
shouldered). After the death of Socrates (399 BCE) he left Athens and

144 From the vantage-point of the turn of the 21th century Plato can be regarded

as centralist, totalitarian and authoritarian. His rigid rules, harsh judgments,

high degree of righteousness and category boxes remind us of the symptoms of

certain totalitarian regimes in our own times.

In his Republic, Plato suggested that society is to be ruled by a special class

called Guardians. These are originally to be soldiers who take over government.

They, in turn, are divided into Rulers, who make policy decisions and the Aux-

iliaries (police etc.) who carry out the policies. Ordinary people are to have

no say in government whatsoever. The Guardians are a sort of hereditary caste

who are to be bred on strictly scientific lines. Families and private wealth are

distractions and are to be abolished. The State is to come first. There is to be

censorship in the arts and in the materials allowed into education. Nothing that

might threaten the State is to be permitted. The whole purpose of education

is to produce a small ‘elite of Guardians’. Breeding is to be arranged through

special marriage festivals. It is thus not surprising that there are strong echoes

of Plato in the Marxists approach to state and government and that the Nazi

party in Germany had as one of its official aims the production of ‘Guardians of

the highest Platonic ideals’. But this is where the similarity ends. Plato was a

good philosopher who meant well and did not seek power for himself. Moreover,

he was not advocating bully-boy fascism and was against the rule of wealth.

What he wanted was competence.
145 Plato’s Republic, a rejection of Athenian democracy, was modeled on Sparta,

where a small body of landlords ruled over a mass of rightless serfs, or helots.

Sparta had defeated Athens in the 30-year long Peloponnesian War, begun in the

year of Plato’s birth, 428 BCE. Deprived of its colonies in the wake of defeat,

Athens erupted in social conflict as rich landholders battled freeholders and

artisans. To protect themselves from the growing demands for abolition of debts

and land distribution, the landholders sought to combat political democracy

and to erect a hierarchical society. Plato became the theoretician of this new

society, rationalized in The Republic and justified by the cosmology expounded

in Timaeus.



387–347 BCE 211

traveled widely for several years through the ancient world. In 387 BCE he re-
turned to Athens and founded there a school of philosophy and science known
as the Academy (after the Greek hero Academus) which lasted under various
forms until 529 CE. It can be considered as the first university. Subjects such
as astronomy, biological sciences, mathematics and political science were in-
vestigated at the Academy. While the influence of Socrates146 (ca 469–399)
in the development of mathematics was negligible (if not actually negative)
that of Plato was substantial, since the Academy became the mathematical
center of the world. His ‘Theory of Forms’ 147 is a remarkable precursor of
modern physical theories on two counts: (1) the notion that everything can
be reduced to geometry, a view held by Descartes and in a different way by
Einstein; (2) the notion that the elements (atoms of Democritos) are made
of still smaller basic entities (‘triangles’ in his language, which are evidently
what in modern physics are called nuclear or elementary particles or even
quarks). Plato believed that the planets move in circular orbits around a
stationary earth.

In addition, Plato accepted the Pythagorean doctrine that the world is
ultimately intelligible in terms of numbers. Altogether therefore, his method
is that of mathematical modeling of the physical world, which is the aim
of mathematical physics today. In mathematics proper, Plato introduced
rigorous definitions (straight line; plane surface) and began the study of the
golden section. He gave a new rule to find square numbers which are the sum
of two squares

[
(2n)2 +(n2 − 1)2 = (n2 +1)2

]
and the five regular solids are

named after him.

It must be remembered, however, that the Pythagorean school and Plato
fostered the idea that rational order and harmony lie at the base of all things
– quite independently of the human mind. This and similar thoughts were
organized in a systematic philosophical edifice.

Plato’s concept of eternal mathematical laws is two-sided. The belief in
such laws and the search for them has been immensely important to science.

146 This great philosopher championed clear thinking with careful definitions, and

condemned the astronomers for their wild conjectures. Thus he probably helped

astronomy towards becoming an inductive science that extracts its data from

observations.
147 Before Plato, Philosophers like Parmenides and Heraclitos had been

wrestling with the problem of change. Heraclitos believed that all was change:

you can never stem into the same river twice. Parmenides believed that there

was an unchanging inner core. Plato put both of these views together with his

theory of ‘inner forms’ or ‘essence’. Those were absolute and fixed while the

surficial matter could change.
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But scientists have had two contrasting views about what these laws are: One
view follows Plato and believes that the laws truly rule the universe, that
the universe is the embodiment of abstract mathematics. The other, quite
different view, is that mathematical laws are descriptions of physical processes
and patterns of nature – the reality is a process described by mathematics,
the language of exact science.

It took mankind another 1600 years to liberate itself from Plato’s total
reliance on the regularity and perfection of the material universe and advocate
systematic observations, experimentation and the reliance on mathematical
rigor.

Plato Versus Democritos

The concept of the atom was first proposed by Democritos and Leucippos
(ca 460–420) BCE. They considered their hypothetical atom the smallest in-
divisible unit of matter, eternal and indestructible. The atoms of Democritos
were all of the same substance, but had different sizes and different shapes.

Plato finally rejected the idea of the atom proposed by Democritos and
Leucippos. For him the smallest parts were geometrical forms: Those of the
earth he compared with cubes, of fire with tetrahedra, of air with octahedra,
and of water with icosahedra. Moreover, he did not consider these smallest
part indivisible. The elements can be transformed148 into each other, they

148 Anaximander (ca 560 BCE) was the first to envisage the possibility of the trans-

formation of one primary substance into another. Heraclitos (ca 500 BCE)

assumed that fire is the basic element, which is both matter and moving force.

Werner Heisenberg (1954) pointed out that if the word fire is replaced by

energy, modern atomic physics is in some way extremely close to the doctrine of

Heraclitos: Energy – or more precisely, quantum fields – is in fact the substance

from which all things, and even the vacuum itself, are considered to be made in

modern physics; energy is what moves (the famous π′αντα χωρει), and even

in classical (pre-quantum) physics energy is transmutable into motion, heat,

light and tension. Einstein’s Special Relativity, of course, taught us that energy

and mass (the latter quantifying inertia – the tendency opposing motion) are,

in a deep sense, inter-convertible.
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can be taken apart and new regular solids can be formed by them; for Plato,
the form was more fundamental than the substance of which it was the form.

The ideas of Democritos prevailed in physics and chemistry until the turn
of the 20th century, soon to be modified through the advent of quantum
physics: Planck, Heisenberg, Pauli and other leading atomic physicists
were greatly influenced and inspired in their philosophy of science by Plato
and Neoplatonism. They considered themselves to be much nearer to Plato
and the Pythagoreans then to the materialistic view of Democritos. The
elementary particles (such as protons, neutrons, electrons, mesons, quarks and
the like) are not eternal and indestructible units of matter, but rather, inter-
convertible (in certain allowed combinations) via absorption and release of
motion-energy. Furthermore, one of these particles is the photon – a particle
of light (“pure energy”).

As modern physics has indeed shown, these particles can be transformed
into each other (in the laboratory or in natural radioactive processes) through
collisions or instability. Such events support the idea that all particles are
made from the same substance, namely dynamical quantum fields, of which a
particle is but one manifestation. These modern views resemble in a remark-
able way those of Plato as expressed in Timaeus. In the last analysis, the
basic building blocks of matter a-la-Plato are not substance but mathematical
forms.

In modern atomic physics elementary particles are also considered as
forms, albeit of a much more complicated nature. In Greek philosophy these
forms were considered as static; modern physics stresses their dynamic nature.
There are in few fields so many strikingly similar ideas, despite basic differ-
ences, as are encountered when comparing Greek philosophy with modern
theories of the atom.

384–100 BCE The concept of ‘parallelogram of velocities’ was known
to Aristotle (384–322 BCE), Archimedes (287–212 BCE) and Hero of
Alexandria (ca 100 CE, author of ‘Automata’, first book on robots).

373 BCE A major earthquake followed by a devastating sea wave emanated
from the Corinthian Gulf (38.3 ◦N, 22.1 ◦E).

ca 370–355 BCE Eudoxos of Cnidos (ca 408–355 BCE, Asia Minor).
A distinguished Greek mathematician, astronomer, orator, legislator, philo-
sopher, geographer, and medical man. The method of Exhaustion, credited
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to him, is a mathematical scheme similar to the integral calculus, although
formally quite different. It is the Platonic school’s answer to the paradoxes of
Zeno. The method assumes the infinite divisibility of magnitudes and has, as
a basis, the proposition: “If from any magnitude there be subtracted a part
not less than its half, from the remainder another part not less than its half,
and so on, there will at length remain a magnitude less than any preassigned
magnitude of the same kind”.

The method is rigorous but sterile, because it does not enable one to
calculate the result. Archimedes however, discovered a procedure which he
established by the method of exhaustion. His idea was to cut up his area,
or volume, into a very large number of parallel plane strips, or thin parallel
layers and (mentally) hang these pieces at one end of a given lever in such
a way as to be in equilibrium with a figure whose content and centroid are
known. With our modern method of limits this method can be made perfectly
rigorous, and is identical with present day integration.

Eudoxos was the founder of scientific astronomy. He constructed a math-
ematical model of motions of heavenly bodies, with 33 concentric spheres
rotating around a stationary earth. The combination of these motions suc-
ceeded in imitating the actual motions of the sun, moon and even planets
across the fixed stars. His work was the first astronomy which broke away
from philosophical speculations and sought to build a mathematical model to
fit observations.

Eudoxos studied mathematics with Archytas in Tarentum, and medicine
with Philistrium on the island of Sicily. When he was 23 years old, he went to
Athens to learn philosophy and rhetoric. He was so poor that he had to live in
the harbor-town Piraeus, a walk of two hours each way from Plato’s Academy.
Some years later his friends enabled him to undertake a journey to Egypt.
From Agesilaos, King of Sparta, he received a letter of recommendation to
the Pharaoh Nectanebus. In Egypt he learned astronomy from the priests
of Heliopolis and he made observations himself in an observatory, situated
between Heliopolis and Cyzicus on the sea of Marmara, which attracted a
large number of pupils.

Around 365 BCE Eudoxos came once more to Athens with his pupils. He
held discussions on philosophical questions with Plato who did not agree with
some of his views and ideas. He died in his native town of Cnidos on the
Black Sea, highly renowned and honored.
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The story of Greek Infinitasphobia

The Pythagoreans could not accept
√

2 as a number, but no one could deny
that it was the diagonal of the unit square. Consequently, they believed that
geometrical quantities must be treated separately from numbers or, rather,
without mentioning any numbers except rationals. Greek geometers thus
developed ingenious techniques for precise handling of arbitrary lengths in
terms of rationals, known as the theory of proportions and the method of
exhaustion.149 The rejection of irrational number by the Greeks was just part
of a general rejection of infinite processes.

Aristotle said that infinity exists only potentially, not in actuality. In fact,
until the late 19th century150 most mathematicians were reluctant to accept
infinity as more than ‘potential’. The infinitude of a process was understood
as the possibility of its indefinite continuation without its eventual completion.
(e.g. the paradoxes of Zeno; ca 450 BCE)

Thus, the Greek accepted that the sequence of natural numbers 1,2,3,... is
a potential infinity. They also understood, that one can generate a sequence
of rational numbers according to a definite rule that approaches

√
2 in the

limit151, yet they were afraid to draw the final logical conclusion even in the
face of the geometrical evidence that such limits do indeed exist.

Nevertheless, the fear of infinity forced the Greek mathematicians to seek
the infinite in the finite, that is, devise a calculus devoid of infinitesimals,
through which they could successfully compute areas, volumes and lengths of
arcs. This was perhaps the Platonic school’s answer to the paradoxes of Zeno.
The names of the persons who achieved this feat were Antiphon (480–411

149 When theses techniques where reconsidered in the 19th century by Dedekind,

he realized that they provided an arithmetical interpretation of irrational quan-

tities after all. It was then possible to reconcile the apparent conflict between

arithmetic and geometry.
150 With the exception of the 18th century, the great age of the infinitesimals; then,

no barrier between mathematics and physics was recognized, since the leading

physicists and the leading mathematicians were the same people.
151 The first mathematical process we would recognize as infinite was devised by

the Pythagoreans via the recurrence relations xn+1 = xn +2yn; yn+1 = xn +yn,

for generating integer solutions of the equations x2 − 2y2 = ±1. It is likely that

those relations arose from an attempt to understand
√

2 and it is easy to see

that lim
n→∞

(xn
yn

) →
√

2.
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BCE), Eudoxos (ca 408–355 BCE) and Archimedes (287–212 BCE) The
method was advanced in two stages:

• Theory of proportions: enables length to be treated as precisely as num-
bers while only admitting rational numbers. The objectives of Eudoxos
was to be able to compare two ratios to determine whether they are
equal, and if they are not, which is larger in a way that is equally valid
for ratios of commensurable and incommensurable magnitudes. This re-
sulted in the statement: “The ratio a

b exists when whole numbers m and
n can be found such that ma > b and nb > a”. [i.e. 1

m < a
b < n]. Euclid

included this statement among his ‘definitions’ in book V. Archimedes,
who used it extensively, regarded it as an axiom. He attributed it to
Eudoxos, and it is now known as the Eudoxos-Archimedes axiom. Its
virtue is that it excludes not only zero but any idea of infinity – either
the infinitely large or the infinitely small.

Eudoxos went on to state a criterion for two ratios to be equal (in modern
terminology): “If a, b, c, d” are four given magnitudes, then a

b = c
d iff,

given any two positive integer, then:

(1) ma > nb implies mc > nd
(2) ma = nb implies mc = nd
(3) ma < nb implies mc < nd

If the magnitudes are commensurate, (2) is sufficient, both ratios being
equal to the rational number n

m . The subtlety of the theory lies in (1)
and (3), because (2) never holds for incommensurable magnitudes. Out
of two inequalities the condition for equality somehow emerges. Eudoxos
goes on to deal with unequal ratios by asserting that if two numbers m
and n exist such that ma > nb and mc < nd then a

b > c
d .

The above three Eudoxian assertions (or axioms) provided a firm foun-
dation from which to extend the Pythagorean treatment of the ratios of
whole numbers to deal with incommensurable magnitudes, while avoid-
ing the notion of irrational numbers on the one hand and providing the
basis for a generalization into the method of exhaustion, on the other.

The theory of proportions was so successful that it delayed the devel-
opment of the theory of real numbers for 2000 years! This was ironic,
because the theory of proportions can be used to define irrational num-
bers just as well as can lengths152.

152 Any arithmetic approach to
√

2, whether by sequences, decimals, or contin-

ued fractions, is infinite and therefore less intuitive. Until the 19th century

this seemed a good reason for considering geometry to be a better foundation
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For the measurement of the circle, Archimedes needed to calculate the
value of

√
3. He did it by a clever uses of the method of proportions in

the following way (modern notation):

22 = 3 × 12 + 1 ∴
(

2
1

)2

= 3 +
1
12

72 = 3 × 42 + 1 ∴
(

7
4

)2

= 3 +
(

1
4

)2

262 = 3 × 152 + 1 ∴
(

26
15

)2

= 3 +
(

1
15

)2

972 = 3 × 562 + 1 ∴
(

97
56

)2

= 3 +
(

1
56

)2

3622 = 3 × 2092 + 1 ∴
(

362
209

)2

= 3 +
(

1
209

)2

13512 = 3 × 7802 + 1 ∴
(

1351
780

)2

= 3 +
(

1
780

)2

Therefore

2
1

>
7
4

>
26
15

>
97
56

>
362
209

>
1351
780

= 1.7320510... >
√

3

Likewise, the numerical identities

52 = 3 × 32 − 2 ∴
(

5
3

)2

= 3 − 2
32

for mathematics than arithmetic. Then the problems of geometry came to a

head, and mathematicians began to fear geometric intuition as much as they

previously feared infinity. There was a purge of geometric reasoning from the

textbooks and an industrious reconstruction of mathematics on the basis of

numbers and sets of numbers.

Indeed, Dedekind(1872) introduced a partition of the positive ratios into sets

L, U such that a member of L is less than any member of U . This definition of

a positive real number, now known as Dedekind cut [e.g. L(
√

2) = {r|r2 ≤ 2};

U(
√

2) = {r|r2 > 2} with r rational], gives a complete and uniform construc-

tion of all real numbers as points on a line, using just the rationals. This is

an explanation of the continuous in terms of the discrete, finally resolving the

fundamental conflict in Greek mathematics.
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192 = 3 × 112 − 2 ∴
(

19
11

)2

= 3 − 2
112

712 = 3 × 412 − 2 ∴
(

71
41

)2

= 3 − 2
412

2652 = 3 × 1532 − 2 ∴
(

265
153

)2

= 3 − 2
1532

9892 = 3 × 5712 − 2 ∴
(

989
571

)2

= 3 − 2
5712

36912 = 3 × 21312 − 2 ∴
(

3691
2131

)2

= 3 − 2
21312

lead to the inequalities

5
3

<
19
11

<
71
41

<
265
153

<
989
571

<
3691
2131

= 1.7320506... <
√

3

To 6 significant figures, we therefore find by Archimedes’ method
√

3 = 1.732050...

To calculate the ratio of the circumference of a circle to its diameter,
Archimedes began by trapping the circle between an exterior hexagon
and an interior hexagon. His result, in terms of

√
3, is

3 <
circumference

diameter
< 2

√
3 = 3.461...

Successively halving the angle subtended by the polygon side at its cen-
ter, there appear regular figures having 12, 24, 48, 96 ... sides153. Using
no more than proportions and the Pythagorean theorem, Archimedes
obtained with a 96-gon his best value154 for π

3.1408 = 3
10
71

<
circumference

diameter
< 3

1
7

= 3.1428.

153 Today we would have written:

2kn sin

(
θ

2k

)

< π < 2kn tan

(
θ

2k

)

, θ =
π

n

when n is the original number of sides, doubled k times. (Archimedes took

n = 6, k = 4).
154 This may have been known to the ancient Egyptians who built the Great Pyra-

mid of Gizah: the ratio of the perimeter of this pyramid to its height was

2 × 3.142 which falls right in between Archimedes’ two limits.



ca 370–355 BCE 219

It correctly compares to π ≈ 3.14159 to 5 figures. The value of 31
7

was used by most European mathematicians until 1573, when Valenti-
nus Otho used π = 355

113 = 3.141592... That Archimedes arrived at his
result without trigonometry, and without decimal (or other positional)
notation is an illustration of his tenacity.

• The method of exhaustion is a generalization of the theory of propor-
tions. Just as an irrational length is determined by the rational lengths
on either side of it, more general unknown quantities (such as arcs, for
example) become determined by arbitrary close approximation using
known elements. Examples (as expounded in book XII of Euclid’s ele-
ments) are an approximation of the circle by inner and outer polygons
and an approximation of the pyramid by stacks of prisms.

In both cases the approximating figures are known quantities, on the
basis of the theory of proportions and the theorem that the area of a
triangle = 1

2 base × height.

“Exhaustion” does not mean using an infinite sequence of steps to show
(in the case of the circle) that area is proportional to the square of the
radius. Rather, one shows that any disproportionality can be refuted
in a finite number of steps. This is typical of the way in which exhaus-
tion arguments avoid mention of limits and infinity.155 In the case of the
pyramid, one uses elementary geometry to show that stacks of prisms
approximate the pyramid arbitrarily closely. Then exhaustion shows
that the volume of a pyramid, like that of a prism, is proportional to
base × height. Finally there is an argument to show that the constant
of proportionality is 1

3 .

Archimedes used the method of exhaustion to calculate the area of a
circle. He was able to show that S = λr2 (S = area; r = radius), with

λ = 32

√
√
√
√

2 −

√

2 +

√

2 +
√

2 +
√

2 = 3.140...

In Euclid, both the infinite and the infinitesimal are deliberately excluded156.

155 Euclid (330–260 BCE) avoided even the method of exhaustion itself in his

derivation of the area of a polygon, using clever dissection arguments.
156 Had the Greeks accepted the concept of infinity, they would have had to accept

the notion that the whole is no greater than some of it’s parts, since infinity,

plus whatever number you please, or plus or times or minus infinity, can still

be infinity. This Aristotle was not ready to accept.
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Archimedes, working in the tradition of Aristotle and Euclid , asserted
that an infinitesimal, if it existed, would be a number greater than zero, which
nevertheless remained less then 1, say, no matter how (finitely) many times it
was added to itself. But such a number could not exist since even a very small
non-zero number becomes arbitrary large if it is added to itself enough times.
So, on the one hand Archimedes rejected infinitesimals, but on the other hand,
being also an engineer and physicist, he used infinitesimals to solve problems
in the geometry of parabolas. Then, since infinitesimals “do not exist”, he
gave “rigorous” proofs of his results using the method of exhaustion, relying
on indirect arguments and purely finite constructions.

The method of exhaustion, is a rigorous but sterile method: once a formula
is known, the method may furnish an elegant tool for establishing it. How
then, did Archimedes discoverer the formulas which he so neatly established
by the method of exhaustion?

The above question was finally answered in 1906, with the discovery
by Heiberg, in Constantinople, of a copy of Archimedes’ long lost treatise
‘Method, addressed to Eratosthenes’. In it, Archimedes reveals that his deepest
results were found using dubious infinitary arguments, and only later proved
rigorously. Because, as he says, “It is of course easier to supply the proof
when we have previously acquired some knowledge of the questions by the
method, than it is to find it without any previous knowledge”.

Archimedes, nevertheless, made the most elegant application of the
method of exhaustion, coming nearest to actual integration, in his quadra-
ture of a parabola. In a letter to his fried Dositheos, he mentioned that he
had shown that ‘any segment bounded by a straight line and a section of a
right-handed cone is 3

4 of a triangle, which has the same base with the section
and equal height.’ We now call the section of right-angled cone a parabola157.

The concepts that Archimedes needed for proofs in geometry – the theory
of proportions and the method of exhaustion – had already been supplied by
Eudoxos. It was, however, Archimedes’ phenomenal insight and technique
that lifted him head and shoulders above his contemporaries. Indeed, even

157 A canonical parabola y = λx2 is cut by the line y = b; the area of the triangle

is b
√

b
λ
; the area of the parabolic sector is

2

√
b
λ∫

0

(b − λx2)dx =
4

3
b

√
b

λ
=

4

3
× (area of triangle),

as calculated by Archimedes.
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with the limitations imposed on him through Aristotle’s fear of the infinites-
imals, he was not to be surpassed for the next 1900 years.

370–350 BCE Thymaridas (ca 400–350 BCE). Phytagorean mathemati-
cian known for his solution of the special system of linear equations

x + x1+ x2+ . . . + xn−1 = S

x + x1 = a1

x+ x2 = a2

x+ x3 = a3

...
...

x+ xn−1 = an−1

The solution x = (a1+a2+...+an−1)−S
n−2 , is known by the name “flower of

Thymaridas”. In this line of development, the Phytagoreans carried forward
the development of Babylonian algebra and transformed it into geometrical
algebra. Thymaridas also wrote on prime numbers. Little is known about
his life except for the fact that he was apparently a rich man, who for some
unknown reason, fell into poverty.

367 BCE Kiddinu (Cidenas). A Babylonian astronomer from the city of
Sippar, known for its school of astronomy. His name is mentioned by Greek
and Roman historians and appeared also on clay tablets. He may have been
the originator of lunar theory, some 200 years before Hipparchos158.

158 Cidenas is mentioned by Strabo and Pliny. He was rescued from a long

obscurity, to take his place as one of the greatest ancient astronomers: The

Jesuits Epping and Kugler deciphered in 1881 a Babylonian tablet of about

100 BCE, entitled ‘The Lunar Computation-Table of Kiddinu’. They found in

it just the same length of the lunar (synodic) month from New Moon to New

Moon, that Ptolemy afterwards attributed to Hipparchos.

In 1920 it was discovered that Kiddinu had recognized the tropical and the

sidereal years. Thus he was acquainted with, and was probably the discoverer

of, the precession of the equinoxes, on which Hipparchos’ fame had mainly
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357–336 BCE Astronomical evidence for the date of the prophecy of Joel.

Joel is one of the few biblical writers who clearly alludes to total lunar and
solar eclipses. His statement in 2, 31, “The sun shall be turned into darkness
and the moon into blood” – is unique in the Old Testament.

Total eclipses of the sun, because of their extreme rarity in any one region,
are very useful for chronological dating. The sudden and intense darkness
which occurs when the whole sun is obscured by the moon is an awe-inspiring
sight, not easily forgotten. Joel’s reference to the moon is more direct; the
association of a total eclipse of the moon with blood is often mentioned in
early literature; the moon often glows a deep red color during totality of a
lunar eclipse on account of sunlight scattered in the earth’s atmosphere.

The originality of Joel’s prophecy suggests that Joel himself witnessed
total eclipses of moon and sun.

As lunar obscurations of this type are frequent (on the average about
one every three years at any given place), it is not improbable that Joel saw
several of these in his lifetime. Consequently, he would not need to draw on
the experience of others.

Astronomical calculations show that from 1130 BCE until almost 310 BCE
only two obscurations of the sun could have been complete anywhere in Israel.

The dates of these events in terms of the Julian Calendar are 357 BCE,
March 01 and 336 BCE, July 04. Both eclipses would be very striking in
Judah; the 357 eclipse would be total at about 1:15 p.m. with the sun at
altitude of about 45 degrees. The later eclipse (336) would be even more
impressive: it would reach totality within a few minutes of noon and the sun
would be at an altitude of 80 degrees (almost at zenith), duration of totality
of each event being about three minutes. Total lunar eclipses visible through
Israel occurred within two years of each event. It would therefore appear
that the astronomical evidence favors a time window 357–356 BCE for the
prophecy of Joel.

354–322 BCE Aristotle (384–322 BCE). A Greek philosopher, educa-
tor, encyclopedic scientist and a mastermind in all fields of human inquiry:
he wrote on physics, metaphysics, ethics, logic, politics, art, biology, zoology

rested!

The astronomical data which Kiddinu determined (or at least employed) are

incredibly accurate: for the sun’s motion relative to the moon he erred by a

single second; for a certain other motion of the sun from the node, his value is

0.5 second too great, and is actually better than that on which our principal

modern tables of eclipses are based. Kiddinu had at his disposal the records of

every eclipse of the moon visible in Babylon for at least 300 years.
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and astronomy. He formalized the gathering of scientific knowledge. While it
is difficult to point to one particular theory, the total result of his compilation
of knowledge was to provide the fundamental basis of science for a thousand
years. Tightened up the Socratic method and showed its application to sci-
ence. Made important contributions by systematizing deductive logic.

His conception of nature stood in marked contrast to those of Pythagoras
and Plato in that it grossly underestimated the importance of mathematics.
Logic, on the other hand, was overrated.

Aristotle found Plato ‘ideas’ ridiculous and considered the senses as the
only sources of truth. His teachings about ethics was that the goal of life was
happiness. He was a student and disciple of Plato in the Academy (and later
an educator and proteǵe of Alexander the Great).

Established in 334 BCE the Lyceum of Athens159. He was perhaps the
world’s first great biologist, but his views on physics and astronomy were
rather confused160. In his book Physics (stemming from the Greek word
‘nature’) he defined philosophy of nature as a study of things that change.
But although Aristotelian physics was wrong, it was an essential precursor of
modern physics.

Aristotle was primarily a philosopher and biologist, but he was thoroughly
au courant with activities of the mathematicians. He made no lasting impact
on the field, although like his teacher, he contributed indirectly to the devel-
opment of mathematics.

Aristotle was among the first to rightly describe the heart as the center
of a system of blood vessels. However, he thought that the heart was both
the seat of intellect (the brain was not identified as a seat of intellect until
over a century later) and a furnace that heated the blood. He considered
this warmth to be the vital force of life because the body cools quickly at
death. Aristotle also erroneously theorized that the “furnace” was ventilated

159 A member of Aristotle’s school or a follower of Aristotle (Aristotelian) is known

as peripatetic; it is an adjective pertaining to the philosophy or method of

teaching of Aristotle, who conducted discussions while walking about in the

Lyceum (from the Greek peri = around and patein = walk). The Lyceum was

a school of philosophy and rhetoric near the temple dedicated to the god of

shepherds, Apollo Lyceus.
160 In a letter to his friend Solovine, Albert Einstein said (1948): “Certain things

from the philosophical writings of Aristotle were actually deceptive. If they

had not been so obscure and so confusing, this kind of philosophy would not

have held its own very long. But most men revere words that they cannot

understand and consider a writer whom they can understand to be superficial”.
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by breathing. Moreover, he did not think that there was a direct connections
between arteries and veins.

Aristotle supported the view that vacuum could not exist (“horror Vacui”
– nature abhors vacuum). He believed that object would travel with infinite
speed in vacuum, but did not believe that actual infinity could exist. He did
believe, however, that all of space is filled with the four elements (fire, earth,
water, air) and with “ether”. The terms ‘ether’ and ‘vacuum’ would be largely
viewed as synonymous for the next 2200 years.

Aristotle set out to construct an actual physical model of the universe. All
motion, according to Aristotle, is either rectilinear, circular, or a combination
of the two, because these are the only “simple movements”. Upward motion is
motion toward the center, downward motion leads away from it, while circular
motion is movement around the center. Celestial bodies revolve in circles. He
devised a scheme that allowed the concentric spheres of Eudoxos to rotate
in practice as well as in theory. His cosmology required a large number of
spheres for its elaborate machinery to operate.

Aristotle had a strong sense of religion and placed much of his belief in
the existence of God on the glorious sight of the starry heavens. He delighted
in astronomy and gave much thought to it. In supporting the scheme of
concentric spinning spheres, he gave a dogmatic reason: the sphere is the
perfect solid shape; and this prejudiced astronomical thinking about orbits
for centuries. The heavens then, are the region of perfection, of unchangeable
order and circular motions.

For ages Aristotle’s writings were the only attempt to systematize the
whole of nature161. They were translated from language to language, carried
from Greece to Rome to Arabia, and back to Europe centuries later, to be
copied and printed and studied and quoted as the authority. Long after the
crystal spheres were discredited and replaced by eccentrics, those circles were
spoken of as spheres; and the medieval schoolmen returned to crystal spheres
in their short-sighted arguments, and believed them real.

The distinction between the perfect heavens and the corruptible earth
remained so strong that Galileo, 2000 years later, caused great annoyance by
showing mountains on the moon and claiming the moon was earthly; and even
he, with his understanding of motion, found it hard to extend the mechanics
of downward fall to the circular motion of the heavenly bodies.

Aristotle did much to set science on its feet. His whole teaching was a
remarkable life’s work of vast scope and enormous influence. At one extreme

161 As Renan observed, “It is largely by the titles of his books that Aristotle has

dominated the human mind; the labels of his books remained for two thousand

years the divisions of knowledge itself ”.
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he catalogued scientific information and listed stimulating questions; at the
other extreme he emphasized the basic problems of scientific philosophy, dis-
tinguishing between the true physical causes and imaginary schemes to save
the phenomena.

He was first to realize that the economic set-up gives rise to social inequal-
ities and hence to social conflicts. Slavery, however, seemed justified to him
because it was ‘necessary’ to society.

Aristotle was born at Stagira in Chalcidice and grew up at the Macedonian
court, where his father was the king’s physician. In 367 BCE, at the age of
18, he went to the academy at Athens to study with Plato and remained
there until the latter’s death 20 years later. In 343 BCE Aristotle returned
to Macedonia as tutor of Alexander the Great, then a lad of 13. When
Alexander died at the age of 33, his conquests had spread Greek culture and
learning throughout most of the known world. Thus Aristotle’s association
with the young prince, which lasted four years, was to have far-reaching effects
on history in general and his own life in particular.

Aristotle was identified with the Macedonian rulers of Athens and their
supporters, and upon Alexander’s death in 323 BCE, he fled the city to
Chalcis, on the Aegean Island of Euboea, to escape the outbreak of anti-
Macedonian sentiment. He died a few months later, leaving a body of writ-
ings whose importance in the history of Western thought cannot be overesti-
mated162.

The works of Aristotle fall under three headings:

(1) dialogues and other works of popular character;

(2) Collection of facts and material from scientific research;

(3) systematic works.

The works on the second group include 200 titles, most in fragments col-
lected by Aristotle’s school and used as research. Some may have been done
at the time of Aristotle’s successor Theophrastos. The systematic treatises

162 It is reported that Aristotle writings were held by his student Theophrastos,

who succeeded Aristotle in leadership of the Peripatetic School. Theophrastos’

library passed to his pupil Neleos. To protect the books from theft, Neleos’

heirs concealed them in a vault, where they were damaged somewhat by damp-

ness, moths and worms. In this hiding place they were discovered about 100

BCE by Apellicon, a rich book lover, and brought to Athens. They were later

taken to Rome after the capture of Athens by Sulla in 86 BCE. In Rome they

soon attracted the attention of scholars, and the new edition of them gave fresh

impetus to the study of Aristotle and of philosophy in general. This collection

is the basis of the works of Aristotle that we have today.
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of the third part were not, in most cases, edited and published after his death
from unfinished manuscript. Aristotle’s systematic treatises may be grouped
as follows:

• Logic

The heart of his logic is the syllogism (e.g.: All men are mortal; Socrates
is a man; therefore Socrates is mortal). The syllogistic form of logical
argumentation dominated logic for 2000 years.

• Physical works

1. Physics (explains change, motion, void, time)

2. On the Heavens (structure of heaven, earth, elements)

3. On Generation (through combining material constituents)

4. Meteorology (origin of comets, weather, disasters)

Empty space is an impossibility. Elements are not composed of geomet-
rical figures (as taught by Plato and Pythagoras). Time depends for
its existence upon motion and on man’s counting mind if there were no
mind to count, there could be no time.

• Psychological works

1. On the Soul (explains faculties, sciences, mind, imagination)

2. On Memory, Reminiscence, Dreams, and Prophesying.

• Works on natural history (mostly on animals)

• Philosophical works

1. Metaphysics (substance, cause, form, potentiality)

2. Nicomachean Ethics (soul, happiness, virtue, friendship)

3. Eudemain Ethics

4. Magna Moralia

5. Politics (best states, utopias, constitutions, revolutions)

6. Rhetoric (elements of forensic and political debate)

7. Poetics (tragedy, epic poetry)
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The prodigious activity of Aristotle marks the climax of the golden age
of Greece. The very existence of his works not only reflects his encyclope-
dic genius, but is also testimony that a large amount of scientific research
had already been accomplished by his time. He had a deep mathematical
knowledge, but that knowledge was happily balanced by a very extensive ac-
quaintance with every branch of natural history. Thus, his philosophy was
naturally more experimental, more inductive, than that of Plato163.

Aristotle is one of the founders of the inductive method. He was first to
conceive the idea of organized research, and himself contributed considerably
to the organization of science by his systematic survey and classification of
knowledge of his time164. He classified the sciences into two broad categories:
theoretical (knowledge and speculation) and practical (action) sciences. The
first group was in turn divided into three subgroups: philosophy, physics and
mathematics. He took pains to elucidate the fundamental principles of each
science in particular and of science in general.

Aristotle’s theories were physical , not metaphysical, in nature. Supersti-
tion and astrological predictions were noticeably absent. Although his cos-
mology of concentric spheres and circular, geocentric, heavenly motions was
quickly superseded by Ptolemy’s epicyclic motions, Aristotle’s views on nat-
ural phenomena were mostly unchallenged for the next 2000 years and his
influence lasted until the beginning of the 18th century.

163 In a detail of Raphael’s fresco The School of Athens, Plato and Aristotle are

depicted in a way which symbolizes their approach to knowledge. Aristotle

gestures toward the earth; Plato points his finger to the heavens. Aristotle

looked to nature for answers; Plato searched for the ideal.
164 The Aristotelian method of problem-solving hinges on the Socrates doctrine of

‘endless search for the truth’. The notion that there is an ultimate truth and

that we can seek to get nearer and nearer to that truth, is what has driven

science along. We look at a complex phenomenon in the belief that at the end

there will be the simplest of ‘ultimate truths’. In practice, the problem is first

subjected to analysis; the cause is identified. When the cause is removed, the

problem is solved. The method presupposes that the cause (or causes) can be

identified, and then, when eventually found – can be removed.
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Worldview II: Aristotle

∗ ∗∗

“To live alone one must be either a beast or a god”.

∗ ∗∗

“Wisdom is not a wisdom at all, if it comes too late.”

∗ ∗∗

“Plato and truth are both clear to us; but it is a sacred duty to prefer truth.”

∗ ∗∗

“The mathematical sciences particularly exhibit order, symmetry, and limi-
tation; and these are the greatest forms of the beautiful.”

∗ ∗∗

“Inferiors revolt in order that they may be equal, and equals that they may
be superior.”

∗ ∗∗

“Injustice arises when equals are treated unequally and when unequals are
treated equally.”

∗ ∗∗

“Wicked men obey from fear; good men from love.”
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∗ ∗∗

“Philosophy is the science which considers truth.”

∗ ∗∗

“The whole is more than the sum of its parts.”

∗ ∗∗

“It was through the feeling of wonder that men now and at first began to
philosophize.”

∗ ∗∗

“Art not only imitates nature, but also completes its deficiencies.”

∗ ∗∗

“Dignity does not consists in possessing honors, but in deserving them.”

∗ ∗∗
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353 BCE The Mausoleum at Halicarnassos: A great marble tomb erected
by Queen Artemisia in memory of her husband King Mausolos. The Greek ar-
chitects Satyros and Pythios designed the tomb and the sculptors Bryaxis,
Leochares, Scopas, and Timotheos carved the decorated band on the
building. The tomb was about 41 meters high. It has a rectangular basement
beneath a colonnade formed by 36 columns. A stepped pyramid rested on the
colonnade, and a statue of Mausolos in a chariot stood on top of the pyramid.
Only pieces of the building and its decorations remain.

350 BCE Menaichmos (ca 380–320 BCE). Mathematician. Pupil of Eu-
doxos. Geometry teacher of Alexander the Great. Is reputed to have dis-
covered the conic sections, later to be known as the ellipse, parabola and
hyperbola. He derived some of their properties. The names were supplied by
Apollonios of Perga (262–200 BCE). Menaichmos lived mostly in Alexan-
dria, and made a fundamental study of the conic sections.

Menaichmos was especially interested in the old problem of the duplication
of the cube165. He found two ways of solving the reduced quadratic equations

165 Three classic problems emerged in the 5th century BCE:

• the squaring of the circle;

• the trisection of an angle;

• the duplication of a cube (the Delian problem).

Hippocrates of Chios and Menaichmos were especially interested in the third

of these problems; Hippias of Elis found an ingenious solution of the second by

means of the curve invented by him, the quadratrix . Deinostratos applied it to

the solution of the first problem.

The origin of the third problem is associated with a story: In 430 BCE a great

plague struck Athens, killing Pericles (429 BCE). The Athenians appealed to

the oracle at Delos to provide a remedy. The oracle said that Apollo was angry

because his cubical altar was too small. If it were doubled, the plague would

end. The Athenians had a new altar built that was twice the original in length,

breadth, and height. The plague became worse because the god wanted the

volume of the cube doubled, and the Athenians has octupled it. The plague

went on until 423 BCE. The Delian problem went on until the 19th century.

Around 320 CE, Pappos declared that it was impossible to solve any of the clas-

sic problems under the Platonic restrictions (straightedge and compass only),

although he did not offer a proof of this assertion. In the 19th century, each

problem was shown incapable of any solution that met the Platonic require-

ment:

• Pierre Wentzel (1837) supplied a rigorous proof that an angle cannot be

trisected with an unmarked straightedge and collapsing compass.

• Ferdinand Lindemann (1882) showed that π is a transcendental number,

implying that the circle cannot be squared.
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of Hippocrates of Chios by determining the intersection of two conics – two
parabolas in the first case, a parabola and a rectangular hyperbola in the
second.

ca 350 BCE Mayan arithmetic and numerical notation. In order to es-
cape rapidly mounting calendric chaos, the Mayan priests devised a simple
numerical system, including the concept of zero, which even today stands as
one of the brilliant achievements of the human mind. Numbers were denoted
by bar-and-dot glyphs; the dot · has a numerical value of 1 and the bar − a
numerical value of 5, and by varying combinations of these two symbols, the
numbers from 1 to 19 were written. The glyph for zero was a symbol that
looks roughly like a half-closed eye,

.
1

..
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...
3

....
4

5
.

6
..

7
...

8
....

9

10
.

11
..

12
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13
....

14

15
.

16
..

17
...

18
....

19

Mayan bar-and-dot notation was simpler than Roman notation: to write the
numbers from 1 to 19 in Roman notation, it is necessary to employ the symbols
I, V and X, and the processes of addition and subtraction (V I is V plus I,
but IV is V minus I). In the Mayan system there is only one arithmetic
process, that of addition.

The Maya employed a second notation comparable to our Arabic notation
in which different types of human heads represented the numbers from 1 to
13, and zero.

In writing bar-and-dot numbers above 19 the Maya used a positional sys-
tem of numeration. In our decimal system, the positions to the left of the
decimal point increase by tens. In the Mayan vigesimal system the values of
the positions increase by twenties from bottom up. (An exception is made in
counting time, when, the third position is 18 instead of 20 times the second.)

• It was shown that the Delian problem required the construction of a line

whose length is the cube root of 2. (With a straightedge and a compass, it is

only possible to construct square roots.).
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Thus, for example, the numbers 10, 951 = 11 · 200 +7 · 201 +7 · 202 +1 · 203

(right) and 806 = 6 · 200 + 0 · 201 + 2 · 202 (left), where written as:

. 1 × 203

.. 2 × 202 .= 7 × 202

(figure of an ‘eye’) 0 × 201 ..= 7 × 201

..
− 6 × 200 .= 11 × 200

The largest number found in the codices is 12,489,781.

ca 350 BCE Heracleides of Pontos (ca 388–315 BCE). Greek philo-
sopher and versatile and prolific writer on mathematics, music and physics.
Made a step toward the heliocentric idea: “The stars of Mercury and Venus,
make their retrograde motions and retardations about the rays of the sun,
forming by their courses a wreath or crown about the sun itself as center”.
He clearly recognized that the earth rotates on its axis.

Heracleides was born at Heraclea in Pontos. Studied philosophy at Athens
under Speusippos, Plato and Aristotle (Plato, on his departure for Sicily, left
his pupils in charge of Heracleides). The latter part of his life was spent at
Heraclea.

339–314 BCE Xenocrates of Chalcedon (ca 385–314 BCE). Mathe-
matician and philosopher. Disciple of Plato. Head of the Athenian Academy
for 25 years. Continued Plato’s policy of excluding from the Academy the
applicants who lacked geometric knowledge. Saying to one of them: “Go thy
way for thou haste not the means of getting a grip of philosophy”.

Xenocrates wrote a great many treatises, all of which are lost. It is known
that he tried to solve the earliest problem of combinatorial analysis: calcu-
lating the number of syllables that could be formed with the letters of the
alphabet (According to Plutarch that number was 1,002,000,000,000).

At the time of Plato’s death, his sister’s son Speusippos, succeeded him
as the head of the school (347–338). Aristotle and his friend Xenocrates
decided to leave, accepting the invitation of a fellow student, Hermeias, ruler
of Atarneus (opposite Lesbos). Aristotle then married Pythias, who was Her-
meias niece and adopted daughter. Hermeias also recommended Aristotle to
Philip as a tutor to his son, Alexander (the Great).

Xenocrates advanced the idea of indivisible atoms of time. The idea of
temporal atomicity does not necessarily imply that there must be gaps be-
tween successive instants. The essential criterion for atomicity is that there
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is a limit to the division of any duration into constituent parts. In other
words, time would be like a line which can be divided into a finite number of
adjacent segments with no intervals between them. It would mean that, from
the temporal aspect, there are minimal-time processes in nature, no process
occurring in less than some shortest unit of time, or chronon166.

339 BCE The Fourth Sacred War : Philip II of Macedonia defeated an
alliance of Greece with Thebes near Amphissa. Philip conquered Greece and
turned the Greek peninsula into a Macedonian protectorate.

The Macedonian army used the phalanx offensive battle formation. It was
made up of heavily armed infantry troops formed in tight ranks for the attack.
The troops carried long spears and protected themselves with overlapping
shields. The depth of each formation ranked from 8 to 12 ranks. The phalanx
had great striking power, but no flexibility. It needed support from lighter
troops and cavalry.

338 BCE, August The decisive battle of Chaeronea where Philip of Mace-
donia crushed the allied Greek citizen armies. Athens finally lost its indepen-
dence, as foreseen by Demosthenes (384–322 BCE). End of the classical
period of Greece167.

166 Modern speculations concerning the chronon have often been related to the

idea of a smallest natural length. One suggestion was that this is given by

the effective diameter of the proton and electron, that is to say about 10−15

meters. If this were a shortest natural length and we divided it by the fastest

possible speed, that of light in vacuo (3 × 108 meters per second), the resulting

interval of time would be about 10−23 – 10−24 seconds. A time of this order

characterizes the normal decay processes of nucleons, i.e. processes involving

the so-called ‘strong interactions’ between protons and neutrons, and also the

lifetime of the most transient elementary particles. It is therefore possible that

if the chronon exists it is of this order of magnitude. A purely theoretical unit

of length much shorter than 10−15 meters can, however, be constructed from

the three fundamental constants, G, h and c (constant of gravitation, Planck’s

constant, and velocity of light). It is
√

(Gh/c3), and is of the order of 10−34

meters. If this is divided by the velocity of light, it gives a time of the order of

10−43 seconds. It is possible that this time, sometimes called the ‘Planck time’,

might be the chronon.
167 Athens made peace, but Demosthenes kept up his opposition. Later he defended

his policy in his speech On the Crown, considered as the most nearly perfect

speech in history. He poisoned himself (322 BCE), when the last Greek effort

to win freedom was a failure.



234 1. Origins – Splendor of the Simple

334 BCE Alexander the Great (356–323 BCE). One of the greatest
conquerors in the annals of history. Hellenized Western Asia and orientalized
Eastern Europe. Pupil of Aristotle. Attacked the Persian empire with an
army of Macedonians and Greeks. Within 12 years he conquered an area
almost the size of the United States, founding Greek cities and establishing
Greek garrisons everywhere he went.

By spreading Greek civilization, ideas and language into the very heart of
Asia, Alexander profoundly affected the history of the world, and Greek cul-
ture rapidly became world culture. Moreover, the cultural intercourse among
ancient peoples was so stimulated by his conquests, that the various cultures
of the ancient world began to congeal into a universal culture to which all
contributed but in which the Greek element predominated. This was the first
large scale contact between East and West.

Alexander’s scientific curiosity was apparently great, and his and Aristo-
tle’s initiative are probably responsible for the first scientific expeditions and
the first attempts to organize science on a large scale. In 332 BCE Alexander
founded in Egypt the city of Alexandria, which was to become one of the
greatest centers of learning and of cultural diffusion between the East and the
West.

334–ca 146 BCE The Hellenistic Era. Marks the culmination of Greek
science and its influence on the civilized ancient world, mainly from its center
in Alexandria.

The word ‘Hellenism’ signifies that culture which drew its vitality from
the classical Hellenic culture. It spread over the entire empire of Alexander
the Great and coated with a thin layer the original ancient cultures of the
conquered nations. The Hellenic influence penetrated by means of the Greek
language, religion, art , literature, philosophy , science, architecture, and po-
litical ideas. Hellenism spread to Rome in the beginning of the 2nd century
BCE and challenged Judaism as of the 3rd century BCE.

But Jewish culture in Israel was firmer and more consolidated than other
cultures and was thus capable of arresting the advance of Hellenism. In fact,
the rigorous encounter of the two rivals at the time of the Maccabees (164
BCE) marks the first sign of the Hellenistic retreat in the east.

Hellenism, though, was more successful in the Jewish diaspora in the east
and in the Aegean world, where the Bible was translated into Greek (septu-
aginta) and where Greek became the spoken language even in the synagogue.
Eventually, the Hellenization of diaspora Jewry expedited the spread of Chris-
tianity among the Jewish masses in Asia Minor and elsewhere. The Sassanic
Kingdom that rose in Persia in the 3rd century CE, finally put an end to
Hellenism in the entire Orient.
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The roots and fruits of Hellenistic philosophy

1. Historical background

Throughout history, philosophy and religion both influenced and were in-
fluenced by economical, political and social conditions. This is true in par-
ticular for the transition era between the downfall of the Hellenic city-state
regime and the rise of Christianity. We list below the main political events in
this time-window:

339 BCE Greece becomes a Macedonian protectorate.

323 BCE Death of Alexander the Great; Beginning of Hellenistic age.

275 BCE Alexander’s Empire finally divided under the rule of three dynas-
ties: Antigonides (Macedonia), Ptolemies (Egypt) and the Seleucides (East).

188 BCE Peace of Apamea: Greek cities lose their independence.

148 BCE Macedonia becomes a Roman province.

133–27 BCE Decline of the Roman Republic. A century of incessant
violence and confusion. Fall of the Hellenistic states.

27 BCE Beginning of the Roman Empire under Augustus. End of the
Hellenistic age; order and stability are restored.

180 CE Death of Marcus Aurelius; Beginning of the decline of the Ro-
man Empire.

325 CE The Council of Nicaea: rigidification of the Christian Church.

415 CE End of the Alexandrian School.

451 CE The Hun Invasion of Europe.

476 CE End of the Western Roman Empire.

529 CE Justinian closes the Athenian schools of Philosophy.
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During 322–148 BCE, Greece was subject, not only to political decline and
the confusion of the wars, but also to very serious social stress. Consequently,
the condition of the majority grew steadily worse. In all parts of Greece, and in
the Aegean islands, many people were living at the very edge of a subsistence
level, and the impression of personal insecurity was very general. Sparta, in
particular, underwent three successive violent social revolution during 250–
200 BCE.

Thus, in spite of their wealth and almost unlimited opportunities, the
Hellenistic states eventually wasted their resources in a series of inconclusive
wars among themselves. As a result, between 200 BCE and 31 BCE all the
Hellenistic world except Macedonia and Persia was annexed piecemeal by
Rome, a new militaristic power that had risen, at first almost unnoticed, in
the Western Mediterranean.

But the Greek culture that had been forged in the classical era and that
had spread in Hellenistic times to most of the rest of the civilized world
was not suppressed by the Romans. It survived and spread to the West.
Although Latin was spoken in Rome itself and in the western provinces, Greek
remained the language of the educated classes of the East. Throughout the
life of the Roman Empire, Rome itself was never more than the political
capital. Alexandria remained the most active commercial city of the empire
and Athens the center for scholars, yet most of the scientific work was done
in Alexandria. After the western half of the Roman Empire, including Rome
itself, fell to barbarian invaders in the fifth century CE, the Hellenistic world
survived for more than 1,000 years as the Byzantine Empire, with its new
capital in the Greek city of Constantinople.

How did philosophy fare in this era of great political changes?

The earlier Milesian Greek philosophers, had called attention to cosmic
order and the beauty of nature. Later, the monist Parmenides of Elea
stressed the power of reason and thought, whereas Heraclitos of Ephesos,
precursor of the philosophy of becoming, had alluded to the constancy of
change and the omnipresence of divine fire, which illuminates all things.

A deeper understanding of man himself came with Socrates (469–399
BCE), symbol of the philosophical man, who personified Sophia and Sapientia
(Greek and Latin: “wisdom”). From Socrates emanated the philosophical
system of the Cynics and the Skeptics168. Thus, although Socrates did not
found any philosophical school, and in fact had no intention of doing so, his

168 Socrates said that the only thing he knew was that he did not know anything.

However, he did at least believe that knowledge was possible, and, he was

bent on acquiring some. He took a positive attitude towards inquiry and the

possibility of learning.
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teaching were indirectly responsible for the systems of thought sponsored by
groups of his disciples. His heritage lasted for many centuries and left its
mark upon the medieval and modern philosophies of the Western World.

In spite of its political downfall and its poverty, Athens was still the focus
of philosophical teaching. The four main schools were: the Academy (Plato),
the Lyceum (Aristotle), the Garden (Epicuros), and the Porch (Stoa). To
these must be added the unorganized efforts of the Cynics and the Skeptics.

The successors of Plato (427–347 BCE) as heads of the Academy were:
Speusippos (347–339 BCE), Xenocrates (339–315 BCE), Polemon (315–
270 BCE), Crates of Athens (270–264 BCE), Arcesilaos (264–240 BCE),
Lacydes of Cyrene (241–224 BCE), Teleclos (224–216 BCE), Erandros
the Phocian and Hegesinos of Pergamum.

The love of philosophy was so diffuse in the Greek population that the
Athenian schools were not enough to satisfy it. Provincial schools were needed
in Megara, Eretria, Cyrene, and probably other places.

Aristotle’s leadership of the Lyceum lasted only thirteen years (335–323
BCE). It was then headed in succession by Theophrastos of Eresos (328–
286 BCE), Straton of Lampsacos (286–268 BCE), Lycon of Troas (268–
225 BCE), Ariston of Iulis. The golden age of the Lyceum lasted less that
70 years (335–268 BCE).

The death of Alexander the Great (323 BCE) and Aristotle (322 BCE)
marked the beginning of a period of extreme social and political disturbances,
the character of which Aristotle failed to foresee, and which radically affected
the course of philosophical thought. From this time onwards, the political
importance of the Greek city-states rapidly declined.

With Athens no longer the center of worldly attraction, its claim to cul-
tural prominence passed on to other cities – to Rome, to Alexandria, and
to Pergamum. The Greek polis gave way to larger political units; local rule
was replaced by that of distant governors. The earlier distinction between
Greek and Barbarian was destroyed; provincial and tribal loyalties were bro-
ken apart, first by Alexander and then by Roman legions.

The loss of freedom by subject peoples further encouraged a deterioration
of the concept of the freeman and resulted in the rendering of obligation and
service to a ruler whose moral force held little meaning. The early intimacy of
order, cosmic and civic, was now replaced by social and political disorder and
traditional mores gave way to transient values. Amid so much uncertainly
and confusion, many felt the need to preserve some firm foundation. At that
time no religion had power or prestige enough to satisfy such a demand, and
the result was an enormous popular interest in philosophy.
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Hellenistic philosophy and religion reflected the great problem of the age:
What part could an individual play in a society in which individual effort
seemed useless? In a small city-state during the Golden Age the individual
played an important role in his community; he could find meaning and pur-
pose in his life and his work. But in the busy and cosmopolitan Hellenistic
world a man was lost in a community as large as civilization itself. Often he
lived in a massive city with a population of hundreds of thousands where the
highest endeavors of an individual might pass unnoticed, or still worse, serve
no purpose. In such a society the values of an earlier time – such as duty to
the state, honesty, justice, piety, and personal honor – often seemed to have
little meaning.

It was inevitable that, under these conditions, there should occur an al-
most immediate movement away from the recent tradition of Plato and Aris-
totle. Those philosophers were certainly too difficult, and in a sense too
conventional, to satisfy the new popular demands. Their work was too full
of intricate logical argument, it demanded too high a devotion to abstract
thought, to provide a possible basis for any popular creed.

Aristotle in particular, in his writing on ethics and politics, had tended
to take for granted as the background of his argument just those political con-
ditions and conventions of conduct which, so soon after his death, had ceased
to exist.

He addressed himself to the ordinary well-educated citizen of the (now)
old-fashioned Greek city-state; he had not, and probably would not have
wished to claim that he had, any moral message for mankind at large in a
period of chaos. He and Plato were philosophers for intellectuals; and for
this reason, though their prestige and their fame remained unassailable, the
philosophy of the new period was provided by others, and was quite different
from theirs.

Perhaps the clearest indication of the changed atmosphere of philosophy
can be found in the changing conception of “happiness,” the goal of life, and
consequently of the means proposed for achieving it. For one thing, this ques-
tion came to be the dominant concern of philosophy, at the expense of those
epistemological and metaphysical inquiries which, for Plato and Aristotle at
least, had been no less important and absorbing. But also the topic itself was
very differently treated.

Aristotle, in his Nicomachean Ethics, had taken the conventional – one
would almost like to say, the sensible – view that the well-being of the indi-
vidual was determined in large part by the circumstances in which he lived,
by the activities in which he engaged, by the achievements which could be
counted to his credit. He would certainly have recommended an active, in-
deed a masterful, part in the public affairs of one’s community. But it is clear



239

that, if so, the well-being of the individual is dependent in part upon external
affairs; and in the precarious post-Aristotelian world, it seems to have been
felt that individual happiness, thus conceived, was itself intolerably precari-
ous. Accordingly, almost every later school agreed in the attempt to maintain
that happiness, rightly conceived, must lie in the sole power of the individual
himself. The attempt to maintain this, however understandable, led at times
to an extremity of paradox.

Even so, it seems to have been tacitly agreed that some conception of
happiness must be worked out which would ensure that, at least in theory, it
could be attained quite independently of shifting, perilous and uncontrollable
circumstances. The resulting tendency was, strongly and persistently, towards
some sort of philosophy of “non-attachment” – towards a kind of strategic
withdrawal, as it were, from a world which no one now could believe, as
Aristotle did, to be manageable by careful and enlightened individual effort.

Out of this new reality there arose four systems of philosophy: Epicure-
anism, Stoicism, Cynism and Skepticism. The first three were primarily moral
doctrines, philosophies of life, far more earnestly occupied with the actual
predicament of man than with any merely theoretical questions and they were
concerned in particular to teach, in a world that was too often dangerous and
deceptive, the secret of individual well-being. And even the Skeptics were apt
to recommend their skepticism as offering a relief from anxiety – as a kind
of restful acquiescence in the single conviction that no exclusive faith or doc-
trine whatever would ever be proved, so that all intellectual struggles must be
ultimately vain.

The pursuit of knowledge passed from Aristotle to the distinguished sci-
entists of the Hellenistic age. The philosophers took up instead the pursuit of
virtue, of happiness, or – in this at least they were all agreed – of security.

Table 1.3 lists most of the important persons that were active in the various
philosophical schools in the Greco-Roman world in the millennium prior to
the close of the Athenian schools by Justinian.
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Table 1.3: Greek Schools of philosophy and their post -

Aristotelian cults and creeds (470 BCE–530 CE)

PHILOSOPHER LIFE-SPAN FLOURISHED SCHOOL
BCE BCE

Xenocrates of Chalcedon — 339–314 Platonic

Theophrastos of Ephesos 373–286 Peripatetic

Eudemos of Rhodes 325 "

Antisthenes of Athens 444–365 Cynic

Diogenes of Sinope 412–323 "

Crates of Thebes 365–285 "

Demetrius 40–75 CE "

Theodoros of Cyrene 465–399 Hedonist

Aristippos of Cyrene 435–355 "

Bion of Borysthenes 325–255 "

Euhemeros of Messene 311–298 "

Hegesias of Cyrene 283 "

Anniceris of Cyrene 350–283 "

Menipass of Gadera 250 "
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Table 1.3: (Cont.)

PHILOSOPHER LIFE-SPAN FLOURISHED SCHOOL
BCE BCE

Epicuros of Samos 341–270 Epicurean

Metrodoros of Lampsacos 330–278 "

Hermarchos of Mytilene
(Lesbos)

270 "

Zeno of Sidon 150 "

Phaedrus of Rome 140–70 "

Titus Lucretius Carus 98–55 "

Polystratos 250 "

Diogenes Laertius 222–235 CE "

Pyrrhon of Elis 365–275 Skeptic

Anaxarchos of Abdera 217 ca 320 "

Timon of Phlias 320–230 "

Arcesilaos of Pitane 315–240 "

Carneades of Cyrene 214–129 "

Lucian of Samosata 120–185 CE "

Clitomachos 187–109 "

Aenesidemos of Cnossos
(Alexandria)

1st BCE "

Sextus Empiricus 200 CE "
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Table 1.3: (Cont.)

PHILOSOPHER LIFE-SPAN FLOURISHED SCHOOL
BCE BCE

Zeno of Citium 336–265 Stoic

Cleanthes of Assos 331–233 "

Chrysippos of Soli 280–207 "

Zeno of Tarsos 204 "

Diogenes of Babylon 240–152 "

Antipater of Tarsos 185–119 150 "

Panaetios of Rhodes 185–110 "

Posidonios of Apamea 135–51 "

Boethos of Sidon 119–55 "

Arios Didymos of Alexan-
dria

63 BCE–10 CE "

Gaius Musonius Rufus of
Volsinii

25–101 CE "

Epictetos of Hierapolis 55–135 CE "

Marcus Aurelius
Antoninus

121–180 CE "

Ouintus Tertullian 155–225 CE "

Antiochus of Ascalon 130–120 Eclectic

Marcus Tullius Cicero 106–43 "

Quintus Sextius 70 BCE–10 CE "
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Table 1.3: (Cont.)

PHILOSOPHER LIFE-SPAN FLOURISHED SCHOOL

Sotion of Alexandria ca 40 BCE– Electic
30 CE

Lucius Annaeus
Seneca

4 BCE–65 CE "

Plutarch 46–127 CE "

Favorinus 80–150 CE "

Numenius of Apamea 150–200 CE Neo-Pythagorean

Atticus 150–200 Neo-Platonist

Plotonius 204–270 Neo-Platonist

Ammonius Saccas 206–268 Neo-Pythagorean

Porphyrius 234–305 Neo-Platonist

Iambilichus 260–330 "

Aurelius Augustinus 354–430 Platonist

Proclos of Byzantium 410–485 Neo-Platonist

Boethius 480–524 Stoic
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2. The Cynics (ca 400 BCE–200 CE)

∗ ∗∗

“I am a citizen of the world”.

“There is no need to rebel because everyone is already free”.

(Diogenes, ca 350 BCE)

∗ ∗∗

“Truly, if I were not Alexander I would wish to be Diogenes”.

(Alexander the Great, ca 330 BCE)

The Cynics rejected all social conventions and believed in individual self-
sufficiency, independence and self-control, virtue as the only good and with-
drawal from the corrupt world.

It is especially desirable to understand the essentials of cynicism because
that school of thought developed into Stoicism, the major philosophy of the
Stoics which lasted for centuries and left its mark upon the medieval and
modern philosophies of the Western world.

The Cynic school of Greek Philosophy can be traced back to Socrates and
Antisthenes(c. 444–365 BCE), who was one of Socrates’ immediate pupils
and is generally considered the founder of the sect. The word cynic means
‘doglike’ in Greek, because Antisthenes accentuated Socrates’ tendency to live
in the simplest fashion and to disregard many of the social conventions and
amenities.

Antisthenes’ most famous disciple was Diogenes of Sinope (c. 412–323
BCE), on the Black Sea, whose excesses of austerity have become proverbial.

Diogenes, an anarchist who lived in great poverty, proclaimed the neces-
sity of self-sufficiency, austerity, and shamelessness and made an aggressive
display of his contempt of conventions; But he did not add anything new to
Antisthenes’ teachings, just dramatized and advertised them. From a popular
conception of the intellectual characteristics of the school comes the modern
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sense of “cynic”, implying a sneering disposition to disbelieve in the goodness
of human motives and a contemptuous feeling of superiority.

What are then the general principles of this school in its internal and ex-
ternal relations as forming a definite philosophical unit? The importance of
these principles lies not only in their intrinsic value as an ethical system, but
also in the fact that they form the link between Socrates and the Stoics, be-
tween the essentially Greek philosophy of the 4th century BCE, and a system
of thought which has exercised a profound and a far-reaching influence an
medieval and modern ethics.

Antisthenes imbibed from Socrates the fundamental ethical precept that
virtue, not pleasure, is the end of existence. He was, therefore, in the forefront
of that intellectual revolution in the course of which speculation ceased to
move in the realm of the physical and focused itself upon human reason in its
application to the practical conduct of life.

“Virtue,” says Socrates, “is knowledge”; in the ultimate harmony of moral-
ity with reason is to be found the only true existence of man. Antisthenes
adopted this principle in its most literal sense, and proceeded to explain
“knowledge” in the narrowest terms of practical action and decision, excluding
from the conception everything except the problem of individual will realizing
itself in the sphere of ordinary existence.

Just as in logic the inevitable result was the purest nominalism, so in
ethics he was driven to individualism, to the denial of social and national
relations, to the exclusion of scientific study and of almost all that the Greeks
understood by education; This individualism he and his followers carried to
its logical conclusion. The ordinary pleasures of life were for them not merely
negligible but positively harmful inasmuch as they interrupted the operation
of the will. Wealth, popularity and power tend to dethrone the authority of
reason and to pervert the soul from the natural to the artificial. Man exists
for and in himself alone; his highest end is self-knowledge and self-realization
in conformity with the dictates of his reason, apart altogether from the state
and society. For this end, disrepute and poverty are advantageous, in so far as
they drive the man back upon himself, increasing his self-control and purifying
his intellect from the dross of the external. The good man (i.e. the wise man)
wants nothing: like the gods, he is self-sufficing; “let men gain wisdom – or
buy a rope”; he is a citizen of the world, not of a particular country.

With all its defective psychology, its barren logic, its immature technique,
cynicism emphasized two great and necessary truths: firstly, the absolute
responsibility of the individual as the moral unit, and, secondly, the autocracy
of the will. These two principles are sufficient ground for our gratitude to these
“athletes of righteousness” (as Epictetos calls them). Furthermore they are
profoundly important as the precursors of Stoicism.
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Finally it is necessary to point out two flaws in the Cynic philosophy. In the
first place,the content of the word “knowledge” is never properly developed.
“Virtue is knowledge”; knowledge of what? and how is that knowledge related
to the will? These questions were never properly answered by them.

Secondly they fell into the natural error of emphasizing the purely animal
side of the “nature,” which was their ethical criterion. Avoiding the artificial
restraints of civilization, they were prone to fall back into animalism pure and
simple. Many of them upheld the principle of community of wives; some of
them are said to have outraged the dictates of public decency.

It was left to the Stoics to separate the wheat from the chaff, and to as-
sign to the words “knowledge” and “nature” a saner and more comprehensive
meaning.

3. The Skeptics (330 BCE–200 CE)

∗ ∗∗

“Every man of science is somewhat of a Cynic, because he does not accept
words and conventions at their fare value, and of a skeptic, because he refuses
to believe anything without adequate proof”.

(George Sarton, 1955)

∗ ∗∗

“Skepticism produces happiness, because by having no dogmatic beliefs
you become free from worry”.

“By Skepticism we arrive first at suspension of judgment, and second at
freedom from disturbance”.

(Sextus Empiricus, c. 200 CE)
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Skepticism was a philosophical movement in ancient Greece that elevated
doubt into an overall thought-principle claiming that it is impossible ever to
arrive at the knowledge of truth, either through the senses or by the mind.

The skeptics tried to weaken man’s confidence in observation and reason as
trustworthy guides to understanding the world. They believed that man can
be certain of the nature of his observations, but he cannot be sure that these
observations reflect the real world. Therefore, man must withhold judgment if
he wants happiness and mental peace.

According to them, the best thing to do was to believe in nothing, to give
nothing away, and to feel as little emotion as possible; the only way to live
a virtuous life was to dispense with philosophy altogether and avoid asking
such questions, since there were no any answers to them. All knowledge is
untrustworthy and nothing can ultimately ever be proven. No two views are
alike because no two men are alike. Hence – there can be no single truth
understood by man.

The philosophical school of Skepticism was a direct result of the compe-
tition between the conflicting views of the diverse schools of thought. The
Skeptics believed that by suspending judgment, they could avoid a feeling of
insecurity arising from possible error. Their most potent rivals were the Stoics
who claimed that Skepticism was self-contradictory, since, if nothing can be
known, how could this alleged fact itself be known?

The origins of Skepticism can be traced to the earliest days of Greek philos-
ophy when the inclination towards bold assertion was accompanied by a con-
trary tendency towards questioning, doubt, and sometimes despair. Among
the pre-Socratics Xenophanes of Colophon (560–478 BCE) and Empe-
docles (490–430 BCE) expressed occasionally the gloomy feeling that, in the
welter of conflicting doctrines, it was really impossible to find any assertion
deserving of full belief.

A basis for skepticism may be found in Socratic irony, a technique devised
by Socrates (he started from the assumption that he knew nothing about the
truth); a similar approach is evident during the Socratic period in Plato’s
dialogues, which arrive at no definite conclusions, in accordance with the
Socratic method.

Eventually however, skepticism itself became a doctrine in the hands of
Pyrrhon of Elis, who died at nearly ninety years of age in about 275 BCE.
Pyrrhon had served as a soldier with Alexander the Great, and had cam-
paigned with him as far as India.

Another philosopher present on that occasion was Anaxarchos of Ab-
dera (fl ca 320 BCE), a follower of Democritos (460–370 BCE). Democritos’
view of the insufficiency of mere sense perception had been given a definitely
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skeptical emphasis by his followers, and it may thus be that Pyrrhon derived
from Anaxarchos the first impulse towards general questioning and doubt.

Distinguished among later leaders of the Academy, and also a skeptic, was
Carneades (214–128 BCE) who made a great stir on a visit to Rome (156
BCE) by giving a series of public lectures, in the first of which he forcefully
expounded the views of Plato and Aristotle on Justice, while in the second
lecture refuted everything he had said in the first.

The skeptics apparently differed over the proper guide to personal conduct.
Some believed that a man can best decide how to act by calculating the most
practical course of action. Others believed he should follow local laws and
customs. Under Arcesilaos and Carneades the skeptics philosophy spread
through the Athenian Academy. No writings of Skeptics survived. Summaries
of Skeptic doctrines were presented in the writings of Cicero and Sextus
Empiricus, a Roman physician of the 200’s CE.

4. The Epicureans (300 BCE–500 CE)

∗ ∗∗

“Live unknown”.

“Death is nothing to us: for that which is dissolved is without sensation,
and that which lacks sensation is nothing to us”.

“It is not possible to live pleasantly without living prudently and honor-
ably and justly, nor again to live a life of prudence, honor, and justice without
living pleasantly”.
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“Self-sufficiency is the greatest of all riches”.

“The ultimate purpose of philosophy is to lead man to the good life of
true happiness”.

“If God listened to the prayers of men, all men would quickly have per-
ished”.

(Epicuros, ca 306 BCE)

∗ ∗∗

“Epicuros questions are yet unanswered: Is God willing to prevent evil,
but not able? Then he is impotent. Is he able but not willing? Then he is
malevolent. Is he both able and willing? Whence then is evil?”

(David Hume, 1765)

Epicureans believed that man could attain the ‘good life’ by seeking mod-
erate pleasures and avoiding pain. Pleasure can best be gained by living in
accordance with prudence, moderation, courage, and justice, and by culti-
vating friendship. Death should not be feared because good and evil lie in
sensation, and death deprives man of sensation.

Epicureanism can be traced back to discussions of the Epicurean Society
at Athens in 306 BCE. There had been a few temporary meetings of these
philosophers in Mitylene and Lampsacos. Thereafter the society met in the
gardens of Epicuros, and were therefore known as “Philosophers of the Gar-
den.”169

169 The Garden was like the Porch in many respects; their resemblance was perhaps

due to common Oriental origins and even more so to the similarity of their

functions. As far as can be judged from the fragments relative to it and to

its founder, the Garden was more informal and simpler than the other schools;

life was generally frugal but animated and quickened with regular feast days

which brought the fellows more closely together; women were admitted to the

fellowship.
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Epicuros, who regarded philosophy as medicine for the soul, wrote three
hundred books to set forth his views. The basic principles of his philosophy
were derived chiefly from two sources: Cyrenaic Hedonism, and the physics,
metaphysics, and psychology of Democritos. From the Cyrenaics he accepted
the theory that pleasure is the sole good. He agreed with Aristippos that
pleasure consists of a gentle motion (the modern equivalent of pleasant emo-
tion), and with Theodoros that the goal of life is an optimistic disposition.
From Anniceris came the concept of the great value of friendship, and from
Hegesias the conclusion that life’s principal objective is to avoid or escape
from suffering.

Among post-medieval thinkers, the following were influenced, in one way
or another, by the ethics, physics or the metaphysical philosophy of Epicuros’
during the past four centuries: Michel de Montaigne (1533–1592); Pierre
Gassendi (1592–1655); Isaac Newton (1642–1727); La Mettrie (1709–
1751); Helvetius (1715–1771); Immanuel Kant (1724–1804); Jeremy
Bentham (1748–1832); James Mill (1773–1836); John Stuart Mill (1806–
1873); Herbert Spencer (1820–1903); Ernest Renan (1823–1892); Karl
Marx (1818–1883); Niels Bohr (1885–1963); Werner Heisenberg (1901–
1976).

5. Cyrenaic Hedonism

Hedonism is the belief that pleasure is the highest good in life. The name
hedonism comes from a Greek word meaning pleasure. In contradistinction,
the Epicureans believed that men should seek pleasures of the mind rather
than pleasures of the body, in direct antithesis to everything that the Cynic
stood for.

Both philosophical systems developed out of the teachings of Socrates;
while the Cynics emphasized the Socratic concept of virtue, the Cyrenaics
stressed the Socratic principle that happiness results from the practice of
virtue. Whereas the former argued that virtue itself is happiness, the latter
taught that the virtuous man is he who knows how to achieve happiness or
has the talent necessary for achieving it. Although both philosophies agreed
that happiness is a state of mind, for the Cynic the term meant the serenity
and mental security which a self-sufficient man experiences, whereas for the
Cyrenaic it referred to that satisfaction which follows upon the fulfillment of
physical appetite.
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Both schools derived their basic concepts from Socratic philosophy and
their leaders have been included among the Lesser Socratics. Moreover, both
schools developed into more sophisticated thought – the Cynics into Stoicism,
and Cyrenaic Hedonism into Epicurean Hedonism.

Just as basic concepts of Stoicism have been perpetuated in Christian
doctrine, and in the philosophies of Kant, Spinoza, and other leading philoso-
phers, so the fundamental views of Hedonism have been incorporated in the
philosophies of the Utilitarians, Freudians, and some Darwinians.

The founder of Cyrenaic Hedonism, Aristippos of Cyrene (435–355
BCE) was influenced by the teaching the Sophist Protagoras and subse-
quently became a disciple of Socrates. His philosophy reflects both sources,
particularly the Protagorean doctrine of relativism and the Socratic belief
that virtue is a sine qua non of happiness. Since the Cyrenaics equated plea-
sure with happiness, they concluded that pleasure is man’s highest attainable
good.

Moreover, according to the Cyrenaic Hedonists, since pleasures are of a
single kind, namely, physical satisfactions, there should be no attempt to des-
ignate any of them as inferior or superior to the others, the only discernible
difference among them being their intensity or duration. The Cyrenaics’ the-
ory that pleasures lack qualitative distinction, that they differ only quanti-
tatively from one another, is known as ‘quantitative Hedonism’. A corollary
of this doctrine is the conclusion that pleasure itself is never evil, that only
the laws and customs of the community designate some as good, others as
morally bad – the central thesis of ethical relativism.

How did the Cyrenaic Hedonists define this experience of pleasure, which
they accepted as man’s highest good? Aristippos described it as a sensation
of gentle motion in contrast to the violent motion of painful experience – but
it must be understood that the Cyrenaics did not use the term motion in the
sense of merely physical movement. Their interpretation came much closer to
the modern conception of emotion.

They held that there are two basic emotions, the emotions of pleasure and
of pain. The emotion of pleasure, or the sensation of gentle motion, resembles
the pleasant feeling of the hungry person immediately after he has satisfied
his appetite. The Cyrenaics ascribed no significance to the state of apathy,
the absence of emotion, which the Cynics regarded as a worthy goal.

Since the Cyrenaic Hedonists believed pleasure to be the only good, they
ignored all scientific, mathematical, and cultural pursuits except those with
useful applications. In this sense they could be classified as Utilitarians, for
they devoted themselves to the study of logic because of its practical utility.
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The Utilitarian view of epistemology (the study of how man obtains knowl-
edge) colored their entire philosophy. Accepting the doctrine of Protagoras,
they agreed that human knowledge is limited to sensations and does not ex-
tend to the real objects to which the sensations correspond – a basic thesis of
Protagorean relativism.

Consequently, man is aware of nothing but his own subjective states of
feeling; for Aristippos, therefore, feeling is the only valid criterion of truth.
The feelings which we experience are the essence of our existence. During
our span of life, we should experience as much pleasure as possible; therefore,
Aristippos insisted that we must pursue the pleasures of the moment, for
tomorrow we shall die. We must enjoy immediate experience inasmuch as the
future does not lie in our hand.

Virtue, then, is the means whereby we can achieve pleasure and increase
our capacity for enjoyment. But the indiscriminate gratification of pleasure
is to be eschewed; at this point in the philosophy of Aristippos, the influence
of Socrates is discernible. The sage, or wise man, while enjoying pleasure,
remains in control of it. Aristippos claimed that the Cynics erred in seek-
ing independence by abstaining altogether from pleasure, for “not he who
abstains, but he who enjoys without being carried away, is master of his plea-
sures.”

Diogenes Laertius, discussing the Cyrenaic philosophers, emphasized
their view that man’s proper goal is to control pleasure and never to be
controlled by pleasure. In order to achieve the highest ends of life, man must
retain mastery over his experience by means of adaptation to circumstances,
self-control, wisdom, the curbing of momentary desires, and an optimistic
outlook and temperament.

Other leading Cyrenaic Hedonists included Aristippos’ son, Aristippos
the Younger, and daughter, Arete; Theodoros, the atheist; Anniceris;
Euhemeros; and Hegesias.

Theodoros contended that the specific momentary gratification of pleasure
is an inconsequential matter and that, consequently, the primary objective
should be to develop an optimistic cheerful attitude toward life. In other
words, the wise man knows that true happiness can be found only within the
mind of the individual – as a result of an appropriate inner mental disposition.

Anniceris raised Cyrenaic Hedonism to a higher level by designating friend-
ship, gratitude, piety, and aid to others as the true sources of pleasure. Euhe-
meros contributed the theory that men who had achieved distinction in their
lifetime became divine beings in the hereafter. Finally, Hegesias, “the death-
counselor,” introduced the doctrine of eudaemonistic pessimism, the theory
justifying suicide as a way out of the pain and suffering which dominate the
lives of the vast majority of human beings.
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According to Hegesias, since the frustration of human desires is a universal
experience, man should prefer death as a happy, pain-free alternative. Thus,
ironically, the philosophy which set out to promote the pursuit of pleasure
became a self-defeating philosophy as a consequence of critical deficiencies in
its rationale.

6. The Stoics (ca 300 BCE–200 CE)

∗ ∗∗

“Of all existing things – some are in our power, and other are not. In our
power are: thought, desire, will to chose and will to avoid, and, in a word,
everything which is our own doing. Things not in our power include the body,
property, reputation, office, and, in a word, everything which is not our own
doing. Things in our power are by nature free, unhindered, untrammeled;
things not in our power are weak, servile, subject to hindrance, dependent on
others”.

“It is not death or hardship that is fearful, but the fear of hardship and
death”.

“Death, the most dreaded of evils, is therefore of no concern to us; for
while we exist, death is not present, and when death is present, we no longer
exist”.

(Epictetos, ca 100 CE)

∗ ∗∗

“Death, as birth, is a mystery of nature: a composition out of the same ele-
ments, and a decomposition into the same. You shall disappear in that which
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produces you, be received back into its seminal principle by transmutation”.

“Think of the universal substance, of which you have a very small portion;
and of the universal time, of which a short interval has been assigned to you”.

“Constantly regard the universe as one living being, having one substance
and one soul; and observe how all things have reference to one perception,
the perception of this one living being, and how all things are the cooperating
causes of all things which exist”.

“What then is that which is able to conduct a man? One thing and only
one, philosophy”.

“My city and my country, so far as I am Antoninus, is Rome, but so far
as I am a man, it is the world”.

“It is one of the acts of life, this act by which we die”.

(Marcus Aurelius Antoninus, ca 170 CE)

Stoicism is composed of three parts: Ethical, social and metaphysical,
with ethics being by far the most important part of the doctrine. The core
of Stoic Philosophy lies in the view that there can be no authority higher
than reason. Its overriding objective was the attainment of peace, through an
attitude of self-control of one’s passions, self-sufficiency and utter indifference
both to pleasure and pain. Virtue (which the stoics equated with wisdom and
obedience to reason) is the only necessary prerequisite to happiness.

The stoic view was that all that occurs should be accepted without any
stirring whatever of emotion or appetite. The only good is virtue, the only
evil is vice (which the stoics equated with failure to control one’s passions).
Virtue and vice were held to consist, respectively, primarily in right and wrong
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disposition of the will. But the will (it was assumed) was wholly and unalter-

able under the control of the individual. Everything that did not fall within

the sphere of his absolute control, was to be regarded with indifference – pain

and pleasure along with the rest.

According to Stoic philosophy, since passions are a disease of the soul, the

individual must expel them completely from his personality; he must never

allow his feelings to deteriorate into passions, which are both unnatural and

irrational. Man conquers the world only by overcoming his own impulses.

External things cannot control him unless he, by an act of his own will,

permits them to do so. A person must maintain an unconquerable will, which

surrenders to no man. Man should act in accordance with nature because

nature is reason – the same reason which every man recognized as the highest

part of himself. Everything that occurs has its place in nature’s grand design.

Their essential worldview can succinctly be described as follows170:

“The world as our reason presents it to us, that is to say the world of

nature, is all the reality there is. There is nothing “higher.” And nature

itself is governed by rationally intelligible principles. We ourselves are part

of nature. The spirit of rationality that imbues us and it (and that is to say,

everything) is what is meant by God. As thus conceived, God is not outside

the world and separate from it, he is all-pervadingly in the world – he is, as

it were, the mind of the world, the self-awareness of the world.

Because we are at one with nature, and because there is no higher realm,

there can be no question of our going anywhere “else” when we die – there

is nowhere else to go. We dissolve back into nature. It is through the ethics

evolved from this belief that Stoicism achieved its greatest fame and influence.

Because nature is governed by rational principles there are reasons why

everything is as it is. We cannot change it, nor should we desire to. Therefore

our attitude in the face of our own mortality, or what may seem to us personal

tragedy, should be one of unruffled acceptance. In so far as our emotions rebel

against this, our emotions are in the wrong. The Stoics believed that emo-

tions are judgments, and therefore cognitive: they are forms of “knowledge”,

whether true or false. Greed, for instance, is the judgment that money is a

pre-eminent good and to be acquired by every available means – a false judg-

ment. If all our emotions are made subject to our reason they will embody

none but true judgments, and we shall then be at one with things as they

actually are.”

170 Brayan Magee, “The Story of Philosophy”, DK Publishing Book, 1998, New

York.



256 1. Origins – Splendor of the Simple

The social component of Stoicism is based on the recognition that friend-
ship is natural, hence good. Although Stoics were indifferent to nationalistic
loyalties, they had faith in the social value of friendship between individuals.
Common brotherhood and common legal prescriptions were prized as natural
laws, two of which – justice and brotherly love – are innate in human nature.
Marriage is an accepted institution insofar as it is infused with moral spirit.
The Stoics viewed man as a citizen of the world. Their cosmopolitan spirit
was reflected also in their defense of the natural rights of slaves. The Stoic
social philosophy harmonized with Christian ideals and its point of view was
buttressed by the rise of Christianity.

Stoic metaphysics and philosophy of religion was closely allied with ethi-
cal naturalism; piety was identified with knowledge, and religious obedience
with universal laws of nature. Stoic religious naturalism acquired pantheistic
characteristics, emphasizing the belief that God and nature are one, although
it differentiated the essential nature of God from the world of nature. Their
metaphysics, which was decidedly Heraclitean, posited fire as the fundamen-
tal principle in things. It was their view that man’s fate is determined by
the mechanistic laws governing all natural phenomena. They linked religion
closely with philosophy. Although they permitted recourse to polytheistic
spirits as media for the worship of God, they held steadfast to a monotheistic
doctrine and made their belief in one supreme, universal Deity (as creator
and sustainer of the universe) the foundation of their moral philosophy.

Three types of Stoics were common, each emanating from its respective
source: (1) philosophers, (2) statesmen, and (3) poets. Consequently, the
Stoics remained sympathetic to the central themes of their religion. Their
point of view was optimistic about nature, but pessimistic about man’s moral
insight. Stoic pessimism was vividly reflected in their acceptance of suicide
(taedium vitae) as a permissible solution to extreme exigencies of life. This
practice seemed to them a symbol of moral strength, evidence that they could
choose to be indifferent to life itself.

Accordingly, they felt justified in ending life whenever the natural course
of events made such a course appear to be an appropriate way of dealing
with insufferable problems. Zeno committed suicide, as did Cleanthes, who
deliberately starved himself to death. It may be noted that the Stoics were
not always consistent in their ideology. Thus they adhered to the doctrine of
self-preservation as the most fundamental law of nature, yet this doctrine was
precisely contrary to their belief in suicide as a rational solution.

The Greek name for Stoicism, Stoa Poikile (Painted Porch), referred to
the portico in Athens where the early adherents held their meetings. The
movement was founded by Zeno of Citium (c. 340–265 BCE), who was a
disciple of the Cynic Crates, and taught the first Stoic groups in that center.



257

Among his eminent contemporary Stoics were two heads of the Stoic
school: Cleanthes of Assos in Troas (c. 303–232 BCE), who had also been
a student of Crates and was the purported author of a monotheistic hymn
(Hymn to the Most High) to Zeus; and Chrysippos of Soli (280–206 BCE),
who integrated many of the Stoic doctrines and classified their terminology.
Two students of Chrysippos, namely, Zeno of Tarsos and Diogenes of
Babylon, succeeded him as leaders of Stoic philosophy in the third century
BCE.

The Stoics of the middle period (second and first centuries BCE) modified
the doctrines of early Stoa to take into account the doctrines of the Platonic
philosophers of the Academy and the Aristotelian Peripatetics. The founder
of this form of Stoicism was Panaetios of Rhodes (c. 180–110 BCE) who
was greatly influenced by some of the views of Plato even though he disagreed
with the fundamental Platonic principles expounded by Carneades, head of
the Academy. Subsequent leaders of the Stoics during this middle period were
Antipater of Tarsos and Boethos of Sidon (d. 119 BCE).

Later Stoa, which prevailed during the first two centuries of the Chris-
tian era, was dominated by two groups of Roman philosophers, one concerned
chiefly with Stoic interpretations of reality, the other with applied morality,
that is, a religious belief in God’s relationship to and interest in mankind
and the universe. To this period belonged Arios Didymos of Alexan-
dria (63 BCE–10 CE), author of commentaries on Greek philosophical works;
Lucius Annaeus Seneca, tutor and for some years an advisor to Nero,
who condemned him to death in 65 CE; C. Musonius Rufus of Volsinii;
Epictetos of Hierapolis (c. 50–138 CE), the most articulate Stoic exponent
of moral philosophy; and the Roman emperor Marcus Aurelius Antoninus
(121–180 CE).

During the period when Christian institutions were developing (230–
1450 CE), elements of Stoic moral theory were known and used in the for-
mulation of Christian and Muslim philosophical doctrines of man and nature,
of the state and society, and of law and sanctions – e.g. in the works of
Boethius (524–525 CE), Isidore of Seville (ca 560–636 CE), and John of
Salisbury (1120–1180 CE).

If the influence of Stoic doctrines during the Middle Ages was largely
restricted to the resolution of problems of social and political significance,
it remained for the Renaissance, in its passion for the rediscovery of Greek
and Roman antiquity, to provide a basis for the rebirth of Stoic views in
logic, epistemology, and metaphysics, as well as the documentation of the
more familiar Stoic doctrines in ethics and politics. The thinkers associated
with this revival are: Pietro Pompanazzi (1462–1525 CE); Desiderius
Erasmus (1466–1536); Thomas More (1478–1535); Huldrych Zwingli
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(1484–1531); Philipp Melanchton (1497–1560); Michel de Montaigne
(1533–1592); Pierre Charron (1541–1603); Justus Lipius (1547–1606).

The leading thinkers of the seventeenth century were predominantly ra-
tionalistic. Reason was the faculty that distinguished man from the beast,
and the triumphs of seventeenth century science proved that reason could be
trusted. And so the conclusion was drawn that the man of reason could know
and understand the world into which he was born if he made the right use of
his mind.

This optimistic attitude was reflected in the growing belief in “natural
law.” The idea of a law of nature that served as a standard of moral be-
havior for all men at all times in all places originated with the Stoics and
was developed by the medieval Schoolmen. During the Renaissance and the
Reformation this idea went into eclipse, but the discovery of “laws of nature”
like Kepler’s laws of planetary motion helped to revive it in the seventeenth
century.

Cicero had given the idea classic formulation: “There is in fact a true law
– namely, right reason – which is in accordance with nature, applies to all
men, and is unchangeable and eternal. By its commands this law summons
men to the performance of their duties; by its prohibitions it restrains them
from doing wrong.”

This law was implanted in the minds of men by God himself. Its content
was hazy, but it was understood to include respect for life and property,
good faith and fair dealing, giving each man his due. These principles could
always be discovered by reason, just as reason could discover the proof of a
geometrical proposition.

The influence of Stoic philosophy on 17th and 18th centuries thinkers is
reflected through the works of: Francis Bacon (1561–1626); Hugo Grotius
(1583–1645); Rene Descartes (1596–1650); Blaise Pascal (1623–1662);
Baruch Spinoza (1632–1677) and Montesqieu (1689–1755).

Along with its rivals, Stoicism enabled the individual to better order his
own life and to avoid the excesses of human nature that promote disquietude
and anxiety. It was easily the most influential of the schools from the time
of its founding through the first two centuries CE, and it continued to have a
marked effect on later thought.

Unfortunately, the Stoics paid little, if any, attention to science and favored
divination (manteia) and astrology; on the ethical plane their doctrines were
too abstract, cold, impersonal; this explains the ultimate victory of Christian-
ity over Stoicism, for the Christians put a new emphasis on love, charity, and
mercy.
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Christianity in general, in spite of striking contrasts with Stoicism, has
found elements within it that parallel its own position. As the Stoic, for exam-
ple, feels safe and protected in the rational care of some immanent Providence,
so the Christian senses that a transcendent though incarnate and loving God
is looking after him. And in general, Stoicism has played a great part through-
out the ages in the theological formulation of Christian thought as well as in
the actual realization of the Christian ideals.

Contemporary philosophy has borrowed from Stoicism, at least in part,
its conviction that man must be conceived as being closely and essentially
connected with the whole universe. And contemporary Humanism still con-
tains some obviously Stoic elements, such as its belief in the solidarity of all
peoples based upon their common nature, and in the primacy of reason. It
is perhaps just because Stoicism has never become a full-fledged philosophic
system that, many centuries after the dissolution of the Stoic school, funda-
mental themes of its philosophy have emerged again and again, and many
have become incorporated into modern thinking.

Stoic ethics have always been widely found to be impressive and admirable,
even by people who do not wholly go along with them. They are not easy
to practice – but perhaps it is bound to be a characteristic of any ethics
worthy of the name that they are difficult to put into practice. They had an
unmistakable influence on Christian ethics, which were beginning to spread
at the time when Seneca, Epictetos, and Marcus Aurelius were writing. And,
of course, to this very day the words “stoic” and “stoicism” are in familiar
use in our language, with perhaps grudgingly admiring overtones, to mean
“withstanding adversity without complaint”.

There must be many people now living who – even if they have never
consciously formulated this fact to themselves – subscribe to an ideal in ethics
which is essentially the same as that of the Stoics.

The fact that in recent centuries the best available school education in
many European countries was based on the study of Latin literature had, as
one of its side-effects, that many generations of well educated European males
absorbed some of the values of Stoicism.
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7. The Eclectics (100 BCE–200 CE)

∗ ∗∗

“Truth itself is hidden in obscurity; I only wish I could discover the truth
as easily as I can expose falsehood”.

“Frivolity is inborn, conceit acquired by education”.

“Any man is liable to err, only a fool persists in error”.

“To be ignorant of what occurred before you were born is to remain always
a child. For what is the worth of human life, unless it is woven into the life
of our ancestors by records of history?”

“Law is the highest reason implanted in Nature, which commands what
ought to be done and forbids the opposite”.

“We must conceive of this whole universe as one commonwealth of which
both gods and men are members”.

“Mankind must pray to God for fortune but obtain wisdom for them-
selves”.

“Men are sprung from the earth, not as its inhabitants and denizens, but
to be as it were the spectators of things supernal and heavenly, in the contem-
plation whereof no other animal participates”.
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“The study and knowledge of the universe would somehow be lame and
defective, were no practical results to follow”.

“That long time to come when I shall not exist has more effect on me than
this short present time”.

(Marcus Tullius Cicero, ca 50 BCE)

The Eclectics advocated a philosophical system which would bring to-
gether and integrate the best ideas of all the philosophers. Like their prede-
cessors, both the Skeptics and the Eclectics regarded philosophy as a practical
inquiry, for they were concerned primarily with ethics, the philosophy of life,
a philosophy which can be implemented. This system which amalgamated
the best doctrines available, was established mostly by Roman philosophers,
including particularly Cicero (106–43 BCE) and Seneca (4 BCE–65 CE).

The Eclectics did not take refuge in Skeptical defenses to maintain a formi-
dable philosophical position. Yet, like the Skeptics, they too developed a
reactionary view seeking to establish acceptable doctrines to cope with the
conflicting philosophical situation which prevailed at that time.

The following four leading schools of philosophy in Athens competed for
adherents: (1) the Stoa group of the Stoics; (2) the Epicurean “Philosophers
of the Garden”; (3) the Academy (Platonists); and (4) the Lyceum, consisting
of the Peripatetic philosophers accepting the views of Aristotle. The Skeptics
supported none of these schools; in contrast the Eclectics sought truths in all
of them and attempted to unify them into a single integrated philosophical
system.

It will be recalled that the Skeptics of the Middle Academy regarded prob-
ability as the best criterion of truth. The Stoics preferred consensus gentium,
that is, the universal opinion of mankind derived from the laws of nature, such
as the law of self-preservation. Cicero and other Roman philosophers joined
these two criteria with the concept of innate ideas (a concept which the mod-
ern philosopher Descartes later used as a foundation stone of his philosophy).
In ethics, Cicero vacillated between the Stoic virtue of self-control and the
Peripatetic view of happiness as the product of satisfying purposive activity.
In the field of physical science, he showed no interest. In political philosophy,
he blended the ideas of Platonism, Aristotelianism, and Stoicism. (The Eclec-
tics had revived and emphasized ancient ideas which had been neglected and
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underemphasized, but they did not actually contribute any important original
ideas to philosophy.)

8. Gnostic and Gnosticism (100 CE–500 CE)

Alexander the Great’s military campaigns were instrumental in expanding
Greek cultural influence into what is now Egypt, the Middle East, and out
into India. Almost inevitably this brought Greek culture into contact with
many other cultures that adhered to very different religious and philosophical
traditions.

Following Alexander’s death in 323 BCE, the Greek empire collapsed and
political power in the Mediterranean shifted from the east to the west, from
Greece to Rome. In 146 BCE, Greece became a Roman colony and Rome was
about to begin the cultural dominion over Europe and beyond that was to
last until the barbarian invasions some 500 years later.

The status of the Land of Israel as a Roman colony was a source of resent-
ment among certain members of the many radical Jewish sects that existed
at this time. It was also the place where Greek, Judaic, and Persian philoso-
phers met each other. From this cultural melting pot there arose a number
of spiritual movements.

Gnosticism is a blanket term used to embrace various dualistic esoteric cos-
mologies and spiritual teachings which developed in the syncretic Hellenistic
civilization in the centuries immediately after Christ. The name designates a
wide assortment of sects that promised salvation through an occult knowledge
that they claimed was revealed to them alone. Scholars trace these salvation
religions back to such diverse sources as Jewish mysticism, Hellenistic mystery
cults, Iranian religious dualism (Zoroastrianism171), Babylonian and Egyptian
mythologies, astrology and pagan religions. The definition of Gnosis172 was
already present in earlier Greek philosophy.

171 Zoroastrianism — ancient Persian religion that viewed the universe as an eter-

nal struggle between forces of light and darkness. (Still has many adherers

today. The German philosopher Nietzsche have been sympathetic to some of

its doctrines.)
172 Gnosis, from the Greek γνωσιζ = knowledge, insight, enlightenment (it is pro-

nounced with a silent “G”, No-sis). The essential knowledge that comes from

within. A gnostic may be part of a tradition (Sufi, Kabbalistic, Christian, etc.),

but each person always interprets that tradition in an individual way;

Complete comprehension which comes from both rational and intuitive means.



263

Gnosticism, Religion and Philosophy

Gnosticism is the teaching based on Gnosis, the knowledge of transcendence
arrived at by way of interior, intuitive means, as opposed to episteme, which is
knowledge in the more mundane sense. The Gnostics believed that knowledge,
not blind faith, held the key to the mysteries of life, but they thought that
knowledge came from spiritual insight, rather than from scientific study.

This knowledge is hidden (esoteric) and only a few may possess it. In
other words, Gnostics claimed to have secret knowledge about God, humanity
and the rest of the universe of which the general population was unaware.

Gnosticism thus rests upon specific personal religious experience, an ex-
perience that does not lend itself to the language of theology or philosophy,
but which is instead closely affinitized to, and expresses itself through, the
medium of myth. The truths embodied in these myths are of a different order
from the dogmas of theology or the statements of philosophy.

The Gnostics taught that:

(1) The physical world is ruled by evil Archons, led by a lesser “god” (known
as Demiurge, after Plato), the deity of the Old Testament, who hold
captive the spirit of humanity. But human bodies, although their matter
is evil, contain within them a divine spark (pneuma) that fell from the
Source, or Nothingness from which all things came. Knowledge (gnosis)
enables the divine spark to return to the Source from whence it came.
Thus, salvation is achieved through knowledge.

Gnosticism held that human beings consist of flesh, soul, and spirit
(the divine spark), and that humanity is divided into classes represent-
ing each of these elements. The purely corporeal (hylic) lacked spirit
and could never be salved; the Gnostics proper (pneumatic) bore know-
ingly the divine spark and their salvation was certain; and those, like
the Christians, who stood in between (psychic), might attain a lesser
salvation through faith. Such a doctrine may have inspired extreme as-
ceticism (as in the Valentinian school) or extreme licentiousness (as in
the sect of Caprocrates and the Ophites). The influence of Gnosticism
on the later development of the Jewish Kabbalah and heterodox Islamic
sects such as the Ismailis is much debated.

(2) The Good God is a transcendental spiritual being, who is utterly alien
to this world, and had nothing to do with its creation.

Experience based not in concepts and percepts, but in the sensibility of the

heart; The idea that there is a special hidden knowledge that only a few may

possess.
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(3) The Savior – whether Christ, Seth, the Thought (Ennoia) of God, or
some other figure – is an emissary of the transcendental God who has
descended into this lower world to confer gnosis on those able to receive
it (the gnostic race).

In stark difference to many orthodox religions or secular worldviews, Gno-
sis holds that human’s “natural” state in this world is that of contingency,
dissatisfaction, bondage and exile. At best, human beings, confined and en-
closed within gnostic “box” of the empirical natural world, can live lives of
temporary relief and fleeting pleasures. True peace and fulfillment evade
them. Salvation can be achieved only by contemplation (theoria), not by
faith (orthodox Christianity).

Christian ideas were quickly incorporated into these syncretic systems
by Simon Magus (fl. 30 CE), Marcion of Sinope (85–160 CE), Capoc-
rates (fl. 140 CE), Ptolemaeus (fl. 140 CE), Valentinus (ca 100–175 CE)
and Basiliades of Alexandria (fl. 135 CE). The largest of them, orga-
nized by Valentinus and Basiliades, were a significant rival to Christianity.
Other known early Gnostics were Numenius of Apamea (fl. 150 CE), a
Platonic philosopher, and Mani (216–276 CE) who founded the syncretic
religion of Manichaeism with roots in Zoroastrianism, Jewish Christianity
and Buddhism. Much of early Christian doctrine was formulated in reaction
to this movement by Irenaeus (ca 130–200 CE), Clement of Alexandria
(ca 145–213 CE), Tertullian (160–225 CE), Hippolytus (170–230 CE) and
Plotinos (fl. 255 CE).

By the second century CE, many very different Christian-Gnostic sects
had formed within the Roman Empire at the eastern end of the Mediter-
ranean. Some Gnostics worked within Jewish Christian and mainline Chris-
tian groups, and greatly influenced their beliefs from within. Others formed
separate communities. Still others were solitary practitioners.

There does not seem to have been much formal organization among the
Gnostics during the early centuries of the Christian movement. As mainline
Christianity grew in strength and organization, Gnostic sects came under
increasing pressure, oppression and persecution. They almost disappeared by
the 6th century. The only group to have survived continuously from the 1st

century CE into modern times is the Mandaean sect of Iraq and Iran who can
trace their history continuously back to the original Gnostic movement.

Many new emerging religions in the West have adopted some ancient Gnos-
tic beliefs and practices. By far, the most successful of these is the Church of
Jesus Christ of Latter-day Saints– the LDS or Mormon church, centered in
Salt Lake City, UT.
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Gnosticism began with the same basic, pre-philosophical intuition that
guided the development of Greek philosophy — that there is a dichotomy
between the realm of true, unchanging being, and ever-changing becoming.
However, unlike the Greeks, who strived to find the connection between the
overall unity of these two ‘realms’, the Gnostics amplified the difference, and
developed a mytho-logical doctrine of humankind’s origin in the realm of
Being, and eventual fall into the realm of darkness or matter, i.e. Becoming.

This general Gnostic myth came to exercise an influence on emerging
Christianity, as well as upon Platonic philosophy173, and even, in the East,
developed into a world religion (Manichaeism) that spread across the known
world, surviving until the Middle Ages.

Gnosticism, in its turn, was influenced by:

1. Hellenistic-Jewish speculation regarding the figure of Sophia (in He-
brew, Hokmah) or divine Wisdom, a personified female creator deity —
midrashic (rabbinic) interpretation of the first few chapters of Genesis
(specifically, Gen 2–6)

2. A particular form of baptismal ritual. Baptism was a common practice
at this time (the biblical John the Baptist being by no means unique),
but the Sethians believed their baptismal water to be of a celestial na-
ture, a Living Water identical with the spiritual Light, and enabling the
ascent of the soul; and so were critical of the ordinary water baptism

3. The developing Christ-doctrine (Christology) of the early church, es-
pecially the identification of Christ with the pre-existent Logos (the
creative power or emanation of God)

4. Neopythagorean and Middle Platonic metaphysics, such as the emana-
tion of divine beings from a single transcendent Absolute, and the un-
derstanding of the cosmos as the reflection of the spiritual world.

173 Long before the advent of Gnosticism, Plato had posited two contrary World

Souls: one “which does good” and one which has the opposite capacity. It

meant to him that this cosmos, like the human soul, possesses a rational and

an irrational part, and that it is the task of the rational part to govern the

irrational. Clearly, this conjecture flew in the face of everything that the ancient

thinkers believed about the cosmos — i.e., that it was divine, orderly, and

perfect. A common solution, among both Platonists and Pythagoreans, was to

interpret the “evil” soul as Matter, which is the opposite of the truly divine

and unchanging Forms. Then, the purpose of the “god” soul is to bring this

“disorder” under the control of reason, and thereby maintain an everlasting

(but not eternal) cosmos.
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5. Babylonian and Chaldean Astrology; the identification of the planets
with deities, and the postulation of a number of a celestial heaven per-
taining to each; all of which determines human destiny and induces a
sort of fatalism.

6. The Pythagorean tradition with its pairs of opposites (light and dark,
good and evil, spirit and matter, etc.)

7. Zoroastrian dualism

8. Ancient Egyptian thought, specifically Memphite and Heliopolitan the-
ologies

In the 20th century, there began a renewed interest in Gnostic ideas; Gnos-
ticism has been treated by several modern authors, philosophers and psychol-
ogists:

• Carl Jung (1875–1961, Switzerland), drew upon Gnostic motifs in his
theoretical work and explained the Gnostic faith from psychological
viewpoint.

• Hans Jonas (1903–1993, Germany and USA) interpreted it from an
existential viewpoint. Indeed Gnosticism, as an intellectual product, is
grounded firmly in the general human act of reflecting upon existence.
The Gnostics were concerned with the basic questions of existence or
“being-in-the-world” (Dasein) – that is: who we are (as human beings),
where we have come from, and where we are heading, historically and
spiritually. These questions lie at the very root of philosophical think-
ing; but the answers provided by the Gnostics go beyond philosophical
speculations toward the realm of religious doctrine and mysticism.

• Eric Voegelin (1901–1985, Germany and USA) held the view that
totalitarian ideologies were caused by Gnostic impulses, including Com-
munism and Nazism.

331 BCE, Sept. 20 Eleven days before the great battle of Arbela174 (Oct.
01, 331 BCE, the last of the Greco-Persian wars and the end of Darius’ Persian

174 Pliny implies that at Arbela the moon was eclipsed two hours after sunset,

while at Sicily the full moon was at sunset. Ptolemy also cites this eclipse and

uses Pliny’s data to calculate the distance between Carthage and Arabela.
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Empire), there occurred a lunar eclipse175 just as Alexander’s army crossed
the Tigris. Greek astronomers used it to determine the difference in longi-
tude176 of two cities from the different times read in clocks when the eclipse
began. One of the cities was Carthage (36◦54′N, 10◦16′E; now Tunisia) and
the other Arbela (36◦12′N, 44◦01′E; now Arbil, Iraq). Sadly, the clocks were
wrong, the difference in longitude was overestimated, and maps of the region
were severely distorted.

ca 330 BCE Praxagoras of Cos (ca 360–290 BCE). Greek physician;
the first to study the pulse and the first to point out the distinction between
arteries and veins, although he thought that arteries are hollow tubes that
carry air throughout the body. Indeed, the word artery is derived from the
Greek arteria = windpipe [since it was noticed that no blood is in them after
death, it was assumed the arteries carried air].

175 In modern times, astronomical determination of longitude at an observing sta-

tion is done by fixing the exact instant of a star’s meridian passage. To deter-

mine the longitude of the station, one needs to determine only the Greenwich-

time of the transit of the star over the local meridian. The difference in time

between the star’s meridian passage at the said station and its meridian passage

at Greenwich is converted into the difference in longitude of the two stations

by using the knowledge that the earth rotates at a rate of 15◦ in each hour of

sidereal time. In practice, radio signals are used, where any reference longitude

(not necessarily Greenwich) can serve.
176 The plane of the earth’s orbit and the plane of the moon orbit intersect along a

line called the line of nodes. The line of nodes passes through the earth and is

pointed in a particular direction in space. Lunar eclipses can occur only when

both the sun and the moon are in or very near the line of nodes, because only

then do the sun, earth, and moon lie along a straight line at a full moon.

When the moon is full and near one of its nodes, the umbra of the earth will

cover its face completely, producing a total lunar eclipse. Somewhat further

from the node, only part of the umbra will fall on the moon – a partial lunar

eclipse. Still further from the node, only the penumbra may fall on the moon.

If the moon is more than about 10◦ from the node, there is no eclipse. As the

moon and sun will be near the nodes only twice a year, usually not more than

two lunar eclipses occur in one year.

The moon’s hourly motion in the sky is a little greater than its own diameter.

As the width of the earth’s shadow at the moon’s distance is more than two and

a half times the moon’s diameter, the whole moon may be in shadow (totality)

for over an hour; shadow may cover part of the moon for about two hours.

Lunar eclipses are visible at the same moment from every part of the earth’s

surface, wherever the moon is above the horizon at the time.
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330–310 BCE Callippos (ca 370–310 BCE). Astronomer. Made accurate
determinations of the length of the seasons and constructed a 76 year cycle to
harmonize the solar and lunar years, which was used by all later astronomers.

330–290 BCE Deinocrates of Rhodes. Greek architect. Designed for
Alexander the Great the new city of Alexandria and for Ptolemy I Soter the
library and museum.

Deinocrates designed the new temple of Artemis at Ephesos and con-
structed the vast funeral pyre at Hephaestion.

325 BCE Antimenes (Greece) devised the first system of insurance men-
tioned in history. With a premium of 8 percent per annum he guaranteed
owners against the loss of their slaves.

ca 325 BCE Eudemos of Rhodes. The first historian of mathematics
on record. A pupil of Aristotle, a friend of Theophrastos and a member of
the Lyceum. Among the writing ascribed to him (but lost), were histories of
arithmetic, geometry, and astronomy. Only fragments have come to us, yet
his work was the main source out of which whatever knowledge we possess of
pre-Euclidean mathematics has trickled down. The appearance at this time
of a historian of mathematics and astronomy proves that so much work had
already been accomplished in these fields that a historical survey had become
necessary.

ca 320 BCE Aristaios the Elder. Mathematician. Marks the transition
between the age of Aristotle and the Age of Euclid . Wrote a treatise on
Conics regarded as loci, anticipating Euclid’s book on the same subject. He
defined the different kind of conics as sections of cones with acute, right,
and obtuse angles. In a second book entitled Comparison of the five figures
(regular solids) he proved the remarkable proposition that “the same circle
circumscribes both the pentagon of the dodecahedron and the triangle of the
icosahedron when both solids are inscribed in the same sphere”177.

ca 320 BCE Pytheas of Massilia. A Greek explorer-mariner, geogra-
pher, and astronomer. The first Southern European to visit the northern
seas. He was also the first person to work out the position of the true North
(realizing that the North Star is not directly above the North Pole), to link
the alternation of tides with the phases of the moon and to invent an accurate

177 This is truly on unexpected result! For who could have foreseen that the faces of

two different regular solids are equally distant from the center of the sphere en-

veloping them? Thus the icosahedron and dodecahedron have a special relation

not shared by the other three solids.
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method of determining latitude with a calibrated sundial. At the time when
Alexander the Great had carved himself an empire as big as the United States
– territory stretching from the eastern Mediterranean to the banks of the In-
dus – the Greeks, astonishingly, had given no more than a passing glance to
the North and West. It was not until some years after Alexander’s death in
323 BCE that a Greek first ventured into the chill waters of the Arctic Circle.

Sometime near 320 BCE, Pytheas set out from his native city, Marseilles,
slipped by a blockade set up by the Carthaginian navy at Gibraltar and headed
northward to Britain and beyond on an extensive voyage of the order of 11,000
km. He visited the Cornish tin mines and circumnavigated Britain, which he
described as triangular in shape with three unequal sides (its perimeter he
reckoned at about 4000 km). Thus he had occasion to observe the considerable
tides on its coasts, and the daily regression of the times of high water, parallel
to that of the time of the moon’s transit. He then went to make a 6-day
crossing of the North Sea to ‘Thule’ (Norway). Turning back to a further
commercial objective, Pytheas sailed along the coast of Europe to the estuary
of the Vistula on the Baltic coast.

His writings have been lost, and are known only through quotations and
allusions by later authors. Also, since Pytheas was acting as a commercial spy,
his mission was cloaked in a certain amount of secrecy. Greek and Roman
geographers, among them Eratosthenes, Polybius and Strabo, were in-
credulous about his geographical discoveries, and scoffed at them [they found
it hard to believe that lands in the latitude of Britain could be habitable –
knowing nothing of the Gulf Stream and its effect on the climate of western
Britain].

However, geographers would depend for centuries on Pytheas’ data about
northern countries. Later discoveries showed that he was telling the truth
about what he had seen. The countries visited by Pytheas were not visited
by any subsequent authority during more than 200 years. Pytheas’ accurate
determinations of latitude were adopted by Ptolemy, and became the basis of
the Ptolemaic map of the Western Mediterranean.

312 BCE Via Appia (Appian way). The most famous of Roman roads.
A high-road leading from Rome to Campania and lower Italy, whose con-
struction began in 312 BCE by the censor Appius Claudius Caecus. It
originally ran only as far as Capua (200 km), but was successively prolonged
to Beneventum (268 BCE), Venusia (190 BCE), Tarentum, and Brundisium.
Initially covered by gravel and later by stone; altogether, the road was made
of multiple layers of durable materials, the top layer composed of a mixture
of concrete, rubble and stones set in mortar.

Not only was the road usable by troops in all weather, it was crucial
to building commercial interests and sustaining cultured links and political
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control over the provinces. The road was administered under the empire by
a curator of praetorian rank, as were the other important roads in Italy.

Over time, several roads were built to link Rome with other cities and
colonies, including the Via Flaminia, which headed north to link Italy with
the Latin colony of Ariminum. In all, the Roman road system covered 80,000
km and crossed through 30 countries.

The Via Appia was the world’s first all-weather road system built to fa-
cilitate warfare. Following their defeat in the Samnite Wars, particularly
their humiliation at the Battle of the Caudine Forks along the rocky Apen-
nines (321 BCE), the Roman military began to develop more effective attack
formations and better transportation routes through uneven terrain.

A large number of milestones and other inscriptions relating to its repair
at various times are known.

The first aqueduct brought pure water into Rome.

ca 310 BCE Zeno of Citium (336–264 BCE). Philosopher of Phoenician
descent. Founded the Stoic178 school of philosophy in Athens. Most of its
early representatives were not Greeks but Asians. Stoicism began in Greece
and then spread to Rome and flourished for more than 500 years until it
was finally harmonized with the spirit of Christianity by some Fathers of the
Church.

The early Stoics were interested in logic and natural philosophy as well
as ethics. The later Stoics, especially Seneca (4 BCE–65 CE), Marcus
Aurelius (121–180) and Epictetos (ca 60–135) emphasized ethics.

Zeno was born in Citium on the Island of Cyprus. The commercial activ-
ities of his family first took the young man to Athens (314 BCE) and there
he developed an interest in philosophy. He abandoned trade and eventually
set up a school of his own.

Fragments of 26 books written by him are extant, but most of his works
have been lost.

According to Zeno, nature is strictly ruled by law; the laws in conformity
with which the world runs its course emanate from some supreme authority
that governs history in all its details. Everything happens for some reason in
a pre-ordained manner. The supreme or divine agency is thought of not as
something outside the world, but running through it, like moisture seeping

178 Derived from Stoa, a painted roofed colonnade (portico) on the north side of the

market place of Athens, which the celebrated painter Polygnotos had adorned

with frescoes representing scenes from the Trojan war. There Zeno taught his

disciples.
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through sand. God is thus immanent power, part of which lives within each
human being. (This kind of view has become famous in modern times through
the philosophical writings of Spinoza, who was influenced by the Stoic tradi-
tion.) Men’s lives are guided by Provident Reason, against which it is futile to
resist and to which the wise man willingly submits with indifference to life’s
vicissitudes.

It was Stoicism, not Platonism, that filled men’s imaginations and exerted
the wider and more active influence upon the ancient world at some of the
busiest and most important times in all history. And this was chiefly because
it was above all a practical philosophy, a rallying point for strong and noble
spirits contending against odds. Its concepts, values, and codes of honor have
infiltrated Western Culture more deeply than we commonly recognize.

Although Stoicism was by no means dormant through the Middle Ages,
the great period of its revival began with the Renaissance and lasted until
the beginning of the 19th century. Stoic morality inspired Shakespeare,
Schiller, Spinoza, Kant and many leaders of the French Revolution.

Stoicism is symptomatic of the subtle infusion of the Asian soul into the
wearied civilization of the Greeks overlords during the decay of Greece af-
ter the death of Alexander the Great (323 BCE). While this boy-emperor
dreamed of spreading the Greek culture through the Orient, he ended up
importing into Europe oriental cults and faiths along the new lines of commu-
nication opened up in the wake of his victorious armies. He had underrated
the inertia and resistance of the Oriental mind, and depth of the Oriental
culture.

The Oriental spirit of apathy and resignation found a ready soil in decadent
and despondent Greece. The introduction of the Stoic philosophy into Athens
by the Phoenician merchant Zeno was but one of a multitude of Oriental
influences.

Both Stoicism and Epicureanism – the apathetic acceptance of defeat, and
the effort to forget defeat in the arms of pleasure – were theories as to how
one might yet be happy though subjugated or enslaved. When the glory had
departed from Athens, she was ripe for Zeno and Epicuros.

The Romans, coming to despoil Hellas in 146 BCE, found the rival schools
of Stoicism and Epicureanism dividing the philosophical field. Having nei-
ther leisure nor subtlety for speculation themselves, they brought back these
philosophies with their other spoils to Rome.

Stoics agreed that space has no edge and rejected the Aristotelean outer
boundary of the universe. They proposed instead a system consisting of a star-
filled cosmos surrounded by a starless extracosmic void extending to infinity.
The Stoic astronomical scheme endured in various guises for more than 2000
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years until the first quarter of the 20th century, when the existence of the
galaxies beyond the Milky Way was established beyond dispute.

Cleanthes (310–232 BCE), a devoted disciple of Zeno, studied under his
master for 19 years. Upon Zeno’s death, he assumed the directorship of the
school for 31 years. Chrysippos (ca 280–207 BCE) succeeded Cleanthes as
director of the Stoic school. He was born in Soli, Cilicia, Asia Minor, and
went to Athens in 260 BCE.

310–301 BCE Epicuros of Samos (341–270 BCE). Greek philosopher.
Promoted the concept of Democritos that matter is made of atoms and
adopted the principle of conservation of matter. Established in Athens a
freethinking school that embraced much of the atomistic philosophy. He re-
jected the gods as the controlling forces of the natural world, invoked physical
causes whenever possible, and taught that sense perceptions form the basis of
all knowledge. Epicuros also outfitted the atomistic world with a comprehen-
sive theory of ethics, claiming the highest good to be pleasure taken wisely
and in moderation, leading to life of maximum freedom from physical and
mental pain. The atomistic system, taught in this practical form – unfortu-
nately easily misunderstood as a hedonistic doctrine – gained the acceptance
of multitudes throughout the known world.

Educated Romans, skeptical of the mythological religion, turned to the
teachings of Epicuros. For more than seven centuries, three before and four
after Christ, Epicureanism flourished. Others – first the Platonists, then the
Stoics, and finally the Christians – reviled Epicuros as an atheist and attacked
his doctrine with bitter hostility.

Epicuros was born on the Island of Samos, seven years after the death of
Plato. At the age of 18 he went to Athens, where the Platonic school was
flourishing under the lead of Xenocrates, and stayed there for a year. Stim-
ulated by the perusal of some writings of Democritos, he began to formulate
a doctrine. In 307 he returned to Athens and established there a philosophy
school. He lived there for the rest of his life.

The arena for his teaching was a garden which he purchased. There he
passed his days as the loved and venerated head of a remarkable and unique
society of men.

310–272 BCE Hieronymos of Cardia (ca 350–246 BCE). Greek histo-
rian and general. Took active parts in the wars that followed the death of
Alexander the Great. He served successively Eumenes of Cardia, Antigonos
and Demetrios in various administrative and diplomatic posts, including that
of governor of Boeotia and superintendent of the asphalt beds of the Dead
Sea.
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Hieronymos wrote a history of the Wars of the Successors from the death
of Alexander (323 BCE) to the death of Pyrrhos (272 BCE). His work was
used by Arrian, Diodoros and Plutarch. In the last part of his work he
made an attempt to acquaint the Greeks with the character and early history
of the Romans.

ca 310 BCE Autolycos of Pitane179 (ca 340–280 BCE). Astronomer and
mathematician. An older contemporary of Euclid, representing the transition
period between the Hellenic school of mathematics and the Alexandrian Age.
Author of the earliest Greek mathematical text-book that has come to us en-
tire. His first treatise, entitled On the moving sphere, deals with the geometry
of the sphere (poles, great circles, etc) and many of its prepositions are used
by Euclid in his Phaenomena.

Another work of Autolycos, in two books, on the rising and settings (of
stars) is more astronomic and implies observations. In these books, proposi-
tions follow one another in logical order; each proposition is clearly enumer-
ated with reference to lettered figures, then proved180 – a Euclidean form,
before Euclid!

In a third book (now lost) Autoclycos criticized Eudoxos’ hypothesis of
concentric spheres on the grounds that it did not account for the planets being
at different distances from the earth at different times. He wondered how the
theory could be reconciled with the changes of the relative size of the sun and
the moon and with the variations of brightness of the planets, especially Mars
and Venus. Autolycos, however, could not resolve the difficulty181.

The practical value of his books was immediately realized by mathemat-
ical astronomers, who transmitted them from generation to generation with
special care. Their preservation was facilitated and insured by the fact that
they were eventually included in a collection called “Little Astronomy” (in

179 A harbor facing Lesbos, near Assos (where Aristotle taught).
180 Some propositions, however, are not proved; that is, they are taken for granted.

This suggests that Autolycos’ books had been preceded by at least one other

book, now lost. Indeed, in his Sphaerics, Theodosios of Bithynia (ca 100

BCE) gives the proof of theorem unproved by Autolycos.
181 He assumed that all the stars were supposed to be on a single sphere. Any

three stars are vertices of a spherical triangle, the sides of which are great

circles. Measuring the distance between two stars on that sphere is equivalent

to measuring the angle which that side of the triangle subtends at the center of

the earth. All such problems are solved now by means of spherical trigonometry,

but trigonometry had not yet been invented in Autolycos’ time and he tried to

obtain geometric solutions.
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contradistinction to Ptolemy’s Almagest, the “Great collection”). “Little As-
tronomy” was transmitted in its integrity to the Arabic astronomers, and
became in Arabic translation, parts of homogeneous collections, each helping
the other to survive.

300–291 BCE Ptolemy I (Soter) (called Soter, i.e., preserver) built
the library and Museum of Alexandria and made it a haven for scholars. The
library may have contained 700,000 ‘volumes’ (rolls) and its Museum (‘home
of the muses’) was a publicly funded research institute.

Soter (366–282 BCE, king 323–285 BCE) was a general in the army of
Alexander the Great and one of his successors. He made Alexandria his
capital and the foremost city of the world.

His son, Ptolemy II (called Philadelphus, 308–246 BCE, king 285–246
BCE) built a canal from the Red Sea to the Nile and made Alexandria the
center of Hellenistic culture. Built a lighthouse on Pharos.

His son, Ptolemy III (called Euergetes, i.e., benefactor, king 246–221
BCE) replaced the Macedonian calendar with Egyptian solar year. He was a
liberal patron of the arts and added many books to the library of Alexandria.
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The Alexandrian School182 (300 BCE–415 CE)

Alexandria was founded by Alexander the Great about the time (332 BCE)
when Greece, in losing her national independence, lost also her intellectual
supremacy. The city was in every way admirably adapted for becoming the
new center of the world’s activity and thought. Its situation brought it into
commercial relations with all the nations lying around the Mediterranean, and
at the same time rendered it as the main communication link with the wealth
and civilization of the East. These natural advantages were augmented to a
great extent by the care of the sovereigns of Egypt.

In 304 BCE Ptolemy I Soter began to draw around him from various
parts of Greece a circle of men eminent in literature, art and science. To
these he gave every facility for the prosecution of their learned researches.
Under the inspiration of his friend Demetrios of Phaleron (350–283 BCE),
the Athenian orator, statesman and philosopher, this Ptolemy laid the foun-
dations of the great Alexandrian library and originated the keen search for
all written works, which resulted in the formation of a collection such as the
world has seldom seen.

He also built, for the convenience of his men of letters, the Museum, in
which they resided, studied and taught. This museum, or academy of science,
was in many respects not unlike a modern university. It probably included
dormitories for the men of science, their assistants and disciples, assembly
rooms, roofed colonnades and open-air study for discussion, laboratories, an
observatory, botanical and zoological gardens. Its scientific development owed
much to its royal patrons and even more so to Straton183 of Lampascos
(Latin: Strato Physicus, ca 340–268 BCE) who was called to Alexandria by

182 For further readings, see:

• Sarton, G., Hellenistic Science and Culture, Dover: New York, 1993, 554 p.

• Sarton, G., Ancient Science Through the Golden Age of Greece, Dover: New

York, 1993, 646 pp.

183 Greek Peripatetic philosopher; known for his doctrine that all substances con-

tain void; tempered Aristotle’s interpretation of nature by insisting on causality

and materialism and denial of supernatural forces at work in nature. Pupil and

successor of the botanist Theophrastos (372–288) as head of the Peripatos (ca

288 BCE). He also expanded on Aristotle’s Physics, noticing that falling objects

(e.g. rainwater off a roof) accelerate as they reach the ground rather than falling

at a steady rate as Aristotle foretold.
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Ptolemy. Straton was indeed the real founder of the Museum for he brought
to it the intellectual atmosphere of the Lyceum, and it was thanks to him
that it became not a school of poetry and eloquence, but an institute of
scientific research. He was deeply interested in the study of nature and thus
was nicknamed hoi physicos (the physicist). Under the distant influence of
Aristotle and his own master, Theophrastos, he realized that no progress is
possible except on a scientific basis and stressed the physical tendencies of
the Lyceum. He remained in Egypt about 15 years, being finally recalled to
Athens in 288.

The patronage of the Museum was passed on to the son and grandson of
Ptolemy I Soter.

Ptolemy II Philadelphus [whose librarian was the celebrated Callima-
chos (305–240 BCE)] bought up all Aristotle’s collection of books, and also
introduced a number of Jewish and Egyptian works. Among these appears to
have been a portion of the Septuagint.

Ptolemy III Euergetos largely increased the library by seizing on the
original editions of the dramatics laid up in the Athenian archives, and by
compelling all travelers who arrived in Alexandria to leave behind a copy of
any work they possessed.

The Alexandrian Renaissance was mainly accomplished by these three
kings within the first half of the third century. It was a magnificent attempt
to continue and develop, under new conditions, the old Hellenic culture.

Much was done at the Museum during the first century of its existence.
Mathematical investigations were led by Euclid, Eratosthenes (who was
first to measure the size of the earth with remarkable precision), and Apol-
lonios (who composed the first book on conics). Archimedes flourished in
Syracuse, but may have visited Alexandria and was certainly influenced by
its mathematical school.

Alexandria was an ideal place for astronomical syncretism; Greek,
Egyptian and Babylonian ideas could mix freely – there were no established
traditions and representatives of various races and creeds could and did actu-
ally meet. Astronomical observations were made by Aristarchos and Tim-
ocharis, and a little later by Conon of Samos (ca 245 BCE).

The anatomical investigations carried out in the Museum by Herophilos
resulted in an elaborate survey of the human body on the basis of dissections.

During 250–150 BCE, the scholars and critics of the Alexandrian library
set to work to establish the texts of the classical Greek authors, equip them
with commentaries and select the list of the principal figures in each literary
genre. Homer and Hesiod were singled out from the immense body of early
epic poetry as the great masters.
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Among the lyric poets nine were nominated for immortality – Pin-
dar, Bacchylides, Sappho, Anacreon, Stesichoros, Ibycos, Alcman,
Alaeos, and Simonides. The crowned heads of the tragic stage were
Aeschylos, Sophocles, and Euripides. Of the comic stage they chose
Aristophanes, Eupolis, and Caritanos. There were lists of best historians
and philosophers, and also a list of ten greatest Attic orators, Demosthenes
prominent among them. The Alexandrian term for the canonized authors was
hoi enkrithentes (the admitted). The Roman later expressed the idea with
the word classicus, meaning: “belonging to the highest class of citizens”.

The period of creative activity of the library lasted only about 150 years;
this period was also that of greatest commercial prosperity. After the 2nd

century BCE, the library declined and fell into somnolence. At the time of its
climax it may have contained 700, 000 “rolls”. It was by far the largest one
of antiquity and found no equal perhaps until the 10th century, when very
large collection of books became available in the Muslim world, both East in
Baghdad and West in Cordova. Decadence was rapid during the 2nd century
CE and there is good reason for believing that many books were taken to
Rome. Under Aurelian (Emperor 270–275 CE) the Museum and the mother
library ceased to exist.

Yet, the scientific tradition was carried on by Hero (ca 100 CE),
Menelaos (ca 100 CE), Ptolemy (ca 150 CE), Diophantos (ca 250 CE),
Pappos (ca 300 CE), and Hypatia (ca 415 CE).

Alexandrian science, however, did not have the same significance to the
Hellenistic world as it does to ours; true, the above-mentioned scholars devel-
oped theories and performed some remarkable experiments that foreshadowed
the scientific achievements of the 17th and 18th centuries. Yet, experimen-
tation with physical phenomena was to them only an aspect of philosophy, a
speculative pastime not intended to impact day to day life.

The principle of the steam engine, for instance, was understood but used
only for tricks of magic. The astronomer Aristarchos demonstrated that the
earth was round and that the planets revolved around the sun. Eratosthenes
measured the circumference of the earth and came within 300 km of modern
measurements. But neither was interested in publicizing the discoveries. Most
of the Hellenistic world, including scholars, continued to believe that the world
was flat and that it was the center of the universe.

The Hebrew Torah (5 books of Moses) was translated184 into Greek during
the 3rd century BCE, in the reign of Ptolemy II Philadelphus. Other books

184 The ancient Greeks hardly paid any attention to the nearby Hebrews and vice

versa. In Hellenistic times, this situation was reversed, because Jews and Greeks

were sharing the same environment in Egypt. However, the large and influential

Jewish colony of Alexandria was losing its command of the Jewish language. Ac-
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of the Old Testament were translated later, many of them in the 2nd century
BCE — the last one, Koheleth (Ecclesiastes), not until about 100 CE (the
original was produced in the period 250–168 BCE).

While important contributions to optics, mechanics, and medicine are to
be credited to the Alexandrian culture, its supreme achievements are all re-
lated directly or indirectly to the discovery of a scientific basis for earth survey.
Alexandria was a center of maritime trade. It was also a cosmopolitan product
of Greek imperialism, and thereafter a cultural center of the Roman Empire.
The art of navigation grew out of the mariner’s practice of steering his course
by the heavenly bodies. Thus, for example, knowledge of latitude arose from
noticing the changing elevation of the Pole star in coastal sailing northward
and southward across the Mediterranean or beyond the Pillars of Hercules.

Knowledge of longitude came from the arts of war, where estimates of long
east-west distances depended on information from campaigns. Scientific ge-
ography was in part a by-product of imperial expansion. Brilliant innovation
in mathematics arose in close relation to the same group of problems: the
trigonometry of Archimedes and Hipparchos, the algebra of Theon and Dio-
phantos can be traced to the inadequacies of Platonic geometry and Greek
arithmetic for handling the large-scale measurements which Alexandrian geo-
desy and astronomy entailed.

The principal discoveries which form the basis of the Ptolemaic system
may be arranged under 4 headings:

• Measurements of the size of the earth.

• Construction of universal star maps with latitude and longitude as ‘co-
ordinates’.

• Introduction of latitude and longitude for terrestrial cartography.

• First estimates of the distances of the moon and sun from the earth.

300–250 BCE Irrigation by means of the sakya was introduced by Greek
engineers into Egypt. It is a rude water-wheel, with earthen pots on an endless
chain running round it, worked by one or two bullocks. [In Northern India

cording to the story told in Greek by the Jew Aristeas, the librarian Demetrios

of Phaleron explained to King Ptolemy II the need for translating the Torah

into Greek. This allegedly resulted in the septuagint .
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it is termed the harat, or Persian wheel]. With one such water-wheel a pair
of oxen can raise water up to 6 m, and keep from 5 to 12 acres irrigated
throughout an Egyptian summer. This primitive contrivance is still in use
today in Egypt and India.

Archimedes is credited with the invention of the Archimedes screw (ca
250 BCE) which raises water as the handle is turned: the water flows from
one spiral of the inclined screw to the next and finally come out of the upper
end of the screw. The devise is still used today; except that a Diesel engine
turns the screw.

300 BCE–100 CE The former cities of Palmyra and Petra (now in the
deserts of Syria and Jordan) flourished, cultivating the vine and olive without
much recourse to artificial irrigation. This seems to imply not only a higher
water table than now but a climate that supplied more dependable rain. The
cities were abandoned at ca 100 CE.

304–291 BCE Herophilos of Chalcedon (ca 335–280 BCE, Alexan-
dria). Greek physician and surgeon. First scientific anatomist. Founder of
the Alexandrian school of anatomy. One of the first to conduct post-mortem
examinations and public dissections185.

Discovered: prostate gland, duodenum, ovaries, fallopian tubes. Made the
first methodical study of the brain (describing its ventricles), the liver, the
spleen, the retina. First to time the pulse, to distinguish between arteries and
veins and between sensory and motor nerves. Determined that the seat of
reasoning is in the brain, not the heart.

The Alexandrian doctors also discovered Ligature, the tying off of blood
vessels. This enabled them to perform operations that had before been im-
possible. They removed bladder stones, repaired hernia and performed am-
putations.

Herophilos was born in Chalcedon (Asia Minor) and flourished under
Ptolemy Soter (366–282 BCE). His bold anatomical investigations were car-
ried through in the Museum. Through his ambitious program of anatomical
research, he conducted an elaborate survey of the human body on the basis
of dissections. As this was done systematically for the first time, the men in
charge were bound to make many discoveries.

185 The Ptolemaic rulers allowed the dissection of human corpses, a taboo among

the Greeks.

It was claimed by the Roman encyclopedist Celsus (1st century CE) and by

Church fathers ( who were eager to discredit Pagan science) that the Alexan-

drian anatomists obtained permission to dissect the bodies of living men, in

order to have a better understanding of the functions of the organs.
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His pupil Philinos of Cos (fl. 250 BCE) founded the so-called Empirical
School of Medicine that rejected dogma and based its practice on experience,
clinical cases and analogy.

ca 300 BCE Euclid186 of Alexandria (ca 330–260 BCE). Greek mathe-
matician who founded the mathematical school of Alexandria. The university
opened ca 300 BCE and Euclid may have been invited from Athens, to head
its school of mathematics.

Euclid is the most prominent mathematician of antiquity best known for
his treatise on geometry The Elements (13 books). The long lasting nature
of The Elements makes Euclid the leading mathematics teacher of all times.
Indeed, the treatise became the center of mathematical teaching for 2000
years.

We are ignorant of the dates of his birth and death, of his parentage, teach-
ers and the residence of his early years. Proclos (412–485 CE), the authority
for most of our information regarding Euclid, states in his commentary on the
first book of the ‘Elements’ that Euclid lived at the time of Ptolemy I (Soter),
King of Egypt, who reigned from 323 to 285 BCE, that he was younger than
the associates of Plato, but older than Eratosthenes (276–196 BCE) and
Archimedes (287–212 BCE).

The question has often been raised as to the extent to which Euclid, in
The Elements, is a compiler rather than a discoverer. To this question no
satisfactory answer can be given. The general agreement is that Euclid must
have made great advances beyond his predecessors both in geometry and
number theory.

Five propositions in the Elements are of special interest:

(1) Propositions 12 and 13 of Book II are recognized as the law of cosines
for plane triangles. They adumbrate the concern with trigonometry that
was shortly to blossom in Greece.

(2) Euclid’s algorithm, which gives a very simple and efficient method for the
determination of the greatest common divisor (g.c.d.) of two numbers
– a basic method of elementary number theory. This is found in the
seventh book of ‘Elements’. This method is essentially that of converting
a fraction into a continued fraction. It therefore constitutes the earliest
important step in the development of the concept of a continued fraction.

(3) The idea of the prime-factorization theorem as well as the lemma used in
proving it – are found in ‘Elements’ Books VII and IX.

186 His name reads Eucleides.



ca 300 BCE 281

(4) The proof of the infinity of primes is found in Proposition 20, Book IX.

(5) 2n−1 (2n − 1) is perfect if (2n − 1) is prime. [Final proposition, Book IX].

If we take Egyptian and Babylonian efforts into account, Euclid’s Elements
is the climax of more than a thousand years of research. Granted that many
discoveries were made before him, he was the first to build a synthesis of
all the knowledge obtained by others and himself and to put all the known
propositions in strict logical order. Thus, although he was seldom a complete
innovator, he did much better and on a larger scale what other geometers had
done before him. Those propositions which cannot be ascribed to others were
probably discovered by Euclid himself and their number is considerable. The
arrangement is to a large extent Euclid’s own; he created a monument which
is marvelous in its inner beauty, clearness and durability.

Consider Book I, explaining first principles, definitions, postulates, axioms,
theorems and problems. It is possible to do better at present, but it is almost
unbelievable that anybody could have done as well 2300 years ago. The most
amazing part of Book I is Euclid’s choice of postulates. In particular, the
choice of postulates 5 is, perhaps, his greatest achievement, the one which
has done more than any other to immortalize the word “Euclidean”: “. . . if a
straight line falling on two straight lines makes the interior angles on the same
side less than two right angles, the two straight lines, if produced indefinitely,
meet on that side on which the angles are less than two right angles”.

The first consequence of Euclid’s decision to accept this as a postulate187,
was the admirable concatenation of his Elements. The second was the endless
attempts which mathematicians through the ages made to correct him.

The third consequence is illustrated by the list of alternatives to the 5th

postulate. Some bright men thought that they could rid themselves of the
postulate and succeeded in doing so, but at the cost of introducing another
one (explicit or implicit) equivalent to it188. Thanks to his genius, Euclid

187 George Sarton’s remark concerning the greatness of this postulate is adequate

here: “A person of average intelligence would say that the proposition is evident

and needs no proof; a better mathematician would realize the need of a proof

and attempt to give it. It requires extraordinary genius to realize that a proof

was needed yet impossible. There was no way out, then, from Euclid’s point of

view, but to accept it as a postulate and go ahead”.
188 “If a straight line intersects one of two parallels, it will intersect the other also”.

(Proclos)

“Given any figure there exists a figure similar to it of any size”. (John Wallis)

“Through a given point only one parallel can be drawn to a given straight line”

(John Playfair)
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saw the necessity of this postulate and selected intuitively the simplest form
of it.

The 4th consequence, and the most remarkable, was the eventual creation
of non-Euclidean geometries.

Euclid flourished in Alexandria under the first Ptolemy and possibly under
the second. Two anecdotes help to reveal his personality. It is said that
the King (Ptolemy I) asked him “if there was in geometry any shorter way

“There exists a triangle in which the sum of the three angles is equal to two

right angles”. (Legendre)

“Given any three points not in a straight line there exists a circle passing

through them”. (Legendre)

All these men proved that the 5th postulate is not necessary if one accepts

another postulate rendering the same service. The acceptance of any of those

alternatives would, however, increase the difficulty of geometrical teaching. It

is clear that a simple exposition is preferable to one which is more difficult.

On the other hand, mathematicians like Saccheri, Lambert and Gauss ar-

gued that inasmuch as the 5th postulate cannot be proved, there is no obligation

to accept it, and if so, it can deliberately be rejected.

The first to build a new geometry on an opposite postulate was Nicolai

Ivanovitch Lobachevsky (1793–1850), who assumed that through a given

point more than one parallel can be drawn to a given straight line or that

the sum of the angles of a triangle is less than two right angles. The discov-

ery of a non-Euclidean geometry was made at about the same time by Janos

Bolyai (1802–1860). Sometime later, another geometry was outlined by Bern-

hard Riemann (1826–1866), who was not acquainted with the writings of

Lobachevsky and Bolyai and made radically new assumptions. In Riemann’s

geometry, there are no parallel lines and the sum of the angles of a triangle is

greater than two right angles. The mathematical teacher Felix Klein (1847–

1925) showed the relationship of those geometries: Euclid’s geometry refers to

a surface of zero curvature, in between Riemann’s geometry on a surface of

positive curvature (like the sphere) and Lobachevsky’s applying to a surface of

negative curvature. To put it more briefly, he called the Euclidean geometry

parabolic, because it is the limit of elliptic (Riemann’s) geometry on one side

and of the hyperbolic (Lobachevsky’s) geometry on the other.

It would be foolish to give credit to Euclid for pan-geometrical conceptions; the

idea of a geometry different from the common-sense one never occurred to his

mind. Yet, when he stated the fifth postulate, he stood at the parting of the

ways. His subconscious prescience is astounding; there is nothing comparable

to it in the whole history of science.
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than that of the Elements, and he answered that there was no royal road to
geometry”. The other anecdote is equally good. “Someone who had began
to read geometry with Euclid when he had learned the first theorem asked
him, ‘But what shall I get by learning these things?’ Euclid called his slave
and said: ‘Give him an obol (silver coin), since he must gain out of what he
learns’ ”.
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A Brief History of Geometry189 (3000 BCE–1900 CE)

Geometry Before the Greeks

The beginnings of geometry are shrouded in the mists of pre-history. This
stage is sometimes called “subconscious geometry.” Later, humans came to
recognize certain principles, such as the fact that the circumference and di-
ameter of circles are always in the same ratio. This stage is the “scientific
geometry.”

Geometry as a science may have begun in Egypt, where the rulers had
need to measure the areas of fields in order to assess taxes on them. (The
word “geometry” means “earth measurement.”) The Moscow papyrus (19th
cen. BCE) and the Rhind papyrus (17th cen. BCE) make it clear that the
Egyptians had a significant amount of geometrical knowledge at least 4000
years ago, and perhaps much earlier than that. (The great Pyramid of Gizah

189 To dig deeper, consult:

• Resnikoff, H.L. and R.O. Wells, Jr., Mathematics in Civilization, Dover: New

York, 1984, 408 pp.

• Ghyka, M., The Geometry of Art and Life, Dover: New York, 1977, 174 pp.

• Huntley, H.E., The Divine Proportion, Dover: New York, 1970, 186 pp.

• Dodge, C.W., Euclidean Geometry and Transformations, Dover: New York,
1972, 295 pp.

• Durell, G.V., Modern Geometry, MacMillan, 1947, 145 pp.

• Brannan, D.A., M.F. Esplen and J.J. Gray, Geometry, Cambridge University

Press, 2002, 497 pp.

• Coxeter, H.S.M., The Beauty of Geometry, Dover, New York, 1999, 274 pp.

• Hilbert, D. and S. Cohn-Vossen, Geometry and Imagination, Chelsea Pub-
lishing Co.: New York, 1952, 357 pp.

• Zwikker, C., Advanced Geometry of Plane Curves, Dover, 1963, 299 pp.
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was built nearly 5000 years ago.) Many of the methods used to calculate areas
and volumes were only approximately correct. One of the most remarkable
results in the Moscow papyrus is a correct procedure for calculating the volume
of a truncated pyramid.

Wherever it may have appeared first, it is clear that some significant
geometry was developed – probably independently – in Egypt, Mesopotamia
(Babylonia), China, India, and perhaps in other places and cultures as well.
Wherever it developed it seems likely that this development came about to
meet the practical needs of surveying, engineering, and agriculture. Geome-
try remained empirical and utilitarian until the Greeks made it into a science
which could be, and was, studied independently of its practical applications.

Geometry in Greece

The Greeks of the Classical Period (600–300 BCE) not only increased the
quantity of geometric knowledge, they changed the very nature of the subject,
and of mathematics in general. Some Greek mathematicians traveled to Egypt
and Babylonia and learned what was known of geometry in those places.
They “transformed the subject into something vastly different from the set of
empirical conclusions worked out by their predecessors. The Greeks insisted
that geometric fact must be established, not by empirical procedures, but by
deductive reasoning; geometrical truth was to be obtained in the study room
rather than in the laboratory.” They created what we may call “demonstrative
geometry,” whose truths are supported by (deductive) proofs rather than only
by inductive evidence.

This work began with Thales in the first part of the 6th century BCE.
Thales, who had traveled in Egypt, is the first known individual with whom
the use of deductive methods in geometry is associated. This axiomatic-
deductive method is the cornerstone of modern mathematics, which thus may
be truly said to have begun with the classical Greeks.

The next important name is that of Pythagoras, who may have stud-
ied under Thales. He founded the celebrated Pythagorean school, a broth-
erhood knit together with secret and kabbalistic rites and observances and
committed to the study of philosophy, mathematics, and natural science.
The Pythagorean belief that everything is explainable by numbers may be
regarded as one of the origins of the quantitative emphasis in modern science.
Pythagoras may have been the first to provide a proof of the theorem named
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for him, but the result had been understood by many peoples for many cen-
turies. Demonstrative geometry was considerably advanced by Pythagoras
and his followers.

Several attempts were made to unite all of the truths of mathematics into
a single chain which could be deduced from explicitly-stated “self-evident”
assumptions (or axioms). And then, about 300 BCE, Euclid produced his
epoch-making effort, the Elements, a single deductive chain of 465 propo-
sitions neatly and beautifully comprising plane and solid geometry, number
theory, and Greek geometrical algebra. From its very first appearance this
work was accorded the highest respect, and it so quickly and so completely
superseded all previous efforts of the same nature that now no trace remains
of the earlier efforts. The impact of this single work on the future develop-
ment of geometry has been enormous and is difficult to overstate. Euclid’s
Elements remained the standard textbook in geometry until the early years
of the 20th century.

After Euclid the most exceptional of the Greek mathematicians were
Archimedes and Apollonios. Archimedes (287–212 BCE), universally ac-
claimed as the greatest mathematician of antiquity and among the greatest
of all time, wrote extensively on geometry. He proved that the value of π
must lie between 3 10

71 and 31
7 . He discovered and established the relationship

between π and the area of a circle. He found and proved formulas for the
volume and surface area of a sphere (using methods which anticipated the
development of integral calculus).

Apollonios (262–190 BCE) wrote a number of works, most of which have
been lost. We do have his monumental work on parabolas, hyperbolas, and
ellipses, The Conic Sections, which has been called one of the greatest scientific
works of antiquity.

Arabic and Hindu Contributions

The five or six centuries following the fall of Rome (in the 5th century CE)
is often referred to as the Dark Ages of Europe. Leadership in the world of
mathematics during this period passed to the Arabs and the Hindus. It has
been said that the greatest mathematical contribution of the Arabs was the
preservation and transmission of Greek achievements to the modern period.
But it is important to note that the Arabs and Hindus made many important
contributions of their own. The most important of these are in the areas of
numeration, computation, algebra, and trigonometry.
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Noteworthy geometrical achievements include the work of Brahmagupta
(fl. 630 CE) on cyclic quadrilaterals, Abu al-Wafa on constructions, Omar
Khayyam on geometric solutions of cubic equations, and the work of Nasir
al-Din al Tusi on Euclid’s parallel postulate.

The Modern Period

The modem period has seen much activity in geometry, including the cre-
ation of a range of new kinds of geometry, namely: Projective Geometry,
Coordinate Geometry, Differential Geometry, Non-Euclidean Geometry, and
Topology. The first three of these arose in the 17th century. Projective geom-
etry results from the application of the concept of a “projection” to geometry.
Coordinate geometry results from the application of algebra to geometry. Dif-
ferential geometry results from the application of calculus to geometry. The
previously existing geometry is sometimes called “synthetic geometry” to dis-
tinguish it from these newer branches of the subject.

Projective geometry grew out of the efforts of Italian artists in the 15th
century who created a geometrical theory called “mathematical perspective”
to aid them in the production of realistic paintings. Later this theory was
taken into mathematics and considerably expanded by several, led by Girard
Desargues and Pascal. Descriptive geometry, which is related to projective
geometry, was created and extended by several mathematicians: Gaspard
Monge, Jean Victor Poncelet, and others in the 18th and 19th centuries.

Analytic geometry, also called coordinate geometry or Cartesian geometry,
was one of the great mathematical achievements of the 17th century – a cen-
tury which also saw the creation of calculus and foundations laid in the theory
of probability. Created independently by Rene Descartes and Pierre de
Fermat, coordinate geometry is the fruitful marriage of algebra and geometry.
It made possible the use of algebra as a tool for solving geometric problems
(and vice versa).

Differential geometry is that geometry which uses calculus as a tool to
investigate the properties of curves and surfaces. The most prominent names
in the history of differential geometry are Gaspard Monge (1746–1818),
Gauss (1777–1855), and Bernhard Riemann (1826–1866).

Non-Euclidean Geometry was created by Gauss, Nicolai Ivanovitch
Lobachevsky (1793–1856), and Janos Bolyai (1802–1860). Bernhard
Riemann extended their researches. Non-Euclidean geometry is obtained
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by replacing Euclid’s parallels postulate by one of its contradictory forms,
and deducing theorems from this new set of axioms.

It took unusual imagination to entertain the possibility of a geometry
different from Euclid’s, for the human mind had for two millennia been bound
by the prejudice of tradition to the firm belief that Euclid’s system was most
certainly the only way to geometrically describe physical space, and that any
contrary geometric system simply could not be consistent. One result beyond
the world of mathematics was the doubt which the discovery of non-Euclidean
geometries cast upon human ability to know the truth about anything.

Topology, sometimes described as “rubber-sheet geometry,” is the study of
those properties of objects which are not altered by stretching or bending (or
more generally, by “continuous deformation”). It began in the 19th century as
a branch of geometry. It has been a major area of mathematical research in the
20th century and has come to be regarded as a fourth division of mathematics,
along with algebra, geometry, and analysis. Among the many important
contributors to topology are Riemann and Henri Poincare (1854–1912).

Other recent developments in geometry include “The Erlangen Pro-
gramm” of Felix Christian Klein, the abstract spaces of Maurice Frechet,
and the “Grundlagen” of David Hilbert.

The 19th century also saw the serious investigation of spaces of dimension
greater than three. Cayley, Grassmann, and Riemann were important
contributors.

Perfect and Amicable Numbers

The ancients considered numbers with the property σ(n) − n = n, or
σ(n) = 2n, where σ is the sum of all divisors (including 1 and n). The first
two examples 6 = 1+2+3 and 28 = 1+2+4+7+14 were noticed already by
the Pythagoreans and had a strong appeal for mystics, since the creation took
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6 days, and there are about 28 days in a lunar month. For this reason they
were named perfect numbers by the Pythagoreans. Two other perfect numbers
known to the Greeks were 496 and 8128. Euclid proved that 2p−1(2p − 1) is
perfect whenever 2p − 1 is prime.

If we denote M = 2p − 1, n = 1
2M(M + 1), then σ(n) = 2n. To see this,

list all the possible factors of n. Certainly each of 1, 2, 22, ...2p−1 is a factor.
It is a hypothesis of the theorem that the factor 2p − 1 is prime, but as many
more factors again can be obtained by multiplying it by each factor in the
above list of powers of 2. This exhausts the possibilities: n has no further
factors. We have then two sets to add:

S1 = 1 + 2 + 22 + · · · + 2p−1 ≡ 2p − 1

S2 = (1 + 2 + 22 + · · · + 2p−1)(2p − 1) = S1(2p − 1)

∴ S1 + S2 = (2p − 1) + (2p − 1)(2p − 1) = 2p(2p − 1) = 2n

This is the sum of the factors. Why did it come out 2n instead of n? Because
we neglected to delete n itself as one of the factors when we formed S2. Thus
the sum of the proper factors, including 1 but not including n, is n, and n is
therefore a perfect number.

The fact that 2p − 1 was prime had to be used in the proof, which brings
us back to the problem of the primality of the Mersenne numbers. We know
already that for 2p − 1 to be prime it is necessary that p be prime, but not
sufficient; 211 − 1 is composite (= 23 · 89) and therefore 210(211 − 1) is not
perfect.

Euler proved190 the inverse: all even perfect numbers have the Euclid
form. That is, an even number is perfect if and only if it is of the form

N = 2p−1(2p − 1),

where 2p − 1 is prime. Thus, the knowledge of even perfect numbers is equiv-
alent to the knowledge of Mersenne primes.

As for odd perfect numbers, not even one has ever been found. If one exists
(as it well might) it is fairly large, at any rate greater than 10300.

The only perfect numbers known to the Greeks were

N2 = 2(22 − 1) = 6

190 Let 2nq be perfect, where q is odd and n > 0. Then 2n+1q = (2n+1 − 1)s, where

s is the sum of all the divisors of q. Thus s = q + d, where d = q/(2n+1 − 1).

Hence d is a divisor of q, so that q and d are the only divisors of q. Hence d = 1

and q = 2n+1 − 1 is a prime.
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N3 = 22(23 − 1) = 28

N5 = 24(25 − 1) = 496

N7 = 26(27 − 1) = 8128 = 13 + 33 + 53 + 73 + 93 + 113 + 133 + 153

Four additional perfect numbers were discovered by the end of the 18th cen-
tury:

N13 = 33, 550, 336

N17 = 8, 589, 869, 056

N19 = 137, 438, 691, 328

N31 = 2, 305, 843, 008, 139, 952, 128 (Euler, 1772)

Perfect numbers have the following remarkable properties

• The last digit of every even perfect number191 is always 6 or 8.

• Except 6, the sum of digits ≡ 1(mod 9).

• The sum of the reciprocal of all divisors is 2.

• Every even perfect number 2p−1(2p − 1) is a sum of cubes of 2k odd
numbers, when k = p−1

2 , except for n = 2. Indeed, let

S1 = 1 + 2 + 3 + · · · + m =
m(m + 1)

2
,

S2 = 12 + 22 + 32 + · · · + m2 =
m(m + 1)(2m + 1)

6
,

S3 = 13 + 23 + 33 + · · · + m3 =
m2(m + 1)2

4
= S2

1 .

191 For p = 2 we have the number 6. If p > 2, then p is a prime of the form 4k + 1

or 4k + 3. If p = 4k + 1, then 2p−1 = 24k = 16k, and the last digit of 2p−1 is

obviously 6, while 2p − 1 = 24k+1 − 1 = 2 · 16k − 1 and the last digit is obviously

1. Thus, the last digit of the product 2p−1(2p − 1) is 6. If p = 4k + 3, then the

number 2p−1 = 24k+2 = 4 · 16k has the last digit 4, while the last digit of 2p is

8, hence the last digit of the number 2p − 1 is 7, and, consequently, the number

2p−1(2p − 1) (as the product of two numbers, one with the last digit 4, and the

other with the last digit 7) has the last digit 8.
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Then

S = 13 + 33 + 53 + · · · + (2m − 1)3 =
m∑

i=1

(2m − 1)3

=
m∑

i=1

(8m3 − 12m2 + 6m − 1)

= 8 · m2(m + 1)2

4
− 12 · m(m + 1)(2m + 1)

6
+ 6 · m(m + 1)

2
− m

= m2(2m2 − 1).

If m = 2k, S = 22k(22k+1 − 1). The even perfect numbers are of this
form for n = 2k + 1.

Amicable Numbers

The ancients, with their quest for the mystic interpretation of numbers,
came across number pairs related by the property that the sum of the aliquot
divisors of either number equals the other number,

σ(m) − m = n, σ(n) − n = m

or
σ(m) = σ(n) = n + m.

Pythagoras, for example, knew of the smallest pair192 (220; 284), since

σ(220) − 220 = 1 + 2 + 4 + 5 + 11 + 20 + 22 + 44 + 55 + 110 = 284

σ(284) − 284 = 1 + 2 + 4 + 71 + 142 = 220.

192 So may have Jacob (Genesis 32, 14) when he presented Esau with 200 she-goats

plus 20 he-goats, to secure his friendship.
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The Pythagoreans named such numbers amicable. Other pairs are
(1184; 1210), (17,296; 18,416).

Amicable numbers intrigued the Greeks, Arabs and many other since an-
tiquity193. The mathematician Thabit Ibn Qurra al-Harrani (ca 855 CE)
found that prime numbers of the form

p = 3 · 2m − 1; q = 3 · 2m−1 − 1; r = 9 · 22m−1 − 1

generate the amicable pairs 2mpq, 2mr. Clearly, the permissible values of m
(such that p, q, r are prime) follow from the relations

σ(2mpq) = (2m+1 − 1)(p + 1)(q + 1) = 2m(pq + r)

σ(2mr) = (2m+1 − 1)(r + 1) = 2m(pq + r).

It is thus required that for any prime of the form q = 3·2m−1 −1, also p = 2q+1
and r = 2(q+1)2 −1 be primes. Consequently, beyond the small values of m

m = 2 p = 11 q = 5 r = 71
m = 4 p = 47 q = 23 r = 1, 151
m = 7 p = 383 q = 191 r = 73, 727,

these amicable numbers become vary large, following the exponential growth
of permissible values of m. Many other amicable numbers, generated by
different algorithms, are also known.

Whether or not there are infinitely many amicable pairs is unknown, al-
though it was proved (1977) that

∑
( 1

m ) is convergent if m runs over all
members of amicable pairs.

193 One can ask for numbers such that σ(n) = kn. Although k seems to be as large

as we wish, it was conjectured that k = O(log log n).
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The Ancient Maya194 (1200–300 BCE)

About 1000 BCE a strange civilization emerged in the lowland jungles
of the Yucatan area in Central America. The people who created it, the
Maya, were not city dwellers like most early civilized people; they lived in
small farming villages. But they built great ceremonial centers – complexes
of pyramid-like temples and palaces which were the focus of their religion and
political life.

Some time during the fourth or third centuries BCE, their priests devised a
vigesimal (base 20) positional numerical system, which embodied the concept
of zero – a notable abstract intellectual achievement. Elsewhere, this mathe-
matical concept is known to have been developed only in the late Babylonian
civilization. The Mayan calendar was more sophisticated and complicated
than either the Gregorian or the Julian calendar. Apparently, the Maya did
not attempt to correlate their calendar accurately with the length of the solar
year or lunar months. Rather, their calendar was a system for keeping track
of the passage of days and for counting time into the past or future. Among
other purposes, their calendar was useful for predicting astronomical events,
for example, the position of Venus in the sky195.

194 For further reading, see:

• Von Hagen, V.W., The World of the Maya, Mentor Books: New York, 1962,
224 pp.

• Morley, S.G., The Ancient Maya, Stanford University Press: Stanford, CA,

1956, 507 pp.

195 Using the simplest equipment, the Mayas calculated the length of the solar year

with an accuracy equal to that of modern astronomy, and devised correction

formulae to adjust the discrepancy between the true year and the calendar year

which is handled by our leap-year correction. They worked out an accurate

lunar calendar and calculated the synodical revolution of Venus, in each case

devising means for correcting the accumulated error.

The ancient civilizations of Mesopotamia employed a positional system of arith-

metic, but it seems to have been in existence for centuries before the concept

of zero diffused to them from the Hindu world. The ancient civilizations of the

Mediterranean arena derived many of their cultural features from the civiliza-

tions of the Middle East, but they did not take over the well-developed system

of computation. This sort of mathematical complex did not penetrate Western

Europe until the time of the Arab invasion in the Early Middle Ages, several

centuries after the Maya had developed their own accurate and flexible system.
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To specify completely a particular date, the Maya made use of what is
called the ‘long count’, a perpetual tally of the days that had elapsed since a
particular date about 3000 years ago in the past. This system is analogous to
that of the ‘Julian day’, but the starting date was not meant to be that of “the
beginning” – it was merely a fiducial, from which days could be counted. The
significant point of the ‘long count’ is that it employed a vigesimal number
system (i.e. based on 20) which included a zero and consequently simplified
their arithmetic (at that time the zero was unknown in Europe).

Mayan astronomers could predict eclipses of the sun. This was achieved
without the instruments upon which modern astronomers depend (Mayan
temples were sufficiently high to obtain clear lines of sight from their summits
to distant points on the horizon: a pair of crossed sticks was set up on top
of a pyramid. From this fixed observation point, the places where the sun,
moon or planets rise or set was noted with reference to some natural fiducial
feature on the horizon. When the heavenly body under observation rose or
set behind this same point for the second time, it had made one complete
synodical revolution).

It must be noticed that the Mayan precise predictions of eclipses, the
position of the moon in the sky and the position of Venus, were all done by
arithmetic: they counted a certain number and subtracted some numbers,
and so on. There was no discussion of what the moon was, or even of the
idea that it revolved. They just calculated the time when there would be an
eclipse, or when the moon would rise at the full, and nothing more.

In about 1200 CE, the Maya deserted their centers and the old stable way
collapsed196; the Spaniards who came in the 1500’s met little resistance from

The basis for the Maya calendric system was the 260-day tzolkin, with its named

and numbered days, and the 365-day haab, with its named months and num-

bered positions within each month. These two meshed calendars repeated cycli-

cally, and could return to a given starting point only after a lapse of 52 years.

The inscriptions for longer time periods were based on the vigesimal (base 20)

system. Using these longer periods, the Maya counted the elapsed time since

the hypothetical starting date of their chronology. They also reordered in the

inscription the fact that the stela was erected on a certain numbered and named

day of the tzolkin which occupied a certain position in a particular month of

the haab; the accompanying supplementary series recorded lunar information

for the date.
196 It is now believed that over-exploitation of farming land ruined the agrarian

resources of the Maya. The ravishes of famine finally put an end to the Maya

civilization. A steadily growing population and limited fertile corn-growing land

around the royal centers, forced the Maya peasants to intensify food production

by disregarding fallow (resting periods which the land needs to regain its fertil-
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the decadent remnant, weakened by internecine fighting.

ca 300 BCE Euhemeros of Messina. Greek philosopher and mythog-
rapher from Sicily. The author of Hiera anagraphe (Sacred History). First to
try to link mythical beings and events with historical fact, explaining the gods
as distorted representation of ancient warriors and heroes. His name lives on
in the term Euhemerism.

Flourished at the court of Cassandros (358–297 BCE; Regent of Mace-
donia 316–306 BCE, King 306–297). He was said to have sailed down the
Red Sea and across the Arabian sea and to have reached an Indian Island
called Panchaia, where he found sacred inscriptions which he described in his
book. Therein he emphasized the historical origins of myths – an attempt to
rationalize mythology (i.e. Greek religion).

283 BCE The sculptor Chares of Lindos completed the Colossos of
Rhodes – a huge bronze statue built near the harbor of Rhodes on the Aegean
Sea, in honor of the sun god Helias to commemorate the survival of the people
of Rhodes after a year-long siege by the Macedonians (303 BCE). The statue
stood 37 meters tall (about as high as the Statue of Liberty) and Chares
worked on it 12 years, using stone blocks and 6.8 ton of iron to support the
hollow statue. Its cost was defrayed by selling the siege machines left behind
by Demetrius I Poliorcetes.

The Colossos was thrown down by the great earthquake of 227 BCE, but
its remains lay on the spot for centuries, until they were sold for scrap by the
Arabs in 653 CE.

ca 280–240 BCE Aristarchos of Samos (310–230 BCE). Alexandrian
Greek mathematician and astronomer. The exponent of a sun-centered uni-
verse who made pioneering efforts to determine the sizes and distances of
the sun and the moon. Appeared to have been the first to combine trigono-
metrical theory and a mathematical model of the heavens, with some simple

ity) and also causing massive soil erosion by farming the hillsides around the

royal centers. Thus, the Maya could not grow enough food to meet the needs

of the population, which dwindled from 3 million (ca 800 CE) to about 50,000

(ca 950 CE). Malnutrition finally caused iron-deficiency anemia (discovered in

skulls exhumed from graves). This is an example of human-induced ecological

disaster – a punishment for living in disharmony with nature.
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physical measurements, to investigate the metrical relationships of the earth,
moon and sun. In these calculations, trigonometry is used for the first time as
a basic tool. In his study he assumes certain properties of the trigonometric
functions (sin α/ sin β < α/β < tanα/ tan β for 0 < β < α < π

2 ), which
must have been known in his time. This indicates a rather advanced state of
knowledge in this branch of mathematics.

Aristarchos proposed an improved scheme of motion for the celestial bodies
by making two simplifying suggestions:

(1) The earth spins – and that accounts for the apparent daily motion of the
stars (others had made this suggestion before).

(2) The earth moves round the sun197 in a yearly circular orbit, and the other
planets do likewise – that accounts for the apparent motions of the sun
and the planets across the fixed stars.

His book on the subject has not come down to us, but his idea was quoted
by Archimedes and referred to by Plutarch.

This simple scheme failed to catch on198. Tradition was against it and the
Alexandrian school was reluctant to accept such a radical alternative: earth

197 Although it was merely an idea, not backed up by observational evidence,

Aristarchos anticipated the great discovery of Copernicus in 1514. Coperni-

cus could not have known of Aristarchos’ doctrine, since Aristarchos’ work was

not published till after Copernicus’ death.

On this account, Aristarchos was accused of impiety by the Stoics, just as

Galileo, in later years, was accused by the theologians. His heliocentric scheme

was abandoned and was not revived until 1800 years later.
198 Instead of the bold suggestion of making the earth spin and move round a cen-

tral sun, the school of Alexandria devised the new theories of Eccentrics and

Epicycles:

A stationary central earth remained the popular basis, but spinning concentric

spheres made the model too difficult. Instead, the slightly uneven motion of

the sun around its “orbit” could be accounted for by a single eccentric circle.

According to this model, the sun is carried around a circular path by a radius

that rotates at constant speed. The observer on earth is off-center, so that he

sees the sun moves unevenly – as it does – faster in December, slower in June.

The eccentric scheme for a planet was somewhat more elaborate: each planet

is carried at the end of a radius that rotates at constant speed, but this whole

circle – center, radius and planet – revolves once a year round the eccentric

earth. This added a small circular motion to the large main one, producing the

planet’s epicycloidal track. The daily motion with the whole star pattern was

superimposed on this.

An alternative scheme to produce the same effect assumed that the earth re-

mained fixed at the center of the main circle. The planet, while going around
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moving around an orbit raised mechanical objections that seemed even more
serious in later ages, and it immediately raised a great astronomical difficulty.
If the earth moves in a vast orbit, the pattern of fixed stars should show
parallax changes during the year. None was observed, and Aristarchos could
only reply that the stars must be almost infinitely far off compared with the
diameter of the earth’s orbit. Thus he pushed the stars away to far greater
distances and released them from being all on one great sphere!

Aristarchos also made the hypothesis that the moon receives its light from
the sun.

In his only surviving short treatise, On the Magnitudes and Distances of
the Sun and the Moon (with a commentary by Pappos), he devised most
ingenious schemes for determining distances to the sun and the moon and
the relative sizes of the earth, moon and sun. His method of estimating
the relative lunar and solar distances is geometrically correct, though the
instrumental means at his command rendered his data erroneous.

These methods were refined in ca 140 BCE by Hipparchos of Nicaea
(180–110 BCE) who obtained an earth-moon distance of 385,000 km and a
sun-earth distance of about 8 million km.

276 BCE Aratos of Soli (315–245 BCE). Greek poet of the Alexandrian
school, who in his poem Phenomena (= φαινoμενα) gives a systematic ac-
count of the stars, including the early fruits of Greek observation since Thales.

Aratos described 43 constellations: 19 in the north, the 12 of the zodiac,
and 12 in the south. He also named 5 individual stars: Arcturus, Stachys
(Spica), Protrugater (Vendemiatrix in Virgo), Sirius and Procyon. He de-
scribed the Pleiads and his account of the polar star sheds an interesting light
on the state of astronomical understanding in the 3rd century BCE.

Aratos recognized the earth as the center of the heavens, which turn about
two poles – one visible, the other hidden. His mention of a slight shifting of

this circle, was simultaneously rotating with a small radius-arm around an in-

stantaneous center on the circumference of the main circle. The motion around

the small sub-circle (epicycle) was at a steady rate, once in 365 days. To an

observer in space, the two circular motions combine to produce an epicycloidal

pattern.

Though these schemes use circles, they were described more grandly in terms

of spinning spheres and sub-spheres. For many centuries, astronomers thought

in terms of such motions of the heavenly spheres – the spheres growing more

and more real as Greek delight in pure theory gave place to naive insistence on

authoritative truth.
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the axis suggests a suspicion of precession, which was not actually discovered
(except perhaps by Kiddinu) until a century later.

Aratos was born in Cilicia. He was invited (ca 276 BCE) to the court
of Antigonos Gonatas of Macedonia, where he wrote the Phenomena. He
then spent some time with Antiochos I of Syria, but subsequently returned to
Macedonia, where he died. Although Aratos was ignorant of astronomy, his
poem attracted the attention of Hipparchos, who wrote commentaries upon
it. Amongst the Romans it enjoyed a high reputation; Cicero translated it,
Ovid mentioned him, Virgil imitated it, and Paul quoted from it (Acts
17, 28).

270 BCE The Pharos lighthouse of Alexandria. A landmark in the de-
velopment of both navigation and architecture. One of the seven wonders
of the ancient world. Designed by the Greek architect Sostratos; it rose
to the height of 134 meters and stood on the island of Pharos off the coast
of Alexandria, guiding ships into the city’s harbor. The structure rose from
a stone platform in 3 sections: the bottom section was square, the middle
eight-sided and the top circular. A fire on top provided light.

It stood for over 1000 years before being toppled by the great earthquakes
of April 07, 796 and Aug. 08, 1303.

250–550 BCE Decline and fall of the Roman Empire. Decreased rain-
fall in Rome. Condition of warmth and drought undermined the agriculture
and favored epidemic diseases (such as malaria) that gradually weakened the
population of the Roman Empire. Simultaneously, increasing drought on the
steppes of Central Asia drove the barbarians to seek new lands, tending to
cut the trade caravans route between Rome and China.

ca 250 BCE Erasistratos of Ceos (Iulis) (ca 304–2 BCE). Greek physi-
cian and anatomist of the Alexandrian school. Founder of physiology and
comparative anatomical pathology. His main anatomical discoveries concern
the brain, the heart, and the nervous and vascular systems. Credited with be-
ing the first to distinguish between motor and sensory nerves. Distinguished
between cerebrum and cerebellum, traced cranial nerves in the brain itself and
investigated the relation of muscles to motion. Traced veins and arteries to
the heart and named the trachea and tricuspid valve of the heart. Was close
to the discovery of the circulation of the blood199. Conducted post-mortem
dissections.

199 Erasistratos proposed that the liver used food to make blood, which was deliv-

ered to the other organs by the veins. He believed that the arteries contained

air, not blood. This air (pneuma), a living force, was taken in by the lungs,

which transferred it to the heart. The heart transformed the air into a “vital
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Erasistratos was born at Iulis, the main city of Ceos, one of the Cyclades,
close to the mainland of Attica (todays Zia). Was educated at Athens and
began his career as assistant of Herophilos. He continued the latter’s investi-
gations, but was more interested in physiology and the applications of physical
ideas to the understanding of life.

ca 250 BCE Ctesibios. Greek inventor. The ‘Edison’ of Ptolemaic
Alexandria. He built the first pump; it consisted basically of a cylinder with
a plunger (valve) inside. As the plunger was moved up and down, it created
a pressure that could be used to pump water. Invented the water clock or
clepsydra; it has water dropping like tears into a funnel from the eyes of a
statue. A float mechanism raised another human figure with a pointer which
indicated the hours on a vertical cylinder. Once in 24 hours the figure de-
scended to the bottom of the column by a siphon mechanism. The siphon
outflow worked a water wheel which very slowly rotated the cylinder dial,
making a complete rotation in a year. The graduation of the cylinder was
adapted to the varying lengths of the hours throughout the seasons.

Ctesibios also built musical instruments worked by pneumatic machinery,
a hydraulic pipe organ, the musical keyboard and the metal spring, made from
bronze plates and used in a catapult.

ca 250 BCE – The earliest preserved examples of our present number
symbols 1, 2, 3, 4, 5, 6, 7, 8, 9, are found in some stone columns erected
in India by King Aśoka. These early specimens do not employ positional
notation.

ca 250 BCE Archimedes of Syracuse200 (ca 287–212 BCE). Mathe-

spirit” that was carried by the arteries to the other organs. George Sarton, in

his “Hellenistic Science and Culture” (1959) warns against modern interpreta-

tion of physiological facts: “. . . one may easily misinterpret Erasistratos’ ideas,

which we know to be his only through Galen, and Galen’s phrasing may suggest

to us some ideas that did not exist in his mind, let alone in the mind of Era-

sistratos. It is almost impossible for us to put ourselves back in their situation,

and relatively easy to interpret their ideas in terms of our knowledge”.
200 For further reading, see:

• Hollingdale, S., Makers of Mathematics, Penguin Books: London, 1989,
437 pp.

• Stillwell, J., Mathematics and its History, Springer Verlag: New York, 1991,

371 pp.

• Dijksterhuis, E.J., Archimedes, Princeton University Press, 1987.

• Weil, A., Number Theory, an Approach Through History, Birkhäuser, 1983.
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matician, physicist, astronomer, engineer and inventor, the greatest universal
intellect of ancient times. The creator of statics, hydrodynamics and mathe-
matical physics. Impressed his contemporaries and the bulk of posterity by
his practical inventions. Considered for almost two thousand years to be the
archetype of the inventor and of the mechanical wizard.

His methods anticipated the integral calculus 2000 years before Newton
and Leibniz. Discovered the mathematical law of the lever, screw201 and
pulley and the basic laws of hydrostatics. Invented ballistic machines, a
hydraulic organ, cranes, burning mirrors, compound pulleys, fulcrums202, and
the like.

He showed203 that the value of π is between 31
7 and 3 10

71 . This discovery
made it possible for him to solve many problems involving the area of circles

• Dörrie, H., 100 Great Problems of Elementary Mathematics, Their History

and Solutions, Dover Publications: New York, 1965, 393 pp.

• Beiler, A.H., Recreations in the Theory of Numbers, Dover, 1966, 394 pp.

201 Although Archimedes discovered the principle of the screw, ordinary wood

screws, as a small fixing device, originated only in the 16th century!

Saws, hammers, nails, chisels and drills all date from the Bronze and early Iron

Ages. Many types of modern tools originated even earlier, in the Neolithic pe-

riod, about 8000 years ago. In fact, there is only one tool that would puzzle

a Roman and a medieval carpenter – a screwdriver! Ancient screws were large

wood contraptions, used for raising water. One of the earliest devices that used

a screw to apply pressure was a Roman clothes press; presses were also used

to make olive oil and wine. The Middle Ages applied the same principle to

the printing press and to that fiendish torturing devices, the thumbscrew. The

inventor of the hand-held screwdriver remains unknown, but the familiar tool

does not appear in carpenters’ toolboxes until after 1800. There was not a great

call for screwdrivers, because screws were expensive. They had to be painstak-

ingly made by hand and were used in luxury articles like clocks. It was only

after 1850 that wood screws were available in large quantities.
202 He allegedly said: “Give me a fulcrum on which to rest and I will move the

earth; give me a place to stand on, and I will move the world”.
203 His method for calculating π is based on the observation that the circumference

of a circle is greater than the perimeter of the inner regular n-polygon and

less than the perimeter of the outer regular polygon. In modern notation:

n sin 180
n

< π < n tan 180
n

. For n = 6 (hexagon), 3 < π < 2
√

3 = 3.46 . . . . For

n = 96, calculations yield values which are close to the Archimedean bounds.
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and the volume of cylinders, cones and spheres204. He also proved that the
area of the spherical cap is equal to the area of a circle, the radius of which is
equal to the cord connecting the ‘pole’ of the cap to its rim.

Archimedes invented an enumeration system that was more workable with
large numbers than were the Greek and the Roman systems. Using this, he
calculated the number of grains of sand he thought it would take to fill the
universe205. He also used methods which, in essence, are used now in modern
calculus (“Method of Equilibrium”). He was probably the greatest mechan-
ical genius until Leonardo da Vinci (1452–1519, Italy). Since he made some
of man’s basic scientific discoveries, some historians call him “the father of
experimental science”. In his own time he was best known for his many inven-
tions, but he looked upon his inventions as play, and considered mathematics
his real work.

The work of Archimedes is characterized by extreme originality and direct-
ness as compared with the work of Euclid and Apollonios. The geometry of
Archimedes is chiefly a geometry of measurements, while that of Apollonios is
rather a study of forms and situations. He realized quadratures of curvilinear
plane figures and quadratures and cubatures of curved surfaces by a method
more general than the method of exhaustion, and which can be regarded as
an anticipation of the integral calculus. He studied paraboloids, hyperboloids,
ellipsoids and polyhedra206. He summed

∑
n2 = 1

6n(n + 1)(2n + 1), and

204 Archimedes stated that the volume of any sphere is 4 times that of a cone with

base equal to a great circle of the sphere and with height equal to the radius of

the sphere – a statement that amounts to saying that V = 4
3
πr3. He also stated

that a cylinder with base equal to a great circle of the sphere and with height

equal to the diameter of the sphere is equal to 1 1
2

times the sphere – a statement

that amounts to the same thing. These facts are stated in yet another form,

known as Archimedes’ theorem: the ratios of the volume of a cone, half-sphere

and a cylinder, all of the same height and radius are 1:2:3 (i.e. 1
3
πr2h, 2

3
πr2h

and πr2h respectively).
205 The largest number given a name by the Greeks was a myriad, which we call

‘ten thousand’ (104). Archimedes began by thinking of myriad of myriads, and

he referred to numbers from 1 to 108 as numbers of the first order, numbers

from 108 to 1016 as numbers of the second order, etc. He continued in this way

until he got to the numbers of order 108. Archimedes then estimated that 1063

grains of sand were needed to fill the entire universe. Current estimates of the

size of the observable universe in terms of Archimedes’ grain-size units, require

no more than 1093.
206 Archimedean polyhedra: According to Pappos, Archimedes invented a class of

semi-regular polyhedra, known also as ‘facially’ regular. This means that every

face is a regular polygon, though the faces are not all of the same kind. How-
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solved cubic equations by means of the intersection of two conics. [His prob-
lem, to cut a sphere by a plane so that the two segments shall be in a given
ratio, leads to a cubic equation x3 + c2b = cx2.]

To Archimedes is credited the famous ‘Cattle Problem’207 (Problema Bow-
inum). He must have known about the Pell Equation u2 − Nv2 = 1 since

ever, the faces must be arranged in the same order around each vertex, and all

the solid angles of the polyhedron are equal. Thirteen such solids exist. One

of them, the truncated icosahedron, is formed by truncating the vertices of an

icosahedron such as to leave the original faces hexagons. It is therefore enclosed

by 20 hexagonal faces belonging to the icosahedron, and 12 pentagonal faces be-

longing to the coaxial dodecahedron. It has altogether 32 faces, 60 vertices and

90 edges. The dihedral angles are 138◦11′(6–6), 142◦37′(6–5). All Archimedean

solids are inscribable in a sphere.

Chemists assumed they knew everything about pure carbon and its manifes-

tations as graphite and diamond. But in 1985 they discovered that 60 carbon

atoms can arrange themselves at the vertices of a truncated icosahedron to

form the most symmetric molecule possible in 3-dimensional space. This mole-

cule was given the name buckminsterfullerine, in honor of Richard Buckminster

Fuller’s geodesic dome.
207 The sun god had a herd of cattle consisting of bulls and cows, one part of which

was white, a second black, a third spotted, and a fourth brown.

Among the bulls, the number of white ones was one half plus one third the
number of the black greater than the brown; the number of the black, one quarter

plus one fifth the number of the spotted greater than the brown; the number of

the spotted, one sixth and one seventh the number of the white greater than the
brown.

Among the cows, the number of white ones was one third plus one quarter of the

total black cattle; the number of the black, one quarter plus one fifth the total
of the spotted cattle; the number of spotted, one fifth plus one sixth the total of

the brown cattle; the number of the brown, one sixth plus one seventh the total

of the white cattle.
What was the composition of the herd?

If we use the letters X, Y, Z, T to designate the respective number of the white,

black, spotted, and brown bulls and x, y, z, t to designate the white, black,
spotted, and brown cows, we obtain the following seven equations for these

eight unknowns:
X − T = 5

6
Y, x = 7

12
(Y + y),

Y − T = 9
20

Z, y = 9
20

(Z + z),

Z − T = 13
42

X, z = 11
30

(T + t),

t = 13
42

(X + x).

After some algebraic manipulations, one is led to so-called Pell equation

u2 − 4729494 v2 = 1, where v must be divisible by 9314. Stupendous feats
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he used it to obtain a very good approximation to
√

3. Indeed,

13512 − 3 · 7802 = 1, so
(

1351
780

)2

− 3 =
1

7802
.

Therefore √
3 ≈ 1351

780
= 1.732, 051, 282 . . . ,

whereas √
3 = 1.732, 050, 805 . . . .

Archimedes was born in Syracuse, then a Greek colony. He went to school
in Alexandria, Egypt, then the center of Greek learning. He spent the rest of
his life back in Syracuse, Sicily.

When Syracuse was attacked by the Roman forces under Marcellus, The
Romans met an enemy in the form of a 75-years-old mathematician, supplied
with unexpected and powerful weapons. Archimedes actively participated in
the defense of the city. He directed the use of systems of pulleys, levers, cranes
and other devices which he had invented long before, as practical demonstra-
tions of his theories. The approaching Roman were knocked down by a very
effective artillery, which discharged long-range projectiles. The ships of the
Roman fleet were sunk by huge cranes. Finally the ships were incinerated by
“burning mirrors”208. Thus Archimedes forced the withdrawal of the Romans
and was the principal factor in the 3-year delay of the fall of Syracuse.

Details of his death are variously told, but all accounts agree that he was
killed at the age of 75 by a blundering soldier of the invading Roman army.
Marcellus, overwhelmed with grief at the news of his death, attempted to make
amends by protecting and even honoring any who could claim relationship to
Archimedes. Cicero informs us that when he was quaestor in Sicily (75
BCE), he saw Archimedes’ tombstone which, though neglected, still showed
the incised figure of a sphere inscribed in a cylinder. The theory epitomized by
this figure was considered by Archimedes to be his greatest achievement. His
greatness can be measured by the fact that the scholars of the 17th century,

of calculation have been performed throughout the ages to obtain integer solu-

tion to this equation. Finally, H. Williams, R. German and C. Zarnke obtained

the first exact solution in 1965, using an IBM 7040 electronic computer. For a

good discussion of the problem, see Vardi (1998): Archimedes’ cattle problem,

Amer. Math. Monthly 105, no. 4, pp. 305-319; or http://www.jstor.org/.
208 The feasibility of this last contrivance has been demonstrated experimentally

(1747) by the naturalist George Buffon and again (1973) by the Greek engi-

neer Ioannis Sakkas.

http://www.jstor.org/
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living almost 2000 years after him were the first to perceive the subtleties
of his computational methods. In their hands, Archimedes’ writings were of
prime influence in the evolution of the calculus.

On Archimedes

∗ ∗∗

“The works of Archimedes are without exception, monuments of mathemat-
ical exposition; the gradual revelation of the plan of attack, the masterly
ordering of the propositions, the stern elimination of everything not imme-
diately relevant to the purpose, the finish of the whole, are so impressive in
their perfection as to create a feeling akin to awe in the mind of the reader.”

(Thomas Heath, 1921)

∗ ∗∗

“One cannot read Archimedes’ complicated accounts of his quadratures and
cubatures without saying to oneself, “How on earth did he imagine those
expedients and reach those conclusions?”

(George Sarton, 1952)
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‘Do Not Touch My Circles’

Rome completed the domination of Italy in 338 BCE (battle of Trifanum).
During the next two centuries it vanquished the Carthaginian Empire (3 Punic
wars, 264–146 BCE) and reduced Macedonia to a Roman province (4 Mace-
donian wars, 215–148 BCE). In 286 CE, Diocletian divided the Roman Em-
pire, which marked the start of its long decline.

The rise and fall of Alexandria (as a center of learning) runs almost con-
currently to that of Rome; founded by Alexander the Great in 332 BCE, it
soon became the world capital of the sciences, edified by the great minds of
Menaechmos, Euclid, Apollonios, Eratosthenes, Hero, Ptolemy,
Diophantos and Pappos.

It was just a matter of time before the two cultures ran into a collision
course; around 180 BCE, Alexandria entered the Roman sphere of influence
and in 80 BCE the city passed formally into Roman jurisdiction. There, Julius
Caesar dallied with Cleopatra in 47 BCE while the great Alexandrian Library
lay burned in ashes; there his example was followed by Antony, for whose
favor the city paid dearly to Octavian, who placed over it a prefect from the
imperial household. Alexandria seemed from this time to have regained its old
prosperity, commanding, as it did, an important granary of Rome. This latter
fact, doubtless, was one of the chief reasons which induced Augustus to place
it directly under imperial power. In 215 CE the emperor Caracalla visited the
city; and, in order to repay some insulting satires that the inhabitants had
made upon him, he commanded his troops to put to death all youth capable of
bearing arms. This brutal order seems to have been carried out even beyond
the letter, for a general massacre was the result.

Notwithstanding this terrible disaster, Alexandria soon recovered its for-
mer splendor, and for some time longer was esteemed the first city of the world
after Rome. But its importance no longer sprang from Pagan learning, but as
a center of Christian theology and Church government. Its great library was
repeatedly sacked and burned by the Roman vandals in 273, 295 and 391 CE.

It is a great fallacy to believe that the Romans had attained an advanced
level in the sciences, the arts, law209, architecture and engineering. Like later

209 It was not inherent superiority that facilitated the spread of Roman law through-

out Europe, for it had borrowed heavily from both Semitic and Greek concepts.

What made Roman law so widely acceptable was that people could borrow its

legal concepts without finding a Roman god or a doctrinaire trap tied to the

end of the paragraph. Even the Jews could borrow from Roman law without
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empires in history, the Romans enslaved peoples whose cultural level was
far above their own. They not only ruthlessly vandalized their countries,
but also looted them, stealing their art treasures, abducting their scientists
and copying their technical know-how, which the Romans’ barren society was
rarely able to improve on; the light of their culture was borrowed from the
Greek and their other enslaved colonies.

Roman engineering was void of all subtlety; long after Heron of Alexandria
(ca 150 BCE) had designed water clocks, water turbines and two-cylinder
water pumps, and had written works on these subjects, the Romans were
still describing the performance of their aqueducts (and charging the users)
in terms of the cross-section of the flow (!), as if the volume of the flow did
not also depend on its velocity.

Nevertheless, the Romans did develop the use of concrete and the arch in
the building of bridges, roads, and aqueducts, creating a series of civil and
military engineering projects that surpassed in scale any since those of the
Assyrians.

Roman engineering, like that of the earlier watershed empires, was based
upon intensive applications of rather simple principles, with plenty of raw
materials, cheep labor, and time. Rome possessed abundant supplies of brick,
stone, and timber. Labor was especially cheap because the swift extension of
the empire had crowded Rome with thousands of slaves.

The Romans devoted more of their energy and capital to useful public
works than did their predecessors. They built roads, harbor works, aqueducts,
temples, forums, town halls, arenas, baths and sewers. A magnate, governor,
or emperor might be a scoundrel in other respects, but he believed that he
gained honor by presenting the people with some useful or entertaining public
work. Under the republic this was a method of bidding for votes; and, even
after elections had ceased in the early Empire, the tradition lived on.

The Roman contribution to science was mostly limited to butchering antiq-
uity’s greatest mathematicians, burning the library of Alexandria, and slowly

fear of becoming beholden to its Pagan deities.

Another reason for the acceptance of Romanism throughout Europe was the

nature of the Roman people. Though they were cruel, they were free from

prejudice, with the noted exception of their antipathy to Christians. They mas-

sacred people and gave them citizenship with equal impartiality, disregarding

race, creed, color, or previous conditions of servitude. The Roman formula for

tying a conquered nation to its victorious chariot was based on four basic prin-

ciples – annex the land by the sword, connect it to Rome roads, bind its people

with citizenship, and govern them with secular laws.
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stifling the sciences that flourished in the colonies of their empire. The Natu-
ralis Historia by Pliny the Elder (23–73 CE) is an encyclopaedic compila-
tion which is generally regarded as the most significant scientific work to have
come out of Rome; and it demonstrates the Roman’s abysmal ignorance of
science when compared to the scientific achievements of their contemporaries
at Alexandria, even a century after the Romans had sacked it.

The Roman contribution to mathematics was almost nihil. Their greatest
mathematician Poseidonius (135–51 BCE), friend and teacher of Cicero and
Pompey who calculated the circumference of the earth with high accuracy,
was a Syrian who studied in Athens. But whatever the value of π used by
Poseidonios, it was high above Roman brows. The Roman architect and
military engineer Marcus Vitruvius Pollio (flourished ca 25 BCE), in De
Architectura, used the value π = 31

8 , the same value the Babylonians had
used at least 2000 years earlier.

The alleged Roman achievements are largely a myth. What they really
excelled in was warefare and blood baths. Thus, during the second Punic war,
the Romans sent an expeditionary force under Marcus Claudios Marcellus210

(268–208 BCE) to Sicily in 214 BCE to “convince” the king of Syracuse to
sever his alliance with Carthago. However, Roman brute force, assaulting
the city of Syracuse by land and sea, ran into some smart scientific engineer-
ing. Using machines that applied the secrets of the lever, the pulley and the
principle of the mechanical advantage, Archimedes was master-minding the
defense of city walls for three years before the city finally fell to the Roman
cut-throats (212 BCE). Inside the city was the 75-year old Archimedes, en-
gaged in the solution of some geometrical problem. Plutarch tells us that a
soldier came up to him and bade him follow to Marcellus, but he would not
go until he had finished his problem and worked it out to the proof. “Do not
touch my circles!” said the savant. Thereupon the soldier became enraged,
drew his sword and slew the savant.

The Greeks were interested in man as a creature who by nature desires
to know; the Romans were interested in man for what they could get from
him by force or persuasion – through the Roman legions or Latin oratory. As
Alfred North Whitehead put it “The death of Archimedes at the hands
of a Roman soldier is symbolical of a world change of the first magnitude. . .
No Roman lost his life because he was absorbed in the contemplation of a
mathematical diagram”.

210 Killed near Venusia, Italy, by Hannibal’s forces.
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247–168 BCE Collision of the Greco-Roman and the Phoenician and
Judean cultures: Hebrew scriptures were translated into Greek during 285–
247 BCE by a group of 72 Alexandrian Jews (Septuagint). In 216 BCE,
Hannibal (247–183 BCE) stood with his army in front of the gates of Rome.
Ecclesiastes was composed sometime between 245 and 168 BCE. The Book
of Daniel was written during 175–164 BCE, probably close to the revolt of
the Maccabees211 in 168 BCE.

ca 245 BCE Conon of Samos. Greek astronomer and mathematician.
The friend of Archimedes, who survived him. Wrote a work on astronomy,
which contained a collection of the observations of solar eclipses made by the
Babylonians. He also investigated the question of the number of points of
intersection of two conics, and his researches probably formed the basis of the
4th book of the Conics by Apollonios of Perga. Considered the inventor of
the curve known as the Spiral of Archimedes.

Conon became court astronomer to Ptolemy III Euergetes at Alexandria;
he is known in connection with the Coma Berenices212.

240 BCE, Aug. 02 Historical record of a Chinese observation of a Peri-
helion passage of Comet Halley. No observations of this comet prior to this
date has yet been identified in the ancient Chinese records.

This event has been recently (1981) ascertained by actually integrating
the comet’s equations of motion backward in time, including planetary and
non-gravitational perturbations.

235 BCE Eratosthenes of Cyrene (276–197 BCE). A Greek mathemati-
cian and astronomer. Librarian of the Museum of Alexandria (235 BCE). De-
vised an ingenious way to measure the circumference of the Earth: he noticed

211 Antiochus IV Epiphanes began the persecution of the Jews by declaring Ju-

daism illegal (168 BCE). Under Jehudah Ha’macabee (Judas Maccabaeus),

the Jewish army, outnumbered 5:1, defeated the Seleucian forces in four decisive

battles and gained religious independence (164 BCE). After a series of wars, the

Jews gained political independence (142 BCE) and established the Hasmonean

Kingdom.
212 Berenice II, wife of Ptolemy III Euergetes had dedicated her hair in a temple

as an offering to secure the safe return of her husband from his Syrian war.

It disappeared from the temple. To flatter the queen, Conon declared that it

has been placed among the stars in the constellation Coma Berenices (Hair of

Berenice).
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that when the sun was overhead at Aswan (Syene), it was about 7.2 degrees
from vertical in Alexandria (sun rays arrive almost parallel to both places)213.
This simple observation sufficed to yield the desired result in terms of the
distance Aswan–Alexandria (ca 800 km). His deduced length for the earth’s
circumference is only 160 km in excess of the present accepted value. Invented
the so-called sieve of Eratosthenes to obtain the prime numbers, and an in-
strument to solve the duplication of the cube. He was the founder of scientific
chronology of ancient Greece and was also a distinguished philologist.

Eratosthenes also measured the tilt of the earth’s axis (relative to the
ecliptic) with great accuracy and compiled a star catalogue. He became blind
at old age and is said to have committed suicide by starvation.

ca 230 BCE Apollonios of Perga (262–200 BCE). Greek geometer and
astronomer of the Alexandrian school. Founder of Greek mathematical astron-
omy, which used geometrical models to explain planetary theory. Flourished
in the reigns of Ptolemy Euergetes and Ptolemy Philopater (247–205 BCE).
His treatise Conic Sections214 gained him the title of The Great Geometer.
All his other treatises have perished, and we have only their titles handed
down, with general indications of their contents, by later writers, especially
Pappos (ca 300 CE).

Apollonios was born in southern Asia Minor. As a young man he went to
Alexandria, studied under the successors of Euclid and remained there for a
long time. Later he visited Pergamum in western Asia Minor, where there was
a recently founded university and library patterned after that of Alexandria.
He returned to Alexandria and died there.

His book on conic sections215, comprising 8 volumes and some 400 proposi-
tions, completely superseded the earlier works on the subject by Menaechmos

213 Syene – a place on the upper Nile River near the Tropic of Cancer (lat. 23 1
2

◦
N).

The observation was made at the time of summer soltice (June 21), when the

sun’s noon rays were nearly perpendicular to the earth’s surface, so as to shine

upon the floor of a deep, vertical well. On the same soltice day, the sun’s noon

rays were observed at Alexandria, located approximately on the same meridian.
214 For further reading, see:

• Somerville, D.M.Y., Analytical Conics, Bell and Sons: London, 1949, 310 pp.

• Heath, T.L. (Editor), Apollonius of Perga: Treatise on Conic Sections, W.

Heffer and Sons: Cambridge, 1961, 254 pp.

215 In fact, Book 8 of Conics is lost while 5 to 7 only exist in Arabic translation.

However, we know something of his other work from the writings of others. Thus

we know that he obtained an approximation for π better than 22
7

> π > 223
71

known to Archimedes. He showed that parallel rays of light are not brought to
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and Euclid. The names ellipse, parabola and hyperbola were coined by Apol-
lonios. In Book II one finds the harmonic properties of poles and polars and
theorems concerning the products of segments of intersecting chords which
constitute the basic elements of today’s projective geometry. Book V is the
most remarkable and original of the extant books. It treats normals consid-
ered to be maximum and minimum line segments drawn from a point to the
curve. The construction and enumeration of normals from a given point are
dealt with. The subject is pushed to the point where one can write down the
Cartesian equations of the evolutes of the three conics!

Appolonios stated the problem of constructing a circle tangent to three
given circles, where the given circles are permitted to degenerate indepen-
dently into straight lines or points. This is now known as the problem of
Appolonios216. It had attracted many mathematicians, among them Viète,
Euler, and Newton.

Many attempts to restore the lost works of Apollonios were made by lead-
ing mathematicians, among them Vièta, Snellius, Fermat and others.
Indeed, the prodigious activity surrounding the study and reconstitution of
his works effectively placed Apollonios in the direct line of the invention of
analytic geometry and made him a powerful force in the modern development
of mathematics.

220–200 BCE Dionysodorus (ca 250–190 BCE). Mathematician. Solved
the problem of the cubic equation using the intersection of a parabola and a
hyperbola. He also is believed to have invented a conical sundial.

218 BCE Archagathos. The first Greek physician whose name is pre-
served as having migrated to Rome from the Peloponnesos; but there were
probably others before him.

When Greece was made a Roman province (146 BCE), the number of such
physicians who sought their fortunes in Rome must have been very large. The
bitter words of Marcus Porcius Cato (234–149 BCE), who disliked them as
he did other representatives of Greek culture, are evidence of this.

a focus by a spherical mirror (as had been previously thought) and discussed

the focusing properties of a parabolic mirror (proved by Diocles).
216 One of the first solutions, applying the new Cartesian geometry was given

by Descartes’ pupil Elizabeth of Bohemia (1618–1680), daughter of Elector

Palatine Frederick V of Bohemia.

Probably the most elegant solution is that furnished by the French artillery

officer and professor of mathematics, Joseph Diaz Gergonne (1771–1859).
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214 BCE The construction of the Great Wall of China217began by emperor
Shih Huang Ti of the Ch’in dynasty to safeguard the country against invasion
from the north. He built the wall by linking together shorter walls erected by
earlier times.

This defensive structure extends over 2400 km in northern China from
Kansu in the west to the Yellow Sea in the east, over 22 degrees of longitude
(98◦ to 120◦E). It defines the historical boundary between China and Mon-
golia. Legend has it that over million workers died during the construction
and their bodies were thrown into the wall. It is the longest fortified line ever
built.

The wall is carried over valleys and mountains, and in places over 1300
meters above sea-level. It stand about 8 meters high. Towers from 11 to 12
meters high were build into the wall every 180–270 meters. It tapers from
a width of 8 meters at the base to about 5 meters at the top. Its sides are
made of earth, brick and stone. The top is paved with bricks that are set in
lime, forming a roadway for horsemen. The Great Wall was built by hand
and took hundreds of years to complete. Under Sui dynasty (589–610 CE),
it was expanded, and during the Ming dynasty (1368–1644) it was repaired.
Later rulers neglected it.

213 BCE ‘Burning of the books’. In China, Emperor Shin Huang-Ti pro-
claimed that everything was to begin with his reign. He then issued an order
to burn all books. 400 scholars were burned alive for having disobeyed the im-
perial command. Some books were bricked up in walls and upon the collapse
of the Chin dynasty in 206 BCE, were recovered from their hiding places, but
many others were lost.

Chang Tsang (ca 210–152 BCE), soldier, statesman, and scholar, recon-
structed the earlier K’iu-ch’ang (whose fragments escaped the book-burning)
into the greatest mathematical work of antiquity, the K’iu-ch’ang suan-shu
(Arithmetical Rules in Nine Sections). Tradition places the origin of the early
work in the third millennium BCE. The latter book contains 246 problems
classified into 9 sections. Among the topics involved are: ‘Euclid’s algorithm’,
proportion, extraction of square and cube roots, plane and solid mensuration
and the right triangle.

210–190 BCE Diocles of Carystos (ca 240–180 BCE). Mathematician.
Wrote On burning mirrors which proves the focusing property of a parabolic
mirror for the first time. Largely ignored by later Greeks, it had a large

217 The name by which that country is known to other nations, comes from a

dynasty which ruled the land for only 14 years (221–206 BCE).



312 1. Origins – Splendor of the Simple

influence on the Arab mathematicians, in particular on Alhazen. Latin trans-
lations of Alhazen, from about 1200 CE, brought the properties of parabolic
mirrors to the West. Diocles also studied the Cissoid (named after him) as
part of an attempt to duplicate the cube. He also studied the problem of
Archimedes to cut a sphere in such a way that the volumes of the segments
shall have a given ratio.

ca 200 BCE Indirect evidence for the use of the zero in India.

ca 200 BCE Romans adopted and improved on an earlier Etrurian nota-
tion of numbers.

Roman numerals were written in terms of certain capital letters of the
Latin alphabet (but not successive letters, in the manner practiced by the
Syrians, Hebrew, and Greeks).

All Roman numerals are written with seven basic symbols. These are
I(1), V (5), X(10), L(50), C(100), D(500), and M(1000). There is no zero.
All other numbers are written by combining these seven symbols. Roman
numerals are written from left to right, using the principle of addition: e.g.,
2713 = MMDCCXIII; MMM = 3000. A smaller numeral (or composite
number) appearing before a larger numeral indicates that the smaller number
is subtracted from the larger one, e.g., 84 = XXCIV .

It is simple to add and subtract with Roman numerals, but the system is
inconvenient and clumsy for other types of calculations.

The Roman-numerals system was the most popular form of writing num-
bers until the widespread use of Arabic numerals began in the late 1500’s.
Today, the former is used to number the faces of clocks, to list important
topics in outlines, to number prefatory book pages, and to record dates on
monuments and public buildings.

187 BCE Plague occurred throughout Egypt, Syria and Greece. Reported
by Pliny.

180 BCE Zenodoros (ca 200–140 BCE). Greek mathematician. Wrote a
treatise on isometric figures, some fragments of which were preserved in the
writings of Theon of Smyrna (ca 125 CE) and Pappos of Alexandria (ca
300 CE). Zenodoros proved that the circle has a greater area than any regular
polygon of equal periphery218. He showed that among polygons with equal

218 The dual statement, that of all curves enclosing a given area the circle possesses

the shortest perimeter, was already known to Aristotle (384–322 BCE); in his

book De Caelo he writes: “Of lines which return upon themselves the line which

bounds the circle is the shortest”.
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perimeter and an equal number of sides, the regular polygon has the greatest
area, and also studied the volume of a solid figure with a fixed surface area.

ca 180 BCE Shimon Ben-Sirah (ca 240–175 BCE, Jerusalem). Savant,
scribe and author of one of the books of the Apocrypha entitled: The Wisdom
of ben-Sirah, or The Book of ben-Sirah; a proverbial wisdom in praise of both
secular knowledge219 and traditional religious wisdom (Torah).

Ben-Sirah lived in Jerusalem at the time of Simon II the Just (d. 190
BCE). The Hebrew original of this book was considered lost until 1896, when
a great part of it was found in a cellar of the Ezra Synagogue in Cairo. The
book was translated in Egypt into Greek in 132 BCE by the author’s grandson
and the Christian Church preserved the book in Greek.

164 BCE Babylonian clay tablets (in the British Museum) documented
observation of comet Halley apparition in the region of the Pleiades in the
constellation Taurus. Recent calculation confirm its appearance in the month
of November of that year.

161–127 BCE Hipparchos of Nicaea (Rhodes) (180–110 BCE). A
Greek astronomer and mathematician and one of the greatest astronomers
of antiquity. He fixed the chief data of astronomy – the lengths of the tropical
and sidereal years, of the various months, and of the synodic periods of the
five planets; determined the obliquity of the ecliptic and the moon’s path;
the position of the sun’s apogee; the eccentricity of earth’s orbit, and the
moon’s horizontal parallax. His borrowings from the Babylonian experts ap-
pear to have been numerous, but were doubtless independently verified. His
supreme merit, however, consisted in the establishment of astronomy on a
sound geometrical basis. His acquaintance with trigonometry, a branch of sci-
ence initiated by him, together with his invention of the planisphere, enabled
him to solve a number of elementary problems.

Hipparchos recognized the existence of the precession of the equinoxes,
which for him was just an empirical fact, and so it remained until 1543. He
became aware of it when he compared his own observations with those of
earlier astronomers. Thus, he may have known that Alpha Draconis was the
pole star for the Egyptian civilization about 3000 BCE.

To an earthbound observer, the sun’s annual trace across the celestial
sphere (of “fixed” stars) intersects the celestial equator at two points. At

219 e.g., he advices: “Honor thy physician. His knowledge allows him to walk with

raised head, and gains for him the admiration of princes. If you fall ill, cry to

the Lord, but also call for the physician, for a sensible man does not neglect the

remedies which the earth offers”.
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each of those points the sun is directly over the equator at noon and the
length of the day and night are nearly the same everywhere on earth. This
happens twice a year: once at the vernal (spring) equinox on March 20 or 21,
as the sun moves north; the other at the autumnal equinox on Sept. 22 or
23, when the sun moves south. Also on those days, the sun rises precisely in
the east and sets in the west, at all latitudes. The beginning of the year was
reckoned in days from the start of spring, – the day when the sun crosses the
celestial equator from south to north in its path around the ecliptic.

The ancient astronomers, through their amazingly careful observations,
had discovered that the celestial sphere of “fixed stars”, seems to turn grad-
ually from west to east with respect to the nodal line connecting the two
equinoctial points. (An observer outside the solar system would instead see
a westward drift of the equinoctial points.) Hipparchos discovered this phe-
nomenon and reported its magnitude to be about 36′ ′ of arc per year (the
true value is 50′ ′).

He also recognized that the existence of this precession of the equinoxes
allowed two different definitions of the year – either the time between spring
equinoxes, bringing the sun back into the same positional relationship to the
earth’s spatial orientation, or the slightly longer time (by about 20 min) for
the sun to return to exactly the same observed position with respect to the
fixed stars. These times are known as the tropical year and the sidereal year,
respectively.

Since 20 minutes is about 1
26,000 year, it follows that the vernal equinox

revolves once every 26,000 years. In the days of Hipparchos, the equinox
had moved to constellation Aries, and now it is in constellation Pisces. The
equinox will continue to move westward, reaching the constellation Taurus –
the location it held in the earliest days of the Zodiac – around the year 23,000
CE. For the same reason, the earth’s axis will not always point to Polaris. In
the days of the Egyptians the polar star was near Thuban (Alpha Draconis),
a bright star in the constellation Draconis. About 6000 years from now the
axis will point to Alpha Cephei. In 14,000 CE Vega will be the polar star.

Around 160 BCE, Hipparchos built an observatory on the island of Rhodes.
In 130 BCE, he made an observation at Rhodes, from which he obtained a
remarkably accurate estimate of the earth-moon distance. His method had
been suggested by Aristarchos, about 150 years earlier. The method involves
a clear understanding of the positional relationship of sun, earth, and moon.
First, he knew that sun and moon subtended almost exactly the same angle α
at the earth220. Hipparchos measured this angle to be 0.553 ◦ (≈ 1

103.5 radian);

220 Which is why total solar eclipses are both possible and very brief.
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he also knew what Aristarchos before him had found — that the sun is far
more distant than the moon.

Hipparchos used this knowledge in an analysis of an eclipse of the moon
by the earth: Assume that centers of the sun, earth and moon (in this order)
are collinear, and that the rays coming from the extreme edges of the sun and
tangent to the earth, cut the moon’s circular orbit at two points A and B.
Let the angle subtended between these two boundary rays be α radians. The
moon passes through the shadow from A to B, and from the measured time
that passage took, Hipparchos deduced that the angle subtended at the earth’s
center by the arc BA was � AOB = 2.5α. The rest is simple geometry: if
the distance from the earth’s center to the moon is D, the length of the arc
AB is about AB = 2RE − αD (RE = earth’s radius). Also AB/D = 2.5α.
With α = 1

103.5 , Hipparchos found D/R
E

≈ 59.

Hipparchos also discovered an ingenious method of calculating the mean
duration of a synodic month; by measuring the exact interval between
a lunar eclipse recorded by the Babylonians and one observed by him-
self, he found that 4267 full moons (lunations) occurred in the interval
of 126,007 days + one hour = 3,024,169 hours. Therefore 3,024,169

4267 hrs =
29d : 12h : 44m : 3.3s = 29.53d is the synodic period221 !

By ca 120 BCE, Hipparchos compiled the first comprehensive star cata-
logue, which listed the coordinates and brightnesses of 850 stars. During the
course of this pioneering work, he compared his star positions with earlier
records dating back to Aristarchos’ time. Hipparchos soon noted system-
atic differences that led him to conclude that the north celestial pole had
shifted slightly over the preceding century. This led him to the discovery of
the precession of the equinoxes.

While compiling his star catalogue, Hipparchos established a system to
denote the brightest of stars. His system is the basis of the magnitude scale
used by astronomers today: the brightest star he saw in the sky he called
1st magnitude star. The dimmest visible star he called a 6th magnitude star.
To stars of intermediate brightness he assigned intermediate numbers on this
logarithmic scale of 1 to 6. With only a few refinements, the same system is
used today.

The erratic configuration of the naked-eye stars has remained essentially
unchanged since the times of the first records; all the stars that Hipparchos
described can be found, with the same brightnesses and practically at the same
places, in the contemporary sky. In fact, there has been no gross alteration
in the constellations for millennia before his time.

221 According to Pliny, Hipparchos also observed a new star (probably a Nova) in

the year 134 BCE.
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The whole sky has been arbitrarily divided into 12 areas which differ
greatly in angular size and shape. Each area embraces a “constellation”,
or group of stars, and is known by a mythical or a semi-mythical name. More
than half the constellations were recognized and mentioned by Hipparchos.
Some data of Hipparchos’ star catalogue may be preserved in the star cata-
logue contained in Ptolemy’s Almagest. The remaining constellations, which
Hipparchos did not observe, lie in the Southern Hemisphere and were not
named until the Age of Exploration in the 16th and 17th centuries. The con-
stellations listed by Hipparchos were known by the Greek equivalents of their
present Latin names. They were not invented by Greeks but came to Greece
from the earlier civilization of Mesopotamia, and their names are found in Eu-
phratean tables of about 600 BCE, which embody ideas of an even remoter
age.

Hipparchos made great advances in both mathematics and astronomy. He
was a careful observer, made new instruments and used them to measure star
positions. He practically invented spherical trigonometry for use in his studies
of the sun and moon. He constructed the first celestial globe on record. He
used and probably invented the stereographic projection. In Rhodes (but also
in Alexandria), he made an immense number of astronomical observations
with amazing accuracy. He noted the existence of misty patches in the heavens
which he called ‘nebulae’. Yet he did not reject the geocentric system, and is
therefore responsible for its long predominance.

Hipparchos’ works are lost, and it is possible that their loss was partly
the result of the fact the Ptolemy’s great book, the Almagest (ca 150 CE)
superseded them and made them superfluous. What we know of Hipparchos
we know almost exclusively from Ptolemy, who quoted him often, sometimes
verbatim. It is strange to think of two men separated by a barrier of 300 years
– yet working as if the second was the immediate disciple of the first.

Hipparchos and Ptolemy rejected the ideas of Aristarchos of Samos (280
BCE) who had anticipated the Copernican system (1514), because they did
not tally sufficiently with the observations. Their objections were of the same
nature as Tycho Brahe’s at the end of the 16th century; a sufficient agreement
between observations and the heliocentrical system became possible only when
Kepler replaced circular trajectories by elliptic ones (1609).
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Lunar Theory222, Part I

The celestial objects that have received the greatest attention throughout
the long history of astronomy are the moon and the sun. In fact, the first
astronomical phenomenon to be understood was the cycle of the moon. On
a monthly basis, we observe the phases of the moon as a systematic change
in the amount of the moon that appears illuminated; the lunar phases are a
consequence of the motion of the moon and the sunlight that is scattered from
its surface. Half of the moon is illuminated at all times, but to an earthbound
observer, the percentage of the bright side facing him depends on the location
of the moon w.r.t. the sun and the earth. When the moon lies between the
sun and the earth, none of its bright side faces the earth, thus producing the
new-moon phase. Conversely, when the moon lies on the side of the earth
opposite the sun, all of its lit side faces the earth, producing the full moon.
At a position between these extremes, an intermediate amount of the moon’s
illumination is visible.

The cycle of the moon through its phases requires about 29 1
2 days, a

period called the synodic month, a cycle that was the basis for the first Roman
calendar. However, this is not the true period of the moon’s revolution, which
takes only about 27 1

3 days and is known as the sidereal month. The reason
for the difference of 2 days each cycle is this: as the moon orbits the earth,
the earth-moon system also moves in orbit around the sun. Consequently,
even after the moon has made a complete revolution around the earth with
respect to the background stars, it has not yet reached its new-moon starting
phase, which is directly between the sun and earth. This additional motion
takes another 2 days223.

The lunar year, consisting of 12 synodic months, contains only 354 days;
its conclusion consequently anticipates that of the solar year by 11 days, and
passes an integer number of times through the whole cycle of the seasons in
about 34 lunar years. It is therefore obviously ill-adapted to the computation
of time, and all nations who have regulated their months by the moon have

222 To dig deeper, see: Moulton, F.R., An Introduction to Celestial Mechanics,

Dover: New York, 1970, 436 pp.
223 The synodic period of the moon is given by the kinematic equation:

τs = 2π
ω

M
−ω

E
, where ωE = 2π

365.256
is the earth’s orbital mean angular ve-

locity relative to the stars (sidereal year) in radians/day, and ωM = 2π
27.32166

is

the mean angular velocity of the moon in its orbit, relative to the background

stars (sidereal month).
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employed some method of intercalation by means of which the beginning of
the year is retained at nearly the same fixed place in the seasons.

In the early ages of Greece the year was regulated entirely by the moon.
Solon (ca 639–559 BCE) divided the year into 12 months, consisting alter-
nately of 29 and 30 days, the former of which were called deficient months, and
the latter full months. The first expedient adopted to reconcile the lunar and
solar years was the addition of a month of thirty days to every 2d year. Since
the difference of 7 1

2 days was still too great to escape observation, occasional
corrections were made as they became necessary; but since these corrections
were left to the care of incompetent persons, the calendar soon fell into great
disorder, until a new division of the year was proposed by Meton224 (ca 432
BCE), which was immediately adopted in greater Greece.

The ancient astronomers recognized the much greater complexity of the
moon’s motion as compared with that of the sun. Thus they found from ob-
servations of eclipses that the length of the synodic month is not constant,
but varies within a few hours on either side of the mean 29d : 12h : 44m : 3 1

3

s
.

In addition, there were many irregularities in the moon’s motion in various
parts of its course. We know today that these irregularities are satisfactorily
explained in the framework of the Newton-Kepler theory. But the ancient
astronomers tried and failed to explain these phenomena by means of an ec-
centric circle alone (as they did in the case of the sun). They were obsessed
with the idea that heavenly bodies whose courses were “ordained by God”
could have no other than perfect movements, which to their minds was syn-
onymous with circular movements. They thus represented the moon’s motion
by an ingenious device – a combination of circular motions.

While the day, the month and the year have clear astronomical origins,
the week is a period of 7 days, having no reference whatsoever to celestial

224 The Athenian astronomer Meton (fl. 432 BCE), who took the length of the year

as 365 1
4

days, discovered that 19 solar years expressed in days, hours, etc., con-

tain almost exactly 235 synodic months (lunations). This is known as Meton’s

19 solar year cycle.

After the period of 19 years the full moons again occur on the same days of the

solar year. Since 235 = 19 × 12 + 7, the period of Meton consists of 12 years

containing 12 months each, and 7 years containing 13 months each, and these

last are chosen to form the 3rd, 5th, 8th, 11th, 13th, 16th, and 19th years of the

cycles.

Calculations from modern data show that 235 lunations are 6939 days + 16.5

hours, while 19 solar years are 6939 days + 14.5 hours. The relation between

integral numbers of months and years expressed by Meton’s rule therefore de-

viates only 2 hours from the truth. Since 19 Julian years make 6939 days + 18

hours, the relation errs only 1.5 hours when the Julian year is used.
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motions. It might have been suggested by the phases of the moon, or by the
number of planets known in ancient times, an origin which is rendered more
probable from the names universally given to the different days of which it is
composed. (The idea of the Sabbath, however, with its social, religious and
moral connotations, is exclusively Hebrew in origin.)

The plane of the moon’s motion is inclined to the ecliptic, on the average
by 5 ◦8′. These two planes intersect along a line of nodes: The moon’s nodes
are the points where its orbit intersects the plane of the ecliptic. The node
where the moon crosses the ecliptic from south to north is called the ascending
node. The other, where the moon crosses from north to south is the descending
node [eclipses can occur only when the moon is very near one of the nodes].

The moon’s orbit is an ellipse of average eccentricity e = 0.055. The
position along the orbit where the moon is nearest to us is called perigee. In
the farthest position the moon is at its apogee. The line connecting the apogee
and the perigee is the line of aspides.

The complexity of the moon’s motion is caused by gravitational action of
the sun on the earth-moon system. Some of the principal perturbations are:

(1) Evection: periodic change in the orbital eccentricity of the moon with a
period of 31.8 days.

(2) Variation: an effect that makes new and full moons occur too early and
half-moons too late.

(3) Annual equation: a perturbation in the moon’s annual equation of motion
due to changes in the sun’s attraction, caused in turn by variations in
the earth-sun distance throughout the year.

(4) Retrogression of the moon’s nodes: a precessional motion of the moon’s
orbital plane due to solar attraction. It results in the backward motion
of the nodes along the ecliptic [similar in effect to the precession of the
equinoxes]. A complete sidereal revolution of the ascending node takes
place in about 18.61 years.

(5) The inclination of the moon’s orbit varies periodically between 4 ◦59′ and
5 ◦18′.

(6) The progression of the line of aspides causes the whole orbit of the moon
to rotate and turn once upon itself every 8.85 years.

The nodical month225 (27.21222 days) is somewhat variable due to the
attraction of the sun, earth’s equatorial bulge and the planets. It is defined
as the time interval between successive passages of the moon through a given

225 Also called ‘draconitic’ because of the ancient belief that a dragon was supposed

to swallow the sun at a total solar eclipse.
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node and is a very important period in eclipse theory. There are also: sidereal
month (relative to the stars; 27.32166 days on the average), tropical month
(relative to vernal equinox: 27.32156 days), anomalistic month (relative to
perigee; 27.55460 days) and synodic month (relative to sun; 29.53059 days).

Along with understanding the moon’s phases, the early Greeks also re-
alized that eclipses are simply shadow effects; the moon is eclipsed when it
moves within the shadow of the earth, a situation that is possible only during
the full moon phase. A lunar eclipse takes place only if a full moon phase
occurs when the moon lies in the plane of the ecliptic. During the total lu-
nar eclipse, the circular shadow of the earth can be seen moving across the
disk of the full moon. When totally eclipsed, the moon will still be visible
as a coppery disk, because the earth’s atmosphere bends and transmits some
long-wavelength light (red) into its shadow226. A total eclipse of the moon
can last up to 4 hours and is visible to anyone on the side of the earth facing
the moon.

Lunar eclipses are one of the oldest known celestial phenomena, reported
in historical sources as early as 2283 BCE (the eclipse associated with the
Mesopotamian town of Ur). A Chinese eclipse is again mentioned in 1136
BCE. From the beginning of the 8th century BCE, the number of eclipses ob-
served in Mesopotamia and in the Mediterranean region has been continually
growing, with later additions from the rest of Europe.

Chaldeans found empirically that one lunar eclipse was generally followed
by another at an interval of 223 synodic months, or 18 years + 11 days + 8
hours (the saros). The explanation of this fact is as follows: The moon, which
was in opposition at the time of any one eclipse, is necessarily in opposition
again after a whole number of lunations. This however is not sufficient for
an eclipse to take place; it is also necessary for the moon to be back in the
ecliptic, that is to say at one of the nodes of its orbit. The returns of the moon
to its nodes are governed by the draconic revolution of 27.2122 days, whereas
the return of a state of opposition is regulated by the synodic revolution (or

226 The apparent paradox of the simultaneous visibility above the horizon of the

setting sun and the eclipsed rising moon (or vice versa) was already noticed in

ancient times. Since the sun, the earth, and the moon are in a straight line

during the eclipse, at least approximately, and since furthermore the effect of

parallax is to lower the moon by nearly one degree for an observer who sees it

near the horizon, this effect appears inexplicable at first. But on the one hand

atmospheric refraction lifts up the apparent sun and moon by over half a degree

each, which compensates the effect of parallax, and on the other hand the center

of the moon may be situated above the center of the earth’s shadow at the time

of observation. The simultaneous visibility is a fleeting effect, however, and

never lasts more than a few minutes.
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lunar month) of 29.5306 days. Since the saros is a period after which eclipses
recur, it must represent the least whole number of both synodic and draconic
revolutions. It does indeed turn out that 223 lunations have the same total
length as 242 draconic revolutions within an accuracy of 51 minutes.

But this is not yet the entire story! Owing to its high orbital eccentricity,
the moon is capable of being over 6 degrees fast or slow when it is half-way
between its perigee and apogee. This would be more than enough to make the
eclipse impossible. But through a very remarkable accident it happens that
223 synodic months make up nearly 239 anomalistic revolutions (to within
5 hours), so that the moon returns essentially to the same point of its orbit
relative to perigee227. Since the saros is 8 hours longer than an integral number
of days (6585), the eclipsed moon will not be seen at zenith 18 years 11 days
later from the same region of the earth but from a region about 120 ◦ further
west. But after 3 saroses, an eclipse is visible in approximately the same
longitude as the first one (There is also a slight shift in latitude).

The Hebrew prophets were also apparently able to foretell the occurrences
of eclipses, and in view of the ignorance and credulity of the masses, threat-
ened them with coming disaster – such as darkening of the sun, moon, or stars
– as a punishment for their sins228 [e.g., Isaiah (13, 10–11); Amos (8, 9)].

Hipparchos found that the moon moved most rapidly near a certain point
in its orbit and most slowly near the opposite point. He could reconcile this
motion with a virtual moon moving uniformly in a circle in which the earth

was displaced from the center by 1
20

th
of the radius of the orbit. (Virtual

eccentricity e = 0.05). He also discovered the 9-year period of the motion of
the line of aspides (ca 130 BCE).

Hipparchos then set forth to determine the other elements of the moon’s
orbit in order to be able to predict its motion at all times. To this end he used

227 223 × 29.53059 = 6585.32157d = 29d12h44m2.8s (synodic) ×223

239 × 27.55460 = 6585.55494d = 27d13h18m35s (anomalistic) ×239

242 × 27.21222 = 6585.35724d = 27d5h5m40s (draconic, nodical) ×242

19 × 346.620 = 6585.4d (eclipse years).

Note that because of the regression of the nodes, the time between successive

passages is less than one year. It is known as an eclipse year, equal to 346.6

mean solar days; 19 eclipse years contain 18 years and 11 1
3

days. During about

1200 years, there are 29 lunar eclipses and 41 solar eclipses: 10 of the latter are

total.
228 The saros method does not, however, enable one to calculate the character

and details of an eclipse, or even the place on the earth’s surface where such

an eclipse will be visible. For that one needs strictly accurate mathematical

methods, using spherical trigonometry, and the laws of planetary motions.
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lunar eclipses. Each eclipse gave a moment at which the longitude of the moon
was different by 180 ◦ from that of the sun, which he could readily calculate.
Assuming the mean motion of the moon to be known and the perigee to
be fixed, 3 eclipses observed at different points of the orbit would render 3
longitudes, that could be used to determine 3 other unknowns, namely: the
mean longitude at a given epoch, the eccentricity and the position of the
perigee.

Thus, by taking three eclipses separated at short intervals, all observations
could be reduced to the same epoch229 and knowing the mean motion and
perigee, the three unknown elements could be eliminated.

A second triplet of eclipses at as remote an epoch as possible, was then used
to redetermine the three elements in order to calculate the annual variation.

Besides the contribution of lunar eclipses to astronomy, they also played an
important part in chronology. Eclipses were often reported in early historical
sources as “epitheton ornans et constans” of many great events. According
to the superstitions of the ancients, lunar eclipses were considered as evil
omens, due no doubt to the bloody color of the totally eclipsed moon. In this
way some historical events, especially battles, were directly influenced by the
appearance of a lunar eclipse.

Some historical lunar eclipses are:

Oct. 02, 731 BCE A partial eclipse visible in Babylon (Ptolemy). Time
intervals were measured with the aid of clepsydra (water clocks); the only
useful timed observations are of eclipses occurring close to sunrise or sunset,
where the effect of drift of clepsydra is minimal.

July 16, 523 BCE In the 7th year of the reign of Cambyses, one hour before
midnight in Babylon, the moon was eclipsed from the north over half of its
diameter (Ptolemy).

Aug. 27, 413 BCE This eclipse retarded the retreat of the Athenian army
under Nicias from Sicily and caused its defeat by the Syracusians (Plutarch).

Aug. 19, 366 BCE This eclipse, explained by the prophet Miltas of Dion’s
army, decided its departure for Sicily in order to overthrow the local tyrant
Dionisios (Plutarch).

Sept. 20, 331 BCE230 This eclipse happened eleven days before the battle of
Arbela in which Alexander triumphed over Darius (Plutarch).

229 Same vernal equinox position, such that no correction for precession and nuta-

tion are necessary.
230 This may well allude to the lunar eclipse referred to by the prophet Joel (3,

3–4): “The sun shall be turned into darkness and the moon into blood”. Indeed,

the moon often glows a deep red color during totality on account of sunlight
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Sept. 01, 218 BCE Gaulish mercenary troops were greatly alarmed by this
eclipse so that Attalus, king of Pergamos, had to dismiss them (Polybios).

Apr. 30, 174 BCE A partial eclipse visible in Alexandria (Ptolemy). At
this period, times were measured to no better than the nearest third of an
hour.

Sept. 02, 172 BCE On the eve of the battle of Pydna the eclipse predicted
by the Roman tribune, C. Sulphicius Gallus, took place (Livy).

Feb. 22, 72 CE An example of a ‘horizontal’ eclipse: the rising sun and
setting eclipsed moon were simultaneously visible (Pliny).

Sept. 14, 927 CE Eclipse timed with ‘clock stars’ at Baghdad.

Mar. 01, 1504 CE Columbus, knowing in advance that this eclipse should
happen, gained the reputation of a prophet among the Indians who, in con-
sequence, supplied provisions to the Spanish expedition.

159–137 BCE Carneades of Cyrene (214–129 BCE). Greek Skeptic phi-
losopher of the Middle Academy. One of the earliest to develop the doctrine
of logical probabilism , which held that certainty is unattainable and that
probability is the only guide to belief and action. He claimed that the truth
of an idea can only be probable, not certain; one discovers probable truth by
means of critical analysis, synthesis and comparison.

Carneades was the founder and director of the Third or New Platonic
Academy in Athens. Little is known of his life. In 155 BCE, together with
Diogenes the Stoic and Critolaos the Peripatetic, he was sent on an em-
bassy to Rome. On this occasion he delivered two speeches on successive days,
one in favor of justice, the other against it. His powerful reasoning excited
speculations, and the elder Cato insisted that Carneades and his companions
be sent back to Athens. Thus was Greek philosophy introduced in Rome.

ca 150 BCE Seleucus of Babylon. Astronomer. Born in Mesopotamia
and lived in Seleuceia on the Tigris. There he obtained some knowledge of
Greek astronomy. His enduring achievements are:

being scattered in the earth’s atmosphere. [The same description was given to

a total lunar eclipse visible in Germany on Nov. 9, 1128 CE.] The closest total

solar eclipse answering the above biblical narrative may have occurred in Judea

on July 04, 336 BCE at midday with a duration of totality of ca 3 minutes.
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• The only supporter in antiquity of Aristarchos’ heliocentric hypothesis.
Went beyond Aristarchos in declaring the heliocentric hypothesis to be
true while Aristarchos merely treated it as an hypothesis.

• Tried to account for the oceanic tide by the resistance opposed to the
moon by the diurnal rotation of the earth’s atmosphere. His conclusions
are erroneous, but they showed the independence and originality of his
mind.

150–120 BCE Hypsicles of Alexandria (ca 180–120 BCE). Mathemati-
cian. Wrote a treatise on regular polyhedra. He is essentially the author of
Book 14 of Euclid’s The Elements which deals with inscribing regular solids
in a sphere. In this work Hypsicles proves some results due to Apollonios.

Hypsicles also wrote On the Ascension of Stars in which he was first to
divide the Zodiac into 360 degrees.

146 BCE Greece made a Roman province. The battle of Zama (202 BCE)
established Rome as the strongest military power in the Mediterranean231,
and almost immediately the eastern states began to court Roman assistance
in their numerous wars. Within two years the Roman became embroiled in
the complex affairs of the Hellenistic East, and during the course of the 2nd

and 1st centuries they gradually gained control over the entire Mediterranean
world.

As the power of Egypt declined (ca 200 BCE), the Greek states around the
Aegean asked Roman protection against Macedon and the Seleucid Empire.
The Roman took firm action and freed Greece from foreign domination. Rome
expected Greece to accept its dictation in foreign affairs. The Greeks, however,
wanted little to do with their barbarian “liberators” once the threat to their
independence had been removed. When Rome continued to intervene in the
affairs of the Achaean League, the Greek revolted.

Goaded into fury by what they considered Greek ingratitude, the Romans
forgot their love for Greek culture long enough to conduct a savage retaliatory
campaign in the Aegean area – the first of many – in 146 BCE. By the time the
Roman armies had slashed their way up the Greek peninsula, Macedon had
been recognized as a Roman province (148 BCE); the ancient city of Corinth
had been leveled; other Greek cities, including Athens, had been plundered;
and thousands of young Greeks had been transported to Italy as slaves.

140 BCE Alchemy said to have begun in China.

231 Before the Punic Wars the rulers of the Hellenistic states regarded Rome as a

remote western city, hardly worthy of notice.
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136 BCE, Apr. 15 Total eclipse observed in Babylonia after sunrise;
Venus, Mercury, Jupiter, Mars and stars above the horizon were seen. A re-
markable accurate description is contained in an astronomical diary (there is
no comparable account until the 18th century) – testimony to the observa-
tional skill which the Babylonian astronomers had achieved.

100 BCE Chinese began to use negative numbers. They also discovered
that a magnet orients itself toward the North Pole, but did not use magnets
for navigation at sea until the 10th century. Their physicians formed accurate
theory of the circulation of blood.

100 BCE Andronicos of Cyrrhestes (Cyrohus). Greek astronomer.
Architect of Tower of Winds, known in the Middle Ages as Lantern of Demos-
thenes; a tower in Athens bearing a weather vane, eight sundials and a water
clock.

ca 100 BCE Philo of Byzantium. Mechanical inventor. Author of a sort
of encyclopedia of applied mechanics. Invented many war engines, pneumatic
machines and the so-called Cardan’s suspension of gimbals232.

100–70 BCE Zenon of Sidon (ca 150–70 BCE, Greece). Epicurean
mathematician and mathematical philosopher. First considered the possibility
of non-Euclidean geometry. Also discussed the principle of induction. Made
deep criticism of Euclid. For example he claimed that Euclid’s first proposition
assumes that two straight lines can intersect in at most one point but Euclid
does not have this as an axiom. He attacked Euclid’s proof of the equality of
right angles on the ground that it presupposes the existence of a right angle.

Zenon was born in Sidon, now Saida in Lebanon. In 79–78 BCE, Cicero
(then 27 years old) was obliged by bad health to travel and he attended in
Athens the lectures of Zenon.

100–70 BCE Poseidonios of Apamea (135–51 BCE). Greek Stoic phi-
losopher, astronomer, geographer and encyclopedist. Teacher of Cicero. Born
in Apamea (Syria), studied in Athens, settled in Rhodes and died in Rome.
Estimated the circumference of the earth and its distance to the sun to a
much better accuracy than Hipparchos and Ptolemy but was still far from

232 A little treatise On the Seven Wonders of the World is attributed to Philo,

although some scholars believe that it belongs to the 6th century CE.
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the true values233. During his extensive travels he collected a large amount of
geographical information, observed earthquakes and volcanoes, and recorded
the elevation of a new volcanic islet among the Lipari Islands. He was first
to explain the tides by the joint action of the sun and the moon, and to call
attention to spring and neap tides.

90–50 BCE Asclepiades234of Bithynia (124–ca 35 BCE, Rome). Greek
Physician. The most eminent of the earlier Greek physicians at Rome, a

233 The Stoic astronomer Cleomedes (ca 150–200 CE) in his extant book Theory

of Revolutions of the Heavenly Bodies gives a striking description of the method

used by Poseidonios to calculate the earth’s circumference. The method con-

sists of three steps:

• Choosing two stations that lie on the same meridian with known distance

between them: Rhodes and Alexandria are separated by 5000 stadia (1 stadion

= 160 meters). Peseidonios relied on mariners’ estimates of a straight course

across the Mediterranean.

• On a spherical earth, the angle subtended at the center by the meridian

between the stations is equal to the angle between the respective horizons (tan-

gents) at the stations, or alternatively, by the difference between the zenith-

distances (normals) at the stations. This angle is also equal to the difference of

latitude between the two stations.

• A certain distant star sends parallel rays of light toward earth: the difference

between the zenith-distances of the star when measured at its meridian transit

from two stations is the number of degrees in the arc of the earth’s circumfer-

ence between the two stations. Since the star Canopus (the brightest star after

Sirius in the sky) grazed the horizon (zenith distance = 90◦) at Rhodes, the

difference in latitude between Alexandria and Rhodes was {90 ◦ minus zenith

distance at Alexandria}. The figure that Poseidonios obtained for the circum-

ference of the earth was 250,000 stadia, within a few percent of the actual figure

of 40,000 km. Strabo (63 BCE–24 CE) quoted a figure of 180,000 stadia. This

last figure was adopted by Ptolemy, and this and other errors of Ptolemy were

the basis of Columbus’ belief that India was near. Had he known the true

distance, possibly he never would have sailed. . . .
234 Named after Asclepios, a Greek mortal physician, later to be elevated to the

rank of god of medicine according to Homer’s Illiad. He was the son of Apollo,

educated by the centaur Chiron, and killed by lightening sent by Zeus, for

bringing the dead back to life. A cult of Asclepios as a hero originated in

the Thessalian town of Tricca. When it extended to Epidauros, Asclepios was

honored as a god in the classical period. From there the cult spread to many

other places (to Athens in 420 BCE); the sanctuary on Cos became very famous,

and was the first of many temples of Asclepios. About 280 BCE, the cult was

introduced in Rome, as a result of an epidemic.
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friend of Cicero. He was born at Prusa in Bithynia (Asia Minor), traveled
much when young, and seems at first to have settled at Rome as a rhetorician.
In that profession he did not succeed, but he acquired great reputation as a
physician. Opposed the Hippocrates (fl. 430–380 BCE) theory of disease and
taught that disease is caused by a disturbance in the particles that make up
the body. His remedies were baths, diet and exercise. Credited with being
the first to distinguish between acute and chronic diseases. Pioneered human
treatment of mental disturbances. He recommended the use of wine, and in
every way strove to render himself as agreeable as possible to his patients.
His pupils were very numerous, and the school formed by them was called the
Methodical.

His system was his own, though founded upon the Epicurean philosophical
creed; on the practical side it conformed closely to the Stoic rule of life, thus
adapting itself to the leanings of Roman in the later times of the republic.

The Romans cannot be said to have at any time originated or possessed an
independent school of medicine. They had from early times a very complicated
system of superstitious medicine, or religion, related to disease and the cure
of disease, borrowed from the Etruscans. Though the saying of Pliny that
the Roman people got on for 600 years without doctors was doubtless an
exaggeration, it must be accepted for the broad truth which it contains. When
the medical profession appears, it is as an importation from Greece.

87 BCE Babylonian clay tablets (in the British Museum) documented ob-
servation of comet Halley apparition. The observation agrees with calculated
perihelion passage-time in the month of August of that year. The subsequent
apparition of Oct. 12 BCE was also reported. Later observations reported the
apparitions of: 451, 684, 760, 837, 912, 989, 1066, 1145, 1222 CE.

81–46 BCE Marcus Tullius Cicero (106–43 BCE, Rome). Roman polit-
ical eclectic-stoic philosopher, historian, orator and statesman whose writings
had considerable influence on the formation of subsequent societies. He is
most noted for his eclectic exposition of general scientific knowledge and phi-
losophy, by which he aimed to arouse an appreciation of Greek culture in
the minds of Romans. Key works235: On the Republic (54–51 BCE); Stoic
Paradoxes (46 BCE). One of the great Latin stylists. Through his orations,
letters and books influenced medieval and post-medieval cultural heritage and
affected the thinkings of Petrarch, Erasmus, Copernicus, Voltaire and
John Adams.

Cicero was born in Arpinum of a well-to-do-family. He studied law, or-
atory, Greek literature and philosophy in Rome and in Greece. He won his

235 Cicero, Selected Papers, Penguin Books, 1976, 272 pp.
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first fame and riches as a defense lawyer. His chief role as prosecutor was in
representing the people of Sicily against Gaius Verres, robber-governor of the
island.

Gained the office of praetor (66 BCE) and consul (63 BCE). As consul, he
crushed the conspiracy of Cataline236 against the Republic; his great speech
at this time was his “First Oration Against Cataline” [“Quo usque tandem
abutere, Cataline, patientia nostra?”]. He was banished from Rome during
58–57 BCE by Caesar, which caused him to write essays on philosophy and
political theory237. As leader of the Senate in 44 BCE, he launched a great
attack on Mark Antony for which he payed with his life a year later.

Cicero ranks among the greatest of ancient writers. He was responsible
for developing a style in Latin prose that has become the basis of literary
expression in the languages of Europe.

236 Lucius Sergius Catalina (108 – 62 BCE)
237 Thadaeus Zielinsky, Russian philologist, asserted that of all Julius Caesar’s

achievements none was as important as the fact that Caesar, by compelling

Cicero to retire to the country, forced the latter to state his philosophy in

writing.
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Worldview III: Cicero

∗ ∗∗

“I only wish I could discover the truth as easily as I can expose falsehood”.

∗ ∗∗

“We must conceive of this whole universe as one commonwealth of which both
gods and men are members”.

∗ ∗∗

“Philosophy is the art of life”.

∗ ∗∗

“That long time to come when I shall not exist has more effect on me than
this short present time, which nevertheless seems endless”.

∗ ∗∗

“Frivolity is inborn, conceit acquired by education”.

∗ ∗∗

“Fame lives in great things, but dignity lives in humility”.

∗ ∗∗

“While I breath I hope (Dum spiro spero)”.



330 1. Origins – Splendor of the Simple

∗ ∗∗

“By teaching we learn (Docendo discimus)”.

∗ ∗∗

“We are not born just for our own sake”.

∗ ∗∗

“Any man is liable to err, only a fool persists in error”.

∗ ∗∗

“To be ignorant of what occurred before you were born is to remain always a
child. For what is the worth of human life, unless it is woven into the life of
our ancestors by the records of history?”

∗ ∗∗

“The whole passion ordinarily termed love is of such exceeding triviality that
I see nothing that I think comparable with it”.

∗ ∗∗

“No one is so old as to think he cannot live one more year”.

∗ ∗∗

“Peace is achieved by victory, not by compromise”.

∗ ∗∗

“Nature abhors vacua”.
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∗ ∗∗

“Rightly defined philosophy is simply the love of wisdom”.

∗ ∗∗

“It is not by muscle, speed, or physical dexterity that great things are
achieved, but by reflection, force of character and judgment”.

∗ ∗∗

“If you pursue good with labor, the labor passes away but the good remains; if
you pursue evil with pleasure, the pleasure passes away and the evil remains”.

∗ ∗∗

“The greater the difficulty, the greater the glory”.

∗ ∗∗

“If you have a garden and a library, you have everything you need”.

∗ ∗∗

“The more laws, the less justice”.

∗ ∗∗

“A home without books is a body without soul”.

∗ ∗∗

“We should not be so taken up in the search for truth, as to neglect the
needful duties of active life; for it is only action that gives a true value and
commendation to virtue”.
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∗ ∗∗

“Justice consists in doing no injury to men; decency – in giving them no
offense”.

∗ ∗∗

“Knowledge which is divorced from justice, may be called cunning rather than
wisdom”.

∗ ∗∗

“Laws are silent in time of war”.

∗ ∗∗

“No one can give you better advice than yourself”.

∗ ∗∗

“No one was ever great without some portion of divine inspiration”.

∗ ∗∗

“The wise are instructed by reason; ordinary minds by experience; the stupid
by necessity and the brutes by instinct.”.

∗ ∗∗

“The enemy is within the gates: it is with our own luxury, our own folly, our
own criminality that we have to contend”.

∗ ∗∗

“To each his own”.
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∗ ∗∗

“Never go to excess, but let moderation be your guide”.

∗ ∗∗

“Nothing is too hard for him who loves”.

∗ ∗∗

“Ask not what your country can do for you, but rather what you can do for
your country”.

∗ ∗∗

“Cannot people realize how large an income is thrift?”

∗ ∗∗

“What is more delightful than leisure devoted to literature?
That literature I mean which gives us the knowledge of the infinite greatness
of nature, and, in this actual world of ours, of the sky, the land, the sea”.

∗ ∗∗

“It might be pardonable to refuse to defend some men, but to defend them
negligently is nothing but crime”.

∗ ∗∗
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70–55 BCE Titus Lucretius Carus (Lucretius, 98–55 BCE, Rome).
Roman Epicurean philosopher, poet, and scientist. Author of the philosoph-
ical poem De rerum Natura238 (On the Nature of Things), in which he gave
an account of the total Greek knowledge of his time, together with a few
prophetic views (such as a vague anticipation of the theory of natural selec-
tion). Lucretius’ chief purpose was to vindicate the rights of reason against
superstition.

Nothing certain is known about the life of this natural philosopher. His
sole poem was published posthumously by Cicero. Virgil studied it, Ovid
admired it, and many authors of didactic poems since have tried to imitate
it. No one, however has equaled his passionate sincerity, his fearless logic or
his breadth of vision. He was not a popular poet and was not read during
the Middle Ages; his present-day fame dates from the Renaissance. The
astonishing fact is that, without a true scientific method, Lucretius at least
hinted at many important physical discoveries of modern times – his physical
theory was superior to any which existed up to the 17th century.

For example, he discusses the spontaneous unpredictable instability
through which laminar flow turns into turbulent flow due to a slight per-
turbation.

Lucretius was an ardent exponent of the concept of plurality of worlds.
In his poem he wrote: “Nature is not unique to the visible world; we must
have faith that in other regions of space there exist other earths, inhabited by
other people”.

60–21 BCE Siculus Diodoros. Greek historian. Born at Agyrium in
Sicily; lived in the times of Julius Caesar and Augustus. He traveled in Egypt
between 60–57 BCE and spent several years in Rome. His writing consisted of
forty books of which only fifteen are still extant. His books contain important
information on various astronomical phenomena, such as comets and eclipses.

The Egyptian Calendar merited his comment (ca 50 BCE): “They have
made special arrangement concerning the months and the years. For they do
not reckon days by the moon, but by the sun, putting 30 days in the months,
and adding 5 days and a quarter to those of the twelve months, and thus they
fill out the yearly circle”.

52 BCE The Battle of Alesia. The decisive battle of Caesar against a con-
federacy of Gallic tribes led by Vercingetorix, which changed the course
of Roman history and Western civilization. While besieging Vercingetorix

238 Lucretius (Titus Lucretius Carus), On the Nature of the Universe, Translated

by R.E. Latham, Penguin Books: New York, 1951, 275 pp.
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in Alesia (Alise St. Reine, near Dijon), a Roman army, 60,000 strong, was
itself surrounded. Outnumbered 5:1, Caesar managed to turn a desperate
struggle into a complete victory, chiefly due to his own courage, cunning and
leadership, and the endurance of his men. Caesar’s victory and the subse-
quent colonialization of Gaul as a Roman province, carried Roman influence
beyond the circum-Mediterranean sphere, into the heart of Europe. A new
Gallico-Roman civilization evolved, carrying the heritage of Rome long after
the empire fell to the Germanic tribes.

ca 40 BCE Wooden ball-bearings for 4-wheeled wagon, found at Dejbjerg,
Jutland.
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The Julian Calendar (46 BCE)

The year is either astronomical or civil. The solar astronomical year is
the period in time in which the earth performs a revolution in its orbit about
the sun, or passes from any point of the ecliptic to the same point again; it
consists of 365d : 5h : 48m : 46s in terms of mean solar time239.

The civil year is that which is employed in chronology, and varied through-
out history among different nations, both in respect to the season at which
it commences and in its subdivisions. As far as the sun’s apparent motion
alone is concerned, the regulation of the year and its subdivision into days
and months may be effected without much trouble. The difficulty, however,
shows up when one seeks to reconcile solar and lunar periods, or to make the
subdivisions of the year depend on the moon, and at the same time to preserve
the correspondence between the whole year and the seasons. In the arrange-
ment of the civil year, two objects are therefore sought: first, the equable
distribution of the days among 12 months; and secondly, the preservation of
the beginning of the year at the same distance from the solstices or equinoxes.

239 What is generally meant by the word ‘year’, particularly so far as our calendar

is concerned, is correctly termed tropical year. It is defined as the time elapsed

between two successive crossings by the sun of the celestial equator at the vernal

equinox. The tropical year has a length of 365d5h48m46s, or 365.242 mean solar

days, where the mean solar day is the time of a complete turn of the earth w.r.t.

sun (corrected for all known irregularities). Because one calendar year is exactly

365 days there is an excess of almost 6h, or one quarter of a day, per tropical

year. By adding a day (Feb. 29) each leap year, this excess is largely corrected.

The exact duration of the apparent solar day (i.e. time elapsing between two

consecutive meridional transits of the sun) is not constant and changes from day

to day. This irregularity of solar day relative to sidereal day is a result of several

circumstances, chief among which are: (1) the obliquity of the ecliptic (the sun’s

apparent annual motion is not in the same plane as its apparent diurnal rotation

relative to the fixed stars), due to the earth’s tilt relative to the (ecliptic) plane

of its circumsolar orbit; (2) eccentricity of the earth’s orbit (varying translational

velocity of the earth in its orbit in conformity with Kepler’s second law). An

average value of the apparent solar day for the entire year is known as the mean

solar day. The Equation of Time is the misnomer for the number of minutes

which, on any particular day of the year, must be added to the apparent (true)

solar time to give the mean time. Clearly, the Equation of Time will apply to the

analog time-difference as monitored by sundial (solar time) versus mechanical

clocks (mean solar time).
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Now, as the year consists of 365 days and a fraction, and 365 is a number
not divisible by 12, it is impossible that the months can all be of the same
length and at the same time include all the days of the year. Also, because of
the fractional excess of the length of the year above 365 days (explicitly: 0.242
days), the years cannot all contain the same number of days, if the epoch of
their commencement is to remain fixed. But as the day and the civil year
must begin at the same instant, the extra hours cannot be included in the
year till they have accumulated to a whole day. As soon as this has taken
place, an additional day must be given to the year.

At the time of Julius Caesar (100–44 BCE), the civil equinox differed
from the astronomical by 3 months, so that the winter months were carried
back into autumn and the autumnal into summer. Caesar ordered a major re-
form of the calendar: With the advice and assistance of his Greek astronomer
Sosigenes he abolished the lunar year and the intercalary month and regu-
lated the civil year entirely by the sun. He fixed the mean length of the year
at 365 1

4 days and decreed that every fourth year should have 366 days, the
other years each having 365.

In order to restore the vernal equinox to the 25th of March (the place
it occupied in the time of Numa) he ordered two extraordinary months to
be inserted between November and December in the current year, the first
to consist of 33 days and the second of 34 days. The intercalary month
of 23 days fell into that year so that the ancient year of 355 days received
an augmentation of 90 days, having altogether 445 days. By means of this
device, the calendar was realigned with the seasons. The Romans called it:
“the last year of the confusion”. The first Julian year commenced with the
1st of January of the 46th year before the birth of Christ, and the 708th from
the foundation of the city.

Insofar as the distribution of the days through the months Caesar ordered
that January, March, May, July (which he named after himself), Septem-
ber and November be given 31 days each and the other months thirty each,
excepting February which in common years should have only 29, but every
fourth year 30 days. His successor, Augustus Caesar, to gratify his vanity,
removed a day from February and added it to his month, August, which now
had also 31 days. Then, in order that three months of 31 days might not come
together, September and November were reduced to thirty days and one day
each given to October and December. Curiously enough, the intercalary day,
added to February every fourth year, was inserted in the calendar between
the 24th and the 25th day, such that nominally, February had 28 days even on
that year. In spite of the reform, the year was still too long by 11m14s, which
amounted to a whole day in 128 years. Thus, in the course of a few centuries,
the equinox retrograded appreciably towards the beginning of the year: when
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the Julian calendar was introduced, the equinox fell on March 25th, but by
1582, it had retrograded to the 11th.

A lunar year is defined as 12 new moons, and is about 11 days shorter than
a tropical year. Because the earth’s orbit is not quite circular, the apparent
angular velocity of the sun is not strictly uniform. Also because the sun’s
apparent motion in the sky is not along the celestial equator, the component
of its velocity parallel to the equator is variable. Therefore, for the purpose
of time-reckoning, a ‘mean sun’ is defined which moves at the rate equal to
the average of that of the true sun. The difference between mean solar time
and the apparent solar time (as given by any form of sundial) is called ‘the
equation’ of time. It may be either positive or negative.

The interval between successive transits of the same star across the merid-
ian is the sidereal day, which is about 4 minutes shorter than a mean solar
day. A sidereal year is the time elapsed between successive occupations of
exactly the same orbital point with reference to the fixed stars. It is longer
by 20m23s (mean solar) than the tropical year because of the precession of
the equinoxes.

37–15 BCE Marcus Vipsanius Agrippa (63–12 BCE, Rome). Soldier,
statesman, engineer and builder. Accomplished great public works (aque-
ducts, sewers). One of the most eminent builders of the Roman world. As a
builder he ranks with Rameses II and Nebuchadnezzar II.

Born into an obscure Roman family, he studied at Apollonia, (a Greek city
on the Adriatic coast, opposite the heel of Italy). With him studied Gaius
Octavius, the future Augustus. They became lifelong friends.

Agrippa later became praetor and won victories in Gaul and Germany.
As consul in 37 BCE, he commanded Octavianus’ fleet against Pompeius in
Sicily waters. Later he commanded the whole Octavianist fleet at the decisive
battle of Actium. In these naval campaigns he used his own inventions of
two devices which gave him military advantage: One was a collapsible tower,
which could be quickly raised from the deck when a ship neared the enemy.
The other was a grapnel that could be shot from a catapult to catch another
ship and pull it close for boarding.

Between these wars, he build a new water system for Rome, including
two new aqueducts, 130 water-distributing stations, 300 large cisterns, and
500 fountains. He even took a boat ride through the Cloaca Maxima – the
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great sewer – to direct its renovation. He built the first public bath in Rome,
another bridge over the Tiber, a series of temples and porticoes, and the
Pantheon. The rest of Agrippa’s life was spent on military and diplomatic
missions. Amidst these activities he built roads in Gaul, Spain and Syria.

The dependence of Augustus on Agrippa was so great that in order to
bind him closer, he persuaded Agrippa to divorce his first wife and marry
Augustus’ niece Marcella, then to divorce Marcella and wed his daughter, the
promiscuous Julia. In addition, Augustus made his stepson Tiberius marry
Vipsania, Agrippa’s oldest daughter240.

32 BCE–8 CE Hillel the Elder (80 BCE–8 CE, Israel). Tannaic scholar,
moralist and logician. Founder of the scientific Mishna. President of the
Sanhedrin. First to formulate clearly the Seven Middot (rules) of inductive
reasoning for properly deriving new concepts from old through the use of logic
(Tosefta, Sanhedrin 7, 11; Avot d’Rabbi Nathan 37, 10). He argued that if a
deduction could be shown to stem logically from a divine proposition, then the
deduction had to be as divine as the source. He thus devised the intellectual
apparatus for an orderly evolution of divine principles.

Modern scholars have shown that Hillel’s syllogisms went beyond those of
his Greek masters, approximating the methods used in modern logic today241.

Hillel came from Babylonia in search of a higher education (40 BCE) and
lived at Jerusalem in the time of King Herod. Though hard pressed by poverty,
he applied himself to study in the academies of Shemaaiah and Avtalion242.

240 After Agrippa’s death, Tiberius’ mother Livia prevailed upon him to divorce

Vipsania and marry the amorous Julia. As Tiberius loved Vipsania, the expe-

rience soured him for life, and he became a morose and miserly emperor. (To

most upper-class Romans, marriage was more a matter of business than it is

with us. They traded wives back and forth as liberally as movie stars.)

Agrippa left several other children, most of whom came to violent ends. A son

of one of these children became the emperor Caligula, while one of Caligula’s

sisters was the dreadful Agrippina, mother of Nero.
241 For instance, one of his rules, known as Binyan Av, is almost identical to that

of John Stuart Mill’s (1843) “Method of Agreement”. Hillel’s rules were

used by rabbis to discover new laws of Scripture in much the same way that

Mill’s inductive reasoning was used by scientists 18 centuries later to obtain new

corollaries from a given natural law.

The seven rules seem to have been first laid down as abstract rules by the

teachers of Hillel though they were not immediately recognized by all as valid

and binding. Hillel collected them as current in his day and amplified them.
242 Having no financial means, he is said to have climbed the roof of an academy

to eavesdrop on a class. One day the roof caved in, and Hillel fell into the
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Thoroughly familiar with Greek literature, thought, and science, he taught
his rabbinic pupils to be the keepers of a viable Judaism.

Hillel filled his leading position as head of the Sanhedrin for forty years.
His descendants, with few exceptions, remained at the head of Judaism in
Israel until the beginning of the 5th century. Hillel’s ancestry was tracked
back to King David. He is especially noted for the fact that he gave a definite
form to the Jewish traditional learning, as it has been developed and made
into the ruling and conserving factor of Judaism in the latter days of the
Second Temple, and particularly in the centuries following the destruction of
the Temple.

Hillel lived in the memory of posterity chiefly as the great teacher who
enjoined and practiced the virtues of charity, humility, and true piety. His
proverbial sayings strongly affected the spirit both of his contemporaries and
of his succeeding generations. In his Maxims (Avot 1, 12) he recommends the
love of peace243 and the love of mankind beyond all else.

His charity towards men is given its finest expression in the answer which
he made to a proselyte who asked to be taught the commandments of the
Torah in the shortest possible form: “What is unpleasant to thyself that do
not do to thy neighbor; – this is the whole Law, all else is but its exposition”.

This allusion to the scriptural injunction to love one’s neighbor (Lev 19,
18) as the fundamental law of religious morals, became in a certain sense a
commonplace of Pharisaic scholasticism. For the Pharisee who accepts the
answer of Jesus regarding that fundamental doctrine which ranks the love of
one’s neighbor as the highest duty after the love of God (Mark 12, 33), does
so because as a disciple of Hillel, the idea is familiar to him. Paul also (Gal
5, 14) learned this in the school of Rabban Gamliel.

9 CE The Varian Disaster : Roman army under Varus defeated in Germany
by Arminius. Three Roman Legions (out of 28 overall) were annihilated in
the Teutoburg Forest. It led to the abandonment of Germany east of the
Rhine and thus saved Teutonic Civilization from absorption by Rome. It is
considered as Rome’s greatest defeat.

This defeat put an end to Augustus’ plans for the conquest of Germany to
the Elbe and established the Rhine as the future border between Latin and
German territory. Augustus discontinued his conquest because of financial

classroom, thus becoming, presumably, history’s first drop-in. Impressed with

such a thirst for knowledge, the academy granted him a scholarship.
243 Hillel, unlike the great Rabbi Akiva, was a totally apolitical figure, which ex-

plained how he could survive under the rule of the terrible Herod.
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difficulties involved in replacing the lost legions and levying enough additional
forces to subdue Germany permanently.

31–65 CE Lucius Annaeus Seneca (4 BCE–65 CE). A Roman states-
man, author and an eclectic-stoic philosopher.

Seneca was born at Cordova, Spain, into a distinguished Roman family.
He became prominent in political and literary life in Rome. Later he became
tutor and advisor to emperor Nero. Nero accused him of plotting his death
and forced him to commit suicide.

The Stoic philosophy, which started with Zeno of Citium (ca 335–265
BCE), spanned a period of some 500 years. One of the principal issues which
remained a central interest in this philosophy is the problem of determinism
and free will: nature is strictly ruled by law which emanates from a supreme
authority that impregnates it. The universe ends in a pristine fire and evolves
all over again in an eternal repetitious cycle.

In modern times, Stoa was revived through the philosophical writings of
Spinoza, who was strongly influenced by this tradition. Among the surviving
works of Seneca there is an essay on Naturalium Quaestionum. We read there
a statement that could have been written today:

“The day will come when diligent research over long periods will bring to
light the mysteries of nature which now lie hidden. A single lifetime, even
though entirely devoted to the sky, would not be enough for the investigation
of so vast a subject. . . And so this knowledge will be unfolded only through
long successive ages. The day will yet come when our descendants will be
amazed that we did not know things that are so plain to them. . . Many dis-
coveries are reserved for ages still to come, when memory of us will have been
perished. Our universe is a sorry little affair unless it has in it something for
every age to investigate. . . Nature does not reveal her mysteries once and for
all”. [Book 7].

The above essay is a collection of physical, astronomical, geographical,
geological, and meteorological questions explained from the atomistic point of
view. His account of the earthquake of Feb. 5, 63 CE is the earliest detailed
report of its kind. Seneca was one of the first hydrologists: he noted that
because of what is now called the hydrologic cycle, the constant flow of rivers
into the sea does not cause the ocean to overflow, nor does the addition of
fresh water dilute the saltiness of the sea. Water is evaporated from the ocean,
falls as rain, and collects in rivers to return to the sea244.

244 This was already known to the author of the book of Ecclesiastes (ca 330 BCE),

for it is written: “All the rivers run into the sea; yet the sea is not full”.
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Seneca noted the magnification of objects seen through water-filed trans-
parent vessels (and his friend, the Emperor Nero may have been the first to
use a monocle, employing an emerald lens to view events in the coliseum.

Seneca was the first to express a belief in the progress of knowledge (not
the progress of humanity!); this idea of progress is unique in ancient literature.
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Worldview IV: Seneca

∗ ∗∗

“Philosophy is the love of wisdom and the endeavor to attain it”.

∗ ∗∗

“What a despicable thing is man, unless he rises above the human condition!”

∗ ∗∗

“Any deviation by nature from the existing state of the universe is enough for
the destruction of mankind”.

∗ ∗∗

“Success comes to the common man, and even to commonplace ability; but
to triumph over the calamities and terrors of mortal life is the part of a great
man only... Toil summons the best men”.

∗ ∗∗

“Nothing is so deceptive as human life, nothing is so treacherous. Heaven
knows! not one of us would have accept it as a gift, were it not given to us
without our knowledge”.

∗ ∗∗

“There is nothing after death, and death itself is nothing... greedy time and
chaos engulf us altogether”.

∗ ∗∗
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“Go on through the lofty spaces of high heaven and bear witness, where thou
ridest, that there are no gods”.

∗ ∗∗

“No great genius has ever existed without a touch of madness”.

∗ ∗∗

“A great fortune is a great slavery”.

∗ ∗∗

“It takes the whole life to learn how to live, and what will perhaps make you
wonder more – it takes the whole of life to learn how to die”.

∗ ∗∗

“It is not the man who has little, but the man who craves more, that is poor”.

∗ ∗∗

“Philosophy... molds and constructs the soul, guides our conduct, shows us
what we should do and what we should leave undone; it sits at the helm and
direct our course as we waver amid uncertainties. Without it, no one can live
fearlessly or in peace of mind”.

∗ ∗∗

“Liberty cannot be gained for nothing. If you set a high value on liberty, you
must set a low value on everything else”.

∗ ∗∗

“Men do not care how nobly they live, but only how long, although it is within
the reach of every man to live nobly, but within no man’s power to live long”.
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∗ ∗∗

“You cannot escape necessities, but you can overcome them”.

∗ ∗∗

“Leisure without study is death”.

∗ ∗∗

“I respect no study, and deem no study good, which results in money-making”.

∗ ∗∗

“When savants have appeared, sages have become rare”.

∗ ∗∗
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31 BCE, Sep 2245 Battle of Actium: a decisive great naval battle off the
coast of Greece between Rome and an Eastern-Hellenistic coalition for the
dominance of the Mediterranean world and culture.

The fleet of Octavian (under command of Agrippa) defeated the com-
bined fleets of Marcus Antonius and Cleopatra; The fleets met outside
the Gulf of Arta, each over 200 ships strong. Antony’s heavy battleships en-
deavored to close and crush the enemy with their artillery; Octavian’s light
and mobile craft made skillful use of skirmishing tactics. During the engage-
ment, Cleopatra suddenly withdrew her squadron and Antony slipped away
behind her, but his fleet was set on fire and thus annihilated. Anthony com-
mitted suicide and Cleopatra followed suite (Aug 29, 30 BCE) and Egypt
thereafter became a Roman Province. Octavian was granted supreme power
by the Senate and the title of Augustus (‘Exalted’).

Cleopatra (69–30 BCE) was the last member of the Ptolemaic Dynasty to
rule Egypt. She was one of the most talented and ambitious woman rulers
in history. Set herself to restore the power of the Ptolemies and become
an Hellenistic monarch with Roman aid. To this end she seduced the leading
Roman lords Julius Caesar and Mark Anthony and when they failed to realize
her dream, planned to use Octavian, who had enough sense to refuse to yield
to her charms. Imperious will, masculine solidness, relentless ambition and
luxurious profligacy made this tragic beautiful Macedonian woman a unique
historical figure.

28 BCE–1638 CE A continuous record of sunspot activity is kept by
Chinese astronomers. First recorded observation of this data made in 165
BCE.

ca 25 BCE Marcus Vitruvius Pollio (Vitruvius). Roman architect and
engineer. In his writings sound is described as a vibratory motion of the air246

245 On the very same day there occurred a major earthquake in Israel (ca 32 ◦N,

35.5 ◦E) which caused great destruction and numerous casualties in Judea,

Qumran, Massada and Herod’s winter palace in Jericho. It is mentioned in

Josephus (AJ 15, 5), Mark (13, 8) and Mathew (24, 2–7; 27, 51). Among the

building destroyed by the tremor was the most ancient synagogue in the world,

built during 75–50 BCE by the Hasmonean queen Shlomzion or one of her sons,

near Herod’s winter palace.
246 The possibility that sound exhibits analogous behavior to water waves was em-

phasized earlier by the Greek philosopher Chrysippos of Soli (280–207 BCE),

with antecedents dating back to Pythagoras (ca 550 BCE), who speculated

that air motion is generated by a vibrating body. The wave interpretation is

also consistent with Aristotle’s (384–322 BCE) statement to the effect that air
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and some study is made of architectural acoustics. Very little is known about
him, save that he had worked for the state as an artillery engineer.

25 BCE–23 CE Strabo (ca 63 BCE–24 CE). Greek geographer and his-
torian. Became famous for his 17 volume Geography, which described all parts
of the known world of his time. These volumes are the best known source of
geographical information about the Mediterranean countries at the beginning
of the Christian Era. It summarized the works of the Greek mathematical
geographers to obtain the total size of the earth, estimated the inhabited frac-
tion, and gave a description of the climatic zones of the globe. He also wrote
a lengthy history that is now lost.

Strabo was born in Amasia in Pontos (a Hellenized city, and the royal
residence of the kings of Pontos). Some of his ancestors were Hellenic, others of
Asiatic origin, but Strabo himself was by language and education thoroughly
Greek. He studied in Rome and Alexandria and traveled in Arabia, southern
Europe and northern Africa. During 25–24 BCE he accompanied the prefect
of Egypt, Aelius Gallus, on his expedition to Upper Egypt. In Alexandria
he remained a long time, amassing material, and studying astronomy and
mathematics in its famous library.

Because he lived in an active part of the globe, Strabo believed that the
crust of the earth was in a constant state of flux. He pointed out that earth-
quakes and volcanic eruptions make the land move vertically and cause the
oceans to invade the land. The rivers, by flowing over the land, erode it and
transport soil to the sea. Because of the eroded material is almost always
deposited close to the shore, the oceans do not fill up so rapidly as one might
expect. Strabo taught that the landscape is sculpted by the wind as well
as by running water. Applying his geographic knowledge to problems in the
social sciences, he pointed out that the ocean plays an important role in the
development of civilization.

Strabo appears to be the first who conceived a complete geographical
treatise as comprising of four divisions: mathematical, physical, political and
historical geography. He endeavored, however imperfectly, to keep all these
objects in view.

ca 20 BCE Chinese documents serve as the earliest known sunspot records
made by the naked eye247.

motion is generated by a source “thrusting forward in like manner the adjoining

air, so that the sound travels unaltered in quality as far as the disturbance of

the air manages to reach”.
247 From 1605 to 1611, Johannes Fabricius, Thomas Harriot, Christoph

Scheiner and Galileo Galilei, among others, began telescopic studies of
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Comets248 in the Greco-Roman World – The Advent of
Astrophysics

The shape of comets and the manner of their appearance has in all genera-
tions been a source of baffled wonderment: the sun and moon are far brighter,
aurorae more impressive, and eclipses more startling. Yet it is comets, with
their modest radiance and infrequent visits, that have commanded more con-
cern.

In the year 467 BCE, a meteorite fell at Aegospotami, in Thrace (on the
European side of the Dardanelles), and a comet was seen in the same year.
The meteorite fell during day time: it was brown in color and the size of
a wagon load. This event made a great impression on Greek thought, and
probably influenced Anaxagoras (ca 500–428 BCE). His attempts to give a
scientific account of eclipses, meteors, comets, rainbows and the sun resulted
in a theory that the heavenly bodies were masses of stone torn from the earth
and ignited by rapid rotation.

Aristotle (384–322 BCE), in his Meteorologia, believed comets would
form when the sun, or planets, warmed the earth, causing the evaporation of
dry, warm exhalations from the earth itself.

In his Naturalium Quaestionum (63 CE), a work devoted primarily to me-
teorology and astronomy, Seneca (4 BCE–65 CE) included newer cometary
ideas of the Greek from the 4th to the 1st century BCE. He presented the
opinion of Epigenes (a follower of Aristotle, fl. 4th century BCE) and
Apollonios of Myndos (a contemporary of Seneca), as well as his own
ideas.

Epigenes’ ideas were but those of Aristotle slightly modified. The theory
of Apollonios of Myndos is, however, close to the modern view:

“. . . A comet is a separate star like the sun and the moon. In shape it is not
compressed into a ball, but loose and elongated; it has no definite course, but

sunspots. These records, as the German astronomer Samuel Heinrich

Schwabe announced in 1843, displayed a prominent periodicity of roughly 10

years in the number of observed sunspot groups. By the 20-th century George

Ellery Hale of the Mount Wilson Observatory in California found those dark

surface irregularities to be the seat of intense magnetic fields, with the strength

of several thousand gauss.
248 For further reading, see: Yeomans, D.K., Comets, Wiley: New York, 1991,

485 pp.
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it passes across the upper regions of the cosmos and becomes visible only on
reaching the lower part of its course. . . The comets are many and various, and
different in size and color. . . Some of them are blood-soaked and terrifying,
ominous of future bloodshed. . .”.

Seneca himself concluded that comets were not sudden fires but were
among nature’s permanent creations, and while their orbits generally dif-
fered, the two comets seen during his age had circular orbits much like the
planets. Seneca suggested that comets moved in closed orbits, traveling in a
uniform manner and disappearing only when they passed beyond the planets.
While his views did little, in a quantitative way, to advance understanding of
the phenomenon, his rejection of the prevailing Aristotelian theory inspired
eventual rethinking of the nature of comets which, unfortunately, had to wait
some 1500 years. However, Seneca’s belief is astrology and divination planted,
with Aristotle, the seeds of superstition. This seed was to flourish under the
guidance of Pliny and Ptolemy.

Pliny the Elder (23–79 CE) did not acknowledge the contemporary views
of Seneca, and gave more credence to comets as portents , viewing comets as
terrifying apparitions by noting the disasters that followed a few cometary
returns.

Joshua ben Hannania (35–117 CE), a Hebrew astronomer and Tanna
was probably the first man in recorded history to establish the periodicity of
a comet. [Babylonian Talmud,Horayoth 10a.]

Ptolemy of Alexandria (ca 94–172 CE), last of the great astronomers
of antiquity, in his tetrabiblos regarded comets as mysterious signs that pro-
voke discord among men and give rise to wars and other evils. Moreover,
he expanded somewhat on the astrological implications that Pliny had out-
lined. Because of his great reputation, the more rational views of Seneca were
quickly submerged, and in the 15 centuries that followed, Ptolemy’s guide-
lines were used repeatedly to correlate cometary apparitions and terrestrial
disasters. Even during the Renaissance, the bulk of cometary literature was
superstitious in nature.

The final break with Aristotelian tradition came on Mar. 19, 1681, with the
telescopic observation of Isaac Newton of the comet of 1680. Although the
physical nature of comets was still largely unknown, Newton had essentially
solved the problem of their dynamical behavior.
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0–50 CE The first treatises on the “Divine Art” appeared in Alexandria,
Egypt, containing the earliest chemistry.

20–50 CE Philo of Alexandria (Judaeus, 20 BCE–50 CE). Jewish phi-
losopher. Spent his whole life in Alexandria, where he was born. A contem-
porary of Jesus and Paul, and deeply versed in both Hellenistic and Judaic
cultures.

Though we know little of Philo’s own life, his numerous extant writings
give the fullest information as to his views of the universe and his scientific
aims, and so enable us to estimate his position and importance in the history
of thought.

Although Philo borrowed much from Greek philosophy (Plato, the Stoics),
he was highly modern and by far ahead of his time. For in his commentary
on Genesis he refers to the history of creation in these words: “It would be
a great naivety to believe that the universe was created in time. The right
thing to say is that the existence of time is conditioned by the existence of the
universe since the movement of stars determines the nature of time”. Thus,
1900 years before Einstein, Philo claimed that time is not absolute, but is
inherent property of the material universe and had no meaning prior to the
creation of matter.

26–29 CE Jesus (Joshua) of Nazareth (7 BCE–30 CE, Israel). A cen-
tral figure in the Christian religion. Jewish wandering preacher and social
reformer. His image had a decisive influence on the development and history
of Western culture, and through it upon the entire of humanity.

He taught that man must relinquish his earthly riches and treat his fel-
low men with love and mercy, even passively accepting the pains and insults
inflicted on him. He proclaimed the imminence of the Kingdom of God as a
relief to the poor in particular. His followers called themselves Nazarenes249,
regarded him as the anointed descendant of King David (or Messiah), foreseen
as a redeemer in biblical prophecy.

It is clear from Jesus’ own assertions that he did not aim to found a
new religion (Matt 5, 17). He observed scrupulously all Jewish feasts, taught
Jewish doctrines and ethics. In fact, his whole system of ethics, sometimes
even down to the very expressions he used, were derived from current Jewish
Pharisee teachings250.

249 Originally a Jewish sect, living near the Jordan river, whose members objected

to the rituals in the Temple.
250 The widely held belief that Christianity introduced a new conception of morality

into the world is, on the basis of historic record, an overstated one; the notion
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Jesus (a diminutive of Joshua) was born251 in Nazareth, Israel. He met no
strong opposition from the authorities until he and his twelve closest associates
traveled to Jerusalem, probably in 30 CE, to preach during the Passover. Like
many rural prophets, Jesus was enraged by the worldliness of the capital and
denounced the priests of the Temple as hypocrites. Jerusalem was crowded
with pious Jews who had come from all parts of Judea for the Passover. Both
Jewish and Roman authorities were prepared to take action against any rural
preacher who might ignite a popular demonstration and necessitate another
Roman purge.

Upon Jesus’ visit to the Temple, a riot broke out which caused his arrest by
Roman soldiers, his consequent trial before the Roman procurator, Pontius
Pilate, and his crucifixion252.

that the Jews believed in a God of Vengence and that Christianity first projected

a God of Love is from an historical point of view quite untenable. Jewish

writings before and during the time of Jesus prove this conclusively. There

are innumerable references in Jewish writings, centuries before Jesus, which

condemn hatred, cruelty, envy, and, conversely, which glorify truth, love of

man, gentleness, generosity of spirit and forgiveness. The ethics of Jesus were

totally Jewish, and they were derived from the Mosaic commandment: “Love

the neighbor as thyself” (Leviticus 19, 18). To cite only a few examples: The

Book of Proverbs, written many centuries before the Christian movement arose,

wished to establish the moral truth that: “The reasonable man is noble, he

glories in pardoning injury” (Prov). Philo of Alexandria, a contemporary of

Jesus, exhorted: “If you ask pardon for your sins do you also forgive those who

have trespassed against you. For remission is granted for remission”.
251 The birth of Jesus is linked to star of Bethlehem. This event is believed to be a

conjunction of Saturn and Jupiter in Pisces, occurring once in 900 years. Thus,

Jesus was probably born on 07 September, 7 BCE. The Last Supper happened

on April 06, 30 CE and the crucifixion on Friday, April 07, 30 CE.

The conjunction hypotheses goes back to Johannes Kepler, who observed

another such conjunction from his observatory in Hradcyn, near Prague, on 17

December 1603. Kepler, in turn, drew his theory from commentary on the book

of Daniel by Don Isaac Abrabanel (1497).
252 It was tragically inevitable that Jesus should have suffered the same fate as

several other “messiah” before him who were called by their followers “King of

the Jews” [e.g., Judah of Galilee, 6 BCE; Theudas in 44 BCE and Benjamin,

“the Egyptian”, in 60 BCE]; the preaching of Jesus and the devoted following

that clustered around him, although pacifist in nature, were also considered

inimical to the security of the Roman state in Judea. To Roman ears, not used

to this mystic conception of a savior, it sounded very much like high treason

against the Emperor in Rome. Whatever the title “King of the Jews”, by which
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The teaching of Jesus might have been forgotten with the crucifixion had
not a group of his followers soon appeared in Jerusalem proclaiming that
Jesus had been the Messiah, that he had come back from the dead, that he
had appeared to many of his disciples and commissioned them to carry on
his teachings, and after 40 days he had returned to God253. Although these
first Christians considered themselves practicing Jews, they were generally
regarded as heretics by the other Jews of that city.

The community of Jewish Christians virtually disappeared after the Ro-
man suppression of the Bar-Kochba revolt (135 CE). But by this time Chris-
tianity had already been established among the Gentiles, primarily by Paul.

40–60 CE Saul of Tarsos (Paul, Paulus, ca 4 BCE–64 CE). Transubstan-
tiated Jesus from a Jewish preacher into a Christian redeemer and succeeded
in marketing this image to the Pagans254. Paul stood for the direct admission
of Pagans into Christianity without a prior introduction into Judaism. He
taught that Jesus’ death atoned for human sin, that faith in Jesus’ divinity
redeems without observance of the Torah (5 books of Moses), and the ab-
rogation of the laws and rituals of the Torah255. It was hatred of the law
(Torah) and his inability to respect it256 that led Saul to become Paul and
preach divine redemption from original sin by exploiting the death of Jesus.
Paul was a Jew by birth, a Roman by citizenship, and a product of Greek

his followers called him, may have signified to Jesus, to the Romans it probably

appeared as a challenge to imperial authority.
253 Messianic movements usually emerged throughout Jewish history after major

national disasters or during long periods of oppression and persecution. It is

thus very likely that after the destruction of the second Temple by the Romans

(70 CE), the disciples of Jesus, in their great despair of the redemption of Israel,

modified the character of his teachings, altered the story of his life and death and

his ideas in order to facilitate the marketing of his ideology in the Greco-Roman

Paganic world.
254 see:

• Maccoby, H. The Mythmaker — Paul and the Invention of Christianity,

Barnes and Noble, 1986, 237 pp.

255 After the death of Jesus, the leadership of the Christian sect gravitated toward

two men. One was James, the brother of Jesus, who tried to keep Christianity

within the fold of Judaism but failed. The other was Paul. James admitted

Pagans to the new Christian sect only after their conversion to Judaism.
256 Nietzsche (1888) denoted Christianity as being immoral from the outset be-

cause its object is to free the individual from the burden of Jewish tradition.
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culture. Whereas Jesus was a messiah-intoxicated Jew who died a Jew, Paul
was a Christ-intoxicated Jew who died a Christian. Whereas Jesus, like the
Jews, had taught that man could earn God’s grace through repentance and
righteousness, Paul the Christian taught that salvation could only be obtained
through the dead Christ.

Paul rejected the Jewish establishment and law, basing his objection upon
the premise that man is devoid of free will and is too weak to follow percepts
and commandments; man can only be saved by identifying himself with the
sacrifice of the crucified Jesus. Thus man is redeemed from the original sin
and becomes immortal too. By rejecting free will Paul liberated his followers
from the yoke of observance of the Biblical commandments257.

For two decades (50–70 CE), the teachings of James and Paul competed
as the true creed of Jesus. The destruction of Jerusalem (70 CE) selected

the victor. Both Sadducee Judaism and Jamesian Christianity perished in
that holocaust. And just as Pharisee Judaism rose out of the rubble, so did
Pauline Christianity. Both were universalist religions in outlook, tailored for
the Jewish exile, the latter for Pagans at large.

During the Hellenistic era, the Jewish way of life made a great impression
on many Greeks and Romans. They liked the non-sexualized symbols of
Judaism and respected the dignity of the Jewish God. They admired the
Jews for not indulging in the Bacchanalian revelry so common in those days
among the Pagans, and they envied the devotion of the Jewish people to
spiritual, family, and scholastic ideas rather than materialistic goals. In the
two-century span 100 BCE–100 CE, thousands of Sabbath candles flickered
in Grecian and Roman homes – so many in fact that Seneca (4 BCE–65 CE)
noted this phenomena by remarking that Jewish customs were everywhere so
prevalent that the Romans were in danger of being swallowed up by them258.

257 The Catholic Church could not accept this idea since free will is at the base

of any establishment based on law and order. Thus the Church was forced to

return to the premise that man has free will and therefore must accept the laws

of the Church. Free will is one of the fundamental principles of the Bible; a man

devoid of free will cannot be moral since he cannot differentiate between good

and evil. In fact, any human culture must, by its own nature, assume that man

has a limited free will or else any interaction between people is impossible.
258 This and the heavy causalities of the Roman Legions in Israel during the War of

Independence (66–70 CE), raised a wave of hatred toward Jews and their culture

in the intellectual circles of Rome. It is indeed regrettable that the writings of

a great moralist like Seneca and a great historian like Tacitus are fouled up

by an irrational venomous hatred directed toward Jewish values, customs and

religion.
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Jewish virtue and ideology did indeed threaten to undermine the Pagan
nations and might have done so if it had not been for the Christian sect, which
began to proselytize more actively than did the Jews themselves.

In the first century CE, over 10 percent of the population of the Roman
Empire was Jewish – 7 million out of 70 million. Of these 7 million professing
the Jewish faith, only an estimated 4 million were Jewish by virtue of centuries
of descent; the rest were converted Pagans or of converted Pagan descent.
The rate of conversion would have been even greater but for two factors: the
rigorous dietary laws, and the necessity for circumcision. In Paul’s time, the
early Christians sect dropped these two requirements, and the Pagans flocked
to the Christian religion, whose entrance specifications were less demanding
than the Jewish.

Paul was born in the Greek-speaking city of Tarsos, in Asia Minor
(Turkey), to a Jewish family, wealthy enough to purchase Roman citizenship.
He received traditional Hellenistic education, for he later wrote in polished
Greek and was well acquainted with Greek philosophy.

In the city of Tarsos he led the life of an ordinary artisan, being a tent-
maker by trade. Three things characterized him and affected his life: a body
subject to some serious ailment, a gift for oratory and public disputation,
and a devotion to Judaism so great as to make him impatient with its slow
progress in converting the Pagans. He must have spent years in wondering
why the ideals of Judaism, obviously so noble, failed to be accepted by the
Pagans and sometimes were not lived up to by the Jews. He finally made up
his mind to go to Jerusalem and study Judaism at its source (ca 35 CE) under
Rabban Gamliel the Elder. Soon after his arrival, he was exposed to ideas of
the followers of Jesus. He saw in Jesus a great attraction to the Pagan world.
He decided to speak of him, not only as a messiah259 who had come to redeem

259 The period in which Jesus and Paul lived was unique in all Jewish religious

experience; it marked the peak development of Messianism among Jews. The

idea of saviors was already well established in the 5th century BCE (Nehemiah

8, 27). Because it was a time of acute suffering, much of the Jewish apocalyptic

literature of that period was permeated with the expectation of the imminent

coming of the Messiah. The prophets Ezekiel and Enoch had spoken awe-

somely of the Last Judgment and of the Resurrection, both of which had now

become associated in the popular mind with the era of the Messiah. It was the

tradition among Jews that the Messiah would come when the affliction of the

Jewish people became unendurable.

Suffering, insecurity, and the helplessness of the Jews under the iron heel of

Rome made them abandon faith in their own strength and efforts. They yearned

increasingly for a supernatural redeemer who would have the invincible power

to bring the enemies of Israel to justice and who would usher in the era of the
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the world (as the original followers of Jesus thought), but also as an ideal, a
divine personality whose example could influence each human being, whether
Jew or Gentile, and lead him to perfection.

Paul then traveled through many parts of the Diaspora, especially Asia
Minor and Greece, offering Judaism devoid of Jewish ceremonial and ritual
together with a new non-historical image of Jesus. Being rejected by the Jews,
he turned his attention almost exclusively to the Pagans. Yet to the very end
he never denied his own Jewishness. On his last appearance in Jerusalem
(ca 60 CE) he visited the Temple and observed all the other Jewish customs.
When, however, it became known that he had violated Jewish traditions while
on his travels, he was arrested and, later condemned by the Romans and
crucified at Rome during Nero’s persecution of the Christians in 64 CE.

What happened to Paul’s teachings? – Most of the people who listened to
him remembered only the connection between believing in Jesus and meriting
God’s mercy and ultimate resurrection. They skipped the middle part –
the need to live godly lives. Thus, faith in Jesus came to be the only and
entire basis of the religion adopted by the Pagan Christians, while the Judeo-
Christians, who lived in Israel, continued to observe Jewish law.

But it was the Pagan Christian attitude which won in the end. Many
Pagans who had admired Judaism either openly or secretly now had a chance
to adopt a form of Judaism which appealed to them. It is not strange that
Christianity spread most easily and rapidly in those cities in which Jews had
lived for a long time, so that people were already acquainted with their life
and religious ideas. Nevertheless, for some centuries still, it was not at all
certain whether Judaism or Christianity would make the greater number of
converts.

Kingdom of God on earth. The prophets, beginning with Isaiah, had articu-

lated this desire and dream, which they expected would bring everlasting peace

and happiness not only on the Jewish people but for all mankind. They had

a vision of an ideal ruler who once more would raise up the fallen kingdom of

David whose departed glories so haunted and tormented the Jews of later days.
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The Silent Century (0–100 CE)

It has always been an unfailing source of astonishment to the historical
investigator of Christian beginnings that there is not one single word from
the pen of any Pagan writer of the first century of our era which can in any
fashion substantiate the story recounted by the Gospel writers of the New
Testament. The very existence of Jesus seems unknown! In other words –
historical research has made it obvious that there is no way to get at the
historical events which have produced the Biblical picture of Jesus with more
than a degree of probability.

For lack of historians? There were many historians just then and some
of them the most illustrious of all time – Tacitus, Plutarch, Livy, the two
Plinys, Philo and Josephus, among others; and besides these many man
of literary note such as Seneca, Martial, Juvenal, Epictetos , Plotinos
and Porphyrios, Virgil, Horace and Ovid. These were all men of great
intellect, and deeply interested in the doctrines and morals of their day. Some
of them held high office and therefore knew their world (Pliny the Elder was
procurator of Spain, Pliny the Younger was governor of Bithynia, Josephus
was governor of Galilee, Seneca was the brother of Gellio, Proconsul of Achaia
at precisely the time Paul is said to have preached there). In fact, we find
nothing like divinity ascribed to Christ before 141 CE.

There is thus only one way to explain away this ‘silent century’: Chris-
tianity (religion and Church) are creations of the third and fourth centuries.
By the third century all the science, philosophy and mythology of Greece had
disappeared, mostly in flames. Rome was now the dominant power. The
Romans, however, lacked the Hellenic love for learning; they had no use for
philosophy. In fact they drove out philosophers. Power was their god and
conquest their vocation.

And so, when the Empire declined, they finally fell, having no inner light
to guide them nor inner strength to sustain them. While a few intellectuals
remained, the masses sunk in abysmal ignorance, poverty and want. They
were thus ripe for the mythology of Christ.

In this lies another contributing factor – the economic one. All mass move-
ment are security inspired, being more interested in bread then philosophy,
especially masses that have never known philosophy. So, as Roman prosperity
vanished, the masses found themselves in desperate straits, ripe for a ‘New
Deal’. Christianity offered it. It was, then, the coincidence of these factors
that furnished the mental soil for Christianity.
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ca 43 CE Pomponius Mela. Earliest Roman geographer. His De Situ
Orbis is the earliest description of the ancient world written in Latin. He
divides the earth into the climatic zones: North Frigid, North Temperate,
Torrid (equatorial), South Temparate, South Frigid.

Pomponius was born in southern Spain in the days of Emperor Claudius.
The first edition of Mela was published at Milan in 1471.

ca 50 CE The Greek seaman Hippalos used the south-west monsoon to
steer a direct course from the Persian Gulf to Western India. He showed
that sea routes might be followed, shorter and quicker than the old coastwise
sailing. Since the monsoons blow from the south-west in summer and from
north-east in winter, they could be utilized both for outward and homeward
voyages.

ca 50 CE Romans used coal as a fuel in Northern Europe

ca 50 CE Aulus Cornelius Celsus. Roman writer. Compiler of an
encyclopedia on agriculture, medicine, military science, law, and philosophy
of which only the portion on medicine is extant. It was one of the first medical
works to be printed (1478).

Celsus, a Roman patrician, appears to have studied medicine as a branch
of general knowledge, which he practiced on his friends and dependents, but
not as a remunerative profession. His work De Medicina was one of a series
of treatises intended to embrace all knowledge proper for a man of the world.
It was not meant for physicians, but the whole body of medical literature
belonging to Hippocratic and Alexandrian times is ably summarized, and the
knowledge of the state of medical science up to and during the times of the
author is thus conveyed in a way which cannot be obtained from no other
source [e.g., it contains first description of sewing an artery and of heart
disease and also describes hernia operation].

The influence of Celsus commenced in the 15th century, when his works
were first discovered and printed.

60–78 CE Pedanios Dioscorides of Anazarba (20–90 CE). A Greek
physician and alchemist260 who wrote the first catalogue of drugs and their

260 Alchemy – a pseudoscience of obscure origin. Sought a philosopher’s stone,

thought capable of changing base metals into gold, and the elixir of life that

would preserve youth indefinitely. Alchemy was academically accepted by

Robert Boyle, Isaac Newton and G.W. Leibniz.
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recipes. Described the processes of crystallization, sublimation and distillation
of substances. Known also as Dioscorides of Cilkia (Asia Minor).

Dioscorides was the author of the herbal De Materia Medica which re-
mained for 1500 years the authority in botany and pharmacopeia. It describes
more than 500 plants and 35 animal products. Ninety of the plants he men-
tions will still be in use in the 20th century. The Italian physician and botanist
Pietro Andrea Mattioli published (1544) an Italian version of De Materia
Medica.

63 CE Israel comes under Roman rule which ends only with the disinte-
gration of the Roman Empire (395 CE). In a series of four revolts [66–70;
114–117; 132-135; 351 CE], the majority of the Jews in Israel perished261 and
the rest were dispersed all over the Empire. With Judea largely depopulated,
the centers of Jewish culture and learning were in the Galilee and in Babylonia
and later shifted to Jewish communities around the Mediterranean.

66 CE Josephus Flavius (Yoseph ben Matitiahu; 37–100 CE, Israel and
Rome) described the apparition of comet Halley as a star resembling a sword.
This he considered as an omen for the fall of Jerusalem (70 CE).

70–110 CE Rabban Gamliel II (ca 30–117 CE, Yavne). Mathematical
astronomer and Tanna. A great-great grandson of Hillel.

Gamliel worked out the problem of the moon’s visibility262 and is said to
have possessed an instrument resembling an astrolabe or a telescope by means

261 Josephus in The Jewish Wars estimated the Roman force besieging Jerusalem

in 70 CE at 80,000 soldiers [Jerusalem was defended by no more than 23,000

Jewish soldiers]. In comparison, Alexander the Great used 35,000 men to

carve out his vast Empire. Caesar had fewer than 60,000 legionaries with which

to conquer Gaul and to invade Britain. Hannibal had no more than 50,000

soldiers when he crossed the Alps to defeat the Romans.

Tacitus estimates 600,000 defenseless Jewish civilians were slain in the after-

math of the siege.
262 The following episode, related in the Mishna [Rosh Hashana 2, 8; 24b and 25a],

illustrates the great confidence that Gamliel had in his astronomical calculations

of the moon’s visibility: Once two witnesses reported that they saw the moon

in the East before sunrise and in the West after sunset. When they came to

Yavne, (some 30 km south of today’s Tel-Aviv) Gamliel accepted their evidence

(needed to establish the definite consecration (Kidush ha-Hodesh) of the new

moon), while the other members of the Calendar Council rejected it. Those who

considered the evidence false, claimed that the moon cannot be seen within an

interval of 24 hours both before sunrise and after sunset. They argued that since

the moon is East of the sun throughout the first half of the month, and West of
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of which he could estimate a distance of 2000 cubits (about 1120 meters), as
well as measure depths and height.

70–110 CE Plutarch263 (ca 46–127 CE). Greek historian, biographer,
philosopher and essayist. Wrote a large number of essays and dialogues on
philosophical, scientific and literary subjects. His philosophical standpoint
was eclectic and he frequently attacked both Stoics and Epicureans. He is
best known for his Parallel Lives, biographies of eminent Greeks and Ro-
mans, generally composed in pairs, one Greek and one Roman, followed by a
comparison between the two.

Plutarch was born at Chaeronea in Boeotia, Greece. He studied philosophy
in Athens. In his travels through Greece, Italy, and Egypt he spent much time
studying and collecting facts on men he wrote. He combined academic studies
with multifarious civic activities. Through friendships formed on an official
visit to Rome, he was made procurator of Achaea by Hadrian, and he also
held a priesthood at Delphi. Yet much of his time he devoted to his school at
Chaeronea and to his literary works.

it during the second half, the New Moon cannot be seen in the morning at the

eastern horizon until after sunrise, and in the evening at the western horizon

until after sunset.

However, the Waning Moon can only be seen in the morning before sunrise and

in the evening before sunset. If, therefore, witnesses testify to having seen the

moon before sunrise and after sunset, their evidence cannot be true – unless it

refers to the waning moon in the morning and the new moon in the evening.

If one accepts this argument, one is in for yet a new obstacle; there must be a

certain minimum angular distance between the sun and the moon for the latter

to be visible. This leads to a situation where between morning [when the moon

must have been in that minimum angular distance behind (or to the west of) the

sun] and in the evening [when the moon must have got that minimum angular

distance ahead of (or to the east of) the sun], the moon must have covered

double that angular distance. But at the rates at which the sun and the moon

are traveling, this would be impossible!

Hence the objection of the majority of the Calendar Council members to the

evidence of the witnesses.

Rabban Gamliel, however, who by his calculations concluded that the new moon

was indeed visible on the evening in question, nevertheless accepted the wit-

nesses’ evidence, on the assumption that what they believed to have seen in the

morning was a piece of cloud that looked like a very thin crescent of the waning

moon.
263 For further reading, see: Grant, M., The Ancient Historians, Barnes and Noble

Books: New York, 1970, 486 pp.
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The ancient solar eclipse of March 20, 71 CE was documented in his writ-
ings and therefore bears his name. In his essay on life of the Spartan general
Lysander, Plutarch mentioned that in a year corresponding to 467 BCE, a
meteorite fell at Aegospotami, in Thrace, on the European side of the Dard-
anelles. Before the stone fell, a vast fiery body was seen in the heavens for 75
days continually (a comet) “but when it afterwards came down to the ground
there was no fire to be seen, only a big stone”.

The sun’s corona, observed during total eclipses, was first reported by
Plutarch.

ca 75–130 CE The composition of the Evangelions264 and the advent of
the Christian265 Church.

Within a century of the death of Jesus, Christianity became a force in
history through the rise of a new institution. In the words of Alfred Loisy
(1857–1940): “What Jesus proclaimed was the Kingdom of God, and what
arrived was the Church”. In the name of Jesus, this new Church reversed many
of his policies to gain larger membership. To achieve this, it ingested many
of the ideas of Essenism, which has also perished with the fall of Jerusalem.

Jesus, like the Pharisee rabbis, was a layman who rejected priesthood,
founded no Church and sought no institutionalized hierarchy. The Church,
however, realizing it needed a devoted hierarchy for future growth, dragged
in through the back door the priesthood Jesus has thrown out of the front
door. The Church institutionalized its creed and established an elaborate or-
ganization of judges and tribunals. In effect, the historical Jesus stands closer
to ben Zakkai’s Judaism, which also rejected Essenism, than to Pauline
Christianity, which absorbed it.

76–116 CE Cornelius Tacitus (55–120 CE, Rome). Historian. Lived
through the reigns of 9 emperors (Nero, Galba, Otho, Vitellius, Vespasian,
Titus, Domitian, Nerva and Trajan). The son-in-law of Julius Agricola and
a friend of Pliny the younger. His most important books, the Histories and
the Annals, cover periods for which our other sources are scanty.

79 CE, Aug. 24 The eruption of Mount Vesuvius buried the towns of
Pompeii, Herculaneum and Stabiae. Pliny the Elder (b. 23 CE), admiral of
the Roman fleet that anchored offshore during the event, died of gas poisoning
from the volcano, and his young nephew, Pliny the Younger (61–113 CE)
lived to tell us about it.

264 From the Greek evangelion = good news; the “official” biographies of Jesus; any

of the four gospels of the New Testament.
265 From the Greek christos = “the anointed”, messiah.
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79 CE Pliny the Elder (Gaius Plinius Secundus) (23–79 CE). Writer,
civil servant, soldier and encyclopedist, perhaps the only Roman on record,
to die of scientific curiosity. Holds a place of exceptional importance in the
history of Western culture and its diffusion.

Born in Novum Comum in Northern Italy, he begun his career in the army,
in Germany, and later held a number of procuratorships in Gaul, Africa and
Spain (70–75). On his return to Rome he devoted his talents to writing. Seven
works are known but only one, the Natural History266, survived. It is an en-
cyclopedic account of the state of science, superstition, art and technology
in the first century CE, and contains material from works no longer extant.
Hence its unique value for our assessment of early imperial science and tech-
nology. Its derivation from over 2000 earlier texts, makes it the major source
for ancient beliefs about every form of useful knowledge267 – from agriculture,
architecture and astronomy to geography, metallurgy and zoology. Pliny’s
work was an extraordinary catalog of truths, half-truths, myths, and outright
nonsense. He was more encyclopedist than a scientist; his knowledge was al-
most exclusively derived from the writing of others rather than from personal
observations.

With the decline of the ancient world and the loss of the Greek texts on
which Pliny had so heavily depended, the Natural History became a substi-
tute for a general education. In the European Middle Ages many of the larger
monastic libraries possessed copies of the work; these and many abridged
versions ensured Pliny’s place in European literature. His authority was un-
challenged, partly because of a lack of more reliable information and partly
because his assertions were not and, in many cases, could not be tested.

The first attack on Pliny’s work – Niccolò Leoniceno’s tract on the errors
of Pliny – was published in Ferrara in 1492. Thereafter, Pliny’s influence
diminished, as more writers questioned his statements. By the end of the
17th century, the Natural History had been rejected by the leading scientists.

Up to that time, however, Pliny’s influence, especially on nonscientific
writers, was undiminished; he was, for example, almost certainly known to
William Shakespeare and John Milton. Although Pliny’s work was never again
accepted as an authority in science, 19th-century Latin scholars conclusively
demonstrated the historical importance of the Natural History as one of the
greatest literary monuments of classical antiquity. It is still of value to those
who wish an honest resumé of 1st-century Rome.

266 Pliny the Elder (Gaius Plinius Secundus), Natural History (A selection), Pen-

guin Books: England, 1991, 400 pp.
267 Pliny coined the word ‘albumen’ for egg white.
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80–110 CE Joshua ben Hannania ha-Levi (35–117 CE, Israel). As-
tronomer, mathematician and Tanna. One of the leading scholars of the 2nd

generation of the Tannaim. First man in recorded history to establish the
periodicity of a comet [Horayoth 10a].

Joshua was born in Jerusalem to a Levite family and probably served in
the second Temple for some years before its destruction (70 CE).

He was a disciple of Yohanan ben Zakkai and assisted in the removal
of the latter from Jerusalem to Yavne during the Roman siege. He trav-
eled extensively by sea and by land to Rome, Alexandria, Asia Minor and
Babylonia for either political, academic and business reasons. He founded his
own private academy at Pekiin (upper Galilee) and was also a member of the
Sanhedrin at Yavne [Shabbat 75a].

85–117 CE Epictetos of Hierapolis (ca 55–135 CE). Greek Stoic philo-
sopher. Left no writings, his philosophy is known through his Discourses and
the Encheiridion (handbook) of his pupil Flavius Arrianus (the historian
of Alexander the Great).

Epictetos taught that nothing is ours besides our will. We should not
demand that events happen as we want but instead want them to happen as
they do. A wise, divine Providence governs all things, so that what seem to
be calamities are really parts of a divine scheme that orders everything for the
best. Only foolish men are upset by events they cannot control. The body
which accompanies us is not, strictly speaking, ours but belongs to things
outside us.

Epictetos was a native of Hierapolis (southwest of Pergia, Asia Minor). His
name is merely the Greek word for “acquired”, his real name being unknown.
He was lame and of weakly health. Originally a slave in Rome at the time
of Nero, he was freed by his master and taught philosophy in Rome until
expelled (89 CE) with other philosophers by Emperor Domitian. He then
settled for the rest of his life in Nicopolis (Greece). He never married.

89 CE Emperor Domitian268 and the Roman Senate expelled from Rome
all philosophers, mathematicians and astrologers.

268 Titus Flavius Domitianus (51–96 CE), Vespasian’s second son, inherited the

mantle of Empire at the age of 29. He was a man beset by suspicions and

fear, and terrorized Rome for 15 years. Domitian ferreted out opponents in the

Army and Senate and had them executed. He was killed at last by a member

of his own household. After his death, the Senate ordered Domitian’s name to

be removed from all public places and refused to give him a state burial.
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ca 90–120 CE Hero (Heron) of Alexandria. Greek mathematician,
physicist and inventor. An important geometer and worker in mechanics.

His geometrical treatises which have survived in Greek are entitled re-
spectively: Definitiones, Geometria, Geodesia, Stereometrica, Mensurae, Liber
Geoponicus and Metrica. Metrica deals with areas of triangles, quadrilaterals,
regular polygons of between 3 and 12 sides, surfaces of cones, cylinders, prism,
pyramid, sphere etc. Methods for approximating square and cube roots are
shown. For the area of a circle of diameter d, he gave the formula 11

14d2
(
based

on π = 3 1
7

)
, in the name of Archimedes and Euclid269. Hero also proved

the expression for the area of a triangle in terms of its sides, and determined
the distance between Rome and Alexandria by observation of the same lunar
eclipse in both places and drawing the analemma for Rome.

Akin to the geometrical works is On the Dioptra, a remarkable book
on land-surveying. The Pneumatica describes siphons, “Hero’s fountain”,
“penny-in-the-slot” machines, a fire-engine, a water-organ and arrangements
employing the force of steam. He also wrote 3 volumes on Mechanics270 and a
book on Water clocks. In his Catoptris (on reflecting surfaces) we encounter
the first minimum principle in physics. He reasons that when a ray of light is
reflected in a mirror, the path (not time!) actually taken from the object to
the observer’s eye is shorter than any other possible path. This proposition
was obtained from a generalization of the observed fact that when light travels
from one point to another, its path is a straight line, that is, it travels the
shortest possible distance between these points.

Hero’s Siegecraft (Belopoiika) tells about several designs for catapults. One
is the crossbow; the others are conventional darts and stone throwers. In
Dioptra he describes a surveying system which did not seem to have come
into use, being probably too far ahead of its time.

Some of Hero’s inventions seem to have been for the benefit of the priest-
hood of Alexandria, to enable them to awe their worshipers. Of all his inven-
tions, the one most pregnant with future possibilities was his steam engine

269 Euclid in his Elements, or other writings known to us, never gives the compu-

tation of the area of the circle, nor of other areas or volumes.
270 In this book he was mainly concerned with mechanical advantage which he

achieved via the lever, the compound pulley, the wedge and the gear train. He

showed how, with such devices, the force applied and the distance moved vary

inversely according to the mechanical advantage. In fact, Hero came close to

discovering the modern technical concept of “work” (= force × displacement).

He also described cranes, methods of raising large building stones by means of

tongs and keys and screw presses.
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or aeolipile. It worked on the reaction principle of the rotary lawn sprin-
kler271. He had in it nearly all the elements needed to make a working steam
engine of either the reciprocating or the turbine type, yet none of the devices
he described under this category was such a steam engine. He simply could
not attack a problem that he did not know to exist. But even so, Hero’s
technological accomplishments are remarkable.

Although Hero’s books were not widely read in later centuries, they were
never altogether forgotten. The engineers of the Renaissance would later
study Hero with lively interest. In the 17th century, when Europeans began
to harness the power of steam, they remembered Hero’s achievements.

95–136 CE Akiva ben Yosef (ca 50–136 CE, Israel). Scholar, philo-
sopher and jurist; perhaps the greatest Jewish savant in the past two millennia.
Through his admirable systematization and scientification of the accumulated
lore of oral law (which until his time was only a subject of knowledge), he
brought it into methodic arrangement, basing it on sound logical foundations
and turning it into a “survival-kit” which marked the path of Judaism for next
1800 years. He is the man to whom Judaism owes prominently its activity
and its capacity for development.

If the older Halakah (oral ruling) is to be considered as the product of the
internal struggle between Phariseeism and Zaducceeism, the Halakah of Akiva
must be conceived as the result of the external contest between Judaism on
one hand and the Hellenism and Hellenistic Christianity on the other.

Akiva no doubt perceived that the intellectual bond uniting the Jews –
far from being allowed to disappear with the destruction of the Jewish state
– must be made to draw them closer together than before. He pondered also
on the nature of that bond. The Bible could not fill the place alone; for the
Christians also regarded it as a divine revelation. Still less could dogma serve
the purpose, for dogmas were always repellent to Judaism, whose very essence
is development and the susceptibility to development.

His first act in this direction was the final canonization of the Bible (inclu-
sion of the books of Song of Songs, Ester and Kohelet and the rejection of the
Apocrypha (the 14 books of the Septuagint included in the Vulgate). His un-
derlying motive was to disarm Christians, especially Jewish Christians, who
drew their “proofs” from the Apocrypha, and at the same time emancipate
the Jews of the Diaspora from the domination of the Septuagint, the errors
and inaccuracies in which frequently distorted the true meaning of Scripture,
and were even used as arguments against the Jews by the Christians. Thus,

271 Newton’s third law was applied 18 centuries before it was formulated!
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under Akiva’s guidance, his pupil Aquila gave the Greek-speaking Jews a
faithful translation of the Bible which they could use in their synagogues.

But this was not sufficient to obviate all threatening danger. It was feared
that the Jews might still become entangled in the net of Grecian philosophy,
and even in that of Gnosticism and must therefore be provided with some
counterpoise to the intellectual influence of the non-Jewish world.

To this end, Akiva developed a remarkable method of reconciling the un-
changeable legal and ethical code of the Holy Scriptures with the dynamical
needs of the ever-developing Judaism.

As a speculative philosopher, Akiva brought new insight into man-God
relationship. Next to the transcendental nature of God, he insists on the
freedom of will, to which he allows no limitations [“everything is foreseen;
but freedom of will is given to every man. . . the divine decision is made by
the preponderance of the good and bad in man’s actions”]272. In opposition
of the Christian insistence on God’s love, Akiva upholds God’s retributive
justice elevated above all chance or arbitrariness.

Akiva came of humble parentage in the town of Lod, Israel. He began
as an illiterate shepherd and learned to read and write together with his son

272 Akiva here laid bare the solid rock on which the whole structure of Rabbinic

Judaism was founded: Man apparently acts according to his free will, but in

fact realizes, unknowingly, the divine plan. Nowhere is this idea expounded

with greater lucidity then in the words of Joseph to his brothers [Gen, 45, 5–8]:

“Now therefore be not grieved, not angry with yourselves, that ye sold me hither:

for God did send me before you to preserve life. For these two years hath the

famine been in the land; and yet there are five years, in which there shall nei-

ther be earing nor harvest. And God sent me before you to preserve you a

posterity in the earth, and to save your lives by a great deliverance. So now it

was not you that sent me hither, but God: and he hath made me a father to

Pharaoh, and lord of all his house, and a ruler throughout all the land of Egypt.”

Akiva’s succinct and ambiguous statement attempts no solution of the con-

tradiction between divine foreknowledge and human free will, but affirms both

and rests in the assurance that He who judges is good. Judgment takes ac-

count of what man has done. Into these few lines Akiva compressed well nigh

the whole Judaic philosophy of religion expressing the fundamental conviction

that divine foreknowledge and human freedom are equally well real and true,

though human wisdom could not intellectually reconcile them. Akiva spoke for

the practical needs of the religious and ethical consciousness of man, not for

theoretical satisfaction of the inquiring mind.
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at an age of 25 or so. He then studied in the local academy for 13 years
before becoming a teacher himself. It is known that in 95–96 CE Akiva had
already attained great prominence. He had made numerous journeys within
and outside the Roman Empire (Spain, Babylonia, Asia Minor, Sicily, Phartia,
North Africa, Athens).

In 132, the prohibition of Jewish observances by Hadrian were accompa-
nied by a decree forbidding the study of the Torah. This he saw as a major
threat to the very survival of the Jewish nation for which a Jew must risk
dying for. Risking capture by the Roman soldiers he continued to study and
to teach. Consequently he was arrested and executed (136 CE).

97–103 CE Sextus Julius Frontinus (ca 35–103 CE, Rome). Soldier
and writer on subjects of military science, land surveying and water supply
systems. City praetor (70 CE), Governor of Britain (75–78 CE), Trajan’s
water commissioner (97 CE). His chief work De Aquis Urbis Romae contains
a history and description of the water-supply of Rome. He also wrote a
theoretical treatise on military science (De re Militari), and a treatise on land
surveying.

The Roman were, of course, not the first folk to build aqueducts. However,
the Roman aqueducts were distinguished from the earlier ones mainly by
their size and number. Sections of their arcades are still to be seen around
within the former limits of their empire. Most Roman aqueducts took the
form of gravity-powered open channels. They sometimes used the inverted
siphon (i.e., U-shaped pipe higher at the intake than at the outlet) instead
of aqueduct bridges to cross deep valleys. Frontinus tells us that water was
conveyed to Rome by nine aqueducts from sources in a spur of the Apennines,
some 25 km to the east273.

273 The first aqueduct brought pure water into Rome as early as 312 BCE. At the

beginning of the Christian era there were six.

Modern estimates of the total volume delivered to Rome runs from 0.3 to 1.2

million cubic meters/day. About half of this enormous supply was required

for the public baths. The baths of Caracalla, dating from about 200 CE were

capable of accepting 1600 bathers at a time. Those of Diocletian, built about

80 years later, had no less than 3000 rooms. The bath, accompanied Roman

civilization wherever it penetrated, and certain places became famed for the

curative power of their mineral-impregnated waters. The population of Imper-

ial Rome is estimated at one million. As nearly as we can estimate, Babylon,

Nineveh, Athens, Syracuse, Carthage, Alexandria, Antioch, Capua and the Re-

publican Rome had all at their height, harbored somewhere from 250,000 to

500,000 people. Probably larger cities were impractical because of the diffi-

culty of bringing food from a distance to feed their populations. Roman roads
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The water system consisted of arcades (aqueduct bridges), conduits and
tunnels, altogether totaling about 450 km, of which only one-ninth were on
arches. They were built mainly of concrete. The pipes that branched off
from the main aqueducts were made of lead (poisonous!). Most of what we
know of these matters comes from Frontinus’ book. He bossed a small staff
of engineers, surveyors, clerks, and a crew of 700 government slaves, includ-
ing inspectors, foremen, masons, plumbers and plasterers. Frontinus bitterly
complained of the frauds that had taken place under his predecessors; he was
shocked to find secret, illegal pipes running to irrigated fields, shops, and even
whorehouses.

Aside from the abuse of the water system by grafters and water steelers,
the system suffered from natural causes, which made its upkeep a heavy re-
sponsibility to a conscientious bureaucrat like Frontinus. The water channels
were always cracking and leaking, caused by the settling of the piers of the ar-
cades. Moreover, the Romans did not understand thermal expansion. Hence
the expansion and contraction of a straight concrete channel several km long,
between a hot summer day and a cold winter night, was enough to crack the
cement. As the water was heavily charged with mineral salts, the leakage
built up thick limestone concretions around the piers.

made it possible to concentrate more people in one metropolis. Hence, Imper-

ial Rome, and – later, for similar reasons – medieval Constantinople, Baghdad,

Anuradhapura (Ceylon), and Hangchow (China) all approached or exceeded the

million mark. There remained about 200 liters of water per head for the million

inhabitants, the same amount that is used today by a citizen of New York or

London. Thus, in 1954, four aqueducts sufficed for the needs of modern Rome.

In its cleanliness, sanitation and water supply, Rome was much more akin to

20th century London and New York than to medieval Paris or 18th century Vi-

enna. A 17th century Londoner existed in conditions which would hardly have

been tolerated by first century Roman. Public health and sanitation were more

advanced in the year 300 CE than they were to be again until the middle of

the 19th century. The great drainage system, the cloaca Maxima, was built in

the 6th century BCE, to drain an area of marsh which later became the site of

the Forum Romanum. The Cloaca gradually assumed the function of a modern

sewer and its plan was copied elsewhere in Italy and the empire. The modern

water closet was not devised until well over a 1000 years after the fall of Rome,

but the ruins of Pompeii and Harculaneum (destroyed 79 CE) have revealed an

elaborate system of waterworks connected with flushing closets. Public lavato-

ries, uncomfortably hard to find in the present-day city, were common place in

Rome during the 1th century CE. The best known of these, a palatial building

fitted with marble urinals, was erected by Vespasian in about 70 CE.
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Nevertheless, Frontinus was very proud of his aqueducts as is evident from
his own words: “With such an array of indispensable structures carrying so
many waters, compare, if you will, the idle Pyramids or the useless though
famous, works of the Greeks!”

ca 98 CE Menelaos of Alexandria. Greek mathematician. Author of
Sphaerica, a work extant in Hebrew and Arabic, but not in Greek. In it he
proves the theorems on the congruence of spherical triangles, and describes
their properties in much the same way as Euclid treats plane triangles. In
it are also found the theorem that the sum of the three angles in a spherical
triangle exceeds two right angles. Two other celebrated theorems of his deal
with plane and spherical triangles274.

ca 100 CE Nicomachos of Gerasa (ca 60–120 CE). Neo-Pythagorean
mathematician, astronomer, physicist and philosopher. Wrote Arithmetike
eisagoge (Introduction to Arithmetic), the first work on the theory of numbers,
in which arithmetic was treated quite independently of geometry. This work
exerted a powerful influence over the study of arithmetic for more than a
millennium.

The principal scene of his activity was the city of Gerasa (today in Jordan).
Nicomachos is our main source of information on Pythagorean mathematics.
He told in a manner intelligible to every one, and in an entertaining way,
about triangular, square, rectangular and polygonal numbers, about prime
numbers and geometric progressions, all illustrated by numerous examples,
but never accompanied by proofs. He quoted the first four perfect numbers:
6, 28, 496, 8128 and noted that the last figure was either 6 or 8.

ca 100 CE The diseases of pneumonia, diabetes, tetanus and diphtheria
first identified or described with accuracy.

ca 100 CE Mary (Maria) the Jewess. Alchemist. Invented chemical
apparatus for distillation (the ambix or alembic) and for sublimation (the kero-
takis; a hot-ash bath). A water-bath was later named bain-marie in her honor.
Her writings combine practical techniques, mystical imagery, and theoretical
ideas.

105 CE The Chinese discovered paper.

274 Lemma of Menelaos: “If the three lines constituting a plane triangle be cut by

a straight line, the product of the three segments which have no common ex-

tremity is equal to the product of the other three”. There exists a corresponding

theorem for spherical triangles.
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106 CE Chinese and Roman traders meet in central Asia. Chinese silk and
spices are exchanged for gems, precious metals, glassware, pottery and wine.

ca 110 CE Marinos of Tyre. Greek geographer and mathematician.
Regarded as the founder of mathematical geography. Predecessor of Ptolemy,
who acknowledged his great obligations to him. His chief merits were that
he assigned to each place its proper latitude and longitude275, and introduced
improvements in the construction of his maps. He also carefully studied the
works of his predecessors and the diaries of travelers. His geographical treatise
is lost.

117–138 CE Soranos of Ephesos (Alexandria and Rome). Greek physi-
cian. Practiced medicine in Alexandria and later in Rome during the reigns
of Trajan and Hadrian. Founder of obstetrics and gynecology. Influenced
medical practice in these fields until the 15th century. His works included
On Midwifery and the Diseases of Women and On Acute and Chronic Dis-
eases. He was the chief representative of the school of physicians known as
“methodists”. It is notable that the speculum, an instrument invented in mod-
ern times, was used by Soranos276.

120–150 CE Claudios Ptolemy (Ptolemaeos) of Alexandria (ca 85–
165 CE). Astronomer, mathematician, geographer, physicist and chronologist.
One of the greatest astronomers and geographers of ancient times. Introduced
geocentric cosmology that was not seriously challenged for 1400 years. His
observations and theories are preserved in a 13-volume work which he en-
titled ‘Mathematike Syntaxis’ (Mathematical composition). Because of the
admiration this work won, it became known as the Almagest, a combination
Greek-Arabic term meaning the greatest.

Ptolemy developed his astronomical system largely from the ideas of Hip-
parchos (150 BCE) and made a critical reappraisal of the planetary records.
He collected the works of Hipparchos and his predecessors, added his own
observations, evolved a first-class theory and left a masterly exposition that
dominated astronomy throughout the Dark Ages. He rejected the idea that
the earth moves and placed a motionless earth at the center of the universe.
Around it went the moon, sun and planets at various speeds. The stars were
brilliant spots of light in a concave dome that arched over everything. Against
this stellar background, Ptolemy traced the motions of the planets and worked
out the theory of each of them.

275 Marinos was, in effect, the first to invent the concept of a coordinate system and

coordinates of a point with respect to it.
276 In fact, specimens of still earlier date, showing great mechanical perfection, have

been found among the ruins of Pompeii.
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The positions of the sun, moon, and planets, relative to the fixed stars,
had been mapped with angles measured to a fraction of a degree. He could
therefore elaborate the system of eccentric crystal spheres and epicycles and
refine its machinery, so that it carried out past motions accurately and could
grind out future predictions with success. He devised a brilliant mathematical
machine, with simple rules but complex details, that could ‘save the phenom-
ena’ with centuries-long accuracy. In this he neglected the crystal spheres as
moving agents; he concentrated on the rotating spoke (or radius) that car-
ried the planet around, and he provided sub-spokes and arranged eccentric
distances.

The general picture was this: the heavens of the stars is a sphere turning
steadily round a fixed axis in 24 hours; the earth must remain at the center
of the heavens – otherwise the star pattern would show parallax changes; the
earth is a sphere, and it must be at rest for various reasons – e.g., objects
thrown into the air would be left behind a moving earth. The sun moves
round the earth with the simple epicyclic arrangement of Hipparchos, and the
moon obeys a more complicated scheme.

His system was a gorgeously complicated system of main circles and sub-
circles, with different radii, speeds, tilts, and different amounts and directions
of eccentricity277. Like a set of mechanical gears the system grounded out ac-
curate predictions of planetary positions for year after year into the future, or
back into the past. And like a good set of gears, it was based on simple prin-
ciples: circles with constant radii, rotations with constant speeds, symmetry,
constant tilts of circles, with the earth fixed in a constant position278.

In the Almagest, Ptolemy described a detailed scheme for each planet and
gave tables from which the motion of each heavenly body could be read off.

277 For the motion of the planets, Ptolemy found that he could not save the sacred

principle of uniform motion even with a simple epicyclic motion; there were

residual discrepancies between theory and observation, so he not only moved

the earth off-center but also moved the center of uniform rotation to a new

point, called the punctum equans. This point enabled him to say that there

exists, after all, a point in space where an observer could enjoy the illusion that

the planet’s motion is of uniform speed.
278 Though this now seems as an unreal model, it is still fashionable as a method

of analysis. Adding circle on circle in Greek astronomy corresponds to our use

of a series of sines (projected circular motions) to analyze complex motions.

Physicists today use such Fourier Analysis in analyzing time-series such as

musical sounds, tides, etc. In principle, planetary motion can be represented

to any desired accuracy, provided one is allowed to compare enough circular

motions (Fourier components).
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The book was copied (by hand), translated from Greek279 to Latin, to Arabic
and back to Latin as high culture moved eastward and then back to Europe. It
served for centuries as a guide to astronomers and a handbook for navigators.
It also provided basic information for astrologers.

The methodic excellence of the Almagest ensured the supremacy of the
Ptolemaic system until the 16th century, in spite of abundant criticism which
became more acute as observations increased in number and precision.

Clearly, Hipparchos and Ptolemy were backward in two respects: they
rejected the heliocentric ideas of Aristarchos and the ellipses of Apollonios.
In retrospect, this can be understood as resulting from a combination of two
factors: since heliocentricity did not lead to greater simplicity or precision,
they lacked the conviction to shake off the prejudices of their own environment.

Ptolemy (Claudios Ptolemaeos) was born in Ptolemais Hermeiu, a Greek
city of the Thebais, upper Egypt, and flourished in Alexandria. His influence
upon later times (until the middle of the 16th century) is second only to that
of Aristotle. Assuming that the bulk of his facts, methods, and principles
was derived from Hipparchos (in most cases Ptolemy admits it), the credit
of his masterly exposition of his subjects and his mathematical treatment of
them, belongs to Ptolemy himself. It seems difficult to conceive of two men
separated by almost full three centuries as close collaborators, yet their fame
is inseparable.

Ptolemy pointed out that the earth is round and that gravity is directed
toward its center. In his Syntax there is a catalog of 1022 stars found in 48 con-
stellations, each with its own celestial latitude and longitude. He discovered
the irregularity of the moon’s motion (evection).

In a book entitled ‘Optics’ he discussed the refraction of light: He realized
that it provided an explanation of why bodies immersed in water seem to be
nearer to the surface than we find them to be when we try to grasp them.

The attempt to find a correction for “atmospheric refraction”, led Ptolemy
to make the first extensive physical experiments in which numerical measure-
ments were recorded to discover the amount of bending. In his experiments

279 The world in which Ptolemy lived was a Roman world, whose intellectual ideas

was still predominantly Greek.

By this time, the top culture of the West was Greek, not Latin. Greek was

the language of science and philosophy while Latin was the language of law,

administration and business. Marcus Aurelius wrote his Meditations in Greek.

Ptolemy and Galen would not have been able to write in Latin, even if they

wished to do so. The remarkable thing about the Roman empire, from an

intellectual point of view, was its bilingualism; every educated man in the West

was supposed to know two languages, Greek as well as Latin.
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he studied the passage of light from air to water, from air to glass, glass to
water and vice versa. His results were not accurate enough to display the
simple geometrical rules of refraction.

Ptolemy’s geography includes a theory of map projection; places are listed
with their longitudes and latitudes. However, in his map of the world he
exaggerated the land mass from Spain to China, and underestimated the size
of the ocean. This mistake later encouraged Columbus to undertake his
famous voyage of discovery in 1492.

As a mathematician, Ptolemy devised new geometrical proofs and theo-
rems. He obtained, using chords of a circle and an inscribed 360-gon, the
approximations: π = 3 17

120 = 3.14166,
√

3 = 1.73205.

His serious treatment of astrology helped to spread that superstition280.

132 CE Zhang Heng (78–139, China). Mathematician, astronomer and
geographer. Invented the first seismoscope (132) to record earthquakes.
Heng’s device was in the shape of a cylinder with 8 dragon heads around
the top, each with a ball in his mouth. Around the bottom were 8 frogs, each
directly under a dragon head. When an earthquake occurred, a ball fell out
of the dragon’s mouth into a frog’s mouth, making a noise and giving a rough
indication of the direction of the initial impulse.

ca 150 CE Rabbi Nehemiah (2nd century, Land of Israel). Hebrew
scholar and mathematician. Author of the Mishnat ha-Middot, the earliest

280 Along with the Almagest, Ptolemy wrote an astrological treatise by the name

of Tetrabiblos which is a compilation of Chaldean, Egyptian and Greek folklore

and earlier writings. The book remained a standard work until our own day.

In that it was even more successful than the Almagest, for the simple reason

that astronomy being a science was bound to develop and change, while modern

astrology being a superstition is essentially the same as the ancient one. The

Almagest is published anew from time to time for students of the history of

science, but has no practical value; on the other hand, new editions of the

Tetrabiblos are still issued for the guidance of practicing astrologers.

Many scholars have claimed that the same man could not possibly be the author

of the rational Almagest and of the Tetrabiblos. They forget that astrology was

the scientific religion of Ptolemy’s day. At a time when the old mythology

had become untenable, the sidereal religion had gradually taken its place in

the minds of men who were loyal to Pagan tradition as well as scientifically

minded. Stemming from Greek astronomy and Chaldean astrology, it was a

compromise between the popular religion and monotheism; it was a kind of

scientific pantheism endorsed by men of science as well as by philosophers,

especially the neo-Platonists and Stoics.
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Hebrew treatise on mathematics known to us. This book includes his own
contributions, as well as those of Greek mathematics. It exerted influence
on Persian-Arabic mathematics, especially Al-Khowarizmi. Nehemiah was
concerned with the determination of the calendar.

Mishnat ha-Middot became known in modern times through the transla-
tion and publication of two manuscripts. The first manuscript, Cod. Hebr.
36, in the Münich Library, containing 5 chapters dealing with plane and solid
geometry, appeared in a German translation in 1862. The other, Ms. Hebr.
c. 18 of the Oxford Bodleian Library, found more recently, is a fragment
consisting of two leaves which contain parts of the 1st, 2nd and 5th chapters
already known and, in addition, the beginning of a 6th chapter, hitherto un-
known. The fragment, on vellum, contains explanations of the size and the
construction of the Tabernacle.

Although Nehemiah had the courage to give the value 3 1
7 for π and offer

a different explanation of the Biblical text ( Kings I 7, 23), the Talmud
restored the canonical value of 3.

He was one of the late pupils of Rabbi Akiva (ca 50–134).

The Astrologers

Astrology is the ancient art of divining the fate of men from indications
given by the position of the stars (sun, moon and planets). The belief in a
connection between the heavenly bodies and the life of man has played an
important part in human history. For long ages astronomy and astrology
were identified. This combination can be traced back to the earlier phases
of Babylonian history (3000 BCE) and directly or indirectly spread through
them to other nations. It came to Greece in about 350 BCE and reached
Rome before the opening of the Christian era. With the introduction of Greek
culture into Egypt, both astronomy and astrology were actively cultivated in
the region of the Nile during the Hellenistic and Roman periods. Astrology
was further developed by the Arabs from the 7th to the 13th century, and in
Europe of the 14th and 15th century, astrologers exerted dominating influences
at court.
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Astrology is based on a theory of divine government of the world. Starting
with the indisputable fact that the fertility of the soil is dependent upon the
sun shining in the heavens as well as upon the rain that comes from heaven,
and taking into consideration the damage done by storms and inundations
(to both of which the Euphratean Valley was almost regularly subject), the
conclusion was drawn that all the great gods had their seats in the heavens.

In the early age of culture, known as the Nomadic stage (which predated
the agricultural stage) the popular moon and sun cults produced a sect of
priests (corresponding to the “scientists” of a latter day) who perfected a
theory of a complete accord between phenomena observed in the heavens and
occurrences on earth. The movements of the sun, moon and five planets were
regarded as representing the activity of 7 gods. The system was then extended
to include prominent and recognizable fixed stars and constellations. All
heavenly phenomena were meticulously remote and correlated with climatic,
royal and public events. In this way a mass of traditional interpretations of
all kinds of observed phenomena was gathered, and once gathered became a
guide to the priests for all times.

Astrology at this stage was centered almost exclusively in the public wel-
fare and the person of the king, i.e., the movements and position of the heav-
enly bodies point to such occurrences as due of public import and affect the
general welfare. The individual interests are not in any way involved, and we
must descend many centuries and pass beyond the confines of Babylonia and
Assyria before we reach the phase which in medieval and modern astrology is
almost exclusively dwelt upon individual horoscope.

In the hands of the Greeks and the Hellenists both astronomy and astrol-
ogy were carried far beyond the limits attained by the Babylonians, and it is
indeed a matter of surprise to observe the harmonious combination of the two
fields – a harmony that seems to grow more complete with each age, and that
is not broken until we reach the threshold of modern science in the 16th cen-
tury. The endeavor to trace the horoscope of the individual from the position
of the planets and stars at the time of birth represents the contribution of the
Greeks to astrology. The system was carried to such a degree of perfection
that later ages made but few additions of an essential character.

The system was taken up almost bodily by the Arab astronomers. It was
embodied in the Kabbalistic lore of Jews and Christians, and through these
and other channels came to be the substance of the astrology of the Middle
Ages. It thus formed a pseudo-science which was placed on equal footing with
astronomy. Moreover, under Greek influences, the scope of astrology was en-
larged until it was brought into connection with practically all of the known
sciences: botany, chemistry, zoology, mineralogy, anatomy and medicine; col-
ors, metals, stones, plants, drugs and animals were associated with the planets
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and placed under the guidance and protection of one or other of the heav-
enly bodies. Indeed, the entire realm of the natural sciences was translated
into the language of astrology with the single avowed purpose of seeing in all
phenomena signs indicative of what the future has in store.

The fate of the individual, as that feature of the future which had a
supreme interest, led to the association of the planets with parts of the body,
e.g.: the right ear is associated with Saturn, the left ear with Mars, the right
eye (male) with the sun and the left eye with the moon, the pubis to Scorpion,
the breasts to Cancer, the thighs to Sagittarius, etc. Not only was the fate of
the individual made to depend upon the planet which happened to be rising
at the time of birth or of conception, but also upon its local relationship to a
special sign or to certain signs of the Zodiac. With human anatomy thus con-
nected with the planets, with constellations, and with single stars – medicine
became an integral part of astrology.

A favorite topic of astrologers of all countries has been the immediate end
of the world. As early as 1186 the earth had escaped one threatened cataclysm
of the astrologers. This did not prevent others astrologists from predicting
universal deluge in the year 1524 – a year as it turned out, distinguished for
drought.

Astrology did not stop after the acceptance of the Copernican system; the
postulates of astrology are independent of whether the sun or the earth is
the center of our planetary system. Kepler himself drew horoscopes. Tycho
Brahe, Gassendi and Huygens subscribed to that superstition.

George Sarton, one of the leading historians of science in the 20th cen-
tury and an erudite deeply versed in the European cultural heritage had this
to say on astrology and astrologers (1959):

“America is leading the world in astronomy, and we have every right to be
proud of that, but if we be honest, we cannot accept praise for our astronomers
without accepting full blame for our astrologers. There are more astrologers
than astronomers in America and some of them, at least, earn considerably
more than the latter; the astrological publications are far more popular than
the astronomical; almost every newspaper has an astrological column which
has to be paid for and would not be published at all if a large number of
people did not want it.

Astrology was perhaps excusable in the social and spiritual disarray of
Hellenistic and Roman days; it is unforgivable today. . . We would be indulgent
to Ptolemy, who had innocently accepted the prejudices endemic in his age
and could not foresee their evil consequences, but the modern diffusion of
astrological superstitions deserves no mercy”.
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The Heritage of Ancient Astronomy281 (3000 BCE–150 CE)

A practical acquaintance with the elements of astronomy is indispensable
to the conduct of human life. Hence it was most widely diffused among
uncivilized peoples, whose existence depended upon immediate and unvarying
submission to the dictates of external nature.

Having no clocks, they regarded instead the face of the sky; the stars
served them for almanacs. They hunted and fished, sowed and reaped in
correspondence with the recurrent order of celestial appearances. But these,
to the untutored imagination, presented a mystical as well as a mechanical
aspect. Thus, familiarity with the heavens developed at an early age, through
the promptings of superstition, into a fixed system of observation. In China,
Egypt, and Babylonia, strength and continuity were lent to this native ten-
dency by the influence of a centralized authority; considerable proficiency
was attained in the art of observation, and from millennial stores of accumu-
lated data empirical rules were deduced by which the scope of prediction was
widened and its accuracy enhanced. But no genuine science of astronomy was
founded until the Greek sublimed experience into theory.

Already in the 3rd millennium BCE, equinoxes and solstices were deter-
mined in China by means of culminating stars. This is known from the
orders promulgated by the emperor Yao about 2300 BCE, as recorded in the
Shu Chung [a collection of documents already ancient at the time of Confu-
cius (551–478 BCE)], and Yao was merely the renovator of a system already
long established. There is no certainty that the Chinese were then capable of
predicting eclipses, but they were probably acquainted with the 19-year cycle
by which solar and lunar years were harmonized. They made observations in
the meridian, regulated time by water-clocks and used measuring instruments
of the nature of quadrants.

281 For further reading, see: Agnes Mary Clerke (1842–1907), History of as-

tronomy; Pannekoek, A., A History of Astronomy, Dover: New York, 1989,

521 pp.
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In 1100 BCE, Chou Kung, as able mathematician, determined with sur-
prising accuracy the obliquity of the ecliptic, but his attempts to estimate the
sun’s distance failed hopelessly as being grounded on belief in the flatness of
the earth.

Circles were divided into 365 1
4 parts, so the sun described daily one Chi-

nese degree, and the equator began to be employed as a line of reference,
concurrently with the ecliptic, probably in the 2nd century BCE. Both circles,
too, were marked by star-groups more or less clearly designated and defined.

Cometary records go back in China to 2296 BCE; they are intelligible and
trustworthy from 611 BCE onward.

In Egypt the stars were observed that they might be duly worshiped. The
importance of their first visible appearances at dawn (for the purposes of
both practical life and ritual observance) caused them to be systematically
noted. The length of the year was accurately fixed in connection with the
annually recurring Nile flood, while the curiously precise orientation of the
Pyramids afforded a lasting demonstration of the high degree of technical
skill in watching the heavens attained in the 3rd millennium BCE. The con-
stellational system, in vogue among the Egyptians, appeared to have been of
native origin, but they contributed little or nothing to the genuine progress
of astronomy.

Babylonian science lacked the vital principle of growth imparted to it by
their successors. From them the Greeks derived their first notions of astron-
omy: They copied the Babylonian asterisms, appropriated the Babylonian
knowledge of the planets and their courses, and learned to predict eclipses by
means of the saros.

Records dating from the reign of Sargon of Akkad (3800 BCE) imply that
even then the varying aspects of the sky had long been under expert obser-
vation. It may be taken as certain that the heavens described by Aratos
of Soli (315–245 BCE, Greek poet) represented approximately observations
made some 2500 years earlier, by the Babylonians, in or near north latitude
40◦. In the course of ages, Babylonian astronomy, purified from the astro-
logical taint, adapted itself to meet the most refined needs of civil life. The
decipherment of Babylonian clay tablets supplied detailed knowledge of the
methods practiced in Mesopotamia in the 2nd century BCE. They show no
trace of Greek influence, and were the improved outcome of an unbroken tra-
dition. The Babylonian astronomers were not only aware that Venus returns
in almost exactly 8 years to a given starting-point in the sky, but they have
established similar periodic relations (with periods 46, 59, 79 and 83 years
respectively) for Mercury, Saturn, Mars and Jupiter. They were accordingly
able to fix in advance the appropriate positions of these objects with reference
to ecliptical stars, which served as fiducial points for their determinations. In
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the Ephemerides published year by year, the times of new moon were given,
together with the calculated intervals to the first visibility of the crescent,
from which the beginning of each month was reckoned. The dates and cir-
cumstances of solar and lunar eclipses were predicted, and due information
was supplied as to the forthcoming risings and settings of the sun, conjunc-
tions and oppositions of the planets. The Babylonians knew the inequality
in the daily motion of the sun, but misplaced by 10 ◦ the perigee of its orbit.
Their sidereal year was 4 1

2m too long282, and they kept the ecliptic stationary
among the stars, making no allowance for the shifting of the equinoxes. On
the other hand, it has been recognized (1900) that Hipparchos had borrowed
from Chaldea the lengths of the synodic, sidereal, anomalistic and draconitic
months.

A steady flow of knowledge from East to West began in the 7th century
BCE. The Babylonian Berossos founded a school about 640 BCE in the Is-
land of Cos, and perhaps counted Thales of Miletos (624–546 BCE) among
his pupils. Pythagoras of Samos (fl. 540–510 BCE) learned on his travels
in Egypt and the East to identify the morning and evening stars, to recognize
the obliquity of the ecliptic, and to regard the earth as a sphere freely poised
in space. The tenet of its axial movement was held by many of his follow-
ers; in an obscure form by Philolaos of Croton (ca 450 BCE), and more
explicitly by Ecphantos and Hicetas of Syracuse (4th century BCE), and
by Heracleides of Pontos (a disciple of Plato in 360 BCE).

A genuine heliocentric system, developed by Aristarchos of Samos (fl.
280–264 BCE), was described by Archimedes in his Arenarius, only to be
set aside with disapproval. The long-lived conception of a series of crystal
spheres, acting as the vehicles of the heavenly bodies, and attuned to divine
harmonies, seems to have originated with Pythagoras himself.

The first mathematical theory of celestial observations was devised by Eu-
doxos of Cnidos (408–355 BCE). The problem he attempted to solve was
to combine uniform circular movements so as to produce the resultant effects
actually observed. With this end in view, the sun and moon and the 5 planets
were accommodated each with a set of variously revolving spheres, with their
numbers totaling 27. The Eudoxian system, after it had been further elab-
orated and modified by Aristotle and Apollonios of Perga (fl. 250–220

282 Yet, their observations were amazingly precise; they computed the length of the

year with a deviation less than 0.001 percent from the current value and their

figures relating to the motions of the sun and the moon have only 3 times

the margin of error of the 19th century astronomers, armed with mammoth

telescopes. Their observations were verifiable, and enabled them to make precise

predictions of astronomical events.
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BCE), held sway for 1800 as the characteristic embodiment of Greek ideas in
astronomy.

Greek astronomy culminated in the school of Alexandria. Soon after its
foundation, Aristyllos and Timocharis (ca 320–260 BCE) constructed the
first catalogue giving star-positions as measured from a reference-point in the
sky. This fundamental advance rendered inevitable the detection of preces-
sional effects. Aristarchos of Samos made his observations at Alexandria
(280–264 BCE). His general conception of the universe was comprehensive
beyond that of any of his predecessors. Eratosthenes (276–196 BCE), a
native of Cyrene, was summoned from Athenes to Alexandria by Ptolemy
Euergetes to take charge of the royal library. He determined the obliquity of
the ecliptic283 at 23 ◦51′ (a value too large by 5′), and introduced an effective
method of arc-measurement.

Among the astronomers of antiquity, two great names stand out with un-
challenged pre-eminence; Hipparchos and Ptolemy entertained the same
large designs; they worked on similar methods, and, as the outcome, their
performances fitted so accurately together that between them they re-made
celestial science. Hipparchos fixed the chief data of astronomy – the lengths of
the tropical and sidereal years, of the various months, and of the synodic pe-
riods of the five planets, the obliquity of the ecliptic and of the moon’s path,
the place of the sun’s apogee, the eccentricity of its orbit, and the moon’s
horizontal parallax, all with appropriate accuracy. His loans from Chaldean
expertise appear to have been numerous indeed, but were doubtless indepen-
dently verified. His supreme merit, however, consisted in the establishment

283 The Greek astronomers must have noticed the correlation between the march

of the seasons, the yearly variations in the sun’s altitude angle above the hori-

zon, the length of day and the changes in distribution of sunlight. Knowing

the yearly relative motion of the sun and the earth, and the inclination of the

earth’s equatorial plane to the sun rays (ecliptic), they must have understood

that when the North pole points away from the sun, the northern hemisphere

experiences winter, and when the North pole points toward the sun, that hemi-

sphere experiences summer.

Furthermore, they must have associated the summer soltice with the sun’s ver-

tical rays striking 23 1
2

◦
north latitude, and the winter soltice with the sun’s

vertical rays striking 23 1
2

◦
south latitude. Likewise they knew that at both

equinoxes, the sun’s vertical rays strike the equator. It is questionable however,

whether they understood the physical aspect of the situation, namely that rays

striking at low angle must traverse more of the atmosphere than rays striking

at a higher angle and thus are subjected to greater depletion by scattering and

absorption.
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of astronomy on a sound geometrical basis. His acquaintance with trigonom-
etry, a branch of science initiated by him, enabled him to solve a number of
elementary problems, and he was thus led to focus special attention upon the
position of the equinox, as being the common point of origin for measures
both in right ascension and longitude. Its steady regression among the stars
became manifest to him in 130 BCE, on comparing his own observations with
those made by Timocharis a century and a half earlier, and he estimated it
to be not less than 36′ ′ per year. An interval of 250 years elapsed before the
constructive labors of Hipparchos obtained completion in Alexandria. The
Ptolemaic system was, in a geometrical sense, defensible; it harmonized fairly
well with observations, although physical reasoning had not been extended to
the heavens. To the ignorant it was recommended by its conformity to crude
common sense, while to the learned it appealed by the wealth of ingenuity
expended in bringing it to perfection.

Nevertheless, the Ptolemaic model of the universe was wrong. It survived
for so long in part because its ad hoc machinery was marvelously adaptable;
it survived also because it took for granted elements of physics which were not
calculable at that time and so had to be accepted, willy nilly. But it failed
in the end for the same reasons: its calculable results were found wanting,
its incalculable bases were seen to be unfounded, and its increasingly baroque
architecture was no longer to the mathematical taste of a new generation of
thinkers.

122 CE Romans build Hadrian’s Wall in Britain to defend against northern
tribesmen. The wall, built mainly of stone, runs 115 km from Tyne to Solway.

138–165 CE Marcion of Sinope (ca 100 CE – ca 165 CE, Asia Minor
and Rome). Created Gnostic284 Christianity by a syncretism of Gnosticism

284 Judaism had never sought to convert outsiders and attract recruits so long as

circumcision and ritual food restrictions were enforced. Christianity might have

remained a sect of unorthodox Jews, had not one of its adherents set himself

to broaden the basis for membership. Paul of Tarsus, a hellenized Jew and

Christian, removing these external obstacles, made Christianity universally ac-

ceptable.

Still, to the hellenized citizens of the Empire it would not do that Christ should

be the son of the God of the Jews. This blemish was avoided by Gnosticism,

a syncretic movement that arose at the same time as Christianity. According
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and Paulian Christianity (Marcion’s Church). Although later condemned as
a heretic over his unorthodox views, Christianity kept parts of Gnosticism at
Nicaea (325 CE) and his replacement theology has infiltrated into the Church
of today.

At the beginning, after all the apostles died, the leaders who replaced
them were mostly Gentile pagans. These Gentiles had comparatively little
understanding of the Old Testament Scriptures unlike the Jewish apostles
who had been exposed to the teaching of the Law and the Prophets since
birth. This caused a shift in focus to the New Testament (written by fellow
converts) and the elimination of anything Jewish. It was very true of the
moral codes which Jesus exalted his followers to obey.

to Gnosticism the sensible, material world was created by Yahweh, who was

really a minor deity, having fallen out with the supreme godhead and thereafter

practiced evil. At last the son of the supreme god came to live among men in

the guise of a mortal, in order to upturn the false teaching of the Old Testa-

ment. These, along with a dose of Plato, were the ingredients of Gnosticism. It

combines elements of Greek legend and Orphic mysticism with Christian teach-

ing and other eastern influences, rounding it off with an eclectic admixture of

philosophy, usually Plato and Stoicism. The Manichaean variety of later Gnos-

ticism went so far as to equate the distinction between spirit and matter with

the antithesis of good and evil. In their contempt for things material they went

further than the stoics had ever ventured. They forbade the eating of meat and

declared sex in any shape or form to be altogether a sinful business. From their

survival for some centuries it seems proper to infer that these austere doctrines

were not practiced with complete success.

While orthodox Christians believe that Creation (physical world and men) be-

came corrupt with Adam and ‘the Fall’, Gnostics believe that Creation was

corrupt to begin with, and that the God of Israel (who created the material

universe) was a totally different God from the Father spoken in the gospel of

Christ.

All this ran contrary to the Hebrew Scriptures. In Hebrew thought, the chief

virtue is in oneness, wholeness, “shalom”.There is one God, Yahweh. There is

one world consisting of the heavens, the earth, and sheol under the earth, and

all creation is good. Each human being is wonderfully made as one cohesive

unit. Salvation is found in living life in covenant relationship with Yahweh, and

salvation is experienced in immediate time, as well as in the future.

In Hebrew thought, the Messiah is a human being, raised up from the people,

chosen by God and anointed to serve and cause redemption to come to the

people of Israel. In Gnostic thought, the savior is god, sent down to earth by

the main good god to teach all.
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It was Marcion who then caused the Church to virtually ignore the Law,
the Hebrew Prophets, all the Apostles (except the Gnostic John), and even
Jesus himself and focus full attention to Paul and his writing on grace.

Marcion was born at the Black Sea port of Sinope to a pagan family.
Around 139 CE, he traveled to Rome and converted to Christianity. As a
wealthy ship-owner, he made large contributions to the Church and became
a respected member in the Christian community.

Marcion’s reference was always to the teaching of Paul (the only apostle
whom he trusted). He held the Gnostic idea that the whole creation is faulty,
being the creation of a lesser god, thus containing no element of the divine.
In this he was influenced by Persian dualism (Zoroastrianism).

Marcion believed that the lawgiver of the Old Testament was the bad God
and that no good could be found in the Old Testament and that after Jesus
Christ, the Law was obsolete. Jesus has come to free man from the Law.
Marcion, therefore, rejected the entire Old Testament, and viewed the Law
as opposed to grace.

All this put Christians in a quandary; they wanted the moral authority of
the Old Testament, yet they just did not want to follow it.

For several generations, Marcion’s Church survived. His anti-Jewish, pro-
Paul churches spread throughout the Roman Empire and became a threat to
the Messianic faith.

As Christianity became more firmly established, its hostility to the religion
of the Old Testament grew fiercer. The Jews, it held, had failed to recognize
the Messiah announced by the prophets of old, and therefore must be evil.
From Constantine onwards anti-semitism became a respectable form of Chris-
tian fervor, though in fact the religious motive was not the only one. It is
odd that Christianity, which had itself been suffering appalling persecution,
should, once in power, turn with equal ferocity on a minority that was just
as steadfast in its beliefs.

156 CE A census estimated the Chinese population of over 50 millions
(compared with 70 millions estimated by scholars for the population of the
Roman Empire).

160–190 CE Claudius Galen (Galenus) (129–200, Greece and Rome).
Anatomist, physician, philosopher. The greatest physician of antiquity af-
ter Hippocrates, and the father of experimental physiology. Discovered a
large number of new facts in the fields of anatomy, physiology, embryology,
pathology, therapeutics and pharmacology. Galen made various physiological
experiments, e.g., to determine the mechanism of respiration and pulsation,
the function of the kidneys, of the cerebrum, and of the spinal cord. He proved
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experimentally that arteries contain and carry blood (and not air as had been
taught up to his time). He also knew that the heart set the blood in motion,
but he failed to discover how the blood circulates through the human body
(Harvey, 1628), although he came very close to it. He was first to use the
pulse as a diagnostic aid.

In his writings (over 500 works, of which only 83 are extant), Galen sys-
tematized and unified Greek anatomical and medical knowledge and practice.
It was used until the end of the Middle Ages. He dissected numerous animals,
but very few human bodies. His writings contain many errors which were
accepted by physicians and scholars throughout the Middle Ages because his
authority was unquestioned.

Galen was born in Pergamum, Asia Minor. His father, Nicon, gave him his
early education. He began his study of medicine at the age of 16 in his native
city, and continued his medical studies in Smyrna and Alexandria. In 158
CE he returned to Pergamum and was appointed surgeon of gladiators. From
there he went to Rome (161 CE), where he enjoyed great success as a physi-
cian. In Rome he gave lectures in the public theater and performed experi-
ments with animals before large audiences. He later became court physician
under Marcus Aurelius (169 CE).

161–180 CE Marcus Aurelius Antoninus (121–180, Rome). Emperor
and Stoic Philosopher285. Author of Meditations (written in Greek), a col-
lection of percepts of practical morality. The bulk of his reign was spent in
efforts to ward off the attacks of the Germanic tribes across the upper Danube
(166–180). He visited Egypt and Athens (176). Worn out at the age of 59,
Aurelius died near Vienna, in the midst of a campaign.

He was master of the Empire during one of the most troubled period of
its history286. His imperial administration, lasting 19 years, was marked by

285 Founded by Zeno (336–264 BCE) in Athens and spread to Rome. Stoicism

remained dominant through the early Roman empire (31 BCE–192 CE) and

claimed among its chief exponents the statesman Seneca (4 BCE–65 CE), and

the slave Epictetos (60–135). But it had to compete with mystical tendencies

which found expressions in astrology, the oriental religions (Egyptian Isis and

Persian Mithras), and Christianity by which it was finally assimilated.
286 In the years from the accession of Marcus Aurelius (160) to the accession of

Diocletian (284), basic weaknesses became apparent in the government, in the

army, in the economy, and in the society. It was an age of moral corruption –

the last effulgence of a dying culture. The military victories of Aurelius gave

the Roman civilization two hundred more years of life, in which Christianity

might rise to strength so that the collapse of the political order would not mean

the destruction of Western civilization.
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prudent and generous reforms at home, conceived in a human spirit287, and by
decisive victories on the Parthian and German frontiers; and in all these the
Emperor himself was the moving force. The comprehensiveness of his legal
and judicial reforms is very striking: slaves, heirs, women and children were
benefited.

During his reign, the atmosphere of Roman society was heavily charged
with the popular Greek philosophy to which Christianity was diametrically
opposed. His upbringing was such that he felt that the policy of the Flavian
emperors was the only logical solution to the problems of Roman society.
Since the Christians taught a unity which transcended that of the Roman
empire, they were regarded as antagonistic to the existing political and social
organism. In this age of decadence, the Stoic philosophy held together the
civil social order of imperial Rome, and taught thinking men the nature of true
freedom, which is not dependent upon swords and laws. It was a philosophy
imported from Greece blended with the high old Roman virtue, the sense of
piety and honesty and office.

Aurelius’ Meditations, not generally known until late in the 16th century,
were written in the midst of public business, and on the eve of battles (166–
168) on which the fate of the empire depended – hence their fragmentary
appearance, but hence also much of their practical value and even their charm.
His thoughts represent a transitional movement, and it is difficult to discover
in them anything like a systematic philosophy.

He held the view of Anaxagoras – that God and matter exist indepen-
dently, but that God governs matter. The soul of man is most intimately
united to his body, and together they make one animal which we call man;

His Stoic philosophy, on the other hand, prepared the way for the acceptance

of Christianity in the dying classical world. The era of competent and con-

scientious emperors ended with his death in 180 CE. During the century that

followed, the army placed a succession of ruthless, uncouth, and politically inept

provincial generals on the imperial throne, known as barrack-emperors. Under

them the civil service came to be stuffed with semi-literate peasants with little

understanding of Greco-Roman political and cultural traditions.
287 Compelled by the force of depraved public opinion, to be present at the gladi-

atorial shows and receive the salutes of the poor wretches below in the arena,

he refused to look at the slaughter. Detesting these inhuman displays, he read

books, or gave audience during the course of the spectacle, and for that he was

jeered by the crowd for his aversion. When, in an hour of great public peril,

he recruited gladiators in the city to fill the ranks of the decimated legions,

the mob threatened to rise against their savior, crying that he designed to turn

them all into philosophers by depriving them of their sport.
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and so deity is most intimately united to the world or the material universe,
and together they form one whole.

The goal of life is not happiness, but tranquility or equanimity. This
condition of mind can be obtained only by “living conformably to nature”,
i.e., one’s whole nature. Consequently, man must cultivate the four chief
virtues, each of which has its own sphere: wisdom (knowledge of good and
evil), justice (giving to every man his due), fortitude (the enduring of labor
and pain), temperance (moderation in all things). Man should not yield to
the persuasion of the body, when they are not conformable to the rational
principle which must govern. This legislative faculty within a man which can
be looked from one point of view as conscience and from another as reason,
must be implicitly obeyed. He who obeys it will attain a tranquility of mind;
nothing can irritate him, for everything is according to nature. As much as
life is a composition of elements, death is a decomposition into the same, and
altogether not contrary to the reason of our constitution.

The morality of Marcus Aurelius cannot be said to be new when it was
given to the world. What gives his sentences their enduring value and fasci-
nation is that they are simply the records of his practice, not a saintliness of
the cloister but the wisdom of the man of the world;

As a Roman Stoic, Aurelius had little understanding of all Eastern cul-
tures, which he held in contempt.

ca 180–211 CE Clement of Alexandria (Clemens Alexandrinus; ca
150–215 CE; Athens and Alexandria). Greek Father of the Church. With
his disciple Origen of Alexandria (ca 185–254 CE) laid the groundwork
for welding of Christian and Hellenistic thought. Argued that Christianity
could profitably utilize pagan Greek philosophy and learning since the latter
is based on natural reason and therefore pointed toward truth. Philosophy
and secular learning in general could be used to interpret Christian wisdom
and therefore philosophy and science could be used to understand the Holy
Scriptures. This attitude was a compromise between the rejection of pagan
learning and its full acceptance288.

Clement was born of heathen parents in Athens, but lived in Alexandria,
where he converted to Christianity. Succeeded his teacher Pantaenus as head

288 This had already been advocated by Philo of Alexandria a century earlier,

who sought to reconcile the revealed religion of the Pentateuch with philosoph-

ical reason as influenced by Plato, Aristotle, Neo-Pythagoreans, Cynics and

Stoics. On the other hand, the Latin ecclesiastic writer Tertullian (ca 155–

225 CE) spoke for the rejectionists when he asked: “What indeed has Athens

to do with Jerusalem? What concord is there between the Academy and the

Church?”
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of Catechetical school in Alexandria. He left Alexandria during persecutions of
Emperor Severus (ca 201 CE) and visited Cappadocia, Jerusalem and Antioch.

The recognition that Christianity could not turn away from Greek learn-
ing was an essential precondition for the scientific revolution during the late
Renaissance.

186 CE Major volcanic eruption at Taupo, New-Zealand.

190 CE Chinese mathematicians use powers of ten.

ca 200 CE Compilation and codification of the Mishna, the early oral
interpretation of the Torah (law of Moses); a collective endeavor of about
350 savants (known as Tannaaim). Its formulation extended over a period
from 300 BCE to 200 CE when it was committed to writing. The Tannaaim
labored to formulate a new set of laws which would reinterpret the ancient
Mosaic concepts to the sons of Israel living in a Pagan world. As long as the
second Temple existed, the rituals, ceremonies and observances, sacrifices,
commands and prohibitions made the Torah a living spirit of Israel. It was
both a state law and religious fountainhead, the guide to daily conduct and the
basis for family and social structure of all the adherents to the Covenant289.

But with the sudden advent of the overbearing and hostile Caesarian Em-
pire, which culminated with the destruction of Jerusalem, the binding ties of
Jewish life changed from national institutions, like a land and a government,
to religious institutions, like the synagogue and the regulations of everyday
life. A thousand practical problems arose that called for immediate solutions:
problems concerning marriage and divorce and other aspects of family life;
concerning personal hygiene and ritual parity; concerning civil and ceremo-
nial law; dietary obligations and sacrificial cults; concerning the observation
of holidays and festivals; the keeping of the Sabbath; the treatment of illness;
the care of the poor; and so on.

It was then that the achievements of the spiritual leaders over more than
500 years of the Second Commonwealth were crystallized into a definite rules
of conduct under the editorship of Rabbi Yehuda ha-Nasi. He summed it
up in logical order into a volume of six books known as the Mishna, which
became a companion to the Bible. Moreover, together with the later Talmud,

289 Hebrew: repetition, oral learning. Outdoor teaching was practiced in Israel and

Babylonia ancient academies. Neither teacher nor pupils carried notebooks, as

all lessons were committed to memory. The lesson was a discourse, after which

the pupils asked questions or engaged in discussions.
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it proved to be a time-capsule which metamorphosed the lost land and inde-
pendence into spiritual values sufficient to maintain and nourish the Jews in
exile for almost 18 centuries – a unique phenomenon in the annals of mankind.

According to the traditional view, the canon of the Old Testament closed
with the work of Ezra (458 BCE). He was followed by the sofrim (scribes), to
the Maccabean age (167 BCE), and these again by the zugoth (pairs; the re-
puted heads of the Sanhedrin), down to the Herodian age (150–30 BCE). The
codification process culminated with in Hillel (80 BCE–8 CE) and Shamai,
the founders of the two great rival schools, and to this famous pair the work
of collecting the Halakah (“legal decisions”) has been ascribed. It was Hillel
who gave Mishna its scientific foundation.

The ensuing period of the Tannaaim (“teachers”; about 10–220 CE) is
that of growth of the Mishna. The best known representatives of the said
generations are listed in Table 1.4.

The Mishna was created amidst one of the most tragic and bloody periods
in the history of the Jewish nation, through which it lost major parts of its
homeland. The Tannaaim witnessed three great national disasters [the war
for Jewish independence, 66–70 CE; the Diaspora rebellion, 114–117 CE; Bar-
Kochba revolt, 132–135 CE] in which a total of 21

4 millions perished (out of
3 millions) over a period of 100 years.

With the codification of the Mishna, Jewish destiny shifted from Rome to
Parthia.
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Table 1.4: Leaders of the five generations of Tannaaim

I. (40–90 CE) Rabban Gamliel the Elder (ca 30 BCE–52 CE)
(teacher of the apostle Paul; astronomer)
Rabban Yohanan ben Zakkai (7 BCE–77 CE)
(founder of the Academy of learning at Yavne290)

II. (90–115 CE) Rabban Gamliel II (ca 30–117 CE)
Rabbi Eliezer ben Horkanos
Rabbi Joshua ben Hannania (35–117 CE)
(astronomer)
Rabbi Eleazar Ben Azariah

III. (115–135 CE) Rabbi Akiva ben Yosef (55–136 CE)
(fixed the official text of the canonical books)
Rabbi Ishmael
Rabbi Tarfon
Rabbi Yossi ha-Glili

IV. (135–170 CE) Rabbi Shimeon Bar-Yohai (80–160 CE)
Rabbi Meir
Rabbi Nehemiah
Rabbi Yohanan ha-Sandlar
Rabbi Nathan of Babylon
Rabbi Yossi ben-Halafta

V. (170–210 CE) Rabbi Yehuda ha-Nasi (137–210 CE)
(known as the Patriarch; brought the Mishna into
essentially its present shape; a close friend of
Emperor Caracallah (Marcus Aurelius Severus
Antoninus, 211–217 CE).

290 Massada and Yavne have come to symbolize two antithetical aspects of Jewish

history, the former that of a resistance, the latter that of a surrender. The

spirit of Massada permeated the first act through which the Hebrews took on

Canaanites, Philistines, Assyrians, Egyptians, Babylonians, Greek and Romans,

scrapping their way through defeats and victories in a struggle for national

survival.

The spirit of Yavne permeates the second act, representing the Jewish response

called for by new world order. The secret of Jewish survival is summed up in

Jewish ability to select the right weapon at the right time.
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During the next 300 years the Mishna was supplemented by many recorded
discussions or commentaries, contributed by Babylonian as well as Israeli
scholars. Some of these were legalistic, some philosophic, some folklorist, some
allegorical. These later writings known as the Gemara (Aramaic: learning),
were intended to expound the Mishna and to facilitate the understanding of
its difficult passages.

200–250 CE Shmuel the Astronomer (Yarchinai, 165–254 CE, Baby-
lonia). Jewish jurist, educator, astronomer and physician. He became the
director of the Mesopotamian Academy of Nehardea. Opposed the medical
superstitions of the day and introduced more rational methods. His astronom-
ical interests were centered upon the Hebrew Calendar, which he improved.

ca 250 CE Diophantos of Alexandria (206–290 CE). Greek mathemati-
cian. Author of Arithmetica291, one of the greatest mathematical treatises of
ancient times. It is a masterly exposition of algebraic analysis, so thorough
and complete in its time, that most previous works in its field ceased to be
of interest and passed into oblivion. In the Arithmetica, algebraic methods
advanced to a peak of achievement which was not to be surpassed before
the 16th century. Following the rediscovery of a manuscript of Diophantos
in the late Renaissance (1570 CE), R. Bombelli (1572 CE) included many
problems of the Arithmetica in his Algebra.

In 1621, Bachet de Meziriac (1581–1638 CE, France) published an edi-
tion of the Arithmetica which contained the Greek text as well as his Latin
translation. Bachet’s edition was made famous by the notes written in the
margin of a copy of his book by Fermat. Since that day, Fermat’s notes have
stimulated a prodigious output in the theory of numbers.

Diophantos solved indeterminate equations of second and higher degrees292

in integers by ingenious devices (but no general method). Used abbreviations

291 The Arithmetica is a collection of 130 problems giving numerical solutions of

determinate equations (those with a unique solution), and indeterminate equa-

tions. The method for solving the latter is now known as Diophntine analysis.

Only 6 of the original 13 books survived.

Diophantos was always satisfied with a rational solution and did not require a

whole number. He did not deal in negative solutions and one solution was all

he required to a quadratic equation. In fact, most of the Arithmetica problems

lead to quadratic equations. Although he did not use sophisticated algebraic

notation, he did introduce an algebraic symbolism that used an abbreviation

for the unknown.
292 Diophantos never dealt with the simpler linear equations. This was left to

Aryabhata (476–550 CE) and Brahmagupta (598–678 CE) in India.
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for powers of numbers and for relationships and operations throughout the
six surviving books of the “Arithmetica”. He was familiar with the rules of
powers combination, equivalent to our laws of exponents, and he had special
names for the reciprocals of the first six powers of the unknowns, quantities
equivalent to our negative powers.

Thus the identity

(a2 + b2)(c2 + d2) = (ac + bd)2 + (ad − bc)2 = (ac − bd)2 + (ad + bc)2,

which played important roles in Medieval Algebra and modern trigonometry,
appears in the work of Diophantos. Various new properties of numbers were
discovered by him: e.g., no number of the form 8n + 7 can be the sum of
three squares. As far as notation is concerned, Diophantos has a good claim
to be known as the ‘Father of Algebra’.

The few details of the personal life of Diophantos available to us, are all
contained in his epitaph. It is said to have been composed shortly after his
death by a close friend. It states that the 1

6

th of his life was spent in childhood

(14 years), after a 1
12

th more had elapsed he grew a beard (at 21), that when

a 1
7

th more had passed he married (at 33), and that five years later his son
was born (at 38). The son lived to half his father’s age and 4 years later the
father died (84).

A commentary on his work (first six books out of the original 13) written
by Hypatia (d. 415), daughter of Theon of Alexandria, is the ultimate
source of all extant manuscripts and translation of the Arithmetica. The
remainder of the work was probably lost before the 10th century.

Book I of the Arithmetica opens with the following dedication: “Knowing,
my most esteemed friend Dionysios, that you are anxious to learn how to in-
vestigate problems in numbers, I have tried, beginning from the foundations
on which the science is built up, to set forth to you the nature and power
subsisting in numbers. Perhaps the subject will appear rather difficult, inas-
much as it is not familiar (beginners are, as a rule, too ready to despair of
success). But you, with the impulse of your enthusiasm and the benefit of my
teaching, will find it easy to master. For eagerness to learn, when seconded
by instruction, ensures rapid progress”.

253 CE Plotinos (204–270 CE, Rome). Philosopher. The most important
representative of Neoplatonism. Under Ammonius Saccas he became imbued
with the eclectic spirit of the Alexandrian school. Having accepted the Pla-
tonic metaphysical doctrine, he applied to it the Neo-Pythagorean principles
and the Oriental doctrine of Emanation. The results of this introspective mys-
ticism were collected by him in a series of 54 treatises arranged in 6 Enneads
which constitute the most authoritative exposition of Neoplatonism.
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The principal doctrine of Plotinos states that God is a transcendental
principle who creates the universe out of himself in a process which is timeless
and eternal. Although present in all objects of creation, he is distinct from
them, supreme, above and before all things. God cannot be categorized or
classified as spiritual, material, soul substance, or in any other category, but
must be regarded as One who, without possessing specific attributes, yet
creates all things.

God is the absolute permanent One (as Parmenides taught), but the uni-
verse as his creation comprises a changeable plurally (as Heraclitos taught).
The physical and spiritual universe (living and nonliving matter) is the by-
product of the One, embracing Anaxagoras’ Nous, as well as Plato’s con-
cepts of ideas, substance, and matter as emanations from God. The ideas,
inasmuch as they are immanent in the Nous, are not subject to error. But
the soul, being a product of the nous, is only its image, and hence is fallible.

Plotinos was born of Roman parents at Lycopolis, Egypt. At Alexandria he
attended the lectures of Ammonius Saccas. He joined the Persian expedition
of Gordian III (242 CE), with the object of studying Persian and Hindu
philosophy on the spot. After the assassination of Gordian (244 CE), he was
obliged to take refuge in Antioch, whence he made his way to Rome and set up
as a teacher there. He soon attracted a large number of pupils. The Emperor
Gallienus and his wife Salonina were also among his enthusiastic admirers,
and favored his idea of founding a Platonic Commonwealth (Platonopolis)
in Campania, but the opposition of Gallienus counselors and the death of
Plotinos prevented the plan from being carried out.

268–301 CE Porphyrios (Malchos) (ca 234–305 CE, Tyre and Rome).
Greek scholar, historian, logician and Neoplatonic293 philosopher. Exerted
great influence on Neoplatonic trends in philosophy and theology in the Middle
Ages. Contributed indirectly to mathematics (in his commentary on Aristotle)
through the Tree of Porphgry294 (now called “binary tree”): categories are split
into two mutually exclusive and exhaustive parts on the basis of a property

293 Neoplatonists resolutely reaffirmed the Pythagorean conviction that mathemat-

ics had a decisive heuristic value as regards man’s search for the patterns of the

physical world.
294 A connected graph is a set of points (vertices) joined by line segments in such

a way that a path can be found from any point to any other point. If there

are no circuits, a connected graph is called a tree. In 3D, real trees, crystals,

river tributaries, brittle solid cracks and electric discharges are few examples of

natural trees. Sets of 2–12 points have respectively 1, 1, 2, 3, 6, 11, 23, 47, 106,

235, 551 topologically distinct trees.
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possessed by one part but not the other. This prepared the use of genealogical
trees and the division of a subject matter into hierarchic categories.

Porphyrios was born at Tyre. After studying grammar and rhetoric under
Longinus he went to Rome (262 CE) and studied under Plotinos (262–268
CE). He then lived a few years in Sicily and returned to Rome (273 CE).
His most distinguished pupil was Iambilichus. When advanced in years, he
married Marcella, a widow with seven children and an enthusiastic student of
philosophy.

Porphyrios was a violent opponent of Christianity and defender of Pagan-
ism. He wrote numerous books on a great variety of subjects, among them
a biography of Pythagoras, comments on Aristotle, history of philosophy
and history proper. He dated the Book of Daniel to the time of Antiochus
Epiphanes.

269 CE The great library at the Alexandria Academy was partially burned.
The Queen of Palmyra, Septimia Zenobia, captured Egypt.

ca 300 CE Iambilichus (ca 260–330 CE, Syria). Neoplatonic Greek phi-
losopher. Follower of Plotinos and Porphyrios. Born in Chalcis, Syria to a
rich illustrious family.

Although lacking in originality, he gave a more systematic application
of Pythagorean number-symbolism. He went beyond the Pythagoreans in
making mathematics a principle for all that can be observed in the cosmos.
(“I believe we can attach mathematically everything in nature and in the world
of change”).

Iambilichus defined mathematics as the “prognostic science of nature”. He
stated that his search for causes, or the causal approach to nature, consisted
“in positing mathematical things as causes” from which the objects in the
perceptible world arise. His was the Pythagorean belief that only what was
possible in mathematics was possible in the structure of nature, and noth-
ing could exist that implied a mathematical impossibility. He formulated a
program that had a ring strongly reminiscent of some aspirations of twentieth-
century physics.
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The Origins of Chemistry295 (0–400 CE)

Chemistry, or the study of the composition of substances, had its ori-
gin about the beginning of the Christian era in the Hellenistic-Egyptian city
of Alexandria, and was probably the result of blending together of material
from two sources: (1) the speculative philosophy of the Greeks, and (2) the
Egyptian practical arts of working in metals and glass, the dyeing of tissues
and the falsification of precious metals and gems.

Alexandria has a mixed population of native Egyptians, Greeks, Syrians,
and Jews, but was essentially Greek in culture. It contained a temple of the
god Serapis, two libraries and the Museum (or University) and, in later times,
the Christian Church of St. Mark and the famous Pharos or lighthouse, 152 m
high. One library, said to contain 700, 000 books, was destroyed by fire in 47
BCE. The Museum was mainly interested in classical literature, philosophy,
mathematics, and medicine.

Under the merger of the above two streams of knowledge, the technical arts
gradually assumed a new form, and the result was the “divine” or “sacred” art
of making gold or silver. This contained the germ of chemistry, and during
the first four centuries a considerable body of positive, practical chemical
knowledge came into existence – the early chemistry.

The Egyptian technique, handed down in the workshops, is described in
the papyri of Leyden and Stockholm, discovered at Thebes in 1828. It is
written in Greek and dates probably from about 300 CE, although much of
the material is probably derived from older Egyptian sources. It summarizes
technical information on metallurgy, dyeing, and imitation of precious stones.

295 For further reading, consult:

• Partington, J.R., A History of Chemistry , 4 Volumes, Macmillan and Com-

pany: New York, 1961.

• Partington, J.R., A Short History of Chemistry, Dover Publications: New

York, 1989, 415 pp.

• Moore, F.J., A History of Chemistry , McGraw-Hill Book Company: New

York, 1939, 447 pp.

• Farber, E., The Evolution of Chemistry, A History of its Ideas, Methods, and

Materials, Ronald Press Company: New York, 1952, 349 pp.

• Leicester, H.M., The Historical Background of Chemistry , Dover Publications:

New York, 1971, 260 pp.
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The earliest of the true chemical treatises, written in Greek at Alexandria
during the first 4 centuries CE, speak clearly of the artificial production of
gold and silver and the imitation of valuable dyes. The earliest name for
chemistry is the “divine art”; the name chemeia appears about 250 CE and
seems to derive from the Egyptian word chemi, meaning “black or burnt”,
or “Egyptian”, or both. There were Greek treatises on the divine art in
existence as early as the first century CE. Practical operations and apparatus
were invented about the same time by Maria the Jewess, who described
apparatus for distillation.

The most copious author who wrote a kind of chemical encyclopedia was
Zosimos of Panapolis in Egypt, who lived about 250–300 CE, and first used
the name chemieia. His books contain interesting descriptions and illustra-
tions of chemical apparatus and experiments (solution, filtration, fusion, sub-
limation, distillation, etc.) and several chemical substances and reactions296.
During his time there arose belief in transmutation of metals.

300–1000 CE Tiahuanaco. Andean Empire (Peru and Bolivia). A dom-
inant pre-Inca civilization which built large stone buildings decorated with
carvings of animals and geometric figures. It had a strong understanding of
science, especially of astronomy and medicine. The remains of a great cer-
emonial center are still to be seen on the Altiplano in Bolivia, near Lake
Titicaca (Puma Punku Temple) at an altitude of 4200 m. Their architectural
megalithic stone work presupposes a social organization, a strong central gov-
ernment which could direct the use of manpower into non-food-producing
channels on such a large scale. All this must have been done by a large
supply of workers with a long technical tradition.

The empire declined rapidly after 1000 CE as a result of a major climatic
change, causing a drought that lasted for 80–100 years.

The livelihood of this one-million people empire depended on a sophisti-
cated agricultural system of raised fields interlaced by water channels. The
water served as solar collectors, which kept away the killing frost during night
by radiating infra-red heat over the ground crops. Due to the prolonged
drought, water could not be replenished and the frost controlled the environ-
ment of the valley.

296 E.g., he explains the burning of limestone to form quicklime (CaCO3 ⇔ CaO+CO2).

The Alexandrian chemists were very near to recognition of gases.
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ca 320–350 CE Pappos of Alexandria. Greek geometer and scientist.
The greatest mathematician of the final period of ancient science and the last
mathematical giant of antiquity. One of his theorems is cited as the basis of
modern projective geometry. A prolific writer on mathematical and scientific
subjects. His main work (340 CE) is “Synagoge” (Collection), in 8 books. It is
an account of previous research, equally valuable for the historical information
it contains and for the additional explanations. It includes the definition of
conic sections by means of the directrix, involution of points, and the theory
of center of gravity.

His surviving books form one of the richest sources of information about
ancient mathematics and exerted a stimulating force upon the greatest schol-
ars of the 17th century297. Building upon his teachings, Descartes, Fermat,
Pascal and Desargues opened the way for the development of modern
mathematics.

Ptolemy’s gigantic efforts were followed by lull of more than a century. So
much so that when Pappos, the next great mathematician, appeared he felt
obliged to prepare a summary of earlier books. Pappos was not a teacher like
Euclid or Ptolemy, but a learned man who was familiar with the whole Greek
mathematics and tried to summarize it in his own peculiar way. He was a
good commentator because he was on the level with his greatest predecessors
and was able to add ingenious theorems and problems of his own, but he
was not very methodical. He had taken notes on the mathematical classics,
invented and solved problems, and then classified them in eight books. Each
book is preceded by general reflections which give to that group of problems
its philosophical, mathematical and historical setting.

Book I covered arithmetic (and is lost) while Book II is mostly lost but the
remaining part deals with large numbers. In Book III he gives a construction
of the arithmetic, geometric and harmonic means. Book IV contains proper-
ties of curves including the spiral of Archimedes and the quadratrix of Hippias.

297 Pappos was among the first keen observers of mathematical patterns in nature.

Thus he noticed that the bees use the regular hexagon exclusively for the shape

of the cells in the honeycomb:

“Though God has given to men the best and most perfect understanding of

wisdom and mathematics, he has allotted a partial share to some of the un-

reasoning creatures as well. . . This instinct is specially marked among the bees.

They prepare for the reception of the honey the vessels called honeycombs, with

cells all equal, similar and adjacent, and hexagonal in form”.

It is of interest to note that Pliny the Elder reported inaccurately in his Nat-

ural History (ca 75 CE) on the rectangular and circular shape of honeycombs.
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Book VII includes the famous Pappos’ problem: “given several straight
lines in a plane, to find the locus of points, such that when straight lines drawn
from it to the given lines at a given angle, the products of certain segments
shall be in a given ratio to the product of the remaining ones”. This problem
exercised Descarte’s mind and caused him to invent the method of coordinates
explained in his Géométrie (1637). It acted like a seed lying dormant for more
than 1300 years and then producing the flowering of analytic geometry.

The final Book VIII is mechanical and largely derived from Heron of
Alexandria. This book may be considered as the climax of Greek mechan-
ics and helps us to realize the great variety of problems to which Hellenistic
mechanicians addressed themselves.

The whole Collection is the culmination of Greek mathematics. Little
was added to it in the Byzantine age and the Western world, having lost its
knowledge of Greek together with its interest in higher mathematics, was not
able to avail itself of all the riches which Pappos has put together.

The ideas collected or invented by Pappos did not stimulate Western math-
ematicians until very late, but when they finally did, they caused the birth of
modern mathematics – analytical geometry and projective geometry. That re-
birth, from Pappos’ ashes, occurred within four years (1637–1640). Thus was
modern geometry connected immediately with the ancient one as if nothing
had happened between.
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Table 1.5: The Greatest Greek Mathematicians

Name Life-span Major contribution

Thales of Miletos 624–548 BCE The first geometer

Pythagoras 580–500 BCE Notions of ‘Axiom’ and ‘proof’
in geometry

Hippasos of
Metapontum 490–430 BCE Irrationality of

√
2;

Dodecahedron

Zeno of Elea 490–430 BCE Infinity and Infinitesimals

Antiphon the Sophist 480–411 BCE Method of ‘Exhaustion’

Hippocrates of Chios 470–410 BCE Use of letters in figures;
Reductio ad absurdum

Theodoros of Cyrene 470–410 BCE Irrationality
of

√
3;

√
17; 1

2 (
√

5 − 1)

Archytas of Tarentum 428–347 BCE Arithmetic; Harmonic and geo-
metric series; Theory of music

Theaetetos of Athens 415–369 BCE Incommensurability;
Regular polyhedra

Eudoxos of Cnidos 408–355 BCE Approximate ‘integration’ pro-
cedure (‘Exhaustion’)

Menaichmos 380–320 BCE Discovery of conic sections

Euclid 330–260 BCE Plane geometry;
Platonic solids; ‘E. algorithm’

Aristarchos of Samos 310–230 BCE Father of Astronomy;
Trigonometry

Archimedes 287–212 BCE Father of Mathematical Physics
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Table 1.5: (Cont.)

Name Life-span Major contribution

Eratosthenes 276–197 BCE Applied geometry;
Number Theory

Apollonios 262–200 BCE
Properties of conic sections (cir-
cle, ellipse, parabola, hyper-
bola)

Zenodoros 200–140 BCE Isometric figures

Hipparchos of Nicaea 180–110 BCE Spherical trigonometry;
Father of trigonometry

Heron of Alexandria 60–120 CE Areas and volumes;
Engineering

Menelaos 65–130 CE Spherical trigonometry;
‘M. Theorem’

Ptolemy of Alexandria 85–165 CE Mathematical astronomy;
Law of sines

Diophantos of
Alexandria 206–290 CE Father of algebra

Pappos 350–410 CE Advent of projective geometry

Avantgarde Chinese Mathematics (300 BCE–1303 CE)

Unlike the early Greeks, who were interested in formal logic, the prac-
tical minded Chinese were at heart applied mathematicians and numerical
analysts. To them, the primacy of arithmetical operations was their main
concern. The notation of a number, in the Pythagorean sense, as an atomic
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and invisible entity did not trouble them. Neither did Chinese mathemati-

cians have to face the dilemma of the irrational numbers, which perplexed the

Greeks. Their ‘dialectical logic’ is best exemplified in their method of solv-

ing equations. A solution is assumed beforehand, and the answer is obtained

to the desired accuracy by performing as many iterations as are necessary.

Thus, they invented the ‘rule of double false position’ (ca 300 BCE), one of

the oldest methods of approximating a real root of an equation298.

For over a thousand years, the Chinese used this method, refining and

extending it, passing it to the Arabs, who in turn passed it on to the Eu-

ropeans. The method still continues to have basic applications in modern

numerical analysis under the name of the chord or chain rule.

Other notable contributions of Chinese mathematics which, at the time of

their conception were yet unknown (and remained so until the 14th century)

were associated with the solution of a system of simultaneous linear equations.

Although composed sometime between 300 BCE to 200 CE it nevertheless

failed to lead to the concept of determinants before the 17th century (Seki

Kowa, Japan, 1683).

As an example consider a single linear equation in one unknown ax+b = 0.

Let g1 and g2 be two preliminary guesses for the value of x and let f1 and

f2 be the errors arising from these guesses; Then ag1 + b = f1; ag2 + b = f2.

From these we obtain by simple manipulation

a(g1 − g2) = f1 − f2; b(g2 − g1) = f1g2 − f2g1

and hence

x = − b

a
=

f1g2 − f2g1

f1 − f2
=

1
f1 − f2

∣
∣
∣
∣

f1 f2

g1 g2

∣
∣
∣
∣

The method can be easily extended to system of simultaneous equations.

It is known as the ‘rule of double false position’. The later transmitted it,

through India, to the Arabs, who in turn passed it to the West. Other im-

portant contributions are:

• The concept of negative numbers appears for the first time in China near

the beginning the Christian era.

298 Variants of this method are to be found in Babylonian mathematics, in Alexan-

drian mathematics (Heron’s method), and in Hindu mathematics.
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• The development of an algorithm for extracting square and cube roots
was first explained in the Chiu Chang, and elaborated and refined by
Sun Tsu (ca 300 CE). The 13th century mathematicians extended the
algorithm to the extraction of roots of any order. The Arab mathemati-
cian Al-Kashi (ca 1400 CE) and later European adopted the method.

• The development of numerical methods of solving high-order equations
in the 13th century – methods similar to those associated with Horner
and Ruffini, at the beginning of the 18th century (Ch’in Chiu-Shao,
1247).

Thus, to solve the equation x2 +252x − 5292 = 0, Ch’in first estab-
lished that there is a root between 19 and 20. He then used the transfor-
mation y = x − 19 to obtain the equation y2 + 290y − 143 = 0,
with a root between 0 and 1. His final approximate solution is x =
19 + 143

1+290 .

Similarly, to solve the equation x3 − 574 = 0 he set y = x − 8 to
obtain y3 + 24y2 + 192y − 62 = 0, yielding as an approximate root
x = 8 + 62

1+24+192 = 8 + 2
7 .

Indeed, ‘Horner’s method’ must have been well known in medieval
China; it was used by several Sung mathematicians for the numerical
solution of cubic and even quartic equations. The unknown quantity
in these equations was represented by a monad and the zero by a little
circle, (the Chinese zero may have come directly from India with Bud-
dhism or it may have been imported later by Muslims). Red and black
ink were used respectively to represent positive and negative numbers.

A mathematician, Li Yeh (1178–1265), wrote treatises in 1248 and 1259
involving problems on quadrilaterals and circles, with their solutions.
Instead of using red and black colors to designate positive and negative
numbers, Li differentiated the latter by drawing diagonal strokes across
them.

• Pascal’s triangle of binomial coefficients was known in China as early as
100 CE. Chinese mathematicians used it to solve numerical equations
of higher degree.

• The value of π estimated by Liu Hui (ca 200 CE) and Tsu Chung
Chin (ca 400 CE), namely

3.141 592 6 < π < 3.141 592 7,

(by successive application of the Pythagorean theorem to polygons with
up to 24576 sides!), remained the must accurate values for a thousand
years.
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• A method of solving system of simultaneous linear equations (up to
5 unknowns), which is basically a variant of a method developed by
Gauss 1500 years later. It appeared in a text ‘Nine Chapters on the
mathematical Arts’ by an unknown author.

• Sun Tsu (c 300 CE) and Chin Chiu Shao (ca 1250) devised a novel
approach to the solution of indeterminate equations of the first degree. It
culminated with the Chinese Remainder Theorem of elementary number
theory. Their general solution predated the work of Euler and Gauss
by the five hundred years.

Indeterminate analysis arose from problem in Calendar making and as-
tronomical calculations. All Calendars need a beginning. A Calendar
constructed during the Wei dynasty (220–65 BCE) took as its starting-
point the last time that winter solstice coincided with the beginning of
a lunar month and was also the first day of an artificial 60-day cycle,
known as chia tsu. The objective was to locate exactly the number of
years (measured in days) since the beginning of the calendar.

Other practical problems of indeterminate analysis arose from engineer-
ing and military applications, and architecture.

To restate the problem of the calendar in modern symbolic notation,
let y be the number of days in a tropical year, N the number of years
since the beginning of the calendar, d the number of days in a synodic
month, r1 the number of days in the 60 day cycle between winter solstice
and the last day of the preceding chia tsu, and r2 the number of days
since the beginning of the lunar month. The number of years since the
beginning of the calendar can then be calculated from

yN ≡ r1(mod 60) ≡ r2(mod d).

More complex alignments, including planetary conjunctions, were built
into models for estimating the beginning of Calendars, and as early
as the 5th century CE Chinese astronomers solved a set of 10 linear
congruences.

Through history China has been relatively isolated from other cultural
centers due to the natural barriers such as the Himalayas and the Central
Asian plains. Yet, these geographical barriers were not sufficient to exclude
all contacts:

By 2nd century CE trade over the Silk Routes from China to the West
was at its height, and along with the goods went ideas and techniques. In
the centuries to come, the Classical civilization of both East and West would
suffer invasions small and large, culminating in Mongol hegemony over vast
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stretches of the Eurasian plains, which both served as instruments for diffusion
and led to the convergence of ideas and technological practices. In examining
the dissemination of Chinese mathematics, one needs to look at the Hindu
and Arab connections.

While there is little evidence of Chinese science in any of the extant Hindu
texts, we have evidence of from 7th century on that translations were made
of Hindu astronomical and mathematical texts which were mentioned in the
records of the Sui and Tang dynasties. The texts contain sections on Hindu
numerals and operations, and sine tables. A surviving Chinese block-print
text contains Hindu numerals, including the use of a dot to indicate zero.

There is evidence of Chinese diplomats posted at the Court of the Guptas
in India in the middle of the 1st millennium CE. A number of Chinese Bud-
dhist scholars made their pilgrimage to holy places in India, bringing back
many texts for translation.

The Arab connection is better documented: there are a number of reports
of political and diplomatic links between the Arab world and China to supple-
ment trade relations. Arab travelers (including Ibn Battuta, ca 1350 CE),
gave detailed accounts of Chinese society and science.

Chinese mathematics may have made specific borrowings from Arab
sources: it is possible that trigonometric methods used in astronomy may
have been transmitted through Arab and Hindu contacts. In constructing a
calendar in the 14th century, Kou Shou Ching used spherical trigonometric
methods which seem to have Arab origins.

Avenues of direct transmission of mathematical lore from China to the
West did probably exist: as early as the 3rd century BCE, Chinese silk and
fine ironware were to be found in the markets of Imperial Rome. And a
few centuries later a whole gamut of technological innovations found their
way slowly to Europe. Thus, it is reasonable to expect that mathematical
knowledge from China diffused westwards to Europe, there perhaps to remain
dormant during Europe’s Dark Ages, but coming to life once more with the
cultural awakening of the Renaissance.

Finally, during the late 17th and 18th centuries, Europe became aware of
the Chinese intellectual heritage and there began an ‘East-West Passage’ of
scientific ideas through the Jesuit connection.

The question is often asked as to why did modern science evolved in the
West and not in China? The answer is quite simple. In the absence of
the concept of a divine being who acted to legislate what went on in the
natural world and whose decrees formed inviolate ‘laws’ of nature, Chinese
and Japanese science was condemned to a curious stillbirth. It is interesting
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to ponder whether science would have flourished in medieval and Renaissance
Europe were it not for the Judeu-Christian theology.

Although differences in scientific progress between East and West can in-
deed be traced to theological differences, other factors are also responsible:
Eastern philosophy lacked the ingredient of reductionism, whereby the prop-
erties of a complicated system are understood by studying the behavior of its
component parts.

Eastern philosophy emphasized holistic interconnectedness of physical
things. The ability to dissect natural systems has been crucial to the progress
of science in the West. On the other hand, the notion that the whole is more
than the sum of its parts arrested the motivation of Eastern thinkers to know
something without knowing everything!

Finally, in the East (especially in China) stability was much more prized
than freedom and the rulers had a powerful vested interest in not being chal-
lenged. Thus, the continuous interest in science in the West may be sought in
the Western tendency to be dissatisfied with the status quo. In China, a phi-
losopher like Thomas Aquinas would have become an unchallenged authority;
in Europe, his system was questioned within a generation after his death.

Mathematics in Ancient India299 (320–500 CE)

During the Gupta dynasty, Hindu mathematics and astronomy reached its
zenith. The Hindus had long been interested in these subjects and surpassed
even the Greeks of the Hellenistic period in some branches of Mathematics.
Using abstract principles of algebra, the Hindus could cope with much more
difficult concepts than found in the visible Greek demonstrations of geometry.

299 For further reading, see: Joseph, G.G., The Crest of the Peacock, Princeton

University Press, 2000, 455 pp.
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Greek algebra was rudimentary, but the Hindus invented the concept of neg-
ative quantities, solved quadratic equations, and calculated the square root
of 2.

In 1881, in a sequestered village called Bakhshali (on the north-west bor-

der of India), a farmer came upon an old manuscript, known today as The
Bakhshali manuscript. The content of this document proved to be mathemat-
ical, ranging over topics in arithmetic, algebra and mensurational geometry.
It was written in an old form of Sanskrit and its content were composed not
later than the 4th century CE.

Most of the illustrative problems are of the type requiring the solution of
linear equations or of an indeterminate equation of the second degree. The
solutions display the writer’s knowledge of average value, and series, and a
considerable skill in operation with fractions. Consistent use is made of the
positional decimal system, where a heavy dot serves the purpose of a zero.
Calculations involve positive and negative numbers, the sign (+) is used to

denote a negative number or subtraction, and multiplication is often indicated

by juxtaposition.

The Hindus summed (algebraically!) arithmetical and geometrical pro-
gressions, and solved commercial problems in simple and compound inter-
est, discount and partnership, mixture and cistern problems, similar to those

found in modern texts. They admitted negative and irrational numbers and
recognized that a quadratic has two formal roots. They also showed remark-
able ability in indeterminate equations, and were perhaps the first to devise
general methods in this branch of mathematics. Unlike Diophantos, who
sought only one rational solution to an indeterminate equation, the Hindus
endeavored to find all possible solutions especially for linear indeterminate
equations, which Diophantos did not treat at all. The Hindu work on inde-
terminate equations reached Western Europe too late to exert any beneficial

influence. The Hindus were not proficient in Geometry. Postulational develop-
ments were nonexistent. Their geometry was largely empirical and generally
connected with mensuration.

In trigonometry, the Hindus introduced the notion of the sine and calcu-

lated300 tables of 24 sines, progressing by intervals of 3 ◦45′.

300 The sine of 3 ◦45′ = 225′ was considered equal to the arc of 225′. The other

sines up to sin 86 ◦15′ were calculated by the identity

sin(n + 1)α = 2λ sin(nα) − sin(n − 1)α,

where α = 225′, λ = cos α, and λ was approximated by the number
(
1 − 1

450

)
.
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The Hindu astronomers knew that the earth was round and that it ro-
tated and they had some understanding of gravitation. Their most famous
invention, however, was the system of the so-called ‘Arabic numerals’, which
first appeared in India in the 3rd century BCE.

By the time of the Guptas, Hindus were using a sort of decimal system.
The zero first appeared in the works of scholars who were familiar with the
Hindu numerals. It is significant that Christian Europe did not know of
Hindu-Arabic numerals until the 12th century and did not use them exten-
sively until the 16th. The two civilizations were too far apart, and contacts
between them were too infrequent, for even such obviously useful ideas to
travel quickly from one region to the other.

At about 412 CE the Gupta state began to decline, chiefly because of
internal disorders. By the 6th century the Gupta kingdom had collapsed.
During the next six centuries India suffered a succession of internal wars and
foreign invasions, and the overwhelming influence of Brahman priests made it
difficult for secular rulers to exercise effective political control. When a new
Hindu Empire finally emerged, it was ruled by the Muslims, not the Hindus.

Nevertheless, Hindu mathematics continued to flourish up to 1400 CE with
considerable achievements in the field of algebra, trigonometry and infinite
series, in contradistinction to the Greeks who excelled in geometry.
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321 CE The edict of the Emperor Flavius Valerius Aurelius Con-
stantinus301 (274–337 CE), known as Constantine302, enacted that magis-
trates, citizens and artisans were to rest from their labors ‘on the venerable
day of the Sun, namely Sunday, the first day of the week. In the same cen-

301 Proclaimed emperor in 306 CE; won his first campaign against his rival Max-

entius (312 CE) by virtue of the fact that Christians sided with him, and that

Christian centurions led his legions. Constantine set aside all persecution of

Christians and admitted them to his court at the very beginning of his reign.

When he defeated the Eastern Roman Emperor Licinius, he established full

equality for Christians, and shortly thereafter he began a cautious repression of

the Pagans. In 329 CE, he began a series of legal actions which expressed his

hatred for the Jews. In the year 330 CE, all people of the Roman Empire were

forbidden (under death penalty) to convert to Judaism. The death penalty was

also specified for all Jews who taught the Torah to gentiles or encouraged gen-

tiles to embrace Judaism. The death penalty was prescribed for any Jew who

married a gentile. All intermarriage was forbidden, unless a Jew converted to

Christianity. Judaism was referred to in imperial pronouncements as the secta

nefaria (“abominable religion”), or the secta feralis (“mournful religion”) or the

“bestial religion”. As a final touch, Constantine forbade any Jew to set foot in

Jerusalem.

So long as the early Christians were persecuted by Imperial Rome, the Chris-

tians did not turn upon the Jews. They needed them too desperately: Chris-

tians were saved from death by Jewish bribes; and thousands of Christians were

brought out of slavery to Jews. During these early years, Christians were re-

garded as Jews by Jews – a condition that lasted into to 4th century CE in

some cities of Asia Minor. It was only when Christianity became the official

state religion of the Roman Empire that the separation of Jew and Christian

was complete, and anti-Semitism became one of the foundation stones of the

new religion. By the time of Emperor Constantine, Christianity had won the

tacit approval if not the total commitment of the most viable and thoughtful

section of the Roman Empire’s population. The need for Jewish help that had

been lessening over the 3rd century CE, now ceased.

Thus, Christianity was established in the Western world in the holy hatred of

Judaism – a Hatred that would exact from the Jew suffering beyond description,

untold millions of lives, and a river of blood.

It is of no credit to the Christian Church that it erased the years of Jewish-

Christian brotherhood, so that the murderous attitude of so many Christians

toward Jews, in the centuries that followed Rome’s acceptance of Christianity,

might not be softened by any memory of Jewish mercy and loving kindness

toward Christians.
302 Hadas, M., Imperial Rome, Time-Life International: The Netherlands, 1966,

190 pp.
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tury, Christmas was assigned to 25 December, because on that date each
year was celebrated the birth of the sun to a new life after the winter soltice.
Easter, being a lunar feast in origin, retained a variable date.

325 CE The Council of Nicaea (Asia Minor) marks the rigidification of
the Christian Church. Although the Julian calendar removed much of the
confusion of civil reckoning of time, and was adopted throughout the Roman
Empire, the moon continued to cause complications. The feasts of the Jewish
and Christian years were fixed by the moon; the Passover was set by the date
of the full moon in the month of which the 14th day (from new moon) fell
on or after the vernal equinox. The date of Easter, in turn, depended on the
date of Passover: most Christians wanted Easter to be the Sunday following
the 14th day of the moon (those who placed it on the 14th day were regarded
as heretics, and called Quartodecimans).

The problem of the date of Easter was officially settled at the Council of
Nicaea: Easter Day was to be (and still is) the first Sunday after the 14th

day of the moon that occurs on, or directly after, the vernal equinox. At
that time, March 21 was the date of the vernal equinox. (It was on March
25 in 46 BCE, the date of the Julian reform, but slipped back to the 21st

on account of the accumulated discrepancy between the Julian year and the
tropical year.) Thus the date of Easter is set by luni-solar reckoning, and its
fluctuations by more than a month from year to year are a good illustration
of the complication involved. At any rate, the possibility of an occasional
coincidence with the Jewish Passover was avoided.

At the bottom of these ‘calendar-exercises’ was the desire of the Chris-
tian Church to separate the Jews from the Christians, segregate them, make
Judaism illegal and finally make Judaism disappear altogether.

The fact was that in 325 CE Judaism still appealed to a great many people
among the Pagans as well as among Christians. There were many Christians
who respected the Synagogue and its traditions as institutions of Mother
Religion. Since Christianity was a movement among the lower classes of the
empire’s society, the more cultured Pagans had more respect for Judaism
which had for centuries been a part of the Roman world.

Thus, the bishops prevailed upon the emperor to prevent Pagans from
becoming converts to Judaism, and also take away from the Jews one of the
political privileges which they had long enjoyed. Many of the Christian clergy,
who now stood close to the Roman government, urged the emperors to deal
harshly with Judaism. But the Roman government had a great deal of respect
for old Roman law, and the law had always permitted Judaism to be practiced.
As the Church acquired power, it began to use unfair methods which have
flagrantly contradicted the great ideas for which Christianity stands.
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The council of Nicea marks an important change in the attitude of the
Church towards the Jews. Until now the rivalry for converts had been based
upon an idealogical basis. Now, however, the Church took up the fight and
carried it on with the assistance of the government. The immediate results
were the litigations of empire-wide anti-Jewish laws, religions and economical
harassments and violent persecutions, especially in Israel (351 BCE). Many of
the Talmudic scholar there had to flee the country and escape to Babylonia.

355–390 CE Oribasius of Pergamum (ca 325–400 CE). Greek physi-
cian. Personal physician of Emperor Julian. Compiled a medical encyclope-
dia. Reputed discoverer of the salivary glands.

358 CE Hillel III (286–365, Israel). Reformer of the Hebrew Calendar.
Jewish patriarch in Israel from 330 to 365 BCE. Political persecution made
it impossible for the dispersed Jewish communities to communicate each year
with the Judean Sanhedrin for the determination of the fasts and feasts. Hillel
III fixed the calendar for the whole Diaspora and for all time to come in
358 CE.

Hebrew Mathematics (200 BCE–500 CE)

The Talmud , which literary means “the study”, is the name given to a
work of many volumes, written partly in Hebrew and partly in Aramaic, which
embodies the teaching and opinions, on religious and sociological matters, of
the ancient Jewish sages during a period of some 700 years (200 BCE to 500
CE). In addition it contains the theological, theosophical and philosophical
views, as well as the moral and ethical maxims, of those sages. It is further
interwoven with many anatomical, physiological, medical and anthropological
observations of scientific character. The Talmud consists of distinct portions:

(1) The Mishna contains the teachings transmitted from generation to gen-
eration by word of mouth. It represents the legal traditions (based on
the written law of the Pentateuch) of some 310 eminent scholars over 14
generations (zugoth and Tanaaim) dating from the time of Simon the
Just (fl. ca 200 BCE) to that of Yehuda ha-Nasi (137–210 CE),
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who compiled and edited it. It was canonized sometimes during 210–220
CE.

(2) The Gemara consists of commentaries on the Mishna. It represents the
discussions and disputations of the Amoraaim, who were the directors
and members of the Babylonian or Jerusalem academies (220–470 CE).
They numbered about 2000 savants, over a span of 7 generations.

Each school of Amoraaim, that of Babylonia and that of Israel, expounded
the Mishna in somewhat different manner from the other: The Talmud Bavli
(“Babylonian Talmud”) was compiled in the Mesopotamian academies of Ne-
hardea, Sura, and Pumbedita. Its compilation began by Rav Ashi (375–427
CE) and it was canonized in 525 CE. The Talmud Jerushalmi (“Jerusalem
Talmud”) was compiled by the Israeli academies. It is much smaller in size
and scope and its discussions do not exhibit the same dialectical acumen as
is shown in the Babylonian edition.

While the primary substance of the Talmud lay in expounding and de-
veloping civil and religious law, a considerable acquaintance with the various
branches of mathematics was mandatory in connection with such legislation.

Thus, the determination of the calendar, legislation regarding the sowing
of fields, as well as certain other religious observances, demanded a knowledge
of branches of mathematics such as algebra, geometry and trigonometry. None
of these sciences are dealt with in any systematic manner in the Talmud, but
scientific problems are alluded to casually in relation to the legal questions
under consideration. Hence we find that statements of mathematical and
astronomical interest are scattered about, in a haphazard way, throughout the
many thousands of pages of the numerous treatises comprising the Babylonian
and Jerusalem Talmuds and their various addenda.

The astronomical facts directly or indirectly mentioned in the Talmud
show that the participants of the discussions must have possessed a consider-
able ingenuity and skill in mathematical computations and geometrical con-
structions. In fact, as far as astronomical lore is concerned, the Talmud reflects
the best definitive knowledge available in the 5th century CE. The following
example will substantiate this claim:

In the field of pure mathematics, the knowledge of the Hebrews equaled
that of the Babylonians, Egyptians and Romans, but certainly did not equal
that of the Greeks in their geometrical speculations. Not only did they not
produce mathematicians on the level of Thales, Pythagoras, Euclid and
Archimedes, but there is no evidence whatever that they discovered anything
original in mathematical theory.
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While the Greeks studied mathematics for its own sake and felt a strong
craving to speculate and discover new mathematical facts, the Talmudic sages
were satisfied with applying (with varying levels of skill) what simple math-
ematical tools they possessed to the various practical problems with which
they had to deal in their exposition of civil and religious laws. For this reason
and others, the foundations of the classical physical sciences were laid during
1550–1750 without direct Jewish participation.

Thus, for example, the Tannaaim and the Amoraaim used the Babylonian
value of π = 3 as late as the 5th century CE while Archimedes in the 3rd

century BCE (as well as the Egyptians before him!), had given more exact
values. Likewise, they used the Pythagoreans’ approximation303

√
2 ≈ 1.4,

which they needed in their calculations of areas.

In the field of applied mathematics, however, the Hebrew scholars exhibited
great ingenuity and originality, which led them, serendipitously, to the brink
of great discoveries in 5 distinct areas:

I. Problems of the Hebrew Calendar
304

Before the departure of the Israelites from Egypt (ca 1250 BCE) their year
commenced at the autumnal equinox; but in order to solemnize the memory
of their deliverance, the month of Nisan (or Aviv) in which that event took
place, and which falls about the time of the vernal equinox, was afterwards
regarded as the beginning of the ecclesiastical or legal year. In civil affairs,
and in regulation of the Jubilees and sabbatical years, the Jews still adhere
to the ancient calendrical year, which begins with the month of Tishri, about

303
√

2 >
√

49
25

= 7
5

[an upper bound is obtained by Heron’s approximation
√

a2 + b ≤ a + b
2a

for a = 1, b = 1, leading to
√

2 < 3
2
]. They knew that

1.4 is not the exact value for
√

2 but did not bother to estimate the difference

[Talmud Yerushalmi, Erubin 2, 1] because further accuracy was not necessary

for their applications.
304 For further reading, see:

• Feldman, W.M., Rabbinical Mathematics and Astronomy, Hermon Press,
1978, 239 pp.

• Reingold E.M. and H. Dershowitz, Calendrical Calculations, Cambridge Uni-
versity Press, 2001, 422 p.
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the time of the autumnal equinox. After their dispersion, the Jews found it
necessary to utilize the astronomical rules and cycles of the more enlightened
heathen, in order that their religious festivals might be observed on the same
day in all the countries through which they were scattered.

The canon of the Old Testament was closed with the work of Ezra (fl.
458 BCE). He was followed by the Sopherim (scribes), and the sages of the
Talmud (200 BCE–500 CE). While the primary work of the Talmudic savants
lay in expounding and developing the civil and religious law of the Bible, a
considerable acquaintance with the various branches of science was necessary
in connection with such legislation.

The determination of the calendar required sound knowledge of astronomy,
since not only were the Jewish festivals fixed on given days of the lunar month,
but they also depended on the position of the sun. Passover, for instance,
which begins on the 15th day of the month of Nisan, must also occur in the
month of the wheat harvest or Aviv (Deut 16, 1). The month of Tishri must
take place in the autumn. Further, the position of the moon in relation to
the sun, as well as its height above the horizon at any moment, had to be
computed mathematically, for the purpose of ascertaining whether the new
moon could be visible at that given moment. This procedure was necessary
for the purpose of fixing the beginning of every new month.

In about 200 CE, Mar Shmuel proposed to adopt the Metonic cycle of
19 solar years, by which the Jewish lunisolar year is regulated to the present
day. The determination of the beginning of a month by the Phase Method
prevailed until 358 CE, when it was replaced by the Fixed Calendar Method
which makes use of the Mean Conjunction, or Molad (literally, “birth”), to
determine the beginning of the month.

The Phase Method operated as follows: to determine whether the moon
is visible at any moment, and to ascertain the exact moment of true con-
junction, it is necessary to know the moon’s true position (celestial latitude
and longitude) at that moment. First, the moon’s mean longitude was deter-
mined. Then, the Talmudic rabbis were confronted with the ascertainment
of the moon’s mean longitude at sunset, or at any given interval after sunset
on a given day. (The time of sunset is calculated by first finding the sun’s
longitude on the day in question, and using the longitude to compute the
sun’s declination on the same day.)

Prior to Kepler’s time, the above calculations were not based on the elliptic
motion of the planets. Instead, the moon’s path was constructed by means
of eccentric circles with epicycles, a device which however ingenious from a
mathematical standpoint, is a purely fantastic one, devoid of any physical
basis. In such a theory, the moon’s apparent diameters when nearest to
and furthest from the earth, should be in a proportion of about 2: 1 instead
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of about 1.14: 1, which is the actual value. Moreover, complicated as the
epicyclic theory was, it became still more involved if one tried to explain a
few of the numerous irregularities of the lunar orbit.

The theory of Keplerian motion is not only simple, but has the merit of
being true. Indeed, the calculation of solar and lunar longitudes on the basis
of an elliptical orbit is extremely simple.

Having found the moon’s longitude, the Talmudic rabbis next had to ascer-
tain whether in that position in the heavens the new moon would be visible
in the neighborhood of Jerusalem. For as the beginning of the month was
fixed on the accredited evidence of witnesses, who reporting having seen the
new moon soon after sunset on a certain day, it was the duty of the Calendar
Council not only to test their evidence by stringent cross-examination, but
also to ascertain by mathematical calculations, whether the moon could in
fact be seen at that particular moment, at the particular place from which
the witnesses came. (This involves laborious and detailed calculations which
were ingeniously perfected in the Middle Ages by Maimonides, although
they were somewhat inaccurate.) The council sat in Jerusalem on the 30th of
each Hebrew month to receive witnesses. If after cross-examination and fur-
ther confirmation of their evidence by mathematical calculations, the Council
concluded that the new moon was indeed seen by the witnesses at the time
they mentioned, that day was proclaimed to be the 1st of the month without
any further delays.

A month of 29 days was called a defective month and one with 30 days
was called a full month. It was possible for 3 months to be consecutively full if
(owing to unfavorable atmospheric conditions) the new moon was not visible.
If however, no witness appeared for 3 months, then the beginning of the next
month was determined by calculations alone. No year was allowed to have
more than 8 or less than 4 full months so that no lunar year lasted more than
356 or less than 352 days.

When the Court was satisfied that a new moon had actually been seen, the
President declared the new moon to be consecrated and news spread to people
outside Jerusalem by means of bonfires on the top of the mountains. When
the awaited signal was observed at neighboring mountains, similar fire signals
were lit, and thus information was rapidly transmitted to distant places.

This method was continued until deliberate attempts to confuse the Jews
were made by the Samaritans, who maliciously lit signals at improper times.
Therefore, these fire signals were altogether abolished toward the end of the
2th century CE by Yehuda ha-Nasi (137–210 CE), and couriers were sent
instead (seven times a year) to convey the tidings. As these could not reach
the more distant places before the 31st day of the old month, the residents of
those places used to celebrate two days for their holidays because they were
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not sure whether the first of the month was the 30th or the 31st day. In the
case of New Year (Rosh Hashana), two days were (and still are) kept even in
Jerusalem, in case witnesses arrived late in the day.

Note that the beginning of the month was not fixed by the moment of the
true conjunction but by the moment the crescent of the new moon was seen
— which was at least 18 hours after the conjunction.

In the construction of the Fixed Calendar, numerous details require atten-
tion. The calendar is dated from the creation, which is considered to have
taken place in the year 3761 BCE305. The year is luni-solar with the following
structure: as the average length of the synodic month is about 29 1

2 days, and
as a calendar month must have an integral number of days and must start at
the same hour of the day — viz., 6 p.m. — it has been agreed to make a civil
month consist alternatively of 30 days (full month) and 29 days (defective
month). Thus, Nisan (1), Sivan (3), Av (5), Tishri (7), Kislev (9) and Shvat
(11) are full, while Iyar (2), Tamuz (4), Elul (6), Marheshvan (8), Teveth
(10) and Adar (12) are defective in an ordinary regular year consisting of 354
days = 50 weeks + 4 days. This arrangement must, however, be modified in
a number of ways due to the following disparities:

• The astronomical lunar year exceeds the civil lunar year by

12 × [29d : 12h : 44m : 3
1
3

s

− 29d : 12h] = 8h : 48m : 40s.

Hence it is necessary, at fixed intervals, to add a day to the ordinary year
by making one of the defective months full, giving rise to an ordinary
full year of 355 days. The defective month chosen is Marheshvan. Such
a procedure, if adopted, say, every 3rd year, necessarily overbalances
the disparity, and hence at other (longer) fixed intervals, the excess so
introduced is adjusted by subtracting a day from one of the full months,
making that particular year only 353 days. Such a year is called an
ordinary defective year, and the full month chosen for this purpose is
Kislev .

• The Hebrew calendar, being based on the Metonic cycle of 19 years,
adopts a fictive mean solar year of length

235
19

× [29d : 12h : 44m : 3
1
3

s

] = 365d : 5h : 55m : 25
25
57

s

,

305 From Biblical, Talmudic and other traditional lore the period between Adam

and the Exodus amounted to 2448 years, and between the latter and the de-

struction of the 2nd Temple there elapsed another 1380 years, making a total

of 3828 years; and as the destruction of the Temple is considered to have taken

place in the year 68 BCE, the above fiducial follows.
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which exceeds the tropical year by 6.6 minutes. With respect to this
year, the lunar year of 12 lunations falls short by 10d : 21h : 6m : 45 25

57

s
.

This amounts to
10d : 21h : 6m : 45 25

57
s

29d : 12h : 44m : 3 1
3

s = 7
19 of a synodic month.

Hence, if in the course of every cycle of 19 years 7 extra months are
intercalated, making 12 ordinary years of 12 months each (= 144 lunations),
and 7 leap years of 13 months each (= 91 lunations), the sun and the moon
will have (almost) exactly the same relative mean positions in the heavens
at the end of the cycle as at its beginning (it would be exactly right if one
could neglect the 6.6m discrepancy between the Hebrew solar year and a
tropical year306). The order of the leap years, in each cycle of 19 years, is

306 The ‘solar year’ of 365d : 5h : 55m : 25.44s is an arbitrary figure designed to
make the solar year exactly 1

19
of 235 lunations. Since it is about 6.6 minutes

longer than the present value of the tropical year, the accumulated difference

during the 1500 years that the Fixed Calendar has been in use, is about 7
days. Hence, the beginning of Passover (which according to Biblical injunction

should fall in the first spring month, viz., during the 30 days between the 21st of

March and 19th of April) has been shifted forward by a complete week. Indeed,
already in 1929 the Passover began on April 25, i.e., 6 days later than the

Biblical limit. In order to remedy this it is necessary to reform the Hebrew

Calendar by introducing a different cycle with a different sequence of leap years .
This is done in the following way:

present length of tropical year − present length of astronomical lunar year

present length of synodic month
≈

10d : 21h : 10s

29d : 12h : 44m : 3s
=

939610

2551443
.

Converting this ratio into a continued fraction, we get

1

2 + 1

1 + 1

2 + 1

1 + 1

1 + 1

17 + . . .

.

If we stop at the dotted line, the value of the fraction becomes 123
334

, which

means that very approximately the excess of a tropical year over a lunar year

is 123
334

of a synodic month. Hence, if in the course of every cycle of 334 years

we introduce 123 leap years, the excess would be practically wiped out. Indeed,

such an arrangement would make the 334 modified civil years only about 39

minutes less than 334 tropical years, and it would take about 12,500 years (in-

stead of about 200 years as it does now) for the difference to accumulate to one

day.

As 334 = 19 × 17+11, the order of the leap years could continue as at present
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{3, 6, 8, 11, 14, 17, 19}. A Hebrew year, Y = x + 3761, is leap if the residue
of Y

19 is a member of the above series, where x is the Gregorian year307. The
intercalary year is inserted as Adar bet (“2nd Adar”), just after Adar aleph
(“1st Adar”).

The Hebrew month begins at 6 p.m. of the day on which the moon
is in conjunction (Molad). Hence, if the Molad of any given month is
known, that of the next month is ascertained by adding an average lunation
L = 29d : 12h : 44m : 3 1

3

s
. Thus, if the Molad of any given month is known,

(say, day number = M1) then that of any other month (M2), n months after
or before the given month, is found from the relation: M2 = M1 ± nL.

The most important Molad of each year is that of the month of Tishri
which determines the New Year Day of that year. Having found the Molad of
Tishri of the first year of any given cycle, the Molad of Tishri of any year in
that cycle easily follows [e.g., the year 5606 was the first of the 296th cycle,
and the mean new moon appertaining to the 1st of Tishri for that year was
Oct. 01, 1845, 15h : 42m : 431

3

s
].

There are five separate occasions which necessitate the postponement of
the New Year Day by one or even two days. These postponements depend on
the exact moment at which a Molad occurs, and necessarily entail a length-
ening of the year by one or two days (with the consequent lengthening of one
or two months in that year). A full embolismic (leap) year may have up to
385 days, in order that certain festivals may fall on proper days of the week
for their due observance.

Note that whereas the accuracy of the phase method hinges on the deter-
mination of the appearance of the crescent of the new moon, the accuracy of
the Fixed Calendar Method depends on the interval between true and mean
conjunction, which is at most 15 hours (positive or negative). In one respect,
however, the Phase Method was more accurate: the lunar year was made to
keep pace with the solar year by intercalating an extra month whenever there
was an actual need for it (as found by the size of the discrepancy between
the date of Passover and that of the calculated, or observed, vernal equinox)
instead of intercalating at regular intervals – as is done under the Fixed Calen-
dar Method. But on the whole, the advantages of the Fixed Calendar Method
considerably outweigh its disadvantages.

The Jewish Calendar was progressively improved during the ages by three
distinguished astronomers:

for 17 complete Meton cycles of 19 years, as well as the first 11 years of the 18th

cycle. After that, a new 343 year’s cycle would have to begin.
307 We ignore here the Gregorian calendar’s own slight fluctuations about the

earth’s (current) astronomical tropical year.
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• Rabban Gamliel II (30–117 CE)

• Shmuel (165–254 CE)

• Hillel III, (286–365 CE)

In the year 357 CE, political persecutions made it impossible for the dis-
persed Jewish communities to communicate each year with the Judean San-
hedrin for the determination of the fasts and feasts. Hillel III thus fixed the
calendar for the whole Diaspora and for all time to come in 358.

II. General Astronomy and Cosmology

Although there was no Hipparchos or Ptolemy amongst them, the Rab-
bis certainly produced several astronomers of considerable merit: Yohanan
ben Zakkai (7 BCE–77 CE); Gamliel II (ca 30–117, Yavne); Joshua ben
Hannania (35–117); Shmuel (165–254); Eliezer Hisma308 (ca 60–120);
Yohanan ben Gudgada (ca 60–120); Jossi ben Halafta309 (ca 95–150);
Nathan of Babylon (ca 90–160); Abayei310 (278–338); Hillel III (286–
365).

The physical nature of comets and their orbits was unknown until Newton
showed them to move in ellipses or in parabolas. It is therefore not surprising
that the Talmudic astronomer Shmuel (ca 200 CE) acknowledged his igno-
rance of the nature of these celestial bodies (Berachot 58b). It is, however,
remarkable that although, until the middle of the 17th century, even the most
civilized nations did not know the period of any comet, the period of at least

308 Rabban Gamliel II was rebuked by Rabbi Joshua ben Hannania for having

refused to promote his pupils Eliezer Hisma and Yohanan ben Gudgada in spite

of their great excellence. Consequently, Gamliel sent for them offering them

promotion, but in their great humility they refused to accept it. He then sent

for them a second time and said: “Do you suppose I am offering you greatness?

It is slavery that I am offering you since it is said (I Kings 12, 7) that a king is

a servant of his people”.
309 Jossi ben Halafta defined the differential positions of the sun in the heavens

at different times of the year as well as the relation between the ecliptic and the

equator [Erubin 56a].
310 Abayei understood the motion of the planets very well and knew the 28 year

Solar Cycle [Berachot 59b].
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one comet was known to Joshua ben Hannania (ca 85 CE), for he said
[Horayoth 10a]:

“A star appears every 70 years and leads ships astray” (by causing the
captains to steer by it erroneously). Apparently Joshua possessed some data
on the apparitions of comet Halley during his lifetime and before his time [87
BCE, 12 BCE, 66 CE].

The biblical account of the creation of the universe is presented in Genesis
1, 1–4; it is very incomplete but highly attractive, because it is pervaded by
a breath from primitive times.

The Talmudic scholars noticed immediately that in the biblical cosmology,
the existence of light apart from the sun is presupposed. Their way of inter-
preting the biblical revelation is not inconsistent with the current Big Bang
theory:

• “Rabbi Abahu said: God used to create universes and destroy them,
recreate them and destroy them again. . .” (Genesis Rabba 9).

• “Rabbi Judah said in the name of Rav: When God created the universe,
it kept expanding until God ordered it to halt, and it stopped” (Hagiga
12).

• “The universe is made in the form of a sphere” (Yerushalmi, Avoda Zara
3).

• “Rabbi Eleazar said: The light that God created on the first day, is used
by man to observe the Universe from one end to the other” (Hagiga 12).

Another important astronomical problem was the determination of side-
real periods on the basis of synodic periods.

Synodic period is defined as the time of orbital revolution of a planet
(or asteroid, or earth’s moon) w.r.t. the sun-earth line. In practice, it is
measured as the time interval between two successive conjunctions or between
two successive oppositions. At their conjunctions, Mercury and Venus are not
visible, but by interpolations carried out over many years (or even centuries),
these times have seen computed, and the synodic periods are known with
great accuracy. Because of the elliptical orbits of earth and other planets
(and asteroids) about the sun – and of the moon about the earth – the times
of conjunction or opposition do not occur with exact regularity.
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The synodic periods result from the difference between sidereal periods of

the planets and that of the earth. The more distant the planet is from the

sun, the slower it travels and the longer is its sidereal period (the time required

for a planet to complete one orbit around the sun). The inner planets gain a

lap on the earth between similar conjunctions, whereas the outer planets lose

a lap between oppositions.

The relation between sidereal and synodic period can be developed by

determining the fraction of a lap gained or lost each day. Thus (ignoring non-

uniform angular speeds attributed to orbital ellipticities), we denote by 1
Si

the fraction of its orbit that a planet travels in one day, by 1
E the fraction of

its orbit the earth travels in one day, and by 1
Sy

the fraction of a lap that the

planet gains or loses on the earth each day. Here Si and E denote the mean

sidereal years of the given planet and earth, respectively, while Sy denotes the

planet’s mean synodic period.

We find in the Talmud (Shabat 75a; Genesis Raba 10, 4) that the cal-

culated sidereal periods of the planets Venus, Mars, Jupiter and Saturn are

respectively 10 months, 1 1
2 years, 12 years and 30 years. Clearly these pe-

riods could not have been directly observed, nor precisely calculated before

the times of Kepler, Galileo and Newton. The only data that the Talmudic

sages could have used were the synodic periods of the five planets, known to

Hipparchos (ca 150 BCE). With the aid of these, the sidereal periods can

be evaluated arithmetically, using the simple approximate relations based on

additivity of angular speeds:

1
Si

=
1
E

+
1
Sy

(Mercury, Venus)

1
Si

=
1
E

− 1
Sy

(Mars, Jupiter, Saturn)

where

Si = sidereal period (m days, say)

Sy = synodic period

E = 365.2422 mean solar days (tropical year).

The following table compares modern values with the results quoted by

the Talmudic savants:
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Sidereal period
Synodic period (tropical years)

Planet (mean solar days) Talmud Modern
(ca 450 CE)

Venus 584 0.8 0.615

Mars 780 1.5 1.881

Jupiter 399 12 11.865

Saturn 378 30 29.650

III. The Eulerian limit

1
e

≈
(

1 − 1
n

)n

, n large [Euler 1748].

The Talmudic scholars needed to know how to divide an inheritance among
ten daughters and one son in a rational way such that the son is not deprived
[Jerusalem Talmud, Ketuboth 6, 6; Babylonian Talmud, Nedarim 39].

If each daughter took an equal share of ten percent, the poor son would
be left empty handed. So, Rabbi Yehuda ha-Nasi (fl 180 CE) devised the
following scheme: the first daughter takes 1

10 of the property value, the second
daughter receives 1

10 of the remaining property, etc. Finally, the son gets what
is left after all ten daughters collected their shares. Clearly, the share of the
kth daughter is 1

10 (1 − 1
10 )k−1, k = 1, 2, ..., 10, while the son gets

(

1 − 1
10

)10

= 0.348678440 >
1
3
.

Now, the Talmud says that: “...the son receives a little bit more than one
third and the daughters receive together a little bit less than two-thirds...”.

There is no way that the Rabbis in the 2nd century CE could have cal-
culated the value of (1 − 1

10 )10 with the mathematical tools available in the
Hellenistic period. Although they were acquainted with the contemporary
Alexandrian mathematics of Heron (90–120 CE), Nicomachos(100 CE),
and the earlier results of Euclid (300 BCE), Archimedes (250 BCE) and
Apollonios (230 BCE), this feat was beyond the capability of even Greek
mathematics.

My guess is, therefore, that the result (1 − 1
10 )10 > 1

3 was derived either
empirically or geometrically (e.g. using Euclid’s method of dividing a line
segment into n equal parts).
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Only in the 17th century, with Napier’s logarithms (1614) and Newton’s Bi-
nomial Theorem (1676), could one see that

e = lim
n→∞

(

1 +
1
n

)n

= lim
n→∞

[

1 + 1 +
n(n − 1)

2!n2
+

n(n − 1)(n − 2)
3!n3

+ · · ·
]

= 2 +
1
2!

+
1
3!

+ · · · = 2.718281828459045...

and

lim
n→∞

(

1 − 1
n

)n

=
1
e

= 0.36787944...

IV. Probability – Prior and Posterior Probabilities – Bayes’

Theorem (1736)

The factor that ensured the primacy of Jewish thinkers in pioneering ways
of thinking about chance in practical situations was that Orthodox Jews were
forbidden to gamble. The Greeks might have discovered probability, for they
were addicted to dice-throwing. But the dice they used were made from the
astragalus bones of a sheep (what would be the knuckle-bones if sheep had
knuckles). These were very irregular in shape, so that dice were biased and
there was not an equal likelihood of each side falling uppermost. Because of
the astragalus’ imbalance, it was not a random device, so it was impossible
for the statistical law of large numbers (‘If the number of tests of an event is
large, then the proportion of successes in the tests is close to the likelihood
of the event’) to manifest itself. By contrast, the elaborate system of casting
lots used by Jewish priests did exactly what it was devised to do; that is, gave
everyone an equal chance of being chosen.

The historical origin of the lottery system is the annual choice of one of two
goats to be the ‘scapegoat’, carrying the heavy load of sin into the wilderness
as the Goat of Azazel. (The other goat was sacrificed). Since the choice here
was between only two participants, it would be demonstrable that the chances
of being chosen were equal for both. This idea could be easily extended to
include the whole group of temple priests who were daily caught up in casting
lots for all sorts of purposes. The concept of an equal chance of being chosen
in a ‘fair’ lottery would be the prime motivation of the whole system. In
turn, the notion of equal probabilities, and the fact that such chances would
be shown by the equal numbers of votes for each participant over a period,
would naturally emerge. [And indeed, the statistical law of large numbers, the



358 CE 421

formulation of which was credited to Jacob Bernoulli (1709), actually was

first declared by Rabbi Isaac Aramah (1420–1484, Spain)].

Consider the following example (Babylonian Talmud: Yevamoth 4): A

widow married her brother-in-law three months after her husband’s death

and there were no signs that the widow was pregnant prior to her second

marriage. Six months after the marriage she gave birth to a child. Was the

child full-term baby (the first husband being the father) or was it premature

(the second husband being the father)? The question was relevant to the

child’s inheritance rights. If the mother was already pregnant by the first

husband when she married his brother (no visible sign of pregnancy) it would

affect the child’s right to inherit from the brother. If would also invalidate the

second marriage and complicate the widow’s right to support. Thus a good

deal hinged on the court’s decision. Two cases must therefore be weighted

against each other:

a. The deceased husband is the father (full-term baby) while the woman

showed no signs of pregnancy. In ancient Israel the probability of the

first premise was 9
10 while the probability of the second premise was 2

10 .

The product of these probabilities is 9
10 × 2

10 = 18
100 .

b. The second husband is taken to be the father with probability of 1
10 . Since

in this case the widow would show no sign of pregnancy with certainty,
the overall probability here is 1

10 × 1 = 1
10 .

The judges rightly rejected a third possibility that the two partners

breached the law by having intercourse within the 3-month waiting period.

This would invalidate a levirate marriage and work against the interests of

the widow herself and her offspring. The probability that the widow would

intentionally harm herself is very low.

The comparison is therefore between a probability of 18 chances in 100

that the deceased husband is the father, as against only 10 in 100 that his

brother fathered the child. The first or deceased husband is nearly twice as

likely as his brother to be the father.

In Europe, it was only in 1736 that this kind of double-barreled question

could be asked, and answered precisely. A scientific formula was worked out by

Thomas Bayes. (His theorem states that if there is no ground to believe one

of a set of alternative hypotheses rather than another, their prior probabilities

are equal. When in addition, posterior evidence is available, then in retrospect

the most probable hypothesis is the one that would have been most likely to

lead to that evidence).
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The rabbis solved the problem much earlier, but expressed the argument
in words, not numbers. They also thought of the analysis as a way to solve
moral and legal problems, not as an end in itself. The degree of precision that
they aimed at was quite adequate for this.

Working with whole numbers, we can verify the rabbinical analysis by
means of Bayes’ theorem. His method was as follows: work out the relative
probabilities (in this case 18 and 10), add these to give the total probability,
28; then divide each relative probability by this total. Using his theorem,
we can confirm that the court decision was correct. The chances that the
deceased husband was the father are 9 in 14; those that his brother was
the father are 5 in 14. The relative probabilities remain the same, but we
now know the absolute probabilities as well. The chances are similar in both
cases (but not quite 50:50). They still favor the deceased husband as father
by about 61

2 in 10, against about 3 1
2 in 10 in favor of his brother as the

father.

There is no suggestion here that the Talmud discussion anticipated Bayes’
theorem. It lacks the clarity of Bayes’ analysis. We must remain content with
relative, not absolute probabilities. None the less, the rabbis understood the
logic underlying this analysis. They recognized the need for an estimate of
prior and posterior probabilities, of evaluating (if only in words) the different
levels of credibility of different hypotheses, and the need for some method of
establishing these results.

V. Game Theory

Although modern game theory proper began in the 1920’s, its roots are
2000 years old. Indeed, in the Mishna (Seder ‘Nashim’, Masehet Kethubot
10, 4) we find a marriage contract problem: a man has three wives whose
marriage contracts specify that in the case of his death they receive di = 100,
200 and 300 Dinars respectively, with i ranging over 1, 2, 3. How should the
value of the property be divided among the three women?
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The Mishna stipulates the divisions as follows:

Value
Contract

specification
of estate, E wife I wife II wife III

d1 = 100 d2 = 200 d3 = 300

100 33 1
3 33 1

3 33 1
3

200 50 75 75

300 50 100 150

When E = 100, equal division makes a good sense, because when the estate
does not exceed the smallest contract debt min(di), any amount of debt to one
person that goes beyond the entire estate might well be considered irrelevant
– you cannot get more than there is.

The case E = 300 is based, apparently, on a different principle of propor-
tional division. The figures for E = 200 look mysterious: but whatever they
mean, they do not fit any simple extension of either equal or proportional
division.

The principle behind the Talmud solution for E = 200 is based upon a
famous Mishna ruling (Baba Metzia 2a) which states: “Two hold a garment;
one claims it all, the other claims half. Then the one is awarded 3

4 , the other
1
4 .” The principle is clear: the lesser claimant concedes half the garment to the
greater one. It is only the remaining half that is at issue; this remaining half
is therefore divided equally (this is quite different from the proportional divi-
sion). The relevancy to the marriage contract problem is immediate: When
the estate value E ≤ min(di) = 100, all claimants divide it equally. As E
grows, this continues until all have received 1

2d1 = 50. At this point the lesser
claimant stops receiving payments and each additional payment is divided
equally between the remaining claimants until E = d2 = 200, for which case
the algorithm leads to the division 50, 50+25, 50+25.

A common rational for all three cases is not apparent. Consequently, this
particular Mishna has baffled Talmudic scholars for two millennia. In 1985, it
was recognized [Aumann311 R.J., and M. Maschler, J. Economic Theory 36,
195–213] that the Talmud had anticipated the modern theory of Cooperative
games.

311 Won the 2005 Nobel Prize for Economy for his contribution to the theory of

games.
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Of course, it is unlikely that the sages of the Mishna were familiar with the
general notion of a coalitional game. But it can be shown that the ruling fits
well with other Talmudic principles which are independent of game theory.
However, without modern Game Theory, it is unlikely that one could have hit
on this retroanalysis.

VI. Combinatorics – The Josephus Problem

We know from the Mishna (Yoma 2, 2), Jerusalem Talmud (Yoma 22,
2) and the Babylonian Talmud (Yoma 2, 1), that the priests of the second
Temple [515 BCE–70 CE] used to win their various daily service-jobs by the
following ‘lottery’ arrangement: they stood in a circle, each pointing one or
two fingers toward a man in charge at the center. This man would then an-
nounce a number (usually 100 or 60), which was larger than the total number
of participating priests, and then count fingers in a specified direction from
a certain fiducial person, ending the count of the preassigned number at the
winner.

The Latin writer Hegesippus (340–397 CE) tells us that the Jewish his-
torian Josephus (37–100 CE) saved his life by knowing the solution to a
simpler deterministic problem. According to his account, after the Roman
captured Yodfat (67 CE), Josephus (the Northern commander of the Jewish
revolt) and 40 other warriors took refuge in a cave. His companions were
resolved to die rather than fall into the hands of the Romans. Josephus and
one friend, not wishing to die, yet not daring to dissent openly, feigned to
agree. Josephus even proposed an arrangement by which the deaths might
take place in an orderly manner: the men were to arrange themselves in a
circle; then every third man was to be killed until but one was left, and he
must commit suicide. Josephus and his friend placed themselves in places 16
and 31, thus guaranteeing their survival.

There is no closed-form solution to the Josephus problem for the general
case, not even a recurrence relation.

369–375 CE Hospital of St. Basil is built in Caesarea, Israel (369). It
heralded start of hospital-building movement by Christians. Charity hospital
with 300 beds for plague victims was set at Edessa in the Eastern Roman
Empire (375 CE).
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378, Aug 09 CE Battle of Adrianople (480 km west of Constantinople)
between the Romans and the Visigoths. The Visigoths defeated and killed
the Emperor Valens. It signifies the beginning of the collapse of the Roman
Empire under the pressure of the Barbarian’s demographic invasion. Two
years earlier, Valens allowed them to cross the Danube and settle in lower
Moesia. Faced with the unprecedented problem of these refugees, the Roman
government bungled the administration, failed really to disarm the Goths and
ultimately had to fight a two-year war with them.

This defeat of the Roman infantry by mounted warriors forecast the rev-
olution in the art of war which determined the military, social, and political
development of Europe throughout the Middle Ages.

390–405 CE Eusebius (Sophronius) Hieronymus (Jerome, ca 345–
420 CE). Christian Latin scholar and writer. Translated the Old Testament
directly from the Hebrew, with the aid of Jewish scholars. The translation is
known as the Vulgate.

Hieronymus was born to wealthy Christian parents at Strido (Dalmatia)
and received a grammatical rhetorical and philosophical education at Rome.
In 373 he went on a pilgrimage to the Holy Land. In 385 CE he settled at
Bethlehem and engaged in literary activity for the remaining years of his life.

His knowledge of Greek, Latin and Hebrew and his excellence as a scholar
made him the ideal erudite for translation of the bible.

393 CE Chinese observed a supernova in the constellation Scorpio. It
remained visible for eight months.

397–426 CE Aurelius Augustinus (Augustine, 354–430 CE, Numidia).
Platonist philosopher and metaphysician who had a marked influence on Pas-
cal, Descartes, Leibniz and Kant. Although concerned principally with
matters of religious doctrine, and although his conclusions might be classified
as highly motivated, his philosophy of history enunciated a doctrine that was
impressed upon the consciousness of Western civilization until the time that
Hegel’s dialectic and Comte’s positivistic approaches shed new lights on the
possibilities of history. Thus Augustine’s influence on subsequent thought is
not confined to theology. As a link between the Pagan and the Christian
world, he reinterpreted the ideals of antiquity, and in a sense created the
modern soul with its conflicts and its unfathomable depths.

To science, Augustine contributed the first serious elaboration on the con-
cept of time since Aristotle. He emphasized the subjective character of time
as being part of the mental experience of man, and placed historical time as
intermediary between subjective time and physical time (the same subjective
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interpretation of time is found in Kant, who makes it a form of understand-
ing). This approach led Augustine to foreshadow the Cartesian doctrine that
the only thing that one cannot doubt is what one thinks. One of the features
of time that puzzled Augustine was the difficulty of defining it.

Augustine was born at Tagaste in the African province of Numidia (now
Constantine, Algeria), a son of a Pagan father and a pious Christian mother.
He received a thoroughly Roman education and at twenty went to Rome
together with his mistress and their young son. A little later we find him
in Milan where he made his living as a teacher of rhetoric. On the religious
side he was a Menichaean during this period. But in the end, the continued
pressure of remorse and a scheming mother brought him within the orthodox
fold. In 387 he was baptized, and ordained a priest in 391. He returned to
Africa, became Bishop of Hippo in 396 and so remained until his death.

Augustine lived in the period of the disintegration of the Roman world,
and his time was marked by the fall of the Western Empire312. (In fact, Rome
was sacked by Alaric’s Goths (410) during his own lifetime.) It was the end of
the twilight era between the decline of Hellenistic Paganism and the advent
of the Judeo-Christian one-way view of time in the philosophy of history.
Thoroughly impregnated with the Judaistic notion of creation out of nothing,
Augustine set himself to counter the Greek pantheistic view, for which God
is the world, and adopt the Creator of the Old Testament, a God outside the
world, a timeless spirit, not subject to causality or historical development;
when he created the world, he created time along with it313.

312 Large-scale trade had collapsed, and slavery had disintegrated too, as supplies

dried up and the population fell. The empire was a society based on impov-

erished serfs, bound to the land and raising subsistence foodstuffs for powerful

landlords: virtually the entire population was reduced to a level of not much

above slaves. Diocletian took the road of repression with savage and widespread

persecutions. When this failed, Constantine took the other road of merger,

converting to Christianity and almost immediately subordinating the Church

to imperial rule. Many Christians revolted against the idea of alliance with the

empire they had fought so long. But many more saw the advantages to the

Church of a new powerful friend. Augustine was the most prominent of the

latter. He formulated the ideology of the new alliance of Church and state, an

alliance that would shape the next 1000 years of Western history.
313 To the Greeks, it would have seemed quite absurd that the world could be

conjured up out of nothing. If God created the world, he is to be thought of as

the master builder who constructs from raw materials that are already there.

That something could come from nothing was alien to the scientific temper of

the Greek mind.
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ca 400 CE Invention of the Candle314 (Lat, Candela, form candera, to
glow). Relatively few candles were used in the home until about the 14th

century, however they were an important symbol of the Christian religion.
The best candles were made of beeswax and were used chiefly in church rituals
because the bee was regarded as a symbol of purity. But because beeswax
was expensive, crude tallow candles had to be used by the common people.
Tallow was smelly and smoky. The candles dripped badly and generally gave
a feeble light.

The energy effective in the form of light emitted by a source of light
through a given surface per unit time per unit solid angle is known as the
luminous intensity of one candle-power. In 1948 a modern unit was adopted
and named the candela (cd). One candela is equal to 1

60 of the luminous
intensity per square centimeter of a blackbody radiation at a temperature at
which platinum solidifies (2042 degrees Kelvin).

ca 400 CE Chinese mathematician Sun Tsu in his Suan Ching (Math-
ematical Manual) began the study of indeterminate equations of the first
degree.

400–500 CE End of compilation and codification of the Jerusalem Tal-
mud315 (ca 400 CE) and the Babylonian Talmud (ca 500 CE). It is an encyclo-
pedia of knowledge which incorporates the collective endeavor of about 2000
scholars (known as Amoraaim316) over a period of 300 years (7 generations)
both in Israel and Babylonia (219–500 CE).

The leading scholars in the Babylonian academies are listed in Table 1.6.

Table 1.6: Leading scholars of the Hebrew Babylonian academies

(Amoraaim)

1st generation Rav (Rabbi Abba bar Ayvu) (175–247 CE)
Shmuel the Astronomer (165–254 CE)

2nd generation Rabbi Huna (218–298 CE)
Judah bar Ezechiel (ca 210–300 CE)
Rabbi Hisda (217–310 CE)

314 The biblical ‘candlestick’ (ner in Hebrew) had a wick of flax which was saturated

with oil in the container. Although there is no direct description of a lamp in

the Bible, it was certainly not made of solid fatty or waxy matter.
315 Hebrew: teaching, learning; the name Gemara is used for the Talmud without

the Mishna.
316 Aramaic: speakers, interpreters.
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Table 1.6: (Cont.)

3rd generation Raba bar Nahmani (261–321 CE)
Rav Joseph bar Hamma (ca 260–323 CE)
Rabbi Zeira (ca 250–325 CE)

4th generation Abayei (278–338 CE)
Raba (278–352 CE)

5th generation Rabbi Pappa (ca 300–372 CE)

6th generation Rav Ashi (352–427 CE)
Rabbina I (334–422 CE)

7th generation Rabbi Tosfaah (ca 410–474CE)
Rabbina II (ca 415–475 CE)

The final editing of the Babylonian Talmud began with Rav Ashi and Rab-
bina I and ended with Rabbi Tosfaah and Rabbina II. By the year 500 CE, no
new material was added to the Talmud. The last of the Babylonian Amoraaim
was Rabbina II. The Parthian Arsacid Empire existed during 129–226 CE.
The new Sassanian Persian Empire followed through 226–542 CE.

The Jerusalem Talmud was created by 5 generations of scholars. Their
leading members flourished in the academies of Tiberias, Zippori (Sepphoris),
Caesarea and Lydda (Table 1.7).

Table 1.7: Leading scholars of the Jerusalem Talmud

1st generation Hiyya the Great (Tiberias; 155–240)
Yannai (Zippori; 165–250)
Hoshaya Rabba (Caesarea; ca 180–240)
Hanina bar Hama (Zippori; 155–240)

2nd generation Yohanan bar Naphha (Zippori and Tiberias;
190–279)

Shimon ben Lakish (Zippori and Tiberias;
ca 195–280)

Eleazar ben Pedat (Tiberias; ca 210–289)

3rd generation Hiyya bar Abba
Abahu (Caesrea; fl. 300)
Ammi (Tiberias; ca 220–305)
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Table 1.7: (Cont.)

Assi (245–315)
4th generation Yossi (Tiberias; d. 351)

[Moed Katan 25]
Jeremiah (Tiberias; d. 350)
Hillel III (Zippori; 286–365)

5th generation Yona (Zippori and Tiberias; fl. 375)
Yossi bar Avin (Tiberias; fl. 375)
Tanhuma bar Abba (Tiberias; fl. 390)

By the time Rome succeeded in driving the Jewish community of Israel
into poverty, ineffectiveness and obscurity, the Jewish community in Babylon
has awakened from a slumber of centuries and was ready to carry on. In their
relative safety, under the Parthian rule, they established schools and led an
active intellectual life, continuing the traditions of Judaism that begun and
developed in Israel.

The downfall of the Hasmoneans (37 BCE), the defeat of the independence
war against the Romans (70 CE) and the failure of the Bar-Kochba insurrec-
tion (135 CE), were three occasions where the Babylonian Jewish population
received a large influx of Israeli refugees. But during the intervening periods,
too, a steady exchange of scholars went between the two centers. Before 135
CE, Babylonian scholars went to the Israel academies (e.g., Hillel, 40 CE) to
complete their education and staying there. The opposite example is that of
Rav (219 CE) who had been a pupil of Yehuda ha-Nasi and returned to
Babylonia to establish the Academy of Sura.

Despite war and other misfortunes, the Israel academies kept up their
studies. The completion of the Mishna (ca 200 CE) served a further incen-
tive for discussions and applying the laws and customs of Jewish life. More
teachers arose, and more students came to their academies; every town had its
school for children, and it was the Mishna which now became a sort of text-
book, every sentence of which gave rise to discussions. In this very fashion,
the Jerusalem Talmud was created during 200–400 CE. However, the persecu-
tions of Constantine brought about the decay of the Israeli schools and there
was an imminent danger that the oral tradition, achieved by generations of
great scholars and sages was likely to be forgotten. Thus, following the riots of
351 CE it was decided to collect and arrange the existing material, which was
never quite completed. This task fell to the 5th generation of Israeli scholars
in Tiberias and the process finally ended in 429 CE.
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At the beginning of the 5th century Rabbi Ashi took in hand the ar-
ranging of the framework of the Babylonian Talmud. Under Rabbi Tosfaah
and Rabbina II, heads of the Academy of Sura317, the recension of the
Babylonian Talmud became practically complete (499 CE). As the Baby-
lonian schools decayed, Talmudic learning was assiduously pursued outside
its oriental home and some Babylonian Talmudists apparently reached the
West. After the compilation of the Talmud, the commentaries and addenda
have never ceased up to the present days. In the Middle Ages, the philo-
sopher Maimonides (fl. 1180), the commentator Rashi (fl. 1080), and the
codifier Joseph Karo (1488–1575) were among those who brought about a
renaissance of Talmudic study in Western Europe.

Although the Talmud is an academic product and may be characterized
in the main as a report of the discussions of the schools, it also sheds a flood
of light on the culture of the people outside the academies. The Talmud thus
became an important source for the history of civilization, discussing the most
varied branches of human knowledge – astronomy and medicine, mathematics
and law, anatomy and botany, and furnishing valuable data for the history of
science too.

The peculiar form of the Talmud is due to the fact that it is composed al-
most entirely of individual sayings and discussions on them, this circumstance
being a result of its origin: the fact that it sought especially to preserve the
oral tradition and the transaction of the academies, allowed the introduction
only of the single sentences which represented the contributions of teachers
and scholars to the discussions.

The Talmud preserved and fostered in the Diaspora, for many centuries
and under most adverse external conditions, the spirit of deep religion and
strict morality. Moreover, it had an exceedingly stimulating influence upon
the intellectual powers of the Jewish people, which were then directed toward
other department of knowledge. The Talmud gradually became an intellectual
activity having no ulterior object in view – a model of study for the sake of
study.

The excessive legalism which pervades the Talmud was the scholarship
of the age. Talmudic discussions are sometimes more exhibition of dialectic
skill, but it is this predilection for casuistry that impelled Jewish scholars of
the Middle Ages to study or translate the learning of the Greeks. This trend
played a necessary part in the development of European science and philosophy
and benefited common humanity.

317 The other two great academies in Babylon were Nehardea and Pumbedita. In

Israel, learning flourished in Caesarea, Tiberias, Zippori, Usha, Shefaraam and

Lydda.
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Table 1.8: Hebrew Astronomers
(A)

and Mathematicians
(M)

(70–365 CE)

fl.
50 CE Yohanan ben Zakkai (A) 07 BCE–77 CE Israel

70 CE Gamliel II (A) 30–117 CE Israel

85 CE Joshua ben Hannania (A) 35–117 CE Israel

150 CE Nehemiah (M) 120–180 CE Israel

180 CE Yehuda ha-Nasi (M) 137–210 CE Israel

200 CE Shmuel (A) 165–254 CE Babylon

315 CE Abayei (A) 278–338 CE Babylon

340 CE Hillel III (A) 286–365 CE Babylon

409–418 CE Pelagius (354–420 CE, Rome and Jerusalem). Early British
theologian. Revived the Ionian’s idea of a nature distinct from the human
will, a nature whose working and processes can be learned by observation. He
taught that nature is ruled by a process that all can see, not by punishment
devised by a capricious God.

Born in Ireland (his name graecized from the Cymric ‘Morgan’), he came
to Rome in ca 405 and by 409 CE refuted Augustinian doctrines of predesti-
nation and total depravity, asserting freedom of will. After the sack of Rome
by the Goths (410), he crossed to Africa and met Augustine. He proceeded
to the Land of Israel (410), where he was accused of heresy, but acquitted
by the Synod of Jerusalem (415). Innocent I called upon him to abjure his
teachings and later excommunicated him (417), banishing him from Rome in
418. Pelagius expounded his worldviews at a point on the time scale midway
between Thales and Copernicus. His disciple, Julian, exclaimed: “The merit
of one single person is not such that it could change the structure of the uni-
verse itself”. Words like these were spoken for the first time in a millennium,
and will not be spoken for yet another millennium when the Ionian methods
again became accepted wisdom.

Pelagius thus planted a seed that would blossom only at the time of Coper-
nicus. But before the rise of the scientific worldview would occur, the two
central concepts of medieval cosmology had to be overthrown – the idea of



432 1. Origins – Splendor of the Simple

a decaying universe, finite in time and space, and the belief that the world
could be known merely through reason and authority.

5th century Chinese solved problems with arithmetical series.

415 CE Since 300 BCE the city of Alexandria reigned as the world’s fore-
most center of science, engineering and philosophy. There lived and cre-
ated Euclid (mathematics), Eratosthenes and Aristarchos (astronomy),
Dionysios of Thrace (ca 100 BCE) (language), Herophilos (physiology),
Hero (engineering), Apollonios (mathematics), Diophantos (mathemat-
ics), Archimedes (mechanics), Ptolemy (astronomy and geography) and
Hypatia318 (mathematics and astronomy). Famous for its research facilities,
observatory, Museum and above all its legendary library in which the accumu-
lated lore of the ancient world lay encapsulated in the form of some 700,000
papyrus scrolls.

In 389 an edict of Emperor Theodosius I ordered the destruction of the
Serapeum, and its books were pillaged by the Christians. But as often happens
in history, the destruction of books was followed by the destruction of people.
In March 415, Hypatia (b. 370 CE), the first woman mathematician to be
mentioned in the annals of mathematics and one of the first martyrs of science,
was barbarously killed by Christian fundamentalists in Alexandria.

318 Her father, Theon of Alexandria (ca 335–395 CE) was a professor of math-

ematics and astronomy. Further details about her are found in Osen, L.M.,

Women in Mathematics, Massachusetts Institute of Technology Press: Cam-

bridge, 1988, 185 pp.
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History of Biology and Medicine319 I – Ancient Time

From early times, perhaps predating the appearance of modern humans,
people must have had and passed on knowledge about plants and animals
to increase their chances for survival. For example, they had to know how
to avoid (or sometimes use) poisonous plants and animals and how to track,
capture and butcher different species of animals. They had to know which
plants could be prepared to make good nets or baskets. In this sense, biology
predates the written history of humans.

Agriculture requires specialized knowledge on plants and animals. Ancient
Oriental people knew about the pollination of date palm from a very early
point of time. In Mesopotamia they knew that pollen could be used in fer-
tilizing plants. A business contract of the Hammurabi period (c. 1800 BCE)
mentions flowers of the date palm as an article of commerce.

In India texts described some aspects of bird life. In Egypt the metamor-
phosis of insects and frogs was described. Egyptians and Babylonians also
knew of anatomy and physiology in various forms. In Mesopotamia, animals
were sometimes kept in what can be described as the first zoological gardens.

However, superstition often blended with facts. In Babylon and Assyria
organs of animals were used in prediction, and in Egypt medicine included a
large amount of mysticism.

The biological sciences emerged from traditions of medicine and natural
history reaching back to the ancient Greeks. For example, the idea of biologi-
cal evolution was supported in ancient times, notably among Hellenists such as
Anaximander, Empedocles, Democritos and his student Epicuros. As
early as 400 BCE the Greek atomists taught that the sun, earth, life, humans,
civilization, and society emerged over aeons without divine intervention.

Later on, in the Greek and the Hellenistic worlds scholars became more
interested in empiricism. Aristotle is one of the most prolific natural philoso-
phers of Antiquity. He made countless observations of nature, especially

319 For further reading, see:

• Timetables of Medicine, Black Dog & Leventhal Publishers, 2000, 72 pp.

• Sutcliffe, J. and N. Duin, A History of Medicine, Barnes and Noble: New
York, 1992, 255 pp.

• Mayr, Ernst, The Growth of Biological Thought: Diversity, Evolution and

Inheritance, Harvard University Press, 1982.
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the habits and attributes of plants and animals in the world around him,
which he devoted considerable attention to categorizing. Aristotle’s succes-
sor, Theophrastos (c. 300 BCE), wrote a series of books on botany, History
of Plants, which survived as the most important contribution of antiquity to
botany, even into the Middle Ages.

In ancient Rome, Pliny the Elder was known for his knowledge of plants
and nature. The Roman medical writer Dioscorides provided important
evidence on Greek and Roman knowledge of medicinal plants. Around 60 BCE
the Roman atomist Lucretius wrote the poem On the Nature of Things
describing the development of the living earth in stages from atoms colliding
in the void as swirls of dust. Later, Claudius Galen became a pioneer in
medicine and anatomy.

Table 1.9 lists 14 leading thinkers in ancient Greek and Rome whose in-
fluence extended over 2200 years into the Middle Ages and up to the 19th

century.
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Table 1.9: Leading Thinkers in the Life-Sciences (560 BCE–450 CE)

Name fl. Specialization

Anaximander of Miletos ca 560 BCE (ET)

Alcmaeon of Crotona ca 500 BCE (M)

Empedocles of Acragas ca 450 BCE (ET)

Democritos of Abdera ca 420 BCE (ET)

Hippocrates of Cos ca 430–390 BCE (M)

Aristotle ca 354–322 BCE (B), (A)

Theophrastos ca 328–286 BCE (BO)

Epicuros of Samos ca 310–301 BCE (ET)

Herophilos of Chalcedon ca 304–291 BCE (M), (A)

Asclepiades of Bithnia ca 90-50 BCE (M)

Lucretius ca 70-55 BCE (ET)

Pliny, the Elder ca 50-70 CE (B)

Pedanios Dioscorides ca 60–78 CE (M), (BO)

Claudius Galen 160–190 CE (M), (A)

Key:

B = Biology

A = Anatomy

M = Medicine

ET = Evolutionary Thinking

BO = Botany



436 1. Origins – Splendor of the Simple

Herbalism and Medicine

All human societies have medical beliefs that provide explanations for,
and responses to, birth, death, and disease. Throughout the world, illness
has often been attributed to witchcraft, demons, averse astral influence, or
the will of the gods, although the rise of scientific medicine in the past two
centuries has altered or replaced many historic health practices.

There is no actual record of when the use of plants for medicinal pur-
poses first started, although the first generally accepted use of plants as heal-
ing agents were depicted in the paintings discovered in the Lascaux caves in
France, which have been radiocarbon dated to between 13,000–25,000 BCE.

Over time and with trial and error, a small base of knowledge was acquired
within early tribal communities. As this knowledge base expanded over the
generations, tribal culture developed into specialized areas. These ‘specialized
jobs’ became what are now known as healers or shamans.

Medical information contained in the Edwin Smith Papyrus date as early
as 3000 BCE. The earliest known surgery was performed in Egypt around
2750 BCE. Imhotep in the 3rd dynasty is credited as the founder of ancient
Egyptian medicine and as the original author of the Edwin Smith papyrus,
detailing cures, ailments and anatomical observations. The Edwin Smith pa-
pyrus is regarded as a copy of several earlier works and was written circa
1600 BCE. It is an ancient textbook on surgery and describes in exquisite
detail the examination, diagnosis, treatment, and prognosis of numerous ail-
ments.

Additionally, the Ebers papyrus (c. 1550 BCE) is full of incantations and
foul applications meant to turn away disease-causing demons and other su-
perstition. In it there is evidence of a long tradition of empirical practice and
observation. The Ebers papyrus also provides our earliest documentation of
a prehistoric awareness of tumors.

Medical institutions are known to have been established in ancient Egypt
since as early as the 1st Dynasty. By the time of the 19th Dynasty their
employees enjoyed such benefits as medical insurance, pensions and sick leave.
Employees worked 8 hours per day.

The earliest known physician is also credited to ancient Egypt: Hesyre,
“Chief of Dentists and Physicians” for King Djoser in the 27th century BCE.
Also, the earliest known woman physician, Peseshet, practiced in Ancient
Egypt at the time of the 4th dynasty. Her title was “Lady Overseer of the
Lady Physicians.” In addition to her supervisory role, Peseshet graduated
midwives at an ancient Egyptian medical school in Sais.
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In 2001 archaeologists studying the remains of two men from Mehrgarh,
Pakistan, made the discovery that the people of Indus Valley Civilization, even
from the early Harappan periods (c. 3300 BCE), had knowledge of medicine
and dentistry. Later research in the same area found evidence of teeth having
been drilled, dating back 9,000 years.

Ayurveda (the science of living), the Vedic system of medicine originating
over 3000 years ago, views health as harmony between body, mind and spirit.
Its two most famous texts belong to the schools of Charaka and Sushruta.
According to Charaka, health and disease are not predetermined and life may
be prolonged by human effort. Sushruta defines the purpose of medicine to
cure the diseases of the sick, protect the healthy, and to prolong life.

The student of Ayurveda was expected to know ten arts that were indis-
pensable in the preparation and application of his medicines: distillation, op-
erative skills, cooking, horticulture, metallurgy, sugar manufacture, pharmacy,
analysis and separation of minerals, compounding of metals, and preparation
of alkalis. The teaching of various subjects was done during the instruction
of relevant clinical subjects. For example, teaching of anatomy was a part of
the teaching of surgery, embryology was a part of training in pediatrics and
obstetrics, and the knowledge of physiology and pathology was interwoven in
the teaching of all clinical disciplines.

China also developed a large body of traditional medicine. Much of the
philosophy of traditional Chinese medicine derived from empirical observa-
tions of disease and illness by Taoist physicians and reflects the classical Chi-
nese belief that individual human experiences express causative principles
effective in the environment at all scales. These causative principles, whether
material, essential, or mystical, correlate as the expression of the natural order
of the universe.

Thus, already during the reign of the Yellow Emperor (2696–2598 BCE),
the influential Neijing Suwen (Basic Questions of Internal Medicine) was
composed. This was expanded and edited by Wang Ping during the Tang
dynasty, and again revisited by an imperial commission during the 11th cen-
tury CE. The result is the extant representation of the foundational roots of
traditional Chinese medicine. Acupuncture was advocated during the Chin
dynasty by Huang-fu Mi (215-282 CE).

Most of our knowledge of ancient Hebrew medicine during the 1st millen-
nium BCE comes from the Old Testament of the Bible which contain various
health related laws and rituals, such as isolating infected people (Leviticus
13:45-46), washing after handling a dead body (Numbers 19:11-19) and bury-
ing excrement away from camp (Deuteronomy 23:12-13). Max Neuberger,
writing in his “History of Medicine” says:
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“The commands concern prophylaxis and suppression of epi-
demics, suppression of venereal disease and prostitution, care of
the skin, baths, food, housing and clothing, regulation of labor,
sexual life, discipline of the people, etc. Many of these commands,
such as Sabbath rest, circumcision, laws concerning food (interdic-
tion of blood and pork), measures concerning menstruating and
lying-in women and those suffering from gonorrhea, isolation of
lepers, and hygiene of the camp, are, in view of the conditions of
the climate, surprisingly rational.”

As societies developed in Europe and Asia, belief systems were replaced
with a different natural system. The Greeks, from Hippocrates, developed
a humoral medicine system where treatment was to restore the balance of
humors within the body. Ancient Medicine is a treatise on medicine, written
roughly 400 BCE by Hippocrates. Similar views were espoused in China and
in India. In Greece, through Galen, until the Renaissance, the main thrust
of medicine was the maintenance of health by control of diet and hygiene.

Anatomical knowledge was limited and there were few surgical or other
cures, doctors relied on a good relation with patients and dealt with minor
ailments and soothing chronic conditions. But they could do little when epi-
demic diseases, growing out of urbanization and the domestication of animals,
then raged across the world.

Metallurgy in China – The Missed Opportunity

During 300 BCE–450 CE China grew into a powerful empire. Its culture
flourished and great technological advancement were made. The invention of
cast-iron (ca 300 BCE) was a feat in which the Chinese had pioneered, some
1700 years ahead of the Europeans!



415 CE 439

The military technology which built the Great Wall (ca 214 BCE) went
far beyond the achievement of the Wall itself. Recently (1975) Chinese ar-
chaeologists discovered that weapons (swords, spears and arrowheads) dating
from the second century BCE were made of sophisticated alloys of 15 differ-
ent metals. The major ingredients are copper, tin and lead, but also other
which have come to use in the West in our own time (Aluminum, Titanium,
Vanadium, Cobalt etc).

A different kind of advanced technology is represented by this set of in-
tricate casting: They are the trigger-release mechanism of the weapon that
armed the emperor Chin troops in holding the barbarians at bay on the Great
Wall – the crossbow; this is a weapon which will not appear in the West for
another 1400 years! Clearly, the exploitation of cast iron by the Chinese in ca
300 BCE marks one of the most significant advances in all history of metals.

We know that the main barrier to the wider use of iron, after the collapse
of the Bronze age, was that it could not be melted. Iron workers could not
therefore cast objects in iron as their predecessors had cast them in Bronze.
This inability meant drudgery at the anvil and frustrated the further use of
iron in Europe for more than a millennium. However, unknown to Europe,
that particular threshold had already been crossed in the East.

An iron blast furnace of remarkable proportions, weighting ca 25 tons,
dating from before the dawn of the Christian era, was discovered in China
(1975). No one outside China handled iron in this quantity until the Industrial
Revolution in Britain. The furnace operated with temperatures in excess of
1400 ◦ C. The Chinese then liquefied iron, treating it as they treated bronze
by pouring it into moulds. With this they made ploughshares and haws.

But casting was only part of the Chinese achievement. Cast iron was high
in carbon, which made it too brittle for useful tools.

By 450 CE, Chinese metallurgists knew how to remove the carbon on the
surface of cast iron and create a steel jacket around the cast iron case. It was
this discovery which finally made it possible for the Chinese to use iron so
comprehensively so early in history.

How did they attain and maintain the required high temperature in their
furnaces? The answer is in more efficient bellows; the more air one blows into
the furnace in a unit of time – the hotter it gets.

Whereas in the West blacksmith’s bellows operated on a vertical principle,
the Chinese system was horizontal. Very large bellows could be suspended
from an overhead beam and driven by waterwheels or by animal power. The
Chinese control of air supply to the furnace was superior to that in the West.
In addition, Chinese used double acting box bellows: the handle operates two
pistons, in upper and lower chamber of the box; simple flat valves control the
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air-flow such that air is pumped both on the pull and the push action. It
supplies twice as much air into the furnace by continuous flow. This was the
key to the Chinese success in high-temperature furnace.

But the more evidence that emerges for the technological lead that China
established over the West in the early Iron Age, the more intriguing becomes
her failure to sustain it. All the conditions seem to exist for China to lead the
world into an industrial and scientific revolution 1300 years before it occurred
in the West.

Historians think that the reasons were political and social. China was
an extremely conservative society in which stability was much more prized
than freedom and where rules had a powerful vested interest in not being
challenged. China’s belief that it was a universe in itself led to dangerous
contempt to development elsewhere. The rise of a stifling bureaucracy anes-
thetized innovation. The iron masters of the Han period who were well placed
to launch a power-driven industrialized revolution went on to making plows
and haws. China lost an advantage to the West that was not yet regained.

From the first through the thirteenth centuries, as Europe passed from
late antiquity through the Dark Ages, science in China flourished. It kept
pace with Arab science, even though geographic isolation deprived Chinese
scholars of the ready-made base that Greek culture provided their Western
counterparts.

The Chinese made brilliant advances in subjects such as descriptive as-
tronomy, mathematics, and chemistry. But they never acquired the habit of
reductive analysis in search of general laws that served Western science so well
from the seventeenth century on. They consequently failed to expand their
conception of space and time beyond what was attainable by direct observa-
tion with the unaided senses. The reason was their emphasis on the holistic
properties and harmonious relationships of observable entities, from stars to
trees to grains of sand.

Unlike Western scientists, they had no inclination to search for abstract
codified law in nature. Their reluctance was stimulated to some degree by the
historic rejection of the Legalists, who attempted to impose rigid, quantified
law during the transition from feudalism to bureaucracy in the fourth century
BCE.

But of probably greater importance was the fact that the Chinese steered
away from the idea of a supreme being who created and supervises a rational,
law-governed universe. If there is such a ruler in charge, it makes sense –
Western sense at least – to read a divine plan and code of laws into physical
existence. If, on the other hand, no such ruler exists, it seems more appropri-
ate to search for separate rules and harmonious relations among the diverse
entities composing the material universe.
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In summary, it can be said that Western scholars but not their Chinese
counterparts hit upon the more fortunate metaphysics among the two most
available to address the physical universe.

ca 435 CE Martianus Minneus Felix Capella (North Africa). Latin
encyclopedic compiler. His comprehensive treatise Satyricon was a complete
encyclopedia of the liberal culture of the time, and was in high repute during
the Middle Ages. A passage in book 8 contains a very clear statement of the
heliocentric system of astronomy. It has been supposed that Copernicus,
who quotes320 Capella, may have received from this work some hints towards
his own new system.

The author’s chief sources were Varro, Pliny, Solinus, Aquila Romanus
and Aristides Quintillanus.

Capella was a native of Madaura in Africa. He appears to have practiced
as a lawyer at Carthago.

ca 450 CE Proclos of Byzantion (410–485, Alexandria and Athens).
Philosopher, mathematician and historian of Greek science. Chief represen-
tative of the later Neoplatoists. Head of Plato’s Academy in Athens. The
most illustrious philosopher and teacher of his time. Discovered an equivalent
postulate to Euclid’s 5th; it states that if a straight line intersects one of two
parallels, it will intersect the other also.

He seems to have been the first to state explicitly the fact that the
three altitudes of any triangles are concurrent (it is not in Euclid, although
Archimedes implies it).

320 In the words of Copernicus: “Therefore it seems to me that it would be wrong

to ignore certain facts well-known to Martianus Capella, who wrote an ency-

clopedia, and some other Latins. He believed that Venus and Mercury do not

go around the earth like other planets, but turn around the sun as their center

and therefore cannot go further away from the sun than the sizes of their orbits

permit. What else does this mean but that the sun is the center of their orbits

and that they turn around him?. . . Therefore we do not hesitate to state that

the moon and the earth describe annually a circular orbit placed between the

outer and inner planets round the sun, which rests immobile in the center of

the world”.
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Proclos was born in Constantinople, but brought up at Xanthus in Ly-
cia. After studying grammar and philosophy at Alexandria, he proceeded to
Athens. There he attended the lectures of the Neoplatonists Plutarch and
Syrianus, and about 450 CE succeeded the latter in the chair of philosophy.
As an ardent upholder of the old Pagan religion, Proclos incurred the hatred
of the Christians, and was obliged to take refuge in Asia Minor. After a year’s
absence he returned to Athens, where he remained until his death.

Although possessed of ample means, Proclos led a most temperate, even
ascetic life, and employed his wealth in generous relief of the poor. His great
literary activity was chiefly devoted to the elucidation of the writings of Plato,
but he also wrote treatises in the fields of mathematics and astronomy.

451 CE The Hun Invasion. The Huns, a nomadic Mongol tribe headed by
Attila, established an empire in Eastern Europe in a region extending from
the Danube River to the Baltic Sea, and from the Rhine River to the Caspian
Sea. During 441–447 they looted the provinces of southeastern Europe and
forced the East Roman Empire to pay a yearly tax321. In 450, Attila demanded
Honoria, sister of Emperor Valentinian III, as his bride, and half the West
Roman Empire as her inheritance. Valentinian refused. Attila stormed into
Gaul (now France), but a combined Roman and Visigoth army repulsed him
near Troyes. He retreated east to the Rhine River and invaded Italy in 452,
capturing and destroying many cities north of the Po River. But famine and
plague forced his troops to withdraw.

Although he seriously threatened the East and West Roman Empire, he
was unable to win decisive victories over them. His kingdom collapsed soon
after his death in 453.

321 One theory holds that the westward movements of the Huns started because of

virulent smallpox in Mongolia; the disease traveled with them, was communi-

cated to the Germanic tribes upon whom the Huns were pressing and, in turn,

infected the Romans who were in contact with the Germans.
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Downfall of the Roman Empire – plague-ridden
decadence

The causes of this fall have been argued by historians for many years past;
some of these causes are connected with disease.

Although in its cleanliness, sanitation and water supply, Rome was much
more akin to 20th century London and New York, Romans, like 17th century
Londoners, did not know the cause of disease. This lack of essential knowledge
rendered the magnificent health measures of Imperial Rome entirely useless
during the long years of her decline.

Imagine Rome as a bloated spider sitting in the center of its web. This
web, in the height of Roman expansion stretched from the Sahara in the south
to the borders of Scotland in the north, from the Caspian Sea and the Persian
Gulf in the east to the western shores of Spain and Portugal. To the north
and west lay the oceans; to the south and east, vast unknown continents in
which dwelt less civilized people, Africans, Arabs, the savage tribes of Asia.
Beyond, in the dim shadows, lay the older civilizations of India and China.

The long land frontiers were manned by garrisons scattered at strate-
gic points; from these frontier garrisons stretched back the filaments of the
spider’s web, the sea routes from Africa and Egypt, the straight, legionary-
made roads, all of which led to Rome. Along these very roads crept the
micro-organisms of foreign disease, reaching the center of a highly civilized
organization lacking the most rudimentary means of combating infection.

Given a conjunction of circumstances such as this, it is little wonder that
the story of the last centuries of Roman power is a long tale of plague:

It started in the 1st century BCE; a very severe type of malaria appeared
in the agricultural district around Rome and remained a problem for the
next 500 Years. All fertile land of market gardens which supplied the city
with fresh vegetables, went out of cultivation; the small farmers who tilled it
added to the overcrowding of Rome, bringing infection with them. It caused
the live-birth rate of the Italo-Roman to fall steeply at the time when the
birth-rate throughout the empire was rising. Moreover, chronic illness and ill-
health caused by untreated malaria decreased life-expectancy and enervated
the nation. Possibly malaria rather than decadent luxury imported from the
East, accounted for the slackness of spirit which characterized the later years
of Rome.
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The first of the great epidemics occurred about the year 79 CE, shortly
after the eruption of Vesuvius. This may have been fulminating malaria
compounded by an epidemic of anthrax, resulting in the large-scale destruction
of livestock. The infection was raging destructively in the cities of Italy. For
about a century there was much sickness (mostly malaria); then came the
plague of Orosius (125 CE), a famine-plague sequence, for the sickness was
preceded by an invasion of locust which destroyed large areas of crops. The
pestilence that followed killed hundred of thousands in Numidia and on the
north coast of Africa. The plague then passed to Italy.

Forty years later there followed the plague of Antoninus (164–189 CE)
through which the Roman Empire was swept by three separate waves of
plague. It began by causing great mortality among the legions under the
command of Avidius Claudius, who had been sent to repress a revolt in
Syria (164–166 CE). The plague accompanied this army homewards, spreading
throughout the countryside and reaching Rome in 166 CE. It rapidly extended
into all parts of the known world, causing many thousands of deaths.

The plague of Antoninus caused the first crack in the Roman defense lines.
Until 161 CE the empire continually expanded and maintained its frontiers.
In that year a Germanic barbaric horde (the Marcomanni from Bohemia and
the Quadi from Moravia) forced the north-eastern barrier of Italy. Owing to
the disorganization produced by the plague, it was not until 169 CE that the
whole weight of the Roman army was thrown against the invaders. Possibly
the failure of this invasion was as much due to the legions carrying plague
with them, thus infecting the Germans. One of the victims of the plague was
the Roman emperor, Marcus Aurelius (d. 180 CE).

A new wave of epidemic originated in Ethiopia (ca 250 CE) and spread,
via Egypt, to the Roman colonies in North Africa. It engulfed all countries
from Egypt in the south to Scotland in the north. It advanced with appalling
speed, decimating the entire Roman empire.

It lasted no less than 16 years and indisputably changed the course of
history; wide areas of farmland throughout Italy reverted to waste; some
thought that the human race could not possibly survive. But despite warfare
in Mesopotamia, on the eastern frontiers and even in Gaul, the empire man-
aged to survive this catastrophe; but by 275 CE the legions had fallen back
from Transylvania and the Black Forest to the Danube and the Rhine, and
so dangerous did the position seem to have become that Aurelian decided to
fortify the city of Rome itself.

Throughout the next 3 centuries, while Rome slowly collapsed under the
pressure of the Goths and Vandals, there were recurrent outbreaks of a sim-
ilar plague. Gradually the evidence became less exact, degenerating into a
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generalized story of war, pestilence and famine, as the darkness descended
over Rome and her mighty empire collapsed.

476 CE Goths under Odovacar deposed Romulus Augustus; the “official”
end of the Western Empire.

Since Attila’s death in 453 CE, Germanic army commanders governed
Italy behind the facade of puppet emperors. Odovacar, the leader of a band
of German mercenaries, tired of the pretense and became king of Italy. All
Roman territories west of the Adriatic were now under barbarian rulers.

Although this was just a symbolic act, the passing of the Latin-speaking
part of the Empire under Germanic rule was a watershed in history; the
Latins became barbarized and the Greek became orientalized. Thus, the two
halves of the Roman world drifted apart, preparing the way for the later split
between Eastern and Western Europe.

For a while the East, on account of its superior stability saved itself from
the Germans, but could not repel the next great attack, that of the Arabs.
The “Fall of the Empire” was not a political episode of the year 476; it was a
deadly crisis in the history of civilization.
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Origins of the European Civilization

On Assyrian monuments the contrast between Asu = (the land of the rising

sun) and ereb = (the land of the setting sun), is frequent [erev = evening

in Hebrew; Genesis 1, 5]. These names were probably passed on by the

Phoenicians to the Greeks, and gave rise to the names of Asia and Europe. The

earliest mention of Europe is in the Homeric Hymn to Apollo. The distinction

between Europe and Asia is found, however, in Aeschylos in the 5th century

BCE.

In places where the names originated, the intervention of the sea clearly

marked the distinction between Europe and Africa. As the knowledge of the

world extended, the difficulty of fixing the land boundary between Europe

and Asia caused uncertainty in the application of the two names, but never

obscured the necessity for recognizing the distinction. Even in the 3rd century

BCE, Europe was regarded by Eratosthenes as including all that was then

known of Northern Asia. But the character of the physical features and climate
finally determined the fact that what we know as Europe came to be occupied

by more or less populous countries in intimate relation with one another, but

separated on the east by unpeopled (or very sparsely peopled) areas from the

countries of Asia.

Within the limits thus marked out on the east and on other sides by

the sea, the climatic conditions are such that inhabitants are capable of and

require a civilization of essentially the same type, based upon the cultivation
of European grains. Those inhabitants have led a common history in a greater

measure than those of any other continent, and hence are more thoroughly

conscious of their dissimilarities from, than of their consanguinity with, the

peoples of the east and the south. Within these geographical limits, the
tradition of the Roman Empire, and above all the organization of the Catholic
Church gave to the European nations, and the states based upon them, a

homogeneity which without them could not have survived. The history of

Europe is the history of this civilization and of the forces by which it was

produced, preserved and developed.

Broadly speaking, European civilization may be traced to four principal

origins: (1) The Aegean civilization (Hellenic and pre-Hellenic); (2) the Ro-

man Empire; (3) Christianity; (4) the break-up of the Roman Empire by the

Teutonic invasions. All these forces helped in the development of Europe as

we now know it.
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To the Aegean civilization [whether transformed by contact with Rome,
and again transformed by the influence of Christianity, or rediscovered dur-
ing the classical Renaissance] Europe owes the characteristic qualities of its
thought and of its expression in literature, art and the sciences. From repub-
lican Rome it largely drew its conceptions of law and of administrative order.
From the Roman Empire it inherited a tradition of political unity which sur-
vived (in visible form, though but as a shadowy symbol) until the last Holy
Roman emperor abdicated in 1806.

Yet more does Europe owe to Christianity, basically a Hebrew religion,
modified by contact with Greek thought and powerfully organized on the
lines of the Roman administrative system. The Roman Church remained a
reality when the Roman Empire had become little more than a name. Indeed,
throughout the period of chaos and transformation that followed the collapse
of the Roman Empire, the Church remained the most powerful instrument for
giving to the heterogeneous races of Europe a common culture and a certain
sense of common interests.

The history of Europe, then, might well begin with the origins of Greece
and Rome, and trace the rise of the Roman Empire and the successive influ-
ence upon it of Hellenism and Christianity.

ca 490 CE Tsu Ch’ung-Chi (430–501) and his son, whose joint book is
now lost, found the remarkable rational approximation 355/113 to π, correct
to 6 decimal places. They further discovered that 3.1415926 < π < 3.1415927.
This rational approximation was not rediscovered in Europe until 1573. The
precision of π achieved by the Tsu’s seems not to have been surpassed until
about 1420 when the astronomer Al-Kashi of Samarkand found π correctly
to 16 decimal places. Western mathematicians did not surpass the Tsu ap-
proximation until around 1600.

ca 499–530 CE Aryabhata the Elder (476–550, India). The first great
Hindu mathematician and astronomer. The author of ‘Aryabhatiya’ (writ-
ten in verse, 499 CE), the first Hindu astronomical text to contain a section
devoted to mathematics. It is a summary of Hindu mathematics up to that
time and includes rules for computational procedures, the extraction of square
and cube roots, the solution of quadratic equations, the sum of powers of the
first n natural numbers [e.g., he gave the formula

∑
n2 = 1

6n(n + 1)(2n + 1)],
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arithmetic progressions322and the trigonometric sine function. It gives formu-
las for the areas of a triangle and a circle which are correct, but the formulas
for the volumes of a sphere and a pyramid are wrong.

Aryabhata gave 62, 832/20, 000 = 3 177
1250 = 3.1416 as an approximate

value of π [it may have come from some earlier Greek source or from calculat-
ing the perimeter of a regular inscribed polygon of 384 sides]323. His work con-
tained one of the earliest attempts at the general solution of a linear indeter-
minate equation by the use of continued fractions. Thus he found the integral
solutions of the linear indeterminate equation ax + by = c (a, b, c integers).
He also solved the indeterminate quadratic equation xy = ax + by + c by a
method later reinvented by Euler.

As an astronomer he taught that the apparent rotation of the heavens was
due to the axial rotation of the earth and explained the cause of eclipses of
sun and moon.

Aryabhata was born near the present day city Patna on the Ganges.

500 CE Polynesians began to inhabit the islands of Hawaii.

ca 500 CE Joannes Philoponus (John the Grammarian). Philosopher.
Flourished in Alexandria. Contested the Aristotelian ideas on motion and
vaguely anticipated the concept of inertia. He denied that bodies of greater
weight fall more quickly, referring to experiment. Nor did he accept the Aris-
totelian doctrine about the impossibility of vacuum.

Philoponus applied Severus’ unity of soul and matter to cosmology. Re-
viving the Ionian ideas, he argued that these same ideas apply to the heavens
and the earth; stars are neither divine nor perfect, beings but material bodies
on fire. The heavens are not unchanging but governed by the same changes
as are earthly objects. In supporting his assertion that stars are lighted by
fire, he pointed to their obvious differences in color: this shows, he said, they
cannot be simple bodies, made of pure ether (the rarefied medium filling the
heavens), as dualism claimed, since we know that on earth different mater-
ial produce different colorations in fire, implying that thus the stars must be
composed of different materials, like these on earth. Thus, Philoponus hit on
the basis of spectrography, which centuries later allowed scientists to figure
out what the stars are made of.

His work, however, could not have led to an early revival of science, for
he lived during the collapse of the Mediterranean civilization. The trade

322 It contains the rule for summing an arithmetic series from the p-th term on.
323 At about the same time, the scholars of the Talmud still used the Biblical

approximation π = 3 for all practical purposes of mensuration (Eruvin, 14).
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that demanded and supported scientific research was disrupted by Byzantine
attempts at reconquest and its futile battles with Persia.

Joannes Philoponus represents the last flicker of ancient science.

ca 500 CE Chinese began the use of gunpowder.

ca 500 CE The Zero symbol is introduced in India.

Zero – The Mathematics of Nothing324

∗ ∗∗

“Thirty spokes are made one by holes in the hull,
By vacancies joining them for a wheels’ use.
The use of clay in moulding pitchers
Comes from the hollow of its absence;
Doors, windows, in a house,
Are used for their emptiness:
Thus we are helped by what is not
To use what it”.

Lao Tsu, 570 BCE

∗ ∗∗

“Each act of creation could be symbolized as a particular product of infinity
and zero. From each such product could emerge a particular entity of which
the appropriate symbol was a particular number”.

S. Ramanujan (1887–1920)

324 Includes quotations from: “zero” by Charles Seife. Penguin Books, 200, New

York.
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∗ ∗∗

“The zero is the most important digit. It is a stroke of genius, to make
something out of noting by giving it a name and inventing a symbol for it”.

Bartel Leendret van der Waerden (1903–2000)

Riddle: “The Babylonians invented it, the Greeks banned it, the Hindus
worshiped it, the Church used it to fend off heretics; once harnessed, it became
the most important tool in mathematics; starting as an Eastern philosophical
concept, its struggle for acceptance in Europe ended with its apotheosis as
the mystery of the black hole. Today it lies at the heart of one of the biggest
scientific controversies of all time, the quest for the theory of everything. Its
companion concepts are infinity and void, and it has been an ever-present
threat to modern physics”.

What is it? It is a number known as Zero.

The first symbol for zero was introduced by the Babylonians in about 300
BCE out of the practical need to give a sequence of digits a unique meaning325

Yet, their symbol for zero (two slanted wedges) was merely a symbol for
a blank space on the cuneiform, a placeholder; it did not really have any
numerical value of its own. It was a digit, not a number.

Like the Babylonians, the Mayans (ca 300 BCE) had a place-value system
of digits using the vigesimal (base 20) system, and needed a zero to keep

325 To see how this need arose, consider the representation of different numbers in

their sexagesimal (base 60) system; Today, we would write (with zero)

61 = 1 · 601 + 1 · 600 ≡ 11

3601 = 1 · 602 + 0 · 601 + 1 · 600 ≡ 101

3660 = 1 · 602 + 1 · 601 + 0 · 600 ≡ 110

But without the placeholder 0, all three numbers would be written as 11. (The

Babylonian actually used the wedge symbol

instead of the Arabic 1).
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track of what each digit meant. But the Mayans went one step further than
the Babylonians (and the Egyptians) in their solar calendar – they started
numbering days with the number zero; the first day of the month was day
zero, the next day was 1, and so forth. This is conceptually equivalent to
placing zero at the origin of the number-line, giving it both a cardinal and an
ordinal value.

Most ancient people believed that only emptiness and void were present
before the universe came to be. There was always a fear that at the end of
time, disorder and void would reign once more. Thus, to the ancients, zero
represented that void and its odd mathematical properties326 were inexplica-
ble, as shrouded in mystery as the birth of the universe.

In the Greek universe, created by Pythagoras, Aristotle and Ptolemy, there
was no zero. To begin with, the framework of the Pythagorean universe was
controlled by ratios and the zero, with it odd properties “would punch a hole
in the neat Pythagorean world order”. For that reason zero (void, vacuum)
was totally excluded from Greek science and mathematics. Because of this,
the West could not accept zero for nearly 2000 years! Pythagorean doctrine
became the centerpiece of Western philosophy: all the universe was governed
by ratios and shapes; the planets moved in heavenly spheres that made music
as they turned. Since infinity (the inverse of zero) was also rejected, the
number of those spheres, according to Aristotle and Ptolemy, must be finite
– the cosmos was finite in extent and entirely filled with matter: there was
no infinite and there was no void.

Moreover, since the Greek rejected the number zero, they could not refute
Zeno’s paradox (‘Achilles and the tortoise’)327. This rejection is the biggest
failure in Greek mathematics, and it is the only thing that kept them from
discovering the calculus. This state of affairs continued into the Dark Ages;
As the medieval thinkers imported the philosophy and science of the ancient,
they inherited the ancient prejudices: a fear of the infinite and a horror of the
void. “The fear of the void was so great that Christian scholars tried to fix
the Bible328 to match Aristotle rather than vice versa”.

In the 4th century BCE, Alexander the Great marched with his troops
from Babylon to India, carrying with him the gospel of the Babylonian system

326 0 + a = 0; 0 × a = 0; a/0 = ∞ (a 
= 0); ∞ · 0 = indeterminate;

0/0 = indeterminate.
327 They did not believe that adding infinite terms could lead to a finite result

[lim
(
1 + 1

2
+ 1

4
+ 1

8
+ · · · + 1

2n

)
= 2, n → ∞]. To them, terms in an infinite

series did not have a limit or a destination.
328 The Judeo-Christian story of creation was Semitic, and Semites did not have a

fear of the void.
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of numbers and with it the Babylonian ‘place-holder zero’. “Unlike Greece,
India never had a fear of the infinity and the void”. Consequently, India,
as a society that actively explored the void and the infinite – embraced the
mathematical zero. Moreover, India transformed it, changing its role from a
mere placeholder to a number.

So, sometimes around 500 CE the Hindus moved to a base-10 system
representing all numbers, negative as well as positive in the number line. No
longer did zero sit to the right of nine – it had a position in the number line
that was all its own, just in the middle between +1 and -1. “Numbers were
stripped of their geometrical significance; mathematician no longer had to
worry about mathematical operations making geometric sense329. This was
the birth of what we now know as algebra”.

When the Arabs conquered India (ca 710 CE), they learned quickly all
about Hindu numerals and their zero. They accepted it and soon rejected
Aristotle.

Christianity initially rejected zero, but trade would be soon demanding it.
The man who introduced zero to the West was Leonardo of Pisa (Fibonacci)
in his book Liber Abaci (1202 CE). After many vicissitudes, and thanks to the
persistence of both the Muslims and the Hindus, the zero and its companion,
infinity, have by 1430 arrived throughout Western Europe.

In the century that followed, Nicholas of Cusa [“Terra no est centra
mundi”, 1440 CE] and Nicolaus Copernicus (1543 CE) cracked open the
nutshell universe of Aristotle and Ptolemy. The Church was now under attack
both from the inside (Luther, 1517) and the outside. For if the universe were
infinite, then there could be no center. How could earth, then be the center
of the universe?

“Zero became a heretic!”

The Catholic Church stroke back by re-rejecting the void and the infinite.
It did so with the establishment of the Jesuit order (1530 CE), the Inquisition
(1543 CE), and the Index of forbidden books. “This counter-Reformation was
the Church’s attempt to rebuild the old order by crushing the new ideas”.

In the meantime the scientific revolution was on its way, but its first
harbingers were somewhat ambiguous: For example, Descartes (being him-
self a Jesuit) “would bring zero to the center of the number line, yet, being

329 Negative number did not have necessarily to mean a negative area. Brah-

magupta (ca 630 CE) gave rules for dividing numbers of the same or mixed

polarity (+
+

= −
− = +, +

− = −
+

= −), but he wrongly asserted that 0
0

= 0

and failed to attach any sensible meaning to 1
0
.
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indoctrinated with the Aristotelian philosophy, denied the existence of the
vacuum (1637)”.

Not for long. It was Galileo’s secretary, Evangelista Torricelli, who
proved this was not true by creating the first vacuum (1643). Aristotle was
defeated, and scientists stopped fearing the void and began to study it. Then
an unexpected help for the Church came from within the scientific camp: Pas-
cal, a devout Jansenist, combined mathematical theory (probability theory),
with zero and infinity to prove (?!) the existence of God.

Then, from deep within the scientific world emerged a new language – the
Calculus of Newton and Leibniz: the most powerful mathematical method
ever by dividing by zero and adding an infinite number of zeros together –
the language of nature!

The Church, however, refused to admit defeat. Its last battle was fought
via an Irish bishop, George Berkeley (1734). He ridiculed infinitesimals,
arguing that Newton himself could not explain how his infinitesimals disap-
peared when squared. He charged the mathematicians of his day that they
just accepted the fact because making them vanish at the right time gave the
correct answer. Berkeley’s attack forced mathematicians to re-examine the
foundation of analysis. There followed 200 years of intense efforts by the best
minds in Europe. The result was a rigorous calculus as we know it today.

This process was started by D’Alambert (the idea of the limit; 1754) and
Lagrange (1797), in what we call today ‘the Arithmetization of the Calculus’.
It was then followed by the French geometer Poncelet (point at infinity in
projective geometry; 1822), and by Gauss (1827) and Riemann (1854) in
their new differential geometry. The concept of infinity was finally harnessed
by the studies of Cantor (1872).

While infinity and zero have been inseparable essential mathematical en-
tities for over 2500 years, these concepts became truly relevant to physicists
only in the 20th century: In thermodynamics zero became an uncrossable bar-
rier; in Einstein’s GTR clockrates vanish and densities diverge in black holes
and cosmological solutions; in quantum mechanics zero-point motion is an
infinite source of energy present even in the deepest vacuum.

Toward the end of the 20th century, physicists began to realize that the
zero of the vacuum might explain the lumpiness of the universe. Since the
vacuum everywhere in the universe is seething with a quantum foam of virtual
particles, the fabric of the universe is filled with infinite zero-point energy.
Under the right conditions this energy is able to push objects around.

Moreover, “zero might also hold the secret of what created the cosmos.
Just as the nothingness of the vacuum and the zero-point energy spawn par-
ticles, they might spawn universes. Perhaps the universe is just a quantum
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fluctuation on a grand scale. Zero might hold the secret to our existence –
and the existence of an infinite number of other universes”.

“Zero is so powerful because it unhinges the laws of physics. It is the
zero hour of the Big Bang and the ground zero of the black hole. It not only
holds the secret to our existence, it will also be responsible for the end of the
universe.”

510–530 CE Anthemios of Tralles (ca 474–534 CE). Mathematician and
architect. Best known for the Hagia Sophia at Constantinople. Described the
construction of an ellipse with a string fixed at two foci. His famous book On
Burning Mirrors describes the focusing properties of a parabolic mirror.

ca 510–524 CE Anicus Manilus Severinus Boethius (480–524 CE,
Italy). Roman philosopher, statesman and writer on mathematics. Played
a role in the history of mathematics because his writings on geometry and
arithmetic remained standard texts in the monastic schools for centuries.

Boethius was born in Rome into an aristocratic Christian family, during
the reign of Odoacar. After the death of his father, a consul, (487 BC) he
was taken under the patronage of men of the high nobility. He befriended
Theodoric, Ostrogoth ruler of Rome, who made him consul (510), and later
head of government and court services (520). But his good fortune did not
last: accused of conspiring against Theodoric330, he was arrested, impris-
oned at Pavia, and finally executed without trial. His work De consolatione
philosophiae (the Consolation of Philosophy) was written in prison. In the
year 996, Otto III, ordered the bones of Boethius to be placed in the church
of S. Pietro in Ciel d’Oro within a splendid tomb, for which Gerbert, after-
wards Pope Silvester II, wrote an inscription.

The very meager works of Boethius came to be considered as the height of
mathematical achievement, and thus well illustrate the poverty of the subject
in Christian Europe during the Middle Ages: For the Geometry consists of
nothing but the statements of the propositions of Book I, and a few selected
propositions of Books III and IV of Euclid’s Elements, and the Arithmetic
is founded on the tiresome and half mystical work of Nicomachos of four

330 When Boethius published his works on philosophy, contemporaries assumed

they were about the occult sciences, and he was accused of being an astrologer

and magician.
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centuries earlier. With these works, and his writings on philosophy, Boethius
became the founder of Medieval scholasticism.

510–538 CE Severus of Antioch (465–538 CE). Greek monk – theolo-
gian and prelate. Undermined the base of the dominant ideology of the Church
by attacking the notion that soul and body are separate. Revived causality331

– the idea that one event leads to other events, that man and nature can
be understood as historical phenomena, autonomous of divine intervention.
Severus sees human beings as processes whose individuality is based on their
history – their parentage, their education, their actions and moral decisions
– which shape them to what they are. Evil arises historically, from people’s
relations with one another in society – rather than from the inherent sinful-
ness of man or matter. Therefore – to combat evil, society must change. This
justified revolution. But if the affairs of humanity can be understood in terms
of historical causes and effects, then the world as a whole can be understood
in the same way.

Severus thus revived the battle between an evolving world and the one
created once and for all.

Severus lived as a monk in the land of Israel; became a leading exponent
for Monophysitism. He became a confidant of Emperor Anastasius who made
him patriarch of Antioch (512 CE); fled to Egypt on accession of Justin I
(518). He then became formulator and head of the Monophysite movement
in Egypt and Syria.

ca 510–540 CE Eutocius of Ascalon (ca 480–540 CE). Lived as a monk
in the city of Ascalon in Israel. Wrote commentaries on works of Archimedes
and Apollonius. Does not appear to have done any original work.

520 CE Bodhidharma (d. 528, India and China). Founded in China the
Zen (Ch’an) school of Buddhist meditation. It is not a philosophy or religion
in the proper sense. It has nothing to teach and no rituals. Zen is a method
of self-restraining that leads to understanding of reality. Its basic idea is that
a person can discipline his mind so that he comes into touch with the inner
workings of his being. He aims to grasp intuitively what he cannot grasp
rationally. This larger awareness cannot be taught and each person must find
it for himself.

Bodhidharma was born in Southern India. In 520 CE he came by sea to
Canton, China, amongst Hindu refugees. He settled in the monastery of Shao-
lin near Lo-Yang, where he founded his school. He realized that scholastic and

331 The Platonic-Augustinian worldview was anti-historical; God created the uni-

verse once and for all. Cause and effect was excluded – things happen because

God willed it, and thus science could not begin to take root.
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philosophical Buddhism had become dominant in China and that the schools
of Buddhism had failed to grasp the reality of its basic ideas. This led him to
promulgate Zen.

Against rational knowledge, on which Western Science is based, Zen has
placed intuitive knowledge that is not enkindled by mathematical formulae
and scientific treatises. Zen preaches that segmented knowledge, as science
offers through its emphasis on rationality, is hardly wisdom. Zen believes that
in order to penetrate the nature of man, a language beyond the confines of man
must be employed. Man cannot know himself through his own language. He
must resort to the language of universal scope, that of no-knowledge. Perhaps
wisdom is the artful way in which rational knowledge, intuitive knowledge
and no-knowledge can be integrated and applied.

529 CE Byzantine emperor Justinian closed the Academy (founded by
Plato in 387 BCE) and the Lyceum (founded by Aristotle in 335 BCE) in
Athens. This move was made to defend the state religion, Christianity, from
what was then perceived as Pagan influence. Under Rome the status of science
sank to a point where philosophers, astronomers, and charlatan magicians of-
ten were grouped together and stigmatized, even outlawed as mathematicians.

The end of the Roman Empire332 is traditionally placed in the year 476
CE in which Odovacar set aside the titular ruler, Romulus Augustus; but

332 Nobody knows precisely what caused the fall of Rome. There is, however, a

consensus among contemporary historians that it was a result of a series of

contingent events. Major among them were:

• Social inequality - the impoverishment of the masses by an economic sys-

tem which enriched a small propertied minority.

Whereas the Western Empire went under, the Eastern sector endured as Byzan-

tine civilization for a very long time. In the East, much more of the land was

owned by peasant proprietors than in the West, and therefore a correspondingly

larger proportion of the total agricultural yield went to them. In the West, how-

ever, a landed aristocracy had a stranglehold on government administration and

used its power and connections to funnel cash into its own coffers, creating a

class of idle rich.

The empire was already structurally flawed in the extreme by the 3rd century.

The taxes levied to maintain the army were massive, and they fell largely on

the poor. The Roman rulers also managed to ruin the middle class. It was this

class that had held the culture of the ancient world together, and by the 4th

century, it was going under. By the 5th century it was gone, and it did not

reappear in Italy until the rise of the mercantile families of the High Middle

Ages.

• Bankruptcy of the State: By the 3rd century nearly every denarius col-
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from an intellectual point of view other dates have greater significance. The
Greek schools of philosophy at Athens had lost much of the vitality they
enjoyed during the days of Aristotle, but they continued to serve as a focus
of scholarly activity until their dissolution in 529 CE. This year marked also
the founding of the monastery at Monte Casino, a coincidence which may be
taken as symbolic of the shift in interest from secular learning to religious
activity.

The attitude of the early Church fathers to natural science had been char-
acteristically expressed by Lucius Caecilius Firmianus Lactantius (ca
240–320 CE) [the “Christian Cicero” and tutor (at Trier) to Crispos, the son
of Constantine], when he wrote:

“To search for the causes of things; to inquire whether the moon is convex
or concave; whether the stars are fixed in the sky, or float freely in the air;
of what size and what material are the heavens; whether they be at rest or
in motion; what is the magnitude of the earth; on what foundations is it
suspended or balanced; to dispute and conjecture upon such matters is just

lected in taxes was going into military and administrative maintenance, to the

point that the state was drifting toward bankruptcy. The standing army rose

from 300,000 troops in 235 CE to about 600,000 in 300 CE. This caused further

debasement of the coinage and enormous inflation. Rome’s policy of geographic

and military expansion, became nonviable. By the time of the 5th century,

Rome was an empire in name only.

• Spiritual and intellectual collapse. For centuries, the aim had been to hel-

lenize or romanize the rest of the population - to pass on the learning and

ideals of Greco-Roman civilization. But as the economic crisis deepened, a new

mentality arose among the masses, and based on religion, which was hostile to

the achievements of higher culture. The new “intellectual” effort were designed

to cater to the masses, until intellectual life was brought down to the lowest

common denominator, primitive forms of life finally drowning out the higher

ones. i.e. the gradual absorption of the educated classes by the masses and

the consequent simplification of all functions of political, social, economical and

intellectual life – the barbarization of the ancient world.

Religion played critical role in these developments: by the 3rd century there was

an attitude among many Christian that education was not relevant to salvation,

and that ignorance had a positive spiritual value. Consequently, there was a

sharp increase in mysticism and a belief in knowledge by revelation. The cogni-

tive ability of comparing different viewpoints or perspectives had disappeared

by the 6th century. Even by the 4th century, what little that had survived from

Greek and Roman philosophy was confused with magic and superstition. In

fact, the study of Greek (and therefore of science and philosophy) was com-

pletely abandoned.
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as if we chose to discuss what we think of a city in a remote country, of which
we never heard but the name”.

Eusebius of Caesarea (ca 260–339 CE), adviser to the Emperor Con-
stantine, one of the most learned men of the age, explained that it was not
through ignorance of natural philosophy that he had turned from science, but
through contempt for the uselessness of its activity, devoting himself to the
direction of souls to better things.

Science Progress Report No. 1

The Earth Becomes Flat Again

“For a man, in those days, to have had an idea that his ancestors hadn’t had,
would have brought him under suspicion of being illegitimate”.

Mark Twain, 1889 (1835–1910)

In the first centuries of the Christian era, mathematics was not in a flour-
ishing state. It was suspect because of its close connection with heathen phi-
losophy. Many even considered it the work of the devil, since the soothsayers
and the astrologers often called themselves mathematicians.

The year 529 marks the end of ancient mathematics and the beginning
of the ‘Dark Ages’ in the history of science. When in 527 Justinian became
emperor in the East, he evidently felt that the Pagan learnings of the Platonic
Academy in Athens and other philosophical schools at Athens were a threat
to orthodox Christianity. Hence in 529, the philosophical schools were closed
and the scholars dispersed.

As a result, there began a migration of scholars into Persia, where they
established, under King Chosroes, the ‘Athenian Academy in Exile’. Hence-
forth, the seeds of Greek science were to develop in Near and Far Eastern
countries, until, some 600 years later, the Christian world was in a more
receptive mood.

Mathematics did not disappear entirely from Europe in 529. The spirit
of mathematics languished, however, and was replaced by barren theological
scholasticism.
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As far as the earth and the heavens were concerned, the Ptolemean geo-
centric cosmology reigned supreme. The actual architecture of the world was
thought to approximate Aristotle’s scheme of crystal spheres. But this purely
descriptive scheme left an obvious epistemological void, which the theologians
moved in to fill. The early leaders of the Christian Church insisted on a lit-
eral interpretation of the relevant Biblical passages, and the earth became flat
again333.

333 In 1993, the supreme religious authority of Saudi Arabia, issued an edict (fatwa),

declaring that the world is flat. The edict also stated that anyone of the round

persuasion does not believe in God and should be punished.

Among many ironies, the lucid evidence that the earth is a sphere, accumulated

by Ptolemy, was transmitted to the West by astronomers who were Muslim and

Arab; It the 9th century, they named Ptolemy’s book (in which the sphericity

of the earth is demonstrated), the Almagest, “The Greatest”.
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D
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Darius I, the Great, 107, 131, 143,
158, 177, 179, 267, 323
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395, 396, 425, 452
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Diogenes of Babylon, 257

Diogenes of Sinope, 240, 244
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Erandros the Phocian, 237

Erasistratos of Ceos, 298, 298, 299
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276, 277, 280, 305, 308, 308,
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Eupolis, 277
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Goethe, Johann Wolfgang von, 136

Gordian III, 391
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409, 412, 419, 429
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Hecataeos of Miletos, 178, 178

Hegel, Georg Wilhelm Friedrich,
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Hieronymos of Cardia, 272, 272,
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Hilbert, David, 288
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Hippasos, 169
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230, 231
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Hisma, Eliezer, 416

Hiyya, the Great, 428
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Job, 136, 138

Joel (Prophet), 134, 137, 140, 222
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Lucretius (Titus Lucretius Carus),
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Lung, Shen, 73
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Lycon of Troas, 237
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Mandrocles of Samos, 177, 177
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Mani, 264

Marcion of Sinope, 264, 380
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N

Nabu-rimannu, 178
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Nebuchadnezzar II, 131, 144, 338
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Numenius of Apamea, 264
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Odovacar, 445, 457
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P
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Pascal, Blaise, 258, 287, 395, 425,
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Pelagius, 431, 431
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Petrarch, 327

Pheidias, 200

Philinos of Cos, 280

Philip II of Macedonia, 233
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Philolaos of Croton, 378
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Polemon, 237

Polybius, 269, 323
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R
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Sakkas, Ioannis, 303
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Satyros, 230
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Scheiner, Christoph, 347
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Schroedinger, E., 174
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Scopas, 230
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Severus of Antioch, 448, 455, 455

Severus, Alexander, 146
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Shalmaneser III, 120

Shamai, 387

Shao, Chin Chiu, 401
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Roijen, 310
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Solinus, 441
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Sophocles, 277
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Sostratos, 298
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Straton of Lampsacos, 237, 275,
276
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Syrianus, 442

T
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Tethmosis III, 73
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Theaitetos of Athens, 204, 206

Themistocle, 179
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Theodoros of Samos, 176, 176

Theodosios of Bithynia, 273

Theodosius I (Emperor), 157, 432

Theodosius II, 157
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Thymaridas, 221, 221
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Timocharis, 276, 379, 380

Timotheos, 230
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Tosfaah (Rabbi), 428, 430

Trajan, 107, 360, 366, 369

Tsu, Ch’ung-Chi, 447
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Tsu, Sun, 400, 401, 427

Tukulti-Ninurta I, 110
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Twain, Mark (Samuel Langhorne
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V

Valentinian III (Emperor), 442

Valentinus, 264

Veda, Rig, 69

Vercingetorix, 334, 335

Vespasian, 360, 362

Viète, Francois (Franciscus Vieta),
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W

Wallis, John, 281

Wentzel, Pierre, 230

Whewell, William, 58

Whitehead, Alfred North, 307
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Wren, Christopher, 170

X

Xenocrates of Chalcedon, 232, 237,
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Xenophanes of Colophon, 176, 176,
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Y

Yannai, 428

Yeh, Li, 400

Yossi, 429

Z

Zachariah (Prophet), 134, 137

Zeeman, Pieter, 171

Zeira (Rabbi), 428

Zeno of Citium, 242, 256, 270, 271,
272, 341, 383

Zeno of Elea, 182, 183, 184, 188,
214, 215, 397

Zeno of Tarsos, 257

Zenodoros, 312, 312

Zenon of Sidon, 325

Zephaniah (Prophet), 134
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Zoroaster (Zarathustra), 137, 141,
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Zosimos of Panapolis, 394

Zwingli, Huldrych, 257
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algebra, 390, 452

Almagest, 316, 369

Alpha Draconis, 84, 313, 314

alphabet, 63, 117

alphabet, Greek, 120

alphabet, Hebrew, 106

alphabet, Latin, 121

amicable numbers, 288

anatomy, 433

apogee, 319

Apostles, 382

Aquarius, 98
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gressions, 404
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B

Babylonians, 90, 94, 97, 130
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Bayes’ theorem, 420, 421

Bible, 69, 121, 129, 134, 136, 373,
426, 448

binomial coefficients, 400

biology, 433

biquadratic equations, 89

Bitumen, 86

botany, 433

Buddhism, 151, 153, 179

C

calendar, 60, 81, 82, 86, 91, 94,
401, 407

calendar, Egyptian, 334

calendar, Hebrew, 98, 389, 408,
410, 413, 414

calendar, Julian, 127, 336

candle, 427

Cardan’s suspension, 325

cast-iron, 116, 438

causality, 455
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center of gravity, 395
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88, 102, 106, 117, 120, 144,
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188, 285, 298, 311, 324, 367,
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Chinese mathematics, 64, 73, 86,
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Chinese remainder theorem, 401

Christianity, Paulian, 381

civil year, 336

clepsydra, 299

Colossos of Rhodes, 295

combinatorics, 424

Comet Halley, 308, 358

comets, 86, 140, 334, 360

conic sections, 230, 309, 395

continued fractions, 164, 280, 448

coordinate geometry, 287

Council of Nicaea, 407

creation ex nihilo, 140

Crete, 64

crystallization, 358

cubic equations, 302

cuneiform, 63
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D

decimal system, 106, 404

Dedekind cut, 217

Demiurge, 263

demotic writing, 76

descending node, 319

determinant, 399

Differential geometry, 287

directrix, 395

dissection, 219

distillation, 358

dodecahedron, 178

Dorians, 126

draconitic month, 319

dualism, Persian, 382

Dulong-Petit Law, 171

duodecimal system, 96

E

earth’s spherical shape, 189

earth-moon distance, 297

earthquake, 140, 152, 295

eclectics, 260

eclipse, 88, 97, 106, 120, 121, 140,
143, 145, 178, 315, 320, 322,
334, 360
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Eightfold Way, 151

electrum, 122

elixir of life, 357

ellipse, 230, 310

empiricism, 149

Epicureanism, 239, 248, 271

episteme, 263

equinoxes, 314, 376, 379

essentialism, 150
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∗ ∗∗

“O sweet spontaneous earth,
How often have the doting fingers

of prurient philosophers pinched and poked thee,
has the naughty thumb of science prodded thy beauty;

How often have religions taken thee
upon their scraggy knees, squeezing and buffeting thee
that thou mightest conceive gods.

But true to the incomparable couch of death–
thy rhythmic lover,

Thou answerest them only with spring”.

E.E. Cummings (1923)
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Monasteries and Monks or,– the case of the ignorant
copyists (529–1100)

The period of history which lies between ancient times and modern times,
from the fall of the Western Roman Empire to the fall of Constantinople and
the end of the Eastern Roman Empire, is generally known as the Middle Ages.

It was a period when the removal of the strong, central government of
Rome left Europe in chaos. The mighty empire was fragmented into small
kingdoms, and in many places rule was by local lords, each of whom exercised
power only in the immediate vicinity of his own castle.

In Europe, this was a time of hardship and poverty. With the lack of
wealth and consequently of people able to act as patrons, there was a decline
in learning. Gradually however, nationalistic feelings grew and strong kings
began to shape countries out of their lands. The rise of the feudal system
created a structure on which secular governments could be based.

The drop in literacy in the Roman Empire was particularly sharp after the
3rd century. There was a decline in the availability of texts, and the period
saw a basic cultural shift, an expansive loss of awareness of past achievements
in the writing of history, as well as in philosophy and literature. Even by 400
CE, works by Cicero were difficult to find, and by the end of the 6th century,
the very few leading intellectuals of the Latin West who did exist, such a
Gregory of Tours1 (538-594), could barely write coherent sentences. From
600 to 1000, most people forgot to read and think, and, in fact, forgot that
they had forgotten. There was an inability to approach texts critically, even
among the leaders of European culture. Scholarship consisted of collecting
quotes and facts, and the reasoning used by these scholars in their own works
bore little resemblance to the classical texts they admired. Real scholarly
debates and understanding, genuine logical interaction, did not appear until
the 11th century. Thus the proverbial lights went out in Western Europe.

One may therefore ask: how did the Phoenix rise from its ashes 600 years
later? To answer this question one must consider what the sources of cultural
preservation were between roughly 500 and 1100 BCE, and what difference
these made for the cultural reawakening of Western Europe that began toward
the end of the 11th century and then lurched unevenly toward the Italian
Renaissance and the Scientific Revolution.

1 He was ignorant of the rules of grammar, his spelling was faulty, his syntax shaky,

and his arguments elementary. He wrote in the vernacular language of his time.
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During the 6th and 7th centuries, monasteries, especially Irish ones, began
to stow away the nuggets of intellectual achievement from Roman civilization,
and, to a lesser extent, that of Greece. By 700 BCE, while Europe was sacked
by Goths, Arabs, and Vikings, a few scholars as the Venerable Bede (672–
735), preserved the knowledge of the classics, carrying the seeds of Western life
through the grim winter of the Dark Ages. In the 7th century alone, 200 new
monasteries were founded in Gaul. For 300 years, Irish monasteries produced
a series of remarkable men who exerted a profound influence on thought and
letters in Western Europe. Their missionary work extended to Scotland and
the Continent, and disciples flocked to these regions. Monasteries such as
those founded by the Irish monks Columba (521–597) and Aidan (590–651)
became important study centers.

In the monasteries, monks were busy in the scriptorium transcribing old
manuscripts2. Most of them did not understand the implications of the texts
they were copying. Passages got transcribed without any inquiry as to whether
they made sense, or contradicted other authorities. In fact, many Benedictine
monks had entered the monasteries as children, handed over by their parents.
The scriptoria thus became the loci of cultural preservation, but the copying of
manuscripts was more a manual training than an intellectual one: calligraphy
rather then philosophy.

Moreover, monasteries, from the 4th century on, were not schools for sacred
study, but, rather, of ascetic practice. Monks and clerks regarded philosophy
as a source of heresy. By 500, the monastic ideal included the notion that
learning was incompatible with Christian culture. The idea of the monastic
school was to break with classical learning, and to teach the “science” of as-
cetic contemplation instead. Thus, it appears that the intellectual disciplines
of distinction, definition, and dialectic were lost to the readers of the Dark
Ages. Their apprehension of the world rested on myth and magic, and the
prevalent mind-set was one of symbols, analogies, and images. Both Columba
and Aidan renounced classical learning, implanting instead the desire to med-
itate on Scripture.

By 800, then, written civilization has disappeared, and only a tiny elite
had access to intellectual culture. And yet, this warped form of classical
preservation did serve an important purpose. Manuscripts were copied, li-
braries were accumulated, and the later dispersion of this material made the

2 Supposedly, the monastic built-in schools taught the old curriculum of the trivium

(grammar, rhetoric, and dialectic) and the quadrivium (arithmetic, geometry,

music, and astronomy). However, the anglo-saxon clergy, knew little or no Latin

and they were in fact, as ignorant as the majority of laymen. By 600, even leading

intellectuals were not able to think in the sense that the people of antiquity or of

the 12th century were able to do.
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subsequent revival of learning possible. When the cognitive revolution (that
began in the late 11th century) finally took hold, the ancient material was at
least available, now to be looked at through new eyes.

So the texts had to be there for a 12th century renaissance to occur, and
the monks of the Dark Ages managed to preserve them, even if they did not
understand them very well and despite the fact that their own purposes were
ascetic rather then intellectual.

Finally, the steady growth of power and wealth within the church provided
another unifying force, and gave some men leisure to pursue lives of scholarship
and study.

The great monasteries founded throughout continental Europe during the
Middle Ages preserved ancient learning. These were inhabited by communes
of monks and nuns who lived by the so-called ‘rule’ of the monastery. The
greatest ‘rule’ was that of St. Benedict of Nursia (480–542) who founded
the monastery of Monte Cassino in Italy at about 529. Under the guidance
of Pope Gregory VII, some monks became scholars and teachers. At a time
when few laymen could read or write, they preserved much classical learning
which would otherwise have been lost3. Monks prayed for the souls of the
dead, and had practical duties such as caring for the sick and feeding the
poor. The religious houses – both male and female – provided almost all the
medical skill available then. The monastic libraries preserved much classical
learning, but books disapproved of by the church, were kept hidden away or
destroyed.

In the Germanic kingdom, the Benedictine monasteries exerted powerful
influence. Their emphasis on obedience to higher authority helped hold the
church together at a time when any sort of centralization was hard to achieve.
In many parts of Europe the Benedictines introduced valuable new techniques,
such as stone masonry and organizing agriculture around the large estate.
Thus they served as nuclei for the growth of towns, for they were usually
more prosperous than the neighboring countryside.

Monasteries spread rapidly throughout most of the Germanic kingdoms,
often more rapidly than organized dioceses and parishes.

3 It was the monks who preserved the cultural heritage of the ancient Greeks by

copying and recopying the old parchments to save them from decaying. It was the

Christian Church, however, who decided what should be copied and what should

not. These decisions affected mainly works of literature and philosophy. Thus,

the Church held the power to censor and exterminate any piece of cultural item

which in its opinion threatened the Christian dogma.
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ca 530 CE Simplicius. Greek philosopher. Disciple of Ammonius and
Damascius. Author of commentaries on some of Aristotle works.

A native of Cilicia and one of the last of the Neoplatonists. When in
529, the school of philosophy at Athens was disendowed and the teaching of
philosophy forbidden, the scholars Damascius, Simplicius, Priscianus and
four others resolved in 531 or 532 to seek the protection of Chosroes, king
of Persia. They returned to Greece when Chosroes, in his peace treaty with
Justinian (533 BCE), expressly stipulated that the seven philosophers should
be allowed “to return to their own homes, and to live henceforward in the
enjoyment of liberty of conscience”.

Simplicius was not an original thinker, but his remarks are thoughtful and
intelligent and his learning is prodigious.

530–540 CE Dionysius Exiguus (497–540, Rome). Chronologist. A
Christian monk, introduced in ca 525 the method of dating years of the Chris-
tian Era. He chose its first year to be the year of Christ’s birth (the actual
time of that event was a few years earlier). Since he started from year 1 and
not year 0, the previous year is called 1 BCE.

Prior to this date, Near-Eastern, Greek and Roman Calendars were all
related to local fiducials, centered on current monarchs or specific events such
as the fall of Troy (1183 BCE, recommended by Eratosthenes), the great
earthquake at the time of the prophet Amos (Amos I, 759 BCE), the olympic
games (Greece, 776 BCE, 772 BCE etc.), the founding of Rome (A.U.C.=ab
urba condita, ca 754 BCE), the battle of Salamis (480 BCE) and other exam-
ples.

The era most commonly used in Dionysius’ day was the Diocletian era,
which the Christians called the era of martyrs. It began on August 29, 284.
Dates were often established with reference to the Roman consuls.

The Christian era was not adopted at once; in the Byzantine Empire,
Dionysius’ reform was not accepted at all. Byzantines numbered their years
with reference to the 15 years indiction-cycles4 and to the creation of the
world. The Christian era was introduced in Russia only in the time of Peter
the Great. The habit of counting pre-Christian years with reference to the
Christian era is a recent innovation.

530–548 CE Cosmas of Alexandria (Indicopleustes). Greek navigator
and explorer of the Indian Ocean. (The surname is inaccurate since he never

4 Diocletian fixed a 15-year assessment of property tax. It was used as a chrono-

logical unit in ancient Rome and incorporated in some medieval systems.
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reached India proper; further, it is doubtful whether Cosmas is a family name,
or merely refers to his reputation as a cosmographer.)

In his early days he had sailed the Red Sea and the Indian Ocean, visiting
Abyssinia and Socotra and apparently also the Persian Gulf, coast of western
India and Ceylon. He subsequently became a monk, and at about 548 CE, in
the retirement of a Sinai cloister, wrote a work called Topographia Christiana.

According to Cosmas’ map the earth is a rectangular plane, covered by the
vaulted roof of the firmament, above which lies the heaven. In the center of
the plane is the inhabited earth, surrounded by an ocean, beyond which lies
the paradise of Adam. His was probably the oldest Christian map. In it the
sun revolves round a conical mountain to the north – round the summit in
summer, round the base in winter, which accounts for the difference in the
length of the day. Cosmas is believed to have been a Nestorian.

537 CE Dedication of the church Hagia Sophia5 in Constantinople (now
Istanbul), the finest and most famous example of Byzantine architecture (East
Roman) in the world. It was built as a Christian cathedral by Justinian I,
the Great, (482–565 CE) between 532 and 537 CE. The architects employed
were Anthemias of Tralles and Isidoros of Miletos.

The main problem they had to solve was that of carrying the dome (which
measures 56 m high and 33 m across) on four arches. The building itself is 76
m from east to west and 72 m from north to south. The four arches formed a
square on a plane, and between them were built spherical pendentives, which,
overhanging the angles, reduced the center to a circle on which the dome
was built. During the earthquake of 555 CE, this dome fell down, and when
rebuilt was raised higher and pierced round its lower part with 40 circular-
headed windows, which give an extraordinary lightness to the structure. This
was done between 558 and 563 CE. After 1453, when the Turks conquered
the city, the building was used as a mosque. Since 1953, Hagia Sophia has
served as a museum.

The inside appearance is one of great space, height and richness. The
rare and costly building materials were brought from many parts of the Ro-
man Empire. The marble-lined walls have many colors and designs. Mosaic
decorate the vaults, and beautiful pictures decorate the walls.

542–594 CE Waves of Bubonic Plague over Europe, Asia and Africa.
Known as the Plague of Justinian, it began in lower Egypt and from there
spread to Israel, Asia Minor, Italy, the North coast of Africa and Gaul. Many
millions died over the whole Roman world.

5 A Greek phrase meaning ‘Holy Wisdom’.
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ca 550 CE Asaf ha-Rofeh; Asaf Yudaeus (Israel and Babylonia).
Physician and medical scholar from the pre-Arabian period. Known for his
extant “Book of Medicine”. Although the book is, in the main, based on
the teachings of the Greek Hippocratic school, it was modified to suit Near-
Eastern climate, national tastes and habits, with important Talmudic and
ancient Israeli sources. The book was originally written in Hebrew and later
translated into Greek, Latin and Arabic. It serves today as a source of an-
cient medicine (terminology, prognostics, diagnostics, hygiene, diet, pathol-
ogy, anatomy, pharmacology etc.).

ca 550 CE Olympiodoros (the Younger) of Alexandria (ca 510–
570 CE). A Greek Neoplatonic philosopher. Maintained Platonic tradition in
Alexandria after suppression of Athenian school (529 CE) by Justinian. Wrote
commentaries on Plato and Aristo. Euclid’s and Heron’s discovery that light
(reflected from a plane surface) takes the path of least time prompted him to
say in his Catoptrica:

“Nature does nothing superfluous or any unnecessary work.”

In medieval times it was commonly accepted that nature behaved in this
manner. Indeed, Leonardo da Vinci said: “Nature is economical and her
economy is quantitative”. Later on, Robert Grosseteste said: “Nature
always acts in the mathematically shortest and best possible way.”

ca 550 CE The map of Madaba. The oldest true geographical map extant.
It is a mosaic map of Israel, discovered in Moab in 1896.

550–580 CE Varahamihira (505–587, India). Astronomer. Produced a
revised version of the Indian Calendar. His works on mathematical astronomy
include a number of trigonometrical identities, apparently derived by him for
the first time:

sin x = cos(
π

2
− x); sin2 x + cos2 x = 1; 1 − cos 2x = 2 sin2 x.

Also, extending the work of Aryabhata the Elder, he gave more accurate
sine tables. He also produced a Pascal’s triangle for the binomial coefficients
Cn

r .

550–580 CE Alexander of Tralles (Trallianus, ca 525–605 CE). Byzan-
tine physician. Practiced in Rome; author of major work on pathology and
therapy circulated in Greek, Arabic and Latin (Libri duodecim de re medica)
into the 16th century. Born at Tralles in Lydia.
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560–760 CE Decline and eradication of the Moche civilization (since 100
CE) in Northern Peru due to destruction of their water irrigation canals by
repeated El-Ninio weather systems.

ca 600 CE The first documentary evidence of Chess. There is supportive
evidence that places it in North India in 455 CE. Some historians place the
origin of Chess even prior to the invasion of India by Alexander the Great in
326 BCE. From India, Chess spread to Persia and China.

600–650 CE A dry period preceded the great wave of Arab outburst out
of Arabia.

600–800 CE Arabs carved themselves an empire from the Indian Ocean to
the Atlantic within one century.

622–633 CE Isidore of Seville or Isidorus Hisplensis (ca 560–
636, Spain). Encyclopedist and historian whose books served to keep alive,
throughout the Dark Ages, some little knowledge of the antique culture and
learning. One of the most important links between the learning of antiquity
and the Middle Ages. His chief works were:

• Chronica – a history extending to his own time.

• Originum sive etymologiarum – an encyclopedia in 20 volumes which
deals with geography, law, medicine, natural history, architecture, etc.
It was based on available knowledge of Greek learning, borrowed from
Pliny the Elder, Suetonius and a wide range of other authorities,
to whom credit is not given. It is an unsystematic, uncritical treatise,
merely reproducing at second hand the substance of antique sources. Yet
even this inadequate encyclopedia was very influential in early Medieval
times. It contributed to the acceptance of astrology in Medieval Europe.

Isidore was educated in a monastery and became archbishop of Seville
(602–636). He was of Jewish birth6 and was made a Saint of the Catholic
Church.

6 It is a fact that the founders of Christianity, many of the Church Fathers (including

the first three Popes), and a considerable number of the Catholic Saints, were of

Jewish origin. So was Saint Isidore of Seville, one of the most commanding and

devout figures in Spanish Church History of the Visigothic period. Yet, it is these

apostates out of spite, that generated the greatest hate against the Jews. In his

polemic book De fide Catholica. . . contra Judaeos (630) he endeavored to ‘prove’,

using biblical quotations, the ‘wrong’ religious perception of Jews.
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622 CE, July 16 (Friday) Commencement of the Muslim Calendar, on
the day of the flight of Muhammad7 (570–632 CE) from Mecca to Medina

7 Founder of Islam. In 595 CE, he married a wealthy widow, who had employed him

as a camel-driver for her caravans. It is at this point, while traveling throughout

Arabia, that Muhammad came into contact with Jews and Judaism and began

to reflect on the differences between the naive pagan pantheism of his people and

the lofty religious concept of the Jews.

The Islamic religion is embodied in the Koran (from the Arabic work “reading”).

Muhammad rejected the concepts of Virgin Birth and Trinity, and insisted with

the Jews that God was one, needing neither a family nor companions. He was

also repelled by the Christian worship of saints, which he viewed as idolatry, and

like the Jews banned all statue worship. The predominant non-Arabic figure in

the Koran is Moshe, not Jesus.

Of the six basic tenets of Islam, four are derived from Judaism (belief in the im-

mortality of the soul; belief in one invisible God; the belief in a God-sent prophet;

the belief in the Book as the revealed text) and two from Christianity (Judgment

day; total surrender of the human will to God). The correspondence is Jehovah-

Allah; Moses-Muhammad; Torah-Koran; “God’s grace”-Islam.

The mosque, like the church, was modeled on the synagogue. In the matter of

prayers, forbidden foods, circumcision, hygiene, marriage and divorce, and the

study of sacred Scripture, Muhammad and his successors also followed Jewish

models faithfully. This may explain why Arabic and Jewish culture during the

first 5 centuries of Islam showed such a remarkable affinity, and why in Spain,

North Africa and Babylonia they went through an almost parallel development.

Whether from conviction or expediency, Muhammad, at the outset of his

prophetic career, addressed his preachings almost exclusively to the Jews of Ara-

bia. He borrowed much of the narrative material as well as the doctrine for the

Koran from the Talmud and Midrash. In composing his poetic Suras he used the

well-known Jewish Bible stories of Adam, Abraham, Lot, Joseph, Moshe, Saul,

David, Solomon, Elijah, Job and Jonah.

When Muhammad first raised the standard of militant Islam in Mecca, he was

persecuted and had to flee (622 CE). He went to Medina, where he expected that

a large part of the Jewish population would accept him as the Prophet of Allah

since, as he saw it, their religion was the same as his. He posed as a prophet

of Israel and preached to the Jews of Medina in a style he thought rabbinical.

Furthermore, he made Jerusalem his Kibla (the direction in which he turned his

face while at prayer).

But when the Jews of Medina, who were well acquainted with their sacred writ-

ings, proceeded to expose his brand of Torah as fraud, Muhammad turned fu-

riously away from them after many acrimonious disputes with their rabbis. He

then changed his Kibla from Jerusalem to Mecca.
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(Hegira). The years of the Hegira are purely lunar, and always consist of
12 lunar months, commencing with the approximate new moon, without any
intercalation to keep them to the same season w.r.t. the sun, so that they
retrograde through all seasons in about 32 1

2 years. They are also partitioned
into cycles of 30 years, 19 of which are common years of 354 days each,
and the other 11 are intercalary years having an additional day appended
to the last month. The mean length of the year is therefore 354 11

30 days, or
354d : 8h : 48m, which upon division by 12 gives 29 191

360 days or 29d : 12h : 44m,
as the time of a mean lunation. This differs from the astronomical mean
lunation by only 2.8 seconds, and leads to an error that amounts to a day in
about 2400 years.

625 CE In Chiku Suan Ching (Continuation of Ancient Mathematics), Chi-
nese mathematician Wang Hsiao Tung presented approximate solutions of
algebraic equations of the third degree with practical applications to problems
encountered by engineers, architects and surveyors.

628 CE Brahmagupta of India (598–670 CE). Astronomer and math-
ematician. Head of an astronomical observatory at Ujein. Wrote a book on

Jews arrived in Arabia as early as the days of King Solomon (900 BCE), when

his ships sailed the seas in search of new markets. During the period of the Has-

monean Kingdom (142–64 BCE), Israel became too small to hold the growing

Jewish population, and numerous Jews went forth to seek homes in Syria, Egypt

and the western coast of Arabia. It is also possible that when the Nabatean Arabs

invaded Israel (as they did on several occasions) they took away some captives

who eventually made their way further south. The defeat by Rome (70 CE), and

the ill effects of the subsequent rebellions, increased the Jewish population in this

part of the Eastern world.

By the middle of the 5th century Jews were to be found as far as the Kingdom

of Yemen. The Jews helped found the city of Yathrib (Medina), which, by that

time, had become the largest, most important city in Arabia, its 10,000 Jews con-

stituting the majority of the population. Far from the centers of Jewish culture in

Israel and Babylonia, the Arabian Jews possessed little learning. They did know

and revere the Bible and therefore were known to the pagans around them as

“the People of the Book”. Their belief in the unity of God, their higher personal

morality, their dignified observance of Jewish feast and fast days, their rest from

work on the Sabbath and their refusal to permit a fellow Jew, even of a different

tribe, to remain in slavery, left a deep impression upon their neighbors. In this

way, their presence and example prepared the mind of the heathen Arabs for the

acceptance of a higher form of religion.

Thus Judaism in Arabia served as a foundation for Islam in the same way that

Diaspora Judaism in the Roman Empire had served as a foundation for early

Christianity.
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algebra and trigonometry. Brahmagupta also wrote an important work on as-
tronomy in 21 chapters Brahma-sphuta-siddhanta (628) (The Opening of the
Universe). His understanding of the number systems was far beyond others
of his period. He developed some algebraic notation. In his trigonometry he
gave not only Heron’s formula for the area A of a triangle in terms of the three
sides but also the remarkable extension for the area of a cyclic quadrilateral
having sides a, b, c, d and a semiperimeter s = 1

2 (a + b + c + d), namely8

A =
√

(s − a)(s − b)(s − c)(s − d).

For the sides of right-angled triangle, Brahmagupta gave the two sets of
values {2mn, m2 − n2, m2 + n2} and {

√
m, 1

2 (m
n − n), 1

2 (m
n + n)}, values that

he probably obtained from Greek sources.

Among other mathematical topics taught by Brahmagupta were rules for
elementary operations with positive and negative numbers, progressions and
Diophantine equations of the first and second degree.

He perhaps used the method of continued fractions to find integral solution
to indeterminate equations of the type ax + c = by.

Brahmagupta also solved quadratic indeterminate equations of the
type ax2 + c = y2 and ax2 − c = y2. For example he solved 8x2 + 1 =
y2, obtaining the solutions:

(x, y) = (1, 3), (6, 17), (35, 99), (204, 577), (1189, 3363), . . .

For the equation 11x2 + 1 = y2 Brahmagupta obtained the solution

(x, y) = (3, 10), (161/5, 534/5), . . .

He also solved 61x2 + 1 = y2, which has

(x, y) = (226 153 980, 1 766 319 049)

as its smallest solution.

8 Brahmagupta wrongly believed that it held good for any quadrilateral. The Greek

mathematician Hero had, however, pointed out that the area of the general

quadrilateral is not determined by the four sides alone. Indeed, medieval mathe-
maticians discovered the general formula

A2 = (s − a)(s − b)(s − c)(s − d) − abcd cos2(
A + C

2
),

where A,C is a pair of opposite vertex angles of the quadrilateral.
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He gave explicit expressions for the sum of squares of the first n natural
numbers as n(n+1)(2n+1)/6 and the sum of cubes of the first n natural
numbers as (n(n + 1)/2)2. No proofs are given so we do not know how
Brahmagupta discovered these formulas.

Brahmagupta derived an interpolation formula which he used to compute
values of sines. The rule is equivalent to the Newton-Stirling interpolation
formula to second order differences.

The great Hindu mathematicians (500 BCE–1400 CE)

There are many differences between Greek and Hindu mathematics. In
the first place, the Hindus who worked in mathematics regarded themselves
primarily as astronomers, and thus Hindu mathematics remained largely a
handmaiden to astronomy; with the Greeks, mathematics attained an inde-
pendent existence and was studied for its own sake. Also, due to the caste
system, mathematics in India was cultivated almost entirely by the priests;
In Greece, mathematics was open to anyone who cared to study the subject.
Again, the Hindus were accomplished computers but mediocre geometers; the
Greeks excelled in geometry but cared little for computational work. Even
Hindu trigonometry, which was meritorious, was arithmetical in nature; Greek
trigonometry was geometrical in character.

The Hindus wrote in verse and often clothed their works in obscure and
mystic language; the Greeks strove for clarity and logic in presentation. Hindu
mathematics is largely empirical, with proofs or derivations seldom offered;
an outstanding characteristics of Greek mathematics is its insistence on rig-
orous demonstration. Hindu mathematics is of very uneven quality, good and
poor mathematics often appearing side by side; the Greek seemed to have an
instinct which led them to distinguish good from poor quality and to preserve
the former while abandoning the latter.

In the period between the demise of the Greek world and the rise of Islam,
it was India that occupied the center of the mathematical stage. We know that
there was some mathematical activity during the first millennium BCE, but we
have no texts earlier than the 5th century CE. The degree of influence of Greek,
Babylonian, and Chinese mathematics on Hindu mathematics, and vice versa,
is still an unsettled matter, but there is ample evidence that influence in



522 2. Slumber and Awakening

both directions was appreciable. One of the pronounced benefits of the Pax
Romana was the diffusion of knowledge between East and West, and from
a very early date India exchanged diplomats with both the West and the
Far East. From about 450 CE until ca 1500 CE, India was subjected to
numerous foreign invasions: Huns, Arabs (8th century)and Persians (11th

century). During this period there were several Hindu mathematicians of
prominence.

Hindu mathematics and astronomy reached its zenith during the period
of the Gupta dynasty (320–550 CE). The Hindus had long been interested in
these subjects and surpassed even the Greeks of the Hellenistic period in some
branches of Mathematics. Using abstract principles of algebra, the Hindus
could cope with much more difficult concepts than found in the visible Greek
demonstrations of geometry. Greek algebra was rudimentary, but the Hindus
invented the concept of negative quantities, solved quadratic equations, and
calculated the square root of 2.

Hindu astronomers during the Gupta period were interested in predicting
the positions of the planets for astrological purposes, having a deep belief in
the cyclic nature of the world. Thus, for example they believed that it takes
the planets 4,320,000 years to return to their identical positions. This time
span they called Maharyuga (great yuga). According to the Hindus, once
in about 4 million years, the planets come into grand conjunction (roughly
in line as seen from Earth). According to two pieces of Sanskrit from the
Bhagavad-Gita this occurred on Friday, 18 February 3102 BCE.

Furthermore, the Hindus believed that the entire universe went through
alternating periods of ‘awake’ and ‘sleep’ every 1000 Maharyuga (= 4.32 bil-
lion years) just like the oscillating universe in modern cosmology. Aryab-
hata’s task was to fit the Greek description of planetary motions developed
by Apollonios and Claudius Ptolemy at Alexandria, into a Hindu religious
settings.

The degree of influence of Babylonian algebra on the pre-Diophantine geo-
metric algebra of the Greeks, on Diophantos himself, and on algebra in India,
has been considerable. This may have been brought about through trade
relations and by frequent foreign invasions of India throughout the first mil-
lennium CE, when Hindu algebra and trigonometry were being developed
mostly by Aryabhata the Elder (476–550 CE), Brahmagupta (598–670
CE), Mahavira (ca 850 CE), Bháskara (1114–1185 CE) and Madhava (ca
1400 CE).

Nevertheless, there is sufficient evidence today, from a number of inde-
pendent sources, to support the claim that original ideas, methods and com-
putational systems in the fields numeration, algebra, trigonometry and even
mathematical analysis (!), originated for the first time in the minds of Hindu
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mathematicians throughout 19 centuries before the High Renaissance in Eu-
rope. Let us summarize their achievements, one by one:

• Algebra: Permutations and combinations, notations for indices and
laws of their operations, including fractional powers. Binomial theorem.
Extraction of roots. Solution of indeterminate equations of the first and
second degree. Solutions of Pell’s equation.

• Trigonometry: First use of the sine function as we know it today.
Basic trigonometric identities and construction of sine tables. Second-
order interpolation to compute intermediate functional values. Infinite
power-series expansions of trigonometric functions (without the use of
infinitesimal calculus). Power series for π.

• Geometry: Discovery of the formula for the circumradius of a cyclic
quadrilateral.

• Advent of mathematical calculus: by the Kerala school of astron-
omy (Narayana, Madhava and Nilakantha). This incorporates the
concept of instantaneous motion of the moon at a given point in time;
they calculated this quantity from the formula (in modern notations)

u′ − u = v′ − v ± e(sinw′ − sin w) (1)

where

u = moon’s true longitude,
v = moon’s mean longitude,
w = moon’s mean anomaly

all at a particular time; (u′, v′, w′) are the same entities after a specific
time interval; e is the orbital eccentricity at this stage. The Hindu
mathematicians recognized the important conceptual step that for short
time intervals

(sin w′ − sin w) ≈ (w′ − w) cos w (2)

In modern notations (1) and (2) are written as

δu = δv ± e cosw(δw) (3)

Bháskara then made the decisive step of isolating the fundamental
mathematical idea of the differential from its astronomical manifesta-
tion. Clearly, equation (2) implies in modern notations that

d(sin w) = cos wdw.
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He noted that when a variable attains the maximum value, its differential
vanishes.

He also gave us the trigonometric identities

sin(α ± β) = sin α cos β ± cos α sin β.

• Present-day numerals, decimal place-notation and first

use of the zero. Representation of unknown quantities

and negative signs.

The Hindu-Arabic decimal numeral system (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) is
named after Hindus, who invented it, and after the Arabs, who transmit-
ted it to Western Europe. This was the most significant achievement of
Hindu mathematics during the European Dark Ages. Final maturation
of this notation into a place-value system probably took place around
500 CE.

The last and most difficult step was the promotion to full membership
of a tenth numeral: a round symbol for zero – or sunya (which means
‘empty’), as the Hindus called it. Confusion about the status of this
mysterious numeral persisted for centuries as ‘a symbol that merely
causes trouble and lack of clarity’. How, it was asked, could a symbol
which means ‘nothing’, when placed after another numeral, enhance its
value tenfold?

The Hindus were not proficient in geometry. Rigid demonstration were
unusual in their works, and postulational development were nonexis-
tent. Their geometry was largely empirical and generally connected
with mensuration. Yet some of their algebraic results in geometry are
remarkable. Among these are the area A and diagonals {D1, D2} of a
cyclic quadrilateral having sides (a, b, c, d) and semiparameter s, given
by Brahmagupta:

A =
√

(s − a)(s − b)(s − c)(s − d)

D2
1 =

(ab + cd)(ac + bd)
ad + bc

; D2
2 =

(ac + bd)(ad + bc)
ab + cd

D1D2 = ac + bd

In algebra, Brahmagupta solved quadratic equations and allowed for the
possibility of negative solutions (665 CE).

In his astronomical treatise Khanda Khadyaka (665 CE) he derived an
interpolation formula for the sine function which in modern notation is
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equivalent to the Newton-Stirling interpolation formula9 up to second
order differences,

f(a + xh) = f(a) + x
�f(a) + �f(a − h)

2
+ x2 1

2!
�2f(a − h)

where � is the first-order forward-difference operator, �2 is the second-
order difference operator.

• First use of continued fractions. Aryabhata, in particular,
used them to solve linear indeterminate equations.

Narayana Pandit (1340–1400) obtained a rule to calculate approximate
values of a square root of a non-square number. He did this by using an inde-
terminate equation of the second order, Nx2 +1 = y2, where N is the number
whose square root is to be calculated. If x and y are a pair of roots of this
equation with x < y then

√
N is approximately equal to y/x. To illustrate this

method Narayana took N = 10. He then found the solutions x = 6, y = 19
giving for

√
10 the approximation 19/6 = 3.1666666666666666667, which is

correct to two decimal places. Narayana then gave the solutions x = 228,
y = 721 which render the approximation 721/228 = 3.1622807017543859649,
correct to four places. Finally Narayana gave the pair x = 8658, y = 227379
which yield the approximation 227379/8658 = 3.1622776622776622777, cor-
rect to eight decimal places. Note for comparison that

√
10 is, correct to 20

places, 3.1622776601683793320.

Madhava of Sangamaramma (1350–1420), astronomer and mathemati-
cian, clinched the mathematical analysis trend began by his predecessors
Bháskara and Brahmagupta. By giving a geometric derivation to infinite
power series expansion of circular and trigonometric functions, as well as a
finite-series approximation to them, he discovered the sine and cosine power
series, about 300 years before Isaac Newton. These series made their first
appearance in Europe (1676) in a letter written by Newton to the secretary
of the Royal Society, Henry Oldenburg.

The series are

9 With the aid of this formula one interpolates the sines of intermediate angles from

a sine table. The interval is h and �θ is the residual angle.
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sinx = x − x3

3!
+

x5

5!
− x7

7!
+ . . . (4)

cosx = 1 − x2

2!
+

x4

4!
− x6

6!
+ . . . (5)

Newton was not aware of their earlier discovery. Using his calculus (which
obviously was unknown to Madhava) he started from the definite integral
representation

sin−1 y =
∫ y

0

dt√
1 − t2

and used the binomial series

(1 + a)p = 1 + pa +
p(p − 1)

2!
a2 +

p(p − 1)(p − 2)
3!

a3 + . . .

with a = −x2, p = −1/2 to obtain (after term by term integration)

sin−1 y = x = y +
1
2

y3

3
+

1
2

3
4

y5

5
+

1 · 3 · 5
2 · 4 · 6

y7

7
+ . . .

Assuming y = a0 + a1x + a2x
2 + . . . and substituting this into the r.h.s.

of the above equation, the coefficients {a0, a1, a2, . . .} can successively be ob-
tained by comparing with the coefficients on the l.h.s. This yields

y = sin x = x − x3

6
+

x5

120
− x7

5040
+ . . .

Madhava also gave a series for the inverse tangent function, tan−1 x, three
centuries before James Gregory (1667):

tan−1 x = x − x3

3
+

x5

5
− . . . x ≤ 1 (6)

He went on to anticipate Brook Taylor (1712) with his expansions for
h � 1

sin(x + h) � sin x + h cosx − 1
2
h2 sin x (7)

cos(x + h) � cosx − h sin x − 1
2
h2 cosx (8)
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Now Madhava put x = 1 into (6) to obtain

π

4
= 1 − 1

3
+

1
5

− . . . (9)

and he also put x = 1√
3

into (6) to obtain

π =
√

12
[

1 − 1
3 · 3

+
1

5 · 32
− 1

7 · 33
+ . . .

]

. (10)

From these results he calculated π correct to 11 decimal places

π = 3.141 592 653 59

which can be obtained from (10) by taking only 22 terms.

Perhaps even more impressive is the fact that Madhava gave a remainder
term for his series. He thus improved the approximation of the series for π/4
by adding a correction term Rn to obtain

π

4
= 1 − 1

3
+

1
5

− . . .
1

2n − 1
± Rn

Madhava gave three forms of Rn which improved the approximation, namely

Rn =
1
4n

or

Rn =
n

4n2 + 1
or

Rn =
n2 + 1

4n3 + 5n
.

There has been a lot of work done in trying to reconstruct how Madhava
might have found his correction terms. The most convincing argument is
that they come as the first three convergents of a continued fraction which
can itself be derived from the standard Hindu approximation to π, namely
62832/20000.

Madhava’s outstanding contribution in the field of infinite series expansion
of circular and trigonometric functions with the finite series approximations to
them, predates European work on the subject by two to three hundred years.
Historians claim that the method used by Madhava to derive the above results
amounts to term by term integration. Thus, this was a decisive step toward
modern classical analysis.
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635 CE The value of π = 3.1415927 was given in decimal notation in the
official history of the Sui dynasty.

638 CE The Muslims conquered Jerusalem and allowed Jews to resettle
there. Upon their conquest of Babylonia (642), Jewish life entered a new cul-
tural phase: an inevitable fusion between Greco-Arab and Jewish-Babylonian
civilizations. Aramaic, which had been the Jewish vernacular since the first
return of the Exiles (538 BCE), gave way to Arabic, although Hebrew contin-
ued to be the language of prayer and religious study.

640–646 CE The remains of the great Alexandria library were burned to
ashes by the Saracens and the Arabs (previously pillaged in 48 BCE, 269,
273, 295, 389 and 415). The story is told that the precious manuscripts in
the great library were used by the Arabs as fuel to heat the baths of the city.

ca 650 CE The first definite trace of the Hindu numerals outside of India.
Severus Sebokht praises the Hindus for “. . . their subtle discoveries in this
science of astronomy, discoveries that are more ingenious than those of the
Greeks and the Babylonians; their valuable methods of calculation; and their
computing that surpasses description. I wish only to say that this computation
is done by means of nine signs”.

From this it is clear that the Hindu numerals had somehow reached the
monastic schools of Mesopotamia.

650–690 CE Paul of Aegina (Paulus Aegineta, ca 625–690 CE). Greek
surgeon. His Epitomae medicae libri septem contained nearly everything
known of medicine in his time and greatly influenced Arab physicians.

725 CE The Chinese invented the escapement of the mechanical clock .

732 CE Charles Martel, ruler of the Franks, defeated the Moslems at
Tours, thus halting their northward advance into Europe. They finally re-
treated over the Pyrenees in 759. It was the first unsuccessful effort of Islam
to take over Western civilization. At this very time, civilization was passing
from the thalassic to the oceanic stage. The Mediterranean was losing its
hegemony as a cultural center of the world for cities were widely established
throughout Europe to the Atlantic coastline.

732–735 CE Bede (672–735, England). Anglo-Saxon scholar, historian,
naturalist and theologian. Father of English history. Writer about the calen-
dar, the shape of the earth, and the tides, giving a correct account in each
case.
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Bede was born at Jarrow, England. Ordained (703); associated with the
monastery of St. Paul at Jarrow throughout his life. Taught Greek, Latin,
Hebrew and theology. Concluded (732) his ecclesiastical history of England.
It may be said that his works, scientific, historical and theological, practically
sum up all the learning of Western Europe in his time. Though Bede makes no
pretensions to originality, freely taking what he needed, and (what is very rare
in medieval writers) acknowledging what he took, still everything he wrote is
informed and impressed with his own special character and temper.

746–749 CE Plague devastated Constantinople and spread into Greece and
Italy. Ca 200,000 die.

ca 760 CE Yehudai ben Nachman Gaon (ca 700–770, Babylonia).
Scholar, legalist and perhaps the Talmud redactor . Head of the Sura Academy
(760–764), when the Abbasides were in power. Composed a digest of the
Talmudic law, the Halakhot Psukot (Law as Decided) to answer fundamental
questions at a time when few copies of the Talmud were available.

Yehudai was already old and blind when he was appointed Gaon of Sura,
but he radically changed the Jewish world. As Jews spread through the
Christian and Muslim Empires, there were more and more legal questions.
The Geonim of Babylonia, enjoying the respect of the Abbasid leadership,
were recognized as the world’s Jewish legal authorities, and communities sent
them their questions. Yehudai was the first Gaon to answer such questions
systematically. These questions and answers were called Responsa. Yehudai
was pushing for the authority of the Talmud throughout the Jewish world.

773 CE Hindu works translated into Arabic: A set of astronomical tables
was taken to Baghdad and translated from the Sanskrit into Arabic (on the
caliph’s command) by Al-Fazari. It is probable that the Hindu numerals,
including the zero, were made known in Baghdad at this time.

781–804 CE Alcuin (732–804, Babylonia). Monk and scholar. Orga-
nized a reform of the Latin language, Roman Alphabet and education under
Emperor Charlemagne10 (742–814). A prominent figure of the Carolingian

10 Charlemagne inherited his throne as king of Franks (768). He overrode the

claims of rivals and relatives, subdued the Saxons, conquered Lombardy, and

finally organized an empire that included northern Italy, France and most of

modern German and Eastern Europe. As an ally of the Pope and a passionate

Christian, Charlemagne was shocked by the decay of Christian learning. He

was dismayed by the crude Latin in the letters he received even from bishops.

The Carolingian Renaissance that he sparked was a Latin Renaissance. In his

famous edict (789), written by Alcuin, Charlemagne ordered: “In each bishopric
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Renaissance. He transmitted to the ignorant Franks the knowledge of Latin
culture which had existed in England since the time of Bede.

Alcuin’s main achievement was the reformation of the Latin script : Before
the age of Charlemagne, letters were strung together without space between
words, without periods, commas, or paragraphing. With the Carolingian
reform in script, came now the practice of separating words by empty space
between them. This helped prevent ambiguities in meaning and so preserved
the pure text.

Alcuin was born at Eboracum (York). He was educated at the cathedral
school of York. Upon his visit to Rome (781) he met Charlemagne, who per-
suade him to come to Aachen to organize a reform of language and education.
Charlemagne’s rich library in his palace at Aachen became a cultural center
drawing scholarly Christian refugees from the Moors in Spain, and even from
the distant islands of Ireland. He ordered every school to have a scriptorium.
From monasteries in Germany, Italy and Bulgaria came manuscripts to be
copied in Reformed Latin in the scriptorium. Alcuin had the knowledge and
the taste to devise new standards. Charlemagne had the administrative power
and the will to enforce them. At his school of Calligraphy in the monastery
of St. Martin’s in Tours, Alcuin taught his reformed script.

700 years later, when movable type came to Europe, letters were fashioned
on the model of Alcuin Carolingian Minuscule. Long after other monuments
of Charlemagne’s empire have crumbled, the pages of books published today
remain a vivid reminder of the power of well-designed written word. What
we call the Roman alphabet is really Alcuin’s alphabet.

789 CE Charlemagne (Charles the Great, ca 742–814). Roman emperor
and king of the Franks; ordered that schools11 should be established in every
diocese. The main effect of these schools was to elevate the education of the
rude and ignorant priesthood of the age, restore Latin to its position as a
literary language, and introduce a correct system of spelling and an improved

and each monastery let the psalms, the notes, the chant, calculation and grammar

be taught and carefully corrected books be available.”
11 From ancient times until the first half of the 19th century, most people – even

in advanced societies – never attended school. In ancient Greece, for example,

only the sons of citizens could attend school, and most Greek residents were not

citizens. During the Middle Ages (400–1500’s), the Roman Catholic Church ran

cathedral and monastery schools in Europe, chiefly to train young men for the

priesthood. Widespread development of public schools began in the early 1800’s,

when government leaders in many countries acted on the belief that a nation’s

progress depends on educated citizens. By the mid-1800’s, the United States

and many European countries had established public school systems.
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handwriting. The manuscripts of the time are accurate and artistic, copies of
valuable books were made, and the texts were purified by careful collation.
At that time, no further result ensued from this measure, since the available
knowledge was to remain stagnant for a long time to come.

Charlemagne introduced a new system of weights and measures, intro-
duced a new calendar , reformed the coinage, and condemned medical super-
stitions.

790–880 CE The Chinese introduced the ancestor of paper money . Ap-
peared first as bank drafts (790) on money deposited; it could be exchanged
for hard cash at a later date. Real paper money i.e. printed paper money
used as a medium of exchange, was first used (880) in Szechuan Province in
China.

800–1000 CE Vikings assaulted France and England and penetrated deep
into Russia. Feudalism settled over Europe as the continent sank into its
cultural nadir. Islam rose to its intellectual zenith. Capetian dynasty founded
in France, and Saxon in Germany.

ca 800 CE Mashallah (ca 750–817, Egypt). Astronomer and astrologer.
One of the earliest medieval astronomers. Egyptian Jew. Wrote: De Scientia
Motus Orbis (translated from Arabic by Gerhardo of Cremona) which was
very popular in the Middle Ages.

830–860 CE Yaqub al-Kindi, Alkindus (ca 800–873, Baghdad). Math-
ematician, philosopher and encyclopedic scholar. The first Arab philosopher.
Made a deep study of Aristotle from the Neo-platonic point of view. Rela-
tively few of his numerous works are extant. They deal with mathematics,
physics, music, medicine, pharmacology and geography. He wrote four books
on the use of the Hindu numerals. Many translations from the Greek into
Arabic were made or revised by him or under his direction. He considered
alchemy as an imposture.

Al-Kindi made significant contributions to the theory of knowledge and
being: His metaphysics recognized five primary substances – matter, form,
motion, place and time – from whose interactions the universe is formed. He
was first to apply mathematics not only to the physical world but also to Ma-
teria Medica, where he calculated the effect of medicines from the proportions
and qualities represented in the various mixtures.

In his manuscript ‘on Deciphering Cryptographic Messages’, al-Kindi was
perhaps the first author to discuss how contents of a scrambled message can be
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revealed simply by analyzing the frequency of the characters in the ciphertext.
The technique is known today as frequency analysis12

Al-Kindi was born in Basra and flourished in Baghdad, under al-Mamun.
A son of a South Arabian governor, he was given the best possible education
at Basra and Baghdad. His life was spent in the service of the court as tutor,
astrologer, translator and editor of many Greek philosophical works. He was
persecuted during the orthodox reaction led by al-Mutawakkil (847–861) and
died in Baghdad.

12 The method is not valid for short texts (less than 100 letters, say). Longer texts

are more likely to follow standard frequencies, although this is not always the

case. The following table of relative frequencies in English, is based on passages

taken from newspapers and novels with total sample length of ca 100,000 alpha-

betic characters:

Letter Percent Letter Percent Letter Percent Letter Percent

a 8.2 h 6.1 o 7.5 v 1.0
b 1.5 i 7.0 p 1.9 w 2.4

c 2.8 j 0.2 q 0.1 x 0.2

d 4.3 k 0.8 r 6.0 y 2.0
e 12.7 l 4.0 s 6.3 z 0.1

f 2.2 m 2.4 t 9.1

g 2.0 n 6.7 u 2.8

Thus, the arrangement of the alphabet in order of decreasing frequency is

{e,t,a,o,i,n,s,h,r,d,l,u,c,m,w,f,y,g,p,b,v,k,j,x,z,q}.

Clearly, the frequency test fails for the short sentence:

‘From Zanzibar to Zambia and Zair, ozone zones make zebras run zany

zigzags.’

Since the distribution of frequencies depends on the particular language used in

ciphertext, it can be used to identify the language. For example, in German,

the letter ‘e’ has the extra ordinary high frequency of 19 percent. In Italian,

there are 3 letters with a frequency greater than 10 percent, and nine letters

with frequency less than 1 percent.

If the correlation is sympathetic with English, but the plain text does not reveal

itself immediately, the code breaker will focus on pairs of repeated letters. In

English, the most common repeated letters are ‘ss’, ‘ee’, ‘tt’, ‘ff’, ‘ll’, ‘mm’ and

‘oo’. Other clues may come from the identification of words containing just one,

two or three letters. The only one-letter words are: a and i. The commonest

two-letter words are: of, to, in, it, is, be, as, at, so, we, he, by, or, on, do, if,

me, my, up, an, go, no, us, am. The most common three-letter words are the

and and.
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The Translators

Except for two of his logical treatises, Aristotle’s work had been unknown
before 1100 CE – buried and forgotten, together with the works of Archimedes,
Euclid, the atomists, and the rest of Greek science. What little knowledge
survived had been handed down in sketchy, distorted versions by the Latin
compilers and the Neoplatonians. Insofar as science is concerned, the first 600
years of established Christendom (500–1100 CE) was a glacial period.

During 600–800, the Muslims on their way from the Arab peninsula
through Mesopotamia, Egypt, and Spain have picked up the wreckage of Greek
science and philosophy in Asia Minor and in Alexandria, and carried it in a
circumambient and haphazard fashion into Europe. From 1100 onwards the
fragments of works of Archimedes and Hero of Alexandria, of Euclid, Aristotle
and Ptolemy found their way into Christendom.

How devious this process of Europe’s recovery of its own past heritage
was, may be gathered from the fact that some of Aristotle’s scientific trea-
tises, including his Physics, had been translated from the original Greek into
Syriac, from Syriac into Arabic, from Arabic into Hebrew and, finally, from
Hebrew into medieval Latin. With Euclid, Aristotle, Archimedes and Ptolemy
recovered, science could start again where it had left off a millennium earlier.

From about 750–1100 CE, Arabic was the scientific and progressive lan-
guage of mankind.

During the period 950–1580 a ‘life line’ of science was constantly in opera-
tion: Ancient Greek, Hindu, Persian and Arabic lore were steadily flowing to
Western Europe via Constantinople, Baghdad, North Africa, Sicily and Spain.
Transmission is as essential as discovery. For if the results of Ptolemy’s in-
vestigations had been lost in transit, it would almost be as if they had never
existed!

At the time when Western Europe was weak, its cities almost non-existent
and its scholars limited to the study of theology, both Byzantium and Islam
had well-organized bureaucratic states, large commercial cities and eminent
scholars. About the year 1000, the Byzantine empire gained control over
Asia Minor and the entire eastern Mediterranean, and was at the apex of
its power. This political ascendancy was accompanied by intellectual revival.
Although not universities of the Western type, schools of philosophy and law
were established in Constantinople, where professors were paid regular salaries
and held high positions at the imperial court. These scholars however, spent
most of their energy copying and commenting on ancient texts, which served
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to preserve many books that otherwise would have been lost. These works
include the translation of Plato into Latin. No original work was done.

In spite of the felt influence of Byzantium in Western Europe (especially
in Italy), Western scholars preferred to acquire the Greek-Arabic-Latin trans-
lations done in Europe than avail themselves of the more direct Greek-Latin
translation that was available in Byzantium. Because Western translators
were primarily interested in Aristotle, they overlooked the opportunity to
increase the stock of Platonic works available in Latin.

Nevertheless, some important texts, such as the advanced works of Euclid,
would have been unknown to Western medieval scholars, had it not been for
the efforts of the translators at Constantinople.

During the 11th century, the Latin and the Greek churches drifted apart.
Finally, in 1054, pope and patriarch excommunicated each other and the two
churches broke off relations in a split that never healed.

Outside the Byzantine Empire, intellectual activity was going on in the
Abbasid Caliphate.

The lands of the Caliphate, which reached its peak of power and wealth
under Harun ar-Rashid during 706–809, stretched from Morocco to the
Indus River, from the steppes of central Asia to the Sudan. In this vast
territory, which was traversed by all the important east-west trade routes,
there were dozens of populous and prosperous cities, of which Baghdad was
the largest and the richest.

This city attracted books and scholars just as it did merchandise and
traders. The Abbasids did even more than the Ommiads to transform their
empire into a center of scholarship. Hundreds of Greek works, especially on
philosophy, science and mathematics, were translated into Arabic and much
was learned from Persian and Jewish sources.

Chinese scholarship had little influence, but the Abbasids borrowed many
ideas from the Hindus, notably the system of arithmetic notation and what
we call the Arabic numerals.

By the 9th century, Muslim scholars had assimilated the work of their
predecessors and were beginning to make original contributions of their own.
From 900 to 1200, the most important work done anywhere in the world
in mathematics, astronomy, physics, medicine and geography, was done in
Muslim countries.

Much Arabic scholarship merely added details to support established sci-
entific theories [accurate observations of star positions; many stars still bear
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Arabic names today13]. However, their most remarkable contribution was in
physics and algebra.

Chemistry among the Arabs was cultivated principally by Jabir ibn
Hayyan Geber (ca 721–ca 803), court physician to Caliph Harun ar-Rashid
and author of large number of works on alchemy. He enjoyed high reputation
with later alchemists and his theory of mercury and sulfur as fundamental
substances contributed to later theory of the phlogiston. Jabir was aware
that addition of sal ammoniac (ammonium chloride, said to have been first
derived from camel stables near the Egyptian temple of Jupiter Ammon) to
nitric acid enables it to dissolve gold, a fact of considerable metallurgical
importance.

In physics they performed interesting experiments in reflection and re-
fraction of light. In mathematics, besides greatly simplifying arithmetical
operations through the use of the new Arabic figures, they carried trigonom-
etry far beyond the Greek accomplishments. And their work in algebra was
even more impressive, for they fashioned a whole mathematical discipline out
of a few hints provided by the Greeks. Most notable was the illustrious figure
of al-Khowarizmi (780–850).

Muslim interest in mathematics and the natural sciences had a decisive
influence on the course of Western science. The Byzantines tended to neglect
these subjects, and little was known about them in Western Europe.

The Chinese had great technical skill, but they developed no general the-
ories. Hindus, after a promising start, lost their interest in mathematical and
scientific problems.

Thus, the Muslim world was the only region that was both actively inter-
ested in science and close enough to Western Europe to touch off a revival of
scientific interest there.

Western European scholars made their first attempts to recover ancient
scientific texts by going to the Muslims of Spain and Sicily. Only after the
revival was well underway, did they begin to seek manuscripts in Constantino-
ple.

The Moore invasion of Spain began in 711 and they conquered almost all
of the Visigoth Kingdom by 718. The Moores (mostly Berbers from North
Africa, converted to Islam), had a more advanced culture than did most of

13 E.g.: Algol , Altair , Antares, Aldebaran, Betelgeuse, Deneb, Sabik , Rigel . The

Arabs also generated the terms: Zenith, Nadir , Alchemy , Algebra, Algorithm,

Alcohol , Alkali .

The word Zero probably came from ziphirum, a Latinized form of the Arabic

word sifr . Sifr is the translation of the Hindu word sunya (void or empty).
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medieval Europe. The Muslims carried with them the Greco-Indian heritage
of mathematics, medicine and other fields of study. They also preserved many
of the writings of the ancient Greek, Roman and Middle Eastern civilizations.

About the time of Gerbert (980), the Greek classics in science and mathe-
matics began to filter into Western Europe. A period of transmission followed
during which the ancient learning preserved by the Muslim culture was passed
on to the Western Europeans. This took place partly through Latin transla-
tions made by Christian scholars traveling to Muslim centers of learning.

The conquest of Toledo by the Christians in 1085 was followed by an influx
of Christian scholars to that city to acquire Muslim learning. Other Moorish
centers in Spain were infiltrated and the 12th century became, in the history of
mathematics, a century of translators. One of the earliest Christian savants to
engage in this pursuit was the English monk Adelard of Bath (1075–1160).

By the middle of the 12th century, the scholars of the West had absorbed
the Latin classics and the Roman law. Searching about for new materials,
they seized upon the rich stone of learning from the East (acquired partly
through the Crusades, which brought Christianity into close contact with
the East) which had never been translated into Latin. Though the scholars
were deeply interested in astronomy and astrology, they had only a few brief
texts of those subjects, while the Greeks and Arabs had scores of volumes.
The same applied to mathematics and physics – all the really advanced works
were in the Eastern languages; in Latin there were only elementary textbooks.

To correct this deficiency, the Western scholars began the task of translat-
ing into Latin the works of Aristotle and the scientific writings of the Greeks
and Arabs. The difficulties were formidable – there were no grammars, no lex-
icons, none of the scholarly apparatus we take for granted in learning foreign
languages. The Romans had never been particularly interested in science and
had not developed a scientific vocabulary. Consequently, even when a trans-
lator knew the meaning of a Greek or Arabic word, he had trouble finding a
Latin equivalent. Moreover, many of the important texts had been corrupted
by repeated translation.

However, by ca 1250, they had translated into Latin almost all the works
of Aristotle and a great mass of other material.

The West had acquired the philosophy and science of the East – just in
the nick of time, for during the 13th century, both Byzantium and the Arab
world were shattered by civil wars and foreign invasions. Though they made
a partial recovery later on, they were never again the intellectual centers they
had been in the early middle ages. The scientific tradition which the Greeks
had originated and the Arabs had preserved, might have been lost had it not
been for the efforts of the translators of the 12th and 13th centuries.
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The diffusion of Arabic learning into northern Europe was largely due to
two factors:

(1) the influence of Jewish physicians (themselves educated in the Moorish
schools of Spain and imbued with intellectual independence) who founded the
medieval schools of medicine;

(2) the development of scientific navigation before the tradition of the
Moorish schools had been finally extinguished. Two features of Catholic tra-
dition and organization forced the universities of Western Christendom to
open their doors to the Moorish learning. One was the humanitarian ide-
ology which prompted the monastic orders to found hospitals and seek the
assistance of experienced physicians.

The other, which encouraged monks like Gerhardo of Cremona or Ade-
lard of Bath to visit the schools of Spain during the Moorish occupation,
was the social function of the priesthood as custodians of the calendar.

In conformity with their role as timekeepers, the Augustinian teaching
had endorsed astronomy as a proper discipline of Christian education. So,
although the patristic influence was mainly hostile to pagan science, clerical
education was not completely immune to influence from non-Christian world.

ca 830 CE Muhammad Ibn Musa al-Khowarizmi (780–850). Mathe-
matician, astronomer and geographer. The first to use zero as a place holder in
positional base notation. Blended the accumulated Greco-Hindu mathemat-
ical achievements into the systematic treatise Hisab al-j’abr w’al-muqabala14

(“science of transpositions and cancellations”). The book was introduced to
Spain by the Arabs and became known in Western Europe only after the
conquest of Spain (1085–1118). The name of the branch of mathematics to
which the treatise is devoted, algebra, is derived from the title of this work.
Al-Khowarizmi’s influence upon writers in the field of algebra can be traced
directly or indirectly for more than 700 years after his death.

Al-Khowarizmi recognized the value of the Hindu numerals (known in
Baghdad by that time) and wrote a small book explaining their use15. [This

14 The Arabic word ‘al-j’abr ’ means “the bonesetting”. Only later it came to

acquire the connotation of the setting of the parts of an equation.
15 Some historians believe that Al-Khowarizmi visited India at about 825 CE and

was influenced there by the works of Brahmagupta. On his return (ca 830
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book was translated into Latin by Adelard of Bath (ca 1120) under the title
Liber Algorismi de numero Indorum].

The Hindu numerals, adopted by the Arabs were brought to Spain at
about 900 CE. From there they diffused to the rest of Europe by traders
in the Mediterranean area and by scholars who attended the universities in
Spain. It finally came into general use in Europe by the invention of the
printing press in the mid 1400’s.

In the complete absence of axiomatic foundations and of proofs dependent
upon them, al-Khowarizmi’s algebra evidenced the author’s marked preference
for Hindu over Greek methods.

Al-Khowarizmi was born in Persia in the city of Khowarezm (Khiva). He
may have been of Zoroastrian descent and had acquired his early knowledge
of Hindu mathematics and astronomy from Zoroastrian clergy. He was en-
couraged by the Caliph al-Mamun (who succeeded Harun ar-Rashid) to join
his court at Baghdad in the early 9th century to participate in the work of his
newly organized Bayt-al hikma (House of Wisdom). Al-Mamun constructed
two astronomical observatories for his new academy, and he made strenuous
efforts to obtain extant scientific works for it. In his eagerness to collect
scientific manuscripts, he went so far as to send a mission to the Byzantine
Emperor Leon for the purpose of securing Greek works. The writings collected
by al-Mamun were immediately translated into Arabic by the scholars of his
academy. It was in this scholarly atmosphere that al-Khowarizmi worked and
reached the peak of his activities.

Al-Khowarizmi also constructed a set of astronomical tables that was to
remain important in astronomy for the next five centuries. His geographical
work is not less important: he helped measure the length of one degree of
latitude at the latitude of Baghdad (91 km), and used astronomical observa-
tions to determine the latitude and longitude of 1200 important places on the
earth’s surface, including cities, lakes and rivers. He incorporated these and
additional findings in his book “The Image of the Earth”.

CE) he brought with him the Hindu numeral system, which he later expounded

in his books. However, the Hindu forms described by al-Khowarizmi were not

used by the Arabs. The Baghdad scholars evidently derived their forms from

some other source, possibly from Kabul in Afghanistan, where they may have

been modified in transit from India. David Eugene Smith (1860–1944), a

historian of mathematics, raised the possibility that the numerals were taken

from Egypt to Afghanistan by the Lost Tribes of Israel after being exiled there

by the Assyrians (721 BCE). [Cabul is a Biblical name: I Kings 9, 13; Joshua

19, 27.] This assumption is strengthened by the Hebrew origin of some of the

numeral names in the 10th century: arbas (4), quimas (5), temenias (8).
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840–880 CE Abu-Máshar (Albumazar; 805–885, Baghdad). Muslim
astrologer and astronomer. Was born at Balkh, flourished at Baghdad, and
died at Wasid in Central Asia. His principal works are: De Magnis Con-
junctionibus (Latin translation); Introductorium in Astronomiam, and Flores
Astrologici.

Second16 to offer a rational explanation (although incorrect) of the causes
of ocean tides, not by invoking supernatural agencies but in terms of the per-
ceived physical nature of the universe: His works, being translated into Latin
already in the 12th century, circulated widely in Europe. Robert Gros-
seteste (ca 1200) adopted Albumazar’s theory of the tides. The correct
gravitational theory was first given by Newton (1687).

ca 848 CE First important medieval medical school at Salerno, Italy, gained
notice. It helped stimulate medical advances between 9th and 11th centuries.

ca 850 CE Mahavira (fl. 850 CE). Indian mathematician from Mysore,
Southern India, where he lived at the court of one of the Rashtrakuta
monarchs. His book Ganita Sara Samgraha contributed to the history of
indeterminate equations and general polynomial equations of the first and
second degree. Yet his claim to fame is in giving our rule for dividing one
fraction by another in the same words which a school-teacher might use today:

“Make the denominator the numerator and then multiply”

namely
a

b
:

c

d
=

a

b
× d

c
=

ad

bc
.

855 CE Johannes Scotus Erigena (ca 810 – ca 877, Ireland and France).
Philosopher and Theologian. Born in Ireland and educated in Irish schools.
Was called by Charles II the Bald (843) to head the Schola Palatina (court
school) at Paris. One of his more important works is De divisione naturae (on
the division of nature), which was condemned by the Church because of pan-
theistic learning. It was an attempt to reconcile Neoplatonistic and Church
philosophy of creation17, i.e. to demonstrate rationally all the truths of the

16 He was preceded in this respect by Seleucus the Babylonian (fl. 150 BCE).
17 From Plato to Erigena philosophers had been explaining the universe as a union

of ideas (or forms) and matter . Plato thought of ideas as existing before things.

Aristotle taught that forms existed in things but were distinct from matter. The

Christian taught that ideas or forms existed in the mind of God and moulded

matter into things of the universe. All these philosophers have been called realists

since they taught that ideas or forms are real things existing independently of

whether or not they ever come into contact with matter.
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Christian faith. He was a more rigorous thinker than Augustine – the tech-
nical quality of the argumentation is higher, and his intellectual points drive
deeper. One of his arguments was to the effect that since God is unknow-
able and undefinable, man cannot expect, with his little and limited brain, to
understand God or to comprehend his ways. Although, not an original idea
(Job 25; 38–39), this insight was generalized by Kant into the point that it
is impossible for a human being to understand its own nature.

Erigena taught that God created the world out of nothing or ‘out of him-
self’, the causeless first cause. Before God created the world, he had a com-
plete pattern of the world in his mind. Then, as a light radiated from its
source, so the world was radiated from God. Consequently, the universe and
God are one, but God is more than the universe: God is in his creation and
his creation is in him. The universe is a unity. The universe is “an expression
of the thought of God”. And therefore cannot exist apart from him.

Erigena was the only large-scale systematic philosopher in the West during
a period of 600 years (5th to 11th century).

855 CE Thabit Ibn Qurra al-Harrani (836–901, Mesopotamia). Physi-
cian, mathematician and astronomer. One of the greatest translators from
Greek into Arabic, and a founder of a school of translators. Improved the
theory of amicable numbers and generalized Pythagoras’ theorem to an arbi-
trary triangle (as did Pappos).

Thabit was born in Harran and lived in Baghdad where he obtained his
mathematical training. He returned to Harran but his liberal philosophies
led to a religious court appearances when he had to recant his ‘heresies’. To
escape further persecution he left Harran and was appointed court astronomer
in Baghdad. A hitherto unknown Arabic translation of Thabit of a work by
Archimedes was discovered (1919) which contains a construction of a regular
heptagon (7 sides).

His grandson Ibrahim Ibn Sinan Ibn Qurra (908–946 CE, Bagh-
dad) was also a known mathematician. He worked on the quadrature of the
parabola, where he introduced a method of integration more general than that
of Archimedes. He also studied the geometry of shadows.

858 CE Amram ben Sheshna Gaon (ca 810–875, Babylonia). Talmudic
scholar. Composed the oldest extant Jewish book of prayers. Head of the
Sura Academy. In his book he introduced for the first time a systematic
and logical arrangement of liturgy for the whole annual cycle as well as the
pertinent laws. It is known as the Seder or Siddur . Amram’s sources, in
addition to the Talmud, were the works of the Geonim and the rites of the
Babylonian Academies. The Seder had a wide influence in Europe and the
Middle East. It enjoyed a very wide circulation and was extensively quoted
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by leading scholars of Spain, France and Germany. It served as a basis for
later orders of prayers.

865–950 CE Decline of the Khazar state influenced by a climatic change.

868 CE The first printing press (block printing) appeared in China.

877–910 CE Muhammad al-Battani; Albategnius (ca 858–929,
Mesopotamia). The greatest Muslim astronomer. Rather than using geo-
metrical methods as Ptolemy had done, al-Battani used trigonometrical
methods. His main work is an astronomical treatise with tables (“De sci-
entia stellarum”, “De numeris stellarum et motibus”), which was extremely
influential until the Renaissance. Discovered the motion of the sun’s apogee.

He made astronomical observations of remarkable range and accuracy from
877 on. His tables contain a catalogue of fixed stars for the years 880–881.
From his observations at al-Raqqa he was able to correct some of Ptolemy’s
results, previously taken on trust. He compiled two tables of the sun and the
moon, subsequently accepted as authoritative. He found that the longitude
of the sun’s apogee had increased by 16 ◦47′ since Ptolemy; that implied the
discovery of the motion of the solar apsides and of a slow variation in the
equation of time. He determined many astronomical coefficients with great
accuracy: Precession, 54.5′ ′ a year; inclination of the ecliptic, 23 ◦35′. He
proved the possibility of annular eclipses of the sun.

The third chapter of his astronomy book is devoted to trigonometry, where
(perhaps independently of Aryabhata, ca 500), he introduced the regular
use of sines with a clear awareness of their superiority over the Greek chords.
He completed the introduction of our cotangents and tangents and gave a
table of cotangents by degrees. He knew the relation between the sides and
angles of a spherical triangle which we express by the formula

cos a = cos b cos c + sin b sin c cos .A

Al-Battani was born near Harran, flourished at al-Raqqa (on the Eu-
phrates) and died near Samarra.

880–890 CE Eldad ha-Dani (ca 830–890). Jewish traveler and philolo-
gist. Native of South Arabia who journeyed in Egypt, Mesopotamia, North
Africa and Spain. Spent several years at Kairawan in Tunisia and died on
a visit to Cordova, Spain. He is the supposed author of a travel-narrative
(in Hebrew) on the question of the Lost Ten Tribes. His story is supported
by the known Hebrew physician of his own time, Zemah Gaon, the rector
of the Academy of Sura, Mesopotamia (889–898 CE). Eldad is quoted as an



542 2. Slumber and Awakening

authority on linguistic difficulties by leading medieval grammarians and lexi-
cographers. The Book of Eldad ha-Dani was first published in Mantua (1480)
and had since been translated into several languages.

880–920 CE Abu Kamil Shuja (al-Hasib) (850–930 CE, Egypt). Mathe-
matician. Worked on integer solutions of equations. He also gave the solution
of a 4th degree equation and of a quadratic equation with irrational coeffi-
cients. Abu Kamil’s work was one of the sources of Fibonacci’s books.

880–930 CE Itzhak ben Shlomo Israeli the elder18 (832–932 CE,
North Africa). Jewish physician, medical scholar of consequence and phi-
losopher. Regarded as father of medieval Jewish Neoplatonism. Author of
scientific and philosophical treatises renowned among Latin scholastics. His
works, written in Arabic and translated into Latin, were studied and admired
by Albertus Magnus, Vincent of Beauvais and Thomas Aquinas. His
medical treatises “On Fever” and “On Diet” remained authoritative for some
500 years.

Israeli was born in Egypt and served as court physician to two Fatimide
caliphs in al-Qayrawan (today in Tunisia). He died in Kairawan. His medical
ideas, enunciated one thousand years ago, sound astonishingly modern:

• “The most important problem of the doctor is how to prevent illness. . .”.

• “The majority of diseases are cured by the help of Nature without the
aid of a doctor. . .”.

• “If you can cure a patient by means of a diet, forbear to prescribe
drugs. . .”.

• “Hold forth the prospects of recovery of patients, even if you are not sure
of them yourself, so that at least you shall second the efforts of Nature
to care them”.

ca 900 CE The diseases of smallpox and measles first identified or described
with accuracy.

ca 900–925 CE Abu Bakr Muhammad ibn Zakariya al-Razi, known
in the West as Rhazes (ca 865–925, Persia). Physician, medical scholar
and philosopher. Considered the greatest physician of the Islamic world19.
Chief physician of hospitals in Rayy and Baghdad; believed in atomist theory

18 His Arab name was Abu Yaqub ibn Suleiyman al-Israeli.
19 As in the parallel case of the Roman conquest of Greece, the superior culture of

the conquered race asserted its supremacy over their Arab conquerors. After the

Muslim conquests became consolidated, and learning began to flourish, schools

of medicine, often connected with hospitals and schools of pharmacy, arose in all
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of nature. Author of numerous treatises in medicine, especially a survey
of Greek, Syrian and early Arabic medicine and a treatise on smallpox and
measles. Some of his works were translated into Latin and had great influence
on medical science in the Middle Ages.

Rhazes realized that fever could be a defense against disease. Continens
Liber , one of his 200 or so treatises, gained him fame.

Al-Razi was also a skilled practical alchemist. He talked about soda (na-
tron), common salt, kali (potash), salpeter, vitriol, arsenic, magnesia and
mercury.

900–930 CE Muhammad al-Farabi; Alpharabius (ca 870–950, Ale-
ppo). Philosopher, musicologist and encyclopedist. Continued the harmo-
nization of Greek philosophy with Islam (begun by al-Kindi), preparing the
way for Ibn Sina. He wrote a number of commentaries on Aristotle (physics,
meteorology, logic) and his own work on the classification and fundamen-
tal principles of science. Al-Farabi was conversant with the whole range of
scientific thought of his day.

the chief seats of Muslim power. At Damascus, Greek medicine was zealously

cultivated with the aid of Jewish and Christian teachers. In Baghdad, under the

rule of Harun al-Rashid and his successors, a still more flourishing school arose,

where numerous translations of Greek medical works were made. At the same

time Arabs became acquainted with Indian medicine, and Indian physicians lived

at the court of Baghdad. The Islamic rulers in Spain were not long behind those

of the East in encouraging learning and medical science. In that country much

was due to the Jews, who had already established schools in places which were

afterwards the seat of Muslim dominion.

Thus, Arabian medicine was in the main Greek medicine, modified to suit other

climates, habits and national tastes, and with some important additions from

Oriental sources. The greater part is taken from Hippocrates, Galen, Dioscorides

and later Greek writers. The Latin medical writers were necessarily unknown

to the Arabs. In anatomy and physiology the Arabians distinctly went back; in

surgery they showed no advance upon the Greeks; in practical medicine nothing

new can be traced, except the description of certain diseases (e.g., smallpox and

measles) unknown or imperfectly known to the Greek). The only real advance

was in pharmacy and the therapeutical use of drugs. By their relation with the

farther East, the Arabs became acquainted with valuable new remedies which

have held their ground till modern times. Also, their skill in chemistry enabled

them to prepare new chemical remedies, and form many combinations of those

already in use.

They produced the first pharmacopeia, and established first apothecaries’ shops.
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He was born near Farab, Turkestan, of a Turkish family. He studied in
Baghdad and flourished chiefly in Aleppo. Died in Damascus.

913–942 CE Saadia (ben Yosef) Gaon (882–942, Babylonia). Philo-
sopher, philologist and trained mathematician. Creator of the Jewish philos-
ophy of religion.

Equally versed in Arabian culture, Biblical and Talmudic scholarship,
Christian dogma, Hindu and Greek philosophy, and the doctrines of Zoroaster
and the Manicheans, he attempted to reconcile rationalism with the Jewish
faith and render a rationalistic interpretation of Talmudic law. Saadia criti-
cized Platonic cosmology, refuted gnostic doctrines and tried to reconcile the
freedom of man with the all-embracing knowledge of God.

His major philosophical work, Kitab al-Amanat wa-al Itiqadat (The Book
of beliefs and opinions), makes ample references to Biblical and Talmudic au-
thority, but in addition draws on medicine, anatomy, mathematics, astronomy
and music. His work reflects the mathematics of his day (which he had thor-
oughly mastered), and in his systematic theology there were already present
some of the methods and the processes of thought which characterized 19th

and 20th-century mathematics.

In Saadia’s writings, one finds the process of abstraction, the use of the syl-
logism including some interesting logical devices as “proof by contradiction”.
There are also certain modern logical concepts such as the formation of the
unit class consisting of a sole element20. Furthermore, there is the realization
of the central role that existence and uniqueness theorems must play within
a theory.

He composed the first Hebrew dictionary, prayer book and grammar, and
was the founder of scientific Hebrew philology. His Arabic translation of the
old Testament, with commentary, remained the standard translation to this
day.

Saadia Gaon influenced the future course of Judaism; he removed the
threat of Karaism and thus re-established the supremacy of Jewish tradition,
saved Jewish unity and fought successful battles against the alluring influence
of Muhammadian philosophy. All this he achieved through the richness of
his knowledge, the depth of his learning, the keenness of his intellect and the
ruggedness of his personal courage.

Saadia was born in Fayyum, Egypt and educated there. He went to Israel
and then to Babylonia, where he was appointed head of the academy in Sura

20 Such logical concepts have become standard since Russel and Whitehead

(1910).
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in 928. But he soon came into conflict with the exilarch and was banished.
He was reinstated a Gaon of Sura close to the end of his life, and died there.

ca 925–930 CE Aharon ben Moshe ben Asher (ca 890–950, Tiberias21,
Israel). Hebrew grammarian and scholar. The last and foremost of a
Karaite22 family of Masoretes that was active in Tiberias for five generations
[Asher I (fl. 785); Nehemiah (fl. 820); Asher II (fl. 855); Moshe (fl. 890);
Aharon (fl. 925)], standardizing the Biblical text and its chanting.

The Masoretes were Jewish scholars who annotated and attempted to
remove errors from the Old Testament. They began their work in the 2nd

century CE, and their principal effects took place in the 5th to the 12th cen-
turies CE. Their final text (the Masorah) included the rows markings that had
been omitted from previous texts, as well as explanatory annotations. Prior
to the Masoretes, there was no rigorous system for ensuring textual accuracy,
nor is it certain that absolute literal accuracy was always deemed necessary.

Aharon was the first systematic Hebrew grammarian. He laid the foun-
dations of the Hebrew Grammar in his works Mahberet ben Asher (ca 925)
and Dikdukei ha-Te’amim (Grammar of the Vocalization). These were origi-
nal collection of grammatical rules and masoretic information. In 930 CE he
produced corrected and annotated edition (so-called Aleppo Codex ) of the Old
Testament including diacritical marks and marginal notations that serve as
precise directions of vocalization, accentuation and chanting the Hebrew text.
His standard will be compared and followed for generations prior to invention
of printing (1450 CE) and will bear tremendous influence on the world of
Biblical grammar and scholarship.

930 CE The Althing , the world’ first parliament, was set up by the settlers
of Iceland. A civil war in the 13th century put an end to democracy in the
Icelandic commonwealth, and the country came under Norwegian rule.

940–980 CE Shabbethai ben Avraham Donnolo (913–983, Southern
Italy). Jewish physician and writer on medicine. Wrote the first book on

21 Between the two great destructive earthquakes of 18 Jan 749 and 05 Dec 1033,

the city of Tiberias served as a center of Hebrew language and the Biblical

Masorah. We know that already by 895 CE, Tiberians had a complex system of

punctuation and vocalization, which began to form there in ca 650 CE.
22 Saadia Gaon attacked the Karaites in general and Ben Asher in particular,

considering them to be outsiders. It was unthinkable to him that traditional

“normative” Jews world accept the work of a Karaite. Nevertheless, being a

Karaite did not disqualify Aharon ben Asher in the eyes of Maimonides and

all subsequent generations of leading Jewish scholars.



546 2. Slumber and Awakening

pharmacology in Europe after the fall of the Western Empire and before the
influence of Arabian medicine began to be felt.

Donnolo was born in Oria, Italy. When 12 years of age, he was made pris-
oner by Arab pirates, but was ransomed by his relatives at Otranto, South-
ern Italy. He turned to medicine for livelihood, studying the sciences of the
Greeks, Arabs, Babylonians and Hindus.

His book Sefer ha-Yakar (Precious Book) contains practical directions for
preparing medicinal prescriptions. His medical science is based on Greco-
Latin sources.

940–980 CE Hasdai Ibn Shaprut (ca 915–990, Spain). Physician, med-
ical researcher and statesman. Physician to the caliphs Abdurrahman III and
IV. Experimented with drugs and invented cares for a number of diseases.
Gained reputation of being an excellent diplomat, and on several occasions
helped maintain peace between Muslims and Christians. Established commu-
nication with the Jewish Kingdom of Khazar.

Hasdai was born in Jaen, Spain and died in Cordova.

ca 960–990 CE Albucasis (936–1013, Spain). Physician. One of the
greatest surgeons of the Middle Ages. Born in Cordova. Wrote Al-Tasrif, the
first illustrated book of surgery and manipulations of spinal deformities. It
also contains the earliest description of haemophilia.

ca 960 CE Abu Hassan al-Uqlidisi (ca 920– ca 980). Mathematician.
Wrote the earliest known text offering direct treatment of decimal fractions.

968, Dec. 22 CE The earliest description of the solar corona during a total
eclipse visible in Europe and the Near-East, and observed at Constantinople.
It was only in the 18th century that the phenomenon began to be studied in
detail.
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The Hebrew Golden Age of Reason23 (900–1600)

With the conquest of southern Spain by the African Moors (711 CE), a
new era of Arab-Jewish culture began. The Jews had enjoyed equal treatment
in Arab lands under the enlightened rule of the Mohammadian Caliphs. Ac-
cordingly, as soon as the Moors had established their first foothold in Spain,
the Jews began to arrive in great numbers from all parts of the Islamic world.
Every encouragement was given them to develop their own religious communal
life.

This held especially true during the 10th century in the reign of the enlight-
ened Umayyad Caliphs Abd ar-Rahman (891–961) and his son Al-Hakim
II (929–996) who made Cordova the most important center of learning in
Europe. It was a time marked by liberality of mind and the advancement of
the sciences and the arts.

Despite Muhammad’s attempts to suppress Greek cultural influences
among the Arabs, they nonetheless persisted; Greek-Arab civilization reached
its most brilliant development during this period. The Jewish intellectuals
became enthusiastic co-workers of the learned Arabs in every branch of knowl-
edge and cultural creativity.

When the Jews began to emigrate from Spain into Southern France, Italy
and other Mediterranean countries, they brought with them into those still
backward Christian lands elements of the superior Greek-Arab-Hebrew culture.

23 For further reading, consult:

• Barnavi, Eli (ed), A Historical Atlas of the Jewish People, Kuperard: London,
1998, 299 pp.

• Ausubel, Nathan, Pictorial History of the Jewish People, Crown Publ.: New

York, 1968, 346 pp.

• Feuerstein, Emil, The Genius of the Jew, Udim Publishers: Tel-Aviv, Israel,
1975, 164 pp.

• Johnson, Paul, A History of the Jews, Harper Perenial: New York, 1988,

644 pp.

• Roth, C., The Jewish Contribution to Civilization, The Phaidon Press: Ox-
ford, 1943, 369 pp.

• Gribett, J., The Timetables of Jewish History, Simon and Schuster: New

York, 1993, 808 pp.
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The historical fact seems somewhat paradoxical: the Jews and the Arabs who
were nurtured by the Orient were, in a cultural sense, the first Europeans.
They planted the intellectual seed of Western civilization on the continent.

In Arab lands, where there had existed a free intermingling of many cul-
tures, there had blossomed a rich and unique Jewish culture. It has spread
to Babylonia after its conquest in 642 by Muhammad in the course of his
holy war. In the centuries of Babylonian Jewry’s declining preeminence as
the world center of Jewish learning, there emerged a galaxy of highly gifted
philosophers, scholars, poets and scientists whose writings showed the impact
of Greek thinking. In a way, this Jewish Renaissance was a resurgence of
Hellenism. The Jews, who during their Greco-Roman period had inveighed
against the Epicureans, Aristotelians and Platonists now opened their minds
to the ideas of these philosophers and tried to reconciliate their teachings with
Jewish theology.

Moreover, unheard-of occupations became respectable Jewish professions;
they became astronomers, mathematicians, alchemists, architects, translators,
finance ministers and international businessmen. And yet, though the door
to assimilation was wide open, they stayed in the house of Judaism.

How had Hellenism found its way back into Jewish life in an Arabic world?
The simple fact is that in rescuing Greek works for the Arabs, the Jews became
imbued for the first time with the true essence of Greek philosophy and science.
As the early Christians had no use for the writings of the heathen Greeks,
and the invading barbarians had no use for the Greek language, most of the
former were lost and the latter forgotten.

Greek literary and scientific works, however, survived in Syriac translations
and in the libraries of wealthy and cultured Jews and unconverted Roman pa-
gans. When the Arabs heard of this wealth of knowledge, they encouraged its
translation into Arabic, and the task fell mainly to the Jews, the cosmopoli-
tans of that age, who spoke Hebrew and Arabic, Greek and Latin, Syriac and
Persian with equal facility.

These ‘Channels to Europe’, the transmission of Greek Science and hu-
manism to Europe, were reopened by the Jews in the 8th century, and the
work continued through 1400. Their first translations were from the Greek
and the Syriac into Arabic, but soon they began to translate Greek and Arabic
works into Hebrew, and finally Hebrew literature and philosophy into Arabic.
A two-way cultural communication had been established. It soon included a
third partner.

The enlightened crowned heads of Europe heard of these Jewish achieve-
ments and invited Jewish scholars, linguists, and translators to come to their
capitals to translate the works of the Greeks and the Arabs, as well as their
own Hebrew literature, into Latin, at the time the international language of
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European scholarship. So, for instance, Frederick II [King of the Romans
(1212), King of the Germans (1215), King of Jerusalem (1229)] appointed
Jewish scholars to teach Hebrew at the University of Naples.

Now that there was no danger of being absorbed into Hellenism (the Greeks
vanished, but the Jews survived), they began to examine more closely the wis-
dom of the Greeks. They had opened a Pandora box of reason and looked
at everything with the new glasses of rational scrutiny. The result was in-
evitable – a split between faith and reason developed. Into the breach rushed
the conservatives to explain that reason and faith were but opposite sides of
the same coin, and the liberals to prove that they were incompatible. A new
tension developed out of which grew science and philosophy.

Numerous were the thinkers, philosophers, astronomers, mathematicians,
jurists, physicians, nautical scientists, linguists, grammarians and biblical ex-
egetes that the fecund Jewish culture milieu produced in Spain, France, Hol-
land, Italy, North Africa and Babylonia during the millennium 700–1700 CE.
Of these, the following names (Table 2.1) can be directly associated with the
accumulated wisdom and knowledge that opened the floodgates of modern
science; unfortunately, some of these names did not receive the recognition
they deserve. Many of their fate sakes which are not of this list, or any other
list for that matter, will always remain the ‘unknown soldiers’ in the service
of science.

The Jewish Age of Reason took the same course that, centuries later,
was taken by its Christian counterpart. The Age of Reason in Europe, born
by the 18th century with the French encyclopedists, collapsed in the 20th

century revolutionary age of totalitarianism. The Jewish Age of Reason, born
in the 8th century with the great Talmudists, collapsed in the 16th century
revolutionary age of Reformation. Slowly the pendulum swung back to faith
as the people rejected the mechanistic Jehovah of the rationalist philosophers
and responded to the humanistic Jehovah of the Romantics. By the time the
Muhammadian Empire collapsed, the Jews had made the transition back to
faith, which was to sustain them in Europe’s gethos. By shear irony of fate,
the Jews stepped into their ‘private’ Middle Ages just when the rest of Europe
emerged from it. The two cultures would meet again in the 19th century.

The tradition of preserving the text of scripture and its vocalization is
known as Masorah and the tradition of text is called Masoretic. The people
who were active in this work are known as Masoretes. This work of handling
the past over to the future was neither simple nor quickly accomplished; it
took a number of generations of scholars to do it. Moreover, these scholars
thereby laid the foundation for the study of Hebrew grammar. For a discussion
of words and how they are to be read in various connections was bound to
lead to the fixing of grammatical rules. The Israeli Masoretes, down to the
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10th century, did not go that far; the real beginning of Hebrew grammar was
made by their followers in Babylonia and Spain.

The 10th century marked a turning point in Hebrew and Biblical studies.
Original masoreti researches reached their high water-mark in Israel in the
works of Ben-Asher, a famed contemporary of Saadia Gaon (882–942).
The vowel-system became definitely established, with the Tiberian system
predominating. Studies of Hebrew then began to direct their attention to
purely grammatical problems, without regard to their implication for biblical
exegesis.

Occasional grammatical observations are to be found already in the Tal-
mud and he Midrashim. The masoreti notes and comments, likewise, contain
a number of significant grammatical remarks. Considerable grammatical ma-
terial is found in the Sefer Yetzirah, an anonymous ancient Kabbalistic work.
But it was not until Saadia that Hebrew grammar was treated as an inde-
pendent science, and not merely as an aid to the clarification of biblical texts.
This versatile scholar laid the foundation for the scientific movement in He-
brew philology. Saadia was prompted to undertake the task of writing Hebrew
grammar because he was irked by the ignorance of the language and by the
disregard for grammatical accuracy among the Hebrew writers and poets of
his day.

As long as the writers confined themselves to conventional themes, such as
liturgical compositions and legal discourses, the available vocabularies, idioms
and word-forms in the Bible and the Talmud were adequate and could be
readily employed as vehicles for self-expression. When, however, the writers
began to deviate from conventional themes, whether because of the influence
of the Arabic culture of medieval Spain or as a result of independent creative
urges, a departure from the stereotyped linguistic pattern became essential.
New words had to be coined and new word-forms had to be constructed.
Since Hebrew was not the vernacular of the people, ignorance of grammar
was proving most serious handicap and threatened to corrupt the language.
Even some of the grammarians of that period fell into glaring etymological
errors.

As time went on, the philological movement initiated by Saadia gathered
momentum, especially under spur of Arabic philological pursuits, and the urge
for literary and religious expression in Hebrew. The rise of the Karaite sect
(toward ca 790), which rejected rabbinic tradition as expressed in the Talmud
and emphasized diligent scrutiny of the Bible as a basis for its tradition, was
also a significant factor in focusing the attention of Hebrew scholars on a
more searching study of the language of the Bible. The knowledge of Hebrew
grammar, consequently, became a vital need.

Grammatical accuracy served as a criterion for the recognition of the mer-
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its of literacy and religious composition, and grammatical knowledge consti-
tuted a badge of honor and the measure of Jewish learning and scholarship.
Interest in Hebrew grammar was, therefore, not confined to professional gram-
marians, but gained vogue among poets, philosophers and even statesmen.
The celebrated poet, statesmen and Talmudist Shmuel ha-Nagid (993–
1056), the eminent physician and poet Yehudah Halevi (1071–1141), the
brilliant philosopher and poet Shlomo Ibn-Gabirol (1021–1058), the poet
and scientist Avraham Ibn Ezra (1089–1167), the grammarian Jonah Ibn
Janah (995–1050) and others, all concerned themselves with Hebrew gram-
matical problems to a greater or lesser degree and wrote about them.

The study of Hebrew grammar as an independent science was pursued
with zeal and profundity by Saadia’s immediate successors. An important
lexical work of Menahem ben Saruk (910–970), entitled Mahberet, inaugu-
rated Hebrew grammatical research on Spanish soil and provoked a vehement
attack by a pupil of Saadia, Dunash ben Labrat (920–990). Dunash ad-
vanced views which already forecast the triliteral theory24, later scientifically
and systematically expounded by Yehudah Hayyuj (ca 975 CE). Although
Dunash had a glimpse into the operation of these phonetic principles, Hayyuj
is undoubtedly entitled to the credit of being the first grammarian to observe

24 The stem (root) of a word is determined by removing the prefixes, infixes and

suffixes. In the majority of cases the residual number of radicals clearly amount

to three. In good many instances, however, the number of these radicals seems

to be reduced to two and even to one [e.g. in wa-tofehu (1 Samuel 28, 24), “and

she baked it”, the f is the only stem letter that remains after the removal of

prefixes an suffixes]. Hence, all the predecessors of Hayyuj, with the exception

of Dunash, who on occasion had an insight into triliteral basis of the Hebrew

stems, operated with the idea of the biliteral and even uniliteral stems. These

grammarians failed to recognize the special character of assimilated stems. In

Hebrew, as in other Semitic languages, stems from which nouns and verbs are

derived consist of consonants and meaning depends on these consonants. The

vowel sounds, which in Indo-European languages are generally on a par with the

consonants as regard their essential role in the stem or root, play a minor part in

the Hebrew word; they merely serve to indicate different shading of the inherent

meaning. A change in vowels will transform an active into a passive verb, or a

verbal into a nominal form.

Thus, the consonantal stem ktb will yield such forms as katab (wrote), koteb

(writes), katub (written), ketab (script) and a lots of other forms, in all of which

the concept of “writing” is inherent. These basic consonants, which are never

dropped in all the modifications of the word, were designated by the Medieval

Hebrew grammarians the shoresh (radix, root). It therefore became customary

among Christians grammarians to refer to these letters as “radicals” or “root

letters”.
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the overall pattern of triliterality in Hebrew language as a design in which the
structure of nouns and verbs fitted in a perfect mosaic fashion.

Another significant contribution by the medieval grammarians is the
arrangement of the paradigms, that is, model of verbs and their various in-
flections in the different conjugations. Once a nature of a given consonan-
tal stem is understood, it is possible to construct a long series of derivative
forms, all having the same basic meaning. The various semantic shadings and
modifications, as well as the differences in person, number and gender, are
indicated by mere changes in vowels or by additions of prefixes and suffixes
as the case may be. There are seven most common conjugations in biblical
Hebrew and are known as binyanim (literally in Hebrew, building forms). In
all formations of the various binyanim the basic meaning is more or less in
evidence. Consequently, an understanding of the nature of binyanim opens
up the wide vistas of the language and provides an insight into its linguistic
pattern. Equipped with this understanding it is possible to get along on a
comparatively small basic vocabulary and to manipulate the language with
relative ease and facility.

Saadia was the first to attempt the arrangements of paradigms. He, how-
ever, confined himself only to two conjugations. The standard arrangement
of the seven conjugations is to be credited to Moshe Kimhi (ca 1130–1190).
His brother David Kimhi (ca 1160–1235) assumed the role of a “gleaner af-
ter the reaper”, whose task was to compile and present succinctly and simply
the voluminous scientific findings of their predecessors. Kimhi’s works mark
the closing of the “Golden Era” of Hebrew medieval philology.

The reaction which set in against the works of Maimonides toward the
end of David Kimhi’s days, marked the waning of all rationalistic pursuits,
including grammatical research, and of any studies outside of the Talmud.
Furthermore, the deterioration of the Jewish economic and political position
in South-Western Europe, resulting largely from persecution and from the
internal rivalries and quarrels within the Jewish communities, led to a serious
decline among the Jews in general cultural interests and activities.

The Jewish people, faced by an accelerated rise in jealousies and preju-
dices among the Christian populace and in persecutions and repressions by
the Catholic Church, sought shelter in their own shell, as it were. Their
interest shifted accordingly from the luxury of pursuing poetry, philosophy
and grammar to the necessity of fortifying themselves by means of a bet-
ter understanding of Judaism and a stronger faith in their religious destiny.
This interest found its outlet in the study of the Talmud and of the mystic
philosophy of the Kabbalah, which began to flourish around that period.

Most of the Jewish scholars of the subsequent generations regarded the
study of grammar as a waste of time, and some even saw in it lack of piety.
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Even the study of the Bible began to be regarded as of secondary importance
and was dwindling to such an extent that a German rabbi of the 17th century
complained that there were rabbis in his generation “who had never in their
lifetime seen a text of the Bible”.

As interest in Hebrew grammar waned among Jewish scholars, it began
to flourish among Christians. The Renaissance, which initiated in Italy,
grew apace and crossed the Alps into the Netherlands, France and Germany,
reached its peak during 1450–1550. This intellectual movement brought in
its wake the Reformation which split the Christian world into two warring
camps.

One of the main motives of the Reformation was to break the shackles of
the Church’s authority and to reassert the right of individuals to search on
their own for the word of God, without the Church as intermediary. They
therefore turned to the study of Hebrew as the master key to the Judaic
background of Christianity, in order to discover for themselves the pristine
meaning of the Bible and the original principles of the Christian faith. Many
of the early leaders of the Reformation achieved considerable proficiency in
Hebrew and familiarity with its literature.

The center of interest in Hebrew grammar and lexicography accordingly
shifted from Jewish to Christian scholars. The father of Hebrew grammar
among the Christians was the humanist Johannes Reuchlin (1455–1522).
The Christian grammarian, whose work enjoyed widest currency and influ-
ence, was Wilhelm Gesenius (1786–1842). The contribution of the Chris-
tian scholars to Hebrew grammar was considerable. They resumed the com-
parative study of Hebrew and Arabic and extended these studies to include
the other Semitic languages. However, being unconversant with the source
materials of the Golden Age Hebrew grammar, and being handicapped by the
tendency to restrict themselves to the language of the Bible, their work was
robbed of progressive and dynamic value.

There was a renewed spurt of zeal for the study of the Hebrew language and
Hebrew grammar among the Jews during the Jewish enlightenment movement
in the first half of the 19th century. Only two grammarians of that period
made any notable and original contribution to the science of Hebrew grammar,
namely Shmuel David Luzzato (1800–1865) and Simhah Pinsker (1801–
1864).

Transmission of the Bible

Once canonized, the Five Books of Moshe became divine. Thereafter, no
changes, additions, or deletions were permitted, and the job of maintaining the
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text was entrusted to a class of scribes known as Masoretes. The 20th century
discovery of the Dead-Sea Scrolls, which yielded Old Testament manuscripts
dating 200 BCE, show what an excellent job these scribes did in preserving
the original text.

The accuracy of the present-day Hebrew version of the Old Testament is
a result of the fastidious care with which the Sopherim and the Masoretes
transmitted it. The Sopherim copied manuscripts of the Hebrew Scriptures
from about 300 BCE until 500 CE. According to the Talmud, they came to
be called “Sopherim” because, in their endeavor to preserve the text from
alteration or addition, they counted the number of words in each section of
Scripture, as well as the number of verses and paragraphs.

During this time, there were two general classes of manuscript copied,
the synagogue rolls and private copies. Even the private copies, or “common
copies” of the Old Testament text, which were not used in public meetings,
were preserved with great care. For the synagogue rolls, however, there was a
very elaborate set of rules for the copyist. The manuscript had to be prepared
by a Jew, written on the skins of clean animals and fastened together with
strings taken from clean animals. Every skin was to contain a certain number
of columns, equal throughout the codex. The length of each column was to
be no less than 48 and no more than 60 lines. The breadth was to be 30
letters. The ink was to be prepared according definite special recipe. An
authentic copy was to be used from which to copy, and the transcriber was
not to deviate from it in the least.

No word or letter, nor even an iota (yod), was to be written from memory.
The scribe was to examine carefully the codex to be copied. Between all of
the consonants of the new copy, a space of at least the thickness of a hair or
thread had to intervene. Between every parashah, or section, there was to
be a breadth of nine consonants. Between every book, there was to be three
lines.

During the period 500–900 CE, the text of Hebrew Bible was standardized
by the Masoretes, who were also very careful in the transmission of the text.
They counted every letter and marked the middle letter and middle word of
each book, of the Pentateuch and of the whole Hebrew Bible, and counted all
parashas (sections), verses, and words for every book. These procedures were
a manifestation of the great respect they had for the sacred Scriptures, and
secured their minute attention to the precise transmission of the text.

The Torah scroll, used for reading in the synagogues, contains only con-
sonants of the Hebrew words; there are no vowel indications such as are to
be found in printed books. There are hardly even paragraph divisions to be
seen, and no sentence markings.

How then did people know how to read and where to stop? They were
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in the same position as one would be if English had no vowels and one came
across the letters “ct”. Only the sense of the sentence would tell one whether
to read it “cut”, “cot” or “cat”. A word of three Hebrew letters like
might be read sachal (he acted cleverly), or sechel (good sense), or shikel (lost
his children), or shekol (that all). The meaning depends upon the vowels,
according to which consonants are read.

Until the 6th century, people learned this from teachers and the division
into phrases, sentences, paragraphs and chapters was handed down by tra-
dition. But that certainly was not a satisfactory situation when troubles
prevented people from studying, when the Jews were scattered all over the
world and teachers were few, and when Hebrew had ceased to be the spoken
language by any part of the people.

The Jews, both in Babylonia and Israel, learned a lesson from the Muham-
medians and from certain Christian groups who lived near them. These peo-
ple, confronted with the same problem in their Arabic and Aramic languages,
had invented little signs to indicate the vowels. Jewish scholars in Babylonia
began to use a variety of lines and dots written above the letters of the Hebrew
alphabet to show how they were to be read.

Certain scholars in Israel, at the same time, suggested another set of signs,
written mostly below the line of letters. The Israeli system turned out to be
the easier and more efficient, and was soon adopted universally by all Jews.
These scholars were very careful to follow the traditional pronunciation of
the words, and then wrote under them the sign appropriate to indicate that
tradition. They also used another set of signs, below or above the words, to
indicate the phrases and stops within the sentence. These are signs now used
as musical notes for chanting. For the chanting, too, was traditional, and the
new signs now fixed the chant for the future.

Their most important use, however, was as commas, colons, and periods
rather than musical notes.

Finally, the same Israelis wrote footnotes to the words of the Bible into which
mistakes had crept, they counted every word and letter, all with the object
of handling the traditional readings of the sacred books down to the future
exactly as they had been handed down to them from the past.

To sum up, the Masoretes introduced a complete system of vowel pointings
and punctuation for the text. Because of their high regard for faithfulness to
the text in transmission, wherever they felt that corrections or improvements
should be made, they placed them in the margin. They retained certain marks
of the earlier scribes relating to doubtful words and offered various possibilities
as to what they were. Among the many lists they drew up was one containing
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all the words that occur only twice in the Old Testament.

A number of texts of the Masoretes are still extent:

• Cairo Geniza fragments (6th to 9th century CE).

• The Cairo Codex (895 CE), copied by Moshe ben Asher. Includes
the Former and Latter Prophets. Found in the Karaite synagogue in
Cairo.

• The St. Petersburg Codex (916 CE), containing only the Latter Prophets.

• Aleppo Codex (930 CE), copied by Aharon ben Moshe ben Asher; It
used to be a complete copy, but was partially destroyed in a synagogue
fire in 1948. Used by Maimonides.

• The British Museum Codex (950 CE). It is a complete copy of the Pen-
tateuch.

• The St. Petersburg Codex (1008 CE). It is the largest complete man-
uscript of the entire Old Testament, on which the ben Asher family
worked for five generations. Copied by the masorete Shmuel ben Yaa-
cov.

• The Reuchlin Codex (1105 CE). Copied by Moshe ben Naphtali (890–
940, Tiberias), a rival of ben Asher. Now in Karlsruhe, Germany.

• The Dead Sea Scrolls (200 BCE– 70 CE). The earliest copies of Old
Testament books, discovered (1947) in a cave at Qumran, near the Dead
Sea. Yet when the scroll of Isaiah was examined and compared with the
codex from 1000 years later it was found that the two texts are almost
identical.

This shows the accuracy with which the Bible was copied by the scribes
through the ages. Indeed, the attention which the Bible has received in
the search for the true text, in exegesis, hermeneutics and commentary,
exceeds by far that devoted to any other work of literature. Nor is this
interest disproportionate, because it has been the most influential of all
books.
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969–985 CE al-Quhi (940–1000 CE, Persia). Astronomer and mathemati-
cian. Worked in Baghdad. Built an observatory in Shiraz to study the planets.
Worked chiefly in geometry and considered problems leading to quadratic and
cubic equations.

968 CE Drought in Africa that caused low Nile in Egypt, resulted in ca
600,000 deaths.

970 CE Al-Azhar University founded in Cairo, Egypt.

970 CE Abu al-Wafa al-Buzjani (940–998, Baghdad). Persian as-
tronomer and mathematician. Contributed considerably to the development
of trigonometry. He was probably the first to show the generality of the sine
law relative to spherical triangles. He gave a new method of constructing sine
tables, his value of sin (30′) being correct to 8 decimal places. He knew rela-
tions equivalent to ours for sin(α ± β) (though in an awkward form) and to
2 sin2 α

2 = 1 − cos α, sin α = 2 sin α
2 cos α

2 . He was first to use the tangent
function, calculated a table of tangents and introduced the secant and cose-
cant. His trigonometric tables are accurate to 8 decimal places (converted to
decimal notation) while Ptolemy’s were only accurate to 3 places. Worked at
the observatory in Baghdad (from 959).

ca 975 CE Yehudah ben David Hayyuj (ca 940–1005, Spain). Perhaps
the most important grammarian of the Hebrew language. Solved the mystery
of the Biblical Hebrew verb. He demonstrated that, despite the way they
looked, all Biblical verbs consisted of three letters (root), Hence he derived
the rules surrounding the Biblical verbs and explained the difficult Hebrew
nouns. His work ended and decided century-old debates on Hebrew grammar
and paved the way for modern analysis of Hebrew. He also wrote a book,
cited by Ibn Ezra, explaining for the first time linguistically difficult verses
in the Old Testament. Hayyuj’s work spread rapidly throughout the Jewish
world.

Hayyuj was born in Fez and arrived in Cordova, Spain in 960 CE at the
time of the famous dispute between Menahem ben Saruk and Dunash ben
Labrat and sided with ben Saruk. Little is known about his life.

980 CE Gerbert of Aurillac (ca 945–1003, France). Mathematician and
natural scientist. A remarkable Medieval Figure. One of the first Christians to
study in the Muslim schools in Spain. May have brought with him to Christian
Europe the Hindu-Arabic numerals (without the zero)25. He is said to have

25 He went to Spain in 967 and obtained his knowledge in the convent of Santa

Maria de Ripoll, a well-known center of learning near Barcelona. There is con-
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constructed, terrestrial and celestial globes, a clock, and perhaps an organ.
He was considered a profound scholar and wrote on astrology, arithmetic and
geometry26.

Gerbert was born in Auvergne, France. He became teacher at Reims;
archbishop of Reims (991); befriended by emperors Otto II and III; archbishop
of Ravenna (998). Elected to the papacy (999) as Sylvester II.

ca 985 CE Muhammad al-Karkhi (ca 950–1029, Baghdad). Mathe-
matician. Among the last of the real contributors to mathematics in the city
of the caliphs. His first work of note was on arithmetic, the Kafi fil Hisab
(ca 1010), and drawn largely from Hindu sources. His second book was on
algebra27, called the Fakhri (ca 1020), named after his patron Fakhr al-Mulk,
the grand vizier of Baghdad at the time.

His algebra is largely based on Diophantos. Gave complete solutions of
quadratic equations with proofs, and the reduction of equations of the type
ax2p + bxp = c to quadratic equations. Treated addition and subtraction of
radicals (e.g.:

√
8 +

√
18 =

√
50), and summation of series such as

∑n
1 n2,∑n

1 n3.

“Of course, America had often been discovered before, but it had always been
hushed up.”

Oscar Wilde

986–1006 CE Norse discovery, exploration and settlement in North Amer-
ica, as attested in old Scandinavian sagas from the 12th and 13th centuries,

siderable evidence to support the belief that the monks in this cloister obtained

their knowledge of these numerals through mercantile sources which were in

communication with the East, rather than through any Moorish channels in

Muhammadean Spain.
26 Gerbert improved the abacus by labeling separate beads.
27 Al-Karkhi gave an approximation of radicals: a + h

2a+1
<

√
a2 + h < a + h

2a
;

0 < h ≤ a. He also gave a solution in rationals to x3 + y3 = z2, namely

x =
n2

1 + m3
, y = mx, z = nx

where (m, n) are arbitrary rational numbers.
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the account of the German priest Adam von Bremen (ca 1075), and ex-
cavations in Newfoundland (1961). According to these sources the following
story can be reconstructed:

Bjarni Herjolfsson sighted (986 CE) the North American continent,
probably in the region of Frobisher Bay [63.30◦W–66◦W], at the southern
end of Baffin Island.

Leif Eriksson (ca 980–1025), a Norse explorer, led the first European
expedition to the mainland of North America in ca 1000 CE. (He was the son of
Eric the Red, who established the first settlement in Greenland.) Returning
from Norway to Greenland, he was driven onto the American coast, which he
called Vinland (Wineland), probably in Newfoundland. Some scholars believe
Eriksson sailed further south, and that Vinland was near Cape Cod.

Thorfinn Karlsefni set out from Greenland in 1003 with three ships
to settle in Vinland. He and his party spent three winters on the American
continent. How long the Norsemen continued to visit America is an open
question. The last definite mention is for 1189 CE, but there is some reason
to believe that they came at least as far as southern Labrador for ship’s timber
as late as 1347. After this date the Vinland colonies declined28.

The Viking29 Invasions
in the Medieval Warm Period (MWP) (787–1066)

Scandinavia developed in isolation until ca 200 CE. But the combined
effect of population pressure (over population), tribal warfare and a global

28 It is believed, that the Greenland colonies were so weakened by the Black Death

(1346–1361) and by failure of supplies from enfeebled Norway that they could

not withstand Eskimo attacks. The last Viking settlers disappeared in the 15th

century and Greenland became unknown country until rediscovered by John

Davis (1550–1605; England) in 1585. It is thought that the Viking settlements

maintained sporadic contact with “Vinland” (part of the coast of Canada or

Newfoundland), and so the Black Death may have entirely altered the history of

North America.
29 From the Icelandic (Old Norse): vik = bay, inlet; vikingr = sea-rover, pirate;

viking = predatory voyage.
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climatic warming period (ca 600–1150 CE) disturbed the balance of marginal
Scandinavian farming, causing the Norsemen to set off on ‘land taking’ and
voyages of plunder in Western Christendom. Their ships spread out across
the North Atlantic to Iceland, Greenland and North America; they emerged
into the Mediterranean; they sailed down the great rivers of Central Asia,
setting up the Russian state, and reaching Constantinople; they won control
of Northern Britain and Normandy. Finally, in 1066, a family of Norse descent
won the crown of England.

The viking aggressive expansion was facilitated by a number of factors:

• The development of the Viking ship: they were expert seamen and they
had perfected a type of long, shallow-draft ship which was very effective
for raiding. With its flexible hull and its keel and sail, this boat was
far superior to vessels used by other people at the time. They used a
sail when the wind was astern, but they were usually propelled by oars.
Equipped with such craft, the vikings could swoop down from the sea
and loot a whole river valley before the local troops, moving slowly over
bad roads, could be mobilized to repel them. (Note that the men who
sailed these ships had neither compass nor loadstone and had no way of
reckoning longitude!)

• Improved metallurgical techniques enabled them to construct better
weapons, such as their war axes.

• The political weakness of Europe at that time: the Frankish Empire was
disintegrating; the British Isles were split into small, warring kingdoms
and the Slavs in Eastern Europe were politically disorganized. Thus, the
continent lay open to any group of determined men bent on marauding
and looting.

• Recent studies of the oxygen isotopic record, tree-ring data (den-
drochronology), history of glacier waxing and waning and historical data
of North Atlantic drift-ice led to the conclusion that during the MWP,
temperatures were typically above normal. Data from North Amer-
ica and Peru support a global Warm Period consistent with the MWP.
[There are several competing theories to explain the climatic changes ex-
perienced during the MWP. These include: sunspot variation, volcanic
eruptions, changes in the large-scale ocean current conveyor belt, and to
a lesser extent – changes in the earth’s albedo. It is likely that each of
these mechanisms played a role].

The warm climate during the MWP allowed the viking migration to
flourish. Decreased drift-ice posed less hazards to sailors, and warmer
climate would also result in a greater harvest in Iceland. Thus, the
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warmer climate brought the vikings in increasing numbers to Greenland
and Iceland.

The participation of Scandinavia in the viking expansion through Europe
was as follows: (there was never a mass-migration!)

(1) Norwegians raided Scotland, Ireland, France;

(2) Danes raided the British Isles, France, the Low Counties. Though the
Scandinavian raiders called themselves vikings, the rest of Europe usu-
ally referred to them as Northmen. In their first serious raids against
Ireland early in the ninth century they rapidly occupied the east coast.
They met somewhat stiffer resistance from the Anglo-Saxons in England,
but by 870 they had subdued all the Anglo-Saxon kingdoms except the
southern state of Wessex. They had already begun to attack the Frank-
ish lands. Year after year the Northmen pushed their long ships up the
Rhine, the Seine, and the Loire to collect tribute and loot from towns
and monasteries. Finally, an especially strong band of raiders forced the
West Frankish king to cede them the land at the mouth of the Seine.
This outpost, founded about 911, became the nucleus of Normandy, the
most famous of the viking states.
In a show of bravado, the Northmen even sailed their ships into the
Mediterranean and plundered a few coastal cities in Spain, southern
France, and Italy.

(3) Swedes moved across Slavdom to Byzantium: They began to push down
the Russian river valleys toward Constantinople. They had known this
route for a long time, and eastern goods and eastern coins had been com-
mon in Scandinavia long before the great raids began. In the late ninth
and tenth centuries, however, the Swedes began to settle in Russia and to
bring the scattered Slavic population under their control. The fortified
trading posts where the vikings settled soon burgeoned into towns; the
most famous of them was Kiev, which became the capital of a large princi-
pality. Once they had gained a footing in Russia, the vikings, with typical
boldness, turned their eyes south to Constantinople. Their attacks on the
imperial city were unsuccessful, but they did manage to wrest a favor-
able commercial treaty from the emperor. These early viking princes and
warriors gave the eastern Slavs their first effective political organization;
in fact, the word Russia itself probably comes from Rus, the name of a
Swedish tribe.

Although the vikings shot around the Northern Hemisphere, terrorizing
and plundering vast swaths of territories with the rapacity of a Ghengis Khan,
they were also traders, explorers and settlers: their sites stretched from Russia
to Newfoundland, and they became the first Europeans to set foot in the
Americas.
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The pagan vikings learned rapidly from the more civilized people they
attacked; they quickly adopted the Christian religion. As they became more
civilized, they gave up their cruelty and their savage love of destruction and
shifted from piracy to peaceful and productive commerce. They disturbed the
old way of life in medieval Europe and their invasion finally helped create a
new Europe.

Table 2.2: The Viking Timeline

787 First recorded appearance of vikings in England (Dorset)
795 First viking raid on Ireland
798 Vikings raid the Isle of Man
834 Vikings sack Utreaht
836 Vikings sack Antwerp
840 Viking settlers founded the city of Dublin in Ireland
844 Vikings raid Seville, Spain
845 Vikings sailed up the river Seine and destroy Paris (again

in 856)
848 Vikings took Bordeaux
851 Vikings sailed up the Elbe and burned Hamburg (again 880)
859 Vikings sailed through the strait of Gibraltar and attacked

coastal cities in Spain, Southern France and Italy; defeated
the Moors in Morocco (again in 900)

860 Norwegian vikings discovered Iceland (colonized 874)
862 Swedish Russ vikings founded Novgorod in Russia
867 Danish vikings established a kingdom in York, England

by 870 Viking subdued all Anglo-Saxon kingdoms except the
southern state of Wessex

871 Vikings took London
879 Rurik established Kiev
881 Vikings sacked Aachen
911 Viking chief Rollo was granted Normandy by the Franks
941 The vikings attacked Constantinople
981 Viking leader Eric the Red discovered Greenland
986 Viking ships sailed in Newfoundland waters
1000 Leif Eriksson explored the coast of North America
1003 Vikings explorer Thorfinn Karlsefni attempted to establish

settlements in North America
1013 The Danes conquered England
1015 The vikings abandoned the Vinland settlement on the coast

of North America
1016 The Danes under Knut rule England
1066 William duke of Normandy defeated the Saxon king Harold

at the Battle of Hastings
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990–1007 CE Ibn Yunus (ca 940–1009, Cairo). Astronomer and math-
ematician. Prepared improved astronomical tables based on his observations
at the Cairo observatory. Improved the values of astronomical constants (in-
clination of the ecliptic, 23 ◦35′; longitude of the sun’s apogee, 86 ◦10′; solar
parallax, 2′; precession, 51.2′ ′ a year). Introduced the trigonometric formula
cos α cosβ = 1

2 [cos(α − β) + cos(α + β)]. Ibn Yunus described 40 planetary
conjunctions accurately and 30 lunar eclipses used by Simon Newcomb (1876)
in his lunar theory.

ca 1000 CE Collapse of the Andean Tiahuanaco Empire due to a prolonged
drought lasting some 80 years.

1000–1030 CE Alhazen (Ibn al-Haitham) (965–1039, Cairo). Opti-
cian, physician, mathematician and astronomer. Gave the first correct ex-
planation of vision, showing that light is reflected from an object into the
eye. One of the greatest students of optics of all times. He went beyond
Philoponus and any reliance on the speculative method of ancient natural
philosophy. He started from systematic, repeated experiments, which were
arranged to yield quantitative measurements, and from these he developed
hypotheses expressed in mathematical form. These were inspired guesses as
to the physical relationships underlying various sets of measurements. If an
hypothesis was seen to fit the measurements, further experiments were devised
to see if the proposed relationship could accurately predict new measurements.
He was thus a pioneer of the scientific method , which he used to demolish the
old optics of Ptolemy and establish the framework for a science of light.

The Latin translation of Alhazen’s main work, the Optics (Kitab al-
manazir) exerted a great influence upon Western science (Roger Bacon,
Peckham, Vitelo, Alberti, Kepler, della Porta) and showed a progress
in experimental methods. Alhazen conducted research with spherical and
parabolic mirrors, studying magnifying power of concave and convex lenses,
spherical aberration, catoptrics30, dioptrics and reflection31. He also studied

30 The following problem in catoptrics is known as Alhazen’s problem, states: Given

a light source and a spherical mirror, find the point on the mirror where the light

will be reflected to the eye of an observer. This can be reduced to the planar

geometrical construction: from two points in the plane of a circle, draw lines

meeting at a point of the circumference making equal angles with the normal

at that point. It leads to an equation of the 4th degree. Alhazen solved it by

the aid of an hyperbola intersecting a circle. In a similar way he also solved the

cubic equation x3 + c2b = cx2, which results from the Archimedean problem

of dividing a sphere by means of a plane into two segments at a given voluminal

ratio to one another.
31 He investigated reflection from non-planar surfaces (concave, convex-spherical,
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the phenomena of atmospheric refraction (attempted to measure the thickness
of the atmosphere on the basis of his observation that the twilight only ceases
or begins when the sun is 19 ◦ below or above the horizon).

Alhazen gave a correct account of the structure of the eye (although he
considered the lens as the sensitive part), contested Plato’s idealism which
made the eye a source of illumination, and appeared to have recognized the
eye as what we now call camera obscura. Alhazen seems to have been well
acquainted with the projection of images of objects through small apertures,
and to have been the first to show that the arrival of the image of an object
at the retina, corresponds with the passage of light from an object through
an aperture in a darkened box.

In mathematics, Alhazen solved problems involving congruences, using
what is now called Wilson’s Theorem [if p is prime, then (p − 1)! + 1 is
divisible by p].

He was born in Basra, and there he acquired such a scientific reputation
that he was called to Cairo by the Caliph to apply his knowledge to the use of
the waters of the Nile for the irrigation of lower Egypt. After examining the
situation (as well as the failures of his predecessors), he realized that the feat
was impossible. Fearing the anger of the Caliph, Alhazen feigned madness,
for which he was confined and his property confiscated. Upon the death of
the Caliph, he regained his liberty and property – as well as the opportunity
to continue his study of science.

1006 CE The eruption of the volcano Merapi believed to have destroyed
the Hindu-Javanese state of Mataram.

1010–1040 CE Abu ar-Rayhan al-Biruni (973–1048). Arabian scholar,
historian and writer on mathematics, astronomy and medicine. His History
of India (ca 1030 CE) became the principal introduction of Hindu numera-
tion for the Arabs. Biruni transmitted Hindu knowledge to the Muslims and
vice versa. Gave a clear account of Hindu numerals (positional notation) and
the sum of a geometrical progression. Simplified the stereographic projection.
Made accurate determinations of latitudes, geodetic measurements, and spe-
cific gravities of precious stones and metals. Remarked that the speed of light
is immense relative to that of sound. Explained the works of natural springs
and artesian wells in terms of the hydrostatic principle of communicating
vessels.

cylindrical, etc.) and finally formulated Alhazen’s law of reflection, namely: that

the incident ray, the normal of the point of reflection, and the reflected ray, all

lie in the same plane.
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Biruni was probably born to Persian parentage in Khwarizm (Khiva)32,
and was a Shi’ite in religion. He devoted his youth to the study of history,
chronology, mathematics, astronomy, philosophy and medicine. For some
years he lived in India, where he remained for a few years, teaching Greek
philosophy and learning the Hindu language. In 1017 he was taken by Mah-
mud of Ghazni to Afghanistan, where he remained for the rest of his life.

1010 CE Ibn Sina (Avicenna) (980–1037, Persia). Physician, as-
tronomer, philosopher and encyclopedist. Wrote a 5-volume treatise (the
Qanun = Canon) on Greek and Arabic medicine that dominated the teach-
ing of medicine in Europe until the 17th century. Wrote many philosophical
works, among them a philosophical encyclopedia (Kitab al-Shifa), and made a
profound study of various physical questions. He observed that if the percep-
tion of light is due to the emission of some sort of particles by the luminous
source, the speed of light must be finite. Many of his writings are devoted to
mathematical and astronomical subjects.

He abandoned the various creation myths and studied geological forma-
tions in order to understand the origin of the present day earth; he correctly
concluded that nearly all land today was once under water, that sedimen-
tary rocks formed under water, and that the land was subsequently lifted by
earthquakes.

Ibn Sina was born at Afshana, near Bukhara33, and died in Hamadhan.

1020–1050 CE Jonah Ibn Janah (ca 990–1050, Spain). Leading Hebrew
grammarian, philologist, logician, poet and physician. Wrote books on gram-
mar and medicine. In such works as al-Mustalhak and Kitab at-Tenkiyeh
established Hebrew syntax, grammar and lexicon. His work is of permanent
value. A huge number of scholars from 11th through 13th centuries quoted
his work, and it became the basis for understanding Hebrew grammar and
philology. Ironically, Rashi and his students apparently did not know his
work.

32 He may have been born at Byrun in the valley of the Indus.
33 He is said to be of Jewish origin [see A. Soub: Avicenna, Prince des Medicins,

Paris 1935]. There is, indeed, nothing improbable in this; for near Bukhara, the

Jews had been settled from time immemorial. But, whether it is so or not, it

is a fact that a large proportion of Avicenna’s writings reached Europe through

the medium of Jewish scholars and translators who worked in Spain, Italy, and

Provence, and whose activity was important and influential in the earlier stages of

the Renaissance, The material on which they worked was partly Avicenna’s own,

partly that of the series of scholars who carried on and developed his tradition.
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Ibn Janah was born in Cordova, studied in Lucena under Itzhak ibn
Gikatilla. In Cordova he studied medicine, which provided him with a liveli-
hood throughout his life.

ca 1025 CE Guido of Arezzo (ca 995–1050 CE, Italy). The father of
modern music. Music teacher and a Benedictine monk in the monastery of
Pomposa. Invented the musical alphabet : the four-line staff, the F cleft and
the first 6 notes of the scale, ut (later renamed do), re, mi , fa, sol , and la.
These reforms made the teaching of music much easier. In his theoretical
writings he assumes a thoroughly practical tone, which differs greatly from
the clumsy scholasticism of his contemporaries and predecessors.

Of his life little is known. He taught singing at Pomposa and invented there
his educational method, by means of which, according to his own statement,
a pupil might learn within 5 months what formerly it would have taken him
10 years to acquire. Envy and jealousy, however, were his only reward, and
he was compelled to leave his monastery. He moved to Arezzo, and there,
about 1030, received an invitation to Rome from Pope John XIV. He obeyed
the summons, and the pope himself became one of his most proficient pupils.
He died as Prior of Avellana.

1040–1058 CE Shlomo Ibn-Gabirol, Avicebron (1021–1058, Spain).
Poet34-philosopher and thinker of striking originality. His philosophical sys-
tem had powerful impact on medieval Christian thinkers, as well as on Spinoza
and Schopenhauer. A man of broad vision and keen penetration who saw
further than the ordinary poet and felt deeper than the ordinary philosopher,
and even cultivated science in his effort to grapple with riddle of the universe
and of man’s existence in it. Influenced by the Neoplatonism of Plotinus
(253 CE) and the pseudo-Empedoclean writings, Ibn-Gabirol’s doctrine con-
tains not only certain teachings not to be found in these sources, but others
irreconcilable with Neoplatonism.

Ibn-Gabirol, unlike other medieval philosophers, pursued his philosophical
studies regardless of the claims of religion, keeping his speculations free from
every theological admixture. In fact, his work shows a total and absolute
independence of Jewish religious dogma; not a verse of the Bible nor a line
from the Rabbis is cited. For this reason Ibn-Gabirol exercised little influ-
ence upon his Jewish successors (though this may be accounted for on the
ground of the predominance of Aristotelianism from the 12th century) and
was accepted by the scholastics as a non-Jew. The odor of heresy which clung

34 In the days of Ibn-Gabirol, the art of versification was not limited to emo-

tional subjects. Law, medicine, and even mathematics were considered legitimate

themes for the poet.
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to him prevented Ibn-Gabirol from exercising a great influence upon Jewish
thought; his theory of emanation was irreconcilable with the Jewish doctrine
of creation, and the tide of Aristotelianism turned back the slight current of
Ibn-Gabirol’s Neoplatonism.

The “Source of Life”, his chief work in philosophy was translated from
the Arabic into the Latin in the middle of the 12th century by Dominicus
Gundissalvus, archdeacon of Segovia, with the assistance of a converted
Jewish physician, Ibn Daud (afterwards called Johannes Hispalensis). Hence-
forth, the Fons Vitae as it is called in Latin, became a work to be reckoned
with in the world of scholasticism. And just as Ibn Sina was corrupted into
Avicenna and Ibn Rushd into Averroes, so Ibn-Gabirol traveled down the
ages under the disguise of Avicebron35.

The main themes of the Fons Vitae are:

(1) All that exists is constituted of matter and form (i.e., physics and
geometry). This includes all created things, spiritual or corporeal. The var-
ious species of matter being but varieties of the universal matter, and sim-
ilarly all forms being contained in one universal form. Ibn-Gabirol’s many
arguments in proof of the universality of matter is among his most original
contributions to philosophy.

(2) Everything that exists may be reduced to three categories: the first
substance, God; matter and form (the world); the divine will as intermediary
and cause of the union of matter and form. This will is above the distinction
of form and matter; it is neither attribute nor substance.

Ibn-Gabirol was born in Malaga and lived in Saragossa. Little is known
of his life there except that his residence was embittered by strife. Envy and
ill-will pursued him, which accounts for the pessimistic strain underlying his
work. Life finally became unbearable in Saragossa, and he fled. He thought of
leaving Spain, but remained and wandered about. After years of wandering
and ill-health, he died in Valencia.

35 In the course of time and after much recopying . It was not until 1846 that the

author’s true identity was discovered. The Dominican and Franciscan scholars

who fought about his philosophy had no idea he was a Jew and celebrated as a

writer of religious hymns used in the Synagogue. Ibn-Gabirol nowhere betrays

his Judaism in Fons Vitae, and so for centuries, he marched through the philo-

sophical schools of medieval Europe, some taking him as a Christian and some

for a Muhammadian. The most zealous of the champions of Ibn-Gabirol’s the-

ory of the universality of matter is Duns Scotus (1265–1308), through whose

influence the basal thought of the Fons Vitae, the materiality of spiritual sub-

stances, was perpetuated in Christian philosophy, influencing later philosophers

even down to Giordano Bruno, who refers to “The Moor Avicebron”.
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He had written twenty books, most of which were lost. In his great meta-
physical poem, The Royal Crown, he renders the following poetic description
of the big-bang :

“Calling unto the void and it was cleft,
And unto existence and it was urged,
And to the universe and its was spread out”.

1041–1049 CE Pi Sheng (fl. 1022–1063, China). Alchemist. Invented ty-
pography – the printing with movable type. His type was made of a baked-clay-
and glue amalgam. Its usefulness was limited by China’s own non-alphabetic
writing system.

1045–1087 CE Constantine the African (ca 1020–1087, Italy). Also
known as Constantinus Africanus. Translator. Latin scholar. Born at
Carthage. Spent most of his life in the Benedictine monastery of Monte
Cassino, translating into Latin Arab works on Greek medicine, philosophy
and Aristotelian physics.

Constantine was aptly called “magister orientis at occidentis” and was
indeed one of the great intermediaries between East and West. First to trans-
port the medical literature of the Arabs into the Western world. The results
of his activity considerably stimulated the hunger of European scholars for
Greco-Arabic knowledge.

1054 CE, July 04 Chinese astronomers observed a supernova explosion
(the creation of a neutron star that occurred some 5000 years ago) in the
Crab nebula, in our galaxy. It was visible for 22 months36.

1055 CE The Arabs introduced the Hindu decimal system into Spain.

36 Other reported observation of supernova are:

• 1006 CE: reports from Switzerland and Arab sources; the only known obser-

vation outside the Far-East before the Renaissance.

• 1572 CE: European reports on supernova of varying brightness in the con-

stellation of Cassiopeia. First detected by Maurolycus and Schüler on Nov.

06, 1572. Seen until Feb. 1574. The amount of energy released in a supernova

explosion is awe-inspiring. The star will shine as brightly as ten thousand million

suns, and the total energy given out during the outburst is greater that released

by the Sun over its entire lifetime.

• 1604 CE, Oct. 8–9: Reported from Europe, Japan and Korea. Seen by Ty-

cho Brahe, Kepler and David Fabricius.
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ca 1060 CE al-Zarqali (Arzachel, 1028–1087). Arab astronomer; flour-
ished in Toledo, Spain. Compiled the Toledan Astronomical Tables. Suggested
that planetary orbits are elliptical .

1064–1072 CE Drought in Africa caused a 7-year failure of Nile flooding,
resulting in a wide-spread famine.

1066 CE Battle of Hastings; William of Normandy (the ‘Conquerer’) with
a motley of invasion forces defeated Harold II; Western civilization was thus
introduced to England.

1070–1105 CE Rabbi Shlomo Itzhaki (1040–1105, Troyes, Northern
France), known by the acronym RASHI. Commentator on the Old Testament
and the Talmud. The greatest teacher and educator that the Jewish nation
had for the past millennium. His commentary on the Talmud influenced
Jewish destiny; his subsequent commentary on the Bible influenced Christian
destiny37.

Unlike Maimonides (1135–1204) and Gersonides (1288–1344), both ardent
followers of Aristotle and both rationalists (who believed that the Bible was
not to be taken in its strict literal meanings but should be interpreted freely
and allegorically), Rashi took a diametrically opposite point of view38. His
commentary was written with such warmth and humanity, in such clear He-

37 The most profound Jewish influence on European civilization has been exercised

through the Bible. The clergy studied it, and, through them, its ideas penetrated

into the minds of the people. European law and morals, beliefs and hopes for the

future derived largely from what the Christian called the Old Testament. Many

Christian reformers of the Middle Ages based their doctrines on interpretations

of the Bible text. During the first thousand years of the Christian era, when

relationships between Jews and Christians were friendly and direct, such influ-

ence came through personal contact and, therefore, have been left unrecorded.

Nicolas de Lyra, of the early 14th century, wrote a Bible commentary that was

admittedly influenced by that of Rashi. He quoted Rashi constantly, either in

approval or refutation.

The German humanist Johannes Reuchlin (1455–1522), after studying the

work of de Lyra, took up the cause of Jewish humanism in his bitter conflict

with the Dominicans. One of Reuchlin’s ardent supporters was Martin Luther

(1483–1546); in his monastic cell Luther read both de Lyra and Reuchlin and

the fury of the coming Reformation took shape in his mind. When Luther

translated the Bible, as part of his religious reform movement, he leaned heavily

upon Lyre’s commentary and thus, indirectly, upon Rashi.
38 Except for his exegesis of the Song of Songs.
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brew, so artfully interspersed with French vernacular39 (where Hebrew lacked
the precise words), that it became loved as literature as much as it was
revered as Scripture. He laid down an undeviating rule: “Scripture must
be interpreted according to its plain natural sense, each word according to
the context”.

Rashi was born in Troyes. He worked his way through the Yeshivas (Tal-
mudic academies) in Germany as a wandering student. After graduation he
settled in his home town where he founded an academy of his own which
attracted scholars from all over the world.

Rashi was the right man for the times. Life in the 11th century Europe no
longer related to many percepts of the Talmud. The people did not understand
Aramaic, did not understand the phraseology, and did not understand its
application to modern life. There was a need for a universal Talmud which
could be understood without interpreters. It was this need that Rashi served.

In the 15th century, classic Talmudic learning split off in two directions.
The Italian and German schools, continuing the former Babylonian tradi-
tions, led to an affirmation of the past . The Spanish schools, resurrecting the
Greek tradition, led to inquity into the future. The former produced a few
more brilliant scholars whose influence died with them; the latter produced
philosophers like Maimonides and Spinoza, whose influence lived after them.

ca 1074 CE Omar Khayyam40 (ca 1044–ca 1123, Persia). Mathemati-
cian, astronomer, freethinker and poet. One of the greatest mathematician
of medieval times. His reform of the Persian calendar achieved extraordinary
accuracy. The first mathematician to study and classify cubic equations and
to employ conic sections in their solutions41. His standard work on algebra,
written in Arabic, and other treatises of a similar character, raised him at once
to the foremost rank among the mathematicians of that age and induced Sul-
tan Malik-Sāh to summon him in 1074 to institute astronomical observations
on a large scale, and to aid him in his enterprise of reforming the calendar
and calculating the length of the solar year with great accuracy.

39 As over 3000 of the French words he used have disappeared from the language,

Rashi’s writings have become important source book on medieval French.
40 His full name is: Ghiyath ud Din Abu’l Fatah Omar bin Ibrahim al-

Khayyami. ‘Al-Khayy’am’ means ‘the tent-maker’, but this occupation was

most likely far back in his ancestry, his immediate forebears having been a literary

family.
41 The algebra of Khayyam is geometrical solving linear and quadratic equations

by methods appearing in Euclid’s Elements. He devised a geometrical method

to solve cubic equations by intersecting a parabola with a circle.
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Far ahead of his time in mathematical methods, Omar supported his al-
gebraic solutions by geometrical constructions and proofs. He is also known
for his critical treatment of Euclid’s parallel postulate, showing him to be
a forerunner of Saccheri’s ideas (1733) that finally led to the creation of
non-Euclidean geometry42.

Omar’s scientific fame is nearly eclipsed by his still greater poetical renown,
which he derives from his ‘rubais’ (quatrains). In these he appears as a radical
free thinker forcibly protesting against the narrowness, bigotry and austerity
of the orthodoxy. He has often been called the Voltaire of the East. His
articulation of an inexorable fate, which dooms to eternal oblivion, still rings
true today as the sentence of a universe that has been set in motion by the
initial conditions of the ‘Big Bang’ cosmology:

“With Earth’s first clay They did the Last Man knead,
And there of the Last Harvest sow’d the Seed:
And the first Morning of Creation wrote
What the Last Dawn of Reckoning shall read”.

His phenomenal rise to fame in all parts of the civilized world began in
1859 with the anonymous publication of a hundred of his four-lined verses in
a book entitled the Rubaiyatt of Omar Khayy’am. It was translated rather
freely into English by Edward FitzGerald (1809–1883), an Irish writer and
student of Iranian philology. Within 50 years after the appearance of that
edition, more than 300 English editions were published, and within 70 years
after 1859, more than 1300 works connected with the Rubaiyatt have appeared.

Omar Khayyam died in Naishapur. He once said that his tomb would
be located in a spot where the north wind would scatter rose petals over it.
In 1884, William Simpson, a traveling artist of the Illustrated London News,
visited Naishapur and found the tomb of Omar. It was just outside a rose
garden. Boughs hanging over the garden had dropped many blossoms on the
grave. He plucked from these a few of the hips still hanging on the bushes.
These seeds were planted successfully in the Kew Botanical Gardens, and on
Oct. 7, 1893, one of these rose trees was transplanted to FitzGerald’s graveside
in a little English churchyard at Boulge, Suffolk.

42 Alhazen (ca 1000 CE) presented a “proof” of Euclid 5th (parallel) postulate,

but like the Greeks before him, he also ran into problems with circular reasoning.

Khayyam was not satisfied with this proof and presented one of his own. Sac-

cheri (1697) assumed the postulate false and tried to reach a contradiction. In

doing so, he unknowingly derived many of the theorems of non-Euclidean geome-

try. Others, such as Legendre and Lambert, improved upon Saccheri’s work,

but fell into the trap of circular reasoning themselves, while striking perilously

close to discovering non-Euclidean geometry.



574 2. Slumber and Awakening

1090 CE Shen Kua (1030–1093, China). Government official, engineer
and astronomer. Wrote Meng chi pi t’an (Dream Pool Essays) which contain
first reference to the magnetic needle, first account of relief maps, a rather
accurate explanation of fossils, and other valuable scientific contributions in
medicine, optics, astronomy, cartography and mathematics.

He entered imperial government service (1063); appointed commissioner
for prefectural civil and military affairs in Yen-chou province (1077); banished
from office after defeat of his troops by the Khitan tribes (1081).

1092 CE Su Sung, built an astronomical clock at the imperial observatory
at K’ai Feng: a cross between the water-clock and the spring driven clock. It
was powered by a water-wheel which advanced in step by step motion and its
time-keeping ability could be adjusted by weights. It struck a gong to indicate
the passing hours by a system of bamboo revolving and snapping springs. An
astronomical check on timekeeping was made by a sighting tube pointed to a
selected star.

1096–1291 CE The Crusades43. Christian military expeditions to free
the Holy Land from the ‘infidel’ Muslims (Saracens). The men who fought
in them came from Western Europe. There were 8 expeditions: 1096–1099;
1147–1149; 1189–1192; 1201–1204; 1217–1221; 1228–1229; 1248–1254; 127044.
Jerusalem changed hands several times (1099, 1187, 1243, 1244).

The first Crusade (proclaimed by the Council of Clermont on Nov 26,
1085) captured much of the Holy Land from the Saracens. Later Crusades
were less successful, and in the 4th the Crusaders, unable to pay the Venetians
for shipping, were persuaded to sack the Christian city of Constantinople
instead. This event was disastrous to Greek culture: quantities of works of art
and manuscripts were lost forever. Moreover, the ensuing Latin domination

43 The word Crusade comes from the Latin crux , meaning cross. Members of the

expedition sewed the symbol of the cross on their tunics. (For further reading,

see: Benvenisti, M., The crusaders in the Holly Land, Israel University Press,

Jerusalem, 1970, 408 pp. and Prawer, J., A History of the Latin Kingdom of

Jerusalem, Mosad Bialik, 1971, 561+654 pp.)
44 An additional one in 1212, known as The Children’s Crusade, ended tragically:

some 50,000 children from France and Germany went on a long march south to

the Mediterranean sea. Many perished of hunger and cold. Other were sold into

slavery. None reached the Holy Land.

During the first Crusade (Sept – Dec 1097), a severe outbreak of plague afflicted

Egypt and Israel. About 100,000 died. A second wave broke out in 1218.
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(1204–1261) was a terrible blow from which the Byzantine culture was never
able to fully recover.

Another disaster which the returning crusaders inflicted on Europe was
an epidemic of leprosy which reached its peak towards the middle of the 13th

century. It was finally controlled by isolating lepers in special houses.

Christians were aroused to organize the Crusades primarily by religious
faith. But the expeditions were also part of a larger effort by the Europeans
to increase their power, territory and riches (by the time of the first Crusade,
the Christians had already retaken southern Italy and Sicily and had put the
Muslims on the defensive in Spain).

In addition, the Crusades were in the common interests of kings and popes
in Europe: Pope Urban II, for example, viewed the first Crusade as an oppor-
tunity to win glory for the Church45, while at the same time help to reduce

45 The Crusades were not simply a war against Islam; they were also, though less

openly, a war against the Jews. As it turned out, the Crusades were not a prof-

itable business – neither morally nor financially (except for Venice!). It is chiefly

in that age that the seeds of the most virulent form of anti-Semitism were sown.

In 1096, the Crusaders massacred and tortured many thousands of Jews in the

Rhine Valley. Later (1099) they burned Jews alive in Jerusalem and killed 70,000

Muslims and Jews in one week. These outrages were repeated in Europe during

the 2nd and 3rd Crusades, when they occurred in England as well (1189–1190).

These anti-Jewish outbreaks of 1096 and 1146 are so important that they may

be considered turning points in the history of the people of Israel. Before that

time Jewish persecutions had been exceptional in Western Europe. They now

became more frequent. Moreover, they were the cause of anti-Jewish legislation

by Innocent III and other rulers. The enormous amount of money needed for the

Crusades were partly obtained by special taxation of the Jews and confiscation

of their goods.

During the Crusades, the persecution of the Jews tended to become more vi-

cious and more petty; in 1215 a yellow badge was enforced upon the Jews by the

Fourth Lateran Council, under Innocent III. The segregation of the Jews into

ghettos, voluntary at first (for mutual protection), obligatory later, was almost a

natural consequence of that branding. But one cannot persecute people without

reason, and new reasons were needed all the time. It was hoped that a critical

examination of the Jewish writings, and especially the Talmud , would provide

the justification for their treatment as outcasts. Gregory IX ordered the confis-

cation of all the Talmuds (1240) on the allegation that it consists of the main

source of Jewish antagonism to Christendom. A great number of Talmuds and

other Hebrew books were burned in Paris (1242). The tide of persecution once

started could not be stemmed. Evil begets evil:

In Spain, a vigorous anti-Jewish propaganda was carried on by the Dominicans.
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warfare among European kings and nobles.

On the other hand, some crusaders hoped to win glory, wealth, and new
lands, whereas merchants, such as those in the Italian seaports of Genoa and
Venice, joined in search of new markets.

In 1291, after the last Crusade, the Muslims seized Acre (now Akko, Is-
rael), the last Christian foothold.

By this time Europeans were losing interest in the Holy Land. Europe was
turning its attention westward, to the Atlantic Ocean and beyond. [In 1492,
the Spaniards drove the Muslim Moors out of Europe, and in the same year
Columbus sailed to the New World.]

The expeditions to the Holy Land prepared Europe for expansion into
America. Europeans acquired new tastes in food and clothing. Their desire
to travel increased. They learned how to make better ships and better maps,
and they learned new ways to wage war. The Crusades quickened the pace
of progress of Western Europe by bringing profit and prosperity to Italian
trading cities.

1100–1123 CE Avraham bar Hiyya ha-Nasi; Savasorda46 (ca 1065–
1136, Barcelona and Provence). Mathematician, astronomer and philosopher.
The author of the first major book of mathematics written in Hebrew. In-
troduced Arab trigonometry to the West. He was one of the leaders of the
movement which caused the Jews of Provence, Spain and Italy to become
transmitters of Muslim science to the Christian West. He helped Christian
scholars to translate scientific works from Arabic into Latin. His book Hibbur

In 1263 they obliged the great Jewish physician, Moshe ben Nahman, to defend

his faith in a public disputation at Barcelona, against the Jewish renegade Pablo

Christiani. Pablo seems to have had the worst of it, but this only added fuel to

the fire, and the persecution was renewed with increased vigor. Once more the

Talmud was scrutinized and attacked.

In England things were hardly better. The financial success of some Jews ex-

cited the hatred and covetousness of their Christian neighbors. More and more

vexations were piled upon them, and the hostile feelings which they inspired

accumulated throughout the 13th century, gathering more and more intensity.

The Spanish method of persuasion was tried in 1280 when they were obliged to

attend Dominican sermons, but this could only make matters worse. The almost

inevitable climax occurred in 1290: Edward I ordered all the Jews to leave Eng-

land before All Saints Day, their immovable property being confiscated to the

crown’s profit. Sixteen years later the Jews were expelled from France.
46 He held the honorary title captain of the guard , the Arabic name of which was

condensed into Savasorda.
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ha-meshiha ve-ha-tishboret (1116) was translated by Plato of Tivoli in 1145
under the title of Liber embadorum. It contains a complete solution of the
quadratic equation x2 + b = ax, showing that it has two roots. The book
exerted a deep influence upon the development of Western mathematics and
was used by Leonardo of Pisa as the foundation for his text-book on Hindu
arithmetic, geometry and trigonometry.

Avraham also composed an encyclopedia, treating mathematics, astron-
omy and optics, and Sefer-ha-ibbur (1122) – the oldest Hebrew treatise specif-
ically devoted to calculation of intercalation. Avraham was one of the creators
of Hebrew scientific language.

While Christianity and Islam met each other on the battlefield, Avraham
bar Hiyya, called by his fellow Jews “the prince”, took a leading part in
promoting spiritual interchange between the representatives of the Christian
and Arabic civilizations.

Through his translations, Muslim trigonometry, and more specifically the
sine and tangent functions, were introduced into the Latin world. Although
starting as an abacist (he wrote a treatise on the abacus before his Arabic
contacts), he later became one of the earliest algorists.

1100–1500 CE Christian pilgrimage47 in medieval times. Journeys of de-
votion to the Holy Land, Rome and other sanctified places.

The medieval Church adopted the custom of pilgrimage from the ancient
Church. The young Germanic and Romance nations did precisely as the Greek
and Romans had done before them, and the motives of these journeys (now
much more difficult of execution in the general decay of the great world-system
of commerce) remained much the same. They were undertaken to the honor
of God, for purposes of prayer or in quest of assistance, especially health. But
the old causes were reinforced by others of equal potency.

The medieval Church was even more profoundly convinced than its prede-
cessor that the miraculous power of Deity is attached to the body of saints
and their relics. But the younger nations – French, English and German –
were scantly endowed with saints; while, on the other hand, the belief obtained
that the home-countries of Christianity, especially Rome and Jerusalem, pos-
sessed an inexhaustible supply of these sanctified bodies. Far more important
consequences, however, resulted from the fact that the medieval mind associ-
ated the pilgrimage with the forgiveness of sins, an idea foreign to the ancient
Church. The pilgrimage became an act of obedience. The place to be visited

47 From the French pelegrin, Latin peregrin, meaning: to travel. (Similarly saunter

is derived from saintre terre, meaning: stroll.)
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was not specified, but the pilgrim lay under the obligation, wherever he went,
to offer his prayers to the tombs of the saints.

As the system of indulgences developed, a new motive came to the fore
which rapidly overshadowed all others: to obtain the indulgence which was
vested in the respective church or chapel. By the close of the Middle Ages
there were thousands of churches in every Western country, by visiting of
which it was possible to buy an almost indefinite number of indulgences. A
system was thus formed through which a repentant sinner could buy himself
out of guilt and obtain total absolution. Simultaneously, the opportunity was
offered of acquiring an indulgence for the souls of those already in purgatory!
Consequently, during the whole period of medievalism, the number of pilgrims
was perpetually on the increase, and so were the accumulated riches of the
Church.

The pilgrimage to Rome received their greatest impetus through the inau-
guration of the so-called Year of the Jubilee (1300 CE), on which the bull of
Boniface 8th promised Plenary indulgence to every Christian who should visit
the churches of Peter and Paul on 15 days during the year. This placed the
pilgrimage to Rome on a level with the crusades – the only mode of obtaining
a plenary indulgence. The success of the papal bull was indescribable: in the
year of the Jubilee, on the average, 200,000 strangers were present in Rome
during the day, the greatest number of pilgrims coming from Southern France.

In the years 1350, 1390, 1423, 1450, 1475, 1500, the troops of pilgrims
again came steaming into Rome to obtain the cherished dispensation.

Next to Rome, the shrine of St. James of Compostella (Santiago, Spain)
became the most favored devotional resort, and a pilgrimage road from France
to that resort was known as the Way of St. James.

Science benefited from pilgrimage in a number of ways: it enabled ex-
change of ideas and information between various cultural centers. It also
accelerated the fusion and diffusion of knowledge from the East into Europe.

1109–1140 CE Yehudah ben Shmuel Halevi (1071–1141, Spain and
Jerusalem). Philosopher-poet and physician. Presented his philosophy of
history in general and of the history of the people of Israel, in particular, in
his famous book Kitab Al Khazari (1139), written in Arabic and translated
into Hebrew under the title Sefer Ha’Kuzari (Book of the Khazar). It is a
profound meditation on the interrelations between the histories of Hebrews
and non-Hebrews and an acute demarcation between philosophy and religion.

According to Halevi, the knowledge of God is attained not through ratio-
nalistic discussions or theoretical philosophical scholasticism (which only lead
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to controversies and disagreements), but via personal inner experience48 such
as experienced by the Hebrew prophets.

He maintains that the universe was created by intentional God’s will out
of nothing, a belief which is at the common root of the three great religions.
The laws of nature were established arbitrarily by God and are manifested
both in the physical world and in history . He rejected Epicurean metaphysics
which maintained that the universe was created by chance.

Halevi seeked to free Judaism from a dependence on the intellectualization
of creed and Aristotelianism which he reproached for subjecting the Deity to
necessity and for becoming incompatible with the idea of a personal God.
Platonic tradition seemed more fitting to him, for he was inclined to regard
God as a principle of form that moulds the eternal material principle. He
maintained that Judaism does not center in the person of its founder as the
other religions do but in the people to whom the Torah has been given. Jewish
history is the work of Divine Providence which he regarded as the continu-
ation of the Divine creative activity. Halevi became the first philosopher to
speculate on the meaning of the Diaspora in Jewish destiny; in his view, the
successful conclusion of the Diaspora and the restitution of the Land of Israel
would herald the redemption of not only the Jews but of all mankind.

Halevi was born in the city of Tudela (not Toledo), Northern Spain. His
well-to-do parents sent him to best schools where he studied algebra, grammar,
Arabic, astronomy and poetry. He left his home town at an early age (ca 1086)
and wandered to Southern Spain, visiting Cordova and Granada. He studied
the Talmud at the academy of Lucena, and medicine at the medical school of
Cordova. Finally, at the age of 24 he established a successful medical practice
in Toledo and married into a prominent family in that city. As the persecution
of the Jews reached an intolerable level, Halevi left Christian Spain (1109),
gave up his career as physician and abandoned his family to take up the life
of a wandering poet.

With his friend, the poet-scientist-physician, Avraham Ibn Ezra, he
roamed the cities of Muslim Spain for many years and at least once, vis-
ited North Africa. (The two poets became related by the marriage of Halevi’s
daughter with Ibn Ezra’s son.) In 1140 Halevi decided to make a pilgrimage
to Jerusalem, despite the dangers to travelers in those days and the risk of
going to Israel while the crusading movement was in progress. He arrived in
Alexandria on Sept. 8, 1140, and apparently died in Egypt some six months
later. Legend has it that at the very moment when he knelt to kiss the ground
at the gate of Jerusalem, an Arab horseman hurled his spear at the prostrate
figure and cut short the poet’s life.

48 In The Varieties of Religious Experience (1902), William James expresses

these very ideas.
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1116–1142 CE Adelard of Bath (1075–1160, England). Philosopher,
translator and mathematician. English monk, who in 1120 studied in Spain
and traveled extensively through Greece, Syria and Egypt. He is credited
with Latin translations of Euclid’s ‘Elements’ and of al-Khowarizmi’s astro-
nomical tables. Adelard had to run physical risks in his acquisition of Arabic
learning: to obtain the jealously guarded knowledge, he disguised himself as
a Muhammadan student.

1120–1160 CE Ibn Zuhr (Avenzoar) (ca 1090–1162, Spain). Physician.
A Muslim of a Jewish descent. Greatest clinician of the Western Caliphate.
Described pericarditis, mediastinal abscesses, surgery for cataracts, kidney
stones. His most important work, Taysir (Aid to Health), was influential
throughout Europe in Latin and Hebrew translations49. Avenzoar was born
in Seville.

1134 CE A Sicilian coin bearing this date serves as the earliest known
example of the official use of the Arabic numerals in the West.

ca 1140–1164 CE Avraham (ben Meir) Ibn Ezra (1089–1167, Spain
and Western Europe). One the greatest Jewish savants of the Middle Ages.
A roving scholar who developed unusually rich literary and scientific activity
in his roaming existence under the stress of circumstances, and who wrote
works of lasting importance: poet, philosopher, physician, mathematician,
astronomer, chronologist, Hebrew philologist, grammarian and biblical com-
mentator. He wrote on the history of numbers, the calendar, astronomy and
the astrolabe.

Ibn Ezra translated astronomical works from the Arabic (al-Biruni and
al-Khowarizmi) and wrote at least five books on mathematics and astron-
omy (some of which were translated from the Hebrew into Latin!) [Sefer-
ha-Ehad – peculiarities of numbers; Sefer-ha-Mispar on arithmetic and com-
binatorics; Luhot – astronomical tables; Sefer-ha-Ibbur – on the Calendar;
Klei-ha-Nehoshet – on the astrolabe]. He adopted the positional decimal sys-
tem for integers (with place values from left to right) of the Hindus, using the
first nine Hebrew letters for the numerals 1–9 (with the tens to the left of the
units etc.), and denoting the zero by the special sign ◦ or ◦ (galgal=wheel
in Hebrew). This lore he spread all over Western Europe, sixty years before
Fibonacci. He was thus instrumental in propagating Eastern mathematics
and astronomy into Italy, France and England. He was fitted for this mission
through the versatility of his learning.

Ibn Ezra was born in Tudela, northern Spain, and afterwards settled in
Cordova, where he practiced medicine and raised a big family, winning for

49 Translated from Hebrew into Latin (1280) by a Paduan physician.
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himself a name of a poet and a thinker. At about 1137 he emigrated from
Spain and led a wandering life of a lonely exile for nearly three decades; he vis-
ited Northern Africa, Egypt, the land of Israel, Mesopotamia and India, and
then returned to Europe and lived in Rome (1140), Salerno (1141), Mantua
(1145), Verona (1146), Lucca (1148), Beziers (1156), London (1158), Narbone
(1160). Longing to see his old Spanish home, he left Rome, but died on the
way at Calahorra.

Ibn Ezra was one of the greatest Biblical commentators of the Middle
Ages. He was also one of the forerunners of modern Biblical criticism, and
much admired by Spinoza on that account. (His conclusion that the Book
of Isaiah contains the sayings of two prophets, has been confirmed by modern
criticism.)

1144 CE The Norwich blood libel. Concoction of the first ritual murder
fantasy - a pernicious medieval superstition which would encourage the most
virulent Jew-hatred in subsequent centuries50. Invented in Norwich, England,
following the murder of a Christian boy just before Easter, who would later
be venerated as medieval’s Europe first child martyr. The crime was then at-
tributed without any evidence to local Jews. They were accused of crucifying
him in mockery of the passion of Jesus, and the fantasy gained acceptance
because people wanted a local saint to work miracle cures and the Norwich
clergy realized that his shrine would enhance the city’s standing on the pilgrim
route.

1145–1149 CE Robert of Chester (England). Mathematician, as-
tronomer and alchemist. Translated al-Khowarizmi’s book into Latin using
‘Algebra’ for ‘al-jabr’ and ‘Algorism’ for the author’s name. From this is

50 Similar accusations spread across England and to the Continent. A famous blood

libel in Italy is the Trent episode (1473) which resulted in the burning of all the

Jews of the city, with the approval of the Pope. The Church revoked its accusa-

tions in the Trent libel only as late as 1965!

Throughout the Middle Ages and into the modern era, blood libels have

abounded in the Christian world and frequently provoked persecutions and mas-

sacres of the Jews. Even in the late 19th century there were notorious blood libel

cases: Tisza-Eszlar , Hungary (1882); Corfu, Greece (1891); Xanten, Germany

(1891); Blondes, Russia (1900); Konitz , Germany (1900).

As late as 1911 the Russian government sought to exploit popular antisemitism

by putting on trial a poor Jewish artisan in Kiev, Mendel Beilis, who was even-

tually acquitted (the Beilis trial , 1913). The Czarist minister of justice stopped

at nothing to prove the charge, but he failed. Even his handpicked judge and

jury being unable to find Beilis guilty. The affair brought ridicule upon Russia.

German Nazi publications also used the blood libel to whip up antisemitism.
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derived today’s word algorithm, meaning: a method of calculating in any
particular way. Introduced the Latin word sinus (1149) into trigonometry.

The Hindus have given the name ‘jiva’ to the ‘half-cord’ in trigonometry,
which the Arabs took over as ‘jiba’. In the translation he confused it with
the Arabic word ‘jaib’ meaning ‘bay’ or ‘inlet’ – which he translated into the
Latin ‘sinus’.

He lived in Spain during 1141–1147 and in London about 1147–1150.

ca 1145 CE Gerhardo of Cremona (1114–1187, Italy). A most indus-
trious translator who translated into Latin over 90 Arabian works, among
which were Ptolemy’s Almagest , Euclid’s Elements, al-Khowarizmi’s algebra
and the works of Aristotle.

Gerhardo was perhaps the greatest of all translators. He was born in
Cremona, Lombardy and died in Toledo. Being anxious to read the Almagest,
which was not yet available in Latin, he went to Toledo, where he studied
Arabic and carried on a prodigious activity as translator until the time of his
death.

ca 1150 CE Bháskara (1114 – ca 1185, India). Also known as
Bhaskaracharya (the Teacher). Hindu astronomer and mathematician. In
his book Sidd’hanta-siromani he presented algorithms for solving Diophan-
tine problems (including the Pell equation51 y2 = px2 + 1), problems in
permutations and combinations, operations with zero (excluding division by
zero) and rules for employing positive and negative numbers.

Gave the remarkable identities
√

a ±
√

b =

√
1
2
(
a +

√
a2 − b

)
±

√
1
2
(a −

√
a2 − b).

These identities are also found in Book X of Euclid’s ‘Elements’, but are
given there in an involved language which is difficult to comprehend. He also
gave the trigonometric identities

sin(α ± β) = sin α cos β ± cos α sin β

Bháskara represents the peak of mathematical knowledge in the 12th cen-
tury. It shows an understanding of the number system and solving equations
which was not to be reached in Europe for several centuries.

51 A complete theory for this equation was worked out by Lagrange in 1766–1769.

Bháskara studied the Pell equation for p = 8, 11, 32, 61, 67. For p = 61 he

found the solutions x = 1776, 319, 049; y = 22, 615, 390.
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1154 CE Muhammad al-Idrisi (1100–1166, Spain and Sicily). An Arab
cartographer, geographer and traveler who lived in Sicily, as a court geogra-
pher of King Roger II. He was born in nowadays Ceuta, Spain and died in
Sicily.

Al-Idrisi was educated in Cordova. Later he traveled far and wide in con-
nection with his studies and then flourished at the Norman court in Palermo.

In 1154 al-Idrisi issued a large map of the “inhabited earth” (as far as
it was known to the author) and an accompanying book, named Geography.
Taken together, they were named Kitab Rudjar (“Roger’s Book”). This book
was based on reports of emissaries which Idrisi sent to observe and describe
various countries and regions including Scandinavia, Germany, France, Italy,
Syria, Asia Minor and Egypt.

In his book he divided the “inhabited earth” into seven “climates” begin-
ning at the equinoctial line, and extending northwards to the limit at which
the earth was supposed to be rendered uninhabitable by cold. Each climate
is then divided by perpendicular lines into eleven equal parts, beginning with
the western coast of Africa and ending with the eastern coast of Asia. The
whole world is thus formed into seventy-seven equal square compartments.
The geographer begins with the first part of the first climate, including the
westernmost part of the Sahara and a small (north-westerly) section of the
Sudan (of which a vague knowledge had now been acquired by the Moslems
of Barbary), and thence proceeds eastward through the different divisions of
this climate till he finds its termination in the Sea of China. He then returns
to the first part of the second climate, and so proceeds till he reaches the
eleventh part of the seventh climate, which terminates in north-east Asia, as
he conceives that continent. The inconveniences of the arrangement (ignoring
all divisions, physical, political, linguistic or religious, which did not coincide
with those of his “climates”) are obvious.

His major contribution lies in medicinal plants as presented in his other
books, specially Kitab al-Jami-li-Sifat Ashtat al-Nabatat. He studied and
reviewed all the literature on the subject of medicinal plants and formed
the opinion that very little original material had been added to this branch
of knowledge since the early Greek work. He, therefore, collected plants and
data not reported earlier and added this to the subject of botany, with special
reference to medicinal plants. Thus, a large number of new drugs plants
together with their evaluation became available to the medical practitioners.
He has given the names of the drugs in six languages: Syriac, Greek, Persian,
Hindi, Latin and Berber.

Al-Idrisi, later on, also compiled another geographical encyclopedia, larger
than the former entitled Rawd-Unnas wa-Nuzhat al-Nafs (“Pleasure of men
and delight of souls”) also known as Kitab al-Mamalik wa al-Masalik.
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Apart from botany and geography, Idrisi also wrote on fauna, zoology and
therapeutical aspects. His work was soon translated into Latin and, especially,
his books on geography remained popular both in the East and the West for
several centuries.

Though Idrisi was in such close relations with one of the most civilized of
Christian courts and states, we find few traces of his influence on European
thought and knowledge.

1155 CE A map of western China printed in China. It is the oldest known
printed map.

12–13th centuries Chinese mathematicians knew how to solve problems
involving equations of the second and higher degrees.

1157 CE Frederick Barbarossa founded the holy Roman Empire, abol-
ished by Napoleon Bonoparte (1806)

1160–1195 CE Muhammad Ibn Rushd; Averroës (1128–1198,
Spain). Philosopher, physician and jurist. An outstanding Muslim philo-
sopher who deeply influenced Christian philosophy in various ways. His main
contribution was to free Aristotelian studies from the distorting influence of
Neo-Platonism. He believed, as did Aquinas later, that God’s existence can
be proved on rational grounds alone. As for the soul, he held with Aristotle
that it is not immortal.

He wrote three commentaries52 on the works of Aristotle (as he knew
them through Arabic translations. Most of these are preserved in Hebrew
translation, or in Latin translation from the Hebrew) in which he tried to
reconcile philosophy (reason) with religion (faith) by the doctrine of twofold
truth: the one (more esoteric) for the philosophers, the other more concrete
and literal (theological) for the masses (“teach the people what they can
understand”). The success of the commentaries had caused orthodox revulsion
everywhere – first among the Muslims in Spain, and finally in Christendom.
Consequently, he was violently attacked by the Muslim clergy, his doctrine
condemned and his books burned. In the eyes of the Church, Ibn Rushd came
to be regarded as the arch-infidel, and the greatest enemy of the faith.

He wrote a medical encyclopedia (1160). His theories of the evolution of
pre-existent forms, and of the intellect, anticipated modern concepts.

52 A “commentary” was a medieval form of publishing one’s views on a definite

subject. To write a commentary on Aristotle meant to compose a philosophic

and scientific encyclopedia, using Aristotle’s writings as a framework and guide.

Such commentary might be original or not, but its being labeled a “commentary”

does not in itself justify any presumption one way or the other.
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Ibn Rushd was born in Cordova of a line of qadis. He studied there law
and medicine, amongst other subjects, and was a qadi in Seville and later
in Cordova. In 1182 he became physician to the caliph in Marrakesh, but
in 1194 he was banished to Cordova for holding philosophical views instead
of contending himself with the faith. In 1198 Ibn Rushd was forgiven and
recalled to Morocco, where he died soon thereafter.

Ibn Rushd was the greatest and the last of the Muslim philosophers. Al-
though his influence on the members of his own faith was insignificant, he
made a tremendous stir in the minds of men for centuries. His originality
must be understood in a relative sense: it appeared chiefly in his way of
interpreting anew the teaching of the wise men who had come before him.
His philosophy was essentially a return to the purer Aristotelianism, a return
to positivism or scientific philosophy which was largely stimulated (as most
philosophical systems are) by opposite tendencies – mysticism and pragma-
tism.

1160–1200 CE Moshe ben Maimon; Maimonides; “RAMBAM”

(1135–1204). Philosopher, physician, astronomer and mathematician. The
leading Jewish savant and philosopher of the Middle Ages.

For Muslim scholars, as for medieval Christians, science was merely one as-
pect of philosophy. Aristotle, the great authority on science for both religions,
was thought of primarily as a philosopher, and one of the chief intellectual
problems of the Middle Ages was to reconcile his philosophy with the truths
of religion. Moshe ben Maimon was the most prominent figure of this cate-
gory, who exerted great influence on the Catholic scholastic philosophers [in
particular upon Thomas Aquinas (1225–1274)].

Born in Cordova, Spain, his family was forced by persecution to leave
their home in 1148 when he was thirteen. For the next ten years they drifted
from place to place; at some time they crossed to Morocco and by 1158 were
settled in Fez. It is not known exactly what Maimonides was doing during
that time, but we may be sure that he seized every opportunity of increasing
his knowledge; he studied theology, philosophy, and medicine. In 1165 the
family sailed to Acre, where they traveled to Jerusalem and to Cairo. They
established themselves at the end of 1165 in Fustat, where he made his living
as a physician. He later became physician to Salah-al-din, and to the latter’s
son. He fell ill in 1200 and probably ended medical practice or reduced it
considerably, being then able to devote the remnant of his life to writing. He
died in Cairo at the age of 69; his remains were carried to Tiberias, Israel,
where his tomb may still be seen.

Maimonides was at one and the same time an Arabic physician and a
Jewish theologian. This implied no contradiction, yet his life was a double
life. His activity was prodigious, for he was a physician and astronomer, a
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Talmudist, a rabbi, and a philosopher. He was at the same time an ardent
Aristotelian, a lover of reason and science, and an orthodox and pious Jew.
He wrote many works on astronomy, medicine, logic and law, and devoted his
philosophy to the reconciliation of Aristotelian philosophy with the Jewish
theology – of reason with faith.

To this end, he gave an allegorical interpretation of Biblical anthropomor-
phism and concreteness, steering clear of both mysticism and religious skep-
ticism; for example, he explained prophetic visions as psychical experiences,
and Jewish laws and customs from the point of view of comparative ethnology.
He insisted that human perfection is inseparable from knowledge, and that
the acquisition of knowledge is one of the highest forms of religion. To that
extent Maimonides was the champion of science against Biblical “fundamen-
talism”. He thus gave a tremendous stimulus to philosophical studies, and
helped check Kabbalistic extravagances as well as theological obscurantism53.

Maimonides’ medical writings have deeply influenced Muslim, Jewish and
Christian physicians. In his astronomical works he rejected eccentric move-

53 One of the distinguished anti-Maimonidean was Moshe ben Nahman.

Another famous anti-Maimonidean was Moshe de Leon (1245–1305, Spain),

a Jewish occultist, and probable author or editor of the Kabbalistic compi-

lation, the so-called Sefer ha-Zohar (Book of Splendor: title derived from

Daniel 12 , 3).

The Zohar is a mystical commentary on the Torah. It deals with such sub-

jects as astronomy, cosmogony, physiognomy, psychology, demonology, etc. It

is derived from many sources: Neo-Platonism, Neo-Pythagoreanism, gnosticism,

Hinduism, and the mysticism of many nations.

The recrudescence of Kabbalism at the end of the 13th century, and the ap-

pearance of the Zohar, are partly explained as reactions against the excessive

intellectualism fostered by Maimonides and his followers. The triumph of Jew-

ish philosophy has repressed other fundamental tendencies beyond endurance

– these emotional, sexual, and mystical needs which are normal constituents of

human nature. The Zohar completed the establishment of the Kabbalah as a def-

inite body of doctrine, and put it on a level of equality with the two other great

streams of Jewish thought, the rabbinical and the philosophical (Maimonidean).

The influence of the Zohar was immense: while containing admirable thoughts

and some sound knowledge, it was adulterated by many superstitions and ex-

travagances. It stimulated magical tendencies and as such has strong attraction

for unbalanced minds, whose destruction it helped to complete. But its influence

did not stop there: every Jewish thinker was more or less affected by it.

One of the central theories of the Kabbalah is the theory of emanation, which is

the result of reconciling the Aristotelian notion of eternity of the world with the

Biblical dogma of creation.
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ments as contrary to Ptolemaic views. In fact, Maimonides carried these views
with him to Egypt in 1165. Their transmission to Eastern Islam was largely
due to him and to his disciple Joseph ben Yehudah Ibn Aqnin. Thus,
the most advanced astronomical lore was diffused in the East by Jews.

The subtitle ‘astronomer’, may seem a little ambitious and to claim more
for Maimonides than he would have claimed for himself. Yet, in his philosoph-
ical synthesis and even in his rabbinical commentaries, he had been obliged
to investigate the scientific knowledge available in his time in order to under-
stand the universe. This meant primarily cosmogony, and, as far as science
was concerned, astronomy. Although he was not a practical or creative as-
tronomer, he was deeply versed in both the Eastern and Western astronomical
literature of his time.

He did however made a significant contribution to science proper, namely
to the concept of time; in his work The Guide to the Perplexed (1190) he
wrote (in Arabic): “Time is composed of time-atoms, i.e., of many parts,
which on account of their short duration cannot be divided. . . An hour is,
e.g., divided into 60 minutes, the minute into 60 seconds, the second into 60
parts and so on; at last after ten or more successive divisions by sixty, time-
elements are obtained which are not subjected to division, and in fact are
indivisible. . .”. He thus concluded that these were 6010 or more such time-
atoms in one hour!54. The notion of Maimonides that time is composed of
time-atoms and that the universe would exist only for one of them, were not
for the continual intervention of God, was also held by Descartes.

In the field of mathematics proper he will remembered among the first who
claimed clearly and unequivocally that π is not rational and that it can only
be approximated by a ratio of integers. He further stated, although without
proof, that squaring the circle by rules of Greek geometry is impossible55.

Maimonides condemned astrology in the most uncompromising manner,
describing it as a system of superstitions. In this he was too far ahead of his

54 In todays jargon such unit is known as chronon. If indeed space-time is discrete

(quantized), then the scale must be very small to agree with experimental ob-

servations. Indeed, the present smallest directly observable division of a second,

which is better than 1 × 10−13 sec, is coming close to Maimonides’ division of

60−10 ∼ 5 × 10−15 sec.
55 In his exegesis to the MISHNA (Eruvin 1,5). Archimedes found the upper

bound 22
7

for π in the 3rd century BCE. Adrian Anthoniszoon (1583) found

the lower bound 333
106

. The irrationality of π was established by Lambert (1767).

Legendre, in his Elements of Geometry (1794) proved the irrationality of π (and

π2) more rigorously. Finally, Lindemann (1882) proved that π is not algebraic,

thus closing the lid on the 2400 year long quest for the circled square.
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time to be understood. The world according to Maimonides is one indivisible
whole, rational through and through; for without rationality, there could not
be any knowledge, or morality, or religion. But he rejected the Aristotelian
view of the eternity of matter and accepted the account of Genesis. In this
he reconciled reason and faith, for he believed that both the world and faith
derive from God56. This gives us a measure of his rationalism – he was ready
to carry it to any extent compatible with his creed – but no further.

The influence of Maimonides was tremendous and far reaching in space
and time. It affected not only the Jews, but also the Christians, chiefly the
Dominicans (while Ibn Gabirol inspired the Franciscans). It can be strongly
detected in Spinoza, and even in Kant.

In spite of the violent antagonism raised by Maimonides’ work57, he suc-
ceeded in his main object, the Aristotelization of Jewish philosophy. To be
sure, he did not convince those who rejected every kind of philosophy. But
aside from these, the ulterior development of Jewish philosophy was mainly a
contest between Aristotelians and Neo-Platonians (most of these Kabbalists),
a contest strikingly similar to the one which was waged at the same time in
the Latin world.

The history of Maimonidism, like that of Averroism, is essentially the
history of a continuous battle against fundamentalism on the one hand and
mysticism (Kabbalism, or its Muslim and Christian equivalents) on the other.
And is not this the very battle fought by men of science? For this reason
alone, Maimonides would deserve a place of honor in the history of science.

1160–1173 CE Benjamin ben Jonah of Tudela, in Navarra (ca 1120–
1175, Spain). Jewish traveler who visited, more than a century before Polo, all
the known countries of the 12th century. Slowly and carefully he went through
Southern Europe, North Africa, the Near East, Arabia, Persia, India, Ceylon
and penetrated up the frontiers of China. The record of his journeys is one
of the most valuable travel accounts of Medieval times. He left Saragossa in
1160 and came back by way of Egypt and Sicily to Castile in 1173. His book
was first published in Constantinople in 1543, translated into Latin in 1575,
and into English in 1625.

1161 CE Avraham ben David Halevi, Ibn Daud, “RABED”58 (1110–

56 If one identifies the Biblical story of creation with the contemporary Big Bang

theory, then the synthesis of Maimonides does not contradict the ideas of modern

cosmology!
57 In 1234, copies of the works of Maimonides had been destroyed by Christian

authorities at the instigation of the conservative rabbis of southern France.
58 Acronym: Rabbi Avraham ben David. Also known as Johannes Aven-

dahut Hispanus.
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1180, Spain). Philosopher, historian, physician, translator, astronomer and
Talmudist. Author of books on astronomical measuring instruments. First
Jewish philosopher to draw systematically on Aristotelian thought. Trans-
lated Hebrew, Greek, and Arabic literature into Latin. Introduced Arabic nu-
merals and the concept of the zero into European mathematics. The RABED

was born in Cordova and died in Toledo, a martyr of the Inquisition.

1170–1185 CE Petahyah of Regensburg (ca 1130–1195, Germany).
Traveler. Visited Eastern Europe and Western Asia. His travelogue (1595),
Sibuv Ha’olam (Journey of the World) was apparently written by a pupil,
based on his notes or on dictation.

Starting from his home-town Regensburg (Ratisbon), Petahyah traveled
through Bohemia, Poland, Southern Russia, Armenia, Kurdistan, Khazaria,
Persia, Babylonia, Syria and Israel (1180).

Rise of the European Universities (1050–1582)

The economic, political and religious revival in Western Europe after 1000
stimulated the growth of towns, especially in Italy and Flanders. During the
11th century, Italian shipping in the Mediterranean increased steadily. With
the Byzantine Empire weakening and the Muslim Caliphate breaking up, the
Italian merchants had little competition. In addition, the Italian monopolized
the trade in oriental goods for Western markets, and these markets were
becoming steadily more profitable, thanks to the general increase in prosperity
and security throughout the West. The great seaports of Venice, Pisa and
Genoa flourished. As the Italian merchants carried their wares north through
France and Germany, they stimulated the growth of other trade centers along
the routes they traveled. Simultaneously, the towns of Flanders found their
nourishment in their textile industry. By the 12th century the Flemish textile
towns of Ghent, Brugs and Ypres rivaled the flourishing seaports of Italy in
wealth and population.

Outside Italy and Flanders old towns were expanding and new towns were
springing up, and rational division of labor between town and country was set
up. Eventually towns gained freedom for their people and a separate system
of municipal government.
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The economical revival was accompanied by political and religious revivals.
Slowly Christianity became less and less a matter of external observance, more
and more a matter of strong internal conviction. A great wave of popular
piety swept through Europe in the 11th and 12th centuries, changing the
whole character of European society. This revival continued unabated into
the 12th century. The men of this era, with much energy and originality, laid
the foundations for a new architecture, a new literature, and a new system of
education. All these activities drew on the Church for intellectual inspiration
and material support, and in many of them Church men played a leading role.

From 1000 CE on, there had been a great wave of church-building in
Western Europe. These cathedrals were larger and more beautiful than any
that had been built before in Europe. The cathedrals and monasteries soon
became centers for theological studies. But 12th century scholars had a wider
range of interests such as Latin classics, Roman law and especially Canon law,
which opened the road to high office in the church.

The cathedral and monastery schools developed slowly into universities.
The oldest was Salerno (ca 1050)59. The next was the University of Bologna,
founded in 1088. It has existed as a law school since 890. The University
of Paris60, founded in 1167, also developed from a pre-existing theological
school. Many other universities evolved from church schools, such as Ox-
ford (1167), Padua (1222), Cambridge (1231), Montpellier61 (1220),

59 The University of Salerno developed gradually from a medical school. One of the

founders of this school was Shabbethai ben Avraham ben Joel Donnolo

(913–982, Italy), a physician and pharmacist, and one of the earliest Jewish

writers on medicine (in Hebrew). Donnolo wrote at the crossroads of the Greco-

Latin and Arab cultures. The Salerno school is said to have taught in Hebrew,

Latin and Arabic, and the Jewish element appears to have been important among

the students and the professors. The reputation of the school was great till the

13th century.
60 During its period of glory – the 13th century – the leading teachers in the Univer-

sity of Paris were almost all foreigners: Roger Bacon (England), Albertus

Magnus (Germany), Thomas Aquinas (Italy) and others. This was less sur-

prising than it seems at first view, for the University of Paris was not a Parisian

or a French institution; it was neither regulated nor subsidized by town or coun-

try; its ideals were Christian ideals, and it was controlled by an international

organization, the Catholic Church. It is true the situation was far from being

the same in the following century, especially when the popes were “captive” in

Avignon under the thumb of the French Kings; Indeed, in the 14th century the

main teachers of Paris are no longer foreigners, but Frenchmen.
61 The medical school of Montpellier existed since early in the 12th century. It owed

its foundation largely to Jewish teachers, themselves educated at the Moorish
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Salamanca (1243) and the Sorbonne62 (1257).

These universities were founded largely to serve the professions. They
provided the first unified teaching of law, medicine and theology. The me-
dieval Latin term ‘Universitas’ (from which the English word “university” is
derived) was originally employed to denote any community or corporation.
In the course of time, probably toward the latter part of the 14th century,
the term began to be used exclusively for a community of teachers and schol-
ars recognized and sanctioned by civil or ecclesiastical authority or by both.
Other customary names were ‘studium generale’ and ‘universitas studii ’.

The university at its earliest stage of development, appears to have been
simply a scholastic gild – a spontaneous combination of teachers, of scholars
(both called ‘students’ !), or of both combined, and formed probably on the
analogy of the trades gilds, and the gild of aliens in foreign cities.

At Bologna, for example, the university was a corporation of the students.
They hired the teachers and controlled the school’s politics: the many foreign
students there, felt that they were being cheated by the Italian boardinghouse
keepers, and sometimes by their professors as well. Their union kept down the
price of food and lodging and made sure that teachers covered the adequate
amount of material in their lecture courses.

At Paris, the chief problem was to determine at what point the student
was entitled to set himself up as a teacher. So the teachers themselves formed
a union to which they admitted only students who had passed a rigorous
examination. They also collected fees from the students and directed the
policies of the university.

Medieval science, as taught at the universities, was based on authority and
developed its ideas through formal logic rather than through observation and
experimentation, and it was contaminated by the wishful thinking of philoso-
phers and magicians. Nevertheless, it was an attempt to explain the physical

schools of Spain, and imbued with the intellectual independence of the Aver-

roists. Its rising prosperity coincided with the decline of the school of Salerno.

Montpellier became distinguished for the practical and empirical spirit of its

medicine, as contrasted with the dogmatic and scholastic teaching of Paris and

other universities.
62 Founded by Robert de Sorbon (1201–1274) in Paris. It started as a mod-

est establishment which accommodated seven priests charged with the duty of

teaching theology gratuitously. To this was added a college of preparatory stud-

ies. In 1257 a site was given by King Louis IX in the heart of the Latin Quarter.

Destined originally for poor students, the Sorbonne soon became a meeting-place

for all the students of the University of Paris.
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world and find ways of summing up seemingly unrelated phenomena by gen-
eral laws. Sometimes, meaningful questions were asked about the nature of
the universe, and from that questioning our modern science has evolved.

The attitude of the Church toward the universities was ambiguous. Al-
though it favored these organizations, it was suspicious of the new learning,
which carried philosophical doctrines that diffused from the Pagan Greeks
through the Arab commentators on Aristotle. Since any corporate group had
to be recognized by some higher authority, the Church saw obvious advantage
in patronizing associations of scholars: it could more easily control the new
learning and use the professors as experts to examine the suspect doctrines.

The famous scholars of the 13th century were university professors, and
university graduates filled high offices in the Church and important positions
in secular governments. Thus, during the 13th century, the universities took
over the intellectual leadership of Western Europe.

Control of the scholars gradually passed to permanent bodies of adminis-
trators. During the Renaissance, in the 15th century, the universities helped
direct the revival of interest in Greek and Roman learning. Discussion of a
new method of inquiry (the so-called ‘scientific method’) began in the uni-
versities in the late 13th and 14th centuries, and came to fruition in Western
Europe after 1600. The new method was essentially a combination of two el-
ements: careful observation and controlled experimentation on the one hand,
and rational interpretation of results by the use of mathematics on the other.

In the 13th and 14th centuries, a small but increasing number of scholars
began to question existing explanations of astronomical problems. Many of
these were Franciscans, inspired by their founder’s sensitive feeling for nature.
Stimulated by the current study of Greco-Arabic science, a group of teachers
at Oxford and Paris began to apply mathematical reasoning to problems
of physics and astronomy, such as accelerated motion. Their speculations
were continued by professors at the University of Padua in the 15th and 16th

centuries. At Padua, a center of medical training for 3 centuries, the proper
method of studying nature was vigorously debated in the course of arguments
about Aristotle. Medieval universities had kept interest in science alive, and
the first faint beginning of the scientific revolution may be seen in Oxford,
Paris and Padua.

Other known universities were established in the following chronologi-
cal order: Prague (1348), Cracow (1364), Vienna (1364), Heidelberg
(1385), Leipzig (1409), Basel (1460), Uppsala (1477), Copenhagen
(1479), Königsberg (1544), Jena (1558), Leyden (1575), Edinburgh
(1582), Utrecht (1634), Harvard (1636), Yale (1701), Göttingen (1737),
Princeton (1746), Columbia (1754), Moscow (1755), Berlin (1809).
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The idea of the university was one of the most important medieval con-
tributions to modern civilization. Prior to their establishment, schooling was
mainly the privilege of the wealthy (private tutoring by individual teachers)
or through instruction of novices by priests.

It must be remembered, however, that institutions of higher learning ex-
isted already 1500 years prior to the first European university, in the form
of the Athenian or Alexandrian Academies, and later as the religious schools
(Yeshivot) of the Jews in Babylon, North Africa, Spain and France and also
at the Muslim Al-Azhar University in Cairo (established 970).

It is remarkable that the Chinese did not develop similar institutions: they
did not have the conviction that people can dominate nature and they were
not interested in the scientific method. Consequently, their theories remained
divorced from observation and experimentation.
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The Friars (ca 1200)

The growing dissatisfaction of town people with the clergy in Southern
Europe, the influx of new ideas along the Eastern trade routes, and the nu-
cleation of free thinkers in circles of the new universities, increased the heresy
in the Church. By 1207, the church saw no other way than to suppress this
movement by sheer force. The heretic movement then went underground or
dispersed to England and Scandinavia, to escape the claws of the Inquisition.

In another vein, the church responded in an internal reform movement
through the establishment of the Franciscan and Dominican Orders [Fran-
cis of Assisi (1182–1226, Italy) and Dominic of Caleruega (1170–1221,
France)]. These orders were founded in the first quarter of the 13th century,
and they played a prominent part in the scientific revolution. So many of
their members contributed to the development of science and philosophy that
it is impossible to understand the thought of their times and of subsequent
centuries without paying considerable attention to them.

The Franciscan Order was founded in 1210, and the Dominical Order in
1215. While the majority of Christian monks shunned the people and spent
their lives in secluded monasteries, the Friars went to the people. They es-
tablished themselves in growing towns where they could reach the multitudes.
They were not attached to monasteries, but simply to their Order, and wan-
dered about as missionaries. They soon realized that it would be impossible
to influence the masses without controlling the education of the leaders, and
tried to obtain chairs in the universities, notably in Paris. Thus the Francis-
cans established themselves in Paris in 1219, and obtained a chair of theology
in the University about 1232. The Dominicans played a very important role in
the development of medieval universities. (However, the organization of the
Inquisition was also essentially the work of Dominicans.) They established
themselves in Paris in 1217 and obtained the first chairs of theology in 1229
and 1231.

The spiritual attitude of these two orders were almost antagonistic. The
Franciscans spoke to the heart, continuing the Platonic tendencies of early
Christianity. They had less intellectual curiosity but more intellectual free-
dom.

The Dominicans, on the other hand, spoke to the head, and made it their
special task to develop Aristotelian philosophy. It is not a mere matter of
chance that Roger Bacon (1214–1292) was a Grey Friar (Franciscan), and
Thomas Aquinas (1225–1274) a Black Friar (Dominican).
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The Dominicans established schools, and the graduates of these schools
soon dominated the faculties of theology of European universities. Both Or-
ders met with immediate success. Thousands of men joined their ranks during
the 13th century.

The creation of these two orders had a decisive influence on the intellec-
tual development of Christendom. It is impossible to explain the vicissitude
of medieval philosophy from this time on without paying attention to the
complications and the new incentives and rivalries caused by the existence of
these two militant organizations.

They took part in the immense educational expansion which was then
taking place in Western Europe. To understand properly the educational
revolution of the 13th century one must try to imagine the creation of some 15
universities in four countries at a time when such opportunities were unknown
except in a very few places.

There is perhaps a touch of irony to the fact that the movements that
sprang out of a need to suppress ‘heresy’, carried with it the seed of the
forthcoming scientific revolution through men like Roger Bacon (Franciscan
friar) and Giordano Bruno (Dominical friar).
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Science Progress Report No. 2

The Inquisition (1231–1834)

Up to a point, Church influence had been for the public good. She pre-
served a limited peace in times of strike, tried to impose a code of human
behavior, and acted as school-mistress. The Church harnessed and nourished
intellect, taught and provided administrators, lawyers, physicians, encouraged
and preserved architecture. literature, and art. But, although creative work
might be encouraged, creative thought, so essential to the development of
science, was sternly repressed, suppressed and oppressed. The doctrine of
persecution formed an integral part of medieval Christianity. Those whose
written and spoken thoughts did not follow the rigid line permitted by the
Church stood in danger of persecution as heretics.

Pope Gregory IX created in 1231 a special court to investigate, punish and
eliminate so-called ‘heretics’. It was known as the Inquisition63. Dominican
and Franciscan friars served as Inquisitors. The Inquisition operated chiefly
in France, Germany, Italy and Spain. It later followed the Spaniards and the
Portuguese in their overseas conquests to Central and South America.

The censure of books was established in 1502 by Ferdinand and Isabella as
a state institution. All books had to pass through the hands of the bishops;
in 1521 the Inquisition took upon itself the examination of books suspected
of Lutheran heresy. In 1547 the Suprema produced an Index of prohibited
books, drawn up in 1546 by the University of Louvain. In 1558 the penalty

63 The first ‘Inquisition’ was established by Augustine (414 CE) when he pro-

mulgated a doctrine to justify the persecution of heretics by church and state,

working together. He mobilized the church’s own vast resources to hound the

leaders of the Donatist heresy. [A powerful sect which arose in the Christian

church of Northern Africa at the beginning of the 4th century, named after Do-

natus of Bagoi, executed in 350 CE.] Donatists led an open revolt against Rome

which the imperial legions could not defeat. Donatist peasants and agricultural

workers terrorized landlords, tax collectors, and creditors, liberated slaves, de-

stroyed rent rolls and land titles, and unraveled the fabric of Roman rule. The

Donatists were crushed by the combination of Catholic inquisition and imperial

force. This civil war and the ensuing schism in the church, helped the invading

Vandals, after their sack of Rome to conquer North Africa (430 CE), and en-

abled them win over the enserfed population of the empire. The Donatist finally

disappeared prior to the Saracen onslaught two centuries later.
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of death and confiscation of property was decreed against any bookseller or
individual who should keep in his possession condemned books.

After the expulsion of the Jews under Isabella the Catholic (1492) and the
Moriscoes (Spanish Moors) under Philip III (1609), the Inquisition attacked
especially Catholics descended from infidels, the Marranos and Conversos.
As late as 1715, a secret association was discovered in Madrid, consisting of
twenty families, having a rabbi and a synagogue, and was prosecuted with the
utmost rigor. A great number of people were sent to the galleys, or burnt, for
having returned to their ancestral religion, on the flimsiest evidence.

It is estimated that 30,000 ‘heretics’, mostly Jews, were burned at the
stakes in 2000 auto da fé public executions or tortured to death in the Inqui-
sition chambers during its overlong 600 year reign, most of them in Portugal
and Spain. About 100, 000 were punished after being imprisoned. Among the
burned were Jan Hus (1415) and Giordano Bruno (1600). One of the
most brutal and bloodthirsty Inquisitors was the Dominican friar Tomas de
Torquemada64 (1420–1498).

In 1632 Galileo Galilei was summoned to appear before the Inquisition,
following the publication of his book: “A Dialogue on the Two Principal
Systems of the World”. After a long trial, which included threats of physi-
cal torture, Church officials forced him to publicly renounce his belief in the
Copernican theory, and sentenced him to an indefinite prison term. Before he
published his Dialogues, he became blind. He lived only five more years, but
the Inquisition constantly watched him in his home during that time. The
prosecution of free thinkers did not end with Galilei and continued with full
vigor throughout the 18th century: The naturalist José Calvigo y Faxar-
cho (1730–1806), the mathematician Benito Bails (1730–1797) and the poet
Tomas de Iriarte were prosecuted as “philosophers”, under a special papal
bull (1738).

The Inquisition died late and hard: Napoleon, on his entry into Madrid
(December 1808), at once suppressed the Inquisition, and on the 12th of Feb-
ruary, 1813 it was declared to be incompatible with the constitution, in spite
of the protests of Rome. The census of books was abolished earlier in 1812.
Ferdinand VII restored the Inquisition (July 21, 1814) on his return from exile,

64 He was himself a descendant of Marranos(!) Universally hated, he was in constant

dread of being poisoned or assassinated, but always traveled with a bodyguard

of 250 men. He viewed with alarm the heresies sweeping Europe and felt that

to save the purity of Spanish Catholicism, the threat of incipient heresy posed

by worldly Marranos, relapsed Muslims, and cynical Christians would have to

be stamped out before it was too late. Torquemada elevated the auto-da-fé into

a masterpiece of showmanship, deliberately planned to resemble the popular

concept of the Last Judgment.
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but it was impoverished and almost powerless. In 1816 the pope abolished
torture in all tribunals of the Inquisition. The inquisition was again abolished
as a result of the Liberal resolution of 1820, but was restored in 1823 after
the French military intervention under duke d’Angoulême.

The last auto-da-fé of the Spanish Inquisition took place in Valencia, Spain
in 1826. It finally disappeared on the 15th of July 1834, when Queen Christina
allied herself with the Liberals. It was not however till the 8th of May 1869
that the principle of religious liberty was proclaimed in the Iberian peninsula;
and even since then it has been limited by the constitution of 1876, which
forbids the public celebration of dissident religions.

The Abacus

Early man used the fingers of his two hands to represent numbers. In this
way it is comparatively easy to count up to ten. The next major step, taken
by the early river-valley civilizations, was to represent numbers by means of
pebbles arranged in heaps of ten. This, in turn, led to the development of
the abacus65 , or counting frame through which arithmetic problems could be
solved.

This device, in its simplest form, consists of a tray covered with dust or
sand in which a number of grooves are made, or of a wooden board with
grooves cut in it. A number is represented by pebbles (or beads) put in the
grooves; as many pebbles are put in the first groove as there are units in the
number to be represented, as many in the second groove as there are ten, and
so on. Objects are counted by placing, for each object, a pebble in the first
groove. As soon as there are ten pebbles in that groove, they are removed,
and a single pebble is placed in the second groove, and so on.

65 Greek: αβαξ, a slab.
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The abacus is one of the hallmarks of early civilization. Since it was in
use in so many widely disparate cultures, it is believed to have been invented
independently in several centers. It was to be found throughout the Mediter-
ranean world in the first millennium BCE. Herodotos (ca 450 BCE) remarks
that the Egyptians reckoned with pebbles, bringing the hand from right to
left, while the Greeks proceeded in the opposite direction!

On the other side of the world, the Spaniards would later find in South
America abaci which were in common use in the pre-Columbian civilizations
of Mexico and Peru. The Aztec form of abacus consisted of a set of parallel
rods stuck into a piece of wood, on to which beads could be threaded. Several
different types of abacus were in use in Rome: the instrument is mentioned,
for instance, by Pliny, Juvenal and Cicero. Some Roman abaci were quite
elaborate, being provided with a number of additional grooves to facilitate
the addition of fractions.

An early form of abacus using bamboo rods instead of pebbles or beads
was used in China at the time of Confucius (it survived in Korea until quite
recently). The modern form of Chinese abacus, the su pan, came into general
use about the 12th century. There is some evidence that it was introduced
into China from Rome (!). The Chinese abacus was in turn introduced into
Japan in the 15th or 16th century. Today the Japanese abacus, in the hands
of a skilled operator, is certainly a most impressive instrument66. It can be
used to add, subtract, multiply, divide, and to calculate square roots and cube
roots.

There can be little doubt that, viewed in the perspective of human history,
the humble abacus is the second most significant aid to calculation that has
ever been invented. For many centuries it was in sole possession of the field;
even today, more people probably compute with the aid of abacus than in
any other way – to say nothing of the still larger number who rely on their
fingers.

66 After World War II there has been a marked revival of interest in the abacus in

Japan, and operational techniques have been greatly simplified and improved.

The Japanese Chamber of Commerce and Industry sponsored an Abacus Re-

search Institute and a Central Committee of Abacus Operators. This latter body

lays down methods of training, formulates standards of performance and awards

certificates of proficiency at various levels.

On November 12, 1946, a contest was staged between a Japanese abacus operator

and an American operator of an electric desk calculating machine. The contest

covered five types of calculation involving the four basic arithmetic operations,

each being judged on speed and accuracy. The abacus’ victory was complete, its

operator winning by 4:1.



600 2. Slumber and Awakening

1180 CE Alexander Neckam (1157–1217, England). Man of science and
encyclopedist. In his books De Naturis rerum and De utensilibus Neckam
has preserved to us the earliest European notices of the nautical use of the
magnetic needle. It was probably in Paris, the chief intellectual center of
his time, that Neckam heard how a ship can be guided in murky weather or
on starless nights by a needle (previously placed upon a magnet) that would
revolve on a pivot until it settled into a northern orientation.

Neckam, the foster-brother of King Richard I, was born in London. He
was educated at St. Albans Abbey school, and began to teach as schoolmaster
of Dunstable. Later he resided several years in Paris, where by 1180 he had
become a distinguished lecturer of the university. By 1186 he was back in
England. Having become an Augustinian canon, he was appointed abbot of
Cirencester in 1213.

The Compass (ca 1080–1269)

The early history of the compass is very obscure. It would seem that
Chinese have known the fundamental property of a magnetic needle for a
considerable time, but have applied it chiefly for occult and pseudo-scientific
purposes. The first clear mention of the magnetic needle in any literature
occurred in ca 1070 by Shen Kua (1030–1093), a Chinese author, mathe-
matician, astronomer, and instrument maker67. The earliest Chinese mention
of the use of a magnetic needle for navigation refers to the period 1086–1099,
where it was used by Muslim sailors between Canton and Sumatra. Thus
although the Chinese were first to perceive the directional property of the
magnetic needle, they failed to apply it to any rational purpose.

It is not surprising that the origin of the discovery cannot be dated, if
one considers that the first pilots who had the wit to make use of the needle

67 His books also contain the earliest Chinese example of summation of a pro-

gression, and the earliest description of printing with movable type. We know,

however, that as early as 1037 a ‘south-pointing needle’ was submitted to the

Sung emperor Jen Tsung.
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to direct their course, had no reason to publish their discovery, and on the
contrary had every inducement to keep and transmit it as a trade secret. Since
maritime trade between the Far East on the one hand, and India, Persia,
Arabia, and Africa on the other was a Muslim monopoly, we may assume
that this great discovery was made probably around 1080 CE. Considering its
origin, it is curious that the earliest reference to it outside of China, are found
not in Arabic or Persian writings, but in French and Latin ones. Neckam
(1180) does not speak of the compass as of a novelty, and James of Vitry
(1219) describes it as having come from India. The earliest Muslim references
are in 1228.

It would seem that the Muslims attached more importance to the southern
end of the needle, owing to the fact for Muslims in Syria and Asia Minor, the
southern end pointed roughly toward Mecca.

Italian sailors were among the first to use the compass, and such use
necessarily led to gradual improvements. The first technical description of a
compass was given by Peter the Stranger in 1269.

The Triple Point

The web of Renaissance was extremely complex, because there were inces-
sant conflicts in many directions.Three great waves of creative wisdom came
from the Orient: The first, and the most fundamental of all, came from Egypt
and Mesopotamia (3100–1650 BCE); the second, of incalculable pregnancy,
came from Israel (800–300 BCE), though it influenced science only in an in-
direct way; the third, came from Arabia and from Persia (750–1250 CE).

It took Islam only 90 years (622–712 CE) to bring under its rule a large belt
of the world, all the way from Central Asia to the Far West [Damascus (635);
Jerusalem (637); Egypt (641); Persia (642); Spain (712)]. A new Muslim
civilization was formed from the fusion of Arabic and Persian cultures. Under
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the guidance of a series of Abbasid caliphs who had a passion for knowledge
– the new civilization developed with incredible speed and efficacy: From
the Hebrews they took, with very few modifications, Semitic monotheism
and morality; from the Hindus and Persians they learned arithmetic, algebra,
trigonometry, iatrochemistry; from the Greeks logic, geometry, astronomy and
medicine. With the aid of the Christian Syrians they translated the whole
Greek scientific heritage into Arabic.

The cultural importance of Islam lies in the fact that it finally brought
together the two great intellectual streams which had flowed independently
in ancient times. Previous attempts had failed; Jews and Greeks had mixed
in Alexandria but, in spite that Jews learned the language of the Greeks and
that Philo (fl. 40 CE) had made a deep study of both traditions, there has
been no real fusion. The Christians had not succeeded any better, because
of their excessive devotion to the new Gospel, which reduced everything else
to futility in their eyes. Now, for the first time, Semitic religion and Greek
science actually combined in the minds of many people all over the world.

The contacts between Muslims and non-Muslims was generally friendly for
the Muslims who treated their subjects with tolerant condescension. Under
their patronage, many important works were published in Arabic by non-
Muslims: Sabians, Christians and Jews. Down to the 12th century, Arabic
was the philosophical and scientific language of the Jews [e.g., the earliest
Hebrew grammars were composed in Arabic; Maimonides wrote his Guide
to the Parplexed in Arabic].

However, the major part of the activity of Arabic-writing scholars con-
sisted of the translation of Greek works and their assimilation; the Arabic-
writing scientists elaborated algebra and trigonometry on Greco-Hindu foun-
dations; they collected abundant astronomical observations and their criticism
of the Ptolemaic system helped to prepare the astronomical reformation of
the 16th century; they enriched enormously our medical experience; they were
the distant originators of modern chemistry; they improved the knowledge of
optics, and meteorology; their geographical investigations extended from one
end of the world to the other.

During 1000–1050 there was a splendid mathematical school in Cairo,
made famous by the astronomer, Ibn Yunus and the physicist Ibn al-
Haitham; al-Karkhi was working in Baghdad, Ibn Sina in Persia, al-
Biruni in Afghanistan. These mathematicians and others, were not afraid
to tackle the most difficult problems of Greek geometry; they solved cubic
equations by the intersection of conics, they investigated the regular heptagon
(n = 7) and enneagon (n = 9), developed spherical trigonometry, Diophantine
analysis.

Nothing of this sort existed in the West at that time: some little treatises
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on the calendar, on the cite of the abacus, on Roman duodecimal fractions
and geometry on the pre-Pythagorean level – a truly pitiful state.

We may say then, that from ca 750 CE to ca 1100 CE, the Arabic-speaking
people (including Jews and some Christians) were marching at the head of
mankind with Arabic being the international language of science, and almost
the only key to the new expanding culture. However, Oriental supremacy
ended about 1100 CE; the power and knowledge of the Latin world was grow-
ing faster and faster; whereas the main task of the Arabic scientists was
already completed, and after that time the relative importance of Muslim
culture declined steadily.

By the middle of the 13th century Islam was already on the downward
path, while Latin Christendom had finally realized the richness of the Greco-
Arabic knowledge and made gigantic efforts to be allowed to share it: Con-
sequently, Christians and Jews were feverishly pouring out the Greco-Arabic
learning from the Arabic vessels into the Latin and Hebrew ones. But the
Christians were far ahead of the Jews in this new stage of transmission. By
the end of the 12th century, the main body of Greco-Arabic knowledge was
already available to Latin readers. By the end of the 13th century, there was
little of real importance in the Arab scientific literature which they were not
aware of.

At first the Eastern Jews and those of Spain were much better off than
the Christians, for the whole of Arabic literature was open to them without
effort. But in the 12th century the scientific life of Judaism began to move from
Spain across the Pyrenees, and in the following century it began to decline
in its former haunts. By the middle of the 13th century a great many Jews
had already been established so long in France, Germany, and England, that
Arabic had become a foreign language to them. Up to this period the Jews
had been generally ahead of Christians, and far ahead; now for the first time
the situation was reversed. Indeed, the Christians had already transferred
most of the Arabic knowledge into Latin; the translations from Arabic into
Hebrew were naturally far less abundant, and hence the non-Arabic-speaking
Jews of Western Europe were in a position of political inferiority (the crusades
had caused many anti-Semitic persecutions and the Jews of Christendom were
everywhere on the defensive).

The gravity of the change is well illustrated by the appearance in the
14th and following centuries of an increasing number of translations (e.g.,
of medical works) from Latin into Hebrew. Thus the stream of translations
which had been running from East to West was again reversed in the opposite
direction. Note that a curious cycle had been completed, for the source of
these writings was Greek; their Arabic elaborations had been translated into
Latin and had inspired new Latin treatises; these treatises were now translated
into Hebrew. From East to East via the West!
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But other cycles were even more curious. In the 14th century and later,
Arabic, Persian, and Latin writings which were ultimately of Greek origin were
re-translated into Greek. For example, the most popular logical textbook of
the Middle Ages, the Summulae logicales of Peter of Spain (Pope John XXI),
was not only translated into Hebrew, but also into the very language from
which its main sustenance had been indirectly derived. From Greek to Greek
via Arabic and Latin!

During the 12th century the three civilizations which exerted the deepest
influence upon human thought and which had the largest share in the molding
of the future, the Jewish, the Christian, and the Muslim, were remarkably well
balanced; but that state of equilibrium could not last very long, because it
was due to the fact that the Muslims were going down while the two others
were going up. By the end of the 12th century it was already clear (that is,
it would have been clear to any outside observer, as it is to ourselves) that
the Muslims would soon be out of the race, and that the competition would
be restricted to the Christians and the Jews.

Now the latter were hopelessly jeopardized by their political servitude and
by the jealous intolerance (to put it mildly!) of their rivals. Moreover, for the
reason explained above, the main sources of knowledge were now less available
to them than to their persecutors. This went much deeper than it seems, for
whenever an abundant treasure of knowledge becomes suddenly available to
a group of people, it is not only the knowledge itself that matters, but the
stimulation following in its wake. The Jews were steadily driven into the
background, and in proportion as they were more isolated, they tended to
increase their isolation by devoting their attention more exclusively to their
own Talmudic studies.

Towards the end of the 13th century, the Christians enjoyed the political
and intellectual hegemony. The center of gravity of the learned world was in
the West and it has remained there until our own days (West = Europe +
the United States).

Of course Muslim and Jewish efforts went on and both faiths produced
many great men in the following centuries, yet the Western supremacy contin-
ued to wax until a time was reached, in the 16th century, when the expanding
civilization was so deeply Westernized that the people – even those of the
Orient – began to forget its oriental origins, and when the very conception of
Muslim and Jewish science almost disappeared.

The final result of science are, of course, independent of the people who
discovered them. After the 16th century, when science was finally disentangled
from theology, the distinction between Jewish, Christian, and Muslim science
ceased to be justified, but it keeps its historical value. In spite of his deep
Jewishness and of his abundant use of Jewish sources, we do not count Spinoza
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any more as a Jewish philosopher in the same sense that we count Maimonides
or Levi ben Gershon; he is one of the founders of modern philosophy, one of
the noblest representatives of the human mind, not Eastern not Western, but
the two unified.

1178, June 25 Apollo asteroid (2 km in diameter) of the Taurid stream
impacted the moon, creating the Giordano Bruno Crater .

1195–1215 CE Yehudah ben Shmuel Ben Kalonymus ‘He-Hasid’
(‘The Pious’; ca 1150–1217, Germany). Philosopher and moralist. A central
figure of the school of Jewish Hassidism in Western Europe. From his center
at Regensburg he led the Hassidic movement, which heralded the Hassidic
branch of Judaism in the 18th century in Central and Eastern Europe.

Teaching the religious value of self-restraint, Yehudah is the author
(ca 1200 CE) of Sefer Hassidim (Book of the Devout) and Sefer ha-Kavod
(Book of Glory). These books achieved enormous popularity among plain
folk and its vogue persisted for 800 years, down to modern times! Through-
out the ages, his numerous disciples strove diligently and ardently to hasten
the redemption of Israel, first through Hassidism and eventually via Zionism.

Yehudah denied all possibility of human understanding of God; Man must
fulfill his religious duties, as they are prescribed in the Bible, without reason-
able knowledge of the Almighty, but, by purification, obedience to ceremonial
life and ascetics, he may obtain union with God that is beyond reasoning.

He was born in Spier, Germany and lived most of his life in Regensburg.
It is believed that Jewish mysticism diffused from Babylonia to Italy and from
there by the Kalonymus family to Germany.

The Kalonymus family began in Italy, where in the 8th and 9th centuries,
they were a primary force (along with the Anav family) in establishing an
academy in Rome. Most of the family was induced by Emperor Charles the
Bald to move to Mainz, where they established a school of rabbinic learning.

Many of the family were wiped out in the Rhineland Massacres during the
First Crusade. Other family members became major figures in the creation of
the Hassidic Ashkenaz movement in the 13th century, among them Shmuel
he-Hassid, his son Yehudah he-Hassid and his son Eleazar of Worms
(1160–1238).
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ca 1199–1202 CE Severe drought in Africa caused several year of low Nile.
More than 100,000 perished.

ca 1200 CE Widespread fires on the South Island of New Zealand, created
by a comet impact.

1200–1235 CE David Kimhi68 (1160–1235, France). Linguist, grammar-
ian, lexicographer, philosopher and biblical exegist. The most accomplished
of a family of Hebrew linguists and exegets in Narbonne, Provence, who were
among the founders of Hebrew scientific philology and grammar.

David Kimhi summarized the conclusions arrived by the earlier Spanish
grammarians and presented a scientific analysis of the Hebrew language which
did much for its study later both by Jews and Christians. He also wrote a
commentary on the greater part of the Bible which is considered next in
importance to those of Rashi and Ibn Ezra.

His father, Joseph Kimhi (1105–1170), a native of southern Spain, em-
igrated to Narbonne, Provence. [The Provence was the bridge physically and
intellectually, between Spain and Central Europe. Many of the important lit-
erary products of the Jews of Spain were worked over by those of the Provence
and they found their way into the thoughts of Jews of Northern and Central
Europe.] Introduced a new grammatical classification of the stems of verbs,
and translated Arabic treatises into Hebrew.

Moshe Kimhi (ca 1130–1190), was first to introduce the now usual
sequence in the enumeration of stem-forms of verb conjugation.

David was the pupil and brother of Moshe, and eclipsed the fame of both
his brother and father.

1200–1250 CE Mongol outbreak into China and Europe correlated to
drought or moist conditions in Mongolia.

1202–1247 CE Mathematical revival . This period witnessed the activities
of five outstanding mathematicians: Fibonacci, Nemorarius, al-Hasan
al-Marrakushi, Ch’in Chiu-Shao, and Li Yeh. These men represent four
different countries: Italy, Germany, al-Magrib, and China. The main accom-
plishments of this period were:

• The publication of Liber abaci (1202) marked the beginning of European
mathematics.

• The diffusion of Hindu-Arabic methods into Europe, by Fibonacci and
by many minor mathematicians.

68 known as the ‘RADAK’, acronym of RAbbi DAvid K imhi.
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• Fibonacci’s interpretation of a negative solution as a debt (1225).

• His problems of Diophantine analysis (1225).

• General proof of the fundamental theorem of stereographic projection,
by Nemorarius.

• Contributions to the theory of numbers by Fibonacci and Nemorar-
ius.

• Publication of astronomical tables in Marseilles and London (ca 1231–
1232). The needs, which brought these tables into being were astrolog-
ical rather than astronomical.

• The ‘Jami’ of al-Hasan al-Marrakushi (1229), which was the most
elaborate trigonometrical treatise of the Western caliphate. It was also
the best medieval treatise on practical astronomy, on gnomonics and
the best explanation of graphical methods.

• Introduction of astronomy into the Latin world by Michael Scot
(1217).

• Translation of the Almagest into Hebrew by Yaacov Anatoli (ca 1231).

• Development of the t’ien yuan shu by Ch’in Chiu-Shao and Li Yeh
(1247–1248).

• Numerical solution of equations of any degree by Ch’in Chiu-Shao
(1247).

1204–1248 CE Political events:

• 1204. Constantinople taken and sacked by the Crusaders. It was almost
a death blow to Greek culture.

• 1214. Battle of Bouvines (near Lille), won by Philip Augustus over the
emperor Otto IV, supported by English and Flemish contingents.

• 1238–1241. Tatar invasion of Russia, Hungary, Bohemia, and Poland.
Kiev and Cracow destroyed, Pesth besieged. The Mongol tide was
stopped by the battle of Wahlstatt (near Legnitz) in 1241.

• 1236–1248. The Moors were slowly driven out of Spain. Cordova recon-
quered by the Christians in 1236 and Seville in 1248. By the middle of
the century the Moors were restricted to the little Kingdom of Granada.
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1202–1220 CE Leonardo of Pisa (Pisano) or Fibonacci (1170–1250,
Italy). The most skilled mathematician of the Middle Ages who played an
important role in reviving ancient mathematics and made significant contri-
butions of his own. His book, Liber abaci (1202), played an influential role
in spreading knowledge and use of the Hindu-Arabic numerical system into
Europe.

Liber abaci was the first complete and systematic explanation of the Hindu
numerals by a Christian writer; and also, the first complete exposition of
Hindu and Muslim arithmetic. Leonardo, however, gave more rigorous demon-
strations than the Muslims. (It is apparent that he had a good knowledge not
only of Muslim, but also of Greek mathematics, largely derived from Latin
translations of Euclid, Archimedes, Heron and Diophantos.)

Liber abaci contains sections on Roman and Indian numerals and on finger
counting. Later chapters are devoted first to commercial calculations and
then to puzzles and recreational mathematics – including the famous ‘rabbit
problem’ which lead to the Fibonacci sequence. He deals with approximating
square roots, cube roots and problems on volumes, in which he takes π to be
3 1

7 .

In his later book De practica geometriae (1220) he obtained the value
3.141818 using Archimedes’ 96-sided polygonal representation of the circle.
This book also contains various geometrical and arithmetical problems, no-
tably an extension of the Pythagorean proposition to solid geometry and the
rule to calculate the volume of a pyramid frustum.

Fibonacci used algebra to solve geometrical problems, which was a novelty
in Christendom. In his book Flos, Fibonacci considered, among other things,
the equation x3 +2x2 +10x = 20. Showing that there is no rational solution,
he gave an approximate solution, using the sexagesimal number system. In
Liber Quadratorum (1225), a work on indeterminate analysis, he emerged as
the outstanding number theorist between Diophantos and Fermat. Thus, this
book contain a solution in integers of x2+y2 = z2, and a proof of the theorem
that the difference of two biquadrates is not a square. His works were quite
beyond the abilities of contemporary scholars, and he certainly appears as the
lone mathematical beacon of his time in Europe.

The transition from the Roman number scheme was surprisingly slow,
because computation with the abacus was quite common and in this case the
advantages of the new scheme are not nearly so apparent as in calculations
with pen and paper today. For three centuries there was a keen competition
between ‘abacists’ and ‘algorists’ and the latter won only close to 1500.

Thus came to an end the saga of the round zero, which started its slow
wheeling from India (876 BCE) through Persia and Arabia (825).
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It is remarkable that the extremely tedious arithmetic of Roman numer-
als69, lacking as it does the zero and positional notation, did not induce the
Europeans to invent the zero earlier.

Fibonacci70 was born in Pisa. His father was called ‘Bonaccio’ (a nick-
name with the ironical meaning of “a good stupid fellow”). To Leonardo
himself, another nickname, Bigollone (dunce, blockhead), seems to have been
given. The father was a secretary in one of the numerous factories erected
on the southern and eastern coasts of the Mediterranean by the warlike and
enterprizing merchants of Pisa. Leonardo was educated at Bugia on the Bar-
bary coast and taught by a Muslim master; later he traveled in Sicily, Syria
and Egypt, where he made the acquaintance of the Hindu-Arabic methods.
The influence of Greek, Arabian and Indian mathematics may be clearly dis-
cerned in his methods. He returned to Italy in 1202 and published Liber abaci ,
which procured him access to the learned and refined court of the emperor
Frederick II.

The Fibonacci Sequence

One of the problems appearing in Liber abaci is as follows: Each month, the
female of any pair of mature rabbits gives birth to a pair of rabbits (of different
sexes). Two months later, any female of a new pair gives birth to a pair of
rabbits, and continues to do so each successive month. Find the number of
rabbits at the end of the year if there was one pair of rabbits in the beginning of
the year . This problem leads to a sequence, wherein the terms are the numbers
of pairs of rabbits present in successive months 1, 1, 2, 3, 5, . . . , x, y, x+y, . . . .
This sequence has become known as the Fibonacci sequence and it occurs in
an astonishing number71 of unexpected situations. It has applications to art,

69 The reader who questions this characterization should try multiplying 57,498 by

837 in Roman numerals!
70 The nickname Fibonacci was given by the 18th century French mathematician

Guillaume Libri.
71 One of the distinguishing characteristics of ordinary honeybees is a system of

controlled reproduction: It seems that early in her career a queen bee goes on a

spree, collecting sperm from eager males. The queen produces many eggs, and
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to the propagation of bees, to phyllotaxis (arrangement of leaves), florets of
composite flowers, population genetics, ray optics and various other topics in
mathematics and physics72.

Biologists have tried to explain the peculiar prevalence of Fibonacci num-

it is the general rule that unfertilized eggs hatch into males and fertilized eggs

into females. Thus male honeybees do not have fathers. The queen bee is able

to store the collected sperm for months and even years and, upon information

supplied by her attendants, she can regulate the gender of the offsprings to meet

the needs of the hive. Female bees are undoubtedly the superior sex; they do

everything; the male’s only function is in his role in the production of the prized

female.

Let us trace the ancestry honeybees of either gender, on the assumption that each

male contributes a single sperm during his lifetime, and each female produces one

unfertilized egg per generation (we ignore the rate of female mortality). Denote

by an the total number of males and females in the nth generation. Since any

female has both a father and a mother, the number of females in a generation

is simply the number of bees in the previous generation. On the other hand,

since only females have fathers, the number of males in a generation is just the

number of females present in the previous generations. Hence an = an−1 +an−2

for n > 2.

While on the subject of bees, there are an+2 = an+1 +an paths by which the bee

can crawl over hexagonal cells in the hive [one path to cell 0, two paths to cell 1,

three to cell 2, five to cell 3, and so on], yielding again the Fibonacci sequence.
72 One encounters the Fibonacci sequence, for example, in ray-optics and informa-

tion theory:

• A light-ray impinges upon a stack of m planar glass plates welded together,

such that at each interface (except the upper boundary) the ray may either be

reflected or transmitted. It is shown that for m = 2, the number Fn of paths by

which a ray can be reflected n times in the system, is governed by the difference

equation Fn+1 = Fn + Fn−1, yielding the sequence of reflections 1, 2, 3, 5, 8,

. . . for n = 0, 1, 2, . . . .

• Imagine a signaling system that has only two signals s1 and s2 (e.g., the dots

and dashes in telegraphy or “low” and “high” voltage [light-intensity] levels in

a binary digital electronic [optical] telecommunication system). Messages are

transmitted over some channel by first coding them into sequences of these two

signals. Suppose s1 requires exactly t1 units of time and s2 exactly t2 units of

time to be transmitted. Let Nt denote the number of possible message sequences

of duration t. A message of duration t must end in either s1 or s2, but there are

Nt−t1 possible messages to which a last s1 may be appended and Nt−t2 possible

messages to which a last s2 may be appended. Therefore Nt = Nt−t1 + Nt−t2 .

We consider the special case t1 = 1, t2 = 2 (one signal takes twice as long to

be transmitted over the channel as the other). Then Nt = Nt−1 + Nt−2.
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bers in phyllotaxis. Symmetry may play a major role, because symmetry
maintains a mechanical equilibrium of a stem, gives the leaves the best expo-
sure to light, and supports the regular flow of nutrients. However, science is
still far from a satisfactory explanation.

The Fibonacci numbers appear as the coefficients of the power series ex-
pansion of

(1 − x − x2)−1 = a0 + a1x + a2x
2 + · · · ,

a0 = 1, a1 = 1, a2 = 2, a3 = 3, . . . .

The nth term of the sequence an, obeys the difference equation an = an−1 +
an−2 with a0 = 1, a1 = 1; or an+1an−1 = a2

n +(−1)n+1, n ≥ 2. Its solution
is

an =
1√
5

[(
1 +

√
5

2

)n

−
(

1 −
√

5
2

)n]

[De Moivre, 1730; Binet73, 1843.] Both numerators and denomi-
nators of the convergents of the continued fraction representation of the

Golden74 Ratio 1+
√

5
2 , are formed from the sequence of Fibonacci num-

bers: 1
1 , 2

1 , 3
2 , 5

3 , 8
5 , . . . . It would seem that nature strives to approximate the

famous golden ratio.

73 Euler and Daniel Bernoulli were also in possession of this result a century

earlier. However, Binet did make the discovery independently, and he has so

little claim to mathematical fame that it won’t hurt these giants to let Binet

take the credit for this crumb.
74 Was the Fibonacci sequence known to the Greeks? The Greek theater at Epi-

daurus (ca 300 BCE) was designed by an architect called Polyelitos (not the

sculptor). The main objective there was to ensure perfect acoustics; and al-

though most of the stage buildings have long since disappeared, the auditorium

is so well preserved that the acoustics remain extremely good. From the point

of view of numerology is it only a coincidence that the numbers of rows and of

seats below and above the diazoma (azimuthal passage across the auditorium)

are respectively 34 and 21? These are two successive numbers in the Fibonacci

sequence. Their ratio 34
21

= 1.6190 . . . approximates the true value of the Golden

Ratio: 1+
√

5
2

= 1.6180 . . . .
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The Fibonacci sequence also appears in different parts of mathematics. For
instance, in the Euclidean algorithm for finding the greatest common divisor
(g.c.d.) of two given positive integers, a certain number of successive divisions
is required. In 1844, Gabriel Lamé proved, by using some properties of the
Fibonacci sequence, that the number of divisions required to find the g.c.d. of
two positive integers is never greater than 5 times the number of (decimal)
digits in the smaller number.

The Fibonacci sequence has also played a prominent role in determin-
ing the primeness or compositeness of some “astronomically” large numbers.
Indeed, Edouard Lucas (1842–1894, France) employed certain divisibility
properties of the Fibonacci numbers to establish a test for the primality of any
given Mersenne number. The literature on the ubiquitous Fibonacci sequence
and its many properties is incredibly large and continues to grow. The inter-
esting relations seem, like the geometry of the triangle, to be inexhaustible.
In 1963, a group of Fibonacci-sequence enthusiasts founded the Fibonacci
Association and began publication of a journal, The Fibonacci Quarterly .

Man’s yearning for a unifying principle aside, ‘universal truths’ are often
so extraordinary that they entice the faithful to push into realms where the
law does not belong: Fibonacci sequences are not omnipresent; for all the fruit
blossoms that have pentagonal symmetry, there are tulips, lilies and hyacinths
that do not. Nature does work in many strange ways, not just one.

1206–1260 CE The Mongols. Under the leadership of Jenghis Khan
(1167–1227), and his successor Kublai Khan (1216–1294), the united Mon-
gol and Kirghiz tribes carved out one of the biggest empires in history, stretch-
ing east-west from Japan to the Caspian Sea, and north-south from Siberia
to Tibet.

In the Middle Ages the Mongols were a group of nomadic tribes living in
Central Asia. They were herdsmen and fierce warriors. Temujin, later called
Jenghis Khan, organized the wandering inhabitants of the steppe along rigid
military lines.

Throughout the years 1206–1218, the Mongols swept over China, Azerbai-
jan, Georgia, and Northern Persia75. This conquest brought the Mongolian
power to the frontiers of the Muslim state of Khorezum, which Jenghis Khan

75 It was suggested that the outbreak of the Mongols was stimulated by drought or

moist conditions in Mongolia at that time.
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attacked and destroyed. In 1220 and 1221 he took and totally destroyed
Bukhara, Samarkand, and Gurgan, then the centers of Muslim-Persian cul-
ture. In 1223 the Mongols defeated a strong force of Russians and Cumans.

After Jenghis’ death, Mongol armies overrun and conquered southern and
central Russia and then invaded Poland and Hungary (1237–1240).

In 1241 the Mongols defeated the Poles and Germans in the battle of Lieg-
nitz in Silesia, while another army defeated the Hungarians. But because of
political complications arising from the death of the Great Khan, the Mon-
gols withdrew from Western Europe. Subsequently, they settled on the lower
Volga, where a Tatar state was organized under the name Golden Horde.

Kublai Khan completed the conquest of China and founded the Yuan
dynasty there. During 1245–1253, the Mongols continued to ravage
Mesopotamia and Armenia. In 1258, Hulagu captured and sacked Baghdad
and executed the caliph. He then invaded Syria and took Aleppo. Finally, in
1260, the Mamluks of Egypt secured a victory over the Mongols at Ain Jalut.
This checked the Mongol advance and saved Egypt, the last refuge of Muslim
culture.

Kublei Kahn was too great an administrator not to realize the need for
mathematicians and astronomers, and it is typical of the cultural mixture
organized by him that his scientific assistants were drawn from many nations.
In 1263 he appointed Isa the Mongol (in Chinese, Ai-hsieh) the head of the
astronomical board. In 1267 a new calendar was devised for Kublai Kahn by
the Persian Kamal al-Din al-Farisi, who also introduced new astronomical
instruments.

1209–1229 CE The Albigensian Crusade mounted by Pope Innocent III76

against the entire population of the Albigens77. The Albigense, in the south
of France, was then the most populous, the most technically, socially, and
economically advanced part of Europe. Its population was largely Gnostics78

and Arian Christians, and a sanctuary for Jews who were persecuted almost

76 He also reinstated a prohibition against the owning or reading of Bibles by anyone

other than the clergy, under penalty of death.
77 They took their name from the town of Albi in Languedoc in Southern France.

There and in Northern Italy the sect acquired immense popularity. The move-

ment was condemned at the Council of Toulouse (1119) and by the Third and

Fourth Lateran Councils (1179, 1215).
78 Gnosticism usually refers to an esoteric cult of divine knowledge (a synthesis of

Christianity, Judaism, Greek philosophy, Hinduism, Buddhism, and the mystery

cults of the Mediterranean), which flourished during the 2nd and 3rd centuries

CE, and had influence on early Christianity.
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everywhere else in Europe. All of these groups had a high percentage of
literacy and read the Bible, which was prohibited by the Vatican.

The slaughter of the Albigensians sealed the fate of the brilliant Provencal
culture. In the reign of Louis IX, the County of Toulouse passed under the
Capetian administration and the royal domain was extended to the Mediter-
ranean.

Hunted down by the Inquisition and quickly abandoned by the nobles
of the district, the Albigensians became more and more scattered, hiding in
forests and mountains, and only meeting surreptitiously. The sect was finally
exhausted and could find no more adepts in a district which, by fair means
or foul, had arrived at a state of peace and political and religious unity.

1215 CE Magna Carta. English barons force King John to agree to a
statement of their rights.

1218–1288 CE Period of great storminess in the North Sea, causing
catastrophic floods on the coasts of Holland: 1228 (100,000 victims); 1282
(200,000 people drowned under 2 meters of water); Dec. 14, 1287 (50,000
victims).

The coasts of the Netherlands are exposed to the strong tides of the North
Sea and have been slowly sinking : Since Roman times they have sunk 2
meters! At high tide, the sea is several meters above the land. This sinking,
in turn, is caused by subsidence of the land under the weight of huge quantities
of sediments transported by the rivers to the North Sea, and is accentuated
by the building of gigantic dikes.

ca 1220–1240 CE Ibn al-Baitar (ca 1197–1248, Spain and Syria). Bota-
nist, pharmacist, herbalist and physician. Left Spain to travel in North Africa
(1219), in Bulgaria (1220), Tunis, Tripoli (1221–1223), Egypt (1224), Dam-
ascus (1237), Cairo (1238). Considered greatest botanist and pharmacologist
in Islam. Traveled extensively in Greece, Egypt and Asia Minor in search of
medical herbs, which he later described in his comprehensive treatise. Con-
temporary of Grosseteste and Anatoli, which together represent the three
main streams of culture in the first half of the 13th century.

Al-Baitar was born in Malaga, Spain and died in Damascus.

ca 1220–1230 CE Jordanus Nemorarius (ca 1185–1237, Germany).
Mathematician. The founder of the medieval Christian school of mechan-
ics and first to correctly state the law of the inclined plane. Second only to
Fibonacci as a medieval mathematician.

The first one widely to use letters to represent general numbers, although
his practice had little influence on subsequent writers. He wrote several books
on arithmetic, algebra, geometry, and astronomy. His book De triangulis is
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a geometric work in four books containing topics such as the centroid of
a triangle, curved surfaces and trisection of an angle. In his Tractatus de
numeris datis he solved problems in which a given number is to be divided in
some stated fashion.

Nemorarius was a contemporary of Fibonacci. The Arabic sifr was intro-
duced by him into Germany as the word cifra, from which the word cipher
was later derived79.

In his arithmetical treatises he showed that n(n + 1) is neither a square
nor a cube (n �= 0, −1). His book on algebra contains problems leading to
quadratic equations, using letters to replace numbers. Finally, his geometrical
treatises deal with the determination of the center of gravity, and contain
the first general demonstration of the fundamental procedure of stereographic
projection. Here, he projected a globe on a plane tangent to the North Pole,
and showed how circles are projected into circles (going beyond Ptolemy who
had proven it only in special cases).

Nemorarius influenced the rebirth of mechanics and his writings include
the germs of concepts like impetus, statical moment , principle of virtual dis-
placements, angular velocity , mechanical advantage of a lever , concepts which
culminated hundreds of years later in the discoveries of Galileo, Newton, and
J. Bernoulli (1717).

Little is known for certain about his life, and even that is controversial.
Most historians believe, however, that Nemorarius was born in Westphalia,
joined the Dominican order in Paris (1220) and died at sea on the homeward
journey from the Holy Land.

1220–1235 CE Robert Grosseteste (1168–1253, England). Ecclesias-
tical statesman, bishop and one of the foremost mathematician and physicist
of his age. In these fields of thought he anticipated some of the most strik-
ing ideas to which Roger Bacon subsequently gave wider currency. Thus, he
understood, far ahead of his time the principles and methods of empirical
science. In 1220, influenced by the writings of Augustine and the scientific
method of Islam, he presented a concept of an infinite isotropic Euclidean
universe. In De luce seu de inchoatione and De motu corporali et luce he
suggested that light was the first form of matter and propagated isotropically
in all directions according to mathematical laws.

In De generatione sonorum he asserted that sound was a vibratory motion,
propagating through the air from the source to the receiving ear. In his

79 The word zero probably comes from the Latinized form of zephirum of the Ara-

bic sifr, which in turn is a translation of the Hindu sunya, meaning “void” or

“empty”. On the other hand, the Arabic sifr could have originated from the

Hebrew verb safor meaning “to count”.
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commentaries on Aristotle’s Physics he presented views on proper scientific
methodology, encouraging the search for general principles, the testing of
hypotheses against observations and the use of mathematics.

Grosseteste was greatly influenced by the Latin translation of Alhazen’s
writings on optics, and in his own work on optics he suggested that rain-

bows are caused by the refraction of sunlight inside clouds. He made Latin
translations of many Greek and Arabic scientific writings.

He was born at Stradbrook in Suffolk to humble parents and received
his education at Oxford (1199–1209) and Paris (ca 1210), where he became
proficient in law, medicine, theology and the natural sciences. He settled in
Oxford as a teacher and was pre-eminent among his contemporaries for his
knowledge in the natural sciences. He was chancellor of Oxford University
from 1215 to 1221. In 1235, after a severe illness, he relinquished his teaching
and research career and became the bishop of Lincoln (for this he is also
known as Robert of Lincoln). In this capacity he was deeply involved in
the struggle to maintain the independence of the English clergy against the
alliance of King Henry III and pope Innocent IV.

Robert Grosseteste was born at the decisive moment when Greek and Ara-
bic science became accessible in Latin versions. Due to his unusual interest in
the study of languages and in the sources of knowledge, he became interested
in science and the scientific method; and he paid particular attention to op-
tics, which he regarded as the key to an understanding of the physical world.
He was conscious of the dual approach to knowledge by means of induction
and deduction. This approach to science was not far removed from that of
Aristotle, but Robert gave it a clarity and sharpness that allowed him and
his 14th century successors to make the first moves towards the creation of
modern experimental science.

It is certain that the Bishop of Lincoln placed an emphasis upon exper-
imentation which has been regarded as characteristic only of later periods.
Indeed, Roger Bacon, his most famous pupil, said of him that he neglected
the books of Aristotle for his own experiments, and with the aid of other au-
thors and scientists, treated independently scientific questions (e.g., the study
of the rainbow) which had occupied Aristotle.

1220–1250 CE Vincent of Beauvais or Vincentius Bellovacensis

(ca 1190–1264, France). Dominican friar and encyclopedist. His Speculum
Majus is the greatest encyclopedia written before the 18th century.

Vincent entered the Dominican order at Beauvais (ca 1217) and held the
post of “reader” at the monastery of Royaumont near Paris (ca from 1250).
He was also chaplain to the court of Louis IX of France.
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He labored on his encyclopedia during 1220–1244. It contains three parts:
Speculum Naturale – a vast summary of all the natural history known to
Western Europe towards the middle of the 13th century; Speculum Doctrinare
– a summary of all scholastic knowledge of the age; Speculum Historiale – the
history of Christianity and the evolution of Christian theology.

Vincent undertook a systematic and comprehensive treatment of all
branches of human knowledge of his time. In the preparation of this colossal
work he was helped in the purchase of books by his royal patron Louis IX.

1225–1235 CE Michael Scot (ca 1175–1235, Scotland, Spain and Italy).
Translator, mathematician and magician. Studied at Oxford and Paris. De-
voted himself to mathematics, philosophy and theology. Ordained as a priest.
Went from Paris to Bologna, Palermo and Toledo (1217). There he acquired
a knowledge of Arabic. This opened to him the Arabic version of Aristotle.
He was one of the savants in the Napolitan court of Frederick II and at the
instigation of the latter translated Aristotle into Latin.

His own books on astrology, alchemy and the occult are mainly responsible
for his popular reputation. [He appears in the Inferno of Dante, Canto 20,
115–117, among the magicians and soothsayers.]

1229–1262 CE Al-Hasan al-Marrakushi (Morocco). Mathematician
and astronomer. His book, the Jami (1229), was the most elaborate trigono-
metrical treatise of his age, the best medieval treatise on practical astronomy
(instruments and measuring methods), on gnomonics, and the best explana-
tion of geographical methods.

1231–1256 CE Yaacov (ben Abba Mari) Anatoli (1194–1256, France
and Italy). Translator, philosopher and physician. His translations from Ara-
bic into Hebrew of the works of Aristotle, Averroes and Ptolemy contributed
to the evolution of the ideas of the Renaissance.

A pupil and son in law of Shmuel Ibn Tibbon. He was invited to Naples
(1231) by the enlightened ruler Frederick II (Emperor, 1212–1250) to serve as
a physician, and under this royal patronage and in association with Michael
Scot, made Arabic learning accessible to Western readers.

ca 1240–1250 CE Dogen (1200–1253, Japan). Philosopher. The most
famous exponent of Zen Buddhism in Japan. His work Shobogenzo is the first
Buddhist text written in Japanese. It is said to be the first truly philosophical
work in Japan.
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1240–1242 CE The Talmud on trial – the Paris disputation80 (June 12,
1240) and the first public burning of the Talmud (June 6, 1242) under the
Bull of Pope Gregory IX.

On a certain summer Saturday, while the Jews were in the synagogue,
police surrounded their homes and carried off what books they could find.
Then a trial was arranged in Paris: the prisoner was a book, the Talmud .
The prosecution was led by a renegade Jew, Nicholas Donin; the defense by a
group of rabbis led by Yehiel of Paris (ca 1192–1268). The judges were a
number of bishops; and the queen-mother (of Louis IX) presided. Donin was
given every opportunity to poke fun at the Talmud by pointing out the naive
tales and legends which it contained, and to twist a number of its statements
into attacks upon Christianity. Rabbi Yehiel did not have the right to point
out equally naive ideas to be found in Christian literature. The judges being
what they were – the cause of the defense was lost from the start.

Consequently, the Talmud was condemned to be an evil, a dangerous book
to Christianity, and ordered to be burnt in a great public ceremony arranged
by the Dominicans. In June 6, 1242, twenty-four cartloads of copies were
burnt in the public square in Paris. To leave no loophole for the Jews, Donin
persuaded pope Gregory IX to issue a Bull, a first of its kind, for the burning
of the Talmud everywhere, and to establish inquisitions and censors over other
Jewish writings, a practice which tormented the Jews for centuries.

Yehiel and his pupils came to Israel (1259) and established an academy at
Akko.

1241 CE The Mongols withdrew from central Europe following the death
of Ogadai Khan.

1245 CE Yehudah ben Shlomo ha-Kohen, Ibn Matka. Trans-
lator and encyclopedist. Wrote an encyclopedic treatise in Arabic including
such subjects as astronomy, logic, mathematics, metaphysics, philosophy and
natural history. His sources were Aristotle, Ptolemy and Euclid. It was
later translated into Latin under the title Inquisito sapientiae. He was born
in Toledo, Spain. Corresponded with Duke Frederick II of Babenberg, who
invited him to Toscana, Italy, to participate in his translation project.

80 Characteristic of the age, the disputations were called by the medieval Church

“Tournaments for God and Faith”. But there was little of the chivalrous ele-

ment in these so-called “tournaments”, the position of the combatants being so

flagrantly unequal. Almost always the verdict was against the Jewish debaters,

with the direct consequences to the practice of their religion, to themselves and

to their fellow-Jews.
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Table 2.3: Trans-Asiatic Journeys (1245–1307)

Within half a century the innumerable risks of such journeys were faced and
successfully overcome by the following 14 persons (not counting the many less
known or anonymous ones who traveled in their wake independently):

• Giovanni Pian del Carpine (1245–1247)

• Hayton the Elder and his brother Sempad (1251–1254)

• William of Rubruquis (1253–1255)

• Niccolo, Maffeo and Marco Polo (1272–1295)

• Giovanni da Montecorvino (1272–1307)

• Bar Sauma (1280–1287)

• Ricoldo di Monte Croce (1288–1301)

• Buscarello de Ghizolfi

• Al-Juwaini

• Chang Te

• Yeh-lu Hsi-liang
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1245–1247 CE Giovanni Pian del Carpine (1182–1252, Italy). The
first of the great travelers from Europe to Asia. A Franciscan Friar who
crossed Asia to contact the Mongols on behalf of Pope Innocent IV (in line
with a policy of opening diplomatic intercourse with a power whose alliance
might be invaluable against Islam).

In his forward journey, the Friar crossed a distance of some 5000 km
(Lyons–Karakorum) in 463 days [April 16, 1245–July 22, 1246]. He left Lyons,
traveling by a northern route through Bohemia, Poland and the Ukraine. In
November 1247, Carpine delivered the Great Khan’s reply to the Pope. It
was, to say the least, discouraging:

. . . “You must come yourself at the head of all your kings and prove to
Us your fealty and allegiance, And if you disregard the command of God and
disobey Our instructions, We shall look up on you as Our enemy. Whoever
recognizes and submits to the Son of God and the Lord of the World, the
Great Khan, will be saved. Whoever refuses submission will be wiped out”.

Though not yielding an immediate panacea for the medieval world’s ills,
Carpine’s trail-blazing journey – undertaken when the Friar had already
turned 60 years of age – had opened up the first real dialogue with the East.
Moreover, Carpine was an astute observer, and his account of his travels,
Historia Mongolorum, furnished Europe with the first insightful glimpse into
Eastern culture.

1245–1260 CE Albertus Magnus (1206–1280, Germany). Natural-
ist and philosopher, known as the ‘Doctor Universalis’. One of the most
learned men in the Middle Ages, and the first serious naturalist since the
Plinys who taught men to think again. He knew neither Greek nor Arabic,
and his only sources were Latin translations. He wrote a series of encyclope-
dic treatises, presenting the entire body of knowledge: natural science, logic,
rhetoric, mathematics, ethics, economics, politics and metaphysics. His in-
fluence was great, but did not last long because his works were too eclectic
and too superficial. Nevertheless, his writings remained for centuries a trea-
sury of information. He had the courage to reject some superstitious ideas
(but he continued to believe in many others). He advocated that a visible
object alters the medium between the object and the eye, and this alteration
is propagated to the eye. He studied insects, whales, and polar bears, and
gave a fairly complete description of German mammals and birds. He also
made original contributions in biology, zoology, chemistry and geology.

Albertus excelled all his contemporaries in the width of his learning. In
his scientific works he was a faithful follower of Aristotle as presented by
Jewish, Arabian and Western commentators; in voluminous commentaries on
the writings of Aristotle he comprehensively documented 13th- century Euro-
pean knowledge of the natural sciences, mathematics and philosophy. He also
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engaged in alchemy, although his works express doubts about possibility of
transmutation of the elements, and gave a detailed description of the element
arsenic.

He was born Albrecht von Bollstädt in Lauingen, Swabia, Germany; stud-
ied in Padua and joined the Dominican order in 1223. He taught theology and
philosophy in various schools, especially is Paris, until 1254, and was bishop
of Ratisbon during 1260–1262. He died at Cologne.

1246–1286 CE Meir of Rothenburg (“MAHARAM”, 1215–1293, Ger-
many). Talmudist, jurist and poet. Foremost Rabbi of Western Germany and
greatest German legalist in the 13th century. A religious leader who exercised
much influence on subsequent development of Judaism. He wrote glosses to
the Talmud (tosaphot) and many Responses of the utmost value for historical
research.

Maharam was born in Worms. He studied in Wuerzburg, Mainz, and
France. He witnessed the famous Talmud Disputations of 1240 and saw the
burning of the 24 cartload of parchments in 1242. He wrote an elegy about
their destruction which is still used in Jewish Ashkenazic communities.

After the Talmud-burnings, he returned to Germany and settled in
Rothenburg. Although only in his early thirty’s, he was already recognized as
a leading Talmudic authority. Communities began to send him legal questions.
He wrote almost a thousand responsa, thus having a tremendous influence on
shaping custom and lifestyle. His modification of synagogue and home rituals
became the accepted forms for the Ashkenazic world.

The Maharam lived in Rothenburg for forty years, thus gaining the title
“Meir of Rothenburg”. He wrote commentaries and discussions on 18 tractates
of the Talmud.

In 1286 he left Germany on account of severe persecution by Rudolf I of
Habsburg (1218–1291), King of Germany and emperor of the Holy Roman
Empire. He was arrested81 in Italy, returned to Germany and then thrown
into prison in Alsace, where he eventually died.

81 The reason given was that, as a Jew, the Rabbi was a serf of the emperor’s

treasury; by leaving, he was depriving the treasury of a source of income: Rudolf

demanded a tremendous sum as ransom, which the Jews were ready to pay. But

the Rabbi declined the deal, fearing that the precedent would lead to extortion in

other cases. After his death, the emperor refused to release the body for Jewish

burial unless the ransom is paid. Finally, after 14 years a rich man named

Alexander Suesskind Wimpfen paid the ransom in full on the condition

that, upon his death, he would be buried by the Rabbi’s side. Maharam was laid

to rest on Feb. 7, 1307 and Wimpfen is buried by his side.
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1247–1259 CE Ch’in Chiu-Shao (ca 1202–1261). Chinese mathemati-
cian. He wrote Mathematical treatise in Nine Sections (1247). It contains
simultaneous integer congruences, the Chinese Remainder Theorem, algebraic
equations, areas of geometrical figures and linear simultaneous equations. De-
veloped methods of successive approximations to solve numerical polynomial
equations of any degree, a method not discovered in Europe until the 19th

century. Ch’in invented a method of solving these numerical equations which
is substantially identical with the Ruffini-Horner procedure82. The unknown
quantity in these equations was represented by a monad and the zero by a lit-
tle circle, like ours (the Chinese zero may have come directly from India with
Buddhism or it may have been imported later by Muslims). Red and black
ink were used respectively to represent positive and negative numbers. A
contemporary mathematician, Li Yeh (1178–1265), wrote treatises in 1248
and 1259 involving problems on quadrilaterals and circles, with their solu-
tions. Instead of using red and black colors to designate positive and negative
numbers, Li differentiated the latter by drawing diagonal strokes across them.

1250 CE Johannes Campanus of Novara (d. 1296, Italy). Mathe-
matician and astronomer. A chaplain of Pope Urban IV. Translated Euclid’s
Elements from Arabic into Latin.

ca 1250–1272 CE Nasir al-Din al-Tusi (1201–1274, Persia). Mathe-
matician, astronomer, physicist, physician and philosopher. One of the great-
est mathematicians of medieval times.

In geometry, he made first attempts to determine whether Euclid’s par-
allels postulate can be derived from the other Euclidean postulates. In
trigonometry he presented the law of sines and began to separate trigonometry
from astronomy. His work in these two areas may have influenced the further
advances of Regiomontanus (1464) and Saccheri (1733). In 1259 al-Tusi be-
gan the construction of a major astronomical observatory at Marãgha83, where

82 Thus, to solve the equation x2 + 252x − 5292 = 0, Ch’in first established that

there is a root between 19 and 20. He then used the transformation y = x − 19

to obtain the equation y2 + 290y − 143 = 0, with a root between 0 and 1. His

final approximate solution is x = 19 + 143
1+290

. Similarly, to solve the equation

x3 − 574 = 0 he set y = x − 8 to obtain y3 + 24y2 + 192y − 62 = 0, yielding

as an approximate root x = 8 + 62
1+24+192

= 8 + 2
7
. Indeed, ‘Horner’s method ’

must have been well known in medieval China; it was used by several Sung

mathematicians for the numerical solution of cubic and even quartic equations.
83 The means to construct the observatory were given to him by Hulagu. It was

an institute for scientific research, with a rich library. Under al-Tusi’s direction,

Marãgha became the outstanding astronomical center of the time and one of

the leading scientific centers of the world. Mathematicians, astronomers and
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he used his self-made quadrants to observe star positions. During 1256–1265
he conducted observation which served as a basis for his astronomical tables
(1272). His criticism of Ptolemaic astronomy was an additional step toward
the Copernican reform.

Al-Tusi’s discussion of the 5th postulate of Euclid was taken up later by
Girolimo Saccheri (1733). In other words, the history of non-Euclidean
geometry can be traced back through Saccheri to one of Nasir al-Din’s writ-
ings. His independent textbook of trigonometry, plane and spherical, can be
considered the climax of a long Greek-Hindu-Arabic tradition. Some spherical
problems were solved by implicit considerations of polar triangles. This trea-
tise was almost equivalent to the Latin treatise composed by Regiomontanus
two centuries later.

Al-Tusi was born in Khurasan. Under Mongol occupation (1256) he be-
came astrologer to the Mongol chief, Hulagu Khan, and went with the Khan
when the latter sacked Baghdad in 1258. He resided in Marãgha from 1259
until almost the end of his life. In 1274 he went to Baghdad and died there.

The work of al-Tusi was continued by his pupil, the astronomer and physi-
cian Qutb al-Din al-Shirazi (1236–1311, Persia). In 1281 the latter sug-
gested an alternative planetary model to that of Ptolemy, making more use
of uniform circular motions. He was the first to give a satisfactory qualitative
account of the rainbow (excepting, of course, the colors). He explained it
by the study of passage of a ray of light through a transparent sphere (drop
of water): the ray is reflected once and refracted twice. This explanation is
essentially similar to that of Descartes. Further details on al-Shirazi’s correct
theory are found in a comment by his student Kamal al-Din al-Farisi (ca
1260–ca 1320; Tabriz), on the Optics of Alhazen. Both, however, lacked the
quintessence of physical theory – a quantitative explanation.

Al-Shirazi was born in Shiraz. He belonged to a family of learned men, and
received part of his medical training from his father and uncles. He traveled
extensively in the Middle East, partly in the service of the Khans of Persia.
He finally settled down in Tabriz and died there.

1251–1254 CE Hayton the Elder (d. 1271, Armenia). Trans-Asian
traveler, King of Little Armenia. With his brother Sempad, made a journey
to Mongol capital Karakorum, the record of which by one of his courtiers was
one of the earliest written accounts of Mongolian geography and ethnology.

instrument makers gathered there from both near and distant countries (Cau-

casus, Morocco, China). The main task of the Marãgha astronomers was the

compilation of new tables. Unfortunately this center did not long survive its

founder.
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1252–1273 CE Thomas Aquinas (1225–1274, Italy). Theologist. One
of the first Christian scholars to recognize the ‘light of reason’ as an inde-
pendent source of knowledge. Aquinas was one of the leading scholars of
Aristotelian physics of his day and was responsible for the general acceptance
of Aristotelian physics84 throughout Europe. In his attempt to reconcile reli-
gion and science, Aquinas set himself the task of harmonizing 631 questions
between Christian and classical science. He made some efforts to appeal to
common sense and the natural word but in most of his cases the desired
answer was simply assumed: Faith always got priority over Reason.

By using Aristotle as a mental catalyst, he and Albertus Magnus con-
tended that there is no conflict between faith and reason. In this sense he
followed Maimonides and Ibn-Rushd, and did for Christianity what the lat-
ter had done for Judaism and Islam respectively, a century before him. He
wrote 21 volumes of mental gymnastics to defend the doctrines of the Catholic
Church. These are still studied today in Catholic seminaries.

Aquinas was born near Aquino, Italy, in the province of Naples. He at-
tended the University of Naples in 1239 and then joined the Dominican Order.
His family opposed the idea so strongly that his brothers seized him as he was
traveling to France, and imprisoned him for a year. After he was released,
he left for Paris in 1245 to study under Albertus Magnus, and then followed
the latter to Cologne. He ended his studies in 1259 and taught at the papal
court from 1259 to 1268. He went to Italy in 1272 to organize the Dominican
school of theology in Naples, and died on his way to Rome.

1253–1255 CE Rubruquis (Willem van Ruysbroeck, Flanders). Flemish
Franciscan Friar and traveler to the East before Marco Polo. He was sent by
Louis IX of France to Mongolia as an unofficial representative in 1253. He
left Constantinople, sailed to the Crimea, crossed South Russia and a large
part of Asia, and finally reached the Mongolian capital Karakorum in April
1254. He left the capital in August, and reached Tripoli, Syria, a year later.
He was the first to describe the Caspian as an inland sea. His travel account
was praised and used by Roger Bacon.

1256–1312 CE Yaacov ben Machir Ibn Tibbon (1236–1312,
Provence). Also known as Prophatius. Astronomer, physician and trans-
lator. A distinguish medical man who worked in the medical faculty of the
University of Montpellier. One of the most famous astronomers of medieval
times. His works, translated into Latin, were quoted by Copernicus and Ke-
pler. He compiled new astronomical tables for the longitude of Montpellier
and the year beginning on March 1, 1300.

84 Although Aristotelian physics was wrong, it was an essential precursor of modern

physics.
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Invented a new instrument, the quadrans novus , meant to be of the same
service as the astrolabe. Yaacov was one of the greatest translators of scientific
works from Arabic into Hebrew (and Latin). Among his translations: Euclid’s
Elements and Ptolemy’s Almagest .

He was born in Marseilles, studied at Lunel, and flourished at Montpellier,
where he died.

The Jewish family of Ibn Tibbon comprised at least four generations of
authors and translators, instrumental in the infusion of Arabic learning into
Europe. The head of this clan was Yehudah Ibn Tibbon (1120–1190);
born in Granada, Spain and immigrated to Lunel, in Southern France, where
he practiced medicine and became a famous physician in the King’s court.
Through his translations from Arabic into Hebrew, he saved the books of
the great Jewish thinkers from oblivion, and through this also enlarged the
vocabulary of the Hebrew language to include scientific concepts and terms.

His son Shmuel Ibn Tibbon (1150–1232), physician and philosophic
writer, was born in Lunel and died in Marseilles. He received a thorough
education in Arabic and Jewish literature, and in all the secular knowledge
of his age. Later he lived in several cities of Southern France and traveled to
Spain and Alexandria (1210–1213). He translated Aristotle, Ibn Rushd and
Maimonides into Hebrew. His son Moshe Ibn Tibbon (ca 1200–1283),
born in Marseilles, was a physician and a prolific translator of Arabic works
on philosophy, mathematics, astronomy, and medicine. His brother was the
father of Yaacov Ibn Tibbon. Finally, Moshe’s two sons, Yehudah and
Shmuel Ibn Tibbon, were also famous translators.

ca 1260 CE The invention of gunpowder85. Probably made by alchemists
in Western Europe, but it is impossible to say where or by whom.

85 Ordinary gunpowder is an explosive mixture of finely powdered salpeter

(potassium-nitrate, KNO3, also known as nitre or neter), sulphur and

wooden charcoal . The proportions of the constituents (by weight) and

the main products of the combustion correspond roughly with the equation

2KNO3+S+3C=K2S+N2+3CO2, which by atomic weights yields the ratio

202: 32: 36 ≈ 6: 1 : 1. Other gaseous products include CO2, H2S, CH4, H2,

and the residue contains potassium carbonate (K2CO3) and sulphate (K2SO4).

The reaction is ignited at about 300◦C and creates a heat of explosion of ca

750 cal/g, together with ca 250 cc/g permanent gases, at 0 ◦ and 760 mm. The

temperature of the explosion reaches 2200 ◦C, or even higher. Under these con-

ditions, a strongly confined gunpowder produces a shattering effect.

Of course, sulphur and charcoal have been known from time immemorial. The

‘invention’ of gunpowder thus essentially implies a knowledge of pure salpeter

and of the proper mixture. The word salpeter = sal petrae, or its equivalent,

niter, has been taken to mean many different things. By niter (nitrum, natron),
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Fuming, fiery and flaming composition of many kinds (“wild fire”) were
known and used before the introduction of gunpowder. These consisted of
mixtures of such ingredients as charcoal, sulphur, resins, fats, and natural
petroleum, pitches and bitumens. The celebrated Greek fire, used in the
Byzantine period, was probably a mixture of this kind. It is easy to imagine
that enterprizing alchemists would not fail to try the effect of adding familiar
mineral materials to these mixtures, and so eventually the particular virtue
of salpeter would be recognized.

Recipes for pyrotechnics and explosives are found in the works of several
men: (1) Liber ignium (ca 1300) by Marc the Greek (Marcus Graecius,
unknown author of a collection of recipes who flourished during 1260–1300);
(2) Kitab al-furusiya by al-Rammah (ca 1260–1295); (3) Opus tertium by
Roger Bacon86, composed 1266–1267. Therein he describes inflammable
mixtures, such as were used for fireworks, and an explosive one which was
probably gunpowder. It is clear from all these sources that the said authors
were not the inventors, although it is evident that gunpowder was discovered
within Bacon’s lifetime.

On the other hand, there is no evidence at all that the Chinese discovered
gunpowder (let alone firearms). [They did however use pyrotechnic devices
comparable to the Greek fire in the battles of 1161 and 1162, and again at the
battle of 1232 against the Mongols.] The discovery of gunpowder depends on
the isolation and purification of potassium nitrate. It was necessary to distin-
guish that kind of saltpeter from others which were of no use for this special
purpose, and to sufficiently purify it from the impurities which compromised
its usefulness.

In the light of this situation it is very probable that gunpowder was actu-
ally made, in diverse places, before 1300 CE, at the end of a process of slow
and gradual evolution.

It should be remembered that the great invention which revolutionized
the world was not, after all, that of saltpeter, nor even gunpowder, but the

the ancients meant any alkaline salt, such as potash (KNO3), soda (NaNO3) or

sodium carbonate (NaCO3) [used by the early Egyptians for embalming, cleans-

ing, curing meat, smelting ores, and as medicine]. The Hebrew word for neter

occurs in Proverbes 25 , 30 and Jeremiah 2 , 22.
86 There is no reason for ascribing the invention of gunpowder to him. His epistola

is apocryphal, and the cipher supposed to contain the recipe of gunpowder, has

no reference whatsoever to a known manuscript. He may have known something

of gunpowder, and he was acquainted with various inflammable and pyrotech-

nic materials; but there is no reason for believing that he knew the explosive

properties of gunpowder, nor that he purified and isolated saltpeter.
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application of gunpowder to the propulsion of missiles. When gunpowder
was invented in ca 1280, nobody understood as yet the implication of that
invention.

1261–1275 CE Yang Hui (ca 1238–1296, China). Mathematician. Wrote
books which use decimal fractions (in the modern form) and gave the first
account on Pascal’s triangle.

1263–1270 CE Moshe ben Nahman; Nahmanides; RAMBAN (1194–
1270, Spain and Israel). Talmudist, philosopher, physician, Kabbalist, and
one of the few biblical commentators that have withstood time’s test.

In his Commentary on Genesis (1267), Nahmanides renders an amazingly
prescient description of the early moments of the universe, which almost reads
like a quotation from Steven Weinberg’s The First Three Minutes (1977).
Translated from the Hebrew text, it reads:

“At the briefest instant following creation all the matter of the universe
was concentrated in a very small place, no larger than a grain of mustard.
The matter at this time was so thin, so intangible, that it did not have real
substance. It did have, however, a potential to gain substance and form and
to become tangible matter.

From the initial concentration of this intangible substance in its minute
location, the substance expanded, expanding the universe as it did. As the
expansion progressed, a change in the substance occurred. This initial thin
incorporeal substance took on the tangible aspects of matter as we know it.
From this initial act of creation, from this ethereally thin pseudosubstance,
everything that has existed, or will ever exist, was, is, and will be formed”.

Commenting further on the first chapter of Genesis, Nahmanides reached
the conclusion that prior to the creation of the universe, neither time nor
space existed; the creation of the universe brought with it not only the time
in which it flows, but also the space into which it expands. Thus, Nahmanides
and cosmologists discuss the events of the Big Bang in uncannily similar terms.

Like other biblical scholars before him, Nahmanides had a well-developed
understanding of the phenomena that produced the day-night cycle on earth.
He summarized his knowledge: “On the earth both evening and morning are
always present. There are on earth at every moment ever changing places
where it is morning and in the places opposite them it is evening”.

This reveals quite an exact comprehension of the illumination of the sun’s
light on a spherical earth, at time in the history of mankind when most of
Western humanity dreaded falling off the edge of a flat earth.

He was born in Genova, Aragon, and became chief rabbi of Catalonia. In
1263, he was obliged by James of Aragon (king from 1213 to 1276) to dis-
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cuss publicly at Barcelona the respective merits of Christianity and Judaism
with the apostate and renegade Pablo Christiani, a Dominican. The discus-
sion lasted four days and turned in Moshe’s favor, but soon afterwards the
Dominicians caused him to be exiled from Aragon, and the Talmud to be
censored87.

After spending a few years in Castile and Southern France, he moved in
1266 to the Holy Land; he lived in Jerusalem and Acre (Akko) and is buried
at Haifa.

1266 CE Theodoric Borogoni of Lucca advocated the use of narcotic-
soaked sponges to put surgical subjects to sleep.

1266–1278 CE Roger Bacon (1214–1292, England). Philosopher and
scientist. One of the founders of the experimental method and a leading
figure in the development of science during the Middle Ages. His writings
and experiments helped lay the foundations for the scientific revolution that
occurred in Europe during the 1500’s and 1600’s.

Advocated direct observations, some experimentation and the application
of mathematics to the various sciences (“Mathematics is the door and key
to the sciences”). In that he paved the way to the emancipation of men’s
intellect from total reliance on the search for regularity and perfection in the
material universe as advocated by the Pythagorean school and by Plato. He
asserted that the temptation to search for patterns of regularity in nature
must be balanced by the equally powerful inclination of the human mind to
seek simplicity and mathematical definiteness.

Bacon attached to logic only a subordinate importance. For him the main
avenue to knowledge was not logic, but linguistic and mathematical ability.
Logical ability he thought to be almost instinctive, but languages and math-
ematics had to be learned. He was not an original mathematician, and his
knowledge of mathematics was very limited. But he was imbued with the Pla-
tonic idea of the transcendental importance of mathematics, and he helped to
spread that idea. He was equally convinced of the practical utility of mathe-
matics in almost every study, and explained it at great length.

His most important mathematical contribution is the application of geom-
etry to optics. He performed experiments with mirrors and lenses, chiefly
burning lenses, and foresaw vaguely both the compound microscope and the

87

• Maccobi, H. Judaism on Trial: Jewish – Christian Disputations in the Middle

Ages, London, 1993.
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telescope. He had some understanding of spherical aberration and of its cor-
rection by the use of paraboloidal and hyperboloidal surfaces. In opposition
to Grosseteste he claimed that the passage of light through a medium can-
not be instantaneous. Gunpowder was discovered probably within Bacon’s
lifetime, but there is nothing to indicate that he was the inventor. He had
great interest in alchemy , although he made a distinction between practical
and speculative alchemy.

Bacon explained to the Pope the importance of undertaking a complete
and accurate survey of the world. He indicated the possibility of reaching the
Indies by sailing westward from Spain, and assumed that these countries were
considerably nearer than they in fact are, as did Columbus later. Bacon made
few experiments himself, and in a sense he never understood the experimental
method as we now understand it. Like his countryman Francis Bacon, more
than three centuries later, he laid down many percepts which he never followed
himself. To be sure, some of the experiments proposed by him were fantastic,
and in spite of his own efforts to separate experimentation from magic, he
did not always succeed. However, in his time, even to speak of the superior
value and indispensability of experimentation was an immense achievement;
the essential soundness of his experimental point of view is proved by his
readiness to sacrifice theories to facts and to confess his own ignorance.

Bacon realized the supreme importance of the texts written in Greek, He-
brew and Arabic, and insisted upon the necessity of studying these languages.
He attached great importance to the study of the Bible in its original form,
and to this end he advocated the study of Hebrew and Greek. He believed
that all knowledge is explicitly or implicitly set forth in the Bible.

Bacon was born at Ilchester, Somerset. He studied in Oxford under Gros-
seteste. Before 1236 he went to Paris, and later seemed to have traveled to
Italy.

Bacon returned to Paris, lectured there as a regent master of the univer-
sity, and returned to Oxford in 1251. Sometime between 1251 and 1257 he
joined the Franciscan Order, but soon got into difficulties with his superiors
in matters of censorship of his writings. Happily for him, he was ordered
(1266) by Pope Clement IV to send him copies of his works, as secretly as
possible. This papal request, made over the head of Bacon’s superiors, made
him anathema to them. After the pope’s death (1278) Bacon was condemned
for teaching “suspected novelties” and imprisoned from 1278 to 1292. He died
soon afterwards.

1268–1286 CE William of Moerbeke (ca 1215–1286, Greece and Italy).
Scholar, Orientalist, Philosopher and translator of scientific and philosophical
texts from the Greek into Latin. One of the most distinguished men of letters
of the 13th century. Held intellectual intercourse with Aquinas, Witelo and
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Campanus. His translations were influential in his day, when few competing
translations were available, and are still respected by modern scholars.

He translated the works of Aristotle, Hero of Alexandria, Archimedes
and Proclos.

ca 1269 CE Peter Peregrinus (the Stranger) of Maricourt. French
physicist, perhaps one of the greatest of medieval times. Discovered the funda-
mental properties of magnets: the two kind of poles, their attractions and re-
pulsions, magnetization by contact, breaking of a magnetic needle into smaller
ones, and the exertion of magnetic force through water and glass. He even
traced the lines of force on a loadstone from one pole to another. One can
find in his writings a vague suggestion of terrestrial magnetism.

He described floating and pivot compasses, provided with a fiducial line
and a circle divided into 360 degrees.

Peregrinus was in the army of Crusaders which besieged Lucera in 1269.
He was a teacher of Roger Bacon, who payed him the highest tributes in the
Opus tertium and in the Opus maius. According to Bacon, Peregrinus was
a recluse who devoted himself to the study of nature, and was able to work
metals.

1269, June 19 Louis IX of France decreed that all Jews must wear a yellow
badge. The Jews of Europe continued to wear the badge for the next 529
years; on Feb 15, 1798, the Jews of Rome were allowed to remove the badge.
However, in 1935, the Germans renewed the practice of the badge, branding
their victims prior to their final extermination.

1270–1290 CE Zerahia (ben Itzhak ben Shaaltiel) Chen of
Barcelona (ca 1230–1292, Spain and Italy). Physician, philosopher and
translator. Translated Greek medical and philosophical writings from Arabic
into Hebrew, especially the writings of Aristotle. Lived in Barcelona during
1277–1290, where most of his translations work was done.

1271–1295 CE Marco Polo (1254–1324, Italy). The greatest medieval
traveler, who traced a route across the whole longitude of Asia, naming and
describing kingdom after kingdom which he had seen with his own eyes. The
first traveler to reveal China in all its wealth and vastness, and tell the West
about Tibet, Burma, Laos, Siam, Japan, Sumatra, Nicobar and Andaman, In-
dia, Ceylon, Abyssinia, Zanzibar, Madagascar, Siberia and the Arctic Ocean.

In 1271, Marco Polo (then 17) and his father and uncle88 sailed from Venice
to Acre (now Akko, Israel). From there they rode camels to the Persian port

88 Nicolo (Marco’s father) and his brother Maffeo Polo, Venetian Jewel traders in

the Black Sea, embarked in 1254 on a travel to Central Asia. After spending
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of Hormuz, and from there on camel back across the deserts and mountains
of Asia. More than three years after leaving Venice, they reached Kublai
Khan’s summer palace in Shang-tu. During 1274–1292 the Polos stayed in
the Chinese empire. Young Marco served the Kahn on many official tours of
the kingdom, taking detailed notes during his travels. On their way back, the
Polos sailed from Southern China (Zaitun) in the South China Sea to what is
now Singapore then around the southern tip of India. They crossed the Ara-
bian Sea and the Gulf of Oman to Hormuz. From there they traveled overland
to the Turkish port of Trebizond and over the Black Sea to Constantinople.

The Polos returned to Venice in 1295 after covering a total distance of
24,100 km. In 1296, the Genoese captured and jailed Marco Polo for a year.
In prison he met a popular writer, Rustichello of Pisa and dictated to him
his story. Polo told about Kublai Khan’s prosperous, advanced empire. He
described the Khan’s communication system, which consisted of a network
of some 10,000 courier stations throughout the Kingdom; horseback riders
relayed messages from one station to another, covering some 700 km per day.

Polo commented on many Chinese customs, such as mining and the use
of coal as fuel (coal had not yet been used in Europe). He also marveled at
the Chinese use of paper money, which bore the seal of emperor. Europeans
still traded with heavy coins made of copper, gold or lead.

Marco Polo’s book Description of the World was completed in 1298. The
book may have helped bring to Europe such Chinese inventions as the com-
pass, papermaking , paper money, printing and explosives (which according
to Polo were in use in China already in 1237).

Printing had not yet been invented in Europe, and so scholars copied Polo’s
book by hand. It soon became the most widely read book in Europe. His-
torians believe it may have influenced many explorers including Christopher
Columbus. Yet, in Polo’s time and through the century that followed, people
did believe most of his stories.

It is told that when asked, on his deathbed, whether his reports were true
or not, Marko Polo replied: “I have not told you even half of what I saw”.

ca 1272 CE Alfonso X, El Sabio; ‘the learned’ (reigned 1252–1284,
Spain), ordered the compilation of new astronomical tables to replace the

three years in Bokhara they proceeded to China, meeting Kublai Khan in 1266

in Peking. They reached Acre in 1269, bearing letters to the Pope from the

Mongol ruler, only to find out that Clement IV had died the previous year and

that the Cardinals had not yet elected a successor. And so they returned to

Venice, where Nicolo’s wife had died in his absence, leaving a son – Marco, who

was then 15 years old.
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Toledan tables which had been edited by al-Zarquli two centuries before in
the same city. The so-called Alphonsine Tables were prepared in 1272 under
Alfonso’s direction, in Toledo, by Yehudah ben Moshe ha-Kohen (Jewish
physician and astronomer), and Itzhak ha-Hazzan89 (Jewish astronomer,
constructor of instruments, and translator from Arabic into Spanish). The
original tables are lost, but the introduction is extant, and thus we have a
definite idea of the nature of these tables.

The scientific fame of Alfonso is based mainly on his encouragement of as-
tronomy. He was brought up in an intellectual atmosphere which was impreg-
nated with Muslim and Jewish influences. He completed the incorporation
of the University of Salamanca in 1254, and gathered around him a num-
ber of Jewish and Christian scholars to continue the transmission of Muslim
knowledge to Christendom and the translation of Arabic writings into Span-
ish. Within this framework, he ordered the translation into Castilian of the
Quran, of Talmudic and Kabbalistic writings, and of a number of astronom-
ical treatises. Thus Alfonso was one of the greatest intermediaries between
Arabic and European knowledge (on the other hand it must be confessed that
he showed but little ability as a king and statesman!).

The Alfonsine Tables became known in Paris only in 1292. In their Spanish
form they could hardly exert any influence outside of the Iberian peninsula.
They owed their immense popularity to the Latin versions, which were printed
for the first time in 1483. They were superseded by the Rudolphine Tables
computed by Kepler in 1627.

1275–1289 CE Severe drought depleted the agricultural resources of the
corn-growing Anasazi Indians in Mesa Verde, Colorado (USA today), causing
then to migrate far from their ancient cultural centers.

1272–1307 CE Giovanni da Montecorvino (1247–1328, Italy). Trans-
Asian traveler and diplomat. Franciscan prelate. Missionary in Armenia and
Persia (ca 1280). Papal emissary to Il-Khan of Persia (1289). Founded first
Catholic mission in India and China; reached Peking (1294). First archbishop
of Peking and patriarch of the Orient (1307).

89 He is also called in the Spanish documents Itzhak Ibn Sid, and was the main

collaborator of King Alfonso. He flourished in Toledo ca 1263–1277, made obser-

vation of eclipses in 1263–1266, and invented or improved various astronomical

instruments. He is said to have introduced two periods of 49,000 and 7,000

years respectively for the precession and the “trepidation” (a fictitious periodic

variation in the precession of the equinox based on an error in Ptolemy’s deter-

mination of the precession. It figured in astronomical tables until the time of

Copernicus). One recognized here a Kabbalistic influence, in the form of sabbath

and jubilee extended to astronomy.
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1275–1305 CE Raymond Lully (Ramon Llull, 1235–1316 CE). Cata-
lan scholar, linguist, poet, philosopher, alchemist and mysticist. Originated
symbolic logic. His principle philosophical concern was with attempting to
reconcile the seeming contraries of life, such as art and science, rationalism
and mysticism, abstract philosophy and practical life.

His Ars Generalis (1275) intended to serve as a basis for all sciences and as
a key to invention and discovery. This work was much admired, even several
hundred years later by Giordano Bruno and Leibniz.

In his main work Ars Magna90 (1305–1308) he set out his theosophical
attempt to encompass all knowledge in a Neoplatonic schema; he broke away
from the scholastic system, criticized fraudulent alchemy and made himself
some contributions to chemistry91 and mathematics. Because of his great
learning he has often been called Doctor Illuminatus.

Lully was born and reared at Palma on the Spanish island of Majorca,
where Christian civilization was in close contact with both Jewish and Arabic
lore. He was the first Christian scholar to study the Kabbalah, which he
regarded as a divine science and a true revelation of the rational soul. He was
a great linguist and obtained (1311) the consent of the Council of Vienna for
teachers of Hebrew and Arabic to be admitted to the papal schools and the
great universities.

Lully traveled throughout Asia Minor and North America, attempting
to convert Muslims. According to legend he was stoned to death at Bugia
(Tunisia).

1275–1310 CE Levi ben Avraham ben Hayim (ca 1240–1315, France).
Natural philosopher, astronomer and mathematician. Recognized heat as a
form of motion four centuries before Robert Boyle (1675).

Levi was born in Villefranche-de-Confluent to an illustrious rabbinic fam-
ily. He studied at Perpignan and Montpellier and was instructed in astronomy
and mathematics by Yaacov ibn Tibbon. He was the grandfather of Levi

90 Lully, searching for the way to break through the stranglehold which Scholas-

ticism had upon science, used the Kabbalah and the works of the Spanish Jew

Avraham ibn Latif (1220-1290) as a basis for his book Ars Magna. Avraham

merged Kabbalah, Aristotelianism, mathematics, and natural science into a uni-

fied system. His works were translated into Latin and caught the attention of

Lully.
91 He is credited with the discovery of ammonia and supported the importance of

sulfur . His work makes him also as one of the precursors of symbolic notation

and combinatorics.
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ben Gershon. His book Loyat Chen (adornment of grace) is a comprehensive
encyclopedia of the sciences known in his day.

Levi lived in poverty, seeking a living through the teaching of science and
foreign languages. Persecuted by the rabbinic establishment because of his
rationalistic interpretation of the Bible92, he was forced to wander in Provene.
He died in Arles.

Medieval Cosmology

In 1227 CE the Bishop of Paris, Etienne Tempier, issued 219 condemna-
tions of all professors who dared to place limits on the power and scope of the
supreme being.

Pierre Duhem (1906), the French historian of science showed that the
condemnation stands as a landmark in the history of cosmology, and that
the year 1277 could serve as a fiducial for the birth of modern science for the
following reason:

In the Middle Ages, Arabs, Jews and then Christians, in their philosoph-
ical and theological studies, adopted the Aristotelian system of concentric
celestial spheres. The Arabs created the primum mobile, an outer sphere that
transmitted motion to all other spheres and was itself driven by divine will.
The high Middle Ages became an age of scribes translating Arab and Greek
manuscripts. The new knowledge exceeded the scope of the monastery and
cathedral schools, and communities of learned scholars founded the universi-
ties. Students flocked to these centers of learning, and the translated works
of Aristotle, Euclid, Ptolemy, Galen, and other sages of the ancient world
revealed vistas of knowledge that exalted the power of the human mind. The
earth-centered universe of Ptolemy was especially congenial to the way me-
dieval scholars thought. Once it was introduced to Europe in the 12th century

92 Levi endeavored to render rational explanations to biblical miracles. e.g. he

interpreted Joshua 10, 12–14 as Joshue’s prayer onto God to grant him enough

strength to reach Gibeon before sunset and then arrive at the valley of Ayalon

before moonset. The Biblical narrator then confirms that his prayer was indeed

accepted.
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(by way of translation from the Arabic texts of the ancient Greeks), it swept
through the universities like wildfire.

But ecclesiastical authorities grew alarmed. The wholesale adoption of an-
cient beliefs about the nature of the universe threatened to transform Chris-
tian doctrine beyond recognition. Granted that the earth rests at the center
of the universe, and granted that the heavens consist of rotating spheres; but
to go further and assert that even God, if he so willed, could not move the
earth, or could not create other worlds than the earth, as taught by profes-
sors in the school of art, controverted the tenets of sacred doctrine. Tempier’s
condemnations were aimed at the new Greek learning that was being taught
in the academies. His main objection seemed to be that by talking about laws
of nature, the science faculties were somehow limiting the power of God.

By proclaiming Aristotle’s fallibility and by undermining his already be-
sieged finite anthropocentric system, the bishop’s condemnation alerted schol-
ars and divines to the need for a system more compatible with the idea of
omnipotent and omniscient supreme being . Thus, scholars of the high and
late Middle Ages were inspired to seek a more ample system to accommodate
the works of a supreme being of greater power and extent.

In any case, the Ptolemaic universe was quickly amalgamated with Chris-
tian thought. The Ptolemaic universe fitted the preexisting view of a moral
universe in which man occupied a middle place, with hell beneath his feet and
heaven above. The spheres of the stars and planets were thus between man
and heaven. Volcanoes provided glimpses into the underworld, and the blue
of the daytime sky was a reflection of the glory of heaven. Demons walked at
night, when the heavenly glow was blocked by shadows – further proof of the
validity of this cosmology. Thomas Aquinas’ doctrine of the right of scientific
reason to operate according to its own rules within the larger framework of
the Christian faith only strengthened the idea of the earth-centered cosmol-
ogy; it went hand in hand with the Christian faith. The medieval universe,
then, combined the best of both worlds: the rational, phenomenon-oriented
astronomy of the Greeks and the secure and emotionally satisfying spiritual
interpretation of life offered from the earliest times by mythology. No wonder
church and secular authorities of the late Renaissance were so reluctant to
abandon this synthesis.

ca 1280 CE Nathan ben Eliezer ha-Meaati (of Cento, Italy). Trans-
lated medical Arabic work into Hebrew. Lived in Rome 1279–1283.
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1280–1288 CE Rabban bar Sauma (ca 1220–1294, China). Trans-
Asiatic traveler and diplomat. Born in Peking. Started on a pilgrimage
to Jerusalem but settled in Armenia, becoming a Nestorian Christian monk
(1243). He gained fame as ascetic and became a Nestorian prelate and later
traveled to Baghdad. Became a European ambassador to Arghun Khan, the
Mongol ruler of Persia. The purpose of this was to form an alliance with the
chief states of Christendom against the Mameluke power. In 1287, Arghun
Khan sent him back with letters to the Byzantine Emperor, the pope and the
Kings of France and England, to gain support for a crusade against Muslims
in the Holy Land. His Asian travels were then narrated in the book, giving a
picture of medieval Europe at the close of the crusading period, painted by a
keenly intelligent, broad-minded and statesmanlike observer.

ca 1280 CE Peter Olivi (Pierre fils de Jean Olivi, 1248–1298, France).
Physicist and theologian. Anticipated the concept of inertia. Further devel-
oped the ‘impetus theory ’ of motion (outlined in ca 500 CE by Joannes
Philoponus), and asserted that after an object is placed into motion by an
initial impetus, it can continue to move even though the propellant force is no
longer applied (this counters Aristotelian tradition, in which motion required
the continued action of an external motive force).

Olivi was born in Sérignan, Languedoc, and joined the Franciscan Order
in Beźiers (1260). He studied in Paris and died in Narbonne.

1281 CE A typhoon sank the entire fleet of Kubla Khan just as it landed
in Kyushu, Japan, aborting the possible occupation of Japan by the Mongols.
This event is the source of the Legend of the Divine Wind – the Kamikaze.

1285–1289 CE Spectacles93 (lens for myopia) were invented in Venice
[called ‘Occhiali’]. Popularized by Alessandro della Spina (d. 1313), a

93 It is well known that Goethe was no friend to spectacles, of which he said

(1830): “Whenever a stranger steps up to me with spectacles on his nose, a

discordant feeling comes over me, which I cannot master. It annoys me so much,

that on the very threshold it takes away a great part of my benevolence, and

so spoils my thoughts, that unconstrained natural play of my own nature is

impossible. . . It always seems to me as if I am to serve strangers as an object for

strict examination, and as if with their armed glances they would penetrate my

most secret thoughts and spy out every wrinkle of my old face. But while they

thus endeavor to make my acquaintance, they destroy all fair equality between

us, as they prevent me from compensating myself by making theirs. For what

do I gain from a man into whose eyes I cannot look when he is speaking, and

the mirror of whose soul is veiled by glasses that dazzle me?”.
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Dominican at Santa Caterina monastery of Pisa, and Slavino degl’ Ar-
mati (d. 1317). Their production spread to the south Netherlands, where
they were called ‘brillen’. The earliest mention of spectacles was in 1316.

1286 CE Appearance of Sefer ha-Zohar (The Book of Splendor): an alle-
gorical, symbolic and mystic commentary on the Torah. Building on earlier
Kabbalistic works, the Zohar deals with the nature of God, the nature and
design of human soul; the mysteries of Creation, the Messiah and redemption.

There are two way of dealing with the problems of religion. One is the way
of the philosophers, like Saadia and Maimonides, who use reason to arrive at
whatever religious truth is humanly comprehensible. This method results in
a system of religious thought which is called theology .

Obviously, theology cannot appeal to everybody, for it is the product of
fine-spun reasoning and systematic logic, requiring acute intellectual powers
and large resources of knowledge. The masses of the people could not be
interested in this method of describing their religion. Moreover, when difficult
times come upon a religious group, it wants a warm faith, some assurance that
God is near and friendly, not a theology which depends upon cold logic.

The method of mysticism was, therefore, more suitable for the Jews of
the 13th and 14th centuries. For to the mystics God was a matter of daily
experience in direct and intimate contact. They had no objection to speaking
of him in human terms. No wonder that mysticism grew among the Jews
in Spain in direct proportion to the somber difficulties of their life as Jews.
It is not surprising, therefore, that the Zohar became the chief expression of
Jewish mysticism. Apart from the tremendous impact it had on Jewish life, it
has also influenced Christian theology. It carried the Jewish Messianic fervor
over more than 700 years under the guise of Hasidism and eventually Zionism.

Nobody knows for sure who wrote Sefer ha-Zohar. Some believe that
parts of it were composed by Avraham ben Shmuel Abulafia (1240-1291,
Spain). It is however certain that its final editor was Moshe ben Shem-Tov
de Leon (1245–1305, Spain).

1288–1301 CE Ricoldo di Monte Croce (1242–1320, Italy). Near-
Eastern traveler and Dominican missionary. Traveled extensively in Israel,
Mesopotamia, Asia Minor, Armenia and Persia, and described his journeys in
a detailed Itinerarius. As a traveler and observer his merits are conspicuous.

1290 CE Expulsion of the Jews from England94. They were readmitted on
Feb 4, 1657, under Cromwell.

94 A mass-expulsion of 16, 000 people by Edward I .

Jews first arrived in England in 1066 at the invitation of William the Conqueror,

who depended on their capital to forge a strong English state. King William



638 2. Slumber and Awakening

For the next 484 years, the mass-expulsion of Jews by European monar-
chies was often exercised; e.g.: France [1394, 1615]; Italy and Sicily [1492-3,
1569]; Germany [1450]; Russia [1727]; Vienna [1670] Prague [1774].

1291–1455 CE Ugolino and his brother Vadino Vivaldo. Genoese
explorers. Headed the first expedition in search of an ocean way from Europe
to India. They left Genoa in May 1291 in two galleys. The galleys were
well armed, and sailed down the Moroccan coast to a place called Gozora
(Cape Nun), in 28◦47′N, after which nothing more was heard of them. In
1315, Sorleone de Vivaldo, son of Ugolino, undertook a series of distant
wanderings in search of his father, and even penetrated to the Somali coast. In
1455 another Genoese seaman, Antoniotto Uso di Mare, sailing in service
of Prince Henry the Navigator of Portugal, claimed to have met, near the
mouth of the Gambia River, with the last descendant of the survivors of the
Vivaldo expedition. He was told that the two galleys had sailed to the sea of
Guinea; in that sea one was stranded, but the other passed on to a place on
the coast of Senegal, where the Genoese were seized and held in captivity.

Rufus, successor to William, even forbade Jews to convert to Christianity because

that would “rid him of valuable property and give him only a subject”. At one

time the Jews sent a deputation begging permission to leave the country. It was

refused, because they were still too useful to the treasury. Slowly their wealth

was drained out of them, until by the end of the 13th century their financial

value was nil. Besides, the Lombards, Italian bankers, had come to England and

had taken the place of the Jews in England’s economic life. Under the vigorous

urging by the Church, the kingdom felt it could get along without them and

expelled them. As Jews became essential again to English economy, they began

to resettle there under Cromwell in 1657.

A Jewish community lived in Oxford since 1090 CE. On Sept 3, 1189, many

Jews were killed in a riot that broke during the coronation of Richard the Lion-

Hearted. On Jan 31, 1253, Henry II forbade Jews in England to build new

synagogues. After the expulsion, their synagogue became a tavern (1309) and is

now a part of Christ-Church. Their cemetery (in use 1231–1290) is now part of

the Botanical Gardens and of Magdalen College.
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Time Reckoning in Antiquity

In the ancient Near East and the world of Greece and Rome, all systems
of time reckoning used cues provided by the periodic motions of the earth,
sun and moon, which functioned as time-standards. Two parallel systems of
time-reckoning were recognized. The first, known already to dynastic Egypt,
consisted, like our modern one, of 24 hours of equal length and used by
astronomers (‘equinoctial hours’ or ‘equal-day hours’).

In the second, known as ‘seasonal hours’ or ‘temporal hours’ [which
Herodotos attributed to the Babylonians] the period of daylight is divided
into 12 hours and the night into 12 hours or ‘watches’. Consequently, the
length of the hour depended on latitude and season.

The interval between two successive returns of a fixed point on the sphere
to the meridian is called the sidereal day, and sidereal time is reckoned from
the moment when the vernal equinox passes the meridian, the hours being
counted from 0 to 24. Clocks and chronometers regulated to sidereal time are
only used by astronomers, to whom they are indispensable, as the sidereal
time at any moment is equal to the right ascension of any star when just
passing the meridian. For ordinary purposes solar time is used.

The solar day, as defined by the successive returns of the sun to the merid-
ian, does not furnish a uniform measure of time, owing to the slightly variable
velocity of the sun’s motion and the inclination of the orbit to the equator,
so that it becomes necessary to introduce an imaginary mean sun moving in
the equator with uniform velocity. The equation of time is the difference be-
tween apparent (or true) solar time and the mean solar time. The latter is
that shown by clocks and watches used for ordinary purposes. Mean time is
converted into apparent time by applying the equation of time with its proper
sign. (As the equation of time varies from day to day, it is necessary to take
this into account, if apparent time is required for any moment different from
noon.)

While it has, for obvious reasons, become customary in all civilized coun-
tries to commence the civil day at midnight, astronomers count the day from
noon, being the transit of the mean sun across the meridian. The ancient
astronomers, although they left us ample information about their dials, water
or sand clocks, and similar timekeepers, are very reticent as to how these were
controlled. Ptolemy, in his Almagest, states nothing whatever to show how
the time was found when the numerous astronomical phenomena which he
recorded took place.
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However, Hipparchos gives a list of 44 stars scattered over the sky at
intervals of right ascension equal to exactly one hour, so that one or more
of them could be on the meridian at the commencement of every sidereal
hour. (It has been shown that the right ascensions assumed by Hipparchos
agree within about 15′, or one minute of time, with those calculated back
to the year 140 BCE from modern star-places and proper motions.) The
accuracy which, it thus appears, could be attained by the ancients in their
determinations of time was far beyond what they seem to have considered
necessary, as they only recorded the hours of astronomical phenomena (e.g.
eclipses, occultations) without ever giving minutes.

The Arabs had a clearer perception of the importance of knowing the
accurate time of phenomena, and on observing lunar eclipses, never failed
to measure the altitude of some bright star at the beginning and end of the
eclipse. A sketch of the principal method of determining time is as follows:

In the spherical triangle ZPS between the zenith (Z), the pole (P ) and
the star (S), the side ZP = 90 ◦ − φ (φ being the latitude), PS = 90 ◦ − δ
(δ being the declination) and ZS = ζ = 90 ◦ − observed altitude. The angle
ZPS = t is the star’s hour angle or, in time, the interval between the moment
of observation and the meridian passage of the star. We have then

cos t = (cos ζ − sinφ sin δ)/ cos φ cos δ.

This formula can be made more convenient for the use of logarithms by putting
ζ + φ + δ = 2S, which gives

tan2
(1
2
t
)

= sin(S − φ) sin(S − δ)/ cos S cos(S − ζ).

According as the star was observed west or east of the meridian, t will be
positive or negative.

The sidereal time = t + α, (where α is the right ascension) and δ are
taken from an ephemeris. If the sun had been observed, the hour-angle t
would be the apparent solar time. The latitude observed must be corrected
for refraction, and in the case of the sun also for parallax.)

Time in antiquity was kept by sundials, sand-clocks or water-clocks which
were the only mechanical time-recorders. Of these, the sand clock is the earli-
est timekeeper independent of celestial bodies, but is inefficient for measuring
time for more than a limited duration.

A combination of water-clock and mechanical clock appeared for the first
time in China (1092), but totally mechanical clocks (that is, clocks equipped
with a weight drive setting a train of wheels in motion with a simple oscillatory
escapement) appeared for the first time in Western Europe in the late 13th

century.
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The English word ‘clock’ is related to the French word ‘cloche’, meaning
a bell. Bells played an important part in medieval life, and it is probable that
mechanisms for ringing them, made of toothed wheels and oscillating levers,
paved the way for the invention of mechanical clocks. The earliest public
clock known on the European continent outside Italy was constructed at the
Strasbourg cathedral in 1352. The builder (unknown) worked at it for two
years. Nothing remained of that old clock except the rooster, preserved in the
Frauenhaus, Strasbourg.

Chaos and Misery95 (1300–1450)

The 13th century represented the acme of scholastic thought and medieval
culture. Contributions of the time to literature, philosophy, science, and the
pure and applied arts rose to the highest levels since antiquity. But what
advance could be anticipated during the 14th century, during which the decline
in learning was accelerated by war and pestilence?

Yet, strangely enough, the century seems to have been responsible for
more striking additions to science and technology than was its predecessor.
Gunpowder, the compass, spectacles and mechanical clocks may have been
adumbrated before 1300, but it was the 14th century which saw their effective
introduction into European civilization.

In mathematics the graphical representation of functions, and in physics
the revival of the concept of impetus or inertia and the suggestion of new laws
for the motion of a freely falling body, are among the outstanding examples
of the development of scientific thought of the time.

95 For further study, see:

• Tuchman, Barbara W., A Distant Mirror, Ballantine Books: New York, 1978,

677 pp.
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In the 14th century there was hardly a place, certainly not a country in
Europe which was ever free for a whole year from war, plague, or starvation.
No place was ever delivered from fear for a single day, for to the natural
fears caused by physical calamities, wars, revolts, and general lawlessness
were added the artificial fears bred by superstitions and unreason. One could
possibly escape natural miseries, but no one could escape the nightmares of
his own mind: devils, witches and evil eye.

The Church dominated everything and every person. Every action or
idea had its theological aspect; every form of nonconformism, or protest was
construed as heresy. Thus, anything concerning the church would affect every-
thing else.

From 1305 to 1377 the papal court was removed from Rome to Avignon, in
Southern France, to escape the turmoil which was raging in Italy (the so-called
‘Babylonian Captivity ’). This was followed by the Great Schism (1378–1417),
dividing Western Christendom into two hostile parties which excommunicated
each other (popes in Rome and anti-popes in Avignon). All this shattered the
spiritual basis of Europe; people began to wonder and doubt, and the Church
was so weakened that it was unable to resist the greater and lasting Schism
which was to occur a century later. The Great Schism was, indirectly, one of
the main causes of the Reformation.

The most obvious cause of the troubles of the last medieval centuries was
economic depression; by 1300, Western Europe had reached the limit of its
capacity to produce food and manufacture goods. There were no more reserves
of fertile land to bring into cultivation. For many years there was no significant
increase in industrial output; most towns barely held their own (the Italian
towns fared better due to increased Mediterranean trade on account of the
Crusades). Until Europe found new markets and new forms of production,
economic stagnation created a climate hostile to innovation and efforts to
cooperate for the common welfare. Each individual, community or class was
eager to preserve the monopolies and privileges that guaranteed it some share
of the limited wealth available.

Economic weakness led to weakness of most governments. Rulers were
always short on money, for the old taxes brought in less and less and it
was very difficult to levy new ones. Salaries of government officials were low
and most officials supported themselves by taking fees, gifts, and bribes from
private citizens. Secular rulers had neither the ability to make realistic plans
for the welfare of their people, nor the authority to impose such remedies
as they did devise. Most secular rulers could think only of increasing their
revenues by conquering new lands or robbing their own wealthy classes96.
Such a policy solved no problems; it merely postponed them for the victor

96 In France, for example, Philip the Fair (Philip IV, reigned 1285–1314) expelled
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and aggravated them for the vanquished. With governments discredited by
futile and costly wars, many men lost faith in their political leaders and turned
to rebellion and civil war.

The leaders of revolt were members of the landed nobility, who still had
wealth and influence though they had lost their old rights of feudal gov-
ernment. Their main purpose was to preserve their privileges or to direct
government revenues to their own pockets. The other classes fared no better
than the nobles. The bourgeoisie were inept at running their own municipal
government.

The townsmen split into factions – old families against new families, rich
against poor – and the faction in power tried to ruin its opponents by discrim-
inatory taxation. As a result, local self-government collapsed in town after
town. As for the peasants, they were far more restive and unhappy than they
had been in the 13th century. With no new lands to clear and no new jobs
to be had in the towns, they had little hope of improving their lot. Some of
them managed to ease the burden of payments and services to landlords by
renegotiating their leases or by moving from one estate to another. The peas-
ants rebelled in country after country, killing landlords, burning records, and
demanding that payments for their lands be lowered or abolished altogether.

Feudal institutions were thus breaking down everywhere with lords ground
between the royal yoke on the one hand, and the growing independence and
insubordination of the townspeople on the other. The feudal world was on
the decline. Its two pillars, the papacy and the kingship, were crumbling.

The main series of wars was the Hundred Years’ War (1337–1453) between
England and France. Those wars were fought on French territory, aggravated
by civil wars among the French people, and caused much misery. It has been
estimated that 1/3 of the French population was destroyed; the destruction
of wealth was at least as great.

One of the main causes of chaos and misery was the existence of mercenary
troops, recruited by captains from among the most lawless and restless ele-
ments of many nations. These companies were hired by princes or towns when
the latter needed military assistance, and discharged when the need was over.
In times of peace between two campaigns, however, these companies, drawing
no pay, robbed and tormented the peasants, and sacked or blackmailed the
cities.

the Jews (1306) and confiscated their money. He then cooperated with Pope

Clement V (French too) and the Inquisition to abolish the wealthy Order of

the Knights Templar and made their treasury a section of the royal finance

administration (1307–1312).
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The effects of economic depression, political confusion and religious un-
certainty were intensified by terrible outbursts of the bubonic plague, known
as the Black Death (1347–1400). The panic caused by the plague drove the
sorely tried people of Western Europe into emotional instability. It is no ac-
cident that the bloodiest peasant rebellions and the most senseless civil wars
took place after the plague, and that the witchcraft delusion, unknown in the
early Middle Ages, then reached its height. Innocent men and women were
falsely accused of practicing black magic. The rationalism and confidence in
the future that had been so apparent at the height of medieval civilization
were gone.

Concurrent with the economical regression of Western Europe, there ap-
peared a new military danger in the East – the Turks. The Turks arose in
Central Asia in the 6th century CE. They converted to Islam in the 9th and
10th centuries, and in the 11th century began to attack the Byzantine Em-
pire. Under Osman I, the Turks advanced towards the heart of the Empire
through gradual infiltration. Later, in a series of military campaigns (1317–
1340), they completed the conquest of Anatolia and the Black-Sea ports with
the exception of Constantinople. In 1345, these Ottoman Turks first crossed
into Europe, and by 1400, under Bayazid I, they were in partial control of
the Balkans, challenging the Mediterranean commercial lines of Venice and
Genoa, and had Constantinople under siege.

Another Turkish Muslim tribe, under Timur (Tamerlane, ca 1336–1405),
began (1370) a long series of raids and wars, conducted with incredible energy
and ferocity. Timur conquered, destroyed, and decimated many of the lead-
ing cities of his time: Isfahan (1387), Edessa, Moscow (1395), Delhi (1398),
Aleppo, Damascus, Baghdad (1401), Bursa, Smyrna (1402). In many places
he built pyramids of human skulls to serve as warnings. His expeditions and
conquests influenced the whole of Asia and Eastern Europe, either directly or
indirectly through the nomadic populations which were hustled out of their
usual territories, or through the sedentary populations which were uprooted
and violently displaced.

The Timurian invasions caused a fantastic reshuffling of Asiatic cultures,
because whatever blows Timur delivered were transmitted from one end of
Asia to another with incredible speed due to the extreme mobility of nomadic
tribes. Thus, the Arabic cultures of the Middle East [already weakened by the
destruction of Baghdad by Hulagu (1258), the Black Death (1348, 1381), and
the Turkish Hegemony] suffered upheavals and decline in 1393 when Timur
conquered and sacked Mesopotamia and Baghdad (its population nearly ex-
terminated!).

Consequently, the destruction of the Eastern Islamic world begun by
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Jenghis Khan in the first half of the 13th century, was completed by Timur97

a century and a half later. It never recovered from this calamity.

In 1400 Timur invaded Anatolia and challenged Bayazid for the leadership
of the Turkish peoples. A military confrontation was inevitable: on July
20, 1402, the two armies met at Angora (Ankara), with nearly one million
combatants on either side. The Ottomans were completely defeated, and
Bayazid was captured. Fortunately for Europe, Timur turned east, to conquer
China, and died in 1405 before embarking on this mission.

The Ottoman Turks, however, made a rapid recovery: by 1453, Con-
stantinople was taken and soon became the Turkish capital.

The misery that befell the population of Europe was amplified in the case
of the Jews. In 1306 they were expelled from France, in 1348 from Germany,
in 1349 from Hungary, in 1394 from Provence, in 1421 from Austria, in 1492
from Spain, in 1495 from Lithuania, and in 1497 from Portugal.

1295–1318 CE Rashid al-Din Fadlullah (1247–1318, Persia). Physi-
cian, theologian and historian. Of Jewish descent. Physician to the Mongol
sovereigns of Persia in Tabriz. Vizier of the empire (from 1298). Composed
encyclopedic universal history Jami al-tawarikh (‘Collection of chronicles’).

Held office under the Mongol sultan Abaqa Khan and his successors
Ghazan, Uljaytu and Abu Said. The envy aroused by his great wealth and
grandiose benefactions enabled his enemies to procure first his deposition

from office and then his execution on the charge of having poisoned Uljaytu.

His great history was begun as a history of the Mongols at the invitation
of Ghazan Khan, who put the state archives at his disposal, and continued as
a universal history, for Uljaytu. The work is notable for impartiality, clarity
of style, and the wide range and authority of its sources.

97 Timur’s raids also finished the destruction of the irrigation system which had

made the Mesopotamia of earlier days a paradise. It is said that in Sassanian

times (before the Muslim conquest) a squirrel could travel from Seleucia to the

Persian Gulf without ever having to come to ground. The canals and ditches

without which the earth lost its fertility were neglected or destroyed, and grad-

ually disappeared. Timur completed the job.
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1297–1307 CE John Duns98 Scotus (1265–1308, Scotland). Philo-
sopher. One of the earlier forerunners of the scientific method. A Franciscan
monk. Probably born in the Scottich village of Duns. He was educated at
Oxford and the University of Paris. He taught theology at Oxford (1301) and
at Paris (1303), and died at Cologne. He is most noteworthy for his criticism
of the views of Augustine and Aquinas, for which he suffered great personal
ridicule; his name was disparaged by his opponents who, after his premature
death, publicly burned his books and distorted the meaning of his doctrine.

Duns Scotus emphasized separation of philosophy from theology, of reason
from faith, of independent thought from dogma. Contrary to his own expec-
tations, the movement generated by his thought (Scotism) led away from the
Church rather than toward it. His insistence on demonstrative proof (perhaps
because of a mathematical background in his Oxford education) led him to
a demarcation between rationalism and empiricism that has followers among
modern philosophers. He taught that philosophy must be regarded as a sci-
ence, within which logic is given a scientific realm of its own. He anticipated
aspects of Gestalt psychology , Gegenstands theory and Existentialism. In sev-
eral of his views, Duns Scotus was inspired by Shlomo Ibn-Gabirol’s Fons
Vitae (Source of Life, ca 1050) which influenced many Franciscans.

In spite of his great success as a teacher, both in London and Paris, he
was removed from Paris to Cologne (1308) due to jealousy and in the same
year died of apoplexy (according to some tradition he was buried alive).

Since the middle of the 19th century, Duns Scotus has been ranked among
the important thinkers of the Middle Ages. His influence has continued into
modern philosophy down to the present.

William of Ockham was one of his disciples.

1298–1338 CE Ritual-murder accusations (blood libels) and Host-desecra-
tion in libels lead to massacres of Jews in Southern and Central Germany in
the name of God and for the sake of their pockets. In 1298, more than 15,000
Jews were killed and 146 communities destroyed in six months. Among the
communities affected were Röttingen, Würzburg, Nüremberg and Bavaria.
Again, during 1336–1338, 10,000 more were killed and 120 communities were
destroyed.

The pattern had been set, and in the ensuing two centuries ritual-murder
accusations against the Jews reached epidemic proportions throughout the

98 The stubborn opposition of Scotists to classical studies of the Renaissance gave

rise to the use of the word dunce for pedant or blockhead. It signifies the age-old

contempt in which his posterity has held the man who dared criticize Aquinas.
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continent. By the 15th century, ritual-murder accusations had died out, al-
though they were briefly revived in the 17th century Poland and late czarist
Russia. The stealing-of-the-Host hysteria reached its height in 14th-century
Germany. By the end of the century, Host-stealing accusations also died out.
The Jews had began to flee Germany, and the rulers, seeing the economies
of their duchies stagnate, quickly stopped the canard by hanging those who
spread such false accusations. The Jews were invited to return, with assur-
ances that such charges would never again be brought against them again.

The Germans, perhaps because they were still closest to the barbaric
strain, which had nursed them, were the most barbaric in their persecutions.
Most of the anti-Jewish measures are popularly attributes to the entire Mid-
dle Ages were of German-Austrian origin, and grew only on German soil.
Here the ritual-murder charges, the Host-desecration libels, and Black Death
accusations were used to whip the population into a frenzy by sadists and
fetishists.

It was here in Germany that the cheating of the Jews reached its noblest
and purest forms. Local German princes enticed Jews to their realms under
sacred promises to protect them and solemnly gave them liberal charters,
swearing on the cross they meant it all, only to rob them later of their wealth,
confiscate their land, and then sell them protection, gangster style. One can
marvel that in spite of it all, the Jewish spirit survived, and Jewish culture
life continued. Talmudic learning still exerted its power, something realized
by Jean-Jacques Rousseau, who wrote in his Social Contract (1762):

“Through it alone [the Talmud and its ritualistic legislation] that extraor-
dinary nation so often subjugated, so often dispersed and outwardly destroyed,
but always idolatrous of its Law, has preserved itself unto our days. . . Its moves
and rituals persist and will persist to the end of the world. . .”.

1299 CE The city of Florence passed an ordinance prohibiting the use of
the new Hindu numerals (i.e. 1,2,3,4,5,6,7,8,9,0) since they were more easily
altered (e.g. by changing 0 to 6 or 9) than Roman numerals or numbers
written out in words99.

ca 1300 CE Dante Alighieri (1265–1321, Italy). Poet. Urged a reform
in the Julian Calendar for its being out of step with the tropical year by more
than a week.
99 As late as the end of the 15th century, the Mayor of Frankfurt ordered his officials

to refrain from calculating in Hindu numerals. Even after the decimal numeral

system was well established, Charles XII of Sweden (1682–1718) tried in vain

to ban the decimal system and replaced it with a base 64 system, for which he

devised 64 symbols!
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1303 CE Chu Shih-Chieh (ca 1270–1330, China). Mathematician. In
a text marking the peak of Chinese mathematics, Chu presented an iteration
scheme for solving equations (used up to degree 14) rediscovered by Horner
and Ruffini. It also contains Pascal’s triangle and gives explicit formulas for
summation of series of polygonal numbers.

1304–1310 CE Dietrich (Theodoric) of Freiberg (ca 1250–1311,
Germany). Dominican scholar, optician, meteorologist and philosopher. In
his book De iride (On the rainbow), he reports on his experiments with globes
of water and correctly explains many aspects of rainbow formation. Accord-
ing to Dietrich, the rainbow arises due to two refractions and one reflection
of solar rays. The first refraction occurs when the light ray first enters a rain-
drop, the reflection occurs within the raindrop, while the second refraction
occurs as the ray exits the raindrop. He explains the less-frequent secondary
arcs as resulting from double reflection of light rays entering near the bottom
of the raindrop100.

Dietrich had also made simple experiments on the dispersion of light by
crystals, some 362 years before Newton.

Dietrich was a Teutonic member of the Order of Preachers. He had been
a professor of theology in Germany, and the author of at least 30 works on
metaphysics and optics, of which about a dozen are now lost. From 1285 to
1296 he was the Dominican master of the large province including Germany,
Austria and the Low Countries. He then earned the degree of Master of
Theology at Paris (1297). In 1304 he was sent as German elector to the
General Chapter of the Order; and in this year at Toulouse he undertook, at
the instigation of the Master-General, Aymeric de Plaisance, his work on the
rainbow. In 1310 he went to Paris as Master of Theology. After 1311 there is
no further information about him, from which one may conclude that this is
approximately the year of his death.

1305 CE Spain banned the study of all science. Among the first victims of
the Inquisition were Christian scientists. Since this was done before the Re-
naissance could gain a foothold in that country, no major scientific discovery
had been made in the Iberian Peninsula.

100 It is remarkable that Dietrich’s theory of the rainbow was proposed at about

the same time by the Persian Qutb al-Din al-Shirazi (1281). A complete

explanation of the main rainbow could only be given after the genesis of colors

had been correctly explained by Newton in 1672, and this was done by Newton

himself in 1704. So Dietrich and al-Shirazi went just as far as it was possible to

go without knowledge of the exact law of refraction and the dispersion of light.
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1306–1322 CE Estori ben Moshe ha-Parhi (1280–1355, France and Is-
rael). Physician, translator, geographer and natural historian. First scientific
topographer of Israel. His family originated in Florenzia, Andalusia, hence
the name Parhi [= flower in Hebrew]. He studied in Montpellier under his
relative Yaacov ben Machir Ibn Tibbon. When the Jews were expelled
from Montpellier (1306) he moved to Barcelona, Toledo and finally to Egypt.
He then proceeded to Israel (1313) and established himself in Beth-Shan in
the Jordan Valley, near the Sea of Galilee. He spent some seven years (1313–
1320) in studying Israelian topography. This work he completed in 1322 and
described in his book Kaftor u-Perah. In it, he was the first to try to identify
systematically Biblical, Talmudic and Arabic place names. His work is valu-
able also from the point of view of archeology and natural history (botany,
zoology, history).

While in Barcelona, ha-Parhi translated into Hebrew medical and astro-
nomical treatises. His astronomical knowledge was derived from Avraham
bar Hiyya and Yaacov ben Machir. He was acquainted with the writings of
Hippocrates, Galen, Aristotle and Ptolemy.

1316–1343 CE Levi ben Gershon, or Leo de Banelis, or Gerson-
ides; known also as RALBAG (1288–1344, Perpignan and Avignon, France).
Mathematician, astronomer, physicist, philosopher and physician. One of the
leading mathematicians and astronomers of the European Middle Ages. Was
first to apply the algebraic algorithm of mathematical induction, if not ac-
tually inventing it. Foreshadowed Copernicus in his firm objection to the
Ptolemaic system. Stressed the importance of the sine function; emphasized
the importance of plane trigonometry and developed it, including the law of
sines. In his book ‘Sefer ha-mispar’ (‘Book of Numbers’) he calculated, for
the first time, the number of permutations of n objects, taken r at a time, and
the number of combinations of n objects taken r at a time101. He proved his
results by the method of induction102 (1321), a hitherto unknown principle,
first used by him.
101 Levi’s results, in modern notation, are: Pn,n = n!, Pn,r = n(n − 1) · · · (n −

r + 1), Cn,r =
Pn,r

Pr,r
. He also found that

∑
n n3 = (

∑
n n)2, and proved

that the numbers 2n, 3m differ by more than a unit, except for (n, m) =

(1, 0), (1, 1), (2, 1), (3, 2). This latter theorem has connections with Fermat’s

Last Theorem through the so called “ABC conjecture” – a topic of great interest

among number theorists.
102 The first to formulate the principle of mathematical induction was Francesco

Maurolico (1575).

The Principle of Mathematical Induction: If for a given assertion P (n) we can
prove that:

1 ◦. The assertion is true for n = 1;

2 ◦. If it is true for index n = k, then it is also true for index n = k + 1;
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Levi invented a new astronomical instrument bearing the name cross-
staff . [It is a long graduated staff with a short perpendicular crosspiece, later
called transversary . To measure an angle, e.g., the altitude of the sun, the
observer holds the staff in his hand and, sighting from one end of it, moves
the crosspiece until one end touches the horizon and the other the center of
the sun.] It remained for centuries one of the main tools of navigation.

In physics he completed the invention of the camera obscura (Alhazen,
1026) in the sense that he rationalized it, popularized it, and tried to account
for the dimensions of the images. He then used the camera and his cross-staff
to determine more exactly the variation in the apparent diameters of sun and
moon. These determinations were important elements in the comparison of
conflicting planetary theories.

Levi realized the prodigious distances of the stars from the earth: the
stars may be considered as points, their rays as parallel, and the size of their
images in the camera depends only on the size of the aperture. He explained
how to observe the progress of lunar and solar eclipses. He compiled astro-
nomical tables (1320) and wrote a treatise explaining in detail the motion of
stars and planets, criticizing the Almaghest and the leading medieval Arab
astronomers, whose observations and calculations he corrected. As his astro-
nomical writings were soon available in Latin and were very well received, he
influenced Western astronomy strongly and rapidly.

Then the assertion is true for every positive integer n.
Consider for example the inequality 2n < n10 + 2. It is found to be true for

all n < 59, but 259 ≈ 5764 × 1014 > 5910 + 2 ≈ 5111 × 1014. It is not hard to

prove that the inequality is false for all n > 59.
Another example, this time from geometry, also serves to show how intuitional

induction may lead us astray: n points are marked arbitrarily on the circumfer-

ence of a circle, each joined to all others by straight lines. What is the maximum
number of regions formed altogether? Simple counting yields for the first five

cases the sequence 1, 2, 4, 8, 16 and one would have liked to stop explicit con-

struction there, hoping that an = 2n. But alas! The next term for n = 6 is 31,
breaking the convenient pattern. The general formula, obtained via induction,

is
1

24
(n4 − 6n3 + 23n2 − 18n + 24) ≡ n +

(n

4

)
+

(
n − 1

2

)

.

It yields the following sequence for n = 1, 2, . . . , 12:

1 2 4 8 16 31 57 99 163 256 386 562 · · ·

Pascal borrowed the idea from Maurolico and clarified it in his Traité du triangle

arithmétique (1655) [Bull. Amer. Math. Soc. 16, 70–73, 1910; Amer. Math.

Mont. 24, 199–207, 1917].
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Yet, he shared with his Arabic, Latin, and Greek contemporaries and
predecessors the inability to use the zero and the positional decimal notation,
and used no numerals except Hebrew letters.

He was born at Bagnols in Languedoc, the maternal great grandson of
Nahmanides. Little is known of his life. His family had been distinguished
for piety and exegetical skill, but though he was known in the Jewish com-
munity for his commentaries on certain books of the Bible, he never seemed
to have accepted any rabbinical post; the freedom of his opinions may have
put obstacles in the way of his advancement. He is known to have been at
Avignon and Orange during his life. Part of his writings consists of commen-
taries on the portions of Aristotle then known. Some of these were printed in
the early Latin editions of Aristotle’s works.

His most important treatise, which secured him a place in the history of
science, is entitled Milhamot Adonai (The Wars of God), and was thirteen
years in the making (1316–1329). A portion of it, containing an elaborate
survey of astronomy as known to the Arabs, was translated into Latin in
1342 at the request of Pope Clement VI. Medieval astronomers have used the
astronomical instruments invented by him. On account of his boldness and
the suspicion of heresy that clung to him, Milhamot Adonai was a forbidden
book103. There is evidence that Spinoza was influenced by the writing of
Gersonides.

1320–1330 CE Maximus (Manuel) Planudes (1260–ca 1330). Promi-
nent Byzantine scholar and mathematical writer. Author of numerous works,
among them two books on the Arithmetic of Diophantos and arithmetic based
upon Hindu-Arabic numerals. Planudes possessed a knowledge of Latin at a
time when Rome and Italy were regarded with hatred and contempt by the
Byzantines. By his translation, he paved the way for the introduction of the
Greek language and literature into the West.

He seems to have been among the first of the mathematicians to use the
word million104, which is not found anywhere before the 13th century.

103 Levi ben Gerson was the intellectual product of Greek-Arabic thought that

streamed from Babylonia, Alexandria and Spain. Both the content and method

of his religious writings were influenced by his training and outlook as math-

ematician, astronomer and philosopher. The orthodox followers of Rashi

rejected his daring discussions of religious matters.
104 One of the most striking features of ancient arithmetic is the rarity of large num-

bers. There are exceptions, as in some of the Hindu traditions, in the records of

some of the Babylonian tablets, and in the Sand Reckoner of Archimedes, with

its number system extending to 1063, but these are all cases in which the élite of

the mathematical world were concerned; the people, and indeed the substantial
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Planudes was born at Nicomedia in Bitynia (Asia Minor), but the greater
part of his life was spent in Constantinople, where as a Greek Orthodox monk
he devoted himself to study and reading. At one time he was appointed (1327)
ambassador to Venice.

His arithmetic is of value chiefly as showing the influence of Baghdad upon
the mathematical thought of Constantinople.

1320–1340 CE Yosef Caspi ben Aba Mari (Don Bonafous de Largen-
tra, 1297–1340, France). Philosopher, grammarian and exegete. Maintained
that natural phenomena can sometimes violate the laws of nature over small
intervals of time105; he used this argument to render a logical explanation to
biblical miracles.

Caspi was born in L’Argentiere106, Southern France and died in Tarascon.
He traveled much, visiting Spain, Majorca and Egypt. He was one of the most
prolific writers of his age.

In his Will and Testament, which he wrote in 1332, he described his travels
and his studies, shedding much light on the literary and religious conditions of
the period as well as expressing his personal views on philosophy and theology.
He wrote no less that twenty-nine works (most of which are still extant in
manuscripts), mainly on philosophy and logic.

ca 1325 CE Invention of firearms. The use of cannons and guns107 implied
not only the availability of quality gunpowder, a task for the alchemist, but

mathematicians in most cases, had little need for or interest in numbers of any

considerable size. By the 15th century the ‘million’ was known to the Italian

arithmeticians, and first appeared in print in 1478. Until the World-War of

1914–1918 taught the world to think in billions (109) there was not much need

for number names beyond millions (except in physics and astronomy).
105 Example: In hindsight we can say today that classical physics fails to explain

the shining of the sun (!) and that the sun shines by a quantum ‘miracle’

namely, by proton tunneling : there is an electrostatic repulsion barrier prevent-

ing hydrogen nuclei from fusing to form Helium. Indeed, the probability of

fusion per encounter between two hydrogen nuclei in the sun is shown to be

10−434. However, with tunneling, probability rises to 10−20, but since there

are ca 1057 hydrogen nuclei in the sun’s core, fusion happens to each hydrogen

nuclei some of the time. i.e. the ‘miracle’ occurs to some nuclei at any given

time.
106 Hence the Hebrew equivalent: Caspi = made of silver.
107 The list of munitions at Windsor Castle in 1330 mentions a “large ballista”

called Lady Gunhilda, which gives us our gun. Mortar was an alchemist tool.

The word cannon is derived from the Hebrew-Greek qaneh, kanna = reed, since
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also the making of guns, a task for the armorer, blacksmith and founder. It
hinged on the progress made in the 13th and 14th centuries by the workers in
brass and bronze. The art of the founder, however, remained a very subtle
one, full of pitfalls and of secrets. As with gunpowder, it is unknown where
or by whom the discovery was made that exploding gunpowder could exert
a propelling force and drive a body through the air. We do, however find an
illustration of a primitive gun in a manuscript of 1327; moreover, there was
a powder-works at Augsburg in 1340, and both gunpowder and cannons were
being manufactured in England in 1344, and probably earlier.

The use of explosive power for the propulsion of projectiles, and the in-
ventions of guns and mortars, probably originated in Germany108 during the
third decade of the 14th century – at about the same time in various places.
By the end of the 14th century, firearms were being manufactured all over
Europe. By the middle of the 15th century, artillery would become a decisive
weapon against feudal stone castles and the traditional curtain walls of towns.

The abundance of references to the cannon in accounts of various sorts
is very remarkable. They are mentioned in the archives and chronicles of
England, France, Spain, Italy, Germany, Flanders, etc. Those early firearms
were very inefficient and did not make much impression, either military or
psychological. The revolution brought about by their use was very gradual; it
was not fully realized until the 16th century. Indirect evidence of that slowness
is provided by the continued popularity of armor. The day would come when
armor would no longer protect the bodies of men and horses, but that day
was still very distant, and in fact the period 1400–1550 was the golden age of
armor.

1325–1354 CE Muhammad Ibn Battuta (1304–1369, Morocco). One
of the greatest travelers in medieval times. During his 29 years of travel he
covered, at the very least, some 120,000 thousand kilometers by land and sea

cannons had the form of a long hollow tube.

The ballista was not necessarily a gun, and could be used for throwing stones

and inflammable substances. We know for sure that cannons were used by the

English at the siege and capture of Calais in 1347, but they could have been

used as early as 1327 by Edward III in his war against the Scots.
108 The discovery of gunpowder and firearms is sometimes attributed to a legendary

monk known as ‘Berthold der Schwarze’ who flourished in Freiburg im Breis-

gau, and made his invention in 1380. Since firearms, not to speak of gunpowder,

had already been invented by that time, he may at most have introduced some

improvements. Since there is no evidence of this either, we are led to assume

that he was the symbolic incarnation of the popular conception of a satanic

environment characterized by flashes of fire and the smell of brimstone.
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(not counting detours), and visited all the Islamic lands, India, China, Africa,
Siberia, Russia, the Balkan and Spain. On his return the Sultan of Morocco
provided him with a secretary, who transcribed and corrected his manuscripts.

He had seen more of the known world than any man before him, and much
more than the most indefatigable travelers since his time; even the list of the
regions and cities he visited resembles a gazetteer. His point of view was
never that of a geographer or a historian. He was not interested in nature,
but very much so in people, yet his account has considerable geographical and
historical value, natural history included.

Ibn Battuta was born at Tangier (Tunisia) to the Berber tribe of the
Lawata (Tunisia) into a respected family of scholars and Islamic judges (qais).
At the age of 21, after finishing his education, he set out to make the pilgrim-
age to Mecca. Along the way, the young man studied under well-known
scholars of Islam. These studies qualified him to become a judge.

In 1326, Ibn Battuta completed his first pilgrimage to Mecca. But instead
of returning home, he decided to see as many parts of Dar al-Islam as possible,
vowing never to travel the same road twice. In 1333, Ibn Battuta arrived in
India after traveling through much of west Asia. Here too, he was well-received
by the sultan of India. The sultan honored him with feasts and gifts and gave
him an important position as grand judge of the capital. After seven years in
India, the sultan appointed the traveler as ambassador to China.

Even this famed traveler was greatly impressed by China: “China is the
safest, best regulated of countries for a traveler. A man may go by himself on
a nine-month journey, carrying with him a large sum of money, without any
fear. Silk is used for clothing even by poor monks and beggars. Its porcelains
are the finest of all makes of pottery and its hens are bigger than geese in our
country.”

He was surprised by the well-established Muslim community he found in
China’s ports. China’s first mosque was built 350 years before his arrival.
Muslim merchants had come to live permanently in China to manage the far
end of their businesses. They had grown wealthy, built mosques and developed
into a thriving community.

After his return in 1354 he was appointed a qadi in Fez and died there.

1327–1335 CE Richard of Wallingford (1292–1336, England). Mathe-
matician contributed to astronomy, horology109 and trigonometry, but is best
known for the astronomical clock he designed (1327).

109 To dig deeper, see:
• North J., God’s Clockmaster: Richard of Wallingford and the Invention of

Time, Oxford Books, 2004.
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Richard was born, the son of a blacksmith, at Wallingford in Berkshire
(now Oxfordshire) in England. He studied 15 years at Oxford University
before becoming abbot of St Albans. The clock was completed about 20
years after his death (1356) by William of Walsham, but was destroyed during
Henry VIII reformation and the dissolution of St Albans abbey (1539).

Richard also designed and constructed a calculation device, known as eq-
uitorium (which he called Albion). This could be used for astronomical cal-
culations such as lunar, solar, and planetary longitudes and could predict
eclipses.

He died from what was then thought to be leprosy (although it might have
been syphilis, scrofula or tuberculosis).

1327–1367 CE Francesco Petrarca, Petrarch (1304–1374, Italy). The
most remarkable man of his time: Poet, and first true reviver of learning in
medieval Europe. Exerted great influence upon his contemporaries.

Although not a man of science himself, he was instrumental in bringing
about the downfall of scholastic philosophy, a prerequisite for the develop-
ment of experimental science. He sharply criticized astrology, alchemy, Aris-
totelianism and Averroism.

Petrarca is considered to be the ‘first modern man’; he was intensely anti-
medieval and the first to consider the Middle Ages as dark ages. With him
began the return to secular ideas – a rebirth of interest in the secular culture
of the ancients, in both the arts and sciences, and a break with the clerical
traditions of the Middle Ages. Petrarca is rightly called the father of a new
Humanism110.

He opened for Europe a new sphere of mental activity. By bringing the
men of his own generation into sympathetic contact with antiquity, he gave a
decisive impulse to that European movement which restored to freedom, self-
consciousness, and the faculty of progress to the human intellect . He was the
first man to collect libraries, to accumulate coins, to advocate the collection
of classical manuscripts. For him the authors of the Greek and Latin world
were living men, and the rhetorical epistles he addressed to Cicero, Seneca,
and Varro prove that he dwelt with them on terms of sympathetic intimacy.

• Watson, E., The St Albans Clock of Richard of Wallingford, Antiquarian

Horology, 1979, 372–384 pp.

110 The medieval science was dominated by preoccupations with God . The Re-

naissance thinkers were more interested in man. From this circumstance the

new cultural movement derives the name Humanism.
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Petrarca regarded the orator and the poet as teachers, bound to complete
themselves by education, and to exhibit to the world an image of perfected
personality in prose and verse of studied beauty.

The life of Petrarca was that of a spectator rather than a participant. He
did not actually take part in the administration of government, and did not
ever practice a profession, marry or fight a battle.

Petrarca was born in Arezzo to a notary that was banished from Florence.
The impoverished family wandered to France and settled in Carpentras. Dur-
ing 1320–1326 Petrarca studied law at Bologna. In 1326 he settled in Avignon
and began an ecclesiastical career (he never went further than the minor or-
ders). There he came to the attention of Cardinal Giovanni Colonnas and his
brother, the Bishop Giacomo, who where Petrarca’s reliable patrons for many
years. Through their financial support he improved his social standing, and
lead the good life of a carefree traveler and bibliophile (he was a keen collec-
tor, hunter and discoverer of manuscripts, including Greek texts he could not
read himself).

During 1330–1336 he traveled extensively in France, Germany, Italy, Spain
and England, and in 1341 was crowned Poet Laureate by Robert of Naples on
Capitoline in Rome. During 1343–1361 he served on papal political missions
as ambassador to Naples, Milan, Prague and Paris. He had two children by
an unknown woman (son 1336; daughter 1343) which he eventually legitima-
tized. After 1361 he wandered restlessly about Italy, invited by churchmen,
princes and friends. Wherever he found himself, he wrote incessantly, com-
posing new works and polishing old ones, releasing them when he thought
them sufficiently elegant to circulate. In 1368 he settled in Arquà111 with his
daughter and son-in-law and died there four years later.

1328–1349 CE The Oxford Calculators: a group of four Merton Col-
lage scholars consisting of Thomas Bradwardine (1290–1349), William
Heytesbury, Richard Swineshead (also known as Richard Suiseth) and
John Dumbleton.

These skillful mathematicians and logicians were first to differentiate kine-
matics from dynamics. Their studies emphasized kinematics and included
the concept of instantaneous velocity . They were the first to enunciate the
mean speed theorem which states that a body traveling at constant velocity
will cover the same distance in the same time as an accelerated body if its
velocity is half the final speed vf of the accelerated body with constant accel-
eration a. They were able to demonstrate this theorem even without Galileo’s

111 A village in the Euganean hills overlooking the Adriatic. On the 18th of July

1374, his people found the old poet and scholar dead among his books in the

library of his little house.
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formulation,

v̄ =
d

t
=
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2at2

t
=

1
2
vf .

Thomas Bradwardine (1328) discussed the issue of the hypothetical free
fall of bodies in void and concluded that two bodies of the same material
but different size, will fall with the same terminal velocity, contradicting the
Aristotelian view that the heavier body falls faster. He was afterwards raised
to the high offices of chancellor of Oxford University and professor of divinity.
From being chancellor of the diocese of London, he became chaplain and
confessor to Edward III, whom he attended during his wars in France.

In 1349 he was appointed archbishop of Canterbary, but died of the
plague at Lambeth forty days after his consecration. At about 1350, Richard
Swineshead (Suiseth) became the first person to show that a sum of an infinite
series may converge to a finite number; specifically, he showed that

∞∑

n=1

n

2n
= 2,

thus braking the Zeno curse which hang over mathematics for two millennia.
(At about the same time the Frenchman Nicole Oresme demonstrated the
divergence of the harmonic series.)

1330 CE William of Ockham (1285–1349, England). Natural philo-
sopher and logician. One of the most profound speculative minds of the
scholastic period. His logico-metaphysical system foreshadowed the trend of
science and natural philosophy prevailing today. Followed to its conclusion,
his secular attitude would adumbrate our present predisposition towards ob-
servation, experiment and theory. Encouraged stronger emphasis on obser-
vations, and the separation of science and theology. Advocated the building
of a theory on the least number of simple premises necessary for explanation
of the facts – “Pluritas non est pondera sine necessitate”, which is known as
“Ockham’s Razor” (principle of economy).

This principle, traceable back to Aristotle and the Jewish Talmud , has
become one of the foundations of modern science. Thus, when two, otherwise
equally successful, theories, compete for explaining a set of observations, the
advantage goes to the one theory which rests on the least number of premises.

In accordance with the scholastic legacy of Augustine (354–430) and
Thomas Aquinas (1225–1274), the theory of knowledge in all its diverse
aspects was completely dependent on theology and ontology. Science in the
modern sense of the word was practically unknown, and what did exist was
totally subservient to the Church. It is without doubt the inalienable merit of



658 2. Slumber and Awakening

this Franciscan scholar that he sundered anew the calamitous union of faith
and reason. The ‘razor’ clearly entails the rejection of the Platonic conception
that universals exist apart from and prior to so-called real things.

Ockham emphasized the distinction between statements referring to lan-
guage and statements referring to things. Denying independent reality to
mere abstractions, he anticipated the phenomenalist and positivist schools
and Mach’s economy of thought.

We may say that Ockhamism was a powerful factor both in the disinte-
gration of medieval thought and in the slow elaboration of modern science. It
became one of the main guides used by scientists to choose between alternative
views. It asserts that there is no special virtue in elaborate and complex expla-
nations, as opposed to a few, simple hypotheses that imply the observed facts.

Ockham was born in Southern England. He joined the Franciscans and
eventually became prominent in that religious order. Ockham studied at
Oxford University and then taught theology. In 1324, Pope John XXII sum-
moned him to Avignon, France, to answer charges of heresy. Ockham re-
mained in Avignon for four years. In 1328 he fled from Avignon to the pro-
tection of Louis of Bavaria, who was the Holy Roman emperor and an enemy
of the Pope. Ockham lived in Münich, Germany from 1330 until his death.

1332 CE Millions perished in India and China by an outbreak of Bubonic
plague.

1337–1345 CE Parching drought with consequential famine in Central Asia
and China may have caused and accelerated the migration of rodents carrying
the bubonic plague westward into Europe.

Diseases and History112

“He that is in the field shall die with the sword; and he that is in the city,
famine and pestilence shall devour him.”

Ezekiel 7, 15 (ca 590 BCE)

112 For further reading, see:
• Karlen, Arno, Men and Microbes, Touchstone Book: New York, 1995, 266 pp.

• Cartwright, F.F., Disease and History, Dorset Press: New York, 1972, 248 pp.
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“Typhus, plague, cholera, typhoid, dysentery had decided more campaigns
than Alexander, Caesar, Hanibal, Napoleon, and the inspector general of
history. The epidemics get the blame for defeat, the generals for victory. It
ought to be the other way around.”

Hans Zinsser

For 10,000 years, since the first hunter-gatherers settled in villages, infec-
tions had killed more people than war, natural disasters and famine.

Disease is as old as life. Infection was already ubiquitous when higher
organisms left their first fossil traces, some 500 million years ago. Dinosaur
bones 250 million years old have marks of bacterial infection, as do the remains
of mastodons and saber-toothed tigers. Evidence has accumulated to support
the idea that all complex cells evolved through the merger of simpler ones, in
what began as parasitism and ended in symbiosis.

Indeed, cellular invasions can be witnessed today that resemble those the-
orized for the past. The adaptation of parasite and host goes through stages
called epidemic, endemic, and symbiotic. A germ entering a virgin population
– one that is unfamiliar and has few defenses against it – often causes acute
diseases in people of all ages. This is the classical picture of an epidemic: if it
involves much of the world, it is called pandemic. The survivors are usually
left with improved defenses against reinfection; over generations, additional
defenses may develop. The disease eventually becomes endemic, a widespread,
lower-grade infection or routine childhood disease.

For several millions years, the main causes of human deaths were acci-
dents and wounds. With the coming of sedentary life, nutrition and longevity
declined, famine and infection became the leading causes of death. For the
next 10,000 years, it was common for microbes to strike people down at every
stage from infancy to late life.
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Farming, timbering, animal domestication, irrigation, pollutions and other
traumas to natural ecosystems have created new breeding grounds for malaria,
and such intensional diseases as dysentery and cholera. Plowing, irrigation
and fertilizer invited other diseases into Neolithic settlements. Domesticated
animals brought new diseases to Neolithic humans. Virtually, every step our
ancestors took to increase and vary food supply invited more infections. Fur-
thermore, when they had turned to farming 5000 years ago, a diet heavy in
carbohydrates caused their size and health to decline.

Malaria was not very important until humans created villages; than it
became one of the most influential diseases in human history. (It still kills
million children each year in Africa and another million in the rest of the world.
Together, malaria, schistosomiasis and tuberculosis cause more sickness and
death world-wide than any other three infectious diseases). For thousands of
years, malaria, sleeping sickness, helminth infections and diarrheal diseases
limited the size of human populations.

The population explosion of the Bronze age, 6000 years ago, took city
dwellers beyond a critical threshold. By the late Neolithic, irrigated fertile
plains around the world supported cities as large as 100,000 people. These
first appeared in the valleys of Tigris and Euphrates in Mesopotamia, then
along the Nile in Egypt, the Indus in India, and the Yellow River in China.

Urban masses became sufficiently large and dense to support ‘crowd dis-
eases’ (zymotic), what in other species are called ‘herd diseases’. For the
first time, infection became humanity’s chief cause of death. (despite a few
respites, this would remain true in the West until 20th century.) The rea-
son epidemics did not take hold until urban times is simply the conditions
imposed by numbers. While nomads were not free of infection, their most
common diseases were chronic, not acute. People did not live densely packed
together, aiding transmission of germs from one person to another. Their
settlements were sufficiently far apart, and travel was sufficiently limited, to
keep outbreak of diseases localized.

Furthermore, most bacterial and viral infections with epidemic potential
leave survivors temporarily or permanently immune. When such disease did
jump from an animal to nomads or villagers, they flashed through the pop-
ulation; soon most of people in a community were either dead or immune.
The microbes, having run out of susceptible hosts died off. Only years or
generations later could the germ attack successfully again depending on new
crop of susceptibles and another accident of reintroduction.

When farmers and villagers began crowding into cities, this immunolog-
ically virgin mass offered a feast to germs lurking in domesticated animals,
wastes, filth, and scavengers. Countless people were sickened and killed by
previously unknown epidemics – smallpox, measles, mumps, influenza, scarlet
fever, typhus, bubonic plague, syphilis, gonorrhea, and common cold.



1337 CE 661

Plague became epidemic only 3000 years ago, when people began to live
in large settlements. In the years 1490–1920 typhus killed more people than
armies had. Thus, from their beginnings until the 20th century, cities have
been pestholes. Only when towns became big cities did massive die-off become
regular part of human life.

Diseases associated with civilization is older than written history, for civ-
ilization of a kind existed before the earliest records were kept. The earliest
known textbook of medicine, the Great Herbal of the Emperor Shen Lung,
dates from about 3000 BCE, and there is a Babylonian physician’s seal of
approximately the same date in the Welcome Historical Medical Museum,
London. Epidemic fevers are mentioned in the Ebers Papyrus, found in a
tomb at Thebes (1862) and dated about 1500 BCE.

In the Old Testament (book of Exodus), there is an account of a plague
which smote Egypt about 1500 BCE. The war-pestilence sequence is well
described in Samuel I. The disease spread throughout Israel, bringing death
(ca 1141 BCE) to about 50,000 people. The plague of Athens (430 BCE)
provides a striking example of the effect of disease upon the course of history.
The pestilence is supposed to have started in Ethiopia; from there it traveled
to Egypt and was carried across the Mediterranean by ship to Piraeus and
Athens. This plague undoubtedly contributed to the downfall of the Athenian
empire.

In general, foci of infections have developed in Mediterranean, Europe,
Egypt, Mesopotamia, India and China. Each area, with its own climate,
ecosystem, and germs, had a distinctive set of infections, to which people
adapted with a distinctive complex of immune defenses. But commerce,
war and travel caused epidemics to spread across the world and merge all
local foci into one. There were more people, bigger armies, better trans-
port.

Thus, for example, the conquest of South and Central America by the
Spaniards in the 16th century ended with disastrous consequences for the
Amerindians: In 1568, less than 50 years after Cortés arrived in Mexico, its
total population was decimated from 30 million to mere 3 million. According
to one estimate, smallpox alone killed 18 million people in Mexico in the 16th

century. In Peru, the Inca population sank from 8 million to 1 million. In
North America and Australia, the native suffered similar slaughter by the
European microbes.

In the centuries after 1500, exploration, technology, and diseases gave
Europe control over much of the world. By about 1700, most of its own
diseases had been domesticated to endemics; the traffic of unfamiliar microbes
was unidirectional: from Old World to the New. Pandemics, which began with
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the Black Death, were now a regular feature of human life and the movement
of hosts and pathogens all over the world would keep increasing.

By the late 18th century, the Industrial Revolution was under way, and
urban population soared. Social changes had never run at such a pace. The
shift from nomadism to farming had taken millennia; the rise of industry and
the megalopoli spanned only a couple of centuries. From the Neolithic to
1820, world population rose from 5 million to about 1000 million; much of the
increase came at the end of the span. After population surges such as those
of the Roman era and the Late Middle Ages, famine and plague had erased
much of the gains. The growth that began in the 17th and 18th centuries was
unique; it continued at an ever faster pace, and it ran out of control to this
day.

During 1951–1993 new diseases had their first appearance or recognition.
Among them Ebola fever, Legionnaires’ disease, AIDS. On the other hand,
limited or controlled revival became widespread (e.g. Cholera, Diphtheria,
Malaria, Syphilis, Tuberculosis). Even in places where they are controlled,
they break out lethally when natural disaster, social chaos, or war disrupts
modern defense against them.

Table 2.4 lists some historically significant epidemics since the first
recorded worldwide plague of 767 BCE.

1332–1364 CE Ibn al-Shatir (1306–1375, Damascus). Astronomer.
Made valuable astronomical observations with instruments of his own design,
and criticized the accepted astronomical theories. He fully realized the need
for continued and precise observations if one would discover the true motions
of heavenly bodies. He determined the obliquity of the ecliptic113at Damascus
in 1363/4 to be 23 ◦31′. (The correct value extrapolated from the present one
is 23 ◦31′19.8′ ′.)

1335 CE Yaácov ben Asher (1270–1343, Germany and Spain). One
of the great codifiers of Jewish law. Fused three generations of European
Talmudic thought into one great code. Through subsequent centuries this

113 The value obtained by Ibn Yunus (990) was 23 ◦35′. That obtained by

William of Saint-Cloud (fl. in Paris 1292–1296) for 1290 was 23 ◦34′ (the

value for that year computed by means of LeVerrier’s formula is ca 23 ◦32′30′′).
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Table 2.4: Historically significant epidemics

Year Location Disease Comments

ca 1350 BCE Asia Minor, Hittite
Empire

unknown

ca 1235 BCE Egypt Bubonic
plague

Exodus 12, 29

ca 1050 BCE Israel Bubonic
plague

Samuel 5, 9-12

767 BCE Europe and Mediter-
ranean world

Bubonic
plague

First recorded world-
wide epidemic

480 BCE Persian army of
Xerxes

Dysentery Herodotos

430 BCE Ethiopia, Egypt,
Athens

Scarlet fever Thucydides

187 BCE Egypt, Syria, Greece unknown Pliny
79–88 Egypt, Syria, Italy,

Rome
Bubonic
plague

165–189 Roman Empire Smallpox Galen
251–270 Roman Empire,

Rome
Smallpox,
measles and
malaria

caused mass conversion
to Christianity

542–594 Europe, Asia, Africa Bubonic
plague

Old world pandemic;
began in Ethiopia and
Egypt; millions perish

735–736 Japan Smallpox Facilitated spread of
Buddism

746–749 Constantinople,
Greece, Italy

Bubonic
plague

200,000 perish

1097 Near East (1st cru-
sade)

Typhoid
fever

100,000 die

1218 Egypt 67,000 die
1235 England 40,000 die

1332–1370 Europe and Asia Bubonic
plague

ca 50 million die;
‘Black Death’ pan-
demic;

1408–1551 England Bubonic
plague

(“Sweating Disease”)

1494–1495 Europe Syphilis
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Table 2.4: (Cont.)

Year Location Disease Comments

1507–1595 South and Central
America

Smallpox,
typhus

ca 80 million natives
die

1528–1530 Italy Typhus More than 100,000 die
1591 Philippines Smallpox
1600 Russia Bubonic

plague
500,000 perish

1590–1711 European cities
(Italy, England,
France)

Bubonic
plague

ca 2.5 million perish

1760–1799 North Africa, Egypt,
Syria

Bubonic
plague

ca 1.2 million perish

1812–1813 Napoleon’s army Dysentery ca 500,000 die
1817–1893 Worldwide (5 waves) Cholera ca 10 million perish in

the pandemic; spread
by contaminated water

1851–1855 England Tuberculosis 250,000 die
1889–1890 Worldwide Influenza ca 3 million die; moves

with a speed of trains
and steamships

1898–1923 China, India, North
Africa and South
America

Bubonic
plague

ca 20 million die

1917–1920 Europe and Asia Influenza,
typhus

ca 25 million die

1921–1923 India Cholera ca 1 million die
1926–1930 India Smallpox ca 500,000 die

1981– Worldwide AIDS
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code formed the cornerstone of Jewish legislation. Moreover, it played a direct
and vital part in the creation of the legal system of Western civilization114

Ben Asher was born at Cologne, Germany. Due to local persecution of
Jews he was forced to flee, with his father (1303), through Savoy and Provence
to Barcelona. About 1314 he was living in poverty and sickness in Toledo,
and in fact he endured privation throughout his life, but declined a position
as a rabbi. Through his father, a great Talmudist in his own right, he be-
came acquainted with the works of the Franco-German scholars; in Spain he
became acquainted with the Spanish Talmudists, and his subsequent wander-
ing through Western Europe familiarized him with the customs of its varied
communities.

His life work, which revealed a profound knowledge of Jewish literature,
was his Arba Turim (The Four Columns), after the four columns of Jewels
on the breast place of the high priest. It was intended to supply coordinated
information for the average Jew, and therefore concerned itself only with those
laws which were still in force after the destruction of Temple. Ben Asher
started this monumental undertaking when he was a young man. The laws
are grouped in the form of connected arguments, recording all the decisions of
earlier rabbis down to his own. They terminate in a decision, and the author
usually makes his father the decisive authority. Yaacov writes very objectively
and never tries to force an opinion upon the reader. The work became so
popular that it was regarded as “the people’s possession and people’s lawbook
of the entire Jewish world”. Many commentaries on it were written, and
glosses were frequently added to it; it eventually became the basis of the
Shulhan Aruch.

Ben Asher’s code answered the need of the times because it combined the
rich strands of French, German, and Spanish learning into one tapestry of

114 When the Jews arrived in England, the English method of settling legal disputes

was through trial by combat. The Jews, on the other hand were accustomed

to judicial procedure base on evidence, examination of witnesses and impar-

tial judges. Thus, they demanded and were granted the right to use Talmudic

guidelines in dispute with Christians. As early as the 2nd century CE Talmudic

law had specified that in property disputes the verdict of 12 men, agreed upon

the litigants would be legally binding on both parties. After a century, even the

Anglo-Saxons found the Jewish method of settling disputes better then trial by

combat. By the 13th century this “Jury” method found its way into British

common law.

The famed due process of law concept, so firmly embedded in the Fifth and

Fourteenth Amendments of the American Constitution, and derived from the

Magna Carta, stems from the 10th century interpretation of the Talmud. This

Talmudic concept of due process of law was stated most succinctly by Mai-

monides several decades before the signing of the Magna Carta.
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European Talmudism. His lucid writing, his logical arrangement of subject
matter, his encyclopedic knowledge of the entire gamut of Talmudic develop-
ment over 300 years, and his clever way of presenting dissenting opinion while
pointing a way out of the jungle of dissent, made his Four Columns the most
popular and definitive code.

1337–1453 CE The Hundred Year War . A struggle between England and
France for control of France that consisted of a successions of wars broken by
truces and treaties. It extended over the reign of five English and five French
kings and culminated in the battle of Agincourt (1415), where Henry V won
one of the most famous victories in English history with an army that was the
best-trained and best equipped fighting force since the Roman legions (this
battle was immortalized by Shakespeare in his historical play Henry V ).

The English won most of the battles, but the French won the War. By the
time the war ended in 1453, England had lost all its territory on the continent
of Europe, except Calais, which was regained by France in 1558.

Firearms were first used in the Hundred Year’s War. Artillery came into
use during 1335–1345 and the major battle involving firearms was on Aug 26,
1346: Edward II of England invaded France with 10,000 man and defeated
some 20,000 Frenchmen at Crécy.

1338–1353 CE Giovanni dei Marignolli (ca 1285–1357, Italy). Traveler
Franciscan Friar. Left a journal of his travels in China, India, Ceylon, Persia,
Mesopotamia, Syria and Jerusalem (1352). He was sent on a mission to the
court of Emperor Togon Temür of China by Pope Benedict XII (1338), reach-
ing Peking (1342), where he remained for four years. He returned to Arignon
(1353), delivering a letter from the Mongol-Chinese Emperor to Pope Innocent
VI. Later (1354), Marignolli became chaplain to Emperor Charles IV.

ca 1340–1377 CE Immanuel ben Yaacov Bonfils (14th century,
France). Physician, mathematician and astronomer. Taught and wrote in
Orange and Tarascon. Published the highly regarded astronomical tables,
Kanfe Nesharim (Wings of Eagles; Exodus 19, 4; Isaiah 6, 2) [which were
translated into Latin in 1406 and commented upon in Greek], primarily as an
aid in the determination of the Hebrew calendar.

Manuscripts of 15 of his works have survived to our time [nine of them are
in the National Library of Paris]. One of them, Derech Hilluq , contains an
exposition of an arithmetic which consistently employs the decimal system of
notation for integers and fractions, and positive and negative exponents. It
also includes an algorithm for root extraction.

Immanuel of Tarascon thus took his place in the line of the contributors
to the development of the decimal system.
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Mathematics in the Medieval world115 (800–1500 CE)

A. Jewish contribution (1100–1500 CE)

Talmudic scholars in South-Western Europe were among the leading math-
ematicians in the Middle Ages (see Table 2.1).

Bar Hiyya was a key figure in the transmission of mathematics to the
Christian West, translating texts from Arabic and Hebrew into Latin. In
his book Liber embadorum he presented a complete solution of the quadratic
equation

x2 + b = ax,

showing that it has two roots. The book exerted deep influence upon the
development of Western mathematics and was used by Leonardo of Pisa as
the foundation for his text books on arithmetic, geometry and trigonometry.

Levi ben Gershon was one of the leading mathematicians and as-
tronomers of the European Middle Ages. In his book ‘Sefer ha-Mispar’ (‘Book

115 For further reading, see:

• Lindberg, D.C. (Editor), Science in the Middle Ages, University of Chicago

Press: Chicago, 1978, 549 pp.

• Grant, E. (Editor), A Source Book in Medieval Science, Harvard University

Press: Cambridge, 1974, 864 pp.

• Jones, Terry and Alan Ereira, Medieval Lives, BBC Books, 2006, 224 pp.

• Rundle, D. Ed., The Hutchinson Encyclopedia of the Renaissance, Helicon
Publishing, 1999, 434 pp.

• Sarton, G., Six Wings, (Men of Science in the Renaissance), Indiana Univer-

sity Press: Bloomington, 1957, 318 pp.

• Dales, R.C., The Scientific Achievement of the Middle Ages, University of

Pennsylvania Press: Philadelphia, 1973, 182 pp.

• Johnson, Paul, The Renaissance, The Modern Library, 2000, 196 pp.
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of Numbers’), he calculated, for the first time, the number of permutations,
Pn,r, of n objects, taken r at a time.

Pn,r = n(n − 1) . . . (n − r + 1), Pn,n = n!.

He then calculated the number of combinations, Cn,r, of n objects taken r at
a time.

Cn,r = Cn,n−r, Cn,r =
Pn,r

Pr,r
.

He also found that
N∑

n=1

n3 =
( N∑

n=1

n
)2

,

and proved that the numbers 2n, 3m differ by more than a unit, except for
(n, m) = (1, 0), (1, 1), (2, 1), (3, 2).

He proved his results by the Principle of Mathematical Induction, hitherto
an unknown principle, first used by him in 1321. As we now formulate this
method of the proof, a property S(n) of natural numbers n is proved to hold
for all n if we can prove S(1) (the base step) and, for arbitrary n, S(n) =⇒
S(n + 1) (the induction step).

Francesco Maurolico (1575) was the first to formulate the principle of
induction. Pascal (1655) borrowed the idea from Maurolico and clarified it
in his treatise Tracté du triangle arithmetique.

Levi foreshadowed Copernicus in his firm objection to the Ptolemian sys-
tem. Stressed the importance of the sine function, emphasized the importance
of plane trigonometry and developed it, including the law of sines.

Aramah was active during 1470–1494 as a philosopher, mathematician
and Talmudic scholar. He was first to formulate the statistical law of large
numbers (1470) in his book ‘Akedat Itzhak’ (published in Saloniki: 1522).
There he stated, over two centuries ahead of Jacob Bernoulli (1770):

“Ordinary lots due to chance are without any tendency to one side
or the other... They are not a ‘sign’, for matters of this kind are
not established unless they are found many times... The casting
of a lot indicates primarily a reference to chance.”

Aramah was born in Zamorah, Spain and served as a head of rabbinical
academies in various Jewish learning centers. He was expelled from Spain
(1492) and died in Naples, Italy. His philosophical system was influenced by
Aristotle and Maimonides, and deals specifically with such major questions
as faith and reason. Aramah became popular and influential and his thinking
represents the mainstream of Jewish medieval philosophy.
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Immanuel Bonfils calculated highly regarded astronomical tables, em-
ployed the decimal system of notation for integers, fractions and positive and
negative exponents (1340 CE). He also developed an algorithm for root ex-
traction.

Avraham Ibn Ezra wrote five books on mathematics and astronomy,
including research on arithmetic, number theory, combinatorics and astronom-
ical tables. He adopted the positional decimal system (1140 CE) for integers
with place-values from left to right, and denoting the zero by a special sign of
the wheel (‘galgal’ in Hebrew). In his book ‘Ta’hbulah’ he discussed the Jose-
phus problem. In his Sefer-ha-Mispar (book of numbers) we find the rule of
summation of an arithmetical progression: “Whoever would know how great
the sum of the numbers is which follow one another in a series to a certain
number, multiply this by its half increased by 1

2 .” That is

Sn = n

(
n

2
+

1
2

)

=
n(n + 1)

2
.

Ibn-Gabirol (fl 1040–1058) was a philosopher of striking originality,
whose philosophical system had powerful impact upon medieval Christian
thinkers as well as on Spinoza and Schopenhauer. His chief work, the
‘Source of Life’ was translated from the Arabic into the Latin in the middle
of the 12th century by Dominicus Gundissalvus, archdeacon of Segovia,
under the name ‘Fons Vitae’. And just as Ibn Sina was corrupted into Avi-
cenna and Ibn Rushd into Averroes, so Ibn-Gabirol traveled down the ages
under the disguise of Avicebron.

Since his work shows a total and absolute independence of Jewish religious
dogma, he exercised little influence upon Jewish thought. His doctrine of
creation is at the base of the Lurianic cosmology which itself was later found
to be coherent with modern cosmology.

Maimonides was first to claim clearly that π is not rational (1160 CE)
and can only be approximated by ratio of integers. He further stated (without
proof) that squaring the circle by rules of Greek geometry is impossible.

In his book Mishneh Torah (“Repetition of Teaching” the most distin-
guished code of Jewish law), Maimonides discusses the mathematical theory
of visibility of the moon, needed for ascertaining the beginning of the month
(‘consecration of the moon’). Therein he developed a simple approximation
method of ascertaining whether the moon was visible from the West point. In
this connection he writes (Hilchoth Kiddush Hachodesh, Chapter 11, 1-17):

“Lest any mathematician think that the approximate methods
sometimes described are due to my ignorance of the more accurate
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mathematical ones, let him dismiss such an idea from his mind. I
have only employed such methods when I was convinced by com-
parison with the results obtained by the strictly mathematical -
but more laborious - methods that the calculation of the moon’s
visibility is not appreciably affected by such approximations. He
will further find that any appreciable positive or negative differ-
ences incidental to such approximate methods cancel themselves
out, with the consequence that sufficiently accurate results are fi-
nally obtained without the labor of a long calculation which might
frighten away the non-mathematical reader”.

No modern applied mathematician could have issued a better apologia for
approximate methods them did Maimonides 800 years ago!

Maimonides made a significant contribution to the physical concept of
time. In his work The Guide to the Perplexed (1190) he wrote (in Arabic):

“Time is composed of time-atoms, i.e., of many parts, which on account
of their short duration cannot be divided. . . An hour is, e.g., divided into 60
minutes, the minute into 60 seconds, the second into 60 parts and so on; at
last after ten or more successive divisions by sixty, time-elements are obtained
which are not subjected to division, and in fact are indivisible. . .”.

He thus concluded that there were 6010 or more such time-atoms in one
hour!

The notion of Maimonides that time is composed of ‘time-atoms’ is known
today in the parlance of physicists as chronon. If indeed space-time is discrete
(quantized), then the scale must be very small to agree with experimental
observations. Indeed, the present smallest directly observable division of a
second, which is better then 1 × 10−13 sec, is coming close to Maimonides’
division of 60−10 ∼ 5 × 10−15 sec.

Levi ben Avraham was a natural philosopher, astronomer and math-
ematician. Recognized heat as a form of motion, 400 years before Robert
Boyle (1675 CE).

Levi was the grandfather of Levi ben Gershon. He lived in poverty, making
a living through the teaching of sciences and foreign languages. Persecuted
by the rabbinic establishment because of his rationalistic interpretation of the
Bible, he was forced to wander in Provance (Narbonne, Beziers). He died in
Arles.

Yosef Caspi, in his book Will and Testament (1332), maintained that
natural phenomena can sometimes violate the laws of nature over a small
interval of time. (He used this argument to render the logical explanation to
biblical miracles). This idea was ahead of its times by more than 600 years.



1340 CE 671

Yehudah ibn Verga invented (Lisbon, 1457) a new instrument to deter-
mine the sun’s meridian and wrote a number of books on mathematics and
astronomy. He died in the dungeons of the Portuguese Inquisition (1499).

Zacuto’s astronomical tables, maritime charts and new astrolabe played
an important role in the Spanish and Portuguese discoveries, especially in the
voyages of Columbus and Vasco da Gama.

Zacuto’s achievements in astronomy were many: his astrolabe of copper,
the first of its kind (previously they had been made of wood), enabled sailors
to determine the position of the sun with greater precision; his astronomical
tables, based on the Alphonsine tables, were an improvement on the latter.
They permitted sailors to ascertain latitudes without recourse to the meridian
of the sun, and to calculate solar and lunar eclipses with greater accuracy.

Columbus used Zacuto’s tables on his voyages, and on one occasion they
were instrumental in saving him and his crew from certain death. Knowing
from the Zacuto tables that a lunar eclipse was imminent, Columbus threat-
ened the natives that he would deprive them of the light of the moon as well
as of the sun. (A copy of the tables, with Columbus’ notes, is preserved in
Seville). Zacuto’s astronomical work Ha-Hibbur ha-Gadol (the Hebrew orig-
inal is extant in several manuscripts) enjoyed a wide reputation during his
lifetime.

Yehudah Abravanel (fl. 1490–1520 CE) was a mathematician, as-
tronomer, physician and one of the great philosophers of the Renaissance.
In 1497 he drew attention to the periodic conjunction of Jupiter and Saturn,
occurring about every 20 years. The sign of the Zodiac in which they occur
changes from one conjunction to the other. This study was consulted by Jo-
hannes Kepler (1603) and prompted him to advance the hypothesis that
the ‘star of Bethlehem’ was indeed a conjunction of Jupiter and Saturn in
Pisces in 7 BCE.

B. Muslim contribution (800–1400 CE)

Hindu work on mathematics and astronomy during 200–1400 CE spread
westward, reaching the Arabs who, in turn, absorbed, refined and augmented
what they received, before transmitting the results to Europe. By far, the
greatest contribution of the Arabs was to pursue a process of creative synthesis
in which they blended a variety of earlier mathematical traditions including
the Babylonian, Greek, Indian, Persian and Chinese.
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This they did with an openness of mind and clear understanding of need
in mathematics (and other sciences) to balance empiricism and theory. It is
most apparent in their astronomical tables, their algebraic approach to applied
mathematical problems, the popularization of our present-day numerals, the
first systematic treatment of trigonometry and the bringing together of the
geometric and algebraic approaches to the solution of equations.

The astronomers and mathematicians who contributed mostly to this
program were: al-Kharki (950–1029); al-Khowarizmi (780–850); abu-
Mahsar (805–885); al-Kindi (815–873); ibn-Qurra (826–901); al-Harrani
(836–901); al-Battani (850–929); al-Wafa (940–998); Ibn Yunus (940–
1009); al-Haitam (965–1039); al-Biruni (973–1048); Omar Khayyam
(1048–1126); al-Marakushi (1190–1265); al-Tusi (1201–1274); al-Shirazi
(1236–1311); al-Shatir (1306–1375) and al-Kashi (1360–1436).

The Arabs played a seminal role in transmitting mathematics to Western
Europe, setting the stage for the development of modern mathematics. But
they were not just custodians of Greek learning and transmitters of knowledge.
They brought together two different mathematical strands - the algebraic and
arithmetic traditions so evident in the mathematical cultures of Babylonia,
India and China, and the geometric traditions of Greece and the Hellenistic
world. The intertwining of these strands had already begun with the latter
Alexandrian mathematicians Heron, Diophantos and Pappos, who had
absorbed much of their mathematics from Babylon and Egypt. They could
not, however, break loose from the constrains imposed by the straight jacket
of Greek mathematical tradition.

It was left to the Arabs to bring together the best of both traditions. In
doing so, they provided us with an efficient system of numeration, in which
calculations, were no longer tied to mechanical devices, an algebra which was
both practical and rigorous, a geometry which was no longer an intellectual
pastime, and a trigonometry freed from its ties to astronomy to become in-
dispensable tool in fields as diverse as optics and surveying.

Even before the beginning of Arab rule, knowledge of Hindu numerals had
spread westwards. Christian sects, particularly the Nestorians and Syrian Or-
thodox denominations, needed to calculate an accurate date for Easter, and
various astronomical texts were examined with this in mind, In fact, it was
a problem that continued to occupy mathematicians, including Gauss, down
to the 19th century. There is also the possibility, given the thriving commer-
cial relations between Alexandria and India, that the Hindu numeral system
reached the shores of Egypt as early as the 5th century CE. It would have
been regarded as a useful commercial device rather then a tool for scientific
and astronomical calculations since Alexandrian scientists continued to use
the die-hard Babylonian sexagesimal system.
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Fibonacci (1170–1250), who was first introduced to Hindu numerals by
his Arab teachers, quickly recognized the enormous advantage of the Hindu
system. The change was, however, a slow process, primarily because the
abacus remained popular for carrying out calculations, and traders and others
engaged in commercial activities were reluctant to adopt the new system which
was difficult to comprehend.

Before Muhammed, the Arabians wrote out all numbers in words. Less
then a century after the Hegira (622 CE) their empire extended from India
to Spain, including North Africa, Southern Italy and large parts of Western
Asia. In 775 the Islamic Empire split into a Western Kingdom with its cap-
ital at Cordova and an Eastern Kingdom centered on Baghdad. Both king-
doms rapidly developed a rich culture, absorbing intellectual nourishments
from the Greek, Jewish, Persian and Hindu worlds. The 9th century was the
Golden Age of Arab mathematics. Baghdad, with its fine library and lavishly
equipped astronomical observatory, became the new Alexandria.

The first Arabic arithmetic known to us is that of al-Khowarizmi, who
is believed to have visited India. On his return, about 830 CE, he wrote
his algebra treatise, which was founded on the work of Brahmagupta.
The Hindu numerals, adopted by the Arabs were brought to Spain at about
900 CE. From there they diffused to the rest of Europe by traders in the
Mediterranean area and by scholars who attended the universities in Spain.
It finally came into general use in Europe by the invention of the printing press
in the mid 1400’s. His second book on algebra also shows little originality.

Although al-Khowarizmi is often hailed as the ‘Father of Algebra’, in two
respects he looked backwards rather than forward: he rejected both algebraic
symbolism (his treatment is entirely rhetorical) and the Hindu acceptance of
negative roots and negative coefficients of equations.

Omar Khayyam went beyond al-Khowarizmi to investigate cubic and
even some quadratic equations. However, he mistakenly believed that the
general cubic equation could not be solved algebraically, but that geometrical
methods, involving the use of conic sections, were necessary. He also did not
recognize negative numbers.

Arab mathematicians addressed problems of inheritance posed by Islamic
law; geometric solutions of cubic equations, introduction of 6 basic trigono-
metric functions and the construction of highly detailed trigonometric tables
with the aid of various interpolation procedures.

One of their greatest scholars was Nasir al-Din al-Tusi, mathematician,
astronomer, physician and philosopher. In geometry, he made first attempts
to determine whether Euclid’s parallels postulate can be derived from the
other Euclidean postulates. In trigonometry he presented the law of sines
and began to separate trigonometry from astronomy. His work in these two
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areas may have influenced the further advances of Regiomontanus (1464)
and Saccheri (1733).

In 1259 al-Tusi began the construction of a major astronomical observatory
at Marãgha, where he used his self-made quadrants to observe star positions.
During 1256–1265 he conducted observation which served as a basis for his
astronomical tables (1272). His criticism of Ptolemaic astronomy was an
additional step toward the Copernican reform.

Some highlights from the works of other Arab mathematicians of the 9th

and 10th century are:

• Al-Harrani (855 CE) proved that if

p = 3 · 2n − 1, q = 3 · 2n−1 − 1, r = 9 · 22n−1 − 1,

and if p, q and r are primes, then 2npq and 2nr are amicable numbers.

• Abu al-Wafa (970 CE) Contributed considerably to the development
of trigonometry. He was probably the first to show the generality of
the sine law relative to spherical triangles116. He gave a new method of
constructing sine tables, his value of sin (30′) being correct to 8 decimal
places. He knew relations equivalent to ours for sin(α ± β) (though in
an awkward form) and to

2 sin2 α

2
= 1 − cosα, sin α = 2 sin

α

2
cos

α

2
.

He calculated a table of tangents and introduced the secant and cose-
cant.

• Al-Kharki (985 CE) gave a solution in rationals to x3 + y3 = z2

namely

x =
n2

1 + m3
, y = mx, z = nx,

where (m, n) are arbitrary rational numbers.

• Ibn Yunus (990 CE) Prepared improved astronomical tables based
on his observations at the Cairo observatory. Improved the values of

116 It is hard to determine who discovered the planar sine law

a/ sin A = b/ sin B = c/ sin C.

It is quite certain that Ptolemy knew it. It may however been rediscovered

by Abu al-Wafa or his disciple Abu Nasr Mansur (970–1036 CE).
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astronomical constants (inclination of the ecliptic, 23 ◦35′; longitude of
the sun’s apogee, 86 ◦10′; solar parallax, 2′; precession, 51.2′ ′ a year).
Introduced the trigonometric formula

cosα cosβ =
1
2
[cos(α − β) + cos(α + β)].

Ibn Yunus described 40 planetary conjunctions accurately and 30 lunar
eclipses used by Simon Newcomb (1876) in his lunar theory.

• Alhazen (1000 CE) solved the following problem: given a light source
and a spherical mirror, find the point on the mirror where the light will
be reflected to the eye of an observer. This can be reduced to the planar
geometrical construction: from two points in the plane of a circle to draw
lines meeting at a point of the circumference and making equal angles
with the normal at that point. It leads to an equation of the 4th degree.
Alhazen solved it by the aid of an hyperbola intersecting a circle. In a
similar way he also solved the cubic equation x3 + c2b = cx2, which
results from the Archimedean problem of dividing a sphere by means of
a plane into two segments at a given ratio to one another.

The Muslim contribution to the development of mathematics, viewed as
a whole, exhibits a nice blending of Greek, Babylonian and Hindu influ-
ences. While making small advances, some of their achievements, when viewed
against the scientifically sterile backdrop of the rest of the world of the time,
seem greater then they really were. Yet, there remains the outstanding fact
that they served admirably as custodians of much of the world intellectual
possessions, which were transmitted to the later Europeans after the Dark
Ages had passed.

The debt of the West is twofold. First, the Islamic scholars collected,
preserved and translated the Classical Greek mathematical texts. Secondly,
they adopted the fully developed Hindu system of numeration, which was in
due time transmitted to the West and eventually to the whole world. Although
the new system had become known in the West by the year 1000, it took
several centuries to displace the Roman number-language in Western Europe
and the Ionic Greek number-language in the Byzantine Empire. We must
remember that most arithmetical calculations were performed on an abacus
or a counting-frame; only the results needed to be recorded on paper, and
for this the Roman or Greek numerals were quite adequate. Indeed, both the
medieval abacus and the counting-frame were direct physical analogues of the
Hindu decimal system of numeration, with the symbol for zero corresponding
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to the empty column. The battle between the ‘abacists’ (the supporters of the
old Roman numbers) and the ‘algorists’ (who advocated the new system of
al-Khowarizmi) continued for centuries. As late as 1299 the city of Florence
issued an edict prohibiting the commercial use of the Hindu-Arabic numerals;
they were thought to be too easy to falsify on accounts.

The loss of Toledo by the Moores to the Christians (1085 CE) was followed
by an influx of Christian scholars to that city to acquire Muslim learning.
Other Moorish centers in Spain were infiltrated and the 12th century became,
in the history of mathematics, a century of translators. Another center of
interaction and transmission was the island of Sicily.

The location and political history of Sicily made that island a natural
meeting ground of East and West. Sicily started as a Greek colony, became
part of the Roman Empire, linked itself with Constantinople after the fall
of Rome, was held by the Arabs for about 50 years in the ninth century,
was recaptured by the Greeks, and then taken over by Normans. During the
Norman regime the Greek, Arabian, and Latin tongues were used side by side,
and diplomats frequently traveled to Constantinople and Baghdad. Many
Greek and Arabian manuscripts in science and mathematics were obtained
and translated into Latin. This work was greatly encouraged by the two
rulers and patrons of science, Frederick II (1194–1250) and his son Manfred
(ca. 1231–1266).

Among the first cities to establish mercantile relations with the Arabic
world were the Italian commercial centers at Genoa, Pisa, Venice, Milan, and
Florence. Italian merchants came in contact with much of Eastern civilization,
picking up useful arithmetical and algebraical information. These merchants
played an important part in the dissemination of the Hindu-Arabic numeral
system.

C. Christian contribution - Arithmetic comes of age

(1200–1600 CE)

After the absorption of the Hindu-Arabic number system, and the stabi-
lization of the numeral forms, the time was ripe for the standardization of the
four fundamental operations – addition, subtraction, multiplication and divi-
sion. All these evolved slowly from the times of ancient Egypt and Babylon,
and their final form became common in Europe not before the dawn of the
17th century.

Addition: The operation has not changed much since Hindu-Arabic numer-
als began to be used, as is evident from Bháskara (ca 1150) in his Lilavati.
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The “carrying” process dates from the time when a counter was actually
carried on the line abacus to the space or line above.

The evolution of the arithmetical procedure can be followed in the writings
of Fibonacci (1202), Pacioli (1494), Gemma Frisius (1540), Recorde
(1542) and Digges (1572). The name of the operation has had its vicis-
situdes: writers used ‘aggregation’, ‘composition’, ‘collection’, ‘assembling’,
‘joining’ and ‘summation’.

Subtraction: The name of the process since Fibonacci (1202) went through
the phases: extraction, detraction, subduction, deduction, rebating and di-
minishing. Only in the 19th century (!) did subtraction become common in
England and America. There have been, throughout the past nine centuries
about five different processes of subtraction, some of which are practical today.
Among them, the plan of simple borrowing (e.g. in the operation

42-27
15

the computer says: “7 from 12 is 5, 2 from 3 is 1”). This plan is very old and
goes back to Avraham ibn Ezra (ca 1140). The computer always begins
at the right and looks ahead to take care of the borrowing. This feature is
Oriental and used in the work of al-Khowarizmi (ca 825).

Multiplication: We know little about the methods of multiplication used
by the ancients. The Egyptians probably made some use of the duplation plan,
which accounts for the presence of the chapter on duplation in so many books
on the Renaissance period. Indeed, even a good a mathematician as Stifel
(ca 1525) still multiplied by successive duplation according to the scheme

1 · 42 = 42
2 · 42 = 84
4 · 42 = 168
8 · 42 = 336

16 · 42 = 672
31 · 42 = 1302

The basic idea here is the expansion of one of the multipliers in the binary
system (31 = 1.20 + 1.21 + 1.22 + 1.23 + 1.24). Our common form appears in
Pacioli’s Suma (1484) together with seven other plans of multiplication.

The oldest multiplication-tables are found already in Babylonian tablets,
where they appear in columns. The square form is found in the arithmetic117

of Boethius (ca 510) and Bede (ca 710), and became common in the 13th

century, as is evident from the writings of Jordanus Nemorarius (1225).

117 Arithmetic: from the Greek arithmeein - to number, to count.
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Many of the 16th century writers found it necessary to urge their pupils
very strongly to learn the tables, showing that the custom was relatively recent
in countries where the abacus had only just been abandoned.

Division: Defined as an unknown number R, satisfying the equation
a = bR when a and b are given. The oldest form of division (known also
as ‘partition’ in the 13th century) is the one used by the Egyptians. The
process was based upon duplation and mediation: e.g. to divide 19 by 8, they
prepared a list of multipliers of 8 by 2, 1, 1

4 , 1
8 , namely 16, 8, 4, 2, 1 and

then selected from these numbers these which have 19 for their sum. Since
19 =

[
2 + 1

4 + 1
8

]
× 8, the result of the division is 19

8 = 2 3
8 (in modern

notation).

It is impossible to fix an exact date for the origin of our present algorithm
of long division, partly because it developed gradually over some 600 years
from the time of al-Khowarizmi (ca 825). Gerbert (ca 980) introduced the
operation of ‘long division’. It may be, illustrated by the simple case of 900

8 .
The process consists of dividing 900 by 10 − 2 (2 being the complement of the
divisor) and runs essentially as follows:

900
900 − 180

10 − 2
90 + 18 + 3 + 1 + 1

2 = 1121
2

180
180 − 36

36
30 − 6

6 + 6 = 12
10 − 2
2 + 2 = 4, 4

8 = 1
2

The method was refined by Calandri (ca 1491) who was first to exhibit
it in a printed book. With the opening of the 17th century it began to replace
other methods.

Roots: Theon of Alexandria (ca 390) used sexagesimals and Euclid’s
identity (a+b)2 = a2+2ab+b2 to extract the square root of an integer. From
Greece the method passed over to the Arabs and Hindus, with no particular
improvement.

Robert of Chester (England) introduced (1145–9) the current mathe-
matical terms: ‘Algebra’ (for ‘al-jabr’ of al-Khowarizmi), ‘algorism’ (algo-
rithm), ‘sine’ (trigonometry). The Hindus have given the name ‘jiva’ to the
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‘half-cord’ in trigonometry, which the Arabs took over as ‘jiba’. In the trans-
lation he confused it with the Arabic word ‘jaib’ meaning ‘bay’ or ‘inlet’ –
which he translated into the Latin ‘sinus’.

One of the first, and certainly the most influential, of the medieval text-
books on the new arithmetic was the Liber abaci, which was completed in 1202
and revised in 1228. Its author, Leonardo of Pisa (ca 1175–1250), is better
known as Fibonacci (‘son of good nature’). His father was a Pisan merchant
who also served as a customs officer in North Africa. The young Leonardo
traveled widely and learned the Arabic methods from a Muslim teacher. His
extended trips to Egypt, Sicily, Greece, and Syria brought him in contact
with Eastern and Arabic mathematical practices. Thoroughly convinced of
the practical superiority of the Hindu-Arabic system, Fibonacci published his
Liber abaci soon after his return home. This work contains a large collection
of problems which served later authors as a storehouse for centuries.

Liber abaci was the first complete and systematic explanation of the Hindu
numerals by a Christian writer; and also, naturally the first complete exposi-
tion of Hindu and Muslim arithmetic. Leonardo, however, gave more rigorous
demonstrations than the Muslims. (It is apparent that he had a good knowl-
edge not only of Muslim, but also of Greek mathematics, largely derived from
Latin translations of Euclid, Archimedes, Heron and Diophantos.)

Liber abaci contains sections on Roman and Indian numerals and on finger
counting. Later chapters are devoted first to commercial calculations and
then to puzzles and recreational mathematics – including the famous ‘rabbit
problem’ which lead to the Fibonacci sequence. He deals with approximating
square roots, cube roots and problems on volumes, in which he takes π to be
3 1

7 .

The 14th century was a relatively mathematically barren one. It was a
century of Black Death, which swept away more than a third of the population
of Europe, and in this century the Hundred Years’ War, with its political and
economic upheavals in Northern Europe, got well under way.

Four significant events influenced the evolution of mathematics and science
in Western Europe from the 15th century onward:

• The collapse of the Byzantine Empire, culminating in the fall of Con-
stantinople to the Turks (1453). Refugees flowed into Italy bringing
with them treasures of Greek civilization. Many Greek classics, hith-
erto known only through the often inadequate Arabic translations, could
now be studied from original sources.

• The invention of printing (1440). It enabled the dissemination of knowl-
edge at an unprecedented rate.
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• The discovery of America (1492) and the consequent circumnavigation
of the Earth.

• The ruin of the Arab centers of learning and the virtual imprisonment
of the Jews in their ghettos left Christians alone at the center stage of
science for the next 300 years. The Jews will return with great vigor,
following their emancipation in the Napoleonic era.

The mathematical activity in the 15th century was largely centered in
the Italian cities and in the central European cities Nüremberg, Vienna and
Prague. It concentrated on arithmetic, algebra and trigonometry and flour-
ished principally in the growing mercantile cities under the influence of trade,
navigation, astronomy and surveying. With the interest in education and
tremendous increase in commercial activity, hosts of popular textbooks in
arithmetic began to appear.

New ideas in the 14th and the 15th century were advanced by ‘three Nico-
las’:

1370 Nicole Oresme 1323–1382 France
1440 Nicolas of Cusa 1401–1464 Germany
1485 Nicolas Chuquet 1445–1488 France

Another important mathematician, belonging to the same period is Jo-
hannes Müller (Regiomontanus). Being both astronomer and mathe-
matician he advanced spherical trigonometry (1470).

1344 CE Gregorio da Rimini (d. 1358, Italy). Augustinian Hermit,
theologian and Ockhamist. Studied in Rimini and Paris (1323–1329). In
1351 he left Paris and returned to the Augustinian house in Rimini. Died in
Vienna. Gregorio addressed the issues of continuity and infinity, discussing
such problems as whether an infinite spiral can exist on a finite body.

1347–1351 CE The Black Death epidemic of bubonic plague wreaked havoc
throughout Europe and Asia killing about 50 million people. One of History’s
greatest natural disasters. It started in 1338 near Lake Issyk-Kul (ca 78 ◦N,
43 ◦E, south of Alma-Ata) in one of the zones in which it lied endemic, and
thence it spread out, eastward into China, south to India and west along the
trade routes to reach the Crimea some eight years later. In 1347 it appeared
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in Cyprus and by the following year had spread to France, Italy, Germany
and England. In 1349 it was in Poland, Scandinavia and Scotland and in 1351
it ravaged Russia118.

About 25 million Europeans died – a depletion of about one quarter of
the continent’s population. The Black Death caused a great shortage in labor
and wages rose enormously. The result was to strengthen the position of the
workers and to hasten the end of the feudal system on which medieval society
was based.

In spite of the Calamity, the second half of the 14th century was not
essentially different from the first, as far as the history of science and learning
is concerned. It is certain that the plague caused the untimely death of many
scholars or potential scholars, but apparently other scholars took their place
and continued their work.

The medieval pandemic did not strike out of the void; earlier outbreaks
were recorded. One of these began in Arabia, reached Egypt (542 CE), fa-
tally weakened the Roman Empire of Justinian and moved on across Europe
to England and Ireland, which it laid waste in 664 CE. One of its parting
flourishes was the Great Plague of London (1665), which seemed to have died
out in the 17th century. Finally came the pandemic which started in 1892 in
Yunnan and reached Bombay in 1896, killing some six million people.

Bubonic plague is endemic to certain areas in the world: Uganda, Western
Arabia, Kurdistan, Northern India and the Gobi Desert. From time to time
it erupts there from a minor, localized epidemic. Far more rarely it breaks its
bounds and surges forth as one of the great pandemics.

In the endemic state, the bacillus Pasteurella Pestis exists in the blood-
stream of an animal or the stomach of a flea such as Xenopsylla Cheopsis ,
which in turn resides in the hair of some rodents. In 1338 it was the tarbagan,
or Manchurian marmot , a beguiling squirrel-like creature much hunted for its
skin.

To disturb the harmless steady-state existence of the bacillus, something
had to happen to make the rodents leave their habitat. It is believed that
extreme ecological environments and climatic changes such as locust, earth-
quakes, floods and prolonged droughts (known to occur during 1333–1337 in
the plains watered by the rivers Kiang and Hoai, in Honan and the mountains
of Ki-Ming-Chan) can affect rodent migration. Even without this incentive,
an increase of rodent population can put too great a strain on the available
supplies of food.

At all events a massive exodus took place and it was above all rattus rattus,
the tough, nimble, by nature vagabond, black rat which made the move. By

118 It could have been carried earlier into Europe by the armies of Jenghis Kahn.
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the middle of the 14th century rats abounded in Europe, probably having
been imported originally in the boats of the returning Crusaders.

The Black Death must have seemed to be of supernatural origin, a pun-
ishment inflicted by higher power upon unknown sinners for unknown crimes.
Culprits were sought: nobles, cripples and Jews in turn came under suspi-
cion. The Jews, in particular, were suspected of purposely spreading plague
by contaminating wells. Their persecution started at Chillon on Lake Geneva
(1348) and rapidly spread to Basel, Bern, Freiburg and Strasbourg. Jews
were herded into large wooden buildings and burned to death. At Strasbourg
over 2000 are said to have been hanged on a scaffold set up in the Jewish
cemetery. So bitter did the persecution become that Pope Clement VI issued
two Bulls declaring Jews to be innocent. Many fled from Western Europe
into east Germany and Poland. The Black Death intensified the medieval
Christian tradition of the scapegoat-Jew.

The Paris Quartet (1350–1370)

In the middle of the 14th century there arose at the University of Paris
a quartet of brilliant scholastic philosophers, two of whom are sometimes
referred to as initiators of the modern age of science.

One of them was Jean Buridan, whose opposition to Aristotelian doc-
trines made him one of the founders of modern dynamics. One historian of
science, Pierre Duhem, places the precise line separating ancient from mod-
ern science at the time (ca 1350) when Buridan applied the theory of impetus
to the heavens, thus breaking the ancient distinction between terrestrial and
celestial motions. It has been claimed that from Buridan, Galileo borrowed
the idea of momentum, Descartes borrowed the principle of the quantity of
motion, and Leibniz took the doctrine of vis viva (kinetic energy). While
such claims must be properly qualified, and although the notion of inertia has
roots in antiquity, nevertheless Buridan was by any reckoning an outstanding
figure in the history of science.

A second member of the quartet, a close associate of Buridan, was Nicole
Oresme. He was hailed as a man whose contributions to physics, astronomy,
and mathematics marked the beginning of the modern period in experimen-
tal science. The holder of more precursorship claims, advanced by modern
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admirers, than any other medieval scientist, he has variously been regarded
as a forerunner of Copernicus, Galileo, and Descartes. His appreciation of
the relativity of motion led him to advance arguments in favor of the diurnal
rotation of the earth; but more important, probably, were his contributions
to mathematics. His introduction of generalized powers in algebra, his antici-
pation of the graphical representation of functions in analytic geometry, and
his study of instantaneous rates of change, all show the originality and power
of his “hunches”. In particular, his observation that the rate of change of a
variable quantity is least at its maximum value (ca 1360), played a key role
in the calculus.

Albert of Saxony (1316–1390), a third member of the scientific quartet
at Paris and transmitter of this science to Vienna, wrote on logic, physics,
mathematics, and geology. His work on the void, on centers of gravity, and
on terrestrial erosion may well have been used later by Leonardo da Vinci.

Albert studied at Prague and then at Paris. He was the rector of the
University of Paris (1353–1362), the founder and first rector of the University
of Vienna (1365–1366), and bishop of Helmstädt (1366). Albert helped spread
the nominalist logic of William of Ockham and the ideas of Bradwardine,
Oresme and others. He was mainly a transmitter of good mathematical ideas
but did not contribute his own work to those.

The 4th member of the closely-knit Parisian group was Albert’s associate
Themo Judaei (Themon son of the Jew; fl. 1349–1361). Author of commen-
taries on physics, astronomy, and meteorology which were also probably used
by Leonardo.

Themo was born in Westphalia, and spent part of his youth in Münster.
After converting to Christianity he proceeded to Paris and studied at the
Sorbonne, passing his final examination in 1349. He became a prominent
teacher at the University of Paris and trained many students. His discussion
of the rainbow is very elaborate, comparable to that given by Dietrich of
Freiberg, and superior to that given by de Dominis (1611).

So intimately was the work of the four men interwoven that it is virtu-
ally impossible to disentangle the literary threads to determine the original
authorship in cases in which all of them wrote similar works on the same
topic. All four of them were, of course, strongly influenced by Aristotle; but
during the 13th and 14th centuries a reaction had set in against servile ac-
ceptance of Peripatetic teachings. There arose an increasing awareness of
the need for a mathematical treatment of physics and a definite inclination
to regard quantitative formulations as adequate explanations of natural phe-
nomena. Emphasis on the metaphysical “why” was being shifted, in scientific
discussions, to the physical “how”. This attitude foretold for advances in
understanding of physical phenomena.
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The Buridan school was primarily responsible for the triumph of the math-
ematical over the philosophical approach to physical problems.

Later, the teachings of Buridan, Oresme, Albert of Saxony, and Themo
found their way to other centers of learning. Paris and Oxford in particular
were at the time closely related by scholarly ties, and Buridanian doctrines
flourished in England as well as France.

ca 1350 CE Jean Buridan; Joannes Buridanus (1295–1358, France).
Post-Aristotelian philosopher of the Ockhamist school of Paris and a method-
ological contributor to science. In a commentary on the Physics of Aristotle
he showed that Aristotelian physics with its unmoved movers, its natural and
violent motion etc., was empty verbiage. He made considerable advances
in the study of motions, momentum, acceleration, and the theory of falling
bodies, and came very close to formulating Newton’s Law of Inertia.

These ideas, clearly expressed by Buridan, had been slowly taking shape at
Merton College and at the Sorbonne during the 14th century, and contributed
to the eventual downfall of Aristotelian physics and cosmogony.

Buridan insisted that scientific truth is not absolute, like mathematical
truth, but has degrees of certitude. The kind of certainty Buridan had in
mind consisted of indemonstrable principles that formed the basis of natural
science but are derivable from inductive generalization and accepted because
they have been observed to be true in many instances, and to be false in
none. Moreover, Buridan regarded these inductively generalized principles as
conditional because their truth is predicted on the assumption of “common
course of nature”. This was a profound assumption that effectively eliminated
the effect on science of unpredictable, divine interventions and with it the need
to worry about miracles in the pursuit of natural philosophy.

Miracles could no longer affect the validity of natural science. Nor could
chance occurrences that might occasionally impede or prevent the natural
effects of natural causes. On this basis Buridan proclaimed that “for us
the comprehension of truth with certitude is possible”. Using reason, expe-
rience, and inductive generalizations, he sought to “save the phenomena” in
accordance with the principle of Ockham’s Razor – that is, by the simplest
explanation that fits the evidence119

119 The widespread use of the principle of simplicity was a feature typical of me-
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Buridan studied in Paris under William of Ockham. He was a professor
of philosophy in the University of Paris and its rector in 1327. An ordinance
of Louis XI, in 1473, prohibited the reading of his works.

1350–1370 CE Nicole Oresme (1323–1382, France). One of the greatest
men of science of the 14th century who meditated and theorized on motion,
infinity and the continuum – all concepts of which are fundamental to modern
mathematics. A bishop who wrote numerous works in both French and Latin
on scholastic, political, scientific and mathematical problems. Introduced
notions that correspond to the idea of rational (fractional) exponents as well
as a concept similar to that of a function. Invented the basic idea of coordinate
geometry before Descartes (1350). Foreshadowed Galileo in his mathematical
formulation of uniformly accelerated motion. His translations of Aristotle
served to popularize science.

While accepting the Ptolemaic system of the Universe, Oresme, in a com-
mentary (1370) on Aristotle’s De Coelo et Mundo, attributed the apparent
daily motion of the stars to the rotation of the earth about its axis. He ar-
gued that the earth’s rotation is compatible with other observed astronomical
phenomena, such as eclipses of the sun and conjunctions and oppositions of
the planets.

In his unpublished Algorismus proportionum he was first to introduce
(1360) fractional exponents, which were not widely used until the 17th century.
In his tract De uniformitae at difformitate intensionum (1350) he introduced
the idea of graphical representation of functions, as the independent variable
was permitted to take on small increments, thus foreshadowing Cartesian co-
ordinate geometry through the logical equivalence between tabulated values
and their graphical display. A century after Oresme’s tract was written, it
was extant in several printings, and in this way came to the attention of
Descartes.

Among other contributions of Oresme was his proof, apparently the first
in the history of mathematics, that the harmonic series is divergent120.

dieval natural philosophy. It was also characteristic of science in the 17th

century, as when Johannes Kepler declared that “it is the most widely ac-

cepted axiom in the natural science that Nature makes use of the fewest possible

means”.
120 His proof was:

1

2
+

(1

3
+

1

4

)
+

(1

5
+

1

6
+

1

7
+

1

8

)
+ · · · +

1

n
+ · · · >

1

2
+

2

4
+

4

8
+

8

16
+ · · · → ∞.

This was shown again by Pietro Mengoli (1626–1686, Italy), who also demon-

strated that the harmonic series with alternating signs converges to {loge 2}.



686 2. Slumber and Awakening

Oresme was born in Normandy. In 1348 he was a student in the College
of Navarre at Paris, of which he became head in 1356. In 1361 he was named
dean of the cathedral of Rouen. He was advisor to Charles V of France, who
appointed him bishop of Lisieux (1377).

1360 CE Henry de Vick of Württemburg built the first mechanical
clock (with iron movement) for King Charles V of France.

1362 CE One of the North-Sea greatest stormtides. Destroyed the Island
of Strand and the city of Ronghold.

1368 CE In China, the Ming dynasty (militantly Chinese and exclusive)
replaced the Mongol Yuan dynasty (cosmopolitan and tolerant). Thus ended
for centuries the European prospects of Christianizing China, and also of
obtaining allies in Eastern and Central Asia with whom to crush the Muslim
hosts of the Near East. After a century of intercourse with the West, China
became again a remote, inaccessible country.

ca 1375 CE Narayana Pandit (1340–1400, India). Mathematician.
Gave a rule to calculate the approximate value of a non-square root num-
ber N , using the equation Nx2 + 1 = y2. He thus calculated

√
10, correct to

20 decimal places.

1375–1440 CE Avraham and Yehudah Crescas121 (or Cresques)
(ca 1330–1387; 1360–1440, Majorca, Barcelona and Portugal). Father and
son. The greatest cartographers of their age, nautical instrument makers
and founders of the Majorcan school of cartography. Avraham issued the
famous Catalan map of the world (1375). Discarding Ptolemy, it shows India
(for the first time!) as a peninsula.

In the second half of the 14th century, Jewish cartographers and instru-
ment makers (astrolabes, compasses, etc.) were active in Majorca under the
patronage of the kings Peter III and IV of Aragon. The maps were originally
intended for the use of seamen navigating in the Mediterranean and along
the coasts of the Atlantic, but in the course of time they were extended to
the mainland and ultimately developed into maps of the whole world, as then
known.

121 Personal or family name common among the Jews of Southern France and

Catalonia. It comes from the Latin verb crescere (= to grow, increase) and is

a French form of Joseph (= may God increase, Gen 30, 24). Bearers of the

name include Hisdai Crescas, the above Majorean map-makers, Crescas

Elijah (physician to Pedro IV of Aragon), and the astrologer Cresques de

Vivers.
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Avraham, who held the title magister mappamundorum et buxolarum was
in the service of the infante John of Aragon, who in 1381 presented the world
map to king Charles VI of France. He was originally from Barcelona.

His son, Jehuda Crescas, collaborated for a while with his father in Majorca
and after his father’s death (1387) continued as cartographer and compass
maker for the kings John I and Martin I of Aragon. During the riots in
Spain (1391), about 50,000 Jews in Majorca were massacred and Yehudah
was forcibly converted to Christianity to save his life. His name was changed
to Jayme Ribes. After staying in Majorca for a while, where he was known as
Io Jucu buscoler (“Jew of the map”), he moved to Barcelona (1420), migrated
(1427) to Portugal, where he instructed Prince Henry’s pilots in their art.

1391 CE Geoffrey Chaucer (ca 1340–1400, England). The greatest Eng-
lish poet of the Middle Ages. Wrote A Treatise on the Astrolabe, describing
the construction of the astrolabe and its use in calculating the position of a
star.

The astrolabe is an instrument that ancient astronomers used to measure
the angles of celestial bodies above the horizon. It consists of a metal disc
suspended from a frame so that the disk remains vertical. The disk has
sights for observing a star, and graduations for measuring its elevation. The
astrolabe became obsolete with the invention of more modern instruments,
such as the sextant .

A reduced version of the astrolabe was the quadrant , which is shaped like
a quarter of a pie with scales marked on its curved edge.

ca 1400 CE Madhava of Sangamaramma (1350–1425, India). As-
tronomer and mathematician. Discovered the series expansion equivalent to
the Maclaurin expansion of sin x, cos x and tan−1 x, about 300 years before
they were discovered in Europe (Newton 1676, Gregory 1677, Taylor 1715).
This outstanding contribution was a decisive step toward modern classical
analysis.

1405–1433 CE Zheng He (Cheng Ho) (1371–1435, China). Chinese
mariner and navigator, ‘Admiral of the Western Seas.’

China’s most famous navigator and explorer. For 28 years he traveled to
the West, totaling more than 50,000 km (in seven expeditions, and visiting
some 30 countries and territories including: Java, Sumatra, Vietnam, Siam,
Singapore, Cambodia, Philippines, Ceylon, Yemen, Arabia, Bangladesh, and
Somalia).

China has a very old seafaring tradition. Chinese ships had sailed to India
as early as the Han Dynasty. Chinese sailors had an important invention to
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help them – the compass. The compass, or “south pointing spoon,” started
out as a fortune-telling instrument.

Along the Silk Road, warfare and chaos were commonplace. The dangers
of travel were increased by roving armies, bandits and unpredictable govern-
ments. Each small kingdom along the route taxed merchants, making their
goods more expensive to the buyer. None of this decreased demand for the
goods of the Silk Road trade. But in did propel merchants to search for other
ways to transport their wares.

Merchant ships had always traveled the seaways between China and Egypt.
But the disturbances in the interior of the continent, combined with improve-
ments in shipbuilding and navigation, gave merchants all the reasons they
needed to sell their camels and invest in ships. The seas were safe by compar-
ison. Ships were faster than camels and could carry more cargo. In addition,
the countries on the coasts of the Indian Ocean were generally far removed
from the warring Mongols and the rebellions against them.

After the Mongols were overthrown in 1368, the emperor of the new Ming
Dynasty122 wanted to assert Chinese power. Because China was no longer
part of a land empire that stretched from Asia to Europe, the emperor turned
to the sea. He decided to build a navy. The Chinese made elaborate plans that
would not be fulfilled for many years. A shipyard was built at the new cap-
ital of Najing (Nanking). Thousands of varnish and tung trees were planted
on nearby Purple Mountain to provide wood for shipbuilding. The emperor
established a school of foreign languages to train interpreters. While all this
was going on, the man who would lead the navy was still an infant.

Chinese shipbuilders also developed fore-and-aft sails, the stern post rud-
der, and boats with paddlewheels. Watertight compartments below decks
kept the ship from sinking. Some boats were armor plated for protection. All
these developments made long distance navigation possible.

At the orders of the then emperor, Cheng Zu, a vast fleet set sail in July,
1405 from Liujia Harbor near Suzhou on a distant voyage. The purpose was
to establish relations with foreign countries, to expand trade contacts and
to look for treasures to satisfy the desire of the sovereign for luxuries. The
man who was given charge of the fleet was Zheng He, a eunuch. Under his
command was a vast fleet of 62 ships manned by more than 27,800 men,
including sailors, clerks, interpreters, officers and soldiers, artisans, medical
men and meteorologists.

On board the ships were large quantities of cargo including silk goods,
porcelain, gold and silver ware, copper utensils, iron implements, cotton

122 The Ming dynasty lasted until 1644. Mongol incursions and Japanese sea pirate

attacks occurred during 1522–1566.
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goods, mercury, umbrellas and straw mats. The fleet sailed along the coast
of Fujian, down south to Zhancheng and, after crossing the South China Sea,
reached such places as Java and Sri Lanka. On the way back, it sailed along
the west coast of India and returned to the home port in 1407.

Between 1405 and 1433, Zheng He had, over a period of 28 years, been
ordered eight times to act as envoy to countries lying to the west of China.
Each time he had under his command a big fleet and a staff of more than
20,000 men. His fleets had sailed in the South China Sea and the Indian
Ocean. They had gone further south to Java in today’s Indonesia. Sailing
then in a northwest direction, they had visited Yemen, Iran and Mecca and
further west to today’s Somalia in East Africa. All this had taken place about
half a century before Columbus’ voyage to America.

On each voyage Zheng He was acting as the envoy and commercial rep-
resentative of the Ming court. No matter what country he visited, he called
on the ruler of the land, presenting to him valuable gifts in token of China’s
sincere desire to develop friendly relations and inviting the host sovereign to
send emissaries to China. Wherever he was, he made a careful study of the
customs and habits of local residents. Showing them due respect, he bartered
or dealt with them through consultation and negotiation on the basis of equal-
ity and mutual benefit. In this way, he obtained large quantities of pearls and
precious stones, corals, ivory and dyestuffs for the Chinese emperor. He also
brought back several kinds of rare and precious animals such as giraffe, lion,
ostrich and leopard.

In ancient India, Chinese sailors made a good impression on the local
people by observing local trading customs and practices such as clapping
hands to clinch a deal in full view of others and never going back on it.

When he visited Sri Lanka on his third voyage, Zheng He offered a quantity
of gold and silver, Buddhist ceremonial vessels and silk-knit religious pennants
to local temples on whose ground steles were set up to mark the occasion of
his visit.

Wherever he went, he was warmly received. At Zhancheng, the king of
the land, in full royal regalia, came in person on elephant back with 500 cav-
alrymen to meet him at the wharf and then take him back to the palace. On
the way they were greeted by local inhabitants who blew trumpets made of
coconut shells and performed national dances at a solemn and joyous cere-
mony. Even today, people in Somalia and Tanzania look upon Ming China as
a symbol of the traditional friendship between their own country and China.
In Thailand today, there are places named after Zheng He’s childhood name
Sanbao (tree treasures) such as Sanbao Harbor and Sanbao Pagoda. Malacca
of Malaysia is known also as the City of Sanbao. At Java in Indonesia, there
is the Sanbao Temple. In Calicut (Kozhikode today) of India, there is an
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inscribed tablet set up in Zheng He’s memory.

On his first voyage overseas, the largest ship in the fleet had a length of
400 feet and a width of 180. Manned by more than 200 sailors and able to
accommodate 1,000 passengers, it was equipped with nine masts which flew
12 big sails. This was probably the largest sea-going vessel of the day123.
Other vessels might not be of the same size but on an average each one was
able to carry aboard four to five hundred passengers.

Many of the navigational problems encountered were solved in a rational,
scientific way. For instance, the way fresh water was collected and stored, the
stability of the hull and its buoyancy, the making of sea charts and the use of
navigational apparatuses like the compass. This accounted for the fact that
in spite of terrible storms, this fleet had ploughed the waves day and night in
full sail.

It is generally believed that Zheng He had the largest, most advanced fleet
in the world in the 15th century. On each of his 8 voyages, Zheng He kept
a detailed logbook and made many charts which were later collected in what
was called Zheng He’s Nautical Charts, which was the first of its kind in the
world. From this we can say that China in those days probably led the world
in the technology of ship-building and the science of navigation.

Zheng He was born in 1371 in Kunyang, a town in southwest Yunnan
Province. His family, named Ma, were part of a minority group known as the
Semur. They originally came from Central Asia and followed the religion of
Islam. Both his grandfather and father had made the Muslim pilgrimage to
Mecca. Zheng He grew up hearing their accounts of travel through foreign
lands.

Yunnan was one of the last strongholds of Mongol support, holding out
long after the Ming Dynasty began. After Ming armies conquered Yunnan in
1382, Zheng He was taken captive and brought to Nanjing. The eleven year
old boy was made a servant of the prince who would become the Emperor.

When his prince seized the Chinese throne from a nephew, Zheng He
fought well on his behalf. As a result, Zheng He became a close confidant of
the new emperor and was given an important position at court.

When Zheng He came back from his seventh voyage in 1433, he was sixty-
two years old. He had accomplished much for China, spreading the glory of the
Middle Kingdom to many countries that now sent tribute and ambassadors
to the court. Though he died soon afterward, his exploits had won him fame.

123 In comparison, the flagship of Columbus, the Santa Maria was only 75 ft × 25 ft

in size.
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Plays and novels were written about his voyages. In such places as Malacca
and Java, towns, caves, and temples were named after him.

However, a new Ming emperor had come to the throne. His scholar-
officials criticized Zheng’s achievements, complaining about their great ex-
pense. China was now fighting another barbarian enemy on its western bor-
ders and needed to devote its resources to that struggle. When a court favorite
wanted to continue Zheng He’s voyages, he was turned down. To make sure,
the court officials destroyed the logs that Zheng He had kept. We know about
his voyages only from the pillar and some accounts that his crew members
wrote.

Thus, China abandoned its overseas voyages. It was a fateful decision, for
just at that time, Portugal was beginning to send its ships down the west
coast of Africa. In the centuries that followed, European explorers would sail
to all parts of the world. They would establish colonies in Africa, America,
and finally in the nations of East Asia. China would suffer because it had
turned its back on exploration. Zheng He had started the process that might
have led the Middle Kingdom to greater glory. Unfortunately the rulers of
the Ming Dynasty refused to follow his lead.

The British submarine engineer and historian Gavin Menzies gave a semi-
nar on March 15, 2002 to the Royal Geographical Society in London to support
his theory that Zheng He beat Columbus by more than 70 years in discov-
ering America. Using evidence from maps dated before Columbus’ trip, and
astronomical maps traced back to Zheng He’s time, Menzies claimed that the
Zheng he should be honored as the first discoverer of America.

The Voyagers (1405–1550)

“There will come a time in future ages when the ocean will loosen the chains of
the universe and a vast land will appear, new worlds will be seen and Iceland
will not be the end of the earth.”

Lucius Annaeus Seneca, ‘Medea’ (4 BCE–65)



692 2. Slumber and Awakening

Almost concurrently with the collapse of the Byzantine Empire and the ‘print-
ing revolution’, the energy accumulated during the long intellectual hiberna-
tion of the middle ages suddenly burst forth in yet another endeavor – the
geographical revolution.

The European ‘discovery’ of the Indian Ocean in the 15th and 16th cen-
turies was only new to them as Western Europeans. The Ancient Egyptians
had traded on the African shores of the Indian Ocean. The Arabs began to set-
tle it in the 8th century CE: Mogadishu (ca 720), Sofala (ca 780), Madagascar
(9th century). These were the bases from which their subsequent explorations
began.

Chinese junks were in the harbor of Malacca when Albuquerque arrived
there. Chinese texts as early as 860 CE describe the south coast of the Gulf
of Aden and the Somali coast. Malindi (Mo-Lin) was known at about 1060
and the Zanzibar coast (Tsheng-Pa) and Madagascar at about 1178. Chinese
coins and porcelain dating from the 7th century onwards (the majority from
the Sung dynasty 960–1279) are so abundant on the east coast of Africa that
they must have been used in payment for goods.

In the early 15th century the great Chinese voyages to the Indian Ocean
began and they are as well documented as any in the West. There were seven
expeditions in all. In the first (1405–1407), the Emperor Cheng Zu commis-
sioned 62 junks carrying 37, 000 men under the command of the Imperial
Palace Eunuch Cheng Ho. They set sail from Liu-Chia Kang in the province
of Suchow, reached Indo-China, Java, Sumatra, Ceylon and Calicut.

In the second expedition (1407–1409) they reached Siam, Cochin and other
parts on the west coast of India. The third, based on Malacca, voyaged in the
East Indies and the southwest coast of India and Ceylon.

On the fourth voyage, based on Ceylon, they explored the Bengal coast,
the Maldive Islands, and reached Hormuz.

On the fifth voyage the fleet divided into squadrons: A Pacific squadron
reached the Ryukyu Islands and Brunei in northwest Borneo, while squadrons
in the Indian Ocean explored the coast between Hormuz and Aden, Mogadishu
in Somalia, Malindi and the coast further south.

The sixth expedition (1421–1422) was an amplification of the previous one,
visiting 36 states between Brunei and Zanzibar.

The last expedition (1431–1433) covered the areas north and west of Java
as far north as Jiddah in the Red Sea. It was the last great venture of the
Ming Navy. From now on the inward-looking Confucians faction was in the
ascendant. It regarded things brought from beyond the seas as superfluous.
Among them were the tusks of elephants, rhinoceros horns, pearls and aro-
matics from Africa and, above all else, spices.
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It is more than possible that they got as far as the southern Atlantic and
some of their captains may have doubled the Cape and seen the West African
shore. Thus, upon the death of the last Ming Emperor, ended the age of
Chinese maritime glory. Could they discover America ahead of Columbus?

In 1400, Europeans knew scarcely more about the earth than the Romans
had. The oceans around the continent were still an impenetrable barrier.
In fact, many people in those days believed that further south the sea grew
boiling hot, or that ships could fall off the edge of the earth.

The man who helped overcome such fears, at least among his own men,
was Prince Henry the Navigator (1394–1460), the third son of King John
of Portugal from an English mother. Henry was a soldier, not a sailor, and
did not himself take part in any journeys of discovery. As a driving force he
had no peer in the history of navigation, blending his vision with the skill of
his sailors and the wisdom of medieval scholars.

In 1415 Henry took part in the campaign in which Spain captured the
North African port of Ceuta from the Moors. A substantial link between
Moorish science and the medieval universities of Christendom already existed
when the growth of mercantile navigation renewed the impetus to astronom-
ical discovery. From 1419 onwards, Henry dispatched a series of expeditions
down the western coast of Africa and spent most of his time organizing and
financing the exploration fleets. About 1439 he retired to Sagre, in southern
Portugal, where he erected an observatory, and founded a college of navi-
gation. He assembled a team of geographers and navigators, and developed
ships suitable for voyages of exploration.

For 40 years he devoted himself to cosmographical studies, while equip-
ping and organizing expeditions which won for him the title of Henry the
Navigator. For the preparation of maps, nautical tables and instruments, he
enlisted Jewish cartographers and astronomers of the Zacuto and Crescas
families, employing them to instruct his captains and assist in piloting his ves-
sels. The development of astronomy once more became part of the everyday
life of mankind.

The motives that prompted the Europeans, rather than the Chinese or
Muslims, to ‘discover’ the rest of the world were both religious (convert the
heathen and weaken Islam by placing Christian allies in the Muslim rear) and
economic (need to find precious metals to pay for Eastern spices).

A third cause, not less important, was the challenge of fresh ideas that
took hold in Europe during the Renaissance. The learning that was brought
to Europe by the fleeing savants of Byzantium spread rapidly, with the aid
of printing. It boosted the questioning of established dogmas in religion, art
and science. Scholarship began to develop independently of the church, and
the human rather than divine in life and art was underlined; the well-rounded
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individual became an ideal. This gave impetus to explorers and reformers
alike.

By the late 15th century a restless, energetic, and bold seafaring popu-
lation was scattered along Europe’s Atlantic Coastline. Resourceful sailors,
fishermen, and merchants had developed techniques and the ships for mak-
ing long voyages. They had religious and economic motives strong enough to
overcome their superstitious fears of what lay beyond unknown waters124, and
their governments were often ready to back them. Europe needed Asia more
than Asia needed Europe, and Europeans believed that it would not be too
difficult to reach Asia by sailing West.

Ptolemy in the 2d century had underestimated the size of the globe and
had overestimated the span of Asia, and the geographers of the 15th century,
accepting his miscalculations, were convinced that Japan and China lay only
a few thousand miles West of Europe. The journey seemed possible, and the
psychological environment was favorable for an age of discovery.

After Henry’s death, his grandnephew, King John II, speeded up the effort
to find an all-water route to India that would short-circuit the Venetian-Arab
monopoly. Within ten years (1487–1497), two voyages took place which raised
Portugal from a nation of peasants, fishermen and seafaring adventurers to
a great maritime power. By 1488 Bartholomeu Dias (1450–1500) rounded
the Cape of Good Hope and in 1497, Vasco da Gama (1469–1524) followed
his route and with four ships reached Calicut, India in 1498. In 1500, a larger
fleet under Pedro Álvars Cabral (1467–1520) touched the coast of Brazil,
and headed for India in da Gama’s wake.

Once the Portuguese had overcome the natural hazards of the sea journey
from Europe to India, they moved purposefully to establish a commercial dom-
inance in south-east Asia. King Manoel sent a permanent force to India, led
by Francesco de Almeida (1450–1510) in 1505. On the way, Almeida took
Kilwa and razed Mombasa, before setting himself up as Governor-General
of India, based at Cochin. His son Laurenco reached Ceylon, an important
source of spices, and the Maldives, an island chain in the Indian Ocean.

124 When seamen left Portugal for the unknown, their wives cried at their departure,

dressed in black as if they were becoming widows. They spoke of saudade or

“regret of absence”. This word which best explains the soul of the Fado (fate),

the traditional song of Portugal, has no exact translation in any other language

(the English longing, the French nostalgia, and the German sehnsucht are part

of it). One may call it “sweet sadness” – a longing for something very dear but

impossible to achieve. Fado is the expression for this feeling. Today, the lady

singers of the Fado are always dressed in black, lights are muted and the public

listens in silence.
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In 1509, off Diu Island, a small force of 19 ships under the command of
Almeida totally vanquished the combined Muslim fleet of 100 vessels. It was
the end of Arab power east of Aden.

Almeida was succeeded as Governor-General of India by one of the great
empire-builders of Portuguese history, Alfonso d’Albuquerque (1453–
1515), in 1509. He seized Goa, on the Indian mainland, captured Malaca
to control the trade between the Spice Islands and the Indian Ocean and se-
cured Hormuz to dominate the entrance of the Persian Gulf. The capture of
these strategic points opened before the Portuguese the seaway to China and
Japan. Indeed, the first Portuguese mission reached China in 1514 and then
Japan in 1542.

In 1557, in recognition of the assistance that they rendered to the Chinese
in exterminating Chinese pirates, the Portuguese were granted a lease on the
peninsula of Macau.

The voyagers had made large profits, but the cost to the Portuguese gov-
ernment of equipping fleets soon ate up those profits. Italian, German and
Flemish bankers soon dominated the Portuguese trade, and the spices that
arrived at Lisbon were sent on directly to Antwerp. The burden of the empire
was already proving heavy when Portugal fell into the grip of Spain in 1580.

Before da Gama’s successful voyage, a Genoese navigator, Christopher
Columbus (1446–1506) had persuaded Queen Isabella of Spain to finance
an expedition to find a westward route to India. Columbus was using the
ancient maps of Ptolemy, according to which the size of the Atlantic was
underestimated. Finally, in 1492 he sailed across the Atlantic Ocean and
discovered the Indies, believing them to be his goal. Columbus never did
realize he had found a whole new continent.

However, a later adventurer, Amerigo Vespucci (1451–1512) [director
of the Medici branch bank in Seville], claimed that he had sailed on both
Spanish and Portuguese voyages and described what he saw in letters that
were widely read throughout Europe. In one, he referred to the great southern
continent in the west as ‘Mundus Novus’ (New World). A German map-
maker, Martin Waldseemüller, labeled the two new continents in 1507, by
the name ‘America’ in honor of Vespucci.

In 1513, the Spanish explorer Vasco Núñez de Balboa (1475–1519)
crossed the Isthmus of Panama and became the first European to see the
Eastern Pacific. Balboa is known as the European discoverer of the Pacific
because he realized that it was a great unknown sea.

The first round-the-world voyage was the inspiration of a Portuguese nav-
igator, Ferdinand Magellan125 (Femão de Magalhaes; Fernando de Mag-

125 It took Magellan to prove that the world was round, but as early as 350 BCE
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allanes, 1480–1521). Out of favor in his own country, Magellan offered his
services to Spain, whose ruler, Emperor Charles V, provided a fleet for the
voyage.

Magellan set sail in 1519 with five ships, aiming for the southern tip of
South America, where he was sure there was a route to the Western Ocean.
Despite tremendous storms, Magellan found his route – the strait that now
bears his name – and sailed into a calm sea which he named ‘Pacific’; he
had lost one ship, and one had turned for home. Magellan sailed across the
Pacific to the Philippines, where he was killed in a skirmish with the natives.
The epic voyage was completed by Juan Sebastian del Cano with one
ship, returning by way of the Cape of Good Hope in 1522, the first ship
to sail around the world. In that year Europe has begun to cast a web of
communication and influence around the earth.

During the next four centuries that web was to draw all of the world under
the influence of European civilization.

The Leading Edge of Western Civilization (1300–1600)

In spite of all the chaos and misery that afflicted Europeans during 1300-
1450 CE, science and technology prevailed. Why? Although the scholarly
work of the period was mostly unoriginal it was important in the sense that it
was useful to men with ideas of their own. Columbus drew most of his notions
about geography from books written in the fourteenth and early fifteenth cen-
turies. And not all the work was unoriginal. In philosophy there was a sharp
attack on the system of Thomas Aquinas which freed scholars, to some extent,
from their adherence to the Aristotelian ideas that had been incorporated into
Thomas’ theology. Once Aristotle’s ideas had been challenged, there could be
wider speculation on scientific questions, especially on explanation of motion

the idea was generally accepted by the Greeks.
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and acceleration. The studies through which Galileo revolutionized the sci-
ence of physics were based on problems raised by fourteenth-century scholars.

More important than any specific achievement was the very fact that in-
terest in scientific problems persisted. Up to the end of the Middle Ages,
Western scholars, relying largely on the work of the Greeks and Muslims,
had made no outstanding contribution to scientific knowledge. But they were
remarkably persistent and kept working on scientific problems after other peo-
ples had given up. The Greeks and Muslims eventually lost interest in science,
as did the Chinese, who had their own independent scientific tradition. But
from the twelfth century on, there were always some scholars in the West who
were interested in science, and this long-term devotion led, in the end, to the
great discoveries of the early modern period. Men like Copernicus and Galileo
were trained in universities that used the methods and the books of the later
Middle Ages.

No one has ever given a completely satisfactory explanation of this con-
tinuing interest in science. Certainly Westerners were paying more attention
to the things of this world during the later Middle Ages and less attention
to the aims of the Church. But Chinese society was far more secular, yet
the Chinese, in the long run, fell behind the Europeans. Perhaps more im-
portant was the Western tendency to be dissatisfied with the status quo, a
tendency that was especially evident in the crucial years between 1300 and
1600. In China, a philosopher like Thomas Aquinas would have become an
unchallenged authority; in Europe his system was questioned within a gen-
eration after his death. Europeans respected authority, but they always felt
that authoritative treatises needed to be reinterpreted. Finally, there was a
curious patience with details, a willingness and an enthusiasm to work very
hard for very small gains.

These qualities also explained some of the advances in technology that were
made in the last medieval centuries. These are:

• The development of firearms.

• The invention of printing (ca 1446).

• Ocean shipping.

• The invention of the mechanical clock (ca 1352).

In the field of firearms the Europeans capitalized on a technique known
to other peoples. The Chinese, for example, were probably the first to dis-
cover gunpowder, and they had cannons about as early as the Europeans.
But Chinese guns were never very efficient, and the Chinese never developed
an army that was primarily dependent on firearms. The Europeans carried
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their experiments with cannons much further than the Chinese. Although the
European guns were not very good - they were as apt to kill the men who
fired them as those against whom they were aimed - they had become fairly
reliable by the end of the fifteenth century. The military significance of this
development is obvious. It reduced the power of local feudal lords by making
their castles untenable; conversely, it increased the power of kings and great
princes like the Duke of Burgundy, for they were the only ones who could
afford the expensive new weapons.

The development of firearms caused a rapid growth in other branches of
technology. In order to make gun barrels that would not burst under the shock
of an explosion, much had to be learned about metallurgy. And in order to
make gun barrels that were truly round and hence could deliver the full effect
of the charge, better metalworking tools and more precise instruments had
to be developed. Better techniques in using metals led to greater demands
for metals, and this in turn stimulated the mining industry. The miners
of Germany (including Bohemia and Austria), supplying the chief source of
metals for Europe, learned to push their shafts deeper and devise ways of
draining off underground water. Increased use of metals and greater skill in
mining in the long run transformed European industry. To take the most
famous example, pumps operated by a piston traveling in a cylinder were
developed in order to remove water from mines; it was this kind of pump that
eventually furnished the model for the first steam engine.

The invention of printing in the fifteenth century also owed much to de-
velopments in metallurgy. The essential element in printing was the use of
movable type, and good type in turn depended on the availability of a metal
that would take the exact shape of the mold into which it was poured. Thanks
to their knowledge of metallurgy, the Germans succeeded in developing an al-
loy that expanded as it cooled, so that it fitted the mold exactly and gave
sharp, clear impressions.

Another technical advance of Western Europe in the latter Middle Ages
was in ocean shipping. Here there was at first more patient experimentation
than striking discoveries. By the end of the thirteenth century the sailors
of Western countries had ships that could tack against the wind and were
seaworthy enough to survive the storms of the Atlantic. The navigators of
the period could find their latitude, though not their longitude, by star and
sun sights; they knew that the earth was round and that the distance to
the rich countries of the East was not impossibly great. Very little more
was needed for the great voyages of discovery except practice, and during
the fourteenth and fifteenth centuries daring men were mastering the art of
oceanic navigation. French and Spanish seamen had discovered the Canary
Islands at least by the fourteenth century, and by 1400 the Portuguese had
pushed down to the bend in the African coast, claiming Madeira and the Cape
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Verde Islands along the way.

These voyages illustrate the point that was made earlier: Europeans were
no more skillful or intelligent than other peoples, they were simply more per-
sistent or more aggressive. During the same years in which the Europeans
were making their first sorties into the Atlantic, the Chinese were sending
expeditions into the Indian Ocean. There they found rich kingdoms, ancient
civilizations, and profitable sources of trade. In contrast, the Europeans dis-
covered only barren islands and the fever-stricken coast of Africa. Yet the
Chinese abandoned their explorations because they, or at least their rulers,
were satisfied with what they had at home. The Europeans persisted, though
it was almost two centuries before they reached the thriving trading centers
of the East or the treasures of Mexico and Peru.

Not as striking as the early voyages, but almost as significant, was the
invention of the mechanical clock. The first clocks, which appeared in the
fourteenth century, were not very accurate, but they were soon improved by
the discovery of the principle of the escapement - that is, the system by which
the train of gears moves only a precise distance before it is checked and then
released to move the same distance again – thus ensuring uniformity of the
time-keeping motions. Crude as the first clocks were, they modified, in the
long run, the mental outlook of the Western peoples.

For several centuries one of the sharpest differences between the West and
the rest of the world lay in attitude toward precise measurement, especially the
precise measurement of time. Western civilization has come to be dominated
by the clock and the timetable, and Westerners have had little sympathy with
people who have escaped this domination.

1410 CE Hisdai ben Avraham Crescas (1340–1411, Spain). Philo-
sopher. The first European thinker to establish the feasibility of infinite mag-
nitude and infinite space, thus paving the way for the modern conception of
the Universe. A pioneer in his criticism of Aristotle and in his revival of the
views of pre-Aristotelian Greek philosophers.

Crescas rejected Neo-Platonism and Aristotelian physics and metaphysics.
He stated that “there are no other worlds” than the one system in which
the earth is situated. This inspired such Christian thinkers as Nicolas of
Cusa (1401–1464), Giordano Bruno (1548–1600), Marsilio Ficino126

126 Translated (1484) the complete works of Plato from Greek into Latin. His
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(1433–1499) and Pico della Mirandola (1470–1533). He deeply influenced
Spinoza, who was indebted to Crescas for his concept of the Universe.

Crescas launched a sharp criticism of Maimonides and Gersonides because
of their efforts to reconcile Judaism with Greek philosophy. He refuted the
Aristotelian conception of one finite Universe and believed in the unification of
forces of nature (including magnetic attraction!). These ideas he expounded
in his principal work on Or Adonai (Light of God) to the completion of which
he devoted many years of his life.

Like almost all Jewish philosophers in the Middle Ages, Crescas developed
his philosophical system in the face of persecution and imminent personal
danger. He endured much personal persecution during the first Spanish In-
quisition, but still defended his views with a spiritual originality and courage
uncommon in the history of the Middle Ages.

He was born in Barcelona and was denounced and victimized there, im-
prisoned and fined (1367), despite the recognition of his innocence. He moved
and settled in Saragossa (1390). Crescas became an authority on Jewish
law and ritual tradition, and often intervened diplomatically on behalf of his
co-religionists in Aragon and the neighboring kingdoms. In 1401–2, at the
request of Charles III (the Noble), he spent some time in Pamplona. A son
of Crescas suffered a martyr’s death in Barcelona in the anti-Jewish riots of
1391. Afterwards he received permission (1393) from the King of Aragon to
marry a second wife, since his first wife was unable to have any more children.
He died at Saragossa.

teaching, translations, and Platonic interpretations formed the basis of a thriv-

ing literary culture which formed the pillar of European thought over subsequent

ages.
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1413–1414 CE The Tortosa Disputation, the most remarkable of its kind
ever held127. It took place in the presence of the anti-pope128 Benedict XIII,
many cardinals, bishops and a vast audience. It began Feb. 7, 1413 and lasted
21 months in 69 sessions. The principal matter debated was whether the Mes-
siah had already arrived or not. The renegade Jew Joshua Lorki opened for
the Christians and the learned Vidal Benveniste for the Jews. The dispu-
tations degenerated into the usual interpretations and misinterpretations of
Biblical and Talmudic passages. Naturally, the Jews were declared ignomin-
ious losers by the anti-pope, the Talmud was condemned and a ban was placed
on the study of the Talmud by Jews.

The Jewish defenders counted among them the philosopher Joseph Albo
(1380–1444), who rigorously presented the Jewish viewpoint of the Talmud.
He attained popularity among medieval scholars (both Christians and Jews
alike) for his book Sefer-He-Ikkarim (Book of root principles, 1425; pub-
lished, 1485). It is important to the general philosophy of religion because it
establishes criteria whereby the primary fundamental doctrines may be dis-
tinguished from those of secondary importance.

127 Other well-known disputation book place in Paris (Yehiel of Paris, 1240) and

Barcelona (Nahmanides, 1263). A modern chapter of medieval disputation

occurred at the McGill University, Montreal on 31 January 1961 between the

Ambassador of Israel to Canada. Yaacov Herzog (1921–1972) and the British

historian Arnold Toynbee (1889–1975). Toynbee declared publicly (and in

his books) that the entire life of the Jewish Diaspora from 132 years after

Jesus of Nazareth until our own day was a fossilized relic of an obsolete culture

that no longer had the right to exist. This indictment was lodged against the

Jewish people from an academic rostrum of world repute, with an air of quiet

certainty, without any anti-Semitic wrapping, relying solely on the authority

of pure philosophical objectivity. The gauntlet had been thrown down before

the entire Jewish people and the truth of history, and the young ambassador

picked it up on the public platform, confronting the professor as equal in McGill

University. At the end of a conclusive and convincing demonstration, Toynbee

was compelled to admit defeat and apologized for his analogy.
128 Most Christians did not consider him the legitimate pope; only Spain recognized

his claim to the papacy. Consequently, he thought he could add to his reputation

by focussing the eyes of all Christians on an elaborate attempt which he would

conduct to refute Judaism. Nowadays we would call it a propaganda trick

to the anti-Jewishness for personal advancement. The Jews, of course, did

not want to take part in anything of the kind. They knew that, far from

being a free and open debate, in which they would have an equal right with

their Christian opponents to speak their mind, this was but another attempt to

humiliate Judaism. But there was no refusing the invitation; threatened with

fines, imprisonment and expulsion, they were forced to appear.
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Albo stated that three principles are basis to every revelational religion: a
belief in God, the concept of divine revelation and divine retributive justice.
His object was to show that all religions grow out of the same ideas; only
after they grow out of these roots do various religions begin to differ from
one another. The branch principles which make up Judaism are purer and
more in harmony with philosophy than the branch principles which compose
Christianity.

Maimonides in the 12th century had formulated the principles of Judaism
in thirteen articles; Albo reduced them to three.

Albo set the example of minimizing Messianism in the formulation of be-
liefs. Though he fully maintained the Mosaic authorship of the Law and the
binding force of tradition, he discriminated between essential and the non-
essential in the practices and beliefs of Judaism.

1413–1436 CE Filippo Brunelleschi (1377–1446, Italy). The greatest
architect of the Early Italian Renaissance. His interest in mathematics led to
his invention of linear perspective as plane representation of objects in three-
dimensional space. The first formal account of the laws of perspective was
given by Leon Battista Alberti129 (1404–1472, Italy), the Universal man of
the Early Renaissance. Alberti, mathematician, architect, painter and writer,
is also credited as the originator of scientific cryptography.

The art of the Renaissance derived its influence from two main sources.
The first was classical: the use once again, after an interval of almost a mil-
lennium, of the forms generally applied in Greek or Roman art. The second
was the application of the newly discovered technique of perspective. This
device gave the artist access to graphic and mathematical rules that enabled
him to reproduce on paper or any other flat surface, with scientific accuracy,
the appearance of 3-dimensional reality. The examples provided by classical
art were of interest above all to architects, who could draw inspiration from
monuments of classical antiquity still in existence.

When, relatively early on, the new movement came to be called Renais-
sance, the influence on it of Greek and Roman antiquity was also the most

129 Alberti studied the representation of 3-dimensional objects and wrote the first
general treatise Della Pictura on the laws of perspective (1435). He also worked

on maps and collaborated with Toscannelli who supplied Columbus with

the maps for his first voyage.
For further reading, see:

• Gadol, J., Leon Battista Alberti, Universal Man of the Renaissance, Univer-

sity of Chicago Press: Chicago, 1973, 266 pp.
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obvious. Its proponents considered themselves heirs to the traditions of clas-
sical art, and consciously sought the ‘rebirth’ of its forms, or at least of its
spirit. They rejected completely the artistic achievements which had suc-
ceeded those of Greece and Rome. They were led to this attitude partly by
admiration for classical art but mainly by a deep-rooted conviction that art,
like science, had its own laws and that these had been discovered and applied
by the artists and craftsmen of ancient Greece and Rome.

Perspective, the second source of influence on the art of the Renaissance,
was in fact the most striking of a whole series of revolutionary discoveries. It
was a decisive element in the development of the arts because it enabled the
artist to show, by means of a realistic sketch – a form which everyone could
understand – how a proposed work might look like when finished.

Brunellechi’s knowledge of Roman construction principles combined with
an analytical and inventive mind permitted him to solve an engineering prob-
lem that no other man of the 15th century could have solved – the design
and construction of a dome (cupola) for the huge crossing of the unfinished
Cathedral of Florence. The problem was staggering, since the space to be
spanned was 44.5 meters in diameter, much too large to permit construction
with the aid of traditional wooden centering. Nor was it possible, because of
the plan of crossing, to support the dome with buttressed walls

Brunellechi seems to have begun work on the problem about 1417 and
erected this revolutionary structure between 1420 and 1436. With exceptional
ingenuity he not only discarded traditional building methods and devised new
ones130 but also invented much of the machinery that was necessary for the
job (e.g. lifting construction materials into position).

Although he might have preferred the hemispherical shape of Roman
domes, Brunellechi raised the center of his dome and designed it around an
ogival section (ovoid shape) which is inherently more stable, as it reduces the
outward thrust around the dome’s base. To reduce the weight of the structure
to a minimum, he designed a thin double shell (the first in history) around a
skeleton of 24 ribs, of which the 8 major ones are visible on the exterior.

Finally, in almost paradoxical fashion, he anchored the structure at the
top with a heavy lantern. This lantern, although adding to the weight of the
dome, has the curious effect of stabilizing the entire structure, since without
the pressure of the weight the ribs have a tendency to tilt outward from the
center, spreading at the top (the cupola is about 113 meter high).

130 To avoid the need for reinforcements or scaffolding, Brunellechi used techniques

of brickwork taken from antiquity, but the form of the dome is pointed and

therefore Gothic in style.
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Alberti’s Cipher (1535)

Codes and cyphers are methods of writing a message so that only persons
with a key can read it. The science of making and breaking of codes is known
as cryptography.131

An early substitution cipher is found in the Old Testament (Jeremiah
25:26 and 51:41). There, the prophet wrote Sheshach for Babel (Babylon).
The second letter of the Hebrew alphabet (b) was replaced by the second-to-
last letter (sh), and the twelfth letter (l) was replaced by the twelfth-to-last
letter (ch). (This cipher is known as Athbash, meaning that the first letter a
of the Hebrew alphabet corresponds to the last letter th, the second from the
beginning .b, corresponds to the second from the end, etc.) Another Biblical
example is found in Isaiah 7:6 where Tabeal is written for Remaliah. In this
cipher, known as Albam, the first letter a is replaced by the 12th, the second,
b, by the 13th, etc.

The Spartans wound a belt in a spiral around a stick, wrote a message
along the length of the stick, and unwounded the belt. In this transposition
cipher, no one could read the message unless he had a stick exactly the right
size. Caesar (50 BCE) used a simple substitution cipher; each letter of the
plain text was replaced by the letter three positions to the right in the normal
alphabet.

Gabriel de Lavinde wrote the first manual on cryptography (1379).
Sico Simonetta wrote the first treatise on cryptoanalysis (1474). John
Trithemius (d. 1516) was an important writer on cryptography.

In every language, the letters of a lengthy plain text exhibits a predictable
frequency; In English the letter that occurs most often is e, and the next in
order of frequency is t. The rest, grouped in order of decreasing recurrence
are: a, o, i, n, s, h, r, d, l, u, c, m, w, f, y, g, p, b, v, k, s, j, x, z, q.

The drawback of an elementary substitution cipher is that it can be cracked
simply by analyzing the frequency with which each symbol occurs. If, on
the basis of frequency count, the cryptoanalyst can decipher the nine most
common letters e, t, a, o, i, n, s, h, r - he has generally broken 70 percent of

131 For further reading, see:

• Singh, Simon, The Code Book, Anchor Books: New York, 1999, 411 pp.
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the cipher. The most modern of code-breaking techniques are based on the
age-old method of frequency analysis132.

All the single letters must be a or i. Doubling letters are ee, oo, ff, ss, etc.
The common words of two letters are (roughly arranged in the order of their
frequency) of, to, in, it, is, be, by, or, as, at, an, so etc. The common words
of three letters are: the, and (in great excess), for, are, but, all, not, etc.; and
of four letters - that, with, from, have, this, they, etc. [Edgar Allan Poe
(1843) made use of these statistics in his tale The Gold Bug].

Alberti came up with an ingenious scheme to sabotage a frequency count
with his Polyalphabetic substitution cipher in which more than one alpha-
bet is used during encryption. His idea, the basis of modern cryptography,
makes use of the so called vigenere table and a keyword agreed upon by the
communicating parties.

Say the keyword is LOVE and the plaintext message is SEND MORE
MONEY. The sender would then write (Table 2.5)

keyword: L O V E L O V E L O V E L x-axis
plaintext: S E N D M O R E M O N E Y y-axis

The sender, starting from the left, finds in the table the letter correspond-
ing to the coordinates X=L, Y=S, which is the letter D. He then moves to
the next pair (O, E) which gives him the letter S, etc. The ciphertext then
reads DSIHXCMIXCIIJ. Decryption is the inverse process: (L, D) yields S,
by moving on the row L to the letter D and reading the letter S on the x-axis.

The polyalphabetic cipher belongs to the family of homophonic ciphers
which equalize the frequencies of the ciphertext letters since a given letter
of the alphabet will not always be encrypted by the same ciphertext letter.
Consequently, it cannot be described by a single set of ciphertext alphabet
corresponding to a single set of plaintext alphabet. The equalization is effected
in such a way that the number of ciphertext symbols assigned to a plaintext
letter is determined by the frequency of that letter: a(8), b(1), c(3), d(4),
e(12), f(2), g(2), h(6), i(7), j(1), k(1), l(4), m(2), n(6), o(7), p(2), q(1), r(5),
s(6), t(10), u(3), v(1), w(2), x(1), y(1), z(1).

132 If it had not been for frequency analysis, Mary Queen of the Scots might

have kept her head (1587). She used a simple substitution cipher to write her

perfidious correspondence, interspersing the letters with meaningless symbols

(nulls). Nevertheless, Francis Walsingham, the founder of the British Secret

Service, managed to weed out the nulls and do a frequency count of the remain-

ing symbols, thus breaking her code.

Had she known the work of Alberti (1535), she might have avoided the chop-

ping block.
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Table 2.5: Polyalphabetic Substitution Cipher

Key Word Letters

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z → x-axis

A A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

B B C D E F G H I J K L M N O P Q R S T U V W X Y Z A

C C D E F G H I J K L M N O P Q R S T U V W X Y Z A B

D D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

E E F G H I J K L M N O P Q R S T U V W X Y Z A B C D

F F G H I J K L M N O P Q R S T U V W X Y Z A B C D E

G G H I J K L M N O P Q R S T U V W X Y Z A B C D E F

H H I J K L M N O P Q R S T U V W X Y Z A B C D E F G

M I I J K L M N O P Q R S T U V W X Y Z A B C D E F G H

e J J K L M N O P Q R S T U V W X Y Z A B C D E F G H I

s K K L M N O P Q R S T U V W X Y Z A B C D E F G H I J

s L L M N O P Q R S T U V W X Y Z A B C D E F G H I J K

a M M N O P Q R S T U V W X Y Z A B C D E F G H I J K L

g N N O P Q R S T U V W X Y Z A B C D E F G H I J K L M

e O O P Q R S T U V W X Y Z A B C D E F G H I J K L M N

P P Q R S T U V W X Y Z A B C D E F G H I J K L M N O

L Q Q R S T U V W X Y Z A B C D E F G H I J K L M N O P

e R R S T U V W X Y Z A B C D E F G H I J K L M N O P Q

t S S T U V W X Y Z A B C D E F G H I J K L M N O P Q R

t T T U V W X Y Z A B C D E F G H I J K L M N O P Q R S

e U U V W X Y Z A B C D E F G H I J K L M N O P Q R S T

r V V W X Y Z A B C D E F G H I J K L M N O P Q R S T U

s W W X Y Z A B C D E F G H I J K L M N O P Q R S T U V

X X Y Z A B C D E F G H I J K L M N O P Q R S T U V W

Y Y Z A B C D E F G H I J K L M N O P Q R S T U V W X

Z Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

↓
y-axis
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The beauty of the Alberti’s cipher is that the table of cipher alphabets - can
be made public133, so long as the keyword is kept secret, without jeopardizing
the security of the cipher. After Alberti, cryptography continued to develop
through the works of Giovanni Battista della Porta (1563), Blaise de
Vigenère134 (1586) and Francis Bacon (1613).

Cardinal Richelieu (Armand-Jean du Plessis, 1585–1642) invented a
grille; he would place a card with holes in it over a sheet of paper, write his
secret message in plain language in the holes, then fill in the rest of the paper
to look like an innocent letter. Only a man with an identical grille could read
the secret message.

For 300 years Alberti’s polyalphabetic cipher was thought to be invulner-
able, but then, Friedrich Kasiska (1865, Prussia), discovered a few intrinsic
weaknesses, overlooked by the sender but exploited by the wily eavesdropping
cryptoanalyst. He found, for example, that if a sequence of plaintext letters,
that come up more than once, happens to be enciphered each time by the
same keyword letters, identical ciphertext results.

For example, in the message SEND MORE MONEY, the key-letter se-
quence LO, twice enciphers the plaintext sequence MO into XC. If bits of the
ciphertext repeat often enough, the cryptoanalyst can figure out the length
of the keyword and, hence, the number of cipher alphabets employed. Then
it is just a matter of cataloging which ciphertext letters came from which
cipher alphabet. For each cipher alphabet, a frequency count will reveal the
plaintext letters.

Thus, careless use of the best cipher can compromise its security, mak-
ing codebreaking much easier in practice than in theory. Diplomatic and
military communications often begin and end with characteristic pleasantries
(“Greetings!”, “Respectfully yours”, etc.) which are footholds for the analyst.
Certain proper names (especially ones that are overly long) can also give the
show away135. Information can often be coaxed out of the enemy136. In this

133 Modern cryptographers, drawing on innovative mathematical methods, have

been able to take this trend to an amazing extreme: both the encryption method

and the key itself can be made public without compromising the cipher. In other

words, the power to encipher a message is not the same as the power to decipher

it.
134 A French diplomat (1523–1596). His book Traicte des Chiffres ou Secretes

d’Escrire (1586), earned him the title: ‘father of modern cryptography’.
135 In WWII, German communications spoke in cipher of the Wehrmachtnachricht-

enverbindungen (a 32-letter word).
136 In May 1942, the American high command knew that a vast Japanese naval

force was going to strike soon, but did not know where. Japanese radio dis-
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day and age, when cryptography is increasingly computerized, breakdowns in
technology can have severe consequences137.

Mathematics and Art – the story of perspective:
Brunellechi (1413) to Chasles (1852)

Although Hellenistic painters could create an illusion of depth in their
works, there is no evidence that they understood the precise mathematical
laws which govern perspective.

Alhazen was first to give correct explanation of vision, showing that light
scattered from an object into the eye (ca 1000 CE). Although he did not apply

patchers referred again and again to AF. To find out, American intelligence

agents instructed the U.S garrison at Midway to radio Pearl Harbor that it was

running out of water. Shortly afterwards, the Americans intercepted a Japanese

dispatch that reported a water shortage at AF. This helped to win the great

naval battle of Midway.
137 In October 1985, the Reagan administration learned from intelligence sources

that Egypt was lying about the whereabouts of the four terrorists who had hi-

jacked the Italian cruise ship Achille Lauro and murdered an American citizen

aboard. Contrary to what Egypt had publicly stated, the hijackers were still

on Egyptian soil, preparing to leave the country quietly by air via an EgyptAir

Boeing 737 jetliner. The Pentagon counterterrorist experts came up with a plan

for intercepting the civilian getaway plane with F-14 Tomcats. Reagan, then

aboard Air Force One, ordered the reluctant Defense Secretary, Weinberger (on

flight in a different military plane), via an open uncoded shortwave radio chan-

nel, to proceed with the daring mission. An amateur radio operator overhead

every word and immediately tried to sell the story to CBS News, who chose not

to report the president’s order. A few hours later the EgyptAir jet was forced

down.
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his ideas to paintings, the Renaissance artists later made important use of his
optics.

By the end of the 13th century Giotto was painting scenes in which he
was able to create the impression of depth by using certain rules which he
followed: he inclined lines above eye-level downwards as they moved away
from the observer, lines below eye-level were inclined upwards as they moved
away from the observer, and similarly, lines to the left or right would be
inclined toward the center. Some of his last works suggested that he may
have come close to the correct understanding of linear perspective. A timeline
history of linear perspective is given bellow:

1413 Brunellechi gave the first correct formulation of linear perspec-
tive. He understood that there should be a single vanishing point
to which all parallel lines in a plane (other than the plane of the
canvas) converge. He correctly calculated the relation between the
actual length of an object and its length in the picture, depending
on its distance behind the plane of the canvas.

1435-6 Using both the principles of geometry and the science of optics,
Alberti was the first to give the mathematical description of per-
spective needed for a proper understanding of painting: setting up a
system of triangles between the eye and the object, he gave a precise
concept of proportionality which determines the apparent size of an
object in the picture relative to its actual size and distance from the
observer.

1447 Lorenzo Ghiberti applied Alberti’s principles to the design of his
bronze doors.

ca 1470 In his treatise ‘On perspective for painting’, Piero della Francesca
gave a complete account of the geometry of vision, proving theo-
rems which relate to the perspective of plane figures, prisms and
more complicated objects such as a human head, the decoration on
the top of columns and other more difficult shapes. To this end he
measured both width and height along different axes. In fact, he
was using a coordinate system (!), computing the correct perspec-
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tive position of many points of the ‘difficult shape’ from which the
correct perspective of the whole object could be filled in.

1490 Leonardo da Vinci was first to study the converse problem of per-
spective: given a picture drawn in correct linear perspective – com-
pute where the eye must be placed to see this correct perspective138.

1525 In his book ‘Unterweisung der Messung mit dem Zirkel und
Richtscheit’, Albrecht Dürer made an important addition to the
theory of the Italian School by stressing the importance of light and
shade in depicting correct perspective. He also invented a variety
of mechanical tools which could be used to draw images in correct
perspective.

1639 Desargues laid the foundations to projective geometry in his trea-
tise ‘Brouillon project d’une atteinte aux evenemens de recontres du
cone avec un plan’ in which he was motivated by the problem of
finding the perspective image of a conic section. He dealt with the
properties of pencils of straight lines and ranges of points lying on a
straight line, and used them to investigate the properties of conics.
The modern term “point at infinity” appears for the first time in
this treatise.

1673 Philippe de la Hire introduced the cross-ratio of 4 points. In his
book ‘Conic sections’ (1685) he expounded a projective approach
to conics.

1719 Brook Taylor published ‘New principles of linear perspective’. The
work gave the first general treatment of vanishing points. The

138 He realized that a picture painted in correct linear perspective only looked right

if viewed from one exact location. Thus, for a painting on a wall, many people

would not view it from the correct position. Indeed, for many paintings it would

be impossible for someone viewing them to have their eye in this correct point,

as it may have been well above their heads.
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phrase ‘linear perspective’ was coined by Taylor in this work and
he defined the vanishing point of a line, not parallel to the plane
of the picture, as the point where a line through the eye parallel
to a given line intersects the plane of the picture. He also defined
the vanishing line of a given plane, not parallel to the plane of the
picture, as the intersection of the plane through the eye parallel to
the given plane, with the plane of the picture. The main theorem
in Taylor’s theory of linear perspective is that the projection of a
straight line not parallel to the plane of the picture, passes through
its intersection with the picture plane as well as through its vanish-
ing point.
Taylor readdressed mathematically the inverse problem, which is to
find the position of the eye necessary in order to see the picture
from the viewpoint that the artist intended.
Taylor’s work was an important step towards the theory of descrip-
tive and projective geometry as developed by Gaspard Monge
(1799), Jean-Victor Poncelet (1822) and Chasles (1852).

ca 1420 CE Jamshid al-Kashi of Samarkand (d. 1436). Arab mathe-
matician and astronomer. Noteworthy for the accuracy of his computations,
especially in connection with the solution of equations by Horner’s method
and his practice of using decimal fractions, both of which he derived from
the Chinese. Calculated π correctly to 16 decimal places. No mathematician
approached this accuracy until the late 16th century.

Al-Kashi found a patron in the prince Ulugh Beg139 (1393–1449), grand-
son of the Mongol conqueror Tamerlane. At Samarkand, where he held his
court, Ulugh Beg had built an observatory (1428), and al-Kashi joined the
group of scientists gathered there. With his death, the account of Arab math-
ematics was closed, since the cultural collapse of the Muslim world was more
complete than the mere political disintegration of the Empire.

139 Muhammed Targai Ulugh Beg and his teacher Quadi Zada (1364–1436)

compiled trigonometric tables to a high degree of accuracy (8 to 12 decimal

places). Ulugh was eventually put to death at the instigation of his own son.

After the death of Al-Kashi, Quadi Zada became the director of the Samarkand

Observatory. He computed the sine of one degree to an accuracy of 10−12 in

decimals.
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However, Arab mathematics had a crucial impact on modern science: the
mathematical tradition handed over to the Latin world in the 12th and the 13th

centuries, was richer than that with which the unlettered Arabic conquerors
had come into contact in the 7th century.

1427–1444 CE Leonardo Bruni (Aratino, ca 1370–1444, Italy). Hu-
manist, historian and scholar. Promoter of Greek learning. Born in Arezzo.
Secretary to the papal Chancery under Innocent VII and John XXII. Chan-
cellor of Florentine Republic. A key figure in ushering the Renaissance of
ancient Greek lore in art, literature and science.

1430–1466 CE Piero della Francesca (1406–1492, Italy). Painter and
mathematician. Recognized as one of the most important painters of the Re-
naissance. Three of his books survived140: Abacus treatise (Trattato d’abaco),
short book of the five regular solids (Libellus quinque corporibus regularibus)
and on perspective for painting (De perspectiva pingendi). In the first he
came up with some entirely original 3-dimensional problems involving two
of the Archimedean polyhedra (truncated tetrahedron and cuboctahedron).
Four more Archimedean appear in the second book: the truncated cube, the
truncated octahedron, the truncated icosahedron and the truncated dodeca-
hedron (all these modern names are due to Kepler, 1619). Piero appears to
have been the independent rediscoverer of these six solids. Moreover, the way
he describes their properties makes it clear that he has in fact invented the
notion of truncation in its modern mathematical sense.

On perspective for painting is the first treatise to deal with the mathe-
matics of perspective141. Piero was determined to show how this technique
is firmly based on the science of vision (as it was understood in his time).
He accordingly started with a series of mathematical theorems, some taken
from the optical work of Euclid (possibly through medieval sources) but some
original to Piero himself.

Though non of Piero’s mathematical work was published under his own
name in the Renaissance, it seems to have circulated quite widely in manu-

140 His pupil, the Franciscan Eva Luca dal Borgo, usurped his master’s books

and after Piero’s death published them as his own works! This we know from

“Lives of the Artists” of Giorgio Vasari (1511–1572). Vasari says that Piero was

regarded as “a great master of the problems of regular polygons, both arith-

metical and geometrical. . . Made an intense study of painting and perspective. . .

acquired an intimate knowledge of Euclid. . .”. Vasari added that he was pre-

vented by his blindness (which overtook him through an attack of catarrh at

the age of 60) from publishing his written mathematical manuscripts.
141 A technique for giving an appearance of the 3rd dimension in 2-dimensional

works such as painting or sculptured reliefs.
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script form and became influential through its incorporation into the works of
others. Thus, much of Piero’s algebra polyhedra appears in Pacioli’s Suma
(1494), much of his work on the Archimedean polyhedra appears in Pacioli’s
De divina proportione (1509), and the simpler parts of Piero’s perspective
treatise were incorporated into almost all subsequent treatises on perspective
addressed to painters.

1440–1446 CE Lorens Janszoon Coster of Haarlem invented printing
with movable cast-metal types (typography).

1440–1450 CE Nicholas of Cusa (Nicolaus Cusanus, Nicholas Krebs;
1401–1464, Germany). Theologian and scholar in the ‘twilight zone’ between
medieval and modern times. Broke with scholasticism while it was still the
orthodox system, and proposed scientific ideas ahead of his time. Although
his knowledge of mathematics and natural philosophy did not go beyond the
Greeks, he responded to their ideas, and reached conclusions not found among
the savants of antiquity:

• Challenged, the Augustinian finite universe. Revived the Ionian cosmo-
logical model of an infinite universe in which all heavenly bodies are
essentially alike. Seriously considered that the earth might be rotating
daily on its axis due to an initial impetus imparted to it at the beginning
of time. Maintained that it might be equally possible to build an astro-
nomical theory on the basis of the earth moving around the sun (1440).
But like Oresme before him (1370), he did not work out a new theory.

• Proposed to reform the calendar following a method later adopted (1582)
by Pope Gregory XIII.

• Recommended timing the pulse rate as an aid in medical diagnosis (1450).

• Gave the first known description in the West of a hygrometer (1450).

• Suggested that plants grew by assimilation of water.

• Believed in the ‘impetus theory’ of motion of a spherical ball: the motive
force is due to an initial impulse and lessens gradually.

• Vaguely anticipated the concept of infinitesimals, and had some intuitive
feel for the procedure of the limit142. However, measured by modern stan-
dards his accomplishments are not exciting. Nevertheless, he contributed

142 Through his futile efforts to square the circle and trisect an angle, he constructed

the following scheme: a unit circle O is intersected by a diameter AB. At A

a tangent is drawn normal to AB, and a point T is marked on it. At B, the

diameter is extended by one radius to a point S. The points S and T are

joined and the line TS intersects the circle at D, closest to T . Draw from D a

perpendicular to AB at F . Denoting θ = AOD, ϕ = AST we find, from the
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to the study of infinity , studying the infinitely large and the infinitely
small. (He considered the circle as the limit of regular polygons.)

• Asserted that the truth can never be known in total, although it can
be approached ever closer through scientific reasoning. God can be ap-
prehended by intuition, i.e. an exalted state of the intellect in which all
limitations disappear.

Nicholas became a great transitional figure between the worldview of the
Middle Ages and that of the Renaissance. Like everyone in his time, he cast
his thought as a continuation of tradition, yet his ideas initiated the fall of the
entire cosmology and social outlook that held sway since Augustine. Nicholas’
ideas were in truth a rebirth of ancient Greek learning, but not that of Plato
and Aristotle, which had indeed never been rejected by the medieval thinkers.
It was instead a revival of the Ionian methods of exactly 2000 years earlier.

In his work Nicholas returned to the central idea of Anaxagoras – an
infinite, unlimited universe. In contrast to Ptolemy’s finite cosmos circum-
scribed by concentric spheres with earth as their center, he argued that the
universe has no limits in space, no beginning or ending in time, no center,
and no single immobile place of rest, including the earth; God is not located
outside the finite universe, he is everywhere and nowhere, transcending space
and time.

Furthermore, since reality is infinite in its complexity, knowledge can only
be a series of improved approximations, unifying ever expanding realms of
experiences. In this sense learning will never lead to the final truth. There
can be no “theory of everything”. This open-ended theory of knowledge led
Nicholas to the unavoidable conclusion that there is no final authority. While
conservative in form, his ideas undercut the basic notions of hierarchy – social
and cosmic – entrenched since the days of Plato.

He was born in the city of Cues (Latin: Cusa) on the Moselle, in the
archbishopric of Trier (Treves), the son of a poor fisherman. He took his
doctor’s degree in law at the University of Padua in 1424. Failing his first
case, he abandoned the legal profession and took the holy orders. He rose
rapidly in the Church, finally becoming a Cardinal in 1448. In 1450 he was
appointed bishop of Brixen in the Tyrol. In 1459 he acted as governor of
Rome during the absence of his friend, Pope Pius II.

Although one of the great leaders in the reform movement of the 15th

century, Nicholas of Cusa’s interest for later times lies in his philosophical

similarity of the triangles TAS and DFS, AT = 3 sin θ
2+cos θ

= 3 tan ϕ. For small

θ, AT ≈ θ ≈ 3ϕ; the length AT of the tangent segment AT is approximately

equal to the arclength ÂD, whose angle θ is thus approximately trisected by

constructing the angle ϕ.
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much more than in his political or ecclesiastical activity. The novel ideas
mentioned above are propounded in his principal work De docta ignorantia
(On learned ignorance, 1440). His chief philosophical doctrine was taken up
and developed more than a century later by Giordano Bruno (1584).

1443–1482 CE Paolo (dal Pozzo) Toscanelli (1397–1482, Italy). Physi-
cian, mathematician, geographer, astronomer and philosopher. A Florentine
savant who collected information and recorded data in the natural sciences
and channeled it further to whoever sought his advice or seemed to him wor-
thy of it. He sought out travelers and adventurers from distant part of the
earth and ferreted out from their rodomontades some nuggets of truth.

As the leading geographer of Italy, he prepared new charts and maps for
the Medici’s sea captains. He recalculated the earth’s diameter, as had the
ancients, with the same goal of finding the length of a degree of latitude.
Based on his calculations (which were wrong) he encouraged Columbus in
the idea that China and India could be reached by sailing across the Atlantic.

Toscanelli recorded observations of comets; the one of 1456 was later
named comet Halley. Proclaimed (1450) the feasibility of sailing from Eu-
rope to Asia across the Atlantic he estimated the distance between the two
continents at roughly 4900 km. In 1468 he traced in the cathedral of Florence
the famous meridian line, which was to serve for determining the dates of the
movable feasts of the church.

He never left his native city of Florence. But in front of him in his study
there stood a globe showing countries still unexplored, and oceans not yet
traversed, and strange races of mankind. From the confusing mass of fantastic
reports that reached him, and from his measurements, made with inadequate
resources, he drew with increasing certainty the conclusion that it must be
possible to reach India by a westward route. He could no longer search for
that passage himself, but he wanted to see it found by bolder and younger
men, and gave them maps and advice. When Columbus began to dream of
the untraveled sea route to India, he sought the advice of Toscanelli who sent
him (1482) a chart of the ocean with an accompanying letter including all
the fragments of his knowledge. This information increased the confidence of
Columbus in his ability to cover the distance that an experienced sea captain
could easily traverse.

He collaborated with Nicholas of Cusa and disseminated the latter’s
new cosmology, linking it to the emerging observational science.

Toscanelli exercised decisive influence over the young Leonardo da
Vinci. He turned Leonardo’s gaze to the skies, explaining to him the na-
ture of the heavenly bodies, according to the new worldview of Nicholas of
Cusa, thus propagating through him a conception of science that was wholly
secular.
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1446–1454 CE Johannes Gensfleish zur Laden zum Gutenberg
(1397–1468, Germany). Inventor. Perfected in Mainz a printing press from
movable metal type and conducted the first large-scale printing-office in the
modern sense. By 1448, at the latest, he was using accurate metal type
through which he could produce in sufficient quantity the print of the Latin
Vulgate Bible. By 1454, Gutenberg printed 300 copies of the so-called Guten-
berg Bible. The names of Johann Fust (1400–1465) and his son in law
Peter Schöffer (1425–1502), both from Mainz, recur in some sources as
possible collaborators.

Gutenberg said: “With my 26 soldiers of lead I will conquer the world”.
And he did. He died blind and penniless.

Gutenberg did much more than invent the printing press, and much less
than invent printing. He played a major practical and symbolic role in inde-
pendently reinventing (in a greatly improved form and within more receptive
society) a printing technique previously developed in Minoan Crete (ca 1700
BCE) and by 1041 CE in China143 by Pi Sheng.

1450–1475 CE Ali al-Qalasadi (1412–1486, Spain). The last of the
Moorish mathematicians of Spain. [The name al-Qalasadi means the Upright,
or Versed in the Law.] Made original contributions to the theory of numbers.
Introduced a new radical sign and a sign of equality, and proposed a system of
ascending continued fractions. Computed

∑
n2,

∑
n3 and used the method

of successive approximation to determine square roots. Although these were
all known to be discovered earlier, some of these may have been discovered
independently by al-Qalasadi. He wrote several books on arithmetic and one
on algebra.

Al-Qalasadi was born in Basta, a Moorish city in Spain, and remained
there until the Christians captured it. He then traveled through the Islam
world and died in Tunisia.

143 By the year 858 CE, China was printing books. But most Chinese printers

carved or otherwise wrote out a text on a wooden block instead of assembling

it – letter by letter as Gutenberg did. Why did Gutenbergian printing take off

while Minoan and Chinese did not? Coming up with an invention itself may be

the easy part; the real, obstacle to progress may instead be a particular society’s

capability to utilize the invention. Other premature inventions include wheels

in pre-Columbian Mexico (relegated to play toys because Mexican Indians had

no draft animals!) and Cro-Magnon pottery from 25,000 BCE (what nomadic

hunter-gatherer really wanted to carry pots?). The first made automobile driven

with an internal-combustion engine was built in 1863, but no motor vehicle came

along for decades, because the public was content with horses and railroads.



1450 CE 717

1450–1461 CE Georg von Peurbach (1423–1461, Austria). Mathemati-
cian and astronomer. Due to him (and Regiomontanus) European scholars
became well acquainted with Arab trigonometry. Peurbach wrote on astron-
omy and gave tables of ecliptic calculations. He observed Halley’s comet
(June 1456) and wrote a report on his observation. He made further observa-
tions of comets and recorded the lunar eclipse of 1457. He published further
tables checked by his own eclipse observations, and devised astronomical in-
struments.

Peurbach studied under Nicholas of Cusa. He became a professor of math-
ematics of Vienna, making this university the mathematical center of his gen-
eration.

1450–1600 CE The Renaissance period in music; The leading composers
are:

• Josquin Despres 1440–1521

• Giovanni De Palestrina 1525–1594

• Orlando di Lassus 1532–1594

• Giovanni Gabrieli 1554–1612

• Claudo Monteverdi 1567–1643

1450–1850 CE ‘Little Ice-Age’ in Europe; advance and recession of
glaciers.
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Books and Guns

In the beginning there was only the spoken word. Then, to entrust his
thoughts to a more lasting medium than mere memory, man took to drawing
pictures representing things. Perhaps the oldest picture-script originated at
4000 BCE in Mesopotamia. Its images – bird, ox, ear of barley – were scratched
into soft clay tablets, then baked hard for preservation.

But such writing was a cumbersome affair, mainly used for priestly doc-
uments and public records and literature depended almost totally on word-
of-mouth transmission. The quick Mediterranean mind, awakening to a new
culture, demanded a better way of harnessing the spoken language; shortly
before 1000 BCE, the Phoenicians – swift seafarers, sharp traders and good
record keepers – began breaking spoken sound into their basic elements, and
shuffling the resulting “letters” to form words – thus creating the world’s old-
est alphabetic writing. Soon the alphabet was seized upon by the Greeks who
gave letters more convenient shapes and added the still-missing vowels.

No sooner had man taught himself to spell then a new problem arose:
what to write on? Leather, tree bark, leaves and wax tablets had all proved
unsatisfactory.

In Egypt, for some 2500 BCE, texts had been inscribed on brittle sheets
made from the pith of a Nile Delta water plant, papyrus. The use of this
material gradually spread through the Mediterranean world. Usually, several
papyrus sheets were glued together to form a scroll that could accommodate
a lengthy text (one 40-meter scroll containing the picture-script of Pharaoh
Rameses II in still extant). But what a clumsy thing to read! The scroll,
wrapped around a wooden stick, had to be held in the right hand, while the
left slowly unwound it to reveal the next column of writing. Nevertheless,
the royal library at Alexandria is believed to have had no fewer than 700, 000
scrolls. Relatively fragile, papyrus invited rivalry.

In wealthy Pergamum, on the coast of Asia Minor, scribes wrote on spe-
cially prepared sheep, goat or calf skins. This fine pellucid stationary, tougher
than papyrus and foldable, came to be known as parchment. Shortly after 1
CE, an unknown Roman scribe with a sense of compactness took a stack of
thin parchment sheets, folded them, and fastened them together at the spine.
Thus, the book was born. The earliest promoters of books were Roman Chris-
tians; to them it was essential to preserve the Scripture in the most lasting
medium – and parchment did not wilt when handled. Moreover, when one
wanted to hunt up a reference, chapter and verse, a book was a lot handier
than a scroll.



1450 CE 719

So it came about that, all through Europe’s Dark Ages, an army of monks,
ensconced behind monastery walls, hand-copied the torn and shredded writ-
ings of the past on sturdy parchment sheets. Without their toil, the literary
and scientific glories of ancient Greek might have been lost forever; it fre-
quently took years to finish copying a thick tome.

Meanwhile, in distant China, in the year 105 CE an inventor by the name
Tsai Lun devised paper, a writing surface that could be produced cheaply
from wood, rags, or other substances containing cellulose. For 600 years
this invention remained a closely guarded secret of the East. It was not
until some Chinese papermakers were captured by the Arabs in the battle of
Samarkand (7 CE) that the secret was divulged. Arab manuscripts written on
paper survive from the 9th century, and in the 12th century the industry was
established among the Moors in Spain, and also among the Moorish subjects
of the Norman Kingdom of Sicily. From there it spread to the Christians in
Spain and Italy, and in the 14th century to Germany and elsewhere, though
down to the close of the Middle Ages the most important paper-making centers
were in north Italy.

In 1439, a stubbornly determined German craftsman, Johannes Guten-
berg, began experimenting with a substitute for handwriting; if he could cast
the letters of the alphabet in reusable metal type, then arrange them, in a
mirror pattern, into words, lines and columns on an even-surfaced plate, an
imprint taken from this plate would make one page. In place of one painstak-
ingly handwritten book, he would be able to run off on his “press” as many
imprinted books – exact copies of each other – as he wished.

Laboriously, Gutenberg put together his first page plates, each one com-
posed of more than 3700 signs and letters. With the help of a hand-worked
wooden press that he had adapted from the wine press of his native Rhineland
(and which remained unchanged for the next 350 years), he started printing
in a rented workshop in Mainz. It took three years to turn out some 190
copies of the Gutenberg Bible (1454).

With this remarkable invention, book prices dropped 80 percent overnight,
and learning to read became worthwhile among the Christians. A mere 50
years after Gutenberg’s exploit, every major European country except Russia
was printing its own books. It was as if floodgates had been opened. Some
520, 000 new titles were published in the 16th century, 1.25 million in the
17th, 2 million in the 18th, and 8 million in the 19th. Today, more than three
billion titles come off the presses in a single year, adding up to an estimated
5 billion individual books.

With the invention of printing came the invention of engraving: Woodcuts
and copperplates did for the graphic arts exactly what printing did for let-
ters. Works of art could be diffused and standardized. The two inventions,
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printing and engraving, were of immense importance for the development of
knowledge. Printing made possible the publication of mathematical and as-
tronomical tables which could be depended upon; engraving, the publication
of books with illustrations representing plants, animals, anatomical or surgi-
cal details, chemical apparatus, etc. One good figure is more revealing than
many pages of text; the use of illustrations obliged the author to be more
precise than he could have been, or wished to be, without them.

The new technology was symbolized by the publication of illustrated
treatise by Vannoccio Biringuccio of Siena (1540), Georgius Agricola
(1556), Lazarus Ercker (1574), all of which included a wealth of information
on mining, metallurgy, chemistry, the founding of guns and bells, the making
of weapons and gunpowder, the casting of alloys such as type metal, the coin-
ing of money, and many other arts and crafts. This suggested that, thanks
to printing and engraving, the Renaissance was a vigorous age of stocktaking
and encyclopedism as well as of invention. Every bit of knowledge could now
be garnered and preserved forever. Words and images were immortalized.

The Chinese gave us paper. Phoenicians brought forth our alphabet. To
Rome we owe the format of the book; to Germany, the art of printing from
movable type. Britain and the United States perfected book production. To-
day, 30, 000 finished books roll of high-speed presses in the U.S. alone in just
one hour, and we find it hard to visualize the bookless world of our fore-
bears.

As is the case with many other inventions, it is impossible to determine
the contribution of a particular individual to the development of typography
and its commercial exploitation. This illustrates the fact that an invention
is sometimes not the creation of an individual but a social product, multiple
and cumulative.

The previous Chinese inventions of block printing and paper, are linked
with the beginning of typographical printing in Western Europe. Xylography,
or wooden block printing, originated in China in the early 8th century. Its
transmission to the west [probably during the century from 1250 to 1350]
suggested the next crucial step of cutting up an old block into constituent
letters.

When the art of writing, xylography, and all the subsidiary arts of illu-
minating, decorating and binding manuscripts, books, pictures etc., were at
their apex (and had long passed out of the exclusive hands of the monas-
teries into the hands of students and artisans) – the art of typography was
invented.

The invention of the movable type alone could not have brought about
the ‘printing revolution’ in the absence of paper, ink and type. Printing on
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parchments (sheep skin) or on vellum (calf skin) would require 170 calf skins
or 300 sheep skins for a single copy of the Bible!

Paper manufacture was introduced, as mentioned above, in Spain during
the 12th century by the Arabs, who had themselves received the technique
from China. It spread slowly during the next two centuries to much of Europe
[to Germany by 1390]. In Europe, the chief raw material was old rags. By
the time of Gutenberg’s youth, paper was plentiful and sold for approximately
one sixth of the price of parchment. The oil base for an ink suitable for metal
type was used by Flemish artists in the early 15th century.

Finally, the type [the mirror image of each of the letters of the alphabet]
required skills connected with delicate forms of metallurgy, namely: those of
the metal engraver and the designer of coins and medals, of the goldsmith
adept at casting small objects, of craftsmen who made punches for stamping
letters on bells, and of manufacturers of pewter vessels.

We must imagine that in many places in Europe, ingenious artisans exper-
imented with type, inks, papers and presses; that many parallel efforts were
made to replace the scribe by a mechanical device. The actual invention of
printing, namely, the dramatic fusion of familiar techniques into a workable
process, probably occurred independently in several places, but first organized
as an industry in Mainz by Gutenberg, Fust and Schöffer. By 1500 the
presses all over Europe had issued more than 9 million books representing
over 30, 000 titles.

The immediate contribution of printing to learning was that it halted
the propagation of error incurred by successive generations of scribes, and
restored the great texts of the past to their original integrity. Printing gave
scholars all over Europe identical texts to work with, referring precisely to a
particular word in a particular line on a particular page. Printing turned
intellectual work as a whole into a cooperative instead of a solitary human
activity; printing thus enlarged the amount of intellectual effort applied to
individual problems.

The effects of this novel concentration of brain power were noticeable, es-
pecially in the exact sciences. Thus, following Copernicus’ publication of his
book in 1543, it gradually drew the best minds in Europe into a cooperative
study of the controversial problem, and a solution was found sooner than
it would have otherwise. Scientific research144 acquired through this tool a
public forum, a published exchange of novel results and ideas controlled by

144 The immediate effect of printing on science was not especially favorable, for

those works printed most often were old-fashioned. A publisher is more keenly

aware of what men wish to read than of the obligation to supply them with

what is best for them to read.
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cooperative critical examination and the repetition of experiments. Printing
made books easier to acquire, freed students from compiling their own dictio-
naries and reference books, and freed their minds from barren memorization.
It accelerated the diffusion of ideas. The reformation spread with the same
astonishing rapidity as printing itself; it could not have done so without it.

The printing press spread the news at a hitherto unthinkable speed, in-
creased the range of human communication, broke down isolation. The broad-
sheets and brochures were not necessarily read by all the people on whom they
exercised their influence; rather, each printed word of information acted like a
pebble dropped into a pond, spreading its ripples of rumor and hearsay. The
printing press was only the ultimate source of the dissemination of knowledge
and culture; the process itself was complex and indirect, a process of dilution
and diffusion and distortion, which affected ever increasing numbers of people,
including the backward and illiterate.

Even three or four centuries later, the teaching of Marx and Darwin and
the discoveries of Einstein and Freud, did not reach the vast majority of
people in their original, printed text, but through second and third hand

sources, through hearsay and echo.

Printing assumed a double role through its promise of enlightenment and
popular education on the one hand, and being a weapon of revolution, hostile
to the status quo, on the other. This is why the censorship of books appeared
very soon after the invention of printing, and was practiced by both secular
and ecclesiastical authorities. Banning and burning of books were designed
to maintain political as well as religious orthodoxy. By 1560, censorship of
books of all forms was prevalent in Western Europe.

No less important was the invention of the gun. After the invention of
the rocket in 1232, the Chinese performed some further experiments in the
military use of explosive power. They put it into tubes of bamboo, making
the first ‘Roman candles’.

Early Roman candles had alternate packing of loose and compressed pow-
der, so that as the powder burned down from the muzzle, the solid lumps were
thrown out and burned as they flew. This was as close as the Chinese came to
the invention of the primitive gun, which probably took place in Germany not
later than 1326. Some of the earliest guns were made of wood strengthened
by iron hoops, or of copper and leather.

Guns soon evolved into cannon and hand guns. The latter were at first
small cannons latched to poles, which the gunners held under their arms like
lances at rest. Cannons evolved into long guns for direct fire and very short
guns, called mortars, for high-angle fire. For a time, balls of iron or lead
were used in hand guns and balls of stone in cannon. Iron cannon balls soon



1452 CE 723

replaced those of stone, carrying as they did more kinetic energy for a given
bore. Now cannons had to be made stronger and of smaller bore.

The gun soon brought the feudal system tumbling down. This was not
accomplished by shooting holes in the armor of knights; the early hand-guns
were not as effective as all that. They did not completely displace the crossbow
until the 16th century, and they did not put the armor makers out of business
until the 17th century, 300 years after guns came into use. What the early gun
did was to knock down the walls of the castles where the local lordlings had
dominated the countryside and defied their king. By shattering the feudal
castle, just as it had the walls of Constantinople, the cannon prepared the
way for the era of sun-kings ruling by divine rights. The towering medieval
fortresses with their draw-bridges and moats became mere relics.

Meanwhile, the hand-gun in its turn improved until it outshone the can-
non. As the flintlock musket, it became cheap enough for any citizen to own,
simple enough for him to use, and deadly enough to enable him to face regu-
lars. Then the stage was set for fall of kings and the setting up of republics.

1452 CE The University of Paris required that students must read the first
6 books of Euclid to get a master’s degree.

1453 CE, May 29 The Turks captured Constantinople145 to the sound
of heavy gun salvo, used for the first time in history in a major war. The
Sultan Mahomet II was able to deploy against the astonished Byzantines 14
batteries, each of several great bombards, plus 56 smaller cannons of various
types. Most spectacular of all were two enormous guns which fired stone balls
nearly 1 meter in diameter and weighing over 400 kg. The guns required two
oxen each and more than 1000 men to drive them from Adrianople, where
they were cast, to the Bosphorus. The great guns took 2 hours to load and
could fire only few times a day. Many Greek-speaking scholars escaped to the
West. They brought with them classical manuscripts in Greek along with the
ability to translate it into Latin. This may be considered as the beginning

145 Founded by Constantine the Great, through the enlargement of the old town of

Byzantium in 328 CE. Famous in history as the capital of the Roman empire

in the East for more than eleven centuries (330–1453) and as the capital of the

Ottoman empire since 1453. Rivals only Athens, Rome and Jerusalem in respect

of influence over the course of human affairs. The University of Constantinople

was founded by Theodosius II (401–450) in 425.
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of the Renaissance in science146, which lagged behind the Italian Renaissance
by some 150 years.

146 The Renaissance may be divided into the Humanistic period (1453–1600, death

of Giordano Bruno), and the Natural Science period (1600–1690, publication of

Locke’s Essay on the Human Understanding , which marked the beginning of the

Enlightenment). Philosophy, during the Humanistic period was man-centered ,

emphasizing the place of man in the universe, while that during the Natural

Science period was cosmos-centered . In both periods, philosophers turned their

attention from theological studies of heaven, the life to come, God and Church,

and supernatural things – to the study of man and nature, the earthly needs

of man, nature’s relationship to man and scientific methodology. Even the

language of the Church, Latin, was discarded by the academic world for the

various national languages, as the power of the Church declined. Rome was

loosing mastery over the Church as new centers of religion appeared in Witten-

berg (Martin Luther), Geneva (John Calvin), and London.

Scientific inquiry developed in all directions. While the universities of Paris

and Oxford remained as great centers of learning, new institutions were estab-

lished in Vienna, Heidelberg, Prague, and throughout Italy as well as Protestant

Germany. During the 17th century the scientific point of view became domi-

nant in England, France, and the Netherlands. Both groups, the Humanists

and the scientists, accepted new points of view – new methods of inquiry, new

knowledge, new standards for the new man in his new Universe. There was a

difference in their approach and emphasis, for the Humanists sought to revive

Hellenic culture, while the scientists relied mainly upon empirical observation

and rational methods of discovery.

Among the most influential philosophers adhering to the strictly scientific school

were: Galileo Galilei (1564–1642), Francis Bacon (1561–1626), Hugo

Grotius (1583–1620), Thomas Hobbes (1588–1679), and Isaac New-

ton (1642–1727). The approach of René Descartes (1596–1650) differed

markedly from both Humanist and scientific philosophers.

The period of Renaissance philosophy (1453–1690) saw the rebirth of Greco-

Roman culture, the revival of an independent spirit of learning, the renewal

of interest in the humanities, and (with the downfall of Scholasticism) the ter-

mination of subserviency of philosophy to theology, and the authority of the

Church. Philosophy developed in a natural progression free from the yoke of

ecclesiastical dogmatism.

Men in the 15th century developed an interest in nature, but most turned to

the Greek writings rather than add new knowledge. It is true that Leonardo

da Vinci (1452–1519) found that sound and light follow certain rules, but he

did not publish his results and had little influence on his contemporaries.
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1457–1503 CE Itzhak ben Yehudah Abravanel (Abrabanel)
(1437–1508, Portugal, Spain, Italy). Jewish statesman, philosopher and bib-
lical exegete. The last scholar-statesman who occupied an important position
in the financial administration of both Spain and Portugal. Assisted in fi-
nancing the Columbus first expedition and led Jewish exodus out of Spain
(1492).

He was born in Lisbon of an ancient family which claimed descent form
the royal house of David. Like many of the Spanish Jews he united scholarly
tastes with political ability. He held a high place in the favor of King Alphonso
V, who entrusted him with the management of important state affairs. On the
death of Alphonso (1481), his counselor and favorites were harshly treated by
his successor John II, and Abravanel was compelled to flee to Spain (with his
son Yehudah), where he held for eight years (1484–1492) the post of a minister
of state under Ferdinand and Isabella. When the Jews were banished from
Spain in 1492, no exception was made in Abravanel’s favor. He afterward
resided in Naples, Corfu and Monopoli and in 1503 removed to Venice, where
he held office as a minister of state till his death in 1508.

His repute as a commentator on the Scriptures is still high. He was one
of the first to see that for Biblical exegesis it was necessary to reconstruct
the social environment of olden times, and he skillfully applied his practical
knowledge of statecraft to the elucidation of the books of Samuel, Kings and
Daniel147.

Abravanel rejected philosophical rationalism, drawing on contemporary
social and political realities to elucidate Messianic Biblical passages. His
political theory is expounded in his commentary on Deuteronomy and Judges:
the monarchy, according to him is a human (not a divine) institution. He
advocated Constitutional form of government, yet he denied right of subjects
to rebel.

1457–1480 CE Yehudah Ibn Verga (ca 1430–1499, Spain and Portu-
gal). Astronomer, mathematician, chronicler and Kabbalist. Wrote a number
of books on astronomy and mathematics. Invented a new instrument to deter-
mine the Sun’s meridian, described in his book Kli-ha-Ofek, (Lisbon, 1457).

147 In his commentary on the book of Daniel (1497) entitled “The Wells of Sal-

vation” (Maa’yanot ha’Yeshuah), the author indulges in an astrological study,

discussing in detail the significance attributed by the Jews to the periodic con-

junctions of Jupiter and Saturn which occur about every 20 years. The sign of

the zodiac in which they occur changes from one conjunction to another. This

study was consulted by Juhannes Kepler (1603) and prompted him to advance

the hypothesis that the ‘Star of Bethlehem’ was indeed a conjunction of Jupiter

and Saturn in Pisces in 7 BCE.
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Ibn Verga came from Seville and was a relative of Itzhak Abravanel. There
he was active in maintaining an understanding between the Marranos and
the Jews. When the Inquisition was introduced into Spain it desired him to
betray the former. When Jews were expelled from Andalusia (1483) he moved
to Northern Spain, but had to flee again to Lisbon (1492). He lived there for
several years until he was imprisoned, perishing as a martyr in the Inquisition
dungeons (1499).

Ibn Verga wrote a history of the persecution of the Jews; his work, in
turn, was the basis of the historical work Shevet Yehudah (The Rod of Yehu-
dah) compiled and published (1550) by his relatives Shlomo Ibn Verga (ca
1460–1524) and his son Yosef Ibn Verga (ca 1495–1559). This work has
special importance in the annals of Jewish historical thought: it is one of the
outstanding achievement of the Hebrew literature of the Renaissance.

1463–1476 CE Johannes Müller, or Regiomontanus (1436–1476,
Germany). Astronomer and mathematician. Together with Georg von
Peurbach ( Purbach) (1423–1461) revived observational astronomy in the
15th century148. His observations of the great comet of January 1472 and
his major work on comets (published by Johannes Schöner in 1531) provided
several techniques for determining a comet’s parallax, as well as determining
a comet’s position and size149.

Müller published De Triangulis, the first systematic European treatise on
spherical trigonometry, from which Copernicus borrowed heavily (without ac-
knowledgement!) in his own chapter on trigonometry. It was the earliest work
treating trigonometry as a substantive science150. Müller made his own astro-

148 They jointly undertook a reform of astronomical observations rendered neces-

sary by the errors they detected in translations of Ptolemy’s tables. This need

arose in connection with navigation and the reform of the old Julian Calendar.

From Roger Bacon in the 13th century to Petrus Ramus in the 16th, there

have been outstanding individuals and schools who realized that Aristotelian

physics and Ptolemaic astronomy had to be put out of the way before a new de-

parture could be made. When Müller completed the commentaries on Ptolemy

which Purbach had begun, he realized the need to put astronomy on a new

basis by ‘ridding posterity of ancient tradition’.
149 Already Levi ben Gershon suggested in 1328 that Ptolemy’s parallax method

for the moon be applied to determine the distance to a comet.
150 Regiomontanus’ problem (1471): “At what point on the earth’s surface does

a perpendicularly suspended rod appear largest?” The point of this problem
becomes obvious when phrased in the more vivid form: “From what distance

will a statue on a pedestal appear largest to the eye?”. Clearly this occurs when

the angle α subtended at the eye is widest.
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nomical observations and prepared a nautical almanac for the aid of Spanish
and Portuguese navigation, including tables of trigonometric functions.

Müller was born at Königsberg, the son of a miller151. He was a child
prodigy, who at the age of 12 published the best astronomical yearbook for
1448, and at 15 received a bachelors degree from the University of Vienna
(and was asked by the Emperor Frederick III to cast a horoscope for the
imperial bride). At 16 he became the pupil and associate of Peurbach in
Vienna and was appointed to the faculty at 21 (his association with Peurbach
lasted through 1452–1461). Upon Peurbach’s death in 1461, he took over
his teacher’s condensation and explication of Gerard of Cremona’s 12th

century translation of Ptolemy’s Almagest . In 1462 he traveled to Italy with
Cardinal Bessarion. At Rome he learned Greek and studied Ptolemy in the
original. Although this work was completed sometime before 1463, it was not
published until 1496.

He left Rome in 1468 to return to Vienna, and there was summoned to
Buda by Matthias Corvinus, King of Hungary, for the purpose of collating
Greek manuscripts at a handsome salary. But he convinced his royal pa-
tron that Ptolemy could no longer be relied on, and that it was necessary
to put astronomy on new foundations by patient observations, making use
of such recent inventions as the corrected sundial and the mechanical clock .
Matthias agreed and in 1471, Regiomontanus left for Nuremberg where, under
the patronage of Johann Bernard Walther (1430–1504) he installed the first
European observatory , for which he partly invented the requisite instruments.
In 1475 he was summoned to Rome by Pope Sixtus IV to aid the reform of
the calendar (which was getting out of step with the solar year), and there he
died within the year, most likely of the plague (some contemporary accounts
attribute his death to poisoning).

If the events surrounding the death of Regiomontanus seem strange, the
events surrounding the fate of his effects were even more peculiar. After his

Assume for simplicity that the x-axis goes through the foot of the pedestal (0, 0)

and the eye (ξ, 0), while the ends of the statue (0, h), (0, h+L) lie on the y-axis.
Simple geometrical considerations show that

f(ξ) = sin α = ξL[ξ2 + h2]−1/2[ξ2 + (h + L)2
]−1/2

.

The extremum condition f ′(ξ) = 0 then yields ξ =
√

h(h + L) , corresponding

to sin α = L
L+2h

. At this distance, the best view is guaranteed. It can be

shown that the points (0, h), (0, h + L), (ξ, 0) lie on a circle that is tangent to

the x-axis at ξ.
151 Königsberg means ‘King’s Mountain’ in German. In Latin, Regiomonte trans-

lates as ‘from the royal mountain’.
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death, his books, papers, and instruments were acquired by Walther. Walther
used the instruments to continue the observations that he and Regiomontanus
had started, but the books and papers were locked up and access to them
denied to one and all. After Walther’s death in 1504, the executors of Re-
giomontanus’ estate apparently started selling his books, all the while denying
that they were doing so. Several law suits were initiated over the remains of
the estate. Finally, most of the remaining books and papers were acquired by
Johannes Schöner, who published a few of them in the 1530’s and the 1540’s.

The manuscripts and notes of Regiomontanus’ last years are lost, and there
remain only scant indications of the reform of astronomy that he planned.
But we know that he had paid special attention to Aristarchos’ heliocentric
system, as a note on one of his manuscripts shows. And much earlier he, too,
had noted that the sun ruled the motion of the planets.

Towards the end of his life, he wrote on a piece of paper enclosed in a letter
the words: “It is necessary to alter the motion of the stars a little because of
the motion of the earth”. The wording, seems to indicate that the ‘motion
of the earth’ here refers to its annual revolution round the sun. In other
words, Regiomontanus has arrived at the same conclusion as Aristarchos and
Copernicus, but was prevented from finalizing his work by his untimely death.
He died at 40, when Copernicus was three years old.

1470–1494 CE Itzhak ben Moshe Aramah (1420–1494, Spain). Phi-
losopher, mathematician and Talmudic scholar. First formulated the sta-
tistical law of large numbers (1470) in his book Akedat Yitzhak (Binding of
Isaac); It was published in Salonici (1522), over two centuries ahead of Jakob
Bernoulli (1770). Therein, Aramah stated:

“Ordinary lots due to chance are without any tendency to one side
or the other... They are not a ‘sign’, for matters of this kind are
not established unless they are found many times... The casting
of a lot indicates primarily a reference to chance.”

Aramah was born in Zamorah, Spain and served as head of rabbinical
academies in various Jewish learning centers. He was expelled from Spain
(1492) and died in Naples, Italy. His philosophical system was influenced by
Aristotle and Maimonides, and deals specifically with such major questions as
faith and reason. Aramah became popular and influential, and his thinking
represents the mainstream of Jewish medieval philosophy.

1473–1497 CE Avraham ben Shmuel Zacuto (1450–1515, Spain and
Portugal). Astronomer, mathematician and historian. His astronomical ta-
bles, maritime charts and new astrolabe played an important role in the Span-
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ish and Portuguese discoveries, especially in the voyages of Columbus and
Vasco da Gama.

Zacuto’s achievements in astronomy were many: his astrolabe of copper,
the first of its kind (previously they had been made of wood), enabled sailors
to determine the position of the sun with greater precision; his astronomical
tables, based on the Alphonsine tables, were an improvement on the latter.
They permitted sailors to ascertain latitudes without recourse to the meridian
of the sun, and to calculate solar and lunar eclipses with greater accuracy.

Zacuto was born in Salamanca, Spain. His ancestors were Jewish exiles
who had come to Castile from France in 1306. He attended the university of
his native city, where he specialized in astronomy. Subsequently he became a
professor at the universities of Salamanca and Saragossa. There he wrote his
major astronomical work (1473–1478), and engaged in research and writing
until 1480. He later removed to Gata, where he wrote a treatise on solar and
lunar eclipses.

In 1492, when the Jews were expelled from Spain, Zacuto emigrated to
Portugal, where he was appointed court astronomer to King John II and later
to his successor Manuel I. Here he was engaged in fitting and instructing
the expedition of Vasco da Gama. Gama himself consulted Zacuto in Lisbon
before he set sail in 1497.

The great services rendered by Zacuto did not protect him, however, from
the persecution inaugurated by Manuel at the instigation of the infamous
royal couple Ferdinand and Isabella of Spain; he and his son were forced to
seek safety in flight. He reached Tunis (1498), where he lived until the Spanish
invasion in 1509. He then fled to Turkey, residing there for the remainder of
his life.

The work of Zacuto was continued by his pupil and associate Joseph
Vecinho (Vizino), who supplied Columbus with a translation of Zacuto’s
astronomical tables. Vecinho was later sent by king John II of Portugal to
the coast of Guinea, there to measure the altitude of the sun by means of the
astrolabe as improved by Yaacov ben Machir Ibn Tibbon.

1477–1514 CE Donato Bramante (1444–1514, Italy). Architect and
painter. Evolved a style known as the High Renaissance. The greatest archi-
tect of his generation.

Bramante was born in Urbino and trained as a painter by Francesca,
Piero della. Arrived in Rome (1499) to build the Tempietto152 of St. Pietro
in Montorio (1502). Worked in Milan (1477–1499) and Rome (1499–1514).

152 So called because it has the aspect of a small pagan temple from antiquity.
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Patronized by the Sforza family. Worked with Leonardo da Vinci on prob-
lems of the Milan Cathedral. Bramante designed the Basilica of St. Peter
(begun 1506). He strongly influenced Pope Julius II city-plan for Rome (from
ca 1508).

Even though Bramante was called unlettered (as were Leonardo), because
he was ignorant of Latin and Greek, he must have acquired considerable learn-
ing, however fragmentary. His theoretical writings, have all been lost. His
insatiable thirst for experiment and for new knowledge forced him away from
convention in his works to a multiplicity of attitudes and expressions. Perhaps
these characteristics indicate a certain dissatisfaction, an inner melancholy, or
a deep sense of solitude. He apparently never married or had children. In un-
ceasing experiments in his work, he may have been seeking a remedy for his
incurable restlessness.

1481 CE Meshullam ben Menahem of Volterra (ca 1441–1500, Italy).
Jewish goldsmith and traveler. Sailed from Naples, Italy (May 1481) via
Rhodes153 to Alexandria. Visited Cairo and went through the Sinai Desert to
Gaza, Hebron, Jerusalem, Jaffa, Damascus and Beirut. From there he sailed
back via Rhodes, Crete and Korfu to Venice (October 1481). His travelogue
was first published in Vienna in 1882. The manuscript is an important histor-
ical document concerning the cultural and socio-political background of life in
the Eastern Mediterranean and the Holy Land at the end of the 15th century.

1480–1484 CE Felix Fabri (1441–1502, Germany). Dominican friar trav-
eler and writer; one of the most distinguished learned writers of the 15th

century.

Fabri (Faber, Schmid) was born in Zürich and died in Ulm, Germany,
where he spent most of his life. He made his early studies under the Do-
minicans at Basle and Ulm and graduated as master of sacred theology. He
became head preacher of the Preaching Order at Ulm (1477–1478). Made
two pilgrimages to the Holy Land (1480, 1483–1484) taking the route Ulm -
Memmingen - Innsbruck - over the Alps into Italy - Venice - by ship to Corfu
- Crete - Cyprus - Syria - Holy Land - Sinai - Egypt. Wrote two accounts of
his travels , one in German and second in Latin. The Latin version is very
complete and accurate in its description of places visited. The journal of his
second pilgrimage made Fabri one of the most distinguished writers of his
time. This work was reproduced by the Stuttgart Literary Society in three

153 During 1428–1485, the Popes forbade all Italian ship owners to transport Jews

to the Holy Land on board their vessels. This explains why Jewish travelers

had to zigzag their way by hopping from port to port in different ships or go

overland through Turkey.
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octavo volumes (1843–1849) under the title: “Fr. Felicis Fabri Evagatorium
in Terrae Sanctae, Arabiae at Aegyptis peregrinationen”.

1482–1519 CE Leonardo da Vinci154 (1452–1519, Italy). Painter,
sculptor, architect, musician, civil and military engineer, inventor and philo-
sopher. The father of modern aviation and anatomy. Student of the natural
sciences (anatomy, botany, astronomy, geology, and physics), who sought to
discover the mathematical laws governing all observable phenomena.

Through his teacher Paolo Toscanelli, his thinking developed towards
the modern scientific method: a conception of science that was wholly secular
and in no way based on religious doctrines or philosophy. In his thinking as
in his actions, the gap between spirit and matter, theory and practice, was
finally bridged in reality. While philosophers from Philoponus to Nicholas
of Cusa had recognized the unity of the world, they had remained abstract
thinkers. In Leonardo, the craftsman, scientist, and inventor are merged into
one. Liberated philosophically by the new infinite cosmology, and liberated
economically by widespread social change that had weakened the authoritar-
ian hierarchy, he went far beyond his predecessors – he observed the whole
world .

Leonardo put into practice Nicholas’ idea that knowledge must derive from
observations, and linked it with the necessity of mathematical description. He
emphasized that “there is no certainty in science where one of the mathemat-
ical sciences cannot be applied”. But he emphatically rejected the Platonic
idea of mathematics as the master of science. In Leonardo’s method, exper-
iments lead to the hypothesis of ‘rules of nature’, mathematical rules whose
utility is as an aid to human beings in their lives. He applied this method on
a scale not equaled before him.

Leonardo recorded his ideas about art, engineering and science in his note-
books, which include about 4200 pages. He wrote his notes backwards, such
that they can be read only with a mirror. Many of his ideas and designs
were far ahead of their time, but because his writings remained largely un-
circulated, and were extremely difficult to decipher155, he exerted little or no

154 For further reading, see:

• Vallentin, A., Leonardo da Vinci, The Tragic Pursuit of Perfection, Viking
Press: New York, 1938, 561 pp.

• Hart, I.B., The World of Leonardo da Vinci: Man of Science, Engineer and
Dreamer of Flight, Viking Press: New York, 1961, 374 pp.

155 His method of mirror writing on little notes which he often inserted in any blank

space that was available, had to do with a number of independent factors: First,
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influence on subsequent generations of scientists. By the time Leonardo’s sci-
entific and technical investigations became widely known, other people had
come up with many of the same ideas. Uneducated156, incapable of adequate
expression in words of the ideas flashing through his extraordinary mind, his
notes are often incoherent and without conclusions. Thus he never developed
his ideas systematically, seldom formulated scientific laws or principles, and
did not make any notable scientific discoveries. He did however develop the
empirical side of the scientific method157, and must be credited with an im-
pressive number of inventions, such as: parachute, helicopter , construction
crane, the wheelbarrow , a hodometer , a lens grinder and polisher , a flying
machine, a compass, flexible chain or sprocket drive, and ball bearings.

His wide variety of suggestions for the fields of military engineering and
hydraulics is amazing: he could produce engines for offense and defense, and
equipment for military excavations, mining, supply, and ordnance. Projectile
throwers, aerial bombs, catapults, mine detectors, military bridges, firearms
capable of imparting spin to bullets, are among his inventions or improvements
on existing devices.

In hydraulics (a subject of endless fascination to him throughout his life) he
was generations ahead of his time, especially in the field of canal engineering .
He also devised innumerable ways of employing hydraulic power, such as water
lifts, ventilators, screws, pumps and water shells. (Yet, there is no proof that
all the machines he sketched were his own invention.) He stated that the sun
does not move (some fifty years ahead of Copernicus), though savants of his
day believed that the sun revolves around the earth.

Together with Andreas Vesalius of Brussels (1514–1564) he is the

paper was not as cheap then as it is now and people did not like to waste it as

we do. Second, there was no patent office and secrecy was the only method of

protection.
156 The distinguished historian of science and longtime Leonardo scholar, George

Sarton, remarks soberly that in comparison to his contemporaries, he quoted

very little from the great minds of his day, and indeed seems, for all his natural

brilliance, to have been comparatively unlettered.
157 Leonardo studied various building problems experimentally. Using small-scale

models, he investigated how the weight that vertical pillars and horizontal

beams could support, varied with their thickness and their height or length.

His experiments led him to the results that the carrying power of a pillar, of

given material and height, varied as the cube of its diameter, and that the car-

rying power of a beam was directly proportional to its thickness and inversely

proportional to its length.

The bones and joints of animals he considered to be lever systems operated by

the forces of their muscles.
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founder of modern anatomy. Leonardo was fearless in his research, at a time
when ecclesiastical and magical taboos still intimidated his contemporaries.
In his anatomical dissections his often restated belief in the primary value of
observation, and his willingness to repeat his dissections rather than content
himself with one single example, establish his drawings as important scien-
tific documents. But again, his anatomical drawing and researches remained
hidden for centuries.

Leonardo was born near the village of Vinci, near Florence, as the illegit-
imate son of Piero da Vinci (a legal specialist) and a peasant girl. During
the late 1460’s Leonardo became an apprentice to the painter and sculptor
Andrea del Verrocchio. During 1478–1482, Leonardo had his own studio
in Florence, and he left Florence in about 1482 to become court artist for
Lodovico Sforza, the Duke of Milan. There Leonardo stayed for 17 years, be-
ing employed as a military and civil engineer and a sculptor. He painted The
Last Supper in 1495. During his Milan years he began to produce scientific
drawings.

In 1499, the French overthrew Sforza and forced him to flee Milan.
Leonardo too left the city, and visited Mantua and Venice before return-
ing to Florence. The Florentine government hired him and Michelangelo to
decorate the new hall for the city council. While working on this project,
Leonardo painted the Mona Lisa, a portrait of Lisa del Giocondo, the young
wife of a Florentine merchant. The Mona Lisa became famous because of the
mysterious smile of the subject158. In 1517 Leonardo settled in France at the
invitation of King Francis I, and spent his final two years near Tours.

Leonardo was one of the greatest heroes of the Renaissance, whose ac-
tivities marked a climax of the Italian Renaissance as well as the beginning
of the French one. Leonardo moves us deeply, first because of the Oriental
proclivities that are one of the aspects of his mysterious genius, and second
because of his scientific tendencies. He was a man without academic learning,
whose attention, therefore, was not focused on books but rather on nature.
He was concerned with new discoveries, not with rediscoveries.

At the end of the 15th century, a new way of thinking opened up great
vistas of learning and beauty. The wonderful phenomenon of the Renaissance
was not merely a revival of classical culture; it was a change in the whole out-
look of thinking men, who demanded escape from the tyranny of dogmatism,

158 “Women did not arouse in him any feelings of desire. He was therefore all the

more curious about the mysterious character of reproduction and generation.

He could consider the sexual act as part of the endless flux of growth, decay

and rebirth which formed for him the most fascinating and fundamental of all

intellectual problems”. (Kenneth Clark).
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from limitations of thought imposed by the Church. It was the Renaissance
that finally broke the Church’s stranglehold upon science and medicine.
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Worldview V: Leonardo da Vinci

∗ ∗∗

“He never turns back who has found his star.”

∗ ∗∗

“Our life is made by the death of others.”

∗ ∗∗

“Necessity is the mistress and guide of nature. Necessity is the theme and the
inventress, the eternal curb and law of nature.”

∗ ∗∗

“Science is the observation of things possible.”

∗ ∗∗

“The common sense is that which judges the things given to it by other
senses.”
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∗ ∗∗

“The Sun does not move.”

∗ ∗∗

“A bird is an instrument working according to mathematical law, which is
within the capacity of man to reproduce.” (1505)

∗ ∗∗

“There is no higher or lower knowledge, but one only, flowing out of
experimentation.”

∗ ∗∗

“Among all the studies of natural causes and reasoning, Light chiefly delights
the beholder; and among the great features of mathematics the certainty of
its demonstrations is what preeminently tends to elevate the mind of the
investigator: Perspective, therefore, might be preferred to all the discourses
and systems of the human learning.” (1497)
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∗ ∗∗

“He who loves practice without theory is like the sailor who boards ship
without a rudder and compass and never knows where he may cast.”

∗ ∗∗

“No human investigation can be called real science if it cannot be demon-
strated mathematically.”

∗ ∗∗
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1484 CE Nicolas Chuquet (ca 1445–1500, France). Mathematician.
Published (1484) a manuscript treatise entitled Triparty en la science des
nombres. Although the work was not printed until 1880, it had considerable
contemporary influence. In the third part of his book Chuquet devised an
exponential notation in which the power of the unknown is indicated by an
exponent [e.g., 6x+12x3+4+7x−2 were written in the form .6.1+.12.3+.4.0+
.7.2.m]. Chuquet also produced what is, in effect, a small table of logarithms
to base 2. In his work, negative numbers appear for the first time and zero is
used.

Chuquet was born in Paris, qualified in medicine and practiced in Lyon.

Table 2.6 lists important Chinese, Hindu and Medieval mathematicians.

Eclipses, Occultations and Maps

If noon (when the sun lies directly over the meridian on which one is
located) at a place B on earth occurs y hours after noon at A, B is 15y
degrees west of A. If noon occurs at B y hours before A, B is 15y degrees
east of A. A difference in longitude is the hour angle difference between the
local transits of the sun across the two meridians (the lines joining the north
and south points of the horizon at the two locales).

Simple as this may appear, it was a very difficult mental leap to make in
ancient times! Until there were wheel-driven clocks, there were no portable
devices with which to compare solar time at two different places. Although the
later Alexandrians had very elaborate water-clocks of much greater delicacy
than the crude hour-glasses of earlier periods (and certainly no less accurate
than the first medieval clocks which were driven by weights) they had no
means of a maintaining a continuous record of time over a long journey.

Yet, Eudoxos (fl. 370 BCE), Kiddinu (fl. 367 BCE), Aristarchos (fl.
280 BCE), Eratosthenes (fl. 235 BCE), Hipparchos (fl. 150 BCE), and
Ptolemy (fl. 150 CE) – all understood that certain astronomical events can
be used in lieu of accurate clocks to determine longitude. Equipped with
neither chronometers, nor radio signals, they offered a way of using natural
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Table 2.6: Important Chinese, Hindu and Medieval Mathematicians

Name Life-Span Major Contribution

China

Liu Hui fl. 263 CE Negative numbers; Solution of linear
indeterminate equations. Suggested
Cavalieri’s principle to find accurate
volumes .

Tsu–Chung–Chi 430–500 π = 3.1415926 . . .

Chin–Chiu–Shao 1202–1261 Chinese Remainder Theorem

Chu–Shih–Chieh 1270–1330 ‘Horner’s Method’; Pascal’s Triangle

India

Unknown ca 500 Decimal position number-system;
Zero symbol

Aryabata the Elder 476–550 Indeterminate equations and contin-
ued fractions

Varahamihira 505–587 Hindu Calendar; Trigonometric
identities

Brahmagupta 598–670 Area of cyclic quadrilateral;
Quadratic equations; Negative
solution of equations

Khadyaka 610–680 Interpolation formula for sine func-
tion

Mahavira fl. 850 Linear and nonlinear indeterminate
equations

Bháskara 1114–1185 ‘Pell Equation’; Operations with
zero; Early combinatorics; Idea of
the differential

Narayana Pandit 1340–1400 Accurate calculation of square roots

Madhava 1350–1425 First power series expansion of a
function
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Table 2.6: (Cont.)

Name Life-Span Major Contribution

Middle East

Al-Khowarizmi 780–850 Algebraic manipulations

Omar Khayyam 1044–1123 Geometrical solutions of cubic
equations; Forerunner of non-
Euclidean geometry

Western Europe

Avraham bar Hiyya
ha-Nasi

1065–1136 First complete solution to the
quadratic equation

Leonardo of Pisa (Fi-
bonacci) (I)

1170–1250 Indeterminate equations;; Fi-
bonacci sequence; Approxima-
tions to cubic equations

Levi ben Gersion
(Gersonides) (J)

1288–1344 Mathematical Induction (1321);
Permutations;

∑
n3 = (

∑
n2)2

Nicole Oresme (F) 1323–1382 Forerunner of Coordinate
Geometry ; Fractional expo-
nents; Harmonic series

Nicolas of Cusa (G) 1401–1464 Forerunner of the concepts:
limit , infinity , infinitesimals;
Calendar Reform

Pietro Della
Francesca (I)

1406–1492 Three-dimensional perspective

George von Puerbach
(G)

1423–1461 Trigonometric tables

Johannes Müller (Re-
giomontanus) (G)

1436–1476 Modern Trigonometry

Johann Widman (G) 1462–1498 Algebraic symbolism

Nicolas Chuquet (F) 1445–1488 First modern algebraist: nega-
tive numbers, fractions, expo-
nents; The idea of logarithms
(1484)

I = Italian; J = Jewish; F = French; G = German
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phenomena visible from many parts of the earth such as eclipses of the moon
or the occultation of a planet or star by the moon’s disk.

The method, based on the lunar eclipse, works as follows. Let the moon
enter the earth’s shadow cone at local time t1 as reckoned at location A1

(relative to the local noon as measured on a sun-dial, say), and let it likewise
enter the same cone at local time t2 as reckoned by the local timekeeping
at location A2. The longitude difference between the two locations is then
15◦(t2 − t1). The mariner who possesses an almanac giving the local time at
which an eclipse (or other astronomical event) will occur at one place, can
therefore obtain his longitude by recording the local time of its occurrence
where he is159.

Aside from lunar eclipses, the moon’s course displays other circumstances
which were highly portentous; as it moves along its orbit, it may block the
visibility of other heavenly bodies, in particular planets which move near the
ecliptic and thus also near the moon’s orbit. Thus, during an occultation of
Mars, the planet will disappear behind the moon’s disk.

People observed these occultations and were able to know when they would
occur at a particular place. Anyone who possessed an hour-glass at another
place could watch for them and record the interval which elapsed between an
occultation (or an eclipse) and that day’s local noon.

Latitude could be determined by either sighting the elevation of a star
at night (with a sextant) or the sun at daytime. Thus true maps could in
principle be constructed from the knowledge of both latitude and longitude
of places.

Occultations and conjunctions of planets were reported by Greek, Chinese,
Arab and European astronomers throughout history; some examples are:

• May 04, 357 BCE: Occultation of Mars visible in Greece during the
lifetime of Aristotle, and one of the very few astronomical observations
which Aristotle himself is known to have made. He renders a very careful
description in De Caelo 2, 12.

• Sept. 04, 241 BCE: Close conjunction of Jupiter and the star δ Cnc
(Ptolemy, Almagest 11, 3).

159 Columbus used this technique to fix the longitude of Jamaica (1504), and

was disappointed to find that it lay not as far west as he expected. Earlier,

he looked out for a port of anchor at Haiti for observing the lunar eclipse on

January 13, 1493. Allegedly, Vespucci found the difference of longitudes

between Venezuela and Cadiz in 1499 by observation of a lunar eclipse.
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• Feb. 12, 73 CE: Chinese report on occultation of β Sco by Jupiter
(disappeared Feb. 12; reappeared Feb. 16).

• Sept. 13, 1170 CE: Conjunction of Mars and Jupiter. During the
night of 12–13 Sept. the planets passed within a minute of arc of one
another, so that the unaided eye would not be able to resolve them.

• July 18, 1273 CE: Mercury occulted by the moon. Observed in Egypt
for half an hour.

• Jan. 09, 1591 CE: Jupiter totally occulted by Mars. Observed by
Kepler at Tübingen, Germany.

Unfortunately, eclipses or occultations occur so rarely as to be almost
useless for ships on the move. Nevertheless, Hipparchos believed that an
extensive series of observations should be carried out in order to ascertain,
by mathematical and astronomical means alone, latitudes and longitudes of
a large number of places. To facilitate such a survey, he prepared tables
of lunar eclipses, and tables to aid in the determination of latitudes, but the
practical difficulties of the undertaking were too great and the work was never
completed. In fact, throughout antiquity the total number of places whose
position had thus been accurately determined probably does not exceed half
a dozen, if that160.

The navigators of Columbus and Magellan, versed in Muslim astron-
omy, were able to define the position of America on the world’s map. So
knowing exactly where the planets are located was a matter of some practical
importance in the period of the Great Navigations, when Copernicus and
Kepler showed that their positions can be calculated more accurately and far
more simply if we reject the commonsense-view of the priestly astronomers.

1485–1488 CE Ovadiah Yareh of Bertinoro (ca 1435–1515, Italy).
Traveler and Mishna commentator. Sailed (1485) from Naples to Sicily and

160 Pliny speaks of an eclipse of the sun that was seen in Campagnia between

the 7th and 8th hours and in Armenia between the 11th and 12th, indicating

a difference in longitude of 4 hours, or 60 ◦. The actual distance is no more

than half of this. Much greater accuracy was attained by the Arabs in their

calculations of longitude, and some of their figures were passed on to the Western

world in astronomical tables during the 12th and 13th centuries.
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from there to Egypt161 (1487). Then went through the Sinai Desert to
Jerusalem (1488). Described his perilous journey in a series of letters (1488–
1490) to his family in Northern Italy. Composed his famous exegesis to the
Mishna (1490–1505). Died in Jerusalem and was buried in a cave in the Mount
of Olives.

1486–1489 CE Johannes Widman (1462–1498, Germany). Mathe-
matician. Introduced the symbols (+) and (−) to denote addition and sub-
traction, respectively. Author of Behennde und hüpsche Rechnung auf allen
Kauffmanschafften (1489). This marks the beginning of algebraic symbolism.
He considered computation with irrational numbers and polynomials to be
part of algebra.

Widman attended the University of Leipzig, graduating in 1482. His Mas-
ters Degree was awarded in 1485 and he then taught at the University of
Leipzig on arithmetic and algebra.

Although the Germans did not enrich algebra during the Renaissance with
great inventions, as did the Italians, they still cultivated it with great zeal.

1492 CE, Jan. 23 First printing of the Pentateuch.

1490–1520 CE Yehudah Abravanel (Leone Ebreo) (1460–1530, Por-
tugal, Spain, Italy). One of the great philosophers of the Renaissance, physi-
cian, mathematics and astronomer. An outstanding figure of the period of
transition between the Middle Ages and the Renaissance. He lived not only
at the conjunction of two eras but was also in contact with three cultures –
Jewish, Spanish and Italian.

Yehudah was born in Lisbon. He fled (with his father Itzhak) to Spain
(1483) and practiced medicine there. After the expulsion (1492) he left with
his father for Naples and worked there as a physician. Upon the conquest of
Naples by the French (1496) he moved to Geneva, but returned to Naples and
lived there (1503–1521) as court physician to the Spanish viceroy. He lectured
on mathematics and astronomy at the Universities of Naples and Rome.

His most famous work Dialoghi di Amore (1535) is a landmark in the
history of aesthetics, metaphysics and ethics. He maintained that true happi-
ness is the union of human intellect with the Divine intelligence, and that it
is directly connected to aesthetic enjoyment. There is a pantheistic strain in
Abravanel’s philosophy, but he always emphasized his orthodox Judaism, and
tries to reconcile his pantheistic feelings with the biblical concept of God. The
book was translated to most European languages and exerted great influence.

161 When the ship reached Palermo, Ovadiah met (1487) with Meshullam of

Volterra, who was on his second voyage to Egypt.
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It was one of the most widely read books in Shakespeare’s England. One of
its heritages is the concept of Platonic love.

1492 CE, Aug. 3 Christopher Columbus162 (Cristoforo Colombo,
1451–1506, Italy), Admiral of the Ocean Sea, sailed from the Spanish port
of Palos with a crew of 89 men on board three small and fragile ships – the
Niña, Pinta and the Santa Maria (a 24 meter long carrack of about 280
tons). On Oct. 12, he completed his first Atlantic crossing and landed on a
Caribbean island that he named San Salvador, which he believed to be an
island of the Indies, near Japan or China. He discovered Cuba (Oct. 27) and
Hispaniola (Dec. 6). On March 4, 1493 he reached Lisbon after a tempestuous
recrossing of the Atlantic.

Columbus’ ambition was to find a short sea route to the Indies. He used
a map given to him by the Florentine geographer Paolo Toscanelli (1397–
1442, Italy), in which Japan lay only 4400 kilometers west of Lisbon.

Columbus navigated by dead reckoning: his navigators knew just enough
celestial navigation to measure latitude from the North star. The naviga-
tion tools at his disposal were: compass needle, sandglass, quadrant and
ephemerides (tables listing positions of stars and planets at given times). It
was virtually impossible for him to use celestial navigation for the measure-
ment of longitude (i.e. east-to-west distance) because there were no chronome-
ters. To find latitude (i.e. north-to-south location) the height of the sun at its
meridian (noon) was measured, or in the Northern hemisphere – the height
of the North star. Sailors used an instrument called a quadrant for making
these measurements; but the quadrant was so difficult to use on a rolling ship
that reliable measurements could be made only through repeated land-based
observations.

Given the primitive state of navigational instruments, the ship’s fix in
Columbus’ day was usually only a rough approximation. It was necessary
to know three elements: time, speed, direction. Based on these, the route

162 Some historians believe that Columbus was of Jewish origin, possibly a marrano

or secret Jew. Five of his crew, as well as his interpreter Luis de Torres

(who knew Hebrew, Chaldaic and a little Arabic) were known to be Marrano

Jews (among them Maistre Bernal, the official doctor of the expedition, and

Marco, the surgeon), and he used the Alfonsine Tables compiled by Jews.

There is bitter irony to the fact that the wealth that Ferdinand and Isabella

confiscated (1492–1497) from the expelled Jewish population (ca 200,000), was

used to finance the journeys of discovery of Columbus, Magellan, Cabral, da

Gama and others. Thus, both Jewish material and intellectual resources were

instrumental in the discovery of the New World. (History repeated here what

had previously occurred during the Crusades!).
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taken from the point of departure could be marked on the chart. Direction
was given by the compass: the horizon was divided into 32 points instead
of 360 ◦, which means that directions were measured roughly. Accuracy was
further reduced by the fact that no account was taken either of declination
(difference between geographic north and magnetic north which varied from
place to place) or of the shifting of the needle caused by nearby metal objects.
It was relatively easy to record successive changes in course, but much more
difficult to calculate the effects of drifts or the movement of currents.

Speed was a matter of guesswork, estimating by looking at the flow of
water along the hull.

Time was measured with a sandglass which was turned every half hour
(every 8 turns of the sandglass – that is, every 4 hours – the old watch was
replaced and fresh crewmen took their place. Each watch passed on the
compass course to the next watch and a new helmsman began his work).
Since the time of noon was essential, and since the hour of midday became
progressively later as the ships sailed westward, it was necessary periodically
to synchronize the sandglass with the sun. Columbus did this on a weekly
basis, using a method that probably was accurate within a quarter of an hour.

It is estimated that Columbus’ first voyage cost $14,000 in today’s cur-
rency. (A few years after the voyage, the ‘poorest’ of Spain’s 13 dukes had
an annual income that was about 5 times greater than all the funds raised for
Columbus’ voyage.) This suggest that his expedition was, in modern terms,
a relatively low-budget operation.

Columbus was born in Genoa. The family name was Colombo. He called
himself Cristóbal Colón after he settled in Spain. His father, Domenico, was
a wool weaver. Columbus was sent to the University of Pavia, where he
devoted himself to mathematics, astronomy, geometry, and cosmography. He
had settled in Lisbon about 1479, marrying the daughter of the governor of
Porto Santo in Madeira Island. There he spent some time studying his late
father-in-law’s collection of navigational works, talking to sailors about their
voyages and making charts.

Like Aristotle and Eratosthenes, who had successfully calculated the cir-
cumference of the earth more than 1600 years earlier, Columbus knew that
the earth was a sphere. Most of his reading seems to have been medieval.
It was Marco Polo’s overestimation of the east-west extent of Asia, and of
the distance of Japan from the Asian mainland, that led him to believe that
the voyage westward from Europe to Japan would be less than 3000 nautical
miles. Indeed, he called the natives of the Bahamas “Indians”, certain that
he had arrived in Asia, in the realm of the Great Khan.

On Sept. 25, 1493 he went on his second voyage with the objective of the
colonization of Hispaniola (today’s Haiti and the Dominican Republic). He
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set out with 3 great carracks, 14 caravels and 1200 men – soldiers, farmers,
missionaries, civil servants, and assorted fortune hunters. During his voyage
he discovered the Lesser Antilles – from Dominicana to the Virgin Islands,
including Puerto Rico and Jamaica. He returned with his fleet to Cadiz on
June 11, 1496.

He embarked again, on his third voyage, on May 30, 1498, with 6 ships,
crewed by pressed men and released criminals, the only men who could be
found. The new lands discovered during this expedition was Trinidad and
what is now Venezuela (= little Venice). From this voyage he was sent home
in chains, but later reinstated in the Queen’s favor.

After this Columbus made his last voyage, sailing on March 9, 1502, once
more presumably in search of a way to Asia, and en route discovered Mar-
tinique, the mainland of Honduras and Costa Rica.

He had no means of knowing that the Pacific was not more than 500
kilometers to the west!163 He reached Seville on September 7, 1504, only to
die two years later, a disillusioned and broken man.

1492–1498 CE The New Exodus164: expulsion of the Jews from Spain un-

163 Columbus drew most of his ideas about geography from books written in the

14th and early 15th centuries. The cosmography in these books was based

on erroneous maps and imaginary concepts that propagated from Greek and

Roman writings
164 In the course of the years 1355–1482, about 60,000 Jews were killed in massacres

and riots and 20,000 forcibly baptized into Christianity under Spanish rule. On

the eve of the expulsion there still remained about 200,000 Jews in the Iberian

Peninsula. Of these ca 25,000 perished while seeking a new home; ca 50,000

remained in Spain as Marranos and Conversos; about 55,000 eventually reached

Turkey; some 35,000 finally settled in France and Holland; 10,000 went to Italy;

5,000 to South America, and 20,000 to North Africa and Egypt.

Jews played a leading part in the cultural and economic life of Spain during

the Roman and Islamic periods. When the Christians wrestled Spain from

the Moors (1212), the Jews brought the splendor of the Islamic civilization to

Christian Spain. By virtue of their learning and sophistication they left an

imprint of humanism on that country. They rose to great positions of power,

many attaining high ranks of nobility. Resentment against “outsiders” as “in-

siders” smoldered for a century, then erupted into an anti-Jewish movement

popularly known as the “Second Reconquest”, a movement to force the Jews to

“give” Spain back to the Christians. It climaxed in the great conversion drives

(1391) when many thousands were forcibly baptized. Thus, these “New Chris-

tians”, the flower of Jewish aristocracy and intelligentsia, entered the service of

the Church (becoming bishops, archbishops, cardinals) and began to dominate
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der complex and chilling circumstances which laid the foundation for modern
racist holocausts in Europe.

1494–1509 CE Luca Pacioli (ca 1455–1517, Italy). Mathematician
and Franciscan friar. Compiled an overview of most mathematical meth-
ods handed over from the Middle Ages in his book Summa de arithmetica,
geometria, proportioni et proportionalita (1494). This work, freely compiled
from many sources, purported to be a summary of the arithmetic, algebra
and geometry of the time. It contains little of importance not found in Fi-
bonacci’s Liber abaci (1202), but does employ superior notation. Methods are
presented for solving equations of the first and second degree, accompanied

Spanish intellectual life. It was this “Jew in Christian cloths” who became the

villain, with disastrous results for the Jews and Spain. The cry was raised by

the “Old Christians” that the “New Christians” were not loyal to the Church.

They held that limpieza de sangre (purity of blood), not mere ability, should

determine one’s fitness for Church office. So persistent was that feeling that

the Inquisition was introduced (1480) to determine blood purity; the stage was

set for the Grand Inquisitor Tomas de Torquemada and the Auto-da-fé (“act of

faith”) – the rite of purification by being burned alive. [His grandfather, Alvar

Fernandez de Torquemada married a recently baptized Jewess; this genealogi-

cal fact throws psychopathological light on the grandson’s ruthlessness toward

Jews.]

Torquemada asked for the expulsion of the all Jews. No charge was brought

against them other than that they were not Catholic. The 50,000 Jews who

chose to stay in Spain by conversion to Christianity became the new Marranos.

But because the all-prevailing effects of limpieza they did not soar to intellec-

tual eminence as the Jews and the Marranos of the two preceding centuries –

the intellectual lights in Spain went out.

In the 2005 Internet text of the Catholic Encyclopedia we read the following

lines under the item ‘Tomas de Torquemada’:

“During Torquemada’s office (1493–1498) 8,800 suffered death by fire and 9,654

were punished by other ways. Whether Torquemada’s ways of ferreting out

and punishing heretics were justifiable is a matter that has to be decided by an

inquiry into their necessity for preservation of Christian Spain.” (sic!)

The contemporary Spanish chronicler, Sebastian de Olmedo calls Torque-

mada “the hammer of heretics, the light of Spain, the savior of his country, the

honor of his order.”

History tells us that after 1498, Spain sank back into the Middle Ages [see

Science Progress Report No. 5]. The persecution by the Inquisition and the fol-

lowing expulsion of the Jews, stripped Spain of most of its intellectual, scientific

and economic powers. It never recovered, and after Torquemada was not worth

saving.
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by many problems leading to such equations. It includes algorithms for mul-
tiplication of integral numbers written in Hindu-Arabic numerals, extraction
of square roots, and the first printed description of double entry bookkeeping .

Pacioli’s second book, De Divina Proportione (1509), included figures of
regular solids on plates engraved by his friend Leonardo da Vinci.

Pacioli traveled extensively and taught at various places.

1495–1512 CE Alesandro Achillini (1463–1512, Italy). Philosopher,
anatomist and surgeon. One of the first to dissect a human body. In his
anatomical writings he described the veins of the arm, the seven bones of the
tarsus, the fornix, ventricles, and infundibulum of the brain, and the trochlear
nerve. He also described the ducts of the submaxillary gland before Thomas
Wharton (1656), and two of the three ossicles of the ear (the malleus and
incus).

Achillini was a lecturer both in medicine and in philosophy at Bologna
and Padua.

1495 CE Epidemic of syphilis sweeps Europe.

1496–1500 CE The diseases of syphilis and cholera first identified or de-
scribed with accuracy.

1497 CE Amerigo Vespucci (1451–1512, Italy). Merchant, pilot and
adventurer, who gave his name of Amerigo to the new world as America
although he had no share in the first discovery of the American continent. Yet,
due to some odd combination of circumstances, America was named after him.

He was born at Florence. His father was notary, and his uncle, to whom
he owed his education, was a scholarly Dominican and a friend of Savonarola.
He studied natural philosophy, astronomy and geography and later was placed
as a clerk in the great commercial house of the Medici, then the ruling family
in Florence. He resided in Seville, Spain throughout the period 1492–1496 as
an agent of the Medici, and certainly did not make the 1497 voyage, which
he claimed he had made. Whether or not he took part in the expeditions of
1499 (for Spain), 1501 and 1503 (for Portugal) is yet an open question.

The connection of the new world with Vespucci, is derived from an alleged
letter written by him from Lisbon (march of April 1503) to Lorenzo Piero
Francesco di Medici, the head of the firm under which his business career had
been mostly spent, describing his alleged Portuguese voyage of March 1501–
September 1502. The original Italian text is lost, but a Latin translation is
extant. According to this letter, Vespucci reached the mainland of America
on a Spanish expedition 8 days before Giovanni Gaboto (John Gabot, June
16th against June 24th, 1497).
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A second letter, written from Portugal (September 1504) to his old school-
mate Piero Sodorini, was made available in Latin translation to Martin Wald-
seemüller, professor of cosmography in St. Dié University. This man wrote a
book Cosmographiae Introductio (St. Dié, 1507) in which he suggested that
the newly discovered 4th part of the world should be called “America, because
Americus discovered it”165. His name was first accepted for South America,
and gradually came into use for North America as well.

1498–1519 CE Shmuel Zarfati166 (called Gallo, ca 1450–1519, Italy).
One of the greatest physicians of his age; Pioneer of blood-transfusion in
modern medicine. Originated from France. When the Jews were expelled
from Provence (1493–1500), Shmuel was assured by King Louis XII that he
personally would not be molested. He nevertheless preferred to emigrate
(1498) and settled in Rome, where he became famous for his cures. There
he was granted special privileges by Pope Alexander VI. He represented the
Jewish community at the coronation of Pope Julius II (1503), and became
the latter’s personal physician (1504). His reputation was greatly enhanced
(1511), when he successfully predicted the recovery of the Pope from a serious
illness at a time when all the Pope’s other physician had given up hope. He was
permitted to treat Christian patients and was granted full rights of residence;
He and his family were exempted from wearing the Jew badge. In 1515 he
became physician of Giuliano de Medici.

Shmuel’s son, Joseph Zarfati (called Josiphon, Giosifante, or
Giuseppe Gallo by Christian writers, ca 1470–1527) was a physician, phi-
losopher, poet, mathematician and an accomplished linguist (Latin, Greek,

165 In 1492, Christopher Columbus had no idea that he reached the Western

Hemisphere. He thought that the islands he explored were part of the Indies.

He first set foot on the mainland of America on his third voyage in 1498. When

Vespucci claimed that he had discovered the new continent, or the New World,

as it was called in 1497, Columbus did not dispute his claim.
166 Zarfati, Zarefati, Sarfaty: An illustrious group of families of rabbinic Talmu-

dic scholars, originating from France, some of which descended from RASHI

(1040–1105). For the next 700 years these families issued Rabbinic scholars,

Talmudists, physicians, poets, mathematicians and linguists which spread from
France to Spain, Netherlands, Italy, Turkey, Israel and North Africa.

Other famous physicians from this family were:

• Yaacov ben Shlomo Zarfati (ca 1365–1425, Avignon, France).

• Itzhak Zarfati (ca 1485–1550, Italy). Physician to Pope Clement VII.

• David Zarfati de Pina (ca 1630–1700, Amsterdam). Noted physician, poet
and preacher.
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Hebrew, Aramaic, Arabic). The Pope extended to him the privileges that had
been accorded to his father; these were confirmed by Pope Leo X and Pope
Clement VII (1524).

The latter part of his life was dogged with misfortune. An unfaithful
servant ran off with his fortune, he was falsely accused of being a spy, he was
beset by robbers, and he escaped the siege of Rome in 1527 only to fall victim
of the plague and die outside of the city of Vicovaro.

1498–1510 CE Gaspar da Gama (1444–1510, India and Portugal). Jew-
ish navigator and explorer. Participated in the Portuguese naval expedition
of Vasco da Gama, Cabral, Nicolau Coelho and Francisco d’Almeida.

He was born in Posen, Poland and became a traveler. He made his way
to Jerusalem and then Alexandria, was taken prisoner and sold as a slave in
India, where he obtained his freedom and entered the service of the ruler of
Goa. There, he took on the name Yusuf’ Adil. We do not know what his
original name was.

When the Portuguese explorer Vasco da Gama arrived off Angediva in
1498, he was greeted in a friendly fashion by this long-bearded European
on behalf of his master. Vasco da Gama self-righteously seized the Jew and
compelled him to embrace Christianity under the baptismal name of Gaspar
da Gama. He was also known as Gaspar d’Almeida and Gaspar de las Indias.

As a Catholic, Gaspar da Gama became the pilot of Vasco da Gama’s
fleet. He successfully guided the ships through treacherous Indian waters and
was brought back to Portugal.

In Lisbon, Gaspar was granted a pension by the King, who employed
his linguistic ability in subsequent Portuguese naval expeditions. In 1500 he
accompanied Cabral on his voyage in Western waters and was with Nicolau
Coelho when he first stepped ashore in Brazil.

On the return voyage he met Amerigo Vespucci (the Tuscan explorer after
whom America is named) at Cabo Verde and was consulted by him.

In 1502, he went to India once more with Vasco da Gama and again in
1505 with Francisco d’Almeida. He took part in the latter’s expedition against
Calicut in 1510, when he may have died.

1500 CE Hindu-Arabic numerals finally superseded Roman numerals for
most computational purposes in Europe.

1500 CE The Portuguese navigator and explorer Pedro Álvars Cabral
(1467–1520) discovered Brazil . After da Gama’s return, King Manuel I of
Portugal sent Cabral in command of a fleet of 13 vessels to establish trade
with India. Taking a westward course, he was carried by wind and current
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to the coast of Brazil and took possession of it in name of Portugal. They
named the country for the red dyewood, called Brazilwood, that they found
there.

The 16th century: final collapse of the cultural balance of the Old World
when Europe opened the Americas, and then explored the rest of the world’s
habitable coastlines, using the oceans as highways for their commerce and
conquests. For the first time, one civilization gained such superiority as to
upset the fourfold balance that existed since 1000 BCE between the four
distinctive civilized traditions of Greece, the Middle East, India and China.

Those four major civilizations were set apart by different cultural tradi-
tions, and by distinctive religious and philosophical world views, all of which
found their initial expressions before the end of the sixth century BCE.

The relationship between the four major civilizations may be thought of
as an equilibrium. Any serious disorders might influence other parts of the
system, but not until 1500 CE did any one civilization gain such superiority
as to upset the fourfold balance of the whole. This balance did, however,
encounter a number of jolts:

• First, Alexander the Great pushed Greek civilization far beyond its
original borders.

• Then, Hindu Buddhism advanced along the silk road into the heart of
China.

• But the Hellenization of the Middle East, like the Indianization of China
did not last and was soon either repudiated or absorbed into native
concepts.

• Next came the explosive conquest of Islam, first across the Middle East,
North Africa and Spain, and then into India, Eastern Europe and Cen-
tral Asia.
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The Amateur Mathematicians of the Renaissance167

(1500–1600)

The Renaissance was a golden age of part-time naive mathematicians.

Before 1500, the three components of modern scientific method – the log-
ical, the experimental and the mathematical – developed in isolation. The
underlying reason was that the aims, intellectual interests and social posi-
tions of the professional groups with which they were connected, were too
diverse to permit fruitful communication among them.

By 1500, the gaps between these groups had narrowed rapidly due to
printing: the cultural ideas of humanism influenced all educated men. Fash-
ion forcefully imposed newly translated texts on their attention, while an
increasing number of scholars learned Greek and began to study Greek sci-
ence in its original source. An important phase of this reappropriation of
Greek antiquity was the recovery of understanding of the works of Pappos,
Apollonios, Diophantos, Hero and above all those of Archimedes, which
appeared in Latin translation in 1543. With these came the growing emphasis
on the cultural and scientific importance of mathematics. Humanist educa-
tional practice stressed mathematics at the expense of logic. The professional
teaching of mathematics spread to the universities and there was hardly a
Renaissance writer who did not remind his readers of the sentence inscribed
over the door of the Platonic Academy: “Let no one unskilled in geometry
enter here”.

In this atmosphere emerged persons who had skills in many fields of knowl-
edge.

The artist-engineer Leonardo da Vinci (1452–1519, Italy) was such a
‘universal man’, and being interested in everything, he was naturally inter-
ested in mathematics. Although he did not have much of a mathematical
education, he tried to square the circle.

Albrecht Dürer (1471–1528, Germany), originated what we call today:
‘descriptive geometry’, because as an artist he was interested in perspec-
tive and the proportions of the human form. Francois Vieta (1540–1603 ,

167 To dig deeper, read:

• Coolidge, J.L., The Mathematics of Great Amateurs, Oxford University Press:

London, 1949, 211 pp.

• Ore, O., Cardano the Gambling Scholar, Dover Publications: New York, 1965,

249 pp.
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France) was a Royal Privy Counselor and mathematician. Joseph Scaliger
(1540–1609, Netherlands)was a philologist at the University of Leyden. He
was an amateur mathematician whose name is associated with the Gregorian
Calendar.

The monk and Lutheran preacher Michael Stifel (1487–1567), was for a
time professor of mathematics at the University of Jena. John Napier (1550–
1617, England) a Scottish nobleman and amateur mathematician invented
logarithms, but also warlike machines for the defense of Britain against Spain.
He promoted astrology and published a book in which he argued that the Pope
was the Anti-Christ. Jobst Bürgi, a Swiss clockmaker working in Prague,
invented the logarithms independently.

It should be kept in mind that during 1494–1559, Italy served as a victim
of rivalries of the strong monarchies which were rising in Western Europe, all
of which coveted the wealth of the peninsula. Spain was engaged in a series
of wars against France to control Italy, which was politically divided into
four major city-states (Venice, Milan, Florence, and Naples) and the Papal
states. These units maintained a precarious balance among themselves and
were constantly endeavoring to victimize each other, and ultimately reached
the point of inviting in foreigners, with the result that Italy became the prey
of French, German and Spanish ambitions.

Nevertheless, the said period marked the apogee of the Renaissance and
the intellectual and artistic primacy of Italy. It seemed as if all the armies of
Europe could not stop the ideas whose time had come.

In the field of political science Niccolo Machiavelli (1469–1527) was
outstanding. Ludovico Ariosto (1474–1533) was a great epic poet. In the
field of music Giovanni Palestrina (1525–1594) and Orlando di Lassus
(1532–1594) were men of the first rank. Architects and painters of eminence
were too numerous to be listed, and it will suffice to recall names like Raf-
faelo Santi (1483–1520), Michelangelo Buonaroti (1475–1564), Titian
(Tiziono Vecelli, 1477–1576), Tintoretto (1512–1594), Paolo Veronese
(1528–1588) etc.

By 1559, almost all of Italy was under the influence of Spain and so it
remained until the early 1700’s.

The most spectacular mathematical achievement of the 16th century was
the discovery, by Italian mathematicians, of the algebraic solution of the cubic
and quartic equations. The story of this discovery rivals any page ever written
by Benevenuto Cellini:

About 1515, Scipione del Ferro (1465–1526), a professor of mathe-
matics at the University of Bologna, algebraically solved the cubic equation
x3 + px = q, probably basing his work on earlier Arabic sources. [Bologna
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was at the time one of the oldest of the medieval universities, with a strong
mathematical tradition.]

Consider the identity (a − b)3+3ab(a − b) ≡ a3 − b3 and denote a − b = x.
The identity then reads x3+3abx = a3 −b3. Comparing this with the original
equation x3 + px = q, we choose 3ab = p, a3 − b3 = q, and solve this pair
for {a, b} in terms of {p, q}. The problem has thus been reduced to the level

of the biquadratic equation, a6 − a3q −
(
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3

)3 = 0. A solution of this equation
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To obtain the other two solutions, one effects the factorization:

x3 + 3abx + b3 − a3 = [x − a + b][x + ωb − ω2a][x + ω2b − ωa]

where ω = − 1
2 [1 + i

√
3], ω2 = − 1

2 [1 − i
√

3], and finds: x2 = ω2a − ωb,
x3 = ωa − ω2b. Note that the case of three distinct and real roots occurs only
when (−a)3 and b3 are complex conjugate. For this “irreducible” case, the
trigonometrical solution is adequate, and was first given by Francois Viète
in ca 1579.

Cardano’s solution for the general cubic equation
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has the explicit algebraic form
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For example the equation x3 − 7x + 7 = 0 is solved by
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This is the famous cubic formula which Cardano is reputed to have
weaseled out of his fellow mathematician, Tartaglia, under the oath of se-
crecy.

Consider two examples: the equation x3+x = 2, has x = 1 as a solution.

The above solution yields x =
[
1 +

√
1 + 1

27

]1/3 −
[

−1 +
√

1 + 1
27

]1/3 =
1.263, 762, 616 − 0.263, 762, 658, which is x = 1 within 2 × 10−10.

We then take the equation x3 − 15x = 4, which has x = 4 as a solution.
Here, the formula yields: x = [2 +

√
−121]1/3 − [−2 +

√
−121]1/3, where x

is real although each of its two members is a complex number. In the year
1545, this was a meaningless expression: square roots of negative numbers
had no legitimacy and the theory of complex numbers was nonexistent. Only
255 years later(!) (when complex numbers were interpreted as points in a
coordinate plane) was the mystery lifted.

Ferro did not publish his solution, but before his death he disclosed it to
his pupil Antonio Maria Fior, a mediocre mathematician. Through this
intermediary, the solution (or part of it) leaked to Niccolo Fontana, known
as Niccolo Tartaglia (‘the stammerer’, 1499–1559) who claimed in 1535
to have found the solution of the cubic equation. He divulged his solution
to Girolamo (Jerome) Cardano (1501–1576) in return for financial assis-
tance. Although Cardano promised not to publish the solution, he did so
in 1545, in his book ‘Ars magna’ which appeared at Nuremberg, Germany.
Tartaglia’s vehement protests were countered by Lodovico Ferrari, who ar-
gued that Cardano had received his information from del Ferro through a
third party and accused Tartaglia of plagiarism from the same source. Since
the actors in the above drama seem not always to have had the highest regard
for truth, one finds a number of variations in the details of the plot.
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The solution of the cubic and quartic equations was perhaps the greatest
contribution to algebra since the Babylonians (almost 4 millennia earlier)
had learned how to complete the square for quadratic equations. No other
discovery had quite the stimulus to algebraic development as those of Ferrari,
Tartaglia and Cardano. It was natural that further study should take aim at
the quintic and polynomial equations of higher order. Here mathematicians
of the next 200 years would be faced with unsolvable problems, and their
negative conclusions would yield much good mathematics.

The explicit solutions of the quadratic, cubic and quartic equations use
only the four basic arithmetical operations and the extraction of roots. In the
attempts to find general formulae for equations of higher degrees, using only
these operations, mathematician after Ferrari have greatly overestimated the
‘power of radicals’ and were mislead by the fact one can very well find special
equations whose solutions can be expressed by radicals (such equations are
called ‘soluble by radicals’, where a radical is a solution of the equation of the
nth degree xn − a = 0 and is denoted168 by n

√
a).

Indeed, Abel (1824) and Galois (1831) put an end to traditional algebra,
Italian style, where one provides a neat formula in terms of coefficients, which
is applicable to all polynomial equations of a certain degree.

In the year named, Abel showed for the quintic equation, that even though
Gauss (1799) guaranteed a solution when coefficients are real or complex, it
is impossible to express this solution using only a finite number of rational
operations and root extractions on the coefficients. Galois gave a more elegant
proof of the same fact, and then established a general theorem indicating
the impossibility of finite algebraic formulation of solutions for polynomial
equations of all degrees greater than four.

1507 CE First outbreak of smallpox in the New World. By 1520 it spread
into Mexico. Several million died.
168 The n roots of the equation xn − 1 = 0, where n is a positive integer, are given

by xk = cos 2πk
n

+ i sin 2πk
n

, k = 0, 1, 2, . . . , n − 1. They are known as the roots

of unity . Clearly, xk = αk where α = cos 2π
n

+ i sin 2π
n

(the nth roots of unity)

lie on the circumference of the unit circle and divide it into n equal parts.

The more general equation xn − λ = 0, λ > 0 has the solutions xk =

λ1/n, αλ1/n, α2λ1/n, . . . , αn−1λ1/n.

Since xn − 1 contains the factor x − 1, it follows that α, α2, . . . , αn−1 are

the n − 1 roots of xn−1 + xn−2 + · · · + x + 1 = 0.
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1510 CE Beginning of systematic importation of African black slaves into
the West Indies.

1510–1528 CE Albrecht Dürer (1471–1528, Germany). Artist (painter,
engraver) and mathematician. Laid the foundations of descriptive geome-
try169. It is expounded in Dürer’s treatise on human proportion [De symetria
Partium in Rectis Formis Humanorum Corporum Libri ], published in Nurem-
berg after his death in 1528. His engraving Melancholic contains the first
magic square to be seen in Europe. It contains the date 1514 as two entries
in the middle of the bottom row. Dürer’s geometry was the first printed work
to consider the subject of higher plane curves, and the first to discuss scien-
tifically the question of such approximate construction as that of the regular
heptagon.

Dürer was born in the Imperial Free City of Nüremberg and became an
apprentice painter and woodcut designer (1486). He traveled to Colmar (1490)
and went to Strasbourg and Basel. He returned to Nüremberg (1494) and
married Agnes Frey. Dürer visited Venice in 1494–1495 and again between
1505 and 1507. These visits strongly influenced his art. He was appointed
court painter to Maximilian I, the Holy Roman emperor (1512) and again
under Charles V (1520).

Dürer (and Rembrandt) are credited with the invention of the technique
of dry-point engraving170.

1513–1519 CE Juan Ponce de Léon (1474–1521, Spain). Explorer.
First to describe the Gulf Stream (specifically, the Florida Current) in 1513.
Sailing from Puerto Rico, he crossed the stream north of Cape Canaveral and
then sailed south to Tortugas. The current was so swift that his three ships
were frequently unable to stem it. (The island of Cuba was first circumnavi-
gated in 1508, but the current was not reported until 1513.)

In 1515, Peter Martyr of Anghiera reported various conjectures about
the Gulf Stream. He believed, however, that the North Equatorial Current is
deflected by the mainland so as to flow back into the ocean. The westward
flow of the Equatorial Current itself was attributed to the general westward
motion of the celestial bodies across the sky that allegedly drew the water
and air of the equatorial regions along with it (!)

169 Later given a sound mathematical basis by Monge (1768).
170 Made by cutting a design into a flat metal plate. The engraved plate is then

used to print the design or picture. The artists uses a needle with a diamond

or hard steel point. As the needle cuts into the plate (copper or zinc), it throws

up a soft ridge of metal called a burr. This burr holds the ink and thus forms

the lines that appear on the picture.
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By 1519 the Gulf Stream was so well known that Spanish ships bound for
America by way of the Equatorial Current, passed on their return through
the Florida Straits, and followed the Gulf Stream to about the latitude of
Cape Hatteras, and then sailed eastward to Spain. In this way they secured
favorable winds and avoided contrary currents over the entire voyage.

Ponce de Léon went to America with Columbus on the second
voyage (1493). He led the settlement of Spaniards in Puerto Rico (1508), and
encountered the Gulf Stream while searching for Bimini , a fabled island on
which was said to be located the Fountain of Youth. This search brought him
to a new land at Easter time of 1513. Ponce de Léon claimed the region for
Spain and named it Florida because of the many flowers he saw there. He
returned to Florida in 1521 to start a colony, but was wounded and died on
his return to Cuba. Ponce, Puerto Rico, is named in his honor.

1513–1525 CE Niccolo Machiavelli (1469–1527, Italy). Political philo-
sopher and historian. A leading literary figure of the Renaissance.

Best known for his book The Prince (Il Principe, 1513, published 1532),
which established Machiavelli as the father of modern political science. He
also wrote History of Florence (1525), The Art of War (1520) and Discourses
upon the First Ten Books of Livy (1517).

Machiavelli was born in Florence, the son of a jurist, and a member of an
old Tuscan family. He became a leading figure in the Republic of Florence
after the Medici family was driven out (1498). For 14 years, he served as first
secretary of the council of the republic. His duties brought him in contact
with the notorious Cesare Borgia. When the Medici regained power (1512),
Machiavelli was dismissed from office, tortured and imprisoned, but finally
released on order of Pope Leo X. He spent the next 14 years (1512–1526) in
retirement near Florence. There he wrote his books on history and politics.

As an historian, he raised the study of history from mere chronicle to
an evaluation of motives and causes. He was the first to come along and
attack the Church and preach rebellion against the dictatorship of the clergy.
Machiavelli’s reputation as a diabolical apostle of intrigue, duplicity and power
politics is a travesty of his actual work:

The Prince, apparently cynical exposition of a creed of treachery and
tyranny, must be read in the context of his other political works, and of
the circumstances of the time. The Discourses give his long-term views, and
in this unconstrained context of security founded on law, he proclaims the
superiority of government by people over government by princes. Thus, the
precepts of The Prince must be taken to be applicable in times of crisis or in
desperate circumstances that are comparatively rare.
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Much of what he says in The Prince is a sardonic description of the
political practices of his own day and not a recommendation of such prac-
tices. Machiavelli, in his own practice as a diplomat and minister, was hardly
‘Machiavellian’: emphasizing power and how it is held, not what should be
done to fulfill a providential scheme.

Machiavelli had serious doubts about the chances of long-term success.
He maintained that humans tire even of stability and success, and crave nov-
elty. They have a weakness, almost a flair, for corruption; and by the time it
becomes visible, it has already taken hold in defiance of the old laws and mea-
sures. To restore the healthy political structure then requires extraordinary
measures which very few are equal to carrying out.

The collapse of the Soviet Union (1989), the discrediting of Marxism and
the defeat of reformist parliamentary socialism are striking examples of the
political theory of Machiavelli.171

1516 CE Franz von Taxis (Francesco Tassi, 1460–1517, Italy and
Germany). Established the first successful regular public postal system in the
Habsburg Empire, which soon spread all over Europe. This organization of
the Taxis family was in operation for 350 years. In 1867 it was incorporated
into the Prussian postal system.

171 According to the political philosopher Leo Strauss (1899–1973), in his book

Thoughts on Machiavelli (1958), Machiavelli is the key turning point that leads

to modern political philosophy, and Machiavelli’s sin was to speak esoteric truths

openly. He told all within hearing that there is no certain God who punishes

wrongdoing; the essence of Machiavellianism is that one can get away with

things. Because of this, he turned his back on the Christian virtue that the

belief in a retributive God had upheld. Pre-Machiavellian philosophy, be it

Greco-Roman of Christian, had taught that the good political order must be

based upon human virtues. Machiavelli believed that sufficient virtue was not

attainable and therefore taught that the good political order must be based on

men as they are, i.e. upon their mediocrity and vices. This is not just realism,

or mere cynicism. It amounts to a deliberate choice as to how society should

be organized and a decided de-emphasis on personal virtue. It leads to the new

discipline of political science, which is concerned with coldly describing men as

they actually are. It leads ultimately to Immanuel Kant’s statement that, “We

could devise a constitution for a race of devils, if only they were intelligent.”

The ancient view is that this will get you nowhere, because only men with civic

virtue will obey a constitution. The modern view leads naturally to value-free

social science and social policies that seek to solve social problems through

technocratic manipulation that refrains from “imposing value judgements” on

the objects of its concern.
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1516 CE The first official ghetto172, the street or quarter of a city in which
Jews were compelled to live, established in Venice, Italy. Ghettos were en-
closed by walls and gates which were locked each night. Haphazardly, without
a master plan, the isolation of the Jews in the ghettos was achieved within
a century of their expulsion from Spain. Out of sight, out of mind, out of
influence, they would be expelled from the mainstream of Christianity (and
later from Islam too), so as not to contaminate with heresy the minds of
Jesus-loving Christians. Placing the Jews into cordons sanitaires (antiseptic
enclaves) seemed an excellent solution.

The Jew, who for a millennium had been an integral part of the economic,
social and intellectual history of Europe, was now relieved of all his rights and
privileges. He was now neither essential for Christian salvation nor necessary
for national economic survival – he has become the superfluous man in Europe.

During the Middle Ages the Jews were forbidden to leave the ghetto after
sunset when the gates were locked, and they were also imprisoned on Sundays
and all Christian holy days. By the middle of the 19th century the ghetto
system was moribund. It was reinstituted by the Germans during 1939–1945
as a transitory stage to the Jews on their trek to the gas-chambers.

1517–1546 CE Elia Levita; Eliyahu ben Asher ha’levi Ashke-
nazi173 (1468–1549, Italy). Hebrew grammarian, philologist and lexicogra-
pher. Laid the foundation of the lexicography and etymology of the Yiddish
language. Published many books on Hebrew Masorah and grammar, and
composed the first comprehensive biblical concordance. Claimed that punc-
tuation was established by the Masoretes in the 4th century CE. Composed
the first Hebrew–Yiddish dictionary.

Levita was born in the village of Ipsheim, near Nüremberg in Germany
and moved to Italy at about 1490, settling in Padua. He lost all his property
during the French conquest of Padua (1509) and eventually moved to Rome
(1514), where he befriended Cardinal Edidio de Viterbo who later became
his patron (1517–1527). In return, Levita taught the Cardinal (and other
noted Christian, among them Martin Luther) the Hebrew language and its
grammar174.

172 Abbreviation of Italian borghetto, diminutive of borgo = a borough. According

to another view it came from gietto nuovo = the new foundry, a location near

an iron-foundry in the city of Venice. Temporary ghettos existed previously in

London (1276), Capua (1375) and Bolonia (1417). The earliest regular ghettos

were established in Italy in the 11th century, though Prague is said to have had

one already in the 10th century.
173 Known also as the ‘Bachur’.
174 The Renaissance made the study of Hebrew more popular, and this resulted in
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In this sense Levita fulfilled the historic mission of endearing the Hebrew
language to enlightened Christians and humanists.

When the Spanish and German mercenaries sacked Rome on May 06, 1527,
Rome pre-eminence in the Renaissance ended. All of Levita’s property (in-
cluding some of his finished manuscripts) was lost and he removed to Venice,
where he continued to publish his works, and spent the last years of his life.

1517–1546 CE Girolamo Fracastoro (Hieronymus Fracastorius)
(1478–1553, Italy). Physician, astronomer and poet. Universal man of the Re-
naissance. Explained fossils as the remains of actual organisms (1517); Gave
name and described symptoms and treatment of Syphilis175 (1530); Prefigured
a Copernican model of the solar system176 in Homocentrica sive de stellis liber
(1538); made first scientific statement on the nature of contagion and trans-
mission of diseases by germs (1546).

Born at Verona and studied at Padua. Became (1502) professor of philos-
ophy and colleague of Copernicus at the University of Padua. He was skilled
not only in medicine and literature, but in most arts and sciences. Maintained
private medical practice in Verona; studied epidemic diseases; medical consul-
tant of Pope Paul III at the Council of Trent (1545 ff). Intimately acquainted
with Julius Scaliger and most of the great man of his time.

1518–1536 CE Hernando Cortés (1485–1547, Spain). Spanish con-
queror of Mexico. Discovered the peninsula of Lower California.

Cortés was born at Medellin, a small town of Estermadura. He belonged
to a noble family of decayed fortune. Being destined for the law, he was sent
(1499) to the University of Salamanca, but returned home (1501) resolved to
enter upon a life of adventure. He set out (1504) as a soldier for San Domingo
and remained there until 1511, when he accompanied Diego Velasquez in
his expedition to the island of Cuba. Soon after the discovery of Mexico by
Juan Grijalva, Velasquez entrusted the conquest of the newly discovered

an increasingly sympathetic attitude on the part of the cultured Europeans to-

ward the literary treasures of the Jews. Italy became the Jewish printing center

and Christian printers employed learned Jews to find the best manuscripts and

to arrange them in the best manner. This ‘honeymoon’, however, did not last

for long. With the rise of Pope Paulus IV, during the Counter-Reformation,

the Inquisition in Italy burned Jews and their books (1553–1572) in great bon-

fires and locked the Jews up in ghettos all over Italy for the next two centuries.

Interestingly enough, Levita’s sons converted to Christianity and his renegade

grandson Vitorio Aliano, urged the Inquisition to burn the Talmud.
175 The name of a mythical young shepherd who developed the disease.
176 His planetary system is close to Eudoxos’ model; it contains 79 spheres.
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country to Cortés. He landed there on the 4th of March 1519. Coasting
along Yucatan and Mexico to San Juan de Uhia (1519), he founded Veracruz
and afterwards destroyed his fleet, showing his soldiers that they must either
conquer or perish177. On march inland, he drew to his side some 6000 natives,
hostile to Montezuma, the Aztec monarch.

Believing Cortés to be the god Quetzalcoatl, Montezuma sent him con-
ciliatory gifts. Cortés entered the Aztec capital Tenochtitlan (Nov 8, 1519)
as Montezuma’s guest, but surrounded and outnumbered by hostile Aztecs
he executed a most daring project of taking the monarch hostage in his own
capital. The Aztec revolted but, after heavy losses and a long siege, Cortés
took the capital and ended Aztec power (13th Aug 1521). These successes
were entirely owing to the military genius, valor and profound but unscrupu-
lous policy of Cortés; and the account of them which he transmitted to Spain
excited the admiration of his countrymen.

This, however, created for him powerful enemies in Spain and Mexico.
Eventually, the King of Spain178 alarmed by Cortés ambition, ousted him179.

177 This moment was immortalized in John Keat’s poem “On First Looking into

Chapman’s Homer” (Oct 1816)

“. . . Then felt I like some watcher of the skies
When a new planet swims into his ken;

Or like stout Cortez when with eagle eyes

He stared at the Pacific – and all his men
Looked at each other with a wild surmise –

Silent, upon a peak in Darien.”

178 Emperor Charles V (1500–1558) was the King of Spain as Charles I (1516–

1556) and also Holy Roman emperor (1519–1556). He was son of Philip I

(“The Handsome”) and the insane Joan who was the daughter of Ferdinand and

Isabela. Charles ruled over the Netherlands, Austria, Milan, Naples, Sardinia,

Sicily and all the Spanish possessions in America. He fought Francis I of France

over their rival claims in Italy. He also fought the Turks who threatened central

Europe and tried unsuccessfully to put down the Protestants. His troops sacked

Rome (1527) and captured Pope Clement VII. The acquisition of Mexico and

Peru by his intrepid conquistadors, afforded him the means of prosecuting his

ambitious and most expensive enterprises; the stream of gold and silver from

the New World surpassed all European dreams of wealth. As a result, Spain

was to become the leading power in Europe in the 16th century.
179 After the disastrous expedition to Algiers (1541), Cortés fell into neglect, and

could scarcely obtain an audience. The story goes that, having forced his way
through the crowd which surrounded the emperor’s carriage, and mounted on

the door-step. Charles, astonished at an act of such audacity, demanded to know

who he was. “I am a man” replied the conqueror of Mexico proudly, “Who has
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Nevertheless, in 1536, Cortés discovered the peninsula of Lower California,
and surveyed part of the gulf which separated it from Mexico.

In 1541, Cortés withdrew from King’s court and passed the remainder of
his days in solitude on his estate near Seville.

1522–1555 CE Joseph Caro (1488–1575, Spain and Turkey). Codifier
of Jewish law and Kabbalist. He began writing Beit Yosef (House of Joseph)
in 1522 in Adrianpole and completed it in Safed, Israel (1542). Caro investi-
gated the source of every practical law from its Talmudic origins, traced its
development, mentioned divergent views, and recommended the appropriate
practice. His Shulhan Arukh (The Set Table), a digest of Beit Yosef, was
completed in 1555. It became the pillar of Orthodox Jewish observance.

Caro was born in Toledo, Spain. He was expelled with his family to
Portugal (1492) and settled in Lisbon. Expelled again (1496) and reached
Constantinople. He finally settled in Safed, Israel (1536) and died there.

Science Progress Report No. 3

The Conquistadors (1521–1548)

As the Spaniards on the Caribbeans began to hear exciting tales of wealthy,
half-civilized empires they turned from exploration to conquest. From 1520
to 1550, the Conquistadors of Spain carved out an empire in the West.

The Aztecs of Mexico began their history in 1168, when migratory
tribes entered the valley of Anahuac. Later in 1325 they founded their capital
Tenochtitlan (now Mexico City). They were fine architects, evolved a system
of picture-writing, but the major thrust of their bizarre culture went into an
extraordinary preoccupation with time and the calendar [it was similar in
many ways to the Maya Calendar, and thus much more advanced than in
either Egypt or Greece].

given you more provinces than your ancestors left you cities.”

For further reading, see:

• Von Hagen, V.W., The Aztec: Man and Tribe, Mentor Books: New York,

1962, 224 pp.
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Their priest-astronomers had put great efforts into the elaboration of the
calendar, which had a 52 year cycle and “5 empty days” at the end of each
year. They believed that during these critical periods, the very future of
the world was at balance and might be destroyed. They responded to this
issue with mass human sacrifice rituals, where the sacrifices had to be precisely
timed so that it would benefit the particular god to whom they were appealing
and thus propitiate the right god at the right time. So sacrifice was not mere
butchery but rather a parade of elaborately conceived ritual with only one
object in view: to preserve human existence.

During the ‘five empty days’, fires were extinguished, fasting was general,
sexual intercourse ceased, artists left their work, business lay idle. On the
dawn of the fifth day, when the priest-astronomers observed the Pleiades rising
in the heavens and knew that the world would not end, they slashed open the
chest of the sacrificial victim, pulled out his heart, and in the freshly weeping
wound kindled a new fire. From it the fires in the temples were rekindled,
and people all over the kingdom gathered the new fire for the coming year180.

Into this formidable empire, entered one Hernando Cortés (1485–1547)
in 1519 with 600 men, 16 horses, a few cannons and a secret weapon of which
he was not aware – the smallpox virus.181

“Thus182, on Saint Hippolytus’ Day, Aug. 31, 1521, amidst the acrid smoke
of a thousand fires, the Spanish conquest was complete and Aztec civilization
passed into cultural limbo.”

The Inca culture in and about the Peruvian Cuzco Valley started at about
1250. By 1500, the Inca ruled an empire in the Andes of perhaps as many as
7 million people. They were fine architects, potters and metal workers with a
well-organized government and superb roads.

Nevertheless, Francisco Pizarro (1471–1541), with 180 men and 27
horses subjugated the entire empire within three years (1532–1535)183. So
passed the glory of the Incas, whose kingdom extended from Ecuador to as

180 In this connection, read the beautiful story of D.H. Lawrence: “The Woman

who Rode Away”.
181 It was recently discovered that the epidemics of 1545 and 1576, which extermi-

nated about 8 million Aztecs, were caused by the Ebola virus.
182 Victor W. Von Hagen: “The Aztec: Man and Tribe” Mentor Books New York

1958
183 At first, the Inca’s King, Atahualpa, thought that the Spaniards were the gods

themselves, coming to conduct him to Cuzco to his rightful heritage as Inca.

But after he had reports that they raped his Virgins of the Sun at the village

of Caxas, he knew by then that he dealt with no gods.
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far as latitude 35 ◦S in present day Chile, a distance of 3200 km on a north-
south line. With them vanished their great skill in engineering and architec-
tural works, which they accomplished without the use of iron tools, mortar,
the wheel, the keystone arch or the written word to help them in their plans
and calculations [instead they used the ‘quipo’, a cord made up of different
colored threads, which acted as a superior abacus].

So vanished too their skill in working precious metals, and their system of
education which was based on their credo that “science was not intended for
the people, but for those of generous blood. Persons of low degree are only
puffed up by it, and rendered vain and arrogant”.

The discovery of the New World had disastrous consequences for the na-
tives of South and Central America; during the century that followed the
voyages of Columbus, about 40 million Indians were methodically extermi-
nated.

Amerindians had spent millennia adapting to their microbial environment.
The Americas were as untouched by Old World crowd diseases as any re-
mote Pacific island. Therefore one person with even a mild case of smallpox,
measles, or mumps could set of an epidemic that could destroy entire cities
and that is what indeed happened.

Smallpox was probably introduced to Europe in Roman times, and perhaps
reintroduced by returning Crusaders. By 1500, it had become endemic, chiefly
a children’s disease to which most adults were immune. When, however, the
virus reached the New World with the Spaniards, it acted as epidemics had
when they killed Romans by the hundred of thousands and drove Huns from
the walls of Rome.

In 1520, reinforcement arrived to Cortés from smallpox – stricken Cuba.
Among them was an African slave with a mild case of the disease. While
the Spanish approached Tenochtitlan, smallpox spread among the natives,
first outside the city and then within. In 1521, Cortés attacked with 300
Spaniards and some native allies. Three months later, when Tenochtitlan fell,
Cortés learned that half of its people had died, including Montezuma and his
successor. The canals were choked with corpses.

The surviving Aztecs were stunned and apathetic, and awed by the white
men who went untouched among the dead and dying. Native social and
political structures shattered. The terror of smallpox sent people fleeing.
Because smallpox incubates for 10–14 days, an apparently healthy refugee
could carry it hundreds of kilometers before showing symptoms. By 1530,
smallpox had rushed ahead of the conquistadors, covering the Americas from
the pampas to the Great Lakes.

South of the Aztec empire, lay the realm of the Mayas. Smallpox reached
them before the Spaniards did, and it run through them with searing devas-
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tation. It continued south toward the Inca empire. It outran Pizarro, killing
hundreds of thousands, among them the chief Inca, his son and heir, and
many nobles and generals. In 1533, when Pizarro finally entered Cuzco, the
Incas were incapable of serious resistance.

The disease preceded the Spaniards as they ventured northward to the
Mississippi valley. In 1539–1542, when Hernardo de Soto made his way
through the land of the Mound Builders, he found uninhabited towns where
corpses were stacked in large houses – the pestilence had done the fighting for
him.

Measles followed smallpox, spread by troops, sailors, missionaries,
colonists, messengers and fleeing natives. In 1529, a measles epidemic in
Cuba killed two-thirds of the natives who survived smallpox. Two years later
it had killed half of the people of Honduras, ravaged Mexico, spread through
the Central Americas and attacked the Incas; whipping out whole cities and
tribes, cultures and languages lost.

Throughout the 16th century and beyond, the “great fire” kept raking
native peoples from Canada to Chile. Other Old World diseases followed –
mumps, typhoid, typhus, influenza, diphtheria, and scarlet fever.

However daring and resourceful Cortés and Pizarro were, it beggars imagi-
nation that each defeated an empire of millions with mere hundreds of soldiers.
Their strongest ally was the Fourth Horseman – the Old World virus; It is
estimated that the New World population of perhaps 100 million was reduced
by about 90 percent. It was a bigger disaster than the Black Death, but
spread over 300 years.

History of Geographical Theory (585 BCE–1524 CE)

Geography is the exact and organized knowledge of the distribution of
phenomena on the surface of the earth. The fundamental conception of ge-
ography is form, including the figure of the earth and the varieties of crustal
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relief. Hence mathematical geography comes first. It merges into physical geog-
raphy, which takes account of the outer forms of the lithosphere (geomorphol-
ogy), and also of the distribution of the hydrosphere and the rearrangements
resulting from the working of solar energy throughout the hydrosphere and
atmosphere (oceanography and climatology). Next follows the distribution of
plants and animals (biogeography), and finally the distribution of mankind
and the various artificial boundaries and redistributions (anthropogeography).

The applications of this latter discipline to human uses, give rise to po-
litical and commercial geography, in the elucidation of which all the earlier
stages have to be considered, together with historical and other purely human
conditions.

The concepts of Darwinian evolution and the more recent Wegenerian
plate-motions has revolutionized and unified geography as it did biology,
breaking down the old partitions between the various departments and in-
tegrating it into one holistic science. The earliest conceptions of the earth
were usually expressed in symbolic language, manifested in the old mytholog-
ical cosmogonies.

The first definite geographical theories to affect the Western world were
those first expressed by the Greeks. The earliest theoretical problem of ge-
ography was the form of the earth: the natural supposition that the earth
is a flat disk, circular or elliptical in outline, had in the time of Homer (ca
800 BCE) acquired a special definiteness by the introduction of the idea of
the ocean river bounding the whole, an application of imperfectly understood
observations.

Thales of Miletos (fl. 575 BCE) is claimed as the first exponent of the
idea of a spherical earth. Although this idea was carried on by Anaximander
(fl. 560 BCE), the Pythagorean school (535 BCE) and Parmenides (fl. 470
BCE), the Ionian philosophers (who preferred to deal with facts demonstrable
by travel rather than with speculations) did not advance beyond the primitive
conception of a circular disk.

Thus Hecataeos of Miletos [fl. 500 BCE, Greek traveler and historian]
in his book Periodos, modeled the habitable world in the form of a land disk
within the ring of ocean. His land mass consisted of Europe to the north, and
Asia to the south, divided by a midland sea.

Herodotos (fl. 450 BCE), equally oblivious of the sphere, criticized and
ridiculed the circular outline of the oceanic ring (which he knew to be longer
in the east-west direction than in the north-south direction). He accepted a
division of land into three continents Europe, Asia and Africa. Beyond the
limits of his personal travels, Herodotos applied the Greek theory of symmetry
to complete in the unknown, outlines of lands and rivers analogous to those
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which had been explored184.

Scientific geography was founded by Aristotle (fl. 350 BCE). He demon-
strated the sphericity of the earth by three arguments, two of which could be
tested by observation:

• The tendency of matter to fall together towards a common center.

• Only a sphere could always throw a circular shadow on the moon during
eclipse.

• The shifting of the horizon and the appearance of new constellations or
the disappearance of familiar stars, as one traveled from north to south,
could only be explained on the hypotheses that the earth was a sphere.

The first approximately accurate measurement of the globe was made by
Eratosthenes (ca 235 BCE) who also was the first to introduce the word
geography.

Aristotle was certainly conversant with many facts, such as the formation
of deltas, coast-erosion, and to a certain extent the dependence of plants and
animals on their physical environment. He formed a comprehensive theory of
the variations of climate with latitude and season, and was convinced of the
necessity of a circulation of water between the sea and the rivers185, though,
like Plato, he held that this took place by water rising from the sea through
crevices in the rocks, losing its dissolved salts in the process.

Ptolemy (fl. 110 CE) summarized in his writings all Greek geographical
learning and passed it across the gulf of the Middle Ages by the hands of
the Arabs, to form the starting-point of the science in modern times. His
main sources were Marinos of Tyre (fl. 150 BCE), and his work was mainly
cartographical in its aim, and theory was, as far as possible, excluded. It was
the ambition of Ptolemy to describe and represent accurately the surface of
the world ocean (“oekumene”), for which purpose he took immense trouble
to collect all existing determinations of the latitude of places, all estimates of

184 Symmetry was in fact the first geographical theory, and the effect of Herodotos’

hypothesis that the Nile must flow from west to east before turning north in

order to balance the Danube running from west to east before turning south,

lingered in maps of Africa down to the time of Mungo Park (1805)!
185 If we believe that he discovered it himself, then this may put a bound (ca 350

BCE) on the date of composition of the book of Ecclesiastes [“All the rivers

run into the sea; yet the sea is not full; unto the place from whence the rivers

come, thither they return again”, 1, 7]. This however, will not be true if both

Aristotle and the biblical author had an unknown common source.
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longitude, and to make every possible rectification in the estimates of distances
by land or sea.

The symmetrically placed hypothetical islands in the great continuous
ocean disappeared and the oekumene acquired a new form of the representa-
tion of the Indian Ocean as a larger Mediterranean completely cut off by land
from the Atlantic. The terra incognita uniting Africa and Farther Asia was
an unfortunate hypothesis which helped to retard exploration. In contradis-
tinction to geography, Ptolemy introduced the word topography to signify the
very detailed description of a small locality.

The Arab astronomers, studying the Arab translation of Ptolemy’s astro-
nomical work (the Almagest) measured a degree on the plains of Mesopotamia,
thereby deducing a fair approximation to the size of the earth (ca 815 CE; in
the time of the Caliph al-Mamun).

The Middle Ages saw geographical knowledge die out in Christendom,
although it retained, through the Arabic translations of Ptolemy, a certain
vitality in Islam. The verbal interpretation of Scriptures led Lactantius (ca
320 CE) and other ecclesiastics to denounce the spherical theory of the earth
as heretical. The wretched subterfuge of Cosmas (ca 550 CE) to explain
the phenomena of the apparent movements of the sun by means of a planar
rectangular earth reverted geography to the primitive ignorance of the times
of Homer.

The journey of Marco Polo (1274 CE), the increasing trade to the East
and the voyages of the Arabs in the Indian Ocean prepared the way for the
reacceptance of Ptolemy’s ideas when the sealed books of the Greek original
were translated into Latin by Angelus (1410 CE). The old arguments of
Aristotle and the old measurements of Ptolemy were used by Toscanelli
and Columbus in urging a westward voyage to India (1492 CE). But not
until the voyage of Magellan shook the scales from the eyes of Europe (1522
CE) did modern geography begin to advance. Discovery had outrun theory;
the rush of new facts made Ptolemy practically obsolete in a generation, after
having been the fount and origin of all geography for a millennium.

The earliest evidence of the reincarnation of a sound theoretical geography
is to be found in a text-book by Peter Apian (1524 CE). He based the whole
science on mathematics and measurement, following Ptolemy closely.

1524–1540 CE Peter Apian (Peter Bennewitz, Peter Bienewitz,
Peterus Apianus) (1495–1552, Germany). Astronomer, mathematician
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and geographer. First to base the science of geography on mathematics and
measurement. Born at Leising, Germany. Professor at Ingolstadt (1527–
1552), where he died. Pascal’s triangle appeared for the first time in one of
his books (1527). In his Cosmographicus liber (1524) [subsequently edited and
added to by Gemma Frisius under the title of Cosmographia] he created
a map projection appropriate for large areas, with latitude circles appearing
as parallel straight lines, a prime meridian as a straight line, and the other
meridians of longitude as circles with curvature increasing away from the
prime meridian. This book includes some of the earliest maps of America and
is considered the first text-book on theoretical geography. In his Instrumen-
tum sinuum sive primi mobilis (1534) he published a table of sines for every
minute of arc. In Astronomicon Caesareum (1540), he included description
of five comets [including the comet later known as Comet Halley ], and stated
that the tails of comets are pointed away from the sun186.

1525 CE Christoff Rudolff (1500–1545, Germany). Mathematician.
Introduced the radical sign √, because it resembles a small r, for radix. His
book on algebra entitled Die Coss was very influential in Germany, and an
improved edition was brought out by Michael Stifel (1553).

1528–1530 CE Typhus epidemic in Italy. Hundreds of thousands of lives
were lost.

1528–1550 CE Georg Bauer (Georgius Agricola, 1490–1555, Ger-
many). Mineralogist, Physician and scholar. The father of mineralogy and
physical geology , and one of the first to base writings on observation and
inquiry rather than received opinion.

He was born at Glauchau in Saxony. Studied philology, philosophy,
physics, chemistry and medicine at Leipzig and Italy, and settled at Joachim-
stal (a center of mining and smelting works) as practicing physician (1527–
1533), his object being to test what had been written about mineralogy by
careful observation of ores and the method of their treatment. His thorough
grounding in philology and philosophy accustomed him to systematic think-
ing, and this enabled him to construct out of his studies and observations of
minerals a logical system which he began to publish in 1528. His Bermannus,
sive de re metallica dialogus , was the first attempt to reduce to scientific or-
der the knowledge won by practical work. In 1530 Prince Maurice of Saxony
appointed him historiographer with an annual allowance, and he moved to
Chemnitz (1530 to 1555), a center of mining industry, in order to widen the
range of his observations.

186 A fact known to the Chinese as early as 635 CE and perhaps earlier, but not

known in Europe.
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The citizens showed their appreciation of his learning by appointing him
town physician and electing him mayor (bürgermeister) in 1546. His popular-
ity was, however, short-lived. Chemnitz was a violent center of the Protestant
movement, while Agricola never wavered in his allegiance to the old religion;
he was forced to resign his office.

In 1544 he published the De ortu et causis subterraneorum, in which he
laid the first foundations to a physical geology187, and criticized the theories
of the ancients. His most famous work, De re metallica, was published in
1556, though apparently completed several years before. It is a complete and
systematic treatise on mining and metallurgy188.

While all of Chemnitz had gone over to the Lutheran creed, Agricola
remained to the end a staunch Catholic. His life ended by a fit of apoplexy
brought on by a heated discussion with a Protestant priest. So violent was
the theological feeling against him that his body was carried, amidst violent
demonstrations, to Zeitz, 10 km from Chemnitz, and buried there.

1528–1554 CE Jean Francois Fernel (1497–1558, France). Astronomer
and physician. The first man to improve on Eratosthenes’ determination of
the earth’s circumference.

He measured a distance in the direction of the meridian near Paris, by
counting the revolutions of his carriage wheels on a journey between Paris
and Amiens. His astronomical observations were made with a triangle used
as a quadrant. The resulting length of a degree were very near the true value.

Fernel was born at Clermont, and educated at Paris. At first he devoted
himself to mathematical and astronomical studies. But from 1534 on he

187 In his books, Agricola describes and classifies minerals according to the phys-

ical properties of color, luster, odor, shape, state, texture, transparency and

weight. He also defines and explains mineral form, hardness, friability, smooth-

ness, solubility, fusibility, brittleness, cleavage and combustibility.

He considered the origin of mountains, hypothesizing that mountains are pro-

duced by water erosion, atmospheric winds, earthquakes, and fire from the

earth’s interiors. He suggested that the subterranean heat apparent in volcanic

eruptions is localized under the volcanic centers, and derives from combustion

of beds of coal, bitumen, or sulfur, ignited by intensely heated vapors.
188 This treatise was preceded by Pirotechnia (1540) by Vannoccio Biringuccio

of Siena (1480–1539, Italy). The latter book describes a brass-foundry in

Milan where 1200 small objects could be made in one mould – an interesting

early example of mass production. It also informs us that 5 percent of brass

and 8 percent of tin were added to copper to make bronze. Bronze has long

been used for casting statues, bells and later also cannons.



772 2. Slumber and Awakening

gave himself up entirely to medicine, in which he graduated in 1530. His
extraordinary general erudition, and the skill and success with which he sought
to revive the study of the old Greek physicians, gained him great reputation,
and ultimately the office of physician to the court.

In his book Medicina (1554) he included descriptions of appendicitis, en-
docarditis, peristalsis, the systole and diastole of the heart, and anatomical
details such as the spinal canal. Fernel introduced the terms ‘physiology ’
and ‘pathology ’ into medicine. First to describe ‘appendicitis’ and ‘peristalsis’
(the waves of contraction in the digestive system that moves food through the
alimentary canal).

Fernel was born in Montdidier, Somme, France.

1530 CE, Nov. 01 Dikes burst in Holland and flood the country; 400,000
people perish. Similar catastrophes occurred on: Dec. 4, 1287; Apr. 17, 1421;
Nov. 1, 1570; Oct. 1–2, 1574; 1646; 1916; 1953.

1530 CE Philippus Aureolus Paracelsus (1493–1541, Switzerland).
Alchemist, pioneering chemist and physician. One of the first to apply chem-
istry to medicine and introduce the use of prescription drugs. Described
the properties of many substances. He was the first man who arrived at the
conclusion that the processes in the body were of a chemical character, and
that when disordered, they were to be put right by counter operations of like
kind.

His real name was Theophrastus Bombast von Hohenheim. At the age
of 16 he entered the University of Basel, but soon abandoned his chemistry
studies in favor of practical medicine and the cure of diseases by means of nat-
ural substances made of minerals, ores and metals. He went to Tirol to study
the mines and the health problems of the miners, believing that the positive
knowledge of nature was not to be got in schools and universities, but only
by going to nature herself, and to those who are constantly engaged with her.
For ten years (1516–1526) he wandered over a part of Europe and acquired
stores of facts, which it was impossible for him to have reduced to order, but
which gave him an unquestionable superiority over his contemporaries.

In 1526 he returned to Basel and was appointed town physician and uni-
versity lecturer. Thus, without a medical degree and against the accepted
doctrines of Galen and Avicenna, he had great success in curing or mitigat-
ing diseases with his drugs (including the use of opium to deaden pain), for
which the regular physicians could do nothing. However, using and advocat-
ing a pharmaceutical system of his own aroused the enmity and jealousy of
his competitors, causing him to leave Basel in 1529 and wander around in
destitution.
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He finally settled in Salzburg (1541). Although he proclaimed that he had
found the philosopher’s stone189 and would live forever, he died before he was
50 – in a fall which some attribute to drunkenness.

Paracelsus was a successful physician and scientist despite his belief in
alchemy. His personality is typical of the transition period from the Middle
Ages to modern times.

1530–1546 CE Pedro Nuñes (Petrus Nonius, 1492–1577, Portugal).
Jewish mathematician, geographer and cartographer190. The father of modern
cartography and a peak figure in Portuguese nautical science. He invented the
‘nonius’ [an auxiliary movable ruler device for reading fine subdivisions on the
scale of astronomical and other instruments which permits greater accuracy
in length or arc measurements. The instrument is also called ‘vernier ’, after
the Frenchman Pierre Vernier (1580–1637), who reinvented it in 1631]. It
is described in his De crepusculis (1542). He discovered the loxodromic curve
in his treatise De arte atque ratione navigandi (1546).

Nuñes (pronounced nü-nesh) was born in Portugal at Alcacer do Sal
(southeast of Lisbon). He was professor of mathematics at Coimbra Uni-
versity, and in 1529 was appointed cosmographer to the crown, when Spain
was disputing the position of the Spice Islands and maps did not agree in
their longitude. He then devoted himself to such problems as well as to maps
and map projections. This led him to discover (1533) the so-called Mercator-
projection and the loxodorme course ahead of Mercator (1568). He published
studies of the sphere and of the oceans and a copiously annotated translation
of portions of Ptolemy. His clear statements on the scientific equipment of
the early Portuguese explorers has become famous.

As the position of the Jews in Portugal became untenable191 he left the
country for Spain (1538). He returned in 1544 to become a leading authority

189 He also claimed that he was successful in creating a homunculus, a living diminu-

tive man devoid of a soul. He thus became a model for the Faust legend.
190 For further reading, see:

• Bagrow, Leo, History of Cartography, Harvard University Press: Cambridge

MA, 1966, 312 pp.

191 Nuñes (also Nuñez) is the family name of Portuguese Marranos, which lost

many members as martyrs to the Inquisition. Those who were fortunate

enough to escape, became prominent physicians, scholars, poets, scientists and

financiers during the past 400 years in England, Italy, Holland, South and Cen-

tral America, and the United States. In fact, the fate of this family reflects,

in a microcosmos, the history of the Jews in the Diaspora since the end of the

Middle Ages.

The bonfires of the autos-da-fe were operating in Portugal from 1540 to 1791
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on the new discoveries of Spain and Portugal. He died at Coimbra in 1577.
A complete edition of all his writings appeared at Basel in 1592.

After Nuñes, little of importance for either fundamental or applied science
appeared from the Iberian Peninsula.

1530–1576 CE Botany breaks away from medicine; plants which adorn
the globe in most countries must necessarily have attracted the attention of
mankind from the earliest times. The science that treats them dates back
to the days of King Solomon (d. 927 BCE), who according to I Kings 5,
13 “spake of trees, from the cedar of Lebanon to the hyssop on the wall”.
The Babylonians, Egyptians and Greeks were the early cultivators of science,
and botany was not neglected, although its study was mixed up with crude
speculations as to vegetable life, and as to the change of plants into animals.

Aristotle’s student Theophrastos of Eresos (372–290 BCE, Athens)
described over 500 plants in his Natural history of plants (ca 300 BCE),

including cane sugar and the coconut palm, used for treatment of diseases.
Pliny the Elder (23–79 CE, Rome) described about a 1000 plants, many of
them famous for their medical virtues. Asiatic and Arabic writers also took
up this subject.

Little, however, was done in the science of botany192until the 16th century.
Botany was then an essential part of medical teaching. While the ancient
botanists had been satisfied mostly with names and enumeration of qualities
and virtues there was now a growing desire to see and handle the plants
themselves. Since 1545 (Padua, Italy) botanical gardens were attached to
medical schools and dried plants were collected in herbaria.

One aspect of the Renaissance has often been described and emphasized:
the publication of the Latin and Greek classics, many of which had been
lost because they were represented by single manuscripts, which were buried
and forgotten in the corners of neglected libraries. The discovery of such
manuscripts was as thrilling as the discovery today of papyri or clay tablets.
There were incunabula editions of the great botanical books of antiquity, those
of Theophrastos and Discorides, but those early editions were not illustrated.
The descriptions of plants, even when correct, were confusing, because they
referred to another flora than that of Western Europe. In this case, the classics
have to be rejected and the work of botanical description had to be done over.
The pioneers, “the fathers of botany”, were Germans:

and claimed the lives of about 1200 Jews. Among them were Pedro’s descen-

dants, Beatrice Nuñes, Fracesco Nuñes, Isabel Nuñes and Clara Nuñes – all

burned at the stake on July 04, 1632.
192 From the Greek βoτανη = plant ; βoσκειν = to graze. The science which

includes everything relating to the plant kingdom.
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• Otto Brunfels (1488–1534, Germany). Father of modern botany, a
physician in Bern, has been looked upon as the restorer of the science of
botany in Europe. In his Herbarium (1530–1536) he gave descriptions
of a large number of plants, chiefly those of central Europe, accurately
illustrated by beautiful woodcuts. He was followed by:

• Leonhard Fuchs (1501–1566, Germany), whose Historia Stirpium
(Basel, 1542) summarized the accepted knowledge regarding some 500
plants. (He introduced European readers to pumpkin and Indian Corn
of the Americas.)

• Valerius Cordus (1515–1544, Germany) wrote Dispensatorium (1535),
one of the first pharmacopeias, describing drugs, chemicals and medical
preparations. His Historia Planetarum (1544) includes description of
500 newly identified plant species. His is the first definite mention of
ether and description of its preparation (1540).

• The physician Hieronymus Bock (1498–1554, Germany) is also re-
garded as one of the founders of the science of botany. Author of Neu
Kreutterbuch (1539), pioneering classic in descriptive botany.

The descriptions in these early works were encumbered with much medical
detail, including methods of preparing and administering extracts for medical
purposes.

• Charles de l’Ecluse (1526–1609, France). Botanist. Introduced potato
into Europe. Published Rariorum Planetarum (1601) on European and
American plants.

• John Ray (1627–1705, England) did much to advance the sciences of
botany and zoology. He promulgated a system of classification of plants
into orders in his Methodus Planetarum nova (1682).

1531–1548 CE The Pizarro brothers: Francisco (1471–1541) and
his three half-brothers (one father, three mothers): Gonzalo (1506–1548);
Hernando (1501–1580); Juan (1505–1536). Explorers and adventurers. Led
the conquest of Peru and its exploitation.

Francisco overcame Atahualpa193 (1532) and executed him (1533) at
Cajamarca for refusal to accept the Chritian faith; Captured Cuzco (1533)

193 In the very same year, the great “boss” of Pizarro and Cortés, namely, emperor

Charles V, held in his hands the fate of two men who offered him a Kingdom

in the East:

David Reuveni (ca 1483–1538) arrived in Venice (1523) and later in Rome
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and secured immense amount of gold. Founded the new capital Lima (1535).
Waged a civil was with Almagro (1537–1538) who was defeated and killed.
He was slain by followers of Almagro in revenge (1541).

Gonzalo went with Francisco to Peru (1531) and became governor of
Quito (1541–1546). After the Spanish government abridged their rights, the
conquistadors revolted but were defeated (1546). The age of the conquistadors
ended in Cuzco on 10 April 1548, when Gonzalo Pizarro was executed.

Hernando went with Francisco to Peru (1531) and returned to Spain
with fifth of the Royal ransom of Atahualpa (1534). On his return to Peru
(1537) he helped Francisco overcome Almagro. He was imprisoned in Spain
(1540–1560) by Charles V.

Juan went with Francisco to Peru (1530) and became governor of Cuzco
(1535), killed in fighting at Cuzco against the Inca Manco Capac.

Gonzalo Pizarro also explored much of northwestern South America. Dur-
ing 1539–1541 he made a perilous journey from Cuzco to Quito, a march of
some 1600 km in hostile Indian territory.194

1533–1545 CE Rainer Gemma Frisius (1508–1555, The Netherlands).
Geographer and astronomer. Invented the modern triangulation technique
for surveying, replacing the pace-out of distances; After measuring a single
baseline, other distances are calculated by means of trigonometry . In De
principis astronomiae et cosmographie (1533) he pointed out that knowing
the correct time according to a mechanical clock and comparing it with sun
time, can be used to calculate longitude.

Gemma Frisius used Maurolycus’ camera obscura for his observation of
the solar eclipse of Jan. 1544 at Louvain, and fully described the methods he

(1525), claiming to be of the Lost Tribe of Reuben; for a while he was supported

by Pope Clement VII and King John III of Portugal in a plan to lead a Jewish

army against Turks in the Holy Land.

Shlomo Molcho (1500–1532), a Portuguese Marrano from Lisbon by the name

Diego Pires, openly proclaimed Judaism. Fleeing the Inquisition, he traveled

and preached in Turkey, Israel and Italy.

Reuveni and Molcho eventually joined forces and tried to persuade Charles V

that they can help defeat the Turks (1532). The emperor, however turned them

over to the Inquisition, who burned Molcho at the Stake in Mantua (1532) and

imprisoned Reuveni in Spain where he probably died a few years later.
194 For further reading, see:

• Von Hagen, V.W., Realm of the Incas, Mentor Books: New York, 1961,
223 pp.
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adopted for making measurements and provided drawings of the eclipsed sun
in his De Radio Astronomico et Geometrico (1545). He recommended that
these methods be used for observation of the moon and stars and also for
longitude determination.

Gemma Frisius was born at Dokkum, Friesland, Holland. He was a pupil
of Maurolycus; died at Louvain (Belgium).

1534–1563 CE Garcia da Orta (1500–1560, Goa). Botanist and physi-
cian. Made major pioneering contribution to medicine and botany by ac-
quainting Europeans with Oriental medical plants and drugs. His monumen-
tal scientific work on which he spent some 30 years of his life in Goa appeared
under the title “Coloquios dos simples e drogos medicinais” (1563).

Da Orta was born in Elvas, Portugal. Studied at Salamanca and Alcala
(1515–1525). Practiced medicine for a while and then became a professor of
logic at Lisbon. Being a Marrano, he endured great affliction and tribulation:
various members of his family, among them a sister, were tried by the Inqui-
sition and sentenced to be burned at the Stake. In 1534 he sailed to India
on a voyage of 6 months and later established himself in Goa as a medical
practitioner. There he carried out the studies and researches which enabled
him to publish his treatise.

Since he lived in Goa as a Jew, he was convicted postmortem on charges
of heresy (1580) and his body was exhumed and burned.

1535–1557 CE Niccolò Fontana (Tartaglia) (1499–1559, Italy). Am-
ateur mathematician, self-taught engineer, surveyor and bookkeeper, who
wrote on mathematics and mechanics. In 1535 he claimed to have discovered
a general method of solving the cubic equation x3 + ax = b, independently
of Scipione del Ferro (1515). In 1537 and 1546 he published works deal-
ing with military tactics, munitions, and ballistics, in which he stated that
the impetus of projection and the force of gravity act together on a projec-
tile throughout the course of its flight. Thus the path of the projectile is
curved throughout its course. Tartaglia also found an empirical rule con-
necting the range of a cannon with its angle of inclination. The range is a
maximum, he said, when the cannon is inclined at an angle of 45 ◦, although
he did not discover the parabolic shape of the trajectory, later discovered by
Galileo Galilei (1638). Tartaglia was much concerned with the promotion of
mathematics and mechanics. He made the first Italian translation of Euclid’s
geometry, and published the first edition of Archimedes’ mechanics in 1543.

Tartaglia was born at Brecia. His childhood was passed in dire poverty.
During the sack of Brecia in 1512 he was horribly mutilated by French soldiers.
He slowly recovered from these injuries, but he long continued to stammer in
his speech, whence the nickname, adopted by himself, of ‘Tartaglia’. Save for
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the barest rudiments of reading and writing, he tells us that he had no master;
yet we find him at Verona in 1521, an esteemed teacher of mathematics. In
1534 he went to Venice. In 1548 Tartaglia accepted the position of professor
of Euclid at Brecia, but returned to Venice at the end of 18 months. He died
at Venice.

1536–1559 CE John Calvin (Jean Cauvin) (1509–1564, France and
Switzerland). Theologian and reformer. One of the chief leaders of the Protes-
tant Reformation. Calvin’s incisive mind, powerful preaching, many books
and voluminous correspondence, and capacity for organization and adminis-
tration made him a dominant figure of the Reformation. He was especially
influential in Switzerland, England, Scotland and Colonial North America.

Calvin was born in Noyon, France and educated in Paris. He was never
ordained as a priest and his education reflected the influence of the liberal
and humanistic Renaissance. He adopted Protestantism (1533) and left Paris
(1534) to settle in Basel where he published his Institutes of the Christian
Religion (1536). From 1541 on, Calvin became the dominant personality in
Geneva, though he held only the position of pastor.

By 1546, many Protestants in Germany, Switzerland and France were
insisting that the people – not just kings and bishops – should share in political
and religious policy–making. This idea influenced Calvin and his followers in
France, England, Scotland and The Netherlands. Calvin’s French followers
were called Huguenots. The English Protestants whom he influenced were
called Puritans.

Calvin developed political theories that supported constitutional govern-
ment , representative government , the right of the people to change their gov-
ernment, and the separation of civil government from church government.
(Calvinists of the 1500’s intended these ideas to apply only to the aristoc-
racy, but during the 1600’s, further democratic concepts arose, especially in
England and later in Colonial America).

Calvin set the Bible as the basis to all Christian teachings, and expanded
the idea that Christianity was intended to reform all society. Indeed, no other
reformer did so much to force people to think about Christian social ethics.
From this ethical concern, Calvin developed the pattern of church government
that today is called Presbyterian. He organized the church government dis-
tinct from civil government, so that an organized body of churchmen would
work for social reform.

The syncretism of the Jewish and Hellenistic cultures that exist at the ba-
sis of Christianity, disintegrated at the time of the Reformation. This process
enabled Luther and Calvin to adopt for themselves anew different ele-
ments from the various components of Christianity. Luther chose the mystic,
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Paulinian element, while Calvin chose the nomistic part, emphasizing those
elements expressed in the Bible.

Calvin based his doctrine on the Scriptures, returning to the Jewish idea
of God’s providence. His dominant figure is that of God and not the Son. He
believed in a world that is ordered, rational and manageable by man, while
Luther believed that the visible world was dominated by the devil , and that
laws were a superfluous devilish phenomena195.

Calvin maintained, on the other hand, that even God’s providence does
not relieve man of responsibility . Paul and Luther held that man is too weak
to save himself by his deeds and therefore not accountable for his sins. While
Calvin returned to Jesus’ original Christianity, Luther continued to negate
the world leaving it under the Devil’s control. For this reason, Germany
lagged behind England and the United States both politically and spiritually.
The devilishness of which Luther spoke so much, finally was realized in the
national-socialist movement and the genocide of the Jews in Europe during
1940–1945 by the Germans.

1536–1561 CE Amatus Lusitanus (1511–1568, Portugal and Italy).
Physician and medical scientist. Among the greatest researchers in medicine
during the first half of the 16th century.

Published Index Dioscoridis (1536) on medical botany and seven volumes
(1549) including 700 medical case histories, which established his name as
an original researcher in the fields of internal medicine, anatomy, surgery,
skin diseases, etc. Although Lusitanus was associated with the traditions of
Hippocrates, Galen and the medieval Arab writers, his accurate observa-
tions, examinations, and diagnoses led him to go beyond these authorities
and make new discoveries. For example, he was first to describe the venous
valves (1547).

Lusitanus was born in Castel Branco, Portugal, to a family of marranos
under the name Joannus Rodericus. His Jewish name is unknown. He stud-
ied medicine, mathematics, Greek and logic at the University of Salamanca,
Spain. He fled the Inquisition (1533) and moved to Antwerp where he re-
turned openly to his Jewish faith. He then removed to Ferrara, Italy (1544)
and later to Ancona (1547), where he became the physician of the papal court.
When pope Paul IV began to prosecute the Jews of Ancona, Lusitanus fled to

195 Through this, Luther returned to Paulinian Christianity, maintaining that since

man is devoid of free will, he is incapable of fulfilling laws of any kind. This

fact had disastrous consequences for the development of Germany; The Germans

never developed their own constitution and that is the reason why Nazi ideology

could and did flourish in Germany and not in a Catholic country, let alone in a

country under Calvinist influence.
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Ragusa and from there to Saloniki (1558), where he died in a local outbreak
of the plague.

1537–1555 CE Andreas Vesalius (1514–1564, Brussels). One of the
foremost anatomists of all times. His book Fabrica (1543) contains the first
complete description of the human body. For this he is called the father of
anatomy . He was first to break with the extravagant admiration of antiquity
(with the excessive confidence in the writings of Galen), and the general
practice of principally dissecting bodies of lower animals.

A native of Brussels, he began to study anatomy at the age of 14. The
difficulties with which the practical pursuit of human anatomy was beset in
France made him look for Italy as a suitable field for the cultivation of this
science; in 1536 we find him at Venice, and later at Padua, where he became
a professor at the age of 23. Because he dared to correct many of Galen’s
errors (based on animal dissection), the followers of Galen bitterly attacked
him. Discouraged, he burned most of his writings and resigned from Padua
in 1544. After teaching at the Universities of Bologna and Pisa he became
physician to Philip II of Spain, and to the Holy Roman Emperor Charles V.

Vesalius departed from tradition by performing dissections himself while
instructing his medical classes. Traditionally, the dissections were performed
by barber-surgeons while the instructor read from the works of earlier writers.

Jewish Scholasticism – Contributions to
the Scientific Method

According to the scientific method , science begins from systematic obser-
vation and measurement , but it does not stop there – it is not the mere col-
lection of information about nature. The creative act is to generalize from the
data, to hypothesize a possible physical process and to describe the process in
mathematical form. Mathematics describes a relationship observed in nature,
rather than claiming to be the underlying reality (as in Platonism). Finally,
the hypothesis is judged not on its intrinsic logic or by debate, but solely by
its ability to predict further measurements.

In spite of their ancient weakness in mathematics (which can be traced
directly to their use of alphabetic notations), the Jewish scholars of the Tal-
mudic era (70–470 CE), and the post Talmudic era (ca 500–1500 CE) must be
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given credit for inventing a completely new way of thinking. In their concern
to apply the scriptures to the minutest details of everyday life, they supplied
not only the definitive method of interpreting the sacred text, but also a logi-
cal basis for the scientific method and the logical principles basic to the theory
of probability, modern statistics and the inductive method in mathematics.
Their achievements are summarized as follows:

• First to declare the principle of economy (later known as ‘Ockham’s
Razor’).

• Established the method of reasoning known as ‘binyan av’. It is simi-
lar to ‘the method of agreement ’ used in scientific reasoning to identify
causes and effects. This method states that, when there is an invariable
association between certain events which happen before the phenom-
enon, and an absence of the phenomenon when these events do not
occur, then the events are related in a causal manner to the phenom-
enon.

• Developed the mode of proof known as ‘en la-davar sof ’. This is the
reductio ad absurdum agreement, also attributed to such Greek thinkers
as Theaetetos, Hippocrates, and Zeno. It tests some declared truth or
opinion by drawing some conclusion from it which is known to be false.
If this can be done, the opinion itself must be false.

• Introduced the mathematical method of proof by induction.

• Formulated the statistical law of large numbers some 250 years ahead of
Jakob Bernoulli (1713). It was first declared by the philosopher Itzhak
Aramah (1420–1494, Spain).

• Anticipated many of the laws of probability and of statistical reasoning.
Extensive use of the method of casting lots and constant scrutiny of the
system of fairness (because of the tendency of individual priests to ma-
nipulate the system for personal gain) was a strong motivation to study
the operations of chance. Expressing the idea of the random princi-
ple led to the recognition that a number of repetitions of a process of
choosing should result in an equal number of choices of the alternatives.

The fact that, in the short run, there might be a bias in the results
of the draw but that this bias should disappear in the long run of re-
peated samplings, led them to an intuitive awareness of the law of large
numbers (that equal probabilities yield equal frequencies as the draw is
repeated more and more times). The recognition that ‘counted majori-
ties’ yield numbers equal to the actual probabilities which operate in
cases of unbiased sampling, was also established.
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The factor that ensured the primacy of Jewish savants in pioneering modes
of thinking about chance in practical situations, was that Orthodox Jews were
forbidden to gamble. The Greek might have discovered probability, for they
were addicted to dice-throwing. But the dice they used were made from the
astragalus bones of sheep. These were very irregular in shape, so that dice
were biased and there was no equal likelihood of each side falling uppermost.
Because of the astragalus’ imbalance, it was impossible for the statistical law
of large numbers to manifest itself in any tractable way. By contrast, the
elaborate system of casting lots used by Jewish priests did exactly what it
was devised to do; that is, gave everyone an equal chance of being chosen196.

The theory is virtually the same as was developed later in mathematical
form by Cardano, de Moivre, Laplace, Gauss, and Pearson. But in the
religious context in which the rabbis worked, they naturally avoided abstract
speculations as an end in itself, and concentrated their analysis on empirical
relations. They worked on problems by means of an inductive logic quite
foreign to the speculative urges of the Greek philosophers. In doing so, they
helped (in the same way as Christian medieval theologians did with their an-
alytic methods and dialectical disputation) to lay the theoretical foundations
for the scientific revolution in Western Europe. They set out, albeit in rhetor-
ical and not scientific terminology, the logical principles basic to the modern
science of statistics.

Solved problems pertaining to external geometrical areas and volumes.
For example – finding a box of the shape of a cube (or a circular cylinder)
with open top and fixed surface area, such that its volume be maximized. A
problem of this kind arose, for example, in connection with Jewish dietary
laws which traditionally divide food into pure and impure [Talmud; Kelim].
The addition of a very small proportion of impure food does not make a
pure food impure. Thus, a cooking vessel whose walls might have in the past
absorbed some impurity, can be used safely, provided the ratio of its volume
to the total area of its walls is sufficiently large.

Consequently, many problems of relative area and volume were analyzed
by the Talmudists197.

196 The historical origin of the lottery system is the annual choice of one of two

goats to be the ‘scapegoat ’, carrying the heavy load of sin into the wilderness as

the Goat of Azazel . The concept of an equal chance of being chosen in a ‘fair’

lottery would be the prime motivation of the whole system. In turn, the notion

of equal probabilities, and the fact that such chances would be shown by equal

numbers of votes for each participant over a period, could naturally emerge.
197 Shlomo ben–Moshe Ashkenazi–Rappoport (1717–1781, Poland). Tal-

mudic scholar and amateur mathematician, solved this problem in an inge-
nious way, bypassing the Newtonian calculus (unknown to him). In his book

Mirkevet–Mishne (1751) he considered a vessel in the form of a box with square
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1540 CE Vannoccio Biringuccio (1480–1539, Italy). Metallurgist.
His De pirotechnia (1540), covers the technology of metallurgy of his time:
practical aspects of mining, smelting of metals, casting of bells and cannons,
and the preparation of chemicals for treating ores.

1542–1565 CE Conrad Gesner (1516–1565, Switzerland). Universal-
ist and naturalist: physician, encyclopedist, botanist, zoologist, linguist and
mountaineer. His compendium Historiae animalium (1551–1587) is the start-
ing point of modern zoology. In his Catalogus plantarum (1542) he classified
the plant genera on the basis of reproductive organs. Distinguished genus
from species and order from class in his classification of plants. He also
classified fossils into 15 different types.

Gesner was born in Zurich. He studied (1532–1541) at the Universities
of Strasbourg, Bourges, Montpellier and Basel, where he took his degree in
medicine (1541). He practiced medicine in Zurich and stayed at the city until
his death from the plague.

In 1545 he published his remarkable Bibliotheca universalis, a catalogue
(in Latin, Greek and Hebrew) of all writers who had ever lived, with the
title of their works, etc. A second part, under the title Pandeclarium sive
partitionum universalium Conradi Gesneri Lingurini appeared in 1548. In
1555 he put forth Mithridates de differentiis linguis, an account of about 130
known languages.

base of side a, and hight h. Then

S = total area = 4ah + a2 = 2ah + 2ah + a2

V = volume = ah2 =
1

2

√
2ah · 2ah · a2

If we take the total area as constant, then 4V 2 = 2ah · 2ah · a2 is the product of

three quantities whose sum is constant, and is therefore a maximum when they

are all equal, which is when h = 1
2
a. The same argument holds for a cylindric

box with a circular base of diameter d, namely h = 1
2
d. This result can be

checked against the provable statement that of all closed rectangular boxes, the

cube encloses the greatest volume for its surface area.
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The Emergence of Modern Science

“In the year 1500 Europe knew less than Archimedes who died in the year
212 BCE”

Alfred North Whitehead, 1953 (1861–1947)

The growth of science was strongly affected by the historical events that
shaped Western civilization. During the 130 years between 1559 and 1689,
Europe passed through a tumultuous and anarchic period of civil wars and
rebellions. Each upheaval had its own distinct character, each had multiple
causes. The one common denominator, which constantly recurred, was the
Protestant-Catholic religious strife.

Yet, amidst all bloodsheds and turmoil, an intellectual revolution in as-
tronomy, physics and mathematics was steadily and quietly being accom-
plished. In no other period of history was there such a dense galaxy of brilliant
thinkers as Copernicus, Francis Bacon, Galileo, Kepler, Descartes,
Fermat, Pascal, Spinoza and Newton. [This was also the age of
Cervantes (1547–1616), Shakespeare (1564–1616), Bernini (1598–1680),
Velásquez (1599–1660), Rembrandt (1606–1669), Hobbes (1588–1679),
Locke (1632–1704), Montaigne (1533–1592) and Moliere (1622–1673)] –
all men of creative genius, whose work still lives today.

No 16th or 17th century achievement is better remembered today than the
accomplishments of this international brotherhood of fellow scientists. They
obliterated the traditional view of nature and established scientific practice
on an impressive new footing. This great breakthrough equipped the physical
scientist with new methods and new standards which worked exceedingly well
throughout the 18th and 19th centuries. So total was the victory, that it
requires an effort of imagination to understand how any intelligent man could
have taken the pre-Copernican view of nature seriously. Yet this traditional
view was scientific within its own terms. For many centuries, thinking men
had found it logical and empirical, as well as emotionally convincing.

We must try to reconstitute this obliterated system in order to appreciate
the magnitude of the scientific discoveries which swept it away.

The traditional view of the cosmos, accepted by almost every educated
man until well into the 17th century, was an amalgam of Aristotelian mechan-
ics, Ptolemaic astronomy, and Christian theology. It fitted all the preexisting
views of a moral universe in which man occupied a middle place between



1542 CE 785

Heaven above and Hell in the earth’s core. Everyday experience would seem
to indicate that Aristotle’s theory of motion did indeed represent the way God
operated the universe: All heavenly bodies, said Aristotle, naturally fell to-
ward the center of the universe and rested there, unless propelled by a mover
in some other direction. It followed that the round earth, obviously solid and
weighty, stood motionless in the center of the universe.

Such teaching, accepted by all Christians, harmonized nicely with Ptole-
maic astronomy in which a concentric series of transparent crystalline spheres
revolved around the earth: the moon, the sun, the planets, the fixed stars and
the outermost sphere, which drives the entire system, all wheeled in perfect
circles, going around the earth once every 24 hours. Beyond the outermost
sphere lay God’s heavenly abode. This theory coincided, as well as anyone
could see, with the crude astronomical observations which stargazers were
able to collect.

There were of course major mysteries that were not written in Aristotle’s
philosophy, such as plagues, storms, floods, earthquakes, comet apparitions
and other natural catastrophes. The fickleness of life seemed to show that
God had delegated a role in nature to fate, fortune, or chance. This was
the twilight zone in which astrologers and alchemists could thrive. It may
also explain the need to believe in small-scale supernatural beings such as
witches, fairies, pixies, evil spirits (fallen angels) or even the devil himself,
who meddled in human affairs.

In the 14th, 15th, and 16th centuries, however, certain forces in European
society were preparing the way for a change in the general view of Nature.
Artisans and craftsmen were becoming more skilled in their techniques. The
invention of the lens and the development of the glass industry, to take but one
example, contained the promise of vastly extending man’s power of observing
natural processes. New techniques in shipbuilding led to voyages of discov-
ery, which in turn stimulated interest in nature and turned men’s attention
to problems of navigation. The Renaissance, with its emphasis on literature
and art, was in some ways anti-scientific. But humanism stimulated a pas-
sionate interest in man. Furthermore, humanistic study revealed conflicting
opinions among the ancients on matters of science, just at the moment when
the authority of Ptolemy was becoming shaky for other reasons: growing skill
in mathematics exposed the clumsiness of Ptolemy’s explanations. In the
opening years of the 16th century, conditions were ripe for change.

The first thinker to challenge the traditional viewpoint was Nicolaus
Copernicus, as early as 1514. He was a quiet, conservative Polish cleric, who
lived in an obscure East Prussian cathedral town. He had no quarrel with
the Ptolemaic vision of concentric crystalline spheres wheeling in perfect cir-
cles around the central point in the universe. What troubled him was the fact
that Ptolemy’s spheres were not perfectly circular, and he therefore published
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his revision to the geocentric theory, hoping to bring Ptolemaic astronomy
up to date. He then discovered that he could account for the irregularities
in celestial motion by making a single elemental adjustment, namely, to put
the sun, rather than the earth in the center of the universe. He could then
simplify the Ptolemaic intricate network of 80 interlocking circles by replac-
ing them with only 34 circles. It would then be superfluous to posit that the
distant fixed stars wheeled daily around the earth.

What we call the Copernican Revolution was not made by Canon Kop-
pernigk. His book was not intended to cause a revolution. He knew that
much of it was unsound, contrary to evidence, and its basic assumption un-
provable. He only half believed in it, in the split-minded manner of the Middle
Ages198. Besides, he was denied the essential qualities of a prophet: awareness
of mission, originality of vision, and the courage of conviction.

The scientific revolution began at the medieval universities of Oxford and
Paris (Roger Bacon, William of Ockham), Padua (Copernicus, Galilei),
Tübingen (Kepler) and Cambridge (Newton).

Other universities such as Bologna, Prague, Vienna, Heidelberg, Leipzig,
Uppsala, Königsberg, Jena, Salamanca, Edinburgh and Leyden (established
1158–1575) also participated in the West European movement of intellectual
emancipation.

Europe Under the Reformation (1517–1648)

Reformation is the name given to a religious movement that gave birth to
Protestantism. It had great impact on man’s social, political and economic life

198 A strange situation formed in astronomy after the Copernican Revolution:

Ptolemy’s epicycles could still fit the data. In fact, in some respect they did

so better than Copernicus’ calculations. Yet their forced complexity came to

make them seem unconvincing when compared with the eventual attractions

of the heliocentric system: There is a deep feeling among those who practice

fundamental science, a feeling that has so far proved reliable, that the way to

true understanding is the one that satisfies the canons of economy and elegance

– the way which is mathematically beautiful.
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and on the development of science. The Reformation began in 1517 when the
German monk Martin Luther (1483–1546) protested certain practices of the
Roman Catholic church. About 40 years later, Protestantism was established
in nearly half of Europe.

Before the Reformation, Europe had been held together by the univer-
salism of the Catholic church and by the claim of the Holy Roman Emperor
to be the supreme secular ruler. After the Reformation, Europe had several
large Protestant churches and some smaller Protestant religious groups. All
of them competed with the Catholic church – and with each other – for the
faith and allegiance of men.

The word Protestant (‘one who protests’) dates from the diet of Speyer,
Germany, in 1529. In 1530, the Lutherans presented the ‘Augsburg Confes-
sion’ to the diet of Augsburg, Germany, and it became the basic statement
of Lutheran doctrine. In the ‘peace of Augsburg’, signed in 1555, the Holy
Roman Empire officially recognized the Lutheran churches.

One of the chief leaders of the Protestant Reformation was John Calvin
(1509–1564). From his center in Geneva he directed efforts to convert the
people of France and other West European countries. His followers in France
were called the Huguenots. In 1571, a moderate form of Protestantism, known
as Anglicanism, was established in England.

As a result of the Reformation, Europe was divided between Catholic
countries in the south and Protestant in the north. The Protestant ethic
encouraged industriousness and careful management of material things. It
contributed to the development of industry and commerce during the 18th

and 19th centuries.

Protestant leaders also emphasized education, promoted literacy, an ed-
ucational curriculum based on ancient Greek and Roman literature and a
high respect for teaching and learning. After 1640, advances in science were
promoted more energetically in Protestant lands.
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Science Progress Report No. 4

The Religious Wars (1562–1689)

Persecution compelled the French Protestants (Huguenots) to take up
arms. At the same time they formed a political party. The ensuing struggles,
therefore, did not constitute a purely religious war, but also civil war in which
the leaders of both parties endeavored to exploit the weakness of the crown
and secure control of the government. The Huguenots were recruited primarily
from the nobility and from the new capitalist-artisan class. Paris and the
northeast in general remained Catholic throughout. After the first three wars
(1562–1569), the Huguenots, despite defeat, were given conditional freedom
of worship.

On Aug. 24, 1572 (known as “Massacre of Saint Bartholomew”), the pro-
Catholic party, with the approval of Queen Catherine dé Medici, murdered
some 5000 Huguenots in Paris and in the French provinces. Killing continued
until October 03. Catholic Europe congratulated the Queen on her success
and the Pope celebrated the event in Rome. The massacre led to the fourth
of the religious wars (1562–1598) in which the Huguenots won.

The wars ended with the Edict of Nant (1598) which gave the Huguenots
equal political rights but did not secure them entire freedom of religious wor-
ship. The persecutions were resumed in 1620, and especially after 1685, when
the Nant Edict was canceled. Many of them (ca 250,000) fled to Switzer-
land, Netherlands, England, Germany and the U.S.A., where they contributed
greatly to the cultures of these countries. Only in 1789 did they regain equal
religious and social rights.

The last of the great religious wars in Europe was the Thirty Year War
(1618–1648). It involved most of the nations in Europe in a struggle for terri-
tory and political power. The underlying cause of the war was the old deep-
seated hostility between the German Protestants and the German Catholics.

The war had three stages: The Bohemian period (1618–1620), The Dan-
ish period (1625–1629), and finally The Swedish-French period (1635–1648).
During the entire duration of the war, the people of Germany suffered mis-
ery and hardships. In 1648, the war ended with the peace of Westphalia.
By this treaty, Calvinism was put on an equal footing with Catholicism and
Lutheranism.

By the time the war ended, Germany was in a pitiable condition. Third of
its people were killed. Whole cities, villages and farms disappeared, and much
property had been destroyed. Art, Science, trade and industry declined. It
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took almost 200 years for Germany to recover from the effects of the Thirty
Years War. Thousands of persons left Europe, especially Germany, and went
to America to build a new life.

The Golden Age of The Netherlands

The Reformation spread through the Netherlands during the early 1500’s.
However, in 1516 Charles of Burgundy also became King of Spain. In this
way, the Netherlands came under Spanish control. In 1519, Charles became
emperor of the Holy Roman Empire and tightened his control over the Low
Countries. He tried to stop the Protestant threat to Roman Catholicism by
persecuting them. His son Phillip II inherited the Netherlands in 1555 and
tried to gain complete power over the country. In 1568, the Nobles there
revolted under the leadership of William of Orange. In 1581, the northern
provinces declared their independence from Spain. The revolt of the Nether-
lands lasted until 1648 (except for temporary peace from 1609–1621), when
Spain finally recognized Dutch independence.

The first half of the 17th century, during which the Dutch provinces were
still at war with Spain to secure their independence, was nevertheless a period
of unexampled flowering in art, science and literature. This was primarily due
to an unprecedented expansion of the Dutch commerce which resulted from
the closing of Lisbon to Dutch trade and the annexation of Portugal to Spain.
The Dutch were obliged to find their own way to the East, and within a
remarkably short time they were disputing the command of the Indies with
the Portuguese, whom they soon displaced.

The Dutch ‘East India Company’ (founded 1602) was given extensive po-
litical and military authority and became one of the chief organs of Dutch
imperialism. In 1652 the Dutch established themselves at the Cape of Good
Hope, and in 1667 they took Sumatra. The ‘Dutch West India Company’
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(founded 1621) had the same extensive control over the American and African
coast trade.

In 1623 the Dutch began extensive conquests in Brazil, until 1661. They
took the islands of St. Eustace and Curacao (1634–5), Saba (1644) and St.
Martin (1648). With this far-flung colonial empire, the Dutch provinces be-
came the commercial center of Europe, Amsterdam easily holding the lead as
the financial center.

Thus, a million and a half people fought, against great odds, the whole
might of the Spanish Empire. At the end the Dutchmen not only were able
to hold their own, but actually turned the tables on their enemies to such an
extent that Spain never recovered from the blow.

The prodigious energy necessary to accomplish such a stupendous victory
could not suddenly be subdued the moment peace was signed. Carried forward
by its own momentum, this desire to achieve manifested itself in almost every
other phase of life. Almost overnight Holland was turned into an economical,
intellectual, and artistic beehive.

Never before or since has Holland been the world power it was then –
a small country, forced to live by its wits. Because of its tolerance for un-
orthodox opinions and its tradition of encouraging freedom of thought, it was
a haven for intellectuals, who were refugees from censorship and thought-
control elsewhere in Europe.

It is therefore not by sheer chance that Descartes created most of his
philosophy and mathematical writings (1628–1649) in Holland. It was the
home of the great Jewish philosopher Baruch Spinoza (1632–1677) and the
political scientist John Locke (1632–1704). It was the cradle of the devel-
opments of the microscope [Leeuwenhoek (1632–1723)] and the telescope
[Huygens (1629–1695)], the extensions of human visions to the realms of the
very small and the very large, respectively.

The fundamental studies of Snellius (1580–1626) on the refraction of light
and Huygens’ wave theory of light are among the remarkable achievements
of this golden age.

This was also the time of Rembrandt (1606–1669), Vermeer (1632–
1675) and Hals (1580–1666).

Is there a common denominator to Descartes’ ‘frame of reference’, and the
obsession with light and vision of Vermeer, Rembrandt, Huygens, Snellius and
Leeuwenhoek? Hendrik van Loon (1882–1944, U.S.A.) replied to that in
the affirmative:

“The Low Countries are one of the few parts of the world where every
window becomes the frame for a very definite and exceedingly paintable little
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landscape, while inside the house that strange light that sweeps across a sky
washed clean by everlasting rainstorms, has a clarity and harsh brightness
which turns even the most ordinary article of daily usage into mysterious
objects that lose their commonplace character and begin to vibrate with all
the colors of the rainbow.”

ca 1543 CE Nicolaus Copernicus (Nicolas Koppernigk, 1473–1543,
Poland). Astronomer, physician and Canon of Law. First to revive the helio-
centric theory of Aristarchos. Broke away from the Ptolemaic doctrine and
put the center of the universe near the sun, with the earth and all the planets
revolving about it (1514). This heliocentric model was revolutionary in that it
challenged the previous dogma of scientific authority of Aristotle, and caused
a complete scientific and philosophical upheaval.

The Ptolemaic system formed the basis of all the writings of the Arab and
Jewish astronomers of the Middle Ages, including Maimonides, Avraham bar
Hiyya, Levi ben Gershon and others.

Martin Luther (1483–1546) ridiculed the Copernican hypothesis, that
the earth revolves around the sun, and appealed to a literal interpretation of
scripture to support his arguments. He pointed out that Joshua had made
the sun – not the earth – stand still! For half a century after Copernicus’
death, his heliocentric theory gained few adherents. It was taught at only
one university (Salamanca, Spain) and the general public was unaware of it.
Montaigne (1533–1592) lightly dismissed it and Tycho Brahe (1546–1601)
did not accept it either. All this was however quite irrelevant to science; the
important thing was that Kepler was a Copernican.

Nicolas Koppernigk was born on the 19th of February 1473, at Torun on
the Vistula in Prussian Poland, a trading post between East and West. There
his father, a native of Cracow, had settled as a dealer in copper (the family
business, from which the Koppernigks derived their name). His mother, Bar-
bara Watzelrode, belonged to a family of high mercantile and civic standing.
After the death of his father in 1483, Nicolas was virtually adopted by his
uncle Lucas Watzelrode, later Bishop of Ermeland.

Placed at the University of Cracow in 1491, he devoted himself during
the next four years to mathematical science, but did not take any degree.
In 1495 he came to the University of Bologna, where he studied Canon law
and astronomy. In 1497 he was nominated a canon of the cathedral chapter
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of Frauenburg199 (some 85 km east of Danzig, on the Baltic Sea), but the
chapter gave him permission to continue his education in Italy. In 1501,
Nicolas entered the medical school of Padua, where he remained until 1505,
having taken meanwhile a doctor’s degree in canon law at Ferrara in 1503.
After his return to his native country in 1506 he resided at the episcopal
palace of Heilsberg as his uncle’s physician until the latter’s death in 1512.
He then retired to Frauenburg and attended to his capitular duties. His work
was mainly administrative, though he had occasionally to practice medicine.
In his spare time he pursued astronomical researches.

The main lines of his work were laid down at Heilsberg and at Frauen-
burg from 1513 until its completion in 1530. In it he sought, with scant
instrumental means, to test by observations the truth of the heliocentric doc-
trine. In 1530 he circulated a brief popular account, the Commentariolus.
His disciple George Joachim Rheticus (1514–1576) printed in 1540, in
Danzig, a preliminary account of the Copernican theory, and simultaneously
sent to the press at Nuremberg his master’s complete exposition of it in a
treatise entitled De Revolutionibus Orbium Coelestium (concerning Revolu-
tions of Celestial Spheres). But the final printed copy reached Frauenburg
barely in time to be laid on the writer’s death-bed. The book was marred by
an anonymous preface, addressed to the reader, slipt in by Andreas Osian-
der (1498–1552). It insisted upon the purely hypothetical character of the
reasoning it introduced, and explained that the ideas of the book need not be
taken too seriously. The trigonometrical section of the book had been issued
as a separate book (1542) under the care of Rheticus.

The first edition, Nuremberg 1543, numbered ca 1000 copies, which were
never sold out. It had altogether 4 reprints in 400 years: Basle 1566, Amster-
dam 1617, Warsaw 1854, and Torun 1873. It is a remarkable negative record,
and quite unique among books which made history.

The Copernican system met with very determined opposition, and the
Christian Church as well as the Jewish Rabbis denounced it as heretical be-
cause the Bible said that the earth was fixed and the sun was moving (Eccles
1, 3–4).

199 His uncle was anxious to secure him this post because the economic future of

the Baltic Sea ports of the Hanseatic league became uncertain due to the alleged

opening of new sea routes to the Orient by Columbus. He drew his prebend, but

he neither took holy orders nor was his physical presence at Frauenburg required

for the next 15 years. However, the income from this position supported him for

the rest of his life. From the age of 22 to 32, the young canon spent his time in

Italy, at the Universities of Bologna, Padua and Ferrara on a series of extended

leaves of absence. Toward the end of his Italian studies, the heliocentric system

began to take shape in Nicolas’ mind (ca 1505).
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The Copernican Revolution (1543)

In 1543 CE, Nicolas Koppernigk (1473–1543) [now known as Nicolas
Copernicus], astronomer, physician and Canon of Law, first revived the he-
liocentric theory of Aristarchos. He broke away from the Ptolemaic doctrine
and put the center of the universe near the sun, with the earth and all the
planets revolving about it (1514). This heliocentric model was revolutionary
in that it challenged the previous dogma of scientific authority of Aristotle,
and caused a complete scientific and philosophical upheaval.

In his book ‘De Revolutionibus’, published as late as 1543, he put for-
ward the kinematic explanation to the precession of the equinoxes. Imagining
himself as an observer outside the solar system, he stated that the earth’s
axis, although it always keeps the same inclination (661

2

◦
) to the plane of

the earth’s orbit (ecliptic), nevertheless traces out a cone of semiangle 231
2

◦

with respect to the normal to this plane. Copernicus also concluded that
the average precessional rate is 50.2′ ′ per year, corresponding to a complete
precessional period of about 26,000 years.

The cause of this precession remained a mystery until Newton [Principia,
Book III, Proposition 39, 1687] gave a quantitative dynamical explanation:
the wandering of the earth’s axis round the pole of the ecliptic depends upon
the same principle as the corresponding motion of a spinning top under the
action of terrestrial gravitation. The equatorial bulge of the earth is attracted
towards the plane of the ecliptic by the Moon and the Sun. Their turning
moment acts upon the earth’s angular momentum vector, causing it to precess.

Although Copernicus is hailed as the harbinger of a new era in natural
science, we encounter in his writings Pythagorean-Platonic mysticism and
scientific reasoning in a combination which, from a modern standpoint, appear
strange to us: he regarded the cosmos as spherical, a ‘divine body’ endowed
with the perfection of its creator, and rejoices in the regularity and order of
the world. Circular motion was supposed to be proper to all complete objects,
and the state of rest to be more noble than that of motion.

The question arises as to how did Copernicus figured out the sidereal
periods of the planets and the sizes of their orbit?

The observed retrograde motion of the planets inspired Aristarchos (ca
270 BCE) to suggest a heliocentric cosmology. In Aristarchos’ day, however,
the idea of a moving earth seemed incompatible with explanation of other
phenomena at the earth’s surface. About 1800 years elapsed before someone
had the insight and the determination to work out the details of a sun-centered
cosmology.
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Table 2.7: The synodic and sidereal periods of the planets (in

earth time units)

Planet Synodic Period Sidereal Period

Mercury 116 days 88.0 days
Venus 584 days 224,7 days
Earth – 365.2 days
Mars 780 days 687.0 days
Jupiter 399 days 11.9 years
Saturn 378 days 28.6 years

Copernicus realized that, using a heliocentric perspective, he could deter-
mine which planets are closer to the sun than the earth and which are further
away. Because Mercury and Venus are always observed fairly near the sun
in the sky, he concluded that their orbits are smaller than earth’s (inferior
planets). The other visible planets: Mars, Jupiter and Saturn can be seen in
the middle of the night, when the sun is far below the horizon, which can oc-
cur only if the earth comes between the sun and the planet. Thus Copernicus
concluded that the orbits of Mars, Jupiter and Saturn are larger than that of
the earth200 (superior planets).

Since the earth, sun and other planets are all in relative motion w.r.t
the distant fixed stars, Copernicus was careful to distinguish between two
characteristic time-intervals, or periods, of each planet. Whereas the synodic
period 201 of a planet can be determined by observing the sky, the sidereal
period 202 must be calculated.

He derived the relation
1
P

=
1
E

± 1
S

,

where

200 Other, dimmer superior planets - Uranus, Neptune and Plato - were discovered

after the telescope came into use.
201 Time that elapses between successive identical configurations (as seen from

earth from one opposition to the next, for example, or from one conjunction to

the next).
202 The time it takes the planet to complete one orbit of the sun - the true orbital

period.
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P = sidereal period of the planet (in earth years)
E = sidereal period of the earth, which Copernicus

knew to be equal to 365 1
4 days = 1 earth year

S = synodic period of the planet (in earth years)

and (+/−) refers to inferior/superior planets, respectively.

For example, taking the synodic period of Jupiter to be 398.88 days =
1.092 earth years, and E = 1, we set:

1
P

= 1 − 1
1.092

= 0.084 =
1

11.9

It thus takes Jupiter to complete one full orbit of the sun in 11.9 earth years.
Table 2.7 renders the values obtained by the method of Copernicus.

To determine the size of an inferior planet’s orbits, Copernicus measured
the angle α between the sun and the planet when this angle (known as elonga-
tion) is maximal. This occurs when the triangle formed by earth, the inferior
planet, and the sun is a right angle. The hypotenuse of the triangle has a
length of one astronomical unit (1 AU), and hence the radius of the inferior
planet’s orbit is equal to sin α, also measured in AU.

Determining the size of the superior planet is somewhat more compli-
cated. Here Copernicus used a triangle formed by the sun, earth and the
planet at quadrature203, which again contains a right angle at the earth. Sim-
ple trigonometry shows that in this configuration, the radius of the superior
planet’s orbit is equal to 1

cos(β−γ) (measured in AU), where β is the angle

the earth has spanned from its initial fiducial position at an approximate rate
of 1◦ per day. The angle γ is that spanned by the planet from the earth’s
initial fiducial position and can be calculated knowing the sidereal period of
the planet.

Copernicus compiled his ideas and calculations into his book De Revolu-
tionibus Orbium Celestium (“On the Revolutions of the Celestial Spheres”)
that was published in 1543, the year of his death. Although he assumed that
the earth travels around the sun along the circular path, he found that per-
fectly circular orbits cannot accurately describe the paths of the other planets.
He therefore had to add an epicycle to each planet to account for the slight
variation in speed along the orbit. Thus, according to Copernicus, each planet
revolves around a small epicycle, which in turn orbits the sun along a circular
path. Table 2.8 compares the average distances of the planets from the sun
calculated by Copernicus with modern values.

203 In this position, the planet’s elongation is 90◦.
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Table 2.8: Average distances of the planets from the sun (in AU)

Planet Copernicus Modern

Mercury 0.38 0.39
Venus 0.72 0.72
Earth 1.00 1.00
Mars 1.52 1.52
Jupiter 5.22 5.20
Saturn 9.07 9.54

Tycho Brahe tried to test Copernicus’ ideas with detailed observations
of the sky. We know that, when we walk from one place to another, nearby
objects appear to shift their position against the background of more distant
objects. Tycho argued that, if Copernicus was correct, nearby stars should
shift against the background stars as the earth orbits the sun.

Tycho spent his lifetime making accurate observations of the positions of
the stars and planets. Yet he could not detect any shifting of star positions. He
therefore concluded that Copernicus was wrong. Actually, the stars are so far
away that naked-eye observations could not possibly detect any tiny shifting
of star positions.That has now been confirmed with telescoping observations.

Nevertheless, Tycho Brahe’s astronomical records were destined to play
an important role in the development of heliocentric cosmology. Upon his
death (1601), many of Tycho’s charts and books fell into the hands of his
gifted assistant, Johannes Kepler.

Could you prove today that Copernicus was right?

Any school-boy knows that the earth revolves about the sun and not the
other way round. But most people, among them, no doubt, some professors
of physics would be hard pressed to explain why they are so sure of this.

The solar system is much smaller then the distance between the sun and
the nearest star. That the universe is such a big place was only understood
once it was realized that the parallax (as viewed from earth in, say, winter
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and summer) of even the nearest star is minuscule, even with a base-line of
3 × 108 km (2 AU). Nonetheless, such parallaxes have been measured204.

Together with optical measurements of stellar aberrations, Doppler shifts
and inertial effects caused by the earth’s revolution, this provides evidence for
the earth’s relative orbital motion w.r.t the sun and fixed stars.

While none of these arguments can distinguish between the Copernican
theory and, say, the Tycho Brahe’s approach205, the immense stellar distances
revealed by parallax measurements to the nearest stars has rendered the Tycho
interpretation unlikely in the extreme. It is simply unreasonable to believe
that such huge numerous and distant objects conspire to rotate in unison
around the earth.

Another powerful argument for the correctness of the pure Copernican
interpretation follows from a judicious combination of empirical facts and
theoretical principles. Once one is armed with Newton’s Second law of motion
and his Law of Universal gravitation can the issue be resolved in several steps
as follows:

• Use Kepler’s third law to compare the lunar orbital elements with those
of the earth’s revolution in order to deduce the mass ratio of earth
and sun. This requires at least two parallax measurements from two
different points on the earth’s surface in order to relate one AU and the
lunar-earth distance to the earth’s radius.

• Use Newton’s Law of Universal gravitation and his second law of motion
to show that the earth and the sun must both revolve around a common
center of mass which is inside the sun.

The problem with this “proof” is that it is somewhat indirect. A bet-
ter way is to directly measure the centrifugal acceleration due to earth’s cir-
cumsolar revolution. This can, in fact, be done with sensitive Eotvös-type
experiment.

Additionally, if the center of the earth’s mass were really stationary relative
to an inertial frame, there would be no way of understanding why there are

204 The vastness of the universe, as revealed by conjoining the Copernican hypothe-

sis with the minute value of stellar parallaxes, intimidated the minds of scholars

and tended to prejudice many against the Copernican theory. Little did they

know that the discovery of the extragalactic nature of many nebulae in the

1920’s would once again vastly expand the scale of man’s universe by many

order of magnitudes.
205 Namely, the compromise view that non-terrestrial planets revolve around the

sun, which in turn revolves around the earth!
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solar and/or lunar tides when the respective heavenly bodies were on the
other side of the earth. Incidentally, the earth’s rotation about an axis is also
easy to demonstrate: it partly accounts for, via the centrifugal force, for the
reduced weight of objects (and the acceleration of gravity) on the equator
relative to higher latitudes.

The following four effects demonstrate that the earth rotates relative to
the sun and the fixed stars:

1. Triangulation of nearest stars.

2. Doppler-shifts of all stars with period of one earth-year.

3. Stellar aberration of light from all stars, with the same period and 90◦

out of phase with the Doppler-shift oscillation.

4. Inertial forces observed in Eotvös-type experiments that are due to or-
bital acceleration.

None of these four effects can settle the question of whether the earth
acceleration relative to sun and fixed stars, or the other way round. Even
effects no. 4 cannot resolve this because of the Lenz-Thirring-Brill-Cohen-
Mach effect. However, since effect no. 1 shows the immense distance of even
the nearest stars, the Tycho interpretation appears unlikely in the extreme.
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On Copernicus

“It is necessary to alter the motion of the stars a little because of the (annual)
motion of the earth”

Aristarchos, ca 280 BCE (310–230 BCE)

“The Ptolemaic astronomy is nothing so far as existence is concerned; but it
is convenient for computing the non-existent”

Muhammad Ibn Rushd, ca 1170 (1126–1198)

“Since, then, the earth cannot be the center, it cannot be entirely devoid of
motion. . . It is clear to us that the earth is really in motion though this may
not be apparent to us, since we do not perceive motion except by comparison
with something fixed. . . Moreover, neither the sun, nor the moon, though to
us it seems otherwise, can in its motion describe a true circle, because they
do not move around a fixed base. . .”.

Nicolas of Cusa, 1440 (1401–1464)

“. . . I cannot get over my amazement at the mental inertia of our astronomers
in general who, like credulous women, believe what they read in the books,
tables, and commentaries as if it were the divine and unalterable truth; they
believe the authors and neglect the truth”.

Regiomontanus, 1464 (1436–1476)

“There is talk of a new astrologer who wants to prove that the earth moves
and goes round instead of the sky, the sun, and moon. . . The fool wants to
turn the whole art of astronomy upside-down. . .”.

Martin Luther, 1533 (1483–1546)
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“. . . I have been informed that you have. . . created a new theory of the Uni-
verse according to which the Earth moves and the Sun occupies central posi-
tion. . .; moreover, that you have written a treatise on this entirely new theory
of astronomy, and also computed the movement of the planets and set them
out in tables, to the greatest admiration of all.
Therefore, learned man, I beg you most emphatically to communicate your
discovery to the learned world. . .”.

From a letter of Nicolaus Schoenberg, Cardinal of Capua, written to
Copernicus on Nov. 1, 1536, at the initiative of Pope Paul III.

“Copernicus had opened the eyes of the most intelligent to the fact that the
best way to get a clear grasp of the apparent movements of the planets in
the heavens was to regard them as movements round the sun conceived as
stationary. If the planets moved uniformly in a circle round the sun, it would
have been comparatively easy to discover how these movements must look
from the earth”.

Albert Einstein, 1930 (1879–1955)

“In philosophy proper, the 15th and 16th centuries are on the whole not very
spectacular. On the other hand, the spread of the new learning, the dissem-
ination of books, and, above all, the renewed vigor of the ancient traditions
of Pythagoras and Plato, paved the way for the great philosophic systems of
the 17th century.
It was in the wake of this revival of ancient modes of thought that the great
scientific revolution began. Starting from a more or less orthodox Pythagore-
anism, it gradually overthrew the established notions of Aristotelian physics
and astronomy, to finish by going right behind the appearances and discov-
ering an immensely general and powerful hypothesis. In all this, the men
who furthered such inquiries knew that they stood directly in the Platonic
tradition. . .
The theory as Copernicus propounded it was not free from difficulties, and in
some ways was dictated by preconceived notions going back to Pythagoras.
That the planets must move steadily in circles seemed to Copernicus a forgone
conclusion, because the circle is a symbol of perfection, and uniform motion
is the only kind becoming to a heavenly body. Within the scope of the ob-
servations available, the heliocentric view with circular orbits was, however,
much superior to the epicycles of Ptolemy. For here, at last, was a simple
hypothesis that by itself alone saved all appearances”.

Bertrand Russell, ‘Wisdom of the West’ (1892–1970)
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“It is a strange paradox that at every time when man was beginning to conquer
nature he was obliged to drive himself away from the center of things; in
proportion as he grew wiser he had to make himself smaller.”

George Sarton

“Copernicus was a poor observer and it had been easier for him (as it was for
Aristarchos) to formulate his new theory, because he was not embarrassed by
good observations.”

George Sarton

“The notion of limitlessness or infinity, which the Copernican system implied,
was bound to devour the space reserved for God on the medieval astronomer’s
charts. They had taken it for granted that the realms of astronomy and
theology were contiguous, separated only by the thickness of the ninth crystal
sphere. Henceforth, the space-and-spirit continuum would be replaced by a
space-time continuum. This meant, among other things the end of intimacy
between man and God. Homo sapiens had dwelt in a universe enveloped by
divinity as by a womb; now he was being expelled from the womb.

During the remainder of the sixteenth century, the new system of the universe
went, like an infectious disease, through a period of incubation. Only at the
beginning of seventeenth did it burst into the open and caused the greatest
revolution in human thought since the heroic age of Greece.

1600 CE is probably the most important turning point in human destiny
after 600 BCE. Astride that milestone, born almost exactly a hundred years
after Copernicus, with one foot in the sixteenth, the other in the seventeenth
century, stands the founder of modern astronomy, a tortured genius in whom
all the contradictions of his age seem to have become incarnate: Johannes
Kepler”.

Arthur Koestler, ‘The sleepwalkers’, 1959



802 2. Slumber and Awakening

1543 CE The works of Archimedes appeared in Latin translation. Vesal-
ius published Des Humani Corporis Fabrica.

1543–1555 CE Petrus Ramus (Pierre de La Rameé, 1515–1572,
France). Humanist, philosopher, mathematician and logician206. Published
(1543) Aristotelicae Animadversiones – an attack on Aristotelian logic and
physics. It represented a break with the authority of medieval tradition.

Ramus defended the audacious thesis that “Everything Aristotle taught
was false”. This iconoclastic attitude was not so much an attack on Aris-
totle as on the medieval Peripatetic tradition which had become embedded
in Scholasticism. One can therefore justly choose the year 1543 to mark the
separation of medieval from modern times.

In his second book Dialecticae partitiones (1543), Ramus criticized uni-
versity curriculum and argued for return to teaching of the seven liberal arts:

His works were suppressed and he was forbidden to teach logic (1544–
1547). However, the ban was lifted by Henry II (1547) through the influence
of the Cardinal of Lorraine. He was then appointed professor of philosophy
at the College de France (1551) and embraced Calvinism (1561). Persecuted
thereafter by academic and ecclesiastic enemies, he was assassinated in the
Massacre of St. Bartholomew.

His system of logic, known as Ramism, emphasized logic as method of
disputation and had influence in the 16th and 17th centuries.

Ramus was born at the village of Cuth in Picardy, a member of a noble
but impoverished family. His father was a charcoal–burner. He gained ad-
mission to the college of Navare, working by day and carrying his studies at
night. On taking his degree (1536) he actually took as his thesis: “Everything
Aristotle taught was false”. At the College de France he lectured, for a con-
siderable time, before audiences numbering as many as 2000. He published
50 works in his lifetime and nine appeared after his death.

1544 CE Lodovico Ferrari (1522–1565, Italy). Mathematician. A
pupil of Cardano. Solved the quartic equation by reducing it to a cubic

206 Ramus was obsessed by the Tree of Porphyry and applied the binary tree to so

many topics that it was thereafter known as the Tree of Ramus . Ramus coined

the term radius (1569) saying: “Radius est recta a centro ad perimetrum”.
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equation207. Ferrari was taken into Cardan’s house as a servant at the age

207 His method, summarized in modern notation, is as follows: First, the general
quartic is reduced to a canonical form

x4 + px2 + qx + r = 0,

which is recast into:

(x2 + p)2 = px2 − qx + (p2 − r).

Using this, one obtains for arbitrary y:

(x2 + p + y)2 = (p + 2y)x2 − qx + (p2 − r + 2py + y2).

Then, y is chosen such that the r.h.s. of the last equation is a square. This

occurs when a cubic in y is satisfied, namely

4(p + 2y)(p2 − r + 2py + y2) − q2 = 0.

Once this is solved and y is known in terms of (p, q, r), we are left with a

quadratic equation in x.

An alternative procedure consists of expressing the original quartic

x4 + ax3 + 3x2 + cx + d = 0 (1)

as a product of two quadratic factors:

(x2 + p1x + q1)(x
2 + p2x + q2) = 0 (2)

To find the coefficients (p1, q1, p2, q2), one carries out the multiplication of the
two quadratic factors and equates its coefficients with (1), obtaining the simul-

taneous equations

p1 + p2 = a; p1p2 + q1 + q2 = b; p1q2 + p2q1 = c; q1q2 = d (3)

Introducing the notation

m = q1 + q2 (4)

we eliminate the four unknown (p1, q1, p2, q2) from the five relations (3) and (4),

obtaining the eliminant

m3 − bm2 + (ac − 4d)m + (4bd − c2 − a2d) = 0 (5)

Assuming m to be solvable explicitly, the equations q1q2 = d and q1 + q2 = m

yield a quadratic equation for the roots q1 and q2

q2 − mq + d = 0 (6)
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of 14. Cardan taught him Latin, Greek and mathematics. Ferrari became

After this, we find p1 and p2 from (3) via

p1 =
aq1 − c

q1 − q2
; p2 = a − p1 (7)

Thus, the solution of a 4th -order equation to a solution of a cubic equation (5)
and of three quadratic equations (6) and (2).

The explicit algebraic solution of the general quartic equation

a0x
4 + 4a1x

3 + 6a2x
2 + 4a3x + a4 = 0,

then hinges on the solution of the resolvent cubic

u3 − g2u + 2g3 = 0,

where

g2 = a0a4 − 4a1a3 + 3a2
2

g3 = a0a2a4 − a0a
2
3 + 2a1a2a3 − a2

1a4 − a3
2

Denoting the roots of the cubic by u1, u2, u3 (using Cardan formula), the

roots of the cubic are

− a1

a2
+

1

a0

√
1

2
a0u1 − a0a2 + a2

1+
1

a0

√
1

2
a0u2 − a0a2 + a2

1+
1

a0

√
1

2
a0u3 − a0u2 + a2

1

The four possible combination of the signs of the square roots are being chosen

so that their product equals − 1
2
(a2

0a3 − 3a0a1a2 + 2a3
1).

For example, the equation x4 + 4x2 − 24x − 24 = 0 is solved by

x1 = −1 +

√

1 +
3

√
3 +

√

1 + ω
3

√
3 +

√

1 + ω2 3
√

3,

x1 = −1 +

√

1 +
3

√
3 −

√

1 + ω
3

√
3 −

√

1 + ω2 3
√

3,

x1 = −1 −
√

1 +
3

√
3 +

√

1 + ω
3

√
3 −

√

1 + ω2 3
√

3,

x1 = −1 −
√

1 +
3

√
3 +

√

1 + ω
3

√
3 +

√

1 + ω2 3
√

3,

where

w = − 1

2
+

1

2
i

√
3

w2 = − 1

2
− 1

2
i

√
3 = w∗.



1544 CE 805

Cardan’s personal secretary and succeeded him (1540) as public lecturer on
mathematics in Milan. On Aug 10, 1548 Ferarri defended Cardan in a debate
with Nicolo Tartaglia in Milan before a large and distinguished gathering. In
1565, Ferrari became professor of mathematics at the University of Bologna.
It is claimed that he died of arsenic poisoning, administered by his own sister!

1544 CE Michael Stifel (1486–1567, Germany). The greatest German
algebraist of the 16th century, was born in Esslingen and died in Jena. He
was educated in the monastery of his native town, and afterwards became a
Protestant minister. The study of the significance of mystic numbers in the
book of Daniel drew him to mathematics. He then studied German and Ital-
ian works and published (1544) in Latin, a book entitled Arithmetica integra.
Its three parts treat respectively rational numbers, irrational numbers, and
algebra. Stifel gave a table containing the numerical values of the binomial co-
efficients for powers below the 18th. He made early steps towards logarithmic
computations, and used alphabet letters to designate unknowns.

Stifel was one of the oddest personalities in the history of mathematics.
Converted by Martin Luther, he became a fanatical reformer. His erratic mind
led him to indulge in number mysticism. From an analysis of Biblical writings,
he prophesied the end of the world on October 3, 1533 and was forced to take
refuge in a prison after ruining the lives of many believing peasants who had
abandoned work and property to accompany him to heaven.

An extreme example of Stifel’s mystical reasoning is his proof, by arith-
mography, that Pope Leo X was the “beast” mentioned in the Book of Reve-
lation208 (13, 18).

1545 CE Girolamo Cardano (1501–1576, Italy), also known as Jerome
Cardan. The most celebrated mathematician of the age. Physician, as-
trologer and a Professor of mathematics at the universities of Bologna and
Milan. Was first to appreciate complex numbers and use them in computa-
tions. In his influential treatise ‘Ars Magna’, he put the complete solution
of a general cubic equation in terms of square roots of numbers that may be
positive or negative. In his book he admits quite candidly that he was not the
original discoverer of the solution. Cardano initiated the study of probability
theory in his gambler’s manual “Liber de Ludo Aleae” (Book on Games of
Chance) published in 1663. He discovered the pn law for the probability of n
successes in n independent repetitions of an event with probability p.

Cardano was one of the most extraordinary characters in the history of
mathematics: a physician by trade, an inveterate gambler, heretic and a caster

208 Others throughout history had claimed the “number of the beast” (616) must

be interpreted as Nero, the Pope of Rome (by Napier), Martin Luther, Kaiser

Wilhelm, and finally the Nazi Führer.



806 2. Slumber and Awakening

of horoscopes [he was imprisoned for a time for heresy because he published
a horoscope of Christ’s life], and undoubtedly an eccentric talent.

His contemporary fame was very largely medical and philosophical. He
studied medicine in Pavia and Padua and obtained his doctorate in 1526,
but was not admitted into the College of Physicians of Milan because of his
illegitimate birth. He settled down as a country doctor in Sacco (near Padua)
and married. According to his own recollections, the years he spent there
(1526–1532) were the happiest of his life. In 1532 he was able to return to
Milan as a lecturer in mathematics; but his first published book was medical
(1536). In 1517 he was appointed professor of medicine in Pavia.

The celebrity which Cardan had acquired led in 1551 to his journey to
Scotland as a medical advisor of Archbishop Hamilton of St. Andrews. At
this point Cardan attained the summit of his prosperity, and the rest of his
life was little but a series of disasters: one of his sons was a scoundrel and the
other was executed for poisoning his wife. Cardan’s reputation and practice
waned, and crushed by the blows he addicted himself to gambling.

He was ultimately banished from Milan on some unspecified accusation
and he found it advisable to accept a professorship at Bologna (1562). There
he was suddenly arrested on a charge of heresy. Through the intervention of
some influential cardinals Cardan was released, but was deprived of his profes-
sorship, prohibited from teaching and publishing any further. Resigning his
chair in Bologna, he moved to Rome and became a distinguished astrologer,
receiving a pension as astrologer to the Papal court.

1545–1563 CE Ambroise Paré (1510–1590, France). Surgeon. Intro-
duced many medical innovations in the field of surgery: use of artificial limbs
and tying severed arteries to stop bleeding after amputation. Instead of treat-
ing gunshot wounds with hot oil, according to the practice of the day, he had
the temerity to trust a simple bandage. In 1545 he published at Paris La
Méthode de traicter les playes. His next book was Anatomy (1550) and Cinq
livres de chirurgie (1563).

He began life as apprentice to a barber-surgeon in Paris. His earliest
opportunities were in military surgery during the campaign of Francis I in
Piedmont. Paré was adored by the army and greatly esteemed by successive
French kings; but his innovations were opposed, as usual, by the faculty, and
he had to justify it as well as he could by quotations from Galen and other
ancients.

1547–1570 CE Andrea Palladio (di Pietro della Gondola, 1508–1580,
Italy). Architect. One of the most influential figures in Western architec-
ture. His palaces and villas were imitated for 400 years all over the Western
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world; He was the first architect to systematize the plan of a house and con-
sistently to use the ancient Greco-Roman temple front as a portico (roofed
perch supported by columns). The influence of Palladio’s buildings and publi-
cations reached its climax in the architecture of the 18th century, particularly
in England, Ireland, the United States and Italy, creating a style known as
Palladianism, which is turn spread to all quarters of the world.

Palladio was born in Padua. As a youth he was apprenticed to a sculptor
in Padua and at the age of 16 enrolled in Vicenza in the guild of the brick-
layers and stonemasons. In 1538, he was discovered by the humanist and
scholar Gian Giorgio Trissino. The name Palladio was then added by Trissino
to Andrea as an allusion to the mythological figure Pallas Athena, the Greek
goddess of wisdom. Palladio then turned to architecture (the ancient litera-
ture on architectural engineering and military science) and was influenced by
Alberti and Bramante. He adopted principles of Roman architecture, revolt-
ing against ornamentalism. He built large palaces, churches and numerous
country villas (most of them are near Vicenza, Rome, Venice and various
parts of the countryside of Northern Italy). In Venice he built the facade of
the churches of San Giorgio Maggiore (1566) and Ill Redentore (1576).

1550–1700 CE Leading European poets and novelists during the periods
of Late Renaissance-Reformation-Baroque:

• Torquato Tasso 1544–1595

• Miguel de Cervantes Saavedra 1547–1616

• Christopher Marlowe 1564–1593

• William Shakespeare 1564–1616

• John Donne 1572–1631

• John Milton 1608–1674

1551–1555 CE Pierre Belon (1517–1564, France). Author of Histoire
naturelle des éstranges poisson marins (1551) and L’Histoire de la nature
de oysseaux (1555), containing pioneering work in comparative anatomy and
embryology . He also wrote Les Observations de plusieurs singularitez et choses
memorables (1553) on his tour of the Eastern Mediterranean.

Belon was born near Le Mans. He studied medicine at Paris, where he
took the degree of a doctor, and then became a pupil of the botanist Valerius
Cordus (1515–1544) at Wittenberg, with whom he traveled in Germany. Dur-
ing 1546–1549 he traveled through Greece, Asia Minor, Egypt, Arabia and
Israel.
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Belon was assassinated at Paris one evening when coming through the
Bois de Boulogne.

1551–1563 CE George Joachim (von Lauchen) Rheticus (1514–
1567, Germany). Astronomer, mathematician and physician. Latinized his
name into Rheticus since his birthplace, Feldkirch in Tyrol, was anciently the
territory of Rhaetica. As a young man he studied at the Universities of Zürich,
Nuremberg and Göttingen. At the age of 22, he was appointed professor of
mathematics and astronomy at the young University of Wittenberg, center
and glory of Protestant learning.

Being greatly attracted by the new Copernican theory, he resigned the
professorship in 1539 and went to Frauenburg with a determined purpose
to set in motion the Copernican Revolution which Copernicus himself tried
to suppress. Soon, a most peculiar situation arose in which Rheticus was
pressing for publication of ‘De Revolutionibus’, while Copernicus maintain-
ing his stubborn opposition. Eventually, he prepared his master’s work for
publication in 1542, but afterwards lost all interest in the subject – because
Copernicus failed to mention his name anywhere in the text.

Rheticus survived his master by more than 30 years, leading a restless
and hectic life in Leipzig, Italy, Cracow and Cassovia in Hungary. During
1551–1563 he completed a monumental work on trigonometry which secured
him an honorable place in the history of mathematics: he was first to define
the trigonometric functions in a right triangle and prepare tables of these
functions to seven decimal places at intervals of 10 arcseconds. These were
published posthumously by his pupil Valentinus Otho (ca 1550–1605).

1552–1553 CE Thomas Gresham (1519–1579, England). The financial
adviser to Queen Elizabeth I. Developed methods to raise the value of the
pound sterling by operations that involved actuarial problems in probability,
however rudimentary. Bequeathed his property for the foundation of the
first chair of geometry in London’s Gresham College in 1596, founded by him.
Henry Briggs was the first incumbent, to be followed later by John Wallis,
Edmund Halley (1656–1742) and Christopher Wren (1632–1723).

Established the economic law (known as: Gresham’s Law): bad coin drives
out good coin.

1553 CE Burning of the Talmud by Pope Julius III on September 9
(Jewish New-Year day) at Plazza Campo de Fiori in Rome [at the same place
they burned Giordano Bruno in 1600]. On September 12, the head of the
Inquisition, Giovanni Pietro Caraffe ordered the Talmud to be burned
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throughout Italy. When this man was elected Pope Paul IV209 (1555), he
issued a decree which, for ferocious anti-Jewishness, was not equaled until
the coming of Hitler in modern Germany. During his terrible reign, Jews and
their books kept burning. When he died (18th Aug. 1559) Romans vented their
hatred by demolishing his statue, liberating the prisoners of the Inquisition
and scattering its papers.

209 Paul’s want of political wisdom and ignorance of human nature were fatal to the

Christian Church; he joined with France (1555) in order to drive the Spaniards

out of Italy. But the victory of Philip II at St. Quentin (1557) and the threaten-

ing advance of Alva upon Rome forced him to abandon his French alliance. He

denounced the peace of Augsburg as a pact of heresy; nor would he recognize

the abduction of Charles V and the election of Ferdinand. By insisting upon

the restitution of the confiscated church-lands, regarding England as a papal

fief, requiring Elizabeth (whose legitimacy he aspersed) to submit her claims to

him, he brought about the final break of England with the Church of Rome.
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Science Progress Report No. 5

The “Marranos” – Or how Portugal and
Spain sank back into the Middle Ages (1498–1615)

The banishment or forcible conversion of the Jews deprived Portugal of its
middle class and of its most scientific traders and financiers. Though the Jews
had always been compelled to reside in Ghettos, they had been protected by
the earlier Portuguese kings. Before 1223 their courts had received autonomy
in civil and criminal jurisdiction; their chief rabbi was appointed by the king
and entitled to use the royal arms on his seal.

Alphonso V even permitted his Jewish subjects to live outside the Ghetto,
relieved them from the obligation to wear a distinctive costume (enforced
1325), and nominated a Jew, Itzhak Abravanel (1437–1508) as his minister
of finance. In all cultural disciplines, the Portuguese Jews surpassed their
rulers. Many of them were well versed in Aristotelian and Arabic philoso-
phy, astronomy, mathematics, cartography, nautical science, and especially
in medicine. Three Jewish printing presses were established between 1487
and 1495; both John II, and Emanuel I, employed Jewish physicians. It
was a Jew – Avraham ben Shmuel Zacuto (1450–1515) – who supplied
Vasco da Gama with nautical instruments; and it was another Jew, Pedro
Nuñes (1492–1577) who invented the nonius, the Mercator projection and as
a peak figure in Portuguese science became the cartographer Royal in 1529.
Moreover, the Jews were employed in the overland journeys by which the Por-
tuguese court first endeavored to obtain information on Far Eastern affairs.

However, while protected by the kings and tolerated by the lower classes,
the other orders – the ecclesiastics and nobles resented their religious exclu-
siveness or envied their wealth, and gradually fostered the growth of popular
prejudice against them. In 1449 the Lisbon Ghettos were stormed and sacked,
and between 1450 and 1481 the Cortes four times petitioned the Crown to
enforce the anti-Jewish provisions of the canon law. John II gave asylum to
90, 000 Jewish refugees from Castile (1492), in return for heavy poll-tax and
on condition that they leave the country within 8 months, in ships furnished
by himself. These ships were not provided in time, and the Jews who were
thus unable to depart were enslaved, while their children were deported to
the island of St. Thomas and there perished.

In 1496 Emanuel I desired to wed Isabella210, daughter of Ferdinand and
Isabella, but found that he was first required to purify his kingdom of the

210 She died, anyway, one year after the wedding, leaving Emanuel with neither

wife nor Jews.
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Jews, who were accordingly commanded to leave Portugal before the end of
October 1497. But in order to avoid the economic dangers threatened by such
an exodus, every Jew and Jewess between the ages of 4 and 24 was seized
and forcibly baptized (March 19, 1497): “Christians” were not required to
emigrate.

In October 1497, 20, 000 adults were treated in the same way. These
“New Christians” or “Marranos”211 as they were called, were forbidden to
leave the country between 1497 and 1507. In April 1506, most of the Marranos
who resided in Lisbon were massacred during a riot. The rest were permitted
to emigrate – an opportunity of which the majority took advantage. Large
numbers settled in Holland where their scientific, commercial, and financial
skills greatly assisted the Dutch in their rivalry with the Portuguese.

After the main body of Jews had been banished from Spain and had
fled from Portugal, the Inquisition was turned against converted Moors and
eventually upon the Christians themselves.

The Reformation never reached Portugal, but even here the critical ten-
dencies which elsewhere preceded Reform, were already at work. Their origin
is to be sought not so much in the Revival of Learning as in the fact that the
Portuguese had learned, on their voyages of discovery, to see and think for
themselves. This interest in the physical world and the true scientific spirit
was seen by orthodox churchmen as a threat to religious doctrines previously
regarded as beyond criticism.

To check this “dangerous” trend, the Holly Office was established in Lis-
bon in 1536, where the first auto-da-fe was held in 1540. The worst vices of the
Inquisition were the widespread system of delation it encouraged by paying
informers out of the property of the condemned. Quite as serious, in their ef-
fects upon national life, were the severe censorship to which all printed matter
was liable before publication and the control of education by the Jesuits.

Portuguese education centered in the national University of Coimbra,
which had long shown itself ready to assimilate new ideas. By 1555 The
Jesuits had secured control over Coimbra – a control which lasted for two
centuries and extended to the whole educational system of the country. The
effects of this change upon the national character were serious and permanent.
Portugal sank back into the Middle Ages. The old initiative and self-reliance
of the nation, already shaken by the brain-drain of the Jews and years of dis-
aster, were now completely undermined, and the people submitted without
show of resistance to a theocracy disguised as absolute monarchy.

In Spain, the harassment of the Marranos became unbearable as time
went on. Those who possessed the means sought to escape from the country.

211 Meaning pigs in Spanish.
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Unfortunately, the great majority of Marranos had become desperately poor.
They saw little hope of cutting themselves loose from the fatal net of their
double loyalty: as Christians openly, and as Jews secretly. Many resigned
themselves to the hopelessness of their lot, and went over completely to the
Church.

But eventually the power of Spain started to crumble. First came the
successes of the Dutch in their struggle to gain independence from Spanish
rule, which was marked by the Union of Utrecht in 1579. This was followed
by the crushing defeat the Great Armada by the English navy (1588) – the
prison walls of Spain and Portugal finally fell down. In 1593 the Iberian Mar-
ranos began to move to the free Protestant Netherlands. Official permission
was granted to them to settle in Amsterdam in 1615. The Dutch never had
occasion to regret their settlement in their country; from their activities pros-
perity and energy flowed to Amsterdam. With their help the city became one
of the principal maritime centers of Europe. By and large, the Marranos were
enterprising merchants and traders. They were fluent in many tongues and
were thus ideally suited for carrying on international commerce.

Moreover, they had world-wide connections with the dispersed communi-
ties of Spanish and Portuguese Jews and Marranos, especially in the coun-
tries of North Africa, in Arab lands, Turkey, Greece, Persia and India. They
also established important shipping branches in such strategic trade ports as
Livorno, Genoa, Venice and Naples.

Finding a ready and unrestricted field for their energies, the ex-Marranos
of Amsterdam founded new factories and industries. They also did an effective
banking business; at one time they controlled more than a quarter of the
stock of the East India Company which played such a decisive role in the
history of New York. The prosperity and the relative freedom they enjoyed in
Amsterdam drew more and more Marranos from Spain and Portugal to the
city.

The exceptional vitality and capability of the freedom-seeking Marranos
exemplified itself in the story of The House of Nasi, The Duke of Naxos.
Operating from Muhammedan Turkey, the family played an important role in
European politics during 1553–1569. The main characters in the drama was
Donna Gracia (Hanna) Mendez-Nasi (ca 1510–1569) and her nephew
Yosef Nasi (ca 1524–1579).

The compulsory baptism in Portugal (1497) left the Mendez family [Fran-
cisco and Diego Mendez and their wives Beatrics and Reyna] residing in Lis-
bon. They were bankers with wide connections, with branch offices in Holland
and debts due them from the kings of France. After the death of Francisco
(1536) and Diego (1543) the clever and gracious Donna Beatrics took over,
with the Inquisition always at her heels, she managed to move her business
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through Antwerp and Venice to Turkey (1553), where, under the protection
of the powerful sultans Suleimen and Selim, her business flourished to such a
degree that she had her own private navy.

In Turkey she openly returned to Judaism and resumed her original name
of Donna Gracia Nasi. Her nephew, Joã Migues followed her there, married
her daughter and adopted his Jewish name, Yosef Nasi. He rose high in the
favor of the Sultan, who created him duke of Naxos. Yosef exerted great influ-
ence on the foreign affairs of the Turkish empire at its height and for a while
was among the most powerful statesmen in Europe; he had conquered Cyprus
for the Sultans and negotiated with the Emperor of Germany, Maximillian
II, William of Orange and Sigismund August II, King of Poland. His career
was one of the tokens of the new era that was to dawn for the Jews as trusted
public officials and as members of the state.

Everywhere they went, the Marranos brought with them to Amsterdam
their superior culture. Even under the oppression of the Holy Office they
had functioned in Spain and Portugal as doctors, lawyers, scholars, writers,
university professors, army officers, and even as statesmen, diplomats and
landed hidalgos. In New Jerusalem (as Amsterdam was called by the Jews)
they picked up the threads of their past callings and many achieved great
distinction in them. They helped advance both Jewish and Dutch cultures in
all branches.

Fore and foremost in eminence is the philosopher Baruch Spinoza (1632–
1677) whose grandfather came from Portugal in 1579. Among the physicians,
Avraham Zacuto II (1575–1641) [known as Zacutus Lusitanus] was the
foremost Jewish doctor in Holland in the days of Rembrandt and a pioneer
in medical history. He came to Amsterdam from Lisbon (1625), where his
great grandfather was a famous astronomer. Zacuto II published important
books in which he foreshadowed later medical discoveries. In France, Eliyahu
Montalto (1550–1616) was a member of the large group of Marranos who
distinguished themselves in medicine.

Itzhak Cardoso (1610–1685), studied medicine at Salamanca and settled
(1632) in Vallabolid. Became chief physician to the Court in Madrid, but was
forced to flee the Inquisition and settled in Verona, Italy. There he reverted
to Judaism, taking the name Itzhak. Published a number of books on medi-
cine, the natural sciences and philosophy. His brother Michael Avraham
Cardoso (1627–1706), also a physician, became one of the ardent followers
of Shabetai Zvi.

Immanuel Rosales (1593–1668) was a mathematician, astronomer and
a famous physician. His family originated from the town Castallvi de Rosanes
near Barcelona. Upon the expulsion of the Jews from Spain (1492), the family
fled to Lisbon, where they became Marranos. Rosales studied mathematics
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and medicine at Montpelier and became a famous physician. Fleeing from
the Inquisition he reached Rome (1625) and then practiced medicine in Ams-
terdam, where he reverted openly to Judaism. The Rosales (Rosanes) family
spread from Spain to North Africa, Europe and the Near East.

Ludovico Mercato (1525–1611) from Vallaboild, Spain, became physi-
cian to Kings Phillip II and Phillip III.

The Marrano family de Castro issued a number of famous physicians
who escaped the jaws of the Inquisition; Roderigo (1546–1627) was one of
the foremost physicians to establish gynecology in the Renaissance period
and a prolific medical writer. He received his education in Pisa and became
a professor of medicine. Died in Hamburg212; Itzhak (1620–1687) was also a
prolific medical writer. Died in Amsterdam.

The physician Garcia da Orta (1500–1560) fled Portugal as far as Goa
and during 1534–1563, prepared singlehandedly a unique encyclopedia of med-
ical plants. But the long hand of the Inquisition reached sentenced and burned
his “heretic” body, twenty years after his death.

The Portuguese Marrano family Teixeira (also known by the name Teix-
eira de Mattos or Teixeira de Sampayo) became noted in Western Europe and
Brazil during the past four centuries for their philanthropy as well as their
financial, diplomatic and scientific achievements:

Benito Teixeira (ca 1545–1600) was an author and martyr. He lived in
Brazil for 30 years and described his travels in books. The Inquisition arrested
him in Bahia, sent him to Lisbon where he was burned at the Stake.

Pedro Teixeira (1570–1650) became one of the greatest explorers of the
17th century, and reverted to Judaism in Antwerp.

Diego Teixeira Sampayo (Avraham Senior Teixeira, 1581–1666) be-
came the diplomatic representative of Queen Christina (of Sweden) in Ham-
burg. He left Portugal (1643) and openly acknowledged Judaism (1647).

His son Manuel Teixeira (Itzhak Hayyim Senior Teixeira, 1625–1705)
continued the diplomatic and financial career of his father and became the
leader of the Spanish–Portuguese community in Amsterdam. In the 18th cen-
tury we find members of his family as educators, writers, statesmen and scien-
tists in Brazil, Italy, Holland, England, Austria and Germany. Among them:
Gomes Teixeira (1860–1941) was the president of Portugal (1923–1925); the
poet and writer Teixeira de Pascoais213 (1877–1952); the mathematician
F.G. Teixeira who extended Bürmann’s theorem (1900); Anisio Spinola

212 His son Benedict (1597–1684), also a physician at Hamburg, became the per-

sonal physician of Queen Christina of Sweden.
213 Pseud. of Joaquim Pereira de Vasconcelos



1553 CE 815

Teixeira, a Brazilian educator; Mario Teixeira de Carvalho (b. 1906), a
Brazilian physician and writer.

Among the Marranos lost to Judaism were the Spanish writer Fernando
de Rojas (1465–1541, Spain), the French philosopher Michel de Mon-
taigne214 (1533–1592) and Mario Soares, former prime minister of Portu-
gal.

1553–1572 CE Moshe Isserles (“REMA”215, ca 1525–1572, Poland).
Jewish scholar, Talmudist, codifier and philosopher. One of the great halakhic
authorities and one of the founders of rabbinic learning in Poland and Ger-
many. He was recognized as the authority not only in rabbinic law but also in
philosophy, Kabbalah, astronomy and the secular sciences. Wrote ten books
on halakhic, philosophical, exegetical and scientific subjects216. These works
contain Biblical exegesis and commentaries, codification of religious laws, re-
sponsa and philosophical matters. In his philosophical system he followed
Maimonides to which he can be compared in his universal outlook, manner of
study, character and his attachment to both Talmudic and secular knowledge.
His philosophy of Judaism is expounded in his book Torat ha-Olah (Prague,
1570).

Isserles was born in Cracow, Poland, a son of a wealthy and influential
Talmudic scholar. He studied in Lublin and in 1553 built a synagogue in
Cracow (called ‘the synagogue of the Rema’), which still exists today. He died
in Cracow and was buried next to his synagogue. Until WW II, thousands of
Jews from all over Poland made a pilgrimage to his grave every year on the
anniversary of his death.

1555 CE The Age of the Jewish Ghetto began officially when compulsory
segregation was imposed by Pope Paul IV. By the end of the 16th century
the ghetto had become an accepted institution in Italy, from Rome to the
Alps. All ghettos were locked at night. Jews who went outside the ghetto
were required to wear a distinguished badge on their garments. They could
not enter a profession except (with severe restrictions) that of medicine. To

214 His mother Antoinette de Louppes (Lopez) was of Spanish Marrano origin.
215 Acronym of Rabbi Moshe Isserles. His full name Israel–Eliezer was shortened

to Isserles
216 E.g. he wrote a commentary on the Theorica of George Peurbach.
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travel out of town they required special permits. Almost everywhere they
were compelled to attend conversionist sermons. The police gave adequate
protection to the ghetto from concerted attacks, but only reluctantly in cases
of individual molestation. There were about 30,000 Jews living in Italy in the
17th and 18th centuries.

When the French armies entered Italy (1796–1798), the new revolutionary
spirit momentarily triumphed: the walls of the ghetto were demolished and
the Jews received equal rights. However, in 1815, the restoration resulted in
a complete and almost general renewal of the old conditions.

1556 CE, Jan. 23 An earthquake in Shansi Province, China caused the
death of ca 830,000 persons. No higher death toll from a natural disaster
has ever been recorded (ca 700,000 people perished on July 27, 1976 during a
major earthquake in the Hopeh Province, China).

1557 CE Robert Recorde (ca 1510–1558, England). Welsh physician
and mathematician. Lived at a time of social change, economic expansion and
religious strife in England. An active participant in the turbulent life of his
times, Recorde rose to a position of great trust and responsibility, becoming
a physician to Edward VI and Queen Mary. A courageous man with the rare
gift of loyalty and compassion, the span of his life was not without its tragedy.

He entered the University of Oxford in 1525. He went later to Cambridge
to study medicine and received his M.D. there in 1545. Recorde introduced
the equality sign (=) into algebra and systematized its notation. He justified
his adoption of a pair of equal parallel line segments for the symbol of equality,
as follows: “bicause noe 2 thynges can be moare equalle”.

Recorde virtually established the English school of mathematics and was
first to introduce algebra in England.

Recorde died in King’s Bench prison, South Wark, where he was confined
for debt.

1558 CE Luigi Cornaro (1475–1566, Italy). Dietician. Established the-
ories on the relationship between food and health. A member of the powerful
Cornaro family of Venice, he spent the first 40 years of his life indulging his
passion for food and drink. After a period of serious ill health, he was threat-
ened by his physician with death if he continued to indulge himself. He then
resolved to restrict his diet drastically, eventually reducing it to a single egg
a day. His Discorsi sulla vita sobria (1558) includes some of the first system-
atic accounts of diet. It enjoyed great popularity and was widely translated,
largely because Cornaro himself lived to the age of 91.

1558–1565 CE Federigo Commandino (1509–1575, Italy). Mathemati-
cian. Rendered a new translation (1558) of the works of Archimedes into
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Latin, thus stimulating subsequent interest in integration techniques. In his
work De centro gravitatis solidorum (1565) he established a theorem (may
have been known to the ancient Greeks), bearing his name and stating that:
The four medians of a tetrahedron (lines joining vertices to centroid of oppo-
site faces) are concurrent in a point that quadrisects each median. In this book
he also applied integration techniques of Archimedes to the determination of
centers of gravity .

1559 CE Matteo Realdo Colombo (1516–1559, Italy). Anatomist.
Demonstrated pulmonary circulation, the process of blood circulating from
the heart to the lungs and back. This showed that Galen’s teachings were
wrong217, and was of help to William Harvey (1628).

Colombo was born at Cremona. He was a pupil of Andreas Vesalius and
became his successor at the University of Padua. Colombo is also remembered
for his ‘discovery’ of the clitoris.

1560 CE Smallpox epidemic sweeped Brazil; millions died.

1560–1667 CE ‘Accademia Secretorum Naturae’ (Academy of the Se-
crets of Nature) established in Naples. It was the oldest scientific society in
modern times. This organization was dissolved after several years following
charges of witchcraft practice. Another society, in Rome, ‘Accademia dei
Lincei’, was established in 1601 and included Galileo. It was closed in 1630
due to pressure from the Church. A third society was established in Florence
in 1650, named ‘Accademia dei Cimento’ (Academy of the Experiments)
and included Torricelli. It dispersed in 1667 when its patron, Leopold Medici
was appointed cardinal. Its last member fell into the hands of the Inquisition
and committed suicide.

1560–1572 CE Rafael Bombelli (1526–1572, Italy). Mathematician,
engineer and architect. Inventor of complex numbers. In a work entitled
‘L’Algebra’, he extended Cardano’s work and initiated the actual algebra
of complex numbers. Improved algebraic notation, including the earliest ap-
proach to index notation. The first person to write down the rules for addition

217 His De re anatomica (1559) claims that blood circulates from the right chamber

of the heart to the lungs and then to the left chamber. Galen thought that the

blood passes directly between the two chambers.

Michael Servetus’ anonymously published book on theology contains (1553)

his view (to be demonstrated by Colombo in 1559), that blood circulates from

the heart to the lungs and back. When his authorship was discovered, his

unorthodox theological views resulted in Servetus being burned at the Stake

(1553) in Geneva by John Calvin.
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and multiplication of complex numbers. He showed that using his methods,
correct real solutions could be obtained from the Cardan–Tartaglia formula for
the solution of the cubic equation even when the formula gave an expression
involving the square roots of negative numbers.

Presented the first explicit use of imaginary numbers in solving the cubic
equation x3 = 15x+4. Employed continued fractions to approximate square
roots. In our modern symbolism he showed that

√
a2 + b = a + b

2a+
b

2a+ · · · .
A similar result appeared in 1613 in a treatise published by Pietro Antonio
Cataldi (1548–1626, Italy).

Rafael Bombelli was born in January 1526 in Bologna, Italy, the eldest son
of Antonio Mazzioli, a wool merchant, and Diamante Scudieri, the daughter of
a tailor. Sometime early in the sixteenth century, the Mazzioli family changed
its surname to Bombelli, perhaps due to political difficulties surrounding the
family’s support of a failed coup. The young Rafael always went by the
Bombelli name.

Little is known about Bombelli’s early life. He was a student of the
engineer-architect, Pier Francesco Clementi of Corinaldo, and it was thus
under Clementi that Rafael learned this trade. Throughout most of his work-
ing life, Bombelli worked in the employ of Monsignor Alessandro Ruffini, a
Roman nobleman and later bishop of Melfi. Most notably, Bombelli helped
engineer the reclamation of the marshes of the Val di Chiana which began, un-
der Ruffini’s patronage, some time prior to 1549. This project was suspended
for some years between 1555 and 1560, and it was during part of this hiatus
(1557–1560) that Bombelli did much of the algebraic work that ultimately
became his book, Algebra, part of which was published in 1572.

Bombelli traveled repeatedly to Rome, working as a consultant to Pope
Pius IV on the proposed reclamation of the Pontine marshes. It was during
one of Bombelli’s Roman sojourns in the 1560s that he met and began working
with Antonio Maria Pazzi on the newly found manuscript of Diophantus’
Arithmetica.

Bombelli died in 1572. At the time of his death, only the algebraic books,
Books I–III, of the Algebra had been published. The geometrical part, Books
IV–V, were discovered in manuscript form in 1923 and were published for the
first time only in 1929.
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Evolution of Algebraic Notation

Some of the symbols encountered by a student of mathematics, such as
>, <, =, +, −, ×, :, { }, [ ], ( ), ::, !, √

, 3
√

, ∞, Σ, π, e, i, ax, an, log,

sin, cos, tan, an, a, b, c, d, e, . . . , m, n, . . . , x, y, z, f(x), Γ(x), are little more
than 400 years old. Yet we know that already the ancient mathematicians
of Babylonia, India and Greece, communicated via comprehensible algebraic
statements. How did they do it?

We can discern three stages in the historical evolution of algebraic sym-
bolism:

(1) Rhetorical algebra. Prior to Diophantos of Alexandria (ca 250 CE), solu-
tions to problems were written, without any abbreviations or symbolism,
as pure prose statements .

(2) Syncopated algebra. A method by which stenographic abbreviations were
adopted for some of the frequently recurring entities, relations and oper-
ations.
One of Diophantos’ significant contributions to algebraic development
was his syncopation of Greek algebra. In the rest of the world (with
the exception of India) rhetorical algebra persisted for many hundreds
of years. Specifically, in Western Europe algebra remained essentially
rhetorical until the 15th century.

(3) Symbolic algebra. Solutions to problems appear largely in a mathematical
shorthand made up of symbols having little apparent connections with
entities and ideas they represent. Symbolic algebra made its first appear-
ance in Western Europe in the 16th century, but developed so slowly that
it did not become widespread until about 1650.

In his book Arithmetica [arithmos = number, techne = science], Dio-
phantos used the following method of syncopation: Greek letters were given
numerical values:

α(1), β(2), . . . , ι(10), κ(20), . . . , ρ(100), σ(200), . . . , ω(800)

[thus 13 = ιγ, 31 = λα, 742 = ψμβ]. Unknowns were denoted by a
final sigma (ς), unknown square by ΔΥ [first two letters of the Greek word
dunamis (ΔΥNAMIΣ)], unknown cube by KΥ [first two letters of the word
kubos (KΥBOΣ), 4th power by ΔΥΔ, 5th power by ΔKΥ and 6th power by
KΥK. The symol ∧ stood for the minus sign. Thus
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x3 − 8x2 + 2x − 3

would appear as

KΥαςβ ∧ ΔΥε
◦

Mγ

and read literally as (unknown cubed 1, unknown 2) minus (unknown squared

8, units 3). Here,
◦

M is an abbreviation of the Greek word monades
(MONAΔEΣ) for ‘units’.

The Hindus had their own syncopation. Addition was indicated by jux-
taposition, subtraction by placing a dot over the subtrahend, multiplication
by writing bha (the first syllable of the word bhavita, “the product”), division
by writing the divisor beneath the dividend, square root by writing ka (from
the work karana, “irrational”) before the quantity. Brahmagupta (628) in-
dicated the unknown by ya, known integers by ru and a second unknown
by ka. In this notation

5xy +
√

13 − 4

appears as

ya ka 5 bha ka 13 ru
·
4.

The symbolic stage may have began in 1486, when Johannes Widman
introduced the + and − signs. It was followed with the radical sign (√ ) in

1525 by Christoff Rudolff and the equality sign (=) of Robert Recorde
in 1557. Rafael Bombelli (1572) denoted square root by Rq and cubic root

by Rc. The compound expression
√

7 +
√

14 would have been written by

him as R[7pR14], whereas the expression 3
√

4 +
√

−11 + 3
√

4 −
√

−11 would
be cast as Rc[4p dim Rq 11]p Rc[4m dim Rq 11].

The following table demonstrates the notation of Bombelli:

Modern notation Bombelli printed Bombelli wrote

5x
1

5̆
1

5̆

5x2
2

5̆
2

5̆√
4 +

√
6 Rq�4pRq6� R|4pR6|

3
√

2 +
√

0 − 121 Rc�2pRq�0m121�� R3|2pR|0m121| |

Although authors such as Pacioli had made limited use of notation, others
such as Cardano had used no symbols at all. Bombelli, however, used quite
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sophisticated notation. It is worth remarking that the printed version of
his book uses a slightly different notation from his manuscript, and this is
not really surprising for there were problems associated with the printing of
mathematical notation which to some extent limited the type of notation
which could be used in print.

Francois Viète (1579), the greatest French mathematician of the 16th

century, did much for the development of algebraic symbolism. He used vowels
to represent unknown quantities and consonants to represent known ones, but
had no symbol for equality. He would have written

5BA2 − 2CA + A3 = 0

as:

B5 in A quad − C plano 2 in A + A cub aequatur D solido.

In 1586, Simon Stevin introduced a notation of encircled numerals to
denote mere exponents, e.g.

9 ©4 −14 ©3 +6 ©1 −5

meant
9x4 − 14x3 + 6x − 5.

Through this notation he did not avoid fractional exponents, and was igno-
rant only of negative exponents.

René Descartes (1637) introduced our present custom of using the latter
letters of the alphabet for unknowns and the early letters for knowns. He also
introduced the present system of indices x, x2, x3, etc. Thomas Harriot
(1588) gave us our present inequality signs > and < and William Oughtred
(1631) left us the cross (×) for multiplication, and the four dots (::) used
in a proportion. John Wallis (1655) introduced negative and fractional
exponents and the symbol ∞ for infinity. William Jones was first to use π
for the ratio (perimeter/diameter) of a circle, in 1706.

We owe to Euler the symbols f(x) for functional dependence, Σ for the
summation sign, ι =

√
−1, e and the adoption of π in 1737. The factorial

symbol n! was introduced in 1808 by Christian Kramp of Strasbourg.

Table 2.9 exhibits milestones in the history of symbolic algebra. Once
introduced, the symbols did not become popular overnight. On the contrary,
often fifty years or more elapsed before anything resembling a unanimous
adoption of the symbol was achieved.218

218 Additional material on this subject can be found in:
• Cajori, F., A History of Mathematical Notation, Dover publications, Inc: New

York, 1993, volume I (451 pp.) and volume II (365 pp.).
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Table 2.9: Milestones in the History of Symbolic Algebra

Symbol Meaning or Name Date

In-

tro-

duced

Inventor

+ Plus 1486 Johannes Wideman
− Minus 1486 Johannes Wideman

√ Square root 1525 Christoff Rudolff
() Parentheses 1556 Nicolo Fontana

(Tartaglia)
= Equals 1557 Robert Recorde
. Decimal point 1617 John Napier

a > b a greater than b 1631 Thomas Harriot
a < b a less than b 1631 Thomas Harriot

× Multiplication 1631 William Oughtred
· Multiplication 1631p Thomas Harriot

AB Multiplication by juxtapo-
sition

1637 René Descartes

x, y, z Letters near the end of
the alphabet for unknown
quantities

1637 René Descartes

a, b, c Letters near the beginning
of the alphabet for known
quantities

1637 René Descartes

a1, a2, a3 . . . positive integer powers 1637 René Descartes
a−1, a

1
2 , . . . negative integer or a frac-

tional powers
1656 John Wallis

∞ Infinity 1656 John Wallis
÷ Division 1659 John Rahn
an n any real number 1676 Isaac Newton
π The ratio of circumference

to diameter in a circle
1706 William Jones

a�b a less than or equal to b 1734 Pierre Bouguer
a�b a greater than or equal to

b
1734 Pierre Bouguer

�= Not equal 1740 Leonhard Euler
p = posthumously
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1565 CE Bernardino Telesio (1509–1588, Italy). Natural philosopher.
Proposed the first system of physics to rival that of Aristotle. In it he sowed
the seeds from which sprang the scientific methods of Bacon and Descartes,
with their rich and manifold results. He therefore abandoned the purely
intellectual sphere and proposed an inquiry into the data gathered by the
senses, from which he held that all true knowledge really comes.

Telesio was born of noble parentage near Naples and was educated at
Milan by his uncle, himself a scholar of eminence. His studies included a
wide range of subjects: classics, science and philosophy, which constituted
the curriculum of the Renaissance savants. He lectured at Naples and finally
founded the Academy of Cosenza. His ideas were expounded in his work De
Rerum Natura. The heterodox views which he maintained aroused the anger
of the Church, and a short time after his death his books were placed on the
Index.

1566 CE Aldus Manutius (Manuzio) the Younger (1547–1597,
Venice). Publisher and erudite; defined the full stop sign as a dot at the end
of the sentence, in his punctuation handbook “Interpungendi ratio”. Here
he described, for the first time, its ultimate role and aspect. He thought he
was offering a manual for typographers; he could not have known that he was
granting all future writers and readers, the gifts of sense and music in all the
literature to come.

The need to indicate the end of a written phrase is probably as old as
writing itself, but the solution, brief and wonderful, was not set down until
the Italian Renaissance.

“No iron”, Isaac Babel wrote, “can stab the heart with such force as a
full stop put just at the right place”.

Aldus was a member of an Italian family , famous in the history of printing
as organizers of the Aldine Press. He became head of the Aldine press (1574).
Appointed professor of literature to the Cancellaria at Venice; Occupied the
chair of eloquence at the University of Bologna (1585).

1568 CE Gerhardus Mercator (Gerhard Kremer, Gerard de Cre-
mere, 1512–1594, Netherlands). Cartographer. Published a projection for
world maps (‘Mercator Projection’)219 suited for navigation, with a grid of

219 Pedro Nuñez employed the same projection already in 1533 and described

it in his treatise De arte atque ratione navigandi (1546). He also discovered the

loxodromic curves before Mercator, in 1533.

Mercator’s projection – in which a spherical surface (representing the earth) is
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straight parallel lines representing longitudes and latitudes. It was one of the
first attempts to base cartography upon solid mathematical principles. His
chart facilitated both dead reckoning and the problem of rhumb-line sailing.

Mercator was born at Rupelmonde, in Flanders (now Belgium). He studied
at Louvain and independently under the mathematician Gemma Frisius
from whom he derived much of his inclination to cartography and scientific
geography. He started to produce maps in 1537. In 1538 appeared Mercator’s
map of the world in hemispheres (north and south). In 1541 he issued the
celebrated terrestrial globe. In 1551 a celestial globe followed.

Mercator was inclined toward Protestantism; in 1533 he had retired for
a time from Louvain to Antwerp, partly to avoid inquiry into his religious
beliefs; in 1544 he was arrested and prosecuted for heresy, but escaped serious
consequences (two of the 42 arrested with him were burnt, one beheaded, two
buried alive). Consequently, he was released and emigrated to Germany to
become cosmographer to the Duke of Cleve (1564). He spent the rest of his life
issuing regional maps of Europe, using his own projection. He did excellent
service in helping to free the 16th century geography from the tyranny of
Ptolemy.

projected from the sphere’s center onto the circumscribing cylinder tangent to

it at the equator – is a particular case of the conical orthomorphic group. The

introduction of this type of projection is due to the fact that for navigation it

is very desirable to possess charts which yield correct local outlines (orthomor-

phic) and at the same time represent by a straight line any line which cuts the

meridians at a constant angle (conformal). The latter condition clearly necessi-

tates parallel meridians, and the former – a continuous increase of scale as the

equator is departed from, i.e., the scale at any point must be equal to the scale

at the equator times a function of the latitude angle θ – which turns out to be

sec θ for the Mercator projection.

In early days the calculations were made by assuming that for a small increase

of latitude, say 1′, the scale was constant, then summing up the small lengths

so obtained. Nowadays (assuming for simplicity that the earth is spherical) we

say that an infinitesimal length of a meridian is represented in this projection

as a secθdθ, and the length of the meridian in the projection between the equa-

tor and latitude θ is
∫ θ

0
a secθdθ = a loge tan

(
θ
2

+ π
4

)
. The projection mapping

is therefore: x = ϕ; y = loge tan
(

θ
2

+ π
4

)
. This is a conformal representation

of the sphere on the plane, in which ϕ = 0, θ = 0 corresponds to x = 0,

y = 0; the equator θ = 0 is mapped onto the x-axis and equally spaced par-

allels θ = constant correspond to lines parallel to the x-axis at ever increasing

distance when θ increases, until North and South poles are mapped at infinity.

Mercator’s projection, although indispensable at sea, is of little value for land

maps.
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The early Greeks had mostly imagined the earth to be a flat disc, sur-
rounded by an ocean and vaulted by the heavens. However, Pythagoras (ca
540 BCE) had taught that the earth was spherical in shape and Aristotle (ca
354 BCE) and Archimedes (ca 250 BCE) tried to prove this fact. Eratos-
thenes (ca 200 BCE) derived a fairly accurate value for the circumference of
our planet. The spherical shape of the earth was certainly common knowledge
to the educated in ancient Greece; yet, in late Roman times, this geographical
knowledge was rarely remembered. Most of the Church Fathers inferred from
the Bible that the earth must be a flat disc. Accordingly it was described as a
wheel having Jerusalem as its center. During the Renaissance, the old Greek
writings were rediscovered, and science revived. In 1492, when Columbus dis-
covered America, Martin Behaim ( 1459–1507, Germany) constructed the
first globe since antiquity. With the increase of trade and navigation, the
preparation of accurate maps became a major scientific, technological and
commercial task.

Portuguese cartographers and theoretical writers on navigation seem to
have been the first to recognize the errors of plane charts, which ignored the
earth’s curvature and the convergence of meridians. From about 1520, grad-
uation in longitude began to appear, usually along the equator. Latitude
graduation has been introduced somewhat earlier than this (1500). The earli-
est surviving printed sea-chart intended for use on board a ship was the map
of the eastern Mediterranean, published in Venice in 1539.

1569–1572 CE Itzhak Luria Ashkenazi (ha-Ari, 1534–1572, Israel).
Philosopher and Kabbalist. Gave rise to a new and influential form of Jewish
mysticism.

Luria, a man of German Jewish ancestry, was born in Jerusalem and raised
and educated in Egypt. He settled in Safed, Israel, and lived the life of an
ascetic. Although he wrote nothing down and merely taught, the Kabbalistic
teachings by Luria’s disciples and apostles made a tremendous impact not only
on Jewish life throughout the communities in Europe but also on Christian
thought.
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Lurianic Cosmology (1572) and modern physics (1979)

Western philosophy and science, which had died with the Greco-Roman
Hellenistic culture in the first several centuries CE, was reborn in the 16th and
17th centuries. A 1400 year philosophical and scientific dark age lies between
Epictetos and Marcus Aurelius on the one hand and Bacon, Descartes, Leib-
nitz, Copernicus, Kepler, Galileo, and Newton on the other. Something must
have sparked this rebirth, but what? Did perhaps the Kabbalistic220 meta-
physical speculations of such Jewish and Christian scholars as Avraham Ibn
Latif (1220–1290), Raymond Lully (1235–1316), Pico della Mirandola
(1470–1533), Johannes Reuchlin (1455–1522), and the contributions of such
Jewish scientists as Avraham bar Hiyya (1065–1136), Levi ben Gershon
(1288–1344) and Immanuel Bonfils (fl. 1340–1377) have something to do
with laying the intellectual foundations for the 17th century rebirth of philos-
ophy and the establishment of scientific methodology in Western Europe?

Indeed, the burst of Christian scientific and philosophical activity did not
take place in the centuries between 1100 and 1500, nor did it take place in
Eastern Europe221. It took place in the 17th century, in Western Europe, in
the area where Jewish Kabbalists and scientists had flourished for 400 years.
There is no reason to doubt that Copernicus, Kepler, Galileo, Newton, Bacon,
Descartes, Locke, Leibnitz and others were familiar both with Kabbalistic
thought and the scientific writings of the Jews. In the 17th century all these
writings were available in Latin and widely distributed in the libraries and
universities of Europe.

One outstanding fact about the Scientific Revolution is that its initial (and
in a sense most important) stages were carried through before the invention of
the new measuring instruments – the telescope, microscope, thermometer and
accurate clock which were later to become indispensable for setting scientific
answers to the questions at the forefront of science. In its initial stages, in
fact, the Scientific Revolution came about rather by a systematic change in
the intellectual outlook, in the type of questions asked, than by an increase in
technical equipment. Such a revolution in methods of thoughts was stimulated
and inspired by the preexisting ideas prevailing in Jewish occult philosophy.

220 The word Kabbalah comes from the Hebrew verb Kabeil , meaning ‘to receive’

- hence ‘tradition’ or ‘revelation’. It was the name given to Jewish mystic

philosophy.
221 In Eastern Europe, Kabbalah was put in the service of alleviating the misery

of the Jewish people; with its doctrine of the imminence of the Messiah, the

Kabbalah held out hope for the Jews.
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Throughout the centuries, this mystical undercurrent was present along-
side the Torah and the Talmud. It fed on noncanonized prophecy, Zoroastrian
resurrection mythology, Greek science, numerology, gnostic heresies. This was
the material Jewish scholars worked on for centuries, distilling it, shaping it,
blowing life into it.

Not until the 8th century CE, did the first of these undercurrents of mysti-
cism break through the surface with the publication of the Book of Formation,
compiled in southern Italy. In the thirteenth century, the second undercurrent
emerged into medieval Jewish civilization with the appearance of the Zohar
(“Glow” in Hebrew), written and compiled in Spain. The Book of Formation
is concerned mainly with the ecstatic experience of God. The Zohar can best
be described as an encyclopedia of occultism and metaphysical speculations on
God, universe, and science. These two books combined, constitute the Kab-
balah, a body of mystic and occult thought, a distinctly Jewish metaphysical
philosophy.

With the appearance of the Zohar, Kabbalism did not continue for long
to course through Jewish life as a unified current, but branched out into
two streams. One stream sought out the rational and the scientific and be-
came metaphysical in its orientation. This current led to Spinoza and the
rationalist school of Western philosophers and scientists, finding adherents
among both Jewish and Christian scholars. The other stream had its source
in Germany and coursed for centuries through Eastern Europe. It began with
mysticism and degenerated into superstition as its central theme.

Both the Zohar and the Book of Formation were translated into Latin and
other Western tongues, and the writings of Jewish and Christian scholars,
humanists, and scientists, based on or inspired by the Kabbalah, were widely
disseminated throughout the universities. This body of Kabbalistic work may
even have had a large share in the sudden efflorescence of science in the
seventeenth century. This was the century when Kabbalism reached the height
of its influence and also saw the beginnings of its demise, perhaps because it
was no longer needed after science was reborn.

Because logic alone could not explain their doctrine of the “exalted ex-
perience of God”, the Kabbalists introduced symbolic thinking and symbolic
language into their speculations. They abandoned the ordinary meanings of
words, gave numerical values to letters, and attributed mystical properties to
both letters and numbers. This symbolic language consisted of the first ten
numbers and all the letters in the Hebrew alphabet, and together they formed
the Kabbalistic thirty-two avenues to wisdom. With this abstract shorthand
the Kabbalists developed a fantastic metaphysical world where one element
was transformed into another, where numbers stood for properties possessed
by objects, and the world revolved around its own axis. These Kabbalists also
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had an ear for language and a flair for style. They wrote great poetry which
survived in Hebrew liturgy and literature.

A scholar who coupled Kabbalism and science was the Spanish Jew Avra-
ham ibn Latif (1220–1290). He wove Kabbalism, Aristotelianism, mathe-
matics, and natural science into a unified system. His works were translated
into Latin and caught the attention of Raymond Lully, a Christian scholar,
and the outstanding scientist of thirteenth-century Spain. Lully, searching
for a way to break through the stranglehold which Scholasticism had upon
science, used the Kabbalah and the works of ibn Latif as the basis for his
book on logic, Ars Magna, which was widely used in the medieval European
universities. The Muhammedans stoned him to death for preaching the gospel
in North Africa.

It was in the fifteenth and sixteenth centuries, however, that Kabbalism
received its greatest dispersal in the Christian world. In the late fifteenth
century, for instance, Pico della Mirandola, a Renaissance humanist and
philosopher, translated the Zohar into Latin. But the Christian scholar who
did the most to popularize Kabbalism was, of course, Johannes Reuch-
lin, who, early in the sixteenth century, freely asserted that his theological
philosophy was based on the Kabbalah.

A new metaphysical philosophy was injected into Kabbalism in the six-
teenth century by one of the greatest Kabbalistic scholars, Itzhak Luria.

A strange parallel exist between his Kabbalistic cosmology and the recent
reformulation of the ‘big bang’ theory via so-called ‘inflationary models’ of
cosmic creation and expansion.

Luria stated that all cosmic energy passed through a cosmic drama of
three stages:

Stage 1 ‘Tzimtzum’ (= ‘contraction’). God ushered in all the world’s dis-
sident elements into a tiny region, while at the same time withdrew
Himself from that which he has created.

Stage 2 ‘Shevirat ha-Keilim’ (= ‘breaking of the vessels’). Everything that
has been brought together in the first stage was expanded and shattered.

Stage 3 ‘Tikkun’ (= ‘restoration’). All that had been shattered is unified
into a new final totality.

In this process, the Ein-Sof (= infinity) contracted unto itself, forming a
‘tehiru’ (= false vacuum), while the Ein-Sof then expanded outwards, and out
of it matter and light were later to emerge. Luria’s cosmos is not a static one,
but the world for him emanated out of a dynamic interplay of archetypical
forces, unlike the cold rigidity of earlier Greek models of the universe.
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According to the Lurianic cosmology, the cosmos was created ex-nihilo
(out of nothing) which parallels a central idea of modern cosmology — that
the universe emerged out of the vacuum state.

Present day cosmologists picture the universe beginning around 14 billion
years ago in the “Big Bang”. The energy densities involved in this explosion
of space-time, matter and energy out of nothing were enormous. However,
in the past several decades particle accelerators have allowed scientists to
explore some of these energy densities in their laboratories (corresponding to
the state of the universe on trillionth of a second after the Big Bang), and the
theories that have emerged about the Big Bang are to some extent supported
by experimental evidence and not merely upon speculation.

As the universe emerged out of the initial singularity, the causally con-
nected space it occupied rapidly expanded until it engulfed the vast expanses
explored by astronomers. During epochs close to the Big Bang, all the en-
ergy and matter of the universe must therefore have been packed into a much
smaller space, and therefore the universe had a much larger energy density,
pressure and temperature. The earlier we go back in time, closer to the event
of creation – to 1 second after the Big Bang, to 10−3 sec, to 10−9 sec, and so
on – the smaller a volume of space the currently-observable universe occupies.

The simplest of Big Bang models thus assume that at the instant of cre-
ation the universe had infinite density and temperature. The idea was that
the universe emerged out of a naked space-time singularity, a kind of a knot
or foam of space-time, like a black hole in reverse. This model of an explo-
sive expansion from a point of nothingness (which had infinite density), raised
more questions than it answered. In particular it is still far from clear why the
various physical constants and relationships between different particles have
the values and patterns they do; for example, the ratio of particles of matter
to photons of light, or the relative strength of the four fundamental forces of
nature – gravity, electromagnetism, weak interactions, and the strong nuclear
force. If the value of some of these constants had been different by a minuscule
amount, the universe would have taken a radically different course.

On the macro scale, stars and planets would not have come into being, or
would have lasted a much shorter time, or been too hot or cold, etc., while
on the smaller scale, the long-chained carbon-based molecules that are the
building blocks of living cells could not have come about unless the physical
constants which constrain the nature of chemical bonding had adopted the
values they have, or unless the stars had the right temperatures and lifetimes,
or unless the nuclear and electromagnetic forces would have strengths whose
ratios are fine-tuned to enable carbon nuclei to form from three helium nuclei.

Some philosophers and theologians saw the possibility of invoking the hand
of God acting to adjust these various values to create the particular special
conditions that gave rise to the universe we know today.
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This period of theorizing about the Big Bang, which began in the 60’s
and 70’s of the 20th century, is to some extent akin to the earlier Kabbalistic
cosmology, in which God had to play an active formative role in structuring
the chain of events. There arose the further problem of what existed before
the Big Bang singularity, and what caused it to happen. God could again be
called upon for assistance.

Luria realized that if God played a formative role in the structuring of
the cosmos, then the cosmos would be a direct manifestation of Him. God
would not have been able to separate Himself from his creation, and therefore
our created world would in fact be part of God’s body.

In a similar way present day cosmologists did not feel inwardly happy with
creation theories in which some factor, outside the equations and mechanics
of creation, set the critical values of the constants of nature that determined
the form and contents of our universe as we know it.

In 1980 Allan Guth, an American physicist, devised a theory which seems
to have solved many of the technical problems inherent in the simplistic Big
Bang theory.

He considered a very early stage in the development of the universe; At
around 10−43 seconds after the Big Bang (the ‘Planck era’), when the strength
of the gravitation forces comes to equal that of other fundamental forces —
quantum gravitational events dominated the emerging universe, its dense bub-
ble of space-time being subject to quantum fluctuation in its very geometry.
The universe itself could indeed be described at that early epoch as a quantum
fluctuation in the vacuum. The energy that the vacuum contained was bound
up in various fields and thus (highly symmetric) vacuum configuration could
have been unstable (a so-called false vacuum) even when the universe was
much older than 10−43 sec (say, 10−30 or 10−20 sec old), and its space-time
manifold already quite smooth.

Once the temperature fell sufficiently, Guth’s “inflationary” scenario be-
came possible. In inflationary models, the field energy of the initial vacuum
is released by a phase transition triggered by the cooling. The released energy
influences space-time geometry via GTR, causing a 1050-fold, faster-than-light
expansion of the universe within a fraction of a second; part of the released
energy is dissipated into heat, which becomes the matter and radiation ob-
served in the present epoch by astronomers. The new, “true” vacuum is
stable, but is less symmetric in its field-configuration than the original false
vacuum — much as a ferromagnetic domain below the Curie temperature
is less symmetrical, yet more stable, than a microscopically-disordered mag-
netic phase. Such a breaking of symmetries is called spontaneous symmetry
breaking.
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We can see a parallel here between the inflation-precipitating fields and the
vessels (Keilim) of the sephiroth, which were unable to hold the light energy
that poured through them. The matter and light in the universe arose out of
the breaking of the symmetries of the fields to which the Lurianic Kabbalah
parallel would be the “breaking of the vessels”, and the falling down through
the worlds of the husks or shells (Kelipoth).

The inflationary model resolves various problems with the naive Big
Bang models, – such as the problem of the large scale uniformity and near-
flatness of the universe; the non-observation of arcane particles called mag-
netic monopoles; and other difficult and paradoxical aspects of the earlier
theory.

As indicated above, cosmologists have been speculating about even earlier
periods in the life of the universe, before the inflationary period, in which the
universe was a foam of space-time emerging out of quantum fluctuations in
an even earlier false vacuum state.

One speculation which has received some credence is that the universe
began as a quantum fluctuation in an eleven dimensional space. This resulted
in four of the dimensions expanding (these being the three dimensions of the
space and one of the time), while the other seven became wrapped up into a
seventh dimensional sphere of extremely small size. These seven “compact”
dimensions remain hidden from our universe on the macro scale (or even
currently-observable subnuclear scales) which only know the four outer space-
time dimensions, though the compact dimensions do participate in the inner
structure of particles of matter.

This idea is strangely paralleled in the Lurianic doctrine of the Ein-Sof
contracting unto itself and forming a tehiru or vacuum while its Ein-Sof ex-
pands outwards. The Tsimtsum of the Kabbalists and folding up of seven of
the eleven dimensions of space-time seem similar. Both of these cosmologies
place this contraction before the formation of the false vacuum out of which
the matter and light particles of the universe were later to emerge.

Nobody would claim, of course, that Luria foresaw the problems of 20th

century physics, or that cosmologists and particle physicists are secretly adept
in obscure areas of Kabbalah.

It seems, though, that both disciplines were addressing the same cosmo-
logical problem, though using different set of ideas. What these parallels do
reveal is the way in which the human mind formulates and pictures an event
as vast and awesome as the creation of the cosmos.

The simplistic archetype of the cosmos emerging from a single source or
event, in a straightforward way, does not satisfy the patterning of our minds;
and both these cosmologies found ways of introducing a ‘falling into matter’
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which harmoniously touches some archetype within our being. So, although
the formulations of these two cosmologies was separated by some 400 years, we
can recognize that they addressed the same problem - that of the emanation
of our cosmos out of nothing.

In a strange way the physicists of today have come to retrace the philo-
sophical and theosophical steps taken by Kabbalists 400 years ago.

Incidentally, the sources of the Lurianic cosmology are to be found in
the works of the great Jewish philosopher Shlomo Ibn-Gabirol (1021–1058,
Spain), who described what might be construed as the “Big Bang” and the
subsequent inflation in these words:

“Calling unto the void and it was cleft,
And unto existence and it was urged,
And to the universe and it was spread out”.

1570 CE, Nov. 2 Flood in the Netherlands222: the great cities flooded,
possibly as many as 400,000 drowned. Flood extended from Northern France
to Northwestern Germany.

1570–1587 CE Avraham Ortelius, Ortels, Wortels (1527–1598,
Antwerp). Scientific geographer, cartographer and publisher of maps. One of
the founders of historical geography. Issued the first modern systematic atlas,
Theatrum Orbis Terrarum223(Theatre of the World, 1570) which consists of 53
maps. Published 20 historical maps and a geographic dictionary (Thesaurus
Geographicus, 1587) in which he laid the basis for critical treatment of ancient
geography.

222 This event marks the beginning of the general advance of glaciers in what is

known as the “Little Ice-Age” in Europe. It was preceded by the floods of April

17, 1421 (100,000 victims) and Nov. 1, 1530 (50,000 victims) and followed by

the flood of 1646 (110,000 victims). Similar events, though of lesser magnitude,

occurred in the 20th century: Jan. 14, 1916 (10,000 victims) and Jan. 31, 1953

(2000 victims).
223 Errors, of course, abound, both in general conceptions and in detail. Thus,

South America is very faulty in outline, but taken as a whole, this atlas, with

its accompanying text was a monument of rare erudition and industry.
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Ortelius came from Augsburg, Germany. He traveled extensively in West-
ern Europe and was a friend of Gerhard Kremer (Mercator). He was appointed
(1575) geographer to Philip II of Spain.

Antwerp and Amsterdam became great centers of cartographic activity,
and they maintained their pre-eminence until the beginning of the 18th cen-
tury.

1571 CE, Oct. 7 Battle of Lepanto (off Greece) for the domination of the
Mediterranean; combined papal and Venetial fleet under Don John of Austria
defeated the Ottoman Turks under Ali Pasha. Lepanto was the end to the
Turkish threat to Europe from the sea. (Cervantes lost his arm in this
battle.) It marks the first stage of the second unsuccessful drive of Islam to
dominate Western civilization.

1571–1578 CE Azariah (Bonainto) dei Rossi (1511–1578, Italy).
Physician and scholar. One of the greatest Hebrew savants of the Renais-
sance. Published Me’or Einayim (Light of the Eyes), a series of historical
essays. Using classical Greek, Latin and Jewish sources, dei Rossi’s work is
the first since antiquity to deal with the Hellenistic-Jewish cultural encounter
and to subject the Jewish calendar to historical scrutiny. On account of his
critical method and refusal to accept rabbinic legend as literal truth, the work
was banned in many Jewish communities. Die Rossi described in detail the
great earthquake of 1561.

1571–1588 CE Michel-Eyquem de Montaigne (1533–1592, France).
Influential skeptic and humanist philosopher. In his main work, the “Essais”
(1588), he used the self as a subject to study the basic features of human
nature. It is “the dialogue of the mind with itself.”

The Renaissance was a period of expanding horizons, and one in which
there was a vast increase in knowledge of the world and its inhabitants. At
the same time Europeans were recovering Latin culture and a much more
complete grasp of Greek literature. Science was developing. New horizons
made previous truths seem wrong or parochial. These discoveries provided
Montaigne and other skeptics with a treasure chest of new facts which they
used to increase our sense of relativity of all man’s beliefs about himself and
the world in which he lives.

The practical and self-centered world-view of the Renaissance was mani-
fested in the autobiographical writings of Cellini and Montaigne, the his-
torical analyses of Machiavelli, and Leonardo’s drawing of the Vitruvian
man. Montaigne was the first to use the term “essay” to describe the literary
form to which he had devoted himself.
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Montaigne’s Essais had great influence not only in France, but also in
England, where his works were quoted by William Shakespeare and imi-
tated by Francis Bacon. No real models existed for Montaigne’s essays. His
literary apprenticeship had been slight: his only early noteworthy publication
had been a work of translation. Montaigne’s purpose in his essays was self-
knowledge: “The greatest thing in the world is to know how to be oneself.”
But the self one finds in his writings is not narcissistic, although he admitted:
“Painting myself for others, I represent myself in a better coloring than my
own natural complexion.” Montaigne gives room for dialogue, addressing his
thoughts to the potential reader, and combining the form of a letter with the
form of a dialogue with an ideal friend. Later the French philosopher René
Descartes (1596–1650) developed Montaigne’s unsystematic thoughts into
their logical conclusion in his famous “Cogito; ergo sum” (Je pense, donc je
suis; I think, therefore I am).

Montaigne was born at his family estate in Château de Montaigne, near
Bordeaux, in southwest France. His grandfather, Ramon Eyquem, had bought
the estate of Montaigne in 1477, and thus gained the right to its name. Mon-
taigne’s father, a lawyer, had served as a soldier in Italy and adopted advanced
views about education, which benefited his son. He had married (1533) An-
toniette de Lopez (or Louppes) of a wealthy Spanish-Portuguese Jewish family
from Toulouse. Montaigne was sent to a small cottage with a peasant family
and a tutor until he was six, and while he lived there he spoke exclusively in
Latin, the language of the educated class.

He received his early education at the Collège de Guyenne in Bordeaux,
and then studied law at Bordeaux and Toulouse (1546). He was a counselor of
the Court des Aides of Périgueaux, in 1557 he was appointed councilor of the
Bordeaux Parliament, and from 1561 to 1563 he was at the court of Charles
IX. When his friend Etienne de la Boëtie died in 1563 at thirty-two, Montaigne
suffered the most severe emotional experience of his life. Thereafter he never
had a close relationship.

In 1564 he married Francoise de la Chassaigne and had five daughters,
but only one survived childhood. In 1570 at the age of 37 he sold his post
of counselor, and in the following year retired to the Château de Montaigne.
There, from 1571 to 1580 he wrote his “Essais.”

The first edition of this work contained only two books. He then set out
on a journey which lasted a year and a half, of which he has written in his
“Journal.” He went to Lorraine and Alsace, started for Switzerland, crossed
Bavaria and came down to the Tyrol, saw Venice and reached Rome, the end
of his journey, where he received letters of citizenship. During his absence he
had been made mayor of Bordeaux, which office he held for four years (1581–
85), his duties coming to an end when the pest broke out. Montaigne being
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absent from the town did not feel obliged to return to it. In 1588 he published
a new edition of his “Essays,” corrected and augmented by a third book. He
continued to revise his work until his death.

The “Essais” reflected his wide interests and erudition. It is the result
of his personal experience and very extensive reading. He writes about his
disgust with the religious conflicts of his time, his belief that humans are
not able to attain true certainty (skepticism), and even alludes to cultural
relativism, all rather modern notions.

Montaigne considered marriage necessary for the raising of children, but
disliked the strong feelings of romantic love as being detrimental to true free-
dom. In education, he favored concrete examples and experience over the
teaching of abstract knowledge that has to be accepted uncritically.

He argued that the beliefs of different cultures should be respected, and
covered in his texts a huge range of subjects, including how to converse prop-
erly, how to endure pain, how to prepare for death, how to read well, how to
bring up children, and how to deal with the sexual urge. Even his cat did not
escape his watchful attention: “When I play with my cat, who knows whether
she isn’t amusing herself with me more than I am with her?” Montaigne’s
voice is skeptical and sincere; “I am myself the subject of my book; it is not
reasonable to expect you to waste your leisure on a matter so frivolous and
empty.”
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Worldview VI: Michel de Montaigne

∗ ∗∗

Let us permit nature to have her way. She understands her business better
than we do.

∗ ∗∗

Love to his soul gave eyes; he knew things are not as they seem. The dream
is his real life; the world around him is the dream.

∗ ∗∗

Make your educational laws strict and your criminal ones can be gentle; but
if you leave youth its liberty you will have to dig dungeons for ages.

∗ ∗∗

Marriage is like a cage; one sees the birds outside desperate to get in, and
those inside equally desperate to get out.

∗ ∗∗

My life has been full of terrible misfortunes most of which never happened.

∗ ∗∗

My trade and art is to live.

∗ ∗∗

No man is exempt from saying silly things; the mischief is to say them delib-
erately.
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∗ ∗∗

No wind serves him who addresses his voyage to no certain port.

∗ ∗∗

Not being able to govern events, I govern myself.

∗ ∗∗

Nothing fixes a thing so intensely in the memory as the wish to forget it.

∗ ∗∗

Nothing is so firmly believed as that which we least know.

∗ ∗∗

Lend yourself to others, but give yourself to yourself.

∗ ∗∗

I prefer the company of peasants because they have not been educated suffi-
ciently to reason incorrectly.

∗ ∗∗

He who establishes his argument by noise and command shows that his reason
is weak.

∗ ∗∗

Rejoice in the things that are present; all else is beyond thee.

∗ ∗∗
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The world is all a carcass and vanity, The shadow of a shadow, a play. And
in one word, just nothing.

∗ ∗∗

If you don’t know how to die, don’t worry; Nature will tell you what to do on
the spot, fully and adequately. She will do this job perfectly for you; don’t
bother your head about it.

∗ ∗∗

It should be noted that children at play are not playing about; their games
should be seen as their most serious-minded activity.

∗ ∗∗

If you press me to say why I loved him, I can say no more than because he
was he, and I was I.

∗ ∗∗

Fashion is the science of appearances, and it inspires one with the desire to
seem rather than to be.

∗ ∗∗

It is not death, it is dying that alarms me.

∗ ∗∗

Fame and tranquility can never be bedfellows.

∗ ∗∗

A man of understanding has lost nothing, if he has himself.
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∗ ∗∗

The way of the world is to make laws, but follow custom.

∗ ∗∗

It is good to rub and polish our brain against that of others.

∗ ∗∗

I have no more made my book than my book has made me.

∗ ∗∗

We can be Knowledgeable with other men’s knowledge, but we cannot be wise
with other men’s wisdom.

∗ ∗∗

There is no conversation more boring than the one where everybody agrees.

∗ ∗∗

There are some defeats more triumphant than victories.

∗ ∗∗

Death, they say, acquits us of all obligations.

∗ ∗∗

An untempted woman cannot boast of her chastity.

∗ ∗∗
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When I am attacked by gloomy thoughts, nothing helps me so much as running
to my books. They quickly absorb me and banish the clouds from my mind.

∗ ∗∗

When I play with my cat, who knows whether she is not amusing herself with
me more than I with her.

∗ ∗∗

Even on the most exalted throne in the world we are only sitting on our own
bottom.

∗ ∗∗

The most profound joy has more of gravity than of gaiety in it.

∗ ∗∗

A wise man sees as much as he ought, not as much as he can.

∗ ∗∗
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1572–1601 CE Tycho Brahe (1546–1601, Denmark). The first modern
astronomical observer. His series of planetary observations made possible
Kepler’s study of the laws of planetary motion, the basis of our modern view
of the solar system.

He constructed the most accurate instruments that were possible at his
time and took great precautions in making masses of astronomical observa-
tions that reached the limits of naked-eye accuracy, being thoroughly modern
in his attempts to avoid errors. Brahe did not believe in the Copernican he-
liocentric theory and clung to the geocentric theory. For, he argued, if the
earth rotated and revolved, a stone dropped from a high tower would fall to
the west , which in fact did not happen.

In science-fiction parlance, Tycho Brahe was something like a mad sci-
entist. On a Danish island he built and operated the fantastic castle of
Uraniborg, equipped with outside instruments, observatories, and laboratories
where he also conducted astrological and alchemical studies.

1572–1604 CE New stars (actually supernova explosions) were seen in the
sky and interpreted as portents of imminent destruction. When astronomers
observed sunspots through the new telescopes, it was taken as evidence that
the sun was decaying too. Previously, the constellations had been thought to
be changeless, but when the Protestant Reformation got under way, belief in
Biblical chronology strengthened.

1573 CE Valentinus Otho (ca 1550–1605, Germany). Mathematician. A
pupil of the early table maker Rheticus. Rediscovered the ancient Chinese
ratio π = 355/113 = 3.1415929. In 1585 Adrian Anthoniszoon (1527–
1607, Netherlands) rediscovered it independently.

1574–1608 CE Christoph Clavius (1537–1612, Germany and Italy).
Mathematician and astronomer. Contributed to algebraic notation (1608)
and developed the proposal adopted as the Gregorian calendar reform (1582).
Author of an extended commentary on Euclid’s Elements (1574). In his book
Astrolabium (1593), he used the identity224

2 sin A sin B = cos(A − B) − cos(A + B)

to shorten calculations by replacing products by sums (“prosthaphaeresis”).
Clavius was born in Bamberg, Germany, and entered the Jesuit order (1555);
professor at the Collegio Romano, Rome (1565–1612).

224 Proved by Ibn Yunus around 975 CE in Cairo and first used by the German

astronomer Johann Werner (1468–1522). as an aid to calculations. This was

used by Rheticus and Brahe up to the invention of logarithms.
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1575–1580 CE Bernard Palissy (1514–1589, France). Potter, ceramist
and naturalist. Made important contributions to both science and art. His
views are set forth in his work (1580): Discours Admirables de la Nature
des Eaux at Fonteines, tant naturelles qu’artificielles, de metaux, de sels et
salines, des pierces, des terres, du feu et des emaux . In it he covered a
wide range of chemical and geological ideas. He was first to recognize that
rain and melting snow were the source from which springs and rivers derived
their waters. Recognized for the first time that fossils are remains of living
organisms. Rediscovered the enameling of pottery (1575).

Palissy, a true son of the Renaissance, was born of humble parents in
Aquitaine. He first studied drawing and modeling. He served as an apprentice
to a glass-painter and later practiced the art of glass-painting. He endeavored
unsuccessfully to discover the secret of Chinese porcelain. He had recourse to
the alchemists and apothecaries in order to learn the nature and properties of
materials (in an age where chemistry had not yet developed into a science).

While gaining from them useful information, he found in their teachings
a large element of imposture and fraud. He then broke away completely from
the speculative attitude of the medieval writers and based his whole treatment
of the subject on the facts of nature which he had observed . His opponents
pointed a finger of scorn at him because he knew neither Latin nor Greek, a
fact which he did not attempt to deny.

After a long period of poverty and disappointment he achieved success:
his pseudo-chemical knowledge gained from the alchemists, aided him in the
preparation of fine glazes for the adornment of pottery.

Later, when in danger of his life because he had embraced the reformed
religion, he was taken under the protection of the King and Court. He lectured
to large audiences in Paris on natural history, illustrating his remarks by
specimens from collections which he had made and insisting that the direct
study of nature and experiment was the true path to knowledge.

Palissy was eventually thrown into the Bastille because he was a Calvinist,
and died in one of its dungeons.

1576–1578 CE Martin Frobisher (1535–1594, England). Navigator and
explorer. Commanded an expedition (1576) in search of the Northwest Pas-
sage to India and China and discovered Frobisher Bay in the Eastern Arctic.
The discovery of such a route was the motive of most of the Arctic voyages
undertaken at that period and for long after, but Frobisher’s special merit was
in being the first to give to this enterprise a national character. For fifteen
years he solicited in vain the necessary means to carry his project into execu-
tion. Finally, with the help of the earl of Warwick, he was put in command
of an expedition consisting of two tiny ships, the ‘Gabriel’ and ‘Michael’ of
about 20 tons each with a crew of 35.
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He returned to the same region in search for gold, which was not there
(1577, 1578). He then became vice admiral under Drake in the West Indian
expedition (1586); Commanded the Triumph against the Spanish Armada
(1588); Vice admiral under Hawkins (1590). Died fighting a Spanish force off
French Coast

Frobisher was one of the greatest seamen in the reign of Queen Elizabeth I.
His three attempts to reach Asia by sailing west extended geographical knowl-
edge. On the first voyage (1576), he rounded the Southern end of Greenland,
visited Labrador, and became the first European to sail into the bay in Baffin
Island.

Frobisher took back to England a rock that some persons thought to be
gold ore. On his next two voyages (1577, 1578) he brought back some 1200
tons of the rock. But it proved valueless. Yet, in spite of this and his failure to
find the Northwest Passage, Frobisher changed the coarse of English imperi-
alism and world’s history by making possible 300 years of British colonialism
in North America.

1576–1589 CE Thomas Digges (ca 1546–1595, England). Mathemati-
cian and astronomer. The first Copernican to claim that space is unbounded
and that stars were scattered through this infinite space. He became the first
to popularize Copernicus’ ideas to a broad audience, and wrote a book about
it in English, instead of scholarly Latin (1576). Already in 1572, Digges and
other astronomers had studied the supernova of that year, showing that the
heavens do in fact change, contrary to tradition – a sight visible to all.

Digges synthesized the works of Copernicus and Nicholas of Cusa,
proclaiming the universe to be infinite, populated with innumerable suns and
worlds.

Thomas Digges was a Member of Parliament (1582, 1585) and served as
mustermaster general of English forces in the Netherlands (1586–1594). His
father, Leonard Digges (d. 1571), also a mathematician, experimented
with magnifying effects from combination of lenses, and was said to have
anticipated the invention of the telescope.

1576–1600 CE Robert Norman. English pioneer in accurate magnetic
work. Published in 1581 his book ‘The New Attractive’ in which he stated the
fundamental law that unlike poles attract while like poles repel. Found that
the magnetic needle dips with the vertical and a freely suspended needle in
a horizontal plane orients itself in the north-south direction. The downward
tendency of the north-pole magnet, pivoted on a horizontal axis, had been
observed by G. Hartmann of Nüremberg in 1544, but his observations were
not published till much later.
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Up to that time, only two magnetic phenomena of importance, besides
that of attraction, had been observed: (1) the north seeking property of a
horizontal magnet; (2) the magnetization of a piece of iron, when brought
into contact with a magnet. The first known magnets were hard black stones,
known as ‘lodestones’. No one knows when or by whom they were discovered,
but the ancient Greek knew their power to attract iron. Throughout the
middle ages, many people believed that the ‘lodestone’ had medical powers.

1577 CE, Oct. 27–Nov. 10 An extraordinary apparition of a comet ,
known thereafter as “The Great Comet of 1577”. Contemporary descrip-
tions noted that it was seen through the clouds like the moon and rivaled
Venus is brightness. It was first recorded on November 01, 1577 in Peru and
last recorded January 26, 1578 by Tycho Brahe (1546–1601). The comet
reached perihelion on Oct. 27, 1577 when it was 0.18 AU from the sun, well in-
side the orbit of Mercury. The comet’s nearly parabolic motion around the sun
was opposite to that of the earth and planets (retrograde), and it approached
closest to earth, at 0.63 AU, on November 10, 1577.

The works published on this comet by the German astronomer Michael
Mästlin (1550–1631) and Tycho Brahe form a turning point in the history
of astronomy because precise observations were used to demonstrate that
Aristotle’s view that comets occur in the earth’s atmosphere (like rainbow),
were wrong225. Thus, belief in Aristotle’s perfect celestial system was shaken
by the appearance of the Great Comet.

225 The comet was shown to be well above the moon: Tycho and his colleagues

observed the comet from two different locations on the earth’s surface. If the

comet was below the moon and close to the earth, each observer would see it

appearing against an entirely different stellar background. Since each observer

noted the comet appearing against nearly the same background stars, the comet

must have been quite distant and beyond the lunar sphere. Tycho found however

that the comet was much closer to earth than the supernova of 1572, since its

motion (relative to distant stars) across the sky was greater.

The placement of the comet of 1577 above the moon by Tycho Brahe and his

colleagues was about one step in the eventual discarding of the Aristotelian

cosmology. Since Tycho still believed in the geocentric system, he faced a

serious problem: on one hand he had the earth at the center of the universe

with the moon orbiting around it; on the other hand he had the sun circling the

earth, with the interior planets Mercury, Venus, Mars and the Great Comet, all

circling the moving sun. There was thus an imminent danger that the crystalline

sphere of the comet would smash into that of the moon or that of Mars. By 1583,

Tycho accepted as possible the intersection of the planetary and lunar orbits,

thus casting aside the notion of solid crystalline spheres for the planetary orbs.
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1577–1580 CE The second circumnavigation of the world accomplished
by the English explorer Francis Drake (1540–1596). On Dec. 13, 1577
Drake sailed from Plymouth aboard the Gololen Hind (a 100 ton gun-boat,
33 meters long). After passing the Straits of Magellan, Drake cruised along
the western coasts of South and Central America and then sailed north to
what is now San Francisco Bay. He then crossed the Pacific Ocean, stopping
for water at the Philippine Islands. After crossing the Indian Ocean, he sailed
around the Cape of Good Hope and reached Plymouth on Sept. 26, 1580.

Drake’s voyage broadened English knowledge about the world and paved
the way for later explorations.

1579 CE Francois Viète (Franciscus Vieta), Seigneur de la Bigotière
(1540–1603, France). French mathematician. A lawyer by profession, in
Poitiers. Being a Huguenot, persecution forced him to flee his native town
for several years. He spent this period (1567–1580) largely on mathematics.
With the accession of Henry of Navarre to the throne of France, Viète filled in
1589 the position of Royal Privy Counselor, and remained in that post till his
death. He endeared himself to the King by breaking the Spanish code, con-
sisting of more than 500 characters, thus enabling the French to read all secret
enemy dispatches. His fame, however, rests entirely upon his achievements in
mathematics.

Viète introduced the algebraic notation in which letters represented un-
knowns. To be sure, Regiomontanus and Stifel in Germany and Car-
dano in Italy, had used letters before him, but Viète extended the idea and
was first to make it an essential part of algebra. The new algebra was called
by him logistica speciosa in contradistinction to the old logistica numerosa.

In 1579 Viète published his Canon mathematicus seu ad triangula cum
appendicibus in which he systematically applied algebra to trigonometry and
discovered new trigonometric identities. It gave first systematic elaboration
in the Occident of the methods of computing plane and spherical triangles
with the aid of the six trigonometric functions. He paid special attention also
to trigonometry, developing such relations as

sinα = sin(60 + α) − sin(60 − α),

and

tan
α

2
=

1 − cosα

sin α
,

with the aid of which he could compute the functions of angles below 30 ◦ or
45 ◦. Letting x = 2 cosα he expressed cos nα as a function of x for all
integers n < 11.



846 2. Slumber and Awakening

An ambassador from the Netherlands once told Henry IV that France did
not possesses a single geometer capable of solving a problem by a Belgian
mathematician, Adrianus Romanus. It was the solution of the equation
of the 45th degree:

y45 − 45y43 + 945y41 + · · · + 9563y5 − 3795y3 + 45y = C.

Henry IV called Viète, who saw at once that this awe-inspiring problem
was simply the equation by which C = 2 sinφ was expressed in terms of
y = 2 sin

{
φ
45

}
. Since 45 = 3 · 3 · 5, it was necessary only to divide an

angle once into 5 equal parts, and then twice into 3, a division which could be
effected by corresponding equations of the 5th and 3rd degrees. Thus Viète
brilliantly discovered that the above equation has 23 roots (the remaining
ones involve negative sines, which were unitelligible to him!)

Detailed investigations on the famous old problem of the section of an
angle into an odd number of equal parts, led Viète to the discovery of a
trigonometrical solution of Cardano’s irreducible case (3 distinct real roots)
of the cubic equation. To this end he applied the identity

(
2 cos

1
3
φ
)3 − 3

(
2 cos

1
3
φ
)

= 2 cos φ

to the solution of the equation x3 − 3a2x = a2b when a > 1
2b, by placing226

x = 2a cos
(

1
3φ

)
and determining φ from b = 2a cosφ.

In 1593 he found the representation of π as an infinite irrational product:

2
π

=
√

2
2

√
2 +

√
2

2

√

2 +
√

2 +
√

2
2

· · · .

The value of π itself was calculated by him to 9 significant figures, using
the Archimedean method by taking a polygon of 393,216 sides obtained by
16 successive doubling of the original hexagon. This enabled him to improve
the Archimedean bounds to 3.1415926535 < π < 3.1415926537.

226 The solutions of the equation

x3 + a1x
2 + a2x + a3 = 0

then assume the forms given in his book De Emendatione: x1 = −2
√

Q cos φ
3

− a1
3

;

x2 = −2
√

Q cos
(

φ+2π
3

)
− a1

3
; x3 = −2

√
Q cos

(
φ+4π

3

)
− a1

3
where Q = 1

9
(a2

1 − 3a2),

R =
1

54
(2a3

1 − 9a1a2 + 27a3); Q3 − R2 ≥ 0; φ = arccos
{ R

√
Q3

}
.
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Table 2.10: Prominent European Mathematicians

of the 16th
century

Name N Life-Span Major Contribution

Scipione del Ferro I 1465–1526 Algebraic solution of the cubic
equation

Albrecht Dürer G 1471–1528 Descriptive Geometry (1514)

Michael Stifel G 1486–1567 Arithmetic and Geometric se-
ries; Algebraic notation

Nicolo Fontana
(Tartaglia)

I 1499–1559 Algebraic solution of the cu-
bic equation; The idea of log-
arithms (1544)

Christoff Rudolff G 1500–1545 Algebraic notation

Girolamo Cardano I 1501–1576 The cubic equation: probability
calculations

Pedro Nuñes J 1502–1577 The ‘Nonius’ calculator

R.Gemma Frisius D 1508–1555 Trigonometric surveying
(1533): Triangulation; Finding
longitude at sea (1534); First
terrestrial and celestial globe

Robert Recorde E 1510–1558 Algebraic notation and termi-
nology

Gerhardus Mercator G 1512–1594 Map projection

George Joachim
(Rheticus)

G 1514–1576 Trigonometric functions as ra-
tios of sides of a right triangle;
Sine tables

Jacques Peletier F 1517–1582 Geometry

Lodovico Ferrari I 1522-1565 Quartic equations; Binomial co-
efficients

Rafael Bombelli I 1526–1572 Algebra of complex numbers;
Algebraic notation

Adrian Anthoniszoon D 1527–1607 π ∼ 355
113 = 3.141592 . . . (1573)

Christopher Clavius G 1537–1626 Continued fractions; Gregorian
Calendar
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Table 2.10: (Cont.)

Name N Life-Span Major Contribution

Francois Viète F 1540–1603 Application of algebra to
trigonometry; New trigonomet-
ric identities; π as an infinite
product; Algebraic symbolism
and notation

Ludolph van Ceulen
(1596)

G 1540–1610 π = 3.14159 26535 89793 23846
26433 8327950

Simon Stevin D 1546–1620 Vector decomposition; Use of
decimal fractions

Thomas Digges E 1546–1595 Mathematical Astronomy

Antonio Cataldi I 1548–1626 Continued fractions

Thomas Finck(e) S 1561–1656 Trigonometry: Law of tangents

Bartholomew Pitis-
cus

G 1561–1613 Calendar Reform; Trigonomet-
ric tables

Galileo Galilei I 1564–1620 Cycloid (1599); Idea of equiva-
lence of infinite classes (future
set theory)

Paul H. Guldin SW 1577–1643 Center of gravity

N = Nationality

(I = Italian; G = German; D = Dutch; E = English; F = French;

J = Jewish; S = Swiss; SW = Swedish)
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1580 CE Gaspare Tagliacozzi (1546–1599, Italy). Surgeon. Pioneered
in plastic surgery . He was the first to repair noses lost in duels or through
syphilis. He also repaired ears. His method involved taking flaps of skin from
the arm and grafting them into place.

ca 1580 CE Itzhak ben Avraham ha-Rofeh of Troky (1533–1594,
Lithuania). Karaite philosopher and physician; Wrote Hizuk Emunah (For-
tification of Faith) – a polemic in defense of Judaism against the repeated
attempts of the Christian Church to establish its faith via a slanted and ten-
dentious interpretation of the Old Testament. The author refutes the linkage
of the Christian Biblical references and aims a thorough discussion at vulner-
able points of the Christian tradition by exposing the internal contradictions
and inconsistencies of the books of the New Testament and misinterpretation
of texts of the Old Treatment by Paul and the other authors of the Evange-
lions. The book was translated into many languages and was highly praised
by anticlerical authors of the 18th century, such as Voltaire.

1580–1600 CE Yehudah Liwa ben Bezaleel, MAHARAL227 OF

PRAGUE (1512–1609, Posen and Prague). Humanist, scholar, Talmudist and
philosopher. The greatest Jewish savant of the Renaissance era. A philo-
sopher of history228 whose original ideas on the evolution of national cul-
tures stand out in their uniqueness on the background of the teachings of his
contemporaries Machiavelli (1469–1527), Calvin (1509–1564) and Grotius
(1583–1645). Foreshadowed the systems of Vico (1668–1743) and Hegel
(1770–1831).

The Maharal lived in a time of great changes in European history, at the
cross-roads of the Middle Ages and the Modern Era. The violent collision of
Judaism and Christianity in the 13th and 14th centuries with all its tragical
consequences229 on one hand, and the collapse of the Medieval World (as
a result of the Copernican revolution, geographic explorations, Gutenberg’s
invention and the wars of the Reformation) on the other – place him forcibly
at the center of all ideological currents of his age.

Equipped with the scholastic tools of a Talmudic erudite, a deep knowledge
in the history of Judaism and Christianity, and the keen understanding of the
philosophical and sociological problems of the age of humanism, the Maharal

227 Hebrew acronym: MORENU HARAV LIWA.
228 B. Gross, “L’Eternite d’Israel” du Maharal de Prague, Editions Klincksieck,

Paris, 1969.
229 Burning of the Talmud (1242); expulsions from England (1290), France (1306),

Germany (1336), Spain (1492); Black Death (1348); Disputations (1263, 1240,

1413–14); Inquisition etc.
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laid out a new outlook of the significance of the history of Israel and its fate
on the universal level , and addressed the confrontation of Judaism with the
humanistic trends in Europe.

In his trilogy Gevurot Hashem (1582), Tifeeret Israel (1599) and Netzah
Israel (1600), the Maharal rendered, for the first time, a daring synthesis that
was aimed to bridge the gap between the dualistic inevitable opposition and
the necessary tie between Israel and the rest of the world. Reading correctly
the internal dynamics of Jewish history and its overall message and mission
in the annals of Western civilization, he proposed a wide Jewish educational
reform aimed at the peaceful coexistence of all different cultures, each keeping
its own uniqueness, and all striving together toward a universal messianic
revelation.

Being deeply versed in the new scientific trends of his age, he was entirely
in favor of scientific research in so far as the latter did not contradict divine
revelation. His message, however, fell on deaf ears; during the 350 years that
followed Jews were busy seeking other solutions: prior to the emancipation of
Jews (after the French Revolution), the horizon of most Jews did not venture
beyond the world of the Talmud. Their interaction with their environment
were limited on account of their being locked inside the ghetto and their
special vernacular. The constant humiliation and brutality to which they
were subjected, encouraged conservative trends and led to derisive indifference
regarding the cultural achievements of the outside world. All their spiritual
energy was introverted. When the emancipation finally arrived, Jews were
blinded by the European culture, and their eagerness to conform led them on
the sure road to assimilation, and the voice of the Maharal was lost in the
void.

The Maharal was born in Posen, Poland, whither his family had fled
from persecution in Worms, Germany, toward the end of the 15th century.
Following his rabbinical studies in his home town and his marriage (1544),
he was appointed rabbi at Nikolsburg, Moravia (1553–1573). He then moved
to Prague, where he established a private academy (1573–1584). On account
of his unconventional ideas his bid for the chief rabbinate of Prague was
rejected and he returned to Nikolsburg. His repeated effort (1592) to gain
the rabbinate of Prague met again with failure and he took the rabbinate of
Posen (1592–1598). Finally, at the age of 86, he became the chief rabbi of
Prague, and there his life-work ended.

The Maharal was greatly influenced by the teachings of Yehudah Halevi
in the latter’s book Ha’Kuzari (1139). Both rejected the application of the
Aristotelian rationalistic system in matters that concern religion, as taught
by Maimonides. According to Maharal, the laws of nature were created
by God arbitrarily (in “reply” to Einstein’s famous question – God indeed
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had a choice!) and all deviations from the apparent laws of physics (miracles)
have their origin in another universe, which he called the “upper universe”230.

1581 CE The Dutch Republic was begun. The history of The Netherlands
began with Caesar’s conquest (58 BCE) of much of the Low Countries, in-
cluding what is now The Netherlands231.

During ca 400–800 CE, the Franks controlled the region. In 870 CE The
Netherlands became part of the East Frankish Kingdom (now Germany).
During the 1300’s – 1400’s the French dukes of Burgundy united most of
the Low Countries. In 1516 Duke Charles of Burgundy, ruler of the Low
Countries, also became the King of Spain.

In 1648, Spain recognized Dutch independence. France controlled The
Netherlands during 1795–1813. In 1815 The Netherlands became an inde-
pendent kingdom united with Belgium (Belgium was an independent country
during 1598 – 1621), but in 1830 Belgium declared its independence from The
Netherlands.

1581 CE, Mar. 30 The fruitful epoch of Jews in medicine, which had
lasted uninterruptedly for some 800 years, came ingloriously to an end with
the severe repression that was initiated by the Church in Rome during the
Counter-Reformation.

Contra Medicos Hebreos , a Bull issued by Pope Gregory XIII, which for-
bade Christians to receive medical treatments from Jewish doctors, on the
ground that this involved danger to the patient’s soul . This, however, did
not stop the Christians from calling on Jewish medical experts. In the late
Middle Ages the popes themselves used Jewish physicians. The very fact that

230 Paradoxically, while the Maharal became a legendary figure already in his life-

time, and Jewish folk-legend ascribed to him the fashioning of the Golem in

the attic of the Gothic-styled Altneuschul – his philosophy remained totally

unknown and was, in fact, ignored by philosophers and historians alike until the

second half of the 20th century. The actuality of his teachings became very acute

after the genocide of the Jews in WWII and the consequential establishment of

the State of Israel.
231 The Netherlands is often called Holland, though this name actually refers to

only one part of the country. The people of The Netherlands call themselves

Hollanders or Netherlanders, but in English speaking countries they are known

as Dutch. “God created the world, but the Dutch created Holland”, according

to an old Dutch saying. More than 3
5

of the country’s land was covered by the

sea, or by lakes, or by swamps. The Dutch “crated” this land by pumping out

the water.
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the Jewish physicians were so skillful and popular made their Christian com-
petitors the more anti-Jewish. Indeed, there was no group, with the possible
exceptions of monks, throughout the history of the Jews in Europe, more
bitterly anti-Jewish than the Christian members of the medical profession.
Eventually they succeeded in reducing the number of Jewish physician to in-
significance. Nevertheless, when a Jewish physician was available, he always
found Christian patients, especially among the higher nobility and the upper
ranks of the clergy.

Challenging the Pope’s Bull, the Jewish physician David de Pomis232

(1525–1595) from Spoleta, bravely defended the integrity of the Jewish doctors
in his publication De Medico Hebraeo enarratio apologetica (1581).

Jews and Medicine

“... therefore choose life...”

(Deutronomy 30, 19)

∗ ∗∗

“Two of the greatest hygienic thoughts of mankind owe their origins to the
Hebrews... the weekly day of rest and the direct prophylaxis of disease. Had
Judaism given nothing more to mankind than the establishment of a weekly
day of rest, we should still be forced to proclaim her one of the greatest
benefactors of humanity.
It is most interesting fact that, despite its theory of natural causation, Greek
medicine was blind to the fact of contagion, or direct transmission of disease.
But in the Old Testament we have a methodical inspection of a leper by
the priest who, according to the diagnosis, isolated the patient temporarily or
permanently, and admitted him again to free intercourse only after indubitable
convalescence or cure.”

Karl Sudhoff

232 One of the greatest physicians in Italy at that time. Descended from the families

exiled by the Roman Emperor Titus from Jerusalem to Rome (‘de Pomis’ =

from the apples). Received his M.D. in 1552 and settled in Venice.
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The science of healing has an intensely revered tradition among Jews, with
an unbroken continuity of more than 2000 years. To be a doctor was generally
considered as the most exalted moral and worldly calling a Jew could aspire
to. The doctor could claim great humanitarian and social usefulness – all the
more important to a Jew because of the religious belief that the alleviation
of human suffering is one of the most meritorious pursuits of righteousness.
In any case, the medical profession always had enormous appeal for Jews.
Centuries of social idealization have fixed for them its tradition and pattern
to this day. They have been producing more doctors in proportion to their
number than any other ethnic or cultural group. For a thousand years Jews
were among the most honored healers in Europe.

Throughout the ages the Jew has shown a remarkable predilection for
the healthy art and in all epochs his skill has been recognized. Indeed there
are significant points of encounter between the history of the Jewish people
and the history of medicine. Jewish physicians always had special interest
in medical ethics and the Hebrew language played an important role in the
history of medical writing.

The Hebrews’ medical concepts and practices were influenced by the sur-
rounding nations, whose knowledge was highly developed. However, the
uniqueness of Biblical “medicine” lies in its prophylactic nature, regulations
of hygiene and the weekly day of rest.

Talmudic writings emphasize the sanctity of human life, the importance
of health and the saving of life (Piku’ah Nefesh). Patients, are required, not
merely permitted, to seek medical help and all restrictions should be set aside.

The Karaites, opponents of Rabbinical Judaism, held that “God alone
should be sought as a physician and no human medicine should be resorted
to”. But the Talmud does not regard calling upon a physician for medical
aid as a failure to rely upon God: “Whoever is in pain, let him go to a
physician”, (Baba Kamma 46b). A physician had to receive adequate fees,
since “a physician who takes nothing is worth nothing” (Baba Kamma 85a).
At the same time, Jewish physicians had to show special consideration for
the poor and the needy - a tradition that was maintained throughout the
centuries.

Beginning with the 9th century they helped found the finest medical col-
leges. Those in Tarentum, Palermo, Salerno and Bari ; a little later, those in
Rome and Montpellier , furnished Europe for centuries with its best doctors:

Zedakiah (fl. ca 1000 CE) was court physician to the Carolingian Kings,
Louis ‘the Meek’ and Charles ‘the Bold’

The three great figures in 10th century medicine were Haroun of Cor-
dova, Yehudah Hayyuj of Fez and Amram of Toledo.
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The study of medicine was introduced as part of the regular curriculum
in rabbinic academies about the year 1000 CE. A long and distinguished line
of rabbi-physicians were graduated from them and served caliphs, emperors,
popes, kings, bishops and princes.

In the Middle Ages, half of the best known Jewish scientists, scholars,
philosophers and litterateurs - men like Maimonides, Yehudah ha-Levi,
Immanuel of Rome, and so on - were physicians by profession; a striking
illustration of the respect in which that calling was generally held. The bibli-
ographer Moritz Steinschneider233 (1816–1907), who devoted much of his
life to a study of Jewish contributions to medieval science and mathematics
was able to enumerate no less than 2168 Jewish physicians who were of suffi-
cient eminence to be recorded and who flourished between the Dark Ages and
the 18th century.

The contribution of Jewish doctors in the Middle Ages lay mainly in their
work as translators. They constituted an important link in the transmission
of Arab medicine to Europe, thus enhancing the emergence of modern science.
This period is also marked by a revival of Hebrew as the language of scientific
writing. Hebrew medical works were important in preserving and spreading
knowledge until the beginning of the 16th century.

Knowledge of Hebrew was considered extremely important in the study
of medicine. In 1518 the rector of the University of Leipzig, Mosellanus,
said in his inauguration speech: “In the libraries of the Jews a treasure of
medical science lies hidden, a treasure as scarce as is to be found in any
other language. Nobody ... will be able to get access to this treasure without
intimate knowledge of Hebrew grammar”.

One of the outstanding features of this period was the constant emphasis
on ethical and social behavior. Medical aphorisms concerning ethical conduct
were composed by every major medical writer from Asaf to Maimonides.
An interesting glimpse into this world is given in the ethical will of Yehudah
ibn Tibbon (ca 1120–1190), an eminent physician and translator, to his son:

“My son, let thy countenance shine upon the sins of man: visit the sick,
and let thy tongue be a cure to them; if thou receive payment from the rich,
attend gratuitously on the poor”.

The most important aspect of the physician’s activity, however, was the
care of the sick. In the Middle Ages and until the late 18th century, sick
people were usually treated at home. And the commandment of visiting the
sick and of strengthening family ties was kept religiously. This explains why
the necessity for a hospital was not felt in Jewish communities. The Hekdesh

233 The father of modern Jewish bibliography. Melvina, the daughter of his cousin

Sigmund, married the philosopher Edmund Husserl (1859–1938).
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was a hospice of sorts and served as a shelter for wandering peddlers and for
poor sick Jews. It was administered by the Hevra Kaddisha, a brotherhood
that cared for the sick and the dead. Servants had a right to special status as
a kind of social insurance.

As merchants and travelers, the Jews met the best scholars of their time
and became acquainted with drugs, plants and remedies from many parts of
the world. The large number of Jewish physicians during the Middle Ages may
be explained by the fact that scholars could turn to the practice of medicine to
earn their living, and indeed many Jewish physicians were also rabbis, authors
or poets. As men of wide general knowledge, they attained high positions in
the countries in which they lived. In spite of renewed ecclesiastical opposition,
bishops and popes, kings and sultans - all summoned Jewish physicians to
their courts.

With the possible exception of Itzhak Israeli, the most renowned Jewish
physician in the Middle Ages, who was also a distinguished rabbi and phi-
losopher, was Moshe Maimonides (the RAMBAM 1137–1204). Born in
Cordova, he fled to Fez and later moved to Israel and then to Cairo, where he
became court physician of Saladin and his sons. Maimonides had a prodigious
literary output, including extensive writing on medical matters. These were
written at the end of his life, after his monumental Halakhic and philosophical
works.

Maimonides strongly believed in prophylactic medicine. He wrote:

“Among a thousand persons only one dies a natural death: the rest succumb
early in life owing to ignorant or irregular behavior”.

Guide To The Perplexed

“Medicine teaches man to restrict his boundless lust which undermines his
health and to choose the manner of living. It helps to maintain the fitness
of the body and enables him to purify and raise his strength to an uplifted
ethical plane.”

Mishne Tora

The ibn Alfakhar family of Christian Spain (12th, 13th and 14th cen-
turies) is known for its distinguished scholars, diplomats and physicians.
Yosef ibn Alfakhar was court physician to Alfonso VIII and his son Yehu-
dah ibn Alfakhar served as physician to Ferdinand III of Castile during the
first part of the 13th century.
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The ibn Shoshan family was very influential in Toledo during the 12th

and 13th centuries. The family included physicians, scholars, Kabbalists, po-
ets, grammarians, philosophers, diplomats and rabbis. Through their political
work the family became wealthy and powerful.

The 16th century was a period of immense exploration, discovery and
progress - the century of Paracelsus, Servetus and Fallopius. In 1543
Andreas Vesalius, the 29 year old Flemish professor of anatomy in Padua,
published De Humani Corporis Fabrica (The fabric of the human body). His
great work showed for the first time how nerves penetrated muscles, the rela-
tionship between the abdominal organs and the structure of the brain. Vesal-
ius gave Hebrew names together with Greek and Latin equivalents for the
anatomical structures.

The beginning of the medical renaissance had tragic consequences for the
Jews of Europe. At the Church Council of Basel (1437–1447) a catalogue of
restrictions was drawn, including a decree prohibiting Jews to receive a uni-
versity degree. Those Jews that were admitted to universities, were subject to
special rules, charged special fees and forced to listen to conversional lectures.
After graduation they were generally forbidden to treat Christian patients.

At the end of the 15th century, Spain and Portugal compelled the Jews
to embrace Christianity. Many became Marranos, and other emigrated. As
a result, during the 16th, 17th and 18th centuries a very high proportion
of noted physicians, scientists and scholars in Europe were of Spanish and
Portuguese origin. The Marranos continued to practice medicine in Spain
and Portugal until the 18th century despite their precarious position and the
continual persecution by the Inquisition.

Ranking high on the seemingly endless list of eminent Jewish doctors and
medical scientists who flourished in Europe as the modern era approached
were Amatus Lusitanus (1511–1568), Eliyahu Montalto (1550–1616) and
Roderigo Lopes (1525–1594). Lopes was physician to Queen Elizabeth I of
England since 1586 and one of about 80 Marranos to live in London during
her reign. He was executed on a false charge of attempting to poison the
Queen. His fate caused the Marrano community to dwindle away.

A particularly horrifying example is that of Garcia da Orta, a physician
who had left Portugal for Goa, India (then a Portuguese colony) in 1534.
There he completed a pioneer scientific work on Oriental medicinal plants,
Coloquios dos simples e drogas e cousas medicinaes da India (1563). Da Orta
died in 1568 but his work had already attracted great attention. But da Orta
was a Marrano and various members of his family, among them his sister, were
tried by the Inquisition and sentenced to be burned at the stake. In 1580,
following da Orta’s posthumous conviction on the charge of having lived as a
Jew, his body was exhumed and burned.
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In spite of the limitations and continuous persecution, many Jewish physi-
cians who distinguished themselves in medical practice and literature were also
concerned with the moral responsibility which their profession required.

In Renaissance Italy there was evidence of a more liberal spirit. Some
Italian universities, mainly those of Padua and Perugia were among the few
that allowed Jews to enter the medical faculties. Relative tolerance was only
one aspect of their life in that period. In the extensive anti-Semitic literature
published at the time, physicians were not spared. Successful Jewish physi-
cians aroused the jealousy of their Christian counterparts, and thus became
subject to bitter attacks and innumerable calumnies. It is not surprising
therefore, that Jewish physicians published several books containing schol-
arly defenses. Among them were David de Pomis, Benedict (Baruch) de
Castro (1597–1684) and Itzhak Cardoso (1604–1681).

Cardoso, at the age of 29, after studying medicine and philosophy, became
court physician to Philip IV in Madrid, and published several medical works.
Persecuted by the Inquisition, he fled to Italy and worked as a physician of
the poor Sephardic community. There he published his apologia, Las Exce-
lencias Y Caluminias De Los Hebreos. In ten chapters he emphasized the
distinguishing features of the Jews, their selection by God, their separation
from all other peoples by special laws, and their compassion for the suffer-
ing of others; on ten other chapters he refuted the calumnies brought against
them.

The famous Jewish physician in the 17th century were:

• Benjamin Mussafia (1606–1675), an ex-marrano who practiced in
Hamburg (1634), Denmark (1635–1647; private physician of Christian,
King of Denmark) and Amsterdam (from 1648).

• Tuvia ha-Rofeh (1652–1729). Physician and Talmudic scholar. Born
in Metz, Germany and died in Jerusalem. Descended from Ezra the
Scribe through the Maniscriba family. His family flew Poland follow-
ing the 1648 persecutions of the Jews. Studied medicine in Padua, and
became a chief physician to the Turkish Sultan.

The 18th century marked the beginning of the Haskalah (Enlightenment),
whose aspirations matched those of educated gentiles, for the moral and social
betterment of Jews and the abolishment of all social and legal discrimination.
This period marked the beginning of the movement of Jews into German
universities and the increase in the number of Jewish physicians.

Marcus Herz represents the change which took place in the status of
Jewish physicians in the Modern Era. Born in Berlin, he studied in Halle
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and was a favorite pupil of Kant. After graduation, Herz lectured on Kantian
philosophy and physics. At the same time he worked at the Jewish Hospital
in Berlin and was reputed to be one of the best doctors of his time. As his
illustrious predecessors, Herz was concerned with the ethical aspects of his
profession and in 1783 published “The Physicians’ Prayer”. It was similar to
those which had come before, but Herz added a section about the thirst for
knowledge, which reflected the spirit of his times:

“May I be moderate in everything except in the pursuit of the knowledge
of science. Grant me the strength and opportunity always to correct what I
have learned... for knowledge is boundless”.

The first half of the 19th century was characterized by a progressively
increasing interest in the natural sciences. This period coincided with the
Emancipation and the opening of universities, hospitals and scientific research
institutes to Central European Jews. Jewish physicians were thus able to take
an active part in the development, and there is scarcely an area in the broad
domain of medicine in which they were not prominent as pioneers.

Nevertheless, for many years Jewish physicians were not accepted as uni-
versity professors unless they converted. They were not welcomed in the fields
of surgery and internal medicine. Consequently, they worked primarily in pri-
vate clinics and hospitals, where they did their research. They developed new
fields of medicine that did not attract their non-Jewish colleagues, such as
dermatology, venereology, hematology and psychiatry. Freud who was not
only a physician but a gifted writer, formulated the reason for this trend with
great perceptiveness:

“Soon there was the insight that I had only my Jewish nature to thank
for two of the qualities that had become indispensable of my difficult path
through life. Because I was a Jew, I found myself free from my prejudices
that limit others in the use of their intellect; as a Jew I was prepared to go
into opposition and forgo the acceptance of the ‘compact majority’”.

Emancipation brought with it many changes, among them the pattern
of sick care within the community. With the improvement of the general
hospital, the Jewish hospital too changed its character from a social institution
to a medical one. The acceleration in the creation of modern Jewish hospitals
continued in the 20th century, and by 1933 there were in Poland alone 48 such
institutions. Some of them continued their activity in the ghettos even after
the German occupation.

The racial laws introduced into Germany at the beginning of the 1930s
and, subsequently, into all of occupied Europe, severed the careers of Jewish
physicians. Many emigrated, mainly to the US, where a center of Jewish
medical activity was emerging, coinciding with the rise of American medicine.
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The motto taken from Deuteronomy, “Therefore choose life...” es-
tablishes the basis of the Jewish attitude towards medicine,– yet there has
never been a “Jewish Medicine” per se. Jews have always adopted the med-
ical teaching of cultures in which they lived, and enhanced them through their
own contribution.

History of Biology and Medicine, II – The Middle Ages
and the Renaissance

The history of biology traces man’s understanding of the living world from
the earliest recorded history to modern times. Though the concept of biol-
ogy as a single coherent field of knowledge only arose in the 19th century,
the biological sciences emerged from traditions of medicine and natural his-
tory reaching back to the ancient Greeks (particularly Galen and Aristotle,
respectively).

Whereas evolutionary ideas more or less died out in Europe after the
fall of the Roman Empire, they continued to be propounded in the Islamic
world. For example Al-Jahiz considered the effects of the environment on the
likelihood of an animal to survive, and Ibn al-Haitham went even further,
writing a book in which he argued explicitly for evolutionism (although not, of
course, natural selection), and numerous other Islamic scholars and scientists
(including Nasir al-Din Tusi) discussed these ideas. Translated into Latin,
these works began to appear in the West after the Renaissance and probably
had a large (though subterranean) impact on Western science.

The decline of the Roman Empire led to the disappearance or destruction
of much knowledge. However, some people who dealt with medical issues still
studied plants and animals as well. In Byzantium and the Islamic world, nat-
ural philosophy was kept alive. Many of the Greek works were translated into
Arabic and many of the works of Aristotle were preserved. Of the Arab biolo-
gists, al-Jahiz, who died about 868, is particularly noteworthy. He wrote Kitab
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al Hayawan (Book of animals). In the 1200’s the German scholar named Al-
bertus Magnus wrote De vegetabilibus, seven books, and De animalibus, 26
books. He was particularly interested in plant propagation and reproduction
and discussed in some detail the sexuality of plants and animals.

Persia and other Islamic areas became important in the development of
science. Based on Greeks and Indian science and connected to Europe they
were in a good position to help science develop. There were also Arab and
Turkish scientists but the most important ones were Persians. Avicenna
(commemorated in the genus Avicenna) recorded many findings. He is some-
times regarded among the fathers of modern medicine.

Interestingly, as many visual artists were interested in the bodies of ani-
mals and humans, they studied the physiology in detail. Such comparisons
as that between a horse leg and a human leg were made. Otto Brunfels,
Hieronymus Bock and Leonhard Fuchs were three men who wrote books
about wild plants; they have been referred to as the fathers of German botany.
Books about animals were also made, such as those by Conrad Gesner, il-
lustrated by, among others, Albrecht Dürer.

Medieval medicine was an evolving mixture of the scientific and the spir-
itual. In the early Middle Ages, following the fall of the Roman Empire,
standard medical knowledge was based chiefly upon surviving Greek and Ro-
man texts, preserved in monasteries and elsewhere. Ideas about the origin
and cure of disease were not, however, purely secular, but were also based
on a spiritual world view, in which factors such as destiny, sin, and astral
influences played as great a part as any physical cause.

In this era, there was no clear tradition of scientific medicine, and accurate
observations went hand-in-hand with spiritual beliefs as part of the practice
of medicine.

This idea of personalized medicine was challenged in Europe by the rise
of experimental investigation, principally in dissection, examining bodies in a
manner alien to other cultures. The work of Andreas Vesalius and William
Harvey challenged accepted folklore with scientific evidence. Understanding
and diagnosis improved but with little direct benefit to health. Few effective
drugs existed, beyond opium and quinine, folklore cures and almost or actually
poisonous metal-based compounds were popular, if useless, treatments.

Table 2.11 lists the most influential contributors to the Life-Sciences and
Medicine throughout the Middle Ages and the European Renaissance.
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Table 2.11: Leading Biologists and Men of Medicine

(550 CE–1550 CE)

Key:

B = Biology A = Anatomy M = Medicine
BO = Botany P = Physiology S = Surgery

ZO = Zoology EB = Evolutionary Biology

Name fl. Specialization

Asaf ha-Rofeh 550 CE (M)

Alexander of Tralles 550–580 (M)

Paul of Aegina 660-690 (M)

Al-Jahiz 830–860 (M), (EB), (ZO)

Itzhak Israeli 900–930 (M)

Al-Razi 900–925 (M)

Shabbethai Donnolo 940–980 (M)

Albucasis (El-Zahrawi) 960–990 (M), (S)

Alhazen (Ibn al-Haitham) 1000–1030 (M), (P), (EB)

Avicenna (Ibn Sina) 1010–1040 (M)

Ibn Zuhr 1120–1160 (M)

Ibn Rushd 1160–1195 (M)

Maimonides 1160–1200 (M)

Ibn al-Baitar 1220–1240 (BO)

Albertus Magnus 1240–1280 (ZO), (BO)

Nasir al-Din al-Tusi 1250–1270 (M)

Ibn-Nafis 1250–1285 (M)

Mondino dei Liucci 1300-1326 (A)

Guy de Chauliac 1330–1368 (M), (S)

Leonardo da Vinci 1482–1519 (A), (P)

Alesandro Achillini 1495–1512 (A), (S)

Shmuel Zarfati 1500–1519 (M)

Albrecht Dürer 1510–1528 (A)

Otto Brunfels 1510–1530 (BO)

Girolano Fracastoro 1517–1546 (M), (EB)

Paracelsus 1531–1541 (M)

Hieronymus Bock 1530–1554 (BO)
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Table 2.11: (Cont.)

Name fl. Specialization

Garcia da Orta 1534–1568 (M), (BO)

Amatus Lusitanus 1536–1561 (BO), (P)

Andreas Vesalius 1537–1555 (A)

Valerius Cordus 1540–1544 (BO)

Conrad Heresbach 1540-1570 (ZO)

Gabriele Fallopio 1540–1560 (A)

Michael Servetus 1540–1553 (P)

William Turner 1540–1568 (BO)

Leonhard Fuchs 1542–1566 (BO)

Conrad Gesner 1542–1565 (M), (BO), (ZO)

Realdo Colombo 1544–1559 (M), (A), (S)

Ambroise Paré 1545–1563 (M)

Pierre Belon 1546–1564 (BO)

Bartolomeo Eustachi 1550–1565 (A)

Andrea Cesalpino 1555–1609 (P), (BO)

Luigi Cornaro 1558–1566 (M)

Charles l’Ecluse (Carolus Clusins) 1580–1609 (BO)

The Gregorian Calendar234

In 1582 CE, Pope Gregory XIII (1502–1585, Italy) ordered a calendar
reform. The Julian year, with average length 3651

4 days, is 11m14s longer than

234 For further reading, see:
• Reingold E.M. and H. Dershowitz, Calendrical Calculations, Cambridge Uni-

versity Press, 2001, 422 pp.
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the tropical year (length 365d5h48m46s). This slight discrepancy accumulates
at a rate of one day in 128 years. Thus, between 46 BCE and 325 CE, the
date of the vernal equinox had slipped back from March 25 to March 21. In
the year 730, the medieval scholar Bede (672–735, England; known as the
‘Venerable Bede’), showed that the deviation was more than 3 days. Roger
Bacon, in 1200, found an error of 7 or 8 days. Dante, soon after 1300, was
well aware of the need of calendar reform. In 1474 Pope Sixtus IV invited the
astronomer Regiomontanus, to revise the calendar and bring it into line.
The premature death of the scientist interrupted the plan. In the following
century, numerous memoirs appeared on the subject by mathematicians of
note.

By 1582, the 11 minutes and 14 seconds per year had added up such that
the first day of spring was occurring on March 11. If the trend were allowed
to continue, eventually Easter and the related days of observance would be
occurring in early winter. Therefore, Pope Gregory XIII undertook the long-
desired reformation. The author of the adopted system was Luigi Lillio
Ghiraldi, a learned astronomer and physician of Naples, who died, however,
before the introduction of the reform. The calculations were continued by
Christoph Clavius (1537–1612, Germany).

The Gregorian calendar reform consisted of two steps. First, 10 days were
dropped out of the calendar in October to bring the vernal equinox back to
March 21, where it was at the time of the Council of Nicaea. This step was
expeditiously accomplished. By proclamation, the day following October 4,
1582, became October 15. The second feature of the new Gregorian calendar
was that the rule for leap year was changed so that the average length of the
year would more closely approximate the tropical year.

In the Julian calendar, every year divisible by 4 was a leap year, so that
the average year was 365.250000 mean solar days in length. The error between
this and the tropical year of 365.242199 mean solar days accumulated to a
full day every 128 years. Ideally, therefore, one leap year should be made a
common year, thus dropping one day, every 128 years. Such a rule, however, is
cumbersome. Instead, Gregory decreed that in 3 out of every 4 century-years,
all leap years under the Julian calendar, would be common years henceforth.
The rule was that only century-years divisible by 400 should be leap years.
Thus 1700, 1800 and 1900, all divisible by 4 (and thus leap years in the old
Julian calendar), were not leap years in the Gregorian calendar. On the other
hand, the years 1600, and 2000, both divisible by 400, are leap years under
both systems.

Among those who objected to this reform was Viète. The reform was
devised so that religious ceremonies could be performed on the correct dates.
The Julian calendar was promptly adopted throughout the Roman Empire,
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which comprised the whole civilized Western world. But the Gregorian cal-
endar was formulated after the Reformation, and the Pope’s decision was not
immediately accepted everywhere.

The Catholic nations adopted it at once, but the Protestant nations fell
in line only gradually: Germany in 1700, England in 1751. By this time, the
two calendars were out of step by 11 days, and there was rioting in England
with the slogan: “Give us back our eleven days”. Notwithstanding, England
and its colonies (North America included) jumped directly from 02 Sept. 1752
into 14 Sept. 1752. Russia adopted the Gregorian calendar only on 31 Jan.
1918, which was succeeded by 14 Feb. 1919.

As the Gregorian method of intercalation has been adopted in all Christian
countries, it is of interest to examine to what degree of accuracy it reconciles
the civil year (365d) with the tropical year (365.2422d = 365d : 5h : 48m : 46s).
The Gregorian rule gives 97 intercalations in 400 years; Thus, 400 years con-
tain 365 × 400 + 97, that is 146,097 days. Consequently, an average year
contains 365.2425 days or 365d : 5h : 49m : 12s. This exceeds the true solar
year by 26 seconds, which amount to a day in 3323 years. It is perhaps
unnecessary to make any formal provision against an error which will only
happen after so long a period of time; but as 3323 differs little from 4000,
it has been proposed to correct the Gregorian rule by making the year 4000
and all its multiples common years. With this correction, the commencement
of the year would not vary more than a day from its present place in 200
centuries.

One would prefer, however, a different method of intercalation by which
the coincidence of the civil and solar year could be restored in shorter periods
(since people in the year 3322 would presumably feel uncomfortable with a
discrepancy of 24 hours!). To find this method, the decimal fraction 0.2422 is
converted into the continued fraction

1
4 + 1

7 + 1

1 + 1

3 + 1

4 + 1
1+···

which gives the series of approximating fractions 1
4 , 7

29 , 8
33 , 31

128 , 132
545 , 163

673 ,
etc. The first of these, 1

4 , gives the Julian intercalation of one day in 4 years,
and is significantly too big. It supposes the year to contain 365d : 6h.

The second, 7
29 , gives 7 intercalary days in 29 years, and errs in defect,

as it supposes a year of 365d : 5h : 47m : 35s.

The third, 8
33 , gives 8 intercalations in 33 years, or 7 successive interca-

lations at the end of 4 years, and the 8th at the end of 5 years. This supposes
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the year to contain 365d : 5h : 49m : 5.45s. It implies a year exceeding the true
year by 19.45s, while the Gregorian year is too long by 26 sec.

Thus, the above method produces a much nearer coincidence between
the civil and solar years than does the Gregorian method; and by reason of
its shortness of period, confines the evagations of the mean from the true
equinox within much narrower limits. The discovery of the period of 33 years
is ascribed to Omar Khayyam (1079 CE).

Better yet is the fourth convergent

31
128

=
3 × 8 + 7

3 × 33 + 29
,

which combines 3 periods of 33 years with one of 29 and would be very con-
venient in application. It supposes the year to consist of 365d : 5h : 48m : 45s,
and is practically exact.

To determine the day of the week corresponding to the day of the month
in any year, one uses the formula

S = Y + D +
Y − 1

4
− Y − 1

100
+

Y − 1
400

.

Here Y is the year of the Gregorian calendar , and D is the day of the year
(after February 28 of a leap year, D → D + 1 relative to a non-leap year).
Also, in dividing Y − 1 by 4, by 100 and by 400, the remainder gives the day
of the week, 0 indicating Saturday, 1 Sunday etc. The corresponding formula
for the Julian calendar is

S = Y + D +
Y − 1

4
− 2.

Thus, Columbus discovered America on Oct. 12, 1492 which was a Friday.

The Gregorian calendar, for all its sophistication, is not quite as accurate
as that devised by the Maya priests of Central America. The Gregorian year
is slightly too long, the error amounting to three days in 10,000 years. The
length of the year according to the Maya astronomers was too short, but the
defect amounted only to two days in 10,000 years.

In the same year (1582), the scholar Joseph Justus Scaliger (1540–
1609, Netherlands) suggested that all dates be referred to an arbitrary fiducial
date, Jan. 1, 4713 BCE (he may have believed this to be the day of creation).
The date thus reckoned is known as the Julian day (JD), in honor of his father
Julius Caesar Scaliger (1484–1558) (no connection to the Julian calendar).
Julian days are now used for expressing the times of most astronomical ob-
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servations. They are reckoned from noon, and parts of a day are expressed in
decimals to the necessary degree of precision235.

The basis of modern Western science

Modern science started at the end of the Renaissance (ca 1550) with
Copernicus, Kepler and Galileo. All efforts prior to this date did not pro-
duce any significant corpus of scientific and technological knowledge and thus
did not lead to the uncovering of the great code of natural laws. Neither the
Greeks, nor the Chinese or the Hebrews succeeded in revolutionizing human
thought in spite of their great respective advances in astronomy, geometry,
logic, philosophy, technology and ethics. Why?

The ancient Hebrews fostered a belief that nature is governed by the de-
crees of an omnipotent and divine law-giver. This created an advantageous
environment for the emergence of a firm belief in laws of nature, and in the
rationality and ordered character of the world: a firm belief that there exists
something worth investigating. It emphasizes a common factor behind nature,
and establishes nature’s universality. Moreover, it establishes the invariance
of some elements of nature in the face of the flux of events.

This biblical view exerted a powerful influence during much of the period
when science grew into its modern form236. The Old Testament picture of
God fashioning the World out of a formless void and ordering it in special
ways was quite different to beliefs elsewhere in the ancient world, and to the

235 The system has since been modified slightly. Modified Julian Date (MJD) is

simply JD − 2, 400, 000 days and 12 hours, putting the zero hour at midnight

on November 17, 1858.
236 The majority of leading British scientists until the beginning of the 20th century

were devout Christians, and this had a particular influence upon their scientific

work.
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earlier magical view of nature. However, this philosophy, while being necessary
for the development of scientific thought, was not sufficient; The instruction
against graven images (Exodus 30, 4-5) forbids the representation of the one
true God and therein is ingrained a perpetual contentment with an abstract
view of things, and a distrust of having useful or symbolic representation of
things. Thus, nature was seen primarily as a sign and symbol of its creator,
rather then as a puzzle to be solved or a source of power to be harnessed.

Moreover, although the natural world was acknowledged to be the handi-
work of the Creator, it was not held that a knowledge of the works of creation
led necessarily to a deeper understanding of God. Deep understanding, or
‘wisdom’, was to be found in the moral world, and came not through the
earthquake, wind or fire, but through the ‘still small voice’ of the Spirit of
God. Science, therefore, could not develop directly within such a world-view.
Indeed, the ancient Hebrews never developed any seafaring tradition (avoiding
the need to study the heavens for the purpose of navigation) and had moti-
vation for neither architecture nor industry - life remained tied to agriculture
and tradition.

In the blundering progress of scientific and technical achievements in
the Middle Ages, the Jews of Europe did not fail to contribute their part.
Throughout the period one finds mention of them - now translating a fun-
damental scientific work, now introducing a new process from one country
to another, now referred to as authorities, now making their original con-
tribution to mathematics, logic, astronomy, philosophy, philology, physics,
chemistry and engineering.

An impressive lot of Jewish inventors and scientists of the Middle Ages
could be compiled. Many other instances may be adduced, serving to in-
dicate that, in the gradual, anonymous, development of technical progress
before the 19th century, Jews collaborated with other sections of the Euro-
pean population. This same intellectual alertness was given a fresh outlet
after the breakdown of the Ghetto.

In the course of the 19th century, the energy and inventiveness which had
previously been almost confined to Talmudical studies (with their philosoph-
ical and mathematical corollaries), or to the difficult task of earning a living
through menial occupations (under adverse conditions of hardships and per-
secutions), began to be turned to science in its wider sense. Jews now not
only earned distinction but produced a few scholars who are the unchallenged
leaders in their particular branches of research.

The idea of a single supreme Deity was foreign to the early Chinese and
as a consequence the fate of natural science in that culture was a curious still-
birth. For the Chinese there existed no concept of a divine being whose decrees
formed inviolate ‘laws of nature’, and who underwrote the scientific enterprise.
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Despite sophisticated technological development in rocketry, printing, and the
widespread use of magnetic compasses in their sailing ships, these inventions
provoked no urge to explore natural regularities or the geography of the globe.

A central idea of Chinese thought from earliest times until the mid 20th

century appears to be that of spontaneous development of order in the world.
This notion could have had its roots in observations of the natural world,
for example the organized collective behavior of insect colonies, where there
arises a mysterious harmony between many separate parts without external
human interference.

Alternatively, we might find its roots in the gradual appearance of social
order within small peasant groups who found themselves evolving a stable
and organized way of life within their communities, without the imposition
of rules by some external central government. Rules arose by negotiation and
compromise rather than dictatorial decree.

This view eventually evolved in the 6th century BCE into Confucianism
- a world view that did not seek rules for the behavior of nature in logical
analysis or through systematic observational studies, but looked instead to
the analogy with the harmonious social customs that evolve out of collective
human activity. Thus, order in nature was sought in social behavior, known
as Li. Li operated across the entire spectrum of life; it was the reason for the
motions of the moon and the stars, for the successful exercise of self-control
in human dealings, and for the social divisions of rich and poor.

Another Chinese philosophy, known as the Tao (the ‘way’) opposed this
search for order of nature in social behavior. They believed that only by being
one with nature could the order within be understood. This holistic view also
denies a notion of an external world of physical reality. Thus, despite their
technology, the Taoist philosophers never framed any statement that we might
call laws of nature. They had no confidence in the ability of reason to unravel
the universe. Their theology of pantheistic naturalism, ran counter to the
entire concept of God controlling the universe. They believed that everything
had the ability to bring itself into being, and so there was no psychological
desire to introduce a personal Creator.

Thus, whether through Li or Tao, the early Chinese had no reason to
believe in an underlying rationality in nature that might be uncovered and
understood by detailed observation and codification. The Universe was be-
lieved to be far too complex for such an enterprise to be even considered.

The idea of order never carried with it any implication that there must
inevitably exist constraining laws and an ordering law-giver. Despite their
early technological superiority, the scientific altitude faded and died unfulfilled
in ancient China.
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It remains to ask why the intellectual atmosphere of Greek culture, with
its stable government and highly developed systems of civil law, did not lead
to uncovering of the great code of natural laws.

At first sight it appears that many trends in Greek thought were taking
the perfect coarse toward a scientific revolution: a faith in the intelligibility
and rationality of the world, a desire to seek out and comprehend the truth
for its own sake and a desire to amass a vast panoply of facts. None the less,
the following trends created a barrier through which their thinking about the
natural world could not pass:

• The Greek philosophical schools begun with theories about the nature
of everything but were too vague and diluted to tell us very much about
particular things. Science only began to make dramatic progress during
the late Renaissance when it limited its objectives and started to address
the particular as the necessary prerequisite to any understanding of the
general. Greek philosophers preferred to argue about the meaning of
the idea rather then observe what happened in the world. Even the
Greek materialist philosophers applied their logic to problems beyond
the reach of observation (origin of life, origin of all things, etc.).

• Greeks were impeded by their very reverence for inexorable logic; but
logic alone cannot reveal to us the existence of new types of entity, and it
has little use for experiment and observation. A reverence for geometry
fosters belief that the most important properties of the world are static,
and prevents one focusing upon the dynamic aspects of its structure.

• Greeks had a low view of manual labor and slavery was a key element
in their economy, To make devices and experiments was beneath their
aristocratic dignity. It was an activity to be pursued by those who could
not think. This resulted in a mentality that all concern with nature was
dominated by theory. There was no experiment. Furthermore, it hin-
dered the development of a large pool of independent skilled craftsmen
within a society. From the workshops of such individuals, and by their
motivation to manipulate nature and build bigger and better artifacts
and tools, did the practice of applied science receive its stimulus during
the Renaissance.

• Many of the physical theories and cosmologies of the Greeks read like
rational revisions of the early myths. They were exercises in deduc-
tive ingenuity in which the question of observational consequence in the
future never arose.

In conclusion: science arose in Western Europe as a direct consequence
of the Judeo-Christian heritage. The new scientific enterprise evolved most



870 2. Slumber and Awakening

successfully in an environment in which there existed a strong belief in the
role of law and order in the widest sense: it was a grand merger of two systems
- a strong monotheistic religious belief coupled to a strong civil legal system
and central government. A culture displaying both of these attributes is an
especially advantageous environment for the emergence of a firm belief in laws
of nature and in the rationality and ordered character of the World.
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Ha-Levi, Yehudah ben Shmuel,
553, 578, 578, 579, 850, 854

Ha-Meaati, Nathan ben Eliezer,
635

Ha-Nagid, Shmuel, 553

Ha-Parhi, Estori ben Moshe, 649,
649

Halley, Edmund, 808

Hals, Frans, 790

Hamilton of St. Andrews (Archibi-
shop), 806

Haroun of Cordova, 853

Harriot, Thomas, 821

Harvey, William, 860

Hayton the Elder, 623

Hayyuj, Yehudah ben David (of
Fez), 553, 559, 853
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He-Hassid, Rabbi Yehudah Ben
Shmuel Ben Kalonymus, 605,
605

He-Hassid, Shmuel, 605

Hecataeos of Miletos, 767

Hegel, Georg Wilhelm Friedrich,
849

Henry, the Navigator, 638, 693,
694

Heresbach, Conrad, 862

Herjolfsson, Bjarni, 561

Hero(n) of Alexandria, 520, 533,
608, 630, 672, 679, 752

Herodotos, 599, 639, 767, 768

Herz, Marcus, 857

Herzog, Yaacov, 701

Heytesbury, William, 656

Hipparchos of Nicaea (Rhodes),
640, 738, 742

Hippocrates of Cos, 543, 649, 779,
781

Hire, Philippe de la, 710

Hispalensis, Johannes (Ibn Daud),
569

Hispanus, Johannes Avendahut,
see Ha-Levi, Avraham ben
David

Hisplensis, Isidorus, see Isidore of
Seville

Hobbes, Thomas, 724, 784

Homer, 767, 769

Horner, W.G., 622, 648

Hulagu Khan, 623

Hus, Jan, 597

Huygens, Christiaan, 790

I

Ibn al-Baitar, 614, 861

Ibn al-Haitham, see Alhazen

Ibn al-Shatir, 662

Ibn Alfakhar, Yehudah, 855

Ibn Alfakhar, Yosef, 855

Ibn Aqnin, Joseph ben Yehudah,
587

Ibn Battuta, Muhammad, 653, 654

Ibn Ezra, Avraham ben-Meir, 553,
559, 579, 580, 580, 581, 606,
669, 677

Ibn Gabirol, Shlomo (Avicebron),
553, 568, 568, 569, 588, 646,
669, 832

Ibn Hayyan, Jabir, 535

Ibn Janah, Jonah, 553, 567

Ibn Qurra, Ibrahim Ibn Sinan, 540,
672

Ibn Rushd, Muhammad (Averroës),
569, 584, 584, 585, 617, 624,
625, 669, 799, 861

Ibn Shaprut, Hasdai, 546
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Ibn Shoshan, 856

Ibn Sid, Itzhak, 632

Ibn Sina (Avicenna), 543, 567, 569,
602, 669, 772, 860, 861

Ibn Tibbon, Moshe, 625

Ibn Tibbon, Shmuel, 617, 625

Ibn Tibbon, Yaacov ben Machir,
624, 625, 633, 649, 729

Ibn Tibbon, Yehudah, 625, 854

Ibn Verga, Shlomo, 726

Ibn Verga, Yehudah, 671, 725

Ibn Verga, Yosef, 726

Ibn Yunus (of Cairo), 565, 565,
602, 662, 672, 674, 675

Ibn Zuhr (Avenzoar), 580, 861

Ibn-Nafis, 861

Immanuel of Rome, 854

Iriarte, Tomas de, 597

Isa, the Mongol, 613

Isaiah (Prophet), 581

Isidore of Seville (Isidorus Hisplen-
sis), 517

Isidoros of Miletos, 515

Israeli, Itzhak ben Shlomo, 542,
855, 861

Isserles, Moshe (ReMA), 815

Itzhaki, Shlomo (RASHI), 571, 571,
572, 606, 651

J

James of Vitry, 601

James, William, 579

Jenghis Khan, 612, 613, 645

Jeremiah (Prophet), 625

Jones, William, 821

Juvenal, 599

K

Kant, Immanuel, 540, 588, 759

Kasiska, Friedrich, 707

Kepler, Johannes, 565, 570, 624,
671, 685, 712, 742, 784, 786,
791, 796, 801, 841, 866

Kiddinu (Cidenas), 738

Kimhi, David (RADAK), 554, 606,
606

Kimhi, Joseph, 606

Kimhi, Moshe, 554, 606

Koestler, Arthur, 801

Koippernigk, Nicolas, see Coperni-
cus, Nicolaus
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Kramp, Christian, 821

Kublai Khan, 612, 613, 631

L

l’Ecluse, Charles de, 862

Labert, Johann Heinrich, 573, 587

Lagrange, Joseph Louis, 582

Lamé, Gabriel, 612

Lantantius, 769

Laplace, Pierre Simon de, 782

Lassus (Lasso), Orlando di, 717,
753

Lavinde, Gabriel de, 704

l’Ecluse, Charles de, 775

Leeuwenhoek, Anton van, 790

Legendre, Adrien Marie, 573, 587

Leibniz, Gottfried Wilhelm von,
633, 682

Leonardo da Vinci, 516, 683, 710,
715, 724, 731, 731, 732, 733,
748, 752, 833, 861

Leonardo of Pisa, see Fibonacci

LeVerrier, Urbain Jean Joseph,
662

Levita, Elia (Eliyahu ben Asher
ha’levi Ashkenazi; ‘Bachur’),
760

Li Yeh, 606, 607, 622

Libri, Guillaume, 609

Lindemann C.L.F, von, 587

Liucci, Mondino dei, 861

Locke, John, 784, 790

Lopes, Roderigo, 856

Lorki, Joshua, 701

Louppes (Lopez), Antoinette de,
815, 834

Lucas, Francois Edouard-Anatole,
612

Lully, Raymond, 633, 633, 826

Luria, Itzhak Ashkenazi (ha-Ari),
825, 826–832

Lusitanus, Amatus (Joannus Roder-
icus), 779, 779, 780, 856, 862

Luther, Martin, 571, 724, 778, 787,
791, 799, 805

Luzzato, Shmuel David, 555

Lyra, Nicolas de, 571

M

Maccoby Hyam, 628

Mach, Ernst, 658

Machiavelli, Niccolo, 753, 758, 833,
849

Madhava of Sangamaramma, 522,
523, 525, 687
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Magellan, Ferdinand (Femão de
Magalhaes, Fernando de Ma-
gallanes), 696, 742, 744, 769,
845

MAHARAL, see Yehudah Liwa

Mahavira, 522, 539

Maimonides, see Moshe ben Mai-
mon

Maniscriba, 857

Manutius (Manuzio) the Younger,
Aldus, 823

Marc, the Greek (Marcus Grae-
cius), 626

Marco Polo, 588, 624, 630, 630,
631, 745, 769

Marco, the Surgeon, 744

Mare, Antoniotto Uso di, 638

Marignolli, Giovanni dei, 666

Marinos of Tyre, 768

Marlowe, Christopher, 807

Martyr, Peter (of Anghiera), 757

Marx, Karl Heinrich, 722

Mary, Queen of the Scots, 705

Mashallah, 531

Mästlin, Michael, 844

Maurolycus, Franciscus (Mauroli-
co, Francesco), 649, 650, 668,
776

Medici, Lorenzo Piero Francesco
di, 748

Meir of Rothenburg (MAHARAM),
621, 621

Mendez-Nasi, Donna Gracia (Hanna),
812

Mengoli, Pietro, 685

Mercato, Ludovico, 814

Mercator, Gerhardus (Gerhard Kre-
mer), 773, 810, 823, 823, 824,
833, 847

Mersenne, Marin, 612

Meshullam ben Menahem of Volterra,
730, 743

Michelangelo Buonaroti, 733, 753

Milton, John, 807

Mirandola, Pico della, 700, 826,
828

Moivre, Abraham de, 611, 782

Molcho, Shlomo, 776

Moliere, Jean Baptiste Poquelin,
784

Monge, Gaspard, 711, 757

Montaigne, Michel Eyquem de,
784, 791, 815, 833, 833

Montalto, Eliyahu, 813, 856

Montecorvino, Giovanni da, 632

Monteverdi, Claudo, 717

Moshe ben Maimon (Maimonides,
RAMBAM), 545, 558, 571,
572, 585, 585, 586–588, 602,
605, 624, 625, 637, 669, 700,
702, 791, 850, 854, 855, 861



Name Index 891

Moshe ben Nahman (Nahmanides,
RAMBAN), 576, 586, 627, 627,
651, 701

Müller, Johannes, see Regiomon-
tanus

Mussafia, Benjamin, 857

N

Nahmanides, see Moshe ben Nah-
man

Napier, John, 753, 805

Narayana Pandit, 523, 525, 686

Nasi, Yosef, 812

Neckam, Alexander, 600, 600, 601

Nemorarius, Jordanus, 606, 607,
614, 615, 677

Newcomb, Simon, 565, 675

Newton, Isaac, 525, 539, 648, 684,
724, 784, 786, 793

Nicolas of Cusa (Nicolaus Cusanus,
Nicholas Krebs), 699, 713,
714, 715, 717, 731, 799, 843

Nilakantha, 523

Norman, Robert, 843

Nuñes (Nuñez), Pedro (Petrus No-
nius), 773, 773, 774, 810, 823,
847

Nuñes, Beatrice, 774

Nuñes, Clara, 773

Nuñes, Isabel, 774

O

Ogadai Khan, 618

Olivi, Peter, 636, 636

Olmedo, Sebastian de, 747

Olympiodoros (the Younger) of
Alexandria, 516

Omar Khayyam (Omar bin Ibrahim
al-Khayyami), 572, 572, 573,
672, 673, 865

Oresme, Nicole, 657, 682, 684, 685,
685, 686, 713

Orta, Garcia da, 777, 814, 856, 862

Ortelius, Avraham (Ortels, Wor-
tels), 832, 833

Osiander, Andreas, 792

Otho, Valentinus, 808, 841

Oughtred, William, 821

Ovadiah Yareh of Bertinoro, 742

P

Pacioli, Luca, 677, 713, 747, 748,
820

Palestrina, Giovanni de, 717, 753
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Palissy, Bernard, 842, 842

Palladio, Andrea (di Pietro della
Gondola), 806

Pappos of Alexandria, 540, 672,
752

Paré, Ambroise, 806, 806, 862

Paracelsus (Philippus Aureolus,
Theophrastus Bombast von
Hohenheim), 772, 772, 773,
856, 861

Park, Mungo, 768

Parmenides of Elea, 767

Pascal, Blaise, 627, 650, 668, 770,
784

Paul of Aegina, 528, 861

Paulinian, 779

Pearson, Karl, 782

Peckham, John, 565

Peletier, Jacques, 847

Pell, John, 582

Peregrinus, Peter (the Stranger),
601, 630, 630

Petahyah of Regensburg, 589, 589

Petrarca, Francesco, 655, 655, 656

Peurbach (Purbach), George von,
717, 726, 727, 815

Philo of Alexandria (Judaeus), 602

Philoponus, Joannes (John the
Grammarian), 565, 636, 731

Pi Sheng, 570, 716

Pinsker, Simhah, 555

Pitiscus, Bartolomeus, 848

Pizarro, Francisco, 764, 775

Pizarro, Gonzalo, 775

Pizarro, Hernando, 775

Pizarro, Juan, 775

Plaisance, Aymeric de, 648

Planudes, Maximus (Manuel), 651,
652

Plato, 539, 566, 628, 699, 714, 768,
800

Plato of Tivoli, 577

Plessis, Armand-Jean du, see Riche-
lieu

Pliny, the Elder (Gaius Plinius Se-
cundus), 517, 599, 620, 742,
774

Plotinus, 568

Poe, Edgar Allan, 705

Polo, Marco, see Marco Polo

Polyelitos, 611

Pomis, David de, 852, 857

Ponce de Léon, Juan, 757, 758

Poncelet, Jean-Victor, 711

Porta, Giovanni Battista della,
565, 707

Priscianus, 514

Proclos, 630

Prophatius, 624
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Ptolemy (Claudios Ptolemy of Ale-
xandria, Ptolemaeos), 533, 541,
565, 582, 617, 618, 623, 632,
634, 639, 649, 674, 686, 694,
695, 714, 726, 727, 738, 768,
769, 773, 785, 800, 824

Pythagoras of Samos, 540, 800,
825

Q

Quadi Zada, 711

R

RABED, see Ha-Levi, Avraham
ben David

RADAK, see Kimhi, David

RALBAG, see Ben Gershon, Levi

RAMBAM, see Moshe ben Mai-
mon

RAMBAN, see Moshe ben Nah-
man

Ramus, Petrus (Pierre de la Rameé),
726, 802

Rappoport, Shlomo ben-Moshe Ashke-
nazi, 782

RASHI, see Itzhaki, Shlomo

Ray, John, 775

Recorde, Robert, 677, 816, 816,
820, 847

Regiomontanus (Johannes Müller),
622, 623, 674, 680, 717, 726,
726, 727, 728, 799, 845, 863

ReMA, see Isserles, Moshe

Rembrandt, Harmenszoon van Rijn,
784, 790, 813

Reuchlin, Johannes, 555, 571, 826,
828

Reuveni, David, 775

Rheticus, George Joachim, 792,
808, 808, 841, 847

Richard of Wallingford, 654

Richelieu, Cardinal (Armand-Jean
du Plessis), 707

Ricoldo di Monte Croce, 637

Robert of Chester, 581, 678

Rojas, Fernando de, 815

Romanus, Adrianus, 846

Rosales, Immanuel (Jacob Hebraeus),
813

Rossi, Azariah dei (Bonainto), 833,
833

Rousseau, Jean-Jacques, 647

Rubruquis, 624

Rudolff, Christoff, 770, 820, 847

Ruffini, Paolo, 622, 648
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Russell, Bertrand Arthur William,
544, 800

S

Saadia Gaon, 544, 544, 545, 550,
637

Saccheri, Girolimo, 573, 622, 623,
674

Santi, Raffaelo, 753

Sarton, George Alfred Léon, 732

Savonarola, 748

Scaliger, Joseph Justus, 753, 865

Scaliger, Julius Caesar, 761, 865

Schöffer, Peter, 716, 721

Schopenhauer, Arthur, 568, 669

Schwarze, Berthold der, 653

Scot, Michael, 607, 617, 617

Scotus, John Duns, 569, 646, 646

Sebokht, Severus, 528

Seleucus the Babylonian, 539

Seneca, Lucius Annaeus, 655

Servetus, Michael, 817, 856, 862

Shakespeare, William, 666, 784,
807, 834

Shen Kua, 574, 574, 600

Shen Lung, 661

Shuja, Abu Kamil (al-Hasib), 542

Simonetta, Sico, 704

Simplicius, 514

Simpson, William, 573

Smith, David Eugene, 538

Snell (Snellius), Willebrod van
Roijen, 790

Soares, Mario, 815

Sodorini, Piero, 749

Sorbon, Robert de, 591

Soto, Hernardo de, 766

Spina, Alessandro della, 637

Spinoza, Baruch, 568, 572, 581,
588, 605, 651, 669, 700, 784,
790, 813

Steinschneider, Moritz, 854

Stevin, Simon (Stevinus), 821, 848

Stifel, Michael, 753, 770, 805, 805,
845, 847

Strauss, Leo, 759

Su Sung, 574

Suetonius, 517

Swineshead, Richard, 656

T

Tagliacozzi, Gaspare, 849
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Tamerlane, see Timur

Tartaglia, Niccolo, see Fontana,
Niccolo

Tasso, Torquato, 807

Taxis, Franz von (Francesco Tassi),
759, 759

Taylor, Brook, 526, 710

Teixeira de Carvalho, Mario, 815

Teixeira de Pascoais (Joaquim Pereira
de Vasconcelos), 814

Teixeira Sampayo, Diego (Abra-
ham Senior Teixeira), 814

Teixeira, Anisio Spinola, 815

Teixeira, Beinto, 814

Teixeira, F.G., 814

Teixeira, Gomes, 814

Teixeira, Manuel (Itzhak Hayyim
Senior Teixeira), 814

Teixeira, Pedro, 814

Telesio, Bernardino, 823, 823

Tempier, Etienne, 634, 635

Thales of Miletos, 767

Theaetetos of Athens, 781

Themo Judaei (Themon Judaeus),
683, 684

Theophrastos of Eresos, 774

Thorfinn, Karlsefni, 561

Timur, 644

Tintoretto, 753

Torquemada, Alver Fernandez de,
747

Torquemada, Tomas de, 597, 747

Torres, Luis Vaez de, 744

Torricelli, Evangelista, 817

Toscanelli, Paolo, 702, 715, 715,
731, 744, 769

Toynbee, Arnold, 701

Trithemius, John, 704

Tsai Lun, 719

Turner, William, 862

Tuvia ha-Rofeh, 857

U

Uljaytu, 645

Ulugh Beg, 711

V

Van-Ceulen, Ludolph, 848

Varahamihira, 516

Vasari, Giorgio, 712

Vasconcelos, Joaquim Pereira de,
see Teixeira de Pascoais

Vecelli, Tiziono, 753
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Vecinho, Joseph (Vizino), 729

Velasquez, Diego, 761

Vermeer, Jan, 790

Vernier, Pierre, 773

Veronese, Paolo, 753

Verrocchio, Andrea del, 733

Vesalius, Andreas, 733, 780, 780,
802, 817, 856, 860, 862

Vespucci, Amerigo, 695, 741, 748,
748, 749

Vick, Henry de (of Württemburg),
686

Vico, Giambattista (Giovanni Bat-
tista), 849

Viète, Francois (Franciscus Vieta),
752, 754, 821, 845, 845, 846,
848, 863

Vigenere, Blaise de, 707

Vincent of Beauvais, 542, 616, 617

Vinci, Leonardo da, see Leonardo
da Vinci

Vitello, see Witelo

Vivaldo, Sorleone de, 638

Vivaldo, Ugolino, 638, 638

Vivaldo, Vadino, 638

Voltaire, Francois Marie Arouet
de, 573, 849

W

Waldseemüller, Martin, 695, 749

Wallis, John, 808, 821

Walsingham, Francis, 705

Wang Hsiao Tung, 519

Weinberg, Steven, 627

Werner, Johann, 841

Wharton, Thomas, 748

Whitehead, Alfred North, 544, 784

Widman, Johannes, 743, 820

William of Moerbeke, 629

William of Ockham, 646, 657, 657,
658, 683, 685, 781, 786

William of Saint-Cloud, 662

Wimpfen, Alexander Suesskind,
621

Witelo (Vitello), 565, 629

Wren, Christopher, 808

Y

Yang Hui, 627

Yehiel of Paris, 618, 701

Yehudah Liwa ben Bezaleel (MA-

HARAL of Prague), 849, 849,
850, 851
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Yehudai ben Nachman Gaon, 529

Z

Zacuto, Avraham ben Shmuel,
671, 693, 728, 729, 810

Zacuto, Avraham II (Zacutus Lusi-
tanus), 813

Zarfati de Pina, David, 749

Zarfati, Itzhak, 749

Zarfati, Joseph (Josiphon, Giosi-
fante, Giuseppe Gallo), 749

Zarfati, Shmuel (Gallo), 749, 861

Zarfati, Yaacov ben Shlomo, 749

Zedakiah, 853

Zemah Gaon, 541

Zeno of Citium, 781

Zerahia Chen of Barcelona, 630

Zheng He (Cheng Ho), 687, 692

Zoroaster (Zarathustra), 544



Subject Index

A

abacus, 598, 599, 673

Accademia dei Cimento, 817

Accademia Secretorum, 817

Accedemia dei Lincei, 817

actuarial problems, 808

Al-Azhar University, 593

al-Mustalhak, 567

Albigensian Crusade, 613

albion, 655

alchemy, 531, 535, 617, 621, 629,
633, 655, 773

Aldine Press, 823

Alexandria, 718

algebra, 535, 537, 581, 582, 602,
678, 819

algebra of complex numbers, 817

algebraic equations, 519, 622

algebraic notation, 819, 847

algebraic symbolism, 743

algorithm, 535, 582, 678

Alhazen’s problem, 565, 675

Almagest, 582, 625, 639, 650, 727,
769

alphabet, 720

Alphonsine Tables, 632

Althing, 545

America, 695, 748

amicable numbers, 540

ammonia, 633

anatomy, 780, 806

Anglicanism, 787

angular velocity, 615

anthropogeography, 767

apparent solar time, 640

Archimedean problem, 565, 675

Arian Christianity, 613

artillery, 666

astrolabe, 671, 687, 728

astrology, 517, 536, 560, 587, 617,
655, 725, 753

astronomical clock, 654

astronomy, 512, 516, 520–523, 528,
534, 536–538, 541, 544, 566,
567, 574, 577, 579, 580, 586,
587, 592, 602, 607, 614, 617,
618, 622, 623, 625, 633, 635,
650, 651, 669, 671–674, 680,
682, 683, 693, 717, 725–729,
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731, 742, 743, 745, 748, 784–
786, 791, 799–801, 808, 810,
815, 844, 866, 867

B

Babylonia, 548

ballistics, 777

battle of Agincourt, 666

Battle of Hastings, 571

Battle of Lepanto, 833

Battle of Salamis, 514

Beilis trial, 581

Bhagavad-Gita, 522

Bible, 778

Big Bang, 570, 573, 588

binomial coefficients, 847

biology, 859

Black Death, 561, 644, 679, 680

bookkeeping, 748

Brazil, 750

British Museum Codex, 558

Bubonic Plague, 515

C

Cairo Codex, 558

calculus, 683

calendar, 531, 713, 763

calendar reform, 740, 848

Cambridge University, 590

camera obscura, 566, 650, 776

canal engineering, 732

Carolingian Renaissance, 530

catapults, 732

Cathedral of Florence, 703

catoptrics, 516, 565

cellulose, 719

center of gravity, 615, 817

chemistry, 602, 620, 720, 770, 772,
842, 867

Chess, 517

China, 517, 531, 541, 570, 574, 584,
588, 599, 601, 606, 612, 613,
622, 623, 627, 630–632, 636,
640, 645, 648, 654, 658, 660,
661, 664, 666, 672, 680, 686,
692, 694, 695, 697, 715, 716,
719–721, 751, 816, 842, 868

Chinese Remainder Theorem, 739

chronon, 587, 670

cipher, 615

climatology, 767, 768

clock, 574, 641

cognitive revolution, 513
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combinatorics, 633, 649, 668, 739

comets, 726, 844

comparative anatomy, 807

compass, 600, 631, 732

complex numbers, 817

Confucianism, 868

conjunction of Jupiter and Saturn,
671

constitutional government, 778

continued fractions, 525, 739, 847,
848, 864

Contra Medicos Hebreos, 851

coordinate geometry, 740

coordinate system, 709

Copernican Revolution, 786, 793

cosmology, 522, 544, 573, 588, 634,
635, 669, 713–715, 731, 793,
796, 828–830, 832, 844

cotangents, 541

Counter-Reformation, 761

cross-ratio, 710

Crusades, 574, 613

cryptography, 704

cubic equations, 572, 740, 753, 777,
805, 818, 846, 847

Curie temperature, 830

cycloid, 848

D

dark ages, 655

Dead Sea Scrolls, 558

decimal fractions, 546, 627, 711,
848

descriptive geometry, 757, 847

differential, 523, 739

Diophantine problems, 582, 608

Dominicans, 594

Doppler shifts, 797, 798

double entry bookkeeping, 748

double reflection, 648

drugs, 772

dry-point engraving, 757

dynamics, 656

E

earthquakes, 514, 816

Ebers Papyrus, 661

eclipses, 541, 565, 632, 640, 650,
671, 675, 685, 729, 741, 742
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Elements, 582, 622, 625

embryology, 807

England, 528–531, 561, 563, 575,
576, 580, 581, 590, 594, 600,
603, 628, 636–638, 643, 653,
656–658, 666, 677, 681, 687,
744, 773, 775, 778, 779, 787,
788, 807, 809, 814, 816, 843,
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Giordano Bruno 928 · Galileo Galilei 930 · Simon Stevin 939 · Wal-

ter Raleigh 946 · Pedro Teixeira 946 · Thomas Harriot 947 · Pietro

Cataldi 952 · Giovanni della Porta 953 · David ben Shlomo

953 · Tommaso Campanella 953 · Prospero Alpini 954 · Fran-

cis Bacon 954 · Ludolph van Ceulen 966 · Eliyahu de Luna Mon-

talto 966 · Andreas Libau 967 · Ulisse Aldrovandi 967 · William

Gilbert 971 · Theodore Turquet de Mayerne 972 · Santorio Santorio

975 · Johann Bayer 976 · Hieronymus Fabricius 976 · Willem Blaeu

976 · Hans Lippershey 976 · Zacharias Jansen 976 · Johannes Kepler

976 · Marco de Dominis 994 · John Napier 995 · Willem Schouten

1001 · Joseph Delmedigo 1001 · Pierre Gassendi 1002 · Cor-

nelius van Drebbel 1002 · Johann van Helmont 1003 · Wille-

brod Snell 1005 · William Oughtred 1006 · Wilhelm Schickard

1007 · Hugo Grotius 1007 · Zacutus Lusitanus 1007 · William Harvey

1008 · Pierre de Fermat 1010 · Albert Girard 1030 · Jan Komensky

1030 · John Rey 1032 · Gilles de Roberval 1032 · Adam Olearius

1033 · Francesco Cavalieri 1033 · Jeremiah Horrocks 1033 · Girard

Desargues 1034 · René du Descartes 1035 · Blaise Pascal 1039 · Fran-

ciscus de la Boë 1063 · Abel Tasman 1063 · Cyrano de Bergerac

1063 · Thomas Hobbes 1064 · Johannes Hevelius 1065 · Evan-

gelista Torricelli 1065 · Marin Mersenne 1067 · Ismael Boulliau

1077 · Jean Picard 1077 · Athanasius Kircher 1078 · Johann

Glauber 1078 · Bernhard Varen 1079 · James Ussher 1080 · Nico-

laus Mercator-Kaufmann 1081 · Thomas Bartholinus 1081 · Otto
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von Guericke 1082 · Francesco Grimaldi 1083 · Christiaan Huy-

gens 1083 · William Brouncker 1086 · John Wallis 1089 · Georg

van Hanau 1089 · Thomas Wharton 1090 · Johann van Hudde

1091 · Robert Hooke 1091 · Johann de Witt 1091 · Johann Heinrich

Rahn 1092 · Jan Swammerdam 1092 · Robert Boyle 1093 · Baruch

Spinoza 1094 · Marcello Malpighi 1109 · John Graunt 1110 · Lorenzo

Bellini 1110 · William Petty 1110 · Isaac Barrow 1115 · James Gre-

gory 1116 · Thomas Willis 1118 · Isaac Newton 1119 · Thomas

Sydenham 1155 · Francis Willughby 1156 · John Ray 1156 · John

Pell 1156 · Francesco Redi 1158 · John Mayow 1158 · Anton van

Leeuwenhoek 1158 · Erasmus Bartholinus 1164 · Nicolaus Steno

1165 · Gabriel Mouton 1165 · Jean Richer 1166 · Giovanni Cassini

1166 · Gottfried von Leibniz 1167 · Nehemiah Grew 1174 · Regnier

de Graaf 1174 · Phillipe de la Hire 1174 · Olaus Römer 1178 · Gio-

vanni Ceva 1178 · Edmund Halley 1179 · Denis Papin 1181 · Edme

Mariotte 1181 · Ehrenfried von Tschirnhausen 1181 · Seki Kowa

1185 · Bernard de Fontenelle 1188 · John Locke 1189 · Michel Rolle

1189 · Jakob Bernoulli 1189 · Rudolph Jakob Camerarius 1191 · Jo-

hann Bernoulli 1191 · Stephen Gray 1193 · Abraham de Moivre

1193 · William Dampier 1196 · Giacomo Pylarini 1197 · Joseph

Sauveur 1197 · Jethro Tull 1197 · Abraham Darby 1208 · Luigi

Marsigli 1214 · Stephen Hales 1214 · William Jones 1215 · John

Machin 1215 · Roger Cotes 1216 · Giovanni Morgagni 1216 · Fran-

cis Hauksbee 1217 · Hermann Boerhaave 1217 · Gabriel Fahrenheit

1217 · Giambattista Vico 1217 · Thomas Newcomen 1220 · Brook

Taylor 1221 · Giulio dei Toschi 1224 · Jacob Hermann 1224 · Jo-

hann Sebastian Bach 1229 · Jacopo Riccati 1230 · Vitus Bering

1230 · James Bradley 1230 · Pierre Bouguer 1232 · Daniel Bernoulli

1232 · Pierre Fauchard 1234 · Jean Astruc 1234 · James Stirling
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1235 · Alexis Clairaut 1244 · Charles Du Fay 1245 · Girolimo Sac-

cheri 1245 · Voltaire 1245 · George Berkeley 1247 · Emanuel Sweden-

borg 1252 · Colin Maclaurin 1252 · George Hadley 1253 · Charles de

la Condamine 1255 · Claudius Aymand 1255 · Israel Ba’al Shem Tov

1255 · Thomas Bayes 1256 · Georg Brandt 1257 · Bernard de Belidor

1258 · David Hume 1258 · Leonhard Euler 1265 · Joseph Oppen-

heimer 1281 · Jose da Silva 1281 · Benjamin Huntsman 1281 · Moshe

Hayyim Luzzatto 1282 · Pierre de Maupertuis 1285 · Johann

Süssmilch 1285 · Christian Goldbach 1287 · Benjamin Robins

1288 · Anders Celsius 1288 · Jean Le d’Alembert 1289 · Jean Nol-

let 1291 · Thomas Simpson 1292 · Jean de Chéseaux 1293 · Hugh

Jones 1295 · Ewald von Kleist 1295 · Pieter van Musschenbrock

1295 · George de Buffon 1295 · James Lind 1301 · Johann Mayer

1301 · Benjamin Franklin 1301 · Charles de Montesquieu 1303 · Jo-

hann Winckelmann 1304 · Frederik Hasselquist 1305 · Gabriel

Cramer 1323 · Maria Agnesi 1323 · Eugene Aram 1323 · John

Michell 1323 · Johann von Segner 1325 · Joseph-Jérome de La-

lande 1325 · Nicolas-Louis de Lacaille 1325 · Jean-Jacques Rousseau

1325 · Denis Diderot 1327 · James Dodson 1327 · Victor von

Haller 1329 · Carolus Linnaeus 1330 · Jean Montucla 1331 · Im-

manuel Kant 1331 · Samuel Johnson 1341 · Ruggiero Boscovich

1341 · Joseph Lagrange 1342 · Joseph Black 1356 · John Smeaton

1357 · Johann Lambert 1360 · Franz Aepinus 1363 · James Brind-

ley 1364 · Jean-Sylvain Bailly 1364 · John Harrison 1365 · Eli-

ahu ben Shlomo Zalman 1368 · Joseph Kölreuter 1369 · James

Hargreaves 1369 · James Watt 1370 · Carl Scheele 1374 · Laz-

zaro Spallanzani 1374 · Peter Pallas 1375 · Henry Cavendish

1376 · William Hewson 1377 · Jesse Ramsden 1380 · James Cook

1383 · Richard Arkwright 1384 · Pierre Sonnerat 1384 · Edward
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Waring 1384 · John Wilson 1385 · Nicolas Cugnot 1385 · Antoine

Lavoisier 1386 · Alexandre-Théophile Vandermonde 1395 · Johann

Bode 1396 · Otto Müller 1397 · Pierre de Laplace 1397 · Marcus

Herz 1409 · Joseph Priestley 1409 · Alessandro Volta 1409 · Jo-

hann Pestalozzi 1410 · William Withering 1410 · Adam Smith

1414 · Jean Meusnier 1415 · Charles de Coulomb 1416 · Joseph

Bramah 1416 · Jan Ingenhousz 1416 · Luigi Galvani 1418 · Charles

Messier 1418 · Johann Wilcke 1418 · Moses Mendelssohn 1419 · Fred-

erick William Herschel 1421 · Caroline Herschel 1422 · Gas-

pard Monge 1424 · Jean Blanchard 1425 · Jacque Montgolfier

1425 · Joseph Montgolfier 1425 · Jacques Charles 1426 · George At-

wood 1427 · William Jones 1427 · René Haüy 1428 · Adrien Legendre

1429 · Johann von Goethe 1435 · James Hutton 1439 · Edmund

Cartwright 1440 · Claude Berthollet 1440 · William Paley 1441 · An-

toine de Condorcet 1442 · Nicolas Leblanc 1443 · Charles Bladgen

1444 · Jeremy Bentham 1444 · Abraham Bennet 1445 · Mar-

tin Klaproth 1450 · Salomon ben Maimon 1450 · John Rennie

1453 · Jeremias Richter 1454 · William Smith 1462 · Jean Delambre

1462 · William Murdock 1463 · Christian Sprengel 1463 · Thomas

Telford 1464 · Carl Gauss 1465 · Mungo Park 1496 · Edward Jenner

1496 · Georges Cuvier 1525 · Aloys Senefelder 1526 · Samuel Hahne-

mann 1526 · Lorenzo Mascheroni 1527 · Joseph Proust 1528 · Ben-

jamin Thompson 1528 · Thomas Malthus 1533 · Johann Ritter

1534 · Johann Pfaff 1535 · Louis Vauquelin 1536 · Marc des Chênes

1536 · Paolo Ruffini 1537 · Aimé Bonpland 1537 · Augustin de Can-

dolle 1538 · Alphonse de Candolle 1538 · Alexander von Humboldt

1539 · Louis Arbogast 1540 · Karl Burdach 1540 · Richard Tre-

vithick 1541 · Johann von Soldner 1542 · John Dalton 1542 · William

Wollaston 1544 · William Symington 1545 · Charles-Francois de
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Mirbel 1546 · Lorenz Oken 1546 · Heinrich Olbers 1546 · Joseph

Gay-Lussac 1558 · Lazare Carnot 1559 · William Henry 1559 · Adel-

bert von Chamisso 1560 · Marc Brunel 1561 · Nicolas de Saussure

1562 · Nicolas Appert 1563 · Jean Biot 1563 · Louis Poinsot

1564 · Joseph Jacquard 1566 · Sophie Germain 1566 · Fran-

cois Servois 1566 · William Congreve 1567 · Charles Brianchon

1567 · Robert Fulton 1571 · Humphry Davy 1573 · Georg Hegel

1576 · Jean Fourier 1585 · Christian Kramp 1602 · Etienne Malus

1602 · Simeon Poisson 1602 · George Cayley 1603 · Jean de Lamarck

1604 · Franz Gall 1605 · Jöns Berzelius 1606 · Amadeo Avogadro

1607 · Charles Bell 1608 · Dominique Arago 1609 · Jacque Bi-

net 1610 · Simon Lhuilier 1610 · Pierre Dupin 1610 · Joseph

von Fraunhofer 1611 · George Stephenson 1612 · John McAdam

1614 · William Prout 1615 · Olinde Rodrigues 1616 · Renè

Laënnec 1616 · Francois Magendie 1616 · John Farey 1622 · Francis

Ronalds 1624 · Friedrich Froebel 1625 · David Ricardo 1626 · Jo-

hann Döbereiner 1627 · Richard Roberts 1628 · Bernhard Bolzano

1628 · Augustin Fresnel 1629 · Arthur Schopenhauer 1644 · Leopold

Zunz 1656 · William Horner 1657
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Stars’ orbits you will know; and bold,
You learn what nature has to teach;
Your soul is freed, and you behold
The spirits’ words, the spirits’ speech.
Though dry reflection might expound
These holy symbols, it is dreary:
You float, oh spirits, all around;
Respond to me, if you can hear me.

What jubilation bursts out of this sight
Into my senses – now I feel it flowing,
Youthful, a sacred fountain of delight,
Through every nerve, my veins are glowing.
Was it a god that made these symbols be
That soothe my feverish unrest,
Filling with joy my anxious breast,
And with mysterious potency
Make nature’s hidden powers around me,

manifest?

Am I a god? Light grows this page –
In these pure lines my eye can see
Creative nature spread in front of me.
But now I grasp the meaning of the sage:
“The realm of spirits is not far away;
Your mind is closed, your heart is dead.
Rise, student, bathe without dismay
In heaven’s dawn your mortal head.”

All weaves itself into the whole,
Each living in the other’s soul.
How heaven’s powers climb up and descend.
Passing the golden pails from hand to hand!
Bliss-scented, they are winging
Through sky and earth – their singing
Is ringing through the world.

What play! Yet but a play, however vast!
Where, boundless nature, can I hold you fast?
And where you breasts? Wells that sustain
All life – the heaven and the earth are nursed.
The wilted breast craves you in thirst –
You well, you still – and I languish in vain?

From Goethe’s ‘Faust’.

Translated by Walter Kaufmann, 1961.
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1583–1600 CE Giordano Bruno (1548–1600, Italy). Philosopher of the
Renaissance. Adopted the view that the universe is infinite with innumerable
stars and planetary systems. In his publication “Dell’ infinito universo e
mondi” (“Of infinity, the universe and the world”) he criticized the doctrines
of Aristotle and Ptolemy that there was an absolutely fixed center in the
universe.

Bruno was christened Filippo. In his 15th year he entered the order of
the Dominicans at Naples. But from an early age he was on the move
through the cities of Europe: Rome (1576), Geneve (1579), Paris (1581),
Oxford (1582), Wittenberg (1587), Prague (1588), Frankfurt (1591), Zürich
(1592), and Venice (1593).

He was burned at the stake in Rome by the Inquisition on the charge of
believing in the nonexistence of the absolute truth. His last cry from the
burning stake was “Eppur si muove!” (“and nonetheless it moves!”).

Beyond the Greeks – The Emergence of
Modern Science

∗ ∗∗

“Until the Scientific Revolution of the 17 th century, meaning flowed from
ourselves into the world; afterwards, meaning flowed from the world to us”.

(Chet Raymo, 1999)

In some branches of science, notably astronomy, the ancients made sub-
stantial contributions. In physics, the most fundamental of the sciences, the
record is scant. Simple engineering tools like the lever, the wheel, and the
inclined plane were known before recorded history; with them, by 3000 BCE,
the Egyptians had built such magnificent structures as the pyramids. The
functioning of these tools, of course, depended on unsuspected physical prin-
ciples.
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The first faint stirring of the science itself — the rigorous examination of
physical principles — was apparently a product of Greek civilization. From
the contemporary physicist’s viewpoint, its most interesting legacy was one of
the first recorded scientific controversies, having to do with the fundamental
nature of matter. Democritos, who lived about 400 BCE, was the leader of
an “atomistic” school which held that all matter was composed, in varying
combinations, of four different kinds of particles, tiny and indivisible. He
believed that their existence was literally a fact. Plato the philosopher, his
foremost opponent, conceived of fundamental matter in terms of mathematical
patterns, forms, and “ideas”. This ancient controversy between materialism
and idealism, has, oddly enough, been revived recently in a quite specific way
by modern atomic physics, and especially by the quantum theory.

The activity of Greek physicists was not limited to theoretical and philo-
sophical problems. Among the earliest experimental physicists was Pythago-
ras, the 6th-century philosopher and mathematician. He and his school at-
tempted to formulate a theory of musical harmony by experimenting with
strings of different lengths, thicknesses and tensions. It was indeed the first
instance of the application of mathematics to a basic physical phenomenon.
Euclid the geometer, who flourished at Alexandria about 300 BCE, made
studies in the laws of perspective and reflection, and is said to have written
on music and mechanics. Hero of Alexandria, who lived probably about
150 CE, made pulleys, gears, siphons, and an engine which used steam to
rotate a hollow sphere — the first known utilization of the law of action and
reaction. Ptolemy, an Alexandrian of about the same period, whose cos-
mology was accepted for many centuries, wrote on reflection and refraction.
Unquestionably the greatest ancient figure in both physics and mathematics
was Archimedes of Syracuse, killed by a Roman soldier in 212 BCE. He
was famous for his engineering and military inventions. More important, he
founded the sciences of statics and hydrostatics.

About the second half of the first century BCE, the Roman Vitruvius
wrote De Architectura, an encyclopedia of useful knowledge in the fields of
architecture, engineering and construction. He investigated such matters as
the measurement of time and acoustics, comparing the waves of sound to
those caused by a stone thrown into a pond. Like his fellow countrymen, he
laid emphasis on practical applications rather than on theoretical scientific
knowledge.

The above names and a few others make up the meager roster of ancient
physicists. Their influence on the main stream of scientific history was slight.
The monasteries, the cultural centers of the Middle Ages, were concerned
primarily with questions of philosophy and religion — for example, whether
God could create a stone so heavy that the Himself could not lift it, a problem
which does not lend itself to experimental verification. Over all science lay
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the shadow of Aristotle, the Greek scientist of the 4th century BCE. His
interests were universal, embracing logic, philosophy, history, politics and
the biological and natural sciences. He was the apostle par excellence of
rationalism, the belief in logical rather than experimental explanations. From
a purely philosophical viewpoint, Francis Bacon, Galileo’s contemporary,
did much to overthrow this doctrine. But in actual practice, it was Galileo
who who sounded its death knell.

1583–1637 CE Galileo Galilei (1564–1642, Italy). Pioneer of mod-
ern applied mathematics, physics and astronomy. The founder of modern
physics on account of his willingness to replace old assumptions in favor of
new scientifically deduced theories.

Supported the Copernican Revolution and paved the road for Newton’s
laws of motion. Introduced the method of mathematical analysis for the
solution of physical problems.

His major achievements are these:

(1) Originated (1583) modern accurate time-keeping through the discovery of
a natural periodic process that can be repeated indefinitely and counted
— the swinging pendulum. He found that each simple pendulum has
its own period, depending on its length. [The actual step of applying
the pendulum to clockwork, so as to record mechanically the number of
swings, was taken by Christiaan Huygens in 1656.]

(2) First pointed his self-made telescope at the sky in 1609. With this in-
strument he extended our knowledge by observing many stars which are
too faint to be seen directly. Discovered the satellites of Jupiter1, and
phases of Venus2. This small-scale model of the solar system convinced
him of the truth of the Copernican theory.

1 Simon Mayr (Mair, Meyer, Marius; 1573-1624, Germany). Astronomer. Assis-

tant to Tycho Brahe (1601). Claimed to have discovered (ca 1610) largest moons

of Jupiter and named them: Io, Europa, Ganymede and Callisto (a discovery,

generally credited to Galileo). Made first telescopic observations of Andromeda

spiral nebula (1611).
2 It was these observations, rather then the ideas of Copernicus, that dealt a death-

blow to the Ptolemaic geocentric system: Both the Ptolemaic and the Copernican

views described the motions of the planets. The heliocentric view of Copernicus

was a simpler hypothesis (Ockham’s razor!). This in itself, however, is not a
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(3) While investigating the motion of objects in free fall3 he was first to
realize that it is not the velocity of a body, but its acceleration which
signifies that there are forces acting on it (1604–1609).

(4) Showed by experiments (or thought-experiments as some claim) that bod-
ies of different constitution and weight (mass) are equally accelerated by
gravity (1609), i.e. fall with the same terminal velocity. Formulated cor-
rectly the basic kinematic laws of falling bodies.

(5) Recognized the concepts of parallelograms of forces and velocities, and
with it the separation of projectile motion into horizontal and vertical
components.

(6) Formulated the restricted mechanical ‘principle of relativity ’, stating that
no mechanical experiment will reveal whether a system is at rest, or
is moving uniformly in a straight line. In other words — the laws of
mechanics are invariant under a ‘Galilean transformation’. [In modern
notation, r ′ = r−v0t, t′ = t: a coordinate transformation that connects
observers in different frames.]

(7) Initiated the modern attitude toward the actual infinite in mathematics
(1638). Asserted that infinite numbers obey a different “arithmetic” from
finite numbers: If using the ordinary notions of “equal” and “less than”
on infinite sets leads to contradictions, this is not a sign that infinite
sets cannot exist, but rather, that these notions do not apply without
modifications to infinite sets. Galileo himself did not see how to carry

demonstration of its validity. Nature may, after all, be complex.

However, both systems differed in another aspect: According to Ptolemy, the sun

circled about the earth, and inside of the sphere of the sun lay the spheres of

Venus and Mercury. With such a geometry, it would be impossible for us ever to

see the entire bright side of Venus! According to Copernicus however, both Venus

and earth circled the sun. Since Venus was sometimes beyond the earth and the

sun, it would be possible for us to see its bright side. Thus, when Galileo turned

his telescope to Venus, and saw that its disk underwent phases from a ‘full Venus’

(similar to our full moon), to a new Venus (the dark side of Venus, corresponding

to our new moon), it was clear that the Copernican hypothesis stood vindicated.

Sunspots were reported independently in 1611 by Galileo and Christoph

Scheiner (1573–1650, Germany). However, Galileo and the other “discoverers”

of sunspots were well aware of the existence of sunspots, and naked-eye reports

of them, before they looked at the sun through telescopes.
3 Giovanni Battista Benedetti (1530–1590, Italy) was an important forerunner

of Galileo. Studied under Tartaglia. He worked on the free fall of bodies and

proposed (ca 1560) a theory almost identical to that which Galileo published in

De motu (1590).
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out such a modification of these notions (this was left to Georg Cantor
some 250 years later).

(8) Invented the thermoscope (1556), a prototype of the later thermometer,
that could only indicate relative changes in temperature: an inverted
flask with a narrow neck was lowered into a shallow bowl containing liq-
uid. The liquid would go part way up the flask’s neck; changes in the
surrounding temperature would either raise or lower the liquid. There was
no way to tell what the temperature actually was. It was later improved
by his friend Sanctorius (1611). Only in 1709 did Daniel Fahrenheit
invent the calibrated mercury thermometer.

Although Galileo4 did not define inertia5, he came close to it by under-
standing that one must exert a force on a body in order to accelerate or
decelerate it. It remained for Newton to generalize Galileo’s results to forces,
in general, and to define mass and inertia.

Galileo’s experiments with falling bodies6 were a crucial landmark in
physics in the sense that they marked the demise of Aristotelian physics.
In 1907, Einstein elevated Galileo’s experiment into a principle, just as ear-
lier in 1905 he had generalized Galileo’s principle of relativity to incorporate
all laws of physics.

After Galileo’s work became known, philosophers and scientists slowly
began to realize that the behavior of physical objects could be described in
mathematical terms. This led to the idea that there existed laws that had
been established by God to regulate his creation. The new idea that nature
itself was subject to laws, depended upon the implicit assumption that such
laws did not change with time, and that their divine origin guaranteed their
eternal endurance.

4 Often just called by his first name.
5 Nicole Oresme and Johannes Buridanus (ca 1350), in Paris, criticized Aris-

totle’s doctrine of motion. They in turn were influenced by the idea of impetus

introduced ca 530 by John Philoponus (John the Grammarian). Philoponus

was a Greek philosopher of Alexandria who speculated that a projectile would

gain momentum from the mechanism that fired it, thus arriving at a crude idea

of inertia. Galileo amalgamated these notions into his theory of motion.
6 In 1328, Thomas Bradwardine (1290–1349, England) discussed the issue of

the hypothetical free fall of bodies in void and concluded that two bodies of

the same material but different size, will fall with the same terminal velocity,

contradicting the Aristotelian view that the heavier body falls faster. Bradwardine

was a theologician and mathematician who became the Archbishop of Canterbury.
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Like Copernicus and Kepler, and in contradistinction to the Greek doc-
trine, Galileo realized that the ‘mysteries’ of nature could be illuminated only
with the assistance of accurate observations and experiments. It was just this
approach that was responsible for the epochal success of these scientists. In
fact, as soon as Galileo and others began to apply the scientific method in
physics and astronomy, a chain of discoveries resulted.

These discoveries fired the imagination and enthusiasm of European
thinkers. Scientific societies were organized, scientific journals began to ap-
pear. Science, hitherto the pursuit of occasional lone individuals, became a
social enterprise and has continued to be so to the present. Furthermore, it
became fashionable. Newton’s work, for example, made a profound impression
on every writer in Europe.

Galileo was born at Pisa. His father Vincenzio was an impoverished de-
scendant of a noble Florentine house, which had exchanged the surname of
Bonajuti for that of Galilei. Vincenzio was a competent mathematician and a
musician. By his wife, Giulia Ammannati of Pescia, he had 4 daughters and 3
sons, the eldest of which was Galileo. From his earliest childhood, Galileo was
remarkable for intellectual aptitude as well as for mechanical invention. His
education was principally conducted in the monastery of Vallombrosa, near
Florence. There he acquired a fair command of Latin, Greek and logic.

He was at this time attracted toward a religious life, but his father with-
drew him permanently from the care of the monks and placed him in 1581,
at the University of Pisa on a course of medical studies. In that year, while
watching a lamp set swinging in the cathedral of Pisa he observed that, what-
ever the range of its oscillations, they were invariably executed in equal times.
The experimental verification of this fact led him to the important discovery
of the isochronism of the pendulum. (More than 50 years later he turned it
to account in the construction of an astronomical clock.)

Up to this time he was entirely ignorant of mathematics, his father having
carefully held him aloof from a study which he rightly apprehended would
lead him to forsake medicine. Listening one day to an accidental lesson in
geometry, his attention was riveted and he threw all his energies into the new
pursuit. He rapidly mastered the elements of the science, and eventually ex-
tracted his father’s reluctant permission to exchange Hippocrates of Cos
and Galen for Euclid and Archimedes. For lack of means, he withdrew
from the university in 1585 before obtaining a degree, and returned to Flo-
rence. Shortly afterward he invented the hydrostatic balance, which he used
to find the specific gravity of objects by immersing them in water.

In 1588 he wrote a treatise on the center of gravity in solids, which together
with his former invention, made his name known throughout Italy and secured
him, at age 24, the post of professor of mathematics at the University of
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Pisa. During the ensuing two years (1589–1591) he carried out a series of
experiments by which he established the fundamental principles of dynamics.
His new views put him on a collision course with Aristotelian physics and
he was forced to leave the university. Through the death of his father in
July 1591, family cares and responsibilities devolved upon him, and thus
his nomination to the chair of mathematics at the University of Padua, was
welcome both for the relief it offered from pecuniary need, and as opening the
road to scientific distinction.

His residence at Padua (1592–1610) was a course of uninterrupted pros-
perity. His appointment was renewed three times, on each occasion with the
expressions of the highest esteem. His lectures were attended by persons of
the highest distinction from all parts of Europe, and such was the charm of his
demonstrations, that a hall capable of containing 2000 people had eventually
to be assigned for the accommodation of the overflowing audiences which they
attracted.

In 1593 he constructed the first thermoscope, consisting of a bulb filled
with air and water and terminating in a vessel of water.

In spite of his adherence to the Copernican theory, he continued to con-
form, in his public teaching, to Ptolemaic principles, waiting for the proper
opportunity to make an open onslaught upon the Aristotelian axioms7. The
discovery of the telescope by the obscure Middleburg optician, Jan (Hans)
Lippershey (1608), provided him with that opportunity. Galileo’s direction
of his new instrument [after one night of profound meditation on the princi-
ples of refraction in June 1609 in Venice, he was able to produce a telescope
with a magnifying power of 32] to the heavens opened an era in the history
of astronomy.

Discoveries followed upon it with astounding rapidity and in bewildering
variety: During 1609–1613 his discoveries indicated: that the moon (contrary
to the teachings of Aristotle) was not a smooth sphere shining by its own light,
that the Milky way was a mass of numerous stars, that Jupiter has 4 bright
satellites (which he named after the Medici family, who ruled the province
of Tuscany where he was born), the peculiar form of Saturn, the phases of
Venus and finally the sunspots8.

7 Nevertheless, he was not completely free of the Pythagorean and Neo-Platonic

doctrines, which had been disseminated during the medieval period and early re-

naissance: his work is premised on the deep-seated conviction of a simple, ordered

world , free from arbitrariness and disclosing geometrical regularity.
8 It was discovered earlier (1611) by the German astronomer Johannes Fabricius

(1587–1615). He concluded from his observations that the spots were integral

parts of the sun and that their movement was caused by the sun’s rotation about
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In September 1610 Galileo finally abandoned Padua for Florence. His
researches with the telescope had been rewarded by the Venetian senate with
the appointment for life to his professorship, at an unprecedented high salary.
His discovery of the ‘Medicean Stars’ earned him the title of ‘philosopher and
mathematician extraordinary’ to the grand duke of Tuscany.

When Galileo firmly upheld the Copernican theory that the earth moves
around the sun, Church officials warned him to abandon this ‘heretical’ sys-
tem. At the same time (1616), the Church placed the work of Copernicus on
the Index of prohibited books, where it remained for 200 years.

In 1632, Galileo published his masterpiece, A dialogue on the Two Systems
of the World9. After a long trial, Church officials forced him to say that he
gave up his belief in the Copernican theory, and sentenced him to an indefinite
prison term, which he spent in his villa near Florence.

Domestic afflictions combined with numerous and painful infirmities to
embitter his old age. His sister in law and her whole family, who came to live
with him on his return from Rome, perished shortly thereafter in the plague.
In 1634, his eldest and best-beloved daughter, a nun in a convent, died.

Galileo was never married, but by a Venetian woman named Marina
Gamba he had three children — a son who married and left descendants,
and two daughters who took the veil at an early age.

His prodigious mental activity continued undiminished to the last. In 1636
he completed his Discorsi a due nuove scienze (Discourses on the Two New
Sciences) in which he recapitulated the results of his early experiments and
presented mature meditations on the principles of mechanics. It summed up

its axis. In 1612 Galileo in Italy, Thomas Harriot in England, and the German

Jesuit Christoph Scheiner published their own observations. Galileo came

forth with the same explanation of the movement of the spots as did Fabricius,

whereas Scheiner said they were small planets revolving around the sun. In his

1613 publication Istoria e dimostrazioni intorno alle macchie solarie e loro ac-

cidenti , Galileo disproved Scheiner’s reasoning and, for the first time, publicly

supported the heliocentric theory of Copernicus. Scheiner, who eventually con-

ceded that Galileo was right, went on to make much more accurate observations

than Galileo had, and he found that the sun completes a full rotation in 27 days.
9 For further reading, see:

• Galilei, G., Dialogues Concerning Two New Sciences (1638), Dover Publica-

tions: New York, 1954, 300 pp.

• Drake, S., Galileo at Work, His Scientific Biography , University of Chicago

Press: Chicago, 1978, 536 pp.
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his life’s work on motion, acceleration and gravity, and furnished a basis for
the three laws of motion laid down by Newton in 1687. His last telescopic
discovery — that of the moon’s diurnal and monthly librations — was made
in 1637, only a few months before he became blind. It was in this condition
that Milton found him when he visited him in Arcetri in 1638. He continued
his scientific correspondence and thought out the application of the pendulum
to the regulation of clockwork, which Huygens successfully realized 15 years
later.

He was also engaged in dictating to his disciples, Viviani and Torricelli,
his latest ideas on the theory of impact, when he was seized with the slow
fever which, within two months, brought him to the grave. He was buried in
the Church of Santa Croce in Florence. Fifty years after his death, the city
erected a monument at the church in his honor.

Science Progress Report No. 6

“Eppur si muove” (1600–1633)

The Catholic hierarchy recognized, as had the Protestants earlier, that the
new cosmology was subversive — incompatible with the traditional, authori-
tarian society. One of the first victims of the Counter-Reformation was Gior-
dano Bruno, a former monk. Bruno traveled to England and befriended its
leading political and scientific figures; and when he returned, he popularized
Copernican theory on the continent. Bruno took Digges’ version of the in-
finite, Copernical universe and purged it of remaining Ptolemaic elements,
such as the perfect spheres that carried the planet’s orbits. He made this
infinite universe, with its infinity of inhabited worlds, the basis of his philos-
ophy, incorporating Nicholas of Cusa’s thinking and going beyond it. Bruno
explicitly challenged the idea of creation ex nihilo, arguing that the universe
must be unlimited in both space and time, without beginning or end.

Bruno was a philosopher, not a scientist, and he used the tradition of logi-
cal argument to support the Copernican worldview. Above all, he considered
himself a loyal Catholic bent on reforming, not rejecting, the church. Yet on
his return to Catholic territory in 1592, he was promptly arrested. Cardinal
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Bellarmino, a prominent leader of the Counter-Reformation and the pope’s
own theologian, saw in Bruno’s writing an effort to subvert the church from
within. The idea of an infinite number of worlds not only undermined the
primacy of the church hierarchy, it contradicted as well sources of authority
— the idea was found neither in the Bible nor in Aristotle or Plato. Moreover,
it very obviously destroyed the Catholic vision of a material, subterranean
hell and an ethereal heaven beyond the cosmic spheres: it portrayed a cosmos
in which these threats and enticements would have no place, and would be
comprehensible to only a few — certainly not to the ill-educated peasants, as
the simple picture of a heaven above and a hell below certainly was.

Over seven years of imprisonment Bellarmino labored to get Bruno to
recant the doctrine of the infinite plurality of worlds. Bruno refused, and in
1600 he was burned at the stake.

Since the charges against Bruno were never made public, other Catholic
scientists, including Galileo, did not take his execution as a sign of Catholic
hostility to Copernicus. But this hostility was confirmed even as the new
theory triumphed.

The astronomical discoveries of Galileo added support to the Copernican
system and brought him more fame. But the new views of the solar system
promulgated by Galileo’s formidable dialectic zeal alerted the Church, which
saw in his scientific teaching a danger to religion. The new astronomy was
publicly denounced by the Church, and on February 1615 the matter was
brought before the Inquisition. Consequently, Galileo received a semi-official
warning to avoid theology and limit himself to physical reasoning.

However, Galileo had already committed himself to dangerous grounds. In
December 1615 he lectured before the entire pontifical court, full of confidence
that the weight of his arguments and the vivacity of his eloquence could not
fail to convert them to his views. He was cordially received, and eagerly
listened to, but his imprudent ardor served but to injure his cause.

On the 24th of February 1616, the consulting theologians of the Holy
Office characterized the proposition that the sun is immovable in the center
of the world as “absurd philosophy and formally heretical, because expressly
contrary to Holy Scripture”. The proposition that earth has diurnal rotation
was described by the Church as “open to the same censure in philosophy, and
at least erroneous to faith”. Two days later Galileo was summoned to the
palace of Cardinal Bellarmino (1542–1621), and there officially admonished
not thenceforward to “hold, teach or defend” the condemned doctrine. This
injunction he promised to obey. However, he trusted his dialectical ingenuity
to find the means of presenting his scientific convictions under the transparent
veil of an hypothesis.
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During 1616–1623, Galileo led a life of studious retirement in the Villa

Segni at Bellosguardo, near Florence, and maintained an almost unbroken

silence. When a new pope was elected in 1623, Galileo visited Rome with

the hope to obtain the revocation of the decree of 1616, through personal

influence. Although he failed to achieve this, he expected that the decree

would at least be interpreted in a liberal spirit. On his return to Florence, he

therefore set himself to complete his work “Dialogo dei due massimi sistemi
del mondo”. It emerged from the press in 1632. A tumult of applause from

every part of Europe followed its publication.

It was at once evident that the whole tenor of this work was in flagrant

contradiction with the edict passed 16 years before its publication, as well

as with the author’s personal pledge of conformity to it. Toward the end of

August 1632 the book’s sale was prohibited, and on the 1st of October the

author was summoned to Rome by the Inquisition. He pleaded his age, now

close to 70 years, his infirm health, and the obstacles to travel caused by

quarantine regulations, but the pope was indignant at what he held to be his

ingratitude and insubordination, and no excuse was admitted. He arrived on

13 February 1633 and was detained until 21st of June, when he was finally

examined under threat of torture.

On the 22nd of June 1633, in the church of Santa Maria Sopra Minerva,

Galileo read his recantation and received his sentence: He was condemned,

as “vehemently suspected of heresy”, to incarceration at the pleasure of the

tribunal, and by way of penance was enjoined to recite once a week for three

years the seven penitential psalms. This sentence was signed by 7 cardinals,

but did not receive the customary papal ratification. He was held by the

Inquisition until December 1633, when he was allowed to return to his villa.

There he spent the remaining 8 years of his life — practically under house

arrest, in strict seclusion, constantly watched by the Inquisition.

Galileo did not make the trek to the stake, because he was sensible enough

not to die for his beliefs but to live for them — he recanted in public and went

on with his studies in private.

He died in 1642, the year Newton was born, surrounded by friends and

pupils. His epitaph was written for him by posterity: eppur si muove — the

famous words which he never uttered at his trial. When his friends wanted

to erect a monument over his grave, Urban told the Tuscan Ambassador that

this would be a bad example for the world, since the dead man ‘had altogether

given rise to the greatest scandal throughout Christendom’.
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In the year 1992, the Roman Catholic Church did in its acknowledgment

that Galileo was right after all, that the earth does revolve around the sun10.

1583–1592 CE Simon Stevin (Stevinus, 1548–1620, Netherlands).
Versatile mathematician, scientist and engineer. The greatest mechanician of
the long period extending from Archimedes to Galileo. A leading figure in the
Dutch school of mathematics and science, and an outstanding representative
of the great scholars of the closing years of the Late Renaissance; he combined
a capability for theoretical investigation with practical skill and inventiveness.

Stevinus originated the study of modern statics and distinguished stable
from unstable equilibrium. He demonstrated (1586) how to resolve a force
according to the parallelogram law11 (vector decomposition; their composition
was known to Galileo). He discovered the hydrostatic ‘paradox’ that the
downward pressure of a liquid is independent of the shape of the vessel, and
depends only on its height and base. He also gave the measure of the pressure
on any given portion of the side of the vessel. He had the idea of explaining
the tides by the attraction of the moon.

In 1586, Stevinus performed experiments concerning the effect of gravity
on falling bodies. He made a noteworthy contribution to trigonometry, using
the unit circle. His greatest success, however, was a small pamphlet, first
published in Dutch in 1586 (under the name De Thiende, i.e. the tithe), and
not exceeding seven pages in the French translation: La Disme enseignant
facilement expédier par Nombres Entiers sans rompuz tous Comptes se re-
contrans aux Affaires des Hommes. It presented first systematic account of
decimal fractions and strongly advocated their usage.

10 Modern Roman Catholicism has no quarrel with the Big Bang, with a universe

15 billion or so years old, with the first living things arising from prebiologi-

cal molecules, or with humans evolving from apelike ancestors, although it has

special opinions on “ensoulment”
11 This was rediscovered by Bernard Lamy (1640–1715, France) in 1676 and

again by Pierre Varignon (1654–1722, France) at about the same time. The

availability of the works of Archimedes was a boon to the study of statics, but

it is regrettable that the popularity of these so heavily overshadowed medieval

steps toward dynamics had to await the genius of Newton a century later (1687).
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Decimal fractions had been employed for the extraction of square roots
since some five centuries before his time, but nobody before Stevinus estab-
lished their daily use. So well aware was he of the importance of his innova-
tion that he declared the universal introduction of decimal coinage, measures
and weights to be only a question of time. Not until the French Revolution,
more than a two centuries later, did the large scale use of decimals come into
vogue12. During the last century it spread all over the world, except, strangely
enough in the Anglo-Saxon countries, where it met — and still meets — with
resistance, which is the stronger in that it is irrational.

His notation (1585) was rather unwieldy: he printed little circles round
the exponents of the different powers of one-tenth. For instance 237 578

1000 was
printed 237 ©0 5 ©1 7 ©2 8 ©3 which was a regression from the early use of
237/578 of Christoff Rudolff13 (1500–1545, Austria) in 1530.

Stevinus was born in Bruges and died at the Hague. He began life as a
merchant’s clerk in Antwerp and traveled in Poland, Denmark and other parts
of Northern Europe. He was an adviser to Prince Maurice of Orange (son of
William the Silent and great uncle of William of Orange), who made him a
Quartermaster General.

Late in life (at an age of 64) he married a young woman who bore him
four children. She remarried in 1623 and died half a century later (1673). In
July 1846 a modest monument was erected to Stevin’s memory in his native
city, Bruges.

12 The decimal Dollar became the basis unit of money in the United States through

the Coinage Act of 1792.
13 The introduction of the decimal point to mark the gap between the integral and

fractional part is attributed to Pelazzi of Nice, about 1492.

The decimal point separatrix was reinstituted by G.A. Magini (1555–1617,

Italy) in 1592 and by Christoph Calvius (1537–1612, Germany) in 1593, both

friends of Kepler.

Finally, it reappeared in the trigonometric tables of Bartholomaeus Pitiscus

(1612) and was accepted by John Napier in his logarithmic papers (1614 and

1619).
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History of Number Representations

Our decimal system of numerals involves three distinct ideas:

• There are only 10 symbols to write any number. The choice of the base

10 is due to the fact that our ancestors made their family accounts on

their fingers or on their toes [the Babylonians, however, used the base 60
and the Mayas — the base 20].

• The representation of numbers employs the principle of local value, i.e.,

the position of any digit in the number determines its value.

• There is a special symbol (zero) representing a vacant position (no num-

ber). It seems that the Maya knew the use of it, but they did not think

of the decimal system.

All sizable calculations in the ancient world were performed with the aid of

some kind of abacus. A written number representation was needed for record

purposes only.

The earliest method of recording numbers — either by writing or by notches

on a tally stick — was simply to make the requisite number of strokes. This

procedure sufficed for small numbers. It was supplemented as early as the first

Egyptian Dynasty (ca 3400 BCE) by the use of an additional symbol for ten.

Further symbols were introduced for 100 and 1000 and the method of grouping

by tens was a feature of most of the early civilizations of the Mediterranean.

In some cases (Etruscan, early Greek and Roman), additional symbols for 5
and 50 were incorporated for brevity.

The Greeks used two number representations. Some time in the 3rd cen-

tury BCE, they abandoned their Roman-type notation in favor of another —

known as the Alexandrian; the numbers 1 to 9 were represented by the first

nine letters of the Greek alphabet, the numbers 10, 20, . . . , 90 by the next

nine letters, and the numbers 100, 200, . . . , 900 by the next nine letters. (The

Greek alphabet contained 24 letters, so 3 additional symbols were borrowed

from other alphabets). The notation was extended by various artifices to en-

able numbers greater than 999 to be represented. This system was in fact

used for business purposes in the Byzantine Empire until its collapse in 1453.

All such number representations are non-positional; the position of any sym-

bol in the group is without numerical significance. Thus 183, for example, is

represented in the Roman system as CLXXXIII, but the order of the symbols
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is irrelevant14. The notation merely expresses the fact that 183 is the sum of
hundred, on fifty, three tens and three units.

Apparently, the first people to use a positional system for writing numbers
were the Babylonians. They employed the rather odd radix of 60, which we
still retain in our method of expressing angles and time. The Babylonians had
separate symbols for 1 and 10, and also one for 100 which was seldom used.
The symbol ∨ for 1 served also for 60, for 60 × 60 = 3600, and in general for
any power of 60; while the symbol < for 10 also served for 10 multiplied by
any power of 60. It seems that the number of powers of 60 in any particular
case had to be deduced from the context.

The commercially minded Babylonians were the great computers of an-
tiquity, and modern research enables us to appreciate the extent of their
achievements. For example, they extended the positional notation to deal
with fractional numbers, and some later Babylonian records even contain a
symbol for zero. So far there is no evidence that this symbol was used in
computation.

The Mayan civilization of Central America, with its highly developed ob-
servational astronomy and its preoccupation with the calendar, also used a
positional notation. It was more highly developed than the Babylonian, al-
though it was encumbered with a clumsy mixture of radices: 5, 20, and 360.
The Mayas even had a symbol, resembling a half closed eye, for denoting zero.

Although the first steps towards the use of a radix notation were taken by
the Babylonians in the 3rd millennium BCE, the logical culmination of this
approach was not reached for another 2000 years. If we leave aside the Mayas
on the other side of the world, the credit for this achievement (which cannot
be precisely dated) must be given to the Hindus.

The earliest preserved examples of our present number symbols are found
on some stone columns erected in India about 250 BCE by King Aśoka. Other
early examples in India, are found among records carved about 100 BCE on
the walls of a cave in a hill near Poona, and in some inscriptions of about 200
CE, carved in the caves at Nasik. These early specimens contain no zero and
do not employ positional notation.

Probably about 600 CE, the Hindus found a way of eliminating place
names. They invented a symbol sunya (meaning empty), which we call zero.
With this symbol, they could write “105” instead of “1 sata, 5”. This revolu-
tion must have been effected prior to 800 CE, for the Persian mathematician

14 The late Roman use of the subtractive form (e.g. IV instead of IIII) provides an

exception to this statement. The absolute position of the pair of symbols I and

V is not important, but the relative position is.
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Al-Khowarizmi describes such a complete Hindu system in a book of 835 CE.
Thus, the Hindu mathematicians took the two concepts (both known much
earlier) of the positional representation of numbers and the decimal scale, and
added their own contribution — the concept of zero as one of the basic digits.

This recognition of the need to provide a special symbol to represent an
empty column in the abacus — was a crucial step. It provided the world with
a flexible and convenient notation whereby any number, however large, could
be represented uniquely by an ordered sequence of symbols drawn from a set
of ten. It set the stage for the development of arithmetic during the next few
centuries.

By the 7th century CE, the focus of our interest shifts to the Arabs, who
by then had established a vast empire with its capital at Baghdad. The
Arabs had substantial commercial dealings with India: they found the Hindu
merchants using the decimal notation and soon adopted it themselves. We
know, for instance, that some Indian astronomical tables in which decimal
digits are employed, were brought to Baghdad and translated into Arabic in
the year 773. By the end of the 8th century, the Arabs had absorbed the
main body of Indian mathematics; during the following century they became
acquainted with the works of the Greek masters.

The transfer of the mathematical lore from India to Baghdad was effected
by Al-Khowarizmi, who visited India in 830 CE and then based his alge-
bra treatise on the work of Brahmagupta. His book was the main source
whereby the decimal notation was introduced, some 300 years later, into the
West. At that time no clear distinction was made between the disciplines now
known as arithmetic and algebra. The new arithmetic — that is to say, the
arithmetic based on the Hindu-Arabic notation instead of the Roman — was
indeed known for several centuries as algorithm, or the art of Al-Khowarizmi.

The Hindu-Arabic mathematics, and with it Greek mathematics as well,
diffused slowly to Western Europe via Spain. The Moorish rule in Spain
attained its Zenith in the 10th and 11th centuries, but Islamic culture was
carefully guarded from Christians and few breaches were made before the
12th century.

One of the first Christians to penetrate the Muslim curtain was the monk
Adelard of Bath, who disguised himself as a Muslim and studied at the
University of Cordova. In about 1120 CE he translated some of the works of
Al-Khowarizmi and Euclid from the Arabic into Latin.

The earliest coin bearing the Hindu numerals is one with an Arabic legend
struck in 1138 to commemorate the reign of Roger of Sicily. But the condi-
tions prevailing in Sicily, where Byzantines, Latins and Moslems met on an
equal footing, were too exceptional to be representative of Western Europe.
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However, by the end of the 12th century a small élite was apparently familiar
with the new system.

A pioneer in spreading the new knowledge in Europe was the mathemati-
cian Leonardo Fibonacci. His father was sent by his fellows merchants to
control a custom house in Barbary, and Leonardo grew up in an Arab cul-
tural environment and became acquainted with the work of Al-Khowarizmi.
He returned to Italy as a young man, and in 1202 he published his liber Abaci
in which he explained the Arabic system “in order that the Latin race might
no longer be deficient in that knowledge”.

Leonardo was a vigorous propagandist for the use of Arabic numerals in
commercial affairs. By the middle of the 13th century, a large proportion
of Italian merchants were employing the new system alongside the old. The
changeover was, of course, not achieved without some opposition. In 1299,
for example, an edict was issued at Florence forbidding the bankers to use the
infidel symbols!

Outside Italy the new notation gained ground more slowly, and merchants
throughout most of Europe continued to keep their accounts in Roman nu-
merals until the middle of the 16th century. The Arabic system was, however,
in general use for scientific purposes throughout Europe by about the year
1400. While no Arabic numerals are to be found in English parish registers or
Manor Court rolls before the 16th century, a popular account of the new algo-
ristic arithmetic entitled The Craft of Nombrynge appeared as early as about
1300 CE — one of the first books to be written in the English language.

Although the new decimal system was a time- and labor-saving invention
of the first magnitude, more than 1000 years elapsed between the discovery
and its general acceptance: not until the beginning of the 17th century was
it finally established in civilized Europe. Even then there were still learned
doctors and professors who claimed that the Roman letters were much clearer
than the Hindu numerals. Was it not much simpler to write CCCXLVIII than
348?

The Hindus had made to mankind a gift of inestimable value. No strings
of any kind were attached to it, nor was the suggested improvement entangled
with any sort of religious or philosophic ideas. Those proposing to use the
new numerals were not expected to make any disavowal or concession; nor
could their feelings be hurt in any way. They were asked simply to exchange
a bad tool for a good one. The history of our numerals is but one example,
among so many others, of the difficulty of overcoming the enormous inertia
of rested traditions.

The advantages of the new system were so great that its universal adoption
was only a matter of time. The invention of printing hastened the process.
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The first manual on arithmetic to come off the press of Renaissance Italy was

printed in Treviso, Venice, in 1478.

The 16th and 17th centuries saw a number of important advances in the

technique of practical calculation; mathematical rigor came later. Arithmeti-

cal procedures were simplified, additional signs were introduced and the dec-

imal notation was extended to represent fractions. The introduction of the

decimal point was finalized at the turn of the 17th century, just before the

appearance of logarithms.

Such is the story of the representation of numbers. One of its most arrest-

ing features is the length of time that elapsed (at least 3000 years) between

the coming into use of the abacus, a concrete embodiment of the positional

decimal notation, and the introduction of the same system for the representa-

tion of numbers in writing. The whole sequence of events provides a striking

illustration of the importance of notation in mathematics.

Even the Greeks, with their unrivaled intellectual prowess, could make

little progress in arithmetic because of the unsuitable number representations

with which they were burdened. Why did the Greek miss the crucial idea

which appears so simple to us now?

A partial answer may be attempted in terms of the social and economic

climate of classical Greece, which emphasized the gulf between theory and

practice, between the intellectual and the artisan. The point, however, is a

wider one, and can be applied to all the ancient civilizations of the Mediter-

ranean and Near East. The very efficiency of the abacus as a computing tool

weakened the practical need for an efficient written number representation

which would facilitate arithmetical calculations. The calculations of everyday

life could be carried on quite satisfactorily with the aid of the abacus. The

written symbols were used merely as labels for recording the results. If the

records were somewhat cumbersome, no great harm was done. The Greek

philosopher with an interest in mathematics could happily devote himself to

geometry, with its superior aesthetic and intellectual fascination.

So the Greeks missed their opportunity and it was left to the Hindus to

take the crucial step. It is interesting to note that the Hindus and the Arabs

made comparatively little use of the abacus; so much more acute was therefore

their need for an effective written number representation.

The utilitarian motive appears, indeed, to dominate the situation through-

out. The main stimulus to the spread of the new notation throughout Europe

came from the merchants and traders, with the ‘establishment’, both lay and

clerical, usually fighting a rearguard action against the forces of change.
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1584–1603 CE Walter Raleigh (1552–1618, England). Poet, his-
torian, scholar, soldier, navigator and explorer. One of the most flamboy-
ant characters in the colorful reign (1558–1603) of Elizabeth I. Raleigh sent
an expedition which explored the North American coast from Florida to
North Carolina (1584) and named the coast north of Florida “Virginia”.
He succeeded in introducing potatoes and tobacco into England and Ire-
land.

He fitted out an expedition to seek the fabulous wealth of Guiana (gold
mines), explored the coasts of Trinidad and sailed up the Orinoco river (1595).

Raleigh’s daring expeditions to the New World, along with his quick
wit, handsome face and ostentatious gallantry, made him a favorite with the
Queen, but after the accession of James I (1603) Raleigh fortunes changed.
He was accused of treason, committed to the Tower of London and executed
in 1618.

1585–1641 CE Pedro Teixeira (ca 1570–1650, Portugal). Explorer
and author. One of the greatest travelers of his age; circumnavigated the
globe during 1585–1601 and commanded an expedition that made the first
documented round trip voyage up the Amazon (1637–1638) from Pará to
Quito and back.

Born in Lisbon of Marrano parents. A man of education and a close
observer, he traveled on his first journey for 18 months (1585–1586) through
the Philippines, China, the Americas and finally back to Lisbon (1601). His
second journey took him to India, Persia and other parts of the Orient (1603–
1607). He then settled in Antwerp and published a detailed account of these
travels, Relaciones de Pedro Teixeira . . . (Antwerp, 1610), containing data
long considered authoritative. If was translated into French in 1681 and the
first English version appeared in 1708-10. A complete English translation,
The Travels of Pedro Teixeira, was published in 1902. The book is still held
to be one of the most important sources of information about the Orient at
the beginning of the 17 th century.

Teixeira arrived in Brazil in the early 1620s and led successful forays
against the English and the Dutch. In July 1637, at the request of Philip III
of Portugal (Philip IV of Spain), he undertook a journey of exploration in the
country. In what was to be his last expedition, Teixeira set our from Pará
(Belém) with a party of 2,000 men and made the first15 documented continu-
ous voyage up the Amazon, finally reaching Quito after an adventurous trip

15 The first European to see the Amazon (1500) was the Spanish explorer Vicente

Yanẽz Pinzon 1460–1523), who during 1487–1500 explored the coast of Brazil.

Another Spaniard, Francisco de Orellana (c. 1490–c. 1546) let the first ex-

ploration of the river by a European. His expedition followed the Amazon from
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lasting ten months. In the course of this journey he extended the bound-
aries of Brazil and established a line of demarcation between the Spanish and
Portuguese possessions in South America.

Teixeira returned to Europe (1640) and settled in Antwerp, where he re-
verted to Judaism. A description of his expedition to the source of the Amazon
is found in the Nuevo descubrimiento del Gran Rio de la Amazonas (1641).

1588 CE Thomas Harriot (1560–1621, England). Mathematician,
astronomer and geographer. One of Britain’s greatest mathematical scien-
tists before Newton. He remained comparatively obscure, because he did not
publish his work during his lifetime. His achievements are summarized as
follows:

• First European to consider the idea of a binary number system.

• In algebra, he introduced the signs for greater than (>), less than (<),
and the raised dot (·) to signify multiplication.

• In optics, he discovered the sine law of refraction, ahead of the Dutch
mathematician Willebrod van Roijen Snell.

• Harriot made telescopes in the same year Galileo did, and he used them
to observe the moon, sunspots, comets and the satellites of Jupiter.

• Investigated the ballistic trajectory of a projectile under the influence of
gravity, a decade before Galileo did. He concluded that the path was a
parabola.

• Was interested in the atomic theory of substances. He believed in the
hypothesis that substances consist of atoms was plausible, and capable
of explaining some of the properties of matter.

His writings contain the following propositions (in his own Elizabethan
style and spelling):

(1) “The more solid bodies have Atoms touching on all Sydes”.

(2) “Homogeneall bodies consist of Atoms of like figure, and quantitie”.

(3) “The waight may increase by interposition of lesse Atoms in the vacuities
betwine the greater”.

the mouth of the Napo River in Peru to the Atlantic Ocean (1541–1542).

Orellana took part in the conquest of Peru under Pizarro, and Pinzon Com-

manded the Ninã on Columbus’ first voyage. His brother Martin Alonso Pin-

zon (1441–1493) commanded the Pinta on that voyage, and a third brother

Francisco Martin Pinzon (1440–1493) was master of the Pinta under Martin

Alonso.
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(4) “By the differences of regular touches (in bodies more solid), we find that
the lightest are such, where euery Atom is touched with six others about
it, the greatest (if not intermingled) where twelve others do touch euery
Atom”.16

Harriot was born in Oxford. He studied at St. Mary Hall, Oxford and
received his bachelor of arts there in 1580. He then became tutor and sci-
entific adviser to Sir Walter Rayleigh, who appointed him in 1585 to the
office of geographer to the second expedition to the newly founded colony of
Roan Island in what is now North Carolina (Harriot published an account
of this expedition in 1588). On his return to England in 1587, he resumed
his mathematical studies and secured the patronage of Henry Percy, Earl of
Northumbria, which yielded him a yearly pension of £300, on which he lived.

But Henry was suspected of complicity in the gunpowder plot and in 1606
was jailed. Harriot remained with his patron, and illness and political turmoil
prevented him from completing the promising projects he has undertaken.
Given more favorable circumstances, he might have become known as the
inventor of analytic geometry or as one who solved the rainbow problem.

Harriot was one of the first algebraists who occasionally placed a purely
negative quantity by itself on one side of an equation. Viète (1600) discarded
negative roots of equations. Indeed we find few algebraists before and dur-
ing the Renaissance who understood the significance of negative quantities.
Fibonacci (1202) seldom used them. L. Pacioli (1494) stated the rule that
“minus times minus gives plus”, but applied it only to the development of the
product (a − b)(c − d).

The first use of + and − as symbols of algebraic notation was due to
the Dutch mathematician van der Hoecke (1514). Stifel (1544) spoke of

16 The structure in which every atom is in contact with six others about it that

Harriot had in mind, is probably the simple cubic arrangement; in this arrange-

ment of atoms the unit of structure is a cube that contains one atom, which

can be assigned the coordinates (0, 0, 0). Each atom is then in contact with six

other atoms, which are at the distance d from it. The volume of the unit cube is

accordingly d3. If the mass of the atom is M , the density for this arrangement

is M
d3 .

The denser structure referred by Harriot, where twelve atoms are in contact with

each atom, is the cubic closest-packed arrangement . The cubic unit of structure

for this arrangement contains four atoms. Its edge a is equal to d
√

2 and its

volume to 2
√

2d3. The mass contained in the unit cube is 4M and the density

is accordingly
√

2 M
d3 , that is 41 percent denser then the simple cubic packing.

Harriot had apparently discovered that there is no way of packing equal hard

spheres in space that gives a greater density.
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numbers which are “absurd” or “fictitious below zero”. However, these ideas
remained sparse, and until the beginning of the 17th century, mathematicians
dealt exclusively with absolute positive quantities.

As regards the recognition of negative roots, Cardano (1545) and
Bombelli (1572) were far in advance of all writers of the Renaissance, in-
cluding Viète. Yet even they mentioned these so-called false or fictitious
roots only in passing, and without grasping their real significance and im-
portance. On this subject Cardano and Bombelli had advanced to about the
same point as had the Hindu Bhaskara (1150), who saw negative roots, but
did not approve of them.

The generalization of the concept of algebraic quantity, so as to include
the negative, was an exceedingly slow and difficult process in the development
of algebra.

1588 CE The Spanish Armada was defeated by the English fleet under
Howard of Effingham, Francis Drake and John Hawkins.

How Thomas Digges defeated the Spanish Armada

It was in England that the two streams of Nicolas of Cusa’s influence –
scientific method and the new infinite cosmology – first merged. England
had nurtured its own scientific tradition from the time of Bacon, and English
scholars and politicians kept abreast of the latest developments in Italian phi-
losophy. The practical impetus for astronomical and general scientific research
was stronger in England than anywhere else.

After the feudal nobility had killed themselves off in the War of the Roses,
a collateral royal line, previously involved in trade rather than landholding,
came to power with Henry VII. By the time Elizabeth became Queen in 1558,
English navigation was in a state of fevered expansion, attempting to wrest
control of trade from Catholic Spain.

Elizabethan England, recently freed from the intolerance of Mary’s rule,
welcomed that antihierarchical and anti-authoritarian teaching of the Coper-
nican system. Thomas Digges, a leading English astronomer, became the
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first to popularize Copernicus’ ideas to a broad audience, writing a book about
it in English, not scholarly Latin, in 1576.

Already in 1572, Digges and other astronomers had studied the supernova
of that year, showing that the heavens do in fact change, contrary to tradition
– a sight visible to all. Indeed, Copernicus’ ideas, backed by Digges’ prestige
as a leading scientist, became the property of the common man.

Digges synthesized Copernicus’ and Nicholas of Cusa’s work, proclaiming
the universe to be infinite, populated with innumerable suns and worlds. But
above all he explicitly criticized the ancients’ method:

“I have perceived that the ancients progressed in reversed order from theo-
ries, to seek after true observations, when they ought rather to have proceeded
from observation and then to have examined theories.”

In a country where free labor was increasingly drawn into manufacture,
and the need for both technological advances and an educated work force
became acute, Digges championed the idea that scientific and technological
advances are welded together, and that scientific knowledge must become
common to all.

Since technological advance would be most rapid when the common work-
ers had combined scientific knowledge with practical experience, Digges vowed
to write all his work in English. Digges and others began a series of practical
scientific manuals aimed at the widest audience. By 1589 publicly sponsored
scientific lectures drew crowds of artisans, soldiers, and sailors eager for knowl-
edge.

The conflict between the old and the new cosmologies was not settled by
scholarly argument, but by the battles of the old and new societies – embodied
in the struggles of nations. Protestants, in manufacturing Holland, revolted
against its Catholic imperial ruler, Spain; and in 1584 the main Protestant
power, England, allied with Holland. The Spanish empire was based on forced
labor – serfs at home and serfs and slaves in the huge empire of the New World.
The English and Dutch relied mainly of free labor.

The Copernican scientific worldview gave not only ideological justification
to the Protestant side, but also decisive technological advantage. By synthe-
sizing theoretical science with craft skill, English industry moved ahead of
Spain in critical areas, such as the casting of naval artillery, producing lighter
guns with greater range and accuracy.

The Copernican revolution had also meant throwing out Aristotelian
physics – based on the idea that moving objects sought their “proper” place
in the hierarchy. This had significant application in the science of ballistics.
Aristotle had taught, and the medieval scholars accepted, that a projectile
flew upward in a straight line, then fell vertically to earth. Leonardo and his
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successor in engineering, Tartaglia, showed by experiment that the trajectory
is a curve, and compiled a gunnery table linking the elevation of the gun to
the range of the shot.

Digges and other English scientists systematized their results, producing
widely read manuals of naval gunnery. English ships, manned by draftees
drawn from the artisan and working classes, had by 1588 both seamen and
officers on board trained in the basics of the new ballistics. Spain, by contrast,
had no use or interest in the new sciences. Nor could their uneducated sailors
use them17.

The related differences in social structure, technology, and training proved
decisive when the Spanish Armada sailed to invade England. The English
ships mounted mostly small guns, called culvetines, whose effective range
was one thousand meters. The Spaniards had crude cannons, effective only at
point-blank range – that is, before the shot began to fall significantly, perhaps
three hundred meters. With this and other advantages the English battered
the Spaniards at long range, while the Spaniards’ ammunition fell far short of
the targets. For one hundred thousand cannonballs fired, the Spaniards killed
one English officer and two dozen seamen, sinking no vessels. The English,
with about half as many shots and lighter guns, sank or disabled seventeen
Spanish ships and inflicted thousands of causalities. When the Spanish ran out
of ammunition, the English chased the shattered Armada out of the channel.

Thus, in a very practical way, the superiority of the empirical worldview
was demonstrated – with cannon, not with debate. In fact, the defeat of
the Armada determined which worldview would triumph, since it determined
which society would survive.

The revolutionary changes of the last quarter of the eighteenth century
were not universally hailed, and neither were the new scientific theories. The
capitalists who ruled Great Britain owed their power to the social revolutions
of the seventeenth century and the industrial revolution of the eighteenth,
but they had no desire to lose that power in further social upheavals. Great
Britain became the major foe of all social change, fearing the development of
rival industrial powers abroad and a continual evolution of social structure at
home. From Britain, religious and philosophical replies were launched against
the ideas of human and natural progress.

Thomas Malthus, rebutting the Marquis de Condorcet, the French
theorist of progress, argued that population growth will always outstrip agri-
cultural production, condemning most people to hunger and blocking material
progress. Geologist John Williams blasted Hutton’s theories on theologi-
cal grounds. Hutton’s “wild and unnatural notion of the eternity of the earth

17 Had they not expelled the Jews in 1492, they could have fared better in 1588!
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leads first to skepticism and at last to downright infidelity and atheism. If
we once entertain a firm persuasion that the world is eternal, and can go
on itself in the reproduction and progressive vicissitudes of things, we may
then suppose that there is no use of the interposition of a Governing Power,”
he wrote, concluding that “all rebellions soon end in anarchy, confusion and
misery and so does our intellectual rebellion.”

But these efforts proved generally unsuccessful: in the course of the first
half of the nineteenth century, Europe continued to be rocked by repeated
popular revolutions, and the industrial revolution transformed British society
as well.

While many of the social gains at the height of the revolution were sub-
sequently rolled back, the fundamental outlook and goals of society had been
irreversibly transformed. The English government’s sponsorship of scientific
research put English science far ahead of that of any other country; this,
together with England’s swift economic development, propelled it a century
later into the industrial revolution.

The scientific revolution was thus not an inevitable process, a natural
outgrowth of human intellectual development. It was the result of a fierce
social conflict, in which cosmological questions were matters of life or death
for individuals and whole societies.

Certainly the people of the time did not think that the defeat of Spain,
the victory of England and Holland, and later the victory of the English
revolution were at all inevitable. Yet without those victories, the scientific
revolution would certainly have not occurred. Only the open society born
in the sixteenth and seventeenth centuries could have nurtured the infinite
unlimited cosmos of modern science. And only such a worldview could have
given the new society the moral and material strength to prevail.

1588–1613 CE Pietro Antonio Cataldi (1548–1626, Italy). Math-
ematician and astronomer. Took the first steps in the theory of continued
fractions and made contributions to the early theory of numbers, especially
Mersenne primes and perfect numbers. Wrote a number of mathematical
works.

Cataldi was born in Bologna and taught mathematics and astronomy in
Florence, Perugia and Bologna, where he died.
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1588–1623 CE Gaspard Bauhin (1560–1624, Switzerland). Physician,
botanist and anatomist. Introduced (1623) a binomial system of nomenclature
for botany. One of the first to describe ileocecal valve (1588), known as the
Bauhin valve.

His book Pinax Theatri Botanici (1623) contains classification and de-
scription of over 6000 plants and was much used by Linnaeus.

Bauhin was born in Basel. Studied at Padua, Montpellier, Paris and
Tübingen. Professor at Basel University.

1589–1606 CE Giovanni Battista, della Porta (1535–1615, Italy).
Natural philosopher and inventor. Made the first distinct step from Hero’s
aeolipile toward the steam engine, by using steam instead of air as the dis-
placing fluid (1601). In his Magia Naturalis (1589) he describes a number of
optical experiments, including a description of the camera obscura to which he
proposed to add a convex lens. He claimed to be the inventor of the telescope
although he does not appear to have constructed one before Galileo. He was
however first to recognize the heating affects of light rays (1589).

The Inquisition banned the publication of his works for a number of years.
Although Porta made important physical observations, much of his work was
from point of view of magic and alchemy.

Della Porta founded in Naples the Accademia Secretorum Naturae and in
1610 became a member of the Accademia dei Lincei at Rome.

1592–1613 CE David (ben Shlomo, Seligman) Gans (1541–1631,
Germany and Prague). Chronologist. In his book Zemach David compiled a
chronology of ancient and medieval events up to 1592. Author of textbooks
on astronomy, mathematics, geography and cosmography.

Studied under the Maharal of Prague and interacted with Kepler,
Regiomontanus and Tycho Brahe.

Gans was born in Lippstadt (Westphalia) and died in Prague.

1591–1639 CE Tommaso Campanella (1568–1639, Italy). Italian
Renaissance philosopher. A precursor of modern empirical science. His work
was a source of inspiration for Descartes, Spinoza and Leibniz. Many of
his ideas are similar to those of modern-day existentialists. Though neither an
original nor a systematic thinker, he stands in the uncertain half-light which
preceded the dawn of modern philosophy and science.

Campanella was born in Stilo, Calabria. Before he was 13 years of age
he had mastered nearly all the Latin authors presented to him. He entered
the Dominican Order (1582), but in 1599 was sentenced to life imprisonment



954 3. The Clockwork Universe

during the Spanish rule for political plotting and heresy. During his stay in
prison he wrote a valiant vindication of Galileo. After 30 years of incarcera-
tion, Campanella succeeded in escaping to France, where he remained for the
remainder of his life under the aegis of Cardinal Richelieu.

His philosophy is a blend of medieval thought combined with the methods
of modern science: he rejected Aristotelian scholasticism and insisted that
knowledge should be based on close observation of the natural world. His
views were strongly influenced by Bernardo Telesio (1509–1588, Italy) and
also by those of Nicolas of Cusa (1401–1464). Telesio founded and directed
the Academia Telesiana, a school in Naples that propagated the scientific
approach to knowledge and advanced the scientific movement in the Renais-
sance.

1591–1603 CE Prospero Alpini (1553–1616, Italy). Physician and bo-
tanist. Studied plants for their therapeutic medicinal use. Introduced (1591)
the first European descriptions of the coffee bush and the banana tree. First
to establish the sexual difference of plants.

Alpini was born at Marostica, in the Republic of Venice. In his youth he
served in the Milanese army and in 1574 went to study medicine at Padua,
taking his doctor’s degree in 1578. To extend his knowledge of exotic plants
he traveled to Egypt (1580) as physician of the Venetian consul in Cairo. On
his return (1583) he resided in Genoa and then (1593) was appointed professor
of botany at Padua. Published De Plantis Agyptic Liber (1592).

1595–1620 CE Francis Bacon (1561–1626, England). A forerunner of
the scientific revolution. Lawyer, essayist, statesman and philosopher. The
first union in English literature of the man of letters and the man of science
(there have been only a few striking examples since).

Bacon was not himself an active scientist, yet he can be likened to a
signpost which shows the way. He had an enduring influence on an entire
generation of great scientists. His chief works include: Essays (1597) — con-
cise expressions of practical wisdom and shrewd observations; Advancement
of Learning (1605) — a survey in English of the state of knowledge (incom-
plete project); Novum Organum (1620), in Latin, key to his system for the
new systematic analysis of knowledge, intended to replace the deductive logic
of Aristotle with inductive methods in interpreting nature. In his utopian
tale New Atlantis, published posthumously (1627), he predicted robots, tele-
phones, tape recorders and electric motors.
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Until the time of Bacon, man had more or less ‘drifted’ in the natural
world. His culture had grown up without conscious self-examination or at-
tention to the fact that man might improve his own society through science.
People decided all questions not by investigating the observable facts, but by
appealing to a priori reasoning, received folk wisdom, religious dogmas, and
the teachings of infallible authorities, living and dead – for instance in me-
dieval Europe, the Church fathers and Aristotle. Education in Bacon’s day
was largely confined to metaphysical arguments along with the readings of
Greek and Roman classics. At Cambridge, learning was largely pretense that
all was of the past18. Men endlessly wove and rewove a gossamer webs of ideas
derived from Greek and Roman sources. The world of Bacon and Shakespeare
was only semiliterate, steeped in religious contentions, with its gaze turned
backwards in wonder upon the Greco-Roman past.

Bacon waged a vigorous battle against the deductive method of scholas-
ticism. He went much further beyond that to outline, with unique prophetic
vision, the future of science and its role in the affairs of man. Bacon:

• Recognized that the triumph of the experimental method demands the
thorough institutionalization of science at many levels of activity and
ability . He eliminated reliance upon the rare elusive genius as a safe road
into the future. It involved of too much risk and chance to rely upon
such men alone.

• Grasped the cumulative nature of culture and the fact that inventions
multiply in a favorable social environment. Science and its traditions
had to be transmitted through the universities, and its efforts had to be
publicly supported . He studied ways by which Cambridge and Oxford
might be encouraged toward fostering laboratories and other educational
tools.

• Recognized the value of the history of science.

• Observed that the lower organisms might reveal secrets of life which in
the higher organisms lay more hidden. (This biological observation, and
others in the social sciences, were made too early. By the time these sub-
jects had emerged as recognized disciplines, his far-reaching, anticipatory
insights were submerged in a welter of new books and newer phrasing.)

• Foresaw the necessity of using mathematics in the examination of nature.

• Entertained the idea of the universe as a problem to be solved.

For all his interest in scientific inquiry and the proper pursuit of science,
Bacon missed practically all the most important developments of his own

18 Even toward the close of the 19th century, the greatest universities in England

were still primarily devoted to the classical education of gentlemen!
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time. He was unaware of the work of Kepler; and, though he was a patient
of Harvey, did not know of the doctor’s researches on the circulation of the
blood. The rejection of the centrality of the syllogism in what still passed
for natural philosophy in his day, led him to underestimate the function of
deduction in scientific inquiry. In particular, he had little appreciation of the
mathematical methods that were actually developing in his time. The role of
induction (in itself a notion that was not new — Aristotle had already used it)
in the framing of hypotheses is but one facet of the scientific method. Without
the mathematical and logical deductions which lead from the hypotheses to
concrete, testable predictions, there would be no knowing what to test against
experiment.

Bacon was born in London, the son of an important government official.
He attended Trinity College, Cambridge, from 1573 to 1575. In 1576, he
joined the staff of England’s ambassador to France. Bacon was elected to
Parliament in 1584 and knighted in 1603. He held several high government
positions19 until 1621, when he was framed20 and convicted of taking bribes
and briefly imprisoned.

Bacon was never free of financial insecurity. In a mercenary age he lacked
the means to buy advancement. Although the prestige of his final offices
[Attorney General (1613); Lord Keeper (1617); Lord Chancellor (1618)] gave
greater weight to his literary pronouncements and financed his publications,
he was nonetheless a stranger in his own age — a civilized man out of his time
and place. Even when one has measured the three sides of his triangular life
(as man of letters, man of science and public servant), one is still at a loss to
understand all the motives governing him in his contradictory actions.

Rumors persist that he did not die in the year 1626 but rather escaped to
Holland21; that he was the real author of Shakespeare’s plays; and that he was
the unacknowledged son of Queen Elizabeth. These rumors are a measure of

19 In 1605, Bacon devised a code for sending secret diplomatic messages. Each

letter of the alphabet was represented by a five-letter group of a’s and b’s. For

example A=aaaaa, B=aaaab, C=aaaba, D=aaabb, . . ., X=babab, Y=babba,

Z=babbb.
20 He became a victim of the conflict between King James I and his Parliament.

Bacon’s enemies, in frustration at their inability to vent their rage on the King,

set to destroy the one man who had sought to temper the royal excess and

preserve the state. Traditional homage was deliberately redescribed as bribery.

King James advised him to avow his guilt and trust his protection to the Crown.
21 He went to a farmhouse in a snowstorm to get a chicken to test his idea that

snow could be used as a preservative instead of salt. The exposure to which the

experiment subjected him caused his death soon after.
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his power to captivate the curiosity of men — a power that has grown century
by century since his birth in 1561.

In spite of certain mystifying aspects of his life, there is no evidence suf-
ficient to justify these speculations, though a vast literature betokens their
fascination and appeal.22

22 For further reading, see:

• Eiseley, L., The Man Who Saw Through Time, Charles Scribner Sons: Ne

York, 1973, 125 pp.

• Bacon, Francis, The Essays, Penguin Books, 1985, 285 pp.
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Worldview VII: Francis Bacon

∗ ∗∗

“Man can only conquer nature by obeying her”.

∗ ∗∗

“We are not to imagine or suppose, but to discover, what nature does or may
be made to do”.

∗ ∗∗

“For the history that I require and design, special care is to be taken that
it be of wide range and made to the measure of the universe. For the world
is not to be narrowed till it will go into the understanding (which has been
done hitherto), but the understanding is to be expanded and opened till it
can take in the image of the world”.

∗ ∗∗

“I say without any imposture, that I . . . frail in health, involved in civil studies,
coming to the obscurest of all subjects without guide or light, have done
enough, if I have constructed the machine itself and the fabric, though I may
not have employed or moved it”.

∗ ∗∗

“Science is not a belief to be held but a work to be done”.

∗ ∗∗

“Make the time to come the disciple of the time past and not its servant”.
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∗ ∗∗

“Many parts of nature can neither be observed with sufficient subtlety, nor
demonstrated with sufficient perspicuity without the aid and intervening of
mathematics”.

∗ ∗∗

“This third period of time will far surpass that of the Grecian and Roman
learning only if men will employ wit and magnificence to things of worth, not
to things vulgar”.

∗ ∗∗

“Many things are reserved which kings with their treasures cannot buy, nor
with their force command, their spies and intelligencers can give no news of
them, their seamen and discoverers cannot sail where they grow”.

∗ ∗∗

“Every act of discovery, advances the art of discovery”.

∗ ∗∗

“Mere power and mere knowledge exalt human nature but do not bless it; we
must gather from the whole store of things such as make most for the uses of
life”.

∗ ∗∗

“Books must follow sciences, and not sciences books”.

∗ ∗∗

“If a man will begin with certainties, he shall end in doubts; but if he will be
content to begin with doubts, he shall end in certainties”.
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∗ ∗∗

“The men of experiment are like the ant, they only collect and use; the rea-
soners resemble spiders, who make cobwebs out of their own substance. But
the bee takes the middle course: it gathers its materials from the flowers of
the garden and field, but transforms and digests it by a power of its own.

Not unlike this is the true business of philosophy [science]; for it neither relies
solely or chiefly on the powers of the mind, nor does it take the matter which
it gathers from natural history and mechanical experiments and lay up in the
memory whole, as it finds it, but lays it up in the understanding altered and
digested.

Therefore, from a closer and purer league between these two faculties, the
experimental and the rational (such as has never been made), much may be
hoped”.

∗ ∗∗

“That all things are changed, and that nothing really perishes, and that the
sum of matter remains exactly the same, is sufficiently certain”.

∗ ∗∗

“Great discoveries appear simple once they are made”.

∗ ∗∗

“I take it, that all those things are to be held possible and performable, which
may be done by some persons, though not by everyone; and which may be
done by many together, though not by one alone; and which may be done in
the succession of ages, though not in one man’s life; and lastly, which may
be done by public designation and expense, though not by private means and
endeavor”.

∗ ∗∗

“It is not the pleasure of curiosity nor the raising of the spirit, nor victory of
wit, nor lucre of profession, nor ambition of honor or fame, nor opportunity
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for business, that are the true ends of knowledge. It is a restitution and
reinvesting of man to the sovereignty and power which he had in the first
state of creation”.

∗ ∗∗

“The technological arts have an ambiguous or double use, and serve as well
to promote as to prevent mischief and destruction, so that their virtue almost
destroys or unwinds itself. All natural bodies have really two faces, a superior
and inferior. He who will not attend to things like these can neither win the
knowledge of nature nor govern it”.

∗ ∗∗

“There is no excellent beauty that hath not some strangeness in the propor-
tion”.

∗ ∗∗

“Truth is more likely to emerge from error than from confusion”.

∗ ∗∗

“Crafty men condemn studies, simple men admire them, and wise men use
them”.

∗ ∗∗

“Knowledge is power”.

∗ ∗∗
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History of Theories of Light I

The science of optics and optical devices embraces a vast body of knowl-
edge accumulated over roughly 5000 years of the human scene. To view
modern optics in full perspective one must trace the road that led us there.
The complete story has myriad subplots and characters, heroes, quasi-heroes
and an occasional villain or two. Yet from our vantage in time, we can discern
4 epochs in the history of optics:

A. The Beginning — Optics of Reflection and Refraction (3000
BCE–1589 CE)

The ancients were more familiar with optics than with any other branch
of physics due to the fact that for the knowledge of external things man is
indebted to the sense of vision in a far greater degree than to other senses.
That light travels in straight lines (i.e. that an object is seen in the direction
in which it really lies) must have been realized in very remote times. The
antiquity of mirrors points to some acquaintance with the phenomena of re-
flection. The lens, as an instrument of magnifying object or for concentrating
rays to effect combustion, was also known.

The cuneiforms of Sumer describe a highly sophisticated society more than
5000 years ago. These cuneiforms were written by pressing a stylus of bone
or hard reed into a tablet of soft river mud. Some of the cuneiform letters are
of the order of a millimeter in size and cannot be read (and written!) without
a magnifying glass. Henry Austin Layard (1885) excavated, amongst the
ruins of the palace of King Sennacherib (705–681 BCE) of Assyria, a quartz
magnifier: It seemed to be cut and polished to the shape of a plano-convex
lens with f ≈ 10 cm and could have been used as a magnifying glass, for
both making the inscriptions and reading them.

Another significant development in optics during this period is the use
of metallic hand-held mirrors. Early mirrors were made of polished copper,
bronze and later of speculum, a copper alloy rich in tin. Specimens have
survived from ancient Egypt: a mirror in perfect condition was found along
with some tools nearby the Pyramid of Sesostris II (ca 2000 BCE) in the Nile
Valley. Exodus 38 : 8 (ca 1200 BCE) recounts how Bezalel, while preparing
the ark and tabernacles, recast “the looking-glasses of the women” into a brass
laver (a ceremonial basin).
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The Bible also tells us that Joshua (8, 18) used a mirror to send a light
signal (sun’s reflected rays) to his ambush force, to rise and to take the city
of Ai.

Chinese philosophers (Mohists, Ca 479–381 BCE), studied the reflection
of light from plane, concave and convex mirrors, and obtained empirical rules
connecting the size and position of objects and images with the curvature of
the mirror used.

In the first systematic writings, of which we have any definite knowledge,
the Greek philosophers: Pythagoras, Empedocles, Democritos, Plato
and Aristotle speculated (550–350 BCE) over the nature of light and vision,
evolving several theories. The aversion of Greek thinkers to detailed experi-
mental inquiry stultified the progress of the science; instead of acquiring facts
necessary for formulating scientific laws and correcting hypotheses, the Greeks
devoted their intellectual energies to philosophizing on the nature of light.

In their search for theory the Greeks were mainly concerned with vision:
they sought to determine how an object was seen, and to what its color was
due. Emission theories, involving the concept that light was a stream of
particles, were formulated.

Their hypothesis was that the eyes emanate vision rays and the returned
rays create vision, a principle similar to that of modern day radar or sonar. As
a result of the concept of the eye-ray, direction of arrows and the designation
of the incident and reflected angles were reversed from what these are today23.

The Pythagoreans assumed that vision and color was caused by the bom-
bardment of the eye by minute particles projected from the surface of the ob-
ject seen. The Platonists subsequently introduced three elements – a stream
of particles emitted by the eye which united with the solar rays, and, after
the combination had met the stream from the object, returned to the eye and
excited vision.

Democritos maintained that extremely small particles chip off from the
object and go into the viewer’s eye and imprinted there by the moisture in
the eyes24. Aristotle argued against this theory because it could not explain
the inability to see in the dark.

The left-right reversal of the image of a vertical mirror, or the upside-down
image of a horizontal mirror, aroused the curiosity of the Greek philosophers,
but even Plato could not provide a satisfactory explanation. From a trea-
tise an optics, the catoptrics, assigned to Euclid (ca 300 BCE) by Proclos

23 It took 1400 years before the direction of the arrows was reversed by Alhazen

(1026).
24 This is perhaps the origin of the corpuscular theory of light.
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and Marinos, we learn that the rectilinear propagation of light, the law of

reflection (viz. the equality of the angles of incidence and reflection) were

known to the Greeks. Hero of Alexandria attempted to explain both these

phenomena by asserting that light traverses the shortest allowed path between

two points25 (150 BCE).

The Greeks were also acquainted with the production of images by

plane, cylindrical and concave and convex spherical mirrors. Reflections, or

catoptrics, was the key-note of the Greeks explanations of most optical phe-

nomena: it is to the reflection of solar rays by the air that Aristotle ascribed

twilight, and from his observations of the colors formed by light on spray, he

attributed the rainbow to reflections from drops of rain.

A burning-glass (a positive lens) was alluded to by Aristophanes in his

comic play The Clouds (424 BCE). The apparent bending of objects partly

immersed in water is mentioned in Plato’s Republic. Archimedes (250 BCE)

used concave mirrors as burning-glasses. Certain elementary phenomena

of refraction were studied by Cleomedes (50 CE) and later by Claudios

Ptolemy of Alexandria (150 CE) who attempted to explain the ‘coin-in-a-

cup’ experiment26 of Ctesibios (50 BCE).

Ptolemy measured the refractive effects of water and discussed refraction

in the atmosphere. He tabulated fairly precise measurements of angles of

incidence and refraction for several media and obtained the small-angle ap-

proximation to Snell’s law, concluding that the ratio of the angles of incidence

and refraction were constant. He also discussed the refraction of starlight by

the atmosphere but held to the theory that vision is due to rays emitted from

the eye. The quantitative law of refraction was unknown (in fact it was not

formulated until the beginning of the 17 th century).

It is clear from the accounts of Pliny the Elder (23–79 CE) that the Ro-

mans also possessed burning-glasses. Several glass and crystal spheres, which

were probably used to start fires, have been found amongst Roman ruins,

and a planar convex lens was recovered in Pompeii. The Roman philosopher

Seneca (4 BCE–65 CE) pointed out in his book Naturalium Quaestionum
that a glass globe filled with water could be used for magnifying purposes. It

is certainly possible that Roman artisans may have used magnifying glasses

to facilitate very fine detailed work.

25 A forerunner of Fermat’s principle of least time (ca 1638).
26 The apparent elevation of a coin in a basin, by filling the basin with water.

Similarly, the Greeks sought to explain the apparent bending of the oar at the

point where it met the water.
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Seneca also observed the analysis of white light into the continuous spec-
trum of rainbow colors by transmission through prism. His friend, the Em-
peror Nero (37–68 CE), may have been the first to use a monocle, employing
an emerald lens to view bloody gladiator combats in the Coliseum. In Rome,
during the first century CE mirrors were made of polished glass, behind which
a sheet of silver was placed.

Aristotle (ca 330 BCE) describes image projection in terms of the camera
obscura27. His concept involves a ‘darkened box or chamber’ with a small hole
in one side though which light is admitted. An inverted image of the scene
is projected onto an interior wall, where it can be viewed and traced by an
artist. From the opening passage of Euclid’s Optics (ca 300 BCE), it would
appear that the above phenomena of the simple darkened room were used
by him to demonstrate the rectilinear propagation of light by the passage of
sunbeams or the projection of the images of objects through small openings
in windows.

The first reference to persistence of vision appears in De Rerum Natura
(Book 4, lines 771–810) by the Roman poet and natural philosopher Titus
Lucretius Carus (98–55 BCE):

“. . . when the first image perishes and a second is then produced in another
position, the former seems to have altered its pose. Of course this must be
supposed to take place very swiftly: so great is their velocity, so great the
store of particles in any single moment of sensation, to enable the supply to
come up.”

Here Lucretius describes frame sequential animation almost 2000 years
before the advent of motion pictures.

All through the Dark Ages, optics lay dormant in Europe, but the center
of scholarship shifted to the Arab world (where the scientific and philosophical
treasures of the past were translated and preserved) and eventually extended
at the hands of Alhazen (ca 1010–1030 CE). He elaborated on the law of
reflection, (putting the angles of incidence and reflection in the same plane
normal to the interface), studied spherical and parabolic mirrors and gave a
detailed description of the human eye as an optical instrument.

27 The invention of this instrument has generally been ascribed to Giovanni Bat-

tista della Porta (ca 1558). However, all he seems really to have done was

to popularize it. In southern climes, where during the summer heat it is usual

to close the rooms from the glare of the sunshine outside, we may often see

depicted on the walls vivid inverted images of outside objects formed by the

light reflected from them passing through chinks or small apertures in doors or

window-shutters.
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By the latter part of the 13th century, Europe was only beginning to
rouse from its intellectual stupor. Alhazen’s work was translated into Latin
and had a great effect on the writings of Robert Grosseteste, the Polish
mathematician Vitelo (ca 1230–1275, Silesia), and the textbook of John
Peckham (ca 1230–1292), the archbishop of Canterbury. All of these were
influential in rekindling the study of optics.

Their works were known to Roger Bacon (1215–1294), who initiated the
idea of using lenses for correcting vision and even hinted at the possibility of
combining lenses to form a telescope. After his death optics again languished.
Even so, by ca 1350, European paintings were depicting monks wearing eye-
glasses, and alchemists had come up with a liquid amalgam of tin and mercury
that was rubbed onto the back of glass to make mirrors.

The great Italian artist, architect and scientist, Leonardo da Vinci
(1452–1519) followed up Alhazen’s experiments and developed the pinhole
camera. He indulged in the study of color, made analogy between sound and
light waves and believed that light is a wave and color is determined by its
frequency. In 1589, the Italian Giovanni Battista della Porta (1535–1615)
published his treatise Magiae Naturalis in which he discussed multiple mirrors
and combinations of positive and negative lenses. This work can be viewed as
contributing to the theoretical preparation for the invention of the telescope
in 1608.

1596 CE Ludolph van Ceulen (1540–1610, Netherlands). A ‘digit-
hunter’, at the University of Leyden, who calculated π to 32 decimal places.
The value of π was therefore often named “Ludolph’s number”. His perfor-
mance was considered so extraordinary, that the numbers were carved on
his tombstone (now lost) in St. Peter’s churchyard, at Leyden [he used the
Archimedean method of in- and circumscribed polygons].

1596–1616 CE Eliyahu de Luna Montalto (1560–1616, Italy and
France). Distinguished physician and medical researcher. Author of extensive
medical writings dealing especially with the mind and the nervous system.
Physician at the court of Maria de Medicis and Louis XIII, France.

Montalto was born in Castel Branco, Portugal in a Marrano family under
the name Philippe Rodrigues. Studied medicine at the University of Sala-
manca and moved to Livorno, Italy (1596). He was summoned to the French
Court in Paris at a period when Jews had been exiled from France for two
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centuries. On his return to Italy he was appointed to the chair of medicine at
the University of Pisa, where he published his research in the fields of optics
and medicine (1606). He returned formally to Judaism in Venice. In 1611 he
was invited back to Paris to serve as the personal physician of the Queen with
a special permission from the Pope to practice his own religion. Died of the
plague in Tour, France and buried in Amsterdam.

1597–1613 CE Andreas Libau (Libavius, 1540–1616, Germany).
Physician, alchemist and chemist. Wrote the first important textbooks in
chemistry (Alchemia, 1597; Syntagma, 1611), in which he described a wide
range of chemical methods and preparations such as: hydrochloric acid (HCl),
sulfuric acid (H2SO4), tin tetrachloride (SnCl4, 1605), ammonium sulphate
[(NH4)2SO4], and others. Wrote medical texts emphasizing the importance
of chemistry for medicine (1606). He pointed out in 1597, before Steno, that
the salts present in mineral waters could be ascertained by an examination of
the shapes of the crystals left upon evaporation of the water.

Libau studied medicine at the University of Jena (1586–1591) and became
a professor of history and literature there. He then practiced medicine at
Rotenburg, serving also as superintendent of schools until 1607. He was among
the first to introduce the study of science into the school curriculum.

He was a follower of Paracelsus, and as such belongs to the transition
period from alchemy to chemistry. He is counted among the pioneers of the
independent science of chemistry.

1599–1603 CE Ulisse Aldrovandi (1522–1605, Italy). Physician and
naturalist. One of the founders of modern zoology. The results of his various
researches were embodied in a magnum opus, which was designed to include
everything that was known about natural history. The first three volumes,
comprising his ornithology , were published in 1599, and a fourth, treating of
insects, appeared in 1602. After his death a number of other volumes were
compiled from his manuscript materials, under the editorship of several of his
pupils, to whom the task was entrusted by the senate of Bologna.

1600 CE Pestilence and famine stroke Russia. Ca 500,000 people perished.
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From Alchemy to Chemistry28 (1530–1789), or – the
Alchemists died poor

Alchemy was one of the earliest forms of chemistry. This ancient prac-
tice originated amongst the followers of Lao Tsu in China and Pythagoras
in Greece (6th century BCE), and combined science, religion, philosophy and
magic. Alchemy developed as men applied theories about nature to met-
alworking, medicine, and other crafts. As the practice of alchemy devel-
oped and moved Westward, Taoist ideas about chemicals were combined with
Pythagorean number mysticism. Another strand of alchemical tradition came
from the Egyptian embalmers.

In China, the early alchemists were searching for the elixir of life29 (a
substance that would provide long or never-ending life and health). Chinese
alchemy was passed on to the Hindus, who were more interested in using
alchemical ideas to cure diseases. About 300–400 CE the Alexandrians sup-
posedly used sorcery to convert base metals to gold.

Eventually the Arabs put together the ideas from the East with the
Alexandrian traditions of alchemy that had descended from the Pythagore-
ans. In this form of alchemy, astrological influences were important; chemical
reactions were believed to be determined by the influences of the planets, the
shapes of the vessels and numerology, and the elixir of life became mingled
with the concept of a philosopher’s stone (an object whose presence would
enable to transmute other metals into gold).

Jabir Ibn Hayyan (721–815, Baghdad) claimed that all base metals
consisted only of brimstone (sulfur) and mercury. To make the metal less
coarse, the sulfur had to be driven out. According to the alchemists, gold
contained almost no sulfur. Arabian alchemists developed a theory in which
different metals could be formed by combining mercury and sulfur in various
proportions.

28 The word chemistry probably originated in 400 BCE from the Greek word

chemeia, which designated the art of metal working. At a later time, the Arabs

added the prefix al. The new word alchemy signified the art of chemistry in gen-

eral.
29 Some of their accomplishments were remarkable: a woman (known as the Lady

of Tai) was buried about 185 BCE in a double coffin filled with a brown liquid

containing mercuric sulphide (HgS) and pressurized methane. There was no

observable deterioration of her flesh when she was exhumed after more than

2000 years.
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The alchemists also thought that bodies were made up of ‘matter’ and

‘spirit’, and they supposed that in some cases they could isolate the spirit

by heating the body and condensing the exuded vapor. Thus they obtained

alcohol, or ‘spirit of wine’, and hydrochloric acid, or ‘spirit of salt’. In this

way, the alchemists managed to obtain various practical results, including the

first strong acids and the distillation of alcohol.

It has been estimated that in the past 2000 years over 100,000 tomes have

been written by Western Alchemists. Who were the Alchemists? We know

that Geber (fl. 1350; Spain) and Avicenna (fl. 1020) were physicians and

alchemists. In the Middle Ages, Albertus Magnus (fl. 1250), Thomas

Aquinas (fl. 1260) and Raymond Lully (fl. 1280) were adept alchemists.

Arabs and Moors invaded and conquered most of Spain during the 700’s.

Spanish scholars did not, however, translate Arabic alchemy books into Latin

until the 1100’s. These translations introduced alchemy to England and the

rest of Europe.

The English philosopher and alchemist Roger Bacon (1214–1294) laid

the foundation for the experimental method of chemical research. Unlike the

early alchemists, Bacon planned his experiments and carefully interpreted his

laboratory work.

During the Renaissance, the West absorbed Arabic alchemy along with

more substantial Arabic science. By the 16th century, alchemy was being

practiced mainly in Europe; some alchemists and physicians began to apply

their knowledge of chemistry to the treatment of disease.

Since ancient times, man had known how to prepare and use various drugs.

He did so, however, without understanding how the drugs worked. The med-

ical chemistry of the 15th and 16th centuries is called iatrochemistry (from

the Greek iatros = physician).

Iatrochemists were the first to study the chemical effects of medicines on

the body [Paracelsus, 1530; Libau, 1597; Helmont, 1620]. As scientists

learned more about medicine, they gradually lost interest in the impractical

theories of alchemy.

However, the tradition of alchemy persisted well into the 18th century:

Newton (1642–1727) spent much of his later life trying to find the phi-

losopher’s stone, and may have gone mad from mercury poisoning caused

during his experiments. Other most distinguished 17 th century scientists,
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G.W. Leibniz (1646–1716) and Robert Boyle (1627–1691), “the father of
modern chemistry”, clearly accepted the theory of alchemical transmutation.30

Finally, Lavoisier (1743–1794) put together a scientific view of chemistry
that effectively abolished the alchemical tradition that had persisted for over
two millennia.

The ancient dream of the alchemists was realized in 1941 CE through the
artificial production of several isotopes of gold (Atomic number = 79) from
Mercury (Atomic number = 80; Atomic mass = 201) by Sherr, Bainbridge
and Anderson, via a nuclear reaction initiated by fast-neutron bombardment
of mercury.

The 17 th century Often is known as the ‘age of genius’ – and this for
at least two reasons. The century effectively invented far more than its share
of scientific instruments: the thermoscope, the telescope, the microscope, the
pendulum clock, are but a few of these. But, more than this, the ‘age of
genius’ also produced more than its just measure of ideas: among them, the
circulation of the blood , the wave theory of light , and the law of gravitation.
To some extent, it is true, the instruments and ideas had been adumbrated
by earlier periods; but it probably is safe to say that in no century, with the
possible exception of the 20 th, was the interplay of instruments and ideas
more effective that during the ‘age of genius’.

1600–1750 CE The European Baroque Period in music. The leading
composers are:

• Heinrich Schütz 1585–1672
• Dietrich Buxtehude 1637–1707
• Alessandro Stradella 1642–1682
• Arcangelo Corelli 1653–1713
• Johann Pachelbel 1653–1706

30 For further reading, see:

• Leicester, H.M., The Historical Background of Chemistry, Dover: New York,
1971, 260 pp.

• Partington, J.R., A Short History of Chemistry, Dover: New York, 1989,
415 pp.
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• Giuseppe Torelli 1658–1709
• Henry Purcell 1659–1695
• Tommaso Vitali 1663–1745
• Francois Couperin 1668–1733
• Thomasso Albinoni 1671–1751
• Antonio Vivaldi 1678–1741
• Francesco Manfredini 1680–1748
• Jean-Baptiste Loeillet 1680–1730
• Georg Telemann 1681–1767
• Jean-Philippe Rameau 1683–1764
• Domenico Scarlatti 1685–1757
• Johann Sebastian Bach 1685–1750
• Georg Friedrich Handel 1685–1759
• Francesco Geminiani 1687–1762
• Johann Friedrich Fasch 1688–1758
• Carlo Tessarini 1690–1765
• Giuseppe Tartini 1692–1770
• Pietro Locatelli 1695–1764
• Giovanni Batista Sammartini 1701–1775
• Giovanni Batista Pergolesi 1710–1736
• Christoph Willibald von Gluck 1714–1787
• Pietro Nardini 1722–1793

1600 CE William Gilbert (1544–1603, England). Physician and sci-
entist. The father of the science of magnetism31. Asserted that the earth is
a giant magnet, thus explaining for the first time why the compass needle

31 Gilbert must have been aware of the contributions of William Borough (1536–

1599, England) and Robert Norman. Borough published A Discourse of the

Variation of the Compass, or Magnetical Needle (1581), based on his observations

during several marine expeditions. Norman (1581) described his discovery made

some years before (1570) of the inclination or dip. He devised a form of a dip-

circle, and found the value for the inclination in London.

Another fundamental discovery, that of the secular change of declination, was

made in England by Henry Gellibrand (1597–1636), a mathematician and

astronomer, professor of mathematics at Gresham College, who described it in

his Discourse Mathematical on the Variation of the Magnetical Needle together

with its Admirable Diminution lately discovered (1635).

Gellibrand also noticed diurnal changes in the declination, which he attributed

to instrumental uncertainties. However, the reality of this phenomenon was first

emphasized by George Graham (1675–1751, England), a London instrument

maker, in 1724.
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seeks the poles. His findings were published in his book: “De magnete mag-
neticisque corporibus, et de magno magnete tellure physiologia nova”. In his
book (1600) Gilbert convincingly demonstrated, with the aid of an enormous
body of experimental material, that the magnetic field of the earth is like the
field of a uniformly magnetized sphere made of magnetic iron ore32. Gilbert’s
book laid the foundations for the scientific approach to magnetism in general ,
and to terrestrial magnetism in particular. For two centuries following his dis-
covery, nothing of substance that was not either a repetition or a development
of what Gilbert had already done, was added to the subject.

Gilbert’s work, which embodied the results of many years of research, was
distinguished by its strict adherence to the scientific method of investigation
by experiment, and by the originality of its material. He explained not only
the north-south alignment of the magnetic needle, but also the variation in the
dipping (inclination) of the needle. Gilbert’s is therefore the first systematic
contribution to the science of magnetism.

Gilbert was born at Colchester of an ancient Suffolk family. He entered
St. John’s College, Cambridge in 1558, and graduated M.D. in 1569. After
spending three years in Italy and other parts of Europe, he settled in London,
where he practiced as a physician with great success. In 1599 he became
president of the college of physicians, and in 1601, court physician to Queen
Elizabeth I. On the death of the queen in 1603 he was reappointed by her
successor, but died soon thereafter of the plague.

1603–1644 CE Theodore Turquet de Mayerne (1573–1655, France
and England). Physician, Physiologist and Chemist. One of the great physi-
cians of the Baroque era: added chemical principles to humoral medicine,
a greater empiricism to a more rational approach to medicine, and an in-
terventionist therapeutics to a more cautious view of therapy. Thus he was
influential in the introduction and support of chemical therapy in medicine,
endorsing the use of chemical remedies in his practice.

Turquet was born in Mayerne, near Geneva, the son of a noted Huguenot
historian and political theorist, Louis Turquet de Mayerne. He com-
pleted his early schooling in Geneva and took his undergraduate degree at
the University of Heidelberg. He received his M.D. in 1597 at the University
of Montpellier. For 50 years he served as a royal physician to three kings in
France and England (Henri IV, James I, Charles II).

32 In explaining terrestrial magnetism Gilbert suggested that the earth was made

of magnetized iron, which created the magnetic field; but his proposition was not

correct. He himself discovered that iron, at the high temperatures that we now

know to exist at the center of the earth, completely loses its magnetic qualities.
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Turquet was one of the 17 th century most renowned authority on the
technical aspects of painting and art: he prepared instructions for varnishes,
painting mediums, coating canvases, enamels and pigments for Peter Paul
Rubens, Anthony van Dyck and a host of other well known painters and
craftsmen of the Baroque33.

33 Many of the practices used by Renaissance and Baroque painters were often kept

secret.
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History of Magnetism I (1100 BCE–1600 CE)

Certain naturally occurring substances (e.g. magnetite Fe3O4, magnetic
pyrites 6FeS · Fe2S3) posses the property of attracting neighboring particles
of iron over considerable distances. Such bodies are called magnets. If a steel
rod be stroked with such a natural magnet, it also assumes the property of
attracting particles of iron. A splinter of magnetite, hanging by a thread,
takes up a definite position, resulted in being called loadstone or lodestone.

These curious facts were known to the ancient Greeks at least as early as
800 BCE. Apart from these two magnetic phenomena, no additional knowl-
edge about magnetism was gained up to the end of the 15 th century. Upon
one of these is based the principle of the mariner’s compass34, which is said to
have been known to the Chinese35 as early as 1100 BCE, thought it was not
introduced into Europe until more than 2000 years later.

A passage in De Rerum Natura (VI, 910–915) by the Roman poet Lu-
cretius (ca 60 BCE) indicates that in his time the phenomenon of magneti-
zation by induction has been observed. The property of orientation, in virtue
of which a freely suspended magnet points approximately to the geographical
north and south, is not referred to by any European writer before the 12 th

century (A. Neckham of Great Britain in 1187 CE).

The needles of primitive compasses, being made of iron, would require
frequent re-magnetization, and a “stone” for the purpose of “touching the
needle” was therefore generally included in the navigator’s outfit. With the
constant practice of this operation, it is hardly possible that the repulsion
acting between like poles should have entirely escaped recognition; but though
it appears to have been noticed that the loadstone sometimes repelled iron
instead of attracting it, no clear statement of the fundamental law that unlike
poles attract while like poles repel was recorded before the publication (1581)
of the New Attractive by Robert Norman.

The foundations of the modern science of magnetism were laid by William
Gilbert (1600) in his book De Magnete. It contains many references to the
exposition of earlier writers from Plato to the author’s own age. He admitted
therein that the north seeking property of magnetite was brought to Europe
from China by Marco Polo. Gilbert showed that the earth’s magnetic field
was equivalent to that of a permanent magnet, lying in a general north-south
direction, near the earth’s rotational axis.

34 From the Latin cum = with, passus = a step; compass = a measuring instrument.
35 First mentioned by Shen Kua of China in 1088 CE.
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No material advance upon the knowledge recorded in Gilbert’s book was
made until the establishment by Coulomb (1785) of the law of magnetic
action.

1603–1614 CE Santorio Santorio or Sanctorius Sanctorius (1561–
1636, Italy). Physician and physiologist. Pioneer of quantitative experimental
medicine. His experimental studies established quantitative metabolic phe-
nomena of body weight (1614). Introduced measurements and quantification
into physiology and medicine.

Santorio was born in Justinopolis, Venetian Republic (now Koper, former
Yugoslavia) to a noble Venetian family. He studied philosophy and medicine
at Padua (1579), where he received his M.D. (1582). Served as a personal
physician of a Croatian nobleman (1587–1599) and then set up a medical
practice in Venice (1599). Here he became part of the circle of learned men,
befriending Galileo and other leading figures of the Scientific Revolution.
Appointed to the chair of theoretical medicine at the University of Padua
(1611), where he taught until his retirement (1624).

Santorio is best known for his investigations into metabolism: over a period
of 30 years he carried out an elaborate series of measurements, described in
his De Statica Medicina. He placed himself on a platform suspended from
an arm of an enormous balance, and weighted both himself and his food,
drink, and waste products. He determined that over half of normal weight
loss is due to ‘insensible perspiration’. He invented instruments to measure
humidity, temperature (1611) and pulse rate (1603).

Although in treating his patients Santorio did not stray far from Hippo-
cratic and Galenic practice (based on the notion of a balance of fluids), he
differed from the classical authors a great deal in his theory and method of
investigation. Rather than relying on authority in the first instance, he ar-
gued that one should first rely on sense experience, then on reasoning, and
only lastly on authority.

Rather than describing the body and its functions in terms of Aristotelian
and Galenic elements and qualities, Santorio argued that the fundamental
properties were mathematical ones, such as number, position, and form. The
body was like a clock, the working of which was determined by the shapes and
positions of its interlocking parts. This was a radical break with traditional
medical theory and natural philosophy, in which the discourse was about
qualities and essences.
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1603 CE Johann Bayer (1572–1625, Germany). Amateur astronomer
and lawyer. Introduced the method of describing the locations of stars and
of naming them with Greek letters and by the constellation they are in; this
system continues to be used today. His Uranometria (1603) is the first attempt
at a complete celestial atlas.

Bayer was born in Rain, Germany.

1604–1619 CE Hieronymus Fabricius (Geronimo Fabricio; Girolamo
Fabrici, 1537–1619, Italy). Surgeon, anatomist and embryologist. Founder of
comparative anatomy.

He was born at Aquapendente. Student of Gabriele Fallopio and his
successor at Padua (1562–1613). Conducted studies in embryology of various
animals and man, published in his De formato foetu (1604) and De formatione
ovi et pulli (1621).

1605–1638 CE Willem Janszoon Blaeu (1571–1638, Holland). Map
maker and astronomer. One of the leading map makers of the early 17 th

century. His works include a world map issued in 1605, a three-volume sea
atlas [The Light of Navigation (1608–1621)], and a series of atlases.

Blaeu was born in Alkmaar and developed his geographical and astro-
nomical skills under the guidance of Tycho Brahe in Denmark. He founded
a publishing house (1599), specializing in cartography. His instruments and
globes featured unprecedented precision.

1608–1609 CE Hans Lippershey (1587–1619) and Zacharias Jansen
(1588–1630), Dutch spectacle makers from Middleburg, and James Metius
of Alkmaar invented both the compound microscope and the telescope. An-
ton van Leeuwenhoek (1632–1723, Netherlands, 1668) first used micro-
scopes for scientific research.

1609 CE First regularly published newspaper in Germany.

1609–1621 CE Johannes Kepler (1571–1630, Germany). Court as-
trologer and astronomer. The founding father of modern astronomy. By
careful observations and years of painstaking calculations, was able to de-
rive the laws of elliptical planetary motion, thus providing evidence for the
Copernican system.

With his resolution to submit every physical and astronomical law to the
test of experiment and observation, he contributed much to the inauguration
of the present scientific age. Kepler dissented from the Aristotelian meta-
physics of his day and maintained that the Copernican system was not merely
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a convenient hypothesis but a true image of nature, and that it was amenable
to verification through quantitative measurements.

Born in Weil-der-Stadt, Württemberg (near Stuttgart), he attended the
University of Tübingen and studied for a theological career. There he learned
the principles of the Copernican system. In 1594 he was offered a position
of teaching mathematics and astronomy at the Lutheran school in Graz. As
part of his duties, he prepared astronomical almanacs and furnished astro-
logical “data”. But he left Graz rather then undergo compulsory conversion
to Roman Catholicism. While he was seeking another post, he formed an
association with Tycho Brahe which shaped the rest of his life.

Tycho set Kepler to work trying to find a satisfactory theory of planetary
motion — one that was compatible with the long series of observations that he
had made. Brahe, however, was reluctant to supply Kepler with enough data
to enable him to make substantial progress, perhaps because he was afraid of
being “scooped” by the young mathematician.

After Tycho’s death in 1601, Kepler succeeded him as mathematician to
Rudolph II, the Holy Roman Emperor, and obtained possession of the major-
ity of Tycho’s records: Their study occupied most of Kepler’s time for more
than 20 years. In 1604 Kepler observed what is today known as a supernova
explosion. [In the same year he also suggested that the opposite ends of a
straight line meet at infinity and that two parallel lines intersect at infinity!]

Kepler made his most significant discoveries when he tried to find an orbit
to fit all Brahe’s observations of the planet Mars. Earlier astronomers thought
that a planetary orbit was a circle or a combination of circles. But Kepler
could not find a circular orbit that would agree with Brahe’s observations. He
spent several years on this problem. At one point he found a combination of
circular arcs that agreed with the observations to within 8 arcminutes (quarter
of a diameter of a full moon), but he believed that Tycho’s observations could
not have been in error by even this small amount, and so, with characteristic
integrity, he discarded the hypothesis. He then took the bold step of assuming
that the orbit of Mars cannot be circular , and tried to represent it with an
oval instead. He soon discovered that the orbit could be fitted well by an
ellipse (Kepler’s First Law).

Kepler found that the eccentricity of the orbit of Mars is only 0.1: the
orbit, drawn to scale, would be practically indistinguishable from a circle. It
is a tribute to Tycho’s observations and to Kepler’s perseverance, that he was
able to determine that the orbit was an ellipse at all. Kepler’s achievement in
dislodging the 2000 year old belief in circular orbits, is all the more remarkable
since he himself was quite partial to perfect heavenly spheres.

In the year 1609, Kepler published his new results in a book ‘Astronomia
Nova’, on which he worked altogether for six years. Before he saw that the
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orbit of Mars could be represented accurately by an ellipse, Kepler had already
investigated the manner in which the planet’s orbital speed varied. After some
calculations, he found that Mars speeds up as it comes closer to the sun and
slows down as it pulls away from the sun. Kepler expressed this relation by
imagining that the sun and Mars are connected by a straight, elastic line. As
Mars travels in its elliptical orbit around the sun, the areas swept out in space
by this imaginary line in equal intervals of time are always equal (Kepler’s
Second Law).

At the time of publication of his book in 1609 Kepler appeared to have
demonstrated the validity of his two laws for the case of Mars alone. However,
he expressed the opinion that they hold also for the other planets.

Kepler believed in an underlying harmony in nature, and he constantly
searched for numerological relations in the celestial realm. This belief was
triumphantly vindicated when he found a simple algebraic relation between
the length of the semi-major axis of a planet’s orbit and its sidereal period:
namely that the squares of the sidereal periods of the planets are in direct
proportion to the cubes of the semi-major axes of their orbits (Kepler’s Third
Law36).

Kepler published this third law in a second book, “De Harmonice Mundi”
in 1619.37 To arrive at this law it was not necessary for him to know the
actual distances of the planets from the sun, only the distance in units of the
earth’s distance. [There were very slight discrepancies when the third law was
applied to the orbits of Jupiter and Saturn. Decades later, Newton gave an
explanation for them, but within the limits of accuracy of the observational
data available in 1619, Kepler was justified in considering his formula to be
exact.]

36 Kepler himself never realized the real importance of his three laws. Indeed, with-

out differential calculus and analytical geometry, these laws show no apparent

connection with each other – they are disjointed bits of information which do

not make much sense. Once you know the inverse square law of gravitation and

Newton’s mathematical equations, all this become beautifully self-evident. Thus,

Kepler’s laws seem to have no particular raison dêtre: of the First he was almost

ashamed – it was a departure from the circle sacred to the ancients and there

was nothing to recommend it in the eyes of God. The Second Law he regarded

as a mere calculating device. The Third he saw as necessary link in the system

of harmonies, and nothing more.
37 For further reading, see:

• Adler, M.J. (ed), Great Books of the Western World. No. 16. Ptolemy,

Copernicus, Kepler, William Benton, Publisher, The University of Chicago,

1952, 1085 pp.
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Much of the rest of “De Harmonice Mundi” deals with Kepler’s attempts
to associate numerical relations in the solar system with the regular Platonic
Solids38 and with music. He tried to derive notes of music played by the
planets as they move harmoniously in their orbits (!). The earth, for example,
plays the notes mi, fa, mi, which he took to symbolize the “miseria” (misery),
“fames” (famine), “miseria” of our planet.

Buried amongst the musical notes was a curious little relationship: “It
seems that the squares of the periods of revolution (T ) of any two planets are
as the cubes of their mean distance from the Sun (r).”

Year (T ) T squared Orbit (r) r cubed
Mercury 0.2408 0.0580 0.388 0.0584
Venus 0.6152 0.3785 0.724 0.3795
Earth 1.0000 1.0000 1.000 1.0000
Mars 1.881 3.5378 1.524 3.5396
Jupiter 11.862 140.71 5.200 140.61
Saturn 29.457 867.72 9.510 860.09

This was to become – even though he didn’t know it himself – Kepler’s Third
Law. It is the key to the orderliness of the solar system, for it indicates in
what way the motions of the five planets are mathematically interdependent.

The book containing it was universally ignored. Three days after the
completion of The Harmony of the Worlds, the Thirty Years War broke out.

38 Kepler attempted here to bare the ultimate secret of the universe in an all-

embracing synthesis of geometry, musics, astrology, astronomy and epistemology.

It was the first attempt of this kind since Plato, and it is the last to our day.

After Kepler, science is divorced from religion, religion from art and matter from

mind.

According to Kepler, the existence of just six planets (with the five intervals

between them) matching the five Platonic Solids, was not by chance – but a

divine arrangement: into the orbit (or sphere) of Saturn he inscribed a cube;

and into the cube another sphere, which was that of Jupiter. Inscribed in that

was the tetrahedron and inscribed in it was the sphere of Mars. Between the

spheres of Mars and Earth came the dodecahedron; between Earth and Venus

the icosahedron; between Venus and Mercury the octahedron.

In the Third Law, Kepler saw the pinnacle of all his achievements: here at

last was the connection between characteristic distances and times associated

with the solar system – the ultimate harmony of the spatial architecture of the

Platonic Solids and the temporal musical scale of the planetary spheres.
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It is indeed surprising to perceive in his work copious signs of superstition
and a keen devotion to astrology. Neo-Platonic and religious conceptions are
even more evident than in Copernicus. Still under the spell of apriorism, he
was anxious to interpret the universe as motivated by mathematico-aesthetic
numerical harmony and exhibiting a surpassing simplicity and unity.

In 1618, 1620, and 1621, Kepler published his text “Epitome Astronomiae
Copernicanae”. Here, he stated that his first two laws had been tested and
found valid for the other planets besides Mars, and for the moon. Also, he
reported that the third law applies to the motions of the four newly discovered
satellites of Jupiter as well as to the motions of the planets about the sun.

In 1623, Kepler concluded work on his last book, the “Tabulae Rudolphi-
nae”, which consisted of tables and rules for determining the positions of the
planets and a catalogue of star positions, mostly based on the data of Brahe.
This book ranked for a century as the best aid to astronomy. The printing of
this book was delayed [by the 30 year war (1618–1648) which raged at that
time in Europe] and was finalized only in 1627.

Kepler also studied optics and designed a telescope that he probably built
but never used. He discovered the inverse-square law of the decrease in the
brightness of a source of light, for he saw instinctively that light from a faint
source spreads out spherically and that the brightness of the source therefore
varies inversely as the square of the observer’s distance from it. Kepler also
investigated the refraction of light and showed that Ptolemy’s approximate
law of refraction (i.e. the proportionality of the angles of refraction and inci-
dence) holds only for small angles of incidence. However, he did not discover
the correct law of refraction39.

At that time, the insolvent imperial exchequer owed Kepler some 12,000
florins, for which Wallenstein assumed full responsibility. But Wallenstein’s
promises to Kepler were not kept. In lieu of the sums due, he offered him a
professorship at Rostock, which Kepler declined. An expedition to Ratisbon,
undertaken for the purpose of presenting his case to the diet, terminated his
life: shaken by the journey, which he had performed across Europe entirely
on horseback in the autumn of 1630, he came down with fever and died at
Ratisbon, on the 15th of November 1630 in the 59th year of his life. By his
first wife (ca 1611) he had five children, and by his second wife — seven
children. Of these only two, a son and a daughter, reached maturity. In 1615
his mother was charged with witchcraft; it was only due to his indefatigable

39 Kepler used his own approximation i = kr cos r
k cos r−(k−1)

, where i is the angle of

incidence (w.r.t. the normal) and r is the corresponding angle of refraction; k is

a fixed number for any pair of media
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efforts that she was acquitted, after having suffered 13 month’s imprisonment
under imminent threat of torture.

Kepler was buried in a cemetery outside the town of Ratisbon. The ceme-
tery was destroyed during the 30 years war and his bones were scattered.
There remained, however, the epitaph that he had prepared for himself:

“Mensus eram coelos, nunc terrae metior umbras,
Mens coelestis erat, corporis umbra iacet”.
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Worldview VIII: Johannes Kepler

∗ ∗∗

“Ubi materia, ibi geometria”

∗ ∗∗

“Expectet ille suum lectoremper annos centum; si Deus ipse
perannorum sena millia contemplatorem praestolatus est.”

“(It may well wait a century for a reader, as God has waited six thousand
years for an observer.)”

(Harmonice Mundi, 1619)

∗ ∗∗

“I measured the skies, now the shadows I measured. Sky-bound was my mind,

earth-bound the body rests.”

∗ ∗∗

“When the storm rages and the state is threatened by shipwreck, we can do
nothing more noble than to lower the anchor of our peaceful studies into the
ground of eternity.”

(1629)
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∗ ∗∗

“I have the answer, the orbit of the planet is a perfect ellipse.”

(1609)

∗ ∗∗

“God always geometrizes”

∗ ∗∗

“The universe was stamped with the adornment of harmonic proportions”

∗ ∗∗

“I undertake to prove that God, in creating the universe and regulating the
order of the cosmos, had in view the five regular bodies of geometry as known
since the days of Pythagoras and Plato, and that he has fixed according to
those dimensions, the number of heavens, their proportions, and the relations
of their movements.”

∗ ∗∗
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Others on Kepler

∗ ∗∗

“Johannes Kepler set out to discover India and found America. It is an
event repeated over and again in the quest for knowledge. But the result is
indifferent to the motive. A fact, once discovered, leads an existence of its
own, and enters into relations with other facts of which their discoverers have
never dreamed. Apollonios of Perga discovered the laws of the useless curves
which emerge when a plane intersects a cone at various angles: these curves
proved, centuries later, to represent the paths followed by planets, comets,
rockets, and satellites.”

(Arthur Koestler “The Watershed”, 1960)

∗ ∗∗

How did Kepler derive his three ‘laws’?40 (1609–1619)

The manner in which Kepler used the empirical astronomical data avail-
able to him (consisting of antiquity’s accumulated lore plus Tycho Brahe’s
observations) is an instructive case study of how Science’s knowledge of the
laws of nature is actually abstracted from observations and experience. It was
done through a sequence of interactive, iterative and convergent interplays be-
tween empirical investigations on the one hand, and theoretical speculation

40 This article was written by Dr. Shahar Ben-Menahem.
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and modeling on the other. It led to Kepler’s three laws of planetary motion,
and then to Newton’s theories of mechanics and universal gravitation.

In order to deduce his ‘laws’, Kepler had to determine the distances of the
planets from the sun and show that the orbits are not circles, but ellipses.
Before we see how he accomplished this feat, let us regress momentarily to
Copernicus (1543) who went back to the doctrine of Aristarchos (270 BCE)
and put the sun at the center of the whole planetary system, including the
earth as a planet. Having no telescopic information, he stuck to the idealistic
belief that each planet moves in the most perfect plane.

The hypotheses which Copernicus adopted may be summarized under four
headings:

1. The apparent diurnal rotation of the celestial sphere is due to the com-
plete rotation of the earth about its polar axis in a period of 24 hours.

2. The moon revolves around the earth in a period of 27 1
3 days.

3. The earth and the planets revolve in circular orbits about the sun in the
same direction as the earth’s diurnal motion.

4. The orbits of Mercury and Venus lie between the sun and that of the
earth, while the orbits of Mars, Jupiter, and Saturn, lie beyond the
earth’s orbit.

The tracks of the planets lie close to the ecliptic plane. So it is better
to calculate their positions in celestial longitude and latitude as Copernicus
did. For the purpose of grasping the principles employed in tracing out their
orbits it will be sufficient to employ right ascension to measure their angular
displacement. This is equivalent to projecting their movements onto the plane
of the celestial equator.

Once one accepts the Copernican system for the solar system, the simplest
set of assumptions is that each planet (earth included) describes a closed orbit
around the sun — and furthermore, that these orbits are circular (centered
at the sun), and that each planet moves around its orbit at a uniform angular
speed. These assumptions are ‘theoretical’ in the sense that the only data
that were actually ‘measured’ from any single observatory on earth (that is to
say, excluding ‘triangulation’ measurements using some terrestrial distance as
baseline) were angular position (right-ascensions and declinations) at which
the planets and sun appear, in reference to the celestial sphere anchored to
the fixed stars. Note that all the above-mentioned theoretical assumptions
turned out in the end to be not quite accurate — but they did play an initial
role in interpreting the “pure”, apparent-angular-position data.
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Kepler’s first task was to calculate the planets’ sidereal periods. True,

Copernicus and his predecessors calculated it from the synodic period (known

to the ancients); the latter is the time elapsed between two successive occasions

when Mars (or any other planet), the sun and the earth occupy the same

relative positions. It is done by noting when Mars is in opposition, i.e., when

it is on the meridian at midnight, and counting the number of days which

intervene before its next midnight meridional crossing (780 earth days on the

average).

But the Copernican formula was based on the assumption of constant

angular speed (circular orbit). Kepler, however, found very soon from Tycho’s

observations that the assumption of a circular Martian orbit is in conflict with

the data. He therefore realized that strictly speaking, there is no such thing as

a precisely-defined synodic period. In other words, because of the non-uniform

planetary speeds, the times of conjunction and opposition do not occur with

exact regularity and one can speak only of a mean synodic period.

So Kepler was led to determine the planets sidereal periods in a better

way, one that does not make use of the (now discredited) ‘theory’ of uniform

angular speeds.

The new, better method involved scanning the Tables for a planets’ appar-

ent angular positions at a sequence of dates separated by an integral number
of earth years; one might term this the “strobing out” method — the well-

known periodicity of the earth’s own sidereal motion (namely, one earth-year)

is removed from the compounded motion by viewing the accumulated data

through a “stroboscope”, as it were, having a period of one earth year. This

method, when applied to the planetary data that had accumulated over the

centuries, gave Kepler accurate values for each planet’s sidereal period.

Having eliminated his dependence upon the uniform-revolutions assump-

tion, Kepler found that the assumption that each planet’s orbit is a sun-

centered perfect circle, was also wanting. By laborious fitting of Tycho’s

data41 , he found that models using circles simply would not work — even

if he shifted the sun away from their centers. Thus, even when a given such

model seemed to work for Mars (the planet boasting the most eccentric of

the planetary orbits) based on R.A. (Right Ascension) data, it failed when

“declinations” (due to the differing orbital planes of Earth and Mars) were

taken into consideration. In other words, neither circular orbits nor uniform

41 Kepler’s various fitting efforts were rendered all the more tedious by his lack of

proper, statistics-based best-fit procedures — which were only developed later,

starting with the work of Gauss
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angular speeds yielded theoretical models which could be reconciled with Ty-
cho’s data (to the level of accuracy to which Kepler believed Tycho’s purely
empirical results held true).

Note that in the case of inferior planets (i.e. Mercury and Venus), the
assumption of sun-centered circular orbits immediately allows the extraction
from Tycho’s (or even the ancients’) data of a reasonable value for these two
planets’ orbital radii – in units of earth’s radius. This can be done by mea-
suring the elongation angle (maximal apparent angular separation between
the planet and the sun) for each inferior planet, and then utilizing simple
trigonometry to compute the ratio of the respective planets’ orbital radii to
that of earth. But the superior planets (Mars and outwards) have no elonga-
tions as viewed from earth; and in any case Kepler could no longer rely on
the sun-centered-circles model – as explained above.

Once Kepler was convinced that a circular Martian orbit about the sun
would not do, he had to obtain a real picture, based on Brahe’s data which
he trusted. However, this was not easy since he only had observation of the
apparent path of Mars from a moving earth. The true distances were unknown,
only angles were measured, and those gave a foreshortened compound of Mars’
orbital motion and the earth’s. So Kepler decided to attack the earth’s orbit
first by a method that had the hallmark of genius.

To use Tycho’s data to extract the correct shapes and sizes of the plane-
tary orbits and the rates at which the planets move along these orbits, Kepler
applied the ‘strobing out’ method in reverse!! Namely, by picking out of Ty-
cho’s tables the apparent angles of a given planet at many observation times
spaced by integral numbers of that planet’s sidereal period — and assuming,
as for the earth, that the given planet’s orbit is a closed curve — Kepler was
able to use apparent angular positions of a single position along the planet’s
orbit, as viewed by many earth positions, to determine the distance of that
particular position of the planet from the sun in units of the average earth-sun
distance (the so-called “Astronomical Unit” – A.U. for short) — via a simple
geometrical construction.

In fact, if one believes that the earth’s orbit itself is a sun-centered circle,
then it suffices to employ two earth positions along its year-long orbit to
properly triangulate each planet; Kepler then could (and did) repeat this
procedure for many different positions of each planet along its orbit, thereby
determining the detailed shapes and sizes of all planetary orbits.

However, the earth’s orbit – although fairly close to being a sun-centered
circle – does have some eccentricity; which is why the “strobed triangulation”
procedure just described, needs to be over-determined. With enough different
earth positions per given position of the planet being investigated, one can
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compensate for the earth’s orbital eccentricity. As a result of this investiga-
tion, Kepler found that the planets, earth included, moved in ellipses with the
sun at one focus (Kepler’s First Law).

After he had worked out the geometry of planetary orbits, Kepler pro-
ceeded to investigate the detailed motion of each planet around its orbit —
finding his second law, governing the way in which a planet’s varying distance
from the sun modulates its (non-uniform!) angular speed along its orbit, as
subtended at the sun.

Finally, Kepler asked himself whether there is any systematic relationship
between the sizes of these orbits and their respective sidereal periods; after
various attempts, he found such a simple rule – the celebrated Kepler’s Third
Law.

Note that there are many other effects, not mentioned above, which “con-
taminate” Kepler’s interpretation of the “pure data” with unwarranted as-
sumptions: to mention just two, there is the earth’s precession (caused by
tidal torques upon the earth’s equatorial bulge, and resulting in the famed
“precession of the equinoxes” thanks to which we are said to be entering “the
Age of Aquarius”), and perturbation of planetary orbits due to inter-planetary
gravitational attractions.

The tidal-precession effect causes an additional apparent motion of the
fixed stars, over and above the familiar diurnal motion — and this additional
rotation is about an axis perpendicular to the ecliptic plane, and thus at an
angle to the rotation axis of the earth. This effect certainly introduced com-
plication in principle for Kepler’s program – but fortunately, the precession
is very slow.

As for the inter-planetary perturbations – those, too, are small; and once
the Keplerian picture (as completed by Newton’s new physics) clarified the
basic dynamics of the solar system, these perturbations were used by subse-
quent scientists to work out such details as three-body dynamics (Lagrange
points, etc.) and to successfully predict new, previously unobserved, plan-
ets from purely theoretical calculations (the planets Neptune and Pluto were
discovered with the aid of successive application of this technique). We thus
see that the grand “iterative, interactive interplay of theory and experiment”
continues to spin and converge long after Kepler, and each new “twist in
the plot” demonstrates anew the fundamental robustness of this never-ending
iteration.

Kepler’s three laws of planetary motion – augmented by Galileo’s observa-
tion of the systematics of the Jovian moons’ motion about Jupiter – allowed
Newton to arrive at his laws of mechanics and universal gravitation.
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Late-17 th-century triangulation measurements (via a terrestrial baseline)
of distances from earth to the nearest planets (Mars and Venus) by Cassini
et al., fixed the absolute distance scale of Kepler’s solar system model – thus
allowing the determination of its basic scale, the A.U. (Astronomical Unit),
in terms of terrestrial units such as kilometers (although the metric system
was yet to be invented).

The Kepler Problem

The motion of an isolated system of two masses, moving under the sole
influence of their mutual gravitation, is known as the two body problem or the
Kepler problem. The motion is governed by a single ODE equation of the
second order:

d2r12

dt2
= −
[
G(m1 + m2)/r3

12

]
r12, (1)

where r12(t) is the relative vectorial distance between the mass m1 and the
mass m2 at time t. In this form the problem is represented in terms of the
separation r12, which can be determined directly . The force between the
masses is

F12 = −[GMμ/r3
12]r12,

where M = m1 + m2 is the total mass and μ = m1m2
m1+m2

is the reduced
mass. Thus the orbit of each mass about the other is equivalent to the orbit
of a mass μ about a mass M that is fixed in an unaccelerated, unrotating
(inertial) frame.

The exact solution of the above equation of motion can be written as a
time-eliminated polar equation of the conic section curve:

r12(θ) =
[MG

h2
+

1
h

{
2E +

M2G2

h2

}1/2 cos θ
]−1

,

where θ is the angle at the focus of the conic between the radius vector r12 and
the major axis (‘true anomaly ’), and (E, h) are the two constants of motion,
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namely the total energy and the orbital angular momentum, both per unit
reduced mass (h is also twice the area swept out by the radius vector per unit
time).

Explicitly

E = − MG

2a
, 1 − e2 =

h2

MGa
, P = 2πa

√
a

MG
,

where a is the semi-major axis, e is the eccentricity of the orbit and P is the
orbital period.

If (a, P ) for a binary system can be evaluated by direct astronomical ob-
servations, and if the motion of one of the two masses (which could be a star,
planet, comet, moon, etc.) w.r.t. the common center of mass is known, the
individual masses (m1, m2) of the pair can also be determined.

The equation of motion can be further exploited to obtain useful relations:
from the area-rate constant

r2 dθ

dt
= h =

√
GMa(1 − e2)

and the energy constant

(
dr

dt

)2

+ r2

(
dθ

dt

)2

= GM

(
2
r

− 1
a

)

,

one obtains (by eliminating dθ
dt )

dr

dt
=

na

r

√
a2e2 − (a − r)2,

where n = 2π
P . Defining the eccentric anomaly E via

a − r = ae cosE,

a straightforward integration of the above first-order differential equation for
r(t) yields the Kepler equation

n(t − T ) = E − e sin E,

where T is an integration constant.

The geometric interpretation of E is clear from its defining equation:

r = a(1 − e cos E).

Construct an auxiliary circle in the orbital plane such that its diameter co-
incides with the major axis of the orbital ellipse, and their centers coincide.
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From a point S(r, θ) on the ellipse draw a normal to the major axis and extend
it until it meets the circle at S′. The angle subtended at the circles’ center
between the major axis and S′ is E.

Then M = n(t − T ) is the angle which would have been described by a
fictitious point moving on the auxiliary circle with mean angular velocity such
that it revolves along the circle (and the ellipse) with period P . The angle M
is known as the mean anomaly. The entity (t − T ) is the epoch relative to T ,
the time of the perihelian passage.

Kepler noticed that given M , one must solve a transcendental equation for
E, namely

E − e sin E − M = 0.

Once E(e; M) is known, the orbit is calculated from r = a(1 − e cosE) and

tan θ
2 =

√
1+e
1−e tan E

2 , yielding R(t, θ(t)). During 1609–1819, more than 100

methods of solving Kepler’s equation had been proposed, the most elegant
being that of Bessel (1819).

Eq. (1) is equivalent to a system of 6 scalar ODE’s of the first order in
6 unknown functions, namely the components of the relative separation of
the masses and of their relative velocity vector at any given time. This is
then a well-posed problem which needs for its complete solution 6 constants
of integration42. These constants are, for example, the relative positions and
velocities of the masses at any given fiducial time.

A difficulty arises from the fact that the observations which are made from
the moving earth give only the direction of the line of sight to the object seen
by the observer and furnish no direct information regarding its distance or line-
of-sight velocity component. The position of the body in space is therefore not
given and of course, its components of velocity are not determined. It thus
becomes necessary to secure additional observations at other times (or use
Dopler measurements to extract line-of-sight speeds via spectral means). It

42 The six arbitrary constants of integration can be represented by six independent

functions (orbital elements) of these constants, which are direct and indirect

observable parameters of the orbit:

a = major semi-axis, which defines the size of the orbit, its energy and its period;

e = the eccentricity, which defines the shape of the orbit;

Ω, i = two angles which together define the position of the plane of the orbit

relative to the plane of the ecliptic (longitude of ascending node and inclination

to the plane of the ecliptic);

ω (or π) = an angle defining orientation of orbit in the plane of the orbit;

T = time of perihelion passage, defining, with the other elements, the position

of the body in its orbit at any time.
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is clear that the problem of finding the position of the body and the elements
of its orbit from such data present some difficulties.

Clearly, six independent entities must be found by observations in order
that the elements could be determined. A single complete geometrical obser-
vation gives two quantities: the angular coordinates of the body. Therefore 3
complete observations are just sufficient to determine the orbit.

It required the combined genius of Euler (1744), Lagrange (1778–1783),
Laplace (1780) and Gauss (1809) to perfect precise and elegant computa-
tional tools for determining the orbital elements of planets and comets from
observations by earthbound spectators.

The Advent of Optical Instruments

The growth of maritime commerce was reinforced by the introduction of
new technical inventions which emerged in a different context from the world’s
everyday work.

One of these was the invention of spectacles. Although devices of one kind
or another for magnifying objects are of considerable antiquity, there does not
seem to have been any general use of them in everyday life till the close of
the Middle Ages.

The introduction of spectacles at about 1300 in Florence involved no the-
oretical discovery about phenomena of which the Alexandrian and Arab as-
tronomers were not fully conversant [Ptolemy, 150; Alhazen, 1026]. It is there-
fore more reasonable to suppose that introduction of paper, the invention of
printing and the use of books in the 15th century, stimulated the demand for
eye glasses. The trade increased during the 16th century, especially in Italy
and in Southern Germany. By 1600 opticians were to be found in most of the
larger towns on the continent.
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Two other inventions, which are signposts in the history of science, came
as quite fortuitous by-products of the new industry: the telescope (1608) and
the microscope (1609).

On Galileo’s visit to Venice in May 1609, he heard that an instrument
for making objects appear nearer and larger had been invented. Returning to
Padua, he made his first telescope by fixing a convex lens in one end of a leaden
tube and a concave lens in the other end. Then he made a better one, went
to Venice, and presented the instrument to the Doge Leonardo Donato. His
first telescope magnified 3 diameters. He soon made others which magnified
8 diameters and finally one that magnified 33 diameters. Kepler devised an
alternative form using a convex eyepiece.

The three years which followed the invention of the telescope by Lipper-
shey, Jansen and Metius, were eventful. Kepler’s account of the motion of
Mars appeared in 1609. His telescope was constructed in 1611. Eight years
later he was able to announce his complete vindication of the fundamental
doctrine of Copernicus and his epoch-making laws of the solar system.

Meanwhile, Galileo had observed the motion of the sun’s spots and had
seen the moons of Jupiter. Galileo’s discoveries were important partly because
it deprived the geocentric view of the universe of the inherent plausibility it
enjoyed before people realized that there were other worlds with satellites
circling about them.

The Inquisition rightly judged the psychological effect of the new real-
ization that our own small world is not a unique one. Thus the tract on the
moons of Jupiter became one of the most decisive battle fields between science
and the priestly superstition.

The telescope had a threefold significance for the age of the Great Nav-
igators. The determination of longitude for westerly sailing had become a
technical issue of cardinal importance, and on this account astronomy re-
tained its place as the queen of the sciences till the end of the 18th century.
At a time when the only method of determining longitude was based on the
use of celestial signals (eclipses and conjunctions), such signals were events of
vital significance for the world’s work, and the discovery of Jupiter’s moons
brought a new battery of celestial signals to the aid of seafaring and scientific
geography. More directly, the telescope was of value to the mariner as a “spy
glass”.

A less obvious use is related to one of the pivotal inventions in the history of
mankind. The age of the Great Navigators was a period of revolutionary and
imperialist wars in which success depended on exploiting the new technique
of artillery. The demands of marksmanship called for accurate devices for
surveying and sighting distant objects. Galileo was not slow to recognize the
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possibilities of the telescope for navigation. Indeed, he offered his invention
consecutively to the Catholic Emperor and to the opposing Protestants in
letters adapted to the convictions of either parties.

The design of better telescopes immediately created two needs: high mag-
nification led inevitably to a more precise statement of the law of refraction
by Kepler, Snell (1618) and Descartes (1637). The need to eliminate
the colored fringe which blurs the outline of the image obtained with simple
lenses, led Newton to the study of the spectrum (1665).

The invention of the telescope is the culmination of a chain of events that
spread over a period of 2000 years from Euclid to Galileo [Euclid composed
a work on the geometrical principles of reflection and Archimedes is credited
with constructing concave mirrors for use as burning-glasses].

1611 CE King James Version of the Protestant Bible: In 1604,
King James I of England authorized a committee of 54 scholars to prepare a
revision of earlier English translations of the Bible. The new version appeared
in 1611 and became known as the King James, or Authorized Version. The
beauty and grace of the translation established it as one of the great treasures
of the English language and Western Culture in general. A revised version by
the Church of England (1870) failed to compete with the King James Version.

In the Middle Ages the Bible was brought to the people indirectly through
the miracle plays and directly through the translations supervised by John
Wyclif (c. 1330–1384). In the sixteenth century came William Tyndale
(c. 1494–1536), whose ambition was thus expressed to a well-known divine of
his day: “If God spare me life, I will cause the boy that driveth the plow to
know more of the Scriptures than you do.” Tyndale suffered martyrdom for his
work, but his translation of the New Testament enabled his successor, Miles
Coverdale (ca 1488–1569), to complete it. By 1540 religious dissensions
were somewhat quieted down, and this “Great Bible”, as it was called, was
established in all the churches.

The scholars of the King James Version made considerable use of Tyndale’s
vigorous phrases, and we owe more to Tyndale than to any other one man.

1611 CE Marco Antonio de Dominis (1560–1624, Italy). Natural
philosopher, mathematician and theologian. First to put forward an expla-
nation of the rainbow which, with all its faults, was superior to any other
published theory over 300 years before him.
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Dominis was born of a noble Venetian family in the Island of Arbe, off
the coast of Dalmatia. For some time he was employed as professor of math-
ematics at Padua and professor of rhetoric and philosophy at Brescia. He
rose to the rank of archbishop of Spalato (1600). In his endeavors to reform
the Church he got involved in quarrel between the papacy and Venice. He
crossed to England (1616) and converted to Anglicanism, becoming the dean
of Windsor (1619). His attacks on the papacy (1617–1618) aggravated the
Church and he was enticed back to Rome by the promise of pardon and rich
preferment. But he was doomed to bitter disappointment: he was thrown into
the Inquisition’s prison and died there. Even this did not end his miseries. By
order of the inquisition his body was taken from the coffin, dragged through
the streets of Rome, and publicly burnt in the Campo di Fiore.

1614–1617 CE John Napier (1550–1617, Scotland). Mathematician,
inventor of logarithms and the man who first used the decimal point in the
arithmetic of decimal fractions. In the absence of any exponential notation
or concept of bases (let alone any knowledge about ‘e’) this self-taught man
labored 20 years to develop a geometrical scheme that simulated natural log-
arithms. In 1624, Henry Briggs (1561–1637, England) published tables [as
did Johannes Kepler] of logarithms to base 10. Briggs introduced the word
‘mantissa’, which is a late Latin term of Etruscan origin meaning an “addi-

tion” or “appendix”. The Swiss Jobst Bürgi (1552–1632), using an algebraic
approach, conceived and constructed a table of logarithms independently of
Napier in 1620.

One of the anomalies in the history of mathematics is the fact that log-
arithms were discovered before exponents were in use (1637). Another fact
which stands out in connection with this invention is the well known motto,
that necessity is the mother of invention. Indeed, the rapid development of
astronomy, trade, navigation, engineering and warfare made ever increasing
demands on the speed and accuracy of computations. These demands were
met successively by the adoption of three remarkable inventions: The Hindu-
Arabic notation (ca 1500), decimal fractions (1592) and logarithms (1614).

The nations of antiquity experimented for thousands of years with numer-
ical notations before they developed the so-called ‘Arabic notation’. In the
simple expedient of the zero which was introduced by the Hindus, mathemat-
ics received one of its most powerful stimuli. One would suppose that once the
‘Arabic notation’ was thoroughly understood, decimal fractions would occur
as an obvious extension of it. But simple as decimal fractions may appear to
us, the invention of them is not the result of one mind or even of one age.
They came into use by a slow and imperceptible process. The first mathe-
maticians associated with their history did not perceive their true nature and
importance, and failed to invent a suitable notation.
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The idea of decimal fractions made its first appearance in methods for
approximating the square roots of numbers, but the first systematic treatment
of decimal fractions is due to Simon Stevin, who in his La Disme (1585)
described the advantages of decimal fractions and decimal division in systems
of weights and measures. Stevin applied the new fractions to all operations of
ordinary arithmetic, but he lacked a suitable notation. In place of our decimal
point, he used a zero.

It has not been agreed yet to whom the first introduction of the decimal
point or comma should be ascribed. However, if a requirement is made that
the point or comma was with the candidates not merely a general symbol to
indicate separation, but that the symbol has actually been used in operations
including multiplication or division of decimal fractions, then it would seem
that the honor falls to John Napier, who exhibited such use in his Rabdolo-
giae (1617). Napier’s decimal point did not meet with immediate adoption.
It was only in the first quarter of the 18th century that the decimal point
achieved a complete and final victory.

By the beginning of the 17th century the victory of the Arabic system of
numeration — for both calculation and recording — was complete in most
of Europe. As a result the abacus went out of use in the countries west
of Russia. It was a long time, however, before even the basic processes of
calculation became either commonly understood or widely practiced43. The
blockage was cleared by two inventions (one quite minor and the other of the
very first importance) which effectively reduced all arithmetical calculations
to addition and subtraction. Both were due to the same man — John Napier.

43 On 4 July 1662, Samuel Pepys, then in charge of the Contract Division of the

Admiralty, wrote in his diary:

“Up by five o’clock, and after my journal put in order to my office about my

business. . . By and by comes Mr. Cooper, of whom I intend to learn mathema-

tiques, and do begin with him today, he being a very able man. After an hour

being with him at arithmetique (my first attempt being to learn the multiplica-

tion table); then we parted till tomorrow”.

Pepys was one of the best educated men of his time. He was a senior Civil

Servant, he had been to Cambridge, and later in life he became president of the

Royal Society and a friend of such men as Isaac Newton and Christopher

Wren. Yet the poor man had to struggle with multiplication tables at an early

hour in the morning! (He probably could add and subtract reasonably well; it

was multiplication, and still more division, of large numbers, that required the

skill of a professional mathematician in his day.)
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John Napier44 was born at the family estate of Merchiston Castle near
Edinburgh and was the 8th Baron of Merchiston. His father was only 16
years of age when John was born. In 1563, the year his mother died, he
matriculated at St. Salvator’s College, St. Andrews. After that, his stay at
the university was short, and only the groundwork of his education was laid
there. To complete his education he studied at the University of Paris, and
visited Italy and Germany. He returned home in 1571 and a year later married
Elizabeth Stirling, who died in 1579, leaving him a son and a daughter. A few
years afterwards he married again, having by his second wife five sons and
five daughters.

During 1588–1614 Napier expended much of his energies in the political
and religious controversies of his day. He was violently anti-Catholic and
championed the causes of John Knox and James I. In 1593, he published
a bitter and widely-read attack on the Church of Rome entitled A Plaine
Discovery of the whole Revelation of Saint John, in which he endeavored to
prove that the Pope was the Antichrist and that the Creator proposed to end
the world in the years between 1688–1700. The book run through 21 editions,
at least ten of them during the author’s lifetime, and Napier sincerely believed
that his reputation with posterity would rest upon this book. He also wrote
prophetically of various infernal war engines and of “devices of slaying under
water”, accompanying his writings with plans and diagrams. Some of his war
chariots are remarkably like a modern tank. It is no wonder that Napier’s
ingenuity and imagination led some to believe he was mentally unbalanced
and other to regard him as a dealer in the black art.

As a relaxation from his political and religious polemics, Napier amused
himself with the study of mathematics and science. In 1614 appeared the
work which in the history of British science can be placed as second only
to Newton’s Principia: Mirifici Logarithmorum45 Cannonis Descriptio (“A
Description of the Marvelous Rule of Logarithms”), containing 57 pages of
explanatory text and 90 pages of tables. It introduced logarithms and simpli-
fied the representation of decimal fractions.

The fundamental idea of relating an arithmetic and a geometric series is
physically represented by Napier through the motion of two points on separate
parallel straight lines, one point moving with uniform velocity and the other

44 The family name was originally Lennox. When one of its members distinguished

himself in battle the King of Scotland changed his name to Napier, to honor his

valor, saying: “You have Na-Peer” (i.e. no equal).
45 The compound of two Greek words: Logos (ratio) and Arithmos (number).
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with accelerated velocity46. [The idea originated with him in 1594: John
Craig, physician to James VI of Scotland, called on him and told him that on
his visit to the astronomical observatory of Tycho Brahe in 1590, the latter
showed him a marvelous mathematical device through which a product of two
numbers is converted into a sum47.]

The publication in 1614 of the system of logarithms was greeted with
prompt recognition, and among the most enthusiastic admirers was Henry
Briggs, the first Savilian professor of geometry at Oxford. In 1615, he left his
studies in London to do homage to Napier at his home in Scotland. There they
discussed possible modifications in the method of logarithms. They agreed
that powers of ten should be used, that the logarithm of one should be zero
and that the logarithm of ten should be one.

Previous to Napier’s publication of his Cannonis Descriptio England had
taken a minor part in the advance of science, and there is no British author of
the time except Napier whose name can be placed in the same rank as those of
Copernicus, Tycho Brahe, Kepler, Galileo, or Stevinus. Scotland had
produced nothing, and was perhaps the last country in Europe from which a
great mathematical discovery would have been expected.

Napier lived not only in a wild country, which was lawless and unsettled
during most of his life, but also in a credulous and superstitious age. Like
Kepler and all his contemporaries, he believed in astrology. Such was the
state of society in the midst of which logarithms had their birth.

46 We can arrive at the definition of the Napierian logarithm with the aid of the

Newtonian calculus (which was unknown to Napier): A point C moves on a

segment AB = a from A to B such that its velocity is always proportional to

x = CB, i.e. dx
dt

|C = −x, x(0) = a. A second point F moves uniformly on

a segment DE from D to E such that y = DF , dy
dt

= a. The two points start

at the same time t = 0. Since y = at and t = loge
a
x
, we have the Napierian

logarithm = y = a log 1
e

(
x
a

)
. Napier chose a = 107 and called y = DF the

logarithm of x = CB. It is evident from this formula that Napier’s logarithms

are not the same as natural logarithms. The notion of a base never suggested

itself to him because it is not applicable to his system.
47 Such as sin x + sin y = 2 sin x+y

2
cos x−y

2
.
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Calculating Devices

Calculating with the aid of machines or devices began well before the use
of electricity. The most important ‘hardware’ inventions in this category were:

ca 500 BCE The bead-and-wire abacus, used for adding and subtracting
large numbers. Invented probably in ancient Egypt.

ca 1500 CE The quadrant, an astronomical calculation tool, widely used
in Europe.

1502 CE The first watch – an analogue time-keeper.

Many of the applied fields in which numerical calculations are important,
such as astronomy, navigation, trade, engineering, and war, made ever in-
creasing demands that computations be performed more quickly and accu-
rately. These increasing demands were met successfully by three remarkable
‘software’ inventions:

• Hindu-Arabic notation (including ‘zero’)

• Decimal fractions (Stevin, 1585)

• Logarithms

Logarithms were invented independently by Napier (1594, 1614) and
Bürgi (1600) and developed further by Briggs (1615, 1624). Their big ad-
vantage is the replacement of multiplication with simple addition, thus saving
calculator’s time by a large margin. It enabled European mathematics to
break away from slow ancient calculating systems and procedures.

To multiply a number a by another number b we write

a = εx, b = εy

where ε is an arbitrary base (usually chosen as ε = 10 or ε = e). Then

ab = εx+y.
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The number x is the logarithm of a to base ε and the number y is the logarithm
of b to base ε. We write

x = logε a; y = logε b

It then follows that
log ab = x + y

and multiplication is reduced to addition.

One of the anomalies in the history of mathematics is the fact that loga-
rithms were discovered before exponents were in use (1637).

The basic idea of logarithms was noted by Stifel (1544). He observed
that the terms of the geometric progression {1, r, r2, r3, . . .} correspond to the
terms in the arithmetic progression {0, 1, 2, 3, . . .} formed by the exponents.
Multiplication of two terms in the geometric progression yield a term whose
exponent is the sum of the corresponding terms in the arithmetic progression.
This observation had already been made earlier by Chuquet (1484). Stifel
extended this connection between the two progressions to negative and frac-
tional exponents. Thus the division of r2 by r3 yield r−1, which corresponds
to the term −1 in the extended arithmetic progression.

Though the definition of logarithms as exponents of the powers that rep-
resent the numbers in a fixed base became the common approach, they were
not defined as exponents in the early 17 th century because fractional and
irrational exponents were not in use. By the end of the century a number of
mathematicians recognized that logarithms could be so defined, but the first
systematic exposition of this approach was made by Euler (1728).

During 1617–1674 mathematicians in England, France and Germany in-
vented and developed mechanical devices and machines to speed up the exe-
cution of arithmetic processes; It all started with Napier himself who invented
a mechanical numbering device called “Napier Bones”. It was made of horn,
bone, or ivory. This device evolved into the logarithmic slide-rule by Edmund
Gunter (1620) and William Oughtred (1622).

Wilhelm Schickard (1592–1685) of Tuebingen, Germany, made a ‘cal-
culating clock’ (1623). This mechanical machine was capable of adding and
subtracting up to 6 digit numbers, and warned of an overflow by ringing a
bell. The machine and its plans were lost and forgotten in the war that was
going on, at that time, then rediscovered in 1935, only to be lost in war again,
and then finally re-rediscovered in 1956 by the same man! The machine was
reconstructed in 1960, and found to be workable. (Schickard was a friend of
the astronomer Kepler.)

Pascal (1642) built one of the first calculating machines that handled
addition by carrying from units to tens, tens to hundreds, etc. Samuel
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Moreland (1625–1695, England) produced both adding and multiplication
machines (1668–72). Leibniz saw the Pascal machine in Paris and then in-
vented (1671–4) a machine which could carry out multiplication and division.
It could multiply numbers up to 5 and 12 digits to give a 16 digit operand.
The machine was later lost in an attic until 1879.

Until 1940 machines of this kind were simply mechanical devices that
performed only arithmetic and had no influence on the course of mathematics.

1615–1616 CE Willem Corneliszoon Schouten (1580–1625, The
Netherlands). Navigator and explorer. First to traverse the Drake Passage
(1615); discovered Cape Horn (1616).

1616–1629 CE Joseph Solomon Delmedigo (1591–1655), known as
the Yashar of Candia. Mathematician, astronomer, philosopher, linguist, and
physician. The greatest secular Jewish savant of the late Renaissance era, who
exerted great influence on the thinking of Baruch Spinoza. He was a keen
critic of medieval philosophy of nature and carried the ideas of the scientific
revolution into the Near East and Central and Eastern Europe.

Delmedigo peregrinated from his native town of Candia, Crete, to Padua,
Italy, where in 1606 he became a pupil and disciple of Galileo Galilei. Fol-
lowing his studies of mathematics, astronomy and philosophy, he took on
medicine under Hieronymus Fabricius (1537–1619). After graduating in
1613, he spent most of his life in travels and short sojourns in Egypt, Turkey,
Poland, Lithuania, Bohemia, Hamburg, Amsterdam, Frankfurt, Worms and
Prague, where he died. He earned his living as a physician and served during
1620–1623 as court physician to Prince Radzivil of Poland.

He wrote some 50 books on mathematics, mechanics, astronomy, medicine
and philosophy, but published only a few — since he had to be careful lest
the ecclesiastical and secular authorities be offended by his ideas. He stressed
the need for experiments in aviation and for the construction of aircraft to
collect data for weather prediction(!).

1618–1648 CE The Thirty Years War; Germany, the most populous
province of the Holy Roman Empire became a playground for the invad-
ing armies of Spain, Denmark, Sweden, and France. Seven to eight million
people (about one third of the total population) were killed. At the time of
the Peace of Westphalia (1648) the empire remained politically fragmented,
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divided into 300 autonomous, sovereign states, most of them very small and
weak. Historians have summed up their feelings about this conflict as follows:

“Morally subversive, economically destructive, socially degrading, con-
fused in its causes, devious in its cause, futile in its results — an outstanding
example in European history of meaningless conflicts”.

1620 CE Pierre Gassendi (1592–1655, France). Mathematician, phi-
losopher and scientist. A Catholic priest who taught mathematics at College
Royal in Paris. He rejected the dogmatic teaching of Aristotelian science and
proclaimed his adherence to the Epicurean belief in the atomistic structure of
matter. Like Bacon he urged the importance of experimental research, and
formulated correctly the law of inertia in 1636. Helped his friend Mersenne
to measure the speed of sound in air. Although he added little to the stock
of human knowledge, he holds an honorable place in the history of science.

1620–1624 CE Cornelius Jacobszoon van Drebbel (1572–1633,
Netherlands). Engraver, alchemist, instrument-maker and an inventor far
ahead of this time. Built the first navigable submarine that could carry a
number of people. It cruised 5 m below the surface of the Thames in London,
on several occasions.

Drebbel was born in Alkmaar, the son of a well-to-do farmer. He had no
university education and as a young man apprenticed to the famous engraver
and alchemist Hendrik Goltzius (1558–1617), who taught him some chem-
ical ideas and processes. Drebbel then devoted himself to engraving but soon
turned to mechanical inventions and instrument making. About 1604 he went
to the court of King James I in England, who became his patron. In 1610
Drebbel visited the court of Emperor Rudolf II in Prague, at the Emperor’s
invitation.

He lingered a decade and instructed the son of Archduke Ferdinand of
Bohemia who would later become Holy Roman Emperor. At the beginning
of the Thirty Years’ War, Ferdinand V’s forces imprisoned Drebbel and took
all his possessions, for he was affluent at this time. Through the intervention
of Prince Henry, Drebbel was set free to return to England in 1613.

During the next several years he lived mostly in London. About 1620
he began to devote himself to the manufacture of microscopes and to the
construction of a submarine. For the next several years he was employed
by the British Navy, partly in connection with the submarine, but mostly to
make explosive devices with which to attack other ships. During 1626 to 1628,
he advised the military on how to relieve the French Huguenots under siege
at La Rochelle. From 1629 until his death in 1633 he was extremely poor and
earned his living by keeping an alehouse.
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His most phenomenal work was definitely the submarine. In 1620, he
made the first “rudimentary” submarine. Drebbel constructed his vessel while
working for the British Navy. They never used it, but tested it many times. He
had a wooden row boat; it had a wooden hull wrapped tightly in waterproofed
leather. His row boat was the first to answer the question of air replenishment
underwater. Air tubes with floats went to the surface to provide the craft with
oxygen. Oars went through the hull at leather gaskets. Twelve oarsmen and
some other passengers were on board. The trip at the Thames River took
three hours. The secret of the craft was probably the production of oxygen
from saltpeter by a process discovered by Drebbel already in 1608.

Drebbel also invented thermostats, a thermoscope and a microscope with
two sets of convex lenses. He made compound microscopes as early as 1619.
He also made telescopes and constructed a camera obscura with a lens in the
aperture. A lunar crater is named after him.

1620–1644 CE Johann Baptista van Helmont (1579–1644, The
Netherlands). Chemist and physician. The first to understand that there
are gases other then atmospheric air, and one of the first to apply chemical
principles to physiological processes. He was a forerunner of the iatrochemical
school, and rendered an important service to the art of medicine by applying
chemical methods to the preparation of drugs. He invented the word gas48

to describe substances that are like air (1620). He even isolated several such
gases, including oxides of carbon (CO2, CO) nitrogen and sulfur (he studied
gases released by burning charcoal and fermenting wine). Helmont maintained
that gases were substances differing fundamentally one from the other, and
from air and condensible vapors.

Helmont was born at Brussels, a member of a noble family. He was ed-
ucated at Louvain, and after ranging restlessly from one science to another
and finding satisfaction in none, turned to medicine, taking his doctor’s de-
gree in 1599. The next few years he spent in traveling through Switzerland,
Italy, France and England. He settled in 1609 at Vilvorde, where he occupied
himself with chemical experiments and medical practice until his death.

Helmont presents curious contradictions, characteristic of chemists of his
age: On the one hand he was a disciple of Paracelsus (a mystic with strong
leanings to the supernatural, an alchemist who believed that with a small piece
of the philosopher’s stone he could transmute 2000 times as much mercury
into gold); on the other hand he was touched with the new learning that was

48 This he derived from the Greek chaos, meaning space. In this way, the word

described the ability of a gas to fill any amount of space. Before his time, and

indeed for some time after, gases were thought to be different forms of the element

of air, or air mingled with some impurities.
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producing men like Harvey, Galileo and Bacon — a careful observer of nature
and an exact experimenter, who in some cases realized that matter can neither
be created nor destroyed.

The Rise of the New World, I

The Pilgrims49 (1620)

In 1002, the Viking Leif Ericsson led an expedition across the north At-
lantic to the shores of North America, where colonies persisted for many years.

Intrepid mariners from half a dozen European nations had explored Amer-
ica’s coastal waters before England planted its first colonies on the eastern
shore. There were earlier visits by Portuguese, Italian and Spanish seamen:
armored Spanish Conquistadors filed north from Mexico to explore the south-
west in the mid 1500’s, and tonsured Franciscan friars from Spain established
missions in Florida, Georgia and California late in the 16th century.

But it was England that founded the first permanent colonies in the early
1600’s, and the British, with their staying power, who outlasted all their
colonial rivals and built the thriving North American empire that eventually
became the United States.

The motives that brought millions of Europeans to America were mixed,
but most of the immigrants hoped to find wealth and a new start in life, or
religious and political sanctuary.

On April 26, 1607, three shiploads of 140 English adventurers, lead by
John Smith (1580–1631), anchored in the James River near the mouth of
Chesapeake Bay. In the words of Sir Walter Rayleigh, they came “to seek
new worlds for gold, for praise, for glory”. They found far more hardship
than gold or glory, and many of them died of disease and malnutrition, but
they did establish Jamestown, the first permanent English settlement in the
New World. They began growing Tobacco (1612), an Indian staple, which

49 To dig deeper, see:

• Johnson, Paul, A History of the American People, Harper Collins, 1997,
1088 pp.
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came into vogue in Europe and became the economic mainstay of Virginia

and much of the Colonial South.

In 1620 the small ship ‘Mayflower’ sailed from Plymouth in England

with 102 passengers bound for religious freedom in the New World. Most of

them were Puritans who had run afoul of the religious laws of Britain. Some

had been in exile in the Netherlands.

The expedition reached Cape Cod Bay in Massachusetts after a 65-day

voyage, and finally landed on part of the rocky shore which had been given

the name Plymouth a few years earlier. These early settlers, forerunners of

the colonists who were to form the independent United States 150 years later,

are generally known as the pilgrim fathers, a term first used in 1799. They

settled the first permanent colony of Europeans in New England.

As Jamestown, Plymouth, and other British settlements that soon lined

the Atlantic coast, grew and prospered, their restless inhabitants gradually

worked their way inland to establish new outposts. England began almost

two centuries of struggle with her Colonial rivals.

1618 CE Willebrod van Roijen Snell (or Snel) (1591–1626, Nether-
lands). Dutch astronomer and mathematician. Rediscovered the law of re-
fraction of light50. In 1637 Descartes derived this law from more basic
principles. In 1657 Fermat derived Snell’s law from his principle of least
time.

When a ray of light passes from one homogeneous medium into another it
undergoes a change of direction, and is said to be refracted. The acute angles
made by the two parts of the ray with the normal to the surface of separation
of the two media at the point of incidence are called the angles of incidence
and refraction. The complete relation between the two directions is given by
the following laws:

50 The design of better telescopes created a need for a precise statement of the

law of refraction. This explains why the best physicists and mathematicians of

the 17 th century were preoccupied with this problem. Indeed, Kepler (1611),

Snell (1618), Descartes (1638), Fermat (1657), Newton (1665) and Huygens

(1678), contributed to the physics of light propagation through inhomogeneous

media.
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• The two parts of the ray are in the same plane with the normal and on
opposite sides of it.

• The ratio of the sine of the angle of incidence i to the sine of the angle
of refraction r is a constant, K, depending on the media, and on the
nature of light.

Thus, Snell found empirically (1618) that sin i = K sin r, where K is a
fixed number for any pair of media. That the ratio varies with the nature of
light was proved by Newton. The ratio K is known as the relative index of
refraction of the two media51. Clearly, for a ray going in the reverse direction
nir = 1

nri
.

The first attempts to deduce a law of refraction go back to Claudius
Ptolemy of Alexandria (150 BCE). His measurements of the angles of re-
fraction of water and glass have come down to us and probably represent the
most ancient physical experiments recorded historically.

Clearly, the relation nri = vi

vr
could be verified experimentally only in the

19 th century, when suitable techniques for measuring velocities of light in ma-
terial media were developed. In contradiction with Snell law vr sin i = vi sin r,
particle kinematics yields, via the law of conservation of linear momentum
vi sin i = vr sin r, where i is the angle of incidence and r is the angle of refrac-
tion. Thus, in the hands of Huygens, Snell’s law provided evidence for the
wave theory of light.

In 1617 Snell developed a method of determining distances by trigono-
metric triangulation. He also devised an efficient method for the evaluation
of π to 35 decimal places.

Snell was born in Leyden. In 1613 he succeeded his father Rudolph
Snell (1546–1613) as a professor of mathematics at the University of Leyden.
It is not known just how Snell discovered the law of refraction. When the
author died he left his manuscript unedited. This manuscript, which may
have been available to Descartes, apparently was last seen by Huygens, and
it now appears to be lost.

1622–1632 CE William Oughtred (1575–1660, England). Mathe-
matician. Invented the rectilinear slide rule in 1622 soon after the invention
51 If we write K = nri, it is shown that

sin i

sin r
= nri =

vi

vr
=

nr

ni
, or ni sin i = nr sin r,

where vi is the velocity of light in the medium of incidence and vr is the velocity

of light in the second medium. Here nr and ni are known as the absolute indices

of refraction of each of the media (i.e. relative to vacuum).
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of logarithms (1614). Introduced the multiplication sign (×) into algebra in
1631. In 1632, he invented the circular slide rule.

Oughtred was born at Eton, and educated there and at King’s College,
Cambridge, of which he became a fellow. He left the University about 1603 to
become a priest, and at about 1628 he was appointed by the earl of Arundel
to instruct his son in mathematics. He corresponded with some of the most
eminent scholars of his time on mathematical subjects. In 1631 he wrote a
short compact treatise on arithmetic and algebra, Calvis mathematicae, in
which he employed new mathematical symbols.

1623 CE Wilhelm Schickard (1592–1635, Germany). Scholar and
inventor. Built a practical calculating machine which was used by Kepler.
He invented many machines like one to calculate astronomical dates and one
for the Hebrew grammar.

Schickard was professor for biblical languages at Tübingen University. His
research was broad and included astronomy, mathematics and surveying. He
died of the plague.

1625–1640 CE Hugo Grotius (Huig de Groot, 1583–1645; The
Netherlands). Political philosopher, humanist and statesman. Considered a
founder of international law. He wrote ‘The Law of War and Peace’ (De Jure
Belli ac Pacis, 1625), which had influenced Spinoza’s political philosophy.

Grotius recognized that the corruption and decline of Papal jurisdiction,
and the birth of the modern state, together give rise to an urgent need to
a form of legality that would transcend the writ of any particular sovereign:
all law must stem either from free association of people, or from the higher
law – the law of nature – which applies to all men, and all nations, in every
circumstance of life. The law of nature is eternal and immutable; to discern
it we have but to employ our reason, which leads us to the perception of right
and wrong, as it leads us to the truths of logic and mathematics.

Grotius was by no means an isolated thinker; the ideas which he expressed
were current in The Netherlands and were to elicit an equal interest in Eng-
land.

Grotius was born in Delft and graduated from the University of Leiden
at 15. He became chief magistrate of Roterdam (1613). Condemned to life
imprisonment (1619) for opposing strict Calvinism, but with the aid of his
wife, escaped prison in a trunk of books (1621); Lived in Paris (1621–1631);
Swedish ambassador in Paris (1634–1644).

1625–1642 CE Zacutus Lusitanus (Avraham Zacuto II, 1576–1642).
Physician and medical writer in Amsterdam. One of the most celebrated
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physicians in Europe during the first half of the 17th century. Studied medicine
and philosophy at the Universities of Salamanca (Spain) and Coimbra (Por-
tugal). Fled the Inquisition (1625) to Amsterdam, where he returned openly
to his Jewish faith. Published a 12 volumes encyclopedia on the history of
medicine: De medicorum principium historia (1642).

1626 CE Peter Minuit (1580–1638). Paid the equivalent of 24 dollars
for the Manhattan Island, currently worth more than 100 billion dollars.

1628–1651 CE William Harvey (1578–1657, England). Physician.
Discovered how blood circulates in the human body (1628), and established
the foundations of modern embryology (1651).

Harvey’s book An Anatomical Treatise on the Motion of the Heart and
Blood in Animals, is considered the most important single volume in the
history of physiology. In it Harvey showed that the heart, by repeated con-
tractions, produces a continuous stream of blood throughout the body which
continually returns to its source. It is amazing how such a fundamental fact
escaped all the savants of antiquity52 and had to await discovery until the
17th century. Even so, Harvey’s theory was severely attacked by followers of
Galen53 in spite of the fact that he based his ideas on firsthand observation

52 The Greek physician Erasistratos came very close to recognizing the circulation

of the blood (ca 280 BCE). A Cairo physician, Ibn al-Nafis (1210–1288), who

came from Damascus, pointed out that the dividing wall of the heart, the septum,

was solid, and quite devoid of pores permitting the passage of blood, which Galen

has postulated. Thus, he argued, the blood must flow from the right to the left

ventricle of the heart through the lungs. In this way Ibn al-Nafis arrived at the

theory of the lesser circulation of blood. His discovery, however, did not pass

into the mainstream of science as his work did not come to light until 1924.
53 The first idea of this discovery occurred to him not later than 1616 but he did

not publish it until 1628 in a little book dealing with the motion of the heart

and blood. One is rather surprised to find that this book did not make more

stir; neither did it arouse much opposition, at least in England. In France the

opposition to the new theory was considerable, but even there, and bitter as it

was, it did not last long. More happy in this than many other forerunners, Harvey

was granted a taste of victory before his death in 1657. By 1673 his cause was

definitely won, even in France, and the people who had been his contemporaries

could witness the complete supremacy of the new doctrine.

Until the time of Harvey, the prevalent conception was that promulgated by

Galen. According to him, the blood was produced in the liver from the materials

furnished by our food and was then transported to the right half of the heart.

Some of it passed into the left half, where it was imbued with new properties, and

became fit to nourish the whole body. To use Galenic language, the blood of the
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and experiment. Harvey lived to see his discovery widely accepted, although
full credit only came after his death.

Harvey was born at Folkestone. He studied medicine at Padua under
Fabricius and became a doctor of medicine in 1602. He returned to London
and practiced medicine. Harvey became a member of the Royal College of
Physicians in 1607, and later served as physician to James I and Charles I.

In one point only was his demonstration of the circulation incomplete:
Harvey could not discover the capillary channels by which the blood passes
from the arteries to the veins. This gap in the circulation was bridged in 1661
by the physiologist Marcello Malpighi (1628–1694, Italy), who saw in the
lungs of a frog, by the newly invented microscope, how the blood passes from
the one set of vessels to the other. Harvey saw all that could be seen by the
unaided eye in his observations on living animals.

Harvey speculated that humans and others mammals must reproduce
through the joining of an egg and sperm. No other theory made sense It
was 200 years before a mammalian egg was finally observed, but Harvey’s
theory was so compelling and so well thought out that the world assumed he
was right long before the discovery was finally made.

Harvey remained a physician at St. Bartholomew’s until 1643. He main-
tained his college lectureship until 1656, the year before his death, missing by a
moment the dismantling under Cromwell of the monarchy that had supported
his research throughout his life.

right heart was endowed with “natural spirits”, that of the left heart with “vital

spirits”. The latter blood was thus essentially different from the former. They did

not circulate in the body, but both moved in a ceaseless ebb and flow, each in its

own domain. But how did the blood pass from the right to the left ventricle? To

explain the impossible, Galen had been obliged to assume that it passed through

innumerable invisible pores in the solid wall which divides the right heart from

the left. Nobody ever detected these pores for they are not simply invisible but

nonexistent. Yet Galen, supreme pontiff of Greek medicine, and nine centuries

later Avicenna, the infallible medical pope of the Middle Ages, had spoken ex

cathedra with such indisputable authority that this gratuitous assumption was

generally taken for gospel.

Even a man like Leonardo da Vinci, endowed with so much genius and originality,

and who had himself dissected a large number of bodies and examined very

minutely many a heart, even he was subjugated by this intangible dogma. This

is the more pathetic in that Leonardo was certainly on the scent of the true

explanation, but the invisible holes were too sacred to be touched, and nothing

but this prejudice caused his failure to discover and to proclaim the circulation

of the blood.
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The Cult of the Virtuoso

Throughout the 17th century, the majority of university mathematicians
continued in the restricted tradition of scholasticism, and the main impetus for
mathematical advance came from the Renaissance humanist reaction against
the universities.

The most fruitful and original research was carried out by gifted amateurs,
who were sometimes called virtuosi, as being endowed with a special, individ-
ual genius. This tendency to single people out as intellectual heroes fostered a
spirit of competitive individualism, rather than of co-operative research — an
attitude which probably encouraged the development of new ideas, but which
tended to recede as mathematics became more and more technical.

The competitive spirit gave rise to considerable jealousies as to priority
over discovery of new theorems and methods. One manifestation of this was
the custom of setting challenge-problems. Often the challenger had already
solved the problem himself, and wanted to publicize his individual achieve-
ment. The emphasis on inventive genius encouraged greater interest in ideas
themselves rather than in their detailed elaboration.

With the advent of navigation maps and the Renaissance of algebra, the
time was ripe for the algebraization of geometry. It began with the concept of
coordinate system in the framework of ‘analytic geometry’. It was invented,
nearly simultaneously and independently, by Fermat and Descartes.

1629–1654 CE Pierre de Fermat54 (1601–1665, France). One of the
greatest mathematicians of all times. Accomplished Toulouse Jurist and a
universalist, who cultivated poetry, Greek philosophy, law and philology, and
devoted to mathematics only the leisure of a laborious life. His father was a
prosperous leather merchant and his mother came from a family of high social
standing. He obtained his law degree from the University of Orleans in 1631,

54 For further reading, see:

• Mahoney, M.S., The Mathematical Career of Pierre de Fermat, Princeton

University Press: Princeton, NJ, 1973.
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and in that year was appointed to a position in the high court of Toulouse
and became entitled to include the honorific ‘de’ in his name.

He began his serious mathematical studies in 1629 when he discovered in-
dependently, and ahead of Descartes, ‘analytic geometry’.55 This included:
general equations of the straight line, the circle (centered at the origin), the
ellipse, the parabola and the rectangular hyperbola. Fermat’s analytic geom-
etry appears to be as general as that of Descartes, but is more complete
and systematic, and corresponds much more closely to modern day analytic
geometry.

In 1638 he communicated to Descartes his method of drawing tangents
to plane curves. Fermat made numerous contributions to the development
of differential and integral calculus: in particular he introduced the notion of
“difference quotient” which he used to define the derivative, and used it in the
study of problems of minima and maxima. The French, including Lagrange,
claim Fermat as the true originator of the calculus.

Along with Pascal he is regarded as the founder of the theory of prob-
ability (1654). In physics, Fermat discovered in 1657 the ‘principle of least
time’, valid for the propagation of light in material media. It is also known as
the principle of shortest optical path. [The optical path is determined by the
integral

∫ r1

r2
nds, where n is the refraction index, which may change from

point to point.]

However, the greatness of Fermat rests mainly in his contribution to num-
ber theory, and for that he is known as the “father of modern number theory”.
Some of his discoveries are:

(1) Fermat’s little theorem (1640) [if p is a prime number and if a is an
integer, then ap ≡ a(mod p). In particular, if p does not divide a then
ap−1 ≡ 1(mod p). This was known to the Chinese for a = 2.]

(2) Fermat’s method of factorization.

(3) Fermat’s method of infinite descent.

(4) Structure of perfect numbers.

(5) Every prime of the form 4m + 1 is the sum of two squares in a unique
way.

(6) Every positive integer is expressible as a sum of 4 squares of integers.

55 Marino Ghetaldi [1566–1626, Dalmatia (now Croatia)] made early applications

of algebra to geometry (1603).
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(7) Fermat’s conjecture (‘Last Theorem’56): The equation an + bn = cn has
no solution in positive integers if n > 2 (1637)57.

A general proof58 has been attempted by Euler, Legendre, Gauss, Abel,
Dirichlet, Cauchy, Kummer and many others over the past four centuries.
Fermat himself proved it for n = 3 and 4 (1659), Euler for n = 3 and
4 (independently, 1738), Legendre and Dirichlet for n = 5 (1828–1830),
Lamé for n = 7 (1839) and Kummer for n < 100 except for n = 37, 59, 67
(1859). By 1978, the conjecture was known to be true for all integer exponents
up to 150,000 and by 1993 for all exponents less or equal to 4,000,000. A large
part of algebraic number theory originated through attempts to prove Fermat’s
conjecture. Thus, in spite of the great frustration that this problem caused
15 generations of mathematicians, it turned out to be a blessing in disguise.

David Hilbert (1862–1943), when asked once why he did not attempt to
prove Fermat’s conjecture, replied: “Why should I kill the goose that lays the
golden egg?”

Fermat firmly believed that f(n) = 22n

+ 1 would yield primes for all
values of n, but he was very wrong. Only 5 primes have been discovered which
conform to this formula: f(0) = 3, f(1) = 5, f(2) = 17, f(3) = 257 and
f(4) = 65, 537, but already f(5) = 4, 294, 967, 297 = 641 × 6, 700, 417. The
compositeness of some Fermat numbers has been established, but no further
primes have been discovered among them.

56 To dig deeper, see:

• Stewart, I. and D. Tall, Algebraic Number Theory and Fermat’s Last Theo-

rem, A.K. Peters, 2002, 313 pp.

• Van der Poorten, A., Fermat’s Last Theorem, Wiley, 1996, 222 pp.

57 For n = 2, the solution of the Diophantine equation x2 + y2 = z2 pro-

ceeds through the factorization (x + y
√

−1)(x − y
√

−1) = z2. Putting

(x + y
√

−1) = (u + v
√

−1)2 ≡ (u2 − v2) + 2uv
√

−1, we find x = u2 − v2,

y = 2uv, z = u2 + v2, which indeed yields the Pythagorean triplets.
58 In 1909 A. Wieferich proved that an+bn = cn is impossible for n an odd prime

not dividing abc with n2 not dividing 2n−1 −1 (the second condition holds for all

n < 3×109 except 1093 and 3511). In 1922 L. Mordell showed that the Fermat

conjecture holds with finitely many exceptions for any n ≥ 3 provided the

Mordell conjecture is true. In 1983 G. Faltings proved the Mordell conjecture.

In 1987 D.R. Heath-Brown proved the impossibility of an + bn = cn for

“almost all” n. Finally, Andrew John Wiles (b. 1953, England) proved

Fermat’s Last Theorem in Modular elliptic curves and Fermat’s Last Theorem

which appeared in the Annals of Mathematics in 1995.
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To sum up: Fermat and Pascal share the invention (1654) of the mathe-
matical theory of probability, Fermat alone founded the theory of numbers,
Fermat and Descartes share the invention of analytic geometry and Fermat
is a harbinger of the differential and variational calculus.

The influence of most of his works upon his contemporaries seems to have
been slight. The impact of his discoveries in number theory were just about
non-existent. It might have been greater had he agreed to publish his findings,
but he shunned this aspect of communication. He began to be appreciated
only after his death. His influence on later generations led to the Renaissance
of modern number theory.59

Fermat and the Theory of Numbers

I. Fermat Numbers and their Associates

In search of an algebraic expression that would yield primes only, Fermat
conjectured (1640) that Fn = 22n

+ 1 is prime for all values of n. This is
true for n = 0, 1, 2, 3, 4, yielding the series of primes 3, 5, 17, 257, 65537
respectively. But in 1732 Euler60 showed that already F5 in composite, and

59 For further reading, see:

• Mahoney, M.S., The Mathematical Career of Pierre de Fermat, Princeton,
1994.

• Singh, S.L., Fermat’s last Theorem, London, 1997.

• Bell, E.T., Men of Mathematics, Simon and Schuster: New York, 1937, 592 pp.

60 It is suspected that Fermat was led to his conjecture that all numbers Fn =

22n

+1, (n = 0, 1, 2, 3, ...) are primes by the Chinese theorem, since he could prove

that Fn divides 2Fn − 2, by induction. During Fermat’s time it was thought that

the Chinese theorem is true, for it was not known then that it breaks down for

n = 341.

We must not rush to condemn Fermat for his blunder. Since F5 has 10 digits, in
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during the 276 years that followed, no one was able to find even one additional
prime number in the series beyond F4. It is perhaps more probable that the
number of primes Fn is finite.61

All numbers of the form 22n

+ 1, whether prime or composite, are called
Fermat numbers. They obey the simple recursion Fn+1 − 2 = Fn(Fn − 2)
which leads to the interesting product

Fn − 2 = F0F1F2 · · · Fn−1.

In other words, Fn − 2 is divisible by all lower Fermat numbers:

Fn−k |(Fn − 2), 1 < k ≤ n.

On March 30, 1796, the Fermat numbers, until then largely a numeri-
cal curiosity, were raised from dormancy and took on a new beauty, linking
number theory with a classical problem of Greek geometry.

On that day, the young Gauss showed that a circle can be divided into n
equal parts using ruler and compass alone, if n was a Fermat number. In other
words: if Fn is prime, then a regular polygon of n sides can be inscribed in a
circle by Euclidean methods. The Greek themselves knew how to construct
regular n-sided polygon for n = 3, 4, 5, 6, 8, 10, 12, 15, 16 but progress in
this problem had eluded mathematician ever since.62

The most important properties of the Fermat numbers are:

order to test its primality, it would be necessary to have tables of primes up to

100,000, which was unavailable to him. He could, of course, derive and use some

criterion for a number to be a factor of a Fermat number, but this he failed to

do. Euler, on the other hand, knew that 5 · 27 +1 = 641 was a potential factor of

F5 and he could do the necessary calculations in his head (!) without the need

of table or calculators.
61 Hardy (1938) suggested, by considerations of probability, that since the corre-

sponding number of primes from 1 through x π(x) ∼ x
ln x

, the probability, that

a number is prime is 1
ln n

. Therefore, the total a priori expectation of Fermat
primes is at most

∑{
1

ln(22n + 1)

}

<
2

ln 2

∑
2−n <

2

ln 2
.

This argument assumes that there are no special reasons why a Fermat number

should be likely to be a prime. But the fact that no two Fermat numbers have

a common divisor greater than 1 and the fact that 2n +1 is composite if n is not

a power of 2, suggest that such special reasons may exist.
62 It is easy to construct a regular 85-gon, using constructions for the 5-gon and

17-gon, and since angles can be bisected, one can construct regular 170-gons,

340-gon and more generally regular polygons for which the number of sides is
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• No two Fermat numbers have a common divisor greater than 1

For suppose that Fn and Fn+k, where k >0, are two Fermat numbers,
and that

m|Fn, m|Fn+k.

If x = 22n

, we have

Fn+k − 2
Fn

=
22n+k − 1
22n + 1

=
x2k − 1
x + 1

= x2k −1 − x2k −2 + ... − 1,

and so Fn|Fn+k − 2. Hence

m|Fn+k, m|(Fn+k − 2);

and therefore m|2. Since Fn is odd, m = 1, which proves the theorem.

• Fermat (1640) showed that for 2n + 1 to be prime, n must be a power
of 2, i.e. n = 2m. Equivalently n has no odd factors, for if n has an
odd factor t, then 2n + 1 has (2n/t + 1) as a factor. Therefore 2n + 1 is
composite, if n is not a power of 2. The inverse statement is false, as
we know that Fm is composite for many values of m >4. In general, for
any an + 1 to be prime, a must be even and n = 2m.

• Euler (1739) showed that for n ≥ 2 a prime divisor of Fn is necessarily of
the form p = k2n+2+1. For assume p|22n

+1. Then 22n

= −1(mod p),
and upon squaring each side, 22n+1

= 1(mod p). On the other hand,
by Fermat’s Little Theorem we know that 2p−1 = 1(mod p). The two
relations are compatible iff p − 1 = r2n+1 for some r. Further investi-
gation shows that r must be even and so p = k2n+2 + 1. Indeed, Euler
found that p = 5 × 27 + 1 = 641 divides F5. Note that for n = 2, 3, 4

n = 2k × Fl × Fm × ..., where k = 0,1,2,... and the Fermat numbers are distinct

primes.
Let us take k = 0 l, m = 0, 1, 2, 3, 4. Then, these polygons with an odd

number of sides are built from the first five Fermat numbers 21 + 1, 22 + 1,

24 + 1, 28 + 1, 216 + 1. If we multiply 1 = 21 − 1 into the cumulative products
we obtain 22 − 1, 24 − 1, 28 − 1, 216 − 1, 232 − 1, the latter being the product of

the first five Fermat numbers

232 − 1 = 3 × 5 × 17 × 257 × 65357 = 4 294 967 295

It’s quite probable that there are no more such odd polygons, because it seems

likely that

3, 5, 17, 257 and 65537

are the only prime Fermat numbers.
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the values of p must be identical with the Fermat number themselves,
implying k = 1, 23, 210 respectively.

Thus every divisor of Fn occurs in the arithmetic progression

1, 2n+2 + 1, 2 · 2n+2 + 1, 3 · 2n+2 + 1, ...

For given n, then, we can work out terms of this progression and check
to see if any is a divisor of Fn. For n = 5 we obtain the sequence 1,
129, 257, 385, 513, 641, 769, .... A great time-saver is provided by the
observation that, for any number, the least divisor greater than 1 must
be a prime number.

Consequently, in the investigation of F5, we need not even bother with
the composite 129. Since 257 is prime it needs to be tried, but it does
not divide. Again, 385 and 513 are composite, so they can be passed
over. This brings us to the prime 641, which actually divides F5.

This procedure is based upon the work of Edward Lucas , who pub-
lished it in 1877. However, Euler knew almost as much a century and
a half earlier. In 1739 one of his publications contained the result that
every prime divisor of Fn is of the form 2n+1k + 1. (Lucas’ improve-
ment amounts only to showing that k must be even.) Presumably he
knew this in 1732 and used it to find the divisor 641. For F5 we have
k · 2n+1 = 26k + 1 = 64k + 1, and for k = 10 we obtain the factor 641.

Hence with the help of only two divisions we can ascertain that 641 is
the smallest prime divisor of the number F5.

• Fn divides 2Fn − 2; this is demonstrated in two steps: first it is shown
by induction that, for positive integers, 2n ≥ n + 1. This implies that
2n+1 divides 22n

, i.e. for some k, we have 22n

= k · 2n+1. Consequently

2Fn − 2 = 222n
+1 − 2 = 2[222n

− 1] = 2[2(2n+1k) − 1]

= 2[(2(2n+1))k − 1k] = 2[(2(2n+1) − 1)(· · · )]
= 2[((22n

)2 − 12)(· · · )] = 2[(2(2n) + 1)(2(2n) − 1)(· · · )]
= 2[(Fn)(2(2n) − 1)(· · · )].

It is suspected that this relation led Fermat to his conjecture that all
numbers Fn (n = 1, 2, . . . ) are primes. During Fermat’s times it was
thought that the so-called Chinese theorem is true, namely the theorem
asserting that if an integer m > 1 satisfies the relation m|2m − 2, then
m is a prime (it was checked for first several hundred integers). This
breaks down, however, for m = 341 = 11·31, which was not then known.
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Table 3.1: Prime factors of 2n + 1, n ≤ 128

n n

30 5 · 5 · 13 · 41 · 61 · 1321

F0 1 3 31 3 · 715827883

F1 2 5 F5 32 641 · 6700417

3 3 · 3 33 3 · 3 · 67 · 683 · 20857

F2 4 17 34 5 · 137 · 953 · 26317

5 3 · 11 35 3 · 11 · 43 · 281 · 86171

6 5 · 13 36 17 · 241 · 433 · 38737

7 3 · 43 37 3 · 1777 · 25781083

F3 8 257 38 5 · 229 · 457 · 525313

9 3 · 3 · 3 · 19 39 3 · 3 · 2731 · 22366891

10 5 · 5 · 41 40 257 · 4278255361

11 3 · 683 41 3 · 83 · 8831418697

12 17 · 241 42 5 · 13 · 29 · 113 · 1429 ·14449

13 3 · 2731 43 3 · 2932031007403

14 5 · 29 · 113 44 17 · 353 · 2931542417

15 3 · 3 · 11 · 331 45 3 · 3 · 3 · 11 · 19 · 331 ·18837001

F4 16 65537 46 5 · 277 · 1013 · 1657 · 30269

17 3 · 43691 47 3 · 283 · 165768537521

18 5 · 13 · 37 · 109 48 193 · 65537 · 22253377

19 3 · 174763 49 3 · 43 · 4363953127297

20 17 · 61681 50 5 · 5 · 5 · 41 · 101 · 8101 ·268501

21 3 · 3 · 43 · 5419 51 3 · 3 · 307 · 2857 · 6529 · 43691

22 5 · 397 · 2113 52 17 · 858001 · 308761441

23 3 ·2796203 53 3 · 107 · 28059810762433

24 97 · 257 · 673 54 5 · 13 · 37 · 109 · 246241 · 279073

25 3 · 11 · 251·4051 55 3 · 11 · 11 · 683 · 2971 · 48912491

26 5 · 53 · 157 · 1613 56 257 · 5153 ·54410972897

27 3 · 3 · 3 · 3 · 19 · 87211 57 3 · 3 · 571 · 174763 ·160465489

28 17 · 15790321 58 5 · 107367629 · 536903681

29 3 · 59 · 3033169 59 3 · 2833 · 37171 · 1824726041
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Table 3.1: (Cont.)

n n

60 17 · 241 · 61681 · 4562284561 80 65537 · 414721 · 44479210368001

61 3 · 768614336404564651 81 3 · 3 · 3 · 3 · 3 · 19 · 163 · 87211 ·
135433 · 272010961

62 5 · 5581 · 8681 · 49477 · 384773 82 5 · 10169 · 181549 · 12112549 ·
43249589

63 3 · 3 · 3 · 19 · 43 · 5419 ·
77158673929

83 3 · 499 · 1163 · 2657 · 155377 ·
13455809771

F6 64 274177 · 67280421310721 84 17 · 241 · 3361 · 15790321 ·
88959882481

65 3 · 11 · 131 · 2731 · 409891 ·
7623851

85 3 · 11 · 43691 ·
26831423036065352611

66 5 · 13 · 397 · 2113 · 312709 ·
4327489

86 5 · 173 · 101653 · 500177 ·
1759217765581

67 3 · 7327657 ·6713103182899 87 3 · 3 · 59 · 3033169 ·
96076791871613611

68 17 · 17 · 354689 ·2879347902817 88 257 · 229153 · 119782433 ·
43872038849

69 3 · 3 · 139 · 2796203 ·
168749965921

89 3 · 179 · 62020897 ·
18584774046020617

70 5 · 5 · 29 · 41 · 113 · 7416361 ·
47392381

90 5 · 5 · 13 · 37 · 41 · 61 · 109 · 181 ·
1321 · 54001 · 29247661

71 3 · 5640964 3 · 13952598148481 91 3 · 43 · 2731 · 224771 · 1210483 ·
25829691707

72 97 · 257 · 577 · 673 ·
487824887233

92 17 · 291280009243618888211558641

73 3 · 1753 · 1795918038741070627 93 3 · 3 · 529510939 · 715827883 ·
2903110321

74 5 · 149 · 593 · 184481113 ·
231769777

94 5 · 3761 · 7484047069 ·
140737471578113

75 3 · 3 · 11 · 251 · 331 · 4051 ·
1133836730401

95 3 · 11 · 2281 · 174763 ·
3011347479614249131

76 17 · 1217 · 148961 ·
24517014940753

96 641 · 6700417 ·
18446744069414584321

77 3 · 43 · 617 · 683 · 78233 ·
35532364099

97 3 · 971 · 1553 · 31817 ·
1100876018364883721

78 5 · 13 · 13 · 53 · 157 · 313 ·
1249 · 1613 · 3121 · 21841

98 5 · 29 · 113 · 197 · 19707683773 ·
4981857697937

79 3 · 201487636602438195784363 99 3 · 3 · 3 · 19 · 67 · 683 · 5347 ·
20857 · 242099935645987
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Table 3.1: (Cont.)

n n

100 17 · 401 · 61681 · 340801 ·
2787601 · 3173389601

115 3 · 11 · 691 · 2796203 · 1884103651 ·
345767385170491

101 3 ·
845100400152152934331135470251

116 17 · 59393 ·
82280195167144119832390568177

102 5 · 13 · 137 · 409 · 953 · 3061 ·
13669 · 26317 · 1326700741

117 3 · 3 · 3 · 19 · 2731 · 22366891 ·
5302306226370307681801

103 3 · 415141630193 ·
8142767081771726171

118 5 · 1181 · 3541 · 157649 · 174877 ·
5521693 · 104399276341

104 257 ·
78919881726271091143763623681

119 3 · 43 · 43691 · 823679683 ·
143162553165560959297

105 3 · 3 · 11 · 43 · 211 · 281 · 331 ·
5419 · 86171 · 664441 · 1564921

120 97 · 257 · 673 · 394783681 ·
4278255361 · 46908728641

106 5 · 15358129 · 586477649 ·
1801439824104653

121 3 · 683 · 117371 ·
11054184582797800455736061107

107 3 · 643 ·
84115747449047881488635567801

122 5 · 733 · 1709 · 3456749 ·
368140581013 · 667055378149

108 17 · 241 · 433 · 38737 ·
33975937 · 138991501037953

123 3 · 3 · 83 · 739 · 165313 ·
8831418697 · 13194317913029593

109 3 · 104124649 ·
2077756847362348863128179

124 17 · 290657 · 3770202641 ·
1141629180401976895873

110 5 · 5 · 41 · 397 · 2113 ·
415878438361 · 3630105520141

125 3 · 11 · 251 · 4051 · 229668251 ·
5519485418336288303251

111 3 · 3 · 1777 · 3331 · 17539 ·
25781083 · 107775231312019

126 5 · 13 · 29 · 37 · 109 · 113 · 1429 ·
14449 · 40388473189 · 118750098349

112 449 · 2689 · 65537 · 183076097 ·
358429848460993

127 3 ·
56713727820156410577229101238628035243

113 3 · 227 · 48817 · 636190001 ·
491003369344660409

F7 128 59649589127497217 ·
5704689200685129054721

114 5 · 13 · 229 · 457 · 131101 ·
160969 · 525313 · 275415303169
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Table 3.2: (Cont.)

F9 = 2424833 ·
7455602825647884208337395736200454918783366342657
· p99

F10 = 45592577 ·
6487031809.4659775785220018543264560743076778192897
·p252

F11 = 319489 · 974849 · 167988556341760475137 ·
3560841906445833920513 · p564

F12 = .114689 · 26017793 · 63766529 · 190274191361 ·
1256132134125569 · c1187

F13 = 2710954639361 · 2663848877152141313 ·
3603109844542291969 ·
319546020820551643220672513 · c2391

F14 = c4933

F15 = 12142510092327042503868417 ·
168768817029516972383024127016961 · c9808

F16 = 825753601 · c19720, F17=310650376028I7 · c39444

F18 = 13631489 · c78906

F19 = 70525124609 · 646730219521 · c157804

where the numbers written out in full are primes, and pN or cN denotes an
N-digit prime or composite number.

II. Fermat’s Little Theorem

In a letter to Bernard Frenicle de Bessy dated Oct. 18 1640, Fermat
stated without proof one of the most important theorems in the theory of
numbers63:

“If p is prime and p 	= a, then ap ≡ a (mod p)”. This can also be written
as p | a(ap−1 − 1). So if we add the condition p 	 |a, p must divide ap−1 − 1:

ap−1 = 1 (mod p).

63 It was not until 1736 that Euler made public a proof of the theorem though it

is known that a similar proof was contained in a manuscript of Leibniz (1683),

unpublished at the time. De Bessy (1605–1675) was an official at the French

mint and amateur mathematician, well-known for his unusual ability in numerical

computations.
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A proof by induction in a is immediate: The theorem is certainly true for
a = 1 since 1=1 (mod p). Now, suppose it is true that ap − a is divisible by
p for some a = b; then it follows that it is true for a = b + 1. Indeed, by the
binomial expansion:

(b + 1)p − (b + 1) = {bp + 1 + terms divisible by p} − (b + 1) (1)
= (bp − b) + Np, say. (2)

But p|(bp − b) on the strength of the induction assumption, and so
(b + 1)p = (b + 1)(mod p) proves the theorem. Another variant of the same
proof is due to Leibniz: for two arbitrary integers A, and B we have

(A + B)p = Ap +
(

p

1

)

Ap−1B + · · · + Bp,

so

(A + B)p ≡ (Ap + Bp) (mod p);

Again

(A + B + C)p ≡ (A + B)p + Cp ≡ (Ap + Bp + Cp) (mod p),

and so in general

(A + B + C + · · · + K)p ≡ (Ap + Bp + · · · + Kp) (mod p).

It suffices to take A = B = · · · = K = 1 and denote their number by a to get
again ap ≡ a (mod p).

The theorem may be described as “little” in comparison with Fermat’s
more famous theorems, but his “small” result is truly remarkable because
there is nothing analogous to it in the classic theory of polynomial equations.
A similar, modern proof of this theorem uses group theory.

Applications

• Prove that if n is prime, then n divides

S = 1n−1 + 2n−1 + · · · + (n − 1)n−1 + 1.

By FLT for p = n, an−1 ≡ 1 (mod n) for 1 ≤ a < p. Thus
S = 0 (mod n) and the theorem is proved.

We do not know any composite number satisfying this relation. It has
been conjectured that there is no such composite number n < 101000.
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• Prove that S = 1n + 2n + 3n + 4n is divisible by 5 iff n is not divisible
by 4.

By FLT a4 ≡ 1 (mod 5) for a = 1, 2, 3, 4. Therefore a4k = 1 (mod 5),
where k is an integer. Let n = 4k + r, where r = 0, 1, 2, or 3. Thus
an = a4kar ≡ ar (mod 5). Consequently

S = 1n + 2n + 3n + 4n ≡ (1r + 2r + 3r + 4r) (mod 5).

It follows that

S ≡ 0 (mod 5) if r = 1, 2, 3
S ≡ 4 (mod 5) if r = 0

• Verify that 97104 − 1 is divisible by 105 = 3 · 5 · 7.

97 ≡ 1 (mod 3) ∴ 97104 ≡ 1104 ≡ 1(mod 3)
97 ≡ 2 (mod 5) ∴ 972 ≡ 4 (mod 5) ≡ −1(mod 5)
974 ≡ 1 (mod 5) ∴ (974)26 = 97104 ≡ 1 (mod 5)
97 ≡ −1 (mod 7) ∴ 97104 ≡ 1 (mod 7)

Since 3, 5, 7 have no factor in common we have 97104 ≡ 1 (mod 105).

• By FLT 10p−1 − 1 is divisible by p if p is not a factor of 10, i.e. if
p 	= 2 and p 	= 5. Thus 106 − 1 = 7k or 1

7 = k
106−1 , where k = 142857.

This implies:

1
7

=
k

106

1
1 − 10−6

=
k

106
+

k

1012
+ · · · +

k

106m
+ · · ·

This is the basis for decimal expansion of fractions, suggesting that any
rational number is always periodic. Note that the period-length may
be less than (p − 1) as for example in 1

3 = 0.3 or as in 1
13 = .076923,

because in these cases p divides (10
p−1
2 − 1).

• Show that n13 − n is always divisible by 2730:

f(n) = n13 − n = n(n12 − 1) = n(n6 + 1)(n6 − 1) = (n6 + 1)(n7 − n)
= n[(n3)4 − 1]
= n(n + 1)(n − 1)g(n)

But
n13 − n is divisible by 13
n7 − n is divisible by 7

n(n + 1)(n − 1) is divisible by 6
n or (n3)4 − 1 is divisible by 5 ∴ 5 · 6 · 7 · 13 = 2730 divides n13 − n
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• If x, y, z are integers such that x2 + y2 = z2, then xyz = 0 (mod 60).

The general integer Pythagorean triplet is: x = 2kab, y = k(a2 − b2),
z = k(a2 + b2) so xyz = 2k3ab(a4 − b4). Either a, b or a2 − b2 is even
∴ xyz = 0 (mod 4). Either a, b or a2 − b2 is a multiple of 3, since by
Fermat’s theorem 3 	 | a, 3 	 | b imply a2 −b2 = (1−1) (mod 3) = 0 (mod 3)
∴ xyz = 0 (mod 3). Similarly by Fermat’s theorem a4 − b4 = 0 (mod 5)
if neither a nor b are divisible by 5. Thus xyz = 0 (mod 3 · 4 · 5) =
0 (mod 60).

• Prove that 19 divides 226k+2
+ 3 for k = 0, 1, 2.

We have 26 = 64 ≡ 1 (mod 9), hence for k = 0, 1, 2, . . . we
also have 26k ≡ 1 (mod 9). Therefore 26k+2 ≡ 22 (mod 9), and since
both sides are even, we get 26k+2 ≡ 22 (mod 18). It follows that
26k+2 = 18t + 22, where t is an integer ≥ 0. However, by Fer-
mat’s theorem, 218 ≡ 1 (mod 19), and therefore 218t ≡ 1 (mod 19) for

t = 0, 1, 2, . . .. Thus 226k+2
= 218t+4 ≡ 24 (mod 19); it follows that

226k+2
+ 3 ≡ 24 + 3 ≡ 0 (mod 19), which was to be proved.

• Prove that 13 divides 270 + 370

By Fermat’s Theorem we have 212 ≡ 1 (mod 13); hence 260 ≡ 1 (mod 13),
and since 25 ≡ 6 (mod 13), which implies 210 ≡ −3 (mod 13), we get
270 ≡ −3 (mod 13). On the other hand, 33 ≡ 1 (mod 13), hence 369 ≡
1 (mod 13) and 370 ≡ 3 (mod 13). Therefore 270 + 370 ≡ 0 (mod 13), or
13|270 + 370, which was to be proved.

• Prove that 11 · 31 · 61 divides 2015 − 1

Obviously, it suffices to show that each of the primes 11, 31, and 61
divides 2015 − 1. We have 25 ≡ −1 (mod 11), and 10 ≡ −1 (mod 11),
hence 105 ≡ −1 (mod 11), which implies 205 ≡ 1 (mod 11), and
2015 ≡ 1 (mod 11). Thus 11|2015−1. Next, we have 20 ≡ −11 (mod 31),
hence 202 ≡ 121 ≡ −3 (mod 31). Therefore 203 ≡ (−11)(−3) ≡ 33 ≡
2 (mod 31), which implies 2015 ≡ 25 ≡ 1 (mod 31). Thus, 31|2015 − 1.
Finally, we have 34 ≡ 20 (mod 61), which implies 2015 ≡ 360 ≡
1 (mod 61) (by Fermat’s theorem); thus 61|2015 − 1 as well.

The Old Chinese Theorem

As early as 500 BCE the Chinese were aware of one divisibility fact in-
cluded in Fermat’s Theorem, for their manuscripts asserted that 2p − 2 is
divisible by p when p is prime. Thus 211 − 2 = 2046 is divisible by 11, which
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can readily be checked, and 29941 − 2 is divisible by the prime 9941, a fact
which no one would care to verify “by hand”.

But Fermat’s theorem implies an infinite number of other divisi-
bility statements. For example, 39941 − 3, 49941 − 4, 59941 − 5, . . . ,
99409941 − 9940 must all be divisible by 9941, and 265537 − 2, 365537 − 3, . . . ,
6553665537 − 65536 are all divisible by the Fermat’s prime 65537.

Although 2n − 2 must be divisible by n if n is a prime number, the early
Chinese (and even, much later, Leibniz himself) erred in conjecturing that the
converse statement would be true. They believed that if 2n − n is divisible
by n, then n would, of necessity, be prime, so that the divisibility property
could then be used as a test of primality.

The conjecture was discovered to be false only in 1819, when it was shown
that 2341 − 2 is exactly divisible by 341 = 11 · 31, a composite number. (Sub-
sequently it was found that 2n − 2 is divisible by n for an infinite number of
other composite values of n.)

To see this we just use the binomial theorem through which it is shown
that (a − b) divides ak − bk. Since (210 − 1) = 1023 = 3 · 341 we can write

2341 − 2 = [(231)11 − 211] + [211 − 2]
= (231 − 2)M1 + (211 − 2)
= 2{(210)3 − 1}M1 + 2(210 − 1)
= 2(210 − 1)M1M2 + 2(210 − 1)
= (210 − 1)J = 341Q

M1, M2, J, Q integers.

Another way of showing this is that 2340 − 1 ≡ 0 (mod 341). Indeed,

210 ≡ 1 (mod 11); 210 ≡ 1 (mod 31)

∴ (210)34 ≡ 1 (mod 11); (210)34 ≡ 1 (mod 31)

This means that 11 and 31 each divide 2340 −1. But then, since (11, 31) = 1
so does their product 341.

A composite number n which divides 2n − 2 is a pseudoprime: pseudo-
primes can also be even; D.H. Lehmer discovered (1950) the pseudoprime
161, 038 = 2 · 73 · 1103 yielding

2161,038 − 2 = 2(2161,037 − 1); 161, 037 = 32 · 29 · 617

2161,037 − 1 = (29)29·617 − 129·617 = (29 − 1)(· · · ) = 7 · 73(· · · )
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Similarly,

2161,037 − 1 = (229)9·617 − 19·617 = (229 − 1)(· · · ) = 233 · 1103 · 2089(· · · )

Since 73 and 1103 are both primes, dividing 2161,037 − 1, it follows that
161038 is an even pseudoprime.

A composite number n which divides 3n − 3, or 4n − 4, or etc . . . , strikes us
as sharing in the property of pseudoprimality. A composite number n which
divides 2n − 2, and 3n − 3, and 4n − 4, and . . . , and an − a, and . . . , for every
integer a, even the negative integers, is certainly the ultimate in this regard,
and is called an absolute pseudoprime.

The smallest one is 561. That is to say, 561 is a composite number and
a561 − a is divisible by 561 no matter what integer is substituted for a. This
follows directly from Fermat’s Little Theorem: the prime decomposition of
561 is 3 · 11 · 17. We need to show that a561 − a is divisible by each of
these primes. We have

a561 − a = a(a560 − 1) = a[(a10)56 − 156] = a[(a10 − 1)(· · · )]

= (a11 − a)(· · · ).

But a11 − a is divisible by 11, by Fermat’s theorem, because 11 is a prime
number. Thus 11 divides a561 − a. Similarly 3 and 17 are also shown to be
divisors.

A few other absolute pseudoprimes are

2821 = 7·13·31 4991 = 7·23·31 10585 = 5·29·73 15841 = 7·31·73

29341 = 13 · 37 · 61; 5 · 17 · 29 · 113 · 337 · 673 · 2689.

It is unknown whether or not there exists an infinity of absolute pseudo-
primes.
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The Isogonic Center

In 1643 Fermat posed the following problem to the Italian mathemati-
cians Evangelista Torricelli (a pupil of Galileo, 1608–1647) and Francesco
Cavalieri (1598–1647):

To find a point P of the plane, the sum of whose distances from the
vertices of a given triangle ABC is the smallest possible. Torricelli’s solution
was published posthumously in 1659 by his pupil Viviani64 (1622–1703). A
simple non-calculus solution, published in 1929, (for the case where each angle
in the triangle is less than 120 ◦) is this: Let P be a point inside the triangle
ABC. Rotate the triangle APC by 60 ◦ about A in a direction away from
the opposite vertex B and denote its new position in the plane by AP ′C ′.
Clearly, the sum of distances AP +BP +CP is now equal to the sum of the
segments C ′P ′ + P ′P + PB, which in general will constitute a continuous
broken line. Since the end points of this line are fixed (the position of C ′ is
independent of P !), its length will be minimal if P and P ′ are on C ′B.

This implies that the sought point P is such that the sides of the triangle
are seen from P at equal angles of 120 ◦. The construction of P is simple:
build on each side of the triangle a new equilateral triangle and connect the
new vertices to the corresponding opposite vertices of the original triangle.
The three lines will meet at P . This solution is undoubtedly one of the most
beautiful ones in the entire Euclidean geometry. The point P is known as the
Fermat point.

It is of interest to mention that the above solution is the amalgam of the
contributions of four mathematicians during 1643–1846: The first, Torricelli,
knew that the circumcircles of the outward, equilateral triangles on the sides

64 Vincenzo Viviani was an assistant to both Galileo and Torricelli. His primary

interests lay in geometry, hydraulics and mechanics. He discovered the geomet-

rical theorem (named after him): For a point P inside an equilateral triangle

ABC, the sum of the perpendiculars a, b, c from P to the sides is equal to the

altitude h.

Viviani studied with the Jesuits in Florence. His years with Galileo took the

place of a university education, and he was Galileo’s companion and pupil dur-

ing the final two years of his master’s life.

In 1660, together with Borelli, Viviani measured the velocity of sound by timing

the difference between the flash and the sound of a cannon. They obtained a

value of 350 m
sec

, which is considerably better than the previous value of 478 m
sec

obtained by Gassendi (the currently accepted value is 331.29 m
sec

at 0 ◦C).
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of the triangle ABC intersect at P . The second, Cavalieri, found that each
side of the triangle ABC is seen from P at an angle of 120 ◦. The third,
Thomas Simpson (1710–1761), realized in 1750, that the lines joining the
outer vertices of the triangle ABC intersect at P . In 1834, Heinen noted
that if one of the interior angles (say B) is greater or equal to 120 ◦, then the
shortest pathway linking A, B, and C consists of the segments AB and BC.

In 1846, Eduard Fasbender discovered the following maximum property
of P associated with its minimum property, if P lies in the interior of ABC:
The least value of the sum of distances AP + BP + CP in the triangle
ABC is equal to the maximum of the altitudes of all equilateral triangles
circumscribing the triangle ABC.

The point P is now known as the isogonic center of the triangle. It was
the first notable point of the triangle to be discovered in times more recent
than that of Greek mathematics. A thorough analysis of the problem and its
generalization to an arbitrary number of point in any number of dimensions,
was given (1843) by the geometer Jacob Steiner (1796–1863) and is known
therefore as the Steiner problem.

The Steiner figure can be obtained in a soap-film experiment : To this end
one takes two glass plates kept parallel by three perpendicular pins of equal
length. If the configuration is immersed in a soap bath and taken out again,
one obtains a system of three soap films perpendicular to each of the plates.
These soap laminae touch each plate in three segments that yield the shortest
pathway linking the three pins at either plate.

As noted, for two or three points the minimal pathway is uniquely deter-
mined. For four or more points, however, we must generally expect more than
one minimal pathway. We must even distinguish between stationary and sta-
ble pathways. The stable pathways yield either absolute, or merely relative,
minima.

The generalization of the Steiner problem to n points in a plane does
not lead to interesting results. To find a really significant extension we must
abandon the search for a single point P . Instead we look for the “street
network” of shortest total length! Thus, if we choose four points that are
vertices of a square, then we obtain two different but congruent minimal
pathways. If we stretch the square into a rectangle, then we obtain two
minimal pathways of different length, one of which is an absolute and the
other a relative minimum.

Mathematically expressed, the problem is: Given n points A1, A2, . . . , An,
to find a connected system of straight line segments of shortest total length
such that any two of the given points can be joined by a polygon consist-
ing of segments of the system. This problem is known today as the Steiner
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problem65, and its solution has eluded the fastest computers and the sharpest
mathematical minds.

The Steiner problem cannot be solved by simply drawing lines between the
given points, but it can be solved by adding new ones called Steiner points,
that serve as junctions in a shortest network.

To determine the location and number of Steiner points, mathematicians
and computer scientists have developed algorithms. Yet, even the best of
these procedures running on the fastest computers cannot provide a solution
for a large set of given points because the time it would take to solve such a
problem is impractically long. Furthermore, the Steiner problem belongs to a
class of problems for which many computer scientists now believe an efficient
algorithm may never be found.

However, approximate solutions to the shortest-network problem are com-
puted routinely for numerous applications, among them designing integrated
circuits, determining the evolution tree of a group of organisms and minimiz-
ing materials used for networks of telephone lines, pipelines and roadways.

About 200 years after Fermat, when calculus was well established, an
analytic solution for the triangle was given: Let (a1, b1), (a2, b2), (a3, b3)
be respectively the coordinates of the vertices A, B, C, referred to a system
of rectangular coordinates. The function whose minimum is sought is

z(x, y) =
[
(x − a1)2 + (y − b1)2

]1/2 +
[
(x − a2)2 + (y − b2)2

]1/2

+
[
(x − a3)2 + (y − b3)2

]1/2
.

From the relations ∂z
∂x = 0, ∂z

∂y = 0, one obtains two algebraic equations

x − a1

a
+

x − a2

b
= − x − a3

c
,

y − b1

a
+

y − b2

b
= − y − b3

c
,

where PA = a, PB = b, PC = c.

Then, squaring and adding, we find the condition

1 + 2
[
(x − a1)

a

(x − a2)
b

+
(y − b1)

a

(y − b2)
b

]

= 0.

The geometrical interpretation of this result is straightforward: denoting
by α and β the cosines of the angles which the direction PA makes with the

65 The Shortest-Network Problem, M.W. Bern and R.L. Graham, Scientific Amer-

ican, January 1985.
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axes x and y, respectively, and by α′ and β′ the cosines of the angles which
PB makes with the same axes, we may write this last condition in the form

1 + 2(αα′ + ββ′) = 0,

or by denoting the angle APB by ω,

2 cos ω + 1 = 0.

This condition expresses the fact that the segment AB subtends an angle
of 120 ◦ at the point P . For the same reason, each of the angles BPC and
CPA must be 120 ◦.

The sum PA + PB + PC is less than the sum of any two sides of the
triangle:

AB + AC =
√

a2 + b2 + ab +
√

a2 + c2 + ac >
(
b +

a

2
)

+
(
c +

a

2
)
.

Hence AB + AC > a + b + c and P therefore actually corresponds to a
minimum. When one of the angles of the triangle is equal or greater to 120 ◦,
the minimum must be given by the vertex of the obtuse angle.

1626–1629 CE Albert Girard (1595–1632, Netherlands). Mathemati-
cian. First to accept and use negative roots of equations in the solutions of
geometrical problems. Conjectured that an algebraic equation of degree n has
n roots, some of which may be non-real (the fundamental theorem of algebra).

First to show how to express the sums of the powers of the roots in terms
of the equation’s coefficients. First to publish (1629) the equation

A = πr2
( s

180
− 1
)
,

relating the area A of a geodesic triangle on a sphere of radius r to the sum
of angles s (in degrees) of that triangle.

Published a treatise on trigonometry (1626) containing the first use of the
abbreviations sin, cos, tan.

1630–1668 CE Jan Amos Komensky (Comenius) (1592–1670,
Moravia, Poland and Holland). Pioneer of modern education; educational
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reformer and philosopher, promoter of scientific societies. His ultimate aim
was universal peace.

He recognized that the necessary steps preliminary to the attainment of
this goal involved the unification of rival Christian denominations, fundamen-
tal reforms in education and new approach to natural science.

It was largely the result of his initiative that scientific societies promoting
research were founded throughout Europe during the 17th century. He insisted
that education should be free, universally available, and compulsory for every
child, that automatic memorization should be replaced by teaching words
with perceptual objects, and that the sensual faculties of school children be
taken into consideration.

Comenius stands on a transitional figure in the area of science – half-way
between the medieval Aristotelianism and modern empiricism. He believed
that independent study and observation offered greater intellectual rewards
than did constant reliance upon Aristotle or Pliny. His textbooks, translated
into 17 languages were used in the early years of Harvard University, and
throughout the 17th century schools of Europe, Asia and the New England.

His principal works were: Gate of Languages Unlocked (1631); The Way
of Light (1642); Patterns of Universal Knowledge (1651); The Great Didactic
(1657); Visible World (1658); The last was the first textbook in which pictures
were as important as text.

Central to his philosophy is the proliferation of truth, which, being one
and universal, carries a chance for world’s peace. Men should be educated
trilaterally to spiritual life, secular moral life and faithful religious life. Hence
the three aims of education: enlightenment, virtues and God-fearing.

Comenius developed a new philosophy of education. He favored broad
general education, rather than the narrow training of his day. His curriculum
consisted of: singing, languages, economy, politics, world history, science,
geography, arts and handicrafts.

He suggested four stages of education, each of 6 years:

(1) 0–6 “mother school” in the family;

(2) grammar school 6–12, emphasizing the development of imagination,
memory and the basic skills;

(3) Latin school, 12–18, for the development of the intellect;

(4) Universities and traveling, 18–24, to consolidate the will and endeavor to
harmonize the various domains of education.
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First to advocate teaching of science in schools. Urged the establishment of
more schools and universities. Developed new method of teaching languages
and issued the first children picture book.

He was born in Comna in Moravia of poor parents and studied at Heidel-
berg. Fled the Thirty Years’ War to Poland (1621), settling with a group of
Bohemian Brethren at Leszno. Invited to England (1641–1642) and Sweden
(1642–1648) to advise on school educational reforms.

Twice during his lifetime, Komensky lost all his property and manuscripts:
in 1621, during the Spanish invasion and the prosecution of the Protestants in
Moravia, and again in 1655 when the Poles burned Lissa during the Swedish-
Polish War.

1630–1632 CE John Rey (1582–1645, France). Metallurgist. One of
the earliest scientists to put forward a mechanical theory of chemical change.
It has been known for some time that metals increased in weight when they
were heated in air and formed a calx. To explain the phenomenon, Rey
suggested that air had weight, and that it was taken up by metals on heating.
He did not think of the process as a chemical combination of air with the
metal but as a mechanical mixing , like dry sand taking up water and becoming
heavier.

In 1632 Rey improved the thermoscope of Galilei (1596) and Sanctorius
(1611) when he used liquid instead of air to measure temperature changes,
that is, the thermoscope had fluid at the bottom and air at the top, more
closely resembling modern-day thermometers.

1630 CE Venice and surrounding Italy devastated by plague. 500,000
died. By 1632, the disease reached France, killing ca 100,000 more.

1634–1643 CE Gilles Personier de Roberval (1602–1675, France).
Geometer and physicist whose extensive correspondence served as a medium
for the intercommunication of mathematical ideas. Developed some pre-
calculus methods of integration of some trigonometric functions and drawing
tangents to plane curves. Asserted that gravitation is an inherent property of
matter throughout the universe and that the counter balancing force allowing
bodies to remain separated is the resistance of the intervening ether.

He was consistently tardy in disclosing his discoveries. This has been
explained by the fact that for 40 years he held the professorial chair of Ramus
at the Collège Royale. This chair automatically became vacant every three
years, to be filled by open competition in mathematical contests in which the
questions were set by the outgoing incumbent.
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1634–1647 CE Adam Olearius (b. Oehlschlaeger; 1599–1671, Ger-
many). Geographer, traveler, mathematician and scholar. His travels in Per-
sia and Russia66 (1634–1639) were described in his book (1647): “Voyages of
the Ambassadors Sent by Frederic, Duke of Holstein, to the Great Duke of
Muscovy and the King of Persia.”

Olearius’ accounts of his travels became one of the major early descriptions
of Russia by a European. He was the first to introduce Western Europe to
Persian culture.

1635 CE Francesco Bonaventura Cavalieri (1598–1647, Italy).
Mathematician. Advanced certain rules that constituted valuable tools in the
computation of areas and volumes. Also produced explicit formulae which
showed how to integrate a class of functions. These methods are essentially
those of the definite integral and anticipated the development of the calculus
later in the century. Cavalieri used his method to evaluate correctly the area
of the ellipse and the volume of the sphere. The methods of Cavalieri were
later extended by Torricelli (1645), Fermat (1654), Pascal (1654), Barrow
(1662) and others.

Cavalieri was born in Milan, studied under Galileo, and served as a pro-
fessor of mathematics at the University of Bologna from 1629 until his pre-
mature death at the age of 49. His treatise Geometria indivisibilibus (1635) is
devoted to the pre-calculus method of indivisibles that can be traced back to
Democritos (ca 410 BCE) and Archimedes. It is likely that the attempts
at integration made by Kepler directly motivated Cavalieri.

1636–1641 CE Jeremiah Horrocks (1619–1641, England). As-
tronomer. First to apply Kepler’s laws to the actual motion of the moon.
This was later used by Newton to forge his synthesis of Kepler laws of the
motion of heavenly bodies and Galileo’s laws of falling bodies and projectiles.
Horrocks clearly perceived the significant analogy between terrestrial gravity
and the force exerted in the solar system.

Horrocks was born at Toxteth Park, near Liverpool. His family was poor
and he pursued his self-education amidst innumerable difficulties. He entered
Emmanuel College, Cambridge, in 1632 and his university career lasted three

66 During the early 17 th century, northern European merchants saw Russia as a

land through which secure trade routes might be opened to Persia and points

east — without danger from or taxation by the Turks, and unknown to Italy,

Spain and Portugal. Adam Olearius was appointed secretary to an embassy from

the Duke of Holstein to Muscovy and Persia which sought to make that Duchy

an entrepot for overland silk trade.
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years. On its termination he became a tutor at Toxteth, devoting to astro-
nomical observations his brief intervals of leisure.

In 1639 he applied himself to the revision of the Rudolphine Tables (pub-
lished by Kepler in 1627), and in the progress of this task became convinced
that a transit of Venus67, overlooked by Kepler, would nevertheless occur on
the 24th of November 1639.

He indeed observed it, while a curate at Hoole, near Preston. This transit
of Venus is remarkable as the first ever observed (that of 1631 predicted by
Kepler, having been invisible in Western Europe). Through this observation
he was able to introduce some important corrections into the elements of the
planet’s orbit and obtain a good estimate of its apparent diameter.

Before he was twenty, Horrocks made an important contribution to lunar
theory, by showing that the moon’s apparent irregularities could be com-
pletely accounted for by supposing it to move in an ellipse with a variable
eccentricity and a rotating major axis of which the earth occupies one focus.
These precise conditions were afterwards demonstrated by Newton to follow
necessarily from the law of gravitation.

Jeremiah Horrocks died when only in his twenty-second year.

1636–1644 CE Girard Desargues (1593–1662, France). Mathe-
matician, engineer and architect. The most original contributor to projective
geometry in the 17th century. A geometer of profoundly original ideas, sus-
tained at the same time by a good spatial intuition, precise knowledge of
the great classic works and exceptional familiarity with the whole range of
contemporary techniques.

In 1639 he distributed in Paris a twelve-page booklet under the heading
(translated): “Proposed Draft on an Attempt to Deal with the Cases of Meet-
ing of a Cone with a Plane”. After presenting his rules of practical perspective,
Desargues outlines a program dominated by two basic themes: the concern
to rationalize and unify the diverse preexisting graphical techniques and the
purely geometric study of perspective.

In this book he developed topics to be found in modern courses in pro-
jective geometry, such as: harmonic ranges, homology, poles and polars, per-
spectives and involution. The book included Desargues’ well-known (today)
‘two-triangle theorem’. In spite of this, the treatise was ignored, forgotten
and lost until 1845, when Michel Charles (1793–1880) found a manuscript

67 Transits of Venus (when the planet is passing between the earth and the sun) are

among the rarest of astronomical phenomena; many astronomers cannot possibly

see one during their lifetimes. Since 1639 there have been transits in 1761, 1874

and 1882. The next pair will occur in 2004 and 2012.
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copy, and since that time the work has been regarded as one of the classics in
synthetic projective geometry.

Desargues was born in Lyons, one of the nine children of a collector of the
tithes on ecclesiastical revenues in the diocese of Lyons. He apparently was
educated as an engineer (and architect), for there is evidence for his presence
in Paris in 1626 in connection with a certain engineering project. In 1630
he evidently became friendly with several of the leading mathematicians in
Paris: Mersenne, Gassendi and Roberval.

After the publication of his booklet in 1636 he won the esteem and respect
of Descartes, and young Pascal, both members of Mersenne’s, Academie
Parisienne. Throughout the period 1636–1644, many attacks were launched
against Desargues’ work by second-rate mathematicians, which may have
caused his scientific and polemic activity to decline; he then embarked on
his new career as an architect (1645–1657).

He returned to Paris from Lyons in 1657. In Paris, the authors of the
period attribute to Desargues, besides a few houses and mansions, several
staircases whose complex structure and spectacular character attest to the
exactitude of his graphical stonecutting procedures. It also seems that he
collaborated, for the realization of certain effects of architectural perspective,
with the famous painter Phillipe de Champagne (1602–1674). In the region
of Lyons, Desargues’ architectural creations were likewise quite numerous.

Desargues’ main accomplishment as an engineer, was a system for raising
water that he installed near Paris, at the Château of Beaulieu, based on
the use (until then unknown) of epicycloidal wheels (described and drawn by
Huygens in 1671).

In 1660 Desargues was again active in the scientific life of Paris, attending
meetings at Montmor’s Academy. He was heard of last on the meeting of 9
November 1660, at which Huygens heard him present a report on a geometrical
problem.

Descartes was probably the source of both the inspiration and demise of
his book, since geometers at that time were totally absorbed in Cartesian
geometry to the exclusion of any new idea in the field. However, in the early
19th century, the mathematical community was once again willing and capable
to digest novel, nonorthodox geometrical ideas.

1637 CE René du Perron Descartes (1596–1650, France). Distin-
guished mathematician, scientist and philosopher. Published his work “Dis-
cours de la méthode pour bien conduire sa raison et chercher la vérité dans
les sciences”, the third and last appendix of which, “La Géométrie” contains
a sufficiently complete (although somewhat confusing) presentation of the
mathematical theory that since then has been called analytic geometry. This
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discovery of the utility of coordinate systems in relating geometry and algebra
opened up an entire new science by enabling the investigation of geometric
objects by algebraic means.

Descartes revised exponential notation for integral exponents almost to its
20th century form. He was first to allow powers higher than the third.

He formalized the classical law of inertia, in the form given in Newton’s
‘Principia’ 40 years later, but he went further to suggest the conservation
of linear momentum. Unlike Newton, who used his theory of gravitation to
explain how the orbital motions of the planets and satellites can be main-
tained, but not how they have originated , Descartes assumed that originally
the world has been filled with matter distributed uniformly. He then sketched
out a qualitative theory of successive formation of the sun and the planets.

In his book La Dioptrique (1637) he was first to publish the now familiar
law of refraction in terms of sines. Although the result was given already by
W. Snell68 in 1621, Descartes went beyond Snell and derived the law from a
new assumption on the nature of light. He considered it to be essentially a
pressure transmitted through a perfectly elastic medium (the ‘aether ’), which
fills all space. In his view, light was a stream of tiny particles and the laws
of reflection and refraction were explained by using particle kinematics69. [In
contradistinction, Fermat rederived the law of reflection from his own prin-
ciple of least time, which departed from Hero’s shortest-path statement.]

In an appendix to Discours de la Méthode (1637), Descartes discovered
(using the law of refraction) the key to the rainbow problem — the reason for
the clustering of rays about the angle 42 ◦ in the primary bow. He discovered
the effective ray through patient observations and laborious calculations (the
Newtonian calculus arrived only in 1671).

While Francis Bacon’s empiricism influenced science and philosophy in
England, Descartes left a profound mark on the thinking of scientists in Eu-
rope for the past 300 years, due to two of his ideas: the first was his con-
viction that the universe (including man’s body but excluding his mind) is a
mathematically intelligible machine, that could be deduced from a few simple
principles, and eventually even by a single overreaching mathematical theo-
rem. This view was the basis of the later cosmological theories of Kant, and
Laplace.

The second is his program of total geometrization of physics via the concept
of ‘dimension’. This idea began to be realized in the new physics of the 20th

century, especially in Einstein’s GTR, and in quantum mechanics. Thus,

68 Huygens believed that Descartes had seen Snell’s manuscript on refraction.
69 See (51) p. 1006.
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although his generalizations in astronomy, physics and anatomy were often
premature and his passion for system-building went beyond his capacity to
check by experiment, he remains one of the founders of modern scientific
thinking.

Descartes rejected Aristotelian teleology which stated that all natural
events are purposeful. He emphasized the use of reason and abstract de-
ductive logic as the chief tool of philosophical inquiry. He greatly influenced
later natural philosophers, especially Berkeley.

Descartes was the first to term the mathematical rules that others had
discovered “the Laws of Nature”. God rules the universe through these eternal
and unchangeable laws, he maintained. These laws were not mere descriptions
of nature, but the very ‘legislation’ of nature: Descartes’ God was the great
Lawgiver. Experiment was to be used, as with the Platonists, to illustrate
laws that were mathematically deduced from first principles.

Descartes was born at La Haye, in Touraine, midway between Tours and
Poitiers. From 1604 to 1612 he studied at a Jesuit school. During the winter
of 1612 he took lessons in horsemanship and fencing; and then started, as
his own master, to taste the pleasures of Parisian life. Here he renewed an
early friendship with Marin Mersenne. In 1614, however, he abandoned
social life and shut himself up for nearly two years in a secluded house of the
Faubourg St. Germain in order to study mathematics.

In may 1617 Descartes set out for The Netherlands and took service in the
army of Prince Maurice of Orange. After spending two years in Holland as a
soldier in a period of peace, he volunteered in 1619 into the Bavarian service.
In 1621 he quit the imperial service and returned to France. Money from an
inheritance and from patrons enabled him to devote most of his life to study.

He visited Switzerland and Italy, and lived in Paris before settling in
Holland in 1628. Except for short visits to France to settle family affairs,
a visit to England in 1630 and an excursion to Denmark (1634), he led a
quiet, scholarly life in The Netherlands until 1649, and there most of his
philosophical works were written.

During his residence in Holland he lived at 13 different places, and changed
his abode 24 times. In the choice of these spots, two motives seem to have in-
fluenced him — the neighborhood of a university or college, and the amenities
of the situation. His residence in the Netherlands fell in the most prosperous
and brilliant days of the Dutch state. Abroad, its navigators monopolized
world commerce and explored unknown seas; at home the Dutch school of
painting reached its pinnacle in Rembrandt (1607–1669).

In 1649 he accepted an invitation from Queen Christina to visit Sweden.
The young queen wanted Descartes to draw up a code for a proposed academy
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of sciences, and to give her an hour of philosophic instruction every morning
at five in her draughty chambers. However, he fell victim to the inflammation
of the lungs, and died soon thereafter in Stockholm.

Descartes’ new ideas were slow to gain the recognition they deserved. In his
appendices of 1637, he hit upon three capital advances yet not one of them was
integrated into scientific thought for several decades. The fault lay in part with
Descartes himself. In the case of each of the appendices — La Dioptrique and
La Geometrie, as well as Les Meteores — the author was primarily boasting
of the efficacy of his methodology. He was not explaining, with a meticulous
care required in new situations, the value of these contributions to science.
He did not explore them further, nor did he determine their implications and
their relationship to other phenomena. He did not surround them with an
aura of proselytizing enthusiasm. In fact he promptly lost interest in analytic
geometry, the law of refraction, and the rainbow.

Descartes never married. In person he was small, having a large head,
protruding brow, prominent nose, and eyes wide apart, with black hair coming
down almost to his eyebrows. His voice was feeble. He usually dressed in
black, with unobtrusive propriety.

In all his travels he only studied the phenomena of nature and human life.
He was a spectator, rather than an actor, on the world stage. He entered into
the army, merely because the position gave a vantage-ground from which to
make his observations. He took no part in the political interests which these
contests involved.

The contempt of aesthetics and erudition is characteristic of the Cartesian
system; to him all the heritage of the past seemed but elegant trivia. The
science of Descartes was physics in all its branches, but especially as applied
to physiology. Science, he said, may be compared to a tree; metaphysics in
the root, physics in the trunk, and the three chief branches are mechanics,
medicine and morals — the three applications of our knowledge to the outside
world, to the human body, and to the conduct of life.
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Who Invented Analytic Geometry?

“Everything has been thought of already. The problem is — thinking of it
again”.

Johann Wolfgang von Goethe (1749–1832)

By definition, analytical geometry is concerned with the representation of
geometrical figures and their relations by algebraic equations. This essentially
means that a problem in geometry is transformed into a corresponding one
in algebra, the algebraic problem solved, and finally the algebraic solution is
interpreted in geometrical terms. It follows that, before analytic geometry
could assume its highly practical form, it had to await the development of
algebraic procedures and symbolism. These decisive contributions were only
made in the 17th century by René Descartes (1596–1650) and Pierre Fer-
mat (1601–1665). Not until after the impetus given to the subject by these
two men, do we find analytic geometry in a form with which we are familiar.

Nevertheless, one of the basic ingredients of analytic geometry, namely the
concept of fixing the position of a point by means of suitable reference frame,
was employed in the ancient world by the Egyptian and the Roman survey-
ors and by the Greek map-makers. And, if analytic geometry implies not
only the use of coordinates but also the geometric interpretation of relations
among coordinates, then Greek priority is favored by the fact that Apollo-
nios derived the bulk of his geometry of conic sections from the geometrical
equivalents of certain algebraic equations of these curves, an idea that seems
to have originated with Menaechmos about 350 BCE!

All these results must have been known to Fermat and Descartes, who
were both deeply versed in the classical literature of mathematics. At any
rate, they certainly could not have escaped reading Oresme.

1640–1662 CE Blaise Pascal (1623–1662, France). Mathematician,
theologian, physicist and philosopher who made great contributions to science
through his studies in hydrostatics and the mathematical theory of probability.

During the 16th and 17th centuries a great deal of the leisure of the Euro-
pean aristocracy was occupied with games of chance and gambling in general.
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This class did not include among their number any mathematicians capable of
handling the problems that naturally suggested themselves. Thus it happened
that from time to time problems of chance were passed on to the mathemati-
cians of the period. We know for example that Galileo (1564–1642) had his
attention directed by an Italian nobleman to a problem in dice.

Pascal was drawn into probability theory as a result of problems that arose
in gambling houses. At the time, a gambling die game was in vogue which
had been played for at least a hundred years and which persists to the present
day: the “house” offers to bet even money that a player will throw at least
one six in four throws of a single die. [This game is mildly favorable to the
“house” since, on the average it wins

[
1 −
(

5
6

)4] to
(

5
6

)4, i.e., in a ratio
671
625 ].

A distinguished Frenchman, Antoine Gombauld Chevalier de Méré,
Sieur de Baussay (1610–1685) was bothered by a number of practical prob-
lems concerning the game, one of which is called ‘the problem of points’ (the
division problem): “How should the prize money be divided among the con-
testants if for some reason it proved necessary to call off the game before it is
completed and when the contestants have only partial scores?”

A second problem was: “If the player roles a pair of dice, will it be fa-
vorable to the ‘house’ to bet that the player will throw at least one double
six in 24 throws of the pair?”. Méré consulted Pascal, whom he knew, and
Pascal proved that the odds were slightly against the house if it wagered on
24 throws, but were slightly favorable for 25 throws.

For the solution of the first problem, Pascal introduced the important idea
that the amount of the prize any contestant deserved, in a partial game, should
depend on the probability that this particular player would win the game,
were it carried through to its conclusion. And Pascal worked out in detail, for
several examples, how the probability of winning could be calculated from a
knowledge of the nature of the game and the partial score of each contestant.

Pascal wrote about these matters to Fermat, who had a great reputation as
a mathematician and who was in addition a distinguished justice at Toulouse.
The resulting exchange of letters went further in working out the mathematics
of some games of chance, and became known in the learned society of the day.
This episode can properly be regarded as the advent of a new branch of
mathematics.

At the time when the theory of probability started at the hands of Pascal
and Fermat, they were the most distinguished mathematicians in Europe.
[Descartes died in 1650. Newton (b. 1642) and Leibniz (b. 1646) were as
yet unknown. Huygens (b. 1629) could not, at this time, be placed on the
level of Pascal and Fermat.]
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It might have been anticipated that a subject of such interest in itself and
discussed by the two most distinguished mathematicians of the time, would
have attracted rapid and general attention; but such does not appear to have
been the case. The two great men themselves seem to have been indifferent
to any extensive publication of their investigations. It was sufficient for each
of them to gain the approbation of the other .

The invention of the calculus by Newton and Leibniz soon offered math-
ematicians a subject of absorbing interest, and the theory of probability ad-
vanced but little during the half century which followed the dates of the cor-
respondence between Pascal and Fermat (1654). In 1658, Pascal published
several treatises which established his work as a forerunner of both differential
and integral calculus.

In 1648 Pascal formulated the basic laws of equilibrium for fluids (pub-
lished posthumously in 1663), stating that pressure in a fluid is transmitted
equally in all directions, and that the height of the mercury column in a
barometer is balanced by the pressure of air. He suggested that the barom-
eter be used to determine altitudes, and further used measurements of the
barometric pressure made at the summit of Mount Puy de Dôme to estimate
the total weight of the atmosphere (his value = 3.7 × 1018 kg).

Pascal was a son of a nobleman. A prodigy of sorts, he had already
published an essay on conic sections by the age of 16 in which he discovered
and proved ‘Pascal’s Theorem’70. He also invented one of the early calculating
machines that could add and subtract (1642).

In his Traité du triangle arithmétique (1654), Pascal united the algebraic
and combinatorial theories by showing that the elements of the arithmetic
triangle (known as the “Pascal Triangle”71 could be interpreted in two ways:
as the coefficient of an−kbk in (a+ b)n and as the numbers of combinations of
n things taken k at a time. In effect, he showed that (a+b)n is the generating
function for the numbers of combinations. As an application, he founded
the mathematical theory of probability by solving the problem of division of

70 If a hexagon is inscribed in a conic, then the points of intersection of the three

pairs of opposite sides are collinear, and conversely (1640).
71 In this triangle, the kth element

(
n
k

)
of the nth row is the sum

(
n−1
k−1

)
+
(

n−1
k

)

of the two elements above it in the (n − 1)th row, as follows from the formula

(a + b)n = (a + b)n−1a + (a + b)n−1b. The triangle appeared to the depth of six

in Yang Hui (1261) and to a depth of eight in Zhu Shijie (1303). Yang Hui

attributes the triangle to Jia Xian, who lived in the 11th century.

The numbers
(

n
k

)
appear as the number of combinations of n things taken k

at a time in the writing of Levi ben Gershon (1321), who gave the formula
(

n
k

)
= n!

(n−k)!k!
.
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stakes72, and as a method of proof he used mathematical induction for the
first time in a really conscious and unequivocal way.

Late in 1654, he became dissatisfied with experimentation and withdraw
from science and the world for a life of religious meditations. He turned to
the study of man and his spiritual problems and produced a religion-oriented
philosophy that concerned itself primarily with the relation of man to God
through faith.73

72 Suppose that a game between players I and II has to be called off with n players

remaining, k of which I has to win in order to carry off the stakes. Assuming

that I has an even chance of winning each play, the ratio of his chance of winning
the stakes to that of II’s winning is

[(n

n

)
+

(
n

n − 1

)

+ · · · +
(n

k

)]

/

[(
n

k − 1

)

+

(
n

k − 2

)

+ · · · +
(n

0

)]

.

73 For further reading, see:

• Steinmann, J., Pascal, Harcourt, Brace and World: New York, 1966, 304 pp.
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Worldview IX: Blaise Pascal

∗ ∗∗

“If God does not exist, one will lose nothing by believing in him, while if he
does exist, one will lose everything by not believing. Hesitate not, then, to
wager that he exists”.

∗ ∗∗

“We arrive at truth, not by reason only, but also by the heart”.

∗ ∗∗

“Nature is an infinite sphere of which the center is everywhere and the cir-
cumference nowhere”.

∗ ∗∗

“Contradiction is not a sign of falsity, nor the lack of contradiction a sign of
truth”.

∗ ∗∗

“Man is equally incapable of seeing the nothingness from which he emerges
and the infinity in which he is engulfed”.

∗ ∗∗

“What is a man in nature? Nothing in relation to the infinite, all in relation
to nothing, a mean between nothing and everything”.

∗ ∗∗
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“The more intelligent one is, the more men of originality one finds. Ordinary
people find no difference between men”.

∗ ∗∗

“[I feel] engulfed in the infinite immensity of spaces whereof I know nothing,
and which know nothing of me. The eternal silence of these infinite spaces
alarms me”.

∗ ∗∗

“Reason is the slow and tortuous method by which these who do not know
the truth discover it. The heart has its own reason which reason does not
know”.

∗ ∗∗

“One can have three principal objects in the study of truth: to discover it
when one searches for it, to prove it when one possesses it and to distinguish
it from falsity when one examines it”.

∗ ∗∗

“By space, the universe encompasses and swallows me up like an atom; by
thought I comprehend the world”.

(1657)

∗ ∗∗
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Choice and Chance74 — The Mathematics of Counting75

and Gambling (1654–1855)

74 For further reading, see:

• Levy, H. and L. Roth, Elements of Probability, Oxford University Press:
London, 1951, 200 pp.

• Parzen, E., Modern Probability Theory and its Applications, John Wiley &

Sons: New York, 1960, 464 pp.

• Aczel, A.D., Chance, Thunder’s Mouth Press: New York, 2004, 161 pp.

• Freund, J.E., Introduction to Probability, Dover: New York, 1993, 247 pp.

• Mosteller, F., Fifty Challenging Probability Problems, Dover Publications:

New York, 1965, 88 pp.

• Rozanov, Y.A., Probability Theory , Dover Publications: New York, 1969, 148

pp.

• Bates, G.E., Probability, Addison-Wesley, 1965, 58 pp.

• Withworth, W.A., Choice and Chance, I-II, G.E. Strechert and Co.: New

York, 1945.

• Vilenkin, N.Ya., Combinatorics, Academic Press: New York, 1971, 296 pp.

• Ball, W.W.R., Mathematical Recreations and Essays, Macmillan and Com-

pany: London, 1944, 418 pp.

75 Anthropologists have found that tribes with limited number vocabularies (“one”,

“two”, and “many”) had elaborate ways of counting on their fingers, toes, and

other parts of their anatomy in a specified order and entirely in their heads.
Most primitive counting systems were based on 5, 10, or 20 (vigesimal) for the

reason that the human animal has 5 fingers on one hand, 10 on both, and 20 fin-

gers and toes. The ancient Chinese, Egyptians, Greeks and Romans used a base
of 10. Babylonians, however, used the sexagesimal (base 60) which they adopted

from the Sumerians, and with that they achieved a remarkably advanced math-

ematics. The 20–base system was used by the Mayans (together with zero and
positional notation) in one of the most advanced of the ancient number systems.

The ancient Greeks and the Romans had an elaborate hand symbolism which

they used for counting from one to numbers in the thousands. So did the

ancient Chinese and other Oriental cultures. Luca Pacioli (1494) illus-

trated the Italian finger symbolism common in the Medieval and Renaissance

periods. Moreover, counting symbolism soon developed into finger arith-

metic for multiplication. This was called for since few people in the Mid-

dle Ages and the Renaissance learned the multiplication table beyond 5 × 5

or had access to an abacus. A variety of simple methods were in use for

obtaining the products of numbers from 6 through 10 using both hands.
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The Greeks and the Romans were familiar with some mathematics asso-
ciated with the game of dice. Plato in his Laws (Book 12) cited 3 and 18 as
the most difficult sums to roll with three dice. Indeed, they are the only sums
that can be made in only one way (1-1-1 and 6-6-6). Since there are 63 = 216
equally probable ways of rolling three dice, the probability of making either a
3 or an 18 is 1

216 . The Greeks called 6-6-6 “Aphrodite” and 1-1-1 “the dog”.

There are many references to these and other dicing terms in Greek and
Latin literature. The Roman Emperor Claudius even wrote a book called
How to Win at Dice indicating the great popularity of the game among the
upper classes (in Greece too). Apart from this, there is no evidence of any
theory of combinations among the ancients.

The Latin writers, having little interest in any phase of mathematics except
the practical, paid almost no attention to the theory of combinations. The
leading exception was Anicus Boethius (475–534, Italy) who gave 1

2n(n − 1)
as the number of combinations of n things taken two at a time.

The Hindus seem to have given the matter no attention until Bhaskara
(c. 1150) gave the rules for the permutations of n objects taken k at a time,
with and without repetition, and the number of combinations of n objects
taken k at a time without repetition.

At about the same time similar results were obtained independently in
China and South-Western Europe: in Spain, the great Jewish savant Abra-
ham Ibn-Ezra seemed to have been aware (c. 1140) of the rule for finding
the combination of n objects taken k at a time [he knew that

(
7
2

)
=
(

7
5

)
;

(
7
3

)
=
(

7
4

)
;
(

7
6

)
=
(

7
1

)
].

Levi ben Gershon (1321) in his Maasei Choscheb (Work of the Com-
puter), carried the subject considerably farther. He gave the formula(

n
k

)
= n!

k!(n−k)! for the number of combinations of n objects, taken k at a time,

together with the fact that there are n! permutations of n elements76.

76 In this treatment of permutations and combinations Levi ben Gershon comes very

close to using mathematical induction, if not actually inventing it [Rabinovitch,

N.L., Arch. Hist. Ex. Sci. 6 (1969) 237–248].

Early in the Christian Era there developed a close relation between mathematics

and the mystic philosophy of the Hebrews known as Kabbalah. This led to the

belief in the mysticism of arrangements and hence to the study of permutations

and combinations. The movement seems to have begun in the anonymous Sefer

Yetzira (Book of Creation), composed probably between the 3rd and 6th centuries

CE in Israel. It seemed to have attracted the attention of the Arabic and Hebrew

writers of the Middle Ages in connection with astronomy. They considered it

w.r.t. the conjunction of planets, seeking to find the number of ways in which

Saturn could be combined with each of the other planets in particular, and, in



1640 CE 1047

The subject of permutations had a feeble beginning in China in the 12th

century, but most of the relevant literature was lost.

Oresme (ca 1360) wrote a work in which he gave the sum of numbers
representing the combinations of 6 objects taken 1, 2, 3, 4 and 5 at a time. He
also gave

(
6
2

)
= 15,

(
6
3

)
= 20, etc., in rhetorical form.

First evidence of permutations in print is found in Pacioli’s Suma (1494),
where he showed how to find the number of permutations of any number of
persons sitting at a table. Tartaglia (1523) seems first to have applied the
theory of the throwing of a dice. In a book Pardes Rimmonim (Orchard of
Pomegranates, 1548) the Jewish Kabbalist Moshe Cordovero (1522–1570,
Israel) gave an interesting treatment of permutations and combinations and
showed some knowledge of the general laws governing them.

At about the same time Joannes Buteo (1492–1572, France) discussed
(1559) the question of the number of possible throws with 4 dice. The first

writer to publish the general rule that
(

n
k

)
= n(n−1)(n−2)···(n−k+1)

k! was
Pierre Herigone (1634).

Pascal (1654) united the algebraic and combinatorial theorems by show-
ing that (a + b)n is a generating function for the number of combinations
of n objects, taken k at a time77. As an application, he founded the mathe-
matical theory of probability, and as a method of proof he used mathematical
induction for the first time in a conscious and unequivocal way.

An interest in logic led Leibniz to write the essay Dissertatio de arte
combinatoria (1666). His aim was “a general method in which all truths of
reason would be reduced to a kind of calculation”. Leibniz foresaw that per-
mutations and combinations would be involved, but he did not make enough
progress to interest 17th century mathematicians in the project.

The true pioneer of combinatorial analysis was Abraham de Moivre,
who first published in Phil. Trans. (1697) the form of the general coefficient
in the expansion of (a+ bx+ cx2 + dx3 + · · · ) raised to any power. His work
on probability would naturally lead him to consider questions of this nature.

In 1730 he introduced the powerful method of generating functions (for
the Fibonacci numbers). This method has been of great importance in com-
binatorics, probability and number theory.

general, the number of combinations of the known planets taken two at a time,

three at a time, and so on.
77 The credit for discovering the Pascal triangle goes to the Chinese mathematicians

Yang Hui (1261) and Zhu Shijie (1303). This is not the only instance of a

mathematical concept being named after a rediscoverer rather than a discoverer,

but Pascal deserves here credit for more than just rediscovery.
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Mathematicians of the 18th century applied the algebra of permutations
and combinations to solve a host of arithmetical and geometrical problems,
some of which had immediate application to probability theory. Although
it is generally agreed that the doctrine of probability has been founded by
Pascal and Fermat, the need for the theory arose already with regard to
throwing of dice and other gambling questions. In the mathematical work
Suma (1494) by Pacioli, two gamblers are playing for a stake which is to go
to the one who first wins n points, but the play is interrupted when the first
has p points and the second q points. It is required to know how to divide
the stakes. The general problem also appears in the works of Cardan (1539)
and of Tartaglia (1556).

The first printed work on the subject was a tract of Huygens (1657).
There also appeared (1708) an essay on the subject by Pierre-Rémond de
Montmort (1678–1719). However, the first book devoted entirely to the
theory of probability was Ars Conjectandi (1713) by Jakob Bernoulli. The
second book on the subject was De Moivre’s Doctrine of Chances (1718).
One of the best known works on the theory of probability is Laplace’s Théorie
analytique des probabilites (1812). In this is given his proof of the method of
least squares.

The application of the theory to mortality tables started with John
Graunt’s book Natural and Political Observations (London, 1662). The first
tables of great importance, however, were those of Edmund Halley (1663)
in his memoir on Degrees of Mortality of Mankind, in which he made a careful
study of annuities. Although a life-insurance policy is known to have been
underwritten in London in 1583, it was not until 1699 that a well-organized
company was established for this purpose.

A few typical examples of problems of historical and aesthetical value are
given below:

• The Bernoulli-Euler problem of misaddressed letters

Someone writes n letters and writes the corresponding addresses on n en-
velopes. How many different ways are there of placing all the letters in the
wrong envelopes?

This problem was first considered by Nicholas Bernoulli (1687–1759),
the nephew of Jakob and Johann Bernoulli. Later Euler became interested
in the problem, which he solved independently of Bernoulli. This problem is
particularly interesting because of its ingenious solution:

Let un be the sought number of ways. Pick a certain letter; by definition
it is in a wrong envelope. Then there are two possibilities:
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(I) The letter that matches the wrong envelope was placed in an en-

velope that matches the originally selected letter. This cross-

derangement can occur in (n − 1) ways. The remaining (n − 2)
letters can be misaddressed in un−2 ways. The total number of de-

rangements of this type is therefore (n − 1)un−2.

(II) While the originally selected letter is placed in a wrong envelope, the

matching envelope for that letter does not host the letter matching

the wrong envelope. Pretending that the latter letter-envelope pair

is matched, the number of configurations of type II is found to be

un−1 per choice of wrong envelope, i.e. (n − 1)un−1. Altogether,

adding the counts for cases I and II:

un = (n − 1)(un−1 + un−2).

This difference equation is solved by

un = n!
[

1
2!

− 1
3!

+ · · · +
(−1)n

n!

]

.

Montfort78 (1713) solved this problem (le problème de recountres) by effec-

tively using what is known today as The principles of inclusion and exclusion,

which may have been known to the Bernoullis. It states:

If of N objects, N(a) have a property a, N(b) property b, . . ., N(ab) both

a and b, . . ., N(abc) a, b, and c, and so on, the number N(a′b′c′) with none
of these properties is given by

N(a′b′c′ . . .) = N − N(a) − N(b) − · · ·
+N(ab) + N(ac) + · · ·

−N(abc) − · · ·
+ · · ·

The proof by mathematical induction is simple once it is noted that the for-

mula N(a′) = N − N(a) can be applied to any collection of properties which

is suitably defined.

The principle of inclusion and exclusion is an important combinatorial

tool.

78 Pierre de Montfort (1678–1715, France). Mathematician. Made a systematic

study of games of chance and contributed to combinatorics.



1050 3. The Clockwork Universe

• Euler’s problem of polygon division

In how many ways can a plane convex polygon of n sides be divided into
triangles by non-intersecting diagonals inside the polygon?

Euler posed this problem (1751) to Christian Goldbach. He then
communicated it to Johann Andreas von Segner (1704–1777, Germany),
disclosing the first seven division numbers En

n 3 4 5 6 7 8 9

En 1 2 5 14 42 132 429

Segner was able to derive a recursion relation for En

En = E2En−1 + E3En−2 + · · · + En−1E2

where E2 ≡ 1. His solution matched Euler’s own result

En =
2n−2(2n − 5)!!

(n − 1)!
.

• Steiner’s problem (1826)

n lines are drawn in the Euclidean plane in such a way that no 3 are concurrent
and no 2 are parallel. What is the maximal number of regions formed?

Let Pn denote this number. An additional line will cut all previous lines,
creating (n + 1) new regions. Therefore Pn+1 = Pn + (n + 1). This
equation, augmented by the initial condition P1 = 2, is uniquely solved by
Pn = 1 + 1

2n(n + 1).



1640 CE 1051

• Josephus
79

problem (Tartaglia, 1546)

Arrange the numbers 1, 2, . . . , n consecutively (say, clockwise) about the cir-
cumference of a circle and proceed clockwise to remove every qth number. Let
Jq(n) denote the final number which remains for a given pair (q, n), i.e. the
last survivor.

For q = 2 (removing number 2 and then every other number) the
survivor’s-table has the form

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

J2(n) 1 1 3 1 3 5 7 1 3 5 7 9 11 13 15 1

Suppose that we have 2n people originally. After the first go-around, all
even numbers will be eliminated and 3 will be the next to go. This is just
like starting out with n people, except that each person’s number has been
doubled and decreased by 1. That is J2(2n) = 2J2(n) − 1, for n ≥ 1. If we
start with (2n + 1) people, it turns out that person number 1 is wiped out
just after person number 2n. Again, we almost have the original situation as
with n people, but this time their numbers are doubled and increased by 1.
Thus J2(2n + 1) = 2J2(n) + 1 for n ≥ 1.

Altogether we have

J2(1) = 1
J2(2n) = 2J2(n) − 1, for n ≥ 1,

J2(2n + 1) = 2J2(n) + 1, for n ≥ 1.

79 The Latin writer Hegesippus (340–397 CE) tells us that the Jewish historian

Josephus saved his life by knowing the solution to this problem for q = 3, n =

41. According to his account, after the Romans had captured Yodfat, Josephus

and 40 other Judean freedom fighters took refuge in a cave. His companions

were resolved to die rather than fall into the hands of the Romans. Josephus

and one friend, not wishing to die yet not daring to dissent openly, feigned to

agree. Josephus even proposed an arrangement by which the deaths might take

place in an orderly manner: The men were to arrange themselves in a circle; then

every third man was to be killed until but one was left, and he must commit

suicide. Josephus and his friend placed themselves in places 16 and 31. This

kind of ‘lottery’, which Josephus adopted, was similar to that used by the priests

of the Second Temple (515 BCE–70 CE) in Jerusalem to win their various daily

service-jobs [Yoma 2, 2 (Mishna); Yoma 2, 1 (Yerushalmi); Yoma 22, 2 (Bavli)].

The priests stood in a circle, each one pointing one or two fingers toward the

man in charge at the center. This man would then announce a number (usually

100 or 60) which was larger than the total number of participating priests, and

then count fingers in a specified direction from a certain fiducial person, ending

the count of the preassigned number at the winner.
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It follows from these recursion relations that J2(2) = 2J2(1) − 1 = 1, J2(4) =
2J2(2) − 1 = 1, etc. and in general, for all m, J2(2m) = 1. Hence we know
that the first person will survive whenever n is a power of 2. In the general
case n = 2m + �, where 2m is the largest power of 2 not exceeding n,
the number of people is reduced to a power of 2 after there have been �
“executions”. The eventual survivor is number 2�+1 in the original ordering,
i.e.

J2(2m + �) = 2� + 1, for m ≥ 0 and 0 ≤ � < 2m.

This can be proved by induction in two steps, depending on whether � is even
or odd: If m > 0 and 2m + � = 2n, then � is even and

J2(2m + �) = 2J2(2m−1 + �/2) − 1 = 2(2�/2 + 1) − 1 = 2� + 1,

by the induction hypothesis. A similar proof works in the odd case, when
2m + � = 2n + 1. We might also note that

J2(2n + 1) − J2(2n) = 2.

Either way, the induction is complete and the closed-form solution is estab-
lished.

To illustrate the solution we compute J2(100). In this case we have
100 = 26 + 36, so J2(100) = 2 · 36 + 1 = 73.

There is no closed-form solution to the Josephus problem for q > 2, not
even a recurrence relation. There is however a computer recipe

Jq(n) = qn + 1 − D
(q)
k ,

where D
(q)
0 = 1, D

(q)
n = q

q−1D
(q)
n−1 for n > 0, and k is as small as possible

such that D
(q)
k > (q − 1)n.

• Rook problems

In how many ways can n rooks be placed on an n × n chessboard so that no
rook can attack another?

If the rooks are unnumbered the answer is n! since there is exactly 1 rook
in each row and each column and thus each configuration of the n rooks is a
different permutation of n objects (numbers). If the rooks are numbered from
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1 to n, the answer is (n!)2, since there are n! ways of placing the numbered
rooks (the result of permuting the latter).

Now, if the rooks are restricted to avoid the main diagonal, every position
of the non-attacking rooks is a derangement of n objects, and we fall back
on the Bernoulli-Euler problem of misaddressed letters, with the result (for
un-numbered rooks)

n!
[

1 − 1
1!

+
1
2!

− 1
3!

+ · · · + (−1)n 1
n!

]

.

Another interesting problem is to find the number of ways of arranging n un-
numbered rooks on an n × n chessboard such that every square of the board
is controlled by at least one of them.

The number of ways of arranging n rooks, one in each column, is nn (the
first rook can be placed on any of the n squares of the first column; no matter
which square it is put on, the second rook can be put on any of the n squares
of the second column, etc.).

The same argument applies to the rows, and it would seem at first glance
that the number of arrangements of n rooks for which the rooks controlled
all squares of the board would equal to 2nn. But in this enumeration we have
counted twice each arrangement of the rooks for which there is one rook in
each column and simultaneously one rook in each row. Since the total number
of such arrangement is n!, the correct answer is 2nn − n!.

In particular, for an ordinary chessboard (n = 8), we obtain
2 · 88 − 8! = 33, 514, 312 different arrangements.

• Problems of occupancy

Starting with the basic permutations and combinations of N objects, there is
a large class of more complicated cases, some of which require very involved
and tricky reasoning that leads to fancy mathematical formulations. We shall
look at a few just to appreciate how powerful such methods can be.

Let there be a set of N objects (e.g. balls) which should be placed in a
set of n compartments (e.g. urns, boxes, etc.). The number of ways in which
the distribution can be effected will depend upon two factors:

(1) Whether the order of the urns, even including empty ones, is taken into
account, i.e. whether the urns are distinguishable (alias different, alias
labeled, distinct) or indistinguishable (alias identical).

(2) Whether the order of the balls within the urns is taken into account, i.e.
whether the balls are distinguishable or not.
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The simplest case is when both balls and urns are different. There are n
choices for each ball as to which urn it will be placed in. The total number of

independent choices is therefore nN (empty urns are allowed).

If in the previous problem the balls are identical and they are placed in n

distinct urns or fewer (i.e. empty urns are allowed) the counting proceeds as
follows:

Due to the indistinguishability of the balls, any single distribution can

be symbolically represented by short vertical bars (walls of urns) and circles

(balls), e.g. |00|000|0| · · · . We must begin and end with walls, and we must
have in each distribution N balls and n − 1 internal walls. So we merely have

to count the number of ways to line up N balls and n − 1 internal walls.

There are N + (n − 1) positions in a line-up and N of them must be balls.
Therefore the answer is

(
N+n−1

N

)
≡
(

N+n−1
n−1

)
. When no cell is empty, the

result turns out to be
(

N −1
n−1

)
.

Note that we are actually asking here how many solutions are

there, in non-negative (or alternatively positive) integers, to the equation
x1 + x2 + · · · + xn = N , where (x1, . . . , xn) is an ordered n-tuple.

The next problem is to count the number of ways in which N different
balls can be arranged in exactly n different urns (no empty urn).

The number of arrangements in which empty urns are admissible is nN ;

the number of arrangements in which one assigned empty urn is admissible is

(n − 1)N , and so on. Hence, by the principle of inclusion and exclusion, the

sought number80 is T (N, n) =
∑n−1

k=0(−1)k
(

n
k

)
(n − k)N .

Using this we can find the number of ways B(N, n) to put N differ-
ent balls into n identical urns, with no empty urns. This amounts to

B(N, n) =
∑n

j=0
1
j!T (N, j).

Finally, in how many ways can N identical balls be put in n identical urns?

There is no nice, closed-form solution to this problem.

• Rolling dice

Count the number of ways of obtaining the sum N with n dice?

The number of arrangements in which the partition x1 +x2 + · · · +xn = N

is effected, with no zero values for any xi, is
(

N −1
n−1

)
. Then, since each xi is

80 This is shown to equal the coefficient of xN in the expansion of N !(ex − 1)n.
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limited by the set {1, 2, 3, 4, 5, 6}, the principle of inclusion and exclusion
yields the result

(
N − 1
n − 1

)

−
(

n
1

)(
N − 7
n − 1

)

+
(

n
2

)(
N − 13
n − 1

)

· · ·

• Sum of divisors

Let p1, . . . , pn be distinct primes. What is the number of divisors of the
number q = (p1)α1(p2)α2 , . . . , (pn)αn where α1, . . . , αn are natural numbers
(including the divisors 1 and q) and what is the sum of these divisors?

Each prime pk can enter a divisor of q with one of (αk + 1) exponents
0, 1, . . . , αk. By the rule of product, the number of divisors is

(α1 + 1) · · · (αn + 1).

To compute their sum, we consider the expression

(1 + p1 + · · · + pα1
1 ) · · · (1 + pn + · · · + pαn

n ).

In performing the product, we obtain a sum in which each divisor of q appears
exactly once. Using the formula for the sum of a geometric progression, the
above product — and therefore also the required sum of the divisors of q —
is seen to have the value

pα1+1
1 − 1
p1 − 1

· · · pαn+1
n − 1
pn − 1

• The birthday problem

If you know more than 23 people’s birthdays, it is more likely than not that
two of them occur on the same day.

Consider the probability that n people’s birthdays are all different, i.e. that
in a random selection of n days out of 365 there shall be no day counted more
than once. The total number of possible selection is (365)n, and the number of
selection in which no day is counted more than once is 365·364· · · · ·(365−n+1).
The probability is therefore

p(n) =
(

1 − 1
365

)(

1 − 2
365

)

· · ·
(

1 − n − 1
365

)

.

The occurrence is as likely as not if p(n) = 1
2 . By taking logarithms, we obtain

approximately 1
365 + 2

365 + · · · + n−1
365 = loge 2 or n(n − 1) ∼= 506, whence
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n = 23. The probability that at least two persons in a room containing
n persons will have the same birthday is q(n) = 1 − p(n). For n = 64,
q(n) = 0.997.

• n people are seated around a table, n > 2. What is the probability that
two persons will be neighbors?

There are n!
n = (n − 1)! arrangements in toto. Of these, 2(n − 2)! are

favorable. Therefore, the sought probability is p(n) = 2
n−1 .

• Given a convex planar irregular (no three diagonals intersect) n-gon.
Enumerate:

(a) the total number of diagonals;

(b) the number of interior intersection points generated by the diagonals;

(c) the number of interior regions generated by the intersecting diagonals.

A diagonal corresponds to a 2-subset of vertices, of which there are
(

n
2

)
.

However, not every 2-subset gives a diagonal: the n-pairs of adjacent vertices

give sides. Thus, the first requested number is
(

n
2

)
− n = n(n−3)

2 .

Likewise, there is a one-to-one correspondence between interior intersec-
tion points and combinations of vertices taken 4 at a time. Hence the second
sought number is

(
n
4

)
.

Finally, using mathematical induction, the number of regions is found to
be
(

n
4

)
+
(

n−1
2

)
= 1

24 (n − 1)(n − 2)(n2 − 3n + 12).

For a given n-gon, all these results are independent of the specific shape
of the polygon.

• Kirkman’s
81

school-girls problem (1850)

In a boarding school there are 15 schoolgirls who always take their daily walks
in 5 rows of threes. How can it be arranged so that each schoolgirl walks in
the same row with every other schoolgirl exactly once a week?

81 Thomas Kirkman (1806–1895, England). Mathematician. Contributed to

combinatorial mathematics. Showed the existence of Steiner systems seven years

before Steiner’s article on the subject.
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Let the girls be labeled X1, . . . , X7, Y1, . . . , Y7, Z. The solution is

Day 1 X1Y1Z X2X6Y4 X3X4Y7 X5X7Y6 Y2Y3Y5

Day 2 X2Y2Z X3X7Y5 X4X5Y1 X6X1Y7 Y3Y4Y6

Day 3

Day 4

Day 5

Day 6

Day 7 X7Y7Z X1X5Y3 X2X3Y6 X4X6Y5 Y1Y2Y4

The solution has the nice property that the triplets for each day can be ob-
tained from those of the previous day by replacing Xi by Xi+1, Yi by Yi+1

(i ≤ 6), X7 by X1, Y7 by Y1.

• Changing a dollar

In how many ways can a dollar be changed into pennies, nickels, dimes, quar-
ters and half-dollars? A painstaking naive counting yields at length the num-
ber 292. Sylvester (1855) developed a general theory which enables one to
derive results like these through a systematic fast algorithm. But even with
this tool, the following consideration is useful: In general, if the change adds
up to N cents and consists of coins of denomination n1, n2, . . . , nk (no restric-
tion on the number of coins of different denominations), one easily derives the
recursion relation

D(N ; n1, n2, . . . , nk) = D(N ; n1, n2, . . . , nk−1) + D(N − nk; n1, n2, . . . , nk)

where the left hand side is the sought number of ways to change N cents
with denominations {n1, n2, . . . , nk }. The above relation shows that if no
nk-cent coin is included in the change, then the full sum N is made up of
coins of lesser denominations {n1, n2, . . . , nk−1}, and if at least one nk-cent
coin is used, then the remainder (N − nk) may include coins of denomination
{n1, n2, . . . , nk }. Applying this to our problem we get

D(100; 1, 5, 10, 25, 50) = D(100; 1, 5, 10, 25) + D(50; 1, 5, 10, 25, 50).

A repeated application of this relation, leads to the above result after a few
steps.

It is clear from the above examples that combinatorial mathematics is first
of all concerned with counting the number of ways of arranging given objects
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in a prescribed way (i.e. satisfying certain conditions). Generally speaking,
both the theoretical analysis and the actual construction of discrete sets are
much more difficult than those problems in analysis concerning infinite sets.

The main emphasis and the name of this field have changed from time to
time and from person to person. Other names such as combinatorial analysis,
combinatorial theory and recently discrete mathematics have also been used
to describe the same field82.

• Combinatorial analysis (1846–1898)

Up to the middle of the 19th century, problems of combination were generally
undertaken as they became necessary for the advancement of some particular
part of mathematical science; it was not recognized that the theory of combi-
nations is in reality a science in and of itself, well worth studying for its own
sake irrespective of applications to other parts of analysis. There was a total
absence of orderly development, and until 1846, Euler’s classical paper re-
mained the only method of combinatorial analysis83. [Other writers who have
contributed to the solution of special problems are James Bernoulli, Rug-
giero Boscovich, Karl Friedrich Hindenburg (1741–1808), William
Emerson (1701–1782), Robert Woodhouse (1733–1827), Thomas Simp-
son and Peter Barlow .]

In 1846 Carl G.J. Jacobi studied the partitions of numbers by means
of certain identities involving infinite series that are met in the theory of
elliptic functions. Further advance was made by Arthur Cayley and Joseph
Sylvester (1855) and during 1888–1898 by Pery Alexander MacMahon
(1854–1929).

82 In the 20th century, the subject has come a long way since Kirkman’s time and

the days are past when the calculus was thought to be the undisputed queen of

applied mathematics.
83 De Partitione Numerorum (1748), in which the consideration of the reciprocal of

the product (1 − ax)(1 − ax2)(1 − ax3) · · · establishes a fundamental connection

between arithmetic and algebra through the identity

1

(1 − ax)(1 − ax2) · · · (1 − axn)
= 1+ax

1 − xn

1 − x
+a2x2 (1 − xn)(1 − xn+1)

(1 − x)(1 − x2)
+ · · · .

Here Euler showed that he could convert arithmetical addition into algebraic

multiplication and by that he gave the complete formal solution of the main

problem of the partition of numbers.
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On Chance

∗ ∗∗

“I returned and saw under the sun, that the race is not to the swift, nor the
battle to the strong, neither yet bread to the wise, nor yet riches to men of
understanding, nor yet favour to men of skill: but time and chance happeneth
them all”.

Ecclesiastes 9 11

∗ ∗∗

“Everything existing in the Universe is the fruit of chance and necessity”.

Democritos of Abdera (ca 460–370 BCE)

∗ ∗∗

“The probable is what usually happens”.

Aristotle (384–322 BCE)

∗ ∗∗

“Probability is the very guide of life”.

Marcus Tullius Cicero (ca 50 BCE)

∗ ∗∗

“The only certainty is that there is nothing certain”.

Pliny the Elder (23–79 CE)
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∗ ∗∗

“It is a truth very certain that when it is not in our power to determine what
is true we ought to follow what is most probable”.

René du Perron Descartes (1596–1650)

∗ ∗∗

“It is remarkable that a science which began with the consideration of games of
chance should have become the most important object of human knowledge”.

Pierre Simon de Laplace (1749–1827)

∗ ∗∗

“The most important questions of life are, for most part, really only problems
of probability”.

Pierre Simon de Laplace

∗ ∗∗

“Fate, time, occasion, chance, and change — to these all things are subject”.

Percy Bysshe Shelley (1792–1822)

∗ ∗∗

“In the field of observation, chance favours the prepared mind”.

Louis Pasteur (1822–1895)

∗ ∗∗
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“No victor believes in chance” (Kein sieger glaubt an den zufall).

Friedrich Wilhelm Nietzsche (1844–1900)

∗ ∗∗

“Chance is the pseudonym of God when he did not want to sign”.

Anatole France (1844–1924)

∗ ∗∗

“I can believe anything, provided it is incredible”.

Oscar Wilde (1854–1900)

∗ ∗∗

“The record of a month’s roulette playing at Monte Carlo can afford us ma-
terial for discussing the foundations of knowledge”.

Karl Pearson (1857–1936)

∗ ∗∗

“The conception of chance enters into the very first steps of scientific activity
in virtue of the fact that no observation is absolutely correct. I think chance
is more fundamental concept than causality; for whether in a concrete case,
a cause-effect relation holds or not can only be judged by applying the laws
of chance to the observation”.

Max Born (1882–1970)

∗ ∗∗
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“The luck of having talent is not enough; one must also have a talent for
luck”.

Hector Berlioz

∗ ∗∗

“The harder you work, the luckier you get”.

Anon

∗ ∗∗

“What is good luck for the early bird is bad luck for the early worm”.

Anon

∗ ∗∗

“Depend on the rabbit foot if you will, but remember — it didn’t work for
the rabbit!”

Anon

∗ ∗∗
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1641–1672 CE Franciscus (Franz) Sylvius de la Boë (1614–1672,
The Netherlands). German born physician, anatomist and chemist. Taught
that the functions of the living organism were mainly determined by chemical
activities (“effervescences”), particularly by acidic or alkaline characters of
body fluids (a precursor of the modern cult of pH). He represents the culmi-
nation of chemical medicine (Iatrochemistry).

Professor of medicine at Leyden (1658–1672), where he built the first uni-
versity chemical laboratory. Discovered (1614) Sylvian fissure in brain.

1642–1644 CE Abel Janszoon Tasman (1603–1659, The Nether-
lands). The greatest of Dutch navigators and explorers. Discovered Tasma-
nia and New Zealand (1642), and Tonga and the Fiji Islands (1643); On his
second voyage (1644) he discovered the Gulf of Carpentaria.

Tasman entered the service of Dutch East India Co. (1633); sent by An-
thony van Diemen, governor general of Dutch East Indies, on expeditions to
Indian and Australian waters (Aug. 1642) in quest of “islands of gold and
silver”.

Tasman was born at Lutjegast at Groningen. Although Tasman con-
tributed to the extension of the Dutch colonial empire, his achievements were
coldly received by the Dutch colonial authorities.

The first people to live in New Zealand were the Maoris. They arrived
around 750 CE from the Cook, Marquesas, or Society Islands (NE of New
Zealand) by canoes.

Tasman tried (1642) to send a group of men ashore, but the Maori attacked
their two small landing crafts and killed several of the men. Tasman made
no further attempt to land. No other European came to New Zealand until
1769, when Captain James Cook landed on the North Island, made friends
with the Maoris, and explored and charted both the North Island and the
South Island. In 1840 the Maoris signed the Treaty of Waitangi , which gave
Great Britain the sovereignty over New Zealand.

1642–1655 CE Cyrano de Bergerac (Savinien de) (1619–1655,
France). Playwright, soldier and writer of science-fiction and philosophical
fiction. He was acquainted with all the philosophical trends of his period
(Scholasticism, which he attacked; Skepticism, Epicureanism as revived by
Gassendi, Cartesianism, and the Italian philosophers of the Renaissance), and
was aware of all the recent discoveries in astronomy and physics since Coper-
nicus, Kepler and Galileo, and in medicine since Harvey. His novels show him
as a keen and talented popularizer, and contain amazing forecasts of many
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later developments in science and technology such as: the unity of matter, its
atomic structure, phagocytes, animal intelligence, aviation, the gramophone,
and X-rays. Known for his sword-fighting and for his long nose [Edmond’s Ro-
stand’s famous play Cyrano de Bergerac (1897) contains a somewhat fanciful
account of Cyrano’s colorful life].

Cyrano was born in Paris. He received his first education from a country
priest. At the age of 19 he entered the corps of the guards, serving in the
campaigns of 1639 and 1640, and began the series of exploits that were to
make him a veritable hero of romance. After 2 years of this life Cyrano left
the service and returned to Paris to pursue literature and science studies,
becoming a pupil of Gassendi.

Among his writings are two fantastic voyages: L’autre monde ou les états
et empires de la lune and Des états et empires du soleil (1654) (published
posthumously 1657 and 1662, after being purged of many religious and philo-
sophical audacities; tr. Voyages to the Moon and the Sun, 1923).

Only after 20th century scholarship made the complete text of his novels
available, did his talent and originality receive full recognition.

Cyrano’s ingenious mixture of science and romance has furnished a model
for many subsequent writers, among them Jonathan Swift (1667–1745, Eng-
land) and Edgar Allan Poe (1809–1849, U.S.A.). He adopted his fanciful
style both for safely conveying ideas that might be regarded as unorthodox,
and to relax from the serious study of physics.

Cyrano spent a stormy existence in Paris and was involved in many duels.
He entered the household of duke d’Arpajon as secretary in 1653, and died
two years later as a result of injuries following an accident.

1642–1656 CE Thomas Hobbes (1588–1679, England). Philosopher.
Best known for his political philosophy, based on the idea of social contract, for
purpose of security of each individual, and absolute authority of a sovereign84

(Leviathan, 1651).

In his travels on the Continent he met Galileo, Gassendi and Mersenne.
In England he was friendly with Bacon and Harvey.

Hobbes was influenced by two developments of his time: the new system
of physics that Galileo and others were working on and the English Civil War.
Men, he concluded, are selfish. They are moved chiefly by desire for power

84 According to Hobbes, man creates social laws autonomically, with no dependence

on God. This is clearly an antithesis to the teaching of Luther, who claimed that

the death of Christ relieves us from all moral obligations to each other.
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and by fear of others. Therefore, without an all powerful sovereign to rule
them, men’s lives would be ‘poor, nasty, brutish and short’.

Though modern physics is not so materialistic as it seemed to be in the
days of Hobbes and though men’s motives are more complex than he supposed,
Hobbes influence continues. He raised fundamental and challenging questions
about the relationship between science and religion, between thought and
physiological processes on which it is based, and the nature and limitations
of political power. These are questions that men still struggle to answer. He
is probably more important for the questions he asked than for the answers
he gave.

Hobbes was born in Westport, England. He was educated at Oxford Uni-
versity, and served as secretary to Francis Bacon. During the Civil War
in England he fled to the European continent, returning to England while
Cromwell’s protectorate was still in power.

1642–1680 CE Johannes Hevelius (Hevel, Hovels or Höwelcke, 1611–
1680, Danzig). German astronomer. Founder of lunar topography. Discoverer
of comets and the moon’s libration in longitude.

He was born in Danzig (now Gdansk, Poland). Studied law at Leyden
in 1630; traveled in England and France, and in 1634 settled in his native
town as a brewer and town councilor. From 1639 his chief interest became
centered on astronomy, though he took, throughout his life, a leading part in
municipal affairs. In 1641 he built an observatory in his house, provided with
a telescope (46 m focal length) which he constructed by himself.

Hevelius made observations of sunspots (1642–1645), devoted four years to
charting the lunar surface, and published his results in Selenographia (1647).
It is the first map of the side of the moon observable from earth. He discovered
4 comets (1652, 1661, 1661, 1672), and suggested the motion of such bodies
in parabolic orbits round the sun.

On 26 September 1679, his observatory, instruments and books were de-
stroyed by arson. He promptly repaired the damage, so far as to enable him
to observe the great comet of December 1680, but his health suffered from
the shock.

His catalogue of 1564 stars appeared posthumously (1690).

1643 CE Typhoid fever first identified or described with accuracy.

1643 CE Evangelista Torricelli (1608–1647, Italy). Geometer and
physicist. A pupil of Galileo. Engaged in pre-calculus calculations of areas,
arc-lengths and extremum. Applied Galileo’s laws of motion to fluids, and
invented the first barometer to measure air pressure, using mercury as fluid
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in a 185 cm glass column sealed at the top. When the tube is upended in
a dish, the mercury sinks to about 76 cm, leaving a partial vacuum at the
top. Torricelli was motivated by his desire to understand why lift pumps were
unable to raise water more than 10.37 m. He then correctly concluded that
the 760 mm of mercury balanced the air pressure in the dish.

Mining engineers were long aware of the fact that a suction-pump could
not draw water from depths greater than some 10 meters and there was no
explanation of why such limit should exist. When the engineers of Cosimo
de’Medici II failed in an attempt to build a suction-pump capable of lifting
water from a depth of 17 meters, the problem was referred to Galileo, and
finally solved by his brilliant pupil Torricelli (1644), who then announced
that the pressure of the atmosphere was equivalent to a column of water over
10 meter in height. He predicted that the pressure of the atmosphere would
fall with increasing altitude, a truth which he confirmed experimentally in
1647, when a barometer was carried to the top of a 1450 m high mountain in
the Auvergne; the height in the mercury in it fell by 7.5 cm during the ascent.

Torricelli created the first man-made vacuum known to science, thus re-
futing the 2000 year old Aristotelian view that vacuum was impossible.

Aristotle was Exactly Wrong

The ancient Greeks believed that the air through which birds fly extended
to the moon (Daedalus failed because human arms were insufficiently strong,
but that was their only objection). As Aristotle said: “Nature abhors a
vacuum”. Even Kepler, in his Somnium (1634) never considered air as a
problem.

In the mid 17th century, the Catholic Church had its own “theory” of why
there was no vacuum: “vacuum is nothing; since God is everywhere and in
everything he could not be nowhere and in nothing”. So the pope decreed that
the vacuum did not exist and to talk about vacuum was considered heresy.
And that was exactly the reason why the air pressure became a Protestant
program.

Torricelli not only created the first artificial vacuum and demonstrated
that air had weight — he essentially discovered outer space! for if air did have
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weight, and if one assumes its density was uniform throughout the atmosphere,
its weight implied that the atmosphere was only 8 km high. Even if one
assumed it thinned as it rose, the atmosphere certainly could not be more than
some 150 km high. From that instant onward, man realized that he inhabited
not a unique land in the universe filled with possible places of habitation, but
a speck-sized island of life in a vast cosmos of life-inimical emptiness.

Science has suddenly isolated man, and showed how precarious was his
grip on nature. Nature, in fact, prefers a vacuum, and Aristotle was shown
to be exactly wrong. How puny man suddenly became, and how horrific his
universe. This was one of the first dreadful fears created by science, fears con-
firmed again and again when the Scottish astronomer Thomas Henderson
(1798–1844) was able to show (1831) that the Sun’s nearest stellar neighbor
was an ungodly 40 trillion km away; when Charles Darwin showed (1859)
that man was just another animal; and when Einstein (1905) turned com-
mon sense regarding the most fundamental categories upside-down; and when
(1945) science coupled with technology showed that they could destroy men’s
sense of the world together with the world itself .

1644 CE Marin Mersenne (1588–1648, France). Mathematician and
natural philosopher. A Franciscan friar who lived in one of the critical peri-
ods of scientific history, overlapping the lives of Galileo (1564–1642), Fer-
mat (1601–1665) and Descartes (1596–1650). Contributing little himself,
Mersenne’s unique historical importance was his gift for stirring up profitable
controversies among his friends. His main accomplishment was his correspon-
dence with many of the intellectuals of his time and the meetings held in
his quarters in the Minim convent in Paris. At one such gathering (1647),
Pascal first met Descartes. Some 18 years after his death, this group of ac-
quaintances had become the French Academy of Sciences. Thus we can see
Mersenne as a catalyst, speeding up the exchange of ideas between others.

Mersenne was born at Oise, France. In 1604 he entered the Jesuit school
of La Flèche, where he met Descartes. In 1609 he went to the Sorbonne in
Paris. In 1611 he joined the order the Minims and moved (1619) to a cloister
at the Place Royale, where he remained most of his life. In 1647 he traveled
to meet with Fermat. The hot journey over bad roads wore him out and he
died soon afterwards. All his mathematical works, except his bad guess about
perfect numbers, quickly became obsolete.
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Since the days of Greek science, philosophers were concerned with the
mystical significance of natural numbers. The 6 days of creation and the
28 days of the lunar month drew attention to the so-called perfect numbers.
Euclid had already proved in his ‘Elements’ that if 2k − 1 is prime, then
2k−1(2k − 1) is a perfect number. Thus, interest aroused early in primes of
the form 2k − 1. Clearly, if this number is prime, k itself must be a prime
(the converse is however not true). In 1644, Mersenne made the incorrect
conjecture that for p ≤ 257, 2p − 1 is prime when and only when p = 2,
3, 5, 7, 13, 17, 19, 31, 67, 127 and 257. He made 2 sins of commission (67,
257) and 3 sins of omission (61, 89, 107).

Mersenne, believing in inquiry by experiments, measured in 1636 the speed
of sound in air. He also observed during 1623–1647 that the intensity of sound
is inversely proportional to the square of the source-observer distance. He
made a distinction between sound frequency and sound intensity and found
that sound velocity is independent of pitch and loudness. He discovered,
before Galileo, that the frequency of swing of a pendulum is inversely propor-
tional to the square root of its length. Although relationships between the
frequencies of vibrating strings had been known since the time of Pythagoras
(ca 540 BCE), the absolute frequency of a musical note was first measured by
Mersenne, who published his results in “Harmonie Universelle” in 1636.

The Mersenne Primes85 (1644–2003)

It took Frank Nelson Cole (1861–1926) about 1000 hours to calculate,
by 1903, that

267 − 1 = 193, 707, 721 × 761, 838, 257, 287.

(Nowadays, a fairly standard computer will render the result in 0.1 sec.)

85 To dig deeper, see:

• Hardy, G.H. and E.M. Wright, An Introduction to the Theory of Numbers,
Oxford University Press: Oxford, 1989, 426 pp.

• Ore, O., Number Theory and its History, McGraw-Hill Book Co., 1948,

370 pp.
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In 1911, R.E. Powers showed that Mersenne had also missed the primes
289 − 1 and 2107 − 1 and in 1947 it was found that 2257 − 1 (having 78 digits)
is composite, having three prime divisors

231, 584, 178, 474, 632, 390, 847, 141, 970, 017, 375, 815, 706, 539, 969,
331, 281, 128, 078, 915, 168, 015, 826, 259, 279, 871
= [535, 006, 138, 814, 359]

×[1, 155, 685, 395, 246, 619, 182, 673, 033]
×[374, 550, 598, 501, 810, 936, 581, 776, 630, 096, 313, 181, 393]

Table 3.3: Known Mersenne Primes

p Digits Year Discoverer Mp = 2p − 1

1 2 1 — — 3
2 3 1 — — 7
3 5 2 — — 31
4 7 3 — — 127
5 13 4 1456 anonymous 8,192
6 17 6 1588 Cataldi 131,071
7 19 6 1588 Cataldi 524,287
8 31 10 1772 Euler 2,147,483,647
9 61 19 1883 Pervushin 2,305,843,009,213,693,951

10 89 27 1911 Powers
11 107 33 1914 Powers
12 127 39 1876 Lucas

13 521 157 1952 computers
14 607 183 1952 computers
15 1279 386 1952 computers
16 2203 664 1952 computers
17 2281 687 1952 computers
18 3217 969 1957 computers
19 4253 1281 1961 computers
20 4423 1332 1961 computers
21 9689 2917 1963 computers
22 9941 2993 1963 computers
23 11213 3376 1963 computers
24 19937 6002 1971 computers
25 21701 6533 1978 computers
26 23209 6987 1979 computers
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Table 3.3: (Cont.)

p Digits Year Discoverer Mp = 2p − 1
27 44497 13395 1979 computers
28 86243 25962 1982 computers
29 110503 33265 1988 computers
30 132049 39751 1983 computers
31 216091 65050 1985 computers
32 756839 227832 1992 computers
33 859433 258716 1994 computers
34 1257787 378632 1996 computers
35 1398269 420921 1996 computers
36 2976221 895932 1997 computers
37 3021377 909526 1998 computers
38 6972593 2098960 1999 computers
39 13466917 4053946 2001 computers
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Table 3.4: Prime factors of 2n − 1, n ≤ 128

n

2 3

3 7

4 3 · 5

5 31

6 3 · 3 · 7

7 127

8 3 · 5 · 17

9 7 · 73

10 3 · 11 · 31

11 23 · 89

12 3 · 3 · 5 · 7 · 13

13 8191

14 3 · 43 · 127

15 7 · 31 · 151

16 3 · 5 · 17 · 257

17 131071

18 3 · 3 · 3 · 7 · 19 · 73

19 524287

20 3 · 5 · 5 · 11 · 31 · 41

21 7 · 7 · 127 · 337

22 3 · 23 · 89 · 683

23 47 · 178481

24 3 · 3 · 5 · 7 · 13 · 17 · 241

25 31 · 601 · 1801

26 3 · 2731 · 8191

27 7 · 73 · 262657

28 3 · 5 · 29 · 43 · 113 · 127

29 233 · 1103 · 2089

30 3 · 3 · 7 · 11 · 31 · 151 · 331

31 2147483647

32 3 · 5 · 17 · 257 · 65537

33 7 · 23 · 89 · 599479

34 3 · 43691 · 131071

35 31 · 71 · 127 · 122921

36 3 · 3 · 3 · 5 · 7 · 13 · 19 · 37 · 73 · 109

37 223 · 616318177

38 3 · 174763 · 524287

39 7 · 79 · 8191 · 121369

40 3 · 5 · 5 · 11 · 17 · 31 · 41 · 61681

41 13367 · 164511353

42 3 · 3 · 7 · 7 · 43 · 127 · 337 · 5419

43 431 · 9719 · 2099863

44 3 · 5 · 23 · 89 · 397 · 683 · 2113

45 7 · 31 · 73 · 151 · 631 · 23311

46 3 · 47 · 178481 · 2796203

47 2351 · 4513 · 13264529

48 3 · 3 · 5 · 7 · 13 · 17 · 97 · 241 · 257 · 673
49 127 · 4432676798593

50 3 · 11 · 31 · 251 · 601 · 1801 · 4051

51 7 · 103 · 2143 · 11119 · 131071

52 3 · 5 · 53 · 157 · 1613 · 2731 · 8191

53 6361 · 69431 · 20394401

54 3 · 3 · 3 · 3 · 7 · 19 · 73 · 87211 · 262657

55 23 · 31 · 89 · 881 · 3191 · 201961

56 3 · 5 · 17 · 29 · 43 · 113 · 127 · 15790321
57 7 · 32377 · 524287 · 1212847

58 3 · 59 · 233 · 1103 · 2089 · 3033169

59 179951 · 3203431780337
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Table 3.4: (Cont.)

60 3 · 3 · 5 · 5 · 7 · 11 · 13 · 31 · 41 · 61 · 151 · 331 · 1321

61 2305843009213693951

62 3 · 715827883 · 2147483647

63 7 · 7 · 73 · 127 · 337 · 92737 · 649657

64 3 · 5 · 17 · 257 · 641 · 65537 · 6700417

65 31 · 8191 · 145295143558111

66 3 · 3 · 7 · 23 · 67 · 89 · 683 · 20857 · 599 · 79

67 193707721 · 761838257287

68 3 · 5 · 137 · 953 · 26317 · 43691 · 131071

69 7 · 47 · 178481 · 10052678938039

70 3 · 11 · 31 · 43 · 71 · 127 · 281 · 86171 · 122921

71 228479 · 48544121 · 212885833

72 3 · 3 · 3 · 5 · 7 · 13 · 17 · 19 · 37 · 73 · 109 · 241 · 433 · 38737

73 439 · 2298041 · 9361973132609

74 3 · 223 · 1777 · 25781083 · 616318177

75 7 · 31 · 151 · 601 · 1801 · 100801 · 10567201

76 3 · 5 · 229 · 457 · 174763 · 524287 · 525313

77 23 · 89 · 127 · 581283643249112959

78 3 · 3 · 7 · 79 · 2731 · 8191 · 121369 · 22366891

79 2687 · 202029703 · 1113491139767

80 3 · 5 · 5 · 11 · 17 · 31 · 41 · 257 · 61681 · 4278255361

81 7 · 73 · 2593 · 71119 · 262657 · 97685839

82 3 · 83 · 13367 · 164511353 · 8831418697

83 167 · 57912614113275649087721

84 3 · 3 · 5 · 7 · 7 · 13 · 29 · 43 · 113 · 127 · 337 · 1429 · 5419 · 14449

85 31 · 131071 · 9520972806333758431

86 3 · 431 · 9719 · 2099863 · 2932031007403

87 7 · 233 · 1103 · 2089 · 4177 · 9857737155463

88 3 · 5 · 17 · 23 · 89 · 353 · 397 · 683 · 2113 · 2931542417

89 618970019642690137449562111

90 3 · 3 · 3 · 7 · 11 · 19 · 31 · 73 · 151 · 331 · 631 · 23311 ·
1883700191127 · 911 · 8191 · 112901153 · 23140471537

92 3 · 5 · 47 · 277 · 1013 · 1657 · 30269 · 178481 · 2796203

93 7 · 2147483647 · 658812288653553079

94 3 · 283 · 2351 · 4513 · 13264529 · 165768537521
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Table 3.4: (Cont.)

95 31 · 191 · 524287 · 420778751 · 30327152671

96 3 · 3 · 5 · 7 · 13 · 17 · 97 · 193 · 241 · 257 · 673 · 65537 · 22253377
97 11447 · 13842607235828485645766393

98 3 · 43 · 127 · 4363953127297 · 4432676798593

99 7 · 23 · 73 · 89 · 199 · 153649 · 599479 · 33057806959

100 3·5·5·5·11·31·41·101·251·601·1801·4051·8101·268501
101 7432339208719 · 341117531003194129

102 3 · 3 · 7 · 103 · 307 · 2143 · 2857 · 6529 · 11119 · 43691 · 131071
103 2550183799 · 3976656429941438590393

104 3 · 5 · 17 · 53 · 157 · 1613 · 2731 · 8191 · 858001 · 308761441

105 7·7·31·71·127·151·337·29191·106681·122921·152041
106 3 · 107 · 6361 · 69431 · 20394401 · 28059810762433

107 162259276829213363391578010288127

108 3 · 3 · 3 · 3 · 5 · 7 · 13 · 19 · 37 · 73 · 109 · 87211 · 246241 ·
262657 · 279073

109 745988807 · 870035986098720987332873

110 3·11·11·23·31·89·683·881·2971·3191·201961·48912491
111 7 · 223 · 321679 · 26295457 · 319020217 · 616318177

112 3·5·17·29·43·113·127·257·5153·15790321·54410972897
113 3391 · 23279 · 65993 · 1868569 · 1066818132868207

114 3·3·7·571·32377·174763·524287·1212847·160465489

115 31 · 47 · 14951 · 178481 · 4036961 · 2646507710984041

116 3·5·59·233·1103·2089·3033169·107367629·536903681
117 7 · 73 · 79 · 937 · 6553 · 8191 · 86113 · 121369 · 7830118297

118 3 · 2833 · 37171 · 179951 · 1824726041 · 3203431780337

119 127 · 239 · 20231 · 131071 · 62983048367 · 131105292137

120 3 · 3 · 5 · 5 · 7 · 11 · 13 · 17 · 31 · 41 · 61 · 151 · 241 · 331 ·
1321 · 61681 · 45622845

121 23 · 89 · 727 · 1786393878363164227858270210279

122 3 · 768614336404564651 · 2305843009213693951

123 7 · 13367 · 3887047 · 164511353 · 177722253954175633

124 3·5·5581·8681·49477·384773·715827883·2147483647

125 31 · 601 · 1801 · 269089806001 · 4710883168879506001

126 3 · 3 · 3 · 7 · 7 · 19 · 43 · 73 · 127 · 337 · 5419 · 92737 ·
649657 · 77158673929

127 170141183460469231731687303715884105727

128 3 · 5 · 17 · 257 · 641 · 65537 · 274177 · 6700417 ·
67280421310721
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Table 3.4: (Cont.)

M131 = 263 · ...
M137 = 32, 032, 215, 596, 496, 435, 569 ·

5, 439, 042, 183, 600, 204, 290, 159
M139 = 5, 625, 767, 248, 687 · ...
M149 = 86, 656, 268, 566, 282, 183, 151 · ...
M151 = 18, 121 · 55, 871 · 165, 799 · 2, 332, 951 · ...
M157 = 852, 133, 201 · 60, 726, 444, 167 · 1, 654, 058, 017, 289 · ...
M163 = 150, 287 · 704, 161 · 110, 211, 473 · 27, 669, 118, 297 · ...
M167 = 2, 349, 023 · ...
M173 = 730, 753 · 1, 505, 447 · 70, 084, 436, 712, 553, 223 · ...
M179 = 359 · 1, 433 · ...
M181 = 43, 441 · 1, 164, 193 · 7, 648, 337 · ...
M191 = 383 · 7, 068, 569, 257 · 39, 940, 132, 241 ·

332, 584, 516, 519, 201 ·
14732265321145317331353282383

M193 = 13, 821, 503 · 61, 654, 440, 233, 248, 340, 616, 559 · ...
M197 = 7, 487 · ...
M199 = 164, 504, 919, 713 · ...
M211 = 15, 193 · 60, 272, 956, 433, 838, 849, 161 · ...
M223 = 18, 287 · 196, 687 · 1, 466, 449 · 2, 916, 841 ·

1, 469, 495, 262, 398, 780, 123, 809 · ...
M227 = 26, 986, 333, 437, 777, 017 · ...
M229 = 1, 504, 073 · 20, 492, 753 · 59, 833, 457, 464, 970, 183 · ...
M233 = 1, 399 · 135, 607 · 622, 577 · ...
M239 = 479 · 1, 913 · 5, 737 · 176, 383 · 134, 000, 609 ·

7, 110, 008, 717, 824, 458, 123, 105, 014, 279, 253, 754, 096,
863, 768, 062, 879

M241 = 22, 000, 409 · ...
M251 = 503 · 54217 · 178, 230, 287, 214, 063, 289, 511 ·

61, 676, 882, 198, 695, 257, 501, 367 · ...
M257 = 535, 006, 138, 814, 359 ·

1, 155, 685, 395, 246, 619, 182, 673, 033 · ...
M263 = 23, 671 · 13, 572, 264, 529, 177 ·

120, 226, 360, 536, 848, 498, 024, 035, 943 · ...

The number M59 was factored by Landry (1869), M67 by Cole (1903), M73

by Poulet (1923) and M113 by Lehmer (1947).
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It is obvious that Mersenne could not have tested the correct results for
p = 19, 31, 127. Some have believed that Fermat had communicated to him
an as yet undiscovered theorem, since empirical methods could hardly have
been used in Mersenne’s time.

So by 1947, Mersenne’s range n ≤ 258, had been completely checked and
it was determined that the correct list is:

n = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107 and 127.

It thus, took 304 years to set Mersenne right!

Apart from the challenge of calculating Mersenne numbers for higher val-
ues of n, number theorists since Fermat endeavored ceaselessly to produce
aids for recognizing if a Mersenne number is a prime, and if not, to determine
its factors (a daunting task in light of the limited calculating devices at their
disposal up to the middle of the 20 th century). Most theoretical results were
found by Fermat, Euler and Lucas inside of a period of 250 years.

The Mersenne primes Mn = 2n − 1 have the following remarkable proper-
ties:

• If n is composite, so is 2n − 1. For let n = rs, r > 1, s > 1. Then

2n − 1 = (2r)s − 1 = (a − 1)(as−1 + as−2 + · · · + a + 1); a = 2r,

and so 2n − 1 is divisible by 2r − 1 > 1 and (since r > 1) cannot be
prime.

This means that when 2n − 1 is prime, n cannot be composite and must
be prime. However, 2n − 1 is frequently composite when n is prime (e.g.
211 − 1 = 23 · 89, 223 − 1 = 47 · 178, 481).

Thus

n = composite −→ 2n − 1 = composite

n = prime −→ 2n − 1 = composite or prime

2n − 1 = prime −→ n = prime

In general, if n > 1 and an − 1 is prime, then a = 2 and n is prime, for
if a > 2, then an − 1 is divisible by a − 1, so an − 1 cannot be prime.
Note that on account of the above result, the problem of the primality
of 2n − 1 is reduced to that of 2p − 1 where p is prime.
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• If r > 2 is a prime, each prime factor p of Mr = 2r − 1 must be of the

form p = 1 + 2kr. For example

M43 = 431 · 9719 · 2, 099, 863 = 243 − 1
p1 = 431 = 1 + 2 · 5 · 43
p2 = 9719 = 1 + 2 · 113 · 43
p3 = 2, 099, 863 = 1 + 2 · 3 · 3 · 2713 · 43

Fermat (1640) proved this statement in the following way: Let r > 2 be

a prime and p a prime divisor of Mr = 2r − 1. So

2r ≡ 1(mod p); 2p−1 ≡ 1(mod p) by FLT

Let d = highest common factor of r and p − 1. Then by Euclid’s algo-

rithm d = αr + β(p − 1) for suitable integers α, β. It follows that

2d = (2r)α (2p−1)
β ≡ 1α · 1β ≡ 1(mod p).

Since Mr is odd we see that p > 2; since p divides (2d − 1) we infer that

d > 1. Because r is a prime and d > 1, d = r and (p − 1) is divisible

by r. Consequently p − 1 = sr for some s. Finally, p − 1 is even and r

is odd. Hence s is even, s = 2k, say, as claimed.

• Euler (1750) found a simple criterion for the factorizability of Mp: If

both p = 4k + 3 > 3 and (2p + 1) are prime then (2p + 1) divides Mp.

Thus if p = 11, 23, 83, 131, 179, 191, 239, 251, then Mp has the factors

23, 47, 167, 359, 383, 479, 503 respectively. The theorem was proved by

Lagrange (1775) and again by Lucas (1878).

• Every Mp = 2p − 1 is prime to every other Mersenne number.

• If Mp is a Mersenne prime, then MMp = 2Mp − 1 is not necessarily a

prime number. For example

M13 = 213 − 1 = 8151 is a prime

M8151 = 28151 − 1 is composite and has the prime factor

2 · (20, 644, 229)M13 + 1 = 338, 193, 759, 479
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In this connection one may consider the sequence of numbers

C1 = 22 − 1 = 3 = M2,
C2 = 2C1 − 1 = 7 = M3,
C3 = 2C2 − 1 = 27 − 1 = 127 = M7,
C4 = 2C3 − 1 = 2127 − 1 = M127, . . . , Cn+1 = 2Cn − 1, . . . .

It is not known whether all number Cn are primes and even if there
exist infinitely many which are primes. It is impossible yet (2004 CE)
to test C5, which has more than 1038 digits!

1645–1667 CE Ismael Boulliau (1605–1694, France). Astronomer and
classical scholar. An early Copernican, Keplerian and defender of Galileo.
First to suggest (without proof) in Astronomia Philoläıca (1645) that the
central force keeping the planets in their Keplerian elliptical orbits, must
be proportional to their inverse-square distance from the sun86. This work is
arguably the most important book in astronomy between Kepler and Newton.

Newton (1684) proved that planets moving under such law will obey the
three laws of Kepler. Among other astronomers who preceded Newton in
astronomical inquiries and contributed some ideas to the establishment of
the true laws that govern motion of planets in their courses, are: Giovanni
Borelli (1664, Pisa), Huygens (1673), Hooke (1674) and Halley (1684).

Boulliau established (1667) the brightness periodicity of the first known
long period variable star, Mira Ceti.

Born to Calvinist parents in London, Boulliau converted to Catholicism
and moved to Paris in the early 1630s. During the next thirty years he enjoyed
the patronage of the family de Thou and assisted the Brothers Dupuy at the
Bibliotheque du roi. Boulliau was a friend of Pascal and Gassendi and a
close associate of Huygens.

Newton, in his Principia, praised Astronomia Philoläıca, particularly for
the inverse-square hypothesis and its accurate tables.

1645–1675 CE Jean Picard (1620–1682, France). Astronomer and a
founding member of the French Academie Royale des Sciences (1666). First to

86 Kepler had claimed proportionality to the inverse distance.
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apply the telescope to measurements of angles. Known especially for accurate
measurements of a degree of a meridian, from which he computed the size
of the earth (1668–1670). Credited with first use of telescopic sights and
of pendulum clocks in astronomical observations. Determined latitude and
longitude of Tycho Brahe’s observatory in Uraniborg so Tycho’s observations
could be directly compared with others. His measurements of the earth’s size
were used by Newton in his gravitational theory.

Picard became professor of astronomy (1655) at the College de France in
Paris. In 1673 he moved to the Paris Observatory where he collaborated with
Cassini, Römer and La Hire.

1646 CE Athanasius Kircher (1601–1680, Germany). Jesuit and
scholar. Credited with the invention of the magic lantern87 (Laterna Magica),
the first early projection device and a forerunner of the modern slide and
motion picture projectors.

The device, in its simpler forms, consisted of: (1) the lantern body,
(2) a source of light, (3) an optical system for projecting the images. It
projected on a white wall or screen largely magnified images of transparent
pictures painted (or later, photographed) on glass, or of objects (crystals,
animals, etc.) carried on glass slides. The projection was made by means of
a concave mirror (acting as condenser) and a projection lens, using sunlight,
oil or candle light.

Laterna Magica was used during 1726–7 at the Opera in Hamburg.

Kircher was a professor of mathematics in Rome (1650). He was one of
the first to experiment with moving images .

1646–1658 CE Johann Rudolph Glauber (1604–1668, Germany).
Chemist. First to distill coal and obtain benzene and phenol; investigated
decomposition of common salt through action of acids and bases. Glauber’s
salt [Na2SO4· 10H2O (1658)] is named after him. Glauber had a fairly clear

87 Although Kircher was first to set up various types of the apparatus, is difficult to

identify the original inventor. In about 1653 the mathematician Andreas Tac-

quet displayed at Löwen a journey from China to the Netherlands by means of

Kircher’s lantern — the first lantern lecture ever delivered. Thomas Walgen-

stein (a Danish student at Leyden) got the idea from Tacquet, and demonstrated

(1658) in a number of cities a magic lantern with interchangeable painted glass

slides and a two-lens objective, creating a great sensation. Huygens, who had

dealings with Walgenstein, also possessed a proper magic lantern at about that

time. He even used a lens as a condenser, whereas Walgenstein still retained the

use of a concave mirror.
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idea that salts consist of acid and base, and a correct notion on affinity .
Resided in Amsterdam from 1655.

1648–1656 CE Fire and sword over Eastern Europe; the uprising of the
serfs and the Greek orthodox Ukrainian Cossacks against the weak regime
of the Roman Catholic Polish gentry. The chieftain of the Cossacks, Bogdan
Chmialnicki, placed himself under the protection of Russia, thus precipitating
a prolonged conflict. Over 200,000 Jews, about one half of the total Jewish
population of the Ukraine and Galicia, perished in the decade of this revolu-
tion and over 700 of their communities were destroyed. Many more fled to
Holland, Germany, Bohemia and the Balkans.

This tragic event brought forth a new spiritual movement generated by Is-
rael Ba’al Shem Tov (1700–1760) and known as Chassidism. It was a new
interpretation of Judaism based not upon reason but faith, not upon intellect
but emotion; man could literally escape his unbearable miseries by immersing
himself in a mystical-esoteric kindling of the soul with God. To the masses
who hungered for a direct, simple, stimulating religion which they could follow
without any philosophical sophistications, the doctrine of salvation through
prayer and humility rather than study was appealing. The unsuppressed emo-
tions and optimistic Chassidic spirit served as a buffer against the depressing
environment of dissolution and terror.

1650 CE Bernhard Varen (Bernhardus Varenius, 1622–1650, Ger-
many). Geographer and physician. In Geographia generalis (1650) he endeav-
ored to lay down the general principles of environmental science on a wide
scientific basis, according to the knowledge of his day.

His work long held its position as the best treatise in existence on scientific
and comparative geography. The work is divided into:

• Absolute geography : investigates mathematical facts relating to the earth
as a whole, its figure, dimensions, motions, etc.

• Relative geography : considers the earth as affected by the sun and the
stars, climates, seasons, the difference of apparent time at different places,
variations in the length of the day, etc.

• Comparative geography : treats the actual divisions of the surface of the
earth, their relative positions, globe and map construction, longitude,
navigation, etc.

Geography is viewed as encompassing all aspects of the surface of the
earth, including its geologic and oceanographic features, climate, plant and
animal life. Varen explains the global wind system by a physical process
through which air in the equatorial regions is thinned by the sun’s heat and
in response the cold, heavier air of the polar regions flows equatorward.
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Isaac Newton thought so highly of this book88 that he prepared an
annotated edition which was published in Cambridge (1672), with the addition
of the plates which had been planned by Varen, but not produced by the
original publishers.

Varen was born at Hitzacker on the Elbe, in the Lüneburg district of
Hanover. His early years (from 1627) were spent at Uelzen, where his father
was court preacher to the Duke of Brunswick. He studied at the Universities
of Königsberg (1643–1645) and Leiden (1645–1649), where he devoted himself
to mathematics and medicine, taking his medical degree at Leiden (1649). He
then settled at Amsterdam, intending to practice medicine. But the recent
discoveries of Tasman (1642–1644), and Schouten (1615–1616), attracted
him to geography. He died only 28 years of age, a victim to the privations
and miseries of a poor scholar’s life.

ca 1650 CE The intensity of the earth’s magnetic field began to decline;
it diminished 15 percent during the next 350 years89. If the trend continues
at the same rate, a reversal of the earth’s magnetic field may occur around
4000 CE.

1650–1654 CE James Ussher (1581–1656, Ireland). Prelate and
scholar. Calculated that God created the world at 9:00 a.m., Sunday, 23
October, 4004 BCE. The calculations of this archbishop were somewhat less
precise than the result would seem to indicate. The year 4004 BCE was ar-
rived at by taking Luther’s estimate90 of 4000 BCE [obtained by rounding off
various arithmetical calculations of Biblical chronology ], and then correcting
it by four years to allow for Kepler’s dating of the birth of Christ in 4 BCE

88 The reason why Newton took so much care in correcting and publishing Varen

was, because he thought him necessary to be read by his audience while he was

delivering lectures on the same subject from the Lucasian Chair.

The book was still recommended for students at Cambridge in 1910!
89 The fact that the magnetic compass was a key factor in navigation led govern-

ments to subsidize the science of geomagnetism. As a result magnetic observa-

tions have been made since the 16 th century.
90 The literal interpretation of the biblical book of Genesis gained increasing de-

votion by Churchmen, not in the early Middle Ages, when the teaching of the

Greeks were still largely accepted in the secular world and the New Testament

was still new, but in the later Middle Ages and the beginning of modern times,

in a reaction to the scientific explorations of the Renaissance. Early Christian

scholars, such as St. Augustine, continued in all essentials the tradition of the

Greek philosophers, but the thread of that kind of thinking was lost in late

medieval outgrowths of Christian scholasticism and theological idealism.
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[based on discrepancy between solar eclipses and New Testament dating of
the crucification].

1650–1671 CE Nicolaus Mercator-Kaufmann (1619–1687, Eng-
land). Independently of James Gregory introduced and summed infinite se-
ries91, in connection with the calculations of areas under plane curves.

Mercator [not to be confused with Gerhardus Mercator (1512–1594),
who is known for the Mercator projection] was born in Holstein (then a part
of Denmark) but spent most of his life in England and was one of the first
members of the Royal Society of London. He died in Paris.

1652 CE Thomas Bartholinus92 (1616–1680, Denmark). Physiologist,
physician and mathematician. Discovered the lymphatic system (1652) and
determined its relationship to the circulatory system. Professor of mathe-
matics (1646–1648) and of anatomy (1648–1680) at Copenhagen University;
physician to King Christian V (1670–1680). Defended Harvey’s doctrine of
the circulation of the blood.

91 The series

loge(1 + x) = x − x2
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· · ·

is sometimes referred to as the Mercator series. It was independently discovered

by G. Saint-Vincent (1584–1667). In the early days of the calculus, this series

was probably derived through a term by term integration of the geometric series
expansion
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This series converges rather rapidly for all positive N and was used in the cal-

culations of logarithms.
92 His father Caspar Berthelsen (Lat. Bartholinus) (1585–1629), physician, was

first to describe the olfactory nerve as first cranial nerve. His brother Erasmus

Bartholinus (1625–1698), was a physician, mathematician and physicist; dis-

covered the phenomenon of double refraction of light in Icelandic feldspar. Both

were professors of medicine at the University of Copenhagen.
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1653 CE The construction of Taj Mahal in Agra, India was completed.
About 20,000 workmen built it over 21 years. The Indian ruler Shah Jahan
ordered it built in memory of his wife Mumtaz-i-Mahal.

The Taj Mahal is made of white marble. It rests on an eight-sided platform
of red sandstone. Each side is about 40 m long. At each corner of the platform
stands a slender white minaret. The central structure has four smaller domes
surrounding the huge, bulbous central dome. The tombs of the Shah and his
wife are in a basement room. Above them in the main chamber are false tombs.
Light is admitted into the central chamber by finely cut marble screens. The
Taj is amazingly graceful from almost any angle of view, and the precision
and care which went into its design and construction are impressive. It is one
of the most beautiful and costly tombs in the world.

Scientists fear that after centuries of undiminished glory, industrial pollu-
tion could cause irreparable damage to the marble.

1654–1672 CE Otto von Guericke (1602–1686, Germany). Soldier,
engineer and natural philosopher. Believed in a finite starry cosmos sur-
rounded by an infinite void, as in the Stoic system. Performed spectacular
public demonstrations in Magdeburg in which two teams of horses were un-
able to break apart two large evacuated brass hemispheres, held together by
external atmospheric pressure. The vacuum was achieved by means of an
air-pump which he developed in 1650. He was also able to show that sound
could not travel, flames could not burn and animals could not live in vacuum.

Von Guericke was born at Magdeburg, in Prussian Saxony. He studied law
at Leipzig, Helmstadt and Jena, and mathematics and mechanics at Leyden.
He then visited France and England and in 1636 became engineer-in-chief at
Erfurt. Toward the end of the Thirty Years War he returned to Magdeburg
and helped rebuild it. He became mayor (1646–1676) and a magistrate at
Brandenburg. His leisure was devoted to scientific pursuits, especially in
pneumatics. Enticed by the discoveries of Galileo, Pascal and Torricelli,
he attempted to create a vacuum. He also experimented with static electricity
and made successful researches in astronomy, predicting the periodicity of
the return of comets. In 1672, at the age of 70, he published his ideas and
experimental results in The New Magdeburg Experiments on Void Space.

Only God and space can be infinite, Guericke said, and though the starry
cosmos may be immense, it is nonetheless finite in size. Guericke believed in a
finite Stoic cosmos, and thought that the gaps between stars reveal to us the
emptiness and darkness of an extracosmic void, i.e. the sky is dark at night
because we look between the stars and see the starless void beyond.
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1655–1663 CE Francesco Maria Grimaldi (1618–1663, Italy). Physi-
cist. First to suggest the wave theory of light in a book entitled “Physico-
Mathesis de lummine coloribus et iride”, published after his death in 1665.
Grimaldi’s major contribution to the optics was the discovery of diffraction
(1660).

Grimaldi found that light did not travel exactly in straight lines, for he
discovered that shadows were a little larger than they should be on the sup-
position that the propagation of light was rectilinear. Moreover, he found
that the edges of shadows were often colored, and so he suggested that light
was a fluid capable of wave-like motions, different frequencies being different
colors(!) If the motions of the light-fluid were wave-like, then the edges of
shadows should be blurred and colored, he said, for water waves can easily
go round an obstacle they encounter. He supposed further that his light-fluid
moved with great speeds, undulating all the time.

Grimaldi developed experiments to study phenomena associated with dif-
fraction, interference, reflection and the color of light. His experiments were
wide in scope and subtle in arrangement. He succeeded in detecting interfer-
ence fringes even with such a quasi-coherent source as the pinhole source. He
illuminated two closely spaced pinholes with a pinhole source and, in the pat-
tern projected onto a screen, he discovered that some areas of the projected
patterns were even darker than when one of the holes were plugged. His ob-
servations are basically the same as those of Thomas Young (1773–1829) in
an experiment performed 150 years later.

His book planted many seeds which were later cultivated to full bloom by
Huygens, Newton, Young and Fresnel.

Grimaldi was born in Bologna, son of a wealthy silk merchant. At the age
of 14 he joined the Society of Jesus , and was educated at his Order’s houses
at Parma, Ferrar and Bologna, where he became Professor of Mathematics at
the Jesuit College (1648).

1655–1678 CE Christiaan Huygens93 (1629–1695, The Netherlands).
An eminent Dutch mathematician, mechanician, physicist and astronomer.

He was born at the Hague, the second son of Sir Constantin Huygens, poet
and diplomat (1596–1687). From his father he received the rudiments of his

93 For further reading, see:

• Wolf, E., The life and work of Christiaan Huygens, in Blok, H., H.A. Ferw-

erda and H.K. Kuiken (Editors), Huygens Principle: 1690–1990: Theory and

Applications, Elsevier Science Publishers, 1992.
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education, which he continued at Leyden (1645 to 1647) and Breda, where he
studied law and mathematics.

In 1655 he discovered Titan, satellite of Saturn, with a telescope that
he built himself, and suggested that the appendages of Saturn seen earlier
by Galileo (1610) are edges of a flat disk surrounding the planet. In 1656,
Huygens was the first effective observer of the Orion nebula.

In November 1659 Huygens made the first reliable record of surface fea-
tures of Mars, using a refracting telescope of his own design. After observing
a prominent, dark, triangular feature (now called Syrtis Major) for several
weeks, Huygens concluded that the rotation period of Mars is approximately
24 hours (modern value = 24h 37m 23s ). This was the first in a series of
observations that would soon lead to speculations about life on Mars.

In 1663, on his visit to England, he was elected a fellow of the Royal
Society. During the period 1666–1681 he resided in Paris as a guest of King
Louis XIV. He returned to Holland to conclude his studies on physical optics.

In 1656 he built the first reliable isochronous pendulum clock with an
accuracy of 10 sec/day. Isochronism was achieved by forcing the bob of the
pendulum to mark a cycloidal arc94. Huygens’ clock incorporated the verge

94 The cycloidal pendulum: A vertical pendulum having a bob of mass m suspended
from the fixed point O.

Fig. 3.1: The cycloidal pendulum

As it oscillates, the string winds up on the constant curve ODA (or OC) as
indicated in the Fig. 3.1. If the curve ABC is a cycloid, the curves ODA and

OC are the evolutes of the cycloid, and in fact are themselves two halves of an

equal cycloid.
Consider the motion of a free particle of mass m under gravity on a smooth

cycloid ABC whose axis is vertical and vertex lowest, as in the figure.

Let the cycloid be generated by a circle of radius a and let s be the arclength from
its lowest point to a general point B on it. Then, it follows from the geometry

of the curve that s = 4a sin ϑ, where ϑ is the angle made by the tangent at B

with the horizontal tangent at the vertex (x – axis).
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type escapement [In 1676 a much improved anchor type was invented, that
interfered less with the pendulum’s free motion; this device allowed, for the
first time, the uniform division of a given time interval] and a spiral balanced
spring of his invention. Huygens used continued fractions for the purpose
of approximating the correct design for the toothed wheels of a planetarium
[rational approximation for irrational gear ratio]. In 1657 Huygens came to
Paris and became interested in the new theory of probability. He introduced
the concept of mathematical expectation.

As an outgrowth of his experimentation with the pendulum and with cir-
cular motion, Huygens was able to derive in 1673 the law of centripetal accel-
eration of a mass which moves uniformly in a circle of radius r with velocity
v; its acceleration a = v2/r is directed toward the center of the circle. In
his studies of mechanics Huygens gave a clear and concise account of the laws
governing the collision of elastic bodies95 (1669) and introduced the important
concept of the moment of inertia. His studies of pendulum motion made it
possible for him to make the first accurate determination of the value of the
acceleration of gravity and to show that it varied with latitude96.

Although his contribution to the calculus was somewhat indirect, he was
the first person since Archimedes to calculate areas of portions of surfaces of
revolution, such as the paraboloid and hyperboloid.

Huygens used his self-made telescope to make important astronomical dis-
coveries throughout the solar system: the existence of Titan, explanation of

The force along the tangent at B is given by

m
d2s

dt2
= −mg sin ϑ ≡ − mg

4a
s,

so that the motion is simple harmonic with the time to the lowest point being

π
√

a
g
, independent of the initial position of the particle. This property will still

be true if, instead of the material curve, we substitute a string tied to the particle

in such a way that the particle describes a cycloid and the string is always normal

to the curve. This will be the case if the string unwraps and wraps itself on the

evolute of the cycloid. Hence, if a string of length 4a is allowed to wind and

unwind itself upon fixed metal cheeks in the form of half of the original cycloid

each, a particle of mass m attached to its end will have its time of oscillation

always isochronous, whatever the angle through which the string oscillates. In

order words: the period of oscillation will be the same regardless of the amplitude

of the oscillations.
95 These conclusions were arrived at independently by Christopher Wren in 1668.
96 Emil Wolf: The life and work of Christian Huygens, in Huygens’ Principle 1690–

1990 , Elsevier Science Publications, pp. 3–17, 1992.
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Saturn’s rings, Martian rotation period, cloud cover of Venus. In addition he
contributed to the design of the first microscopes.

In 1678, Huygens made an explicit development of the wave theory of
light, and stated his celebrated principle97 (in its extended formulation): each
surface element of a wavefront at time t0 is regarded as a source of secondary
spherical waves. The wavefront at later time t, is the envelope of all the
interfering secondary spherical waves with radius c(t − t0).

In the same year, Huygens made the fundamental discovery of polariza-
tion: each of the two rays arising from refraction by Iceland spar may be
extinguished by passing it through a second crystal of the same material if
the latter crystal be rotated by 90 ◦ about the direction of the ray98.

Huygens never married. He died at the Hague, bequeathing his manu-
scripts to the University of Leyden and his considerable property to the sons
of his brother.

1655–1660 CE William Brouncker (1620–1684, England). Mathe-
matician. Among the founders of the Royal Society of London and its first
president. Worked on continued fractions and calculating logarithms by infi-
nite series. Discovered the expansion (1655)

4
π

= 1 +
12

2 +
32

2 +
52

2 + · · ·

.

Gave a method of solution to the Diophantine equation x2 − ay2 = 1 (1657),
which first appeared in Fermat’s work (1640), to be known later as the Pell
equation.

97 Huygens’ Principle continued to play an important role in the development of

physics: In 1926, Schrödinger invoked the Principle to elucidate the transition

from classical to quantum mechanics. In 1938, Zernike used Huygens’ Principle

to show how certain statistical features of light, known as its coherence properties,

are transmitted on propagation.

Feynman (1948) made use of Huygens’ Principle, in the so-called path integral

formulation of quantum mechanics.
98 It was however left to Newton (1717) to interpret these phenomena. He as-

sumed that rays have “sides”; and indeed this “transversality” seemed to him an

insuperable objection to the acceptance of the wave theory, since at that time

scientists were familiar only with longitudinal waves. Later (1808), the polariza-

tion of light by reflection was discovered by Etrienne-Louis Malus (1775–1812,

France). But Malus did not attempt the interpretation of this phenomenon. Only

in 1818 did Fresnel establish the transversality of light waves.
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Continued Fractions

The origin of continued fractions is hard to pinpoint: we can find examples
of these fractions throughout mathematics in the last 2000 years, but its true
foundations were not laid until the late 1600’s, early 1700’s.

The origin of continued fractions is traditionally placed at the time of the
creation of Euclid’s Algorithm, used to find the greatest common divisor (gcd)
of two numbers. However, by algebraically manipulating the algorithm, one
can derive the simple continued fraction of the rational p/q as opposed to the
GCD of p and q. It is doubtful whether Euclid or his predecessors actually
used this algorithm in such a manner. But due to their close relationship, the
creation of Euclid’s Algorithm signifies the initial development of continued
fractions.

For more than a thousand years, any work that used continued fractions
was restricted to specific examples. The Indian mathematician Aryabhata
(d. 550 CE) used a continued fraction to solve a linear indeterminate equation.
Rather than generalizing this method, he used continued fractions solely in
specific examples.

Throughout Greek and Arab mathematical writing, we can find examples
and traces of continued fractions. But again, its use is limited to specifics.
More examples were provided during the Late Renaissance by Bombelli
(ca 1570 CE) and Cataldi (ca 1600 CE), who expressed the square roots
of 13 and 18, respectively, as repeated continued fractions. However, neither
of them investigated the properties of the continued fractions.

Christiaan Huygens was first to demonstrate practical applications of
continued fractions (1695). He used it for the purpose of approximating the
correct design for the toothed wheels of a planetarium.

William Brouncker discovered in 1655 a continual fraction expansion
for 4

π . He then discovered a method to solve the Diophantine equation

x2 − Ny2 = 1

by a continued fraction. The theory shows that a particular solution is

x = pn, y = qn

where pn

qn
is a certain convergent of

√
N . Moreover, from one solution, an

infinite number of solutions may be found. Thus from the least-values solution

x = 3, y = 2 of x2 − 2y2 = 1,
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one derives

xn =
1
2

[
(3 + 2

√
2)n + (3 − 2

√
2)n
]

yn =
1

2
√

2

[
(3 + 2

√
2)n − (3 − 2

√
2)n
]
.

The field began to flourish when Leonhard Euler (1707–1783), Johann
Heinrich Lambert (1728–1777), and Joseph Louis Lagrange (1736–1813)
embraced the topic. Euler laid down much of the modern theory in his work
De Fractionibus Continius (1737). He showed that every rational can be
expressed as a terminating simple continued fraction. He also provided an
expression for e in a continued fraction form

e − 1 = 1 +
1

1 +
1

2 +
1

1 +
1

1 +
1

4 +
1

1 +
1

1 +
1
. . .

He used this expression to show that e and e2 are irrational. He also demon-
strated how to pass from a series to a continued fraction representation of the
series, and conversely.

Lambert generalized Euler’s work on e to show that both ex and
tan x are irrational if x is rational. Lagrange used continued fractions to find
the value of irrational roots. He also proved that a real root of a quadratic
irrational99 is a periodic continued fraction.

The 19th century can probably be described as the golden age of continued
fractions. The subject was known to every mathematician and, as a result,
there was an explosion of growth within this field. Some of the more prominent
mathematicians to make contributions to this field include Gauss, Cauchy,
Jacobi and Hermite.

99 Any number of the form P ±
√

D
Q

, where P, D, Q are integers and D is a positive

integer which is not a square.
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1655–1695 CE John Wallis (1616–1703, England). Mathematician.
Contributed substantially to the origins of calculus. Wrote a book, ‘Arith-
metica infinitorum’ (1655), in which he introduced the concept of limit , nega-
tive and fractional exponents, and the symbol ∞ for infinity. The whole thrust
of his work was to replace geometrical with algebraic concepts and procedures
wherever possible. Newton’s study of this book was a major influence in his
discovery of the general binomial theorem.

Wallis prime objective, however, was to ‘square the circle’, i.e., to effect the
quadrature of the curve y = (1−x2)1/2, by expanding y in power series of x2 of
the form a0 +a1x

2 +a2x
4 + · · · . In this he was unsuccessful; it was left to the

young Newton to achieve success here. In 1685 Wallis presented a graphical
representation of complex numbers in his book: “Treatise of Algebra”. He also
made pioneering contributions to mechanics: In 1668 he suggested the law of
conservation of momentum. In 1655 he found the infinite rational product
π = 2 2·2·4·4·6·6···

1·3·3·5·5·7··· .

In his book Opera Mathematica (1695) Wallis laid some of the basic
groundwork for continued fractions. He explained how to compute the nth

convergent and discovered some of the now familiar properties of convergents.
It was also in this work that the term “continued fraction” was first used.

Wallis has been described thus: “One of those youthful prodigies who
never quite pay off. But for the mishap of living in the age of Newton, Leibniz,
Descartes and Fermat, he might have been a leading mathematician of the
17th century . . .”

We also find in history books that he testified against Laud, the Arch-
bishop of Canterbury, and was partly responsible for his execution. For his
distinguished services to the crown, he was appointed Savillian professor of
geometry at the University of Oxford.

1655–1698 CE Georg Eberhard Rumpf van Hanau (Rumphius,
1627–1702, Amboina, the Moluccas, East Indies). One of the great natural-
ists of the 17th century. In his Herbarium Amboinense he described the first
large herbal of the flora of the Eastern and tropical world (published posthu-
mously 1741–1750, Amsterdam). Earlier (1705), his manuscript Amboinsche
Rariteitkamer , describing Moluccan shells, was published in Delft.

Rumphius was born near Hanau (on the river Main), the son of a prosper-
ous architect. He was educated in the local gymnasium and soon developed
a very adventurous spirit; he enlisted in the Venetian army, but the ship on
which he sailed to Brazil was captured by the Portuguese, and the boy was
drafted into the Portuguese army. In 1649 he was allowed to return to Hanau.
In 1653 he took service as a warrant officer in the Dutch East India Company
and sailed to Java and from there to Amboina. This was to become the arena
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of his scientific activities for the next half-century. In spite of many catastro-
phes which befell him [loss of eyesight, 1670; loss of his wife and youngest
daughter in the earthquake of Feb. 17, 1674; loss of all his manuscript draw-
ings in the Amboina fire of 1687; loss of the text and illustrations of half of the
Herbarium at sea, when the carrying ship was sunk by the French in 1692],
he continued his work. Four more years of labor amidst all the discomforts of
tropical life — far away from every library and university, the new manuscript
of the whole work (12 books) was ready. In 1696, the Amsterdam officials of
the Dutch East India Co. had it in their hands — one of the masterpieces
of botanical literature — but they did not considered it worth publishing. It
was to remain 40 years hidden in their archives.

After a long period of oblivion, Rumphius’ magnum opus, the Herbarium
amboinense was rescued from the Zeventienen archives by the Amsterdam
professor, Johannes Burman (1707–1779), who decided to edit it, to trans-
late it into Latin, to add various notes, and to publish it with the original
illustrations. The work was so enormous and so expensive to produce that no
single Dutch firm would assume the whole risk. It was finally issued by a con-
sortium of eight Dutch publishers in six folio parts appearing in Amsterdam
from 1741 to 1750.

1656 CE Plague spread from Sardinia to Naples. Ca 400,000 perished.
The disease returned by 1672, killing ca 400,000 more.

1656 CE Thomas Wharton (1614–1673, England). Physician and
anatomist. Gave first thorough account of the glands of the human body,
which he classified as excretory, reductive and nutrient. Wharton differenti-
ated the viscera from the glands and explained their relationships, describing
the spleen and the pancreas.

Wharton was born in Winston-on-Tees, Durham county. He studied at
Cambridge and Oxford, obtaining his M.D at Oxford (1647). He had medical
practice in London and was elected a fellow of the Royal College of Physicians
(1650).

In 1456 he published his Latin treatise “Adenographia – a description of
the glands of the entire body”.

Wharton discovered the duct of the submaxillary salivary gland and the
jelly of the umbilical cord, both of which are named for him; he also provided
the first adequate account of the thyroid, and gave it that name. He explained
the role of saliva in mastication and digestion.

1657 CE Accademia del Cimento, the first scientific research institute,
was founded in Florence with the encouragement and support of Ferdinand
II, grand duke of Tuscany (1610–1670).
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1657 CE Johann van Waveren Hudde (1628–1704, The Netherlands).
Mathematician. Introduced letter coefficients which stand for negative as well
as positive number. Until this date, negative values were not allowed .

1657–1685 CE Robert Hooke (1635–1703, England). Inventor and
experimental scientist. Because of his varied interests he abandoned many
successful but slow-moving experiments without finishing them, originating
much but perfecting little. Others profited from his findings.

In 1660, Hooke laid the foundations to the currently accepted theory of
elasticity in his motto “Ut tensio sic vis”. It states the one-dimensional stress-
strain relation of linear elasticity. This he discovered while applying spiral
springs to the balances of watches.

His other scientific activities were:

• Improved the air pump and used the improved version to confirm Galilei’s
hypothesis (with a feather and a coin) that in a vacuum all objects fall
at the same rate (1657).

• Constructed the first reflecting telescope (1664).

• Invented the anchor escapement for clocks and was first to use a spiral
spring to regulate watches (1658).

• Discovered plant cells (1665).

• Stated the inverse-square-law of gravitation prior to Newton’s publica-
tion (he insisted that Newton mention this fact in his Principia!) and
approached to a remarkable degree the discovery of universal gravitation
(1679).

• His optical investigations led him to adopt, in an imperfect form, the
wave theory of light, to anticipate the concept of interference and to
observe, independently of F.M. Grimaldi (1618–1663), the phenomenon
of diffraction.

In personal appearance Hooke made a sorry show: his figure was crooked,
his limbs shrunken, his hair hung in disheveled locks over his haggard coun-
tenance. His temper was irritable, his habits penurious and solitary.

Many circumstances concurred to embitter the latter years of his life, and
the repeated anticipation of his discoveries by others filled him with morbid
jealousy. In 1691, the Royal Society made him a grant to enable him to
complete his inventions. While engaged in this task he died, worn out with
disease, in London.

1658–1671 CE Johann de Witt (1625–1672, Netherlands). Dutch
statesman and amateur mathematician. He conceived a new and ingenious
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way of generating conics, essentially the same as that by projective pencils of
rays in modern synthetic geometry, but which he treated by means of Carte-
sian analytic geometry. Using the known theory of probability of his day
[mainly via the works of Fermat, Pascal and Huygens], he gave a care-
ful and adequate discussion of the theory of life-annuities. This represents
his most important contribution to mathematics, and is a remarkable perfor-
mance for a man deeply involved in the affairs of state.

Witt was born at Dort. He was educated at Leyden and displayed early
on remarkable talents in mathematics and jurisprudence. As a student he
lived in the house of Franciscus van Schooten (1615–1660) [a professor of
mathematics at Leyden, remembered for his recommendation of the use of
Cartesian coordinates in 3-dimensional geometric problems].

He led a hectic life while leading of the United Provinces through periods
of war, in which he opposed the designs of Louis XIV. When in 1672 the
French invaded The Netherlands, de Witt was dismissed from office by the
Orange party and lynched by an infuriated mob.

1659 CE Johann Heinrich Rahn (1622–1676, Switzerland). Math-
ematician. In his book Teutsche Algebra (1659) he introduced the logical
symbol ∴ (therefore) and the operational symbol ÷ for division.

1658–1673 CE Jan Swammerdam (1637–1680, The Netherlands).
Naturalist. Founder of both comparative anatomy and entomology.

Conducted microscopic examination of aspects of human anatomy. First
to observe and record red blood cells (1658). Discovered the valves of the
lymph vessels (1664), which now bear his name.

Performed (1667) series of experiments on animal respiration: by com-
pressing and expanding an air bellows attached to the windpipe and lungs of
various animals, he was able to examine the effects of inflating and deflating
the lungs.

Swammerdam described ovarian follicles of mammals independently of de
Graaf (1672). Through his investigation of the human reproductive system
he was first to show that female mammals produce eggs, analogous to birds’
eggs.

Studied the anatomy of insects, which he classified on the basis of devel-
opment. His chief works are Historia Insectorium Generalis (1669) and Biblia
Naturae in which he used a simple microscope to make observations of a great
range of biological phenomena.

Swammerdam was born in Amsterdam. He studied medicine at Leiden
but never practiced.
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1659–1661 CE Cheques and Banknotes: Messrs Clayton and Morris,
bankers in London, handled the first known cheque (1659). The first Eu-
ropean banknotes were issued in Stockholm, Sweden. They were originally
receipts issued by bankers for gold deposited with them, promising to repay
the deposition (1661).

1660 CE The Royal Society founded in London by Jonh Wilkins (1614–
1672) and William Brouncker (1620–1684).

1660 CE Robert Boyle (1627–1691, England). Irish chemist and physi-
cist. Laid the foundations of modern chemistry100. In his book The Sceptical
Chymist (1661) he disputed and refuted the ideas of Aristotle (the 4 Greek
“elements”: air, earth, fire, water) and Paracelsus (the fundamental nature
of sulfur, salt, and mercury; 1530) on the composition of matter. Introduced
the modern concepts of elements, alkali , acid and defined chemical reaction.
Although he argued against the existence of elements, he was first to make
attempts to classify all substances into elements, compounds and mixtures.
Experimented with his improved air-pump (‘Boyle’s engine’) and showed that
sound cannot diffuse in vacuum, whereas light can pass through it unattenu-
ated.

Derived ‘Boyle’s law’ for ideal gases, stating that at fixed temperature
the gas volume is inversely proportional to its pressure. Theorized that gas is
made of small indivisible spherical particles, in random motion.

Robert Boyle was born at Lismore Castle, in the province of Munster,
Ireland, the 14th child of Richard Boyle, the great earl of Cork. While still a
child he learned to speak Latin and French, and was only 8 years old when
he was sent to Eaton. During 1638–1642 he traveled with a tutor in Europe
and being a heir to a great fortune, he decided to dedicate his life to study
and scientific research. He settled in Oxford (1654) and set himself, with the

100 The Late Latin alchimista stemmed from al kimiya, the prefix al being the

Arabic article. The remainder of the word may be from the Greek chimia

(χυμεια) [meaning: pouring, infusion and used in connection with the study

of juices of plants. Also cheimeia = transmutation of metals]. This derivation

accounts for the old-fashioned spellings: chymist and chymistry .

Another view traces it to the Egyptian kym, god of the Nile or khem, which

denotes black earth and occurs in the Bible (Gen 9, 24; Ps 78, 51; Ps 105,

23, 37; Ps 106, 22) and Plutarch. On this derivation alchemy is explained as

meaning the Egyptian art . The first occurrence of the word is said to be in a

treatise of Julius Firmicus (ca 346 CE), an astrological writer.

The prefix al was added by a later copyist, and dropped about the middle of

the 16th century.
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assistance of Robert Hooke, to improve on the air-pump of Otto von Guericke
(1657–1660). It was in relation to this work that he discovered in 1661 his
famous law. In 1680 he was elected president of the Royal Society of London
for improving natural knowledge (established 1660). In 1668 he left Oxford for
London, where his failing health caused him to withdraw from all his public
engagements. He was buried in the churchyard of St. Martin’s in the Fields.

1660–1677 CE Baruch Spinoza (1632–1677, Netherlands). One of
the greatest philosophers of modern times. His philosophical system has come
to impregnate the prevailing modern scientific, social and moralistic theories.
Spinoza merged in his doctrine the best gems of reason he could extract
from Greek philosophy, the Talmud and the Kabbalah, Maimonides and the
Christian scholars Hobbes and Descartes.

His philosophy is composed of four elements, subsequently personified by
four great Jewish thinkers:

• The need for piety (Leopold Zunz, 1832)

• The passion for freedom and justice (Karl Marx, 1848)

• The rational ordering of all thought (Sigmund Freud, 1904)

• The conception of all-embracing science of the universe (Albert Ein-
stein, 1915)

It was mainly the spread and influence of science in its more dogmatic
aspects that, toward the end of the 19th century, caused especial interest to
be taken in Spinoza’s thought. By a sort of instinct Spinoza seems to have
anticipated, by deductions from first principles, many of the most fundamental
principles of modern science; e.g., the conservation of energy (in his belief that
the total quantity of motion in the universe is constant); the non-existence of
a vacuum; and the existence of nothing real in the universe but configurations
and motions.

Anticipating the methods and fundamental ideas of modern science, he
examined the concepts of space, time, causality, free will and natural laws in
an holistic attempt to comprehend the entire universe in all its manifestations.
Thus, his system advances rational claims for a definite beginning in cosmic
time and for a cosmic evolution [“There was no time or duration before the
creation”; “We are aware of external things only in relation to each other. All
sense experience and all deductions based on them are inadequate”.]
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His ideas are present in the writings of Berkeley and Mach, and in Ein-
stein’s General Relativity.101

Spinoza’s teachings also echo in Quantum Mechanics, since he argued that
no system can be understood in isolation, and we are forced to treat the ob-
server as part of the physical system he is observing. Indeed, according to
modern interpretation, both free will and causality are only rendered meaning-
ful in the presence of external, and thus indeterminate, perturbations. Thus
an observer, who himself should ultimately be considered part of the system,
must perturb the subsystem that he is focusing on, and measure the result,
in order to imbue causality with meaning. Likewise, Spinoza would argue
that our observer’s self-perceived “free will” is an illusion, stemming from his
ignorance of external influences acting on him.

Only two of Spinoza’s writings were published during his life time: Renati des
Cartes Principiorum (1663), and the Tractatus Theologico-Politicus (1670).
Three additional works appeared in the year of his death (1677): the Ethics,
which brought him universal fame in the annals of philosophy; his treatise On
the Improvement of the Understanding , and his Political Treatise.

Baruch Spinoza, or, as he later called himself, Benedict de Spinoza, was
born in Amsterdam on the 24th of November, 1632. His forefathers fled from
Spain to Portugal in 1492, but in 1498 were forced to convert by the Inquisition
(yet remained Jews in spirit). After the establishment of the Union of Utrecht
in 1579, his grandfather’s family sought refuge in the emancipated Netherlands
(1593), and returned there to Jewish orthodoxy. The name, variously written
Espinoza, de Spinoza, and Despinoza, probably is derived from the city of
Espinoza de los Monteros in Leon, not far from the city of Burgos. Baruch’s
father, Michael de Spinoza, a respectful merchant, was one of the leaders of
the Sephardic community of Amsterdam. He married thrice and Baruch was
the third of the four children born to him from his second wife (this wife and
her sister, which became his third wife, were also from the Espinoza family).

Spinoza was six years old when his mother died (1638), and his father
died in 1654. He was trained at the communal school and at the Pereira
Yeshivah, over which Manasseh ben Israel and Saul Morteira presided. There
he studied Hebrew, Bible, Talmudic literature, and, toward the end of his
course, some of the Jewish philosophers: Maimonides, Gersonides, Hisdai

101 For further reading, see:

• Reflections and Maxims by B.Spinoza (with Introduction by Albert Einstein),
Philosophical Library, New York, 1965, 92 pp.

• Nadler, S., Spinoza, a Life, Cambridge University Press, 2001, 407 pp.
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Crescas, Avraham Ibn Ezra (bible commentaries) and other representatives
of Jewish medieval thought, who aimed at combining the traditional theology
with ideas gotten from Aristotle and his Neoplatonic commentators. The
amount of his Kabbalistic knowledge is somewhat doubtful, but both of his
teachers were adepts in Kabbala.

During his studies Spinoza had shown early promise of becoming an ex-
cellent rabbinic scholar and the Amsterdam Sephardic community had high
hopes for him. However, the study of Jewish philosophers of former days led
him to turn to the study of philosophy in general. At that time, philosophy
was abandoning its interest in theology (which had been its main concern in
the Middle Ages), and was turning to the study of natural sciences and the
human mind.

Spinoza was attracted by the atmosphere of free thought characteristic
of the Dutch Capital. He associated himself with a number of freethinking
friends and teachers, both Jews and Christians. It is also likely that his
heretical views developed out of heterodox controversies within the Amster-
dam Jewish community.

Latin, still the universal language of learning, formed no part of Jewish
education, and Spinoza, after learning the elements of the language from a
German master, resorted to further instruction from Franz van der Ende, an
adventurer and polyhistor, under whom he also studied mathematics, physics,
mechanics, astronomy, chemistry, and the medicine of the day. The mastery
of Latin opened up to him the whole world of modern philosophy and science,
both represented at that time by the writings of Descartes. Spinoza likewise
acquired a knowledge of the scholasticism developed in the school of Thomas
Aquinas.

His acquaintance with the works of Descartes (who led Europe in an at-
tempt to establish a philosophy based upon reason, not tradition), accelerated
his estrangement from the tradition of the synagogue and finally led to his
break with Jewish orthodoxy.

Shortly after leaving the yeshiva (Jewish academy), rumors became per-
sistent that young Spinoza had given utterance to heretical views. There was
danger in this for the newly established Jewish community, whose enemies
might now point out that Judaism was fostering irreligion and disbelief in
God.

Desirous to avoid public scandal, the chiefs of the community offered him
a yearly pension if he would outwardly conform and appear now and then
in the synagogue. His refusal put him on a direct collision course with the
congregation, and on the 27th of July 1656 Spinoza was solemnly cut off from
the commonwealth of Israel. While negotiations were still pending, he had
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been set upon one evening by a fanatical ruffian, who thought to expedite
matters with the dagger.

Spinoza was thus cast out at the age of 23 from all communion with
men of his own faith and race, and there is no evidence of his coming into
communication with a single Jewish soul from that time to his death.

Spinoza, however, did not mind. He was an individualist who could find no
place in any organized religion. In the free environment of Holland he could
live peacefully without being a member of any religious group. Socially, he
was not alone: he had already formed a circle of friends and disciples, mainly
of the Mennonite sect known as Collegiants, whose doctrines were similar to
those of the Quakers; and he attended a philosophical club, with membership
drawn mainly from this sect.

During 1656–1661 Spinoza took his abode with a Collegiant friend near
Amsterdam, and started his research in optics through the grinding and pol-
ishing of lenses for the newly invented microscope and telescope (in which his
mathematical knowledge was valuable). He also took pupils in philosophy,
Latin and Hebrew.

The five years which followed the excommunication, were devoted to con-
centrated thought and study. Before their conclusion Spinoza had parted
company from Descartes, and the main tenets of his own system were already
clearly determined in his mind. He wrote what was later extended into the
“Tractatus Theologico-Politicus”, and a short tractate on “God, Man and his
Well-Being” (afterwards developed into his Ethics).

In 1661 Spinoza removed to Rhijnsburg, near Leyden, then the center of
the Collegiants activity. Here he spent the two most fruitful years of his life.
In 1663 he removed to Voorburg (a suburb of The Hague), to be near the de
Witt brothers102, then at the height of their power. From Voorburg Spinoza
used to send portions of his Ethics, written in Dutch, to his band of disciples
in Amsterdam, who translated them into Latin. The “Tractatus Theologico-
Politicus” was published in 1670, without the author’s name, and it brought
such a storm of opprobrium that it was formally proscribed by the Synod of
Dort and by the States General of Holland, Zealand and West Friesland.

Spinoza’s reputation as a thinker, however, had by this time been fully es-
tablished by his two published works, and he was consulted both in person and
by letter by many important scientific men of the day, including Oldenburg

102 Spinoza’s income was supplemented by a small pension given to him by John

de Witt. This arrangement assured his independence, and left him sufficient

time to pursue his philosophical writings and correspond with the leading sci-

entists of the day.
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(secretary of the London Royal Society), Huygens103, von Tschirnhausen
and Leibniz104. In 1670 Spinoza settled at the Hague itself where he spent
the remaining years of his life in the state of frugal independence which he
prized. In 1673 he received an invitation to become a professor of philoso-
phy in the University of Heidelberg, but he declined because it required from
him “that he will not misuse his freedom of speech to disturb the established
religion”.

Early in 1677 Spinoza became seriously ill. He had a hereditary tendency
to consumption derived from his mother, and this was aggravated by the
inhalation of particles of crystal incidental to his work as lens grinder. He
died on the 21th of February 1677, with his friend Dr. Meyer as the only
witness of his last moments. He was little more than 44 years of age.

Many mourned him; for the simple folk had loved him as much for his
gentleness as the learned had honored him for his wisdom. Philosophers and
magistrates joined the people in following him to his final rest, and men of
varied faiths met at his grave105. In 1678, the Dutch government confiscated

103 It was as an optician that he first came into contact with Huygens. In fact,

Huygens and his brother tried to spy on Spinoza’s own techniques of grinding

lenses. An optical “Treatise on the Rainbow” written by Spinoza was discovered

in 1862.
104 Those of Leibniz’s works that have been published give little evidence of any

connection with Spinoza other than in the latter’s calling as optician, and his

public utterances on Spinozism were in every case hostile and derogatory; but

more recent evidence shows that during the critical period of his development,

from 1676 to 1686, he took a more favorable attitude toward both Spinoza

and Spinozism, and this has been traced to an intimate personal association of

the two philosophers during a whole month in 1676, not long before Spinoza’s

death. It was during this period that Leibniz developed from a pure Cartesian

into an opponent of Descartes, chiefly as regards the definition of body and

the principles of motion; it is known that Leibniz discussed both subjects with

Spinoza. When, however, a strong outcry broke out against Spinoza’s “athe-

ism”, Leibniz devoted himself to finding an escape from Spinozism, and it took

him nearly ten years before he arrived at his theory of the monads, which he

declared to be the only solution of the difficulty. Bertrand Russell’s analysis of

the philosophy of Leibniz proved that in his views on soul and body, on God

and ethics, he “tends with slight alterations of phraseology to adopt (without

acknowledgment) the views of the derided Spinoza”.
105 He was buried in the yard of the New Church, the Hague, in a grave that his

friends rented for 20 years. In 1697, upon the termination of the grave-contract,

his remains were removed to an unknown location. In 1953, a tombstone was

erected, in that yard, by David Ben-Gurion, then Israel’s prime minister. The
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all of Spinoza’s writings and his name became a symbol of heresy.

Spinoza lived in the Netherlands at the time when scientific discovery,
religious division, and profound political changes has revolutionized the nature
and application of philosophy. Philosophy, for Spinoza, was not a weapon,
but a way of life – the adoption of truth as one’s master and one’s goal. But
every orders requires a sacrifice, and that demanded by philosophy is neither
easily undertaken nor readily understood by those who refuse it. To the mass
of mankind, therefore, the philosopher may appear as a spiritual saboteur
and a subverter of things lawfully established. So Spinoza appeared to his
contemporaries, and for many years after his death he was regarded as the
greatest heretic of the 17th century.

Indeed, for more than a century after Spinoza’s works were published,
their author was bitterly denounced by Catholics, Jews, Protestants and free-
thinkers alike. Even David Hume, in general a man of kindly disposition,
branded him as ‘infame’, and Moses Mendelssohn, the affable advocate of
tolerance, was scandalized when he heard that his friend Lessing had adopted
Spinoza’s doctrine106.

However, a radical change took place in Germany and England: Spinoza
was rediscovered by of all people, the poets! This was possibly due to the influ-
ence of Johann Gottfried von Herder (1744–1803) and Goethe (1749–
1832), who had both given utterance to great admiration for Spinoza’s life
and thought. The wide influence of Goethe, whose philosophical views were
entirely Spinozian and were expressed in some of the profoundest of his po-
ems, was perhaps the chief influence which drew to Spinoza the attention of
such men as Samuel Taylor Coleridge (1772–1834), Matthew Arnold
(1822–1888) and Joseph Ernest Renan (1823–1892).

Post-Kantian philosophers and romantic poets in Germany were deeply
influenced by Spinoza’s conception of nature. In modern times, Spinoza is
universally recognized as a philosopher of unsurpassed sublimity and profun-
dity. Even his critics agree that Spinoza had a most lovable personality, one

stone is adorned by the inscription of a rose surrounded by thorns. Two words

are inscribed on it too: the Hebrew word ‘AMCHA’ (meaning: the common

folk) and the Latin word caute (beware), which was engraved on Spinoza’s ring.

The philosopher himself, however, does not rest under that stone.
106 Mendelssohn may have realized that Spinoza had first shown how a critique

of Judaism could be used to reach radical conclusions about the world. His

example has been indeed followed by the French enlightenment, though their

treatment of Judaism was far more hostile, and racial, in tone. Two centuries

later, the personal anti-semitism of Karl Marx would play a similar role in his

socio-economical theory
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of the purest characters in the history of mankind. His delicate feelings, his
benevolence and fondness of plain people never hampered the boldness of his
thoughts and the sternness of his will to draw conclusions logically and with-
out any deference to personal inclinations. Philosophical thinking was, to
Spinoza, self-education and improvement of the mind of the thinker. His aim
was to obtain, by means of reason and science, the same trust in the rules of
human behavior that religious traditions claimed to grant their believers.

Spinoza affirmed that God does not exist in the way religion preaches, only
as an impersonal and spiritual ‘principle’, as a substance which constitutes
the reality of the universe. Nothing exists save the one substance – the self-
contained, self-sustaining, and self-explanatory system which constitutes the
world. This system may be understood in many ways: as God or Nature;
as mind or matter; as creator or created; as eternal or temporal. And to
understand it in its totality, is also to know that everything in the world
exists by necessity, and that it could not be other than it is107. A single stuff,
obedient to a single set of laws gives rise to all that we observe. The task of
science is to provide the complete description of that substance and the laws
which apply to it.

Contrary to Descartes, he denied the possibility of harmonizing reason
with Biblical revelation, and in that, Spinoza, not Descartes, became the
symbol of the end of medieval philosophy. The scientific method offered to
Spinoza not only the measure of moral evaluation but a means of gaining

107 The God of Spinoza is not a personal deity with whom man can communicate.

In this sense man is devoid of free will, unable to change the course of his life.

The deity of the Bible activates Nature and as such is beyond Nature. God of

the Bible negotiates with man (Abraham, Moses, Job, the prophets) and some-

times changes his will in accordance with man’s actions.

The conflict between the teachings of Spinoza and Judaism is that of monothe-

ism and pantheism. i.e. the idea of oneness against that of unity: Judaism is

based upon the notion that the creator (God) is above both nature and man,

each authority being subjected to its own set of laws which ‘he’ made. But in

contradiction to inanimate nature, man has a free will.

According to Spinoza, creator and creation are one and the same entity and

cannot be separated; there is but one authority and one set of laws. Man is an

integral part of nature with no privileges. Man is not a transcendence of nature

but an immanence of it, subjected to nature’s laws with no free choice whatso-

ever. Furthermore, while Judaism believes that God is purposeful and created

man without the ability to comprehend his purposefulness, Spinoza maintains

that God = nature is totally unpurposeful. Hence man is unable to comprehend

the purpose of nature not because he is not capable of knowing it, but because

it did not exist ab initio.
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eternal bliss. To win supreme happiness or ‘unceasing joy’, Spinoza said, man
has to attain knowledge of his union with the whole of nature.
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Worldview X: Baruch Spinoza

∗ ∗∗

Sed omnia praeclara tam difficilia quam rara sunt.
All excellent things are as difficult as they are rare.

∗ ∗∗

Nothing in Nature is random... A thing appears random only through the
incompleteness of our knowledge.

∗ ∗∗

He who loves God cannot endeavor that God should love him in return.

∗ ∗∗

In the language of philosophy, it cannot be said that God desires anything of
any man, or that anything is displeasing or pleasing him: all those are human
qualities and have no place in God.

∗ ∗∗

The bees, in all their work and the orderly discipline, which they maintain
among themselves, have no other end in view than to make certain provisions
for themselves for the winter, still, man who is above them, has an entirely
different end in view when he maintains and tends them, namely to obtain
honey for himself. So also [is it with] man, in so far as he is an individual
thing and looks no further than his finite character can reach; but, in so far as
he is also a part and tool of the whole of Nature, because she is infinite, and
must make use of him, together also with all other things, as an instrument.
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∗ ∗∗

Whenever anything in nature seems to us ridiculous, absurd, or evil, it is be-
cause we have but a partial knowledge of things, and are in the main ignorant
of the order and coherence of nature as a whole, and because we want every-
thing to be arranged according to the dictate of our own reason; although,
in fact, what our reason pronounces bad, is not bad as regards the order and
laws of universal nature, but only as regards the laws of our own nature taken
separately.

∗ ∗∗

Whatsoever is contrary to nature is also contrary to reason, and whatsoever
is contrary to reason is absurd, and, ipso facto, to be rejected.

∗ ∗∗

Be not astonished at new ideas; for it is very well known to you that a thing
does not therefore cease to be true because it is not accepted by many.

∗ ∗∗

The highest endeavor of the mind, and the highest virtue is to understand
things by the intuitive kind of knowledge.

∗ ∗∗

All bodies are surrounded by others, and are mutually determined to exist
and operate in a fixed and definite proportion, while the relations between
motion and rest in the sum total of them, that is, in the whole universe,
remain unchanged. Hence it follows that each body, in so far as it exists as
modified in a particular manner, must be considered as a part of the whole
universe, as agreeing with the whole, and associated with the remaining parts.

∗ ∗∗
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If the foundations of their religion have not deserted their minds they may
even, if occasion offers, so changeable are human affairs, raise up their empire
afresh, and that God may a second time elect them.

∗ ∗∗

Do not weep; do not wax indignant. Understand.

∗ ∗∗
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On Spinoza

∗ ∗∗

“There is no other philosophy then that of Spinoza”

Ephraim Gotthold Lessing (1729–1781)

∗ ∗∗

“I feel a deep spiritual affinity between me and Spinoza, albeit his soul is more
profound than mine. His doctrine inspires tranquility and calm; it brings the
tranquility of God or the tranquility of nature upon me. Yet, I do not dare
to claim a thorough apprehension of the ideas of one who ascended to the
pinnacle of reason”.

Johann Wolfgang von Goethe (1749–1832)

∗ ∗∗

“To be a philosopher one must first be a Spinozist”.

Georg Wilhelm Friedrich Hegel (1770–1831)

∗ ∗∗

“Whose dwelling is the light of setting suns,
And the round ocean, and the living air,
And the blue sky, and in the mind of man —
A motion and a spirit, which impels
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All thinking things, all objects of all thought,
And rolls through all things”.

William Wordsworth (1770–1850)

∗ ∗∗

“I can hardly imagine how one can be a poet, and yet not admire Spinoza”.

Karl Wilhelm Friedrich von Schlegel (1772–1829)

∗ ∗∗

“All the contemporary philosophers, perhaps unknowingly, observe the world
through lenses grinded by Baruch Spinoza”.

“When we read Spinoza, we have the feeling that we are looking at all-powerful
Nature in liveliest repose — a forest of thoughts, high as heaven, with green
tops ever in motion — while below the immovable trunks are deeply rooted in
the eternal earth. It may be that the spirit of the Hebrew prophets hovered
over their remote descendant.

Benedict Spinoza teaches that there is but one substance, God. This one
substance is infinite and absolute. All finite substances are derived from it,
are contained in it, emerge from it or sink into it; they have only relative,
transitory, accidental existence. Absolute substance manifests itself to us in
the form of infinite thought as well as infinite extension. We know only these
two attributes. But God, absolute substance, may posses other attributes
which we do not know.

Only stupidity and malice could term this doctrine ‘atheism’. No one has ever
expressed himself in more sublime terms regarding the Deity. Instead of saying
that he denies God, we should rather say that he denies Man. All finite things
are contained in God; the human intellect is only a ray of infinite thought;
the human body only an atom of infinite extension; God is the infinite cause
of souls and bodies — natura naturans”.

Heinrich Heine (1797–1856)

∗ ∗∗
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“In Spinoza is contained the fullness of modern science”.

Ernest Belfort Bax (1854–1926)

∗ ∗∗

“No modern writer is altogether a philosopher in my eyes, except Spinoza”.

George Santayana (1863–1952)

∗ ∗∗

“The system of Spinoza remains one of the outstanding monuments of Western
philosophy. Though the severity of its tone has a certain Old Testament flavor,
it is one of the great attempts, in the grand manner of the Greeks, to present
the world as an intelligible whole”.

Bertrand Russell (1872–1970)

∗ ∗∗

“I believe in Spinoza’s God who reveals himself in the orderly harmony of all
that exists, not in a God who concerns himself with the fate and actions of
men”.

“I would not think that philosophy and reason itself will be man’s guide in
the foreseeable future; however, they will remain the most beautiful sanctuary
they have always been for the select”.

Albert Einstein

∗ ∗∗

“This man, from his granite pedestal, will point out to all men the way of
blessedness which he found; and ages hence, the cultivated traveler, passing
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by this spot, will say in his heart: ‘The truest vision ever had of God came
perhaps, here’”.

Ernest Renan, at the unveiling of Spinoza’s statue, The
Hague (1882)

∗ ∗∗

“Original ideas are exceedingly rare and the most that philosophers have done
in the course of time is to erect a new combination of them”.

George Alfred Léon Sarton (1884–1956)

∗ ∗∗
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1660 CE End of the English Civil War(also known as the Puritan Revo-
lution, 1642–1646) and the beginning of the Restoration (1660). The biggest
revolution in English history; the last and grandest episode in Europe’s age of
religious wars. It was mainly a contest over religious and political principles
— Puritanism versus Anglicanism and parliamentary self-government versus
royal absolutism.

After Cromwell beheaded Charles I (Jan. 30, 1649), England was a Pu-
ritan republic (1649–1660); Cromwell conquered Ireland (1649) and Scotland
(1651) and compelled them to accept union with England, welding Great
Britain into a single political unit. During the reign of Cromwell and the Pu-
ritans, Anglicans and Catholics were persecuted, but after Cromwell’s death
(1658) the Puritan Republic collapsed and Charles II was invited to return
(1660).

With the restoration of the Stuart monarchy, the Church of England be-
came again the state Church and the persecution of the Puritans was resumed:
Puritans were not allowed into government, army, teaching positions, or par-
liament, which made it difficult for many of them to get a job. The only two
places open for them were trade and industry, where most of them did indeed
go. As it turned out, all of the great scientists, technologists and innovators
of the next hundred years in England were Church of England rejects! (e.g.
James Watt). Thus, religious intolerance kicked off the industrial revolution
and brought the chemistry it needed.

Marranos, Huguenots and Puritans — three versions of the same history.

1660–1679 CE Marcello Malpighi (1628–1694, Italy). Physiologist
and anatomist. Founder of microscopic anatomy; the first to apply the micro-
scope to the study of animal and vegetable structure. Malpighi was born near
Bologna. He studied medicine there (1649–1653). Professor of medicine at
Pisa (1656–1659), at Messina (1662-1666) and again at Bologna (1666–1691).
He then moved to Rome to become the private physician to Pope Innocent
12th (1691).

Malpighi studied structure of secreting glands; discovered capillary circu-
lation in the lung of the frog (1660); the deeper portion of the epidermis is
known as the Malpighi layer ; loops of capillaries in the kidney are known
as Malpighi tufts; masses of adenoid tissue in the spleen are called Malpighi
corpuscles. He described structure of human lung, development of the chick
(1673), structure of the brain and spinal cord, and the metamorphosis of the
silkworm (1669). He published Anatome plantarium (1675–1679).
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1662 CE John Graunt (1620–1674, England). Published a book,
“Natural and Political Observations made upon the Bills of Mortality”, in
which he laid the foundation to the science of statistics. 43 years later, the
first successful life insurance company was established in England.

1662 CE Lorenzo Bellini (1643–1704, Italy). Physician and anatomist.
Discovered the complex of tubules composing the kidney (Bellini’s tubules)
and described the mechanical theory of excretion (1662). Investigated the
sense of taste.

1662–1687 CE William Petty (1623–1687, England). Physician,
political economist and statistician. A founder of the Royal Society and a
pioneer in the field of vital statistics108

His “Treatise of Taxes and Contributions” contains the first clear state-
ment of the doctrine that price depends on the labor necessary for production.
Petty was a professor of anatomy at Oxford (1651).

Evolution of the Calculus109

It took over 2500 years for the calculus to progress from the early notions
on the subject to the form we study today. For most of this period the
concepts of differential and integral calculus were considered distinct.

It was not until the latter part of the 17th century that mathematicians,
led by Isaac Newton in England and Gottfried Wilhelm von Leibniz in
Europe, discovered the connection between these fundamental ideas.

108 Records of the most basic human events – birth, marriage, divorce, sickness

and death. This data is essential for legislators, health authorities, sociologists,

school administrators, insurance statisticians and market researchers. State

bureaus of vital statistics and state health departments maintain files of vital

records and compile statistics.
109 Calculus means “pebble” in Latin (hence the word calculation). Indeed, in the

civilizations of Egypt and the Asian river valleys, numbers were represented by

means of pebbles arranged in heaps of ten. This in turn led to the development

of the abacus, or counting frame in which a number is represented by pebbles

put in grooves.
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Over the past 300 years, calculus has been put on a firm mathematical
foundation and refined to the point that it now follows logically from a few
basic notions and principles.

The underlying concept of integral calculus was used by Greek mathemati-
cians at least as early as the time of Antiphon the Sophist (fl. 450 BCE),
Eudoxos of Cnidos (408–355 BCE) and Archimedes of Syracuse (287–
212 BCE), employing the so-called method of exhaustion to approximate areas
and volumes. Archimedes determined the area of a circle by computing the
area of the inscribed and circumscribed polygons of increasing numbers of
sides. In this and similar applications he adumbrated the concept behind the
Riemann integral. Archimedes also derived laws for determining the tangent
lines to certain curves, including parabolas and the curve that bears his name,
the ‘spiral of Archimedes’. In some sense, Archimedes could be considered
the founder of calculus. He did not, however, have a notion of a unified theory
that could be applied to more than a few specific cases, nor did he recognize
a connection between the differential and integral concepts of calculus110.

Little progress was made toward the discovery of the unified theory of cal-
culus until the beginning of the 17th century. Then, in the course of a mere 64
years, a formidable group of precursors, pioneers, inventors and co-inventors
succeeded in creating the basic mathematical framework of the calculus fa-
miliar to us today (Kepler, 1615; Galileo, 1619; Fermat, 1629; Roberval,
1634; Cavalieri, 1635; Wallis, 1656; Barrow, 1669; Newton, 1671; Leib-
niz, 1673; Huygens, 1679, 1695).

The first method of differentiation was introduced by Fermat (1629) based
on an earlier idea of Kepler (1615).

Kepler had observed that the increment of a function becomes vanishingly
small in the neighborhood of an ordinary maximum or minimum value. Fer-
mat translated this fact into a process for determining such extrema. His
method is equivalent to setting

lim
h→0

1
h

[f(x + h) − f(x)] = 0,

i.e setting the derivative of f(x) equal to zero. Fermat also devised a gen-
eral procedure for finding the tangent at a point of a curve whose Cartesian
equation is given.

110 In beginners college courses, it is customary to begin with differentiation and

later consider integration. Historically, however, the idea of integration, in

connection with finding certain areas and volumes, was created earlier then that

of differentiation, which was associated with problems of tangents to curves and

with the question of finding maxima and minima of functions.
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Fermat, however, did not know that the vanishing of the derivative of f(x)
is only a necessary, but not a sufficient, condition for an ordinary extremum.

He also did not distinguish between a maximum and a minimum value.

It was again Kepler (1615) who applied crude integration procedures to

evaluation of areas which he needed in connection with his Second Law of

planetary motion and volumes of solids of revolution.

Thus, Kepler regarded the circumference of a circle as a regular polygon

with an infinite number of sides. If each of these sides is taken as a base of

an isosceles triangle whose vertex is at the center of the circle, then the area

of the circle is divided into an infinite number of thin triangles, all having an

altitude equal to the radius if the circle. Since the area of each thin triangle

is equal to half the product of its base (Δl) and the radius (r), and since
∑

(Δl) = 2πr, the total area is πr2. Similarly, the volume of a sphere can be

imagined to consist of infinitude of small cones, each of volume 1
3r(Δs) where

∑
(Δs) = 4πr2.

Cavalieri (1635) was influenced by this work by Kepler when he carried

the refinement of the infinitesimal calculus a stage further in his method of

indivisibles.

The problem of constructing tangents to curves was also taken up by

Roberval (1634), Descartes (1637) and Barrow (1669). With such active

research, it was only a matter of time until the discovery of the notion that

differentiation and integration are inverse operations.

The first published statement concerning this Fundamental Theorem of

Calculus appears in Lectiones geometricae, a treatise published by Barrow in

1670. The theorem, however, is believed to have been recognized intuitively

by Galileo 50 years earlier in connection with his study of motion.

This brings us to the time of Newton, a young student at Cambridge in

the 1660’s, and to Leibniz, who was born in Leipzig and was self-trained in

mathematics. These two men systematically unified and codified the known

results of calculus, giving, in essence, algorithmic procedures for the use of

these results. Each gave a proof of the Fundamental Theorem of Calculus and

each clearly demonstrated the importance of this new theory.

Newton developed most of his calculus, called the “method of fluxions

and fluents”, during a period 1664 through 1671, and compiled his results

in the tract De analysi per equationes numero terminorum infinitas in 1669.

Although this manuscript was circulated and studied by a number of his

English contemporaries, it did not appear in print until 1711, over 40 years

later. In fact, Newton probably used his calculus to develop many important
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discoveries regarding gravitation and the motion of objects111, but his treatise
on this subject, Philosophiae naturalis principia mathematica (1687), contains
only classical geometric demonstrations.

It is difficult to determine precisely when Leibniz first became interested
in the calculus, but it was probably shortly before he traveled to France and
England in 1673 as a political envoy. While visiting the London home of John
Collins (1625–1683), he saw Newton’s 1669 tract. He probably did not have
a sufficient mathematical background to follow Newton’s arguments at this
time, but he was nevertheless excited by the result, particularly those dealing
with series. After studying Descartes’ fundamental work La géométrie, he
communicated with Newton regarding the discoveries the latter had made.
The two exchanged several letters during 1676–1677, by which time Leibniz
had developed his own theory of calculus. The letters generally describe the
extent of their work, but often omit crucial details necessary for the methods
of discovery.

Leibniz understandably expected that Newton would soon publish a trea-
tise on calculus. When it became obvious that this work was not forthcoming,
Leibniz began in 1682 to publish his own discoveries in a series of papers in
the Acta eruditorum, a journal published in Berlin with a wide circulation in
Europe. In 1684 Leibniz published the first work on differential calculus and
in 1686, the first on integral calculus. His articles are often vague and sketchy
and were never collected in a definitive treatise.

Because of Leibniz’s prior publication, his calculus became the version
known to the mathematical public of the time, particularly the European
scientific community. We use his differential notation, dy/dx, for differenti-
ation and his elongated S symbol,

∫
, to represent integration. He called his

integral calculus calculus summatorius; the term integral was introduced by
Jakob Bernoulli in 1690. Newton’s notation was generally more cumber-
some, although his symbol ẏ to denote the derivative of y is still commonly
used to indicate differentiation with respect to time.

Many reasons have been suggested for Newton’s failure to capitalize on
his discovery of calculus: his reticence, his preoccupation with other research,
and his lack of interest in publishing. Certainly he had a complex personality

111 The Newtonian calculus enabled mathematicians and physicists, for the first

time, to solve more complex problems of motion, which up to his time seemed

insoluble. This modern branch of mathematics, having achieved the art of deal-

ing with infinitely small entities (infinitesimals), was unknown to the ancients.

It corrected the inevitable errors which the human mind cannot avoid (such as

Zenon’s paradoxes) when dealing with discrete elements of motion instead of

continuous motion.
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and a sensitivity to criticism. Nevertheless, spurred on by their friends and
colleagues, Newton and Leibniz were locked in a bitter controversy for nearly
20 years over who deserved the credit for discovering the differential calculus.
This is one of the saddest chapters in the history of mathematics: Leibniz
complained that Newton’s attitude was the malicious interpretation of a man
who was looking for a quarrel, while Newton said that second inventors count
for nothing! Of course, there was more than enough honor to go around, and
the effect of the quarrel has been only to tarnish the images of both these
mathematical giants.

It should be kept in mind that neither Newton nor Leibniz established
their results with anything resembling modern mathematical rigor. An exam-
ple is the limit concept, so basic to the study of both the differential and the
integral calculus. Although this concept is intuitively clear, its definition is
quite sophisticated. It was not until 1870 that Eduard Heine (1821–1881,
Germany) published the definition for the limit of a function that we use
today. Heine’s work was strongly influenced by that of Karl Weierstrass
(1815–1897, Germany), who was one of the leaders in the movement to place
function theory on a firm and rigorous basis.

Another calculus timeline involves the calculation of arc-lengths and area
of surfaces: mathematicians of the early 18th century became interested in
the problem of finding paths of shortest length on a surface using the methods
of the calculus. The brilliant and prolific mathematician Leonhard Euler
(1707–1783) presented the first fundamental work on the theory of surfaces
in 1760 with “Recherches sur la courbure des surfaces”, and it may have
been in this work that a surface was first defined as a thee-dimensional graph
z = f(x, y). In 1771 Euler introduced the notion of parametric representation
of surfaces.

After the rapid development of calculus in the earth 18th century, formulas
for the lengths of curves and areas of surfaces were developed. The underlying
concepts of the length of a curve and the area of a surface were understood
intuitively before this time, and the use of the formulas from calculus to
compute areas were considered a great achievement.

The subject of the calculus has played a special role in the history of
modern science: Most of physics and engineering, and important parts of
astronomy, chemistry and biology, would be impossible without it.112

112 We list below a number of excellent calculus textbooks for self-study, on a

number of levels:

• Kline, Morris, Calculus – An Intuitive and Physical Approach, Dover: New

York, 1998, 943 pp.

• Zeldovich, Ya.B., Higher Mathematics for Beginners, Mir Publications:
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1662–1677 CE Isaac Barrow (1630–1677, England). Versatile scholar,
classicist and mathematician. Developed a method of determining tangents
that closely approach the methods of calculus. Prolific writer on theology,
mathematics and poetry. Translated Euclid, Archimedes and Apollonios
into English and Latin. His book Lectiones Geometricae (1669) contains the
foundations of the calculus in geometrical form. It presents, for the first
time, differentiation and integration as inverse processes, integration as a
summation, and nomenclature and methods which were direct forerunners of
the algorithmic procedures of the calculus. His presentation of the differential
triangle, clearly indicates the mutual influence of Barrow and Newton upon
each other !

Barrow’s influence upon Leibniz, too, may be inferred from the fact that
Leibniz is known to have purchased a copy of Barrow’s Lectiones Geometricae
in 1673.

Barrow was born in London. He entered Trinity College, Cambridge in
1644 and received his B.A. degree in 1648. The next four years were spent
in travel, at times highly adventurous, over Eastern Europe. He returned to
England in 1659. In 1662 he was elected professor of geometry in Gresham
College and in 1663, he became the first Lucasian professor of mathematics
at Cambridge. In 1669 he resigned this chair to his great pupil and friend
Isaac Newton. In 1675 he was chosen vice-chancellor of the university. He
died suddenly of a fever and was interred in Westminster Abbey.

1663–1665 CE First scientific newspapers:

• Erbauliche Monaths Unterredungen (‘Monthly edifying discussions’).
Issued (1663) in Germany.

Moscow, 1972, 494 pp.

• Granville, W.A. et al., Elements of the Differential and Integral Calculus, Gin

and Company, 1941, 556 pp.

• Piskunov, N., Differential and Integral Calculus, P.Noordhoff: Groningen,

1962, 895 pp.

• Fikhtengol’ts, G.M., The Fundamentals of Mathematical Analysis, 2 Volumes,

Pergamon Press: Oxford, 1965, I, 491 pp; II, 516 pp.

• Smirnov, V.I., A Course of Higher Mathematics, Addison-Wesley, 1964, Vols

I+II (543 pp.+630 pp.)

• Khinchin, A., A Course of Mathematical Analysis, Hindustan Publishing Cor-

poration: Delhi, India, 1960, 668 pp.
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• Journal des Savants (‘Scientists newspaper’). Issued (1665) in France,
by Denis de Sallo.

1663–1671 CE James Gregory (1638–1675, Scotland). Mathemati-
cian and astronomer. One of the first to distinguish between convergent and
divergent series. Expanded (1667) the infinite series tan−1 x, tan x and
sec−1x and showed in 1671 that

tan−1 x = x − x3

3
+

x5

5
− x7

7
+ · · ·

yields for x = 1,
π

4
= 1 − 1

3
+

1
5

− 1
7

+ · · · .

The tan−1 series was used in 1699, with x =
√

1
3 , to evaluate π to 71

correct decimal places. In 1671, Gregory preceded Brook Taylor (1712) in
series expansion of a function about a point.

Gregory, a Reverend’s son, was born and educated at Aberdeen. In 1665
he went to the University of Padua where he studied for some years. In 1674
he became a professor of mathematics at the University of Edinburgh.

Many members of the Gregory family attained eminence in various de-
partments of science. During 1650–1850, fourteen of them held professorships
in mathematics or medicine.

The Reflecting Telescope

Gregory, a Reverands son, was born at Aberdeen. In 1665 he went to the

University of Padua, Italy, where he studied for some years. He became a

professor of mathematics at the University of St. Andrews(1669) but left that

school in 1674 (his salary was not paid!) and was appointed a professor at

the University of Edinburgh. In Oct. 1675, while showing the satellites of the
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planet Jupiter to some of his students through one of his telescopes, he was

suddenly struck with blindness, and died of the stroke a few days afterwards.

In 1663 Gregory published his famous treatise Optica promota in which

he made known his invention (1661) of the Gregorian reflecting telescope.

In the Gregorian arrangement, a concave ellipsoidal secondary mirror rein-

verts the image, returning the beam through a hole in the primary image.

It was first successfully constructed (with some modification) by Newton

(1668), and only became important research tool in the hands of Frederick

William Herschel a century later.

The Gregorian system was incorporated into the design of 1997 Arecibo
reflecting radio telescope, having a spherical mirror with a diameter of 10

meters.

Gregory also discovered a diffraction grating (using a birds ‘feather’). In

a letter to a friend dated May 12, 1673 Gregory pointed out that sunlight

passing through a feather would produce a colored pattern and he asked that

his observations be conveyed to Mr. Newton .

Cassegrain (1625–1650, France), physician and inventor, improved the

Gregory–Newton reflecting telescope by utilizing a convex hyperboloidal sec-
ondary mirror to further increase the angular magnification. A century later

it was noted by Ramsden (1735–1800) that this system also partly eliminated

spherical aberration.

The system gives an inverted image of any distant object and is superior to

Gregory’s in two points: first, the spherical aberrations of the two mirrors tend

to correct instead of reinforcing each other, thus promoting good definition of

the image; secondly, the necessary radius of aperture of the convex mirror is

less, so that the proportion of light stopped is less in this instrument than in

Gregory’s telescope.

Cassegrain’s system of mirrors is used today within many modern re-

flecting and large refraction telescopes. Nothing is known for certain about

Cassegrain’s life – not even his first mane. Believed to have been a professor

at the College Chartres.
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1664 CE, Mar. 06 Appearance of the first issue of the Philosophical
Transactions of the Royal Society . By 1750, 46 volumes had been published113.

In 1887 the Phil. Trans. was divided into two series, labeled A and B re-
spectively, the former containing papers of a mathematical or physical char-
acter, and the latter papers of a biological character.

In 1832 appeared the first volume of Abstract of papers printed in the Phil.
Trans. from the year 1800. This publication developed in the course of a few
years into a Proceedings of the Royal Society .

1664–1672 CE Thomas Willis (1621–1676, English). Physician,
anatomist and physiologist. Through his studies of the anatomy of the cen-
tral nervous system and the circulation of the blood he extended the concepts
proposed by the Roman physician Galen. In his Cerebri Anatome, (1664)
the most complete and accurate account of the nervous system to that time,
he rendered the first description of the hexagonal continuity of arteries (the
“circle of Willis”) located at the base of the brain and ensuring that organ
a maximum blood supply, and of the 11th cranial nerve (spinal accessory
nerve) responsible for the motor stimulation of major neck muscles. Willis at-
tempted to correlate the knowledge of anatomy, physiology and biochemistry
with chemical findings in neuropathology.

He was a member of the iatrochemistry school, which believed that chem-
istry was the basis of human function, rather than mechanics, as was the main
belief of the time.

Willis was born in Great Bedwyn, Wiltshire. An Oxford professor of
natural philosophy (1660–1675). Opened a London practice that became the
most profitable and fashionable of the period. Died in London.

1664 CE The Great Plague in London. Ca 100,000 perished.

113 15 million scientific papers were written since modern science began. It was

written by 4 million authors, most of them are alive today. Papers are being

published now (2000) at a rate of one million per year in 40,000 journals. The

mean ‘life’ of most of the journals is 25 years. But half of the reading is confined

to only 200 journals.

The number of scientific journals N(t), has doubled every 15 years for the

past 200 years. Approximately N(t) = 4eλt, where λ ≈ 0.0461, and t = 0

corresponds to the year 1794.
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1665–1687 CE Isaac Newton (1642–1727, England). Physicist, math-
ematician and astronomer. One of the greatest names in the history of hu-
man thought. Discovered the calculus, established the fundamental laws of
mechanics and stated the universal law of gravitational attraction, unifying
terrestrial and celestial mechanics.

In 1664 Newton began to work on his “Calculus of fluxions”, the princi-
ples and methods of which were developed by him in three tracts entitled: De
analysi per aequationes numero terminorum infinitas (1666); Methodus flux-
ionum et serierum infinitarum (1671); and De quadratura curvarum (1676).
None of these was published until long after they were written (printed 1711,
1736, 1704, respectively).

The infinitesimal calculus was ‘almost’ discovered by Fermat (1629) and
Isaac Barrow (1630–1677, England). Newton was Barrow’s pupil, and he
knew to start with, in 1664, all that Barrow knew and that was practically
all that was known about the subject at that time.

The discovery of the infinitesimal calculus seems to consist of three parts:

(1) The recognition that differentiation, known to be a useful process, could
always be performed, at least for the functions then known. Thus, the prob-
lem of tangents could be solved once and for all.

(2) The recognition that the operation of integration is the inverse of dif-
ferentiation and could be rendered systematic.

(3) The introduction of a suitable notation through which the discovery could
be rendered accessible to mathematicians in general.

During the years 1664–1666 Newton started to wonder whether the earth’s
gravity could account for the motion of the moon and whether the sun’s grav-
itation could account for Kepler’s laws. On the second issue, when Kepler’s
third law is substituted into the expression for the centripetal acceleration of
a planet in its orbit about the sun, there results the dependence of the cen-
tripetal acceleration on the inverse square average distance from the sun114.
When he used this law for the earth-moon system, the moon’s acceleration

114 It is possible that this was independently deduced by R. Hooke, C. Wren and

E. Halley working together in 1679, using Huygens’ 1673 law of centripetal

force, and Kepler’s third law. The idea of inverse-square-law was “in the

air” when Newton made his calculations. Other scientists were speculating

on a cause for Kepler’s laws and asking whether planetary motions could be

explained by an attraction spreading from the sun. Newton rescued the question

from mere speculation and extended the guess to universal gravitation.
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toward the earth was found to be equal to g
(

r
R

)2 � g
3600 , where g is the

acceleration of gravity on the earth’s surface, r the earth’s radius, and R the
earth-moon distance115.

Newton then calculated the moon’s centripetal acceleration v2

R in its
orbit around the earth. Finding that it was actually equal to 1

3600 of the
value of gravity on earth, he knew that universal gravitation could indeed
supply the force needed to maintain the moon in its orbit around the earth.
All these preliminary calculations were done by Newton without invoking
his own calculus. Later in 1687, however, he used the calculus to justify
the assumption that the earth and the moon can be treated as point masses
located at their respective centers116.

During 1665–1672, Newton laid the foundation for the science of optical
spectrum analysis. He passed a beam of light through a glass prism and
studied the resulting separation of sunlight into its various color components.
He was then led in 1668 to construct the first reflecting telescope, in which
a reflecting mirror is used instead of a system of lenses to avoid chromatic
aberration. Newton’s telescope was 15 cm long with a magnification of 38.
Through it he saw the satellites of Jupiter.

He believed that light behaves as if it were a stream of tiny particles, such
that red light was composed of the largest particles and violet of the smallest.
He then showed that Snell’s law can be derived from his own principles of
mechanics. Huygens, on the other hand, argued that light has the nature of
a wave propagating in a vacuum. [Modern quantum physics has shown that
both were right.]

In 1671 Newton introduced new coordinate systems, such as polar coordi-
nates and bipolar coordinates.

115 Virtually, the moon falls radially toward earth with acceleration g′ = GM
R2 . On

the other hand, for the earth itself g = GM
r2 ; Therefore g′ = g

(
r
R

)2
, where

g′ = v2

R
= GM

R2 . Newton knew that the radius of the moon’s orbit was about

60 times the radius of the earth itself, as the ancient Greeks had first shown

[Hipparchos, ca 130 BCE].
116 Newton could have, and probably did, deduce the inverse-square distance de-

pendence of the law of universal gravitation by amalgamating Kepler’s third

law [R3/T 2 = K], the expression for centripetal acceleration [a = ω2R] and his

own second law (F = ma).
Indeed, the force F that accelerates a mass m in a circular orbit of radius r

with angular velocity ω, is explicitly expressible in the form

F = ma = m(ω2R) = mR
4π2

T 2
= (4π2K)

m

R2
.
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In 1687, there appeared his book: “Principia mathematica philosophiae
naturalis (“Mathematical principles of natural philosophy”).117 In this trea-
tise he defined the concepts of mass and force, stated the three basic laws of
mechanics and postulated the universal law of gravitation through the force
F between any two point masses m and M at a distance r apart: F = GmM

r2 ,
where G is the universal constant of gravitation. He then showed how the
empirical Kepler’s laws follow from his laws (1680), but made no hypothesis
as to how the gravitational force is transmitted118.

Newton then applied his theory to explain the ocean tides as resulting
from the combined attraction of the moon and sun. He also showed that the
precession of the equinoxes resulted from the earth’s equatorial bulge and the
attractions of the sun and the moon. In addition he obtained detailed cor-
rections to Kepler’s elliptical orbits. In order to make the proper calculations
related to all these phenomena, Newton had to develop many mathematical
techniques in addition to the differential calculus. The phenomenal success of

117 For further reading, see:

• Newton, Isaac, Mathematical Principles of Natural Philosophy, University of
California Press: Berkeley, CA, 1960, 680 pp.

• Maury, J.P., Newton — The Father of Modern Astronomy , Harry N. Abrams:

New York, 1992, 143 pp.

• Westfall, R.S., Never at Rest: A Biography of Isaac Newton, Cambridge

University Press: Cambridge, 1980, 908 pp.

• Rankin, W., Newton for Beginners, Icon Books, 1993, 176 pp.

118 With a stroke of genius, Newton created here, without knowing it, one of the

fundamental concepts of modern physics — the field .

His action at a distance force acts with no apparent physical contact between

interacting objects, yet this action is ubiquitous, pervading the entire space

surrounding the masses.

The enormity of this step can be vividly illustrated by the fact that a steel

cable of radius d = 50 km would not be strong enough to hold the earth in its

orbit. Yet the gravitational force which hold the earth in its orbit is transmitted

from the sun across a hundred and fifty million kilometers of space without any

material medium to carry that force! Indeed, equating the gravitational force

between the two point-mass models of these bodies, we obtain per unit cross-

section of the cable: {GM⊕M�R−2}/πd2 = 2.1 × 1012 dyn/cm2, which is

above the value of Young’s modulus for steel. [In this calculation we took

G = 6.67 × 10−11 Newton×meter2

kg2 ; R = 1.5 × 1011 meters; M� = 2 × 1030 kg;

M⊕ = 6 × 1024 kg; 1 Newton = 105 dyn.]
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his efforts owed much to his unusual mathematical skills and superb physical
insights.

In his Principia (1687) Newton devised a simple way to estimate the dis-
tance of the stars nearest to the sun: Assuming that the sun is a typical fixed
star, one may estimate the distance to a star by comparing its apparent bright-
ness with that of the sun — in the same manner that a distance to a candle
may be judged by comparing its brightness with that of an identical candle
nearby. Newton then calculated that our nearest stars are about a million
times further than the sun, in good agreement with later measurements.

One of Newton’s great achievements was the formulation of the fundamen-
tal laws of mechanics (1687). These constitute a codification of observation,
experience and theory into 3 propositions:

1. Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter
in directum, nisi quatenus illud a viribus impressis cogitur statum suum
mutare.
[Every body persists in its state of rest or uniform motion straight ahead,
except in so far as it be compelled to change that state by forces impressed
upon it.]

2. Mutationem motus proportionalem esse vi motrici impressae, et fieri se-
cundum lineam rectam qua vis illa imprimitur.
[The change of motion is proportional to the motive force impressed and
it takes place along the right line in which that force is impressed.]

3. Actioni contrariam semper et aequalem esse reactionem: sive corporum
duorum actiones in se mutuo semper esse aequales et in partes contrarias
dirigi.
[To an action there is always an equal and contrary reaction: or, the mu-
tual actions of two bodies upon each other are always equal and directed
to contrary parts.]

These propositions, while somewhat vague, have been the foundation of
much of the science and technology developed to the present time. They
are stated in terms of undefined primitive concepts such as mass (implicitly)
and force (explicitly) which need to be separately quantified. Notwithstand-
ing, they provide the infrastructure for a precise analysis of a wide range of
complex and seemingly unrelated systems and phenomena at a vast range of
spatiotemporal scales.

In the 18th and 19th centuries, L. Euler (1758–1765), J. d’Alembert
(1742), J.L. Lagrange (1788), S.D. Poisson (1813), C.G.J. Jacobi
(1837), W.R. Hamilton (1828) and J.H. Poincaré (1889) have put New-
ton’s propositions on a much firmer analytical basis, which led to the birth
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and development of special branches of continuum mechanics such as hydro-
dynamics, aerodynamics, gas dynamics, theory of elasticity etc. The spirit
of mechanics in all of its manifestations, however, is still easily traceable to
Newton.

The first law is an important special case of the 2nd law, since when
F(e) = 0 (vanishing of total external force) the acceleration (of a point-
particle or of the center of mass of a composite system) vanishes and thus the
relevant velocity vector is fixed, both in direction and magnitude.

One may ask, then, why include the first law at all? The answer is that
it helps to give meaning to the concept of force, by defining the case where it
vanishes in a suitable class of reference frames! Of course, F(e) must be better
defined than that in order to solve for the motion in terms of initial positions
and velocities (which is the aim of classical physics). Thus, it is necessary to
use some theoretical form or semi-empirical ansatz (exemplified by the Law
of Universal Gravitation on the one hand, and Hooke’s law on the other).

Finally, we note that the third law may be replaced by momentum con-
servation. Thus, for a closed system of two interacting masses, let F12(F21)
be the force exerted by 1 on 2 (2 on 1), respectively; we have by the second
law

F12 =
d

dt
(m2V2), F21 =

d

dt
(m1V1),

so the third law F12 = −F21 is equivalent to m1V1 + m2V2 = const.,
which is just the statement that the momentum of the overall closed system
is conserved. This readily generalizes to a system of n masses, or even a
continuous medium, such as an elastic solid or a liquid.

Yet another way of expressing this law is that the center of mass (COM)
position vector of the closed system,

rCOM ≡ 1
∑n

i=1 mi

( n∑

i=1

miri

)
,

moves in a straight line at constant speed. Consulting the first law again, we
see that we can think of the n-mass system as a single mass located at its
COM . When the system is not closed, it obeys the second law as if it were
a mass acted upon by the total force

∑n
i=1 F(e)

i , where F(e)
i is the total

external force acting on the ith mass.

The important thing to remember is that the main difference between
Newton’s second and third laws concerns the definition of the system under
study : If one wishes to examine the motion of a single object (however defined)
that is being acted by forces that originate outside the object, one uses

F(e) =
d(mV)

dt
,
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where mV is termed the momentum vector of the object.

On the other hand, if we consider a whole closed system composed of parts
that can interact with each other , then Newton’s third law tells us that the
sum of the changes of the individual momenta will be equal to zero and that,
therefore, the internal forces must act in pairs such that each pair is equal
and opposite.119

An extended closed system (and after all any real-life mass is such a sys-
tem, made up of myriad of atoms!) obeys another vectorial conservation law
— that of angular momentum:

Ltotal ≡
n∑

i=1

miri × ṙi = const.

Arriving at this law from Newton’s laws is more circuitous, and in fact an extra
ingredient is required to derive it. It follows from the second law, applied to
the individual masses, that

d

dt
Ltotal =

n∑

i=1

ri × Fi ≡ Ttotal,

where Fi is the overall force acting on mi, by the other masses and by external
influences. Here Ttotal is the total torque acting on the system, and is origin-
dependent.

One way to derive
d

dt
Ltotal = 0

for a closed system, turns out to require an action principle with rotational
symmetry, from which the second law must be derivable as Euler-Lagrange
equations; this is true in particular for a closed self-gravitating system of
masses, and indeed one can check the angular momentum conservation di-
rectly in this case:

Ttotal =
n∑

i=1

ri ×
∑

j �=i

Gmimj(rj − ri)
|rj − ri|3 = 0.

119 If a subsystem or object is defined in such a way that no mass may enter or

leave it, we have dm
dt

= 0 and Newton’s 2nd law assumes the form F(e) =

m dV
dt

= ma, with a the instantaneous acceleration of the object’s COM.
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In addition to such so-called ‘conservative’ forces120, one can add any types of
contact forces, for which there is no net torque. Thus, angular momentum is
conserved also in the presence of non-conservative forces such as friction121.

Newton’s laws of motion embody what is now known as Galileo’s princi-
ple of relativity , according to which uniform motion has meaning only when
referred to some other body or system and can be detected only by reference
to something external to the body in motion. Hence all laws of mechanics are
the same in all systems (frames) of reference that move uniformly relative to
each other (two such systems are related by a Galilean transformation).

To explain the forces that act on bodies in non-uniform motion, Newton
invented the concept of ‘absolute space’, regarding it as a substance within
which bodies move, which reacts but cannot be acted upon. The reaction
of absolute space back on the body produces the ‘inertial force’. Thus, the
fictitious centrifugal and Coriolis forces are the reaction of absolute space
on the rotating body122. Berkeley (1734) and Mach (1872) later rejected

120 Besides gravity, other examples are: elastic, intermolecular and electrostatic or

magnetostatic forces.
121 In classical mechanics the law of conservation of angular momentum does not

carry the strength of a universal principle; it applies mainly to two cases —

particles interacting via central forces, and in continuum mechanics with only

contact forces.

In a (classical or quantum) system derived from an action principle of fields,

however, it is a universal law — of no less importance than the law of conser-

vation of linear momentum.

In special relativistic physics we must raise the number of dimensions from 3 to

4; consequently energy and momentum become components of a single 4-vector,

while the extension of the angular-momentum 3-vector into a skew-symmetric

4-tensor of rank 2 leads one to the uniform rectilinear motion of the center of

mass.

When dealing with fields or other continuous matter-energy distributions, we

are led to consider densities of these conserved quantities, since in each vol-

ume element one has energy, momentum and angular momentum w.r.t. some

given point. Moreover, it makes little sense to consider energy density by itself,

because what is energy density in one reference frame will be some combina-

tion of energy density, energy flux density, and momentum flux density as seen

from another reference frame (even in Newtonian mechanics, a shift in the spa-

tial origin mixes angular momentum with (linear) momentum, while a Galilean

transformation between inertial frames admixes components of momentum into

energy). Hence, all these quantities are best considered together.
122 They are ‘fictitious’ only in the sense of arising in non-inertial frames — frames

in which Newton’s 1st law is violated. These reference frames are accelerated

relative to inertial frames.



1126 3. The Clockwork Universe

this simplistic ‘solution’, but it was not until the advent of Einstein’s general
relativity (1915) that a more satisfactory interpretation emerged.

Newton also concerned himself with the equivalence of inertial and gravi-
tational mass. The roots of this problem are to be sought in Galileo’s result
that in a given gravitational field, all nearby pointlike particles fall with the
same acceleration. This statement implies that to some extent gravitational
forces behave in the same way as inertial forces. Galileo’s statement can be
called Galileo’s principle of equivalence.

Newton sharpened this principle by combining it with his own second law
of motion. This fusion then yielded the statement that the gravitational force
is proportional to the mass on which it acts, ergo: the inertial mass and the
gravitational mass are proportional. Newton then assumed that these two
measures of mass were equal and he set forth to determine the precision of
this determination. Newton’s principle of equivalence then states that grav-
itational mass (mg) and inertial mass mF (resistance to change of motion
under action of forces) are equal .

Comparing periods of pendula of fixed length but with different masses
and composition, he found123 that

|mI − mg |
mI

� 10−3.

Clearly, Newton’s principle implies equal accelerations only for bodies of
sufficiently small size placed in a sufficiently homogeneous gravitational field .

Newton’s laws of motion have the inherent property that they are covariant
under the Galilean transformation, i.e., they retain their form when viewed
by different inertial-frame observers — those attached to frames of reference
in which no inertial forces are observed; any two such frames move with fixed
velocity with respect to each other (r′ = r−vt, t′ = t). [A physical law which
retains its form under a particular transformation is said to be covariant w.r.t.
that transformation.] Frames of reference in which a test particle moves with
constant velocity unless acted on by a force are known as inertial frames. [One
may define such a frame in a picturesque way as one in which it is possible to
play three-dimensional billiards.]

Newton’s laws of motion do not distinguish between past and future, in
the sense that they are symmetrical w.r.t. reversal of motion. Indeed, with

123 In the period 1891–1908 Roland von Eötvös (1848–1919, Hungary) used a

torsion balance, which he had developed, to lower Newton’s equivalence bound

to ca 10−9. This number was further reduced to 10−12 in experiments performed

at Princeton and Moscow in the 1960’s.
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the exception of a rare kind of decay among a certain type of elementary
particles, all experimental facts known to date about the actual world (even
at the quantum level and even in GTR) are consistent with the following
symmetry postulate: to any state or process encountered in the actual world
there corresponds a time reversed state or process that is again a possible state
or process in the actual world .

Newton’s views on time were clearly stated in his ‘Principia’ of 1687:

“Absolute, true and mathematical time, of itself and from its own nature,
flows equably without relation to anything external”.

Thus according to Newton, time would continue just the same even if the
universe were completely empty.

The work of Newton cannot be properly understood without a knowledge
of the science of antiquity. Newton did not create in a void. Without the stu-
pendous work of Ptolemy (which completed and closed ancient astronomy)
and Kepler’s ‘Astronomia Nova’, the mechanics of Newton would have been
impossible. Without the conic sections of Apollonios, which Newton knew
thoroughly, his development of the law of gravitation is equally unthinkable.
And Newton’s integral calculus can be understood only as a continuation of
Archimedes’ determination of areas and volumes. The history of mechanics
as an exact science begins with the laws of the lever, the laws of hydrostatics
and the determination of mass centers by Archimedes. In short, all the de-
velopments of mathematics, mechanics and astronomy which converge in the
work of Newton, began in Greece.

And one must not forget Galileo Galilei; There is an appropriate sym-
bolism in the fact that the death of Galileo and the birth of Isaac Newton
occurred in the same year, 1642. Galileo and Newton are to be considered
as the parents of modern science. In the words of Alfred North Whitehead:

“There would have been no Newton without Galileo; and it is hardly a
paradox to say, that there would have been no Galileo without Newton”.

Newton was born at Woolsthorpe, a hamlet in the parish of Colsterworth,
Lincolnshire. His father (also Isaac Newton) who farmed a small property
of his own, died before his son’s birth, a few months after his marriage to
Hannah Ayscough. When Newton was two years old his mother remarried
and had three more children, to the descendants of which Newton eventually
left most of his property. At the age of 12 he was sent to a grammar school
at Grantham. At the age of 14 his stepfather died and his mother took him
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away from school, since she intended him to be a farmer. He was sent back
to school, however, and admitted to Trinity College, Cambridge, in 1661.

During the next 3 years he studied Euclid’s Elements, Descartes’ Geome-
try and Wallis’ Arithmetic Infinities. In 1665 Newton took the B.A. degree.
During his college career, Newton showed no exceptional ability and was grad-
uated without any particular distinction. In the years 1665 and 1666, Trinity
College was closed on account of the Great Plague in London (ca 70,000
people died). Newton retired to the countryside at his mother’s home in
Lincolnshire, where he made his preliminary discoveries of the binomial the-
orem, the method of fluxions, universal gravitation and the light spectrum.
He returned to his college in 1667, and took his M.A. degree early in 1668.
In 1669 (at age 26), his teacher, Isaac Barrow, resigned the Lucasian chair
in favor of Newton, who thus became a professor of mathematics. In 1672
he was elected fellow of the Royal Society and during 1689–1690 represented
Cambridge University in Parliament. To afford him a substantial salary, his
friends secured for him the vacated mastership of the mint in 1699, where he
later drew up the English monetary reform.

In 1701 he resigned his Cambridge professorship and moved to live in
London. He was knighted in 1705, and was a very popular visitor at the court
of George I. Newton added very little to his achievements in physics and
mathematics after 1687 and spent most of the next 40 years of his unmarried
life on public activities, experiments in alchemy and problems of theology and
Biblical chronology . He died in 1727 and was buried in Westminster Abbey.

Newton was a man of deep religious convictions, bordering on mysticism.
From an early period of his life he paid great attention to theological studies.
[In fact, he spent little of his time studying mathematics, physics and as-
tronomy.] The preoccupation with these matters served as the driving force
behind his scientific work, which he considered as the deciphering of nature’s
code. Most of his life was spent on investigations of the Scriptures and the
writings of the Christian saints, where he hoped to find hints to the secrets
of the creation. He was a Unitarian and kept it a secret.

We know that Newton adhered to the philosophical view that time is cyclic
and was convinced that the world was coming to an end. He believed that
the comet of 1680 had just missed hitting the earth, and in his commentaries
on ‘Revelations’ and the ‘Book of Daniel ’, unpublished in his lifetime, he
indicated that the end of the world could not be long delayed. A particularly
striking example of his cyclical philosophy occurs in a letter that he wrote to
Henry Oldenberg, secretary of the Royal Society, in December 1675:

“For nature, is a perpetual circulatory worker, . . . so perhaps may the Sun
imbibe this Spirit copiously to conserve his shining, and keep the Planets from
receding further from him”.
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Newton’s discoveries had been so impressive for nearly two hundred years
that they had the hallmark of being the last word. No refinement of his laws
had been suggested. His law of gravitation had successfully explained every
astronomical observation (with the tiny exception of a wobble in the orbit of
the planet Mercury around the sun).

In fact, during his own lifetime the success of his mechanics had led to
speculations that his approach might provide a panacea for the investigation
of all questions. The impressive completeness of Newton’s Principia (1687)
and the deductive power of his mathematics led to a bandwagon effect with
thinkers of all shades aping the Newtonian method. There were books on
Newtonian models of governments and social etiquette, and Newtonian meth-
ods for children and ‘ladies’.

Nothing was imagined to be beyond the scope of the Newtonian approach.
Nor was Newton himself entirely divorced from this enthusiasm. His later
work on alchemy and biblical criticism reveals a deep-rooted belief in his
ability to unveil all mysteries for the human race. Having first revealed the
truth about God’s design of the physical world, he seems to have seen himself
as having a similar commission to fulfill in the realm of the spiritual and the
mystical.

Newton is a deeply paradoxical figure when viewed through the lens of
modern scientific attitudes. A mathematical genius who possessed the most
penetrating physical intuition of any recorded scientist, he nevertheless had
one foot in the Middle Ages and displayed a magician’s belief in his ability
to solve all problems and overcome all barriers. His achievements must have
made his contemporaries believe that the end of the seventeenth century was
indeed the completion of science.

Newton was basically a very religious person, deeply influenced by the
Bible and the religious philosophy of the ancient Hebrews. He believed in the
unity of nature and the universality of natural laws — hence the motive for
his discovery of the law of universal gravitation which applies to all stars in
the universe. This was not a Greek heritage. This he received directly from
the Bible.

Many years of Newton’s life were embittered by the professional controver-
sies which his Principia evoked. A long time elapsed before his ideas became
part of the equipment of the ordinary educated man. It has been said that
there were comparatively few scientists in the 20 s and 30 s of the 20 th cen-
tury who comprehended Einstein’s GTR. But there have been far fewer in
Newton’s day who could appreciate the reasoning of the Principia.

In 1692 and 1693 Newton seems to have a serious illness characterized by
insomnia, withdrawal from close friends, headaches, nightmares, loss of hair.
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It is now believed that there were symptoms of mercury poisoning, caused
by his preoccupation with alchemy (transmutation of mercury into silver and
gold).

Newton maintained that the corpuscles of light associated with various
colors excited the ether into characteristic vibrations, where the sensation of
red corresponds to the longest vibration of the ether and violet to the shortest.
Perhaps the main reason for rejecting the wave theory as it stood then was
the blatant problem of explaining rectilinear propagation in terms of waves
which spread out in all directions.
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Worldview XI: Isaac Newton

∗ ∗∗

“If I have seen further it is by standing on the shoulders of Giants.”

In a letter to Robert Hooke, February 5, 1675

∗ ∗∗

“I know not what I may appear to the world, but to myself I seem to have
been only like a boy playing on the sea-shore, and diverting myself in now
and then finding a smoother pebble or a prettier shell than ordinary, whilst
the great ocean of truth lay all undiscovered before me.”

∗ ∗∗

“The light of the fixed stars is of the same nature (as) the light of the sun.”

Mathematical Principles of Natural Philosophy, 1687

∗ ∗∗

“Physics, beware of metaphysics.”

∗ ∗∗

“Nature is pleased with simplicity, and affects not the pomp of superfluous
causes.”
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∗ ∗∗

“Absolute space, in its own nature, without relation to anything external,
remains always similar and immovable. . . . Absolute motion is the translation
of a body from one absolute place into another.”

Mathematical Principles of Natural Philosophy, 1687

∗ ∗∗

“Are not gross bodies and light not convertible in to one another?”

∗ ∗∗

“Amicus Plato, amicus Aristoteles, magis amica veritas.”
(Plato is my friend, Aristotle is my friend, but my best friend is truth)

∗ ∗∗

“Absolute, true and mathematical time, of itself, and from its own nature,
flows equally without relation to anything external.”

∗ ∗∗

“Truth is ever to be found in simplicity, and not in the multiplicity and con-
fusion of things . . . He is the God of order and not of confusion.”

∗ ∗∗

“Whence it is that nature does nothing in vain; and whence arises all that
order and beauty which we see in the world.”

∗ ∗∗
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On Newton

∗ ∗∗

“Newton, forgive me. You found the only way that was possible for the man of
the highest powers of intellect and creativity. The concepts that you created
still dominate the way we think in physics.”

“Let no one suppose, however, that the mighty work of Newton can easily
be superseded by reality on any other theory. His great and lucid ideas will
retain their unique significance for all the time as the foundation of our whole
modern conceptual structure in the sphere of natural philosophy.”

Albert Einstein

∗ ∗∗

“Nature, and nature’s laws lay hid in night.
God said, Let Newton be! and all was light.”

Alexander Pope

∗ ∗∗

“Nearer to the Gods no mortal may approach.”

∗ ∗∗
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“Newton, with his prism, and silent face: The marble index of a mind for ever
voyaging through strange seas of thought alone.”

William Wordsworth
(on seeing Newton’s statue in the chapel at Trinity

College by moonlight)

∗ ∗∗

“One had to be a Newton to notice that the moon is falling when everyone
sees that it does not fall.”

Paul Valery (1871–1945)

∗ ∗∗
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Time and Tides

The periodic rise and fall of the ocean level, termed simply the Tide,
was suggested by ancient peoples to be in some way related to the celestial
bodies, long before a word for gravity existed. But the theories advanced were
fantastic. It is natural that the writings of the classical authors of antiquity
should contain but few references to the tides, for the Greeks and Romans
lived on the shores of an almost tideless sea.

Pytheas of Massilia (fl. ca 310 BCE) was familiar with the tides in
the region of the British Isles and North Sea and is said to be the first to
have actually measured the rise and fall of the tide. The Greek geographer
and historian Strabo (ca 64 BCE–20 CE) quotes from Poseidonios (135–51
BCE) a clear account of the tides on the Atlantic coast of Spain. He also gives
the law of diurnal inequality124 of the tide in the Indian Ocean as observed
by Seleucus the Babylonian. Seleucus was the first known commentator
to offer a rational (thought incorrect) mechanism of tide-generation.

The Roman historian Pliny the Elder (23-79 CE) described the variation
in the tidal range accompanying the moon’s phases and changes in declination.
In his Historia Naturalis he writes:

“Much has been said about the nature of waters; but the most wonderful
circumstance is the alternate flowing and ebbing of the tides, which exist,
indeed, under various forms, but is caused by the sun and the moon. The tide
flows twice and ebbs twice between each two risings of the moon, always in the
space of 24 hours. First, the moon rising with the stars swells out the tide,
and after some time, having gained the summit of the heavens, she declines
from the meridian and sets, and the tide subsides. Again, after she has set,
and moves the heavens under the earth, as she approaches the meridian on
the opposite side, the tide flows in; after which it recedes until she again rises
to us. But the tide of the next day is never at the same time with that of the
preceding”.

Julius Caesar and his officers were totally ignorant of the connection
between moon and tide: in the year 55 BCE, his first assault-landing on the
Kentish coast of Britain, near Dover, failed as a direct result of a devastating
spring tide; high water came about an hour before midnight, and driven by

124 The difference in the amplitudes (at locations in the middle latitudes of ei-

ther hemisphere) of the two diurnal tides due to the periodicity in the moon’s

declination.
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the gale, the beach galleys were swept by the breakers, all sustaining heavy
damage. As a result, Caesar and his army returned to France.

The next 1500 years did not advance the tidal lore beyond the observations
of Pytheas and Pliny. The occurrence, at many places, of high tide at about
the time of the moon’s passage across the meridian may have prompted the
idea that the moon exerts some attraction on the water, but the occurrence
of a second high tide when the moon is on or near the opposite meridian was
a great puzzle to the few philosophers who thought about it.

We know about two Englishmen who were occupied with this problem:
Alexander Neckam (1157–1217), a learned monk, who was for a time a
professor at the University of Paris, wrote a book of general knowledge, De
Naturis Rerum in which he remarked that he was unable to resolve the vexed
question as to the cause of the tides, but that the common belief was that
they are due to the moon. Wallingford (d. 1213) made recordings of tidal
observations for the purpose of prediction and tabulated the occurrences of
floods at London Bridge in ca 1210.

The Franciscan friar Roger Bacon of Oxford attempted, at about 1250
CE, a rational (though wholly false) solution to the problem of the ‘second
high tide’, based on the Ptolemaic conception of the universe.

Johann Kepler had recognized the tendency of the waters of the ocean
to move towards the centers of the moon and the sun, and he wrote of some
attraction between the moon and the earth’s waters. Galileo then expressed
regret that so acute a man as Kepler should produced a theory with occult
qualities of the ancient philosophers (!!) His own explanation referred the
phenomenon to the rotation and orbital motion of the earth, and he considered
that it afforded a principal proof of the Copernican system.

It was not until Newton published the consequences of his law of universal
gravitation in the Principia (1687) that the basic mechanics of tidal behavior
could be understood.125 It is a fact of the history of science that during the
entire period from Pliny to Newton, nobody had the conviction that ocean
tides are caused directly by the moon or the sun.

But even if someone could believe it, and even if that someone knew about
gravitational attraction between masses, he still could not have accounted
quantitatively for the tide generating forces without stating clearly the three
fundamental laws of dynamics discovered by Newton! It is the association
of these two categories that made Newton see the light. The essence of his
reasoning is this: When an astronomical body is moving under the action of

125 For further reading, see:

• Cartwright, D.E., Tides, Cambridge University Press, 2000, 292 pp.
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the gravitational forces of other astronomical bodies, the orbit of the moving
body is that of its center of mass. The finite extent of the body introduces
two new effects:

(1) A precession of the axis of rotation in case of a rotating body (provided
the body is not a sphere with homogeneous or concentric distribution of mass).

(2) Appearance of tidal forces: Under the assumption that the body is rigid,
the forces of inertia due to the orbital motion (revolution without rotation)
are uniform for each mass element of the body. They have the same magnitude
and opposite direction to that of the gravitational force acting on the body’s
center of mass. The gravitational forces, however, are not uniform through-
out the body so that outside the center of mass, differences appear between
gravitational forces and the inertial forces. These differences appear as tidal
forces: Over the earth’s hemisphere nearer to the moon, the gravitational
attraction is greater and the centrifugal126 acceleration is less so that over
this hemisphere there is a distribution of unbalanced upward force directed
moonward and acting against the earth’s own gravitation force.

Over the opposite hemisphere the gravitational force of the moon is less
and the centrifugal force is greater than at C, so that there, too, a distribution
of unbalanced force results, directed obliquely upward. Particles free to move,
like those of the sea and air, will do so under the actions of these unbalanced
forces. The mathematical formulation of this concept, on the basis of the law
of gravitational attraction, does not require more than elementary algebra.

A tide-producing force (on the surface of a hypothetical yielding, spherical
earth) can be resolved into a tangential (horizontal) component and a normal
(vertical) component. Assuming this sphere to be covered with an oceanic
layer, the motion of the water on its surface will be governed by the horizontal
component of the tidal force. This motion will lead toward an accumulation,
or a heaping up, of water at the sublunar centers (points nearest and farthest
from the moon), with an attendant rise in sea level.

On the other hand, a withdrawal of water will tend to take place along
the great-circle zone on a plane normal to the earth-moon line, where the sea
level must fall. In general if the whole spherical earth were made of a yielding
material and made to respond to the tidal forces by deforming freely, it would
assume the shape of an ellipsoid with its major axis coinciding with the earth-
moon direction. An equilibrium shape would be reached when the inequalities
of the earth’s own gravitational attraction (resulting from the development

126 An earthbound observer co-revolving with the earth prefers to see it as a cen-

trifugal force, while an outside observer will see it as a centripetal force. Both

views are equivalent.
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of its prolated form), exactly counterbalance the tide-producing forces at all
points.

Thus, if the earth were not rotating about its own axis, the heaping up of
water at the two tidal centers, and the lowering of the sea level along the great-
circle zone would quickly reach a state of equilibrium, becoming permanently
fixed in geographic coordinates. We would then have no tidal fluctuations
due to the moon’s attraction. As the earth turns on its axis, however, the
direction and magnitude of the tidal force acting at any given place on the
earth’s surface changes periodically. This causes the two tidal centers (bulges)
to move westward as a tidal wave around the earth. At any given geographical
point, the period of the lunar tide is 12 moon-hours, i.e. 12h24m (the time127

elapsed between successive meridian passages of the moon).

When Newton developed his theory of tides he assumed, for the sake of
simplicity, that the earth was covered by an ocean of uniform depth and that
the flow of water to the two centers of tidal rise would quickly bring about
an equilibrium form of the sea surface in which pressure differences would
exactly balance the horizontal forces. Thus, the water are devoid of inertia
in this approximation, whereas its gravitational properties are kept. This
is Newton’s theory of the equilibrium tide. The observed tides are generally
much greater than those derived from the equilibrium theory. The oceans
are unable to respond instantly and completely to the rapidly moving sys-
tem of horizontal forces. Nevertheless, the equilibrium theory is valid as a
fundamental explanation of the tide.

Newton was well aware of this discrepancy between theory and fact, but
pursued it no further. The quasi-static theory was completed in 1741 by
Daniel Bernoulli, L. Euler and C. Maclaurin. In 1774, P.S. Laplace
presented his dynamic theory of tides. He considered tides as waves induced
in a uniform ocean layer by periodic forces, taking into account Coriolis forces
and friction. But even this theory could not account for local observations.
The nature of actual tides is complicated due to the presence of land masses
stopping the flow of water, the unknown friction in the oceans and between
oceans and the ocean floors, the rotation of the earth, the variable depth of
the ocean, winds and other factors128.

127 During the semi-diurnal period of 12h, the moon advances in its orbit about

the earth. Since its speed is 30 times slower than that of the earth, the earth

must spend 12h

30
= 24m more to overtake the moon.

128 The numerical integration of the Laplace tidal equation (1774) for realistic mod-

els of the world oceans was undertaken by C.L. Pekeris (1908–1993, Israel)

during 1969–1978.
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Both the times and the heights of high tide vary considerably from place
to place on the earth. The earth’s rapid rotation causes the tide-raising forces
within a given mass of water to vary too rapidly for the water to adjust
completely to them. These forces however, recurring periodically, set up forced
oscillations in the ocean surfaces, so that the water over a large area rises and
falls in step. Consequently, the highest water does not necessarily occur when
the moon is highest in the sky (or lowest below the horizon).

Sometimes shallow coastal seas have such shapes and sizes that the natural
frequency of the basin waters is very nearly the same as that of the tidal period
in the adjacent ocean. Then the ocean tide can set up resonance oscillations
in the basin (e.g. the Bay of Fundy between New Brunswick and Nova Scotia
and the Gulf of Maine; under favorable conditions, the tidal range at the head
of the Bay of Fundy can exceed 15 meters).

Tides also occur in the atmosphere (Laplace, 1825) and the solid earth
(Lord Kelvin, 1863).

The sun too produces tides on the earth, although it is less than half as ef-
fective a tide-raising agent as the moon. Actually, the gravitational attraction
between the sun and the earth is about 180 times as great as that between
the earth and the moon, but the earth-sun distance is about 390 times larger
than the earth-moon distance. The moon’s tides, therefore, dominate. On
the other hand, when the sun and the moon are lined up at new or full moon,
both tides reinforce each other (spring-tides). In contrast, when the moon is
at first quarter or last quarter, the tides produced by the sun partially cancel
out the tides of the moon, and the tides are lower than usual (neap-tides)129.

Consider first the lunar effect, and neglect the rotation of the earth about
its axis. The centripetal acceleration of the earth and the moon, required
for revolution of the earth-moon system about their common mass-center, is
provided by their mutual attraction, but only at the mass center of each body
is the gravitational force precisely equal to the centripetal force.

Put the centers of the earth and the moon at points O and M respectively
(a distance d apart on a z-axis). At an arbitrary point P in the earth with
coordinates {r, β} relative to the z-axis, the centripetal acceleration is also in
the z-direction. The difference between this acceleration and the acceleration
due to the moon’s attraction, gives the tidal acceleration at P .

To see this quantitatively we perform a preliminary calculation for points
on the earth nearest and farthest from the moon. The moon’s attraction

129 The unit of acceleration in the cgs system is 1 cm s−2 and this unit is called

1 gal , in honor of Galileo Galilei (1564–1642) who was a pioneer in the study

of motion of bodies under gravity. One thousandth of a gal is called 1 milligal

(mgal). One millionth of a gal is called 1 microgal (μgal).
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on unit masses located at these points, and at the earth’s mass center, are
f1 = GM(d − r)−2, f2 = GM(d+r)−2 and f0 = GMd−2 respectively, with
M the lunar mass. Hence

f1 − f0 = GM
[ 1
(d − r)2

− 1
d2

]
= GM

(2d − r)r
d2(d − r)2

;

f2 − f0 = GM
[ 1
(d + r)2

− 1
d2

]
= −GM

(2d + r)r
d2(d + r)2

.

Since d � r, we have to a good accuracy

f1 − f0
∼=

2GMr

d3
, f2 − f0 = − 2GMr

d3
.

For points which are not necessarily on the mass-center line, the above
calculation involves vector subtraction. It is then more convenient to write
the gravitational potential Φ of the moon, acting on a unit mass at P at
distance

R =
√

d2 − 2dr cosβ + r2 = d

√

1 − 2
r

d
cosβ +

r2

d2

from the moon’s center: Φ = − GM
R + C. Clearly, C is a constant that must

be assigned the value GM
d in order to secure Φ(r = 0) = 0.

Thus

Φ =
GM

d

[
1 −
(
1 − 2

r

d
cosβ +

r2

d2

)−1/2]
.

Expanding the inverse square root in a series of Legendre polynomials we find

Φ = − GM

d2
z − GMr2

d3

[
P2(cos β) +

r

d
P3(cos β) + · · ·

]
,

where z = r cosβ. The first term on the r.h.s. is just the uniform centripetal
acceleration. The second term dominates the moon’s tide generating potential.
Since r

d is about 1
60 , this term is very often sufficient. The force associated

with this potential, namely f = − grad Φ, has the radial (vertical) component

fv = − ∂Φ
∂r

=
3GMr

d3

(
cos2 β − 1

3
)

and the azimuthal (horizontal) component

fh = − 1
r

∂Φ
∂β

= − 3GMr

d3
sin β cosβ.

These expressions show that the amplitudes of the radial and the azimuthal

tidal accelerations on the earth’s surface are 2g
(

M
E

)(
r
d

)3
and 3

2g
(

M
E

)(
r
d

)3
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respectively, where g = G E
r2 is the surface gravity acceleration and E is the

mass of the earth. Taking the values M
E = 1

81.5 , r
d = 1

60 , one obtains a
vertical acceleration of 0.112 mgal against a centripetal acceleration of

GM

d2
= g
(M

E

)( r

d

)2 = 3.38 mgal.

Thus, the vertical tidal acceleration acting on a mass of 1 kg at sea-level is
only 0.11 milligram, a mere 10−7 g! [This will make the weight of the “Queen
Elizabeth” ocean liner (83,673 tons) lighter by ca 9 kg as she passes under
the zenith of the moon, compared to a location where fv vanishes.] However,
being an unbalanced force, it may nevertheless cause large displacements.

The tide-generating potential which incorporates the rotation of the earth
about its axis, is obtained directly from the above expression for Φ if we go
over from the intrinsic earth-moon coordinate system to the celestial sphere
coordinate system. Applying the trigonometric identity

1
2
(3 cos2 β − 1) ≡ 1

2
(3 sin2 δ − 1)

1
2
(3 cos2 θ − 1)

+
3
4

sin 2δ sin 2θ cosH +
3
4

cos2 δ sin2 θ cos 2H

(δ = moon’s declination; (ϕ, θ) = spherical coordinates of observatory;
H = ϕ + t; t = −ϕM = hour angle of moon at Greenwich], the three terms on
the r.h.s. of this identity represent respectively the lunar fortnightly tide Mf ,
the principal lunar diurnal component O1 (25.82h) and the principal lunar
M2 (12.42h). The explicit expression for the latter potential is

Φ2 =
3
4
gr
(M

E

)( r

d

)3 cos2 δ sin2 θ cos 2(ϕ + t).

For θ = 90 ◦, r = mean equatorial radius, and 〈cos2 δ〉 = 0.722, the
height of the tide at the equator follows the expression

η =
1
g
Φ2 = 25.6 cos 2(ϕ + t) cm.

The corresponding expression for the sun’s tide is 11.8 cos 2(ϕ+ t) cm. Since
δ and d both depend on time, the tide at any given location, even in the
framework of equilibrium tidal theory, is a combination of a great number of
Fourier components, each with its own period, amplitude and phase.

Of special interest in the earth sciences is a rare event, occurring approxi-
mately every 1600 years, when perigee (moon closest to earth) coincides with
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syzygy (centers of sun, earth and moon are collinear) as well as with perihe-
lion (sun closest to earth); the moon’s nodes are on the line connecting the
earth and the moon (moon on the ecliptic); and the declination between the
moon and the sun is zero. These conditions, which give the greatest possible
tide-raising force, have the following schedule of occurrence: 3500 BCE, 1900
BCE, 250 BCE, 1433 CE, 3300 CE.

Newton’s Calculus of Fluxions (1664–1671)

When Newton received his B.A., at the age of 23, in June 1665, his exam-
iner, Professor Barrow was of the opinion that Newton did not even know his
basic Euclid. Newton had indeed sorely neglected the syllabus. What Barrow
did not realize was that Newton was already advancing beyond Descartes,
who in his turn had already advanced beyond Euclid. Newton was entirely
self-taught — in the sense that he worked largely alone, from books. All his
work was confined to his notebooks — which nobody else had seen. However,
despite the gaps in his knowledge, he was allowed to continue studying for an
M.A. degree.

Newton seemed to thrive in isolation, and events now conspired to make
sure this continued. By August 1665130 Cambridge University had effectively
closed down on account of the Great Plague in London, causing Newton to
return to Woolsthorpe, where he remained for about a year.

Newton’s first major breakthrough was the development of the differential
calculus – a method for finding the tangent to a point on a curve131. This

130 This was to result in an annus mirabilis, the like of which was Einstein’s 1905,

240 years later.
131 Pierre de Fermat (1638) beat him to that and was considered by Lagrange

to be the true originator of the differential calculus.



1665 CE 1143

method, which he named the method of fluxions, was communicated to Barrow
in 1669, written in 1671, but was not published until 1736.

In this work, Newton considers a curve as generated by the continuous
motion of a point. Under this conception the abscissa and the ordinate of the
generating point are, in general, changing quantities. A changing quantity
is called a fluent (a flowing quantity), and its rate of change is called the
fluxion of the fluent. If a fluent, such as the ordinate of the point generating
a curve, be represented by y, then the fluxion of this fluent is represented by
ẏ. In another standard notation we see that this is equivalent to dy

dt , where t
represents time.

In spite of this introduction of time into geometry, the idea of time can be
evaded by supposing that some quantity, say the abscissa of the moving point,
increases constantly. This constant rate of increase of some fluent is called the
principal fluxion, and the fluxion of any other fluent can be compared with
this principal fluxion. The fluxion of ẏ is denoted by ÿ, and so on for higher
ordered fluxions.

On the other hand, the fluent of y is denoted by the symbol y with a small

square drawn about it, or sometimes by
|
y (these notations are no longer used).

Newton also introduces another concept, which he called the moment of a
fluent; it is an infinitely small amount by which a fluent such as x increases
in an infinitely small interval of time o. Thus, the moment of the fluent x is
given by the product ẋo.

Newton remarks that we may, in any problem, neglect all terms that are
multiplied by the second or higher power of o, and thus obtain an equation
between the coordinates x and y of the generating point of a curve and their
fluxions ẋ and ẏ.

As an example he considers the cubic curve

x3 − ax2 + axy − y3 = 0.

Replacing x by x + ẋo and y by y + ẏo, we get

x3 + 3x2(ẋo) + 3x(ẋo)2 + (ẋo)3

− ax2 − 2ax(ẋo) − a(ẋo)2

+ axy + ay(ẋo) + a(ẋo)(ẏo) + ax(ẏo)
− y3 − 3y2(ẏo) − 3y(ẏo)2 − (ẏo)3 = 0.

Now, using the fact that x3 −ax2+axy −y3 = 0, dividing the remaining terms
by o, and then rejecting all terms containing the second or higher power of o,
we find

3x2ẋ − 2axẋ + ayẋ + axẏ − 3y2ẏ = 0.
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Newton considered two types of problems. In the first type, we are given a

relation connecting some fluents, and we are asked to find a relation connecting

these fluents and their fluxions. This is what we did above, and is, of course,

equivalent to differentiation. In the second type, we are given a relation

connecting some fluents and their fluxions, and we are asked to find a relation

connecting the fluents alone. This is the inverse problem and is equivalent to

solving a differential equation. The idea of discarding terms containing the

second and higher powers of o was later justified by Newton by the use of

primitive limit notions.

Newton made numerous and remarkable applications of his method of

fluxions. He determined maxima and minima, tangents to curves, curvature
of curves, points of intersection, convexity and concavity of curves, and he

applied his theory to numerous quadratures and to the rectification of curves.

Newton’s awkward notation led him into long and complex calculations.

But he eventually derived simple rules for differentiation of the elementary

polynomial, algebraic, trigonometric and exponential functions.132

This process of the differential calculus provided the new mathematics

with one of its most powerful tools — allowing the calculation of all kinds of

rates of change. This included, for instance, the determination of maximum

and minimum points in any curve – which occur when the rate of change, dy
dx ,

is equal to zero.

Problems of maximum and minimum were solved by great mathematicians

long before Newton; in Euclid’s Elements VI, 27 we read:

“Of all the parallelograms applied to the same straight line and

deficient by parallelogrammic figures similar and similarly situated

to that described on the half of the straight line, that parallelogram

is greatest which is applied to half of the straight line and is similar

to the defect”

132 The rules of thumb for differentiation, in modern notation, are put in very
simple terms, and can be mastered even by high-school kids who know what

to do, but don’t really know what they are doing. Thus, for example, who was

not amazed to learn that the function y = ex, like a phoenix rising again from
its own ashes, is its own derivative. Indeed, by Newton’s own method:

ẏ = lim
h→0

ex+h − ex

h
= ex lim

h→0

{
eh − 1

h

}

→ ex.
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After a lapse of 1900 years, problems of maxima and minima were taken
up again by Fermat (1638). Fermat’s method was made more general by
Newton, who called it ‘the method of fluxions’.

Early Applications of the Calculus

(1) Numerical Approximations

Today, a student of mathematics pushes a little key on his or her pocket
calculator, and there appears π, correct to 8 decimal places, ready to be
used. Whenever higher accuracy is required, a simple computer subroutine
can produce π to hundreds decimal places in a matter of seconds. In the pre-
calculus era, π was still being calculated through the old Archimedean method
of regular polygons. The peak of this endeavor was reached in 1596, when
Ludolph van Ceulen, after devoting years of effort to the task, calculated
π to 35 significant figures, using polygons with 262 sides!

This inefficient classical method of approximating π had carried mathe-
maticians far. But in the 17th century came a mathematical explosion of epic
proportions, one of whose advances at last supplanted Archimedes’ approach
and pushed the search for π into a new phase. In 1665, young Isaac New-
ton applied his generalized binomial theorem and his newly invented method
of fluxions — that is, calculus — to get a very accurate estimate of π with
relative ease.

He considered a circle having its center at C
(

1
2 , 0
)

and radius r = 1
2 .

Since its equation is y =
√

x − x2, the area of the circular segment ABD,
with a base A(0, 0) to B

(
1
4 , 0
)
, is

S =
∫ 1/4

0

√
x

√
1 − x dx,

where D is a point on the circle at x = 1
4 , y = 1

4

√
3. Replacing

√
1 − x by

its binomial expansion and integrating term by term, Newton obtained

S =
2

3 · 23
− 1

5 · 25
− 1

28 · 27
− 1

72 · 29
− · · ·
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On the other hand, the segment ABD equals the sector ACD less the triangle

BCD, and since CD = 1
2 , BD =

√
3

4 , Newton found S = π
24 −

√
3

32 . On
comparing the two expressions for S, he obtained

π =
3

√
3

4
+ 24

[
1
12

− 1
5 · 25

− 1
28 · 27

− 1
72 · 29

− · · ·
]

.

Here, 22 terms were sufficient to give him 16 decimal places (the last term
was incorrect because of the inevitable round-off error). Since an/an+1 → 4,
the method is not suitable for the calculation of many significant figures.

Newton also devised and ingenious algorithm for approximating the roots
of a numerical equation, known today as the Newton-Raphson method. To
find a root x of an algebraic or transcendental equation f(x) = 0, one starts
with a given approximation xn and seeks an improved approximation xn+1.

Let en, en+1 be the respective errors in xn, xn+1 so that

xn = x + en, xn+1 = x + en+1.

Expanding by Taylor’s series we get

0 = f(x) = f(xn − en) = f(xn) − enf ′(xn) +
1
2

e2
nf ′ ′(xn) − · · · .

If f ′(xn) 	= 0 and if we ignore e2
n and higher powers we get

en ≈ f(xn)
f ′(xn)

; x ≈ xn − f(xn)
f ′(xn)

.

It follows that

xn+1 ≈
[

xn − f(xn)
f ′(xn)

]

+ en+1.

Discarding en+1 and setting xn+1 equal to the first r.h.s. term, one can easily

show that en+1 = ke2
n where k = 1

2
f ′ ′(x)
f ′(x) , and therefore negligible, within the

limits of the claimed accuracy. All told, an improved approximation to x is
then

xn+1 = xn − f(xn)
f ′(xn)

,

which is the Newton-Raphson formula.

It has a simple geometrical interpretation: draw y = f(x) and construct a
tangent to the curve at x = x1. This tangent intersects the x-axis at x = x2.
At x = x2 erect a line normal to the x-axis and let the line intersect the curve.
Draw a new tangent to f(x) at this point. It intersects the x-axis at x = x3,



1665 CE 1147

etc. The process can be repeated and the root of f(x) = 0 is approached with
great rapidity.

Joseph Raphson (1648–1715) published (1690) a tract, Analysis aequa-
torium universalis which essentially describes the method. Newton’s earliest
printed account appeared in Wallis’ Algebra (1685).

The chief contribution of Wallis to the development of the calculus lay
in the theory of integration. The first to realize in full generality that differ-
entiation and integration are reverse operations was Isaac Barrow (1670).
He developed a method of determining tangents that closely approached the
methods of calculus.

At this stage of the development of differential and integral calculus many
integrations had been performed, many cubatures, quadratures, and rectifi-
cations effected, a process of differentiation had been evolved and tangents
to many curves constructed, the idea of limits had been conceived, and the
fundamental theorem recognized.

What more remained to be done? There still remained the creation of a
general symbolism with a systematic set of formal analytical rules, and also a
consistent and rigorous redevelopment of the fundamentals of the subject. It
is precisely the first of these, the creation of a suitable and workable calculus,
that was furnished by Newton and Leibniz, working independently of each
other. The redevelopment of the fundamental concepts on an acceptably
rigorous basis had to outwait the period of energetic application of the subject,
and was the work of the French analyst Augustin-Louis Cauchy (1789–
1857) and his nineteenth-century successors.

With the invention of calculus, the history of elementary mathematics had
essentially terminated. There remained, however, one special preoccupation
which still kept haunting the spirit of mathematicians – the mystique of π!

Ever since the ancient Greek circle-squarer’s cult, this number held mathe-
maticians in wonder and awe and each generation devised new representation
for it. The calculus served as a novel tool to this end:

John Wallis started from the equation

1∫

0

√
1 − x2dx =

π

4

to obtain

π

2
=

2 · 2 · 4 · 4 · 6 · 6 · · ·
3 · 3 · 5 · 5 · 7 · 7 · · · (1655)

William Brouncker then followed with a novel expression of his own
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4
π

= 1 +
12

2 +
32

2 +
52

2 +
72

2 + · · ·

. (1660)

Newton used ∫
dx√

1 − x2
= arcsin x

to obtain

π

3
= 1 +

1
(3 · 23)

+
1 · 3
4

1
(5 · 25)

+
1 · 3 · 5
4 · 6

1
(7 · 27)

+
1 · 3 · 5 · 7
4 · 6 · 8

1
(9 · 29)

+ · · ·

(1665)

James Gregory (1638–1675) appeared on the scene in 1663. A Scott

mathematician and astronomer, he was one of the first to distinguish be-

tween convergent and divergent series. He expanded (1671) the infinite se-

ries

tan−1 x = x − x3

3
+

x5

5
− x7

7
+ · · · ,

which for x = 1 yields

π

4
= 1 − 1

3
+

1
5

− 1
7

+ · · ·

In 1699, the tan−1 x series was used by him, with x =
√

1
3 , to evaluate π to

71 correct decimal places. Thus Gregory preceded Brook Taylor (1712) in

series expansion of a function about a point. Note that the tan−1 x series can

be alternatively written with x = tan θ, as

θ = tan θ − 1
3

tan3 θ +
1
5

tan5 θ + · · ·

and as such, has some computational advantages.

Another important series was discovered by Nicolaus Mercator-

Kaufmann (1650)
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loge(1 + x) = x − 1
2
x2 +

1
3
x3 − 1

4
x4 + · · ·

It is sometimes referred to as the Mercator series. It was independently dis-
covered by G. Saint-Vincent (1584–1667).

The arithmetic, algebra, geometry, and trigonometry ordinarily taught
in the schools today, along with college algebra, analytic geometry, and the
calculus usually taught during the freshman or sophomore year in college,
constitute what is generally called “elementary mathematics”.

At this point, then, we have virtually concluded the historical treatment of
elementary mathematics in the form that we have it today. It is interesting to
note, without carrying the generalization too far, that the sequence of mathe-
matics courses studied in the classroom follows quite closely the evolutionary
trend of the subject.

(2) Mathematical Astronomy: orbits and gravitation

Orbits were discussed already by the Greeks, and their method of epicycles
is, in fact, an early application of Fourier series. Copernicus (1543) proposed
openly that the planets and the earth were in circular orbit round the sun.
However, astronomical observations soon began to show that his proposal was
not strictly accurate.

In 1609, Kepler showed that a planet moved around the sun in an elliptical
orbit which has the sun in one of its focii (First Law). He also showed that
a line joining the planet to the sun sweeps out equal areas in equal times
(Second Law). These laws were not accepted with enthusiasm by Kepler’s
peers: the first was given a cool reception and was thought to require further
work to confirm it. The second was ignored (!) by scientists for about 80 years.
Kepler’s Third Law, that the squares of the periods are proportional to the
cubes of the mean radii of their orbits (1619), was, however, widely accepted
from the time of its publication.

Newton (1665–6; ‘Principia’ 1687) suggested, for the first time, that
planetary motion is a result of a central force, proportional to the inverse-
square distance from the centers of the sun and the planet. He then associated
this force with a universal law of gravitation. It is possible that Hooke
(1679) independently deduced the inverse-square-law, using Huygens’ law of
centripetal acceleration (1673) and Kepler’s Third Law.

In his Principia (1687), the problem of two attracting bodies is completely
solved, showing that an inverse-square law must produce elliptical, parabolic
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and hyperbolic orbits. The observed parabolic orbit of a bright comet (visible
14 Nov 1680 – 05 Dec 1680) confirmed Newton’s theory.

For more than two point masses, only approximations to the motion of a
body could be found and this line of research led to large efforts by mathe-
maticians to develop methods to attack this 3-body problem. But even if the
earth-moon system were considered as a 2-body problem, the orbits could not
be simple ellipses; neither the earth nor the moon is a perfect sphere and so
does not behave as a point-mass. This was to lead to the development of
mechanics of rigid bodies, but even this would not give a complete accurate
picture of the 2-body problem since tidal forces mean that neither the earth
nor the moon are rigid.

Halley (1682) calculated the perturbations of Jupiter and Saturn on the
orbit of a comet which appeared in 1378, 1456, 1537, 1607 and 1682, and used
the Newtonian theory to predict its return on 13 April 1759, giving an error
of one month on either side of this date. The comet was indeed observed,
reaching perihelion on 12 March 1759.

Note that the notion that bodies fell to earth owing to some form of at-
traction exerted by the earth did not originate with Newton. His genius,
however, showed itself in extending this idea to the whole universe, formulat-
ing his result in a single law, and verifying it by examination of the motion
of the planets, comets, the earth and the moon.

Newton was worried that his model of the solar system could become grav-
itationally unstable in the long run. (He was correct, but this was not proven
until 1989). To compensate for the instability, he suggested a cyclic process
whereby the planets would be assisted by God when they were periodically
perturbed from their orbits by their mutual gravitational action.

The great mathematical physicists of the 18 th century, such as Euler,
Laplace, and Lagrange, showed that the solar system was in fact stable
to first order, the perturbations which worried Newton leading merely to a
cyclic oscillation of the planetary orbits. The periods of the oscillations were
of the order of a few thousand years, and the astronomers of the 19 th century
concluded that the solar system was stable for at least this length of time.

More than 300 years after the publication of the Principia, the full implica-
tions of Newton’s deceptively simple law of gravity, with its surprisingly com-
plicated consequences, still elude us. One has only to look at the strangeness
of a chaotically tumbling satellite like Hyperion or at the intrinsic difficulties
of calculating the moon’s itinerary or delving into the solar system’s origin,
to sense the dynamical mysteries that confront us. Apparently, even in the
classical world God, after all, ‘plays dice’. Yet, recent studies of the dynamics
of the solar system assure us that its past history certainly suggests that it
probably remains stable for geologically significant periods.
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Newton, Shakespeare and the Law of Gravitation

A sign of Shakespeare’s (1564–1616) many-sided genius is his anticipa-
tion of a scientific vision of later times: Kepler’s Third Law was discov-
ered in 1618 and Newton’s law of universal gravitation was stated by him in
1687. Yet, in Troilus and Cressida (1609) the heroine thus expressed herself
(iv.2):

“Time, force, and death,
Do to this body what extremes you can,
But the strong base and building of my love
Is as the very centre of the earth,
Drawing all things to it.”

Indeed, Newton cannot rightly be said to have discovered the law of
gravitation; he only applied it to the movements of members of the solar sys-
tem. Even Aristotle had defined weight as “the striving of heavy bodies
towards the centre of the earth”. Among men of classical culture in England
in Shakespeare’s time, the knowledge that the centre point of the earth at-
tracts everything to it was quite common. It seems that several of the men
whose society Shakespeare frequented were among the most highly-developed
intellects of the period. That his astronomical knowledge was not, on the
whole, in advance of his times is proved by the expression, “the glorious
planet Sol” (Troilus and Cressida i,3). He never got beyond the Ptolemaic
system.

Another example of this kind concerns the field of geology: Steno (1669)
first systematized geological conceptions; but he was by no means the first
to hold that the earth has been formed little by little, and that it was there-
fore possible to trace in the record of the rocks the course of the earth’s
evolution. His chief service lay in directing attention to stratification, as af-
fording the best evidence of the processes which have fashioned the crust of
the earth.

In the second part of Henry IV (iii, 1), composed in 1597, King Henry
says: –

“O God! that one might read the book of fate,
And see the revolution of the times
Make mountains level, and the continent,
Weary of solid firmness, melt itself
Into the sea! and, other times, to see
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The beachy girdle of the ocean
Too wide for Neptune’s hips; how chances mock,
And changes fill the cup of alteration
With divers liquors!”

The purport of this passage is simply to show that in nature, as in human
life, the law of transformation reigns; but no doubt it is implied that the
history of the earth can be read in the earth itself, and that changes occur
through upheavals and depressions.

There is nothing in these lines that presupposes any special or technical
knowledge; Shakespeare’s knowledge was not of a scientific cast. He learned
from men and from books with the rapidity of genius. Not, we may be sure,
without energetic effort, for nothing can be had for nothing; but the effort of
acquisition must have come easy to him, and must have escaped the obser-
vation of all around him. There was no time in his life for patient research;
he had to devote the best part of his days to the theater, to uneducated and
unconsidered players, to entertainments, to the tavern. We may fancy that
he must have had himself in mind when, in the introductory scene to Henry
V (1598) he makes the Archbishop of Canterbury thus describe his hero, the
young king: –

“Hear him but reason in divinity,
And, all-admiring, with an inward wish
You would desire the king were made a prelate:
Hear him debate of commonwealth affairs,
You would say, it hath been all-in-all his study:
List his discourse of war, and you shall hear
A fearful battle render’d you in music:
Turn him to any cause of policy,
The Gordian knot of it he will unloose,
Familiar as his garter; that, when he speaks,
The air, a charter’d libertine, is still,
And the mute wonder lurketh in men’s ears,
To steal his sweet and honey’d sentences;
So that the art and practice part of life
Must be the mistress to this theoric:
Which is a wonder, how his grace should glean it,
Since his addiction was to courses vain;
His companies unletter’d, rude, and shallow,
His hours fill’d up with riots, banquets, sports;
And never noted in him any study,
Any retirement, any sequestration
From open haunts and popularity.”
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To this the Bishop of Ely answers very sagely, “The strawberry grows un-
derneath the nettle.” We cannot but conceive, however, that, by a beneficent
provision of destiny, Shakespeare’s genius found in the highest culture of his
day precisely the nourishment it required.

1665 CE First mathematical journal appeared.

1665–1684 CE The Italian family of Cassini produced four generations
of astronomers who succeeded each other in official charge of the observatory
of Paris. The first was Giovanni Domenico Cassini (1625–1712), who first
determined the rotation periods of Jupiter, Mars and Venus (1665–1667).
During 1671–1684 he discovered 4 Saturnian satellites and in 1675 he found
the division in Saturn’s ring named after him. Made the earliest sustained
observations of the zodiacal light.

Cassini was also the first person to see the Martian polar caps, which bear
a striking resemblance to the arctic and antarctic polar caps on earth. (More
than a century elapsed, however, before William Herschel first suggested
that the Martian polar caps are made of ice.)

G.D. Cassini was born near Nice. Educated by Jesuits at Genoa, he was
nominated in 1650 professor of astronomy at the University of Bologna. In
1657 he was appointed director of waterways in the papal states by Pope
Alexander VII. Louis XIV of France applied for his services in 1669. He
died at the Paris Observatory. A partial autobiography was published by his
great-grandson, Count Cassini, in 1810.

As the quality of telescopes improved, details of the ring and of Saturn’s
cloud cover (Huygens, 1655) became visible. In 1675 G.D. Cassini discovered a
dark division in the ring that looks like a gap about 5000 km wide. Afterwards,
astronomers began to view the ring as a system of rings, known today as the
Cassini division.

Cassini was also the first to make an indirect measurement of the solar
parallax by measuring Mars’ distance from us, at its nearest approach to
earth. This he achieved by obtaining measures of the parallax of Mars at
the same time from two stations (Paris and Cayenne, South America), widely
separated on the earth’s surface. A value of 9.5 ′ ′ was obtained for the solar
parallax.

The mean distance of the earth from the sun is the average of major and
minor axes of the earth’s orbit. This distance is defined by the solar parallax
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which is the angular size of the earth’s radius as seen from the sun. Since
the earth is not quite spherical, the equatorial radius is the one used, and
because its distance from the sun varies, the mean radius, corresponding to the
mean distance, is employed. The measured quantity is called the sun’s mean
equatorial horizontal parallax (horizontal, because it is the angle between the
direction of the sun on the horizon and the direction it would have if viewed
from the earth’s center), or simply a geocentric parallax , on the baseline of
the earth’s radius.

Unfortunately, this parallax is hard to measure directly on account of the
great distance to the sun, which makes it less than 9 ′ ′. Aristarchos, Ke-
pler and Huygens tried to measure it directly, but obtained very inaccurate
results.

Cassini’s geometrical method of triangulation was an ingenious way to
circumvent a frontal attack: measure first the parallax of Mars at a smaller
distance from the sun: every 15 or 17 years, Mars comes to a point where it
is nearest to us. At its nearest, Mars’ distance from us is little more than 1

3

of our distance from the sun, and its geocentric parallax is 23 ′ ′.

Minor planets are even better subjects than Mars; they have smaller
images, and some of them approach nearer than Mars. From all geo-
metrical measures of the solar parallax, the mean value is calculated to
be 8 ′ ′.803 ± 0.001. In combination with the best value for the earth’s
equatorial radius, this gives for our mean distance from the sun the value
1 AU = 149,459,000 ± 17,000 km. Other methods, based on dynamical and
spectroscopic determinations of the solar parallax are in close agreement.

His son Jacques Cassini (1677–1756) was born at the Paris Observatory,
as was Jacques’ son, César Francois Cassini (1714–1784), as well as the
fourth Cassini, Jacques Dominique Cassini (1748–1845). He succeeded in
1784 to the directorate of the observatory, but his plans for its restoration
and re-equipment were obstructed in 1793 by the animosity of the National
Assembly. He resigned in that year and was thrown into prison in 1794, but
released after several months. He then withdrew to his estate at Thury and
died there at the age of 97.

1666 CE Foundation of the French Academy of Sciences in Paris. The
academy arose from an association of a group which used to meet at the cell
of Mersenne (1588–1648), a man active in spreading the teaching of Galileo.
The original members included Descartes, Pascal, Fermat and Gassendi
(whose commentaries on Epicuros revived the atomistic speculations of the
early Greek materialists).
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The Paris Academy, like the English Royal Society, was actively inter-
ested in all problems related to navigation, then the cornerstone of mercantile
supremacy. Under its auspices, the Paris observatory was inaugurated and
completed 3 years before the one at Greenwich. A rich harvest of discoveries
followed immediately. To Paris came Cassini from Italy and Römer from
Denmark. Cassini undertook the calculation of tables forecasting eclipses of
Jupiter’s satellites for use in determining longitude at sea (the project was
undertaken in accordance with a suggestion made by Galileo himself).

The determination of longitudes by eclipses of Jupiter’s satellites merely
depend on the known fact that the same event does not occur at the same
solar time in two places on different meridians of longitude. The tables that
Cassini prepared for calculating longitude by observations of the satellites of
Jupiter, were used by the French Navy during the first half of the 18th century.

The academy sponsored several expeditions, notably one to French Guiana
with a view to simultaneous observations on the parallax of Mars from the
Paris observatory and Cayenne (Lat. 4 ◦46′N). This expedition, which gave
the first relatively satisfactory scale of the solar system, ushered in a new era
in clock technology.

1666–1686 CE Thomas Sydenham (1624–1689, England). Physician.
A founder of clinical medicine and epidemiology. Often called “the English
Hippocrates”. Believed and taught that medicine could be learned only at the
bedside of the patient. He was a keen observer and gave excellent descriptions
of gout, scarlet fever, measles, influenza, smallpox, malaria and hysteria. He
had great faith in the healing power of nature, and he felt that fever was
nature’s way of fighting the injurious matter that caused disease.

Sydenham introduced opium into medical practice and adopted quinine for
the treatment of fevers at the time when many doctors opposed this new drug.
He was one of the first to use iron in treating anemia. Studied epidemics in
relation to different seasons, years, and ages. Insisted on clinical observations
instead of theory.

Sydenham was born at Wynford Eagle, Dorset, and studied medicine
(1642–1663) at the universities of Oxford, Cambridge and Montpellier. Served
in parliamentary forces in the Civil War. Success came slowly to him, but
eventually he gained recognition as one of the great doctors of his time.

1667 CE, July 21 Treaty of Breda to end the ‘Musk-Seed War’ between
England, Holland, France and Denmark. It ended a long war over Far-East
spice routes between the East-India companies of the respective countries.
England retained New Amsterdam (later, New York) and Holland got Suri-
nam.
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1667–1704 CE Francis Willughby (1635–1622, England) and John
Ray (1627–1705, England). Naturalists. Their plant and animal classification
were the first significant attempts since Aristotle (334 BCE) to produce
systematic taxonomy based on a variety of structural characteristics, including
internal anatomy.

From 1663 to 1666 they toured Europe to study flora and fauna and collect
specimens.

After the death of Willughby (1672), Ray completed the three-volume
Historica Generalis Planetarium (1704) in which he attempted to produce an
extensive botanical classification based on a scheme of Aristotle but incorpo-
rating many of the new plant forms discovered on the 16 th and 17 th century
voyagers of discovery. Altogether, 18,600 European species were covered.

Although it was not possible to devise a natural classification system un-
til Charles Darwin and Alfred Wallace formulated evolutionary theory
(1859), Ray’s system approached that ideal more closely than those of any
of his contemporaries and remained the best attempt at classification until
superseded by Linneaus’ taxonomic work (1735).

Ray was born in Black Notley, near Braintree, Essex. He was educated at
Cambridge and was appointed lecturer in Greek (1651), mathematics (1653)
and humanity (1655). He was elected FRS in 1667.

1668 CE John Pell (1611–1685, England). A scholar whose contribu-
tions to mathematics were worthless, but who had the good fortune to prop-
agate his name through the “Pell (or Pellian) equation” erroneously named
after him by Euler (1759) [some claim that Pell never saw his equation].

Pell was a professor of mathematics at the University of Amsterdam (1643–
1646) and a fellow of the Royal Society (1663) [his output is still carefully
preserved in the form of 40 folio volumes in the British Museum]. Both
Newton and Leibniz were happy to discuss their latest researches with
him, and Oliver Cromwell made him his political emissary to the Protestant
cantons of Switzerland. It is not clear today how he earned his reputation as
a mathematician. It is known however that for a time he was confined as a
debtor in the king’s bench prison. Pell died in abject poverty at the College
of Physicians in London.

The so-called Pellian is the non-linear Diophantine equation133

x2 − Ny2 = 1,

133 For further reading, see:

• Beiler, A.H., Recreations in the Theory of Numbers (The Queen of Mathe-

matics Entertains), Dover Publications: New York, 1964, 349 pp.
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where N is not a perfect square natural number and (x, y) are integers. Ref-
erences to individual cases of this equation occur scattered throughout the
history of mathematics. The Greeks and the Hindus of ca 400 BCE realized
that a/b was a good approximation to

√
2 when a2 − 2b2 = ±1, an equation

which, unlike a2 − 2b2 = 0, is solvable by integers.

The most curious of these occurrences is the so-called Cattle-Problem
(Problema Bovinum) of Archimedes (ca 250 BCE). It contains eight un-
knowns (numbers of cattle of various kinds) which satisfy 7 linear equations
together with 2 conditions which assert that certain numbers are perfect
squares. After some elementary algebra, the problem reduces to that of solv-
ing the equation x2 − (4, 729, 494)y2 = 1, the least solution of which is a
number y of 41 digits. The least solution of the original problem, deduced
from this, consist of numbers with hundreds of thousands of digits134.

By 130 CE, Theon of Smyrna had shown how to find infinitely many
approximations to x2 − 2y2 = 1. The Hindu mathematicians of about 800
CE also claimed to have known how to solve equations of this type. Later,
ca 1150, a completely general method was given by the Hindu mathemati-
cian Bháskara. In modern times, Fermat seems to have been the first
to state categorically that there are infinitely many solutions to the Pel-
lian. In fact, in 1657 he challenged all European mathematicians to solve
x2 − 109y2 = 1 [there was a slim chance that anybody at that time could
have found even the least solution to that equation, since we know now that
it is y = 15, 140, 424, 455, 100].

Nevertheless, William Brouncker (1620–1684, Ireland) discovered a
method to solve x2 − 313y2 = 1, which is essentially the continued frac-
tion method. Euler showed in 1759 how to obtain infinitely many solutions
of the general Pellian by using the continued fraction135 expansion of

√
N ,

134 A sphere with the radius of the Milky way could not contain all the cattle even

if they were of the size of electrons.
135 The theory of continued fractions shows that a particular solution of

x2 − Ny2 = 1

is x = pn, y = qn, where pn/qn is a certain convergent of
√

N . Moreover,

from one solution an infinite number of solutions may be found. Thus from the
least-values x = 3, y = 2 of x2 − 2y2 = 1 one derives

xn =
1

2
[(3 + 2

√
2)n + (3 − 2

√
2)n];

yn =
1

2
[(3 + 2

√
2)n − (3 − 2

√
2)n]

1√
2
.
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without giving a proof. This was left to Lagrange in 1768.

1668 CE Francesco Redi (1626–1697, Italy). Physician, naturalist
and poet. One of the first to test scientifically the theory of spontaneous
generation; showed that no maggots developed in meat protected so that flies
could not lay their eggs on it.

1668–1674 CE John Mayow (1641–1679, England). Chemist, physi-
cian and physiologist. His studies on respiration show him to have been an
investigator much ahead of his time. In Tractatus quineue medicophysici he
noted the similarities between combustion and respiration in particular that
both use only a small proportion of the available air. He suggested that in
respiration the volume of air is reduced, but air must consist of two different
gases.

Mayow was born in London and studied Medicine and Law at Oxford,
graduating in 1670. He practiced medicine in the City of Bath and was chosen
a fellow of the Royal Society (1678). The following year, after his marriage,
he died in London.

Mayow, who also gave a remarkably correct anatomical description of the
mechanism of respiration, preceded Priestley and Lavoisier by a century in
recognizing the existence of oxygen (under the guise of his spiritus nitro-ereus)
as a separate entity distinct from the general mass of the air; he perceived
the part it played in combustion and in increasing the weight of the calces of
metals as compared with metals themselves.

Rejecting the common notion of his time that the use of breathing is to
cool the heart, or assist the passage of the blood from the right to the left
side of the heart, he saw in inspiration a mechanism for introducing oxygen
into the body, where it is consumed for the production of heat and muscular
activity. His extent of influence on Lavoisier is the subject of debate.

1668–1692 CE Anton van Leeuwenhoek (1632–1723, Holland). Am-
ateur scientist who, in retrospect, deserves to be called the father of micro-
biology . He was the first in his field to leave written records of his findings.
Through tedious hand-grinding techniques, Leeuwenhoek prepared hundreds
of lenses with magnifying powers up to 300 and resolutions of about 10−3

millimeters. With these lenses he studied such diverse materials as stagnant
water (protozoa, 1676), blood cells (he discovered and described the human136

136 Red blood cells in frogs were observed (via microscope) and described in 1658

by Jan Swammerdam (1637–1680, Holland). He also described the metamor-

phosis of insects (1669).
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red blood corpuscles137 in 1673), muscle fibers, and spermatozoa. His animal-
cules (tiny animals) were described as being 1000 times smaller than the eye
of a louse (which he used as a standard measurement because its size is re-
markably constant). He opposed the popular notion that living things can
arise from dead matter.

Leeuwenhoek138 was among the first to estimate the maximal number of
people that the earth could support: he argued that if the whole planet were
inhabited with the same population density as that of Holland, the number
would reach about 13.4 × 109 individuals. This coincides with one of the
present estimates.

Revival of the Medical Sciences

Many of the medical works of the ancient Greeks and Galen reached
Western Europe by a roundabout route that took centuries to complete.

In 431 CE, the Church banished Nestorius, the heretical patriarch of Con-
stantinople, with his followers. Their descendants fled to Persia where, at
Jundi Shapur, they made the university and its medical school and hospital
a leading intellectual center. There the Nestorians translated into Syriac all

137 Leeuwenhoek had a very good idea of the size of a human blood corpuscle

(ca 7.5 × 10−6 m). He also was aware of the fact that the blood corpuscle’s

size was not growing with the size of the animal. It was later found that

it is related to the animal’s activity, namely to its oxygen intake. We know

today that the shape of the platelets evolved to meet three criteria: maximum

volume, maximum diffusion-rate and maximal flexibility; hence the special disk-

like shape which looks like a cross between pancake and doughnut.
138 There is a fascinating biography of Leeuwenhoek by Clifford Dobell. As a

young bacteriologist, Dobell was especially interested in studying the microbial

flora of the mouth. However, each time he presented his professor with what

he thought was the discovery of a new type of microbe, his professor would

shake his head and respond, “No, no, Leeuwenhoek already discovered that

one.” Finally, motivated by a mixture of curiosity and skepticism, he decided

to find out more about this man Leeuwenhoek. After 25 years of painstaking

research, Dobell published a truly inspiring biography of Leeuwenhoek in 1932.
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the Greek books they could find, including the Hippocratic Corpus and the
works of Galen.

With the rise of Islam in the 7th century, medical schools spread. In the
Eastern Caliphate of Baghdad, Muslim scholars and physicians continued to
translate Greek works, adding their own commentaries.

Islam spread through North Africa and into Spain and south-west France,
until it was stopped by the Christians at the Battle of Tours (732 CE). The
Western Caliphate was centered on the Spanish city of Cordova, which had
50 hospitals, 70 public libraries and the most renowned university of the 10th

century.

Abu al-Qasim, Khalaf (Abul Kasim, Albucasis (936–1013), Spanish-
Arab physician, was one of the greatest surgeons of the Middle Ages. Born
in Cordova. Wrote al-Tasrif, a medical compendium partly based on earlier
authors, but containing new material including remarkable illustrations and
surgical instructions; This work greatly influenced European surgery for 500
years.

Ibn Zuhr (Avenzoar, 1090–1162), Muslim physician and greatest clin-
ician of Western Caliphate. Born in Seville; his at-Taysir was influential
throughout Europe in Latin and Hebrew translations.

Maimonides (1135–1204) became physician to the Saracen sultan, Sal-
adin, whose crusader foe, Richard Coeur de Lion of England, tried in vain to
secure the Jewish doctor’s services. Maimonides studied the patient, not the
disease; he also rejected astrology and attempted to separate medicine from
religion.

The works of these men and the works of Galen were first translated from
Arabic into Latin already in the 11th century. The translation was continued
in the 12th century, when Galen was translated from the Greek. It marked
the beginning of the Western rediscovery of the original ancient texts, to be
later continued by the humanists of the Renaissance.

In the Middle Ages, medical scholars were again carrying out human dis-
section (with ecclesiastical permission), but only rarely — and in circum-
stances hardly conductive to learning. The professor, in long robes, sat on
high in a great chair reading his anatomy lecture, with the cadaver on a table
below him. A junior colleague pointed out the line of incision, and a third —
the menial demonstrator — did the actual cutting.

The new teaching methods of Mondino dei Liucci (1270–1326, Italy),
who taught at the University of Bologna, were a major advance and soon
spread to other medical schools. His anatomy textbook, the Anathomia
(1316), although full of inaccuracies, passed down from Galen and Avicenna,
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is considered the first modern work on the subject and remained authoritative
until the appearance of Vesalius’ anatomical work (1543).

In Italy, Leonardo da Vinci (1452–1519), among others, spearheaded
the new interest in anatomy. Dissecting in the secret of the night, he repro-
duced exactly what he saw, in 750 anatomical drawings. Unfortunately, his
pioneering work remained hidden for more than 300 years, and others had to
forge on without knowledge of his discoveries.

In 1543, Andreas Vesalius, a 29-year-old Flemish professor of anatomy
at Padua, published De Humani Corporis Fabrica (The Fabric of the Human
Body). Like Mondino, he dissected personally, and his work showed, for the
first time, how nerves penetrated muscles, the nutrition of bones, the true
relationship of the abdominal organs and the structure of the brain.

Two of Vesalius’ assistants also made major findings and are among the
founders of modern anatomy: Gabriele Fallopio (1523–1562) described the
internal working of the ear, the anatomy of bones and muscles, and the sex
organs: the tubes leading from the ovaries to the uterus are named after him.

Bartolomeo Eustachi (1520–1574) studied the kidneys and the head,
describing the anatomy of the teeth and, in particular, the ‘Eustachian tubes’
from the throat to the middle ear and the ‘Eustachian valve’ in the heart.

The true circulation of the blood continued to elude these pioneers. How-
ever, Miguel Serveto (known as Michael Servetus; also used pseudonyms
Michael de Villeneuve and Villanovanus, 1511–1553), a Spanish theologician
and physician. Lectured on geography and astronomy; practiced medicine at
Charlieu and Vienna (1538–1553). He included the first description of the
circulation of the blood in the lungs in a theological work entitled Christian-
ismi restituto (1553). For that he was arrested and brought to trial before the
Inquisition at Lyons; he escaped, but was apprehended at Geneva; imprisoned
at Calvin’s request and burned at the stake as heretic.

Andrea Cesalpino (1519–1603, Italy), physiologist and botanist, stum-
bled across not only the pulmonary circulation but the systemic circulation
as well (1583). Cesalpino was a professor of materia medica and director of
the Pisa botanical gardens, physician to Pope Clement VIII and professor at
Rome. [He wrote the first true textbook of botany and created first coherent
system of taxonomy, to which Linnaeus acknowledged indebtedness.]

During the Renaissance, surgery made great progress, while medicine re-
mained the province of book-oriented physicians. Many fine surgeons of the
Middle Ages had gained experience and knowledge on the battlefields of Eu-
rope; for example, the British surgeon John Arderne (1307–1390), who
served in the Hundred Year’s War — and dealt not only with slashes and
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punctures from sword and lance, but also with gaping, dirt-filled wounds
caused by bullets from the newly invented guns and artillery.

As the Black Death swept through Italy in 1347 and 1348, taking its ter-
rible toll, the pretensions of the physicians and barber-surgeons were stripped
bare139. But within 75 years or so, there was a new air of inquiry in medicine,
as the Renaissance began.

To bolster up their status, physicians created professional structures for
themselves, in order to prevent anyone not properly trained (and, in effect,
women and Jews) from practicing. Thus, in 1518, six prominent physicians
in London were granted a charter by the King to form the Royal College of
Physicians; it could license doctors, and prosecute, fine and imprison, unli-
censed practitioners.

Philipp Aurelus Theophrastus Bombastus von Hohenheim (1493–
1541) was a German alchemist and physician who had styled himself Paracel-
sus — implying that he was greater than the great Roman encyclopedist
Celsus. He had earned his niche in medical history as standard bearer for
freedom of scientific inquiry, the central position of the patient in medicine
and above all a forerunner of pharmaceutical chemistry. His opinion of the
state of contemporary medicine is reflected in his conclusions:

• “When I saw that nothing resulted from doctor’s practice but killing and
laming, that they deemed most complaints incurable. . . I determined to
abandon such a miserable art and seek truth elsewhere”.

• “The best of our popular physicians are the ones who do the least harm.
But unfortunately some poison their patients with mercury, and others
purge or bleed them to death. There are some who have learned so much
that their learning has driven out all their common sense”.

To emphasize his point, he pitched the books of Galen, Avicenna and
other masters of medieval medicine on to a bonfire in a public square.

Paracelsus, in many ways ahead of his time, believed in the power of nature
and the imagination to cure the body and the mind. The patient had to be
treated as a whole: diet, surroundings, the behavior of doctor and carers —
all these and more could have a profound effect on recovery. In his own words:

• “Medicine does not consist of compounding pills and drugs of all kinds,
but it deals with the processes of life, which must be understood before
they can be guided”.

139 Small wonder that Shakespeare wrote in Timons of Athens (1607) — “Trust

not the physician, His antidotes are poison”.
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The 15th- and 16th-centuries ‘Rebirth’, or Renaissance, in medicine cen-
tered on the rediscovery of the ancient Greek and Roman works in their
original form and the discovery of the fabric of the body.

On this more solid basis, medicine grew into the age of enlightenment
— two centuries that saw Britain’s Glorious Revolution (1688), America’s
Declaration of Independence (1776) and the French Revolution (1789). But
these events did not occur in a vacuum. They were reflections of an attitude
of mind: a rejection of social and religious constraints; a belief that progress
in science and technology would lead to a utopian existence; and, as far as
medicine is concerned, a determination that one day all diseases would be
conquered — or so they were convinced.

Scientific and technological progress certainly played its part in medicine,
as Galen’s erroneous theories were finally overthrown, the circulation of the
blood was understood, microbes were revealed by the microscope, and small-
pox vaccination was introduced.

Galen believed that the body daily manufactures and eliminates large
quantities of blood. In 1628 this theory was overthrown by the British doctor
William Harvey (1578–1657). Actually, Harvey made his discovery already
in 1603, but delayed the publication of his results because he was not sure
about the reaction of the medical establishment and needed more time to
design a striking experimental proof.

In 1661, Robert Boyle (1627–1691) rejected Aristotle’s 4-elements and
instead proposed an experimental theory of the elements, thus transforming
alchemy into scientific chemistry. In addition he revealed that air was neces-
sary for life. In 1667, Boyle’s former assistant Robert Hooke (1635–1703)
demonstrated that the key to respiration was the alteration of blood in the

lungs.

At the end of the 16th century, the compound microscope was discov-
ered by the Dutch spectacle makers Hans and Zacharias Jansen. Us-
ing one, Robert Hooke first described cells, and in 1660, an Italian, Mar-
cello Malpighi (1628–1694), discovered the missing link in Harvey’s theory:
the tiny capillaries that connect the arteries and veins. However, it was a
Delft draper, Anton van Leeuwenhoek (1632–1723), who popularized the
medical use of the microscope, describing spermatozoa, red corpuscles and
stripped voluntary muscles, as well as protozoa and bacteria.

In 1709, Gabriel Daniel Fahrenheit (1686–1736), a German physicist,
invented the alcohol thermometer and, five years later, the mercury thermome-
ter and a temperature scale that stood medicine in good stead for almost three
centuries.
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Gradually, scientific and medical research ceased to be an activity of iso-
lated men of genius, but more organized in academies — such as the Royal
Society in London (1660) [which grew out of informal tavern meetings of a
group Boyle called the ‘Invisible College’; the Accademia dei Lincei in Rome
(1661) and the Académie Royale des Sciences in Paris (1666).

1669 CE Erasmus Bartholinus (1625–1698, Denmark). Physician,
mathematician and physicist. Discovered the phenomenon of double refrac-
tion of light in an anisotropic crystalline substance. Bartholinus obtained
some beautiful crystals from a sailor who collected them in Iceland, and when
he viewed small objects through them, he found that the objects appeared
double.

Bartholinus discovered the origin of this phenomenon140; if one sends a
narrow beam of light — a light ray — into an ordinary transparent medium
such as a piece of glass, it is refracted and then proceeds as a single beam.
However, when it is refracted at the face of the Iceland spar (calcite, CaCO3;
an anisotropic trigonal system) a second beam is generated, and this is the
reason for the appearance of a second image. Bartholinus suggested that one
of the rays, which resembles the usual one in some ways, be called the ordinary
ray and the other one, which behaves in a somewhat unusual fashion, be called
the extraordinary ray.

140 Huygens contributed to the understanding of double refraction. In his book

Traité de la Lumière (1690) he assumed that when light is incident on the

Iceland spar, each element of it produces secondary waves surfaces which are

no longer spherical but rather consist of two geometrical surfaces (sheets); one

of the sheets is again spherical and is associated with the ordinary rays. The

other sheet has the form of an ellipsoid and is associated with the extraordinary

rays. Huygens’ treatment is rather incomplete, and while of appealing form,

is deceptively simple. It presupposes that a diverging bundle of rays which

originates from a point source behaves in the same way as a system of mutually

independent plane waves. Lamé (1852) was the first to recognize that this

presents a mathematical problem of wave propagation in an anisotropic medium,

which is by no means simple. In addition, the existence of double refraction

posed difficulties for contemporary theories of light, and was not explained until

the early 1800’s.
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Bartholinus noted that rotating the crystal will cause one image to remain
stationary while the other appears to move in a circle about it, following the
motion of the crystal.

He was born at Roskilde. His father Gaspard (1585–1629) was a well-
known physician and a professor of medicine at Copenhagen. Bartholinus
spent 10 years visiting England, Holland, Germany and Italy, and later filled
the chairs of mathematics and medicine at Copenhagen. He was Römer’s
father-in-law.

1669 CE Nicolaus Steno (Niels Stenson, 1638–1686, Denmark, Italy).
Danish-born naturalist and physician. The first scientist to notice that the
horizontal stratification of rocks holds the key to their history. Made the first
clear statement that layered rocks show sequential changes and thus laid the
foundation to the time-stratigraphic record.

His fame rests on De solido intra solidum naturaliter contento, published
at Florence in 1669. From his work on the mountains of Western Italy, Steno
realized that the principle of superposition in the stratified rocks was the es-
sential key. Steno also realized the importance of another principle — original
horizontality — namely, that strata are always initially deposited nearly hor-
izontally although they may be found dipping steeply. In his book, Steno
described various gems, minerals and fossils enclosed within solid rocks. He
found that the angles between the faces of quartz crystals were the same even
though the crystals had different shapes.

Steno was born in Copenhagen and studied medicine and anatomy there
and in Paris. After a period of travel he settled in Italy (1666), at first as
professor of anatomy at Padua, and then in Florence as house-physician to
grand-duke Ferdinand II of Tuscany. He returned to his native city in 1672,
but left again for Florence and was ultimately made apostolic vicar of Lower
Saxony. He died at Schwerin in Mecklenburg.

1670 CE Gabriel Mouton (1618–1694, France). Mathematician. First
to suggest the metric system, the decimal system, and the treatment of series
by the method of finite differences ahead of Leibniz (1673).

Mouton was born in Lyon, took the holy orders and spent his whole career
as the vicar of the Church of St. Paul in Lyon. His most famous work Ob-
servationes (1670) studied interpolation. His methods of interpolation were
similar to those used by Briggs in the construction of his log tables. He pro-
duced 10 place tables of logarithmic sines and cosines and an astronomical
pendulum of remarkable precision. He suggested (1670) a standard unit of
length based on the length of the arc of one minute of longitude on the earth’s
surface and divided decimally.
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1671 CE Jean Richer (1630–1696, France) and Giovanni Domenico
Cassini (1625–1712, France-Italy) measured the scale of the solar system
(earth-sun distance) from the parallax of Mars at Cayenne and Paris. Their
result was about 10 million km short of the actual figure.

Richer’s second important work was to examine the periods of pendulums
at different point on the earth. He examined the period of a pendulum at
Cayenne and found that it beat more slowly than in Paris. From this he
deduced that gravity was weaker at Cayenne, so it was further from the center
of the earth than was Paris.

History of measurements of absolute distances on earth
and inside the Solar System (ca 585 BCE–1671 CE)

Thales (fl. 585 BCE) measured the height of the Pyramid of Cheops
(146 m) by measuring the length of its shadow at a time when the height of
a nearby stick of known length was equal to the length of its shadow.

Eratosthenes (ca 235 BCE) estimated the length of the earth’s circum-
ference to be 160 km in excess of the present accepted value: he found that
when the sun was overhead at Syene (Aswan), it was about 7 ◦ from the verti-
cal in Alexandria, about 800 km away. Assuming the sun rays to arrive almost
parallel to both places, the circumference is ≈ 360

7 × 800 = 40, 000 km. From
the circumference, the diameter of the earth can be calculated by the familiar
formula D = 40,000

π . Taking Euclid’s value π = 3 1
7 , one finds D = 12, 700 km.

There is a beautiful simplicity about the method which Eratosthenes used.
It invokes no mathematical principles which had not been current in the
Greek-speaking world two centuries before his time; and its importance to
posterity lies less in any direct impetus to theoretical inquiry than to the fact
that it provided an indispensable basis for any successful attempt to measure
the distance of the earth from the sun or the moon, as attempted by his
contemporary Aristarchos (ca 280–240 BCE) with inadequate information.

At about 150 BCE, Alexandrian astronomy and geography received an
enormous impetus from the work of three contemporaries: Hypiscles, Hip-
parchos and Marinos. The first introduced the Babylonian system of angu-
lar measurement (360 ◦to a full circle) and the sexagesimal fractions.
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Hipparchos introduced a new system of mapping the position of stars by

guide lines comparable to our familiar system of terrestrial latitude and longi-

tude. To this end he needed, and had indeed constructed, a table of trigono-

metrical ratios (probably by the half-angle formulae cos A
2 =

√
1+cos A

2 ).

Marinos is notable as the first to introduce the use of circles of latitude

and longitude to map the habitable globe as then known.

Now, in 130 BCE, Hipparchos made an observation at Rhodes, from which

he obtained a remarkable accurate estimate of the earth-moon distance. His

method has been suggested by Aristarchos, about 150 years later.

The method involves a clear understanding of the positional relationship of

sun, earth, and moon. First, he knew that sun and moon subtended almost

exactly the same angle α at the earth. Hipparchos measured this angle to

be 0.553 ◦ ( ≈ 1
103.5 radian); he also knew what Aristarchos before him had

found — that the sun is far more distant than the moon. Hipparchos used

this knowledge in an analysis of an eclipse of the moon by the earth: Assume

that centers of the sun, earth and moon (in this order) are collinear, and

that the rays coming from the extreme edges of the sun and tangent to the

earth, cut the moon’s circular orbit at two points A and B. Let the angle

subtended between these two boundary rays be α. The moon passes through

the shadow from A to B, and from the measured time that passage took,

Hipparchos deduced that the angle subtended at the earth’s center by the

arc BA was 2.5 α. The rest is simple geometry: if the distance from the

earth’s center to the moon is D, the length of the arc AB is AB = 2RE − αD

(RE = earth’s radius). Also AB/D = 2.5α. With α = 1
103.5 , Hipparchos

found D/RE ≈ 59.

Nothing new happened in the field of distance measurements in the solar

system until 1671 CE. In that year, Domenico Cassini and Jean Richer

measured for the first time an absolute earth-sun distance from the parallax
of Mars at Cayenne and Paris. Using a Galilean telescope and the theory of

Kepler, their result was 10 million km short of the actual figure of about

150 million km.

1672–1715 CE Gottfried Wilhelm von Leibniz (1646–1716, Ger-
many). Mathematician, logician, scientist, philosopher, theologian, jurist and
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diplomat — a Universal man with a wide range of interests, who deliber-
ately ignored boundaries between different disciplines and believed in cross-
fertilization of ideas, which he saw as essential to the advance both of knowl-
edge and wisdom. Leibniz’s most immediate influence was as a mathemati-
cian. His philosophical influence was rather less direct. As a logician he was
far ahead of his time.

His contributions to the various disciplines are:

Mathematics (1672–1700)

• Discovered the equations for the curves known as catenary , isochrone
and brachistochrone. Laid (1694) the foundations of the theory of en-
velopes141.

• Discovered the basic principles of topology, for which he coined the Latin
name: analysis situs. He saw it as complementing the analytic geometry
of Fermat and Descartes. His ideas in this field remained dormant until
the 19th century.

141 Previously, Huygens (1673) originated the idea of evolutes of plane curves

(envelope of normals to a given curve). However, the concept may be traced

to Apollonios (ca 200 BCE) where it appears in the fifth book of his Conic

Sections.

While Leibniz (1694) and B. Taylor (1715) were first to encounter singular

solutions of differential equations, the geometrical significance of envelopes was

first indicated by Lagrange (1774). Particular studies were made by A. Cay-

ley (1872) and G.W. Hill (1888).

The envelopes of a family of plane curves f(x, y; α) = 0 are determined by

the elimination of α between the simultaneous equations f(x, y; α) = 0 and
∂

∂α
f(x, y; α) = 0.

If a family of curves is given in terms of two parameters by the equations

f(x, y; α, β) = 0 g(α, β) = 0, the envelopes of this system are determined

with the aid of the third equation ∂f
∂α

∂g
∂β

− ∂g
∂α

∂f
∂β

= 0.

Examples:

• The family of straight lines x cos α+y sin α − p = 0. Differentiation of this

equation w.r.t. α yields −x sin α + y cos α = 0. The elimination of α between

them reveals that the envelope is the circle x2 + y2 = p2.

• The trajectory of shells fired from a gun at velocity v0 at angular elevation

α with the horizon, is given by the parabola y = x tan α −
(

g

2v2
0 cos2 α

)
x2. The

envelope of all trajectories is the safety parabola y = 1
4a

− ax2, where a = g

2v2
0
.

No point outside it is within reach of shells fired from a gun with velocity v0.

• Consider the envelope of a line of constant length moving with its ends

upon the two coordinate axes: x
a

+ y
b

= 1 where a2 + b2 = 1. The resulting

envelope is the astroid x2/3 + y2/3 = 1.
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• Improving on Pascal’s calculating machine, he devised one which per-
formed the four fundamental operations and also extracted roots (1673).

• Invented binary arithmetic142 (1700). He failed, however, to generalize it
into a theory of modular arithmetic with its own special theorems; nor
did he try to design a calculating machine which used it143. [Leibniz was
not the first to discover the binary system. It has already been thought
of by Thomas Harriot early in the century.]

• Discovered the infinite series representation for π:

π

4
=

1
1

− 1
3

+
1
5

− 1
7

+ · · · .

In his efforts to sum these series (squaring the circle!), he discovered the
‘Leibniz test’ for convergence.

• Discovered the infinitesimal calculus independent of Newton144 (1673).
His discovery arose from the concept of an infinite series converging to a

142 After thinking that he had invented binary numerals, Leibniz was astonished

to find that an ancient Chinese book, the I Ching , contained a set of numbered

figures, called hexagrams. Each hexagram consists of 6 lines, each of which is

either solid or broken. The hexagrams are related to the binary sequence in a

simple way.
143 It may seem odd to us, in the age of the computer, that someone who invented

both a calculator and binary arithmetic should not have put the two together,

and come up with something closer in principle to the modern computer. But in

the context of the technology of that time, a binary machine would only increase

Leibniz’s difficulties. There would have been more wheels, more friction, more

carrying, and there would have had to be an extra mechanism for translating

between binary and decimal, in order to make the calculator usable by ordinary

people. The binary system came into its own only with the advent of electronics.

As far as Leibniz was concerned, the greatest significance of his discovery was

metaphysical, or indeed mystical, as showing how the whole universe could be

seen as constructed out of number.
144 Newton beat him to it by 9 years, though Leibniz was first to publish the discov-

ery in 1684. If matters had rested with Newton and Leibniz, there would have

been no quarrel between them. But early in the 1700’s, their supporters on op-

posite sides of the channel started squabbling about the respective merits of the

two systems and about the priority of their discovery. Newton and Leibniz were

soon drawn into the dispute, which became unpleasantly acrimonious. In par-

ticular, Leibniz had to defend himself against charges of plagiarizing Newton’s

letters during the early 70’s, and of subsequently tampering with the evidence.

It is beyond reasonable doubt that Leibniz’s discovery was in fact independent,

but the nationalistic fervor aroused by the dispute, and the incontrovertible
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limit: the differential calculus was a technique for determining the limit
of such a series, and the integral calculus for finding its sum. But he
never thought of the derivative as a limit.

Newton’s approach was basically geometrical and his notation clumsy and
difficult to work with. Leibniz’s approach was algebraic, introducing such new
notions as: differential and function. His notation, which we still use today,
was clear and elegant. it was based on the letter for ‘difference’ (as in dy

dx ),
and the contemporary long s (

∫
) for ‘sum’, or integral145.

• Made important contributions to the theory of determinants, the calculus
of finite differences, and the theory of numbers146.

• In a letter to Huygens (first published in 1833) he discussed the possibil-
ity of creating a system which would serve as a direct method of space
analysis. It can be ranked as the first conceptual forerunner of vector
analysis.

Mechanics (1671–1695)

While Newton proposed to measure motion by momentum, Leibniz argued
for another quantity, the “vis viva”, which — except for the factor 1

2 — is
identical with our “kinetic energy”. Leibniz replaced the Newtonian equation
by the equation that “the change of kinetic energy is equal to the work done
by the force”. The ideas of Leibniz were in harmony with later developments
in analytical mechanics. Both the kinetic energy and the work of the acting
forces could easily be generalized from one single particle to an arbitrary
system of particles. The work of the forces could be replaced by another
more fundamental quantity, the negative of the “potential energy” (a term
coined by W.J.M. Rankine in 1853). Both kinetic and potential energy were
quantities which could characterize a system as a whole, and later became
essential in the variational formulation of the laws of mechanics.

Symbolic logic (1666–1696)

At the age of 20, he earned the right to teach at the University of Leipzig
with his paper entitled: “Dissertatio de Arte Combinatoria”, his first thoughts
on the subject of symbolic logic. He later returned to his fundamental idea of

evidence in favor of Newton’s priority, had disastrous consequences for English

mathematics. While the Continental mathematicians of the 18th century made

great strides in the theory of the calculus, and in its applications to Newtonian

physics, the English stuck loyally to Newton’s own much less suitable method

of fluxions, and remained in a backwater for over a century!
145 Their ‘official’ use started only in 1812 due to the reform of George Peacock.
146 There is evidence that Wilson’s theorem [For any prime p, (p−1)! ≡ −1(mod p)]

was known to Leibniz long before 1770.
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‘Language of Concepts’ again and again, clarifying, emending and implement-
ing it. Two fragments found among his papers contain Leibniz’s introduction
to symbolic logic. They clearly establish him as one of the founders of the
science. It was not until the work of George Boole (who probably did not
know of Leibniz’s paper) that an algebra came into existence which can be
called a realization of Leibniz’s ideas.

Philosophy

His philosophical system stands at the interface between the holistic and
vitalist world-view of the Renaissance, and the atomistic and mechanistic
materialism that was to dominate the 18th and 19th centuries.

Leibniz grasped that space and time were merely phenomenal things (ap-
pearances) and not genuine realities. He called these entities ‘monads’ (Greek
for unity).

Leibniz was born in Leipzig. His father, Friedrich Leibnütz (1597–1652)
was a professor of philosophy at Leipzig University. His mother (1621–1664)
was Friedrich’s third wife. Though the name Leibniz, or Lubeniecz, was
originally Slavonic, his ancestors were German, and for 3 generations had
been in the employment of the Saxon government.

At an early age he mastered Latin, Greek and scholastic philosophy, which
formed the basis of his later massive erudition in the classics. At the age of
14 he enrolled in the University of Leipzig, following the standard 2-year arts
course which included philosophy, rhetoric, mathematics, Latin, Greek and
Hebrew.

He devoted the next 3 years to legal studies, and in 1666 applied for the
degree of doctor of law. Refused on the ground of his youth, he left his
native town forever. The doctor’s degree refused him there was conferred
on him at once (1666) at Altdorf — the university town of the free city of
Nüremberg — where his brilliant dissertation procured him the immediate
offer of a professor’s chair. But by that time Leibniz had changed his mind
about an academic career, and decided instead to become more involved in
the outside world. It is possible that already at that stage of his mental
development, he became hostile to universities as institutions because their
rigid faculty structure was bent on intellectual and scientific specialization.

During 1667–1672, Leibniz stayed for some time in Nüremberg where he
was associated with a secret brotherhood of alchemists147. He soon left them
147 To his dying day, Leibniz retained a close interest in alchemy . Unlike Newton,

he never did actual laboratory work. His declared motives were scientific, but

in fact he hoped to make his fortune from it. Thus, in 1676 he entered into a

formal profit-sharing agreement with two practicing alchemists, his side of the

bargain being to provide capital and technical advice.
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to become an Assessor in the Court of Appeal of the Elector of Mainz, where
he spend the next five years. In the course of his work there he also applied his
mind to literary148 and political activities. Thus he devised a plan to distract
Louis XIV away from Northern Europe with an enticing scheme for a French
conquest of Egypt (the strategy he suggested was almost identical to the one
actually carried out by Napoleon a century and a half later). He was then
sent to Paris to try and lay it before the French government.

Strongly attracted to the society of the leading scientists and mathemati-
cians in Paris, Leibniz renewed his mathematical studies under the guidance
of Huygens. He attacked the current problems in mathematics and science149

with characteristic gusto (1672–1676) and by the time he left Paris he had
already made most of the discoveries that were to earn him his place in the
history of mathematics.

In 1673 he went to London and made personal contacts with members
of the Royal Society. He showed them his mechanical calculator, which im-
pressed then considerably (at the time even educated people rarely understood
multiplication, let alone division!!). His trip to London was cut short by the
news of the sudden death of his patron, the Elector of Mainz. He sought a
research post attached to the Paris Academy, but it was denied him. He then
accepted the post of Court Councilor at the service of the Duke of Hannover.
Leibniz remained in the service of the Brunswick family for 40 years to the
day of his death (1676–1717).

On his way back to Germany he had 4 days of intense discussions with
Baruch Spinoza at The Hague (1676). His work in the service of the Duke
of Hannover can be divided into 3 periods: During 1676–1686 he was the
chief librarian of the great Hanover Library, where his duties were onerous
but fairly mundane: general administration, purchase of new books and cat-
aloging150.

148 All his life he prided himself on his Latin poetry and boasted that he could recite

the bulk of Virgil’s Aeneid by heart. In 1676 he translated Plato’s Phaedo and

Theaeteus into Latin.
149 While in Paris, Leibniz was full of technological ideas: a device for calculating a

ship’s position without using a compass or observing the stars, a compressed-air

engine for propelling vehicles or projectiles, a ship which could go under water

to escape enemy detection and various improvements to the design of lenses.
150 Leibniz supported himself as a librarian (1676–1717), helping the dukes of

Brunswick-Lüneburg in Hanover arrange their collection of 3000 volumes. Then

he went on to organize the 30,000-volume ducal Library of Wolfenbüttel, for

which he provided one of the first comprehensive alphabetical author catalogue.

Leibniz signaled the transition from the royal and ecclesiastical collection for
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In the second period (1687–1697) he became the historian and archivist
of the House of Brunswick: his genealogical researches in Italy and elsewhere
in Europe established the Hanoverian claim for a succession to the throne of
Great Britain. He spent much time traveling. Although he had his own coach,
it is nevertheless remarkable that he managed to write letters while on the
move151. In this phase of his life he interacted strongly with the Bernoulli
brothers, Jakob and Johann, exchanging mathematical challenges with them;

The ubiquitous practice of issuing challenge problems was actually inau-
gurated at this time by him. They were at first intended merely as exercises
in the new calculus.

Thus, in 1687, Leibniz proposed the problem of the isochrone curve152: it
was solved by ‘the brothers’, Huygens, and himself. Jakob Bernoulli returned
the challenge with the Catenary problem153 (1690), which was readily solved
by Huygens, ‘the brothers’ and himself (quite an exclusive club!). During
1698–1714, Leibniz was engaged in diplomatic tasks for Hannover in Vienna,
London, Berlin and Paris. He also promoted scientific societies and academies.

the privileged few to the library serving everyone.

In 1856, Anthony Panizzi (1797–1879) became the Principal Librarian of the

British Museum, establishing an egalitarian Reading Room there. Thomas

Carlyle (1795–1881) established the London Library (1841), where books could

be checked out by subscribers – the first circulating library in the world. But

the public library “in every town”, which Carlyle demanded, was yet to come.

Panizzi still required users to present letters of introduction to enter the Reading

Room and his books did not circulate. Andrew Carnegie (1835–1919) would

spread public libraries across the United States of America.
151 Leibniz was an avid letter-writer. He was corresponding with intellectuals from

all over Europe, sometimes with hundreds of people at a time, on almost every

subject under the sun — science, mathematics, law, politics, religion, philoso-

phy, literature, history, linguistics, numismatics. He was obsessive about pre-

serving his letters, and over 15,000 survived.
152 A particle descends a smooth curve under the action of gravity, describing equal

vertical distances in equal times, and starting in a vertical direction. Taking x

as the horizontal axis and y in the vertical (downward) direction with the initial

condition ẋ(0) = 0, ẏ(0) = V , the energy equation yields 1
2

(
ds
dt

)2
= gy + 1

2
V 2

or ẋ2 + ẏ2 = 2gy + V 2, while the constraint is y = V t. Eliminating ẏ = V

and integrating leads to y3 =
(

9V 2

8g

)
x2, a semi-cubical parabola.

153 To find a curve formed by a chain of uniform weight suspended freely from its

ends
[
y = acosh

(
x
a

)]
.



1174 3. The Clockwork Universe

During his last years Leibniz was rather miserable and lonely. He was
getting too infirm either to travel or to start a new life elsewhere. He died
peacefully in the presence of his secretary and coachman.

1672–1682 CE Nehemiah Grew (1641–1712, England). Physician
and botanist. A founder of plant anatomy. First to hypothesize in print on
sex in plants.

Through microscopic observations he discovered sexual reproduction in
plants and identified the stamen and pistil as the male and female organs
respectively, as well as representing detailed drawings of plant anatomy.

Author of Anatomy of Plants (1682). It was the first complete account of
the subject and remained the most authoritative work in this field for over
150 years.

Grew was born in Atherstone and educated at Cambridge and Leiden.

1672 CE Regnier de Graaf (1641–1673, The Netherlands). Physician
and anatomist. One of the founders of experimental physiology. Discovered
the Graafian vesicles of the mammalian female gonad, coining the term ‘ovary’
for the organ.

He was born in Schoohoven and studied at Utrecht and Leiden.

1673–1685 CE Phillipe de la Hire (1640–1718, France). Mathe-
matician, astronomer, physicist, naturalist, architect and painter. In his book
Sectiones conicae he argued for the power and potential of projective geom-
etry154 and thus secured its place in mathematics. His work had influenced
Newton, yet during de la Hire’s lifetime, the mathematical community was
not convinced that the synthetic methods of Desargues (1639) can match in
power the analytic methods of Descartes (1637). The father of de la Hire, a
well-known painter, was a student of Desargues.

154 De la Hire’s theorem: On a line L outside a conic (e.g., ellipse) and coplanar

to it, we choose three points and draw from each of these points two tangents

to the conic; connect the opposite points of tangency by lines; then these three

lines meet at a point Q, dual to L.
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Table 3.5: Greatest Mathematicians of the 17
th

century

Name Nat. Life-span Major Contribution

Joost Bürgi SW 1552–1632 Logarithms (1603); Decimal
and exponential notations

John Napier E 1550–1617 Logarithms (1614)

Thomas Harriot E 1560–1621 Mathematical symbols

Henry Briggs E 1561–1630 Decimal logarithms;
Logarithmic tables (1624)

Johannes Kepler G 1571–1630 Forerunner of calculus (areas
and volumes, 1615); New
polyhedra; Applied conic
sections.

William Oughtred E 1575–1660 Mathematical symbols;
Logarithmic slide-rule (1622)

Edmund Gunter SW 1581–1626 Cosine, cotangents (1620),
slide-rule (1620)

Girard Desargues F 1591–1661 Early development of
synthetic projective
geometry

Albert Girard D 1595–1632 General algebraic equations:
roots and coefficients;
Fundamental theorem of
algebra (conjecture).

Rene Descartes F 1596–1650 Coordinate geometry;
Topology (v − e + f = 2);
Algebraic notation.

F.B. Cavalieri I 1598–1647 Precursor of the integral
calculus

Pierre de Fermat F 1601–1665 Modern number theory;
Modern analytic geometry;
Differential calculus;
Probability theory.
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Table 3.5: (Cont.)

Name Nat. Life-span Major Contribution

G.P de Roberval F 1602–1675 Pre-calculus method for
tangents and areas.

E. Toricelli I 1608–1647 First notion that
differentiation is the inverse of
integration; envelopes of
families of curves.

John Wallis E 1616–1703 Pre-calculus integration;
Concept of limit; First
geometric representation of
complex numbers.

Nicolaus Mercator E 1620–1687 Mercator series.

William Brouncker E 1620–1684 Continued fractions; ‘Pells’
equation; Infinite series.

Johann H. Rahn SW 1622–1676 Mathematical symbols

Vincenco Viviani I 1622–1703 Geometer, physicist and
inventor of instruments.

Blaise Pascal F 1623–1662 Calculating machine;
Mathematical theory of
probability; Projective
geometry; Binomial triangle;
Cycloid.

Pietro Mengoli I 1626–1686 Infinite series; Divergence of
harmonic series; Infinite
product for π.

Christiaan
Huygens

D 1629–1695 Probability; Rational
approximation for gear-ratio
by continued fractions.

John Hudde D 1628–1704 Algebraic equations with
literal coefficients standing for
negative and positive
numbers.
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Table 3.5: (Cont.)

Name Nat. Life-span Major Contribution

James Gregory E 1638–1675 Convergent and divergent
infinite series (tan−1 x)

Isaak Barrow E 1630–1677 Pre-calculus differentiation:
tangents and rectification of
curves; maxima and minima.

P. de la Hire F 1640–1718 Projective geometry; pole and
polars.

Seki Kowa N 1642–1708 General determinant theory

Isaac Newton E 1642–1727 Creation of workable calculus
(1671)

G.W. Leibniz G 1646–1716 Infinitesimal calculus
(1673–1676); Calculus of finite
differences; Binary
arithmetics; Early topology;
Theory of determinants
(1698); Symbolic logic; Theory
of envelopes; Theory of
numbers.

Giovanni Ceva I 1647–1734 Synthetic geometry (Ceva
theorem)

Walter von
Tschirnhausen

G 1651–1708 Theory of equations; “The T.
Transformation”

Michel Rolle F 1652–1719 Rolle’s theorem (1691)

E = England; I = Italy; G = Germany; F = France;
D = Holland; N = Japan; SW = Switzerland.
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1675 CE Scarlet fever first identified or described with accuracy.

1675 CE Olaus Römer (1644–1710, Denmark). Astronomer. Made
the first measurement of the velocity of light — 309,000 km/sec.

Previously, Kepler and Descartes believed it to be infinite. Galileo
failed to devise a successful method of measurement. Römer used observations
based on the times of eclipses and occultations of the four large satellites of
Jupiter. The four moons could be easily seen with the telescopes of that day.
Römer compiled a table of their periods of revolution around the planet. He
could predict the times at which each was eclipsed as it moved into Jupiter’s
shadow or occulted when it passes behind the planet’s limb. He found that
these phenomena occur sooner than expected during part of the year and later
then expected during the other part, and correctly inferred that the advance
or delay of the occurrence was due to the finite velocity of light.

Römer’s observations showed that there is a difference of 1000 seconds at
two dates roughly 6 months apart. In 1675, the diameter of the earth’s orbit
was known to be 309 million km; hence Römer’s value for the speed of light
in free space.

In 1849 Armand Hippolyte Louis Fizeau (1819–1896, France) made
a first laboratory measurement of the velocity of light, by synchronizing the
rate of a rapidly rotating toothed wheel with the reflection of a light beam
so as to allow the beam to enter and leave through two adjacent slits. Again
the result was close to 300,000 km/sec. Later measurements by Michelson
(1879, 1887, 1926) improved it gradually to within an error of less than 10−5

percent. The meter is nowadays defined by means of a value of c, agreed upon
by international committee to be c = 299, 792.458 km/sec.

1675 CE Foundation of the Royal Observatory at Greenwich. This date
indicates the beginning of the precise standardization of time measurements,
needed primarily for navigation.

1678–1692 CE Giovanni Ceva155 (1647–1734, Italy). Mathematician.
Discovered one of the most important results on the synthetic geometry of the
triangle between Greek times and the 19 th century. His geometrical treatise
De lineis rectis (1678) contains a theorem now known by his name: “If three
concurrent lines (known as Cevians), one from each vertex of a triangle, are
drawn, they divide the opposite sides into six segments such that the products

155 A town in Piedmont, Italy, in the province of Cuneo. In the Middle Ages it was

a strong fortress defending the confines of Piedmont towards Liguria, but the

fortifications on the rock above the town were demolished (1800) by the French.
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of three segments having no common end is equal to the product of the three
other segments”.

The converse of Ceva’s theorem is also true.

Ceva’s theorem is a direct generalization of the corresponding theorems
in elementary plane geometry and marks a point of departure of the new
European geometry away from the classical Greek tradition. Its applications
lead immediately to some important properties of the triangle156.

Giovanni was in the service of the Duke of Mantua; known also for his
calculations of centers of gravity, areas and volumes of geometric figures. His
brother Tomasso Ceva (1648–1737) was a teacher of mathematics in the
Jesuit College at Milan, and wrote on the cycloid and mathematics in general.

1678–1718 CE Edmund Halley (1656–1742, England). Astronomer-
royal. A close friend of Isaac Newton and active in many areas of astronomy.
Halley is best known for his pioneering study of comets.

After what he termed a ‘prodigious deal of calculations’, Halley (1705)
published parabolic orbital elements for 24 well-observed comets. He noted
the similarities in the orbits for the comets of 1682, 1607, and 1531 and
published his first correct prediction for the return of a comet. It did return
on time (16 years after his death) and has been called “Comet Halley” ever
since.

Other discoveries of Halley are:

(1) The proper motions of the stars on the celestial sphere (1718). Halley
shattered man’s ancient belief in ‘fixed stars’ by charting the motions
of Sirius, Arcturus and Aldebaran, listed as bright stars in Ptolemy’s
Almagest .

(2) Secular acceleration of the moon’s mean motion (1693). Halley found
from a comparison of ancient and modern eclipses that the mean velocity
of the moon in its orbit is gradually increasing. Nearly 100 years later
(1787), Laplace showed that it is caused partly by the gradual average
decrease of the eccentricity of the earth’s orbit which has been going on
for many thousands of years.

Indeed, due to planetary perturbations and the slowing down of the earth’s
rotation (10−3 second per century. First suggested by William Ferrel in

156 E.g., if each side of the triangle is divided into n equal parts and the Cevian lines

are drawn to the first point from each vertex in a clockwise (or anticlockwise)

direction around the triangle, the central triangle has an area of (n−2)2

n2−n+1
of the

original triangle.
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1856) caused by tidal braking, the moon is speeding up at a rate that is pro-
portional to square of elapsed time. This apparent change in the moon’s rate
is manifested in the appreciable shift in tracks of eclipses. When actual eclipse
tracks are calculated for ancient eclipses on the basis of current motions of sun
and moon, they are found to deviate slightly eastward from the observations.

(3) Determination of the solar parallax by means of the transit of Venus
(1677).

(4) Explanation of the trade-winds and monsoons (1686): published a world
map indicating the prevailing winds over the tropical oceans. He ex-
plained the equatorward157 flow of the trades as resulting from a com-
bination of the rising of air near the equator due to solar heating and
the resulting surface inward flow of air toward the updraft region. [An
improved explanation based on the rotation of the earth and atmosphere
was given later by George Hadley (1735).]

Halley went to St. Helena island during 1676–1678 to catalog stars not
visible from Northern observatories. His resulting star catalog started the
systematic study of the Southern sky. It was the first study based on tele-
scopic, rather then naked eye observations.

Before Halley made his study on comets, most people believed that comet
apparitions were random. But Halley argued that comets belonged to the
solar system and that their orbits are governed by Newton’s law of universal
gravitation.

In 1981 Tao Kiang et al. numerically integrated the orbital motion of
comet Halley back to 1404 BCE, using the Newtonian equations of motion.
They took into account the perturbations by the nine major planets over
the past 3500 years and non-gravitational forces due to ‘rocket effects’ of
an outgasing water ice-nucleus. The dynamic model used to compute the
long-term motion of the comet successfully reproduced the ancient Chinese
observations over nearly two millennia.

If Halley could comment on the wonders of the computer era and its as-
tronomers, he would not be likely to change even one word of what he already
said in his paper of 1705:

“You see therefore an agreement of all the elements in these three, which
would be next to a miracle if they were three different comets. . . Wherefore,
if according to what we have already said it should return again about the

157 This basic pattern was known already to the ancient Hebrews, for we read in

the Bible [Eccl. 1, 6]: “The winds blow to the south, and turn to the north;

round and round it goes, ever returning on its course”.



1679 CE 1181

year 1758, candid posterity will not refuse to acknowledge that this was first
discovered by an Englishman”.

1679–1709 CE Denis Papin (1647–1712, France). Physicist and
inventor. One of the inventors of the steam-engine (1690). Papin was born in
Blois. He studied medicine at the University of Angers (1662–1669). Assisted
Huygens in Paris in his experiments with the air-pump (1674–1675) and
afterwards assisted Boyle in his experiments in London. At this time he
experimented with hydraulic and pneumatic transmission of power, improving
the air-pump, inventing the condensing pump, and the “steam-digester” [a
pressure cooker with which he showed that boiling point is raised or lowered
as the pressure exceeds or falls below atmospheric pressure]. He also invented
the safety valve and is credited with being the first (1690) to apply steam to
raise a piston.

In 1687 Papin was appointed to the chair of mathematics in the University
of Marburg, and there he remained until 1696. In 1707 he sailed with his
family to London in an ingeniously constructed boat, propelled by paddle-
wheels. He died in London in poverty and total obscurity.

1680 CE Edme Mariotte (1620–1684, France). Physicist. Indepen-
dently discovered Boyle’s law.

1682 CE A Russian Physician reportedly repaired the skull of a wounded
nobleman using bone from a dog. The surgery was said to be successful,
but the Russian Church threatened the nobleman with excommunication,
prompting him to have the graft removed.

This is the first recorded case in medical history of animal tissue trans-
plantation.

In the late 1800’s frog skin was often grafted onto patient’s skin in an
attempt to heal burns or skin ulcer. Good results were reported.

1682–1683 CE Ehrenfried Walther von Tschirnhausen (1651–
1708, Germany). Physicist and mathematician. Discovered the caustic of
reflection158 (1682). Endeavored to solve equations of any degree by removing

158 Parallel light rays from the sun fall onto a nearly full cup of coffee. Each ray
is reflected from the circular surface of the cup and these reflected rays form

an envelope known as a caustic. At the caustic, the intensity of the light is

theoretically infinite (according to geometrical optics) since the cross-section of
the ray pencil at each point on the envelope has zero area. In fact this is not

quite true, as is obvious on physical grounds and as a more accurate analysis

confirms, but the intensity can indeed be very great: sufficient to burn a piece
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all the terms except the first and the last (this procedure has been tried before
him by the Frenchman Francois Dulaurens and the Scot James Gregory).

In 1683 Tschirnhausen published Method of Eliminating All Intermediate
Terms from a Given Equation. Although the title exaggerated, the paper was
the most important idea for the solution of algebraic equations in about 200
years. It showed that a polynomial of degree n > 2 can be reduced by his
transformations to a form in which the coefficients of the terms of degrees
(n − 1) and (n − 2) are zero.159

Tschirnhausen studied at Leyden, and for a while served in the Dutch
army. Later he spent some time in England. He visited Paris several times,
and was elected (1682) to the French Academy of Sciences. He also set up a
glasswork in Italy to further his experiments on light.

Tschirnhausen was a man of wide acquaintance and interests. Everywhere
he went he sought contact with leading scientists, collected observations and
reported interesting discoveries to Leibniz. He thus met with Spinoza, Huy-
gens, and Wallis and corresponded with Newton, Jakob Bernoulli and

of paper, for example (hence the Greek name caustic).
Let the inner surface of the cup be represented by the unit circle, and let the

incident rays be parallel to the (horizontal) x-axis. If a ray is incident on the

cup at the point Q, whose coordinates we may take to be (cos θ, sin θ), then
since the angle of reflection is equal to the angle of incidence we may easily find

the equation of the reflected ray from Q: (y − sin θ) cos 2θ = (x − cos θ) sin 2θ.

Considered as a family of equations with θ as parameter, this represents all the
reflected rays.

The caustic is the envelope of this family, i.e. the curve which is tangent to every

member of the family. Now, the equation of the envelope of a one-parameter
family of curves f(x, y; θ) = 0 is found by eliminating the parameter θ from

the equation f = 0 and ∂f
∂θ

= 0. It is shown that the parametric equations of

the envelope are

x = cos θ − 1

2
cos 2θ cos θ; y = sin θ − 1

2
sin 2θ cos θ.

These are the equations of a curve known as the nephroid . Note that throughout

this calculation we have been suppressing the z-coordinate; the equation we have

derived is really that of a cylinder with the nephroid as cross section, and what

we observe in the intersection of this cylinder with a plane z = constant, i.e.

with the surface of the coffee.
159 To dig deeper, see:

• Panton, A.W., The Theory of Equations, Dover: New York, 1960, Vol I

(286 pp.); Vol II (318 pp).
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Johann Bernoulli. He also examined unpublished and posthumous papers
of Descartes and Pascal.

However, he exhausted his mathematical talents in searching for algo-
rithms and lacked insight into the more profound mathematical ideas of his
age (e.g., he considered infinitesimal symbolism to be of limited applicability).
He could have achieved more, but being essentially an autodidact he lacked
the guidance of experienced and strict teachers, who might have instilled in
him a greater measure of self-criticism.

Algebra and the Theory of Equations

Descartes (1637) rejected complex roots and termed them imaginary.
Even Newton did not regard complex roots as significant, most likely be-
cause in his day they lacked physical meaning. Leibniz worked with complex
numbers formally, but possessed no understanding of their nature.

Despite the lack of any clear understanding during the 16 th and 17 th cen-
turies, the operational procedures with real and complex numbers were im-
proved and extended. John Wallis (1673) was first to show how to represent
geometrically the complex roots of a quadratic equation with real coefficients,
as point in a plane. His work was ignored because mathematicians were not
receptive to the use of complex numbers.

It is remarkable that the free use of algebra provoked a host of protests.
The philosopher Thomas Hobbes (1588–1679), though only a minor figure in
mathematics, nevertheless spoke for many mathematicians when he objected
to the application of algebra to geometry. He characterized John Wallis’
book on the algebraic treatment of conics as a scurry book and as a “scab of
symbols”. Many mathematicians, including Pascal and Barrow, objected
to the use of algebra because it had no logical foundation; they insisted on
geometric methods and proofs.

Unlike Descartes, who still regarded algebra as the servant of geometry,
John Wallis and Newton recognized the full power of algebra. Leibniz, too,
noted the growing dominance of algebra and fully appreciated its effectiveness.
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Albert Girard (1629) conjectured that an equation of degree n always
has n solutions in the domain of complex numbers. Attempts to prove this
were made by Descartes, d’Alembert and others, but it was only Gauss
(1799) who succeeded in giving a rigorous proof without gaps.

Girard (1629) was also the first to engage in nonalgebraic solutions of
algebraic equations, involving an infinite number of arithmetic steps, such as
infinite series or products. He had shown that trigonometric functions (which
are nonalgebraic, or transcendental functions) are effective in obtaining solu-
tions when the cubic formula yields irreducible results (3 distinct real roots).
Therefore, mathematicians after Galois’ day conceived the idea that the ellip-
tic functions, which generalize ordinary trigonometric functions, might offer
a means of expressing solutions of some higher-degree equations that are not
solvable algebraically. The ideas of Girard were picked by Lambert (1757),
who suggested a solution base on series.

The search for meaning of negative and imaginary roots of equations that
started with Cardano (1545), continued in the 17 th century: Albert Girard
(1629) interpreted negative numbers as a kind of a relative orientation, which
eventually paved the way toward the idea of the number-line. Girard retained
all imaginary roots of equations because they show the general principles in
the formation of equation from its roots. He stated clearly the relation between
roots and coefficients, allowing of negative and imaginary roots of equations.

Descartes (1637) coined the term ‘imaginary’ for expressions involving
square roots of negative numbers, and took their occurrence as a sign that
the problem was insoluble. Leibniz (1670) was confused and perplexed by
expressions such as

3

√

6 +

√

− 1225
7

+
3

√

6 −
√

− 1225
7

= 4

which results from Cardano’s solution of x3 − 13x − 12 = 0. Today such
relations are considered trivial by a good high-school algebra student.

Apart from the problem of the existence of solutions of algebraic equations,
there is also the problem of determining them. After the solution formulae
for the cubic and quartic equations had been found during the Renaissance,
the mathematicians of the 17 th and the 18 th centuries searched with great
tenacity for the corresponding solution formulae of degree 5 and higher.

In their quest for a solution of the quintic by radicals, mathematicians were
first concerned with the reduction of the general quintic into the simplest
possible canonical form. The feasibility of this procedure is based on the
pioneering discovery of Tschirnhausen (1683) that a special transformation
can eliminate the terms of degree (n − 1) and (n − 2) from any polynomial of
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degree n > 3. He started from the observation that the transformation of the
equation

xn + an−1x
n−1 + · · · + a1x + a0 = 0

by the linear substitution y = x + h eliminates the (n − 1) th power by choos-
ing h = 1

nan−1. He then noticed that it is possible to remove both the
(n − 1) th and the (n − 2) th powers by effecting a quadratic transformation
y = x2 + ax + b. To see this one first assumes the “existence of an equation
in y of the same degree as the original in x, i.e.

yn + bn−1y
n−1 + · · · + b1y + b0 = 0.

This is always possible since xn+k can be expressed as a polynomial of de-
gree not higher than n by a repeated use of the original equation. Thus
{y, y2, y3, . . . , yn} will be each a polynomial of degree lower or equal to n.
When the equation in y is formed, the free parameters {p, q} are chosen such
that bn−1 = bn−2 ≡ 0.

Thus he found that by a transformation of the form y = x2 + ax + b, a
general cubic is reduced to the form y3 = K. Another such transformation
reduces a general quartic to y4 + py + q = 0, and a general quintic to the
form y5 + αy2 + βy + γ = 0. In general, a Tschirnhausen transformation of
a polynomial equation f(x) = 0 is one of the form y = g(x)/h(x), where g
and h are polynomials and h does not vanish for a root of f(x) = 0. The
transformation by which Cardano and Viète solved the cubic were special
cases of such transformations.

1683 CE Seki Kowa (1642–1708, Japan). Mathematician. Considered
by the Japanese the greatest mathematician that their country has produced.
His most original and important work is the invention of determinants, at least
10 years ahead of Leibniz (1693). Also, Leibniz treated only 3 equations with
3 unknowns, whereas Seki considered n equations and gave a more general
treatment. Seki knew that a determinant of the nth order, when expanded,
has n! terms and that rows and columns are interchangeable. Discovered
Bernoulli Numbers before Jacob Bernoulli. Credited with the independent
invention of the differential calculus. Seki was a great teacher who attracted
gifted pupils. He discouraged divulgence of mathematical discoveries made by
himself and his school.For that reason it is difficult to determine with certainty
the exact origin and nature of some of the discoveries attributed to him.
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1683–1699 CE Islam vs. Christendom; Since 1656 the Ottoman Empire
had been undergoing a revival, and in the 1660’s began a new thrust up
the Danube Valley directed at their old enemies, the Habsburgs. Louis XIV,
also an inveterate enemy of the Habsburgs, allied himself with the Turks
and Hungarian rebels against his Austrian foes. This resulted in two of the
greatest military confrontations of the second half of the 17 th century160: the
Habsburg’s successful resistance to the advance of Turkey into Europe and
their subsequent counter-offensive; and the great coalition which halted Louis
XIV’s attempt to dominate the Continent.

The crisis came in July 1683, when a Turkish army of ca 200,000 laid
siege to Vienna. For two months the fate of Christendom seemed to hang
in the balance. Then volunteers began to flow in from all over the continent
to help the emperor in his extremity: Pope Innocent XI contributed moral
and material aid, and King Jan Sobieski of Poland arrived with an army that
helped rout the Turks by September. This marked the beginning of the decline
of the Ottoman Empire, and the end of a thousand year military conflict
between Islam and Christianity. Thus failed the last (perhaps) attempt of
Islam to subdue Christendom and conquer Western Europe [1st, 732 at Tour,
2nd, 1571 at Lepanto].

160 The Jewish connection: The financier Samuel Oppenheimer [1630–1703; a

distant relative of Joseph Oppenheimer, the so-called “Jud Süss” (1698–

1738)] was the Imperial War Purveyor to the Austrian monarchy during 1673–

1702 and played a decisive role in the above wars of the Habsburgs. He was

running the finances of two-front war, marshaling the resources. Some histori-

ans believe that he was indeed the man who saved Vienna during the siege of

1683 when the emperor fled.

No one ever rendered greater services to the Habsburgs. But the Austrian

Treasury never payed him back! Moreover, in 1701 his house in Vienna was

“accidentally” burned down, destroying most of the financial business records.

At that time the Crown owed him more than ten million florins. But Oppen-

heimer could no longer produce proofs of the debts due to him from the State.

So the State produced its own records “proving” that he had been overpaid!

All his services were then forgotten and the Jew was rewarded by being thrown

into prison while his family was left penniless.

His nephew David Oppenheimer (1664–1736), rabbi of Prague, managed to

gather a large library of rare Jewish books and manuscripts. These he kept in

Hamburg, away from the reach of Inquisition in Catholic Bohemia. His collec-

tion was purchased by Oxford University early in the 19 th century, and now

forms the basis of the Bodleian hebraica, encompassing over 7,000 books and

1,000 manuscripts.
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Historians have explored the question of why the West (nearly) always
wins? For 2,500 years, from ancient Greece to the present day, Western
armies vanquished their non-Western adversaries in almost every war, with
rare exceptions when the West was caught completely by surprise or was
exceptionally outnumbered.

A comprehensive examination of important battles, from the Battle of
Salamis in which the Athenians defeated the Persian fleet to the Battle of
Midway in World War II in which the Americans defeated Japan refutes wide-
spread assumptions that Western military superiority is explained by greater
valor, military-technology advantage or greater economic strength. Hanson161

argues that the secret is that Western military forces are more effective killers.
This results from the “citizens’ army” model created in a Western “open so-
ciety,” which was born in the ancient Greek tradition of storming the enemy.

While Ancient, Eastern monarchs considered war a sport, a game of bal-
ance between forces, ancient Greek democracy gave rise to an utterly unsports-
manlike perception of war. It viewed war as a fight for liberty and freedom of
community and citizen, an existential fight to the death. Its primary objec-
tive was not to defend city and homeland but, to the greatest extent possible,
to prevent the enemy from recovering in time for another round. While non-
Western forces strive to gain points, their Western adversaries strive for a
knockout.

1685 CE, Oct. 18 Revocation of the edict of Nantes (1598) by Louis
14th of France; all religions except Roman Catholicism became forbidden by
law. About 400,000 Protestants (Huguenot) fled France and emigrated to the
neighboring countries and North America.

There were about a million Huguenots out a total population of perhaps
18 million in France in 1650. After Richelieu deprived them of their military
and political privileges, they had become good citizens and remained loyal to
the crown. Many were successful in industry and the professions. The French
Catholic clergy had long tried to persuade Louis 14th that the continued ex-
ercise of the Protestant religion in France was an insult to his dignity and
authority, and as Louis became more concerned about his salvation, the idea
of atoning for his sins of the flesh by crushing heresy became more attrac-
tive to him. The edict was “interpreted” more and more strictly. Protestant
children were declared of age at seven and converted to Catholicism, and
any attempt of their parents to win them back was punished by imprison-
ment. Money was offered to converts. Protestant chapels were destroyed,

161 The American military historian Victor Hanson in his book “Carnage and

Culture” (Doubleday, 2002).



1188 3. The Clockwork Universe

and troops were quartered on prominent Huguenots to make life miserable for
them.

Finally Louis aided and abetted by his mistress and his Jesuit advisers,
announced that since all the heretics had finally been converted to Catholi-
cism, there was no further need for the Edict of Nantes and it was therefore
revoked; Protestant churches and schools were closed, and all Protestant chil-
dren were baptized as Catholics. The Revocation was savagely enforced by
imprisonment, torture and condemnation to the gallows.

The Huguenots escaped to England, The Netherlands, Brandenburg, and
the New World, where their industry and skill contributed appreciably to the
economic, technological and cultural life of their new homes. To France the
Revocation ‘brain-drain’ brought both economic and cultural loss.

Thus, under the influence of the clergy, was committed one of the most
flagrant political blunders in the history of France.162

The Protestant Huguenots experienced in 1685 what the Jews had already
gone through during 1492–1498 in the Iberian Peninsula. In this sense the
fate resemblance of the Marranos and the Huguenots is a striking example
for the way in which history repeats itself from time to time.

1686 CE Bernard (Le Bovier) de Fontenelle (1657–1757, France).
Man of letters, thinker and science-fiction writer. Made the first major at-
tempt to present scientific knowledge to the layman in an attractive literary
form.

Born in Rouen, a nephew of Corneille. Studied law, but having lost the
first case which was entrusted to him, he soon abandoned law and gave himself
completely to literary pursuits.

In his Entretiens sur la pluralite des mondes habites (1686), he popularized
among his countrymen the astronomical theories of Descartes. It is a lucid
exposition of astronomy according to Copernicus and Descartes, enlivened
by speculations concerning life on other planets. In 1691 he was received into
the French Academy, and in 1697 became its perpetual secretary.

1687–1789 CE Leading European Poets and Novelists in the Enlighten-
ment (Age of Reason):

• Daniel Defoe 1660–1731
• Jonathan Swift 1667–1745

162 In fact, the oppression of the Huguenots in France and the Puritans in Eng-

land, during 1640–1685, accelerated the outbreak of the Industrial Revolution

in England in the 1760’s.
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• Alexander Pope 1688–1744
• Voltaire 1694–1778
• Johann Wolfgang von Goethe 1749–1832
• William Blake 1757–1827
• Friedrich von Schiller 1759–1805

1689–1695 CE John Locke (1632–1704, England). Empirical phi-
losopher. Rejected the notion of the ‘divine rights’ of kings, as well as the
infallibility (absolute truth) of religion and the dogma of the Church. Opposed
the authority of the Bible and the Church in temporal affairs. Maintained that
political sovereignty rests upon the consent of the governed.

His political philosophy is strongly felt in the American Constitution and
Declaration of Independence. In his own words:

“No man has the right to more than others, because we are all equal, of
the same species and condition, equal amongst ourselves, with equal rights to
enjoy the fruits of nature”.

Held that men were free to think of God in their own way, not as any
religion told them to. His major works: Two Treaties on Government (1689);
And Essay on Human Understanding (1690).

Locke was born in Wrington in Somerset County. He attended Oxford
University. When his friend Anthony Cooper became involved in plots against
the King, the suspicion also fall on Locke and he fled to Holland (1684), but
returned (1689) as favorite of the court of Prince William of Orange.

1691 CE Michel Rolle (1652–1719, France). Mathematician; author
of a theorem named after him163, found in his ‘Methode pour résoudre les
egalitez ’ (1691). The name Rolle’s theorem was first used in 1834 in Germany
and in 1846 in Italy (G. Bellavitis).

1690 CE Jakob (Jacques, James) Bernoulli (1654–1705, Switzer-
land). Among the principal contributors to mathematics in the 17th century.
Jakob and his brother Johann gave up earlier vocational interests and became
mathematicians when Leibniz’s papers began to appear in the Acta erudito-
rum. They were among the first mathematicians to realize the surprising

163 Rolle’s Theorem: If f(x) is continuous in the interval a ≤ x ≤ b, f ′(x) exists

in the open interval a < x < b and f(a) = f(b) = k, then there is a point c,

such that a < c < b, at which f ′(c) = 0 [one may assume, without loss of

generality, that f(b) = f(a) = 0 since one may apply the theorem to the new

function, f(x) − k, instead of f(x)]. For polynomials, Rolle’s theorem takes

the form: between any pair of roots of P (x) = 0 lies a root of P ′(x) = 0.
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power of the calculus, and to apply the tool to a plethora of problems, and
first to use the term ‘integral’ (1690).

Jakob Bernoulli invented polar coordinates (1691). [Newton may have
discovered them earlier in 1671, but this is not clear from his writings.] He
wrote on infinite series, studied many special functions and introduced the
Bernoulli numbers that appear in the power series expansion of the function
z(ez − 1)−1 and the Bernoulli polynomials164 of number theory. In 1700
he developed further the theory of probability (Bernoulli distribution) and
rediscovered the law of large numbers, a theorem named after him. Was first
to apply calculus to probability theory.

The solution of the Brachistochrone problem by him and his younger
brother Johann, started an acrimonious quarrel between them that dragged
on for several years. Jakob is also known for the early use of radius of cur-
vature of a plane curve, discovery of the isoperimetric figures, the Bernoulli
equation in the theory of ODE, and his pioneering work in the calculus of
variations. In his 1690 solution to the problem of the isochrone [curve along
which a body will fall with uniform vertical velocity], we encounter for the first
time the word “integral” in a calculus sense. Leibniz had called the integral
calculus calculus summatorius, but in 1696, Leibniz and Johann Bernoulli
agreed to call it calculus integralis.

Jakob Bernoulli was struck by the way the equiangular spiral repro-
duces itself under a variety of transformations and asked, in imitation of
Archimedes, that such a spiral be engraved on his tombstone along with
the inscription “Eadem mutate resurgo” (“I shall arise the same, though
changed”).

164 Bernoulli numbers Bn were introduced in his Ars Conjectandi (published
posthumously, 1713) through the definition:
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The Bernoulli family is one of the most illustrious families in the annals of
science. They originally came from Antwerp. Driven from Holland during the
oppressive government of Spain for their attachment to the Reformed religion,
the Bernoullis sought asylum first in Frankfurt (1583) and afterwards in Basel,
where they ultimately rose to the highest distinctions.

Jakob was born in Basel. He was educated at the city’s public school.
Upon the conclusion of his philosophical studies at the university, some geo-
metrical figures which he chanced to see excited in him a passion for mathe-
matics, and in spite of the opposition of his father, who wished him to be a
clergyman, he applied himself in secret to his favorite science. In 1676 he vis-
ited Geneva on his way to France, and subsequently traveled to England and
Holland. While in Geneva he taught a blind girl several branches of science,
and also how to write; and this led him to publish A Method of Teaching
Mathematics to the Blind . In London he was admitted to the meetings of
Robert Boyle, Robert Hooke and other learned men. On his return to
Basel in 1682 he devoted himself to physical and mathematical investigations,
and opened a public seminary for experimental physics.

In the same year he published his essay on comets, Conamen Novi Sys-
tematis Cometarum, which was occasioned by the appearance of the comet
of 1680. In 1687 the mathematical chair of the University of Basel was con-
ferred upon him, and he was later made rector of his university. In 1684 he
had been offered a professorship at Heidelberg; but his marriage to a lady of
his native city led him to decline the invitation. He wrote elegant verses in
Latin, German and French; but although these were held in high esteem in
his own time, it is on his mathematical works that his fame now rests.

1694 CE Rudolph Jakob Camerarius (Camerer) (1665–1721, Ger-
many). Physician and botanist. In De Sexu Plantarum Epistola, presented a
conclusive demonstration of the sexuality of plants. Professor at the Univer-
sity of Tübingen (from 1688).

1694–1718 CE Johann (Jean, John) Bernoulli (1667–1748, Switzer-
land). One of the leading mathematicians of the 18th century. A member of
a remarkable Swiss family that produced 8 mathematicians — three of them
outstanding — who in turn had a swarm of descendants who distinguished
themselves in many fields.

In 1694 he took a doctor’s degree in medicine but became fascinated by cal-
culus and applied it to many problems in geometry, differential equations and
mechanics. In 1695 he was appointed professor of mathematics and physics
at Groningen in Holland, and on his brother Jakob’s death, succeeded him in
the professorship at Basel. In 1696 he proposed the famous ‘Brachistochrone
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Problem’ as a challenge to the mathematicians of Europe165 [curve of shortest
descent-time between two fixed points in a homogeneous gravitational field
— the cycloid]. It was solved by Newton, Leibniz, his brother Jakob and
himself [solved earlier (1673) by Huygens and applied by him in the con-
struction of a pendulum clock]. Most of the calculus integration techniques
were systematically worked out by the Bernoullis and Euler. Johann, how-
ever, pioneered the use of substitutions.

The so-called L’Hopital Rule was actually obtained by him in 1696; but
L’Hopital and Bernoulli had an agreement (1692) whereby Johann sent
L’Hopital some of his mathematical discoveries, to be used as L’Hopital chose,
in exchange for regular salary. It was only after the death of Guillaume
Francois Antoine L’Hopital, Marquis de St. Mesme (1661–1704) that
Bernoulli accused him of plagiarism, an accusation that at the time was gen-
erally dismissed but now seems to be well founded166. The Marquis introduced
this method in the first calculus textbook “Analyse des infiniments petits”,
published in Paris in 1696. This book had a wide circulation, and brought the
differential notation into general usage in France as well as making it known
throughout Europe.

Johann Bernoulli was the first to recognize the principle of virtual work as
a general principle of statics with which all problems of equilibrium could be
solved. He introduced the product of the force and the virtual velocity in the
direction of the force, taken with a positive or negative sign according to the
acute or obtuse angle between force and velocity (scalar product of vectors!).
In 1717 he announced the general principle that for all possible infinitesimal
displacements, the sum of all these products must vanish if the forces balance
each other .

165 He was the first to denote the acceleration of gravity by the symbol g, and first

to write the relation v2 = 2gh. The notation φx to indicate a function of x

was introduced by him in 1718.
166 In 1921, Johann’s manuscript on the differential calculus was discovered. To-

gether with the correspondence of L’Hopital and Bernoulli, it proved that the
Swiss mathematician was the true author of L’Hopital’s calculus book.

One of Johann’s contributions, made jointly with Leibniz, was the technique of

partial differentiation The two kept this discovery secret(!) for 20 years in order
to use it as a “secret weapon” in problems about a family of curves. Another

startling result of Johann (1697) was
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Remarkably ingenious, too, is another observation of Bernoulli; he com-
pared the motion of a particle in a given field of force with the propagation
of light in an optically heterogeneous medium, and tried to give a mechanical
theory of the refractive index on this basis. Bernoulli is thus the forerunner
of the Hamilton-Jacobi theory, that links optical and mechanical systems and
presages quantum mechanics.

1696–1727 CE Stephen Gray (1666–1736, England). Physicist and
chemist. A pupil of Newton. One of the first experimenters in static electric-
ity, using frictional methods to prove conduction (1727).

Discovered the conduction of electrical charges and made the distinction
between conductors and insulators. Gray showed that electricity can be trans-
mitted from one object to another and over distances through conductors and
that static electrical charges reside on the surfaces of objects, not in the inte-
riors (1729). Transmitted electrical charges, generated by electric generator,
over brass wires 100 meters long. Demonstrated that anything can be charged
with static electricity if it is isolated by nonconducting materials (1731). His
work had a great influence on the electrical theory of Du Fay (1733–1740).

Gray was born in Canterbury and followed his father’s trade as a dyer, but
the thirst of education led him to Cambridge University. His first scientific
paper (1696) described a microscope made of a water droplet, similar to the
glass bead microscope made so famous by Leeuwenhoek (1703).

1697–1733 CE Abraham de Moivre (1667–1754, England). An
outstanding mathematician of the 18th century. Extended the pioneering
ideas of Fermat, Pascal, Huygens and Jakob Bernoulli in probability
theory, and originated other ‘simple discoveries’ which are found today in
school textbooks. His achievements are:

(1) Wrote a systematic treatise on probability: “Doctrine of chances” (1714).
In 1733 he showed the manner in which the normal distribution function
arises in probability, as means of approximately evaluating probabilities
associated with the binomial law167. He proved the central limit theo-
rem for a special case. He is credited with the first treatment of the
probability integral

∫∞
0

e−x2
dx = 1

2

√
π and of the normal frequency

curve y = ae−λ2x2
in statistics theory. Moivre is also noted for his work

167 De Moivre’s observation, in modern notations, is as follows: The binomial law
states that

(py + q)n =
n∑

k=0

Pn(k)yk,

where Pn(k) = n!
k!(n−k)!

pkqn−k, (q = 1−p) is the probability of k successes in n

independent trials. Simple manipulation via differentiation and the subsequent
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substitution y = 1, yield the identities:

n∑

k=0

Pn(k) = 1, k̄ =

n∑

k=0

kPn(k) = np; k̄2 =

n∑

k=0

k2Pn(t) = n(n−1)p2+np

It thus follows that the first and second order parameters of the binomial
distribution are: mean = k = np; dispersion =D = k̄2 − (k̄)2 = npq;

root mean square deviation=σ =
√

npq.

Introducing a new variable x = k − k̄ = k − np, the binomial probability
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De Moivre obtained the asymptotic expressions
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“Annuities upon Lives”, which played an important role in the history of
actuarial mathematics.

(2) Was first to derive the factorial approximation n! � (2πn)1/2(n/e)n,
misnamed Stirling’s formula.

(3) Announced in 1707 the keystone formula of analytic trigonometry168 :

(cos x + i sin x)n = cosnx + i sin nx

for positive integer n. It was explicitly stated and proved inductively by
Euler in 1748.

(4) Introduced (1730) the powerful method of generating functions which
proved to be of great importance in combinatorics, probability and num-
ber theory. He used it to obtain a closed-form expression for the general
term of the Fibonacci sequence, namely

Fn =
1

2
√

5

[(
1 +

√
5

2

)n

−
(

1 −
√

5
2

)n]

+
1
2
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√
5

2

)n

+

(
1 −

√
5

2

)n]

(It was rediscovered by Binet in 1843).

Moivre was born in Vitry, Champagne, to a French Huguenot family. His
father was a surgeon. He was compelled to take refuge in England at the revo-
cation of the edict of Nantes in 1685. He started his mathematical education
in France and furthered it in London. There, he eked out a living by giving
private lessons in mathematics and games of chance. He never married.

He was greatly influenced by the “Principia Mathematica” of Newton and
was among Newton’s personal friends. He became distinguished among first-
rate mathematicians and was admitted in 1697 to the Royal Society of London.
His merits were so well known and acknowledged that the society found him
fit to decide the famous contest between Newton and Leibniz. In spite of
all this he never secured a university position, perhaps because he was not
British by birth.

His old age was spent in obscure poverty. A bizarre story is associated
with his death: de Moivre noticed, so the story goes, that each day he re-
quired a quarter of an hour more sleep than on the preceding day. When this

168 Using this formula he proved that y = cos nθ is a polynomial in x = cos θ.
Indeed this is a direct consequence of the relation

2y =
(
x +

√
x2 − 1

)n

+
(
x −

√
x2 − 1

)n

, |x| ≤ 1.

He thus anticipated the Chebyshev polynomials Tn(x) = cos n(cos−1 x).
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progression reached 24 hours, de Moivre passed away, almost blind, at the age
of 87.

1699 CE William Dampier (1652–1715, England). Buccaneer, nav-
igator and oceanographer. In the publication “Discourse of Winds, Breezes,
Storms, Tides and Currents”, he suggested that major ocean currents might
be caused by winds (they were previously explained as resulting from ocean
height differences produced by evaporation and rain). Distinguished the
steady low-latitude trade winds from the mid-latitude westerlies.

Dampier spent 38 years of his life at sea in various capacities: he went to
sea as a boy, and joined the British navy in 1672. During 1679–1711 he was
engaged in Pirating (1679–1680) and privateering169 in the South Seas (against
the Spaniards). In 1688 he sailed to Australia (then called New Holland) on
a pirate ship. In 1699 he reached Australia again in a voyage financed by
the British Admiralty. Dampier also reached New Britain and New Ireland,
islands off the coast of New-Guinea.

In 1703–1711 Dampier commanded two privateers on an expedition to
the South Pacific. Alexander Selkirk170, the original Defoe’s hero, Robinson
Crusoe, was the master of one of his vessels.

169 Privateer : armed vessel owned and officered by private person holding a gov-

ernment commission, authorized to use it against hostile nations, especially in

capture of merchant shipping. Dampier visited Jamaica (1679) and joined a

party of pirates with whom he spent the year 1680 on the Peruvian Coast,

sacking, plundering and burning Spanish ships.
170 Alexander Selkirk (1676–1721). Scottish sailor. Ran away to sea (1695) and

joined Dampier in a privateering expedition to the South Seas, going with the

“Cinque Ports” galley (96 tons, 16 guns) as sailing master. In September 1704,

he quarreled with his captain, and at his own request was put ashore on Mas

Afuera, one of Juan Fernandez islets (33.45◦ S; 80.45◦ W, some 750 km west of

Valparaiso, Chile). There he was marooned in complete solitude for four years

and four months (Sept. 1704–Jan. 1709), until taken off by one of Dampier’s

ships.

He was later given command of one of the privateering vessels. Selkirk met

with Defoe in Bristol (1711) and handed over his papers to him. Defoe

then wrote his novel: The Life and Strange Surprising Adventures of Robinson

Crusoe (1719). Defoe’s narrative is an amalgamation of Selkirk’s story and

background material from Woodes Rogers’ “Cruising Voyage round the World”

(1712), and Edwards Cooke’s “Voyage in the South sea and round the World”

(1712) (both, the earliest descriptions of Selkirk’s adventures). Nevertheless,

most of the incidents in Defoe’s masterpiece are fairly independent of his sources;

thus the decidedly tropical description of Crusoes island and the whole narrative

of the Cannibals’ visits etc. agree rather with one of the West Indies than with
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Dampier accounts of his voyages [“New Voyage Round the World” (1697);
“Voyages and Descriptions” (1699); “Voyage to New Holland” (1699)] are
famous. He had great talent for observation, especially of the scientific phe-
nomena affecting the seaman’s life. His style is easy, clear and manly. His
knowledge of natural history, though not scientific, appears surprisingly ac-
curate and trustworthy.

1701 CE Giacomo Pylarini of Smyrna. A Greek physician. The
first immunologist. Inoculated children with smallpox in Constantinople.

1701 CE Joseph Sauveur (1653–1716, France). Physicist. Coined the
terms ‘acoustics’ (study of sound) and ‘harmonics’ (multiples of a fundamen-
tal frequency) while experimenting with vibrating strings.

1701–1731 CE Jethro Tull (1674–1741, England). Gentleman farmer
and agriculturist. Technical innovator of the agrarian revolution171. Intro-
duced new agricultural machinery (1701) and new farming methods (1731)
through the use of manure, pulverization of the soil, growing crops in rows
and hoeing to remove the weeds.

Tull was born in Berkshire, and was educated at St. John’s College, Oxford
University. He traveled in France and Italy to observe farming methods. In
his days, farmers sowed the seed by throwing it by hand. Tull regarded the
practice both wasteful and uncertain. So he invented a drill for boring straight
rows of holes into which he dropped the seed. His ideas were adopted slowly.

1702 CE First daily newspaper in England.

1703 CE French chemists Nicolas Lémery (1645–1715) and Martin
Lister (1638–1712) promoted a theory that the source of an earthquake was
an explosion produced by mixing minerals inside the earth composed of the
same chemicals used for explosives (iron, sulfur, salt, water). This theory
became very popular and Isaac Newton in his book Optiks (1704) adopted
this idea of the mineral explosion in subterranean cavities.

Juan Fernandez. The best biography is the “Life and Adventure of Alexander

Selkirk” by Jonh Howell (1829).

Selkirk returned to sea, and died as master’s mate of H.H.S. “Weymouth” on

Dec. 12th 1721.
171 The English statesman Charles Townshend (1674–1738) introduced into Eng-

land the four-course system of crop rotation (1731), which he first practiced at

his Raynham estate.

Robert Bakewell (1725–1795, England) was first to introduce stock-breeding

improvements and grassland amelioration by systematic irrigation.
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The ‘explosion theory’ reigned supreme for more than 150 years. It was
finally discarded172 in the wake of the great Napolitan earthquake (1857)
under the impact of the new ideas of Robert Mallet (1860).

The ‘Little Ice Age’ (LIA 1560–1850)

Current research on global climate change, drawn from tree rings and
Greenland Ice cores, provides much detailed information on weather and cli-
mate history173. This new information can be correlated with historical ac-
counts on major weather events and their influence on the human condition.

Indeed, this new knowledge provides an engaging history of Western Eu-
rope; it reveals that Europe experienced a prolonged warm period known as
the Medieval Warm Period174 (600–1150), cooling of the climate (1150–1460),
a brief warming (1460–1560), followed by dramatic cooling known as the Little
Ice Age175 (1560–1850).

For people living near subsistence levels, as most European did before 1800,
abrupt changes in weather could mean the difference between prosperity and

172 As often happen in science, the theory was recently resurrected and incarnated:

it has been claimed that under increasing strain, minerals undergo a phase

transformation and become metastable polymorphs of higher free energy den-

sity. This instability leads to an explosion creating a shock wave with supersonic

velocity, which then causes fluidization of the fault core; the fault is thus un-

locked, releasing the stored elastic energy, ergo, an earthquake.
173 Brian Fagan: “Little Ice Age” Basic Books, N.Y. 2001, 246 pp.
174 The Viking expansion from Scandinavia through Europe and the North Atlantic

(800–1050), occurred through this period.
175 It seems that the LIA affected the entire globe; Temperature data obtained from

a Peruvian ice core whose layers date from 1600 CE to the present agree well

with independent temperature histories derived for the Northern hemisphere,

confirming that the LIA of 1400 to 1650 and the climatic impact of the 1815

Tambora volcanic eruption in Indonesia, were global in extent and demonstrat-

ing that some mid-latitude glacial records, too, can play important roles in

studies of historical climate.
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pauperhood, or even between life and death – especially if these changes lasted
more than one season. Events such as the French Revolution and the Irish
Potato-famine, are now seen through the lens of weather and its effects on
harvests: the colder weather impacted agriculture, health, economics, social
strife, emigration and even art and literature. Increased glaciation and storms
also had a devastating affect on those that lived near glaciers and the sea.

The climate of a region is typically defined by its monthly mean tempera-
ture (Fig. 3.2) and annual total precipitation. However, direct observations of
these variables began only after the invention of the barometer (Torricelli)
and the thermometer (Galileo) in the first half of the 17 th century.

To determine earlier climate, investigators infer the climate record from
physical and biological fossil data including, among others: oxygen isotope
ratios detected in ice cores, tree-rings dating, ice flow and glacier data, and
archaeological discoveries, and also from records intended for other purposes
such as: weather diaries, shipping logs, tax records, crop production and
pricing records, allusions to climate in art and literature, etc.

• Oxygen Isotope Record: Measurements of the isotopes ratio 18O/16O in
ice indicates the temperature of the snow at the time if was formed.
Higher ratios of the heavier 18O oxygen isotope indicate the snow
formed at a higher temperature while lower ratios indicate the snow
formed at a cooler temperature.

• Tree-Ring Data: individual rings represent individual years while the
width of each ring shows the growth-rate during that year. The width
of rings from trees found at higher altitudes and higher latitudes in
generally a function of temperature, where wide rings indicate warm
years and narrow rings indicate cool years. Because the pattern of rings
is similar to a fingerprint, dendrochronologists are able to construct
a chronology by matching similar ring patterns found in living trees,
construction timbers, and fossil trees.

• North Atlantic Drift Ice: Drift ice is carried from the Arctic ice pack
and the waters north of Iceland by ocean currents. In colder times,
arctic waters carry the ice southward while in warmer times the Gulf
Stream dominates the Iceland area, keeping drift ice away. Drift ice was
carefully observed by Icelanders both from shore and from ships because
it threatened ships and therefore affected commerce. Thus, drift ice can
be considered a thermometer of the North Atlantic.

• Glacier Waxing and Waning: Mountain glaciers in Scandinavia and
the Alps can be used to record climatic changes. Because glaciers are
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Fig. 3.2: Estimated mean yearly temperatures based on a variety of climatic,
political and social indicators. (Redrawn from Climate, History and the Mod-
ern World H.H. Lamb Methuen, London, 1982.)

massive, they respond to long-term temperature and precipitation vari-

ations on a time scale of decades and centuries. Glaciers grow dur-

ing winters by accumulating snowfall and glaciers decline during sum-

mers due to above-freezing temperatures. For a glacier to maintain

its position, snowfall must equal snowmelt. Cooler summers result in

less snowmelt and longer winters increase the number of days of po-

tential snowfall (clearly, cooler winters may also bring drier air which

could decrease snowfall, but this factor is much smaller than the for-

mer).

There are four main possible causes (forcing mechanisms) of the climatic

changes experienced during the LIA. These include: sunspot variations, vol-

canic eruptions, changes in the large-scale ocean current conveyor belt and

changes in the earth’s albedo. None of these factors on their own offers con-

clusive evidence; it is likely that each has played a role.
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• Sunspot Variations: Because the sun is earth’s greatest source of energy
and is the driving force behind its atmospheric circulation, any variation
in solar output will influence the weather. Scientists have observed that
the number of sunspots on the surface of the sun has been determined
to correspond to solar output variability. More sunspots correspond
to a higher solar energy output while fewer sunspots correspond to a
lower solar output. A record of sunspot numbers has been recorded
through time by various indicators including naked eye observations,
auroral reports, and 14C isotope concentrations in tree rings.

Thus, during the Medieval Warm Period (600–1150 CE) there was a
high number of sunspots referred to as the Medieval Maximum, while
during the Little Ice Age (1560–1850 CE) there were two periods of very
low sunspots numbers called the Spörer Minimum and the Maunder
Minimum (1645–1715 CE).

• Volcanic Eruptions: Ash and other small particulate matter injected
into the stratosphere can effectively reduce incoming solar radiation re-
ceived at the earth’s surface. Sulfur compounds from eruptions condense
into very tiny sulfuric acid droplets that form clouds which may stay
suspended in the stratosphere for years, further reducing incoming sun-
light.

Large eruptions at low latitudes can cause the greatest global climate
change. Weaker eruptions only send their eruptive materials into the
troposphere where weather processes quickly remove them and high lat-
itude eruptions only send their materials into one hemisphere. The
explosion of Mt. Tambora in 1815 led to the year 1816 being called “the
year without a summer” across much of Europe. The eruption of Mt.
Pinatubo in 1991 provided a good example of how a large low-latitude
eruption can quickly influence global climate: in nine days the sulfur
dioxide plume had spread into both hemispheres and around half the
planet.

The result was an estimated 1 ◦C global cooling that lasted two years.
It is unlikely that a single eruption can cause long-term cooling over
hundreds of years such as during the LIA. But evidence has shown that
there was an increase in the frequency of large eruptions during the
LIA that corresponds quite well with the coolest years during this time
period.

• Large-Scale Ocean Current Conveyor Belt: Warm waters in the upper
1500 meters flow northward to the vicinity of Iceland. Winter cooling
increases the density of the water permitting it to sink to great depths.
Once at depth, the water flows the length of the Atlantic and becomes
mixed into the deep southern hemisphere current. Because the ocean
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and atmosphere are a coupled system, any changes in this large-scale
ocean circulation could cause large-scale atmospheric changes on the
order of hundreds of years. The ocean is both a heat source for the
atmosphere by releasing carbon dioxide, a greenhouse gas, and a heat
sink by conducting heat away from the air that rests upon it. Surface
water that comes into contact with air is referred to as ventilated water.
Scientists have demonstrated that very high rates of deep water venti-
lation occurred curing the LIA, which means the oceans were removing
heat from the atmosphere at a greater rate than normal during that
period. That could explain the dramatic cooling observed during the
LIA.

• Earth Albedo: Albedo is a measure of the reflectivity of a surface. Snow
and ice have a high albedo because their properties allow them to reflect
up to 90% of incoming sunlight. After a global cooling event has begun,
it can become self-perpetuating. With increased snow cover and glacia-
tion, the planet’s surface will have a higher albedo, which in turn will
cause more incoming sunlight to be reflected. With less sunlight being
absorbed at the earth’s surface there will be a subsequent cooling effect.
This cooling effect may cause even more snow cover and glaciation that
would increase the planet’s albedo even more. As the climate cooled
during the LIA, earth’s albedo increased due to more snow and greater
glaciation. The process can last for many years; however, it eventually
does subside because cooler oceans experience less evaporation which
leads to a decrease in cloud cover. Reduced cloud cover allows more
sunlight to reach the surface which results in higher global air temper-
atures.

The Historical Record

The cooling of 1.5–2.0 ◦C, synchronous over broad regional areas for a span
of several hundred years caused a wide gamut of accompanying phenomena,
documented in Europe and North America:

(i) Glacier movements

Glaciers in many parts of Europe began to advance about the mid-13 th

century, influencing almost every aspect of life for those unfortunate
enough to be living in their path. It destroyed farmland and caused
massive flooding. Glaciers in the Swiss Alps advanced, gradually en-
gulfing farms and crushing entire villages. On many occasions bishops
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and priests were called to bless the fields and to pray that the ice stopped
grinding forward. Various tax records show glaciers over the years de-
stroying whole towns caught in their path. A few major advances are:

1595 CE: Gietroz (Switzerland) glacier advances, dammed Dranse
River, and caused flooding of Bagne with 70 deaths.

1600–1610 CE: Advances by Chamonix (France) glaciers cause mas-
sive floods which destroyed three villages and severely damaged a fourth.

1670–1680’s CE: Maximum historical advances by glaciers in Eastern
Alps. Noticeable decline of human population by this time in areas close
to glaciers, whereas population elsewhere in Europe had risen.

1695–1709 CE: Iceland glaciers advance dramatically, destroying
farms.

1710–1735 CE: A glacier in Norway was advancing at a rate of 100 m
per year for 25 years.

1748–1750 CE: Norwegian glaciers achieved their historical maximum
LIA positions.

In general, habitual structures which were once at high altitude in the
Alps were destroyed by glacier activities: a glacier blocked the Saas
valley, including its river (1589) and eventually formed a lake. Ice sheets
advanced over farms, villages and valleys in Greenland. Once productive
Icelandic farms were covered by advancing glaciers. So serious was the
climatic change experienced by Icelanders that Denmark, the parent
country, considered evacuating all the Icelanders and re-settling them
in Europe.

Glaciers advances in North America occurred from 1711–1724 and 1835–
1849.

(ii) Storms

During the LIA, there was a high frequency of storms. As the cooler
air began to move southward, the polar jet stream strengthened and fol-
lowed, which directed a higher number of storms into the region. At least
four sea floods of the Dutch and German coasts in the thirteenth century
were reported to have caused the loss of around 100,000 lives. Sea level
was likely increased by the long-term ice melt during the MWP which
compounded the flooding. Storms that caused greater than 100,000
deaths were also reported in 1421, 1446, and 1570. Additionally, large
hailstorms that wiped out farmland and killed great numbers of livestock
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occurred over much of Europe due to the very cold air aloft during the
warmer months. Due to severe erosion of coastline and high winds, great
sand storms developed which destroyed farmlands and reshaped coastal
land regions.

Two great storms in the North Sea occurred in 1362 and in 1703. The
first destroyed the Island of Strand and the city of Ronghold. The second
(Nov 26) killed ca 8,000 people on the eastern coast of the British Isles.

(iii) Freezing

The Baltic Sea and rivers such as the Thames in England and the Tagus
in Spain, currently ice-free the year around, were regularly frozen sev-
eral inches thick. Winter Landscape, painted by Peter Brueghel the
Younger (1601) exhibit the frozen canals of Holland, now regularly
ice-free the year around. A generation earlier, Peter Breughel the
Elder recorded the merrymaking of Flemish peasantry in their daily
lives. His artworks-started off with fairly warm sunny summer weather,
but In the 1560s he suddenly switched to cold snow-swept landscapes.
This change began with Hunters in the Snow, depicting a group of men
returning from a hunt, set against a frozen lake. It was at this time that
the winter of 1564–1565 struck – the longest and most severe for well
over a century.

In the winter of 1780, New York Harbor froze, allowing people to walk
from Manhattan to Staten Island. Sea ice surrounding Iceland extended
for miles in every direction, closing the island’s nation’s harbors to ship-
ping.

(iv) Volcanic Activity

Throughout the Little Ice Age the world also experienced heightened
volcanic activity. When a volcano erupts, its ash reaches high into the
atmosphere and can spread to cover the whole earth. This ash cloud
blocks out some of the incoming solar radiation, leading to world-wide
cooling that can last up to two years after an eruption. Also emitted
by eruptions is sulfur in the form of SO2 gas. When this gas reaches
the stratosphere it turns into sulfuric acid particles, which reflect the
sun’s rays, further reducing the amount of radiation reaching the earth’s
surface. The 1815 eruption of Tambora in Indonesia blanketed the at-
mosphere with ash; the following year, 1816, came to be known as the
Year Without A Summer, when frost and snow were reported in June
and July in both New England and Northern Europe.
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There’s probably no better example of the artistic weather record than
Joseph Turner. Because he was obsessed with the light of the sky,
clouds and sea, Turner has given us a stunning insight into the climate
of the early nineteenth century. His glorious red skies were a particular
sign of strong atmospheric powers at work, because this was a time
when volcanic eruptions in the Azores in 1811 and Tambora in 1815
had shot clouds of dust across the globe. That dust cooled the earth
and scattered the light, filtering out the blues in the low sun and giving
sumptuous red sunrises and sunsets.

(v) Agriculture, economics and health

Crop-failures, poor harvests, increasing grain prices, lower wine-
production and severe diseases marred the lives of people in Western
Europe during the LIA, especially throughout the Maunder minimum.

These ere some of the many disasters impacted by the dramatic cooling
of the climate. Due to the famine, storms, and growth of glaciers, many
farmsteads were destroyed, which resulted in less tax revenues collected
due to decreased value of the properties.

The change in climate during these years greatly affected crop produc-
tion and animal husbandry. Famine became more frequent and death
from diseases increased.

Each grain crop requires several conditions before a successful growing
season and harvest is possible. Minimum temperatures are necessary
for seed germination. Higher altitudes are more susceptible to adverse
climatic cooling. Frost will occur later in the spring and earlier in the
fall causing a shortened growing season. Increase cloud cover and cool
weather retard the growing process and prolong the ripening of the grain.
In addition, if the summer remains wetter than usual, grain crops may
not be able to mature by drying out. If an early frost comes, the still-
moist grain will suffer damage. A cooling trend can affect the growing
plant in several ways, compounding the possibility of crop failure.

Thus, in the years of the LIA the price of grain increased over five times,
imposing an obvious hardship on the poor.

It is estimated that in the coldest decades of the Little Ice Age the growing
season was shortened by 3-4 weeks. This may represent an approximate
reduction of 20% of the total growing season which would range from
May to September in the Northern latitudes.

Exceptionally grim reports of mass deaths are frequent in the literature
of this time. There were population decreases in large portions of Eu-
rope. While diseases such as bubonic plague (Black Death) definitely
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had their effect, the generally weakened health of the people in years of
poor harvest must certainly be considered. In fact, population declines
attributed to low food levels began 40 years before the plague arrived.

In conclusion, the cooler climate during the LIA had a huge impact
on the health of Europeans, dearth and famine killed millions. Cool, wet
summers led to outbreaks of an illness called St. Anthony’s Fire. Whole
villages would suffer convulsions, hallucinations, gangrenous rotting of
the extremities, and even death. Grain, if stored in cool, damp condi-
tions, may develop a fungus known as ergot blight and also may ferment
just enough to produce a drug similar to LSD. (In fact, some historians
claim that the Salem, Massachusetts, witch hysteria was the result of
ergot blight.)

Malnutrition led to a weakened immunity to a variety of illnesses. In
England, malnutrition aggravated an influenza epidemic of 1557–8 in
which whole families died. In fact, during most of the 1550’s deaths
outnumbered births The Black Death (Bubonic Plague) was hastened
by malnutrition all over Europe.

(vi) Social Unrest

Conditions during the LIA led to many cases of social unrest. The
winter of 1709 killed many people in France. Conditions were so bad, a
priest in Angers, in west-central France, wrote:

“The cold began on January 6, 1709, and lasted in all its rigor until
the twenty-fourth. The crops that had been sewn were all completely
destroyed... Most of the hens had died of cold, as had the beasts in
the stables. When any poultry did survive the cold, their combs were
seen to freeze and fall off. Many birds, ducks, partridges, woodcock,
and blackbirds died and were found on the roads and on the thick ice
and frequent snow. Oaks, ashes, and other valley trees split with cold.
Two thirds of the vines died... No grape harvest was gathered at all in
Anjou... I myself did not get enough wine from my vineyard to fill a
nutshell.”

In March the poor rioted in several cities to keep the merchants from
selling what little wheat they had left.

The winter of 1739–1740 was also a bad one. After that there was no
spring and only a damp, cool summer which spoiled the wheat harvest.
The poor rebelled and the governor of Li told the rich to “fire into the
middle of them. That’s the only way to disperse this riffraff”.

One of history’s most notorious quotes might have been due in part to a
rare extremely warm period during the LIA. In Northern France in 1788,
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after an unusually bad winter, May, June, and July were excessively hot,
which caused the grain to shrivel. On July 13, just at harvest time, a
severe hailstorm (which typically occurs when there is very cold air aloft)
destroyed what little crops were left. From that bad harvest of 1788 came
the bread riots of 1789 which led to Marie Antoinette’s alleged remark
“Let them eat cake,” and the storming of the Bastille.

(vii) Vampires and Violins

Writers were also influenced by the great change in climate. In 1816,
“the year without a summer,” many Europeans spent their summers
around the fire. Mary Shelley (1797–1851) was inspired to write
‘Frankenstein’, and John Polidori (1795–1821), ‘The Vampyre’. Both
authors, together with Byron and Percy Shelley, were in Switzerland,
near Lake Geneva where Byron said “We will each write a ghost story.”
Percy Shelley also referred to a glacier in his poem “Mont Blanc” when
he wrote “and wall impregnable of beaming ice. The race of man flies
far in dread; his work and dwelling vanish”.

The less intense solar radiation and activity coincided with a sharp
decline in temperature, causing a very cold weather in Western Europe.
It is clearly seen in tree-ring records from high-elevation forest stands in
the European Alps. The long winters and cool summers produced wood
that has slow, even growth – desirable properties for producing quality
sounding boards.

Antonio Stradivari of Cremona, Italy, perhaps the most famous of
violin makers176, was born one year before the beginning of the Maunder
minimum (1645–1715). He and other violin makers of the area used
the only wood available to them from the trees that grew during the
Maunder minimum. It was suggested177 that the narrow tree-rings of

176 The violin first emerged in Northern Italy in the mid 1500’s. Many of the

most distinguished violins ever created were produced by famous local fami-

lies. The most famous makers were: Andrea Amati (1520–1578; Italy); Ja-

cob Stainer (ca 1617–1683; Austria); Antonio Stradivari (1644–1737; Italy);

Francesco Stradivari (1671–1743; Italy); Andrea Guarneri (ca 1626–1698;

Italy); Giuseppe Guarneri (1666–ca 1739); Giuseppe del Gesu Guarneri

(1687–1745). Stradivari, the most famous of these craftsmen, produced over

1100 violas, guitars, cellos and violins. Around 600 of his instruments are ex-

tant today. Narrow tree-rings would not only strengthen the violin but would

increase the wood’s density. Dense wood with narrow growth-rings may help

instill a superior tone and brilliance in violins.
177 H. Grissino-Mayer and L. Burckle: Dendrochronologia, 21, 41–45, Lamont-

Doherty Earth Observatory, Dec 2003.
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these trees played a role in the enhanced sound quality of instruments
produced at this time.

1703 CE, Nov. 26 An ocean tempest killed ca 8000 people on the eastern
coast of the British isles. Probably the greatest British storm of the last two
millennia. Fifteen warships and hundreds of merchant vessels (with about
1500 seamen on board) were lost. Thousands of trees were laid low throughout
the country, including ca 4000 large oaks in the New Forest, Cranbourne
Chase, and the Forest of Dean. Houses were blown to pieces; church steeples
toppled like skittles; floods were widespread, and Bristol’s streets ran into
water. Eddystone lighthouse, together with its crew, was swept like a heap of
rubble into the sea. When it was all over, the Commons presented an address
to Queen Anne and she issued a proclamation of general fast.

1704–1709 CE Abraham Darby (1678–1717, England). Iron and
brass manufacturer who developed a process for smelting iron using coke178

178 Coke is prepared by carbonizing coal in coke-ovens. The old oven consisted of a

covered mound of brickwork, in which coal was partly burnt in a limited supply

of air, as in charcoal burning. The high temperature produced carbonizes the
rest of the coal, and all the volatile products are lost.

The blast-furnace consisted of an outer shell of steel plates, lined with refrac-

tory bricks. It was a 15–30 m hight, the greatest width being about 8 m at the
“boshes”. The mouth was closed with a cap-and-cone (above) through which

the charge of ore, limestone and fuel was fed intermittently, whilst the gases

(carbon monoxide and nitrogen) pass away through a pipe to a dust-catcher,
and are utilized in heating the blast. The furnace below the boshes narrows

gradually to a hearth at the base, about 3 m in diameter and the same height.

This was pierced with holes for the water – jacketed iron blowing-pipes or tuy-
eres, through which air was forced from an annular pipe by means of powerful

blowing engines. About 3–5 tons of air were passed through the furnace per

ton of iron made, the power for working the blowing-engines being supplied by
coke-oven gas obtained in producing the coke for the blast furnace.

The first extensive use of cast-iron was in England (1544). Formerly, charcoal

was used as fuel; coal was used by D. Dudley (1599–1684) in England (1619).

The chemical reactions in the blast-furnace are as follows:

• Oxygen unites with carbon at a very high temperature in the hearth to pro-

duce carbon monoxide: 2C + O2 = 2CO.
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instead of the more expensive charcoal. Darby produced coke to use in blast-
furnaces. It was made by partly burning coal in a closed chamber. The
heating drives out the volatile material from the coal, including most of the
sulfur. This produced a high-carbon fuel which was clearer and hotter than
coal. Formerly wood-based charcoal was used to smelt iron.

The discovery greatly increased the market for coal and improved iron
production. With the invention of the Newcomen engine, this breakthrough
marked one of the starting points of the Industrial Revolution in England.
(Darby employed the cheaper iron to cast thin pots for domestic use, and
after his death it was used for the huge cylinders required by the new steam
pumping-engines.)

His grandson, Abraham Darby III (1750–1791) constructed the world’s
first iron bridge, over the river Severn at Coalbrookdale, Shropshire.

Darby was born near Dudely, Worcestershire to a Quaker family and
trained in engineering, setting up his own business (1698). He visited Holland
(1704) and brought back with him some Dutch brass179 founders, establish-
ing them in Bristol, later moving to Coalbrookdale. They experimented with
substituting cast iron for brass in some products and in 1708 Darby took out
a patent for a new way of casting iron pots and other ironware in sand only,

• Above the boshes, at a dull red-heat (500 ◦C–900 ◦C) the ferric oxide is re-

duced by the carbon monoxide to spongy iron: Fe2O3 + 3CO � 3Fe + 3CO2.

The reaction is reversible and the escaping gases contain CO and CO2. An-

other reaction also occurs which limits the completeness of the reduction:
2Fe + 3CO � Fe2O3 + 3C. In this upper zone the limestone is decomposed:

CaCO3 � CaO + CO2, and some carbon dioxide is reduced to monoxide:

CO2 + C � 2CO. The spongy iron absorbs sulphur from the fuel.

• Near the center of the furnace, at bright red heat, finely-divided carbon is
deposited by the reaction: 2CO � CO2 + C. This and the carbon of the

charge complete the reduction:

Fe2O3 + 3C = 2Fe + 3CO.

• At the white zone, in the lowest part of the furnace, the spongy iron containing
carbon, sulphur, phosphorus and silicon, fuses to molten cast-iron which is

tapped-off from time to time into sand moulds to form pig-iron, or is sent in

the fused state to the steel furnaces.

179 After the restoration of the monarchy England’s economy had surged, and the

demand for household brass rose rapidly.
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without loam or clay. This process cheapened utensils much used by poorer
people.

Table 3.6: Iron metallurgy – signposts of progress, 1650–1950

In England, the age of iron marched from triumph to triumph; New tech-
niques were developed for its production and new users were found for it. Vast
new smelting houses were built. Such was the demand, that Britain had to
import some 50,000 tons a year.

1665 CE Smelting iron with charcoal in England.

1709 CE Darby (England) developed a process using coke in blast fur-
naces.

1740 CE Huntsman (England) rediscovered the crucible process of making
cast steel . The small ingots produced by this process could not be used
yet to build bridges or railways.

1781 CE Darby’s grandson constructs in England the world’s first cast-iron
bridge (over the Severn River); the bridge is still used by pedestrians.
The 378-ton bridge spans 30 m.

1783–1784 CE The English ironmaster Henry Cort (1740–1800) invented
a process for purifying iron by puddling and a method of producing iron
bars by means of grooved rollers. He produced wrought iron. It used
a ‘reverberatory furnace’ where raw coal and low-carbon iron were kept
separate to reduce impurities in the finished product (Cort himself was
ruined by a prosecution for debt and died poor).

1790 CE Stainless steel is produced in England.

1801 CE The engineer James Finlay (USA) completed the first modern
suspension bridge in Pennsylvania, USA. It used iron chains for support.

1822 CE The engineer George Stephenson (1781–1848) built the first
iron railroad bridge in the world. The first iron steamship to cross the
Channel was assembled on the Thames from parts fabricated in England.
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1845 CE The engineer William Fairbairn (1789–1874, Scotland) built the
first steel bridge.

1851 CE Architect Joseph Paxton (1801–1865, England) built the Crys-
tal Palace of glass and iron for the London exhibition.

1855 CE Henry Bessemer (England) developed the Bessemer process of
converting pig iron into steel: cold air was forced through holes in the
base of the furnace and through the molten iron, burning up the carbon.
The device produced large amounts of steel cheaply.

1861 CE William Siemens (1823–1883, Germany and England) and
Pierre Emile Martin (1824–1915, France) streamlined steelmaking
with their independent invention of the open-hearth process: air and
hot gas pass over the molten pig iron. The gases from the molten metal
are then used to heat the air, to save fuel.

1885 CE The first skyscraper is erected in Chicago, USA, using presaged
technique introduced by Paxton (1851).

1902 CE P. Héroult (France) began producing steel in a electric-arc fur-
nace. This gave very high temperatures, producing much purer steel.

1904 CE Leon Guillet (France) developed the first stainless steel that
resist corrosion.

1913 CE H. Brearley (England) first made stainless steel by adding
chromium to steel. This prevents rusting.

1947 CE H. Hartley (England) added titanium to iron to produce much
stronger iron.

1948 CE The basic oxygen process was introduced in Austria. This is the
main method of making steel today: A jet of oxygen is blown on the
molten iron, quickly burning up the carbon and producing steel. It is
ten times faster than the open-hearth process.

Nomenclature:

Ore A natural deposit of a solid containing an insoluble compound of a
metal. Ores contain minerals (comparatively pure compounds of the
metals of interest) and mixed with relatively large amounts of gangue
(sand, soil, clay, rock and other materials). Native ores is the free state
of the less active metals: Au, Ag, Pt, Os, Ir, Ru, Rh, Pd, As, Si, Bi,
Cu.

Common classes of ores are:
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Oxide Fe2O3 (hematite); Fe3O4 (magnetite); Al2O3 (bauxite); SnO2

(cassiterite); MgO (periclase); SiO2 (silica).

Sulfide CuFeS2 (chalcopyrite); Cu2S (chalcocite); ZnS (sphalerite);
PbS (galena); FeS2 (iron pyrites); HgS (cinnabar).

Chloride NaCl (rock salt); KCl (sylvite); KCl · MgCl2 (carnallite).

Carbonate CaCO3 (limestone); MgCO3 (magnesite); MgCO3 · CaCO3

(dolomite).

Sulfate CaSO4 · 2H2O (gypsum); MgSO4 · 7H2O (epsom salt); BaSO4

(barite).

Silicate Be3Al2Si6O18 (beryl); Al2(Si2O8)(OH)4 (kalinite); LiAl(SiO3)2
(spodumence).

Alloy Mixing of a metal with another substance (usually other met-
als) to modify its properties. Among these are: bronze (cop-
per+tin), brass (copper+zinc), pewter (tin+antimony+copper), Ger-
man silver (copper+nickel+zinc), yellow gold (gold+copper), white gold
(gold+palladium+silver), sterling silver (silver+copper), wrought iron
(iron+small percentage of carbon), cast iron (iron+2 percent or more of
carbon), steel (many different alloys of iron containing carbon and one or
more metals such as: manganese, nickel, tungsten, molybdenum, cobalt,
vanadium and chromium), stellite (cobalt+chromium+tungsten), car-
boloy (tungsten+carbon+cobalt), woods metal (bismuth+tin+lead+
cadmium).

Metallurgy The overall process by which metals are extracted from ores.

Roasting Heating a compound below its melting point in the presence of
air. It removes sulfur, CO2, moisture and other impurities from the ore.
The remaining solid material contains a metallic oxide.

Smelting Chemical reduction of a substance at hight temperature in met-
allurgy. Basically it is a process of melting the ore in such a way as to
remove impurities.

In the case of iron, for example, the ore is placed in a huge, brick-lined
furnace called a blast furnace and subjected to high heat by blasting
hot air into the bottom half of a furnace, producing temperatures up to
1000 ◦C. Quantities of coke and limestone are also placed in the furnace.
As the heat of the furnace is raised, the coke begins to burn and gives
off carbon monoxide. This gas takes oxygen from the iron oxide, helping
to purify the metal.

Many of the other impurities of the ore melt and combine with the
limestone to form a liquid collection of waste materials (refuse), which
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is lighter than iron. This refuse rises to the top of the molten metal,
and is taken from the furnace as slag .

Pig iron The iron as it comes from the blast furnace. It usually contains 95
percent iron, 3 to 4 percent carbon, and smaller amounts of manganese,
phosphorus, sulfur, and other elements.

Coke A substance produced from coal by heating it in the absence of air;
the heating drives out volatile material from the coal, including most of
the sulfur. It also consolidates the carbon into strong lumps, stronger
from either coal or charcoal.

Cast iron Reprocessed pig iron: it is remelted in a coke-burning furnace
and cooled. It is brittle because it contains much iron carbide Fe3C, but
cheaper to make.

Wrought iron Pig iron is melted and most of the impurities are removed.
The molten iron is then poured over a glassy mass of melted sand,
or silica slag . The iron separates into droplets which quickly start to
harden. Gases are trapped inside each droplet. The gases build up
pressure and cause the drops to explode. The iron and silicate form
spongelike balls of iron. These sponge balls are placed in presses to
squeeze out the excess slag and form the wrought iron into blocks. The
tiny threads of iron silicate make wrought iron more malleable (easier
to hammer) and more resistant to corrosion than other kind of iron.

Wrought iron, with no carbon, was stronger but expensive because of
the extra work involved in making it. What everyone was looking for
was an effective compromise: cheap iron with just a little carbon, what
is now called – wild steel . But the only kind of steel then available
was unsuitable. From about 1000 BCE onwards bars of iron could only
be steeled by hand labor with hammer and anvil or by roasting with
charcoal in a furnace. The secret of melting steel, though practiced in
India before the Christian era, was unknown in the West until 1740 CE,
when a Yorkshire clock maker devised a process which made Sheffield
steel world famous.

Steel An alloy of iron and small definite amounts of other metals. There
are many types of steel, containing alloyed metals and other elements in
various controlled proportions. Stainless steel show high tensile strength
and excellent resistance to corrosion. The most common kind contains
14 to 18% chromium and 7 to 9% nickel.

Pig iron can be converted into steel by burning most of the carbon with
O2 in an oxygen furnace: Oxygen is blown through a heat-resistance
tube inserted below the surface of the molten iron. Carbon burns to
CO, which subsequently escapes and burns to CO2.
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1704–1711 CE Luigi Ferdinando Marsigli (1658–1730, Italy). Nat-
uralist, adventurer, soldier, writer, and student of the sea, whose life was
stranger than fiction: A general in the Austrian army, a slave in Turkey, a
pensioner of the Queen of Sweden, and a fellow of the French and London
Royal Societies. He wrote one of the first textbooks of oceanography, pub-
lished in Venice in 1711.

While in the Bosporus, Marsigli observed the currents flowing between the
Black Sea and the Mediterranean. He found that the surface water flows out
of the Black Sea, but the deep water flows in the opposite direction. The local
fishermen had been making good use of this fact. To travel from the Black Sea
to the Mediterranean, a fisherman merely drifted in the surface current. To
proceed in the opposite direction, he lowered his net into the bottom current.
The large net acted as a sea anchor, dragging the boat toward the Black Sea
against the surface current.

When Marsigli studied the deposits brought up from the sea bottom by
fishermen, he became interested in the depth of the sea. He investigated the
variation of temperature in the Mediterranean and found that it does not
change significantly with depth. He measured the density of seawater with a
hydrometer and found that the density increases with depth.

Marsigli was born at Bologna. After a course of scientific studies in his
native city he traveled through Turkey, collecting data on the military orga-
nization of that empire, as well as on its natural history. On his return he
entered the services of the emperor Leopold (1682) and fought with distinc-
tion against the Turks, by whom he was wounded and captured in a battle
on the River Raab, and sold to a pasha whom he accompanied to the siege
of Vienna. His release was purchased in 1684, and he afterwards took part
in the war of the Spanish succession. In 1703 he was appointed second in
command under Count Arco in the defense of Alt-Breisach. The fortress sur-
rendered to the Duke of Burgundy, and Marsigli was court martialed and
forced to give up soldiering. He then devoted the rest of his life to scientific
investigations, in the pursuit of which he made many journeys through Eu-
rope, spending a considerable time at Marseilles to study the nature of the
sea.

1705–1733 CE Stephen Hales (1677–1761, England). Clergyman,
physiologist, chemist and inventor. Inaugurated the science of plant phys-
iology and is one of the originators of experimental physiology. First to
investigate the role of gases in plant metabolism and measure blood pres-
sure.
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The first volume of his book Vegetable Staticks (1727) contains an account
of numerous experiments on the exchange of gases in plants, flow of fluids in
plants and plant respiration, root pressure, leaf growth and the rise of sap
under varying plant conditions, weather conditions and time of day. He con-
cluded that plants drew through their leaves some part of their nourishment
from the air. In the second volume (1733) on Haemostaticks he reported
methods of determining blood pressure in man and animals and also the rate
of flow, and the capacity of different vessels. He first reported observing elas-
ticity in arteries180.

Hales was born in Bekesbourne in Kent, grandson of Sir Robert Hales,
who was created a baronet by Charles II, in 1670. Studied divinity, anatomy
and chemistry at Cambridge and received the degree of doctor of divinity
from Oxford (1733). Elected Fellow of the Royal Society (1717) and foreign
associate of the French Academy of Sciences (1753).

Hales invented artificial ventilator for ships, prisons and hospitals, and
devised forceps to aid remove kidney and bladder stones.

1706 CE William Jones (1675–1749, England). Mathematician. In-
troduced the symbol π, adopted by Euler in 1739.

1706 CE John Machin (1680–1752, England). Mathematician. Pro-
fessor of astronomy in London. Calculated π to 100 decimal places181, using

180 As the heart pumps blood into the arteries during ventricular systole, a greater

volume of blood enters the arteries from the heart than leaves them to flow into

smaller vessels down-stream, because the smaller vessels have a greater resis-

tance to flow. The arteries’ elasticity enables them to expand to temporarily

hold this excess of volume of ejected blood, storing some of the energy imparted

by cardiac contraction, in their stretched walls.

When the heart relaxes and ceases pumping blood into the arteries, the

stretched arterial walls passively recoil. This recoil pushes the excess blood con-

tained in the arteries into the vessels down-stream, ensuring continued blood

flow to the tissues when the heart is relaxing and not pumping blood into the

system.

181 tan 4β = 4 t(1−t2)

1−6t2+t4
; tan

(
4β − π

4

)
= tan 4β−1

tan 4β+1
; t = tan β.

Taking tan β = 1
5

we find tan 4β = 120
119

and tan
(
4β − π

4

)
= 1

239
. Conse-

quently:

tan−1 1

239
= 4β − π

4
= 4 tan−1 1

5
− π

4
,

which is Machin’s formula. Substituting Gregory’s series

tan−1 x = x − 1

3
x3 +

1

5
x5 − 1

7
x7 + · · · ,
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the arctangent series

π

4
= 4 arctan

(
1
5

)

− arctan
1

239
.

1706–1716 CE Roger Cotes (1682–1716, England). Mathematician. A
contemporary of Newton who undertook the publication of the second edition
of Newton’s Principia.

He was the first to develop, in 1714, the important relation

iθ = loge(cos θ + i sin θ),

which is usually attributed to Euler. To Cotes we also owe a geometric theo-
rem (1714) which depends on the factorization of a trigonometric function182,
and ‘theorem of the harmonic mean’.183

Cotes was born at Burbage, Leicestershire, the son of a rector. He was ed-
ucated in Trinity College, Cambridge (1699–1705) and in 1706 was appointed
Plumian professor of astronomy and experimental philosophy. He took orders
in 1713. After his death, his papers were collected and published under the ti-
tle Harmonia Mensurarum (1722). His meteoric career earned him Newton’s
exclamation, “If Cotes had lived, we might have known something”.

1706–1761 CE Giovanni Battista Morgagni (1682–1771, Italy).
Physician and anatomist. Founder of the science of pathological anatomy.

one finds

π

4
= 4

[
1

5
− 1

3 · 53
+

1

5 · 55
− · · ·

]

−
[

1

239
− 1

3 · 2393
+

1

5 · 2395
− · · ·

]

.

182 The factorization:

x2n + 2xnyn cos nα + y2n =

n−1∏

0

{
x2 + 2xy cos

(
α +

2kπ

n

)
+ y2}

is proven by factoring the complex bivariate polynomial
{
xn + exp(inα) × yn

}
,

making use of the n-th root of unity,and taking the modulus assuming x, y to

be real.
183 “If, through a fixed point O, a variable line is drawn, cutting an algebraic curve

at points (P1, P2, P3, . . . , Pn), and if a point H is taken on the line such that OH

is the harmonic mean of OP1, OP2, . . . , OPn, then the locus of H is a straight

line.”



1706 CE 1217

His object was to relate the illness to the lesions established at autopsy.
His explorations of the female genitals, of the glands of the trachea and of
the male urethra, broke new grounds. His work (1761) De sedibus et Causis
Morborum per Anatomen Indagatis (Caused of Diseases) was grounded on over
600 postmortems. Morgangi was born in Forli. Graduated from the University
of Bologna and practiced medicine there. Professor at Padua University 1711–
1771.

1706 CE Francis Hauksbee (Hawksbee) (c. 1666–1713, England).
Physicist. Studied surface tension and capillary cation in fluids. Invented
(1706) an electrostatic generator. Constructed a two-cylinder vacuum pump.
Experimented with electroluminescence. He is called ‘the elder’ to distinguish
his from his nephew of the same name (1688–1763) and the similar scientific
interests.

1707–1732 CE Hermann Boerhaave (1668–1738, The Netherlands).
Physician, chemist and botanist. Founded modern system of clinic instruc-
tion. A man with immense academic knowledge who dominated and influ-
enced various branches of science in Europe.

Boerhaave was born in Voorhout, near Leiden. Went to the University of
Leiden (1684) where he studied philosophy, botany, languages, chemistry and
medicine (graduated 1693). Professor al Leiden (from 1709).

1709–1714 CE Gabriel Daniel Fahrenheit (1686–1736, Germany).
Physicist. Proposed a temperature scale that bears his name. He also made
the thermometer more accurate by using mercury instead of alcohol in the
thermometer tube. He determined three fixed temperatures: 0 ◦F for the
freezing point of ice + salt + water; 32 ◦F for the freezing point of pure water
and 96 ◦F for the normal temperature of the human body. These three tem-
peratures correspond respectively to −17.77 ◦, 0 ◦, and 35.55 ◦ on the Celsius
temperature scale. Later experiments proved the body normal temperature
to be 98.6 ◦F, or 37 ◦C.

Fahrenheit was born in Danzig. For the most part he lived in England
and Holland, devoting himself to the study of physics and making a living by
the manufacture of meteorological instruments. He also invented an improved
form of a hygrometer, of which he published an account in the Phil. Trans. of
1724. He died in Holland.

His temperature scale is still extensively used in the United States and
Great Britain.

1710–1744 CE Giambattista (Giovanni Battista) Vico (1668–1744,
Italy). Historical philosopher and jurist. Criticized radically the aims of sci-
ence as outlined through the Cartesian system. Claimed that mathematics
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does not enable us to promote a knowledge of nature as much as the ratio-
nalists thought and therefore tried to discover a ‘new science’ that was both
perfectly knowable and about the real world. Advanced the basic principle
that we can know only what we can do or make184.

Vico’s work contains the terms of many developments in the philosophy of
the 19th century. His ideas echoed through the Sturm and Drang movement
in Germany (Goethe, Herder, 1770) and he extended great influence upon
Karl Marx (1860), Benedetto Croce (1902), Georges Sorrel (1908) and
Oswald Spengler (1918).

In his own time, however, and for fifty years after his death, Vico remained
practically unknown. He was born in Naples, son of a small bookseller and
lived there or in its environs until his death. Educated by priests, he became,
at the age of thirty-one, a minor professor of rhetoric at the university of his
native city. This somewhat subordinate position he held until his retirement
in 1741. Most of his life he was poor. To keep himself and his family he had to
eke out his modest salary by giving private tuition and composing inscriptions,
Latin eulogies and laudatory biographies for the nobility. In the last years
of his life he was rewarded by being appointed official historiographer to the
Austrian Viceroy of Naples.

Vico is known mainly for his Principi d’una Scienza Nuova (1725). He
founded no school and his philosophy seemed to die with him; his name
was soon obscured, especially as the Kantian system dominated the world
of thought. His reinstatement was completed by Michelet (1827)185, who
translated his books.

According to Vico, mathematics, being an arbitrary construction of the
human mind is divorced from nature. It is not as Descartes supposed, a dis-
covery of an objective structure, the eternal and most general characteristic of

184 His approach was to establish a clear distinction between the world as it really

is and the world which we create and cognize through the use of mathematical

models and physical experiments. He realized that the understanding one has

of something created by oneself is of a different nature to that understanding

gleaned from simple observations. This distinction means we can never be free

from subjectivism. Vico saw that mathematical models appear intelligible and

coherent to our minds because our minds alone have made them. All our inquiry

is necessarily anthropocentric because we employ man-made tools and human

reasons in its pursuit. Vico believed the ‘real’ world of nature, which obeyed

inaccessible rules, differed in kind from our do-it-yourself model of intelligible

but man made laws.
185 Jules Michelet (1798–1874, France). Historian. Professor, College de France

(1838–1851).
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the real world, but rather an invention: invention of a symbolic system which
men can logically guarantee only because men have made it themselves; but
men cannot make the physical world. Nature herself was made by God and
therefore only he can fully understand her. As far as man goes, he can learn
something about nature by adopting an empirical approach through experi-
ment and observation and not so much through a mathematical procedure186.
Nature is not completely knowable. His concept of knowledge led Vico to
argue further that man can fully know only what he himself invented, created
or participated in, i.e., such provinces as participated in, i.e., such provinces
as mathematics, mythology, language, symbolism and its own history.

Faced with the choice between a perfect understanding of a philosophical
system divorced from reality and an imperfect understanding of the reality
of life, Vico chose the latter and developed his concept that, since men could
only fully apprehend the reality of their own creations, the task of philoso-
phy should be the study of the universal principles underlying the history of
nations. He pleaded that history should be written by philosophers.

Vico was the first thinker who asked, why have we a science of nature, but
no science of history? Because our glance can easily be turned outwards and
survey the exterior world; but it is far harder to turn the minds eye inwards
and contemplate the world of the spirit.

Vico advanced the cyclical theory of history which maintains, counter to
the Christian concept of time, that humanity advances not in a straight line
but along an upward spiral staircase, with each spiral bringing man closer to
freedom and nearer to God.

He declared that there were three great doors that led into the past: lan-
guage, myths, and rites (institutional behavior). The task before those who
wish to grasp what kind of lives have in the past been led in societies different
from their own, is to understand their worlds through each of the above cat-
egories. Poetry, for example, is a direct form of self-expression of our remote
ancestors, collective and communal. Myths are far-reaching images of past
social conflicts out of which many diverse cultures grew.

Vico maintained that the Homeric poems were the sublime expression of
a society dominated by the ambition, avarice and cruelty of its ruling class;
for only a society of this kind could have produced this vision of life. Later
ages may have perfected other aids to existence, but they cannot create the

186 Vico failed to see the role it plays in scientific research. At the same time

one might allow that there was here a warning against unbridled mathematical

speculation, which sometimes tries to pass for empirical work. The proper

approach lies somewhere between these two extremes.
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Iliad , which embodies the modes of thought and expression and emotion of
one particular kind of way of life; these men literally saw what we do not see.

The scientific method is adequate for establishing bare facts. However, the
task of historians is not merely to establish facts and give causal explanation
for them. The knowledge that they need is not knowledge of facts or of logical
truths, provided by observation or the science of deductive reasoning. They
must possess imaginative power of a higher degree. Without this power of
entering into minds and situations, the past will remain a dead collection
of objects in a museum for us. Without some ability to get into the skin
of others, the human condition, history cannot be understood. This use of
informed imagination about, and insight into, systems of value, conceptions
of life of entire societies, is not required in mathematics or physics.

The ideas of Vico provided a natural prologue to the more critical analysis
which were to be developed by David Hume and Immanuel Kant.

1711 CE Austria and Germany devastated by plague. About 500,000
died.

1712 CE Thomas Newcomen (1663–1729, England). One of the inven-
tors of the early steam engine. His ‘fire engine’ (1712) was used for pumping
water from mines until James Watt invented one with a separate condenser.
Newcomen’s engine was the first to use a piston and a cylinder. Earlier mod-
els of the machine were constructed by him during 1705–1712 with the aid
of the military engineer Thomas Savery (1650–1715). The whole situa-
tion is confused by a patent granted to Savery and in later years Newcomen
paid royalties to Savery. It is also known that Newcomen corresponded with
Robert Hooke about the previous investigations of Denis Papin.

Newcomen was born in Dartmouth, Devon, and set up a blacksmith’s
shop there, assisted by a plumber called John Calley. The Newcomen’s
engine consumed an enormous amount of coal, because fresh hot steam had
to be raised for each piston stroke. The early engines were very expensive,
because the cylinder was made by brass; later, iron cylinders were produced
but they were thick-walled and consequently even less efficient in terms of
coal consumed. However, they were mostly used in coal mines. It was with
the Newcomen’s engine that the age of steam began.

As late as the French revolution (1793 CE), it has been estimated, Europe
drew energy from about 14 million horses and 24 million oxen. All these soci-
eties exploited energy sources that where renewable: nature could eventually
replenished the forests they cut, the wind that filled their sails, the rivers
that turned their puddle wheels. Even animals and people were replenished
“energy slaves”.

A revolutionary shift began after Newcomen’s engine. Societies, by con-
trast, drew their energy from coal, gas and oil – from irreplaceable fossil funds.
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It meant that for the first time a civilization was eating into natures capital
rather than merely living off the interest it provided.

This dipping into the earth’s energy reserves provided a hidden subsidy
for industrial civilization – a vastly accelerated economic growth. And from
that day to this, nations built towering technologies and economic structures
on the assumption that cheap fossil fuels would be endlessly available.

1712–1715 CE Brook Taylor (1685–1731, England). Mathematician.
Discovered the polynomial approximation of analytic functions near a given
point187. Also, contributed to the general development of the calculus. In

187 Taylor expansion of a function f(x) [f (n)(x) continuous] about a point x = a

is

f(x) = f(a)+ f ′(a)(x − a)+
f ′′(a)

2!
(x − a)2 + · · · +

f (n−1)(a)

(n − 1)!
(x − a)n−1 +R(x),

with a remainder

R(x) =
1

(n − 1)!

∫ x

a

(x − s)n−1f(s)ds =
f (n)(ξ)

n!
(x − a)n, a < ξ < x.

Newton’s method of finding an approximate local solution to an equation of the

form f(x) = 0 follows from Taylor’s expansion in the following way: Suppose

c denotes the solution to the above equation and f ′′(x) exists on an interval
containing both c and the initial value x0. Expanding f(x) in Taylor series

about x0 we have

0 = f(c) = f(x0) + (c − x0)f
′(x0) +

1

2
f ′′(ξ)(c − x0)

2,

or

c − x0 +
f(x0)

f ′(x0)
= − 1

2

f ′′(ξ)

f ′(x0)
(c − x0)

2,

where f ′(x0) 	= 0. Denoting x1 = x0 − f(x0)
f ′(x0)

(Newton’s first approximation),

Taylor’s expansion implies that

c − x1 = − 1

2

f ′′(ξ)

f ′(x0)
(c − x0)

2.

If a bound M is known for the second derivative of f on an interval about c

and x0 is within the interval, then |c − x1| ≤ M
|2f ′(x0)| |c − x0|2. This inequality

implies that Newton’s method has the tendency to approximately double the
number of digits of accuracy with each successful approximation.

Succeeding approximations are generated by applying the formula

xn+1 = xn − f(xn)

f ′(xn)
.
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1715 he introduced the idea of “integration by parts”188. During 1715–1717,
Taylor invented the concept of finite difference, thus initiating the calculus
of finite differences. Devised the basis principle of perspective in his Linear
Perspective (1715).

Taylor was born in Edmonton, Middlesex. He was elected a Fellow of the
Royal Society (1712) and was appointed in that year to the committee for
adjudicating the claims of Newton and Leibniz to have invented the calculus.

‘Taylor’s Expansion’ on a Sumerian Cuneiform Tablet?

The ancient Sumerians in Mesopotamia gave some interesting approxima-
tions to the square root of nonsquare numbers, like 17

12 for
√

2 and 17
24 for 1√

2
.

A remarkable approximation for
√

2 is

1 +
24
60

+
51

(60)2
+

10
(60)3

= 1.4142155

Choosing f(x) = xn − k and taking x0 to be an approximation to n
√

k, we find

x1 = n−1
n

x0 + k

nxn−1
0

.

A useful generalization of the Taylor expansion in which one function is
expanded in terms of another given function, was discovered by Heinrich

Bürmann (1799):

f(x) = f(a) +

n−1∑

k=1

αk(a)

k!

[
g(x) − g(a)

]k
+ R(x),

where αk(x) =
α′

k−1(x)

g′(x)
, k = 1, 2, . . ., α0(x) = f(x), R(x) = αn(ξ)

n!

[
g(x) − g(a)

]n
,

a < ξ < x, f (n)(x) and g(n)(x) continuous; g′(x) 	= 0. The function αk(x)

is given explicitly by the expression

αk(x) =
[ 1

g′(x)

d

dx

]k
f(x).

188 The name “integration by parts” first appeared in 1797 in a book by Sylvestre

Francois Lacroix (1765–1843, France).
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(correct to 5 decimals), found on the Yale tablet YBC 7289 dated about 1600
BCE.

When searching for
√

x, the Sumerian would start with some approxima-
tion a and then generate a sequence of increasingly better approximations. In
modern notation they calculated

a1 =
1
2

(

a +
x

a

)

, a2 =
1
2

(

a1 +
x

a1

)

, · · · , an+1 =
1
2

(

an +
x

an

)

.

This iterative algorithm by successive approximation was known to the
Greeks, as is evident from the writings of Heron (ca 50 CE).

Let us apply their technique to evaluate
√

2 and take a = 1 as our initial
guess. Then

a1 =
1
2

(

1 +
2
1

)

=
3
2

≡ 1 +
30
60

,

a2 =
1
2

(
3
2

+
2

3/2

)

=
17
12

≡ 1 +
25
60

,

a3 =
1
2

(
17
12

+
2

17/12

)

=
577
408

≡ 1 +
24
60

+
51

(60)2
+

10
(60)3

,

which leads to the result inscribed on the Yale tablet!

Al-Khowarizmi (ca 825 CE) spoke of rational numbers as audible and
surds as inaudible, and it is the latter that gave rise to the word surd (deaf,
mute in Arabic). The European use of this word begins with Gerhardo of
Cremona (ca 1150 CE).

The Arab mathematicians (e.g. Al-Karkhi, 1020 CE) and medieval writ-
ers used the approximation

a +
h

2a + 1
<
√

a2 + h < a +
h

2a
, 0 < h ≤ a.

Now, on the r.h.s. we recognize the old Sumerian first approximation. Indeed,
take x = a2 + h and then

a1 =
1
2

(

a +
a2 + h

a

)

= a +
h

2a
.

The European mathematicians before Newton generalized the surd approxi-
mation to the case of cube roots. Thus, Joannes Buteo (1492–1572, France)
derived 3

√
a3 + h ≈ a + h

3a(a+1) (1559) and Stevin followed suit (1634) with
3

√
a3 + h ≈ a + h

3a(a+1)+1 . With the development of the Newtonian calculus
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and the expansions of Taylor and Maclaurin that followed in its wake, it was
recognized that the approximation

n
√

an + h ≈ a +
h

nan−1
(h < a)

corresponds to the first approximation used by Heron for n = 2 (the relevant
Sumerian analogs were discovered only in 1943).

Moreover, Taylor’s polynomial expansion shed some light on the entire
Sumerian method of approximating square roots. for, if we apply their tech-
nique to

√
1 + x, starting with the approximate value a = 1, we find

a1 =
1
2

[

1 +
1 + x

1

]

= 1 +
x

2

a2 =
1
2

[

1 +
x

2
+

1 + x

1 + x/2

]

.

But for |x| < 1, 1
1+x/2 = 1 − x

2 + x2

4 − · · · renders

a2 = 1 +
x

2
− x2

8
+ · · · .

Continuing this process will lead to the Taylor polynomial of higher and higher
degrees. The Sumerian approximation, however, had the clear advantage of
being valid for all values of x and not just |x| < 1.

1715–1750 CE Giulio Carlo Fagnano dei Toschi (1682–1766, Italy).
Mathematician. Discovered the formula π = 2i loge

1−i
1+i , in which he antici-

pated L. Euler in the use of imaginary exponents and logarithms. His studies
on the rectification of the ellipse, the hyperbola and the lemniscate are the
starting-points of the theory of elliptic functions. Suggested new methods in
solving equations of degree 3 and 4. He gave expert advice to Pope Benedict
XIV regarding the safety of the cupola of St. Peter’s at Rome. In return the
Pope promised to publish his mathematical investigations. For some reason,
the promise was not fulfilled and they were not published until 1750.

1716–1720 CE Jacob Hermann (1678–1733, Switzerland). Mathe-
matician. Worked in mechanics and first to study the ‘inverse problem’, where
one has to determine the orbit from the knowledge of the law of force. One
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of the pioneers of ‘theoretical mechanics’. Hermann was a pupil of Jakob
Bernoulli and was a professor of mathematics in the University of Padua
(1707–1713), at Frankfurt a.d.O. (1713–1724), at St. Petersburg (1724–1731)
and at Basel.

The Evolution of Trigonometry (280 BCE–1720)

Trigonometry, in its essential form of showing how to deduce the values of
the angles and sides of a triangle when other angles and sides are given, is an
invention of the Greeks, although the basic trigonometry of the right-angled
triangle was known to the Babylonians and the Egyptians.

Thus, the history of trigonometry stretches over a period of some 2000
years from Aristarchos of Samos to Euler.

Trigonometry found its origin in the computations demanded for the re-
duction of astronomical observations and in other problems connected with as-
tronomical science: After the 3rd century BCE, mathematical research shifted
increasingly away from the pure forms of constructive geometry toward ar-
eas related to applied disciplines, in particular to astronomy. Also, in the
2nd century BCE, the Greeks first came into contact with the fully devel-
oped Mesopotamian astronomical systems and took from them many of their
observations and parameters.

While retaining their own commitment to geometric models rather than
adopting the arithmetic schemes of the Mesopotamians, the Greeks never-
theless followed the Mesopotamians’ lead in seeking a predictive astronomy
based on a combination of mathematical theory and observational parame-
ters. They thus made it their goal not merely to describe but to calculate the
angular positions of the planets on the basis of the numerical and geometric
content of the theory. This major restructuring of Greek astronomy, in both
its theoretical and practical aspects was primarily due to Hipparchos (ca
150 BCE), whose work was consolidated further by Ptolemy.

To facilitate their astronomical researches, the Greeks developed tech-
niques for numerical measurements of angles, a precursor of trigonometry, and
produced tables for practical computations. Early efforts to measure numer-
ical ratios in triangles were made by Archimedes and Aristarchos. Their



1226 3. The Clockwork Universe

results were soon extended, and comprehensive treatises on the measurement
of chords (effectively tables of values of the sine function) were produced by
Hipparchos and by Menelaos of Alexandria (ca 98 CE). These works
are now lost, but the essential theorems and tables are preserved in Ptolemy’s
Almagest. For computing with angles the Greeks adopted the Mesopotamian
sexagesimal method in arithmetic, whence it survived in the standard units
for angles and time employed to this day.

It so happened that spherical trigonometry was developed before the sim-
pler plane trigonometry.

In place of sine, cosine and tangent, the Greek astronomers Hipparchos
and Ptolemy (150 CE) always used chords of arcs of circles. In fact it makes
little difference whether one operates with cords or with sines, since what we
now call the sine of an angle is the quotient by the radius of one half of the
chord of twice the intercepted arc i.e.

sinα =
1

2R
chord(2α)

[it is only since around 1800 CE that we divide by the radius and regard the
l.h.s. as more fundamental than chord (2α)].

As early as the 5 th century CE, the Hindu astronomers changed from the
chords to the sines.

The Hindus, who were much more adept calculators than the Greek,
availed themselves of the Greek geometry which came from Alexandria, and
made it the basis of trigonometrical calculations. The principal improvement
which they introduced consists in the formation of tables of half-cords (or
sines) instead of chords.

Although the Hindus could calculate sines and cosines of one degree
[sin 1 ◦ = 10

573 , cos 1 ◦ = 6568
6569 ] with greater accuracy than Ptolemy, they did

not apply their trigonometrical knowledge to the solution of triangles. For
astronomical purposes they solved right-angled plane and spherical triangles
by geometry.

The Arabs were acquainted with Ptolemy’s almagest and they probably
learned from the Hindus the use of the sine. The Arab astronomer Al-

bategnius (850–929) employed the sine regularly, and was fully aware of the
advantage of the sine over the chord. He was also acquainted with the formula

cos a = cos b cos c + sin b sin c cosA

for a spherical triangle ABC.



1716 CE 1227

Abu al-Wafa of Baghdad (940–998) was the first to introduce the tan-
gent as an independent function. This improvement was forgotten, however,
and the tangent was reinvented in the 15th century.

Ibn Yunus of Cairo (d. 1008), Alhazen’s contemporary and countryman
(they both lived in Egypt), introduced the formula

2 cos x cos y = cos(x + y) + cos(x − y).

[This formula, and 3 similar ones, were used in 16th century Europe to convert
products to sums before the invention of the logarithm!] He showed even more
skill then Albategnius in the solution of problems in spherical trigonometry,
and gave improved approximate formulae for the calculation of sines.

The Western Muslim astronomer, Jabir Ibn Aflah of Seville (frequently
called Jabir or Geber), who flourished ca 1130, discovered the relation
cos B = cos b sin A, valid for a spherical triangle ABC with a right angle
at C. This formula escaped the notice of Ptolemy. Strangely enough, Jabir
made no progress in plane trigonometry.

George Peurbach (Purbach) (1423–1461), professor of mathematics
at Vienna, wrote a work entitled Tractatus super propositiones Ptolemaei de
sinubus et chordis (Nuremberg, 1541). This treatise consists of a development
of a method of interpolation for the calculation of tables of sines, and was
published posthumously by Regiomontanus at the end of his works.

Johannes Müller (1436–1476), known as Regiomontanus, was a pupil
of Purbach and taught astronomy at Padua; he wrote an exposition of the
Almagest, and a more important work, De triangulis planis et sphericis cum
tabulis sinuum, which was published in 1533, a later edition appearing in
1561. He reinvented the tangent and calculated a table of tangents for each
degree, but did not make any practical applications of this table, and did not
use formulae involving the tangent. His work was the first complete European
treatise on trigonometry, and contains a number of interesting problems; but
his methods were in some respects behind those of the Arabs.

Copernicus (1473–1543) gave the first simple demonstration of the fun-
damental formulae of spherical trigonometry; the Trigonometria Copernici
was published by George Joachim (1514–1576), known as Rheticus (1542).
He wrote Opus palatinum de triangulis, which contains tables of sines, tan-
gents and secants of angles at intervals of 10′ ′ from 0 ◦ to 90 ◦. His method of
calculation depends upon the formulae which give sin(nα) and cos(nα) in
terms of the sines and cosines of (n − 1)α and (n − 2)α; thus these formulae
may be regarded as due to him. Rheticus found the formulae for the sines of
the half and third of an angle in terms of the sine of the whole angle.
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In 1595 there appeared an important work by Bartholomaeus Pitis-
cus (1561–1613), entitled Trigonometriae seu De dimensione triangulorum, in
which the word ‘trigonometry’ was first coined; this contained several impor-
tant theorems on the trigonometrical functions of two angles, some of which
had been given before by Thomas Fincke, Landsberg (or Lansberghe de
Meuleblecke) and Adrian van Roomen.

Francois Viète or Vieta (1540–1603) employed the equation

(
2 cos

1
3
φ
)3 − 3

(
2 cos

1
3
φ
)

= 2 cos φ

to solve the cubic x3 − 3a2x = a2b
(
a > 1

2b
)
; he obtained, however, only

one root of the cubic. In 1593 Van Roomen proposed, as a problem for all
mathematicians, to solve the equation

45y − 3795y3 + 95634y5 − · · · + 945y41 − 45y43 + y45 = C.

Vieta gave y = 2 sin 1
45φ, where C = 2 sin φ, as a solution, and also twenty-

two of the other solutions, but he failed to obtain the negative roots. In his
work Ad angulares sectiones Vieta gave formulae for the chords of multiples
of a given angle in terms of the chord of the angle itself.

A new stage in the development of the science was commenced after John
Napier’s invention of logarithms in 1614. Napier also simplified the solution
of spherical triangles by his rules for the solution of right-angled triangles. The
first tables of logarithmic sines and tangents were constructed by Edmund
Gunter (1581–1626), professor of astronomy at Gresham College, London;
he was also the first to employ the expressions cosine, cotangent and cosecant
for the sine, tangent and secant of the complement of an angle.

A treatise by Albert Girard (1590–1634), published at the Hague in
1629, contains the theorems which give areas of spherical triangles and poly-
gons, and applications of the properties of the supplementary triangles to the
reduction of the number of different cases in the solution of spherical triangles.
He used the notation sin, tan, sec for the sine, tangent and secant of an angle.

In the second half of the 17th century the theory of infinite series was de-
veloped by John Wallis, Gregory, Mercator, and afterwards by Newton
and Leibniz. In the Analysis per aequationes numero terminorum infinitas,
which was written before 1669, Newton gave the series for the angle in powers
of its sine; from this he obtained the series for the sine and cosine in powers
of the angle; but these series were given in such a form that the law of the
formation of the coefficients was hidden.

James Gregory discovered in 1670 the series for the angle in powers of
the tangent and for the tangent and secant in powers of the angle. The
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first of these series was also discovered independently by Leibniz in 1673,
and published without proof in the Acta eruditorum for 1682. The series
for the sine in powers of the angle he published in 1693; this he obtained by
differentiation of a series with undetermined coefficients.

In the 18th century the science began to take a more analytical form;
evidence of this is given in the works of Jakub Kresa (1648–1715) in 1720 and
Mayer in 1727. Friedrich Wilhelm von Oppel’s Analysis triangulorum
(1746) was the first complete work on analytical trigonometry. None of these
mathematicians used the notation sin, cos, tan, which is the more surprising
in the case of Oppel, since Leonhard Euler had, in 1744, employed it in a
memoir in the Acta eruditorum. Johann Bernoulli was the first to obtain
real results by the use of the symbol

√
−1; he published in 1712 the general

formula for tan(nφ) in terms of tanφ, which he obtained by means of
transformation of the angle into imaginary logarithms.

Further advance was made by Euler, who brought the science in all es-
sential respects into the state in which it is at present. He introduced the
present notation into general use; until his time the trigonometrical functions
had been, except by Girard, indicated by special letters, and had been re-
garded as certain straight lines, the absolute lengths of which depended on
the radius of the circle in which they were drawn.

Euler’s great improvement consisted in his regarding the sine, cosine, &c.,
as functions of the angle only, thereby giving to equations connecting these
functions a purely analytical interpretation, instead of a geometrical one as
before. The exponential values of the sine and cosine, de Moivre’s theorem,
and a great number of other analytical properties of the trigonometric func-
tions, are due to Euler, most of whose writings are to be found in the Memoirs
of the St. Petersburg Academy.

1722 CE Johann Sebastian Bach (1685–1750, Germany). Composed
The Well-Tempered Clavier , written in the tempered scale with 12 notes per
octave having a fixed frequency ratio of 21/12 = 1.0595. Although there is
controversy as to whether Bach ever played on an instrument tuned according
to equal temperament, his Well-Tempered Clavier had considerable influence
on the use of the system.

This scale may have originated in China long before the time of Pythago-
ras (ca 540 BCE). Michael Stifel (1544) introduced the scale to Europe.
Mersenne (1636), however, was the first to give the correct frequency ratios
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for equal temperament. One should note that Bach was able to employ the
tempered scale only because Napier had invented the logarithms before him,
shortly after 1600.

1724 CE Jacopo Francesco Riccati (1676–1754, Italy). An Italian
savant who wrote on mathematics, physics and philosophy. He was chiefly re-
sponsible for introducing the ideas of Newton to Italy. At one point he was of-
fered the presidency of the St. Petersburg Academy of Sciences, but preferred
the leisure and comfort of his aristocratic life in Italy. Though widely known in
scientific circles of his time, he did very little original work and his name now
survives only through the differential equation y′ = p(x) + q(x)y + r(x)y2,
bearing his name. Even this was an accident of history, for Riccati only dis-
cussed special cases of this equation without offering any solutions, and even
most of these were treated by various members of the Bernoulli family. The
term ‘Riccati’s equation’ was given by d’Alembert (1763).

1725–1741 CE Vitus Bering (1680–1741, Denmark). Navigator and
explorer in Russian service. Was dispatched by Peter the Great to explore
the waters off north-eastern Siberia. The Bering Island, sea and strait take
their name from him. In a series of voyages he discovered the Bering strait,
crossed to Kamchatka and explored the Aleutian Islands.

1728–1748 CE James Bradley (1693–1762, England). Astronomer.
Discovered the phenomenon of starlight aberration (1728): because of the
earth’s orbital motion, if starlight is to pass through the length of the tele-
scope189 the telescope must be slightly tilted forward in the direction of the
earth’s motion relative to the actual line of sight to the star’s position; i.e.
the apparent direction of the star is displaced slightly from its geometrical
direction, and the displacement is in the direction of the earth’s orbital mo-
tion.

Since the speed of light is about 10,000 times that of the earth in its orbit,
the angle through which a telescope must be tilted forward can be as large as
ten-thousandth of a radian, or about 20.5′ ′. The effect is greatest when the
earth is moving at right angles to the star’s direction.

189 Analogy : A man stands still, holding a straight drain pipe in a vertical upright

position. If it is raining, and if raindrops fall vertically (no wind), they will

fall through the length of the pipe. But if the man walks forward with a fixed

speed, v, he must tilt the pipe forward so that drops entering the top will fall

out at the bottom without being swept up by the approaching inside of the wall

of the pipe. If the raindrops fall with speed V in the earth’s frame, the pipe

must be tilted at an angle α to the vertical such that tan α = v
V

.
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Bradley found that if a telescope is pointed in a certain direction to observe
a particular star on one night, then 6 month later the telescope must be
pointed in a slightly different direction to observe the same star. Let a star
be located on a line from the sun that is perpendicular to the earth’s orbital
plane. Because of the earth’s motion with orbital velocity V , the tilt angle
α of the star’s rays is given by tan α = V/c, where c is the speed of light in
vacuum. Bradley measured the difference in sighting angles 6 months apart,
obtaining 2α = 40.4′ ′ (arc seconds). Combined with V = 30 km/sec (known
independently from celestial mechanics), this value for 2α radians gives

c =
V

tanα
≈ V

α
=

3.0 × 104 m
sec

20.2 × π/(3600 × 180)
= 3.06 × 108 m/sec.

The relativistic expression is

tan α = β(1 − β2)−1/2,

β = V/c. When β � 1, this expression reduces, as in the present case, to
tan α ≈ β.

A star that is on the ecliptic plane appears to shift back and forth in a
straight line during the year. A star in a direction perpendicular to the earth’s
orbit appears to describe a small circle in the sky. [In 1862, J. Foucault
reversed the logic of the above calculation by using his measurement of the
speed of light to calculate the earth’s speed, and hence verify its distance to
the sun.]190

In 1737 Bradley discovered the nutation of the earth’s axis, which is
a motion caused by the temporal irregularity of the forces that cause the
precession: for instance when the sun or moon is in the plane of the earth’s
bulge, no tidal torque is applied by the respective body. The sun crosses the
celestial equator twice a year and the moon crosses it twice a month, and at
these moments of crossing there will be no torque effecting precession due to
one or the other. In addition, there are variations in the orientation of the
moon’s orbit with respect to the ecliptic. All these factors affect precession
by causing slight fluctuations in its rate and in the tilt angle of the earth’s
axis to the ecliptic191. These are the nutations (Latin for “nodding”), which

190 The distance is approximately equal to V T
2π

where V is the earth’s orbital speed

and T is its orbital period (1 year). Knowing this, the mass of the sun can then

be estimated from Kepler’s third law. This idealized calculation assumes a

circular orbit.
191 However, even a simple spinning top on a flat table, generally undergoes nuta-

tion, since precession competes with the tendency of the tilted top to fall.
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result in an overall periodic motion of the earth’s pole relative to the “fixed
stars” much faster than its precession (period: 18.6 years).

Bradley was born in Sherborne, Gloucestershire. He graduated from Ox-
ford University in 1717 and was trained in astronomical observations by his
uncle, a skilled astronomer. He became a professor of astronomy at Oxford
in 1721 and served until 1742. He then became the director of Greenwich
Observatory, succeeding Edmund Halley as astronomer royal.

1728–1749 CE Pierre Bouguer (1698–1758, France). Mathemati-
cian and physicist. Invented the photometer (1748) and the heliophotometer.
Considered as the father of photometry . Devised a method to relate grav-
ity anomalies to deficiency of mass in the earth’s crust. Participated in the
French astro-geodetic expedition192 to Peru (1735–1744), and made his mea-
surements in the high Andes.

Bouguer was appointed in 1723 to succeed his father as professor of hy-
drography. In 1730 he was made professor of hydrography at Havre, and
succeeded Maupertuis as member of the Académie des Sciences.

1728–1755 CE Daniel Bernoulli (1700–1782, Switzerland). A distin-
guished mathematician of the 18th century. Son of Johann Bernoulli. Studied
medicine like his father, and like him gave it up to become a professor of
mathematics, at St. Petersburg. In 1733 he returned to Basel and was suc-
cessively a professor of botany, anatomy and physics. He won 10 prizes from
the French Academy, for one of which his father was among the competitors.
In a fit of jealous rage Johann threw his son out of the house for winning the
prize that he coveted for himself.

His famous book ‘Hydrodynamica’ (1738) includes the earliest treatment
of the kinetic theory of gases and the famous Bernoulli principle193 [obtained

192 This expedition, and another to Lapland (1736–1737), established that the earth

is flattened at the poles. The flattening, predicted theoretically by Newton

(1687), was confirmed by the expeditions’ measurements of 110,600 m for the

length of a degree of latitude in Peru and 111,900 m for the corresponding length

in Lapland.
193 The Bernoulli principle: If an incompressible frictionless homogeneous fluid

with density ρ moves without friction, the sum of pressure p and kinetic energy

per unit volume remains constant (along a streamline): p + 1
2
ρv2 = constant.

Thus an increase in the flow velocity v is accompanied by a decrease in the

pressure exerted by the fluid on the walls of the container.

Many aerodynamic effects are consequences of Bernoulli’s principle. For ex-

ample, subsonic aircraft obtain most of their lift from the pressure difference

between underside and top of the wing, whose profile makes the air flow faster
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before the discovery of the Euler equation, by considerations similar to the
modern principle of conservation of energy]. He also used the Fourier series
expansion long before Fourier (1828).

He is considered by many to have been the first genuine mathematical
physicist.

Apart from Jakob, Johann and Daniel, the Bernoulli family produced
another 6 mathematicians of distinction:

• Nicolas (Nicolaus, 1687–1759). Professor of mathematics at Padua.
Contributed to probability theory and the theory of infinite series.
Nephew of Jakob and Johann.

• Nicolas II (1695–1726). Professor of mathematics at St. Petersburg.
Empress Catherine ordered him a state funeral upon his premature death.

• Johann II (1710–1790). Professor of mathematics at Basel. Contributed
to the theory of heat diffusion and light propagation.

• Johann III (1744–1807). Astronomer at the Academy of Berlin. Son of
Johann II.

• Jakob II (1759–1789). Professor of mathematics at St. Petersburg.
Tragically drowned while bathing in the Neva, a few months after his
marriage to the granddaughter of Leonhard Euler. Son of Johann II.

• Daniel II (1751–1834). Professor of mathematics at Basel. Son of Jo-
hann II.

The Bernoulli family, with all its mathematical talent, also had more than
its share of arrogance and jealousy, which turned brother against brother
and father against son. In three successive generations, fathers tried to steer
their sons into nonmathematical careers, only to see them gravitate back to
mathematics. The fiercest conflict occurred between James, John, and Daniel.

During his teens Daniel was tutored by his older brother Nicholas II; his
father wanted him to go into business, but when that career failed Daniel was
permitted to study medicine. During his years at St. Petersburg Academy
(1725–1733) he conceived his ideas on modes of vibrations and produced the

over the top than along the underside. Similarly, the “curve ball” familiar to

baseball aficionados is the Bernoulli effect on a moving sphere whose spin will

cause a difference in air flow velocity and thus a pressure difference on opposite

sides of the sphere.
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first draft of his Hydrodynamica. Although he missed the basic partial differ-
ential equations of hydrodynamics, his book used systematically the principle
of conservation of energy. Unfortunately, publication of Hydrodynamica was
delayed until 1738. His father, John then published a book on hydrodynam-
ics in 1743, dating his book to 1732! - one of the most blatant priority theft
in the history of mathematics. Daniel complained to Leonhard Euler (1743)
with the result that John’s reputation was so tarnished by the episode that
he did not even receive credit for parts of his work that were original.

1728 CE Pierre Fauchard (1678–1761, France). Dentist. Founder
of modern dentistry. He practiced in Paris from 1715 and was influential in
raising dentistry from a trade into a profession. He advocated the sharing
of dental knowledge and wrote the two volume ‘La chirurgien Dentiste ou
traité des dents’ (1728). It includes detailed discussions on the treatment of
caries, the making and using of removable dentures, and a variety of dental
instruments. After removal of the carious material, with pain reduced through
application of oil of cinnamon, the cavity is filled with small pieces of thin foil
of tin, or gold.

After the publication of Fauchard’s work the practice of dentistry became
more specialized and distinctly separated from medical practice, the best ex-
ponents of the art being trained as apprentices by practitioners of ability, who
had acquired their training in the same way from their predecessors.

Fauchard suggested porcelain as an improvement upon bone and ivory for
the manufacture of artificial teeth.

1729–1753 CE Jean Astruc (1684–1766, France). Physician, medical
researcher and historian, and a pioneer biblical critique and exegetic. One of
the most prolific medical authors of the 18 th century. Physician to August II,
King of Poland; consultant to Louis XV of France. Descendant from a Jewish
Marrano family. Wrote extensively on venereal and skin diseases. Considered
as the progenitor of the modern scholarly and textual investigation of sources
of Pentateuch (1753).

1730–1746 CE Identification, study and industrial working of the metallic
element zinc194 by Isaac Lawson (1730, England), John Champion (1743,

194 Plato (ca. 400 BCE) refers to brass, an alloy of zinc and copper. An alloy

containing 23 percent of zinc and 10 percent of tin was found at Gezer (ancient

Israel), already in 1500 BCE. The name zinc derived from tusku (mentioned

in Assyrian tablets of 650 BCE), probably zinc carbonate, ZnCO3, used also

by the alchemists. Deposits of calamine (native zinc carbonate) occur in the

old Greek silver mines of Laurion. The extraction of zinc from its ores was in
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England) and Andreas Sigismund Marggraf (1746, Germany). Marggraf
made the earliest complete study of zinc.

1730 CE James Stirling (1692–1770, Scotland). Mathematician.
Presented the approximation of the factorial function for large argument

n! ≈
√

2πn(n/e)n, or more generally195 : Γ(x) ∼
√

2π
x (x/e)x. He also con-

tributed to the calculus of finite differences [Stirling’s interpolation formula,
Stirling numbers196, and Stirling factorial series197 ].

Stirling, a descendant of a noble Scottish family, was educated at Glasgow
and Oxford. He was expelled from Oxford for supporting the Jacobite cause,
and lived in Venice during 1716–1724. His return to Britain is supposed to
have been hastened because he had learned some secrets of the glass indus-
try, and may have feared for his life. Newton, whose friendship he enjoyed,
helped him secure fellowship in the Royal Society. Stirling’s book Metho-
dus differentialis, which appeared in 1730, included most of his mathematical
discoveries.

In 1735 he was asked to reorganize the work of the Scottish Mining Com-
pany in the lead mines at Leadhills, Lenarkshire. Stirling was a successful
administrator and spent most of his time after 1735 in that remote village.
In 1748, he was elected to the Berlin Academy of Sciences, even though his
mathematical activities had ceased. Stirling’s own political principles pre-
vented him from succeeding to the Edinburgh chair left vacant at Maclau-
rin’s death.

operation on an extensive scale in Bristol (1743), the roasted ore ZnO being

distilled with carbon at high temperatures in a crucible.
195 The asymptotic expansion

Γ(z) = e−zzz−1/2
√

2π
[
1 +

1

12z
+

1

288z2
− 139

51840z3
− 571

2488320z4
+ O(z−5)

]

is known today as Stirling’s expansion. This is a misnomer, however, since it

was discovered earlier by de Moivre.
196 Stirling numbers of the first kind S

(n)
k are the coefficients of xn−k in the factorial

polynomial of degree n, i.e.

x(x − 1) · · · (x − n + 1) = S
(n)
0 xn + S

(n)
1 xn−1 + · · · + S

(n)
n−1x.

197 The Stirling series
∑∞

s=0 as

{
s!

x(x+1)···(x+s)

}
are of importance in the theory of

linear difference equations, where they play a part analogous to that of power

series in the theory of differential equations.
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1730–1735 CE Advances in navigational instruments: John Hadley
(1682–1744, England). A country gentleman (b. Hertfordshire) of indepen-
dent means and instrument-maker of East Barnet, London, and independently
Thomas Godfrey (1704–1749), a poor glazier in Philadelphia, invented in
1730 the reflecting sextant198 to measure the angle between a star and the
horizon. The frame of the sextant supports the graduated arc of a sixth part
of a circle, a moveable arm which represents the radius of the circle, two mir-
rors and a small telescope. One of the mirrors is fixed (known as the horizon
glass). The second mirror is screwed to the moveable arm, and is called the
index glass, both mirrors being perpendicular to the plane of the sextant.

Light from a star is reflected from the index glass to the silvered half of the
horizon glass and thence through the telescope to the observer’s eye. If the
moveable arm has been moved so as to make the image of the star coincide
with that of the horizon, it is seen that the altitude of the star is equal twice
the angle which the moveable arm reads on the graduated arc.

In 1731 John Hadley invented the bubble-sextant , or artificial horizon sex-
tant (it made long-range air navigation possible 200 years later).

In 1735 John Harrison made the first accurate chronometer in England.

198 It was introduced by Tycho Brahe to measure angular distances between any

two points on the celestial sphere. Originally it was equipped with two sights:

one on a fixed radius, the other on a moveable radius, which the observer pointed

to the two objects of which the angular distance was to be measured.
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Geodesy199 and the Gyrostatic Equilibrium of
Liquid-like Bodies

Man has been concerned about the earth on which he lives for many centuries.
During very early times this concern was naturally limited to his foraging
range or to the immediate vicinity of his dwelling place; later it expanded
to encompass a village, a region of land or sea, a country; and finally, with
the development of advanced means of transportation man became interested
in his whole world. Much of this early “world interest” was evidenced by
speculation concerning the size, shape, and composition of the earth.

The early Greeks, in their speculation and theorizing, ranged from the
flat disc advocated by Homer to Pythagoras’ spherical figure — an idea
supported later by Aristotle (ca 350 BCE). Pythagoras (ca 530 BCE)
was a mathematician, and to him the most perfect figure was a sphere. He
reasoned that the gods would create a perfect figure and therefore the earth
was created to be spherical in shape. Anaximenes (ca 540 BCE) held that
the earth was rectangular in shape.

The early astronomers, however, had no doubts: reasoning from the uni-
form level appearance of the horizon, the variations in latitude of the circum-
polar stars as one travels toward the north or south, the disappearance of a
ship sailing out to sea, and perhaps other phenomena — they came to regard
the earth as a sphere.

Since the spherical shape was the most widely supported during the Greek
era, efforts to determine its size followed. Plato (ca 380 BCE) determined the
circumference of the earth to be 64, 000 km, while Archimedes (ca 250 BCE)

199 Geodesy determines by observation and measurement the exact position of

points and the figures and areas of large portions of the earth’s surface, the

shape and size of the earth, and the variation of terrestrial gravity.

Geophysics deals with the physical phenomena and properties of the whole earth

(or of its more extensive regions). One of the branches of geophysics is gravime-

try , which is the science of the earth’s gravity field [from the Latin gravis (=

heavy) and the Greek meterin (= to measure)]. The gravimetrician measures

gravity, studies the figure and dimensions of the earth’s body and relates these

to the internal structure and composition of the earth’s interior.

The determination of the figure of the earth is a problem of the highest impor-

tance in astronomy, inasmuch as the diameter of the earth is the unit to which

all celestial distances must be referred.
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estimated it to be 50, 000 km. Plato’s figure was a guess and Archimedes’ a
more conservative approximation. Meanwhile, in Egypt, Eratosthenes (ca
250 BCE) set out to make more explicit measurements.

He had observed that on the day of the summer solstice, the midday sun
shone to the bottom of a well in the town of Syene (Aswan). At the same time,
he observed that the sun was not directly overhead at Alexandria; instead, a
vertical pole cast a shadow with subtended angle equal to (1/50)th of a circle
(7 ◦12′). To these observations, Eratosthenes added certain “known” facts:
(1) that on the day of the summer solstice, the midday sun was directly over
the line of the summer Tropic Zone (Tropic of Cancer) — Syene was therefore
concluded to be on this line; (2) the linear distance between Alexandria and
Syene was (in today’s units) 804.5 km; (3) Alexandria and Syene lay on a
direct north-south line.

From these observations and “known” facts, Eratosthenes concluded that,
since the angular deviation of the sun from the vertical at Alexandria was also
the angle of the subtended arc, the linear distance between Alexandria and
Syene on the earth’s surface was 1

50 of the circumference of the earth; the
latter thus came out 50 × 804.5 = 40, 225 km. [A currently accepted value
for the earth’s circumference at the Equator is 40, 065 km, based upon the
equatorial radius of the World Geodetic System.] The actual unit of measure
used by Eratosthenes was called the “stadia”. No one knows for certain what
the stadium that he used is in today’s units. The measurements given above
in km were derived assuming one stadia to be 160 meters.

It is remarkable that such accuracy was achieved in view of the fact that
most of the “known” facts, and his observations too, were incorrect: (1) al-
though it is true that the sun at noon is directly overhead at the Tropic of
Cancer on the day of the summer solstice, it was erroneously concluded that
Syene lay on that line. Actually, Syene is 60 km to the north; (2) the true dis-
tance between Alexandria and Syene is 729 km and not 804.5 km; (3) Syene
lies 3 ◦30′ east of the meridian of Alexandria; (4) the difference of latitude
between Alexandria and Syene is 7 ◦5′ rather than 7 ◦12′ as Eratosthenes had
concluded.

Nevertheless, Eratosthenes appears to have seen the first who entertained
an accurate idea of the principles on which determination of the figure of the
earth really depends, and attempted to reduce them to practice. His method,
the comparison of a line measured on earth with the corresponding arc of the
heavens, is still valid.

Another ancient measurement of the size of the earth was made by the
Greek Poseidonios (ca 100 BCE). He noted that a certain star was hidden
from view in most parts of Greece but that it just grazed the horizon at
Rhodes. Poseidonios measured the elevation of the same star at Alexandria
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and determined that the angle was 1
48

th
of circle. Assuming the distance

from Alexandria to Rhodes to be 800 km, he computed the circumference of
the earth as 38, 600 km. While both his measurements were approximations,
when combined, one error compensated for another and he achieved a fairly
accurate result.

Revising the figures of Poseidonios, another Greek philosopher determined
29, 000 km as the earth’s circumference. This last figure was promulgated
by Ptolemy (ca 150 CE) through his world maps. The maps of Ptolemy
strongly influenced the cartographers of the Middle Ages. It is probable that
Columbus, using such maps, was led to believe that Asia was 5000–6500 km
west of Europe. It was not until the 16th century that this concept of the
earth’s size was revised.

No improvement on the Greek methods was forthcoming until 1528, when
Jean Francois Fernel repeated the Eratosthenes procedure with greater
accuracy.

G. Mercator (1568 CE) made successive reductions in the size of the
Mediterranean Sea and all of Europe which had the effect of modifying the
size of the earth. The telescope, logarithmic tables, and the method of trian-
gulation were contributed to the science of geodesy during the 17th century.
Indeed, during 1617–1669, measurements of this type (employing a spheri-
cal earth model) were redone by Snell (1617), Richard Norwood (1637),
and Jean Picard (1669) who was the first to apply the telescope to angular
measurements. He performed an arc measurement that is modern in some re-
spects; he measured a base line with the aid of wooden rods, used a telescope
in his angle measurements, and computed with logarithms. Earth models
departing from spherical symmetry date from 1672, when Jean Richer dis-
covered that the magnitude of the force of gravity depends on latitude.

The first, rather inaccurate measurements of the acceleration of gravity
were made by Galilei (1564–1642). In ca 1590 he discovered that the dis-
tance traversed by a falling body in the first second is equal to half the value
of the acceleration of gravity at the point of observation. The possibility of
determining the shape of the earth from measurements of gravity on its sur-
face, occurred to both Newton (1642–1727) and Huygens (1629–1695) who
became interested in the observation of Richer (1630–1696) that the period
of a pendulum depends on the latitude of its location via the dependence of its
period on g. Newton, assuming the earth to be a gravitating rotating ellipsoid
of revolution of uniform fluid in hydrostatic equilibrium, demonstrated that
a slowly rotating liquid body must necessarily be flattened at the poles. He
found its ellipticity to be ε = a−c

a = gp −ge

ge
≈ 1

231 , where {gp, ge} are the
respective values of gravity at the pole and the equator.
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Huygens, on the other hand, assumed a uniform earth with its total mass
concentrated at its center. Using the condition of the Geoid200 as an equipo-
tential surface, he obtained ε = 1

578 .

The disagreements between the theoretical considerations of Newton and
Huygens were explained by Clairaut (1713–1765), who also showed how the
flattening of the earth could be computed from gravimetric observations.

The prediction of Newton (1687) that the earth was oblate at the poles
was contrary to the best astronomical evidence available at the time, and
for years after Newton’s death, the Parisian school of Cassini (1625–1712)
vigorously supported the view that the earth was actually prolate201. To
settle the controversy once and for all, the French Academy of Sciences sent a
geodetic expedition to Peru in 1735 to measure the length of a meridian degree
close to the equator, and another to Lapland to make a similar measurement
near the Arctic Circle.

When the leader of the Arctic party, Maupertuis, returned to Paris, after
suffering hunger and shipwreck, with proof that the earth is oblate (as Newton
had forecast), Voltaire congratulated him on having “flattened the poles and
Cassini”.

We now know that the actual ellipticity of the earth is ∼ 1
294 , substan-

tially smaller than Newton’s predicted value of ∼ 1
230 . This discrepancy is

interpreted in terms of the inhomogeneity of the earth.

200 The Geoid is a theoretical smooth surface whose normal at each point is in the

direction of gravity at that point, i.e., a surface of constant gravity potential.

The shape of the Geoid is that which the surface of water would take, were it to

cover the whole surface of the earth. [Sea-level, undisturbed by winds or tides,

is an equipotential surface of the earth’s gravitation.] The niveau spheroid is a

mathematical approximation of the Geoid, where all local irregularities caused

by lateral density variations were removed. This spheroid is very close to an

ellipsoid of revolution.
201 G.D. Cassini continued Picard’s arc northward to Dunkirk and southward to

the Spanish boundary, dividing the measured arc into two parts, one northward

from Paris, another southward. When he computed the length of a degree from

both chains, he found that the length of one degree in the northern part of the

chain was shorter than that in the southern part. This unexpected result could

have been caused only by an egg-shaped earth or by observational errors.

The results started an intense controversy between French and English scien-

tists. The English claimed that the earth must be flattened, as Newton and

Huygens had shown theoretically, while the Frenchmen defended their own

measurement and were inclined to keep the earth egg-shaped.



1730 CE 1241

Newton’s model of the earth as a rotating homogeneous incompressible
fluid body was valid only for small rotation speeds. However, in 1742 Maclau-
rin (1698–1746) generalized Newton’s result to the case where the ellipticity
caused by the rotation cannot be considered small. He found a class of exact
solutions for the equilibrium of a rotating body. In these solutions, known
as Maclaurin spheroids (the fluid surface is an oblate ellipsoid of revolution)
the eccentricity is a function of the angular velocity. Moreover, Simpson and
d’Alembert (1717–1783) have shown (1743) that Maclaurin’s solution im-
plies: (1) for slow rotation there are two possibilities, one nearly spherical and
the other very much flattened; (2) above a critical rotation rate no spheroid
is a figure of equilibrium.

In 1834 Jacobi proved that when the rate of rotation is not too great
there is an ellipsoid of 3 unequal axes which is a figure of equilibrium. For
a certain rate of rotation it coincides with the more nearly spherical shape
of the Maclaurin spheroids. These figures are known as Jacobi ellipsoids. In
1860, Riemann went one step further than Jacobi by showing that even the
Jacobi ellipsoids are only special members of a much larger family of ellipsoidal
equilibrium configurations, the Riemann ellipsoids.

In 1885, Poincaré showed that the Jacobi ellipsoids are actually the
preferred configurations of rapidly rotating fluid bodies because they have
lower energy for fixed angular momentum and mass.

A more detailed account of the development of these ideas is as follows:
Maclaurin showed that for every volume V and for each angular velocity
ω ≤ ωL = 1.188

√
ρG (G = Newton’s gravitational constant, ρ = density of

liquid), there exist two different rotating oblate spheroids that are in gyrosta-
tic equilibrium. As ω approaches ωL, the shapes of both spheroids approach
that of the same rotating spheroid, rotating with the angular velocity ωL. As
ω approaches a value of zero (that is, as the rotation slows down to zero),
one branch of the Maclaurin spheroids will increasingly resemble a ball of vol-
ume V , the well-known equilibrium configuration at absolute rest (ω = 0),
whereas the other branch will grow into a disc of “infinite diameter”.

For nearly a century it was believed that Maclaurin’s spheroids were the
only shapes possible for uniformly rotating bodies of homogeneous fluids in
gyrostatic equilibrium. Lagrange claimed that there could not be any other
equilibrium configurations; yet this was not true. In 1834 Jacobi discovered
that, for every volume V and every value ω of the angular velocity which
is neither zero nor too large, there exists an equilibrium configuration in the
shape of an asymmetric ellipsoid (a > b > c) that rotates about the axis
of the smallest principal radius c. Jacobi showed that ω should stay below
ωJ = 1.084

√
ρG < ωL.
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If ω approaches the value of ωJ , the Jacobi ellipsoid will eventually re-
semble one of the Maclaurin spheroids (which rotate with the angular velocity
ωJ) and, if ω approaches a value of zero, the Jacobi ellipsoid will come to
resemble a needle of infinite length. [What would life be like on a planet that
was very thin and very long, and that rotated very, very slowly?].

Poincaré found that a new branch of pear-shaped equilibrium configu-
rations bifurcates from the family of Jacobi ellipsoids, much as the Jacobi
ellipsoids branch off one class of the Maclaurin spheroids. Poincaré conjec-
tures “that the bifurcation of the pear-shaped body leads onward stably and
continuously to a planet attended by a satellite”. He furthermore proclaimed
that along the Jacobi sequence there must be other points of bifurcation that
give rise to other stable branches that would eventually develop into planets
with two, three, or more satellites. In this way Poincaré envisioned a grand
scheme that could explain the birth of our solar system by an evolutionary
process rather than by sudden catastrophes.

If one follows the cosmogonic hypotheses of Kant and Laplace, our solar
system was at first a huge and slowly rotating gas ball of very low density.

Self-gravitation would then lead to a contraction of the gas, thereby increasing
density and angular velocity, with the matter then changing from a gaseous
into a liquid state. As density and speed increased, the originally sphere-
shaped matter would become a more and more oblate Maclaurin spheroid,
until the bifurcation point at which the Jacobi ellipsoids became stable con-
figurations. The liquid body would change into a Jacobi ellipsoid and then,
with even stronger contraction, into a pear-shaped body, which eventually
would fission into a main body and a satellite.

Poincaré never made the detailed calculations necessary to substantiate
such a scenario. Such calculations were instead carried out by George Dar-
win (1898) who claimed that he had proved the stability of the pear forms.
Unfortunately, Lyapunov (1903) was able to refute Darwin’s calculations,
and other scientists reached the same conclusion. Thus Poincaré’s wonderful
model collapsed. Nevertheless, the theory of equilibrium configurations de-
veloped by Poincaré and Lyapunov was the beginning of bifurcation theory in
nonlinear dynamics. This important theory is a principal tool in such diverse
areas as fluid mechanics, mathematical biology, and elasticity theory.

What happens for large values of ω? it was known that a figure cannot be
in gyrostatic equilibrium if its angular velocity ω is too large. There is, in fact,
no possible gyrostatic equilibrium if ω2 is greater than 2πGρ. The only way
out of this dilemma is to consider rotating liquid bodies in which the liquid
is in internal motion, but whose shape does not alter. This is a much weaker
type of equilibrium, but very likely a more realistic one. It was studied by
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Dirichlet and Riemann (1858–1860) and completed by Chandrasekhar
in the 1960s.

The importance of the Jacobi ellipsoids for galactic dynamics is that
their very existence suggests that a rapidly rotating galaxy may not remain
axisymmetric.

The equilibrium shape of rotating liquid masses is a special case of a more
general problem: the rotation of a homogeneous fluid [either simply connected
(like a ball) or multiply connected (like a handle, ring etc.)] under forces gen-
erated in the fluid itself such as self-gravitation, surface tension, electrosta-
tic Coulomb attraction and centrifugal forces. In gyrostatic equilibrium, the
above four forces balance each other: the contractive forces of surface tension
and self gravitation counterbalance the dispersive electrostatic (for charged
fluid) and centrifugal forces. The problem is then to find the possible shapes
of liquid bodies in stable gyrostatic equilibrium.

According to Johann Bernoulli’s principle of virtual work (1717), the
equilibria are stationary states of the potential energy, and the stable equi-
librium correspond to the minima of potential energy. The total potential
energy of a liquid body is the sum of four terms: total energy = surface en-
ergy (proportional to the surface area) + electrostatic energy + gravitational
energy + rotational energy (potential energy of the centrifugal forces).

We have seen that the earliest example was that of rotating bodies of
liquids, which served as models of the planets and, later on, of the stars and
galaxies. Here the forces of self-attraction caused by gravitation are so large
that the influence of surface tension can be neglected. If charged celestial
bodies are excluded, the potential energy reduces to the sum of gravitational
and rotational energies.

Another special case of interest in physics is where surface tension is the
dominant force, whereas self-attraction is virtually nill. This situation was
realized by Plateau (1873) who derived an apparatus for rotating small un-
charged drops of oil, immersed in another liquid of the same density; with
increasing angular velocity, the drop decomposes first into a drop + ring, then
into a drop with droplet satellites of different sizes. This circumstance brings
to mind a solar system with a large central body circled by small satellites.
The ring resembles the rings of Saturn or Jupiter202.

202 Recently, Plateau’s experiments were repeated and improved on by scientists

at the Jet Propulsion Laboratory in Pasadena, CA. Besides the axisymmetric

and ring-shaped figures of Plateau, they discovered two-, three- and four-lobed

equilibrium shapes. With increasing angular speed, all figures were seen to

decay into a one-lobed shape. No satisfactory method of explaining all this is

currently available, because, in fact, the friction between the host liquid and the
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The more complicated case of a charged drop found application in the
nuclear drop model of G. Gamow (1929). Here, theory predicts various
hourglass figures corresponding to different values of the physical parameters.
If energy is introduced into the nucleus — say, by bombarding it with a
neutron — the nucleus can be excited into a state of free oscillations; if these
vibrations take the nucleus above a certain energy barrier, it will then be split
into two parts (fission).

Can this physical model be applied to unicellular organisms, which are
drops of protoplasm, a very viscous fluid, suspended in water? It is believed
that tension forces at the surface of a cell can only partly explain its shape,
and that internal structures are to a large extent responsible for cell shape.

1731–1743 CE Alexis Claude Clairaut (1713–1765, France). Math-
ematician. Born in Paris and spent most of his life in his native city.

Under his father’s tutelage he made such rapid progress that at age 13 he
read before the French Academy an account of four curves which he had then
discovered. He was first to give analytic expressions to non-planar space curves
and study their differential geometry (1729). This procured him admission
into the Paris Academy of Sciences in 1731 although he was then below the
legal age. He became the youngest person ever elected to the Academy.

During 1736–1738 he participated in the Lapland expedition of Mauper-
tuis. Their geodetic measurements of length of meridian arcs at different
latitudes, afforded data which showed conclusively the flattening of the earth
at the poles.

Later in 1743, he deduced a theoretical relation between the variation of
gravity from equator to poles and the ellipticity of a spheroidal earth model203

oil drop cannot be neglected. This friction causes internal flows, which become

rather significant as soon as lobes form.
203 g(ϕ) = g(0)[1+β sin2 ϕ], where g(ϕ), g(0) are the respective values of gravity

at latitude ϕ and the equator. The ellipticity is then given by ε = 5
2

ω2a
g(0)

− β,
where β is known from observations. For further reading, see:

• Webster, A.G., Dynamics – Lectures on Mathematical Physics, Hafner Pub-

lishing Co., 1949, 588 pp.

• Jeffreys, H., The Earth, Cambridge University Press, 1976, 574 pp.
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of mean radius a [his development is valid only to terms of the first order in
the flattening]. His results showed for the first time how the oblateness of the
earth could be computed from gravimetric observations.

In 1750 Clairaut gained the prize of the St. Petersburg Academy for his
essay Théorie de la lune, and in 1759 he calculated the perihelion of Halley’s
comet. The first-order ODE, y = xy′ + f(y′), bears his name. He studied
the 3-body problem and wrote several important memoirs on the calculus.

1733 CE The Industrial Revolution is launched in England with the in-
vention of the Flying Shuttle by John Kay.

1733–1740 CE Charles Francois de Cisternai Du Fay (1698–1739,
France). Physicist. Demonstrated that there are two different kinds of electric
charges, one of which was to be found in rubbed amber and one in rubbed
glass. In 1750 they were named ‘negative’ and ‘positive’ electrical fluids,
respectively, by Benjamin Franklin (1706–1790, U.S.A.). He noticed that
if an object carrying one kind of electricity touched an object carrying an equal
quantity of the other kind, the two kinds neutralized each other, leaving both
objects electrically ‘uncharged’. He then coined the names, ‘positive charge’
and ‘negative charge’.

1733 CE Girolimo Saccheri (1667–1733, Italy). Mathematician. Com-
posed ‘Euclides ab omni naevo vindicatus’ (Euclid vindicated from all fault),
where he inadvertently laid the foundation of non-Euclidean geometry.

1733–1773 CE (Francois Marie Arouet de) Voltaire (1694–1778,
France). Writer. A universal man of the 18th century. In his writ-
ings he was at once dramatist, poet, philosopher, scientist, novelist, moralist,
satirist, polemicist, letter-writer, and historian. In his life he was imprisoned
in the Bastille, spent years abroad in England and Prussia, was courtier at
Versailles and a wealthy landowner at Ferney.

His long life and his voluminous writings, which show a strong sense of en-
gagement in the world around him, made him a man who bestrided the Age
of Enlightenment, and in many ways is the epitome of it. Helped spread
Newtonian science through the European intellectual community (Lettres
Philosophiques sur les Anglais, 1773; Elements de la Philosophie de New-
ton, 1738), and presented new ideas in the field of optics, most particularly
regarding the psychology of perception. During 1751–1772 Voltaire partici-
pated in the composition of the French Encyclopedia of the Sciences, Arts and
Trades. In 1772, he encouraged the serious study of probability theory in his
Essay on Probabilities Applied to the Law .
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Voltaire (pseud, 1718) was born at Paris, son of a notary who belonged to a
class of yeoman-tradesman. He was educated by the Jesuits, and soon began
to appear in Paris society, particularly in free-thinking and neo-Epicurean
circles. His satiric writings incurred him nearly a year in the Bastille (1717–
1718). A quarrel with an influential aristocrat led to exile in England (1726),
where he encountered a society living in a state of relative justice and freedom.

The publication of his Lettres Philosophiques (1773) occasioned another
scandal and forced him to retreat at Cirey; he remained there for a decade,
apart from brief visits to Paris, Prussia and the Low Countries [an inheritance
from his father in 1721 made him economically independent]. There he con-
tinued writing, conducting experiments in physics in his own well-equipped
laboratory.

In 1744 he was recalled to Versailles and given official positions at Court.
During 1750–1753 he visited the court of Frederick II in Berlin. Eventually
he settled (1755) at Les Delices on the outskirts of Geneva, and later moved
to Ferney (purchased in 1758), a few miles away inside France. He remained
there until 1778, when he went back to Paris and died there.

Voltaire was, in general, an ardent defender of victims of religious perse-
cution with, however, one exception:

In his entry ‘Juifs’ [Dictionnaire Philosophique, 1764], Voltaire writes:

“We find in the Jews only an ignorant and barbarous people, who have
long united the most sordid avarice with the most detestable superstition and
the most invincible hatred for every people by whom they are tolerated and
enriched”.

Thus, Voltaire echoes the familiar litany of insults drawn from classical
pagan antisemitism, which he, no doubt, owed to his Jesuit upbringing. Not
only did he repeat the pagan canard that Jews were the ‘enemies of the
mankind ’, but he even justified the long history of persecution and massacres
to which they had been subjected. These diatribes, shared by other prominent
thinkers of the French Enlightenment like Diderot, Baron d’Holbach, and
Rousseau, should be seen as philosophical expression of a crisis of a religious
belief, in which war was conducted against the very roots of the Christian
faith led logically to an assault on its Jewish origins.
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The achromatic lens story (1733–1758)

Chester Moor Hall (1703–1717, England) and John Dollond (1706–
1761, England). Opticians. Independently invented the achromatic telescope,
using an objective lens, composed of two kinds of glass so that the chromatic
aberration in one kind of glass is compensated for by the other kind of glass.

Hall, an amateur scientist from Essex, made achromatic lenses for his own
use (1733) to little notice. Dollond developed the achromatic telescope (1758)
with his son Peter (1738–1820). Earlier (1754) Dollond, a London optician
of Huguenot descent, invented the heliometer, a telescope that produces two
images that can be manipulated to determine angular distances accurately,
for finding the diameter of the sun or distances between stars. Hall brought an
action against the Dollonds on the ground of the priority of his earlier work,
but the action was dismissed by the courts. In 1761 Dollond was appointed
optician to King George III, only a few month before his death.

Isaac Newton (1704) gave up trying to remove chromatic aberration from
refracting telescope lenses, erroneously concluding that it could not be done:
he falsely maintained that two lenses of different refraction indices require an
infinite focal distance. Consequently he turned to the design of reflectors.

Euler proposed that the undesirable color effect seen in a lens were ab-
sent in the eye (which is an erroneous assumption) because the different me-
dia present negated dispersion. He suggested that achromatic lenses might
be constructed in a similar way. Enthused by this work, Samuel Klingen-
stjerna (1698–1765, Sweden), professor at Uppsala, reperformed Newton’s
experiments on achromatism and determined them to be in error. Klingen-
stjerna was in communication with John Dollond, who was observing similar
results. Dollond finally (1758), combined two elements, one of crown glass
and the other of flint glass, to form a single achromatic lens. This was an
accomplishment of great importance. The full mathematical theory of com-
binations of thin lenses and its application for correction of spherical and
chromatic aberration was given in 1840 by Hungarian mathematician Joseph
Max Petzval (1807–1891).

1734 CE George Berkeley (1685–1753, England). Philosopher, eco-
nomist, mathematician, physicist and bishop. Argued that ‘absolute space’
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does not exist by itself, since it is not a fundamental thing but an attribute,
like color or harmony. Hence motion is relative and must be measured against
some fiducial. He claimed that “Esse is percipi” — the existence of a thing is
our perceiving it and since absolute space cannot be perceived, it cannot do
as a reference frame. This led him to the notion that inertia is not intrinsic
to a body but produced by motion relative to the fixed stars, i.e. all motion,
including acceleration and rotation, should be regarded relative to the fixed
stars, not space itself.

In his book “The Analyst : A Discourse Addressed to an Infidel Mathe-
matician” (1734), he ridiculed infinitesimals as “the ghosts of departed quan-
tities”. His criticism was a much needed breath of fresh air; in the early days
of calculus, it was practiced by a handful of fanatics, and so it had to be, for
the theories of fluxions and fluents204 were virtually devoid of rigor. Berke-
ley’s attack forced mathematicians to re-examine the foundations of analysis.
There followed 200 years of intense efforts by the best minds in Europe. The
result was the rigorous calculus we know it today.

He was some 150 years ahead of his time and his arguments were lost in
Newton’s shadow.

204 Berkeley’s criticism was meant indirectly against Newton. Newton, however,

knew exactly what he was doing; he just could not find a precise way to express

it.
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Do the infinitesimals really exist?

The concept of the infinitesimal, a number that is infinitely small yet
greater than zero, has roots stretching back into antiquity. In spite of its im-
portance as a tool in mechanics and geometry since the golden age of Greece,
a never ending war between the finite and the infinite has been going on for
the past 24 centuries.

In the 19 th century infinitesimal were driven out of mathematics once
and for all, or so it seemed. To meet the demands of logic, the infinitesimal
calculus of Isaac Newton and Gottfried Whilhelm von Leibniz was
reformulated by Karl Weierstrass (1872) without infinitesimals. Let us
briefly survey the evolution of this idea:

In Euclid’s geometry, both the infinite and the infinitesimal are deliber-
ately excluded; we read in Euclid that a point is that which has a position
but no magnitude. Certainly this meaningless definition is just a pledge not
to use infinitesimal arguments. This was a rejection of earlier concepts in
Greek thought: the atomism of Democritos had been meant to refer not
only to matter but also to time and space. But then the arguments of Zeno
had made untenable the motion of time as a row of successive instants, or the
line as a row of successive “indivisibles”. Aristotle, the father of systematic
logic, banished the infinitely large or small from geometry.

One of the first thinkers who came forth in defense of infinitesimals was
Nicolas of Cusa (ca. 1450). It behooved him to do just that because, as
a cardinal of the Church, he believed that the infinite was the “source and
means, and at the same time the unattainable goal, of all knowledge”. Nicolas
was followed in his mysticism by Johannes Kepler who in 1612 used infin-
itesimals to find the best proportions for a wine cask! He was not troubled
by the self contradictions in his method; he relied on divine inspiration, and
he wrote that “nature teaches geometry by instinct alone even without ratio-
cination”. Moreover, his formulas for the volumes of wine casks are correct.

The most famous mathematical mystic was no doubt Blaise Pascal. In
answering those of his contemporaries who objected to his reasoning with
infinitely small quantities, Pascal said that “the heart intervenes to make the
work clear” (1656). Pascal looked on the infinitely large and infinitely small as
mysteries proposed by nature to man for him to admire but not to understand.

The full flower of infinitesimal reasoning came with Newton (1664), Leib-
niz (1673), Jakob Bernoulli (ca. 1700), Johann Bernoulli (ca. 1700) and
Leonhard Euler (ca. 1740). The first textbook on the calculus was written
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in 1696 by G. F. A. de L’Hospital, a pupil of Leibniz and Johann Bernoulli.
In it are found two axioms that Aristotle outlawed 2000 years earlier:

• Two quantities differing by an infinitesimal can be considered equal (i.e.
equal and unequal at the same time).

• A curve is the totality of an infinite number of straight segments.

Curiously enough Newton and Leibniz did not endorse these views: Leibniz
did not claim that infinitesimal really existed205, only that one could reason
without error as if they did exist. Newton, on the other hand, tried to avoid
the infinitesimal: in his Principia Mathematica (as in Archimedes’ ‘On the
Quadrature of the Parabola’), results originally found by infinitesimal methods
are presented in a purely finite Euclidean fashion.

The first critique of the infinitesimal method appeared by George Berke-
ley in his book The Analyst (1734). It was addressed to “an infidel math-
ematician” [He meant Edmund Halley who financed the publication of the
Principia and helped prepare it for the press]. In this book he accused both
Newton and Leibniz of false reasoning, calling infinitesimals “the ghosts of de-
parted quantities” and naming Newton’s fluxions206 “obscure, repugnant and
precarious”.

205 This syndrome repeats itself at every revolutionary stage in the history of sci-

ence: e.g. Einstein did not believe in the inherent probabilistic interpretation

of quantum mechanics and Schrödinger did not believe in the reality of his

own wave mechanics!
206 Newton called “fluent” what we call today the instantaneous position function

(of time) of a moving body. By “fluxion” he meant the instantaneous veloc-

ity of the same body. In the case of a falling stone, the fluent is given by

the formula s(t) = 16t2 with distances measured in feet and time in seconds.

To evaluate the velocity of the falling stone at t = 1, we let dt stand for the

infinitesimal increment of time. The corresponding increment in position is

ds = 16(1 + dt)2 − 16 = 32dt + 16dt2. The ratio ds
dt

which yields the average

velocity over ds at time dt is equal to 32 + 16dt. To compute instantaneous

velocity one must drop the infinitesimal 16dt, i.e. assume that 32 + 16dt is the

same as 32. That is precisely what Bishop Berkeley would not let them do.

He said: “dt is either equal to zero or not equal to zero. If dt is not zero then

32 + 16dt is not the same is 32. If dt is zero, then the increment in distance ds

is also zero, and the fraction ds
dt

is not 32 + 16dt but a meaningless expression
0
0
”.

Weierstrass, 138 years later, gave the following answer (1872): to find an in-

stantaneous velocity we abandon any attempt to compute the speed as a ratio.

Instead we define the speed as a limit , which is approximated by ratios of finite
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Although Berkeley’s logic could not be refuted at the time, mathemati-
cians went on using infinitesimals for another century, and with great success.
Indeed, physicists and engineers have never stopped using them. The 18 th

century, the great age of the infinitesimals, was the time when no barrier be-
tween mathematics and physics was recognized. The leading physicists and
the leading mathematicians were the same people. When pure mathematics
reappeared as a separate discipline, mathematicians again made sure that
the foundations of their work contained no obvious contradictions. “Just go
on, and faith will soon return”, said Jean Le Rond d’Alembert to hes-
itate mathematical friend, who lacked experience and intuition in handling
infinitesimals.

By the beginning of the 19 th century a clear distinction had been estab-
lished between analysis (the study of infinite processes) and algebra (the study
of operations of discrete entities such as natural numbers). A major objec-
tive of much of 19 th-century mathematical effort was to unify (or at any rate
to bridge) these two branches of mathematics. This endeavor was termed
‘the arithmetization of analysis’. It was realized that the prime task was to
construct a sound logical foundation for the real number system. Although
the basic concepts of analysis - function, continuity, limit, convergence, infin-
ity, were progressively clarified and refined during the first half of the 19 th

century, notably by Cauchy, much remained to be done. This task was
left to Weierstrass, Dedekind and Cantor, who eventually restored Greek
standard of rigor: Modern analysis secured its foundation by doing what the
Greeks had done: outlawing infinitesimals.

increments. Let Δt be a variable finite time-increment and Δs be the corre-

sponding variable space-increment. Then Δs
Δt

is the variable quantity 32+16Δt.

By choosing Δt sufficiently small we can make Δs
Δt

take on values as close as we

like to the value 32, and so, by definition, the speed at t = 1 is exactly 32.

This approach succeeds in removing any reference to numbers that are not

finite. It also avoids any attempt to set directly Δt = 0 in the fraction Δs
Δt

.

There is, however, a price to pay: the intuitively clear and physically measur-

able quantity, the instantaneous velocity, becomes subject to the surprisingly

subtle notion of ‘limit ’. In the mathematical terminology it means that:

“The velocity is v if, for any positive number ε,
∣
∣Δs
Δt

− v
∣
∣ < ε for all values of

|Δt| < δ for some δ = δ(ε, t) > 0”.

We have defined v by means of a relation between two new quantities, ε and

δ, which are irrelevant to v itself. Ignorance of ε and δ never prevented Euler

or Bernoulli from finding a velocity. The truth is that in a real sense we al-

ready knew what instantaneous velocity was before we learned this definition;

for the sake of logical consistency we accept a definition that is much harder to

understand than the concept being defined.
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The reconstruction of the calculus on the basis of the limit concept and it’s
‘epsilon-delta’ definitions amounted to a reduction of the calculus to the arith-
metic of real numbers. The momentum gathered by these foundational clarifi-
cations led naturally to an assault on the logical foundation of the real-number
system. This was a return, after 2500 years, to the problem of irrational num-
bers, which the Greeks had abandoned as hopeless after Pythagoras (One of
the tools of these efforts was the newly developed field of symbolic logic). For
rigorous certainty one had to resort to the cumbersome Archimedean method
of exhaustion in it’s modern version: the Weierstrass epsilon-delta method.

When we say that infinitesimals do exist, we do mean this in the sense it
would be understood by Euclid and Berkeley. Until 100 years ago it was tacitly
assumed by all philosophers and mathematicians that the subject matter of
mathematics was objectively real in the sense close to the sense in which the
subject matter of physics is real. Whether infinitesimals did or did not exist
was a question of fact not too different from the question of whether material
atoms do or do not exist.

Today, most mathematicians have no such conviction of the objective ex-
istence of the objects and structures they study. What mathematicians want
from infinitesimals is not material existence but rather the right to use them
in proofs. This, of course, is of no concern to applied mathematicians and
physicists since it is quite true that whatever can be done with infinitesimals
can in principal be done without them.

1734 CE Emanuel Swedenborg (1688–1772, Sweden). Scientist, phi-
losopher and mystic207. Believed that the world evolved from a material point-
source and the solar system originated from a sudden explosion of material
from the sun.

1734–1742 CE Colin Maclaurin (1698–1746, Scotland). One of the
ablest mathematicians of the 18th century. He is best known today for his

207 He wrote a treatise A new system of reckoning which turns 8 instead of the

usual turn at 10 (1718) in which he defended the number 8 as a base. In his

own words: “Should the practice of the use and the use of the practice give

its approval, I suppose that the learned world will gain incredible benefits from

this octonary reckoning”. Modern computers have long been using a base-8

arithmetic. [It has been recently discovered that crows are capable of counting

up to 7.]
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exact solution for the spheroidal figure of equilibrium of a uniformly rotating
homogeneous fluid mass (1742).

He did not discover the ‘Maclaurin expansion’ f(x) =
∑∞

n=0 f (n)(0)xn

n! ,
since it is a special case of the ‘Taylor expansion’ (1715) and was also given by
James Stirling a quarter of a century before Maclaurin used it (as acknowl-
edged by Maclaurin himself). He did, however, devise in 1729 a means of
finding solutions to systems of linear equations, long before Cramer published
it in 1750.

Maclaurin did notable work in geometry, particularly in the study of higher
plane curves, and he showed great prowess in applying classical geometry to
physical problems. Among his many papers in applied mathematics is a prize-
winning memoir on the mathematical theory of tides (1740). In his ‘Treatise
on Fluxions’ (1742) he undertook the defense of the calculus techniques of
Newton, which came under attack in 1734 by a nonmathematician, Bishop
George Berkeley. In his book Maclaurin treated calculus on the basis
of Greek geometry and thus answered all objections to its method as being
founded on false reasoning and full of mystery. It is in this work that he
expounded his discovery of the ‘Maclaurin spheroids’.

Maclaurin was a mathematical prodigy. At age 11 he entered the Univer-
sity of Glasgow. In 1717 he was elected professor of mathematics in Marischal
College, Aberdeen. Two years later he was admitted as Fellow of the Royal
Society and made acquaintance with Isaac Newton.

In 1722 Maclaurin traveled as tutor and companion to the eldest son of
Lord Polward. In 1725 he was elected professor of mathematics in the Uni-
versity of Edinburgh on the recommendation of Newton. There was some
difficulty in obtaining a grant to cover his salary, and Newton offered to bear
the cost personally.

In 1745, when the rebels of Charles the pretender were marching on Ed-
inburgh, Maclaurin took part in preparing trenches and barricades for its
defense. The hardships to which he was thus exposed, caused a disease to
which he later succumbed. He died at Edinburgh.

1735 CE George Hadley (1685–1768, England). One of the first con-
tributors to the classical model of the general circulation in the atmosphere.
In his paper “Concerning the cause of the general trade winds”208, he revised

208 Trade winds: steady winds, with speed between 5–7 1
2

m/sec, occupy belts be-

tween latitudes 25 ◦ and 5 ◦ on either side of the equator. North of the equator

they blow from the northeast; in the Southern Hemisphere their direction is gen-

erally from the southeast. Along the equator, the atmospheric pressure tends

to be low and the winds weak. This is the region of the doldrums, where sailing

vessels can make but very little headway.
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and improved Edmund Halley’s earlier explanation of the trade winds (1686).

Hadley was well aware of the fact that solar energy drives the winds.
He proposed that the large temperature contrast between the poles and the
equator would create a thermal circulation very similar to that of sea breeze.
As long as the earth’s surface is heated unequally, air will move in an attempt
to balance the inequalities.

Hadley suggested that on nonrotating earth the air movement would take
the form of one large convection cell in each hemisphere. The more intensely
heated equatorial air would rise and move poleward. Eventually, this upper-
level flow would reach the poles where it would sink and spread out at the
surface and return to the equator. As the cold polar air approached the
equator, it would be reheated and rise again. If the earth were not rotating,
this would produce winds blowing from the poles to the equator along the
earth’s surface. Because of the rotation of the earth, the air moving towards
the equator is deflected to blow from east to west (easterly wind), while the
flow aloft will be deflected from west to east (westerly wind).

Hadley’s paper remained unnoticed for many years. His ideas were based
on a single thermally direct cell and required high pressure over the poles and
low pressure over the equator, with uniform pressure gradient between them.
In the 19th century, new observations of surface pressures contradicted this,
for belts of high pressure were observed in the subtropics as well as at the
poles, with low pressure in middle latitudes as well as at the equator; such
distribution required the existence of three cells (Ferrel, 1856), not one209. In
the 1920’s, the three-cell model (in each Hemisphere) was definitely accepted
as correct (and sufficient to accomplish the task of maintaining the earth’s
heat balance).

In the zone between the equator and roughly 30 degrees latitude, the
circulation closely resembles the convective model used by Hadley for the
whole earth; hence, the name Hadley cell is generally applied to it.

209 Hadley’s model does not take into account the thermal conditions in the up-

per atmosphere. Clearly, heating and cooling are not restricted to the earth’s

surface. However, there is yet another reason why the single-cell model is not

acceptable: because of gravity, the atmosphere must rotate with the earth. In

the Hadley model the surface winds blow toward the west and would, because

of friction, oppose the earth’s rotation, which is toward the east. Since the

atmosphere is attached to the earth, however, its average motion relative to the

solid earth’s surface must vanish. Thus, easterly flow at one latitude must be

balanced by westerly flow at another.
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It is of historical interest to note that Hadley realized the effect of the
earth’s rotation on winds 100 years ahead of Coriolis(!), basing his theory
upon the law of conservation of angular momentum.

1735–1743 CE Charles Marie de la Condamine (1701–1774,
France). Naturalist and mathematician. Member of an expedition to Peru
(with Bouguer) to measure the length of a degree of a meridian arc at the
equator (1735). Made first scientific exploration and account of the Amazon
river in a 4-month raft journey (1743). It was published in 1751.

1736–1740 CE Claudius Aymand (1660–1740, France). Surgeon.
Performed the first recorded successful appendectomy (1736).

1736–1760 CE Israel ben Eliezer, Ba’al Shem Tov (Master of
The Name; Acr. BESHT, ca. 1700–1760, Poland). Religious leader and phi-
losopher. Founder (1736) of the Jewish Hasidic (“The Pious”) movement in
Eastern Europe that influenced the course of Jewish life for over two centuries.
The new cult was directly in the line of the traditional Jewish mystics of the
Kabbalah, but the BESHT endeared it to the masses with a poetic earthiness
and love of life and people which the old ascetic Kabbalah lacked.

Upon the rapid decline of Jewish life in Slavic countries following the great
devastation and massacres by the Cossack hordes (1648–9), religious worship
had become even more formalistic and the great majority of the Jews sank
into the most abject poverty and ignorance. In his teachings, the BESHT
revived the cult of the Tzadik210, the righteous saintly person who mediates
between the Upper and the Lower worlds. He invented a revolutionary form
of popular prayer, through which man breaks down the barriers of his natural
existence and reaches into the divine world. Thus Hasidism emphasized joyful
worship of God in prayer and in all of one’s actions.

210 The Talmudists placed Ba’al Shem and his followers under the ban, but to no

avail. Since eventually Hasidism became orthodoxy it could not be excommuni-

cated. One of the dedicated enemy of Hasidism was the great Talmudic scholar

Eliahu ben Shlomo Zalman (Known as HAGA’ON MI-VILNA; 1720–1797,

Lithuania). He was a man of awesome secular and religious knowledge, probably

one of the greatest Hebrew scholars ever. He purchased a small house outside

Vilna and concentrated entirely on study. He never slept more than two hours

a day, and not more than a half an hour at a time. To eliminate distractions

he kept his shutters closed even in daytime and studied by candlelight. To stop

himself from falling asleep, he cut off the heating and put his feet in a bowl of

cold water. He expressed interest in secular science as an aid to understanding

the Torah. “all knowledge is necessary for understanding the Holy Torah and

is included in it”.
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Nothing of what the BESHT taught was new to Judaism; he merely gave
added emphasis to ideas which had been current for millennia [e.g. Psalms 47,
2; 100, 2]. His techniques, however, offered the Jewish masses an escape from
their troubled life and the oppressive authority of the rabbis. Consequently
his movement spread with remarkable speed trough Southeastern Europe.

The Ba’al Shem Tov was born in Okop in backward Podolia to very old
parents. Orphaned at an early age, his early manhood was spent in the
wilderness, in utter poverty, performing miracles, faith-healing, and exorcizing
evil spirits (unlike Jesus, he was twice married).

In his fortieth year, (1740), Ba’al Shem threw off his cloak of boorishness
and revealed himself in the splendor of a messenger of God. He established
himself in Medzibezh, Podolia, where he remained until his death. Henceforth,
he led a life of saintliness and piety. The BESHT left no writings. His homilies
were put down by his disciples.

1736–1761 CE Thomas Bayes (1702–1761, England). Mathematician.
Introduced the ‘Principle of inverse probability’ 211: “The posterior probabil-
ities of the hypotheses are proportional to the products of the prior proba-
bilities and the likelihoods”. In other words: if there is no ground to believe
one of a set of alternative hypotheses rather than another, their prior prob-
abilities are equal. When, in addition, posterior evidence is available, then
in retrospect the most probable hypothesis is the one that would have been
most likely to lead to that evidence. Thus, if the data were equally likely to
occur on any of the hypotheses, the former tell us nothing new with respect
to the credibility of the latter, and we shall retain our previous opinion, what-
ever it was. This principle provides a formal rule, in general accordance with
common sense, that enables a decision between hypotheses on the basis of
available evidence.

Bayes initiated the “Bayesian” school of ‘inductive probability’ (proba-
bility of causes) with his extension of the definition of conditional probability.
It has been promoted by Harold Jeffreys (1891–1989, England) and applied
with considerable success to diagnosis of medical conditions and many other
applications of statistical inference and fuzzy logic.

211 The essence of Bayes’ theorem is found already in the Talmud (Yevamoth, 4).

The Jewish rabbis solved the problem very much earlier (ca. 100 CE), but ex-

pressed the argument in words, not numbers. They also thought of the analysis

as a way to solve moral and legal problems, not as an end in itself. The Tal-

mud, though, lacks the clarity of the Bayes’ analysis and is content with relative,

not absolute probabilities. Yet, the rabbis understood the logic underlying this

analysis, and their relative probabilities are the same as obtained by the Bayes’

formula.
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Bayes was born in London. He was privately educated and his mature life
were spent as an Anglican minister at the chapel of Turnbridge Wells.

In 1761 he attempted to use the theory of probability to prove the existence
of God. To this end he started from a statement expressing the relationship
between the conditional probability and its inverse (“The other way around”).
The conditional probability of event B, given A is

prob(B|A) = prob(A|B)
prob(B)
prob(A)

Now, let a set of mutually exclusive events B1, B2, . . . , Bn, be given, and let us
assume that the occurrence of one or another of them is a necessary condition
for the occurrence of an event A. Since

prob(A) ≡ P (A) = P (B1)P (A|B1) + P (B2)P (A|B2) + · · · P (Bn)P (A|Bn),

there follows Bayes’ theorem

P (Bi|A) =
P (Bi)P (A|Bi)

P (B1)P (A|B1) + P (B2)P (A|B2) + · · · + P (Bn)P (A|Bn)

Two years later (1763) Bayes died and his “Essay towards solving a problem
in the doctrine of chance” was discovered and published. It caused a great stir
in the mathematical community, establishing an entire new field of science,
now called Bayesian Statistics, and having far reaching implications about
scientific inference.212

1737, Oct 11 CE A cyclonic storm in the Bay of Bengal killed about
300,000 people in Calcutta, India.

1737 CE Georg Brandt (1694–1768, Sweden). Chemist. Discovered
and isolated the element cobalt . The coper-miners of the Harz Mountains
frequently obtained ores looking like copper-ore; these gave an unpleasant
smell of garlic or roasting and furnished no copper. The miners attributed
their occurrence to the pranks of a mischievous spirit, Kobold (from the Greek
kobalos), and the material was called “false-ore”, or cobalt . The use of cobalt
as a constituent of some blue glazes and blue glass, made in imitation of lapis

212 Using Bayes’ theorem in cases where the prior probabilities of Bi cannot be

measured directly, may lead to controversial results: misrepresentation of data.

if one is not careful enough.

In the 20th century, a leading proponent of Bayesian probability theory was

Bruno de Finetti (1906–1985, Italy), who expounded the mathematical rela-

tionships between independence and exchangeability.
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lazuli , has been established for ancient Egyptian (1735 BCE) and Babylonian
(1450 BCE) specimens by analysis.

Cobalt chloride solutions were introduced as invisible ink in 1705. The pale
pink, almost colorless complex 2[Co(H2O)6]Cl2 in dilute aqueous solution is all
but invisible when used to write on white paper. Gentle warming of the paper
shifts the equilibrium to Co(CoCl4)+12H2O by driving out the complexed
water molecules, forming the easily identified blue cobalt chloride complex.
However, if the paper is allowed to sit about at room temperature for a while,
all is soon invisible again as the anhydrous complex picks up moisture from
the atmosphere.

With the advent of nuclear physics in the 20th century, a great variety of
radioactive isotopes for medical and industrial use were produced by neutron
irradiation of various elements. The most widely used of these is cobalt-60,
which is prepared from the normal metal cobalt-59. A moveable cobalt-60
“gun” produces a beam of gamma rays for the irradiation of a selected spot
on the patients body.

Since cobalt-60 has a half life of 5 years, the “gun” does not have to be
loaded very often. Cobalt-60 is also an exceptionally effective material for
making a dirty bomb. It can be wrapped around a large hydrogen bomb in al-
most unlimited amounts to absorb the superfluous neutrons and produce fall-
out enormously more potent than that from an ordinary atomic bomb. Cobalt
bombs have been mentioned as possibly the main ingredient of a doomsday
machine.

1737–1753 CE Bernard Forest de Belidor (1698–1761, France).
Civil engineer. First to apply the Newtonian calculus to practical architectural
problem. This he expounded in his influential 4-volume treatise Architecture
hydraulique (1737–1753). He wrote numerous books dealing with hydraulic,
civil and military engineering.

Bedidor was a professor at the Ecole de Artilleric.

1737–1776 CE David Hume (1711–1776, Scotland). Agnostic phi-
losopher, historian and political economist. A major figure of the enlighten-
ment (1715–1789). Pioneered in the sciences of political and cultural history,
economics, comparative history of religions, sociology and psychology. Scan-
dalized Britain with his anti-religious ideas.

After his graduation from Edinburgh University and after fruitless at-
tempts to make a place for himself in law and in business (1734), David
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Hume went to France and there wrote Treatise on Human Nature213 (1735–
1740). Settling in his family estate of Ninewells (1740) he wrote an Enquiry
Concerning Human Understanding (1748). His reputation made by this essay,
was solidified in England and on the continent with An Enquiry Concerning
the Principles of Morals (1752).

Hume’s reputation as a skeptic led to his failure to obtain the Chair of
Ethics and Philosophy at Edinburgh University (1744). Later on he was a
soldier (1745–1746), librarian (1751–1757), diplomat (1763–1765) and Under-
Secretary of State (1767–1768). Thereafter he settled down in Edinburgh
living among his friends with Epicurean ease, and dedicating his time to the
writing of a history of England and his posthumously published Dialogues
Concerning Natural Religion (1779).

In his Dialogues, Hume mounted a skeptical attack on the logical structure
of many naive features of the Newtonian clockwork-universe (“God wound up
the Universe and set it going”) and indeed also upon the rational basis of
any form of scientific inquiry. Hume calls the Design Argument ‘the religious
hypothesis’, and proceeds to attack its foundation from a variety of directions.
Hume’s approach was entirely negative; whereas most of his contemporaries
accepted the rationality and ordered structure of the world without question,
Hume did not. A commonsense view of the world, along with the metaphys-
ical trimmings that had been added to the Newtonian world model, Hume
rejected.

His objections are threefold: Firstly, the Design Argument is unscientific;
there can be no causal explanation for the order of nature because the unique-
ness of the world removes all grounds for comparative reference. Secondly,
analogical reasoning is so weak and subjective that it could not even provide
us with a reasonable conjecture, let along a definite proof. And finally: all
negative evidence has been conveniently neglected.

Hume maintains that a dispassionate approach could argue as well for a
disorderly cause if it were to concentrate upon the disorderly aspects of the
world structure.

Humean tirade against the simple design arguments of the English physi-
cists fell upon deaf ears, and must have seemed rather naive when held up
against the staggering quantitative achievements of the Newtonian system.
He became an isolated and ignored figure in literary circles even during his
lifetime, and appeared a ‘crank’ to the Newtonians.

213 In Germany, the philosopher, statistician and scientist Johannes Nico-

laus Tetens (1736–1807) expounded a similar theory in his treatise (1777):

“Philosophische Versuche über die Menschliche Natur und ihre Entwicklungen.”

He is therefore known as the ‘German Hume’.
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Hume’s theory of knowledge can be summarized as follows:

• Science and religion are mutually exclusive. Religion is not a form of
knowledge; it is not even a form of knowing ; it is rather a complex kind
of feeling , without recourse to science and reasons. Religion simply pos-
tulated unknown causes: reason is limited to the realm of human experi-
ence, and therefore it cannot decide ultimate questions such as the origin
of the cosmos.

• Except for abstract reasoning concerning quantity and numbers (mathe-
matics) reasoning involves belief rather than knowledge and is referable
to human feelings, instincts and emotions (passions).

• The problem of truth in questions of fact and existence is referable to
psychology rather than to logic. Hume stressed that empirical facts must
be given due weight against the testimony of men. He gives a number
of examples showing that testimony of otherwise reputable men cannot
be trusted. Mass delusion214 can occur: given enough time for people to
talk to each other, the delusion can develop consistency. Delusions are
especially likely in cases where people are trying to interpret an extra-
ordinary event, e.g. the natural law (confirmed billions of times by all
humans everywhere) that the dead do not rise must outweigh testimony
to the contrary.

• The idea that bases the existence of God on the majestic and wondrous
design of the Universe (i.e., natural theology) is rejected. The world could
have existed throughout eternity, requiring no first cause.

• There is no observable ‘soul’ behind the process of thought; what we call
‘mind’ is only an abstract name for perceptions, memories and feelings.
(By dissipating the concept of soul, Hume destroyed orthodox religion.)

• Man cannot know ultimate reality or achieve any knowledge beyond a
mere awareness of phenomenal sensory images. The only knowledge we
can possess consists of a mere sequence of ideas (perceptions, or assump-
tions) none of which can be proved to be true; all knowledge is therefore
restricted to mental states or experiences; of those only we can be certain.
(He thus challenged all alleged truths except those of mathematics and
the immediate intuitive awareness of our sense experience.) This made
him reject the idea of scientific law as objective reality, i.e., science must

214 We have now vastly more experience with mass delusions than Hume had, ex-

perience primarily obtained in the process of investigating UFOs. The modern

world does not believe in messengers from God (angels), but it does believe

in extraterrestrial intelligent life: imaginary super-beings from other stars that

play the same psychological role in modern society as angels did in the past.
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limit itself strictly to mathematics and direct experiment; it cannot trust
to unverified deduction from “laws”.
There is no such thing as ‘natural law’ or ‘necessity’ in the sequence of
effect upon cause; we never perceive causes, or laws: we perceive events
and sequences, and infer causation and necessity. ‘Law’ is an observed
custom in the sequence of events; but there is no ‘necessity’ in custom.

• An event C and a subsequent event E are related as cause and effect , if
the occurrence of C (or a situation similar to it215) is always followed by
E, and if E never occurs unless C has occurred previously. But the fact
that we have become aware of a particular cause sequence (like C to E)
even a very large number of times, is no proof that C will be followed by
E on all future occasions. He concluded that our belief in causality is no
more than a habit which is not an adequate basis for belief.

Causality according to this definition216 cannot be gained from material
given by the senses. To connect one occurrence with some other by the notion
of cause and effect is not the result of rational knowledge but of a habit of
expecting the perception of the second after having perceived the first; because
that sequence has previously taken place in innumerable cases. This habit is
founded upon a belief which can be explained psychologically but cannot
be derived by abstraction from the ideas of the two events (objects) or the
impressions of the senses. Hume did not deny that causality works. He only
denied that reason is capable of understanding it.

There can be no causal explanation for the order of nature: perhaps the
development of the world is random but has had an infinite amount of time
available to it so all possible configurations arise until eventually a stable
self-perpetuating form is found or — matter may posses some intrinsic self-
ordering property (1748).

Hume has influenced the development of the best philosophers who came
after him (Kant, James, Russel, Santayana) and gave speculative phi-
losophy a new direction217.

215 Hume included it in his definition because he wanted to make causality experi-

mentally verifiable.
216 Modern physics, whose causal laws are elaborated inferences from the observed

course of nature, have supported Hume’s challenge to the traditional causal

connection.
217 Immanuel Kant read Hume’s Dialogues in 1780 and subsequently acknowl-

edged his debt to him for awakening him ‘from his dogmatic slumbers’.

Hume’s idea that the world might have been gradually evolved from very small

beginning, increasing by the activity of its inherent principles rather than by

a sudden decree of God was taken up by the zoologist Erasmus Darwin
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(1731–1802), who was Charles Darwin grandfather. Erasmus was starting

to take up early steps (1794) toward an evolutionary theory of animal biology,

maintaining that the components of an animal or plant were not designed for

the use to which they are currently applied, but rather, have grown to fit that

use by a process of gradual improvement.

Hume had also influenced young Albert Einstein, who said of him: “One

is amazed that many, sometimes highly esteemed, philosophers after him have

been able to write so much obscure stuff and even find grateful readers for it”.
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Worldview XII: David Hume

∗ ∗∗

“Reason is limited to the realm of human experience, and therefore it cannot
decide ultimate questions such as the origin of the cosmos”.

∗ ∗∗

“While Newton seemed to draw off the veil from some of the mysteries of
nature, he showed at the same time the imperfections of the mechanical phi-
losophy; and thereby restored her ultimate secrets to that obscurity in which
they ever did and will remain”.

∗ ∗∗

“If we take in our hand any volume, of divinity or school metaphysics, for
instance; let us ask ‘Does it contain any abstract reasoning concerning quan-
tity or number?’ No. ‘Does it contain any experimental reasoning concerning
matter of fact and existence?’ No. Commit it then to the flames: for it can
contain nothing but sophistry and illusion”.

∗ ∗∗

“Look around this world: Contemplate the whole and every part of it. You
will find it to be nothing but one great machine, subdivided into an infinite
number of lesser machines. . . All these various machines and even their most
minute parts, are adjusted to each other with an accuracy, which ravishes into
admiration all men who have ever contemplated them. The curious adapting
of means to ends, throughout all nature, resembles exactly, though it much
exceeds, the productions of human contrivance; of human design, thought,
wisdom and intelligence. . .”.

∗ ∗∗
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“. . . We are guilty of the grossest, and most narrow partiality, and make
ourselves the model of the Universe. . . What peculiar privilege has this little
agitation of brain which we call thought, that we must thus make it the model
of the whole Universe”.

∗ ∗∗

“A very small part of this great system, during a very short time is very im-
perfectly discovered to us: And do we thence pronounce decisively concerning
the origin of the whole?. . . Let us remember the story of the Indian philo-
sopher and his elephant. It was never more applicable than to the present
subject. If the material world rests upon a similar ideal world, this ideal world
must rest upon some other; and so on, without end. It were better, therefore
never to look beyond the present material world”.

∗ ∗∗

“But were this world ever so perfect a production, it must still remain un-
certain whether all the excellences of the work can justly be ascribed to the
workman. . . Many worlds might have been botched and bungled, throughout
an eternity, ere this system was struck out; much labour lost, many fruitless
trials made; and a slow but continued improvement carried on during infinite
ages of world-making”.

∗ ∗∗
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1737–1783 CE Leonhard Euler218 (1707–1783, Switzerland). The
greatest mathematician of the 18th century. Freed the analytical calculus
from all geometric bounds, and thus established analysis as an independent
science, which from his time on has maintained an unchallenged leadership in
the field of mathematics.

Euler was born in Basel, the son of a preacher. The father’s wish was that
his son should follow in his footsteps, but on entering the University of Basel
in 1720, Euler met Johann Bernoulli and learned much mathematics from
him. Nevertheless he emerged with a master of philosophy degree and joined
the department of theology, with ample knowledge in Greek and Hebrew and
a strong religious conviction that stayed with him all his life.

At 19 he won a prize from the French Academy of Sciences for a paper
on the masting of ships, and was consequently invited to join the Academy of
Sciences in St. Petersburg. In 1740 he lost sight in one eye, and at the request
of Frederick the Great joined the scientific community in Berlin, where he
stayed for the next 25 years. In 1766 he returned to St. Petersburg, and by
1771 he had become totally blind.

Euler’s output, range and energy were phenomenal: he published hundreds
of papers in almost every field in the pure and applied mathematics of his day,
plus several books on a wide range of topics. While in Berlin he supervised the
observatory, the botanic gardens and the publication of maps and calendars.
He also advised on financial matters, including lotteries and pensions. In
addition he was required to work on canal improvements and to translate a
military book into German. He continued to work in his blindness for twelve
years, producing an 800-page book on lunar motion and 50 research papers
totaling 1000 pages. He fathered 13 children, and enjoyed playing with them
whilst simultaneously contemplating mathematics.

Euler contributed new essential ideas in number theory, algebra, calculus,
calculus of variations, functions of complex variables, differential geometry,
difference and differential equations, special functions, acoustics, optics219,
mechanics, fluid dynamics, astronomy, artillery, navigation, statistics, finance
and philosophy of science. In addition, he was also a prodigious calculator.

In his memoir ‘De Fractionibus Continius’ he laid the foundations for
the modern theory of continued fractions which play an important role in
present day mathematics. They constitute a most important tool for new

218 For further reading, see:

• Wittle, T., Leonhard Euler 1707–1783: Beiträge zu Leben und Werke,

Gedenkband des Kantons Basel-Stadt, Birkhäuser: Basel, 1983.

219 E.g., suggested (1766) a design for achromatic lenses.
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discoveries in number theory and in the field of Diophantine approximations.
In numerical analysis, continued fractions are used to give rapid numerical
approximation.

Euler (1728) introduced the notation e for the base of the natural log-
arithms220. In 1739 he adopted the symbol π (Jones, 1706). Later (1750)
he introduced the functional notation f(x), the summation symbol

∑
; and

in 1777, the symbol i =
√

−1. In 1755 he discovered the differential equa-
tions of motion of non-viscous fluids. During 1758–1765, he proved that the
instantaneous displacement of a rigid body can be expressed as a sum of an
axial rotation and a translation. To describe the rotation he introduced the
‘Euler angles’, thus establishing the basis for the algebra of finite rotations.
He then derived the equations of motion of a rigid body about a point, thus
laying the mathematical foundation for the analysis of gyroscopic behavior.
His formulation emphasizes the crucial role of the components of the inertia
tensor , the first tensor entity to enter physics.

In 1765 he suggested that the earth might undergo a free nutation with a
period of A/(C − A) = 305 sidereal days. Euler started the systematic inves-
tigation of variational problems, a subset of which is known as isoperimetric
problems. These maximum-minimum problems attracted the interest of the
best minds — such as Newton, Leibniz, Jakob and Johann Bernoulli
— from the very start of the infinitesimal calculus. Euler found a differen-
tial equation which gave the implicit solution of an extended class of such
problems.

In 1768, Euler published his three-volume treatise ‘Institutiones calculi
integralis’ in which he presented exhaustive methods for evaluating definite
and indefinite integrals in terms of elementary functions. He also developed
the theory of ordinary and partial differential equations221.

220 Seeking a function f(x) whose derivative is equal to itself, Newton (1665)

had shown that f(x) = 1 + x + x2

2!
+ x3

3!
+ · · · . From this he deduced that

f(1) = 1 + 1 + 1
2!

+ 1
3!

+ · · · + 1
n!

+ · · · .

Euler (1728) proved that f(1) = lim
n→∞

(
1 + 1

n

)n
and gave this number the

symbol e.

Lambert (1776) proved that e is irrational and Hermite (1873) showed that

e is also transcendental.

Euler discovered the beautiful relationship eπi = −1 and, more generally that

e is related to the trigonometric functions by eiθ = cos θ + i sin θ.
221 Example: Euler derived a closed-form solution to the general linear ODE of

the second order in the form of a continued fraction. Starting from y(x) =

P1(x) d2y
dx2 + Q0(x) dy

dx
this equation is differentiated and becomes y′ = Q1y

′′ +

P2y
′′′, where Q1 =

Q0+P ′
1

1−Q′
0

, P2 = P1
1−Q′

0
. This procedure is repeated indefi-

nitely, and a set of relations y(n) = Qny(n+1) + Pn+1y
(n+2) is obtained, where
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The legacy of Leonhard Euler in unsurpassed in the long history of math-
ematics. In body, quantity and quality his achievements are overwhelming.
Euler’s collected works fill over 70 volumes, a testament to the genius of this
unassuming man who changed the face of mathematics so profoundly.

Throughout his career, Euler was blessed with a phenomenal memory. His
number-theoretic investigations were aided by the fact that he had memorized
not only the first 100 prime numbers, but all their first six powers as well.
While others were digging through tables or pulling out pencil and paper,
Euler could simply recite from memory such quantities as 2414 or 3376. He
was able to do mental calculations requiring him to retain in his head up to 50
significant figures, and that without apparent effort, “just as men breath, as
eagles sustain themselves in the air” — in the words of Francois Arago. Yet
this extraordinary mind still had room for the entire text of Virgil’s Aeneid ,
which Euler had committed to memory as a boy, and still could recite flaw-
lessly half a century later. No writer of fiction would dare provide a character
with a memory of this caliber222.

n = 1, 2, 3, . . ., and Qn =
Qn−1+P ′

n
1−Q′

n−1
, Pn+1 = Pn

1−Q′
n−1

. Then

y

y′ = Q0 +
P1

(y′/y′′)
= Q0 +

P1

Q1 + P2
(y′ ′ /y′ ′ ′)

.

Let

λ(x) = Q0 + P1

Q1 + P2

Q2 + P3
Q3 +

.. . + Pn
Qn+Rn

where Rn = Pn+1
y(n+2)

y(n+1) .

If the fraction terminates, y(x) = e
∫ dx

λ(x) ; if it does not terminate, the problem

of its convergence arises. To this end the following fundamental theorem is avail-

able:
{
λ(x)

}−1
converges and has the value y′/y if y 	= 0 and (1) Pn → P ,

Qn → Q as n → ∞, (2) the roots ρ1 and ρ2 of the equation ρ2 = Qρ + P

are of unequal modulus; if further |ρ2| < |ρ1| then lim |y(n)|1/n < |ρ2|−1

provided that |ρ2| 	= 0. When |ρ2| = 0 the last condition is replaced by the

condition that the limit is finite.
222 However, even the great Euler was not always right. His conjecture (1769) that

xn + yn + zn = cn has no solution if n ≥ 4 was proven wrong:

Noam Elkies found (1988) the counterexample

2, 682, 4404 + 15, 365, 6394 + 18, 756, 7604 = 20, 615, 6734
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Part of Euler’s well-deserved reputation rests upon the textbook he au-
thored. In all his texts, Euler’s exposition was quite lucid and his mathemat-
ical notation was chosen so as to clarify, not obscure, the underlying ideas.

Euler’s Opera Omnia, consists of 73 volumes. It contains 886 books and
articles — written variously in Latin, French and German. His output was so
huge and the pace of its production so rapid — even in the darkness of his
later life — that a publication backlog is reported to have lasted 47 years after
his death. It has been estimated that if one were to collect all publications in
the mathematical sciences produced during 1725–1800, roughly 1/3 of these
were from the pen of Leonhard Euler.

Virtually every branch of mathematics has theorems of major significance
that are attributed to Euler.

One can get a feel for Euler’s profound insight through the following ex-
amples:

To prove that
∑∞

n=1
1

n2 = π2

6 Euler began with the key equation

sin x

x
= 1 − x2

3!
+

x4

5!
− x6

7!
+ · · · =

[

1 − x2

π2

] [

1 − x2

4π2

] [

1 − x2

9π2

]

· · · .

and Roger Frye followed with the simpler result

95, 8004 + 217, 5194 + 414, 5604 = 422, 4814.

Moreover, Elkies showed that there are infinitely many solutions of

x4 + y4 + z4 = c4

in coprime natural numbers x, y, z, and c. He also provided a second solution
in four astronomical numbers, each width 70 digits:

x = 1439965710 6489544922 6850677183 3175267850 2014266153 0044221829 2336336633,
y = 4417264698 9945384969 4359748975 4952845854 6722971790 4789886412 4209346920,
z = 9033964577 4825324980 5948245939 8457291004 9479250057 4302814746 5732645880,
c = 9161781830 0354368478 3245239826 7266038227 0029622572 4366207037 0888722169.

Euler further conjectured (1769) that the general Diophantine equation

xn
1 + xn

2 + · · · + xn
n−1 = xn

n (n ≥ 4)

has no solutions in positive integers. Yet, L. J. Lander and T. R. Parkin
were able to furnish the first counterexample (1966) for n = 5

275 + 845 + 1105 + 1335 = 1445.
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Performing the infinite multiplication on the right hand side, Euler obtained

1 −
[

1
π2

+
1

4π2
+

1
9π2

+
1

16π2
+ · · ·

]

x2 + (· · · )x4 − · · · .

Equating the coefficient of x2 on both sides, the required result follows. Thus,
Euler found the answer that had escaped mathematicians for decades223.

From the above key equation Euler deduced, for x = π
2 , the known Wallis’

infinite-product representation

2
π

=
(
1 − 1

4
)(

1 − 1
16
)(

1 − 1
36
)

· · ·

or
π

2
=

2 · 2 · 4 · 4 · 6 · 6 · · ·
1 · 3 · 3 · 5 · 5 · 7 · 7 · · · .

Moreover, by equating the coefficients of x4 on both sides of the above key
equation, he could announce that

∑∞
n=1

1
n4 = π4

90 .

Another of Euler’s beautiful results is the relation (1737) known as ‘Euler’s
product formula’

∑∞
n=0

1
ns =

∏
p

(
1 − 1

ps

)−1, where s is a real number greater
than 1 and the expression on the right denotes an infinite product in which p
runs over all primes.

In the field of Diophantine equations, Euler found that p = a3 − 9ab2;
q = 3a2b − b3; r = a2 + 3b2 solve the equation p2 + 3q2 = r3

223 Historically,

1 +
1

22
+

1

32
+

1

42
+ . . .

was the first series that mathematicians were unable to sum using elementary

algebraic methods. After the Bernoulli family had tried and failed, Euler finally

cracked the problem (1734) by means of a brilliant unorthodox argument. To-
day, such results can be derived in a systematic way using residues:

Consider the function g(z) = cot(πz)

z2 . With N a positive integer, let S be the

origin – centered square with vertices (N + 1
2
)(±1 ± i). Adding up the residue

inside S,

1

2πi

∮

s

g(z) = Res [g(z), 0] +

−1∑

n=−N

Res[g(z), n] +
N∑

n=1

Res [g(z), n] =

= − π

3
+

2

π

N∑

n=1

1

n2

As N tends to infinity, the integral on the LHS tends to zero and from this fact

we immediately deduce Euler’s result.
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It is incredible how Euler could have discovered the identity:

x4 + y4 = z4 + t4

where

x = a7 + a5b2 − 2a3b4 + 3a2b5 + ab6,
y = a6b − 3a5b2 − 2a4b3 + a2b5 + b7,
z = a7 + a5b2 − 2a3b4 − 3a2b5 + ab6,
t = a6b + 3a5b2 − 2a4b3 + a2b5 + b7.

One of Euler’s achievements (1748) was the discovery of the four-square ana-
logue of (a2 + b2)(c2 + d2) = (ac ± bd)2 + (ad ∓ bc)2, namely:

(x2
1 + x2

2 + x2
3 + x2

4)(y
2
1 + y2

2 + y2
3 + y2

4) = (x1y1 + x2y2 + x3y3 + x4y4)2

+(x1y2 − x2y1 − x3y4 + x4y3)2

+(x1y3 + x2y4 − x3y1 − x4y2)2

+(x1y4 − x2y3 + x3y2 − x4y1)2.

Euler also showed (1737) that

tanh(1) =
e2 − 1
e2 + 1

=
1

1 +
1

3 +
1

5 +
1

7 + 1

. . .

= 0.76159415 . . .

where e is the basis of the natural logarithms.

The Saga of i =
√

−1

During the 16th century, mathematicians encountered square roots of neg-
ative numbers through the general solutions of quadratic and cubic equations.
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Since the square of every real number is either positive or zero, the equation
x2 + 1 = 0 cannot be solved in the field of real numbers.

A book on algebra by Rafael Bombelli, which dates from 1572, con-
tains a consistent theory of roots of negative numbers. These numbers were
used by mathematicians since the middle of the 17th century and were since
known as imaginary numbers. Later, the theory of numbers of the form
a + b

√
−1 (complex numbers) was advanced by Johann Bernoulli. How-

ever, the symbol
√

−1, was not satisfactory as it lead to paradoxes such as:
−1 = (

√
−1)2 =

√
−1

√
−1 =

√
(−1)(−1) =

√
1 = 1. To avoid this, Leon-

hard Euler224 introduced in 1777 the notation i with the basic property
i2 = −1. The two roots of the equation x2 = −1 are now ±i. The symbol
i is called the imaginary unit. The choice of the word imaginary is unfortu-
nate, but it indicates the distrust with which complex numbers were viewed.
These suspicions slowly vanished at the end of the 18th century, when Caspar
Wessel in 1797, Carl Friedrich Gauss in 1799 (doctoral thesis) and Jean
Robert Argand in 1806, gave simple geometric representation to complex
numbers a + ib as vectors (points) in the Cartesian plane.

This simple interpretation of complex numbers made mathematicians feel
much more comfortable with them, and their existence was slowly accepted.

With Euler began the study of functions and power series in a complex
variable. He observed that the formal substitution of x by ix in the expo-
nential function

ex = 1 +
x

1!
+

x2

2!
+

x3

3!
+ · · ·

leads to

eix =
(
1 − x2

2!
+

x4

4!
− · · ·

)
+ i
(
x − x3

3!
+

x5

5!
− · · ·

)
,

that is, eix = cos x + i sin x. However, all these formal results were lacking
in mathematical rigor and often led to paradoxes225.

It was not until the 19th century that this naive approach to complex
analysis was replaced by a rigorous treatment. In 1833, William Rowan
Hamilton presented a paper before the Royal Irish Academy in which he

224 For further reading, see:

• Nahin, P.J., The Imaginary Tale, Princeton University Press, 1998, 257 pp.

225 For example, we know that the real-valued function y = tan x for

−π/2 < x < π/2 takes on all real values. Suppose that this function could

be generalized so as to take on all complex values while retaining the ordinary

law of the tangent of sums. There should then exist a complex number x0 such

that tan x0 = −i. Thus for any complex number x with tan x 	= ±i, we should

have tan(x + x0) = tan x+tan x0
1−tan x tan x0

= tan x−i
1+i tan x

= −i, which is absurd.



1272 3. The Clockwork Universe

introduced a formal algebra of ordered pairs of real numbers, the rules of com-
bination being precisely those given today for the system of complex numbers.

The founders of the theory of functions of complex variable (and of all
analysis), were Augustin Louis Cauchy, professor at the École Polytech-
nique in Paris (1848), Karl Weierstrass, professor at the University of Berlin
(1864), and Bernhard Riemann, professor at Göttingen (1859). Cauchy in-
troduced the concept of the complex line integral in 1814 and published his
basic theorems on functions of complex variable in 1825. During the second
half of the 19th century, Riemann developed the theory of complex functions
from a physico-geometrical standpoint, and Weierstrass developed it from a
logically rigorous standpoint.

The invention of set theory by Georg Cantor at the end of the 19th

century helped enormously in the development of the foundations of complex
analysis.

Euler versus Bernoulli versus Leibniz

Nothing sheds more light on the state of knowledge in any given era than the
issues debated among the scientists of that time. One of the investigations
continued from the 17th century was the solution of polynomial equations. In
this context, the question was raised whether an arbitrary polynomial with
real coefficients can be decomposed into a product of linear factors (or a
product of linear and quadratic factors with real coefficients, to avoid the use
of complex numbers). Leibniz (1702) thought this was not possible and gave
the example

x4 + a4 = (x2 − ia2)(x2 + ia2) = (x + a
√

i)(x − a
√

i)(x + a
√

−i)(x − a
√

−i),

claiming that no two of these four factors render a quadratic factor with real
coefficients upon multiplication. Had he been able to express the square root
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of i and −i as ordinary complex numbers, he would have seen his error.
Indeed, Nicholas Bernoulli (1687–1759), a nephew of James and John,
pointed out in 1719 that

x4 + a4 = (a2 + x2)2 − 2a2x2 = (a2 + x2 + ax
√

2)(a2 + x2 − ax
√

2)

[which meant that the function (x4 + a4)−1 could be integrated in terms of
trigonometric and logarithmic functions!]

Notwithstanding this result, Nicholas did not believe that his decomposi-
tion can be effected for every polynomial with real coefficients. Euler, how-
ever, took the correct stand: In a letter to Nicholas of October 1, 1742, Euler
affirmed (without proof ) that a polynomial of arbitrary degree with real co-
efficients could be decomposed into linear and quadratic factors with real
coefficients.

Nicholas replied on December 15, 1742 with an example of his own, which
he said, contradicts Euler’s assertion:

f(x) = x4 − 4x3 + 2x2 + 4x + 4 = (x − z1)(x − z2)(x − z3)(x − z4)

where

z1 = 1 +
√

2 + i
√

3; z2 = 1 +
√

2 − i
√

3;

z3 = 1 −
√

2 + i
√

3; z4 = 1 −
√

2 − i
√

3.

Euler then showed that since z1 = z2, z3 = z4 (conjugate pairs), the
factorization yields

f(x) =
[
x2 − 2(1 + p)x + (1 + p)2 + q2

] [
x2 − 2(1 − p)x + (1 − p)2 + q2

]
,

where p, q are real and

z1 = 1 + p + iq; z2 = 1 + p − iq;

z3 = (1 − p) − iq; z4 = (1 − p) + iq.

Euler thus proved Nicholas wrong on this count, but he still lacked a
general proof. The kernel of the problem of factoring a real polynomial into
linear and quadratic factors with real coefficients was to prove that every such
polynomial had at least one real or complex root. The proof of this fact, called
the fundamental theorem of algebra, became a major goal. Proofs afforded by
d’Alembert and Euler were incomplete. The first substantial proof was
given by Gauss, in his doctoral thesis (1799).
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Worldview XIII: Leonhard Euler

∗ ∗∗

“If a nonnegative quantity was so small that it is smaller than any given
one, then it certainly could not be anything but zero. To those who ask what
the infinitely small quantity in mathematics is, we answer that it is actually
zero. Hence there are not so many mysteries hidden in this concept as they are
usually believed to be. These supposed mysteries have rendered the calculus
of the infinitely small quite suspect to many people. Those doubts that remain
we shall thoroughly remove in the following pages, where we shall explain this
calculus”.

∗ ∗∗

“Mathematicians have tried in vain to this day to discover some order in
the sequence of prime numbers, and we have reason to believe that it is a
mystery into which the human mind will never penetrate”.

∗ ∗∗

[Upon losing the use of his right eye] “Now I will have less distraction”.

∗ ∗∗
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On Euler

∗ ∗∗

The whole form of modern mathematical thinking was created by Euler. It is
only with the greatest difficulty that one is able to follow the writings of any
author preceding Euler, because it was not yet known how to let the formulae
speak for themselves. This art Euler was the first to teach.

F. Rudio

∗ ∗∗
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The Earth’s Rotation (350 BCE–1765)

The revolution of the earth about the sun and its rotation about its own
axis were known to Heracleides (ca 355 BCE). During the next two centuries,
the Greeks accumulated sufficient astronomical data which enabled them to
discover the forced precession of the earth’s axis of rotation. This astronomical
lore was put in ‘deep freeze’ for some 1700 years and resurged in Europe after
the Copernican revolution (1543).

By the time of Euler (1758) the following facts about the earth’s rotation
were known:

(1) The inertial behavior of the earth is compatible with a figure that closely
resembles an ellipsoid of revolution226 (spheroid), slightly flattened at the
poles with ellipticity (flattening) of 1

297 , i.e. possessing an equatorial
diameter greater by about 43 km than its polar diameter.

The figure has its principal moment of inertia C, in the direction of the
symmetry axis. The points at which the axis of symmetry pierces the surface
of the earth is the geometric North Pole.

(2) The earth is not rotating at present about a principal axis. Therefore
the axis of rotation is not fixed relative to itself. The points at which the
angular velocity vector cuts through the earth’s surface are the celestial
poles of rotation. Vertically above these points stars would have no diur-
nal motion. (The star Polaris is near the celestial North Pole). This axis
of spin227 is called the polar axis. The polar axis is inclined to the plane
of ecliptic by 23 ◦27′.

226 This is known as the ‘reference ellipsoid’. It is generated by the rotation of the

ellipse R1 = b(1 − ε2 cos2 ϕ1)
−1/2, where b is the semi-minor axis, R1 is the

geocentric radius, ϕ1 is the geocentric latitude and ε2 = (a2 − b2)/a2, where a

is the semi-major axis [a = 6378.388 km, b = 6356.912 km] and the flattening

is (a − b)/a.
227 To an earthbound observer, the principal axes of inertia of the earth are fixed.

The angular velocity vector ω is fixed in magnitude and rotates about the major

axis of inertia e3 (free Eulerian precession). In the forced precession, the inertia

axis e3 rotates about the normal to the ecliptic, as seen to an observer outside

the earth.

Spin is the component of the angular velocity vector in the direction of

the greatest moment of inertia. Its value is ω3 = 7.29211 × 10−5 rad/sec.
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(3) According to the Eulerian theory of free precession, the tip of the angular
velocity vector (relative to the body axes) describes a circle (the ‘polo-
hods’) about the axis of symmetry. In the case of the earth, the shape
of this curve is somewhat irregular, but its diameter never exceeds 15
meters, with a mean radius of 4 m. The period of revolution about the
figure axis is about 305 days.

(4) Because of the earth’s oblateness (‘equatorial bulge’) and the inclination
of the polar axis just mentioned, the resultant attraction of the sun or
moon does not pass through the earth’s center of mass. The resultant
attraction is therefore equivalent to a force acting through the center of
mass and a couple which tends to bring the earth’s equator into coinci-
dence with the ecliptic. The earth, being an enormous gyroscope, reacts
to this couple by a precession of its spin axis (roughly directed along its
axis of symmetry) around a normal to the ecliptic (Newton, 1687). The
precession due to the moon is more than twice as great as that due to
the sun. This precession manifests itself through two equivalent motions:

(a) a slow conical motion of the earth’s polar axis in space (about a
normal to the ecliptic);

(b) a continual revolution of the line of nodes (line of equinoxes in astro-
nomical usage, i.e. the intersection of the plane of the earth’s equator
with the plane of the ecliptic) in the plane of the ecliptic.

Both motions have a period of about 25, 800 years and amount to a
rotation of 50.4′ ′ per year228. The diameter of the apparent circular
motion at the earth’s poles is about 52 cm which is about 10 times smaller
than the corresponding amplitude of the Eulerian free precession.

(5) Superposed on the precessional motion of the principal inertial axis, there
is an additional periodic irregularity, called forced nutation [from Latin
nutare, to nod]. This appears as a small elliptical motion229 about the
mean pole, depending on the moon’s inclination, with a period of about
18.6 years and amplitude of about 9′ ′ (Bradley, 1748).

228 The average precession rate per year due to the combined action of the sun

and the moon is − 6π2

Ω

(
C−A

C

)
cos θ

[
1 + mL

m+mL

1
τ2
1

]
where Ω = angular velocity

of the earth’s rotation relative to the inertial frame of the fixed stars = 2π ×
365 1

4
radians per year; (C − A)/C = 0.0032; θ = 23 ◦27′; mL

m+mL
= 1

82.5

(m = mass of earth; mL = mass of moon); τ1 = period of revolution of the

moon around the earth (27.32 days) in units of solar years = 27.32

365 1
4
. The total

result is −15.9′′ − 34.5′′ = −50.4′′ per year.
229 The major axis of this ellipse points towards the Pole of the ecliptic and is

only 18′′ long, and the minor axis is 14′′ long. These are about the angular

dimensions of a lemon seen from a distance of a kilometer.
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The Enlightenment (Age of Reason 1687–1789)

Central Europe emerged from the calamity of the Thirty Years’ War

greatly diminished in population, badly disorganized economically and more

than ever broken up into tiny political states. The largest of this states was

Austria, whose king was usually also emperor of the so-called Holy Roman
Empire, though his powers as emperor were purely nominal. The next in size

was Prussia, whose ruler (1700) changed his title of elector to that of King.

Then there where hundreds of almost independent principalities, cities, bish-

oprics. The head of each of these, or its group of ruling patricians, exercised

authority with few limitations, the common people having no say whatever in

the government. Few of the rulers, moreover, had any idea how to improve the

economic situation of their people. Their interests were confined to taxing,

conducting war and living in as grand a style as possible.

The burgers, on the other hand, were bound to the old ways of doing things

and feared the slightest change in the methods of commerce and industry.

Their guilds regulated every thing to a degree that it was impossible for

trade to make any progress. England and Holland had broken with these

old-fashioned methods and were rising rapidly in wealth and power, while the

rest of Europe was standing still. Alone among the princes of the Continent,

Frederick William, elector of Prussia (reigned 1640 – 1688), saw the need for

reforming the economic conditions of his country by breaking the stranglehold

of the guilds, thus starting Prussia on the road to military and political power.

This power derived from the changes he forced in the economic order of his

lands.

The one hundred years that preceded the French revolution witnessed the

rise of kings to unmatched power and influence in European affairs. These

years also encompassed the birth, maturation, and waning of the Enlighten-
ment. In the latter half of the period, during the rule of “philosopher kings”
(the enlightened absolutists), the monarchical tradition and the new intellec-

tual development was reflected. This period was brought to an abrupt end by

the movement toward representative government and the stirrings of political

and social revolts.

The overwhelming success of the Newtonian physics and world-view in-

duced the thinkers of the 18th century to apply the methods and principles
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of 17th century mathematics and physics to heal the economic, social, po-
litical and ecclesiastical elements of society. The Paris-centered enlighten-
ment movement dates from the visit of Voltaire (1694–1778) to England
(1726–1729), and the subsequent dissemination of the ideas of Newton and
Locke (1632–1704) across the channel. Other leaders of the enlightenment
were Montesquieu (1689–1755, France) [who tried to apply methods of the
natural sciences to the study of governmental forms], and Denis Diderot
(1713–1784, France).

The period produced many important advances in the fields of astronomy,
chemistry, mathematics and physics. Philosophers of the Age of Reason orga-
nized knowledge in encyclopedias and founded scientific institutes. They ex-
plored issues in education, law, philosophy and politics, and attacked tyranny,
social injustice, superstition and ignorance. Many of their ideas contributed
directly to the outbreak of the American and French revolutions230.

The principal publication of the Age of Reason is the ‘Encyclopédie’ 231,
edited by Diderot and d’Alembert in 17 volumes of text and 11 volumes of
illustrations during 1751–1772. This monumental endeavor became important
in the democratization of scientific knowledge. Technology was given equal
importance to that of pure science or philosophy. For the first time in the
history of science a group of scholars and savants addressed their ideas in
writing to a broad public.

While science, literature and philosophy flourished in France, there was
little evidence for such cultural activity in Germany; here, the setback caused
by the Thirty Year’s War (1618–1648) lasted until the second half of the 18 th

century. The like was true of Jewish culture: the ghetto imprisonment, the
impoverishment and the terrors of war had not only destroyed schools, but
also crushed the independence of spirit necessary for cultural progress232.

230 In the Middle Ages, opposite forces were held together by the pressure of the

Church. As this pressure has diminished, the opposite forces rebelled against

each other, leading to revolutions.
231 It was by no means the first endeavor of its kind. The Chinese encyclopedia

‘Yung lo ta tien’ was written in the 15th century.
232 As odd as it may seen, the Enlightenment in France marks the beginning of mod-

ern secular anti-judaism. The torchbearers of this new age, namely Voltaire,

Diderot and to a lesser degree Jean-Jacques Rousseau, carried over into

the mainstream of Enlightenment thinking the medieval Christian stereotypes

of the Jew.

Instead of disappearing with Enlightenment, antisemitism simply found new

guise, one which no longer blamed the Jews for crucifixion of Christ but held

them responsible for all the crimes and perversities committed in the name of
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Other major figures of the enlightenment are: Swift (1667–1745), Berke-
ley (1685–1753), Buffon (1707–1788), Frederick the Great (1712–1786),
Sterne (1718–1768), Helvetius (1715–1771), Winckelmann (1717–1768),
Adam Smith (1723–1790), Lessing (1729–1781), Moses Mendelssohn
(1729–1786), Burke (1729–1797), Priestley (1733–1804), Wieland (1733–
1813), Coulomb (1736–1806), Gibbon (1737–1794), Galvani (1737–1798),
Lavoisier (1743–1794).

The late enlightenment created [toward the end of the 18th century] a
reaction to its materialism233 and rationalism. It is generally called ‘Roman-
ticism’ in France and England. In art, music and literature this reaction
emphasized the great elemental motions and denied the supremacy of reason.
Romanticism did not come to fruition in most countries until the first half of
the 19th century.

the monotheistic religions: The Jews were judged to be inherently perverse, and

their ‘fossilized’ religion to be an obstacle to human progress!

Interestingly enough it was Jews, and non other, that helped Germany recover

from the destructive effects of the Thirty Years’ War by strengthening its shaky

economy and catalyzing the diffusion of the spirit of the age of reason into Ger-

many. Jews were being called out of the ghetto-prisons to help rebuild the lands

ravaged by war. However the Christian population continued in its accustomed

hostility, despite the new ideas which were slowly spreading among the new

cultured classes.

As one of the means to achieve his ends, Frederick William of Prussia made use

of the Jews. To overcome the opposition to the burgers (who, on the slightest

suspicion of competition by Jews bestirred themselves to force the Jews out of

the occupation involved) He granted the Jews certain trading privileges, and

then used these privileges to bargain with the burgers, either to gain greater

authority for himself or to make some change in general economic situation,

which enhanced interstate and international commerce for the benefit of all

concerned. Thus there emerged the figure of the Court-Jews who served the

various princelings as financial agents and as civilian quartermasters for their

armies. The two most noted of these were Samuel Oppenheimer of Vienna

(1630–1703) and his distant relative Joseph Süss Oppenheimer (“Jud Süss”)

(1692–1738, Feb 04).
233 A philosophical doctrine which examined both nature and social life from a

mechanistic point of view. Basing themselves on mechanics, which in those

days was the height of science, materialist philosophers imagined that the same

mechanical laws can be applied automatically to life and nature. Moreover,

since these laws are immutable, society changes very little except for repeating

itself mechanically via wars, hunger, government etc. Consequently, mankind

can do nothing to change things.
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The romantic era marked an interlude between the more disciplined, ra-
tionalist ‘Weltanschauung’ of the 18th century, which reflected the order and
regularity of the Newtonian universe, and the science-oriented outlook that
was to triumph in the second half of the 19th century.

At any rate, what remained of the romantic mood was shattered by the
mid-century revolutions of 1848. The abortive uprisings of that year seemed
to prove that ideals were not enough, that in the last analysis physical force,
material resources, and power were what counted in human relations

1738 CE, Feb 04 Joseph Süss Oppenheimer (1692–1738). The
Jewish Financial Minister of Karl Alexander, the Duke of Württemberg. He
has been envied and hated for his role in planning and implementing radical
economics reforms. Arrested after the Duke’s death and placed in an iron
cage suspended from a high beam over the Württemberg city square, for all
to see and mock. When the mob tired of the spectacle, Oppenheimer was
strangled. In 1939, the German Nazis made an anti-semitic movie named
Jüde Süss, which was very successful all over Germany. The public murder
of Oppenheimer took place in the middle of European Enlightenment (Age of
Reason) in the days of Voltaire, Montesquieu, Diderot, Rousseau and Lessing.

1739 CE, Oct Jose Antonio da Silva (1705–1739, Brazil and Portugal).
A Converso writer, was garroted and burnt at a Lisbon auto-da-fe (on charges
of Sabbath observance) by the Inquisition – Enlightenment Portuguese style.
His wife, who witnessed his death, did not long survive him. Da Silva’s tragic
story has inspired several modern writers, including the Portuguese Camilo
Castelo Branco (author of the novel O Judeu), who was himself of Converso
origin.

1740 CE Benjamin Huntsman (1704–1776, England) inventor and
steel-manufacturer. Produced a satisfactory cast steel , purer and harder than
any steel then in use234. Born to German parents in Lincolnshire. He started
business as a clock, lock and tool maker at Doncaster, and attended a consid-
erable local reputation for scientific knowledge and skilled workmanship.

234 Steel had been made in small quantities even before Christian era. However, in

1722 René Antoine de Réaumur, a French physicist, learned how to make

larger quantities by placing malleable iron in a bath of cast iron.
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Finding that the bad quality of the steel then available for his products
seriously hampered him, he began to experiment in steel manufacture, first
at Doncaster and subsequently in Handsworth, near Sheffield, to where he
moved in 1740 to secure cheaper fuel for his furnaces.

After several year’s trials he at last produced satisfactory cast steel235. The
Sheffield cutlery manufactures, however, refused to buy it, on the ground that
it was too hard, and for a long time, Huntsman exported his whole output
to France. The growing competition of imported French cutlery made from
Huntsman’s cast-steel at length alarmed the Sheffield cutlers (who vainly en-
deavored to get the exportation of steel prohibited by the British government)
and compelled them in self-defense to use it.

Huntsman had not patented his process and its secret was discovered by
a Sheffield ironfounder. Huntsman’s business was subsequently greatly devel-
oped by his son William Huntsman (1733–1809).

1740–1747 CE Moshe Hayyim Luzzatto236 (1707–1747, Italy Ams-
terdam and Israel; acronym RaMHaL). Philosopher, mystic moralist, accom-
plished linguist, poet and the progenitor of a Hebrew revival. His philosophy

235 Steel is a purified alloy of iron, carbon, and other elements that is manufactured

in the liquid sate. Most steels are almost freed from phosphorus, sulfur, and

silicon, and contain between 0.15 to 1.5 percent of carbon. High-carbon steels

(0.70–1.5 percent) are used for making razors, surgical instruments, drills and

other tools.

The Crucible is the oldest method of making steel, it is a small pot made of

clay and graphite. A number of crucibles are placed on the hearth of a furnace,

which is heated by gas. Carefully selected scrap is melted in these crucibles.

Huntsman melted together pieces of iron and charcoal (Ca 20 kg) in a covered

crucible for a few hours. The resulting steel, with a relatively high but evenly

distributed carbon content, was exceptionally hard. Because he cast it in molds,

Huntsman called it cast steel . However, small ingots of this size could not yet

be used to build bridges and railways.
236 Luzzatto (Luzzatti) is the name of Italian scholars that is derived from the

province of Lausitz in Eastern Germany (Lat. Lussatia). According to tradi-

tion the family emigrated into Italy in ca 1450, settling in the Venetian territo-

ries. The earliest member of the family of whom there is a record is Abraham

Luzzatto (1586); one of his sons settled in Safed, Israel.

During 1500–1900 CE, the Luzzatto family has provided an uninterrupted lin-

eage of some 14 generations of creative scholars in many fields of human in-

tellectual endeavor: philosophers, scientists, physicians, historians, statesmen,

authors and religious leaders. Among them: (i) Shmuel David Luzzatto

(acronym SHaDaL; 1800–1865), philosopher, philologist, translator, Bible com-

mentator; (ii) Luigi Luzzatti (1841–1927); Prime Minister of Italy 1910–1911.
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inspired millions of people in Europe and continues to be a living tradition in
Judaism.

His treatise The Path of the Upright (Mesillat Yesharim, 1740) stands
on it’s owns as one of the most influential and inspirational ethical works
of Judaism [alongside with the Bible book of Genesis (ca. 750 BCE); Book
of Job (ca. 600 BCE); Book of Ecclesiastes (ca. 250 BCE); Book of the
Khazar (Yehuda Halevi, 1139) and The Guide for the perplexed (Maimonides,
1190)]237. Luzzatto was born in Padua, son of a wealthy merchant. Since his
childhood prodigy, he became thoroughly knowledgeable in Judaic literature,
classical and modern languages, contemporary Italian culture and the secu-
lar sciences. In his early poetry and dramas (1724–1727) he created a new
school of Hebrew literature. But through 1727–1734 he began to lean toward
Kabbalistic mysticism, becoming leader of a group of religious thinkers. This
brought him to a direct conflict with the Venetian Rabbinate who, fearing a
new messianic pretender, put Luzzatto under the ban (1734) for “practicing
sorcery and pronouncing incantations”.

Subjected thus to persecution and excommunication, Luzatto went to Am-
sterdam (1736) where he could freely teach and write on diverse topics, such as
ethics, philosophy, poetry and Kabbalah. Like Spinoza before him, he earned

237 The spiritual giants of the Jewish people can be divided into two groups: One is
called “Ma’atikei Shmu’a” – those who faithfully record what has been passed

down to them for posterity. The other is composed of those who have tried to

rewrite the tradition that passed down to them.
The members of the first group earned admiration, trust, and love during their

lifetimes. The members of the second group were not trusted and were consid-

ered to be controversial; after their death, however, they where given unlimited
admiration, to the point of becoming legends. It is to this second mysterious

group that Maimonides and Rabbi Moshe Hayyim Luzzatto belong. An intel-

lectual and tragic common denominator connects them: it was after their death
that both earned total admiration, which has not diminished since. Based upon

the following famous Talmudic passage Luzatto wrote Mesillat Yesharim in or-

der to blaze a trail that man must follow to attain ethical perfection: Rabbi
Pinchas ben-Yair says: (Mishna; Sota, 9)

“Watchfullness leads to alertness,

Alertness leads to cleanliness,
Cleanliness leads to abstinence,

Abstinence leads to purity,

Purity leads to saintliness,
Saintliness leads to humility,

Humility leads to fear of sin,

Fear of sin leads to holiness.”
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his living by grinding optical lenses, but unlike him he remained ardently de-
voted to the cause of Judaism. However, he did not turn his thoughts from
the mysticism that not only incited his loftiest aspirations but also inspired
him to the conception of high ethical principle.

Indeed, it is in Amsterdam that he wrote his important philosophical
treatise Mesillat Yesharim (The path of the Upright) on the path man must
follow to attain ethical perfection238. This ethical work, written in Hebrew,
became one of the most influential books read by Eastern European Jewry in
the late 18 th and 19 th centuries.

In other ethical and theosophical works Luzzatto studied some basic theo-
logical questions: the ways of divine justice, the ways to overcome evil desires,
prayer, the Commandments, relationship between the just and the sinner,
original sin, the aim of creation, the next world and the world of redemption.
All his works in this field were widely read and accepted, and contributed to
his metamorphosis to sage and saint.

Luzatto visited London, but finally he was determined to escape from the
prohibition to teach Kabbalah. Filled with longing for the Holy Land, and
after many hardships he moved with his wife (m. 1731) and son to Safed, the
Kabbalistic center in Israel at that time. He died of the plague on May 06,
1747 in Kfar Yassif near Acre and was buried at Tiberias beside Rabbi Akiva

Luzatto, though persecuted when alive, was accepted by the three main
19 th century Jewish movements, which were fighting bitterly among them-
selves: the Hassidim saw him as a saintly mystic and used some of his Kab-
balistic ideas. Their opponents, the Mitnaggedim regarded his ethical works
as the clearest pointers toward a Jewish ethical way of life; and the enlighten-
ment (Haskalah) writers saw Luzzatto as a progenitor of their own movement,
and his works as the beginning of Hebrew aesthetic writings. Every facet of

238 This treatise has been compared to John Bunyan’s The Pilgrim’s Progress

(1675), though it was not influenced by the latter. Though written in the

18 th century, Messilat Yeshrim is essentially a medieval book, for Jewish me-

dievalism outlasted European medievalism by almost 400 years. The work was

printed many times, and translated into many languages.

A common groundless accusation against Judaism, which is repeated ad nau-

seam, is that Judaism was nothing but a formal system of practices which ex-

acted outward conformity regardless of inner meaning of mind and heart. This

misleading disinformation, which is all too opt to be accepted uncritically, is

shuttered in the face of the vast ethical literature which the Jews have produced.

Messilat Yesharim cultivates the inwardness of the laws and duties which the

Jew has to live up.
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Luzatto’s work, therefore, remained alive and creative in the divided and
confused Jewish culture of 19 th century.

1740–1744 CE Pierre Louis Moreau de Maupertuis (1698–1759,
France). Mathematician and astronomer.

Was born in St. Malo. At 20 he entered the army, becoming lieutenant
in a regiment of cavalry and spending his leisure on mathematical studies.
In 1723 he quit the army and was admitted as a member of the Academy of
Sciences. In 1728 he visited London and was elected a fellow of the Royal
Society. In 1736 he was the head of an expedition sent by Louis XV into
Lapland to measure the length of a degree of the meridian for the sake of
determining the oblateness of the earth. On the basis of these measurements
he found that the earth is flattened at the poles and oblate at the equator, as
predicted by Newton. His findings corrected earlier results of Cassini.

In 1740 Maupertuis went to Berlin on the invitation of the King of Prussia,
and took part in the battle of Mollwitz where he was taken prisoner by the
Austrians. Returning to Berlin in 1744 at the request of Frederick II, he was
chosen president of the Royal Academy of Sciences.

In 1744, he stated his “principle of least action” and applied it to optics
and mechanics. He believed that it is a mathematical principle through which
nature acts in the grand scheme of the universe to secure greatest economy.

Maupertuis was a man of considerable ability, but his restless, gloomy
disposition involved him in constant quarrels, of which his controversy with
Voltaire during the latter part of his life furnishes an example.

1741–1765 CE Johann Peter Süssmilch (1707–1767, Germany).
Prussian regimental pastor and a pioneer in the field of population statis-
tics. In his book (1761): “Die göttliche Ordnung in den Veränderungen des
menschlichen Geschlechts aus der Geburt, dem Tode, und der Fortpflanzung
desselben erweisen” he made a systematic attempt to make use of a class
of facts which up to that time had been regarded as belonging to “political
arithmetic” (today — “vital statistics”).

In his book, Süssmilch investigated whether war and plague were part of
God’s plan239 for the decimation of human surplus on earth. To this end he

239 In this he was influenced by a paper (1710) of John Arbuthnot (1667–1735)

called “An argument for Divine Providence, taken from the constant regularity

observed in the birth of both sexes”. In this note Arbuthnot (Physician to

Queen Anne during 1709–1714, satirical writer and collaborator of Jonathan

Swift) claimed to demonstrate that divine providence, not chance, governed

sex-ratio of birth.
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estimated that the earth had then a billion people (an overestimate), and
calculated that the population could grow for centuries before it reached the
maximum number of people the earth could support. This number he esti-
mated at 13.9 billion. Süsmilch then piously concluded that war and pestilence
were not part of the divine plan for reducing human population.

Süssmilch had arrived at a perception of what has been later termed the
“laws of large numbers”. He endeavored to form a general theory of society,
based upon quantitative aggregate observation. Although he did not enter his
investigation with an open mind, his work was nevertheless a most valuable
one since it pointed out the road which other unbiased researchers were not
slow to follow. Thus, Süssmilch’s success was the origin of a mathematical
school of statisticians240.

How Many People Have Ever Lived on Earth?

Leeuwenhoek (1769) published the first quantitative estimate of 13.4 bil-
lion people. Since then, 65 different estimates have been made, ranging from 1
billion to 1000 billion, depending upon initial assumptions made. Süssmilch
(1761) gave an estimate of 13.9 billion.

240 The word statistics is derived from the Latin status, which in the Middle Ages

came to mean a state in the political sense, denoting inquiries into the condition

of a polity.

As human societies became more and more organized, a considerable body of

official statistics came into existence, and intended to aid administration. The

Romans were careful to obtain accurate information regarding the resources of

the state, and they appear to have taken the census with a regularity which has

hardly been surpassed in modern times. The material for statistics therefore

existed at a very early period, but it was not until within the last four centuries

that systematic use of the information available began to be made for purposes

other than mere administration.

Statistics in the modern sense of the word, did not really come into existence

until Süssmilch’s publication.
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The total number of people who have ever lived on earth can be estimated
in a reasonable way as follows:

One begins by determining the mean population size for a birth-death
stochastic process (i.e., the average behavior of a population whose size
varies stochastically, growing over time due to random occurrence of births
and deaths). One then assumes a starting population of two persons
1.5 millions years ago and divides the total time span into a number of
smaller subintervals by using times for which estimates of world population
have been made (e.g., N (8000 BCE) = 5 × 106; N (0 BCE) = 250 × 106;
N (1750 CE) = 800 × 106; N (1825 CE) = 109; N (1930) = 2 × 109;
N (1960) = 3 × 109; N (1980) = 4.4 × 109). The total number of people
who ever lived since 1.5 million years before present is then found to range
from 50 to 100 billion (1011).

One can also show that the number of people living today (2008 CE) is
almost equal to the number of offsprings from a single pair of parents (The
primordial Adam and Eve of, say, the Homo Sapiens branch) 140,000 years
ago.

1742 CE Christian Goldbach (1690–1764, Germany and Russia).
Mathematician. Made notable contributions to the theory of infinite series
and the integration of differential equations, but is mainly known on account
of the Goldbach conjecture241: in a letter to L. Euler (1742) he claimed:
(1) Each even positive integer n > 2 is expressible as a sum of two primes.
(2) Each positive integer greater than 2 can be represented as a sum of three
primes.

Goldbach was born in Königsberg, Prussia. He became a professor of
mathematics at St. Petersburg (1725). In 1728 he became a tutor to Tzar
Peter II, and from 1742 on served as a staff member of the Russian Ministry
of Foreign Affairs.

241 The first conjecture was found valid up to n = 100, 000, but no definitive

proof has been found. In 1937, Ivan Matveyevich Vinogradov (1891–1983,

Russia) gave a partial proof of the second conjecture, restricting n to be a

sufficiently large odd number (≥ 3315
).
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1742 CE Benjamin Robins (1707–1751, England). Military engi-
neer. Laid the groundwork for modern ballistic theory. Invented the ballistic
pendulum242, first described in his New Principles of Gunnery (1742).

Artillery men of 18 th century endeavored to improve their cannon-firing
with little success. Robins noted that one of the causes of imperfection was
the deflection of the bullet’s path due to friction against the bore of the gun.
He suggested remedying this by scoring the bore longitudinally.

Euler rejected both Robin’s observations and his solution. It was more
than a century before they were recognized as fully justified243.

1742 CE Anders Celsius (1701–1744, Sweden). Astronomer. Described
the centigrade thermometer in a paper read before the Swedish Academy of
Sciences. Born in Uppsala. Occupied the chair of astronomy in the university
of his native town (1730–1744), but traveled during 1732 and some subsequent
years in Germany, Italy and France. In Paris he advocated the measurement

242 Ballistic pendulum: A device used to measure the velocity of such projectiles as

bullets, arrows, and darts by applying the momentum principle. It consists of a

rather massive block of wood that is suspended by parallel cords and is initially

hanging at rest. A test projectile (e.g., a bullet) is fired horizontally into the

block, which is thick enough to bring the bullet to rest, embedded inside it

(inelastic collision). The block and embedded bullet swing up to a maximum

deviation h. From the known masses and h, the final velocity of the bullet is

v = m+M
m

√
2gh. Because h is generally small and difficult to measure, this

result is expressed in terms of xm (the maximum horizontal displacement) and

L (the length of the pendulum chord). Thus, for x2
m >> h2 we find h ∼= x2

m
2L

,

v = m+M
m

xm

√
g
L

. Note that during the stopping time of the bullet, momentum

is conserved, but kinetic energy is not, whereas later, as the pendulum begins

to swing, energy is conserved, but the momentum of the pendulum of the block

changes due to the unbalanced forces that then begin to act.

If m = 10 g, M = 3 kg, xm = 25 cm, L = 1 m, calculations yield

v = 235 m/sec.

Momentum conservation allows us to obtain a result for the velocity of the bullet

even though the force exerted on the bullet by the block during the stopping

time is extremely complicated (even unknowable). To obtain the result from

the time-developed equations of motion, using Newton’s second law, would be

exceedingly difficult (even impossible).
243 Euler, like most of his contemporaries, adopted the wrong philosophy of ex-

plaining science rather then observing it. He thus made an impressive blunder

which halted the progress of ballistics for a hundred years. There are innumer-

able examples of this type throughout the history of science.
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of an arc of the meridian in Lapland, and took part, in 1736, in the expedition
organized for that purpose by the French Academy.

1742–1747 CE Jean Le Rond d’Alembert (1717–1783, France).
Mathematician, physicist and man of letters. Pioneer in the study of partial
differential equations and their application in physics. Studied the equilib-
rium and motion of fluids, hydrodynamics, mechanics of rigid bodies, the
3-body problem in astronomy and atmospheric circulation. In science he is
remembered for his four contributions:

(1) d’Alembert’s principle (1742): by introducing the concept of ‘force of
inertia’, which is created by the body’s own motion, it is possible to
reduce problems of motion to problems of equilibrium in the body’s co-
moving frame of reference. d’Alembert went further to generalize the
principle of virtual work to all mechanical systems, thus furnishing a
bridge between the Newtonian formulation of the laws of mechanics and
the later Lagrangian formulation.

The first veiled formulation of the principle of virtual work is contained
in the Physics of Aristotle (384–322 BCE). However, he used virtual
velocities rather than virtual displacements, and this is the form in which
the principle was used up to the 19th century. Aristotle derived the
law of the lever from his principle and Stevinus (1548–1620) used it
to deduce the equilibrium of pulleys. Galileo (1564–1642) improved
the formulation of Aristotle’s principle by recognizing that it is not the
velocity, but rather the velocity in the direction of the force which counts.

His method amounts to the recognition of the “work” as the “product of
the force and the displacement in the direction of the force”. He applied the
principle of virtual work to the equilibrium of a body on an inclined plane,
and showed how his principle gives the same result that Stevinus found on
the basis of the energy principle. Johann Bernoulli (1667–1748) was first
to formulate the principle of virtual work as a general principle of statics with
which problems of equilibrium could be solved (1717).

The principle states: “If a system of n material points A1, . . . , An is
without friction, then the necessary and sufficient condition for the equi-
librium of the acting forces F1, . . . ,Fn, is that to every virtual dis-
placement δr1, . . . , δrn the inequality

∑n
j=1 Fj · δrj ≤ 0 holds for the

virtual work of the acting forces” [virtual displacements = infinitesimal
displacements possible at a point A]. The importance of the principle
consists in the fact that it gives a condition of equilibrium of the acting
forces without the aid of reactions. In the d’Alembertian formulation the
principle of virtual work assumes the form:

∑n
j=1(Fj − mj r̈j) · δrj = 0.
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(2) Discovered the scalar wave equation of a vibrating string and found its
general solution (d’Alembert’s solution) (1747).

(3) Calculated the perturbation of the planets on the orbits of the moon
and the earth. This theory was previously developed by Newton from
a geometrical standpoint. d’Alembert and Clairaut, each in his own
way, formulated the result in the form of series solutions of differential
equations (1747–1754).

In 1754 d’Alembert developed the mathematical theory of the perturb-
ing effects of the planets (mainly Jupiter) on the motions of earth. He
showed that because of these perturbations, the luni-solar precessional
period of 26,000 years [known to Hipparchos (120 BCE), and shown
by Newton (1687) to be caused by the gravitational pull that the sun
and the moon exert on the earth’s equatorial bulge], must be modified
to include precession of the earth’s perihelion (47′ ′ per century) to yield
a general precession of the equinoxes with a period of 22,000 years.

This must be understood as follows: In the absence of planetary per-
turbations, the plane of the earth’s equator turns in a retrograde direc-
tion about the normal to the ecliptic, with the latter regarded as fixed
relative to the fixed stars. The rate of this nearly uniform rotation of
the earth’s spin axis is about 50′ ′ per year, making a full revolution in
60×60×360

50 = 26, 000 years. During this motion, the obliquity of the
earth’s axis w.r.t. the ecliptic is unchanged, only the orientation of the
polar axis relative to the fixed stars varies [however, the lunar forced
nutation (Bradley, 1737) must, of course, be considered as well].

When planetary perturbations are introduced, the elliptic orbit, as a
whole, executes a slow rotation, known as the precession of the perihelion.
Consequently, as seen from earth, the curve described by the North Pole,
is not quite a perfect circle, and it does not close back on itself during
26,000 years but rather sooner, in 22,000 years.

(4) Was first to notice (1754) the unsatisfactory state of the foundation of
analysis and see that a theory of limits is needed. The actual process
of banishing intuitionism and formalism from analysis started in 1797
with Lagrange. This led in the 19th century to the arithmetization of
analysis.

His main lifework was his collaboration with Diderot in preparing the
famous Encyclopédie, which played a major role in the French enlightenment
by emphasizing science and literature and attacking the forces of reaction in
church and state.

d’Alembert was a foundling: having been abandoned near the church of
St. Jean le Rond, Paris, he was discovered on the 17th of November, 1917.
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It afterwards became known that he was the illegitimate son of a Parisian
notable. He was called Jean le Rond after the church near which he was
found; the surname d’Alembert was added by himself at a later period. In
1730 he entered the Mazarin College, where his exceptional talents were soon
noted. His knowledge of higher mathematics was acquired by his own unaided
efforts after he had left college.

On leaving college he returned to the house of his foster mother, where he
continued to live for 30 years. He studied law and medicine but in 1740 re-
solved to fully devote his time to mathematics. His association with Diderot in
the preparation of the Dictionaire Encyclopédique led him to take a somewhat
wider range than that to which he had previously confined himself (1754).
Apart from contributing mathematical articles to the Encyclopedia, he wrote
literary and philosophical works which extended his reputation but also ex-
posed him to criticism and controversy. d’Alembert was interested in music
both as a science and as an art. His fame spread rapidly throughout Europe:
Frederick the Great, Catherine of Russia, and Pope Benedict XIV each invited
him to live in their respective country on lucrative salaries, but he preferred
to stick to the quiet and frugal life dictated by his simple tastes.

His latter years were saddened by circumstances connected with a romantic
attachment to a noted consort of literary men and savants. On her part there
seems to have been nothing more than a warm friendship, but his feelings
toward her were of a stronger kind and her death in 1776 deeply affected him.

The chief features of d’Alembert’s character were benevolence, simplicity
and independence. Though his income was never large, and during the greater
part of his life was very meager, he continued to find means to support his
foster mother in her old age, to educate the children of his first teacher and to
help various deserving students during their college career. His conversation
was a singular mixture of feigned malice, goodness of heart and delicacy of
wit.

1743–1750 CE Jean Antoine Nollet (1700–1770, France). Physicist.
Invented the first electroscope (1747–1750). Discovered and described the
phenomenon of osmosis and osmotic pressure (1748).

Osmosis is derived from a Greek word, meaning to push. A membrane par-
tition separates pure water, say, from a weak solution of a substance (solute)
in water (solvent). The membrane is such that the molecules of the water can
pass through it, but not those of the solute (a semi-permeable membrane).
After some time the level of the pure solvent (water) becomes lower than
the level of the solution. The process of penetration of a solvent through a
semi-permeable membrane is called osmosis. The pressure difference created
between the two sides of the membrane is called osmotic pressure. The new
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state of equilibrium can be understood either as due to the entropy gain at-
tendant to the further dilution of the solute (thermodynamic argument), or,
alternatively, as an impairment of the rate of effusion of water molecules from
the solution to the pure-water side, caused by the presence of solute molecules
in the former.

The exact microscopic mechanism of this impairment is not completely
understood. Apparently, a complex interaction between the molecules and
the semi-permeable membrane is at work. The magnitude of the osmotic
pressure depends on the concentration of the solute molecules; the greater
the concentration, the higher the osmotic pressure difference. On the other
hand, for a given weight of solute, the lower the osmotic pressure, the higher
the molecular weight . This enables one to determine molecular weights, of
proteins say, through osmotic pressure measurements.

Nollet was born near Noyon (Oise) to a peasant family. His parents des-
tined him for the clergy, but after finishing his theological studies in Paris,
he came under the influence of Réaumur, and began the study of the exact
sciences.

In the Church he ultimately attained the rank of abbé, but his tastes
lay in the direction of experimental physics. In 1734 he was admitted as
member of the London Royal Society, and in 1739 he entered the Academy
of Sciences at Paris. In 1753 he was appointed to the newly instituted chair
of experimental physics in the College de Navarre. He discovered osmosis
while experimenting with water diffusing into sugar solution from which it is
separated by an animal membrane.

1743–1750 CE Thomas Simpson (1710–1761, England). An able
self-taught mathematician. Was active in perfecting trigonometry as a sci-
ence. His name is preserved in the so-called Simpson’s rule published in his
Mathematical Dissertations on a Variety of Physical and Analytical Subjects
(1743) — a rule for approximate quadrature using parabolic arcs (this result
appeared in somewhat different form in 1668 in the Exeritationes Geometricae
of James Gregory).

Simpson’s father was a weaver, and, intending to bring his son up into
his own business, took little care of the boy’s education. Young Simpson was
so eager for knowledge that he neglected his weaving, and in consequence
of a quarrel was forced to leave his father’s house. Until 1743 his life was
rather turbulent; he managed to sustain himself through a gamut of odd jobs
as fortune-teller, oracle, astrologer and private teacher. After publishing 5
books on mathematics he was finally appointed professor of mathematics in
the Royal Military Academy at Woolwich, and in 1745 he was admitted as
fellow of the Royal Society of London.
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1744 CE Jean Philippe Löys de Chéseaux (1718–1751, Switzer-
land). Astronomer. ‘Solved’ the riddle of the dark night sky by assuming
that starlight is slowly absorbed while traveling across the immense gulfs of
interstellar space in a boundless universe. In his essay “On the intensity of
light, its propagation through the ether, and the distance of the fixed stars”
(1744) he wrote:

“The enormous difference between this conclusion and experience demon-

strates either that the sphere of fixed stars is not infinite but actually incom-

parably smaller than the finite extension I have supposed for it, or that the

intensity of light decreases faster than the inverse square of distance. This

latter supposition is quite plausible, it requires only that starry space is filled

with a fluid capable of intercepting light very slightly”.

Chéseaux’ calculation, in the updated form given by Lord Kelvin (1901),
is as follows: we assume that all stars are sun-like, of radius a, and uniformly
distributed with density n per unit volume. The number of stars in a shell of
radius q � a and thickness dq approximately equals 4πnq2dq, and the sum
of their uneclipsed projected areas is this number multiplied by πa2, thus
giving 4π2na2q2dq; If we divide this area of stellar disks by the area 4πq2

of the shell, we find that the fraction of the sky covered by the stars is of the
shell nπa2dq = nσdq, where σ = πa2 denote the geometric cross-section of
a star.

We now integrate out to distance r and find that the fraction of the sky
covered is α = nσr = r

λ , where λ = 1
nσ is the mean free path of a light

ray traced backwards from a point on earth, terminating on the surface of the
star which emitted it. (The mean free path — a term commonly used in the
kinetic theory of gases — is the average distance a particle travels between
collisions.) When r = λ = 1

nσ (or α = 1), the whole sky is covered
with stars. The corresponding distance is known as the background limit . If
V = 1

n is the average volume occupied by one star, the background limit in
a star-filled universe is λ = V

σ .

Let N = 4πn r3

3 stand for the number of stars out to distance r. The
number of uniformly scattered stars needed to cover the entire sky is obtained
by inserting r = λ = V

σ in the above equation. Then N = 4πV 2

3σ3 . Even in
an infinite universe containing an infinite number of stars, we see only out to
a finite distance and a finite number of stars.

Assuming then for simplicity that all stars are similar to the sun in size
and luminosity, we take σ = 1.5 × 1012 km2. Noticing that there are
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about 10 stars within a distance of 10 light-years from the sun, we ob-
tain V ≈ 100 (light-years)3. Consequently244 λ ≈ 6 × 1015 light-years, and
N ∼ 1046.

It was the immensity of the background limit that prompted Chéseaux
to think that absorption in space, even the slightest, would veil the most
distant stars and create the observed dark night sky. Indeed, the above toy
model can easily be made to incorporate the effects of both geometric overlap
by stars of intermediate shells and absorption. To this end we multiply our
former expression for the fraction of the sky covered by stars in the shell
first by e−q/λ, where λ = 1

πna2 , and then by e−q/μ, where μ is the
absorption mean free path. Hence, the fraction of the sky covered by stars
in the shell is

{
dq
λ

}
e−q( 1

λ + 1
μ ). Integrating from q = 0 to q = r, we

find α = μ
λ+μ

[
1 − e( 1

λ + 1
μ )
]
, where α is the fraction of the sky covered by

unobscured stellar surface of effectively-solar apparent brightness. As r → ∞
in an unlimited and uniform universe, the fraction of the sky covered by stars
becomes α = μ

λ+μ . If the absorption limit μ is much less than the overlap
limit λ, α ≈ μ

λ � 1, and most stars are obscured from view.

Because a system of concentric shells may be constructed about any point
in space, always yielding the same result, we conclude that observers at all
places will perceive the sky as consisting of one continuous, though dimmed,
stellar surface.

Chéseaux was born in the Swiss village of Chéseaux near Lausanne, the
son of a landowner of modest wealth. Educated by his grandfather, the math-
ematician Jean-Pierre de Crousaz, he developed an interest in astronomy
while a youth and constructed his own observatory. At age 17 he wrote papers
on the physics of collisions, retardation of cannonballs by air resistance, and
sound propagation. Never very robust, he died while on a visit to Paris, at
the age of 33.

Chéseaux’ name is associated with the magnificent comet of 1744, one of
the finest of the 18th century. Though not discovered by him, this comet is
often referred to as Chéseaux’ because he computed its orbit and ephemeris
and described its impressive, multiple tails.

ca 1745 CE During the Silesian wars between Prussia (Frederick the
Great) and Austria (Maria Theresa), the latter saw a disgrace in her loss
of Silesia. Deeply frustrated, the Austrian empress blamed her military de-
feat on the Jews of Prague(!) and on Dec. 18, 1744 she ordered their expulsion

244 Note, however, that in this estimate Chéseaux uses the average star density in

our galaxy — which is far higher than the average for the Universe as a whole.
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from the country within six weeks. Thus, in the blistering cold of a Febru-
ary day, thousands of people of all ages were clogging the highways and the
roadside was lined with the dead and the sick. Eight centuries of continuous
Jewish community life and of dynamic intellectual striving were wiped out.
It is indeed odd that this most dramatic expulsion should have taken place
not during the Dark Ages but in the year 1745 when the Industrial Age and
the modern spirit had already made their appearance in Europe.

Three years later the Imperial Treasury in Vienna began to feel acutely the
financial loss resulting from the expulsion. This made the empress regret her
excessive resentment against the Jews. Consequently, the Imperial Military
Council denounced their own previous charges against the Jews and ordered
their immediate return to Prague.

ca 1745 CE Hugh Jones (1692–1760, North America245). Mathemati-
cian. An ardent advocate of the octary (radix eight) system (which is used
today in connection with certain electronic computers). Jones, a professor of
mathematics at the College of William and Mary, was a reformer who asserted
that the base eight makes fractional work simpler because octary fractions are
just a matter of repeated halving. Moreover, computation is facilitated be-
cause the radix eight is a perfect cube, and four, which is one-half of the radix,
is a perfect square.

1745–1746 CE Ewald Georg von Kleist (1700–1748, Germany) and
Pieter van Musschenbrock (1692–1761, Holland) independently invented
the Leyden Jar , an early version of an electrical capacitor .

Von Kleist was a German ecclesiastic and scientist. Dean of the Cathedral
of Kamin, Pomerania. He discovered it on 04 Nov, 1745. Van Musschenbrock
was a Dutch mathematician, physician and physicist. Von Kleist was member
of a notable Leiden family246 of instrument makers (air pumps, microscopes,
and telescopes). He was a professor at Duisburg (1719–1723), Utrecht (1723–
1740), Leiden (1740–1761). The jar device accumulates electrical charges
produced by a static machine. When voltage reaches a critical value, there
occurs a discharge through the air-gap. Theirs was the first working model of
an electrical storage device.

1745–1785 CE George Louis Leclerc de Buffon (1707–1788, France).
Naturalist and mathematician. Although not a profound original investigator,

245 At this time, a British colony.
246 To this illustrious family of scientists, soldiers and poets belong also: Ewald

Christian von Kleist (1715–1759), poet and soldier; Heinrich Wilhelm von

Kleist (1777–1811), a great dramatist, poet and prose writer; Paul Ludwig

Ewald von Kleist (1881–1954), army general in WWII.
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he is remembered today due to his initiation of some geometrical aspects of
probability247: he showed how to get experimental estimates of π by tossing
a needle across a grid a large number of times (1777).

Previously, in 1745, he advanced the first of the so-called catastrophic
theories which envision a solitary sun disrupted by some singular cataclysmic
event. Buffon suggested that a massive body (comet) passed so close to the
sun that its gravitational pull drew material out of it, which then condensed
to form the planets (1785). He also tried, for the first time, to determine the
age of the earth (his result: 74,832 years!).

He regarded (1749) spermatozoa as “living organic molecules” which mul-
tiply in the semen.

Buffon was born at Montbard (Côte d’Or). He studied law and mathe-
matics at the Jesuit College at Dijon. Being a rich nobleman he led a life of a
scientist-at-large, occupying himself with whatever he liked. His son, an army
officer, died by the guillotine at the age of thirty in 1793.

Buffon was a member of all the learned societies of Europe. He was known
during his time chiefly due to his great work (44 quarto volumes) on natural
history, the publication of which extended over 50 years.

247 Buffon’s Needle problem: A table of infinite expanse has inscribed on it a set of

parallel lines spaced a units apart. A needle of length l < a is twirled and tossed

on the table. What is the probability that when it comes to rest it crosses a

line?

What matters is the needle’s angle θ with the horizontal, and the distance x of

the needle’s-center from its nearest parallel. Since the needle’s-center is equally

likely to fall anywhere between the parallels, then for a fixed θ, the chance that

the line crosses on of the parallels is 2x
2a

, because the line crosses a parallel if

the center falls within x units of either parallel. On account of the twirling,

the angle θ might be thought of as uniformly distributed from 0 to π
2

radians,

because crossing that happens for angle θ also happens for angle (π − θ). All

we need then is the mean value of x
a
, or, since x = l cos θ, the mean value of

(
l
a

)
cos θ, which is equal to l/a

π/2

π/2∫

0

cos θdθ = 2l
πa

. This is indeed the desired

result. In the particular case in which 2l = a, the probability of intersection

is 1/π. When the needle is tossed N times onto the ruled plane and on n of

these occasions the needle intersects on of the lines, the Law of Large Numbers

dictates n
N

≈ 1
π
.
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From Divination through the Buffon Needle to
Monte Carlo Methods

Throughout history simple games of chance have been used to communi-
cate with, or seek guidance from, the supernatural. In some primitive soci-
eties a person’s innocence or guilt was determined by drawing or casting lots
[Joshua 7, 14–18; 18, 10; Jonah 1, 7; I.Chronicles 26, 13–14]. In ancient
Greece and Rome oracles based predictions on casts of astragali (forerunners
of modern dice), and in the Bible there is a reference to an occasion where the
direction in which the army was to proceed was determined by shaking arrows
in a quiver and observing the direction in which the first one fell [Ezekiel 21,
26–28: “For the king of Babylon stood at the parting of the way, at the head
of the two ways, to use divination”; also in the Talmud; Gittin 5, 56 p. 1].

These early crude attempts to generate random (and sometimes ‘rigged’ !)
events, were later replaced by rolling dice or flipping coins. Yet the harnessing
of a gambling device in solving a problem of pure mathematics had to await
the year 1777 CE, when the French naturalist George de Buffon showed
that if a very fine needle of length l is thrown at random on a board ruled
with equidistant parallel lines, the probability w that the needle intersect one
of the lines is 2l

πa , where a > l is the distance between the parallel lines.

The problem and its solution were largely forgotten for the next 35 years,
until the great French mathematician Pierre Simon de Laplace (1812)
called attention to it and gave it a new twist. Writing Buffon’s result in the
form π = 2l

aw , Laplace realized that it provides a new method of calculating
π!

Indeed, the remarkable thing about this result is that it involves the con-
stant π = 3.1415926 . . ., which can be thus estimated by actually tossing a
needle on a board suitably ruled with parallel lines. Early experiments of
this kind (1850) gave the probability w = 0.5064, based on 5000 throws with
a needle 36 mm long and a distance of 45 mm between the parallels. This
yielded π ≈ 3.151496. Note that a probabilistic approach has been used here
to solve a non-probabilistic problem, very far from the ancient divinations,
where other non-probabilistic problems were solved by interpreting chance
happenings as divine intent.

It is not difficult to calculate the probability of obtaining π correct to K
decimals in N throws. The result of such calculation show that this method
is very inefficient as far as the numerical computation of π is concerned.
Yet, Laplace had discovered a powerful method of computation that did not
come into its own until the advent of electronic computers. The method that
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Laplace proposed consists of finding a numerical value by realizing a random
event many times and observing the outcomes experimentally.

A similar procedure, though non-geometrical, was devised for estimating e.
It is based on the observation that if 2K uniformly distributed numbers xi are
independently drawn in a sequence from a random source, and assuming each
draw value to be uniformly distributed, then the probability that they are all
in ascending order x1, x2, x3, . . . , x2K is 1

(2K)! . This is so because 2K numbers

can have (2K)! possible orderings and only one ordering will be an ascending
one. The probability that a sequence of trials yielding an increasing sequence
of xi’s will fail on the odd trial 2K + 1 is the difference 1

(2K)! − 1
(2K+1)! .

Thus, the total probability that a sequence of drawings of random numbers
from an equilikely source will produce a rising sequence that ends with an even
number of numbers is

∞∑

k=1

[
1

(2k)!
− 1

(2k + 1)!

]

=
∞∑

k=0

[
1

(2k)!
− 1

(2k + 1)!

]

=
1
e

An experiment using 252 runs gave 1
e = 0.381, a 3.5 percent error.

This result serves as a basis for a winning strategy of a well-known game
in which N cards, assigned with random numbers, are uncovered one at a
time by a player. The player must announce his decision of whether or not an
uncovered card bears the largest number of the lot. The optimal strategy is
to delay decision until after

(
100
e

)
percent of the cards have been uncovered.

In recent decades, the practice of chance happenings [namely, statistical
experiments] has become quite respectable through the use of the so-called
Monte Carlo methods248; we should add, though, that there is no longer any
question of divine intervention. Monte Carlo methods are essentially sim-
ulation techniques, and they enable us to study in the classroom or in the
laboratory random processes which would otherwise be difficult to observe.

They have been used, for example, to study the effect of changes in an
assembly procedure without actually having to put the changes into operation,
the effects of pollution without having to induce them in our environment,
as well as complex series of chemical and nuclear reactions (before an engine
or reactor is actually built, or to check its design and performance). Very
often, the use of Monte Carlo methods eliminates the cost of building and
operating experiments; it is thus used in the study of collisions of photons
with electrons, the scattering of neutrons, evolution of biological populations,
and other complicated phenomena. The chance factors in all these processes

248 The term “Monte Carlo” was coined by N. Metropolis and S. Ulam in 1949

[J. Amer. Statistical Assoc. 44, 241–335].
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are simulated by means of appropriate gambling devices, which, most of the
time, are themselves simulated by means of electronic computers.

Monte Carlo methods solve certain types of problems through the use of
random or pseudo-random numbers249, whose values depend on the outcome
of a random or pseudo-random event. The former may be generated by using
the outcomes of random physical processes such as throwing of dice, spinning
a roulette wheel, scintillation in a Geiger-Müller counter, noise generated by
electrical transmission systems, etc.; the latter can be generated via deter-
ministic numerical algorithms.

Monte Carlo methods offer two types of applications:

• Sampling: deducing properties of a large set of elements by studying
only a small, random subset. Thus an average value of f(x) over an
interval may be estimated from its average over a finite, random subset
of points in the interval. Since the average of f(x) is actually an integral,
this amounts to a Monte Carlo method for approximate integration.

• Simulation: providing arithmetical imitations of “real” phenomena. In
a broad sense this describes the general idea of applied mathematics.
The classical example is the simulation of neutron’s motions and ab-
sorptions in a nuclear reactor, its zigzag path being imitated by a type
of arithmetical random walk.

Of the mathematical problems to which the Monte Carlo method has
been applied, one may mention: solving systems of linear equations, matrix
inversion, evaluating multiple integrals, solving the Dirichlet problem, and
solving functional equations of a variety of types.

249 Random numbers, in the context of computations and communication pseudo-

random and not numbers generated by a random, analog physical process (such

as the flip of a coin or the spin of a wheel). Instead they are numbers generated
by a completely deterministic arithmetical process, the resulting set of numbers

having various statistical properties which together approximate randomness.

A typical algorithm for generating pseudorandom numbers is

xn+1 = rxn(mod N).

An initial element x0 is repeatedly multiplied by r, each product being re-

duced modulo N . With decimal computers xn+1 = 79xn(mod 105), x0 =

1 is quite satisfactory, while with binary computers a good choice is

xn+1 = (8t − 3)xn(mod 25), x0 = 1, with t being some large number. Truly

random computer bits can be produced by means of e.g. amplified and dis-

cretized electronic noise, or a Geiger counter monitoring nuclear decays.
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Suppose, for example, that it is required to evaluate I =
1∫

0

f(x)dx, where

f(x) is assumed to be bounded above and below so that it can be transformed
to satisfy the condition 0 ≤ f(x) ≤ 1. Monte Carlo integration then proceeds
as follows: random points are chosen within the unit square. The integral I is
then estimated as the fraction of random points that fall below the curve f(x).
The number of points must be sufficiently large and their uniform distribution
must be truly random in both the x- and y-dimensions, so that one deals with
n mutually independent trials. Uniformly distributed random numbers make
it possible to break off the procedure at a value n for which the successive
estimates differ by less than a prescribed limit of accuracy. If (k − 1) is the
number of counting steps executed so far and Ik−1 the resulting estimate of
I, then the recursive counting scheme

Ik = Ik−1 + (ξk − Ik−1)/k = [(k − 1)Ik−1 + ξk]/k

has proved useful, where ξk = 1 if the kth point falls in the region of f(x),
and ξk = 0 otherwise.

If only uniformly distributed random numbers xi in the one-dimensional
interval [0, 1] are chosen for the argument, and f(xi) is calculated for each,
then the statistical mean M [f(x)], multiplied by the width of the interval 1,
is an estimate for the required integral. Because the arithmetic mean is an
effective estimate for M [f(x)], one obtains

1
n

∑
f(xi) ≈

1∫

0

f(x)dx.

Here the deterministic recursive formula

Ik = Ik−1 + [f(xk) − Ik−1]/k = [Ik−1(k − 1) + f(xk)]/k

has proved suitable (i.e. ξk was replaced by its expectation f(xk)).

This method can, in principle, be extended to multidimensional volumes
V . One picks N points, uniformly randomly distributed in V . Call them
x1, x2, . . . , xN . Then the basic theorem of a Monte Carlo integration estimates
the integral of a function f over the multidimensional volume,

∫

fdV ≈ V 〈f 〉 ± V

√
〈f2〉 − 〈f 〉2

N
.

Here 〈 〉 denote taking the arithmetic mean over the N sample points,

〈f 〉 =
1
N

N∑

i=1

f(xi) ; 〈f2〉 =
1
N

N∑

i=1

f2(xi) .
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The “plus-or-minus” form is a one standard deviation error estimate for
the integral, which is a rough indication of the probable error range.

1747–1753 CE James Lind (1716–1794, Scotland). Surgeon in the
Royal Navy. Pioneer of preventive medicine and nutrition. Founder of naval
hygiene and promoter of the use of citrus fruits and fresh vegetables to pre-
vent and cure scurvy. The discovery was ignored until forty years after he
discovered the cure.

1747–1760 CE Johann Tobias Mayer (1723–1762, Germany). Math-
ematician, physicist and astronomer. Made a careful investigation of the
libration of the moon250 (1747–1748), and published tables on the positions
of the moon which allow determinations of longitude at sea (1753). With the
tables in hand, a mariner could obtain his longitude through tedious calcula-
tions with an accuracy of half a degree. The method was that suggested by
Peter Apian (1524).

Mayer was born at Marbach, in Würtemburg, and brought up at Esslin-
gen in poor circumstances. A self-taught mathematician, he entered (1746)
to work in a cartographic establishment at Nuremberg. Here he introduced
many improvements in map-making and gained a scientific reputation which
led (1751) to his election to the chair of mathematics in the University of
Göttingen. In 1754 he became superintendent of the astronomical observatory
of that university. He left behind him an essay on color, in which 3 primary
colors are recognized; a memoir on the proper motions of 80 stars; papers
on atmospheric refraction (1755), on the motion of Mars as affected by the
perturbations of Jupiter and the earth (1756), and on terrestrial magnetism
(1760), where he made the first definite attempt to establish a mathematical
theory of magnetic action.

The British Government paid his widow a grant of 3000 Sterling for the
lunar tables which he submitted to them in 1755.

1747–1784 CE Benjamin Franklin (1706–1790, U.S.A.). Scientist,
inventor, statesman and diplomat. One of the first men to experiment with
electricity (1747–1752). Invented the lightning rod (1749) and created such

250 The moon slightly wobbles as it moves along its orbit. This wobbling, called

libration, permits us to view 59 percent of its surface.



1302 3. The Clockwork Universe

electrical terms as armature, condenser , and battery . Invented bifocal eye-
glasses (1784) which allowed both reading and distant lenses to be set in
a single frame. Published the first chart of the North Atlantic Gulf Stream
(1770), based on his own observations.

He was the first to relate the severe Northern Hemisphere winter of 1783/4
to the eruption of the volcano Laki in Iceland in the summer of 1783, speculat-
ing that solar heating of the earth is reduced due to the ash and other particles
injected by the volcano into the atmosphere. Franklin was instrumental in es-
tablishing the American Philosophical Society , the first scientific society in
the United States (proposed in 1743, established in 1769 at Philadelphia).

Franklin was born in Boston, the 15th child and youngest son in a family
of 17 children. His formal schooling ended at the age of 10, but he continued
to educate himself throughout his life. From 1723 to 1730 Franklin worked for
various printers in Philadelphia and London, England. He became the owner
of a print shop in 1730, and began publishing The Pennsylvania Gazette,
writing much of the material for this newspaper himself. His name gradually
became known throughout the colonies. Seeking to improve the poor colonial
postal service he became Philadelphia’s postmaster in 1737, and in 1753 he
became deputy postmaster general for all the colonies.

He started his electrical experiments in 1747, with the discovery that a
pointed conductor can draw off electric charge from a charged body. In 1751
he described electricity as a single fluid and distinguished between positive (ex-
cess) and negative (deficiency) electricity. He also showed that electricity can
magnetize and demagnetize iron needles. In June 1752, Franklin performed
his famous kite experiment, showing that lighting is a form of electricity,
similar to the discharge from a Leyden jar. This was the first recorded exper-
iment on atmospheric electricity251, and the first human endeavor to harness
this natural source of power.

Franklin became the first scientist to study the movement of the Gulf-
Stream. He spent much time charting its course, and recording its temper-
ature, speed, and depth. He hoped that use of his chart would help ships
to avoid the current and to speed the mail in crossing from Great Britain to
America252.

251 In 1912 Victor Franz Hess (1883–1964, Austria) discovered, through manned

balloon flights, the agent of this phenomenon — cosmic radiation. The bom-

bardment of the earth’s surface by massive particles from outer space was named

‘cosmic rays’ by Millikan in 1925.
252 Gulf Stream: a current of warm waters that flows from the Straits of Florida in

a north-easterly direction across the Atlantic toward Europe. It flows as fast as

220 km/day and its rate of flow, measured in volume per second, is about 1000
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Franklin was a fierce supporter of America’s struggle for independence: he
played an important part in drafting the declaration of independence (1776)
and the United States constitution (1787). During 1776–1785, he served as
ambassador to France.

1748–1750 CE Charles-Louis de Secondat, Baron de la Brède et
de Montesquieu (1689–1755, France). Political and social philosopher.
His L’Esprit des lois (1748) [The Spirit of the Laws] is a seminal contribution
to political theory which profoundly influenced political thought in Europe
and America.

His family belonged to the lesser nobility of Guyenne, with a distinguished
tradition of legal service in Bordeaux. He accordingly trained for the law at
Bordeaux and Paris, where he was in touch with some of the most emancipated
minds. A literary career (1721–1726) led to his election (1727) to the French
Academy and in 1728 he began a 3-year European tour which took him to
Italy and England and greatly nourished his interest in political and social
institutions. He lived in England (1729–1731) and came to admire the English
political system.

In his magnum opus he analyzed human institutions and the laws which
embody them in terms of their dependence upon forms of government, upon
the external relations of the state, upon national temperament, climatic and
economic factors. The most influential part of the work, however, has been
his analysis of the conditions which create political liberty, and his advocacy
(based upon his readings of the English constitution) of a system of equilib-
rium based upon a separation of the legislative, executive and judicial powers
of the state.

Montesquieu believed that laws underline all things – human, natural, and
divine. One of philosophy’s major tasks was to discover theses laws. Man was

times greater than that of the Mississippi River. It is the second largest ocean

current.

The Gulf Stream is partly responsible for the warm southwesterly winds that

make the climate of Great Britain and Northwestern Europe much warmer than

parts of North America that lie equally far north. These winds pick up heat

and moisture from the Sargasso Sea and the Gulf Stream. The Gulf Stream is

also an aid to shipping. Many large oil tankers and ore carriers, traveling from

South America to Atlantic coastal harbors, attempt to “ride” the current on

their northbound journey.

The stream is about 80 km wide and 910 meters deep. It is formed in the

Caribbean from the union of the North and South Equatorial currents. These

currents, in turn, are generated by trade winds, as suggested by Benjamin

Franklin already in 1770.
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difficult to study because the laws governing his nature were highly complex.
Yet Montesquieu believed that these laws could be discovered empirically.
Knowledge of the laws would ease the ills of society and improve human life.
He maintained that liberty and respect for properly constituted law could
exist together.

1748–1768 CE Johann Joachim Winckelmann (1717–1768, Ger-
many). One of the fathers of modern archeology and art historian who set
the foundation of our modern views on the arts. His writings reawakened
the taste for classical art and was responsible for generating the neoclassical
movement in the arts.

Born at Stendal in Brandenburg, the son of a poor shoemaker. As a
child, Johann was influenced by the ancient Greek culture, especially Homer.
He studied theology and medicine at Halle and Jena Universities. In 1748
he discovered the world of ancient Greek art while serving as a librarian near
Dresden. There he wrote the essay “Reflections on the Painting and Sculpture
of the Greeks” (1755). This was recognized as a manifesto of the Greek ideal
in education and art. His other works include “Geschichte der Kunst des
Altertums” (1764, “History of the Art of Antiquity”).

In 1763 he became superintendent of Roman antiquities, but soon he rose
to the position of librarian at the Vatican and later became the secretary to
Cardinal Albani, who had an extensive collection of classical art.

In his work, Winckelmann sets forth both the history of Greek art and the
principles on which it seemed to him to be based. He also presents a glowing
picture of the political, social and intellectual conditions which he believed
tended to foster creative activity in ancient Greece. The fundamental idea of
his theories is that the end of art is beauty, and that this end can be attained
only when individual and characteristic features are strictly subordinated to
the artist’s general scheme.

The true artist, selecting from nature the phenomena fitted for his pur-
pose, and combining them through the imagination, creates an ideal type
marked in action by “Edle Einfalt und stille Größe” (“noble simplicity and
quiet grandeur”) — an ideal type in which normal proportions are maintained,
particular parts, such as muscles and veins, not being permitted to break the
harmony of the general outlines.

In the historical portion he used not only the works of art he himself had
studied but the scattered notices on the subject to be found in ancient writers;
and his wide knowledge and active imagination enabled him to offer many
fruitful suggestions as to periods about which he had little direct information.
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Many of his conclusions, based on inadequate evidence of Roman copies,
have been modified or reversed by subsequent research, but the fine enthusi-
asm of his work, its strong and yet graceful style, and its vivid descriptions
of works of art give it enduring value and interest. It marked an epoch by
indicating the spirit in which the study of Greek art should be approached,
and the methods by which investigators might hope to attain solid results.
To Winckelmann’s contemporaries it came as a revelation, and exercised a
profound influence on the best minds of the age.

On June 8, 1768 on his way back to Rome from Germany and Austria, he
was murdered by a chance acquaintance in Trieste, Italy, which was where he
was buried.

1749–1752 CE Frederik Hasselquist (1722–1752, Sweden). Traveler
and naturalist; The first modern researcher of the fauna and flora of the Holy
Land.

Born at Törnevalla, East Gothland and studied at Uppsala under Lin-
naeus. On account of the frequently expressed regrets of the latter regarding
the natural history of the Holy Land, Hasselquist resolved to undertake a
journey to that country. He visited parts of Asia Minor, Egypt, Cyprus and
the Land of Israel, making large natural history collections. But his consti-
tution, weakened by chronic consumption, gave way under fatigues of travel,
and he died near Smyrna on his way home.

His collections reached home in safety, and five years after his death his
notes were published by Linnaeus under the title Resa till Heliga Landet,
1749–1752. It was translated into French (1762) and English (1766). Among
his discoveries: the fig-wasp (Blastophaga psenes), St. Peter’s fish (Thilapia
galilaeae), the common jerboa (Jaculus jaculus). His herbal collection Flora
Palestina (1763) includes 600 species.
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The Honeycomb — or, How to Hold the Most Honey
for the Least Wax

One of the most beautiful hexagonal arrays is the honeycomb constructed
by bees. The walls of the main body of connected cells form regular hexagonal
prisms. The bottom of each cell is shaped like a concave triangular pyramid
and constructed from three equilateral rhombs. The cell walls are slightly
tilted toward the rim, which prevents honey from running out before the cells
are closed.

The first question that comes to mind is, why the hexagonal cross-section?
After all, the bees might have built their cells with rounded walls as the bum-
blebees do or as they themselves build for the cradles of their queens. Or they
could base their architectural style on some other geometrical configuration.
However, if the cell were round or, say, octagonal or pentagonal, there would
be empty spaces between them. This would not only mean a poor utilization
of space; it would also compel the bees to build separate walls for all or part
of each cell, and entail a great waste of material.

These difficulties are avoided by the use of triangles, squares, and
hexagons. But of those three geometrical figures with equal area (and for
equal-depth cells — also with equal volume) the hexagon has the smallest
circumference. This means that the amount of building material required for
cells of the same capacity is the least in the hexagonal construction. The
geometry of the cell-bottoms and the manner in which they dovetail into each
other, contributes to the stability of the comb. A comb measuring 37 by 22.5
centimeters can hold two kilogram of honey. Yet in the manufacture of such
a comb, the bees use only 40 grams of wax.

This natural architectural marvel must have attracted the attention and
excited the admiration of mathematicians from time immemorial.

The writings of Pappos of Alexandria (ca 300 CE) inform us that the
ancient Greeks had already tried to explain the regularity of beehive cells by
means of an optimum principle. He has left us an account of its hexagonal
plan, and drew from it the conclusion that the bees were endowed with “a
certain geometrical forethought . . . There being, then, three figures which of
themselves can fill up the space around a point, viz. the triangle, the square
and the hexagon, the bees have wisely selected for their structure that which
contains most angles, suspecting indeed that it could hold more honey than
either of the other two”.

Erasmus Bartholinus (1669) was the first to suggest that the hypothesis
of ‘economy’ was not warranted, and that the hexagonal cell was no more than
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the necessary result of equal pressures, each bee striving to make its own little
circle as large as possible.

The understanding of the particular shape of the bottom of the cell was a
more difficult matter than that of its sides, and came later. Kepler was first
to deduce from the space-filling symmetry of the honeycomb that its angles
must be those of the rhombic dodecahedron; and Swammerdam (1673) also
recognized the same geometrical figure in the base of the cell. But Kepler’s
discovery passed unnoticed, and to the Italian astronomer Giacomo Filippo
Malardi [(1665–1729), a nephew of D. Cassini; lived in Paris] goes the credit
of ascertaining the shape of the rhombs and the solid angle which they bound,
while watching the bees in the garden of the Paris Observatory (1712).

He found the angles of the rhomb to be 110 ◦ and 70 ◦. He later observed
that the angles of the three rhombs at the base of the cell depend on the basal
angles of the 6 trapezia which form its sides. It then occurred to him to ask
what must these angles be, if those on the floor and those of the sides are
equal to one another. The solution to this geometrical problem yielded the
theoretical values of 70 ◦32′ and 109 ◦28′. Thus, invoking the two principles
of simplicity and mathematical beauty, Malardi obtained a theoretical result
very close to the observed values!

The next step, taken by the French physicist and naturalist René-
Antoine Ferchault de Réaumur (1734), had been foreshadowed long be-
fore by Pappos. Though Euler had not yet published his famous discussion
on curves, maximi minimive proprietate gaudentes, the idea of maxima and
minima was in the air as a guiding postulate, a heuristic method, to be used
as Malardi used his principle of simplicity.

So it occurred to Réaumur that the hexagonal structure of the bee’s hon-
eycomb should follow from a minimum principle: the bee would build its cells
with the greatest economy in order to use as little wax as possible; and that,
just as the closed-packed hexagons gave the minimal extent of boundary in
a plane, so the figure determined by Malardi, namely the rhombic dodeca-
hedron, might be that which employs the minimum of surface for a given
volume; or which, in other words, should hold the most honey for the least
wax253.

253 Consider a right prism of height h, having regular hexagonal base abcdef , top

ABCDEF , both with side s (volume = 1
2
3

√
3s2h). At the top, we cut off

the corners B, D, F by planes through the lines AC, CE, EA. Using these

lines as ‘hinges’, we rotate the so-formed three tetrahedrons such that they all

meet at a common vertex V . The new body with top faces AXCV , CY EV ,

EZAV (rhombuses), is the bee’s cell and has the same volume as the original

prism. The hexagonal base at the opposite end is the open end. One parameter
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Réaumur posed his conjecture to Samuel Koenig, a young Swiss math-
ematician: Given a hexagonal cell terminating with three similar and equal
rhombs, what is the configuration which requires the least quantity of mater-
ial for its construction? Koenig (1739) found that the angle 109 ◦24′ followed
from the minimum principle proposed by Réaumur [Koenig’s own paper, sent
to Réaumur, remained unpublished and was lost and his method of solution
is unknown]. Thereupon Bernard Le Bovier de Fontenelle (1657–1757),
the perpetual secretary of the French Academy, declared that bees had no
intelligence; yet they were “blindly using the highest mathematics by divine
guidance and command”.

In spite of the striking success of the calculus in explaining the cell’s geom-
etry in terms of ‘wax economy’, a line of mathematicians since Bartholi-
nus doubted the philosophical implications of this theory. Glaisher (1873)
summed up the matter as follows:

“As the result of a tolerably careful examination of the whole question,
I may be permitted to say that the economy of wax has played a very sub-
ordinate part in the determination of the form of the cell. I should not be
surprised if it were found that the form of the cell had been determined by
other considerations, into which saving wax did not enter, although I would
not go as far as to say that the amount of wax required was a matter of
absolute indifference to the bees”.

D’Arcy Thompson (1860–1948) commended in the same spirit that it
makes more sense to suppose:

“that the beautiful regularity of the bee’s architecture is due to some auto-
matic play of the physical forces” than to suppose “that the bee intentionally
seeks for a method of economizing wax”.

But all this assumes that the bees have somehow hit upon the optimal
honeycomb. Have they? This question was investigated by the Hungarian

is, however, left to our choice: the angle through which we cut-off the three

tetrahedrons, or alternatively, the angle θ which the vertical at V makes with

the line V X. The bees form the faces by using wax. When the volume is given,

it is economic to spare wax and, therefore, to choose the angle of inclination θ

in such a way that the surface area S of the bee’s cell is minimized .

Simple geometrical considerations reveal that S(θ) = 6hs + 3
2
s2
( √

3
sin θ

− cot θ
)
.

The derivative S′(θ) vanishes if, and only if, cos θ0 = 1√
3
, yielding θ0 = 54.7 ◦

or 2θ0 = 109 ◦24′, independent of the choice of h and s. It is worth comparing

the result with the actual angle chosen by the bees. It is difficult to measure this

angle. However, the average of all measurements does not differ significantly

from the theoretical value of 2θ0 = 109 ◦24′. Thus, the bees strongly prefer

the optimal angle. It is rather unlikely that the result is due to chance.
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mathematician Fejes Tóth (1964). In his paper “What the bees know and
what they don’t know”, he considered honeycombs, which he defined as a set of
congruent convex polyhedra called cells, filling the space between two parallel
planes without overlapping and without interstices in such a way that:

(1) each cell has a face (called a base or opening) on one and only one of
the two planes; and

(2) every pair of cells is congruent in such a way that their bases correspond
to each other.

The cells built by the bees are prismatic vessels, the openings (and cross
sections) of which are regular hexagons, whereas their bottoms consist of three
equal rhombi.

The bees construct their honeycomb in such a way that the hexagonal
openings of the cells are attached to one of the two planes. Is the zigzagged
bottom surface constructed by the bees the most economical one? (It is
certainly more advantageous than a plane.)

In order to state the problem precisely, we formulate (following Tóth) the
isoperimetric problem for honeycombs: Given any two numbers V and W ,
find a honeycomb of width W whose cells have smallest surface area and yet
enclose the volume V . (The width W is the distance between the two parallel
planes that bound the honeycomb.)

We don’t know yet what the solution is, but definitely it cannot be the
bee cell, because Fejes Tóth found another cell that yields a slightly better
result. The bottom of this cell consists of two hexagons and two rhombi.
The advantage of Tóth’s cell amounts to less than 0.35% of the area of an
opening (and a much smaller percentage of the surface area of a cell). Hence
we can state that the bees do a pretty good but not a perfect job, although
their practical result, taking the margin of error into account, might still be
optimal.
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Evolution of Minimum and Variational Principles254

Many fundamental ideas in science were conceived in antiquity, and our
present way of thinking owes a great deal to our predecessors. One essential
idea that modern science has inherited from the classical world is the con-
cept of a fundamental order and harmony to the universe, a harmony that
could be reflected in the beauty of mathematical structures. Because Greek
mathematics was mainly restricted to geometry, the ancient scientists used
geometric models to describe nature.

Thus, since the nascence of the Milesian school (ca 600 BCE), Greek
philosophers and scientists sought to reduce the manifold phenomena of na-
ture to a basic set of unifying laws. This quest for simplicity was continued
by Pythagoras (ca 540 BCE), but whereas the Ionian physicists postulated
a single substance from which all substances comprising the cosmos were de-
rived, Pythagoras put the emphasis on mathematical reasoning and believed
that the concepts of harmony and number (positive integers) embrace the
whole structure of the universe (mathematics and physics were in his time
indistinguishable).

Plato (427–347 BCE) continued the Pythagorean legacy and upheld the
view that number rules the universe. Although he rejected the experimental

254 For further reading, see:

• Elsgolts, L., Differential Equations and the Calculus of Variations, Mir Pub-

lishers: Moscow, 1980, 440 pp.

• Yourgrau, W. and S. Mandelstam, Variational Principles in Dynamics and

Quantum Mechanics, Dover: New York, 1968, 201 pp.

• Weinstock, R., Calculus of Variations, Dover: New York, 1974, 326 pp.

• Gelfand, I.M. and S.V. Fomin, The Calculus of Variations, Prentice Hall,

1965, 232 pp.

• Lanczos, C., The Variational Principles of Mechanics, University of Toronto

Press, 1964, 367 pp.

• Woodhouse, R., A Treatise on Isoperimetrical Problems, and the Calculus of

Variations, Chelsea Publications: New York.

• Todhunter, I., A History of the Progress of the Calculus of Variations in the

Nineteenth Century , Chelsea Publications: New York.
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method, he still adhered to the conceptual representation of the phenomenal
world through ideas of simplicity, uniformity, order and perfection.

Aristotle (384–322 BCE) mentioned the fact that of all curves enclosing
a given area, the circle possesses the shortest perimeter. This marks the
transition from the belief in simplicity to a minimum principle, explicitly
stated for the first time. This minimum hypothesis was not dictated by any
appeal to quantitative measurement and was not subject to rigorous scrutiny.
Hero of Alexandria (ca 150 BCE) gave a geometrical demonstration of the
principle of shortest optical path (distance) for light rays reflected from a
plane mirror. No further development of this idea was made until the advent
of Fermat’s least-time principle in the 17th century.

In the interim period, however, the claim for the simplicity of nature was
strongly advocated by William of Ockham (1285–1349). His ‘razor’ princi-
ple, while indicating a viewpoint similar to the simplicity hypothesis of Aris-
totle, differs from it in the sense that while the Greek philosopher held that
nature possesses an immanent tendency to simplicity, Ockham demanded that
in describing nature one should avoid unnecessary complications. Both doc-
trines appear simultaneously in the writings of Copernicus (1473–1543),
Galileo (1564–1642) and Kepler (1571–1630) in the form of Pythagorean-
Platonic mysticism and deep-rooted convictions of a simple, harmonious and
ordered universe.

Both Newton (1642–1727) and Leibniz (1646–1716) reformulated the
principle of simplicity: “We are to admit no more causes of natural things
than such as are both true and sufficient to explain their appearances” (New-
ton); “The perfectly acting being . . . can be compared to a clever engineer
who obtains his effect in the simplest manner one can choose” (Leibniz).
The French philosopher Nicolas de Malebranche (1638–1715) replaced the
word simplicity by economy and arrived at a similar view which he called the
‘Economy of Nature’ 255.

In 1621, Snell derived empirically the law of light refraction across a
boundary between two homogeneous media in which the velocity of light has
the values c1 and c2, respectively. If the ray passes from one region to the
other, then it must consist of two straight-line-segments which satisfy the

255 There were, however, other more prosaic motives for the preoccupation of scien-

tists with extremum problems; the question of shortest and quickest connections

became especially important to the European powers during the 15th and 16th

centuries, when they were searching for the best routes to the Far East and to

the New World. Faster sailing routes promised greater profits. The well-known

expeditions of Vasco da Gama and Christopher Columbus must be seen mainly

in economic terms.
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law of refraction, sin α1/ sin α2 = c1/c2, where α1 and α2 are the angles
between the normal to the boundary and the two line-segments at the point
of intersection.

In 1657, Fermat succeeded in deriving Snell’s law from a new principle
— the principle of least time. It stated that a light ray requires less time
along its actual path between two points than it would require along any
other conceivable (‘virtual ’) path satisfying the given condition.

It is remarkable that Fermat demonstrated the principle using elementary
algebra only (no derivatives!). He later generalized his result to curved sur-
faces separating the two media and also for inhomogeneous media. He thus
arrived at the general Fermat principle of geometrical optics:

“In an inhomogeneous medium, a light ray traveling between two points
follows a path along which the time taken is minimum w.r.t. paths joining the
two points”256.

Minimizing the travel-time t between two points P and Q means mini-

mizing the integral I =
∫ Q

P

ds
v , where s is the arc-length along the ray and

v = v(s) = v(r(s)) is the velocity at a general point r(s) on the ray. The

principle then states that δ
∫ Q

P

ds
v = 0, meaning that the variation between

the time taken to travel along the actual path and that needed to cover an
infinitesimally adjacent virtual path is zero.

Thus, 1800 years had to pass before Hero’s observation could be improved
upon and generalized. The ideas unfolded by Fermat have had a tremendous
influence on the development of physical thought in and beyond the study of
classical optics; including its analogues in classical and quantum mechanics as
well as both classical and quantum field theories. Fermat’s principle provided
science with an insightful and highly useful way of anticipating the behavior
of light, matter and energy. Note that Fermat’s principle is not so much a
computational device as it is a concise way of thinking about the propagation
of light. It is a statement about the grand scheme of things, without reference
to any underlying causal mechanisms.

The first real justification of Fermat’s principle was given by Huygens
who, in 1678, deduced the laws of reflection and refraction on the basis of the
wave theory of light (Huygens’ principle). Furthermore, he demonstrated that

256 Fermat’s principle is a true minimum principle (and not merely a stationary

value principle) if we make comparisons in the local sense. However, it is re-

quired that all along the trajectory the wave surfaces shall be well defined,

single-valued with definite normals (no intersection of ray trajectories!). The

mathematical machinery needed to derive the equations of the rays for a given

v(r) was not known to Fermat and had to await for another 100 years.
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the travel-time of light upon refraction was a real minimum. Fermat’s achieve-
ment, with Huygens’ support, stimulated a great deal of effort to supersede
Newton’s laws of mechanics with a similar variational formulation.

In 1740, the French mathematician Maupertuis (1698–1759) announced
le principe de la moindre quantité d’action — the famous principle of least
action.

According to this principle all events in nature take place such that a
certain quantity, called “action”, is rendered minimum. He postulated that
the action must depend on the mass and the histories of the velocities and
displacements; he therefore defined action as an integral of the product of
these three factors (dimensionally it is also equal to the product of energy and
time or to angular momentum). The bold universality of this assumption is
admirable and well in line with the spirit of the 18th century. It conforms with
the spirit of the Platonic-Pythagorean cosmology, as well as with the natural
philosophy of Leibniz, and follows in the footsteps of Hero and Fermat.

However, Maupertuis’ original definition of action (as a product of mass,
velocity and distance without integration) was very obscure, owing to the
fact that the distance covered by the moving body varies with time, and his
failure to specify the time interval for which the product is to be computed.
For these reasons Maupertuis could not establish satisfactorily the quantity to
be minimized. He applied his principle to the derivation of the laws of elastic
collision. This phenomenon is very intricate if treated as a minimum problem
and requires great skill in handling (the mathematical powers of Maupertuis
were far behind the high standards of his period); he obtained the correct
result by an incorrect method. More satisfactory was his treatment of the law
of refraction, in which he showed how Fermat’s principle of least time can be
replaced by the principle of least action (this result was earlier recognized by
Johann Bernoulli).

Thus, the original statement by Maupertuis was vaguely theological and
could hardly pass muster today. The integral formulation which today bears
his name is actually due to Euler who discovered the principle in 1743 in
an entirely correct form (he may have been inspired, in part at least, by
Maupertuis’ 1740 paper). In particular, Euler knew that both actual and
virtual motions have to satisfy the law of conservation of energy. Without
this auxiliary condition, the action quantity of Maupertuis, even if corrected
from a sum (the form in which he used it) to an integral, loses all significance.

Euler, who confined himself to a single particle moving on a plane curve,
asserted:

“When a particle travels between two fixed points, it takes the path for
which

∫
vds is a minimum”, v being the velocity of the particle and ds the
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corresponding element of the curve. Euler also gave an alternative formulation
through which the actual path can be mathematically evaluated:

“A particle travels between two fixed points in such a way that the differ-
ence between the integral

∫
vds taken along the actual path and that taken

along any neighboring virtual path between the two points, is an infinitesimal
quantity of second order; the particle is supposed to travel along the virtual
path with the velocity for which the energy is equal to the given energy” (vir-
tual path is one along which the particle may be imagined to move without
satisfying Newton’s laws of motion).

The condition is thus

δ

∫ Q

P

vds = 0

where P and Q are the initial and final points and δ denotes the variation of
the integral under the aforementioned restrictions.

The nascence of the calculus of variations was in Euler’s work (1744)
“Methodus Inveniendi lineas Curvas Maximi Minimive proprietate gaudentes”
(a method to find curved lines that enjoy a maximum or minimum property).

He was seeking an admissible function y(x) that extremalizes the func-
tional given by the integral I =

∫ x2

x1
f(x, y, y′)dx. He showed that if y(x)

exist, it must obey the differential equation

d

dx

(
∂f

∂y′

)

− ∂f

∂y
= 0.

Euler applied the calculus of variations to the study of elasticity, examining
the bending, buckling and vibrations of bands and plates. Note that since in
Euler’s equation f = f

(
x, y(x), y′(x)

)
, ∂f

∂y′ is in general an explicit function

of x as well as an implicit function of x via y(x) and y′(x). Therefore

d

dx
=

∂

∂x
+

dy

dx

∂

∂y
+

d2y

dx2

∂

∂y′ .

Consequently the second order ODE for y(x) is found to be

(
∂2f

∂y′2

)
d2y

dx2
+
(

∂2f

∂y∂y′

)
dy

dx
+
(

∂2f

∂x∂y′ − ∂f

∂y

)

= 0.

The solution of this equation constitute a two-parameter family of curves, and
among these, the stationary functions are those in which the two parameters
are chosen to fit the given boundary conditions.
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In the case of three independent variables, the integral in question in

I[u] =
∫∫∫

R

F

(

x, y, z; u,
∂u

∂x
,
∂u

∂y
,
∂u

∂z

)

dxdydz,

where u = u(x, y, z), the local stationary point of the functional I[u] obeys
the Euler equation

∂I

∂u
− ∂

∂x

(
∂I

∂ux

)

− ∂

∂y

(
∂I

∂uy

)

− ∂

∂z

(
∂I

∂uz

)

= 0.

Suppose we wish to find u(x, y, z) which has a minimum average value
of the square of the gradient in a certain region in space, i.e.

F = (∇u)2 = u2
x + u2

y + u2
z.

The resulting Euler equation is simply the Laplace equation ∇2u = 0 which
must be satisfied, for instance, by the electric potential in free space.

The Laplace equation is therefore the necessary condition that the average
electrostatic field energy be minimized in a given volume. If the same quantity
is to be made stationary, but with the additional requirement that

∫
u2dxdydz

shall have a fixed value, another interesting equation results. In that case we
define

F = (ux)2 + (uy)2 + (uz)2, F1 = u2.

If we extremalize the integral
∫∫∫

(F −λ2F1)dxdydz, with λ2 the Lagrange
multiplier of the constraint

∫
u2dxdydz = constant, Euler’s equation then

reads
∇2u + λ2u = 0

which is the Helmholtz wave equation for monochromatic waves. Such a wave
may therefore be characterized as a disturbance in which the displacement u
has a fixed mean square value and at the same time a minimum mean square
gradient.

Another example of the power of the variational calculus is the propagation
of light in an inhomogeneous medium: Let v(x, y, z) be the velocity of light
at each point of the medium. The square element of distance between two
points on a light ray (x, y, z) and (x + dx, y + dy, z + dz) is ds2 =
dx2
[
1 +
(

dy
dx

)2 +
(

dz
dx

)2]
, where y = y(x), z = z(x) constitute the equations

describing the ray.

Therefore, the travel time along a path between two fixed points P and Q

is t =
∫ Q

P

√
1+y′2+z′2

v(x,y,z) dx. It is required to simultaneously find two functions

y = y(x), z = z(x) such that the functional t is the smallest.
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Writing the system of Euler equations for this functional, i.e.

∂v

∂y

√
1 + y′2 + z′2

v2
+

d

dx

y′

v
√

1 + y′2 + z′2
= 0;

∂v

∂z

√
1 + y′2 + z′2

v2
+

d

dx

z′

v
√

1 + y′2 + z′2
= 0,

we obtain the two coupled ordinary differential equations for the curve along
which light propagates. Once y(x), z(x) are known, the path of light from
P to Q is given in the parametric form

{
x, y(x), z(x)

}
.

Another important application of Euler’s equations is the determination
of the path of shortest distance between two points on a surface r = r(u, v).
If such a path exists, we call it a geodesic. The line-element on the surface is

ds2 = dr · dr =
( ∂r
∂u

du +
∂r
∂v

dv
)2 = Edu2 + 2Fdudv + Gdv2

where

E =
∂r
∂u

· ∂r
∂u

, F =
∂r
∂u

· ∂r
∂v

, G =
∂r
∂v

· ∂r
∂v

.

A curve on the surface has the parametric representation u = u(t), v = v(t).
Hence, the distance between P (t1) and Q(t2) on the surface and along the
curve is given by the line integral

J [u, v] =
∫ t2

t1

√
Eu′2 + 2Fu′v′ + Gv′2 dt,

where u′ = du
dt , v′ = dv

dt . Writing Euler equations for the functional J , we
obtain the simultaneous differential equations for the parametric functions u
and v:

Au

Δ
− d

dt

C

Δ
= 0;

Av

Δ
− d

dt

D

Δ
= 0,

where

Δ =
√

Eu′2 + 2Fu′v′ + Gv′2;

Au =
∂E

∂u
u′2 + 2

∂F

∂u
u′v′ +

∂G

∂u
v′2;

Av =
∂E

∂v
u′2 + 2

∂F

∂v
u′v′ +

∂G

∂v
v′2;

C = 2(Eu′ + Fv′); D = 2(Fu′ + Gv′).
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Although Euler was first to implement Maupertuis’ conjecture, the credit
for having given the correct formulation of the principle of least action goes to
Lagrange (1736–1813). It is true that Euler was first to introduce the concept
of variation and stationarity (minimum or maximum) instead of an exclusive
minimum, but he still held to the conviction that some sort of maximum
or minimum law prevails throughout nature. Lagrange, on the other hand,
showed that the principle of least action together with the law of conservation
of energy is fully equivalent to Newton’s law of motion and may, indeed, be
employed as an alternative formulation of the principles of dynamics.

Lagrange himself remarked, in conformity with his general outlook on
natural philosophy, that the principle of least action was to be considered not
as a metaphysical postulate, but as a simple and general consequence of the
laws of mechanics (1788).

For the next half century, the principle of least action was thought of as
interesting rather than important, and no use at all was made of it. Indeed,
as late as 1837, it was described as “only a useless rule” by Poisson, who
failed to read Hamilton’s 1835 paper. There, Hamilton gave the first exact
formulation of the principle of least action for systems which are not neces-
sarily conservative (showing it to be equivalent to the Lagrange equations of
motion) and stated his principle

δ

∫

Ldt = 0.

This effort culminated in the celebrated Hamilton-Jacobi equation (1828–
1837) which brought about the geometrization of dynamics and the mathe-
matical analogy between optical rays and mechanical paths of point-masses.
A bridge had finally been established between Fermat’s principle of least time
and Hamilton’s principle of least action. Thus, a long line of thinkers from
Hero through Fermat, and even Euler, believed in an underlying meta-
physical optimum law of one kind or another. But such postulates were trans-
formed by Lagrange, Hamilton and Jacobi into exact analytic instruments
capable of solving concrete problems in physics, mathematics and astronomy.

The striking similarity between the principles of Fermat and Hamilton
played an important role in Schrödinger’s development of quantum me-

chanics. In 1942 R.P. Feynman showed that quantum mechanics can be
formulated in an alternative way using a variational approach257. And so, the

257 Feynman used a continuous sum (path integral) over all virtual trajectories

between two given particle positions at two given times: the classical path, and

its neighboring trajectories, determine the path integral in the classical limit.

In this way, the Huygens principle is seen to apply to quantum mechanics.
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continuing evolution of variational principles take us back to optics via the
modern formalism of the matter waves of quantum mechanics.

So far we have concentrated mainly on dynamical problems. In the geo-
metrical vein matters had a history of their own, and in order to see it in
the right perspective we must return to the period 1690–1701, namely to
the emergence of the calculus of variations due to the efforts of the brothers
Jakob and Johann Bernoulli.

The pivotal year is 1696, in which two problems were proposed: In De-
cember of that year Johann Bernoulli challenged the mathematicians of his
age in the journal Acta Eruditorum to solve the problem of the brachistochrone
by Easter 1697: He asked to determine a curve of the quickest descent of a
massive particle moving between two given points in a homogeneous gravita-
tional field. In time, three mathematicians solved the problem: Johann and
Jakob Bernoulli, and Leibniz. The path, which happens to be a cycloid, is
known as the brachistochrone258.

258 Let the particle start from rest at the origin; the terminal point of the motion

is (x2, y2). It is convenient to extend the y-axis to the right and to measure x

downwards. From the energy equation

mgx =
1

2
mv2 =

1

2
m

(
ds

dt

)2

=
1

2
m

[√
dx2 + dy2

dt

]2

,

we find dt =
[
1 + (y′)2

]1/2
(2gx)−1/2dx. The integral to be minimized is

therefore
√

2g t =

∫ x2

0

(
1 + y′2

x

)1/2

dx.

Euler’s equation reads
d

dx

y′

[x(1 + y′2)]1/2
= 0;

hence y′ = x
(

x
c

− x2
)−1/2

, with c a constant. If we introduce 2a = 1
c
,

integration leads to

y = a cos−1
(
1 − x

a

)
−

√
2ax − x2.

It represents an inverted cycloid with its base along the y-axis and the cusp at

the origin. The constant a must be so adjusted that the cycloid passes through

the point (x2, y2).

This problem must not be confused with another problem, the tautachrone,

proposed by Jakob Bernoulli in 1690: to determine a curve on a vertical

plane, along which a massive particle will arrive at a given point of the curve

in the same time interval, no matter from what initial point of the curve it
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The other problem to which attention was called in 1696 by Jakob
Bernoulli is the isoperimetric problem (iso = equal, perimetron = circumfer-
ence), of which the Greek mathematicians were well aware. It has been one of
the most stimulating and influential problems in the history of mathematics.
Its origins lay in the ancient legend associated with the founding of the city of
Carthage (ca 900 BCE). Dido, a Pheonician princess, fled from the city-state
of Tyre when her ruthless brother Pygmalion murdered her husband to usurp
her possessions. She bought a parcel of land from the King of Numidia under
the condition that she would obtain only as much land as she could enclosed
by the skin of an ox. To maximize the land she cut the hide in thin strips
and tied them together to form a cord of some 1500 meters, and then formed
with it a semi circle with the Mediterranean coast as its diameter.

The Greek thus knew that among all closed lines of the same perimeter,
the circle has the maximal area259. An incomplete proof of the isoperimet-
ric property of the circle was given by Zenodoros (ca 180 BCE). Jakob

started (This curve, too, is a cycloid!). It was solved earlier by Huygens (1673)

and Newton (1687) and applied by Huygens in the construction of pendulum

clocks. The isochronous property of the cycloid is this: a pendulum constrained

to swing between two successive arches of an inverted cycloid must oscillate such

that the time to the lowest point is π
√

a
g
, where a is the radius of the circle that

generates the cycloid, and irrespective of the oscillation’s angular amplitude.
259 The Greeks, who held some rather impressive notions of beauty and perfection,

came to the conclusion that the circle was the most beautiful curve. After all,

the sun and moon were round, the horizon was round, and the planets (so they

thought) orbited in circles. The circle must be the perfect figure, for the ar-

chitect of the universe would certainly not deal with imperfect creations. Some

views about the circle were even more sweeping. The philosopher Empedocles

held that the nature of God is a circle whose center is everywhere and whose

circumference is nowhere.

But this theory received a blow even at ancient times. When astronomers were

able to measure the paths of the planets accurately, they were found not to

travel in true circles. Ptolemy invented an ingenious but ad hoc system of

epicycles — that is, of circles and circles upon circles — to generate the paths

of the planets. In the 17th century, when Kepler found that the planets moved

in ellipses around the sun, the circle was dethroned from its position as the most

perfect curve. Yet, no other curve shares the following list of characteristics:

• Every point on the circle is at the same distance from the center.

• Every diameter of the circle is an axis of symmetry.

• A circle is a figure with constant width.

• Every tangent to a circle is perpendicular to the radius drawn from the cen-

ter to the point of tangency.
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Bernoulli gave a proof in 1701. A complete proof, however, was first given
by Weierstrass in 1865.

Denoting the given perimeter of the curve by L, all permissible areas A

formed by L obey the isoperimetric inequality A ≤ L2

4π . This inequality has
the following theorem as a consequence:

Among all figures of equal area, the circle has minimal perimeter .

This can easily be seen, because the area A of a circle of perimeter L

equals L
2
/4π. If there were a plane figure with the same area but a smaller

perimeter L < L, we would have A > L2

4π , which contradicts the isoperi-
metric inequality.

This explains the circular shape of oil slicks: the molecular forces generate
a figure of least potential energy (least surface area) for a given amount of
oil. There are several other optimum properties of the circle. For instance:
among all plane domains of a given area, the disc can support the largest
sand pile; among all cross-sections of a perfectly elastic column of equal area,
the disc can withstand the largest torsional moment; out of all drums with
a given cross-sectional area, the circular membrane has the lowest tone [this
last result was conjectures by Rayleigh (1877) on the basis of experiments,
but it was proved by Faber and Krahn (1923–1924)].

The term isoperimetric problem is usually extended beyond its classical
content to include the general case of finding extremals for one integral (sub-
ject to constraints) requiring a second integral to take on a prescribed value260.

• The curvature of a circle is constant at every point.

• Of all curves that enclose the same area, the circle has the least perime-

ter, and of all curves with the same length of perimeter, the circle encloses the

greatest area. Thus, given any plane figure of area A and perimeter L, then
4πA
L2 ≤ 1 (equality holds only for the circle). For a semicircle, this ratio is about

0.75, for a square 0.79 and for a perfect hexagon 0.91.

The 3-dimensional isoperimetric property can be expressed by the inequality
36πV 2

A3 ≤ 1 between the surface area A and the volume V , the equality holding

only for the sphere.
260 If the curve is expressed parametrically by x(t) and y(t) and it is traversed

once counterclockwise as t increases from t1 to t2, then the enclosed area is

known to be A = 1
2

∫ t2
t1

(xẏ − yẋ)dt, [where · = d
dt

], which is an integral

depending on two unknown functions [this integral expression for A is a special
case of Green’s theorem]. Since the length of the curve is L =

∫ t2
t1

√
ẋ2 + ẏ2 dt,

the problem is to maximize A subject to the constraint that L must have a

constant value. Using the method of Lagrange multipliers, the problem reduces
to maximizing the unconstrained functional I =

∫ t2
t1

F (x, y; ẋ, ẏ)dt where F =
1
2
(xẏ − yẋ) + λ

√
ẋ2 + ẏ2.



1749 CE 1321

In August 1697, Johann Bernoulli again publicly posed the problem of
finding the shortest line between two given points on a convex surface. This
was meant as a challenge to his brother Jakob, with whom he was publicly
feuding. The unfortunate rivalry of the two brothers eventually became so
intense, and their polemics so ugly, that the scientific journals of the time
declined to publish them. Anyway, the challenge was met by Jakob who
solved the problem in 1698 for all surfaces of revolution.

Johann then announced that he had found a solution of the shortest con-
nection problem for an arbitrary surface (1698). His unpublished solution
appeared in the form of a geometric theorem:

“at each point P of a shortest line C, the corresponding osculating plane of
C intersects the tangent plane to the surface in a right angle (the osculating
plane includes the tangent to C at P and the principal normal at P )”.

Thirty years later, in December 1727, Johann again posed the problem to
his student Euler! Euler published his solution in 1728 under the title Da linea
brevissima in superfice quacunque duo quaelibet puncta jungente (“On the
shortest line on an arbitrary surface connecting any two points whatsoever”).

In contradistinction to the geometric solution of Johann Bernoulli, Euler
reduced the problem to the solution of a differential equation. Euler stated
that we can easily solve the problem of shortest connection between two points
on a convex surface by a simple mechanical artifice: we fix a string at one
of the points and pull it taut in the direction of the other. The string then
yields the shortest connection between the two points.

The Euler equations for this case then read:

d

dt

(
∂F

∂ẋ

)

− ∂F

∂x
= 0

and
d

dt

(
∂F

∂ẏ

)

− ∂F

∂y
= 0.

The integration of these equations yields the circle:

(x − c1)
2 + (y − c2)

2 = λ2.
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Early Theories of Cosmic Evolution

1750–1785 CE Descartes’ idea of a universe evolving by natural processes

of separation and combination was the source of a succession of theories of cos-

mic evolution by Swedenborg (1688–1772, Sweden; 1734), Thomas Wright

(1711–1786 , England; 1750), Immanuel Kant (1724–1804, Germany; 1755),

Johann Heinrich Lambert (1728–1771, Germany; 1761), Georges Louis

Leclerc de Buffon (1707–1788, France; 1785) and others.

Their theories related to the formation of the solar system and the phe-

nomenon of the ‘Milky Way’ [galaxy is the Greek word for ‘milk’]. Kant held

to the idea that in the beginning all matter was in a gaseous state and was

spread more or less uniformly throughout the universe (his interpretation of

Genesis I, 1–2). He assumed that we live in an evolutionary universe in the

sense that the past was essentially simpler than the present. Subsequently a

giant cloud of gas, contracting under its own gravitation, began to rotate and

shed matter from its center, to in turn form the planets by further gravita-

tional contraction.

The phenomenon of the ‘Milky Way’ was interpreted by similar specula-

tions of Wright and Lambert who came very close to the truth. Wright

suggested that the Milky Way consisted of a flattened distributions of stars

forming a disc, which rotates about its center on an axis normal to the disc

plane. He also suggested that what appear to be nebula are actually galaxies

and that the solar system comprises a small portion of one of the universe’s

endless galactic structures.

These ideas remained speculative until 1785, when they were confirmed

by the observations of Frederick William Herschel (1738–1822, England).

Kant suggested that the universe was hundreds of millions of years old, and

that it was in a state of continuous dynamical evolution that is manifested

through motion, creation and disintegration. Kant’s theory liberates time

from its earthly confinement and links it with cosmic processes.
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1750 CE Gabriel Cramer (1704–1752, Switzerland). Mathematician.
Widely known among students of mathematics for his rule for solving a system
of linear equations by determinants261.

Cramer was born in Geneva. He belonged to an ancient Holstein family
known first in Strasbourg, and then in Geneva, where his father and grand-
father were physicians. Cramer was educated at the University of Geneva,
and in 1724 was given an appointment there as a professor of mathematics.
In 1727 he took a two-year leave for travel, during which time he made the
acquaintance of Jean Bernoulli in Basel. He died in Bagnols near Nimes in
the south of France, where he sought to restore his failing health.

1750 CE Maria Gaetana Agnesi (1718–1799, Italy). Mathematician
and philosopher. Became the first woman to occupy a chair of mathematics
in modern times. It happened at the University of Bologna, Italy. The plane
curve y(x2 + ya2) = 8a3, now known as the witch of Agnesi262, is named
after her.

ca 1750 CE Eugene Aram (1704–1759, England). Self-taught philolo-
gist. Recognized in advance of scholars the Indo-European affinities of Celtic
and disputed the derivation of Latin from Greek. But he was not destined to
live in history as a pioneer of philology, as he should; In 1759 he was convicted
of murdering his wife’s lover (1745) and executed. This was the subject of a
romance by Bulwer Lytton Eugene Aram (1832).

1750–1784 CE John Michell (1724–1793, England). Geologist, as-
tronomer and the founder of the science of seismology. Expounded novel and
farsighted ideas on a wide range of subjects:

• Made accurate magnetic observations, described a method of magneti-
zation and gave a lucid exposition of the nature of magnetic induction
(1750).

• Invented the torsion balance (1784) independently of Coulomb (1777).
Michell described it in his proposal of a method for obtaining the mean
density of the earth. He did not live to put his method into practice;

261 This rule was discovered independently by Colin Maclaurin (1698–1746, Scot-

land) in 1742.
262 The name is a misnomer; It seems that Agnesi confused the old Italian word

“versorio” [given earlier (1703) to the curve by Guido Grandi (1671–1742,

Italy)] which means ‘free to move in any direction’ with versiera which means

‘Devil’s wife’ or ‘goblin’. This curve was treated earlier by Fermat (1663). A

similar curve was studied by James Gregory (1658) and used by Leibniz

(1674) in deriving the series π
4

= 1 − 1
3

+ 1
5

− 1
7

+ · · · .
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this was done by Henry Cavendish, who made, by means of Michell’s
apparatus, the celebrated determination that now goes by the name of
Cavendish’s experiment (Phil. Trans., 1798).

• In his geological essay entitled Conjectures concerning the cause and ob-
servations upon the phenomena of earthquakes (Phil. Trans. 60, 1760),
he recognized that earthquakes originate within the earth and send out
elastic waves through the earth’s interior.

• Originated the concept of a black hole263 in his essay On the means of
discovering the distance, magnitude etc. of the fixed stars (Phil. Trans.,
1784), 12 years ahead of Laplace. Reasoning, a la Newton, that light is
composed of particles, he calculating that a star with the same density

as the sun but with a radius 500 times larger could, due to its gravitation
alone, prevent the escape of light and consequently be invisible to the
rest of the universe.

Michell was educated at Queens’ College, Cambridge. He became M.A. in
1752, received his doctor’s degree in 1761, and taught mathematics, theology,
Greek, Hebrew and philosophy there. Appointed Woodwardian professor of
geology in 1762, and in 1767 became rector of Thornhill in Yorkshire. He was
elected a fellow of the Royal Society in the same year as Henry Cavendish
(1760). Michell had a wide circle of scientific friends, among them Joseph
Priestley, John Smeaton and William Herschel.

1750–1820 CE The Classical Period in music. Its leading composers are:

• Johann Wilhelm Hertel 1727–1789
• Joseph Haydn 1732–1809
• Luigi Boccherini 1743–1805

• Domenico Cimarosa 1749–1801
• Carl Stamitz 1745–1801
• Giovanni Batista Viotti 1755–1824
• Wolfgang Amadeus Mozart 1756–1791

263 The velocity of escape v from the gravitational influence of a massive star of

mass M and radius R is given by v2 = 2GM
R

= 8π
3

GρR2, where ρ is the star’s

density and G is the universal gravitational constant. If we require v > c

(velocity of light), light will be trapped inside the star; this happens whenever

ρR2 ≥ 3c2

8πG
. Inserting the numerical values: c = 3 × 1010 cm

sec , G = 6.672 × 10−8

cgs, ρ (sun’s mean density) = 1.41 g
cm3 , we find: R ≥ 500R�, where R� (sun)

= 6.96 × 1010 cm. The entity R = 2GM
c2

(obtainable from the equality v = c,

i.e. GM2

R
= 1

2
Mc2) is known today as the radius of the event horizon of a black

hole of mass M . It is remarkable that already Newton (1687) hypothesized

that light is attracted by massive bodies.
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• Luigi Cherubini 1760–1842
• Johann Hoffmann 1760–1820
• Ludwig van Beethoven 1770–1827
• Johann Nepomuk Hummel 1778–1837

1751 CE Johann Andreas von Segner (1704–1777, Germany). Physi-
cist and mathematician. Introduced the concept of surface tension of liquids.

Segner was a professor at Jena (1732–1735), Göttingen (1735–1755), and
Halle (1755–1777). Invented (1750) a simple reaction waterwheel, later devel-
oped by Leonhard Euler into a crude turbine.

1751–1753 CE Joseph-Jérome Le Francais de Lalande (1732–1807,
France) and Nicolas-Louis de Lacaille (1713–1762, France) obtained
for the earth-moon distance the figure of 60 earth radii. The two French
astronomers arrived at this result from measurement of the moon’s parallax
at the Cape of Good Hope and Berlin. Their result provided a more exact
value than the estimates known since antiquity.

Lacaille was born at Rumigny, in the Ardennes. He studied theology at
the Collège de Lisieux in Paris, and after taking his deacon’s orders, he devoted
himself exclusively to science. Through the patronage of G.D. Cassini he was
employed in remeasuring the French arc of the meridian (1739). Subsequently,
he was appointed a professor of mathematics in Mazarin College. His desire
to observe the Southern heavens led him to propose (1750), an astronomical
expedition to the Cape of Good Hope.

Lalande was born at Bourg. He studied law in Paris but was accidentally
drawn to astronomy. On the completion of his legal studies he was about to
return to Bourg to practice there as a lawyer, when Lemonnier sent him to
Berlin to make observations on the lunar parallax in concert with those of
Lacaille at the Cape of Good Hope.

1751–1772 CE Jean-Jacques Rousseau264 (1712–1778, France). Phi-
losopher of history and social reformer, whose ideas had great influence on
Western civilization. He was the first to diagnose, from secular aspects, the
symptoms of the crisis of modern civilization, that has not yet come to an
end in the age of two World Wars. Both modern civilization and the entire
history that shaped its features were condemned by Rousseau as deviations
from nature.

264 For further reading, see:

• De Beer, G., Rousseau, G.P. Putnam’s sons: New York, 1972, 117 pp.
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He asserted that progress in arts and sciences was disastrous for mankind ;
cultural life is degenerating more and more because vital needs of the human
heart are neglected. He demanded a radical reform that does not mean re-
turn to primitive barbarism, but rather a restitution of the natural order in
which reason and sentiment become harmonized. Free and equal men with
inalienable wills have a right to institute a State through mutual agreement,
by engaging in a social contract.

Rousseau became the precursor of the French and American Revolutions
and caused a literary turmoil that started soon after the publication of his
principal works [Discours sur les arts et sciences (1750); Du contract social
(1762); Emile (1762)]. This religious creed is a deism that relies more on
feelings than on reason, without excluding rational principles. In the field of
education, his ideas were adopted by Pestalozzi (1746–1827).

Among the philosophers, his teachings are reflected in the works of Kant
(1724–1804), Fichte (1762–1814), Hegel (1770–1831), and Karl Marx
(1818–1883). His literary influence remained strong from the times of Goethe
(1749–1832) and Byron (1788–1824) to the days of R.L. Stevenson (1850–
1894) and D.H. Lawrence (1855–1930). Notwithstanding the excesses of
the French Revolution [Maximilien Robespierre (1758–1794) was one of
Rousseau’s most devoted followers!], Rousseau continued to be regarded the
apostle of democracy, although it it was discovered that some aspects of his
philosophy favor totalitarian dictatorship.

The tormented soul of Jean-Jacques Rousseau was born to a Huguenot
family of watchmakers in Geneva. Since the age of 10 he lived as an or-
phan. His unstable temperament, insatiable need for love, and deep sense of
guilt explain his restless, wandering existence. An engraver’s apprentice from
1727, he fled Geneva (1728), and in Annecy encountered Mme de Warens, to
whom he would return at intervals in the following years. She sent him to
Turin where he became a Catholic convert. Thereafter he was a footman, a
seminarist, a music master (with little knowledge of music, he undertook to
revolutionarize musical notation!), a tutor.

During 1732–1740 he settled near Mme Warens at Chambéry and made up
for many gaps in his education by voracious readings. But from 1840 he was
rootless again. He went to Paris (1741) and entered on a career in society,
which included sojourn abroad as a secretary to the French ambassador in
Venice (1743–1744), but otherwise he lived in Paris. He became attached
(1746) to an illiterate inn-servant by whom he had 5 children, all placed in a
foundling hospital.

At the same time he collaborated with Diderot in the Encyclopedia, almost
exclusively on musical subjects. The reputation which he enjoys today as a
writer is entirely founded on work written from 1750 onwards. The 1750’s
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saw quarrels with philosophers like Voltaire and Diderot, who had formerly
befriended him, and the pattern was to be repeated until his death.

With tireless energy he wrote operas, plays, novels, essays, political tracts,
autobiography and social discourses, enough to fill 47 volumes. Nearly every-
thing that came from his pen was controversial and combative enough to make
for him many distinguished enemies, which he constantly fled from. These
miseries fed his persecution complex.

Several years of his life were spent in exile. It was in England (1766–
1767) that he wrote his confessions and quarreled with Hume. However,
some respite was granted in 1770, when he found humble but quiet lodging
in Paris, where he wrote his latest works. He was undoubtedly partly insane
during the 10–15 last years of his life.

Rousseau’s social contract was not only an influence on his time and his
country, but also on the revolutionary founders of democracy in America.

1751–1776 CE Denis Diderot (1713–1784, France). Encyclopedist.
One of the first evolutionary thinkers. He was the editor of the great Ency-
clopedia of the Sciences and Crafts, whose publication in 35 volumes, 1751–
1776, impeded by government censorship, was the culminating event of the
Enlightenment. Diderot himself wrote many articles on industrial and techni-
cal processes, studying them first hand for this purpose. He gained thereby a
genuine appreciation for practical and experimental knowledge that led him to
urge the founding of scientific laboratories. Diderot followed Montesquieu
(1689–1755, France) in breaking the chains of Biblical chronology of nature.
He thought that the age of the universe was a matter of several millions of
years.

1752–1756 CE James Dodson (1705–1757, England). Mathematician,
actuary265, and innovator in the insurance industry. Published (1756) “First
Lectures on Insurance”.
265 An actuary is a business professional who deals with the financial impact of risk

and uncertainty.

Actuaries have a deep understanding of financial security systems, their reasons

for being, their complexity, their mathematics, and the way they work. They

evaluate the likelihood of events and quantify the contingent outcomes in order

to minimize losses, both emotional and financial, associated with uncertain un-

desirable events. Since many events, such as death, cannot be totally avoided, it

is helpful to take measures to minimize their financial impact when they occur.

These risks can affect both sides of the balance sheet, and require asset man-

agement, liability management, and valuation skills. Analytical skills, business

knowledge and understanding of human behavior and the vagaries of informa-

tion systems are required to design and manage programs that control risk.
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Dodson’s pioneering work on the level premium system led to the for-
mation of the ‘Society for Equitable Assurances on Lives and Survivorship’
(1762) which used the actuarial principles that Dodson had developed over
the previous decade. This was the first life insurance company to use premium
rates which were calculated scientifically for long-term life policies.

Actuaries’ insurance disciplines may be classified as life; health; pensions, annu-

ities, and asset management; social welfare programs; property; casualty; gen-

eral insurance; and reinsurance. Life, health, and pension actuaries deal with

mortality risk, morbidity, and consumer choice regarding the ongoing utilization

of drugs and medical services risk, and investment risk. Products prominent in

their work include life insurance, annuities, pensions, mortgage and credit in-

surance, short and long term disability, and medical, dental, health savings ac-

counts and long term care insurance. In addition to these risks, social insurance

programs are greatly influenced by public opinion, politics, budget constraints,

changing demographics and other factors such as medical technology, inflation

and cost of living considerations.

Casualty actuaries, also known as non-life or general insurance actuaries, deal

with catastrophic, unnatural risks that can occur to people or property. Prod-

ucts prominent in their work include auto insurance, homeowners insurance,

commercial property insurance, workers compensation, title insurance, mal-

practice insurance, products liability insurance, directors and officers liability

insurance, environmental and marine insurance, terrorism insurance and other

types of liability insurance. Reinsurance products have to accommodate all of

the previously mentioned products, and in addition have to properly reflect the

increasing long term risks associated with climate change, cultural litigiousness,

acts of war, terrorism and politics.

Actuaries use skills in mathematics, economics, finance, probability and statis-

tics, and business to help businesses assess the risk of certain events occurring,

and to formulate policies that minimize the cost of that risk. For this reason,

actuaries are essential to the insurance and reinsurance industry, either as staff

employees or as consultants, as well as to government agencies such as the Gov-

ernment Actuary’s Department in the UK or the Social Security Administration

in the US. Actuaries assemble and analyze data to estimate the probability and

likely cost of the occurrence of an event such as death, sickness, injury, dis-

ability, or loss of property. Actuaries also address financial questions, including

those involving the level of pension contributions required to produce a certain

retirement income and the way in which a company should invest resources to

maximize its return on investments in light of potential risk. Using their broad

knowledge, actuaries help design and price insurance policies, pension plans,

and other financial strategies in a manner which will help ensure that the plans

are maintained on a sound financial basis.
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In ancient Rome, the title of actuarius was given to the secretary of the
senate, responsible for compiling the Acta Senatus. Prior to 1762, the use
of the term had been restricted to an official who recorded the decisions (or
‘acts’) of ecclesiastical courts.

The 17th century was a period of extraordinary advances in mathemat-
ics in Germany, France and England. At the same time there was a rapidly
growing desire and need to place the valuation of personal risk on a more sci-
entific basis. Independently from each other, compound interest was studied
and probability theory emerged as a well understood mathematical discipline.
Another important advance came in 1662 from a London draper named John
Graunt, who showed that there were predictable patterns of longevity and
death in a defined group, or cohort, of people, despite the uncertainty about
the future longevity or mortality of any one individual person. This study
became the basis for the original life table. It was now possible to set up an
insurance scheme to provide life insurance or pensions for a group of people,
and to calculate with some degree of accuracy, how much each person in the
group should contribute to a common fund assumed to earn a fixed rate of
interest. The first person to demonstrate publicly how this could be done was
Edmond Halley. In addition to constructing his own life table, Halley demon-
strated a method of using his life table to calculate the premium someone of
a given age should pay to purchase a life-annuity (Halley 1693). Dodson built
on these statistical mortality tables.

In the eighteenth and nineteenth centuries, computational complexity was
limited to manual calculations. The actual calculations required to compute
fair insurance premiums are rather complex. The actuaries of that time devel-
oped methods to construct easily-used tables, using sophisticated approxima-
tions to facilitate timely, accurate, manual calculations of premiums. In the
1930s and 1940s, however, rigorous mathematical foundations for stochas-
tic processes were developed. Actuaries could now begin to forecast losses
using models of random events instead of the deterministic methods. Com-
puters further revolutionized the actuarial profession. From pencil-and-paper
to punchcards to microcomputers, the modeling and forecasting ability of the
actuary has grown exponentially.

1752–1773 CE Victor Albrecht von Haller (1708–1777, Switzerland).
Physician, naturalist, anatomist, physiologist, botanist, historian of science
and poet.

One of the founders of experimental physiology. Elucidated the mecha-
nism of respiration. Discovered the function of bile. First to distinguish and
relate muscle irritability and nerve sensibility and show transmission of nerve
impulse (1752). His book Elementa physiologiae was the demarcation line be-
tween modern physiology and whatever preceded it (9 volumes, 1759–1776).
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He was first to show (1766) that nerves stimulate muscles to contract and
that all nerves lead to the spinal cord and brain.

Haller was born in Bern. He was known as a child prodigy and at age
10 already mastered Latin, Greek and Hebrew. He studied at the Universi-
ties of Tübingen (1723), Leiden (1725–1727), Paris (1728) and Basel (1728).
He earned his medical degree in 1727 and studied mathematics under John
Bernoulli in Basel. He served as a professor of medicine and botany in
Göttingen (1736–1753) and practiced medicine at Bern (1753–1777). Haller
published 650 articles on almost every branch of human knowledge and wrote
books, treatises and bibliographies on physiology, medicine, history of science,
botany, philosophy and poetry. He topped this prolific literary and research
activity with three marriages, having 8 children.

In 1773 the state of his health rendered necessary his entire withdrawal
from public business; for some time he supported his failing strength by means
of opium; it is believed that the excessive use of the drug hastened his death.

1753–1763 CE Carolus Linnaeus (Carl von Linné, 1707–1778, Swe-
den). Naturalist and botanist. Established the modern scientific method of
classification and naming of plants, animals, minerals and diseases. In this
system, each living thing has a name with two parts; the first part is the genus
(group), and the second part is for the species (kind). Linnaeus’ book Species
Plantarum (1753) forms the basis for plant classification. His Systema Nat-
urae (1758) covers animal classification, while his Genera Morborum (1763)
classifies diseases.

Linné was born in R̊ashult, in the province of Småland, Sweden. In 1726
his father destined him to be an apprentice to a shoemaker. He was, however,
saved from this fate through his town physician, who expressed his belief that
he would yet distinguish himself in medicine, and who further instructed him
in physiology.

In 1728 he entered the University of Uppsala and studied botany. In 1732
he undertook to explore Lapland; with the equivalent of 50 dollars given to
him by the Royal Society of Science, he spent 5 months collecting plants while
walking nearly 1600 kilometers. Linnaeus then went to The Netherlands,
where he earned his medical degree in 1735. He returned to Stockholm in
1738 to practice medicine as a naval physician. In 1741 he was appointed
to the chair of medicine at Uppsala, but soon changed it for that of botany
(1742). In 1761 he was granted a title of nobility with the name Carl von
Linné.

When Linné appeared upon the scene, new plants and animals in increas-
ing numbers were daily discovered thanks to the increase in trade. To him
belongs the honor of having first enunciated the principles for defining genera
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and species. No naturalist has impressed his own character with greater force
upon his pupils than did Linné. He imbued them with his own intensive ac-
quisitiveness, taught them in an atmosphere of enthusiasm, trained them to
close and accurate observation, and then dispatched them to various parts of
the globe.

1754–1761 CE Jean Etienne Montucla (1725–1799, France). His-
torian of the mathematical sciences. His book Histoire des mathématiques
(2 volumes, 1758; second edition, 4 volumes, 1795–1802) is essentially a his-
tory of science from a mathematical viewpoint. It is the first comprehensive
modern evaluation of the evolution of mathematical thought, especially with
reference to the 17th and 18th centuries.

Montucla was born in Lyon. He received his first education in the Jesuit
College of Lyon. It included a thorough training in mathematics, Greek and
Latin. He later picked up sufficient understanding of Italian, English, Ger-
man and Dutch. In 1745 he studied law in Toulouse and a few years later
established himself in Paris. There he came under the influence of Diderot,
d’Alembert, Lalande and others and began his investigations on the his-
tory of mathematics. His first publication concerns the history of the attempts
to square the circle (Histoire des recherches sur la quadrature du cercle, 1754).

After an ill-fated trip to French Guiana (1764–1765), where he was ap-
pointed royal astronomer of that colony, he lived for the rest of his life in
Versailles, where he was superintendent of royal buildings, gardens, manu-
factures, and academies. During that period of peaceful activity, Montucla
devoted his leisure to historical studies. In spite of the fact that he has been a
clerk in the royal administration, he had good friends among the revolution-
aries who kept him unharmed and unaffected by the revolution.

1754–1798 CE Immanuel Kant (1724–1804, Germany). Idealist phi-
losopher and speculative scientist. Established a system of thought that dom-
inated the philosophy of the 19th century. No other philosopher of modern
times has been throughout his work so imbued with the fundamental concep-
tions of physical science; no other has been able to hold with such firmness
the balance between empirical and speculative ideas.

The early writings of Kant are almost without exception on questions of
physical science. It was only by degrees that philosophical problems began to
engage his attention, and that the main thrust of his literary activity turned
toward them. The following are the most important of his works which bear
directly on physical science:

• The Nebular Hypothesis (1755) was motivated by the faint patches of light
which telescopes revealed in large numbers. A particularly troublesome
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item was a cloudy patch of light in the constellation Andromeda266. In
his book Universal Natural History and Theory of the Heavens267, Kant
hypothesized a primeval, slowly rotating cloud of gas (nebula) which in
some unspecified fashion condenses into a number of discrete globular
bodies. The rotation of the parent nebula is preserved in the rotation of
the sun, the revolution of the planets about the sun, and the rotation of
the planet about their axes — all in the same direction.

According to Kant and Laplace, the original mass of gas cooled and began
to contract. As it did, the rotational speed increased until successive rings
of gaseous material spun off from the central mass by centrifugal forces. In
the final stages the rings condensed into planets. While Laplace considered
the Andromeda Nebula to represent a planetary system in the process of
formation, Kant did not accept the Andromeda as a visible support of his
own theory.

Instead, he suggested that Andromeda and similar bodies, might repre-
sent immensely large conglomerations of stars, which appeared as small, fuzzy

266 Visible to the naked eye as a small object of the 4th magnitude that looks like a

fuzzy star. Some Arab astronomers had noted it in their maps, but the first to

describe it in modern times was the astronomer Simon Martin (1570–1624,

Germany) in 1612.
267 Published anonymously. The publisher went bankrupt and the stock was seized

by the creditors, so that very few copies reached the public.

Laplace proposed essentially the same theory in 1796, without the mathemat-

ical formulation which he was incapable of providing. Had he been able to

provide it, he might have discovered some serious flaws. Indeed, Maxwell and

Jeans showed about 100 years later that there was not enough mass in the

rings to provide the gravitational attraction for condensation into individual

planets. The coup de grâce was delivered in 1906, when Forest Ray Moulton

(1872–1952, U.S.A.) showed that the nebular hypothesis violated the observa-

tion that the planets carry 99 percent of the angular momentum (the sun, which

collected 99.9 percent of the mass should have gathered most of the angular mo-

mentum of the system). Nevertheless, recent theories tend to be neo-Kantian in

the sense that they revive the idea of primordial, rotating cloud of gas and dust

whose shape and internal motions were determined by gravitational and rota-

tional forces. At some moment, gravitational attraction became the dominant

factor, contraction began, and the rotation speeded up. The cloud tended to

flatten into a disk ; matter began to drift toward the center, accumulating into

the proto-sun. The proto-sun collapsed due to its own gravitation, ending with

the known scenario of sustained thermonuclear reactions. The formation of the

planets and how they picked up the necessary angular momentum is, however,

still poorly understood.
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patches only because they were immensely far away. He felt they might rep-
resent “island universes”, each one a separate galaxy, so to speak. However,
this suggestion of Kant’s was not based upon any observational data available
to the astronomers of the time. It made very few converts, and was dismissed
as a kind of a science fiction268.

• Secular retardation of the earth’s rotation (1754). Pointed out that the
tide-generating forces of the moon might act through the oceans to pro-
duce a breaking effect on the earth’s rotation. (The attendant accelera-
tion in the orbital motion of the moon had been suggested by Halley in
1695.) First to suggest that tidal friction would cause a lengthening of
the day.

• Calculated (1754) that if the sun’s light came from ordinary combustion,
it would have burned out in 1000 years.

• Conjectured (1786) that the major forces of nature are manifestation of
a single force, and can be converted one into the other.

• Theory of winds (1756). Independently of Hadley (1735), pointed out
how the varying velocity of rotation of the successive zones of the earth’s
surface furnishes a key to the phenomena of periodic winds.

Consideration of these works is sufficient to show that Kant’s mastery of the
science of his time was complete and thorough, and that his philosophy is to be
dealt with as having throughout a reference to general scientific conceptions.

Trained in the philosophy of Leibniz, he was influenced by the mathe-
matical theories of Newton, by the psychological theories of John Locke
(1632–1704, England), and especially by the philosophy of David Hume
(1711–1776).

His own system was rooted in a rationalistic outlook, but sought to implant
a comprehensive method and doctrine of experience that would improve upon
mere intellectual idealism. His Critique of Pure Reason (Kritik der Reiner
Vernunft) (1781) cost him fifteen years of critical analysis of human thought.
Like other philosophers before him he maintained that only part of our knowl-
edge is based on experience. The world we observe is only a part of a reality
that we are able to conceive. Another part is not inferred inductively from
our experience but is acquired by our senses, then filtered and elaborated by

268 The nebular hypothesis was given observational support in 1983, when an or-

biting telescope in space, the Infrared Astronomical Satellite, found the first

evidence for disks of particles orbiting stars.

To date, such disks of gas and dust, which may be proto-solar-systems and/or

debris left over from the formation of the planets, have been found around as

many as a quarter of all nearby stars.
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our reason, thinking and intelligence. Here, reason brings laws, order and
regularity into the observed phenomena.

Thus, the laws conceived are the result of the process of reason, which
does not derive from nature. We understand these phenomena because we
approach them with certain notions and concepts for which Kant uses the
term a priori . Among such necessary notions, or categories, are space and
time. They are prerequisite and basic structures into which we must fit all
our perceptions. We cannot imagine that there could be no space, even if we
can imagine that there should be nothing in the space. The same reflections
apply to time. Without these two a priori notions we should be unable to
perceive a well-ordered universe.269

The law of causality is another a priori notion: When an event is observed,
it must be determined by a preceding event. For Kant the a priori category
of the law of causality forms an absolute necessity of all science; it is not an
empirical assertion that can be proved or disproved by experiment. Rather it
forms the basis of all experience.

These a priori categories are based on Newtonian mechanics, which
strongly influenced not only Kant’s philosophy but that of the 19 th century.
These laws of physics had absolute validity for Kant and were not subject to
any question.270

Kant argued that no description of the World can free itself from the
reference to human experience. Although the world that we know is not of

269 Kant’s proposition that the human mind inevitably imposes order on the world

so as to make sense of it ceased to impress scientists of the 20 th century. Kant

knew nothing of atomic or nuclear structure, yet the study of the atom revealed

the same sort of mathematical regularities — many more of them in fact —

that occur in the organization of the solar system. This fact has nothing to do

with the way we choose to perceive the world. Moreover, it is difficult to be

convinced that the deep and complex mathematical symmetries evinced in the

operation of the fundamental forces is of no significance except as a tribute to

the tidy nature of the human mind.
270 Their limited applicability only became apparent through the results of mod-

ern physics. Moreover, in Newtonian physics, the geometry that formed the

essential basis in his concepts was that of Euclid. Not till the 19 th century

was a new geometry developed, particularly by the pioneer work of Gauss

(1777–1855), which then greatly influenced thinking in physics and philosophy.

Kant obviously could not have foreseen the startling developments of modern

physics, neither the theory of relativity nor quantum theory. The former forced

the change of the a priori concepts of time and space. The latter demonstrated

that the law of causality is not strictly applicable to events in the atom.
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our creation, it cannot be known except from the point of view that is ours.
All attempts to break through the limits imposed by experience, and to know
the world ‘as it is in itself ’, from the absolute perspective of ‘Pure Reason’
– end in contradiction. ‘Ideas’ of reason can never be coherently applied,
and although we may have intimations of an ‘absolute’ or ‘transcendental’
knowledge, that knowledge can never be ours: to be sure, we know only
appearances, colors, sounds and the like, never the thing-in-itself (“Ding an
Sich”).

Thus Kant maintained that true knowledge cannot transcend experience.
The temptation of Pure Reason, Kant argued, can never be overcome. It
is part of our nature as rational beings that we should aspire towards the
‘transcendental’ perspective. This yearning of reason toward the eternal is
at the root of morality. Transformed into practical imperative, the Ideas of
Reason provide a moral law which guides us. Kant was certain that there
cannot be morality without some belief in God or immortality. This obliged
one to presuppose the existence of God as a necessity.

Kant’s ‘Idealist ’ philosophy was the exact opposite to 17 th century materi-
alist philosophy. The materialists wanted to reach an absolute truth through
science. Kant claimed that this truth is subordinate to our senses and for this
reason science is unable to discern the essence of things independently of the
process of understanding. Reason enables man to conceive the universe but
his senses prevent him from doing so. To establish universal laws one must
go beyond all possible experience. The objective of knowledge is just a myth,
although Kant still accepts the objective existence of things, which he called
‘Being’. ‘Being’ is the very essence of things, and independent of the way in
which things appear to us.

Kant was born at Königsberg. His grandfather was an emigrant from
Scotland, and the name Cant is not uncommon in the north of Scotland. In
his youth he studied theology and his inclination at this time was towards
the classics. During his university course, which began in 1740, Kant was
principally attracted towards mathematics and physics. During 1746–1755 he
was much disturbed by poverty and was compelled to earn his own living as
a private tutor. But with the aid of friends he was able to resume his studies,
and during 1755–1770 he slowly and patiently worked his way from the rank
of privatdocent to that of professor of logic and metaphysics at Königsberg.

In the course of 1781–1793, the Kantian philosophy made rapid progress in
Germany, and the Critique of Pure Reason was expounded in all the leading
universities, and even penetrated the schools of the Church of Rome. Young
men flocked to Königsberg as to a shrine of philosophy.
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In 1792, Kant was involved in a dispute with the government on the ques-
tion of his religious doctrines, since his moral rationalism could not be rec-
onciled to the literal doctrines of the Lutheran Church. The government,
influenced by hatred and fear of the French Revolution, banned his writings
in Berlin, and exacted from him a pledge not to lecture or write at all on reli-
gious subjects in the future. Consequently, in 1794, he withdrew from society
and in 1797 he ceased altogether his public affairs, after an academic career
of 42 years.

His stature was small, and his appearance feeble. He was little more than
5 feet high; his breast was almost concave, and he had a deformed right shoul-
der. His senses were quick and delicate, and though of weak constitution, he
stayed healthy through a strict regimen. His life was arranged with mechan-
ical regularity; and, as he never married, he kept the habits of his studious
youth to old age. His man-servant, who woke him summer and winter at 5
o’clock, testified that he had not once failed in 30 years to respond to the call.

After rising, he studied for 2 hours, then lectured for another two, and
spent the rest of the morning, till one, at his desk. He then dined at a restau-
rant (which was his only regular meal), and often held prolonged conversation
until late in the afternoon. He then walked out for at least one hour in any
weather, always at the same time (the burghers used to set their watches
when he passed under their windows!). The evenings were spent in lighter
reading271, except for an hour or two devoted to the preparation of his next
day’s lectures, after which he retired between 9 and 10.

His acquaintance with books of science, general history and travels was
boundless. He was fond of newspapers and works on politics. As a lecturer,
Kant avoided altogether that rigid style in which his books were written.
He sat behind a low desk, with a few jottings on slips of paper or book
margins, and delivered an extemporaneous address, opening up the subject by
partial glimpses and many anecdotes or familiar illustrations, until a complete
idea of it was conveyed. His voice was extremely weak, but sometimes rose
into eloquence, and always commanded perfect silence. Though kind to his
students, he refused to remit their fees, as this, he thought, would discourage
independence. Another of his principles was that his chief exertions should

271 At 70 he wrote an essay “On the Power of the Mind to Master the Feeling of

Illness by Force of Resolution”. One of his favorite principles was to breathe

only through his nose, especially when outdoors; hence, in autumn, winter and

spring he would permit no one to talk to him on his daily walks; better silence

than a cold. He applied philosophy even to holding up his stockings — by bands

running up his trousers to the pockets, where they ended in springs contained

in small boxes. He remained a lifelong bachelor; he felt that marriage would

hamper him in the honest pursuit of truth.
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be bestowed on the intermediate class of talent, as the geniuses would help
themselves and the dunces were beyond remedy.

Truthful, kind-hearted and high-minded as Kant was in all moral respects,
he was somewhat deficient in sentiment. He held little enthusiasm for the
beauties of nature, and indeed never sailed into the Baltic, or traveled more
than 60 km from Königsberg; shunned music and poetry, and held the female
sex in low esteem. Though faithful in a high degree to the duties of friendship,
he could not bear to visit his friends in sickness, and after their death he
repressed all allusion to their memory. His engrossing intellectual efforts no
doubt tended to harden his character, and in his zeal for rectitude of purpose
he forgot the essential part which affection and sentiment play in human
affairs.

Yet, the influence of Kant on Europe was enormous: the entire philo-
sophic thought of the 19 th century revolved about his speculations. After
Kant, all Germany began to talk metaphysics: Schiller and Goethe stud-
ied him; Beethoven quoted with admiration his famous words; and Fichte,
Schelling, Hegel and Schopenhauer produced in succession systems of
thought reared upon the idealism of Kant. His criticism of reason, and his
exaltation of feeling, prepared for the teachings of Schopenhauer, Nietzsche,
Spencer, Bergson and William James. His identification of the laws of
thought with the laws of reality gave to Hegel a whole system of philosophy.

Immanuel Kant made disparaging statements about Jews and non-whites.
However, because of the magnitude of his achievement, scholars have tended
to downplay his unwholesome writings on Jews and non-white people.

Clearly, Kant did not generate his anti-Semitism out of thin air: As with
other figures of the Enlightenment (e.g. Voltaire and Thomas Paine),
his mind was furnished with the medieval thinking he intended to refute.
Going back to at least the 12 th century, European culture had developed a
distorted image of the Jews as grasping materialists and as slaves to pedantic
legality. These perceived traits (encapsulated in the Shakespearean figure of
Shylock) were contrasted with an idealized revision of Christianity committed
to otherworld values and spiritual freedom – providing the structure for Kant’s
world view272.

272 The historian Michael Mack in his study “German Idealism and the Jews”

(University of Chicago Press) argues for a deep affinity between modern anti-

Semitism and the philosophy of Immanuel Kant. By Mack’s account, Kant’s

contempt for the Jew is intimately related to the central themes of his world

view, and sheds light on the limits of Enlightenment thinking. According to

Mack, all the positive traits of Kantian philosophy (freedom, autonomy, rea-

son) are formed by being contrasted with a negative image of unenlightened
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Worldview XIV: Immanuel Kant

∗ ∗∗

“Human reason is burdened by questions which, as prescribed by the very
nature of reason itself, it is not able to ignore, but which, as transcending all
its power, it is also not able to answer.”

∗ ∗∗

“It is impossible to prove the existence of God through any normal means.”

∗ ∗∗

“Every intent, whether scientific or religious, to define reality is nothing other
than pure hypothesis.”

∗ ∗∗

humanity. He saw Judaism as an inherently materialist religion, based upon a

quid pro quo between God and His chosen people.

“In order to fully define the formal structures of his philosophy (autonomy, rea-

son, morality and freedom), Kant almost unconsciously fantasized about the

Jews as its opposite,” Mack notes. “He posited Judaism as an abstract princi-

ple that does nothing else but, paradoxically, desire the consumption of material

goods.”

As portrayed in Mack’s book, Kant is a pivotal figure in Western thought be-

cause he took this earlier religious hostility toward Jews and reformulated it in

philosophic language. By showing that the traditional critique of the Jews could

be made by an Enlightenment philosopher, Kant set the stage for modern sec-

ular anti-Semitism. In the central chapters of his book, Mack argues that what

he believes is Kant’s fundamental antinomy (free enlightened humanity versus

Jews enslaved to materialism) provided the framework for future anti-Semites,

notably the philosopher G.W.F. Hegel and the musician Richard Wagner.

Since Wagner in particular was a cultural hero for Adolf Hitler, Kant’s own

anti-Semitism can be seen as having a far-reaching effect.
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“Every attempt to apprehend transcendental knowledge is vain, since for every
thesis the mind produces, one can oppose an equally valid anti-thesis.”

∗ ∗∗

“Give me matter and I will construct a world out of it.”

∗ ∗∗

“I call it the ‘thing in itself’. I differentiate it from phenomena, that is, the
world as it appears to us.”

∗ ∗∗

“Seek not the favor of the multitude; it is seldom got by honest and lawful
means. But seek the testimony of the few, and number not voices but weigh
them.”

∗ ∗∗

“Two things fill the mind with ever new increasing admiration and awe: the
starry heavens above me, and the moral law within me.”

∗ ∗∗

“Concepts without factual content are empty; sense data without concepts
are blind: the understanding cannot see, the senses cannon think. By their
union only can knowledge be produced.”

∗ ∗∗

“One must understand that the greatest evil that can oppress civilized peoples
derives from wars, not, indeed, so much from actual present or past wars, as
form the never-ending arming for future war. To this end all the nation’s
powers are devoted, as are all those fruits of its culture that could be used to
build a still greater culture.”
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∗ ∗∗

“Understanding is the knowledge of the general.
Judgment is the application of the general to the particular.
Reason is the power of understanding the connection between the general and
the particular.”

∗ ∗∗

“Intelligence divorced from judgment produces nothing but foolishness.”

∗ ∗∗

“The mark of a mature man is to live for a cause, that of an immature man
to die for a cause.”

∗ ∗∗

“Memory should only be occupied with such things as are important to be
retained, and which will be of service to us in real life.”

∗ ∗∗

“Science is organized knowledge. Wisdom is organized life.”

∗ ∗∗
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1755 CE, Nov. 01 A major earthquake destroyed two-thirds of the city
of Lisbon and killed more than 60,000 people in Portugal.

1755 CE Samuel Johnson (1709–1784, England). Writer, moralist
and scholar. Composed the first comprehensive authoritative Dictionary of
English Language273, including definitions for some 114,000 words. In the
preface he declared that

“The Dictionary was written with little assistance of the learned, and with-
out any patronage of the great; not in the soft obscurities of retirement, or
under the shelter of academic bowers, but amidst inconvenience and distrac-
tion, in sickness and in sorrow”.

Though plagued by ill health and stricken by the death of his wife, he
produced the work just 8 1

2 years after he had begun. He legislated standard
English into existence – by the power of a printed dictionary.

In his preface Johnson explained that language was inevitably changed
by conquests, migration, and commerce, and by the progress of thought and
knowledge; “No dictionary of a living tongue ever can be perfect, since while it
is hastening for publication, some words are budding and some falling away”.

1755–1783 CE Ruggiero Giuseppe Boscovich (Rudjer Josip
Bos̆cović; 1711–1787, Croatia and Italy). Mathematician, astronomer and
physicist. One of the earliest continental savants to adopt Newton’s gravita-
tion theory and apply it to the calculation of orbits and rotations of celestial
bodies, and to the figure of the earth. Advanced an atomistic theory of matter
(1758) in which atoms possess inertia and mutual interaction. He considered
that chemical elements result from combination of point atoms, and chemical
compounds from combination of chemical elements. These ideas influenced
both Humphry Davy and Michael Faraday.

He published many remarkable memoirs, among them solutions of the
problem to determine the orbit of a comet from three observations, and the
achromatic telescope (1778).

273 The first English dictionary appeared in 1604, authored by Robert and

Thomas Cawdrey, schoolmaster father and his son, and entitled: “A Ta-

ble Alphabeticall, conteyning and teaching the true writing and understanding

of hard usuall English wordes, borrowed from the Hebrew, Greeke, Latine, or

French, etc.” Next came The New World of English Words (1658) by Edward

Phillips (1630–1696). It was followed by A New English Dictionary (1702) by

John Kersey.

Two other famous dictionaries of the English language are Noah Webster’s

American Dictionary of the English Language (1828) and James A.H. Mur-

rey’s (1837–1915) Oxford English Dictionary (1925).
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Boscovich was born at Ragusa in Dalmatia. Joined the Jesuits (1725), and
on completing his noviciate at Rome, studied mathematics and physics at the
Collegium Romanum. Taught in Rome (1740), Pavia (1764) and Milan (1770),
and became director of optics for the French navy (1773–1883). He took part
in the Portuguese expedition for the survey of Brazil, and the measurement
of a degree of the meridian (1743). He also measured an arc of two degrees
between Rome and Rimini.

In 1783 he returned to Italy. But his health was failing, his reputation was
on the wane, and his works did not sell. He fell into melancholy, and finally
madness, with lucid intervals, and died in Milan.

1755–1788 CE Joseph Louis Lagrange (1736–1813, France). One of
the greatest mathematicians of the 18th century. He belongs to that brilliant
group of mathematicians whose magnanimous rivalries helped to accomplish
the task of generalization and deduction reserved for the post-Newtonian era.
Indeed, it is by no means easy to distinguish and apportion the respective
merits of the competitors. This is especially the case between Lagrange and
Euler on the one side and between Lagrange and Laplace on the other. La-
grange’s mathematical career can, however, be viewed as a natural extension
of the work of his older and greater contemporary Euler, which in many
respects he furthered and refined.

In 1755 Lagrange communicated to Euler his method of multipliers for
solving isoperimetric problems. He is justly regarded as the inventor of the
calculus of variations (the name given by Euler in 1766).

During 1773–1784, Lagrange undertook the demanding task of verifying
Newton’s universal gravitation via the observed motions of the planets and
comets of the solar system. Using the method of planetary perturbations and
transferring the origin of coordinates from the center of the sun to the center
of gravity of the sun-planet system, he was able to achieve great simplification.

With Alexandre Vandermonde he introduced in 1770 the notion of
a ‘group’ (though not the term). In 1773 he originated the idea of scalar
gravitational potential.

Lagrange took conspicuous part in the advancement of almost every branch
of pure mathematics. In the theory of numbers he furnished proofs of many
of Fermat’s theorems, and added some of his own. In algebra he discovered
the method of approximating the real roots of cubic and quartic equations by
means of continued fractions. [Traité de la résolution des équations numerique
de tous degrés (1767).] To the calculus of finite differences he contributed the
beautiful formula of interpolation which bears his name (although substan-
tially the same result seems to have been previously obtained by Euler) and
the Lagrange expansion (1770).
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Lagrange’s contributions to the theory of equations were doubtless the
most potent anticipations of Galois’ later breakthrough (1831). In a 1770–
1771 memoir, Lagrange attempted to find a uniform procedure for solving
equations of all degrees. He analyzed the methods that had yielded general
solutions for degrees 2, 3, 4, and found that in each case the technique involved
the use of a resolvent equation. Although the latter was of lower degree
than the original for n = 2, 3, 4, Lagrange discovered that application of the
previously successful pattern to the quintic (n = 5), led to an irreducible
sextic (n = 6), and the problem became more difficult instead of being
resolved. He then hinted at the impossibility of solution by radicals, and let
the matter drop.

His greatest achievement was the transformation of mechanics [defined
by him as a “Geometry of four dimensions”] into a branch of analysis, by
exhibiting mechanical principles as simple results of the calculus: instead of
following the motion of each individual mass, he determined their collective
configuration by a sufficient number of dynamical variables, whose number is
that of the scalar motional degrees of freedom, there being as many equations
as the system has degrees of freedom. The kinetic and potential energy of the
system can then be expressed in terms of these, and the differential equations
of motion follow by simple differentiations.

Lagrange gave the solution of isoperimetric problems quite independently
of Euler, and with entirely new methods. He developed for this purpose the
new calculus of variations.

His work had deep influence on later mathematical research, for he was the
earliest first-rank mathematician to attempt a rigorization of the calculus. His
cardinal idea was the representation of a function f(x) by a Taylor’s series.
The notation f ′(x), f ′ ′(x) is due to Lagrange. But he failed to give sufficient
attention to matters of convergence and divergence, which were later taken
up by his pupil Cauchy.

Lagrange274 was born at Turin of mixed French-Italian ancestry. His in-
terest in mathematics was aroused through the reading of a paper by Halley
on the uses of algebra in optics. An intensive self-study for two years placed
him on a level with the greatest of his contemporaries and at the age of 19 he
was appointed professor of geometry in the Royal Artillery School in Turin
(1754). At the age of 26, Lagrange found himself at the summit of European
fame (1762). In 1764 he carried off the prize offered by the Paris Academy of
Sciences for the best essay on the librations of the moon. He won four more
such prizes: theory of Jovian systems (1766), restricted 3 body problem (1772),

274 He was born with the name Lagrangia.
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secular equation of the moon (1774) and the theory of cometary perturbations
(1778).

In 1776, when Euler left Berlin for St. Petersburg, he suggested to Fred-
erick the Great that Lagrange be invited to take his place. The invitation
conveying the wish of the “greatest king in Europe” to have the “greatest
mathematician” at his court, was sent to Turin. Lagrange accepted and lived
in Berlin for twenty years (1766–1786) until the death of Frederick. There he
had ample leisure for scientific research, and royal favor sufficient to secure
him respect without exciting envy. During this period he introduced the con-
cept of velocity potential , and made the first use of the stream function in
the analysis of fluid motion (1781). In 1788 he wrote the treatise Mécanique
Analytique in which he unified and developed analytical mechanics, introduc-
ing the ‘Lagrangian’275 and the ‘Lagrange equation’276. In this book Lagrange
created a new and powerful tool which could solve any mechanical problem on

275 For further reading, see:

• Doughty, N.A., Lagrangian Interaction, Addison-Wesley, 1990, 569 pp.

276 Consider the dynamical system composed of n mass points located at vec-

tor positions rj (j = 1, 2, . . . , n) w.r.t. some origin. The resultant ex-

ternal force on the jth mass is denoted Fj . We shall designate by qk

(k = 1, 2, . . . , m) the generalized coordinates necessary to describe the system;

in general m ≤ 3n due to possible constraints. Since rj = rj(q1, q2, . . . , qm),

we have: δrj =
∑m

k=1

∂rj

∂qk
δqk; ṙj =

∑m
k=1

∂rj

∂qk
q̇k

(
dot = d

dt

)
. We confine our

attention to holonomic systems, that is, systems in which the δqk and δq̇k are

independent. The virtual work is then

δw =

n∑

j=1

Fj · δrj =

m∑

k=1

Qkδqk,

where

Qk =

n∑

j=1

Fj · ∂rj

∂qk

are defined as generalized forces. The d’Alembertian principle of Virtual Work

then reads:

∑

k,j

(Fj − mj r̈j) · ∂rj

∂qk
δqk =

m∑

k=1

[

Qk −
n∑

j=1

mj r̈j · ∂rj

∂qk

]

δqk = 0.

In this expression

mj r̈j · ∂rj

∂qk
=

d

dt

[

mj ṙj · ∂rj

∂qk

]

− mj ṙj · ∂ṙ

∂qk
. (1)
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the basis of pure calculation, without any reference to physical or geometrical
considerations, provided that the kinetic and potential energies of the system
were given in analytical form.

He returned to Paris in 1787 and accepted a professorship at the newly
established École Polytechnique277. Marie Antoinette warmly patronized him,
he was lodged at the Louvre and received a generous pension. He emerged un-
scathed from the turmoil of the French Revolution, since he was respected and
held in affection by all political parties: the revolutionary tribunals overlooked
his association with the aristocracy, and even his pension was continued by the
National Assembly. Lagrange, however, was revolted by the cruelties of the
Terror. When the great chemist Lavoisier went to the guillotine, Lagrange
expressed his indignation at the stupidity of the execution: “It took the mob
only a moment to remove his head; a century will not suffice to reproduce it”.

Later in life Lagrange was subject to fits of loneliness and despondency.
He was rescued from these, when he was 56, by a young and beautiful girl
nearly forty years his junior — the daughter of his friend, the astronomer

The last term in (1) is equivalent to

− ∂

∂qk

[
1

2
mj ṙj · ṙj

]

= − ∂

∂qk

(
1

2
mjv

2
j

)

.

The term preceding this takes a similar form when
∂rj

∂qk
is replaced by

∂ṙj

∂q̇k
,

allowed by
∂ṙj

∂q̇k
=

∂rj

∂qk
. Putting these forms into (1) and summing over the

particles (j) yields:

∑

k

[

Qk − d

dt

(
∂T

∂q̇k

)

+
∂T

∂qk

]

δqk = 0.

With all the δqk arbitrary, this can vanish if and only if, for each degree of

freedom k = 1, 2, . . . , m,

d

dt

(
∂T

∂q̇k

)

− ∂T

∂qk
= Qk,

where T is the total kinetic energy. In cases of forces derivable from a poten-

tial V (q1 · · · qk; t) such that Qk = − ∂V
∂qk

, there follow Lagrange’s equation of
motion

d

dt

(
∂L

∂q̇k

)

− ∂L

∂qk
= 0,

for L = T (q, q̇, t) − V (q, t) and k = 1, 2, . . . , m.
277 A famous school in the history of mathematics, where many of the great math-

ematicians of modern France were trained and held professorships.
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Lemonnier (1715–1799). She was so touched by Lagrange’s unhappiness
that she insisted on marrying him (1792). He had no children by this or his
former marriage.

Lagrange was nominated president of the Academic Commission for the
reform of weights and measures and for the establishment of the metric system.
Napoleon loaded him with personal favors and official distinctions. He became
a senator, a count of the Empire, and a grand officer of the Legion of Honor.

Toward the end of his life, Lagrange felt that mathematics had reached
a dead end and that the physical and biological sciences would attract the
ablest minds of the future. His pessimism might have been relieved if he had
been able to foresee the coming of Gauss and his successors, who made the
19th century the richest in the long history of mathematics.

He was buried in the Pantheon on April 10, 1813. The funeral oration
was pronounced by Laplace. Hamilton called Lagrange the “Shakespeare of
Mathematics” on account the extraordinary beauty, elegance and depth of his
methods.

The astronomy historian Agnes Mary Clerke (1842–1907) succinctly
summarized his life work in the statement:

“His treatises are not only storehouses of ingenious methods, but models
of symmetrical form. The Clearness, elegance and originality of his mode
of presentation give lucidity to what is obscure, novelty to what is familiar,
and simplicity to what is abstruse. His genius was one of generalization and
abstraction, and the aspirations of the time towards unity and perfection
received, by his serene labors, an embodiment denied to them in the troubled
world of politics”.

Lagrange and the ‘3-Body Problem’ (1772)

Euler (1760) seems to be the first to have studied the general problem of
three bodies’ motion under their mutual gravitation, although at first he only
considered the restricted three bodies problem when one of the bodies has a
negligible mass.

It is then assumed that the motions of the other two can be solved as a
two body problem, the body of negligible mass having no effect on the other
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two. Then the problem is to determine the motion of the third body attracted
to the other two bodies which orbit each other.

Even in this form the problem does not lead to exact solutions. Euler,
however, found a particular solution with all three bodies in a straight line.

The Paris Academy Prize of 1772 for work on the orbit of the Moon was
jointly won by Lagrange and Euler. Lagrange submitted Essai sur le
problème trois corps in which he found another solution where three bodies
were at the vertices of an equilateral triangle.

The motion of an isolated system of two attracting point masses278 is solv-
able exactly in the framework of Newtonian dynamics. Lagrange considered

278 “Point mass”: a model for a spherically-symmetric mass distribution, which

for purposes of Newtonian attraction is considered to be concentrated at the
sphere’s center. It is tacitly assumed in astronomical applications that the mass’

dimensions are small compared to the inter-mass distance (no other restriction

on size of mass).
While this is only a very good first approximation for real masses in the universe,

it nevertheless underlines the mathematical theory of nearly all problems in

celestial mechanics. In the following, the word ‘mass’ or ‘body’ will mean ‘point-
mass’, unless otherwise stated.

The attraction (external gravitational potential) of a finite body that is not

necessarily symmetric, at a point P a distance r from the body’s mass-center
O, is given by the expression

φ(P ) = −G

[
M

r
+

Q : erer

2r3
+ O

(
1

r4

)]

.

Here M =
∫

ρ(r′)dr′ is the total mass (r′ � r), ρ(r) the density,

Q =
∫

ρ(r′)(3r′r′ −r′2I)dr′ is the mass quadrupole moment tensor , and r = rer

is the position vector of the field point relative to the mass center.
The potential φ can be represented in a number of alternative forms:

(I) Maccullagh’s formula: same as the above with Q : erer = A + B + C − 3J ,
where {A, B, C} are the principal moments of inertia of the body relative to

the mass center , and J is the body’s moment of inertia about the axis OP .

(II) Multipole expansion:

φ(r > r′) = −G

∞∑

�=0

�∑

m=−�

4π

2� + 1

[
Ŷ�m(θ, ϕ)

r�+1

]

Q�m

where

Q�m =

∫

ρ(r′)r′ �
Ŷ ∗

�m(θ′, ϕ′)d3r′;

Ŷ�m(θ, ϕ) =

√
2� + 1

4π

(� − |m|)!
(� + |m|)! P

|m|
� (cos θ)eimϕδm;
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the motion of an isolated system of three masses, free to move under their
mutual Newtonian attractions. It is governed by 3 2nd order vector ODE’s,
or equivalently by a system of 18 first-order ODE’s. An explicit analytic
solution does not exist279 for the general case. This is so because only 10
out of the 18 constants of integration (i.e. coordinates and velocities of each
mass at a common fiducial time) are expressible as conservation laws. They
are: the system’s total mechanical energy content, 6 components of the mass-
center position and velocity vectors, and 3 components of the total angular
momentum vector at any chosen time.

To see this, we write the equations of motion in the form:

r̈1 = G

[
m2

r3
12

r12 − m3

r3
31

r31

]

;

r̈2 = G

[
m3

r3
23

r23 − m1

r3
12

r12

]

;

r̈3 = G

[
m1

r3
31

r31 − m2

r3
23

r23

]

,

where (m1, m2, m3) are the three masses in question, G is the universal con-
stant of gravitation, {r1, r2, r3} are the time-dependent respective position-
vectors of the masses w.r.t. an inertial frame of reference and rjk is a vector
with origin at mj and terminus at mk. Simple algebraic and differential ma-
nipulations of the above equations yield the following results:

δm =

{
1 m ≥ 0

(−)m m < 0

}

.

When this expansion is applied to a nonspherical earth (bulged at the equator,

flattened at the poles but azimuthally symmetric), it reduces to

φ = − GM

r

[

1 − 10−6
∞∑

�=2

J�

(re

r

)�

P�(sin λ)

]

,

where re = equatorial radius, λ = geocentric latitude = sin−1 z
r
, and

J2 = 1082.64 ± 0.03; J3 = −2.5 ± 0.1; J4 = −1.6 ± 0.5; J5 = −0.15 ± 0.1;

J6 = 0.57 ± 0.1; J7 = −0.44 ± 0.1.
279 Although there is no closed-form analytical solution, the problem is still solv-

able numerically by the use of computers, since the number of equations and

unknowns is compatible. However, the computer cannot give answers to ques-

tions about the behavior of the system which require an infinite time to answer,

such as whether some member of the system will escape from it or eventually

collide with another member.
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(1) The center of mass of the system either remains at rest or moves uniformly
in space on a straight line.

(2) The total angular momentum of the system is fixed in magnitude and
direction at all times.

(3) The sum of potential and kinetic energies of the system is constant.

Result (1) is mathematically expressed as

R ≡ 1
M

(m1v1 + m2v2 + m3v3) =
a1

M
t +

a2

M

where M =
3∑

i=1

mi and {a1, a2} are two constant vectors. This equation

therefore yields 6 scalar equations satisfied by the mass coordinates.

Result (2) has the mathematical form

d

dt
H = 0, H = (r1 × m1v1) + (r2 × m2v2) + (r3 × m3v3).

It consists of 3 additional scalar relations linking the positions and velocities
of the masses.

Result (3) reads

1
2

∑
miṙ2

i − G

(
m1m2

r2
12

+
m2m3

r23
+

m3m1

r31

)

= E = const.

It yields one additional relation (integral of motion). Thus, 10 of the 18 inte-
grals which are necessary for complete solutions are known, and they are all
algebraic functions when expressed in rectangular coordinates. In 1887, H.
Bruns showed that when rectangular coordinates are chosen as the indepen-
dent variables in the 3-body problem, the 10 integrals (constants) described
above are the only integrals to be expected, and no more such algebraic in-
tegrals exist. Poincaré showed, in the same year, that there are no new
transcendental integrals, even when the masses of all bodies except one are
small.

Knowing all this (although lacking Brun’s proof ), Lagrange sought par-
ticular exact solutions to the 3-body problem which do not require more than
10 constants of integration. These particular solutions were discovered by him
in a prize memoir in 1772.

Lagrange considered two separate problems. The first, known as the re-
stricted three-body problem, is of particular importance in discussions of space
probes moving in the gravitational fields of the earth and the moon. In this
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case one of the three masses, referred to as the ‘particle’, is so small in com-
parison with the other two that its gravitational effects on these two masses
can be neglected. The particle is thus considered as a test mass whose motion
is the object of calculation. [The earth-moon system together with a small
artificial satellite or spacecraft constitutes such a system, if we ignore the
presence of the sun, the lack of sphericity of the earth and the eccentricity of
the moon’s orbit.]

It is then advantageous to set up the following model: two massive bodies
(masses m1 and m2 respectively) move in circular orbits about their center
of mass, which is taken as the origin of a coordinate system that revolves
around its z-axis (such that the xy axes are in the plane of motion of the two
finite masses) with an angular velocity that is equal to their orbital velocity,

ω = G
√

m1+m2
a3/2 , (m1 ≥ m2) by Kepler’s third law (a = radius of circular

orbit).

In this special rotating system, the equation of motion of the particle is

a + 2(ω × v) + ω × (ω × r) = −G

[
m1

ρ3
1

ρ1 +
m2

ρ3
2

ρ2

]

,

where ω = ωez; a = ẍex + ÿey + z̈ez, r = xex + yey + zez; {ρ1, ρ2} are
the vector distances of the particle from the masses m1 and m2 respectively
and {ex, ey, ez } are the three unit vectors along the axes of the rotating
system.

The general problem of determining the motion of the test particle requires
six integrals for its complete solution. Simple manipulations of the above
equation of motion yield the first integral in the form which resembles the
energy integral in a two-body system. Choosing the unit of mass such that
m1 + m2 = 1 [i.e. m1 = 1 − m, m2 = m], and furthermore choosing the
units of distance and time such that G = 1, a = 1 (ω = 1), the first integral
reads

ẋ2 + ẏ2 = (x2 + y2) +
2(1 − m)

ρ1
+

m

ρ2
− c.

There remain five integrals to be found. However, by restricting the motion
of the particle to the xy plane, it is possible to reduce the total number of the
needed constants to a total of two280. One new integral is therefore needed,
but cannot in principle be found, on the strength of the above-mentioned
Brun’s theorem. Nevertheless, the first integral is sufficient to deduce the

280 This was shown by C.G.J. Jacobi, in 1844. The first ‘energy-like’ integral is

also due to him and known as Jacobi’s integral . Lagrange arrived at his results

in another way.
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salient features of the motion of the particle, as was done by Lagrange: he
derived the contours of zero velocity, by examining the equipotential contours

x2 + y2 +
2(1 − m)

√
(x − x1)2 + y2

+
2m

√
(x − x2)2 + y2

= c.

It turns out that there are five points in the xy plane, known as the La-
grangian points281, which are of special significance in the three body problem.
At each of these 5 positions (relative to the two masses in mutual circular rev-
olution) the particle, once placed, will also move on a circular orbit, always
maintaining a fixed orientation w.r.t. to the other two masses. Three of these
points, called the Lagrangian points L1, L2 and L3, along the line joining the
two masses, are unstable, in the sense that if the particle is displaced slightly
from one of them, it will leave its circular orbit.

Because small perturbations are always likely to occur, we would not ex-
pect to find many examples in nature in which three bodies revolve exactly
in those configurations.

The two remaining points, known as L4, and L5 (“L” in honor of La-
grange) are, however, stable. A particle at one of those positions cannot be

281 The equipotential contours display the combined gravitational fields of the two

massive objects. The field has a constant strength at each point (x, y) along

the curve. Thus, we can think the equipotential contour map as a sort of topo-

graphical map, showing ‘hills’ and ‘valleys’ in the gravitational field. A small

object like an asteroid can be permanently trapped at one of the stable La-

grange points.

In 1776, asteroids had not yet been discovered, and Lagrange knew no actual

case that would demonstrate the existence of the {L1, L2, L3} points. However,

90 years after Lagrange’s theoretical work, Daniel Kirkwood (1866) showed

that it applied perfectly to Jupiter and the asteroids. Those places between

Mars and Jupiter where no asteroid would be found have been known as Kirk-

wood’s gaps ever since.

The Trojan asteroids at L4 and L5 along Jupiter’s orbit have been known since

1906 and provided the first proof of Lagrange’s theoretical ideas about these

points. Since then, stable Lagrange points have been found to exist at many

places in the solar system; while passing Saturn, the Voyager spacecraft (1980)

discovered tiny satellites at the L4 and L5 points of the Saturn-Tethys and

the Saturn-Dione systems. A group called the L5 society argues that the L5

point on the Earth-Moon system would be an ideal location for a huge space

station with a permanent human population. Despite careful searches, no as-

teroids have been found at the stable Lagrange points of the Earth-Sun and

Saturn-Sun systems.
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forced away by slight perturbations. It can be shown that in these configu-
rations, the particle and the two masses are at the corners of an equilateral
triangle. We do, in fact, find natural examples of this kind of motion: The
best known is the equilateral configuration defined by the sun, the planet
Jupiter and the two groups of Trojan asteroids (the sun and Jupiter move in
nearly circular paths around their mutual COM, and the minor planets have
negligible mass in comparison).

Lagrange’s solution to the restricted 3-body problem also specifies the
regions of space within which the particle can move relative to the two larger
ones. In recent years his theory found another application in the theory of
evolution of massive stars: there are many binary star systems in which the
two stars revolve about each other in nearly circular orbits. If the two stars
are relatively close together and if one evolves to a large enough size, the
atoms of its outer distended layers, having negligible mass, move about (in
the role of particles) in a manner predicted by Lagrange.

We thus find that during the evolution of stars in binary systems, matter
can flow from one star to another, or can flow in an orbit around one or both
stars, or can even flow into space, escaping the two stars altogether (from
the inner Lagrangian points). This mass exchange, believed to occur between
many stars in closed binary systems, can have profound effects of the evolution
of the stars in a system, possibly accounting for such phenomena as novae and
supernovae. It can also lead to the formation of a large circumstellar disk or
ring of matter around the binary system, and even be involved in the creation
of neutron stars and black holes.

The second problem considered by Lagrange was that of special stationary
solutions of the three-body problem for arbitrary masses. By a stationary
solution we mean one in which the geometric configuration of the three masses
remains self similar w.r.t. time. If the motion of the masses is such that
their mutual distances from each other remains unchanged, the configuration
simply rotates in its own plane around the center of mass. On the other hand,
an expansion or contraction may take place which does not alter the shape of
the patterns of points.

Lagrange showed that there are only two such configurations: one in which
the three masses lie on a straight line, and the other in which the masses form
an equilateral triangle whose base is the segment a between two masses. In
this latter case the motion is such that the plane through the three masses
is fixed in space while the plane rotates with fixed angular velocity ω =
{G(m1+m2+m3)

a3

}1/2
onto itself. The resultant Newtonian forces on each of

the three masses passes through their common mass center. Finally, the three
points describe conic sections similar to each other, with the common mass-
center lying at the focus. In a coordinate system rotating with angular velocity
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ω in the plane of the masses, the Lagrangian points (masses) are fixed: at
these points, the gravitational and the centrifugal forces just balance each
other.

In the straight-line solution, the masses will be located at Lagrangian
points (also known as libration points) if they are arranged on a line (the
x-axis, say) with coordinates {x1, x2, x3} such that if x2 − x1 = 1, then
x3 − x2 = p, where p is the only positive root of the quintic equation:

(m1 + m2)p5 + (3m1 + 2m2)p4 + (3m1 + m2)p3

−(m2 + 3m3)p2 − (2m2 + 3m3)p − (m2 + m3) = 0.

The angular velocity for this case282 is

Ω = ω

[
m1p

2 − m3

m1p2 − m3p3

]1/2

.

282 To translate this into a mathematical language, we write the total coplanar

acceleration of any one of the mass points a = (r̈ − rθ̇2)er + (2ṙθ̇ + rθ̈)eθ,
where r = rer is its position vector (drawn from the system’s mass-center)

and {er, eθ } are unit vectors in radial and transverse directions respectively.

Since we have assumed ṙ = r̈ = 0, θ̇ = ω = the constant angular speed
of revolution about the mass-center, the accelerations become ai = −riω

2ei

where (er)i = ei (i = 1, 2, 3). Using these values in the general equations

of motion given at the beginning of this section, we obtain the differential
equations

r̈i = −ω2ri (i = 1, 2, 3),

where general solutions are conic sections. If the orbits are ellipses, where εs is

the eccentricity and Es is the eccentric anomaly , then ri = ai(1 − εs cos Es).
Thus the various conics described by the three bodies are all similar and the

masses occupy corresponding positions in their orbits at any given instant. To

derive the dependence on the angular velocity ω on the constants of the system
we must solve the three simultaneous algebraic vector equations

−ω2r1 =
m2

r3
12

r12 − m3

r3
31

r31;

−ω2r2 =
m3

r3
23

r23 − m1

r3
12

r12;

−ω2r3 =
m1

r3
31

r31 − m2

r3
23

r23

with the additional center of mass condition

m1r1 + m2r2 + m3r3 = 0,

where r12 = r2 − r1; r23 = r3 − r2; r31 = r1 − r3.
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In conclusion, the n-body problem (n > 2) can be solved in general only
by laborious numerical calculations. There are, however, some special cir-
cumstances in which there exist solutions, or partial solutions, in the form of
algebraic equations. Usually, these solutions apply only when the mass-system
has a very particular and most unlikely configuration. Nevertheless, the La-
grange’s theory can serve as an approximate model for certain important and
interesting astrophysical phenomena.

There is yet another aspect of the three-body problem that one should
not overlook: consider the case of two spherical bodies that move under the
influence of their mutual attractions, each describing a conic section w.r.t.
their center of mass as a focus. If there is a third body attracting the other
two under consideration, their orbits will cease to be exact conic sections. The
difference between the coordinates and components of velocity in the actual
orbits and those which the bodies would have had if the motion had been
undisturbed are the perturbations.

For example: in the solar system, to first approximation, each planet
moves as though it and the sun constituted a two-body system. This suggests,
therefore, that we first study the motion of a planet as a part of a two-body
system. Then we determine the deviations from a purely two-body motion
that will result from the presence of other disturbing bodies, namely — the
perturbations. This approach supplements the above results of Lagrange, who
was interested in the motion of the test particle and ignored its perturbing
effect on the large masses.

It is of interest to note that Lagrange considered his solutions for the 3-
body problem as inapplicable to the solar system. We now know, however,
that both earth and Jupiter have asteroids sharing their orbits in the equi-
lateral triangle solution configuration discovered by Lagrange. For Jupiter,
these bodies are called Trojan planets, the first to be discovered being Achilles
(1908).

The first comet to have a calculated elliptical orbit which was far from a
parabola was observed (1769) by Charles Messier (1730–1817). The ellip-
tical orbit was computed by Lexell (1740–1784) who correctly realized that
the small elliptical orbit had been produced by the perturbation of Jupiter.
The comet made no reappearance and Lexell correctly deduced that Jupiter
had changed the orbit so much that it was thrown far away from the sun.

The Lagrange theory found interesting and important applications in re-
cent times. It was shown that the forces at the Lagrangian balance-points
could capture objects and keep them orbiting. The European Space Agency
has taken advantage of one balance point by launching a sun-observatory
called SOHO that currently orbits at L1. The orbits of objects at these
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points are exotic, often tadpole-shaped and rarely horseshoe-like. The horse-
shoe orbit involves movement around L3, L4 and L5 points.

In 1986 astronomers discovered a new Near-Earth asteroid, named 3753
Cruithne283 (also known as 1986 TO). At that time no one had tracked its
path thoroughly enough to detect its rare orbit. Then, in 1997, it was found
that Asteroid 3753 follows a spectacular horseshoe orbit and has character-
istics never before seen or even anticipated, either in theory or in computer
simulations.

Cruithne is co-orbital with the earth (meaning that it shares the earth’s
orbit). In a co-rotating frame with the earth (in which earth is stationary)
Cruithne is on an spiraling horseshoe orbit: every year, the asteroid traces out
a kidney bean. Over time, this kidney bean drifts along the earth’s orbit, trac-
ing out a spiral which, when complete (after 385 years) fills in an overlapping
horseshoe.

Cruithne avoids collision with earth: at its closest approach it only gets
to within 15 million km. Each year, it is at its closest in the autumn, and at
this point it will pass almost directly beneath the earth’s South Pole.

The asteroid is about 5 km wide and takes 770 years to complete its
horseshoe-shaped orbit around the earth. It is believed that it is a tempo-
rary companion, remaining in a suspended state around the earth for at least
5000 years.

The Lagrange theory for this 3-body problem (earth-Cruithne-sun) pro-
vides for new dynamical channel through which free asteroids become tem-
porarily moons of the earth and stay there for periods ranging from a few
thousand years to several tens of thousands of years. Thus, some asteroids
that cross the earth’s orbit may be trapped in orbits caused by the gravita-
tional dance between earth and sun.

It is believed that the laws of nature would make it very difficult for an
asteroid to have entered into this orbit recently. The asteroid may be as old
as the solar system itself, and it might have found its way into this orbit when
the solar system was forming. On the other hand, if it joined us more recently,
the mechanics and physics that would have been needed to get this asteroid
into orbit in recent times are akin to threading a needle.

Asteroid 3753 is following the most complicated horseshoe orbit ever seen,
and it is unique in our solar system. It has unique characteristics, including:
a spiraling motion; a big inclination (titled path) and an overlap at the end
of the horseshoe.

283 The Cruithne (=croo-een-ya) were the first Celtic tribal group to come to the

British Isles between about 800 to 500 BCE.
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1754–1778 CE Joseph Black (1728–1799, Scotland). Physician, che-
mist and physicist. Rediscovered carbon dioxide (1754). First to introduce
the concepts and theories of heat capacity and latent heat (1760). These the-
ories contributed substantially to Watt’s development of the steam engine.
He visualized heat as a certain imponderable fluid (called “calor”), which can
penetrate all material bodies and thus increase their temperature. Mixing a
gallon of boiling water with a gallon of ice cold water, he noticed that one
finds the temperature of the mixture just halfway between two initial tem-
peratures, and he interpreted this fact by saying that, after the mixing, the
excess of “calor” in hot water is equally distributed between the two por-
tions.

He defined the unit of heat as the amount necessary to raise the tempera-
ture of 1 lb of water by 1 ◦F (in the modern metric system we speak of calorie,
which is the amount of heat it takes to raise the temperature of 1 gm of water
by 1 ◦C). He concluded that equal weights of different materials heated to
the same temperature contain different amounts of “calor” since, indeed, by
mixing equal weights of hot water and cold mercury, one gets a temperature
which is much closer to the original temperature of water than of mercury.
Therefore, he argued, cooling a certain amount of water by 1 ◦ liberates more
heat than is necessary to heat an equal weight of mercury by 1 ◦.

This led him to the notion of the heat capacity of different materials,
characterized by the amount of heat needed to raise their temperature by
1 ◦. Another important notion introduced by Black was that of latent heat ,
which is the amount of heat needed for a change of phase, e.g. to turn ice
into ice water (both at 0 ◦C), or to burn boiling water into water vapor (both
at 100 ◦C). He thought that adding a given amount of the imponderable heat
fluid to a piece of ice loosens up its structure, making it liquid, and that, in a
similar way, adding more heat to the hot water further loosens its structure,
turning it into vapor.

Black was born at Bordeaux, where his father, a native of Belfast but
of Scottish descent, was engaged in the wine trade. He studied medicine in
Glasgow. James Watt, at the University of Glasgow, later absorbed the ther-
mal theories of Joseph Black (by then professor of medicine at the university)
and applied them in his invention of the improved condensing steam-engine
(1765).

1756–1763 CE Seven Years’ War . Prussia and Austria fought for control
of Germany in a war that involved nearly every nation in Europe. It pitted
Prussia (Frederick the Great) against Austria, Sweden and France. The war
ended exactly where it began, with no territorial changes in Europe. In North
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America, however, France gave up Canada to Britain and also yielded its
colonies in North America.

1756–1774 CE John Smeaton (1724–1792, England). Civil engineer
and inventor. Founder of the civil engineering profession during the early
days of the Industrial Revolution in England. Improved instruments used in
navigation and astronomy. His major achievements were

• Rediscovered (1756) hydraulic cement, unknown since the fall of Rome.

• Made improvements on windmills and watermills (1759).

• Design large pumping engines; improved diving bell; rebuilt Eddystone
lighthouse (1759).

• Constructed Ramsgate harbor (1774), Forth and Clyde Canal, and
Perth, Banff, and Coldstream bridges.

• Improved the steam-engine of James Watt (1775).

Smeaton was born at Austhorpe Lodge, near Leeds. Left the grammar
school of Leeds in his 16 th year to become apprentice to an instrument maker
and in 1750 set up his own business. In 1759 he read a paper before Royal
Society entitled ‘An Experimental Inquiry concerning the Native Powers of
Water and Wind to turn Mills and other Machines depending on a Circular
Motion’ for which he received the Copley medal.

In 1754 he made a tour of the Low Countries to study the great canal
works there. He died at Austhorpe and was buried in the old parish church
of Whitkirk.
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The Watch284 and Modern Time-Culture (1502–1760)

The invention of portable timepieces dates from the end of the 15th cen-
tury, and the earliest manufacture of them was in Germany. It is known
that Peter Henlein (1480–1542), a locksmith of Nuremberg, built, during
1502–1510, a small round clock with steel mainspring enclosed in a box. It
was known as the Nuremberg Egg. Being too large for the pocket it were fre-
quently hung from the girdle. It was the first pocket watch ever made. Before
Henlein invented the watch, time was told by clocks that used heavy weights.
The mainspring supplied the power to turn the wheels. The manufacture of
watches by hand soon spread throughout Europe. The difficulty with these
early watches was the inequality of action of the mainspring.

An attempt to remedy this was provided through 1525–1540. In early
watches, the escapement was the same as in early clocks, namely, a crown
wheel and pallets with a balance ending in small weights. Such an escapement
was, of course, very imperfect; since the force moment acting on the balance
does not vary with the displacement, the time of oscillation varies with the
arc, and this in turn varies with every variation of the driving force. An
immense improvement was therefore effected when the hair-spring was added
to the balance, which was replaced by a wheel. This was done about the end
of the 17th century.

During the 18th century a series of escapements were invented to replace
the old crown wheel, ending in the chronometer escapement. Though great
improvements in detail have since been made, the modern mechanical watch
may nevertheless be called an 18th-century invention.

Early watches had only an hour hand. The minute hand was developed
in 1687. In the 1800’s, new machinery made it possible to produce accurate
watches cheaply.

The invention of the clock in the 14th century and its technical improve-
ments during the 15th and 16th centuries, rendered a useful means for the
fulfillment of religious and social functions: it was regularly fixed on the front
walls of churches and town halls, or placed in city squares, where its chimes

284 From the Old English word waecce = a keeping guard or watching, from

wacian = to guard, watch, wacan = to wake. Hence watch = that

which keeps watchful or wakeful observation or attention over anything.

The term was used for persons who patrolled the streets, called the hours,

and performed the duties of modern police. The term was later ap-

plied to a period of time marked by the change of sentries or ship crews.
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served to assemble the burghers to prayer and public meetings. Only in the
16th century, when clocks became part of the household, and more so in the
17th century, when portable watches were in the private use of individuals,
did the modern time-culture begin. This was the time when man’s concept of
time underwent a revolutionary change.

Prior to the invasion of the metric time keeper into the household, the day-
and night-cycle and the annual cycle of the seasons dominated the conduct
of human life. In the agrarian pre-industrial society, all activities were prede-
termined by the calendar, by the constant march of generations and the ages
of man, and the periodic change of the seasons. Beyond that was the con-
sciousness of the existence of an eternity beyond life, granted by faith. This
routine was totally disrupted when life according to the calendar changed to
life according to the watch; Western civilization has come to be dominated by
the clock and the timetable, and Westerners have had little sympathy with
people who have escaped this domination.

Hours, days and periods that were of unique value to societies and cultures,
and previously sanctioned by their calendars, were absent from the indifferent
faces of the new timekeepers, which from now on became the only measure
of homogeneous, universal and objective time. During the next 300 years,
there occurred a gradual but perpetual subjugation of all norms, concepts
and values to clock time; Westerners adopted a new puritan world outlook,
known by its motto: TIME IS MONEY (Benjamin Franklin, 1733).

The message was clear: no more spontaneous prayers, easygoing work,
communal togetherness and mutual aid; life became more mechanized and
more personal. Cooperation gave way to mere synchronization. People be-
came more punctual, more pedantic, more purposeful. Even basic functions
such as eating and sleeping became mundane; Europeans dined not out of
hunger but when the clock said so, and they turned in to sleep not when tired
but when the time came. Puritans turned from a life of meditation and absti-
nence to a life of creativity and labor. The harnessing of inanimate physical
forces in the Industrial revolution made it possible for work to be carried on
for 24 hours a day throughout the year — under cover, by artificial light, and
at a controlled temperature.

But that was not all: clock-time intensified man’s consciousness of the
fleeting moment, the discretized unit of time, and increased his fear of
death285. Time became less abstract and more real, symbolized by the per-

285 Great poets and artists, as always, are first to feel the deep implications of social

changes.

The clock as a harbinger of death is clearly portrayed in the sonnets of Shake-

speare (1609) and the woodcuts of Hans Holbein, “The Dance of Death”

(1538).
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petual moving hands of the clock. It became the idol of a new mercantile-
industrial society. The value of goods was measured by the time needed to
produce it and vice versa: the value of time was measured by the amount of
goods produced. The clock thus became a machine that produced time!, and
obviously, like any other material object whose value is measured by it useful-
ness, the collective time became redundant after its use; it lost its moral value
as soon as it passed and there was no motivation whatsoever in its keeping.
The clock turned time into a one dimensional disposable entity that is not
accumulated in any cultural collective consciousness or tradition. It did not
turn anymore into a significant past — it became a historic time.

1757–1776 CE Johann Heinrich Lambert (1728–1777, Germany).
Physicist, mathematician and astronomer. Came close to being the founder
of non-Euclidean geometry. His mathematical discoveries were extended and
overshadowed by the work of his contemporaries.

In 1770 he derived the continued fraction representation

π = 3 + 1

7 + 1

15 + 1

1 + 1
292 + · · ·

.

It yields as partial fractions the historical approximations 3
1 , 22

7 , 333
106 , 355

113 ,
103993
33102 , 104348

33215 , · · · where the 4th fraction yields π with an error of at most 3
units in the 7th decimal place286. Later (1776), Lambert proved that π and e
are irrational287.

286 This expansion does not seem to have any regularity. Apparently, it was ob-

tained by transforming the decimal fraction for π into a continued fraction. The

first 23 terms are: [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, . . .].
287 Lambert’s proof is rather hard. The following simple proof, of unknown origin,

appeared in the Mathematics Preliminary Examination at Cambridge in 1945:

Consider the integral In =
∫ 1

−1
(1 − x2)n cos

(
π
2
x
)
dx. Two integrations by parts

yield In =
(

2
π

)2n+1
n!Pn, where Pn is a polynomial in

(
π
2

)
of degree ≤ 2n

and with integral coefficients depending on n. Assuming 1
2
π = b

a
, where a and

b are integers, it follows that b2n+1

n!
In = Pna2n+1. The right side is an integer.

But 0 < In < 2, and as n → ∞, b2n+1/n! → 0. Hence for some m and



1757 CE 1361

In 1761 he loosely speculated that various solar systems might revolve
about a common center, that such systems might in turn revolve about an-
other system288 and “where shall we stop?” In 1776 he argued in favor of
developing a non-Euclidean geometry by building a logically consistent sys-
tem through the explicit rejection of the parallel postulate, while keeping all
other postulates intact.

Among his other contributions is his series solutions of the equation xm +
px = q (1757), which was extended by Euler and Lagrange, and the
first systematic development of the theory of hyperbolic functions. He also
contributed to the mathematics of descriptive geometry, the determination of
cometary orbits and the theory of map projections, some of which bear his
name.

Lambert was born at Mulhausen, Alsace (then part of Swiss territory), to
a poor family. He was self-educated and worked his way up patiently. In 1764
he removed to Berlin, where he received many favors at the hand of Frederick
the Great and was elected a member of the Royal Academy of Sciences. He
died of consumption.

all n > m, b2n+1

n!
In < 1, and therefore = 0 since it is a non-negative integer.

Hence In = 0 for n > m.

But for −1 < x < 1, cos 1
2
πx is positive, and 1 − x2 is positive. Hence In > 0

for all n. This contradiction shows that 1
2
π cannot be of the form b/a.

The irrationality of e is even easier to demonstrate; let e = p
q

be rational (p and

q integers). We may write e = en +Rn, where en = pn
qn

= 1+ 1
1!

+ 1
2!

+ · · · + 1
n!

or n! pn
qn

= 1 + nf(n). Since Rn < 1
n!

we can replace pn
qn

by p
q

for a large

enough n. Then n! p
q

= 1 + nf(n). But we can choose n > q in which case

the l.h.s. is divisible by n whereas the r.h.s. is not. The irrationality of eπ was

proved by Gelfond (1929).
288 This idea is borne out by our current knowledge of the hierarchical structure

of the universe: stars clusters, spiral arms, galaxies, galaxy clusters and super-

clusters, etc.
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The 1758 return of Comet Halley

In 1705, Halley predicted his comet return in late 1758 or early 1759.
The prediction was confirmed by Cheseaux (1744) and Euler (1746). In
1757, Lalande suggested that the comet would be most easily seen during
the month of November. What was needed was an improvement in knowing
the time of the comet’s perihelion passage. This task was entrusted in the
hands of the French mathematician Alexis-Claude Clairaut.

Applying the first approximation to the 3-body problem, Clairaut began
his computations in June 1757. Since the return was imminent, he was racing
against time. Initially the plan was to compute the comet’s motions around
the sun over the 1607 to 1759 interval, taking into account perturbative ef-
fects of both Jupiter and Saturn. To assist him in the lengthy computations
Clairaut enlisted the aid of his young colleague Lalande, who in turn en-
listed the aid of Madame Lepaute, wife of the clock maker to King Louis XV.
The three of them made calculations from morning to night over six months.
The discrepancy of 33 days is only a modest error considering the uncertainty
in the planetary masses, the perturbations from neglected or undiscovered
planets, and the approximations that had to be made in the method itself.

Clairaut’s first paper on the predicted return was read to the Academy
of Sciences in Paris on Nov 14, 1758, thus winning the race between himself
and the comet. Had he waited with his announcement after the paper was
published and the comet recovered prior to the announced result, their work
might have been perceived as a mere footnote in astronomical history rather
than the classic work it turned to be. Indeed, the published version of his
prediction did not appear until January 1759 – well after the first sighting of
the comet by Palitzsch on December 25, 1758.

In 1760, after the comet was recovered, Clairaut corrected some errors
in the earlier work, made more comprehensive perturbation calculations for
Saturn, and suggested a perihelion passage of April 4, 1759. His essay two
years later moved this date back further, to March 31, 1759, which Clairaut
considered to be within 19 days of the observed perihelion passage. A com-
petition made in 1985 between Clairaut’s work and computer results based
on modern astronomical data, showed that 6 days of this remaining error as
due to the planets Uranus and Neptune, which had not yet been discovered;
another 6 days due to neglected effects of Mercury, Venus, Earth, and Mars;
and 4 days from errors in the masses of Jupiter and Saturn that Clairaut
adopted.
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The arduous work left Clairaut with an unspecified malady that changed
his temperament for the rest of his life.

For mid-European observers, the comet’s apparition was broken into
3 phases:

• The first phase: From December 24, 1758, through February 14, 1759.
It ended when the comet disappeared into the evening twilight.

• The second phase: Rounding perihelion on March 13, 1759, the comet
again became visible in early April, before it sank below the local hori-
zon.

• The third phase of visibility was from early May to when it was last seen
on June 22. The comet passed within 0.12 AU of the earth on April 26,
1759, and became a rather impressive naked-eye object.

The bold prediction and successful recovery of comet Halley in 1758 and
1759 was the most visible confirmation of Newtonian dynamics in the 18 th

century.

Apart from the man vs. nature aspect of the 1758 apparition of comet Hal-
ley, there is another side to the story: Johann Georg Palitzsch (1723–1788)
was a German farmer and amateur astronomer. Palitzsch lived in Prohlis, a
small town near Dresden in Saxony. On the nights of 24–26 Dec 1758 he
observed the comet with his eight-foot telescope but did not identify it with
Halley’s. His observations were however published in a Dresden newspaper.
To their chagrin, members of the Paris Academy (Clairaut included) learned
about the comet recovery more than 3 months later (April 1, 1759), unable
to understand how a German farmer beat them to it.

Palitzsch also observed the June 6, 1761 transit of Venus. He observed
a black band linking Venus and the sun near the beginning and end of the
transit and correctly interpreted this as evidence that Venus possessed an
atmosphere. He also found that the brightness of Algol varied with a period
of 2 days, 20 hours, 53 min.

1759 CE Franz Aepinus (Franz Maria Ulrich Theodor Hoch
1724–1802, Germany). Physicist. Professor at St. Petersburg (1757–1798).
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Discoverer of the pyroelectric effect in the gemstone tourmaline289. He also
noticed that when tourmaline is subjected to a mechanical stress it can gen-
erate electric charges. Conversely, it can change its shape when voltage is
applied to it.

Aepinus was first to apply mathematics systematically to phenomena of
electricity and magnetism. He constructed the first condenser with parallel
plates.

1759–1772 CE James Brindley (1716–1772, England). Canal engineer
of remarkable mechanical ingenuity. Pioneered in construction of canals and
aqueducts at the dawn of the industrial revolution.

Brindley was born at Thornsett, Derbyshire. His innate ingenuity more
than compensated for his lack of training.

1759–1787 CE Jean-Sylvain Bailly (1736–1793, France). Astronomer,
historian of science and statesman. Computed the orbit of Comet Halley
(1759); studied major satellites of Jupiter (1766). Author of histories of an-
cient and modern astronomy (1775–1787).

Bailly was born in Paris; originally intended for the profession of a painter,
he preferred writing tragedies until attracted to science by the astronomer
Nicolas de Lacaille. Gained high literary reputation by his writings on
Moliere, Corneille and Leibniz (1770); admitted to all three French Acad-
emies (1784–5).

The cataclysm of the French Revolution interrupted his studies. He be-
came president of the National Assembly (1789) and first mayor of Paris
(1789). Imposed martial law and called out the National Guard to keep or-
der, leading to massacre of Champ de Mars (1791). Late in 1793, Bailly
quited his Nantes home to join his friend Pierre Simon de Laplace at Melun;

289 Sodium aluminum borosilicate

Na(Mg, Fe, Mn, Li, Al)3Al6(Si6O18)(BO3)3 · (OH, F )4.

Commonly used as a gemstone. It crystallizes in rhombohedral, hexagonal sys-

tem as prisms. It consists of six-membered silica rings and 3-membered borate

rings held together by sodium, aluminum, and other positive ions.

Transported to Europe from Sri Lanka by Dutchmen (1703). Its name comes

from the Sinhalese ‘tormalli’. The columns of tourmaline are charged when

heated, positively at one end, and negatively at the other.

The Sri Lanka variety is reddish to vividly red (rubellite). The less conspicuous

black tourmaline (schorl) was known in Europe long before, but its dull coloring

did not arouse their curiosity.
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but was there recognized, arrested and brought before the Revolutionary Tri-
bunal at Paris, where he was guillotined amid the insults of a howling mob.
He met his death with patient dignity.

1760 CE John Harrison (1693–1776, England). Horologist. Solved
the greatest scientific problem of his time: built the first mechanical marine
chronometer, accurate to within 0.1 sec/day, leading to longitude determi-
nations accurate to within ca 1.3 minutes of arc. Harrison’s instrument was
tested on a voyage to Jamaica, and on its return to Portsmouth in 1762 it was
found to have lost just under 2 min. The function of the clock was to keep
Greenwich time, needed in celestial navigation to determine the longitude at
sea from the time-dependent star position. [Latitude could be determined by
the stars alone, through the identification of new constellations as the ships
moved south, as well as the elevation of Polaris.]

Harrison, the son of a carpenter, was born at Faulby in Yorkshire. At
first he learned his father’s trade and worked at it for several years, but
later became interested in mechanical devices, and during 1715–1726 made
ingenious clocks. In 1714 Queen Ann authorized a public reward of $ 20,000
to any person who should construct chronometers that would determine a
ship’s longitude in the open sea within 30 minutes of arc290.

In this connection Isaac Newton said: “That, for determining the longi-
tude at sea, there have been several projects, true to the theory, but difficult
to execute: one is, by a watch to keep time exactly; but, my reason of the mo-
tion of a ship, the variation of heat and cold, wet and dry, and the difference
in gravity in different latitudes, such a watch hath not yet been made”.

Harrison applied himself vigorously to the task, and in 1735 went to the
Board of Longitude with a watch which he also showed to Edmund Halley
and others. Through their influence he was allowed to proceed in a king’s
ship to Lisbon to test it. The result was so satisfactory that he was paid
$500 to carry out further improvements. Harrison continued to work on the
subject with the utmost perseverance for the next 25 years. In 1762, Harrison
claimed the full reward of $ 20,000, but it was not until 1773 that he was paid
in full. He was never able to express his ideas clearly in writing for lack of
formal education, although in conversation he could give a very precise and
exact account of his many intricate mechanical contrivances.

In Harrison’s watches, compensation for changes in temperature was ap-
plied for the first time by means of a “compensation-curb”, designed to alter

290 Since the earth rotates once every 24 hours, the time at noon changes by one

hour every 360 ◦

24
= 15 ◦ of longitude. To be accurate to 1

2

◦
, a clock must not

vary by more than 2 minutes at the end of the voyage.
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the effective length of the balance-spring in proportion to the expansion or
contraction caused by variations in temperature. Harrison’s timekeeper was
used on Cook’s last voyage of 1776, and Cook had nothing but praise for it.

Further improvements were made in the 18th century, especially in the
development of the escapements. The best solution to the temperature-
compensation problem was ultimately proposed by Pierre le Roy (1717–
1785, France) in 1765, and perfected in 1785 by Thomas Earnshaw (1749–
1829, England). Their idea was to diminish the inertia of the balance-wheel in
proportion to the increase of temperature, by means of the unequal expansion
of the metals composing the rim. Earnshaw’s chronometer made the voyage
of the Bounty with Captain William Bligh in 1791.

The Longitude Problem291, or
John Harrison against the Admiralty (1714–1760)

“For lack of a practical method of determining longitude, every great cap-
tain in the Age of Exploration became lost at sea despite the best available
charts and compasses. From Vasco da Gama to Vasco Núñez de Balboa, from
Ferdinand Magellan to Sir Francis Drake — they all got where they were
going willy-nilly, by forces attributed to good luck or the grace of God.

As more and more sailing vessels set out to conquer or explore new territo-
ries, to wage war, or to ferry gold and commodities between foreign lands, the
wealth of nations floated upon the oceans. And still no ship owned a reliable
means for establishing her whereabouts. In consequence, untold numbers of
sailors died when their destinations suddenly loomed out of the sea and took
them by surprise. In a single such accident, on October 22, 1707, at the Scilly
Isles near the southwestern tip of England, four homebound British warships
ran aground and nearly two thousand men lost their lives”.

“The active quest for a solution to the problem of longitude persisted over
four centuries and across the whole continent of Europe. Most crowned heads

291 Includes quotations from: ‘Longitude’ by D. Sobel, Penguin Books, 1996, New

York, 184 pp.
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of state eventually played a part in the longitude story, notably King George
III of England, and King Louis XIV of France. Seafaring men such as Captain
William Bligh of the Bounty and the great circumnavigator Captain James
Cook, who made three long voyages of exploration and experimentation before
his violent death in Hawaii, took the more promising methods to sea to test
their accuracy and practicability.

Renowned astronomers approached the longitude challenge by appealing
to the clockwork universe: Galileo Galilei, Giovanni Domenico Cassini,
Christiaan Huygens, Isaac Newton, and Edmund Halley, all entreated
the moon and stars for help. Palatial observations were founded in Paris,
London, and Berlin for the express purpose of determining longitude by the
heavens. Meanwhile, lesser minds devised schemes that depended on the yelps
of wounded dogs, or the cannon blasts of signal ships strategically anchored
– somehow – on the open ocean.

In the course of their struggle to find longitude, scientists struck upon
other discoveries that changed their view of the universe. These include the
first accurate determinations of the mass of the earth, the distance to the
stars, and the speed of light”.

As time passed and no method proved successful, the search for a solution
to the longitude problem assumed legendary proportions. The governments of
the great maritime nations — including Spain, the Netherlands, and certain
city-states of Italy — periodically roiled the fervor by offering jackpot purses
for a workable method. Finally, in 1714 Queen Ann (through the famed
Longitude Act of Parliament) authorized a public reward of £20,000 to any
person who should construct chronometers that would determine a ship’s
longitude in the open sea within 30 minutes of arc.

There lay the problem; and as it often happens in the history of science, or
history in general for that matter, the nation that produced the problem, also
produced the individual that was equal to the challenge, one John Harrison,
clockmaker, a mechanical genius who pioneered the science of portable pre-
cision timekeeping, who devoted his life to the quest. He accomplished what
Newton had feared was impossible: he invented a clock that would carry the
true time from the home port to any remote corner of the world. He would
build the first mechanical marine chronometer, accurate to within 0.1 sec/day,
leading to longitude determination accurate to within 1.3 minutes of arc, thus
solving the greatest scientific problem of his time.

There is yet another side to this story which must be told. As in a Shake-
spearean play, heroes go with villains, and the archvillain in our epic is Nevil
Maskelyne (1732–1811). Reverend and the 5 th astronomer royal, who con-
tested his claim to the coveted prize money, and whose tactics at certain junc-
tures can only be described as foul play. As a member of the longitude-prize
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board, he made all possible obstructions to prevent Harrison from getting the
prize. In addition, he took all Harrison chronometers from him (1766) and
placed them in a damp cellar at Greenwich, untouched until 1920. Moreover,
the commissioners charged with awarding the longitude prize (orchestrated by
Maskelyne) changed the contest rules whenever they saw fit, so as to favor the
chances of professional astronomers over the likes of Harrison and his fellow
‘mechanics’.

Thus, in 1767, Maskelyne published a nautical almanac (1767) which gave
the positions of each heavenly body for exact time and dates. By observing
the direction of several stars and measuring their angles above the horizon,
the navigator could roughly estimate his longitude at sea. The method was
much inferior to Harrison’s clocktime determination and could not meet the
prize conditions.

“With no formal education or apprenticeship to any watchmaker, Harrison
nevertheless constructed a series of virtually friction-free clocks that required
no lubrication and no cleaning, that were made from materials impervious to
rust, and that kept their moving parts perfectly balanced in relation to one
another, regardless of how the world pitched or tossed about them. He did
away with the pendulum, and he combined different metals inside his works
in such a way that when one component expanded or contracted with changes
in temperature, the other counteracted the change and kept the clock’s rate
constant.

But the utility and accuracy of Harrison’s approach triumphed in the end.
His followers shepherded Harrison’s intricate, exquisite invention through the
design modifications that enabled it to be mass produced and enjoy wide use.

An aged, exhausted Harrison, taken under the wing of King George III,
ultimately claimed his rightful monetary reward in 1773 – after forty strug-
gling years of political intrigue, international warfare, academic backbiting,
scientific revolution, and economic upheaval”.

1760–1797 CE Eliahu ben Shlomo Zalman (1720–1797, Lithuania;
known as the ‘VILNA GAON’; acronym: HA’GRA). Scholar, teacher and
leader. One of the greatest Jewish scholars of the 2d millennium CE. Sought
to lead the Jews out of their mental ghetto into the wide world of general
culture without doing harm to their specifically Jewish culture. He felt that
Jewish learning had excluded too much of the secular knowledge which could
be helpful in understanding the world as well as Judaism.
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Born in Vilna to a family of distinguished rabbis, he turned out to be
a prodigy: at the age of six he had completed the study of the Bible and
was deep in the Talmud292. By thirteen he had mastered most rabbinic and
mystical literature. He steadfastly refused to undertake the responsibilities of
active rabbinate, but preferred to live exemplary life on a meager stipend left
him in a relative will, so that he might have more time for study. His reputa-
tions, however, grew despite his seclusion and before long he was recognized
as the unofficial spiritual head of all the communities of Eastern Europe.

The Vilna Gaon was the last of the great Jewish scholars of Talmudism,
revered by the orthodox but ignored by the moderns. Through his interest in
science, he had shown the Talmudic students the way to Western Enlighten-
ment. The seeds for the coming massive Jewish involvement in modern science
were sown when the Vilna Gaon had encouraged not only his but other Tal-
mud students to study and translate scientific works into the language of the
prophets.293

History repeats itself: as in the Greco-Roman and Islamic days, when
these 18 th century Jewish youth came in contact with new ideas, they also
became imbued with them.

The Vilna Gaon left no written works, but over 40 volumes of his textural
notes and his student’s notes have been published.

1761–1766 CE Joseph Gottlieb Kölreuter (1733–1806, Germany).
Botanist. Pioneer of hybridization experiments with plants. Recognized the
importance of insects and the wind in pollinating flowers: Published reports
describing 136 quantitative experiments in artificial hybridization, foreshad-
owing the work of Mendel. Professor of natural history and curator of Botan-
ical Gardens at Karlsruhe (1764–1786).

1764–1770 CE James Hargreaves (c. 1722–1778, England). Inventor,
weaver and carpenter. Invented the ‘spinning jenny ’, the first machine to spin
many threads at a time. He turned the spindles of several spinning wheels
upright and placed them in a row. He then added a frame which alternately
held and pulled the rovings (crude twists of cotton) from which threads were
made. He patented the ‘jenny’ in 1770. Earlier, (1733) John Kay invented

292 At the age of ten he wanted to become a scientist, but his horrified father turned

him from science to Talmud. He never forgot his early interest in science. Had

he been born in the 12 th century he would have been a great philosopher. At

the 18 th century he was an anachronistic man.
293 The Gaon urged one of his pupils, who knew German, to translate Euclid’s

Geometry , for example, which he felt ought to be studied by Jews.
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the flying shuttle loom which doubled the amount of cloth that weavers could
make, but Hargreaves’ invention supplied the weavers with more thread.

Hargreaves was a weaver in Standhill, England, and first used the ‘jenny’
at home. He then sold some machines. The sales made his patent invalid,
and he was never rewarded for his invention. Local spinners worried that the
increased amount of yarn the ‘jenny’ spun might cost them their jobs. They
burned Hargreaves’ machine and drove him from the town.294 He moved to
Nottingham (1768) and helped found a prosperous spinning mill. His machine
was used in the mill. Other manufacturers used the ‘jenny’ without paying
him. No one really knows the origin of the term jenny.

1765 CE The Lunar Society of Birmingham, an informal club of technol-
ogists, was founded in England. The society included men such as Erasmus
Darwin (1731–1802) and James Watt. Its members, consisting of Mid-
land scientists and manufacturers, met once a month on the occasion of the
new moon to discuss technology and other subjects of shared interest, such as
chemistry of clays and glazes, surveying, geology and the developing science
of climate and weather. They projected plans for new canals, and devices
for harnessing the power of wind and steam. The Lunar Society was the
intellectual seedbed for the industrial revolution.

1765–1774 CE James Watt (1736–1819, England). A Scottish engineer
whose improved engine design first made steam power practicable.

Crude steam engines were used before Watt’s time but burned large
amounts of coal and produced little power. Their lateral motion restricted
their use to operating pumps. Watt’s invention of a separate condenser made
steam engines more efficient, and his further development of crank move-
ment enabled them to turn wheels and made possible their wider application
(patented, 1769). The first primitive steam-engine to convert heat into me-
chanical energy (used to drain mines) was invented by Thomas Newcomen
(1663–1729, England) in 1712. His machine was improved by John Smeaton
(1724–1792, England).

294 Wool weavers afraid of loosing their job destroyed John Kay’s loom in 1733 and

sent him packing to France. Nevertheless, about 1750, cotton workers started

using the flying shuttle.
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Table 3.7: The evolution of surface transportation (1769–1997)

(Trains, Automobiles, Airplanes, Ships, Submarines)

1769 CE James Watt (Scotland) patented his improved steam en-
gine.

1770 CE Nicolas Cugnot (France) built first steam-powered
wagon.

1787 CE John Fitch (USA) built first successful steamboat.

1802 CE John Stevens (USA) constructed steamboat that uses
screw propeller .
Richard Trevithick (England) built the first steam rail-
way locomotive.

1807 CE Robert Fulton (USA) directed the building of the ‘Cler-
mont’, the first steamboat to become a practical and fi-
nancially successful (20 HP engine).

1814–1829 CE George Stephenson (England) built the first reliable
railway locomotive. Completed the adaptation of the
steam engine to the railroad.

1815 CE John McAdam (England) introduced a new method of
road-building, using crushed rocks.

1830 CE Robert L. Stevens (USA) invented the railroad rail (in-
verted “T”).

1834 CE Thomas Davenport (USA) built the electric streetcar .

1836 CE The screw propeller for ships was patented.

1838 CE The Sirius (England), first steamship to cross the Atlantic
Ocean without sails. It made crossing in 18 days.

1839 CE Charles Goodyear (USA) invented the process of rubber
vulcanization.

1845 CE Robert W. Thomson (England) invented the pneu-
matic rubber tire.

1860 CE Etienne Lenoir (France) invented first practical gas en-
gine for a road vehicle.

1863 CE First successful subway built in London.
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1865 CE Pierre Lallement and Ernest Michaux (France) con-
structed the pedal-powered bicycle.

1869 CE The Suez Canal opened.
First transcontinental railway completed in the U.S.

1874 CE Ocean liners cross the Atlantic in only 7 days.

1875 CE Siegfried Marcus (Germany) built the first successful
4-cycle petrol driven engine and carriage.
Nickolaus Otto achieved this feat a year later.

1879 CE First electric locomotive demonstrated in Berlin.

1881 CE First electric streetcar built in Berlin.

1885 CE Karl Benz (Germany) built a gasoline-powered automo-
bile.

1887 CE J.B. Dunlop (Scotland) invented the air-inflated rubber
tire.

1896 CE Rudolph Diesel (Germany) built the first successful
diesel engine.

1896 CE Samuel P. Longly (USA) made first successful powered
flight of an unmanned heavier then-air-plane. The craft,
weighting 12 kg, is powered by a small steam engine.
Otto Lilienthal (Germany) was killed while flying one
of his experimental gliders after making hundreds of suc-
cessful flights. His pioneering work heavily influenced the
Wright brothers’ airplane design.

1900 CE Electrical ignition system invented for internal combustion
engine.

1903 CE The Wright brothers (USA) made the first successful
airplane flight.

1907 CE Louis Bréquet and Paul Cornu (France) made the first
successful helicopter flight.

1908 CE Gyroscopic compass was invented.
Henry Ford introduced the Model T car.

1914 CE The Panama Canal opened.
Red and green traffic lights utilized for the first time in
Cleveland, Ohio.
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1927 CE Charles A. Lindbergh (USA) completed first nonstop
solo transatlantic flight: flew 5180 km from New York to
Paris in 33 1

2 hours.

1930 CE Frank Whittle (England) patented the first jet engine.

1932 CE First successful synthetic rubber became available com-
mercially.
Diesel-electric trains were introduced.

1935 CE The French ocean liner ‘Normandie’ crossed the Atlantic
in only 4 days.
Gas-turbine engines patented in England and Germany
contributed to the development of the jet aircraft engine.

1939 CE First flight of jet-powered aircraft in Germany.

1947 CE An experimental rocket-plane broke the sound barrier in
the United States.

1949–1952 CE First commercial turbo-jet airliner (the De Havilland
‘Comet’) was unveiled in Great Britain. Went into reg-
ular service in 1952.

1950 CE Jet aircraft made its first transatlantic flight.

1954 CE U.S. launched ‘Nautilus’, world’s first nuclear submarine.

1955 CE First practical hovercraft was built.

1958 CE U.S. launched ‘Savannah’, world’s first nuclear-powered
cargo ship.

Boeing 707, first American jet air-liner, begun regular
commercial service.

1964 CE Boeing 727 commercial airliner was introduced.

1969–1970 CE ‘Concorde’ – supersonic jet-liner (French-British) and the
Soviet Tu-144, fly at supersonic speeds for the first time.
Pan-American World Airlines began commercial flights of
the 362-passenger Boeing 747 jet.

1986 CE Lightweight airplane ‘Voyager’ completed record round-
the-world flight without refueling.

1988 CE Largest suspension bridge constructed in Japan; it has a
span of 2 km.
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1997 CE (Oct 15) Andy Greene (England) broke the sound barrier
(1220 km/sec) with his supersonic car in the Nevada
desert. The car was driven by two turbo-jet engines.

1765–1784 CE Carl Wilhelm Scheele (1742–1786, Sweden). Apothe-
cary and chemist. First discoverer of oxygen (1772, ahead of Priestley), chlo-
rine, manganese, and barium (1774). Claimed that air consists of oxygen
and nitrogen (1777). Discovered and isolated various organic acids: [prussic
(1765), tartaric (1770), oxalic and uric (1776), lactic (1780), citric (1784),
malic (1785), gallic (1786)] and also glycerine (1783). Discovered action of
light on silver salts (1777). Formed HCN (hydrocyanic acid) by the action
of ammonia on a mixture of charcoal or graphite and potassium carbonate
(1782).

Scheele was born at Stralsund, then the chief town of Swedish Pomera-
nia. He was apprenticed in 1757 to an apothecary in Gothenburg, where he
began to study chemistry. He occupied positions in pharmacies in Malmö,
Stockholm, Uppsala and Köping, where he died at an early age.

Scheele was a man of great modesty and his circumstances were often poor.
He worked with very simple apparatus and in periods of scanty leisure, in a
cold and uncomfortable laboratory, yet he made a great number of discoveries
of the very first rank.

1765–1785 CE Lazzaro Spallanzani (1729–1759, Italy). Physiologist,
naturalist and ‘microbe-hunter’. Known for his experiments in digestion, cir-
culation of the blood, fertilization and regeneration of animals. Disproved
the theory of spontaneous generation; pioneered in volcanology. The first to
watch isolated bacterial cells divide. His main achievements:

• Suggested preserving the quality of food by sealing it in airtight contain-
ers (1765).

• Demonstrated (1767–8) that the experiments of John Needham (1713–
1781, England), allegedly ‘proving’ spontaneous generation of microor-
ganisms, were invalid since they derived from germs transported in the
air.
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• Discovered (1773) digestive action of saliva.

• Established importance of semen for fertilization.

• Showed that digestion was clearly a chemical process rather than a me-
chanical grinding of food (1780).

• Performed artificial semination of a dog (1785).

• Lay the foundations of modern volcanology and meteorology .

Born in Pavia. First educated by his father, who was a lawyer. At the age
of 15 was sent to a Jesuit college at Reggio de Modena and took orders of the
Roman Catholic Church. Studied natural history, languages and mathematics
at the University of Bologna. Professor at the Universities of Reggio (1754–
1760), Modena (1760–1769) and Pavia (1769–77). Made many journeys along
the shores of the Mediterranean.

1766–1794 CE Peter Simon Pallas (1741–1811, Germany). Zoologist
and botanist. Influenced the development of evolutionary theory.

Pallas was born in Berlin and attended the Universities of Halle, Göttingen
and Leiden, where he earned his doctor’s degree at the age of 19. His books
Miscellania Zoologica (1766) and Spicilegia Zoologica included a new system
of animal classification as well as a discovery of several vertebrates new to
science.

In 1767 he was invited by Catherine II of Russia295 to become a professor
at the St. Petersburg Academy of Sciences, and during 1769–1774 he led an
expedition to Siberia collecting natural history specimens on their behalf. He
explored the upper Amur, the Caspian Sea, and the Ural and Altai mountains,
reaching as far eastward as Lake Baikal. Between 1793 and 1794 he led a
second expedition to southern Russia, visiting the Crimea and the Black Sea.

The first expedition resulted in his book: “Journey through various
provinces of the Russian Empire” (1776–1778).

The stony-iron meteorite of Krasnoyarsk as well as a number of animals
are named after him. His work provided great amounts of data on a vari-
ety of subjects, including botany, zoology, geology, geography, ethnography,
philology, and medicine. Employing the comparative method, he thus laid the
foundations of a new natural history that was influential in the development
of evolutionary theory.

295 During the reign of this empress, Russia became increasingly receptive to West-

ern science, technology and culture. The German-born monarch invited scores

of foreign scholars to take up residence in Russia in the hope of developing the

material resources and intellectual life of her empire.
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1766–1798 CE Henry Cavendish (1731–1810, England). Physicist
and chemist. In 1766 he discovered the properties of hydrogen and identified
it as an element. Later he showed that water is composed of hydrogen and
oxygen.

In 1798, Cavendish performed a novel laboratory experiment to measure
Newton’s universal gravitation constant G [the apparatus he employed was
devised by John Michell in 1784]. This constant remained unknown for over
half a century after Newton. A rough estimate of G from guesses like Newton’s
of the average density of the earth, showed that the attractions between small
objects in a laboratory must be almost hopelessly small. The common forces
of gravity seem strong; but they are due to the huge mass of the earth296. The
sun, with enormously greater mass still, controls the whole planetary system
with its gravitational pull. But the gravitational tugs between human-sized
objects are so small that we never notice them compared with earth-pulls and
the forces between objects in “contact”. It was clear that to measure G, very
delicate and difficult experiments would be needed.

In a desperate attempt, several scientists at the end of the 18th century
tried to use a measured mountain as the attracting body. They estimated
G by the pull of the mountain on a pendulum hung near it. They had to
measure astronomically , the tiny deflection of the pendulum from the vertical
caused by the sideways attraction of the mountain. They then had to geo-
logically estimate the mass of the mountain and its “average distance” from
the pendulum. Substituting these measurements in F = GMm

d2 gave the
estimated value297 G ≈ 7.5 × 10−8 cgs and consequently ρ = 4.5 gm/cm3

(1774).

Cavendish placed a pair of small metal balls on a light trapeze suspended
by a long thin fiber. He brought large lead balls near the small ones in such
positions that their attractions on the small balls pulled the trapeze about
the fiber axis, twisting the fiber until its elastic forces balanced the effects of
the tiny attractions.

He measured the masses and the distances between the small balls and
the large attracting balls, but to calculate the value of G he also needed
to know the attracting forces. Since the fiber was far too thin and delicate

296 For a mass m on the surface of a homogeneous spherical earth of radius a,

mass M = 4π
3

ρa3 and average density ρ, Newton’s law yields: GMm
a2 = mg,

where g is the earth’s surface gravity. The two equations render the relation

g = 4π
3

Gρa. For known g and a, this relation enables one to calculate the mean

density if G is measured independently.
297 In 1887 Thomas Preston (1860–1900) obtained, in a similar experiment,

G = 6.6 × 10−8 cgs.
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for any direct measurement, Cavendish let the trapeze and its small balls
twist to and fro freely with simple harmonic motion and timed the period
of that isochronous motion. From that, with measurements of mass and
dimensions of the trapeze, he could calculate the twisting strength of the
fiber. He then proceeded to obtain a good estimate of G. To avoid convection
currents, Cavendish placed his apparatus in a closed room and observed it with
a telescope from outside the room. Cavendish’s value for G was 6.75 × 10−8

cgs. The ensuing average density of the earth was 5.48 gm/cm3 (1798).

Cavendish was born in Nice, France, the elder son of Lord Charles
Cavendish [brother of the 3rd duke of Devonshire] and Lady Anne Gray,
daughter of the duke of Kent. During 1749–1753 he studied in Cambridge
without taking a degree. In the latter part of his life he inherited a fortune
which made him one of the richest men of his time. He owned a huge private
library, where he used to attend on appointed hours to lend the books to men
who where properly vouched for. So methodical was he that he never took
down a volume for his own use without entering it in the loan-book. He never
married.

1768–1774 CE William Hewson (1739–1774, England). Surgeon,
anatomist and physiologist. Sometimes referred to as the ‘father of haema-
tology.’ Isolated fibrin, a key protein in the blood coagulation process. He
also contributed work on the lymphatic system by showing the existence of
lymph vessels in animals and explaining their function. Demonstrated that
red blood cells were flat rather than spherical (as had been previously supposed
by Leeuwenhoek).

In 1773 he produced evidence for the concept of a cell membrane in red
blood cells — however, this last work was largely ignored.

Hewson was born in Hexham. He studied at Newcastle upon Tyne and
Edinburgh, being the assistant of William Hunter (1761–1762). He died,
at the age of 35, as a result of sepsis contracted whilst dissecting a cadaver.

An article “William Hewson (1739–74): the father of haematology” was
published in May 2006 in the British Journal of Haematology.
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Evolution of the Steam Engine298

A crude prototype of the first engine, in the form of an apparatus which
employed the kinetic energy of jets of steam, is mentioned amongst the writ-
ings of Hero of Alexandria (ca 150 BCE). In his book Pneumatica, he
describes a primitive steam reaction turbine (Hero’s engine was considered in
his time to be mainly an interesting toy). Another apparatus described by
Hero is a mechanism to close or open temple doors by a hidden mechanism:
A hollow altar containing air is heated by a fire kindled on it. The air, in
expanding, drives some of the water contained in a spherical vessel beneath
the altar into a bucket. The descending bucket pulls ropes that are entwined
on a pair of vertical posts, to which the doors are fixed, causing them to open.
When the fire is extinguished, the air cools, the water leaves the bucket, the
ascent of which closes the doors. In another device, a jet of water driven out
by expanding air is turned to account as a fountain.

Today, not only do jet propulsion and rocket motors run airplanes — there
are also gasoline engines for cars and planes; diesel engines for trucks, boats
and trains; steam turbines to generate electricity and propel boats; and steam
engines to run boats and locomotives.

But all of these engines make use of the same basic principle which op-
erated Hero’s toy: a hot flame imparts increased motion to molecules and
causes expansion of gases. When a substance is heated, its molecules move
at great speeds but in random, haphazard motion. As many molecules go
one way as another. The problem is to organize this chaos of movement so
that the molecules act together, applying their energy in one direction. In
all heat engines this collimation is accomplished by permitting the hot gas to

298 A steam engine is a machine for the conversion of heat into mechanical work, in

which the working substance is water and water vapor. The working substance

may be regarded from two points of view: Thermodynamically it is the vehicle

by which heat is conveyed to and through the engine from the hot source (the

furnace and boiler). Part of this heat undergoes a transformation into work as

it passes through, and the remainder is emitted, still in the form of heat.

Mechanically , the working substance is a medium capable of exerting pressure,

which effects this transformation in doing work by means of a change of volume

which it undergoes in the operation of the machine.

Regarded as a thermodynamic device, the function of the engine is to

extract as much work as possible from a given quantity of heat (or

from the combustion of a given quantity of fuel). Accordingly, a ques-

tion of primary importance is what is called the efficiency of the engine.
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create pressure in a chamber which is completely enclosed except on one side.
Sometimes there is a movable piston on this side and the bombardment of the
molecules cause it to move. In a jet propulsion engine this side is left open;
then the hot expanding gases rush out the back, at the same time reacting
on the engine to push it forward. In the steam turbine, the motion of the gas
rushing out of the open end pushes a wheel and makes it turn.

From the time of Hero to the 17th century no progress was recorded,
though here and there we find evidence that appliances like those described
by Hero were used for trivial purposes, such as organ blowing and the turning
of spits.

However, in 1601 Giovanni Battista della Porta described in his trea-
tise on pneumatics, an apparatus similar to Hero’s fountain but with steam
instead of air: Steam generated in a separate vessel passes into a closed cham-
ber containing water, from which a pipe (open under the water) leads out.
He also pointed out that the condensation of steam in the closed chamber
may be used to produce a vacuum and suck up water from a lower level. In
fact, his suggestions anticipated the machine which a century later became
the steam engine.

In 1629, Giovanni Branca designed an engine shaped like a water-wheel,
to be driven by the impact of a jet of steam on its vanes, and in its turn to
drive another mechanism for various useful purposes.

To Edward Somerset, 2nd marquis of Worcester, appears to be due the
credit of proposing (1663), if not making, the first useful steam engine: Its
object was to raise water, and it probably worked like della Porta’s model —
but with a pair of displacement-chambers, from which water was alternatively
forced by steam from an independent boiler, while the other vessel was allowed
to refill.

The steam engine first became commercially successful in the hands of
Thomas Savery (1650–1715, England), who in 1698 obtained a patent for
a water-raising engine. In the use of artificial means to condense the steam,
and in the application of the vacuum so formed to raise water by suction
from a level lower than that of the engine, Savery’s engine was probably an
improvement on Somerset’s.

Earlier, in 1678, the use of piston and cylinder (long before known as
applied to pumps) in a steam engine had been suggested by Jean de Haute-
feuille (France), who proposed to use the explosion of gun-powder to raise
a piston. In 1680, Christiaan Huygens described an engine in which the
explosion of gun-powder in a cylinder expelled part of the gaseous contents,
after which the cooling of the remainder caused a piston to descend under
atmospheric pressure, doing work in the process by raising a weight.
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In 1690, Denis Papin suggested that the condensation of steam should
be employed to make a vacuum under a piston, previously raised by the
expansion of the steam. Papin’s was the earliest cylinder and piston engine.

The first usable engine which made use of heat obtained by burning coal
was invented by Thomas Newcomen in 1705. In this engine, the pressure
of the steam moving through a pipe controlled by a valve made the piston
rise. Then the valve was shut manually and another valve on the opposite
side was opened to let the steam out, condense it and thus make a vacuum
under the piston. Air pressure above the piston then pushed it back to repeat
the cycle (boys were hired at very low pay to turn the valves for 14 hours a
day!).

About half a century after Newcomen’s engine first appeared, it was
greatly improved by James Watt (1769). He gets the credit for inventing
the steam engine because he made the valve operation automatic and thus
creating a practical engine. The non-condensing, high-pressure engine was
the invention of Richard Trevithick (1800) and Oliver Evans (1755–1819,
U.S.A.) in 1805.

A steam engine is called an external-combustion engine because the fuel is
burned outside the cylinder of the engine. There is a furnace to burn the coal
and a boiler for the production of steam. In most steam engines, the furnace
and the boiler are much larger than the cylinder itself. Watt’s improvements
and other improvements added since Watt’s time, have made the modern
steam engine 10 times as efficient as Newcomen’s original. Nevertheless, on
the average, less than 15 percent of the total heat energy that is put into
the engine is converted into mechanical energy. With expensive equipment
and the greatest care of operation, this efficiency figure can be raised to 27
percent.

1768–1777 CE Jesse Ramsden (1735–1800, England). Precision
instrument-maker. One of the most skillful designers of mathematical, astro-
nomical, surveying and navigational instruments in the 18 th century. Intro-
duced the first satisfactory screw-cutting lath299(1770), which had far reaching
consequences.

299 The availability of accurately cut screws, engaging with equally accurately cut

gears, made it possible to effect the controlled movement of the scriber that

cut the graduations of the scale. In this field Duc de Chaulnes (1714–1769,

France) did much pioneer work, introducing the use of microscopes, with cross-
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Using the ideas of Duc de Chaulnes (1768), he built the first dividing-
engine suitable for work on an industrial scale. His machines excited great
interest, and early in the 18th century many of a similar type were built.

Ramsden was first to carry out in practice a method of reading off an-
gles by measuring the distance of the index from the nearest division line by
means of a micrometer screw which moves one or two fine threads placed
in the focus of a microscope. His specialty was divided circles, which began
to supersede quadrants in observatories toward the end of the 18th century.
He took out patents for improvements in the sextant , theodolite, barometer
and micrometer . He also invented the electrostatic machine with glass plates
(1768).

He was elected Fellow of the Royal Society (1786) and received the Copley
Medal (1795).

hair in the field of view, for the precise location of the graduations of the master

plate; he also used the tangent-screw drive.

The development of the steam-engine by Watt (1769) and Trevithick (1800)

made possible the creation of a civilization based on power-driven machinery

but did not of itself create such a civilization. In fact, the steam-engine took

almost 50 years to establish itself as the principal source of power for industry.

One reason was the poor trade conditions existing during and after the great

French wars; another reason was the purely technical difficulty of constructing

steam-engines and the machinery they were to drive: the making by hand of

parts of machinery to precise standards could prove not merely prohibitively

expensive but even a practical impossibility. To this end, accurately threaded

screws were important for a variety of purposes in the making of both precision

machines and machine-tools [as, for example, the moving of the tool-holder —

since each turn of the screw must correspond to a precisely determined linear

movement forward].

The rate of which standards changed is illustrated in the fact that in 1776

the error in boring a meter-long cylinder was about 2 millimeters, whereas by

1856 workshop machines were capable of measuring 250 parts per million of a

millimeter!
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Ship of Doom

Principal causes of mortality among Royal Navy warship crews during
the late 18th century were: Enemy action 8.3%; Fire, sinking, wreck 10.2%;
Accident 31.5%; Disease 50%.

Eye-patch, hook-hand and peg-leg, equipment of the pantomime pirate,
are theatrical details with origins of historical accuracy. Throughout its his-
tory, the sailing ship was a death trap to the men who sailed in it, and
mutilation often the lot of those who survived a lifetime at sea. Accidents
could be of different origins:

• Falls were an everyday hazard to man racing aloft to take in sail at the
onset of a squall. They meant either broken bodies on deck or “man lost
overboard”. A fall into a billowing sail would catapult a sailor far into
the sea.

• Electrocution (a storm hazard), if lightning struck a mast.

• Rupture, caused by hauling on ropes, or reefing heavy sails, was common
among crew members.

• Snapping cables whiplashed, severing the limbs of bystanders if not killing
them.

• On deck, a gun breaking loose from its mount would crush anyone in its
path and had to be tipped on its side to stop it.

After months at sea, the air below decks was rank and fetid and the bilges
fouled. Respiratory diseases — tuberculosis, pneumonia — were common;
stomach disorders, caused by bad food and bad water, were things with which
every sailor had to live.

Headroom below decks was so limited that cracked heads were common.
If a man found his way to the surgeon, he was in the hands of a man who
supplied his own drugs and instruments and knew as little about his job as
the man he treated.

To these everyday hazards, a passage in the tropics added many more.
Yellow jack, or the black vomits, and malaria reduced crews to a point where,
unless more hands could be pressed, a ship sailed undermanned and was
more prone to foundering and running aground. Finally there was scurvy, a
horrifying deficiency disease leading to disfigurement and death; it remained
common until steam came along to shorten passage times and reduce the
crew’s reliance on stored food. During the late 18th century, when British sea
power was approaching its peak, press-gangs roamed the seaports, clubbing
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unwary passers-by senseless and carrying them off to lives of hardship and
likely death — not in action, but from accident or disease.

1768–1779 CE James Cook (1728–1779, England). Navigator, sur-
veyor and explorer of the Pacific Ocean. Commanded three scientific expedi-
tions around the globe.

The first (1768–1771), was launched under the joint sponsorship of the
English Admiralty and the Royal Society, to observe the transit of Venus
(June 03, 1769, Tahiti), produce a detailed survey of the coastline of the
‘South Continent ’300, and observe its flora, fauna and inhabitants.

In the H.M.S. Endeavor (368 tons, 31 m long, crew of 97 men), he cir-
cumnavigated the North and South islands of New Zealand and mapped its
coasts. During this voyage, the naturalist Joseph Banks301 (1743–1820)
and his assistants collected specimens of 1400 previously unidentified species
of plants.

Soon afterwards, Cook embarked on his 2nd voyage (1772–1775) with the
Resolution (462 tons), the Adventure (330 tons), and a crew of 193 men. He
became the first man to sail across the Antarctic circle. His pioneering work
led him to conclude that a frozen continent lay further south in the Antarctic
(later explorers proved him right).

Cook’s 3rd and last voyage (1776–1779) was primarily to settle the question
of the northwest passage. He proved that there was no direct water route from
the Pacific Ocean to Hudson Bay. He was killed by the Hawaii islanders in a
trivial incident.

“In ten years, he explored more of the earth’s surface than any other man
in history”. This tribute was to James Cook, who by sheer competence as
a navigator, sailor and leader of men rose in his life from obscure origins to

300 Geographers have speculated for hundreds of years the existence of a continent

that extended from the South Pacific to the South Pole. Like many explorers

before him, he looked for it in vain.
301 A wealthy young naturalist and member of the Society, who put up £10,000

to help the expedition and supplied some of the telescopes and other scientific

instruments. With him were Carl Solander, a Swedish botanist and pupil

of Linnaeus. There were also two artists: Alexander Buchan, a landscape

painter, and Sydney Parkinson, who specialized in natural history.
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a permanent place in history. In his youth and early twenties he served in
collier brigs working out of Whitby (a busy port in his native Yorkshire),
before joining the Royal Navy in 1755 as a seaman. In two years he was
master — warrant officer in charge of handling a warship — aboard the 64-gun
Pembroke, and by his navigational skills was instrumental in the successful
assault on Quebec by General Wolfe in 1759. The talents that had gained
him promotion made him a giant among explorers.

1769 CE Richard Arkwright (1732–1792, England). Inventor and
manufacturer. Improved on earlier versions of spinning machines by adding
mechanical details that made them work. The machine was powered by wa-
ter. Sets of rollers turning at different speeds drew cotton from the carding
machine, which straightened out the fibers. Spindles then twisted the cotton
into thread.

Arkwright was born in Preston in Lancashire, the youngest of 13 children.
After serving his apprenticeship in his native town, he established himself as a
barber about 1750, and later amassed a little property from dealing in human
hair, and dyeing it by a process of his own. He worked 16 hours a day and
studied at night to make up for his lack of schooling. He was knighted in
1786.

1769–1781 CE Pierre Sonnerat (1748–1814, France). Naturalist and
explorer. Made several voyages to southeast Asia, visiting the Philippines and
Molucces (1769–1772), India and China (1774–1781) and New Guinea (1776).
He was the first person to give a scientific description of the south Chinese
fruit tree lychee.

In the latter half of the 18th century, France made serious attempts to
break the monopoly in the spice trade which the Dutch had long enjoyed.
Having annexed the Seychelles islands in the Indian Ocean (1743), they built
permanent settlements (1768) and spice plantations, later dispatching ex-
peditions to India, the Malay archipelago, and elsewhere. Sonnerat was a
naturalist accompanying one such voyage. He made extensive observations of
primitive societies and exotic wildlife, which he subsequently reported.

1770 CE Edward Waring (1734–1798, England). Physician and math-
ematician. In his Meditationes algebraicae asserted without proof:

• Every positive integer is the sum of nine or fewer cubes (known as the
‘Waring Conjecture’; yet unproven).

• Every positive integer is a sum of a fixed number s of non-negative k th

powers (known as the ‘Waring Problem’).
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Clearly, the ‘conjecture’ is a special case of the ‘problem’ for which s(3) = 9.
In general s = s(k), such that for a given non-negative integer N

N = uk
1 + uk

2 + · · · + uk
s(k), k ≥ 2.

For each s there are two problems:

(1) Prove that s(k) exists (done by Hilbert in 1908).

(2) Find the minimum value s(k) for a given N .

Lagrange proved (1770) that s(2) = 4 and Waring himself claimed that
s(3) = 9, s(4) = 19.

G.H. Hardy had pointed out (1938) that the most fundamental and
most difficult aspect of the problem is that of deciding not how many cubes
are required for the representation of all numbers, but how many are required
for the representation of all large numbers, i.e. of all numbers with some finite
number of exceptions.

In 1986, Ramachandran Balasubramanian, Jean-Marc Deshouillers
and Fancois Dress proved that s(4) = 19.

Waring also classified quartic curves and was first to set forth a method
of approximating values of imaginary roots of polynomial equations.

Waring practiced medicine in various London Hospitals. From 1760 he
was Lucasian professor of mathematics at Cambridge, although he did not
give up practicing medicine until 1770.

1770 CE John Wilson (1741–1793, England). Discovered a theorem
that bears his name:

(p − 1)! + 1 ≡ 0(mod p)

for p prime [or: 1·2·3···(p−1)+1
p is an integer]. This theorem was presum-

ably discovered on numerical evidence alone, and reported without proof in
Waring’s book: ‘Meditationes Arithmeticae’ (1770). Among the posthumous
papers of Leibniz there were later found similar calculations on the remain-
ders of n!, and he seems to have made, already in 1682, the same conjecture.
The first proof of the theorem was given by Lagrange in 1770.

Wilson was a senior Wrangler at Cambridge and left the field of mathe-
matics quite early to study law. Later he became a judge and was knighted.

1770 CE Nicolas Joseph Cugnot. French army captain. Operated
successfully a three-wheeled steam-powered vehicle. It was used as a tractor
for hauling cannon. It could travel 5 km/hour and had to stop every 10 or 15
minutes to build up steam.
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1770–1789 CE Antoine Laurent Lavoisier (1743–1794, France).
French chemist who gave the first accurate scientific explanation of the mys-
tery of fire. In 1777, after a series of careful experiments, he stated that burn-
ing is the result of rapid union of the burning material with oxygen and that
respiration is a form of combustion (1780). In 1789 he wrote the first modern
textbook of chemistry302 in which he formulated the principle of conservation
of matter303. These ideas led him to write the first chemical equation.

Originated the modern concept of the chemical element through the def-
inition: “an element is a substance that cannot be decomposed into simpler
substances”. On the basis of this definition, he drew up a list of 30 or so
elements, most of which are still recognized as such.

Lavoisier was born in Paris of well-to-do parents, and attended the College
Mazarin, where he studied mathematics, astronomy, chemistry, and botany.
In 1768 he became a member of the Academy of Sciences. He established
an agricultural experiments station, and tried to improve farming methods in
France. Among his other varied interests were the increase of production of
salt, improved manufacture of gunpowder, plans for improving the social and
economic conditions of the community by means of saving banks, insurance
societies, canals, and workhouses. He was further associated with committees
on hygiene, coinage, the casting of cannon, etc., and was secretary of the
treasurer of the commission appointed in 1790 to secure uniformity of weights
and measures.

In 1787, Lavoisier, Berthollet and their associates introduced the first
method of chemical nomenclature based on scientific principles (“Method

d’une nomenclature chimique”).

He was executed on the guillotine for his membership in a financial com-
pany that collected taxes for the government304.

302 Traité élémentaire de chimie (1789), a work sometimes described as marking the

start of chemistry as a science, and classed with Darwin’s Origin of the Species

(1859) in biology and Newton’s Principia mathematica (1687) in physics. In

his book, Lavoisier describes fermentation as the splitting of sugar into alcohol

and CO2. He characterized the reaction as an oxidation-reduction process. He

also made the first measurements on human metabolic rate.
303 He arrived at this conclusion after realizing that the total weight of all the

products of a chemical reaction must be exactly equal to the total weight of the

reacting substances. He was able to draw correct inferences from his weighings

because, unlike many of the phlogistonists, he looked upon heat as imponder-

able.
304 A petition in his favor addressed to Coffinhal, the president of the tribunal,

is said to have been met with the reply: “La Republique n’a pas besoin de
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The name Lavoisier is indissolubly associated with the overthrow of the
phlogistic doctrine that had dominated the development of chemistry for over
a century, and with the establishment of the foundations upon which the
modern science rests. Justus von Liebig said of him:

“He discovered no new body, no new property, no natural phenomenon
previously unknown; but all the facts established by him were the necessary
consequences of the labors of those who preceded him. His merit, his immortal
glory, consists of this — that he infused into the body of science a new spirit;
but all the members of that body were already in existence, and rightly joined
together”.

Founders of Modern Chemistry – from Lavoisier to
Mendeleev (1778–1889)

If a specific date is to be set for the science of chemistry, it may be said
to have begun with Robert Boyle’s clear definition of a chemical element
in his Sceptical Chymist of 1661. Nevertheless, it would be quite wrong to
suppose that there was a sharply defined transition from empiricism to science.
Chemical theory was built on a strong foundation of knowledge laboriously
built up over the centuries by practical men and, on a level more detached
from reality, by the alchemists with their fruitless preoccupation with the
transmutation of base metals into gold and the preparation of an elixir of life.
More realistic than the alchemists, though more limited in ambition, were the
so-called iatrochemists of the 16th century Paracelsian school, who looked on
chemistry as primarily the handmaiden of medicine.

The discovery of gases305 during 1620–1774, and the investigation of their
properties slowly undermined the phlogiston theory306, and after 1785 it

savants”.
305 Hydrogen (Boyle, 1670; Cavendish, 1766); Ammonia (Kunckel, 1677;

Berthollet, 1787); Oxygen (Scheele, 1772; Priestley, 1774); Nitrogen

(Cavendish and others, 1772); Chlorine (Scheele, 1772; Priestley, 1774); Car-

bon dioxide (Van Helmont, 1620; Black, 1754); Carbon monoxide (Daniel

Rutherford, 1772).
306 The name phlogiston was coined (1703) by Georg Ernst Stahl (1660–1734),

a professor of medicine and chemistry at Halle.
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rapidly disappeared except among a few very conservative chemists. [Al-
though the theory had the advantage of coordinating a large number of facts
into a system, it retarded the progress of chemistry, and prevented a number
of the best investigators from seeing the correct explanation of the facts they
brought to light.]

With the publication in 1789 of the Elements of chemistry by Lavoisier,
the science of chemistry severed its remaining connections with the alchem-
ical past and assumed a modem form. Lavoisier stressed the importance of
quantitative methods of investigation in chemistry, and in this connection,
he introduced the principle of conservation of matter. Lavoisier’s new view-
point led to the elaboration of several empirical laws. The first was the law of
equivalent proportions (1791), formulated by Jeremias Benjamin Richter
(1762–1807, Germany). After this discovery, tables of equivalent weights were
drawn up, showing the relative amounts of chemical elements that would com-
bine with each other. Richter also introduced the name stoichiometry .

A second law, that of constant proportions, was put forward (1797) by
Joseph Louis Proust (1754–1826, France). Finally, the revival of the atomic
theory (1803) by John Dalton (1766–1844, England), opened the road to
the quantitative analysis and synthesis of compounds and put chemistry on
solid foundations upon which the scientific method could rest.

Gay-Lussac (1778–1850, France) then established the law of combining
gaseous volumes (1807), followed by an hypothesis (1811) of Amadeo Avo-
gadro (1776–1856, Italy) which reconciled Dalton’s atomic theory with Gay-
Lussac’s law. But Avogadro’s hypothesis was not accepted until the 1860’s,
and chemists long continued to base atomic weights on arbitrary rules307.

William Prout (1785–1850, England), a London physician, suggested
(1815) that the atoms of all the elements were composed of a discrete number
of hydrogen atoms, but Jöns Jacob Berzelius (1779–1848, Sweden), who

307 Dalton himself denied to the end the validity of Avogadro’s hypothesis(!) be-

cause Avogadro pointed out that the molecules of elementary gases are not

necessarily the atoms themselves, but usually consist of groups of atoms. Both

kind of particles, atoms and molecules, had been called “atoms” by Dalton, but

they are really different. Dalton held that like atoms must repel one another

and could not combine. With his logic, the fact that one volume of oxygen com-

bined with one volume of nitrogen to produce two volumes of nitric oxide meant

that nitric oxide should contain only half as many particles in a given volume as

nitrogen or oxygen. But the true reaction is N2+O2=2NO in full accord with

Avogadro’s hypothesis. The hypothesis was also rejected by Gay-Lussac and

Berzelius.
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devised the modern chemical symbols (1813) and introduced the name Halo-
gen (1825), showed that the atomic weights of the elements were not exact
multiplies of the weight of the atom of hydrogen.

From about 1820 to 1860 the atomic theory did not play a prominent
role in chemistry. For the most part chemist preferred to use the directly
determined equivalent weights of the elements, rather than the atomic weights
which involved uncertain estimates as to the combining numbers of the atoms.
The rejection of Avogadro’s hypothesis left chemists without a general method
of ascertaining the combining numbers of the elementary atoms.

As early as 1824, chemists discovered isomers (compounds with the same
chemical formulas but different molecular structure). It all began with Eil-
hard Mitscherlich (1794–1863, Germany), one of Berzelius’ pupils, who
noticed (1819) that compounds with similar chemical formulae had the
same crystalline form. This was the advent of isomorphism, through which
Berzelius could determine the formulae of many salts and the atomic weight
of their constituent elements.

In the same year Pierre Louis Dulong (1785–1838, France) and Alexis
Thérèse Petit (1791–1820, France) found in Paris that in the case of a
number of metals, the product of their atomic weight and specific heats was
constant. This law enabled rough values of the atomic weights of the metals
to be determined.

The discoveries of Galvani (1771) and Volta (1775) and the availabil-
ity of the Voltaic cell, soon led to the development of the new branch of
electrochemistry. It appeared that electricity could bring about chemical ac-
tion; William Nicholson (1753–1815, England) and Anthony Carlisle
(1768–1840, England) performed (1800) the first electrolysis of water. The
experiments of Humphry Davy (1778–1829, England) during 1801–1806
on the electrolysis of salt solutions led him to the theory that the chemical
reaction between the elements, was essentially of an electric character and
paved the road to the electrical theory of chemical affinity developed further
by Berzelius. The laws of electrolysis were introduced (1833) by Michael
Faraday (1791–1867, England).

Inorganic chemistry developed rapidly in the period 1790–1830, as geol-
ogists discovered numerous minerals for the chemists to analyze. Berzelius
himself described the preparation, purification, and analysis of over 2000 in-
organic compounds in the decade 1810–1820. Hundreds of chemists, mainly in
German, French, English and Swedish universities were discovering each year
new elements and compounds and determining their properties: Uranium
(1789) was discovered by Martin Heinrich Klaproth (1743–1817, Ger-
many); Chromium (1798) by Louis Nicolas Vauquelin (1763–1829, France);
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Bromine (1826) by Antoine Jérome Ballard (1802–1876, France); Palla-
dium and Rhodium (1803) by William Hyde Whollaston (1766–1828);
hydrogen peroxide by Louis Jacques Thenard (1777–1857, France).

Early recognitions of the law of mass action were made by Carl Friedrich
Wenzel (1740–1793, Germany) in 1777 and by Claude Louis Berthollet
(1748–1822) in 1799. Jean Antoine Chaptal (1756–1832, France) pro-
posed the name nitrogen (1790) and William Whewell (1794–1866, Eng-
land) coined the names electrolysis, electrolyte, anode, cathode, anion and
cation at the request of Michael Faraday (1833). Robert Wilhelm Bun-
sen (1811–1899) studies the chemical action of light (1857) and applied the
spectroscope to chemistry (1859).

In 1807, Berzelius named the class of solid substances that melt upon
heating — inorganic and those that burn — organic. It was soon discovered
that while minerals could be characterized by the relative amounts of the
elements which were contained in them, organic compounds from the start
were seen to be complex arrangement of few elements, notably of carbon (C),
hydrogen (H), oxygen (O), and nitrogen (N); quantitative analysis did not
go far toward the characterization of such compounds.

Isolated studies of carbon compounds go back to the Middle Ages (e.g.,
alcohol, ether, acetone). The investigations of Scheele during 1770–1784,
resulted in the discovery of many organic acids in plants and fruits, glycerin,
HCN and esters.

The first satisfactory method of organic analysis was worked out by Gay-
Lussac and Thenard (1810). Michel Eugène Chevreul (1786–1889)
investigated the composition of oils and fats (from 1813), explained the reac-
tion of saponification and worked on the analysis of organic compounds. The
first amino acid was isolated and studied by Henri Braconnot (1781–1855,
France) in 1820.

The development of organic chemistry was boosted considerably by the
works of the German chemists Friedrich Wöhler (1800–1882) and Justus
von Liebig (1803–1873). Liebig went to Paris to study under Gay-Lussac
at the Ecole Polytechnique, and Wöhler went to Stockholm to study under
Berzelius. The later, as late as 1819, had thought that organic compounds
did not obey the law of constant proportions and did not belong to chemistry
proper, as they were the products of “vital forces”. But in 1828, Wöhler
broke down the hypothetical barrier dividing inorganic substances from or-
ganic substances by heating some ammonium cyanate, classed as inorganic,
and got urea, an organic chemical308.

308 He had mixed solutions of silver cyanate (AgCNO) and ammonium chloride

(NH4Cl), producing the isomer ammonium cyanate (NH4.CNO) which, when



1770 CE 1391

Now organic and inorganic chemistry were brought close together. Never-

theless, certain fundamental difference were emerging. It was found already

in 1815 by Jean Baptiste Biot (1774–1862, France) that tartaric acid pro-

duced by grapes [HOOC −(CHOH)2−COOH] polarizes light, while seemingly

the same acid produced in the laboratory, did not polarize light — both acids

having the same chemical formula. Liebig and Wöhler found other simi-

lar situations in 1824. In 1830, Berzelius named such pairs of compounds

isomers.

Louis Pasteur (1822–1895, France) investigated the optical activity of

organic compounds (1848) and had worked out the mechanism by which two

otherwise identical isomers behave differently in living organisms. He sug-

gested that the shape of the molecule might be different between the isomers.

He also provided experimental proofs for the vitalistic theory of fermentation
(1857) and later carried out fundamental research in bacteriology, disproving

‘spontaneous generation’.

Jean Baptiste Dumas (1800–1884, France), chemist and politician, sug-

gested that the chemical properties of organic compounds were due to their

particular structural arrangements, or type, and not to the electrical character

of the elements which compose them (1838). His theory had a direct influence

on the revival of the atomic theory, which meanwhile had receded into the

background of chemical theory.

The theory of types was further developed by August Laurent (1808–

1853) [who also discovered anthracene (1832)] and Charles Frederic Ger-

hardt (1816–1856, France) who revived the theory of acid radicals and con-

tributed to the developing concept of atomic weights. Charles Adolphe

Wurz (1817–1884, France) developed the method of synthesizing long-chain
hydrocarbons using hydrocarbon iodides and sodium (1855).

warmed, gave crystals of urea identical to those obtained as a waste product

in urine. He wrote: “I must tell you that I can make urea without requiring a

kidney or an animal, either man or dog”.

Previously, urea had been obtained synthetically by John Davy in 1811 by

the action of ammonia gas on carbonyl chloride (the poisonous gas phosgene,

obtained when a mixture of equal volumes of chlorine and carbon monox-

ide is exposed to bright sunlight). The reactions are: Cl2+CO ⇒ COCl2,

4NH3+COCl2 ⇒ CO(NH2)2+2NH4Cl. Urea is then separated from ammo-

nium chloride by warming with alcohol in which urea is soluble.

Davy, however, was not aware that urea was formed in the reaction.
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In 1859, Marcel Morren, the dean of the science faculty of Marseille,
discovered acetylene (H −C ≡ C −H) by activating an electric spark in a glass
containing carbon electrodes and hydrogen309 (2C+H2 � C2H2).

Pierre-Eugéne-Marcellin Berthelot (1827–1907) succeeded in synthe-
sizing many organic compounds (1854–1868), among them alcohol (1857) and
the first that do not occur naturally (1860). Through this he seriously under-
mined the remaining support for the theory of vitalism. Berthelot also carried
out important work in physical chemistry on reaction velocity, thermochem-
istry and detonation waves.

Christian Friedrich Schönbein (1799–1868, Switzerland) discovered
ozone (1840) and synthesized (1846) the new organic compound nitrocellu-
lose310 which heralded the age of high explosives. Thomas Graham (1805–
1869, Scotland), one of the founders of physical chemistry, discovered his
law of diffusion of gases (1829). Hermann Kolbe (1818–1884, Germany)
foreshadowed modern structural formula and valence.

However, it was Edward Frankland (1825–1899, England) who intro-
duced the concept of valence of elements into chemistry (1852) [valenc = the
definite capacity of each atom to combine with other atoms] and recognized
that the valency of an element could vary. He noted that the elements fell
into groups which had the same valency.

Friedrich August Kekulé (1829–1896, Germany) recognized the 4-
valency of carbon (1857) and began to use structural diagrams based on
bonding in organic chemistry (1861). His diagrams showed that Pasteur was
correct in assuming that the shape of the organic molecule determines its
properties. Kekulé also put forward the hexagon formula for benzen (1865).

309 Morren reported that he obtained ‘carbonized hydrogen’, the nature of which

he has not yet established. Three years later (1862) Marcelin Berthelot

repeated the same feat. However, he knew that he had synthesized acetylene.

There was one difference between the two experiments. Morren had made a

discovery and Berthelot an invention. Jean Baptiste Dumas, who was

president of the Academy, drew Berthelot’s attention to what Morren had

done before him. Berthelot replied that Morren had not been able to verify

his production of a carbonized hydrogen. In fact, Morren had verified it by a

spectral analysis of the gas obtained, but he was not up to contesting the matter

with Berthelot; he stepped down and history has forgotten his name.
310 It was discovered when Schönbein’s wife’s apron, which he had used to wipe up a

spilled mixture of acids, exploded and vanished in a puff of smoke. When others

tried to manufacture guncotton in quantity, many were killed by premature

explosions.
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At the international Karlsruhe conference (1860) Stanislao Cannizzero
(1826–1910, Italy) revived the work of Amadeo Avogadro, particularly, Avo-
gadro’s hypothesis and the important distinction between atoms and molecules
(1811). Cannizzero employed the Avogadro hypothesis in the straightforward
determination of molecular weights of gaseous compounds by comparing the
weight of the volume of the gas to that of an equal volume of hydrogen at
the same pressure and temperature. From molecular weights he proceeded to
atomic weights. The valency could then be obtained by dividing the atomic
weight by the equivalent weight of the element.

With settled values for the valencies of the elements, structural models of
their compounds were constructed. The reaction of those compounds provided
tests for the validity of such structures, while, in turn, the proposed structures
indicated possible new reactions.

The final addition to the classical theory of molecular structure came in
1874 when Joseph Achille Le Bell (1847–1930, France), and Jacobus
Hendricus Van’t Hoff (1852–1911, Holland), suggested independently that
the 4 valencies of carbon were directed in space toward the apices of a regular
tetrahedron, in order to account for the two isomeric forms of tartaric acid
isolated by Pasteur (1848), and other cases of optical isomerism discovered
later.

The acceptance of Avogadro’s hypothesis, followed by the establishment of
the definitive valencies and atomic weights of the elements, had its influence
upon inorganic as well as organic chemistry. The works of Johann Dobere-
iner (1780–1849, Germany) and Antoine Jérome Ballard (1802–1876,
France) helped to classify the elements into equivalency groups. Alexan-
dre Émile Beguyer de Chancourtois (1820–1886, France) was first to
publish a list of elements in the order of their atomic weights (1862), but
since he failed to furnish an accompanying diagram, the periodicity of the
elements was far from clear.

Finally, Dimitri Ivanovich Mendeleev (1834–1907, Russia) in 1869
and Julius Lothar Meyer (1830–1895, Germany) in 1870, formulated the
periodic law, stating that the properties of the elements varied in a periodic
manner with their atomic weights. Both emphasized that there were gaps in
the periodic table which elements as yet unknown should occupy. Mendeleev
specified three gaps, all of which were filled by discoveries between 1875 and
1885. As a consequence, he got most of the credit for the periodic table.

The periodic classification provided the first theoretical guide to the search
for new elements: 23 elements known to Lavoisier had been discovered by the
trial and error study of their specific chemical relations. Practical chemical
analysis became more systematized, and, applied to the mineral specimens
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provided by the geologists, it led to the discovery of 31 new elements in the
period 1790–1830.

Between 1830 and 1860 little was accomplished in regard to the isolation
and identification of new elements, save the rare-earths lanthanum and er-
bium by Carl Gustaf Mosander (1797–1858, Sweden) in 1839–1841. With
his new spectroscope, Bunsen discovered the new alkali metals cesium and
rubidium in 1860–1861.

In London, William Crookes (1861–1919) found thallium (1861) and
in the Freiberg School of Mines, Ferdinand Reich (1799–1882, Germany)
discovered indium (1863). Then came the discoveries of gallium (1874), ytter-
bium (1878), scandium (1879), gadolinium (1880) and germanium (1885) by
the respective chemists Paul Emile Lecoq de Boisbaudran (1838–1912,
France; Ga), Jean Charles Galissard de Marignac (1817–1894, Switzer-
land; Gd), Lars Fredrik Nilson (1840–1859, Sweden; Sc) and Clemens
Alexander Winkler (1838–1904, Germany; Ge).

The development of chemistry in the second half of the 19th century was
mainly due to the rapid growth of synthetic organic chemistry: attempts were
made to prepare in the laboratory those compounds which built up the plant
and animal organisms. In addition, numerous drugs and dyestuffs have been
prepared which are not found in the storehouse of nature.

Three of the leading organic chemists who contributed most of this trend
were Adolf Johann Friedrich Wilhelm von Baeyer (1835–1917), Emil
Hermann Fischer (1852–1919), and Victor Meyer (1848–1898) — all
from Germany. Baeyer synthesized the dye indigo blue (1878) Fischer won
the Nobel Prize (1902) for sugar and parine synthesis (1891–1898), and Meyer
discovered thiophene (1882).

In the 19th century chemistry held sway as the leading science. Yet it
was running ahead of its theories, emerging with little understanding of why
certain rules worked; for example, the concept of valence was introduced in
1852 and the periodic table in 1869, but it was not until the discovery of
the Pauli exclusion principle in 1925 that either of these could be understood
from first principles. Likewise, with no understanding of how electron behave
(indeed, without any suspicion of electrons!) the wonders of spectroscopy
emerged without a theoretical basis.
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1771 CE Encyclopedia Britannica published.

1771–1772 CE Alexandre-Théophile Vandermonde (1735–1796,
France). Mathematician and musician. Founded the general theory of deter-
minants (1772).311

His role in this field is similar to the one played by Cayley with regard to
matrices in 1857. In his “Mémoire sur la resolution des équations” (1771), he
approached the general problem of solubility of algebraic equations through a
study of functions invariant under permutations of the roots of the equation.

Kronecker (1888) claimed that the study of modern algebra began with
this paper of Vandermonde. Cauchy stated that Vandermonde had priority
over Lagrange (1771) for this remarkable idea which eventually led to the
study of group theory . He thus discovered the first truly group-theoretic
properties of permutations and the key to understanding of the solution of
equations by radicals.

311 His name is best known today for the Vandermonde determinant . Yet nowhere

in his four mathematical papers (1771–1772) does this determinant appear!

Let

P (x) = xn − s1x
n−1 + · · · + (−)nsn = (x − x1)(x − x2) · · · (x − xn),

let σi =
n∑

j=1

xi
j for i = 1, 2, ... and let A and B be the n × n matrices

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 1 · · · 1

x1 x2 · · · xn

x2
1 x2

2 · · · x2
n

...
... · · ·

...

xn−1
1 xn−1

2 · · · xn−1
n

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

n σ1 σ2 · · · σn−1

σ1 σ2 σ3 · · · σn

σ2 σ3 σ4 · · · σn+1

...
... · · ·

...
σn−1 σn σn+1 · · · σ2n−2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

It can be then shown that
• det A =

∏

i>j

(xi − xj) = Vandermonde’s determinant

• B = AAT (AT = transpose of A)
• D(s1, s2, ..., sn) = discriminant of P (x) = det B

• Discriminant of P (x) = xn + px + q is

(−)
n(n−1)

2
[
(−)n−1(n − 1)n−1pn + nnqn−1

]
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Solved (1771) the irreducible cyclotomic equation

(z11 − 1)/(z − 1) = z10 + z9 + z8 + z7 + z6 + z5 + z4 + z3 + z2 + z + 1 = 0

in radicals.

1772 CE Nitrogen was discovered independently by Daniel Rutherford
(1749–1819, Scotland), Carl Scheele (1742–1786, Sweden), Joseph Priest-
ley (1733–1804, England), and Henry Cavendish (1731–1810, England).

1772 CE Johann Bode (1747–1826, Germany) stated an empirical
relation that gives the approximate mean distance of the known planets from
the sun. It is known as Bode’s law although it was stated earlier (1766) by
Johann Titius (1729–1796, Germany) and it is not a law in the strict physical
sense. If 4 is added to 0, 3, 6, 12, 24, 48, 96, and each sum is divided by 10,
a sequence of number results, each of which is the approximate distance of a
planet in astronomical units312 [Mercury 0.4 (0.39); Venus 0.7 (0.72); Earth
1.0 (1.00); Mars 1.6 (1.52); Ceres 2.8 (2.77); Jupiter 5.2 (5.20); Saturn 10.0
(9.54); Uranus 19.6 (19.18); Neptune 38.8 (30.06); Pluto 77.2 (39.44).]

When Bode’s law was stated, there was an apparent gap in the series
between the distances of Mars and Jupiter and it was thought that there was
a planet in the gap.

On Jan. 1, 1801, Guiseppe Piazzi313 (1746–1826, Italy) discovered the
first known asteroid. This “star” was found to move and was observed for
about a month before it became “lost” owing to the illness of its discoverer.

Based on complicated calculations with meager evidence (41 days of data),
Carl Friedrich Gauss (1771–1855, Germany), then only 23 years old, de-
termined its orbit using a new method developed by him ad hoc. When its
distance from the sun was found to fit almost exactly the mean distance com-
puted by Bode’s law, it was assumed to be the missing planet and named
Ceres (diameter ∼ 1000 km), for the goddess of agriculture and protector of
Sicily.

It is not clear today whether Bode’s law is just a coincidence of numbers,
or whether it describes some deeper interrelation among the planet’s orbits.
If this progression of numbers indeed has any meaning, it could provide some
insight into the early history of the solar system. But it could also just be an

312 The number in brackets is the actual value.
313 The astronomer Piazzi was born in Ponte di Valtellina, Italy. He became a

Theatine monk, professor of theology in Rome (1779), and professor of mathe-

matics at the Academy of Palermo (1780). He set up an observatory at Palermo

(1789) and published a catalogue of fixed stars (1813), listing 7646 entries.
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arrangement that would hold for any system of bodies orbiting about a center
of mass, given enough time for those bodies to reach some state of dynamic
equilibrium.

Gauss’ method depends on accurate positions of the body on 3 dates,
preferably separated by a few weeks. It is still used in modified form. Ceres
was found again in the position predicted by Gauss. Other asteroids were
discovered (often called minor planets): Pallas (1802), Juno (1804), Vesta
(1807), Astraea (1845). Presently, nearly 2000 asteroids are known.

The fame earned by Gauss through his efforts on the problem eventually
led, in 1807, to his appointment as director of the Göttingen Observatory,
where he remained for the rest of his life.

1773–1778 CE Otto Frederik Müller (1730–1784, Denmark). Nat-
uralist. Taxonomically separated bacteria314 from protozoa and was able to
distinguish two morphological types of bacteria: bacillum and spirillum. Bac-
teria were first stained (with indigo and carmine) by Wilhelm Friedrich von
Gleichen-Russworm (1778).

1773–1825 CE Pierre Simon de Laplace (1749–1827, France). An
eminent mathematician and astronomer. His most outstanding work was
done in the fields of celestial mechanics, probability, differential equations
and geodesy.

He was first to examine the conditions of stability of the system formed by
Saturn’s rings, pointed out the necessity for their rotation and assigned to it a
period (10h33m) virtually identical with that established by the observations
of Herschel. In 1773 he began his studies of the figure of equilibrium of a
mass of rotating fluid. The related subject of the attraction of spheroids was
also promoted by him, and in 1784 he generalized the results of Legendre and
Maclaurin and treated exhaustively the general problem of the attraction of
any spheroid form upon a particle situated outside or on its surface.

Laplace was born of poor parents at Beaumont-en-Auge in Normandy. His
early mathematical ability won him a teaching post in the military school of
Beaumont. He came to Paris and with the support of d’Alembert, became a
professor of mathematics in the Ecole Militaire of Paris.315

At the age of 24 he rose to fame following his discovery (1773) concerning
the mutual gravitational interactions of the constituents of the solar system

314 First discovered by Leeuwenhoek (1683).
315 Napoleon Bonaparte was a cadet at this school from October 1784 to October

1785.
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(sun, planets and their satellites). He showed that while perturbations316 in-
troduced small changes into planetary orbits, these changes were periodic:
that is, the orbit would alter its properties in one direction, then back in the
other, and so on indefinitely. Over the long run, the average shape of the
orbit would remain constant317. This is Laplace’s celebrated conclusion of
the invariability of the planetary mean motions, carrying the proof as far as
the cubes of the eccentricities and inclinations. This was the first and most
important step in the establishment of the stability of the solar system. It
meant that the solar system was in dynamic equilibrium, and could continue
indefinitely into the future and might already have existed through an indefi-
nite past [assuming of course that there is no appreciable overriding influence
by stars outside the system].

Laplace’s results were followed by a series of investigations, in which La-
grange and Laplace alternatively surpassed and supplemented each other in
assigning limits of variation to the several elements of the planetary orbits.

In his monumental five-volume treatise: “Traité de Mécanique Céleste”
(1799–1825), Laplace summed up the work on gravitation of several gener-
ations of illustrious mathematicians [giving credit only to himself (!) and
suppressing references to discoveries of his predecessors and contemporaries,
including Lagrange]. The principal legacy of Mécanique Céleste to later gen-
erations lay in Laplace’s wholesale development of potential theory318, with its

316 To dig deeper, see:

• Nayfeh, A., Perturbation Methods, Wiley, 1973, 425 pp.

• Bellman, R., Perturbation Techniques in Mathematics, Physics and Engineer-
ing, Holt, Rinehart and Winston, 1964, 118 pp.

• Bush, A.W., Perturbation Methods for Engineers and Scientists, CRC Press,

1992, 303 pp.

• Hinch, E.J., Perturbation Methods, Cambridge University Press, 1991,

160 pp.

• Bender, C.M. and S.A. Orszag, Advanced Mathematical Methods for Scien-
tists and Engineers, McGraw-Hill, 1978, 593 pp.

317 Newton himself was bewildered by the complexity of the solar system and was

of the opinion that divine intervention would occasionally be needed to prevent

this complex mechanism from degenerating into chaos. Laplace, apparently,

decided to seek reassurance elsewhere.
318 For further reading, see:

• Kellogg, O.D., Potential Theory, Dover, 1953, 384 pp.

• MacMillan, W.D., The Theory of the Potential, Dover, 1958, 469 pp.
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far-reaching implications for different branches of physics ranging from grav-
itation and fluid dynamics to electromagnetism and atomic physics. Even
though he lifted the idea of the potential from Lagrange without acknowledge-
ments, he exploited it so extensively that ever since his time the fundamental
partial differential equation of potential theory has been known as the Laplace
equation319.

The overall aim of Laplace in his treatise was to “offer a complete solution
of the great mechanical problem presented by the solar system, and to bring
the theory to coincide so closely with observation that empirical equations
should no longer find a place in astronomical tables”.

The first part of the work (2 volumes, 1799) contains methods for calcu-
lating the movements of translation and rotation of the heavenly bodies, for
determining their figures and resolving tidal problems.

In his book ‘Exposition du Systeme du Monde’, published in 1796, Laplace
speculated on the subject of planetary origin in his famous nebular hypothesis.

Already in 1644, Descartes advanced the idea that the sun and its solar
system formed from a gigantic whirlpool, or vortex, in a universal fluid, with
the planets and their satellites forming from smaller eddies. This crude theory
did not include any clearly specified idea of the nature of the cosmic substance
from which the sun and planets arose, but it did account for the fact that all
orbital motions are in the same direction.

The hypothesis of Descartes320 was the first of a general type known as
evolutionary theories , in which the formation of the solar system is posited to

• Webster, A.G., Partial Differential Equations of Mathematical Physics, Dover,
1956, 440 pp.

• Webster, A.G., Dynamics – Lectures on Mathematical Physics, Hafner, 1949,

588 pp.

• Bateman, H., Partial Differential Equations of Mathematical Physics, Cam-

bridge University Press, 1959, 522 pp.

319 It is the equation ∇2φ = 0 of the gravitational potential φ, outside the source

region. It had actually been discovered by Euler in 1752, in connection with his

studies of hydrodynamics.
320 The Cartesian idea of a set of universal laws which control natural occurrences

exercised a powerful appeal in the succeeding centuries. Laplace, even as he de-

veloped his theory of a naturally evolving cosmos, took the motion to its logical

conclusion by endorsing the idea that, given the laws of gravitation and other

forces, Newtonian mechanics, and the “initial conditions” of the universe, every

subsequent event not only can be accurately predicted, but is predetermined .

The whole history of the universe, and of earth, is but the inevitable unfolding
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have occurred as a natural by-product of the sequence of events that produced
the sun.

Immanuel Kant in 1755 further elaborated Descartes’ idea by applying
the recently discovered Newtonian mechanics to show that a rotating inter-
stellar gas cloud would flatten into a disc as it contracted.

Laplace added to this model the notion that as the spinning cloud flattened
into a disc, rotational inertial forces broke off concentric rings of matter, so
that at one point the early solar system would have resembled the planet
Saturn with its rings. Each ring was supposed to have condensed into a
planet.

In the same book, Laplace raised another speculation about an object
which he called “corps obscurs”. He noted (1796) that a consequence of
Newtonian gravity and Newtonian corpuscular theory of light was that light
would not be able to escape from a sufficiently massive object, but would be
bent around and stay trapped near the object321. In spite of this deduction,
the idea that a ‘black hole’ could actually exist in nature did not occur to
astronomers for almost 2 centuries. Laplace’s “Corps obscurs” were taken
up in the mid 1960’s by modern physicists, armed with the new General
Relativity Theory.

His other masterpiece was the treatise “Théorie Analytique des Proba-
bilités” (1812). Nowhere did Laplace display his genius more conspicuously
than in the theory of probabilities. The science which Pascal and Fermat
had initiated, was brought by him to near perfection. In this book he amal-
gamated his own discoveries with many ideas of others (unacknowledged!),

of the consequences of a set of eternal laws. Laplace believed that mathemati-

cal physics is capable of explaining everything , although in practice he ignored

physical phenomena not governed by the basic mathematical laws known in his

day. For example, he did not take into account (because he could not) the

electrical and magnetic interactions of bodies, their chemical reactions, their

nuclear transformations, the processes by which they are heated and cooled

— in short, all the phenomena now known to science but unknown to him.

Nevertheless, the Laplacian idea of a deterministic, natural evolving universe

– suitably modified by modern insight of quantum physics and chaos theory –

is nowadays taken for granted by science – even in the realms of biology and

cosmology (the study of the universe as a whole, including its very creation).
321 This was noted before (1784) by John Michell. Laplace calculated that no

light could escape from a body with the earth’s density and a radius 250 times

that of the sun. Did Laplace read Michell’s paper, published in the Philosophical

Transactions of the Royal Society of London?
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but even discounting this, his book is considered to be the greatest contribu-
tion to this branch of mathematics by any one man. Here he harnessed, for
the first time, the powerful machine of the infinitesimal calculus to discrete
mathematics.

To this end he invented the Laplace Transform, generating functions and
many other highly nontrivial tools. He showed how the Laplace transform can
be used to reduce the solutions of linear differential equations to definite in-
tegrals, and furnished an elegant method by which a linear partial differential
equation of the second order might be solved.

Laplace died exactly 100 years after the death of Isaac Newton. His last
words were: “That which we know is a trifle — that which we are ignorant of
is immense”.
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Worldview XV: Pierre-Simon de Laplace

∗ ∗∗

Nature laughs at the difficulties of integration.

∗ ∗∗

Read Euler: he is our master in everything.

∗ ∗∗

Such is the advantage of a well constructed language that its simplified nota-
tion often becomes the source of profound theories.

∗ ∗∗

“An intelligence, which at a given moment knew all of the forces that animate
nature, and the respective positions of the beings that compose it, and fur-
ther possessing the scope to analyze these data, could condense into a single
formula for the movement of the greater bodies of the universe and that of
the least atom: for such an intelligence nothing could be uncertain, and past
and future alike would be before its eyes.”

(1812)

∗ ∗∗
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Napoleon and his scientists

(Lagrange 1736–1813; Monge 1746–1818; Laplace 1749–1827;
Fourier 1768–1830)

In September 1785, Laplace examined and passed a cadet by the name of
Napoleon Bonaparte in a military school at Beaumont. With this education,
Napoleon qualified himself for the artillery.

Napoleon Bonaparte (1769–1821) Emperor of the French, was an en-
thusiastic amateur mathematician, particularly fascinated by geometry, which
of course had great military value. He was also a man with unbounded admira-
tion for the creative French mathematicians of his day. Whatever Napoleon’s
ability as a geometer may have been, it is to his credit that he so revolutionar-
ized the teaching of French mathematics that, according to several historians
of mathematics, his reforms were responsible for the great upsurge of creative
mathematics in the 19 th century France.

It is said that in 1797, while discussing geometry with Lagrange and
Laplace, Bonaparte surprised them by explaining some of Mascheroni’s
solutions that were completely new to them. “General”, Laplace reportedly
remarked, “we expect everything of you, except lessons in geometry”.

Yet, a theorem named after Napoleon exists. It states that the centers
of equilateral triangles constructed on the sides of an arbitrary triangle form
another equilateral triangle (Napoleon’s theorem). [The theorem provides a
generalization in which the word ‘equilateral’ is replaced by ‘similar’.] It is
very doubtful that Napoleon was well enough versed in geometry to have
discovered and proved it himself.

Monge gained the close friendship and admiration of Napoleon and ac-
companied the latter, along with J. Fourier, on the Egyptian Expedition
(1798).

The publication of Mécanique Céleste gained Laplace world-wide
celebrity. Asked by Napoleon why in the entire work he had not once men-
tioned God, Laplace replied: ‘Sire, je n’avais pas besoin de cette hypothèse’
(Sir, I had no need for that hypothesis).

But scientific distinctions by no means satisfied his ambition, and after
the French revolution Laplace’s political talents and greed for position came
into full play. He set a memorable example of a genius degraded to servility
for the sake of a riband and a title. He smoothly adapted himself by changing
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his principles – back and forth between fervent republicanism and fawning
royalism – and each time emerged with a better job and grander titles. The
ardor of his republican principles gave place to devotion towards Napoleon,
a sentiment promptly rewarded with the post of minister of the interior. His
incapacity for affairs was however so flagrant that it became necessary to
supersede him at the end of 6 weeks. “He brought into the administration”,
said Napoleon, “the spirit of the infinitesimals”.

His failure was consoled by elevation to the senate, of which body he
became chancellor in 1803. The title of Count he had acquired on the creation
of the Empire. Nevertheless, he cheerfully gave his voice in 1814 for the
dethronement of his patron, and his compliance merited a seat in the chamber
of peers and, in 1817, the dignity of a marquisate.
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Table 3.8: Greatest Mathematicians of the 18
th

century

Name Nat. Life-span Major Contribution

Jakob Bernoulli

(Jacque, James)

SW 1654–1705 Theory of probability;
isoperimetric problems (early
calculus of variation);
Bernoulli numbers and
polynomials.

Antoine Parent F 1666–1716 Solid analytical geometry
(1700).

G. Saccheri I 1667–1733 Forerunner of non-Euclidean
geometry.

Johann Bernoulli

(Jean, John)

SW 1667–1748 Principle of virtual work;
L’Hospitale rule; partial
differentiation;
Brachistochrone; Applied
calculus.

Abraham de
Moivre

E 1667–1754 Normal and binomial
distributions; Probability
theory; De-Moivre formula;
generating functions;
Approximation for n!.

J.F. Riccati I 1676–1754 Differential equations.

Roger Cotes E 1682–1716 Algebraic equations;
Trigonometry.

Fagnano dei Toschi I 1682–1766 Addition theorems for elliptic
integrals; Rectification of
curves; π = 2i ln 1−i

1+i .

Brook Taylor E 1685–1731 Polynomial approximation to
analytic functions; Integration
by parts; Calculus of finite
differences.
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Table 3.8: (Cont.)

Name Nat. Life-span Major Contribution

Christian Goldbach G 1690–1764 Goldbach conjecture (1742).

Colin Maclaurin E 1698–1746 Applied calculus; Attraction
of ellipsoids; determinants.

P.L.M. de
Maupertuis

F 1698–1759 Principle of least action
(optics and mechanics).

Daniel Bernoulli SW 1700–1782 Hydrodynamic theory; First
‘Fourier expansions’.

Thomas Bayes F 1702–1761 Principle of Inverse
probability (conditional
probability).

Gabriel Cramer SW 1704–1752 Determinants.

Leonhard Euler SW 1707–1783 One of the last, and one of the
greatest mathematical
universalists. Contributed to
all fields of pure and applied
mathematics. Established
analysis as an independent
science.

Comte de Buffon F 1707–1788 Geometrical probability.
Forerunner of Monte-Carlo
methods.

Alexis-Claude
Clairaut

F 1713–1765 Differential geometry.
Differential equations.

Jean Le Rond
d’Alembert

F 1717–1783 Scalar wave-equation;
Mathematical theory of
gravitational perturbation;
Foundations of calculus.



1773 CE 1407

Table 3.8: (Cont.)

Name Nat. Life-span Major Contribution

John Landen E 1719–1790 Elliptic Integrals and
functions.

Johann H. Lambert G 1728–1777 Irrationality of π and e;
Non-Euclidean geometry; map
projections; Infinite Series;
descriptive geometry.

Etienne Bezout F 1730–1783 Algebraic equations; (Bezout
eliminant).

A.T. Vandermonde F 1735–1796 Theory of determinants.
Notion of ‘group’.

Erland S. Bring S 1736–1798 The quintic equation
(x5 + px + q = 0, 1786).

Joseph Louis
Lagrange

F 1736–1813 Calculus of variations; Theory
of numbers; Interpolation
formulae; Theory of equations;
Continued fractions; 3-body
problem; Theoretical
dynamics.

John Wilson E 1741–1793 Theory of numbers (1770).

Caspar Wessel S 1745–1818 Geometry of complex
numbers.

Gaspard Monge F 1746–1818 Descriptive geometry;
differential geometry of space
curves and surfaces.

Jean-Baptiste-
Joseph

Delambre

F 1749–1822 Spherical trigonometry.
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Table 3.8: (Cont.)

Name Nat. Life-span Major Contribution

Pierre Simon de
Laplace

F 1749–1827 Celestial mechanics; Theory of
analytic probability; Partial
differential equations.

Lorenzo
Mascheroni

I 1750–1800 Geometry; infinite series.

Marie Adrien
Legendre

F 1752–1833 Number theory; Elliptic
Integrals; method of least
squares; Law of quadratic
reciprocity.

Lazare Carnot F 1753–1823 Synthetic geometry.

J.B.M.C. Meusnier F 1754–1793 Differential geometry;
Minimal surface (1785).

Aimé Argand SW 1755–1803 Geometry of complex
numbers.

Marc-Antoine
Parseval

F 1755–1836 Parseval Equality.

Paolo Ruffini I 1765–1822 The quintic equation (1799).

Key: SW = Switzerland; F = France; I = Italy; E = England; G = Germany;
S = Scandinavia.
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1774–1784 CE Marcus (Mordecai) Herz (1747–1803, Germany).
Physician, physicist and philosopher. One of the best physicians of his time.
Was concerned with the ethical aspects of his profession and published (1783)
“The Physician’s Prayer”.

Born to a poor Jewish copyist of scriptures. At the age of 15 left his par-
ent’s home and moved to Königsberg, where he began his philosophy studies,
under Kant. Befriended Moses Mendelssohn in Berlin (1770) and studied
medicine (1770–1774) at the University of Halle. Published books on phi-
losophy and medicine. King Frederick William III (1744–1797) of Prussia
appointed him Professor for life. His wife Henriette (1764–1847) was a fa-
mous beauty and society leader who conducted a brilliant salon frequented
by Boerne, Humboldt, Fichte and Schleiermacher. She married Herz at
age of 15 and after his death adopted the Christian faith (1817).

1774–1786 CE Joseph Priestley (1733–1804, England). Chemist.
Shares the credit for the discovery of oxygen322 with Carl Wilhelm Scheele
of Sweden. His experiments are described in his 6 volume treatise “Experi-
ments and Observations of Different Kinds of Air”. Priestley prepared and
examined oxygen, nitrous oxide, nitric oxide, nitrogen dioxide, hydrogen chlo-
ride, ammonia, silicon fluoride and sulphur dioxide. His work firmly estab-
lished the fact that different gaseous forms of matter exist, each with definite
properties.

Priestley was born near Leeds. He studied for the ministry and became a
dissenting (nonconformist) minister in Leeds and Birmingham. Through his
friendship with Benjamin Franklin he became interested in electricity, on
which he performed many brilliant experiments. He turned to chemistry in
1772.

Priestley’s sympathies for the cause of the French Revolution made him
unpopular in England. In 1791 an angry mob burned his home and chapel in
Birmingham. He then left England and moved to the United States in 1794.

1774–1800 CE Alessandro Giuseppe Antonio Volta (1745–1827,
Italy). Physicist. Pioneer of electrical science. Invented the electric battery,
the first electrochemical source of electric current. His discovery of the decom-
position of water by electrical current laid the foundation of electrochemistry.
He also invented the electric condenser.

Volta was born in Como, Italy, a member of a noble family. By 1774 he
had established a reputation by his research work in electricity. In 1779, a

322 Priestley called the gas “dephlogisticated air”. The French chemist Antoine

Lavoisier named it oxygen. At that time gases were called “airs”.
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chair of physics was founded in Pavia, and Volta was chosen to occupy it.
In 1782 he journeyed through France, Germany, Holland and England, and
became acquainted with many scientific celebrities. In 1801 Napoleon called
him to Paris, to show his experiments on contact electricity, and a medal was
struck in his honor. He was made a senator of the kingdom of Lombardy. In
1815, the emperor of Austria made him a director of the philosophical faculty
of Pavia. The volt , a unit of electric potential, is named for him.

1774–1804 CE Johann Heinrich Pestalozzi (1746–1827, Switzer-
land). Educational reformer. Influenced strongly methods of instruction in
elementary schools throughout Europe and America.

Pestalozzi believed a pupil learned best by using his own senses and by
discovering things for himself. His emphasis, therefore, lay upon concrete
approach in education, with objects used to develop powers of observation
and reasoning.

He was born in Zurich. He first studied for the ministry, but later changed
to law. Poor health forced him to abandon law, and Pestalozzi settled on
his farm near Zurich. In 1774 he established a school for poor children on
his estate and endeavored to put in practice educational theories of Jean-
Jacques Rousseau; although the school failed (1780), he derived from his
experience a knowledge of certain principles for effective education, which he
explained in his influential book Lienhard und Gertrude (1787). His most
famous educational experiments were carried on at an institute for training
teachers which he established at Yverdon (1805–1825). His theories are also
expounded in Abendstunde eines Einsiedlers (1780) and Wie Gertrude ihre
Kinder lehrt (1801).

1775–1785 CE William Withering (1741–1799, England). Physician
and botanist. Discovered the use of digitalis, the most important drug in the
treatment of heart disease323.

Withering was born in Wellington, England. In 1766 he received his med-
ical degree from the University of Edinburgh and established a general practice
in the town of Stafford in Shropshire. He listened with interest (1775) to the
country folk in his native district as they described the benefit of foxglove-tea

323 Digitalis was a medical herb for centuries. Dioscorides (ca 80 AD) praised it

as a plant whose leaves, applied to the skin, could cure many diseases. Rural

people made hot water infusions of leaves and drank foxglove tea to experience

inexpensive but dangerous intoxication.
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for ‘dropsy’324. For several gold sovereigns he purchased the recipe from a
local ‘witch’ and for the next ten years studied digitalis therapy in dropsy.
Chemistry was not sufficiently advanced to permit the isolation of the active
ingredient; biology in general and human physiology in particular were just
in their infancy.

It was thus left to Withering to answer questions such as: which part
of the plant was most active, could the leaves be dried; what was the best
solvent for the active material (cold water); should one pick leaves in early
or late summer and, most importantly, what was the optimum dose and how
frequently should it be administered. In 1785, he published An Account of
the Foxglove and Some of its Medical Uses, a clinical study so detailed and
so accurate, so as to make the use of digitalis effective and safe.

The report was something of a bombshell in England where the standard
treatment of dropsy was to puncture the water-logged tissues with an unster-
ilized scalpel and stretch the patient over bedsprings to allow the fluid to drip
into buckets.

William Withering died of tuberculosis (1799) and was buried in a vault
on which a Digitalis plant was engraved.

324 A cardiac-stimulating chemical, occurring naturally in the dried leaves of the

common garden flower purple foxglove (Digitalis purpurea). It is a mixture

of several cardiac glucosides. Doctors use digitalis in small doses to stabilize

heartbeat when the action of the heart muscle is too weak to force blood out of

the heart normally.

Dropsy (edema) is a condition in which watery fluid gathers in the body cavities

and tissues caused by disorders in blood circulation in anemia, heart disease,

kidney failure, etc. The word Digitalis was coined (1539) from the Latin digi-

tis = little finger, and is directly derived from the German name for the plant

fingerhut .
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∗ ∗∗

“Behold, I make all things new”

(Revelations 21:5)

∗ ∗∗

“The Revolution was effected before the War commenced.”

(John Adams)

∗ ∗∗

1775–1783 CE American War of Independence. Thirteen of Britain’s
North American Colonies broke away from rule by the mother-country and
formed the United States of America; they were: Connecticut, Delaware,
Georgia, Massachusetts, Maryland, North Carolina, New Hampshire, New
Jersey, New York, Pennsylvania, Rhode Island, South Carolina, and Virginia.
The colonies already made their own local laws, but the Britain Parliament
kept control of financial matters, and particularly trade. The colonies had
to use their own or British ships and to trade mainly with Britain or British
colonies.

The Revolution could not have taken place without the religious back-
ground afforded by the Great Awakening — an American revivalist move-
ment (1719–1775)325. It arose in response to the growing formalism of early
18 th century American Christianity, but was also influenced by the European

325 Just as in France, rather late in the century, the combination of Voltairean ra-

tionalism and Rousseauesque emotionalism was to create a revolutionary explo-

sion, so in America, but in a characteristically religious context. The thinking

elements, and the fervid, personal elements were to combine to make Americans

see the world with new eyes.

The essential difference between the American Revolution and the French Rev-

olution is that the American Revolution, in its origin, was a religious event,

whereas the French Revolution was an anti-religious event. That fact was to

shape the American Revolution from start to finish and determine the nature

of the independent state it brought into being. Indeed, in his Farewell Address
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Enlightenment and the economic boom of middle-class people in Colonial
America.

Revival began in New Jersey in 1719; Key figures were: William Tennent
(1673–1745), a Presbyterian preacher, Jonathan Edwards (1703–1758), a
puritan scholar, and George Whitefield (1714–1770), evangelist. Finally,
Presbyterians, Baptists, Calvinists and Methodists all over America embraced
the new movement. By questioning established authority, founding new col-
leges, and revivifying evangelical zeal, it helped to prepare the revolutionary
generation in America.

The historian Paul Johnson in his book ‘A History of the American
People’ (1997) summarized the impact of the Great Awakening, in these words:

“The Revolution was in the mind and hearts of the people. . . It
was the marriage between the rationalism of the American elites
touched by the Enlightenment, with the spirit the Great Awaken-
ing among the masses which enabled the popular enthusiasm thus
aroused to be channeled into the political aims of the Revolution
— itself soon identified the coming eschatological event. Neither
force could have succeeded without the other.”

After the Seven Years’ War which brought Britain the French possessions
in North America (1755–1763), Britain felt it necessary to keep a standing
army there and taxed the colonies to pay for it. The colonists objected to
‘taxation without representation’ in Parliament. The British tried imposing
taxes on newspapers, tea, paper, lead, and paint, but had to repeal all but
the tea tax when the colonists refused to buy British goods as protest.

On December 16, 1773, a band of colonists disguised as Indians boarded
British ships in Boston harbor and threw cargos of tea overboard. To this
‘Boston tea party ’ the British Parliament retorted with the so-called ‘Intoler-
able Acts’, which included closing the port of Boston.

The First Continental Congress at Philadelphia (Sept. 1774) protested at
the Acts, and the colonies decided not to buy British goods. British troops
were sent from Boston to destroy an arms cache held by the colonists in

(1796), Washington dispelled for good any notion that America was a secular

state. He insisted: “Religion and Morality are indispensable supports. . .There

can be no security for property, for reputation, for life, if the sense of religious

obligation desert the oaths which are the instruments of investigation in the

Courts of Justice.”

In fact, Washington was saying that America, being a free republic, dependent

for its order on the good behavior of its citizens, cannot survive without religion.
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nearby Concord. Just after dawn on April 19, 1775, at Lexington on the road
to Concord, the troops were confronted by armed colonists and the war began.

The British retreated from Concord to Boston, and in June won the Battle
of Bunker Hill , near Boston, despite heavy losses. The Second Continental
Congress assembled in May 1775 and on July 4, 1776 issued the Declara-
tion of Independence, largely drafted by Thomas Jefferson, claiming complete
freedom from the British rule.

In 1777, the British army gained an important victory at Brandywine
Creek (Pennsylvania), but a few weeks later, under General John Burgoyne,
were forced to surrender at Saratoga (New York). France entered the war on
the American side, followed later by Spain.

The end came when the British under Cornwallis surrendered to the Amer-
ican commander-in-chief, George Washington at Yorktown (Virginia) on
October 19, 1781. The Treaty of Paris (September 03, 1783) formally recog-
nized the independence of the United States. Washington was elected first
president in 1789.

1776 CE The submarine is first used in combat, during the American
Revolution. This 2-meter vessel, called the Connecticut Turtle, was designed
(1775) by David Bushnell (1742–1824) of wood, iron and pitch. Driven by a
hand-cranked propeller, it attempted unsuccessfully to sink British warships
in New York harbor.

1776 CE Adam Smith (1723–1790, Scotland). Economist. Regarded
the founder of modern economics. Worked out a theory of division of labor,
money, prices, and wages in his book “Inquiry into the Nature and Causes of
the Wealth of Nations”. It laid foundations of the science of political econ-
omy and is the most influential economic treatise ever written, founding the
classical school of economy. It contains the germ of nearly all economic ideas
which have since appeared, even in rival systems.

The book dealt with the basic problem of how social order and human
progress can be possible in a society where individuals follow their own self-
interests, free from any government interference. This is the policy of ‘laissez
faire’ – leaving things done. Smith argued that this individualism led to
order and progress. In order to make money, people produce things that
other people are willing to buy. Buyers spend money for those things that
they need or want most. When buyers and sellers meet in a market, a pattern
of production develops that results in social harmony provided that all this
would happen without any conscious control or direction. Smith also believed
that:
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• Labor (not land or money) was both the source and the final measure
of value; wages developed on the basic needs of the workers and rent on
the productivity of the land. Profits were the difference between selling
prices and the cost of labor and rent.

• Profits should be used to expand production; this expansion would in
turn create more jobs, and the national income would grow.

• Free trade and a self-regulating economy would result in social progress.
Government need only preserve law and order, enforce justice, defend
the nation, and provide for a few social needs that could not be met
through the market.

Smith attacked the British mercantile system’s limit on free trade and crit-
icized the British government’s tariffs and other limits on individual freedom
in trade.

Smith was born in Kirkcaldy, Scotland and studied at the University of
Glasgow and Oxford University. He became professor at Glasgow (1751).
Appointed tutor of the young duke of Buccleuch (1764) and later received a
regular income from that family. This enabled him to retire from teaching
and devote the years 1766–1776 to the writing of his book.

1776–1784 CE Jean Baptiste (Marie Charles) Meusnier (de la Place)
(1754–1793, France). Mathematician, engineer and army general. A pupil
of Monge at the school in Mézières. Derived the Meusnier theorem (1776) on
curvature at a point on a surface326. In 1783–1784, after Montgolfier’s ascent
in a balloon, he did fundamental research on aerostatics and designed (1784)
a dirigible balloon. In this period he collaborated with Lavoisier in his work
on decomposition of water into its elements. Meusnier joined the Jacobins

326 Euler’s theorem (1760): kn = k1 cos2 α + k2 sin2 α. It expresses the normal

curvature (l.h.s.) to a surface in an arbitrary direction α in terms of the principal

curvatures k1, k2.

Meusnier’s theorem (1776): If a set of planes be drawn through a tangent

to a surface in a nonasymptotic direction, then the osculating circles of the

intersections with the surface (normal sections) lie upon a sphere (kn = k cos γ,

where kn = normal curvature, k = curvature of normal section, γ = angle

between the principal normal to the curve and the normal to the surface).

The theorem was published in his Mémoire sur la courbure des surfaces, which

he wrote after Monge had shown him Euler’s paper. Together with Euler’s

theorem it gives full information concerning the curvature of any curve through

a point on the surface.
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(1790), became a field-marshal (1792) and was killed in defense of the fortress
of Kassel, Mainz.

1777–1789 CE Charles Augustin de Coulomb (1736–1806, France).
Scientist, inventor and military engineer. Made fundamental contributions
in the fields of friction, electricity, and magnetism. In 1777 he invented the
torsion-balance for measuring torsional elasticity, which he used to derive
the laws of torsion of metal wires327, strands of hair and thin silk (1784).
In his memoir on the theory of simple machines (1779–1781) he discovered
the fundamental law of friction; In 1785 he made precise measurements of
the forces of attraction and repulsion between charged bodies and between
magnetic poles, using his torsion balance. He then demonstrated conclusively
that electric charges and magnetic poles obey the inverse-square laws like that
of static gravity.

Coulomb was born at Angouleme. He chose the profession of military
engineer. After spending nine years at Martinique in the West Indies he was
stationed, in 1781, permanently at Paris. Upon the outbreak of the Revolution
in 1789, he resigned his position and retired to a small estate at Blois. But
he was recalled to Paris, to take part in the new determination of weights
and measures, decreed by the revolutionary government. He was appointed
inspector of public instruction in 1802 and died in Paris a few years later.

The practical unit of quantity of electricity, the coulomb, is named after
him.

1778–1802 CE Joseph Bramah (1748–1814, England). Engineer
and prolific inventor whose inventions introduced practical techniques that
founded the engineering industry. Suggested the possibility of screw propul-
sion for ships (1785), and the hydraulic transmission of power (1802). In-
vented the hydraulic press (1795), a numerical printing machine (1806) and
the ball-drive siphon system for a water closet (1778).

Bramah was born at Stainborogh in Yorkshire, the son of a farmer. He
worked as a cabinet-maker in London, where he subsequently started a busi-
ness of his own.

1779 CE Jan Ingenhousz (1730–1799, Holland). Physician and
scientist. Discovered photosynthesis328, and the carbon cycle in the earth-
atmosphere system.

327 The torque τ in a thin cylinder with diameter d and length � is τ = μd4θ/�,

where μ is the rigidity and θ is the angle of twist.
328 The overall process by which plants absorb, store and use radiant energy: red

light is absorbed by certain plant pigments (mainly chlorophyll), and converted

into potential chemical energy. This energy is used to break the water molecule
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He showed that in the presence of sunlight plants absorb water and carbon
dioxide and give off oxygen through their green portions. In the dark the
roots, flowers, and fruits give off carbon dioxide. In this process, plants obtain
carbon from the atmosphere and not from the soil. On the other hand, he
maintained, animals, by eating plants and breathing oxygen, recombine plant
tissue and oxygen and re-form carbon dioxide and water. Thus, he concluded,
plant and animal life on earth formed a balance.

Moreover — nothing material is used up; carbon, hydrogen, and oxygen
shuttle between plants and animals, and from land to sea in a process that is
most commonly called “the carbon cycle”. Other elements, too, are engaged
in cyclic processes: nitrogen, sulfur, phosphorus, and so on are absorbed from
the soil by the plants and incorporated into their tissue. Animals eat plants
and make use of the various elements, then finally restore them to the soil in
their droppings, and in the form of their own bodies when death is followed
by bacterial decomposition. Only one thing is permanently used up in these
cyclical chemical changes, and that is the energy of the solar radiation.

Ingenhousz was born in Breda, Holland. During 1772–1779 he was court
physician to empress Maria Theresa of Austria. He died in England.

Ingenhousz’ discovery was not accidental, but rather a natural consequence
of the Industrial Revolution: Following the ascent of the first hydrogen bal-
loons, and the introduction of coal, gas and metallurgical innovations associ-
ated with the use of steam power, chemical science grew rapidly.

Black’s work on CO2 (1756), Rutherford’s isolation of nitrogen (1772),
the researches of Watt (1776), Cavendish (1766–1781), and Charles
(1787) on hydrogen, those of Priestley (1770), Lavoisier (1783–1789),
and Scheele (1771) on oxygen — distinguished the principal constituents of

into H and OH, thus reducing atmospheric CO2 to glucose, according to the

general scheme: 683 Kcal+6CO2+12H2O → C6H12O6+6O2+6H2O. The above

equation glosses over the complexity of what is perhaps a 100-step molecular

sequence(!), each step probably requires the action of specific catalytic enzymes,

with monosaccharides, proteins, and fats (lipids) also being produced along the

way. None of this, of course, was known to Ingenhousz in 1779.

The reverse process, that which occurs in the dark, is none other than animal

respiration, through which energy is formed by oxidation of the stored glucose

(or any other carbohydrate) and giving off CO2. It thus became evident that

CO2 and H2O are essential for life: both take an active part in carrying out the

various life functions of living organisms, and in storing energy from the sun in

the form of sugars and starches — through a process by which the chlorophyll

of green plants catalyzes the formation of carbohydrates from carbon dioxide

and water, through the action of sunlight.
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air and the 4 elements which make up the bulk of plant tissues. They reawak-
ened interest in the problem of breathing and made it possible to analyze the
elementary constituents of the atmosphere and of plant body.

While prosecuting the researches which led to the modern view of metal-
lurgical processes, Scheele, Priestley, and Lavoisier also devoted their efforts
to the analogous problems of combustion, breathing, and animal heat. An
important by-product of these subsidiary inquiries were two contradictory
observations: One was made by Priestley who claimed that plants remove
CO2, and the other by Scheele who maintained that they produce it.

Lazzaro Spallanzani (1729–1799) then noticed (1768) that aquatic
plants give off bubbles of oxygen in sunlight and do not do so in darkness. At
this point, Ingenhousz took up the clues and showed that while plants remove
carbon dioxide from the air and give up oxygen to it in sunlight, they evolve
carbon dioxide and take up oxygen in the dark. He thus showed that two
kinds of gaseous exchange between the green plant and the air occur: one is
comparable to respiration in animals, the other is essentially different from it.

1780–1794 CE Luigi Galvani (1737–1798, Italy). Physician and Physi-
cist. Made pioneering researches in electrophysiology, as causing muscular
contraction in a frog’s legs by application of static electricity. Galvani was
professor of obstetrics at Instituto delle Scienze, Bologna (1782 to 1798).

1781 CE Charles Messier (1730–1817, France). Astronomer. First
to compile a systematic catalog of nebulae, galaxies and star clusters. There
are about 110 objects in the Messier catalog. Messier’s objects (known by
the prefix M and their catalog numbers) include the emission nebulae M8
(Lagoon) and M16 (Eagle) – two of the most famous hot clouds of interstellar
matter (emission nebulae).

Massier was born in Badonville, Lorraine. He began professional career as
an assistant to Delisle in Paris (1751). He observed the return of the Halley
Comet (1759) and from that time onwards was an arid searcher of comets,
discovering independently a total of 13 of them. His purpose in compiling his
catalog was to make comet hunting easier by taking careful note of permanent
deep-sky objects that might be mistaken for comets.

1781 CE Johann Carl Wilcke (1732–1796, Sweden). Physicist. In-
troduced the idea of specific heat329, quantity of heat required to raise the
temperature of a given substance by a given amount (usually 1 ◦C).

329 The Irish physician and chemist Adair Crawford (1747–1795) may also be

credited with an independent introduction of the concept of specific heat in

1779 in connection with his treatment of heat generation in animals.
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Wilcke was born in Wismar, Germany. Moved to Sweden with his par-
ents (1739). Entered Uppsala university (1750) to study theology but con-
centrated instead on physics and mathematics. Received his doctorate at
Rostock (1757). Prepared a comprehensive map of the earth’s magnetic incli-
nation (1768). Drew up a list of specific heats for different substances (1781),
independently of Joseph Black (1728–1799).

Wilcke also discovered that in changing phase (e.g. from solid to liquid), a
body absorbs (or releases) heat without changing temperature (latent heat).
These were the first important discoveries about heat in modern times.

1781–1786 CE Moses Mendelssohn of Dessau (1729–1786, Ger-
many). Distinguished scholar. The apostle of Jewish enlightenment in Ger-
many. Catalyzed the merger of German and Jewish cultures, thus creating
the proper climate and opportunity for the involvement of Jews in modern
European science.

However, by asserting the pragmatic principle of the possible plurality of
truths and his unfailing efforts to emancipate the Jews at the price of weak-
ening the firm adhesion to their traditional values – he opened the floodgates
of apostasy, secularization and assimilation on a scale that the Jewish people
had never known before. Mendelssohn own descendants – a brilliant circle, of
which the composer Felix330 331 was the most noted – left the synagogue for
the Church.

Moses’ father, Mendel Heyman was a poor scribe – a writer of Torah
scrolls. The maternal grandfather, however, was a direct descendant from a

330 His father, Abraham Mendelssohn-Bartholdy (1776–1835) reflected on his sta-

tus: “Before, I was known as the son of my father, and now I am the father of

my son.”
331 Moses had 5 sons and 5 daughters. Of these: 4 died young, 4 were baptized

[Dorothea 1764–1839; married the philosopher Friedrich Schlegel in 1804;
Henriete 1775–1831; Avraham 1776–1835; Nathan] and 2 remained Jews [Rachel

1767–1831; Joseph 1770–1848]. The converts were baptized during 1814–1815.

Abraham had 3 daughters and one son:

• Fanny 1805–1847, grandmother of the mathematician Kurt Hensel.

• Felix 1809–1847 (composer).

• Rebeca 1811–1858, married the mathematician Dirichlet.

• Ottilie 1819–1848, married the mathematician Kummer. Their daughter

Marie-Elisabeth married the mathematician Herman Amandus Schwartz.
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most illustrious rabbinic lineage332. His early education was cared for by his
father and by the local rabbi. The latter, besides teaching him the Bible and
Talmud, introduced him to the philosophy of Maimonides. When the rabbi
received a call to Berlin (1743) the lad followed him there.

For the next seven years he embarked on a program of self-education,
learning German, English, French, Latin, mathematics, philosophy and gen-
eral history. His life at this period was a struggle against crushing poverty,
but his scholarly ambition never relaxed. In 1750 he was appointed by a
wealthy silk-merchant as teacher to his children. Mendelssohn soon won the
confidence of his benefactor, who made the young student successively his
book-keeper and his partner.

No stage director would have dared select an ugly ghetto hunchback as
the central character in this drama. But history dared. It selected Moses
Mendelssohn from the ghetto of Dessau, to reintroduce a knowledge of Ju-
daism to the Christians and sell Christians cultural values to the ghetto
dwellers. In a matter of a few years he befriended Lessing (then Germany’s
foremost dramatist and the great liberator of the German mind) and Im-
manuel Kant. His subsequent philosophical works earned him the sobriquet
“German Socrates”; his reviews on literature made him the leading German
stylist, while his critical essays on art made him the founder of modern aes-
thetic criticism.

He was soon challenged publicly to quit straddling the religions issue and
either refute Christianity or be baptized (1781). In wrestling with his con-
science, Mendelssohn became reinfected with the spirit of Judaism. From
then on he dedicated the rest of his life to the emancipation of the Jews. To
this end he saw his task as twofold: first, to give the Jews a tool for their own
emancipation; second, to prepare a new basis for Judaic values once the old
religious norms were rejected.

The German language was to be the tool whereby the Jews would lift them-
selves out of the ghetto. It was with this in mind that Mendelssohn translated
the Pentateuch into lucid German, written in Hebrew letters (1783). His book
Jerusalem (1793) was a forcible plea for freedom of conscience and noninter-
ference of the state with the religion of its citizens.

332 Moses’ grandfather, Saul Whal of Dessau, was the 6 th generation of Rabbi Meir

Katzenellenbogen, known as the MAHARAM of Padua (1482–1565). Karl

Marx was the 12 th generation of this very ancestor along another route.

Mendelssohn had 10 children: 4 died young, 4 were baptized and 2 assimilated.

All his grandchildren but one were apostates, and the last Jewish Mendelssohn

died in 1871, thus bringing this rabbinic line into final extinction.
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Whether his influence was for good or evil in the next generation has
been a subject of much debate. But the real difficulty was not at all of his
doing. It was due to the fact that the Jews caught his spirit of eagerness to
re-enter European society much more quickly than the Christians were willing
to permit them to enter.

1781–1800 CE Frederick William (Friedrich Wilhelm) Herschel
(1738–1822, England). One of the greatest observational astronomers in his-
tory and founder of the present day system of stellar astronomy. Made a
series of astronomical discoveries that established the universality of the law
of gravitation — its not being confined to the solar system alone.

In 1781 he discovered the planet Uranus and the phenomenon of binary
stars. In 1782 he discovered that the entire solar system is moving relative to
the fixed stars. Finally in 1783 cosmology received an enormous boost when
Herschel observed diffuse patches of light, or nebulae, through his telescope.
He considered them to be ‘island universes’.

Thomas Wright and Immanuel Kant had previously speculated about
such nebulae, but Herschel’s observations established extragalactic astronomy
as an independent branch of astronomy. He realized that the ‘Milky Way’
might be similar in structure and scale to other faint nebulae. He was also
able to resolve the globular star clusters in our own galaxy into stars.

In so doing Herschel took a major step toward placing the earth in its
proper perspective with respect to the rest of the universe.

In 1800, he discovered infrared radiation by moving a thermometer along
the color spectrum produced by a prism.333

Herschel was born in Hanover. His father, Isaac, was a Jewish musician
employed in the Hanover guard. His grandfather’s family had left Moravia

for Saxony in the early part of the 17th century on account of religious per-
secutions. He started his career as an oboist in the Prussian army, but the
hardships of the Seven Years War caused his parents to send him to England,
where he became organist and teacher of music.

During 1766–1772 he was director of all public musical entertainment at
Bath, and in his free time taught himself mathematics and astronomy. More-
over, in 1772 he brought his sister Caroline Lucretia (1750–1848) to England
and both built, after toiling at it for few years, a 7 ft. Newtonian reflecting

333 Although William Herschel is best remembered for his hand-built telescopes and

his discovery of Uranus (1781), the simple experiments he performed with glass

prisms and thermometer (1800), with which he detected what is now known as

infrared light, were far more momentous: They gave science its first evidence

that an entire world lay hidden beyond the limit of our visual perceptions.
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telescope — having an aperture of 6 1
2 inch (16.25 cm). His observations were

communicated by him to the Royal Society in a series of memoirs from 1781 to
1797. In 1782 he accepted the offer of King George III to become his private
astronomer.

In a series of papers from 1784 up until 1818 (when he was 80 years of
age) he demonstrated that our sun is an ordinary star of the Milky Way, and
that all the stars visible to us lie more or less in clusters scattered throughout
a comparatively thin, but immensely extended disc. In 1789 he finished the
construction of his large 4 ft (122 cm) aperture reflecting telescope, through
which he could observe the Saturnian system with its 7 satellites, two of which
he discovered himself (Enceladus and Mimas). The 8th, Hyperion, escaped
his notice.

His son John Frederick William (1792–1871) continued his father’s
studies on double stars and nebulae and contributed further to the knowledge
of the Milky Way. His sons: Alexander Stewart (1836–1907) and John
(1837–1921) were also astronomers.

1781–1828 CE Caroline Lucretia Herschel (1750–1848, England).
Astronomer. She was born at Hanover, Germany, while this territory was
still part of the British crown. Her father, Isaac Herschel, a musician in the
Hanoverian guard, encouraged the development of her musical talents and she
learned to play the violin competently enough to perform in concerts.

After her father’s death, she was brought by her brother William to Eng-
land to keep his house for him. During her stay at Bath she established herself
as a popular vocalist and also an as assistant to her brother in his astronomical
observations. When William became the Astronomer Royal, Caroline became
his official assistant at a stipend of 50 pounds annually. Never before or since
has any government purchased such a dedicated servant for such a relatively
low cost of hire.

To this end she taught herself mathematics and took care of all the la-
borious numerical calculations and reductions, all the record keeping and the
other tedious minutiae. She also did her own observations and during 1783–
1797 she discovered 8 comets, 3 nebulae and issued a comprehensive star
catalogue. In 1828 she completed the cataloging of 1500 nebulae. For this
immense and valuable labor, the Royal Astronomical Society presented her
with a gold medal and in 1835 elected her an honorary member of the society.
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Synthetic vs. Analytic Geometry

Projective geometry investigates those properties of geometrical figures

that are unaltered by projection. The impetus for these investigations was

provided by the study of perspective in painting and architecture.

The first beginnings of this synthetic approach (in contradistinction to the

analytic geometry of Fermat and Descartes) are to be found in the work of

Pappos (ca 300 CE) who introduced the cross-ratio, referring to the lost work

of Apollonios of Perga (262–200 BCE).

The first projective geometer of modern times is Girard Desargues

(1593–1662). In a highly original treatise on conic sections (1639), he went

beyond the Greek geometers and presented a systematic foundation to pro-

jective geometry, and in addition — a number of beautiful theorems unknown

to Apollonios.

Following the development of descriptive geometry, principally by Gas-

pard Monge (1746–1818), the first outline of projective geometry was given

by Victor Poncelet (1788–1867). Analytical methods in projective geom-

etry were introduced mainly by August Ferdinand Möbius (1790–1868)

and Julius Plücker (1801–1868), while Jacob Steiner (1796–1863) and

Christian Von Staudt (1798–1867) perfected a development of projective

geometry without these methods.

The connection between projective and Euclidean geometry was clarified

by Felix Klein (1849–1925). He also introduced the idea of a geometry as

the invariant theory of certain groups of mappings.

The essence of analytical geometry of space consists in setting up a cor-

respondence between the points of the space and real numbers: Curves (1-

dimensional manifolds) and surfaces (2-dimensional manifolds) then corre-

spond to solution of sets of equations, and geometrical constructions can be

replaced by algebraic and analytic methods. Since these methods form the

basis of analytic geometry, the subject did not arise until progress was made

in algebra and analysis.
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1781 CE Gaspard Monge (1746–1818, France). Mathematician. The
inventor of descriptive geometry and the father of differential geometry of
space curves and surfaces.

Monge was born at Beaune. He started his career as a teacher at the
military school in Nézieres (on the Meuse in N. France), where he discovered
a clever representation of 3-dimensional objects by appropriate projections on
a 2-dimensional plane. His method was adopted by the military and classified
as top-secret(!) It later became widely taught as descriptive geometry .

In 1778 Monge married Mme Horbon, a young widow whom he had
previously defended in a very spirited manner from an unfounded charge, and
in 1780 he was appointed to a chair of hydraulics at the Lyceum in Paris.
Unlike the three L’s (Lagrange, Laplace, Legendre) who remained aloof
from the French Revolution, Monge was an active Jacobine and occupied
leading scientific positions.

As temporary head of the government on the day of the King’s execution,
he incurred lasting royalist resentment as the chief regicide. He served as a
Minister of Marine and engaged in the manufacture of arms and gunpowder
for the army.

After 1795 he was the principal organizer of the Polytechnical School in
Paris [the prototype of all technical institutes in Europe and the U.S., even
West Point] and became a professor of mathematics there.

Monge gained the close friendship and admiration of Napoleon and accom-
panied the latter, along with J. Fourier on the Egyptian expedition in 1798.
Monge was a great teacher and his lectures in algebraic and differential geome-
try inspired many young men. Among them were: E.L. Malus (1775–1812),
J. Dupin (1784–1873, geometry of surfaces), J.V. Poncelet (1788–1867,
projective geometry), A.L. Cauchy (1789–1857), O. Rodrigues (1794–
1851), A.J.C. Barré de Saint-Venant (1796–1886, theory of curves through
his work in elasticity), M.A. Lancret and J.B. Meusnier, all of whom have
theorems in differential geometry named after them. Others, whose principal
papers in differential geometry were written in the period 1840–1850, are: F.
Frenet (1816–1888), J.A. Seret (1819–1885), V. Puiseax (1820–1883) and
J. Bertrand (1822–1900).

The school of Monge contributed greatly to the geometry of surfaces, in-
troducing the concept of developable surfaces334.

334 A surface that may be unrolled or developed into a plane without stretching

or tearing, e.g.: cylinder, cone. In order to find geodesics on such surfaces, we

“unwrap” the surface, flattening it to a plane, draw the relevant straight lines

in the plane, and then wrap the plane up again. Using this idea, it is not too
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Monge himself contributed to differential geometry in the topics of space
evolutes and lines of curvature on 3-dimensional surfaces.

In 1816 he was discharged as director of the Polytechnical School after the
fall of the Emperor. He was also purged with his friend, the geometer Lazare
Carnot (1753–1823) from the Académia, while Cauchy was assigned to it
by royal decree — although he had not been elected by the members of the
Académia. This created an enormous scandal in scientific circles and Cauchy
became very unpopular. [The tables were turned in 1830: Louis-Philippe
came to power and Cauchy, as a loyal Burbon, refused to swear allegiance to
the new government. He then went into voluntary exile.] Monge died soon
afterwards.

1781–1793 CE Jean Pierre Francois Blanchard (1753–1809,
France). Aviation pioneer and inventor. Proposed heavier-than-air machines
in 1781. But as soon as the Montgolfiers made successful balloon flights,
Blanchard became an ardent balloonist; he made his first balloon ascent in
England (1784) and on Jan. 07, 1785 made the first aerial crossing of the
English channel with Dr. John Jeffries (1745–1819, U.S.A.), an American
physician. Invented the parachute and survived the first jump (1784). In 1793
he made the first balloon ascent over North America (Philadelphia, 1793). He
was born in Les Audelys, France.

1783 CE The brothers Jacque Étienne (1745–1799) and Joseph Michel
(1740–1810) Montgolfier (France) invented and built the first balloon
to carry men into the air. The balloon was made of cloth and paper, filled
with hot air. On its first public trial (June 05, at Annonay, France), their
balloon (unmanned) rose about 1800 meters. Five months later (Nov 21), two
men: Francois Pilatre de Rozier and Marquis d’Arlandes rose to height
of 24 meters and flew across Paris for 25 minutes in a Montgolfier balloon –
the first human beings to fly. Ten days later, the physicist Jacques Charles
and a member of his team made the first hydrogen balloon flight.

1783 CE, June 08 The eruption of the Laki volcano in Iceland, started.
Fluid basalt lavas flooded out of the fissure for a period of 2 months, spreading
out over tens of square kilometers. Large volumes of sulphurous fumes were
emitted throughout the eruption, forming a ground-hugging layer extending
many kilometers down-wind from the fissure. A heavy fall of ash also rained

difficult to show that geodesics on a cylinder or a cone are curves that make

constant angle with the elements of the cylinder or cone. In the case of the

cylinder, the geodesics are helices.

A sphere, for example, is not developable. It can be shown that the Gaussian

curvature of a developable surface is zero.
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on the countryside. 10,000 people, about 1
5 of Iceland’s population in the

18th century, died of the eruption. Most died a lingering death of the resulting
environmental damage: ash-fall destroyed growing crops and carpeted grazing
lands, so that cattle either died of starvation, or were forced to eat ash-
covered grass. The loss of livestock produced a severe famine which resulted
in starvation. The Laki event was the largest eruption of historic times in
terms of the volume of material erupted.

Benjamin Franklin, while serving in Paris in 1783 as the first diplo-
matic representative of the newly-formed United States of America, related
the severe Northern Hemisphere winter of 1783–1784 to the Laki eruption and
speculated that the injection of ash, dust and gases from the volcano into the
atmosphere could result in lower temperatures by screening out some of the
solar radiation.

1783–1790 CE Advent of the steam boat ; Thomas Newcomen’s first prac-
tical steam-engine, employing piston and cylinder, was first used to power a
45 m paddle-boat by the Marquis de Jouffroy (France) in 1783. Two years
earlier, James Watt patented a way to change the power produced by a
steam engine from a back-and-forth motion to rotary motion. This was used
by John Fitch (England) in 1787 to successfully test his steam boat on the
Delaware river. By 1790, one of Fitch’s steamboats was in regular service for
several weeks during the summer, but it was a commercial failure.

1783–1801 CE Jacques-Alexandre-César Charles (1746–1823,
France). Physicist and mathematician. First, in 1783, to employ hydrogen
for the inflation of balloons (he made the first ascent in that year to an altitude
of 3.2 km). In 1787 he discovered (ahead of Joseph Gay-Lussac, 1802) that
a gas expands, under constant pressure, such that its volume is proportional
to the absolute temperature (Charles law)335.

Charles was born at Beaugency, Loiret. After spending some years as a
clerk in the ministry of finance, he turned to scientific pursuits, and attracted

335 Charles did not publish his findings, but explained his experiments to the French

chemist Joseph Louis Gay-Lussac (1778–1850). The latter performed simi-

lar experiments and published his results in 1802.
As a result, Charles’ law is sometimes called Gay-Lussac’s law. The ideal

gas law PV = nRT combines Boyle’s law [(PV )T = constant], Charles’

law [(V/T )P = constant], and Avogadro’s law into a single statement.
[P = pressure; V = volume; T = absolute temperature in degrees Kelvin (K);

n = number of moles of gas; R = universal gas constant.] For one mole (n = 1),

R = PV
T

.
Taking a gas at p = 1 atm, T = 0◦C = 273.15◦K and molar volume of 22.4

liter, one obtains R = 8.3144 J
mole× ◦K . In general PV = nRT = NkT ,

N = nNA = total number of molecules in the sample, NA = Avogadro’s
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considerable attention by his skillful and elaborate demonstrations of phys-
ical experiments. In 1785 he was elected to the Academy of Sciences, and
subsequently became professor of physics at the Conservatoire des Arts et
Metiers.

1784 CE George Atwood (1746–1807, England). Applied mathe-
matician. Graduated from Trinity College, Cambridge in 1769 and remained
there until 1784 as a fellow and tutor. In 1776 he was elected a fellow of the
Royal Society of London. In 1784 he was appointed to the office of a patent
searcher of the customs. In the same year he published his work “Treatise
on the Rectilinear Motion and Rotation of Bodies” in which he invented a
machine for the demonstration of the laws of free fall (Atwood machine)336.
With this machine he was able to improve the accuracy of the measurement
of the acceleration of a body in free fall.

1784–1794 CE William Jones (1746–1794, England). Orientalist,
linguist and jurist. Recognized and demonstrated that six groups of kindered
languages (known today as Indo-European) — Sanskrit, Greek, Latin, Gothic,
Celtic and Persian originated from a common source (proto Indian-European)
which no longer exists337.

number, k = Boltzmann’s constant. Therefore

k =
R

NA

=
8.3144 J/mole × ◦

K

6.02205 × 1023/mole
= 1.38066 × 10−23 J

◦K
.

336 The apparatus “dilutes” the effect of gravity so that acceleration could be ac-
curately measured to determine the value of g. It consists of a light frictionless

pulley on which two nearly equal masses m2 > m1, are hung vertically. Ne-

glecting the mass and rotational effect of the pulley, the energy conservation
can be expressed as:

(m2 − m1)gs =
1

2
(m1 + m2)v

2,

where s is the vertical displacement of the blocks and v their linear velocity.
But since v2 = 2as, the acceleration a of the system is

a =
m2 − m1

m2 + m1
g.

337 Two hundred years earlier, an Italian, Filippo Sassetti, had already noticed

the similarity between Sanskrit and Italian. Sassetti lived in India (1581–1588).
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Jones was born in London and distinguished himself at Harrow and Oxford
in the study of Oriental languages. By 1766 he mastered Arabic, Hebrew,
Persian, Chinese, French, Italian, Spanish and Portuguese. During 1768–1774
he occupied himself with translations from Asiatic to European languages. To
enhance his income he studied law and gained high reputation in this field
both in England and America. In 1783 he was appointed judge of the supreme
court at Calcutta. In this capacity (1783–1794) he compiled a digest of Hindu
and Muhammadan law and translated from the ancient Hindu literature into
English.

An extraordinary linguist knowing 13 languages well, and having a mod-
erate acquaintance with 28 others, his range of knowledge was enormous. As
a pioneer in Sanskrit learning he rendered the language and literature of the
ancient Hindus accessible to European scholars, and thus became the indirect
cause of later achievements in the field of Sanskrit and comparative philology.

1784–1809 CE René Just Haüy (1743–1822, France). Mineralogist
and the founder of the science of crystallography. Elucidated geometrical
properties of various crystals and laid theoretical basis for further work in
his Traité de mineralogie (1801) and Traité de cristallographie (1822). Also
studied pyroelectricity.

Haüy was born at St. Just, Oise. He studied at the college of Navarre and
afterwards at that of Lemoine. Becoming one of the teachers (Abbé Haüy) at
the latter (1770 to 1784), he began to devote his leisure hours to the study
of botany; but an accident directed his attention to another field of natural
history: while looking at a particular collection of minerals, he supposedly
dropped a group of calcite crystals that crystallized as hexagonal prisms. As
he went down to examine the shattered fragments, he found they were all
perfect rhombohedra, in every detail the identical shape of Iceland spar, a
different crystalline form of calcite (= calcium carbonate, or limestone in one
form).

Thus he found that all crystals of calcite, whatever their external form,
could be reduced by cleavage to a rhombohedron with interfacial angle of 75 ◦.
Further, by stacking together a number of small rhombohedra of uniform size
he was able to reconstruct the various forms of calcite crystals338.

338 In the same manner a regular octahedron is built of cubic elements, such as

given by the cleavage of rock-salt. By making the steps one, two or three bricks

in width and one, two or three bricks in height the various secondary faces on

the crystal are related to the primitive form or “cleavage nucleus” by the law of

whole numbers, and the angles between them can be arrived at by mathematical

calculation. By measuring, with a goniometer, the inclination of the secondary

faces to those of the primitive form, Haüy found that the secondary forms are
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When the revolution broke out he was thrown into prison (1792), and his
life was even in danger, when he was saved by the intercession of the naturalist
Étienne Geoffray Saint-Hilaire339 (1772–1844, France). He later taught
at École des Mines (1795 to 1802). In 1802, under Napoleon, he became a
professor of mineralogy at the museum of natural history and the Sorbonne
(1809), but after 1814 he was deprived of his appointment by the government
of the Restoration. His latter days were consequently clouded by poverty,
though he lived cheerful and respected till his death in Paris.

1784–1809 CE Adrien Marie Legendre (1752–1833, France). An
outstanding mathematician whose works have placed him at the forefront of
achievement in widely distinct fields of pure and applied mathematics. He had
the misfortune of seeing most of his best work — in elliptic integrals, number
theory and the method of least squares — superseded by the achievements of
younger and abler men.

For 40 years he slaved over elliptic integrals (his 2-volume treatise appeared
in 1827) without noticing what both Abel and Jacobi saw almost at once
(1828) that by considering the inverse functions the whole subject drastically
simplified.

The readiness with which Legendre, who was then 76 years of age, wel-
comed these important researches, that quite overshadowed his own, and in-
cluded them in successive supplements to his work, eloquently testify to his
integrity.

Legendre was born in Paris. In 1775 he was appointed professor of mathe-
matics in the École Normale. In 1783 he was elected a member of the French
Academy in succession of J. Le Rond d’Alembert. During the revolution,
he was one of the three members of the council established to introduce the
metric system.

In 1767–1769 Legendre used continued fractions to find approximations
to the irrational roots of algebraic equations, and approximate solutions of
ordinary differential equations.

always related to the primitive form (on crystals of numerous substances) in

the manner indicated, and that the width and the height of a step are always

in a simple ratio, rarely exceeding that of 1 : 6. This laid the foundation of the

important law of rational indices of the faces of crystals.
339 Geoffray was a student of medicine in Paris when Haüy, his former teacher,

and other professors of the colleges of Lemoine and Navarre were arrested by

the revolutionists as priests. Through the influence of Daubenton, Geoffray

obtained an order for the release of Haüy in the name of the Academy.
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In 1784, Legendre encountered his polynomials in his research on the
gravitational attraction of ellipsoids. He introduced the celebrated expres-
sions, which though frequently called ‘Laplace coefficients’, are more cor-
rectly named after Legendre. The definition of the coefficients is that if
(1 − 2h cos φ + h2)−1/2 be expanded in ascending powers of h, and if the
general term be denoted by Pnhn, then Pn is the Legendre coefficient of the
nth order.

In 1805 Legendre issued the first published account of the method of least
squares in connection with his work on the orbits of comets. It had, how-
ever, been applied earlier (1795) by Gauss, and was independently used by
Laplace (1810).

To Legendre is due the theorem known as law of quadratic reciprocity in
the theory of numbers, the most important general result in the science of
numbers which has been discovered since the time of Fermat and which was
called by Gauss “the gem of arithmetic”. The symbol

(
a
p

)
for odd prime p

is known as Legendre’s symbol340. Legendre’s formula {x/(loge x − 1.08366)}
for the approximate number of primes less or equal to a number x, was first
given by him in 1801 in his famous treatise ‘Théorie des nombres’.

In 1825 Legendre provided a complete proof, for the case n = 5, of the
Fermat conjecture.

In 1794 he published a popular textbook on Euclidean geometry called
‘Eléments de géométrie’, in which he attempted a pedagogical improvement of
Euclid’s ‘Elements’ by rearranging and simplifying many of the propositions.
This book was translated by Thomas Carlyle (1795–1881), who early in his
life was a teacher of mathematics, and ran through 33 American editions for
100 years.

In one respect, Legendre’s life resemble that of Lagrange: in 1792, at the
age of 40, he married a girl 22 years his junior. His young wife helped him put
his affairs in order and also brought the tranquility to his life which greatly
aided him in his work.

340 Equal to zero when p divides a; equal to +1, when p is prime to a but p divides

N2 − a, for some N ; equal to −1, when p is prime to a but there is no N such

that p divides N2 − a.
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The Remarkable Legendre

Legendre’ works have placed him at the very forefront in the widely distinct
subjects of elliptic functions, theory of numbers, potential theory, geodesy and
analysis. His versatility is demonstrated in the following relations discovered
by him.

I. Elliptic Integrals (1811)

The relation
EK ′ + E′K − KK ′ =

π

2
relates the complete elliptic integrals

K(k) =
∫ π/2

0

dθ(1 − k2 sin2 θ)−1/2, k2 + k′2 = 1

K ′(k) =
∫ π/2

0

dθ(1 − k′2 sin2 θ)−1/2 ≡ K(k′)

E(k) =
∫ π/2

0

dθ(1 − k2 sin2 θ)1/2

E′(k) =
∫ π/2

0

dθ(1 − k′2 sin2 θ)1/2.

It is known as the Legendre relation. To prove it, one must show that

dE

dk
=

1
k

(E − K),
dK

dk
=

1
kk′2

(E − k′2K),

dE′

dk
=

k

k′2
(K ′ − E′),

dK ′

dk
=

1
kk′2

(k2K ′ − E′).

It then follows that d
dk (EK ′ + E′K − KK ′) = 0. To find the value of the

constant, we let k → 0.

With the aid of the Legendre relation and Gauss’ arithmetic-geometric
mean, Eugene Salamin discovered (1976) a new formula that is currently
used as a computer algorithm for the fast computation of π with the property
of doubling the number of digits at each step.
Thus, Y. Tamura and Y. Kanada computed π in 1982 to 4,194,293 digits
with a CPU time of 2 hours and 53 minutes!!.
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II. Prime Factorization of m!

Legendre enriched mathematics, both pure and applied, with many important
and beautiful results. But one can recognize the signature of the master even
in one of his lesser known theorems.

Suppose we wish to find how many zeros there are at the end of the number

1000! = 1 · 2 · 3 · . . . · 999 · 1000

Clearly, the number of terminal zeros of a number depends on how often
the factor 10 = 2 · 5 occurs in its factorization. We must therefore find the
exponents of the factors 2 and 5 in the prime factorization of 1000!. The
smaller of these exponents will yield the largest exponents, say α, for which
10α = (2 · 5)α divides 1000!, and α will be the number of terminal zeros in
1000!.

Now, every fifth one of the numbers

1, 2, 3, . . . , 1000

is a multiple of 5. Since
1000 = 5 · 200 + 0,

there are 200 factors in 1000! which are divisible by 5. Of these 200, i.e., of

5, 10, 15, 20, 25, . . . , 1000,

every fifth is a multiple of 52. Since

200 = 5 · 40 + 0,

there are 40 factors divisible by 52. Moreover, since

40 = 5 · 8 + 0, 8 = 5 · 1 + 3, 1 = 5 · 0 + 1,

there are 8 numbers divisible by 53, one by 54, and none by any higher power
of 5.

Thus, the prime factorization of 1000! contains 5200 · 540 · 58 · 51; the
exponent of 5 in the prime factorization is

200 + 40 + 8 + 1 = 249.

On the other hand, the prime 2 occurs to a higher power in the prime
factorization of 1000!, since 500 of the factors are even, 250 are divisible by
22, etc. Hence there are 249 zeros at the end of 1000!.
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Legendre attacked the general problem of the exponents in the prime fac-
torization of m!. He asked: What is the highest power, say pα, of a prime p
such that pα divides m!, where m is any given natural number? In order to
answer this question he generalized the procedure used in the above solution
for the case m = 1000, p = 5.

First, divide the given number m by the prime p:

m = pq1 + r1 (0 ≤ r1 < p);

Next, divide the quotient q1 by p:

q1 = pq2 + r2 (0 ≤ r2 < p).

One continues this process until one obtains a quotient which is zero, i.e.,

qk−1 < p, qk = 0.

By examining the solution of the problem, it is seen that the exponent α
(which was 249 in the case m = 1000, p = 5) is the sum of the quotients
obtained in the above algorithm:

α = q1 + q2 + · · · + qk−1.

It is now claimed that the remainders r1, r2, . . . , rk obtained in this algo-
rithm are the digits in the representation of the number m to the base p. To
see this, just substitute repeatedly for the quotients; thus,

m = pq1 + r1 = p(pq2 + r2) + r1 = · · · = pk−1rk + pk−2rk−1 + · · · + pr2 + r1.

The last expression proves the claim. In the solution of the problem, the
remainders in the divisions were 0, 0, 0, 3, 1 and the representation of 1000 to
the base 5 is, indeed, 13000.

Next it is shown how to express the exponent α in terms of the remainders.
One adds the expressions

m = p q1 + r1

q1 = p q2 + r2

...
...

...
qk−1 = p · 0 + rk

and obtains

m + q1 + q2 + · · · + qk−1 = p (q1 + q2 + · · · + qk−1) + r1 + r2 + · · · + rk
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or
m + α = pα + s,

where s = r1 + r2 + · · · + rk. Solved for α, this gives

α =
m − s

p − 1
.

This proves the following theorem of Legendre:

If m is a positive number and p a prime, then the exponent of p
in the prime factorization of m! is

m − s

p − 1

where s is the sum of the digits of the representation of m to the
base p.

The prime power in a factorial, i.e. the highest power of p that divides m!
is alternatively given by the expression

[
m

p

]

+
[

m

p2

]

+
[

m

p3

]

+ · · ·

which include only finitely many non-zero terms. Here [A] indicates the great-
est integer not exceeding A.

To see this we write

m! = 1 · 2 · · · (p − 1) · p · (p + 1) · · · (2p) · · · (p − 1)p · · · p2 · · · .

It is obvious that there are
[

m
p

]
multiples of p,

[
m
p2

]
multiples of p2, and so

on. Similarly, the number

(
n

r

)

=
n!

r!(n − r)!

is an integer because the power of p in
(
n
r

)
is

∑

m

([
n

pm

]

−
[

r

pm

]

−
[
n − r

pm

])

.

Since [A] − [B] is either [A − B] or [A − B] + 1, the sum is a non-negative
integer.
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Examples:

• If m = 1000, p = 3 then

[
1000

3

]
= 333;

[
1000
32

]
= 111;

[
1000
33

]
= 37;

[
1000
34

]
= 12;

[
1000
35

]
= 4;

[
1000
36

]
= 1

Therefore the exact power of 3 which divides 1000! is 498.

• Defining 3!!! = [(3!)!]! = 720!, prove that it has more than 1000 digits,
and find the number of zeros at the end of the expansion.

Since (720)! > 99!100621 > 101242, 3!!! has more than 1000 digits.
The largest power of 5 which divides 3!!! = 720! is

[
720
5

]

+
[
720
25

]

+
[
720
125

]

+
[
720
625

]

= 144 + 28 + 5 + 1 = 178,

while the largest power of 2 dividing 720! is still greater (since already[
720
2

]
= 360). It follows that the number 3!!! has 178 zeros at the end

of its decimal expansion.

1784–1810 CE Johann Wolfgang von Goethe (1749–1832). Poet-
philosopher and scientist. The last of the great universal men. In the course
of a long life he engaged in a wealth of activities: poet, lawyer, politician, civil
servant, physicist, botanist, zoologist, painter, theater manager and literary
critic. Yet there is nothing fragmentary about him, and his mature writings
are the expression of the harmony he created by conscious effort out of the
manifold experiences of a richly varied life.

Goethe made important contributions in anatomy , botany and optics. He
tried to introduce an evolutionary perspective into every one of these disci-
plines. He advocated a holistic approach toward science, emphasizing intuition
and a concern for the whole rather than a separation into parts (1791).
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As a student he studied in Leipzig and Strasbourg where his thinking was
strongly influenced by the works of Bacon, Spinoza and Kant.

Goethe discovered the intermaxilary bone, a feature of the human upper
jaw that is missing in most other mammals.

In the two-volume Zur Farbenlehre (1810), he attacked Newton’s theory
of light (1704) and presented a psychologically-oriented examination of color.
However, Goethe would not recognize the distinction between physical and
physiological341 optics; this was the reason for his fruitless fight against New-
ton: reviving the old Aristotelian view, Goethe abhorred the theory that
white light is a mixture of the seven colors of the rainbow.

He was certainly correct in regard to the white342-sensation which he had
primarily in mind, but the rainbow should have convinced him that white
light is decomposed into colors by a spectral apparatus (in this case, water
droplets).

In attempting to explain the metamorphosis of plants (1789) he claimed
incorrectly that all plant structures are modified leaves, but clearly espoused
evolution.

341 Today we understand without difficulty that the sensation yellow which is

caused by the D-lines of sodium is a phenomenon which is entirely different

from the wavelengths λ = 5890Å and λ = 5896Å by which we must describe

these lines physically. For we know that the psychological response to an event

is something entirely different from the physical event itself; the two are different

in nature, though related.
342 We perceive the sun’s natural light as white (i.e., as lacking all spectral colors)

because the eye is adapted to see sun; that is to say, because our eye and the

associated physiological-psychological vision apparatus has in its evolutionary

development adapted itself to the spectrum of the sun. If we lived in the vicinity

of a red giant , we would presumably perceive its red color as the normal white.
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Worldview XVI: Johann Wolfgang von Goethe

∗ ∗∗

“In the inside of Nature — Nature has neither kernel nor shell”.

∗ ∗∗

“The history of science is science itself; the history of the individual, the
individual”.

∗ ∗∗

“As for what I may have done as a poet, I take no pride in it whatever. . .
Excellent poets have lived at the same time with me, poets more excellent
lived before me, and others will come after me. But that in my country I am
the only person who knows the truth in the difficult science of colors — of
that, I say, I am rather proud, and here I have a consciousness of superiority
to many”.

∗ ∗∗

“In the eternal silence within a crystal they may see the happenings of the
world outside”.

∗ ∗∗

“Gray and ashen, my friend, is every science. And only the golden tree of life
is green”.

∗ ∗∗

“Duration is change”.
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∗ ∗∗

“Man is naturally disposed to consider himself as the center and end of cre-
ation, and to regard all the beings that surround him as bound to subserve
his personal profit. . . He cannot imagine that the least blade of grass is not
there for him”.

∗ ∗∗
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1785 CE The Times (London) was founded.

1785–1788 CE James Hutton (1726–1797, Scotland). Geologist,
chemist, physician and farmer. The father of modern geology. Concluded
(1785), on the basis of geological observations, that vast periods of time were
required for the earth to have reached its present state and form. He saw
the earth as a living machine, immensely old, continuously changing and
powerful343.

Noticing how little the Hadrian wall was affected by erosion during the
1600 years of its existence, he concluded that there was simply no time for
mountains and valleys to be carved during the meager 6000 years allocated
by Ussher (1650)344.

Hutton was born in Edinburgh and educated at the high school and uni-
versity of his native city. He completed his medical education in Paris and
Leyden (1749) but later abandoned the medical profession, and after exten-
sive travels in the Low Countries and France (1750–1754) he settled on his
own farm in Berwickshire. In 1768 he established himself in Edinburgh for the
rest of his life, living unmarried with his 3 sisters. Surrounded by congenial
literary and scientific friends he devoted himself to research.

343 Hutton observed the layering of rock in Scotland’s provinces, and deduced that

the layers of limestone, sandstone, and shales had been laid down in distant

times as soft sediments that settled to the bottom of the sea. He then conjec-

tured that these sediments had been compacted and slowly turned to stone by

the pressure of sediments settling above them; at last the sea had withdrawn,

or the sea bed had risen, exposing some of the rock to the open air. The wear-

ing action of wind and weather (erosion) had broken up the topmost layers of

rock into fine bits, helping to make the rich mix we call soil. Rains continually

wash the soils into streams and rivers and hence to the sea, where the sedi-

ment is compacted once again into solid rock. Heat within the earth heaves this

bedrock up above the sea to form new mountains. This cycle, Hutton argued,

from rock to soil to rock, from sea to air and again to sea, had endured for an

extraordinary length of time, and will go on indefinitely. In his own words: “We

find no vestige of beginning — no prospect of an end”. Hutton did not venture

to estimate the time-scale involved in these processes. His ideas were further

elaborated by Wegener (1912).
344 Ussher’s age for the earth proves much too small for a totally different reason:

we know the Sumerians invented writing in ca 3000 BCE. We cannot expect

that in 900 years, a civilization complex enough to require a writing system can

be developed.
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Edinburgh was at that time the center of Scottish Enlightenment, which
included James Watt, Adam Smith, David Hume, John Clerk (1728–
1812) and Joseph Black. They met one evening a week at the Oyster Club,
which Hutton helped to found. These men brought into the world the engines
of the Industrial Revolution and some of the ideas and attitudes that made
the revolution possible.

Hutton communicated his views in 1785 to the recently established Royal
Society of Edinburgh, in a paper entitled Theory of the Earth.

1785–1787 CE Edmund Cartwright (1743–1823, England). Inventor
and clergyman. Developed a steam-powered loom for wearing cotton that led
to the invention of more effective power looms and to the development of
modern wearing industry.

Cartwright was born at Marnham, in Nottinghamshire. He studied litera-
ture at Oxford, but had no scientific education. He became pastor of a rural
parish in Goadby Marwood in Leicestershire. In 1784 Cartwright learned of
the need for a wearing machine that could make cloth faster than the hand
loom. Even though he had never seen a loom in operation, he hired a carpen-
ter and a blacksmith to help him build a power loom. In 1787 he used it in a
spinning and wearing factory he opened at Doncaster.

In 1791, a mill at Manchester ordered 400 of Cartwright’s looms. But the
factory was burned down by workmen who feared the new power machinery
would eliminate their jobs. Although Cartwright’s looms were never fully
practical, Parliament recognized his pioneering work (1809) by awarding him
the equivalent of $ 50,000.

1785–1803 CE Claude Louis Berthollet (1748–1822, France). Che-
mist. Made the first systematic attempt to grapple with the problems of
chemical physics (the physics of chemistry), such as chemical affinity and rate
of chemical reactions.

Berthollet was born at Talloire, near Annecy in Savoy. He graduated
in medicine at Turin. In 1722 he moved to Paris and became the private
physician of Phillip, duke of Orleans. In 1785 he declared himself an adherent
of the Lavoisierian school, and in 1787 participated in the revision of chemical
nomenclature with Lavoisier himself. He determined the composition of
ammonia (NH3) and hydrogen sulphide (H2S), and introduced the process of
chemical bleaching345 (1785). After 1794 he became a professor of chemistry
at the École Polythechnique. He accompanied Napoleon to Egypt in 1798.

345 Berthollet found that a solution of chlorine in water, when exposed to light ,
gave of bubbles of oxygen, which causes the bleaching action

Cl2 + H2O�HCl + HOCl�H + Cl + HOCl;
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During 1799–1803 he determined the factors influencing chemical reaction:
affinity (tendency to combine) and concentration. In 1803 Berthollet antic-
ipated the law of mass-action346 which was formulated in a general form by
Guldberg and Waage (1864 to 1867).

Under the empire Berthollet became a Count, and after the restoration
of the Bourbons he was made a peer. In the later years of his life he had
established, at Arcueil, a well-equipped laboratory which became a center
frequented by some of the most distinguished scientific men of the time.

1785–1802 CE William Paley (1743–1805, England). Philosopher and
churchman. Author of “The Principles of Moral and Political Philosophy”
(1785) and “Natural Theology” (1802).

Argued that living things are far too complicated to have arisen by chance,
and that the existence of creatures as beautifully fitted for their way of life
as ourselves, reveal the presence of a designer. Paley’s arguments come both
from biology and astronomy: he realized, for example, that the inverse-square
law of the gravitational attraction force is unique in giving rise to stable
orbits. If the law of gravity had, for example, been an inverse cube, then
planetary orbits would be unstable, and a planet that moved a little closer
to the sun would immediately begin to fall inwards permanently, while one
that moved slightly outwards in its orbit would continue receding forevermore.
Tiny changes, such as those caused by the impact of a meteorite, would be
disastrous. In our universe, if the earth’s orbit, say, shifts slightly inwards or
outwards because it is hit by a piece of rock from space, the natural tendency
is for the planet to return close to its old, regular path. Paley saw this

HOCl�HCl + O.

The photon energy decomposes the chlorine molecule into two chlorine atoms,

and the oxygen, through the oxidizing OH group, helps to convert pigments and

strains from cotton goods.
346 A chemical reaction, e.g. A + BC → AB + C, is countered by the inverse

reaction: AB + C → A + BC which can often take place under the same

conditions and simultaneously with the direct reaction. A state of equilibrium

is then reached when the two opposing reactions balance each other, i.e., proceed

with equal rates. This is denoted A+BC�AB +C [example: reducing steam

by heated iron 3Fe+4H2O � Fe3O4+4H2]. Such reactions are called reversible

reactions.

According to Berthollet, the activity of a substance is proportional to the affinity

and the concentration. The product of these he called active mass. His law of

mass-action then states: In the equilibrium state, the extent of chemical change

is proportional to the active masses of the interacting substances.
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“choice” of the universe square law of gravity as another example of the work
of intelligent design in a universe suitable for human life. He did not elaborate,
however, on the fact that the inverse square law is a byproduct of the fact that
the universe has three spatial dimensions — although this had been noticed
by Immanuel Kant earlier in the eighteenth century.

Paley’s arguments go back to authors such as John Ray, and have had
a long intellectual history, surviving to the present day in the critique of
Darwinian evolution. Yet Charles Darwin, while himself a student at Christ’s
College of Cambridge University, not only had to read Paley, but was deeply
impressed with Paley’s arguments. Even though Paley’s concept of God as a
designer is very different from Darwin’s theory of natural selection, Darwin
took from his reading of Paley a belief in adaptation — that organisms are
somehow fit for the environments in which they live, that their structure
reflects the functions they perform throughout their lives.

Where natural theology ran into trouble was in explaining the many cases
of apparent pain, waste, and cruelty in the living world: why would a benevo-
lent Designer have made cats play with mice before killing them, or parasites
that eat their hosts from the inside?

Paley struggled to reconcile the apparent cruelty and indifference of nature
with his belief in a good God, and finally concluded that the joys of life
simply outweighed its sorrows. Where Darwin departed from Paley was in his
concept of natural selection as a process that could produce adaptation and
design without the all-encompassing intervention of a benevolent Designer.

Paley was born in Peterborough and graduated from Christ’s College,
Cambridge (1763). In 1782 he became Archdeacon of Carlisle.

1785–1794 CE Antoine-Nicolas Caritat Marquis de Condorcet
(1743–1794, France). Mathematician. Tried to apply probability theory to
situations of human judgment, such as the probability of election of a candi-
date by a given number of voters or the probability of a tribunal arriving at a
true verdict in a trial if to each juror a number can be assigned that measures
the chances he will speak or understand the truth. This probabilité des judg-
ments, with its overtones of the Enlightenment philosophy, was prominent
in the work of Condorcet347. Though an advocate of the French Revolution
(and a believer in the necessary progress of the human race towards happiness
and perfection), he himself became ironically, a victim of the revolutionary
tribunal.

347 His Voteŕs Paradox (1785) plays a central role in both the theory of group

choice (voting) and the theory of group preference (utility aggregation), finding

application in modern game theory
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1787–1794 CE Nicolas Leblanc (1742–1806, France). Chemist and
Surgeon. Father of modern industrial chemistry. Invented the first industrial
chemical process348 to be worked on a really large scale.

The great expansion to textile manufacturers in Britain which began with
the industrial revolution, together with the expansion of glass-making and
soap manufacture, greatly increased the demand for alkali, and so great a
strain was put on natural resources, that before long the synthesis of alkali
became essential. In France the general shortage of alkali has been made acute
by the difficulties arising from the wars, and in 1775 the Academy offered a
prize of 2400 livres for the satisfactory method of making soda from salt.

Leblanc, then a physician to the Duke of Orleans, took the challenge and
established his process in a works by means of a loan from the Duke (1791).
He opened factories at St. Denis, Rouen, and Lille, but reaped no lasting
benefit from what was to remain for a century one of the most fundamentally
important of all industrial processes. In 1793 the Duke was guillotined by the
friends of liberty and fraternity, and Leblanc’s factory was confiscated and
dismantled. Moreover, Leblanc was forced to reveal the secrets of his process.

By way of compensation for the loss of his rights, the works were handed
back to him in 1800, but all his efforts to obtain money enough to restore
them and resume manufacturing were vain. Worn out with disappointment,
the unfortunate inventor died by his own hand in a shelter for the poor in St.
Denis, near Paris and buried in an unknown pauper’s grave.

Four years after his death, Michel Jean Jacques Dizê published a paper
in the Journal de Physique claiming that it was he himself who had first
suggested the addition of chalk; but a committee of the French Academy
came to the conclusion that the merit was entirely Leblanc’s (1856).

Although Leblanc’s process was announced in 1787, it was not worked in
Britain until nearly 40 years later, an important factor in the delay being the
excise duty on salt (1702–1823).

348 The ‘Lablanc process’: the preparation of Soda (Na2CO3) from common

salt. In this process, sulphuric acid made from pyrites is heated with salt:

2NaCl+H2SO4 = Na2SO4+2HCl, the hydrochlorin acid being absorbed and

converted into chlorine, used in the manufacturing of bleaching powder. The

‘salt-cake’ (Na2SO4) is now heated with carbon in the presence of limestone

(chalk, CaCO3). The reaction occurs in two stages, sodium sulphate being

first reduced to sulphide: Na2SO4+2C = Na2S+2CO2, and the sulphide

then reacting with chalk to form a mixture of sodium carbonate and calcium

sulphide, together with unchanged carbon and impurities, called black ash:

Na2S+CaCO3 = Na2CO3+CaS.
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1788 CE Charles Bladgen (1748–1820, England). Scientist and
physician. Discovered that the lowering of the freezing point of a solvent by a
substance in dilute solution is proportional to the concentration of the solute.

Blagden was born in Gloucestershire. Assistant of Cavendish. Visited
Lavoisier (1783) and told him of Cavendishe’s experiments. Established the
importance of sweating in maintaining constant body temperature of animals.

1789 CE Jeremy Bentham349 (1748–1832, England). Social philo-
sopher. Remembered as a legal and political critic and reformer.

Founded the philosophy known as Utilitarianism. It defines virtue in terms
of utility (the enhancement of the happiness of many, expressed in the formula,
“the greatest happiness of the greatest number”, as the proper goal of society,
and the function of a good government. Utilitarians advocated the intellectual
and social independence of individuals, defended civil liberties, and declared
their belief in democratic ideals. All such values, however, were regarded
merely as steps toward the fundamental goal of universal happiness, not as
absolute truths.

Bentham avowed his faith in the democratic rights of man, but he consid-
ered them to be only fictions necessary for the successful conduct of life. He
proposed to organize a country’s laws and institutions so that they placed the
general good above each person’s pleasure, effecting harmony between public
and private interests. His criticisms brought about many needed reforms.

Bentham dabbled in various scientific and intellectual pursuits; for exam-
ple, he propounded schemes for cutting canals through the isthmus of Suez
and the isthmus of Panama.

As a teacher of the principles of legislation, Bentham inquires of all insti-
tutions whether their utility justifies their existence. His writings have been
and remain a storehouse of instruction for statesmen and legal reformers, and
the great legal revolution (1873) which in England accomplished the fusion of
law and equity can be traced to him.

Bentham identified the useful and the good. This outlook influenced Eng-
lish thought, which took its spirit from a life of industry and trade, and looked
up to matters of fact with a certain reverence.

The Baconian tradition had turned thought in the direction of things, mind
is the direction of matter ; The materialism of Hobbes, the sensationalism

349 The stuffed and clothed skeleton of Jeremy Bentham are preserved according to

his instructions in his will by the University of London. He left his entire estate

to the university with the provision that his remains be present at all meetings

of the board.
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of Locke, the skepticism of Hume, and the utilitarianism of Bentham were
variations on the theme of a practical and busy life.

1786–1789 CE Abraham Bennet (1750–1799, England). Physi-
cist. Early pioneer of electricity. Tried to relate atmospheric electricity to
the weather. In the course of these investigation invented (1786) the gold-
leaf electroscope [based on the “portable electrometer” of Tiberius Cavallo
(1740–1809), an Italian, who settled in London]. He also invented a simple
electric induction machine (1789).

Bennet was born Taxal, Cheshire, the son of the schoolmaster.He was or-
dained in London (1785) and appointed to curacy in Wirksworth, Derbyshire.
He held several other posts at the same time, including librarian to the Duke
of Bedford.

1789 CE Bad weather and disastrous harvests infected with ergot resulted
in mass hallucinations in Brittany – leading to widespread panic and irrational
fears of food being stolen; it is not known how many people died of ergot
outbreaks, but it had an impact on events leading up to the French Revolution.

1789–1795 CE The French revolution350 transformed the government of
France, shook the Establishment throughout Europe and led to many changes
in ideas of government.

By 1789 France was deeply in debt because of expensive wars, and badly
governed by an elite of the nobility, who lived in luxury while many poor
people starved.

Faced with national bankruptcy, the King, Louis 16st, decided to summon
the Estates General , a national parliament which has not met since 1614. It
consisted of 300 noblemen, 300 clergy and 600 commoners. Each estate had
one vote, which meant that the nobility and clergy could outvote the com-
moners. So the commoners formed a national Constituent Assembly , pledged
to make a new constitution for France.

Louis planned to dismiss the Assembly. This aroused the fury of the Paris
mob, which stormed the fortress-prison of the Bastille on July 14, 1789. Louis
had to give way, and the Assembly proceeded to bring many reforms. Louis
then conspired with his allies in Austria and Prussia, and in June 1791 tried
to flee the country. He was captured and taken back to Paris. War with
Austria and Prussia followed in April 1792.

350 For further details, see:

• Hobsbawm, E.J., The Age of Revolution 1789–1848, Mentor Books: New

York, 1962, 416 pp.
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In August the Paris mob attacked the King in the Palace of the Tuileries,
butchering his guards and imprisoning him. French victory against the Prus-
sians in the Battle of Valmy (1792) encouraged the revolutionaries. A new
assembly, the National Assembly , declared the monarchy abolished and set up
a republic on Sept. 21, 1792. Power in the Convention passed to a political
group called the Girondists, who had Louis tried for treason and executed
(1793).

During 1793, a more extremist group, the Jacobians, gained power. The
Girondists were executed, and a Committee of Public Safety ruled the country,
headed by Maximilien Robespierre. Under his influence anyone suspected of
opposing the new regime was executed, in a blood-bath known as the ‘Reign
of Terror ’. In July 1794, Robespierre himself was accused and guillotined,
and the Terror gradually died away. In 1795, a new two-chamber assembly
was elected, and order returned to France.

The French Revolution marked a turning point in European history. It un-
leashed forces that altered not only the political and social structures of states
but also the map of Europe. Europe entered a world of class conflict, middle-
class ascendancy, acute national consciousness, and popular democracy. To-
gether with industrialization, the Revolution reshaped the institutions, the
societies, and even the mentality of European men351.

Industrial Chemistry I

No beginning can be set to chemical industry, for at the earliest times for
which we have either archaeological evidence or written records, a considerable
number of both chemicals and of chemical processes were in use.

351 The revolution did not, however, bring immediate equality for women; the

French took the last word of the revolutionary slogan liberté, égalité, fraternité

so literally that French women were not given the right to vote until 1945.

In the United States, women had to struggle for more than half a century before

the 19th Amendment to the constitution gave them full voting rights (1928);

Great Britain reluctantly made the same concession in 1928.
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One of the first chemicals in demand was salt352, an early consequence of
cooking food on fire; many cooking processes remove salt from the raw food.
In the hot climate of the early civilizations much salt was also lost in sweat,
and the need of replenishment was correspondingly great. For these reasons
salt trade was one of the most ancient in the world. In addition of its use for
seasoning food, salt was also used at an early date to preserve both meat and
fish.

Natron (an impure form of soda) was preferred for the preservation of the
body after death. The production of natron, derived from three main natural
sources in Egypt, and especially from the Wadi Natrun, was a state monopoly
in Ptolemaic times.

While the roasting and grilling of food became possible as soon as mastery
of fire had been won, boiling had to await the availability of vessels that would
withstand the heat of the fire. Thus, cooking begat pottery vessels, the glazing
of which demanded chemical skill; Egyptian potters used naturally occurring
iron oxide to form red and black glazes.

Fermentation processes, too, had their origin in the preparation of alco-
holic beverages by the conversion of sugar by yeast. Although Alexandrian al-
chemists were familiar with the processes of distillation, it is doubtful whether
apparatus was sufficiently advanced for pure alcohol to have been available
before the 12th century.

In ancient Egypt it was known that the fermentation could proceed further,
resulting in the formation of vinegar : chemically, this involves oxidation of
alcohol to acetic acid.

The art of painting produced a need for natural pigments: blacks were
produced with manganese dioxide, red with iron oxide and yellow with iron
carbonate. By the time of the ancient empires, the paint for the decoration of
houses, temples and tombs was made viscous by addition of such substances
as egg-white, gum, or honey. Pigments used included red lead, yellow lead
oxide, malachite and green copper silicate — the preparation of which needed
considerable chemical skill.

The plastering of walls with lime, made by roasting limestone or chalk
in kilns to expel carbon dioxide was introduced already around 2500 BCE.
Likewise, roasted gypsum (hydrated calcium sulphate) was used for decoration
of walls.

352 The Bible is abundant with such evidence (e.g., Job 6, 6; Lev 2, 13; Zep 2, 9).

Wars were fought for control over salt and asphalt sources (Gen 14; Chron II

25, 11; Kings II 4, 7).
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With increasing sophistication there came the increasing demand for ar-
tificial illumination; lamps of metal and pottery were modeled on sea-shells,
using oil mixed with little salt to give a yellower and more luminous flame.
Oil was made either from olives or the seed of the sesame plant.

The demands of clothing provided the most powerful stimulus for the de-
velopment of chemical processes: To this day, the chemical and the textile
industries are very closely related. The origin of soap (in the chemical sense
of saponified fats and oils) is probably in the 4th century CE. Long before
that, however, various cleansing agents of a different chemical character were
in use. The basic process in soap-making is to boil fats or vegetables oils with
strong alkali. From the 12th century on, soft soap for the use of the textile
industry was prepared using caustic alkali.

The practice of dyeing goes back to remote times, and the earliest records
show that it was already a complex craft relying heavily on chemical processes.
Until the 19th century, virtually all dyes were of vegetable or animal origin.
From very early times it was known that cloth would take up colors much more
intensely and permanently if it was first treated with what we now know to
be salts of aluminum (alums). The Greeks and Romans used potassium alum,
obtained from certain volcanic regions, but by the 13th century a method of
purifying natural aluminum sulphate was described by Arabic writers.

Of the origins of the three principal acids of modern chemical industry353

353 By far the most important industrial chemical is sulfuric acid. It is used as a

solvent and reactant in the preparation of a large number of other chemicals.

Thus, it is involved in the manufacture of phosphate fertilizers, of inorganic

pigments, of iron and steel, of ammonium sulfate [(NH4)2SO4] and aluminum

sulfate [Al2(SO4)3], and of rayon. Sulfuric acid is also involved in the processing

of nonferrous metals and in the manufacture of a variety of petroleum products.

After H2SO4, ammonia (NH3) is the industrial chemical produced in the great-

est quantity. Its largest use is in the preparation of fertilizers. It is also used in

the manufacture of soda ash, nylon, dyes, rubber and various plastics. HCl is

used in the petroleum, food and metal industries. HNO3 has its largest use in

the manufacture of nitrates, explosives and as an oxidizing agent.

Some idea of the variety of compounds and uses can be obtained from the fol-

lowing list of the uses of the salts of sodium:

NaCl (sodium chloride): table salt, manufacture of NaOH, Cl2 and in the paper

industry.

Na2SO4 (sodium sulfate): preparation of paper pulp and in the manufacture

of glass.

NaHSO4 (sodium bisulfate): dye industry.

NaHSO3 (sodium bisulfite): tanning and bleaching of textiles.

Na2S2O3 (sodium hyposulfate): photography.
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— sulfuric (H2SO4), hydrochloric (HCl), and nitric (HNO3), sulfuric acid
seems to have been unknown until the early 16th century, when it was made
in Germany by dry distillation of green or blue vitriol (iron or copper sulfate).
It was of virtually no industrial importance until the 17th century, which is
also when HCl was first clearly distinguished. Nitric acid, commonly obtained
by distilling nitre (potassium nitrate) with vitriol, was described by the 8th

century Arabic alchemist, Jabir (Geber). It was industrially important for
separating large quantities of silver, which dissolves in it, from gold.

Far more important than nitric acid was nitre (KNO3), which with sulfur
and charcoal, is an essential ingredient of gunpowder. By 1300 this mixture
was prepared for use in artillery and, later, in small arms. The common source
of nitre was from stables, pig-sites etc., in which it resulted from bacterial
action on manure. At first, mixing of the three ingredients was done by
artillerymen in the filed, but power-mills were soon established; the earliest
were manually operated, but water-power had been introduced by the 17th

century.

Up to the 18th century, the main specifically chemical trades were those of
the apothecary, who prepared compounds on a small scale for use in medicine,
and of the alum makers, who prepared alum on a comparatively large scale
for the treatment and coloring of skins, paper, and textiles.

The new spinning and weaving machines introduced during the 18th cen-
tury increased the output of textiles to such a degree that the chemical prob-
lems of bleaching, and later of dyeing cloth, became considerable. Tradition-
ally, textiles had been bleached by dipping them alternately in acid solutions
of sour milk and alkaline solutions of plant ashes, and exposing them to the
sun on ‘bleach fields’, a process that occupied all of the summer months in
a given year. A shortage was soon experienced in sour milk and then also in
natural alkali.

At the end of the 18th century, the discoveries of Antoine Lavoisier
(1789) and Nicolas Leblanc (1791) in France had propelled a small chem-
ical industry. But it was in Germany, which became the leading country in
theoretical chemistry, that chemical research had the biggest impact on in-
dustry. By the end of the 19th century, the country had developed into the

NaBO3 (sodium perborate): oxidizing and bleaching agent.

Na2CO3 (sodium carbonate; soda ash): manufacture of glass, soap and deter-

gents, paper.

NaOCl (sodium hypochlorite): disinfectants, deodorants, bleaches.

NaClO3 (sodium chlorate): manufacture of rocket propellant and explosives.

Na2S (sodium sulfide): preparation of dyes.
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largest manufacturer of such chemicals as dyes, fertilizers, and acids used in
industrial processes354.

In England, William Henry Perkin (1838–1907) was trying to synthe-
size quinine when he accidentally produced the first synthetic dye, which we
know as mauve. Perkin got rich on mauve and then went on (1875) to create
the first synthetic perfume ingredient coumarin.

Perkin’s chemistry teacher, August Wilhelm von Hoffmann (1818–
1892, Germany) was a German chemist teaching in England. He synthesized
his first dye, magenta in 1858. After he returned to Germany he discovered
many chemicals and aniline dyes. Other chemists in Germany worked on
producing natural dyes from easily available chemicals, obtaining a red called
alzarin (1869) and indigo (1880). All these dyes became the basis of an
immense German chemical industry. They also had an impact on biology, for
biologists discovered that coloring bacteria or cells with dyes made previously
invisible structures apparent.

1789–1842 CE Martin Klaproth (1743–1817, Germany). Chemist.
Discovered an unknown metal in pitchblende (1789). Although he was unable
to isolate the new metal, he named it uranium after the recently discovered
plant Uranus (1781, William Herschel). In 1842 the chemist Eugène Mel-
chior Peligot (1811–1890, France) isolated the element.

1790–1800 CE Salomon ben Joshua Maimon (1753–1800, Ger-
many). Philosopher, historian of philosophy and logician. Attempted to ex-
pound an algebraic symbolic system of logic (1794). Developed a form of
monism (1797) (i.e. there is but one fundamental reality) that pervaded not
only philosophy, but all sciences, and by which Fichte, Schelling and Hegel
were influenced. Goethe, Schiller, Kant and Mendelssohn payed him
tributes of praise.

354 The relationship between scientific education and technological progress became

fully understood during the 19th century. Following the example of the Ecole

Polytechnique in France, Germany (and later the United States) also founded

technical schools with the idea of applying science to technology. At the end

of the century, these technical universities played an essential role in the rapid

expansion of Germany’s industry. They developed the various kind of engi-

neers who used science to solve technological problems rather than to advance

knowledge.



1790 CE 1451

Key works:

• Versuch über die Transzendentalphilosophie (Essay on the Transcen-
dental Philosophy, 1790). Criticism of Kantian philosophy. Kant ac-
knowledged Maimon as the most acute of his critics.

• Versuch einer Neuen Logik (Essay on the New logic, 1794)

• Kritische Untersuchungen über den Menschlichen Geist (Critical
elaborations on the human spirit, 1797).

• Lebengeschichte (Autobiography, 1793). An important source for the
study of Judaism and Hasidim in Eastern Europe in that period.

In his later writings he achieved synthesis of rationalism and Judaism. In
his Kritische Untersuchungen, the great question at issue is Kant’s question:
“Has man any ideas which are absolutely and objectively true?”. The answer
to this question depends on another question: “Has man any ideas indepen-
dent of experience?”, for if all ideas depend on experience, there can be no
question of objective ideas, experience being essentially subjective.

Kant answered the second question in the affirmative, and the first in the
negative. He showed that in consciousness certain elements are given which
are not derived from experience, but which are necessarily true. However these
given elements or “things in themselves” man knows only as they appear to
him, but not as they are “per se”. This concept of “things in themselves”
is rejected by Maimon, who holds that the matter of exterior objects which
produce impression on man’s sensibility is absolutely intelligible.355 He also

355 Maimon seized upon the fundamental incompatibility of a consciousness which

can apprehend, yet is separated from, the “thing-in-itself”. That which is ob-

ject of thought cannot be outside consciousness; just as in mathematics
√

−1 is

an unreal quantity, so things-in-themselves are ex-hypothesis outside conscious-

ness, that is to say, unthinkable.

The Kantian paradox he explains as the result of an attempt to explain the

origin of the “given” in consciousness. The form of things is admittedly sub-

jective; the mind endeavors to explain the material of the given in the same

terms, an attempt which is not only impossible but involves a denial of the

elementary laws of thought. Knowledge of the given is, therefore, essentially

incomplete. Complete or perfect knowledge is confined to the domain of pure

thought, to logic or mathematics. Thus the problem of the thing-in-itself is

dismissed form the inquiry, and philosophy is limited to the sphere of pure

thought. The Kantian categories are, indeed, demonstrable and true, but their

application to the given is meaningless and unthinkable.
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contested the Kantian distinction between sensibility and understanding as
well as the subjectivity of the intuitions of time and space. For him, sense
is imperfect understanding, and time and space are sensuous impressions of
diversity, or diversity presented as externality.

In practical philosophy he criticized Kant for having substituted an un-
practical principle for the only motive for action – pleasure. The highest
pleasure is in knowing, not in physical sensation, and because it recognizes
this fact the “Ethics” of Aristotle is much more useful than the Kantian.

Maimon’s autobiography was published by K. Ph. Moritz (Berlin, 1793).
In this work he gives a résumé of his views on the Kabbalah, which he had
expounded in a work written while he was still in Lithuania. According to
him the Kabbalah is practically a modified Spinozism, in which not only is
the world in general explained as having proceeded from the concentration of
the divine essence, but every species of being is derived from a special divine
attribute. God, being the ultimate substance and the ultimate cause, is called
“En Sof,” (infinity) because He can not be predicated by Himself. However,
in relation to the infinite beings, positive attributes were applied to Him,
and these attributes were reduced by the Kabbalists to ten – the ten sefirot .
The ten “circles” correspond to the ten Aristotelian categories, without which
nothing can be conceived.

In the same work Maimon expresses his views on Judaism. He divides
Jewish history into five main periods:

(1) the period of natural religion, extending from the Patriarchs to Moses;
(2) the period of revealed or positive religion, from Moses to the Great San-
hedrin;
(3) the Mishnaic period;
(4) the Talmudic period;
(5) the post-Talmudic period.

Maimon censures the Rabbis for having burdened the people with minute
prescriptions and ceremonies, but praises their hight moral standard.

Maimon was born at Nieswiez, Polish Lithuania. He was a child prodigy in
the study of rabbinic literature. Married off by his father at the age of 11, he
became a father himself at 14. He supported his family by working as a tutor

By this critical skepticism Maimon takes up a position intermediate between

Kant and Hume. Hume’s attitude to the empirical is entirely supported by

Maimon. The causal concept, as given by experience, expresses not a necessary

objective order of things, but an ordered scheme of perception; it is subjective

and cannot be postulated as a concrete law apart form consciousness.
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in neighboring towns. In his spare time he educated himself in philosophy,
secular sciences and foreign languages. He adopted the name Maimon in
honor of Maimonides, as a token of reverence for that great master.

Harassed both by his implacable mother-in-law and by his correligionists
(who regarded him as a heretic) he left home and family (1770) to begin a life
of material insecurity and wandering over Northern Europe which terminated
only in 1790; he was then offered a retreat on the estate of Count Adolph
Kalkereuth of Nieder Siegersdorf (Silesia), where he died.

1790–1820 CE John Rennie (1761–1821, England). Civil engineer.
Constructed many canals, bridges, docks, breakwaters and harbors in Scot-
land and England. The most conspicuous are: Waterloo bridge, Southwark
bridge and London bridge over the Thames.

Born at Phantassie, Haddingtonshire, and educated (1780–1784) at Edin-
burgh University.

A feature of his work was the use of iron for many portions of the machines
which had formerly been made of wood.

1790–1850 CE Leading Western poets and novelists in the Age of Ro-
manticism an Naturalism.

• Friedrich Hölderlin 1770–1843
• William Wordsworth 1770–1850
• Samuel Taylor Coleridge 1772–1834
• Heinrich von Kleist 1777–1811
• Adelbert von Chamisso 1781–1838
• Stendhal 1783–1842
• Jakob Grimm 1785–1863
• Wilhelm Grimm 1786–1859
• Lord Byron 1788–1824
• Percy Bysshe Shelley 1792–1822
• John Keats 1795–1821
• Heinrich Heine 1797–1856
• Adam Mickiewicz 1798–1855
• Honore de Balzac 1799–1850
• Alexander Pushkin 1799–1837
• Victor Hugo 1802–1885
• Prosper Merimeé 1803–1870
• Hans Christian Andersen 1805–1875
• Henry W. Longfellow 1807–1882
• Edgar Allan Poe 1809–1849
• Nikolai Gogol 1809–1852
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• Alfred Tennyson 1809–1892
• Berthold Auerbach 1812–1882
• Ivan Goncharov 1812–1891
• Mikhail Lermontov 1814–1841
• Herman Melville 1819–1892

1791 CE Jeremias Benjamin Richter (1762–1807, Germany). Che-
mist. Formulated the Law of Equivalent Proportions which states that if an
amount x of substance A combines chemically with amount y of substance B
and also with amount z of substance C, then amount y of substance B will
combine with amount z of substance C. After this discovery, tables of equiv-
alent weights were drawn up, showing the relative amounts of the chemical
elements that would combine with one another.

Richter was born at Hirschberg in Silesia, and became a chemist at Breslau
mines and the Berlin porcelain factory. Richter was a pupil of the philosopher
Immanuel Kant, and he held, with his master, that the physical sciences
were all branches of applied mathematics.

Emancipation – The second Exodus (1791–1917)

In antiquity the Jews were the great innovators in religion and morals.
In the Dark Ages and early medieval Europe they were still an advanced
people transmitting scarce knowledge and technology. Gradually they were
pushed from the van and left behind until, by the end of the 18th century, they
were seen as bedraggled and obscurantist rearguard in the march of civilized
humanity.

But then came an astonishing second burst of creativity. Breaking out of
their ghettos, they once more transformed human thinking, this time on the
secular scientific sphere.

With the decline of religious faith in post-medieval European society, the
traditional theological hostility towards the ‘deicide’ people became less rel-
evant, especially to intellectuals, who identified with the skeptical temper of
the Age of Enlightenment. The rise of rational thinking in the 17th and 18th
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centuries appeared to be positive development for the Jew, for it attacked the

foundations of Christian religion and the unified Christian state which had

excluded or oppressed Jews for reasons of creed.

It was partly from rationalist assumptions of the German Enlightenment
that the Habsburg Emperor Joseph II derived his Toleration edicts of the

1780s, that Moses Mendelssohn felt empowered to build a bridge between

traditional Jewish and modern German cultures and that his friend Gotthold

Lessing immortalized a more positive image of the Jew in his famous play,

Nathan the Wise. Without the philosophy of the Enlightenment, the Prussian

bureaucrat Christian Wilhelm Döhm would never have written his tract

“Concerning the Civic Amelioration of the Jews” (1781), an indictment of the

responsibility of the Christian world for the degradation of the Jews.

Other forces were also in action; with the disappearance of the last ves-

tiges of feudalism, the Court Jews went also. Their financial manipulations,

which often saved European monarchs from bankruptcy, made way for the

public banking system which we know today. Their financial services and

counsel to sovereigns, states and private enterprises were vastly important in

the commercial development and industrial growth of Europe. Thus, at the

turn of the 19th century, the rulers of Europe were not blind to the economical

potential of the Jews.

The Emperor, as well as his neighbor, Frederick the Great of Prussia,

have certainly not overlooked the substantial revenue the Jew brought into

their realms by stimulating industry. Indeed, the industrial revolution in

Germany found its most enterprising pioneers among Jews. The first iron

industry (1840), coke industry, and railroad industry were all founded and

built by Jewish investors and entrepreneurs. The electrical, chemical, shipping

and dye industries also owe much to Jews.

With those factors combined, the ghetto dwellers faced, at the end of the

19th century, the most momentous political event in Jewish history since the

loss of their state in 70 CE – the Emancipation:

• Sept. 28, 1791: Jews were declared to be equal (on paper) with all men

and free citizens of the Republic of France.

• 1798: The ghetto gates in Bonn, Germany, were broken down by Chris-

tians

Consequently, the Jews of Germany and Austria emerged from the mental

and physical isolation of ghetto life and rushed with burning enthusiasm into
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the arts and sciences356. They may have been newcomers to the German
universities, but it seemed as though they had been preparing for the entrance
examination for a thousand years.

Their bibliophile tradition as “people of the Book” took them almost as
a matter of course, into medicine, biology and mathematics as well as liter-
ature and music. Their grandfathers had studied the Talmud. They, no less
attentively, read Kant, Goethe and Hegel. Karl Marx (grandson of two
orthodox rabbis) unconsciously reverted to an old Kabbalist technique when
he “turned Hegel upside down” in order to formulate his own dialectical ma-
terialism. In the sciences, though most professorships still remained closed to
them357, new doors were constantly opening.

There was, however, a price to pay for joining the modern world; the
“ticket of admission to European culture” was the baptismal certificate358,
common mostly in the first half of the 19 th century. After 1848, apostasy
declined while other forms of assimilation (intermarriage and renegades) were
more fashionable.

356 Moses Mendelssohn translated the Pentateuch into German (1783):

Leopold Zunz and his friends established (1819) the Society for promotion

of Jewish Culture and Science
357 From 1818, Jews in Germany were excluded from state academic posts, by de-

cree of King Frederick William III. Jews were also dismissed from state positions

and conversion to Christianity was actively encouraged.
358 During the 19 th century, at least 250,000 Jews converted to Christianity in

Europe alone. [Germany 22,500; Britain 23,500; Russia 84,500; Poland 21,500;

Austro-Hungary 45,000]. This amounted to about 5 percent of the total Jewish

population during that century. Most apostates belonged to the wealthy and in-

tellectual circles in major cities, who constituted about 15 percent of the Jewish

population. The rest were poor religious people who would not change their old

living style, thus being immune to assimilation of any form. Total Jewish popu-

lation in Europe reached 1,430,000 (1800) [Russia and Poland 800,000; Austria,

Hungary and Galicia 300,000; Germany 200,000; France 80,000; Holland 50,000]

and 8,690,500 (1900); 9,462,000 (1939). In Berlin, the Jewish population never

exceeded 4 percent [2000 (1743); 3300 (1812); 12,000 (1852); 24,280 (1864);

45,500 (1876); 106,000 (1900); 172,600 (1925); 160,500 (1933); 82,780 (1939);

In Vienna: 178,000 (1933); 91,500 (1939)]. The number of Jews in Germany

grew to 420,500 (1871) and 564,400 (1925), where the 1925 figure included some

80,000 immigrants from the east.

Intermarriages during 1906–1930 amounted to 27% of total Jewish marriages.

In general, Jewry lost 80% of descendants via intermarriages. The Jewish in-

tellectual elite amounted to about 3 percent of their total number at any given

time during 1830–1930.
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Apostasy was usually Protestant in Northern Germany (for Heine, Marx,
Felix Mendelssohn and many others) but Catholic in Bavaria and the Hab-
sburg empire. Conversion tended to be a matter of good form rather than an
act of faith. Most converted Jews blended entirely into the social background.
A generation or two later, no one remembered that Johann Strauss, Sr.
(“the demon of Viennás innate musical spirit”, as Richard Wagner described
him), was the son of a baptized Jewish tavern-keeper from Budapest. Many
German Jews bore the names of localities which, with the addition of a von
or zu, furnished a pure Aryan flavor.

Even those who stopped short of conversion, however, tended to abandon
the more visible aspects of the Jewish faith. Since German life was becoming
increasingly secular, baptism as such ceased to be the touchstone of social
assimilation. Most of the emancipated German Jews did their best to become
outwardly indistinguishable from their neighbors.

But despite all the efforts of the liberal elements and the strenuous fight
of the Jews themselves to remove the barriers to their full acceptance by
assimilation, anti-Semitic forces remained powerful, especially in the lower
middle class and nobility. They frequently brought about violent outbreaks
and riots differing in strength and extent in the cities and states where they
took place. Whenever adverse events (economic, political or social) occurred,
these feelings of hostility erupted.

The attitude of Bismarck to this problem during his reign (1862–1890)
was ambiguous; on one hand he had great respect for the high qualities, great
talents and competence of many Jews and had not the slightest hesitation to
use their services for Germany or for his own interests.359 But Bismarck also
used antisemitism as a convenient political weapon in his fight against liberals
and Social Democrats, many of whose leaders were Jewish. Nevertheless, he
would not tolerate any violent actions against Jews and would not permit
their civil rights violated, fully recognizing their great value for the strength
of Germany.

The attitude of Kaiser Wilhelm II toward Jews was more complex and
sometimes more emotional. During his reign (1888–1914), Jews increasingly

359 An example is his close association to the Jewish banker Gerson von

Bleichröder (1822–1893) who helped to finance two of Bismarck’s wars and was

instrumental in the building of the empire. He was also Bismarck’s personal fi-

nancial adviser, as well as that of Benjamin Disraeli. Bleichröder’s contributions

to the greatness of Germany earned him only envy scorn and hatred, becom-

ing the target of strong antisemitic reactions, especially from the economically

declining ruling Junker class.
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penetrated academic professions and many became recognized leaders in sci-
ence and many other fields. But, owing to the newly accumulated wealth,
Jews began to play a prominent role in society, and many Junkers were un-
able to compete with them. These Junkers, whose wealth was essentially
based on their large estates were impoverished by the rise of capitalism and
industrialization. Attributing their misfortunes to the Jews and not to the
economic trends prevailing in Western Europe, they succeeded (with the full
support of Wilhelm) to block the Jews from both government and the army.

Unfortunately, the Kaiser fell under the influence of the antisemitic ideol-
ogy of Cosima Wagner360 and her son-in-law, Houston Stewart Chamberlain.
Consequently he began to consider Jews in general as the deadly enemy of the
“Aryan” Germans. This did not prevent many of his entourage from having
Jews as their personal physicians, bankers, or advisers, despite their gross
antisemitism. As for Wilhelm himself, he was fully aware of the major con-
tribution of German Jews to German science and industry and like Bismarck
would not tolerate any violent eruption of antisemitism; Law and order were
untouchable!

What were the factors permitting the Jews in Germany to become instru-
mental in the rapid rise of science in the Wilhelmian era (1888–1914) and
later in the Weimar Republic until Hitler (1919–1933)?

360 In December 1914, Lord Balfour (Britain’s foreign secretary 1916–1919) told

the scientist and Zionist leader, Chaim Weizmann that on his previous visit

to Cosima Wagner in Bayreuth she had expressed the opinion that “. . . the

Jews in Germany have captured Stage, Press, Commerce and the Universities.

They are putting in their pockets, after only a hundred years of emancipation,

everything for which the Germans have worked for centuries. We resent very

much having to receive all the moral and material culture at the hands of the

Jews . . . ”

To this, Weizmann had commented to Balfour: “The essential point which most

non-Jews overlook and which forms the crux of the Jewish tragedy is that those

Jews who are giving their energies and their brains to the Germans are doing

it in their capacity as Germans and are enriching Germany and not Jewry,

which they are abandoning . . . . The tragedy of it all is that whereas we do not

recognize them as Jews, Madame Wagner does not recognize them as Germans,

and so we stand there as the most exploited and misunderstood people.”

At the turn of the century these extreme views of Cosima Wagner were shared

by a small number of people, but they became widespread in the era of the

Weimar Republic. It is remarkable how unaware Jews, as well as many non-

Jews, were of these deep-rooted feelings, almost until the era when the Nazis

came to power.
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One factor was the rapid growth of cities which offered talented, intelligent
Jews, with their willpower and drive, an unexpected chance.

A second factor was the rapid development of the capitalistic and indus-
trial economy around 1850. New elite and new ideologies were formed; a new
upper middle class began to emerge at the expense of the previously dom-
inant nobility, the craftsmen, the lower middle class, the peasants, and the
landowners, who lost many of their privileges. Jews seized upon these new
opportunities and played an important role in the new economy.

The third factor was the vast expansion of the universities and the techni-
cal institutions. About 10% of the students were Jews while Jews constituted
not quite 1% of the total population! In 1907, they amounted to 6% of all Ger-
man physicians and dentists, 14% of all lawyers, and 8% of private scholars,
journalists and writers.361

The acceptance of Jews in the universities was greatly facilitated by their
assimilation to German civilization. At the turn of the century many Jews
had lost almost all connections with Jewish tradition and the Jewish com-
munity. Many of them considered themselves as German citizens of Jewish
faith. But the Jewish religion actually had little meaning for many of them.
Even in the relatively liberal Wilhelmian era, a period of great prosperity and
relative affluence, the freedom that the Jews enjoyed in the academic and free
professions was not extended to all fields. Even baptized Jews were admitted
to public office and civil service in very limited and insignificant numbers.
They were virtually excluded from the government and the army. In these
fields, the situation began to change only in WWI, when many Jews fought
in the army.

Full emancipation (the right of religious freedom and the right to be chosen
to governing bodies) was declared in The Netherlands (1796); Italy (1798);
Belgium (1831); Canada (1832); Germany (1871); England (1878); U.S.A.
(1785–1877); Russia362 (1917).

361 When the Nazis came to power (1933) almost half of the 6000 physicians in

Berlin were Jews.
362 There was no other state on the European continent which officially pursued

such repressive anti-Jewish policies in the 19 th century as the Tzarist Russian

Empire. By 1897, more than 5 million Jews (about half of the world Jewry) lived

under the totalitarian rule of the Tzars in poverty and deprivation, subjected

to endless humiliating decrees. What the Russians did was to engage in the

first modern exercise of social engineering , treating Jews as earth or concrete,

to be shoveled around. Firstly they confined the Jews to what was called the

“Pale of the Settlement” (1812) which consisted of one million square kilometers

stretching from the Baltic to the Black Sea. A series of statutes (1804) forbade
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The Jewish intellectual tradition, nurtured continuously for so many cen-
turies by Talmudic studies and enriched at various periods by fusion with
other cultures, received a new impetus with the emancipation.

Although severely handicapped by the numerus clausus (an anti-Semitic
device for limiting Jewish students in universities on a percentage quota), Jews
nonetheless entered into all fields of study. They distinguished themselves
especially in the sciences. While science does not know any racial or national
boundaries, since it aims to serve all mankind, in Germany, however, sharp
distinctions were often made between Jewish and non-Jewish scientists — to
the detriment of science and of Germany.

them to live and work in the villages, thus destroying the livelihood of a third

of the Jewish population, without allowing them to do any labor on the land.

The real aim was to drive Jews into accepting baptism. The next turn of

the screw came in 1827, when Nikolai I issued the ‘Cantonist Decrees’ which

conscripted all male Jews, from 12 to 25, to 25 years of military service, the

object again being to promote baptism. During 1827–1856, some 60,000 kids

were forcibly kidnapped and conscripted, half of which were eventually baptized.

The government destroyed Jewish education. Jewish books were censored or

burned. Movements outside the pale were banned, and inside it – restricted.

Russian antisemitism was in its origins a combination of simple primitive hatred

for the Jews as ‘aliens’ and of Christian orthodox religious prejudice which

regarded Jewish people as deicides. Such prejudice remained alive and virulent

both at the state level and among the millions of superstitious and illiterate

Russian peasants. In fact, Russia was the only country in Europe, at this

time, where antisemitism was the official policy of the government. It took

innumerable forms, from organizing massacres (pogroms, 1871–1906) to forging

and publishing the Protocols of the Elders of Zion.
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History of Theories of Light II

B. Waves Versus Corpuscles, A (1608–1800)

The 17th century opened with a shower of new inventions and ideas. It seemed
as if all the latent optical lore of 2000 years, suddenly burst the floodgates of
human consciousness and materialized in the form of telescopes, microscopes,
prisms, the new phenomena of dispersion, polarization, diffraction and aber-
ration and the principles of least-time and Huygens’.

Above all, however, hovered the great controversy on the nature of light:
was it a stream of particles as maintained by Democritos (420 BCE),
Descartes (1637) and Newton (1672) or a rapid undulation of ethereal
matter as argued by da Vinci (1490), Grimaldi (1665), Hooke (1665) and
Huygens (1678)?

Until about the middle of the 17 th century, it was generally believed that
light consisted of a stream of corpuscles, emitted by light sources, such as the
sun or a candle flame, and traveled outwards from the source in straight lines.
This theory provided simple explanations to the simple laws of reflection and
refraction from smooth surfaces. With the discovery of the phenomenon of
light diffraction by Grimaldi (1665) and Römer’s proof (1676) that light
travels with a definite velocity, Huygens (1690) showed that the laws of
reflection and refraction could be explained on the basis of a wave theory
(through the wavelets and secondary wavefronts) and that such a theory could
furnish a simple explanation to the recently discovered phenomenon of double
refraction by Erasmus Bartholinus (1670).

The great moments of this epoch were undoubtedly the invention of the
telescope (1608), the mathematical statement of the law of refraction (Snell,
1621), Fermat’s principle of least-time (1657), the advent of wave theory
[Grimaldi, Hooke, 1665; Huygens, 1678], the determination of the velocity
of light (Römer, 1676) and Newton’s theory of corpuscles, dispersion and
color (1672). The authority of Newton led to the rejection of the wave-
theory and the abeyance of optics for nearly a century.363 But it still found
an occasional supporter, such as the great mathematician Leonhard Euler

363 For one thing, it was objected that if light were a wave motion one should be

able to see around corners, since waves can bend around obstacles in their paths.

We know now that the wavelengths of light are so short that the bending, while

it does actually take place, is so small that it is not ordinarily observed. The

significance of Grimaldi’s results was not realized at the time.
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(1746). It was not until the beginning of the 19th century that the decisive
discoveries were made which led to general acceptance of the wave theory.

1791–1819 CE William Smith (1769–1839, England). Geologist, en-
gineer and surveyor. Founder of stratigraphical geology. Discovered a method
to assign relative ages to individual rock strata (formations) by means of their
fossilized content and thus was first to point out the relationship between fos-
sils and geologic data (1791).

Units of similar lithology are not continuous even in one region and the
stratigraphic sequences differ significantly among widespread localities. The
need for detailed mapping of rock formations required a new unifying principle
— a new tool by which units could be categorized and recognized widely.
[Detailed geologic mapping in a humid region like Europe is difficult. Almost
everywhere the rocks are superficially covered by soil, vegetation, or alluvium.]

Smith found fossils to furnish just such a tool. His investigations of roads,
quarries, mines, and canals acquainted him intimately with much of England’s
countryside. During his travels he recognized and traced out numerous sed-
imentary rocks, and he soon noticed that each successive unit contained its
own diagnostic assemblage of fossils by which it could be distinguished from
other units of different ages. Utilizing this principle he produced, in 1815, the
first geological map of England, and correlation between distant localities now
became feasible. The way was prepared to erect a stratigraphic classification
based on time relations of strata rather then on rock type.

1792–1808 CE Jean-Baptiste-Joseph Delambre (1749–1822,
France). Astronomer, erudite and historian of astronomy. Discovered new
formulas in spherical trigonometry (1808). Published tables of the location
of planets and their satellites (1792); with Méchain, measured an arc of the
meridian between Dunkirk and Barcelona (1792–1799); wrote histories of an-
cient, medieval and modern astronomy. A large crater is named for him on
the moon.

Delambre was born at Amiens. Despite extreme penury he studied inde-
fatigably ancient and modern languages, history and literature, and it was
not until he was 36 years of age that he begun a serious study of astronomy
and mathematics. He was 40 before he published anything on the subject,
and it was some years later that he was awarded a prize by the Academy for
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his tables of Uranus. He succeeded Lalande (1807) as professor of astronomy
at the College de France.

1792 CE Ca 800,000 died of the plague in Egypt. By 1799 the disease
reached North Africa with ca 300,000 additional casualties.

1784–1830 CE William Murdock (1754–1839, England). Inventor.
Invented coal-gas lighting (1792). First to construct a model of steam powered
carriage (1784). Made important improvements of the steam engine.

Murdock was born near the village of Auchinleck in Ayrshire. He was first
to realize that coal gas might be used for light. In 1807, London streets began
to be illuminated by coal-gas lighting.

At the celebration of the centenary of gas lighting (1892), the bust of
Murdock was unveiled by Lord Kelvin.

1793 CE Christian Konrad Sprengel (1750–1816, Germany). Bo-
tanist. Discovered the part played by nectaries, insects and the wind in the
pollination of flowers (plant fertilization).

1793–1798 CE Eli Whitney (1765–1825, U.S.A.). Inventor. The father
of mass production. His cotton gin (1793) made cotton-growing profitable,
and helped make the United States the largest cotton producer in the world.
His method of making guns by machinery (1798) marked the beginning of
mass production in the world’s industry.

Whitney was born in Westborough, Mass., the son of a farmer. Times
were hard after the Revolutionary War, and Whitney did not have the money
to go to college. He taught school for five years and with his saving financed
his studied at Yale during 1788–1792. By 1793 he had built the cotton gin,
which could clean cotton as fast as 50 men working by hand.

In 1798, he built a factory near New Haven and began to make muskets
by a new method. Until then, each gun had been handmade by a skilled
craftsman, and no two guns were alike. Whitney invented tools and machines
that enabled unskilled workmen to turn out absolutely uniform parts.

1793–1814 CE Thomas Young (1773–1829, England). Distinguished
physicist, physician and philologist. Discovered and explained the phe-
nomenon of light interference and consolidated the wave theory of light on
a firm experimental basis. Opposed Newton’s particle theory of light in favor
of light as a wave in the cosmic aether (1801). In 1807 he anticipated the na-
ture of infrared radiation from hot bodies, claiming that heat, like light, is a
wave vibration rather than a material substance. In 1809 he applied the wave
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theory of light to the phenomena of light refraction and dispersion, although
he believed light vibration to be mainly longitudinal.

Young is also the founder of physiological optics: in 1793 he explained
the mode in which the eye accommodates itself to vision at various distances
depending on the change of the curvature of the lens. In 1801 he described the
defect known as astigmatism. In 1802 he put forward the theory that color
perception depends on the presence in the retina of 3 kinds of nerve fibers
which respond respectively to red, green and violet light.

In another field of research, he was one of the first successful workers
at the decipherment of Egyptian hieroglyphic inscriptions: by 1814 he had
completely translated the enchorial (demotic) text of the Rosetta stone.

Young, like Leonardo da Vinci, was a remarkably versatile scholar. His
epitaph reports that “he first penetrated the obscurity which had veiled for
ages the hieroglyphics of Egypt”; but his work shows only one facet of a
brilliant career. His work in medicine and science later led the physiologist
and physicist Helmholtz to say of him: “He was one of the most profound
minds that the world has ever seen”.

Young was born to a Quaker family in Somerset, England, the youngest
of 10 children. At age 14 he was acquainted with Latin, Greek, French,
Italian, Hebrew, Persian and Arabic. In 1796 he obtained his M.D. degree
at Göttingen, Germany. Upon the death of his grand-uncle in 1797, he be-
came financially independent and in 1799 established himself as a physician
in London. In 1801 he was appointed professor of physics, but resigned his
professorship in 1803, fearing that its duties would interfere with his medical
practice.

1793–1828 CE Thomas Telford (1757–1834, Scotland). Civil engineer.
Devised and improved methods of road construction. The Telford method
of using large flat stones for road foundations is named after him. Telford
engineered roads, bridges, harbors, docks, canals and waterways. He built
the Menai Strait suspension bridge in Wales, the Ellesmere Canal in England,
the Caledonian Canal in Scotland and the Göta Canal in Sweden.

Telford was born in Eskdale, Scotland and died in London (buried in West-
minster Abbey). He was a son of a shepherd. From early childhood he was
employed as a herd, occasionally attending the parish school of Westerkirk.
He was mostly self-educated, learning architectural drawing in his spare time.
He never married, living most of his adult life in hotels. He was a fellow of
the Royal Societies of London and of Edinburgh.
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Science Progress Report No. 7

“The Revolution has No Need for Savants”

With the rise to power of the Jacobines in 1793, the French revolution took
a more radical turn, and many of the old institutions were closed down, in-
cluding the Paris Academy of Sciences; scientists associated with the regime
of the Girondists were executed, notably Lavoisier. The vice-president of the
tribunal that tried Lavoisier declared that France “Already had too many
scholars”.

However, after 40, 000 people were killed by the government and its agents,
the National Convention was sobered by the terror and with the fall of the
Jacobines in the summer of 1794, the revolution fell back into the hands of
the bourgeoisie, which was the class that in the end gained the most from it.

1794–1835 CE Carl Friedrich Gauss364 (1777–1855) Germany)365.
Physicist, astronomer, and one of the greatest mathematicians of all times.
Published the treatise ‘Disquisitiones Arithmeticae’, which includes his dis-
coveries in number theory and is one of the most important works in the
history of mathematics.

Gauss was born in Brunswick, Germany, into a poor family. He was a
child prodigy. At the age of 14 he discovered the prime number theorem, and
completed his first original work at 19, when he showed how to construct a
regular 17-sided polygon with a ruler and compass, the first ‘new’ n-gon for

364 For further reading, see:

• Bühler, W.K., Gauss, Springer-Verlag, 1981, 208 pp.

• Hall, T., Carl Friedrich Gauss, Massachusetts Institute of Technology Press:

Cambridge, 1970, 176 pp.

• Dunnington, G.W., C.F. Gauss Titan of Science, New York, 1955.

• Gauss, C.F., Disquisitiones Arithmeticae (1801), Yale University Press: New

Haven, CT, 1966, 472 pp.

365 During 1777–1783, both Euler and Gauss were alive.
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2000 years366. His doctoral thesis (1799) contained the first acceptable proof
of the fundamental theorem of algebra, a result whose proof had defeated
such giants as Euler and Lagrange. He did fundamental work in probabil-
ity, geodesy, mechanics, optics, actuarial science and electromagnetism [with
W.E. Weber, he build in 1833 the first operating electric telegraph]. Like
Euler, he was a prodigious calculator.

In 1795, Gauss developed the method of least squares367, thus founding
the field of mathematical statistics. He applied it to problems as diverse as
astronomy and prime number counting.

In 1811 Gauss opened the modern period of research on infinite series with
his memoir on the hypergeometric series [name given by Johann Friedrich
Pfaff (1765–1825, Germany)]. Euler had studied it and introduced its defin-
ing differential equation, but Gauss was the first to master it. He made the
first adequate study of its convergence and associated functional relations.
The hypergeometric function played a central role in Gauss’ thinking, be-

366 In 1801 Gauss took up the ancient problem of finding all regular polygons that

can be constructed by means of compass and ruler. The construction of regular
polygons of 2n, 3 · 2n, 5 · 2n and 15 · 2n have been known since the time of the

Greeks, but no one suspected before Gauss that polygons of any other number

of sides could be constructed by ruler and compass. The way had to be paved
by numerous theorems in algebra. This Gauss did, showing eventually that a

circle can be divided by ruler and compass into n equal parts if and only if n is

of the form

2α0
[
2(2α1 ) + 1

][
2(2α2 ) + 1

]
· · ·
[
22αn ) + 1

]
,

where each of the quantities in parenthesis is a prime and where α1, α2, . . . , αn

are all different positive integers. The only known primes of the form Fn =

22n

+1 (Fermat numbers) are 3, 5, 17, 257 and 65537 corresponding to n values

of 0, 1, 2, 3 and 4. Euler showed (1732) that F5 is not prime. No prime Fn has

yet been found for n ≥ 4. In fact, Fn is known to be composite for all n such

that 5 ≤ n ≤ 21, as well as for some larger n.

Gauss was so proud of his discovery showing the relation between prime Fermat

numbers and inscribed polygons that he wished to have a 17–gon inscribed on

his tombstone (emulating the tombstone of Archimedes, which was decorated

by a figure of a sphere and circumscribed cylinder, suggesting his formula for

the area of a sphere).

For some reason his request was not granted and on Gauss’ grave in Göttingen

there is no such polygon. It does, however, appear on the side of a monument

in his native town of Brunswick.
367 Formal priority belongs to Legendre (1805). Gauss published his results only in

1821.



1794 CE 1467

cause he encountered many special cases of its defining series in the theory of
elliptic integrals.

In 1819 Gauss obtained an explicit formula for the combination of two
finite rotations (never published). This led him to the discovery of the quater-
nions 24 years in advance of Hamilton.

In 1827 Gauss made the first systematic study of quadratic differential
forms in his Disquisitiones generales circa superficies curves, thus laying the
foundation of differential geometry. He was led to this by his geodetic work,
which concerned the precise measurement of large triangles on the earth’s
surface. This provided the stimulus that led him to found the intrinsic dif-
ferential geometry of general curved surfaces. For this work he introduced
curvilinear coordinates u and v on a surface. He obtained the fundamental
quadratic differential form ds2 = Edu2 + 2Fdudv + Gdv2 for the element of
arclength ds, which makes it possible to determine geodesic curves.

He formulated the concepts of metric coefficients, Gaussian curvature and
total curvature.

His main specific results were the famous theorema egregium, which states
that the Gaussian curvature depends only on E, F , G, and the Gauss-Bonnet
theorem on total curvature for the case of a geodesic triangle368, which in
its general form is the central fact of modern differential geometry. It is

368 Gauss was able to find a formula for the sum of the angles of a geodetic tri-

angle on any surface. If s is the sum of the angles, measured in degrees, then
s = 180

[
1 + 1

π

∫
KdA

]
, where K is the Gauss’ curvature and the integral is

taken over the interior of the triangle. In the plane, K = 0 and we have

s = 180 for any triangle. On a sphere of radius r, we have K = 1
r2 and∫

KdA = A
r2 , where A is the area of the triangle. Then s = 180

(
1 + A

πr2

)
or

A = πr2
(

s
180

− 1
)
. (This formula was first published by the Flemish mathe-

matician Albert Girard (1629).) By measuring A and the sum of angles s,
this equation can be used to determine the radius r of a sphere. In general, on

a surface with positive curvature we have K > 0,
∫

KdA > 0, and the sum of

the angles s is greater than 180 degrees. Negative curvature implies K < 0 and
s is then less than 180 degrees.

Thus, an inhabitant of a 2-dimensional spherical surface can discover the radius

of his spherical world by simply measuring the area and the sum of angles of
an arbitrary spherical triangle, using the formula

r =

√
(A/π)
s

180 ◦ − 1

e.g. a quarter-hemisphere spherical triangle has: s = 270 ◦, A = 1
2
πr2.
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the generalization of these concepts that opened the door to Riemannian
geometry, tensor analysis and the ideas of Einstein.

In 1831, Gauss turned his attention again to number theory, where he
broadened the ideas of number into the complex domain. He defined complex
integers (now called ‘Gaussian’ integers) as complex numbers a + ib with
a, b as ordinary integers. This led him to introduce a new concept of prime
numbers in which 3 remains prime but 5 = (1 + 2i)(1 − 2i) does not.

He then proved the unique factorization theorem for these integers and
primes. The ideas of this paper inaugurated algebraic number theory. [He
used these concepts to prove Fermat’s conjecture for n = 3.]

In 1839 Gauss published his fundamental paper on the general theory of
inverse square forces, which established potential theory as a coherent branch
of mathematics. Among his discoveries were the divergence theorem369, the
basic mean value theorems for harmonic functions and the very powerful state-
ment which later became known as “Dirichlet’s Principle” and was finally
proved by Hilbert in 1899.

Unlike Euler, he restricted the amount of his research that he made public
and in his publications, obliterated any description of how his ideas had been
generated. He stuck to his motto “Few, but ripe”. Like Newton before him,
he ascribed his success in solving problems where others failed to ‘always
thinking about them’.

In his unpublished notes it was discovered, after his death, that Gauss
had considered non-Euclidean geometry before Lobachevsky, quaternions
before Hamilton, elliptic functions370 before Abel and Jacobi as well as
much of Cauchy’s complex variable theory. In a letter written to his friend
Bessel in 1811, Gauss explicitly stated Cauchy’s integral theorem (1827) and

369 Gauss’ divergence theorem (1839): The flux of a vector field out of a closed
oriented surface equals the integral of the divergence of that vector field over

the volume enclosed by the surface. The results parallel Stokes’ theorem in that

it relates an integral over a closed geometrical object (curve or surface) to an
integral over a contained region (surface or volume).

Let F be a smooth vector field defined on Ω. Then
∫

Ω

div F dV =

∫

∂Ω

F · dS =

∫

∂Ω

(F · n)dS,

where ∂Ω is an oriented closed surface that bounds Ω and n is the outward unit

normal to Ω.

This theorem arose in connection with electrostatic problems.
370 In 1799, Gauss defined the sinus lemniscaticus function (sin lem) x = sl u via

the inverse relation u =
∫ x

0
dt√
1−t4

. He then defined the lemniscate cosine by
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remarked that he had found a fairly simple proof, and also that he knew how
to make series expansion of functions of complex variable [Laurent, 1843].
For some reason, however, the suitable occasion for the publication of these
theorems did not arise.

By 1820 he was in full possession of the main theorems of non-Euclidean
geometry (the name is due to him), but he did not reveal his conclusions.
The reason for this may be sought in the dominance of the ideas of Kant at
that time in Germany, namely, the idea that Euclidean geometry is the only
possible way of thinking about space. Gauss knew that this idea was totally
false and that the Kantian system was a structure built on sand. However, he
valued his privacy and quiet life and held his peace in order to avoid wasting
his time on disputes with the philosophers.

The same thing happened again in the theory of elliptic functions, a very
rich field of analysis that was launched primarily by Abel in 1827 and by Ja-
cobi in 1828–1829. Gauss had published nothing on this subject and claimed
nothing, so the mathematical world was filled with astonishment when it grad-
ually became known that he had found many of the results of Abel and Jacobi
before these men were born!371 Abel was spared this devastating knowledge

cl u = sl
(

ω
2

− u
)
, where ω = 2

∫ 1

0
dt√
1−t4

, and showed that

sl2u + cl2u + (sl2u)(cl2u) = 1.

The equation of the John Bernoulli lemniscate (1694) is

(x2 + y2)2 − 2a2xy = 0, or r2 = a2 sin 2θ.

Clearly, sl 0 = 0, cl 0 = 1, sl
(

ω
2

)
= 1, sl(ω − u) = sl u, cl(ω − u) = −cl u.

The graphs of sl u and cl u resemble in their appearance those of the circular

functions sin u and cosu. The lemniscate is the locus of points P , the product

of whose distances from two fixed points F1, F2 (the foci) 2a units apart is

constant and equals a2.
371 Gauss (1818) devised a remarkable method for the numerical calculation of

elliptic integrals: To begin with, Gauss (and independently, Lagrange) intro-
duced (ca 1785) the concept of the arithmetico-geometric mean in the following

way: Let two numbers {a0, b0} be given. Then the arithmetic mean a1 is

defined by a1 = 1
2
(a0 + b0) and the geometric mean by b1 =

√
a0b0. He

then formed the new means a2 = 1
2
(a1 + b1), b2 =

√
a1b1. By continuing this

process, one obtains two series of numbers obeying the coupled recursions

an+1 =
1

2
(an + bn), bn+1 =

√
anbn.

As n → ∞, an steadily decreases and bn steadily increases toward the same

limit M(a0, b0) known as the arithmetico-geometric mean. This follows from
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by his early death in 1829, at the age of 26, but Jacobi was compelled to swal-
low his disappointment and go on with his work. His attention was caught
by a cryptic passage in the Disquisitiones, whose meaning can only be un-
derstood if one knows something about elliptic functions. He visited Gauss
on several occasions to verify his suspicion and tell him about his own most
recent discoveries, and each time Gauss pulled a 30-year-old manuscript out
of his desk and showed Jacobi what Jacobi has just shown him. The depth of
Jacobi’s chagrin can readily be imagined. At this point in his life Gauss was
indifferent to fame, and was actually pleased to be relieved of the burden of
preparing a treatise on the subject which he had long planned.

In 1832 Gauss established with Wilhelm Eduard Weber (1804–1891,
Germany) the now-standard CGS system of units.

In 1835 he discovered that a moving charge exerts a different electric force
from a charge at rest. His (unpublished) result was rediscovered by Weber in
1846. Earlier, in 1833, Gauss and his friend Weber built the first experimen-
tal electromagnetic telegraph which transmitted signals across a wire, 2000
meters long, connecting Gauss’ house with his observatory.

Gauss married twice (1805, 1811) and had altogether 2 daughters and 3
sons, two of which emigrated to the U.S.A. after an extended conflict with

the inequalities:

an+1 − bn+1 =
1

2
(

√
an −

√
bn)2 > 0

an − an+1 =
1

2
(an − bn) > 0

bn+1 − bn =
√

bn(
√

an −
√

bn) > 0.

Next, Gauss established the relation

∫ π/2

0

dθ
√

a2
0 cos2 θ + b2

0 sin2 θ
=

∫ π/2

0

dθ
√

a2
1 cos2 θ + b2

1 sin2 θ
.

By applying this transformation repeatedly, he obtained

lim
n→∞

∫ π/2

0

dθ
√

a2
n cos2 θ + b2

n sin2 θ
=

∫ π/2

0

dθ
√

M2 cos2 θ + M2 sin2 θ
=

π

2M
.

Choosing a0 = 1, b0 = k′ =
√

1 − k2, Gauss clinched the final beautiful result

K(k) =

∫ π/2

0

dθ
√

cos2 θ + k′2 sin2 θ
=

π

2M(1, k′)

which provides a powerful means of constructing a table of values of K(k).
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him. His second wife died in 1831 and his youngest daughter kept the house
for him until his death in 1855. Gauss did not seem to relish travel: In the
last 27 years of his life he slept away from his observatory only once.

Gauss lived in a period of extraordinary political and social upheavals, even
when measured by the standards of our fast-moving and eventful age. He was
12 years old when the French Revolution broke out (1789), 29 when the 1000-
year old Holy Roman Empire was dissolved (1806), 38 when Napoleon was
defeated (1815), and over 70 when Germany had its own Liberal Revolution
(1848). During the same period, the so-called first Industrial Revolution took
place, with its lasting and incisive effects on everyday life and on the political
and social order. All this affected Gauss’ life in an explicit and tangible way.

Gauss’ contemporaries in Germany were: Ludwig van Beethoven
(1770–1827), Franz Schubert (1797–1828), Arthur Schopenhauer (1788–
1860), Georg Wilhelm Friedrich Hegel (1770–1831), Johann Wolfgang
von Goethe (1749–1832), Heinrich von Kleist372 (1777–1811) and Caspar
David Friedrich (1774–1840).

372 His father’s uncle, Ewald Georg Christian Johann von Kleist (1700–1748,

Germany) invented the Leyden jar (1745). It is a glass jar, partially filled with

water and containing a nail projecting from its cork stopper, basically an early

version of an electrical capacitor.
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Worldview XVII: Carl F. Gauss

∗ ∗∗

“Few, but ripe” (his motto)

∗ ∗∗

If others would but reflect on mathematical truths as deeply and as continu-
ously as I have,, they would make my discoveries.

∗ ∗∗

I confess that Fermat’s Theorem as an isolated proposition has very little in-
terest for me, because I could easily lay down a multitude of such propositions,
which one could neither prove nor dispose of.

[A reply to Olbers’ attempt in 1816 to entice him to
work on Fermat’s Theorem.]

∗ ∗∗

There are problems to whose solution I would attach an infinitely greater
importance than to those of mathematics, for example touching ethics, or our
relation to God, or concerning our destiny and our future; but their solution
lies wholly beyond us and completely outside the province of science.

∗ ∗∗

I have had my results for a long time: but I do not yet know how I am to
arrive at them.

∗ ∗∗
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You know that I write slowly. This is chiefly because I am never satisfied until
I have said as much as possible in a few words, and writing briefly takes far
more time than writing at length.

∗ ∗∗

God does arithmetic.

∗ ∗∗

We must admit that, while number is purely a product of our minds, space
has a reality outside our minds, so that we cannot completely prescribe its
properties a priori.

Letter to Bessel, 1830

∗ ∗∗

I mean the word proof not in the sense of the lawyers, who set two half
proofs equal to a whole one, but in the sense of a mathematician, where half
proof = 0, and it is demanded for proof that every doubt becomes impossible.

∗ ∗∗
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Gauss’ Class-Number Conjecture373 (1801–1983)

Consider Gaussian integers of the form a + b
√

−N , where N is some
positive integer other than 1 and (a, b) are integers or half-integers. The
question may arise as which values of N result in unique factorization. For
N = 1, 2, 3 we do get it but for N = 5 we do not, since, for example
6 = 2 · 3 = (1 +

√
−5)(1 −

√
−5). In Gauss’ time, 9 values of N were known

for which the system of numbers a+b
√

−N has a unique factorization. They
are N1 = 1, 2, 3, 7, 11, 19, 43, 67, 163 .

Despite considerable efforts by Gauss (1801) and others in the decades
that followed, no one was able to find higher values of N1. However, in 1952,
the Swiss mathematician Kurt Heegner proved that the special number 163
is the largest value of N for which the number system a + b

√
−N allows

unique factorization! [An independent and different proof was given in 1967
by Harold Stark (U.S.A.) and Alan Baker (England).]

We turn to number systems that fail the unique factorization. One can
still group them into different classes according to the number of ways there
are for factoring numbers in the system into primes in that system. We assign
to each such class a figure of merit, called the class number (Gauss, 1801),
and denote it by h(N). Thus h(N1) = 1 is given to the above class of
values N1 for which unique factorization holds.

The class number h(N2) = 2 is assigned to the class where unique
factorization just fails: N2 = 5, 6, 10, 13, . . . . To h(N3) = 3 corresponds the
series N3 = 23, 31, 59, . . . and to h(N4) = 4 holds for N4 = 14, 17, 41, . . .
and so on.

In Article 303 of his Disquisitiones Arithmeticae, Gauss described some
extensive computations of class numbers, and observed that for each class
number k, there seemed to be a largest value for Nk. Thus, N1 = 163,
N2 = 427, N3 = 907 are maximal in their respective classes. But Gauss was
able neither to confirm that any of these values really was maximal, nor to
prove that there always was a largest N , though he conjectured that this was,
nevertheless, the case.

The class number problem, which assumes the truth of Gauss’ conjecture,
is to determine for each class number k the largest N for which h(N) = k. In

373 To dig deeper, see:

• Stark, N.M., An Introduction to Number Theory, The MIT Press, 1987,

344 pp.
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1983, Don Zaiger (U.S.A.) and Benedict Gross (U.S.A.) announced that
they had proven Gauss’ conjecture, and the ‘ class-number conjecture’ was
finally put to rest. Yet this subject still has a number of interesting sidelines.

Euler discovered in 1772 that the formula f(n) = n2 + n + 41 yields
primes for all values of n from zero to 39. No other quadratic formula has
been discovered which produces as many prime numbers. Of the first 10
million values, the proportion of primes is about one in three — far greater
than for any other quadratic formula.

It turns out that the roots of f(n) = 0 are − 1
2 ± 1

2

√
−163. Is it a

coincidence that the number 163 arises again in connection with primes? Yet

this is not all: It was found that the number eπ
√

163 differs from an integer
by less than 10−12, namely

eπ
√

163 = 262 537 412 640 768 743 . 999 999 999 999 250 · · · .

Incidentally374, the very simple 2n2 + 29 found by Legendre in 1798
generates 29 primes for n = 0, 1, 2, . . . , 28.

Statistics Comes of Age – The Normal Distribution
and the Method of Least Squares (1795–1827)

Statistics is the system of computation that deals with the collection,
classification, analysis and interpretation of numerical data. By using the
theory of probability it aims at discovering laws that govern complex physical

374 In 1752, Christian Goldbach (1690–1764, Germany) proved that no polyno-

mial with integer coefficients can yield a prime for all integer values of x. The

proof of this statement is elementary: Let g(x) = a0 + a1x+ a2x
2 + · · · + akxk,

with ai integers and g(m) prime for any integer m. Then, if p is a prime

derived from this formula when x = m, we have p = g(m). Likewise, let q

be another prime such that q = g(m + np). Clearly q = p + pf(m, n) with f

integer, and thus q is composite for some integer m. This shows that no such

polynomial g(x) can exist.
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as well as biological and social systems. As a science, statistics began in
Germany in the 18 th and 19 th centuries when governments used statistics to
count their citizens and to collect taxes. Today, statistics helps all sciences
to deal with masses of facts and it makes vital contributions to business and
industry; advertising, finance, insurance, manufacturing, retailing, and many
other fields depend on statistics. It helps politicians plan their campaigns,
and the use of statistics forms the basis of public-opinion polls.

I. History
375

Over the two centuries, from 1700 to 1900, statistics underwent a simul-
taneous horizontal and vertical development: horizontal in that the method
spread among disciplines, from astronomy and geodesy, to psychology, to bi-
ology, and to social sciences, being transformed in the process; vertical in that
the understanding of the role of probability advanced as the analogy of games
of chance gave way to probability models for measurements, leading finally to
statistical inference.

The roots of modern statistics, since 1650, encompassed the following dis-
ciplines and scientists:

• The works of mathematicians on probability: P. Fermat (1601–1665),
B. Pascal (1623–1662), C. Huygens (1629–1695), Jacob Bernoulli
(1654–1705), A. de Moivre (1667–1754), Daniel Bernoulli (1700–
1782), T. Bayes (1701–1761), P.S. Laplace (1749–1827), S.D. Pois-
son (1781–1840).

• The works of astronomers and geodesists on the solutions of overdeter-
mined set of equations: L. Euler (1707–1783), Tobias Mayer (1723–
1762), Ruggiero Boscovich (1711–1787).

• The ideas of mathematicians concerned with the errors of measurement
and combination of observations: C.F. Gauss (1777–1855), Legendre
(1752–1833).

375 For further reading, see:

• Stigler, S.M., The History of Statistics, Harvard University Press, 1986,
410 pp.

• Larsen, R.J. and M.L. Marx, An Introduction to Mathematical Statistics and

its Applications, Prentice-Hall: Englewood Cliffs, NJ, 1981, 596 pp.
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• The labors of social scientists to extend a calculus of probability to
the social sciences: John Graunt (1620–1674), A. Quetelet (1796–
1874), A.A. Cournot (1801–1877), Francis Galton (1822–1911),
Wilhelm Lexis (1837–1814), F.Y. Edgeworth (1845–1926), Karl
Pearson (1857–1936), G.U. Yule (1871–1951), W.S. Gosset (1876–
1937), Ronald Fisher (1890–1962).

Early work in mathematical probability was motivated by problems in
the social sciences, annuities, insurance, meteorology, and medicine, but the
paradigm for the mathematical development of the field was the analysis of
games of chance. Concepts applied there were applied in astronomy. Thus,
the consideration of games of chance led to the first mathematical treatment
of the quantification of uncertainty.

By the end of the 17 th century the mathematics of many simple games of
chance was well understood and widely known. Fermat, Pascal, Huygens,
Leibniz and Jacob Bernoulli — all had examined the ways in which the
mathematics of permutations and combinations could be employed in the
enumeration of favorable cases in a variety of games of known properties.
These works had been concerned with a priori computations: given an urn
known to contain Q white balls and P black balls, the chance of a white ball
being drawn is Q

P+Q . Jacob Bernoulli (1713) was the first to consider the
inverse problem or the a posteriori question: to determine P and Q from
observations of the outcomes of a game.

In his search for a solution to this problem, Bernoulli developed (1713)
the theory of the binomial distribution (alias ‘Bernoulli’s Formula’). The
physical picture was that of a sequence of experiments satisfying the following
conditions (known as ‘Bernoullian trials’):

• For each experiment, the possible results are classified as either success
or failure.

• The probability of success is the same for every experiment.

• Each trial is independent of all the others.

Under these conditions, Bernoulli showed (on the basis of the Newtonian
binomial theorem) that the probability of exactly k successes in n Bernoullian
trials is Cn

k pkqn−k where q = 1 − p and Cn
k =

(
n
k

)
. It then followed that

the probability of at least k successes in n trials is
n∑

s=k

(
n
s

)
psqn−s, while the

probability of at most k successes in n trials is
k∑

s=0

(
n
s

)
psqn−s.
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The next major step was made by de Moivre. In a work that started in
1721 and culminated in 1733, he succeeded in approximating the terms of a
binomial expansion and derive what we now call the normal approximation
to the binomial distribution. In achieving this goal he used his own approxi-
mation to n! (factorial n) ahead of Stirling (1730). He also recognized that
the root mean square deviation is proportional to

√
n, and calculated values

of the normal integral376
a∫

−a

1√
2π

e− x2
2 dx as approximations to the binomial

probabilities (e.g. in the case p = q = 1
2 ) P ( 1

2n − 1
2a

√
n ≤ X ≤ 1

2n+ 1
2a

√
n).

Looking at de Moivre’s work from a perspective of 270 years it is easy
to appreciate the profound influence it had upon later mathematical devel-
opments and the solution of a wide variety of scientific problems. Yet his
contemporaries greeted these advances with indifference and missed the po-
tential in this masterful work. No application or extension of these ideas
occurred before 1774, the year that Laplace revisited the inverse probability
problem of Jacob Bernoulli.

Here, the analytic superiority of Laplace enabled him to apply probability
to statistical inference for the first time and succeed where Bernoulli and
Thomas Bayes had failed.

In another vein, astronomers and geodesists were struggling with the solu-
tion of large sets of overdetermined equations. The outcome of this endeavor
was a novel idea that had a profound effect on the theory of statistics.

The method of least squares was the dominant theme of 19 th century math-
ematical statistics. It was to statistics what the calculus had been to math-
ematics a century earlier. Indeed, disputes on the priority of its discovery
signaled the intellectual community’s recognition of the method’s value. This
“calculus of observations”, like the calculus of mathematics, did not spring
into existence without antecedents, and the exploration of its subtleties and
potential took over a century. Throughout much of this time statistical meth-
ods were commonly referred to as “the combination of observations”.

The genesis of the method of least squares is anchored in the three major
physico-astronomical problems of the 18 th century:

• To determine and represent mathematically the motions of the moon.

• To account for an apparently nonperiodic (secular) perturbations that
had been observed in the motions of the planets Jupiter and Saturn.

376 P (a) =
a∫

−a

1√
2π

e− x2
2 dx is the probability for a measurement to occur in

an interval within aσ of the mean, where σ is the variance. In particular

P (0.6745) = 1/2 is the median deviation from the mean (probable error).
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• To determine the shape (figure) of the earth.

These problems involved astronomical observations and the theory of gravita-
tional attraction, and they all presented intellectual challenges that engaged
the attention of many of the ablest mathematical scientists of the period.

The chain of development that led to the method of least squares began
with Johann Tobias Mayer (1723–1762, Germany), who in 1747 undertook
the study of the complex irregular minor perturbations of the moon’s mo-
tion.377 The specific work of Mayer that most influenced statistical practice
was his study (1750) of the librations of the moon. He made numerous obser-
vations of the position of several prominent lunar features and in his memoir
he showed how these data could be used to determine various characteristics

377 In the 18 th century the problem of accurately accounting for these minor per-

turbations in the moon’s movement, either by a mathematical formula or by an

empirically determined table describing future lunar positions, was of great sci-

entific, commercial and even military significance. Its scientific importance lay

in the general desire to show that Newtonian gravitational theory can account

for the movement of our nearest celestial neighbor if allowance is made for the

attraction of other bodies (such as the sun), for periodic changes in the earth’s

and the moon’s orbits, and for the departure from sphericity of the shapes of

the earth and the moon. But it was the potential commercial and military

usefulness of a successful accounting of the moon (as an aid to navigation) that

prompted the widespread attention the problem received. Over the previous

19 centuries, from Hipparchos and Ptolemy to Newton and Flamsteed,

the linked development of theoretical and practical astronomy had played a key

role in freeing ship’s navigation from a dependence upon land sightings as a

way of determining the ship’s position. The developments of better nautical in-

struments (including the sextant, 1731) and a more accurate understanding of

astronomical theory, increasingly enabled navigators to map their ships’ courses

across previously trackless seas.

By 1700, it had become possible to determine ship’s latitude at sea with relative

precision by the fixed stars, simply by measuring the angular elevation of the

celestial pole above the horizon. The determination of longitude, however, was

not so simple. Indeed, in 1714 England established the “commissioners for the

discovery of longitude at sea”, a group that by 1815 had disbursed £101,000

in prizes and grants to achieve its goal. The two most promising methods of

ascertaining longitude at sea were the development of an accurate clock (so that

Greenwich time could be maintained on shipboard and longitude determined

by the comparison of the fixed stars’ positions and Greenwich time) and the

creation of lunar tables that permitted the determination of Greenwich time

(and thus longitude) by comparison of the moons position and the fixed stars.
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of the moon’s orbit: all in all he ended up with an overdetermined system of

27 equations for the calculations of 3 unknown parameters.

Mayer divided his equations into three groups of nine equations each,

added each of the three groups separately, and solved the resulting three

linear equations for their unknowns. He then made a numerical estimate of the

accuracy of his empirical determination. This way of combining observations

and making an error assessment was remarkable for this time.

Mayer’s story of statistical success showed that there was a potential gain

to be achieved through the combination of observations. Yet the discovery of

the method of least squares was not possible in the intellectual climate of 1750

and certain conceptual barriers had to be crossed before this climate became

sufficiently supportive for the later advances.

In a widely read treatise, Astronomie (1771), Joseph Jerome Lalande

presented an extensive discussion of Mayer’s work for the specific purpose of

explaining how large number of observational equations could be combined to

determine unknown quantities. It was this exposition that called the method

to the attention of contemporary astronomers.: Boscovich, Laplace and Legen-

dre. After it was decided that the earth was oblate (1735) it remained only to

establish the size of the oblateness (ellipticity) because different pairs of arcs

gave different results.

In 1760, Ruggiero Giuseppe Boscovich introduced a statistical proce-

dure for resolving measurements of the length of a meridian arc. Boscovich

was aware, as others before him had been, that to obtain an accurate deter-

mination of the figure of the earth it would be necessary to compose measure-

ments widely separated in latitude, as even small errors made in proximate

arc measurements would be greatly exaggerated in any pairwise combination

of them.

He thus focused his attention on only five determinations that were made

at well-separated locations and were likely to be accurate. He then calculated

the inverse ellipticity and polar excess (the amount by which a degree at the

pole exceeds a degree at the equator) for all possible ten pairs. He next focused

upon the discrepancy between his average value of polar excess and the ten

components that made up the average378, coming forth with two conditions

that would lead to best choice of the results:

378 As his average yielded the value of 1
155

for the ellipticity, Boscovich tried to

improve this value by rejecting pairs which looked “different from the others”.

It finally occurred to him that he must subject this arbitrary rejection of data

to certain principles.
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(i) Since positive and negative error are equally likely, the sum of positive
corrections should be equal to the sum of negative corrections.

(ii) The sum of the corrections, taken without regard of sign, was to be a
minimum.

In 1770, Boscovich appended the French translation of his 1760 paper with
a geometric description of an algorithm which was based on the above two
principles. Through this he calculated the ellipticity as 1

230 , in close proximity
to Newton’s own value. Boscovich gave no further development of the method,
no analytic formulation, and no application to problems other than the figure
of the earth. The method might thus have faded into obscurity had not a brief
reference to its existence, in a 1772 review of the 1770 translation, caught the
eye of Pierre Simon Laplace.

In the course of a memoir on the perturbation of the motions of Saturn
and Jupiter (1787), Laplace proposed and extension of Mayer’s method of
reconciling inconsistent linear equations. In his epochal work, Laplace finally
laid to rest what was then a century-old problem by showing that the pertur-
bations were in fact periodic with a very long period.

In 1810, Laplace produced a major result in probability theory, known
today as the Central Limit Theorem (CLT). Roughly speaking, it states that
whenever a random variable X may be expressed as a sum of a very large
number of independently varying random variables, then the probability den-
sity of X is approximately normal. Combined with his unrivaled ability to
derive asymptotic approximations to integrals, the CLT enabled Laplace to
show that quite general sums or averages had distributions well approximated
by the normal curve.

Thus, two major avenues of attack on statistical problems were at the
disposal of mathematicians in 1810:

• Legendre’s method of least squares (1805) and Laplace’s way of com-
bining observations in complex situations (1787).

• The probability apparatus developed by de Moivre and Laplace for the
analysis of binomial distributions and its limiting case of the normal
distribution.

What was missing was any connection between these two lines of work. In
1809 Gauss provided the key, and within two years a remarkable synthesis
was achieved.

Laplace must have encountered Gauss’ work soon after April 1810, and
it struck him like a bolt. Before seeing Gauss’ work Laplace had not seen
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any connection between his limit theorem and the method of least squares,
but almost immediately afterward he could see how it all fit together: If the
errors of Gauss’ formulation were themselves random variables, then the limit
theorem implied they should be approximately distributed as what would
later be called normal, or Gaussian curve. And once Gauss’ choice of curve
was given a rational basis, the entire development of least squares fell into
place, just as Gauss had showed.

One of the Gauss’ most efficient tools in his research was the method of
least squares. When he first developed it (1795), he did not consider it very
important. Although formal priority belongs to Legendre (1805), it seems
that the motivation, deduction, and systematic application of the method of
least squares is more interesting than the problem of deciding who happened
to discover, use, and publish it first.

Suppose we try to measure some quantity x and make M measurements
xi. We do not see x but only measurements xi with errors of measurement εi;
that is, we observe xi = x + εi, i = 1, 2, ..., M . We will regard the residuals
εi as “noise” and call x the true value, whatever that may mean in a situation
in which it cannot be measured directly.

The principle of least squares states that the best estimate x̂ of x is that
number which minimizes the sum of the squares of the deviations of the data
from their estimate,

f(x̂) =
M∑

i=1

ε̂2
i =

M∑

i=1

(xi − x̂)2. (1)

In the final analysis, the usefulness of this principle rests on how useful the
results turn out to be in practice and how easy it is to use.

This principle is equivalent to the assumption that the average (sample
mean)

x̄ =
1
M

M∑

i=1

xi (2)

is the best estimate. To prove this equivalence, we first show that the least-
squares principle leads to the average. We regard

f(x̂) =
M∑

i=1

(xi − x̂)2 (3)

as a function of x̂ to be minimized. Applying the usual calculus rule df
dx̂ = 0,

(3) yields at once x̂ = x̄ as given in (2). Thus x̄ = x̂ minimizes the sum of
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squares of the residuals. We note also that d2f
dx2 = 2M > 0 and hence we have

an absolute minimum.

We have now proved that the principle of the least squares and the choice
of the average as the best value are equivalent.

The maximum-likelihood estimator of an unknown parameter is motivated
by the Bayes-type notion that we should select the value that maximizes
the likelihood of observing it. If the sample is from some probability density
ϕ(x; θ), then the likelihood of the value θ for x is the product of the individual
(independent) observations

L(θ) = ϕ(x1; θ)ϕ(x2; θ) · · · ϕ(xm; θ). (4)

In the case that the errors come from a normal distribution

k√
π

e−k2(x−θ)2 ,

then this leads to

L(θ) =
kM

πM/2
e−k2∑(xi −θ)2 .

When this is maximized θ clearly is the solution to a least-squares problem,
and is the maximum likelihood estimator,

θ =
1
M

M∑

i=1

xi = x. (5)

Thus lest squares can be derived from the normal distribution via the (as-
sumed) maximum-likelihood estimator.

In his decisive papers (1821, 1823)379 Gauss defines the function ϕ(x) as
the relative frequency of errors in the observations X. Then ϕ(x)dx expresses
the probability of the error lying between x and x + dx. The function ϕ is
required to fulfill the two conditions:

∞∫

− ∞

ϕ(x)dx = 1 ;
∫

x2ϕ(x)dx attains a minimum.

These conditions expresses the idea that the squares of the error is its most
suitable weight. This is where Gauss’ approach differs from that of Laplace,

379 In his several publications Gauss derived the method in substantially different

ways. His most mature approach was developed in the two papers “Theoria

combinationis observationum erroribus minimis obnoxiae”, I and II.
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who earlier tried to use the absolute value of an error for its weight. This is

why Gauss’ method is called the method of least squares; computationally, it

is clearly superior to Laplace’s original method.

After developing the theoretical basis of his method, a suitable distribution

function ϕ(x) had to be found. In general, the distribution of errors will not

be known in advance. After some heuristic preparations, Gauss introduced

the experimental density380 ϕ(x) = 1√
2π

e− 1
2 x2

as a particularly natural law

according to which errors of observation occur381. This law was found to

represent the errors of observations in astronomy and other physical sciences

remarkably well. Hence its name “Law of Errors”. This law occupies a central

position in statistical theory.

380 This probability density is often called the Laplacian density by the French and

the Gaussian density by the Germans. Normal is British usage. Probability

theorists and statisticians use ‘normal’, while physicists and engineers often use

‘Gaussian’. The least-squares criterion is widely used, and often believed to be

the “right one” to use.

There is a saying that mathematicians believed that it is a physical principle

while physicists believe that it is a mathematical principle.

Either we can assume the principle or we can assume some other principles and

deduce that of least squares – something must be assumed in any case. There

appears to be a widespread belief that the principle of least squares implies the

normal law of errors. This belief is false. Another belief sometimes encountered

is that the normal law is “a law of nature”. Certainly, the normal law has been

found in practice to be a useful model in many applications. Deviations from

it usually occur from having more values in the “tail” of the distribution (when

x is large) than the model indicates there should be. The reason for this is

that often there is a small effect which has a wide variability. In such cases,

a mixture of two normal distributions with different parameters sometimes is

useful. The theory of quality control is , in part, based on the observed excesses

in the tails.

381 It can be easily shown that if (4) and (5) are assumed, then the Gaussian Law

follows. To see this, one differentiates (4) logarithmically, uses (5) and solves

the ensuing differential equation ϕ′(x)
ϕ(x)

= λx, where λ is a constant.
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Gauss’ ‘Clock-arithmetic’ 382

Consider a clock, numbered (in unorthodox fashion) with the hours
0, 1, 2, . . . , 11. Such a clock has its own peculiar arithmetic. For example,
since three hours after 5 o’clock is 8 o’clock, we could say that 3 + 5 = 8, as
usual. But 3 hours after 10 o’clock is 1 o’clock, and 3 hours after 11 o’clock is
2 o’clock; so by the same token, 3 + 10 = 1 and 3 + 11 = 2. Not so standard!

Nevertheless, this ‘clock arithmetic’ has a great deal going for it, includ-
ing almost all of the usual laws of algebra. Following Gauss, we describe it as
arithmetic to the modulus 12, and replace ‘=’ by the symbol ‘≡’ as a reminder
that some monkey-business is going on. The relation ‘≡’ is called a congru-
ence. In arithmetic modulo (that is, to the modulus) 12, all multiples of 12
are ignored. So 10 + 3 = 13 ≡ 1 since 13 = 12 + 1 and we may set 12 ≡ 0.

If a scientist is performing an experiment in which it is necessary for him
to keep track of the total number of hours that have elapsed since the start
of the experiment, he may label the hours sequentially 1, 2, 3, etc. When 41
hours have elapsed, it is 41 o’clock “experimental time.” How does he reduce
experiment time (e.t.) to ordinary time? If zero hours e.t. corresponded to
midnight, his task is easy: he simply divides by 12 and the remainder is the
time of day. 41 e.t. is thus 5 o’clock, because 12 goes into 41 with a remainder
of 5; 41 is congruent to 5 modulo 12:

41 ≡ 5(mod 12).

For the purpose of telling the time of day it is not necessary to know how
many times 12 is contained in 41, but only the remainder, 5. Of course if one
wants to distinguish between a.m. and p.m., then it would be better to divide
by 24. We then find that 41 is congruent to 17 modulo 24. This means that
41 e.t. is 17 hours (military time), namely 5 p.m.

Any other number n may be used as the modulus: now multiples of n
are neglected. The resulting arithmetical system consists only of the numbers

382 For further reading, see:

• Deskins, W.E., Abstract Algebra, Dover: New York, 1955, 624 pp.

• Childs, L.N., A Concrete Introduction to Higher Algebra, Springer-Verlag,

1995, 522 pp.

• Littlewood, D.E., A University Algebra, Dover Publications: New York, 1970,
324 pp.
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0, 1, 2, . . . , n − 1, and has its own multiplication and subtraction rules, as well
as addition. Division is less pleasant: but if n is a prime then it is possible to
divide by any non-zero number. For example, modulo 7 we find that 3/5 = 2,
since 2 · 5 = 10 ≡ 3. This bizarre arithmetic was introduced by Gauss because
it is ideal for handling questions of divisibility. Number theory has used it for
this purpose ever since.

Every integer may be expressed as the multiple of a lower integer plus a
remainder. The number n can accordingly be expressed as

qm + r

where r is the remainder when n is divided by m; qm begin a multiple of m.
Where n is expressed as a multiple of m, and m is a factor of n, the remainder
will obviously be equal to zero.

The number n will not, however, be the only number which gives the
remainder r when divided by m, and this is the basic fact upon which the
theory of congruences was founded by Gauss.

The numbers 40 and 64, for instance, give the same remainder of 4 when
divides by 12. This is another way of saying that both numbers are equal to
multiples of 12 added to 4. They both, therefore have something in common
in their relationship to the number 12. In mathematical parlance the latter
number is called the ‘modulus’ with respect to which the two other numbers
have similar properties, and these two numbers are said to be ‘congruent’ to
each other for that modulus.

Thus, if
a = pm + r

and
b = qm + r

then a is said to be congruent to b for the modulus m, and the relationship is
expressed in either of the equivalent forms:

a ≡ b (mod m) ; a − b = km ; a − b ≡ 0 (mod m)
a ≡ b

}

(1)

where k may be positive, zero, or negative.

For example 10 ≡ 3 (mod 7), and 13 ≡ 28 (mod 5). Also a ≡ b (mod p) if
a = b + kp.

Sometimes the notation is used in a wider sense: the general solution, in
radian units, of tan θ = tan α may be written θ ≡ α (mod π).

It will be seen that the algebra of congruences is so like that of ordinary
integer arithmetic that no inconvenience arises from using the same notation
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for both. The explicit statement of the modulus at each stage of the work is
not necessary when the same modulus is used throughout.

The congruence a ≡ r (mod m), 0 ≤ r < m means that

a = r + km , r = 0, 1, 2, . . . , m − 1.

The set of all possible m remainders (including zero) constitute a complete
residue system (mod m). On the other hand, since k is an arbitrary integer
(positive or negative), all integers will group into m classes, known as residue
classes (mod m), where each class is characterized by one of the remainders
of the residue system r = 0, 1, . . . , m − 1. For a given r and m, these classes
will be

a = km, 1 + km, 2 + km, . . . , (m − 1) + km.

No number from one class is congruent to any number from another class.

For example for m = 2, r = 0, 1 there are two classes:

1st class: a = 2k . . . , − 4, − 2, 0, 2, 4, . . . (even)
2nd class: a = 1 + 2k . . . , − 3, − 1, 1, 3, 5, . . . (odd)

For m = 3, r = 0, 1, 2

1st class: a = 3k . . . , − 6, − 3, 0, 3, 6, . . .
2nd class: a = 1 + 3k . . . , − 5, − 2, 1, 4, 7, . . .
3rd class: a = 2 + 3k . . . , − 4, − 1, 2, 5, 8, . . .

Clearly, all numbers in a residue class have the same greatest common
divisor with the modulus m.

Consider next the case m = 5, r = 0, 1, 2, 3, 4 with the corresponding
residue classes

class residue class

a = 5k . . . , −10, − 5, 0 , 5, 10, . . .

a = 5k + 1 . . . , −9, − 4, 1 , 6, 11, . . .

a = 5k + 2 . . . , −8, − 3, 2 , 7, 12, . . .

a = 5k + 3 . . . , −7, –2 , 3, 8, 13, . . .

a = 5k + 4 . . . , −6, –1 , 4, 9, 14, . . .

Where the squares indicate a particular choice of a set of 5 numbers,
no two of which are congruent to each other. This can be done in an infinite
number of ways by picking just one number from each class. Such a set will be
referred to as a complete residue system. Thus, instead of the canonical system
r = 0, 1, 2, 3, 4, we may select r = 5, 6, 7, 8, 9, or (as above) r = 0, 1, 2, −2, −1.
In general, we shall say that the m numbers {a1, a2, . . . , am} form a complete
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system of residues if every number is congruent to ai (only one); each residue

ai then represents its class in mod-m arithmetic.

The word ‘congruence’ can be used synonymously with ‘residue class’.

Returning to the basic logic of clock arithmetic, we next consider the

operations of addition and multiplication of congruences. One can easily verify

the following addition and multiplication tables for modulo 5 arithmetic.

Addition mod 5 Multiplication mod 5

0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

The following properties of congruences are obvious from their definition:

• Symmetry: when a ≡ b (mod m) then b ≡ a (mod m).

• Transitivity: a ≡ b (mod m) and b ≡ c (mod m) imply

a ≡ c (mod m).

• Residue classes of the same modulus may be added, subtracted, mul-

tiplied by an arbitrary integer and multiplied together unambiguously.
Namely, if a ≡ b (mod m) and a′ ≡ b′ (mod m) and if (q, r) are

integers, then

qa + ra′ ≡ qb + rb′ (mod m)

aa′ ≡ bb′ (mod m)

an ≡ bn (mod m) [(an − bn) is always divisible by a − b]

• If a ≡ b (mod m) f(a) ≡ f(b) (mod m) for polynomials of integer

coefficients f(x).

• If any polynomial f(x) and g(x) have congruent coefficients of cor-

responding powers modulo m, and a ≡ b (mod m), then f(a) ≡
g(b) (mod m).



1794 CE 1489

The notion of congruence began with Euler (1783). In his treatise Dis-
quisitiones Arithmeticae, Gauss (1801) developed the systematic algebra of
congruences, treating congruence polynomials of the n-th degree with a prime
modulus. He showed that congruences w.r.t. the same modulus can be treated
like ordinary Diophantine equations: they can be added, subtracted and mul-
tiplied, and one can ask for a solution of congruences involving unknowns,
e.g.

Axn + Bxn−1 + · · · Mx + N = 0 (mod p),

where p is a prime not dividing A. Gauss proved that this equation cannot
have more than n noncongruent roots. A famous example is the Fermat’s
Little Theorem

ap−1 − 1 ≡ 0 (mod p),

where p is prime and a is not a multiple of p. Gauss’ book was indeed a new
way of looking at old things, introducing the concept of residue classes. In
his own words:

“If a number A divides the difference of two numbers B and C,
B and C are called congruent with respect to A, and if not, in-
congruent. A is called the modulus; each of the numbers B and C
are residues of each other in the first case, and non-residues in the
second.”

Does it seem strange that Gauss should write a whole book about the
implication of A | (B − C)? It surely is not clear a priori why this group of
symbols should be worthy of such protracted attention. In fact, these opening
sentences are completely unmotivated and hardly understandable, except in
the light of historical perspective. But in that light, the time was ripe for such
an investigation. Gauss may not have been aware of the underlying structure
of the works of Fermat and Euler that evolved from their preoccupation with
perfect and Mersenne numbers. But his interest in periodic decimals called
for a new notation and new notions to handle an algebra of ambiguity and an
arithmetic of remainders.

The power of the congruence algebra is manifested in the following simple
examples:

I. Since (2n + 1)2 = 4n(n + 1) + 1, every even power of any odd number
is congruent to 1 (mod 8). This modulus partitions the integers into 8
residue classes, all the odd numbers being congruent to one of 1, 3, 5, 7.
If we square these four possible congruences, we find that every odd
square is congruent to one of the numbers 1, 9, 25, or 49 (mod 8). But
these all happen to be ≡ 1 (mod 8). Raising the original residue to an
arbitrary even power will not change this congruence.
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II. A number is divisible by 3 or 9 if and only if the sum of its digits is
divisible by 3 or 9. For let

N = a0 + a1 · 10 + a2 · 102 + · · · + an · 10n.

Multiplying the congruence 10 ≡ 1 (mod 3 or 9) repeatedly, one obtains
10k ≡ 1 (mod 3 or 9) and therefore ak · 10k ≡ ak for k = 1, 2, . . . , n.
Then N ≡ a0 + a1 + a2 + · · · + an (mod 3 or 9). This means that N is
divisible by 3 or 9 iff the sum of its digits is so divisible.

In a similar way the congruences 10 ≡ −1 (mod 11),
10k ≡ (−1)k (mod 11) yield N ≡ a0 − a1 + a2 + · · · (mod 11). Hence an
integer is divisible by 11 iff the sum of its digits with alternating signs
is divisible by 11.

III. Prove that 999, 999 is divisible by 7:

999, 999 = 106 − 1
10 ≡ 3 (mod 7)

106 ≡ 36 (mod 7) ≡ (32)3 (mod 7) ≡ 93 (mod 7)
9 ≡ 2 (mod 7) ∴ 93 ≡ 23 (mod 7) ≡ 1 (mod 7)

∴ 106 ≡ 1 (mod 7) ∴ 106 − 1 ≡ 0 (mod 7).

IV. Prove that 211 − 1 has 23 as one of its factors; The steps are:

25 = 32 ≡ 9 (mod 23)
210 ≡ 81 (mod 23) ≡ 12 (mod 23)

2 ≡ 2 (mod 23)
211 = 210 × 2 ≡ 12 × 2 (mod 23) ≡ 1 (mod 23)

Therefore 211 − 1 ≡ 0 (mod 23).

V. Prove that 34n+2 + 52n+1 is divisible by 14:

34n+2 = 9 · 81n ≡ 9 · [11 (mod 14)]n ≡ 9 · 11n (mod 14)
52n+1 = 5 · 25n ≡ 5 · [11 (mod 14)]n ≡ 5 · 11n (mod 14)

∴ 34n+2 + 52n+1 ≡ 14 · 11n ≡ 0 (mod 14).

VI. Find the remainder when 21000 is divided by 13.

23 = 8; 26 = 64 ≡ −1 (mod 13); But since 1000 = 6 · 166 + 4
and 2996 = (26)166 ≡ (−1)166 (mod 13) ≡ +1 (mod 13), we have:

21000 ≡ 24 (mod 13) ≡ 16 (mod 13) = 3 (mod 13).
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The remainder is therefore 3.

VII. What are the last two digits of 31234? In mod 100 arithmetic

32 ≡ 9 ; 34 ≡ 81
38 ≡ 812 ≡ 61
310 ≡ 9 · 61 ≡ 49
320 ≡ 492 ≡ 1
1234 = 20 × 61 + 4 + 10
31234 ≡ (320)6134310 ≡ 81 · 49 ≡ 69 (mod 100)

The last two digits are seen to be 69.

VIII. Show that A = 2903n − 803n − 464n + 261n is divisible by 1897 for any

natural number n.

Write

A = (2903n − 464n) − (803n − 261n).

The first group is divisible by 2903 − 464 = 9 · 271 and the second by

803 − 261 = 2 · 271, so A is divisible by 271 But we can also write

A = (2903n − 803n) − (464n − 261n),

where the first group is divisible by 2903 − 803 = 7 · 300 and the second

by 464 − 261 = 7 · 29, so that A is also divisible by 7. Since 271 is not

divisible by the prime 7, A is divisible by the product 271 · 7 = 1897.

IX. Prove that the 5 th Fermat number F5 = 225
+ 1 = 232 + 1 is divisible

by 641 (Euler’s claim, 1732):

640 = 5 · 128 = 5 · 27 ≡ −1 (mod 641)
54 · 228 = (5 · 27)4 ≡ (−1)4 ≡ 1 (mod 641)

54 = 625 ≡ −16 (mod 641) ≡ (−24) (mod 641)
∴ − (24) · 228 ≡ 1 (mod 641)

−(232) ≡ 1 (mod 641)
232 ≡ −1 (mod 641)

232 + 1 ≡ 0 (mod 641)

Alternatively,

F5 = 225
+ 1 = 232 + 1 ≡ (54 · 228 + 232) − (54 · 228 − 1)
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But

54 · 228 + 232 = 228(54 + 24) = 641 · 228

54 · 228 − 1 = (52 · 214 + 1)(52 · 214 − 1)
= (52 · 214 + 1)(5 · 27 − 1)(5 · 27 + 1)
= 641 · (52 · 214 + 1)(5 · 27 − 1)

Application - Calendar problems

How does one find the relation between dates and days of the week in the
Gregorian calendar?

According to this calendar, the common year consists of 365 days and each
leap year of 366 days. Leap years are the years for which the number is divis-
ible by 4, except the centurial years, which are leap years only if divisible by
400. Thus, the first centurial leap year after the reformation of the calendar,
which occurred in the catholic countries in 1582, was 1600, but 1700, 1800,
1900 were common years; the next centurial leap year was 2000, and so on.

It is easy to determine the number of leap years between 1600 exclusive
and a given year N inclusive. The number of years divisible by 4 in the
assumed interval is the same as the number of integers x such that

400 < x ≤ N

4
;

that is, [
N

4

]

− 400.

But from this we must exclude the number of centurial years not divisible by
400. The number of all centurial years between 1600 exclusive and N inclusive
is [

N

100

]

− 16,

and among them there are [
N

400

]

− 4

divisible by 400. Consequently the number of centurial years which are not
leap years is [

N

100

]

−
[

N

400

]

− 12
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and the requested number of all leap years between 1600 exclusive and N
inclusive is thus

T =
[
N

4

]

−
[

N

100

]

+
[

N

400

]

− 388.

This expression can be put into more convenient form by setting

N = 100C + D

where C is the century number and D < 100. Then
[
N

4

]

= 25C +
[
D

4

]

;
[

N

100

]

= C;
[

N

400

]

=
[
C

4

]

and

T =
[
D

4

]

+
[
C

4

]

+ 24C − 388.

Since in a leap year an additional day is added at the end of February, it
is convenient to proceed as if the years begin in March. Then March, April,
May, . . . will be counted as the first, second, third, . . . months of the year
N , while January and February of the same year will be considered as the
eleventh and twelfth months of the year N − 1. It will also be convenient to
denote days of the week beginning with Sunday by 0, 1, 2, . . . , 6.

Now suppose that the first of March of the year 1600 had the weakday
number a. Since the next year 1601 was a common year, 365 days elapsed
between March 1, 1600, and March 1, 1601. But 365 days consist of 52 full
weeks and 1 day; hence March 1, 1601, had the number a + 1 or this number
diminished by 7.

Again, since the years 1602 and 1603 were common years, March 1, 1602,
and March 1, 1603, had the numbers a + 2 and a + 3 or these numbers
diminished by a proper multiple of 7. Between March 1, 1603, and March 1,
1604, since 1604 was a leap year, 366 days or 52 weeks and 2 days elapsed;
hence the number of March 1, 1604, was a + 5 or the least positive residue of
it modulo 7.

It is now clear that every common year elapsing augments the number of
March 1 modulo 7 by one unit and every leap year by two units. Hence, to
find the number of March 1 in the year N , we have to add to a the number of
all years between 1600 exclusive and N inclusive and also the number of leap
years in the same interval, and to reduce the sum to its least positive residue
mod 7. Thus March 1 of the year N will have the number a′ determined by
the congruence

a′ ≡ a + 100C + D − 1600 +
[
D

4

]

+
[
C

4

]

+ 24C − 388 (mod 7)
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or

a′ ≡ a + D +
[
D

4

]

+
[
C

4

]

− 2C (mod 7).

For the year 1938, March 1 was on Tuesday, so a′ = 2; again for the same
year

D = 38, C = 19; D +
[
D

4

]

+
[
C

4

]

− 2C ≡ 6 (mod 7),

whence
2 ≡ a + 6 (mod 7), a = 3.

That is, March 1, 1600, was a Wednesday, and the preceding expression
for a′ becomes

a′ ≡ 3 + D +
[
D

4

]

+
[
C

4

]

− 2C (mod 7).

This congruence determines the day of the week on which March 1 falls in
every year after the Gregorian reform.

Origins of the Vector Concept (1589–1831)

The foundations of vector analysis were laid in the 1840’s. The deep roots
of this concept were latent in various forms, in the works of 10 men:

(1) Parallelograms of velocities and forces (Galileo, 1589).

(2) ‘Geometry of situations’ (Leibniz, 1693).

(3) Geometrical representation of complex numbers (1797–1831). Caspar
Wessel (1745–1818, Norwegian Surveyor, 1797), Carl Friedrich Gauss
(1777–1855, Germany, ca 1797, first published in 1831), Abbé Buée
(1805, France), Jean Robert Argand (1768–1822, Switzerland, 1806),
John Warren (1828, England), C.V. Mourey (1828, France).
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(4) ‘Sensed magnitudes’ first to be employed systematically in projective
geometry by Lazare Carnot (1803) and later by August Ferdinand
Möbius (1827).

Wessel was the first to render a clear exposition on the subject in his paper
‘On the Analytical Representation of Directions’, which he read before the
Royal Academy of Science and Letters of Denmark. It contained a complete
development of laws governing operations with directed line segments as rep-
resentation of numbers in the form a + b

√
−1 and their applications, as well

as a partial theory of rotation.

Wessel was born in Jonsrud, Norway, to a family blessed with 13 children.
In 1763 he went to Copenhagen, and in the following year he was engaged by
the Danish Academy of Sciences as an assistant in the preparation of a map
of Denmark. He remained in the employment of the Academy until 1805.

It speaks well for the Academy that they received Wessel’s paper sympa-
thetically, since he was neither a member nor was he considered a mathemati-
cian. Written in Danish (in Volume 5 of the Memoirs of the Academy, 1799),
it failed to achieve wide accessibility to the mathematicians of other countries
— with the result that this excellent and significant work did not become
generally known until a French translation of it was published in 1897!
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1795–1805 CE Mungo Park (1771–1806, Scotland). African explorer.
Explored the course of the Niger River. Born on a farm in Selkirkshire,
Scotland, the seventh son in a family of thirteen. In 1791 he obtained a
surgical diploma at the University of Edinburgh. Through his connections
with Joseph Banks, president of the Royal Society, he was sent in 1795 by
the African Association with a small expedition to ascertain the course of the
River Niger. He ascended the Gambia River, crossed Senegal, followed the
course of Niger (1795 to 1796), was captured by an Arab chief, and escaped
after four months of imprisonment. In 1797 he reached England, where he
had been given up for dead, by way of America. An account of his adventures
by his own pen appeared in 1799 (Travels in the Interior of Africa). He then
married (1799) and settled in Peebles, where he worked as a country doctor.
The hardness and monotony of life at Peebles impelled him to accept the
government’s offer to lead another expedition to the Niger (1805). Park and
his European colleagues were either killed or drowned in an encounter with
forces of the King of Haoussa, 800 km south of the Niger delta (1806).

1796 CE Edward Jenner (1749–1823, England). Physician and dis-
coverer of vaccination383. Laid the foundation of modern immunology. It was
introduced by him as a preventive measure against smallpox. The success of
the smallpox vaccine led to the search for vaccines to prevent other serious
diseases. Before his time, no mother counted her children safe until all had
passed through smallpox.

Smallpox (Variola major) replaced the plague as the foremost epidemic
disease. The first reasonably effective method of control in the early 18 th

century was variolation — inserting pus from a smallpox pustule into a scratch
on someone unaffected. In 1768, the ‘inoculator ’ Thomas Dimsdale (1712–
1800) treated the Russian Empress Catherine the Great, her son and her
court, and was rewarded with a considerable fee, pension and the rank of a
baron. Unfortunately, variolation could sometimes lead to a fatal attack or
fail to give protection, and all who underwent it became infectious and had
the potential to spread the disease.

It was common knowledge in Jenner’s time that a person could catch
smallpox only once. Many people tried to inoculate themselves with matter

383 From the Latin vacca = cow, since it referred to the injection of cowpox virus

to prevent smallpox. In general, vaccination is the introduction of dead or

weakened viruses or bacteria, or their toxins (poisons) into the body to develop

resistance to disease. The material introduced is called a vaccine. The vaccine

causes the body to manufacture substances called antibodies which fight the

effects of bacteria, toxins and viruses. Vaccines must be strong enough to excite

resistance, but too weak to cause serious illness.
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from smallpox sores. They hoped to catch a light case of the disease and then
be immune for it for the rest of their lives.

Mary Wortley Montagu (1689–1762), an English author, had intro-
duced the practice of inoculation in 1717 from Turkey. She had her own
children inoculated, but encountered a vast amount of prejudice against this
procedure. The method was, indeed, unsafe.

Jenner was born at Berkeley, Gloucestershire. In 1770 he went to London
to study medicine and in 1792 he obtained the degree of doctor of medicine
from St. Andrews College. In 1796, Jenner took matter from the hand of
Sarah Nelms, a Berkeley dairymaid384 who caught the cowpox disease while
milking the cows. Jenner made two cuts on the arm of James Phipps, a
healthy 8-years-old boy, and infected the matter from one of Sarah’s sores.
The boy then caught cowpox. Six weeks later, Jenner risked his medical
reputation by introducing variolous matter into the boy’s arm. Ordinarily
fatal, the smallpox matter had no effect.

Subsequently the method proved routinely successful385, and honors began
to shower on him from abroad386: He was elected a member of almost all the
chief scientific societies on the continent of Europe. In his own country his
merits were less recognized; In 1813 the University of Oxford conferred on
him the degree of M.D. but the college of physicians would not admit him
until he had undergone an examination in classics! To which Jenner replied:
“To brush up my classics — I would not do it for a diadem”. He continued to
vaccinate gratuitously all the poor who applied to him, so that he sometimes
had as many as 300 persons waiting at his door. Only in 1858 was a statue
of him erected by public subscription in London.

With Jenner’s vaccination, smallpox could be controlled, and by 1975, it
had been eradicated.

384 Cowpox is a minor disease in humans, that causes a few sores on the hands, but

carries little danger of disfiguration and death. People believed that dairymaids

who had caught cowpox could not catch smallpox.
385 An early advocate of vaccination was the physician Jacob Ezekiel Aronsson

(1759–1845) of Alsace-Lorraine.
386 In 1796, Catherine the Great, the Empress of Russia, caused the first child

operated upon to receive the name Vaccinov, and to be educated at the public

expense. On one occasion, when Jenner was endeavoring to obtain a release of

some of the unfortunate Englishmen who had been detained in France on the

sudden termination of the Peace of Amiens (1803), Napoleon was about to

reject the petition, when Josephine uttered the name of Jenner. The Emperor

paused and exclaimed: “Ah, we can refuse nothing to that name”.
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1796–1815 CE The Napoleonic Wars:

• 1796–1797 The Italian campaign: Napoleon defeated the Austrians and
the Piedmontese in a series of 8 battles (Millesimo, Mondovi, Ladi, Cas-
tiglione, Roverdo, Bassano, Arcola and Rivoli).

• 1798–1799 The Egyptian expedition: Napoleon wins the land-battles of
the Pyramides (against the Mamluks) and Abukir (against the British
and the Turks), but looses the sea-battle of the Nile.

• 1798–1799 War of the second coalition (Britain, Russia, Austria, Naples,
Portugal and Ottoman Empire): The French are driven out of Italy in a
series of five battles (Magnano, Cassano, Zürich, Trebbia and Novi).

• 1800 Battles of Marengo and Hohenlinden: France defeats Austria.

• 1805 Battle of Ulm: France defeats Austria.
Battle of Trafalgar : British navy under Nelson defeats the combined
French and Spanish fleets.
Battle of Austerlitz : France defeats the combined armies of Austria and
Russia.

• 1806 Battles of Jena and Auerstädt : France defeats Prussia.

• 1807 Battle of Friedland : France defeats Russia.

• 1808–1814 The Peninsular War of the British against the French in Por-
tugal and Spain. A series of 4 battles (Vimerio, Corunna, Talavera and
Ocana).

• 1809 Battle of Aspern and Essling and Battle of Wagram in which
Napoleon crushed the Austrians.

• 1812 Battle of Borodino: Russian retreated and abandoned Moscow. The
retreating French army fought at Jaroslavetz and Viazma against Kutu-
zov.

• 1813 Battle of Dresden: Napoleon defeated the allied army of Prussia,
Russia and Austria.
Battle of Leipzig : Napoleon is driven out of Germany.

• 1813–1814 Napoleon is driven out of Spain. The allies enter Paris and
Napoleon is exiled to Elba.

• 1815 Battle of Waterloo.
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Impact of Social Revolutions (1775–1814)

From 1775 to 1783 Britain’s North American colonies, with a population
of well over 2 million, broke away from rule by the mother country. The thir-
teen ex-colonies formed the United States of America [Connecticut, Delaware,
Georgia, Massachusetts, Maryland, North Carolina, New Hampshire, New
Jersey, New York, Pennsylvania, Rhode Island, South Carolina, Virginia]. In
1778 France entered the American War of Independence in support of the
colonists.

The success of the American Revolution had profound effects on Europe,
and eventually on other parts of the world. It passed on to the western world
the ideas of constitutional government and popular sovereignty.

Encouraged by the American example, the French Revolution (1789–1799)
not only transformed the government of France, but also shook the estab-
lishment throughout Europe and led to new ideas that remained influential
throughout the next century.

France was the hive of advanced ideas. A widespread rebellion had broken
out against the tyranny of the clergy and the monarchy which finally culmi-
nated in the French Revolution. It did more to spread political ideas than
philosophical ones. Following the U.S. and French example, other parts of
America fought to free themselves from Europe and Europe from the Pope.
These ideas liberated the world from the yokes of religion and with this lib-
eration came the flowering of new sciences.

Indeed, for the next two centuries, nobody was able to think of the era of
the sciences without referring to the French Revolution, when the scientists
quite plainly took power. An astronomer was Mayor of Paris, the inventor of
topology was at the head of the Committee for Public Health, the scholars
occupied the institutions before the people did and in their place, and a geo-
metrician, although a minor one, gained the title of Emperor. The nobility
and the clergy collapsed, society no longer lived according to the same divi-
sions or the same offices and scientists at last formed a class, replacing the
clerics and forming a new “Church”.

Under the influence of the social ferment, the movement of ideas and
beliefs which had been dominant until this time – the Enlightenment , with its
emphasis on reason and natural law – gave way to the Romantic movement
in the arts, which favored emotion before reason and espoused free individual
expression.



1500 3. The Clockwork Universe

The French revolution marked the coming of a modern world — a world
of class conflict, middle-class ascendancy, acute national conflicts and popu-
lar democracy. Together with industrialization, the revolution reshaped the
institutions, the societies and even the mentalities of the European peoples.

In France itself, the revolution stimulated the rapid growth of science at
the turn of the 18th century. The scientists of France found their activities
directed towards practical ends, which appears to have given them a greater
taste for experimentation than they previously had. Simultaneously, scien-
tific institutions were established which trained the French talent that was
to dominate the cutting edge of science during the early years of the 19th

century.

The first practical problem which the revolutionaries posed to the scientists
of France was the standardization of weights and measures throughout the
country. During the 18th century weights and measures varied in France from
region to region. The meter, for example, measured 100 centimeters in Paris,
was 98 cm at Marseilles, 102 cm at Lille and 96 cm at Bordeaux. By 1799
‘the astounding and scandalous diversity in measures’ was brought to an end.

In 1794 the National Convention founded the École Polytechnique and
the École Normale Supériere, which were important institutions devoted to
scientific education and research in France throughout the 19th century. The
Supériere was closed down after 4 months, and did not become important
until 1808, when it was reopened by Napoleon Bonaparte (1769–1821). The
Polytechnique, however, flourished from the start. It opened in 1794 with 400
pupils and a staff composed of the leading scientists of the time: mathematical
physics were taught by Laplace and Lagrange, geometry by Monge and
chemistry by Berthollet. Amongst their students were Poncelet, Poisson,
Cauchy, Carnot, Gay-Lussac, Dulong (1785–1838) and Petit (1791–
1820).

Napoleon himself encouraged the practical side of science by offering prizes
for useful discoveries. He also discouraged the speculative thinkers who contin-
ued the tradition of the earlier materialist philosophers. Thus French science
became more practical and experimental during the Napoleonic period.

A marked anti-scientific movement arose in the official and fashionable
circles in France with the restoration of the Bourbons in 1815. The movement
was particularly opposed to the mathematical tradition of French science. But
the scientific institutions set up by the National Convention in 1794 had the
effect of concentrating the scientific activity of France in the capital, at the
Paris schools. During the 19th century the Polytechnique and the Supériere
became the Mecca of young French scientists from the provinces as well as
from the metropolis.
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1796 CE At the age of 19, Carl Friedrich Gauss conceived the first
proof that a 17-sided regular polygon is constructible by means of a compass
and a ruler: The first mathematician to thus go beyond the ancient Greeks.

Cyclotomic Equations and the Roots of Unity –
de Moivre to Gauss (1730–1801)

During the 36 centuries that elapsed from he Old Babylonian period to
the end of the 19 th century, algebra was the science of solution of equations.

The solution of algebraic equations occupied the minds of the finest
mathematicians of Europe in the 17 th, 18 th and 19 th centuries and de-
manded the combined efforts of men like de Moivre (1730), Euler (1749),
Lagrange (1770), Vandermonde (1771), Gauss (1801), Ruffini (1810),
Abel (1824) and Galois (1831).

1. Historical overview

Archaeological research in the 20 th century has revealed that the peo-
ple of Mesopotamia around 1700 BCE had an advanced mathematical cul-
ture, including a knowledge of the Pythagorean theorem (a millennium before
Pythagoras), a sexagesimal system of arithmetic and a method of solution of
quadratic equations.

There was only modest progress in algebra in the 3000 years that followed;
During the Middle Ages, Europe had learned about algebra from the Arabs
and had begun to improve it by devising new symbols and notations. Then,
in the 16 th century, the algebraic solution of cubic equations was discovered
(1515), and closely thereafter the solution of quartic equations (1544).

It was not until almost 300 years later that it was shown – first by Abel
(1824), then by Galois (1831) – that it is impossible to solve the quintic equa-
tion in the same manner that the quadratic, cubic and quartic were solved;
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specifically, by using a finite number of additions, subtractions, multiplica-
tions, divisions, and the extractions of roots.

However, certain classes of quintic (and higher order) equations can be
solved in this manner. Thus, any algebraic equation can be associated with a
Galois group, which may be the symmetric (permutation) group Sn, metacyclic
group Mn, dihedral group Dn, alternating group An, or the cyclic group Cn.
Solvability of a quintic is then predicated on its corresponding group being a
solvable group. An example of a quintic equation with a solvable cyclic group
is

x5 − x4 − 4x3 + 3x2 + 3x − 1 = 0

which arises in the computation of sin
(

2π
11

)
.

2. Roots of unity

In the 18 th century, the problem of solving the n th degree equation cen-
tered on the special case xn = 1, called the binomial equation. Roger Cotes
(1714) and de Moivre (1707, 1730) showed, through the use of complex
numbers, that the solution of this problem amounts to the division of the
circle into n equal parts; hence the alternative name cyclotomic equation. To
obtain the roots of this equation by radicals (trigonometric solutions are not
necessarily thus expressible) it is sufficient to solve the case of n an odd prime
p. Indeed, assume this: Then if n = pm, let y = xm. But yp − 1 is solvable.
By assumption, and for each such y = yj , xm = yj can be solved if m is either
prime or, if not, m can be decomposed in the same manner that n is.

To solve xn = 1 we write

xn = 1 = cos 2kπ + i sin 2kπ, k = 0, 1, . . . , n − 1 (1)

Then, using de Moivre’s theorem, we have

xk = (cos 2kπ + i sin 2kπ)
1
n = cos

(
2kπ

n

)

+ i sin
(

2kπ

n

)

, (2)

which renders all the n th roots of unity when k sweeps the range
k = 0, 1, . . . , n − 1. Denoting

R = cos
2π

n
+ i sin

2π

n
, (3)

we use again de Moivres’ theorem to obtain

Rk = cos
2kπ

n
+ i sin

2kπ

n
(k an integer). (4)
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Comparing with (2) we see that the n th roots of unity are powers of R. The
n distinct roots of unity are

R, R2, R3, . . . , Rn−1, Rn = 1. (5)

Since the absolute value (modulus) of Rk is 1, the points representing the
nth roots of unity are equally spaced on the circumference of the unit circle.
Joining these points by straight line segments, a regular polygon of n sides is
formed. The possibility of construction of such regular polygons with the use
of straightedge and compass alone is discussed next.

An nth root of unity which is not also a pth root (for some prime p < n) is
called a primitive root. The number R defined by (3) is a primitive nth root
of unity.

Of the numbers (5) the primitive nth roots are those whose exponents are
prime to n. To see this we consider the root Rs in (5) (s < n), namely

Rs = cos
2sπ

n
+ i sin

2sπ

n
.

Suppose s and n are not relatively prime. Let k be the g.c.d. of s and n; Then
n = ka, s = kb; and 1 < k < n (all lower case Latin letters but i represent
natural numbers here, unless stated otherwise). We have

(Rs)a = (Rn)b = 1b = 1.

Since a < n, then Rs is not a primitive n th root of unity by virtue of the
definition of a primitive n th root.

But if s and n have no common factor other than unity, then (Rs)r 	= 1
for r a positive integer less than n, since for

(Rs)r = cos
2rsπ

n
+ i sin

2rsπ

n

to be unity, rs
n must be an integer. However s is by hypothesis prime to n.

Therefore r
n must be an integer; yet this is impossible, since r < n.

The primitive n th roots of unity are

n = 3 ω, ω2 ω = − 1
2 + 1

2 i
√

3

n = 4 i, −i

n = 5 R, R2, R3, R4 R = cos 2π
5 + i sin 2π

5

n = 6 R, R5 R = cos π
3 + i sin π

3

n = 8 R, R3, R5, R7 R = cos π
4 + i sin π

4
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If n is a prime number, all the complex roots are primitive and given
by (5). In general, when one primitive nth root is known, all the other are
obtainable.

The properties of the roots of the binomial equation are summarized in
the following six theorems:

• If α is a complex root of xn − 1 = 0, then αm, m integer, is also a
root.
Proof: αn = 1 ∴ (αn)m = 1 or (αm)n = 1; Therefore αm is a root of
xn − 1 = 0.

• If m and n are prime to each other, the equations xm −1 = 0, xn −1 = 0
have no common root except unity.
Proof: Let α be a common root αm = 1, αn = 1 ∴ α(mb−na) = 1 for
integers a and b. But since (m, n) = 1 there exist integers a, b such that
mb − na = 1, so α = 1 and 1 is the only common root of the given
equations.

• If k is the greatest common divisor of two integers m and n, the roots
common to the equations xm − 1 = 0 and xn − 1 = 0 are roots of the
equation xk − 1 = 0.
Proof: m = km′, n = kn′, (m′, n′) = 1. So integers a, b can be found
such that m′b − n′a = 1 ∴ mb − na = k. Thus if α is a common root
then αmb−na = 1 and also αk = 1. This proves that α is a root of
xk = 1.

• When n is a prime number, and α any complex root of xn − 1 = 0,
all the roots are included in the series,

1, α, α2, . . . , αn−1 .

Proof: By our first theorem, these entities are all roots of xn − 1, and
by the second they are all different.

• When n is a composite number formed of the factors p, q, r, . . ., the roots
of the equations xp − 1 = 0, xq − 1 = 0, xr − 1 = 0 etc., all satisfy
the equation xn − 1 = 0.
Proof: Let α be a root of xp − 1 = 0; then αp = 1. Then

(αp)qr... = 1 or αn − 1 = 0.
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3. Solution by radicals

(a) n = 3, 4, 5, 6, 8, 10, 12

The most important result of the previous section is that the primitive
n th roots of unity are

e2kπi/n = cos
2kπ

n
+ i sin

2kπ

n
(6)

where k runs over the positive integers which are less than n and relatively
prime to n. In particular, when n is prime, then every n th root of unity
except 1 is primitive.

Now, Eq. (6) renders the roots of unity in a trigonometric form. Yet, one
of the basic problems in the theory of algebraic solution of equations is to give
algebraic solutions of the cyclometric equation xn = 1.

In the case n = 3, Lagrange (1771) showed how this can be elegantly
achieved: starting from

x3 + qx + p = 0 (7)

he substituted x = y − q
3y , obtaining the 6 th degree equation

y6 + py3 − q3

27
= 0.

Putting r = y3, one derives the quadratic equation r2 + pr − q3

27 = 0 with the

explicit solutions r1,2 = 1
2

[
−p ±

√
p2 + 4

27q3
]
. It then remains to solve

y3 − r = 0;

Clearly

y = 3
√

rj ; ω 3
√

rj ; ω2 3
√

rj ; j = 1, 2; r1r2 = − q3

27
,

where

ω3 = 1, 1 + ω + ω2 = 0; ω =
1
2
(−1 +

√
−3),

and therefore
x0 = 3

√
r1 + 3

√
r2

x1 = ω 3
√

r1 + ω2 3
√

r2

x2 = ω2 3
√

r1 + ω 3
√

r2

(8)
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This solution exhibits the link between the solutions of the general cubic and
the cyclotomic equation of degree 3, ω3 = 1. The solution of the latter is an
immediate result of the factorization

ω3 − 1 = (ω − 1)(ω2 + ω + 1) = 0 (9)

and so
x1 = cos 2π

3 + i sin 2π
3 = − 1

2 + i
2

√
3 = ω

x2 = cos 2π
3 + i sin 2π

3 = − 1
2 − i

2

√
3 = ω2

(10)

In the case n = 4, the algebraic solution is

x4 − 1 = (x2 − 1)(x2 + 1) = 0,

resulting in
x1 = 1, x2 = −1; x2 = i, x4 = −i.

The points (1, 0); (−1, 0); (0, i); (0, −i) then divide the unit circle into
four equal parts.

In the case n = 5

x5 − 1 = (x − 1)(x4 + x3 + x2 + x + 1) = 0 (11)

To solve Eq. (11), one uses the trick discovered by de Moivre (1707) to solve
general reciprocal equations, namely the substitution x + 1

x = u. Then, since

x2 +
1
x2

= u2 − 2,

x3 +
1
x3

= u3 − 3u,

x4 +
1
x4

= u4 − 4u2 + 2,

x5 +
1
x5

= u5 − 5u3 + 5u, etc.,

(12)

the quartic reciprocal equation yields,

x4 + x3 + x2 + x + 1 = x2

[

(x2 +
1
x2

) + (x +
1
x

) + 1
]

= x2(u2 + u − 1) = 0.

It then remains to solve the pair of quadratic equations:

u2 + u − 1 = 0; x2 − ux + 1 = 0, (13)
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yielding

x1 = 1
4 [(

√
5 − 1) + i

√
10 + 2

√
5] = cos 2π

5 + i sin 2π
5 = e

2πi
5

x2 = 1
4 [−(

√
5 + 1) + i

√
10 − 2

√
5] = cos 4π

5 + i sin 4π
5 = e

4πi
5

x3 = 1
4 [−(

√
5 + 1) − i

√
10 − 2

√
5] = cos 6π

5 + i sin 6π
5 = e

6πi
5

x4 = 1
4 [(

√
5 − 1) − i

√
10 + 2

√
5] = cos 8π

5 + i sin 8π
5 = e

8πi
5

(14)

The very same result could have been obtained through the factorization

x4 + x3 + x2 + x + 1 = (x2 + Ax + 1)(x2 − 1
A

x + 1) = 0 (15)

where

A =
√

5 + 1
2

,
1
A

=
√

5 − 1
2

.

Note that since x1 = cos 2π
5 + i sin 2π

5 , it follows that

u1 = x1 +
1
x1

= e
2πi
5 + e

−2πi
5 = 2 cos

2π

5
=

1
2
(

√
5 − 1).

The geometrical interpretation of this result renders the key to the construc-
tion of a regular pentagon inscribed in a unit circle: one draws a unit circle
centered at O and two perpendicular diameters AA′ and BB′. Let the mid-
point of OA′ be C. Draw an arc with C as center and CB as a radius, cutting
OA at D. Then, if Sn represents a side of a regular polygon of n sides,
S10 = OD and S5 = BD.

Apart from x5 = 1, there is a whole class of quintic equations solvable by
radicals. Furthermore, certain quintics have solutions expressible in terms of
the fifth roots of unity. Thus the equation

x5 − 5ax3 + 5a2x − 2b = 0, (16)

sometimes known as de Moivre’s quintic, has the explicit simple solutions

xk = εku1 + ε4ku2 k = 0, 1, 2, 3, 4, ε = e
2πi
5 . (17)

To solve for uj , set k = 0 and substitute x = u1 + u2 in (16) and obtain

u5
1 + u5

2 + 5(u1 + u2)(u2
1 + u1u2 + u2

2 − a)(u1u2 − a) − 2b = 0.

Letting u5
1 + u5

2 = 2b and u5
1u

5
2 = a5, the solution is

u1 =
5
√

b +
√

b2 − a5 ; u2 =
5
√

b −
√

b2 − a5 . (18)
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It can be shown387 that if a and b are rational numbers such that the quintic
trinomial x5 + ax + b is irreducible over the rationals, then the equation
x5 + ax + b = 0 is solvable by radicals iff there exist a sign θ( = ±1), and

reals c( ≥ 0) and e( 	= 0) such that a = 5e4(3−4θc)
c2+1 , b = −4e5(11θ+2c)

c2+1 , in

which case the roots of x5 + ax + b = 0 are

xk = e
[
εku1 + ε2ku2 + ε3ku3 + ε4ku4

]
, k = 0, 1, 2, 3, 4

u1 =
(

v2
1v3
D2

)1/5

, u2 =
(

v2
3v4
D2

)1/5

,

u3 =
(

v2
2v1
D2

)1/5

, u4 =
(

v2
4v2
D2

)1/5

v1 =
√

D +
√

D − θ
√

D v2 = −
√

D −
√

D + θ
√

D

v3 = −
√

D +
√

D + θ
√

D v4 =
√

D −
√

D − θ
√

D

D = 1 + c2

(19)

For a = 0, b = −1, we fall back on (14).

In the case n = 6

x6 − 1 = (x3 − 1)(x3 + 1) = (x − 1)(x + 1)(x2 + x + 1)(x2 − x + 1) = 0. (20)

So, the only roots of x6 −1 = 0 which are not roots of lower order equations are

those of x2 − x + 1 = 0, namely α = 1+i
√

3
2 , β = 1−i

√
3

2 with the additional
provisions αβ = 1 = α6 or β = α5. Therefore, the primitive roots of
x6 − 1 = 0 are

α, α5 or β5, β or α,
1
α

.

In the case n = 8

x8 − 1 = (x4 − 1)(x4 +1) = (x2 − 1)(x2 +1)(x2 − x
√

2+1)(x2 +x
√

2+1) = 0.
(21)

387 B.K. Spearman and K.S. Williams Am. Math. Monthly 101, 986–992, 1994.
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The eight roots are

xk = cos
kπ

4
+ sin

kπ

4
k = 0, 1, . . . , 7,

which correspond explicitly to the series

1, −1, i, −i,
1 + i√

2
,

1 − i√
2

,
−1 + i√

2
,

−1 − i√
2

.

The case n = 10, yields

x10 − 1 = (x5 − 1)(x5 + 1) = (x5 − 1)(x + 1)(x4 − x3 + x2 − x + 1)
= (x5 − 1)(x + 1)(x2 + ax + 1)(x2 + bx + 1) (22)

with

a =
√

5 − 1
2

, b = −
√

5 + 1
2

.

There are four primitive roots, corresponding to the roots of the quadratic
equations x2 + ax + 1 = 0 and x2 + bx + 1 = 0. The division of the circle
into 10 equal parts is then feasible with a compass and a ruler.

The case n = 12, likewise, lends itself to the factorization

x12 − 1 = (x6 − 1)(x6 + 1)
x6 − 1 = (x − 1)(x + 1)(x2 + x + 1)(x2 − x + 1) (23)
x6 + 1 = (x4 − x2 + 1)(x2 + 1)

Clearly, there are only 4 primitive roots corresponding to the roots of

x4 − x2 + 1 = 0 ∴ x2 =
1
2
(1 ±

√
−3),

namely

x1,2,3,4 = ±
√

1
2
(
1 ±

√
−3
)
.

But since

1 ±
√

−3
2

=

(√
3 ± i

2

)2

, x1,2,3,4 = ±
√

3 ± i

2
,
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(the two signs are independent), the 4 primitive roots are:

α =
√

3 + i

2
,

1
α

=
√

3 − i

2
; α1 =

−
√

3 + i

2
,

1
α1

=
−

√
3 − i

2
.

Division of the circle into 12 equal parts is enabled simply because
12 = 2 · 2 · 3. For the same reason, the division of the circle into 16 = 24

equal parts is possible, and also into 15 = 3 · 5 parts, because 2π
15 = π

3 − π
5 .

(b) n = 7, 9, 11

The Greeks, as well as succeeding mathematicians, tried in vain to con-
struct a regular heptagon. It was especially frustrating since regular polygons
of 3, 4, 5, 6, 8, 10 sides could be constructed with a compass and a ruler.

The source of the difficulty becomes obvious once we try to solve

x7 − 1 = (x − 1)(x6 + x5 + x4 + x3 + x2 + x + 1) = 0. (24)

Applying the substitution y = x + 1
x and using (12), we end up solving a pair

of equations:

y3 + y2 − 2y − 1 = 0 , x2 − xy + 1 = 0 . (25)

The three solutions of the cubic are obtained via the irreducible Cardano
solution

y1 = 2 cos 2π
7 = u + v − 1

3

y2 = 2 cos 4π
7 = ωu + ω2v − 1

3

y3 = 2 cos 6π
7 = ω2u + ωv − 1

3

u = 1
3

3

√
7
2

[
1 + 3i

√
3
]1/3

, v = 1
3

3

√
7
2

[
1 − 3i

√
3
]1/3

ω = − 1
2 +

√
3

2 i, ω2 = − 1
2 −

√
3

2 i

(26)
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It follows from (26) that

2 cos
2π

7
=

1
3

3

√
7
2

[
(1 + 3i

√
3)1/3 + (1 − 3i

√
3)1/3

]
− 1

3
. (27)

Since the separation of the real and imaginary parts of (1 ± 3i
√

3)1/3 leads
back to the cubic in (25), it is impossible to express cos 2π

7 by an algebraic
expression involving real radicals of any kind. Indeed, it can be rigorously
proved that an irreducible cubic equation with rational coefficients is not
solvable by real roots. This explains why it is not possible to construct a
regular polygon with seven sides with a compass and a ruler.388

The same fate befalls the case n = 9, leading to the cyclotomic equation

x9 − 1 = (x3 − 1)(x6 + x3 + 1) = 0. (28)

The trigonometric solution is

xk = cos
2kπ

9
+ i sin

2kπ

9
, k = 0, 1, . . . , 8 ,

and yields x1 = cos 40 ◦ + i sin 40 ◦. The corresponding algebraic solution is
x1 = 1

3√
2
(−1 + i

√
3)1/3. This implies that

cos 40 ◦ =
1

2 3
√

2

{
(−1 + i

√
3)1/3 + (−1 − i

√
3)1/3

}
. (29)

However, the complex–algebra process indicated on the r.h.s. of this equation
leads again to a cubic equation, the solution of which is 2 cos 40 ◦. It is thus
impossible to express 2 cos 40 ◦ by an expression involving real radicals of any
kind.

Note that here again x6 + x3 + 1 = x3(y3 − 3y + 1) with y = x + 1
x , where

y3 − 4y + 1 = 0 is an irreducible cubic. Ergo – a regular polygon of 9 sides
cannot be constructed with a compass and a ruler.

Until 1771, no one knew how to solve by radicals the equation xn −1 = 0
for n > 10. A paper by Alexandre-Théophile Vandermonde (1735–1796),
in which he solved (1775) the case n = 11 was regarded as an important
advance. In his paper, Vandermonde had pinpointed (without himself being
aware of that!389) the very basic idea of Galois theory (1831), namely, that in

388 Archimedes, however, devised a method for trisecting an angle using a pair

of compasses and a ruler with two marks on it which enables a most ingenious

method for constructing a regular heptagon using the same instruments.
389 On this missed opportunity Lebesgue said:
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order to determine the ‘structure’ of an equation, deciding eventually whether
is solvable by radicals, one has to look at the permutations of the roots; but one
needs only consider those permutations which preserve the relations between
the roots.

Vandermonde started from the factorization

x11 − 1 = (x − 1)(x10 + x9 + · · · + x + 1) = 0. (30)

Substituting u = −(x + 1
x ) and using (12), the solution of (30) lead him to

the irreducible quintic (solvable!)

u5 − u4 − 4u3 + 3u2 + 3u − 1 = 0, (31)

which he set to solve by radicals over the field of complex numbers. His novel
idea was to generalize the solutions of the cubic and the quartic equations [see
(8)] by the introduction of the auxiliary entity, known today as the Lagrange
resolvent:

t2 = a + αb + α2c + α3d + α4e. (32)

Here (1, α, α2, α3, α4) are the primitive roots of x5 = 1, [given explicitly in
Eq. (14)] and (a, b, c, d, e) are the solutions of (31), yet undetermined.

Now, in (32) we effect the permutation

a → b → d → c → e → a (33)

and consequently define

t = a + b + c + d + e

t1 = a + αb + α2c + α3d + α4e

t2 = b + αd + α2e + α3c + α4a

t3 = d + αc + α2a + α3e + α4b

t4 = c + αe + α2b + α3a + α4d

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(34)

“Surely, any man who discovers something truly important is left be-

hind by his own discovery; he himself hardly understands it, and only by
pondering over it for a long time. But Vandermonde never came back to

his algebraic investigations because he did not realize their importance

in the first place, and if he did not understand them afterwards, it is
precisely because he did not reflect deeply on them; he was interested in

everything, he was busy with everything; he was not able to go slowly

to the bottom of anything. To assess exactly what Vandermonde saw,
understood and what he did not catch, one would have to reconstruct

not only the mind of a man from the eighteenth century, but Vander-
monde’s mind, and at the moment when he had a glimpse of genius and

went ahead of his age.”
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Since

xk = cos
2πk

11
+ i sin

2πk

11
= e

2πki
11 , k = 1, 2, . . . , 10

we have
u1 ≡ a = −2 cos 2π

11

u2 ≡ b = −2 cos 4π
11

u3 ≡ c = −2 cos 6π
11

u4 ≡ d = −2 cos 8π
11

u5 ≡ e = −2 cos 10π
11

(35)

Vandermonde then used the trigonometric formula

2 cos θ1 cos θ2 = cos(θ1 + θ2) + cos(θ1 − θ2) (36)

to obtain relations between a, b, c, d and e. For instance, substituting 2π
11 for

θ1 and θ2, one obtains 2 cos2 2π
11 = cos 4π

11 + cos 0, leading to the relation
a2 = −b + 2. Likewise, substituting 2π

11 for θ1 and 4π
11 for θ2 one finds that

ab = −c − a. Altogether one can easily verify the relations

a2 = −b + 2 ab = −a − c bc = −a − e cd = −a − d

b2 = −d + 2 ac = −b − d bd = −b − e ce = −b − c

c2 = −e + 2 ad = −c − e be = −c − d

d2 = −c + 2 ae = −d − e de = −a − b

e2 = −a + 2

(37)

Note that the relations in (37) are preserved under the permutation (33).

Next, Vandermonde created the algebraic expressions for the fifth powers
t5, t51, t

5
2, t

5
3, t

5
4. Using (37) repeatedly and the known relations between the

roots of (31) and its coefficients, namely

a + b + c + d + e = 1

abcde = 1

abcd + bcde + cdea + deab + eabc = 3

abc + abd + cda + cdb + eab + ecd + eac + ead + ebc + ebd = −3

ab + bc + cd + de + ea + ac + ce + eb + ad + bd = −4,

(38)

it is possible to greatly simplify the algebraic expressions for the fifth powers
[in fact t = 1, by (31)]. It is thus finally shown that fifth root of t5j , j =
1, 2, 3, 4, are linear combinations in the roots a, b, c, d, e. It then follows, after
some algebra, that
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a =
1
5

[

1 + 5

√
t51 + 5

√
t52 + 5

√
t53 + 5

√
t54

]

(39)

Using the above simplifications for t5j , we can express them in terms of the
coefficients of the quintic in (31). We then find

(t1)5 = 11
4

[
(89 + 25

√
5) + i(45

√
5 − 2

√
5 − 5

√
5 + 2

√
5)
]

(t2)5 = 11
4

[
(89 + 25

√
5) − i(45

√
5 − 2

√
5 − 5

√
5 + 2

√
5)
]

(t3)5 = 11
4

[
(89 − 25

√
5) − i(45

√
5 + 2

√
5 + 5

√
5 − 2

√
5)
]

(t4)5 = 11
4

[
(89 − 25

√
5) + i(45

√
5 + 2

√
5 + 5

√
5 − 2

√
5)
]

(40)

Eq. (39) for the first root is augmented with similar ones for the roots b, c, d, e.
Note that since (t51, t

5
2) and (t53, t

5
4) are complex conjugate in pairs, the expres-

sion for a in (39) is real, as it should be.

Note also that to obtain the solutions xk for x11 − 1 = 0, one must yet
solve the quadratic equation

x2
k + xku + 1 = 0

for u = a, b, c, d, e. Thus for k = 1:

x1 = − a

2
+ i

√

1 −
(a

2

)2

= cos
2π

11
+ i sin

2π

11
(41)

etc.

(c) Gauss and n = 17 (heptadecagon)

Apart from the three classical outstanding ancient Greece non-construction
problems (squaring the circle, trisection of an angle and the doubling of the
cube), Greek geometers also focused their interest on several other problems,
among them the construction of regular polygons and platonic bodies (regular
polyhedra).

The number of regular polygons which can be constructed in 2-dimensional
space is unlimited. The number of regular convex polyhedra in a space of 3
dimensions is five. The Pythagoreans, who were interested in such matters,
regarded the dodecahedron as begin worthy of special respect. By extending
the sides of one of its pentagonal faces to form a star, they arrived of the penta-
gram, or triple triangle, which they used as a symbol and badge of the Society
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of Pythagoras. By this sign they recognized a fellow member. The construc-
tion of the pentagon390 and the pentagram discovered by Pythagoreans (and

given by Euclid), is directly based on the Golden Section ratio
√

5+1
2 and

on the formulas:

pr = side of the regular pentagon = R
2

√
10 − 2

√
5

ps = side of the star-pentagon = R
2

√
10 + 2

√
5

ps

pr
=

√
5+1
2 = diagonal of regular pentagon

side of a regular pentagon

where R is the radius of the circumscribed circle.

The construction of the regular n-gons with n = 3, 4, 5, 6, 8, 10, 12, 15, 16
were known to the mathematicians of ancient Greece.391

It was not until 1796 that any further constructions of regular polygons
were discovered. In that year, Gauss, a student of mathematics at Göttingen
who had just turned 19, proved that it is possible to construct the regular
17-gon with ruler and compass.

In the 7 th and last section of Disquisitiones arithmeticae (1801), Gauss
turns to the general problem of constructing regular polygons by compass and
ruler392. The geometric entities that are constructible from known data by
means of compass and ruler correspond algebraically to those expressions that

390 No pentagon or decagon is to be found in Egyptian monuments, although it is

easy enough to divide a circle into 5 equal parts without geometrical conscious-

ness of any kind. Pentagonal ornaments occur in Mycenaean art, prisms of hep-

tagonal shape were found in Babylon, and regular dodecahedron of Etruscan

and Celtic origins were discovered. Thus, elaborate geometrical ornaments can

be drawn without explicit geometry.
391 The case n = 15 is interesting: knowing how to construct geometrically the angle

for the equilateral triangle (120 ◦) and the regular pentagon (72 ◦), the angle for

the regular 15-gon (24 ◦) is half the difference angle
[

120 ◦ −72 ◦

2
= 24 ◦

]
. It can

also be constructed as the sum 60 ◦

4
+ 72 ◦

8
= 15 ◦ + 9 ◦ = 24 ◦.

392 It is assumed that each of these two instruments be used only for a single, specific

operation: with the compass, circles with given center and circumference-point

can be drawn; with the ruler, a straight line can be drawn through two given

points. Thus, marking on the ruler cannot be utilized. Any construction that

can be performed by compass and ruler can be made by compass alone, and,

also, if a fixed circle has been drawn, the construction may be achieved by ruler

alone!

Since the algebraic calculation of the intersection points of a circle and a straight



1516 3. The Clockwork Universe

may be deduced from given numbers by repeated use of the four rational op-
eration and square root extraction. Thus, in principle, construction problems
are transliterated into questions in the theory of equations.

Therefore, to decide on the possibility of solving a construction problem,
one must examine first whether the quantity to be found satisfies an algebraic
equation that is rational in the given quantities, and second whether this
equation has a constructible solution, i.e. whether it is solvable by square
roots.

There may be several such equations, but among them there is one of
minimal degree, which cannot be factored further with rational coefficient
(known as irreducible), and it divides all other equations of the same kind. For
this minimal equation to be solvable by square roots it must have very special
properties. One of these is that its degree must be a power of 2. Indeed, the
unsolvable problem of the duplication of the cube leads to the cubic equation
x3 − 2 = 0. Similarly, the trisection of any angle α leads to the cubic equation
4x3 − 3x − cosα = 0 and, in general, one cannot decompose this equation
further into factors whose coefficients depend rationally on cosα.

A regular polygon with n sides has its vertices equidistant on a circle (say
of unit radius, without loss of generality). Since each side of the polygon
corresponds to a central angle of 360 ◦

n , the problem is to divide a full angle of
360 ◦ into n equal parts. Now, any angle can be bisected, so when a regular
polygon with n sides has been obtained, one can successively construct a
polygon with 2mn sides. On the other hand, from a polygon with 2n sides,
one can draw one with n sides by joining every second vertex by a side.
Consequently, one can limit the considerations only to regular polygons with
an odd number of sides. From the fact that regular polygons with 3, 4, 5 sides
can be easily constructed, it follows that all polygons with 2m, 3 · 2m, 5 · 2m

sides are constructible. Furthermore, given the constructability of polygons
with sides a and b, where a and b are relatively prime, a polygon with ab sides
is obtainable. Clearly, the side of a regular n-polygon inscribed in unit circle

with n sides is sn =
√

2 − 2 cos 2π
n .

All this was known before Gauss. But instead of dealing with these quan-
tities directly, Gauss took a step that at the time was innovative: he used

line, or of a circle with another circle leads to a second degree equation, the

coordinates are obtained as the sum of a rational expression and the square

root of such an expression. The distance between two points is also expressible

as a square root. Since all other allowed constructions can be composed of

a series of these simple operations, those magnitudes that can be constructed

from given ones may be computed algebraically by repeated operations of the

four arithmetic operations and by extracting square roots (and vice versa).
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the unit circle in the complex plane. In the circle he inscribed a regular
polygon with n sides such that one vertex lies on the positive real axis at
the point x = 1. The next vertex will correspond to the complex number
R = R1 = cos 2π

n +i sin 2π
n and the subsequent ones to Rk = cos 2πk

n +i sin 2πk
n ,

k = 1, 2, 3, . . . , n − 1 with Rk = Rk by the theorem of de Moivre. This
means that R as well as its powers are roots of the algebraic equation
xn − 1 = 0.

Gauss then proved that a necessary and sufficient condition that a regular
polygon with n sides could be inscribed in a circle (constructed) by compass
and ruler is that

n = 2mp1p2 . . . pn,

where the prime factors are also Fermat numbers pk = 22k

+ 1.

Since 17 = 222
+ 1, a regular polygon of 17 sides can be inscribed in a

circle by ruler and compass. The possibility of this construction is proved if
we show that cos 2π

17 can be constructed.

Starting from the equation x17 − 1 = 0, we arrive at

x16 + x15 + x14 + · · · + x2 + x + 1 = 0,

with

R = cos
2π

17
+ i sin

2π

17
,

Gauss arranged the roots in the order

R, R3, R9, R10, R13, R5, R15, R11, R16, R14, R8, R7, R4, R12, R2, R6,

each of which is the cube of the preceding, the first being the cube of the last.

Set
y1 = R + R9 + R13 + R15 + R16 + R8 + R4 + R2

y2 = R3 + R10 + R5 + R11 + R14 + R7 + R12 + R6.

Then y1 + y2 = −1, y1y2 = −4, and each y satisfies the equation
y2 + y − 4 = 0 whose roots are

y =
±

√
17 − 1
2

.

But
y1 = (R + R16) + (R2 + R15) + (R4 + R13) + (R8 + R9)

= 2 cos
2π

17
+ 2 cos

4π

17
+ 2 cos

8π

17
+ 2 cos

16π

17
> 0
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∴ y1 =
√

17 − 1
2

, y2 =
−

√
17 − 1
2

. (42)

Now set

z1 = R + R13 + R16 + R4 = 2 cos
2π

17
+ 2 cos

8π

17
> 0

z2 = R9 + R15 + R8 + R2 = 2 cos
4π

17
+ 2 cos

16π

17
< 0.

Then z1 + z2 = y1, z1z2 = −1, and each z satisfies the equation
z2 − y1z − 1 = 0, whose roots are

z1 =
√

17 − 1
4

+

√
34 − 2

√
17

4
;

z2 =
√

17 − 1
4

−
√

34 − 2
√

17
4

.

(43)

Now set

w1 = R3 + R5 + R14 + R12 = 2 cos
6π

17
+ 2 cos

10π

17
> 0

w2 = R10 + R11 + R7 + R6 = 2 cos
12π

17
+ 2 cos

14π

17
< 0.

Then w1 + w2 = y2, w1w2 = −1, and each w satisfies the equation

w2 − y2w − 1 = 0,

whose roots are

w1 =
−

√
17 − 1
4

+

√
34 + 2

√
17

4
;

w2 =
−

√
17 − 1
4

−
√

34 + 2
√

17
4

.

(44)

Now set

u1 = R + R16 = 2 cos
2π

17
, u2 = R4 + R13 = 2 cos

8π

17
.

Then
u1 > u2 > 0, u1 + u2 = z1, u1u2 = w1.

Whence each u satisfies the equation u2 − z1u + w1 = 0 whose roots are

u1 =
z1 +

√
z2
1 − 4w1

2
= 2 cos

2π

17
, u2 =

z1 −
√

z2
1 − 4w1

2
, (45)
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and we see that u1/2 = cos 2π
17 can be obtained by a finite number of rational

operations and extraction of square roots of real numbers. Hence the regular
polygon of 17 sides is constructible.

Gauss’ final algebraic expression, as obtained by the substitution of (43)
and (44) into (45) is

cos 2π
17 = − 1

16 + 1
16

√
17 + 1

16

√
34 − 2

√
17

+ 1
8

√

17 + 3
√

17 −
√

34 − 2
√

17 − 2
√

34 + 2
√

17;
(46)

Note that the problem is not entirely algebraic because the sign of the radicals
in Gauss’ formula (46) must be determined by nonalgebraic means.

The construction of regular polygons had interested Gauss since 1796 when
he conceived the first proof that the 17-sided polygon is constructible. There
is a story about this discovery. One day Gauss approached his professor A.G.
Kästner at the University of Göttingen with the proof that this polygon is
constructible. Kästner was incredulous and sought to dismiss Gauss, much
as university teachers today dismiss angle-trisectors. Rather than take the
time to examine Gauss’ proof and find the supposed error in it, Kästner told
Gauss the construction was unimportant because practical constructions were
known. Of course Kästner knew that the existence of practical or approximate
constructions was irrelevant for the theoretical problem. To interest Kästner
in his proof Gauss pointed out that he had solved a seventeenth degree alge-
braic equation. Kästner replied that the solution was impossible. But Gauss
rejoined that he had reduced the problem to solving an equation of lower
degree. “Oh well,” scoffed Kästner, “I have already done this.”

Gauss also proved the following important theorems:

• For every prime p, the cyclotomic polynomial

fp(x) = xp−1 + xp−2 + · · · + x + 1 (47)

is irreducible over the field of rational numbers.

• For every integer n, the n th roots of unity have expressions by radicals.

4. Circulant matrices and the roots of unity

There is an interesting and useful connection between matrix algebra and
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roots of polynomials through a special kind of matrices known as circulants393.
An n × n circulant matrix is defined by

Cn =

⎡

⎢
⎢
⎢
⎢
⎣

c1 c2 c3 · · · cn

cn c1 c2 · · · cn−1

cn−1 cn c1 · · · cn−2

· · · · · · ·
c2 c3 c4 · · · c1

⎤

⎥
⎥
⎥
⎥
⎦

, (48)

where the c’s are real or complex. Each row in (48) consists of the elements of
the preceding row shifted one position to the right, with the ‘overflow’ element
begin moved to the first position. The matrix is entirely determined by its
first row. Three properties can be seen immediately by inspection of (48):

• The elements along each diagonal line parallel to the principal diagonal
(including the principle diagonal itself) are equal.

• Transpose of a circulant is also a circulant.

• Cn is symmetric w.r.t. its secondary diagonal (the line from top right
corner to bottom left corner.

Using the notation Cn = circ(c1, c2, . . . , cn), an important special circu-
lant matrix is

Wn = circ(0, 1, 0, . . . , 0)n =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 · · · 0
0 0 1 0
...

...
...

...
0 0 0 · · · 1
1 0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

n

, (49)

known as the permutation matrix of order n or the shift matrix, because the
postmultiplying of any matrix by Wn shifts its columns one place to the right
(a similar shift is applied to rows on premultiplying by W ). Clearly

Cn = c1I + c2W + c3W
2 + · · · + cnWn−1 =

n∑

k=1

ckW k−1 (50)

393 Circulants were introduced by Catalan (1846) and further investigated by

Bertrand (1850), Sylvester (1855), Cremona (1856), Bellavitis (1857) and

Souillart (1858).
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and
CnWn = WnCn (51)

For example, with n = 3:

C3 =

⎡

⎣
a b c
c a b
b c a

⎤

⎦ = a

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦+ b

⎡

⎣
0 1 0
0 0 1
1 0 0

⎤

⎦+ c

⎡

⎣
0 0 1
1 0 0
0 1 0

⎤

⎦

= aI3 + bW3 + cW 2
3

Using (50), it can be shown that the inverse of Cn is also a circulant
matrix. Note that if we denote C = [cij ], then cij = cj−i+1 with c−k = cn−k

for k ≥ 0. With this notation, one easily shows that the matrix product of
any two circulant matrices is also a circulant. In other words, circulants form
a group under multiplication. It also follows directly from (50) that any two
circulants of the same order commute

C1C2 = C2C1 (52)

Eigenvalues of a circulant

It is known from the theory of matrices that if λ is an eigenvalue of an n×n
matrix A i.e. A−→x = λ−→x or |A − λI| = 0, then the Cayley-Hamilton
theorem guarantees that P (A)−→x = P (λ)−→x , where −→x is an eigenvector and P
is any polynomial. Let us first calculate the eigenvalues of Wn, through the
equation

|Wn − λIn| =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−λ 1 0 · · · 0
0 −λ 1 · · · 0
...

...
1

1 · · · −λ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
n

(53)

Clearly, the characteristic polynomial of Wn is λn = 1 and therefore
its eigenvalues are the n th roots of unity. Because of (50) and on the strength
of the Cayley-Hamilton theorem, the k th eigenvalues of a circulant Cn is
(λ1 = 1)

rk = c1 + c2λk + c3λ
2
k + · · · + cnλn−1

k , k = 1, 2, . . . , n (54)

This implies that the determinant of Cn can be expressed in the compact form

|Cn| =
n∏

k=1

(c1 + c2λk + c3λ
2
k + · · · + cnλn−1

k ). (55)
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For example

∣
∣
∣
∣
∣
∣

x1 x2 x3

x3 x1 x2

x2 x3 x1

∣
∣
∣
∣
∣
∣
= (x1 + x2 + x3)(x1 + ωx2 + ω2x3)(x1 + ω2x2 + ωx3),

where ω and ω2 are the complex cube roots of unity.

We note that (54) can be recast in the matrix relation

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 · · · 1
1 λ λ2 · · · λn−1

1 λ2 λ4 · · · λ2(n−1)

... · · ·
1 λn−1 λ2(n−1) · · · λ(n−1)2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

c1

c2

c3

...
cn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

r1

r2

r3

...
rn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (56)

The n × n matrix on the l.h.s. is a Vandermonde type matrix
V (1, λ, λ2, . . . , λn−1). When multiplied by 1√

n
it is known as the Fourier-

Transform matrix Fn = 1√
n
V . It is a unitary matrix, its inverse being

equal to its conjugate transpose

F −1 = F ∗.

Let

Dn =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0
λ

λ2

. . .

0 λn−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, λ = e− 2πi
n . (57)

Using (50), (56) (or 54), one readily proves the important relations

Wn = F −1
n DnFn Dn = FnWnF −1

n

Cn = F −1
n ΔnFn Δn = FnCnF −1

n

(58)

where

Δn = c1I + c2D + c3D
2 + · · · cnDn . (59)
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This means that all elements of a circulant Cn are simultaneously diagonalized
by the same unitary matrix.

A special type of circulant matrix is defined as

Cn =

⎡

⎢
⎢
⎢
⎢
⎣

1
(
n
1

) (
n
2

)
· · ·

(
n

n−1

)

(
n

n−1

)
1

(
n
1

)
· · ·

(
n

n−2

)

...
...

...
. . .

...

⎤

⎥
⎥
⎥
⎥
⎦

, (60)

where
(
n
k

)
is a binomial coefficient. The determinant of Cn is given by the

formula

Cn =
n−1∏

j=0

[(1 + λj)n − 1] . (61)

Thus, the computation of a circulant’s eigenvalues is actually quite trivial:
simply generate a polynomial from the first row

q(t) = c1 + c2t + · · · + cntn−1

and then evaluate the polynomial at t = λk. For example, if

C4 =

⎡

⎢
⎢
⎣

1 2 1 3
3 1 2 1
1 3 1 2
2 1 3 1

⎤

⎥
⎥
⎦

Since q(t) = 1 + 2t + t2 + 3t3 and λ1 = 1; λ2 = −1; λ3 = i; λ4 = −i,
we have for the eigenvalues of C:

q(1) = 7; q(−1) = −3; q(i) = −i; q(−i) = i .

Suppose that μ1, μ2, . . . , μr−1 are the roots of the polynomial

q(z) = c1 + c2z + · · · + cnzn−1 (62)

known as the representer of the circulant (to be distinguished from the eigen-
values of Cn). Then

Cn = q(W ) = ar(W − μ1I)(W − μ2I) · · · (W − μr−1I) . (63)

This gives us a factorization of any circulant into a product of circulants
(W − μkI) that are of a particular elementary type.
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Let Cn be nonsingular. i.e.: non of the eigenvalues of Cn is zero,
namely, λj = q(W j−1) 	= 0, j = 1, 2, . . . , n. This will be true iff
μn

k 	= 1, lk = 1, 2, . . . , r − 1. Then, from (63) one has

C−1
n = a−1

r (W − μ1I)−1(W − μ2I)−1 · · · (W − μr−1I)−1 . (64)

It can be shown that for μn 	= 1

(W − μI)−1 =
1

1 − μn

[
μn−1I + μn−2W + μn−3W 2 + · · · + Wn−1

]
. (65)

The characteristic polynomial of Cn

Given a n × n circulant matrix Cn, the polynomial

Pn(x) = det(xI − Cn) = xn + pn−1x
n−1 + · · · + a1x + a0 (66)

is the characteristic polynomial of Cn. Its roots rk, as determined in (54), are
the eigenvalues of Cn. Clearly

pn−1 = −(r1 + r2 + r3 + · · · + rn) = trace of Cn = −nc1 . (67)

If we effect the transformation y = x − 1
npn−1 in (66), the term of

degree n − 1 is eliminated and this operation corresponds to making the trace
of Cn vanish. Thus, the circulant matrix for the modified polynomial has
vanishing diagonal and trace; such a matrix is called a traceless circulant.

Suppose we wish to obtain expressions for the roots of p3(x) = x3 +βx+γ
as the eigenvalues of a circulant matrix

C3 =

⎡

⎣
0 b c
c 0 b
b c 0

⎤

⎦ (68)

The characteristic polynomial of C3 is x3 − 3bcx − (b3 + c3). This equals
p3(x) if b3 + c3 = −γ; 3bc = −β. To complete the solution of the
original equation, we must solve this system for b and c, and then apply
q(x) = bx + cx2 to the cube roots of unity. That is, for any a and b
satisfying b3 + c3 = −γ and 3bc = −β, we obtain the roots of p as

q(1) = b + c
q(ω) = bω + cω2

q(ω̄) = bω̄ + cω̄2
(69)
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Solving, then, the above equations for the unknowns b3 and c3 we obtain

b =

[
−γ +

√
γ2 + 4β3/27
2

]1/3

, c = − β

3b
, (70)

which is essentially the Cardano solution. What distinguishes this approach is
the role of the roots of unity and the immediate extendability of the circulant
approach to the quadric equation and solvable polynomial equations of higher
degree.

Circulant matrices have important applications to diverse disciplines in-
cluding physics, image processing, probability and statistics, numerical analy-
sis, number theory and geometry. The built-in periodicity also means that
circulants are closely related to Fourier analysis and group theory.

1796–1825 CE Georges (Léopold Chrétien Frédéric Dagobert)
Cuvier (1769–1832, France). Geologist and paleontologist. Author of the
geological-historical concept of world revolutions in nature. Founder of com-
parative anatomy and paleontology (1805). Attributed fossil succession to
extinction caused by a series of natural catastrophes394 rather than to evolu-
tion (1812–1825). Developed a method of classifying mammals (1796) and
gave an account of the whole animal kingdom, dividing it into four groups
(1817).

394 Crisis: an event that occurs in the history of a system, when stress is suffi-

cient to cause the imminent alteration of the system’s principal structures, but,

through the absorption of this stress into its subsystems, the system survives.

Catastrophe: an event that occurs in the history of a system, when stress is

sufficient to cause the imminent alteration of the system’s principal structures;

and the subsystems fail to absorb all of the stress but survive, although the

system fails. In such cases, a new and modified system is then formed to take

the place of the failed system.

Cataclysm: an event that occurs in the history of a system, when stress is suffi-

cient to cause the imminent alteration of the system’s principal structures, and

both the system and its subsystems fail.

In each of the three events just described, the source of the stress is left unde-

fined; but, for the present, it can be inferred to be external. Crises occur often,

catastrophes happen less often, and cataclysms rarely occur on a grand scale.
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Cuvier was born at Montbéliard, in Wurthenburg (now a part of Bur-
gundy) of a poor Lutheran military family of Huguenot stock. After spending
four years at the Caroline University near Stuttgart, he accepted the position
of tutor in the family of the Comte d’Hericy. Like Laplace, he was appointed
(1795) assistant at the Muséum d’Histoire Naturelle. He later became profes-
sor of natural history in the Collège de France (1799), and titular professor
at the Jardin des Plantes (1802).

During the early years of the 19 th century Cuvier was a man of consider-
able influence, earning for himself in the sciences the title of ‘the dictator of
biology.’ In 1808 he was placed by Napoleon upon the council of the Imperial
University, assisting the latter in the reorganization of higher education. In
1831 he was raised by Louis-Philippe to the rank of peer of France.

Cuvier lived through turbulent times: the fall of the nobility, the French
Revolution, the reign of Napoleon, the return of the nobility, the fall of the
Church, and the resurgence of its influence. Like Laplace, he was a “sur-
vivor”, who died rich, famous and powerful. His vanity was boundless, as was
his hunger for honors and praise. He was said to have had an exceptional
memory and to have known the contents of all 19,000 books in his library.

His life story and character may explain why he chose the catastrophic
point of view.

1796–1826 CE Aloys Senefelder (1771–1834, Germany). Inventor of
lithography . In 1826 he invented a process of lithographing in color. Born in
Prague. Director of the royal printing office in Münich (1809).

1796–1833 CE Samuel Hahnemann (1755–1843, Germany). Physi-
cian. Founded homeopathic medicine. This medical system is based on simple
remedies (exercise, a nourishing diet, and pure air), and on two fundamental
principles:

• diseases are cured by drugs which produce in healthy persons the symp-
toms found in those who are ill;

• the smaller the dose, the more efficacious the medicine.

Hahnemann was born in Meissen, Saxony. He studied medicine at Leipzig
and Vienna and received his M.D. at the University of Erlangen (1779).
Through his practice he quickly discovered that the medicine of his day
(purgatives, emetics, blistering, cupping, sweating, bloodletting and huge
doses of calomel and other mineral drugs) did as much harm as good.

He then gave up his practice and made his living as a writer and trans-
lator. While translating William Cullen’s A Treatise on the Materia Medica,
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Hahnemann encountered the claim that Cinchona, the bark of a Peruvian
tree, was effective in treating malaria because of its astringency. Hahnemann
realized that other astringent substances are not effective against malaria and
began to research cinchona’s effect on the human organism very directly: by
self-application. He discovered that the drug evoked malaria-like symptoms
in himself, and concluded that it would do so in any healthy individual. This
led him to postulate a healing principle: “that which can produce a set of
symptoms in a healthy individual, can treat a sick individual who is manifest-
ing a similar set of symptoms.” This principle, ‘like cures like’, became the
first of a new medicinal approach to which he gave the name homeopathy.

Hahnemann began systematically testing substances for the effect they
produced on a healthy individual and trying to deduce from this the ills
they would heal. He quickly discovered that ingesting substances to produce
noticeable changes in the organism resulted in toxic effects. His next task
was to solve this problem, which he did through exploring dilutions of the
compounds he was testing. He discovered that these dilutions, when done
according to his technique of succussion (systematic mixing through vigorous
shaking) and potentization, were still effective in producing symptoms.

Hahnemann began practicing medicine again using his new technique,
which soon attracted other doctors. He first published an article about the
homeopathic approach to medicine in a German medical journal in 1796; in
1810, he wrote his Organon of the Medical Art, the first systematic treatise
on the subject.

Hahnemann continued practicing medicine, researching new medicines,
writing and lecturing to the end of a long life. He died in 1843 in Paris,
88 years of age, and is entombed in a mausoleum at Paris’ Pére Lachaise
cemetery.

1797 CE Lorenzo Mascheroni (1750–1800, Italy). Mathematician
and poet. Published a variety of mathematical works. He shares with Euler
the name of the number γ = limn→∞

[
1
1 + 1

2 + 1
3 + · · · + 1

n − loge n
]
, known

as the Mascheroni-Euler number .

γ = 0.577 215 664 901 532 860 606 512 090 082 402 431 042 159 335 939 92 . . .

is one of the most mysterious of all arithmetic constants. It appears unex-
pectedly in several places in number theory.

In Geometria del compasson (1797) he showed that every compass-and-
straightedge (unmarked ruler) construction can be done with a compass
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alone395 (it is assumed that two points, obtained by arc intersections, de-
fine a straight edge). Among the problems solved by Mascheroni, using the
compass alone, were:

• Locating the center of a given circle.

• Finding a point midway between two given points A and B.

• Dividing a circle, its center given, into four equal arcs (known as
“Napoleon problem”396).

Mascheroni was ordained as a priest at the age of 17. At first he taught
rhetoric, then, from 1778, he taught physics and mathematics at the seminary
at Bergamo. In 1786 he became professor of algebra and geometry at the
university of Paris. He later became rector of that University.

1797–1808 CE Joseph Louis Proust (1754–1826, France). Chemist.
Discovered the quantitative nature of chemical combination through the Law
of Definite Proportions. He also was first to distinguish a chemical compound
from a simple mixture of elements. Identified the sugars: glucose, fructose
and sucrose in plant juices (1808).

1798 CE Benjamin Thompson (1753–1814); Count Rumford.
British-American scientist, adventurer and political figure. In “An Inquiry

395 A Danish geometer George Mohr with no other claim to fame, published this

surprising result already in 1672 in a 24-page booklet. It was issued in a Dan-

ish edition under the name Euclides Danicus and a Dutch edition (1673) under

Compendium Euclidis Curiosi . The Dutch edition, published anonymously, was

translated (1674) into English, but the Danish book was discovered only in 1928

in Copenhagen.

Jean Victor Poncelet suggested a proof (1822) that all compass-and-

straightedge constructions are possible with a straightedge and a fixed com-

pass. But again, a little-known geometer, Servais, published this result earlier

(1805). Incidentally, the first systematic effort to go beyond the Greek by im-

posing more severe restrictions on instruments used in construction problems,

is ascribed to the Persian mathematician Abu al-Wafa (ca 970 AD). In his work

he described constructions possible with a straightedge and a fixed compass.
396 Young Mascheroni was an ardent admirer of Napoleon and the French Rev-

olution. His book Problems for Surveyors (1793) was dedicated in verse to

Napoleon. The two men met and became friends in 1796, when Napoleon in-

vaded Northern Italy. A year later, when Mascheroni published his book on

constructions with the compass alone, he again honored Napoleon with a dedi-

cation in a lengthy ode.
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Concerning the Source of the Heat Which is Excited by Friction”, he reported
his experiments which discredited the caloric theory of heat and established
heat as a form of energy rather than a substance. Since heat was being in-
troduced by motion, he suggested that heat is a form of motion itself. In
1797, Rumford conjectured the existence of large-scale convection currents
in the world oceans. In his essay “On the propagation of heat in fluids”, he
concluded that the existence of cold water at depth in the tropics implies a
meridional circulation, transporting deep water from the polar regions toward
the equator.

Thompson was born in Woburn, Massachusetts, to a family of wealthy
farmers that had settled in New England around 1650. His father died when
he was very young and his mother speedily remarried. At the age of 14 he
was already versed in algebra, geometry, astronomy and higher mathematics.
In 1768 he was apprenticed to a storekeeper at Salem, and occupied himself
in chemical and mechanical experiments.

He began his checkered career when at the age of 19 he married a wealthy
widow (from the township of Rumford), 14 years his senior. He was allegedly
engaged in spying for the British during the American Revolution and had
to leave America when the British troops left Boston in 1776. On his arrival
in London he entered the civil service and within 4 years rose to a rank of
under-secretary of state. His official duties, however, did not interfere with
the prosecution of his scientific pursuits, and in 1779 he was elected a fellow of
the Royal Society. He then left the civil service and joined the cavalry, which
he quit in 1783 at the rank of lieutenant-colonel. He then joined the Austrian
army, for the purpose of campaigning against the Turks. At Strasbourg he
was introduced to Prince Maximilian, afterwards elector of Bavaria, and was
invited by him to enter the civil and military service of that state.

During 1787–1798 he remained in Münich as a minister of war, minister of
police and grand chamberlain to the elector. His work to improve the living
conditions of the poor in Münich gained him the title of Count of the Holy
Roman Empire in 1791. His political and courtly employments, however,
did not absorb all his time, and during his stay in Bavaria he contributed
a number of papers to the Philosophical Transactions. In 1798 he made his
greatest contribution to science while supervising the boring of cannons.

The death of the elector Karl Theodor, the rise of Napoleon and the fact
that the Bavarians were beginning to find him tiresome, led Rumford to return
to England in 1799. In 1800 he helped found the British Royal Institution.
In 1804 he established himself in Paris, where he was married briefly and
unhappily to the widow of Lavoisier. He died at Auteuil, near Paris, at the
age of 61.
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1798–1801 CE Napoleon’s Egyptian campaign. A French expedition of 151
scientists, engineers, medical men and scholars created the first modern vision
of Egyptian antiquity and its natural history. It resulted in a monumental
encyclopedia Le Description de L’Égypte, printed between 1809 and 1828 in
ten folio volumes of plates (50 cm by 65 cm), three atlases (65 cm by 100 cm)
and nine accompanying volumes of text comprising approximately 7000 pages
of memoirs, description and commentary.

Serving as permanent secretary of the project was Jean Baptist Fourier,
who had yet to invent the analysis that bears his name. Among the sci-
entists in the expedition were Gaspard Monge (exact sciences), Claude
Louis Berthollet (physical chemistry), Étienne Geoffray Saint-Hilaire
(vertebrate zoology), Jules César Lelorgne de Savigny (invertebrate zool-
ogy, ornithology), Francois-Michel de Rozière (mineralogy), Dominique
Jean Larrey (medicine) and Jean Francois Champollion (archaeology).

On the first of July 1798, an armada of 400 ships appeared of the coast
of Alexandria. By the end of the day, an army of 36,000 men, under the
command of Napoleon Bonaparte landed ashore. On July 21, this army de-
feated the Mamelukes in the Battle of the Pyramids. Ten days later, Admiral
Horatio Nelson destroyed the French fleet, marooning the expeditionary force
for the next three years397.

The most famous discovery of the expedition remains the Rosetta stone; it
was only in 1822 that Champollion succeeded in matching the name Ptolemy
in the three scripts — hieroglyphic, demotic and Greek — inscribed on the
Rosetta stone, and not until the 1850’s were scholars able to construe whole
texts.

Another archaeological feat was the excavation of the route of the canal
that had linked the Red Sea to the Mediterranean in ancient times.

As for science is the ordinary sense, the Egyptian environment created
exceptional opportunities. Some of these achievements are:

(1) Monge’s explanation of mirages as the effect of light rays from beyond
the horizon, reflected from the surface of a layer of air superheated at

397 In 1798, when all of England’s allies in the war against France had been de-

feated and when the Spaniards had changed sides, the Royal Navy was obliged

to withdraw from the Mediterranean. Bonaparte then set out from Toulon

with a powerful fleet with the intension of conquering Egypt and attacking

the British in India. He had captured Malta, stormed Alexandria and taken

Cairo. On Aug. 01, Nelson discovered the French fleet in the Bay of Aboukir

and although outmanned and outgunned, he attacked without delay. His vic-

tory shattered Napoleon’s scheme in Egypt and India and had great political

influence in Europe.
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ground level by the sun-soaked sand. Although modern optics attributes
the effect to dual refraction within the surface layer, Monge had the
underlying physics right.

(2) Motivated by the natural occurrence of the reaction

CaCo3 + 2NaCl
humidity

heat−−−−−→ Na2Co3 + CaCl2

in limestone formations surrounding saline lakes, Berthollet advanced
(1803) his theory that the course of reactions is determined not only by
the relative concentration of reagents but also by exterior physical factors
such as pressure, heat and light. This, in retrospect, is considered as the
point of departure for physical chemistry.

(3) The zoological studies of the naturalists Geoffray and Savigny moved
beyond taxonomy (classification) to morphology (form and structure);
the former had been the main preoccupation of the natural history of the
18th century; the latter became important subdiscipline of the emerging
science of biology in the 19th century.

(4) In a monograph ‘On the Physical Constitution of Egypt and its Relation
with the Ancient Institutions of the Country ’ Rozière observed that in
no other country has a highly developed society such as that of ancient
Egypt, ever exhibited such dependence on a single set of physical factors:
everything in the laws of the land and the customs of the people derived
from the behavior of the Nile. The rise and fall of the river not only
shaped the civilization of Egypt but also accounted for the influence of
its culture on the theogonies, the sciences, and the arts and crafts of all
antiquity.

(5) Larrey gave clinical descriptions of trachoma, bubonic plague, tetanus,
yellow fever, leprosy, elephantiasis and gigantism. In his view, the etiol-
ogy of some of these diseases involved a specific external agent, for which
he sometimes used the word virus and sometimes germ.

With the French conquest of Egypt, began the spread of European sci-
ence and its appurtenances to African and Asian societies under the aegis of
military conquest and political power.

1798–1816 CE Extinction of German universities. The political storms
which marked the turn of the 19th century dealt a death-blow to some 15 of
the old universities in Germany. Among them: Mainz (1476–1798), Cologne
(1388–1798), Bamberg (1648–1804), Altdorf (1580–1807), Frankfurt a.o.
(1506–1809), Wittenberg (1502–1815) and Erfurt (1379–1816).
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Rumford and Caloric

Many earlier experimenters believed that heat was a weightless, highly
elastic, self-repellent fluid, indestructible and uncreatable. This fluid they
called caloric398. The caloric theory offered an explanation of the facts then
known: bodies emitted heat because the particles of caloric repelled one an-
other strongly. Differences in specific heats were due to the different attracting
powers of different substances for the fluid. Expansion occurred because the
self-repellent fluid tended to increase the volume of any body in which it was
lodged. Latent heat was supposed to enter into combination with the particles
of the material: thus water = ice + latent heat . If a simple theory of this
kind served to explain all the observed facts, it was quite reasonable to look
no further. But the generation of heat by percussion and by friction presented
difficulties.

The theory stated that the rise of temperature of a block of lead, when
hammered, was due to the extrusion of caloric under pressure, much as water
issues from a sponge when it is squeezed. The rise in temperature of two bodies
when rubbed together was due to the diminution of the bodies themselves: as
the small particles rubbed off, the bodies’ overall power of attracting caloric,
decreased, and some of it was thereby freed — that is, the specific heat of a
finely powdered substance was less than that of the same substance in one
solid mass. No attempt seems to have been made to detect this diminution
of specific heat, and this argument could not possibly explain the generation
of heat by the churning of a liquid.

Rumford performed a series of experiments (1798) at the Münich military
arsenal, Germany, in which heat was generated by rotating a blunt cannon
borer in a large mass of gun-metal. He observed that a large quantity of
heat (sufficient to raise nearly 12 kg of water from the freezing point to the
boiling point in one experiment) was released from the abrasion of a very small
quantity of metallic dust, and he found that the specific heat of this dust was
not appreciably different from that of the solid material, which showed that
the caloric theory was false, on this point at least. Further, the supply of heat
appeared to be inexhaustible, and it was clear that no closed system could
supply unlimited amounts of any material substance.

In a paper published in 1799, Humphry Davy (1778–1829, England) re-
ported that rubbing two blocks of ice together in a vacuum, using a clockwork

398 The term “phlogiston” was used before “caloric”, in a similar but not identical

manner.
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mechanism, caused the ice to melt at the surface in contact. As it was well
known that considerable latent heat is required to turn ice into water, and as
no other possible source of heat was available, this experiment was claimed
to demonstrate that heat was evolved here by mechanical action only. Also,
the specific heat of the product (water) is approximately double that of the
solid used. Although this work has been accepted for many years, it seems
very doubtful if Davy, then 19 years of age, could have carried out such an
experiment, which would tax the ingenuity of any trained physicist.

In spite of the works of Rumford and Davy, the caloric theory remained
in favor for some 50 more years, until finally wiped out by the theories and
experiments of Mayer (1840), Joule (1847), Helmholtz (1847), Kelvin
(1852) and Rankine (1853).

1798–1820 CE Thomas Robert Malthus (1766–1834, England)
Economist. Aroused controversy by his Essay of the Principles of Population
Theory, based on the premise that population, when unchecked, tends to
increase in a geometrical progression (doubling every 25 years), whereas the
means of subsistence tend to increase only in an arithmetic progression. From
this Malthus concluded that:

• population always increases as the means of subsistence increase.

• population is limited by the means of subsistence.

• population is kept from overgrowing the means of subsistence by two
kinds of checks: positive checks (disease, war, famine etc.) and preven-
tive checks (voluntary abstinence from sex indulgence).

The Malthusian population theory went hand in hand with Wage Theory :
If laborers receive wages affording them more than mere subsistence, they will
raise more children. The number of people will thus increase until there are
more than can be fed and the population will reduce to numbers that can
just be supported by the available means of subsistence. It is thus useless
to attempt to relieve the laboring classes of their misery: in the struggle for
survival the fittest come out on top, the unfit perish. This is better than to
keep the unfit alive through charity and to let the fit die instead. Darwin
built his theory of evolution on this Malthusian idea.
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Although it contains much that is true, the theory has been criticized
in several counts: (1) The ratios of increase of population and the means
of subsistence are hypothetical, not actual; (2) Population does not always
increase to the full extent of its biological capacity399; (3) Means of subsistence
may increase faster than population due to technological improvements; the
experience of the last 150 years bears this out.

The doctrine of Malthus was a corrective reaction against the superficial
optimism diffused by the school of Rousseau and its blindness to the real
conditions that circumscribe human life.

Malthus was born near Guilford, Surrey. He was educated by private tu-
tors and went to Cambridge (1784–1797). He then became a curate at a small
parish in Albury, Surrey (1797); During 1805–1834 he was professor of history
and political economy at the East India Company’s college at Haileybury.

1798–1805 CE Johann Wilhelm Ritter (1776–1810, Germany).
Physicist. His suggestion that the galvanic current was due to a chemical
interaction between the metals (1798), was the first electrochemical expla-
nation of this phenomenon. Discovered the process of electroplating (1800);
discovered existence of ultraviolet radiation through its effect of darkening a
silver chloride film (1801); observed thermoelectric currents (1801); invented
the dry voltaic cell (1802) and the electrical storage battery (1803).

Ritter was born in Samitz, Silesia (now Poland) and began his career as
an apothecary. He then studied at the University of Jena (1796). The basic
concept of electrolysis and electroplating was discovered by Ritter at the same
time or in some cases earlier than the experiments of Carlisle, Nicholson
and Davy.

In 1801 he observed thermoelectric currents, anticipating the discovery of
thermoelectricity by Seebeck (1821). In 1805, Ritter moved to Munich to
take a position at the Bavarian Academy of Science. He died at the young
age of 33, as a direct result of exposing his body to very high voltages in his
experiments on the electrical excitation of muscle and sensory organs.

399 On the eve of the Agricultural Revolution (10,000 BCE), the human species

numbered about 4 million people. On the eve of the Industrial Revolution (ca

1750 CE), the total world population was estimated at 800 million people. In

1950 world population reached 2485 (± 5%) millions, and in 1990 it was about

5300 million. Projections to the years 2000 and 2050 CE yield the respective

estimates of 6200 and 10,000 million.
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1797–1815 CE Johann Friedrich Pfaff (1765–1825, Germany). Math-
ematician. Presented the theory of Pfaffian forms and equations400 (1797).
His work constituted the starting point of a basic theory of integration of PDE

which, through later work of Jacobi, Lie and others, has developed into the
modern Cartan’s exterior calculus of differential forms.

Pfaff was born in Stuttgart to a distinguished family of Württemberg civil
servants. At age of 9 he went to the Hohe Karlsschule in Stuttgart, a school
with harsh military discipline, serving chiefly to train servile government of-
ficials. Pfaff completed his legal studies there in 1785 and then spent a few
years in travel and study at the Universities of Göttingen, Berlin, Vienna,
Halle, Jena and Prague.

He finally settled down as a professor of mathematics at the University
of Helmstadt. Gauss, after completing his studies at Göttingen (1795–1798),
lived in Pfaff’s house. Pfaff recommended Gauss’ doctoral dissertation and,
when necessary, greatly assisted him. Gauss always retained a friendly mem-
ory of Pfaff both as a teacher and as a man.

400 The expression
∑n

i=1 Fi(x1, x2, . . . , xn)dxi in which the Fi (i = 1, 2, . . . , n)

are functions of the n independent variables x1, x2, . . . , xn, is called a Pfaffian

differential form in n variables. Similarly, the relation
∑n

i=1 Fidxi = 0 is called

a Pfaffian differential equation.

In the case of 2 variables, the form P (x, y)dx + Q(x, y)dy = 0 is equivalent

to dy
dx

= f(x, y) = − P
Q

. If {P, Q} are single-valued functions, then dy
dx

is

single-valued, and the solution to the above ODE which satisfies the boundary

condition y0 = y(x0) consists of a curve which passes through this point and

whose tangent at each point is defined by the DE. Thus the original Pfaffian

equation defines a one-parameter family of curves in the xy-plane. It can be

shown that a Pfaffian DE in 2 variables always possesses an integrating fac-

tor, i.e. there exist μ(x, y), φ(x, y) such that 0 = μ(Pdx + Qdy) = dφ or
1
P

∂φ
∂x

= 1
Q

∂φ
∂y

= μ.

When there are 3 variables, the Pfaffian DE is of the form Pdx+Qdy+Rdz = 0.

If we introduce the vectors x = (P, Q, R) and dr = (dx, dy, dz), we may write

this equation in vector notation as x · dr = 0. A necessary and sufficient

condition that the Pfaffian DE x · dr = 0 should be integrable is that

x · curlx = 0 [this theorem figures prominently in theoretical thermodynamics.

Moreover, the exterior calculus of Cartan can be used to extend it to criteria

for solvability of systems of ODE’s].

The representation of a given vector-field
−→
f in the form

−→
f = ∇w+u∇v, where

(u, v, w) are scalar functions of the coordinates, is known as the Pfaff Problem.
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In 1810, the University of Helmstadt was closed and Pfaff went to Halle,
where he stayed to the end of his life.

1798–1817 CE Louis Nicolas Vauquelin (1763–1829, France). Che-
mist. Discovered chromium (1798), beryllium401 (1798) and [with Pierre Jean
Robiquet (1780–1840)] first isolated an amino acid, asparagine402, from as-
paragus (1806).

1799 CE Marc Antoine Parseval des Chênes (1755–1836, France).
Mathematician. His reputation rests on a single formula for summing special
cases of series of products. Since its appearance in print in 1800, dozens of
equations have been called Parseval equations, theorems or identities both
in the theory of Fourier series and the theory of the Fourier integral; most
of them only remotely resemble the original. In his memoirs, which were
presented at the Academy of Sciences, Parseval applied his theorem403 to

401 He discovered it in the gems beryl and emerald , but did not isolate the element.

Beryllium was finally isolated by Friedrich Wöhler (1828).
402 Asparagine was synthesized by Wilhelm Körner (1839–1925) in 1887. It has

the structural formula
COOH

|
H2N — C — H

|
CH2

|
C

�� �

O NH2

Asparagine is important in the metabolism of nitrogen and the anabolism of

nitrogen-containing compounds.
403 In modern notation: If in the series

M = A0 + A1s + A2s
2 + · · ·

and

m = a0 + a1s + a2s
2 + · · · ,

s is replaced by eiu and the real and imaginary parts are separated so that

M = P + iQ and m = p + iq, then

2

π

∫ π

0

Ppdu = 2A0a0 + A1a1 + A2a2 + · · · .

Today, Parseval’s theorem (or identity) for Fourier series states: Let f(x)
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the solution of certain differential equations suggested by Lagrange and
d’Alembert.

Little is known of Parseval’s life or work; he was a member of a distin-
guished French family. An ardent Royalist, he was imprisoned in 1792 and
later fled the country when Napoleon ordered his arrest for publishing poetry
against the regime.

1799–1813 CE Paolo Ruffini (1765–1822, Italy). Physician and mathe-
matician. Taught mathematics as well as clinical medicine at the University of
Modena. In his book Teoria generale dell equazioni (1799), and later in 1813,
he continued the thread of thought of Lagrange (1770), giving an incomplete
proof that virtually established the unsolvability of the quintic equation by
means of algebraic functions of the coefficients involving radicals.

Previously, Euler’s attempts (1750) to reduce the solution of the quintic
equation to that of a quartic equation met with total failure. Ruffini’s proof
was later improved by Abel (1824).

1799–1831 CE Aimé Jacques Alexandre Bonpland (1773–1858,
France and South America). Naturalist, botanist, horticulturist, agricultural
experimenter and physician. As a botanist of the Humboldt expedition to
the Spanish territories of South America (1799–1804), he garnered and de-
scribed some 60,000 plant specimens, which he personally managed to collect
in the equatorial swamps and rain forests. Later, during his stay in Argentine,
Brazil, Uruguay and Paraguay (1816–1858) he continued to enrich European
science with new floral specimens. He collected thousands of specimens of
new plants and diagnosed them. Being a physician he had a special interest
in plants which might have medicinal virtues and he sent many of them to the
Paris Muséum for chemical analysis. He was first to investigate the culture
of certain herbs and try to improve them in a scientific manner. He was one

and g(x) be bounded and integrable in (−π, π) such that

f(x) = A0 +

∞∑

n=1

[An cos nx + Bn sin nx],

g(x) = a0 +

∞∑

m=1

[am cos mx + bm sin mx].

Then
1

π

∫ π

−π

f(x)g(x)dx = 2A0B0 +
∞∑

k=1

(Akak + Bkbk).
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of the first botanists to observe one of the marvels of the floral world — the
giant water lily (1819).

Bonpland was born in the parish of St. Bartholomew of La Rochelle. He
received a medical education in Paris, and became a surgeon in the French
navy. Under the influence of Lamarck, he had developed a deep interest in
natural history, chiefly botany, which needed only a little encouragement to
flare out. Having completed his naval service (1795), he returned to Paris
to continue his medical studies. He then acquainted Alexander von Hum-
boldt, and the two friends embarked together on their famous expedition to
South America.

After their triumphal return to Paris (1804), Humboldt secured for him
an appointment as botanist to the empress Joséphine404 (1763–1814) who
had a deep interest in flowers and was an ambitious horticulturist. After the
empress’ death he emigrated to Buenos Aires (1816), where he established a
plantation on the Paraná River. There he undertook agricultural experiments
on a large scale. However, in 1821 his plantation was sacked by troops of the
Paraguayan dictator Francia, and he himself was imprisoned in Paraguay for
more than seven years. Finally, thanks to the intervention of Humboldt, he
was freed and settled (1831) in San Borja, on the eastern shore of the Uruguay
River. He established there a large plantation, where he continued to conduct
horticultural experiments, especially with regard to citrus fruits.

1799–1839 CE Augustin-Pyrame de Candolle (1778–1841, Switzer-
land). Botanist. Laid the foundation for modern studies on plant evolution
and classification in his Théorie Elementaire de la Botanique (1813); Regni
Vegetabilis Systema Naturale (1817–1821), and Prodromus Systematis Natu-
ralis Regni Vegetabilis (1824–1839).

De Candolle was born in Geneva. Studied in Paris (1796); professor, Mont-
pellier (1808–1817), Geneva (1817–1841). Coined the term “taxonomy” as a
method of classifying plants by structure (1818). His son Alphonse-Louis-
Pierre-Pyrame de Candolle (1806–1893) succeeded him as professor in
Geneva (1842–1893) and continued the Prodromus to 17 volumes; author of
Geographic botanique raisonnée (1855).

404 Born at Martinique, she accompanied her father to France (1779) and married

there the viscount Alexandre de Beauharnais; he was beheaded in July 1794.

In 1796, she married general Bonaparte and was crowned with him on Dec. 2,

1804. Napoleon divorced her in 1809. However, she was richly endowed and

was able to keep a royal establishment at Malmaison near Paris, which she had

bought during Napoleon’s absence in Egypt. She died there in 1814.
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1799–1858 CE Alexander von Humboldt (1769–1859, Germany).
Naturalist, geographer and explorer. The first modern geographer to become
a great traveler, and thus to acquire an extensive stock of first-hand infor-
mation on which an improved system of geography might be founded. Laid
the foundation to physical geography and meteorology, and pioneered in plant
geography and climatology. The theory of geography was advanced by Hum-
boldt mainly by his insistence on the great principle of the unity of nature. He
brought all the “observable things” which the eager collectors of the previous
century had been heaping together regardless of order or system, into relation
with the vertical relief and the horizontal forms of the earth’s surface. Thus he
demonstrated that the forms of the land exercise a directive and determining
influence on climate, plant life, animal life and on man himself405.

He traveled extensively in the Spanish territories of America (1799–1804),
and the results of this voyage were published by him in 23 volumes during
1804–1823. Among his novel contributions to science throughout this expe-
dition one may mention his delineation of isothermal lines, through which he
devised the means of comparing the climatic conditions of various countries.

He first investigated the rate of decrease in mean temperature with increase
of elevation above the sea-level, and afforded, by his inquiries into the origin of
tropical storms, the earliest clue to the detection of the more complicated law
governing atmospheric disturbances at higher latitudes. Studied meteorite
showers, volcanoes, the earth’s magnetic field and communication between
the water-systems of the Orinoco and Amazon rivers, and introduced the
fertilizing properties of the guano into Europe.

Humboldt was born in Berlin. During 1788–1792 he studied geology, bi-
ology, and political science at the University of Göttingen, mining and met-
allurgy at the School of Mines in Freiburg, commerce and foreign languages
at Hamburg, and anatomy and astronomy at Jena. His studies were directed,
with extraordinary insight and perseverance, to the purpose of preparing him-
self for his distinctive calling as a scientific explorer. Through the years 1799–
1804 he was engaged in the scientific exploration of Central and South Amer-
ica.

In 1808 he settled in Paris, then a center of geographical learning, and lived
there for the next 20 years. In 1811 he speculated about the mechanism that

405 This in itself was no new idea; it had been familiar for centuries in a less

definite form, deduced from a prior consideration, and so far as regards the

influence of surrounding circumstances upon man, Kant had already given it

full expression (1765). Humboldt’s concrete illustrations and the remarkable

power of his personality enabled him to enforce these principles in a way that

produced an immediate and lasting effect.



1540 3. The Clockwork Universe

drives the current flowing along the coast of Peru, later named the Humboldt
current in his honor. In 1827 he settled permanently in Berlin. In 1829 he was
the first scientist ever to organize an all-European research program in earth-
magnetism and meteorology in which Germany, France, Britain and Russia
participated. In 1845 he began the publication of his five-volume treatise
Kosmos, in which he tried to unify all of the physical science of his day.

In 1829 he made a voyage for the Russian czar, who sent him to the Ural
Mount and Central Asia to report on mineral resources. Between May and
November of that year he traversed, with his associates, the wide expanse of
the Russian Empire from Neva to the Yenesei, accomplishing in 25 weeks a
distance of some 16,000 km. One of the most important fruits of this journey
were the correction of the prevalent exaggerated estimate of the height of the
Central Asian plateau.

The last decade of his life was devoted to the continuation of his Kosmos.
The scope of this remarkable work may be briefly described as the represen-
tation of the unity amid the complexity of nature. In it the large and vague
ideals of the 18th century are sought to be combined with the exact scientific
requirements of the 19th century. And, in spite of inevitable shortcomings,
the attempt was quite successful. The science historian Agnes Mary Clerke
summed up his personality and lifework in the statement:

“After every deduction has been made, he yet stands before us as a colossal
figure, not unworthy to take his place beside Goethe as the representative of
the scientific side of the culture of his country”.

1800 CE Louis-Francois-Antoine Arbogast406 (1759–1803, France).
Mathematician. Introduced discontinuous functions and conceived the cal-
culus as algebra of operational symbols. In his book Calcul des Derivations
(1800) introduced integer powers of D = d

dx as operational symbols for differ-
entiation and integration. In this respect he was far ahead of his time.

1800–1802 CE Karl Friedrich Burdach (1776–1847, Germany).
Physiologist. Introduced the term biology (1800), using it in a restricted sense
to denote the combined morphological, physiological, and psychological study
of human beings (1800). A broader definition was given in 1802 by Gottfried
Treviranus (1776–1837, Germany) and J.B. Lamarck (1744–1829, France)
to signify the study of life in general.407

406 Arbogast was a name of a Frankish general in the Roman army (c. 334–394 CE),

one of the greatest soldiers of the late empire, and one of the most interesting

personalities of the 4th century.
407 The word biology is formed by combining the Greek βιoς (bios), meaning “life”,

and the suffix ‘-logy’, meaning “science of”, “knowledge of”, “study of”, based
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1800–1804 CE Richard Trevithick (1771–1833, England). Engineer
and inventor. A great rival of James Watt in improvement on the steam
engine. His earliest invention of importance was his improved plunger pole
pump (1797) for deep mining, and in 1798 he applied the principle of the
plunger pole pump to the construction of a water-pressure engine, which he
subsequently improved in many ways. In 1800 he built a high-pressure non-
condensing steam engine, which became a successful rival of the low-pressure
steam-vacuum engine of Watt. He was a precursor of George Stephenson
in the construction of locomotive engines and introduced rails into steam
transportation.

In February 1804 he invented and constructed the first steam locomotive
(railway) in South Wales which was able to haul twenty tons of iron and 70
men. It traveled at 8 km/h on the 16 km track. He was the first to recognize
the importance of iron in the construction of large ships, and in various ways
his ideas also influenced the construction of steamboats.

Trevithick was born in the parish of Illogan, Cornwall, where his father was
manager of important Cornish mines. He had little formal education and was
a big man of exceptional physical strength. At the age of 18 he began to assist

on the Greek verb λεγειν, ‘legein’ = “to select”, “to gather” (cf. the noun
λoγoς, ‘logos’ = “word”). The term “biology” in its modern sense appears to

have been introduced independently by :

• Karl Friedrich Burdach in 1800,

• Gottfried Reinhold Treviranus (Biologie oder Philosophie der lebenden

Natur, 1802) and

• Jean-Baptiste Lamarck (Hydrogéologie, 1802).

The word itself appears in the title of Volume 3 of Michael Christoph

Hanov’s Philosophiae naturalis sive physicae dogmaticae: Geologia, biologia,

phytologia generalis et dendrologia, published in 1766.

Before biology, there were several terms used for study of animals and plants.

Natural history referred to the descriptive aspects of biology, though it also in-

cluded mineralogy and other non-biological fields; from the Middle Ages through

the Renaissance, the unifying framework of natural history was the scala naturae

or Great Chain of Being. Natural philosophy and natural theology encompassed

the conceptual basis of plant and animal life, dealing with problems of why

organisms exist and behave the way they do, though these subjects also in-

cluded what is now geology, physics, chemistry, and astronomy. Physiology and

(botanical) pharmacology were the province of medicine. Botany, zoology, and

(in the case of fossils) geology replaced natural history and natural philosophy

in the 18 th and 19 th century before biology was widely adopted.
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his father and soon showed considerable aptitude for mechanical invention. He
went to work in Peru and Costa Rica (1814–1826), but was financially ruined
in the Peruvian revolution of the 1820’s. He returned to England in 1827,
and in 1828 petitioned parliament for a reward for his inventions, but without
success. He died penniless, at Dartford. A Live of Richard Trevithick, with
an account of his Inventions was published in 1872 by his third son, Francis
Trevithick (1812–1877).

1801 CE Johann Georg von Soldner (1776–1833, Germany). Mathe-
matician. Used classical Newtonian gravitation theory to calculate the bend-
ing of starlight rays in the sun’s gravitational field, based on the assumption
that light consists of particles moving with velocity c, scattered by the sun.
The correct answer408 was given by Einstein in 1915 in the framework of Gen-
eral Relativity. Einstein was not aware of this work and it was rediscovered
only in 1921!

1801–1808 CE John Dalton (1766–1844, England). Chemist and
physicist. Introduced atomic theory into chemistry. Revived, sharpened and

408 Soldner’s derivation is as follows: By Newtonian mechanics, a hyperbolic orbit

of a small mass about a massive star, is subjected to the relation sin
( δ

2

)
=

1

e
,

where e > 1 is the eccentricity of the hyperbola, and δ is the angle between

the asymptotes, which in turn represents the angle of deflection of the orbiting

mass. The eccentricity, however, can be shown to be expressible in the form
e = 1+2rminE/GM , where G is the universal gravitational constant, M is the

star’s mass, rmin the distance of closest approach and E = 1
2
v2 the energy per

unit mass of the orbiting body, whose orbital velocity is v. For a light particle,
v = c and hence e = 1 + c2rmin/GM ≈ c2rmin/GM , since c2rmin/GM � 1

in all practical cases. Thus e is very large and δ is very small, leading to the

final result

δ ≈ 2GM/c2rmin.

For light grazing the surface of the sun, rmin = R� = 6.960 × 1010 cm,

G = 6.672 × 10−8 cgs, M = M� = 1.989 × 1033 g, yielding the “classical”

value δ = 0.87 seconds of arc. Note that, although the mass of the photon

cancels out in the derivation, the mass must be finite (i.e., m 	= 0); and this

was not established in prerelativity physics. Moreover, if we had used the spe-

cial theory of relativity instead of Newtonian mechanics, we would have found

δ = 0, because light tracks are null geodetics, and in flat spacetime these are

straight lines! Shortly after developing the general theory Einstein calculated

the deflection and got the same answer. However, he later further developed

the theory and found that GTR actually predicts a value twice as large, or 1.75

seconds of arc. The experiment was first performed in 1919 and the result was

1.7 seconds of arc.
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quantified the atomic theory of matter, expounded by Leucippos and Dem-
ocritos 23 centuries before. Prepared the first list of atomic weights (1803).

In 1801 Dalton formulated his law of partial pressures for gases. [It states
that the pressure exerted by a mixture of gases in a closed vessel held at a
fixed temperature, is the sum of the pressures which each gas alone would
exert if separately confined in the whole volume occupied by the mixture.]

Dalton’s atomic theory (1803) supposes that:
(1) all matter is made up of minute particles, called atoms;
(2) all atoms of the same element are identical in all respects, particu-
larly in weight or mass. Different elements have atoms differing in weight,
and each element is characterized by the weight of its atom409;
(3) in chemical compounds, a whole number of atoms of one element is
associated with a whole number of atoms of another element, to form a
molecule of the compound;
(4) each kind of atom has a definite small weight or mass.

Realizing that the absolute weights of atoms are very small, Dalton di-
rected his attention to the determination of the relative weights , taking the
weight of the lightest atom, that of hydrogen, as unity410. With his simple

409 Dalton’s second assumption has been considerably modified by the discovery of

isotopes, and can no longer be maintained. One element, e.g. chlorine, may have

atoms differing in mass, and the atoms of such an element are not necessarily

all the same, since an ordinary element may be a mixture of isotopes. It is the

atomic number (net positive charge on the nucleus of the atom) rather then the

atomic weight , which characterizes an element. Distinct isotopes of the same

elements differ in atomic weight and have minutely different chemistries (quan-

titatively as well as qualitatively). Only at temperatures close to absolute zero

(0◦ K ≈ −273.15◦ C) can isotopic differences be (sometimes) very significant

(as in e.g. superfluid Helium).
410 Since the relative average masses of atoms are in the ratio of nearly integral

numbers in most cases, it is convenient to define an atomic weight scale that

specifies the weights of all atoms relative to an arbitrary standard [the relative

weights of two objects are always the same at any given common altitude, and

are thus always equivalent to the relative masses].

We could choose this standard as the (standard isotope) hydrogen atom H,

and we could arbitrarily choose the atomic weight of this species to be a di-

mensionless number 1 (exactly). Suppose we now express this atomic weight

in units of gram, which is the most convenient mass unit for most chem-

ical purposes. Since the mass of the hydrogen atom has been found to be

1.67 × 10−24 g, the number of H atoms in 1.00 g of hydrogen is approximately
1.00 g

1.67×10−24 g/atom
= 5.99 × 1023 atoms. [Therefore, for a pure sample of any
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assumptions Dalton could explain the basic laws of stoichiometry, such as the
law of constant proportions (Proust, 1799), the law of multiple proportions
(Dalton, 1802), and the law of equivalent proportions (Cavendish, 1788).

John Dalton was born at Eaglesfield, a village near Cockermouth in Cum-
berland. His father was a poor weaver and a Quaker. As a boy he earned
a living partly by teaching rustic youth, and partly as a farm laborer. He
had received some instruction in mathematics from a distant relative, and in
1781 left his native village to become an assistant to his cousin who kept a
school at Kendal. There he passed the next 12 years, becoming in 1785 a
joint manager of the school with his brother Jonathan. In 1793 he moved to
Manchester, where he spent the rest of his life. Mainly through John Gough
(1757–1825), a blind philosopher (to whose aid he owed much of his scientific
knowledge), he was appointed teacher of mathematics and natural science at
Manchester’s New College.

Apart from his work on atomic theory, he published papers on meteorol-
ogy and color vision411. Altogether Dalton contributed 116 memoirs to the
Manchester Literary and Philosophical society. In 1822 he was elected to
the fellowship of the Royal Society and in 1830 he became a corresponding
foreign member of the French Academy of Sciences. He never married, but
there is evidence that he delighted in the society of women of education and
refinement.

1801–1814 CE William Hyde Wollaston (1766–1828, England).
Physician, chemist and physicist. Discovered the elements palladium and
rhodium (1804) and isolated the second amino acid, cystine, from a blad-
derstone (1810). Invented the total reflection refractometer (1802). First to

element, the mass corresponding to the number of grams given by the atomic

weight of the element, would contain about 6 × 1023 atoms (Avogadro’s number ,

1811).] The international atomic weight scale presently in use is based on the

exact number 12 for the atomic weight of the dominant carbon-12 isotope, 12C

(the atomic weight of natural carbon on earth is 12.01115 due to the presence of

stable isotope 13C (1.11% in abundance) as well as the unstable (but constantly

replenished) radioactive 14C isotope.
411 Dalton suffered from red-green color-blindness. He published (1794) the earliest

scientific description of the condition in a paper “Extraordinary Facts Relating

to the Vision of Colors” [before him, Joseph Huddart (1741–1811, England)

described the condition in a letter to the chemist Joseph Priestley (1777)].

Dalton believed that color blindness is caused by coloration of the eye’s vitreous

humor. He bequeathed his eyes for science, but upon a post mortem examina-

tion it was found to be normal. In 1995, his eye’s DNA were examined and the

cause of his color-blindness was finally discovered — a genetic defect.
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observe (1802) Fraunhofer lines in the spectrum. First to fix a meniscus lens
to a Camera Obscura (1812). Secretary of the Royal Society (1804–1816).

Before the invention of photography , a Camera Obscura was a blackened
box-like apparatus which was used by painters for the reproduction of complex
images (the image was inverted on the base and it simply had to be sketched by
hand). Initially, simple biconvex lenses had been used in these dark chambers,
but the problem with them was that the images they produced were clear in
the middle and blurred around the edges. Wollaston therefore introduced
the meniscus which was convex on one side and concave on the other, and
to which he adopted a diaphragm on the concave side. With its equal focal
distances the meniscus gave much better definition412.

Wollaston also proved the elemental nature of niobium and titanium. He
developed a method of making platinum malleable. His consideration of geo-
metrical arrangements of atoms led him into crystallography and the invention
of the reflecting goniometer to measure angles of crystal faces. The mineral
Wollastonite was named in his honor.

Though he was formally educated as a physician, his great curiosity led
him into study and research in the fields of chemistry, physics, astronomy,
botany, physiology, pathology, and crystallography. He was one of the most
influential scientists of his time.

Wollaston was born in East Derham, Norfolk and died in London.

1802 CE William Symington (1763–1831, Scotland). Engineer. Built
the tug Charlotte Dundas, the first practical steamboat equipped with stern
paddle.

412 It still had appreciable lateral chromatic aberration which produced colored

fringes on the outer parts of the field. Then there was the astigmatic deforma-

tion beyond the half-field of 200 and the optical distortions that made straight

lines appear curved. Finally, the last fault, which appeared when the Wollas-

ton device was used in photographic instruments, was that the aperture was

limited to f/11 due to spherical aberrations. In 1821 the Frenchman Charles

Chevalier made a positive lens using crown-glass which has a low refractive

index and a weak dispersion. He stuck it on to a negative lens made of lead

glass, (flint glass), which has a high refractive index and high dispersion. This

was the first double lens objective which eliminated the chromatic aberration,

but did not eliminate astigmatism, which remained in the edges. The field dis-

tance also remained limited to f/11. Finally, Joseph Petzval (1841) added

a modified telescope lens to the Chevalier lens and thus noticeably eliminated

their spherical distortions. It allowed an aperture of f/3.6, a previously un-

known photographic speed. Even at apertures as large as f/1.6 this objective

maintained an excellent definition up to 50 off the axis
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1802 CE Charles-Francois Brisseau de Mirbel (1776–1854, France).
Botanist. Founder of plant-cytology and physiology (1802).

Mirbel concluded from his numerous observations of plant structure that
“the plant is wholly formed of a continuous cellular membranous tissue. Plants
are made up of cells, all parts of which are in continuity and form one and
the same membranous tissue”.

Mirbel worked at the Musée d’Histoire Naturelle (1798–1803) and was
director of gardens at Malmaison from 1803.

1802–1816 CE Lorenz Oken (Ockenfuss) (1779–1851, Germany).
Naturalist and philosopher. Sought to unify the natural sciences. Contended
that natural sciences can only offer partial knowledge and demand completion
by a metaphysical – idealistic interpretation of nature. [His book: Philosophy
of Nature (1802).] In his speculations, he foreshadowed theories of the cellular
structure of organisms, the protoplasmic basis of life (1805), and that light is
a state of stress of the ether (1808).

Okenfuss was born at Bohlsbach, Swabia. He changed his name to Oken
upon his appointment to privatdocent at Göttingen (1801). His reputation at
Göttingen has reached the ear of Goethe, and in 1807, Oken was appointed
an associated professor of medical sciences in the University of Jena. In 1808
he advanced the preposition that “light could be nothing but a polar tension
of the ether”. Founded the influential periodical Isis (1816). He then became
a professor at Munich (1829), and Zurich (1833).

1802–1826 CE Heinrich Wilhelm Matthias Olbers (1758–1840,
Germany). Astronomer and physician. Pointed out that in an infinite, homo-
geneous, static Newtonian universe the mean radiation density would be as
high as on the surface of a star.413

Born at Arbergen near Bremen, where his father was a minister. He
studied medicine and mathematics at Göttingen during 1777–1780. In 1779
he devised a method of calculating cometary orbits.

Olbers settled as a physician in Bremen (1781) and practiced medicine
actively for about 40 years — during day-time only. The greater part of
each night (he never slept more than 4 hours) was devoted to astronomy, the
upper portion of his house being fitted up as an observatory. He paid special
attention to comets, and that of 1815 (period = 74 years) bears his name.

413 For further reading, see:

• Harrison, E., Darkness at Night, Harvard University Press, 1987, 293 pp.
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On 28 March 1802 he discovered the asteroid Pallas and later the minor
planet Vesta.

While watching the sky for many years, it occurred to him to ask the
naive question (1826): “Why is the night sky dark, away from the Milky
way?” This question is known as ‘Olbers’ Paradox ’, since according to the
classical Newtonian cosmology [eternal-infinite-Euclidean-static-homogeneous
universe] there are enough stars to fill the sky, and their light should be
sufficiently intense to set fire to the earth414.

414 In the absence of absorption, the apparent luminosity of a star of absolute lu-

minosity L at a distance r in a Newtonian universe model will be L
4πr2 . If

the density of such stars is a constant N , then the number of stars at distances

between r and r + dr is 4πNr2dr, so that the total radiant energy den-

sity due to all stars at a given locus in the universe, should be proportional to
∫∞
0

(
L

4πr2

)
4πNr2dr = LN

∫∞
0

dr = ∞. In words: doubling the distance of a

star reduces the light received from it to one quarter. At the same time, dou-

bling the radius of the shell increases the number of stars fourfold; therefore, we

should receive from each concentric equi-thickness celestial shell-volume about

us the same amount of starlight. A distant shell of many faint stars gives as

much starlight as a nearer shell of fewer and brighter stars.

Olbers attempted to resolve this paradox by suggesting that space was filled

with a tenuous absorbing medium. This explanation is invalid, however, as the

intervening gas would be heated by the radiation it absorbs until it attained

a temperature such that it radiates as much energy as it received, and so no

reduction in the average radiation intensity would result.

The stars themselves are of course opaque, and block out the light from suffi-

ciently distant sources. This however does not resolve the Olbers’ Paradox since

every line of sight must terminate at the surface of a star, so the intensity would

tend to the average surface brightness of the stars — that is to say, comparable

to the surface brightness of the solar disk.

Modern cosmological models avoid the Olbers’ Paradox. In such models the

mean total energy density of starlight anywhere at epoch t0 is proportional

to
∫ t0

− ∞ L(t1)
[R(t1)

R(t0)

]4
dt1, L(t1) ≡

∫
n(t1, L)LdL, where: L is the absolute

luminosity of a star as reckoned in a comoving coordinate system, t0 is the time

(epoch) the star is observed , t1 is the time the light is emitted , n(t1, L)dL is

the number density of stars of luminosity between L and L + dL at time t1,

and R(t) is the radial scale factor of the spacetime metric. In a “big-bang”

cosmology there is obviously no paradox, since the integral is cut off at a lower

limit t1 = 0, and the integrand vanishes at t1 = 0 roughly like R(t1). The

question of an Olbers’ Paradox arises only in models such as the (now defunct)

steady state cosmology , in which the universe is supposed to have existed for an

infinitely long time. In such models, a necessary condition for avoidance of the

Olbers’ Paradox is that t1R
4
1(t1)L(t1) → 0 for t1 → −∞. In the case of the
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The same question was already asked in 1744 by the Swiss astronomer
Jean Philippe Löys de Chéseaux. The astronomer Edmund Halley
stumbled on the paradox even earlier (1721) and Johannes Kepler wrote
about it in 1610. The first to worry about the problem seems to have been
Thomas Digges in 1576. Olbers had a copy of Chéseaux’s book in his library
but apparently never read it, and most scholars credit him with having arrived
at the idea on his own.

This paradox, which is based on a superficial observation, has a deep
cosmological significance and suggests that the naive Newtonian cosmology is
wrong.

Modern cosmological models, based on GTR, avoid the Olbers’ Paradox,
and the threatened fiery furnace is transmuted into the tepid 2.7 ◦K microwave
background. To see this we note that the divergence of the total energy
integral can be avoided by assuming that the stars had not been shining
forever but had turned on at some finite time in the past. In that case, the
absorbing matter might not have heated up yet or the light from distant stars
might have not reached us yet. Even in an infinitely old expanding , steady-
state universe model with a constant average luminosity per unit volume,
Olbers’ Paradox is avoided on account of the red-shift, which weakens the
contribution of distant galaxies over and above the inverse square law, such
that the integrated radiant energy remains finite and even negligible. In the
favored Big-Bang model, both mechanisms are operative, with the finite age
of stars being quantitatively more important in avoiding Olbers’ Paradox415.

oscillating model , absorption is needed during the highly contracted state and

redshift during the expansion stage, to save the phenomenon (as the universe

expands and galaxies drift apart owing to the expansion of intergalactic space,

white light emitted by stars in galaxies far away and long ago arrives feeble and

red, and the feeblest starlight arriving from the farthest galaxies is red-shifted

into invisibility).
415 The idea that the universe had a finite lifetime also existed in the mid-19th cen-

tury, although only on the popular fringes of science. The first suggestion that

the universe originated in a creative explosion — the first Big Bang — actually

came from the pen of Edgar Allan Poe (1809–1849, U.S.A.). Poe was not

only a well-known writer and poet, but also a scientific popularizer who kept

abreast on the latest in astronomical research. In the book-length essay Eureka

(1848) Poe rejected the idea of an infinite universe, citing Olbers’ objections.

He reasoned that a universe governed by gravitation would collapse in a heap

if not kept apart by some form of repulsion. He postulated that God had, in

an enormous explosion at the creation, thrust all the stars apart. Like a rocket

racing into the sky, the stars and galaxies would first expand, and then contract

into a final catastrophe, the end of the world.
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One may use Olbers’ Paradox to provide significant constraints on the
luminosity that can be attained by very remote galaxies. In this way as-
tronomers were compelled to conclude that most of the luminosity from these
young remote galaxies must have been greatly red-shifted.

In Eureka Poe offers a solution to Olbers’ Paradox in which he proposes that

the light from very distant stars has not yet reached us. This solution requires

only slight amendments to fit in with the standard modern cosmology. In his

own words:

“Were the succession of stars is endless, then the background of the sky would

present us a uniform luminosity, like that displayed by the Galaxy — since

there could be absolutely no point, in all that background, at which would not

exist a star. The only mode, therefore, in which, under such state of affairs, we

could comprehend the voids which our telescopes find in innumerable directions,

would be by supposing the distance of the invisible background so immense that

no ray from it has yet been able to reach us at all”.

It is remarkable that the same man that solved Olbers’ Paradox with such bril-

liant intellectual aplomb, had the capability to match it with an equally grand

poetic soul:

“Deep into the darkness peering, long I stood

there, wondering, fearing,

Doubting, dreaming dreams no mortal ever

dared to dream before”

Poe was born in Boston. his father deserted the family and his mother died

before Poe was three years old. He was raised as a foster child and lived with

his new family in London (1815–1820). In 1826 he entered the University of

Virginia, but soon left to pursue a literary career. Served in the US Army

(1827–1829) and attained the rank of sergeant major. Published his first po-

etry volume (1827), and married his cousin Virginia Clemm (1836), who at the

time was only 14 years old. His most productive years as a fiction writer (1837–

1845) were spent in New York City and Philadelphia. His wife died (1847) of

tuberculosis and he was engaged (1849) to marry his childhood sweetheart when

he suddenly died in Baltimore, apparently of hydrophobia caused by a cat’s bite

a year earlier.
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Science Progress Report No. 8

Meteorites416

“And it came to pass that the Lord cast down great stones from heaven upon
them”.

Joshua 10, 11

It was once thought that the world was small and flat. Columbus sailed
across the Atlantic (1492) and enlarged it, Magellan (1522) sailed around
the world and made it round. It was thought that the earth was at the center
of the universe until Copernicus(1543) restored the sun to its proper place
and set the earth in orbit around it. We thought that the earth and its moon
were unique until Galileo (1609) showed us that there were similar planets
and moons elsewhere in the heavens. And we thought, until the turn of the
19th century, that not even a stone could fall from the sky, that nothing could
shatter our isolation from the cosmos.

Fallen meteorites have been recovered throughout history and description
of meteorites appear in ancient Hebrew, Chinese, Greek and Roman literature.
There are numerous examples of meteorite veneration, such as the black stone
of Kaaba enshrined at Mecca.

Yet, the extraterrestrial origin of meteorites was rejected by most people,
scientists included, prior to 1800. Upon hearing a lecture by two Yale pro-
fessors, President Thomas Jefferson (1743–1826) is said to have remarked: “I
could more easily believe that two Yankee professors could lie than that stones
could fall from Heaven”. The mere fact that meteorite falls had been widely
witnessed and specimens had been collected (as, for example, in the 1751 fall

416 Meteor : Greek μετεωρα, literally: “things in the air”, from μετα = beyond and
αειρειν = to lift up. Hence meteorology — the study of the atmosphere and the

weather. A chunk of matter in space is called a meteoroid . A meteor (shooting

star) is a brief flash of light that is visible at night when a meteoroid strikes
the earth’s atmosphere. When it reaches the ground it becomes a meteorite.

This happens with extreme rarity at any one locality, but over the entire earth

probably about 500 meteorites fall each year. The total mass of the meteor-
producing meteorites that enter the atmosphere each day is estimated to be

from 10 to 100 tons. Of these, only about 10 tons reach the ground each year.

For further reading, see:

• Heide, F., Meteorites, The University of Chicago Press, 1957, 144 pp.
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near Zagreb, Yugoslavia) did not tip the scales in favor of the extraterrestrial

theory of meteorite origin.

In 1772, the distinguished French chemist Antoine Lavoisier wrote a

memorandum in which he concluded that stories of stones falling from the

sky are mere fabrications — since meteorites could not possibly come from

outside the earth. He was later beheaded by the revolutionaries’ guillotine,

although not for that reason.

In that year (1794), Ernst Florens Friedrich Chladni (1756–1827,

Germany) openly suggested that meteorites are not terrestrial but cosmic in

origin. Conclusive evidence came on April 26, 1803, when many witnesses

observed the explosion of a bolide that pelted the French village of l’Aigle

(Orne). Afterwards, many meteorite stones were found, reportedly still warm,

on the ground. The austere French Academy, whose members were among

the last diehards, sent the noted physicist Jean Baptiste Biot to investigate

the matter and collect evidence to refute the rumors about stones falling from

the sky. In his exhaustive report he stated that he believed the witnesses

and finally convinced the scientific community of the extraterrestrial nature

of meteorites.

One of the barriers to accepting the existence of meteors and meteorites

was the absence of a theory which predicted they exist. About the time Biot

made his observations, Laplace put forward his Nebular Hypothesis for the

formation of the solar system. In the Nebular Hypothesis, one would expect

debris in the form of stones in interplanetary space remaining to this day.

Thus, the science of astronomy was transformed from a bastion of powerful

empirical arguments against their existence into a strong supporter.

Occasionally, scientists are wrong, and the illiterate peasants reporting

observations of exotic events are correct. But in most cases it is the other way

round. An interesting experiment was conducted in 1962 by the astronomer

Frank D. Drake; in 1962 two very bright fireballs (a type of meteor) burst

over West Virginia, USA, at about 10 P.M. about a month apart. Astronomers

were sent to collect meteorite bits and interview people about what they saw.

We know what they should have seen, since fireballs are well-studied physical

phenomena, so the interviews were a test of observation by inexpert witnesses

who suddenly were exposed to unfamiliar phenomena.

It turned out that 14 % of witnesses reported hearing a loud noise at

the same time they saw the fireball, despite the fact that the witnesses had

no contact with each other. A few simple calculation show that the visual

stimulus could not have been accompanied by any sound whatsoever. Drake
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suggested this auditory delusion to be due to a crossover in the brain when
strong uninterpreted stimuli occur417.

Diogenes and the French Academy, or – History
Lessons

During the first five centuries BCE, Greek philosophers established the
foundations of much of modern science. Aristarchos of Samos proposed
that the earth moves around the sun; Democritos and Leucippos described
atomic structure; Herophilos of Thrace described the brain as the organ
of thought; Empedocles proposed the idea of primal elements and forces;
Pythagoras and Euclid developed geometry; Diogenes proclaimed that
meteors move in space and frequently fall to earth; and Archimedes founded
the subjects of mechanisms and hydrostatics.

Many of these enduring ideas were not easily accepted; Pythagoras, for
example, was forced to flee Magna Graecia because of his bizarre suggestion
that numbers constitute the true nature of things.

By the 6th century CE, the Greek and the Roman civilizations had
declined. Much of Greek science had been recast into theological scripture,
which rapidly crystallized into dogma. Deviations from the official view were
not tolerated.

During the “Dark Ages”, not much happened. With the exception of a
few enlightened individuals such as Leonardo da Vinci in the 15th century,
scientific and scholarly development in the Western world was rather quiet

417 Drake’s findings also revealed that a witness’s memory of exotic events fades

very quickly: after one day, about half of the reports are clearly erroneous;

after two days, about 3/4 are clearly erroneous; after four days, only 1/10 are

good; after five days, people report more imagination than truth. Later they

were reconstructing in their imagination an event based on some dim memory of

what happened. We know today that collective delusions are extremely common

in UFO ‘observations’.
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for about a thousand years. Because mirrors were not readily available in the
dark Ages, da Vinci survived persecution for his dangerously heretical ideas
by writing his notes backward. By contrast, the Eastern world continued to
develop a thriving civilization and enjoy many ingenious fireworks displays.

By the beginning of the 16th century, as astronomical measurements im-
proved, astrologers and calendar makers had grown increasingly dissatis-
fied with the inaccuracy of Ptolemy’s geocentric (earth-centered) cosmology.
Copernicus and others proposed a heliocentric (sun-centered) cosmology,
which directly challenged scriptural doctrine.

Despite attacks by theological authorities, the heretical Copernican model
proved to be more accurate than the Ptolemaic and was eventually adopted,
but not without causing a profound shock to Western’s society’s metaphysical
assumptions. The new cosmology dethroned the earth, and by implication,
human beings, from the center of the universe.

By the end of the 17th century, Renaissance luminaries such as Newton,
Galileo, and Descartes had changed the course of Western civilization by
splitting the world into two distinct realms. Theology became the authorita-
tive voice for spirituality, morality, and the mental world, and science became
the authority for the material world. Although the effects of their revolution
would not directly affect most people for a century or more, the Church’s
reaction to the growing scientific revolution was brutal and persistent.

Galileo was persecuted for his audacious proposal that moons orbit the
planet Jupiter. Kepler was accused of blasphemy in suggesting that the
moon controlled the motion of the tides. Many Renaissance scientists were
charged with heresy; some survived the wrath of the orthodox, many did not.

While not fully appreciated for several centuries, Newton’s famous paper
on the nature of light, published in 1671 in the Philosophical Transactions
of the Royal Society, described an experiment that could not have worked
the way he said it did. He was well aware that his experiment, involving the
refraction of white light through a glass prism, was an idealization, but he did
not acknowledge this until he was challenged by a contemporary who tried
and failed to repeat his experiment. Newton was apparently so convinced
that his theory about light was correct that he fabricated an experiment to
confirm it. Fortunately for Newton, his intuition was correct.

By the middle of the 18th century, there were as many theories about the
nature of electricity as there were experimenters. Most of the theories had
something in common – the Newtonian-Cartesian concept of a mechanical-
corpuscular world – but although all the experiments involved electricity and
the experimenters read each other’s works, their theories bore no more that
a meager resemblance.
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Meanwhile, the Royal Society in the United Kingdom was suppressing evi-
dence that supported the existence of phenomena they interpreted as “witch-
craft”. Centuries later, those phenomena would be largely understood in
terms the psychological concepts of suggestion, hypnosis, and hysteria.

By the end of the 18th century, the Newtonian-Cartesian worldview, with
its underlying principles of positivism (what is real is measurable), reduction-
ism (complex systems can be understood by reducing them to their individual
parts) and materialism (everything real is made of matter), had created an
outstanding success of modern science. But the new emergence of successful
scientific theories carried a severe price – systematic exclusion and denial of
natural phenomena that did not fit the prevailing theories.

By paying homage to prevailing theories, the French Academy (of Science)
soundly denounced public reports of “hot stones” falling from the sky, because
both common sense and science agreed that there were obviously no stones
in the sky, thus there was nothing to fall. The reported phenomena were
declared as delusions, and therefore the witnesses of such phenomena were
officially pronounced mentally deranged. A few radical scientists suggested
that possibly a few stones might be cast into the sky by distant volcanic
eruptions, but the prestige of the French Academy was so great that museums
all over Western Europe threw away their specimens of rocks that fell from
the sky. As a result, there are very few preserved meteorite specimens in
France that date prior to 1790.

In 1879, Thomas Edison developed the first successful electric light bulb.
He was already famous for many other successful inventions. But when Edison
announced his new invention, scientists worldwide were incredulous. In re-
sponse to the critics, Edison wired up the streets of Menlo Park, New Jersey,
the location of his famous laboratory, and artificially illuminated the night
sky for the first time in history. A professor, Henry Morton, who lived nearby
and personally knew Edison, did not bother to view the evening exhibition,
which went on night after night. Instead, he was so confident that the claimed
invention was impossible that he offered the sober opinion that Edison’s ex-
periments were a “conspicuous failure, trumpeted as a wonderful success. A
fraud upon the public”.

Of course, Edison had already been denounced as a fraud for his invention
of the phonograph years earlier, so one can imagine his amusement upon
reading the opinion of Edwin Weston, a respected specialist in arc lighting,
who asserted that Edison’s claims were “so manifestly absurd as to indicate a
positive want of knowledge of the electric circuit and the principles governing
the construction and operation of electrical machines”.

Meanwhile, back in Britain, after the lime was proposed as a cure for
scurvy (a serious disease caused by malnutrition due to depletion of vitamin



1802 CE 1555

C) the British medical establishment declared the proposal laughable and
refused to put limes aboard ships. It took another 50 years to convince an
entirely new generation of physicians that the cure actually worked, and over
that sad half-century, thousands of sailors needlessly lost their lives.

About the same time, prior to the radical “germ theory” of disease, a
Viennese physician named Semmelweiss reported that washing one’s hands
before obstetrical assistance could prevent what was then a widespread disease
threatening newborns: childbed fever. He was viciously scorned and rejected
by his contemporaries and died a broken man several years later in an insane
asylum.

By the middle of the 19th century, Scottish physicist James Clerk
Maxwell had brilliantly synthesized 150 years of unorganized empirical obser-
vations about electricity and magnetism, and biologist Charles Darwin had
described his theory of evolution. These and other significant developments
aroused great hostility among mainstream scientists of the day. Maxwell’s
theory was called “scandalous”; Darwin’s theory was condemned as absurd
by both scientists and theologians; von Helmholtz’s idea that physical ex-
perimentations could teach us how the human body worked was severely de-
nounced.

By the end of the 19th century, physics professors were so confident in
the highly accurate results of Newtonian physics that they began to discour-
age their best students from pursuing careers in physics because most of the
difficult problems had already been solved. Most of the rest of physics was
expected to be little more than a “mopping up” operation – adding a few
more decimal places to the known physical constants and resolving a few mi-
nor questions about puzzles known as the “ultraviolet catastrophe” and the
“photoelectric effect”.

Year before the Wright brothers flew their airplane at Kitty Hawk, Rear-
Admiral George Melville, chief engineer of the US Navy, declared that at-
tempting to fly a heavier-than-air aircraft was simply “absurd”. A few weeks
before the airplane flew, Simon Newcomb, a distinguished professor of
mathematics and astronomy at Johns Hopkins University, stated that heavier
than air powered human flight was, in scientific terms, “utterly impossible”.
According to Newcomb, any form of powered flight would require the discov-
ery of entirely new force. With such eminence behind these statements, the
mainstream media of the day meekly followed the lead of the authorities, and
sneered at the ridiculous notion of the powered flight.

To add injury to insult, more than two years after the Wright brothers
had first flown their aircraft, and in spite of the fact that dozens of eyewit-
nesses had actually seen them fly, the popular Scientific American magazine
continued to ridicule the “alleged” flights.
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Many years later, when the editor of the Wright brothers’ hometown news-
paper was asked why he had refused to publish anything about their amazing
accomplishment, he replied “We just didn’t believe it. Of course, you remem-
ber that the Wrights at that time were terribly secretive.” The interviewer
responded incredulously, “You mean they were secretive about the fact that
they were flying over an open field?” The editor considered the question and
replied sheepishly, “I guess the truth is we were just plain dumb.”

At about the same time as the Wright brothers were flying their impossi-
ble machine, Einstein, Bohr, Heisenberg and others had begun to revolu-
tionize physics with the quantum theory. Einstein’s theories were vigorously
attacked on the basis that their acceptance would throw back science to the
Dark Ages.

The inventor Lee De Forest, was prosecuted for fraud in 1913 for claiming
that if was possible to transmit the human voice across the Atlantic by radio.

The Atoms of Leucippos and Dalton (460 BCE–1803 CE)

The empirical laws of chemical combination, particularly the law of multi-
ple proportions, suggest that the chemical elements react together as though
the matter of which they are composed is parceled out into exceedingly minute
portions. Each such particle is incapable of further subdivision, so that when
two elements combine they do so in masses which are whole multiples of the
masses of these individual portions.

Two possible guesses as to the ultimate structure of matter present them-
selves. The first saw matter as a continuous structure, completely filling the
space occupied by bodies in the same way as jelly fills a mould. The second
saw matter filling space discontinuously, with interstitial gaps, much as small
pellets fills a barrel. The first view is associated with the Elea school of Greek
philosophy, founded by Xenophanes (ca 530 BCE); the second is the atomic
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hypothesis, due to Leucippos (ca 460 BCE), but particularly developed by

Democritos of Abdera (ca 420 BCE). This assumes the division of mat-

ter into exceedingly small particles, or atoms, incapable of further division

by physical means. It is uncertain whether it was independently proposed in

India, but it certainly appears there in a novel form in later Buddhist and

Jainist treatises. The idea of divisible atoms (i.e., molecules) was put forward

by Asclepiades of Bithynia (100 BCE).

Epicuros (310 BCE) and Lucretius (57 BCE) adopted the theory, and

we possess a long Latin poem of the latter, De Rerum Natura, dealing princi-

pally with the atomic theory. van Helmont, Nicolas Lémery (1645–1715,

France, 1675), Hermann Boerhaave (1668–1738, Holland, 1724), Boyle

and Newton, made use of the hypothesis. Indeed, the latter gave a mathe-

matical demonstration of Boyle’s law on the basis of the hypothesis that gases

consist of atoms repelling one another with forces inversely proportional to the

distances. Ruggiero Boscovich (1711–1787, 1758) also made extensive ap-

plication of a similar theory, but considered the atoms as mere points, centers

of attractive and repulsive forces, and endowed with mass.

Bryan Higgins and William Higgins418 (1762–1825, Ireland), in 1777
and 1789 respectively, made some applications of Newton’s atomic theory

to chemistry, but the merit of having independently elaborated a chemical
atomic theory capable of coordinating all the known facts, and of being mod-

ified and extended with the progress of the science, belongs unquestionably

to John Dalton (1776–1844).

Dalton’s theory provided no means of determining even the relative weights

of atoms. Although 7.94 parts of oxygen combine with 1 part of hydrogen, we

do not know how many atoms of each element the molecule of water contains.

If it contains one atom of each element (as Dalton supposed), the atomic

weight of oxygen is 7.94, but if it contains 2 atoms of hydrogen to 1 atom of

oxygen, as Davy supposed from the combining of volume ratio, the atomic

weight of oxygen is 2 × 7.94 = 15.88. Thus, Dalton’s assumption that the

particles of elements in the free state are single atoms was the main source of

the difficulties of the earlier theory.

418 William Higgins’ book ‘Comparative View of the Phlogistic and Anti-Phlogistic

Theories’ anticipated the atomic theory later developed by Dalton (1803);

however, the book was not widely distributed, and Dalton probably never saw

it. Higgins also anticipated later chemical symbolism developed by Berzelius

when he used first letter abbreviations for many elements.
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1802–1815 CE Joseph Louis Gay-Lussac (1778–1850, France). Che-
mist and physicist. Among the distinguished chemists of the early 19th cen-
tury. Discovered (independently of J. Charles and J. Dalton) that a volume
of gas at constant pressure is proportional to the absolute temperature (1802;
known as Charles-Gay Lussac law). Deduced the equation for alcoholic
fermentation. Made balloon ascents to investigate the effects of terrestrial
magnetism, composition, temperature and moisture of air at altitudes as high
as 7016 meters (1804).

Enunciated the law of volumes (or Gay-Lussac law), stating that two gases
combine chemically such that the volumes involved are in ratio of small num-
bers (1808). Investigated the composition of water (1805; with A. von Hum-
boldt). Established the properties of potassium (1808; with L.J. Thenard).
Isolated boron (in the same year that Humphry Davy did), and devised im-
proved methods for analyzing organic compounds (1809). Demonstrated that
sulfur is an element (1810). Conducted studies of fermentation and improved
processes for manufacturing of sulfuric acid, oxalic acid, etc. (1811–1815).
Showed that iodine is an element and was first to predict the existence of
isomers (1814). Discovered the gas cyanogen and was first to recognize the
importance of radicals in chemical reactions (1815).

Gay-Lussac was born at St. Léonard-le-Noblat. In 1797 he was admitted to
the École Polytechnique, and in 1800 became an assistant to C.L. Berthollet
at the École de Ponts at Chaussées. He was a professor of physics at the
Sorbonne (1808 to 1832) and subsequently a professor of chemistry at the
Jardin des Planets.

Gay-Lussac will be remembered as a bold and energetic scientist. His
early adventures heralded the fearless aeronauts: on Sept. 16, 1804 with the
thermometer marking 91

2 degrees below freezing, he ascended in a balloon,
unaccompanied to the altitude of 7 km above sea-level. He remained at this
dizzying height, for a considerable time. A year later he investigated at close
range the volcanic eruption of Vesuvius. He exhibited great fortitude of spirit
and will power throughout a health crisis and under the laboratory accidents
that befell him. Only at the very end, when the disease from which he was
suffering left him no hope, did he complain with some bitterness of the hard-
ship of leaving his world while the many discoveries being made pointed to
yet greater discoveries to come.
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1803–1806 CE Lazare Nicolas Marguerite Carnot419 (1753–1823,
France). French army general and geometer who took a leading part in the
revolutionary changes at the end of the 18th century and the revival of pro-
jective geometry. He was also one of the harbingers of the vector concept.

Carnot was born at Nolay in Burgundy. Following the custom of many
of the sons of well-to-do French families, he prepared himself for the army
and was thus led to the military school at Mézières, where he studied under
Monge, becoming a Captain of engineers in 1782. In 1783 he published his
first work ‘Essai sur les machines en genéral ’ in which he proved that kinetic
energy is lost in the collision of imperfectly elastic bodies.

The Revolution drew him into political life. As a republican member of
the Assembly he voted in 1793 for the execution of Louis XVI as a traitor. In
the same year he undertook the organization of the French army to oppose
the million-man force that Europe launched against France. In this capacity
he was technically responsible for the acts of the Reign of Terror. In 1796 he
opposed Napoleon’s coup d’etat, and had to flee to Geneva, where he wrote
a semi-philosophical work on the metaphysics of the calculus.

In 1800 he became Minister of War, but opposed the increasing monar-
chism of Napoleon who, however, gave him a pension and commissioned him
to write a book on fortification for the military school at Metz. It is during
these years that he published Géometrie de position (1803) and Essai sur la
théorie des transversals (1806). In these works the influence of Desargues
(1593–1662) and Pascal is evident, but Carnot went beyond them in the ex-
tension of well-known theorems of geometry as well as the development of
various coordinate system that are independent of any particular choice of
axes.

In 1814, when France was once more in danger, Carnot offered his services
and was made a general of a division. He joined Napoleon during the Hundred
Days and was made minister of the interior. On the second restoration he was
exiled and lived in Magdeburg, occupying himself with science.

His son Sadi became a celebrated physicist. Of his other son Hippolyte
he had one grandson, Sadi, who became the 4th president of the 3rd French
Republic (1837–1894) and a second grandson, Adolpe, who became an eminent
chemist.

1803–1808 CE William Henry (1774–1836, England). Chemist. For-
mulated Henry’s law : the weight of a gas dissolved by a liquid is proportional

419 For further reading, see:

• Gillispie, C.C., Lazare Carnot – Savant, Princeton University Press: New

Jersey, 1971, 359 pp.
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to the pressure of the gas over the liquid. It contributed directly to the atomic
theory of John Dalton, who extended the law to mixtures of gases, in con-
junction of his own Law of Partial Pressures.

1803–1838 CE Adelbert von Chamisso [(Louis Charles Adelaide de
Chamisso de Boncourt), 1781–1838, Germany]. Botanist, explorer, novelist
and poet of French origin. Some of his poems are known in their musical set-
tings, such as the touching song cycle “Frauenliebe und Leben” (“A Woman’s
Love and Life”), memorably set by Schumann. Chamisso is also known for
the novella “Peter Schlemihl’s Remarkable Story,” the tale of a man who sells
his shadow to the devil for a bottomless purse.

Indeed, this trade brings wealth to Peter Schlemihl, but also exclusion
from society and he ends in despair. To end his ordeal, the demon offers him
a second deal: his shadow against his soul. But Peter declines, although it
means that he looses the woman he loves. With the aid of a pair of magic
boots he is wandering the world searching for peace of mind; he finds it as a
naturalist, and not in endless wealth. But his magic boots cannot bring him
everywhere, he regrets not being able to visit the Pacific islands, notably the
coral islands. So even his magic tools, do not enable him to get the ultimate
knowledge.

This admirable story of Peter Schlemihl certainly reflects the life and strug-
gles of the naturalist Adelbert Chamisso.

The secret of his popularity lies in his poised blend of the conservative
and the progressive, the intellectual and the emotional. Though disguised as
a simple tale, it has a profound psychological significance that has kept it all
as classic, until the present day.

Chamisso was born at the Chateau of Boncourt in Champagne, France,
the ancestral seat of the family. Driven out by the French Revolution, his
parents settled in Berlin. During 1798–1808 Chamisso served in the Prussian
infantry regiment as lieutenant.

He lived in Berlin (1808–1810) and Switzerland (1810–1812), studying
botany, natural science and medicine. He continued his botanical research in
Berlin and during 1815–1818 served as a botanist aboard the Russian ship
“Rurick” which Otto von Kotzebue commanded on a scientific voyage round
the world. His diary of the expedition (1821) is a fascinating account of the ex-
pedition to the Pacific Ocean and the Bering Sea420During this trip Chamisso

420 For further reading, see:

• Von Kotzebue, Otto, A New Voyage Round the World, in the Years 1823,

24, 25, and 26, Henry Colburn & R. Bently: London, 1830, Two volumes.

vol.1:(6), 341 pp. plus three maps (two folding); vol.2(2), 362 pp.
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described a number of new species found in what is now the San Francisco
Bay Area. Several of these, including the California poppy, Eschscholzia cal-
ifornica, were named after his friend Johann Friedrich von Eschscholtz, the
Rurik’s entomologist. In return, Eschscholtz named a variety of plants, in-
cluding the genus Camissonia, after Chamisso. On his return in 1818 he was
made custodian of the botanical gardens in Berlin, and was elected a member
of the Academy of Sciences, and in 1820 he married.

1803–1843 CE Marc Isambard Brunel (1769–1849, England). In-
ventor and civil engineer. Best known for the construction of the Thames
tunnel (1825–1843).

Brunel was born in France. Arrived in New York (1793) as a refugee of the
French Revolution and practiced there as architect and civil engineer. Sailed
to England (1799) in order to submit to the British government his plans for
the mechanical production of ships’ blocks, instead of the manual processes
then employed. His proposals were adopted and the machinery was installed
at the Portsmouth dockyard (1803–1806).

He erected many sawmills, experimented with steam navigation, invented
a knitting machine (1816), a timber bending machine, etc. He also invented
a tunneling shield (1818) and with it bore a tunnel under the Thames river
between Wapping and Rotherhithe. He used Portland-cement concrete (1828)
for filling in the river bed over this tunnel. (It came into large-scale use a
generation later, when 70,000 tons of it went into the making of the London
main drainage system.)

• Von Chamisso, Adelbert, A Sojourn at San Francisco Bay 1816, Book Club

of California: San Francisco, 1836, Folio, v+16 pp+8 plates.

• Von Chamisso, Adelbert, A voyage around the world with the Romanzov ex-
ploring expedition in the years 1815–1818 in the Brig Rurick, Captain Otto

von Kotzebue, translated by H. Kratz University of Hawaii Press: Honolulu,

1986.

• Von Chamisso, Adelbert, The Alaska Diary 1815–1818, translated by Robert
Fortuine, Cook Inlet Historical Society, 1986.

• Fischer, Robert, Adelbert of Chamisso: Citizen of the World, Natural Scien-

tist and Poet, Klopp, 1990.
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Brunel got into financial difficulties and was thrown into prison (1821),
from which he was freed by his friends, who secured for him a grant of £5000
from the government.

Many difficulties were encountered during the Thames tunnel construction;
the river broke through the roof of the tunnel (1827), and after a second
irruption (1828), work was discontinued for lack of funds. Seven years later
it was resumed with the aid of money advanced by the government, and after
three more irruptions the tunnel was completed and opened in 1843. Aided
by his son, Brunel displayed immense determination and extraordinary skill
and resourcefulness in the various emergencies with which he had to deal, but
the anxiety broke down his health.

The second phase of the industrial revolution was affected almost contin-
uously by the economy of the Great French Wars (1792–1815). Even while
Napoleon was banished to Elba, Britain was still at war with America. This
war regime reached a climax in the years 1806–1811, when Napoleon at-
tempted to exclude British trade from the Continent and Britain counter-
acted his so-called “continental system” blockade by depriving the Continent
of all trade which did not pass through British ports. Although this situation
created a strain felt by the munitions industries, including the building, arm-
ing and servicing of war ships (on which the safety of the island nation was
seen to depend), these wars served to boost technological progress421 — as
the block-making machinery introduced by Brunel at Portsmouth dockyard
clearly illustrates. In general, the increased use of steam-power and machin-
ery enabled Britain to press home the advantage which she derived from her
superiority in iron production. The wars also encouraged their use in the tex-
tile industries, amplifying (for instance) the insatiable demand for American
cotton which, in turn, bolstered the slavery-based culture of the American
South and made inevitable the U.S. Civil War.

1804 CE Nicolas Théodore de Saussure422 (1767–1845, Switzer-
land). Chemist and naturalist. Laid the foundations of plant chemistry (phy-

421 There has always been a strong underlying relationship between man’s general

history and the history of his technological progress. The Roman empire, for

example, rested upon the achievements of its engineers, including the great

road-makers, as truly as it did upon its more abstract concepts of law and duty.

The expansion of Europe in the 16th century depended upon the existence of

new means of crossing the oceans. In the same way, the bewilderingly rapid

and numerous political changes during 1750–1900 influenced, and were in turn

influenced by the technological revolutions of the time.
422 Name of a distinguished Swiss family including Nicolas (1709–1790),agriculturist).

His son Horace Benedict (1740–1799), was a professor of philosophy and

physics at Geneva who developed the first electrometer (1766), invented the
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tochemistry); made pioneering work on nutrition and respiration in plants,
on fermentation, germination, composition of alcohol, and transformation of
starch into sugar. Asserted the importance of CO2 and soil nitrogen to green
plants, and demonstrated that plants absorb water. He showed that plants re-
ceive their carbon from atmospheric CO2, not from the soil as earlier theorists
had supposed. Moreover, his experiments represent the first treatment of the
subject of photosynthesis, using quantitative methods and modern chemical
terminology.

1804–1806 CE Lewis and Clark Expedition: A group of US frontiermen
sent by president Thomas Jefferson to reconnoiter the vast new territories
west of the Mississippi River acquired by the United States in the Louisiana
Purchase. The Journals of the expedition provided valuable scientific infor-
mation about Indian tribes and the natural wealth of the Western lands.

The expedition included about 5000 frontiermen under the leadership of
Meriwether Lewis (1774–1809) and William Clark (1770–1838). The
expedition set out on May 14, 1804 from St.Louis on a round trip of 13,000
km to the Pacific Ocean. They went up the Missouri River across the Rocky
Mountains, then down the Columbia River to the Ocean in canoes. On the
return trip Clark went down the Yellowstone River, reaching St. Louis on
Sept. 23, 1806.

1804–1812 CE Nicolas-Francois Appert (1750–1841, France). Chef
and inventor. Produced a process for preserving food in hermetically sealed
containers: he put precooked foods in sealed glass bottles and heated them in
boiling water. Appert published his reports in 1810 – a pioneering enterprise
in heat sterilization of food. He later established the first commercial cannery
(1812).

1804–1820 CE Jean-Baptiste Biot (1774–1862, France). Physicist,
mathematician and astronomer. Discovered with Felix Savart that the in-
tensity of the magnetic field set up by a current flowing through a wire varies
inversely with the distance from the wire (known as Biot-Savart Law). This
law is fundamental to modern electromagnetic theory. Made a balloon ascen-
sion with Gay-Lussac (1804) to study the upper atmosphere and terrestrial
magnetism. Collaborated with Arago to study refractive properties of gases.

world’s first Solar Collector (1767), built first hygrometer utilizing a human

hair (1783) and introduced the term geology (1799). Nicholas Théodore was the

eldest son of Horace. Horace’s grandson, Henri (1829–1905) was an entomol-

ogist. Ferdinand (1857–1913), son of Henri, was a linguist, regarded as the

father of modern linguistics.
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Investigated polarization of light passing through chemical solutions (1815).
Became a professor of Mathematical Physics at the College de France (1800).

1804–1834 CE Louis Poinsot (1777–1859, France). Mathematician.
Contributed significantly to analytical and geometrical mechanics. Introduced
the concept of a force-couple, and proved that every system of forces is
equivalent to a system consisting of a sum (resultant) acting at an arbitrary
point O and a couple whose moment is equal to the moment of the system
about O. In 1834, Poinsot gave a geometrical description of the force-free
motion of a rigid body about a fixed point, known as Poinsot’s construction423.

Poinsot (1809) wrote an important book on polygons and polyhedra
[Mémoire sur les polygons et les polyèdres], discovering four new regular poly-
hedra424. Two of these appear in Kepler’s work Harmonice Mundi (1619),
but Poinsot was unaware of this. On the subject of polygons, he determined
the number of n-pointed regular (noncompound) polygons that can be drawn
around the circumference of a circle425. Today, this enumeration has become
important in electrical network theory, statistical mechanics and numerical
analysis.

423 Describes the motion of the inertia-ellipsoid relative to a plane perpendicular

to the angular momentum vector of the body about the fixed point (invariable

plane). According to Poinsot, the motion of the body is equivalent to the rolling

the momental ellipsoid on the fixed tangent plane.
424 A simple polyhedron is a closed shape enclosed by faces, all of which are plane

polygons (e.g. pyramid, prism, frustum). A convex polyhedron is said to be

regular if its faces are regular and equal (e.g. tetrahedron, cube etc.). Non-

simple polyhedra can have holes. Kepler described the small and the great

stellated dodecahedra, which do not fit Euler’s relationship (F = 12, V = 12,

E = 30), since their faces intersect themselves. Cauchy (1810) proved that

any regular polyhedron must have the same face planes as the 5 platonic solids

and thus deduced that no further regular polyhedra can exist.
425 n points are drawn at evenly spaced intervals on the circumference of a circle.

These points are then joined with line segments to form a polygon. The points
can be joined consecutively or skipped over any fixed interval (d − 1). There

are three possible classes of outcomes:

(a) regular convex polygons (d = 1) for any n;
(b) d > 1 but prime to n, resulting in non-convex regular polygon (sides have

equal length and consecutive sides form equal angles; e.g. the 5-pointed star or

the 6-pointed star of David);
(c) d > 1, but n and d have common factors. The degenerate form is known as

a compound polygon. Cases (a) and (b) together yield non-compound polygons.

Poinsot asked: how many non-compound polygons are generated by n points.
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Poinsot was born in Paris. He studied at the École Polytechnique during
1794–1797, and left in order to enter the École des Ponts et Chaussées. He
eventually gave up the idea of becoming an engineer. From 1809 until 1826
he was both inspector general of the Université de France and teacher and
examiner at the École Polytechnique. From 1839 until his death he worked
at the Bureau des Longitudes. He showed no interest in algebra and was one
of the principal leaders of the revival of geometry in France during the first
half of the 19th century.

1805 CE, Oct. 21 Battle of Trafalgar (sandy cape on Spain’s southern
coast, at the western entrance to the Strait of Gibraltar). British navy under
Horatio Nelson defeated a combined French and Spanish fleets in one of the
greatest naval battles in history. The victory ended the invasion threat of
Napoleon and gave England undisputed domination of the seas throughout
the 19th century.

1805 CE The German pharmacist Friedrich Sertürner (b. 1783) ex-
tracted morphine from opium (1805) and used it to relieve pain. [It was not
until 1925 that the chemical structure of morphine and other alkaloids were
fully known.]

Sertürner named the new crystalline substance morphium, but the name
soon changed to morphine. In 1817 he determined the alkaloid nature of
morphine, thus marking the beginning of alkaloid chemistry. His isolation is
the first of an alkali with a vegetable origin.

In 1905, the physician Carl Gauss of Freiburg, brought down the wrath
of the Lutheran Church when he used morphine to induce dammerschlaf (the
twilight sleep treatment) in women experiencing difficult births. The Church
fathers — non of them mothers — declared that Dr. Gauss has fallen from

His answer was

N =

⎧
⎪⎨

⎪⎩

1
2
(n − 1) if n is prime

n
2

(
1 − 1

m1

)(
1 − 1

m2

)(
1 − 1

m3

)
· · ·
(
1 − 1

mk

)
if the different prime

factors of n are m1, m2, m3, . . . , mk, excluding n and unity.

Thus for n = 7, 8, 9, 10 we have respectively N = 3, 2, 3, 2.

The preceding relationship between the geometry of star polygons and the theory

of numbers (1809) followed the earlier discovery by Gauss (1801) that polygons

with a prime number of sides could be constructed (using only a compass and

a straightedge) if and only if the number of sides was a prime of a special form.

Both examples hint to a close relationship between geometry and the theory of

numbers.
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grace and was near unto heresy because the Bible says (Gen 4, 16) that women
were to bring forth in pain.

1805 CE Joseph Marie Jacquard (1752–1834, France). Inventor.
A silk weaver who perfected the loom with an attachment that made the
loom weave patterns automatically . The attachment automated the weaving
of fabric through use of a series of cards with punched holes, forerunners of
the punched cards used later for input to early computers.

1805–1831 CE Sophie Germain (1776–1831, France). A mathe-
matician, contemporary of Gauss, Cauchy and Legendre, with whom she
corresponded. Contributed to number theory, acoustics and elasticity. Proved
a restricted form of Fermat’s conjecture: The equation ap + bp = cp has
no solution in integers prime to p, if p is an odd prime and 2p + 1 is also a
prime.

It follows from this theorem that the equation ap+bp = cp has no solution
in integers not divisible by p. The proof of the theorem is quite simple and
shows how far one can go with very elementary arguments. In 1831 Germain
introduced the notion of mean curvature of a surface, M = 1

2 (k1 + k2).

Germain took correspondence courses from the Ecole Polytechnique in
Paris since women were not allowed in the building of the school. During
1811–1816 she presented memoirs on the theory of vibrating plates based on
the experimental work of Chladni. Gauss was so impressed by her work that
he recommended her for honorary degree from the University of Göttingen.
Unfortunately Germain died before the degree could be awarded.

1805–1814 CE Francois Joseph Servois (1767–1847, France). Math-
ematician. Published ideas on 3-dimensional vectorial systems, and developed
the first elements of what became known as the operational calculus (1814).
Hamilton later attributed to him the nearest approach to an anticipation of
vectors and quaternions. Developed the notion of a mathematical ‘operator ’.
Introduced the term ‘pole’ in projective geometry, and was one of the chief
precursors of the English school of symbolic algebra.

Servois was born at Mont-de-Laval, Doubs, France, a son of a merchant.
He was ordained a priest at Besancon at the beginning of the Revolution, but
in 1793 gave up his ecclesiastical duties in order to join the army. In 1794,
after a brief stay at the artillery school of Chalons-sur-Marne, he was made
a lieutenant. With the support of Legendre, he was appointed professor of
mathematics at the artillery school of Besancon (1801). He later served in
this capacity at Metz (1802–1808), and finally was appointed curator of the
artillery museum at Paris (1816–1827).
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Although Servois did not produce a major body of work, he made a number
of original contributions to various branches of mathematics and paved the
road for important later developments in vector theory, operational calculus,
projective geometry and symbolic algebra. Thus, his memoirs directly inspired
the work of George Boole (1847).

1805–1814 CE William Congreve (1772–1828, England). Inventor
and pioneer of military rocketry. Developed a war rocket that could carry
explosives and was driven by gun-powder. It was used by British troops in the
Napoleonic wars [the shelling of and burning of Boulogne (1806), Copenhagen
(1807) and Leipzig (1813)] and in their war against the United States Army
(1812–1814)426. The Congreve rocket was in use by the British army until
1860, when cannons became more accurate.

Congreve was a versatile man of science: he invented a process of color
printing (1821), water-marks on banknotes, and was first to suggest the ar-
moring of battleships.

He was educated at Trinity College, Cambridge.

1806–1820 CE Charles Julien Brianchon (1785–1864, France).
Mathematician. Contributed mainly to projective geometry. Discovered
jointly with J.V. Poncelet (1820) the nine-point circle427.

426 After watching the rocket attack of British troops on Fort McHenry in Mary-

land (1812), Francis Scott Key described the rocket’s red glare in “The Star-

Spangled Banner”.
427 Brianchon’s Theorem: if all the sides of a hexagon are tangent to a conic, then

the diagonals joining opposite vertices are concurrent.

Brianchon discovered it when he was a 21-year-old student and published it in

1806 in the Journal of l’École Polytechnique.

The nine-point circle: the mid-points of the sides, the feet of the altitudes, and

the mid-points of the lines joining the orthocenter to the vertices of the triangle

are concyclic.

The theorem concerning this circle is named for neither Brianchon nor Pon-

celet (joint paper in Gergonne’s Annales for 1820–1821), but for yet a third

mathematician Karl Wilhelm Feuerbach (1800–1834) who in 1822 published

this and some related theorems. Feuerbach showed that the center of the circle

lies on the Euler line and is midway between the orthocenter and the cir-

cumcenter. Feuerbach’s Theorem then states that the nine-point circle of any

triangle is tangent internally to the inscribed circle and tangent externally to the

three escribed circles, possibly one of the most beautiful theorem in elementary

geometry that has been discovered since Euclid.

In the 19th century the geometry of the triangle made noteworthy progress by
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Brianchon was born at Sevres. During 1804–1808 he studied at the École
Polytechnique under Monge. He then became a lieutenant of artillery in the
armies of Napoleon (1808–1813). In 1818 he was appointed professor at the
Artillery School of the Royal Guard.

The ‘Elastic Skin’ of Liquids

If a thin glass tube (a fraction of a millimeter in diameter) is lowered
into water, then in violation of the law of communicating vessels, the water
in it will begin to rise rapidly, and its level will become considerably higher
than that of the large vessel. The discovery of this phenomenon, known as
capillarity428, is attributed to Leonardo da Vinci (ca 1500).

What forces are supporting the weight of the column of liquid that has
risen up? The answer was given some 300 years later by John Leslie429

(1802): the rise is accomplished by the forces of adhesion between the water

the above authors and Steiner. But it was many years before the subject at-

tracted much attention. Lemoine (1840–1912) was the first (1873) to take up

the subject in a systematic way and to contribute extensively to its develop-

ment. Henri Brocard (1845–1922; France) discovered certain critical points

of the triangle that bear his name.
428 From the Latin capilla = thin as a hair.

Plants and trees have an entire system of long ducts and pores. The diameters of

these ducts are less than a hundredth of a millimeter. Because of this, capillarity

forces (aided by negative osmotic pressures) raise soil moisture to a considerable

height and distribute water through the plant.

If a sheet of blotting paper is observed through a microscope, it is seen to

consists of a sparse network of paper fibers, forming thin and long ducts that

play the role of capillary tubes. Capillarity causes kerosene to rise through the

wick of a lamp, and in the technology of the dyeing industry, frequent use is

made of a fabric’s ability to draw in a liquid through the thin pores formed by

its threads.
429 John Leslie (1766–1832, Scotland). Mathematician and physicist. In 1805 he

was elected to succeed John Playfair to the chair of mathematics at Edin-

burgh, and in 1819 was promoted to the chair of natural philosophy.
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and the glass (for a diameter of 0.01 mm, the height of the rise is about 15
cm).

The physicist Francis Hauksbee (1666–1713, England) made first accu-
rate observations of the capillary action of tubes and glass plates, and ascribed
the action to an attraction between the glass and the liquid (1709). He con-
cluded that only those particles of the glass which are very near the surface
have any influence on the phenomenon. James Jurin (1718) showed that
the height to which the same liquid rises in tubes, is inversely proportional to
their radii. The concept of surface-tension430 was first introduced in 1751 by
Johann Andreas von Segner (1704–1777). He ascribed it to short range
attractive forces. Segner also attempted to calculate the effect of surface ten-
sion in determining the form of a drop of liquid. His results had a most
important effect on the subsequent development of the theory: first, they
showed that macroscopically, the surface of a liquid is in a state of tension
similar to that of a two-dimensional elastic membrane, stretched equally in
all direction. Second, it gave hope for deducing this surface tension from a
microscopic molecular theory.

Indeed, the works of Thomas Young (1804) and P.S. Laplace (1806)
provided the natural quantitative aspect to Segner’s ideas. Thomas Young
founded the theory of capillary phenomena on the principle of surface tension.
He also observed the constancy of the angle of contact of a liquid surface with
a solid, and showed how to deduce from these two principles the phenomena
of capillary action. He supposed particles to act on one another with two
different kind of forces: one of which, the attractive force of cohesion, extends
to particles at a greater distance than those to which a repulsive force is
confined. The attractive force is constant throughout the small distance to

430 In liquids (and solids) the average distance between molecules is about the same

as a molecular diameter, so molecules are essentially in contact with their near-

est neighbors.

The molecules of a liquid experience strong attractive (cohesive) forces that

resist attempts to separate molecules. These forces have short ranges. Con-

sequently, the molecules in a liquid interact only with their nearest neighbors.

But surface molecules have less neighbors than bulk ones. So the surface effec-

tively has a positive potential energy proportional to the number of molecules,

i.e. to the surface area. Any physical system will tend spontaneously toward a

condition of minimum potential energy (apart from entropy effects). In a liquid,

this entails a tendency toward minimizing the surface area. Because the surface

area in equilibrium is minimal, work is required to increase the surface area.

The amount of this work per unit area is called the surface tension. A fixed

volume of free liquid will therefore assume the shape of a sphere, because this

shape has the least surface area for a given volume.
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which it extends, but the repulsive force increases rapidly as the distance
diminishes.

The subject was taken up by Laplace, who furnished us with seminal
quantitative results that have never been surpassed.

Consider an experimental set up in which air can be pumped into a spher-
ical soap bubble. To increase the radius of the bubble by an amount dr, a
certain amount dW of external work must be done to overcome the resistance
of the surface to an increase of its area. Clearly dW = pdV = p4πr2dr,
where p is the excess pressure inside the bubble above the outside pressure
and dV is the change of volume due to expansion.

In a state of equilibrium, the bubble is held together by a surface tension
T
(

force
length

)
. The work done by this force is TdS, where dS = d(4πr2) is the

change of surface area due to the expansion. Equating the two expressions
we arrive at Laplace’s law : p = 2T

r . When the same logic is applied to a

cylinder of radius r, we obtain p = T
r .

Laplace (1806) generalized these results to arbitrary curvature radii R1

and R2 in two perpendicular directions: p = T
(

1
R1

+ 1
R2

)
. This equation

equates the outward excess pressure p to the inward pressure due to the surface
tension. At equilibrium, p and T are fixed over the entire surface, that is

1
R1

+
1

R2
= mean curvature = const,

at all points. This equation then represents a surface of minimal area for the
volume enclosed, otherwise known as a minimal surface. Planes, cylinders
and spheres belong to the family of such surfaces.

Note that for fixed T , p varies like 1
r . This explains why very small spheres

with only thin walls can withstand enormous internal pressures (plant cells
often have internal pressures of 10 atmospheres with walls only a few microns
thick!)

The rise, h, of a wetting liquid of density ρ in a capillary of radius r can
be calculated by equating the total upward surface-tension force 2πr(T cos β)
[β = angle between tube wall and tangent to the liquid surface at the wall]
to the weight of the liquid column (πr2h)ρg, yielding

h =
2T cosβ

ρgr
.

The same result can be obtained from energy considerations: the total energy
is E(h) = 1

2 · (πr2h2 · ρg) − (2πrh)T cosβ + c. Solving the equation ∂E
∂h = 0

for h, yields the same result.
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The next step was taken by C.F. Gauss (1830). Instead of calculating
the direction and magnitude of the resulting force on each particle, arising
from the action of neighboring particles, he formed a single expression for the
sum of the potential energies of the system constituents: the first depending
on the action of gravity, the second on the mutual action between the particles
of the fluid, and the third on the action between particles of the fluid and the
particles of a solid or fluid in contact with it. The condition of equilibrium is
that this expression shall be a minimum. The condition, when worked out,
gives not only the equation of the free surface in the form already established
by Laplace, but the conditions of the angle of contact of this surface with the
surface of a solid.

During 1830–1869, J.A.F. Plateau made an elaborate study of the phe-
nomena of surface tension. Lord Kelvin (1887) calculated the effect of sur-
face tension on the propagation of surface waves of a liquid.431

1807 CE Robert Fulton (1765–1815, U.S.A.). An American inventor.
Designed and built the first commercially successful steamboat. Also made
important contributions to the development of the submarine.

Fulton was born on a farm in Lancaster County, Pennsylvania, and showed
inventive talent at an early age. He went to Philadelphia at the age of 17 and
was apprenticed to a jeweler. At the age of 21 he went to England and made a
moderate living in London as an artist. After 1793 he gave his full attention to
developments in science and engineering, and painted only for amusement. He
began to travel, studied science and higher mathematics and learned French,
Italian and German.

About 1797 Fulton turned his attention to submarines, a project which
claimed his energies until 1806. The problem of submarine navigation received
his practical attention during the time that he was making his experiments
on steam propulsion. He constructed two submarine boats in France, and one
in America. One of the former, the “Nautilus”432 was built with the direct

431 In the 1970’s a Minkowski-space version of the Plateau minimal-surface-area

problem was applied to studying the relativistic, quantum dynamics of funda-

mental strings, leading to major advances in elementary particle theory.
432 It seems that this name was adopted by Jules Verne (1828–1905, France)

in his book “Twenty Thousand Leagues Under the Sea” (1870). It is a story

about Captain Nemo, a mad sea captain who cruises beneath the oceans in an

internationally-manned submarine.
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encouragement of Napoleon in 1801. It was 6.4 m long, and supplied with
compressed air for respiration. He descended in it to a depth of 8 m, remaining
under water for fully 4 hours. Although Fulton’s submarine ideas interested
both Napoleon and the British Admirality, neither nation showed much in-
terest in the craft, even though it sank several ships in demonstrations433.

Fulton’s submarine was propelled by manual power; two horizontal screws
were employed for propulsion and two vertical screws for descending and as-
cending. It was built of wood with iron ribs, and was sheathed with copper.

In 1802 Fulton became interested in the steamboat. An experimental boat,
launched on the Seine River in Paris in 1803, sank because the engine was
too heavy. But a second boat, which was built in the same year, operated
successfully434.

Fulton returned to the United States in 1806, and in 1807 he directed the
building of a steamboat in New York, which he named the Clermont . On
Aug. 17, 1807, this vessel began its first successful trip up to Hudson River
to Albany.

433 Fulton failed to convince either the English, French or the United States gov-

ernments of the adequacy of his submarine boats. Thus, in Brest harbor, he

was able (1801) to blow up a small vessel with a torpedo sent from his 6.5 m

long Paris-built Nautilus, before the watchful eyes of a commission appointed by

Napoleon. Although it was still propelled manually, the Nautilus was equipped

with a reduction gearing system; it could maintain 4 men under water for 4

hours. His Nautilus II, was launched at Brest harbor heading for the British

fleet, but was unable to get close to any of the ships because the English (in-

formed by spies) had rowing boats on constant patrol around their vessels.

Nautilus II returned to port without having attached its explosive charge to

anything, and France lost interest in the so-called fish-boat. Turning to the en-

emy (1805), Fulton tried to persuade England to adopt his submarine. Despite

having the support of the Prime Minister Pitt, he came up against the oppo-

sition of the first Lord of the Admiralty, John Jervis, who saw in it a serious

treat to the British supremacy of the seas. When Fulton succeeded, experimen-

tally, in blowing up the schooner Dorothy by attaching to it an explosive charge

which was detonated from a distance using an electric cable, the success of his

demonstration only served to reinforce Jervis’ hostility. Queen Victoria had her

own peculiar reservation to “submarine” warfare on the ground that it was an

unBritish (i.e. ungentlemanly!) way to win a war!
434 Allegedly, Fulton offered Napoleon his services in building for him a fleet of

steam battleships for the invasion of Britain. Napoleon, however, rejected the

idea. One wonders whether or not history could have changed its course, had

the French warlord accepted the challenge.
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1807–1816 CE Humphry Davy (1778–1829, England). Chemist.
Isolated potassium and sodium through electrolysis (1807). Invented the
arc lamp in 1809. Proposed Chlorine435 as an element (1810) [Until then it
was commonly believed that it was a compound which contained Oxygen and
known by the name Oxymuriatic acid ]. Davy (1816) was also able to finally
prove that diamond is actually carbon.

Diamond (16–1955 CE)

Diamond is one of the most valuable precious stones. Its unequaled phys-
ical properties and intrinsic beauty place it in a unique position among other
minerals. The discovery of diamonds dates back to ancient times436, but the
first undoubted application of the name to diamond is found in Manilius
(16 CE) and Pliny the Elder (ca 75 CE), though Romans only knew dia-
monds of small dimensions. Most of the known large, valuable stones were

435 In 1811 J.S.C. Schweigger proposed the name halogen for Chlorine.

Berzelius (1823) accepted Davy’s theory that Chlorine is an element. Then

(1825), Berzelius used the name halogen for the elements Fluorine, Chlorine

and Iodine. Bromine was not discovered and added until 1826.
436 The name ‘αδαμας’ (“the invincible”) was probably applied by the Greek to

hard metals, and thence to corundum [(Al2O3), has some valuable transpar-

ent colored varieties, including ruby and sapphire]. The “diamond” (Yahalom)

mentioned in the Old Testament [Ex 39, 11], used in the breastplate of the

high priest, was certainly some other stone, for it bore the name of a tribe, and

methods of engraving the true diamond cannot have been known so early. The

stone became familiar to the Romans only after being introduced from India,

where it was probably mined at a very early period. Later Roman authors men-

tioned various rivers in India as yielding the Adamas among their sands. The

name Adamas became corrupted into the forms adamant, diamaunt, diamant,

diamond.
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found only at the beginning of the 17 th century. However, the nature of the

diamond still remained a mystery.

Isaac Newton (1675) conjectured that the diamond was combustible on

account of its high refractive power; this was first established experimentally

by the Italian Academicians, Averani437 and Targioni438.

Smithson Tennant (1797) and Humphry Davy (1816) finally proved

that diamond actually is carbon.

Of all the solid elements (at S.T.P.), only sulphur, gold and diamond (car-

bon) are found in nature in their pure state. Since ancient times, diamonds

have been found in the form of grains, or small octahedrons, in alluvial de-

posits, whence they had been carried from dark, igneous rocks. Efforts to find

diamonds in the original rock hardly ever met with success.

There are only four known instances of diamonds being found in their

parent rock. The oldest one is the mine in the Kimberley region of South

Africa, where they occur in a decomposed olivine rock (Kimberlite). Another

substantial deposit of diamonds in parent rock is in the Vilyuy river basin

in Yakutsk (Russia). In 1961, diamonds in Kimberlite were discovered in

Sierra Leone. The most well-known diamond alluvial deposits are in Zäıre,

Minas Gerais (Brazil), Angola, Tanzania, Ghana and on the West African

coast (Guinea, Ivory Coast, Liberia). In North America they are found in

Arkansas, Ohio, Indiana and Wisconsin.

Diamonds are formed in nature at great depths (80 km or more) at 1100 −
1300 ◦C under great pressure by eruption in the volcanic pipes. It is carried

with the rising Kimberlite to the surface of the earth. Diamonds, together

with other minerals and rocks, are carried away by water, along rivers, some

of them into the sea. Therefore, secondary deposits are found in river beds,

on old valley terraces and along the Atlantic coast on old beaches. Small

diamonds were also discovered in certain meteorites, both stones and irons;

[e.g. Novo-Urei, Penza, Russia 1886; Carcote, Chile; Canyon Diablo, Arizona].

The history of many of the diamond discoveries is interesting and the

fate which pursued the prospectors and the stone themselves is vivid and

437 Giuseppe Averani (1662–1738, Italy). Professor at the University of Pisa.

Performed various experiments in physics and botany. Member of the London

Royal Society.
438 Giovanni Targioni-Tozzetti (1712–1783, Italy). Naturalist and physician.

Curator of the Botanic Garden and professor of botany at the University of

Florence. Director of the Magliabechiana Library (1739).
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dramatic439. Many large diamonds of rare quality are now the property of
royalty or of governments. The largest stone ever discovered was the Cullinan
(Kimberly, 1905, original weight = 3106 carats; 1 carat = 0.2054 gram.

The commercial manufacture of diamonds was begun in 1955 by the Gen-
eral Electric Company in the US, after technique for obtaining very high
pressure (over 70, 000 atm.) at high temperature (2000 ◦C) had been devel-
oped. The crystallization of artificial diamonds is favored by the addition of a
small amount of a metal such as nickel. Artificial diamonds therefore contain
some nickel atoms replacing pairs of carbon atoms.

Physical structure and properties:

Density = 3.510; refractive index = 2.417 for the D line; high dispersive
power.

Diamond has a cubic unit of structure with side a = 3.56Å; there are

8 atoms in the unit cell at coordinates:

(0, 0, 0); ( 1
2 , 1

2 , 1
2 ); ( 1

2 , 0, 1
2 ); ( 1

2 , 1
2 , 0); ( 1

4 , 1
4 , 1

4 ); ( 1
4 , 3

4 , 3
4 ); ( 3

4 , 1
4 , 3

4 ); ( 3
4 , 3

4 , 1
4 ).

Carbon, with 4 electrons missing from a complete octet, can form 4 cova-
lent bonds. In the diamond, each atom is bonded strongly to 4 neighboring
atoms which are held about it at the corners of a regular tetrahedron. These
covalent bonds bind all of the atoms into a single giant molecule. Since the
C-C bonds are very strong, this network solid crystal is very hard, in fact the
hardest substance known.

Recently (1999) it was conjectured that Saturn’s atmosphere rains dia-
monds (!), the free fall of which converts gravitational energy into heat, thus
driving that planet’s weather system. The same may be true for Uranus and
Neptune.

439 Perhaps the most dramatic of them all is the affair of the diamond necklace

(1784–1786) — a mysterious incident at the court of Louis 16 th of France,

which involved the queen Marie Antoinette and contributed to render her very

unpopular, probably sealing her fate. It involved: cardinal Louis de Rohan

(formerly ambassador to Vienna), Comte and Comtesse de Lamotte, Boehmer

and Bassenge (Paris jewelers), Marie Lejay, Reteaux de Villete (small time

crook) and Cagliostro (famous charlatan) — a complex story of greed, passion

and doom.
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1807–1820 CE Gas lights first introduced in London (1807). By 1820
much of the cities of London and Paris were lighted.

1807–1821 CE Georg (Wilhelm Friedrich) Hegel (1770–1831,
Germany). Philosopher. Perhaps the most abstruse of the Teutonic thinkers.
Built a huge edifice to contain the whole of human knowledge. In his effort
to reveal the implications of reality and reason, he employed the method
of thesis, antithesis and synthesis, with analysis as the starting point. The
examination of contradictions as the second step, and finally the arrival at
unity by means of reason in a summation of ultimate truths. Hegel’s system
is applied to the whole experience, beginning with logic, going on to the
philosophy of nature and then to the philosophy of mind and spirit. Within
these categories, anthropology, philosophy, metaphysics, law, ethics, morality,
government, property, the family, emotions, customs, art, religion, history
and many other facets of thought and life were examined analytically, in their
opposites and finally in synthesis.

His point of view, that everything is a logical process of thought obeying
the laws of evolution from the simple to the more complex, held sway in
Germany and influenced other countries until the middle of 19 th century;
even though it lost some of its popularity after that date, it continued to
influence world thought for many years thereafter to such a degree that it had
profound effects on the ideas and political events of 20 th century.

His theories echo through the writings of Marx, Kierkegaard, A. N.
Whitehead, John Dewey and a group of British and American thinkers
known as Neo-Hegelians.

Among his important work are: Phenomenology of mind (1807); Science
and Logic (1812–1816), Encyclopedia of Philosophy (1817); Philosophy of Law
(1821).

Hegel developed the most systematic and comprehensive philosophy of
modern times. He sought to synthesize the ontology of the ancient Greeks
(Particularly the theories of Aristotle) with Kantianism440. Some of his
views may be traced to the influence of Heraclitos, Spinoza, Schelling and
Fichte. In fact, notwithstanding its revolutionary emphasis, the Hegel system
represents largely a synthesis of other philosophers.

Kant had set a precedent for such synthesis when he combined the concep-
tual (rational) world of ideas with the phenomenal world of perception as the
basis for valid knowledge. Similarly, Hegel set out to synthesize all opposites

440 Kant argued that one could suppose God’s existence, but no system could prove

it; Hegel instead seeks to justify the idea of God. Kant separated science from

religion, Hegel wanted to make religion into a new science.
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to arrive at truth which is considered as an organic unity of applied parts;
according to his grammar of logical thinking, every condition of thought or
of things, every idea or every situation in the world (thesis), leads irresistibly
to its opposite (anti-thesis), and then unites with it from a higher or more
complex whole (synthesis)441. This scheme constitute the formula and secret

441 This ‘dialectic movement ’ runs through everything that Hegel wrote. It is an

old thought, foreshadowed by Empedocles, and embodied in the ’golden mean’

of Aristotle, who wrote that ‘the knowledge of opposites is one’. Moreover it

comprises one of the 13 logical principles on which the Hebrew Talmudic ex-

egetics are based; [“Shnei ketuvim ha’makishim ze et ze...”; Barai’ta d’Rabi

Ishmael; ca 115 AD].

Hegel generalized this principle to embrace all things and thoughts; thus, a

social system with free economy stimulating individualism is required in a pe-

riod of economic adolescence and unexploited resources, but in a later age a

cooperative commonwealth is preferable; the future will see neither the present

reality nor the envisioned ideas, but a synthesis in which something of both

will come together to beget a higher life. For Hegel, history too is a dialecti-

cal movement, almost a series of revolutions, in which people after people, and

genius after genius, become the instrument of the spirit of the Age (Zeitgeist).

What actually happens to a state or people represents the final judgment as

to the worth of a national policy or course of action. For Hegel world history

constitutes the world’s court of justice. Reason is constantly evolving in his-

tory toward an absolute goal. God exists only as a ’world-spirit’ which is real

because it is rational. History advances and progresses only because

of conflicts, wars, revolutions, i.e. through religious struggles.

Peace and harmony do not make for progress. Hegel’s logic leads

to the conclusion that war is justified because it is the means by

which progress is made. Moreover, it carries the unfortunate implication

that whatever has been successful is thereby also somehow ‘right’ and superior

to what had been unsuccessful. Whatever vanished from the memory of history

(because it was destroyed or unsuccessful) was to Hegel ‘unjustified existence’.

The Hegelian system was adopted by the Prussian state and many Prussian

thinkers held that the Prussian state was destined to carry forward the realiza-

tion of universal reason through its eventual conquest of the world.

The dialectical process makes change in the cardinal principle of life. No condi-

tion is permanent; in every stage of things there is a contradiction which only

the strife of opposition can resolve.

After Hegel died, German philosophers gravitated around him, some approved

him, and some other supported his theories. His followers ‘Young Hegelians’

eventually splitted into ‘right ’, ‘left ’ and ‘center ’ over questions of theology:

‘Right Hegelians’ defended traditional Christianity; ‘Center’ sought to reinter-

pret religious dogma in Hegelian terms to give it a new, more scientific language;
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of all development and all reality442.

For not only do thoughts develop and evolve according to this ‘dialectical
movement ’443, but things do equally; every condition of affairs contains a
contradiction which evolution must resolve by a reconciling unity. The higher
stage, if reached, too will divide into a productive contradiction, and rise
still to loftier levels of organization, complexity and unity. The movement
of thought, then, is the same as the movement of things; in each there is
a dialectical progression from unity trough diversity to diversity in unity.
Thought and being follow the same law; and logic and metaphysics are one.

Hegel, the native of Stuttgart, studied philosophy and theology at the
national university of Tübingen (1788–1793). He took part in the walks,

‘Left Hegelians’ criticized Christianity and developed Hegel’s ideas toward rad-

ical conclusions, not only in theology. Mosses Hess (1812–1875), Ludwig

Feuerbach (1804–1872) and Karl Marx (1818–1883) turned Hegel’s philoso-

phy of history into a theory of class struggles leading by Hegelian necessity to

inevitable socialism. In place of the Absolute as determining history through

the Zeitgeist, Marx offered mass movements and economic forces as the basic

causes of every fundamental change, whether in the world of things or in the

life of thoughts. He has argued a la Hegel, that since change is a road to bet-

ter thing, a society based on private property would give way to one in which

socialism was supreme via a synthesis of opposites. The collapse of Soviet Com-

munism in 1989 demonstrated that at least Marx’s extrapolation was wrong.

Since the second half of the 19 th century, positivists and existentialists ques-

tioned the role of Hegel’s philosophical reasoning and sought to replace it

[Comte (1798–1857); Kierkegaard (1813–1855); Husserl (1859–1938)].
442 In modern physics one could view the electron through ‘Hegelian eyes’ accord-

ing to a triadic structure: thesis (particle), antithesis (wave) => synthesis

(non-classical quantum-mechanical entity). Likewise, in modern biology, pro-

tein synthesis is achieved through the combination of two single ladders into

a double-stranded DNA molecule. In general, the movement of evolution is a

continuous development of oppositions, and their merging and reconciliation.

Darwin (1809–1882), like Hegel, also starts from what has been empirically

successful and argues back to the supposed necessity of it’s appearance. In

Darwin, however, there is no longer a rational dialectic of nature, but instead a

principle of ‘natural selection’. Both Hegel and Darwin can be miss-construed

to support a belief in the ‘survival of the fittest ’. Seen in the light of such a

‘Darwinian Hegelienism’, world history presents a very ugly spectacle – at its

most grotesque in the rise and fall of Nazism and Soviet communism.
443 Way back in ancient times, Greek philosophers applied this strategy to arrive

at truth; a system of arguments, which bring out the contradiction in ones

opponent’s reasoning.
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beer-drinks and love-making of his fellows and gained most from intellectual
intercourse with his contemporaries Hölderlin and Schelling.

After leaving the university he became a private tutor at Bern and lived
there in intellectual isolation (1793–1796). Schelling recommended his ap-
pointment to the faculty of Jena University (1797–1808). But in 1807, the wife
of Hegel’s landlord gave birth to Hegel’s illegitimate son and the philosopher
moved to Nuremberg, where he assumed the post of a teacher of philosophy
in a classical high school for boys (1808–1816). During that period he mar-
ried (1811) Marie von Tucker (the daughter of a respected Nuremberg family)
scarcely half his age. When, Christiana Burckhardt, the mother of Hegel’s
illegitimate son, Ludwig, heard of the marriage and tried create a stir, Hegel
had been paying money to support his son and appeared to have placated
her.

At the age of 46 (1816) Hegel went to Heidelberg to take up his first
secure full-time academic post. Finally, in 1818 he succeeded Fichte at the
University of Berlin. From this point on, in accordance with his new status
and public role in Berlin, Hegel’s philosophizing took on the form of lectures.

In his last years, Hegel denounced the radicals and aligned himself with
the Prussian Government and basked in the sun of its academic favors. His
enemies called him ‘the official philosopher ’444. He began to think of the
Hegelian system as part of the natural laws of the world; he forgot that his
own dialectic condemned his thought to impermanence and decay. Never did
philosophy assume such a lofty tone, and never were its royal honors so fully
recognized and secured as in 1830 in Berlin.

When the cholera epidemic came to Berlin in 1830, his weakened body
was one of the first to succumb to the contagion. Just as the space of a year
had seen the birth of Napoleon Beethoven and Hegel, so in the years from
1827 to 1832 Germany lost Goethe, Hegel and Beethoven. It was the end of
an epoch, the last fine effort of Germany’s greatest age.

444 E.g.: Hegel did not believe in the immorality of the soul. But being a respectable

civil servant of the Prussian State he was forced to give in a bit and not let his

ideas to be spread among people.
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Worldview XVIII: Georg W.F. Hegel

∗ ∗∗

“Philosophy always comes an the scene too late to give instructions to what
the world ought to be. As a thought of the world, it appears only when it is al-
ready there, cut and dried, after the process of formation has been completed.”

∗ ∗∗

“What exists is reason; ... Reason is the substance of the universe, ... The
design of the world is absolutely rational445”.

∗ ∗∗

“In a true tragedy, both parties must be right”.

∗ ∗∗

“The people are that part of the state which does not know what it wants”.

∗ ∗∗

“We learn from the history that we do not learn from history”.

∗ ∗∗

445 In the light of the experience of the Holocaust and Stalin’s totalitarianism,

reason itself appears insane as the world acquires systematic totality.
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“My task is to turn Kantian criticism into a true system, in other words,
to overcome the divisions it still contains by deriving all its elements from a
single fundamental principle”.

∗ ∗∗

“What is rational is actual, and what is actual is rational”.

∗ ∗∗

“As far as history goes, we must rather deal with what had been and what
is. In philosophy, on the other hand, with what is and is eternally”.

∗ ∗∗

“Beauty is the mediation between the sensible (or sensuous) and the rational
(or intellectual). My definition of beauty as ‘pure appearance of the idea to
sense’ is true of beauty throughout the history of its embodiment in art. But
art has the particular task of showing within the realm of the human, the
essence of the divine”.

∗ ∗∗

“... It is science which had led you into this labyrinth of the soul, and science
alone is capable of leading you out again and healing you”.

∗ ∗∗

“I believe that philosophy, like geometry, is teachable and must no less than
geometry have a regular structure”.

∗ ∗∗
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“Nothing great in the world has been accomplished without passion”.

∗ ∗∗

“Life is not made for happiness, but for achievement”.

∗ ∗∗

“The history of the world is not a theater of happiness; periods of happiness
are blank pages in it, for they are periods of harmony”.

∗ ∗∗

“Great men had no consciousness of the general idea they were unfolding, ...
but they possessed insight into the requirement of the time – what was ripe
for development. This was the very Truth for their age, for their world; they
merely placed another stone on the pile, as other have done; somehow he has
the good fortune to come last, and when he placed his stone the arch stood
self-supported”.

∗ ∗∗
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Philosophers on Hegel

∗ ∗∗

“Philosophers are doomed to find Hegel waiting patiently at the end of what-
ever road we travel”.

Richard Rorty

∗ ∗∗

“All the great philosophical ideas of the past century – the philosophies of
Marx and Nietzsche, phenomenology, German existentialism, and psycho-
analysis – had their beginnings in Hegel”.

Maurice Merieau-Ponty (1908–1961)

∗ ∗∗

“Whether through logic or epistemology, whether through Marx or Nietzsche,
our entire epoch struggles to disentangle itself from Hegel”.

Michel Foucault (1926–1984)

∗ ∗∗

“It may well be that the future of the world, and thus the sense of the present
and the significance of the past, will depend in the last analysis on contem-
porary interpretation of Hegel’s work”.

Alexandre Kojère (1900–1968)
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∗ ∗∗

“The highest of audacity in serving up pure nonsense, in stringing together
senseless and extravagant mazes of words, such as had previously been known
only in madhouses, was finally reached by Hegel, and become the instrument
of the most bare-faced general mystification that has ever taken place, with a
result which will appear fabulous to posterity, and will remain as a monument
to German stupidity.”

Arthur Schopenhauer (1788–1860)

∗ ∗∗

“We surrealists, recognize Hegel as one of the first of our own mad company,
willing to explore the furthest reaches of Unreason in order to win a new,
expanded and higher form of Reason”.

Andre Breton (1892–1966)

∗ ∗∗

“One could write intellectual history of our century without mentioning Hegel.
The 19 th century thinkers whose spirits have dominated the 20 th century
have been Marx, Kirkegaard and Nietzsche. At the beginning of this century
Sigmund Freud brought to light the unconscious and Ferdinand de Saussure
the structure of Language. Meanwhile science had made explosive progress,
more or less obvious to the continuing debates among philosophers of science.
It is possible to leave Hegel out of the picture”.

Lloyd Spencer (1996)

∗ ∗∗
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1807–1822 CE Jean Baptiste Joseph Fourier (1768–1830, France).
Mathematical physicist and politician who exerted great influence on his field.
Was first to assert (1807) that an arbitrary function (such as were understood
in his time), given in the interval (−π, π), could be expanded in a trigono-
metric series

a0 +
1
π

∞∑

n=1

[an cosnx + bn sin nx],

if

a0 =
1
2π

∫ π

−π

f(x)dx;

an =
∫ π

−π

f(x) cos nxdx;

bn =
∫ π

−π

f(n) sin nxdx, n > 1.

First to establish a mathematical theory of heat conduction in isotropic solids
(1811).

He proved that the above expansion, known today as the Fourier expan-
sion, or Fourier series, holds for certain simple functions which he needed
in the problems of heat conduction. Since then, these series have been
used extensively in the solution of the differential equations of mathemati-
cal physics446.

Although Euler (1748), d’Alembert (1749, 1754), Clairaut (1757), La-
grange (1759) and again Euler in 1777, used the above coefficients (Fourier
made no claim to its discovery!) the credit goes to Fourier447 because he was
the first to apply these coefficients to the representation of an entirely arbi-
trary function. He was also the first to allow that the arbitrary function might
be given by different analytical expressions in different parts of the interval.

446 The Fourier coefficients an and bn have the remarkable property that they give

the best least-squares fit among all possible approximations when a function

f(x) is expanded in terms of an orthonormal set of functions. This implies

that the mean square error 1
2π

∫ π

−π

[
f(x) − Fn(x)

]2
dx is minimized when Fn(x)

coincides with the partial n-th sum of the Fourier-series expansion for f(x).
447 Why did great mathematicians like Euler and Lagrange miss the final crucial

step?

It was, no doubt, partially because Fourier’s disregard for rigor, that he was

able to take conceptual steps which were inherently impossible to men of more

critical genius. However, once the floodgate of the new idea opened, mathe-

maticians hurried to exploit it and make it into one of the most efficient tools

of modern linear mathematics.
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Indeed, the theory of Fourier Series was further developed by Poisson
(1820), Cauchy (1826), Dirichlet (1837), Stokes (1847), Riemann (1854),
Lipschitz (1864), H.E. Heine (1870), Cantor (1872), Du Bios-Reymond
(1875), U. Dini (1880), Jordan (1881), Lebesgue (1902), Fejer (1904),
Riesz (1907) and Fisher (1907). The origin of the theory of the Fourier
Integrals is found in Fourier’s “Analytical Theory of Heat” (1822). Fourier
transforms are due to Cauchy who pointed out the reciprocity of the Fourier
integrals (1826).

Fourier was born at Auxerre. He was the son of a tailor, and was orphaned
in his 8th year. His admission into the military school of his native town was
secured through the kindness of a friend. He soon distinguished himself in
mathematics. Barred from entering the army on account of his poverty and
low birth, he was appointed teacher of mathematics at the same school. In
1787 he became a novice at the abbey of St. Benoit-sur-Loire, but he left
in 1789 and returned to his college. From 1789 to 1794 Fourier taught in
secondary schools and also became actively involved in the French Revolution.
As a result of this latter activity, Fourier spent some time in the prison of
Auxerre in 1794. In 1795 he was on the faculty of the École Normale in Paris
and thereafter occupied the chair of analysis at the École Polytechnique.

Fourier was one of the savants who accompanied Bonaparte to Egypt in
1798. During his expedition he was called on to discharge important political
duties in addition to his scientific ones. He was for a time virtually governor
of half of Egypt. He returned to France in 1801 and during the rest of his life
combined scientific and political activities. As a politician Fourier achieved
uncommon success, but his fame rests chiefly on his strikingly original contri-
butions to science and mathematics.

The theory of heat conduction in solids engaged his attention quite early,
and in 1812 he obtained a prize offered by the Academy of Sciences for his
memoir: Theorie des mouvements de la chaleur dans les corps solides — an
epochal paper in the history of mathematical and physical science. The works
of Fourier have been collected and edited by Gaston Darboux in 1889–1890.
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Scientists on Fourier Analysis

∗ ∗∗

“Fourier’s book was of paramount importance in the history of mathematics
and pure analysis perhaps owed it even more than applied mathematics.”

(Poincaré, 1895)

∗ ∗∗

“Looking back, we can see Fourier’s memoir as heralding the surge of new
mathematical methods and results which were to mark the new century. His
ideas are built into the commonsense of our society.”

(T.W. Körner, 1988)

∗ ∗∗

“It is difficult to say which of Fourier results is most to be praised: their
uniquely original quality, their transcendently intense mathematical interest,
or their perennially important instructiveness for physical science.”

(Lord Kelvin, 1880)

∗ ∗∗

“Fourier’s book is a great mathematical poem.”

(J.C. Maxwell)

∗ ∗∗
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Fourier and his Integral 448

When Joseph Fourier published his book “Téorie analytique de la chaleur”
(1822), he certainly could not foresee that he had provided scientists of the
20 th century with one of their most powerful research tools. Indeed, one can
hardly find a better example for the metamorphosis of a successful idea, than
the story of the Fourier integral and its applications.

Historical Perspectives

In the 17 th century, Isaac Newton showed that the way to understand
the natural world is to use differential equations that govern the motion of
objects under given forces. Albert Einstein merited it as “the greatest
intellectual stride that has ever been granted to any man to make”. Predictive
science became possible, prompting Laplace to imagine a single formula that
would describe the motion of every object, for all time.

Some 150 years after Newton, Joseph Fourier provided a practical way
to extract the truth from a whole class of such equations: linear partial dif-
ferential equations. He asserted that virtually any 2π-periodic function f(x)
can be represented as the infinite sum of sines and cosines, now known as a
Fourier series:

f(x) = a0 +
∞∑

k=1

(ak cos kx + bk sin kx), (1)

where the Fourier coefficients {a0, ak, bk } are calculated by

a0 =
1
2π

2π∫

0

f(x)dx;

448 For further reading, see:

• Wiener, N., The Fourier Integral and Certain of its Applications, Dover Pub-

lications: New York, 1958, 201 pp.

• Titchmarsh, E.C., Introduction to the Theory of the Fourier Integrals, Oxford

University Press: Oxford, 1948, 391 pp.

• Sneddon, I.N., Fourier Transforms, McGraw-Hill Book Company: New York,

1951, 542 pp.
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ak =
1
π

2π∫

0

f(x) cos kxdx; (2)

bk =
1
π

2π∫

0

f(x) sin kxdx.

Roughly, what this means is that any curve that periodically repeats itself,
no matter how jagged or irregular, can be expressed as the sum of perfectly
smooth oscillations. Knowing {a0, ak, bk }, one may reconstruct the original
function from its Fourier coefficients.

The Fourier coefficients ak and bk have the remarkable property that they
give the best least-squares fit among all possible approximations when a func-
tion f(x) is expanded in terms of an orthogonal set of functions. This implies

that the mean square error 1
2π

π∫

−π

[f(x) − Fn(x)]2dx is minimized when

Fn(x) coincides with the partial n-th sum of the Fourier-series expansion for
f(x).

To prove this we want to minimize, for an arbitrary expansion of f(x), the
expression:

S(ak, bk) =

π∫

−π

[f(x) − a0 −
n∑

k=1

(ak cos kx + bk sin kx)]2dx.

This requirement is met when the partial derivatives of S w.r.t. a0, ar, and
br are set to zero, namely

π∫

−π

[f(x) − a0 −
n∑

k=1

(ak cos kx + bk sin kx)]dx = 0

π∫

−π

cos rx[f(x) − a0 −
n∑

k=1

(ak cos kx + bk sin kx)]dx = 0, r = 1, 2, ..., n

π∫

−π

sin rx[f(x) − a0 −
n∑

k=1

(ak cos kx + bk sin kx)]dx = 0

Using the orthogonality relations

π∫

−π

cos rx cos kxdx = πδkr =

π∫

−π

sin rx sin kxdx,
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π∫

−π

sin rx cos kxdx =

π∫

−π

cos rx sin kxdx = 0,

we regain the Fourier coefficients:

a0 =
1
2π

π∫

−π

f(x)dx;

ak =
1
π

π∫

−π

f(x) cos kxdx; k 	= 0

bk =
1
π

π∫

−π

f(x) sin kxdx.

Dirichlet (1829, 1837) showed that when the function f(x) is bounded in
the interval (−π, π), and this interval can be broken up into a finite number
of partial intervals in each of which f(x) is monotonic, the Fourier series
converge at every point within the interval to 1

2 [f(x + 0) + f(x − 0)], and
at the end-points to 1

2 [f(−π + 0) + f(π − 0)]. These sufficient conditions
(and their extensions to unbounded function) cover most of the cases that are
likely to be required in the applications of Fourier series to the solution of the
differential equations of mathematical physics and engineering.

During 1850–1905, we pass into the domain of pure mathematics. Rie-
mann aimed at finding a necessary and sufficient conditions which an arbi-
trary function must satisfy so that, at a point x in the interval, the correspond-
ing Fourier series shall converge to f(x). The question Riemann set himself
to answer has not yet been solved. But in the consideration of the problem
he realized that the concept of the definite integral should be widened. And
thus it transpires that we owe the Riemann Integral to the study of Fourier
series.

Riemann showed (1854) that for any bounded and integrable function
f(x), the integral

1
π

π∫

−π

f(x)
[

sinnx
cosnx

]

dx

tends to zero as n tends to infinity. This theorem implies that, if f(x) is
bounded and integrable in (−π, π), the convergence of its Fourier series at a
point in (−π, π) depends only on the behavior of f(x) in the neighborhood of
that point.

The nature of the convergence of Fourier series received attention, espe-
cially after the introduction of the concept of uniform convergence (Stokes
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1847, Seidel 1848). Jordan (1881) simplified the treatment of Fourier series
by introducing his functions of bounded variation. His criterion states that the
Fourier series for the integrable function f(x) converges to 1

2 [f(x+0)+f(x−0)]
at every point of which f(x) is of bounded variation.

If Fourier’s Series for f(x) is not convergent, it may converge when one
or the other of the methods of ‘summation’ applied to divergent series is
adopted. Fejer (1904) proved that when the series is summed by the method
of arithmetical means, its sum is 1

2 [f(x + 0) + f(x − 0)] at every point in
(−π, π) at which f(x ± 0) exist. The condition attached to f(x) is:

• If bounded, it shall be integrable in (−π, π).

• If unbounded,
π∫

−π

f(x)dx shall be absolutely convergent.

Although applied mathematicians were quite satisfied with the new lim-
iting processes placed in their hand by Dirichlet, Riemann, Cantor and
Jordan, pure mathematician were still unsatisfied because of the lack of unity,
symmetry and completeness of the overall theory. Some advancement made
during 1905–1920 greatly improved this situation. The most important con-
tribution were made by Lebesgue (1902–1905), Fejer (1904), de la Vallée
Poussin (1893) and W.H. Young (1912). One of the advantages of the
Lebesgue integral is that a function which is integrable-L (Lebesque) need not
be continuous ‘almost everywhere’ in the interval of integration, as is the case
of a function integrable-R (Riemann). The Riemann-Lebesgue Lemma now
guarantees that if f(x) is integrable-L in (a, b), then

lim
n→∞

b∫

a

f(x)
[

sin nx
cosnx

]

dx = 0, (3)

whether f(x) is bounded or not.

One of the most remarkable results which follow from the use of the
Lebesgue integral in the theory of Fourier Series is the converse of Parse-
val’s Theorem, known as the Riesz-Fisher Theorem: Any trigonometric series

for which
∞∑

1
(a2

n+b2
n) converges is the Fourier Series of a function whose square

is integrable-L2 in (−π, π).

From Fourier Series to the Fourier Integral

When applying the theory of Fourier Series to time signals it is convenient
to change the name of the variable x to t and f to g. Thus, if g(t) is a
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continuous function with a finite number of bounded discontinuities, defined
in the interval T1 ≤ t ≤ T2, T = T2 − T1, one defines the Fourier expansion
of g(t) over T by

g(t) =
∞∑

n=− ∞
cneinω0t, cm =

1
T

T2∫

T1

g(s)e−imω0sds, ω0 =
2π

T
. (4)

Clearly, the Fourier series representation of g(t) is periodic with period T .

If g(t) is also periodic with period T , the Fourier series will render g(t) for
all values of t; If, however, f(t) is not periodic, the sum will be equal to g(t)
only for T1 ≤ t ≤ T2. If g(t) is real cm = c∗

−m. At points of discontinuity of
g(t) the sum will converge to the arithmetic mean of the values of the function
on both sides of the discontinuity.

For real g(t) we may write

g(t) =
a0

2
+

∞∑

1

[an cosnω0t + bn sin nω0t] =
a0

2
+

∞∑

1

Bn cos(ω0nt − ϕn), (5)

where

an =
2
T

T2∫

T1

g(s) cos(nω0s)ds; bn =
2
T

T2∫

T1

g(s) sin(nω0s)ds;

ϕn = tan−1 bn

an
; Bn =

√
a2

n + b2
n

a0 =
2
T

T2∫

T1

g(s)ds; b0 = 0; c0 =
a0

2
;

cn =
an − ibn

2
; c−n =

an + ibn

2
;

Bn = 2
√

cnc−n .

(6)

Inserting the integral expression of cm from (4) into the infinite-sum rep-
resentation of g(t) with the provisions

T1 = − T

2
, T2 =

T

2
, cm = c∗

−m [real g(t)] (7)
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one obtains

g(t) =
∞∑

n=− ∞

⎡

⎢
⎣

1
2π

T
2∫

− T
2

g(s)e−inω0sds

⎤

⎥
⎦ω0e

inω0t. (8)

In the limit T → ∞

ω0 = Δω (say) → 0; nω0 = nΔω → ω as n → ∞, (9)

where any ‘harmonic’ nω0 must now correspond to the general frequency
variable which describes a continuous spectrum.

Consequently the summation in (8) becomes an integration over ω, and
the function g(t) has the representation

g(t) =
1
2π

∞∫

− ∞

⎡

⎣

∞∫

− ∞

g(s)e−iωsds

⎤

⎦ eiωtdω. (10)

If we define

G(ω) =

∞∫

− ∞

g(t)e−iωtdt, (11)

then (10) becomes

g(t) =
1
2π

∞∫

− ∞

G(ω)eiωtdω. (12)

Eqs. (11) and (12) comprise the Fourier representation of the nonperiodic
function, and are known together as the Fourier Integral Theorem.

Note the fundamental difference between the representation of a g(t)
through a Fourier Series and a Fourier integral; the Fourier Series of a periodic
function concerns only those sines and cosines whose frequencies are integer
multiples of the base frequency. If a function is not periodic but decreases
sufficiently fast at infinity, it is still possible to describe it as a superposition
of sines and cosines i.e. to analyze it in term of its frequencies. But now we
must compute the coefficients for all possible frequencies. To this end, one
may recast (11) and (12) in the symmetric form (for a variable x which does
not necessarily represent time)

f(x) =

∞∫

− ∞

F (ξ)e2πiξxdξ; F (ξ) =

∞∫

− ∞

f(x)e−2πiξxdx (13)
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and call F (ξ) the Fourier transform of f(x). The Fourier transform is essen-
tially a mathematical prism, breaking up the function f(x) into the frequency
components that compose it, as a prism disperses white light into colors.

With the substitution ω = 2πξ, (13) can be recast in the less symmetric
form

f(x) =
1
2π

∞∫

− ∞

F (ω)eiωxdω; F (ω) =
∞∫

− ∞
f(x)e−iωxdx, (14)

which agrees with (11)–(12).

Mathematicians spent much of the 19 th century coming to terms with the
ideas of Fourier. This process yielded a surge of new mathematical methods
and results. Thus, questions of convergence and divergence have provided a
great deal of work for mathematicians449. The need to formulate conditions
on Fourier- decomposeable or -transformable functions, sum-shorted (together
with advances in DE) the discipline of function spaces (topological and vec-
tor); measure theory; functional analysis, as well as special and generalized
functions.

The Fourier Integral Theorem and its immediate consequences

Michaël Plancherel (1885–1967, Switzerland) formulated (1910) the
Fourier Integral Theorem in a form which is completely symmetrical with
the aid of a new concept known as mean convergence. If fn(x), n = 1, 2, 3...
are absolutely square integrable functions over (a, b) and if

lim
n→∞

b∫

a

|fn(x) − f(x)|2 dx = 0, (15)

where f(x) is square integrable over (a, b), then we say that fn(x) converges
in the mean to f(x) with index 2, and write it as

f(x) = l.i.m
n→∞

fn(x). (16)

(limit in the mean)

449 Virtually every periodic function can be represented as a series, or sum, of sines

and cosines, but not every series of sines and cosines represent a function. If a

series can be proved to converge, one can work with a finite number of terms,

confident that adding more terms will not significantly change the results. If,

however, the coefficients of the series do not become small fast enough, the

series diverges and does not represent the function.
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A similar notation holds if the parameter n tending to infinity is replaced
by a variable tending continuously or discretely to some other limit.

Note that pointwise convergence does not imply convergence in the mean

[e.g. fn(x) = n3/2xe−n2x2 → 0 for every x while
1∫

−1

|fn(x)|2dx → 1
2

√
π

and fn(x) does not converge in the mean]. However, if can be shown that
if fn(x) converges to a limit f(x) almost everywhere on (a, b) and at the
same time converges in the mean to a limit g(x), then f(x) = g(x) almost
everywhere.

Plancherel’s theorem: If the complex function f(t) is absolutely square
integrable on (−∞, ∞) than

F (ω) = l.i.m
n→∞

λ∫

−λ

f(t)e−iωtdt, (17)

known as the Fourier transform of f(t), exists and is absolutely square inte-
grable, and we have

f(t) = l.i.m
λ→∞

1
2π

λ∫

−λ

F (ω)eiωtdω (18)

where
∞∫

− ∞

|F (ω)|2 dω = 2π

∞∫

− ∞

|f(t)|2 dt. (19)

The conditions of this theorem are only sufficient. This means that the Fourier
Integral Theorem may be valid for many functions which do not obey these
conditions.

It is easy to prove the Fourier Integral Theorem for the more restrictive
class of piecewise smooth functions f(t) for −∞ < t < ∞ where t is a real

variable, and
∞∫

− ∞
|f(t)|dt converges. This is done with the aid of the δ-function

concept. We wish to show that

f(t) = lim
λ→∞

1
2π

λ∫

−λ

eiωtdω

∞∫

− ∞

f(ξ)e−iωξdξ. (20)

To this end define the Fourier transform of f(t)

F (ω) =

∞∫

− ∞

f(ξ)e−iωξdξ, (21)
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multiply both sides by eiωt and integrate over the ω-range (−λ, λ), to obtain

λ∫

−λ

F (ω)eiωtdω =

∞∫

− ∞

f(ξ)dξ

λ∫

−λ

eiω(t−ξ)dω. (22)

However

lim
λ→∞

λ∫

−λ

eiω(t−ξ)dω = 2πδ(t − ξ), (23)

where δ is the ‘Dirac delta function’. Eqs. (22)–(23) then yields f(t) =
∞∫

− ∞
F (ω)eiωtdω, by use of the “sifting” property of δ(·).

In the 20 th century the concept of l.i.m. has been extended to ‘stochastic
processes’ in which all functions are random variables and the l.h.s. of (15) is
replaced by bits ‘expectation’.

A number of important special cases and consequences can be drawn from
the Fourier Integral Theorem:

Sine and cosine transforms

If f(t) is real and F (ω) = R(ω) + iX(ω), then

R(ω) = Re F (ω) =

∞∫

− ∞

f(t) cos(ωt)dt ≡
∞∫

0

[f(t) + f(−t)] cos ωtdt

X(ω) = Im F (ω) = −
∞∫

− ∞

f(t) sin ωtdt ≡ −
∞∫

0

[f(t) − f(−t)] sin ωtdt

So, if f(t) is real and even

R(ω) = R(−ω) = 2

∞∫

0

f(t) cos ωtdt, X(ω) = 0

and hence (by the Fourier Integral Theorem)

f(t) =
1
π

∞∫

0

R(ω) cos(ωt)dω. (24)
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On the other hand, if f(t) is real and odd

R(ω) = 0, X(ω) = −X(−ω) = −2

∞∫

0

f(t) sin(ωt)dt,

f(t) = − 1
π

∞∫

0

X(ω) sin(ωt)dω. (25)

Since an arbitrary function f(t) can always be decomposed into a sum of
an even and an odd function

f(t) =
f(t) + f(−t)

2
+

f(t) − f(−t)
2

= feven + fodd,

we can write,

feven(t) =
1
π

∞∫

0

R(ω) cos(ωt)dω, fodd(t) = − 1
π

∞∫

0

X(ω) sin(ωt)dω. (26)

Next, consider the so-called causal function f(t) = 0 for t < 0. Then since for
this case

f(t) = 2feven(t) = 2fodd(t), t > 0 (27)

we find that

f(t) =
2
π

∞∫

0

R(ω) cos ωtω = − 2
π

∞∫

9

X(ω) sin ωtdω, t > 0

f(0) =
1
π

∞∫

0

R(ω)dω =
1
2
f(0+).

(28)

In this case, the functions R(ω) and X(ω) are not independent. In fact they
are Hilbert transforms of each other.

Cauchy (1826) pointed out that the sine and cosine transforms lead to
reciprocal relations between pairs of functions. If we write

Fc(u) =

√
2
π

∞∫

0

f(t) cos utdt,

then,

f(t) =

√
2
π

∞∫

0

Fc(u) cos tudu, (29)
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and the relation between f(x) and Fc(x) is thus reciprocal. For example e−x,√
2
π

1
1+x2 are a pair of Fourier cosine transforms. Likewise, from Fourier’s sine

formula, we obtain

Fs(u) =

√
2
π

∞∫

0

f(t) sin utdt,

f(t) =

√
2
π

∞∫

0

Fs(u) sin tudu, (30)

which are sine transforms of each other. Thus e−x,
√

2
π

x
1+x2 belong to this

family.

The Poisson Summation formula

Consider the function

S(x) =
∞∑

n=− ∞
f(x + nx0), (31)

where f is some function. S(x) is periodic with period x0 because with n+1 =
m

S(x + x0) =
∞∑

n=− ∞
f [x + (n + 1)x0] =

∞∑

m=− ∞
f(x + mx0) = S(x), (32)

and so it may be expressed as a Fourier Series

S(x) =
∞∑

l=− ∞
Cle

2πilx
x0 ; Cl =

1
x0

x0
2∫

− x0
2

S(x)e− 2πilx
x0 dx. (33)

Substituting S(x) from (31) into (33) and changing variables via y = x+nx0,
we have

Cl =
1
x0

∞∑

n=− ∞

(n+1/2)x0∫

(n−1/2)x0

f(y)e− 2πily
x0 dy =

=
1
x0

∞∫

− ∞

f(y)e− 2πily
x0 dy =

1
x0

F

(
2πl

x0

)
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where F (k) is the Fourier transform of f(x) (Eq. (21)). Therefore we arrive
at the Poisson sum formula:

S(x) =
∞∑

n=− ∞
f(x + nx0) =

1
x0

∞∑

l=− ∞
F

(
2πl

x0

)

e
2πilx

x0 . (34)

In many cases the summation over Fourier-transformed functions is easier
then the original sum. For the special case x = 0, x0 = 1

∞∑

n=− ∞
f(n) =

∞∑

l=− ∞
F (2πl) ≡

∞∑

l=− ∞

∞∫

− ∞

f(u)e−2πiludu. (35)

Example 1

To sum the series

S =
∞∑

n=0

1
a2 + n2

=
1

2a2
+

1
2

∞∑

n=− ∞

1
a2 + n2

, (36)

we put f(u) = 1
a2+u2 , v = 2πl. It remains to calculate the integral

∞∫

− ∞

e−iuv

a2 + u2
du =

∞∫

− ∞

cos uv

a2 + u2
du + i

∞∫

− ∞

sin uv

a2 + u2
du =

∞∫

− ∞

cosuv

a2 + u2
du.

For v > 0, the residue theorem is applied to a closed contour completed
in the lower v half-plane, yielding π

a e−av for the integral. For v < 0, the
contour is deformed around the upper half-plane and the result is similarly
π
a eav. Combining the two results

S =
1

2a2
− π

2a
+

π

a

1
1 − e−2πa

≡ π

2a

[

coth(πa) +
1
πa

]

. (37)

When a → 0, S(a) − 1
a2 → π2

6 , so
∞∑

n=1

1
n2 = π2

6 . By the same method one

can prove the more general result

∞∑

n=0

cosnx

n2 + a2
=

1
2a2

+
π cosh[a(π − x)]

2a sinh(πa)
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Example 2

Let
f(u) = e−2u2+2πiauλ.

Then Eq. (34) yields

1 + 2
∞∑

m=1

e−m2λ2
cos(2mπλa) =

√
π

λ
e−π2a2

[

1 + 2
∞∑

n=1

e− π2n2

λ2 cosh
2π2na

λ

]

. (38)

Taking λ = πt, v = λa, we obtain

1 + 2
∞∑

m=1

e−m2π2t2 cos(2mπv) =
1

t
√

π

∞∑

n=− ∞
e−[ (n+v)

t ]2 . (39)

If f(x) is an even function of x which can be expanded in a Fourier Series of
cosines, in the open interval (−a, a), (34) takes the form (x0 = 2a)

∞∑

n=− ∞
f(x + 2na) =

1
a

∞∫

0

f(x′)dx′

+
2
a

∞∑

n=1

cos
nπx

a

∞∫

0

f(x′) cos
πnx′

a
dx′. (40)

If in (34) we set x = 0, x0 = β, αβ = 2π, n = l and define the
symmetric cosine transforms

f(x) =

√
2
π

∞∫

0

F (t) cos xtdt, F (t) =

√
2
π

∞∫

0

f(x) cos xtdx (41)

then, for α > 0, β > 0, the summation formula for even f(x) takes the form

√
β

∞∑

n=− ∞
f(nβ) =

√
α

∞∑

n=− ∞
F (nα) . (42)

This formula may have been known earlier to Gauss. When it was first ob-
served by A.L. Cauchy, his admiration was very great. He said that it was a
discovery worthy of the genius of Laplace. It has much in common with the
Euler-Maclaurin summation formula and in some applications is superior to it.
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The techniques that Fourier invented have had an impact well beyond
studies of heat, or even solutions of differential equations. Real data tend
to be very irregular. Consider electrocardiogram arabesques – tantalizing
curves that contain all the information of the signal but hide it from our
comprehension. Fourier analysis translates these signals into a form that
makes sense, transforming a signal that varies with time (or in some cases,
with spatial dimensions) into a new function, the Fourier transform of the
signal, which tells how much of each frequency the signal contains.

In many cases these frequencies correspond to the frequencies of the actual
physical waves making up the signal. This applies to sound waves (e.g. speech,
music) and all kinds of electromagnetic waves (radio waves, microwaves, in-
frared, visible light and x-rays), not even known in Fourier’s time.

Being able to break down such waves into frequencies has myriad uses,
including tuning your radio to your favorite station, interpreting radiation
from distant galaxies, using ultrasound for medical diagnosis, and making
cheap long-distance telephone calls.

With the discovery of quantum mechanics, it became clear that Fourier
analysis is directly relevant to any dynamical system. On the “position space”
side of the Fourier transform, one can talk about an elementary particle’s po-
sition; on the other side, in “Fourier space,” one can talk about its momentum
or think of it as a wave; and similarly for time vs. energy; electric vs. magnetic
field; intensity vs. phase of an EM wave; and other such “conjugate pairs” of
dynamical variables. The modern realization that matter and energy at very
small scales behave differently from matter and energy on a human scale –
that (for example) an elementary particle does not simultaneously have a pre-
cise position and a precise momentum – is naturally expressed in the language
of Fourier analysis and transform.

While irregular functions, defined on compact domain, can be expressed
as sums of sines and cosines, usually those sums are infinite. Why translate a
complex signal into an endless arithmetic problem in which one must calculate
an infinite number of coefficients and sum an infinite number of waves?

We seem to be jumping from the pot into the frying pan. Fortunately a
small number of coefficients is often adequate. In the case of the heat diffusion
equation, for example, Fourier showed that the coefficients of high-frequency
sines and cosines rapidly approach zero, so all but the first few frequencies can
safely be ignored. In other cases engineers may assume that a limited number
of calculations gives a sufficient approximation, until proved otherwise.

In addition, engineers and scientists using Fourier analysis often don’t
bother to add up the sines and cosines to reconstruct the signal; instead
they “read” Fourier coefficients (or at least the amplitudes; phases are more
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difficult) to get the information they want, the way some musicians can hear
music silently by reading the notes.

They may spend hours on end working happily in this “Fourier space,”
rarely emerging into “physical space.” (For one-dimensional signals, “physical
space” generally corresponds to time, but Fourier analysis can also be applied
to pictures. In this case, “physical space” corresponds to position.)

Fourier decomposition and transforms have been extended, in both clas-
sical and quantum physics and engineering, to other sets of base functions
besides sinusoids. These may be orthonormal or not. Examples are: spa-
tial vibration eigenmodes in non-rectangular geometries; wavelets and Gabor
transforms in space an/or time; and coherent states in quantum optics.

But the time it takes to calculate Fourier coefficients is a problem: with-
out computers and fast algorithms, Fourier analysis would have remained a
theoretical tool, and digital signal-processing technology would not pervade
modern life.

1808 CE Christian Kramp (1760–1826, France). Mathematician at
Strasbourg. Introduced the factorial symbol n!

1808–1810 CE Etienne-Louis Malus (1775–1812, France). Engineer
and physicist. Discovered polarization of light by reflection and presented a
theory explaining double refraction of light in crystals (1810).

Malus was educated at the Ecole Polytechnique and remained associated
with it all his life as an examiner, but his main career was in the army. As an
engineer he accompanied Napoleon’s expedition to Egypt and Syria (1798–
1801).

1808–1837 CE Simeon Dennis Poisson (1781–1840, France). Notable
mathematician. A principal successor to Laplace, both in interests and posi-
tion. There are few branches of mathematics to which he did not contribute
something, but it was in the application of mathematics to physical sub-
jects that his greatest services to science were performed. He considered such
matters as physical astronomy, stability of planetary orbits (1808), heat con-
duction (1811), analytical mechanics (1833), the attraction of ellipsoids, prob-
ability theory, definite integrals, Fourier series and theory of elasticity. One
encounters Poisson Brackets, Poisson’s Constant , Poisson Integral , Poisson
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Equation, Poisson Summation Formula (1827) and the Poisson Distribution
(1837).

He was first to predict the existence of longitudinal and transverse elastic
waves450 (1828) and deduced, in an alternative way to that of Navier, the
basic equations of a viscous fluid. He also studied the propagation of waves
in anisotropic media (crystals).

He derived the equation satisfied by the gravitational potential within a
distribution of matter, which now bears his name (∇2ψ = 4πGρ, 1813).

Poisson was born in Pithiviers. He was educated by his father who had
served as private soldier in the Hanoverian wars but deserted, disgusted by
the ill-treatment he received from his patrician officers. Poisson entered the
École Polytechnique to study mathematics (1798) and immediately began to
attract the notice of Lagrange and Laplace, the latter regarding him almost
as his son. In 1806 he became a full professor, in succession to J. Fourier.
In 1808 he became astronomer to the Bureau des Longitudes and in 1809,
when the Faculté des Sciences was instituted, he was appointed professor of
rational mechanics.

His father, whose early experience let him to hate aristocrats, bred him in
the stern creed of the First Republic. Throughout the Empire period, Poisson
faithfully adhered to the family principles and refused to worship Napoleon.
After the Second Restoration, his fidelity was recognized by his elevation to the
dignity of Baron in 1825, but he never used the title. The revolution of 1830
threatened him with the loss of all his honors, but his disgrace was averted
with the help of his friend Francois Arago (1786–1853) and in 1837 he was
made a peer of France — not for political reasons but as a representative of
French science.

In all his work, his role was that of an insightful extender rather than
that of a bold originator. As a scientist, however, his activity has rarely, if
ever, been equaled. Notwithstanding his many official duties, he found time
to publish more than 300 works, several of them extensive treatises, and many
of them memoirs dealing with the most abstruse branches of pure and applied
mathematics. There is a remark of his that explains how he accomplished so
much: “La vie c’est le travail”.

1809–1810 CE George Cayley (1773–1857, England). Father of mod-
ern aeronautics. Contributed many ideas to early aviation. Clearly defined
for the first time the idea that sustentation can be accomplished by moving

450 His findings, however, created at that time a new difficulty in the wave theory

of light: for if the luminiferous ether behaved like an elastic solid, his analysis

showed that two waves, instead of one, should be visible!
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an inclined surface in the flight direction, provided one has mechanical power
to compensate for the air resistance which hinders this motion.

He belonged to a group of enthusiasts who tried to empirically solve the
problem of flight by building models and studying bird flight. In his papers,
published in 1809–1810, he clearly defined and separated the problem of sus-
tentation, or in modern scientific language — the problem of lift, from that
of drag i.e. the component of total resistance that works against the flight
direction, and must be compensated by propulsion in order to maintain level
flight.

Cayley understood the effect of streamlining on drag, and advocated bor-
rowing from nature in the design of low-drag cross sections (e.g. spindles of
the trout and woodcock). The shape of his profiles almost exactly coincided
with certain modern airfoil sections. Cayley wrote about helicopters and para-
chutes. He conceived the biplane and built a glider that carried a coachman
for 270 meters. Cayley was born in Brompton, England.

1809–1822 CE Jean-Baptiste (Pierre Antoine de Monet, le
Chevalier) de Lamarck (1744–1829, France). Naturalist. A thinker who
played an important part in preparing the way for universal acceptance of
the doctrine of evolution . He also propounded a theory, known by his name
as Lamarckism that evolutionary change might have occurred by the inher-
itance of ‘acquired characteristics’, i.e. he believed that changes that came
about during an organism’s lifetime, as a result of active adaptation to cir-
cumstances, would become impressed upon its genome, or chromosomes, and
thus be reproduced in succeeding generations. His ideas were outlined in his
book Philosophie Zoologique (1809).

Lamarck was born in Bazentin, Picardy. He studied medicine, meteorology
and botany, and traveled across Europe as botanist to King Louis XVI from
1781. In 1793 he was made professor of zoology at the Museum of Natural
History in Paris.

Lamarck was the first to distinguish vertebrate from invertebrate animals
by the presence of a bony spinal column. He was also the first to establish
the crustaceans, arachnids, and annelids among the invertebrates451. It was
Lamarck who coined the word ‘biology ’. His studies of both living and fos-
sil invertebrates were described in his book Natural History of Invertebrate
Animals (1815–1822).

Unfortunately, all attempts to demonstrate a Lamarckian scenario in real-
life heredity have failed, either because the demonstration itself has been

451 So little was known about invertebrates at this time that some scientists grouped

snakes and crocodiles with insects.
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unconvincing or because the phenomenon said to have been observed were
open to an alternative, Darwinian interpretation. The incentive to support
Lamarck lay partly in the fact that his theory seems only fair: the skills
that human beings obtain by their own endeavors and exertions should surely
become part of their children’s heritage. This, after all, is what happens
regularly in the kind of inheritance that takes place extragenetically through
culture452.

1810–1820 CE Franz Joseph Gall (1758–1828, Germany and France).
Physician and anatomist. Pioneer in ascribing cerebral functions to various
areas of the brain; first to identify grey matter of brain with neurons and
white matter with ganglia; sought to establish relationship between faculties
and shape of skull (phrenology)453. Wrote Anatomy and Physiology of the
Nervous System (1810–1820).

452 The Lamarckian idea was not new: the first theory of evolution came from

the Book of Genesis (25 – 30), where the story about breeding suggests that

environmental influences can affect heredity.

According to the story, Jacob came to his father-in-law, Laban, and to Laban’s

daughters to claim his reward for 20 years of service to them. After some

discussion it was agreed that his reward should be to take for his own from

Laban’s flocks all the brown sheep and all the spotted, speckled and banded

goats.

Jacob accordingly set about increasing the proportion of such goats in the flock.

He did this by causing them, as the famous depiction by the seventeenth-century

Spanish painter Bartolomé Murillo shows, to mate in the presence of rods, or

wands, of green poplar, hazel and chest-nut stripped of bark in such a way that

they were emblazoned with alternating bands of white and dark wood. This is

alleged to have done the trick. The offspring of goats influenced by the stripes

now had among them, according to the tale, an increased proportion of “ring-

straked (banded) speckled, and spotted” goats!

The story of Jacob and the sheep of Laban is by no means uplifting, but it

does illustrate the great antiquity of Lamarckian ideas and helps to explain

why those ideas enjoy a popular revival every few decades.
453 A pseudo scientific theory based on the idea that certain mental faculties and

character traits are indicated by the configuration of a person’s skull, i.e. that

mental qualities are associated with physical characteristics. The sciences of

physiology and psychology have shown that different portions of the brain do

have certain functions, but these usually merely receive sensory stimuli and

relate them to action. However, the knowledge we have accumulated so far

tends to disprove phrenology.
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Gall was born in Tiefenbrunn, Germany; Physician in Vienna (1785); took
up residence in Paris (1807). His lectures on phrenology were popular, but
suppressed (1802) as being subversive to religion.

1810–1836 CE Jöns Jacob Berzelius (1779–1848, Sweden). Distin-
guished chemist. Made valuable contributions to the development of atomic
theory. Discovered the elements selenium and thorium (1829). He was the
first to isolate the elements calcium, silicon (1823) and tantalum, and to note
and describe allotropy, isomorphism and chemical catalysis (1835). He orig-
inated the system of writing chemical symbols454 and formulae (1813), and
undertook an extensive program to determine the relative atomic weights of
the known elements (1818–1826).

Berzelius was born at Väfversunda Sorgard, near Linköping, Sweden. He
went to Uppsala University, where he studied chemistry and medicine, and
graduated as M.D. in 1802. He served as a professor of chemistry at Stockholm
from 1807 until 1832. About 1807 he began to devote himself to what he made
the chief object of his life — the elucidation of the composition of chemical
compounds through atomic theory. During 1810–1820 he analyzed over 2000
inorganic compounds to determine the weight ratios of the various constituent
elements, using oxygen as the basis of reference. This resulted in the first table
of atomic weights which he published in 1818 and 1826: most elements are
presented with atomic weights very close to those accepted in the 20th century.

Another service of the utmost importance which he rendered to the study
of chemistry was in continuing and extending the efforts of Lavoisier and his
associates to establish a convenient system of chemical nomenclature, later

454 Some of the elements retained their old names: copper = the metal from Cyprus

(301 AD); gold = gelb = yellow (teutonic; the Latin aurum is akin to Aurora,

goddess of the dawn).

Many elements have names derived from Greek roots: chlorine, from its color,

chlorus = yellowish green (Davy, 1811); chromium, from chroma = color.

Other elements have been named after mythological deities or personages: vana-

dium from Vanadis, one of the names of the Norse goddess Freya; thorium

from Thor, the Scandinavian war-god; tantalum and niobium from Tantalus

and Niobe, of Greek mythology. Names of places where compounds of ele-

ments were first discovered have sometimes formed the bases of other names:

strontium, from Strontian, in Scotland; ruthenium, from Ruthenia (Russia);

ytterbium, from Ytterby (Sweden); hafnium, named after Copenhagen, for-

merly called Hafnia; masurium, after a lake in East Prussia; rhenium, from the

Rhine; palladium and uranium after Pallas and Uranus, discovered about the

same time; selenium and tellurium are named after the Moon (selene) and the

Earth (tellus).
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to become accepted in the scientific literature: an element is generally rep-
resented by the first letter of its Latin name, or, in the event of elements
with the same first letter, by the first two letters. Compounds are symbol-
ized by juxtaposing the element symbols, superscribed455 with the number of
atoms involved if greater than one; e.g., carbon dioxide is symbolized as CO2.
Berzelius was first to classify minerals on a chemical basis.

1811 CE Amadeo Avogadro (1776–1856, Italy). Physicist. Postu-
lated the Avogadro hypothesis which states that for a given temperature and
pressure, equal volumes of gas have the same number of molecules (moles)456.
This provides an explanation for the law of integral volume ratio [asserts that
when two gases combine chemically, they do so such that the two volumes
involved are in the ratio of whole numbers]. It was discovered by Joseph
Louis Gay-Lussac (1778–1850, France) in 1809.

Avogadro’s hypothesis was ignored until 1865, when Joseph Loschmidt
(1821–1895, Austria) used the new kinetic theory of gases to obtain the

number of molecules of an ideal gas in a cubic centimeter as 2.69 × 1019

under standard conditions. [Loschmidt-Avogadro number. Also given as
6.022×1023 molecules/mole, since 6.022

2.69 104 ∼= 22400, the number of cm3 in 22.4
liters.] This number is one of the fundamental constants of nature. Unlike the
dimensionless constants, this one belongs to the category of constants whose
numerical values depend on conventions and system units. Here specifically,

455 In 1834, Justus von Liebig revised this by replacing superscript by subscript,

e.g., CO2 → CO2.
456 The ideal gas equation [which combines Boyle’s law (1660) with Charles law

(1787)], is: PV = αT , where α = P0m
ρ0T0

is a constant which depends on

the selected mass m of a particular gas. There are two options for making

this a useful law: either to agree on a fixed mass of gas (say, one gram) or

choose a variable mass, but one that always has the same number of molecules

(molecular mass, mole). In the first case, α will differ from one gas to another.

In the second case, α (denoted by R) will have the same value for 1 mole of all

gases. It is known as the gas constant . Thus, the ideal gas equation, referring to

one mole of any gas, is PV = RT , and PV = nRT for n moles. Here n = m
M

,

m being the mass in grams and M is the molecular weight (mass). It has been

found experimentally that one mole of any gas under standard pressure and

temperature occupies approximately 22.4 liters.

Avogadro’s hypothesis (which later became a law in the framework of kinetic

theory of gases) removed a serious obstruction to progress in chemistry since

it provided a simple way of comparing masses of molecules by weighing equal

volumes of two gases. The results agreed with other evidence, leading chemists

to trust the hypothesis.
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on the centimeter unit and the values of standard temperature and pressure
(for Loschmidt’s number), and of the numerical scale of atomic and molecular
weights (for Avogadro’s number457). Once these definitions are made, the
value of the constants is immutable. All that remains is to measure it as
accurately as possible.

Avogadro was born at Turin. He was for many years professor of physics
at Turin University. He published numerous physical memoirs but is chiefly
remembered for his “Essai d’une maniére de déterminer le masses relatives
des molécules elémentaires des corps, et les proportions selon lesquelles elles
entrent dans les combinaisons”, in which he enunciated his hypothesis. He
coined the term molecule.

1811 CE Birth of the Siamese twins Eng and Chang (1811–1874), iden-
tical twins joined together at the hip. They ended up as American citizens,
taking the name Bunker, and before the Civil War they were shareholders
in North Carolina. Eng and Chang had seven daughters and three sons for
Chang, seven sons and five daughters for Eng. (The birth of Siamese twins is
very rare, about 1:50,000).

1811 CE Charles Bell (1774–1842, Scotland). Surgeon and anatomist.
Discovered distinct functions of sensory and motor nerves and the dual nature
of spinal nerves (1811).

Asserted in his Idea of a New Anatomy of the Brain that different parts
of the brain undertake different functions and that the specific functions of
each of the various divisions of the peripheral nerves derive from the part of
the brain connected to that division.

1812 CE Volcanic eruption in the Azores (1811) led to a bitter winter in
1812, and was a major factor in the defeat of Napoleon’s army in Russia.

457 The precise value of Avogadro’s number for the 12C atomic weight scale is

6.022169 × 1023 atoms per gram atomic weight. One gram atomic weight of

any element (i.e., the atomic weight of the element, expressed in grams) is

called a mole. One mole of any pure substance — whether it is composed of

atoms, molecules, ions, electrons, or any other kind of particle — contains (by

definition) Avogadro’s number of particles. For this reason, Avogadro’s number

is given by NA = 6.022169 × 1023 mole−1 with the numerator “particle” being

understood. Thus, 1 mole of H atoms weighs precisely 1.00797 g; 1 mole of

N atoms weighs 14.0067 g. Similarly, 1 mole of water molecules H2O weighs

15.9994 g+2(1.00797 g) = 18.0153 g. Avogadro’s number of photons (a mole

of photons) is called 1 einstein. The energy of one einstein at wavelength λ is
EAhc

λ
.
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1811–1816 CE Organized bands of English rioters called Luddites458 de-
stroyed labor-saving machines as a protest against their low wages and terrible
working conditions, and because of the widespread prejudice that its use pro-
duced unemployment.

The riots arose out of severe distress caused by the war with France.
Apart from this prejudice, it was inevitable that the economic and social
revolution implied in a change from manual labor to work by machinery should
give rise to great misery. The riots began (1811) with the destruction of
stocking and lace frames in Nottingham. Continuing through the winter and
the following spring, it spread into Yorkshire, Lancashire, Derbyshire and
Leicestshire. They were met with severe repressive legislation. In 1816 the
rioting was resumed (caused by depression which followed the peace of 1815
and aggravated by one of the worst recorded harvests) and extended over
the whole kingdom. Vigorous repressive measures, and, especially, reviving
prosperity, brought the movement to an end.

1811–1848 CE Dominique-Francois-Jean Arago (1786–1853,
France). Physicist and statesman. Contributed to the discovery of laws of
light polarization, ruling out the previously assumed longitudinal nature of
light. He thus lead Young (1817) to the correct transverse nature of light’s
vibrations.

Arago devised an experiment (1816) by which the nature of light was
demonstrated via its reduced speed through dense media. Working with Biot,
he made measurements of arc length on the earth which led to the standard-
ization of the metric system of lengths. Encouraged his student Le Verrier
to investigate irregularities in Uranus’ orbit, which led to the discovery of
Neptune.

Arago was educated at the Ecole Polytechnique in Paris and became pro-
fessor of geometry there at the age of 23. Later (from 1830) he became
director of the Paris Observatory. He was minister of war and marine in the
provisional government (1848); responsible for the abolition of slavery in the
colonies.

1812 CE, June Napoleon invaded Russia with a grand army of ca 600,000
men. Of these, only some 90,000 reached Moscow. The rest succumbed to
the common campaign diseases of dysentery and typhus. Typhus had been
endemic in Poland and Russia for many years. Lack of water and insufficient
changes of clothing made bodily cleanliness impossible. Fear of Russian attack
and Polish reprisals caused the men to sleep close together in large groups.

458 Named after Ned Ludd, who in 1779 destroyed frames used in stocking ma-

chines in a village in Leicestershire.



1610 3. The Clockwork Universe

The lice of infested hovels crept everywhere, clung to the seams of clothing,
to the hair and bore with them the bacteria of typhus. Disease alone had
rubbed Napoleon’s central force of some 265,000 men of its effective strength
by the end of the first month!

By June 1813, less than 3000 of his grand army were alive. By the autumn
of 1813 some 470,000 new troops were mobilized for the final battle.

1812–1823 CE Jacque-Philippe-Marie Binet (1786–1856, France).
Mathematician and astronomer. Discovered the rule for matrix multiplication.
He continued to investigate the foundation of matrix theory, thus setting the
scene for later work by Cayley and others. Derived the laws of motion of a
particle in a field of a central force (Binet’s formulas459).

Binet was a student at the Ecole Polytechnique in Paris and after gradu-
ating worked for the Department of Bridges and Roads of the French govern-
ment. Appointed to the chair of astronomy at the College de France (1823).

1813 CE Simon-Antoine-Jean Lhuilier (1750–1840, Switzerland).
Mathematician. Noticed that Euler’s formula v−e+f = 2 was wrong for solids
with holes in them and derived instead the more general formula v − e + f =
2 − 2g where g is the number of holes. This was the first known result on
what we call today topological invariant .

1813–1822 CE Pierre-Charles-Francois Dupin (1784–1873, France).
Differential geometer. Invented the Dupin indicatrix 460 which gives an indi-
cation of the local behavior of a surface. Dupin was a pupil of Monge at
the Paris Ecole Polytechnique. Entering the Napoleonic Navy as an engineer,
Dupin lived to be a promoter of science and industry, a peer of France and
a senator under Napoleon III. He was a professor at Conservatoire des Artes
(1819–1864).

459 Binet’s formulas: Given the equation of the particle’s path r = r(θ) under a

central force in the xy-plane, the first formula is v2 = h2

[
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where

v is the particles’s velocity; the second formula is F = − mh2

r2

[
1
r

+ d2

d θ2

(
1
r

)]
,

where F is the centripetal force acting in the central motion, m is the particle’s

mass, and h is twice the areal velocity.
460 Dupin’s indicatrix is the ellipse κ1x

2 + κ2y
2 = 1 with principal semi-axes

{
1√
κ1

, 1√
κ2

}
where {κ1, κ2} are the principal curvatures of a surface. The nor-

mal curvature κ = κ1 cos2 α + κ2 sin2 α is obtained graphically by intersecting

the ellipse with a line y = x tan α through the center; the distance inter-

cepted by the ellipse in the α direction is then equal to 1√
κ
.
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1814–1823 CE Joseph von Fraunhofer (1787–1826, Germany). Op-
tician and physicist. The true founder of astrophysics; laid the foundations of
solar and stellar spectroscopy. Born at Straubing in Bavaria to a very poor
family, he was apprenticed to an optician at the age of 11 and lived in a half-
ruined house in Munich. One day this slum collapsed, killing all its occupants
except the young boy, who was pulled out of the ruins seriously injured. The
Elector of Bavaria showed his compassion to the survivor by granting him
the sum of 18 ducats, which Joseph spent on books and optical instruments.
Through solitary and dogged labor he became an expert optician, and at 19
he went to work for a large glassware and scientific instrument factory. Three
years later he became one of its directors!

In an attempt to improve telescope objectives, he embarked on a study
of prisms and refraction. He repeated Newton’s experiments, but added to
the prism a small telescope which received the colored beams and gave a
particularly clear image of the spectrum. Having far better prisms at his
disposal than had Newton, he discovered (1814) that the continuous spectrum
of the sun is interrupted by a large number of dark lines: certain wave-lengths
were lacking, or at least were greatly suppressed, in the light of the sun.

These dark lines were subsequently called Fraunhofer lines461. He not only
discovered them, but undertook the measurement of their relative positions,
making up a map of the spectrum. By a series of ingenious experiments, he
proved that these dark lines really are a property of sunlight and are not due
to instrumental shortcomings.

Fraunhofer then turned to the spectra of other celestial bodies. In the
spectrum of Sirius he could see lines which were completely different from
those he found in sunlight. He noticed that different stars had different spec-
tra, thus showing the way to stellar spectroscopy. At the same time this
tireless optician was studying artificial light sources; he noticed in particular
that the same bright yellow line, or rather a pair of lines, was to be found in
nearly all flames. This double line is in exactly the same position as a very
strong line in the solar spectrum, called the D line by Fraunhofer.

He invented the diffraction grating and established the fundamental law
which makes it possible to find the wavelength of monochromatic radiation
from the position of the corresponding line462 in the grating spectrum of order

461 Whollaston had detected 4 of the strongest lines in 1802, but he thought that

they were the natural separations between the colors!
462 A diffracted wave, obtained by a grating from a plane wave at normal incidence,

has local maxima in directions making angles θ with that of the white central

image such that sin θ = nλ
d
, where d is the distance between 2 successive slits

in the grating and n are integers. Thus, the grating disperses light composed of
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n. With the aid of his gratings Fraunhofer determined the first accurate value
of the wavelength of the sodium463 D lines in 1822.

In his studies he used a beam of light coming practically from infinity
(plane-wave), which is the one used in observing the stars through a tele-
scope. This kind of diffraction has since been named Fraunhofer diffraction
in his honor [in contradistinction to the Fresnel diffraction from close point-
sources]. In 1823 he was appointed conservator of the physical cabinet at
Munich, and in the following year he received from the elector of Bavaria the
civil order of merit.

All the scientific achievements of Joseph von Fraunhofer were carried out
in his spare time, and one sometimes wonders how such an enormous amount
of work could have been done in so short a life. He died at Munich and
was buried near Reichenbach. On his tomb is the inscription “Approximativ
sidera”.

Fraunhofer started his apprenticeship at a tender age, produced a large
number of inventions, both large and small, and died before he was 40. One
might say that he was, in a way, the Mozart of physics.

1814–1825 CE George Stephenson (1781–1848, England). Engi-
neer and inventor. Known as the ‘Founder of Railways’. Completed the
adaptation of the steam engine to the railroad.

He was born in Wylam, near Newcastle, the son of a coal-ship fireman. In
boyhood he was employed as a cowherd, in his 14th year he became assistant
fireman to his father at a shilling a day, and in his 17th year was yet unable to
read. In his 18th year he began to attend a night school and made remarkably
rapid progress. In 1804 he moved to Killingworth and there devised his miner’s
safety lamp (1815), independently of Humphrey Davy who was producing
his lamp at about the same time.

various wavelengths more, the closer the spacing of the slits. Hence the efforts

of this ingenious physicist to engrave gratings with closer and closer lines. He

constructed a machine that could engrave 3000 lines in one centimeter of glass,

with a diamond point.
463 Sodium (Na) was first isolated by Humphry Davy (1807) through electrolysis

of Na2CO3 (caustic soda), using a voltaic battery (1800). Previous to this

discovery, caustic alkalies were regarded as elements, although Lavoisier (1789)

hinted that alkaline earths might be oxides of unknown metals.

Fraunhofer did not know in 1822 that the lines that he tabbed “D” were due

to sodium, but Kirchhoff (1859–1861) showed that Fraunhofer’s D-lines were

produced by the cool sodium vapor of the solar atmosphere.
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In 1814 he completed his construction of a traveling engine for the tram-
roads between the coal-ship and the shipping port, 15 km distant. The engine,
which he named ‘My Lord ’, ran a successful trial on 25th of July, 1814 at a
speed of 10 km/h. His second engine, ‘Puffing Billy ’, embodied his invention,
the steam blast. This device increased the draft in the boiler. In turn, the
fire became hotter and made steam of higher pressure.

He was instrumental in opening the world’s first railway, the Stockton and
Darlington Railroad on Sept. 27, 1825. His locomotive The Rocket (1829)
traveled at the then unheard of speed of 48 km/h, and became a model for
later locomotives.

With the wealth he amassed from his inventions he became a philan-
thropist for the miners cause, establishing night schools for miners and edu-
cational and recreational facilities for their children.

1815 CE, April 5–10 The greatest volcanic explosion of recent centuries.
The eruption of Mount Tambora (8 ◦15′S, 118 ◦00′E) on the Island of Sumbawa
in Indonesia killed ca 100,000 persons. About 150 km3 of tephra (1.7 × 106

tons) were ejected into the atmosphere, giving rise to remarkable sunsets
and luminous twilights in England for 6 months after the eruption464. The
total energy released in the two series of eruptions (April 5 and April 10), is
estimated at 8.4 × 1026 erg, 80 times bigger than that of Krakatoa (1883).

The year that followed has sometimes been called the year without a sum-
mer , there being only 3 or 4 days without rain between May and October
1816 in Wales with subsequent poor harvests and food shortage.

The explosion affected climate on a world-wide scale: temperatures
dropped by about 2 ◦–4 ◦C in Paris, Geneva, Milan, and some North Ameri-
can locations465, resulting in considerable famine and extremely cold winters
in many parts of the world. This lasted for about 3 years. It was not until
1847 that the first scientific expedition went to Sumbawa to study Tambora.

1815 CE, June 16-18 Battle of Waterloo (Belgium): An allied army un-
der the command of Wellington (mixed British-Dutch-German-Belgian force
of 100,000 men) and Blücher (Prussian force, ca 120,000 strong) defeated
Napoleon’s French army (ca 124,000 men); Austrian and Prussian monarchies

464 These may have inspired some of the best works of the English painter J.M.W.

Turner and the novel Frankenstein by Mary Shelley who lived at that time

in Geneve with Shelley and Byron.
465 A freezing cold was reported in New England on the night of June 10, 1816,

and on July 04, 1816 during daytime!
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restored; German confederation replaced Confederation of the Rhine; King-
dom of Netherlands formally united Belgium and Holland. France’s bound-
aries restored to those of 1790.

Napoleon very nearly defeated Wellington at Waterloo; Napoleon’s ill-
health may have provided the necessary weight to tilt the balance (migraine,
hemorrhoids, gall stone colic, peptic ulcer and thyroid deficiency).

1815–1820 CE John Loudon McAdam (1756–1836, Scotland). Inven-
tor. Originated the paving of roads with crushed rock, known as the macadam
type of road surface. He was the first man to recognize that dry soil supports
the weight of traffic, and that pavement is useful only for forming a smooth
surface and keeping the soil dry. His macadam pavements consist of crushed
rock packed into thin layers. McAdam methods of road building spread to all
nations.

He was born at Ayr, Scotland, being descended on his father side from the
McGregors. In 1770 he went to New York and returned with a considerable
fortune (1783). The highways of Great Britain were at this time in a very bad
condition and McAdam at once began to consider how to effect reforms. In
pursuing his investigations he had traveled over 50,000 km of roads. In 1819
he published a Practical Essay on the Scientific Repair and Preservation of
Roads, followed, in 1820, by the Present State of Road Making . As a result of
a parliamentary inquiry in 1823 into the whole question of road-making, his
views were adopted, and in 1827 he was appointed general surveyor of roads.

History of Roads466 and Highways

Early roads were built in the Near East soon after the wheel was invented
(ca 3500 BCE). As travel developed between villages, towns, and cities, trade
routes were made. One such early system of roads was the Old Silk Trade

466 The word road came from the Middle English word rode, meaning a mounted

journey .This, in turn, was derived from the Old English rad , from the word

ridan, meaning to ride.
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Route which extended over 10, 000 km connecting China and Rome and pre-
Christian Europe across Turkestan, India, and Persia. The first road markers
were piles of stones at intervals. Trails through forests were marked by blazing
trees.

The Egyptians, Carthaginians and Etruscans all built roads. But the
first really great road-builders were the Romans. They knew how to lay a
solid base, paved with flat stones and recognized that the road must slope
slightly from the center toward both sides to drain off water. They also dug
ditches along the sides of the road to carry water away. Roman roads were
intended mainly to transport soldiers across their empire. These roads ran
in almost straight lines and passed over hills instead of cutting around them.
The Roman built more than 80, 000 km of roads and some are still in use.

In the Middle Ages there was little reason to build good roads, because
most of the travel was on horseback. In South America from the 1200’s to
the 1500’s the Inca Indians built a network of 16, 000 km of roads connecting
their cities. In England, certain main roads were higher than the surrounding
ground because earth was thrown from the side ditches toward the center.
Hence they were called highways. These roads were under the protection of
the king’s men and were open to all travelers. In North America, early roads
were surfaced with hand-broken stone and gravel. Some roads were covered
with logs or planks, laid crosswise, and were therefore very bumpy.

When the steam locomotive arrived in 1830, the rapid development of
railroads began and people became convinced that the railroad was the best
means of travel over long distances. From 1830 to 1900, there was little
change in the surfacing materials for roads and highways. Even in the cities,
only wood blocks, brick, and cobblestones were used. By 1900, because of the
rapid development of the United States, there was a growing demand for good
roads. It was mainly for roads extending a short distance from the railroad
so farmers could get their produce to the rails. But with the ever growing use
of the automobile after 1900, the demand arose for good roads to all places.

The first concrete road was laid in Detroit in 1908.

1815–1827 CE William Prout (1785–1850, England). Chemist and
physician. Practiced in London. Suggested that hydrogen is the fundamen-
tal unit from which all elements are built (1815–1816). Among the first to
classify food components into fats, carbohydrates, and proteins (1827). Made
significant determinations of the density of air (1822–1823).
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1815–1840 CE Olinde Rodrigues (1794–1851, France). Mathemati-
cian, economist and reformer with a brief career in mathematics. Born to
Jewish parents of Portuguese ancestry. A student of Monge at the École
Polytechnique. In 1815 he contributed to the differential geometry of surfaces
(Rodrigues formula and Rodrigues theorem) and in 1816 his name became
attached to a theorem in the theory of Legendre functions (also Rodrigues
formula). Soon thereafter he became interested in the scientific organization
of society, but made his living off the family banking business.

In 1840 he found some spare time to prove that every displacement of
a rigid body is the resultant of a rotation and a translation. Described a
rotation by four parameters, the first three determining the direction of the
axis. He then developed explicit formulae for the resultant of two rotations
and stressed the fact that the product is not commutative. He came to the aid
of Saint-Simon467 (founder of Socialism) in his destitute old age, supported
him during the last years of his life and became one of his earliest adherents.

1816 CE Renè Theophile Hyacinth Laënnec (1781–1826, France).
Physician. Invented the stethoscope: a device physicians use to hear the
sounds produced by certain organs of the body, such as the heart, lungs,
veins, and arteries.

Laënnec was a pupil of Napoleon’s personal physician, Corvisart. He
made the first stethoscope from a hollow wooden tube.

1816–1822 CE Francois Magendie (1783–1855, France). Physiologist.
Showed for the first time that nitrogenous foods were needed for life. Professor
at College de France (from 1831).

He fed dogs on diets composed of distilled water and one specific food,
such as sugar, olive oil, or butter. The dogs in every case died after about a
month.

Extended the work of Charles Bell (1811) on the functions of the dorsal and
ventral roots of spinal nerves (1822). Formulated and demonstrated the Bell-
Magendie Law that the anterior roots of the spinal cord control movements
while the posterior roots control sensation.

467 Claude-Henri de Rouvroy, Comte de Saint-Simon (1760–1825, France).

Volunteer with the French troops fighting with Americans in the American

Revolution (1777–1783); on his return to France (1783) made a fortune in land

speculation but lost it (by 1805), and lived thereafter in poverty. Founded a

‘religion of socialism’, combining the teaching of Jesus with ideas of science and

industrialism. His disciples spread his system, known as Saint-Simonianism

throughout Europe.
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History of Biology and Medicine, III – The ‘Age of
Reason’

During the Renaissance and Age of Discovery, renewed interest in em-
piricism as well as the rapidly increasing number of known organisms led to
significant developments in biological thought; Vesalius inaugurated the rise
of experimentation and careful observation in physiology, and a series of natu-
ralists culminating with Linnaeus and Buffon began to create a conceptual
framework for analyzing the diversity of life and the fossil record, as well as
the development and behavior of plants and animals. The growing importance
of natural theology — partly a response to the rise of mechanical philosophy
was also an important impetus for the growth of natural history (though it
also further entrenched the argument from design).

In the 18 th century many fields of science — including botany, zoology,
and geology — began to professionalize, forming the precursors of scientific
disciplines in the modern sense (though the process would not be complete
until the late 1800s). Lavoisier and other physical scientists began to con-
nect the animate and inanimate worlds through the techniques and theory of
physics and chemistry.

In 1665, using an early microscope, Robert Hooke discovered cells in
cork, and a short time later in living plant tissue. The German Leonhart
Fuchs, the Swiss Conrad von Gesner, and the British authors Nicholas
Culpeper and John Gerard published herbals that gave information on the
medicinal uses of plants.

In 1628 William Harvey explained that blood circulates throughout the
body, and is pumped by the heart. Antony van Leeuwenhoek’s use and
improvement of the microscope in about 1650 opened up the micro-world of
biology. The History of Plants was greatly extended, almost into an ency-
clopedia, by Giovanni Bodeo da Stapel in 1644 CE. Jan Swammerdam
(1658) and Marcello Malpighi (1660) were the first to observe and describe
red blood cells, while Leeuwenhoek was the first to describe spermatozoa,
bacteria and infusoria in the 1670’s and 1680’s. By the 1690’s plants were,
like animals, known to be sexual, having stamens and pistils.

Systematizing, naming and classifying dominated biology throughout
much of the 17th and 18th centuries. Carolus Linnaeus published a basic
taxonomy for the natural world in 1735, and in the 1750’s introduced scientific
names for all his species. The discovery and description of new species, and
collecting specimens became a widespread passion of biologists.
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This work of classification was led by the Frenchmen Antoine de Jussieu
(1789), Geoffray St. Hilaire (1796), Georges Cuvier (1812) and August
de Condolle (1819).

One of the major evolutional trends during 1530–1750 CE was the pas-
sage from alchemy to medical chemistry. The ancient Greek biologists and
medical writers had never considered the physiology of the human body in
specifically chemical terms. Since ancient the Greek philosophers and the me-
dieval scholars were not greatly interested in chemical substances and their
properties, most medicines were not derived from mineral sources. However,
some alchemists became interested in the application of alchemy to medicine.

Such a movement culminated in the work of Paracelsus (1531), who en-
deavored to bring into being a new science of medical chemistry (iatrochem-
istry), by uniting medicine with alchemy.

He put forward a theory that the human body was essentially a chemical
system composed of mercury, sulphur and salt. Illness, according to Paracel-
sus, could arise from a lack of balance between these three elements, and
the balance was to be restored by mineral medicines, not organic remedies.
Iatrochemistry was developed further by van Helmont (1648).

One of the earliest chemists to put forward a mechanical theory of chemical
change was John Ray (1630). His line of thinking was extended by Robert
Boyle (1684). Boyle was interested in the work of iatrochemists, particularly
in their empirical observations, but he was of the view that those observations
should be explained in terms of the mechanical philosophy, namely — that
matter consists of particles of corpuscles in motion.

The English school of medical chemists of the 17 th century, includ-
ing Robert Hooke (1635–1703), Richard Lower (1631–1691), and John
Mayow (1645–1679) — did not survive, and modern chemistry was founded
in France at the end of the 18 th century. Boyle had arrived at a reasonable
definition of a chemical element and at a promising conception of method in
chemistry.

The discovery of the circulation of the blood by Harvey (1628) estab-
lished its primacy and many 18 th century authors attributed to it alone all
the properties formerly associated with the other humours. From the end of
the 18 th century physiological investigations concentrated more upon its con-
stituent parts and assigned properties to them and, although modern science
reliance on blood tests and transfusions has emphasized its role in diagnosis
and therapy, it is now viewed primarily as a carrier and transmitter of other,
more important, chemical substances round the body (e.g. hormones).
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The concept of the brain as an anatomical entity emerged quite early in
Western thought. The brain is first mentioned in Egyptian papyri and much
of its detailed gross anatomy was described by the Greeks especially after the
establishment of dissection as a valid method of inquiry. Galen, for example,
was able to produce a classification of the cranial nerves.

With the revival of anatomy during the Renaissance, more features of the
brain were described, notably its arterial supply by Thomas Willis (1664).
Marcello Malpighi (1660) first investigated cerebral structure microscopi-
cally. By 1800, this anatomical tradition has elucidated most of the major
visible features of the organ except for the regularity of the cerebral convul-
sions.

Harvey’s discovery of the blood’s circulation (1628) also helped to eluci-
date the mechanics of breathing (respiration). First, Robert Boyle, John
Mayow and others (1645–1679) showed air necessary for life, Mayow recog-
nizing a component of air indispensable for combustion, respiration and con-
verting venous into arterial blood.

Then Malpighi (1679) microscopically identified the pulmonary capillar-
ies and Albrecht von Haller (1752) expounded the mechanics of breathing.
The identification of Mayow’s aerial nitre with oxygen by A. Lavoisier (1780)
and others, sealed the analogy between combustion and respiration.

Finally, E.F.W. Pflüger showed that the essential chemical changes of
respirations occur in the tissues and cells rather than the lungs (metabolism).
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Table 3.9: Leading Biologists and Men of Medicine (1600–1820)

Key:

B = Biology ZO = Zoology CL = Chemistry of Life
A = Anatomy M = Medicine EP = Epidemics
P = Physiology EM = Embriology T = Taxonomy
BO = Botany MB = Microbiology IM = Immunology
S = Surgery MR = Medical Research PA = Pathology

EB = Evolutionary Biology

Name fl. Specialization

Gaspard Bauhin 1588–1623 (BO), (A)

Eliyahu de Luna Montalto 1596–1616 (M), (MR)

John Gerard 1597–1607 (BO)

Andreas Libau 1597–1613 (P), (CL)

John Tradescant 1600–1638 (BO)

Adrian van der Spiegel (Spigelius) 1603–1625 (BO), (A)

Santorio Santorio 1603–1614 (P), (M)

Theodore Turquet de Mayerne 1603–1644 (P), (CL), (MR)

Hieronimus Fabricius 1604–1619 (EM), (A), (M)

Joseph Solomon Delmedigo 1616–1629 (M)

Johann Baptista van Helmont 1620–1648 (BO), (M), (CL)

Zacutus Lusitanus 1625–1642 (M), (MR)

William Harvey 1628–1651 (P), (M)

Franciscus de la Boë 1641–1672 (M), (A), (CL)

Thomas Browne 1645–1680 (BO), (M)

Georg Rumpf van Hanau 1655–1698 (BO)

Thomas Wharton 1656–1673 (M), (A)

Jan Swammerdam 1658–1673 (P), (A), (EM)

Marcello Malpighi 1660–1679 (P), (A)

Lorenzo Bellini 1664–1704 (M), (A)

William Petty 1664–1687 (A), (M)

Thomas Willis 1664–1672 (A), (P)

Richard Lower 1665–1691 (P)

Robert Hooke 1665–1703 (P)

Thomas Sydenham 1666–1686 (EP), (M)
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Table 3.9: (Cont.)

Name fl. Specialization

Francis Willughby 1667–1704 (T)

John Ray 1667–1705 (T), (CL)

Francesco Redi 1668–1697 (B)

Anton van Leeuwenhoek 1668–1692 (MB)

Regnier de Graaf 1668–1673 (M), (A)

Nehemiah Grew 1672–1682 (M), (BO)

John Mayow 1674–1679 (P), (M)

Robert Boyle 1684–1691 (P)

Rudolph Camerarius 1694–1721 (M), (BO)

Giacomo Pylarini of Smyrna 1701 (M), (IM)

Stephen Hales 1705–1730 (P)

Hermann Boerhaave 1707–1732 (M), (BO)

Antoine de Jussieu 1719–1758 (BO)

Pierre Fauchard 1728–1761 (M)

Jean Astruc 1729–1753 (M)

Carolus Linnaeus 1735–1763 (BO), (T)

Georges Louis Leclerc (de Buffon) 1739–1788 (BO)

Julien de la Mettrie 1740–1751 (M), (S)

Percival Pott 1740–1780 (M), (S)

Giovanni Battista Morgagni 1740–1760 (M), (A)

James Lind 1747–1794 (S), (M)

Frederik Hasselquist 1749–1752 (BO)

Victor Albrecht von Haller 1752–1773 (M), (A), (P), (BO)

John Hunter 1760–1790 (M), (P)

Joseph Gottlieb Kölreuter 1761–1766 (BO)

Lazzaro Spallanzani 1765–1785 (P), (B)

Peter Simon Pallas 1766–1794 (BO), (ZO)

William Hewson 1769–1774 (P), (S), (A)

Otto Frederik Müller 1773–1778 (B)

Jan Ingenhousz 1779–1799 (M), (CL)

Jiri Prochaska 1784–1820 (A), (P), (MB)

Christian Sprengel 1793–1816 (BO)

Edward Jenner 1796–1823 (IM)
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Table 3.9: (Cont.)

Name fl. Specialization

Georg Cuvier 1796–1825 (B)

Étienne Saint Hilaire 1798–1801 (ZO)

Samuel Hahnemann 1793–1843 (M)

Jules de Savigny 1798–1801 (ZO)

Aimé Jacques Bonpland 1799–1813 (M), (BO)

Augustin de Candolle 1799–1839 (BO)

Karl Friedrich Burdach 1800–1802 (B), (P)

Gottfried R. Treviranus 1802–1837 (B), (EB)

Charles-Francois de Mirbel 1802–1854 (BO)

Nicolas Théodore de Saussure 1804–1845 (CL), (BO)

Friedrich Sertürner 1805–1841 (CL)

Jean-Baptiste de Lamarck 1801–1822 (B), (T)

Franz Joseph Gall 1810–1820 (A), (M)

Charles Bell 1811–1842 (A), (M)

William Prout 1815–1827 (P)

Renè Theophile Laënnec 1816–1826 (M)

Francois Magendie 1816–1822 (P)

Pierre Joseph Pelletier 1817–1842 (CL)

Joseph-Bienaime Caventou 1817–1877 (CL)

Alfred Donné 1829–1878 (P), (BM), (M)

Thomas Addison 1837–1860 (P), (M)

J.H. Bennett 1845 (P)

E.F.W. Pflüger 1868 (P), (EB)

Claudius Aymand (S), (M)

1816 CE John Farey (1766–1826, England). Geologist and surveyor.
In an article ‘On a curious property of vulgar functions ’ published in the
Philosophical Magazine (1816) he constructed a sequence of common fractions
(now called the ‘Farey Sequence’) defined as follows: For a fixed number n, one
observes all rationals between 0 and 1 which, when expressed in their lowest
terms, have denominator not exceeding n. The sequence is then written in
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ascending order of magnitude beginning with the smallest. For example468

F5 =
{

0
1

,
1
5

,
1
4

,
1
3

,
2
5

,
1
2

,
3
5

,
2
3

,
3
4

,
4
5

,
1
1

}

.

It is then found that this sequence has the following ‘curious property’:
each member of the sequence is equal to the rational whose numerator is the
sum of the numerators of the fractions on either side, and whose denominator
is the sum of the denominators of the fractions on either side. Thus

2
5

=
1 + 1
3 + 2

;
1
3

=
1 + 2
4 + 5

;
2
3

=
3 + 3
5 + 4

.

In the final paragraph of his article, Farey wrote:

I am not acquainted, whether this curious property of vulgar frac-
tions has been before pointed out?; or whether it may admit of
some easy or general demonstration?; which are points on which
I should be glad to learn the sentiments of some of your mathe-
matical readers . . .

One mathematical reader (at least of a French translation) was Cauchy,
and he gave the necessary proof in his Exercises de mathématique which was
published in the same year as Farey’s article. This might have been the end
of the story but there is more to tell.

Farey was not the first to notice the property. Haros469, in 1802, wrote
a paper on the approximation of decimal fractions by common fractions. He

468 The question may arise as to how long is the Farey Sequence? It can be shown

that the n th sequence has the length

L(n) = 1 + Φ(1) + Φ(2) + · · · + Φ(n − 1) + Φ(n)

where Φ(n) is the Euler totient function, equal to the number of numbers smaller

and relatively prime to n [e.g. Φ(1) = 1, Φ(2) = 1, Φ(3) = Φ(4) = Φ(6) =

2, Φ(5) = Φ(8) = Φ(10) = 4, Φ(7) = Φ(9) = 6, Φ(100) = 40]. There is

no simple formula for the above sum of totient numbers, but it is known that

asymptotically for large n the sum is L′ =
(

3
π2 n2

)
. For example L′(10) = 30.4

compared to L(10) = 30.
469 Haros, C.: “Tables pour evaluer une fraction ordinaire avec autant de deci-

males qu’on voudra; et pour trouver la fraction ordinaire la plus simple, et qui

approche sensiblement d’une fraction decimale”, in Journal de L’Ecole Royale

Polytechnique, Tome IV (cahier 11), pp. 364–368, Paris, 1802.
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explains how to construct what is in fact the Farey sequence for n = 99 and
Farey’s “curious property” is built into his construction. However, this is
certainly not a proof, nor for that matter a general statements of the “curious
property”.

Farey himself gave no proof, and it is unlikely that he had found one,
since he seems to have been at the best an indifferent mathematician. As a
geologist he is forgotten. However, the one thing in his life which survives is
just his sequence.

The Farey sequence Fn for the first few values of n are

F1 =
{

0
1 , 1

1

}

F2 =
{

0
1 , 1

2 , 1
1

}

F3 =
{

0
1 , 1

3 , 1
2 , 2

3 , 1
1

}

F4 =
{

0
1 , 1

4 , 1
3 , 1

2 , 2
3 , 3

4 , 1
1

}

Except for F1, each Fn has an odd number of terms and the middle term
is always 1

2 . Let p
q , p′

q′ and p′ ′

q′ ′ be three successive terms in a Farey Sequence.
Then

qp′ − pq′ = 1;
p′

q′ =
p + p′ ′

q + q′ ′ .

These two statements are actually equivalent.

A method of computing a Farey Sequence of order n + 1 from a sequence
of order n is as follows: Let a

c be directly followed by b
d in the n sequence.

Then, the fraction a+b
c+d , c + d ≥ n + 1 is the mediant fraction between a

c

and b
d in the (n + 1) th sequence. Interpolating the Farey Sequence of order n

with such mediant a+b
c+d , satisfying c+d ≥ n+1, we obtain the Farey Sequence

of order n + 1.

1816–1823 CE Francis Ronalds (1788–1873, England). Pioneer of
telegraphy whose ideas were largely ignored. Experimented with sending mes-
sages of words and numbers over few hundred meters by single wires.

On the ground of his estate in Hammersmith, London, he erected an exper-
imental telegraph system. It used a clockwork-driven rotating dials, engraved
with letters of the alphabet and numbers, synchronized with each other, at
both ends of the circuit. They were connected with an iron wire hung on two
strong wooden frames.

Ronalds successfully transmitted and received letters. The British Admi-
ralty was informed of his success but rejected his invention; they felt that
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the telegraph was not needed in peacetime and that the existing semaphore
system was adequate. In their own words: “Telegraphs of any kind are wholly
unnecessary” (1823).

1816–1844 CE Friedrich Wilhelm August Froebel (1782–1852, Ger-
many). Educator and founder of the Kindergarten system.470 Created (1837)
an environment for young children that nurtured self-education, spontaneous
play, and intimacy with nature – the kindergarten.

Born in Oberweissbach, Turingia, Froebel was the fifth son of the village
Lutheran pastor. His mother died when he was an infant and the boy would
spend most of his time in the gardens and forests surrounding his home.
Perhaps because of its botanical heritage, the village became the place where
Froebel would begin to feel a deep, mystical connection with nature, which
later influenced his ideas on education.

Having taken up the education of the sons of his deceased brother,
Friedrich marveled at the auto-didactic nature of their play. Each was dif-
ferent, yet each led himself to new understandings and discoveries through
individual role playing and adventures. Perhaps the prevailing idea that chil-
dren should be “seen and not heard” was not correct. Perhaps children carried
in them the seed of self-development, which should be encouraged, guided and
nurtured by adults. “Kommt, lasst uns unsern Kindern leben” Come, let
us live with our children became the cornerstone for a new approach to
early childhood education. Children are like the tiny flowers; they are var-
ied and need care, but each is beautiful alone and glorious when seen in the
community of peers. “My school shall be called Kindergarten – the garden of
children,” he reasoned.

Froebel labeled his approach to education as “self-activity.” This idea
allows the children to be led by their own interests and to freely explore
them. The teacher’s role, therefore, is to be a guide rather than lecturer.

Froebel studied and worked under Pestalozzi at Yverdon, Switzerland
(1808–10); served during the anti-French campaign (1813–14); assistant in
mineralogical museum, Berlin (1814–16). Founded school at Griesheim
(1816); moved to Keilhau (1817); founded a kindergarten at Blankenburg,
Thuringia (1837); established training courses for kindergarten teachers and
introduced kindergartens throughout Germany. Author of Die Menschen-
erziehung (1826), Mutter- und Koselieder (1844), etc.

470 Prior to Froebel’s kindergarten, children under the age of 7 did not attend

school, since it was held that young children did not have the ability to focus

or to develop cognitive emotional skills before this age. Froebel’s ideas seem

correct enough to us today, yet were radical in his day.
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Froebel’s ideas were promoted in Germany through the intervention of
Baroness Bertha von Marenholtz-Buelow. Through her connections to the
more liberal Weimar court and Thuringian nobility, as well as liberal ur-
ban educators and intellectuals in Dresden, Leipzig, Frankfurt and Berlin,
Madame von Marenholtz-Buelow convinced skeptics and adherents alike that
there was worth in his ideas. She took Froebel’s philosophy to Switzerland,
Holland, Belgium and England. In London, Charles Dickens attended her
lectures and wrote that he was favorably impressed. Other liberal educators
and followers of Froebel transplanted the educational system to the United
States, Canada, and even Japan.

The influence of Froebel’s system was not to end in the 19 th century.
Although modified, child-centered kindergartens are now found throughout
the world. There is a Froebel College on Roehampton Lane in London and
another in Dublin, Ireland, which together with the Pestalozzi Froebelhaus in
Berlin to this day further the child-friendly ideas started by the Thuringian
educator over 165 years ago.471

1817 CE David Ricardo (1772–1823, England). Economist. Founder of
the classical school472of economics. One of the leading economists of the 19 th

century. In “On the Principles of Political Economy and Taxation” (1817)
developed his theory of rent, profit and wages, and presented clear statements
on the quantitative theory of money.

Ricardo was born in London to a religious Jewish family. His father (de-
scended from Portuguese marano’s) emigrated from Holland and became a
successful member of the London Stock Exchange. At the age of 14, Ricardo

471 Norman Brosterman, in his recent book Inventing Kindergarten (New York:

Harry Abrams, 1997), theorizes that Froebel was the impetus for the creations

of a number of renowned modern architects and artists, all who had attended

Froebelian kindergartens where abstraction of natural forms through geometric

shapes was explored. Hence, one finds commonalities in the work of such figures

as Georges Braque, Piet Mondrian, Paul Klee, Wassily Kandinsky,

Frank Lloyd Wright, and Le Corbusier amongst others.
472 Classical economy is based on the assumption that people behave rationally ;

they desire to maximize gain and have freedom of choice (of goods, occupations,

etc.). The theory then deduces from these premises how people act individually

and how their actions collectively determine prices and quantities of goods in

the market. Deductive theory based on the assumption of rational action to

maximize gain is still adhered to by many economists who see no possibility of

any other theory.

The basic elements of classical economics were already contained in the writings

of Adam Smith (1776) and Robert Malthus (1798).
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entered his father’s office, where he showed much aptitude for business. But
in 1793 he married physician’s daughter of a Quaker family and converted
to the Anglican Church, severing his ties with his family and his faith-sakes
altogether. He then entered a successful career in the profession to which
he had been brought up and at the age of 25 was already rich. Ricardo re-
tired from business (1819), became a land proprietor, and entered parliament
(1819–1823).

Ricardo’s work was the real first textbook on economics; he defined the
conditions that would enable a nation’s economy to reach its greatest po-
tential. He believed that the accumulation of capital was the key to rapid
economic growth473, and argued that allowing businessmen to seek high prof-
its would bring about a rapid accumulation of capital. He considered labor
to be the most important source of wealth.

Labor, to Ricardo, was very much like any other commodity. When it
was plentiful, it was cheap; when it was scarce, it was expensive. As long as
there is an ample supply of workers, wages will inevitably sink to the lowest
possible level of subsistence, just above starvation. To try to remedy this
situation by lowering profits and raising wages would be futile, since it would
merely increase the number of worker’s children and, by limiting the supply
of capital, cut down production. He therefore advocated that wages should
be left to the fair and free competition of the market, and should never be
controlled by the interference of the legislation.

Ricardo’s theories influenced other thinkers; his theory of comparative
advantage is still the basis for the modern theory of international trade. Karl
Marx was influenced by Ricardo’s labor theory of value, which held that
the value of a commodity is determined by the amount of labor needed in
its production. John Stuart Mill used Ricardo’s ideas as the basis for a
philosophy of social reform. In general, the tenets of Ricardo’s theory were
enthusiastically adopted by a rising manufacturing class which sought low
wages and freedom from governmental interference.

1817 CE Johann Wolfgang Döbereiner (1780–1849, Germany).
Chemist. Recognized (52 years ahead of Mendeleev) relationships between
the properties of the chemical elements and their atomic weights, upon which
the periodic table of the elements is based; classed closely related elements in
group of three (known as Döbereiner’s triads).

473 The entire economic activity of Ricardo took place in the shadow of the Napoleon

Wars and the following periods of Restoration. His theory offered solutions to

concrete problems that bugged the economy of Britain at that time. Ricardo’s

economics enjoyed an immense practical success, culminating in the adoption

of free trade in England (1846).
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He was a professor at Jena from 1810.

1817–1848 CE Richard Roberts (1789–1864, England). Engineer and
mechanical inventor. Machine-tools pioneer. Made a long series of inventions
of machines in the cotton, railway and steam-engine industries. His inventions
include a screw-cutting lathe and a planing machine. In 1848 he invented
a machine for punching holes in steel plates. Incorporating the Jacquard
method, he devised a machine for punching holes of any pitch in bridge plates
and boiler plates. He later invented a machine for simultaneously shearing
iron and punching both webs of angle iron to any pitch.

Roberts was born at Carreghova, Montomeryshire, Wales, — a son of a
shoemaker. He had very little formal education. Starting as a toolmaker at
Manchester he became one of the greatest mechanical engineers of the 19 th

century. But with all his inventive genius, his lack of business acumen led him
eventually to die in poverty.

1817–1820 CE Bernhard (Bernhardus Placidus Johann Nepo-
muk) Bolzano (1781–1848, Prague). Czech priest, mathematician and phi-
losopher. Made many important contributions to mathematics in the first half
of the 19th century. Freed calculus from the concept of the infinitesimal. Was
one of the first to recognize that many “obvious” statements about continu-
ous functions474 require proof. His observations concerning continuity were
published posthumously in 1850.

In 1834 Bolzano devised a function which is continuous throughout an
interval but has no derivative at any point on that interval. This work was
overlooked for almost 30 years and credit for this function is given to Weier-
strass, who rediscovered it in 1861. In 1840, Bolzano introduced the concept
of denumerable and nondenumerable sets, 32 years ahead of Cantor (1872).

In 1865 Karl Weierstrass proved that if S is a bounded infinite set of points,
then there exists a point P such that every neighborhood of P contains points
of S. This is known as the Bolzano-Weierstrass Theorem in recognition of
the earlier contribution of Bolzano.

Bolzano was born in Prague. His father, an Italian emigrant, was an art
dealer and his mother was the daughter of a hardware tradesman. Bolzano
studied philosophy, physics, mathematics and theology at the University of

474 Bolzano’s theorem: Let f(x) be continuous at each point of a closed interval

[a, b] and assume that f(a) and f(b) have opposite signs. Then there is at

least one point c in the open interval (a, b) such that f(c) = 0.

Bolzano’s definition of continuity : f(x) is continuous for x = ξ if, given

δ > 0, we can choose ε(δ) > 0 so that |f(x) − f(ξ)| < δ if 0 < |x − ξ| ≤ ε(δ).
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Prague (1796–1804). He distinguished himself at an early age, and after his
ordination to the priesthood was appointed professor of the philosophy of reli-
gion at Prague University (1807). In 1816 he was accused of being connected
with some of the student’s revolutionary societies. He was compelled to resign
and was also suspended from his priestly functions, spending the rest of his
life in literary work. He was influenced by Leibniz and Kant.

1818–1827 CE Augustin Jean Fresnel (1788–1827, France). Promi-
nent physicist. Derived the equation of wave-surfaces of purely transverse
plane waves in anisotropic media (crystals). He discovered that the structure
of anisotropic media permits two plane waves with different linear polariza-
tions and distinct velocities of propagation, in any given direction.

In 1818 he was first to give a correct explanation to the phenomena of
diffraction of light as the mutual interference of secondary waves from an
aperture. In a series of calculations he demonstrated the ability of a transverse
wave theory of light to account for the details of the observed phenomena of
reflection, refraction, interference, polarization, and diffraction patterns that
appear as light spreads around objects. His theory led to such fundamental
concepts475 as Fresnel-diffraction, Fresnel-Huygens principle, Fresnel-zones,
Fresnel integrals, and Fresnel equations.

Fresnel, the son of an architect, was born at Broglie (Eure). His early
progress in learning was slow, and when 8 years old he was still unable to read.
At the age of 13 he entered the École Centrale in Caen, and at 16 he entered
the École Polytechnique. Then he went to the École des Ponts et Chaussées
and started his career as a civil engineer, engaged in the construction of
roads in Southern France. Fresnel spoke openly against Napoleon, and as
a consequence he had to resign his government position. This freed him to

475 Diffraction — the deviation of light from rectilinear propagation. It occurs

whenever the waves encounter an obstacle (either transparent or opaque), and

results in alteration of the amplitude and phase of the incident radiation. The

various segments of the wavefront propagate beyond the obstacle and interfere

to cause the particular energy-density distribution referred to as a diffraction

pattern. The hypothesis that each point on a wavefront is a source of secondary

waves [Huygens’ principle] was supplemented by Fresnel with the statement

that these secondary waves are mutually coherent, and the waves emitted by

them interfere. Thus, while analyzing the propagation of waves we must take

into consideration their amplitudes and their phases. If we use plane waves

to begin with and look at the interference pattern far away from the obstacle,

the phenomenon is called Fraunhofer diffraction. If the original wavefront is

not plane and if we study the interference pattern just past the obstacle, the

phenomenon is called Fresnel diffraction.
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devote himself entirely to optics. He was elected a member of the Académie
des Sciences at Paris in 1823, and in 1825 he became a member of the Royal
Society of London. In 1819 he was nominated a commissioner of lighthouses.
He died of consumption at Ville-d’Avray, near Paris.

His work in optical science received only scant public recognition during
his lifetime, and some of his papers were not printed by the Academie till
many years after his death. But, as he wrote to Young in 1824: “In me, that
sensibility, or that vanity, which people call love of glory, had been blunted.
All the compliments that I have received from Arago, Laplace and Biot,
never gave me so much pleasure as the discovery of a theoretic truth, or the
confirmation of a calculation by experiment”.

The Diffraction of Light – Fresnel vs. Poisson

In the year 1678 Christiaan Huygens expressed the intuitive convic-
tion that if each point on the wavefront of light signal were considered to
be the source of a ‘secondary’ spherical disturbance, then the wave front
of any later instant could be found by constructing the ‘envelope’ of these
secondary wavelets. With this construction he could explain the wave phe-
nomena of reflection. However, the phenomenon of diffraction, observed by
F.M. Grimaldi (1660), could not be accounted for, neither by him nor by
any of his contemporaries.

In 1801, Thomas Young discovered the interference of light waves and
thus paved the way for Augustin Jean Fresnel (1818) to establish the real
cause of diffraction: by making some rather arbitrary assumptions about the
effective amplitudes and phases of Huygens’ secondary sources, and by allow-
ing the various wavelets to mutually interfere, Fresnel was able to calculate
the distribution of light in diffraction patterns with excellent accuracy.

The transversally of light motion was recognized by Young (1817) and the
polarization of light was discovered by Malus (1809). Thus, in a span of little
more than one decade, all major difficulties in the wave theory of light were
resolved. The centuries – old question of the nature of light was answered by
stating that light was a transverse motion of waves in the elastic ether.
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In the meantime, the corpuscular theory had been developed further by
P.S. de Laplace and J.B. Biot, and under their influence the Paris Acad-
emy proposed the subject of diffraction for the prize question of 1818, in
the expectation that a treatment of this subject would lead to the crowning
triumph of the corpuscular theory.

To their dismay, and in spite of strong opposition, the prize was awarded
to A.J. Fresnel, whose treatment was based on the wave theory. His work
was the first of a succession of investigations, which, in the course of a few
years, were to discredit the corpuscular theory completely.

In his memoir Fresnel effected a synthesis of Huygens’ envelope construc-
tion with Young’s principle of interference. This was sufficient to explain
diffraction phenomena. Fresnel calculated the diffraction caused by straight
edges, small apertures, and screens. [He was advised by Francois Jean
Arago (1786–1853, France) to read the publications of Grimaldi and Young,
but could not follow this advice because he could read neither English nor
Latin.]

Fresnel’s theory predicted that in the center of the shadow of a small aper-
ture there should appear a bright spot. This counter-intuitive fact caused
S.D. Poisson to refute the theory. Fresnel was saved by Arago, who per-
formed the experiment by himself and verified that Fresnel’s theory was in-
deed correct. Poisson acquired his share of fame in the event: the spot became
known as Poisson’s spot!

The ideas of Huygens and Fresnel were put on a firmer mathematical
foundation by Helmholtz (1860), Rayleigh (1871) and Kirchhoff (1882).
Helmholtz developed the mathematical theory of the Huygens principle for
monochromatic steady-state scalar waves and Kirchhoff generalized the results
of Helmholtz for a source with an arbitrary time-dependence. Both employed
a mathematical vehicle formulated earlier by Green (1828), but had went
unnoticed until 1845, when it was publicized by Kelvin. Both succeeded in
showing that the amplitudes and phases ascribed to the secondary Huygens
sources by Fresnel were indeed logical consequences of the wave nature of
light.

Kirchhoff based his mathematical formulation on two assumption about
the boundary values of light incident on the surface of an obstacle placed
in the way of the propagating light. These assumption were later proved
inconsistent by Poincaré (1892).

As a consequence of these criticism, Kirchhoff’s formulation of the so-
called Huygens-Fresnel principle must be regarded as a first approximation
although under most conditions it yield results that agree amazingly well with
experiments.
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The advent of the Maxwell electromagnetic theory [Maxwell (1864),

Hertz (1888)], left no doubt that light was not an elastic wave, and in 1881

Rayleigh analyzed the scattering of light by small particles based on the

electromagnetic theory of light. It is interesting to note that in the beginning

Kirchhoff and Rayleigh based their diffraction theories upon the elastic theory

of light, ignoring Maxwell’s equations. However, as far as their approxima-

tions were concerned, light could be treated either way.

The first truly rigorous solution of a diffraction problem was given in

1896 by Arnold Sommerfeld and in 1897 by Rayleigh and is known as

the Rayleigh-Sommerfeld diffraction theory. In it, Sommerfeld treated the 2-

dimensional case of a plane-wave incident on an infinitesimally thin, perfectly

conducting half-plane.

In general, rigorous diffraction theory involves solving the Maxwell equa-

tions subject to boundary conditions assumed for the aperture screen. The

geometrical limitations inherent in the Fresnel-Kirchhoff theory do not exist

in the rigorous theory, which therefore renders a complete description of the

field in the vicinity of the aperture boundary, as well as at great distances.

Unfortunately, the number of cases that can be treated rigorously is very

limited, and even the simplest case, (that treated by Sommerfeld) involves

complicated mathematical analysis.

However, even so, the Rayleigh-Sommerfeld theory employs certain sim-

plifications and approximations ab initio. Central to these is the treatment

of light as a scalar phenomenon. i.e., only the scalar amplitude of a single

transverse component of either the electric or the magnetic field vector is con-

sidered, it being assumed that any other component of interest can be treated

independently in a similar fashion. Such on approach entirely neglects the

fact that the various component of the electric and magnetic field vectors are

coupled through Maxwell’s equations and cannot be treated independently.

Experiments have shown that the scalar theory yields accurate results if

two conditions are met476:

• The diffracting aperture must be large compared with the wave-length.

• The diffracted field must not be observed too close to the aperture.

476 There exist important problems for which these conditions are not met, e.g., in

the theory of high-resolution diffraction gratings. There, the vectorial nature

of the fields must be taken into account if reasonably accurate result are to be

obtained.
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We next give a succinct account on scalar diffraction theory, encompassing
the main results of Fresnel, Helmholtz, Kirchhoff and Rayleigh. For the
sake of both clarity and brevity we do not follow the historical sequence of
evolution, and use modern notation.

Scalar diffraction theory
477

Although from a wave point of view, we find it quite reasonable that waves
can “bend around corners”, it is still to be seen how to handle the phenom-
enon quantitatively. Historically, most of the development of the theory of
diffraction has been in the context of visible light, but it must be recognized
that the theory is applicable to any physical process that can be described by
the ordinary wave equation in two or three spatial dimensions (e.g. electro-
magnetic, acoustic, seismic, etc.)

A point-source at Ps emits an outgoing monochromatic spherical wave
which interacts with an opaque screen S, having a small aperture ΔS. Ac-
cording to Huygens’ construction, every point of the wavefront may be con-
sidered as a center and source of a secondary disturbance which gives rise to
spherical wavelets, and the wavefront at any later instant may be regarded
as an envelope of these wavelets. Fresnel supplemented the Huygens con-
struction with the postulate that the secondary wavelets mutually interfere.
This combination of Huygens’ construction with the principle of interference
is known as the Huygens-Fresnel principle. Let us invoke it in the above
setup: let the wave reach an aperture point Q centered on an infinitesimal
area element ds at distance rs from Ps. There it excites secondary spherical
wavelets which reach an observation point P0 at distance r0 from Q.

Now, the wave-amplitude reaching Q from Ps is a solution of the wave
equation (

∇2 − 1
c2

∂2

∂t2

)

Ψ = 0,

namely Ψ = A
r ei(kr−ωt), where A is the amplitude at unit distance from the

source, λ is the wavelength, k = ω
c = 2π

λ is the wave-number, ω is angular
frequency and c is the wave velocity. A unit wavelet with zero phase, emerging

477 To dig deeper, see:

• Born, M. and E. Wolf, Principles of Optics, Macmillan Co.: New York, 1964,

808 pp.

• Stone, J.M., Radiation and Optics, McGraw-Hill, New York, 1963, 544 pp.



1634 3. The Clockwork Universe

Fig. 3.3: Scalar diffraction by a small aperture

from Q, reaches P0 with amplitude 1
r0

eikr0 . Accordingly, the wavelet that
arrives at P0 from the secondary source element at Q may be written as

dΨ = Ψ0f(θs, θ0)
[

A

rs
ei(krs −ωt)

] [
1
r0

eikr0

]

,

where Ψ0 is a constant complex source-amplitude and f(θs, θ0) represents the
dependence of the amplitude of the secondary wavelet on its angular position
in the aperture relative to P and P0 (the angle θs is between the normal n
at Q and the vector rs, and the angle θ0 is between the same normal at Q
and the vector r0. The entire disturbance at P0 is found by summing up all
contributions across the aperture

Ψ(P0) = Ψ0Ae−iωt

∫

ΔS

f(θs, θ0)
eik(rs+r0)

rsr0
ds. (1)
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The results is known as the Fresnel-Kirchhoff formula. Fresnel rendered a
convenient contrivance to calculate the above integral, known as the Fresnel
zone construction.

Helmholtz and Kirchhoff realized that in order to obtain explicit values
for Ψ0 and f(θs, θ0) in (1), the above heuristic derivation must be properly
represented as a boundary value problem. To this end they used the 1824
Green’s theorem which states that for surface Σ enclosing a volume V

∫

V

(
Φ∇2Ψ − Ψ∇2Φ

)
d3x =

∫

Σ

[

Φ
∂Ψ
∂n

− Ψ
∂Φ
∂n

]

dΣ. (2)

Let the field Ψ be assumed to satisfy the homogeneous scalar Helmholtz
wave equation

(∇2 + k2)Ψ(x) = 0

and let Φ = G be the Green’s function for the Helmholtz wave equation

(∇2 + k2)G(x,x′) = −δ(x − x′).

Eq. (2) then yields for points x inside V and points x′ on Σ

Ψ(x) =
∫

Σ

[Ψ(x′)n′ · ∇′G(x,x′) − G(x,x′)n′ · ∇′Ψ(x)] dΣ, (3)

where n′ is the inward directed normal to Σ.

Choosing G(x,x′) = eikr0

4πr0
, r0 = |x − x′ |, we divide the integral over

Σ into two parts, one over the screen and its aperture (ΔS), the other over
a surface S∞ which is made to recede to infinity. It can be shown that the
contribution from S∞ vanishes under a requirement on the behavior of Ψ at
infinity, known as the Sommerfeld radiation condition. Then (3) becomes

Ψ(x) = − 1
4π

∫

ΔS+Screen

eikr0

r0
n′ ·
[

∇′Ψ + ik

(

1 +
i

kr0

)

er0Ψ
]

ds (4)

where er0 is a unit vector in the direction of r0. In order to apply (4), it
is necessary to know the values of Ψ and ∂Ψ

∂n on ΔS and the screen. But
these values are not known, unless the problem has been solved. Kirchhoff’s
approach was to approximate the values of Ψ and ∂Ψ

∂n over the aperture and
the screen by assuming:

• Ψ and ∂Ψ
∂n vanish everywhere on the screen.
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• The values of Ψ and ∂Ψ
∂n on the aperture are equal to the values of the

incident wave in the absence of the obstacle, ergo Ψ � A eikrs

rs
e−iωt.

• kr0 >> 1 (‘far-field’ approximation).

With these assumptions, the Sommerfeld-Kirchhoff integral becomes

Ψ(P0, t) = − iA

λ
e−iωt

∫

ΔS

[
cos θs + cos θ0

2

]
eik(rs+r0)

rsr0
ds, (5)

where we have used the ancillary relations (n′ · ers) = cos θs and
(n′ · er0) = cos θ0. Upon comparison with the Fresnel-Kirchhoff formula we
find

Ψ0 = − i

λ
, f(θs, θ0) =

1
2
(cos θs + cos θ0).

The factor (−i) signifies that Huygens wavelet is radiated with a phase ad-
vance of 90 ◦, a feature not anticipated in the phenomenological treatment of
Huygens and Fresnel. The factor f(θs, θ0) has a maximum value of unity in
the forward direction and goes to zero for the portion of the Huygens wavelet
returning toward the source.

It can be shown that there are serious mathematical inconsistencies in
the first two assumptions of Kirchhoff. Rayleigh showed that these can be
removed by an alternative choice of the Green’s function. Indeed, choosing

G1(x,x′) =
1
4π

[
eikR

R
− eikR′

R′

]

, (6)

where R′ = |x − x′ ′ |, x′ ′ being the mirror-image of x′ [i.e.

R2 = (x − x′)2 + (y − y′)2 + (z − z′)2;

R′2 = (x + x′)2 + (y + y′)2 + (z + z′)2.

With this choice G1 will vanish on Σ and consequently

Ψ(x) =
∫

Σ

Ψ(x′)n′ · ∇′G1(x,x′)dΣ,

leading to the Rayleigh integral

Ψ(P0, t) = − iA

λ
e−iωt

∫

ΔS

cos θ0
eik(rs+r0)

r0rs
. (7)
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Similarly, the choice

G2(x,x′) =
1
4π

[
eikR

R
+

eikR′

R

]

will end with

Ψ(P0, t) = − iA

λ
e−iωt

∫

ΔS

cos θs
eik(rs+r0)

r0rs
. (8)

Note that in (7), Ψ is approximated on ΔS, while in (8) it is ∂Ψ
∂n which is

approximated on ΔS. Hence the difference. But how can we have three
different approximation to the Helmholtz-Kirchhoff integral? The answer is
simple: if the source point Ps and the observation point P0 are far from the
screen in terms of aperture dimensions, the function f(θs, θ0) can be treated
as constant. For normal incidence all values of f are approximately unity.

Rayleigh diffraction formulas (1897)

In the analysis of diffraction by an aperture in a plane screen one must
determine the solution of Helmholtz wave equation (∇2 +k2)Ψ(r) = 0 for the
wavefield Ψ(x, y, z) valid throughout the Half-space z > 0 from (approximate)
knowledge of the boundary values Ψ(x, y, z) on the half-space boundary z = 0.

An outgoing monochromatic wave in the half-space has the Fourier-integral
representation

Ψ(x, y, z; t) = e−iωt

∞∫∫

− ∞

a(p, q)eik(px+qy+mz)dpdq (9)

where the support of a(p, q) is assumed contained in the disk p2 + q2 ≤ 1,
m2 = 1 − p2 − q2, and

a(p, q) =
(

k

2π

)2
∞∫∫

− ∞

Ψ(x′, y′, 0; 0)e−ik(px′+qy′)dx′dy′. (10)

Substituting (10) into (9) and interchanging the orders of integrations, one
obtains the expression of the field in terms of the boundary values

Ψ(x, y, z; t) = e−iωt

∞∫∫

− ∞

Ψ(x′, y′, 0; 0)G(x − x′, y − y′, z)dx′dy′ (11)
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with

G(x − x′, y − y′, z) =
(

k

2π

)2
∞∫∫

− ∞

eik[p(x−x′)+q(y−y′)+mz]dpdq

where p2 + q2 + m2 = 1.

We next use Weyl’s integral (Weyl, 1919) with r = (x, y, z > 0),
r = (x0, y0, 0) which represents an outgoing spherical wave as a superposi-
tion of plane waves

eik|r−r′ |

|r − r′ | =
ik

2π

∞∫∫

− ∞

1
m

eik[p(x−x′)+q(y−y′)+mz]dpdq, (12)

from which we deduce that

G(x−x′, y −y′, z) = − 1
2π

∂

∂z

[
eikR

R

]

, R2 = (x−x′)2+(y −y′)2+z2. (13)

Inserting this in (11), we arrive at the first Rayleigh formula

Ψ(x, y, z; t) = − e−iωt

2π

∞∫∫

− ∞

Ψ(x′, y′; 0)
∂

∂z

[
eikR

R

]

dx′dy′, (14)

since
∂

∂z

[
eikR

R

]

� ikz

R

eikR

R

for kR → ∞ (the ‘far field’).

Then since z
R = cos θ0, one can write

Ψ(x, y, z; t) = − i

λ
e−iωt

∞∫∫

− ∞

cos θ0
eikR

R
Ψ(x′, y′, 0)dx′dy′, (15)

which a more general form of the Rayleigh integral in (7).

Summary

The Fresnel-Kirchhoff diffraction theory is intrinsically a high-frequency
approximation; it gives incorrect results when the aperture dimensions are
much smaller than a wavelength. Furthermore, even if such dimensions are
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large and one uses theory to predict fields at only those distances which are

large compared with a wavelength, the predictions may be in substantial dis-

agreement at large angular deviations from the direction n.

Nevertheless, the theory is satisfactory for explaining small-angle, high-

frequency diffraction phenomena and has an advantage in simplicity compared

with rigorous theories of diffraction.

It is extensively used in optics; applications to acoustics are limited (ex-

cept for ultrasonics) because many of the diffraction phenomena of interest

either involve dimensions small compared with a wavelength or require on

understanding of diffraction through large angles.

The Fresnel-zone construction

According to Huygens’ construction, every point of a wavefront may

be considered as a center of a secondary disturbance which gives rise to

spherical wavelets and the wavefront at any later instant may be regarded

as the envelope of these wavelets. Fresnel was able to account for diffrac-

tion by supplementing Huygens’ construction with the postulate that the

secondary wavelets mutually interfere. This combination of Huygens’ con-

struction with the principle of interference is called the Huygens-Fresnel prin-
ciple.

Before applying it to the study of diffraction effects one is tempted to

verify that, with certain simple additional assumptions, the principle correctly
describes the propagation of light in free space.

To see this we consider the instantaneous position of a spherical mono-

chromatic wavefront of radius rs which proceeds from a point source Ps to

another point P0 where the light disturbance is to be determined.
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Fig. 3.4: Fresnel’s zone construction

Let the time factor be e−iωt (omitted) and let the disturbance at Q on
the wavefront be Aeikrs/rs, where A is the amplitude at unit distance from
the source. In accordance with the Huygens-Fresnel principle we regard each
element of the wavefront as the center of a secondary disturbance which is
propagated in the form of spherical wavelets, and obtain for the contribution
dΨ(P0) due to the element dS at Q the expression

dΨ = k(χ)A
eikrs

rs

eikr0

r0
dS,

where r0 = QP0 and k(χ) is the inclination factor, describing the variation
with direction of the amplitude of the secondary waves, χ being the angle
between the normal at Q and the direction QP0.

We assume that k is maximum for χ = 0 and zero for χ = π/2. Hence the
total disturbance at P0 is given by

Ψ(P0) = A
eikrs

rs

∫∫

S′

eikr0

r0
k(χ)dS (16)

where S′ is that part of S which is not obstructed by obstacles situated be-
tween Ps and P0.

To evaluate (16) we draw spheres from P0 of radii

rj = b + j

(
λ

2

)

j = 0, 1, 2, ..., n, r2
n = (b + rs)2 − r2

s
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(P0Q tangent to the primary wavefront at r = rn).

These spheres divide S into a number of zones z1, z2, z3, ..., zn. Assuming
rs >> λ, r0 >> λ, then k may be assumed to have the same value Kj , for
points on one and the same zone.

Now by the law of cosines,

r2
0 = r2

s + (rs + b)2 − 2rs(rs + b) cos θ

so that

r0dr0 = rs(rs + b) sin θdθ b, rs fixed

and therefore

dS = r2
s sin θdθdφ =

rs

rs + b
r0dr0dφ φ = azimuth angle

Hence, the contribution of the jth zone (spherical ring) to Ψ(P0) is:

Ψj(P0) = 2π
Aeikrs

rs + b
Kj

b+j λ
2∫

b+(j−1) λ
2

eikr0dr0

= 2iλ(−1)j+1Kj
Aeik(rs+b)

rs + b

The total wave at P0 is

Ψ(P0) = 2iλA
eik(rs+b)

rs + b

n∑

j=1

(−1)j+1Kj . (17)

The contributions of the successive zones are alternately positive and negative

Σ = K1 − K2 + K3 − ... + (−1)n+1Kn.

It can be shown that (approximately)

Σ ≈ K1

2
+

Kn

2
(n odd)

Σ ≈ K1

2
− Kn

2
(n even).
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Since Kn = 0 [χ = π
2 ] for the last zone, Σ ≈ K1

2 and we have approx-
imately:

Ψ(P0) = iλK1A
eik(rs+b)

rs + b
=

1
2
Ψ1(P0), (18)

showing that the total disturbance at P0 is approximately equal to half of the
disturbance due to the first zone. This last result is in agreement with the
field at P0 obtained by simply assuming a spherical wave beginning at Ps and
ending at P0. i.e

Ψ(P0) ≈ A
eik(rs+b)

rs + b

if iλK1 = 1, namely

K1 = − i

λ
=

1
λ

e− πi
2 .

The factor e− πi
2 may be accounted for by assuming that the secondary

waves have an initial phase retardation of a quarter of a period, relative to
the primary wave. There is also the amplitude factor of 1

λ .

By means of the above method, Fresnel was able to “calibrate” his ap-
proximate integrating scheme and thus test the validity of his principle. To
enable additional experimental tests he introduced a plane screen with circular
opening, perpendicular to the optical axis PsP0, with its center on this line.
The total disturbance at P0 must now be regarded as due to wavelets from
only those zones that are not obstructed by the screen. Four experiments
could be performed:

• The screen covers all but half the first zone; according to Eq. (18) with
j = 1

Ψ(P0) =
1
2
Ψ1(P0) = iλK1

Aeik(rs+b)

rs + b
=

Aeik(rs+b)

rs + b
.

This is the same disturbance as would be obtained if no screen were
present.

• All zones are covered except the first one; then (17)–(18) yields

Ψ(P0) = 2iλK1
Aeik(rs+b)

rs + b
= 2

Aeik(rs+b)

rs + b
.

The intensity I(P0) = |Ψ(P0)|2 is four times larger than if the screen
were absent. [Conservation of energy clearly demands that there be
other points where the intensity has decreased.]
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• Only the first two zones are left open; since K1 and K2 are nearly
equal (which can be shown), there will be almost complete darkness.
In general, when the size of the opening is varied, there is a periodic
fluctuation in intensity at P0. Similar results are obtained when the
size of the opening and the source’s position are fixed but P0 gradually
moved along the axis.

• When only the first zone is obstructed by a small circular disk placed at
right angles to PsP0, the field is

Ψ(P0) = 2iλ
Aeik(rs+b)

rs + b
[−K2 + K3 − K4 + · · · ]
︸ ︷︷ ︸

,

≈ − K2

2
but since K1 ≈ K2 it follows that there is light in the geometrical shadow
of the disk! and (even more remarkably) the intensity there is the same
as if no disk were present.
This prediction478 of Fresnel’s theory made a strong impression on his
contemporaries, and was one of the decisive factors which temporarily
ended the long battle between the corpuscular and the wave theories of
light in favor of the latter.

We next integrate the expression

dS =
rs

rs + b
r0dr0dφ

over the j-th zone to get the area of that zone:

Aj =
2πrs

rs + b

b+j λ
2∫

b+(j−1) λ
2

r0dr0 =
λπrs

rs + b

[

b +
(2j − 1)λ

4

]

=
λπrsb

rs + b

[

1 +
(2j − 1)

4
λ

b

]

.

478 That a bright spot should appear at the center of the shadow of a small disk was

deduced from Fresnel’s theory by S.D. Poisson (1818). Poisson, who was a

member of the committee of the French Academy which reviewed Fresnel’s prize

memoir, considered this conclusion contrary to experiment and so rejected Fres-

nel’s theory. However, Arago, another member of the committee, performed

the experiment and found that the surprising prediction was correct. A similar

observation was made in 1723 by Jacques Philippe Maraldi (1665–1729), a

nephew of G.D. Cassini, but was forgotten.
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It is also found that the mean distance from the field point P0 to the j-th
zone is rj = b +

(
2j−1

4

)
λ so that Aj/rj is constant.

When λ << b and for small j values, we have approximately

A ≈ rs

rs + b
πbλ (independent of j)

If the aperture has a radius R, a good approximation for the number of zones
within it is thus simply

πR2

A
=

(rs + b)R2

rsbλ
.

If the point source has been moved so far from the aperture (diffraction screen)
that the incoming wave can be regarded as a plane wave (rs → ∞), two facts
emerge:

• A � πbλ independent of j

• Since rj = b + j λ
2 , we have πR2

j ≈ π(b + j λ
2 )2 − πb2

or

R2
j ≈ jbλ + j2 λ2

4
� jbλ ∴ Rj

∼=
√

jbλ

as long as j is not extremely large. So the radii are proportional to the
square roots of the integers.

It should be borne in mind that, the sensor at P0 merely records the light
amplitude (or intensity), the zones having no reality. It is just a convenient
contrivance for the evaluation of the field.

1818–1844 CE Arthur Schopenhauer (1788–1860, Germany). Philo-
sopher. One of the first Western thinkers to concern himself with the dilemmas
and tragedies of real modern life, not just with abstract philosophical prob-
lems. Espoused pessimism that saw life as being essentially evil and futile.
Under influence of Eastern thought, he saw hope in aesthetics, sympathy for
others and ascetic living. His ideas influenced the fields of music, psychology,
literature and physics (through Einstein and Schrödinger). Accorded the
arts a more important place in the overall scheme of things than any other
major philosopher.
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While still in his twenties he wrote his masterpiece: “The World as Will
and Representation” (1818), and then “On the Will as Nature” (1836), show-
ing that the ongoing progress of science was supporting the arguments of his
main work. Finally he produced two books on ethics: “The Freedom of the
Will” (1841), and “The Foundations of Morality” (1841).

Schopenhauer was born near Danzig, the son of a rich Hanseatic merchant
of Dutch heritage. As his parents had strong feeling against any kind of
nationalism, the name Arthur was selected especially because it was the same
in English, German and French.

After the city fell to Prussia during the second partition of Poland (1793),
the family fled to Hamburg. In 1805 Schopenhauer’s father died (possibly
by suicide) and his mother, Johanna, moved to Weimar, where she kept a
literary salon at which she entertained such figures as Goethe and the Brothers
Grimm.479

Schopenhauer studied at the University of Göttingen and was awarded a
PhD from the University of Jena. As a youth, he traveled widely, becoming
fluent in English and French, so that his prose style acquired a lightness and
clarity quite unlikely the murky philosophic German of his times. His first
education was that of a man of the world, only later did he obtain the usual
academic credentials.

He became a friend of Goethe, and in 1816 wrote a small book on color
theory480 inspired by the ideas of the older man.

479 She herself achieved fame as a romantic novelist, and one of her poems was set

to music by Schubert. When Goethe told her that he thought her son was

destined for great things, Johanna objected: she had never heard there could

be two geniuses in a single family.
480 Schopenhauer’s philosophy of science has its embarrassing aspects: Schopen-

hauer did not understand the new physics of light and electricity that had been

developed by Thomas Young (1773–1829) and Michael Faraday (1791–

1867). He disparaged the wave theory of light, which Young had definitively

established, as a “crude materialism”, and “mechanical, Democritean, ponder-

ous, and truly clumsy.” Unfortunately, Schopenhauer does not seem to have un-

derstood the evidence for Young’s discoveries about light, or even for Newton’s

— he still clung to Goethe’s clever but clueless theory of colors. Nevertheless,

Schopenhauer would have been happy to learn how his beloved qualitates oc-

cultae would return in force with quantum mechanics: Things like strangeness,

charm, baryon number, lepton number, etc., are exactly the kinds of irreducible

types he demanded.
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Because of a large inheritance from his father, Schopenhauer was able to
retire early, and, as a private scholar, was able to devote his life to the study
of philosophy.

Schopenhauer was influenced by Friedrich Schelling, regarded himself
as the true spiritual descendant of Kant, and despised Hegel. He thought
that Hegel’s belief in a happy ending to human history was the ramblings
of a “stupid and clumsy charlatan.” He maintained that Hegel, and other
university philosophers had perverted the Kantian gospels.

The first edition of his major work, The World as Will and Representation
appeared in 1818. He followed Kant in the belief that the mind is not merely
a passive recipient of sense impressions, but takes an active role in fitting the
phenomena into the categories of space and time, the principle of causality
being the necessary method for creating this representation of the world. Kant
taught that the real world, the noumenon, the thing-in-itself [Ding an sich],
can never be accessible to human thought or experience. Schopenhauer did
not agree: he believed that the thing-in-itself can be identified as will. Every
person experiences himself in two different ways, as an object like any other,
and through self-consciousness as a will. The will is neither a phenomenon
nor a representation, it is a directly experienced reality.

What is true of the microcosm of man, is also true of the world: its thing-
in-itself is will. On the foundation of this primary intuition, which of course
can be neither proved nor disproved, Schopenhauer constructed a philosophy
that has continued to fascinate and influence thinkers of all kinds: Nietzsche,
Tolstoy, Chekhov, Zola, Maupassant, Bernard Shaw, R.M. Rilke,
Thomas Mann, Freud, Klimt, and Schrödinger, to mention a few. The
reason for this wide range of influence must be sought in a combination of an
unparalleled depth of insight into the human condition with a literary style
of exceptional quality.

This use of the term “will” has led to much misunderstanding, because
people find it difficult to think of a will that has no personality, no kind of
mind or intelligence, and no aims or goals: but this is what Schopenhauer says
quite clearly that he means. He would have regarded the discovery by physics
in the 20 th century that the entire contents of the empirical world, including
all material objects, are reducible to energy and fields of force, operating in a
space-time framework, as fitting in perfectly with his philosophy.

Schopenhauer agreed with Kant that human beings can only ever live in
the phenomenal world. But for Schopenhauer, the phenomenal world is an
illusory one, always controlled by the Will. The Will directs every living
being, including humans.

Human beings like to believe that their own individual lives have some
kind of higher meaning, but there is no more to their lives than the urge
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to satisfy their desires. Different individual wills then inevitably come into
conflict, and this is what produces human suffering.

According to Schopenhauer, the Will to Live (Wille zum Leben), is de-
fined as an inherent drive within human beings, and indeed all creatures, to
stay alive and to reproduce. He refused to conceive lore as either trifling or
accidental, but rather understood it to be an immensely powerful force ly-
ing unseen within man’s psyche and dramatically shaping the world. He saw
‘falling in love’ as the process whereby the noumenon, Kant’s ‘thing in itself,’
enters the world of phenomena.

He had more to say about sexual love than any previous philosopher,
since ‘the sexual relation in the world of mankind . . . is really the invisible
central point of all action and conduct . . . The ultimate aim of all love affairs,
whether played in sock or in buskin, is actually more important than all
other aims in man’s life; and therefore it is quite worthy of the profound
seriousness with which everyone pursues it. What is decided by it is nothing
less than the composition of the next generation.’ The new individual who
will arise from the love affair is like a new Platonic idea, and ‘just as all the
Ideas strive to enter into the phenomenal with the greatest vehemence, avidly
seizing for this purpose the matter which the law of causality divides among
them all, so does this particular Idea of a human individuality strive with the
greatest eagerness and vehemence for its realization in the phenomenon. This
eagerness and vehemence is identical with the passion for each other of the
two future parents.’

Schopenhauer’s view of the human condition is that of a world of violence
and injustice ending in death. He took the blackest view of our existence that
is possible to take and still remain sane.

He believed, however, that a momentary release from our imprisonment in
the dark dungeon of this world could be achieved through the arts: painting,
sculpture, poetry, drama, and above all – music.

Through these media we are in touch with something outside the empirical
realm. We are taken out of time and space and also out of ourselves (body
included). In particular, he regarded music as a sort of super-art transcending
all the others in metaphysical significance.
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Worldview XIX: Arthur Schopenhauer

∗ ∗∗

All truth passes through three stages. First, it is ridiculed. Second, it is
violently opposed. Third, it is accepted as being self-evident.

∗ ∗∗

Each day is a little life; every waking and rising a little birth; every fresh
morning a little youth; every going to rest and sleep a little death.

∗ ∗∗

After your death you will be what you were before your birth.

∗ ∗∗

Every possession and every happiness is but lent by chance for an uncertain
time, and may therefore be demanded back the next hour.

∗ ∗∗

Human life must be some form of mistake.

∗ ∗∗

If a man sets out to hate all the miserable creatures he meets, he will not have
much energy left for anything else; whereas he can despise them, one and all,
with the greatest ease.

∗ ∗∗
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The discovery of truth is prevented more effectively, not by the false appear-
ance things present and which mislead into error, not directly by weakness of
the reasoning powers, but by preconceived opinion, by prejudice.

∗ ∗∗

The first forty years of life give us the text; the next thirty supply the com-
mentary on it.

∗ ∗∗

The fundament upon which all our knowledge and learning rests is the inex-
plicable.

∗ ∗∗

Physics is unable to stand on its own feet, but needs a metaphysics on which
to support itself.

∗ ∗∗

The closing years of life are like the end of a masquerade party, when the
masks are dropped.

∗ ∗∗

A man must have grown old and lived long in order to see how short life is.

∗ ∗∗

Fate gives us the hand, and we play the cards.

∗ ∗∗

Wealth is like sea-water; the more we drink, the thirstier we become; and the
same is true of fame.
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∗ ∗∗

The alchemists in their search for gold discovered many other things of greater
value.

∗ ∗∗

A man can do what he wants, but not want what he wants.

∗ ∗∗

The wise have always said the same things, and fools, who are the majority
have always done just the opposite.

∗ ∗∗

Money is human happiness in the abstract; he, then, who is no longer capable
of enjoying human happiness in the concrete devotes himself utterly to money.

∗ ∗∗

The present is the only reality and the only certainty.

∗ ∗∗

Martyrdom is the only way a man can become famous without ability.

∗ ∗∗

Sleep is the interest we have to pay on the capital which is called in at death;
and the higher the rate of interest and the more regularly it is paid, the further
the date of redemption is postponed.

∗ ∗∗
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The deep pain that is felt at the death of every friendly soul arise from the feel-
ing that there is in every individual something which is inexpressible, peculiar
to him alone, and is, therefore, absolutely and irretrievably lost.

∗ ∗∗

The highest, most varied and lasting pleasures are those of the mind.

∗ ∗∗

Life swings like a pendulum backward and forward between pain and boredom.

∗ ∗∗

Natural ability can almost compensate for the want of every kind of culti-
vation; but no cultivation of the mind can make up for the want of natural
ability.

∗ ∗∗

To go to the theater is like making one’s toilet with a mirror.

∗ ∗∗

Will power is to the mind like a strong blind man who carries on his shoulders
a lame man who can see.

∗ ∗∗

The difficulty is to try and teach the multitude that something can be true
and untrue at the same time.

∗ ∗∗

The more unintelligent a man is, the less mysterious existence seems to him.
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∗ ∗∗

Without books the development of civilization would have been impossible.
They are the engines of change, windows on the world, “Lighthouses” as
the poet said “erected in the sea of time.” They are companions, teachers,
magicians, bankers of the treasures of the mind, Books are humanity in print.

∗ ∗∗

Books are like a mirror. If an ass looks in, you can’t expect an angel to look
out.

∗ ∗∗

Authors may be divided into falling stars, planets, and fixed stars: the first
have a momentary effect; the second have a much longer duration; but the
third are unchangeable, possess their own light, and work for all time.

∗ ∗∗

Any book, which is at all important, should be reread immediately.

∗ ∗∗

Almost all of our sorrows spring out of our relations with other people.

∗ ∗∗

With people of limited ability modesty is merely honesty. But with those who
possess great talent it is hypocrisy.

∗ ∗∗

Every man takes the limits of his own field of vision for the limits of the world.

∗ ∗∗
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Boredom is just the reverse side of fascination: both depend on being outside
rather than inside a situation, and one leads to the other.

∗ ∗∗

Do not shorten the morning by getting up late; look upon it as the
quintessence of life, as to a certain extent sacred.

∗ ∗∗

Journalists are like dogs, whenever anything moves they begin to bark.

∗ ∗∗

Exaggeration of every kind is as essential to journalism as it is to dramatic
art, for the object of journalism is to make events go as far as possible.

∗ ∗∗

To find out your real opinion of someone, judge the impression you have when
you first see a letter from them.

∗ ∗∗

Religion is the masterpiece of the art of animal training, for it trains people
as to how they shall think.

∗ ∗∗

Buying books would be a good thing if one could also buy the time to read
them in: but as a rule the purchase of books is mistaken for the appropriation
of their contents.

∗ ∗∗

Great men are like eagles, and build their nest on some lofty solitude.
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∗ ∗∗

A man’s face as a rule says more, and more interesting things, than his mouth,
for it is a compendium of everything his mouth will ever say, in that it is the
monogram of all this man’s thoughts and aspirations.

∗ ∗∗

Change alone is eternal, perpetual, immortal.

∗ ∗∗

A word too much always defeats its purpose.

∗ ∗∗

We forfeit three-fourths of ourselves to be like other people.

∗ ∗∗

Honor has not to be won; it must only not be lost.

∗ ∗∗

It is a clear gain to sacrifice pleasure in order to avoid pain.

∗ ∗∗

Ignorance is degrading only when found in company with great riches.

∗ ∗∗

In action a great heart is the chief qualification. In work, a great head.

∗ ∗∗
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Compassion is the basis of morality.

∗ ∗∗

So long as we are given up to the throng of desires with its constant hopes
and fears, we never obtain lasting happiness or peace.

∗ ∗∗

Actions are transitory while works remain: The most noble action still has
only a temporary effect; the work of genius, on the other hand, lives and has
beneficial and uplifting effect through all times.

∗ ∗∗
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1819–1851 CE Leopold (Yom-Tov Lipmann) Zunz (1794–1886,
Germany). The first modern Jewish thinker. Devoted his long life to the
refurbishment of the old-style Jewish learning and its presentation in a modern
scientific spirit.

Zunz and his friends of the immediate post-Napoleonic period, called their
work the Wissenschaft des Judentums (The science of Judaism). In 1819, im-
mediately after the Hep-Hep riots, they realized the fragility of the acceptance
of the Jews even in modern-minded Germany, and set up the Society for the
promotion of Jewish Culture and Science481. Its object was to investigate
the nature of Judaism by modern scientific methods and demonstrate the
universal value of Jewish knowledge.

Zunz then embarked on a grand project: an encyclopedia of Jewish intel-
lectual history: He translated an enormous amount of Jewish literature and
elaborated a philosophy of Jewish history. He visited the great libraries in
search of material, in an overall effort to emancipate Jewish writing from the
theologians and rise to the historical viewpoint. In practice it involved ac-
cepting that the history of the Jews was merely an element of world history.
In that Zunz was influenced by Hegelian ideas of progression from lower to
higher forms, and inevitably applied this dialectic to Judaism.

There had been only one period in Jewish history, he said, when their inner
spirit and their external form had matched, and they had become the center
of world history, and that was under the ancient commonwealth. Thereafter
they were delivered into the hands of other nations. Their internal history
became a history of ideas, their external history a long tale of suffering. A
day will come, he believed, that the distilled legacy of Jewish ideas became
part of the common property of enlightened mankind.

While Zunz’ interpretation of Jewish history and learning as a contribution
to the world stock made some impression on gentile society, it involved almost
by definition a severance from a great part of Judaism.482

481 The society soon dissolved (1824), because most of its members and officers

converted to Christianity in the most opportunistic manner. Nonetheless, un-

der the guidance of Zunz it had successfully initiated the scientific method in

the study of Jewish religion, history and culture. Among the initiators was

Heinrich Heine, then still a fledgling poet.
482 The Jewish orthodoxy in his time, rejected this dualism. To them it was not Ju-

daism: there are no two kinds of knowledge, sacred and secular; there was only

one. Moreover, there was only one legitimate purpose in acquiring it: to dis-

cover the exact will of God, in order to obey it. Hence the ‘Science of Judaism’,

as a dislocated academic discipline, was contrary to Jewish belief. They believed

that, without Israel, there would have been no world and therefore no history.
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Zunz was born in Detmold. Studied at Berlin University (1815–1821)
and received his Ph.D. at the University at Halle. Eventually he became the
principal of a teachers’ seminary established by the Jews in Berlin (1840).
His foremost work is “The Religious Discourses of the Jews”. It proved that
Judaism never stood still, but underwent changes in accordance with require-
ments of time and place; it changed itself even when there was no reformers
advocating change.

1819 CE William George Horner (1786–1837, England). Mathe-
matician. Rediscovered the ancient Chinese computational scheme for the
evaluation of a polynomial and hence solving for the real roots of algebraic
equations.

Horner was born in Bristol. He began his humble career as an assistant
schoolmaster at Kingston (1802), worked his way to become a Headmaster
there (1806), and founded his own school at Bath (1809). Although not a
man of great ability as a mathematician, he succeeded in making for himself
a name that is well known to students of Algebra.

While a schoolteacher at Bath, he came independently upon a method
known to Chu Shih-Chieh (ca 1300 CE) for the approximation of the real roots
of a numerical algebraic equation. This method, which has been practically
forgotten in China, was made known in a paper read by Horner before the
London Royal Society (1819), and since that time has become familiar in all
parts of the English speaking world.

It was recently discovered that Ruffini (1765–1822) had described a sim-
ilar method a few years earlier (1813).
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An Age of Transition483

“Greek civilization depended essentially on slave-labor but could not
progress without the harnessing of natural forces to labor-saving machines.
Only the free man, not a slave, has a disposition and interest to improve im-
plements or to invent them. Accordingly, in the devising of a complicated
machine, the workmen employed upon it are generally co-inventors. The
eccentric and the governor, most important part of the steam-engine, were
devised by laborers. The improvement of established industrial methods by
slaves, themselves industrial machines, is out of question.

Justus von Liebig (1803–1873)

“Prior to 1890, the steam engine did more for science than science for the
steam engine”.

L.J. Henderson

The industrial age started in England at about 1740, continued to France in
ca 1810, and arrived in Germany and the U.S.A. in about 1830. It became
pronounced after 1815. By 1850 industrialization had become widespread
in Western Europe as well as the northeastern United States. This process
eventually took manufacturing out of the home and workshop. Power-driven
machines replaced handwork, and factories developed as the best way of bring-
ing together the machines and the workers to operate them.

As industrialization grew, private investors and financial institutions were
needed to provide money for its further expansion. Financiers and banks
thus became as important as industrialists and factories in the growth of the
industry. For the first time in European history, wealthy businessmen called
capitalists took over the control and organization of manufacturing.

This was a great turning point in the history of mankind. It changed
the Western world from a rural and agricultural society to a basically urban

483 For further reading, see:

• Craig, G.A., Europe Since 1815, The Dryden Press: Hinsdale, IL, 1974,
620 pp.

• Talmon, J.L., Romanticism and Revolt (Europe 1815–1848), Harcourt, Brace
and World: New York, 1970.
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society. Industrialization brought many material benefits, but also created
a large number of problems that still remain critical in the modern world.
Some of the most acute of these problems today are air and water pollution,
the depletion of natural resources and other man-made alterations of the
biosphere.

The transformation of Europe’s economy from agriculture to industry af-
fected science in both direct and indirect ways: the invention of the steam
engine stimulated interest in thermodynamics and the concepts of power, work
and energy began to be formalized. The advent of chemical industry based
on chemical processes accelerated the renaissance of the atomistic theory of
matter. The kinetic theory of gases and the discovery of electromagnetism
are also associated with the industrial age.

In addition, industrialization stimulated the rise of mechanical inventions,
especially those associated with transportation on land and sea.

The advent of the efficient steam engine (Watt, 1769), the steam locomo-
tive (Trevithick, 1804), the steamboat (Fulton, 1807) and magnetic teleg-
raphy (Morse, 1838) revolutionized transport, travel and communication.

The first commercial steam railroad was opened between Liverpool and
Manchester in 1830. By 1840 the first transatlantic steamer line was estab-
lished. In 1844 the first telegraph line was connected between Washington and
Baltimore and in 1850, the first submarine cable was laid under the English
Channel between Dover and Calais.

The negative reaction to Newtonian science and mathematics, and the
industrial revolution that followed in its wake, found its powerful expression
in the best-known lyric of William Blake (1810):

And did those feet in ancient time
Walk upon England’s mountains green?
And was the holy Lamb of God
On England’s pleasant pastures seen?

And did the Countenance Divine
Shine forth upon our clouded hills?
And was Jerusalem builded here
Among these dark Satanic mills?

Bring me my Bow of burning gold:
Bring me my Arrows of desire:
Bring me my Spear: O clouds unfold!
Bring me my Chariot of fire.

I will not cease from Mental Fight,
Nor shall my Sword sleep in my hand
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Till we have built Jerusalem
In England’s green & pleasant Land.

Set to music, and usually misnamed Jerusalem, it is frequently sung as a
hymn today, even though its allusions are obscure. Blake believed in the leg-
end that England had once been part of Atlantis, the home of mankind during
the Golden Age. To Blake mills are both the ugly factories and symbols of
the chains of Newtonian science. The weapons of gold and fire are weapons
of the imagination to be used in the Mental Fight to restore the harmony of
reason and vision in man’s thinking.

The Agricultural revolution of the 10th millennium BCE and the Industrial
revolution of the 18th century AD, on the other hand, created deep breaches
in the continuity of the historical process. With each one of these two Revo-
lutions, a new story begins, dramatically and completely alien to the previous
one. Continuity is broken between the cave-man and builders of the pyra-
mids, just as continuity is broken between the ancient ploughman and the
modern operator of a nuclear power station. Clearly, each Revolution had its
roots in the past, but each created a deep break with the very same past; the
first “Revolution” transformed hunters and food-gatherers into farmers and
shepherds, while the second “Revolution” transformed farmers and shepherds
into operators of machines fed with inanimate energy.

The ten millennia or so that separate the two “Revolutions” witnessed
a great number of discoveries and innovations that increased man’s control
over energy sources, but until the Industrial Revolution man continued to
rely mainly on plants, animals and other men for energy – plants for food
and fuel, animals for food and mechanical energy, other men for mechanical
energy. The use of other available sources – mainly wind and water power –
remained limited.

If the Agricultural Revolution is the process whereby man came to control
and increase the supply of biological converters (plants and animals), the
Industrial Revolution can be regarded as the process whereby the large scale
exploitation of new sources of energy by means of inanimate converters was
set on foot.

Looking at things from this point of view, one easily understands the key
role played by the cultural revolution of the 16th and 17th centuries is the
shaping of the destiny of mankind. It was in fact the cultural revolution that
gave to man the conceptual tools which enabled him to master new sources
of energy. The conscious systematic investigation of phenomena revealed in
man’s environment became a fundamental cultural trait of early modern Eu-
rope since the days of the Renaissance.
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In the north-west part of Europe the 16th and 17th centuries witnessed also
a most remarkable mercantile development which favored the accumulation
of physical wealth and of entrepreneurial skills. In England these cultural and
economic developments happened to coincide with a shortage of a traditional
form of energy (timber) and the presence of large supplies of coal. It was
the union of certain happy mental qualities with material resources of an
altogether peculiar character that provided the explosive formula.

In the second half of the 18th century, James Watt perfected previous dis-
coveries and constructed a steam engine (1765), the commercial use of which
mounted through 1800–1820. Steam engines were used in metallurgical and
textile activities as well as in mining coal and in surface transportation. As
more machine power made it possible to produce more coal and to transport
it at an enormously accelerated rate, more coal in its turn meant more ma-
chine power. Coal became a strategic element in the emergence and diffusion
of the industrial civilization. It meant a rapidly expanding supply of energy
that could be used for heating and lighting and for power in sea and land
transportation and in almost all the various forms of industry484.

A cumulative interaction was soon set in motion; the extraordinary growth
in the supply of energy stimulated economic growth, which in turn stimulated
education and scientific research leading to the discovery of new sources of
energy485! Under the impact of these discoveries, the process quickened: the
more energy was produced, the more energy was sought. Man turned to the
sun, the tides, earth-heat, tropical waters, and atmospheric electricity. Then,
toward the middle of the 20th century, man discovered that energy could be
obtained from atoms through the process of fusion or fission.

Man needs capital to trap energy, and still more capital to exploit this
energy for productive purposes. Capital accumulation is a necessary condition
for any society’s survival and progress. There is a definite correlation between
capital and output. In a hunting economy, the capital needs are very limited:
a few bones (used as tools or weapons), and in more developed cultures:
bows, arrows and stone implements. In an agricultural economy the capital
needed is: stocks of seeds, fertilizers, ploughs, draught animals, silos, mills,

484 Around 1800 the world production of coal amounted to 15 × 106 ton
year

. By

1860 it rose to 132 × 106 ton
year

(= 1057 × 106megawatt-hours) and by 1900 to

702 × 106 ton
year

. By 1950 the corresponding figures were 1454 × 106 ton
year

.

485 The year 1860 marks the advent of the American oil-well industry. The gas-

engine was patented in the same year by Lenoir. The electric industry was born

with Faraday’s discoveries (1822–1831). By 1870 practical types of generators

were already available to produce either direct or alternating current. The great

consumption of electricity followed the evolution of the incandescent lamp.
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boats, wagons, etc. In an industrial economy capital needs are still more
complex and much larger: machinery, railways, chemical and atomic plants,
dams, research laboratories, etc. The greater the production, the greater the
volume of capital needed.

Capital is made possible by saving. If resources are consumed they are
obviously not available for capital accumulation (if you eat your cow today,
you cannot hope to have your milk tomorrow!). Only by forgoing present
consumption can a society cumulate capital. In any agricultural society, given
the low per capita income, saving per capita is rather low. Temples, pyramids,
mansions, jewelery, warfare etc absorb a large quota of resources squeezed out
of current income.

Furthermore, pre-industrial societies are typically characterized by inade-
quate transport facilities. Mass transportation was generally non-existent and
communications were costly and insecure. Consequently, any pre-industrial
society must have kept inventories of all commodities in much larger propor-
tion to current production than any industrial society does.

To accomplish the transition from agricultural to industrial society the
active population must acquire new skills and adopt new pattern of living
to change the patterns of capital formation; further capital is needed for
investment in education.

In all agricultural societies of our past we find that, mainly because of
limitations of energy sources known and exploited, the great mass of people
could hardly afford to satisfy anything but the more elementary needs: food,
clothing and housing, and even these at rather unsatisfactory levels. Corre-
spondingly, the most of the available resources were employed in agriculture,
textile manufacture, and building. On the fringe, there was always some trade.

All historical records seem to show that where trade flourished, demo-
graphic and economic levels were the highest attainable within the range of
agricultural possibilities. Actually, almost all the great agricultural civiliza-
tions of the pre-industrial past were founded on the expansion of the mercan-
tile sector. Indeed, it was an exaggerated expansion of this sector in the 17th

– and 18th–century England that created the preconditions of the Industrial
Revolution.

Under this regime, new sources of energy, larger amounts of capital, and
more efficient use of factors of production increased the per capita real income
and improved the diet, clothing and housing of the masses. While expenditure
on food decreased as a percentage of total private expenditure, expenditure
on transportation, medical care, education, amusement etc, increased more
than proportionally.
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In conjunction with the exploitation of new kinds of energy and new pre-

vailing consumption patterns, one observes a general decline in the relative

importance of agriculture, which also suffers from the fact that the other

productive sectors tend to lose their dependence on it. The building indus-

try substitutes steel and cement for timber. The textile industry substitutes

artificial fibers (rayon, dacron, etc.) for natural ones. The pharmaceutical

industry substitutes chemical products for spices and herbs. Even the food

industry follows the trend: vitamin pills replace natural fruits, and Coca Cola

replaces wine.

Correspondingly, both the percentage of total active population employed

in agriculture and the proportion of income produced by the agricultural

sector shrink markedly while a great expansion is experienced in the new key

sections: the chemical, the metallurgical, and the mechanical.

In an industrial society, the contribution of science and scientific methods

to production is obviously great. Consequently, the rate of growth of an in-

dustrial society is largely influenced by the amount of resources devoted to

research and education and by the efficiency at which these resources are used.

In an industrial society a good deal of economic growth is due to technological
change, better education and the training and retraining of the labor force.

The growth of inputs (labor and capital) and their progressive more efficient

utilization brought forward an extraordinary expansion of production. Pro-

duction increased faster than population, and thus per capita income grew

over the long run.

The passage of a society from one type of economic organization to another

also implies drastic cultural and social changes. Four generation ago more

than 2/3 of the people living on earth were peasants. In ca 2050, less than

1/3 will live in the fields. The Industrial revolution is spreading all over the

world. We witness changes that are not merely industrial but also social and

intellectual. A new style of life is emerging, as another disappears for ever.

We know what is disappearing but we do not know what to expect.

This is an age of transition as well as an age of uncertainty and anguish.

Every aspect of life has to be geared to the new models of production. Family

ties are not on the wane and give way to broader perspectives for larger social

groups. Individual savings gives way to collective social services, undistributed

profits, and taxes. The rounded philosophical education of the few is set aside

for the technical training of the masses. Artistic intuition must give way to

technical precision. New juridical institutions, new types of ownership and
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management, different distribution of income, new tastes, new values, new
ideals have to emerge as an essential part of the industrialization process486.

Economic activity depends on the earth’s capacity to supply raw materi-
als, to produce food, and to absorb waste. While it took 100,000 years for
the world’s human population to reach 6000 million, it will now take merely
50 years to add another 6000 million. However, improvement in quality of
the human species is not necessarily alternative to a growth in quantity. A
larger population may mean greater possibilities in the division of labor and
economies of scale. These possibilities may contribute to the growth of per
capita income, to better levels of living, and to better education. But beyond
certain points, quantity and quality may become competitive487.

It is inevitable that, as humans beings become over-abundant in relation
to other resources, their marginal value diminishes and the dignity of human
life deteriorates correspondingly. 100,000 years may seem a very long span
of time, but from the point of view of the whole history of the earth and
mankind, this time interval is a brief fragment. It is however remarkable that
during this time span homo sapiens has turned himself from savage into the
conqueror of the earth: considering that the Neolithic Revolution diffused into
Europe between 5000 BCE and 2000 BCE, slightly more than 150 generation
separate Europeans from their ancestors.

Thus, within a relatively small number of generations, man has come to
control his environment and to master the powerful forces of Nature. However,
the selective process that favored the success and the multiplication of the

486 When ‘industrialization’ occurs gradually, these socio-cultural changes take

place in a balanced process with economic changes. But when ‘industrialization’

is speeded up artificially, the socio-cultural environment may show much greater

degree of resistance to change than the economic structure and a socio-political

revolution may emerge (e.g. as in Africa, Latin America, Iran, Turkey and the

Soviet Union); All the miseries and the hardships that follow then become part

of the price of industrialization.
487 In 1794, John Barrow (1764–1848), during a journey through China, witnessed

a peculiar scene:

“Of the number of persons who had crowded down the banks of the grand canal

(to Canton), several had posted themselves upon the high projecting stern of

an old vessel which, unfortunately, breaking down with the weight, the whole

group tumbled with the wreck into the canal. Although numbers of boats were

sailing about the place, non were perceived to go to the assistance of those that

were struggling in the water; one fellow was observed very busily employed in

picking up, with his boat-hook, the hat of a drowning man.”

This happened because men were over-abundant and hats were scarce.
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aggressive type was certainly not interrupted by the Neolithic Revolution.
It continued to operate well into ‘civilized’ times and to a large extent still
operates today, when man can commend immensely powerful forces, and his
efficiency – for good and evil – has increased in spectacular fashion.

Single man, like Stalin and Hitler as recent history has dramatically
demonstrated, can today bring about unspeakable catastrophes that affect
the entire world and the entire human species488.

488 The naturalist and ethologist K. Lorenz, (1903–1989) himself a Nazi supporter

during 1933–1945, wrote (1966): “An unprejudiced observer from another

planet, looking upon man as he is today, in his hand the atom bomb, the

product of his intelligence, in his heart the aggression drive inherited from his

anthropoid ancestors, which this same intelligence cannot control, would not

prophesy long life for the species.”
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Zürich, 1985.

Gillispie, C.C. (ed), Dictionary of Scientific Biography , 15 Volumes, Charles
Scribner’s Sons: New York, 1970.

World Book Encyclopedia, 22 Volumes, Field Enterprises Educational Cor-
poration: Chicago, 1977.
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Cartan, Élie Joseph, 1535

Cartwright, Edmund, 1440

Cassegrain, 1117

Cassini, César Francois, 1154

Cassini, Giovanni Domenico, 989,
1078, 1153, 1155, 1166, 1167,
1240, 1307, 1325, 1367

Cassini, Jacques Dominique, 1154

Catalan, E.C., 1520

Cataldi, Pietro Antonio, 952, 1087

Catherine the Great, Empress,
1233, 1496

Cauchy, Augustin-Louis, 1012, 1147,
1251, 1272, 1343, 1395, 1424,
1425, 1468, 1500, 1564, 1566,
1586, 1597, 1623

Cavalieri, Francesco Bonaventura,
1033, 1111, 1112

Cavallo, Tiberius, 1445

Cavendish, Henry, 1324, 1376,
1376, 1377, 1387, 1396, 1417,
1444, 1544

Caventou, Joseph-Bienaime, 1622

Cawdrey, Robert, 1341

Cawdrey, Thomas, 1341

Cayley, Arthur, 1058, 1168, 1610

Cayley, George, 1395, 1603, 1604

Celsius, Anders, 1217, 1288

Celsus, Aulus Cornelius, 1162

Cesalpino, Andrea, 1161

Ceulen, Ludolph van, 966, 1145

Ceva, Giovanni, 1178, 1179

Ceva, Tomasso, 1179
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Fourier, Jean Baptiste Joseph, 1141,
1233, 1403, 1424, 1522, 1530,
1536, 1585, 1585, 1586–1588,
1602, 1603

France, Anatole (Jacques Anatole
Francois Thibault), 1061

Francesco Cavalieri, 1027

Frankland, Edward, 1392

Franklin, Benjamin, 1245, 1301,
1302, 1303, 1359, 1409, 1426

Fraunhofer, Joseph von, 1545, 1611,
1611, 1612, 1629

Frederick William III, King, 1409,
1456

Frederick, the Great (King of Prus-
sia), 1265, 1280, 1291, 1294,
1344, 1356, 1361, 1455

Frenet, Jean Frederic, 1424

Fresnel, Augustin Jean, 1083, 1086,
1612, 1629, 1629, 1630, 1631,
1633, 1635, 1639

Freud, Sigmund, 1094, 1584, 1646

Friedrich, Caspar David, 1471

Froebel, Friedrich Wilhelm Au-
gust, 1625

Fuchs, Leonhart, 1617

Fulton, Robert, 1371, 1571, 1571,
1572, 1659

G

Galen (Galenus), 933, 975, 1008,
1009, 1118, 1159–1163, 1619

Galilei, Galileo, 930, 930, 931–935,
937–939, 947, 953, 954, 975,
988, 993, 994, 998, 1001, 1004,
1027, 1032, 1033, 1040, 1063–
1068, 1077, 1082, 1084, 1091,



1686 3. The Clockwork Universe

1111, 1112, 1125–1127, 1136,
1139, 1154, 1155, 1178, 1199,
1239, 1289, 1311, 1367, 1494,
1550, 1553

Gall, Franz Joseph, 1605, 1622
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clock-arithmetic, 1485

clockwork, 930

coal-gas lighting, 1463

coating canvas, 973

coffee, 954

coke, 1208, 1210, 1213

College de France, 1078

collision of elastic bodies, 1085

comet Halley, 1179, 1180, 1362

comets, 947, 1065

compass, 974, 1372

complex numbers, 1183, 1494

compound microscope, 976

condenser, 1302, 1364

congruence, 1485, 1489

conic sections, 1039

continued fractions, 952, 1085,
1087, 1265, 1266, 1342, 1360

convergent and divergent series,
1116

coordinate system, 1010, 1036

Copernican theory, 930, 949, 976
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cosmological theories, 1036

cotton gin, 1463

crystallography, 1428

cubic closest-packed arrangement,
948

cubic equation, 1501

cyanogen, 1558

cyclic group, 1502

cycloidal arc, 1084

cycloidal pendulum, 1084

cyclotomic equation, 1501, 1502

D

d’Alembert’s principle, 1289

d’Alembert’s solution, 1290

dark night sky, 1293

de Moivre’s theorem, 1229, 1502

De Rerum Natura, 965, 974

de Moivre’s quintic, 1507

decimal coinage, measures and
weights, 940

decimal fractions, 939, 995, 999

decimal point, 940, 995

decimal system, 1165

derivative, 1011, 1170

descriptive geometry, 1424

determinants, 1170, 1185, 1323,
1395, 1521

diamond, 1573, 1574

Diesel engine, 1372

differential, 1143, 1170

differential and variational calcu-
lus, 1013

differential calculus, 1142

differential equation, 1144

differential geometry, 1610

diffraction, 1083, 1091, 1117, 1461,
1611, 1612, 1629–1635, 1637–
1639, 1644

diffraction grating, 1611

dihedral group, 1502

Diophantine equations, 1086, 1087,
1268, 1269

Dirichlet’s Principle, 1468

dispersion, 1194, 1247, 1461, 1464,
1545

divisibility, 1486

Döbereiner’s triads, 1627

double refraction, 1164, 1461

drag, 1604

drugs, 1003
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Dupin’s indicatrix, 1610

E

earth, 931, 935, 937, 939, 950, 971,
972, 974, 978, 979, 985–989,
991, 1034, 1065, 1079, 1093,
1106, 1114, 1119–1121, 1128,
1135–1142, 1149–1154, 1159,
1165–1167, 1178–1180, 1197,
1200–1202, 1204, 1205, 1221,
1230–1232, 1237–1241, 1244,
1245, 1254, 1255, 1266, 1276,
1277, 1285–1287, 1290, 1296,
1301, 1302, 1323–1325, 1333,
1341, 1348–1350, 1354, 1355,
1363, 1365, 1367, 1376, 1377,
1383, 1399, 1400, 1416, 1417,
1419, 1421, 1439, 1459, 1467,
1479–1481, 1539, 1540, 1547,
1550–1553, 1574, 1609, 1615,
1661, 1663, 1664

earth’s magnetic field, 974

earthquakes, 1197, 1324

eccentric anomaly, 990, 1353

eccentricity, 1353

Ecole Normale Supériere, 1500

Ecole Polytechnique, 1272, 1345,
1390, 1450, 1500, 1558, 1565–
1567, 1586, 1602, 1603, 1609,
1610, 1616, 1629

economics, 1414

electric battery, 1409

electric condenser, 1409

electric streetcar, 1371, 1372

electric-arc furnace, 1211

electrical capacitor, 1295

electrical ignition, 1372

electricity, 999, 1082, 1193, 1245,
1301, 1302, 1364, 1378, 1389,
1409, 1410, 1416, 1418, 1445,
1553, 1555, 1661

electrolysis, 1612

electromagnetic telegraph, 1470

electroscope, 1291

elements, 1093

Elizabethan England, 949

elliptic functions, 1184, 1224, 1469

elliptic integral, 1431

ellipticity of earth, 1480

embryology, 1008

Encyclopedia Britannica, 1395

England, 925, 932, 935, 936, 946–
952, 954–956, 969, 971, 972,
994, 995, 998, 1000–1008,
1012, 1031–1033, 1036, 1037,
1056, 1064, 1065, 1081, 1082,
1084, 1086, 1089–1091, 1093,
1099, 1109, 1110, 1113, 1115,
1119, 1151, 1155, 1156, 1158,
1160, 1165, 1174, 1177, 1179,
1182, 1188, 1189, 1191, 1193,
1195–1197, 1204, 1206, 1208–
1211, 1214–1217, 1220, 1221,
1230, 1234–1236, 1245–1247,
1253, 1256, 1259, 1278–1281,
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1288, 1292, 1302, 1303, 1322,
1323, 1327, 1333, 1341, 1357,
1364–1367, 1369–1371, 1373,
1374, 1376, 1379, 1380, 1383–
1385, 1388–1390, 1392, 1396,
1408–1411, 1416, 1417, 1421,
1422, 1425–1428, 1440, 1444,
1445, 1450, 1453, 1459, 1462–
1464, 1474, 1479, 1494, 1496,
1529, 1530, 1532, 1533, 1541,
1542, 1544, 1559, 1561, 1565,
1567, 1569, 1571–1573, 1603,
1604, 1612, 1613, 1615, 1622,
1624, 1626–1628, 1657–1662

English Civil War, 1064

enlightenment, 1278, 1281

envelopes, 1168

epicycles, method of, 1149

epicycloidal wheels, 1035

equations of motion of a rigid body,
1266

equations of motion of non-viscous
fluids, 1266

Euclid’s Algorithm, 1087

Euler angles, 1266

Euler line, 1567

Euler totient function, 1623

Euler’s product formula, 1269

evolutes, 1168

Evolution, 1322, 1604

evolutionary, 1327

expansion of a function about a
point, 1116

expeditions, 946–948, 980, 1004,
1005, 1063, 1155, 1196, 1232,
1240, 1244, 1255, 1285, 1289,
1311, 1325, 1342, 1383, 1403,
1424, 1496, 1498, 1530, 1537–
1539, 1563, 1586, 1602, 1613

explorer, 1383, 1496, 1539

F

factorial series, 1235

Farey Sequence, 1622

Fermat Little Theorem, 1076

Fermat numbers, 1012, 1491, 1517

Fermat principle, 1312

Fermat’s conjecture, 1012, 1566

Fermat’s Little Theorem, 1489

Fermat’s Theorem, 1472

Feuerbach’s Theorem, 1567

finite difference, 1222

fluent, 1143

fluxion, 1143

flying shuttle loom, 1245, 1370

force, 1121

force-couple, 1564

forced nutation, 1277

formula, 1606
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fossils, 1165, 1462

Fourier Analysis, 1587

Fourier coefficients, 1585

Fourier Integrals, 1586, 1588

Fourier series, 1149, 1588

Fourier transform, 1522, 1586,
1595, 1601

France, 925, 939, 954, 956, 966,
967, 972, 1000–1003, 1008,
1010, 1032, 1034, 1035, 1037,
1039, 1049, 1063, 1065, 1067,
1077, 1082, 1086, 1113, 1116,
1117, 1136, 1153, 1155, 1160,
1165, 1166, 1174, 1177, 1178,
1181, 1187–1189, 1191, 1192,
1195, 1197, 1203, 1206, 1211,
1218, 1222, 1223, 1232, 1234,
1244–1246, 1255, 1258, 1259,
1279, 1280, 1282, 1285, 1288,
1289, 1291, 1295, 1303, 1322,
1323, 1325, 1327, 1331, 1342,
1345, 1356, 1357, 1364, 1366,
1367, 1370–1372, 1377, 1379,
1380, 1386, 1388–1391, 1393–
1395, 1397, 1403, 1408, 1410,
1414–1416, 1418, 1424–1426,
1428, 1429, 1439, 1440, 1442,
1443, 1445, 1446, 1449, 1450,
1455, 1456, 1462, 1463, 1465,
1494, 1497–1500, 1525, 1526,
1528, 1530, 1536–1538, 1540,
1546, 1554, 1557–1559, 1561,
1563–1568, 1571, 1572, 1575,
1585, 1586, 1602–1605, 1607,
1609, 1610, 1614, 1616, 1629,
1631, 1658

Fraunhofer diffraction, 1612

Fraunhofer lines, 1611

French Academy of Sciences, 1067,
1077, 1154

French Revolution, 1364, 1412,
1445, 1499, 1526

Fresnel diffraction, 1612, 1629

Fresnel integrals, 1629

Fresnel-Huygens principle, 1629

Fresnel-zones, 1629

function, 1170

fundamental theorem of algebra,
1030

G

galaxy, 1243, 1294, 1322, 1333,
1418, 1421, 1548, 1549, 1601

Galilean telescope, 1167

Galilean transformation, 1125

Galileo’s principle of equivalence,
1126

Galileo’s principle of relativity,
1125

Galois group, 1502

Galois theory, 1511

game theory, 1442

Ganymede, 930

gas constant, 1607

gas engine, 1371
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gas lights, 1576

gas-turbine engine, 1373

Gauss’ Class-Number Conjecture,
1474

Gauss-Bonnet theorem, 1467

Gaussian curvature, 1467

Gaussian integers, 1468

Gay-Lussac law, 1558

Geiger-Müller counter, 1299

General Theory of Relativity, 1129

geodesic, 1316

Geodesy, 1237

Geoid, 1240

geology, 1151, 1439

geomagnetism, 1080

geometric progression, 1000

Germany, 924, 925, 930, 931, 940,
953, 967, 976, 992, 997, 1000,
1001, 1007, 1050, 1078, 1079,
1082, 1099, 1114, 1115, 1165,
1167, 1172, 1177, 1181, 1189,
1191, 1211, 1217, 1218, 1220,
1229, 1235, 1279–1282, 1285,
1287, 1288, 1295, 1301, 1322,
1325, 1331, 1332, 1335, 1337,
1356, 1358, 1360, 1363, 1369,
1372, 1373, 1388–1390, 1392–
1394, 1396, 1408–1410, 1419,
1420, 1422, 1449, 1450, 1454–
1460, 1463–1466, 1469–1471,
1475, 1476, 1479, 1494, 1498,
1526, 1531, 1532, 1534, 1535,
1539, 1540, 1542, 1546, 1551,
1576, 1579, 1605, 1606, 1611,
1627, 1656, 1658

gold, 1574

gold-leaf electroscope, 1445

Goldbach conjecture, 1287

Golden Section ratio, 1515

gravitation, law of, 1032, 1149

gravity, 1166

gravity anomalies, 1232

Great Awakening, 1412

Greenwich observatory, 1155, 1178,
1232

Gregorian calendar, 1492

Gregorian reflecting telescope, 1117

group theory, 1395

Gulf Stream, 1302

gyroscope, 1266

gyrostatic equilibrium, 1243

H

Hadley cell, 1254

Hadrian wall, 1439

Haley convection cell, 1254

halogen, 1573

Hamilton-Jacobi equation, 1317

Hamilton-Jacobi theory, 1193

harmonic mean, 1216
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harmonics, 1197

heat capacity, 1356

heat conduction in solids, 1586

helicopter, 1372, 1604

heliometer, 1247

Henry’s law, 1559

homeopathic medicine, 1526

Honeycomb, 1306

hot air balloon, 1425

hovercraft, 1373

Huguenots, 972, 1002

Humboldt current, 1540

humidity, instruments for measur-
ing, 975

Huygens principle, 1086

Hydrodynamica, 1232

hydrodynamics, 1234

hydrogen, 1376

hydrogen balloon, 1425

hydrostatic paradox, 939

hydrostatics, 1039

hypergeometric series, 1466

I

Ice Ages, 1198

identity, 1536

imaginary numbers, 1184, 1271

immunology, 1197

indeterminate equation, 1087

index of refraction, 1006

India, 942, 943, 946, 968, 984,
1004, 1063, 1082, 1087, 1089,
1090, 1135, 1155, 1213, 1257,
1264, 1413, 1427, 1530, 1534,
1557, 1563, 1573, 1574, 1615

Industrial Revolution, 952, 1188,
1245

inertia, 932

inertia tensor, 1266

inertia-ellipsoid, 1564

inertial frames, 1126

infinite series, 1081

infinitesimal, 1249

infinitesimal calculus, 1119, 1169

inoculation, 1497

Inquisition, 953, 1281

instantaneous velocity, 1250

integration, 1111, 1147

integration by parts, 1222

interference, 1083, 1091, 1414,
1463, 1627, 1629–1631, 1633,
1639

internal combustion engine, 1372

internal forces, 1124



Subject Index 1719

interpolation, 1165, 1342

interpolation formula, 1235

inventors, 1091, 1416, 1526, 1541,
1567, 1571, 1612

inverse problem, 1224

inverse-square-law of gravitation,
1091

invertebrate animal, 1604

Io, 930

iodine, 1558

iron railroad bridge, 1209, 1210

iron steamship, 1210

irrational number, 1252

Islam, 925, 1160, 1186

isochrone, 1168, 1190

isochrone curve, 1173

isochronous pendulum clock, 1084

isogonic center, 1028

isomers, 1558

isomorphism, 1606

isoperimetric figures, 1190

isoperimetric problems, 1266, 1309,
1319, 1342

isotopes, 1543

Italy, 928, 930, 931, 933, 935, 940,
944, 945, 952–954, 966, 967,
972, 975, 976, 992, 994, 997,
1001, 1003, 1009, 1032, 1033,
1037, 1046, 1065, 1083, 1109,
1110, 1116, 1155, 1158, 1160–
1162, 1165, 1166, 1173, 1177,
1178, 1182, 1189, 1197, 1207,
1214, 1216, 1217, 1224, 1230,
1245, 1257, 1282, 1288, 1303,
1323, 1341, 1342, 1367, 1374,
1388, 1393, 1396, 1408, 1409,
1418, 1459, 1498, 1527, 1528,
1537, 1574, 1607

J

Jacobi ellipsoids, 1241, 1243

Jacobi integral, 1350

Japan, 1177, 1185, 1373

Jerusalem, 1051, 1420, 1659, 1660

jet engine, 1373

Jews, 925, 951, 966, 1001, 1008,
1046, 1047, 1051, 1079, 1094–
1097, 1099, 1160, 1162, 1186,
1188, 1234, 1246, 1255, 1256,
1279–1281, 1283–1285, 1294,
1295, 1337, 1338, 1368, 1369,
1409, 1419–1421, 1452, 1454–
1460, 1616, 1626, 1656, 1657

Judaism, 967, 1079, 1283

Jupiter, 930, 988, 1153
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K

Kabbalah, 1255, 1283, 1284, 1452

Kepler equation, 990

Kepler Problem, 989

Kepler’s laws, 977, 979, 984, 985,
988, 1077, 1119, 1149, 1151

keystone formula, 1195

Kindergarten, 1625

kinetic energy, 1170

Krakatoa, 1613

L

L’Hopital Rule, 1192

Lagrange equation, 1344

Lagrange expansion, 1342

Lagrange resolvent, 1512

Lagrangian, 1344

Lagrangian points, 988, 1351

Lamarckism, 1604

Laplace equation, 1399

Laplace Transform, 1401

Laplace’s law, 1570

Laplace’s tidal equation, 1138

latent heat, 1356, 1419

Laterna Magica, 1078

latitude, 1366, 1479

latitude, celestial, 985

Law of Definite Proportions, 1528

Law of Equivalent Proportions,
1454

law of friction, 1416

law of gravitation, 970, 1151

law of large numbers, 1190, 1296

law of mass-action, 1441

law of partial pressures, 1543, 1560

law of quadratic reciprocity, 1430

law of rational indices, 1429

law of refraction, 1036

law of refraction of light, 1005

laws of equilibrium for fluids, 1041

least squares principle and method,
1475, 1478, 1479, 1482

Legendre’s symbol, 1430

lens, 962

Lewis and Clark Expedition, 1563

Leyden jar, 1295, 1471

librations of the moon, 1479

life insurance, 1110

life-annuities, 1092

lift, 1604

light, 962, 1461



Subject Index 1721

light interference, 1463

light polarization, 1609

lightning rod, 1302

limit, 1089, 1114, 1144, 1170, 1250

limit of a function, 1114

linear perspective, 1222

lithography, 1526

locomotive engines, 1541, 1613

lodestone, 974

logarithms, 995, 999, 1086

London, 946, 956, 971, 972, 998,
1002, 1009, 1048, 1077, 1081,
1090, 1091, 1093, 1094, 1098,
1113, 1115, 1118, 1128, 1136,
1156, 1158, 1162, 1164, 1172,
1173, 1181, 1191, 1195, 1200,
1211, 1214, 1215, 1228, 1236,
1247, 1257, 1284, 1285, 1292,
1302, 1367, 1371, 1385, 1388,
1394, 1400, 1416, 1427, 1428,
1439, 1444, 1445, 1453, 1463,
1464, 1497, 1529, 1545, 1549,
1561, 1571, 1574, 1576, 1615,
1624, 1626, 1630, 1657

longitude, 1366, 1479

longitude, celestial, 985

Loschmidt-Avogadro number, 1607

Luddites, 1609

Ludolph’s number, 966

Lunar Society, 1370

lunar theory, 1034

lunar topography, 1065

M

Maclaurin Spheroids, 1241

magic lantern, 1078

magnetic induction, 1323

magnetism, 971, 974, 1080

map making, 976

map projections, 1361

Marranos, 946, 966

Mars (planet), 1084, 1153

Mascheroni-Euler constant, 1527

mass, 1121

mass production, 1463

materialism, 1335, 1554

mathematical expectation, 1085

mathematical journal, 1153

mathematical statistics, 1466

matrices, 1610

Maunder minimum, 1205, 1207

Maupertuis principle of least ac-
tion, 1317

maximum likelihood, 1483

mean curvature, 1566
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mechanical marine chronometer,
1365

mechanics, 929, 931, 935, 985, 988,
1001, 1027, 1036, 1038, 1082,
1085, 1086, 1089, 1096, 1118–
1123, 1125, 1127, 1129, 1136,
1150, 1170, 1191, 1224, 1242,
1249, 1250, 1265, 1280, 1285,
1289, 1312, 1313, 1317, 1318,
1343, 1344, 1347, 1355, 1368,
1397, 1399, 1400, 1466, 1542,
1564, 1601–1603

medicine, 933, 954, 966–969, 972,
975, 1001, 1003, 1008, 1009,
1038, 1063, 1080, 1081, 1092,
1096, 1109, 1116, 1155, 1158,
1160–1163, 1165, 1181, 1191,
1217, 1232, 1233, 1291, 1330,
1356, 1385, 1387, 1409, 1429,
1440, 1449, 1456, 1464, 1477,
1497, 1530, 1537, 1546, 1604,
1606, 1617, 1618

Mercator projection, 1081

Mercator series, 1081, 1149

meridian, 1078, 1366

Mersenne primes, 952, 1075

metabolism, 975

metacyclic group, 1502

metallurgy, 921, 1210, 1212

meteor, 1550

meteorite, 1550, 1574

meteoroid, 1550

method of least squares, 1401, 1430

metric coefficients, 1467

metric system, 1165

Meusnier theorem, 1415

microbiology, 1158

microscope, 1002, 1003

military rocketry, 1567

Milky Way, 1322, 1421, 1422

minimal surface, 1570

moment of inertia, 1085

monism, 1450

monocle, 965

Monte Carlo methods, 1297, 1298

moon, 931, 934, 936, 939, 947, 977,
980, 985, 1033, 1034, 1065,
1066, 1119–1121, 1134–1142,
1150, 1166, 1167, 1179, 1180,
1231, 1277, 1290, 1301, 1319,
1325, 1333, 1343, 1344, 1349,
1350, 1367, 1370, 1462, 1478–
1480, 1550, 1553

Mordell conjecture, 1012

motion pictures, 965, 1078

Musk-Seed War, 1155

Muslims, 943, 1160, 1227

N

Napier Bones, 1000

Napierian logarithm, 998
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Napoleon’s theorem, 1403

natural selection, 1578

Nautilus, 1571

navigation, 949, 1366

nebulae, 1421

nebular hypothesis, 1399

negative quantity, 948

Neptune, discovery of, 1609

nervous system, 1605

Newcomen engine, 1209

newspaper, 976, 1197

Newton’s laws of mechanics, 988,
1123

Newton’s principle of equivalence,
1126

Newton-Raphson method, 1146

nine-point circle, 1567

nitrogen, 1396

non-Euclidean geometry, 1468

normal curvature, 1610

normal distribution, 1475

north-west passage, 1383

nuclear submarine, 1373

number representations, 941

number theory, 1486

number-line, 1184

Nuremberg Egg, 1358

nutation, 1231, 1266, 1290

O

ocean currents, 1196

octary system, 1295

Olbers’ Paradox, 1547

open-hearth process, 1211

operational calculus, 1566

operator, 1566

optical instruments, 992

optics, 947, 962, 965, 967, 980,
1197

ornithology, 967

osmosis, 1291

osmotic pressure, 1291, 1292

overdetermined equations, 1478

oxygen, 1003, 1158, 1376, 1386,
1409, 1440, 1606

Oyster Club, 1440

P

Panama Canal, 1372

parachute, 1425, 1604
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parallax, 1153, 1154, 1166, 1167

parallelogram law, 939

Parallelograms of velocities and
forces, 1494

parametric surfaces, 1114

Paris, 928, 932, 953, 966, 967,
1001, 1002, 1007, 1034, 1035,
1037, 1064, 1067, 1077, 1078,
1081, 1084, 1085, 1153–1155,
1164–1167, 1172, 1173, 1181,
1182, 1192, 1234, 1240, 1244,
1246, 1279, 1288, 1290, 1292,
1294, 1303, 1325, 1326, 1330,
1331, 1343, 1345, 1347, 1362–
1364, 1367, 1386, 1389, 1390,
1397, 1410, 1416, 1418, 1424–
1426, 1429, 1439, 1440, 1443,
1445, 1446, 1465, 1498–1500,
1528, 1529, 1537–1539, 1565,
1566, 1572, 1575, 1576, 1586,
1604, 1606, 1609, 1610, 1613,
1623, 1630, 1631

Paris Observatory, 1078

Parseval theorems, 1536

Pascal’s Theorem, 1041

path integral, 1317

Pell equation, 1086, 1156

pendulum, 1165

pendulum clock, 1078

pentagram, 1514

perfect numbers, 952, 1068

perturbations, inter-planetary, 988

petrol engine, 1372

Pfaff Problem, 1535

Pfaffian differential equation, 1535

Pfaffian forms, 1535

philology, 1323

phlogiston, 1387, 1532

photography, 1545

photometry, 1232

photosynthesis, 1416

phrenology, 1605

physicians, 967, 1001, 1003, 1008,
1164, 1537, 1616

pig iron, 1211, 1213

pigment, 973

pinhole camera, 966

plague, 967, 1032

plant cells, 1091

Platonic Solids, 979, 1514

pneumatic tire, 1371

Poinsot’s construction, 1564

Poisson Brackets, 1602

Poisson Distribution, 1603

Poisson Equation, 1603

Poisson Integral, 1603

Poisson summation formula, 1603

Poisson’s Constant, 1602

polar coordinates, 1120

polarization, 1086
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political economy, 1414

positivism, 1554

potassium, 1573

potential energy, 1170

potential theory, 1468

precession, 988

precession of the earth’s perihelion,
1290

precession of the equinoxes, 1121,
1290

prime factorization, 1432, 1434

Principia, 1077, 1149

principle of least action, 1285

principle of least time, 1011

principle of relativity, 931

principle of virtual work, 1192,
1289

prism, 965

probability, 1039, 1256, 1400

probability theory, 1193, 1297,
1442, 1476, 1481

projective geometry, 1034, 1559,
1567

public library, 1173

Pyramid of Cheops, 1166

pyroelectricity, 1364

Pythagorean theorem, 1501

Pythagoreans, 963, 1514
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hardus Mülder 1937 · Jacob Schleiden 1937 · Ferdinand Minding 1950 ·
Max Eisenstein 1952 · Louis Daguerre 1953 · Charles Goodyear 1955 ·
James Maccullagh 1956 · Christian Schönbein 1958 · John William

Draper 1959 · Germain Hess 1960 · Joseph Max Petzval 1961 ·
Friedrich Henle 1962 · Karl Schimper 1962 · Edward Forbes 1963 ·
James Joule 1964 · David Gruby 1964 · Alexander Bain 1964 · David

Livingstone 1966 · Johann Doppler 1967 · Julius Robert Mayer 1967 ·
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John Kerr 2448 · Eduard Suess 2449 · Wilhelm Lexis 2450 · Eu-

gen Goldstein 2450 · Francois Lucas 2450 · Lord Rayleigh 2457 ·
Willard Gibbs 2462 · Paul Appell 2474 · Samuel Basch 2474 · Emin
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Ader 2525 · Paul Ehrlich 2527 · Edward Barnard 2530 · Oliver Heav-
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tave Robin 2614 · Giuseppe Peano 2615 · Henri Moissan 2616 · Elie

Metchnikov 2616 · Augustin Le Prince 2617 · Paul Tannery 2618 ·
Woldemar Voigt 2619 · Lois Binger 2620 · Ernesto Cesàro 2620 · Vito
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lik 2685 · Albert Londe 2685 · Mordecai Haffkine 2686 · Wilhelm

Wien 2685 · Karl Pearson 2686 · Max Weber 2687 · Shibasaburo Ki-
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Environmental Events

that Impacted Civilization
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perish
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1887 Floods of the Yellow River (China): 1 million people perish

1889–1890 Influenza pandemic in the world; millions die

1892–1900 Drought, famine and plague in India and China; ca 7 million
perish
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∗ ∗∗

“I am the daughter of earth and water,
And the nursling of the sky;

I pass through the pores of the ocean and shores;
I change, but I cannot die.

For after the rain, when with never a stain
The pavilion of heaven is bare,

And the winds and sunbeams, with their convex gleams,
Build up the blue dome of air,

I silently laugh at my own cenotaph,
And out of the caverns of rain,

Like a child from the womb, like a ghost from the tomb,
I arise and unbuild it again.”

P.B. Shelley (“The Cloud”, 1820)
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1820 CE Hans Christian Oersted (1777–1851, Denmark). Physicist and
chemist. Discovered electromagnetism (the magnetic effects of currents) and
concluded that there exists a magnetic field surrounding a current. This phe-
nomenon was soon quantified by Jean Baptiste Biot (1774–1862, France)
and the physician and physicist Felix Savart (1791–1841, France).

Oersted was born at the town of Rudkobing, on the Island of Langeland,
Denmark.

The Law of Biot-Savart

In 1819 Oersted observed that wires carrying electric currents produced
deflections of permanent magnetic dipoles placed in their neighborhood. Thus
the currents were sources of magnetic-flux density. Biot and Savart (1820),
and later Ampère (1820–1825), in much more elaborate and thorough experi-
ments, established the basic experimental laws relating magnetic induction B
to the source currents, and established the law of force between one current
and another. The final analytic results were derived by Ampère (1826). In a
form later written by Maxwell, a time-independent magnetic field due to a
static current-density J(r) is given by

curl H =
4π

c
J(r); B = curl A, div A = 0, ∇2A = −4πμ

c
J(r).

Integration of the vector Poisson equation gives A = μ
c

∫ J(r′)
|r−r′ | dr′, and conse-

quently B = μ
c

∫ J(r′)×(r−r′)
|r−r′ |3 dr′. If the conductor in which the current flows

is sufficiently thin (thin wire), and if we are interested only in the field in
the surrounding space, the thickness of the wire may be neglected. The inte-
gration over the volume of the conductor is then replaced by an integration
along its length, i.e. we put J dr′ → J dl, where J is the total current in the
conductor. Hence

A =
μJ

c

∮

wire

dl

R
; H =

J

c

∮

wire

dl × R

R3
; R = r − r′,

which is Biot and Savart’s law. Note that the field H is independent of the
magnetic susceptibility of the medium. Above, dl is an element of length
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(pointing in the direction of current flow) of a filamentary wire carrying a
current J , and R is the coordinate vector from the element of length to an
observation point.

Ampère’s experiments did not deal directly with the determination of the
relation between currents and magnetic induction, but were concerned rather
with the force that one current-carrying wire experiences in the presence of
another; the force experienced by a current element J1dl1 in the presence of
a magnetic induction H is dF = J1

c (dl1 × H). If the external field H is due
to a closed current loop with current J2, then the total force which another
closed current loop with current J1 experiences is

F12 =
J1J2

c2

∮ ∮
dl1 × (dl2 × R12)

|R12|3
,

where the line integrals are taken around the two loops and R12 is the vector
distance from line element dl2 to dl1. This is the mathematical statement
(in modern notation) of Ampère’s observations about forces between current-
carrying loops, as obtained by Grassman (1809–1877) in 1844. By manipu-
lating the integrand it can be recast in a form which is symmetric in dl1 and
dl2 and which explicitly satisfies Newton’s third law. Thus

dl1 × (dl2 × R)
|R12|3

= −(dl1 · dl2)
R12

|R12|3
+ dl2

[
dl1 · R12

|R12|3

]

.

The second form involves a perfect differential in the integral over dl1.
Consequently, it gives no contribution to the integral in F 12, provided the
paths are closed or extend to infinity. Ampère’s law of force between current
loops then becomes

F 12 = −J1J2

c2

∮ ∮
(dl1 · dl2)R12

|R12|3
.

The line integral for the field H can be transformed into an equivalent integral
over a surface S bounded by the line, obtaining

H = grad Φ; Φ =
J

c

∫

S

ds · R
|R|3 ,

where ds is the vectorial area element, and Φ is a harmonic potential. The
surface integral is, geometrically, the solid angle Ω subtended by the closed
contour at the point considered. As this point describes a closed path round
the wire, the angle Ω changes suddenly from 2π to −2π, rendering Φ a multi-
valued potential.

The law of Biot-Savart is applicable, mutatis mutandis, in the theories of
hydrodynamics and elasticity.
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Clearly, the work done by moving a unit magnetic pole once around the
wire or a closed curve C is

∮
C

H · dl =
∮

C
dΦ = 4πJ/c. This is known as

Ampère’s circuital theorem.

1820 CE Robert Gibbon Johnson (USA). Consumed two tomatoes on
the steps of the courthouse in Salem MA, thus refuting the then widely cir-
culating belief that the tomato was poisonous1. This changed forever the
human-tomato relationship.

1820–1827 CE André Marie Ampère (1775–1836, France). Physicist.
Attempted to render a combined theory of electricity and magnetism. Stim-
ulated by the discovery of the phenomenon of electromagnetism by Oersted
(1820), he soon followed with his own discovery of the basic laws of electro-
dynamics (Ampère coined this term).

He showed that parallel electric currents attract each other if the currents
move in the same direction, and repel each other if their directions are oppo-
site. In 1820 he showed that an electric current flowing through a coiled wire
acts like a magnet. This led him in 1824 to the invention of the galvanometer,
an instrument for detecting and measuring electric currents2.

From his experiments, Ampère derived a number of quantitative empiri-
cal laws concerning the interaction of circuits carrying direct electric currents.
Among the laws stated, is the inverse square law of force between two current
elements (analogous to Newton’s law of gravitation, 1687; and Coulomb’s law

1 Tomato (Lycopersicum esculentum; order — Solanaceae). Annual plant, native

of South America, probably Peru. The family includes: potato, eggplant, bell

peppers, hot chili peppers, pimentos, paprika. Within this family are 4 genera

which have been involved in most foul murders, in witchcraft and demonology, in

military campaigns, in sly seduction, and in sexual orgies. These are: jimsonweed

(Datura), deadly nightshades (Atropa), henbanes (Hyoscyamus), and mandrakes

(Mandragora). These genera contain three alkaloids: atropine, hyoscyamine, and

scopolamine which are representative of the tropane series of alkaloids, similar in

structure to cocaine.
2 Johann Salomo Christoph Schweigger (1779–1857, Germany) made an in-

dependent, similar experiment: he built a galvanometer (1820) consisting of a

wire wound around a magnetic needle and measured the angle of deflection of

the magnetic needle by the current. He named his instrument in honor of Luigi

Galvani.
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of the static force between point charges, 1785). Another is the Ampère cir-
cuital law relating the current flowing in a closed circuit to the magnetic field
produced by the current3. Consequently, he treated magnetism by postulating
small closed circuits inside the magnetized substance. This approach became
fundamental in the 19th century. Later, Maxwell modified this law for the
case of time-varying electric fields.

Ampère was born at Polémieux, near Lyons. At an early age he learned
Latin, which enabled him to read the works of Euler and the Bernoullis, but
his reading also embraced history, travels, poetry, philosophy and all natural
sciences. His father, an anti-revolutionary justice of peace, perished at the
scaffold. This event produced a profound impression on the youth’s suscepti-
ble mind. He was married in 1799 and moved to Bourg in 1801 to become a
professor of physics and chemistry. His wife died in 1804 and he never recov-
ered from the blow. In 1809 he was elected a professor of mathematics at the
polytechnique school in Paris.

He died at Marseilles. The great amiability and childlike simplicity of
Ampère’s character are well brought out in his ‘Journal et Correspondance’
(Paris, 1872).

1820–1836 CE John Frederic Daniell (1790–1845, England). Chemist
and meteorologist. Invented (1820) a dew-point hygrometer (a device that
indicates atmospheric humidity) which came into widespread use. Daniell
(1823) revealed his findings on the behaviour of the atmosphere and on trade
winds, in addition to giving details of improved meteorological equipment.
Improved the voltaic cell by devising a cell giving steady current (1836). This
‘Daniell-cell’ was used as a source of energy in the electromagnetic telegraphy
built by W.F. Cooke and C. Wheatstone. It gave new impetus to electric
research and found many commercial applications.

3 Ampère discovered the following experimental facts concerning the magnetic fields

produced by an electric current:

• A small coil (or loop) of current J behaves like a magnetic dipole of moment

m.

• m is perpendicular to the plane of the coil.

• m forms a right-handed screw with the flow of the current round the coil.

• |m| is proportional to the current J flowing in the coil.

With a proper choice of the unit of current (e.m.u), one can write m = J ds,

where ds is the vectorial area element of the magnetic shell.
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Daniell was born in London. In 1831 he became the first professor of
chemistry in Kings College.

1820–1847 CE John Herapath (1790–1868, England). Natural philo-
sopher. One of the first to discover that heat was not a substance but a
form of motion. His kinetic theory was presented in an ambitious Mathemat-
ical Inquiry into the Causes, Laws and Principal Phenomena of Heat, Gases,
Gravitation etc., submitted to the Royal Society (1820) but rejected as being
too speculative. It was however studied by James Joule, who in his own
work on heat (1843–7), almost certainly followed Herapath.

Herapath was born in Bristol, and entered his father’s profession as a
maltster, but left business (1815) to open a mathematical academy in Bristol.
He gave up teaching (1832), moved to Kensington, and began to write about
the growing British railway network. This in turn aroused his interest in heat
engines and hence modeling steam-gas physics in terms of elastic collisions
between self-repulsive particles.

1820–1875 CE Christian Gottfried Ehrenberg (1795–1876, Germany).
Naturalist. One of the first explorers of marine life. He was born at Delitzsch
in Saxony, and studied at Leipzig and Berlin, where he took the degree of
doctor of medicine in 1818. He was appointed professor of medicine at the
University of Berlin in 1827.

Ehrenberg traveled widely, exploring the natural history of Egypt,
Abyssinia, Arabia, and Russia, all the way to the frontier of China. After
returning from these voyages, he examined his collections under the micro-
scope. He discovered that many of the rock samples he had brought back
were not inorganic products, as he had thought, but consisted of the remains
of countless microscopic animals. In 1836 he showed that many silicate rocks
were similarly composed of the remains of diatoms, sponges, and radiolaria.

Next he showed that living organisms similar to the ones that make up
rocks still inhabit the sea. He reasoned that these rocks are continually form-
ing as a result of the constant rain of dead organisms to the sea bottom.
Ehrenberg also showed that the phosphorescence of the sea is due to the pres-
ence of microscopic organisms. Thus life in the sea extends from the largest
living animal, the whale, to microscopic organisms which are so numerous
that their accumulated remains make up thick layers of rock.

1820–1910 CE The European Period of Romanticism in music; Its leading
composers are:

• Mauro Giulliani 1781–1828
• Nicolo Paganini 1782–1840
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• Carl Maria von Weber 1786–1826
• Gioachino Rossini 1792–1868
• Franz Schubert 1797–1828
• Abraham Niedermeyer 1802–1861
• Hector Berlioz 1803–1869
• Mikhail Glinka 1804–1857
• Felix Mendelssohn 1809–1847
• Robert Schumann 1810–1856
• Frederic Chopin 1810–1849
• Franz Liszt 1811–1886
• Giuseppe Verdi 1813–1901
• Cesar Franck 1822–1890
• Edouard Lalo 1823–1892
• Bedrich Smetana 1824–1884
• Johannes Brahms 1833–1897
• Alexander Borodin 1834–1887
• Camille Saint-Saëns 1835–1921
• Georges Bizet 1838–1875
• Max Bruch 1838–1920
• Modest Mussorgsky 1839–1881
• Peter Ilytch Tchaikovsky 1840–1893
• Antonin Dvorak 1841–1904
• Edvard Grieg 1843–1907
• Nicolai Rimsky-Korsakov 1844–1908
• Gabriel Fauré 1845– 1924
• Francesco Paolo Tosti 1846–1916
• Charles Hubert Parry 1848–1918
• Giacomo Puccini 1858–1924
• Mikhail Ippolitov-Ivanov 1859–1935
• Gustav Mahler 1860–1911
• Claude Debussy 1862–1918
• Alexander Glazunov 1865–1936
• Jean Sibelius 1865–1957
• Sergei Rachmaninoff 1873–1943
• Maurice Ravel 1875–1937

1821 CE Jean Francois Champollion (1790–1832, France). Egyptolo-
gist. The first to decipher hieroglyphic writing. The Rosetta stone, discovered
in 1799 during Napoleon’s campaign in Egypt, provided the key to the lan-
guage of ancient Egypt.

1821 CE Joseph Maria Wronski (1776–1853, Poland and France). Orig-
inated the ‘Wronskian determinant’ in the theory of linear ODE. This was his
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only contribution to mathematics. He is the sole Polish mathematician of
the 19th century, remembered today. Wronski, who had an impecunious and
erratic personality, spent most of his life in France.

The Emergence of Dynamic Elasticity Theory4

In 1787 the German physicist Ernst Florens Friedrich Chladni (1756–
1827) studied vibration of plates by means of sand figures (1827). In his
experiments he poured fine sand on top of a glass plate. He then rubbed a bow
against the plate, causing a vibration. The sand bounced away from regions
that vibrated and collected at nodes (places that remained still). Within a
second the plate was covered with a series of sandy curves. The patterns were
symmetric and spectacular: circles, stars and other geometric figures. The
character of the pattern depended on the shape of the plate, the position of
the supports and the frequency of vibration.

Since this phenomenon could not be explained by contemporary German
and Swiss mathematicians, Chladni visited Paris in 1808 and presented his
experiments before mathematicians and physicists of the Institute of France,
a section of the French Academy of Science. Chladni’s experiments so as-
tounded the scientists that they asked him to repeat his demonstration before
Napoleon. The Emperor was impressed, and he agreed that the Academy
should award a medal of one kilogram of gold to anyone who could devise a
theory that explained Chladni’s experiments. The contest was announced in
1809 and a deadline of two years was set for all entrees.

In 1811, Sophie Germain (1776–1831, France) was the only entrant in
the contest: she tried to explain the behavior of elastic plates by applying the
methods that Euler (1751) had used: Euler had suggested that a force applied

4 For further reading, see:

• Love, A.E.H., A Treatise on the Mathematical Theory of Elasticity , Dover
Publications: New York, 1944, 643 pp.

• Todhunter, I. and K. Pearson, A History of the Theory of Elasticity from

Galileo to Lord Kelvin, 2 Volumes, Dover Publications: New York, 1960.
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to a rod is counteracted by an internal force of elasticity that is proportional at
any point along the rod to the curvature of the rod. Similarly, she proposed
that at any point on the surface, the force of elasticity is proportional to
the sum of the major curvatures of the surface at that point. (The major
curvatures are the maximum and minimum values of curvature out of all the
curves formed when planes cut through the surface perpendicularly).

Germain’s work did not win the award; she had not derived her hypothesis
from principles of physics nor could she have done so at the time, because she
lacked knowledge of analysis and the calculus of variations.

But her work did spark new insights: Lagrange, who was one of the judges
of the contest, corrected the error’s in Germain’s calculations and came up
with the equation

∂2z

∂t2
+ K2

(
∂4z

∂x4
+

∂4z

∂y4
+ 2

∂4z

∂x2∂y2

)

= 0,

where z(x, y) is the amplitude of the vibration for small z, t is time and (x, y)
represent a point on the surface.

In 1811, the Academy extended the contest deadline by two years, and
again Germain submitted the only entry. She demonstrated that Lagrange’s
equation did yield Chladni’s patterns in several simple cases. But still, she
could not devise a satisfactory derivation of Lagrange’s equation from physical
principles. For this work, she received honorable mention from the Academy.

At about the same time Simeon Dennis Poisson approached the subject
of elasticity with all the resources available to a 19th century mathematician
and physicist. In 1812, he was elected to the Academy and was therefore
ineligible to compete for the prize. In 1814 Poisson published an article on
elastic plates which sought to arrive at Lagrange’s equation by applying a
Newtonian model in which the plate consists of molecules that mutually repel
and attract each other. By modern standards, Poisson’s assumptions seem
absurd.

In her third entry in the contest (1815) Germain proposed to regard the
work done in bending as proportional to the integral of the square of the sum
of the principal curvatures taken over the surface. From this assumption and
the principle of virtual work she deduced the equation of flexural vibration in
the form now generally admitted. Later investigations have shown, however,
that the formula assumed for the work done in bending was incorrect.

The judges in the contest were, at that time, Legendre, Laplace and
Poisson. They could not accept all of her assumptions, and with this reser-
vation she won the prize. Germain did not attend the award ceremony.
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At the end of 1820, no one knew yet how to combine the Newtonian
conception of the constitution of bodies with Hooke’s law. In the words of
A.E.H. Love in the 1892 edition of his Treatise on the Mathematical Theory
of Elasticity:

“the fruit of all the ingenuity expanded on elastic problems might be
summed up as — an inadequate theory of flexure, an erroneous theory of
torsion, an unproved theory of the vibrations of bars and plates, . . . ”.

Yet, very little was needed to combine the older researches: the recogni-
tion of the distinction between shear and extension (strain) was there. So
was the recognition of forces across the elements of a section of beam (stress).
Also, there was an awareness that deflection of a bent beam and vibrations
of rods and plates are expressible in terms of differential equations. Finally,
the generalization of the principle of virtual work in the Mécanique Analy-
tique of Lagrange threw open a broad path in this as in every other branch
of mathematical physics. Physical science had emerged from its incipient
stages with definite methods of hypothesis and induction and of observation
and deduction, with the clear aim to discover the laws by which phenomena
are connected with each other, and with a fund of analytical processes of
investigation.

This was the hour for production of general theories, and the men were
not wanting: in a span of seven years, 1821–1828, Navier, Cauchy and
Poisson established the modern theory of elasticity and applied the general
theory to special problems. It was further applied by Lamé and Clapeyron
(1831–1833) to numerous problems of vibrations and of static elasticity, and
thus means were provided for testing its consequences experimentally.

After the equations of elasticity had been formulated, little advance seems
to have been made in the treatment of problems of shells and plates. Only
in 1860 did Kirchhoff succeed formulating the equation of small motion of
a plate in a correct way. He deduced it from the principle of virtual work
and applied it to the problem of the flexural vibrations of a circular plate.
Chladni’s experiments were finally explained.

1821–1823 CE Claud Loui Marie Henri Navier (1785–1836, France).
Engineer and applied mathematician. Worked on topics such as engineering,
elasticity and fluid mechanics. He was first to develop a theory of suspension
bridges which hitherto had been built on empirical principles. Presented a
molecular theory of an elastic body, giving the equation of motion for the
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displacement of a particle in an elastic solid5. Led by formal analogy with
the theory of elasticity, he succeeded in setting up the differential equation of
motion of a viscous fluid6 (Navier-Stokes equations, 1823).

Navier was born in Dijon and educated at the École Polytechnique. In
1819 he became professor of applied mechanics at the École des Ponts et
Chaussées in Paris, and in 1831 a professor of analytical mechanics at the
École Polytechnique. He was a disciple and a friend of Fourier.

1821–1831 CE Augustin Louis Cauchy (1789–1857, France). The most
outstanding analyst of the first half of the 19th century. Pioneered the study

5 The field equations for linear elastic media are derived from three fundamental

physical principles applied to the elastic continuum: conservation of mass, linear
momentum and angular momentum. The conservation of linear momentum leads

to the Cauchy equation of motion

div T + ρF = ρ
∂2u

∂t2
,

where T is the stress tensor, F is a body force per unit mass, ρ is the density,

and u(r, t) is the displacement field. [The conservation of mass manifests itself

in the relation δρ = −ρ div u, reflecting changes of density due to wave motions,
which are usually negligible in many applications. The conservation of angular

momentum leads to the symmetry of the stress tensor.] For linear elastic solids,

the stress-strain relation (Hooke’s Law) is of the form

T =
4

C :
1

2
(∇u + u∇),

where
4

C is the fourth-order tensor of elastic moduli . The special case of an

isotropic homogeneous solid renders

T = λI div u + μ(∇u + u∇).

The substitution of this relation into the Cauchy equation yield the Navier elas-

todynamic equation for the unknown displacement field,

(λ + 2μ) grad div u − μ curl curl u + ρF = ρ
∂2u

∂t2
,

where (λ, μ) are the Lamé parameters of the elastic solid.
6 Navier derived the proper form of these equations although he had no conception

of shear stress in a fluid and despite not fully understanding the physics of the

situation which he was modeling. He rather based his work on modifying Euler’s

equation to take into account forces between molecules in the fluid.
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of analysis and the theory of permutation groups. Researched the conver-
gence and divergence of infinite series, differential equations, determinants,
probability and mathematical physics. He wrote extensively and profoundly
on both pure and applied mathematics and can be ranked next to Euler in
volume of output7 [27 large quarto volumes of collected works, including 789
papers]. His work, however, is of uneven quality.

His greatest contributions to the mathematical sciences are couched in
the rigorous methodology which he introduced since 1821, banishing formal
manipulations and intuition from analysis. These are mainly embodied in
his 3 great treatises: Cours d’analyse de l’Ecole Polytechnique (1821), Le
Calcul infinitésimal (1823), Lecons sur les applications du calcul infinitesimal
a la geometrie (1826–1828). In these volumes he developed the theory of
convergence and divergence of infinite series [root test, ratio test, integral test,
product of series, absolute convergence] and of infinitesimal calculus [limits,
continuity, differentiability, definite integral as a limit of a sum, etc.].

He was the first to prove Taylor’s theorem rigorously, establishing his
well-known form of the remainder. He was also first to properly define length
of arcs and surface areas by integrals [the question of defining surface areas
independent of integrals was taken up somewhat later, but this posed many
difficult problems that were not properly solved until the 20th century].

It is true that the first known appearance of infinite series occurred in the
work of Archimedes and that infinite series were freely used in the late 17th

century by Newton, Leibniz and others, but little or no attention was given
to the general question of establishing rigorous tests for their convergence or
divergence.

During 1823–1828 Cauchy laid the foundations of today’s mathematical
theory of elasticity. He introduced the notions of stress and strain tensors, de-
rived the 3D stress-strain relations and also correctly established the number
of elastic constants: two for an isotropic solid and 21 for a crystal.

In 1831 he developed his complex function theory where one encounters
Cauchy’s inequality8, Cauchy’s integral theorem, Cauchy’s integral formula,

7 In 1835 the Academy of Sciences began publishing its Comptes Rendus. So rapidly

did Cauchy supply this journal with articles that the Academy became alarmed

over the mounting printing bill, and accordingly passed a rule, still in force today,

limiting all published papers to a maximum length of 4 pages.
8 Cauchy inequality: Let f(x) and g(x) be two functions, not identically equal

to zero, given on the interval (a, b). We choose arbitrary numbers λ and μ and

form the expression

∫ b

a

|λf(x) − μg(x)|2dx ≥ 0, i.e. 2λμC ≤ λ2A + μ2B,
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Cauchy-Riemann equations and Cauchy’s power series expansion of an ana-
lytic function.9

Cauchy was born in Paris. He received his early education from his father
Louis Francois Cauchy (1760–1848), who held several minor public appoint-
ments and counted Lagrange and Laplace among his friends.

Later, at the École du Panthéon, he excelled in ancient classical studies. In
1805 he entered the École Polytechnique and won the admiration of Lagrange
and Laplace. In 1807 he enrolled at the École des Ponts et Chaussées, where
he prepared for a career as a civil engineer. In 1810 he left Paris for Cher-
bourg and returned in 1813 on account of his health, whereupon Lagrange
and Laplace persuaded him to renounce engineering and devote himself to
mathematics.

He obtained an appointment at the École Polytechnique but was forced to
give up his professorship after the revolution of 1830, and was excluded from

where

∫ b

a

f(x)g(x)dx = C,

∫ b

a

f2(x)dx = A,

∫ b

a

g2(x)dx = B.

Since the above inequality is valid for arbitrary values of λ and μ, we may choose

λ =
√

C
A

, μ =
√

C
B

. Substituting these values of λ and μ in the inequality, we

obtain C√
AB

≤ 1, or the Cauchy inequality:

∫ b

a

f(x)g(x)dx ≤
{∫ b

a

f2(x)dx

∫ b

a

g2(x)dx

}1/2

.

9 To dig deeper, see:

• Titchmarsh, E.C., The Theory of Functions, Oxford University Press: Lon-
don, 1939, 452 pp.

• Lavrentjev, M.A. and B.W. Shabat, Methoden Der Komplexen Funktionen-
theorie, Deutscher Verlag der Wissenschaften: Berlin, 1967.

• Needham, T., Visual Complex Analysis, Oxford University Press, 2000,
592 pp.

• Dettman, J.W., Applied Complex Variables, Dover Publications, 1984,

481 pp.

• Moretti, G., Functions of a Complex Variable, Prentice-Hall of India, New

Delhi, 1968, 456 pp.

• Fisher, S.D., Complex Variables, Dover, 1999, 424 pp.
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public employment for 18 years. A short sojourn at Freiburg in Switzerland
was followed by his appointment, in 1831, to the newly-created chair of math-
ematics and physics at the University of Turin. In 1833 the deposed King
Charles X, living in exile in Prague, summoned Cauchy to tutor his grandson,
the 13-year-old Duke of Bordeaux. For five years the great analyst served as
a baby-sitter of sorts to the pampered youth, and Charles made him a baron
for this martyrdom.

Finally, in desperation, Cauchy escaped to Paris, saying he had to attend
the celebration of his parents’ golden anniversary. Once back in France, he was
permitted to resume his post at the Académie. In 1848, after teaching in some
church schools in Paris, he was allowed to return to the École Polytechnique
without having to take the oath of allegiance to the new government. Cauchy
was disliked by most of his colleagues. He displayed self-righteous obstinacy
and an aggressive religious bigotry. His last words were: “Men pass away, but
their deeds abide”.
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The New Mathematics

A tidal wave of mathematical inventiveness and novelty began to sweep the
European continent at the dawn of the 19th century. This movement began
with a quintet of brilliant minds: N.H. Abel (1824), W.R. Hamilton
(1818), C.G.J. Jacobi (1829), E. Galois (1829) and P.G.L. Dirichlet
(1829).

With them the centroid of mathematical activity shifted from France
to Germany. During the post-Newtonian era (ca 1740–1819)10, the leading
French school of mathematics was strongly tied to problems of Newtonian
mechanics and astronomy. The French revolution, with its ideological break
from the past and its many sweeping changes, created favorable conditions
for the growth of mathematics. Thus in the 19th century mathematics under-
went a great forward surge, first in France and later, as the motivating forces
spread over Northern Europe, in Germany, and still later in Britain.

The new mathematics began to free itself from its narrow interest in me-
chanical problems, and a more general and abstract outlook evolved. The
great mathematicians of the 19th century seem to be almost of a different
species from their predecessors. They were not content with special problems,
but attacked and solved general problems whose solutions yielded those of a
multitude of problems which, in the 18th century, would have been considered
one by one.

The 60 years starting with the pivotal 1829, witnessed a most extraordi-
nary phenomenon in the history of human thought: mathematicians prepared
for the physicists of the 20th century most of the mathematical tool needed to
model the world of 20th century physics: groups, matrices, vectors, quater-
nions, sets, non-Euclidean geometry, integral transforms, integral equations,
partial differential equations, special functions and symbolic algebras.

Indeed, during 1828–1893, these weapons were forged by armies of en-
thusiastic workers that wheeled into the front ranks of analysis, geometry,
algebra, theory of functions, theory of numbers and applied mathematics,
under the leadership of G. Green (1828)11, N.I. Lobachevsky (1832),
J. Bolyai (1832), A.F. Möbius (1832), J.J. Sylvester (1834), J. Liou-
ville (1837), H.G. Grassmann (1844), L. Kronecker (1845), J.B. Listing

10 The discovery of electromagnetism (1820), which marked a new era in physics,

is contemporary with the rise of the new mathematics whose harbingers were

Poncelet (1822) in geometry and Abel (1824) in analysis.
11 Year in parenthesis indicates beginning of activity.
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(1847), K.T.W. Weierstrass (1848), E.E. Kummer (1850), G.F.B. Rie-
mann (1851), A. Cayley (1854), G. Boole (1854), S. Lie (1870), J.W.R.
Dedekind (1872), G.F.L.P. Cantor (1872), W.K. Clifford (1873), J.W.
Gibbs (1876), O. Heaviside (1881), G. Darboux (1887), V. Volterra
(1887), G. Ricci-Curbastro (1887), A.M. Lyapunov (1892) and K. Pear-
son (1893).

The very foundations of mathematics were re-examined, and fundamental
principles were worked out anew. The terms number, function, limit, continu-
ity, infinity and integral were given more precise meaning. One of the phases
of the quest for rigor was the re-defining of mathematics. An old idea which
goes back to Aristotle defined mathematics as the science of quantity.

Auguste Comte (1798–1857, France), philosopher and mathematician,
defined mathematics as “the science of indirect measurement”. These defin-
itions had to be abandoned, however, since the modern branches of mathe-
matics, such as the theory of groups, topology, projective geometry, theory
of numbers and the algebra of logic, have no a priori relation to quantity
and measurement. Moreover, the continuum, the central supporting pillar
of modern analysis, as constructed by K. Weierstrass, R. Dedekind and G.
Cantor, did not bear any reference whatsoever to quantity. In this light we
understand the definition of Benjamin Peirce (1870) that “mathematics is
the science which draws necessary conclusions”.

Thus, reasoning which seemed absolutely conclusive to one generation, no
longer satisfied the next.

1822 CE The first meeting of the association of German speaking scientists
and doctors (Deutscher Naturforscher Versammlung), was held at Leipzig.
Some 20 scientists who had published work attended, together with 60 guests.
First viewed with suspicion12, these congresses later became instruments for
increasing national unity in Germany; subsequent meetings, which were held

12 Being both liberal and nationalistic in tone, the first congresses drew the sus-

picion of the rulers of the German states. Members attending the 1st meeting

refused to allow their names to be recorded, for fear their governments should

find out. Metternich is Austria suggested to Viennese scientists applying for

passports that it would be contrary to their own interests to go, with the result

that the Austrian scientists were not represented until 1832, when the annual

meeting was held at Vienna.
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annually in one or other of the main German cities, gradually grew larger:
some 600 attending the 1828 meeting at Berlin, and a 1000 the 1842 meeting
at Mainz. Quite early on, the Prussian government saw that the national
science congresses could become a controlled force for German unity, and it
extended patronage to the meetings from 1828 on. Thereafter the congresses
came more under the control of the German governments, with the state
acting as host for a particular annual congress, appointing the president of the
congress for that year and the secretary who organized and ran the meetings.

The idea of the association was conceived and realized by Lorentz Oken
(Ockenfuss, 1779–1851), a Swabia-born German naturalist (who in 1806 elab-
orated on Goethe’s theory that the skull in vertebrates evolved from enlarge-
ment and fusion of Vertebrae; this theory was disproved in 1858 by Thomas
Huxley).

1822–1826 CE Jean Victor Poncelet (1788–1867, France). A mathe-
matician and engineer. One of the founders of modern projective geometry.
Born at Metz. From 1808–1810 he attended the École Polytechnique and was
a pupil of Monge. In 1812 he became lieutenant of engineers and took part
in the Russian campaign, during which he was taken prisoner and confined
at Saratov on the Volga. It was during his imprisonment that he began his
researches on projective geometry, which led to his great treatise on that sub-
ject: “Traité des propriétés projectives des figures” (1822), which is a study
of those properties which remain invariant under projection. It contains fun-
damental ideas such as the cross-ratio, perspective, involution, and circular
points at infinity. In 1826, Poncelet discovered the principle of duality. It was
applied in 1826 by Joseph Diaz Gergonne (1771–1859) to the theorem of
Desargues, and proved by Plücker in 1829.

From 1815 to 1825 Poncelet was occupied with military engineering at
Metz and from 1825 to 1835 he was professor of mechanics at the École
d’Application there. From 1838 to 1848 he was professor at the faculty of
science at Paris and from 1848 to 1850, director of the École Polytechnique.

1822 CE Chemist Georges-Simon Serulas discovered iodoform and its
antibacterial action.

1822 CE Thomas Johann Seeback (1770–1831, Germany). Physicist.
Invented the thermocouple and discovered thermoelectricity; he showed, in his
Berlin laboratory, that a temperature difference between the junctions of two
different metals in a closed circuit can create an electric current. But, because
of a mistaken interpretation of what was involved, he did not do any practical
application for it. Thermoelectricity lay undisturbed for over a hundred years
like a Sleeping Beauty. The Prince that awoke her was the semiconductor.
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1822 CE Joseph Nicèphore Niépce (1765–1833, France). Physicist.
Was the first person to make a permanent photographic image13. He ex-
posed a light-sensitive metal plate in a camera, and then used an engraving
process to “fix” the image to obtain what could be called a “photograph”. A
photograph he made in 1826 still exists today.

In 1839, Louis Jacques Mandé Daguerre (1787–1851, France) pro-
duced the first popular form of photography, the Daguerreotype. He based
his process on Niépce’s work, exposing a light-sensitive metal plate and devel-
oping the image with mercury vapor. He then ‘fixed’ the image with common
salt. Also in 1839, William Henry Fox Talbot (1800–1877, England) in-
vented a light-sensitive paper. This paper, coated with salt and silver-nitrate,
produced a negative image from which positive prints could be made. This
was the first negative-positive system of making photographs. The astronomer
John Frederick William Herschel (1792–1871, England) named the in-
vention photography and suggested the use of sodium thiosulphate (hypo) as
a fixing agent.

1822–1842 CE Eilhard Mitscherlich (1794–1863, Germany). Physical
and organic chemist. Discovered the phenomenon of isomorphism (“the same
shape”), namely — that substances with similar chemical composition may
have the same shape of crystal (1822). He demonstrated it with crystals of
potassium arsenate and potassium phosphate and with some of the sulphates.
He further noticed that sulphur forms either rhombic or monoclinic crystals,
and this led him to the discovery of dimorphism, the capacity of some elements
to occur in two distinct forms. He synthesized nitrobenzene in the laboratory
(1832), which he termed benzine (1834). He also synthesized artificial minerals
by fusing silica with various metallic oxides. He showed that yeast (which in
1842 he identified as a microorganism) can invert sugar in solution.

Mitscherlich was born in Jever, Lower Saxony, and entered Heidelberg
University to study Oriental languages, but had to abandon it with the fall
of Napoleon. He instead studied science at Göttingen and then worked with
the Swedish chemist Jöns Berzelius in Stockholm for two years. He became
professor at the Friedrich Wilhelm Institute in Berlin (1825).

1823 CE Michel Eugène Chevreul (1786–1889, France). Chemist. One
of the founders of modern organic chemistry. Elucidated the true nature of

13 Niépce “almost” discovered radioactivity! He knew that uranium salt may darken

a metal plate but failed to understand what he was doing.
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soap and explained clearly for the first time the reaction of saponification14

(soap formation) in a classical paper (1823): “Recherches chimiques sur les
corps gras d’origine animale”. In this work he established the fact that soap
is formed by a combination of alkali with an acid constituent of the fat15, the
other constituent (glycerol) being set free. It was one of the first works ad-

14 Saponification is the reaction between an ester (fat; fatty acid) and a base (such
as NaOH or KOH) in aqueous solution to form an alcohol and a salt (soap), e.g.,

O O

‖ //
H3CCH2–O–C–CH3 + (Na+)aq+(OH−)aq → H3CCH2OH + CH3–C

\
O−Na+

ethyl acetate sodium hydroxide ethyl alcohol sodium acetate

(ethanol) (soap)

Another typical soap molecule is sodium laurate CH3(CH2)10COO−Na+. The
long hydrocarbon chain in this molecule is nonpolar and does not dissolve well

in water. This end (tail) of the molecule is called hydrophobic (“water hating”).

On the other hand, the polar end of the molecule (head) –COO−Na+ is a salt,
and dissolves well in water. It is hydrophilic (“water loving”) and therefore gives

soap its stability.

The hydrocarbon tails of the molecules can mingle with the grease, which is
typically a mixture of fats and oils. As a result, the surface of a grease droplet

becomes surrounded by a sheath of head groups, which do not mix with the

grease. The head groups form hydrogen bonds with water, which lifts them
and the droplet and washes them away from the object. Thus, soap acts as an

enveloping coating over the grease and dirt particles.

Detergent is the name used for synthetic substances that are not soaps but have
similar properties. In the most common type, the polar carboxylate end of the

soap molecule is replaced by a sulfate group. A typical detergent molecule is

sodium dodecylsulfate

O
‖

CH3(CH2)10CH2–O–S–O−Na+

‖
O

Whereas soaps tend to precipitate in hard water (i.e., water containing bicar-

bonates of such divalent metals as Mg or Ca), leaving a ring of Mg soap or Ca

soap around a bathtub, most detergents do not, and are therefore superior for

use in hard water. Most detergents are not biodegradable, however, so in recent

years their environmental impact has become the source of increasing concern.
15 This fact was asserted already by the apothecary and medical chemist Otto
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dressing the issue of the fundamental structure of a large class of compounds.
In 1825, Chevreul and Gay-Lussac patented a method of making candles from
fatty acids; these candles were a great improvement on tallow (fats of cattle
and sheep) candles, then commonly in use.

Chevreul was born at Avigers, a son of a physician. He came to Paris
(1803) and studied under Vauquelin. He later occupied technical positions
in Paris, including the directorship of the famous Goblin tapestry works.
Chevreul became (1826) member of the Academy of Sciences and foreign
member of the Royal Society of London. He subsequently became professor
of organic chemistry in the Natural History Museum (1830). As a result of
the researches of Gay-Lussac, Vauquelin and Chevreul, Paris became a center
of work and research in the new science of organic chemistry. His completion
of his 100th year was celebrated with public rejoicing and after his death he
was honored with a public funeral.

Soap-making is one of the oldest chemical syntheses: soap both as medici-
nal and as a cleansing agent was known to Pliny, who mentions it as originally
a Gallic invention for giving a bright hue to the hair. Thus, there is reason to
believe that soap came to the Romans from Germany. Detergents, however,
were in use in earlier times and mentioned as soap in the Bible (Jer 2, 22;
Mal 3, 2; etc.). These refer to the alkali-rich ashes of plants and other such
purifying agents.

Phosphates are added to detergents to provide the optimal acidity for the
functioning of the surfactant (surface-active agents like soap) molecules, to
remove calcium and magnesium ions by wrapping around them and hiding
them away from other ions with which they precipitate and form a scum, and
to attache to dirt particles that have been washed off the fabric to prevent
them from redepositing. Unfortunately, since phosphates are fertilizers, the
waste water from a load of wash is highly nutritious and can promote the
growth of microorganisms in rivers and lakes. This can lead to eutrophication,
or overnourishment, which leads to clogging by organic growth, perhaps to
the point of transforming a lake into a swamp.

1823–1828 CE Niels Henrik Abel (1802–1829, Norway). A great math-
ematician of the 19th century with a meteoric career. Abel was born in
Findo, Norway. His father was a country minister of considerable culture.
His mother’s outstanding characteristic seems to have been her beauty. Bur-
dened with the support of his mother and five brothers and sisters when he
was only 18, Abel struggled to take care of them and pursue his mathematical
studies at the University of Christiania.

Tachenius (1620–1699, Germany) in his book Hippocrates Chimicus (1666). In

this book he also stated that every salt is composed of acid and alkali.
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The first explicit appearance of integral equations in the history of
mathematics16 was in Abel’s thesis (1823) on tautochrones. His first notable
work was a proof of the impossibility of solving the quintic equation by radicals
(1824–1826).

State aid enabled him to visit Germany and France in 1825. In Freiburg
he made his brilliant researches in the theory of elliptic, hyperelliptic and
Abelian functions. He came to Paris in 1826, and during a ten months’ stay
he met the leading French mathematicians, but he was little appreciated, for
his work was scarcely known. Pecuniary embarrassments, from which he had
never been free, finally compelled him to return to Norway. When he realized
that he was dying of tuberculosis, he praised the good qualities of his fiance
Crelly to his friend Kielhan, and indeed Kielhan did marry Crelly after Abel’s
death.

In 1829, August Crelle (1780–1855) was able to secure for him an appoint-
ment as professor of mathematics at the University of Berlin, but the offer
did not reach Norway until after his death. His premature death at the age
of 26 cut short a career of extraordinary brilliance and promise.

1823–1839 CE Jan Evangelista Purkyne (Purkinje) (1787–1869,
Bohemia). Physiologist. Known for observations and discoveries in physiol-
ogy and microscopic anatomy. Professor in Breslau (1823–1850) and Prague
(1850–1869). Director (1839) of the first institute of physiology in Breslau
(Wroclaw, Poland).

His main contributions:

• Developed first system for classifying fingerprints (1823) and recognized
fingerprints as means of identification.

• Discovered sweat glands (1833).

• Noted that animal tissues are made from cells (1835).

• Outlined the key features of the cell theory (to be more fully propounded
by Schwann in 1839). Discovered ciliary movements in vertebrates; a
class of pear-shaped cells in the middle layer of the cerebellar cortex are
known as Purkyne’s cells (1837).

• Observed cell division under the microscope (1838).

16 There is an opinion that the first appearance of an integral equation was marked

by Laplace (1782), when he introduced the Laplace transform.
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• Discovered networks of fibers made up of large muscle cells in cardiac
muscles, known as Purkyne’s network, system or tissue (1839). Promoted
the word protoplasm in the modern sense.

• Discovered ganglionic bodies in the brain.

1823–1855 CE Justus von Liebig (1803–1873, Germany). Chemist. Dis-
covered (1823) the concept of chemical isomers (compounds with the same
chemical composition but very different properties). The name isomer (Greek
for equal parts) was coined in 1830 by Jöns Jacob Berzelius (1779–1848,
Sweden), who also discovered silicon in 1823.

Liebig discovered the composition of many organic compounds. Made a
systematic organization of organic chemistry, based on the radicals (radicals
in organic chemistry act analogously to the elements in mineral chemistry,
with the same general principles of combination and reaction). Discovered
chloroform (CHCl3) in 1831, and explained the theory of exchange of carbon
and nitrogen in plants and animals (1840). Founded agricultural chemistry
(chemistry of fertilization).

Liebig was born in Darmstadt. Studied at the Universities of Bonn and
Erlangen and graduated as Ph.D. in 1822. He then went to Paris and practiced
chemistry under Gay-Lussac. In 1826 he became a professor of chemistry
at Giessen. In this small town his most important work was accomplished.
There he established a new chemical laboratory, unique of its kind at the time,
that soon rendered Giessen the most famous school in the world. It gave a
great impetus to the progress of chemical education throughout Germany. In
1852, Liebig accepted the chair of chemistry at Munich University.

1824–1844 CE Friedrich Wilhelm Bessel (1784–1846, Germany). As-
tronomer. As director of the Königsberg observatory (1810–1846) he inaugu-
rated the modern era of precision astronomy. Determined the positions and
proper motions of over 50,000 stars and discovered the parallax of 61 Cygni.
In 1838 Bessel made the first authentical measurement of a star’s distance
from the sun, using stellar parallaxes. This was achieved by employing an
instrumental technique that enabled measurements of angles to a fraction of
an arc second. In 1831–1832 Bessel measured an arc of the meridian in East
Prussia and deduced for the earth’s figure, in 1841, an ellipticity of 1

299 .

In 1844 he discovered the companion of Sirius17 (called Sirius B), a star of
the type known later as a white dwarf. Bessel deduced the binary nature of

17 In 1914, Walter Sydney Adams (1876–1956, U.S.A.) succeeded in taking the

spectrum of Sirius B, from which he inferred that it was a ‘white’ star, not very
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Sirius by noticing that the star was moving back and forth slightly (wobbling),
as if orbited by an unseen object. Only in 1863 was the companion first seen.

Bessel (1835) used dates of disappearances of the Saturn Rings18(as viewed
from earth) in an effort to determine the orientation of Saturn’s pole (w.r.t. to
its own orbital plane about the sun). To this end he surveyed the astronomical

different from its companion. He found that it had a surface temperature of

ca 10,000 ◦C, which according to its luminosity, would have been quite small .

Recent satellite observations at ultraviolet wave lengths showed that the surface

temperature of Sirius B is about 30,000 ◦K.
18 Saturn, whose equatorial diameter is 9.44 earth diameter, orbits at a mean dis-

tance of 9.539 AU from the sun with a mean orbital velocity of 9.6 km
sec (compared

to 29.8 km
sec for earth). The Saturnian year is 29.46 earth years and its equatorial

rotation period is 10h13n59s. The inclination of its orbit to the ecliptic plane is

2◦29′.

Earth-based views of the Saturnian ring-system (first identified by Huygens in

1655) change dramatically as Saturn orbits slowly about the sun. This change is

observed because the rings (which are in the plane of Saturn’s equator) are tilted

26◦44′ from the plane of Saturn’s orbit. Thus, over the course of Saturn’s year,

the rings are viewed from various angles by earth-based observers. At one time,

the observers look “down” on the rings; one-half of a Saturnian year later, the

“underside” of the rings is exposed to view from earth. At intermediate times,

the rings are seen edge-on, and they then disappear entirely from the view of the

earth-based observer.

Saturn turns ringless as the earth passes the plane of the planet’s razor-thin rings.

Most of the time, however, the ring-plane does not cut the earth’s orbit. It does so

with a period of 14.7 years, and on that year, there are 3 ring-plane crossings (i.e.,

3 disappearances of the rings at unequal intervals) due to the approximate ratio

3 : 1 of the orbital velocities of earth and Saturn. Thus, the four last ring-plane

crossings were {May 22, 1855; Aug. 10, 1985; Feb. 12, 1986; May 22, 1995}. Not

until 2009 will the rings be aligned directly toward us once more. The ring-plane

takes about 12 to 28 minutes to sweep across the earth.

Prior to the mid-19th century, observers often imagined the rings to be a thin,

solid, opaque disc, divided into two concentric portions by the dark gap of the

Cassini Division. This was despite Laplace’s demonstration (1785) that such

broad rings, if truly solid (and thus in a state of uniform rotation) would be torn

apart by Saturn’s tidal forces. A series of many narrow solid rings could evade

Laplace’s objection, but Maxwell showed (1857) that even such narrow rings

would be unstable. Only then did most astronomers reluctantly accept that the

rings must be composed of myriads of independently orbiting moonlets. Argu-

ments about fluid rings persisted until Harold Jeffreys’ definitive work (1946)

showed that the moonlets must be separate bodies.
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literature to collect all reliable ring-plane crossing observations between 1714
and 1833. He even attempted to determine the precession period of the pole,
obtaining a value of 340,000 years (the modern estimate is 1.7 million years).

Bessel was born at Minden. Early work on Comet Halley in 1804, which he
communicated to Olbers, and an investigation of the comet of 1807, enhanced
his reputation and he was summoned by the King of Prussia in 1810 to help
establish a royal observatory.

In 1819 Bessel introduced into an investigation of Kepler’s problem the
solutions of the differential equation

y′ ′ +
1
x

y′ +
(

1 − m2

x2

)

y = 0,

which now bear his name: ‘Bessel functions ’19.

These functions were known earlier to Daniel Bernoulli (1732) [obtained
the Bessel function of order zero as a solution to the problem of oscillations of

19 Bessel (1824) discovered the intriguing continued-fraction expansion of a ratio
of the modified functions

I1(2)

I0(2)
=

1

1 +
1

2 +
1

3 +
1

4 +
1

5 + · · ·

=

∞∑

k=0

1

k + 1

1

(k!)2

∑∞
k=0

1

(k!)2

= 1.59063685 . . .
2.27958530 . . . = 0.697 774 658 . . .

It is interesting that the continued fraction converges, thus differing from the

harmonic series in this regard.
To prove the above relationship we write the nth convergent for the continued

fraction as Pn
Qn

where

Pn = nPn−1 + Pn−2, Qn = nQn−1 + Qn−2, n ≥ 3

P1 = 1, Q1 = 1, P2 = 2, Q2 = 3.

Now, the modified Bessel functions Kn and In obey the recurrence relations

Kn+1(x) = 2n
x

Kn(x) + Kn−1(x)

In+1(x) = − 2n
x

In(x) + In−1(x).
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a chain20 suspended at one end] and Leonhard Euler (1764), who employed

Hence An = Kn+1(2) and An = (−)n+1In+1(2) are independent solutions of

An = nAn−1 + An−2. Consequently

Pn = αKn+1(2) + β(−)n+1In+1(2)

Qn = γKn+1(2) + δ(−)n+1In+1(2).

The values of (α, β, γ, δ) are found from the initial conditions and the Wronskian
relation Kn+1(x)In(x) + Kn(x)In+1(x) = 1

x
namely,

α = 2I1(2), β = 2K1(2), γ = 2I0(2), δ = 2K0(2).

But In(2) tends to zero as n tends to infinity, while Kn+1(2) ∼ 1
2
n! as n tends

to ∞. This yields P∞
Q∞

= I1(2)
I0(2)

.

20 In 1781, the problem was taken up by Euler, who formalized it as follows (mod-

ern notation): A chain (or a massive thread, devoid of flexural rigidity), with
line density ρ and total length L, is suspended at one end. Take the origin o at

that point, with the x-axis pointing downward along the undisturbed chain, and

the y-axis pointing to the right.
Let the chain execute a motion with small transverse (y) amplitude. At a general

point A, the tension makes an angle ψ with ox. The y-component of this tension

is T sin ψ ≈ T ∂y
∂x

. An adjacent point B, at x + dx, experiences a tension differ-
ing by ∂

∂x

(
T ∂y

∂x

)
dx. The mass of the element AB is ρ dx and its acceleration

is ∂2y
∂t2

. Moreover, since the oscillations are small, it is sufficiently accurate to

take the tension T as the weight of the chain below A; hence T = ρg(L − x).
This renders the equation of motion

ρ
∂2y

∂t2
=

∂

∂x

[

ρg(L − x)
∂y

∂x

]

.

Assuming a harmonic motion y = ueiωt and denoting L − x = z, the equation

for the amplitude u becomes

d2u

dz2
+

1

z

du

dz
+ k2 u

z
= 0, k2 = ω2/g.

Its general solution is

u(z) = aJ0(2k
√

z) + bY0(2k
√

z).

The free-end conditions implies b ≡ 0. At the fixed end, u(x = 0) = 0
yields J0(2k

√
L) = 0, which furnishes an equation for the eigenfrequencies

ωn = ωn(L, g). By an extremely ingenious analysis Euler proceeded to ob-

tain the values 1.445795, 7.6658 and 18.63 for the three smallest roots
of the period equation [more accurate values are 1.4457965; 7.6178156;

18.7217517].
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And here is how he did it: first, he assumed that all zeros are distinct and real

0 < α1 < α2 < α3 . . .

and that it is possible to express it as the infinite product

J0

(
2

√
x
)

=
∞∏

n=1

(

1 − x

αn

)

.

If it is differentiated logarithmically, then

− d

dx
log J0

(
2

√
x
)

=
∞∑

n=1

1

αn − x
=

∞∑

n=1

∞∑

m=0

xm

αm+1
n

provided that |x| < α1, and the last series then converge absolutely.

Put
∞∑

n=1

1

αm+1
n

= σm+1

and change the order of summations; then

− d

dx
J0

(
2

√
x
)

≡ J0

(
2

√
x
) ∞∑

m=0

σm+1x
m.

Replace J0 (2
√

x) on each side by its series expansion

1 − x

12
+

x2

12 · 22
− x3

12 · 22 · 32
+ · · · ,

multiply out the product on the right, and equate coefficients of the various

powers of x in the identity; we thus obtain the system of equations

1 = σ1,

− 1

2
= σ2 − σ1,

1

12
= σ3 − σ2 +

1

4
σ1,

− 1

144
= σ4 − σ3 +

1

4
σ2 − 1

36
σ1

1

2880
= σ5 − σ4 +

1

4
σ3 − 1

36
σ2 +

1

576
σ1

− 1

86400
= σ6 − σ5 +

1

4
σ4 − 1

36
σ3 +

1

576
σ2 − 1

14400
σ1,

whence

σ1 = 1, σ2 =
1

2
, σ3 =

1

3
, σ4 =

11

48
, σ5 =

19

120
, σ6 =

473

4320
, ...
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Since 0 < α1 < α2 < α3 . . ., it is evident that

1

αm
1

< σm, σm+1 <
σm

α1
,

and so

σ−1/m
m < α1 <

σm

σm+1
.

By extrapolating from the following table:

m σ
−1/m
m σm/σm+1

1 1.000 000 2.000 000
2 1.414 213 1.500 000

3 1.442 250 1.454 545
4 1.445 314 1.447 368

5 1.445 724 1.446 089

6 1.445 785 —

Euler inferred that α1 = 1.445795, whence

1

α1
= 0.691661, 2

√
α1 = 2.404824.

By adopting this value for α1, writing

∞∑

n=2

1

αm
n

= σ′
m,

and then using the inequalities

1

αm
2

< σ′
m, σ′

m+1 <
σ′

m

α2
,

Euler deduced that α2 = 7.6658, and hence that α3 = 18.63, by carrying the
process a stage further.

Poisson (1833) calculated α1 by solving the quadric equation obtained by equat-
ing to zero the first five terms of the series for J0(2

√
x):

1 − x

12
+

x2

22
− x3

62
+

x4

242
= 0,

obtaining α1 = 1.446796491. Rayleigh (1874) used the method of Euler to

calculate the smallest zero of Jν(x).
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the functions of both zero and integral orders in an analysis of the vibrations
of a stretched membrane. Later, Schlömilch (1857) defined these functions
as the coefficients of the power of t in the expansion of exp

{
1
2z(t − t−1)

}
,

namely:21

e
1
2 z(t− 1

t ) =
∞∑

n=− ∞
Jn(z)tn.

History of Thermometry (1593–1848)

In Aristotelian philosophy, hot and cold were associated with the terrestrial
elements, earth, water, air and fire, which conveyed the sensations of coldness
(earth-water), wetness (water-air), heat (air-fire), and dryness (fire-earth).
Therefore, it was natural for Greek scientists, although not too keen on the
experimental approach, to investigate the qualitative differences between these
elements.

The first thermoscope was developed by Philo of Byzantium in 250 BCE.
This rudimentary device was able to distinguish between a balloon filled with
cool air and the same balloon exposed to the heat of the sun. Heron of
Alexandria later constructed a more refined thermoscope, but in the social
conditions of the Hellenistic world and the Middle Ages that followed, these
devices remained solely objects of amusements for more than 1500 years.

The first step in the development of the science of heat was of necessity
the invention of the thermometer — an instrument for indicating temperature
and measuring its changes22. The first requisite for such an instrument is that
it should always give, at least approximately, the same indication at the same
temperature. The invention of such a device is generally attributed to Galileo

21 To dig deeper, see:

• Watson, G.N., A Treatise on the Theory of Bessel Functions, Cambridge

University Press: Cambridge, 1966, 804 pp.

22 The invention of the thermometer preceded by some 260 years the notion that

temperature is linearly related by the mean molecular kinetic energy of a certain

kind of system in thermodynamic equilibrium.
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at about 1593. An improved version was made by him in 1612. It consisted
of alcohol hermetically sealed in a glass bulb, with an attached graduated fine
tube. In order to render the readings of such instruments consistent with each
other, it was necessary to select a fixed point (standard temperature) at the
zero starting-point of the graduations.

It was soon found preferable to take two fixed points and to divide the
interval between them into the same number of degrees. It was natural in the
first instance to take the temperature of the human body as one of the fixed
points.

In 1701, Newton proposed a scale in which the freezing-point of water
was taken to be zero, and the temperature of the human body as 12 ◦.

In 1714, G.D. Fahrenheit proposed to take as zero the lowest temper-
ature obtainable with a freezing mixture of ice and salt, and to divide the
interval between this temperature and that of the human body into 12 ◦.
To obtained finer graduations, the number was subsequently increased to
96 ◦ = 8 × 12 ◦. The freezing point of water was at that time supposed to be
somewhat variable, because as a matter of fact, it is possible to cool water
several degrees below its freezing-point, in the absence of ice.

Fahrenheit showed, however, that as soon as ice began to form, the tem-
perature always rose to the same point, and that the mixture of ice or snow
with pure water, always gave the same temperature. At a latter date he
also showed that the temperature of boiling water varied with the barometric
pressure, but that it was always the same at the same pressure, and might
therefore be used as a second fixed point — provided that a definite pressure,
such as the average atmospheric pressure, were specified. The freezing and
boiling points on one of his thermometers came out in the neighborhood of
32 ◦ and 212 ◦ respectively, giving an interval of 180 ◦ between the points.
Shortly after his death (1736), the freezing and boiling points of water were
generally recognized as the most convenient fixed points to adopt, but differ-
ent systems of subdivision were employed.

Fahrenheit’s scale, with its small degrees and its zero below the freezing-
point, possesses undeniable advantages for meteorological work, and is still
retained in most English-speaking countries. But for general scientific pur-
poses, the centigrade system, in which the freezing-point is marked at 0 ◦ and
the boiling-point at 100 ◦, is now almost universally employed, on account of
its greater simplicity from the arithmetical point of view. For work of preci-
sion the fixed points have been more exactly defined, but no change has been
made in the fundamental principle of graduation.

In general, any property of a suitable substance which varies as the tem-
perature is changed, can be used to compare temperature differences with
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the fundamental interval. For example: the volume of a liquid enclosed in
a vessel, the volume of a fixed mass of gas maintained at constant pressure,
the pressure of a fixed mass of gas maintained at constant volume, the elec-
trical resistance of a piece of metal, the saturated vapor pressure of a liquid,
are among the many measurable physical properties which alter reproducibly
as the temperature changes. Any one of these can be made the basis of a
temperature scale23.

It was soon observed that thermometers constructed with different liquids
(such as oil, alcohol and mercury) did not agree precisely in their indications
at points of the scale intermediate between the fixed points, and diverged even
more widely outside these limits.

In 1802 the research of Gay-Lussac showed that the laws of expansion of
gases are much simpler than those of liquids, and that almost all gases expand
nearly equally such that the differences between them cannot be detected
without the most refined observations. This affords a strong a priori argument
for selecting the scale given by the expansion of gas as the standard scale of
temperature. Among liquids, mercury is found to agree most nearly with the
gas scale, and is therefore used as a secondary standard to replace the gas
thermometer within certain limits.

In 1848, Lord Kelvin proposed to take advantage of the fact that the
efficiency24 of a reversible Carnot ideal engine is independent of the nature of
the working substance and dependent on temperature alone. This, he argued,
could serve as a basis for an absolute temperature scale. The defining equation
Q1/Q2 = T1/T2 does not, however, prescribe the numbering of the scale, nor
indicate how the scale is to be realized in practice.

If, however, T0 is the temperature of the ice-point and T0 + 100 that of
the steam-point, then if Q0 and Q100 are the quantities of heat absorbed and
ejected by the Carnot engine between the ice-point and the steam-point

(T0 + 100)/T0 = Q100/Q0.

23 Consider any one quantity, the magnitude x of which changes linearly with tem-

perature. Then T = 100
x

T
−x0

x100−x0
, where x0, x100, xT are the respective values

of x at the ice-point, the steam-point and the unknown temperature T . In a

mercury thermometer, for example x = �, where � is the length of the mercury

column above the bulb. For an ideal gas x = PV (P = pressure, V = volume).

This leads to the ideal gas temperature scale.
24 If a Carnot engine takes in a quantity of heat Q1 at temperature T1, and

ejects a quantity of heat Q2 at a lower temperature T2, its efficiency is

η = Q1−Q2
Q1

= T1−T2
T1

and hence Q1
Q2

= T1
T2

. This defining equation is the ba-

sis upon which the Kelvin ( ◦K) scale of temperature is founded.
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Assuming that both Q100 and Q0 can be measured, this equation enables us
to find T0, the thermodynamic absolute temperature of the ice point, and the
grading of the scale is thus settled.

To realize the absolute scale in practice, the working substance of the
Carnot engine is chosen as a unit mass of an approximately ideal gas. It is
then shown that the Kelvin Absolute Thermodynamic Scale of temperature
and the ideal gas scale of temperature are identical — both giving the one
truly absolute scale of temperature.

1824 CE Henri J. Paixhans (1783–1854, France). Artillerist. Introduced
the shell gun, a revolutionary invention in the history of warfare.

1824 CE Sadi Nicolas Léonhard Carnot (1796–1832, France). A French
engineer. The founder of the science of thermodynamics. An original and
profound thinker of the foremost rank, whose full stature was not recognized
until pointed out by Lord Kelvin in 1848.

The only work he published was Réflection sur la puissance motrice du
feu et sur les machines propres a developer cette puissance (Paris, 1824) [Re-
flections on the Motive Power of Heat and on Proposed Machines to Develop
that Power].

In this manuscript Carnot described a working cycle, now called a Carnot
cycle, that is of great importance from both a practical and a theoretical view-
point. Paving the way to the forthcoming Second Law of Thermodynamics,
he gave the first substantial theory of heat engines.25

The steam engine was well known to Carnot26. He knew that it had been
made increasingly efficient over the years, and he wondered whether there

25 For further reading, see:

• Noakes, G.R., A Text-Book of Heat, Macmillan, 1945, 469 pp.

• Rocard, Y., Thermodynamics, Pitman and Sons: London, 1961, 681 pp.

• Sommerfeld, A., Thermodynamics and Statistical Mechanics, Academic Press:

New York, 1955, 401 pp.

• Bruhat, G., Thermodynamique, Masson and Cie, 1947, 428 pp.

26 The first real steam engine was invented by Newcomen in 1705. It was an inef-

ficient contraption until James Watt introduced, during 1769–1774, a number

of innovations which made the steam engine a practical device. Fulton’s steam-

boat was driven by one of Watt’s engines in 1807. Another heat engine that
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was some limit to its improvement. He appreciated that real steam engines
leaked steam and that friction reduced their efficiency. So he imagined the
ideal engine, one that we call reversible, on the basis of which he formulated
the problem in exactly the right way.

Carnot showed that such a heat engine operating in an ideal, reversible
cycle between two heat reservoirs, would be the most efficient engine possible.
Such an ideal engine, called a Carnot engine, establishes an upper limit on
the efficiencies of all engines. That is, the net work done by the working
substance taken through the Carnot cycle is the largest possible for a given
amount of heat supplied to the working substance. This efficiency is found to
be η = 1 − Tl/Th, where {Tl, Th} are the low and high temperature limits
of the working substance [Carnot’s theorem].

In addition to the frustration encountered by any inventor who tries to
contravene the law of conservation of energy, another fundamental limitation
governs all engines designed to convert heat into mechanical work or other
forms of useful energy: it is impossible to construct an engine that will do
work by extracting heat from a single heat reservoir.

For example, universal frustration is met by inventors who want to con-
struct a device consisting of a box which, when immersed into the ocean, will
via some mechanism inside the box convert the heat content of the ocean
into some other form of energy. Such a hypothetical device, which is no way
violates the law of conservation of energy, is called a perpetual motion engine
“of the second kind”, to distinguish it from perpetual motion engines “of the
first kind” (which do not conserve energy).

The origin of this impossibility can be traced to the fact that to transfer
heat from a reservoir at lower temperature to a reservoir at higher temperature
requires additional work. Indeed, if the perpetual engine were feasible one
could, in principle, use the work drawn from the box to boil some water taken
from the ocean. The net effect would resemble an experiment in which the
water in a kettle placed on a stove would freeze by transfer of heat to the
stove, which would become hotter. This sort of thing does not happen in
nature.

influenced Sadi Carnot was due to the French engineer, physicist and inventor

Charles Cagniard de la Tour (1777–1859) who reported (via Lazare Carnot)

to the Academy of Sciences in 1809 on his novel invention: his “buoyancy en-

gine” relied on air expanding in a liquid to produce work. Cagniard was born in

Paris and studied at the École Polytechnique and the École du Genie Geogra-

phie. Between 1809 and 1838 he made several inventions (the cagniardelle, a

forced-draft blowing machine and a siren for acoustical studies) and worked on

crystallization and fermentation.
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The most efficient conversion of heat into work is effected by a reversible
engine, operating between two reservoirs of temperatures T1 and T2. Such an
engine can convert at best only a part W of the amount of heat Q1 drawn from
the reservoir at T1 into work; the balance Q2 = Q1 − W must be transferred
as heat to the other reservoir at T2. An engine is “reversible” if none of its
moving parts generates any heat by friction, and if all heat transfers between
different parts of the engine take place “isothermally”, i.e., only between parts
that do not differ in temperature by more than an infinitesimal amount.

The classic example of such an ideal device is provided by Carnot’s cyclic
engine, which does work in four strokes of a frictionless piston with an ideal
gas as working substance. Carnot noticed that the efficiency of such an engine
depends on the two temperatures only , and is independent of the working sub-
stance. This observation is now generally known as “Carnot’s theorem”. It
enables one to define an absolute temperature scale by writing W = T1−T2

T1
Q1

or Q1 = T1
T1−T2

W , where all temperatures are measured in the absolute
scale. The factor (T1 − T2)/T1 is called the ideal efficiency and is, obviously,
always ≤ 1. By measuring this efficiency for an engine operating between var-
ious heat reservoirs one can, in principle, establish the absolute temperature
scale experimentally. Indeed, the efficiency of a reversible engine approaches
1 as the temperature of the colder reservoir approaches the absolute zero of
temperature (0 ◦K = −273 ◦C).

Another instructive way of looking at the above definition of the absolute
temperature scale is obtained if one draws from engineering experience the
following inference: the amount of heat Q1 extracted by a given reversible
engine from the hotter reservoir does not depend on what happens to the
heat later, and is thus the same for given T1 independent of the value of T2.
Similarly, the amount Q2 of heat delivered by a given engine to the reservoir
at T2 does not depend on the value of T1.

If this is accepted as empirically obvious, then one can arrive at an absolute
temperature scale by first introducing as standard TS = 1 ◦, the temperature
of a reservoir that accepts from the given engine a standard amount of heat
QS = S (say), and then defining T0 as the temperature of a reservoir from
which the engine draws T times the standard amount S, namely, Q = TS.
Since, by definition, this is true for all temperatures, one has, specifically,
Q1
T1

= Q2
T2

= Q
S

T
S

= S.

The law of conservation of energy as applied to a reversible engine,
Q1 = Q2 + W , allows one to write the above equation in the form
T2
T1

Q1 = Q1 − W or W = T1−T2
T1

Q1. One then obtains an expression for
Q2 in terms of W , Q2 = T2

T1−T2
W or W = T1−T2

T2
Q2.
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Since these relations must hold even if the engine is run in reverse, so
that it acts as a heat pump, the above equation can be used to define the
factor (T1 − T2)/T2 as the ideal inefficiency (sometimes called “performance”
coefficient) of a heat pump. The lower the temperature T2 of the colder
reservoir, the larger the unavoidable inefficiency of the pump; it will take
more and more work W to transfer the amount Q2 out of T2 into T1 as T2 is
made lower and lower.

For example, a steam engine operating between a reservoir at T1 = 127 ◦C
= 400 ◦K and outside air at T2 = 27 ◦C = 300 ◦K cannot exceed the effi-
ciency [(400 − 300)/400] = 1

4 . A refrigerator operating between an ice box
at T2 = −3 ◦C = +270 ◦K and the kitchen at T1 = 27 ◦C = 300 ◦K cannot
have an inefficiency less than [(300 − 270)/270] = 1

9 .

The beauty of Carnot’s result is that it does not depend on the particular
design of the reversible engine. All reversible engines must have the same
efficiency, independent of the working substance, which may be a gas as in
the case of the steam engine, or consist of electrons as in the case of a ther-
moelectric device. To see this, suppose the assertion were not true. Then
there should be an engine 1 giving work W and another engine 2 giving work
W̃ > W . By running engine 1 backward with the work W delivered by en-
gine 2, one would have as net result an engine that delivers the work W̃ − W

by drawing this amount of heat from a single reservoir T2, contrary to the
observed impossibility of perpetual motion of the second kind. To avoid this
inconsistency one must conclude W̃ ≤ W , which proves the assertion27.

Thus all heat engines convert only part of their heat intake into work, and
discard the remainder into the surrounding medium. This limitation is not
contained within the First Law of Thermodynamics, nor does it result from
imperfections in the engines. This suggested that there must be a Second
Law of Thermodynamics which imposes limits not expressed by the First
Law. Indeed, the Second Law of Thermodynamics is implied here in the
assumption that energy cannot flow spontaneously of its own accord from
a colder to a hotter body [such a flow happens in refrigerators, but at the
expense of additional external electrical energy and is thus not spontaneous].
This law was stated explicitly by Rudolf Clausius, 25 years later.

27 Maxwell found his kinetic theory of gases to be in conflict with the ideas of

Carnot and he postulated a hypothetical situation where intelligence could con-

tradict Carnot’s principle (Maxwell’s demon). Maxwell then correctly concluded

that the second law is of statistical nature. In the twentieth century, it has been

realized (Szilard and Brillouin) that the doings of the hypothetical sorting

demon involve information processing, itself requiring some energy input.
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Sadi Carnot was born in Paris. He entered the École Polytechnique in
1812. Later he served as officer in the French army, but was unemployed
in his profession because of his father’s political activity. He then devoted
himself to mathematics, chemistry, natural history, technology, music, art
and athletic sports. He became Captain in the Engineers in 1827, but left the
service altogether in 1828.

His naturally feeble constitution, further weakened by excessive study,
finally broke down in 1832. An attack of scarlatina led to brain fever, and
he had scarcely recovered when he fell victim to cholera, of which he died in
Paris at the mere age of 36.

A quotation from his memoir is appropriate:

“The steam engine works our mines, impels our ships, excavates our ports
and our rivers, forges iron. . . Notwithstanding the work of all kinds done by
steam engines, notwithstanding the satisfactory condition to which they have
been brought today — their theory is very little understood”.

1824–1859 CE Johann Franz Encke (1791–1865, Germany). As-
tronomer. Used the data from a Venus transit to deduce a sun-earth distance
of 153,200,000 km28 (1824). Encke studied the comets of 1680 and 1812, the
orbit of a comet that now bears his name (1818) and the motion of asteroids.
He expounded a method of determining an elliptic orbit from 3 observations
(1849).

Encke was born at Hamburg. Graduating from the University of Göttingen
in 1811, he devoted himself to astronomy under Carl Friedrich Gauss.
He enlisted in the Hanseatic Legion for the campaign of 1813–1814 and be-
came lieutenant of artillery in the Prussian service in 1815. He returned to
Göttingen in 1816 to start his astronomical observations in the Seeberg Ob-
servatory near Gotha. He visited England in 1840.

1825 CE Thomas Drummond (1797–1840, England). Engineer and ad-
ministrator. Invented the limelight lamp: an intense beam of light focused by
a parabolic mirror and produced by burning lime in an alcohol flame enriched
by addition of oxygen.

28 This was too high by a little over 3.2 million km. In 1931 the asteroid Eros

was scheduled to approach earth to within a distance of only about 2
3

that of

Venus. Since Eros held no atmosphere to fuzz its outlines, its position could be

determined with great accuracy. An international project was set up to determine

the position and parallax of Eros and it was found that the average sun-earth

distance is just a bit less than 149,079,000 km [at perihelion 146,514,000 km and

at aphelion 151,644,000 km].
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1825–1836 CE William Sturgeon (1783–1850, England). Electrical en-
gineer and inventor. Built the first electromagnet capable of supporting more
than its own weight (1825). This device led to the invention of the telegraph,
the electric motor, and numerous other devices basic to modern technology.
He built an electric motor (1832) and invented the commutator, an integral
part of most modern electric motors. He invented the first suspension coil
galvanometer (1836), a device for measuring current.

Sturgeon was born in Whittington, Lancashire, England.

1826 CE August Leopold Crelle (1780–1855, Germany). Civil engineer
and mathematical enthusiast who made various discoveries in the geometry of
the triangle (1816). A unique figure in the annals of mathematics. Founded
(1826) a new periodical devoted exclusively to mathematics, the Crelle’s Jour-
nal der Mathematik. He started it off by publishing a whole series of papers
by Abel, including the great one that proved the unsolvability of the general
5th-degree equation. Thus Crelle was able to give an international circulation
to Abel’s first important results, while Abel could supply papers of a quality
that ensured the success of the new journal.

Crelle constructed most of the Prussian highroads (1816–1826) and
planned the Berlin-Potsdam railway. He published a German translation
of Legendre’s geometry (1822) and Lagrange’s mathematical work (1823–
1824).

1826 CE The last recorded auto-da-fé of the Spanish Inquisition took place
in Valencia, Spain, where a Jew and a Quaker were tortured to death. Between
1481 to 1826, there were 2000 autos-da-fé with about 30,000 persons (mostly
Jews) burned alive at the stakes.

1826–1837 CE Repeated outbreaks of cholera ravaged Europe; millions
perished; Ca 900,000 in 1831 alone.

1826–1837 CE Henri (René Joachim) Dutrochet (1776–1847, France).
Physician and physiologist. First to discover the quantitative dependence of
the osmotic pressure on the difference of concentrations over the two sides of
the membrane (1826). In 1837 he discovered that carbon dioxide is absorbed
only by those plant cells that contain green pigment and only in the presence
of light.

He was born at Chateau de Néon (Indre). In 1802 he began the study
of medicine at Paris, and was subsequently appointed chief physician to the
hospital at Burgos. He returned to France in 1809 and dedicated himself to
the natural sciences.
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1826–1842 CE Peter Gustav Lejeune Dirichlet (1805–1859, Ger-
many). One of the eminent German mathematicians of the 19th century.
At Gauss’ death in 1855 he was appointed his successor at Göttingen, a fit-
ting honor for a mathematician who was Gauss’ former student and a lifelong
admirer of his mentor.

Dirichlet was born in Duren, Germany. As a young man he attended a
Jesuit college in Cologne, where one of his teachers was Georg Simon Ohm
(1787–1854). In 1822 he went to Paris to learn from the great French masters
Laplace, Legendre, Fourier and Cauchy. In particular, he found the work of
Fourier appealing. In 1828 Dirichlet moved to Berlin to teach mathematics at
the military academy. In 1831 he was made a member of the Berlin Academy
and married Rebecca Mendelssohn, the sister of the composer. While at
Göttingen, he hoped to finish Gauss’ incomplete works, but his early death
in 1859 prevented this.

At the time when the hegemony in mathematics moved from France to
Germany, Dirichlet, being fluent in both German and French, served as liason
between mathematicians of the two nationalities.

In 1829, Dirichlet found a sufficient condition for the convergence of Fourier
series which suffices for practical purposes and covers a wide class of functions,
including functions with discontinuities. This theorem is of paramount im-
portance in harmonic analysis of physical signals. The undertaking led him
to generalize the classical function concept [through what we call today the
Dirichlet function29 {sinλt/πt}] and derive the Dirichlet conditions.

The name of Dirichlet is associated with a number of other topics: Dirich-
let test for uniform convergence, Dirichlet theorem (1826) on primes [every
arithmetic progression in which the first term and the common difference are
primes contains an infinite number of primes] and the Dirichlet boundary value
problem for the Laplace equation [solve ∇2ψ = 0 inside (outside) V such that
ψ takes prescribed values f on the boundary of V ]. The Dirichlet problem
is related to the calculus of variations because the solution of the Dirichlet
interior problem minimizes the integral I =

∫

V
|∇ψ|2dτ . This is known as

the Dirichlet principle.

Weierstrass later disagreed with Riemann about the automatic exis-
tence of a function which makes this integral minimum, but Hilbert later
showed that provided certain conditions on f are satisfied, Dirichlet’s varia-
tional problem always possesses a solution. The value of the method lies in
the fact that in certain cases “direct methods”, (i.e. methods which do not
reduce the variational problem to one in differential equations), may produce

29 A hundred years later, the limit of this function as λ tends to infinity, became

known as one of the useful representations of the ‘delta-function’.
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a solution of the variational problem more easily than the classical methods
could produce a solution of the corresponding interior Dirichlet problem.

The variational method is also of great value in providing approximate
solutions, especially in certain physical problems in which the minimum value
of I is the object of some interest30.

Dirichlet contributed notably to number theory. In 1832 he provided a
proof for the special case n = 14 of Fermat’s conjecture. He studied the
Dirichlet series [

∑
ann−s, including the Riemann zeta-function as a special

case] which are of great importance in applications of analysis to the theory
of numbers.

1827 CE Felix Savary (1797–1841, France). Astronomer. Showed that
the motion of binary stars is in full accord with Newton’s theory of universal
gravitation.

1827–1865 CE August Ferdinand Möbius (1790–1868, Germany). As-
tronomer and mathematician. He is known and appreciated for his work in
five fields:

(1) In his book ‘Barycentrische Calcül’, Möbius presented, 20 years ahead
of Grassmann and Hamilton, the ideas of vectors and quaternions
(1827).

(2) Introduced the ‘Möbius function’ and the ‘Möbius transform’ (1832) into
the theory of numbers. After Euler’s totient function, these are among
the most important tools of number theory31.

30 e.g. in electrostatic problems, I is closely related to the capacity of the system.

In this connection, one notices that 1
8π

∫

V
|∇ψ|2dτ is the potential energy of

the field.
31 The Möbius function: μ(n) = 1 for n = 1, μ(n) = 0 if n is divisible by a square

and μ(n) = (−)k if n is a product of k distinct primes. The Möbius transform

of f(x) is defined as

F (x) =
∞∑

n=1

f(nx)n−s

and its inverse is

f(x) =

∞∑

n=1

μ(n)F (nx)n−s.

For x = 1 (Dirichlet series), f(n) = 1 yields for F (1) the Riemann zeta
function ζ(s) and therefore

[ζ(s)]−1 =

∞∑

n=1

μ(n)

ns
.
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(3) Discovered the ‘Möbius bilinear mapping’ in the complex plane
[
w = az+b

cz+d

]
. It is linked to projective geometry via the cross-ratio

(w−w1)/(w−w3)
(w2−w1)/(w2−w3)

, which is invariant under a projective transformation

(1840).

(4) Originated the concept of homogeneous coordinates (1827).

(5) Constructed a one-sided, one-edged surface, the ‘Möbius strip’ (1865).
This appeared in a paper in which a polyhedral surface was viewed as
a collection of joint polygons, which in turn introduced the concept of
2-complexes into topology.

Möbius was born near Naumberg, Germany. Through his father, a dance
teacher, he was a descendant of Luther. In 1809 he entered the University
of Leipzig to study law, but ultimately devoted himself to mathematics and
astronomy and was a student of Gauss at Göttingen. In 1816 he became an
associate professor at Leipzig University, and later was chosen as the director
of the university observatory. He waited 28 years to become a full professor
(1844).

The Dawning of Topology (1735–1914)

“A Geometry is defined by a group of transformations, and investigates every-
thing that is invariant under the transformations of this given group”.

Felix Klein (1849–1925)

The Möbius function is also tied up with the prime zeta-function

P(s) =
∑

p

p−s,

p prime, since

P(s) =

∞∑

k=1

μ(k)

k
loge ζ(ks).
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“It has been said that geometry is the art of applying good reasoning to bad
diagrams. This is not a joke but a truth worthy of serious thought. What do
we mean by a poorly drawn figure? It is one where proportions are changed
slightly or even markedly, where straight lines become zigzag, circle acquire
incredible humps. But none of this matters.

An inept artist, however, must not represent a closed curve as if it were open,
three concurrent lines as if they intersected in pairs, nor must he draw an
unbroken surface when the original contains holes”.

Henri Jules Poincaré, 1895

In the first half of the 19th century there began a completely new develop-
ment in geometry that was soon to become one of the great forces in modern
mathematics. The new subject, called analysis situs or topology, has as its
object the study of the properties of geometrical figures that persist even when
the figures are subjected to deformations so drastic that all their metric and
projective properties are lost.

The major actors in this drama were L. Euler (1707–1783), Lhuilier
(1750–1840), Gauss (1777–1855), Möbius (1790–1868), Listing (1808–
1882), Betti (1823–1892), Kirchhoff (1824–1887), Riemann (1826–1866),
C. Jordan (1838–1922), F. Klein (1849–1925) H. Poincaré (1854–
1912), Hausdorff (1868–1942), Lebesgue (1875–1941), Frechet (1878–
1973), F. Riesz (1880–1956), Veblen (1880–1960), Brouwer (1881–1966),
Lefschetz (1884–1972) and Alexander (1888–1971).

In Euclidean geometry, the allowed movements are rigid motions (trans-
lations, rotations, reflections), in which the distance between any two points
of the figure are not changed. Thus the geometric properties are those which
are invariant under the group of rigid motions. Since the transformations are
the rigid motions, two figures are considered equivalent if they are congruent.

In projective geometry, two figures are considered equivalent if one may be
projected into the other. As the projections include parallel projection, pla-
nar, projective geometry includes Euclidean geometry as a special case. Here,
not only are similar figures equivalent, but any two triangles are equivalent.
This means that all triangles may be placed in the same equivalence class and
may therefore be treated alike as being congruent.

Although distances are no longer invariant under projection, collineation
is preserved. [i.e. if three points lie on a line in one configuration, their
transformed images will likewise be on a line; if three lines go through a
single point, their images go also through a single point.]
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Whereas Euclidean transformations may be expressed by polynomials of
the first degree, projective transformation may be expressed as the ratio of
polynomials of degree one.

In algebraic geometry (which includes projective geometry as a subset) the
class of transformations is widened to that of algebraic transformations. All
such transformations also constitute a group. Thus we have extension upon
extension in geometry, each extension comprising all the other lower in the
hierarchy as special cases. This systematized categorization of the geometries
in due to Felix Klein (1849–1925) and is known as his Erlangen Program.

In topology, the allowed movements are continuous invertible deformations
that might be called elastic motions. We imagine that our figures are made
of perfectly elastic rubber and, in moving the figure, we can stretch, twist,
pull and bend it at pleasure. We are even allowed to cut such a rubber figure
and tie it in a knot, provided that we later sew up the cut exactly as it was
before, so that points which were close together before we cut the figure, are
close together after the cut is sewed up. We are not allowed to force two
different points to coalesce into just one point. Two figures are topologically
equivalent iff one figure can be made to coincide with the other by such an
elastic motion.

The topological properties of a figure are those which are invariant under
all such continuous transformation. So, topology is not concerned with the
issues of Euclidean geometry — the measurements of lengths, areas, volumes,
angles, the making of scale drawings or enlargements. Moreover, topology
is not limited to the rules of projective geometry, where straight lines may
change in position but may never be distorted into curves, and circles may
be transformed into ellipses and vice versa, but may not acquire humps or
altogether arbitrary closed contours.

Thus, topology might be described as the general study of continuity, that
concept whose various aspects have challenged philosophers and mathemati-
cians from Pythagoras’ day.

One of the first topological observations is due to Descartes, who as
early as 1640 deduced an equation relating the numbers of vertices, edges
and faces of simple polyhedra. This formula was rediscovered by Euler in
1752. [The typical character of this relation as a topological theorem, became
apparent much later, after Poincaré has recognized ‘Euler’s formula’ and its
generalizations as one of the central theorems of topology.]

Euler’s name is linked to the subject through another problem which de-
serves to be considered as the beginning of topology: In 1736 he presented a
memoir to the St. Petersburg academy, in which he solved the problem of the
Königsberg bridges:
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The river Pregelarme has two islands linked by a bridge. One island has one
bridge crossing from it to each bank; the other has two bridges to each bank.
Can the citizens of Königsberg cross all seven bridges (each being traversed
only once) in a continuous walk? Euler showed that to be impossible32, and
he solved the most general problem of the same type.

His method is based on the observation that it is the way the bridges
connect, not their precise positions or sizes, that matters. It is evident that
the question will not be affected if we suppose the islands to diminish to
points and the bridges to lengthen out. In this way one ultimately obtains a
geometrical figure of a network. Euler’s problem therefore consisted in finding
whether a given network can be described by a point moving so as to traverse
every line in it once and only once.

Euler then proved the rule V − E + F = 1 for planar networks in con-
tradistinction to V − E + F = 2 for polyhedra. [This problem marks the
origin of today’s graph theory which in itself is part of combinatorial topology.
It is applied to electrical networks, perturbative Feynman graphs, industrial
management science, linear programming, game theory, statistical mechanics,
social psychology and other behavioral sciences.]

Not much happened in topology during the next 100 years33. However, in
the middle of the 19th century, topology began to assert itself as a separate
branch of geometry (known then as ‘analysis situs’), soon to become one of
the main themes in modern mathematics. About 1850 Francis Guthrie
adduced a conjecture concerning the 4-color problem: that any map on a
plane or on a sphere can be colored with at most 4 colors. The problem was
later taken up by Augustus de Morgan, Arthur Cayley and others.

One of the great geometers of the time was A.F. Möbius, a man whose
lack of self-assertion destined him to the career of an insignificant astronomer
in a second-rate German observatory. Möbius probably did not think of him-
self as a topologist, because at that time there was no general subject called
topology; nevertheless his ideas have had a profound influence on the devel-
opment of the subject. At the age of 68 he submitted to the Paris Academy

32 In 1875, an eighth bridge was built. The addition of this bridge made it possible

to solve the problem.
33 Gauss made several contributions to topology. Of the several proofs that he

furnished of the fundamental theorem of algebra, two are explicitly topological.

His first proof of this theorem employs topological techniques and was given in

his doctoral dissertation in 1799 when he was 22 years old. Later, Gauss briefly

considered the theory of knots, which today is an important subject in topology.

Although he added little beyond these few abstractions, much has been achieved

by his students: Möbius, Listing, Kirchhoff and Riemann.
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a memoir on ‘one-sided’ non-orientable surfaces that contained some of the

most surprising facts of this new kind of geometry. Like other important con-

tributions before it, his paper lay buried for years in the files of the Academy

until it was eventually made public.

Independently of Möbius, the astronomer J.B. Listing (one of Gauss’s

students) in Göttingen had made similar discoveries, and at the suggestion of

Gauss, had published in 1847 a little book, Vorstudien zur Topologie. In this

book, the first devoted to the subject, Listing introduced the term topology.
The theory of Euler’s networks is included as a particular case among the

propositions proved by Listing in his book. [In 1857, W.R. Hamilton, using

combinatorial analysis and group theory, solved some special problems in

network theory.]

G.R. Kirchhoff, another of Gauss’ students, employed (1847) the topol-

ogy of linear graphs in his study of electrical networks.

But of all of Gauss’s students, the one who contributed by far the most

to topology was Bernhard Riemann, who, in his doctoral thesis of 1851,

introduced topological concepts into the study of complex-function theory.

When Bernhard Riemann came to Göttingen in 1847 as a student, he

found the mathematical atmosphere of that university town filled with keen

interest in these strange new geometrical ideas. Soon he realized that therein

was the key to the understanding of some deep properties of analytic functions

of a complex variable. His was the first major contribution to analysis situs
since Möbius, namely the so-called Riemann surfaces or Riemann sheets which

enable to set up a one-to-two, or more, correspondence between the function

w(z) and its argument z [e.g. two z-sheets for w2 = z and an infinite number

of z-sheets for w = log z].

He pictured the sheets as attached at certain special points (“branch
points”), and also envisioned abstract “bridges” enabling passage from one

sheet to another. In this way he established the homeomorphism or topo-
logical equivalence of the w-plane to the many-sheeted z-plane (Riemannian

surface34). Nothing, perhaps, has given more impetus to the later develop-

ments of topology than the structure of Riemann’s theory of functions, in

which topological concepts are absolutely fundamental.

J.C. Maxwell (1873) used the topological theory of connectivity in his

study of electromagnetic fields. Others, such as H. Helmholtz and Lord

34 Such a surface is topologically equivalent to a sphere to which several handles

have been added or, to put it another way, to a plane with several holes.
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Kelvin, can be added to the list of physicists who applied topological ideas
with success35.

The next mathematician in chronological order, as far as combinatorial
topology is concerned, was H. Poincaré, who developed many of his topolog-
ical methods while studying ordinary differential equations which arise in the
study of certain astronomy problems. Indeed he was led to topology through
his efforts to solve the n-body problem for the case n = 3. This involves the
determination of all-time orbits for sun, earth and moon, for example. [The
3-body problem involves the solution of a system of 9 differential equations.]

35 Helmholtz (1858), building on the ideas of Riemann (1851, 1857), introduced

topological considerations into hydrodynamic theory. He defined vortex lines

as lines integrating the local directions of the axes of rotation of the fluid, and

vortex tubes as bundles of vortex lines through infinitesimal elements of area.

Helmholtz showed that the vortex tubes had to close up and also that the parti-

cles in a vortex tube at any given instant would remain in the tube indefinitely.

So, no matter how much the tube was distorted, it would retain its topological

shape. Helmholtz was aware of the topological ideas in his paper, particularly

of the fact that the region outside a vortex tube was multiply connected, which

led him to consider many-valued potential functions.

Tait (1867) verified Helmholtz’s theoretical claims regarding two circular vortex

rings via experiments with smoke rings. Curiously enough, Helmholtz’s topol-

ogy, driven by physical ideas of fluid-flow, impacted the Scottish mathematical

physicists, Kelvin (Thomson), Maxwell and Tait, each in a different way:

Kelvin concocted an elaborate theory according to which atoms, viewed as knot-

ted vortex tubes in the ether, interact (chemically) as fluid vortices do. Tait and

Maxwell wished to model the interaction of linked current circuits after the dy-

namics of vortex rings in a fluid, using the integral formula counting the linking

number of two closed curves which Gauss had discovered (1833). Thus, these

physicists became involved in topological concepts, in particular knot theory, be-

cause it entered their physical considerations in a natural way.

Of the three, Maxwell was ahead of his time by some 50 years. Although his

approach lacked mathematical rigor, he defined (1868) the “Reidemeister moves”

which, later (1920’s), would be shown to be the fundamental moves in modifying.

Moreover, Maxwell considered a region of 3D space bounded by one external sur-

face of genus n, and m internal surfaces of genera n1, n2, . . . nm and showed

that the region possessed N = n + n1 + n2 + · · · + nm cycles. Now in modern

terminology, Maxwell was claiming that the first Betti number of the region

was N . Again we should note that Maxwell did not give precise mathematical

definitions of the concepts he was dealing with, so no rigorous proof was possible.

It is reasonable to ask how, then, did he find the correct answer. The answer is

that he reached his correct results using correct physical understanding, rather

than mathematical intuition.



1827 CE 1793

Poincaré showed that if two of the bodies have masses that are small com-
pared to the third, periodic solutions exist. In 1912 he proved that certain
orbits could be periodic, provided that a simple geometric theorem, topo-
logical in nature, is true [the problem being to prove that when a certain
topological transformation of the annular area between 2 concentric circles, is
carried out, 2 of its points must remain fixed].

It is hard to believe that a serious issue of dynamical astronomy can depend
on such an apparently simple question that sound like an exercise in high
school geometry.

Poincaré also put on a completely rigorous basis (1895) the concept of
connectivity, elaborated earlier by Listing, C. Jordan and Betti. He intro-
duced the concepts of homology and homotopy, gave a more precise definition
of the Betti numbers, and generalized Euler’s convex polyhedra formula to
p-dimensional space.

At the same time, topology developed along another route through the
generalization of the ideas of convergence. This process began already in 1817
when B. Bolzano removed the association of convergence with a sequence
of numbers and associated convergence with any bounded infinite set of real
numbers. Cantor (1872) introduced the concept of a set of limit points,
defined closed subsets of the real line as subsets containing their set of limit
points, and introduced the idea of an open set — a fundamental concept in
point set topology.

Weierstrass (1877) introduced the concept of a neighborhood of a point.
Hilbert (1902) used this concept when he stated that a continuous trans-
formation group is differentiable. Frechet (1906) extended the concept of
convergence from Euclidean space by defining metric spaces, and showed that
Cantor’s ideas of open and closed subsets extended naturally to metric spaces.

Riesz (1909) disposed of the metric altogether, and proposed a new ax-
iomatic approach to topology based on the definition of a set of limit points,
with no concept of distance. Hausdorff (1914) followed suit by defining neigh-
borhoods via four axioms devoid of metric considerations. These contributions
allow the definition of abstract topological spaces.

Topological concepts also entered mathematics via functional analysis, pio-
neered by Volterra (1887). This topic arose from mathematical physics and
astronomy because the methods of classical analysis were somewhat inade-
quate in tackling certain types of problems in the calculus of variations. Fur-
ther advances in the theory of functionals were made by Hadamard (1903),
Frechet (1904), and Schmidt (1907).

However, the pioneers, like Poincaré, were forced to rely largely upon geo-
metrical intuition. Recent work has brought topology within the framework
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of rigorous mathematics, where intuition remains the source but not the final
validation of truth. During this process, starting by L.E.J. Brouwer (1881–
1966), the significance of topology has steadily increased, and the collection of
methods developed by Poincaré was built into a complete topological theory.

Today, topology, together with abstract algebra, is at the root of almost
all of modern pure mathematics. In fact, topology has penetrated into other
mathematical subjects and pervades current activity. The subject of topology
itself consists of several different branches such as point-set topology, algebraic
topology, differential topology, analytic topology and combinatorial topology36.
We know today that some very fundamental features of our physical reality
are topological.

1827 CE Georg Simon Ohm (1787–1854, Germany). Physicist. Born in
Erlangen and educated at the university there. In 1817 he became a professor
of mathematics in the Jesuits’ college at Cologne. In a pamphlet published in
Berlin in 1827 with the title “Die galvanische kette mathematisch bearbeitet”
he stated that a current flowing in a wire is proportional at each point to the
gradient of the potential (E = RI). This he modeled after the flow of heat
over a temperature gradient, mutatis mutandis. This phenomenological law,
albeit approximate, had a most notable influence on the whole development
of the theory and applications of dynamical electricity.

However, when the law was announced it seems too good to be true, and
was not believed(!). Ohm was considered unreliable because of this, and was
so badly treated that he resigned his professorship at Cologne and lived for
several years in obscurity and poverty before it was recognized that he was
right. So, in 1833, Ohm returned to become a professor at the polytechnic
school in Nuremberg, and in 1852 he was appointed a professor of experimental
physics at the University of Munich. He died soon thereafter, in 1854.

Peter Dirichlet was one of Ohm’s pupils at Cologne.

1827–1828 CE Robert Brown (1773–1858, England). Scottish botanist.
Discovered the erratic microscopic movement of small inorganic particles sus-
pended in fluids. While investigating the pollen of several different plants, he

36 In many cases a problem originally conceived as number-theoretic, algebraic,

analytic, or geometric has eventually turned out to be combinatorial. Recent

progress with electronic computers is playing an important role in the solution

of various combinatorial problems arising in large systems, and the study of com-

binatorial topology is now quite active in terms of both theoretical development

and applications.
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observed that pollen dispersed in water in a great number of tiny particles
exhibit uninterrupted irregular zig-zag motion. This phenomenon, which can
also be observed in gases, is referred to as Brownian motion. Although it
soon became clear that Brownian motion is an outward manifestation of the
molecular motion postulated by the atomic theory of matter, it was not until
1905 that Albert Einstein first advanced a satisfactory theory.

Brown was one of England’s greatest botanists. He is best known for his
discovery of the nuclei of plant cells, as well as for classifying a large number
of unfamiliar plants which he brought back from an Australian expedition
in 1801–1805. In 1810 he became librarian to the Royal Society. Though
offered a university chair he preferred to retain this job, where he had the
use of valuable collections. In 1828 Brown wrote a pamphlet entitles “A brief
account of microscopical observations made in the months of June, July and
August, 1827, on the particles contained in the pollen of plants and on the
general existence of active molecules in organic and inorganic bodies”.

Brown was born at Montrose, a son of a Scottish Episcopalian clergyman.
He studied medicine at the Universities of Aberdeen and Edinburgh and spent
5 years (1795–1800) in the British army as an assistant surgeon. He gained
international reputation and was elected member in many learned foreign
societies. He died in London.

The motions of microscopic particles in fluids were observed by biologists
long before Brown, but were considered to be of organic character . [John
Turberville Needham (1713–1781, in 1767); Lazzaro Spallanzani (1729–
1799, in 1767) and others before 1800.] What Brown showed was that this
phenomenon was not biological but physical in nature, thus removing the
subject from the realm of biology to the realm of physics.

Brown had other claims to fame, and Brownian motion is not mentioned
in his biography in the Encyclopaedia Britannica’s 9th edition, 1878. In the
13th edition of 1925, it merited a few words in passing.

1827–1861 CE Anyos Istvan Jedlik (1800–1895, Hungary). Physicist
and inventor. Invented the first prototype of a dynamo.

Jedlik was born in Zemna (the Kingdom of Hungary, now Slovenia). Be-
came a Catholic priest (1817). Lectured on physics (1839–1879) at the Bu-
dapest University of Science.

In 1827 he started experimenting with electromagnetic rotating devices.
Discovered the principle of the self-excited generator (1856–1861), at least six
years ahead of Ernst Werner von Siemens. His idea was that the performance
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of current generators37 could be perfected by using the current produced by
the machine to feed their magnets. In fact, he observed that the very slight
remnant magnetization present in the iron core of the electromagnets was
sufficient to start the process of induction.

This principle of self-excitation (i.e. the dynamo) was financially exploited
a few years later by Siemens and Wheatstone, to whom Jedlik had not been
known.

1828–1832 CE Friedrich Wöhler (1800–1882, Germany). Chemist. Syn-
thesized the first artificial product which is created in nature within a living
being38, thus shattering the popular belief that some mysterious vital principle
was at work in organic chemicals (1828).

Wöhler was born at Eschersheim, near Frankfurt-on-Main. He took his
degree in medicine and surgery at Heidelberg in 1823, but was persuaded to
devote himself to chemistry. He studied in Berzelius’ laboratory at Stock-
holm. He later taught chemistry in Berlin (1825–1831), Cassel (1832–1836)
and Göttingen (1836–1882), where he held the position of professor of chem-
istry in the medical faculty.

Wöhler maintained lifelong friendships with both Berzelius and Liebig.
With the latter he carried out a number of joint researches.

1828–1835 CE Lambert Adolph Jacques Quetelet (1796–1874, Bel-
gium). Statistician, astronomer and meteorologist. The father of statistics.

37 Faraday’s discovery (1831) of electromagnetic induction opened up the possi-

bility of generating electric currents by the mechanical movement of a conductor

in a magnetic field: The reversal of the process makes it possible to obtain me-
chanical work by the action of a magnetic field upon and electric current.

Accordingly, we may classify electrical machines into:

• Current generators, by which mechanical work is transformed into electrical

energy.

• Motors, by which electrical energy is transformed into mechanical work.

In 1867 W. von Siemens introduced the self-excited generator (dynamo) in

which the magnetic field is established not by permanent magnets but by the

generator itself. (It is the residual magnetization of the iron that makes it pos-

sible for a machine to excite itself once set running.)
38 Prepared urea, CO(NH2)2, by evaporating the inorganic isomer ammonium

cyanate NH4OCN. People were astounded in his time because they thought that

organic compounds can be produced only by living organisms.
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Demonstrated the use of probability models in describing social and biological
phenomena. Conducted statistical research on the development of the phys-
ical and intellectual qualities of man, formulating a theory of the “average
man” as a basic type. First to use the normal curve other than as an error
law.

Quetelet was born in Ghent. Became professor of mathematics at the
University of Brussels (1819). Was the founder and director of the new Royal
Observatory at Brussels. Conducted (1829) the first statistical breakdown of
a national census, examining for the Belgian census the correlations of death
with age, sex, occupation and economic status.

Quetelet studied briefly with Laplace and the latter’s influence on him
was unmistakable. He traveled through Europe in the ensuing years, spread-
ing with fervor the statistical “gospel”. (By 1870, “modern” mathematical
statistics was poised and ready for its debut.)

His book Sur l’homme et le développement de ses facultés, ou Essai de
physique sociale (1835) was the first attempt to apply mathematical analysis
to the study of man — not only of his body but of his behaviour and morality,
his mind and soul. In this respect he may be considered the first modern
sociologist39. The rest of his life was devoted to the consolidation of his initial
effort. He laid a great stress on the universal applicability of the binomial
distribution.

The roots of Quetelet’s thought must be sought outside the statistical
literature. There are two main sources:

• The calculus of probabilities which originated (1654) in a correspon-
dence between Pascal and Fermat and reached its climax in Laplace’s
Théorie analytique des probabilités (1812). (Quetelet was introduced to
him in Paris, in 1823.)

• The “political arithmetic” which was developed in England during 1662–
1683 by John Graunt (1620–1674), William Petty (1623–1687) and
Edmund Halley (1656–1742) who estimated mortality rates drawn from
tables of births and funerals with an attempt to ascertain the price of
annuities upon lives.

39 Auguste Comte (1798–1857) was probably the first to speak of social physics

(as early as 1822) and of sociology (1839). But Comte wrote on these matters

with prolixity and conceit whereas Quetelet was not only saying what need be

done, but actually doing it, and much better than Comte could imagine. For

the real difficulties and crucial points only appear when one is tackling concrete

problems.
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1828–1837 CE George Green (1793–1841, England). One of the most
brilliant and original mathematical physicists of the 19th century; created a
number of ideas that were far ahead of his time. Made major contributions
to potential theory.

In 1828 he printed privately in Nottingham the tract “An essay on the
application of mathematical analysis to the theories of electricity and mag-
netism”. In this manuscript he presented a theorem, named after him, which
concerns the relationship between a line integral over a simple closed curve in
the plane and a double integral over a region bounded by the curve.

Green’s theorem in the plane (1828): Arose in connection with
gravitational and electric potential theory. States the following: Let D be
a region in the xy-plane bounded by a simple closed curve C which consists
of a finite number of smooth arcs. Then, if P (x, y), Q(x, y) are continuous
functions with continuous first partial derivatives we have

∫ ∫

D

(
∂Q

∂x
− ∂P

∂y

)

dxdy =
∮

C

(Pdx + Qdy),

where the circuit integral is taken in the positive sense: (a person making the
circuit will always have the region D on his left). Green’s theorem has the
vector form ∫

C

F · ds =
∫

D

(∇ × F ) · ezdA

where

F = (P, Q), ds = (dx, dy) = tangent vector line element,

ez is a unit vector normal to D, and dA = dxdy. If we choose F = (−Q, P ),
with nds = (dy,−dx) = normal vector line element to the curve C, the
above vector form changes into

∫

C

F · nds =
∫

D

div F dA.

Green’s theorem is very useful because it relates a line integral around a
boundary of a region to an area integral over the interior of that region and
in many cases it is easier to evaluate the line integral than the area integral,
e.g. if we know that P (x, y) vanishes on the boundary, we can conclude that∫

D
∂P
∂y dxdy = 0 even though ∂P

∂y need not vanish in the interior.

The latter form of Green’s theorem generalizes – for the case of three-
dimensional curves, surfaces and vector fields – to Stokes’ theorem (1850). It
relates the line-integral of a vector-field around a simple curve C to an integral
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over a surface S for which C is a boundary. If f(r) is a continuously dif-
ferentiable vector function over a two-sided piecewise smooth oriented surface
S, spanning the closed curve C, then

∫

S

curl f · dS =
∮

C

F · ds, dS = ndS, ds = tds,

where n is the positive normal to S and t is the tangent to C in the positive
sense.

The theorem states that the circulation of a vector field around the contour
of some surface is equal to the flux of the curl of the vector field through this
surface. Otherwise stated: the integral of the normal component of the curl of
a vector-field over a surface is equal to the integral of the tangential component
of the same vector-field around the boundary of that surface.

In 1837, Green defined the elastic strain-energy density, derived the elasto-
dynamic equation of motion in anisotropic media from the principle of virtual
work, and correctly established the boundary conditions at the surface.

Green was primarily self-taught, and the tract was published with the aid
of a patron who later helped him enter Cambridge as an undergraduate in
1833. The essay contained not only his theorem, but many other important
results. Green graduated from Cambridge in 1837 and although he continued
his research, none of his subsequent work had the depth or importance of his
essay.

Green’s essay went largely unnoticed until it was discovered by Lord
Kelvin (1845), who arranged to have it printed. It is now regarded as one of
the great classics of mathematical physics.

1828–1843 CE William Rowan Hamilton (1805–1865, Ireland). A
great mathematician of the 19th century, and Ireland’s greatest claim to fame
in the field of mathematics.

In 1828 he transformed the Lagrange 2nd order equations of a dynamical
system to a set of canonical first order equations, with twice as many vari-
ables, considering the position coordinates and the momenta as independent
variables. These 2n first order differential equations are called Hamilton’s
equations for the system, and can replace those of Lagrange in giving the
solution of a given problem.

Hamilton gave the first exact formulation of the principle of least action.

He also realized that problems in mechanics and geometrical optics can
be tackled from a united viewpoint, where the characteristic function satisfies
the same partial differential equation. He was first to grasp the concept of
group velocity (1839).
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With the rapid development of Newtonian dynamics and the geometric
representation of complex numbers, the vector concept and its applications
were coming of age. In 1843, Hamilton originated quaternions40and coined the
words: scalar , vector and tensor . [His quaternions consist of four terms, three
of which correspond to vector components and the fourth being a scalar . The
term tensor was used by Hamilton to define the root of the sum of squares of
the four elements of the quaternion. This definition has nothing whatsoever
to do with the later use of this word.] During 1843–1850, Hamilton developed
for the first time the underlying concepts of vector analysis (e.g. scalar and
vector products, ∇ operator41) within the framework of his quaternion theory.

It is told of him that on the evening of Oct. 16, 1843, while walk-
ing along the Royal Canal in Dublin, the algebra of Quaternions dawned
upon him and he carved on a stone on Brougham Bridge the formulas
i2 = k2 = j2 = ijk = −1.

Hamilton was born in Dublin of a branch of a Scottish family which had
settled in the north of Ireland in the times of James I. He was early orphaned
and his upbringing was entrusted to an uncle who gave the boy a strenuous
but lopsided education with strong emphasis on languages. William proved
to be a prodigy and when he reached the age of 13 he acquired, besides
modern European languages, Persian, Hebrew, Arabic, Hindustani, Sanskrit
and Malay. At 16 he mastered a great part of Newton’s Principia and at
17 he read Laplace’s Mécanique céleste. Hamilton’s career at Trinity College,
Dublin, was unexampled, for in 1828, when he was still a 23 year old graduate
student, the university electors unanimously appointed him Royal Astronomer
of Ireland and a professor of astronomy.

Two unhappy love affairs (he attempted to drown himself after the first
one), a hypochondriac wife and alcoholism marred the personal life of this
great Irish mathematician. Although it is thought by many that these dif-
ficulties lowered the quality of his mathematical thought, Hamilton’s output
continued unabated to the end of his life.

Hamilton was inspired by the necessity for appropriate mathematical tools
to enable the application of Newtonian mechanics to various aspects of astron-
omy and physics. The theory of quaternions was too complicated in structure
and was not able to survive in its original form as a tool of classical mathemat-
ical physics. However, quaternions can be used to represent complex variables,
vectors and rotations in 3-space and 4-space. Moreover, the algebra of quater-
nions is of deep significance and its importance has been emphasized in recent

40 The origin of the name comes from the New Testament Acts 12, 4.
41 In his quaternion theory, he introduced (1853) the symbolic operator

∇ = i ∂
∂x

+ j ∂
∂y

+ k ∂
∂z

, which Heaviside later named “nabla”.



1828 CE 1801

decades by applications in group representation theory, quantum mechanics
of spinors and special and general relativity.

Fifty years later, Oliver Heaviside said of Hamilton: “Vector analysis
without quaternions could have been found by any mathematician, but to find
out quaternions required a genius”.

The highest tribute to Hamilton was perhaps paid by Erwin Schrödin-
ger:
“I dare say not a day passes — and seldom an hour — without somebody,
somewhere on this globe, pronouncing or reading or writing or printing Hamil-
ton’s name. His famous analogy between mechanics and optics virtually an-
ticipated wave mechanics, which did not have to add much to his ideas, only
had to take them seriously — a little more seriously than he was able to
take them, with the experimental knowledge of a century ago. The central
conception of all modern theory in physics is ‘the Hamiltonian’ ”.

The Principle of Least Action

Consider n particles of masses mj , located at points rj(t), and acted
upon by resultant external and internal forces F j . By d’Alembert’s prin-
ciple, we write

∑n
j=1(mj r̈j − F j) · δrj = 0 for arbitrary variations δrj .

Call δW =
∑n

j=1 F j · δrj the virtual work done by all the forces. We have
d
dt (ṙj · δrj) ≡ ṙj · d

dt (δrj) + r̈j · δrj , which together with d
dt (δrj) = δṙj per-

mits us to conclude that for the jth particle

mj r̈j · δrj =
d

dt
(mj ṙj · δrj) − δTj ,

where Tj = kinetic energy of jth particle = 1
2mj ṙ

2
j = 1

2mjv
2
j . Summing over

all particles, we finally have

d

dt

n∑

j=1

mj ṙj · δrj = δT + δW.

Consider two times t0 and t1 at which we assume δrj = 0, i.e., two times at
which actual and virtual paths coincide. Integrating the last equation between
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t0 and t1, we have
∑n

j=1 mj ṙj · δrj |t1t0 =
∫ t1

t0
(δT + δW )dt. But the l.h.s. is

zero by virtue of our restriction on δrj ; hence
∫ t1

t0
(δT + δW )dt = 0. If we

assume that W is a work function arising from a potential energy such that
W = −V (r1, . . . , rn), then δW = −δV leads to

δ

∫ t1

t0

(T − V )dt = δ

∫ t1

t0

Ldt = 0,

which is Hamilton’s principle for conservative dynamical systems. L is known
as the Lagrangian function of the system.42

We may enunciate the principle as follows: a system moves from one con-
figuration to another in such a way that the variation of the integral

∫ t1
t0

Ldt
between the actual path taken and a neighboring virtual path, co-terminous
in space and time with the actual path, is zero. In other words,

∫ t1
t0

Ldt, called
the action – a functional of the virtual trajectory in the system’s configuration
space — is stationary at the actual trajectory, if all virtual trajectories are
constrained to evolve between the same two spatial points at the end-times
t0 and t1.

This principle is equivalent to the Lagrange equations. Indeed: for a single
particle in one dimension x

(
ẋ = dx

dt

)
,

δ

∫ t1

t0

L

(

x,
dx

dt
; t

)

dt =
∫ t1

t0

{
∂L

∂x
δx +

∂L

∂ẋ
δ(ẋ)

}

dt

=
∫ t1

t0

{
∂L

∂x
δx +

∂L

∂ẋ

d

dt
(δx)

}

dt

=
∫ t1

t0

{
∂L

∂x
δx − d

dt

(
∂L

∂ẋ

)

δx +
d

dt

(
∂L

∂ẋ
δx

)}

dt

=
∫ t

t0

{
∂L

∂x
− d

dt

∂L

∂ẋ

}

δxδt +
[
∂L

∂ẋ
δx

]t1

t0

The last term vanishes (δx being zero at t0 and t1), and, since δx may oth-
erwise vary arbitrarily in the time interval (t1, t2), we deduce the Euler-
Lagrange equation:

d

dt

∂L

∂ẋ
− ∂L

∂x
= 0

as a necessary and sufficient condition for the functional
∫ t1

t0
Ldt to be sta-

tionary at the trajectory x(t), t0 ≤ t ≤ t1. When there are several dependent

42 For further reading, see:

• The Feynman Lectures on Physics, Volume II, Addison-Wesley, 1964.
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variables (i.e. the physical system is multi-dimensional or has multiple degrees
of freedom for another reason), there results a system of (generally coupled)
Euler-Lagrange equations, one for each dependent variable. Note that the
Lagrangian of a closed system does not depend explicitly on time.

Denoting the system’s generalized coordinates by qi, i = 1, . . . , n, the La-
grangian is a function of qi(t), their first time derivatives, and (possibly) also
depends explicitly on time. Thus, the total differential of L is

dL =
∑

i

∂L

∂qi
dqi +

∑

i

∂L

∂q̇i
dq̇i +

∂L

∂t
dt =

∑

i

ṗidqi +
∑

pidq̇i +
∂L

∂t
dt

with ∂L
∂q̇i

= pi by definition (generalized canonical momenta) and ∂L
∂qi

= ṗi

by the Euler-Lagrange equations. The above equation then yields

d

[
∑

i

piq̇i − L

]

= −
∑

i

ṗidqi +
∑

i

q̇idpi − ∂L

∂t
dt.

The argument of the differential is called the Hamiltonian of the system:
H(p, q; t) =

∑
i piq̇i − L, and dH = −

∑
i ṗidqi +

∑
i q̇idpi − ∂L

∂t dt, with the
first two sums numerically canceling each other since dqi = q̇idt, dpi = ṗidt.

Note that it is tacitly assumed here that the relations ṗi = ∂L(q,q̇)
∂qi

can be

uniquely inverted to yield q̇i = q̇i(p, p)43. From this follows that44 −∂L
∂t = ∂H

∂t

and:

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
,

which are known as Hamilton’s equations (1835). These constitute a system of
first order ODE’s in (qi, pi). They represent the simplest and most desirable
form into which the differential equations of the variational problem can be
brought. Hence the name canonical equations by which Jacobi designated
them.

The total time derivative of the Hamiltonian is

dH

dt
=

∂H

∂t
+

∑ ∂H

∂qi
q̇i +

∑ ∂H

∂pi
ṗi =

∂H

∂t
,

43 The cases where the inversion is not unique — termed constrained dynamical

system — encompass some of the most important applications of the least-action

principle to quantum field theory, including non-abelian gauge theories, quantum

gravity, and string theory.
44 ∂H

∂t
is ∂

∂t
H(p, q; t) with {pj , qj }n

j=1 held fixed, while ∂L
∂t

means ∂
∂t

L(q, q̇; t) with

{q̇j , qj }n
j=1 held fixed.
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on account of Hamilton’s equations. For a conservative closed system, neither
L(q, q̇) nor H(p, q) depend explicitly upon time and the Hamiltonian – equal
to T + V – is, numerically, the conserved system energy.

The Hamilton-Jacobi equation (1828–1837) is the most important first-
order PDE that occurs in mathematical physics. It is derived as follows: the
action integral S =

∫ t2
t1

Ldt is taken along a path between two given positions
which the system occupies at given instants t1 and t2. In varying the action,
we compare the values of this integral for neighboring paths sharing the same
values of the vectors q(1) = q(t1) and q(2) = q(t2) and find that generally
only one of these paths corresponds to the actual motion, namely the path
for which the integral has its minimum (or, more generally, extremum) value.

Consider now the action integral S on the true path as a function of the
value of the vector q(t2) at the upper limit of integration t2 [q(t1) = q(1) is
held fixed]. In general

δS =

[
n∑

i=1

∂L

∂q̇i
δqi

]t2

t1

+
∫ t2

t1

n∑

i=1

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)

δqidt,

but since paths of actual motion satisfy Lagrange’s equations, the integral in
δS is zero. Since δq(t1) = 0 and ∂L

∂q̇i
= pi, we have for δS =

∑
i piδqi, where

we have denoted δq(t2) by δq. From this relation it follows that ∂S
∂qi

= pi.

Now the action may similarly be regarded as an explicit function of time
(even for a closed system) by considering paths starting at a given instant t1
and at a given point q(1) and ending at a given point q(2) at various times
t2 = t. Clearly if q(2) = q(t2) is allowed to evolve with t = t2 in accordance
with actual motion,

dS

dt
≡ L =

∂S

∂t
+

∑

i

∂S

∂qi
q̇i =

∂S

∂t
+

∑

i

piq̇i.

Hence ∂S
∂t = L −

∑
piq̇i or ∂S

∂t = −H. Combining this result with ∂S
∂qi

= pi

we have

dS =
∑

i

pidqi − Hdt

for the total differential of the action as a function of independently-varied
coordinates and time at the upper limit of integration.

The action S(q, t) thus obeys the equation

∂S

∂t
+ H(p, q, t) = 0.
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Accordingly, replacing the generalized momenta pi in the Hamiltonian by the
partial derivatives ∂S

∂qi
, we have the equation which must be obeyed by the

function S(q, t). This first order nonlinear PDE is called the Hamilton-Jacobi
equation:

∂S

∂t
+ H

(

q1, . . . , qn,
∂S

∂q1
, . . . ,

∂S

∂qn
; t

)

= 0.

Like Lagrange’s equations and the canonical equations, the Hamilton-Jacobi
equation is the basis of a general method of integrating the equations of mo-
tion.

If the system is closed and conservative, H does not depend upon the
time explicitly and its numerical value is time-independent along actual paths.
Thus, the integration of ∂S

∂t = −H yields S = S0(q) − Et, where E is the
conserved total system energy and also equals the constant value of H. The
Hamilton-Jacobi equation then assumes the somewhat simpler from45

H

(

q1, . . . , qn;
∂S0

∂q1
, . . . ,

∂S0

∂qn

)

= E.

A particular solution to the latter energy equation can be obtained for the
motion of a point particle in a field of potential energy V in rectangular
coordinates.

The energy-equation then takes the form

1
2m

(p2
1 + p2

2 + p2
3) + V (x, y, z) = E,

or, since pi = ∂S
∂qi

= ∂S0
∂qi

,

(∇S0)2 = 2m(E − V ),

i.e. (
∂S0

∂x

)2

+
(

∂S0

∂y

)2

+
(

∂S0

∂z

)2

= 2m(E − V ).

Given constants m, E and the function V , it is then required to find at
any given field point P (x, y, z) a surface S0(x, y, z) = const., such that
the modulus of the normal ∇S0 is the scalar function

√
2m(E − V ); the

Hamilton-Jacobi theory then guarantees that the geometric path of the mov-
ing point-mass is normal to this family of surfaces at every point. We obtain
a family of possible paths by constructing the orthogonal trajectories to the

45 This simplification procedure is equivalent to applying the separation of variables

technique to the full Hamilton-Jacobi PDE.
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surface S0 = const. These mechanical paths have the ray property, because
they behave exactly like light rays in optics, the latter being orthogonal to
the wave surfaces46.

The mechanical-optical analogy that follows from the Hamilton-Jacobi
equations draws parallels between Fermat’s principle of least time and the
Hamilton principle of least action; between surfaces of equal time in optics to
surfaces of equal action in mechanics. Moreover, the basic differential equation
of geometrical optics:

(
∂φ

∂x

)2

+
(

∂φ

∂y

)2

+
(

∂φ

∂z

)2

=
n2

c2

n = inhomogeneous refractive index, c = light speed in vacuum,

φ = wavefront-phase = ωT, ω = monochromatic ray angular frequency,

T = ray travel time; Wavefronts are perpendicular to the rays,

which expresses Huygens’ principle in infinitesimal form (known as the eikonal
equation), has the same form as the Hamilton-Jacobi equation with the cor-
respondence

φ = αS0,
n

c
= α

√
2m(E − V ),

α being an arbitrary constant.

46 This orthogonality does not always involve orthogonality in the ordinary Euclid-

ean sense, although it does in our above point-mass mechanical example; e.g.

an electron moving in a magnetic field, does not cross the surfaces S0 = const.

perpendicularly; nor do light rays in crystals, in general. This is because pi = ∂S
∂qi

is not always parallel to the vector q̇i
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Non-commutative systems:

Quaternions and Polyadics

The efforts of Gauss (1819) to build a 3-dimensional complex-number
system within the framework of common algebra have failed. The isomor-
phism of complex numbers and two-dimensional vectors in a plane prompted
Hamilton (1843) to extend 3-dimensional vector algebra to include both
multiplication and division. But he soon noticed that if one tries to define
vector-division by seeking a vector C such that B × C = A (or C × B = A)
for two given vectors A and B, then this operation is well-defined only when
A · B = 0. It is however non-unique on account of the identity

B × C = B × (C − λB).

Thus, Hamilton was led to invent a new division algebra for quadruples of
numbers (an analogue of 2-D complex numbers) at the price of relinquishing
the commutative law of multiplication.

Hamilton considered a 4-dimensional vector-space with abstract unit base
elements {e0, e1, e2, e3}. A general vector in this space, known a quaternion
(“four-fold” numbers) is written in the form

q = q0e0 + (q1e1 + q2e2 + q3e3) = q0e0 + q.

Quaternions obey the rules of common algebra w.r.t. addition and multipli-
cation by a scalar. The number q0 is the scalar of the quaternion and q is its
vector.

Multiplication is defined by the table:

e0 e1 e2 e3

e0 e0 e1 e2 e3

e1 e1 −e0 e3 −e2

e2 e2 −e3 −e0 e1

e3 e3 e2 −e1 −e0

Clearly, the product of two unit quaternions with different indices is in
general non-commutative, since eres = −eser (r, s = 1, 2, 3, r �= s). Using
the table and the distributive law, one verifies that the product of two general
quaternions is

pq = (p0q0 − p · q)e0 + p0q + q0p + (p × q) �= qp



1808 4. Abstraction and Unification

where

p · q = p1q1 + p2q2 + p3q3

p × q = (p2q3 − p3q2)e1 + (p3q1 − p1q3)e2 + (p1q2 − p2q1)e3.

The multiplication table shows that e2
0 = e0 and e0er = ere0; therefore we

may choose e0 = 1. For e0 = 1, {±e1,±e2,±e3} are the six square roots of
−1. Two limiting cases are of interest:

• p2 = q2 = p3 = q3 = 0, e0 = 1, e1 =
√

−1, p = p0 + ip1,
q = q0 + iq1. Quaternions reduce to ordinary 2-D complex numbers with
the corresponding algebra.

• p0 = q0 = 0: pq = −(p · q)e0 + (p × q). Neglecting the scalar piece, one
may view the elements (e1, e2, e3) as unit vectors in 3D. Then pq is
the ordinary vector cross product which is covariant under coordinate
rotation.

Just as a complex number can be viewed as an ordered pair of numbers,
a general quaternion can be viewed as an ordered pair of complex numbers.
Indeed, since e1 = e2e3, we may write, identifying e0 = 1 and e3 = i:

q = (q0 + q3e3) + (q2 − q1e3)e2 = x + ye2 ⇒ (x, y),

with x = q0+iq3, y = q2−iq1. Addition and multiplication are then defined
as

(x, y) + (u, v) = (x + u, y + v)
(x, y)(u, v) = (xu − yv∗, xv + yu∗) ∗ = complex conjugation

In analogy to the algebra of complex numbers, one defines the quaternion
conjugate

qt = (x∗,−y) = q0 − q1e1 − q2e2 − q3e3,

the square of the norm

‖q‖2 = qqt = qtq = q2
0 + q2

1 + q2
2 + q2

3 ,

and the inverse

q−1 =
qt

‖q‖2
.

One then finds a one-to-one correspondence between the complex matrices
(e1 ⇒ i)

q →
[

x y
−y∗ x∗

]

=
[

q0 + q3i q2 − q1i
−q2 − q1i q0 − q3i

]
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and the quaternions q0 + q1e1 + q2e2 + q3e3, which preserves multiplication.

So far we have not specified the nature of the abstract base elements
{e0, e1, e2, e3}, except for some special cases. But, although obeying the same
multiplication table, different representations of these elements may exist. To
stress this important point we first recast the above 2 × 2 matrix representa-
tion of q in the form

q → q0

[
1 0
0 1

]

+ q1

[
0 −i
−i 0

]

+ q2

[
0 1

−1 0

]

+ q3

[
i 0
0 −i

]

= q0E + q1I + q2J + q3K.

We then ‘discover’ that the 2 × 2 matrices {E, I, J, K} have the same prop-
erties as the basis quaternions {e0, e1, e2, e3}. In fact

E2 = E, I2 = J2 = K2 = −E

IJ = K = −JI; KI = J = −IK; JK = I = −KJ.

The 2 × 2 matrix representations of the basis quaternions are intimately con-
nected with the Pauli spin matrices (1925)

σ1 = iI; σ2 = −iJ ; σ3 = −iK

which were found to be of central significance in quantum mechanics!

It is easy to show that {e0, e1, e2, e3} have yet another representation, as
4 × 4 matrices. To see this we begin with

q →
[

x y
−y∗ x∗

]

and then represent each of the four complex numbers by its own matrix repre-

sentation with 1 and i represented as

[
1 0
0 1

]

and

[
0 1

−1 0

]

, respectively. This

leads to a 4 × 4 real matrix for each quaternion

q = q0e0 + q1e1 + q2e2 + q3e3 →

⎡

⎢
⎢
⎣

q0 q3 q2 −q1

−q3 q0 q1 q2

−q2 −q1 q0 −q3

q1 −q2 q3 q0

⎤

⎥
⎥
⎦ ,

such that the one-to-one correspondence again preserves multiplication.

For example:

(2 − 4e1 + e2 + 3e3)(1 + 2e1 + 3e2 − e3) = 10 − 10e1 + 9e2 + 13e3
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and
⎡

⎢
⎢
⎣

2 3 1 4
−3 2 −4 1
−1 4 2 −3
−4 −1 3 2

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 −1 3 −2
1 1 2 3

−3 −2 1 1
2 −3 −1 1

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

10 −13 9 10
13 10 −10 9
−9 10 10 13
−10 −9 −13 10

⎤

⎥
⎥
⎦

Again, if we write q = q0E4 + q1I4 + q2J4 + q3K4, where

E4 =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ , K4 =

⎡

⎢
⎢
⎣

0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

⎤

⎥
⎥
⎦ ,

J4 =

⎡

⎢
⎢
⎣

0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎤

⎥
⎥
⎦ , I4 =

⎡

⎢
⎢
⎣

0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

⎤

⎥
⎥
⎦

we find that the 4 × 4 basis matrices E4, I4, J4, K4 obey the same algebra as
{e0, e1, e2, e3}.

Quaternions and finite rotations

Suppose that a rigid body is first rotated by a certain angle φ in a given
sense around the axis OA passing through a given point O, and that it is then
rotated by an angle φ1 around another axis OB passing through the same
point. The question is: Around what axis and by what angle must the body
be rotated in order to bring it from its first position directly to the third?
This is the well-known problem of addition of finite rotations. True, it can
be solved by means of the ordinary analytic geometry, as was done already
by Euler in the 18th century. However, its solution assumes a far more lucid
form by means of quaternions.

Define

n =
1
h

(q1e1 + q2e2 + q3e3), n2 = −e0,

N =
√

q2
0 + q2

1 + q2
2 + q2

3 , h =
√

q2
1 + q2

2 + q2
3 = N sin

φ

2
,

q0 = N cos
φ

2
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Under this definition, every quaternion is reduced to the standard form

q = N(e0 cos
φ

2
+ n sin

φ

2
); q−1 =

1
N

(e0 cos
φ

2
− n sin

φ

2
)

It then follows that with n = xe1 + ye2 + ze3

r′ = qrq−1 = r cosφ + (1 − cosφ)n(n · r) + sinφ(n × r)

= [I cosφ + (1 − cosφ)nn + sin φ(n × I)] · r = R · r,

where R describes an active rotation of space about an axis given
by the vector n, relative to the fixed axes {e1, e2, e3}, by an angle

φ = 2 tan−1{ 1
q0

√
q2
1 + q2

2 + q2
3}.

Applying a second rotation represented by a quaternion p, the combined
action is given by the expression

p(qrq−1)p−1 = (pq)r(pq)−1

since q−1p−1 = (pq)−1 by the associative law of multiplication. This means
that the result of two successive rotations, characterized by the quaternions
q and p, is the rotation characterized by the product quaternion pq. In other
words the addition (or more precisely, the composition) of the rotations cor-
responds the product of the respective quaternions.

The Pauli spin matrices, mentioned earlier, tie in with the subject of finite
rotation in the following way: we adopt the representation (I is the 2×2 unit
matrix)

e0 = I, e1 = −iσ1, e2 = −iσ2, e3 = −iσ3, σ = (σ1, σ2, σ3)

which leads us to the unit quaternion

q(n, φ) = I cos
φ

2
− i sin

φ

2
(σ · n),

where

σ · n =
[

n3 n1 − in2

n1 + in2 −n3

]

.

The matrices σk are Hermitian (transpose = complex conjugate) and traceless.
Moreover, they obey appropriate laws of multiplication.

Since any such rotation can be decomposed into 3 successive rotations
with Euler angles (α, β, γ) about the respective fixed space axes {ez, ey, ez},
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we find that

q(n, φ) = q(ez, α)q(ey, β)q(ez, γ)

=
[
e−i α

2 0
0 e+i α

2

] [
cos β

2 − sin β
2

sin β
2 cos β

2

] [
e−i γ

2 0
0 e+i γ

2

]

=
[
cos β

2 e− i
2 (γ+α) − sin β

2 e
i
2 (γ−α)

sin β
2 e− i

2 (γ−α) cos β
2 e

i
2 (γ+α)

]

=
[
q0 − iq3 −(q2 + iq1)
q2 − iq1 q0 + iq3

]

which is a unimodular unitary matrix. If we shift φ to φ + 2π (or by any
odd multiple of 2π), R(n, φ) remains the same while q(q, φ) changes its sign.
Thus, both ±q represent the same rotation and the correspondence between
unimodular quaternions and 3D rotations is indeed established, though it is
multi-valued.

Hamilton introduced the vector quaternion differential operator (e0 − 1,
e1 = i, e2 = j, e3 = k)

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

(known today as the gradient operator). He then showed that when ∇ operates
on the vector quaternion v = v1i + v2j + v3k, their formal “product” yields
the vector quaternion

∇v = −div v + curl v.

Thus, ∇v is a quaternion with a scalar {−div v} and a vector curl v, where

div v =
∂v1

∂x
+

∂v2

∂y
+

∂v3

∂z
;

curl v = (
∂v3

∂y
− ∂v2

∂z
)i + (

∂v1

∂z
− ∂v3

∂x
)j + (

∂v2

∂x
− ∂v1

∂y
)k.

Quaternions form a 4 dimensional non-commutative associative algebra
over the reals (in fact a division algebra) and contain complex numbers, but
do not form an algebra over the complex numbers. The quaternions, along
with the complex numbers and real numbers, are the only finite dimensional
skew fields over the field of real numbers.

Hermann Grassmann47 (1844) [and independently Saint-Venant
(1832)48] invented the noncommutative algebra of polyadics in n-dimensional

47 Grassman, H.D., Die Linear Ausdehnungslehre, Leipzig, 1844.
48 In 1832 the French engineer Adhémar, Comte de Saint-Venant (1797–1866)

exposed mathematical ideas similar to those which are present in the Grass-

manian system. Among other things he defined the dyadic product of two vec-

tors.
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Euclidean space. Grassmann’s work remained neglected until its resurrec-
tion by James Clerk Maxwell (1871), Josiah Willard Gibbs (1881) and
Oliver Heaviside (1893) who built upon its foundation the modern algebra
and analysis of vectors and dyadics in 3-dimensional Euclidean space.

Grassmann’s ideas in Gibbs’ notation are as follows: Let
a = a1e1 + a2e2 + a3e3; b = b1e1 + b2e2 + b3e3 represent two vectors
with the respective components {a1, a2, a3} and {b1, b2, b3} in an orthogonal
Cartesian coordinate system with unit vectors {e1, e2, e3}. One then defines
three types of products between the two vectors:

• The scalar (inner) product a · b = b · a = a1b1 + a2b2 + a3b3

• The vector (outer) product (a × b) = −(b × a) = λ1e1 + λ2e2 + λ3e3

λ1 = a2b3 − a3b2; λ2 = a3b1 − a1b3; λ3 = a1b2 − a2b1

(ei · ej) = δij ; (ei × ej) =
∑

k

ekεijk,

with εijk the totally antisymmetric Levi-Civita symbol.

• The dyadic (indeterminate) product

ab =
∑

i,j

aibjeiej �= ba i, j = 1, 2, 3

The dyadic product is a tensor of the second rank with 9 components.

An important scalar is the triple-product of the vectors {a, b, c}:

(a × b) · c =

∣
∣
∣
∣
∣
∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣
∣
∣
∣
∣
∣

equal in absolute value to the volume of a parallelepiped constructed by the
vectors a, b and c.

The connection between the Hamilton and Grassmann algebras is the fol-
lowing: the Grassmann inner product of two vectors is equivalent to negative
of the scalar of Hamilton quaternion product of two vectors; the Grassmann
outer product is precisely Hamilton’s vector of the quaternion product of two
vectors. However, in a theory of quaternions, the vector appears as a sub-
sidiary part of the quaternion, whereas in the Grassmann algebra the vector
is a basic quantity.

While physicists ignored quaternions (up to 1928), Hamilton’s work led
mathematicians to the theory of linear associative algebras and beyond.
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Grassmann’s work, however, was redeemed sooner and became a powerful
tool in exploiting the theory of the electromagnetic field. Maxwell and Clif-
ford separated Hamilton’s ∇v into a scalar divergence and the curl vector,
establishing the identities:

divcurl v ≡ 0, curlgrad v ≡ 0

and defining the Laplacian operator

divgrad = ∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

Maxwell’s work made clear that vectors were real tool for physical thinking
and not just an abbreviated notation. Thus, by Maxwell’s time a great deal of
vector analysis was created by treating the scalar and vector parts of quater-
nions separately. The formal break with quaternions and the inauguration
of a new independent subject, 3-dimensional vector analysis, was made inde-
pendently by J. W. Gibbs and Oliver Heaviside in the early 1880’s. By
the beginning of 20th century, the physicists were quite convinced that vector
analysis was what they wanted. The mathematicians finally followed suit and
introduced vector methods in analytic and differential geometry. With the
rise of quantum mechanics in the 1920’s, physicists would return to embrace
quaternions as representing a new physical reality.

From the purely algebraic standpoint quaternions were exciting because
they furnished an example of an algebra that had the properties of real num-
bers and complex numbers except for commutativity of multiplication. During
the second half of the 19th century mathematicians explored other varieties of
noncommutative algebras. Clifford (1873), B. Peirce (1881), F. G. Frobe-
nius (1878), C. S. Peirce (1881) and A. Hurwitz (1898), made important
contributions to the field of linear associative algebra.

1828–1868 CE Julius Plücker (1801–1868, Germany). Distinguished
mathematician and physicist. In a unique double career as geometer and
experimental physicist, he was both the founder of line geometry (1830) and
one of the first promoters of gas spectroscopy.

Plücker established Poncelet’s principle of duality as a fundamental con-
ceptual tool in projective geometry, and extended it to three dimensions where
the duality is between points and planes, lines being unchanged (1828–1831).
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Plücker introduced line-geometry , where straight lines are used as elements
in 3-D space, rather than points (1830).

In 1839, Plücker established the field of algebraic geometry. He discovered
six equations connecting the number of singularities of algebraic curves. He
discovered homogeneous coordinates independently of Möbius, E. Bobillier
and Feuerbach, defined Plücker’s coordinates and Plücker’s equations.

In 1846 he switched to experimental physics, and his research centered
on spectroscopy of rare gases. After 1855, improved vacuum techniques en-
abled Plücker and Crookes to investigate the properties of the so-called
‘Cathode-rays’, which led in 1897 to their identification with electron-streams
by J.J. Thomson.

It is believed that Plücker was the first to identify three lines of hydrogen
in the spectrum of the Solar Corona in 1858, and also first to invent the
cathode-ray tube (1859).

Plücker was born at Elberfeld and was educated at the universities of
Bonn, Heidelberg and Berlin. In 1823 he went to Paris and came under
the influence of the school of French geometers established by Monge. He
returned to Bonn in 1825 and stayed there until 1833, moving thereafter
to Berlin and Halle. In 1836 Plücker returned to Bonn as a professor of
mathematics, becoming in 1847 also a professor of physics.

1829 CE The word technology coined.

1829–1851 CE Carl Gustav (Jacob Shimon) Jacobi (1804–1851, Ger-
many). One of the leading mathematicians of the 19th century and the great-
est mathematician in Germany after Gauss.

True to the spirit of his time, a spirit compounded of equal parts of faith
and nearly incredible ingenuity, he derived in his magnum opus, Fundamenta
Nova Theoriae Functionum Ellipticum, many elegant and intricate results
by means of algebraic manipulations that surpassed even Euler and Gauss.
He uncovered a treasure-house of results whose variety, aesthetic appeal and
capacity for arousing our astonishment have not been equaled by research in
any other area.

Jacobi was born of Jewish parents in Potsdam, Prussia and later converted
to Christianity, without which he could not have pursued an academic career
in the Germany of those days. He was introduced to mathematics at an
early age by his maternal uncle Lehmann, who prepared him to enter the
Potsdam Gymnasium in 1816. His unusual talents were recognized already at
school and he left in 1821 to enter the University of Berlin. He taught himself
algebra, calculus and number theory through the direct reading of the works
of Euler and Lagrange. This earliest self-instruction was to give Jacobi’s first
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outstanding work — in elliptic functions — its definite direction, for Euler,
the master of ingenious devices, found in Jacobi his brilliant successor. For
sheer manipulative ability in tangled algebra, Euler and Jacobi have no rival,
except perhaps Srinivasa Ramanujan in the 20th century.

Jacobi’s student days at Berlin lasted from 1821 to 1825. During the first
two years, he divided his time about equally between philosophy, philology
and mathematics. Mathematics, however, finally won him over, and in 1825
he obtained his degree and moved to the University of Königsberg, where he
joined, amongst others, Friedrich Bessel. He soon rose to the rank of associate
professor, due to his great talents as an inspiring teacher and his work on cubic
reciprocity in number theory. The latter excited Gauss’ admiration and with
his recommendation, the Ministry of Education promoted Jacobi over the
heads of his colleagues.

In 1829 he published his first masterpiece, Fundamenta Nova on the theory
of elliptic functions and modular equations49 and obtained his full professor-
ship at the age of 25. This work is one of the greatest mathematical classics
that has ever been written — a book perhaps never equaled in the annals
of mathematics in the shear number of new and important results first given
in it. He continued to work incessantly, with Gauss watching his phenome-
nal activity with more than a mere scientific interest — as many of Jacobi’s
discoveries overlapped some of his own youth, which he had never published.
The two met in September 1839, when Jacobi, collapsing from 12 years of
overwork, returned from a vacation in Marienbad.

In 1842 Jacobi met Hamilton at Manchester. It was one of Jacobi’s great-
est glories to extend Hamilton’s work in dynamics, which Hamilton forsook
in favor of his quaternions. Later in the year Jacobi became seriously ill with
diabetes. Through the efforts of Dirichlet and von Humboldt, he was granted
financial support to enable him to visit Italy for a few months and restore his
health. On his return he moved to Berlin, where he lived as a royal pensioner.
In February 1851 his health deteriorated again. He first contracted influenza
and then, on the point of recovery, caught smallpox and died within a week.

Jacobi was the greatest university mathematical teacher of his generation,
stimulating and influencing an unprecedented number of able students. He re-
jected the notion that before doing research, students should first master what
has already been accomplished and held that young mathematicians “ought
to be pitched into the icy water to learn to swim or drown by themselves, or
else they never acquire the knack of independent work”.

49 Jacobi studied modular equations for elliptic functions. The equation

u6 + v6 + 5u2v2(u2 − v2) + 4uv(1 − u4v4) = 0 is fundamental for Hermite’s

1858 solution of quintics.
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His investigations of elliptic functions, the theory of which he established
upon quite a new basis, and more particularly his development of the theta
functions, constitute his greatest analytical discovery.50

He contributed to complex variable theory and was one of the early
founders of the theory of determinants. He developed extensively the prop-
erties of the functional determinant formed by the n2 partial derivatives of
n given functions w.r.t. their n independent variables, which now bears his
name — the Jacobian (1829) (although it was known to Cauchy already in
1815). This function plays an important role in differential geometry. The
Jacobian of two functions u(x, y), v(x, y) is defined as the determinant

∣
∣
∣
∣
∣

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

∣
∣
∣
∣
∣
=

∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x
≡ (∇u × ∇v)z.

It is represented by the symbol ∂(u,v)
∂(x,y) or J(u,v

x,y ). A necessary and sufficient
condition that two continuously differentiable functions u(x, y) and v(x, y) in
a region R satisfy the relation F (u, v) ≡ 0 for some function F is that their
Jacobian vanish in R.

Similarly, the Jacobian of three functions u(x, y, z), v(x, y, z) and w(x, y, z)
is defined by the determinant

J

(
u, v, w

x, y, z

)

=

∣
∣
∣
∣
∣
∣
∣
∣

∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

∣
∣
∣
∣
∣
∣
∣
∣

= (∇u × ∇v) · ∇w.

A necessary and sufficient condition that three continuously differentiable
functions u, v, w satisfy an equation F (u, v, w) ≡ 0 in R is that their Jacobian
vanish in this region.

A general differentiable transformation of coordinates x̄i = fi(x1, x2, x3)
in which the functions fi are single-valued for all points in R can be solved
to render xi = g(x̄1, x̄2, x̄3) iff J =

∣
∣∂x̄
∂x

∣
∣ = det ∂x̄i

∂xj
�= 0 everywhere in R. The

volume element is altered by the transformation according to the relation

dV̄ =
∣
∣
∣
∣J(

x̄1, x̄2, x̄3

x1, x2, x3
)
∣
∣
∣
∣ dV.

50 On a higher order of originality is his discovery, of Abelian functions. Such

functions arise in the inversion of an Abelian integral, in the same way that the

elliptic functions arise from the inversion of an elliptic integral. Here he had

nothing to guide him, and for long he wandered lost in a maze that yielded no

clue. The appropriate inverse functions in the simplest case are functions of two

variables having four periods; in the general case, the functions have n variables

and 2n periods; the elliptic functions correspond to n = 1.
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There are also the Jacobi identity for associative algebras, Jacobi elliptic func-
tions, Jacobi polynomials, Jacobi zeta function, Jacobi epsilon function, and
Jacobi identity for a triple infinite product.

Jacobi extended Hamilton’s equations of motion via the canonical transfor-
mations, to what is known as the Hamilton’s-Jacobi equation. In his formal-
ism, geometrical optics, mechanics and wave mechanics [Louis Victor de
Broglie (1892–1987, France, 1924) and Erwin Schrödinger (1887–1961,
Germany, 1925)] meet on common ground: the geometrization of physical
phenomena.

Jacobi’s contributions to number theory were extensive. In 1827 he stated
the law of cubic reciprocity. He applied elliptic functions to the theory of
numbers, obtaining the Fermat-Lagrange four-square theorem. Furthermore,
Jacobi’s theory could determine the number of distinct ways in which each
number can be represented.

Jacobi contributed to the theory of differential equations and to the calcu-
lus of variations. He introduced (1837) the concept (though not the term) of
a self-adjoint differential equation: Using modern notation, we consider the
general linear second-order PDE

n∑

i,j=1

Aij
∂2u

∂xi∂xj
+

n∑

i=1

bi
∂u

∂xi
+ cu + F = 0,

or in its index-free vector form,

L[u] + F = A : ∇∇u + b · ∇u + cu + F = 0,

where A, b, c, F are functions of the coordinates (x1, . . . , xn), one of which
can be time.

Define the adjoint operator as

L[u] = div div(Au) − div(bu) + cu.

Using certain vector identities it is shown that if A is a symmetric tensor
and b = div A, the operators L and L are identical. In that case we say that
the original PDE is self-adjoint, and write it in the compact form

div[A · ∇u] + cu + F = 0.

As an example, set u = u(x1, x2, x3, t), ∇u =
{

∂u
∂x1

, ∂u
∂x2

, ∂u
∂x3

, ∂u
∂t

}
and

choose A =

⎡

⎢
⎢
⎣

λ
λ

λ
−ρ

⎤

⎥
⎥
⎦ with λ, ρ function of position only. The
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self-adjoint equation then becomes

ρ
∂2u

∂t2
= div(λ grad u) + cu + F ,

which is recognized as the wave-equation, with div and grad as the usual
operators in 3-dimensional space. On the other hand, the diffusion equation
is not self-adjoint, and can be derived from the original equation, with the
aid of the identity div[A · ∇u] = div A · ∇u + A : ∇∇u. The equation then
becomes

div[A · ∇u] + (b − div A) · ∇u + cu + F = 0.

Choosing

A =

⎡

⎢
⎢
⎣

λ
λ

λ
0

⎤

⎥
⎥
⎦, b − div A = (0, 0, 0,−κ),

we obtain
κ

∂u

∂t
= div(λ gradu) + cu + F ,

which renders the diffusion equation.

Lagrange (1762 to 1765) was probably the first to present examples of
adjoint differential equations. Liouville (1838) gave a special pair of adjoint
differential systems. The term adjoint is due to Fuchs (1873). The theory of
self-adjoint differential equations was further developed by Frobenius (1873
to 1878).

We note that uL[v] − vL[u] = div P , where

P = uvb + uA · ∇v − v div(Au).

When L is self-adjoint, P = (u∇v − v∇u) · A.

For A = I, the special case of Green’s identity, u∇2v − v∇2u =
div(u∇u − v∇u), is obtained.

In a single spatial dimension, the self-adjoint PDE degenerates into the
self-adjoint ODE

d

dx

[

p0(x)
du

dx

]

+ p2(x)u + F = 0,

where p0 �= 0 in the interval a ≤ x ≤ b.
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One arrives at this result with the explicit requirement that

L[u] =
[

p0(x)
d2

dx2
+ p1(x)

d

dx
+ p2(x)

]

u(x) + F

be made equal to the adjoint operator

L[u] =
d2

dx2
(p0u) − d

dx
(p1u) + p2u + F

≡
[

p0
d2

dx2
+ (2p′

0 − p1)
d

dx
+ (p′ ′

0 − p′
1 + p2)

]

u + F,

which happens whenever p′
0 = p1.

In this case, an operator can always be made self-adjoint upon its multi-
plication with

1
p0

exp
{∫ x (

p1

p0

)

dx

}

= μ(x),

leading to the self-adjoint

μ(x)L[u] =
d

dx

[

p0μ
du

dx

]

+ p2μu + F.

Also, for F = 0

uL[v] − vL[u] =
∂

∂x
[p0uv′ − v(p0u)′ + p1uv] .

To the Newton-Laplace-Lagrange theory of attraction Jacobi made sub-
stantial contributions, by his investigations on the functions which recur re-
peatedly in that theory and by the application of elliptic and Abelian functions
to the attraction of ellipsoids.

Jacobi (1841) introduced the notation d and ∂ for total and partial
derivatives (differentialia partialia), respectively, i.e. he was first to write
df = ∂f

∂xdx + ∂f
∂y dy + ∂f

∂z dz. This he generalized to a function of n variables
f(x1, x2, . . . , xn). The notation ∂f

∂x advocated by Jacobi did not meet with
immediate adoption. It took half a century for it to secure a generally recog-
nized place in mathematical writing.51By 1898, Jacobi’s notation was accepted

51 When Cayley (1857) abstracted Jacobi’s paper, he paid no heed to the new

notation and wrote all derivatives in the form df
dx

, etc.

Partial derivatives appear in the writing of Newton, Leibniz, and the
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in England, where Hamilton’s gradient operator was written for the first time
as ∇ = i ∂

∂x + j ∂
∂y + k ∂

∂z .

The Elliptic Wonderland of Jacobi52

“God ever geometrizes”

Plato (427–347 BCE)

“God ever arithmetizes”

C.G.J. Jacobi (1829 CE)

A large number of important properties of elliptic integrals were observed
by Euler and Legendre before it was realized that the inverses of certain

Bernoullis, but as a rule without any special symbolism. Euler (1776) used
∂λ

p
· V to indicate the λth derivative, partial w.r.t. the variable p, operating upon

V . The use of the rounded letter ∂ in the notation for partial differentiation oc-

curs again (1786) in an article by Legendre, but he himself soon abandoned his

own notation in later papers.
52 For further reading, see:

• Lawden, D.F., Elliptic Functions and Applications, Springer-Verlag: New
York, 1989, 334 pp.

• Dutta, M. and L. Debnath, Elements of the Theory of Elliptic and Associated
Functions (With Applications), The World Press Private, 1965, 290 pp.

• Eagle, A., The Elliptic Functions as They Should Be, Gallaway and Porter:

Cambridge, England, 1958, 508 pp.

• Oberhettinger, F. and W. Magnus, Anwendung Der Elliptischen Functionen

in Physik und Technik, Springer-Verlag: Berlin, 1949, 126 pp.
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standard types of elliptic integrals, rather that the integrals themselves, should
be regarded as fundamental functions of analysis. This idea is due to Gauss,
Abel and Jacobi.

Gauss inverted the lemniscate integral (1797)

u =
∫ x

0

dt√
1 − t4

and defined through it the “lemniscate sine function”

x = sl(u).

He found that the function was periodic, like the sine, with period

2ω̃ = 4
∫ 1

0

dt√
1 − t4

.

From the relation
d(it)

√
1 − (it)4

= i
dt√

1 − t4

he deduced sl(iu) = isl(u) and hence that the lemniscate sine has a second
period 2iω̃. Thus Gauss discovered double periodicity, one of the key prop-
erties of elliptic functions, though at first he did not realize its universality.
However, the importance of elliptic functions became clear to him when he
independently discovered (1799) an ingenious method to calculate numeri-
cally the values of complete and incomplete elliptic integrals by using the
arithmetic-geometric mean.

To grasp the revolutionary idea of inversion, consider, for example, the
fundamental elliptic integral of the first kind

u(x) =

x∫

0

dt
√

(1 − t2)(1 − k2t2)

=

φ∫

0

dθ
√

1 − k2 sin2 θ
, t = sin θ, x = sin φ,

where the parameter k is known as the modulus and k′ =
√

1 − k2 is the

complementary modulus. In the trivial case k2 = 0 we have

u(x) = φ = sin−1 x =
∫ x dt√

1 − t2
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where u is a multivalued function of x. The inverse relation x = sin u is sim-
ple and represents a single-valued periodic function of period 2π. A similar
situation occurs with u = log x =

∫ x dt
t and x = eu.

In light of this analogy, Jacobi defined for all k ≤ 1

u(x) =
∫ x

0

dt
√

(1 − t2)(1 − k2t2)
= sn−1x.

The inverse functions, single-valued and analytic, are then defined through
the new symbols

x = sn(u, k), φ = am(u, k).

The fundamental new functions are related through the equations:

x = sn(u, k) = sin φ = sin[am(u, k)]

√
1 − x2 = cn(u, k) = cosφ = cos[am(u, k)]

√
1 − k2x2 = dn(u, k) = [1 − k2 sin2(am(u, k))]1/2

am(u, 0) = u, sn(u, 0) = sin u, cn(u, 0) = cosu, dn(u, 0) = 1

sn2u + cn2u = 1; dn2u + k2sn2u = 1

u = sn−1x = cn−1
√

1 − x2 = dn−1
√

1 − k2x2

Euler (1761) has shown that if R(ξ) is a rational polynomial in ξ of the
4th order, then there exists an algebraic function W (x, y) such that

∫ x

0

dξ
√

R(ξ)
+

∫ y

0

dξ
√

R(ξ)
=

∫ W (x,y)

0

dξ
√

R(ξ)
.

Thus, for R(ξ) = (1 − ξ2)(1 − k2ξ2), Euler found

W (x, y) =
x
√

1 − y2
√

1 − k2y2 − y
√

1 − x2
√

1 − k2x2

1 − k2x2y2
.
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Using the notation of Jacobi

u =
∫ x

0

dξ
√

R(ξ)
, x = snu, v =

∫ y

0

dξ
√

R(ξ)
, y = snv

W = sn(u + v);

one can recast Euler’s result in the form of an addition theorem

sn(u + v) =
sn u cn v dn v + sn v cn u dn u

1 − k2sn2usn2v
.

In inverse-function notation this reads

sn−1x + sn−1y = sn−1W (x, y).

In the limit k = 0, the last two relations degenerate into the familiar trigono-
metric formulas

sin(u + v) = sin u cos v + cosu sin v,

sin−1 x + sin−1 y = sin−1[x
√

1 − y2 + y
√

1 − x2]

The theory of elliptic functions includes two fundamental parameters: the
modulus k and the complete elliptic integral of the first kind

K(k) = sn−1(1) =
∫ 1

0

[(1 − t2)(1 − k2t2)]−1/2 dt =
π

2 2F1(
1
2
,
1
2
, 1, k2),

am K =
π

2
, k′2 + k2 = 1.

Associated with K is the quantity

K ′ =
∫ 1

0

[(1 − t2)(1 − k′2t2)]−1/2 dt = K(k′).
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The elliptic functions reduce to circular functions with

k = 0, k′ = 1, K =
π

2
, K ′ = ∞

and to hyperbolic functions with

k = 1, k′ = 0, K = ∞, K ′ =
π

2

in which case:

snx = th x, cn x = dn x =
1

ch x
.

The elliptic functions are doubly periodic in the complex u-plane. To see this
important feature, one effects the substitution

x =
iy

√
1 − y2

= sin φ = i tanψ,

implying

cosφ =
1

cosψ
, − sin φ dφ = sec ψ tanψ dψ,

√

1 − k2 sin2 φ =
1

cosψ

√

1 − k′2 sin2 ψ.

Then

u =
∫ x

0

dt
√

(1 − t2)(1 − k2t2)
=

∫ φ

0

dθ
√

1 − k2 sin2 θ

= i

∫ ψ

0

dα
√

1 − k′2 sin2 α
= i

∫ y

0

dξ
√

(1 − ξ2)(1 − k′2ξ2)
≡ iW.

This further implies y = sin ψ = sn(W, k′) and

sn(u, k) = sn(iW, k) = sinφ

cn(u, k) = cn(iW, k) = cosφ

dn(u, k) = dn(iW, k) =
√

1 − k2 sin2 φ.
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For k = 0 (trigonometric functions)
∫ 1

0
dt√
1−t2

= π
2 = 1

4T where T = 2π is

the period. It is therefore natural to expect that K will assume the role of the

quarter-period of the elliptic function. To see this we calculate

∫ πn+β

0

dφ
√

1 − k2 sin2 φ
=

∫ πn

0

dφ
√

1 − k2 sin2 φ
+

∫ πn+β

πn

dφ
√

1 − k2 sin2 φ

= 2nK +
∫ β

0

dφ
√

1 − k2 sin2 φ
= 2nK + u.

The above relation can be translated into sinβ = snu, sin(β + πn) =
sn(2nK + u), or sn(u ± 4K) = snu. In fact, 4K is the period of all
three elliptic functions snu, cnu and dnu.

Similar manipulation involving k′ show that

sn(u + 4K) = sn(u + 2iK ′) = sn u

cn(u + 4K) = cn(u + 2K + 2iK ′) = cn u

dn(u + 2K) = dn(u + 4iK ′) = dn u,

exhibiting the double periodicity of the elliptic functions in the complex x

plane.

It can be shown that a function of complex variable cannot have two

incommensurate periods in the same direction, but if one of the periods is in

a different direction in the complex plane (i.e. the ratio of the periods is not

a real number), this is possible. Thus, instead of a one-dimensional sequence

of periods (as in the case for the trigonometric functions) there will be a two-
dimensional lattice of parallelograms, with the function repeating, in each

parallelogram, its behavior in every other parallelogram. The smallest unit

within which the function goes through all its behavior is called the unit cell
for the function; each side of the unit cell is one of the fundamental periods

for the function.

Thus, for real W , one has

{sn iW, cn iW, dn iW}

defined for purely imaginary argument u = iW in terms of the real Jacobi

functions with real argument W and complementary modulus k′.
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Furthermore, the same reasoning that permitted us to define sn u and
hence cn u and dn u as periodic functions with real period 4K shows
that we can take sn(W, k′), cn(W, k′) and dn(W, k′) as real periodic
functions with real period

4K ′ = 4
∫ 1

0

dx
√

(1 − x2)(1 − k′2x2)
.

Clearly, 4iK ′ is a second period, purely imaginary, for sn u, cn u,
and dn u, that is

sn(u + 4iK ′) = sn u

etc.

Jacobi elliptic functions are therefore doubly periodic functions of the
complex variable u. However, all told, the Jacobi elliptic function, although
defined for real u and purely imaginary u, were never defined for complex
u = σ + iτ . Abel and Jacobi got around this by using the addition formula
for sn u, etc.

This procedure, unfortunately, breaks down when one wishes to use com-
plex values of k.

Thus, if one wishes to define Jacobi elliptic functions as functions of a
complex variable, by using the idea of inverting the elliptic integral of the
first kind, [i.e., considering one limit of integration as a complex variable, and
the value of the integral as a complex line integral over some curve], then one
must use a thoroughly complex variable technique which takes into account
all the difficulties of integrating a multi-valued function, with branch cuts
in complex plane. The correct technique was discovered by Riemann, who
introduced the notion of Riemann surface precisely to handle such problems.

There are no functions of complex variable z which have more than two
independent periods.

The elliptic function y = sn(u, k) has simple zeros at u = 2mK + 2nK ′i
(m, n = 0,±1,±2, . . .) and has simple poles at u = 2mK + i(2n + 1)K ′ (the
first pole at u = iK ′ on the imaginary axis);

It thus has a row of zeros along the real axis, spaced at distance 2K apart
and a row of poles along the line y = K ′, each vertically above a zero on the
real axis, and so on. [The residue at the pole u = iK ′ is 1

K , and the residue
at u = 2K + iK ′ is (− 1

K ).]

This property makes the elliptic function useful in the solution of certain
potential problem in electrostatics.



1828 4. Abstraction and Unification

The 5-Fold Way

The number 5 has the following remarkable traits:

• The geometry of art, aesthetics and life is associated with the pentagon,
the pentagram and the Golden Section, that is inherent in both. Five
is also the 4th Fibonacci number. In Phyllotaxis (regular arrangement
of leaves of a stems or petals in flowers), a pattern with 5 units occurs
very frequent [whimsical: 5 fingers on human limbs]. Five is also the
hypotenuse of the smallest Pythagorean triangle.

• There are 5 Platonic solids: the regular tetrahedron, cube, octahedron,
dodecahedron and icosahedron (all but the cube were named after the
Greek word for their number of faces). They were all known to the
Greeks. Euclid showed that there are no more than 5.

Kepler used them, with typical confidence in their mystical properties,
to explain the relative sizes of the orbits of the planets.

• The ‘worst’ close-regular-packing of spheres53 in any dimension is at
dimension 5.

• The smallest integer n for which Fn = 22n

+ 1 (Fermat number) is
composite: F5 = 232 + 1 = 641 · 6, 700, 417 = 4, 294, 967, 297.

• The nth Fibonacci number is given by the formula

Fn =
1√
5
[(

1 +
√

5
2

)n − (
1 −

√
5

2
)n].

• The smallest Zn group that cannot be a symmetry of a periodic lattice
is Z5 = 5-fold symmetry. D. Schechtman (1984, Israel) has demon-
strated that this symmetry is nevertheless realized in non-periodic quasi-
crystals.

53 The volume of a unit sphere in n-dimensions is Vn = πn/2/Γ
(

n
2

+ 1
)
. It is

largest at n = 5 (V1 = 2, V2 = 3.14 . . ., V3 = 4.19 . . ., V4 = 4.93, V5 = 5.26,

V6 = 5.17 . . ., V∞ = 0). In a 5-dimensional space the density of packing has

a minimal value of
√

2
60

π2 = 0.2325 . . ..
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• The general algebraic equation of the 5th or higher degree cannot be
solved in terms of the coefficients by using only a finite sequence of
arithmetical operations and radicals. This was first proved by Abel
during 1824–1826. By 1831, Galois established the theory of algebraic
solution of equations in its most complete form, associating it with sub-
groups of the group of permutation of the roots. The results of Galois
are much deeper and more general than those of Abel. Moreover, Galois
found that algebraic equations of orders 5, 7 and 11 are related to the
modular equations in the theory of elliptic functions.

Thus, by shutting the door to the possibility of algebraic solution of a
class of polynomial equations, he simultaneously opened another door
to nonalgebraic solutions of the same class, requiring an infinite number
of arithmetical operations on the coefficients. Indeed in 1858, Hermite
used this method in a very elegant manner to obtain all 5 solutions
of the quintic equation in terms of elliptic functions [analogously to the
trigonometrical solution of the cubic equation]. Finally, it was shown by
C. Jordan in 1870 that the solutions of the general algebraic equation
of degree higher than 5 are not expressible in terms of elliptic functions
alone.

• Plays an unexpected part in the Rogers-Ramanujan identities (1894)

1 +
∞∑

1

xm2

(1 − x)(1 − x2) . . . (1 − xm)
=

∞∏

0

1
(1 − x5m+1)(1 − x5m+4)

1 +
∞∑

1

xm(m+1)

(1 − x)(1 − x2) . . . (1 − xm)
=

∞∏

0

1
(1 − x5m+2)(1 − x5m+3)

It is also reflected in Ramanujan’s most bizarre result, obtained with
the aid of the above identities (1913)

u =
x

1 +
x5

1 +
x10

1 +
x15

1 +
x20

1 + . . .

; v =
x1/5

1 +
x

1 +
x2

1 +
x3

1 +
x4

1 + . . .

v5 = u
1 − 2u + 4u2 − 3u3 + u4

1 + 3u + 4u2 + 2u3 + u4
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As in the previous item, the number 5 seems to emerge out of the theory
of elliptic functions. Yet, there is here a hidden connection between
seemingly unrelated formulas: even after we understand what has been
done, the feeling of bewilderment and wonder is not lifted.

After x is eliminated, one is left with a quadratic equation in v5, namely

(u−1 − 1 − u)6

u−5 − 11 − u5
=

1
v5

− 11 − v5,

which upon simplification yields the desired result.

1829–1832 CE Évariste Galois (1811–1832, France).

“Down, down, down into the darkness of the grave
Gently they go, the beautiful, the tender, the kind;

Quietly they go, the intelligent, the witty, the brave.
I know. But I do not approve. And I am not resigned”.

Edna St. Vincent Millay, ‘Dirge Without Music’

A most brilliant mathematician who, in a brief meteoric career, laid the
foundations to the theory of groups and the theory of algebraic equations.
His theory of equations is based upon concepts of group theory and supplies
criteria for the possibility of solving an algebraic equation by radicals.

Galois resolved the deeper issues of solvability. His group-theoretic ap-
proach superseded the algebraic theories of Lagrange (1770), Ruffini (1799)
and Abel (1824).

In 1815 Gauss gave an algebraic proof of the fundamental theory of alge-
bra. The problem with this theorem is, however, that it does not tell us what
the roots are.

After Abel’s work (1826), the situation was as follows: Although the
general equation of degree higher then four was known to not be solvable
by radicals, there were special equations (e.g. xp = a, p prime) that were
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solvable by radicals. It remained to determine which equations are solvable
by radicals. This task was successfully undertaken by Evariste Galois.

Galois’ idea was to associate to any polynomial equation a group in such
a way that the properties of the group and the nature of the solutions of the
equations are closely related. In particular, he devised groups that reflect the
symmetry properties of the roots of general polynomial equations.

To this end he introduced the concept of the Galois group of an equa-
tion: If f(x) = xn + an−1x

n−1 + · · · + a1x + a0 is a polynomial over the
rationals, then there are certain rational functions with rational-valued coef-
ficients H(α1, . . . , αn) = 0, among the solutions α1, . . . , αn of f(x) = 0.
The group of all permutations that leave all the relations H(α1, . . . , αn) = 0
invariant, is called the Galois group54 of the equation55. It can then be shown
that any rational relation (in the above sense) left invariant by all permuta-
tions in the Galois group, is rational-valued (in either of the senses explained
in the previous footnote).

The central theorem in Galois’ theory then states that a polynomial equa-
tion is soluble by radicals if and only if its group is ‘solvable’. When the
Galois group for any equation has been found, a criterion devised by Galois
will indicate whether or not the group is ‘solvable’.

The association of the group concept with solutions of algebraic equations
can be illustrated with aid of the following example:

The equation x3 − 2 = 0 has the three roots: x1 = 3
√

2, x2 = ω 3
√

2,
x3 = ω2 3

√
2, where ω = −1

2 + 1
2 i

√
3 is a primitive cube root of unity. The

three roots can be pictured in the plane of complex numbers as 3 points,
equally spaced on a circle of radius 3

√
2. There are 6 operations of permuting

the roots, such that x3 − 2 = (x − x1)(x − x2)(x − x3) remains invariant56.
They are:

(1) Rotation of each root-vector by 120 ◦ counterclockwise:

3
√

2 → ω
3√

2 → ω2 3
√

2 → 3
√

2.

54 For further reading, see:

• Maxfield, J.E. and M.W. Maxfield, Abstract Algebra and Solutions by Radi-

cals, Dover Publications, 1992, 209 pp.

55 Here “rational-valued” could mean either rational numbers, or rational functions

of the coefficients {αj }.
56 The coefficients of this polynomial, or of any polynomial, are totally symmetric

polynomials of the roots, and furthermore, any rational function of the roots

that is totally symmetric under root permutations, can be shown to be a rational

function of these symmetric polynomials.
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The corresponding permutation is

(
1 2 3
2 3 1

)

.

(2) Rotation of each root-vector by 240 ◦ counterclockwise:
3
√

2 → ω2 3
√

2 → ω
3
√

2 → 3
√

2.

The permutation is

(
1 2 3
3 1 2

)

.

(3) Reflection about the horizontal (real) axis:
3
√

2 → 3
√

2, ω
3
√

2 → ω2 3
√

2, ω2 3
√

2 → ω
3
√

2,

corresponding to the permutation

(
1 2 3
1 3 2

)

.

(4) The identity

(
1 2 3
1 2 3

)

.

(5) Reflection about an axis going through the origin and ω 3
√

2, corresponding
to the permutation

(
1 2 3
3 2 1

)

.

(6) Reflection about an axis going through the origin and ω2 3
√

2, the corre-
sponding permutation being

(
1 2 3
2 1 3

)

.
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These 6 permutations constitute the group of symmetries of the equation.

Consider next the particular equation

x4 + px2 + q = 0, (p, q rational numbers)

having the explicit roots

x1 =

√

−p +
√

p2 − 4q

2
; x2 = −

√

−p +
√

p2 − 4q

2

x3 =

√

−p −
√

p2 − 4q

2
; x4 = −

√

−p −
√

p2 − 4q

2

Let Q be the field of the rationals. Clearly

x1 + x2 = 0, x3 + x4 = 0

holds. Of the 24 possible permutations of the above 4 roots, the following 8
substitutions (permutations)

E =
(

x1 x2 x3 x4

x1 x2 x3 x4

)

E1 =
(

x1 x2 x3 x4

x2 x1 x3 x4

)

E2 =
(

x1 x2 x3 x4

x1 x2 x4 x3

)

E3 =
(

x1 x2 x3 x4

x2 x1 x4 x3

)

E4 =
(

x1 x2 x3 x4

x3 x4 x1 x2

)

E5 =
(

x1 x2 x3 x4

x4 x3 x1 x2

)

E6 =
(

x1 x2 x3 x4

x3 x4 x2 x1

)

E7 =
(

x1 x2 x3 x4

x4 x3 x2 x1

)

(1)

leave the two relations true in Q. One could show that these 8 are the only
substitutions of the 24=4! which leave invariant all rational relations in Q

among the roots. These 8 are the Galois group of the equation in Q and
constitute a subgroup of the full group. That is, the group of an equation
w.r.t. a field Q is the group of substitutions on the roots which leave invariant
the rational relations with coefficients in Q (among the roots of the given
equation).
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One can say that the number of substitutions that leave all rational re-
lations in Q invariant is a measure of our ignorance of the root because we
cannot distinguish them under these 8 substitutions.

Now consider

x2
1 − x2

3 ≡
√

p2 − 4q. (2)

We adjoin this radical to Q, and form the field Q′, which is the smallest
fields containing Q and

√
p2 − 4q. Since x1 + x2 = 0 and x3 + x4 = 0 we

also have

x2
1 = x2

2, x2
3 = x2

4.

We then notice that of the 8 substations listed in (1) only E, E1, E2, E3 leave
the Q′-valued relation (2) invariant. Then these four substitutions, since they
leave every true Q′-valued rational relation among the roots invariant, are the
Galois group of the original quartic equation over Q′. These four comprise a
subgroup of the eight-member Galois group of the equation.

Suppose next that we adjoin to Q′ ′ the quantity
√

1
2

(
−p −

√
p2 − 4q

)
,

thereby forming the field Q′ ′. Then

x3 − x4 = 2

√
1
2

(
−p −

√
p2 − 4q

)
(3)

is a rational relation in Q′ ′. This relation remains invariant only under the
substitution E and E1, but not under the rest of the eight. Thus, the group of
the equation in Q′ ′ consists of these two substitutions, because every rational
relation in Q′ ′ among the roots remains invariant under theses two substi-
tutions. The two comprise the subgroup of the previous four-substitutions
subgroup.

If we finally adjoint to Q′ ′ the quantity
√

1
2

(
−p +

√
p2 − 4q

)
we get Q′ ′ ′.

In which we have

x1 − x2 = 2

√
√
√
√

(
−p +

√
p2 − 4q

)

2

It is found that the only substitution leaving all the rational relations over
Q′ ′ ′ invariant is just E (the trivial subgroup) – and this is the group of the
equation over Q′ ′ ′.
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Now Galois showed that when the group of an equation w.r.t. a given field
is just E, then the roots of the equation are members of that field.

There is next a straightforward process for finding the roots by rational
operations in Q′ ′ ′. Galois pointed out, however, that his work was not intended
as an efficient practical method of solving equations. Yet the Galois theory
shows that the general nth - degree equation for n > 4 is not solvable by
radicals whereas for n ≤ 4 they are. (see the following essay).

Galois was born in the village Bourg-la-Reine near Paris, the son of the
village mayor. Throughout his school years, Galois was hampered by teachers
who discouraged his interest in mathematics.

Galois discovered mathematics with the reading of Legendre’s textbook
of Euclidean geometry at the age of 13. Finding his school algebra textbook
boring, he started at the age of 14 to read the original memoirs of Lagrange
and Abel, whose algebraic analyses were addressed to professional mathemati-
cians. Galois tried twice (1827, 1829) to enter the École Polytechnique, but
was refused admission for inability to meet the formal requirements of his
examiners, who completely failed to recognize his genius. This failure drove
him in upon himself and embittered him for the remainder of his short life.

In 1828, at the age of 17, Galois was already making discoveries of epochal
significance in the theory of equations, discoveries whose consequences are
not yet exhausted after almost two centuries. In 1829, he published his first
paper, on continued fractions, and entered the École Normale to prepare him-
self to teach. At about this time he presented an abstract of his fundamental
discoveries to Cauchy for presentation to the Academy of Sciences. Cauchy
promised to present this, but forgot — and also lost the manuscript. Em-
bittered and frustrated, Galois was drawn by democratic sympathy into the
turmoil of the 1830 revolution. He was expelled from school and spent sev-
eral months in prison. Shortly after his release, he was killed in a pistol duel
with a friend: both men, having fallen in love with the same girl, decided
the outcome by a gruesome version of Russian roulette. The night before, he
wrote his scientific testament in the form of a letter to one of his friends. He
was buried in the common ditch of the South Cemetery, so that today there
remains no trace of the grave of Évariste Galois. His enduring monument is
his collected works, 60 pages in all.

Hermann Weyl, a leading 20th century mathematician, had this to say
(1952):

“If judged by the novelty and profundity of ideas it contains, it is perhaps
the most substantial piece of writing in the whole literature of mankind”.
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In 1846, Joseph Liouville published several of Galois’ memoirs and man-
uscripts in his Journal de mathématique. The importance of Galois’ ideas
became apparent only after they were applied in 1870 by Camille Jordan,
Felix Klein and Sophus Lie.

Galois and the Dawn of Abstract Algebra

The first stirrings of modern abstract algebra began with investigations
of the theory of equations, and studies of n-object permutations that arose in
this theory. This line of work began with successive attempts to algebraically
prove the fundamental theorem of algebra (Euler, Lagrange, Laplace).

Lagrange’s work, in particular (1771–3), introduced the use of symmetric
functions of the roots of a general polynomial, and proved what later became
known as Lagrange’s theorem in group theory57. Those early proofs of the
Fundamental Theorem58 suffered from the common flaw of assuming that
the roots of any polynomial exist, in some sense.

Gauss gave the first (almost) algebraic proof which escaped this apparent
tautology, by means of the so-called “principle of continuation of identities”59.
In the course of this proof (1815), Gauss introduced a congruence of polynomi-
als modulo a given polynomial, thus paving the way to such abstract-algebra
concepts as ideals, quotient rings, field extensions and splitting fields.

Cauchy independently co-discovered a subset of these new concepts and
methods (1815); and his own studies of symmetry permutation groups of

57 Lagrange Theorem: The order (# of elements) of a subgroup divides the order

of the larger group.
58 Fundamental Theorem of Algebra: every n-th order polynomial with real coeffi-

cients is factorizable into linear and quadratic factors.
59 It states that if a function F of the n fundamental symmetric polynomials

σ1 = α1 + · · · + αn, . . . , σn = α1 · α2 · · · · · αn

is identically zero, F (σ1, . . . , σn) ≡ 0, then this also holds for any n reals σj = sj .

Here αj are the n putative roots.
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algebraic functions led to what later came to be known as Cauchy’s theorem
of group theory60. Additionally, Gauss’ earlier work on the roots of unity and
cyclotomic fields, together with Abel’s extensions, pioneered many related
concepts, including what were later recognized as Galois groups (the Abelian,
or commutative case).

Galois, having read the relevant works by Legendre and Gauss, made
a complete study of finite fields, and introduced, for the first time, explicit
definitions of groups, normal subgroups, field extensions and related concepts
(albeit with different names, in some cases, from later nomenclature in what
came to be known as “Galois’ theory”) His efforts to characterize the hidden
structure of polynomials in terms of groups – especially with regard to the
solvability-by-radicals of polynomials – were so complete and successful that
the old “theory of equations” ended, in effect, with him, while giving birth to
modern abstract algebra.

Later (1843), Hamilton managed to finally extend the field of complex
numbers into the non-commutative (yet still associative) field of quaternions.
Hamilton’s approach – developed with physical applications in mind – led
him to do what Galois and his followers did: namely to generalize ordinary
addition and multiplication (and sometimes division) into abstract operations
among a priori-undefined elements, thus breaking ground for modern axiomat-
ics. Galois’ work was continued by Cayley, Jordan, Serret and others61;
Hamilton’s quaternions were subsumed by Gibbs’ vectors, but remained a cor-
nerstone of modern algebra and re-entered physics in the guise of the Pauli
matrices – describing quantum-mechanical spin – and was generalized to Clif-
ford algebras in the context of quantum field theories and GTR. The abstract
algebra pioneered bay Galois, Hamilton and their predecessors & followers,
exercises a unifying effect within modern mathematics itself, and has also led
to many important applications in modern physics.

Here, we shall present a simplified modern synopsis of that part of Galois’
theory dealing with the solvability by radicals of algebraic equations62.

Let f(x) be any n-th order polynomial over the field of rational numbers63,
with the coefficient of the highest power normalized to unity:

60 Cauchy’s theorem: a group of order n = p · m, p prime, has a subgroup of

order p
61 Including F. Klein, E. Moore, Hölder, L. Kronecker, and S. Lie.
62 Another branch of his work – that dealing with finite fields – has found modern

applications in digital logic design and cryptography
63 Galois theory applies to polynomials over any algebraic field, not just Q.



1838 4. Abstraction and Unification

f(x) = xn + an−1x
n−1 + · · · + a1x + a0, aj ∈ Q

where Q denotes the field of (real) rational numbers. By the fundamental the-

orem of algebra, f(x) has n complex roots (not all of which need be distinct):

f(x) = (x − d1) · (x − d2) · · · · · (x − dn), dj ∈ C

with C the field of complex numbers. Expanding this product, we find that

the coefficients aj are symmetric polynomials in the roots {dk}:

a0 = (−1)nd1 · d2 · · · · · dn, . . . an−1 = −d1 − d2 − · · · − dn.

These n-variable polynomials are ‘symmetric’ in the sense that they

remain invariant under arbitrary permutations of the n roots of f(x). Some

of these roots might be rational (i.e. lie in Q).

Denote a maximal, linearly-independent (over Q) subset of the irrational
roots, if any, by {c1, . . . , cm} (we only include distinct irrational roots in this

set). Note that if all roots of f(x) are in Q, m = 0 and the set is empty.

It can be shown that any symmetric rational function of the roots {dj}
can be expressed as a rational function of the coefficients {aj} (which are

themselves symmetric polynomials, as seen above.) Since aj are in Q, it fol-

lows that any symmetric rational R(d1, . . . , dn) has a numerical value in Q.

Galois posed the following question: are there any rational functions of {dj}
which are not fully symmetric, yet nevertheless assume rational numerical

values for a given polynomial f(x)? The answer is clearly in the affirmative;

for example, if f(x) has even a single rational root (say d1), the rational func-

tion R(d1, . . . , dn) ≡ d1 is not invariant under all permutations, yet assumes

a rational numerical value.

Galois was thus led to associate to each polynomial a group: The group64

G(f) of all permutations of the n roots such that a generic rational function
R(d1, . . . , dn) assumes a rational numerical value if, and only if, it is invariant

under the permutation belonging to G(f). Clearly, G(f) is a subgroup of the

group of all possible permutations of the n roots; the latter group is known

as the symmetric group of n objects, and denoted Sn. It can be shown that,

in fact, G(f) = Sn for a generic n-th order polynomial over Q; but G(f) is a

proper subgroup (i.e. smaller than Sn) for special choices of the coefficients aj ,

or of algebraic relations among them. If all the dj are rational, R(d1, ..., dn)

64 To be more precise, this group should be denoted GQ(f) and referred to as the

Galois group of f(x) over Q. However, we shall employ the simpler notation.
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is a rational number for any rational function R, so clearly G(f) is the trivial
group65 {1}, consisting only of the trivial (identity) permutation

(
1 2 . . . n
1 2 . . . n

)

≡ 1.

There is another, equivalent way of determining the Galois group – an
abstract-algebraic way, as follows. One defines an extension E of the field Q,
such that E is also a field and all roots dj belong to E. The basis irrational
roots {c1, . . . , cm} and their powers generate E over Q (if m = 0, we simply
have E = Q). This minimal extension field, denoted as E = Q(c1, . . . , cm),
is a finite-dimensional vector space, because (cj)n and higher powers can be
expressed as linear combinations of lower powers by using f(cj) = 0.

An automorphism of the field E is a one-to-one mapping σ of E onto66

itself, x → σ(x), which preserves addition and multiplication:

σ(x + y) = σ(x) + σ(y), σ(xy) = σ(x)σ(y), x ∈ E, y ∈ E.

It can be proven that the subfield Q is invariant under any automorphism
σ: σ(x) = x when x ∈ Q. Clearly, σ maps any root dj of f(x) into another
such root67, dj . And since σ is one-to-one, it acts on the set of roots {dj}
by permuting them. The set of all automorphisms of E is readily seen to be
group, called Aut(E), with the map x → x being the identity element (σ = 1)
and group multiplication being defined by map composition:

(σ1 · σ2)x ≡ σ1(σ2(x)), x ∈ E, σ1 ∈ Aut(E), σ2 ∈ Aut(E)

Since any x ∈ E is a linear combination of powers of roots, the permutation
induced by any mapping σ ∈ Aut(E) completely determines the action
σ(x) on all elements of E. It is thus possible to identify the group of auto-
morphisms of the extension field with a subgroup of the permutations group
Sn. It can be shown that this subgroup is exactly the Galois group:

Aut(E) = G(f)

This, then, is the abstract-algebraic way of defining the Galois group. It is
very useful, because abstract entities involved in this approach – field exten-
sions, automorphisms and the riches of finite-group theory – obey numerous,

65 In this case the set {c1, . . . , cm } is an empty set.
66 That σ is “onto” means that for any y ∈ E, there exits an x ∈ E that maps into

it: σ(x) = y.
67 Since 0 = σ(f(di)) = f(σ(di)) = 0.
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quite powerful theorems. Using these tools – which he pioneered himself – Ga-
lois was able to answer questions concerning the solvability of a polynomial
equation f(x) = 0 by precisely mapping these questions into corresponding
ones about the group G(f) and its subgroups.

For a general finite group G, let G(1) denote the set of commutators

xyx−1y−1, x ∈ G, y ∈ G.

Clearly the unit element 1 of G is also a member of G(1),since we may choose
x = y and then xyx−1y−1 = 1. It is immediately seen that G(1) is a sub-
group of G. One can repeat the procedure to form the subgroup G(2) of G(1)

consisting of all commutators of element pair x ∈ G(1), y ∈ G(1). If the
repeated application of this procedure eventually yields the trivial, subgroup
G(r) = {1} after finite number of steps r, the original group G is said to be
solvable.

Galois’ two main theorems concerning polynomial solvability (specialized
to the case of rational coefficients) can now be stated68:

(i) A non-constant, n-th order polynomial f(x) over Q is solvable by radicals
if and only if, its Galois group G(f) is a solvable group;

(ii) For n ≥ 5, a generic69 n-th order polynomial f(x) over Q has the Galois
group G(f) = Sn, i.e the full n-object permutation group.

From the above definition of group solvability, it is a mere mechanical
task to check whether any given finite group is solvable. The only catch is
that it is often quite quite difficult to actually determine the group G(f) for
a given polynomial f(x). Once this is done, however, theorem (i) enables a
straightforward determination as to whether f(x) is solvable by radicals or
not.

The correspondence between the solvability of f(x) by radicals and the
solvability of G(f) as a group is, in fact, more intimate than indicated
by Theorem (i). If the finite sequence of nested subgroups of a solvable
G(f) ≡ G(0) is G(0), G(1), ..., G(r) = {1}, then the number of distinct sets
xG(j+1) = {xy1, xy2, ...} where x ∈ G(j), and y1, y2, . . . range over all ele-
ments of G(j+1), is an integer, nj+1; theses sets are called congruences or

68 The first theorem exposes the reason for naming the just-described property of

some groups “solvability”!
69 By a “generic”, or “general”, polynomial is meant : any f(x) except some special

classes definable via algebraic relations among the coefficients.
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cosets, and they form (for each j) an Abelian group.70In Galois theory, it can
then be shown that solving f(x) = 0 by radicals (if possible at all) can be done
by solving successive algebraic equations of orders n1, n2, ..., nr. Furthermore,
for nj prime, the j-th of these algebraic equations can be written in the form
ynj = g, where g is a function (of the roots of f(x)) whose group of symmetries
is G(j−1). The procedure of extracting the nj-th root of g is then a step in
a sequence of field extensions that iteratively build up the field E introduced
above.

The combinations of (i) and (ii), plus the easily demonstrated fact71 that
Sn is solvable for n ≤ 4 and insolvable for n ≥ 5, leads us immediately to
Galois’ celebrated result – that a general 5th or higher-order polynomial is
not solvable by radicals72.

We conclude with several examples.

(1) n = 1: any 1st-order (linear) polynomial is, of course, solvable via simple
subtraction – even radicals are not needed! Thus if x + a0 = 0, the
solution is simply x = −a0. And, indeed, G(f) is in this case the trivial
group {1} (since S1 = {1} and G(f) is a subgroup of S1). This group is
(trivially) solvable.

(2) n = 2: The quadratic equation x2 + a1x + a0 = 0 is always solvable
by radicals: d1,2 = 1

2 (−a1 ±
√

(a1)2 − 4a0). If (a1)2 − 4a0 happens
to be a perfect square in Q, then both roots are rational numbers and,
as explained above, G(f) = {1} in this case - a solvable group (as in
example (1)).

But if (a1)2−4a0 is not a perfect square, {dj} are both irrational, and
it is readily seen that the only rational functions of (d1, d2) over Q that are
rational numbers are symmetric rational functions – which, for n = 2, means
rational functions of (d1 · d2, d1 + d2). Thus, by the first definition of the
Galois group, G(f) = S2 in this case. S2 consists of 2! = 2 permutations:

S2 =
{

1,

(
1 2
2 1

)}

,

70 The set of cosets xG(j+1), x ∈ Gj , is a group by virtue of the fact that G(j+1) is

a normal subgroup of G(j), i.e. x−1yx ∈ G(j+1) for any x ∈ G(j), y ∈ G(j+1).
71 In the examples below it will be shown that S1, S2, S3 and S4 are solvable groups,

and that S5 is insolvable
72 For rational coefficients. However, this also holds for a general n ≥ 5 polynomial

over R. This can be seen by either noting that Q ⊂ R, or by applying Galois’

theory but replacing Q with the field of rational functions of the coefficients

{a0, a1, . . . , an−1} (of f(x)) over Q.



1842 4. Abstraction and Unification

where 1 is again the trivial permutation:

1 =
(

1 2
1 2

)

.

S2 is clearly an abelian group, so its commutators are all 1; G(f) = S2 is,
once again, a solvable group. Thus G(f) is always solvable for n = 2 –
confirming Galois’ result.

(3) n = 3: Theorem (ii) states that for a general 3rd order polynomial,
G(f) = S3. In particular, this holds for f(x) = x3−2. This polynomial is
easily solved by radicals, with three complex roots d1 = 3

√
2, d2 = ω( 3

√
2),

d3 = ω2( 3
√

2), where ω = −1±i
√

3
2 . We now use the second (abstract

algebra) definition of the Galois group: any permutation of these roots is
an automorphism of the extension field E. For instance, the permutation

(
1 2 3
1 3 2

)

maps ω into its complex-conjugate ω2 = ω∗, and vice versa, leaving 3
√

2
invariant; it thus amounts to redefining i =

√
−1 as −i, which clearly

preserves addition and multiplication in the field E = Q(ω, ω∗, 3
√

2). Like-

wise, the cyclic permutation

(
1 2 3
2 3 1

)

merely multiplies each root by

e2πi/3, and is equivalent to redefining the “canonical” root, d1 = 3
√

2, to
be ω 3

√
2; and similarly with the other 3!− 3 = 3 nontrivial permutations.

Thus indeed G(f) = S3 for the particular polynomial x3 −2. By working
out all two-element commutators in

S3 =
{

1 =
(

1 2 3
1 2 3

)

,

(
1 2 3
1 3 2

)

,

(
1 2 3
2 1 3

)

,

(
1 2 3
3 2 1

)

,

(
1 2 3
2 3 1

)

,

(
1 2 3
3 1 2

)}

we easily find:

S
(1)
3 =

{

1,

(
1 2 3
2 3 1

)

,

(
1 2 3
3 1 2

)}

This is the subgroup of cyclic permutations, and is abelian; hence

S
(2)
3 = {1}, and S3 = G(f) is therefore solvable – in agreement with Galois

result.
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In this example – and in fact for the general cubic f(x) ≡ 0, except special
cases – the sequence of nested normal subgroups is:

G(0) = S3 (a group of order 6, i.e. having 6 elements)

G(1) = A3 = “alternating group” =
{

1,

(
1 2 3
2 3 1

)

,

(
1 2 3
3 1 2

)}

= subgroup of order 3;

G(2) = {1}.

The order ratios are nothing but the indices {nj} mentioned above:
n1 = 6/3 = 2, n2 = 3/1 = 3. And as these indices are both prime, Ga-
lois theory tells us that the general cubic may be solved by taking a square
root and then a cubic root (with rational operations before, after and between
these radical operations corresponding to the standard Cardano-Tartaglia so-
lution.

A more cumbersome algorithm having the same radical sequence – an
algorithm, in fact, directly related to Galois theory – is as follows.

Let α, β, γ denote the roots of a general cubic. The three fundamental
symmetric functions:

σ1 = α + β + γ

σ2 = αβ + βγ + αγ

σ3 = αβγ

are just the (rational) non-leading coefficients of f(x) (up to signs). Each σj

has as its group the full S3, and any function with this invariance group can
be expressed as a rational function of σ1, σ2, σ3 over Q.

An example of a function of α, β, γ which corresponds to the subgroup
G(1) = A3, is:

τ ≡ α2β + β2γ + γ2α

Galois theory predicts that τ satisfies a quadratic equation over the rationals
– and indeed, some algebra shows that

τ =
1
2

(
A ±

√
B

)
, where

A = α2β + β2γ + γ2α + αβ2 + βγ2 + γα2 =
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=
1
3
(α + β + γ)3 − 1

3
(α3 + β3 + γ3) − 2αβγ,

B = (α − β)2(α − γ)2(β − γ)2.

A and B are fully symmetric, i.e. their group is S3, and thus are rational
functions of σ1, σ2, σ3; therefore A, B are rational numbers and thus τ solves
a rational quadratic equation – as predicted by Galois theory. It can likewise
be shown that α, β, γ can be obtained from τ by extracting a third root of
a rational function of τ over the extension field Q(

√
B).

(4) n = 4: The generic 4th-order polynomial has G(f) = S4, and it has been
known for centuries that a general quartic is solvable by radicals. This
is in agreement with Galois theory, because S4 is a solvable group: this

is proven by constructing the sequence of groups S
(1)
4 , S

(2)
4 , ... (as done

above for S3).

For a general quartic f(x), the sequence of commutator subgroups over
the extension field Q(

√
B) is as follows:

G(0) = S4, of order 4! = 24; G(1) = A4 = set of even permutations of order
(2).

G(2) =
{

1,

(
1 2 3 4
2 1 4 3

)

,

(
1 2 3 4
3 4 1 2

)

,

(
1 2 3 4
4 3 2 1

)}

,

of order 4; and then,

G(3) =
{

1,

(
1 2 3 4
2 1 4 3

)}

,

is of order 2.

The indices are:

n1 = 24/12 = 2; n2 = 12/4 = 3; n3 = 4/2 = 2.

Thus the general quartic could be solved by solving a quadratic, then a
cubic, and finally another quadratic.

But the well-known Ferrari Solution of quartic proceeds by first solving
an auxiliary cubic and then two successive quadratics. This corresponds to a
different sequence of groups, not invoking successive commutator; one of the
groups is not a normal subgroup of the preceding one. This illustrates the fact
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the solutions by radicals suggested by Galois theory, are quite cumbersome –
one can usually do better!

(5) n = 5: S5 is not a solvable group. Indeed, by computing all commutators

one can verify that S
(1)
5 = A5, the subgroup of all even permutations;

and that S
(2)
5 = A

(1)
5 = A5, so that S

(r)
5 �= {1} for any natural

number r.

Hence S5 is insolvable, and the general quintic equation is not solvable by
radicals.

A concrete example of a quintic not solvable by radicals is

f(x) = x5 − 4x + 2,

for which the abstract “machinery” of Galois theory can be used to prove
that, indeed, G(f) = S5. But for

f(x) = x5 − 2, dj = 5
√

2e2πij/5 (0 ≤ j ≤ 4)

In this case f(x) is solvable by radicals, and indeed G(f) is a 20 - element,
solvable subgroup of the 120-element S5 permutation group.

This order-20 subgroup M20 of S5 is the so-called metacyclic group for the
case n = 5; i.e. it is the subgroup of substitutions

j → rj + g mod 5, r ∈ {1 , 2 , 3 , 4}, g ∈ {0, 1, 2, 3, 4}.

This is not a normal subgroup, so unless G(f) is this metacyclic group –
it cannot be used as part of a Galois group-sequence. However, even for an
f(x) for which G(f) = S5, it can be proven that a function of the roots having
M20 as its group satisfies an algebraic equation (with rational coefficients) of
6th order (since 120/20 = 6 is the index of M20 in S5).

In some special cases this sextic is solvable by radicals – in which case,
so is the original quintic. The G(f) is again M20, as occurred in the case
f(x) = x5 − 2.
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1829–1832 CE Nicolai Ivanovitch Lobachevsky (1793–1856, Russia).
A geometer of great originality. Pioneer of modern geometries which deal
with spaces other than Euclidean.73 Published (1829) the first account of non-
euclidean geometry to appear in print.

This revolutionary development marked the liberation of geometry from
its traditional mold established by the Greeks. A deep-rooted and centuries-
old conviction that there could be only one possible geometry was shattered,
and the way opened for the creation of many different systems of geometry.
Moreover, it became apparent that geometry is not necessarily tied to ac-
tual physical space as long as its postulates are self-consistent. And as in
other instances, it turned out, less than a century later, that these “artifi-
cial geometries” are not less physical than the Euclidean geometry. Clifford
(1845–1879) called Lobachevsky “the Copernicus of geometry”.

Lobachevsky was born in Makariev, Nizhniy Novgorod. His father died
around 1800 and his mother, who was left in poor circumstances, removed to
Kazan with her three sons. In 1807 Nicolai entered the University of Kazan,
then recently established. In 1823 he rose to a rank of a full professor of
mathematics and retained the chair until 1846. His first contribution to non-
Euclidean geometry is believed to have been given in a lecture at Kazan in
1826, but the subject is also treated in many of his memoirs.

Gauss (1777–1855) and Janos Bolyai (1802–1860, Hungary) share with
Lobachevsky the credit for the discovery of non-Euclidean geometry. Al-
though Gauss failed to publish anything on the matter throughout his life,
there is ample evidence to show that he was first to reach penetrating conclu-
sions concerning the parallel postulate.

Bolyai published his findings in 1832 in an appendix to a mathematical
work of his father. Because of language barriers and the slowness with which
information on new discoveries traveled in those days, Lobachevsky’s work
did not become known in Western Europe for some years74.

1829–1841 CE Jacques Charles Francois Sturm (1803–1855, Switzer-
land and France). Mathematician and physicist. Made major contributions to

73 For further reading, see:

• Brannan, D.A. et.al., Geometry, Cambridge University Press, 1998, 497 pp.

74 In 1824, F.A. Taurinius (1794–1874, Germany) communicated to Gauss two

monographs on non-Euclidean geometry. Earlier, in 1817, F.K. Schweikert

(1780–1859, Germany), discussed his ideas with Gauss and is also known to have

developed a non-Euclidean geometry.
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the theory of algebraic and differential equations [Sturm’s theorem75, Sturm-
Liouville equation]. Made the first accurate determination of the velocity of
sound in water (1826).

Sturm was born in Geneva. After completing his studies at the Geneva
Academy, he became (1823) a tutor to the youngest son of Mme de Staël at the
Château of Coppet near Geneva. There he met the Duke Victor de Broglie76.
He then accompanied the Duke to Paris and through him was able to enter
the capital’s scientific circles. He became a French citizen (1833). In Paris
he met Arago, Ampère, Gay-Lussac, Dulong and Fourier. Upon the death
of Ampère, he was elected to the vacant seat in the Académie des Sciences
(1836), and in 1838 he became a professor of analysis and mechanics at the
École Polytechnique, and succeeded Poisson to the chair of mechanics there
(1840).

Around 1851 Sturm’s deteriorating health obliged him to arrange for a
substitute at the Sorbonne and at the École Polytechnique. Four years later
he died in Paris. Sturm also made contributions to experimental and mathe-
matical physics in the fields of analytical mechanics, optics, heat conduction
and the study of vision.

75 Sturm’s Theorem shows how to find for any equation, by rational methods, the

exact number of real roots which lie within a given range of values. (Descartes,

Newton, Lagrange, Fourier and Cauchy had tried to find suitable criteria

to decide whether a root of a polynomial lies in a given interval of the domain

of definition.) Given a polynomial of degree n, Sturm defined a chain of n + 1

functions f(x), f ′(x), f2(x), . . . , fn(x) where f ′(x) is the derivative, f2(x)

is the remainder of the division of f(x) by f ′(x), f3(x) is the remain-

der of the division of f ′(x) by f2(x) etc. Substituting for x a particular

value a in the polynomials of Sturm’s chain gives a sequence of real numbers:

f(a), f ′(a), f2(a), . . . , fn(a). If two consecutive numbers fi(a) and fi+1(a) in

this sequence have different signs, one speaks of a sign change. Let W (a) de-

note the number of sign changes in the Sturm’s chain for a value x = a. Sturm’s

theorem then states: “Let f(x) be a polynomial with only simple zeros, where

a < b and f(a) �= 0, f(b) �= 0; then {W (a) − W (b)} is equal to the number

of zeros of the polynomial in the closed interval [a, b]”.
76 Victor Claude, Prince de Broglie was executed at Paris in June 1794. His son,

the Duke Achille Charles Léonce Victor de Broglie (1785–1870) escaped with his

mother to Switzerland, where they remained until the fall of Robespierre. In

1816 he was married to the daughter of Madame de Staël. In 1832, he took

office as minister for foreign affairs. His son, Jacques Victor Albert (1821–1901),

was a prime minister of France in 1877. Jacques’ grandson was the physicist

Louis Victor de Broglie (1892–1987).
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1829–1855 CE Thomas Graham (1805–1869, Scotland). Chemist. A
founder of physical chemistry. Conducted research on gases and solutions. In
1829 he formulated Graham’s law of diffusion77, which explains how two gases
mix with each other. He also did pioneering work with colloids78, founding
the science of colloidal chemistry (1850).

Graham was born in Glasgow. In 1819 he entered the University of Glas-
gow with the intention of becoming a minister of the Church, but ‘converted’
to experimental science and concentrated his studies on molecular physics, a
subject which formed the main preoccupation throughout his life. He gradu-
ated in 1824, and in 1837 was appointed to the chair of chemistry in University
College, London. In 1855 he became Master of the Mint.

1829–1858 CE Isambard Kingdom Brunel (1806–1859, England).
Railway and bridge engineer, and naval architect. One of the greatest English
engineers of the 19th century. Son of Marc Isambard Brunel (1769–1849).
Took a leading part in the systematic development of ocean steam navigation.
Designer and builder of railroads, bridges, tunnels, steamships and docks.

Brunel studied in Paris (1820–1823) and during 1823–1828 assisted his
father in the Thames-tunnel project. First designed the Clifton suspension
bridge over the Avon (1829; completed 1864). In 1833 he became chief en-
gineer of Great Western Railway and constructed all its viaducts, bridges
and tunnels, including the Royal Albert bridge across the River Tamar into
Cornwall. During 1838–1845 he designed two highly successful steamships
for regular transatlantic service: the Great Western (1838) was a wooden
steamship, measuring 72 m long and 11 m wide with two huge side wheels
that drove it at a speed of 9 knots. The Great Britain (1845) was the first large
iron-hulled screw-driven steamship. Then in 1853 he began the construction
of the Great Eastern, the largest steamship of its time79 (1858).

77 The ratio of speeds at which two different gases diffuse is inverse to the ratio of

the square roots of the gas densities. The same law applies to the flow of gas

through a small aperture (effusion).
78 Colloids: tiny particles of one material evenly distributed in another.
79 It measured 211 m long, 26 m wide with a total tonnage of 18,918 tons, ac-

commodating 4000 passengers. The Great Eastern was intended to show the

full potentialities of the iron steamship by carrying enough fuel for a voyage to

Australia and back, out of the Cape and home via the Horn. This was a bold at-

tempt to overcome the great obstacle to the development of steamships, namely

the fact that coal took up so much space and there was no room for the other

commodities less profitable than passengers and mail. As an advertisement of

the structural possibilities of iron, the ship was a great success; as a demonstra-

tion of the economic use of coal it was a dismal failure – it did not attract enough



1830 CE 1849

1830 CE George Peacock (1791–1858, England). Mathematician. Was
first to study the fundamental principles of algebra and its structure and
pass from ‘symbolized arithmetic’ to ‘symbolic algebra’. In 1830 he published
Treatise on Algebra which attempted to give algebra a logical treatment com-
parable to Euclid’s Elements. First to define and introduce symbolic algebra
as the science which treats the combinations of arbitrary signs and symbols
by means defined through arbitrary and consistent laws. As an undergradu-
ate at Cambridge he made friends with John Herschel and Charles Babbage
and together they formed the Analytical Society whose aims were to bring
the advanced continental methods to Cambridge. In 1836 he was appointed
professor of geometry and astronomy at Cambridge.

Peacock was followed by Duncan Farquharson Gregory (1813–1844,
England, 1840), Augustus de Morgan (1806–1871, England, 1860),
George Boole (1815–1864) and finally Hermann Hankel (1839–1873, Ger-
many, 1867). These studies led to the liberation of algebra (as in geometry)
and opened the floodgates of modern abstract algebra. Thus, it seemed in-
conceivable in the early 19th century that there could exist non-commutative
algebras. However, Hamilton and A. Cayley applied it soon enough to
quaternions and matrices.

The founders of quantum mechanics showed in the 1920’s that the atoms
and electrons must live by the rules of a non-commutative algebra. Later on,
non-associative algebras, such as Jordan algebras and the Lie algebras, were
introduced.

Abstract Algebraic Structures

The modern abstract point of view requires a pure science to be founded on
postulates (assumptions) about undefined elements, which are not necessarily
numbers or points but abstractions (elements), potentially capable of varied

passengers to pay the enormous operation costs; it was used (1866) to lay the

first transatlantic telegraph cable. In 1881 it was sold for scraps.

During the late 1800’s, steel began to replace iron for ships. Steel ships were

stronger and lighter than iron ones. In 1881, the Servia, a British vessel, became

the first all-steel passenger liner to cross the Atlantic.
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interpretations consistent with the basic assumptions. With this in mind, one
might begin with systems in which a set of undefined elements is given, as well
as two operators between these elements, ⊕ and ⊗. These symbols are used
to suggest some kinship with ordinary addition and multiplication, although
in different concrete realizations and interpretations might be considerably
different from the usual ones. Then our postulate set can include those ‘laws’
or ‘properties’ such as closure, commutativity, and associativity for both ⊕
and ⊗, and also distributivity of ⊗ w.r.t. ⊕.

One of the simplest sets of abstract elements is a modulus: a set S of num-
bers such that the sum and difference of any two members of S are themselves
members of S, i.e. m ∈ S, n ∈ S ⇒ (m ± n) ∈ S. The elements of a modu-
lus need not necessarily be integers or even rational: they may be complex
numbers or quaternions.

The single number 0 forms a modulus (the null modulus). For any modulus
S and a ∈ S we have a − a = 0 ∈ S, and also: a + a = 2a ∈ S. Repeating this
argument we see that na ∈ S for any integer n. More generally, a ∈ S, b ∈ S
implies xa + yb ∈ S for any integer x, y. Thus the set of values of xa + yb also
forms a modulus.

It can be shown that xa + yb is the set of multiples of d = (a, b), the
greatest common divisor of a and b. But a number representable as ax + by
is, per definition, linearly dependent on a and b. Clearly, the property of linear
dependence on a and b is preserved by addition, subtraction and multiplication
by a number and is not affected by interchanging a and b. Indeed,

(ax1 + by1) ± (ax2 + by2) = a(x1 ± x2) + b(y1 ± y2)

and

λ(ax + by) = (λx)a + (λy)b.

We shall next exhibit five fundamental algebraic structures which have a wide
application in the physical world.

Before we discuss algebraic structures, let us consider first the subject of
complex numbers.

When operating with ordinary real numbers, it is noticed that the square
root of negative numbers has no meaning, because the square of every real
number is positive or zero. However, the solution of quadratic and cubic equa-
tions compelled mathematicians to regard expressions of the form a + b

√
−1.

If it is assumed that these ‘imaginary’ numbers are subject to the same laws
(axioms) of common arithmetical operations as the ordinary numbers, then
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all square roots of negative numbers can be expressed in terms of the quan-
tity i =

√
−1, and the result of arithmetical operations performed any finite

number of times on real or imaginary numbers can always be expressed in the
form a + bi, where a and b are real numbers.

Clearly, this definition of imaginary numbers runs counter to common
sense: First it was stated that expression

√
−1,

√
−2, and so forth, have no

meaning, and then it was proposed that these meaningless expressions be
called imaginary numbers. This circumstance caused many mathematicians
of the 17th and 18th century to doubt the validity of the use of complex
numbers. However, these doubts were dispelled at the beginning of the 19th

century, when a geometrical interpretation was found for the complex numbers
by points in a plane.

Another purely arithmetical foundation of the theory of complex numbers
was discovered by Hamilton (1833) who noted that the complex number
a+ bi can be viewed simply as an ordered pair of real numbers, subject to the
addition and multiplication rules

(a, b) + (c, d) = (a + c, b + d);

(a, b)(c, d) = (ac − bd, ad + bc).

For example, we have

(2, 3) + (1,−2) = (3, 1) (2, 3)(1,−2) = (8,−1)

(3, 0) + (2, 0) = (5, 0) (3, 0)(2, 0) = (6, 0)

These examples show, in particular, that the arithmetical operations on pairs
with a zero in the second place reduce to the same operations on their first
terms, so that the arithmetic of real numbers is just a special case of the
arithmetics of complex numbers. Indeed, if we introduce the notation i for
the pair (0, 1) then we have

(a, b) = a(1, 0) + b(0, 1) = a + bi

i2 = (0, 1)(0, 1) = (−1, 0) = −1

i.e., we have the usual notation for complex numbers.

One then defines the conjugate of a complex number by (a, b)∗ = (a,−b),
the square of the norm of (a, b):

(a, b)(a,−b) = (a2 + b2, 0) = ||a, b||2

and the multiplicative inverse of (a, b) as

(a, b)∗

||a, b||2 ,
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whenever (a, b) is nonzero.

Sylvester (1852) noted that complex numbers could alternatively be rep-
resented by matrices80

(
a b
−b a

)

= a

(
1 0
0 1

)

+ b

(
0 1

−1 0

)

.

Since (
0 1

−1 0

) (
0 1

−1 0

)

=
(

−1 0
0 −1

)

,

the matrix (
0 1

−1 0

)

plays the ‘role’ of i =
√

−1.

Thus it would be improper to state that complex numbers were invented
so that negative numbers would have square roots, or, equivalently, so that
all quadratic equations would have solutions. It is certainly true that they do
provide these, as well as many other interesting and useful properties.

Before negative numbers were invented, mathematicians would say that
the equation x + 1 = 0 has no solution. Similarly, before complex numbers
were introduced, mathematicians could state that x2 + 1 = 0 has no solution.

The real reason that complex numbers gained acceptance in mathemati-
cal circles, has to do with cubic equations. It was recognized that all cubic
equations have at least one real root. However, when the cubic formula was
discovered, it was found that sometimes complex numbers were needed as an
intermediate step in finding that one real root. One could not just dismiss a
cubic as having no solutions; but at the same time maintain that real numbers
were insufficient to solve it.

Operations on the complex numbers can be used to describe geometrical
operations on the plane. For instance, multiplication by a real number cor-
responds to scaling of the plane. Multiplication by complex numbers with

80 The matrices (
a b

−b a

)

form a group w.r.t. matrix multiplication. This group is isomorphic to the

multiplicative group of non-zero complex numbers

(
a b

−b a

)

↔ a + bi.
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a modulus (“length”) of unity corresponds to rotation of the plane. Adding
complex numbers corresponds to translation of the plane. Thus, transforma-
tion of the plane is easily modeled with complex numbers.

By 1830, it was well established that complex numbers behave alge-
braically like vectors in a plane.81

Let us investigate this interesting observation in more detailed: consider
the complex numbers

z = x + iy = reiθ

iz = −y + ix = rei(θ+π/2).

Multiplication by i then rotates the ‘vector’ z by 90 ◦ counterclockwise. Two
consecutive operations of this kind rotate the vector by 180 ◦, yielding a vector
that is anti-parallel to the original vector z.

Now suppose that we start from the plane vector r = xex + yey and cross
it from the left by ez

ez × r = −yex + xey.

This operation is again rotating the vector by 90 ◦ clockwise. Both cases can
be represented by the coordinate transformation

[
0 −1
1 0

] [
x
y

]

=
[
−y
x

]

.

We may then write the symbolic equation in the xy plane

i ⇔ ez × .

Moreover, the product of two complex numbers f = a − ib, g = c + id can
be written as

fg = (ac + bd) + i(ad − cb) ⇔ (f · g) + i{f × g},

where
f = aex + bey,

g = cex + dey,

f × g = ez{f × g}.
When the two vectors are perpendicular, the real part of their product van-
ishes. If, on the other hand they are parallel, the imaginary part of their
product vanishes.

81 Aristotle knew that forces can be represented as vectors and that the combined

action of two forces can be obtained by the ‘parallelogram law’. Simon Stevin

employed this law in problems of statics, and Galileo stated the law explicitly.
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This notion can be further extended into the realm of the calculus: Let

∇ =
∂

∂x
+ i

∂

∂y

operate on S = u + iv. Then ∇ gives the divergence and the rotation of a
vector S = uex + vey

∇S =
(

∂

∂x
− i

∂

∂y

)

(u + iv) =
(

∂u

∂x
+

∂v

∂y

)

+ i

(
∂v

∂x
− ∂u

∂y

)

= div S + i{curl S}z

If S is analytic, the Cauchy-Riemann relations

∂u

∂y
= −∂v

∂x
,

∂u

∂x
=

∂v

∂y

enable us to write

∇S =
(

∂

∂x
− i

∂

∂y

)

(u − iv) = 0

∇S =
(

∂

∂x
+ i

∂

∂y

)

(u + iv) = 0

The complex representation of plane vectors can be extended to plane tensors.
Consider the symmetric plane dyadic

↔
A = a11exex + a12(exey + eyex) + a22eyey,

having the scalar invariant A1 = a11 + a22. Let us set our former correspon-

dence ey = (ez×)ex = iex. We may then recast
↔
A in the symbolic form

↔
A = (a11 − a22)exex + 2ia12exex = Aiexex,

where Ai = (a11 − a22) + 2ia12 is called the complex invariant of
↔
A. We can

then use it as a complex representation of the dyadic
↔
A.
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1. Group

A group G is a set of elements a, b, c, etc. (objects, symbols, quantities)
for which a composition law ∗ between any two elements (ordered pair) has
been uniquely defined and for which the following four conditions are fulfilled.

(i) Closure: If a belongs to G and b belongs to G, then a ∗ b also belongs
to G.

(ii) Associativity: For any three elements a, b, c in G

(a ∗ b) ∗ c = a ∗ (b ∗ c).

(iii) Existence of a unit element (the identity): There exists an element e in G
such that operating with e has no effect on a, namely e ∗ a = a ∗ e = a
for every a of G. [Actually the slightly weaker condition of the right
identity a ∗ e = a would also suffice.]

(iv) Existence of the inverse element: Corresponding to each a of G there
exists an element denoted by a−1 such that a−1 ∗ a = a ∗ a−1 = e for
every a in G. [Again, the existence of a right inverse only could suffice.]

Of course, a ∗ b �= b ∗ a in general. A group is said to be Abelian or commu-
tative if in addition to the group axioms (i)–(iv) we also have a ∗ b = b ∗ a for
any pair of elements in G. It is usual in this case to call the composition law
addition and write a + b for a ∗ b which is then called the sum of the element
a and b. The identity is then denoted by 0 and is called the zero element while
the inverse of a is called the negative of a and denoted by −a. Thus, for an
Abelian group, the axioms (i)–(iv) take the form:

(i) a ∈ G, b ∈ G ⇒ a + b = c ∈ G; a + b = b + a

(ii) a + (b + c) = (a + b) + c

(iii) a + 0 = a for every a ∈ G

(iv) a + (−a) = 0 for every a ∈ G

Examples of groups:

(1) The set of all integers with ordinary addition as the composition law.
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(2) The set of all n × m matrices A with complex elements aij under the
addition law

(A + B)ij = aij + bij = (A)ij + (B)ij .

The negative of A is defined by (−A)ij = −aij = −(A)ij , so that
A + (−A) = (aij + (−aij)) = (0) = 0, where 0 = (0), the null matrix,
all of whose elements are zero, is the zero element of the group.

(3) The set of permutation of n objects. Such a permutation may be written

S =
(

1 2 3 . . . n
s1 s2 s3 . . . sn

)

=
(

k
sk

)

,

k = 1, 2, . . . n: this means that the object in cell 1 was sent to cell s1,
the object in cell 2 was sent to cell s2 etc. under the permutation S.
Observe that S remains the same in permuting its columns in any way.
Consider the permutation

T =
(

k
tk

)

≡
(

sk

tsk

)

.

The product

TS =
(

k
tk

) (
k
sk

)

means that we first carry out the permutation S that sends the object
in cell k to cell sk, and then from sk to tsk

, namely

TS =
(

k
tsk

)

, k = 1, 2, . . . n.

In general, TS �= ST . The permutation

E =
(

k
k

)

which leaves the objects where they are is the unit element, and

S−1 =
(

s1 s2 s3 . . . sn

1 2 3 . . . n

)

.

The algebra of permutations can alternatively be executed with the
aid of matrices proper: A permutation on n objects is represented by



1830 CE 1857

an n × n orthogonal matrix (of determinant ±1) in which the column
(k, ak) in (

1 2 3 ... k ... n
a1 a2 a3 ... ak ... an

)

is represented by placing unity in the kth row and the ath
k column of the

matrix, and zero elsewhere in that row. Thus, for example

(
1 2 3 4 5
1 4 2 5 3

)

⇒

⎡

⎢
⎢
⎣

1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0

⎤

⎥
⎥
⎦ .

(4) The set of all non-singular complex square matrices of order n under
matrix multiplication.

(5) The set of all non-singular complex quaternions under quaternion mul-
tiplication.

2. Ring

A ring R is a set of elements a, b, c etc. which is closed under two distinct
composition laws between any two elements and for which the following four
conditions are fulfilled:

(i) R is an additive abelian (commutative) group

(ii) a ∈ R; b ∈ R ⇒ ab ∈ R for any a, b (Closure under ‘multiplication’)

(iii) a(bc) = (ab)c for any a, b, c of R (Associativity for ‘multiplication’)

(iv) a(b + c) = ab + ac and (b + c)a = ba + ca (Distributivity)

Note again that the commutative operation (+) and the operation of mul-
tiplication may be only abstractly connected with the usual connotations of
these expressions. In general ab need not be equal to ba and the corresponding
ring is then called a non-commutative ring.

An immediate consequence of (iv) is a · 0 = 0 for any a ∈ R, where 0 is
the zero element of R. In some rings the product of two non-zero elements
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may itself be zero, i.e. ab = 0 while a �= 0, b �= 0. In that case, these elements
are called zero divisors. Furthermore, a ring need not contain either a unit
element e in the sense that ae = e, or a multiplicative inverse a−1 of a given
a. A commutative ring which contains no zero divisors is called an integral
domain. In this domain ab = ac implies b = c if a �= zero (cancellation law).

Examples of rings:

(1) The set of all integers, 0, ±1, ±2, . . . under ordinary addition and mul-
tiplication. The integer 1 serves as a unit element for multiplication but
there does not exist an integral inverse n−1 for any n except n = ±1.
Note that the subset of all even integers 0, ±2, ±4, . . . is itself a ring.
This ring does not contain even a unit element.

(2) The set of all polynomials A(x) = a0 + a1x + · · · + anxn of arbitrary
degrees under addition and multiplication82: we define a zero polynomial
as the one with all its coefficients zero and it is simply denoted by 0. The
negative −A(x) of A(x) is evidently the polynomial whose coefficient of
xk is −ak (k = 0, 1, . . . , n).

In this manner, the set of all polynomials becomes an additive abelian
group. We make it into a ring by defining the product polynomial of
A(x) and B(x) (of orders m, n respectively) as one of degree n + m,

A(x)B(x) = c0 + c1x + . . . ckxk · · · + cn+mxn+m

ck =
∑

r+s=k

arbs; (k = 0, 1, . . . n + m)

82 The exact significance of the symbol x varies subtly with the context. In the

early stages of algebra x denoted some unknown number, to be discovered even-

tually at the outcome of the analysis. Later, with the introduction of the concept

of a function the unknown x is replaced by the variable x, which can range over

all numbers of a given set. But unknown and variables obey exactly the same

algebraic laws and it is not always necessary to have a clear idea which one is

being used. Sometimes one passes from unknown to variable without noticing.

Thus it may be required to solve the equation x3 + 3x + 2 = 0 for the unknown

x. But a convenient method of solving this equation is by finding the intersection

of the curve y = x3 with the line y + 3x + 2 = 0. Here, the symbol x ceased to

be an unknown and has become a variable.

The laws of algebra are not concerned, however, with whether x represents an

unknown, a variable or a constant. A further important generalization is in-

troduced here: the letter x can denote an indefinable, i.e. just a symbol about

which nothing is assumed, except that it obeys a certain arbitrary system of

formal algebraic operations, that may or may not be commutative.
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One can similarly define rings of polynomials in several unknowns.

(3) The set of all square matrices under the composition laws of addition
and multiplication of matrices. The ring is non-commutative, contains

zero divisors [e.g.

(
1 1

−1 −1

) (
a b

−a −b

)

=
(

0 0
0 0

)

] and contains

both singular and non-singular matrices [i.e., some elements have no
inverse].

(4) The set of complex quaternions with the product definition

AB = (a0b0 − a · b, a0b + b0a + a × b),

where A = (a0, a); B = (b0, b).

Here again, the ring consists of all quaternions, both singular

[|A| = a2
0 + a2

1 + a2
2 + a2

3 = 0] and non-singular, and must be distin-

guished from the group of nonsingular complex quaternions introduced
earlier. This ring too, contains zero divisors [e.g. (1 + ie1)(1 − ie1) = 0
where e1 is a quaternion unit e2

1 = −1] and is non-commutative.

3. Division ring (skew-field)

We observe that a general ring is a group w.r.t. addition and only a
semigroup w.r.t. the multiplication since only closure and associativity are
assumed to hold relative to this second composition law. If on the other
hand, the elements of the ring (with exception of its zero element), form a
multiplicative group as well, it is called a division ring.

More explicitly, a division ring is a ring that contains a unit element e
and also the inverse a−1 of every a �= 0 such that ae = a and aa−1 = e. Here
in addition to the unique solution x = −a + b of an equation a + x = b, an
equation ay = b also possesses the unique solution y = a−1b and hence, the
name division ring for this structure.

In general, a division ring is not commutative w.r.t. multiplication83.

83 However J.H.M. Wedderburn (1882–1948) proved (1905) that any finite divi-

sion ring must be commutative (and thus a field).
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Example of a non-commutative division ring:

The set of all real quaternions under the definition of the inverse to A(a0, a)

A−1 =
Ā

|A|2

where Ā = (a0,−a); |A|2 = a2
0 + a2

1 + a2
2 + a2

3. We also have a unit element
(1,0).

4. Field

A commutative division ring is a field. In other words: a field is a set of
elements forming a ring w.r.t. two binary operations, addition and multiplica-
tion, for which the set of all elements except the unit element w.r.t. addition
forms an abelian group w.r.t. multiplication. In yet simpler language one
could say that a field is a set of entities which is closed w.r.t. the four rational
arithmetical operations of addition, subtraction, multiplication and division
by any non-zero member of the set.

Obvious instances of fields are the set of all rational numbers, the set of all
real numbers and the set of all complex numbers. We notice that each of these
examples is a subfield of the one that succeeds it. Note that x2 = 2 cannot be
solved over the field of rationals while x2 + 1 = 0 cannot be solved over the
field of real numbers.

Consider the field of rational numbers Q. Each rational number can be
represented uniquely as a point on a straight line, the ‘number axis’. Each
such point is a rational point. The rational number A is said to be less than
the rational number B (A < B) if A lies left of B on the axis. Equivalent
statements are that B is greater than A (B > A) if, or that B − A is positive.

It then follows that, if A < B, the points (numbers) between A and B
are those which are both > A and < B. Any such pair of distinct points,
together with the points in between, is called a segment, or interval, (A, B).
The distance of a point A from the origin, considered as positive, is called the
absolute value of A and is indicated by the symbol |A|. By definition

|A| = A, if A > 0

= −A, if A < 0
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It is clear that if A and B have the same sign, the equality |A + B| = |A| + |B|
holds, while if A and B have different signs, we have |A + B| < |A| + |B|.
Hence, combining these two statements we have the general inequality

|A + B| ≤ |A| + |B|,

which is valid irrespective of the signs of A and B.

The absolute value |x| of x ∈ Q therefore satisfies the three properties

(i) |x| ≥ 0, |x| = 0 ⇐⇒ x = 0

(ii) |xy| = |x||y|

(iii) |x + y| ≤ |x| + |y|

Any function on Q with properties (i)–(iii) is called a norm. [The absolute

value |x| is not the only norm possible over the rationals]

Once the norm is defined, one can go further and define a metric D over

the rationals

d(x, y) = |x − y|

which renders the distance between any two rational points on the number

axis. It has the following properties

(i) d(x, y) = 0 iff x = y

(ii) d(x, y) = d(y, x)

(iii) d(x, y) ≤ d(x, z) + d(z, y)

for all z ∈ Q, x ∈ Q and y ∈ Q.

In the field of complex numbers C, with the metric

d(a + bi, c + di) =
√

(a − c)2 + (b − d)2

the above condition (iii) is known as the triangle inequality. Indeed, in the

complex plane, with the above metric, (iii) states that the sum of two sides of

a triangle is greater than the third side:
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The integral domain of polynomials over a field can be extended to form
a field by the use of infinite series. If a0 differs from zero, the inverse of
the polynomial (a0 + a1x + a2x

2 + · · · + anxn) can formally be generated by
assuming the existence of an infinite series of ascending powers of x such that

(a0 + a1x + a2x
2 + · · · + anxn)(b0 + b1x + · · · + bnxn + . . . ) = 1.

Solving successively for the coefficients bk we obtain

b0 =
1
a0

; b1 = −a1

a2
0

; b2 =
a2
1 − a0a2

a3
0

; b3 = −a3
1 − 2a0a1a2 + a3a

2
0

a4
0

etc. No question of convergence arises; the system of polynomials is merely
extended to include infinite series. The system is not yet a field, as the
element x has no reciprocal. But the system of polynomials and series of the
form xp(a0 + a1x + a2x

2 + . . . ) where p is a positive or negative integer does
form a field.

5. Linear Vector Space
84

One considers an additive abelian group V with elements 0, x, y . . . whose
general element is denoted by v. One then considers a field F with elements

84 For further reading, see:

• Deskins, W.E., Abstract Algebra, Dover: New York, 1995, 624 pp.

• Littlewood, D.E., University Algebra, Dover, 1970, 324 pp.

• Childs, L.M., A Concrete Introduction to Higher Algebra, Springer-Verlag,

2000, 522 pp.
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0, λ, μ, a, b . . . We call V a linear Vector Space over the ground field F if we
can define an operation called scalar multiplication which associates with each
λ ∈ F and each v ∈ V one unique element of V denoted λv and satisfying the
following axioms in addition to those of the abelian group for v and the field
F :

λ(x + y) = λx + λy

(λ + μ)x = λx + μx

λ(μx) = (λμ)x ≡ λμx

1x = x; 1 is the unit element of F.

The elements of V are called vectors while the elements of F are called
scalars. If the ground field F is the real number field, V is a real linear vector
space; if F is the complex number field, V is called a complex vector space.
An obvious consequence of the above axioms is

x ∈ V, y ∈ V ⇒ λx + μy ∈ V for arbitrary λ, μ ∈ F.

If each element v of V is equivalent to a finite sum of n scalar-multiplied fixed
vectors of V

v = λ1v1 + λ2v2 + . . . λnvn,

the vector space is said to be finite-dimensional over F . If, in addition,
v1, . . . vn are linearly independent85, V is called an n-dimensional vector space
over F , usually designated Vn.

Let the ground field F possess a norm as defined above. Then a vector
space V over F is called normed if to every element v of V there corresponds
a real, non-negative number ‖v‖ called the norm of v such that

(i) ‖λv‖ = |λ|‖v‖, λ ∈ F , v ∈ V

(ii) ‖v1 + v2‖ ≤ ‖v1‖ + ‖v2‖ for v1, v2 ∈ V

(iii) ‖v‖ > 0 for v �= 0

It is easily proven that ‖0‖ = 0.

An example of a norm is the magnitude of the real vector v, namely |v|,
its euclidean distance from a fiducial origin.

A vector space is called metric if for each pair of elements v1, v2 in the
space there is a real, non-negative number d(v1, v2) such that

85 A set of vectors v1, v2 . . . vn is said to be linearly dependent if scalars λ1, λ2 . . . λn,

not all of them zero, exist such that λ1v1 + λv2 + . . . λnvn = 0.
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(i) d(v1, v2) = 0 iff v1 = v2

(ii) d(v1, v2) ≤ d(v3, v1) + d(v3, v2) for all v3 in V

These properties imply that d(v1, v2) = d(v2, v1). Clearly a normed vec-
tor space can be made metric by taking

d(v1, v2) = ‖v1 − v2‖,
which is the ‘distance’ between the vectors v1 and v2.

Examples of linear vector spaces:

(1) The set of all 3-dimensional real vectors as oriented line segments with
the triangle law of vector addition and with the real number field as the
ground field.

(2) The set of all n-tuples of the form

x = (xk) = (x1, x2, . . . xn)

where xk are elements of a ground field, and

x + y = (xk) + (yk) = (xk + yk) = (x1 + y1, x2 + y2, . . . xk + yk)

The zero element is clearly 0 ≡ (0, 0, . . . 0) and the negative of x is
−x = (−xk); also λx = (λxk) = (λx1, . . . , λxn). The n-tuple x when
written as a row is called a row vector and when written as a column is
called a column vector.

(3) The set of all matrices A of order n, with complex elements, on defining
(λA)ij = λAij , where λ is a complex number.

(4) The set of all polynomials A(x) of degree less than or equal to some
number n over a field F , on defining

λA(x) = (λa0) + (λa1)x + . . . (λan)xn, λ ∈ F.

It may be noted that in the above abstract structures no mention has
been made of a vector product; this is because that structure is in general
not a vector at all from the viewpoint of linear transformation theory; i.e. its
components do not transform to different coordinate systems as do those of
an ordinary vector, unless n = 3.

Table 4.1 overviews the development of abstract algebra during the 19th

century.
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Table 4.1: Major events and turning points in the evolution of

Abstract Algebra, 1771–1880

Mathematician Year(s) Achievement

J.L. Lagrange 1771–1774 Employment of symmetric and
similar functions in the solution of
algebraic equations by radicals.

A.T. Vandermonde 1771 First group-theoretic theorem. In
his memories “Memoire sur la
resolution des équatious” he ap-
proached the general problem of
solvability of algebraic equations
through the study of functions in-
variant under permutations of the
roots of the equations. Kronecker
(1888) claimed that the study of
modern algebra began with this
paper by Vandermonde.

R. Ruffini 1799–1813 Introduction of subgroup of sub-
stitutions; notions of transitivity
and primitivity of groups. First
to prove (with groups) the Abel-
Ruffini Theorem, using permuta-
tion groups. May have come up
first with some of the ideas of Ga-
lois.

C.F. Gauss 1801 Showed that equation xp − 1 = 0
can be reduced to solving a series
of quadratic equations, whenever p
is Fermat prime∗.

1815 Algebraic proof of the fundamen-
tal theorem of algebra. Pioneered
early concepts of: group; spe-
cial (abelian) case of Galois group;
field ; splitting field ; quotient ring ;
Extensions of cyclotomic fields;
primitive roots.
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Table 4.1: (Cont.)

Mathematician Year(s) Achievement

N.H. Abel 1824–6 Complete independent proof of
Abel-Ruffini theorem of the impos-
sibility of the algebraic solution of
general algebraic equation of degree
higher than the forth.

E. Galois 1823–1829 Complete theory of finite fields.
Theory of field extensions ; Solvabil-
ity conditions of algebraic equations
by radicals. Completion of the the-
ory of equations. Group concept;
Normal subgroups. A turning point
in the rise of group theory. Ad-
vent of abstract algebra. Decisive
paper published by J. Liouville only
in 1846.

G. Peackock
D.E. Gregory
A. de Morgan 1834–1841 Symbolic algebra and logic
G. Boole

C.G. Jacobi 1834 Theories of determinants,
quadratic forms and invariants.

W.R. Hamilton 1843 Advent of hypercomplex numbers;
Quaternions.

H.G. Grassmann 1844 Polyadic algebra (n-dimensional ‘ex-
terior algebra’); harbinger of tensor
algebra.

A. Cauchy 1844–1846 Permutation subgroups, splitting
fields (1815); Cauchy theorem in
group theory: (‘every group whose
order is divisible by a prime num-
ber p must contain one or more
subgroups of order p’).
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Table 4.1: (Cont.)

Mathematician Year(s) Achievement

A. Cayley 1849–1859 Theories of matrices (1858); ab-
stract finite groups [Cayley theo-
rem: every finite group is isomor-
phic to a subgroup of Sn]. Theory of
algebraic invariants. With Hamil-
ton and Grassmann opened ab-
stract algebra to a variety of struc-
tures.

S.H. Aronhold
J. Silvester
R.F.A. Clebsch 1850–1872 Theory of invariants (later to
L.O. Hesse become essential in tensor algebra)
P. Gordan

J.A. Serret 1866 Gave the first exposition of Galois’
ideas in his book ‘Cours d’algebre
superiere’.

C. Jordan 1870 Consolidation of group theory (nor-
mal subgroups, simple groups, ho-
momorphism, matrix groups). First
full and clear presentation of Galois
theory.

L. Kronecker 1870 Generalized Gauss’ work (1815)
and solved the general problem of
polynomial splitting field.

L. Sylov 1872 Extended Cauchy’s theorem

J.W Dedekind
B. Peirce 1872–1880 Creation of structural theory of

semisimple algebras.

W.K. Clifford 1878–80 ‘Clifford algebras’; biquaternions.
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Table 4.1: (Cont.)

(*) Example, since x5 − 1 = (x − 1)(x4 + x3 + x2 + x + 1), the equation to be solved is
x4 + x3 + x2 + x + 1 = 0. We put z = x + 1

x
. Since x5 = 1, we have

1

x
= x4, z = x4 + x, z2 = x2 + 2 +

1

x2
= x2 + 2 + x3.

This yields the equation z2 + z − 1 = 0 for z and the equation z2 − zx + 1 = 0 for x.
Solving these equations we obtain

z1,2 =
−1 ±

√
5

2
, x1,2 =

z ± i
√

z + 3

2
.

Thus,

x1,2 =
−1 ±

√
5

2
+ i

√

5 ±
√

5

8
; x3,4 =

−1 ±
√

5

4
− i

√

5 ±
√

5

8
.

Vandermonde (1771) produced an algebraic solution in radicals for the binomial
equation x11 − 1 = 0
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1830 CE Joseph Jackson Lister86 (1786–1869, England). Optician.
Showed how microscope lenses could be made to correct for chromatic and
spherical aberrations87(seventy years after the first achromatic telescope lenses
were made). His invention improved the resolving power of compound micro-
scopes. This, in turn, enabled physiologists to advance cell theory on a solid
basis88.

1830–1833 CE Marshall Hall (1790–1857, England). Physician and
physiologist. Described the mechanism by which a stimulus can produce a
response independently of sensation or volition and coined the term “reflex”.
Maintained his theory in face of denunciation by colleagues. Denounced blood-
letting89 as a treatment for disease (1830).

86 Not to be confused with the English surgeon Joseph Lister (1827–1912),

founder of antiseptic surgery (1865–1877) who first demonstrated that the use of

carbolic acid as an antiseptic reduced the danger of surgery.
87 When a bundle of rays originates from an axial point, the image distances are

not the same for all rays but depend on the original slope angle at the object

point. This means that the rays do not converge to a single focus. This common
feature of spherical reflecting and refracting surfaces (such as lenses, mirrors,

prisms etc.) is known as spherical aberration. Due to dispersion, the focal length

of a simple lens also varies with the wavelength. This variation, called chromatic
aberration, can be reduced substantially by means of a lens combination in which

the component lenses are made of glasses having different dispersions. An achro-

matic combination of focal length f for two thin lenses in contact is obtained if
the focal lengths of the component lenses are

f1 = f

(

1 − δ1

δ2

)

, f2 = f

(

1 − δ2

δ1

)

,

where

δ1 =
1

n1 − 1

dn1

dλ
, δ2 =

1

n2 − 1

dn2

dλ
,

n1, n2 being the indices of refraction and λ the wavelength. Since dn
dλ

also varies

with wavelength, a lens can be achromatized over a limited wavelength interval

only. Spherical aberration, on the other hand, can be minimized by appropriate

choice of lens curvatures and separations.
88 Pierre Turpin (1826) reported his observations of cell division in algae; Franz

Meyen observed (1830) that each cell is an independent unit which nourishes it-

self, build itself up and incorporates raw nutrients that are taken up into different

substances and structures. Robert Brown (1831) discovered the widespread

occurrence of nuclei in cells. Hugo von Moll (1805–1872, Germany) showed

that plant-cells alone possessed walls (1835–1839).
89 An ancient practice, found in virtually all periods and cultures, based on magic
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1830–1833 CE Charles Lyell (1797–1875, England). Founder of modern
historical geology. Building on Hutton’s concept of gradual change through
existing physical causes, Lyell marshaled all the observations he could collect
in support of the doctrine that the earth has changed slowly and gradually
through the ages by means of processes that are still going on.

Between 1830 and 1833 he published the three volumes of his Principles
of Geology, which organized existing information about that science with lu-
cidity and clarity. Until then many persons believed that changes in the earth
occurred in sudden worldwide upheavals. Almost singlehandedly, Lyell es-
tablished uniformitarianism at the expense of catastrophism, as the accepted
philosophy for interpreting the history of the earth. In so doing he introduced,
with profound impact, the concept of unlimited time. Geological problems
now could be solved by reference to natural laws still active and available for
study in the real world about us instead of by reference to former, shadowy,
mythical, or supernatural events; the present became a key to the past.

Lyell’s wide influence prepared the ground for the succeeding accomplish-
ments of the 19th century, including those of Charles Darwin, whose ideas
on the gradual development of living things could not have flourished without
the intellectual framework of vast time. Hence, the uniformitarian doctrine
was eminently successful in nourishing scientific progress.

In retrospect, however, it appears that the pendulum swung a bit too
far90. Not only did Lyell strictly reject any process that could not be shown
to accord with constant and presently verifiable laws of nature, but he would
not even entertain the thought that rates of change, or the relative importance
of geological agents, ever differed from what they have been within human
experience. In short, strict uniformitarianism possessed its own rigid and
stifling aspects, brought on by allowing, for all the geological past, only the
present rates of natural processes.

Lyell was born in Kinnordy, Scotland. In 1816 he entered Exeter College,
Oxford, studying law and geology. During 1821–1826 he was simultaneously
practicing law and active in geological research, becoming a member of the
Royal Society in 1826. In 1827 he finally abandoned the legal profession and

and other supernatural explanations. Although various exuberant Renaissance

phlebotomists were attacked by Paracelsus (1493–1541) and J.B. van Helmont

(1579–1644) as upholders of outmoded traditions, bloodletting was still widely

used into the 19th century and died out only gradually toward 1900.
90 e.g. Lyell’s doctrine would preclude catastrophic episodes in the earth’s history

such as the one posited in the contemporary theory of the extinction of the

dinosaurs, or nonlinear processes such as the reversal of the polarity of the geo-

magnetic field.
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devoted himself to geology. In 1841 he spent a year in traveling through the
United States and Canada; he returned the America in 1845. During these
journeys he studied the annual average accumulation of alluvial matter in the
Mississippi delta and the coal-formations in Nova Scotia.

Among his characteristics were great thirst for knowledge, perfect fairness
and sound judgment. He was buried in Westminster Abbey.

1830–1842 CE Auguste Comte (1798–1857, France). Philosopher and
social thinker. Founder of the history of science (1832). Founded a philosoph-
ical system concerned with the impact of modern science on society, known
as positivism. In it he tried to arrange the entire field of scientific study in a
comprehensive and logical order. Each science in the hierarchy contributes to
the entries that follow it, but not to those who precede it; the list is headed
by mathematics and followed by astronomy, physics, chemistry, biology and
sociology91.

Comte adopted the view there are three phases in the historical develop-
ment of human society: (1) initial theological phase, where man’s speculations
were dominated by superstition and prejudices; (2) metaphysical phase, where
man’s search for reality took the form of rational speculation unsupportable
by facts; (3) final positive phase, where dogmatic assumptions began to be
replaced by factual and rational scientific knowledge. This phase brings the
historical process to its ultimate state of perfection92.

One may consider positivism as a type of social physics describing a society
rigidly governed by natural laws, with reason playing a key role in social
evolution. This evolution goes through three stages: a military-theological
stage, a critical-metaphysical stage, and a scientific-industrial stage. In this
last stage man no longer concerns himself with ultimate causes, as he did
during the metaphysical stage, but is satisfied with the material world and
with whatever he might learn from observing it. Here was a philosophy that

91 The idea of such an order is extremely old, going back as far as Aristotle, and

was later adopted by the philosophical movement of the encyclopedists.

Comte himself coined sociology for the science of man, the last and most complex

study in the hierarchy. He considered himself as its founder.
92 Such a view reflects the “rampant optimism” of the 19th century, shared by

Hegel, Spencer and Marx. Herbert Spencer (1820–1903, England) sought

to interpret society in terms of principles derived from mechanics (within 50

years of Comte and Spencer a positivist account of mechanics came to be given

by Mach). In his First Principles he amassed an enormous amount of data,

systematically arranged and accompanied by consistent body of theory. He was

the chief exponent of the philosophy of evolution.
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accepted science as its only guide and authority and which for that reason
was eminently suited to the late 19th century.

Comte maintained that it is necessary to study the evolution of the dif-
ferent sciences to understand the development of the human mind and the
history of mankind. It is not sufficient to study the history of one or of many
particular sciences; one must study the history of all sciences, taken together.
Indeed, as early as 1832, Auguste Comte made an application to the minis-
ter Guizot for the creation of a chair, devoted to the general history of the
sciences93 (histoire générale des sciences).

Comte further maintained that Positive humanity will be ruled by the
moral authority of a scientific élite, while the executive power will be entrusted
to technical experts, an arrangement that is similar to the ideal state of Plato’s
Republic.

Comte was born in the ancient university town of Montpelier , at a time
when social and political conditions were highly unstable. He was the son
of a respectable and conventional family of government clerks. His father
was a monarchist and a rigid Catholic. When at the École Polytechnique in
Paris (1816), he was expelled for taking part in a student rebellion against
one of their professors. This later prevented him from gaining university
employment.

Throughout his life Comte was frail in health, and suffered from recurrent
mental depression which drove him to the verge of suicide. He made a living by
giving private lessons in mathematics and by gifts from friends and admirers.
He was twice committed to an insane asylum; the first time, as a result of
his unhappy marriage (1825–1842); the second, after the death of his friend
Clotilde de Vaux (the wife of a man imprisoned for life) in 1846.

1831–1843 CE James Clark Ross (1800–1862, England). Polar explorer.
On June 1, 1831, Ross located the north magnetic pole94 in Boothia Penin-
sula. Commanded Antarctic expedition (1839–1843), discovering Ross Sea,

93 It was sixty years before this wish of his was granted; the course entrusted

to Pierre Laffitte was inaugurated at the Collège de France in 1892, thirty-five

years after Comte’s death. The real heir to Comte’s thought was Paul Tannery

(1887).
94 At the magnetic poles, on the earth’s surface, the horizontal component of the

magnetic field vanishes and a completely free magnetic needle sets itself vertically.

The line joining the poles is the magnetic axis of the earth. In 1963, the poles

were approximately at 75 ◦N, 101 ◦W and 67 ◦S, 143 ◦E. In contradistinction, the

geomagnetic poles (the best dipole approximation to the earth’s true field) are

at 78 1
2

◦N, 69 ◦W and 78 1
2

◦S, 111 ◦E.
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the Ross Ice Shelf, Victoria Land, and Mount Erebus, an active volcano. His
uncle John Ross and William Edward Parry trained him during six arctic
voyages in search of the Northwest Passage (1818–1834).

Tracking the North Magnetic Pole (1831–2000)

The discovery of the directive property of a magnetic needle in the earth’s
field and the invention of the mariners compass is obscure. The earliest men-
tion in European literature is ascribed to the monk Alexander Neckham
(1157–1217). Using a model of the earth made from loadstone (a naturally
occurring magnetic rock), William Gilbert came to the conclusion (1600
AD) that the earth behaved substantially as a uniform magnetized sphere, its
magnetic field being due to causes within the earth, and not from any external
agency, as was supposed at that time. The field of a uniformly magnetized
sphere can be represented by a dipole at its center. Gilbert showed that there
should be two points on the earth where a magnetized needle should stand
vertically: at the North and South magnetic poles.

This is basically the same definition used today. At the magnetic poles, the
earth’s magnetic field is perpendicular to the earth’s surface. Consequently,
the magnetic dip, or inclination (the angle between the horizontal and the
direction to the earth’s magnetic field), is 90◦. And since the magnetic field
is vertical, there is no force in a horizontal direction. Therefore, the magnetic
declination, the angle between true geographic north and magnetic north,
cannot be determined at the magnetic poles.

Gilbert believed that the North Magnetic Pole coincided with the north
geographic pole. Magnetic observations made by explorers in subsequent
decades showed that this was not true, and by the early nineteenth century,
the accumulated observations proved that the pole must be somewhere in
Arctic Canada.

In 1829, John Ross set out on a voyage to discover the Northwest Pas-
sage. His ship became trapped in ice off the northwest coast of Boothia
Peninsula, where it was to remain for the next four years. John’s nephew,
James Clark Ross, used the time to make magnetic observations along the
Boothia coast. These convinced him that the pole was not far away, and in
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the spring of 1831 he set out to reach it. On June 1, 1831, at Cape Adelaide

on the west coast of Boothia Peninsula, he measured a dip of 89◦59′. For all

practical purposes, he had reached the North Magnetic Pole.

In 1839, Gauss, by spherical harmonic analysis, showed that the field

of uniformly magnetized sphere was an excellent first approximation to the

earth’s magnetic field. Gauss further analyzed the irregular part of the earth’s

field, i.e. the difference between the actual observed field and that due to a

uniformly magnetized sphere. With the data then available, he showed that

both the regular and irregular components of the earth’s field were of internal

origin.

The next attempt to reach the North Magnetic Pole was made some 70
years later by the Norwegian explorer Roald Amundsen. In 1903 he left

Norway on his famous voyage through the Northwest Passage, which, in fact,

was his secondary objective. His primary goal was to set up a temporary

magnetic observatory in the Arctic and to re-locate the North Magnetic Pole.

A pole position was next determined by scientists shortly after World War

II. Paul Serson and Jack Clark measured (1947) a dip of 89◦56′ at Allen

Lake on Prince of Wales Island (73.9 ◦ N, 100.9 ◦ W ). This, in conjunction

with other observations made in the vicinity, showed that the pole had moved

some 250 km northwest since the time of Amundsen’s observations. Subse-

quent observations by scientists in 1962, 1973, 1984, and in 1994, showed that

the general northwesterly motion of the pole is continuing, and that during

the 20th century it has moved an average of 10 km per year95.

If, as Gilbert believed, the earth acts as a large magnet, the pole would not

move, at least not so rapidly as it does. We now know that the cause of the

earth’s magnetic field is much more complex. We believe that it is produced

by electrical currents that originate in the hot, liquid, outer core of the earth.

In nature, processes are seldom simple. The flow of electric currents in the

core is continually changing, so the magnetic field produced by those currents

also changes. This means that at the surface of the earth, both the strength

and direction of the magnetic field will vary over the years. This gradual

change is called the secular variation of the magnetic field.

95 These measurements were:

1962 Loomer and Dawson 75.1 ◦ N 100.8 ◦ W
1973 Niblett and Chairboneau 76.0 ◦ N 100.6 ◦ W

1984 Newitt and Niblett 77.0 ◦ N 102.3 ◦ W

1994 Newitt and Barton 78.3 ◦ N 104.0 ◦ W
1999, 2000 Newitt, McKee, Mandea and Orgeval 81.3 ◦ N 110.8 ◦ W
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The position of the North Magnetic Pole is strongly influenced by the
secular variation in its vicinity. For example, if the dip is 90◦ at a given point
this year, that point will be the North Magnetic Pole, by definition. However,
because of secular variation, the dip at that point will change to 89◦58′ in
about two years, so it will no longer be the pole. However, at some nearby
point, the dip will have increased to 90◦, and that point will have become the
pole. In this manner, the pole slowly moves across the Arctic.

The more rapid daily motion of the pole around its average position has an
entirely different cause. If we measure the earth’s magnetic field continually,
such as is done at a magnetic observatory, we will see that it changes during
the course of a day, sometimes slowly, sometimes rapidly. The ultimate cause
of these fluctuations is the sun. The sun constantly emits charged particles
that, on encountering the earth’s magnetic field, cause electric currents to
be produced in the upper atmosphere. These electric currents disturb the
magnetic field, resulting in a temporary shift in the pole’s position. The
distance and speed of these displacements will, of course, depend on the nature
of the disturbances in the magnetic field, but they are occurring constantly.
When scientists try to determine the current average position of the pole, they
must average out all of these transient wanderings.

In April and May of 1994, Larry Newitt, of the Geological Survey of
Canada, and Charles Barton, of the Australian Geological Survey Organi-
zation, conducted a survey to determine the average position of the North
Magnetic Pole at that time. Working out of Resolute Bay, N.W.T., they es-
tablished a temporary magnetic observatory on Longheed Island, close to the
predicted position of the pole. This allowed them to monitor the short-term
fluctuations of the magnetic field that result in the daily motion of the pole.

The strength and direction of the magnetic field were measured at this
site, and at seven additional sites in the region. From these observations, the
point at which the average dip was 90◦ could be determined.

They determined that the average position of the North Magnetic Pole in
1994 was located on the Noice Peninsula, southwest Ellef Ringnes Island, at
78.3◦N, 104.0◦W.

Note that the magnetic North and South Poles are not diametrically op-
posite, each being about 2300 km from the point antipodal to the other.
The magnetic poles must not be confused with the geomagnetic poles, which
are the points where the axis of the Gaussian geocentric dipole (which best
approximates the earth’s field) meets the surface of the earth.

The geomagnetic poles are situated approximately at 78 1
2

◦
N, 69◦W and

781
2

◦
S, 111◦E and the geomagnetic axis is thus inclined at 11 1

2

◦
to the earth’s

geographical axis. If the geocentric dipole field were the total field, the dipoles
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and geomagnetic poles would of course coincide. A better approximation to
the earth’s field can be obtained by displacing the center of the equivalent
dipole by about 300 km towards Indonesia. Vestine (1953) has determined
the position of the eccentric dipole from 1830 to 1945 and found a change in
longitude of about 0 · 30◦ per year.

1831–1839 CE In 1831 the cell nucleus96 was discovered by Robert
Brown (1773–1858).

During 1838–1839 botanist Jacob Matthias Schleiden (1804–1881, Ger-
many) and physiologist Theodor Ambrose Hubert Schwann (1810–1882,
Germany) originated what we now call cell biology.

1831–1846 CE Michael Faraday (1791–1867, England). Distinguished
experimental physicist and chemist. Discovered (1831) electromagnetic induc-
tion and introduced the concepts of lines of force and a physical field (1845).
As a chemist he discovered and isolated benzene (C6H6) in 1825.

His experiments started in 1821, when he showed that a current carrying
wire is surrounded by circular lines of magnetic field which he called ‘lines of
force’. Electromagnetic induction was independently discovered by Joseph
Henry in 1832. On the other hand, Oersted preceded Faraday in discovering
the magnetic field of a current (1820).

In 1831 Faraday discovered that electric current is generated by changes
in the magnetic field — a phenomenon complementary to Oersted’s discovery
of the magnetic effects of currents. In 1845 he discovered diamagnetism and
paramagnetism. He also showed that a magnetic field affects the polarization
of light in a medium. In the same year he conjectured that light is essentially
electromagnetic waves. In 1846 he suggested that electromagnetic energy is
transmitted by a transverse vibrations of the lines of force, and no fluid agent,
such as the ‘ether’, is needed for the transmission of light.97

1831–1848 CE Macedonio Melloni (1798–1854, Italy). Physicist. First
to claim that radiant heat and light were different modes of the same process.

96 Nucleus = little nut (Latin: Diminutive of nux, nuc).
97 For further reading, see:

• Williams, L.P., Michael Faraday, A Biography , Basic Books: New York, 1965,

531 pp.
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Measured the heating effect (infrared radiation) from the sun’s light scattered
from the moon and reaching the earth during the night.

Melloni was born in Parma, and became a professor of Physics there (1824–
1831). Had to flee to France on account of political activities. Returning to
Naples (1839), he became the director of the Vesuvius Observatory. He died
of cholera.

From Thales to Faraday and beyond, or —

What is Electricity?

As early as 600 BCE, Thales of Miletos, is supposed to have made
the first observation on this mysterious entity, by noting that amber rubbed
with another substance attracted certain light objects. Since then its exact
nature has been a matter of dispute. The ancients considered it a kind of soul
or spirit inhabiting otherwise lifeless objects. Cardano (1557) described it
as a material substance, a fluid that flows from object to object. Galvani
(1791) held that it was a “vital force”, the element essential to life, for which
philosophers had searched for centuries.

Du Fay (1733) offered evidence that there were not one but two differ-
ent types electricity, vitreous and resinous. Benjamin Franklin, in a dan-
gerous experiment, showed (1752) that lightning and electricity were akin.
Oersted (1820) proved that there was a relationship between electricity and
magnetism.

Faraday, a consummately skillful experimentalist, went even further. He
knew of Oersted’s observation; he also knew that heat and chemical reactions
could generate electricity and vice versa. With an insight which characterizes
a great scientist, he stated: “I believe that the various forms under which the
forces of matter are made manifest, have one common origin; or, in other
words, are so directly related and mutually dependent, that they are convert-
ible, as it were, into one another”.

Before Faraday, electricity was a plaything of natural philosophers, a
source of entertainment for the fashionable audiences who attended their
lectures. No one had the slightest intimation of its practical possibilities.
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Faraday had little interest in such possibilities. He was concerned with fun-
damental research — with the establishment of principles linking seemingly
diverse phenomena. He was, however, more farsighted than his predecessors,
and in response to a query by W. Gladstone, he is said to have replied, “Some
day you will tax it”.

Faraday’s discoveries should have led immediately to a major electrical
industry, but it took a very long time to develop. The reason was mainly
economic: although it would have been possible to have produced electricity
in a big way in 1830, electricity could not be sold because there were no
buyers!

The first call for electricity was through fashion: people were becoming
moderately rich, not rich enough to afford silver spoons, but what about
having electroplated spoons? For that a good source of current was required
and the magneto machine of Faraday, slightly improved, worked very well for
this purpose. Then it was used for where really bright lights were needed, arc
lights, and for lighthouses. Gradually the uses increased and as the demand
for it increased, so did production.

1832 CE Following the Reform Act, elementary education in England be-
came the concern of the state rather then that of the Church. The government
stepped in with grants, and toward 1850, elementary education became uni-
versal in public schools, for the first time in history.

1832 CE Joseph Henry (1797–1878, U.S.A.). Physicist and inventor. Dis-
covered the principles of electromagnetic self-inductance. Proposed a single
wire telegraph (1816).

1832 CE A Chicago carpenter, George W. Snow(e), reinvented98 the
balloon frame which revolutionized home construction. This simple method,

98 The idea was not original. Carpenters in 17th century Virginia employed a similar

method when confronted with pressures to build rapidly. But no matter the type

of frame, carpenters could not reduce substantially the handwork necessary for

building a house until the 1880’s. Then, Chicago carpenters replaced mortized-

and-tenoned sills with box sills that used only dimensional lumber joined by

nails. By this time, factories produced most windows, doors, and trim, as well

as kiln-dried dimensional lumber with tighter tolerances. Carpenters on the site

merely fit and installed these products.

The balloon frame evolved slowly over the course of the 19th century. Companies
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utilizing standard size boards and machine-cut nails allowed even unskilled
workers to build houses, quickly, cheaply and easily.

Traditional building methods used heavy, hand-hewn timbers and hand
carved mortise-and-tenon joints held by hand-cut dowels or hand-made nails.
An entire wall was assembled on the ground by skilled craftsmen and then
lifted into place by a crew of about twenty laborers.

The balloon frame was built with much lighter pre-cut 2×4 studs and held
together by factory-made nails. This reduced the cost and made affordable
building materials available to middle-income and low-income families. These
houses could be built quickly and easily by only two workers using basic
carpentry techniques.

The method was first used by Augustine Taylor on St. Mary’s Church in
Fort Dearborn, near Chicago. His crew framed the church with 2 × 4s and
2 × 6s — using studs, joists, and cross members, all nailed together. There
were no mortises, no tenons, no dovetail joints to be carved. It was built with
just boards and nails.

Professional carpenters said the church would blow away in a stiff wind and
labeled the technique “balloon construction.” It was a derisive term which
stuck. The style also stuck as most homes today still used this method with
some modifications. In early construction, the studs ran from the foundation
to the roof. In case of fire, this long open space created a chimney effect and
allowed fires to spread rapidly. Today, the studs are broken by the floors and
the spaces between the studs are filled with insulation reducing the chimney
effect.

Two architectural practices, the balloon frame and Chicago Construction,
made Chicago the world’s first vertical city. Builders using the balloon frame
method created a skeleton of two-by-four covered by wooden siding. First
widely used in 19th-century Chicago and still employed today, the balloon
frame not only sped up the building process; It also made construction less
costly.

The new balloon frame helps to explain the astonishingly rapid expansion
of Chicago. By 1848, it became an important port equipped with facilities for
handling the biggest inland ships in the world with 100 trains a day arriving
on eleven different railroads. From a small village (1830), with a population
less than 200, it grew (1887) into a city of 800,000 people.

in Chicago then produced ready-made houses with balloon frames that were sold

to various Western cities attempting to meet the needs of rapidly expanding

populations.
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The balloon frame was a precursor to a great Chicago innovation: the
practice of attaching a facade onto a strong yet light steel frame. Though
skyscrapers were born in New York, the method called Chicago Construction,
developed by Chicago architects and engineers between 1880 and 1883, pro-
vided the basic structural system for building modern steel-and-glass office
towers.

Balloon frame construction helped to make possible the incredible growth
of Western U.S., where trees were scarce. Wood from the Midwest, cut into
standard-size boards, was shipped by rail to the West. Most wooden buildings
erected today still use the method of construction derived from this system.

1832–1846 CE Joseph Liouville (1809–1892, France). A remarkable
mathematician of the 19th century.

He was born into a distinguished family in St. Omer, France. He studied
at the École Polytechnique and was appointed professor there in 1833. In 1836
he founded the Journal des Mathématique Pures et Appliquées, which upheld
the high standard of French mathematics throughout the 19th century. He
was appointed professor at the Sorbonne and the Collège de France in 1839.

Liouville contributed significantly to many fields of mathematics, espe-
cially to boundary-value problems for 2nd order linear differential equations
(Stürm-Liouville theory). He was also interested in number theory, differen-
tial geometry and Hamiltonian dynamics. Today he is also remembered for
having published the works of Galois, after the latter’s untimely death.

In 1838 he discovered an important theorem which found applications
both in classical and quantum mechanics. It states that the volume of any re-
gion in phase-space remains invariant under any Hamiltonian time evolution.
Otherwise stated it means that the ‘phase-fluid’ moves like an incompressible
fluid99. Of historical importance is his general method of solution of integral
equations by successive substitution (1837).

A number of important theorems bear his name: Liouville theorem in the
theory of functions states that if f(z) is analytic for all values of z and
|f(z)| < k, where k is constant, then f(z) is constant. Another Liouville
theorem states that an elliptic function E(z) with no poles in a cell is
merely a constant. Then there are a number of theorems that concern the

99 Boltzmann (1867) applied the theorem in the context of his statistical-

mechanics theory. An explicit equation was first derived by Gibbs (1884), who

recognized its potential usefulness in astronomy.
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solvability of second order differential equations100, and in particular of the
Riccati equation.

Liouville proved the existence of transcendental numbers (1844) and con-
structed an infinite class of such numbers. He wrote over 400 papers in total,
many of them of major importance in mathematics.

1832–1863 CE Jacob Steiner (1796–1863, Switzerland). An outstanding
geometer. Laid the foundations of modern synthetic geometry. His mathe-
matical works are confined to geometry, which he treated synthetically, to the
total exclusion of analysis. In his own field he surpassed all his contempo-
raries. His investigations are distinguished by their great generality, rigor and
profound intuition.

Steiner clarified many of the concepts of projective geometry and stressed
the fundamental importance of the principle of duality. Using exclusively
synthetic methods he was able to prove theorems that belong to the realm
of analysis. Among his contributions: the Steiner-Poncelet theorem, which
states that second order problems (Euclidean constructions) can be solved
with the aid of a straight-edge and a circle with a given center.

Steiner was born in the village of Utzendorf (canton Bern). He learned
to read and write at the age of 14. At 18 he became a pupil of Heinrich
Pestalozzi and afterward studied mathematics at Heidelberg and Berlin,
where he made his living by giving private lessons. He was helped by A.L.
Crelle, and due to the influence of G.C.J. Jacobi and the brothers Alexan-
der and Wilhelm von Humboldt he was appointed professor of geometry
at the University of Berlin (1834), where he taught for the rest of his life.

1832–1873 CE Joseph Antoine Ferdinand Plateau (1801–1883, Bel-
gium). Physicist. Devised an experimental method of visualizing minimal
surfaces, and described it in his 1873 treatise on molecular forces in liquids.
The essence of the matter is that if a piece of wire is bent into a closed
curve and dipped in a soap solution, then the resulting soap film spanning
the wire will assume the shape of a minimal surface in order to minimize the
potential energy due to surface tension. During 1830–1869 Plateau performed
many striking experiments on surface tension and capillary phenomena, and

100 There is a partial nonlinear differential equation, which bears his name:

uxy = eu. It has the exact solution eu = 2 α′(x)β′(y)

[α(x)+β(y)]2
, where α(x), β(y)

are arbitrary functions of x and y respectively.
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since his time the problem of minimal surfaces has been known as Plateau’s
problem.101

Plateau was born in Brussels. From 1835 and on he was a professor of
physics at Ghent. He did most of his work in the fields of physiological optics
and molecular forces. We owe to him the stroboscopic102method of studying
the motion of a vibrating body, by looking at it through equidistant radial
slits in a revolving disc.

In 1829 he imprudently gazed at the midday sun for 20 seconds, with the
view of studying after effects. It caused him to lose his eyesight in 1843. But
this calamity did not interrupt his scientific activity. Aided by his wife, son
and son-in-law, he continued to the end of his life his researches on vision,
although he did not see many of his own experiments.

In 1832 he developed the phenakistoscope103, the first device that gave
pictures the illusion of movement: Plateau placed two discs on a rod. He
painted pictures of an object or a person along the edge of one disc. Each
picture slightly advanced the subject’s position. Slots were cut in the other

101 For further reading, see:

• Hildebrandt, S. and A. Tromba, The Parsimonious Universe, Springer-Verlag,
1995, 330 pp.

• Courant, R., Dirichlet’s Principle, Conformal Mapping and Minimal Surfaces,
Interscience-Wiley: New York, 1950, 330 pp.

102 Plateau and Simon von Stampfer (1792–1864, Austria) invented the strobo-

scope independently around 1823. Stampfer was a professor at the Technical

College of Vienna. The stroboscope and the principle of persistence of vision

were at the base of all early attempts to produce moving pictures, culminating

with the cinematograph of the Lumiére brothers (1885).
103 The phenakistoscope was constructed with Simon Ritter. It was then de-

veloped in a number of directions in an attempt to produce moving pictures.

Franz von Uchatius (1811–1881, Germany) was the first person to project

visible moving images on the screen: he scanned a series of painted slides (places

around a disc) through slits cut in a second disc. As the discs were rotated, ap-

parently moving images were projected by light onto a screen (1853). Ottomar

Anshutz (1846–1907, Prussia) made the first noteworthy attempt (1892, two

years before Edison’s peepshow kinetoscope) to project moving sequences of

photographs using his projecting Electrotachyscope which was in principle just

an elaborated stroboscope.

The commercial history of the moving pictures began with Edison’s kineto-

scope (1854) and the invention of the Kodak celluloid film by George Eastman

(1888).
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disc. When both discs were rotated at the correct speed, the pictures seemed
to move as they appeared in the slots.

1833 CE Charles Babbage (1792–1871, England). Mathematician. The
great ancestral figure in the history of computers. The first man to put
forward detailed proposals for an all purpose automatic calculating machine.
He designed and tried to build a complicated machine, dubbed the Analytical
Engine. The design for his vast mechanical calculators rank among the most
startling intellectual achievements of the 19th century. Yet Babbage failed in
his efforts to realize those plans in physical form, because the demands of his
devices lay beyond the capabilities of Victorian mechanical engineering.

Contemporary computers are based on many of the principles used in
Babbage’s machine: It was designed so that it would perform mathematical
operations from a set of instructions (‘program’). The machine would ‘read’
the program from ‘punched cards’, an idea derived partly from the punched
cards of the Jacquard loom (1805). The computer was equipped with a mem-
ory and a central processor. A long sequence of different operations could be
performed with no human intervention after the punched cards were fed in.

The first machine conceived by Babbage, already in 1812, was the Differ-
ence Engine which he intended as a device for computing and printing tables
of mathematical functions. He noticed that tables of polynomials can be eas-
ily constructed to any desired accuracy if one employs their first, second etc.
differences, using the addition operation only. Since most functions can be
represented to sufficient accuracy (at least over a limited range) by means
of polynomials, their values can be constructed in a similar way. It was this
process that Babbage proposed to mechanize with his Difference Engine.

Babbage constructed a small machine with 3 registers which would tab-
ulate quadratic functions. This he demonstrated in 1822, to such effect that
he secured the support of the Royal Society for the construction of a full size
machine to compute and check tables of 6th degree polynomials to no less than
20 decimal places. The machine was never constructed. A part of it is now in
the London Science Museum. [In 1853, Pehr Georg Scheutz (1785–1873,
Sweden), stimulated by some published accounts of Babbage’s ideas and funds
from the Swedish Academy, completed an improved version of the Difference
Engine that would tabulate 4th degree polynomials to 14 decimal places.] In
1832 Babbage lost interest in the Difference Engine.

Babbage was born in Teignmouth, Devonshire. He was educated at a
private school, and afterwards entered St. Peter’s College, Cambridge, where
he graduated in 1814. Though he did not compete in the mathematical tripos,
he acquired a great reputation at the university. In the years 1815–1817, he
contributed three papers to the Philosophical Transactions and in 1816 was
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made a fellow of the Royal Society. Babbage’s attention seems to have been
drawn at an early stage to the number and importance of errors introduced
into astronomical and other tables.

From 1828 to 1839 Babbage held the post of Lucasian Professor of Math-
ematics at Cambridge — but without delivering a single lecture at the uni-
versity. He was busy enough in other directions, however. Not only did he
attempt to reform the Royal Society, Greenwich Observatory, and the teach-
ing of mathematics at Cambridge, but he also found time to analyze the
operation and economics of the Post Office, the pin-making industry and the
printing trade, to publish one of the first reliable actuarial ‘life tables’, and to
make some of the earliest dynamometer measurements on the railway, running
a special train on Sundays for the purpose.

The essential constituents of the ‘Analytical Engine’ are:

• a store (sometimes called a memory) for holding numbers — both those
forming the data of the problem and those generated in the course of the
calculation;

• an arithmetic unit — a device for performing arithmetic operations on
those numbers (Babbage called it the mill);

• a control unit — a device for causing the machine to perform the desired
operation in the correct sequence;

• input devices whereby numbers and operating instructions can be sup-
plied to the machine;

• output devices for displaying the results of the calculation.

For storage Babbage proposed to use columns of wheels, each wheel being
capable of resting in any one of ten positions and so of storing one decimal
digit. Transfer of numbers between the store and the mill was to be accom-
plished by means of elaborate mechanisms of gears, rods, and linkages. The
store itself was to accommodate 1000 numbers, each number being repre-
sented by no less than 50 decimal places. It seems that Babbage intended
that numbers would normally be set on the storage wheels or on the mill by
hand, but he also envisaged supplying mathematical tables to the machine in
punched-card form. Several alternative kinds of output were envisaged: direct
printing, the production of moulds from which printer’s blocks could be cast,
and punched cards.

Babbage’s ideas were sound, but there was no technology in the mid 19th

century to implement them. For that reason, the Analytical Engine was
never completed, although Babbage continued to work on it until his death,
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spending much of his own money. His schemes were simply too ambitious
(consider, for instance, his idea of working with numbers to 50 decimal places!)
at a time when simple desk calculators were far from reliable mechanically and
could not be made in any quantity.

As time went on the frustrated inventor became increasingly embittered
by a sense of failure104. He quarreled with many of his contemporaries, from
his own craftsmen to the astronomer royal; he became ever more intolerant of
criticism, more caustic in his judgments, more out of sync with his time. He
suffered the unhappy fate of a misunderstood genius who is too far ahead of
his time.

It took the world a century to catch up with him. Today, when his germinal
ideas are bearing so rich a fruit, we can appreciate the magnitude of his
achievements and the depth of his prophetic insight.

In 1831, Babbage, John Frederick William Herschel (1792–1871)
and David Brewster (1781–1868) created the ‘British Association for the
Advancement of Science’ to promote British science, which was on the decline.
The reason was that the mathematics taught in Britain during the early years
of the 19th century did not go much beyond the level of Newton’s time. In
the calculus, Newton’s somewhat clumsy notation105 was adhered to, whilst
the more elegant symbolism introduced by Leibniz, and the advances made by
the French, were largely ignored. Moreover, scientific research in England was
still largely an amateur activity, and a reform in the universities was needed.

The idea of the association had originated from a national congress of Ger-
man scientists, which Babbage had attended in Berlin in 1828. Other founders
appear to have been stimulated by the writings of Francis Bacon, who in
1626 had suggested the formation of a national academy for the advancement
of the sciences and crafts.

104 Babbage’s vain attempts to make a universal digital adding machine, are partly

the result of the obtuse avarice and shortsightedness of Prime Minister Robert

Peel (1788–1850); just when the ‘analytical engine’ was near completion and

the inventor desired to adopt a new principle – Peel declined government grants,

unwilling to accept further risk.
105 Herschel introduced the new mathematical notation:

• sin−1, cos−1 etc., to indicate the inverse trigonometric functions (1813);

• single-line representation of a continued fraction (1820); e.g.,
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1833 CE Jean Marie Constant Duhamel (1797–1872, France). Applied
mathematician. Known for his resolution of boundary value problems for the
diffusion equation (Duhamel’s Theorem106), and the Duhamel Superposition
Integral107 in the theory of linear systems. In acoustics, Duhamel studied
the vibration of strings and suggested, independently of Ohm (1843), that
one perceives a complex sound signal as a linear superposition of elementary
sinusoidal components.

Duhamel entered the École Polytechnique in Paris in 1814. The political
events of 1816, which caused reorganization of the school, obliged him to
return to Rennes, where he studied law. He taught at the École Polytechnique
from 1830 to 1869, becoming a professor of analysis and mechanics in 1836.
The commission of 1850 demanded his removal because he resisted a program
for change, but he returned as professor of analysis in 1851, replacing Liouville.

1833–1845 CE Urbain Jean Joseph LeVerrier (1811–1877, France).
Astronomer. His main work was in celestial mechanics. His discovery of
a discrepancy in the motion of the perihelion of Mercury was important as
early evidence for Einstein’s GTR.

During 1833–1843 he developed formulas for calculating past changes in
the earth’s orbit, and reconstructed the orbital history of the past 100,000
years. Published in 1843, these calculations were based on the orbits and
masses of the seven planets known at the time. He was then led in 1845
to postulate the existence of planet Neptune [co-predicted by John Couch

106 Duhamel’s Theorem: If T = F (r, t0, t) is the temperature at point r in a

heat conducting solid at time t due to zero initial temperature, a fixed heat
source s(r, t0) and fixed boundary temperature φ(r, t0) for some t0 such that

0 < t0 < t, then the temperature in the same body due to zero initial temper-

ature and variable heat source s(r, t) and boundary temperature φ(r, t), will
be given by the Duhamel Integral

T (r, t) =
∂

∂t

∫ t

0

F (r, τ, t − τ)dτ.

Note that the theorem does not tell us how to find F , but only how to re-

duce a problem with time-dependent source and boundary conditions to time-

independent source and boundary conditions.
107 Duhamel’s Superposition Integral : Given the step-response h(t) of a causal lin-

ear system, its response to arbitrary excitation f(t) is given by

g(t) = f(0+)h(t) +

∫ t

0

f ′(τ)h(t − τ)dτ.
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Adams108 (1819–1892, England)] on the basis of calculations of its perturba-
tion of the orbit of Uranus. He encouraged astronomer Johann Gottfried
Galle (1812–1910, Germany) to search for it. The latter indeed found it on
Sept. 23, 1846, only 52 seconds of arc from LeVerrier’s predicted position.

In 1859 LeVerrier postulated the existence of a planet (‘Vulcan’) between
Mercury and the sun, as the cause of an anomalous precession of Mercury’s
perihelion (that part of the precession which remains after the perturbations
due to known planets are subtracted). However, no such planet was ever
found. In 1916, Einstein explained the anomalous precession of Mercury’s
orbit as a consequence of small non-Newtonian spacetime curvature effects in
his theory of General Relativity. LeVerrier worked at the Paris observatory
for the most of his life.

1833–1855 CE Wilhelm Eduard Weber (1804–1891, Germany). Physi-
cist. With Gauss, investigated terrestrial magnetism, and devised the electro-
magnetic telegraph (1833). Introduced the absolute system of electrical units
after Gauss’ system of magnetic units. His ratio between the electrodynamic
and electrostatic units of charge (1855) was crucial to Maxwell in his electro-
magnetic theory of light. Weber found the ratio was 3.1074 × 108 m/sec but
failed to take any notice of the fact that this was close to the speed of light.
The Weber, a magnetic flux unit, is named in his honor.

Weber entered the University of Halle (1822) and wrote his doctoral dis-
sertation there (1826). He became a professor at Göttingen from 1831. When
Victoria became Queen of Britain (1837) her uncle became ruler of Hanover
and revoked the liberal constitution. Weber was one of seven professors at
Göttingen to sign a protest and all were dismissed. He remained in Göttingen
without a position until 1843, when he became a professor of physics at
Leipzig. In 1848 he returned to his old position at Göttingen. He and Dirichlet
became temporary directors of the astronomical observatory there.

1833–1861 CE William Whewell (1794–1866, England). Philosopher,
historian of science and mathematician. Suggested to the British Association
for the Advancement of Science in Cambridge that their members be called

108 The idea that an unknown planet is causing the observed perturbation of the

orbit of Uranus occurred to Adams already in 1841, when he was still an un-

dergraduate at Cambridge University, following an earlier conjecture made by

Mary Fairfax Sommerville (1780–1872), a writer on mathematics and phys-

ical science. After 4 years of work Adams obtained a solution, calculated the

position of the unknown planet and sent his results to G.B. Airy, then the

Astronomer Royal of England. Unfortunately, Airy was not interested in the

prediction and made no search for the perturbing body.
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scientists. The word gradually caught on and began to displace natural phi-
losopher. (Today, we would call few of those BAAS members scientists, since
most were amateurs or supporters of science.)

In his book The Philosophy of Inductive Sciences (1849) he analyzed the
method exemplified in the formation of ideas, in the new induction of science,
and in the applications and systematizations of these inductions. Whewell
articulated that the success of western science is due to the broad theoretical
consistency of physics, that with its astonishing congruity with mathematics,
came to undergird chemistry, which in turn proved foundational for biology109.

Whewell was born at Lancaster. His father, a carpenter, wished him to
follow his trade, but his success in mathematics in local grammar-school en-
abled him to proceed to Cambridge (1812). He was a professor of mineralogy
(1828–1832) and philosophy (1838–1855) at Cambridge. He died from the
effects of a fall from his horse.

1834 CE Emile (Benoit Pierre) Clapeyron (1799–1864, France). Engi-
neer and physicist. Born in Paris and educated at the École Polytechnique.
He went to Russia in 1820 with G. Lamé at the invitation of the czar Alexan-
der I to supervise a program of public works. Upon his return in 1830 he was
employed in the Paris-Versailles railroad project. In 1834 he revived the for-
gotten theory of Carnot by applying it to practical steam engine problems.
By considering a Carnot engine operating between two reservoirs differing in-
finitesimally in temperature, and by letting the working substance undergo a
change in phase, he derived an important relation, giving the slope of the equi-
librium lines in a pressure-temperature diagram. This was later generalized
by Clausius, and is known today as the Clausius-Clapeyron equation110.

109 He introduced the concept of consilience as literally a “jumping together” of

facts and theory to form a common network of explanation across the scientific

disciplines. He said: “The Consilience of Inductions takes place when an In-

duction, obtained from one class of facts, coincides with an Induction, obtained

from another different class. This Consilience is a test of the truth of the Theory

in which it occurs.”

Western scientists succeeded because they believed that the abstract laws of

the various disciplines in some manner interlock and interconnect. Consilience

proved to be the way of the natural sciences.
110 For a pure crystalline solid the change of state from solid to liquid (the process

of melting) takes place at a single definite temperature under fixed pressure.

This temperature is called the melting point for that pressure. The melting
point at a given pressure is the temperature at which the solid and the liquid

are in equilibrium under that pressure. Melting is accompanied by a change of

volume, which may be either an increase or a decrease (there is a decrease in
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1834 CE Foundation of the Statistical Society of London. Though it has
contributed little to the theory of statistics, it has had a considerable influence
on the practical work of carrying out statistical investigations in the United
Kingdom and elsewhere.

1834–1837 CE Charles Wheatstone (1802–1875, England). Experimen-
tal physicist and practical founder of modern telegraphy. In 1834 he measured
the velocity of current electricity by examining sparks produced at the ends of
a lengthy electric circuit with a revolving mirror. He estimated that electricity
traveled at a speed which was one half the speed of light. The great velocity of
electrical transmission suggested to him the possibility of utilizing it for send-
ing messages, and after many experiments and business collaboration with
William Fothergill Cooke (1806–1879), a patent for an electric telegraph
was taken out in their joint name in 1837. Wheatstone is also known for his
“bridge”, a circuit for comparison of resistors.

Wheatstone was born in Gloucester. He was educated at several private
schools. In 1823 he and his brother inherited their father’s business. In 1829
he retired to devote himself to experimental research in sound physics. By
1834 he was appointed professor of experimental philosophy at Kings Col-
lege, London. In 1868, after completion of his automatic telegraph, he was
knighted. Wheatstone was the uncle of Oliver Heaviside.

volume when ice melts, but increase in volume when wax melts).

The effect of a change of pressure on the melting point is such that dp/dT

has always the same sign as V2 − V1 [V2,1 = volume of a unit mass of liquid
(solid)]. The thermodynamic equation governing this phenomenon is known as

the Clausius-Clapeyron equation:

dT

dp
=

T (V2 − V1)

LJ
.

Here dT is the change in the absolute temperature T of the melting point caused

by the change in pressure dp, L is the latent heat of melting in cal. per gram,

and the conversion factor J is the mechanical equivalent of heat (1 calorie ≡
4.2 joules).

If V2 > V1, the substance expands on melting and dT/dp is positive, whence

increasing the pressure raises the melting point. If V2 < V1, the substance

contracts on melting, dT/dp is negative, whence increasing the pressure lowers

the melting point.

The Clausius-Clapeyron equation applies to changes of state in general, e.g.

change of vapor-pressure with temperature, and enables dp to be calculated if

dT and other quantities are provided. As it stands, the equation cannot be

integrated unless L(T ), V1(T ) and V2(T ) are explicitly known.
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1834–1840 CE Jean Charles Athanase Peltier (1785–1845, France).
Experimental physicist and meteorologist. Discovered experimentally that a
junction between two dissimilar metals tends to absorb heat when an elec-
tric current is passed across it in one direction, but tends to lose heat when
the current is passed in the opposite direction. The thermoelectric cooling
or heating of the junction was later termed the Peltier effect, and is now
commonly used e.g. to cool semiconductor chips. Introduced the concept of
electrostatic induction (1840).

Peltier was born at Ham (Somme). He was originally a watchmaker, but
retired from business about the age of 30 and devoted himself to experimental
and observational science.

1834–1856 CE James Nasmyth (1808–1890, England). Engineer and
inventor. Developed the self-acting principle in machine tool design, by which
a mechanical hand moving along a slide holds a tool. Using this principle,
Nasmyth invented the planning mill and a nut-shaped machine.

Nasmyth was born in Edinburgh, the son of a noted artist. He became
assistant to Henry Maudslay, tool designer and manufacturer. In 1834,
Nasmyth started the Bridgewater Foundation at Manchester, which became
famous for machine tool and steam-engine construction. He then invented the
shaper (1834) and the steam-hammer (1839).

When James Watt began his experiments with the steam engine (1763)
he could not find anyone who could drill a perfect hole! As a result, his engines
leaked steam until the Englishman John Wilkinson (1728–1808) invented
the boring machine. The planner was developed (1800–1825) by Matthew
Murray, Joseph Clements, and Richard Murray. The principle of the
lathe had been known since ancient times, and probably originated with the
potter’s wheel. Until 1800, lathes were crude machines that could not be used
to cut screw threads accurately. In that year, Henry Maudslay (1771–1831,
England) invented the first good screw-cutting lathe.

Nasmyth did much for the improvements of machine-tools, and his inven-
tive talent devised many new appliances.

1834–1884 CE James Joseph Sylvester (1814–1897, England). One of
the foremost mathematicians of his time. Developed the theories of matrices,
algebraic invariants and quadratic forms, partition of numbers111, algebraic

111 Sylvester addressed the problem of “denumeration”, i.e. the number of par-

titions of a number N into m parts n1, n2, . . . , nm, repeated or not.
This is the same thing as finding the number of solutions in integers of

n1x1 + n2x2 + · · · + nmxm = N . Sylvester (1855) introduced the name “de-

numerant” for this number of partitions and denoted it by the symbol
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elimination and substitution, determinants, theory of equations, mechanics,
optics and astronomy. Sylvester coined the terms matrix , latent roots (eigen-
values) and Jacobian.

Sylvester was born of orthodox Jewish parents in London as James Joseph.
His eldest brother emigrated to the United States, where he took the name
of Sylvester, an example followed by the rest of the family. In 1831 Sylvester
entered St. Johns College, Cambridge. Being a Jew he was ineligible for fel-
lowship and could not even take a degree. This last, however, he obtained
at Trinity College, Dublin, were religious restrictions were no longer in force.
After leaving Cambridge he was appointed to the chair of natural philosophy
at University College, London, where his friend A. de Morgan was one of
his colleagues, but he resigned in 1840 in order to become professor of math-
ematics in the University of Virginia, U.S.A. There, however, he remained
only a few months, for a certain event entailed unpleasant consequences and
caused his return to England112.

D(N ; n1, n2, . . . , nm). He then proved that the denumerants are the coefficients

in the expansion of the generating function

1

(1 − tn1)(1 − tn2) · · · (1 − tnm)
=

∑

n

D(n; n1, n2, . . . , nm)tn.

Multiplying this equation by (1 − tnm) and equating coefficients of tn of two

equivalent sums, we get the relation

D(N ; n1, n2, . . . , nm) =D(N − nm; n1, n2, . . . , nm)

+ D(N ; n1, n2; . . . , nm−1)

which upon repetition, enables one to evaluate the denumerant.
112 Sylvester was America’s first Jewish professor. He arrived in Charlottesville

late in November 1841 and left suddenly in March 1842. Being both a Jew

and an Englishman he attracted the hatred of the local protestant community

even before his arrival. The watchman of the South, organ of the Presbyterian

Church, the most influential denomination in Virginia, led a venomous racist

attack on his appointment, driven by the fear that “his powerful ascendancy

over the young minds may contaminate their pure Christian morality”. This

crusade provoked some of his students to abuse him to such a point that he had

no choice but leave the hornet’s nest.

The virtual ouster of Sylvester did great damage not only to his career, but

especially to the advancement of science itself. His most creative years were lost

to humanity. Disgraced, outcast from the mathematical community, unable to

secure any teaching post, unemployed for more than a year in New York City,

Sylvester sought his livelihood for 10 years as an actuary and at the legal bar.
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He then proceeded to spend almost ten years in business and then turned
to the study of law, in connection with which, in 1850, he first met A. Cayley.
The two men were to remain lifelong friends, and ultimately both left the
law. In 1855 Sylvester took a position at the Royal Military Academy at
Woolwick. In 1877 he was appointed professor of mathematics in the Johns
Hopkins University, Baltimore, where he stayed until 1883. His stay there
gave an enormous impetus to the study of higher mathematics in America,
and during that time he contributed to the American Journal of Mathematics,
of which he was the first editor. In 1883 he was appointed to the Savillian
chair of geometry at Oxford113, from which he retired in 1893 due to failing
health.

Sylvester was a good linguist and a diligent composer of verse, in English,
Latin and Greek.

1835 CE The Roman Catholic Church finally takes the books of Copernicus,
Galileo and Kepler off its Index of Prohibited Books (the decision to lift the
ban was made in 1822). Thus, heliocentricity is officially restored 13 centuries
after Justinian and 21 centuries after Aristarchos of Samos.

1835 CE Samuel Colt (1814–1863, US). Designer and manufacturer of
the first successful repeating pistol – the ‘colt revolver’. It had a cylinder of
several chambers that could be discharged in succession by the same locking
and firing mechanism. The idea for a revolver dates back to the early 1500’s,
but Colt was the first person to make it simple and rugged enough for long
use.

Samuel Colt was born in Hartford, Conn. He established a factory there,
where he also produced arms used during the Mexican War and the Civil War.

1835 CE Augostino Maria Bassi (1773–1856, Italy). Bacteriologist. An-
ticipated Pasteur and Koch in formulating germ theory.

Demonstrated that a disease of silkworms was caused by a parasitic fungus
(1835). Theorized that many diseases are caused by parasites. This discovery
gave impetus to the germ theory of infectious diseases.

At the beginning of the 19th century Bassi studied the silkworm disease
(muscardine). He discovered (1807) that it was caused by a minute parasitic

He also took a few private pupils. One of them was Florence Nightingale,

then six years younger than her teacher.
113 After the abolition of the religious tests (1871), this appointment could go

through.
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fungus (the fungus was later named Botrytis bassiana after its first discoverer)
that was transmitted by infected food and from animal to animal by contact.
He went on to describe methods for treating fungally infected worms, which
was of considerable interest at the time, as muscardine was causing financial
losses to those working in the European silk trade.

Bassi was born in a village near Lodi in what was then part of the Austrian
Empire but is now a part of Italy. He graduated in law and worked as a civil
servant in Italy while devoting much of his spare time to the study of living
organisms using an early version of the microscope.

Although Anton van Leuwenhoek first discovered and described such
minute microorganisms as bacteria (1676), the link between these tiny organ-
isms and the induction of infectious diseases was not recognized for another
two hundred years. Bassi was the first to understand this link.

1835 CE Gaspard Gustave de Coriolis (1792–1843, France). Physicist.
Presented an analysis of a body’s motion in a rotating frame in his paper:
“Memoire sur les équations due mouvement relatif des systèmes de corps”.
He applied his study to fluid motions on a rotating earth114.

114 Nevertheless, problems associated with the dynamics of the earth’s rotation

continue to challenge scientists even today. Consider, for example, the phenom-

enon of the “bathtub vortex”, i.e. the rotation developed when water drains out
through a hole at the bottom of a vertical tank. In a carefully controlled exper-

iment, water in the tank is allowed to settle for some 24 hours before opening

the drain to begin the experiment, so that the residual vorticity is reduced to a
value less than that corresponding to the earth’s angular velocity; a perceptible

counterclockwise (looking down on the tank) rotation appears in the Northern

Hemisphere after 10–15 min of drain, indicating that vorticity can be developed
from the earth’s rotation. Under similar controlled conditions, a clockwise ro-

tation (looking down on the tank) is developed in the Southern Hemisphere.

The equation of motion for a homogeneous, inviscid and incompressible fluid of
density ρ relative to a reference frame having angular velocity ω (relative to an

inertial frame), is

Dv

Dt
≡ ∂v

∂t
+ v · ∇v = g − 2(ω × v) − grad

P

ρ
,

where P , v are the pressure and velocity fields and g is the body force per
unit mass, assumed to be conservative. This equation assumes that centripetal

acceleration terms involving the square of the earth’s angular velocity are neg-

ligible. Taking the curl of the above equation (Ω = curl v), one obtains the
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evolution equation for the vorticity Ω:

∂Ω
∂t

+ v · ∇Ω = (Ω + 2ω) · ∇v.

The flow for the situation to be considered (that of vorticity generation as

water flows out of an exit in the center of the bottom of a vertical cylindrical
tank), is symmetric. We accordingly employ the cylindrical coordinate system

(r, θ, z), with the z direction being downward. In these coordinates (neglecting

the term v · ∇Ω for the small velocities under consideration), the equations
for the components of the vorticity vector become

∂Ωz

∂t
= Ωr

∂vz

∂r
+ (Ωz + 2ωz)

∂vz

∂z
;

Ωr = − ∂vθ

∂z
; Ωz =

1

r

∂

∂r
(rvθ).

They give the growth of the vertical vorticity component Ωz in a frame having

angular velocity ωz in terms of the prescribed velocity gradients ∂vz
∂r

, ∂vz
∂z

and
∂vθ
∂z

.

Additional relations are obtained from the equation of continuity

div v =
1

r

∂

∂r
(rvr) +

∂vz

∂z
= 0.

We take vθ to be independent of θ on account of axial symmetry. The temporal
growth of the circulatory velocity vθ associated with the growth of the vertical

vorticity Ωz is taken as the primary effect, and we assume that only the vertical

component ωz of the angular velocity of the frame of reference is operative in
generating vorticity. Then, a solution satisfying div v = 0 is obtained with

Ωr = 0, Ωθ = 0, vz = az, vr = − 1
2
ar, ωz = −ωE sin λ, where ωE is the

angular velocity of the earth’s rotation and λ is the latitude of the location of
the experiment (assumed to be in the Northern Hemisphere). The explicit form

of the solution for Ωz is

Ωz = −2ωE sin λ(eat − 1) + (Ωz)0e
at,

where (Ωz)0 is the residual vorticity of the water in the tank on beginning

the discharge at time t = 0. If this residual vorticity is absolutely removed by
stilling, then vorticity will be generated and grow (initially) exponentially with

time, according to

Ωz = −2ωE sin λ(eat − 1),

being negative in the Northern Hemisphere (counterclockwise when viewed from

above). Taking ωE = 7.3 × 10−5 radians per sec, we find that at latitude 50 ◦

North, a counterclockwise vorticity of about one revolution in 6 sec would be

generated after 15 min with a value of a = 0.01 sec−1. The actual value of

a depends upon the dimensions of the tank. Note, though, that the assumed

velocity profile in the no-rotation limit (vz = az, vr = − 1
2
ar) does not

hold for any actual draining container; furthermore, eventually Ωz is large

enough to invalidate the approximates made, so Ωz does not continue to grow

exponentially.



1835 CE 1895

Coriolis was assistant professor of mathematics at the Ecole Polytechnique,
Paris (1816–1838). He introduced the terms ‘work’ and ‘kinetic energy’ with
their present scientific meaning. In 1835 he wrote a mathematical theory of
billiards.

Let ω be the angular velocity vector of the earth, with the vector point-
ing in the direction of advancement of a right-hand screw (that is, northward
along the earth’s axis). Since the earth turns once in 24 hours, the mag-
nitude of ω is 2π

24×3600 = 0.729 × 10−4 rad/sec.115 If v is a body’s velocity
relative to the earth’s frame, then the Coriolis acceleration = −2ω × v. If u
and v are the east and north components of the velocity v, the correspond-
ing components of the Coriolis acceleration are: Cu = 1.46 × 10−4(v sin λ);
Cv = −1.46 × 10−4(u sin λ), where λ is the latitude.

If a car is driven at 90 mph (40 m/sec) in any direction, the Coriolis
acceleration at latitude λ = 45◦ will tend to push it to the right with an
acceleration of 0.4 cm/sec2. Meanwhile, gravity will be acting downward
with an acceleration of 980 cm/sec2. As a result, suspended objects in the
car will tend to lean to the right by 4 parts in 10,000, or 1.4 minutes of arc.
There is no need to bank the freeways for the Coriolis effect. The effect is tiny,
but sufficient to cause lateral wear on railway tracks, except near the equator.
For example, suppose a train of mass 500 tons = 5 × 105 kg moves with a
speed of v = 40 m/sec toward the north at latitude λ = 30 ◦, so that the
component of its speed perpendicular to the earth’s axis is v

V
= v sin λ = 20

m/sec. The Coriolis acceleration it experiences is about 3 × 10−3 m/sec2,
and the Coriolis force it experiences on the track through the flanges of its
wheels is thus about 1.5 × 103 Newton.

In the Northern Hemisphere winds will circle around a low-pressure area in
a counterclockwise direction, as recorded on a weather map. As a low-pressure
area is developing, air will be drawn into its center, and as the wind gathers
speed it will be deflected, by the Coriolis effect, toward the right. The net
result is a circulation of air around the low-pressure area in a counterclockwise
direction. In the southern hemisphere this sense of circulation is reversed, as
borne out by meteorological observation.

115 Other measures of rotation-rate are:

• RPM – rotations per minute;

• deg/s – degrees per second.

The relations between them are:

1 RPM = 360 deg / 60 sec = 6 deg/sec

1 rad/sec = 180 deg / π sec = 57.3 deg/sec
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Objects dropped from a tower will be deflected, except at the poles, to-
ward the east by the amount d = 2

3ω0 cosλ
√

2h3

g , where h is the height of the
tower, g the local acceleration of gravity, λ the local latitude angle and ω0 the
angular speed of the earth’s spin. For λ = 40 ◦ and h = 100 m, d = 1.6 cm.
This effect can be made plausible by the following line of reasoning: consider
a tower of height h located at the equator. The velocity of the tower’s base
is v

R
= 2πR/T and the velocity of the tower’s top is v

R+h
= 2π(R + h)/T ,

directed from west to east because of the earth’s rotation. Accordingly, an
object at rest at the top will have an eastward horizontal component of its
velocity with respect to ground of amount v

E = v
R+h

− vR = 2πh
T = ω0h. Ne-

glecting the fact that the local vertical and horizontal are slowly rotating with
the earth, one estimates the deflection toward the east, if the falling time is
t, to be of amount d ∼= v

E
t with t =

√
2h
g . Combining these result, we

obtain the above formula except for the factor 2
3 .

In 1735, exactly 100 years before Coriolis published his theory, George
Hadley (1685–1768, England) proposed a theory based on the conservation
of angular momentum to explain the existence of trade winds.

In 1775 Laplace included the horizontal components of the ‘Coriolis accel-
eration’ in his hydrodynamic tidal equations, antedating the work of Coriolis.

1835–1837 AD Edward Blyth (1810–1873, England and India). Chemist
and naturalist. Presented a precursor of Darwin’s work on evolution. In a
number of papers, published in the Magazine of Natural History, heralded
elements of the theory of evolution by natural selection, some twenty years
ahead of Charles Darwin (1859)116. He stated therein:

‘A variety of important considerations here crowd upon the mind, fore-
most of which is the inquiry that, as man, by removing species from

116 In his book Darwin and the Mysterious Mr. X (1979), Loren Eiseley vig-

orously promoted the thesis that Darwin read Blyth’s papers and quite likely

had derived a major inspiration from it without ever mentioning this in his

writings. Eiseley argues that Darwin was to use many of Blyth’s ideas years

later when writing his “Origin”, yet he had given Blyth little or no acknowl-

edgment. Darwin, however, having been influenced by Blyth’s ideas, changed

natural selection around to mean evolutionary descent of all beings from a com-

mon ancestor. Loren Eisely wrote: “But let the world not forget that Edward

Blyth, a man of poverty and bad fortune, shaped a key that dropped half-used

from his hands when he set forth hastily on his own ill-fated voyage. That key,

which was picked up and forged by a far greater and more cunning hand, was

no less then natural selection.”
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their appropriate haunts, superinduces changes on their physical consti-
tution and adaptations, to which extent may not the same take place
in wild nature, so that, in a few generations, distinctive characters may
be acquired, such as are recognized as indicative of specific diversity.
May not then, a large proportion of what are considered species have
descended from a common heritage?’

Blyth was an ardent creationist, and his papers flowed with his sense of awe
and reverence for the God of creation who had so wonderfully and wisely
made all of his creatures.

Unlike Darwin, Blyth was not born into wealth. His father died when he
was ten, leaving his widowed mother to raise four children. She managed to
send Edward, her eldest son, to school where he excelled in chemistry and
natural history. He went to India (1841) and was eventually appointed a
curator of the Museum of the Royal Society of Bengal. He lived there for
many years on a meager stipend. Plagued by continuing poor health, and
afflicted by a personal tragedy, he returned to England (1862), living on a
small pension.

1835–1839 CE Theodor Ambrose Hubert Schwann (1810–1882, Ger-
many). Physician and physiologist. Laid the foundation of cell-biology . Dis-
covered and isolated pepsin (1835), a digestive catalyst enzyme117 (which he
called ferment), the first known animal enzyme. Discovered (1837) that yeast
is made of small living organisms118.

The theory of fermentation was immediately attacked by the leading
chemists of the time: Berzelius (1839) concluded that microscopic evidence
was of no value and that nothing was living in yeast! In the same year Justus
von Liebig and Friedrich Wöhler added sarcasm to scorn by ridiculing the
Schwann-de la Tour discovery. It took a man of the caliber of Pasteur to
settle the problem once and for all.

117 The latter term was coined (1876) by Wilhelm Künhe (1837–1900, Germany)

from Greek words meaning in yeast , because they acted outside cells as ferments

did inside cells such as yeast. Künhe, a physiologist, discovered the enzyme

trypsin in the pancreatic juice. Born in Hamburg, died at Heidelberg.

Schwann coined (1839) the word metabolism, taken from the Greek and meaning

literally “throw into different position” (and therefore implying ‘change’).
118 This was independently discovered in the same year by the French inventor

Charles Cagniard de la Tour (1777–1859).
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Schwann was born at Neuss in Prussia. Educated at Bonn and Würzburg,
where he graduated M.D. in 1834. During 1838–1847 he lectured at the
Catholic University of Louvain, and in 1847 he was appointed professor at
Liége, where he remained.

1835–1840 CE Nachman (Kohen) Krochmal119 (1785–1840, Ukraine).
Philosopher of history. The first thinker to view Jewish history not as a
distinct and independent entity, but as a part of the whole of civilization
in the framework of world history. In his Moreh Nevuchei ha-Zman (Guide
to the Perplexed of the Age) he set forth his ideas on reconciling essential
Judaism with modern thought; he showed that while the history of every
nation undergoes the inevitable stages of growth, blossoming and decay, that
of Israel is cyclic, i.e., always rises again to begin a new cycle.

Drawing from Maimonides, Avraham Ibn Ezra, Yehuda Halevi,
Maharal, Kant, Hegel and Schelling, Krochmal’s philosophy of Jewish
history is based on the concept of ‘national spirit ’ that consists of its religious
greatness and spiritual gifts; this spirituality permeates all the people’s intel-
lectual achievements, explains the ability of the Jews to overcome the forces
of decline and is the secret of their self-rejuvenation and national revival.

Krochmal was born in Brody (Poland), lived most of his life in Zalkieve
and died in Tarnopol. He was a merchant, and later a bookkeeper at Nestrov,
near Lvov. He ordered his disciples to send the manuscript of his book to
Yom-Tov Lippmann Zunz (1794–1886, Germany) in Berlin, who published
it posthumously (1851).

1835–1865 CE Panfuty Lvovich Chebyshev (1821–1894, Russia). An
outstanding, versatile mathematician with rare talent for solving difficult
problems by elementary methods.

Conjectured at the age of 14 that
{

x
log x

}
is a good approximation to

the number of primes less or equal to x. In probability theory, Chebyshev
introduced the concepts of variance and arithmetic mean of random variables.
Known also for his inequality120, set of polynomials and problem121. He was the

119 Known by his acronym: RANAK.
120 If a1 ≥ a2 ≥ · · · ≥ an ≥ 0 and b1 ≥ b2 ≥ b3 ≥ · · · ≥ bn ≥ 0 then

1

n

n∑

1

akbk ≥
(

1

n

n∑

1

ak

) (
1

n

n∑

1

bk

)

,

n = 1, 2, . . . .
121 To find the probability that two integers, chosen at random, are prime to one

another (the answer is 6
π2 ).
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principal founder of the theory of approximations. Proved (1850) Bertrand’s
conjecture (1845) that there is always at least one prime between n and 2n
for n > 3.

Chebyshev was born at Borovsk. He was educated at the University of
Moscow, and in 1859 became a professor of mathematics in the University of
St. Petersburg, a position from which he retired at 1880.

Approximations — Minimax vs. Least-Squares

“After having spent years trying to be accurate, we must spend as many more
in discovering when and how to be inaccurate”.

Ambrose Gwinett Bierce (1842–1914)

Mathematical models of natural processes inevitably contain some inherent
errors. These errors result from incomplete understanding of natural phenom-
ena, the stochastic or random nature of many processes, and uncertainties in
experimental measurements. Often, a model includes only the most pertinent
features of the physical process and is deliberately stripped of superfluous
detail related to second-level effects. Therefore, we approximate because we
must !

Even if an error-free mathematical model could be developed, it could
not, in general, be solved exactly on a digital computer. A digital computer
can only perform a limited number of simple arithmetico-logical operations on
finite, rational numbers. Fundamentally important mathematical operations
such as differentiation, integration, and evaluation of infinite series cannot, in
general, be implemented directly on a digital computer. All computers have
finite memories and computational registers; only a discrete subset of the real,
irrational numbers may be generated, manipulated, and stored. Thus, it is
impossible to represent infinitesimally small or infinitely large quantities, or
even a continuum of real numbers on a finite interval.
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Algorithms that use only finitistic arithmetic operations and certain logical
operations (such as a branching based upon algebraic comparison or logical)
are called numerical methods. The error introduced in approximating the
solution of a mathematical problem by a numerical method is usually termed
the truncation error of the method. When a numerical method is actually run
on a digital computer after transcription to computer program form, another
kind of error, termed round-off error, is introduced. These are caused by
the rounding of results from individual arithmetic operations because only a
finite number of digits can be retained after each operation, and will differ
from computer to computer, even when the same numerical method is being
used.

The art of approximations is as old as mathematics itself; the greatest
mathematicians since Archimedes, including Newton, Euler, Lagrange,
Gauss, Legendre and Ramanujan devised ingenious and even beautiful ad-
hoc techniques to approximate π, e, arclengths, areas, sums of series, roots of
equations, solutions of differential equations and other entities.

However, the rapid growth of applied mathematics in the wake of the
Industrial Revolution called for the establishment of a discipline of approxi-
mations, through which algorithms could be systematized and developed me-
thodically to answer the growing needs of the exact sciences. The banner of
this new trend in mathematics was carried by Panfuty L. Chebyshev.

To understand the ideas of Chebyshev, a brief survey of polynomial ap-
proximation is needed: It is sometimes useful to approximate one function
f(x), by a sum of ‘suitable’, simpler function. Such simpler functions are:
monomials {xk}, k = 0, 1, . . . , n, trigonometric functions {sin kx, cos kx}
or exponential functions {eλkx}. A linear combination of monomials leads to
an algebraic polynomial of degree n, pn(x) =

∑n
k=0 akxk. Polynomials are

easy to evaluate, and their sums, products, differences, derivatives and inte-
grals — are also polynomials. In addition, they remain polynomials under the
transformations of scaling and of origin translation122. These favorable prop-
erties are possessed by the trigonometric functions as well. The Weierstrass

122 A natural generalization of polynomial approximation consists in approximation

by ratios of polynomials, that is, by rational functions. Such approximations
are expressed conveniently in terms of continued fractions. As an example, con-

sider the continued-fraction expansion of Thorvald Nicolai Thiele (1909)

f(x) = a0 +
x − x0

a1 +
x − x0

a2 +
x − x0

a3 + · · ·
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approximation theorem123 (1885) then provides the analytical justification for

with coefficients

a0 = f(x0), ak =
k

[
dρk−1(x)

dx

]

x0

for k = 1, 2, . . . where the function ρk(x) follows from the recursion relation

ρk = ρk−2(x) +
k

ρ′
k−1(x)

for k = 1, 2, . . . with ρ−1(x) = 0, ρ0(x) = f(x). Also

ak = ρk(x0) − ρk−2(x0).

For small values of x − x0, the Thiele expansion can be seen as an alternative
to the Taylor expansion of f(x) about x = x0.

As an example, take f(x) = ex at x0 = 0, to obtain

a0 = 1, a2n = 2(−1)n, a2n+1 = (−)n(2n + 1).

A generalization of the above expansion leads to an analog of the Bürmann-

series expansion in the form:

F (x) = A0 +
G(x) − G(x0)

A1 +
G(x) − G(x0)

A2 +
G(x) − G(x0)

A3 + · · ·

where

Ak = Φk(x0), Φk(x) = Pk(x) − Pk−2(x), Φk+1(x) = (k + 1)
G′(x)

P ′
k(x)

,

P−2(x) = P−1(x) = 0, Φ0(x) = F (x).

The first few Φ’s are readily found to be governed by the equations Φ0 = F ,
Φ1 = G′

F ′ , Φ2 = 2 G′

Φ′
1
, Φ3 = 3 G′

F ′+Φ′
2
. Thus, for example, if we take

F (x) = ex, G(x) = sin x, x0 = 0, we obtain, near x = 0,

ex = 1 +
sin x

1 +
sin x

−2 + · · ·

.

123 If f(x) is continuous in the closed interval [a, b] then, given any ε > 0,

there is some polynomial pn(x) of degree n(ε) such that |f(x) − pn(x)| < ε,

a ≤ x ≤ b.
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believing that polynomials can yield good approximations for a given func-
tion. Weierstrass’ theorem is of little value in cases where f(x) is unknown,
except for a few sampled values. But even if f(x) is known, the theorem
does not tell us how the polynomial pn(x) can be produced.

If the data is given in the form of n + 1 paired values {xi, f(xi)},
i = 0, 1, . . . , n, the determination of the approximating polynomial

pn(x) =
n∑

i=0

aix
i

boils down to the determination of the coefficients ai from the set of n + 1
equations pn(xi) = f(xi), i = 0, 1, . . . , n. The result is known as the inter-
polating polynomial of the nth degree. It does not guarantee accurate approx-
imation of f(x) for x �= xi, unless f(x) itself is a polynomial of degree n
or less.

There are situations which render the above procedure inefficient. This is
especially true when the degree of reliability of the discrete data is not well
established. There is no sense then in attempting to determine a polynomial
of high degree which fits the vagaries of such data exactly and hence, in all
probability, is represented by a curve which oscillates violently about the true
function. In this case it is preferable to apply a postulate that is often known
as the principle of least squares (Gauss, 1795; Legendre, 1806).

The basic idea behind this principle is the requirement that f(x) and
its approximant pn(x) (or some other function) agree as closely as possible
in a specific sense. Of the many meanings which might be ascribed to “as
closely as possible”, the principle assumes that the best approximation is that
for which the integral (or sum) of the squared error is least.

More generally, if W (xi) is a measure of the relative precision of the
value assigned to f(x) when x = xi, the criterion is modified by requiring
that the squared error at xi be multiplied by the weight W (xi) before the
sum is calculated.

For a given f(x) and basis functions φk(x), one minimizes the integral

I =
∫ b

a

W (x)

[

f(x) −
∞∑

k=0

Akφk

]2

dx.

Setting ∂I
∂Ak

= 0 yields at once

Ak =
∫ b

a

W (x)f(x)φkdx,
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provided φk are orthonormal with weight W (x) in [a, b]. One can show that
the truncated Fourier series

TM (x) =
1
2
A0 +

M∑

k=1

(Ak cos kx + Bk sin kx)

minimizes the integral

I =
∫ 2π

0

[f(t) − TM (t)]2 dt.

In other words, to minimize I we should choose

Ak =
1
π

∫ 2π

0

f(t) cos kt dt, Bk =
1
π

∫ 2π

0

f(t) sin kt dt.

The minimum value of I then assumes the form

Imin = π

∞∑

k=M+1

(A2
k + B2

k).

If f(x) is discontinuous, the truncated Fourier-series does not give a good
approximation to f(x) in the vicinity of the discontinuity points, no matter
how large M is chosen (Gibbs’ phenomenon)124.

124 In 1904, Lipót Fejer (1880–1959, Hungary) has shown that a better approxi-
mation to f(x) is obtained if one replaces TM (x) by the arithmetic mean of

the partial sums

sN (x) =
1

N
{T1(x) + T2(x) + · · · + TN −1(x)}.

As N increases, this series tends to a limit that is equal to the mean disconti-

nuity, i.e.
1

2
[f(x + 0) + f(x − 0)].

Since trigonometric series can in turn be represented by power series, sN (x)
can be approximated by a polynomial in x.

Fejer Theorem: Let f(x) be a function of the real variable x, −π ≤ x ≤ π,

and defined by the equation f(x + 2π) = f(x) for all real values of x; and
let

∫ π

−π
f(x)dx exist and (if it is an improper integral) let it be absolutely

convergent. Then the Fourier series associated with the two limits f(x ± 0)

exist and its average is

s = lim
N →∞

sN (x) =
1

2
[f(x + 0) + f(x − 0)].
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Another popular criterion for how close is “as closely as possible”, termed
the minimax principle, requires that the coefficients of the approximating
polynomial pm(x) be chosen so that the maximum magnitude of the dif-
ference f(xi) − pm(xi), i = 0, 1, . . . , n (m < n) be as small as possi-
ble. Then the minimax polynomial of degree m must satisfy the condition
maxi |f(xi) − pm(xi)| = minimum, that is, pn(x) must minimize the maxi-
mum error. In more general form maxa≤x≤b |f(x) − pm(x)| = minimum. The
principle was created by Chebyshev (1859), and the minimax polynomials are
closely related to the Chebyshev polynomials of the first kind Tn(x).

These polynomials are defined by Tn(x) = cos(n cos−1 x). This may
look trigonometric at first glance, but it is indeed algebraic [the symbol
Tn comes from the French spelling used for his name in French, Tcheby-
chef 125]. To see this, we recall de Moivre’s theorem

(cos θ + i sin θ)n = cos nθ + i sinnθ.

Expanding the binomial and taking the real part, we get, with x = cos θ:

Tn(x) = cos nθ =
n

2

[n/2]∑

k=0

(−)k Γ(n − k)
k!(n − 2k)!

(2x)n−2k.

With the aid of the recurrence formula Tn+1(x) = 2xTn(x) − Tn−1(x) one
can generate Tn(x) for any n. In particular T0(x) = 1; T1(x) = x;
T2(x) = 2x2 − 1; T3(x) = 4x3 − 3x.

The Chebyshev polynomials have a number of interesting and useful prop-
erties:

Fejer has shown that

sN (x) =

∫ π

0

[f(x + t) + f(x − t)]

{
sin2 N

2
t

sin2 t
2

}
dt

2πN

where the function in the curly braces is the Fejer kernel. Since

lim
N →∞

{
sin2(N

2
t)

1
2
πNt2

}

= δ(t),

the above result is then obvious.
125 Abram S. Besicovitch (1891–1970) once said, in his thick Russian accent:

“Zey are called T -polynomials because T is the first letter of ze name Cheby-

shev”.
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(1) Tn(x) is a polynomial of degree n. If n is even, Tn(x) is an even
polynomial; if n is odd, Tn(x) is an odd polynomial. The coefficient of
xn in Tn(x) is 2n−1.

(2) Tn(x) has exactly n real zeros on the interval [−1, 1]. These zeros are
located at xj = cos 2j+1

n
π
2 , j = 0, 1, 2, . . . , n − 1.

(3) |Tn(x)| ≤ 1, −1 ≤ x < 1 for all n. For n > 0, Tn(x) attains
its bounds ±1, alternately at the points xj = cos πj

n , j = 0, 1, . . . , n;
Tn(xj) = (−1)j .

(4) The Chebyshev polynomials are orthogonal in the interval [−1, 1] over
weight W (x) = (1 − x2)−1/2, namely

2
π

∫ 1

−1

Ti(x)Tj(x)√
1 − x2

dx =

⎧
⎨

⎩

0 i �= j
1 i = j �= 0
2 i = j = 0

⎫
⎬

⎭
.

Given a function f(x), the least-squares approximation to f(x) in
terms of the Chebyshev polynomials yield the series

∑∞
k=0 AkTk(x) with

Ak = εk

π

∫ 1

−1
f(x)Tn(x)√

1−x2 dx where ε0 = 1, εk = 2 (k �= 0).

The polynomials Tn(x) also satisfy the discrete orthogonality relation

2
n

n∑

k=1

Ti(xk)Tj(xk) =

⎧
⎨

⎩

0 i �= j
1 i = j �= 0
2 i = j = 0

⎫
⎬

⎭

with 0 ≤ i < n, 0 ≤ j < n. Here xk (k = 1, ..., n) are the n zeros of
Tn(x). If f(x) is an arbitrary function in the interval [−1, 1], and if N
coefficients cj (j = 0, 1, . . . , N − 1) are defined by

cj =
2
N

N∑

k=1

f(xk)Tj(xk),

then the approximation formula

f(x) ≈
[

N −1∑

k=0

ckTk(x)

]

− 1
2
c0

is exact for x equal to all N zeros of TN (x).

The importance of this should be appreciated because it means that we can
approximate the continuous case in a natural way by simply doing the discrete
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case. This property is not enjoyed by the other classical set of orthogonal
polynomials.

(5) Since Tn(x) belongs to a class of functions of the special form
Tn(x) = f

[
nf −1(x)

]
, one derives the unique relation

Tm [Tn(x)] = f
[
mf −1Tn(x)

]
= f

[
mf −1fnf −1(x)

]
= f

[
mnf −1(x)

]

= Tmn(x) = Tnm(x) = Tn [Tm(x)] .

(6) Minimax Property. Let pn(x) be any polynomial of degree n with
leading coefficient unity. Then

max
−1≤x≤1

|21−nTn(x)| ≤ max
−1≤x≤1

|pn(x)|,

i.e.
{
Tn(x)/2n−1

}
has the smallest maximum magnitude on the interval

[−1, 1] of all polynomials in this class.

This property is of great interest in numerical computations, since any
error that can be expressed as an nth degree polynomial, can be minimized
by equating it with Tn(x)/2n−1, provided there is freedom of choice in
selecting the base points xi [which one chooses as the roots of Tn(x)].
It has been shown that if the function f(x) can be expanded in terms
of Chebyshev polynomials f(x) =

∑∞
k=0 akTk(x), then the partial sum

pM (x) =
{∑M

k=0 akTk(x) − 1
2a0

}
will usually be a very good approximation

to the minimax polynomial, that is, pM (x) will be near-minimax126, but
whereas the minimax polynomial is very difficult to find, the Chebyshev ap-
proximating polynomial is very easy to compute.

The polynomial pM (x) is known as the minimax polynomial approxima-
tion to f(x). If f(x) is given by a polynomial pn(x), it is possible in many
cases to obtain a minimax polynomials with M < n − 1. The procedure for
replacing a polynomial of a given degree by one of lower degree is known as
economization.

126 Note that pM (x) is just the Fourier cosine series expansion of the function

f(cos θ).
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1835 CE Giusto Bellavitis (1803–1880, Padua, Italy). Mathematician.
Created a two dimensional vectorial system (calculus of ‘equipollences’),
thereby describing geometrical entities that are in all ways equivalent in be-
havior to complex numbers. He gave numerous and ingenious applications of
his method to mathematical and physical problems. Made significant contri-
butions to algebraic geometry and descriptive geometry.

Bellavitis was born in Bassano. He was an autodidact who did not pursue
regular studies. During 1822–1843 he worked for the municipal government
of Bassano, occupying his free time with mathematical studies and research.
In 1845, he became a professor of descriptive geometry at the University of
Padua (through competitive examination). In 1866 he was elected a senator
of the Kingdom of Italy.

1835–1846 CE Jean Léonard (Louis) Marie Poiseulle (1799–1869,
France). Physician and physiologist. Discovered experimental laws for viscous
laminar flow in straight circular pipes, known as Hagen-Poiseulle flow127. He
wanted to understand the flow of blood through capillaries and determined
the relevant laws in painstaking detail.

If a pressure difference Δp drives the viscous fluid (of shear viscosity η)
in a cylinder of length L and radius R, the velocity profile is given by the
parabola

V (r) =
Δp

4ηL
(R2 − r2),

where 0 ≤ r ≤ R (Poiseulle law).

This Hagen-Poiseulle flow is a steady unidirectional axisymmetric flow
in a circular cylinder. The law of flow is derivable theoretically through a
straightforward integration of the Navier-Stokes equations for steady, axially-
homogeneous axially-directed incompressible flow,

η∇2V = −Δp

L

where V (r, t) = V (r)ez, ez being a unit vector along the axis. We find

1
r

d

dr

(

r
dV

dr

)

= −Δp

ηL
.

127 Gotthilf Heinrich Ludwig Hagen (1797–1884, Germany). Hydraulic engi-

neer in Prussian state service. Known for his studies of laminar and turbulent

flow, and for the independent discovery of the law of laminar flow in circular

pipes (1839). A laminar flow is a an orderly non-turbulent flow in which the

fluid particles move in smooth layers without mixing.
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Integrating twice w.r.t. r and imposing the boundary condition V (R) = 0,
we arrive at the Poiseulle law.

The volume velocity (volume flow per unit time) through the tube is given
by Qc = πR4

8η
Δp
L (Poiseulle equation) and serves to determine η when all

other entities are known. The sensitive dependence of Qc on R explains why
small changes in diameter can cause large changes in flow128. The application
of this law to flow in blood vessels must be modified by the elastic properties
of the capillary wall and the presence of erythrocytes. (It is convenient to
define the resistance to flow via the relation Qc = F

Ω , where F = πR2(Δp)
is the driving force and Ω = 8ηL

R2 is the resistance.)

The above relation is sometimes recast in the form Δp = Qc · r where
Δp =mean arterial pressure, Qc =cardial output and r =total peripheral re-
sistance.

128 If the pipe has an elliptic cross section

x2

a2
+

y2

b2
= 1,

the solution of the above problem becomes

V (x, y) =
Δp

2ηL

(
a2b2

a2 + b2

) (

1 − x2

a2
− y2

b2

)

,

which describes the flow of a fluid of viscosity η through an elliptic pipe. The

flux through the pipe is

Q =

∫∫

x2
a2 + y2

b2
≤1

V (x, y)dxdy =
πΔpa3b3

4ηL(a2 + b2)
.

Setting a = b = R, we deduce that the flux through a circular pipe of radius

R is given by Qc = πΔpR4

8ηL
. Since the area of an ellipse is πab, a circular

pipe with the same cross-sectional area as the ellipse must have radius
√

ab.

Hence the fractional flux reduction caused by deforming the circle into an ellipse

with the same area is 1 − Q
Qc

= (a−b)2

a2+b2
. This is always non-negative and is

clearly minimized by taking a = b. Thus for a given cross-sectional area and

driving pressure drop, a circular pipe carries a greater quantity of fluid per unit

time than any elliptical one, and this is why pipes are circles! This optimality

property is intuitively clear: because the circle, being the curve of minimum

length for a given enclosed area, minimizes the area of viscous friction between

fluid and pipe per unit pipe length.
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Blood pressure, the force per unit area exerted by the blood against a vessel
wall and normal to it, depends on the volume of blood contained within the
vessel and the compliance of the vessel wall (how easily they can be stretched).
If the volume of blood entering the arteries were equal to the volume of blood
leaving the arteries during the same period, arterial blood pressure would
remain fixed. This is not the case, however. During ventricular systole, a
stroke volume of blood enters the arteries from the ventricle while only about
1/3 as much blood leaves the arteries to enter the arterioles. During diastole,
no blood enters the arteries, while blood continues to leave, driven by elastic
recoil (Hale, 1733).

The maximum pressure exerted in the arteries when blood is ejected into
them during systole, the systolic pressure, averages 120 mm Hg. The minimum
pressure within the arteries when blood is draining off into the remainder of
the vessels during diastole, the diastolic pressure, averages 80 mm Hg. The
arterial pressure does not fall to 0 mm Hg because the next cardiac contraction
occurs and refills the arteries before all the blood drains off.

In computing the average pressure (or mean arterial pressure) responsible
for driving blood forward into the tissues throughout the cardiac cycle, it must
be taken into account that arterial pressure remains closer to diastolic than
to systolic pressure for a longer portion of each cardiac cycle; numerically,
mean arterial pressure = diastolic pressure + 1

3 [ systolic − diastolic].

Poiseulle’s main interest was the flow of blood through the vessels of the
circulatory system, but he actually worked with water because of the difficulty
at that time of preventing blood from clotting on exposure to air. Poiseulle’s
law is so well established experimentally that it is often used in order to
determine the viscosity coefficient of viscous fluids. When blood is examined
in this manner129, its viscosity coefficient is found to be about 5 times the
value for water, if the diameter of the tube is relatively large (η

B
= 0.035

poise130, where 1 poise = 1 dyn sec/cm2).

129 Estimate of total number of capillaries in the body : The cardiac output is about

K = 5.5 liter/minute. The mean blood flux, Qc, through a typical capillary

of radius 3.5 micron (a mean value for the entire body) is calculated from

Poiseulle’s equation to be 0.13 × 10−6 milliliter/sec. The total number of

capillaries in the body, N , is then calculated from K = fNQc (f � 0.7 is the

fraction of capillaries that are open), yielding N ≈ 1.0 × 109. This estimate

agrees with other estimates in order of magnitude. The mean velocity through

a capillary is 2.5 mm/sec.
130 A unit of viscosity named after Poiseulle. In 1975 the unit was changed to

{Pascal·sec}, where Pascal (Pa) is a unit of pressure ( = 1 N/m2) and 1 Pa·sec
= 10 poise.
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1836 CE Introduction of the marine screw propeller, developed by John
Stevens (1749–1838, U.S.A.) and later applied by John Ericsson (1803–
1889, Sweden, U.S.A.) and Francis Pettit Smith (1808–1874, England).
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The Rainbow —

From Noah to Airy (1836) and Beyond

“The triumphal arch through which I march,
With hurricane, fire, and snow,

When the powers of air are chained to my chair,
Is the million-colored bow;

The sphere-fire above its soft colors wove,
While the moist earth was laughing below”.

Percy Bysshe Shelley, ‘The Cloud’

I. Phenomenology

The rainbow (formerly known as iris) is best seen in the sky after a rain
storm when the sun is low but is shining brightly through a section of the sky
that is clear. To see the rainbow, one must turn one’s back to the sun and
look toward a region that still has rain clouds. Under good conditions one
sees a colored arc consisting of concentric circular bands having their common
center on the line joining the eye of the observer to the sun. Each band within
the bow has its own color, with blue-violet on the inside (lower boundary) and
red on the outside (upper boundary). This is known as the primary rainbow;
it has an angular radius of about 41 ◦, and exhibits a fine display of the colors
of the spectrum.

Sometimes an outer bow, the secondary rainbow, is observed; this is much
fainter than the primary bow, and it exhibits the same play of colors, with
the important distinction that the order of colors is reversed — the red being
inside and the violet outside. Its angular radius is about 57 ◦. It is also to
be noticed that the space between the two bows is considerably darker than
the rest of the sky. The third or tertiary bow, having about the same radius
as that of the primary and colors in the same order, lies between the observer
and the sun, but is so faint that it is rarely seen in nature. In addition to
these prominent features there are sometimes to be seen a number of colored
bands, situated at or near the summits of the bows, close to the inner edge of
the primary and the outer edge of the secondary bow; these are known as the
spurious, supernumerary or complementary rainbows.
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The higher the sun, the lower the bow; if the sun is on the horizon, the
observer will see a full 180 ◦ of the rainbow (and an observer on a high moun-
tain might see the whole circle of the bow). If the sun is higher in the sky,
only a small section of the upper arc can be seen. If the sun is higher than
42 ◦ above the horizon, the rainbow disappears completely. However, if one is
looking down into a canyon where there is a waterfall or even down the mist
produced by a lawn sprinkler, one can see a miniature rainbow though the
sun is high in the sky. Under the right conditions, one may be able to see the
whole 360 ◦ of the bow from an airplane!

(Occasionally, the light from the moon forms a feeble lunar rainbow. But
this phenomenon is rarely seen except about great waterfalls and along certain
showery coasts.)

Seven colors are discernible in each rainbow: violet, indigo, blue, green,
yellow, orange, and red. But these colors blend into each other so that the
observer really perceives only four or five of them. The angular width of each
color band varies, and depends chiefly on the size of the raindrops in which
the rainbow forms.

Like other optical phenomena, rainbows have been used by people as a
means of predicting the weather. A well-known weather proverb says:

Rainbow in the morning, sailors take warning
Rainbow at night, sailors delight.

This bit of weather lore relies on the fact that weather systems in the mid-
latitudes usually move from west to east. Remember that an observer must
be positioned with his back to the sun and facing the rain in order to see the
rainbow. When a rainbow is seen in the morning, the sun is located to the
east of the observer and the raindrops that are responsible for its formation
must therefore be located to the west. In the early evening, the opposite
situation exists — the rain clouds are located to the east of the observer.

Thus, we predict the advance of foul weather when the rainbow is seen
in the morning because the rain is located to the west of the observer and is
traveling toward him. On the other hand, when the rainbow is seen late in the
day, the rain has already passed. Although this proverb does have a scientific
basis, a small break in the clouds, which lets the sun shine through, can
generate a late-afternoon rainbow. In this situation, a rainbow may certainly
be followed shortly by more rainfall.

Rainbows differ among themselves131, as one snowflake from another.
Close observations of rainbows show that not even the colors are always the

131 Furthermore, each observer sees his “own” rainbow, generated by a different set

of droplets and different sunlight from that which produces another person’s

rainbow. In this sense each observer would find “his” rainbow responding to
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same; neither is the band of any color of constant angular width; nor is the
total breadth of the several colors at all uniform; similarly, the purity and
brightness of the different colors are subject to large variations. All these
differences depend essentially upon the size of the drops.

II. Optics

The rainbow is produced by the combined effects of refraction, reflection,
dispersion, scattering and diffraction of sunlight by drops of rain132.

Consider first the formation of the primary bow in terms of geometrical
optics133 (ray theory). Consider first a monochromatic (fixed wavelength, λ)
plane wave of sunlight falling on a spherical drop of water. According to ray

his motion in the same sense as his shadow. Rainbow, like beauty, is in the eye

of the beholder.
132 If we look at a very bright rainbow through a monochromatic red glass we see a

succession of circular arcs, alternately bright and dark, similar to the diffraction

rings which are formed when the light from a point source (sunlight or a distant

arc lamp) falls through a small circular stop on to a white screen.
133 The laws of geometrical optics are asymptotic laws of propagation of electro-

magnetic waves (light), valid in the limit of wavelengths small relative to typ-

ical spatial dimensions of the problem. In this regime one assumes that the

wave-fronts near any point are sufficiently characterized by their normals and

by their local radii of curvature. This approximation breaks down near the

rainbow, where the Airy theory applies. The visible spectrum stretches from

λ = 0.7μm (red) to λ = 0.4μm (violet), while the diameters of a rain drop

range from 200μ to 2000μ. Visible fog may have characteristic particle sizes as

small as 5–20μ.

The general explanation for rainbows is that of all the parallel rays of light

which fall on a drop of water and emerge after one or more internal reflections,

those which emerge in appreciably the same direction reinforce each other, and

therefore produce a definite sensation on the eye. The order of the colors is

explained by the fact that the direction of these “accumulated” rays depends

on the index of refraction of the drop, and is therefore different for different

colors.

This explanation is not entirely satisfactory, nor are the results it predicts ab-

solutely consistent with the facts. The rays that leave the drop in the same

direction take slightly different paths in the drop, and may therefore be in a

condition to produce interference effects in accordance with the principles of
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theory, this wave is represented by its normal (ray). Because of the drop’s
spherical symmetry, it is sufficient to determine the effects of this interaction
in the plane of a great circle containing the ray, rendering the problem 2-
dimensional134.

Let the ray enter with incidence angle i (w.r.t. the local normal of the
sphere) and angle of refraction r (w.r.t. the same normal), be internally re-
flected n times, and finally be refracted into air again. The path of the ray
will lie throughout in the initial plane of incidence. Simple geometric consid-
erations show that the angle by which the incident ray will be bent from its
original direction (known as total deviation) is given by

D = 2(i − r) + n(π − 2r).

Since sin i = μ sin r (Snell’s law of refraction; μ = index of refraction of
water relative to air), the deviation becomes a function of {i, μ, n}, having
the explicit form

D = πn + 2i − 2(n + 1) sin−1

{
1
μ

sin i

}

.

Now, according to ray theory, the intensity of the emergent ray at large
distance R from the sphere is

In =
a2

R2
I0ε

2
nG,

where a is the radius of the drop, I0 the incident intensity, εn the fraction
that yields the refracted part of the total energy, and

G =
sin i cos i

sin θ|dD
di |

is the divergence coefficient (θ = azimuth angle of emergent ray at the sphere’s
center relative to incident direction in the plane of incidence).

Clearly, the intensity is very sensitive to
∣
∣dD

di

∣
∣, and since a2

r2 is usually
very small, it is just this amplification due to G that makes the rainbow visible!
But, alas, the rays which render D(i) extremal [i.e. dD

di ≡ 0] are precisely

Physical Optics. In the purely ray-theory calculation, one must determine the

general form of the caustic surface enveloped by a system of rays, originally

parallel and emerging after any number of reflections within a drop of water.
134 To obtain the 3-dimensional picture, one then rotates this plane about a line in

the plane that bisects the angle between the incident and emerged paths of any

given ray in the same plane.
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those which invalidate the geometrical optics approximation. Simple calculus

shows that the angle of incidence of such rays is given by cos ic =
√

μ2−1
n2+2n ,

and that the total deviation there is a minimum.

If the rays suffer one internal reflection (primary bow), the deviation is a

minimum when the ray is incident at an angle cos−1

{√
μ2−1

3

}

. If we take

μ = 1.3311 for red rays (λ = 6562.9 Å), we find that the corresponding
angles are (n = 1) ic = 59 ◦31′, rc = 40 ◦21′, D = π − 42 ◦22′. With
μ = 1.3435 for violet (λ = 3968.5 Å) we obtain: ic = 58 ◦48′, rc = 39 ◦33′,
D = π − 40 ◦36′.

Now, if a line be drawn through the eye parallel to the direction of sun’s
rays, all drops which lie on a cone of semi-opening angle {π − D} with this
line as axis, will be in a position to allow the emergent parallel rays to enter
the eye135. The apparent arc is therefore composed of arcs of different colors;
and the angular radii will be 42 ◦22′ for the red arc and 40 ◦36′ for the violet
arc. However, as each point of the sun’s disc sends rays giving rise to a bow,
the apparent breadth of the bow exceeds the difference of these radii by the
sun’s angular diameter (ca 32′), yielding altogether 2 ◦18′ ′.

Thus, geometrical optics allows us only to explain the overall shape and
color-geometry of the primary (and secondary) bow. However, intensities at
or near the zones of minimum deviation for each color, must be evaluated
from the reconstruction of the caustic formed by the physical-optics process
of interference of the refracted and reflected wave-fronts inside the drop.

To this end, Airy (1836) first derived the equation of the emergent wave-
surface, which he showed to be the involute of the caustic surface. His lengthy
analysis boils down at the end to the rather simple equation y = h

3a2 x3 where

h =
(n2 + 2n)2

(n + 1)2(μ2 − 1)

√
(n + 1)2 − μ2

μ2 − 1
.

Here y(x) is the curve in the plane of incidence which results from the
intersection of the involute with the said plane. It represents the distortion of
the straight-line segment of the incident plane wave due to its interaction with
the drop, i.e. the initial plane wave surface becomes curved on emerging from

135 Since the rainbow may be regarded as consisting of coaxial, hollow conical beams

of light of different colors seen edgewise from the vertex, they may have great

depth, or extent, in the line of sight. The drops that produce the bow may

be nearby or far away, and the question “what is the rainbow’s distance” is

therefore meaningless.
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the drop; it is bent in opposite directions on either side of the least deflected
ray. Only those rays that lie close to the inflection point (x = 0, y = 0) reach
the eye and give rise to the rainbow image on the retina136.

Airy then calculated the amplitude at a distant point in the direction θ
from the ray of minimum deviation. Taking the origin of the coordinates at
the point of inflection of the emitted wave-front near the drop, the spatial
part of the amplitude is the real part of the Airy “rainbow integral”

A = A0

∫ ∞

− ∞
e−ik[y(x) cos θ−x sin θ] dx

where k = 2π
λ is the light wavenumber, y(x) = h

3a2 x3, and A0 is the amplitude
per unit length of the front.

The above integral can be transformed into a form which yields the lu-
minous image intensity produced in the eye by this active part of the wave
surface: A2 = M2f2(z). Here

f(z) =
∫ ∞

0

cos
π

2
(u3 − zu) du, z = 2 3

√
6

sin θ

(cos θ)1/3
a2/3λ−2/3h−1/3,

h =
(n2 + 2n) sin ic
(n + 1)2 cos3 ic

, M = 2A0

[
3a2λ

4h cos θ

]1/3

.

Airy’s theory predicts periodic changes of intensity of monochromatic light
via the function f(z); the first maxima does not coincide with z = 0, nor,
therefore, with θ = 0, the direction of the ray of minimum deviation.

When the source of light simultaneously emits radiations of various wave-
lengths, as does the sun, a corresponding sequence of bows, each consisting of
a sequence of maxima and minima, are partially superimposed on each other.
In this way different colors are mixed, and thus the familiar polychromatic
rainbow produced. The mixing of colors is governed by two causes: First,
the angular intervals between two successive maxima increase with λ2/3, and
consequently, coincident distribution of the intensities of any two colors is im-
possible. Second, since the direction of the ray of minimum deviation varies

136 This equation, then, represents a curve very nearly coincident with that portion

of the wave-front to which the rainbow phenomena are due, and, since the effects

computed from it substantially agree with those observed when the drops are

not too small, the approximation is sufficient for most practical use. Indeed

the approximation that raindrops are perfectly spherical involves, perhaps, a

greater error (the undersides of a falling drop depart most from a spherical

shape — the largest drops look like hamburger buns with concave undersides).
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with the refractive index, the direction of the zero (θ = 0) point on the inten-
sity curve, near which the first maximum lies, correspondingly varies. These
two causes, together, produce all sorts of colors mixings that in turn give rise
to widely varied sensations.

The actual intensity is proportional to
{

a7/3

λ1/3

}
. The breadth of the line

is proportional to
{

λ2/3

a2/3

}
. Thus, the rainbow bands produced by very small

droplets (fog) are not only broad, but also feeble; as their colors necessarily
are faint they frequently are not distinguished — the bow appearing as a mere
white band.

Note that in the above analysis certain contributions to the incident radi-
ation and scattering by the drop were totally neglected, since they contribute
little to the rainbow. (Thus, for example, radiation backscattered to the sun
through reflection off the back surface was ignored.)

III. History

The rainbow affords a means of bridging the gap between the sciences and
the humanities.

Mankind has been thinking, talking, and writing about the rainbow for
thousands of years. Virtually every volume on mythology contains legends
connected with the rainbow, and practically all modern textbooks of physics
include some exposition of the optical principles which account for the bow.

Man’s story of the rainbow, like other aspects of the history of science,
has no inescapable origin and no discernible end. There is no record, oral or
written, of the precise date at which a rainbow was first noticed; and even now,
at the dawn of the 21th century, it is not possible to boast that the formation
of the bow is accounted for in all its details. The primeval theories of the
rainbow must have arisen from man’s sense of wonder; and now, thousands of
years later, the theory has become enmeshed with the intricacies of advanced
mathematics. To trace the gradual development of this theory from early
primitive conjectures to sophisticated contemporary formulations is to tread
the pathway of human knowledge.

The earliest documented mentions of the rainbow are in Homer’s Iliad, a
Chaldean story of the flood, an early Sumerian hymn and above all in the
beautiful Biblical passage on God’s covenant with Noah (Genesis 9, 13–16):
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“I do set my bow in the cloud, and it shall be for a token of a covenant
between me and the earth”.

“And it shall come to pass, when I bring a cloud over the earth, that the
bow shall be seen in the cloud”.

“And I will remember my covenant, which is between me and you and
every living creature of all flesh; and the waters shall no more become a
flood to destroy all flesh”137.

“And the bow shall be in the cloud; and I will look upon it, that I may
remember the everlasting covenant between God and every living creature
of all flesh that is upon the earth”.

Most exegetes interpreted the passage broadly as indicating that God here
gave to the already familiar beauty of the rainbow a new significance, causing
it to be a symbol of divine promise. Rain, sunlight, and cloud formations
would appear to have been sufficiently similar (throughout temperate regions
and during the period of man’s existence) to those familiar today to justify
the assumption that rainbows were observed by our most primitive ancestors.
The circular-arc form of the rainbow may have been perceived by the earliest
forms of life endowed with a sense of color-vision. At any rate, the rainbow
probably existed more than a billion years ago, independently of the observer,
as soon as suitable atmospheric conditions for its formation came into being.

Primitive peoples viewed the rainbow with fear and misgiving, as is evi-
dent from the various myths and legends. There is no precise date at which
mythology gave way to science in the theory of the rainbow, nor did the tran-
sition take place at the same time or at the same rate in all cultures. With the
four potamic138 civilizations (Tigris-Euphrates, Nile, Indus, Yangtze) flourish-
ing several thousand years ago, one might expect to find some theory of the
rainbow; yet there is no evidence of an attempt at a scientific explanation in
those cultures.

137 God indeed kept his promise, for He used the fire next time to wipe out Sodom

and Gomorrah (Genesis 19, 24–25).
138 In a very broad and over-simplified sense, one can recognize, in the develop-

ment of civilizations, three general stages which may be designated respectively

as potamic, thalassic, and oceanic, according as the dominant cultures centered

about rivers, seas or oceans. The first of the stages left nothing scientific on the

rainbow. With the advent of the thalassic civilizations, which thrived through-

out the whole Mediterranean area during the first millennium BCE, the situation

changed.
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Among the peoples pressing down from the north were the Hellenes, who
occupied the peninsula between the Adriatic and Aegean Seas and then spread
east and west to colonize the shores of Asia Minor and the tip of Italy (Magna
Graecia). They acquired with amazing alacrity all the knowledge that the
potamic civilizations had accumulated, and then they looked about for new
intellectual fields to conquer. Unencumbered by hoary traditions and rela-
tively unhampered by political and cultural authoritarianism, Greek scholars
investigated nature with an exhilarating freedom and ingenuity. With them
the scientific point of view became a dominant characteristic, for they sought
to coordinate observations of natural phenomena into a consistent theoretical
structure.

Anaximenes (ca 575 BCE), a member of the Ionian school led by Thales
of Miletos, was first to issue a naturalistic statement on the rainbow. First,
he pointed out the obvious relation of the rainbow to the appearance of the
sun. Then, he explained the colors as resulting from the admixture sunlight
with the blackness of the cloud. Finally, he claimed that the cloud is bending
the rays of the sun toward the eye.

No documents of the period have survived the ravages of time, and the
little that is known of the Milesian school is reported by others who lived long
afterwards.

Anaxagoras (ca 460 BCE) declared that the rainbow is but a reflection
of the sun from a spherical cloud, as from a mirror. His theory that the
rainbow is caused by reflection persisted, in variously elaborated forms, for
about 2000 years. One cannot, however, determine whether Anaxagoras, and
later Democritos (to whom Albertus Magnus ascribed the idea that the
colors of the rainbow are due to positions from which it is viewed), were
aware of the optical law of reflection, or if it had been applied in those days
to a geometrical demonstration of the formation of the rainbow.

The law may have been discovered shortly after the Periclean age, for
Plato (in the Timaeus, ca 380 BCE) seems to have been aware of some uni-
formity in the angles in optical reflection.

Aristotle (ca 340 BCE) did not contribute significantly to the physics of
the rainbow, and his “theory” is today untenable. The most serious defi-
ciency is the ascription of the bow to reflection alone, with no role accorded
the essential phenomenon of refraction. A characteristic of his explanation
which was perhaps even more obstructive was the macroscopic approach —
the concentration of attention on the cloud and the meteorological sphere,
rather than on the “little mirrors” of the cloud, where the key to the problem
was, in the end, to be found. Finally, one misses in his account any mensura-
tional element, although his geometry, even without measurement, was more
sophisticated than that of any successor for well over a millennium. Moreover,
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his work includes the idea that the size of the rainbow could be explained geo-
metrically in terms of the relative positions of the sun, the rain cloud, and
the eye of the observer.

Whatever may be one’s judgment on the place of Aristotle in the history
of science, criticism must be in terms of the status of knowledge at that time.
The rainbow concerns one of the most elusive portions of science; and when
one compares the idiosyncrasy of the atmosphere with the regularity of the
heavens, it is easier to appreciate why the rainbow appeared so enigmatical
to the ancients. In view of the fact that Aristotle placed the explanation for
rainbow not in optics, but in meteorology, along with hydrology, seismology,
geology, and other portions of natural philosophy, it is greatly to his credit
that he gave a thoroughly mathematical treatment to the bow.

Aristotle was undoubtedly acquainted with the colors formed when sun-
light passes through a glass prism, but he seems not to have associated these
with the rainbow. He was in fact, primarily a philosopher and biologist; and
hence it is all the most surprising that the first mathematical theory of the
rainbow should have come from him. The surprise deepens into admiration
when one realizes that no superior explanation was proposed for a period of
more than 1500 years. Archimedes (ca 250 BCE), the greatest mathematical
scientist of antiquity, was especially interested in optical phenomena; yet, so
far as one knows, he left the problem of the rainbow quite untouched139.

Seneca added little of permanent value in the theory of the rainbow. His
chief contribution is his emphasis upon the role of the individual raindrops or
“mirrors”. The practical Romans were ever poor mathematicians, and one
looks to them in vain for any improvement over the Aristotelian geometrical
theory of the rainbow.

Ptolemy, who left us in his Optics the earliest surviving tables of angles
of refraction from air to water, could have attributed the bow to refraction,
but this is not mentioned in that part of Optics which came down to us.

The first man to refute the old idea that the rainbow is due to reflection of
the sun’s rays by the surface of a cloud (as from a concave or convex mirror)
was Robert Grosseteste (ca 1217 to 1235 CE) in his book De Iride Seu de
Iride et Speculo. He hinted vaguely to the role of refraction in the formation

139 Here one sees a sharp difference in approach of the two outstanding scientists of

ancient times. Aristotle gave answers — often times rough-and-ready, occa-

sionally more sophisticated — to all questions that turned up; and hence many

of his answers have not stood the test of time. Archimedes concentrated his

attention upon a few aspects of mechanics and optics, and his treatises are as

impeccable today as when they were written.
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of the rainbow but gave no specific explanation and made no attempt at

quantitative treatment.

Albertus Magnus (ca 1260 CE) reiterated the part played by the indi-

vidual drops, and in that sense he was the initiator of the microscopic doctrine.

In his Opus Majus (1266–1267 CE), Roger Bacon followed the lead of Gros-

seteste and Albertus and stated that the rainbow must be produced by many

reflections in numberless drops of water. Nevertheless, he utterly failed to

clear up the problem of the rainbow, and the seed planted by Grosseteste

sprouted elsewhere, in far-away Poland: Witelo (b. 1230 CE) was brought

up in the neighborhood of Cracow, but he had been educated at Paris, as well

as at Padua and Viterbo, and hence may have been acquainted with the work

of Grosseteste. He was however mostly influenced by Alhazen’s Treasury of

Optics. He wrote, sometimes between 1270 and 1278, a treatise on Optics.

In his theory of the rainbow, some rays were reflected directly from the

convex surfaces of drops, others were refracted through drops before being

reflected at the other surfaces of other drops lying further within the medium.

Refraction served primarily to condense the light; the drops served as spherical

lenses, to enhance the lights impression upon the eye. He mistakenly believed

that the reflections, as well as refractions, participated in the formation of the

colors.

Witelo also furnished tables of refraction from water (or glass) to air. In so

doing he used some of Ptolemy’s values from the reciprocal law, (i.e. indepen-

dence of the refracted ray on the sense in which the path is traversed). Witelo

tried, unsuccessfully, to find general mathematical relations between angles

of incidence and refraction, but on the other hand he anticipated Newton’s

discovery of dispersion, believing that the refraction of different rays through

different angles produced the various colors. He did not succeed, however, to

render an overall picture of the rainbow.

The next significant advance in the theory of the rainbow was made by

Dietrich of Freiberg in his book De Iride Radialibus Impressionibus (1304–

1310). Possessed of experimental skill and persistence as well as theoretical

imagination, and deeply versed in the optical learning available at the time,

he was admirably equipped to exploit to the full the accumulated wisdom of

the rainbow, and draw from it correct and clear physical conclusions.

Consequently, his explanation is an essentially correct (though incomplete)

description of the mechanism producing the rainbow, and vastly superior to

that of any one of the eminent scholars before him who had sought unsuc-

cessfully to explain the bow. The merits of his contribution are summarized

as follows:



1922 4. Abstraction and Unification

• Provided for the first time a clear-cut and unambiguous qualitative theory
of the formation of the primary and secondary bows in terms of total
reflections and refractions in a raindrop.

• Discovered that each drop is responsible but for one color in the bow.

His theory was nevertheless wrong, because he did not discard the Aristotelian
macroscopic circle of altitude, and in his microscopic raindrop model he did
not use the essential geometric angle between the incident and emergent rays
(deviation). Consequently he failed to account for the radius of the rainbow
and the tertiary bow. In linking the orthodox macroscopic geometric expla-
nation to a new microscopic consideration of the geometry of the raindrop,
he proposed the only quasi-quantitative theory of the rainbow to appear in
the long interval from Aristotle to Copernicus. His work, with all its faults,
represents one of the greatest scientific triumphs of the Middle Ages.

Similar ideas were presented simultaneously and independently by the Per-
sian scholar Kamal al-Din al-Farisi140 between the years 1302 and 1311.
This amazing case of simultaneous discovery can be understood as due to the
common intellectual heritage available to them.

The first clear-cut break with the Aristotelian tradition is due to the Si-
cilian mathematician Franciscus Maurolycus (1494–1575) of Messina, Ab-
bot of Castronuovo. In his book Diaphaneon (written 1553–1567; published
1611) he abandoned the meteorological sphere and focused attention for the
first time on the basic question to which Aristotelian writers had given only
fleeting consideration: How can one account for the apparent size of the rain-
bow? Why is the angle between the incident and reflected ray close to 45 ◦?
Of course, Dietrich knew from experience that there was a particular path
through the drop designated by nature as appropriate for the production of
the primary bow, and he successfully traced this path even though he could
not explain it in terms of number or measure.

Maurolycus seems to have felt that the geometrical basis was discoverable
without recourse to experimental observation. However, his suggested scheme
through which rays are sufficiently reinforced to reach the eye was physically
impossible, inasmuch as it was based on reflection without refraction141.

140 Kamal says that he was greatly assisted by his teacher Qutb al-Din al-Shirazi

(1236–1311), a distinguished Persian scientist. Hence the discovery of the theory

presumably belongs to al-Shirazi, its elaboration to al-Farisi. Both Dietrich and

al-Shirazi derived their inspiration from the Meteorologica of Aristotle and

Kitab al-Manazir (Treasury of Optics) of Alhazen.
141 In another book, Theoremata de Lumine Umbra (1521), Maurolycus investi-

gated the optical problems connected with the passage of rays of light through
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Kepler came close to solving the problem of the rainbow (1608) through
the study of refraction in a spherical globe of water. He recognized the fact
that colors arise only at places where the refraction is maximum, but lacking
the mathematical expression for the law of refraction, he could not make
the final step and became discouraged. Yet to Kepler one owes the clear
recognition that “to measure is to know”; and to him physics is indebted
for the earliest quantitative theory of the rainbow based upon refraction in
raindrops. Had he but measured more accurately, he might have anticipated
the theory that Descartes gave seven years after Kepler’s depth.

In 1611, Marco Antonio de Dominis142 (1560–1624, Italy), theologi-
cian, natural philosopher and mathematician, issued the publication De Radiis
Visus et Lucis in Vitris Perspectivis et Iride Tractatus. His explanation of the
rainbow, with all its faults, is superior to any other published in the interval
of three centuries from 1311 to 1611.

His theory was not derived from any one source, but was rather a mosaic
of notions borrowed from the philosophical and optical traditions, verified or
modified perhaps by direct experimental evidence. Dietrich’s work was clearly
of a higher order in precision and correctness of thought as far as what takes
place within the raindrop; but at least Dominis correctly followed Maurolycus
in abandoning the old incubus, the Aristotelian meteorological sphere.

Nevertheless, in several respects Dominis’ views are quite inferior to the
unpublished opinions of Kepler. In the first place, Kepler’s explanation was
consistent with the elementary principles of geometrical optics, for he recog-
nized the inevitability of the second refraction. Then, too, Dominis made no

small apertures with and without lenses (Camera Obscura). He applied it to

solar observations in a darkened room (1535).
142 Born of a noble Venetian family in the island of Arbe, off the coast of Dalmatia.

He was educated by the Jesuits in their colleges at Loreto and Padua. For some

time he was employed as professor of mathematics at Padua, and professor of

philosophy at Brescia. He was appointed bishop of Segnia (1596), archbishop

of Spalato (1598), and primate of Croatia and Dalmatia (1600). His endeavors

to reform the church involved him in a quarrel between the papacy and Venice,

and made his position intolerable. He crossed to England (1616), where he

became convert to Anglicanism and dean of Windsor (1619). He attacked the

papacy in a number of publications (1616 to 1619). He was enticed back to

Rome by the promise of pardon and the prospect of a cardinal’s hat, only to

be doomed to bitter disappointment. Upon his return (1623) he was thrown in

prison and died soon thereafter in a dungeon of the Inquisition in St. Angelo.

Later the Inquisition tried him posthumously and found him guilty. His corpse

was exhumed, dragged through the streets of Rome and publicly burnt in the

Campo di Fiore.



1924 4. Abstraction and Unification

attempt to account for the size of the bow, a problem which Kepler essayed,
albeit unsuccessfully. Yet, the explanation of Kepler has been universally
overlooked and in many an authoritative treatises on physics one can read
that “the elementary theory of the rainbow was first given by de Dominis”.
(Newton, Leibniz, Goethe and others virtually accused Descartes of pla-
giarism from de Dominis!)

The abortive efforts to solve the problem of the rainbow came to an end
326 years after the first scientific theory was propounded by Dietrich. The
man who reaped what others have sowed over more than three centuries was
non other than René Descartes.

In the third appendix to the Discours de la Méthode, one to which he gave
the title Les Météores, Descartes solved for the first time the fundamental
problem of the size of the rainbow. Following many experiments and calcula-
tions he concluded (1637): “I took my pen and made an accurate calculation
of the paths of the rays which fall on the different points of a globe of water
to determine at what angles, after two refractions and one or two reflections
they will come to the eye, and then I found that after one reflection and two
refractions there are many more rays which can be seen at an angle of from
41 to 42 degrees than at any smaller angle; and that there are none which
can be seen at a larger angle. I found also that, after two reflections and two
refractions there are many more rays which come to the eye at an angle from
51 to 52 degrees than at any larger angle, and none which come at a smaller
angle”.

Thus Descartes gave the 14th century theory true scientific status by show-
ing the quantitative agreement of theoretical calculations with the results of
observation. He discovered the key to the rainbow problem — the reason
for the clustering of rays about the angle 42 ◦ in the primary bow. This he
achieved through patient observations and laborious calculations (the calcu-
lus arrived only in 1671). Yet, he had not really answered all the problems
connected with the rainbow, as future generations were to find out.

Descartes’ work was not exempt from the rule that new ideas do not
meet with immediate acceptance; in fact, it was not integrated into scientific
thought for several decades, and consequently, the Aristotelian theory of the
rainbow had not suddenly been overthrown. Philosophical disagreement was
not the only impediment to the spread of the Cartesian explanation. In
1637 there were no scientific periodicals, and news traveled slowly. Thus,
his work, even though published again in Latin (1656), was slow to achieve
the recognition it deserved.

The next character in the rainbow drama is Huygens, who played a role as
a transition figure between the age of Descartes and that of Newton. He held
Descartes’ explanation of the rainbow in high regard. The chief contribution
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of Huygens to the theory of the rainbow was indirect, and its influence was
not felt until well over a century later. In the Cartesian geometrical theory it
matters little what light is, or how it is transmitted, so long as propagation is
rectilinear and the laws of reflection and refraction are satisfied. But rainbow
developments of the 19th century were to hinge closely on the nature of light,
and here Huygens introduced a major change (1679) — the wave theory of
light and a new derivation of the law of refraction by means of the “Huygens
Principle”.

This led him to conclude that light travels faster in air than in water,
contrary to the conclusions of Descartes and Hooke. But Huygens was
unable to verify this inference, nor was he able to make use of his principle
to explain the colors of the rainbow. The reason for this lay in the fact that
he disregarded the oscillatory and dispersive characteristic of waves. Huygens
never really accepted the challenge which the problem of the colors presented
and felt that, except for the question of color formation, the work of Descartes
was definitive. He probably never dreamed that his theory of light some day
would revolutionize the explanation of the rainbow.

It is of interest to note that whereas Descartes had laboriously calculated
the paths of innumerable rays, one by one, Huygens expressed the deviation of
the emergent ray as a function of the angle of incidence and then calculated,
by the method of Fermat, the values for which this deviation is a maximum
or a minimum (a procedure equivalent to the use of the calculus).

Huygens may have been the original inspiration for a little-known treatise
on the rainbow Stelkonstige Reeckening Van Den Reegenboog, composed by
Baruch Spinoza and published posthumously (1687), the year of Newton’s
Principia. In this manuscript the author combined the use of a variant of
the method of Fermat and Cartesian analytic geometry to arrive at the radii
40 ◦57′ and 54 ◦25′ for the two bows.

Then came Newton. For thousands of years men had looked at colored
spectra produced by light passing through spheres and prisms of water and
glass; but Newton looked at the spectrum more carefully than had any one of
his predecessors. He saw that rays of differing color were refracted by differing
amounts. Ever since antiquity it had been realized that the amount by which
light was refracted depended on the angle of incidence, as well as upon the
media in question; but Newton first showed (1666 to 1672) that it depends
also on the color of the light involved, each color having its own characteristic
index of refraction. Thus, for the first time color was reduced to an orderly
quantitative basis, and, also, for the first time, an adequate explanation was
possible for the width of the rainbow.

Traditionally (since Aristotle) it had been understood that white light
was pure and homogeneous, and that color, such as that of the rainbow, was
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the result of a loss in strength or purity. Newton’s experiments indicated,

however, that the reverse is true — only colored light is pure and homo-

geneous, and it is not a result of weakening. Newton realized that such a

drastic departure from previously accepted views would not be accepted by

his contemporaries without strong supporting evidence. Consequently, he

went out of his way to get an audience for his ideas. In 1672 he presented

to the Royal Society a paper describing his discovery of the composite na-

ture of white light. But the reception accorded Newton’s great discovery

was a great disillusionment to the young author. Half a dozen scientists, in-

cluding Hooke and Huygens, criticized his work. From that time on Newton

was most prudent indeed. He withheld from publication anything further on

optics until 1704, the year after Hooke, his sharpest critic, had died. Mean-

while his ideas went pretty much unnoticed, with credit sometimes ascribed

to others who did similar work [e.g. Edme Mariotte (1679)]. Newton made

two other contributions to the theory of the rainbow; he was first to ren-

der calculations concerning rainbows of order higher than two (1669–1671,

published 1704), and he derived for the first time an explicit formula from

which the radii of bows of all orders (and for any index of refraction) can be

deduced143.

The theory of the rainbow during the Newtonian age had reached the point

where no one untrained in advanced mathematics could hope to follow it. In

the field of poetry the change in attitude toward the rainbow was variously

received. In England, some times later, on December 28, 1817, in a dinner

gathering, Charles Lamb (1775–1834) and John Keats (1795–1821) agreed

that Newton had destroyed all the poetry of the rainbow by reducing it to

its prismatic colors, and all the guests drank a toast: “Newton’s health, and
confusion to mathematics”. Not long afterwards Keats composed the familiar

lines of Lamia:

143 [cos ic =
√

μ2−1
(n+1)2−1

; μ = water index of refraction; n = 1 for the primary

rainbow, etc.; ic = critical angle of incidence which makes the deviation D

extremal;

D(ic) = πn + 2ic − 2(n + 1) sin−1

{
1

μ

√
(n + 1)2 − μ2

(n + 1)2 − 1

}

].
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“Do not all charms fly
At the mere touch of cold philosophy?
There was an aweful rainbow once in heaven:
We know her woof, her texture; she is given
In the dull catalogue of common things.
Philosophy will clip an Angel’s wings,
Conquer all mysteries by rule and line,
Empty the haunted air, and gnomed mine –
Unweave a rainbow”.

For 99 years after the Opticks appeared (1704) there was nothing of compa-
rable significance in the story of the rainbow. It was generally assumed that
the last word has been written; the theory appeared to be in such satisfactory
shape that little refinement seemed to be necessary.

The first substantial studies in the physiology of color, as well as the
first credible explanation of the supernumerary rainbows, came in the work of
Thomas Young (1803). His discovery of optical interference unlocked one
of natures best-kept secrets — the cause of supernumerary rainbows: Young
saw that for each angle of incidence upon a raindrop greater than that of the
Cartesian effective ray, ic, there is another of smaller angle such that the two
rays emerge from the drop in parallel, or nearly parallel, paths.

It can be shown that these two rays are reflected at the same point on the
rear surface of the drop. These two rays, being deviated more than D(ic),
will appear inside the primary bow (for the secondary rainbow they appear
outside the bow). It is clear that the two rays, on traversing the drop, will
have followed paths which are not quite equal in distance, and so they will
arrive at the eye’s retina with a certain phase-difference and interfere. If the
difference in the lengths of the paths is an integral multiple of the wavelength
of a given color, the rays will be reinforced; if it is an odd multiple of half a
wavelength, the rays will extinguish each other. Several positions are expected
where reinforcement takes place, and also other intermediate positions where
the rays annihilate each other — the familiar phenomenon of Newton rings,
namely, the formation of a whole series of bows.

Thus, there are potentially infinitely many bands of each hue in the pri-
mary bow, the bands becoming fainter and narrower as the radii diminish.
The spacing of the bands depends on the variations in the length of the path,
and these are determined by the size of the drops. Ordinarily there is consid-
erable overlapping in the bands of various colors, especially when the drops
are not of uniform size; and this accounts for the fact that most people see
only a single primary rainbow.

If the drops are unusually minute (as in a fine mist), the interference bands
may become so intermingled that the result is a superposition of all colors,
that is, a white bow.
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For large drops of rain, only one brightly colored primary rainbow is usu-
ally seen; but Young found that supernumerary bows are clearly visible when
the raindrops are uniformly sufficiently small, and noted that there was a reg-
ularity in their spacing which corresponds to that of Newton’s rings. Young
actually advanced this phenomenon as an argument supporting his doctrine
of interference144.

Young’s theory, however, was unable to explain 18th century observations
that the radius of the bow is not constant, but rather varies considerably;
and the explanation had to wait for another 35 years. In the meantime,
Young’s work did not receive the recognition it deserved, partly due to the
discovery of the phenomenon of polarization of light [Malus (1808); Biot
(1812); Brewster (1815)].

Indeed, the observation that light from the two rainbow arcs is almost
entirely polarized in the planes which pass through the eye and the radii of the
arcs, could not be fitted into Young’s interference theory, since the latter was
based (prior to 1816) on the wrong concept of light as a sound-like longitudinal
motion. But in 1816 both Fresnel and Young, independently, finally saw
that polarization made it necessary to abandon this preconception to conceive
instead of light as a transverse vibration, in which the displacements take place
at right angles to the direction of propagation. They assumed that light is a
bundle of transverse waves in planes variously oriented, and that in reflection
and refraction some of the planes of vibration are screened out to leave a beam
which is wholly or partially polarized. This idea saved the wave theory from
the incubus presented by the non-interference of polarized light, for transverse
vibrations in different planes could scarcely be expected to affect each other.

Since transverse vibrations were regarded as incompatible with the fluid
state, Fresnel was forced to assume that the luminiferous ether behaves like
an elastic solid; with an elasticity greater than that of steel. But scientists
found it difficult to believe that the heavenly bodies are moving resistlessly
through such a solid, and it was not until 1838 that the Newtonian emission
theory gave way to the wave theory of Young and Fresnel.

Neither Young nor Fresnel gave the adequate mathematical exposition
which was needed for the formation of the rainbow. The definitive explanation
of the rainbow was to a large extent the work of three Cambridge men, not

144 The interference theory of the rainbow made clear why the bow is brighter near

the earth and why the supernumerary arcs seem to appear near the highest part

of the bow; raindrops tend to increase in size as they fall, and the results of

Young showed that where the drops are uniformly larger, there will the bow be

brighter, but unaccompanied by supernumerary arcs.
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one of whom was primarily a mathematician: George Biddell Airy (1801–
1892) was an astronomer, William Hallowes Miller (1801–1880) was a
mineralogist, and Richard Potter (1799–1886) was a chemist and physicist
with medical training. Their theory was further refined by other Cambridge
scholars and professors, notably Stokes, Larmor and Rayleigh.

The final major assault on the rainbow problem was started by Potter
(1835): He integrated all the former concepts of Descartes (limiting ray),
Huygens (wave front), Newton (dispersion), and Young (interference) into
a single mathematical theory. To this he added a central idea which es-
caped the notice of his predecessors — the caustic145 wave front formed in
the raindrop: following the refraction at the concave surface of the drop, the
wave-front is no longer rectilinear, but curvilinear. In fact, some of the rays
intersect others even before they strike the rear surface. Descartes had traced
the path through the drop of one ray at a time, and so he failed to call atten-
tion to this intersection. These rays, after the first refraction, form a caustic
by refraction.

Potter then found that the orthogonal trajectory of the rays reflected from
the rear concave surface of the drop is an s-shaped curve, with an equation
approximately of the form y = kx3. Finally, the wave front which emerges
from the drop after the second refraction consists of two convex portions,
mutually tangent but with unequal radii of curvature, which form a cusp at a
point slightly below the Cartesian limiting ray. The Cartesian rainbow band
can therefore be thought of as a caustic, and the rays of each color have
their own caustic, each one corresponding to a colored band in the rainbow
as explained by Newton in different terms.

Potter called attention to the fact that close to the caustic, the nearly
parallel rays will exhibit the interference phenomenon of which Young had
pointed out, creating the Newton-rings pattern. Consequently, the intensity
of illumination does not fall of monotonically as one departs from the effective
ray, as Descartes believed; the decline in intensity is oscillatory.

The precise analytical expression for the intensity of illumination at each
and every point of the region brightened by the bow (as a function of the
angular deviation of the ray from the least-deviated ray) was given by Airy

145 Caustic surface — the envelope of a family of reflected or refracted rays. An

example of a caustic curve, which is a plane section of a caustic surface, can

easily be seen by noting the bright arcs formed by reflected light rays on the

bottom of a teacup. If the equations of the tangent lines (rays) forming the

caustic are known, the equations of the orthogonal trajectories (wave-fronts) and

envelopes (caustics) can be found by the methods of advanced calculus. Caustics

can be formed either by reflection or by refraction, usually by intersecting rays.
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(1836) in his diffraction theory of the rainbow. He found that the intensity of
light is given by the square of an integral which since has come to be known as
“Airy’s rainbow integral”. His calculations showed that the region of greatest
brightness (as viewed by any particular observer) lie appreciably within the
radius computed on the basis of geometrical theory.

Airy also showed that the radius of the primary bow (and not only the
colors and spacing of the arcs) varies with the size of the drops. Moreover,
whereas Descartes, Young and Potter maintained that there should be no
light whatever returned to the eye at an angle greater than that of the least
deviated ray, Airy’s calculations show that this assumption is erroneous146

and that diffraction must be taken into account in any complete theory of the
rainbow.

Miller (1841) extended Airy’s analysis to include the secondary bow and
performed experiments which verified the results of Airy. Stokes (1850) de-
rived a more expeditious device for calculating the values of Airy’s rainbow
integrals, and calculated intensities of illumination sufficient to place the first
fifty maxima.

The theory of Potter and Airy ignored the finite size of the sun’s disc;
throughout the computations of the rainbow integral the light was assumed
to come from a point source. Keiichi Aichi (b. 1880, Japan) and Aikischi
Tanakadate (b. 1856) extended the Airy theory for a circular source of light
(1904). They had been struck by the fact that, according to the theory of Airy,
one should anticipate numerous supernumerary arcs, whereas in nature the
bow generally is accompanied by only a very limited number. They suspected,
from some approximations, that this discrepancy might be accounted for by
fact that the sun is not a point source of light. Their elaborate analysis showed
that, for a finite source, the supernumerary arcs of the natural rainbow lose
most of their color, especially for large drops. They demonstrated that the
degree of luminous intensity depends on the breadth of the source, as well as
on the size of the drops.

Since 1945 rainbows have been “used” for the first time as a means of
calculating how large the drops of water in a cloud are. The results were
used in aircraft icing investigations, where the free-water content and the
size of drops becomes a matter of immediate concern; a camera “rainbow
recorder” was used, both in natural clouds and in experimentally-controlled

146 Diffraction occurs for negative values of the Airy parameter z ≈ 2θ
{

a2

hλ2

}1/3

.

Airy also showed that, as far as the rainbow is concerned, there is no need to

integrate over the cusped wave-front that emerges from the drop, but over the

simpler s-shaped caustic-curve that results from the reflection at the back of

the drop.



1836 CE 1931

fog chambers, to find the difference in viewing angle between the principal
bow and the first supernumerary arc: the rainbow-calculated drop diameters
differed by as little as 2 to 5 percent from those computed by other means.
Airy’s theory proved, however, inadequate in the range of drop sizes from 10
to 15 microns, and a new approximation for the equation of the generating
caustic wave-front was derived.

The story of the rainbow had passed from Iris to Mathesis through a
mythological state, a reflection stage, a refraction state, a geometrical stage, a
dispersion state, an interference stage, and a diffraction stage. But although
much is known about the production of the rainbow, little has been learned
about its perception; our knowledge of what goes on between the eye and the
brain when one sees a rainbow is pretty much in a state of flux. Which part
of what we see is due to physical factors, and which is due to purely entoptic
reasons — is still unknown. As long as man by nature desires to know and
yearn for beauty, just so long will Iris continue to inspire both exact science
and romantic literature. For poets the rainbow had served as a ubiquitous
source of inspiration, but mathematics has also given the bow a beauty which
only the deeply initiated can fully appreciate.

1836–1855 CE Nicholas Joseph Callan (1799–1864, Ireland). Priest,
scientist and inventor. Created the first induction-coil (1836), which led to
the modern transformer [ahead of Ruhmkorff (1851)].

Callan was influenced by the work of William Sturgeon, who invented
(1825) the first electromagnet and by the discoveries of Michael Fara-
day (1831) and Joseph Henry (1832) concerning electromagnetic induc-
tion. Working from 1834 on, Callan employed a horseshoe-shaped iron-bar
and wound it with thin insulated wire (primary coil) and then wound thick
insulated wire over the winding of the thinner wire (secondary coil). He dis-
covered that, when a DC current (sent by a battery) through the primary coil
was interrupted, a high voltage was produced in the open secondary coil. In
doing so he constructed what is today known as autotransformer. Callan’s
induction-coil also used a “breaker”, consisting of a rocking wire that repeat-
edly dipped into a small cup of mercury. A clock mechanism was used to
interrupt the current in the primary coil 20 times a second. It generated a
40-cm spark in the open secondary coil over an open-circuit voltage of some
600, 000 Volt.

Like Cavendish before him, Callan made an independent discovery of
Ohm’s law (Ohm, 1827). In applied science he discovered several types of
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galvanic battery and influenced the study of high-voltage electricity. He also
constructed one of the first DC electric motors.

In 1838, Callan stumbled on the principle of the self-excited dynamo; mov-
ing his electromagnet in the earth’s magnetic field, he found he could produce
electricity without a battery. In his words, he found that “by moving with the
hand some of the electromagnets, sparks are obtained from the wires coiled
around them, even when the engine is in no way connected to the voltaic
battery”. The effect was feeble so he never pursued it, and the discovery is
generally credited to Werner Siemens (1866).

Callan was born at Darver, Ireland. After ordination as priest (1823)
he went to Rome where he obtained a doctorate in divinity (1826) at the
Sapienza University. While at Rome he became acquainted with the experi-
ments of Galvani and Volta. In 1826 he was appointed to the chair of Natural
Philosophy in Maynooth University (near Dublin) and remained in that post
until his death.

Unfortunately, his name was forgotten and his inventions were attributed
to other scientists: Maynooth was a theological university where science was
marginal in the curricula. Callan’s colleagues often told him that he was
wasting his time. In such an atmosphere, Callan’s pioneering work was soon
forgotten after his death, and Ruhmkorff (who like all instrument makers,
put his name on every instrument he made) got into the textbooks and thus
received the pioneering credit for the induction-coil. It was never challenged
until Callan’s publications were rediscovered in 1936 and first put into physics
textbooks in 1953.

1836–1858 CE Robert Remak (1815–1865, Germany). Neurologist and
biologist. Made important discoveries in nerve and muscle diseases (1859).
Developed new cell theory for animals, emphasizing protoplasm as cell sub-
stance and that cells are formed by division of existing cells. Showed (1845)
that there are only three layers present in the early development of the embryo
which he named: ectoderm, mesoderm and endoderm.147

Remak was born in Posen (Poznan), the oldest of the five children of Sa-
lomon Meyer Remak, who ran a tobacco shop and lottery office, and Friedrike

147 In this he revised earlier theory of Christian Pander (1820) and Karl von

Baer (1826) who first maintained that an embryo has heterogeneous structural

layers, called germ layers, which always give rise to the same physiologically

differentiated adult tissues. Remak emphasized that the formation of the germ

layers occurs by cell division.
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Caro148. The family were Orthodox Jews and in 1815 Poznan had returned
from Polish to Prussian sovereignty by the Congress of Vienna. Remak re-
ceived his earliest education at home and enrolled at the University of Berlin
(1833) to study medicine. His pioneering studies on the nerve tissue (1836)
gained him the M.D. (1838).

Although Remak wished to make a career in teaching, the way was barred
to him, since in Prussia at that time Jews were not admitted to that profes-
sion. He therefore continued his laboratory research, and in 1839 discovered
ganglion cells in the human heart. This finding seemed to him to explain
the relatively autonomous action of the heartbeat. During 1843–1856, Re-
mak applied many times for a teaching position, but in spite of his growing
fame and the intervention of Alexander von Humboldt and other eminent
friends on his behalf, his repeating requests were refused. Finally (1859) he
was appointed assistant professor at the University of Berlin, but this belated
and meager recognition had no effect upon his subsequent career.

His son Ernst Julius became a professor of medicine at the Berlin Uni-
versity (1902).

His grandson Robert became an important researcher in number theory.
The name REMAK is an acronym for Rabbi Moshe Kordovero149[1512–
1570, Safed, Israel], and the Remak family probably stemmed from the same
Spanish-Italian ancestry.

1837–1838 CE Based on the discoveries of Oersted (electromagnetism,
1820), Sturgeon (electromagnet, 1825) and John Daniell (steady current
cell, 1836), three men developed successful wire-telegraphy: in England, work-
ing together, William Fothergill Cooke (1806–1889) and Charles Wheat-
stone (1802–1875), and in the U.S.A. the painter Samuel Finley Breese
Morse (1791–1872). The Morse code, patented by Morse in 1840, uses pat-
terns of dots and dashes to represent letters, numerals, punctuation and other
signs.

1837–1844 CE Samuel Finley Breese Morse (1791–1872, USA).
Portrait painter and inventor. Developed the first successful electric

148 Kisch, B., “Forgotten Leaders in Modern Medicine”, Trans. Amer. Phil. Soc.

44, 227–296, 1954; Pagel, J., Allgemeine deutsche Bibliographie 28, 191–192,

Leipzig, 1889
149 Provided the first complete and systematic theory of the Kabbalah.



1934 4. Abstraction and Unification

telegraph150 in the United States and invented the Morse Code, still used
occasionally to send telegrams.

Morse was born in Charlestown MA, the eldest child of the Reverand
Jedidiah Morse and his wife, Elizabeth Ann Breese. He graduated from Yale
College (1810), went to London (1811) and studied two years at the Royal
Academy of Arts. He returned home in 1815 and within the next ten years
became a well-known portrait painter. His interest in telegraphy began in
1832 and after working at it for five years he demonstrated his equipment
in 1837. His symbolic alphabet, known as the Morse code was invented in
1840. A line was constructed between Baltimore and Washington and the
first message, sent in May 24, 1844, was “What hath God wrought!”. Morse
and his telegraph were known within 12 years throughout North America and
Europe. In 1861 the United States were linked by telegraph from coast to
coast. Electromagnetic waves were not yet discovered at that time. Morse
was not the first to invent the telegraph, but he is known as the “father” of
the telegraph because he created a new industry.

1837–1853 CE Heinrich Gustav Magnus (1802–1870, Germany).
Physicist and chemist. Investigated the motion of spinning spherically or
cylindrically-shaped solids in a fluid (liquid or gas) and discovered an effect
named after him (“Magnus effect”)151. It is responsible for the “curve” of
a served tennis ball or a driven golf ball, and affects the path of a spinning
artillery shell. Analyzed (1837) gases in the blood and showed that a higher

150 Independently, William O’Shaughnessy set up a 22 km demonstrator tele-

graph system in India, near Calcutta (1839) and later (1854) completed a 1300

km telegraph line in India, between Calcutta and Agra.
151 In ideal-fluid aerodynamics (neglecting friction), the force exerted by the fluid

on a finite rigid body moving with a constant velocity through it is zero, if the

fluid closes behind the body (d’Alembert’s paradox ). The result implies that the

so-called drag-force on the body due to fluid resistance is zero. [It also predicts

a zero lift force for lifting bodies such as wings of an airplane!]

If however, a circulatory flow is superposed, such as occurs when the body is

spinning, Bernoulli’s theorem predicts the existence of a force that tends to

divert the body from its straight trajectory. In the case of a cylinder (e.g. spin-

ning artillery shell) with a clockwise rotation and moving to the right, the fluid

velocity above the cylinder increases, whereas the velocity below it decreases.

Consequently there is a low pressure (“suction”) above it and a high pressure

below it. The result is a lift on the cylinder [Rayleigh, 1876]. The lift on an

airplane wing does not require a rotating body; the shape of the wing creates

a velocity distribution with circulation, but no vortices. The lift is then caused

by a Bernoullian pressure-gradient.



1837 CE 1935

concentration of oxygen exists in the blood flowing in arteries than in that
flowing in veins. This suggests that respiration takes place in the tissues152.

Magnus was born in Berlin to parents of Jewish origin. He studied for a
while under Gay-Lussac in Paris. In 1831 he returned to Berlin as a lecturer
on technology and physics at the university, and in 1845 he became a full
professor there.

1837–1859 CE Gabriel Lamé (1795–1870, France). Engineer and math-
ematician. Invented curvilinear coordinates. Made the following forecast of
the scientific significance of coordinate systems:

“Should anyone find it singular that we have been able to found a Course

of Mathematics on the sole concept of a system of coordinates, he may be

reminded that it is precisely these systems which characterize the phases and

stages of science. Without the invention of rectangular coordinates, algebra

might still be where Diophantos and his commentators left it, and we should

lack both the infinitesimal calculus and analytic mechanics. Without the in-

troduction of spherical coordinates, celestial mechanics would be absolutely

impossible; and without elliptic coordinates, illustrious mathematicians would

have been unable to solve several important problems of this theory. . . Sub-

sequently the reign of general curvilinear coordinates supervened, and these

alone are capable of attacking the new problems [of mathematical physics] in

all their generality. Yes, this definitive epoch will arrive, but tardily : those

who first recognized these new implements will have ceased to exist and will

be completely forgotten — unless some archaeological mathematician revives

their names. Well, what of it, provided science has advanced?”

Lamé insistence on the importance of coordinates has been justified in
modern physics. His early work (1839) on the conduction of heat in ellipsoids
led him to discover the functions which bear his name.

Lamé’s investigation in curvilinear coordinates led him into the field of
number theory. In 1840 he was able to prove Fermat’s Last Theorem for the
case n = 7. In 1847 he developed a solution, in complex numbers, of the form
A5 + B5 + C5 = 0 and in 1851 a complete solution, in complex numbers, of
the form An + Bn + Cn = 0.

152 This was later confirmed by the physiologist Eduard Friedrich Wilhelm

Pflüger (1829–1910, Germany), who showed that the essential chemical

changes of respiration occur in the tissues and cells rather than in the lungs.

Finally John Scott Haldane (1860–1936, England) and Joseph Bacroft

(1872–1947, England) elucidated the fine physical mechanism of respiration.
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He also proved the following theorem: The number of divisions required
to find the greatest common divisor of two numbers is never greater than 5
times the number of digits in the smaller of the numbers.

Lamé was born in Tours. He attended the École Polytechnique during
1813–1817. He then continued at the École des Mines from which he graduated
in 1820. In the same year he accompanied E. Clapeyron to Russia. He
was appointed director of the School of Highways and Transportation in St.
Petersburg, where he taught the exact sciences. He was also busy planning
roads, highways, and bridges that were built around that city.

In 1832 he returned to Paris and accepted the chair of physics at the
École Polytechnique. In 1836 he was appointed chief engineer of mines. He
also helped plan to build the first two railroads from Paris to Versailles and
to St. Germain. In 1851 he became professor of physics and mathematics at
the University of Paris.

It is difficult to characterize Lamé and his work. Gauss considered him
the foremost French mathematician of his generation. French mathematicians,
however, considered him too practical, while French scientists viewed him as
too theoretical. Yet the work he began was generalized almost as soon as it
appeared by such mathematicians as Klein and Hermite.

1837–1861 CE Origins of the telephone. In 1837, C.G. Page of Salem,
Massachusetts, drew attention to the sound given of by an electromagnet at
an instant when the electric current is closed or broken. He later discussed the
musical note produced by rapidly revolving the armature of an electromagnet
in front of the poles. In 1854, Charles Bourseul (Paris) recommended the
use of a flexible plate which would vibrate in response to the varying pressure
of the air, and thus open or close an electric circuit. A similar plate at the
receiving station would be acted on electromagnetically, and thus produce as
many pulsations as there are breaks in the current.

In 1861, Johann Philipp Reis (1834–1874, Germany) succeeded in trans-
mitting speech and music electrically down a wire using a device he called ‘das
Telephon’ in a lecture delivered before the physical society of Frankfurt. He
described an apparatus in which he caused a membrane to open and close an
electric circuit at each undulation, thus transmitting as many electric pulses
through the circuit as there were periodic amplitude vibrations in the sound.
These electric pulses were made to act on an electromagnet at the receiving
station, which gave out a sound corresponding to the number of times it was
magnetized or demagnetized per second. Reis could not, however, reproduce
human speech with sufficient clarity. The suggestion of Bourseul and the
experiments of Reis are founded on the idea that a succession of currents,
corresponding in number to the successive undulations of the pressure on the
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membrane of the transmitter, could reproduce at the receiving station sounds
of the same character as those produced at the sending station. The profes-
sors to whom this invention was presented were not very impressed and his
version of the “telephone” never received any financial support and no patent
ensued.

Reis was born in the town of Gelnhausen, in Hesse-Cassel, Germany, where
his father was a master baker and a petty farmer. Orphaned at an early age,
he interrupted his high school education to become merchant but in 1855 he
became a schoolteacher of mathematics and science.

1838 CE Antoine-Augustin Cournot (1801–1877, France). Economist
and mathematician. Attempted to apply mathematics to solution of eco-
nomic problems; pioneer in mathematical economics. In Recherches sur les
principles mathematiques de la theorie des richess (1838) discussed supply
and demand functions and introduced the concept of ‘elasticity of demand’.
He also considered conditions for equilibrium with monopoly, duopoly and
perfect competition. He considered the effect of taxes, treated as changes in
production costs, and discussed problems of international trade. Conducted
research in the theory of probability.

Cournot was professor at Lyons (1834), rector of academies at Grenoble
(1835–1838) and Dijon (1848–1862).

1838 CE Gerhardus Johannes Mülder (1802–1880, Holland). Chemist.
Coined the name protein from the Greek word for “first”. He studied the
chemical structure of the albuminous substances and concluded that they
were built up of a basic building block to which various amounts of modifying
structures were added. Mülder’s speculation turned out to be not quite right,
but the name remained.

1838–1839 CE Matthias Jacob Schleiden (1804–1881, Germany). Bo-
tanist. Recognized the importance of the cellular element of plants and stated
that the cell153 was the basic unit of life: an individual living and reproduc-
tive organ. The next year, the physiologist Theodor Schwann (1810–1882,
Germany) advanced the same idea. Neither of them originated this concept.
A number of other scientists had already come to believe that all organisms
were made of cells. But from that time on, all biologists regarded the cell as
the building block of life.

153 In 1665, Robert Hooke (1635–1702) coined the word cell for the infrastruc-

tural unit of a piece of cork which he saw through his microscope.
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The Cell (1831–1925)

The word cell owes its existence to Robert Hooke, who first noticed the
cellular structure of cork (1665). What Hooke really saw were dead cell walls
in the bark of the cork oak. Other early microscopists soon observed cells in all
kind of plants. Animals contained similar units, but these were harder to see
because animal cells lack the thick walls that surround plant cells. Observers
also reported the existence of many tiny unicellular organisms, each consisting
of only one cell. Thus, Antoine van Leeuwenhoek observed (1674) bacteria
2 micron long, as well as blood cells and spermatozoa. More than 150 years
later, in 1831, the appreciation of the cell as the basic unit of the organism
was finally manifested through the works of Robert Brown, who coined the
term ‘cell nucleus’. Schleiden and Schwann soon followed (1838–1839) with
the first theory on nucleus and cell formation. This theory states that:

• cells are the fundamental unit of life – the smallest entities that can be
called “living”

• all organisms are made up of one or more cells.

Robert Remak (1845) was first to demonstrate that cells are formed by
division of existing cells. Rudolf Virchow (1855) generalized and popular-
ized Remak’s discovery, using the aphorism: Omnis cellula e cellula - all cells
from cells. He added a third statement:

• cells arise only by division of other cells. In other words, cells are the
fundamental structural, functional and reproductive units of life.

Why are there cells? The metabolism of a living organism requires a
chemical environment different from any found in the nonliving world. A cell
organizes an “environment in miniature” by maintaining strict control of the
chemical composition within its boundaries. In the controlled environment of
a cell, all the activities of life occur: acquiring energy; using this energy to
maintain the chemical environment, to build organic molecules, to grow, and
reproduce by division into two new cells.

Many organisms are unicellular, but most plants and fungi, and all ani-
mals, are multicellular, composed of many cells. All cells must carry out cer-
tain basic activities; in addition, each cell of a multicellular organism makes a
specialized contribution to the economy of the body as a whole. For example,
a muscle cell in the heart is specialized to contract and help pump blood.
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Since it is deep within the body, it cannot capture its own food or obtain
oxygen from the air, but must rely on other specialized cells, such as those of
the digestive tract, lungs, and blood, to provide its food and oxygen.

Thus there is division of labor among the cells of a multicellular organism.
Unicellular organisms may also be highly specialized for their own ways of
life, with features much more complex than those in the cells of most plants
and animals. A specialized cell is usually distinguished by the exaggeration
or modification of one or more features common to most types of cells, rather
than by possession of structures or chemicals that other calls lack. We can
think of specialized cells as variations on the basic theme of cell structure and
function.

An idealized “basic cell” has three main parts:

1. The plasma membrane, covering the outside of the cell. (in plants, this
lies just inside the nonliving cell wall.)

2. The cytoplasm (cyto = cell), containing water, various salts, and organic
molecules. The cytoplasm also contains a variety of larger structures,
collectively called organelles, which are the working parts of the cell.
Many of these “little organs” are surrounded by membranes very similar
to the plasma membrane. The cytoplasm fluid is crisscrossed by a barely
visible network of microtubules involved in transporting molecules to and
from the membrane.

3. The cell nucleus (in bacteria, the nuclear area), containing the cell’s
genetic material.

The Plasma Membrane

Molecules and ions are in constant, random motion. Left to themselves,
these substances would diffuse down their concentration gradients and even-
tually become uniformly distributed. However, the chemical composition and
the physical environment is usually not completely appropriate for the bio-
chemical reactions of life. Cells require higher concentrations of some sub-
stances and lower concentrations of others.

To remain alive, a cell must maintain chemical homeostasis (“same-
standing”); that is, it must keep its internal chemical composition constant



1940 4. Abstraction and Unification

within the narrow limits suitable for life. However, a cell cannot create a suit-
able internal environment and then seal itself off from the world to avoid gain-
ing or losing substances by diffusion. The biochemical reactions of metabolism
require raw materials from outside the cell and generate waste products that
must be expelled. Hence the cell must maintain homeostatis while continu-
ously exchanging substances with its environment. Control of what substances
enter and leave the cell is the task of the plasma membrane, also called the
cell membrane or plasmalemma.

The idea of homeostatis is due to Claude Bernard (1857) who coined
the aphorism: “la fixité du milieu interieur c’est la condition de la vie libre”
(free life depends on the constancy of the internal environment). Indeed, the
plasma membrane plays an important role in homeostatis, the constancy of
the internal environment at the cellular level.

The plasma membrane is selectively permeable154; that is, it permits some
substances to pass more freely than others, and even prevents the passage of
certain kinds of molecules, to which it is impermeable. Hence the concentra-
tion of ions, nutrients, and other substances inside the cell differ from those
in the cell’s environment.

For biological systems to operate, some parts of organisms must be sepa-
rated from other parts. On a cellular level, the outside of the cell has to be
separated from the inside of the cell. “Greasy” lipid membranes serve as the
barrier. In addition to isolating the contents of the cell, membranes allow the
selective transport of ions and organic molecules into the cell.

All biological membranes consist of lipids155and proteins. The actual kinds

154 Discovered by Charles E. Overton (ca 1895) and established further by the

experiments of I. Langmuir (1905).
155 Lipids are a class of biochemical compounds composed mainly of fats and oils.

They are soluble in fat solvents such as benzene, ether, and chloroform, but

insoluble in water. Lipids do not contain a common chemical unit, and their

composition as well as their structure varies widely. Most lipids, however, are

ethers of fatty acids. Lipids are essential constituents of almost all living cells.

The more complex lipids are concentrated in brain and nerve tissues.

Lipids may be classified into the following categories:

I. Simple lipids that contain C, H, O, N, and P

(a) Phospholipids (phosphatides)

(1) Lecithins

(2) Cephalins

(3) Sphingosides
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and proportions of molecules present depend upon the membrane, its location
and function.

The plasma membrane is very thin, only about 7.5 to 10 nanometers (nm)
thick (1 nm = 10−9 m = 10−6 mm). Therefore, it cannot be seen with a
regular microscope. However, its existence was deduced from the behavior
of cells long before the much more powerful electron microscope showed that
it really is there. Electron micrographs show the membrane as a continuous
double line surrounding the cell.

The classic studies of membrane structure used the red cells of mammals
(warm-blooded animals with fur or hair, including humans). These cells were
chosen because of their simple structure. Mammalian red blood cells lack
most of the internal components of other cells; they consist of a single, sac-
like plasma membrane containing little other than the red, oxygen-carrying
hemoglobin.

An experiment done in 1925, by E. Gorter and F. Grendel, established
that plasma membranes contain a double layer of lipid molecules. These
researchers broke open blood cells and separated the membranes from the

(b) Glycolipids

II. Derived lipids

(a) Sex hormones

(b) Fat-soluble vitamins A, D, E, and K

Fats are esters of three molecules of fatty acid and one molecule of glycerol.

Fats are called triglycerides because they are triesters of glycerol and three

fatty acids. They are the most abundant as well as the most important class

of lipids in the average diet (they comprise 10 percent of the body weight of

mammals). Triglycerides are used to store energy, and they provide protection

against heat loss and mechanical shock.

Many internal organs, such as the kidneys, are enveloped in a thick layer of fat

to protect them from the effects of violent shock.

Among lipids found in biological membranes is cholesterol (a derived lipid) and

phospholipids. The latter are complex esters composed of an alcohol, fatty acids,

phosphoric acid, and a nitrogenous base. They are present in every tissue of

the body, but especially in the nervous system.

In the energy economy of the cell, glucose reserves are like ready cash, whereas

lipid reserves are like a fat savings account. The stored energy of lipids resides

in the fatty acid chains of triacylglycerols. When there are excess calories, fatty

acids are synthesized and stored in fat cells. When energy demands are great,

fatty acids are catabolized to liberate energy.
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hemoglobin. They dissolved the membrane lipids in acetone (the main com-
ponent of nail polish remover). When the acetone-lipid preparation was mixed
with water, the lipids rose to the top and spread over the water surface in a
monolayer only one lipid molecule thick. This lipid monolayer occupied two
times the surface area calculated for the plasma membranes of the original
red blood cells. Hence the researchers concluded that the plasma membrane’s
lipid must exist in a double layer, or bilayer. We now know that all biologi-
cal membranes have double layers of lipid molecules. In fact, lipids found in
biological membranes may form bilayers spontaneously even when they are
removed from the cell.

Membranes have two main functions: they form a physical barrier around
a cell or organelle, and they control the passage of substances into or out of
the enclosed area. Some aspects of the membrane permeability have been
understood for a long time, but not until the 1970s did it become clear that
substances cross biological membranes in only three distinct ways: by dissolv-
ing through the lipid layers, by being moved through the lipid layers by way
of the membrane proteins, or by moving within a sac formed from part of the
membrane. We shall consider each of these in turn.

Some molecules cross biological membranes by virtue of their interactions
with the lipid molecules in the membrane. In essence, these substances dis-
solve in the lipid on one side of the membrane and emerge at the opposite face.
These substances move by diffusion, each entering or leaving the cell accord-
ing to its own concentration gradient. To study these interactions without
interference from membrane proteins, researchers work with artificial lipid
bilayers. The lipids in these bilayers behave essentially like lipids in intact
biological membranes. A lipid bilayer’s hydrophobic interior makes it rela-
tively impermeable to ions and to many polar molecules. As a result, the
plasma membrane prevents most of the water-soluble cell contents from es-
caping. However, small uncharged molecules can slip between the hydrophilic
heads of the membrane phospholipids and will diffuse across the bilayer. The
rate at which such a substance can diffuse through the lipid bilayer depends
on its solubility in lipids and its molecular size.

Hence small, nonpolar molecules such as oxygen (O2), nitrogen (N2), ben-
zene, ethylene, and ether cross membranes rapidly. Uncharged polar mole-
cules also cross the lipid bilayer rapidly if they are small enough. For example,
ethanol and urea cross rapidly; glycerol, which is also uncharged but larger,
crosses much more slowly, and glucose, twice the size of glycerol, can hardly
cross an artificial lipid bilayer at all.

Because water is relatively insoluble in lipids, it is somewhat surprising
that water molecules cross lipid bilayers quite rapidly. This is partly because of
the water molecule’s small size, but it may also be that the molecules’ unique
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bipolar structure somehow permits it to pass the membrane’s hydrophilic
outer layers especially easily.

Artificial lipid bilayers are about 109 (one billion) times more permeable to
water molecules than to charged ions, even such small ones as sodium (Na+)
and potassium (K+). The inability of ions to penetrate the plasma membrane
is partly due to their electric charge. In addition, ions in solution are hydrated,
that is, surrounded by a layer of water molecules, which in effect makes them
much larger.

Many (particularly polar) molecules move rapidly across biological mem-
branes even though they cross artificial lipid bilayers very slowly. Exam-
ples include various small ions, glucose, and amino acids. These substances
are transported by membrane transport proteins or carriers. Each transport
protein is specific in that it transport only one or a few chemically similar
substances.

Some transport proteins merely move one type of solute across the mem-
brane. In others, transfer of one solute depends upon the simultaneous trans-
fer of a second kind of solute in the same or the opposite direction. Some
proteins move their solutes in only one direction, while others work in both
directions. Here we consider some of the more important types of protein
transport systems.

In passive transport, the membrane protein provides a means for an ion or
molecule to cross the membrane, moving down its electrochemical gradient. It
is well-known that molecules move according to their concentration gradients,
going from areas where their concentration is greater to areas where it is less.
However, a second factor also influences the movement of ions: the electrical
environment.

In most plasma membranes, transport proteins move ions in such a way
that electrical charge is unequally distributed on the two sides of the mem-
brane.

Therefore we say that an electrical potential difference, or membrane po-
tential, exists across the membrane. For instance, if the interior of a particular
cell has an electrical potential of −50 millivolts (mV) compared with the ex-
terior, its membrane has a membrane potential of −50 mV. So the membrane
potential has this effect: positively charged ions tend to enter the cell readily,
attracted by the excess negative charges there, but negatively charged ions
tend to remain outside the cell, attracted by the external positive charge and
repelled by the negatively charged interior.

Now we can see that the diffusion of a given ion across a membrane depends
on two factors: (1) the ion’s own concentration gradient and (2) the overall
electrical potential gradient across the membrane, which is the gradient of the
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amalgamated concentrations of all electrically charged species present. Both
these gradients together constitute the electrochemical gradient for the ion,
and this determines how rapidly the ion diffuses across the membrane.

Perhaps the simplest case of passive transport occurs where membrane
proteins form channels through the lipid membrane. These channels contain
an aqueous solution and permit small solutes to cross the bilayer by sim-
ple diffusion down their electrochemical gradients, avoiding the membrane’s
hydrophobic interior.

While some of the channels are open all the time, others, called gated
channels, behave as if they have gates that open and close. Some gated
channels open when a specific substance binds to a receptor on the plasma
membrane. Others open in response to changes in the membrane potential.
Still others open when the concentration of a particular ion inside the cell
increases. Many “gates” close again automatically even if the stimulus that
caused them to open is still present. Gated channels permit the membrane’s
permeability to change from time to time. This feature is vital, among other
things, to the working of nerves and muscles.

In facilitated diffusion, a carrier protein combines with a specific solute
and moves it from one side of the membrane to the other, down its electro-
chemical gradient. This in effect increases the membrane’s permeability to
the substance and so allows the substance to cross membranes faster than it
otherwise would.

An example is the system that facilities the diffusion of glucose into the
cells of some tissues of vertebrates (animals with backbones). In the liver, the
lens of the eye, and red blood cells, facilitated diffusion moves glucose across
the plasma membrane in both directions by means of a carrier molecule. The
carrier molecule is more likely to encounter and pick up a glucose molecule
on that side of the membrane where glucose is more plentiful. When a cell is
breaking down glucose quickly during respiration, the glucose concentration
inside the cell falls; glucose is then more plentiful outside the cell, and it is
moved into the cell more rapidly than it is moved out.

Facilitated diffusion is just as important in increasing the rate at which
glucose leaves a cell. Cells in the liver, for instance, not only remove glucose
from the bloodstream when the blood glucose level is high but also replenish
the blood glucose when its level drops.

In active transport, substances are moved either with or against their elec-
trochemical gradients; this process requires the expenditure of energy. The
source of energy for active transport may be the high-energy ATP molecule or
the electrochemical gradient of an ion across a membrane. Common sources
of such electrochemical energy are steep differences in sodium ion (Na+) or
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hydrogen ion (H+) concentration on the two sides of a membrane. Since there
is a strong tendency for ions to move down a steep gradient, such a gradient
represents a source of energy.

Among the many active systems are those that take up amino acids, pep-
tides and potassium in the bacterium Escherichia coli. These substances move
into the bacterium only in the presence of the appropriate carriers and of a
source of energy.

Another example is a calcium pump, found in many cells, which pumps
Ca2+ out of cells and so keeps their internal Ca2+ concentration much lower
than external levels. A spectacular pump found in the stomach wall is re-
sponsible for secreting “stomach acid”: using the energy of ATP, it exports
H+ against a pH gradient of about a million to one! But one of the most
widespread and best examples is the sodium-potassium pump.

In order for a cell to maintain homeostatis, it must have strict control over
its chemical content, which includes not only the absolute amounts of solutes
but also their concentration. Thus the content of the solvent, water, in a cell
must also be precisely regulated. Vital as water is to living cells, cells have
known carriers or other direct means of transporting water in or out. Water
seems to travel through the plasma membrane quite freely – faster, in fact,
than any other substance.

Osmosis, the process by which water moves through a selectively perme-
able membrane, is a special case of diffusion: it involves the diffusion of a
solvent, such as water, rather than the diffusion of substances dissolved in the
solvent. In osmosis in living cells, water moves across a membrane from a
weak, or dilute, solution into a strong, or concentrated, solution (this process
is spontaneous since it increases the overall solute entropy).

A simple way to demonstrate osmosis is to separate distilled (pure) water
from an aqueous solution by a membrane that is permeable to water but not
to the solute. As time passes, the volume of the solution increases and that
of the distilled water decreases. Therefore water must be moving by osmosis
from the water, across the membrane, and into the solution.

What is the molecular mechanism for this entropy-increasing process? Wa-
ter molecules can cross the membrane in either direction. However, the water
molecules in the higher-concentration solution bump into the solutes and also
experience forces attracting them to solute particles; this retards the move-
ment of the water molecules in the solution, and so water moves into that side
of the membrane solution faster than it moves out.

In a laboratory osmotic system, the net movement of water into the so-
lution increases the height of the solution in the tube, and the weight of the
column of solution exerts hydrostatic pressure. As water enters the solution,
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the hydrostatic pressure builds up until it is pushing water molecules out as
fast as they enter. The solution will remain at this level.

The extent of movement of water across a membrane can be predicted by
knowing the osmotic potentials of the two solutions separated by the mem-
brane. The osmotic potential of a solution is its tendency to gain water when
separated from pure water by an ideal selectively permeable membrane. A
stricter definition of osmotic potential is that it is the negative of the osmotic
pressure, which is the minimum pressure that must be applied to a solution
to prevent it from gaining water when it is separated from pure water by an
ideal selectively permeable membrane.

The osmotic potential is expressed in negative terms: the more concen-
trated the solution, the lower (more negative) its osmotic potential, and the
greater its tendency to gain water from a solution with a higher (less negative)
osmotic potential. The osmotic potential is the driving force of osmosis, since
water tends to move in a downhill direction in terms of free energy, that is,
in the direction of the lower osmotic potential,

The osmotic potential in a system depends on the concentration of parti-
cles in the solution and on the attraction of water molecules to the particles,
which slows the movement of the water molecules. There may be only one
type of molecule dissolved in a solution, or there may be many, as in a living
cell. Each molecule of a strong-electrolyte ionic substance dissociates into
more than one particle in aqueous solution; NaCl dissociates into two par-
ticles, MgCl2 into three, and so forth. The more particles there are in a
solution, the lower the osmotic potential. If the solute particles are able to
pass through the membrane, then the osmotic potential of the solution will
gradually change as solute particles enter or leave it.

We can now see how a cell can control its water content, and hence its
volume. The cell can create a difference in osmotic potential across its mem-
brane by the active transport of solutes, especially by means of the sodium-
potassium pump. Water will then move by osmosis toward the side of the
membrane where the osmotic potential is lower.

Cells behave as an osmotic system. A living cell has a selectively perme-
able plasma membrane, which encloses the cell’s internal solution of various
particles dissolved in water. To remain alive, the cell must be covered by at
least a thin layer of water, which also has solutes dissolved in it. If this extra-
cellular (extra = outside) solution is in osmotic balance with the intracellular
(intra = within) solution, no net exchange of water occurs between them, and
the cell is said to be living in an isotonic solution.

If the external solution is made more concentrated, so that the cell loses
water to its environment, such an extracellular solution is said to be hypertonic
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to the cell contents. And if the cell is placed in a solution dilute enough for
the cell to gain water from outside, this environment is said to be hypotonic
to the intracellular solution.

Some animal cells in dilute (hypotonic) solutions may take in so much
water that their internal pressure ruptures the plasma membrane, allowing
the cell contents to escape. This process is known as lysis (bursting) of a cell.
In the same situation, the rigid wall of a plant cell produces a wall pressure
which opposes the outward pressure of swelling and makes most plant cells
more resistant to swelling in a hypotonic solution.

Many animals live in freshwater environment which are hypotonic to their
cell cytoplasm. Why don’t these animals take up so much water by osmosis
that they swell up and burst? Most of a freshwater animal’s body surface is
covered by a layer of rather impermeable material, which retards water uptake.
Such layers include the mucus of fish and worms or the wax-impregnated chiti-
nous armor of aquatic insects and spiders. In addition, the excretory struc-
tures of such organisms have well-developed active transport mechanisms,
which allow them to rid their bodies of water while conserving precious salts.

Freshwater protozoa (unicellular organisms that lack cell walls, such as
Amoeba and Paramecium) gain a great deal of water by osmosis. These or-
ganisms void excess water by way of specialized structures called contractile
vacuoles, which accumulate water and then contract, squeezing the water
back into the environment. Like all other freshwater organisms, protozoans
face a scarcity of available salts. So, before the contractile vacuole expels its
contents, salts are removed by active transport. Every 4 to 8 minutes the
contractile vacuoles of a paramecium eject a volume of water equivalent to
the volume of the entire cell!

The cells of a multicellular organism communicate with their neighbors
by the exchange of substances in the cytoplasm. Such transfers can be ac-
complished most effectively by direct cytoplasm-to-cytoplasm connections. In
many cases we find plasma membranes arranged to permit such connections.

In plants, the cytoplasm of neighboring cells is often connected by strands
of cytoplasm called plasmodesmata (singular: plasmodesma). These cytoplas-
mic bridges pass through interstices in the cell walls between the two cells, and
both the cytoplasm and the plasma membranes of these cells are essentially
continuous with each other.

Gap junctions occur between many kinds of animal cells and are thought
to permit passage of ions and small molecules from cell to cell. This cell-to-
cell connection can be shown by placing microelectrodes inside two adjacent
cells that are linked by gap junctions. The electrical resistance between the
electrodes is very low, indicating that electrically charged substances can move
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unimpeded between the cells. In contrast, if the electrodes are placed so that
one is inside and the other outside a cell, the electrical resistance measured
is high. This shows that the flow of ions through the membrane is highly
controlled.

The main electrically charged particle in biological systems are proteins
and nucleic acids, which are too big to leave the cell (even through gap junc-
tions), and small ions such as Na+, K+, and Cl−. The low electrical resistance
between adjacent cells suggests that ions can move from one cell to another,
probably through the intercellular channels of the gap junction. It is some-
times possible to confirm such a finding by tracing the movement of fluorescent
or radioactive substances from one cell to another.

In some tissues, the function of electrical coupling between cells is clear.
For instance, coupling helps to coordinate the contractions of adjacent heart
muscle cells. However, the function of this coupling is not yet understood in
other cases, such as the many gap junctions in early animal embryos.

Electron micrographs of gap junctions show an array of proteins channels
linking the cytoplasm of two neighboring cells. Each channel consists of two
short, pipe-like sections, one in each plasma membrane, lined up so that they
meet in the intercellular space to form a continuous passageway. One end
of each “pipe” juts its counterpart on the opposite membrane. The walls of
each “pipe” consists of six rather cylindrical membrane proteins arranged in
a circle surrounding a channel about 1.5 to 2.0 mm in diameter.

The complex process by which a cell nucleus gave rise to two daughter
nuclei was worked out during the 1870’s and the 1880’s, largely by German
investigators who gave the first clear description of the appearance of chromo-
somes in mitosis. These phenomena gained importance (1890) when August
Weismann took up the theories of hereditary particles developed by Hugo de
Vries and others, combined them with studies of cytology and embriogenesis,
and developed the idea that nuclei, and particularly chromosomes, contained
determinants which directed the development of the cells and hence controlled
the characteristics of the whole animal or plant. Hence the nucleus, previously
seen as a part of the active protoplasm of the cell, came to be viewed as a
store of information.

Summary

Cells must maintain the internal concentrations of all substances at ap-
propriate levels. At the same time, cells must maintain a lively commerce
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with their environments, taking in new raw materials for their metabolism
and expelling waste products.

The plasma membrane regulates what enters or leaves the cell. It is perme-
able to many types of small molecules and ions, yet sufficiently impermeable
to prevent the loss of such materials as nucleic acids, proteins, and polysac-
charides.

A biological membrane consists of a fluid lipid bilayer with various proteins
floating in it, some mobile in the bilayer and some anchored to stable cellular
structures. Oligosaccharides are attached to some protein and lipid molecules,
forming glucoproteins and glycolipids.

This basic structure has two properties crucial to membrane function.
First, lipid bilayers spontaneously form closed compartments, thereby keeping
the solutions inside and outside the membrane separate. Second, membranes
are asymmetrical, with different lipid and protein components in each of the
two layers, and with molecules oriented so that they consistently face one
membrane surface or the other. For example, active transport molecules are
oriented so that they move substances in only one direction.

A membrane’s lipid bilayer is freely permeable to water. It also admits
small, lipid-soluble molecules, which diffuse through the lipid layers according
to their concentration gradients.

Most ions and polar molecules can cross the membrane only with the aid
of protein transport molecules. Each protein is specific for a particular solute
or a few closely related solutes. Channel proteins form aqueous channels
through the membrane; some are gated so that they open in response to
specific polar molecules and ions down their electrochemical gradients. Other
proteins mediate active transport, which can move a solute either with or
against its electrochemical gradient (used e.g. to transport ions such as Na+

or H+). The sodium-potassium pump, powered by ATP, pumps Na+ out of a
cell and K+ in. This pump is largely responsible for the membrane potential of
a cell, and the electrochemical gradient of sodium that it creates also provides
energy for the active transport of solutes such as glucose.

When the cell acquires macromolecules or larger particles, the membrane
surrounds them and pinches off to become a vesicle or vacuole inside the cell,
by the process of endocytosis. Substances can be discharged from many cells
by the opposite process of exocytosis.

Cells gain or lose water by osmosis. The membrane does not control the
movement of water molecules directly; rather, it performs active transport of
solutes and so creates an osmotic potential difference that will induce osmosis.
The cell wall of a plant cell exerts a pressure that limits the cell’s water
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content. Many protozoans void excess water taken in by osmosis by means of
a contractile vacuole.

The plasma membrane may be expanded to provide additional surface area
for exchange of substances with the environment. The plasma membranes of
adjacent animal cells may interact. Tight junctions seal membranes together
and prevent seepage of substances between cells. Intermediary junctions and
desmosomes provide mechanical strength by attaching the membranes of ad-
jacent cells. Gap junctions act as “pipes” through animal cell membranes,
providing for direct transfer of ions from cell to cell. In plants, direct transfer
between cytoplasm of adjacent cells occurs by way of plasmodesmata.

1838–1840 CE Ferdinand Minding (1806–1885, Germany). Mathemati-
cian. A forerunner of hyperbolic non-Euclidean geometry. Contributed to
the differential geometry of surfaces of constant curvature and was first to
introduce the concept of the pseudosphere156 and show that the hyperbolic

156 Pseudosphere: A surface of revolution formed from the plane pursuit curve

called tractrix. This curve was first studied by Newton (1676) and later by

Huygens (1693), Leibniz (1693), Johann Bernoulli (1728), and Liouville
(1850). Also called Tractory and Equitangential curve. It is the path of a

particle pulled by an inextensible string whose other end moves along a line

(x-axis, say). The simplest example is that of a toy-boat pulled by a boy with
a string: he starts walking in a direction perpendicular to the string, always

keeping the string taut. The tractrix is the boats’ path in the water (ignoring

the boy’s height). Since the thread is stretched in the direction tangent to
the curve, we can write dy

dx
= − y√

p2−y2
where p is the length of the string.

Integration yields the equation

x = p ch−1

(
p

y

)

−
√

p2 − y2 ,

or in parametric form:

y = p sin φ, x = p

[

log tan
φ

2
− cos φ

]

, − π

2
< φ <

π

2
,

where φ is the angle between the string and the x-axis (the asymptote).

Consider the surface of revolution formed by rotating the curve about the entire
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formulas for triangles hold on the pseudosphere (1840). Minding was a stu-
dent of Gauss and later became a professor at the University of Dorpat (now
Tartu, Estonia).

Hyperbolic non-Euclidean geometry (nEg) can briefly be characterized by
the fact that there are (at least) two straight lines passing through a point
and parallel to the given line, and the sum of the angles of a triangle is less
than π. In Elliptic nEg there does not exist a straight line parallel to a given
one, and the sum of the angles of a triangle is more than π. The intrinsic
geometry of surfaces with positive constant Gaussian curvature is, at least
locally, identical with elliptic nEg.

Minding established the theorem (1839) that all surfaces with the same
constant curvature are isometric; in particular, every surface of constant neg-
ative Gaussian curvature K = − 1

λ2 can be isometrically mapped onto a
pseudosphere of pseudoradius λ.

Minding started from the standard relation for a spherical triangle of sides
{a, b, c} and angle A opposite the side a:

cos
a

R
= cos

b

R
cos

c

R
+ sin

b

R
sin

c

R
cos A,

where R is the sphere’s radius and a
R is the angle subtended at the sphere

center by side a, in radians, and similarly for b
R , c

R . In the plane limit R → ∞
it reduces to the Euclidean law of cosines a2 = b2 + c2 − 2bc cosA. On a
surface with constant curvature K, the above relation is generalized into

cos(a
√

K ) = cos(b
√

K ) cos(c
√

K ) + sin(b
√

K ) sin(c
√

K ) cos A.

Applying this to surfaces with negative curvature K = −1, one finds
ch a = ch b ch c − sh b sh c cosA, which holds for a geodetic triangle on
a pseudosphere. This very equation was obtained earlier (1837) by
Lobachevsky who did not realize that it holds on a pseudosphere. It is one
of the great examples of noncommunication in mathematical history. Neither
Minding nor Lobachevsky seem to have read the other’s paper. Nobody seem
to have read them both and realize that Lobachevsky’s “imaginary geometry”

asymptote. It has an area of 4πp2 and a volume of 2
3
πp3 (Huygens showed in

1693 that they are finite). The mean curvature of the said surface (arithmetic

mean of maximum and minimum curvatures at a point) is a negative constant(
− 1

p

)
. It is for this reason that the surface is called the pseudosphere with

pseudoradius p. Because of this property the pseudosphere serves as a model

for non-Euclidean hyperbolic geometry, just as a sphere does for non-Euclidean

elliptic geometry.
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was nothing more than the very real geometry of a particular surface. Hence,
the importance of this result for hyperbolic geometry was totally missed. Per-
haps it was clear that the pseudosphere cannot serve as a “plane”, because
it is infinite in only one direction. It was not until 1868, when Beltrami ex-
tended the pseudosphere to a true hyperbolic plane157 — a surface locally like
the pseudosphere but infinite in all directions — that hyperbolic geometry
was finally placed on a firm foundation.

1838–1852 CE Ferdinand Gottfried Max Eisenstein (1823–1852, Ger-
many). Mathematician. One of the most gifted mathematicians in Germany,
of the two generations after Gauss.

Contributed to the fields of elliptic functions, algebra and number theory.
In the latter he created the theory of cubic forms. His work led to several
theorems for quadratic and biquadratic residues, cyclotomy and quadratic
partition of prime numbers158 and reciprocity laws. He was Gauss’ favorite
student and Gauss wrote of him to von Humboldt: “Eisenstein belongs to
those talents who are born but once in a hundred years”.

157 Hyperbolic plane: consider a circle of radius 2 in the x–y plane. Define a metric
tensor w.r.t. a polar coordinate system (r, θ) at the origin:

g11 =

(

1 − r2

4

)−2

, g12 = g21 = 0, g22 = r2

(

1 − r2

4

)−2

.

The Gaussian curvature

K = − 1√
g11g22

[
∂

∂r

(
1√
g11

∂
√

g22

∂r

)

+
∂

∂θ

(
1√
g22

∂
√

g11

∂θ

)]

is found to be equal to −1, while the geodesics consist of Euclidean straight lines

through the origin and circles whose center lies outside the boundary r = 2 and

intersect r = 2 orthogonally. Thus, through a point not on a given geodesic

circle, there exist infinitely many “parallel lines” (circles) to the given one.
158 Prime numbers can be defined in fields other than integers. In the complex

field C we have the Gauss integers n + im (n, m integers) and the Gauss

primes [primes of the form 4k − 1 over the integers are still primes in C, but

2 and primes of the form 4k + 1 can be factored in C, e.g. 2 = (1 + i)(1 − i),

5 = (2 + i)(2 − i), 13 = (2 + 3i)(3 − 3i), 19 = (4 + i)(4 − i), etc.].

Eisenstein defined the Eisenstein integers n + ωm, where ω is the com-

plex cube root of unity [ω = 1
2
(1 −

√
−3); 1 + ω + ω2 = 0]. The prime 2 and

primes of the form 6k − 1 are also Eisenstein primes, but 3 and primes of the

form 6k + 1 can be factored, e.g. 3 = (1 − ω)(1 − ω2), 7 = (2 − ω)(2 − ω2),

13 = (3 − ω)(3 − ω2), 9 = (3 − 2ω)(3 − 2ω2), etc.
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Eisenstein was born in Berlin to Jewish parents. He started his university
studies while still in high school and on his second year of study he received
his Ph.D. degree, honoris causa, from the University of Breslau.

Eisenstein suffered all his life from bad health. After leaving school he
traveled with his parents to England where they were looking for a better life.
While in Ireland Eisenstein met Hamilton, who gave him a copy of a paper
that he had written on Abel’s work on the impossibility of solving quintic
equations. This stimulated Einstein to do research in mathematics and on his
return to Germany he enrolled at the University of Berlin. In 1844 Eisenstein
went to Göttingen for a short time and met Gauss.

Throughout this year he published no fewer than 25 papers in German
mathematical journals. In 1852 he became a professor of mathematics at the
University of Berlin and was elected to the Prussian Academy of Science. He
was an influential teacher of Riemann in Berlin.

But his health worsened after 1847. Soon he spent most of his time in
bed. Eisenstein spent a year in Sicily in an attempt to improve his health but
after his return to Germany he died of pulmonary tuberculosis at the age of
29. The collected works of Eisenstein were published by Gauss already during
his lifetime (1847) [his autobiography was published in Volume 40 of Zeitschr.
f. Math. u. Physik , pp. 143–200, 1895].

1839, Aug 19 Official date for the start of photography

The Academy of Science and the Academy of Fine Arts met jointly in
Paris to debate one last time the process invented by Daguerre (1839) and
(after the French state purchased the inventor’s patent at the price of a life
annuity) made the world a gift of that process.

Evolution of early photography (1826–1851)

The discovery of photography during the first third of the 19th century
was the response of the technological era to the new tastes of a middle class
of considerable economic means. Indeed, manual graphic techniques such as
drawing, etching and lithography must have seem outmoded to people living
in an age when steam machine energy was being pressed into the service of
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capitalist production, when mechanical looms were gradually replacing labor
force, and when railroads were on the verge of bringing distant regions within
the reach of one another, thus endowing humanity with new mobility.

Above all, such manual and therefore largely subjective forms of repre-
sentation hardly corresponded with the objective vision of the world and the
environment to which the rational positivism of the times aspired.

Strictly speaking, the basic principles of photography had been known for
some time. They only had to be combined and the final missing link supplied.
The working of the camera obscura, for example, had been known since ancient
times and had also served as an aid to artists interested in achieving more
true-to-life perspective in their work since the Renaissance. Similarly, the
sensitivity to light of silver salts was a known fact by, at the latest, the time
of Johann Heinrich Schulz (1727). What remained lacking up until the
end of the 18th century was a socially rooted interest in obtaining pictures by
mechanical means and a way of making permanent the camera obscura “sun
pictures”.

Various separate developments took place during the first half of the 19th
century: in 1826, the Frenchman Nicéphore Niepce had succeeded in tak-
ing a photograph of the view from his workroom window by using bitumen
coatings on a copper plate; since 1834, England’s Henry Fox Talbot had
been successfully experimenting with sensitized paper negatives; and by 1837,
Louis Jacques Mondé Daguerre had succeeded in producing the type of
photograph which was named after him: the daguerreotype.

The international reaction to the publication of the technique by the
French Academies (1839) was as immediate as it was tremendous – a proof
that Western industrial society had been waiting for just such a techni-
cal means of producing pictures. People were enchanted with the way the
process brought out every detail of a picture equally, and with the method’s
speed. Although lack of color was disappointing, what fascinated and finally
convinced most people was the mechanical, almost automatic nature of the
process.

The potential range of applications of the new medium was soon recog-
nized: architectural and landscape photography, art reproductions, portrai-
ture, and a tool of astronomy and photometry.

The widely traveled Alexander von Humboldt reflected on the useful-
ness of a camera on journeys159.

159 The long exposure times required in 1839 left the achievements of portraits in

the realm of the utopia. For example, after a first visit to Daguerre (Feb 1839),

Humboldt mentions exposure times taking 10 minutes! Even in 1842, after
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From a technical point of view, it was the invention of the negative by
Talbot which laid the cornerstone for the popularization of photography.
Both in theory and in practice, negatives affording countless positives was a
winning formula. At the start, however, Talbot’s brown-spotted “catlotypes”
could hardly measure up to the finely lined, steel-gray and sharply defined
daguerreotypes of the day. Even stiffer competition was afforded by the col-
ored motifs in the stereoscopic daguerreotypes which so enthused the public
and even now remain astonishing. But steady improvement in the technique
from approximately 1840 onwards soon made its basic superiority apparent.

One of the first commercial photographers was Antoine-Jean-Francois
Claudet (1797–1867, France and England), who was a French glass merchant,
living in High Holborn, England. He learned the details of the daguerreotype
process from its inventor, and bought from him a license to operate in England.
In 1841 he set up a studio on the roof of the Adelaide Gallery (near the Nuffield
Centre), behind St. Martins in the Fields Church, London, and later on in
two other sites in London.

In 1847 glass was used for the first time as an emulsion support, while
albumen paper, long appreciated for its sheen, was put on the market in 1850.
Finally, the arrival of the colodion wet-plate process (1851) at last made avail-
able photographic material combing a high level of light-sensitivity with sharp
definition. By the middle of the 19th century, the main steps had been taken
w.r.t. both the practical aspects of the medium and the over-widening scope
of its subject matter.

In addition to the various chemical-technical improvements, there were
also new discoveries and refinements of optical features and the cameras them-
selves.

1839 CE Charles Goodyear (1800–1860, U.S.A.). A New-England hard-
ware merchant; discovered a method of vulcanizing rubber.

The rubber in use at that time became hard in the winter and sticky
in the summer. Without having any idea of what he was doing (he was
no chemist), Goodyear began a series of experiments to try to improve the
properties of rubber. He worked with rubber-sulfur mixtures, because he had
heard of other similar experiments. When he accidentally spilled one of his

the introduction of improved lenses and more sensitive photographic plates,

exposure times were rarely less than 30 seconds.
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concoctions on a hot stove, he found that he had created a superior type of
rubber whose properties did not alter with heat or cold. Thus was the process
of vulcanization born.

Unfortunately, Goodyear himself reaped no benefit from it. Before his
discovery, his life had been marked by debtor’s prison and bankruptcy, after it
by patient litigation and the borrowing of huge sums to promote his invention.
He died not quite 60 years old and hundreds of thousands of dollars in debt.

1839 CE James Maccullagh (1809–1847, Ireland). Irish mathematician
and physicist. Produced an elastic model of the ether as a solid, the potential
energy of which depends only on the rotation of a volume element, thus ex-
plaining the single wave velocity c = (μ/ρ)1/2. In terms of the later Maxwell
theory, his displacement vector u corresponds to the magnetic field vector,
and μ curl u to the electric field vector [μ = rigidity, ρ = density]. He also
derived the gravitational potential of a finite body at an external point in
terms of its principal moments of inertia.

Maccullagh was born near Strabane, Ireland. After a brilliant career at
Trinity College, Dublin, he held the chair of mathematics during 1832–1843
and in 1843 was transferred to the chair of natural philosophy. Overwork
induced mental disease, and he died at his own hands in 1847.

The Principle of Conservation of Energy

The failure to comprehend the distinction between velocity and acceler-
ation retarded the study of dynamics for centuries. The study of heat was
retarded by a somewhat similar confusion between temperature and heat, and
by the further misapprehension that heat was a substance. Discovery of the
true relationships involved some of the most illustrious names in theoretical
and experimental physics.

The principle of conservation of kinetic and potential energy for rigid bod-
ies was intuitively recognized already by Galileo Galilei (1564–1642), fol-
lowing his experiments with bodies in free fall. The generalization of this
principle to the entire field of mechanics is due to C. Huygens (1629–1695),
G.W. Von Leibniz (1646–1716), J. Bernoulli (1667–1748) and L. Euler
(1707–1783).
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The concept of work originated with J.V. Poncelet (1788–1867). The
word energy occurs already in Aristotle’s writings. It was introduced into the
language of science by T. Young and William Rankine (1853). Robert
Mayer (1840), James Prescott Joule (1843), William Robert Grove
(1846), H.L.F. Helmholtz (1847) and Lord Kelvin (1852) reformulated
the energy principle to include thermal, electrical and chemical phenomena
and found the proper numerical conversion factors.

1839–1842 CE The Chinese Opium War with Great Britain. The Chinese
government had long been alarmed by the flourishing trade in opium and had
vainly tried to stop it. In 1839 it moved to confiscate and destroy the vast
quantities of the drug stored in Canton. This provided Britain the rationale
for taking over China, something that it had long desired. A punitive force,
assisted by the fleet of the East India Company, invaded China. The Chinese
were no match for the experienced Westerners. Britain lost 500 troops; the
Chinese lost 30,000. After three years of intermittent fighting, the Chinese
were forced to agree to Britain’s terms as laid down in the Treaty of Nanking
(1842).

Opium had been used in China for medical purposes for centuries, but
there was only a small amount of addiction among the people. China had
little use for Western goods and ideas; its society was stable, and the vast
country supplied all its own needs.

Europe, however, was extremely interested in the goods of China. Its tea,
silks, spices, and porcelain commanded high prices on a market fascinated by
the Orient.

The conquest of Bengal (1773) by Britain and the development of the
World’s finest merchant fleet allowed England’s East India Company to obtain
a foothold in the China trade and, by 1800, to monopolize it; after delicate
negotiations with the Chinese government, a small island off the shores of
Canton was established as a basis for trade. But the Chinese insisted that all
goods be paid for in silver . By 1810–1815, China had acquired a good share
of the silver of Europe which, because of scarcity, was rising rapidly in price,
thus reducing the profits of British merchants.

Moreover, the Napoleonic wars have dwindled the gold reserves of Britain
to a degree that it could not pay for the imported tea from China. Obviously,
there had to be something that the Chinese wanted (except silver) and, with
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unerring intelligence, the British decided to sell Indian-made opium to the
Chinese.

This required two preliminary steps: first, making the Chinese masses
addicted to the drug, and second, securing a safe ocean route for trafficking the
drug from India to China. These two objects were simultaneously achieved:
on the one hand a British military expedition, occupied Java and controlled
the Straits of Malacca (1811). In 1819 Thomas Stamford Raffles (1781–
1826) founded Singapore.

Simultaneously opium was given away, and as addiction spread, prices
rose accordingly. Because of its absolute control over India, the East India
Company subverted the agriculture of Benares, Baher, and other areas of India
to the growing of the poppy and the production of opium. Poppy cultivation
was compulsory, and since the production of food crops was limited, the people
of these India provinces were reduced near to starvation.

As addiction in China rose to astronomical proportions, silver began to
move out of the country back into Europe where its price fell and the profits of
the East Indian Company soared. Since silver was the currency of China, taxes
went unpaid and internal business was disrupted. Based on Confucian and
Tao ideals, Chinese society was grounded in the philosophy of self-discipline
and a hierarchical arrangement of duties to family and emperor. The addict to
his habit sacrificed family, duty, and self-discipline, and the fabric of Chinese
society and government began to collapse. Nevertheless, the British govern-
ment refused to order the East India Company to stop the opium trade; tax
revenues from India, tea duties, and opium sales were simply too profitable.

1839–1846 CE Christian Friedrich Schönbein (1799–1868, Germany).
Chemist. Discovered ozone (1839) and guncotton (1846), a powerful explosive,
which he prepared and applied as a propellant in fire-arms.

Schönbein was born at Metzingen, Swabia. After studying at Tübingen
and Erlangen, he taught chemistry and physics at Germany and England,
but most of his life he spent at Basel, where he was appointed full professor
(1835–1868). He was a prolific writer and carried on a large correspondence
with other men of science such as Berzelius, Faraday, Liebig and Wöhler.

1839–1846 CE William Robert Grove (1811–1896, England). Jurist,
physicist and electrochemist-inventor. “Father of the Fuel Cell”.

A fuel cell is a device that produces electricity by combining hydrogen and
oxygen — the reverse process of electrolysis. In his classic “On the Correlation
of Physical Forces” (1846), he enunciated the principle of conservation of
energy a year before the German physicist Hermann von Helmholtz.
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Grove invented two cells of special significance. His first cell consisted of
zinc, in dilute sulfuric acid and platinum in concentrated nitric acid, separated
by a porous pot (Grove Cell).

Grove’s nitric acid cell was the favorite battery of the early American tele-
graph (1840–1860), because it offered strong current output. This cell had
nearly double the voltage of the first Daniell cell. As telegraph traffic in-
creased, it was found that the Grove cell discharged poisonous nitric dioxide
gas. Large telegraph offices were filled with gas from rows of hissing Grove
batteries. As telegraphs became more complex, the need for constant voltage
became critical and the Grove device was necessarily limited (as the cell dis-
charged, nitric acid was depleted and voltage was reduced). By the time of
the American War, Grove’s battery was I replaced by Daniell battery.

His second cell, a “gas voltaic battery” was the forerunner of modern
fuel cells. He produced the first fuel cell in 1839 basing his experiment on
the fact that sending an electric current through water splits the water into
its component parts of hydrogen and oxygen. So, Grove tried reversing the
reaction — combining hydrogen and oxygen to produce electricity and water.
This is the basis of a simple fuel cell. The term “fuel cell” was coined later in
1889 by Ludwig Mond and Charles Langer, who attempted to build the
first practical device using air and industrial coal gas.

Grove was born at Swansea, South Wales. He was educated by private tu-
tors and then at Brasenose College, Oxford, and also studied law at Lincoln’s
Inn and was called to the bar in 1835. His scientific career flourished while
he was a professor of physics at the London Institution (1839–1864). At that
period he also invented the earliest form of a filament lamp intended for use
in mines.

He was elected FRS in 1840 and was one of the leaders of the reform
movement. His law career was resumed in 1879, when he became a Judge at
the Court of Common Pleas. He moved to the High Court of Justice in 1880
and became a Privy Councilor in 1887. Grove was knighted in 1872.

In 1846 he published his book on The Correlation of Physical Forces, the
leading ideas of which he had already put forward in his lectures: its funda-
mental conception was that each of the manifested energy-forms of nature —
light, heat, electricity, etc — is definitely and equivalently convertible into
each other, and that where experiment does not give full equivalent, it is
because the initial energy has been dissipated, not lost, by conversion into
heat.

1839–1876 CE John William Draper (1811–1882, U.S.A.). Pioneer sci-
entific photographer, photochemist, historian and author. His contributions:
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• Made portrait photography possible by his improvements (1839) on Da-
guerre’s process. Made first telescopic daguerreotype of the moon (1840)
and the sun’s diffraction spectrum (1844). Took photographs of the solar
spectrum (1876) and anticipated development of spectrum analysis.

• Showed that plants grown in solution of sodium bicarbonate can liberate
oxygen in light (1844).

• Investigated the dependence of the color of a heated substance upon its
temperature.

Draper was born at St. Helen near Liverpool, England. He studied at the
University of London. Went to the U.S.A. (1831) and continued his studies at
the medical school of the University of Pennsylvania (1835–1836). Professor
of chemistry at the University of the City of New York (1838–1882).

His son Henry Draper (1837–1882, U.S.A.), astronomer, was professor at
the University of the City of New York (1860–1882). Built and mounted a 28-
inch reflector (1869) with which he did pioneering work in stellar spectroscopy:
obtained the first photograph of the stellar spectrum of Vega (1872), and the
Orion Nebula (1880).

1840 CE Germain Henri Hess (1802–1850, Switzerland and Russia).
Chemist, Formulated Hess’s Law160, which states that the net heat evolved
or absorbed in any chemical reaction depends only upon the initial and final
stages, It was a forerunner of the more complete law of the conservation of
energy.

Hess was born in Geneva, Switzerland and became a professor of chemistry
at St.Petersburg, Russia (1830–1850).

160 Hess’s Law: If a reaction is carried out in stages, the algebraic sum of the

amounts of heat evolved in separate stages (heat absorbed being reckoned neg-

ative) is equal to the total evolution of heat when the reaction occurs directly.

e.g.: the heat of combustion of carbon to carbon dioxide: C+O2 =

CO2 + 94 kilocalories; the heat of combustion of carbon monoxide to diox-

ide: CO+ 1
2
O2 =CO2 + 67.8 kilocalories. By subtracting the second of these

equations from the first, we find the heat of formation of carbon monoxide:

C+ 1
2
O2 =CO+26.2 kilocalories.
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Table 4.2: Mail services and Newspapers throughout history

900 BCE China has an organized postal service for government use

500 BCE Persia has a form of pony express

59 BCE Julius Caesar ordered posting of Acta Diurna

100 CE Roman couriers carry government mail across the empire

1200 CE European monasteries communicate by letter system

1300 CE Incas and Aztecs employ courier runners to carry messages
over their kingdoms roads at top speed of ca 400 km/day

1305 CE The Taxis family began a private postal service in Europe

1450 CE First newsletters began circulating in Europe

1533 CE A postmaster in England

1609 CE First regularly published newspaper appeared in Germany

1627 CE France introduced registered mail

1650 CE A daily newspaper in Leipzig, Germany

1840 CE First postage stamps sold in Britain

1840 CE Joseph Max Petzval (1807–1891, Hungary). Mathematician
and optician. Contributed to the design of precision optical systems through
his work on lenses and aberrations. These had great impact in the design of
modern cameras; Petzval produced an achromatic portrait lens that was vastly
superior to the simple meniscus lens then in use. Petzval curvature, Petzval
surface, Petzval theorem. Petzval condition and Petzval lens are named after
him.161

161 To dig deeper, see:

• Born, M. and E. Wolf, Principles of Optics, Macmillan: New York, 1964,
808 pp.
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The discovery of photography (1839) by Daguerre was chiefly responsible
for early attempts to extend the Gaussian theory. Practical optics, which until
then was mainly concerned with the constructions of telescope objectives, was
confronted with the task of producing objectives with large apertures and
large fields. Petzval attacked with considerable success the related problem
of supplementing the Gaussian formulae by terms involving higher powers of
the angular inclination of rays to the axis. Unfortunately, Petzval’s extensive
manuscript on the subject was destroyed by thieves; what is known about his
work comes mainly from semi-popular reports.

He was professor at the University of Vienna and worked for much of his
life on the Laplace transform, being influenced by the work of Liouville. He
pioneered the application of the Laplace transform to the solution of linear
differential equations although he did not use contour integration to invert
the transform.

1840 CE Friedrich Gustav Jacob Henle (1809–1885, Germany).
Anatomist and pathologist. First to argue that infectious diseases are trans-
mitted by living organisms which can reproduce. In his work Pathologische
Untersuchungen (Pathological investigations) he presented an early version
of germ theory of disease in which parasite living matter can be transmitted
through contact or through the atmosphere. His contention was proved by
his pupil Robert Koch 40 years later.

Henle was born at Fürth, a grandson of a rabbi, and was baptized at the
age of 11. He took his doctors degree in medicine at Bonn (1832) and latter
became a professor at Heidelberg (1844).

1840 CE Polio first identified or described with accuracy.

1840–1862 CE Cholera spread worldwide; fatalities were in the millions.

1840–1865 CE Karl Friedrich Schimper (1803–1867, Germany). Natu-
ralist and poet. Proposed many of his scientific ideas in poetic form, including
botany, geology, and the formation of the Alps during the Ice Age. A pioneer
of modern plant morphology. Originated the modern concepts of the Ice Age
and the climatic cycles. Formulated the theory of phyllotaxis.

Schimper was born in Mannheim. He studied theology at Heidelberg
(1822) and medicine at Munich (1829) but failed to secure an academic post
nor any other regular appointment. He never married despite two engage-
ments and eventually moved to Schwetzingen where he died of dropsy.

His cousin, Wilhelm Philipp Schimper (1808–1890) was a botanist.
Studied at the University of Strasbourg, where he became Director of the lo-
cal Natural History Museum (1835). Identified the Paleocena Period in earth’s
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history (1874). His son Andreas Franz Wilhelm Schimper (1856–1901)
was also a botanist and a professor at Basel (1898–1901). Proved (1880) that
starch is a source of stored energy for plants and a product of photosynthe-
sis.

1840–1870 CE Joseph Whitworth (1803–1887, England). Mechani-
cal engineer and inventor; a leader in tool design and manufacture. In-
vented measuring machines and found a method of milling and testing plane
surfaces. Introduced a system of standard measures, gauges, and screw
threads.

Whitworth was born in Stockport, England, and died at Monte Carlo.

1840–1895 CE Leading Western poets and novelists in the Age of Natu-
ralism and Realism:

• Charles Dickens 1812–1870
• Ivan Turgenev 1818–1883
• Walt Whitman 1819–1892
• Charles Baudelaire 1821–1867
• Gustav Flaubert 1821–1880
• Feodor Dostoevsky 1821–1881
• Charles de Coster 1827–1879
• Henrik Ibsen 1828–1906
• Lev N. Tolstoi 1828–1910
• Bjornstjerne Bjornson 1832–1910
• Mark Twain 1835–1910
• Emil Zola 1840–1902
• Edmondo de Amicis 1846–1908
• Henryk Sienkiewicz 1846–1916
• Jens Peter Jacobsen 1847–1885
• August Strindberg 1849–1912
• Guy de Maupassant 1850–1893
• Robert Louis Stevenson 1850–1894
• Anton Chekhov 1860–1904

1841–1847 CE Edward Forbes (1815–1854, England). Naturalist and
oceanographer. One of the first men to take a scientific interest in the ocean
depths. As a naturalist on board the surveying ship H.M.S. Beacon, he did
some dredging in the Aegean Sea, studying the distribution of flora and fauna
and their relation to depth, temperature and other factors. His pioneering
work led the way to the Challenger expedition.
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Forbes was born at Douglas, in the Isle of Man. In 1854 he became
professor of natural history in the University of Edinburgh, but died soon
afterwards.

1841–1852 CE James Prescott Joule (1818–1889, England). Physicist.
With J.R. Mayer and H.L.F. Helmholtz established the First Law of
Thermodynamics and the mechanical equivalent of heat.

Joule began his work with the discovery of the rate of heat production
by an electric current in a conductor and showed it to be proportional to the
square of the current strength and the wire resistance (Joule’s Law , 1841).
In 1843, Joule read before the British Association at Cork his paper, enti-
tled: “The Caloric Effects of Magneto-Electricity and the Mechanical Value
of Heat”.

In 1847, he generalized his former results and asserted equivalence and
convertibility of heat, mechanical, electrical and chemical forms of energy,
rendering some numerical conversion factors. In 1852 he established, with
W. Thomson, the Joule-Thomson effect.

Joule was born at Salford, near Manchester. Although he received some
instruction from John Dalton in chemistry, most of his scientific knowledge
was self-taught.

1841–1852 CE David Gruby (1811–1898, France). Distinguished physi-
cian and pioneer in the fields of modern microbiology, veterinary protozoology,
and parasitology. Created the field of pathological mycology of humans and
pets. First to show that fungi can cause diseases in humans. His decisive and
pioneering contribution to the development of microbiology and parasitology
has been underestimated in the history of medicine and biology.

Gruby was born in a small village, near Novi-Sad, Hungary, the son of a
poor Jewish farmer. He left his home at an early age and went to Budapest
and from there to Vienna, where he studied medicine. In Paris (1835) he
distinguished himself as a lecturer in the Museum of Natural History. He
ceased his research activity in 1852 and dedicated all his time to his medical
practice. He was the personal physician of Heinrich Heine and and Alexandre
Dumas.

1841–1852 CE Alexander Bain162 (1811–1877, Scotland). A mechan-
ical genius of the first order who came before his time. Clockmaker, in-
ventor, telegraphy pioneer and the ‘father of the facsimile’ (fax), which
can be said to be a primitive forerunner of television. Proposed facsimile

162 Not to be confused with his namesake and country sake Alexander Bain

(1818–1908), philosopher and psychologist
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telegraph163 transmission system (1843). Made the first electric clock (1841).
Invented the first chemical telegraph (1846). Details of his inventions are:

• Electrical clock: Electromagnetic pendulum is kept going by an electric
current instead of springs and weights. He improved on this idea in
following patents, and also proposed to derive the motive electricity
from an ‘earth battery’, by burying plates of zinc and copper in the
ground.

• Facsimile: His method for sending a facsimile image cleverly explored
the transmission of electrical signals over telegraph wires. The telegraph
was a relatively new device in Bain’s day but was rapidly gaining on
popularity. Both amateur and professional inventors were trying their
utmost to find new ways to use it.

Bain’s operated as follows: the sender write a message on a sheet of
conducting tin in non-conducting ink. The sheet was then fixed to a
curved metal plate and scanned by a needle controlled by a swinging
pendulum. This ‘scanner’ read the text line by line, point by point
at a rate of three lines per millimeter. It emitted an electrical signal,
which registered at one strength as it passes through the images’ black
points (ink) and at another as it passed through the images’ white points
(absence of ink, i.e. metal). The two distinct signals traveled over the
telegraph wire to the receiver where a synchronized pendulum controlled
a stylus that marked out with Prussian blue ink on a paper soaked in
potassium ferrocyanide – leaving behind images of black and white dots
that had defined the original text.

To ensure that both needles scanned at exactly the same rate (so that
they would begin and end the scan lines at the same point) two ex-
tremely accurate clocks should be used. This, however, could not have
been achieved in Bain’s time. Other improved on Bain’s invention in
the years to come.

• Chemical telegraph: Bain recognized that the Morse telegraph was com-
parably slow in speed, owing to the mechanical inertia of the parts;
and he saw that if signal currents were made to pass through a ribbon
of paper soaked on a solution of iodide of potassium, a brown mark
could be made at the point of contact due to liberation of iodine and
consequently a very high speed could be obtained.

163 Note that the first patent on a working fax machine had been filed and granted

33 years before Alexander Graham Bell patented his telephone, and even before

Bell was even born!
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When the chemical telegraph was tried between Paris and Lille, the
speed of signaling attained was 325 words/min as compared to 40
words/min on the Morse electro-magnetic instrument. Others later im-
proved on the neglected method of Bain and reached a recording rate
of 113 words/min.

Bain was born of humble parents in the little town of Thurso at the extreme
north of Scotland. Learning the art of clock-making, he went to Edinburgh,
and subsequently removed to London. By 1870, his royalties from patents
for electric telegraph and clocks were exhausted, and he sank into poverty.
Moved by this unhappy circumstances, Lord Kelvin and William Siemens
obtained for him from the Prime Minister W. Gladstone (1873) a pension of
80 pound a year; but the beneficiary lived in such obscurity that it was a
considerable time before his lodging could be discovered. The Royal Society
had previously made him a gift of 150 pounds.

In his later years his health failed and he was removed to the Home for
Incurables at Broomhill, Kirkintilloch, where he died. He was a widower, and
had two children, but they were said to be abroad at the time, the son in
America and a daughter on the continent.

Several of Bain’s earlier patents were taken out in two names; owing to his
poverty he was compelled to take a partner to share the patent fees. Consid-
ering the early date of his achievement, and his lack of education or pecuniary
resource, we cannot but wonder at the strength, fecundity, perseverance and
prescience of his creative faculty. Beyond a few facts in a little pamphlet
(published by himself) there is little to be gathered about his life; a veil of
silence had fallen alike upon his triumphs, his errors and his miseries.

1841–1873 CE David Livingstone (1813–1873, Scotland and Africa).
Missionary, physician, geographer and explorer in Africa. No single African
explorer has ever done so much for African geography as Livingstone during
his thirty years’ work: his travels covered one-third of the continent, extending
from the Cape to the equator, and from the Atlantic to the Indian Ocean.
He did his journeying leisurely, carefully observing, mapping and recording
all that was worthy of note, with rare geographical instinct and with the eye
of a trained scientific observer, studying the ways of the people, eating their
food, living in their huts, and sympathizing with their joys and sorrows.

In all the countries through which he traveled his memory was cherished
by the native tribes as a superior being. Indeed, in the annals of exploration
of Africa, he stands preeminent above all. His example and death raised in
Europe a powerful feeling against the slaver trade that through him it received
its death-blow. The motto of his life was advice he gave some school children
in Scotland: “Fear God, and work hard”.
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Livingstone was born at the village of Blantyre Works, in Lanarkshire,
Scotland. Received a degree in medicine from Glasgow University (1840) and
then became connected with the London Missionary Society. He went to
South Africa (1841) to begin his missionary work. His aims were to convert
African natives to Christianity, to put a stop to the slave trade, and to explore
the mysterious African continent. He arrived at Lake Ngami (1849), Zambezi
River (1851), and sighted Victoria Falls (1855). He explored Lake Nyasa
region, the Shire River (1858), Lake Shirwa (1858), reached the southern end
of Lake Tanganyika (1867) and Lake Bangweulu (1868).

Concern over his safety led to the expedition of Henry Morton Stanley
and the two met near Lake Tanganyika (1871). Livingstone refused to return
to the coast with Stanley (1872) and continued his travels for another year.
Weakened by illness, he arrived at Lake Bangweulu where he died on April
30, 1873. He was later buried at Westminster Abbey in London.

1842 CE Johann Christian Doppler (1803–1853, Austria). Physicist.
Discovered the law that determines the change of frequency of a moving
source of mechanical radiation (Doppler Effect)164. Since its inception, this
law became a major tool in determining translational and angular velocities
in all branches of physics and astronomy where the moving bodies might be
electrons, satellites, stars or galaxies, in the framework of classical physics,
quantum physics and general relativity.

Doppler was born in Salzburg. He was educated at the Polytechnisches
Institut in Vienna and became professor of experimental physics at the Uni-
versity of Vienna in 1850.

1842 CE Julius Robert Mayer (1814–1878, Germany). Physicist and
physician. First to recognize that the law of conservation of energy goes be-
yond the framework of classical mechanics, without giving this idea a precise
mathematical formulation. It is remarkable that in spite of inaccurate rea-
soning and data of limited quality, he was able to obtain a correct numerical
result for the mechanical equivalent of heat. Thus, on account of his boldness,
insight and intuition, it can be claimed that he was the father of the First
Law of Thermodynamics165.

Mayer, the son of the owner of an apothecary shop, was born at Heilbronn.
He studied medicine at Tübingen, Münich and Paris, and after a journey to

164 Later found to apply to electromagnetic radiation as well, with the appropriate

relativistic correction.
165 On this point there was no agreement between Sommerfeld on the one hand

and Lord Kelvin, Maxwell and G.G. Stokes on the other. The British

physicists claimed that distinction for their countryman J.P. Joule.



1968 4. Abstraction and Unification

Java in 1840 as surgeon of a Dutch vessel, in the East Indies, obtained a
medical post in his native town. It was here, by a curious route, that he was
led to the idea of the conservation of energy. That route involved medicine,
not physics.

Letting out blood was a common medical cure of the time, and while let-
ting the blood of sailors arriving at Java, Mayer noted that their blood was
unusually red. He reasoned that the heat of the tropics reduced the metabolic
rate needed to keep the body warm and therefore reduced the amount of oxy-
gen that needed to be extracted from the blood. Accordingly, the sailors had
a surplus of oxygen in their blood, causing its extra redness. This hypothesis,
and its apparent validation, were taken by Mayer to support the link between
heat and chemical energy, the energy released by the combustion of oxygen.

After deciding that there must be a balance between the input of chemical
energy and the output of heat in the body, Mayer made a conceptual leap.
Friction in the body, from muscular exertion, also produced heat, and the
energy associated with this heat also had to be strictly accounted for by the
intake of food and its content of chemical energy.

Mayer, being a physician and not a physicist, was at first not familiar with
the principles of mechanics, and his first paper on energy had errors. It was
rejected. Although disappointed, Mayer immediately took up the study of
physics and mathematics, learned about kinetic energy, and submitted a new
paper a year later. In 1842 he published a little paper “Bemerkungen über
die Kräfte der unbelebten Natur” in which he expounded his ideas concern-
ing conversion and conservation of energy. This paper did not receive much
attention, but within the next few years other physicists, mainly J.P. Joule
(1843–1849) and H.L.F. Helmholtz (1847) put the First Law on a much
firmer foundation.

Despondent over his lack of recognition, Mayer attempted suicide in 1850.
He suffered episodes of insanity in the early 1850s and was confined in asylums
on several occasions.

After 1860, Mayer was finally given the recognition he deserved. Many
of his articles were translated into English, and such well-known scientists as
Rudolph Clausius in Germany and John Tyndall in England began to
champion Mayer as the founder of the law of the conservation of energy.

From his marriage Mayer had 7 children, 5 of whom died in childbirth. He
died of tuberculosis in 1878.

1842 CE Joseph Alphonse Adhémar (1797–1862, France). Mathemati-
cian. First to propose an astronomical theory of the ice ages based on the
precession of the equinoxes.
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Adhémar theorized that glacial climates occur whenever a hemisphere en-
ters winter while at its farthest distance from the sun. Thus, every 11,000
years166 (every half cycle) an ice age would occur, alternately in one hemi-
sphere and then in the other; a series of abnormally cold winters would allow
snow and ice to build up and would pitch the globe into an ice age.

In 1852, Alexander von Humboldt (1769–1859, Germany) pointed out
that Adhémar’s basic idea was incorrect: the average temperature of either
hemisphere is controlled not by the number of hours of daylight and dark-
ness, but the total number of calories of solar energy received each year. And,
as d’Alembert’s calculations had demonstrated many years before, any de-
crease in solar heating that occurs during one season (earth farther from the
sun), is exactly balanced by an increase during the opposite season, when the
earth is closer to the sun. Therefore, the total amount of heat received by one
hemisphere during the year is always the same as that received by the other.

Although Adhémar’s theory was proved wrong, it was nevertheless an
important step toward understanding the ice age mystery. The idea that
astronomical phenomena such as the precession of the equinoxes might have
a significant effect on the earth’s climate was not forgotten, and would set the
stage for further discoveries.

1842 CE Samuel Earnshaw (1805–1888, England). Mathematician.
Showed that a set of physical point-objects (charges, masses, magnetic poles),
governed by the classical long-range inverse-square law (electrostatic, magne-
tostatic, gravitational), cannot be maintained in a stationary stable equilib-
rium configuration. This is known as ‘Earnshaw’s Theorem’.

Earnshaw was born in Sheffield and graduated Senior Wrangler and
Smith’s Prizeman (1831) in Cambridge University. He worked there as tripos
coach (1831–1847) and was also appointed to the parish church at St. Michael,
Cambridge (1846).

He published several articles and books on classical physics and mathe-
matics, but is best known for his article: “On the Nature of the Molecular
Forces which Regulate the Constitution of the Luminiferous Ether” (Trans.
Camb. Phil. Soc. 7, 97–112, 1842). Earnshaw’s Theorem has consequences
for levitation by means of electromagnetic fields, as it shows the impossibility
of stable levitating permanent magnets without active control. Note that the

166 Previously (1754) it was shown by d’Alembert that the simultaneous preces-

sion of the equinoxes (due to the combined pull of the sun and the moon), and

the precession of the earth’s perihelion (due to the perturbation of the planets)

cause the earth to undergo a general precession of the equinoxes with a period

of 22,000 years.
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case of a point charge in arbitrary static electric field is a simple consequence
of Gauss’ law: divE = −ΔU = 0 at field points, where E(r) is the electric
field and U(r) is the potential and curl E = 0 in free space. Thus, at any
equilibrium point, there must be some direction along which the equilibrium
is unstable.

The theorem also means that even dynamic system of charges are unstable
in the long term due to EM radiation. This lead, for some time, to the puzzling
question of how matter is held together electromagnetically. The answer came
via the quantum-mechanical structure of the atom. It was then discovered
that the Pauli exclusion principle and the uncertainty principle are responsible
for holding bulk matter in a rigid form.

1842–1843 CE (Augusta) Ada Byron, Countess of Lovelace; 1815–1852,
England. An amateur mathematician167 who wrote the first computer pro-
gram for Babbage’s analytical machine. It was a set of instructions for the ma-
chine to compute the Bernoulli numbers (the analytical engine never reached
the stage of allowing the program to be run).

Ada was the only child of Lord and Lady Byron. She had considerable
mathematical talent (in this she took after her mother, who was described by
the poet as the ‘Princess of Parallelograms’), and frequently visited Babbage
while he was working on his engine. In 1840, Babbage gave a series of lectures
in Turin. Among his audience was L.F. Menabrea168, a young engineer
officer on the staff of the Military Academy in that city. Menabrea wrote
an account of Babbage’s ideas and published it in a Geneva Journal in 1842.
The paper was translated into English by Lady Lovelace, who added extensive
notes of her own, and was published in Taylor’s Scientific Memoirs in 1843.
She had a remarkable grasp of Babbage’s ideas and her lucid notes make
fascinating reading even today.

Her notes are mainly concerned with the formulation of a schedule of in-
structions (the program) which will enable the machine to carry out a desired
calculation automatically. Lady Lovelace went into the subject in considerable
detail, and illustrated her points by describing several programs for performing

167 Ada lost much of her fortune by using her computations to predict horse races.
168 Luigi Federico Menabrea (1809–1896, Italy). Became professor of mechanics

at the military academy and at the University of Turin (1842). Embarked in a

political career which led him to become Italian Premier and Foreign Minister

(1867). During this period of politics he still continued his scientific work,

giving the first precise formulation of methods of structural analysis based on

the principle of virtual work. Published, jointly with J.L.F. Bertrand, the

first correct proof of the principle of least work (1870). This was later called

the Castigliano principle.
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advanced mathematical calculations, some of them of considerable sophistica-
tion. The two basic features of her programs are: the use of repetitive cycles,
whereby the same set of instructions is executed over and over again, and the
use of a jump (branching) instruction to enable the calculation to take one or
the other of two alternative paths.

In one of her more elaborate programming examples she introduced a
number in a certain register for the specific purpose of counting the number of
repetitions of a group of instructions. This number is arranged to change sign
when the desired number of cycles has been executed, and a jump instruction
is inserted to cause the machine to move out of the loop at this point to the
next part of the calculation.

Since the punched cards in the Jacquard loom (1805) pass through the
mechanism in a fixed order which cannot be varied once the loom is set up,
Lady Lovelace suggested the provision of an additional hardware facility to
enable the backing of the cards of the analytical engine: the drum over which
the train of cards passes must be able to rotate in the reverse direction in an
amount determined by the program. She wrote:

“The object of this extension is to secure the possibility of bringing any
particular card or set of cards into use any number of times successively in
the solution of one problem. The power of repeating the cards reduces to
an immense extent the number of cards required. It is obvious that the
mechanical improvement is especially applicable wherever cycles occur in the
mathematical operation, and that, in preparing data for calculations by the
Engine, it is desirable to arrange the order and combination of the processes
with a view to obtain them as much as possible symmetrically and in cycles,
in order that the mechanical advantages of the backing system may be applied
to the utmost”.

Already in 1842, this remarkable pioneer of modern programming had a
full grasp of the ‘soul of the computer’, as she put it in her unusual clarity:
“The Analytical Engine has no pretensions whatever to originate anything.
It can do whatever we know how to order it to perform”.

The computer language “Ada” was named by the designers after her.

Ada was the first wife of Baron King, who in 1838 was made earl of
Lovelace. They had two sons and a daughter.

1842–1845 CE Physicians in the United States first used anesthesia to ease
pains during treatment of patients. Crawford Williamson Long (1815–
1878), surgeon, was first to use ether vapor (1842), in Jefferson Ga, to knock a
patience unconscious during operation. In 1845, he used ether for the first time
in delivering a child; William Thomas Green Morton (1819–1868), den-
tist, administered ether (1846) during a surgical operation at Mass. General
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Hospital (Boston). He did this at the suggestion of Charles Thomas Jack-
son169 (1805–1880), physician, chemist and geologist at the Harvard Medical
School. James Young Simpson (1811–1870, Scotland), physician, was first
to use chloroform (1847) to reduce pain at childbirth. This was quicker and
more effective than ether; Queen Victoria was one of the first women to be
anesthetized during childbirth.

1842–1855 CE Ludwig Otto Hesse (1811–1874, Germany). Mathemati-
cian. Introduced the ‘Hessian normal form’170 and also the ‘Hessian function’
and the ‘Hessian matrix’171 that appear in extremalization of real-valued func-
tions and the theory of algebraic invariants.

Hesse was born in Königsberg. His studies at the University of Königsberg
(1832–1840) were interrupted for an educational journey throughout Ger-
many and Italy and his subsequent high-school teaching career. Hesse studied

169 Practiced medicine in Boston (1832–1836) but abandoned medicine to work in

chemistry and mineralogy (1836). Claimed to have pointed out to S.F.B. Morse

the basic principles of the electric telegraph; also claimed the priority in discov-

ery of guncotton (explosive). In 1852, the French Academy awarded a prize of

5000 francs jointly to Jackson and Morton. Both men claimed sole credit for

the discovery, and Morton refused to share the prize with Jackson. A bitter

quarrel and lawsuits followed, and Morton was ruined financially. Long did not

get any credit since he published the account of his early discovery only in 1849.
170 The vector form of a plane in space is x · x1 + d = 0, where x = (x, y, z)

and x1 = (a, b, c), i.e. ax + by + cz + d = 0. If this equation is divided by the

normalization factor ±(a2 + b2 + c2)1/2, one arrives the Hessian normal form

x cos α + y cos β + z cos γ − p = 0,

where (α, β, γ) are the direction cosines of the normal x1, and p is the distance

of the plane from the origin.
171 Let P be some particular point chosen as the origin of a coordinate system with

coordinates x. Then, any function f can be approximated by its Taylor series

f(x) = f(P ) + x · grad f |P +
1

2
xx : grad grad f |P + · · ·

The matrix

(grad grad f)ij ≡ ∂2f

∂xi∂xj
|P ,

whose components are the second partial derivative matrices of the function,

is called the Hessian matrix of the function at P . The determinant functional

H[f ] = ‖ ∇ ∇f ‖, known as the Hessian determinant, has found many applica-
tions in algebraic geometry.

For example, if in the bilinear form
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mainly under C.G.J. Jacobi, who greatly stimulated his mathematical in-
vestigations.

He then taught at Königsberg (1845–1855), Heidelberg (1856–1868) and
Münich (1868–1874). He became an ordinary professor in 1855 and among his
students were G. Kirchhoff, S.H. Aronhold, C. Neumann, A. Clebsch
and R.O.S. Lipschitz.

1842–1866 CE Siemens: Name of German brothers: inventors, electrical
engineers and industrialists.

• Ernst Werner von Siemens (1816–1892); invented the electroplating
process (1842); invented the dial telegraph (1846); laid an underground
electric telegraph for the army (1847). Founded the Siemens firm for
manufacture of telegraphic equipment and electrical apparatus (1847).
Laid cables across the Mediterranean and from Europe to India; in-
vented the self-excited generator (1866).

• Karl Wilhelm (Charles William) Siemens (1823–1893). Natu-
ralized British citizen (1859). Invented the regenerative steam engine

f(x1, x2) = a0x
2
1 + 2a1x1x2 + a2x

2
1

we effect the linear transformation

[
x1

x2

]

=

[
ξ1 η1

ξ2 η2

] [
X1

X2

]

,

we obtain the new bilinear form

F (X1, X2) = A0X
2
1 + 2A1X1X2 + A2X

2
2

where
A0A2 − A2

1 = (a0a2 − a2
1)D

2,

and

D = det

[
ξ1 η1

ξ2 η2

]

= ξ1η2 − ξ2η1.

It is also true that H[F ] = D2H[f ], where under an orthogonal transformation

D2 = 1; the Hessian functional is

H[f ] =
∂2f

∂x2
1

∂2f
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−
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(1847) and Siemens process for making steel (1861). Laid the first cable
between Britain and the USA (1875).

• Friedrich Siemens (1826–1904). Invented (1856) a regenerative smelt-
ing oven widely used in the glass and steel making industries.

• Karl von Siemens (1829–1906). Organized and directed the Russian
branch of the firm.

1843 CE Pierre Alphonse Laurent (1813–1854, France). Engineer and
mathematician. Discovered the relationship between power series and analytic
functions in a domain bounded by two concentric circles172.

Laurent was born in Paris. After studying for two years at the École
Polytechnique, he joined the army engineering corps and took part in the
expeditions to Algeria. He then returned to France and spent about 6 years

172 Laurent series: Let f(z) be a function analytic in the ring-shaped region
between two concentric circles C and C′, of radii R′ < R, and center a, and on

the circles themselves. Then f(z) can be expanded in a series of positive and

negative powers of z − a, convergent at all points of the ring-shaped region:

f(z) =
∞∑

n=− ∞
an(z − a)n;

an =
1

2πi

∫
f(ω)

(ω − a)n+1
dω,

for all values of n.
The integral is taken round any simple closed contour within the region. In the

particular case where f(z) is analytic inside C′, all the n < 0 coefficients are

zero (by Cauchy’s theorem), and the series reduces to a Taylor series.
In the neighborhood of a pole of the nth order, the Laurent series are truncated

at the negative power with exponent n. In a similar way, a function defined

by a Laurent series has a pole of the nth order at infinity when the terms with
positive powers ends at the term with power n.

If f(z) is regular in an arbitrary narrow annulus

1 − ε < |z| < 1 + ε (0 < ε < 1),

it can be represented there by the series
∑∞

n=− ∞ cnzn, where

cn =
1

2πi

∮

|z|=1

f(ζ)dζ

ζn+1
=

1

2π

∫ 2π

0

f(eiθ)e−inθdθ (n = 0, ±1, ±2, . . .).

In particular, at the points z = eit on the unit circle, f(z) is represented by
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in the port of Le Havre, directing hydraulic construction projects. In the
midst of these technical operations he submitted two memoirs to the Academy
of Sciences, one of which dealt with the ‘Laurent series expansion’. It was
communicated by Cauchy, but due the negligence of the latter was never
published by the Academy. It did not appear until 1863, when it was published
in the Journal de l’École Polytechnique.

1843 CE Heinrich Samuel Schwabe (1789–1875, Germany). Apothe-
cary and amateur astronomer. Discovered the 11-year cycle of solar activity,
the sunspot cycle; also made (1831) the first known detailed drawing of the
Great Red Spot on Jupiter.

In 1825, Schwabe began to study the sun and its sunspots. He spent 17
years looking at it (with the proper precautions to avoid blindness) and dis-
covered that the number of spots rose and fell in what seemed a cycle of 10
years (more like 11, according to continuing studies by others). This con-
tributed to the beginning of the science of astrophysics, the study of physical
phenomena in stars and other objects in the universe.

1843 CE John Stuart Mill (1806–1873, England). Philosopher and logi-
cian. Delineated the foundations of inductive logic and the scientific method
in his book A System of Logic (1843). He applied principles of Empiricism to
the scientific method, interpreted as a system of inductive logic. Rounding out
and perfecting Francis Bacon’s inductive technique, he advocated induction
as a new approach of problem-solving that would supersede the Aristotelian
method of deductive logic.

Mill was born in London and educated completely by his father. He began
to study Greek at the age of 3, and at 14, had mastered Latin, classical
literature, logic, history, political economy and mathematics. He entered the
East India Company at the age of 17. Like his father, he became director of
the company. He retired after 33 years of service and was elected member of
Parliament (1865).

F (t) = f(eit) =

∞∑

n=− ∞
cneint,

where

cn =
1

2π

∫ 2π

0

F (θ)e−inθdθ (n = 0, ±1, ±2, . . .).

This is none other then the complex form of the Fourier series of F (t). Thus,

on the unit circle z = eit, the Laurent series, considered as a function of the

real variable t, is the Fourier series of the function F (t) = F (eit).
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The main task of the System of Logic173 is the analysis of inductive proof.
His canons of inductive methods for comprehending the causal relations be-
tween phenomena are valid under the assumption of the validity of the law
of causality , which cannot be accepted except on the basis of induction —
making the whole argument circular.

1843–1849 CE Søren Aabye Kierkegaard (1813–1855, Denmark). Phi-
losopher. Attacked social and religious complacency. His assault on institu-
tional Christianity and on traditional Western philosophy generated a crisis
that produced a radically new way of philosophizing and made him the founder
of a school that would later be called Existentialism – centered on the obsession
with the particularity of human existence. To Kierkegaard, reality was per-
sonal, subjective – it began and ended with the individual. To him, Hegel’s
system174was an immense fraud which, by its verbose techniques of reconcilia-

173 Mill presented five rules (canons) of inductive reasoning:

(1) Rule of Agreement: If two or more instances of the phenomenon under in-

vestigation have only one circumstance in common, the circumstance in which

alone all the instances agree is the cause (or effect) of the given phenomenon.

(2) Rule of Difference: If an instance in which the phenomenon under investiga-

tion occurs, and an instance in which it does not occur, have every circumstance

save one in common, that one occurring only in the former, the circumstance

in which alone the two instances differ is the effect, or cause or a necessary part

of the cause, of the phenomenon.

(3) Joint Rule of Agreement and Difference: If two or more instances in which

the phenomenon occurs have only one circumstance in common, while two or

more instances in which it does not occur have nothing in common save the

absence of that circumstance, the circumstance in which alone the two sets of

instances differ, is the effect, or cause, or a necessary part of the cause, of the

phenomenon.

(4) Rule of Residues: Subduct (subtract) from any phenomenon such part as is

known by previous inductions to be the effect of certain antecedents, and the

residue of the phenomenon is the effect of the remaining antecedents.

(5) Rule of Concomitant Variations: Whatever phenomenon varies in any man-

ner whenever another phenomenon varies in some particular, is either a cause

or an effect of that phenomenon, or is connected with it through some fact of

causation.

His rule (1) is almost identical to the hermeneutic Talmudic rule Binyan-Av of

Hillel (ca 32 BCE). It was used by the latter as a tool of logical deduction from

the juxtaposition of two legal sections.
174 Hegel had treated the human individual as an insubstantial being of secondary

importance to social institutions and the state. He saw God as a poetic myth

anticipating in a primitive way the higher philosophical truth embodied in his

own doctrine of the Absolute.
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tion and rationalization, refused to confront the actual circumstances of man
in the world, and in particular the fact of deaths and the remoteness and
inscrutability of God.

Kierkegaard argued that actual existence, as we experience it in life, cannot
be rationalized in Hegel’s way: men and the world they inhibit cannot be tidily
explained. Belief in God is not the solution to a theoretical problem but a free
act of faith. In this framework he saw the Protestant Church as a means of
perverting its original messages, and the very symbol of self-satisfied bourgeois
snugness that stands between the individual and the truth. Knowledge, as
Kierkegaard construes it, is always abstract but existence cannot be thought,
because it is always concrete. Existence must, at its very core, be experienced
as anguish or dread of the possibility of death at any moment.

Kierkegaard took the position that religion was a personal experience.
He divided experience into three categories: aesthetic, ethical, and religious.
The child is an example of an individual who lives almost exclusively at the
aesthetic level: all choices are made in terms of pleasure and pain, and ex-
perience is ephemeral, having no continuity, no meaning, but being merely a
connection of isolated, non-related moments. The ethical level of experiences
involves choices, whenever conscious choice is made, one lives at the ethical
level. At the religious level, one experiences a commitment to oneself, and
an awareness of one’s uniqueness and singleness. To live in the religious level
means to make any sacrifice, any antisocial gesture that is required by being
true to oneself.

These levels are not mutually exclusive but may coexist. He concluded that
only when man experiences the suffering of firm commitment to the religious
level of experience can he be considered truly religious. If religion then is a
purely personal matter, truth is clearly subjective, quite separate from the
“truth” of religious doctrine. Objective truth, such as that of geometry, is
acquired by the intellect ; subjective truth must be experienced by the total
individual. One may have objective truth, but one must be religious truth.

His main works: Fear and Trembling (1843); Either/Or (1843); The Con-
cept of Dread (1844);The Sickness unto Death (1849).

Kierkegaard lived most of his life in Copenhagen. In 1840 he became
engaged to a 17-year old girl, but he broke off the engagement after about a
year. Their affair continued to haunt him throughout his life. For two years
he traveled in Germany (1840–1842) where he studied Hegelian philosophy at
the Berlin university under Schelling with his classmates Friedrich Engels,
Ludwig Feuerbach and Michael Bakunin. Kierkegaard died in the middle
his violent battle against the Lutheran Church establishment in Denmark; he
died a lonely man with hardly a follower.
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There were riots at his funeral, caused by theology student’s outrage at
the way the Church tried to take over in death the man who had opposed it so
bitterly with his last breath. He had wanted to have written on his tombstone
simply “THE INDIVIDUAL”.

In his short life, Kierkegaard wrote more than twenty-five books. After
his death, his works slipped into obscurity.

He has been ‘discovered’ only in the 20th century, and has influenced
both modern Protestant theology and the Existentialist philosophy (e.g. of
Heidegger). Jean-Paul Sartre said of Kierkegaard: “I want to catch hold
of him, and it is myself I catch”.
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Worldview XX: Kierkegaard

∗ ∗∗

“To seek objectivity is to be in error.”175

∗ ∗∗

“Existing is a form of doing, not a form of thinking.”

∗ ∗∗

“People demand freedom of speech to make up for the freedom of thought
which they avoid.”

∗ ∗∗

“Wherever there is a crowd there is untruth.”

∗ ∗∗

“Life can only be understood backwards; but it must be lived forwards.”

∗ ∗∗

“The tyrant dies and his rule is over; the martyr dies and his rule begins.”

∗ ∗∗

“It is not true that the scientist goes after truth. It goes after him.”

175 Compare with the cynical wit of Oscar Wilde (1856–1900): “It is only about

things that do not interest one that one can give a really unbiased opinion,

which is no doubt the reason why an unbiased opinion is always absolutely

valueless.”

Kierkegaard probably got this skeptical view from reading Hume (1711–1776)

who held that no moral claim can ever be grounded in objective fact.
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1843–1857 CE Ernst Eduard Kummer (1810–1893, Germany). Math-
ematician. Showed that the Fermat conjecture was true for all prime powers
smaller than 100 except 37, 59 and 67. [First three ‘irregular primes’.] In
his efforts to prove the conjecture, Kummer extended (1846) the notion of
‘prime’ numbers in the integers to general algebraic domains, preserving the
existence of a unique factorization into prime factors. The prime factors in
the more general domains are called ‘ideal numbers’. In 1849 he extended the
theory of Gaussian complex numbers.

1843–1857 CE John James Waterstone (1811–1883, Scotland). Physi-
cist and engineer. First formulated the essential features of the kinetic theory
of gases. Submitted to the Royal Society (1845) a speculative memoir on
gases linking heat with molecular motion. In it he included a calculation
of the ratio of specific heats at constant temperature and constant volume.
The memoir was dismissed by the referees as ‘nothing but nonsense’. In 1892
it was reproduced in complete form by Rayleigh (1842–1919). However,
many of Waterstone’s key ideas had by then been published by Clausius and
Maxwell. Waterstone’s misfortune176 resulted from the fact that the idea of
energy conservation became accepted only in 1858. Thus the rejection of his
work delayed progress by about 15 years.

Waterstone was born and educated in Edinburgh. He moved to London
(1833) to do surveying for the railways, then took a job in the Hydrographers’
Department of the Admiralty. Went to India (1839) as teacher of the East
India Company’s cadets in Bombay. He returned to Edinburgh (1857) to
devote all his efforts to research. His work, however, was repeatedly rejected
or ignored, causing him to withdraw from the scientific community.

Waterstone wrote other papers on gravitation, sound, capillarity, physi-
ology, latent heat and various aspects of astronomy. He also estimated the
temperature of the sun (1857).

1843–1858 CE Haim Zelig Slonimsky (1810–1904, Poland). Mathe-
matician, astronomer and inventor. Made important contribution to the study
of the Hebrew calendar (1852). Invented a novel calculating machine (1843)
and developed a method of delivering simultaneously four messages via a tele-
graph wire. Befriended the German astronomers and mathematicians Bessel,
Crelle, Encke and Jacobi and especially Alexander von Humboldt who
remained his lifelong friend.

176 He did not even merit a mention in the Britannica’s 11th edition (1910)!
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Slonimsky was trained as a rabbinical Talmudic scholar up to his 18th
year. After his marriage (1828), he self-educated for six years in the home of
his father-in-law, publishing a number of books on various mathematical and
astronomical subjects, and also mathematical papers in the Crelle Journal.
His Yesodei ha-Ibur (Foundations of the Calendar, 1844) is still the seminal
work in this field.

Slonimsky was born in Bialystok and later lived in Warsaw. The Russian
government appointed him supervisor of the rabbinical academies (1862). In
the same year he began publishing the Hebrew scientific weekly, Hazefira,
which turned (1886) into daily newspaper. Slonimsky’s grandchildren became
prominent figures in the Polish and Russian literature.

1843–1865 CE Claude Bernard (1813–1878, France). Physiologist. In-
vestigated chemical phenomena of digestion, discovering role of pancreas in
digestion of fat and the glycogenic function of the liver; discovered regulation
of blood supply by vasomotor nerves.

In an attempt to prove that animals could synthesize food materials in
their bodies instead of having to obtain all nutrients from plant life, Bernard
discovered that the liver could serve as a source of blood sugar (1843); in
1857 he indeed announced the isolation of glycogen from the liver177. Thus,
the foundations for an understanding of carbohydrate metabolism had been
laid, though the real comprehension of the reaction involved had to wait until
the structure of the sugars had been worked out.

Bernard was a professor at the Sorbonne (1854), College de France (1855–
1868), and the Musée d’Histoire Naturelle (1868–1878).

1843–1873 CE Charles Hermite (1822–1901, France). One of the em-
inent French mathematicians of the 19th century. A professor at the Sor-
bonne (1869) and the teacher of Picard (1856–1911), Borel (1871–1956)
and Poincaré (1854–1912).

Abel had proven in 1824 that the quintic equation cannot be solved by
functions involving only rational operations and root extractions. One of Her-
mite’s most surprising achievements (1858) was to show that this equation can
be solved by elliptic functions. In 1873 he proved that e is transcendental178.

177 Glycogen was independently discovered (1857) by Viktor Hensen (1835–1924,

Germany), a medical student who worked under Rudolf Virchow (1821–1902,

Germany).
178 In a sense this is paradigmatic of all the discoveries of Hermite. By a slight

adaptation of Hermite’s proof, Felix Lindemann (1882) obtained the much

more exciting transcendence of π. Thus, Lindemann, a mediocre mathemati-
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Hermite was born in Dieuze, Lorraine, the sixth of seven children. His
father, Ferdinand, a man of strong artistic inclination who had studied engi-
neering, entrusted his draper’s trade to his wife, Madeleine, in order to give
full rein to his artistic bent. Around 1829 Charles’ parents transferred their
business to Nancy. They were not much interested in the education of their
children, but Charles continued his studies in Paris; his mathematics profes-
sor was the same Richard who 15 years earlier had taught Évariste Galois.
So, instead of seriously preparing for his examination Hermite, at the age
of 17, read Euler, Gauss and Lagrange. He was thus admitted to the École
Polytechnique in 1842 with the poor rank of 68. After a year’s study, he was
refused further study, because of a congenital defect of his right foot, which
obliged him to use a cane.

At this time, Hermite resembled a Galois resurrected: Owing to the inter-
vention of influential people the decision was reversed, but under conditions to
which Hermite was reluctant to submit and he declined the paramount honor
of graduating from the École Polytechnique, contenting himself with the ca-
reer of a high school teacher. In 1847 he became acquainted with Jacobi’s
work on elliptic and hyperelliptic functions, and already in 1843, at the age
of 20, he was able to generalize some of Abel’s results, thus placing himself
in the ranks of the first analysts. He communicated his discovery to Jacobi,
who did not conceal his delight.

The association of Hermite with the École Polytechnique was resumed in
1848 and through the influence of Pasteur (1822–1895), a special position
was created there for him. In 1869 he took over J.M.C. Duhamel’s chair
as professor of analysis both at the École Polytechnique and the Sorbonne
positions which he kept until 1876 and 1897 respectively. He was an honorary
member of a great many academies and learned societies, and was awarded
many decorations. His 70th birthday gave scientific Europe the opportunity
to pay homage in a way accorded very few mathematicians.

Hermite married the sister of Joseph Bertrand (1822–1900); one of his
daughters married Émile Picard (1856–1941). Hermite was seriously ill
with smallpox in 1856, and under Cauchy’s (1789–1857) influence became a
devout Catholic. He studied Sanskrit and ancient Persian.

Throughout his life Hermite exerted a great scientific influence by his
correspondence with other prominent mathematicians. If Hermite’s work were

cian, became even more famous than Hermite — for a discovery for which

Hermite had laid all the groundwork and that he had come within a gnat’s

eye of making. [The irrationality of π and e had previously been demonstrated

by Lambert (1776).] Hermite also produced an ‘artificial’ new transcendental

number
∑∞

n=0 2−n!.
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scrutinized more closely, one might find more instances of Hermitian preludes
to important discoveries by others, since it was his habit to disseminate his
knowledge lavishly in correspondence, in his courses, and in short notes. His
correspondence with T.J. Stieltjes, for instance, consisted of at least 432
letters written by both between 1882 and 1894. Hermite’s most important
results have been so solidly incorporated into more general structures that
they are rarely attributed to him.

Several of his purely mathematical discoveries had unexpected applica-
tions many years later in mathematical physics: Hermitian forms and ma-
trices which he invented in connection with certain problems of number the-
ory turned out to be crucial for Heisenberg’s 1925 formulation of quantum
mechanics, and Hermite polynomials and functions appear in the solution of
Schrödinger’s wave equation for a harmonic oscillator, as well as in solutions
of the classical wave equation representing narrow beams.

1843–1876 CE George Gabriel Stokes (1819–1903, Ireland and Eng-
land). A British mathematician and physicist with an extraordinary com-
bination of mathematical prowess and experimental skill. His contributions
range from optics, acoustics, and hydrodynamics to viscous fluid problems (a
unit of viscosity is named for him).

Stokes was born in Skreen, Ireland. He entered Bristol College at 16 and
matriculated at Pembroke College, Cambridge, in 1837. He became a Fellow
of Pembroke College in 1841 and in 1849 received the Lucasian Professorship
of mathematics at Cambridge, held by Airy from 1826. Baron since 1889,
member of parliament (1887–1892) and president of the Royal Society (1885–
1890).

In 1843 he gave a new deduction of the general equation of viscous flow
(discovered by Navier in 1823; Navier-Stokes equation179). Anticipated the
instability of laminar flow patterns. In 1847 he created the concept of uniform
convergence of series. In 1849 he conceived the first mathematical model of
a point source in an elastic solid (‘luminiferous ether’), treating light as a
transverse wave in the elastic ether.

179 The Navier-Stokes equation governs the motion of Newtonian fluids (viscous

fluids for which the shearing stress in linearly related to its rate of deforma-

tion).

The laws of conservation of mass, linear momentum, and angular momentum

lead directly to the two basic field equations:
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Stokes’ theorem was discovered by William Thomson (Lord Kelvin) and
communicated to his friend Stokes in a postscript to a letter of July 2, 1850.
Stokes replied that the result was very elegant and new to him and that he
had constructed his own proof. He never claimed it as his own or published a
proof, but he did include a question on it in the Smith’s Prize Examination for
1854 [a competitive examination given to the best mathematics students at
Cambridge University]. One of the students who took the 1854 examination,
and who tied for first place on it, was James Clerk Maxwell (1831–1879).
Stokes’ theorem is of critical importance in electromagnetic theory and in the
formulation of Maxwell’s equations.

∂ρ

∂t
+ div(ρV ) = 0

(equation of continuity: ρ(r, t) = density, V (r, t) = particle velocity),

div T + ρF = ρ
DV

Dt

(Euler’s equation of motion relative to an inertial frame,

D

Dt
=

∂

∂t
+ V · ∇;

F = force per unit mass, T = stress tensor).
The adequate stress tensor for isotropic linear viscous fluid (Navier-Poisson

law) is derived on the basis of experimental evidence:

T = −pI +

(

λ − 2

3
η

)

I div V + η(∇V + V ∇),

where I is the unit dyadic, λ is the bulk viscosity and η the shear viscosity.
Assuming uniform λ, η, a substitution of the explicit form of T in Euler’s equa-

tion yields the Navier-Stokes equation (non-linear in V ):

ρ
DV

Dt
= ρF − grad p + η∇2V +

(

λ +
1

3
η

)

grad div V .

We thus have 4 scalar equations in the 5 unknown functions (V , ρ, p). The

equation of state p = p(ρ) supplies the missing relation.
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Introduced the Stokes parameters (1852), useful in the experimental deter-
mination of the state of polarization of a light beam. Derived the expression
for the drag force on a sphere moving slowly (small ‘Reynolds numbers’) in a
viscous fluid [F = 6πaηu; a = sphere’s radius180, u its velocity, η = dynamic
viscosity. It was used by Millikan in his famous experiment to determine the
charge of the electron (1910) and by Einstein in analyzing Brownian motion
in external fields].

Stokes named and explained the phenomenon of fluorescence (1852).

Discovered the Stokes phenomenon (1857), namely — the discontinuity
of the constants in the asymptotic expansion of integral functions. Stokes
illustrated the change with the aid of Bessel functions whose orders are 0 and
1
3 , the latter being those associated with the Airy integral. On this discovery,
George Neville Watson (1886–1965) remarked that “the discovery was
apparently one of those which are made at three o’clock in the morning”.

Stokes was first to derive an analytical expression for group velocity181

(1876).

180 This law is still valid in the form F = Aηu for non-solid and non-spherical

objects, where the parameter A depends on the shape of the body, and upon its
physical state. For example, A = 4πa (air bubble), 16a (disk, moving face-on),
32
3

a (disk, moving edge-on), 12a [disk, moving at random. The ‘addition law’

is

(
1

A

)

random

=
1

3

(
1

Ax
+

1

Ay
+

1

Az

)

].

Thus we have:

A =
4πa

loge
2a
b

− 1
2

(Ellipsoid, a � b, moving lengthwise), and

A =
8πa

loge
2a
b

+ 1
2

(Ellipsoid, a � b, moving sidewise).
181 Subsequently developed by Rayleigh (1877). It appears however that as early

as 1839 Hamilton had made investigations into the velocity of advance of

a finite train of waves in a dispersive medium, but his researches were only

published in short abstracts and have been entirely overlooked until recently.

Also in 1839, George Green derived the formula for the phase velocity of

water waves in terms of wavelength [“Note on the Motion of Waves in Canals”,
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1843–1889 CE Joseph-Louis-Francois Bertrand (1822–1900, France).
Mathematician. Known for his contributions to differential geometry, number
theory and probability theory.

Conjectured (1845) that there is at least one prime number between n
and 2n − 2 for n > 3. This was proved by Chebyshev (1850). His book
Calcul des probabilités (1889) contains what Poincaré later called, Bertrand’s
paradox182 and Bertrand’s coin problem183.

1844 CE Johann Martin Zacharias Dase (1824–1861, Germany). A
calculating prodigy who calculated π correctly to 200 decimal places in less
than two months; using the formula

π

4
= arctan

(
1
2

)

+ arctan
(

1
5

)

+ arctan
(

1
8

)

,

with a series expansion for each arctangent [the ‘Gregory-Leibniz’ formula is
not suitable for practical calculation of π, since one would need 100,000 terms
to calculate π to 5 decimal places].

Dase gave exhibitions of his extraordinary calculating prowess in Germany,
Austria and England. During an exhibition in Vienna in 1840 he made ac-
quaintance with Schultz von Strassnitzky (1803–1852, Austria), who urged
him to make use of his powers for the calculation of mathematical tables.

Dase calculated the natural logarithms of the first 1,005,000 numbers, each
to 7 decimal places, in his spare time in 1844–1847, when employed by the
Prussian Survey. On the recommendation of Gauss, the Hamburg Academy
of Sciences agreed to assist him financially, for a preparation of table of factors

Trans. Camb. Phil. Soc. 7, 87–95]. Later extensions have originated in Kelvin’s

method of stationary-phase (1887).
182 Bertrand’s paradox: A chord is chosen randomly in a circle of radius r. What is

the probability that the length X of the chord will be less than the radius r? The

answer depends on the method for randomly choosing points to determine the

chord. In this manner one is able to obtain distinct answers for the probability

P (X < r). The importance of the paradox lies in that it serves as a warning

to all persons who adopt practical policies on the basis of theoretical solutions,

without first establishing that the assumptions underlying the solutions are in

good accord with the experimentally observed facts.
183 Of 3 identical boxes, one contains 2 gold coins, one contains a gold and a silver

coin, and the third contains 2 silver coins; a box is selected at random and a

coin taken from it. Given that the chosen coin is gold, what is the probability

that the other coin in the selected box is also gold?
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of all numbers from 7 to 10 million. He died in 1861, after he had finished
about half of it.

Calculating Prodigies of the 18th and 19th centuries

Among the self-taught calculators who showed their power in youth184

were: Jedediah Buxton (1707–1772, England). With the exception of his
power of dealing with large numbers, his mental faculties were of low order
and he remained throughout his life a farm laborer. He could calculate 2140.
When asked later to square this number, he gave the answer 2 1

2 months later,
and he said he had carried on the calculations at intervals during that period
(he could not read or write). In 1754 he reached London and was examined
by various members of the Royal Society. It was suggested that he counted
by multiples of 60 and of 15 and thus reduced the multiplication to addition.

Of billions, trillions, etc. he had never heard, and in order to represent the
high numbers required in some of the questions posed to him, he invented a
notation of his own, calling 1018 a tribe, and 1036 a cramp. He could stop in
the middle of a piece of mental calculation, take up other subjects, and after
an interval of weeks, could resume the consideration of the problem.

Zerah Colburn (1804–1840, U.S.A.) showed extraordinary powers of
mental calculation while still less than 6 years old, which were displayed in a
tour of America and later in London (1812). He was born at Cabut, Vermont,
the son of a small farmer. At the age of 8 he could calculate 816 in a few
seconds. He gave the answer to such questions so rapidly that the gentle-
man who was taking them down was obliged to ask him to repeat them more
slowly. His power of factorizing numbers less than a million was exceptional.
In 1814, his English and American friends raised money for his education.
With education, his calculating powers fell off .

George Parker Bidder (1806–1878, England) had mental capabili-
ties similar to those of Colburn. He could calculate the square root of
119,550,669,121 in 30 seconds. Bidder later graduated from the University

184 Excluding educated prodigies who channeled their energy into rational mathe-

matics, such as Wallis, Ampère, Gauss, Ramanujan and others.
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of Edinburgh as a civil engineer and rose to high distinction. He retained his
power of rapid mental calculation to the end of his life. Other members of
his family have also shown exceptional powers of a similar kind as well as an
extraordinary memory.

Jacques Inaudi (1867–1939, Italy) was employed in his early years as a
shepherd and was ignorant of reading and writing even in his teens. He could
find integral roots of equations and could represent numbers less than 105 as
a sum of four squares in a minute or two. He could mentally reproduce the
sound of the declamation of the numbers’ digits in his own voice, and was
confused, rather than helped, if the numbers were shown him in writing. A
number of 24 digits, having been read to him in 59 seconds, was memorized by
its sound. His memory was excellent for numbers, but normal or subnormal
for other things.

Most of these calculating prodigies found it difficult or impossible to ex-
plain their methods. There are a few analyses by competent observers of the
processes used, notably of Bidder on his own work and that of Darboux of
Inaudi.

[Bidder performed multiplication, say of 397 × 173, by forming the prod-
uct (100 + 73 + 3) and (300 + 90 + 7) and adding up all the partial prod-
ucts. This method he used even when multiplying a 9 digit number by another
9 digit number.]

Dase visualized recorded numbers, working in much the same way as with
pencil and paper, while Bidder made no use of symbols and recorded successive
results verbally in a sort of cinematographic way.

In multiplication of a number of n digits, the strain on the mind varied ap-
proximately as nx (measuring it by the time taken in answering the question)
where x ∼ 5 for Bidder and x ∼ 3 for Dase.

1844 CE Hermann Günther Grassmann (1809–1877, Germany).
Mathematician. The harbinger of modern abstract algebra, especially vec-
tor and polyadic algebra.

In his book ‘Ausdehnungslehre’ (1844) he developed a mathematical sys-
tem involving a theoretical algebraic structure (calculus of linear extensions)
on which geometry of any number of dimensions in affine and metric spaces
could be based. He used invariant symbolism in which we now recognize vec-
tor and tensor (dyadic) notation. His “gap” products correspond to Gibbs’
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later ‘indeterminate products’. Vector addition and subtraction, the two ma-
jor kinds of vectorial products, vector differentiation and the elements of the
linear vector function were all presented in forms either equivalent or nearly
equivalent to their modern counterparts.

His ‘Ausdehnungslehre’ includes the concept of hypercomplex numbers and
their algebras, and Hamilton’s algebra and matrix algebra are just special
cases of his broader concepts — which embraces even the tensor algebra of
general relativity.

Grassmann never attended a university mathematical lecture, and the
great mathematicians of his day such as Gauss, Kummer, Möbius, Hamil-
ton and others, failed to appreciate the greatness of his achievement. Thus,
his ideas were overlooked in the main during his lifetime, and their importance
was not recognized until the twentieth century. A later generation utilized
parts of Grassmann’s structure to build up vector and dyadic analysis for
affine and metric spaces. All in all, the geometrical tradition of Hamilton and
Grassmann led to the extremely useful vector algebras of classical mechanics
and mathematical physics and eventually to tensor algebra and calculus.

Furthermore, Grassmann’s non-commutative algebra was implemented in
the matrix mechanics of quantum theory by Werner Heisenberg (1901–
1976, Germany, 1925). It seems probable that Grassmann did not anticipate
any such outcome for his extremely general ‘geometric algebra’185.

Grassmann was a high-school teacher in Stettin, Germany. His father,
Justus Günther Grassmann once said: “I would be happy if Hermann became
a gardener or a craftsman”.

1844 CE Gabriel Gustav Valentin (1810–1883, Germany). Physiologist
and physician. Discovered that pancreatic juice breaks down food in digestion.
Contributed to the physiology of metabolism, the digestive tract and the
nervous system.

Valentin was born to Jewish parents in Breslau. He became a professor of
physiology in the University of Bern (1836).

1844–1859 CE Carl Friedrich Wilhelm Ludwig (1816–1895, Ger-
many). Physiologist. One of the founders of physiochemical school of physiol-
ogy. Helped create an autonomous discipline of physiology, with its research
schools, professional societies and specialized journals.

185 In 1845 the French engineer Adhémar, Comte de Saint-Venant (1797–

1866) exposed mathematical ideas similar to those which are present in the

Grassmannian system. Among other things he defined the dyadic product of

two vectors.
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Ludwig was born in Witzenhausen, Hesse and studied at Marburg (though
temporarily compelled to leave the university as a result of his political
activities186), Erlangen, and the surgical school in Bamberg. He wasprofessor
at Marburg (1846–1849), Zürich (1849–1855), Vienna (1855–1865), Leipzig
(1865–1895).

Ludwig showed (1844) that the epithelium of the kidney tubules serve as a
passive filter in urine production. Demonstrated the influence of nerves on the
distribution of blood and on the secretion of the glands. Developed (1846)
the kymograph — first physical device for a continuous recording of blood
pressure187 and other physiological or muscular processes. Proved (1854) that
blood circulation is purely mechanical, such that no mysterious vital processes
outside ordinary physics need to be involved. First to keep animal organs
alive in vitro outside the body, which he achieved by pumping blood through
them (1859). Devised medical instruments, useful especially in diagnostic
technology. Energetic and influential teacher. Sought explanation of living
processes in the paradigms of physics and chemistry (reductionism).

1844–1871 CE Pierre-Ossian Bonnet (1819–1892, France). Mathemati-
cian. Contributed to the differential geometry of curves and surfaces.188 The
field was opened by Euler, Monge and Gauss189, but at the time was lack-
ing a systematic treatment. Between 1840 and 1950, this challenge was taken

186 He had a stormy student career: dueling left him with a heavily scarred lip.
187 Before the late 19th century, blood pressure studies required sticking a tube

directly into the arteries.
188 For further reading, see:

• Struik, D.J., Lectures on Classical Differential Geometry , Dover Publications:

New York, 1988, 232 pp.

• Weatherburn, C.E., Differential Geometry of Three Dimensions, Cambridge

University Press: Cambridge, 1939, 268 pp.

• Mishchenko, A. and A. Fomenko, A Course of Differential Geometry and
Topology , Mir Publications: Moscow, 1988, 455 pp.

• Kreyszig, E., Differential Geometry , Dover Publications: New York, 1991,
352 pp.

189 Gauss-Bonnet theorem (Bonnet, 1848; known earlier to Gauss): If the Gaussian

curvature K of a surface is continuous in a simply connected region A, bounded
by a closed curve C composed of k smooth arcs making at the vertices exterior

angles θ1, θ2, . . . , θk, then:

∫

C

Kgds +

∫ ∫

A

KdA = 2π −
k∑

i=1

θi,
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up by Bonnet and a group of younger French mathematicians, among them
Serret, Frenet, Bertrand and Puiseux190. Bonnet demonstrated the in-
variance of the geodetic curvature under bending of the surface and stressed
the usefulness of special coordinate systems, such as isometric and tangential
coordinates.

Bonnet was born at Montpelier. He studied at the École Polytechnique
and became a teacher there in 1844. He succeeded the astronomer LeVerrier
to a Sorbonne chair in 1878.

1844–1890 CE John Fowler (1817–1898, England). Civil engineer. Pio-
neer in the construction of railway systems (including bridges and deep tun-
neling ‘tubes’) in England, Italy, Egypt and Sudan.

Fowler was born at Wadsley Hall, near Sheffield and flourished in an era
of railway construction initiated by the Stepensons. In 1890 he completed the
Forth bridge with his partner Benjamin Baker.

1845–1867 CE Robert William Thomson (1822–1873, Scotland). En-
gineer and inventor. Invented the vulcanized rubber pneumatic tire191. He
patented his invention in 1845, and it was successfully tested in London.
However, it was abandoned because it was thought too expensive for common
use. The tire was re-invented by John Dunlop in 1888.

Thomson also patented the fountain pen (1849) and a steam traction en-
gine (1867). He was born in Stonehaven, Scotland.

where Kg represents the geodetic curvature of the arcs.

This theorem is an application of Green’s theorem, known from the theory of

line integrals and surface integrals in the plane, to the integral of the geodetic

curvature.
190 Victor Alexandre Puiseux (1820–1893, France). Mathematician. Furthered

Cauchy’s work on functions of complex variable. First to distinguish poles,

essential singularities and branch points.
191 It consisted of inflexible casings around an inner tube and was designed for

vehicles pulled by animals. They were ousted after a few years by solid tires.

The Michelin brothers (France) were the first to fit motor vehicles with tires

with inner tubes (1895).
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The Real Number System

The middle of the 19th century saw the main thrust of the program for
the arithmetization of analysis, which started with d’Alembert (1754), La-
grange (1797) and Cauchy (1821). In the first stage of this process, the
foundations of the real number system were rigorized. This was done in sev-
eral different ways.

One of the methods starts with the positive integers as undefined con-
cepts, states some axioms concerning them, and then uses them to build a
larger system consisting of the positive rational numbers (quotient of positive
numbers). The positive rational numbers, in turn, are used as a basis for con-
structing the positive irrational numbers (such as

√
3, π, etc.). The final step

is the introduction of the negative real numbers and zero. The most difficult
part of the whole process is the transition from the rational numbers to the
irrational numbers.

Although the need for irrational numbers was apparent to the ancient
Greeks from their study of geometry, satisfactory methods for constructing
irrational numbers from rational numbers were not introduced until late in
the 19th century.

Three different theories were outlined by Karl Weierstrass (1815–1897),
Georg Cantor (1845–1918) and Richard Dedekind (1831–1916). In 1889,
the Italian mathematician Giuseppe Peano192 (1858–1932) listed 5 axioms
for the non-negative integers that could be used as the starting point of the
whole construction:

(1) Zero is a number.

(2) If a is a number, the successor of a is a number.

(3) Zero is not a successor of a number.

(4) Two numbers of which the successors are equal are themselves equal.

(5) If a set S of numbers contains zero and also the successor of every number
in S, then every number is in S (axiom of induction).

192 For further reading, see:

• Kline, M., Mathematical Thought from Ancient to Modern Times, Oxford

University Press, 1990, 1211 pp.
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Here, the postulational method attained a new height of precision, with
no ambiguity of meaning and no concealed assumptions.

1845–1881 CE Leopold Kronecker (1823–1891, Germany). Distin-
guished mathematician and mathematical philosopher who planted the seed
of intuitionism193 in modern mathematics (although his views should not be
confused with those of the present-day movement). In general Kronecker ad-
hered to an arithmetical approach to algebra, via a postulational treatment
of algebraic structures in terms of various number fields, and insisted that
arithmetic and analysis be based on the whole numbers194.

He categorically rejected the real number construction of his day on the
ground that they cannot be achieved through finite processes only, and he

193 Intuitionism asserts that mathematics is built solely on finite constructive meth-

ods, employing a finite number of steps [e.g. a Galois field having a finite number

of elements, as for example the field of integers modulo a prime number]. For

the intuitionists, an entity whose existence is to be proved must be shown to be

constructible in a finite number of steps.

Intuitionism stresses that mathematics has priority over logic; the objects of

mathematics are constructed and operated upon in the mind by the mathe-

matician, and it is impossible to define the properties of mathematical objects

simply by establishing a number of axioms.
194 Kronecker’s theorem in one dimension (1884): If ν is irrational, α is arbitrary,

and N and ε are positive, then there are integers n and p such that n > N and

|nν − p − α| < ε.

The theorem implies that there are integers n for which nν is as near as we

please to any number in (0, 1). Alternatively, if ν is irrational, then the set of

points (nν)(mod 1) is dense in the interval (0, 1). The theorem has a simple

application to a plane geometrical-optics problem: a ray of light leaves a point

inside a square, the sides of which are reflecting mirrors. What is the nature

of the path? The equivalent geometrical theorem then states: Either the path

is closed and periodic or it is dense in the square, passing arbitrarily near to

every point in the square. A necessary and sufficient condition for periodicity is

that the angle between a side of the square and the initial direction of the ray

should have a rational tangent.

Kronecker himself proved his theorem for the more general case of a space of K

dimensions. Later, Harald Bohr (1934) and Georgii Fedoseevich Voronoi

(1868–1908) extended the theorem to spaces of infinite number of dimensions.
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called for an arithmetical revolution that would ban the irrational numbers
as nonexistent(!)195. In analysis, Kronecker openly criticized his contempo-
raries (especially Weierstrass and Cantor) in lectures and conversation. He
believed that mathematics should deal only with finite numbers and a finite
number of operations.

Kronecker made significant contributions to algebra: with Kummer and
Dedekind he invented the modern theory of algebraic numbers. They did
for higher arithmetic and the theory of algebraic equations what Gauss,
Lobachevsky and Riemann did for geometry, in emancipating it from the
narrow Euclidean dogma. Thus the creators of the theory of algebraic num-
bers have unified the separate theories of equations, algebraic curves and
surfaces, and numbers into one firm supersystem based on a firm background
of postulates.

In addition, Kronecker investigated the curvature of hypersurfaces in
Euclidean space in n-dimensions (1869) and introduced (1881) his famous
δ symbol. [δij = 1 if i = j; δij = 0 if i �= j.]

He used the method of residues and the integral

∫
e

2πi
m z2

dz

1 − e2πiz

to render a simple proof of the Gauss sum

m−1∑

s=0

e
2πi
m s2

=
i + i1−m

i + 1
√

m.

Gauss himself devoted several painful years to determine the exact form
of this sum. He later deduced from it the law of quadratic reciprocity for real
primes.

Kronecker was born at Liegnitz, Prussia, of Jewish parents. At school he
excelled in Greek, Latin, Hebrew, philosophy and mathematics. His mathe-
matical talent appeared early under the expert guidance of Kummer. He ac-
quired a broad liberal education in the Greek classics, painting and sculpture,
and was an accomplished pianist and vocalist. Upon entering the University
of Berlin in 1841 he came in contact with Dirichlet, Jacobi, Weierstrass,
Steiner and Eisenstein. After taking his Ph.D. degree at the age of 22, he
spent the years 1845–1853 managing a successful farming business.

195 His motto: “Die ganze Zahl schuf der liebe Gott, alles übrige ist Menschwerk”

(God made the integers, men made the rest.)
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Until the last decade of his life, Kronecker was a free man with obligations
to no employer. From 1861 to 1883 he conducted regular courses at the
University of Berlin, principally on his personal researches. In 1883 Kummer
retired, and Kronecker succeeded him as ordinary professor.

Kronecker was of very small stature and extremely self-conscious about
his height. In fact he attacked rigorously anyone whose mathematics he dis-
approved.He believed that the mathematical analysis of Weierstrass, based on
his conception of irrationals as defined by infinite sequences of rationals, is all
wrong. His finitism obviously embarrassed Weierstrass, but it was Cantor
whom he wounded most seriously. Not only did Kronecker stand in the way
of a position for Cantor in Berlin, but he sought to undermine the branch
of mathematics that Cantor was creating. In 1884 Cantor suffered the first
of the nervous breakdowns that were to recur throughout the remaining 33
years of his life.

Kronecker died of bronchial illness in Berlin. On his death bed he con-
verted to Christianity.

Analysts at his time regarded his views as excessively metaphysical. After
a temporary decline, his views reappeared in a new form in the works of
Poincaré (1902–1906) and Brouwer (1908). This school of intuitionism has
gradually strengthened with the passage of time. It won over some eminent
present-day mathematicians, and has exerted great influence on all thinking
concerning the foundations of mathematics.

1846 CE, Sept 23 Johann Gottfried Gale (1812–1910, Germany), as-
tronomer, discovered the planet Neptune using predictions of its position by
Urbain LeVerrier (1811–1877, France) and John Couch Adams (1819–
1892, England).

The discovery of Neptune was a dramatic and spectacular achievement of
mathematical astronomy. The very existence of this new member of the solar
system, and its exact location, were demonstrated with pencil and paper;
there was left to observers only the routine task of pointing their telescopes
at the spot the mathematicians had marked.

1846 CE Hugo von Mohl (1805–1872, Germany). Botanist. Pioneer in
the field of plant cell structure and physiology. His meticulous observations
were the first attempts at cytochemistry; he identified a substance he called
protoplasm. Mohl was the first person (1846) to use the term protoplasm in
cell biology. He was the first to clearly explain osmosis.

Mohl was born in Stuttgart and studied medicine at Tübingen. Professor
of Physiology at Bern (1832–1835) and of Botany at Tübingen (1835–1872).
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1846 CE, Aug 10 The Smithsonian Institution founded by act of Congress
in Washington D.C., with a $100,000 bequest from English chemist and min-
eralogist James Smithson (1765–1829). It is a federal chartered nonprofit
corporation of scientific, educational, and cultural interests, established for
the “increase and diffusion of knowledge among men”. The Smithsonian con-
ducts scientific research and publishes the results of studies, explorations, and
investigations. It preserves and displays items representing aeronautics and
space exploration, science and technology and natural history.

James Smithson (known until 1801 as James Louis Macie) was born in
Paris, the illegitimate son of Hugh Smithson Percy, 1st Duke of Northum-
berland, and Elizabeth Macie. The mineral smithsonite (calamine) is named
after him.

1846 CE Ernest Heinrich Weber (1795–1878, Germany). Anatomist
and physiologist. Founded experimental psychology, studying the response of
humans to physical stimuli. Professor at Leipzig (1818–1878). Established
the empirical law (1846):

“Noticeable differences in sensation occur when the increase of stimulus is
a constant percentage of the stimulus itself”.

If s is the magnitude of a measurable stimulus and (Δs) the increase just
required for discrimination, then the ratio r = Δs

s is constant. This applies
to sound, light and taste reception196.

Weber’s law is at best a good approximation to reality. It fails when s is
either too small or too large.

1846–1885 CE Louis Pasteur (1822–1895, France). Distinguished che-
mist, microbiologist and humanist. Pioneered in the field of modern stereo-
chemistry in proving the existence of optical isomers (1846) and explaining
the phenomenon.

196 Example: Assume a person holds a weight of 20 grams in his hand and that

he is tested for the ability to distinguish between this weight and a slightly

higher weight. Experiments show that a person is not able to discriminate

between 20.5 g and 20 g, but that he finds 21 g to be heavier than 20 g most

of the time. Now, a person cannot reliably discriminate between 41 g and

40 g. The detectable increase is 2 g instead of 1 g. It is found that, in general,

discrimination is possible if s is increased by 5 percent of the original value.

The following list of r-values may illustrate the sensitivity of human senses:
visible brightness 1:50 (s =light intensity)

tone 1:10 (s =sound intensity)

smell for rubber 1:8 (s =number of molecules)
taste for saline solution 1:4 (s =concentration of solution)
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Discovered that fermentation of wine and beer is caused by microorgan-
isms (yeast), not by chemical means, as previously supposed and proved that
these organisms do not arise by spontaneous generation (1856–1871). Deter-
mined that excess fermentation could be eliminated by boiling the liquid or
filtering the microorganisms (1856). Discovered the bacilli causing two dis-
tinct diseases of silkworm and found a method of preventing spread of the
disease (1868), thus saving the silk industry in France. Extended his the-
ory of fermentation to the germ theory of disease (1862–1885) and developed
effective inoculation against several specific diseases: chicken cholera (1880),
anthrax (1882) and rabies (1885). Identified the bacteria streptococcus (1879).
Invented the process of milk ‘pasteurization’ (1885).

Pasteur was born at Dôle, Franche-Comté. In 1838 he was sent with a
friend to Paris, to a preparatory school for the École Normale. But being a
nervous and excitable boy, his health broke down, and he returned home, to
Arbois. He then continued his education at the Royal College of Besancon. His
admittance to the École Normale was hampered by a low grade in chemistry
(1842). This only increased his incentive for a serious study of chemistry.
After his brilliant solution of the isomeric problem (1846) which had baffled
the greatest chemists and physicists of the time, he was immediately appointed
professor of chemistry at the faculty of science at Strasbourg, where he soon
married Mlle Laurent.

In 1854 he was appointed professor of chemistry and dean of the Faculty
of sciences at Lille. In his inaugural address he used significant words, the
truth of which was soon manifested in his case: “In the field of observation,
chance only favors those who are prepared”.

The diseases of beer and wine had from time immemorial baffled all at-
tempts at cure. Pasteur one day visited a brewery containing both sound
and unsound beer. He examined the yeast under the microscope, and at once
saw that the globules from the sound beer were nearly spherical, while those
from the sour beer were elongated; and this led him to a discovery the conse-
quence of which have revolutionized chemical as well as biological science. It
was the beginning of a series of experimental researches in which he proved
conclusively that the notion of spontaneous generation was a chimera.

Up to this time the phenomenon of fermentation was considered strange
and obscure. Explanations had indeed been put forward by men as eminent as
Berzelius and Liebig, but they lacked experimental foundation. This was
given in the most complete degree by Pasteur. For he proved that various
changes occurring in the several processes of fermentation are invariably due
to the presence and growth of minute organisms.

In a series of delicate and intricate experiments Pasteur was able to show
that when the atmospheric germs are absolutely excluded, no changes take
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place. The application of these facts to surgical operations has revolutionized
surgical practice in Pasteur’s own time.

Pasteur left Lille in 1857 to become the director of the École Normale in
Paris (1857–1867). His discoveries on fermentation inaugurated a new era
in the brewing and wine-making industries. Empiricism, hitherto the only
guide, was replaced by exact scientific knowledge; the connection of each
phenomenon with a controllable cause was established. Yet, in spite of rising
fame and success, he still had to withstand grave opposition from powerful
foes in the academy.

His powers of patient research and exact observation were about to be
put to a severe test: An epidemic of a fatal character had ruined the French
silk producers. Up to that time he had never seen a silkworm, and hesitated
to attempt so difficult a task; but at the reiterated request of his friends he
consented, and in June 1865 went to the south of France for the purpose of
studying the disease on the spot. In September of the same year he was able
to announce results which pointed to the means of securing immunity from
the epidemic, thus bringing back prosperity to the silk trade of France.

In 1880 Pasteur attacked the problem of chicken cholera, an epidemic
which destroyed 10 percent of the French fouls; after the application of inoc-
ulation the death-rate was reduced to below one percent.

Next came the successful attempt to deal with the fatal cattle scourge
known as anthrax. Many million of sheep and oxen all over the world have
been treated by Pasteur’s method, and the rate of mortality reduced from 10
to less than one percent. It is estimated that the monetary value of these
discoveries was sufficient to cover the whole cost of the war indemnity paid
by France to Germany in 1870.

The most spectacular of Pasteur’s anti-microbial wars was launched
against the dread disease of hydrophobia in man and of rabies in animals.
This was accomplished in spite of the fact that the virus causing the disease
had not been identified. Here again, the method of inoculation proved to be
successful. On the 14th of November 1888, the ‘Institut Pasteur’ was founded.
Thousands of people suffering from bites from rabid animals, from all lands,
have been treated in this institute, and the death-rate from this disease has
been reduced to less than one percent197.

Pasteur brought to microbiology the spirit and logic of the exact methods
of physics and chemistry. This enabled him to bring under the domain of
scientific laws the phenomenon of disease. Rich in years and honors, but

197 Paul Muni (1895–1967; born Muni Weisenfreund in Lemberg, Austria) played

the character of Pasteur in the movie “The Story of Louis Pasteur” (1936).
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simple and affectionate in his demeanor, this great benefactor of humanity
passed quietly away near St. Cloud on the 28th of September 1895.

In 1874 Pasteur said: “Life, as is known to us, is a direct result of the
asymmetry198 of the universe or of its indirect consequences. The universe is
asymmetric.”

Now, at that time, the only known asymmetry pertaining to this comment
was that of optical isomers in the field of organic chemistry. From our present
vantage point this reads as a prophetic statement because life, physics, matter
and even the fabric of the vacuum which we inhabit, are known to stem
from spontaneous breaking of a string of symmetries. e.g.: time-reversal,
electroweak gauge symmetry and chiral symmetry.

In biology, the fundamental symmetry of the double helix molecule is a
case in point.

Worldview XXI: Louis Pasteur

∗ ∗∗

“Let me tell you the secret that has led me to my goal: my strength lies solely
in my tenacity.”

∗ ∗∗

“Travailler, travailler toujours.”

∗ ∗∗

198 Symmetry is the Greek word ΣY M -METPIA = “the same measure”.
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“Blessed is he who carries within himself a god and an ideal and who obeys
it — an ideal of art, of science, of gospel virtues. Therein lie the springs of
great thoughts and great actions.”

∗ ∗∗

“In the field of observation, chance favors the prepared mind.”

∗ ∗∗

“Science owns no fatherland.”

∗ ∗∗

“Unfortunate are those scientists who have only clear thoughts in their heads!”

∗ ∗∗

“There does not exist a category of science to which one can give the name
applied science. There are science and the applications of science, bound
together as the fruit of the tree which bears it.”

∗ ∗∗

At the inauguration of his institute (1888) he closed his oration with the
following words:

“Two opposing laws seem to me now in contest. The one, a law of blood
and death, opening out each day new modes of destruction, forces nations to
be always ready for the battle. The other, a law of peace, work and health,
whose only aim is to deliver man from the calamities that beset him. Which
of these two laws will prevail, God only knows. But of this we may be sure,
that science, in obeying the law of humanity, will always labor to enlarge the
frontiers of life.”
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∗ ∗∗

“Où en êtes-vous? Que faites-vous? Il faut travailler” (on his death-bed, to
his devoted pupils, watching over him).

The Spontaneous Generation Controversy

(340 BCE–1870 CE)

“Omne vivium ex Vivo.”

(Latin proverb)

Although the theory of spontaneous generation (abiogenesis) can be traced
back at least to the Ionian school (600 B.C.), it was Aristotle (384–322 B.C.)
who presented the most complete arguments for and the clearest statement of
this theory. In his “On the Origin of Animals”, Aristotle states not only that
animals originate from other similar animals, but also that living things do
arise and always have arisen from lifeless matter. Aristotle’s theory of sponta-
neous generation was adopted by the Romans and Neo-Platonic philosophers
and, through them, by the early fathers of the Christian Church. With only
minor modifications, these philosophers’ ideas on the origin of life, supported
by the full force of Christian dogma, dominated the mind of mankind for more
that 2000 years.

According to this theory, a great variety of organisms could arise from
lifeless matter. For example, worms, fireflies, and other insects arose from
morning dew or from decaying slime and manure, and earthworms originated
from soil, rainwater, and humus. Even higher forms of life could originate
spontaneously according to Aristotle. Eels and other kinds of fish came from
the wet ooze, sand, slime, and rotting seaweed; frogs and salamanders came
from slime.
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Rather than examining the claims of spontaneous generation more closely,
Aristotle’s followers concerned themselves with the production of even more
remarkable recipes. Probably the most famous of these was van Helmont’s
(1577–1644) recipe for mice. By placing a dirty shirt into a bin containing
wheat germ and allowing it to stand 21 days, live mice could be obtained.
Another example was the slightly more complicated but equally “foolproof”
recipe for bees. By killing a young bullock with a knock on the head, burying
him in a standing position with his horns sticking out of the ground, and
finally sawing off his horns one month later, out will fly a swarm of bees.

The more exact methods of observation that were developed during the
seventeenth century soon led to a realization of the complex nature of the
anatomy and life cycles of certain living organisms. Equipped with this better
understanding of the complexity of living organisms, it became more difficult
for some to accept the theory of spontaneous generation. This skepticism sig-
naled the beginning of three centuries of heated controversy over a theory that
had gone unchallenged for the previous 2000 years. What is more significant
is that the controversy was to be resolved not by powerful arguments but by
ingeniously designed, simple experiments.

The controversy went through four phases:

I. Redi (1688) Vs. Aristotelian school and Church dogma

Redi was first to use carefully controlled experiments to test the theory
of spontaneous generation. He put some meat in two jars. One he left open
to air (the control); the other he covered securely with gauze. At that time
it was well recognized that white worms would arise from decaying meat or
fish. Sure enough, in a few weeks, the meat was infested with the white
worms but only in the control jar which was not covered. This experiment
was repeated several times, using either meat or fish, with the same result.
On closer examination he noted that common houseflies went down into the
meat in the open jar, later the white worms appeared, and then new flies.
Redi reported that he had observed the flies deposit their eggs on the gauze;
however, worms developed in the meat only when the eggs got to the meat.
He therefore concluded from his observations that the white worms did not
arise from the putrid meat. The worms developed from the eggs that the flies
had deposited. The white worm then was the larva of the fly, and the meat
served only as food for the developing insect.
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Redi’s experiment provided the impetus for testing other well-established
recipes. In all cases that were examined carefully, it was demonstrated that
the living organism arose not by spontaneous generation, but from a parent.
Thus it was shown that the theory of spontaneous generation was based on
a combination of the weakness of the human eye and bits and snatches of
information gathered by accidental observation. The early biologists had seen
earthworms coming out of the soil and frogs emerging from the slime of pond
water, but they had not been able to see the tiny eggs from which these or-
ganisms arose. Because their observations had not been systematic, they had
not seen how the mice invaded the grain bin in search of food, so they thought
that the grain produced the mice. Based on the more exact methods of ob-
servation, the evidence that supported the theory of spontaneous generation
of animals and plants was largely demolished by the end of the seventeenth
century.

II. Spallanzani Vs. Needham (1767–1768)

As soon as the discoveries of Leeuwenhoek199 became known, the propo-
nents of spontaneous generation turned their attention to these microscopic
organisms and suggested that surely they must have formed by spontaneous
generation. Finally, experimental “proof” for this notion was published in
1748 by an Irish priest, John Tuberville Needham (1713–1781).

Needham reported that he had taken mutton gravy fresh from the fire,
transferred it to a flask, heated it to boiling, stoppered it tightly with a cork,
and then set it aside. Despite boiling, the liquid became turbid in a few days.
When examined under a microscope, it was teeming with microorganisms
of all types. The experiments were repeated by and gained the support of
the famous French naturalist, Georges Louis Le-clerc, Comte de Buf-
fon (1707–1788). Needham’s demonstration of spontaneous generation was
generally accepted as a great scientific achievement, and he was immediately

199 The development of microscopy started with Janssen (1590) and continued

with Hooke (1660), Leeuwenhoek (1676) and Zeiss (1883). Just as the theory

of the abiogenesis of higher organisms was being refuted, the controversy was

reopened, more heated than ever, because of the discovery of microorganisms

by Antony van Leeuwenhoek. Leeuwenhoek patiently improve his microscopes

and developed his techniques of observation for 20 years before he reported any

of his results.
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elected into the Royal Society of England and the Academy of Sciences of
Paris.

Meanwhile in Italy, Lazzaro Spallanzani (1729–1799) performed a series
of brilliantly designed experiments of his own that refuted Needham’s con-
clusions. Spallanzani found that if he boiled the food for one hour and her-
metically sealed the flasks (by fusing the glass so that no gas could enter
or escape), no microorganisms would appear in the flasks. If, however, he
boiled the food for only a few minutes, or if he closed the flask with a cork,
he obtained the same results that Needham reported. Thus he wrote that
Needham’s conclusions were invalid because (1) he had not heated the gravy
hot enough or long enough to kill the microorganisms, and (2) he had not
closed the flask sufficiently to prevent other microbes from entering.

Count Buffon and Father Needham immediately responded that, of course,
Spallanzani did not generate microorganisms in his flasks because his extreme
heating procedures destroyed the vegetative force in the food and the elasticity
of the air. Regarding Spallanzani’s experiments, Needham wrote, “from the
way he has treated and tortured his vegetable infusions, it is obvious that he
has not only much weakened, and maybe even destroyed, the vegetative force
of the infused substances, but also that he has completely degraded ... the
small amount of air which was left in his vials. It is not surprising, thus, that
his infusions did not show any sign of life.”

Rather than engage in theoretical arguments over the possible existence of
these mystical forces, Spallanzani returned to the laboratory and performed
another set of ingenious experiments. This time he heated the sealed flasks
to boiling not for one hour, but for three hours, and even longer. If Needham
was right, this treatment should certainly have destroyed the vegetative force.
As Spallanzani had previously observed, nothing grew in these heated, sealed
flasks. However, when the seal was broken and replaced with a cork, the
broth soon became turbid with microbes. Since even three hours of boiling
did not destroy anything in the food necessary for the production of microbes,
Needham could no longer argue that he had killed the vegetative force by the
heat treatment.

Spallanzani continued to perform experiments that led him to the con-
clusion that properly heated and hermetically sealed flasks containing broth
would remain permanently lifeless. He was, however, unable to answer ad-
equately the criticism that by sealing the flasks he had excluded the “vital
forces” in the air that Needham claimed were also necessary ingredients for
spontaneous generation. With the discovery of oxygen gas in 1774 and the
realization that this gas is essential for the growth of most organisms, the
possibility that spontaneous generation could occur, but only in the presence
of air (oxygen), gained additional support.
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III-1. Schwann Vs. Berzelius, Liebig and Wholer (1836–1839)

– the fermentation controversy

The art of brewing was developed by trial and error over a 6000-year pe-
riod and practiced without any understanding of the underlying principles.
From long experience, the brewer learned the conditions, not the reasons, for
success. Only with the advent of experimental science in the eighteenth and
nineteenth centuries did man attempt to explain the mysteries of fermenta-
tion. Let us, then, from our vantage point in time, trace the observations,
experiments, and debates from which evolved our present understanding of
fermentation and biological catalysis.

For centuries, fermentation had a significance that was almost equivalent
to what we would now call a chemical reaction, an error that probably arose
from the vigorous bubbling seen during the process. The conviction that
fermentation was strictly a chemical event gained further support during the
early part of the nineteenth century, when French chemists led by Lavoisier
and Gay-Lussac determined that the alcoholic fermentation process could
be expressed chemically by the following equation:

C6H12O6
glucose

→ 2C2H5OH
ethyl alchohol

+ 2CO2
carbon dioxide

It was, of course, known that yeast must be added to the wort in order to
ensure a reproducible and rapid fermentation. The function of the yeast,
according to the chemists, was merely to catalyze the process. All chemists
agreed that fermentation was in principle no different from other catalyzed
chemical reactions.

Then in 1837, the French physicist Charles Cagniard-Latour and the
German physiologist Theodor Schwann independently published studies
that indicated yeast was a living microorganism. Prior to their publications,
yeast was considered a proteinaceous chemical substance. The reason the two
workers came up with the same observations at approximately the same time
is most likely due to the production of better microscopes.

It should be mentioned that one of the reasons it was difficult to ascertain
whether or not yeast is living was because, like most other fungi, yeast is
not motile. The organized cellular nature of yeast was discovered only when
improved microscopes became available. Schwann and Cagniard-Latour also
observed that alcoholic fermentation always began with the first appearance
of yeast, progressed only with its multiplication, and ceased as soon as its
growth stopped. Both scientists concluded that alcohol is a by-product of the
growth process of yeast.
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The biological theory of fermentation advanced by Cagniard-Latour and
Schwann was immediately attacked by the leading chemists of the time. The
eminent Swedish physical chemist Jons Jakob Berzelius reviewed the two
papers in his Jahresbericht for 1839 and concluded that microscopic evidence
was of no value in what was obviously a purely chemical problem. According
to Berzelius, nothing was living in yeast.

This opinion was supported by Justus von Liebig and Friedrich
Wöhler. Liebig argued that:

1. Certain types of fermentation, such as the lactic acid (souring of milk)
and acetic acid (formation of vinegar) fermentations, can occur in the
complete absence of yeast.

2. Even if yeast is living, it is not necessary to conclude that the alcoholic
fermentation is a biological process. The yeast is a remarkably unstable
substance which, as a consequence of its own death and decomposi-
tion, catalyzes the splitting of sugar. Thus, fermentation is essentially
a chemical change catalyzed by breakdown products of the yeast.

Liebig’s views were widely accepted, partly because of his powerful influ-
ence in the scientific world and partly because of a desire to avoid seeing an
important chemical change relegated to the domain of biology. And so the
stage was set – biology against chemistry – for the entrance of Louis Pasteur.

III-2. Pasteur Vs. Liebig and Berzelius (1857–1860)

In 1851, Pasteur published his first paper on the topic of fermentation.
The publication dealt with lactic acid fermentation, not alcoholic fermenta-
tion. Utilizing the finest microscopes of the time, Pasteur discovered that
souring of milk was correlated with the growth of a microorganism, but one
considerably smaller than the beer yeast. During the next few years, Pasteur
extended these studies to other fermentative processes, such as the formation
of butyric acid as butter turns rancid. In each case he was able to demon-
strate the involvement of a specific and characteristic microorganism; alcoholic
fermentation was always accompanied by yeasts, lactic acid fermentation by
nonmotile bacteria, and butyric acid fermentation by motile rod-shaped bac-
teria. Thus, Pasteur not only disposed of one of the opposition’s strongest
arguments, but also provided powerful circumstantial evidence for the biolog-
ical theory of fermentation.

Now Pasteur was ready to attack the crucial problem, alcoholic fermenta-
tion. Liebig had argued that this fermentation was the result of the decay of
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yeast; the proteinaceous material that is released during this decomposition
catalyzes the splitting of sugar. Pasteur countered this argument by devel-
oping a protein-free medium for the growth of yeast. He found that yeast
could grow in a medium composed of glucose, ammonium salts, and some
incinerated yeast. If this medium is kept sterile, neither growth nor fermen-
tation takes place. As soon as the medium is inoculated with even a trace
of yeast, growth commences and fermentation ensues. The quantity of al-
cohol produced parallels the multiplication of the yeast. In this protein-free
medium, Pasteur was able to show that fermentation takes place without the
decomposition of yeast. In fact, the yeast synthesizes protein at the expense
of the sugar and ammonium salts. Thus Pasteur concluded in 1860:

“Fermentation is a biological process, and it is the subvisible organisms
which cause the changes in the fermentation process. What’s more, there are
different kinds of microbes for each kind of fermentation. I am of the opinion
that alcoholic fermentation never occurs without simultaneous organization,
development and multiplication of cells, or continued life of the cells already
formed. The results expressed in this memoir seem to me to be completely
opposed to the opinion of Liebig and Berzelius.”

Pasteur argued effectively, and more important, all the data were on his
side. Thus the vitalistic theory of fermentation predominated until 1897, when
an accidental discovery by Eduard Buchner (1860–1917) demonstrated that
the alcoholic fermentation of sugars is due to action of enzymes contained in
the yeast.

The controversy was thus finally resolved and the door was thrown open
to modern biochemistry.

IV. Pasteur and Tyndall Vs. Pouchet (1859–1885)

The spontaneous generation controversy was brought to a crisis in 1859
when Felix Archimède Pouchet (1800–1872), a distinguished scientist and
director of the Museum of Natural History in Rouen, France, reported his ex-
periments on spontaneous generation. Pouchet claimed to have accomplished
spontaneous generation using hermetically sealed flasks and pure oxygen gas.
These experiments, he argued, demonstrated that “animals and plants could
be generated in a medium absolutely free from atmospheric air and in which
therefore no germ of organic bodies could have been brought by air.”

The impact of Pouchet’s experiments on his contemporaries was so great
that the French Academy of Sciences offered the Alhumpert Prize in 1860 for
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exact and convincing experiments that would end this controversy once and
for all. Pasteur first set out to demonstrate that air could contain numerous
microorganisms. From his microscopic observation, Pasteur concluded that
there are large numbers of organized bodies suspended in the atmosphere.
Furthermore, some of these organized bodies are indistinguishable by shape,
size, and structure from microorganisms found in contaminated broths. Later
he showed that these organized bodies that collected on the cotton fibers
not only looked like microorganisms, but when placed in a sterile broth were
capable of growth!

Pasteur’s second series of experiments provided further circumstantial evi-
dence that it was the microbes on floating dust particles and not the so-called
vital forces that were responsible for sterilized broth’s becoming contaminated.
In these experiments, Pasteur carried sterile-sealed flasks to a wide variety of
locations in France. At the various sites, he would break the seal, allowing air
to enter the flask. The flask was immediately resealed and brought back to
Paris for incubation. The conclusion from these numerous experiments was
that where considerable dust existed, all the flasks would become turbid. For
example, if he opened sterile flasks in the city, even for a brief period, they
all became turbid, whereas in the mountainous regions, especially at high
altitudes, a large proportion of the flasks remained sterile.

His third and most conclusive experiment utilized the now famous swan-
neck flask. As a result of the experiments described, Pasteur hypothesized
that the source of contamination was dust. If true, then it should be possible
to keep a broth sterile even in the presence of air as long as the dust is
kept out. In order to test this hypothesis. Pasteur constructed several bent-
neck flasks. After placing broth into the flask, he boiled the liquid for a few
minutes, driving the air from the orifice of the flask. As the flask cooled, fresh
air entered the flask. Despite the fact that the broth was in contact with
the gases of the air, the fluid in the swan-neck flask always remained sterile.
Pasteur reasoned correctly that the dust particles that entered the flask were
absorbed onto the walls of the neck and never penetrated into the liquid. As
an experimental control, Pasteur demonstrated that nothing was wrong with
the broth. If he broke the neck off the flask or tipped liquid into the neck (in
both cases dust would enter the broth), the fluid soon became turbid with
microorganisms.

With these simple, ingenious experiments, Pasteur not only overcame the
criticism that air was necessary for spontaneous generation but he was also
able to explain satisfactorily many of the sources (dust) of the contradictory
findings of other investigators. Although Pasteur’s conclusions gained wide
support in both the scientific and the lay communities, they did not convince
all the proponents of spontaneous generation.
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Pouchet and his followers continued to publish reports of spontaneous
generation. They claimed their techniques were as rigorous as those of Pas-
teur. Where Pasteur failed to obtain spontaneous generation they succeeded
in every case. For example. they carefully opened 100 flasks at the edge of
the Maladetta Glacier in the Pyrenees Mountains at an elevation of 10,850
feet. In this region which Pasteur had found to be almost dust free, all 100 of
Pouchet’s flasks became turbid after a brief exposure to the air. Even when
Pouchet used swan-neck flasks, there was growth.

To Pasteur, this disagreement no longer revolved around the interpretation
of experiments; rather, either Pouchet was lying or his techniques were faulty,
Pasteur had complete faith in his own procedures and results and had no
respect for those of his opponents. Thus he challenged Pouchet to a contest in
which both of them would repeat their experiments in front of their esteemed
colleagues of the Academy of Science. Pouchet accepted the challenge with
the added statement, “If a single one of our flasks remains unaltered, we shall
loyally acknowledge our defeat.”

A date was set, and the place was to be the laboratory in the Museum
of Natural History at the Jardin des Plantes, Paris200. Pasteur arrived early
with the necessary apparatus for demonstrating his techniques. Newspaper
photographers and reporters were also on hand for this event of great public
interest. However, Pouchet did not show up, and Pasteur won by default. It is
difficult to ascertain whether Pouchet was intimidated by Pasteur’s confidence
or, as he later stated, he refused to take part in the “circus” atmosphere
that Pasteur had created, and that their scientific findings should instead
be reported in the reputable scientific journals. At any rate, in Pouchet’s
absence, Pasteur repeated his experiments in front of the referees with the
same results he had previously obtained. As far as the scientific community
was concerned, the matter was settled201. The law Omne vivium ex vivo (All
life from life) also applied to microorganisms.

In retrospect, however, the most ironic aspect of this extraordinary contest
was not that Pouchet failed to show up, but rather that if he had appeared, he
would have won! Pouchet’s experiments are reproducible. Pouchet performed
his experiments in the following manner: He filled swan-neck flasks with a

200 Henri Milne-Edwards (1800–1885), a French naturalist and zoologist (then

a professor at the Museum and from 1864, its director) lent political and scien-

tific support to Pasteur during the Pasteur-Pouchet debate. He wrote important

works on crustaceans, mollusks, and corals and wrote a major opus on compar-

ative anatomy and physiology.
201 Yet, the Pasteur-Pouchet debate had a chilling effect on French evolutionary

research for decades.
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broth made from hay, boiled them for one hour, and then allowed the flasks
to cool. He obtained growth in every flask. Pasteur’s experiments differed
in only two respects. Pasteur used a mixture of sugar and yeast extract for
broth and boiled it for just a few minutes. Pasteur never obtained growth
in his swan-neck flasks. The reason for their contradictory results was not
understood until 1877, 17 years later.

Mainly because of the careful work of the English physicist Tyndall (1820–
1893), Pouchet’s experiments could be explained without invoking sponta-
neous generation. Tyndall found that foods vary considerably in the length
of boiling time required to sterilize them. For example, the yeast extract and
sugar broth of Pasteur could be sterilized with just a few minutes of boiling,
whereas the hay medium of Pouchet required heating for several hours to ac-
complish sterilization. Tyndall postulated that certain microorganisms can
exist in heat-resistant forms, which are now referred to as spores. Further-
more, studies by Tyndall and the French bacteriologist Ferdinand Cohen
revealed that hay media contain a large number of such spores. Thus the
contradictory results of Pasteur and Pouchet were due to differences in the
broths they used.

Tyndall went on to demonstrate that nutrient medium containing spores
can be sterilized easily by boiling for one-half hour on three successive days.
This procedure of discontinuous heating, now called Tyndallization, works as
follows: The first heating kills all the cells that are not spores and induces
the spores to germinate (in the process of germination, the spores lose their
heat resistance as they begin to grow); on the second day, the spores have
germinated and are thus susceptible to the heating. The third day heating
“catches” any late germinating spores. Thus, with the publication of Tyndall’s
work, all the evidence that supported the theory of spontaneous generation
was destroyed. Since that time, there has been no serious attempt to revive
this theory.

It should be pointed out, however, that by its very nature, the theory of
spontaneous generation cannot be disproved. One can always argue that the
conditions necessary for spontaneous generation have not yet been discov-
ered. Pasteur was well aware of the difficulty of a negative proof, and in his
concluding remarks on the controversy, he merely showed that spontaneous
generation had never been demonstrated.

There is no known circumstance in which it can be affirmed that micro-
scopic beings came into the world without germs, without parents similar to
themselves. Those who affirm it have been duped by illusions, by ill-conducted
experiments, and by errors that they either did not perceive, or did not know
how to avoid.
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1847 CE Augustus De Morgan (1806202–1871, England). Mathemati-
cian and logician, a contemporary of Boole. Laid the foundation of modern
symbolic logic and developed new technology for logical expressions. Formu-
lated De Morgan’s laws. Introduced and vigorously defined the term math-
ematical induction. He endeavored to reconcile mathematics and logic, but
compared with Boole, his impact on modern mathematics and its applications
is small203, and he is remembered mainly as a logical reformer. He is most
noteworthy as the founder of the logic of relations and as a developer of the al-
gebra of logic which reconstructed the logic of Aristotle upon a mathematical
basis.

De Morgan was born in India, and taught at University College in London
during 1836–1866. Although a convinced theist, he never joined a religious
congregation. He renounced his professorship in 1866 when a colleague was
denied a chair at University College because he was a unitarian.

The Basic Ideas of Topology

I. Polyhedra and surfaces
204

A simple polyhedron is a body enclosed by faces, all of which are plane
polygons (some examples of polyhedra are: pyramid, prism, frustum). It has

202 De Morgan was always interested in odd numerical facts; thus in 1849, he

noticed that he had the distinction of being x years old in the year x2 (x = 43).
203 Nevertheless, he shall be remembered in mathematics proper due to his discov-

ery of the summation formula:

N∑

n=1

x2n−1

x2n − 1
=

1

x − 1
− 1

x2N − 1
(x �= 1).

204 For further reading, see:

• Cundy, H.M., Mathematical Models, Oxford University Press, 1961, 286 pp.

• Coxeter, H.S.M., Regular Polytopes, Dover, 1973, 321 pp.

• Fauvel, T. et al (eds), Möbius and his band, Oxford University Press, 1993,

172 pp.
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no holes, and can be continuously deformed into a sphere. A convex polyhe-
dron205 is said to be regular if its faces are regular and congruent polygons
(e.g. cube, tetrahedron). The study of polyhedra held a central place in Greek
geometry, which already recognized most of their salient geometrical features.
Greek geometers correctly concluded that the only polygons that can occur as
faces of a regular polyhedron are the regular polygons having 3, 4 or 5 sides,
bringing the total number of possible regular polyhedra to five.

Now, all five of these possible forms actually exist. They were well known
as early as Plato (ca 390 BCE), and he gave them a very important place
in his Theory of Ideas, which is why they are often known as the “Platonic
Solids”206. The most important data on the regular polyhedra are given in
Table 4.3 (L = length of edge, R = radius of circumsphere).

While the sphere encloses the most volume of all shape having a given sur-
face area, the tetrahedron, of all polyhedra, encloses the least volume with a

given surface area [this ratio is equal to ( 1
12a3

√
2)/a2

√
3 = a

12

√
2
3 , where a is

the side length]. Table 4.3 suggests that for simple polyhedra V − E + F = 2,
a fact first stated by Descartes (1635), proved incompletely by Euler (1751)

• Henle, M., A Combinatorial Introduction to Topology, Dover: New York,
1994, 310 pp.

• Flegg, H.G., From Geometry to Topology, Dover: New York, 2001, 186 pp.

205 The designation ‘convex ’ applies to every polyhedron that is entirely on one

side of each of its faces, so that it can be set on a flat table top with any face

down. Although convexity is not a topological property it implies a topological

property, since every convex polyhedron is necessarily simple.

There is a peculiar difference between the convex and the non-convex polyhedra:

whereas every closed convex polyhedron is rigid, there are closed non-convex

polyhedra whose faces can be moved relative to each other.
206 It seems probable that Pythagoras (c. 540 BCE) brought the knowledge of

the cube, tetrahedron and octahedron from Egypt, but the icosahedron and the

dodecahedron have been developed in his own school. He seems to have known

that all five polyhedra can be inscribed in a sphere. These solids played an

important part in Pythagorean cosmology, symbolizing the five elements: fire

(tetrahedron), air (octahedron), water (icosahedron), earth (cube), universe or

earth (dodecahedron). The Pythagoreans passed on the study of these solids to

the school of Plato. Euclid discusses them in the 13th book of his Elements,

where he proves that no other regular bodies are possible, and shows how to

inscribe them in a sphere. The latter problem received the attention of the

Arabian astronomer Abu al-Wafa (10th century CE), who solved it with a single

opening of the compass.
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for convex polyhedra, and proved generally by Cauchy (1811). It may have
been known to Archimedes (ca 225 BCE), although the Greeks usually asso-
ciated geometrical properties with measurements and not with mere counting.

We have extant specimens of icosahedral dice that date from about the
Ptolemaic period in Egypt. There are also a number of interesting ancient
Celtic bronze models of the regular dodecahedron still extant in various mu-
seums. There was probably some mystic or religious significance attached to
these forms. Since a stone dodecahedron found in northern Italy dates back
to a prehistoric period, it is possible that the Celtic people received their
idea from the region south of the Alps, and it is also possible that this form
was already known in Italy when the Pythagoreans began to develop their
teachings in Crotona.
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The five regular polyhedrons attracted attention in the Middle Ages chiefly
on the part of astrologers. At the close of this period, however, they were
carefully studied by various mathematicians. Prominent among the latter
was Pietro Franceschi, whose work De Corporibus Regularibus (c. 1475)
was the first to treat the subject with any degree of thoroughness. Following
the custom of the time Pacolli (1509) made free use of the works of his con-
temporaries, and as part of his literary plunder he took considerable material
from this work and embodied it in his De Divina Proportione.

Albrecht Dürer, the Nürnberg artist, showed how to construct the fig-
ures from a net in the way commonly set forth in modern works.

Thus, Platonic and Archimedean polyhedra have sparked the imagination
of creative individuals from Euclid to Kepler to Buckminster Fuller207. These
polyhedra are rich in connections to the worlds of art, architecture, chemistry,
biology, and mathematics. In the realm of life, the Platonic Solids present
themselves in the form of microscopic organisms known as radiolaria.

Three other groups of polyhedra drew the attention of mathematicians
throughout the ages:

• Archimedean Solids: characterized by having all their angles equal and
all their faces regular polygons, not necessarily of the same species.
Archimedes’ own account of them is lost. Thirteen such solids exist
mathematically, some realized in crystalline forms: truncated tetrahe-
dron (8 faces); cuboctahedron (14); truncated cube (14); truncated octa-
hedron (14); rhombicuboctahedron (26); icosidodecahedron (32); trun-
cated icosahedron (V = 60, E = 90, F = 32); snub cube (38); rhombi-
cosidodecahedron (62); snub dodecahedron (92). Recently, the trun-
cated icosahedron showed up in chemistry as the molecule C60, known
as a fullerene (after Buckminster Fuller).

• Kepler-Poinsot Polyhedra have as faces congruent regular polygons, and
the angles at the vertices all equal, but their center is multiply en-
wrapped by the faces (convex polyhedra).

207 American engineer and inventor (1895–1983); among his numerous inventions is

his geodesic dome structure (1947), based on 3-dimensional structural principles

that were developed to achieve maximum span with a minimum material. His

designs find parallels to such natural molecular geometries as the tetrahedron

and the truncated icosahedron (C60, named “Buckeyball” or “Fullerene” in his

honor).

Fuller also built the geodetic dome at the American Pavilion in the 1970 World

Fair in Montreal.
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Four such solids exist: small stellated dodecahedron (F = 12, V = 12,
E = 30); great dodecahedron (F = 12, V = 20, E = 30); great icosahe-
dron (F = 20, V = 12, E = 30). They were described and studied by
Kepler (1619), Poinsot (1810), Cauchy (1813) and Cayley (1859).

• Semi-regular Polyhedra: solids which have all their angles, faces, and
edges equal, the faces not being regular polygons. Two such solids
exist: rhombic dodecahedron, a common crystal form; and semi-regular
triacontahedron.

On the basis of Euler’s formula it is easy to show that there are no more
than five regular polyhedra. For suppose that a regular polyhedron has F
faces, each of which is an n-sided regular polygon, and that r edges meet at
each vertex. Counting edges by faces, we see that

nF = 2E;

for each edge belongs to two faces, and hence is counted twice in the product
nF ; but counting edges by vertices,

rV = 2E,

since each edge has two vertices. Hence from V − E + F = 2 we obtain the
equation

2E

n
+

2E

r
− E = 2

or
1
n

+
1
r

=
1
2

+
1
E

.

We know to begin with that n ≥ 3 and r ≥ 3, since a polygon must have at
least three sides, and at least three sides must meet at each polyhedral angle.
But n and r cannot both be greater than three, for then the left hand side
of the last equation could not exceed 1

2 , which is impossible for any positive
value of E. Therefore, let us see what values r may have when n = 3, and
what values n may have when r = 3. The totality of polyhedra given by these
two cases yields the number of possible regular polyhedra.

For n = 3 the last equation becomes

1
r

− 1
6

=
1
E

;

r can thus equal 3, 4, or 5. (6, or any greater number, is obviously excluded,
since 1/E is always positive.) For these values of r we get E = 6, 12, or 30,
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corresponding respectively to the tetrahedron, octahedron, and icosahedron.
Likewise, for r = 3 we obtain the equation

1
n

− 1
6

=
1
E

,

from which it follows that n = 3, 4, or 5, and E = 6, 12, or 30, respectively.
These values correspond respectively to the tetrahedron, cube, and dodeca-
hedron.

While Euler’s formula is valid for simply-connected polyhedra (regular
and truncated polyhedra, pyramids, prisms, cuboids, frustums, crystal-lattice
unit cells of various kinds) which are all topological spheres, it fails for solids
with holes in them and non-convex star-polyhedra. Thus, Kepler (1619)
described the small and great stellated dodecahedra with V = 12, F = 12,
E = 30, V − E + F = −6 and Lhuilier (1813) noticed that Euler’s for-
mula was wrong for certain families of solid bodies. For a solid with g holes
Lhuilier showed that V − E + F = 2 − 2g.

Consider for example a non-simply-connected polyhedron such as the pris-
matic block, consisting of a regular parallelepiped with a hole having the
form of a smaller parallelepiped with its sides parallel to the outer faces of
the block. Introducing just enough extra edges and faces to render all faces
simply-connected polygon interiors (rectangles and trapezoids), this polygon
is seen to have V = 16, E = 32 and F = 16 such that V − E + F = 0.
This corresponds to Lhuilier’s formula with g = 1.

To understand the significance of the number g and its role in the topo-
logical classification of surfaces208, we compare the surface of the sphere with
that of a torus. Clearly, these two surfaces differ in a fundamental way: on
the sphere, as in the plane, every simple closed curve separates the surface
into two disconnected parts. But on the torus there exist closed curves that
do not separate the surface into two parts — for example, the two generator
circles on the torus surface. Furthermore, such a closed curve cannot be con-
tinuously shrunk to a point — whereas any closed curve on a sphere can be
so shrunk. This difference between the sphere and the torus marks the two
surfaces as belonging to two topologically distinct classes, because this shows
that it is impossible to deform one into the other in a continuous way.

Likewise, on a surface with two holes we can draw four closed curves each
of which does not separate the surface into disjoint components; these can be

208 For the time being, we consider only two-sided and closed surfaces — i.e., we

assume the surface has no boundary and that an ant, walking on one of its

two sides, can never reach the opposite side without puncturing the surface. A

2-sided surface is also known as an oriented surface.
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chosen to be the four generator curves (two per hole). Furthermore, one can
draw two (non-intersecting) closed curves that, drawn simultaneously, still do
not separate the two-hole surface. The torus is always separated into two
parts by any two non-intersecting closed curves. On the other hand, three
closed non-intersecting curves always separate the surface with two holes.

These facts suggest that we define the genus of a (closed and 2-sided)
surface as the largest number of non-intersecting simple closed curves that
can be simultaneously drawn on the surface without separating it. The genus
of the sphere is 0, that of the torus is 1, while that of a 2-holed doughnut is
2. A similar surface with g holes has the genus g. The genus is a topological
property of a surface and thus remains the same if the surface is deformed.
Conversely, it may be shown that if two closed 2-sided (oriented) surfaces
have the same genus, then one may be continuously deformed into the other,
so that the genus g = 0, 1, 2, . . . of such a surface characterizes it completely
from the topological point of view.

For example, the two-holed doughnut and the sphere with two “handles”
are both closed surfaces of genus 2, and it is clear that either of these surfaces
may be continuously deformed into the other. Since the doughnut with g
holes, or its equivalent, the sphere with g handles, is of genus g, we may take
either of these surfaces as the topological representative of all closed oriented
surfaces of genus g.

Suppose that a surface S of genus g is divided into a number of regions
(faces) by marking a number of vertices on S and joining them by curved
arcs. As stated above, it has been shown that

V − E + F = 2 − 2g,

where V = number of vertices, E = number of arcs, and F = number of faces
or regions209. The topological invariant on the L.H.S. is usually denoted χ
and is known as the Euler characteristic of the surface (this invariant admits
a generalization to even-dimensional manifolds of dimension higher than two).
We have already seen that for the sphere, V − E + F = 2, which agrees with
the above equation, since g = 0 for the sphere.

Another measure of non-simplicity which is used in the classification of
surfaces will emerge from the following example. Consider two plane domains:
the first of these, a, consists of all points interior to a circle, while the second,
b, consists of all points contained between two concentric circles. Any closed

209 An outline of the proof: S can be constructed from a particular partitioning of

the sphere by identifying 2g distinct sphere faces pairwise. This reduces E and

V by the same integer, and reduces F by 2g, thus resulting in a reduction of

V − E + F by 2g from its sphere value (2), as claimed.
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curve lying in the domain a can be continuously deformed or “shrunk” down
to a single point within the domain. A domain with this property is said
to be simply connected. The domain b, however, is not simply connected.
For example, a circle concentric with the two boundary circles and midway
between them cannot be shrunk to a single point within the domain, since
during this process the curve would necessarily sweep through the center of
the circles, which is not a point of the domain. A domain which is not simply
connected is said to be multiply connected. If the multiply connected domain
b is cut along a radius, the resulting domain is simply connected.

More generally, we can construct domains with two “holes”. In order to
convert this domain into a simply connected domain, two cuts are necessary.
If h − 1 non-intersecting cuts from boundary to boundary are needed to
convert a given multiply connected planar domain D into a simply connected
domain, the domain D is said to be h-tuply connected. The degree of con-
nectivity of a domain in the plane is an important topological invariant of the
domain. The number h is called the connectivity number assigned to every
surface. It extends also, mutatis mutandis, to 3-dimensional bodies.

As an example, consider a closed, non-self-intersecting polygon (a chain)
consisting of edges of a polyhedron. If the surface of the polyhedron is divided
into two separate parts by every such closed chain of edges, we assign the
connectivity h = 1 to the polyhedron. Clearly, all simple polyhedra have
connectivity 1, since the surface of the sphere is divided into two parts by
every closed curve lying on it. Conversely, it is readily seen that all polyhedra
with connectivity 1 can be continuously deformed into a sphere. Hence the
simple polyhedra are also called simply connected.

A polyhedron is said to have connectivity h if h − 1 is the greatest
possible number of chains that, when simultaneously drawn, do not cut the
surface in two. Since h − 1 = 2 for the prismatic block, its connectivity
is h = 3.

We thus set h = 1 for the sphere and h = 3 for the torus. Surfaces of
higher connectivity can be constructed by flattening a sphere made of a plastic
material, cutting holes into it, and identifying (sewing together) each pair of
stacked hole-boundary closed curves.

We shall call such surfaces pretzels. It can be proved that a pretzel with
g holes (i.e. a g-handle surface) must have connectivity h = 2g + 1.

On a general surface, the curves can be chosen more freely than on a
polyhedra, where we restricted the choice to chains of edges. Various other
definitions can be given for the connectivity of surfaces – for example, the
following:
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On a closed surface of connectivity h, we can draw h − 1 closed curves
without cutting the surface in two, but every system of h closed curves cuts the
surface into at least two separate parts. On a closed surface of connectivity
h = 2g + 1 there is at least one set of g closed, mutually non-intersecting
curves – and no set of more than g such curves – having the property that the
curves in the set do not cut the surface in two when drawn simultaneously.

All the polyhedra and closed surfaces we have considered thus far had
odd connectivity numbers h and even Euler characteristics (χ = 2 − 2g),
related by the formula χ = 3 − h. If we extend both concepts to surfaces
with boundaries (i.e. open) — with χ still defined as V − E + F and
h now defined as the maximal number of simultaneous cuts (along closed
or boundary-to-boundary open curves) leaving the surface connected — the
formula becomes210 χ = 2 − h. And for such surfaces, χ and h may be both
even or both odd.

The numbers χ, g and h are all topological invariants. So is the
orientability/non-orientability property, which we explain next.

The question arises whether there are any closed (boundary-less) surfaces
at all with even connectivities or odd χ values; or whether there are boundary-
less surfaces for which genus and connectivity are not related by h = 2g + 1.
Indeed, such surfaces do exist and are called one-sided (or non-orientable)
surfaces.

Hitherto we have been dealing with “ordinary” surface, i.e. those having
two sides. This restriction applied to closed surfaces like the sphere or the
torus and to surfaces with boundary curves, such as the disc, a sphere with
two holes (i.e. with two discs removed) – equivalent to a cylinder – or a torus
from which a single disc has been removed.

The two sides of such a surface could be painted with different colors to
distinguish them. If the surface is closed, the two colors never meet. If the
surface has boundary curves, the two colors meet only along these curves.
A bug crawling along such a surface and prevented from puncturing it or
crossing boundary curves, if any exist, would always remain on the same side.

Möbius made the surprising discovery that there exist surfaces with only
one side. The simplest such surface is the so-called Möbius strip (Figure 2),
formed by taking a long rectangular strip of paper and pasting its two ends

210 Also, the formula h = 2g + 1 does not always apply for a non-closed surface.

For instance, a cylinder with g handles – equivalent to a g-handle sphere with

two discs cut out – has h = 2g + 2; for g = 0 (a simple cylinder) h = 2, since

it can be cut once (1 = h − 1) while maintaining connectedness — e.g. from

boundary to boundary along the cylinder axis.
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together after giving one end a half-twist. A bug crawling along this surface,
keeping always to the middle of the strip, will return to its original position
upside down and on the opposite side of the surface! The surface is thus
indeed one-sided when considered globally; only local portions of it can be said
to have two sides. The Möbius strip also has but one edge, for its boundary
consists of a single closed curve. The ordinary two-sided surface formed by
pasting together the two ends of a rectangle without twisting has two distinct,
disconnected closed boundary curves; topologically it is a cylinder (or a sphere
missing two discs).

If this surface is cut along a plane separating the two closed boundary-
curves, it falls apart into two such disjoint cylinder surfaces, each with a
new closed-curve component to its boundary. Like the cylinder, the Möbius
strip has a continuous family of closed curves in its interior, each having the
property of not being continuously deformable to a single point. And, as in
the case of the cylinder, all such curves of unit winding-number (i.e. consisting
of a single component if the surface is cut back into the original rectangle)
can be deformed into each other, and are thus topologically equivalent.

However, unlike the cylinder, if the Möbius strip is cut along one of its
non-shrinkable closed curves, we find that it remains in one piece211. It is
rare for anyone not familiar with the Möbius strip to predict this behavior, so
contrary to one’s intuition of what “should” occur. If the surface that results
from cutting the Möbius strip along the middle is again cut along its middle,
two separate but intertwined strips are formed.

The connectivity of the Möbius strip is h = 2, just as the untwisted
open cylinder. It also may be characterized by means of another important
topological concept which can be formulated as follows: Imagine every point of
a given surface (with the exception of boundary points, if any) to be enclosed
in a small closed curve that lies entirely on the surface. We then try to fix a
certain sense (handedness) on each of these closed curves in such a way that
any two curves that are sufficiently close together have the same sense. If
such a consistent determination of sense of traversal is possible in this way,
we call it an orientation of the surface and call the surface orientable.

While all two-sided surfaces are orientable, one-sided surfaces are not.
Thus the classification of surfaces into two-sided and one-sided surfaces is
identical to the classification into orientable and non-orientable surfaces.

211 The cut strip is in fact equivalent to a rectangular strip subjected to two half-

twists before identifying its two (short) opposite sides — both half-twists being

in the same sense. This strip is topologically equivalent to a cylinder, yet cannot

be deformed into it without self-intersection if embedded in 3-D space (R3).
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It is easy to see that a surface is non-orientable if and only if there exists on
the surface some closed curve such that a continuous family of small oriented
circles whose center traverses the curve will arrive at its starting point with
its orientation reversed.

The Möbius strip is an open one-sided surface and does not intersect it-
self. But it can be proven that all one-sided closed surfaces embedded in R3

(Euclidean 3-dimensional space) have self-intersections. However, the pres-
ence of curves of self-intersection need not represent a topological property in
the sense that in some cases it can be transformed away by deformation, or
eliminated by defining the surface intrinsically (without embedding it in a 3-D
R3 space), or else by embedding it in an Rn space with n > 3. If this is not
the case we say that the surface has singular points which are a topological
property.

This raises the question of whether there can exist any one-sided closed
surface (2-D intrinsic manifold) that has no singular points. Such a surface
was first constructed mathematically by Felix Klein, as follows. Consider an
open tube (cylinder). A torus212 is obtained from it by bending the tube until
the ends meet and then gluing (identifying) the boundary circles together. But
the ends can be welded in a different way:

Taking a tube with one end a little thinner than the other, we bend the thin
end over and push it through the wall of the tube, molding it into a position
where the two circles at the ends of the tube have nearby and concentric
positions. We now expand the smaller circle and contract the larger one
a little until they meet, and then join them together (Fig. 7). This does
not create any singular points and gives us Klein’s surface, also known as the
Klein bottle. It is clear that the surface is one-sided and, in any R3 embedding,
intersects itself along a closed curve where the narrow end was pushed through
the wall of the tube.

The connectivity number of the Klein bottle is 3, like that of a torus. It
can be shown that any closed, one-sided surface of genus g is topologically

212 Torus: a surface (intrinsic or embedded in R3). The intrinsic torus is a rectangle

with opposite ends identified without twists (Fig. 9(f)). An R3-embedded torus
is generated by revolving a circle about a line (in its plane) that does not

intersect the circle. One of its parametric representations in Gaussian surface

coordinates (u, v) is

r(u, v) = [(a + b cos v) cos u; (a + b cos v) sin u; b sin v],
a > b > 0; 0 ≤ u < 2π, 0 ≤ v < 2π.

a and b are the two radii of the R3 torus, while the coordinates u, v are azimuths

along two generating circles.
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Fig. 1: Sewing up a cylinder to yield a representation of the Möbius strip as
a topological sphere with cross-cap. The two copies of point A are identified,
and similarly for B and the directed arcs a, b

Fig. 2: An embedding of the Möbius strip in R3

Fig. 3: The Real Projective Plane (sphere with one cross-cap)
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Fig. 4: Klein bottle represented as a topological sphere with two cross-caps

Fig. 5: The triple-crosscap surface (topological sphere with three cross-caps)

Fig. 6: Cutting the Klein bottle along to closed curves while maintaining
connectivity
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Fig. 7: A Klein bottle represented as a self-intersecting, nonsingular embed-
ding (immersion) in R3

(a) Two Möbius strips with their boundaries sewn (identified) yield a Klein bottle.

(b)

Fig. 8
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(a) (b) (c)

(d) (e) (f)

(g)

Fig. 9: Surfaces (open and closed, orientable and non-orientable) obtained
from a rectangle by identifying (sewing) edges in various ways. Broken-line
edges are not identified; arrows (single-line or double lines) are identified with
same-type arrows (head with head and tail with tail). (a): topological disc;
(b): Klein bottle; (c): Möbius strip; (d): real projective plane; (e): sphere;
(f): torus; (g): cylinder (tube)
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(a) (b) (c)

Fig. 10: Deforming the standard Möbius-strip representation into a disk-with-
crosscap

equivalent to a sphere from which g discs have been removed and replaced by
local topological constructs called cross-caps.213

213 Cross-Caps: Modular building blocks for non-oriented surfaces.

The Möbius strip is the basic unit of non-oriented surfaces. It can be represented

as described above: by half-twisting a rectangle and then identifying a pair of
opposite sides (Figs. 2 and 9(c)). In the latter, the two corners labeled “A”

are identified – “sewn” together – as are the two corners labeled “B”; and the

two solid edges are identified in accordance with the arrow-indicated directions.
But in this representation the Möbius strip has a complicated-looking bound-

ary. Figures 1 and 10(a) to 10(c) show how to continuously deform this into

the standard disc-with-crosscap representation. Unfolding the solid-line closed
boundary of 10(a) yields 10(b) (the dotted lines indicate the Möbius-strip inte-

rior). Then, untwisting the boundary of 10(b) into a circle yields Fig. 10(c). In
10(c) it was necessary to cut the surface along some closed curve ABA to avoid

intersections among the broken lines. This cut results in the rectangle depicted

in 10(c), in which the two single-solid lines are identified along their arrows —
as are the two double-solid lines. Re-sewing the cut ABA, as depicted in Fig. 1,

results in a disc with one crosscap. This is a convenient representation of the

Möbius strip, because its boundary is a simple curve (a circle if we wish), and
also because any non-orientable surface (open or closed) is topologically equiv-

alent to a sphere with some number of local discs removed, with some or all of

these discs replaced by cross-caps. On the other hand — as clearly seen in Fig. 1
— the cross-cap representation of the Möbius strip makes it self-intersecting in

a 3-D embedding (though it has no singular point).
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From this it easily follows that the Euler characteristic V − E + F of such
a surface is related to g by the equation

V − E + F = 2 − g.

Thus for the Klein bottle, g = 2. For an orientable closed surface we have
χ = 2 − 2g, while for a non-orientable closed surface χ = 2 − g.

Figs. 3-5 depict the three simplest classes of closed non-orientable surfaces, rep-

resented as a sphere with one, two and three local cross-caps, respectively. The

class shown in Fig. 3 includes the real projective plane (RP2), obtained from R3

by identifying all points (λx, λy, λz) with fixed (x, y, z) and all real numbers λ;

this class is also a Möbius strip with its boundary sewn to a disc. Fig. 4 — a

sphere with two cross-caps — is equivalent to a Klein bottle (Fig. 7). This is

because a Klein bottle can be constructed by sewing together the boundaries

of two Möbius strips — as shown in two different ways in Figs. 8(a) and 8(b).

Fig. 8(a) shows how two standard (twisted-strip) representations of Möbius

strips are sewn along their boundaries to yield a single Klein bottle. In Fig. 8(b)

it is done another way, by identifying the boundaries of two Möbius strips. Each

separate Möbius strip is represented as a rectangle with two of its edges iden-

tified, as in Fig. 9(c). The final Klein bottle can be represented as a rectangle

with its four edges identified pairwise as in Fig. 9(b). The vertices A, A′ are

identified with each other, as are B and B′; the two single-broken-line arrows

are identified with each other (base with base and arrow-tip with arrow-tip),

and the two double-solid-line arrows are similarly identified. The two remaining

arrow pairs are separately identified within each Möbius strip, as in Fig. 9(c)

(single-solid-arrows identified with each other, as are the single-dotted-arrows).

Proceeding from left to right, the first solid-whit arrow indicates the sewing

together of the boundaries of the two Möbius strips. The second solid-white

arrow indicates two further operations: a 180◦ twisting of the right closed curve

ABA to align it with the left closed ABA curve, followed by a cut along a curve

between the two copies of point A. Neither operation changes the Klein bottle’s

topology.

Fig. 5 shows a sphere with three cross-caps; this can be shown to be topo-

logically equivalent to a torus with a small disc removed and replaced with a

cross-cap (Dyck’s theorem).

Fig. 6 shows how a Klein bottle can be simultaneously cut along two closed

curves while remaining a connected surface: the two cuts open the surface’s

two cross-caps, converting them into two closed-curve boundaries — the Klein

bottle is thus converted into a topological cylinder.

Finally, Figs. 9(a)-9(g) show how to obtain various surfaces — open and closed,

orientable and one-sided — by sewing (identifying) the vertices and edges of a

single rectangle in various ways.
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In general, for a closed orientable surface S of genus g, for which the
R2 → R3 mapping r(u, v) is twice continuously differentiable, the integral cur-
vature is equal to

∫∫
S

K dA = 4π(1 − g), where K is the Gaussian curvature
(this follows from the Gauss-Bonnet theorem). For the torus (g = 1) the right-
hand side vanishes. And indeed, in terms of the parametric representation of
the R3-embedded torus given above:

K =
cos v

b(a + b cos v)
, dA = (a + b cos v)b du dv

and therefore the integral curvature is zero as claimed, as
∫ 2π

0
dv cos v = 0.

Another interesting feature of the torus is that an elliptic function defines a
mapping of a plane into a torus. It arises from the notion that the curve
y2 = ax3 + bx2 + cx + d can be parametrized as x = f(z), y = f ′(z), where f
and f ′ are elliptic functions (Jacobi, 1834).
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II. Topological mappings

Starting with the concept of a set (such as points in a plane, lines through
a point, rotations in 3-D, etc.) one can generalize the idea of a function to
that of a map: A map is a relation between two specified sets that associates
a unique element of the second to each element of the first.

To establish topological equivalence between sets, one must have a math-
ematical machinery that is able to transform one of the sets into the other,
and this transformation must be a map endowed with various properties.

There are various methods of mapping one surface (or higher-dimensional
manifold space, whether intrinsically defined or embedded) onto another.
The most faithful image of a surface is obtained by an isometric, or length-
preserving, mapping214. Here the geodesic distance between any two points
is preserved (assuming the surface or space is endowed with a metric215), all
angles remain unchanged, and geodesic lines are mapped into geodesic lines.
An isometry also preserves the Gaussian curvature at corresponding points.
Hence the only surfaces that can be mapped isometrically into a part of the
plane are surfaces whose Gaussian curvature is everywhere zero; this excludes,
for example, any portion of the sphere. In consequence, no geographical map
(i.e. map of the earth’s surface) can be free of distortions.

Less accurate, but also less restrictive, are the area-preserving mappings.
They are defined by the condition that the area enclosed by every closed curve
be preserved. With the aid of such a mapping portions of the sphere can be
mapped onto portions of the plane, and this is frequently used in geography.
It is achieved in practice by projecting points of the sphere onto the cylinder
along the normals of the cylinder. If the cylinder is now slit open along a
generator and developed into a plane, the result is an area-preserving image
of the sphere in a plane; the distortion increases the further we are from the
circle along which the cylinder touches the sphere.

Another type of mapping, especially useful for navigation, is that of geo-
desic maps, where geodesics are preserved. If, for example, a portion of a

214 In the Euclidean plane all isometries can be generated by combining a two-

parameter translation, a one-parameter rotation, and a single reflection about

some fixed axis. In Euclidean R3, there are 3 translations parameters and 3

rotation-angle parameters, but still only one independent reflection, which can

be implemented with the help of a mirror. No more than 3 mirrors (i.e. three

reflection planes) are needed to generate any isometry in R3.
215 In the case of a 2D surface embedded in R3, the natural surface metric is the

one inherited from the Euclidean metric of the “host” R3 space.
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sphere is projected from its center onto a plane, then the great circles are
mapped into straight lines of the plane, and the map is therefore geodesic.
At the same time, this gives us a (local) geodesic mapping of all surfaces of
constant positive Gaussian curvature into the plane, because all these surfaces
can be mapped isometrically into spheres. All surfaces with constant negative
Gaussian curvature can also be mapped into the plane by a geodesic mapping.

Yet another type of mapping is that of the conformal, or angle-preserving,
mappings, for which the angle at which two curves intersect is preserved. The
simplest examples of conformal mapping, apart from the isometric mapping,
are stereographic projections and the circle-preserving transformations216. A
stereographic projection map, in which a sphere (with its north-pole removed)
is placed atop a plane and projected onto it by drawing straight lines from
that pole, is also a circle-preserving map.

It can be shown that very small figures suffer hardly any distortion at all
under general conformal transformations; not only angles are preserved, but
the ratios of distances (although not the distances themselves) are approxi-
mately preserved. In the small, the conformal mappings are thus the nearest
thing to isometric mappings among all the types of mappings mentioned ear-
lier, for area-preserving and geodesic mappings may bring about arbitrarily
great distortions in arbitrarily small figures.

The most general mappings that are at all comprehensible to visual intu-
ition are continuous invertible mappings (homeomorphisms). The only condi-
tion here is that the mapping is one-to-one and that neighboring points (and
only such) go over to neighboring points. Thus a homeomorphic mapping
may subject any figure to an arbitrary amount of distortion, but it is not per-
mitted to tear connected regions apart or to stick separate regions together.
Yet, continuous mappings do not always exist that can map (which we refer
to here as “continuous” for simplicity’s sake) two given surfaces onto each
other (Example: the circular disc and the plane annulus bounded by two con-
centric circles cannot be mapped continuously into each other, even not their
boundaries alone!). Clearly, the class of continuous mappings embraces all the
types of mapping mentioned so far. The question of when two surfaces can
be mapped onto each other by a continuous mapping is one of the problems
of topology.

The simplest type of topological mapping of a surface consists of a con-
tinuous mapping (homeomorphism) which is such as to transform the surface

216 An example of a circle-preserving map is the R2 → R2 inversion map w.r.t.

a given circle. If the latter is x2 + y2 = a2, this inversion is x → a2x
x2+y2 ,

y → a2y
x2+y2 . It is a special type of conformal transformation that maps any

circle into another circle.
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as a whole onto itself, and which is arcwise-connected with the trivial (unity)
map (in which each surface point is mapped to itself217). This type of map-
ping is called a deformation. The reflection of a plane about a straight line,
on the other hand, is an example of a topological mapping which is not a
deformation; for a reflection reverses the sense of traversal (orientation) of
every circle, whereas deformations cannot reverse the sense of traversal.

A point that is mapped onto itself under the mapping is called a fixed
point of the mapping. In the applications of topology to other branches of
mathematics, “fixed-point” theorems play an important role. The theorem of
Brouwer states that every continuous deformation of a circular disc (with the
points of the circumference included) onto itself has at least one fixed point.
On a sphere, any continuous transformation which carries no point into its
diametrically opposite points (e.g. any small deformation) has a fixed point.

Fixed point theorems provide a powerful method for the proof of many
mathematical “existence theorems” which at first sight may not seem to be
of a geometrical character. Also, topological methods have been applied with
great success to the study of the qualitative behavior of dynamical systems.
A famous example is a fixed point theorem conjectured by Poincaré (1912),
which has an immediate consequence: the existence of an infinite number of
periodic orbits in the restricted problem of three bodies.

Apart from the choice of the mapping transformation there is yet another
problem that must be resolved; in describing a surface or other manifold,
there is the freedom of choice of a suitable coordinate system (CS). In general
we cannot restrict ourselves to manifolds which can be covered by a single CS
such as is suitable for an n-dimensional Euclidean space Rn; simple examples
of various kinds of surfaces embedded in E3 indicate that, in general, no single
CS can exist which covers a given surface completely.218

The simplest example is a 2-dimensional spherical surface in E3 (the latter
having Cartesian coordinates (x1, x2, x3)), which we wish to map onto a planar
disc. To obtain a one-to-one correspondence in the mapping, one may choose

217 Two continuous mappings f : A → B, g : A → B from a set A to a set B

are said to be arcwise-connected (or continuously deformable into each other) if

there exists an arc of continuous functions h(s) : A → B, s ∈ [0, 1], such that

h(0) = f , h(1) = g, and h is a continuous map from [0, 1] × A to B.
218 En is the space Rn with a Euclidean metric (norm). A CS (coordinate system)

is a homeomorphism between a region (open subset) of the surface (or higher-

dimensional manifold) and Rm, m being the manifold’s dimension (m = 2

for a surface). For a manifold requiring more than one CS, it is assumed that

the open subsets cover the manifold, and that in the intersection of any two

subsets, the two CS maps compose to yield a Rm → Rm homeomorphism.
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the hemisphere for which x1 > 0, which is then continuously mapped onto
a disc in the x2x3 plane. Accordingly, this hemisphere is referred to as a
coordinate neighborhood.

Similarly, 5 other hemispheres corresponding to the respective restrictions
x1 < 0; x2 > 0; x2 < 0; x3 > 0; x3 < 0 can be regarded as coordinate neigh-
borhoods. The totality of these 6 hemispheres covers the sphere completely,
and in the overlap of any pair of them, composing the two corresponding maps
yields a continuous map of one planar disc onto another. In general, the exis-
tence and overlap structure of suitable coordinate neighborhoods depends on
the topological properties of the surface taken as a whole. This shows that
one must give up on the construction of a unique CS for all points of a space
under consideration and use different CS for different parts of the space.

A surface, however curved and complicated, can be thought of as a set of
little curved patches glued together; and topologically (though not geometri-
cally) each patch is just like a patch in the ordinary Euclidean plane. It is not
this local patch-like structure that produces things like the hole in a torus: it
is the global way all the patches are glued together. Once this is clear, the
step to n dimensions is easy: one just assembles a space from little patches
carved out of n-dimensional space instead of a plane. The resulting space is
an n-dimensional manifold. For example: the motion of three bodies under
mutual gravitational forces involves an 18-dimensional phase-space manifold,
with 3 position coordinates and 3 velocity coordinates per body.

III. Algebraic topology

Algebraic topology is the study of the global properties of spaces by means
of abstract algebra. One of the earliest examples is Gauss’s linkage formula
which tells us whether two closed space curves are linked, and – if so – how
many times does any one of them wind around the other. The linkage number
remains the same even if we continuously deform the space curves. The central
idea here is that continuous geometric phenomena can be understood by the
use of integer-valued topological invariants.

One of the strengths of algebraic topology has always been its wide degree
of applicability to other fields. Nowadays that includes fields like theoretical
physics, differential geometry, algebraic geometry, and number theory. As
an example of this applicability, here is a simple topological proof that every
non-constant polynomial p(z) has a complex zero (root) — a key component
in proving the fundamental theorem of algebra.
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Consider a circle of radius R and center at the origin of the complex plane.
The polynomial transforms this into another closed curve in the complex
plane. If this image curve ever passes through the origin, we have our zero.
If not, suppose the radius R is very large. Then the highest power of p(z)
dominates and hence p(z) transforms the circle into a curve which winds
around the origin the same number of times as the degree of p(z). This
is called the winding number of the curve around the origin. It is always an
integer and it is defined for every closed curve which does not pass through the
origin. If we deform the curve, the winding number has to vary continuously
but, since it is constrained to be an integer, it cannot change and must be a
constant unless the curve is deformed through the origin.

Now deform the image curve by shrinking the radius R to zero and suppose
that the image curve never passes through the origin, that is to say, the original
circle, in shrinking, never passes through a zero of the polynomial. The image
curve gets very small since p(z) is continuous; hence it must have winding
number 0 around the origin unless it is shrinking to the origin (which cannot
be the case unless p(0) = 0). If the image curve is shrinking to the origin, the
origin is a zero of p(z). If not, the winding number is 0 which means that the
polynomial must have degree 0; in other words, it is a constant.

The winding number of a curve illustrates two important principles of
algebraic topology. First, it assigns to a geometric object, the closed curve,
a discrete invariant, the winding number which is an integer. Second, when
we deform the geometric object, the winding number does not change, hence,
it is called an invariant of deformation or, synonymously, an invariant of
homotopy. The field is called algebraic topology because an equivalence class
of geometric entities possessing the same invariant — e.g. linkage number
between curves; winding numbers of curves about points, or of closed surfaces
in many-to-one mappings about other closed surfaces; winding numbers of
non-shrinkable generator curves on the surface of a surface of nonvanishing
genus; et cetera — turn out to form algebraic structures, such as rings and
groups, under various geometric operations.

IV. From curves and knots to manifolds

A simple closed curve (one that does not intersect itself) is drawn in the
plane. What property of this figure persists even if the plane is regarded as
a sheet of rubber that can be deformed in any way? The length of the curve
and the area that it encloses can be changed by a deformation. But there is a
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topological property of the configuration which is so simple that it may seem
trivial: A simple closed curve C in the plane divides the plane into exactly two
domains, an inside and an outside. By this is meant that those points of the
plane not on C itself fall into two classes — A, the outside of the curve, and
B, the inside — such that any pair of points of the same class can be joined
by a curve which does not cross C, while any curve joining a pair of points
belonging to different classes must cross C. This statement is obviously true
for a circle or an ellipse, but the self-evidence fades a little if one contemplates
a complicated curve like the twisted polygon. This problem was first stated
by Camille Jordan (1882) in his Cours d’analyse. It turned out that the
proof given by Jordan was invalid.

The first rigorous proofs of the theorem were quite complicated and hard
to understand, even for many well-trained mathematicians. Only recently
have comparatively simple proofs been found219. One reason for the difficulty
lies in the generality of the concept of “simple closed curve”, which is not
restricted to the class of polygons or “smooth” curves, but includes all curves
which are topological images of a circle. On the other hand, many concepts
such as “inside”, “outside”, etc., which are so clear to the intuition, must be
made precise before a rigorous proof is possible.

It is of the highest theoretical importance to analyze such concepts in their
fullest generality, and much of modern topology is devoted to this task. But
one should never forget that in the great majority of cases that arise from the
study of concrete geometrical phenomena it is quite beside the point to work
with concepts whose extreme generality creates unnecessary difficulties. As
a matter of fact, the Jordan curve theorem is quite simple to prove for the
reasonably well-behaved curves, such as polygons or curves with continuously
turning tangents, which occur in most important problems.

A knot is formed by first looping and interlacing a piece of string and then
joining the ends together. The resulting closed curve represents a geometri-
cal figure the “knotiness” of which remains essentially the same even if it is
deformed by pulling or twisting without breaking the string. But how is it
possible to give an intrinsic characterization that will distinguish a knotted
closed curve in space from an unknotted curve such as the circle? The answer
is by no means simple, and still less so is the complete mathematical analysis
of the various kinds of knots and the differences between them. Even for the
simplest case this has proved to be a daunting task.

Consider, for example, two knots which are completely symmetric mirror
images of one another. The problem arises whether it is possible to deform

219 A generalization of the Jordan theorem to arbitrary surface is used in proving

the surface classification theorem cited earlier.
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one of these knots into the other in a continuous way. The answer is in the

negative, but the proof of this fact requires considerable knowledge of the

technique of topology and group theory.

Knots are the most immediate topological features of curves in space.

Beyond curves come surfaces; beyond surfaces come multidimensional gener-

alizations called manifolds, introduced by Riemann.

Whereas mathematical analysis and the theory of differential equations

deal primarily with “local” properties of a function (only infinitesimally adja-

cent points are considered), geometry studies the “global” properties of func-

tions (i.e. their properties are analyzed by considering finitely spaced points).

This intuitive idea of globality has given rise to the fundamental concept of

manifold as a generalization of the concept of domain in Euclidean space.

A coordinate system describing the positions of points in space is an in-

dispensable tool for studying geometrical objects. Using coordinate systems,

we can apply the methods of differential and integral calculus to solve various

problems. Therefore, an analysis of spaces which admit such concepts as dif-

ferentiable or smooth functions, differentiation and integration, has emerged

as an independent branch of geometry.

Topologists would like to do for manifolds what they have already done

for surfaces and knots. Namely:

(1) Decide when two manifolds are or are not topologically equivalent.

(2) Classify all possible manifolds.

(3) Find all the different ways to embed one manifold in another (e.g. a

knotted circle in 3-space).

(4) Decide when two such embeddings are, or are not, the same.

The answer to problems (1) and (2) lies in an area called homotopy theory
which is part of algebraic topology. It endeavors to associate various algebraic

invariants with topological spaces. Poincaré was one of the fathers of this

theory. But problems (1) and (2) have not yet been fully resolved. Problem

(3) led topologists to some surprising and counter-intuitive results, as the

following example shows. It has been asked: when can two 50-dimensional

spheres be linked [i.e. embedded such that they cannot be separated by a

topology-preserving transformation of the surrounding n-dimensional space].

The answer is:
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cannot link for n ≥ 102
can link for n = 101, 100, 99, 98

cannot link for n = 97, 96
can link for n = 95, . . . , 52.

V. Networks

Graph (or Network) theory had its origin in a paper by Euler (1736)
including the famous problem of the bridges of Königsberg. Euler saw that
the problem could more easily be studied reducing island and banks to points
and drawing a network (graph) in which two points are connected by an edge
whenever there is a bridge connecting the corresponding two land masses.
In this way Euler was able to abstract the problem so that only information
essential to solving it was highlighted, and he could dispense with all other
aspects of the problem. He could thus rephrase the problem as follows: “Given
a connected graph, find a path that traverses each edge of the graph without
retracing any edge.” Such a path is called a Eulerian traversal or Eulerian
path220. Some experimentation and application of logic lead to the conclusion
that in order to have a Eulerian path, it is necessary that for any edge along
which the path enters a vertex, there must correspond a distinct edge along
which the path leaves it — and that all such edge-pairs be distinct for any
given vertex. The only exception occurs for the beginning and ending vertices
of the path, if these points are different.

Networks can be used to solve mazes and guarantee that one can find a
path through a maze, if such a path exists, even when no map is explicitly
given. Other procedures enable people to retrace their steps to the beginning
of a labyrinth. Some of these procedures have applications to problems of com-
puter processing, traffic control, electrical engineering, and many other fields.

During the ten generations elapsed since 1736, mathematicians have de-
veloped a new branch of geometry — a geometry of dots and lines, otherwise
known as graph theory — that preserves geometrical relations only in their
most general outlines. Here lines do not have to be straight, nor are there
such things as perpendicular or parallel lines, and it does not make sense to
talk about bisecting lines or measuring lengths or angles. The power of graph
theory (a sub-field of topology) is that it can be used to model many patterns

220 A practical architectural application: In the hallways of a museum, pictures are

hung on one side of each hall. How does one design a tour that will enable a

person to see each exhibit exactly once?
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in nature — from the branching of rivers to the cracking or brittle of surfaces
to subdivision of cellular forms, as well as many abstract concepts. It gives us
a way to study spatial structures unencumbered by the details of Euclidean
geometry.

A geographical map shows countries, borders and corners. From such a
map we may prepare an abstract mathematical map in which countries are
faces (F ), borders are chains of pairs of adjacent edges (E) and corners are
vertices (V ). In order to study the topology of a map in the technical lan-
guage of mathematics, we must forget its geographical significance and treat
it as merely a network, or graph, being a set of faces, edges and vertices,
M = {F, E, V }, with certain incidence relations among them (e.g. face f1

has edges (e2, e3); edge e2 is shared by faces {f1, f3}; vertex v1 is shared by
{f1, f2, f3} and also by {e2, e3, e4}; etc.). In this context the face is repre-
sented by some polygon and each edge lies in exactly two faces. Copies of a
map formed by placing it on a flexible membrane and stretching the mem-
brane without cutting, are considered identical or homeomorphic. Edges and
faces thus become distorted but the sets E, F and V and their relational
structure (incidence relations) maintain their integrity.

From a mathematical point of view, maps on a plain and maps on the
sphere, with one point removed, are isomorphic. Since all the enclosed areas,
including one additional outer one, are now considered to be faces, and maps
are always considered to be in one piece (connected), one can show that Euler’s
formula V − E + F = 2 holds for connected planar maps on either a plane
or a sphere.

There is a family of maps for which each vertex, edge or face is like every
other vertex, edge or face. They are called regular maps and are said to
have perfect symmetry. Upon finding oneself stranded in a mathematical
country defined by such a map, one would experience vistas of sameness in
all directions and be hopelessly lost.

There are only five221 such regular maps and they correspond to the five
3-dimensional Platonic Solids. In fact, they are obtained by projecting the
edges of a Platonic polyhedron onto a plane from a point directly above the
center of one of its faces, and counting the infinite area outside the boundary
as an additional face. These are known as Schlegel diagrams.

Visually, this amounts to holding one face of a polyhedron quite close to
one’s eyes, looking at the structure through the face, and drawing the projec-
tion of the structure as seen in this exaggerated perspective. The number of
vertices, faces and edges for the Schlegel diagrams then becomes identical to
those of the corresponding Platonic Solids.

221 Except for two trivial families, one of which consist of all regular polygons.
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Just as there are only five regular maps on the sphere (or plane), there are
only three classes of regular maps that can be created on a torus.

For a surface homeomorphic to a sphere with g handles Euler’s formula
becomes V − E + F = 2 − 2g.

On a torus, for example, we have (with g = 1) V − E + F = 0.

G. R. Kirchhoff enunciated (1845) laws which allow calculations of cur-
rents, voltages and resistances of electrical networks. In the framework of
these laws he became interested in the mathematical problem of the number
of independent circuit equation in a given network. Considering the electri-
cal network as a geometrical object (map) constructed from points (vertices,
V ) and lines (edges, E), Kirchhoff proved that, in general, the number of
independent circuits222is equal to (E − V + 1).

His paper is quite modern in its approach, and he used various construc-
tions which we now think of as standard in graph theory. But he did not
have the algebraic techniques that are needed to extend the results to higher
dimensions. However, the basic ideas were latent in Kirchhoff’s paper, and it
was just those ideas which mathematicians were able to develop in the sec-
ond half of the 19th century, in order to create what we now call ‘algebraic
topology’. This development did not happen overnight.

The apparatus of vectors, matrices, and what we call now linear algebra,
as well as the abstract algebra of groups, rings, homeomorphisms etc., were not
available to Kirchhoff, Listing, and the other mathematicians of the 1840’s.
However, in the course of time all these ingredients developed into a program
which turned some very vague and descriptive ideas about the ‘holeyness’ of
solids into an impressive general theory – an algebraic context within which
these ideas can be formulated independently of any intuitive notions. There
are many famous names associated with this program. One of them was
the Italian mathematician Enrico Betti, who introduced numbers, knows as
Betti numbers, which turn out to be a generalization of the Kirchhoff number
(E − V + 1).

But the person who made the greatest advances, in a series of papers
published around 1895, was the French mathematician Henri Poincaré. He
formulated everything in terms of multi-dimensional objects (complexes), built
out of what he called simplexes, and he showed how the rules by which they
are fitted together can be described by means of matrices. He also showed
how the ‘holeyness’ of complexes can be described algebraically in terms of
properties of these matrices. Veblen (1916) gave a modern treatment of
Poincaré’s theory.

222 This is compatible with Euler’s formula if we equate the number of independent

circuits to (F − 1).
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1847 CE Johann Benedict Listing (1806–1882, Germany). Mathemati-
cian. Started the systematic study of topology as a branch of geometry, and
coined the word ‘topology’. Some topological problems are found in the works
of Euler, Möbius and Cantor, but the subject only came into its own in
1895 with the work of Poincaré.

1847–1852 CE Matthew O’Brien (1814–1855, England). Mathemati-
cian. A forerunner of Gibbs and Heaviside. Introduced the modern symbols
for vector multiplication.

History of the Wave Theory of Sound223

The speculation that sound is a wave phenomenon grew out of observations

of water waves. The rudimentary notion of a wave is that of an oscillatory

disturbance that moves away from some source and transports no discernible

amount of matter over large distances of propagation.

The possibility that sound exhibits analogous behavior was emphasized by

the Greek philosopher Chrysippos (ca 240 BCE), by the Roman architect

223 For further reading, see:

• Crighton, D.G. et all, Modern Methods in Analytical Acoustics, Springer

Verlag: Berlin, 1992, 738 pp.

• Pierce, A.D., Acoustics, American Institute of Physics, 1989, 678 pp.

• Dowling, A.P. and J.E. Ffowcs Williams, Sound and Sources of Sound, Ellis

Horwood, 1983, 321 pp.

• Lord Rayleigh, Theory of Sound, Vols I-II, Dover: New York, 1945.

• Morse, P.M. and K.U. Ingard, Theoretical Acoustics, McGraw-Hill, 1968,

927 pp.
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and engineer Vitruvius (ca 35 BCE), and by the Roman writer Boethius224

(ca 475–524).

The pertinent experimental result that the air motion generated by a vi-
brating body (sounding a single musical note) is also vibrating at the same
frequency as the body225, was inferred with reasonable conclusiveness in the
early 17th century by Marin Mersenne (1636) and Galileo Galilei (1638).

Mersenne’s description of the first absolute determination of the frequency
of an audible tone (at 84 Hz) implies that he had already demonstrated that
the frequency ratio of two vibrating strings, radiating a musical note and its
octave, is as 1: 2. The perceived harmony (consonance) of two such notes
would be explained if the ratio of the air oscillation frequency is also 1: 2,
which in turn is consistent with the source-air motion frequency equivalence
hypothesis.

The analogy with water waves was strengthened by the belief that air mo-
tion associated with musical sound is oscillatory and by the observation that
sound travels with finite speed. Another matter of common knowledge was
that sound bends around corners, which suggested diffraction, a phenomenon
often observed in water waves. Also, Robert Boyle’s (1660) classic experi-
ment on the sound radiation by a ticking watch in a partially evacuated glass
vessel provided evidence that air is necessary, both for the production and
transmission of sound.

The apparent conflict between ray and wave theories played a major role
in the history of the sister science of optics, but the theory of sound developed
almost from the beginning as a wave theory.

When ray concepts were used to explain acoustic phenomena (as was done
by Reynolds and Rayleigh in the 19th century), they were regarded, either
explicitly or implicitly, as mathematical approximations to a well-developed
wave theory.

224 Born into an aristocratic Christian family and became a consul (510). He wrote

texts on geometry and arithmetic which were of poor quality but used for many

centuries during a time when mathematical achievements in Europe were re-

markable low. Boethius fell from favor and was imprisoned and later executed

for treason and magic.
225 The history of this is intertwined with the development of the laws of vibrating

strings and the physical interpretations of musical consonances, which goes back

to Pythagoras (ca 550 BCE) and perhaps earlier. Thus, the dual nature of

wave-motion in both time and frequency domains goes back all the way to the

ancient Greeks.



1847 CE 2043

The successful incorporation of geometrical optics into a more comprehen-
sive wave theory had demonstrated that viable approximate models of com-
plicated wave phenomena could be expressed in terms of ray concepts. This
recognition has strongly influenced 20th century development in architectural
acoustics, underwater acoustics, and noise control.

The mathematical theory of sound propagation began with Isaac New-
ton (1642–1727), whose Principia (1686) included a mechanical interpreta-
tion of sound as being pressure pulses transmitted through neighboring fluid
particles226. Substantial progress toward the development of a viable theory
of sound propagation resting on firmer mathematical and physical concepts
was made in 1759–1816 by Euler, d’Alembert, Lagrange and Laplace.
During this era, continuum physics, or field theory, began to receive a definite
mathematical structure. The wave equation emerged in a number of contexts,
including the propagation of sound in air. The theory ultimately proposed
for sound in the 18th century was incomplete from many standpoints, but the
modern theories of today can be regarded for the most part as refinements of
that developed by Euler and his contemporaries.

The linearized equations of the acoustic field are derived directly from the
general equations of fluid motion on the basis that the fluid velocity u, the
change of pressure p, and the change of density ρ — are all small compared
to the sound velocity c, average ambient density ρ0, and average background
pressure p0, respectively, such that products of the small entities can be ne-
glected in the equations.

There are three fundamental equations relating the above entities:

(1) Newton’s equation of motion (conservation of the fluid linear momen-
tum) relating the pressure gradient to the linear fluid acceleration:

∇p = −ρ0
∂u

∂t
;

where u is the fluid velocity vector.

(2) the equation of continuity (conservation of mass):

ρ0 div u +
∂ρ

∂t
= 0;

226 The fundamental relation λf = c [λ = wavelength; f = frequency; c = phase

velocity] appeared explicitly for the first time in Newton’s Principia (1686). The

first measurement of the sound speed in air was evidently made by Mersenne

(1635, 1644). The time was measured from the visual sighting of a firing of a

cannon to the reception of the transient sound pulse at a known distance from

the source.
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(3) the equation of state, specifying the functional dependence p = p(ρ),
subjected to the expansion

p − p0 = (ρ − ρ0)
(

dp

dρ

)

ρ0

+ · · · ≈ (ρ − ρ0)c2,

where c2 = dp
dρ

∣
∣
∣
ρ0

and c the ambient velocity of sound.

Newton (1686), applying Boyle’s law p = ρf(T ) [isothermal process],

obtained c =
√

p0
ρ0

= 290 m
sec at T = 293 ◦K, 15% lower than the observed

value.

Laplace (1816) improved on Newton’s result by correctly assuming that
sound waves pass too rapidly for a significant exchange of heat to take place.
For an adiabatic expansion in a perfect gas, he used pρ−γ = p0ρ

−γ
0 , which

led him to

c2 =
dp

dρ
= γ

p0

ρ0
= γRT

with c = 343 m
sec at T = 293 ◦K,

γ = cp/cv = ratio of specific heats,

and
R = universal gas constant.

[Clearly, the theoretical prediction of the speed of sound in liquids is more
difficult than in gases. For example, c in sea water depends on the pressure,
salinity, water temperature and the amount of dissolved and suspended gas.]

The above equations then imply the approximate relations

p = ρc2 + const.,

k div u +
∂p

∂t
= 0,

where k = ρ0c
2 is the incompressibility. The combination of the conservation

laws for mass and momentum leads to the wave equation

∇2p =
1
c2

∂2p

∂t2

for the acoustic pressure changes. The further assumption u = gradψ, im-
plies that the fluid velocity u also obeys the same wave equation. It then
follows that all field entities are expressible in terms of the potential ψ:

p − p0 = −ρ0
∂ψ

∂t
;
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ρ − ρ0 = −ρ0

c2

∂ψ

∂t
; u = ∇ψ.

The wave equation for ψ is

∇2ψ =
1
c2

∂2ψ

∂t2
.

For one-dimensional motion,

ψ = ψ(x − ct); u = ψ′

implies at once the relations p = ρ0cu; ρ = ρ0
1
c u. Certain entities formed

of the basic field elements {p, u, c, ρ0} are of use in acoustic engineering:

Z = ρ0c ≡
√

ρ0k (impedance);

W =
1
2
ρ0|u|2 +

1
2k

|p|2 = ρ0|u|2 =
|p|2
ρ0c2

(wave energy density = fluid momentum flux);

I = pu = Wc

(sound intensity = rate at which acoustic energy crosses a unit area per unit
time).

The application of the Fourier transform to the pressure wave equation
yields the Helmholtz equation (1860):

∇2p +
ω2

c2
p = 0,

where ω is the angular frequency of the harmonic Fourier component.

It is of interest to note that Euler, in his “Continuation of the Researches
on the Propagation of Sound” (1759, 1766), already derived the Helmholtz
spectral wave equation for the particle displacement (or velocity).

The solution of the Helmholtz equation for a symmetrical point-source
yields the well-known result that the sound intensity falls of as the square of
the distance from the source in a free open space. For sources of large area,
the approximation does not hold and the sound intensity may at first fall off
proportionally to the first power of the distance. Finally, in enclosed regions
the sound intensity may decrease very slowly, or not at all, with distance.

Pressure is measured in units of Pascal, denoted Pa = Newton
m2 = 10 dyn

cm2

[Newton = 105 dyn, Joule = Newton×meter; Watt = Newton×meter/sec].
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Another unit is the bar = 105 Newton/m2 = 106 dyn/cm2 ≈ Kg/cm2;
1μbar = 10−6 bar = dyn/cm2. Atmospheric pressure ≈ 105Pa ≈ Kg/cm2.

1847–1856 CE Jean Frederic Frenet (1816–1888, France). Mathemati-
cian. Contributed to differential geometry of curves and surfaces. Introduced
the so-called Frenet-Serret227 formulae for the moving-trihedral on a space
curve. He was a man of wide erudition and a classical scholar.

Frenet was born at Perigueux and graduated from the École Normale
Superior (1840). He was a professor at Toulouse and Lyons.

1847–1861 CE Ignaz Philipp Semmelweis (1818–1865, Hungary). Ob-
stetrician. Pioneer of antisepsis228. Proved (1847–1849) that puerperal fever
(childbed fever) is brought to the woman in labor by the hands and instru-
ments of examining physicians and can be eliminated through a thorough
cleansing, in a solution of water with chloride of lime, of the hands, instru-
ments, and other items brought in contact with the patient. Published (1861)
Die Aetiologie, der Begrift und die Prophylaxis des Kindbettfiebers.

Semmelweis was born in Buda to Jewish parents and was educated at
the Universities of Pest and Vienna, graduating M.D. in 1844. At the time
when he was appointed assistant professor in a maternity ward, the mortality
rate from puerperal fever stood at about 20 percent. His antiseptic measures
caused this rate to drop to 1.2 percent by May 1847. His superior, Johann
Klein, apparently blinded by jealousy and vanity, and supported by other
reactionary teachers, drove Semmelweis from Vienna (1849).

Fortunately, in the following year Semmelweis was appointed obstetric
physician at Pest in the maternity department, then as terribly afflicted as
Klein’s clinic had been. In the course of his six years of tenure there he
succeeded, by antiseptic methods, in reducing the mortality rate to 0.85 per-
cent. However, constant conflicts with his uncooperating superiors brought

227 Joseph Alfred Serret (1819–1885, France). Mathematician. Graduated from

the Ecole Polytechnique (1840). Professor of celestial mechanics at College

de France (1861); Professor of Mathematics at Sorbonne (1863). Succeeded

Poinsot in the Academie des Sciences (1860).
228 In 1854, Heinrich Schröder and Theodor von Dusch showed that bacteria

could be removed from air by filtering through cotton-wool. In 1867, Joseph

Lister (1827–1912, England) reported his method of antiseptic surgery [son of

Joseph Jackson Lister (1786–1869)].
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him within the gates of an asylum (1865). He brought with him into this
retreat an infected dissection wound which caused his death — a victim of
the very disease for the relief of which he had already sacrificed health and
fortune.

1847–1894 CE Hermann Ludwig Ferdinand von Helmholtz
(1821–1894, Germany). One of the foremost scientists of the 19th century.
Surgeon, physiologist, physicist, mathematician, chemist, musical scientist
and philosopher. Helmholtz was among the last of the universalists: his re-
search spanned almost the entire gamut of science.

In one of the epoch-making papers of the century, he formulated in 1847
the universal law of conservation of energy. Presented (1858) the first math-
ematical account of rotational fluid flow, introducing the important concepts
of vorticity, circulation, vortex flow229 and vortex lines. In 1860, Helmholtz

229 Circulatory flow that is irrotational everywhere (except possibly at r = 0)
is possible and is known as circulatory flow without rotation. In this case

if the fluid is also incompressible and the flow stationary the velocity field

has to satisfy both the matter conservation (div(V ) = 0) and irrotationality
(Ω = curl V = 0) conditions. The simplest solution of this class exhibiting

circulatory flow about r = 0 has

V = uθ(r)eθ,

while irrotationality requires

Ω =
∂(ruθ)

r∂r
= 0.

It therefore follows that

ruθ = K = constant

(which is the law of conservation of angular momentum in disguise; the fluid

angular-momentum density is J = ρuθr]. Thus

V = K
eθ

r

representing irrotational motion except at the point r = 0, where the vorticity
Ω and the velocity become infinite (this is obviously an idealization of actual

such flows). The circulation along a steamline r = const. is

Γ =

∮

V · d� = 2πK

and the motion is known as vortex flow. It plays an important role in aerody-

namics. On the basis of experimental evidence and the theory of viscous flow,

one can assume that there is a fluid core or nucleus surrounding the center of
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developed the mathematical theory of Huygens’ principle for ‘monochromatic’
steady-state scalar waves. He also showed that an arbitrary continuously dif-
ferentiable vector-field can be represented at each point as a superposition of
the gradient of a scalar potential and a curl of a vector potential.230

Helmholtz made a great contribution to our understanding of thermody-
namics; he was first to apply minimum principles to thermodynamics, and
showed that for reversible processes, the role of the action was played by the
“Helmholtz free energy”, F .

In 1854 Helmholtz seized upon the problem of the sun’s luminosity. Pre-
viously, Kant had calculated that if the sun’s light came from ordinary com-
bustion, it would have burned up in only 3000 years. Helmholtz then argued
that the tremendous weight of the sun’s outer layers, pressing radially in-
ward, should cause the sun to gradually contract: Consequently, its interior
gases will become compressed, and heat up. Hence gravitational contraction
causes the sun’s gases to become hot enough to radiate energy into space.
He was thus able to boost the theoretical age of the sun to some 20 million
years. This in turn meant that the sun extended beyond the earth’s orbit
only 20 millions years ago, to which geologists could not agree on the ba-
sis of the earth’s present surface features. Kelvin supported and ‘improved’
Helmholtz’s theory and it is known as Helmholtz-Kelvin contraction.

In other fields of science, Helmholtz contributed to the subjects of: fer-
mentation, animal heat and electricity, muscular contraction, velocity of nerve

the flow and that the core rotates approximately like a solid body. Within the

core we have circulatory flow with constant angular velocity and outside the

core we have circulatory flow without rotation. Inside the core

uθ ∼ r

while outside

uθ ∼ 1

r
.

Such a combination is known as an eddy or simply a vortex . The central core

is called the vortex core. The tornado and water spout (or even the common

bathtub vortex) are examples of such a flow. The stability of the vortex is

determined by its Reynolds’ number.

If an eddy occurs in a fluid that is otherwise undisturbed, the spatial location

of the eddy remains unaltered. However, if a uniform stream is superposed on

it, it will move with the stream. Such a vortex is known as a free vortex.
230 This theorem is now recognized as a special case of a result from Cartan’s

exterior calculus in an arbitrary, n-dimensional manifold. The more general

result relates to algebraic topology through the de Rham cohomology .
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impulses231, invention of the ophthalmometer, physiological optics, color vi-
sion, physiological acoustics and meteorological physics.

From 1869 to 1871 Helmholtz involved himself in the verification of
Maxwell’s predictions concerning electromagnetic waves. He entrusted the
subject into the hands of his favorite pupil, Heinrich Hertz, and the latter
finally gave an experimental verification of their existence and velocity.

Helmholtz was born in Potsdam, near Berlin. His father was a high school
teacher and his mother was a lineal descendant of the Quaker William Penn
(founder of the state of Pennsylvania).

As his parents were poor and could not afford to allow him to pursue a
purely scientific career, he became a surgeon in the Prussian army. He lived
in Berlin from 1842 to 1849, when he became a professor of physiology in
Königsberg. In 1855 he removed to assume the chair of physiology in Bonn.
In 1858 he became professor of physiology at Heidelberg, and in 1871 he was
called to occupy the chair of physics in Berlin.

Helmholtz married twice and had 4 children. He was a man of simple but
refined tastes, noble carriage and somewhat austere manner. His life, from
first to last, was one of devotion to science.

1848 CE A year of revolutions in almost every European country. It was
the natural climax of a process of reaction and revolt which began after the
defeat of Napoleon at Waterloo in 1815. Thereafter, Europe entered a period
of instability, characterized by a long series of upheavals. The revolution of
1848 was the culmination of the political, economical and social unrest of the
time — of the struggle between the aristocracy and the middle classes, the
rapid increase of population from 180 million in 1800 to 266 million in 1850,
the fact that more and more people now lived in cities, the conflict between
the bourgeoisie and the rising proletariat, and the movements for national
liberation and reunion. And it confounded all the protagonists, compelling a
reappraisal of ideas and a realignment of forces.

In some sense, the French Revolution and its sequel in Napoleonic impe-
rialism, disrupted the historic continuity of European society and shattered
most of its traditions.

All the significant problems of the period arose out of these events. This
break in continuity engendered a quest for new patterns of interpretation —
nationalism, socialism, vast philosophical systems like those of Marx and
Hegel, new conceptions of historical, scientific, literary and artistic ideas.

231 He actually measured the speed of nerve impulses (1852).
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Table 4.4: Timeline of the Industrial Revolution, 1770–1848

• ca 1770 — Consolidation of the steam engine by James Watt

• 1775–1783 — American Revolution

• 1780 — Industrial Revolution under way

• 1789–1794 — The French Revolution

• 1799–1815 — Reign of Napoleon

• 1800–1850 — Romanticism in literature and the arts

• 1815 — The Congress of Vienna and the congress system of European
diplomacy

• 1820 — Revolutions in Greece and Spain

• 1830 — Rise of liberalism and nationalism

• 1830, 1848 — Periods of revolution in Europe

• 1832 — Parliamentary reform in Great Britain

• 1848 — Karl Marx’s ‘Communist Manifesto’.

Europe’s search for stability after 1815 was marked by a contest between
the forces of the past and the forces of the future. For a while it seemed as
though the traditional agencies of power — the monarchs, the landed aris-
tocracy and the Church — might once again resume full control. But potent
new forces were ready to oppose relapse into the past. With the quickening
of industrialization, there was now not only a middle class of growing size
and significance but a wholly new class, the urban proletariat. Each class
had its own political and economical philosophy — liberalism and socialism
respectively — which stood opposed to each other as well as to the traditional
conservatism of the old order.

Nationalism as an awareness of belonging to a particular nationality was
nothing new. What was new was the intensity that this awareness now as-
sumed: for the mass of the people, nationalism became their most ardent
emotion, and national unification or independence their most cherished aim.

The Vienna settlement (1815) ignored the stirrings of nationalism and the
hopes for democracy that had been awakened by the French Revolution. It was
mainly interested in peace and order and the restoration of conditions as they
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were before the French Revolution232. Indeed, there was no war among the
great European powers for 40 years, and no war of world-wide dimensions for a
whole century. The Triple Alliance of Austria, Russia and Prussia guaranteed
to maintain the territorial status quo in Europe and the existing form of
government in every European country, i.e. aiding legitimate governments
against revolutions.

A first wave of reaction that followed the peace settlements of 1815, man-
ifested itself in the first wave of revolutions (1820–1829) in Spain, Portugal,
Italy, Greece and Russia. The second wave of Revolutions swept France, Bel-
gium and Poland during 1830–1833. The third wave (1848–1849) lasted for
over a year and affected most of Europe with the exception of England and
Russia. In Italy, Germany, Austria, and Hungary, the fundamental grievance
was still the lack of national freedom and unity. In Western Europe the chief
aim of revolutions was the extension of political power beyond the upper mid-
dle class. With the revolutions of 1848, socialism for the first time became an
issue of modern politics.

In addition, severe economic crises particularly affected the lower classes:
everywhere the small artisan was fighting against the competition of large-
scale industry, which threatened to deprive him of his livelihood. At the same
time, the industrial workers in the new factories were eking out a miserable
existence on a minimum wage. There were also periodic upheavals in agricul-
ture, primarily as a result of crop failures.

The revolutions of 1848 had failed everywhere due to weaknesses in the
revolutionary camp (lack of widespread popular support, indecision among
their leaders and the lack of well-defined programs) and the continued strength
of the forces of reaction. The burden of the revolution fell on the workers
whereas the middle class, in most countries, did not really want a revolution.
It preferred to achieve its aims through reform, as had been done in England.
There was no attempt to coordinate the revolutions in different countries,
although the forces of reaction worked together.

Two forces emerged from the revolutions that henceforth were to domi-
nate the history of Europe — nationalism and socialism. These now became,
respectively, the main issues in the struggle of nation against nation and class
against class.

232 In Spain and Naples the returning Bourbons abolished the liberal reforms that

had been granted in 1812. In the Papal States, Pope Pius VII got rid of the

French legal reforms, re-established the Jesuits, put the Jews back into the

ghettos, and forbade vaccination against smallpox!

In Piedmont, Victor Emmanuel I had the French botanical gardens torn up by

the roots and the French furniture thrown out of the windows of his palace!
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1848–1867 CE Karl (Heinrich) Marx (1818–1883, Germany and Eng-
land). Political economist. A critic of capitalism. Sought a scientific formula
for social justice. The most influential social thinker of modern times. Marx
approach was philosophical, Hegelian, and his materialist conception of his-
tory is basic to his philosophy of economic determinism (Historical Material-
ism). Marx defined Communism as the common ownership of the means of
production, an ideal system to be achieved by shifting control over economic
resources from the capitalists to the proletariat. This transfer of properly
rights would result in the permanent abolition of private property, with pub-
lic ownership of all means of production, including the farms and factories,
raw materials, transportation and communication facilities, and the like.

In his major work Das Kapital (Capital , 1867, 1885, 1894), Marx sys-
tematically developed his theory of surplus value, which maintains that the
worker is exploited in an inequitable distribution of the products of his labor
by the owners of the means of production. The surplus is the difference be-
tween what he gets in order to subsist and what is totally derived from what
he creates233.

Marx accepted the Hegelian dialectic, which states that every thesis con-
tains its own antithesis, its negation, opposite, or contradiction, and that the

233 Ayn Rand (1905–1982, USA), social philosopher, maintained that most work-

ers in a capitalistic economy earn far more – both in the value of their wages

and through the infrastructure made possible by such an economy – than they

could ever bring into existence on their own. Thus, according to Rand, the

“surplus value” works the other way, and is a de facto gift from enterpreneuring

individuals to those whom they employ (or whose employment is made possible

by the entrepreneurs’ inventions and business acumen).

She was born in St. Petersburg, Russia, as Alissa Rosenbaum, to Jewish par-

ents. Emigrated to the USA (1926). Espoused her philosophy of “rational

selfishness” (Objectivism) in novels, and in non-fiction books such as “For the

New Intellectual” (1961); “The Virtue of Selfishness” (1965); “Capitalism: The

Unknown Ideal” (1966); and “The New Left” (1971). Rand held that the source

of all happiness, progress and justice lies with the productive individual, free to

pursue his own agenda by relentlessly applying reason and by engaging in vol-

untary, non-coercive cooperation/competition with other individuals for mutual

benefit and satisfaction. She thus staunchly opposed religion and all other forms

of mysticism, as well as any social order based upon altruism; regarded Aris-

totle as the most important philosopher; and taught that the United States

– the only country founded upon laissez-faire capitalism and the principles of

the enlightenment – was (in the 19th century), and potentially still is, the most

moral county in the history of mankind.
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two conflicting forces merge to produce a synthesis, a new and greater re-
ality. He applied this logical principle to socio-economic history. The two
socio-economic classes, the property-owing class (capitalists) and the workers
(proletariat), who must sell their labor in order to survive — are antithetical
to each other.

Under the influence of Ludwig Andreas Feuerbach234 (1804–1872, Ger-
many), a pupil of Hegel in Berlin, Marx adopted the economic interpretation
of history (Historical Materialism). It contends that a particular society’s
mode of economic production determines the nature of its cultural and social
structure. Marx traced the relevant cause-effect relationship from ancient to
modern times. He noted that the chief mode of production among the ancient
Greeks and Romans was replaced by feudalist methods of production during
the medieval period. Feudalism and the institution of serfdom upon which it
depended yielded to capitalism in the modern period when the mode of pro-
duction was changed through wider use of machinery and the factory system.
Marx concluded that capitalism, by its very nature, is self-destructive and
hence must capitulate to Socialism, that owing to the dialectical character
of history, each historical period carries within itself the “germs of its own
destruction” (Hegel’s principle of negativity).

Marx held that the victory of the proletariat in their struggle could be pre-
dicted with the certainty of a scientific experiment (hence the term ‘Scientific
socialism’). However, the history of the world in the 13 decades that elapsed
since the appearance of the Capital (culminating with the collapse of Com-
munism in Soviet Russia and Eastern Europe) proved that there were many
blind spots in Marx’ socialist theories: while the rich were getting richer, the
poor did not necessarily get poorer.235 The general standard of living in the
world’s industrial nations was to reach heights undreamed of by Marx. Man,
furthermore, does not seem to be moved exclusively, or even primarily, by eco-
nomic concerns. Despite Marx’ attack on religion, the established churches
have continued to play an important role even in the lives of the lower classes.

Another force that increasingly came to command the allegiance of rich
and poor alike was nationalism. The great wars of the last century have
been fought not between the “oppressed” and their “oppressors” but between
workers of different nations for the defense or the greater glory of their own
country. Marx’ fundamental errors arise from an uncritical extrapolation of

234 Brother of the mathematician Karl Wilhelm Feuerbach (1800–1834, Ger-

many), after which the ‘9-point circle’ is named.
235 Paul Samuelson (Nobel prize in economics, 1970) said: “one may ignore the

entire life-work of Karl Marx for the impoverishment of the working class simply

did not happen.”
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what he observed in capitalist societies236 to all class societies, and from a
disregard of the enormous influence which political, national, and moral forces
have exerted on the development of capitalism as an economic system.

236 Much of the political tension of Europe during the first half of the 19th century

was a manifestation of underlying economic unrest caused by the gradual trans-

formation of Europe’s economy from agriculture to industry. In this new scheme

of things, the impact of the railroad was overwhelming. Here was an entirely

new industry, answering a universal need, employing thousands of people, offer-

ing unprecedental opportunities for investment, and introducing greater speed

into all industrial and commercial transactions. As the workers grew in num-

ber, they became aware that they constitute a new and separate class whose

interests conflicted with those of their employers. This conflict prompted the

emergence of Utopian Socialism that proposed to distribute the profits of human

labor in such a way that every member of society receive an equitable share,

economically, socially and politically. (“From each according to his capacity, to

each according to his need”.)

However, the Utopian Socialists [Henri de Saint-Simon (1760–1825),

Charles Fourier (1772–1837); Louis Blanc (1811–1882), Robert Owen

(1771–1858)] failed because they believed in the natural goodness of man and

the perfectibility of the world. A more realistic and more militant type of So-

cialism was needed that would use the worker’s potential economic and political

power to wrest concessions from the middle class.

The class-struggle, as enunciated by Karl Marx, is the main doctrine of the

theory as well as the means of achieving socialism. Because the economic forces

in the modern world are in constant conflict, Marx proclaimed that the work-

ing classes, out of historic necessity, must make their bid for power by uniting,

bringing about social and political changes and achieving dominance in soci-

ety through the “dictatorship of the proletariat”. Marx’s basic error was his

failure to appreciate the importance of noneconomic forces in society: religion,

emotion, prestige, genius, stupidity and such factors as climate and geography.

His economic theories themselves based on conceptions of static economy: the

theory of surplus value did not take sufficient account of the importance of cap-

italist equipment, administrative ability, initiative, and the willingness to take

risks. The capitalist-industrial revolution, far from pressing more and more

people into proletarian poverty, increased production to such an extent that it

improved the general standard of living of all men. Indeed, in the most highly

industrialized countries the proletarian class is rapidly disappearing. The great

revolutions inspired by Marxist doctrines have taken place not in industrial soci-

eties (where Marx expected them to occur), but in societies still overwhelmingly

agricultural, beset by very real economic hardships. In all revolutions inspired

by Marxism, the state has played a dominant role in the reorganization of soci-

ety, but nowhere is there any sign of its withering away.
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Despite errors and shortcomings in his teachings, however, the contribu-
tion of Marx to modern thought have been most fruitful. By bridging the gap
between politics and economics, he enriched our understanding of the past.
Prior to Marx, the division of society into rich and poor, haves and have-nots,
was accepted as a natural, unchangeable fact. It was chiefly due to Marx that
we came to realize the importance of economic factors, being jolted out of
complacent acceptance of the status quo. By predicting far reaching changes,
he made people aware that changes were possible. The threat of revolution-
ary changes, conjured up in Marx’ writings, did much to hasten the peaceful
evolution that has so markedly improved the condition of the lower class in
all industrial societies. Almost every social movement in the 20th century has
been influenced by Marxist ideology.

Karl Marx was born in Trier (Trèves), Rhenish Prussia. His paternal
grandfather, Meir Levi (later surnamed Marx237), was the Rabbi of Trèves
and his paternal grandmother, Chaya (neé Lwow), was a descendant of an
unbroken chain of Ashkenasi rabbis, at least 8 centuries long238. His father,
Hirschel (Heinrich) Marx (1782–1838), was a lawyer and judge in Trèves. He
married Henriette Pressburg, daughter of the Rabbi of Nijmegen, Holland, and
had his entire family baptized as Christian Protestants (1824) for business and
social reasons.239

Marx went (1835) to the universities of Bonn and Berlin. He studied first
law, then history and philosophy and in 1841 took the degree of doctor of
philosophy. In Berlin he became acquainted with the philosophy of Hegel
and interacted with the ‘Young Hegelians’240. At 24 he became an editor of a

237 Marx was the 12th generation of the famous Jewish medieval scholar Rabbi

Meir Katzenellenbogen, the MAHARAM of Padua (1482–1565), the great

ancestor of Europe’s leading Rabbis, Talmudists and heads of the Rabbinic

Courts in principal cities and towns for over three centuries. The MAHARAM

himself was the 17th generation of RASHI (1040–1105).
238 Marcus is an ancient Roman name and means: “belonging to the god Mars”.

Jews with Hebrew name of Moshe or Mordecai often selected Marcus or Mark

as the non-Hebrew name. This became the family name Marks or Marx.
239 Although a trained lawyer, he could not practice law as a Jew in Trier, Prussia.
240 Karl Marx was a product of this school of thought. Unlike his fellow rene-

gades Ludwig Feuerbach, Bruno Bauer [Die Judenfrage, 1843], and G. F.

Daumer who became virulent racist antisemites, Marx himself stopped short of

full-fledged antisemitism, but in his own way reinforced the negative stereotype

of the Jew as the personification of modern capitalism, which would later be

adopted by the Nazis and their imitators. Thus, the implementation of Marx’s

vision [“As soon as society succeeds in destroying the empirical essence of Ju-

daism, the Jew will become impossible... The total emancipation of Jewry, is
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paper in Cologne, Germany, but his radical ideas soon got him into censorship
trouble and he had to flee to Paris to escape arrest. With him went his young
wife, Jenny von Westphalen, whom he had married (1842) in spite of both
families misgivings. [She was a most faithful companion to Marx during all
the vicissitudes of his career and died in 1881 after bearing him 6 daughters,
3 of whom reached marriageable age and 2 of whom outlived him.]

In Paris (1844) Marx met Friedrich Engels (1820–1895), a son of a
German textile manufacturer, whose ideas were in complete accord with Marx’
and who collaborated with him in writing. This was the beginning of a close
friendship and an uninterrupted collaboration and exchange of ideas which
lasted for nearly 40 years. He also befriended the poet Heinrich Heine,
who contributed some of his poems to Marx’ radical magazine. Following his
expulsion from Paris (1845), Marx lived for a time in Brussels, Belgium. He
later returned to Paris (1848) but only to be expelled again (1849).

Marx then went to England and made his home in London for the next 34
years. He lived in wretched poverty (3 of his children died through the lack
of medicines). Sometimes Marx could not go out because his clothes were at
the pawnbroker. He spent day after day in the British Museum library, his
bills being paid by Engels.241

the emancipation of society from Judaism”, 1843] of Communism in the USSR

in the name of ‘human emancipation’ would cause untold suffering to Jews and

other national or religious minorities. His writings were used in the Soviet Union

to justify the most vulgar antisemitic propaganda.

At the same time, the fact that the founder of Communism was himself born

a Jew, made him the arch-symbol of Jewish revolutionary subversion for the

conservative and radical Right all over the world! Modern antisemitism seized

on the prominent role which ‘non-Jewish Jews’ like Marx played in Socialist,

Communist and other radical movements to construct a new myth of the Jew

as the ‘ruthless cosmopolitan’ enemy of all national values, religious traditions,

social cohesion, and bourgeois morality.
241 Marx great intellectual talents could only be matched by his tenacity and per-

severance: he would be found at his writing desk from nine in the morning until

three o’clock the next morning — with time off only for meals and bedtime

stories. When he worked at the British Museum he would arrive when the li-

brary opened at nine, and leave only when it closed at seven: to a penniless

refugee, the great domed reading room offered the advantages of dependable

central heating and comfortable chairs.

He would encourage his disciples to study harder. “Learn, learn,” was the cat-

egorical imperative which he would shout often at them, though the message

was already conveyed in the example he set up and of what they could see of
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While in Brussels, Marx and Engels had written the epochal revolutionary
pamphlet ‘Manifesto of the Communist Party’ (1848). It contains the simplest
expression of Marx’ beliefs (see Table 4.4). The ideas in it were later developed
at length in the three volumes of his major work ‘Das Kapital’.

Some historians claimed that the ideas expounded in the Manifesto were
directly taken by Karl Marx from the writing of Adam Weishaupt242 (1778),
the founder of the Order of the Illuminati in Bavaria.

Only eight people were present to hear Engels’ funeral oration in Highgate
Cemetary on March 15, 1883. Marx’ descendants, the Longuet family, live
today in France.

Marx never had a steady income. No one knew anything about him outside
a small circle of German exiles and a few intellectuals (only in 1917, with the
rise of the communists in Russia, the works of Marx became known in Europe).
Marx’s economic theories made no immediate impact on the debate inside the
worker’s movement or on other thinkers except after his death (1883). This
is true of his theories on value and surplus value, accumulation, exploitation,
crisis and appropriation, class struggle and revolution. But by the end of
the 19th century, several such theories were hotly discussed with the worker’s
movement.

Marx was an apostate Jew, he had no Jewish education and never sought
to acquire any. He tried to shut Judaism showing the smallest concern for any
of the injustice inflicted on Jews throughout his lifetime. But his suppressed

his own tremendous labors.
242 Weishaupt (1748–1811, or 1830) was born in Ingolstadt, Bavaria of orthodox

Jewish parents who had converted to Catholicism in 1748. When his father died

(1754) young Adam was turned over to be raised by the Jesuits. He graduated

from the University of Ingolstadt (1768) and was made a professor of Law (1772),

after his conversion to Protestantism. He was initiated as a Freemason (1774)

and then founded (1776) the Order of the Illuminati, some proto-communist

organization dedicated to bringing about a proletarian revolution. In 1784 the

Illuminati attempted a coup against the Habsburgs, but the plot was revealed by

police spies that had infiltrated the order. This led to the total ban of all secret

societies in Bavaria and membership was punished by death. Weishaupt was

forced to flee to a neighboring province (1785). The French Revolution of 1789

has been widely attributed to the machinations of the Illuminati. Although this

statement is an exaggeration, it cannot be denied that several persons who were

intensively involved in the revolution were active members, among others the

Comte de Mirabeau (1749–1791). After the rise of Napoleon Bonaparte,

the Illuminati were utterly crushed.
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self-hatred manifested itself through venomous attacks on friends, benefactors
and especially Jews.

However, despite his ignorance of Judaism as such, there can be no doubt
about his Jewishness: his notion of progress was profoundly influenced by
Hegel, but his sense of history as a positive and dynamic force in human so-
ciety, governed by iron laws, is profoundly Jewish. His Communist vision is
deeply rooted in Jewish apocalyptic thought and messianism. His methodol-
ogy too, was wholly rabbinical: all his conclusions were derived solely from
books, his temperament was religious, and he was quite incapable of conduct-
ing objective, empirical research. Marx’s theory of how history, class and
production operate, and will develop, is not a scientific theory at all but a
Kabbalistic theory of the Messianic Age.

The roots of Marx’s anti-Semitism went deep. He was not merely a Jewish
thinker, but also an anti-Jewish thinker. Therein lies the paradox, which has a
tragically important bearing both on the history of Marxist development and
on its consummation in the Soviet Union and its progeny. Marx’s personal
anti-Semitism, however disagreeable in itself, might have played no great part
in his lifework had it not been part of a systematic theory in which Marx
profoundly believed. In fact it is true to say that Marx’s theory of Communism
was the end-product of his theoretical anti-Semitism.

Worldview XXII: Marx

∗ ∗∗

“Die Philosophen haben die Welt nur verschieden interpretiert; es kommt
darauf an, sie zu verändern.”
“The philosophers have only interpreted the world in various ways; the point,
however, is to change it.”

(Epitaph on his tomb in Highgate Cemetery, London)

∗ ∗∗
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“Darwin’s book is very important and serves me as a basis in natural science
for the class-struggle in history.”

∗ ∗∗

“Natural science will in time include the science of man, as the science of man
will include natural science; there will be one science.”

∗ ∗∗

“Lucretius is the truly Roman heroic poet; his heroes are the atoms, inde-
structible, impenetrable, well-armed, lacking all qualities but these; a war of
all against all, the stubborn form of eternal substance. Nature without gods,
gods without a world.”

∗ ∗∗

“At the entrance to science, as at the entrance to Hell, there should be posted
the demand: ‘Here the spirit should be firm. Here the promptings of fear
should be heeded’.”

∗ ∗∗

“The more of himself man attributes to God, the less he has left in himself.”

∗ ∗∗

“Religion is the opiate of the people.”

∗ ∗∗

“Social revolution never occur because of the weakness of the strong; for that
you need the strength of the weak.”
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Philosophies of Social Criticism

By the middle of the nineteenth century, the coming of the Industrial

Age, with its revolutionary political, social, and economic effects, had made

itself felt over most of Europe and it also extended to other parts of the

world. For the next two decades, people’s attention in Europe and the United

States became absorbed by momentous political developments. Once the po-

litical situation had become stabilized, however, shortly after 1870, a second

wave of economic development swept over Europe and the world, a wave of

such magnitude that it is often referred to as a “Second Industrial Revolu-

tion.”

Marxian socialism, in its ultimate effects on society, turned out to be the

most important attack on the capitalist philosophy of laissez faire. There were

other critics of this philosophy, however, who tried in various ways to awaken

their contemporaries to the social problems created by the industrialization

of society.

Humanitarianism

Writers like Honoré de Balzac in France and Charles Dickens in Eng-

land, by dwelling in their novels on the more sordid aspects of the new industri-

alism, played on human sympathy in the hope of creating a climate favorable

to reform. The historian Thomas Carlyle, in his Past and Present (1843),

showed deep concern over the growing division between the working classes

on the one hand and the wealthy classes on the other. He turned against

the “mammonism” and the “mechanism” of his age and admonished the new

captains of industry to be aware of their responsibilities as successors to the

old aristocracy. Like Carlyle, Benjamin Disraeli, one of the rising young

Tories, in his social novel Sybil (1845), deplored the wide gap that industrial-

ization had opened between the rich and the poor. It was, he said, as though

England had split into two nations “between whom there was no intercourse

and no sympathy.”

Anarchism

One other form of social protest, the effects of which were not felt until

later in the 19th century. It is the belief that every form of regulation or

government is immoral, and that restraint of one person by another is an evil

which must be destroyed (Anarchism comes from Greek word meaning without
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government). Anarchism dates back to ancient times. It also appeared among
early Christian groups.

Anarchism, like socialism, hoped to overthrow capitalism. But while the
socialists were ready to use the state as a stepping stone for the realization of
their aims, the anarchists were deeply opposed to any kind of governmental
authority and organization. One of the earliest theorists of anarchism and
the first to use the word anarchy, was the French social philosopher Pierre-
Joseph Proudhon (1809–1865). In his pamphlet First Memoir on Property
(1840) he asked the question, “What is property?” and replied with the
well-known slogan, “Property is theft!” This seeming opposition to private
property appeared to align Proudhon with communism and endeared him
to Marx. The latter’s admiration cooled, however, when he discovered that
Proudhon was less interested in overthrowing the middle class than in raising
the worker to the level of that class. Proudhon was against any kind of
government, be it by one man, a party, or a democratic majority. “Society,”
he wrote, “finds its highest perfection in the union of order with anarchy.”

Thus Proudhon, often called the father of anarchism, became the first
to make anarchism a mass movement. His philosophical, or individualistic,
anarchism urged the willing cooperation of free men without any regulation
(law) or government.

Terroristic anarchism began under the leadership of Mikhail Bakunin
(1814–1876, Russia). A theorist of anarchism, he also practiced what he
preached. Bakunin was involved in several revolutions, was three times con-
demned to death, and spent long years in prison and Siberian exile. Most of
the evils of his day Bakunin attributed to two agencies — the state and the
Church. His ideal society was a loose federation of local communities, each
with a maximum of autonomy. In each of these communities the means of
production were to be held in common. The way to achieve this government-
less state of affairs, Bakunin held, was not by waiting patiently for the state
to wither away, as Marx had held, but by helping matters along, if nec-
essary by means of terrorism, assassination, and insurrection. The years
1881–1912 witnessed a whole series of assassinations attributed to anarchists
(Czar Alexander II of Russia, 1881; President Carnot of France, 1894; Prime
Minister of Spain Antonio Canovas del Castilio, 1897; Empress Elizabeth of
Austria, 1898; King Humbert of Italy, 1900; President William McKinley of
the United States, 1901; Prime Minister of Spain José Canalejas y Mendez,
1912).

Anarchism under the leadership of the Russian physical geographer and
political philosopher Prince Peter Alekseievitch Kropotkin (1842–1921),
during the late 1800’s assumed a more rigid communistic form. Kropotkin
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rejected the terroristic methods of Bakunin, but he also opposed the author-
itative type of communism.

Under such kind of anarchism, the state would be eliminated and the future
society would be built on the communes, or village communities, which had
existed in feudal Russian society. Each commune would be a self-sufficient
group.

He advanced a theory of mutual aid (1904) as a rationale for eliminating
all forms of government except true self-government. He based this theory
on the evidence of various studies of animal behavior, and his main source
for inspiration was Darwin’s theory of evolution through the survival of the
fittest. Kropotkin insisted that mutual aid is as important a principle of
nature as mutual hate; that mutual hate, and the struggle for existence, as
Darwin had shown, exists only with respect to different species; that among
the same species there is a spirit of mutual cooperation for existence; and that
since man is a single species, all men should cooperate and help each other to
survive. Thus, “the aspirations of man are at one with nature,” and “mutual
aid, therefore, is the predominant fact of nature.”

Born into the Russian nobility, Kropotkin entered the Imperial army in
1862 and served until 1867. Visiting Switzerland in 1872 he became a con-
vinced anarchist, under the influence of Bakunin’s teaching. Back in Russian
he began active propaganda for the movement, and in 1874 was arrested and
imprisoned. Two years later he escaped and fled from Russia, beginning an
exile, mainly spent in London, ended only by the revolution of 1917. He saw
anarchist communism very much as the next natural stage of social revolu-
tion, and part of the wider evolutionary process. In contrast to Darwin’s
social disciples, he believed that mutuality and cooperation were features of
the animal world and already significant forces in society, however masked
by coercive government. With Marx he believed that modern productive
techniques opened up possibilities of good living conditions for all; capital-
ism with its wage system must be replaced by communism. The Soviet state
which emerged from the Bolshevik revolution did not have his sympathies.
He did not reject the use of force, and supported the Allies against Germany
in WWI. His Mutual Aid: a Factor of Evolution (London, 1902) is one of the
continuing classics of anarchist thought.

During the 1870’s some of the nihilists fell under the influence of Mikhail
Bakunin and his philosophy of anarchism. In 1879 this terrorist faction formed
a secret society, “The Will of the People,” whose aim was to overthrow the
government by direct action and assassination.

Frightened by these manifestations of radicalism, Alexander II reverted to
a policy of renewed reaction. Yet by reverting to repression, he merely helped
to strengthen the revolutionary forces he hoped to combat. This fact was
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brought home to him in several attempts on his life, and in 1880 he tried once
again to return to his initial policy of reform. But by then it was too late.

Anarchists tried to mobilize working-class support behind the Russian
General Strike which was a central feature of the Russian Revolutions of
1905 and 1917. But anarchism never developed into a well-defined movement,
partly because of Bakunin’s death in 1876, partly because of the impracticable
nature of its doctrine.

The strength and influence of anarchism declined throughout the world in
the 1900’s after the rise of totalitarian states elsewhere. They were active in
the Spanish Civil War of 1936–1939, and in the latter half of the 20th century
anarchism attracted urban terrorists.

1848–1851 CE Armand Hippolyte Louis Fizeau (1819–1896, France).
Outstanding experimental physicist. In an experiment (1851) of great histor-
ical value243, he showed that the Galilean transformation of velocities does
not apply to the velocity of light in moving media. This result constituted a
strong motivating factor for Einstein in his development of relativity theory.

243 Consider a medium in which the velocity of light is u = c
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which is obtained by using the Galilean, rather then the Lorentz transformation.

In pre-relativistic times, the extra term was attributed to the dragging along

of the ether by the moving body which, in turn, was accounted for by ad-hoc

theories of A.J. Fresnel (1788–1827) and G.G. Stokes (1819–1903). After

the ether theory was demised by the Michelson-Morley experiment, Fizeau’s

experiment remained without a plausible explanation until 1905.
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In 1849, Fizeau devised a laboratory experiment to measure the velocity of
light in air and in water. In 1850, he measured the velocity of propagation of
the electromagnetic field in matter: his values ranged from 1

3c in iron wires
to 2

3c for copper wires. In 1848, he established experimentally the existence
of the Doppler effect for light waves and discovered the so-called ‘red shift’.

1848–1872 CE Heinrich Eduard Heine244 (1821–1881, Germany).
Mathematician. He was born in Berlin, Germany, the eighth of nine chil-
dren. His father was a banker. Eduard studied at Berlin and Göttingen and
from 1848 was a professor at the University of Halle. He was still teaching
there when Georg Cantor joined the faculty in 1874.

Influenced by Weierstrass’ lectures at Göttingen, Heine introduced the ε–δ
definition of limits. He published about 50 papers, most of them dealing with
special functions, but his name is best known for its association with the so-
called Heine-Borel theorem. Borel’s name is associated with this result due
to his recognition of its importance and his use of it as a separate theorem in
1895.

1848–1878 CE Karl Theodor Wilhelm Weierstrass (1815–1897, Ger-
many). One of the greatest mathematical analysts of the 19th century. Sought
to separate analysis, especially the calculus, from geometry and reduce the
principles of analysis to real number concepts (a program known as ‘arithme-
tization of analysis’).

Weierstrass began his mathematical career with papers on Abelian func-
tions, but his most important contribution to mathematics is his construction
of the theory of complex functions by means of power series. He showed spe-
cial interest in entire functions and functions defined by infinite products. He
rigorized the concept of uniform convergence245 (1854) and exhibited a class
of continuous non-differentiable functions246.

244 A member of the Jewish banking family founded by Solomon Heine, and

therefore a relative of the poet Heinrich Heine.
245 Discovered independently at about the same time by Cauchy (1853) and G.G.

Stokes (1847) and by P.L.V. Seidel (1821–1896, Germany) in 1848.
246 In 1876 Weierstrass stated that the function

∞∑

n=0

bn cos(πanx), a > 1,
1

a
< b < 1,

is continuous but nowhere differentiable. Earlier, in 1872, he published the

result only for a = odd integer and ab > 1 + 3π
2

. Weierstrass was not the

first to produce functions of this kind. Riemann had asserted already in 1861
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In algebra, he gave a postulational definition of a determinant and con-
tributed to the theory of bilinear and quadratic forms. One of the important
contributions of Weierstrass to analysis is known as analytic continuation. He
has shown that the infinite power series representation of a function f(z),
about a point z1 in the complex plane, converges at all points within a cir-
cle C1 whose center is z1 and which passes through the nearest singularity.
If now, one expands the same function about a second point z2 within C1,
z2 �= z1, this series will be convergent within a circle C2 having z2 as center
and passing through the singularity nearest to z2. This circle may include
points outside C1, hence one has expanded the area of the plane within which
f(z) is defined analytically by power series. The process can be continued
with still other circles. Weierstrass thus defined an analytic function as one
power series together with all those that are obtainable from it by analytic
continuation. The impact of this idea is felt particularly in mathematical
physics, in which solutions of differential equations are rarely found in any
form other than as an infinite series.

In his drive to arithmetize the calculus, Weierstrass contributed to the
definition of a real number and provided an improved definition of the limit
concept. He is the herald of the age of rigor, replacing older heuristic devices
and intuitive views by critical, logical precision. In todays textbooks the defi-
nitions of a limit of a function are in essence those introduced by Weierstrass
and Heinrich Eduard Heine (1821–1881, Germany) a century ago, and the
so-called delta-and-epsilon proofs, or epsilontics, are now part of the mathe-
maticians stock-in-trade.

Weierstrass was born at Ostenfelde in the district of Münster, Germany.
His father was a customs officer in the pay of the French (who at the time

(without proof) that the function

f(x) =
∞∑

n=1

sin(n2x)

n2

was nowhere differentiable. A deeper insight into this function was, however,

only achieved in 1916, when Hardy proved that f(x) has no finite derivative

at any point πξ, where ξ is either irrational or rational of the form 2A
4B+1

or
2A+1
2B

(A and B integers). J. Gerver (1970) continued Hardy’s efforts and

showed that for rational ξ of the form 2A+1
2B+1

the Riemann function has, on the

contrary, the finite derivative
(

− 1
2

)
. Thus Gerver succeeded to show that the

Riemann function does not in fact belong to the class of continuous, nowhere

differentiable functions. In 1972 A. Smith gave a proof that f(x) has no

finite derivative at any point other than those of the Gerver form.
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dominated Europe). His mother died when he was 11 years old, and his
stepmother contributed very little, to say the least, to Karl’s education.

Weierstrass not only did extremely well at school, but at the age of 15 was
able to secure a job as an accountant. After analyzing Karl’s qualities, his
father concluded that he should prepare for public service: the youngster was
sent to study law at the University of Bonn. After four years at Bonn, Karl
returned home an expert in drinking and fencing, but without the law degree.
He was then sent by his family to embark on a secondary-school teaching ca-
reer, at the Academy of Münster, for which he was ready in 1841. At Münster
Weierstrass became fascinated by the lectures of his mathematics professor,
Christoph Gudermann247, who was an enthusiast of elliptic functions. Gu-
dermann’s idea was to base everything on the power series representation of
a function. This idea was the main tool for the greatest part of Weierstrass’
work. Karl spent the next 15 years in the capacity of an unknown school
teacher in an obscure village. However, the publication of his memoir on
Abelian functions in the Crelle Journal in 1854 brought him at once into the
limelights of the mathematical world, and he moved to Berlin in 1856. But
only in 1864 was he awarded full professorship at the University of Berlin and
could finally devote all his time to advanced mathematics.

Due to occasional spells of vertigo, he never trusted himself to write his
own formulae on the blackboard, but dictated to an assistant who wrote them
for him. Among the most important of his students were Hermann Aman-
dus Schwarz (1843–1921), Sonja Kovalevsky (1850–1891), Georg Can-
tor (1845–1918), Magnus Gösta Mittag-Leffler (1846–1927) and David
Hilbert (1862–1943).

1849 CE Paul Julius von Reuter (1816–1899, Germany). Journalist.
Founded in Aachen (1849) a central telegraphic and pigeon-post bureau for
collecting and transmitting news, forerunner of Reuter’s News Agency with
headquarters in London (from 1851); removed to England (1851) and became
naturalized British subject; created baron (1871) by Duke of Saxe-Coburg-
Gotha.

Born at Cassel, Germany as Israel Beer Josaphat, he was baptized
(1844), when he assumed the name Reuter. At the age of 13 he became a

247 A. Cayley called the function φ(u) = sin−1{tanh u} the Gudermannian of u,

and denoted it by gd u. Then

u = gd−1φ = log{tan φ + sec φ} ≡ log tan

[
π

2
+

φ

2

]
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clerk in his uncle’s bank at Göttingen, where he chanced to make the acquain-
tance (1829) of Carl Friedrich Gauss (1777–1855), whose experiments in
telegraphy were then attracting some attention. Reuter’s mind was thus di-
rected to the value of the speedy transmission of information, and in 1849, on
the completion of the first telegraph lines in Germany and France he found
an opportunity of turning his ideas to account.

There was a gap between the termination of the German line at Aix-la-
Chapelle and that of the French and Belgian line at Verviers. Reuter organized
a news-collecting agency at each of these places, his wife being in charge
of one, himself at the other, and bridged the interval by pigeon-post. On
the establishment of through telegraphic communications, Reuter endeavored
to start a news agency in Paris, but finding that the French government
restrictions would render the scheme unworkable, removed to England (1851).

The first submarine cable (between Dover and Calais) had just been laid,
and Reuter opened an office in London for the transmission of intelligence
between England and the Continent. In 1859 Reuter extended his sphere of
operations all over the world. In 1866 he laid down a special cable from Cork
to Crookhaven, which enabled him to circulate news of the American Civil
War several hours before the steamer could reach Liverpool.

1849–1859 CE Arthur Cayley (1821–1895, England). One of the prin-
cipal mathematicians of the 19th century and one of the most prolific mathe-
maticians of all times, rivaled in productivity only by Euler and Cauchy [the
number of his papers and memoirs exceeded 800]. Cayley wrote upon every
subject of pure mathematics and also upon theoretical dynamics, physical
astronomy and physical geography. He was primarily an algebraist, and his
main achievements are as follows:

(1) Created the theory of matrices248 and developed it as a pure algebra

248 Among the key theorems discovered by him is the Cayley-Hamilton Theorem:
Every matrix satisfies its own characteristic equation, i.e. if f(λ) is the char-

acteristic polynomial of A, then f(A) = 0. This theorem was established by

Hamilton (1853) for a special class of matrices. Cayley (1858) enunciated the
general result without proof.

The manipulation of matrices is often generally facilitated by the Cayley-

Hamilton theorem, which provides an easy method for expressing any poly-
nomial in A as a polynomial of degree not exceeding n − 1, when n is the

degree of f(λ). Thus, if A satisfies the equation

A4 − π2A2 = 0,

we have

sin A = A − π−2A3.
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(1857); showed that quaternions can be represented as matrices of spe-
cial form. [Matrices, considered as arrays of coefficients in homogeneous
linear transformations, were tacitly in existence long before Cayley, but
their properties were not studied for their own sake.] The importance of
matrix theory in the mathematical machinery of modern physics echo the
prophetic statement made by P.G. Tait: “Cayley is forging the weapons
for future generations of physicists249”.

(2) Initiated the ordinary analytic geometry of n-dimensional space (1843),
using determinants as the essential tool and introducing the modern no-
tation for determinants. [Simultaneous work on the same subject was
done by Grassmann and Ludwig Schläfli (1814–1895, Switzerland,
1852).]

(3) Introduced the notion of an abstract finite group and what we call today
‘finite group algebra’.

(4) Contributed to the theory of algebraic invariants, which later proved to
be essential to tensor algebra.

(5) Research on the singularities of curves and surfaces250.

Similarly, it can be shown that if

S =

⎡

⎣
0 ν −μ

−ν 0 λ

μ −λ 0

⎤

⎦,

then

eS = I +
sin ω

ω
S +

1 − cos ω

ω2
S2,

where
ω2 = λ2 + μ2 + ν2.

The latter result is immediately applicable to the general finite three-

dimensional rotation matrix about an arbitrary axis.
249 His work on matrices served as a primary mathematical tool for the theory of

quantum mechanics as developed by Heisenberg (1925)
250 In a memoir “on Contour and Slope Lines” (Philosophical Magazine 18 p.264

1859) Cayley introduced the first elements of physical geography such as topo-

logical contour-lines and its application to geological surveying, as well as to

mathematical topology. He discovered the relations S = P + 1 (S = number

of summits, P = number of passes) and I = B + 1 (I = number of bottoms,

B = number of bars), deducing it from the theory of maxima and minima of

continuous functions of two variables.

Unaware of this contribution, J. C. Maxwell (Philosophical Magazine 1870)

rederived most of Cayley’s results.
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(6) By developing algebras satisfying structural laws different than those
obeyed by common algebra, he opened [together with Hamilton and
Grassmann] the floodgates of modern abstract algebra to an enormous
variety of systems. Some of these are known as: groupoids, quasigroups,
semigroups, monoids, rings, lattices, fields, vector spaces and Boolean
algebras251.

(7) Showed in 1885 that three-dimensional as well as four-dimensional rota-
tions can be represented by quaternions. Similar results were obtained by
Felix Christian Klein (1849–1925); hence the ‘Cayley-Klein rotation
parameters’. These were systematically used by Felix Klein and Som-
merfeld (1868–1951, Germany) in their classical book “Über die Theorie
des Kreisels” (1897).

Cayley was born at Richmond in Surrey, of Russian origin on his mother’s
side. At age 14 he arrived at King’s College school, London. He soon showed
remarkable mathematical ability and entered Trinity College, Cambridge. In
1842 he graduated Senior Wrangler. In 1846 Cayley decided to adopt the
law as a profession and indeed practiced law during 1849–1863. Then he was
elected to the new Sadlerian chair of pure mathematics in Cambridge, which
he held thereafter.

251 As early as 1849 Cayley wrote a paper linking his ideas on permutations with

Cauchy’s. In 1854 Cayley wrote two papers which are remarkable for the insight

they have of abstract groups. At that time the only known groups were groups

of permutations and even this was a radically new area, yet Cayley defined an

abstract group and gave a table to display the group multiplication. He realized

that matrices and quaternions formed groups.
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Matrix Algebra252 – A powerful Mathematical Tool

It is clear from the historical survey shown in Table 4.5 that the earliest
notions of determinants arose 23 centuries ago in connection with the simplest
algebraic structures then known to mathematicians, namely the solution of
linear systems of equations.

The subject of matrices, too, was well developed before it was ‘officially’
created by A. Cayley (1858). Logically, the idea of a matrix precedes that
of a determinant but historically the order was the reverse and this is why
the basic properties of matrices were already clear by the time matrices were
introduced: just because the use of matrices were well-established, it occurred
to Cayley to introduce them as distinct entities.

Determinants and matrices arose in connection with elimination theory,
transformation of coordinates, change of variables in multiple integrals, so-
lution of systems of differential equations arising in planetary motion and
reduction of quadratic forms in 3 or more variables (geometrical surfaces) to
standard form.

In themselves matrices and determinants say nothing directly that is not
already stated in the equations or the transformations themselves. Neither
determinants nor matrices have influenced deeply the course of mathemat-
ics despite their utility as compact expressions. Nevertheless, both concepts
have proved to be highly useful tools and are now part of the apparatus of
mathematics.

252 For further reading, see:

• Mirsky, L., An Introduction to Linear Algebra, Oxford University Press: Lon-

don, 1955, 433 pp.

• Turnbull, H.W. and A.C. Aitken, An Introduction to the Theory of Canonical

Matrices, Blackie & Son: London, 1952, 200 pp.

• Turnbull, H.W., The Theory of Determinants, Matrices and Invariants, Dover

Publications: New York, 1960, 374 pp.

• Barnett, S., Matrices, Oxford University Press, 1990, 450 pp.

• Heading, J., Matrix Theory for Physicists, Longmans, Green and Company:
London, 1958, 241 pp.

• Gantmacher, F.R., The Theory of Matrices, Vols I-II, Chelsea Publishing

Company: New York, 1960, 366+276 pp.

• Lay, D.C., Linear Algebra and Its Applications, Addison Wesley, 2003, 492 pp.

• Hohn, Franz E., Elementary Matrix Algebra, Dover: New York, 2002, 522 pp.

• Stephenson, G., An Introduction to Matrices, Sets and Groups for Science

Students, Dover: New York, 1965, 164 pp.
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Table 4.5: Milestones in the history of matrices and

determinants

Year(s) Mathematicians and their achievements

ca 300 BCE Babylonians studied problems which lead to simul-
taneous linear equations.

200–100 BCE In the text ‘Nine Chapters of the Mathematical Art’,
written during the Han Dynasty, Chinese mathe-
maticians gave the first known example of matrix
methods: the author set up coefficients of a system
of 3 linear equations in 3 unknowns as a table on
a ‘counting board’ and then proceeded to solve the
system by a method now known as the ‘Gaussian
elimination’ (early 19th century).

1545 CE Cardano (in his ‘Arts Magna’) gave a rule for solv-
ing a system of two linear equations, now known as
‘Cramer’s Rule’.

ca 1658 CE De Witt (in his ‘Elements of Curves’) showed how
a transformation of the axes reduces a given equa-
tion of a conic to canonical form. This amounts to
diagonalizing a symmetric matrix.

1683 CE Leibniz (Germany) and Seki Kowa (Japan) inde-
pendently introduced determinants and gave meth-
ods for calculating them. Seki knew that a determi-
nant of nth order, when expanded, has n! terms and
that rows and columns are interchangeable. Leibniz,
on the other hand, knew that the solubility condition
for an homogeneous linear system of equations is that
the coefficient matrix has determinant zero. He also
proved what is essentially Cramer’s Rule and that
a determinant could be expanded using any column
(now called the ‘Laplace expansion’). Leibniz also
studied quadratic forms which led naturally towards
matrix theory.
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Table 4.5: (Cont.)

Year(s) Mathematicians and their achievements

ca 1735 CE Maclaurin (in his Treatise of Algebra) proved
Cramer’s Rule for 2 × 2 and 3 × 3 systems of equa-
tions.

1747 CE d’Alembert introduced the concept of an eigen-
value while studying the motion of a string with
masses attached to it at various points.

1750 CE Cramer gave the general rule for a n × n system
of equations. It arose out of a desire to find the
equation of a plane curve passing through a number
of given points.

1764–1771 CE Bezout and Vandermonde gave methods for cal-
culating determinants.

1772 CE Laplace gave an expansion of a determinant (he
called it ‘resolvent’) which now bears his name. It
arose in connection with his studies of the orbits of
the inner planets.

1773 CE Lagrange, solving a problem in mechanics, showed
that the volume of a tetrahedron formed by 4 points
(0,0,0), (x1, y1, z1), (x2, y2, z2), (x3, y3, z3) is express-
ible by the determinant

1
6

∣
∣
∣
∣
∣
∣

x1 y1 z1

x2 y2 z2

x3 y3 z3

∣
∣
∣
∣
∣
∣
.

1801–1809 CE Gauss introduced the term ‘determinant’ while
studying quadratic forms. In this connection he de-
scribed matrix multiplication and the inverse of a ma-
trix. In his work on the orbit of the asteroid Pallas,
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Table 4.5: (Cont.)

Year(s) Mathematicians and their achievements

Gauss obtained a system of 6 linear equations in 6
unknowns. He gave a systematic method for solving
such equations which is now known as the Gaussian
elimination method.

1812–1841 CE Cauchy expounded the first systematic work on de-
terminants, introducing the concept of minors and
adjoints. He proved the multiplication theorem for
n × n determinants, cij =

∑

n
aikbkj , (1841). In the

context of quadratic forms, Cauchy used the term
‘tableau’ for the matrix of coefficients. He calculated
the eigenvalues and gave results on diagonalization
of a matrix in the context of converting a form to a
sum of squares (1826). He also introduced the idea of
similar matrices (1826), showed that if two matrices
are similar they have the same characteristic equa-
tion and proved (again, in the context of quadratic
forms) that every real symmetric matrix can be di-
agonalized (1826).

1829 CE Sturm (Switzerland) defined the concept of the
eigenvalue in the context of solving an ordinary dif-
ferential equation. However, neither d’Alembert nor
Sturm realized the generality of the idea they were
introducing and saw them only in the specific context
in which they were working.

1841 CE Jacobi generalized the determinant concept to in-
clude elements that are functions. Cayley used two
vertical lines on either side of the array to denote a
determinant.

1850–1851 CE Sylvester introduced the term matrix. Defined
equivalence of two matrices (1851).
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Table 4.5: (Cont.)

Year(s) Mathematicians and their achievements

1853 CE Hermite introduced Hermitian matrices (matrix
equal to its transpose conjugate) and showed that
its eigenvalues are real. In 1854 he was first to use
orthogonal matrices.

1858 CE Cayley created the theory of matrices, singling out
the matrix for its own sake, giving it an abstract
definition and establishing matrix algebra (addition,
multiplication, scalar multiplication and inverses).
He gave an explicit construction of the inverse of a
matrix and also proved that a 2 × 2 matrix satisfies
its own characteristic equation.

1870 CE Jordan defined the canonical or normal form of a
matrix.

1874 CE Kronecker defined the direct matrix product.

1878–1879 CE Frobenius defined the minimum polynomial of a
matrix as the polynomial of the lowest degree which
the matrix satisfies, formed from the factors of the
characteristic polynomial. He also defined the rank
of a matrix (1879) as the least r-rowed minor whose
determinant is not zero. Gave a formal definition
to orthogonal matrices(equal to the inverse of its
transpose). Defined congruent matrices. Proved the
Cayley–Hamilton theorem for n × n matrices.

1885 CE A. Buchheim (1859–1888) proved that the eigen-
values of a real symmetric matrix are real (Cauchy
proved it for determinants).

1892 CE W.H. Metzler introduced transcendental func-
tions of a matrix, writing each as a power se-
ries in a matrix. He established series for
eA, e−A, lnA, sinA, sin−1A for matrices A.
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Table 4.5: (Cont.)

Year(s) Mathematicians and their achievements

1904 CE K. Hensel proved that the minimal polynomial of a
matrix divides any other polynomial satisfied by the
matrix.

1907 CE The textbook ‘Introduction to Higher Algebra’ by
M. Bôcher brought matrices into their proper place
within mathematics.

1908 CE H. Minkowski gave covariant formulation of rela-
tivistic electrodynamics in terms of matrices.

1925 CE W. Heisenberg253 formulated quantum mechanics
in terms of matrices, establishing matrix mechanics.

A. Determinants

Systematic treatments of determinants began with Cauchy (1812–1840)
and continued throughout the 19th century by Jacobi (1832–1846), Cata-
lan (1839–1846), Bertrand (1850), Hermite (1854–1856), Cayley (1855),
Cremona (1856), Bellavitis (1857), Souillart (1858), Weierstrass (1858),
H.J. Smith (1861), R.F. Scott (1878) and Hadamard (1892).

The determinant

D3 =

∣
∣
∣
∣
∣
∣
∣
∣
∣

a11

�

�

�

�
a12 a13

�

�

�

�
a21 a22 a23

a31 a32

�

�

�

�
a33

∣
∣
∣
∣
∣
∣
∣
∣
∣

(1)

stands for the number

253 Because matrix algebra was not taught in the curriculum of graduate physics

in German universities, neither Heisenberg nor Born knew what to make of the

appearance of matrices in the concept of the atom. David Hilbert had to tell
then to look for differential equations with the same eigenvalues.
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a11a22a33 + a21a32a13 + a31a12a23 − a13a22a31 − a23a32a11 − a12a21a33. (2)

Each term in (2) comprises of a product of three elements of the determinant,
such that no two elements are from the same row or the same column; e.g.
the circled elements, corresponding to the last term in (2). The first index
of the element indicates its row and the second index stands for its column.
Note that the indices of each term in (2) can be considered as a permutation
of 1, 2, 3. Thus a11a22a33 corresponds to the identity permutation

(
1 2 3
1 2 3

)

,

while a13a22a31 corresponds to the permutation
(

1 2 3
3 2 1

)

and a12a21a33 to the permutation
(

1 2 3
2 1 3

)

.

In general, the determinant Dn of the array

Dn =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

· ·
· ·
· ·

an1 an2 an3 · · · ann

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, (3)

is the number

Dn =
∑

±a1ia2j ...anp =
∑

±ai1aj2...apn, (4)

where the summation is over all permutations (i, j, ..., p) of (1, 2, ..., n) and
the sign accords with the parity of the permutation. In each term of the sum
there is one element from each row and one from each column but no two
elements have their row or column in common.

Cauchy (1826) encountered determinants in his study of the quadratic
form

f(x1, x2, x3) = a11x
2
1 +a22x

2
2 +a33x

2
3 +2a12x1x2 +2a13x1x3 +2a23x2x3. (5)

This function can be associated with the determinant
∣
∣
∣
∣
∣
∣

a11 a12 a13

a21 a22 a23

a31 a32 a31

∣
∣
∣
∣
∣
∣
, aij = aji,
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where the roots of the characteristic equation |aij − λδij | = 0 determine the

principal axes.

Sylvester (1840) came across a determinant in his studies of the theory

of equations. He asked: what is the condition under which the two equations

f(x) = ax3 + bx2 + cx + d = 0;

g(x) = px2 + qx + r = 0

possess a common root? Now , if such a root exist, it is also a common root

of the system of the 5 equations

xf(x) = 0, f(x) = 0, x2g(x) = 0, xg(x) = 0, g(x) = 0,

namely

ax4+bx3+cx2+dx = 0,
ax3+bx2+cx+d= 0,

px2+qx+r= 0,
px3+qx2+rx = 0,

px4+qx3+rx2 = 0.

If we treat these as 5 linear equations, homogeneous in {x4, x3, x2, x, 1}, the

condition for their consistency is, by the theory of linear equations,

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a b c d 0
0 a b c d
0 0 p q r
0 p q r 0
p q r 0 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0. (6)

This determinant is Sylvester’s eliminant and comprises the relation that the

7 parameters (a, b, c, d; p, q, r) must obey.

Certain classes of determinants gained importance in numerical analysis

and mathematical physics:

• Continuants

A continuant is a determinant all of whose elements are zero except those

in the main diagonal and in the two adjacent diagonal lines parallel to

and on either side of the main diagonal, i.e. Dij = 0 for |i − j| > 1.
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A general continuant has the form

Dn,1 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a1 b1 · · ·
c1 a2 b2

c2 a3 b3

...
. . .

. . .
. . .

cn−2 an−1 bn−1

cn−1 an

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (7)

Expansion in terms of the elements of the first column, leads to the
difference equation Dn,1 = a1Dn,2 − b1c1Dn,3, where Dn,j means that
the first element of the main diagonal is aj and the last is an. Sylvester
(1855) showed that continuants are linked to continued fractions in the
following way:

Dn,1

Dn,2
= a1 − b1c1

Dn,2/Dn,3

develops into

Dn,1

Dn,2
= a1 − b1c1

a2 − b2c2

a3 −
. . .

b3c3

an−1 − bn−1cn−1

an

. (8)

The case an = a, bn = b, cn = c was investigated by R.F.
Scott (1878)

Dn =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a b 0
c a b

. . .
. . .

. . .

c a b

0 c a

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
n

(9)

The n × n determinant obeys the difference equation

Dn+2 − aDn+1 + bcDn = 0 n ≥ 1,

the solution of which is

Dn =
(a + Δ)n+1 − (a − Δ)n+1

2n+1Δ
, Δ =

√
a2 − 4bc.
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For a = 2 cos θ, c = b = 1, Dn = sin(n+1)θ
sin θ = Un(cos θ).

Considering Dn as an n × n matrix where a, b, c are real and bc > 0,
the eigenvalues of Dn are given by

λs = a + 2
√

bc cos
sπ

n + 1
, s = 1, 2, ..., n.

In the 1950’s, investigations of the stability of numerical solutions of the
heat conduction equation

∂u

∂t
=

∂2u

∂x2
, 0 < x < 1, u = u(x, t), u(0, t) = u(1, t) = 0, t > 0

led to the explicit finite-difference scheme

ui,j+1 = rui−1,j + (1 − 2r)ui,j + rui+1,j .

This, in turn, is manifested through the behavior of the eigenvalues of
the above tridiagonal matrix with a = 1 − 2r, b = c = r. It was found
that the scheme is stable for r ≤ 1

2 , where r = k
h2 , h = spatial mesh-

size, k = temporal mesh size.

Another case of interest is bn = 1, cn = −1. Here, the continued
fraction has the form:

Pn

Qn
= a0 +

1

a1 +
1

a2+ . . .
+

1
an−1

. (10)

where

Pn =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a0 1 0 · · · 0 0 0
−1 a1 1 · · · 0 0 0

...
. . .

. . .
. . .

...

0 0 0 · · · −1 an−2 1
0 0 0 · · · 0 −1 an−1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
n=1, 2,...
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Qn =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a1 1 0 · · · 0 0 0
−1 a2 1 · · · 0 0 0

...
. . .

. . .
. . .

...

0 0 0 · · · −1 an−2 1
0 0 0 · · · 0 −1 an−1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
n=2, 3,...

(Q1 = 1),

and where the sequential subdeterminants are

P1 = a0 Q1 = 1 (defined)
P2 = a0a1 + 1 Q2 = a1

P3 = a0a1a2 + a0 + a2 Q3 = a1a2 + 1
P4 = a0a1a2a3 + a0a3 + a2a3 + 1 Q4 = a1a2a3 + a1 + a3

An example of a practical application of the above theory was given
by Muir (1889): a rapidly converging series for the extraction of a
square root. It was based on previous work done on continued fractions
by Lagrange, who proved that any quadratic number has a continued
fraction expansion which is periodic from some point onward. So if
N > 0 is an integer which is not a perfect square,

√
N = a1 +

1
a2 +

1
a3 +

· · · 1
2aj +

1
aj+1 +

· · · (11)

for some j ≥ 1. For example

√
41 = 6 +

1

2 +
1

2 +
1

12 +
1

2 +
1

2 +
1

12 + · · ·

(12)

In general, it can be shown that

√
N = a1+

Qn(a2, ..., an)
Pn(a1, ..., an)

+
(−)n

2Pn(a1, ..., an)Qn(a2, ..., an; a1)
−· · · (13)

For the above example, this yields
√

41 = 6.403 124 237, with an error



1849 CE 2081

less than 5 × 10−9. The next approximant improves the accuracy to 25
decimal places.

Another, more complicated example of a continuant, applicable to the
theory of musical scales, is the algorithm

loga0
a1 =

log a1

log a0
=

1

n1 +
1

n2 +
1

n3 + · · ·

, (14)

where {n1, n2, n3, ...} is a sequence of positive integers, and
a0 > a1 > 1. The ni are determined by the relations ani

i < ai−1 <
ani+1

i with the sequence ai recursively defined by ai+1 = ai−1/ani
i ,

i = 0, 1, 2... Thus, for a0 = 3, a1 = 2 the ni sequence is
[1, 1, 1, 2, 2, 3, 1...]; already the first 5 terms yield an excellent approxi-
mation for the musical fifth: log 2/ log 3 ≈ 12/19, from which the Greek

result,
(

3
2

)12 ≈ 27, follows!

Another result obtained through the above algorithm is log 3/ log 5 ≈
13/19.

Note that pk

qk
, the kth convergent to log a1

log a0
is given by pk = nkpk−1+pk−2,

qk = nkqk−1+qk−2 (n0 = 0, p−2 = 0, p−1 = 1, p0 = 0, p1 = 1; q−2 = 0,
q−1 = 0), where {pk, qk} are the respective continuants:

pk =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

n2 1
−1 n3 1

−1 n4 1
· · ·

· · ·
· −1 nk−1 1

−1 nk

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, k = 2, 3, ...; (15)

qk =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

n1 1
−1 n2 1

−1 n3 1
· · ·

· · ·
· −1 nk−1 1

−1 nk

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, k = 1, 2, 3, ... (16)
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The study of continuants began with Jacobi (1850) and Sylvester
(1853).

• Alternants

When the elements of the first row of a determinant are all functions
of one variable, the elements of the second row are the same respective
functions of a second variable, and so on, the determinant is called an
alternant (and similarly for columns): for example

∣
∣
∣
∣
∣
∣

sin x cos x 1
sin y cos y 1
sin z cos z 1

∣
∣
∣
∣
∣
∣

(17)

A well-known alternant is due to A.T. Vandermonde(1772),

Vn =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 · · · 1
λ1 λ2 · · · λn

λ2
1 λ2

2 · · · λ2
n

...
...

...
λn−1

1 λn−1
2 · · · λn−1

n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(18)

It can be shown that

Vn =
∏

n≥j>i≥1

(λj − λi).

The corresponding Vandermonde matrix is thus non-singular iff all the
λ’s are different from each other. This matrix finds application in nu-
merical analysis, where the coefficients of an interpolating polynomial
are determined from the data: it is required to determine the polyno-
mial

y = a0 + a1x + a2x
2 + ... + an−1z

n−1

so that it passes through n given points (x1, y1), (x2, y2), ..., (xn, yn).
The coefficients are determined by the matrix equation aV = y, where
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a = [a0, a1, ..., an−1], y = [y1, ..., yn] and V is the Vandermonde matrix
with λi = xi.

The study of alternants began with Cauchy (1812) and Jacobi
(1841).

• Recurrents

Determinants associated with polynomials, ratios of polynomials, binary
quartics and ratios of infinite power series are known as recurrents. For
example

a0x
n + a1x

n−1y + a2x
n−2y2 + · · · + anyn =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a0 a1 a2 · · · an−1 an

y x 0 · · · 0 0
0 y x · · · 0 0
· · · · · · · ·
· · · · · · · ·
0 0 0 · · · y x

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (19)

Another example comes from the algebra of infinite series. If

a0 + a1
x
1! + a2

x2

2! + · · ·
b0 + b1

x
1! + b2

x2

2! + · · ·
= c0 + c1

x

1!
+ c2

x2

2!
+ · · · , (20)

then cn is given by the determinant

cn =
1

bn+1
0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

b0 0 0 · · · a0

b1 b0 0 · · · a1

b2 2b1 b0 · · · a2

...
...

... · · ·
...

bn Cn
1 bn−1 Cn

2 bn−2 · · · an

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (21)

If however, we take the ratio of two polynomials

φ(x) = c0x
m + c1x

m−1 + · · · + cm,

f(x) = a0x
n + a1x

n−1 + · · · + an,
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its formal Laurent series is

φ(x)
f(x)

= A0x
m−n + A1x

m−n−1 + A2x
m−n−2 + · · · ,

and have, upon equating coefficients on both sides of the equation

f(x)φ(x)
f(x) = φ(x)

c0 = a0A0, c1 = A0a1 + A1a0, c2 = A0a2 + A1a1 + A2a0, ...

Solving for Ar, we get (Hagen, 1883)

Ar =
(−)r

ar−1
0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

c0 a0 0 0 · · · 0
c1 a1 a0 0 · · · 0
c2 a2 a1 a0 · · · 0
· · · · · · · ·

cr−1 ar−1 ar−2 ar−3 · · · a0

cr ar ar−1 ar−2 · · · a1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
r+1

. (22)

A famous recurrent is associated with Laplace, who produced an ex-
plicit expression for the values of the Bernoullian numbers (Johann
Bernoulli, 1713), defined as the coefficients of the power series expan-
sion

t

et − t
=

∞∑

n=0

Bn
tn

n!
, |t| < 2π.

Laplace gave the formula

Bn = (−)nn!

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1
2!

1 0 · · · 0

1
3!

1
2!

1 · · · 0

1
4!

1
3!

1
2!

. . . 0

· · · · 1

1
(n + 1)!

1
n!

1
(n − 1)!

· · · 1
2!

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (23)
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The numbers Bn figure in the power expansion of the functions
tan t, tanh t, t cot t, t coth t, in the Euler-Maclaurin summation
formula, and in the asymptotic form of Euler’s gamma function. Some
Bernoullian numbers are:

B0 = 1, B1 = −1
2
, B2 =

1
6
, B4 = − 1

30
, B6 =

1
42

, B8 = − 1
30

,

B10 =
5
66

, B12 = − 691
2730

, B14 =
7
6
,

B2n+1 = 0, n = 1, 2, 3, ...

The first 62 Bernoullian numbers were computed by Adams (1877).

• Circulants

A determinant such that any row is obtained from the preceding one
by passing the last element to the first place, or the first element to the
last place, is called a circulant. Thus:

c(a1, a2, ..., an) =

∣
∣
∣
∣
∣
∣
∣
∣

a1 a2 · · · an

an a1 · · · an−1

· · · · · ·
a2 a3 · · · a1

∣
∣
∣
∣
∣
∣
∣
∣

;

c′(a1, a2, ..., an) =

∣
∣
∣
∣
∣
∣
∣
∣

a1 a2 · · · an

a2 a3 · · · a1

· · · · · ·
an a1 · · · an−1

∣
∣
∣
∣
∣
∣
∣
∣

(24)

By transposition of rows it appears that

c′(a1, a2, ..., an) = (−)
1
2 (n−1)(n−2)c(a1, a2, ..., an),

where c′ belongs to the class of symmetric determinants.

Certain circulants may form a group under determinant multiplication,

e.g. ∣
∣
∣
∣
∣
∣

a c b
b a c
c b a

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

x y z
z x y
y z x

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

A C B
B A C
C B A

∣
∣
∣
∣
∣
∣

(25)
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Explicitly

(a3 + b3 + c3 − 3abc)(x3 + y3 + z3 − 3xyz) = (A3 + B3 + C3 − 3ABC),

where

A = ax + by + cz, B = bx + az + cy, C = cx + bz + ay

or
A = ax + bz + cy, B = bx + ay + cz, C = cx + az + by.

If a = x, b = y, c = z, we obtain by induction
∣
∣
∣
∣
∣
∣

x y z
z x y
y z x

∣
∣
∣
∣
∣
∣

2n

=

∣
∣
∣
∣
∣
∣

An Bn Cn

Cn An Bn

Bn Cn An

∣
∣
∣
∣
∣
∣
. (26)

Explicitly:

(x3 + y3 + z3 − 3xyz)2
n

= A3
n + B3

n + C3
n − 3AnBnCn,

with An = A2
n−1 + 2Bn−1Cn−1 etc.

Likewise, for n = 4
∣
∣
∣
∣
∣
∣
∣
∣

x y z u
u x y z
z u x y
y z u x

∣
∣
∣
∣
∣
∣
∣
∣

= (x2 + z2 − 2yu)2 − (u2 + y2 − 2zx)2

∣
∣
∣
∣
∣
∣
∣
∣

x y z u
u x y z
z u x y
y z u x

∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣

X Y Z U
U X Y Z
Z U X Y
Y Z U X

∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣

A B C D
D A B C
C D A B
B C D A

∣
∣
∣
∣
∣
∣
∣
∣

where

A = xX + yY + zZ + uU

B = uX + xY + yZ + zU

C = zX + uY + xZ + yU

D = yX + zY + uZ + xU

Circulants were introduced by Catalan (1846) and further investigated
by Bertrand (1850), Sylvester (1855), Bellavitis (1857) and Souil-
lart (1858).
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• Pfaffians

The determinant of a skew-symmetric matrix can always be written as
the square of a polynomial in the matrix elements. This polynomial is
called the Pfaffian of the matrix. The Pfaffian is nonvanishing only for
2n × 2n skew-symmetric matrices, in which case it is a polynomial of
degree n. For example

Pf

[
0 a

−a 0

]

= a; Pf

⎡

⎢
⎢
⎣

0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0

⎤

⎥
⎥
⎦ = af − be + dc

B. Matrices

Matrices entered mathematics with Cayley in connection with linear trans-
formations of the type

x′ = ax + by (27)

y′ = cx + dy

(where a, b, c, d are real numbers), which may be thought of as mapping the
point (x, y) into the point (x′, y′). Since the above transformation (or map) is
completely determined by the four coefficients a, b, c, d it can be symbolized
by the square array

[
a b
c d

]

,

which is called a (square) matrix (of order 2).

If the transformation given above is followed by a second transformation

x′ ′ = ex′ + fy′,

y′ ′ = gx′ + hy′, (28)
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the combined (composition) map can be shown to be the transformation

x′ ′ = (ea + fc)x + (eb + fd)y,

y′ ′ = (ga + hc)x + (gb + hd)y. (29)

This leads to the following definition for the product of two matrices,
[

e f
g h

] [
a b
c d

]

=
[

ea + fc eb + fd
ga + hc gb + hd

]

. (30)

For brevity we shall state Cayley’s definition for 2 by 2 and 3× 3 matrices
though the definitions apply to n × n matrices. Two matrices are equal iff
their corresponding elements are equal. Cayley defined the zero matrix and
the unit matrix

⎡

⎣
0 0 0
0 0 0
0 0 0

⎤

⎦ ,

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ .

Addition of matrices is defined by
[

a b
c d

]

+
[

e f
g h

]

=
[

a + e b + f
c + g d + h

]

, (31)

and if λ is any real number

λ

[
a b
c d

]

=
[

a b
c d

]

λ =
[

λa λb
λc λd

]

. (32)

In the resulting algebra of matrices, it may be easily shown that addition
is both commutative and associative and that multiplication is associative and
distributive over addition. But multiplication is not commutative, as is shown
by the simple example

[
1 0
0 0

] [
0 1
0 1

]

=
[

0 1
0 0

]

,

[
0 1
0 1

] [
1 0
0 0

]

=
[

0 0
0 0

]

. (33)

This example also demonstrates that the product of two matrices may be zero
without either being zero.

A special class of a linear transformations in two dimensions is that of
rotations of a plane through an angle θ1 in a counterclockwise sense,while the
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coordinate axes remain fixed (active rotation). If the point (x, y) is carried
into position (x′, y′), then

x′ = x cos θ1 − y sin θ1,

y′ = x sin θ1 + y cos θ1. (34)

In matrix notation, this takes the form

[
x′

y′

]

=
[

cos θ1 − sin θ1

sin θ1 cos θ1

] [
x
y

]

. (35)

Planar rotation through the angle θ2 followed by a second rotation through
θ1 is written as

[
x′ ′

y′ ′

]

=
[

cos θ1 − sin θ1

sin θ1 cos θ1

] [
cos θ2 − sin θ2

sin θ2 cos θ2

] [
x
y

]

. (36)

Applying the law of matrix multiplication to this product, we obtain, through
the use of certain trigonometric identities,

[
x′ ′

y′ ′

]

=
[

cos(θ1 + θ2) − sin(θ1 + θ2)
sin(θ1 + θ2) cos(θ1 + θ2)

] [
x
y

]

. (37)

which just states the expected result that two consecutive rotations by angles
θ1 and θ2 are equivalent to a single rotation by the sum of the angles (θ1+θ2).

The set of rotation matrices in (37) constitute a multiplicative group of
matrices known as the orthogonal group of R2, or O(2); any matrix in O(2)
is called orthogonal, defined as having the property

AT A = AAT = I, (38)

where AT is the transpose of A and I is the unit matrix. Explicitly, these
relations imply

n∑

k=1

akraks = δrs, (r, s = 1, ..., n)

n∑

k=1

arkask = δrs, (r, s = 1, ..., n) (39)

While either one of the relations (39) implies (38), Eq. (38) is also equiv-

alent to the property that the vectors A ·
[
x
y

]

, A ·
[
u
v

]

are orthogonal iff
[
x
y

]

and

[
u
v

]

are (hence the adjective “orthogonal” for matrices in O(2)).
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This property, in turn, is equivalent to u′ · v′ = u · v for any two vectors

u =
[
x
y

]

, v =
[
ξ
η

]

, where u′ = Au, v′ = Av, and u · v =
n∑

i=1

uivi is the

scalar product of two vectors.

Equations (38), (39) and the preservation of scalar products, all generalize

to orthogonal matrices in n = 3 and higher dimensions, where the group

of orthogonal matrices is denoted O(n); but (36), (37) imply O(2) is a

commutative group, which does not hold for O(n) with n ≥ 3.

Another interesting outcome of the law of matrix multiplication is the

result [
0 −1
1 0

] [
0 −1
1 0

]

=
[

−1 0
0 −1

]

(40)

If we denote

X =
[

0 −1
1 0

]

,

Eq. (40) can be written as

X2 = −I. (41)

As I plays the role for matrices that 1 plays for numbers, this suggests that

we should think of the matrix X, in some sense, as a square root of minus

one. Note that since X is obtained from the rotation matrix
[

cos θ − sin θ
sin θ cos θ

]

by inserting θ = π/2, the interpretation of (41) is that the symbol a + ib

stands for the matrix Ia + ib, namely

[
a −b
b a

]

= a

[
1 0
0 1

]

+ b

[
0 −1
1 0

]

. (42)

Given two n×n matrices A and B, three types of products find applications

in linear mathematical physics (linear vector spaces):

• The ordinary matrix product (A · B)ik =
n∑

j=1

AijBjk, (i, k = 1, 2, ...n)

• The scalar product A : B =
n∑

i,k=1

AikBik

• The Kronecker (direct) product (A ⊗ B)ik,jl = (A)ij(B)kl
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An example of the Kronecker product is

A =
[

a11 a12

a21 a22

]

, B =
[

b11 b12

b21 b22

]

A ⊗ B =
[

a11B a12B
a21B a22B

]

=

⎡

⎢
⎢
⎣

a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22

⎤

⎥
⎥
⎦ , (43)

where
trace(A ⊗ B) = (traceA)(traceB) (44)

since (using the summation convention for repeated indices) (A ⊗ B)ik,ik =
AiiBkk.

The Kronecker product arises in the following way: Let −→x , −→y be two
vectors in n dimensions, −→x = xi

−→ei ,
−→y = yk

−→ek ; then

−→x ⊗ −→y = xiyk(−→ei ⊗ −→ek).

Explicitly −→x ⊗−→y is a column vector with components (i = 1, ..., n; k=1,...,n)

−→x ⊗ −→y = xiyk = x1y1, ... x1yn... xny1, ... xnyn.

Next apply the linear transformation of the coordinates

−→
x′ = A−→x i.e. x′

i = Aijxj

−→
y′ = B−→y i.e. y′

k = Aklyl

Then, the Kronecker product transforms according to the law

−→
x′ ⊗

−→
y′ = (A ⊗ B)(−→x ⊗ −→y )

It remains to express (A ⊗ B) explicitly in terms of A and B. But since

(
−→
x′ ⊗

−→
y′ ) = x′

iy
′
k = AijxjBklyl = (A ⊗ B)ik,jlxjyl

we have
(A ⊗ B)ik,jl = (A)ij(B)kl.
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• Inverse of a matrix

A linear system of n equations in n unknowns can be written in concise
matrix notation as a matrix product

A
−→
X =

−→
b (45)

where
−→
X is the column vector

⎡

⎢
⎢
⎢
⎣

x1

x2

...
xn

⎤

⎥
⎥
⎥
⎦

and
−→
b is the column vector

⎡

⎢
⎢
⎢
⎣

b1

b2

...
bn

⎤

⎥
⎥
⎥
⎦

.

Its solution, when A is non-singular (|A| �= 0) is written as

−→
X = A−1−→b (46)

Here the matrix A−1 is the inverse of the matrix A, given explicitly by

A−1 =
1

|A|

⎡

⎢
⎢
⎢
⎣

A11 A21 · · · An1

A12 A22 · · · An2

...
... · · ·

...
A1n A2n · · · Ann

⎤

⎥
⎥
⎥
⎦

, (47)

where Ajk is the cofactor of ajk in |A|. We note that in A−1 the cofactor
Ajk occupies the same place as akj (not ajk) does in A.

Thus, for example, for

A =
[

a c
b d

]

, ad �= bc,

A−1 =
1

ad − bc

[
d −c
−b a

]

(48)
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A Hermitian matrix H, is such that its transpose is equal to its complex
conjugate, i.e., HT = H∗. An example is

H =

⎡

⎣
1 2 − i 4i

2 + i 3 −1 − i
−4i −1 + i 4

⎤

⎦ , i =
√

−1. (49)

For real matrices the concept of Hermitian matrix reduces to that of
a symmetric matrix. A skew Hermitian matrix satisfies HT = −H∗,
which for real matrices reduces to skew-symmetry.

A unitary matrix U is such that its inverse equal its conjugate transpose,
i.e., U −1 = (U ∗)T or UU ∗T = U ∗T U . Two examples are:

U2 =
1
2

[
1 + i 1 − i
1 − i 1 + i

]

; U3 =

⎡

⎢
⎣

1 0 0
0 1√

2
i√
2

0 − 1√
2

i√
2

⎤

⎥
⎦ (50)

A real unitary matrix is simply an orthogonal matrix. Note that U3 may
arise in the following way: consider a vector in a spherical coordinate
system

u = erur + eϑuϑ + eϕuϕ.

We can also recast this in the form

u = e0u0 + e−u− + e+u+

where we use complex basis vectors and complex components:

e− = 1√
2
(eϑ − ieϕ) u− = 1√

2
(uϑ + iuϕ)

e0 = er u0 = ur

e+ = 1√
2
(−eϑ − ieϕ) u+ = 1√

2
(−uϑ + iuϕ).

(51)

Then

⎡

⎣
u0

u−

u+

⎤

⎦ =

⎡

⎢
⎣

1 0 0
0 1√

2
i√
2

0 − 1√
2

i√
2

⎤

⎥
⎦

⎡

⎣
ur

uϑ

uϕ

⎤

⎦ (52)

Just as an orthogonal n × n matrix preserves the Rn scalar product
of vectors, u · v, so a unitary n × n matrix can easily be shown to
preserve the scalar product u∗ · v = u∗

jvj , where u, v belong to Cn
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(vector space of complex n-tuples). The set of n × n unitary matrices
is again a multiplicative group, denoted U(n) and called the (n × n)
unitary group.

• Transformation of matrices

There are 4 fundamental relations possible between two given square
matrices:

• Equivalence B = PAQ (H.J.S. Smith, 1861)

• Similarity B = P −1AP (Frobenius, 1878)

• Congruence B = PT AP (Frobenius, 1878)

• Hermitian Congruence B = P ∗T AP (Hermite, 1854)

If P −1 = PT we have orthogonal similarity; if P −1 = P ∗ we have unitary
similarity, and if PT = P ∗ the transformation is real.

• Eigenvalues and eigenvectors

Let A = [ajk] be a given n × n matrix and consider the vector equation

Ax = λx (53)

where λ is a number (scalar) and x is a vector.

It is clear that the zero vector x = 0 is a solution of (53) for any
value of λ. A value of λ for which (53) has a solution x �= 0 is called
an eigenvalue or characteristic value (or latent root) of the matrix A.
The corresponding solutions x �= 0 of (53) are called eigenvectors or
characteristic vectors of A corresponding to that eigenvalue λ. The set
of the eigenvalues is called the spectrum of A. The largest of the absolute
values of the eigenvalues of A is called the spectral radius of A.

The problem of determining the eigenvalues and eigenvectors of a ma-
trix is called an eigenvalue problem. Problems of this type occur in
connection with physical and technical applications.

Let us consider (53). If x is any vector, then the vectors x and Ax will,
in general, be linearly independent. If x is an eigenvector, then x and
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Ax are linearly dependent; corresponding components of x and Ax are
then proportional, the factor of proportionality being the eigenvalue λ.

Any n × n square matrix has at least 1 and at most n distinct (real or
complex) eigenvalues.

To see this we write (53) out:

a11x1 + · · · + a1nxn = λx1,

a21x1 + · · · + a2nxn = λx2,

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
an1x1 + · · · + annxn = λxn.

By transferring the terms on the right-hand side to the left-hand side
we obtain

(a11 − λ)x1 + a12x2 + · · ·+ a1nxn = 0
a21x1 + (a22 − λ)x2 + · · ·+ a2nxn = 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
an1x1 + an2x2 + · · ·+ (ann − λ)xn = 0

In matrix notation,

(A − λI)x = 0.

By Cramer’s theorem, this homogeneous system of linear equations has
a nontrivial solution if and only if the corresponding determinant of the
coefficients is zero:

D(λ) = det(A−λI) =

∣
∣
∣
∣
∣
∣
∣
∣

a11 − λ a12 · · · a1n

a21 a22 − λ · · · a2n

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
an1 an2 · · · ann − λ

∣
∣
∣
∣
∣
∣
∣
∣

= 0. (54)

D(λ) is called the characteristic determinant, and (54) is called the
characteristic equation corresponding to the matrix A. By developing
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D(λ) we obtain a polynomial of nth degree in λ. This is called the
characteristic polynomial corresponding to A.

Once the eigenvalues have been determined, corresponding eigenvectors
can be determined. Since the system is homogeneous, it is clear that if
x is an eigenvector of A, then kx, where k is any constant, not zero, is
also an eigenvector of A corresponding to the same eigenvalue.

Let us, for example, determine the eigenvalues and eigenvectors of the
matrix

A =
[

5 4
1 2

]

.

The characteristic equation

D(λ) =
∣
∣
∣
∣

5 − λ 4
1 2 − λ

∣
∣
∣
∣ = λ2 − 7λ + 6 = 0

has the roots λ1 = 6 and λ2 = 1. For λ = λ1 the system assumes the
form

−x1 + 4x2 = 0

x1 − 4x2 = 0.

Thus x1 = 4x2, and

x1 =
[

4
1

]

is an eigenvector of A corresponding to the eigenvalue λ1. In the same
way we find that an eigenvector of A corresponding to λ2 is

x2 =
[

1
−1

]

,

where x1 and x2 are linearly independent vectors.

• Application to a simple mechanical system

Matrices find many application to geometry, mechanics, electromag-
netic theory, relativistic electrodynamics, quantum mechanics, proba-
bility theory and game theory.

Historically, the concept of vectors and matrices were automatically de-
rived from the application of Newton’s laws to simple physical config-
urations governed by a system of linear ordinary differential equations
with constant coefficients.
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A mechanical system is composed of a linear array of n equal masses

m interconnected by linear springs of equal stiffness μ. In addition,

each mass is connected to a common support force F (t) by means of

a spring of stiffness ν. Taking into account frictional attenuation and

‘next-neighbor interaction’, the displacement of the i-th mass at distance

xi(t) from equilibrium is given by the differential equation

m
d2xi

dt2
= μi(xi+1 − xi) − μi−1(xi − xi−1) − νixi − 2hm

dxi

dt
+ mF (t)

or

..
xi =

μ

m
(xi+1 − 2xi + xi−1) − ν

m
xi − 2h

.
xi + F (t). (55)

In abbreviated notation, (55) takes on the form

..

X + 2h
.

X − [Kn] X = F (t) [In] (56)

where

[Kn] = − ν

m
[In] +

μ

m
[Tn] , (57)

X =

⎡

⎢
⎢
⎢
⎣

x1

x2

...
xn

⎤

⎥
⎥
⎥
⎦

, [Tn] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2 1
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
1 −2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(58)

and [In] is the n-dimensional unit matrix.

To obtain a formal solution of (56) we fall back for a moment on the

one-dimensional equation of motion of a single attenuated harmonic

oscillator driven by a time-dependent force

..

X + 2h
.

X − k

m
X = F (t).
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The solution of this equation is known to be

X(t) =

t∫

0

F (τ)G(t − τ)dτ + X(0)G1(t) +
.

X(0)G(t) (59)

where

G(t) =
eα1t − eα2t

α1 − α2
; G1(t) =

α2e
α1t − α1e

α2t

α2 − α1
;

α1,2 = −h ± σ; σ =
√

h2 + k/m. (60)

Explicitly, for F (t) = qU(t), X(0) = 0,
.

X(0) = 0, with U(t)

standing for the Heaviside unit step-function

X(t) = e−ht

[

a0 cosh(σt) + b0
sinh(σt)

σ

]

U(t) − a0U(t), (61)

a0 = mq/k; b0 = mhq/k; q = force per unit mass

In a similar way, we may write the solution of (56)

X(t) =
{

e−ht

[

cosh(σt) + h
sinh(σt)

σ

]

− In

}

K−1
n qU(t) (62)

where cosh(σt), sinh(σt)
σ , Kn and K−1

n are (n × n) matrices,

q a column n-vector and

σ2 = h2I + Kn. (63)
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Since the eigenvalues of σ2 are254

λs = h2 − ν − 4μ sin2 πs

2(n + 1)
, s = 1, 2, ..., n, (64)

the explicit forms of the matrices participating in (62) are

cosh σt =
n∑

s=1

B(s)
n cosh

(
t
√

λs

)
,

sinh σt

σ
=

n∑

s=1

B(s)
n

sinh
(
t
√

λs

)

√
λs

1
Kn

=
n∑

s=1

1
∧
λs

B(s)
n

∧
λs = −ν − 4μ sin2 πs

2(n + 1)
(65)

{
B(s)

n

}

ij
=

2
n + 1

M
(n)
is M

(n)
sj (no summation over s),

where Mn is the symmetric modal matrix whose columns are the eigen-
vectors of Kn and its (sk)th term is sin

(
πsk
n+1

)

254 The eigenvalues of [TN ] are known to be equal to

{

−4 sin2 πn

2(N + 1)

}

, n = 1, 2, ...N

The corresponding eigenvectors are

[

sin
πn

N + 1
, sin

2πn

N + 1
, ..., sin

πnN

N + 1

]

.

In general, the eigenvalues of the 3-diagonal matrix

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a b
c a b

c a b

. . .
. . .

. . .

c a b

c a

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

are

λn = a + 2
√

bc cos

(
πn

N + 1

)

, n = 1, 2, ..., N.

If a = 1 − 2r, b = c = r, then λn = 1 − 4r sin2
(

πn
2(N+1)

)
.
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Mn =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

sin
π

n + 1
sin

2π

n + 1
· · · sin

nπ

n + 1

sin
2π

n + 1
sin

4π

n + 1
· · · sin

2nπ

n + 1
...

... · · ·
...

sin
nπ

n + 1
sin

2nπ

n + 1
· · · sin

n2π

n + 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, M −1 =
2

n + 1
M.

(66)

Defining

Q(λs) = 1 −
(

cosh t
√

λs + h
sinh t

√
λs√

λs

)

e−ht, s = 1, 2, ..., n

we may present the solution as

X(t) =

⎡

⎣
n∑

s=1

Q(λs)

(−
∧
λs)

B(s)
n

⎤

⎦ qU(t). (67)

• Triangular Matrices

A square n×n matrix L is called lower triangular matrix if all elements
of L above the principal diagonal are zero

L =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

l1,1 0
l2,1 l2,2

l3,1 l3,2
. . .

...
...

. . .
. . .

ln,1 ln,2 . . . ln,n−1 ln,n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Analogously, a matrix of the form

U =

⎡

⎢
⎢
⎢
⎣

u1,1 u1,2 u1,3 · · · u1,n

u2,2 u2,3 · · · u2,n

. . .
. . .

...
0 un,n

⎤

⎥
⎥
⎥
⎦
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is called upper triangular matrix.

If the entries on the main diagonal are 1, the matrix is termed normed (or
unit) upper/lower triangular. Because matrix equations with triangular
matrices are easy to solve they are very important in numerical analysis.

A special type of a normed triangular matrix is one in which all the
off-diagonal entries are zero except for entries in one column. Such a
matrix is called a Gauss matrix, and its inverse is again a Gauss matrix.

Li =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0
. . .

1

li+1,i
. . .

...
. . .

0 ln,i 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

L−1
i =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0
. . .

1

−li+1,i
. . .

...
. . .

0 −ln,i 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Here the off-diagonal entries are replaced by their opposites.

Note that:

– A matrix which is simultaneously upper and lower triangular is
diagonal. The identity matrix is the only matrix which is both
normed upper and lower triangular.

– A matrix which is simultaneously triangular and normal, is also
diagonal. This can be seen by looking at the diagonal entries of
A∗A and AA∗, where A is a normal, triangular matrix.

– The transpose of an upper triangular matrix is a lower triangular
matrix and vice versa. The determinant of a triangular matrix
equals the product of the diagonal entries, and the eigenvalues of
a triangular matrix are the diagonal entries.

– The product of two upper triangular matrices is upper triangular,
so the set of upper triangular matrices forms an algebra.
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– A matrix equation in the form Lx = b is very easy to solve. It
can be written as a system of linear equations

l1,1x1 = b1

l2,1x1 + l2,2x2 = b2

...
...

. . .
...

lm,1x1 + lm,2x2 + · · · + lm,mxm = bm

which can be solved by the following recursive relation

x1 = b1
l1,1

,

x2 = b2−l2,1x1
l2,2

,
...

xm = bm −
∑m−1

i=1 lm,ixi

lm,m
.

A matrix equation Ux = b with an upper triangular matrix U
can be solved in an analogous way.

Let A be an invertible square matrix. An ‘LU decomposition’255 gives
an algorithm to decompose A into normed lower triangular matrix L
and an upper triangular matrix U in the form A = LU , where L and
U are of the same size as A. For a 3 × 3 matrix this becomes

⎡

⎣
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤

⎦ =

⎡

⎣
1 0 0
l21 1 0
l31 l32 1

⎤

⎦

⎡

⎣
u11 u12 u13

0 u22 u23

0 0 u33

⎤

⎦

=

⎡

⎣
u11 u12 u13

l21u11 (l21u12 + u22) (l21u13 + u23)
l31u11 (l31u12 + l32u22) (l31u13 + l32u23 + u33)

⎤

⎦

It yields 9 equations in 9 unknowns {l21, l31, l32, u11, u12, u13, u22, u23, u33}.

255 For further reading, see:
• Press, W.H. et al, Numerical Recipes in C, Cambridge University Press,

1988, 735 pp.

• Lay, D.C., Linear Algebra and its Applications, Addison-Wesley, 2003,
492 pp.

• Horn, R.A. and C.R.Johnson, Matrix Analysis, Cambridge University
Press, 1985.
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In general there are n2 equations in n2 unknowns. To solve the matrix
equation

Ax = LUx = L(Ux) = b,

we first solve Ly = b for y and then solve Ux = y for x.

Other decompositions by means of triangular matrices are:

LDU decomposition
A = LDU , where D is a diagonal matrix, and L, U are normed
triangular matrices.

PLU decomposition
A = PLU , where P is a permutation matrix (i.e., a matrix of zeros
and ones that has exactly one entry in each row and column).

PLUQ decomposition
A = PLUQ, where P and Q are permutation matrices.

It can be shown that:

(1) An invertible matrix admits an LU factorization if and only if all
its principle minors are non-zero. The factorization is unique if we
require that the diagonal of L (or U) consists of ones. The matrix
has a unique LDU factorization under the same conditions.

(2) If the matrix is singular, then an LU factorization may still exist.
In fact, a square matrix of rank k has an LU factorization if the
first k principal minors are non-zero.

(3) Every invertible matrix admits PLU factorization. Finally, every
square matrix A has a PLUQ factorization.

(4) The matrices L and U can be used to calculate the matrix inverse.

Cholesky256 Decomposition (1905)

Every real symmetric and positive definite matrix A (i.e. xT Ax is pos-
itive for every non-zero vector x) can be expressed in the Cholesky
decomposition

A = LLT = UT U,

256 Andre-Louis Cholesky (1875–1918, France). Mathematician. His novel

method of solving simultaneous algebraic linear equations was discovered by him

in 1905, published posthumously in 1924, and became widely known through

A.M. Turing in 1948. Cholesky was born near Bordeaux, France. He gradu-

ated from the Ecole Polytechnique (1897) under Camille Jordan and the Army

Artillery School (1899). He then served in the Army’s Geodetic Section in

Tunisia, Algeria and Crete (1902–1912). He was killed in action in 1918 in

North of France.
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where U is an invertible upper triangular matrix whose diagonal entries

are positive, and L is a lower triangular matrix with positive diagonal

elements. Thus L can be seen as the “square root” of A. To solve

Ax = b, one solves first Ly = b for y, and then LT x = y for x.

Cholesky decomposition is often used to solve the normal equations in

linear least squares problems; they give AT Ax = AT b, in which AT A

is symmetric and positive definite.

If A is Hermitian and positive definite, then we can arrange matters so

that U is the conjugate transpose of L. In this case

A = LL∗.

The Cholesky decomposition always exists and is unique.

To derive A = LLT , we simply equate coefficients on both sides of the

equation:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

a31 a32 · · · a3n

...
...

. . .
...

an1 an2 · · · ann

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

l11 0 · · · 0
l21 l22 · · · 0

l31 l32
... 0

...
...

. . . 0
ln1 ln2 · · · lnn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

l11 l21 · · · ln1

0 l22 · · · ln2

0 0
... ln3

...
...

. . .
...

0 0 · · · lnn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

to obtain:

a11 = l211 → l11 =
√

a11

a21 = l21l11 → l21 = a21/l11
a22 = l221 + l222 → l22 =

√
(a22 − l221)

a32 = l31l21 + l32l22 → l32 = (a32 − l31l21)/l22, etc.

In general, for i = 1, . . . , n and j = i + 1, . . . , n:

lii =
√(

aii −
∑i−1

k=1 l2ik

)

lji =
(
aji −

∑i−1
k=1 ljklik

)
/lii.

Because A is symmetric and positive definite, the expression under the

square root is always positive, and all lij are real.
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• Application to Modern Control Theory

Consider a set of linear differential equations

dx

dt
= Ax + bu, (68)

where x = [x1, x2, . . . , xn]T is a vector of variables describing the state
of a system, dx

dt = [dx1
dt , dx2

dt , . . . , dxn

dt ]T , A is a given n × n matrix, b
is a given constant column n-vector, and u is a scalar control variable
which can be manipulated. If there are m control variables, the set (68)
is replaced by dx

dt = Ax + Bu, where B is a n × m matrix and u is a
m-vector.

It is frequently convenient to seek an approximate solution to a problem
governed by a differential equation by first obtaining a difference equa-
tion which approximately simulates that equation and then satisfying
the new equation at a certain discrete mesh of points by direct alge-
braic methods, with the expectation that the solution of the simulating
problem will indeed simulate the solution of the true problem at these
points. In modern digitally controlled systems, state variables measure-
ments and actuator commands, occur, in any case at discretely spaced
times.

Thus, if (68) is subjected to the prescribed initial conditions x(t0) = x0,
one uses a Taylor expansion to approximate the derivative dx

dt by the

divided difference Δx
h , where h is a conveniently chosen spacing, and

hence rewrite (68) in the form

x(t + h) = x(t) + h[Ax(t) + Bu] + O(h2). (69)

We then denote by y(t) the solution of the difference equation which re-
sults from ignoring the terms of order h2, and require that the resultant
equation holds when t = t0, t1 = t0+h, . . . , tk = t0+kh. With the usual
abbreviation yk = y(tk), the equation determining the approximation
yk then takes the form

yk+1 = Ayk + Buk, k = 0, 1, 2, . . . (70)

where the associated truncation error accordingly is of order h2 when
h is small. Eq. (70) can be treated as a recurrence formula. In gen-
eral, the controlled plant dynamics (68)–(70) may involve explicit time
dependencies in A and B.

Eqs (68) and (70) (as well as non linear and other variants) are ap-
plicable to control problems, which gained importance in the last three
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decades of the 20th century as a discipline for engineers, mathemati-
cians, scientists and other researchers. Examples of control problems
include landing a vehicle on the moon, controlling a power-plant car en-
gine or the macroeconomy of a nation, designing robots, and controlling
the spread of an epidemic.

In our example, the time-discretized uncontrolled physical system is
governed by the homogeneous difference equation yk+1 = Ayk, where
A is an (assumed known) n × n matrix. To control this system (i.e.
to induce it to behave in a predetermined fashion), we introduce into
it a forcing term, or a control, uk. Thus, the controlled system is the
inhomogeneous system yk+1 = Ayk + uk. In realizing this system, it is
assumed that the control can be applied to directly affect each of the
state variables y1,k, y2,k, . . . , yn,k of the system, at each timestep tk. In
most applications, however, this assumption is unrealistic257. Thus, a
more realistic model for the controlled system is

yk+1 = Ayk + Buk, (71)

where B is a (n × m) matrix, and uk is an (m + 1) vector, with m in-
dicating the number of control variables u1(k), u2(k), . . . , um(k), where
m ≤ n.

In control problems, two basic questions need to be answered in deciding
whether or not a control solution exists. These questions may be posed
thus:

(i) Can we transfer the system from any initial state to any other
desired state – or make it follow a desired trajectory – to pre-
specified accuracy and over a given time interval, by application of
a suitable control force? (controllability and stability)

(ii) Knowing the vector of output (sensed, measured) variables for a
finite length of time, can we determine the initial state of the sys-
tem? (observability)

The answers to these questions were conceptualized (1960) by R.E.
Kalman258.

257 Thus for example economists do not know how economic growth and rate of

inflation can be controlled, but can affect them by altering some or all of the

following variables: taxes, the money supply, prime bank lending rate, etc.
258 Rudolf Emil Kalman (b. 1930, USA). Mathematical system theorist and

electrical engineer. Co-invented the Kalman Filter, a mathematical technique

widely used in control systems and avionics to extract a signal from a series

of incomplete and noisy measurements by a succession of optimized updates of
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More precise definitions of controllability and observability are as fol-
lows:

– A system is said to be completely state controllable if it is possible
to transfer the system state from any initial state x(t0) to any other
desired state x(t0) in specified finite time by a control trajectory
u(t).

– A system is said to be completely observable, if every state x(t0)
can be completely identified by measurements of the output z(t)
over a finite time interval.

If a system is not completely observable, this implies that some of its
state variables are shielded from observation. As an example consider
the system governed by the discretized equations

y1(k + 1) = a11y1(k) + a12y2(k) + bu(k)
y2(k + 1) = a22y2(k) (72)

Here

A =
[

a11 a12

0 a22

]

, B =
[

b
0

]

.

Clearly, this system is not completely controllable, since by inspection,
u(k) has no influence on y2(k). Moreover, y2(k) is entirely determined
by the second equation and is given by y2(k) = (a22)ky2(0).

In general, Kalman proved259 that the system (71) is completely con-

feedback gains and controls. Kalman filters were first used during the Apollo

program of NASA.

Kalman was born in Budapest, Hungary. Obtained his M.Sc. degree from

MIT (1954) and his doctorate from Columbia University (1957). Professor of

Stanford University (1964–1971), University of Florida (1971–1992) and ETH,

Zurich (1973–1992).
259 The proof hinges on the fact that the explicit solution of the difference equation

y(k + 1) = Ay(k) + Bu(k) for constant matrices A and B is

y(k) = Any(0) + Wū(k),

where we define a new m × k vector:

ū(k) =

⎡

⎢
⎢
⎢
⎣

u(k − 1)

u(k − 2)
...

u(0)

⎤

⎥
⎥
⎥
⎦

.
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trollable if and only if rank W = n, where

W = [B, AB, A2B, . . . , An−1B] (73)

is a matrix of n rows and mn columns.

Consider the system

y1(k + 1) = ay1(k) + by2(k)
y2(k + 1) = cy1(k) + dy2(k) + u(k),

where ad − bc �= 0. Here A =
[
a b
c d

]

, B =
[
0
1

]

and u(k) is a scalar

control sequence. Now

W = [B, AB] =
[
0 b
1 d

]

has rank 2 iff b �= 0. Thus the system is completely controllable iff b �= 0.

If, however, we consider the control system yk+1 = Ayk + Buk with

A =
[
0 1
0 0

]

, B =
[
1
0

]

, subjected to y(0) = y0 =
[
y01

y02

]

, we have

y(1) = Ay0 + Bu(0) =
[
0 1
0 0

] [
y01

y02

]

+
[
1
0

]

u0 =
[
y02

0

]

+
[
u0

0

]

. So, if

we pick u0 = −y02, then we will have y(1) = 0. Therefore the system is

controllable to zero. But since rank[B, AB] = rank
[
1 0
0 0

]

= 1 < 2, the

system is not completely controllable.

In the previous theory it was assumed that the observed discretized
output of the control system is the same as that of the state of the
system y(k). In practice, however, one may not be able to observe the
state of the system y(k) but rather an output z(k) that is related to y(k)
in a specific manner. The mathematical model of this type of system is
given by

y(k + 1) = Ay(k) + Bu(k); z(k) = Cy(k) (74)

where A is an n×n matrix, B is a n×m matrix, u(k) is an m-dimensional
column vector, and C is r × n matrix. The control u(k) is the input of
the system, and z(k) is its output (Fig. 11).

Roughly speaking, observability means that it is possible to determine
the state of the system y(k) by measuring only the output z(k). Hence
it is useful in solving the problem of reconstructing unmeasurable state
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Fig. 11: Flow diagram of a control system

variables from measurable ones. The input-output system (74) is com-
pletely observable if for any integer k0 ≥ 0, there exists N > k0 such that

the knowledge of u(k) and z(k) for k0 ≤ k ≤ N suffices to determine

y(k0) = y0.

For constant matrices A, B, C, the exact solution of (74) for k ≥ k0 is

z(k) = CAk−k0y0 +
k−1∑

j=k0

CAk−j−1Bu(j). (75)

Since the second term on the r.h.s. of (75) is known, it may be sub-

tracted from the observed value of z(k). Hence, for investigating a

necessary and sufficient condition for complete observability it suffices

to consider the case where u(k) = 0.

It can then be shown that the system (74) is completely observable iff

rank V = n, where

V =

⎡

⎢
⎢
⎢
⎣

C
CA
CA2

...

⎤

⎥
⎥
⎥
⎦

.

Returning to the continuous time model, let the initial system state

be x(0) and the final state be x(tf ). We say that the system (68) is

controllable if it is possible to construct a control signal which, in finite

time interval 0 < t ≤ tf , will transfer the system state from x(0) to

x(tf ).

For simplicity we restrict attention to the case of a single component

(control input) variable. Let us first assume that the eigenvalues of

the matrix A are all distinct, so that the ODE system (68) can be
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transformed into the canonical state variable form
⎡

⎢
⎣

ż1

...
żn

⎤

⎥
⎦ =

⎡

⎢
⎣

λ1 · · · 0
. . .

0 · · · λn

⎤

⎥
⎦

⎡

⎢
⎣

z1

...
zn

⎤

⎥
⎦ +

⎡

⎢
⎣

b̃1

...

b̃n

⎤

⎥
⎦ u.

This equation can be written in component form as

żi = λizi + b̃iu, i = 1, 2, . . . , n,

which has the solution

zi(t) = eλitzi(0) + eλit

∫ t

0

e−λiτ b̃iu(τ)dτ.

The system described by Eq. (68) is then completely controllable if the
state variable zi can be transferred from any initial state zi(0) to any
final state zi(tf ) in a finite time tf . In other words, the system is
controllable if it is possible to construct a control signal u(t) such that
the following equation is satisfied

zi(tf ) − eλitf zi(0)
eλitf

=
∫ tf

0

e−λiτ b̃iu(τ)dτ.

This inverse problem is easily solvable. In fact there are an infinity of
functions u(t) on the interval (0, tf ), which solve it, provided b̃i �= 0,
because otherwise the link between input and the corresponding state
variable gets broken and hence it is no longer possible to control that
particular state variable.

It therefore follows that the necessary condition of complete controlla-
bility is simply that the vector b̃ should not have any zero elements. If
any element of this vector is zero, then the corresponding state variable
is not controllable. It can be further shown that the condition stated
here is in fact both necessary and sufficient.

The result just obtained can be extended to the case where the control
variable u is an m-dimensional vector. For the system described by

ż = Λz + B̃u

where Λ = diag(λ1, λ2, . . . , λn), and

B̃ =

⎡

⎢
⎢
⎢
⎣

b̃11 b̃12 . . . b̃1m

b̃21 b̃22 . . . b̃2m

...

b̃n1 b̃n2 . . . b̃nm

⎤

⎥
⎥
⎥
⎦
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the necessary and sufficient condition for controllability is that the rank
of the matrix B̃ must be n0. It is observed from the above equation
that otherwise, it is not possible to influence (all) state variables by the
control forces and hence the system is not fully controllable.

Consider the state model of an n-th order single-input, single-output
linear time-invariant system,

ẋ = Ax + bu

y = cT x

The state equation may be transformed to the canonical form by the lin-
ear transformation x = Mz. The resulting state and output equations
are

ż = Λz + b̃u (76)

y = c̃T z

= c̃1z1 + c̃2z2 + · · · + c̃nzn

(77)

Since diagonalization decouples the state variables, no z-component now
contains any information regarding any other component, i.e., each state
must be independently observable. It therefore follows that for a state
to be observed through the output y, its corresponding coefficient in
Eq. (77) should be nonzero. If any particular c̃i is zero, the correspond-
ing zi can have any value without its effect showing up in the output
y. Thus the necessary (and also sufficient) condition for complete state
observability is that none of the c̃i’s (i.e., none of the elements of cT M)
should be zero.

The result may be extended to the case of multi-input, multi-output
systems where the output vector, after canonical transformation, is given
by ⎡

⎢
⎢
⎢
⎣

y1

y2

...
yp

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

c̃11 c̃12 · · · c̃1n

c̃21 c̃22 · · · c̃2n

...
c̃p1 c̃p2 · · · c̃pn

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

z1

z2

...
zn

⎤

⎥
⎥
⎥
⎦

or

y = C̃z.

The necessary condition for complete observability is that none of the
columns of the matrix C̃ be zero.
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Kalman’s test of observability is as follows. A general n-th order multi-
input, multi-output linear time-invariant system

ẋ = Ax + Bu

y = Cx

is completely observable if and only if the rank of the composite matrix

Q0 = [ CT
... AT CT

... . . . (AT )n−1CT ] (78)

is n.

Example Let us examine the observability of the system given be-
low

⎡

⎣
ẋ1

ẋ2

ẋ3

⎤

⎦ =

⎡

⎣
0 1 0
0 0 1
0 −2 −3

⎤

⎦

⎡

⎣
x1

x2

x3

⎤

⎦ +

⎡

⎣
0
0
1

⎤

⎦ u = Ax + bu (79)

y =
[
3 4 1

]
⎡

⎣
x1

x2

x3

⎤

⎦ = cT x (80)

The characteristic equation is

A − λI =

∣
∣
∣
∣
∣
∣

−λ 1 0
0 −λ 1
0 −2 −3 − λ

∣
∣
∣
∣
∣
∣
= 0

or
λ(λ + 1)(λ + 2) = 0.

Therefore the eigenvalues of matrix A are

λ1 = 0, λ2 = −1, λ3 = −2.

The diagonalized matrix is then

M =

⎡

⎣
1 1 1
0 −1 −2
0 1 4

⎤

⎦

Under the linear transformation x = Mz, the output is given by

y = cT Mz =
[
3 0 −1

]
⎡

⎣
z1

z2

z3

⎤

⎦
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It is found that the system is not completely observable, since the state
variable z2 is hidden from observation.

Let us apply the Kalman’s test to the same system. From Eqs. (79) and
(80)

AT (cT )T = AT c =

⎡

⎣
0 0 0
1 0 −2
0 1 −3

⎤

⎦

⎡

⎣
3
4
1

⎤

⎦ =

⎡

⎣
0
1
1

⎤

⎦ ;

(AT )2(cT )T = (AT )2c =

⎡

⎣
0 0 0
1 0 −2
0 1 −3

⎤

⎦

⎡

⎣
0
1
1

⎤

⎦ =

⎡

⎣
0

−2
−2

⎤

⎦ .

Therefore the composite matrix in Eq. (78) is given by

Q0 = [ c
... AT c

... (AT )2 ] =

⎡

⎣
3 0 0
4 1 −2
1 1 −2

⎤

⎦ .

Since
∣
∣
∣
∣

3 0
4 1

∣
∣
∣
∣ �= 0 and

∣
∣
∣
∣
∣
∣

3 0 0
4 1 −2
1 1 −2

∣
∣
∣
∣
∣
∣
= 0

the rank of the matrix Q0 is r = 2, while n = 3. Hence one of the state
variables is unobservable.

The concepts of controllability and observability found important appli-
cations in signal processing and control theory260, where it is sometimes
desired to “track” (i.e. maintain an estimate of) a time-varying sig-
nal in the presence of noise. If the signal is known to be characterized
by some number of parameters that vary only slowly, then the formal-
ism of Kalman filtering tells how the incoming, raw measurements of
the signal should be processed to produce best parameter estimate as
a function of time. For example, if the signal is a frequency-modulated

260 For further reading, see:

• Kalman, R.E., A New Approach to Linear Filtering and Prediction Prob-
lems, Transaction of the ASME 82, 35–45, 1960.

• LaSalle, J.P., The Stability and Control of Discrete Processes, Springer-
Verlag, New York, 1986.

• Barnett, S. and R.G. Cameron, Introduction to Mathematical Control
Theory, Oxford University Press, 1985.

• Franklin, G.F. et al, Feedback Control of Dynamic Systems, Prentice-

Hall, New York, 2001.
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sine wave, then the slowly varying parameter might be the instanta-

neous frequency. The Kalman filter for this case is called a phase-locked
loop and is implemented in the circuitry of good radio receivers.

In control theory a system is said to be controllable if it is possible to

manipulate the control variables in such a way that the system starts

out from any initial state and finishes up in any desired state — for

example, transferring a spacecraft from an orbit round the earth to a

specified orbit round the Moon, or to a ‘soft landing’ on the Moon, by

suitably controlling the rocket motors.

Indeed, when a deep space probe is launched, corrections may be nec-

essary to place the probe on a precisely precalculated trajectory. Ra-

dio telemetry provides a stream of discretized-time observed state vec-

tors, x1, x2, . . . , xk, giving information at different times about how the

probe’s position compares with its planned trajectory.

Similarly, space shuttle261 control systems are absolutely critical for

flight. Because the shuttle is an unstable air-frame, it requires constant

computer monitoring during atmospheric flight. The flight control sys-

tem sends a stream of commands to aerodynamic control surfaces and

many small thruster jets.

Modern control theory involves besides input and output variables also

feedback and feedforward loops. These feed information on the sensed

and desired trajectories into the input. Adaptive control schemes es-

timate unknown parameters such as inertia or weights of a neural net

estimator of unknown dynamics. These parameters are then involved

alongside the normal state vector. A control scheme must guarantee

suitable levels of stability and controllability in the presence of nonlin-

earities, delays and noise.

261 The Columbia (12 stories high and weighing 75 tons, launched in April 1981)

was the first U.S. space shuttle, a triumph of control systems engineering design,

involving many branches of engineering — aeronautical, chemical, electrical,

hydraulic, and mechanical.
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1849–1857 CE Antonio Santi Guiseppe Meucci (1808–1889, Italy and
USA). Made pioneering experiments of transmission of the human voice by
electricity. Designed and constructed a prototype of an electromagnetic tele-
phone many years before Alexander Graham Bell (1876). However, the va-
garies of history and the patent office have determined that Meucci will be
recognized only in Italy as the true inventor of the telephone.

Meucci was born in Florence, Italy. During 1821–1827 he studied chem-
istry and mechanics in the ‘Accademia di Belle Arti’. In 1833–1834 he was
involved in the conspiracies for the liberation of Italy, being jailed with other
patriots. In 1835 he fled the violence of the civil insurrections which raged
throughout Italy and reached Havana, Cuba and stayed there as chief engi-
neer of the local Opera House. In 1850, the Meucci’s moved to Clifton (Staten
Island) NY where he begun to conduct experiments on telephony communi-
cations over distances of a few km.

Today in Bensonhurst, New York, there is an iron-fenced triangle of land
with fresh sod, some trees, and a small monument that reads: “ANTO-
NIO MEUCCI, 1808–1889, FATHER OF THE TELEPHONE. FIRST US
PATENT CAVEAT 3335”. He was also memorialized in an Italian postal
stamp.

1849–1877 CE Emil Heinrich Du Bois-Reymond262 (1818–1896, Ger-
many). Physiologist. Showed the existence of electrical currents in nerves,
correctly arguing that it would be possible to transmit nerve impulses chemi-
cally. His experimental techniques proved the basis for almost all future work
on electrophysiology.

He was born and educated in Berlin. He studied a wide range of subjects
for two years before he finally chose a medical training. Graduating in 1843, he
plunged into research on animal electricity and especially on electric fishes. By
1849 he developed a delicate instrument for measuring nerve currents which
enabled him to detect an electric current in ordinary muscle tissues, notably
contracting muscles. Du Bois-Reymond denounced the vitalistic doctrines
that were in vague among German scientists and denied that nature contained
mystical life forces independent of matter.

He became a professor of physiology at the Berlin university (1858) and
was appointed the head of the new Physiological Institute which first opened
in Berlin (1877).

262 His brothel Paul (1831–1889) was a mathematician, who made contributions to

the theory of functions. Their father was a Swiss teacher who settled in Berlin.

The family was French-speaking.
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1850–1866 CE James Young (1811–1883, Scotland). Industrial chemist.
Started commercial production of paraffin from crude oil made from heated
coal. The crude oil was distilled into its components (or fractions), in con-
tainers heated by steam. Thus Young established the basis for oil refining263.

Young was born in Glasgow and studied chemistry under Thomas Gra-
ham at University College, London. He worked as a chemist in Lancashire
(1839) and after 1850 directed his efforts to the establishment of the Scottish
mineral-oil industry — for the production of lubricating oils, illuminating oils
and paraffin wax.

1850 CE Advent of large sanitary municipal improvement in Western Eu-
rope. Before this date the practice of bathing was not a general one, and was
entirely confined to river and sea baths.

263 Traditionally, oil was brought to the surface in buckets by workmen who lowered

themselves into hand-dug wells.



1850 CE 2117

Science in the Age of Nationalism264 (1850–1890)

The Germans and Italians were the pioneers of modern science, reaching
their first peak achievement with the works of Kepler and Galileo respec-
tively in the early decades of the 17th century. But they did not sustain
this effort, and almost 200 years were to elapse before they produced men of
science who were at all comparable.

The great geographical discoveries opened up opportunities which were
the more effectively exploited by England, France and Holland, and these
lands became the main centers of European endeavor. In science, as in other
fields, England and France retained their leadership right down to the mid
or the late 19th century [their activities were somewhat complementary: the
French were inclined toward theoretical interpretation of nature, while the
British leaned more to empirical investigation]. In the early decades of the
19th century French scholars were the leaders in the world of science, but
during 1850–1870, the British rose to the forefront once more.

Meanwhile, the Germans and the Italians adhered to traditions which had
been laid down in the 16th century. Politically they remained divided up into
a number of petty principalities (in contrast to the unified states of Britain
and France), whilst in science they retained an active interest, but produced
little that was novel during most of the 18th century.

It is noteworthy that, of the 90 or so scientific journals founded before
1815, 53 were German, 8 were Italian, 15 were French and 11 were English,
whilst America, Sweden and Holland, had one each. For such a number of
scientific journals to be founded, there must have been a considerable interest
in science amongst the Italians and Germans, but it seems that this interest
was not active enough to produce markedly novel advances.

In general, the second half of the 19th century is marked with an overrid-
ing interest and deep belief in science, to a degree that a veritable ‘cult of
science’ developed. Science inspired a positive alternative to the seemingly
futile Idealism and Romanticism of the early 19th century.

Scientific research, formerly the domain of a few scientists and gentleman
scholars, now became the concern of large numbers of people, especially as the
application of science to industry gave an incentive to new inventions. “Pure”

264 For further reading, see:

• Rich, N., The Age of Nationalism and Reform (1850–1890), W.W. Norton
and Company: New York, 1977, 270 pp.
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science continued to be of fundamental importance, but “applied” science —
the fusion of science and technology — now took precedence in the minds

of most people. A virtually endless series of scientific inventions seemed to
provide tangible evidence of man’s ability to unlock the secrets of nature.

By the end of the 19th century, Germany has outstripped both England

and France and held the leading position in the physical sciences and math-
ematics, which climaxed in the ‘second scientific revolution’ of Planck and

Einstein during 1900–1905.

1850–1857 CE Rudolf Julius Emanuel Clausius (1822–1888, Ger-
many). Theoretical physicist who laid the foundations to thermodynamics
and the kinetic theory of gases.

Based on the theoretical results of James Joule (1818–1889, England,
1847) and the former theory of heat engines of Sadi Carnot (1796–1832,
France, 1824), Clausius stated (1850–1865) the first and second laws of
thermodynamic265and introduced the concept of entropy . He formulated
(1854–1857) the kinetic theory of gases, defining the concept of mean free-
path. He assumed different molecular velocities, but the statistical velocity
distribution function is due to Maxwell (1859). In 1870 Clausius applied
to the theory of gases a theorem in mechanics due to the astronomer and
mathematician Yvon Villarceau (1813–1883, France), known today as the
scalar virial theorem; the virial is the integral of the moments of the molecular
forces, partaking in the equation of conservation of mechanical energy. This
theorem leads directly to the Van der Waals equation of state.

The scalar virial theorem: although not as important as the conservation
of angular momentum under central force, on the conservation of energy under
a conservative force, assumes considerable importance in the kinetic theory of
gases, and in its applications to galactic dynamics266.

265 In a paper of 1865 he stated these in the following form:

1. The energy of the universe is constant.

2. The entropy of the universe tends to a maximum.

266 Consider a general system of mass points with position vectors ri and applied

forces F i (including any forces of constraint). Starting with the equation of
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motion of a single particle

d

dt
(miV i) = ṗi = F i,

we derive from it the vector identity

miV
2
i + F i · ri ≡ d

dt
(miV i · ri).

Summing over all particles and time-averaging this equation over a time interval

τ , we obtain

2T +
∑

i

F i · ri =
1

τ
[G(τ) − G(0)],

where

G =
∑

i

miV i · ri,

T =
1

τ

∫ τ

0

∑

i

(
1

2
miV

2
i

)

dτ.

If the motion is periodic, or if coordinates and velocities of all particles remain

finite (such that there is an upper bound for G), or if the forces are derived

from a potential — then the entity

1

τ
[G(τ) − G(0)]

vanishes or can be made as small as desired. The ensuing result

2T +
∑

i

F i · ri = 0,

is known as the virial theorem.

The quantity − 1
2

∑
(F i · ri) is called the virial of the system. For a sin-

gle particle moving under a conservative central force the theorem reduces to

T = 1
2

r∂V (r)
∂r

, where F = −er
∂V
∂r

. The virial theorem differs in character from

mechanical conservation laws in being statistical in nature, i.e., it is concerned

with time averages of various mechanical quantities.
In general, F i can be separated into external (f i) and internal (f ij) forces.

Then,

2T = −

⎡

⎢
⎢
⎣

∑

all
particles

f i · ri +
∑

all pairs
of particles

f ij · rij

⎤

⎥
⎥
⎦, rij = ri − rj .

One of the most interesting applications of the virial theorem is the derivation

of the equation of state of a gas, which describes the relations between the

macroscopic quantities such as pressure, volume, and temperature. Clausius
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Clausius was born at Köslin, in Pomerania. He studied at Stettin, Berlin
and Halle. In 1855 he was appointed professor of physics at Zürich. He then
held appointments at the universities of Würzburg (1867), and Bonn (1869).

During the Franco-German war he was at the head of an ambulance corps
composed of Bonn students.

1850–1871 CE Adhemar-Jean-Claude Barre de Saint-Venant
(1797–1886, France). Applied mathematician. Contributed to mechanics,
elasticity, hydrostatics and hydrodynamics.

Derived solutions for the torsion of noncircular cylinders (1850). Extended
Navier’s work on the bending of beams (1864). Derived the equations for non-
steady flow in open channels. Also developed a vector calculus similar to that
of Grassmann. Stated (1855) the Saint-Venant principle267.

(1870) has shown that for N gas molecules enclosed in a volume V at absolute

temperature T and pressure p, the virial theorem leads to the result

pV = NkT +
1

3

⎛

⎜
⎜
⎝

∑

all
pairs

f ij · rij

⎞

⎟
⎟
⎠

average

.

For an ideal gas, the intermolecular forces are considered zero, and this result

reduces to the classical result pV = NkT (k = Boltzmann’s constant). In all

other cases, it is a good approximation except when the molecules are closely

packed or the temperatures are very low. Clausius also generalized Clapeyron’s

equation expressing the relation between the pressure and temperature at which

two phases of a substance are in equilibrium (Clausius-Clapeyron equation).
267 Saint-Venant principle (as formulated by Boussinesq (1889)): In elastostatics,

if the boundary tractions on a part S1 of the boundary S are replaced by a

statically equivalent traction distribution, the effect on the stress distribution in

the body are negligible at points where distance from S1 is large compared to

the maximum distance between points of S1. The principle has been widely ac-

cepted on empirical grounds, and a precisely stated version of it was proved by

S. Sternberg (1954). The principle is of great importance in applied elastic-

ity, where it is frequently invoked to justify solutions in long slender structural

members where the end traction boundary conditions are satisfied only in an

average sense, so that the correct stress resultant acts on the ends. In such

solutions, the actual stress distribution near the ends may differ considerably

from the calculated stress distribution. The exact solutions in such cases require

elaborate calculations.

The principle is not limited to linear elastic solid or infinitesimal displacements.
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Saint-Venant was a student of Liouville (1839–1840). He taught mathe-
matics at the Ecole de Ponts et Chausses when he succeeded Coriolis.

1850–1871 CE Six European wars established a new balance of power, out
of which came the unifications of Italy and Germany and the unprecedented
economic growth and scientific development of Europe.

The Crimean War (1854–1856) arose out the conflict between Russia and
the Western powers over economical interests in the Near East, caused by
the slow disintegration of Turkish rule in the Balkans. The defeat of Russia
curtailed its influence over the area adjacent to the Ottoman Empire. More
than 500,000 people lost their lives in the war. The cost of the war (both
sides) have been about $310 million268 (1903).

In the war of 1859 Austria lost to France and Italian forces, and was
consequently driven out of Lombardy. In 1860, Sicily and Southern Italy
were liberated from French rule by a small expedition force of ca 1000 men
under the leadership of Giuseppe Garibaldi, who defeated an army twenty
time its size. The kingdom of Italy269 was proclaimed in 1861.

Although no precise proof is available, Goodier (1937) has argued on the basis

of energy as follows: Let p be the order of magnitude of the surface forces, and

a the order of magnitude of the linear dimension representative of the surface

ΔS upon which the forces act. Then the components of the stress tensor will be

of order (pa2), the components of the strain tensor of order p
E

, the components

of the displacement of order pa
E

, the total work done by the applied forces of

order p2a3

E
and the energy density is of order p2

E
. The work done by the ap-

plied forces is just sufficient to affect a volume whose magnitude is of order a3;

outside this volume there can be no deformation and one can therefore assume

that the region affected will be the immediate vicinity of the surface ΔS upon

which the surface forces act.

The concept of Saint-Venant principle does not apply to problems in elasto-

dynamics, where the governing equations are hyperbolic, and we know that

any fine structure of the surface pressure distribution is propagated all the way

to infinity, or at least to the far-field [e.g. the field of a line load traveling at

supersonic speeds over the free surface].
268 On the night of November 14, 1854 a violent storm in the Black Sea wrecked

the entire British supply fleet; nearly 30 vessels with their cargo were sunk.

Nobody bothered to read the barometer !
269 The independence and unification of Italy was conducted under the joint efforts

of Giuseppe Mazzini (1805–1872), Camillo di Cavour (1810–1861) and

Giuseppe Garibaldi (1807–1882). These men were, respectively, the ‘soul ’,

the ‘brain’ and the ‘sword ’ of the independence movement.
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In the Austro-Prussian war of 1866 (battle of Sadowa270), the Austrians
were defeated and surrendered Venice to Italy.

Previously, in 1863, Denmark had suffered a crushing defeat at the hands
of Prussia and Austria and had to surrender Schleswig and Holstein to the
victors.

Finally in 1870, the battle of Sedan decided the outcome of the Franco-
German war271.

Thus, in 1871, Germany emerged as a great power — both militarily and
culturally. From 1871 to 1945, the influence of that belatedly unified nation
made itself felt in every major international crisis and in the history of every
country. Compared to German unification, the unification of Italy seems of
minor importance today, though it did not appear so at the time. Of much
greater consequence was the tragic fate of the Second French Empire. Its
defeat at the hand of Prussia sowed some of the seeds that brought forth the
great wars of the 20th century. At the time however, it seemed as though the
Continent had at long last found the stability that statesmen before 1850 had
tried so hard to achieve. The future was to show the precariousness of the
new order in Europe.

1850–1881 CE Ferdinand Julius Cohn (1828–1898, Germany). Bota-
nist and bacteriologist. Defined and named the term bacterium and founded
the study of the bacteriology. First to treat bacteria systematically by dividing
them into genera and species (1872). Assisted Robert Koch in his work
on anthrax (1876). Helped disprove the notion of spontaneous generation.
Showed that plant and animal protoplasm are one and the same substance.

270 The battle of Sadowa. Austria was deeply divided and poorly prepared. She

was further handicapped by having to fight on two fronts. The Prussians were

in excellent military form and led by a master-strategist, Helmut von Moltke.
271 The main cause of the Franco-Prussian War of 1870–1871 was French resentment

of the growing power of Prussia. Relations between the two countries grew worse

when Prussia appeared to support the claim of a German prince to the throne

of Spain. The final spark occurred when Otto von Bismarck (1815–1898),

chief minister of Prussia, made public a telegram from King William which he

had altered to appear insulting to the French. Bismarck hoped war with France

would unite Germany behind Prussia. France at once declared war, although

not ready to fight. In six weeks its main army, with the Emperor Napoleon

III, had surrendered, and in January 1871 Paris capitulated after 132-day siege.

Under the Treaty of Frankfurt, which ended the war in 1871, France gave Prussia

the provinces of Alsace and Lorraine, and paid an indemnity of 5000 million

Franc.
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Cohn was born in Breslau (then Wroclaw, Poland) to Jewish parents. He
was educated at Breslau and Berlin272 (PhD: 1847, at the age of 19), and
became an associate professor at Breslau already at the age of 31. At an early
age he exhibited astonishing ability with the microscope, which he did much
to improve. Although his early researches were especially on algae, he soon
widened the scope of his interest to fungi and bacteria and other lower life-
forms. He had also a clear perception of the important bearings of mycology
and bacteriology in infective diseases. Cohn founded the first institute of plant
physiology (1866), the world’s first institute specializing in plant physiology.

Bacterial studies outside medicine remained superficial until Cohn. He
distinguished four groups on the basis of external form and specific fermentive
activity. He recognized that bacteria take nitrogen from simple ammonia
compounds, elucidated their life-cycles, identified spores and suggested that
bacteria were motile cells devoid of walls. Cohn is regarded as the father
of bacteriology in that he was the first to account it a separate science and
define bacteria. He observed sexual formation of spores in the fungal genera
Sphaeroplea Pilobolus.

1851 CE John Gorrie (1803–1855, USA). Physician and inventor. In-
vented the first machine for mechanical refrigeration, based on principles
of present-day mechanical refrigerators: a steam-engine driven piston com-
pressed the air in a cylinder. When the piston withdrew, the air expanded,
absorbing heat from a bath of brine in which the cylinder was immersed.

Gorrie spent most of his life practicing medicine in Apalachicola, Fla.
There he investigated the artificial cooling of sickrooms and hospitals. In
1851, he patented an ice-making machine but he lacked funds to manufacture
it.

1851 CE Heinrich (Henri) Daniel Ruhmkorff (1803–1877, Germany
and France). Mechanic, manufacturer of instruments of physics and electrical
researcher. Invented (1851) the Ruhmkorff induction-coil which could produce

272 He went to the University of Breslau (1842) in order to study philosophy and

soon became interested in botany, but because he was a Jew he was unable to

obtain a degree there. This prompted his transfer to the University of Berlin.

Upon his return to Breslau (1849) he had to wait ten years before he was made

associate professor and another thirteen years to become a full (ordinary) pro-

fessor of botany — the first non-assimilated Jew in Prussia to obtain this rank.

Indeed, Robert Remak (1815–1865) was not allowed to hold a senior teach-

ing position in any German university. Julius Sachs (1832–1897), however,

was appointed full professor at Breslau already in 1868, but he had been fully

assimilated and relinquished his religion long before.
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sparks more than 30 cm in length. He thus improved on the two-winding
induction spark-coils of Callan (1836), on the basis of the research conducted
by Mason and Breguet (1842).

The Ruhmkorff coils, which produced high-voltage current within a second
armature winding, were used for operation of Geissler and Crooks tubes, in
the first radio transmitters, for detonation devices as well as in other primitive
electrical and electronic devices.

The induction-coil is built as follows: upon an iron core is wound a primary
coil consisting of a relatively small number of turns of thick wire, and over
this (generally in several layers insulated from one another) a secondary coil
consisting of a large number of turns of thin wire. The necessary variations
of the magnetic field of the primary current (supplied by a voltage source
in its circuit) are produced by making and breaking this current at a rapid
speed. A condenser is usually connected in parallel with the make-and-break.
It consists of a large number of sheets of tin-foil insulated from each other by
means of paraffined paper or sheets of ebonite. Alternate tin-foil sheets are
connected together so that the capacity of the whole is very great.

The action of the induction-coil is as follows: When the primary circuit
is “made”, the magnetic flux through the coil increases. When the primary
circuit is suddenly “broken”, the magnetic field disappears rapidly and the
corresponding field energy, previously stored up chiefly in the air, becomes
available. It cannot give rise to a current in the primary coil, for this is now
open. The whole of the field energy therefore goes to produce current in the
secondary circuit, provided that this is closed. If the secondary circuit is also
open, then in consequence of the rapid decrease of magnetic induction and
the large number of turns in the secondary coil, a high voltage is produced
between the secondary terminals. This tends to cause a spark or arc to pass,
with consequent of closing of the secondary circuit and consumption of the
greater part of the field energy.

The object of the condenser is to reduce the voltage between the contacts
of the make-and-break at the moment of breaking the primary circuit, thus
preventing sparking and arcing at this point. Since it is connected in parallel
with the make-and-break, the condenser acts as a shunt. Hence, the introduc-
tion of the condenser not only protects the contacts of the make-and-break
against damage by arcing, but also increases the efficiency of the induction
coil.

Ruhmkorff was born in Hannover, Germany. After apprenticeship to a
German mechanic, he worked in England with Joseph Brahmah, inventor
of the hydraulic press. In 1855 he opened his own shop in Paris, which be-
came widely known for the production of high-quality electrical apparatus.
The induction-coil awarded him (1858) a 50,000-franc prize by the Emperor
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Napoleon III as the most important discovery in the application of electricity.
Ruhmkorff coil was popular for energizing discharge tubes and in particular
for generating X-rays (discovered in 1895 by Roentgen). His doubly wound
induction-coil later evolved into the alternating-current transformer.

1851–1859 CE Georg Friedrich Bernhard Riemann (1826–1866, Ger-
many). A profound mathematician who greatly influenced the mathematics
of the 20th century. His ideas concerning geometry of space had a major ef-
fect on the development of modern mathematical physics and provided the
concepts and methods used later in General Relativity Theory. He was an
original thinker, and a host of methods, theorems and concepts are named
after him [Riemann surface; Riemann integral; Riemann hypothesis etc.]. Ob-
tained his doctoral degree in Göttingen (1851) under Gauss. His work can
be classified according to the following topics:

(1) Theory of functions of complex variable, based upon the Cauchy-Riemann
relations. Introduced geometrical representation of multi-valued func-
tions (Riemann surfaces), rendering geometric interpretation to the hid-
den analytical properties of functions. In this he paved the road to mod-
ern topology.

Riemann is considered, with Cauchy and Weierstrass, as one of the
three founders of complex function theory. The method of steepest descent
(also known as the saddle-point method) occurs in a posthumously-published
fragment of Riemann (Gesammelte Werke, 1892). It was rediscovered in 1910
by Peter Debye (1884–1966, Holland).

(2) Theory of functions of real variable (1854). Developed the concept of
the Riemann integral. Generalized Dirichlet’s criteria for the validity of
Fourier expansions. This inspired Cantor’s theory of sets and then led to
the concept of the Lebesgue integral.

(3) Differential equations. Aimed to characterize all linear differential equa-
tions whose solutions are expressible in terms of Gauss’ hypergeometric
function, and to achieve systematic classification of all linear differential
equations with rational coefficients according to the number and nature
of their singularities.

(4) Differential geometry (1854). Followed up the work of his teacher Gauss
on curved surfaces and took the final step in a far-reaching generalization
of differential geometry.

While Gauss’ theory is a direct descendant of cartography and geodesy,
Riemann, in one of the most prolific contributions ever made to geom-
etry, passed immediately to the general quadratic differential form in n
variables, with variable coefficients. He introduced space as a topological
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manifold in an arbitrary number of dimensions. A metric was defined in
such a manifold by means of a quadratic differential form:

ds2 =
n∑

i,j=1

gijdxidxj ,

where the gij ’s are suitable functions of (x1, x2, . . . , xn); different sys-
tems of gij ’s define different Riemannian geometries on the manifold un-
der discussion.

He introduced the Riemannian curvature tensor, which reduces to the
Gaussian curvature when n = 2, and whose vanishing he showed to be nec-
essary and sufficient for the given quadratic metric to be equivalent (isomet-
ric) to the Euclidean metric. From this point of view, the curvature tensor
measures the deviation of the Riemannian geometry from Euclidean geome-
try. The physical significance of geodesics appears in its simplest form as a
consequence of Hamilton’s principle in the calculus of variations.

In a general Riemannian space, gij is a symmetric non-singular
(det gij �= 0) covariant second-rank tensor field. The dependence of gij on
the coordinates xj is arbitrary except that its partial derivatives will be as-
sumed to exist and be continuous to any required order.

A special case of a Riemann space in which a global Cartesian system
can be set up is known as a Euclidean space. This condition imposes certain
restrictions on the metric tensor gij , namely that the independent compo-
nents of the Riemann-Christoffel tensor Rr

·ijk vanish everywhere.273There

are thus n(n−1)
2 conditions on the 1

2n(n + 1) independent metric coefficients
of an Euclidean space, in any coordinate system.

The Cartesian coordinate system has the advantage that the distance ds
between two neighboring points x and x + dx is given by the Pythagorean
theorem ds2 = dxidxi and therefore gij = δij . If (x′, x′ + dx′) are the
coordinate of the same point in another Cartesian frame, then ds2 = dxidxi

and it follows that ds2 is invariant w.r.t. a transformation of the coordinates
from one rectangular frame to another. However, in an Euclidean space it is
often convenient to employ a coordinate frame which is not Cartesian, and
this is achieved by a curvilinear transformation of the coordinates. Thus,
curvilinear orthogonal coordinate frames are generated with metric tensors
gij represented by diagonal matrices. (If the curvilinear coordinates are non-
orthogonal, off-diagonal elements of gij will appear.)

273 Rr
·ijk and glm together obey, identically, certain algebraic symmetry conditions

and differential equations (the latter are the Bianchi identities). This reduces

the number of functional conditions on gij to 1
2
n(n − 1).
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In another class of Riemannian spaces, no admissible global transformation
exists which reduces ds2 = gijdxidxi to the Pythagorean form ds2 = dyidyi,
i.e. no global Cartesian coordinate system can be found. These spaces are
non-Euclidean, e.g. the 2-dimensional surface of a sphere. In this example we
can always find a local Cartesian frame in which ds2 = du2 + dv2 at a single
point or even along a local curve, but never in any local two dimensional
region, let alone globally (in contradistinction, the surfaces of the right circular
cylinder and cone are locally, though not globally, Euclidean.) Clearly, one
may approximate any sufficiently small region by a flat (Euclidean) space
provided that the region taken is small enough.

Consider a 2-dimensional Riemann surface with metric equation
ds2 = g11dv2 + 2g12dvdw + g22dw2 where (v, w) are some Gaussian
coordinates and g11 > 0. The coefficients g11, g12, and g22 are func-
tions of position and contain all the information about the geometry of
the surface. A point P on the surface is selected and local coordinates
(x, y) are found for which the metric is locally Euclidean at P . A general
definition of the new coordinates is

dv = A(x, y)dx + B(x, y)dy,

dw = C(x, y)dx + D(x, y)dy,

where

A =
∂v

∂x
, B =

∂v

∂y
, C =

∂w

∂x
, D =

∂w

∂y
.

Then
ds2 = g′

11dx2 + 2g′
12dxdy + g′

22dy2,

where
g′
11 = A2g11 + 2ACg12 + C2g22,

g′
12 = ABg11 + (AD + BC)g12 + CDg22

and

g′
22 = B2g11 + 2BDg12 + D2g22.

We are free to choose not only the values of A, B, C, D at P , but also
the values of their first derivatives at P , provided the two compatibility
conditions (∂A

∂y = ∂B
∂x , ∂C

∂y = ∂D
∂x ) are obeyed. Thus, the values of A, B,

C, D, and their 6 independent first derivatives provide 10 free variables,
enough flexibility to arrange at P :

g′
12 = 0, g′

11 = g′
22 = +1,

∂g′
11

∂x
=

∂g′
12

∂x
=

∂g′
22

∂x
=

∂g′
11

∂y
=

∂g′
12

∂y
=

∂g′
22

∂y
= 0.
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It follows that a Euclidean surface with metric equation ds2 = dx2 + dy2

will match the current surface locally at P , up to deviations quadratic
in x − xp, y − yp. In other words, a plane can always be drawn so as to
pass through any arbitrary point on a 2-dimensional Riemann surface so
that it is locally tangential to the surface. Furthermore, this plane can be
deformed such that it remains intrinsically un-curved and its (previously)
straight lines match all of the manifold’s geodesics at P in both direction
and curvature. (Notice that the conditions on the metric components
and derivatives only make up 9 equations, whereas there are 10 degrees
of freedom. The residual degree of freedom amounts to the choice of
orientation of the x and y axes on the plane.)

It is even possible to choose A, B, C, D such that g′
ij , ∂g′

ij/∂x, ∂g′
ij/∂y

vanish along a finite curve on the manifold which passes through P .

A similar procedure can be followed in higher dimensional spaces; some
coordinate transformation can always be found which converts the metric
coefficients locally (or in the vicinity of a curve section) to a sum of
squares, up to corrections quadratic in the geodetic distance from the
given point or curve. Riemann spaces are thus said to be locally flat (or
locally Euclidean) in this restricted sense. It is not possible, however,
to arrange that the 2nd derivatives as well as the first derivatives of the
coefficients g11, g12, and g22 all simultaneously vanish.

If g11g22 − g2
12 < 0, the quadratic form obtained in the locally-flat co-

ordinate system is ds2 = dx2 − dy2 rather than x2 + dy2. The space
involved is still locally flat (in the above sense). It is referred to as a
pseudo-Riemannian space. The space-time of STR is pseudo-Euclidean
(Minkowski space), that is, its metric assumes the form ds2 = c2dt2 − dr2

everywhere.

A work published after Riemann’s death contains what is now known
as the Riemann-Christoffel tensor in the general-relativistic theory of
gravitation (GTR). Riemann made the remarkable conjecture that his
new metrics would reduce questions concerning the material universe and
the “binding forces” holding it together, to problems in pure geometry.

His unifying principle enabled him to classify all existing forms of geom-
etry and allowed the creation of any number of new types of abstract
spaces, many of which have since found a useful place in geometry and
modern physical theories.

Einstein conceived the geometry of spacetime as a pseudo-Riemannian
geometry (locally pseudo-Euclidean) in which the curvature and geodes-
ics are determined by the distribution of matter. In this curved space,
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planets move in their orbits around the sun by simply coasting along geo-
desics, instead of being pulled into curved paths by a mysterious force of
gravity whose nature no one had ever really understood.

(5) Analytic number theory was founded by Riemann in his path-breaking
paper of 1859, devoted to the Prime Number Theorem. It launched a
tidal wave in several branches of pure mathematics, and its influence will
probably still be felt for many years to come. He generalized Euler’s
identity to complex values of s. The resulting function is known as the
Riemann zeta-function:

ζ(s) = 1 + 2−s + 3−s + · · ·; s = σ + iy.

He made six conjectures with regard to the nature of this function274.

274 This Dirichlet series is convergent for σ > 1, and uniformly convergent in any

finite region in which σ ≥ 1 + δ, δ > 0. It therefore defines an analytic func-
tion ζ(s), regular for σ > 1.

An equivalent definition of the zeta-function is

ζ(s) =
∏

p

(

1 − 1

ps

)−1

,

where p runs through all the primes. This is known as Euler’s product and is
absolutely convergent for σ > 1. Euler considered it for particular values of s

only, and it was Riemann who first considered ζ(s) as an analytic function

of a complex variable. Since a convergent infinite product of non-zero factors is
not zero, ζ(s) has no zeros for σ > 1.

The analytic function ζ(s) can be continued beyond the half-plane σ > 1.

One such extension is through the relation

(1 − 21−s)ζ(s) = 1 − 2−s + 3−s − 4−s + · · ·, σ > 0.

Riemann has extended the definition of the zeta-function for all complex values

of s through a line integral in the complex s plane. He has also shown that the
zeta function satisfies the remarkable functional equation:

Γ
( s

2

)
π− s

2 ζ(s) = Γ

(
1 − s

2

)

π−( 1−s
2 )ζ(1 − s).

Some special values and relations involving ζ(s) are:

ζ(0) = − 1
2
; ζ(1) = ∞;

1 − 1
2

+ 1
3

− 1
4

= limn→1

[
(1 − 21−n)ζ(n)

]
= ln 2;

ζ(2) = π2

6
; ζ(4) = π4

90
;
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Assuming these six, Riemann then proved the Prime Number Theorem,
namely, that the number of primes less then a given number x asymp-
totically approaches {x/ loge x}. Since then, five of his six conjectures
have been proven true.

The famous Riemann Hypothesis: All complex solutions of the equation:
1 − 1

2s + 1
3s − 1

4s + · · · = 0 lie on the line s = 1
2 + it, for some t �= 0, has

not yet been proved.

Riemann initiated the study of many more topics, but he died too young
to have completed all the projects he started.

Riemann was brought up in a warm family atmosphere, and was of poor
health due to poverty at home. Thanks to his father’s understanding he did
not practice theology, for which he was trained.

ζ(2n) = (2π)2n

2(2n)!
|B2n |, n = 1, 2, . . . (Bn = Bernoulli numbers);

ζ(−2m) = 0;

ζ(1 − 2m) = − B2m
2m

;

ζ(−m) = − Bm+1
m+1

, m = 1, 2, 3, . . .;

γ =
∑∞

n=2
(−)n

n
ζ(n) (Euler-Mascheroni constant);

1
2
z coth z =

∑∞
n=0(−)n+1ζ(2n)

(
z
π

)2n
.

The infinity of primes is a direct consequence of the relation

6

π2
=

(

1 − 1

22

) (

1 − 1

32

)

· · ·
(

1 − 1

p2
n

)

· · ·,

and the fact that the l.h.s. is irrational.
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The Riemann Hypothesis (RH) and the

Prime Number Theorem275 (PNT)

The functional equation derived by Riemann for the zeta function exhibits
a symmetry about s = 1

2 . Consequently it is expected that the line Re s = 1
2

will play an important role in the theory of the zeta function. On the basis of
this functional equation, and some preliminary calculations and asymptotic
analyses which he made, Riemann conjectured that all the zeros of Γ

(
s
2

)
ζ(s)

were on the line s = 1
2 + it.

Despite its apparent simplicity, this statement has never been confirmed
or refuted. As a result of the concerted effort of a number of mathemati-
cians — in the pre-computer era: E. Landau (1911–1933), T.H. Gronwall
(1913), G.H. Hardy (1914), J.E. Littlewood (1914–1928), S. Ramanujan
(1915), C. de la Vallée-Poussin (1916), C.L. Siegel (1922–1948), A.E. In-
gham (1926–1933), J. Hadamard (1927), E.C. Titchmarsh (1928–1947),
A. Selberg (1942–1946), A.M. Turing (1943) — a great deal has been
learned about the distribution of zeros of ζ(s).

It has been proven that:

(1) ζ(s) has an infinity of zeros in the strip 0 ≤ σ ≤ 1, all of which are
complex (no zeros on the real axis between 0 and 1);

(2) the zeros either lie on σ = 1
2 or occur in pairs symmetrical about this

line;

(3) there is an infinite number of zeros of ζ(s) on s = 1
2 + it [Hardy,

1914].

Nevertheless, the RH remains one of the outstanding challenges of math-
ematics, a prize which has tantalized and eluded some of the most brilliant
mathematicians of 20th century. In fact, the RH stand today as the most
important unsolved problem in mathematics. Not only is it tied up with the
prime number theorem, but many other theorems are conditioned on the RH

— that is, their proofs assume that the RH is true. Other results are known
to be equivalent to the RH.

275 For further reading, see:

• du Sautoy, M., Music of the Primes, Perennial, 2003, 335 pp.

• Derbyshire, J., Prime obsession, Joseph Henry Press: Washington, D.C., 2003,
422 pp.
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The search for the zeros is a story in itself : In 1903, J.P. Gram pub-
lished values of t of the first 15 zeros [14.13, 21.02, 25.01, 30.42, 32.93,
37.58, . . . to two decimal places], thus rendering the first solid evidence in
support of the RH. There was even some wonderment at how Riemann had
arrived at his prediction, since his paper on the zeta-function contained no
computations at all. It was generally believed that Riemann had based his
hypothesis on aesthetics and intuition — two major driving forces of mathe-
matical research.

However, in 1932, Carl Ludwig Siegel proved that there was more to
it than aesthetics and intuition. Searching through Riemann’s unpublished
papers in the archives of the University Library at Göttingen, Siegel discovered
that Riemann had indeed computed several zeros of the zeta-function. Not
only that, but he had done so by a method superior to those that Gram and
others had used after him!

Siegel cleaned up Riemann’s method, and the so-called Riemann-Siegel
formula became the basis for computing zeros of the zeta-function. The list
of zeros has grown with the advent of high-speed computers. In 1952, Alan
Turing identified the first 1054 zeros (“the first” meaning the zeros closest
to the real axis — the purported line of zeros is perpendicular to the real axis
at the point 1

2 ).

The list grew to 25, 000 in 1956, 3.5 million in 1968 and 81 million in 1979.
In 1985, it reached a staggering 1.5 billion zeros — every one of which lies
on the predicted line. In 1990, the 1020-th zero of the Riemann zeta-function
was found to be 1

2 + [15, 202, 440, 115, 920, 747, 268.629, 029, 9 . . .]i. Thus, to
date, mathematicians have amassed impressive amounts of evidence in favor
of the hypothesis.

But that is not all: statistical studies of the distribution of spacing between
the zeros of the zeta-function have led to another conjecture, namely that
the distribution of these spacing is similar to that of eigenvalues of random
matrices that are studied in many-particle systems in physics. This hypothesis
suggests that the zeta-function could be used as a model of quantum chaos.

The importance of ζ(s) in the theory of prime numbers lie in the fact
that it connects two expressions, one of which contains the primes explicitly,
while the other does not.

The theory of primes is largely concerned with the function π(x), the
number of primes less or equal to x.

Gauss (1792, age 14!) was first to notice that π(x) can be estimated by

the function
{

x
loge x

}
or

Li(x) =
∫ x

2

dt

loge t
=

x

lnx
+

1!x
(ln x)2

+ . . .
(k − 1)!x
(ln x)k

+ O[
x

(ln x)k+1
];
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He did not publish this result. In 1798, Legendre, independently, suggested
that π(x) ∼ x

loge x−1.08366 . At that time, these relations seemed completely

inexplicable, since loge x arose in differential calculus in connection with
problems of continuous growth and decay and was not known to be related
in any way to discrete prime numbers. The approximation, in percentage
terms, grows better and better as x increases. Gauss, being both a number
theorist and the man who founded mathematical statistics, used his “method
of least squares” to show that, as x approaches infinity, the errors are likely
to eventually approach zero [for x = 103, the error is 16.0%, for x = 109,
it is 5.4%, while for x = 1014, it is only 3.2 percent].

It took 50 years before anyone made any progress toward proving the
Gauss-Legendre conjecture. The first person to do so was P. Chebyshev in
1850. He obtained a partial result and his ideas were then imitated by others.
But eventually it turned out that his methods would not go any further, and
they were abandoned.

In 1859, Riemann published a small paper entitled: “On the Number of
Primes Less Than a Given Magnitude” (in German). Its reasoning contained
large gaps, and very little was definitively proven, but nearly everything that
has been done in the theory of numbers since then has been influenced by
that paper.

For 40 years, other mathematicians tried to prove the main result enunci-
ated in Riemann’s 8-page paper — but to no avail. In 1896, Hadamard
and de la Vallée-Poussin, working independently, finally proved that

limn→∞

{
π(n)

n/ loge n

}
= 1, the PNT.

Further research followed: In 1908, E. Landau showed that

π(x) = Li(x) + O[xe−γ
√

ln x].

In 1914, J.E. Littlewood showed that the difference {Li(n) − π(n)} changes
from positive to negative infinitely many times as n runs up through the
positive integers, although the first change of sign occurs for a very large n [in
1986 J.J. te Riele showed that this number is smaller than 6.69 × 10370. A
computer search made as far as 109 failed to produce such a number. It may
never be possible to discover the actual number !]

An approximation to π(n) which involves the zeta-function explicitly was
derived in 1903 by Gram from Euler’s product formula:

R(n) = 1 +
∞∑

k=1

1
kζ(k + 1)

(log n)k

k!
.
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Thus, for n = 109,

π(n) = 50, 847, 534;
{

x
loge x

}
= 48, 254, 942;

{
x

loge x−1.08366

}
= 50, 917, 519, R(n) = 50, 847, 455;

R(n) thus yields best estimate with a percentage error of only 1.5 × 10−4!
Ramanujan discovered (1913) the alternative form

F (x) =
∫ ∞

0

(log x)tdt

tΓ(t + 1)ζ(t + 1)

for the sum.

The importance of the RH lies in the fact that the errors of the approxi-
mations to π(x) depend on the zeroes of the zeta-function. The connection
between π(x) and RH also lies behind a great deal of other known facts
about primes. If the RH does turn to be true, then the connection with the
function π(n) will enable even more information about the prime numbers
to be deduced than is at present known.

Moreover, the prime number theorem is important not only because it
makes an elegant and simple statement about primes and has many applica-
tions, but also because much new mathematics was created in the attempt to
find a proof. This is typical in number theory and topology, where problems
which are very simple to state are often extremely difficult to solve. Mathe-
maticians working on these problems often create new areas of mathematics
of independent interest276. Two additional examples stand out:

(1) the creation of Algebraic Number Theory as a result of work on the Fermat
Conjecture;

(2) the creation of Graph Theory as a result of the search for the solution to
the 4-color problem.

276 This phenomenon, which happened over and over again in mathematics, brings

to mind the well-known tale about a farmer who had three lazy sons that were

loafing around without doing any substantial work. On his deathbed, the farmer

told them that a treasure was buried somewhere on the farm. Following his

death the sons began to dig the farm inside out in search of the fortune. In

doing so, they unknowingly cultivated the land and became very prosperous.

The conjecture of Riemann was such a hidden ‘treasure’.
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1851 CE The first successful submarine telegraph cable was laid between
Dover and Calais.

1851 CE The brown rats (alias Norway rats) reach the Pacific coast277of the
United states after some 50 years of migration from the East coast (average
diffusion rate of ca. 300 meter/day). It reached the ports of the New World
from Europe as stowaways on ships. Brown rats migrated to Europe from
Asia, apparently from North China. They are known to have reached Paris
in 1753.

1851–1855 CE Tuberculosis ravaged England; Ca 250,000 died.

1851–1897 CE William Thomson (Lord Kelvin, 1824–1907, England).
A distinguished physicist of the 19th century. Kelvin published more than 600
papers on a wide range of scientific subjects, and he patented 70 inventions.
Queen Victoria knighted Kelvin for his work as an electrical engineer in charge
of laying the first successful transatlantic cable278 in 1866.

In 1851 he proposed the gas thermometer as the basis of an absolute tem-
perature scale (Kelvin scale; 1848), with degree intervals equivalent to those
on the centigrade scale but with the fiducial zero point at −273.7 ◦C [today
at −273.15 ◦C=−459.67 ◦F], called the Absolute zero. [According to classical
physics, ideal gases at this temperature contract to solids and all molecular
motion ceases.] He coined the word Thermodynamics (1849).

In 1852 he discovered with James Prescot Joule the ‘Joule-Thomson
Effect’, according to which gases undergo a change of temperature when made
to expand freely [the effect was utilized in 1877 by Carl von Linde (1842–
1934) to design an Ammonia gas refrigerator]. Greatly interested in the im-
provement of physical instrumentation, he designed and improved many new
devices.

277 Some 300 years after Balboa, the first European to see the Pacific Ocean in

1513. Since the second half of the 19th century brown rats arrived everywhere

with the speed of trains, ships and cargo planes, spreading diseases such as

plague, typhus, anthrax and trichinosis.
278 Experimental testing of physiologists in the 1930’s provided important evidence

confirming the relevance of telegraphic cable theory to nerve axons. Alan

Lloyd Hodgkin (1946–1947) and his co-workers presented derivations of the

Kelvin cable equation for nerve cylinders and included transient solutions as

well as methods for estimating the values of key parameters. The application

of cable theory to dendritic neurons began in the late 1950’s, when it became

necessary to interpret experimental data obtained from individual neurons by

means of intercellular microelectrodes located in the neuron soma.
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Among Kelvin’s inventions are the mirror galvanometer (1867) and the
marine compass free of magnetic influence (1873). In 1876 he proposed the
principle of the differential analyzer279 (a misnomer for a mechanical com-
puter, destined to solve mainly ordinary differential equations). In 1897 he
finalized his estimate of the age of the earth, using the theory of conduc-
tive cooling of a semi-infinite half-space model. He hypothesized that the
earth was formed at a uniform high temperature and that its surface was
subsequently maintained at low temperature. He then assumed that a thin
near-surface boundary layer developed as the earth cooled. Since the bound-
ary layer would be thin compared with the radius of the earth, he reasoned
that a one-dimensional heat-equation model could be applied. His calcula-
tions then yielded the value of ca 20 million years for the age of the earth.
The discovery of radioactivity (1896) showed that his basic assumptions were
wrong280.

Kelvin was also wrong on three other counts: he was convinced that the
Eulerian period of 10 months for the free precessional motion of the earth’s
axis of rotation was real, and ignored the effect of the period lengthening by
4 months due to the non-rigidity of the earth.

He was totally blind to the impact of vectors on physical theory. In 1886
he wrote to Hayward: “Quaternions came from Hamilton after his really good
work had been done; and, though beautifully ingenious, have been useless to
those who have touched them in any way, including Clerk Maxwell”. In a
letter to G.F. Fitzgerald in 1890 he wrote: “Vector is a useless survival, or
off-shoot, from quaternions, and has never been of the slightest use to any
creature”. Finally, Kelvin did not accept the atomic theory of matter.

Applied mathematicians and physicists will always be grateful to him for
discovering the method of stationary phase (1887), for asymptotic evaluation
of special integrals281.

279 The proposal was unfortunately neglected. Not until 50 years later was a work-

able machine constructed by Vannevar Bush and his colleagues at the Massa-

chusetts Institute of Technology.
280 Kelvin also viewed the sun as some sort of a dwindling self-gravitating coal pile

that illuminated the earth for only a few tens of millions of years.

Kelvin would not accept geological arguments against his estimate and once, in

the heat of a dispute over the earth’s age, said that geology was as intellectually

respectable as collecting postage stamps.
281 The method is applicable to integrals of the form K(λ) =

∫ ∞
− ∞ g(ω)eiλf(ω)dω,

where g(ω), f(ω) are real functions and λ is a large, positive constant. When
λ is large, the exponential function eiλf(ω) will, in general, oscillate very
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Kelvin resolved Olber’s paradox quantitatively and correctly in the frame-
work of a transparent, uniform, and static universe. In a paper entitled “On
ether and gravitational matter through infinite space”, published in the Philo-
sophical Magazine (1901), he was the first to show, on the strength of the
Kant-Laplace nebular hypothesis, that if one assumes that we live in a uni-
verse of finite age (or in a universe of unlimited age in which the stars have
been shining for only a limited time), then the observed phenomenon of a dark
starlit sky would categorically necessitate a cosmological regime in which the
size of the visible universe is less than the background limit282. This Kelvin

rapidly. If g(ω) changes slowly, the rapid phase-change will tend to cause

cancellations. In total, the integral will approximately vanish except around

points ω = ω0 where f(ω) is stationary, i.e., f ′(ω0) = 0. For one stationary
point, the quantitative analysis of this statement yields Kelvin’s formula:

∫ ∞

− ∞
g(ω)eiλf(ω)dω =

[
2π

λ|f ′′(ω0)|

]1/2

g(ω0)e
iλf(ω0)+iδ

[

1 + O

(
1

λ

)]

,

where δ = πi
4

sgn f ′′(ω0).
282 The treatment of Kelvin elucidates what was previously shown by Halley

(1721), Cheseaux (1744), and Olbers (1826). Let all stars be sun-like, of
radius a, and uniformly distributed (n per unit volume). Let α denote the frac-

tion of the sky covered by the discs of stars out to radius r. Then α = r
λ

≥ 1,

where λ = 1
πna2 is the mean free path of a light ray. We note that α = 1

when the radius r of a surrounding sphere of stars equals λ, and hence λ is

also the background limit of a star-filled universe. (In this case the entire sky

is covered in a distribution of stars of infinite extent and the average distance
observable from any position is the background limit λ.)

Let each star have luminosity L. The contribution to the radiation density u at

its center of a shell of radius q and thickness dq is du = nL
c

dq. By integrating
from q = 0 to q = r we find u = u∗ r

λ
≡ u∗α, where u∗ = L

πa2c
is the

radiation density at the surface of a star. Therefore, α = u
u∗ demonstrates the

truth of Kelvin’s statement that α is the ratio of the apparent brightness of our
starlit sky to the brightness of our sun’s disc. Kelvin thus showed that,

brightness of starlit sky

brightness of sun’s disc
=

size of visible universe

background limit
=

fraction of sky

covered by stars
.

Since the left hand fraction is much less the unity, any viable theory must explain

why the size of the visible universe (the part we see) is much smaller than the

background limit. In his estimate for the size of the background limit λ = 1
πna2 ,

he followed the reasoning of Cheseaux and Olbers, and the astronomical data

available to him, which gave him a value of ca 3 × 1015 light-years. To ensure

that the visible universe remains always smaller than λ, his static uniform model

forced him to limit the age of the universe (or equivalently, the age of stars in

a universe otherwise of unlimited age). Kelvin chose (erroneously), a visible
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was easily able to show on the basis of the then available astronomical infor-
mation.

Although he solved the riddle of cosmic darkness according to the condi-
tions prescribed in its original conception for a uniformly populated and static
universe, it can be shown that all the variants of this primitive standard model
that resort to absorption, hierarchy, and redshift (owing to expansion) merely
accomplish a state of greater darkness in a universe already dark.

Kelvin disbelieved in paradoxes. In his Baltimore Lectures (1884) he more
than once declared: “There are no paradoxes in science”. He took the ratio-
nalist attitude that paradoxes are the result of misunderstandings; they lie in
ourselves and not the external world.

Kelvin was born in Belfast, Ireland. His father James was a professor of
mathematics at Glasgow University. He was educated at the universities of
Glasgow, Cambridge, and Paris. Kelvin became a professor of natural history
at the University of Glasgow in 1846 and remained there until his retirement
in 1899. He was married twice (1852, 1874). However, there was no heir to
his title, which became extinct.

Electrostatics and Number Theory

In 1853, Lord Kelvin used his method of images to calculate, in a very
elegant way, the mutual capacitance (C12) of a configuration consisting of 2
spheres of radii a and b, with their centers a distance c ≥ (a + b) apart. He
was able to show that the result can be represented in the form of a converging
modified Lambert series (Lambert, 1771)

C12 =
EI

c

∞∑

n=1

αn

1 − α2n
; α =

E − I

E + I
≤ 1.

universe of 14 million light-years, but even with modern values of 14 billion

light-years, the darkness at night is fully guaranteed.

Cheseaux and Olbers assumed that the stars shine long enough for light

to travel from the background limit. Had they questioned this assumption,

they might have realized that there was no need to postulate the absorption of

starlight.
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Here,
E =

√
c2 − (a − b)2, I =

√
c2 − (a + b)2

are the lengths of the external and internal tangents, respectively, to the
circles obtained by cutting the spheres with a plane through their centers.

This problem has drawn the attention of mathematicians and physicists,
who tried to improve the convergence of the above series [E.W. Barnes
(1903), A. Russell (1911), J.H. Jeans (1915), W. Smythe (1939)]. One
hundred years after its inception (1953), the problem was revisited by Balt-
hazar van der Pol, who noticed that

∞∑

n=1

αn

1 − α2n
≡

∞∑

n=1

∞∑

m=0

αn(2m+1).

Therefore,

C12 =
EI

c

∞∑

n=1

{
d(n) − d

(n

2

)}
αn.

The Dirichlet divisor function, d(n), characteristic of number theory,
represents the number of divisors of n. [d

(
n
2

)
is to be replaced by zero for

any odd n.] This function is related to the Riemann zeta-function ζ(n), via
the Voronoi relation283

{ζ(s)}2 =
∞∑

n=1

d(n)
ns

.

Also, the above series is closely related to the famous divisor problem of
Dirichlet284, which is that of determining the asymptotic behavior as x → ∞
of the sum

D(x) =
∑

n≤x

d(n) =
1

2πi

∫ c+i∞

c−i∞
ζ2(z)

xz

z
dz

(with c > 1 and x not integer).

1851–1852 CE Jean Bernard Léon Foucault (1819–1868, France). A
distinguished experimental physicist. Demonstrated the absolute rotation of

283 G. Voronoi (1904).
284 Dirichlet proved that D(x) = x log x + (2γ − 1)x + O(x1/2), where γ is the

Euler-Mascheroni constant.
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the earth at the Paris exhibition by means of a pendulum (1851). An iron
ball of about 30 kg was suspended from the ceiling of the Pantheon from a
wire 60 m long, so as to be free to swing in any direction. To an observer
in an inertial frame outside the earth, the plane of motion of a pendulum
at either pole remains fixed in space while the earth rotates underneath. To
an observer on earth the plane of motion rotates relative to earth, and the
pendulum’s motion is attributed to the action on it of a Coriolis force. (In
any non-polar location on earth, however, the pendulum’s plane of motion is
fixed in neither frame.)

In 1852 Foucault constructed a refined gyroscope to demonstrate the rota-
tion of the earth. Because the device exhibited the rotation of the earth before
his eyes, Foucault named it the ‘gyroscope’, which means etymologically ‘to
see rotation’ [from the Greek ‘gyros’ = ring, ‘skopien’ = to view].

During 1850–1865, he produced many important experiments, discoveries
and inventions: he used a revolving mirror to measure the speed of light, and
showed that light travels slower in water than in air and that its speed varies
inversely with the index of refraction. He also made various improvements in
the mirrors of reflecting telescopes and invented the parabolic mirror telescope
which did away with spherical aberration. He discovered the existence of eddy
currents, which are produced in a conductor moving in a magnetic field.

Foucault was the son of a publisher at Paris. After an education received
chiefly at home he studied medicine, which he abandoned for physical science.

History of Gyroscopic Phenomena and Technologies, I

A. General theory

The earliest appreciation of gyroscopic phenomena appears to date to the
time of Newton (1642–1727). It arose from a study of the motion of our
planet, which is itself a massive gyroscope. A description of its motion will, in
fact, help in understanding some of the essential characteristics of the general
case. The earth approximates closely to a free gyroscope, for its axis remains
almost fixed in the direction of the North Star, Polaris, irrespective of its
transit around the sun. The direction of the axis, however, has been changing
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slowly throughout the centuries, a phenomenon known as “precession of the
Equinoxes”. Its polar axis is sweeping out a cone, with an apex angle of
46 ◦54′16′ ′ and a period of 25, 800 years.

Though extremely slow, this motion is similar to the precession of a spin-
ning top. It arises from the gravitational torque to which the earth is subjected
by the sun and the moon, as a combined result of its lack of sphericity and
the inclination of its axis to the ecliptic plane. A further periodic movement
is also present, in which the earth’s axis describes a much smaller cone whose
diameter at the North Pole is approximately 800 cm. This movement, known
as Eulerian motion, has an observed period of 428 days and corresponds to
the free oscillation or nutation of a gyroscope. The above phenomena are
superposed on the orbital motion of the earth around the sun.

From the above we may identify three gyroscopic attributes, namely direc-
tional stability, precession and nutation. The technological applications of the
gyroscope are based upon these properties. For example, directional stability,
which may be regarded as the reluctance of a body to change its orientation,
provides the basis of modern inertial navigation.285

Also, it is found that rate of precession is proportional to applied torque,
and as the latter may be produced by the acceleration of a platform upon
which the gyro rides, linear acceleration may be measured by angular velocity,
and consequently linear velocity by angular displacement. This integrating
ability of the gyroscope is made use of in instruments carried by rockets for
recording their position in space.

A further characteristic depends on the opposite nature of action and reac-
tion. If forced to precess, a gyroscope exerts a reactive moment proportional
to the product of the velocities of spin and precession. Moments of immense
magnitude may thus be produced by the precession of high-speed rotors. This
feature is utilized in gyroscopic vibration absorbers and in some ship stabiliz-
ers.

The mathematical foundation of gyroscopic behavior must undoubtedly
be ascribed to Euler (1707–1783). His initial work in this field concerned
the general motion of a rigid body for which he derived a set of dynamical
equations involving relations between applied moment, inertia, angular accel-
eration and angular velocity. These, known as Euler’s equations, were stated
with reference to axes fixed in the body. Later he established the indepen-
dence of rotation and translation of a rigid body, and devised the so-called
Eulerian angles to define its orientation with respect to a system of fixed axes.

285 Although it is being replaced with such technologies as laser gyros and MEMs

(= Micro Electro-Mechanical devices), which detect rotations and accelerations

by other, optical and mechanical, means.
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From this background came his first direct contribution to gyrodynamics:
the general motion of a rigid body, fixed at a point and otherwise free from
external force. This problem includes that of the free gyroscope, and was to
occupy the attention of mathematicians for many years. The general displace-
ment of the body is, in fact, only expressible in terms of elliptic functions,
mainly associated with the name of Jacobi (1804–1851). Euler’s later contri-
butions included the inertial properties of bodies, which led to the concepts
of principal axes and momental ellipsoid.

There is an important concept which first appears to have been recognized
by Clairaut (1713–1765) in 1742, though credited much later to Coriolis.
This concerns the force to which a particle is subjected when moving on
a surface which is itself subjected to rotation. Although this had not been
neglected in earlier work, Clairaut indicated its application to a moving frame
of reference.

From the death of Euler in 1783 until the early part of the 19th century,
little was added to the theory of the gyroscope. A revival of interest, however,
is evident in the work of Poinsot286 (1777–1859) who approached the subject
by way of analogy. He demonstrated theoretically that if a free body, fixed
at a point, were replaced by its momental ellipsoid, the path of motion of
the ellipsoid when rolled on a fixed plane was identical to that of the body.
In this representation, the distance of the plane from the fixed point was a
function of the energy and momentum of the body. At a later date, Sylvester
(1814–1897) showed that if a solid homogeneous ellipsoid were used, not only
the path but also the transit times at each position would be identical to that
of the actual body.

Many contributions of Poisson (1781–1840) are associated with gyrody-
namics. In particular, he appears to have been the first to investigate the
motion of the spinning top, a much more complex problem than that of the
free gyroscope. Because of the torque due to the gravitational force, a top
may perform a large variety of complicated motions; and during the latter
half of the 19th century, much thought was devoted to this subject. Poisson
also made a comprehensive study, related to the work of Poinsot, which dealt
with the rolling of bodies of various shapes on a plane.

The following years provided new approaches to gyroscopic problems. Pe-
ter Guthrie Tait (1831–1901) investigated the motion of the free gyroscope
by vector methods, while Edward John Routh (1831–1907) studied the
stability of gyroscopic motion and gave a geometrical construction for deter-
mining the rise and fall of a spinning top. The contributions of Lord Kelvin
(1824–1907) were both practical and theoretical. He made a suggestion for

286 Poinsot introduced the concept of ‘torque’ (1804).
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using a gyro-compass as early as 1883, and later developed analogies between
gyroscopic motion and the motion of electrons in magnetic fields. The work
of Felix Klein (1849–1925) also deserve mention. He approached the motion
of a top by using parameters which later became known as the Cayley-Klein
parameters.

By the turn of the 20th century gyroscopic theory was virtually complete,
and since then emphasis has shifted to gyroscopic applications. This has
stimulated much theoretical work involving the solution of specific problems,
rather than the discovery of new phenomena. The gyroscope has become the
province of the inventor rather than of the mathematician.

B. Gyro-technology (1744–1930)

The early history of the gyroscope is obscure. Its modern history begins
with the Englishman Serson287, who in 1744 constructed a spinning rotor
for indicating the position of the horizon at sea, when the real horizon was
obscured. It was supported at its centroid (to avoid precession) so as to be
free from disturbance by the motion of the ship, and was the forerunner of
the ‘gyroscopic horizon’, used in modern aircraft.

The early part of the 19th century saw gyroscopes being used in the teach-
ing of dynamics.

In 1810 Bohnenberger (Germany) constructed the earliest type of gyro-
scope now in use. In 1819 the English instrument maker Edward Troughton
(1753–1835) produced an improved ‘gyroscopic horizon’ in which the center of
gravity of the rotor could be adjusted accurately by means of screwed plugs.
In 1832 Walter Rogers Johnson (Philadelphia, U.S.A.) constructed an im-
proved type and used it to illustrate the dynamic of rotating bodies. He called
it a ‘rotascope’. In 1852, Foucault constructed a gyroscope with which he
successfully demonstrated the earth’s rotation.

In the last decade of the 19th century, the stage was set for the applica-
tion of the gyroscope to real world problems. These were quick in coming;

287 Serson was sent to sea by the Admiralty to test his instrument, but he was lost

in the wreck of the “victory” in 1744. His invention was reported, however, in

Phil. Trans. Royal Soc. 47, 1752.
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three things drove the transformation of the gyroscope from a child’s toy, or
inventor’s curiosity to that of a usable technology. These were:

• The increasing use of steel in ships made the vessels unstable.

• Unreliability of the magnetic compass within a steel ship.

• Preparation of the great powers to conduct underwater warfare in steel
hull ships.

In 1883 Lord Kelvin made suggestions for using a gyro-compass, which
was indeed designed during 1908–1911 by Hermann Anschütz-Kaempfe
(Germany) and Elmer Ambrose Sperry (1860–1930, U.S.A.), mainly for
the use of polar expeditions. Anschutz and Sperry both built on the properties
of the gyroscope: stability and precession. If force is exerted on it, it will react
at right angles to the applied force. The characteristic of a gyro combined
with other elements of precession, pendulousity and damping will allow the
gyro to settle toward the true north.

In 1908 Anschutz patented the first north seeking gyrocompass with the
United Kingdom’s Patent Office. The same year Elmer Sperry invented and
introduced the first ballistic gyrocompass, which included vertical damping.
Both of these first devices were of the single pendulum type. Earlier, Schlick
(Germany) made first attempts to stabilize a ship against rolls by means of
a gyroscope. However, the solution to this problem was finally perfected by
Sperry in 1907. In 1923, Max Schuler (Germany) introduced his finely-tuned
gyro-pendulum288.

Since that date, the gyroscope has been used in a variety of ways to steer
torpedoes, navigate ships, rockets and missiles, to stabilize the rolling of ships,
to counter vibration and to operate innumerable control mechanisms. The
small directional unit of the gyro-compass operates by the same principles as
the massive rotor of the ship stabilizer, weighting up to 100 tons.

The conventional gyroscope, however, always consists of a symmetrical
rotor spinning rapidly about its axis and free to rotate about one or more
perpendicular axes. Freedom of movement about an axis is normally achieved
by supporting the rotor in a gimbal, and complete freedom can be approached
by using two gimbals. None other than Albert Einstein spent much of his
valuable time on the improvement of the gyrocompass during 1915–1925, as a

288 With its universal Schuler-period of T = 2π
√

R
g

= 84.4m, where R is the earth’s

mean radius.
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consultant to the Kiel-based firm Hermann-Anschütz-Kaempfe. After WWI,
Einstein and Anschutz collaborated intensively on the development of a fun-
damentally improved gyrocompass. In the 1930’s virtually every navy in the
world, except the British and the American, was equipped with gyrocom-
passes by the Anschütz firm. The construction of these gyrocompasses also
involved a patent of Albert Einstein.

As of 1925, Einstein’s share in the profits of the gyrocompass project was
contractual, receiving 3% of the sales price of each instrument, and 3% of
any revenue from licenses. The contract was not with the Kiel firm, but with
the Dutch firm Giro, a distribution company founded by Anschütz primarily
to evade the ban imposed by the treaty of Versailles on exports of military
articles. This firm was liquidated in 1938 since the parent firm in Kiel no
longer needed a Dutch branch to circumvent armaments controls. By then
Einstein had no longer received any payments from the German Reich. He
was thus at least spared any disquieting thoughts on the propriety of earning
royalties from a device which guided German U-boats and Japanese aircraft
carriers.

1852 CE Francis Guthrie (1831–1899, England). Mathematician. For-
mulated the four-color conjecture. This states that any map on a plane or a
sphere can be colored with the use of only four colors, in such a way that no
two adjacent domains are of the same color.
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Chromatic Numbers (1852–1952)

“I know by the color. We’re right over Illinois yet. . . Indiana ain’t in sight. . .
Illinois is green, Indiana is Pink. You show me any pink down here, if you
can. No, sir; it’s green. . . I’ve seen it on the map”.

“Indiana pink?. . . Well, if I was such a numskull as you, Huck Finn, I would
jump over. Seen it on a map! Huck Finn, did you reckon the states was the
same color out-of-doors as they are on the map?”

“Tom Sawyer, what’s a map for? Ain’t it to learn facts? . . .there ain’t no
two states the same color. You get around that, if you can, Tom Sawyer”.

Mark Twain, ‘Tom Sawyer Abroad’ (1835–1910)

There are many topological questions, some of them quite simple in form,
to which intuition gives no satisfactory answer. A problem of this kind, known
as the 4-color problem, arose out of the practical needs of map-makers already
in the 16th century. These men were familiar with the notion that not more
than 4 colors are necessary in order to color a map of a country (divided into
districts) in such a way that no two contiguous districts shall be of the same
color289.

The problem was mentioned by A.F. Möbius in his lectures in 1840, but
was first stated as a mathematical conjecture in 1852 by Francis Guthrie.
Shortly after he had completed his studies at University College, London, he
was coloring a map showing counties of England. As he did so, it occurred
to him that, in order to color any map [subject to the requirement that no
two regions sharing a length of a common boundary should be given the same
color], the maximum number of colors required seemed likely to be 4. Being
unable to prove this, he communicated the problem to Augustus de Morgan
(1806–1871), one of the major mathematicians of his time, and through him
the proposition then became generally known.

289 Contiguous = districts having a common line as part of their boundaries. The

map is drawn on a simply-connected surface, such as a plane or a sphere. The

number of districts is finite and no district consists of two or more disconnected

pieces. The map may or may not fill up the whole surface. Some maps can be

colored with fewer than 4 colors, such as a chess-board, which requires only 2,

or a hexagonal tessellation, which requires 3.
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Like Guthrie, de Morgan had no difficulty proving that at least 4 colors
are necessary (i.e. that there are maps for which 3 colors are not sufficient).
He also proved that it is not possible for 5 regions to be in a position such
that each of them is adjacent to the other 4 [this may, at first glance, appear
to imply that 4 colors are always sufficient, but it does not in fact imply this
at all. Numerous false ‘proofs’ of the 4-color conjecture that appeared during
1852–1976 were based upon this invalid implication].

Unable to solve the problem, de Morgan passed it on to his students and to
other mathematicians, among them W. Hamilton, giving credit to Guthrie
for raising the question. However, the problem did not seem to attract much
interest until 1878, when Arthur Cayley, unable to determine the truth
or falsity of the conjecture, called attention to it by asking the members of
the London mathematical society if they knew a proof of the conjecture. His
question was published in the society’s proceedings, and this was the first
mention of the problem in print.

Within a year after Cayley’s challenge, Arthur Bray Kempe (1849–
1922), a London barrister and a member of the London Mathematical Soci-
ety, published a paper that claimed to prove that the conjecture was true.
However, in 1890 Percy John Heawood (1861–1955, England) pointed out
that Kempe’s argument was in error. Heawood was, however, able to salvage
enough to prove that 5 colors are always adequate.

Heawood, in trying to attack the problem, investigated a generalization of
the original conjecture: The maps studied by Guthrie and Kempe were maps
in a plane or on a sphere. Heawood also considered maps on more complicated
surfaces containing “handles” and “twists”. He was able to derive upper
bounds for the numbers of colors required to color maps on these surfaces
(the numbers themselves are known today as the chromatic numbers). His
method, however, was not applicable to the plane290.

290 Heawood proved that for a surface of Euler characteristic n

(= V (vertices) − E (edges) + F (faces)),

such that n ≤ 1, the number of colors that suffice to color all maps drawn on

the surface is 1
2
[7 +

√
49 − 24n], where [x] denotes the largest integer contained

in x.

For a sphere n = 2; for the torus and the Klein bottle, n = 0, and for a

double-torus, n = −2. Though topologically equivalent surfaces do have the

same n value, topologically different surfaces may or may not.

Thus for the torus, 7 colors are sufficient. For the Klein bottle, the formula gives

the answer 7, while only 6 colors are needed.



2148 4. Abstraction and Unification

Heawood continued to work on the 4-color problem for the next 60 years
(1890–1950). During that time numerous mathematicians and even a greater
number of amateurs, investigated the 4-color problem, developing in the
process a great many mathematical techniques that ultimately proved to have
applications elsewhere in mathematics. In fact, much of what is now known
as Graph Theory (the geometry of wiring diagrams and airline routes) grew
out of the work done in attempting to prove it.

In 1913, George D. Birkhoff used the idea of Kempe to develop much of
the basis for later progress. Using these results, Philip Franklin (1898–1965,
U.S.A.) proved in 1922 that every map with 25 or fewer zones could be colored
with 4 colors. In 1975 this figure reached 96. In 1950, H. Heesch, who had
been working on the 4-color problem since 1936, indicated for the first time
that the problem would be solved only with the aid of a computer, capable
of handling vast amounts of data, and he indeed advocated, and attempted,
a computer-aided assault on the problem.

1853–1869 CE Johann Wilhelm Hittorf (1824–1914, Germany). Physi-
cist. Pioneer in electrochemical research. Investigated the migration of ions
during electrolysis (1853) and suggested that different ions in a solution im-
pelled with an electric current travel at different rates. He then developed ex-
pressions to account for the measured transport numbers. Studied electrical
phenomena in rarefied gases, the Hittorf tube being named for him. Deter-
mined a number of properties of cathode-rays (before Crookes) including the
deflection of the rays by a magnet (1869).

Hittorf was born in Bonn, Rhenish Prussia. He was a professor of physics
at Münster (1852–1890).

1853–1871 CE William John Macquorn Rankine (1820–1872, Scot-
land). Ingenious engineer and physicist. Was among the founders of the sci-
ence of thermodynamics on the basis laid by Sadi Carnot and J.P. Joule.
His work was extended by Maxwell.

Although the word energy occurs already in the writing of Aristotle, it
was introduced into the language of science by Rankine in 1853. His manual
of the steam engine (1859) coined most of the modern terms used in the field.
Introduced the Two-Phase Rankine Cycle in the ideal steam engine and the
Rankine Temperature Scale. He demonstrated (1865) that the functioning of
the propeller is based on the principle of reaction and was first to recognize
that the essential point in its action is the acceleration of the air mass passing
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through the circular area swept by its blades. He also contributed to the
theory of shock waves (1870). Rankine also wrote on fatigue in the metal of
railway axles and on soil mechanics.

Rankine was born in Edinburgh and completed his education in its uni-
versity. In 1855 he was appointed to the chair of civil engineering in Glasgow.

1853–1876 Heinrich (Zvi Hirsch) Graetz (1817–1891, Germany). The
first Jewish historian of modern times. His eleven-volume History of the Jews
is one of the great monuments of the 19th century historical writings.

Graetz was born in Posen291and received his doctorate from the University
of Jena (1846). He momentary thought of entering the rabbinate, but he was
unsuited to that career. For some years he supported himself as a tutor, but
in 1856 the publication of the 3rd volume of his history made him famous.
No Jewish book of the 19th century produced such a sensation as this. The
work has been translated into many languages; it appeared in English in five
volumes in 1891–1895. In 1854 he was appointed on the staff of the new
Breslau Seminary and passed the remainder of his life in this office. In 1869
he was created professor by the government of the Breslau University. He
kept this post until his death at Munich.

Graetz made use of a vast number of sources in many languages, but his
vision of the Jew was rooted in Deutero-Isaiah. The Jews, he argued, had

291 Poznan (Posen); a city at the confluence of the Cybina and the Warthe rivers.

One of the oldest towns in Poland (ca 800 CE), and the residence of some of

the early Polish princes. It became the seat of Christian bishopric about the

middle of the 10th century. The original settlement was on the right bank of

the Warthe, but the new town established on the opposite bank by German

settlers (1250), soon became the more important part of the double city. Posen

became a great depot for the trade between Germany and Western Europe on

the one hand and Poland and Russia on the other. The city attained the climax

of its prosperity in the 16th century (p. 80,000). The intolerance shown to

Protestants, the troubles of the Thirty Years’ war, the plague and other causes,

soon conspired to dwindle its population to 12,000 in the 18th century. Since

its annexation by Prussia and the 2nd partition of Poland (1793) its growth has

been rapid. The German rule (1793–1806, 1815– ) ended in 1918 when most of

German inhabitants left the city. During WWII the Germans exiled its citizens

and filled it with Germans from the Baltic states. It reverted to Poland after

the war.

Jews lived in Poznan from the 12th century to the Holocaust [3000 (1519);

76,00 (1840); 26,599 (1910); 5000 (1920); 0 (1940)]. Its orthodox community

constantly supplied the German Jewery with religious spiritual leaders as well

as distinguished intellectuals that contributed to Judaism and science.
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always been powerful and productive in religious and moral truths for the
salvation of mankind. Judaism was, by divine providence, self-created. In
that respect it was unlike any other great religion. Its ‘sparks’ had ignited
Christianity. Its ‘seeds’ had brought forth the fruits of Islam. From its insights
could be traced the origins both of scholastic philosophy and Protestantism.

Graetz was not interested in the social and economic motivations of human
society, and laid the blame for the persecution of the Jews on the narrowness
and bigotry which characterized Christianity during the Middle Ages. This,
obviously, aroused resentment among many Christians and German national-
ists.

Graetz’s history was accepted by the Jews with mixed feelings: although
the Jews of the world over hailed it with enthusiasm, it carried no real message
to the great masses of East European Jews. He disparaged their study of the
Talmud, as vain and useless scholasticism. Knowing little about Jewish mys-
ticism, he had nothing but contempt for Hasidism, which was so widespread
among them. To him it seemed pure superstition.

He failed to see the beautiful piety which prevailed in Eastern Europe
despite hostility and poverty. Had he taken the trouble to learn more about
the living Jews of Russia, Poland and Romania, Graetz would have found
among them that very loyalty to Jewish life which he claimed so much in the
Jews of the Middle Ages and which he was trying to revive among the Jews
of Germany.

Nevertheless, Graetz had written a justification of Jewish life and, in a
sense, gave a pledge of Jewish continuity. The History of Jews appeared at
an opportune moment: Forces were already in motion in Germany which
were opposed to that spirit of freedom and democracy which had brought
emancipation to the Jews.

1854 CE A wire telegraph was established between London and Paris.

1854 CE George Boole (1815–1864, England). Irish logician and mathe-
matician. One of the principal founders of symbolic logic.

Boole was born in Lincoln. His extraordinary mathematical talents did
not manifest themselves in early life. During 1832–1849 he was a school
teacher. In 1849 however, he was appointed a professor of mathematics in
the Queen’s College at Cork. He published some 50 papers and a few books
and pamphlets. His most important work is “An Investigation of the Laws
of Thought, on which are founded the Mathematical Theories of Logic and
Probabilities” (1854) in which he put logic on a mathematical basis.

Boole was first to put laws of human reason in symbolic form. Today,
Boolean algebra is considered as a mathematical system used to solve problem
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in logic, probability and engineering. In the context of this algebra, logical
statements are formulated symbolically so that they can be written and proved
in a manner similar to that used in ordinary algebra.

Boolean algebra deals with relationships between sets (collections of en-
tities). Such sets and operations on them (unary or binary) are represented
by letters and symbols of operations [e.g. A ∩ B represents the set of those
elements that are in both sets A and B].

In 1881 Boole’s work was extended by John Venn (1834–1923), and later
in 1901 by Giuseppe Peano (1858–1932).

The Algebra of Switching Circuits (1854–1901)

By switching circuit is meant a connected set of circuit elements which
may be opened (thereby interrupting a portion of the circuit) or closed.

Let x represent the condition of an element by taking the value

x =
{

1 closed
0 open

Let the operation + denote elements in parallel and “multiplication” represent
elements in series.

Since the switching circuit design is an arrangement of wires and switches
where an open switch prevents the flow of current while a closed switch permits
the flow, the tables below exhaust all possible configurations of a subcircuit
consisting of two distinct switches x and y, through each of which current
may flow or not.

(A)

parallel
x y

circuit
x y x + y

on on on 1 1 1
on off on 1 0 1
off on on 0 1 1
off off off 0 0 0
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(B)

series
x y

circuit
x y xy

on on on 1 1 1
on off off 1 0 0
off on off 0 1 0
off off off 0 0 0

Note that x + x = x. Also 1 + x = 1, because having one element of a
parallel pair closed ensures the pair will ‘act’ closed. Also, to each element x
there is an element x̄ (with x + x̄ = 1 and x · x̄ = 0) which is open when x is
closed and closed when x is open.

The two binary operations introduced above can be represented by the
diagrams:

Each switching circuit has an associated switching function which describes
whether it is on or off as a whole, as a function of the states of its individual
switches. Thus for the circuit

the switching function would be f = x(y + z) which is unity if and only if
x = 1 and (y + z) = 1 (i.e. y or z or both are closed) and which is zero if and
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only if x = 0, or if y and z are zero, or if x, y and z are all zero. The overall

state of the switching circuit can be specified by the vector (x, y, z).

If x, y and z are circuit conditions (switches), the following algebraic

properties hold [x̄ is the complement of x defined by x + x̄ = 1 and x · x̄ = 0]:

(i) x + 0 = x additive identity
(ii) x · 1 = x multiplicative identity

(iii) x + y = y + x
(iv) xy = yx

}

commutative laws

(v) (x + y) + z = x + (y + z)
(vi) (xy)z = x(yz)

}

associative laws

(vii) x(y + z) = xy + xz
(viii) x + yz = (x + y)(x + z)

}

distributive laws

(ix) x + x̄ = 1
(x) xx̄ = 0

(xi) x + 1 = x
(xii) x · 0 = 0
(xiii) x2 = x

(xiv) x + y = x̄ȳ
(xv) xy = x̄ + ȳ

}

De Morgan’s laws

Each of these identities can be proved using the above tables. Equations

(viii) through (xiii) have no analogues in ordinary algebra. In particular, (viii)

is a ‘weird’ fact since ordinary algebra has instead

x2 + xy + xz + yz = (x + y)(x + z)

The switching circuit algebra is an example of a Boolean algebra. It is easy to

see that there exists a 1-1 correspondence between a disjunction (join, union)

and a parallel circuit (+) on one hand, and between a conjunction (meet,

intersect) and a series circuit (·) on the other. Thus, in general Boolean

algebra we replace + by the symbol ∨ and (·) by the symbol ∧, to remind us

of the corresponding set-theoretic operations.
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Nonassociative Algebraic systems

By developing algebras satisfying structural laws different from those

obeyed by common algebra, Hamilton, Grassmann, and Cayley opened

the floodgates of modern abstract algebra. Indeed, by weakening or deleting

various postulates of common algebra, or by replacing one or more of the

postulates by others, which are consistent with the remaining postulates, an

enormous variety of abstract systems can be studied.

As examples of these systems we mention groupoids, quasi-groups, loops,

semigroups, monoids, groups, rings, integral domains, lattices, division rings;

Boolean rings, Boolean algebras, fields, vector spaces, Jordan algebras, and

Lie algebras, the last two being examples of nonassociative algebras.

It is probably correct to say that mathematicians have, to date, studied

well over 200 such algebraic structures. Most of this work belongs to the

twentieth century and reflects the spirit of generalization and abstraction so

prevalent in mathematics today. Abstract algebra has become the vocabulary

of much of present-day mathematics, and has increasingly penetrated even

engineering textbooks.

Octonions were discovered by John T. Graves (1843) and independently

by Arthur Cayley (1845). They are sometimes called Cayley numbers or

Cayley algebra.

Every octonion is a real linear combination of unit octonions

1, e1, e2, e3, e4, e5, e6, e7

which thus form a basis of a vector space of octonions over the field of real

numbers R. The multiplication table for this 8-dimensional algebra, shown

below, describes the result of multiplying the element in the i-th row by the

element in the j-th column. Multiplication of two general non-basis octonions

is defined by means of the distributive laws and the general properties of vector

spaces:

(a +
7∑

j=1

bjej) · (a′ +
7∑

j=1

b′
jej) = aa′ −

7∑

j=1

bjb
′
j

+
7∑

j=1

(a′bj + ab′
j)ej +

7∑

j,k=1

bjb
′
kejek
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1 e1 e2 e3 e4 e5 e6 e7

1 1 e1 e2 e3 e4 e5 e6 e7

e1 e1 −1 e4 e7 −e2 e6 −e5 −e3

e2 e2 −e4 −1 e5 e1 −e3 e7 −e6

e3 e3 −e7 −e5 −1 e6 e2 −e4 e1

e4 e4 e2 −e1 −e6 −1 e7 e3 −e5

e5 e5 −e6 e3 −e2 −e7 −1 e1 e4

e6 e6 e5 −e7 e4 −e3 −e1 −1 e2

e7 e7 e3 e6 −e1 e5 −e4 −e2 −1

The interesting things that one learns from this table are:

• e1, e2, . . . , e7 are square roots of −1: e2
i = −1, i = 1, 2, . . . , 7

• ei and ej anticommute when i �= j: eiej = −ejei

• whenever eiej = sek with s = ±1,

ei+1ej+1 = sek+1 with index addition understood to be defined so that

8 equals 1 (index cycling property)

• whenever eiej = sek

e2ie2j = se2k where index doubling is again understood to obey the

cycling property “8 = 1” (index doubling property)

• ei(ejek) �= (eiej)ek unless i = j of j = k (non-associativity)

e.g. e1(e2e3) = e1e5 = e6 e6(e7e3) = −e6e1 = −e6

(e1e2)e3 = e4e3 = −e6 (e6e7)e3 = e2e3 = e5

The definitions of the norm, conjugate and inverse are similar to those of

quaternions. The norm N(A) is defined as N(A) = A∗A = AA∗, where A∗

is the conjugate octonion, i.e. ej replaced with −ej . For a nonzero octonion

A, the multiplicative inverse A−1 is also an octonion (division algebra), since

A−1 = 1
N(A)A

∗. For two octonions A and B



2156 4. Abstraction and Unification

• (AB)∗ = B∗A∗

• N(AB) = N(A)N(B) (composition algebra property)

• A(AB) = A2B (alternativity property)

• A∗(AB) = (A∗A)B = N(A)B

Since octonions do not form an associative algebra, they cannot be repre-

sented directly by matrices. The following describe a method of representing

octonions:

An octonion A is written as an ordered pair of two 4-dimensional quater-

nions q1 and q2 as A = (q1; q2). Then the rule of multiplication of two octo-

nions A and B is

AB = (q1; q2)(q3; q4) = (q1q3 + βq∗
4q2; q2q

∗
3 + q4q1)

where β is a field parameter.

Octonions are the largest of the 4 normed division algebras, but were some-

what neglected due to their nonassociativity. Their relevance to geometry was

quite obscure until 1925, when Elie Cartan used them to establish symmetry

between vectors and spinors in 8-dimensional Euclidean space. Their poten-

tial relevance to physics was noticed in 1934 by Jordan, von Neumann and

Wigner, but attempts to apply octonions quantum mechanics to nuclear and

particle physics were met with little success.

In 1985 it was realized that octonions explain some curious features of

string theory. Beside their possible role in physics, octonions seem to tie to-

gether some mathematical structures. Today they stand at the crossroads of

many interesting fields of mathematics: Clifford algebras and spinors, pro-

jective and Lorentzian geometry, Jordan algebras, and the exceptional Lie

groups. They seem to have applications in quantum logic, special relativity

and supersymmetry.
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Sedenions

The word sedenion is derived from sexdecim, meaning 16. A sedenion
is a hypercomplex number constituted from 16 basal elements obeying the
multiplication table:

1 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15

1 1 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15

e1 e1 −1 e3 −e2 e5 −e4 −e7 e6 e9 −e8 −e11 e10 −e13 e12 e15 −e14

e2 e2 −e3 −1 e1 e6 e7 −e4 −e5 e10 e11 −e8 −e9 −e14 −e15 e12 e13

e3 e3 e2 −e1 −1 e7 −e6 e5 −e4 e11 −e10 e9 −e8 −e15 e14 −e13 e12

e4 e4 −e5 −e6 −e7 −1 e1 e2 e3 e12 e13 e14 e15 −e8 −e9 −e10 −e11

e5 e5 e4 −e7 e6 −e1 −1 −e3 e2 e13 −e12 e15 −e14 e9 −e8 e11 −e10

e6 e6 e7 e4 −e5 −e2 e3 −1 −e1 e14 −e15 −e12 e13 e10 −e11 −e8 e9

e7 e7 −e6 e5 e4 −e3 −e2 e1 −1 e15 e14 −e13 −e12 e11 e10 −e9 −e8

e8 e8 −e9 −e10 −e11 −e12 −e13 −e14 −e15 −1 e1 e2 e3 e4 e5 e6 e7

e9 e9 e8 −e11 e10 −e13 e12 e15 −e14 −e1 −1 −e3 e2 −e5 e4 e7 −e6

e10 e10 e11 e8 −e9 −e14 −e15 e12 e13 −e2 e3 −1 −e1 −e6 −e7 e4 e5

e11 e11 −e10 e9 e8 −e15 e14 −e13 e12 −e3 −e2 e1 −1 −e7 e6 −e5 e4

e12 e12 e13 e14 e15 e8 −e9 −e10 −e11 −e4 e5 e6 e7 −1 −e1 −e2 −e3

e13 e13 −e12 e15 −e14 e9 e8 e11 −e10 −e5 −e4 e7 −e6 e1 −1 e3 −e2

e14 e14 −e15 −e12 e13 e10 −e11 e8 e9 −e6 −e7 −e4 e5 e2 −e3 −1 e1

e15 e15 e14 −e13 −e12 e11 e10 −e9 e8 −e7 e6 −e5 −e4 e3 e2 −e1 −1

The sedenions form a 16-dimensional algebra over the reals. Like octo-
nions their multiplication is neither commutative nor associative. But in
contrast to octonions the sedenions do not even have the property of being
alternative. They do, however, have the property of being power-associative:
AnAm = An+m.

The sedenions have multiplicative inverses, but they are not a division
algebra because they have zero divisors.

Every sedenion is a real linear combination of the unit sedenions
1, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14 and e15, which form a basis
of the vector space of sedenions.
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A sedenion may be represented as an ordered pair of two octonions. The
product of the sedenions S and T is then given as

ST = (A; B)(C; D) = (AC + γD∗B; BC∗ + DA)

where B∗ is the conjugate of B and γ is a field parameter.

Classical Group Theory292 (1770–1903)

A group G is a set of objects, symbols or operations (elements), a, b, c, . . .
for which there exists a certain binary composition law (usually called ‘multi-
plication’) that associates with each ordered pair of elements a unique element
(called their ‘product ’), such that the following conditions are satisfied:

292 To dig deeper, see:

• Hall, G.G., Applied Group Theory , American Elsevier Publishing Company:
New York, 1967, 128 pp.

• Smirnov, V.I., Linear Algebra and Group Theory, McGraw-Hill, 1961, 464 pp.

• Barnard, T. and H. Neill, Mathematical Groups, Teach Yourself Books, 1996,

218 pp.

• Lyubarskii, G.Ya., The Applications of Group Theory in Physics, Pergamon

Press, 1960, 381 pp.

• Bishop, D.M., Group Theory and Chemistry, Dover, 1993, 300 pp.

• Kramer, E.E., The Nature and Growth of Modern Mathematics, Princeton

University Press, 1982, 758 pp.
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• Closure: If a and b are two elements of G, then the product ab is also

an element of G.

• Associativity: For any 3 elements a, b, c multiplication is associative, i.e.

(ab)c = a(bc).

• Existence of identity: There exists an element I called the identity such

that aI = Ia = a for every element a of G.

• Existence of inverse: Corresponding to each element a of G there ex-

ists an element denoted by a−1 and called the inverse of a, such that

aa−1 = a−1a = I for every a of G.

Of course ab �= ba in general. A group is said to be finite if the number of

elements in it is finite. The number of distinct element is called the order of

the group. Otherwise, it is said to be an infinite group. A group G is said to

be Abelian or commutative if in addition to the group postulates we also have

ab = ba for any pair of elements a, b of G.

To illustrate the group properties, consider the group of rigid geometrical

operations that transform the figure of a square into itself. There are 8 inde-

pendent operations in the plane, generated by rotations and reflections, which

achieve this goal. Labeling the corners of the squares with numbers 1 through

4, beginning at the upper right and going around clockwise, it is clear that

the numbers will be permuted by each of the 8 operators as indicated in the

following list:

Identity (I) 4
3�1

2

90 ◦ Counterclockwise rotation (R1) 1
4�2

3

180 ◦ Counterclockwise rotation (R2) 2
1�3

4

270 ◦ Counterclockwise rotation (R3) 3
2�4

1

Reflection through horizontal axis (H) 3
4�2

1

Reflection through vertical axis (V ) 1
2�4

3

Reflection through diagonal
joining corners 1 and 3 (D1) 2

3�1
4

Reflection through diagonal
joining corners 2 and 4 (D2) 4

1�3
2
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These are the 8 basic geometrical operations for transforming a square into
itself. If, for example, we effect R2 after R1, the combined effect of both op-
erations is exactly the same as would have been obtained from the original
square with R3 alone, so we can write symbolically R2R1 = R3, which il-
lustrates closure. Proceeding in this manner, the entire ‘multiplication table’
for the square operators can be established, with each particular entry being
the product of the same-row element in the left column (left factor) with the
same-column element of the topmost row (right factor), as is shown in the
following table:

I R1 R2 R3 H V D1 D2

I I R1 R2 R3 H V D1 D2

R1 R1 R2 R3 I D1 D2 V H

R2 R2 R3 I R1 V H D2 D1

R3 R3 I R1 R2 D2 D1 H V

H H D2 V D1 I R2 R3 R1

V V D1 H D2 R2 I R1 R3

D1 D1 H D2 V R1 R3 I R2

D2 D2 V D1 H R3 R1 R2 I

The table exhibits that the 8 operators do indeed form a group, but since
D2R3 = H, R3D2 = V etc., the group is not Abelian. Any subset of elements
in a group (usually a smaller subset) which in themselves satisfy the group
postulates is called a subgroup of the initial group. Thus {I, R2} is a subgroup
of order 2, while {I, R1, R2, R3} is a subgroup of order 4.

A group such as that of the square has a certain formal or abstract struc-
ture which does not depend upon geometrical associations for its meaning.
Thus, a set of eight matrices could be determined which would satisfy the
group postulates just as the geometrical operators did. These are, for ex-

ample, I =
(

1 0
0 1

)

; R1 =
(

0 −1
1 0

)

; R2 =
(
−1 0
0 −1

)

; R3 =
(

0 1
−1 0

)

;

H =
(

1 0
0 −1

)

; V =
(
−1 0
0 1

)

; D1 =
(

0 1
1 0

)

; D2 =
(

0 −1
−1 0

)

, under
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ordinary matrix multiplication. The elements of this group of matrices and
those of the group of operators can be put into one-to-one correspondence
with each other which preserves the multiplication table, and the groups are
then said to be isomorphic to one another. The matrices are said to form a
representation of the group.

A second example is the group Sn of rearrangements (permutations) of
n objects, known as the symmetric group. A typical element of S5 might
be written as [24153], which means: put the second object first, the fourth
object second, etc. Two elements are “multiplied” by performing first the
rearrangement on the right, then the rearrangement on the left. For exam-
ple, [24153][51234]abcde = [24153]eabcd = acedb = [13542]abcde, where let-
ters represent the 5 objects; therefore [24153][51234] = [13542]. The order
of Sn is obviously n! .

An example of a group with a different kind of binary operation (composi-
tion law) is the group of 6 functions: I(x) = x; A(x) = 1

1−x ; B(x) = 1 − 1
x ;

C(x) = 1
x ; D(x) = 1 − x; E(x) = x

x−1 . The law of composition is the sub-
stitution of one function into the other as a function of a function, e.g.,

AE = A (E(x)) = A
(

x
x−1

)
= 1

1− x
x−1

= 1 − x = D(x).

The general representation of a group G is a group of square non-singular
matrices, one matrix M for each group element g, with matrix multiplication
as the composition law. If the matrices corresponding to different elements of
G are themselves different, the two groups are isomorphic. If, however, one
matrix M represents more than one group element of G, the group is said to
be homomorphic to the matrix group. An isomorphism of a group onto itself
is an automorphism.

Consider a particular representation D. The matrix associated with the
group element g, will be written as D(g). We can form another represen-
tation D′ in quite a trivial way by defining D′(g) = S−1D(g)S, where S is
any non-singular matrix. Such representations, connected by the equivalence
transformation, are said to be equivalent, and will, in practice, be considered
to be the same representation. From two representations of the same element,
D(1)(g) and D(2)(g), we can form a new representation

D(g) = D(1)(g) ⊕ D(2)(g) =
(

D(1)(g) 0
0 D(2)(g)

)

.

If D(1) and D(2) have dimensionalities n1 and n2, the dimensionality of D(g)
is clearly n1 + n2. The representation D is said to be reducible and splits
into two smaller representations D(1) and D(2). A representation which is
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not of the above form and cannot be brought into this form by an equiva-

lence transformation, is called an irreducible representation. The irreducible

representations of a group are the “building blocks” for the study of group

representations, since an arbitrary representation can be decomposed into a

linear combination of irreducible representations293.

Since the same group can be represented by infinite number of equivalent

matrix groups which are the same for most physical purposes, it would seem

preferable to identify the particular group by something that is invariant
under similarity transformations. One such invariant is the trace of the matrix.

We therefore define the character of the ith representation χ(i)(g) as the trace

of D(i)(g). In the case of S3, for example, we have the following irreducible

representation with its associated characters:

293 A tensor in n-dimensional space is reducible if there exists a less general class
of the same rank which transforms onto itself by any Rn rotation (the group of

these rotations is called SO(n), a subgroup of the orthogonal group O(n)).

Vectors are always irreducible since for any two given vectors a and b it is always

possible to find a rotation R such that R · a = b. With dyadics (second rank

tensors) the situation is different since in general, for any given two dyadics A

and B one cannot always find a rotation R such that R · A · R
−1 = B, because

not all matrices are similar. In fact, the group of all dyadics is reducible into

three groups: For an arbitrary dyadic,

A =
1

3
λI +

1

2
(A − A

T ) +

[
1

2
(A + A

T ) − 1

3
λI

]

,

where λ = trace A, I is the unit dyadic and A
T is the transpose of A. Then,

with B = R · A · R
−1, λ = trace B = trace A:

• R · (λI) · R
−1 = λI.

• R · (A − A
T ) · R

−1 = B − B
T .

• R ·
(

1
2
A + 1

2
A

T − 1
3
λI

)
· R

−1 = 1
2
B + 1

2
B

T − 1
3
λI.

These three sub-representations (identity, skew-symmetric and symmetric trace-

less) are irreducible.
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g D(g) rotations χ(g)

[123]
(

1 0
0 1

)

= I Rz(0) 2

[231] 1
2

(
−1

√
3

−
√

3 −1

)

= A Rz(120 ◦) −1

[312] 1
2

(
−1 −

√
3√

3 −1

)

= B Rz(240 ◦) −1

[321] 1
2

(
1

√
3√

3 −1

)

= E R
E
(180 ◦) 0

[213] 1
2

(
1 −

√
3

−
√

3 −1

)

= D R
D

(180 ◦) 0

[132] 1
2

(
−1 0
0 1

)

= C R
C
(180 ◦) 0

Note that D(g) serves also to represent the 6-element crystallographic dihe-
dral group with three axes of symmetry, when 3 identical atoms are fixed at

the vertices of an equilateral triangle in the x–y plane: (0, 1),
( √

3
2 ,−1

2

)
and

(
−

√
3

2 ,−1
2

)
. There are 3 in-plane rotations and 3 reflections which leave the

triangle invariant. These 6 symmetry operations are: 3 rotations Rz about a
z-axis perpendicular to the x–y plane at its origin with the respective angles
0, 120 ◦, 240 ◦, a reflection R

C
about the y axis, a reflection R

D
about an

altitude drawn from
( √

3
2 ,−1

2

)
, and finally a reflection R

E
about an altitude

drawn from
(

−
√

3
2 ,−1

2

)
.

It is an indication of the versatility of the group concept, that in addition
to the groups whose order is finite or denumerably infinite, there are groups
the elements of which form a continuum. For example, the real numbers
form an Abelian group L under addition. Also, the 2 × 2 active rotation

matrices R(θ) =
(

cos θ sin θ
− sin θ cos θ

)

form an Abelian group O(2) under matrix

multiplication, since R(θ1)R(θ2) = R(θ1 + θ2) [clearly L and O(2) are not
isomorphic, but rather homomorphic].

The group O2 is an example of a group whose elements depend on one or
more continuous parameters. The functional dependence is not only continu-
ous but also differentiable to any order provided a suitable set of parameters
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is used in each region of the group manifold. Such groups are known as Lie
groups. Obviously, we cannot write down a “multiplication table” in the ordi-
nary sense for such a group. The neighborhood of the identity (i.e. of θ = 0
in the O(2) example) is of special significance, since the identity element is
I = R(0), and the inverse of R(θ) is R(−θ). In the neighborhood of the
unit element the group structure of L and O2 is similar. Such a neighborhood
is known as a group germ, and both L and O2 have isomorphic group germs.
Indeed, for small angles δθ, the infinitesimal rotation operator takes the linear
form

R(δθ) =
(

1 δθ
−δθ 1

)

.

Some examples of Lie groups will indicate the range of applications of
the ideas. Generally, a Lie group of r parameters has elements which de-
pend on r real parameters in an r dimensional space and are so related that
if A(γ) = A(β)A(α), where α, β, γ each have r components, then the pa-
rameters satisfy γ = f(β, α) and each component of f is analytic in all
components of α and β294. Some of the more important Lie groups are:

• GL(n): The general linear group in n dimensions consist of all real
non-singular n × n matrices. It has n2 parameters ranging over a non-
compact domain.

• SL(n): The special linear (or unimodular) group is a subgroup of GL(n)
which consists of matrices whose determinant is unity. This condition
reduces the number of parameters by one.

• O(n): The orthogonal group in n dimensions consists of all real n × n
matrices A which satisfy AAT = I. There are 1

2n(n − 1) angle pa-
rameters that have a compact domain. Only proper rotations can be
reached by starting from the identity and applying successive infinites-
imal rotations. The subgroup of O(n) consisting of proper rotations
only (no reflection allowed) is SO(n), which can also be defined as a set
of matrices A of O(n) such that det A = 1.

• U(n): The unitary group in n dimensions consist of all n × n matrices U
with complex elements satisfying UU+ = I, where U+ = (U ∗)T . The

number of real parameters is n2. [In 2 dimensions U =
[
a b
c d

]

, where

aa∗ + bb∗ = 1, cc∗ + dd∗ = 1, ac∗ + bd∗ = 0.]

294 In general, more than one chart of coordinates α may be needed to cover the

group manifold, with analytic maps α′(α) relating the coordinates of any two

intersecting chords inside their overlap region
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• SU(n): The special unitary group is a subgroup of U(n) whose matrices
have a determinant of unity. This reduces the number of real parameters
to n2 − 1.

• The affine group in three dimensions consists of all transformations of the
form r′ = Ar + a, where A is a non-singular matrix and a is a vector.
This group has 12 parameters. One important subgroup is the group of
rigid rotations and translations, in which A is restricted to orthogonal
matrices.

• The fractional linear (or projective) group, under substitution in two
variables, consists of all transformations of the type x = a11x+a12y+a13

a31x+a32y+a33
,

y = a21x+a22y+a23
a31x+a32y+a33

and has 8 parameters.

In one variable, all expressions of the form w = az+b
cz+d form a group under

substitution, where a, b, c, d are parameters which satisfy ad − bc = 1.
If w and z are complex variables and (a, b, c, d) are complex parameters
then this is a group of conformal representations. One particular finite
subgroup of this continuous group has already been mentioned earlier. It

consists of the 6 functions
{

z, 1
1−z , 1 − 1

z , 1
z , 1 − z, z

z−1

}
.

• A one-parameter group of general transformations: Consider the
transformation of coordinates (not axes) given by x′ = f(x, y; a);
y′ = φ(x, y; a), where a is an arbitrary parameter. The transformation
carries the point M(x, y) in the x–y plane to another point M ′(x′, y′) in
the same plane. To each value of the parameter a corresponds a definite
transformation. Varying this parameter, we obtain an infinite number of
different transformations.

Suppose that we carry out in succession two different transformations of
this set, corresponding to two values of a and b of this parameter. The first
transformation will carry the pair (x, y) into (x′, y′) according to the above
equations. The second transformation will carry (x′, y′) into a third pair
(x′ ′, y′ ′) such that x′ ′ = f(x′, y′; b); y′ ′ = φ(x′, y′; b). Substituting (x′, y′)
from the first transformation, we find x′ ′ = F (x, y; a, b), y′ ′ = Φ(x, y; a, b),
which defines a point-transformation depending on two parameters a and b.

We shall say that the set of transformations f and φ form a continuous one-
parameter group if the new transformation belongs to this set. It is necessary
and sufficient for this that x′ ′ = f(x, y; c); y′ ′ = φ(x, y; c), where c = ψ(a, b)
for some function ψ.

Examples are: {x′ = x + a; y′ = y + 2a}; {x′ = x cos α − y sin α;
y′ = x sin α + y cos α}; {x′ = ax; y′ = a2y}. But x′ = x + a; y′ = y + a2

do not form a group.
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Such a group contains the identity transformation

f(x, y; a0) = x, φ(x, y; a0) = y

for some value a = a0 of the parameter. If ε is small, the transformation
x1 = f(x, y; a0 + ε); y1 = φ(x, y; a0 + ε) will be such that x1 differs only
infinitesimally from x, and y1 from y. This transformation therefore differs
only infinitesimally from the identity transformation, and is said to be an
infinitesimal transformation.

The idea of a group is one which pervades the whole of mathematics, both
pure and applied. In the particular form of the study of symmetry, group
theory can claim to have its origin in prehistoric times. Nowadays, group
theory is developed in an abstract way so that it can be applied in many
different circumstances — but many of these still concern symmetry.

The notion of group (though not the term) originated (1770) in the works
of Lagrange and Vandermonde on permutation groups. Lagrange moved
toward the definition of the group concept in his attempts to solve the gen-
eral quintic equation. He proved that the number of elements in a group is
divisible by the number of elements in any of its subgroups (1770, Lagrange’s
Theorem). A.L. Cauchy (1815) investigated permutation groups and discov-
ered several basic theorems. Galois (1829 to 1832) laid the foundations to
the theory of groups in his group-theoretical approach to the problem of solv-
ability of algebraic equations by radicals. Auguste Bravais295 (1811–1863,
France) studied the symmetry of crystalline lattices by means of rotations
and translations of their patterns into themselves. He thus advanced both
crystallography and group theory (1848 to 1851).

A. Cayley (1854) presented the first technical definition of a group, list-
ing postulates and representing a finite group by its multiplication table.
He later (1878) asserted the equivalence of isomorphic groups296. Ludvig
Sylow (1832–1918, Norway), discovered (1872) the fundamental theorem of
permutation groups297.

295 French physicist. Served in the navy (1831–1857), and as a professor at the

École Polytechnique (1845 to 1856). Demonstrated (1850) the 14 possible lattice

configurations, known as Bravais lattices.
296 Cayley theorem: Every group of finite order is isomorphic to a subgroup of the

permutation group Sn =

(
1 , 2 , 3 , . . . , n

s1, s2, s3, · · · , sn

)

, also known as the symmetry

group for some n.
297 If p is a prime number and α is a positive integer such that pα divides the order

of the group but pα+1 does not, then the group has a subgroup of order pα.
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The progress that was made by means of theory of groups in the solution of
algebraic equations of higher degree, induced mathematicians of the mid 19th

century to attempt to use the theory of groups in the solution of equations of
other forms, in the first instance the solution of differential equations, which
play such an important role in the applications of mathematics. This attempt
was rewarded with success.

Although the place occupied by groups in the theory of differential equa-
tions is entirely different from their role in the theory of algebraic equations,
the applications of the theory of groups to the solution of differential equa-
tions led to substantial extension of the very concept of a group and to the
creation of a new theory of the so-called continuous group (Lie groups), which
have proved to be extremely important for the development of many branches
of mathematics and physics.

M.S. Lie298 established (1874 to 1891) the theory of continuous groups
and applied it to the classification and integration of ODE. Georg Frobe-
nius (1896 to 1903) expanded the study of group representations to all finite
abstract groups. He introduced and developed the concepts of reducible and
completely reducible representations. Eliakim Moore (1862–1932, U.S.A.)
developed (1893) the theory of the group of automorphism of any finite group.

1854–1863 CE Francesco Brioschi (1824–1897, Italy). Mathematician,
engineer and architect. Contributed to the theory of determinants (1854)
and the application of elliptic modular functions to the solution of algebraic
equations of the 5th and 6th degree.

Brioschi was born in Milan, and graduated from the University of Pavia
(1845). He taught mechanics, architecture and astronomy at Pavia and the
Istituto Tecnico Superiore in Milan (1863–1897).

1854–1883 CE Gustav Robert Kirchhoff (1824–1887, Germany). Dis-
tinguished physicist. Made important contributions to the theory of circuits,
using topology, and to elasticity.

298 Lie and F. Klein were students together in Berlin in 1869–1870 when they

conceived the notion of studying mathematical systems from the perspective of

transformation groups which left these systems invariant. Thus, Klein in his

famous Erlangen program, pursued the role of finite groups in the studies of

regular bodies and the theory of algebraic equations, while Lie developed his

notion of continuous transformation groups and their role in the theory of ODE.
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Born and educated at Königsberg, Prussia. A student of Gauss. Served as
a professor of physics at Breslau (1850), Heidelberg (1854) and Berlin (1875–
1887). Made numerous important contributions to mathematical physics. In
1857 he showed that the mechanical forces manifested by static and current
electricity were related by a constant which has the dimensions of velocity.
By comparing the attractive force of two static charges with the magnetic
force produced when they are discharged, he demonstrated that the constant
has the same magnitude as the velocity of light. Established the fundamental
laws which govern the distribution of currents in a network of conductors
(Kirchhoff circuit laws).

During 1859–1861, Kirchhoff and his collaborator Robert Wilhelm
Bunsen (1811–1899) invented the Kirchhoff-Bunsen spectroscope for chem-
ical analysis of metals placed in a flame, whereby the bright lines in the
spectra of elements could be accurately recorded. They conjectured that each
element produces a characteristic spectrum. By discovering the metal cesium
they demonstrated how new elements could be discovered via spectroscopic
analysis.

Furthermore, Kirchhoff found that for any emitting body in thermal equi-
librium, the coefficient of emission and the coefficient of absorption are in a
ratio that is a function only of wavelength and temperature. He introduced
the concepts of blackbody and emissivity. He mapped the solar spectrum, and
showed that elements such as sodium can be detected in the atmosphere of
the sun by means of the dark (absorption) lines they cause in the spectrum299.

299 The heated vapors produced an emission spectrum: bright lines against a dark

background. The nature of these bright lines depended on the elements present

in the vapor. Each element produced its own pattern of bright lines, and the

same line in precisely the same position was never produced by two different

elements. The emission spectrum served as a sort of fingerprint of the elements

present in the glowing vapor. In the course of their studies, Kirchhoff and

Bunsen detected lines that were not produced by any known element. They

suspected the presence of new and hitherto undiscovered elements and were

able to verify the fact by chemical analysis. The new elements were named

cesium and rubidium from Latin words meaning sky blue and red respectively,

signifying the colors of the lines that led to the discovery (the first elements to

be discovered spectroscopically).

Kirchhoff and Bunsen then worked with light from a glowing solid (which pro-

duced white light that consisted of a continuous spectrum) and passed that

light through a cool vapor. They found that the vapor absorbed certain wave-

lengths of light, and that the spectrum that was formed after the light had

passed through the vapor was no longer completely continuous, but was crossed

by dark lines which marked the position of the absorbed wavelengths. This was
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In 1883 he generalized the Helmholtz harmonic time solution of the scalar
wave equation (1860) to the case of transient waves.

1855 CE Heinrich Geissler (1814–1879, Germany). Physicist. Developed
a mercury pump which he uses to produce the first good vacuum tubes. Such
tubes were used in 1869 to produce “cathode rays”, leading eventually to the
discovery of the electron.

1855 CE Henry Bessemer (1813–1898, England). Inventor and manufac-
turer. Developed the Bessemer process of converting pig iron to steel. In this
process a blast of air burns most impurities out of the molten pig iron. In 1830
he established his own steelworks at Sheffield and financed the experiments
that promoted his invention. It was soon adopted throughout the world.

1855 CE William Parsons (1800–1867, England and Ireland). As-
tronomer. First to record observations of the spiral structure of galaxies.
The nature of these spiral nebulae remained a source of speculations until
1924.

Using a large telescope of his own design (built 1827–1845) he was able
to distinguish spiral structure in what we know today as the whirlpool galaxy
(M51, in the constellation of Canes Venatici, 15 million light years away from
earth).

William Parsons, the 3rd earl of Rosse, was born in York, England. He
was rich, liked machines, and was fascinated with astronomy. Accordingly he
set about the business of building gigantic telescopes. In February 1845 he
completed a 183 cm reflecting telescope at his estate in Birr Castle, Ireland.
The contraption was mounted at one end of a 18.3 m tube that was controlled
by cables, straps, pulleys, and cranes. For a brief time it was the largest
telescope in the world.

In the course of 20 years, Lord Rosse examined many of the nebulae that
had been discovered and catalogued by William Herschel, and observed
that some of these have a distinct spiral structure. Because he did not have
any photographic equipment, he had to make drawings of what he saw. His
drawing of the M51 captured the salient features of modern photographs of
the galaxy. Views such as this inspired Lord Rosse to echo Kant’s (1755)
theory that these objects might be “island universes” — vast collections of
stars far beyond the confines of the Milky Way.

an absorption spectrum, and it seemed clear that the solar spectrum was an

example of this.
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The poor weather over Birr Casle usually limited the capabilities of the
big telescope. Nevertheless, the whirlpools of light stood clearly against the
black background of space.

1855–1859 CE John Henry Pratt (1809–1871, England and India).
Geophysicist and clergyman. Introduced (with Airy) the concept of isostasy
compensation and calculated the average depth of density compensation to be
100 km. Gave 43 km as the difference between equatorial and polar radii of
the earth.

Pratt postulated (1855) density difference in the crust of the earth: lower
density under mountains, high density in the lowlands — to explain the too
nearly constant values obtained for gravity of a given latitude. In the same
year, Airy offered a different explanation (though based on the same principle)
of the gravity data. Both proposals have their merits but are oversimplifica-
tion of the actual situation.

Pratt was archdeacon of Calcutta (1850–1871).
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The Hindu Puzzle

Before the middle of the 18th century, geologists and geodesists regarded
mountains as composed of matter of much the same density as the rest of
the crust, and it was not recognized that their weight would be expected to
produce any deformation of the matter below them, nor that the density of the
matter below a mountain range might differ systematically from that of the
matter at an equal depth below a plain or even an ocean. Now, if a mountain is
considered merely as an extra mass superposed on a previously uniform crust,
and its deforming effect in the interior is ignored, it is possible to compute all
components of its contribution to gravity on bodies in its neighborhood. The
attraction can also be found experimentally and the result compared with
that calculated.

The experiment was carried out on several mountains during the 18th
century with unexpected results. Indeed, the measurements of P. Bouguer
(1749) of the deflection of gravity due to the mountain Chimborazo (Andes),
of Maskelyne (1774) at Schiehallion (England) and Petit (1849) in the Pyre-
nees, showed that the attraction of mountains was generally nearer to zero
than to the values calculated on the supposition that the underlying matter
was of normal density.

The modern development began with the discussions of Pratt (1855) and
Airy (1855) on the deflections of gravity observed by Everest during the great
land survey in India (1830–1843): the distance between Kaliana (some 100
km south of the Himalayas range, and Kalianpur (600 km further south), was
determined in two precise ways – by measurement over the surface and by
reference to astronomical observations – and the results disagreed by some
150 meters over 600 kilometers. This may seem to be a small amount, but it
was an intolerable surveying error even by 19th century standards.

The astronomical method of measuring distances uses the angles of stars
w.r.t. the vertical, which are defined by a plumb line (a weight suspended on
a string). To account for the difference, it was proposed that the plumb line
was tilted toward the Himalayas because of the gravitational attraction of the
mountains on the plumb bob, causing an error in the distance measurement.
When, however, the calculation was actually made, it was found that the
mountains should have introduced an even larger error – one of about 450
meters – thus compounding the puzzle!

Following an earlier suggestion by Cavendish (1772), Pratt and Airy
(1855), independently, came forward with an explanation for the discrepancy
that contained the basis of the principle of isostasy (the actual word isostasy
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was coined in 1889 by C.E. Dutton). Accordingly, the enormously heavy
mountains are not supported by a strong rigid crust below, but that they float
in a “sea” of rock. Thus, the excess mass of the mountain above sea-level is
compensated by a deficiency of mass in an underlying root (since the lighter
mountain-base material locally displaces the denser “rock-sea” material). This
root provides the buoyant support, in the manner of all floating bodies such as
a ship with a deep hull or an iceberg. The plumb bob “feels” both the excess
mass on top and the deficiency of mass below; hence the reduced deflection.

The principle of isostasy is thus the Archimedes principle of buoyancy
applied to the flotation of continents and mountains, which holds that the
relativity light continents float on a more dense mantle. The supportive root
must develop as part of a process that provides buoyancy and keeps the load
from sinking300. A simplified quantitative treatment of the above idea develops
as follows:

If the mass of the earth is M , its mean density ρ̄, and its radius a, the
acceleration of gravity at the surface in the absence if any disturbance is

g0 = G
M

a2
=

4
3
πGρ̄a.

At height h above the surface, in the free air, the intensity is

g0
a2

(a + h)2
� g0(1 − 2h

a
).

If instead of the space between sea-level and height h being empty, it is filled
by matter of density ρm and a shape of width ∼ h, the theory of Newtonian
attraction predicts an additional contribution of (2πGρmh) to the intensity
of gravity above it. In order to remove the gravitational attraction of local
topography the P. Bouguer gravity anomaly correction, Δg = −2πGρmh,
must be applied to the data.The overall excess of gravity at height h over its
value at sea-level should be

−[
2g0h

a
(1 − 3

4
ρm

ρ̄
)].

Although the Bouguer gravity formula is effective in removing the gravita-
tional influence of local topography, it is not effective in removing the influence

300 One variant should be mentioned: if for some reason (e.g. regional heating)

a part of the upper mantle becomes less dense than the adjacent mantle, it

will also exert a buoyant force that can support elevated topography above it

without the need for a crustal root. Here the lower density mantle serves as a

root.
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of regional topography: a mountain or valley with a small horizontal scale, say
10 km, can be supported by the elastic lithosphere without deflection and
consequently does not influence the density distribution at depth. However,
the load due to a mountain range with a larger horizontal scale, say 100 km,
deflects the lithosphere downwards as well as the so-called Moho discontinuity
in which it is embedded. Because crustal rocks are lighter than mantle rocks,
this results in a low density root for the mountain range with a large hori-
zontal scale. The mass associated with the topography of the mountains is
compensated at depth by a low-density root. According to Pratt, the density
of the root varies horizontally as a function of the elevation h according to
ρp = ρ0

w
w+h , where ρ0 is the surface density corresponding to zero elevation

and w is referred to as the depth of compensation. According to Airy (1855),
the density of the crust ρc and the mantle ρM are assumed to be constant. A
crust feature with an elevation h has a crustal root of thickness

b =
ρc

ρM − ρc
h,

derived from the principle of hydrostatic equilibrium.

Clearly, compensation in the lithosphere may be a complex combinations
of both the Pratt and the Airy models.

The resolution of the ‘Indian Puzzle’ not only led to the notion of isostasy
but also introduces gravity surveying as a method for detecting mass variations
in the interior by their corresponding gravity variations.

1855–1858 CE Rudolf Ludwig Carl Virchow (1821–1902, Germany).
Pathologist and political leader. Founded cellular pathology. Extended and
applied cell theory to problems of pathology301 and disease and set forth the
principle that the outward symptoms of disease are merely the reflections of
impairment at the level of cellular organization. He also advanced the notion
that all cells arise from pre-existing cells: “Omnis cellula e cellula”. His book

301 Pathology — the study of disease. Pathology took definite form with Giovanni

Morgagni’s (1682–1771, Italy) Seats and Causes of Disease (1761), correlating

disease symptoms with the underlying pathology of the organs.

Xavier Bichat (1771–1802, France) introduced the concept of tissue to un-

derlie pathological anatomy. Karl von Freiherr Rokitansky (1804–1878,

Austria) systematized modern post-mortem protocol and described many spe-

cific conditions such as gastric ulcer and acute yellow atrophy of the liver.
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Cellular Pathology (1858) established the cell as the fundamental pathological
unit and permitted such processes, as inflammation, tumor growth (cancer)
and degeneration, to be understood in cellular terms.

Virchow was born at Schivelbein, in Pomerania. He took a M.D. degree in
Berlin (1843). Professor of pathological anatomy, Würzburg (1849) and Berlin
(1856). Carried on research on blood, phlebitis, tuberculosis, rickets, tumors,
trichinosis, etc. Made sanitary reforms in Berlin; established farms utilizing
sewage for fertilizing the land. Founder and leader of the German Liberal
party. Member of the German Reichstag (1880–1893); opposed policies of
Bismarck.

1855–1868 CE Jules-Antoine Lissajous (1822–1880, France). Physi-
cist. Studied the vibrations of bodies under combined excitations of different
frequencies phases and amplitudes302. Found a simple way visualizing and
studying these vibrations by reflecting a light beam from a mirror attached to
a vibrating object onto a screen (1855–1857); e.g. by successively reflecting
light from mirrors on two tuning forks vibrating at right angles. The result-
ing Lissajous-figures could be seen only because of persistence of vision in the
human eye (no oscilloscopes available at that time!).

Lissajous entered the Ecole Normale Superieure (1841) and was awarded
a doctorate thesis on vibrating bars using Chladni’s sand pattern method to
determine nodal positions (1850).

1855–1868 CE Nathanael Pringsheim (1823–1894, Germany). Bota-
nist. One of the first to demonstrate sexual reproduction in algae (1855).
Observed sperm penetration of the egg of Oedogonium.

1855–1876 CE Alexander Bain (1818–1903, Scotland). Philosopher and
psychologist. Referred to by many as the first real psychologist. Devel-
oped psychology as a discipline apart from philosophy and physiology and

302 These had been observed earlier (1815) by Nathaniel Bowdich (1773–1838,

USA), mathematician and astronomer. Consider a particle forced to vibrate

harmonically, with two simultaneous motions at right angles

x = xm cos(ωxt + φx); y = ym cos(ωyt + φy).

The path of the particle in the x − y plane is a Lissajous curve. If ωx
ωy

is a rational

number, the angular frequencies are commensurable and the curve is closed i.e.

the motion repeats itself at regular intervals. Even for ωx = ωy, xm = ym the

curves will depend on the phase-difference φx − φy. If ωx
ωy

is irrational, then

the curve is open. Lissajous observed beats when his tuning forks had slightly

different frequencies; it showed as a rotating ellipse for the case ωx = ωy.
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attempted to relate known physiological facts to psychological facts. Ex-
tended the associationist approach to all areas of psychological functioning,
including habit and learning. Coined the term “trial and error”; wrote the
first textbook on psychology in English (1855, 1859); and founded the first
psychological journal, Mind, in 1876.

Bain was born in Aberdeen. Studied mathematics, physics and philosophy
at Marischol College and later came under the influence of John Stuart Mill
(1842). Appointed professor of mathematics and natural philosophy in the
University of Glasgow but in 1846 resigned his position and devoted himself
to literary work. Lived in London since 1848 and acquired wide influence as
a logician and grammarian. Guided the awakened psychological interest in of
British thinkers of the second half of the 19th century.

1855–1878 CE David Edward Hughes (1831–1900, England and USA).
Inventor. Invented (1855) a keyboard telegraph with rotating type-wheel
printer that grew into modern telex industry. Invented the carbon micro-
scope303 (1878).

Efforts to improve the telephone transmitter invented by Alexander Gra-
ham Bell (1876) led to the development of the microphone. Other micro-
phone inventors included: Philip Reis (1861), Emile Berliner (1877) and
Thomas Edison (1877).

Hughes was born and died in London. He emigrated with his parents to the
United States (1838). In 1850 he became a professor of music at the College of
Bardstown, Kentucky. He abandoned his academic career (1854) and moved
to Louisville to manufacture his type-printing telegraph machines. In the
succeeding ten years it came into extensive use all over Europe. It used a
keyboard in which each key caused the corresponding letter to be printed at a
distant receiver. It worked a bit like a ‘golfball’ typewriter and was produced
before the typewriter was invented. The modern teleprinter, telex system
and the computer keyboard are all direct descendants of his invention. His
invention of the loose-contact carbon microphone became vital to telephony
and later to broadcasting and sound recording. Hughes refused to patent his
inventions and revealed it to the general public.

303 Charles Wheatstone was first to use the word microscope (1827). Hughes

(1878) revived the term in connection with his discovery that a loose contact in

a circuit containing a battery and a telephone receiver would give rise to sounds

in the receiver corresponding to vibrations impinged upon the diaphragm of the

mouthpiece or transmitter.
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1856 CE Norman Robert Pogson (d. 1891, England). Amateur as-
tronomer. Proposed a quantitative scale of stellar magnitude that is now
generally adopted.

1856 CE Philipp Ludwig von Seidel (1821–1896, Germany). Mathe-
matician. Presented the earliest systematic treatment of third-order geomet-
rical aberrations304 which was extremely important in the design and con-
struction of lens system in cameras and other optical instruments. [In earlier
optical system such as telescopes, only those points and rays were considered
which lie in the immediate neighborhood of the axis. The resulting theory is
known as Gaussian optics].

Seidel entered the University of Berlin in 1840 and studied under Dirich-
let. He moved to Königsberg where he studied under Bessel, Jacobi and
Franz Neumann. He obtained his doctorate from Munich University (1846)
and he went on to become a professor there.

1856 CE Adolf Eugen Fick (1829–1901, Germany). Physiologist. Devel-
oped fundamental laws of diffusion in living organisms. Professor at Zürich
(1852–1868) and Würzburg (1868–1899).

Fick’s law consists of the observation that for small concentration gradi-
ents, the diffusive flux J is proportional to the gradient of the concentration
c [J = −D grad c, where D is the diffusion coefficient and the minus sign
shows that the flow is in the direction from higher to lower concentration].
This law treats diffusion from the macroscopic point of view.

304 First order geometrical ray theory (Gaussian optics) is based on the assumption

that the optical system is restricted to operate in an extremely narrow region
about the optical axis — this is known as the paraxial approximation. Math-

ematically, one takes here sin ϕ ≈ ϕ. Obviously, if rays from the periphery of

a lens are to be included in the formation of the image, the statement that
sin ϕ ≈ ϕ is unsatisfactory. Seidel retained the first two terms in the expansion

sin ϕ = ϕ − ϕ3

3!
+

ϕ5

5!
− ϕ7

7!
+ . . .

which resulted in a third order theory. Departures from first-order theory are

then embodied in the five primary aberrations: spherical aberration, coma, astig-

matism, field curvature and distortion (‘Seidel aberrations’). The difference be-

tween the results of exact ray tracing and the computed primary aberrations are

the sum of all contributing higher aberrations. More refined treatment of aber-

rations is based on physical optics via diffraction theory. K. Schwarzschild

(1905–1906) extended Seidel’s analysis to include 5th order terms.



1856 CE 2177

Fick was the first to put diffusion on a quantitative basis by adopting
the mathematical equation of heat conduction derived some years earlier by
Fourier (1822). Moreover, he recognized that the transfer of heat by conduc-
tion is due to random molecular motion. He was one of the first to actually
experiment with contact lenses on animals and then, finally, fit contact lenses
to human eyes.

1856 CE Discovery of the first Neanderthal remains in Germany.

1856–1901 CE Pierre Eugène Marcellin Berthelot (1827–1907,
France). Chemist and politician. One of the most distinguished chemists
of the 19th century. His interests were extraordinarily wide and his work was
highly original and of a fundamental character. First to synthesize organic
compounds from inorganic ones305.

By the synthetic production of numerous hydrocarbons, natural fats and
sugars, he showed that organic compounds can be formed by ordinary methods
of chemical manipulations, and obey the same laws as inorganic substances.
He held that chemical phenomena are not governed by special laws peculiar to
themselves, but rather are explicable in terms of the general laws of physics,
and are in operation throughout the universe (1860). Discovered the partition
law306 for solubility of a substance in a mixture of liquids (1872).

Berthelot was born in Paris, the son of a doctor. After distinguishing
himself at school in history and philosophy, he turned to the study of science.
In 1851 he became a member of the staff of the College de France, and in 1865
became a professor of organic chemistry there. He was appointed inspector
general of higher education in 1876, minister of public instruction (1886–1887),
and held the portfolio of foreign affairs in the cabinet of 1895–1896.

1856 CE Christoph Hendrik Diederik Buys-Ballot (1817–1850, Hol-
land). Meteorologist. Professor at Utrecht University (1847). For-
mulated the law determining the swirl direction of large storms and
hurricanes307 [counterclockwise in the Northern Hemisphere as viewed from

305 When he began his active career it was generally believed that on the whole,

organic chemistry must remain an analytical science and could not become a

synthetic one, because the formation of organic compounds required the inter-

vention of vital activity of some form.
306 The weights of dissolved substance per unit volume of each liquid are in constant

ratio.
307 Big storms in the atmosphere are usually centered on low-pressure areas. Inde-

pendently, William Ferrel, in the United States (1859), gave a mathematical

formulation of atmospheric motions on a rotating earth and applied his theory

to the general circulation of both the atmosphere and the oceans.
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above the North Pole (direction of earth’s spin) and clockwise in the South-
ern Hemisphere – in accord with the Coriolis effect (1835)].

1857–1866 CE A submarine telegraphic cable was laid across the Atlantic
Ocean from Ireland to Newfoundland. Otway H. Berryman made a line of
soundings from the U.S.S. Arctic to verify the existence of a submarine ridge
on which it was proposed to lay the telegraph cable (1856) [see Table 4.4]

1857–1880 CE Joseph Wilson Swan (1828–1914, England). Inventor.
Notable for his achievements in photography, synthetic textiles and electric
lighting. A rival of Edison.

Swan was born in Sunderland and after leaving school at 13 was appren-
ticed to a druggist. In 1846 he joined a pharmaceutical business in Newcastle
which also manufactured photographic plates, and thus Swan was led to one of
the advances in photography with which his name is associated – the produc-
tion of extremely rapid dry plates based on his observation that heat increases
the sensitiveness of a gelatino-bromide of silver emulsion (1857). The patent
was bought by George Eastman, founder of Kodak, and helped make pho-
tography cheaper and thus widely popular.

He was one of the first (since 1848) to undertake the production of electric
lamp in which light should be produced by the passage of an electric current
through a carbon filament, but it was not until Herman Sprengel (1834–
1906, Germany and England)developed his mechanized air-pump (1865) that
it became possible to achieve the necessary vacuum in the bulb. A scientific
American article of July 1879 mentioned how Swan had designed an incan-
descent lamp using carbon shaped into a form of a cylinder.308

In 1880 he established a small factory near Newcastle and within three
years he was manufacturing 10,000 lamp bulbs a week. In 1883 he amalga-
mated his business with Edison to form the ‘Ediswan’ Electric Light Company.

308 Edison admitted to have read this article. Swan defenders claim Edison stole

this idea from Swan. Edison backers claim Edison read this article after he

designed his own carbon filament. Apparently, neither of them was the sole

inventor. More than 30 experimenters have been known to work on the perfec-

tion of incandescent electric lighting during 1802–1879 and carbon had been an

ingredient of experimental light bulbs 50 years before Edison.
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Table 4.6: Development of world-wide electromagnetic

Telegraphy Communications (1831–1866)

1831 Joseph Henry (USA) sent an electric charge over 1.5 km
of a single wire, where an electromagnet produces a force
on a suspended permanent magnet that rang a bell.

1831 C.F. Gauss and W. Weber (Germany) built an electro-
magnetic telegraph that operated over a distance of 2 km.
It used a mirror-galvanometer as a receiving device.

1836–1837 John Daniell and Charles Wheatstone improved the
voltaic cell, creating a stable source of current.

1838 Carl August von Steinheil (1801–1870, Germany) dis-
covered the possibility of using the earth for a return con-
ductor in telegraphy (grounding). He also invented a tele-
graph system in which characters are printed on a paper
ribbon.

1839 William Oshaughnessy (British) laid a telegraph cable
which crossed the Ganges in India.

Samuel Morse (USA) laid down a telegraph cable in the
port of New York (Detected the use of an electromagnet for
transmitting signals in 1837).

1844 Samuel Morse (USA) set up a 60 km telegraph line be-
tween Washington DC and Baltimore.

1846 New York City was linked with Washington DC.

1851, Dec 31 England and France combined efforts to lay the first sub-
marine cable across the English Channell from Dover to
Calais (ca 33 km).

1852 England was linked telegraphically to Ireland, Belgium,
Holland, and Denmark.

1853 The Rhine was crossed at Worms.

1854 Turkey was linked with Crimea, across the Black Sea.
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1855 David Edward Hughes (England and USA) invented a
keyboard-telegraph with rotating type-wheel printer that
grew into modern telex industry.

1855 The Mediterranean was crossed from Italy to Corsica, from
Corsica to Sardinia and from Sardinia to Bône.

1856 Twelve companies in the USA combined to form the West-
ern Union Telegraph Company.

1858, Aug 18 The first cablegram from America to Europe was sent across
the Atlantic. It took 35 minutes to arrive. The text con-
sisted of a congratulation of US President Buchanan to
Queen Victoria. It read:

“Europe and America are united by telegraphy. Glory to
God in the highest, on earth peace, goodwill toward man.
It is a triumph more glorious because for more useful to
mankind than was ever won by a conqueror on the field of
battle.”

The line remained in service for 23 days only when the cable
broke. Silence fell over the Atlantic for the next 6 years.

1861, Oct 24 Transcontinental coast to coast telegraph line was estab-
lished in the USA. That day, Stephen J. Field, chief justice
of California, sent the first message to President Abraham
Lincoln. It declared California’s loyalty to the Union. The
transcontinental telegraph ended the pony express, which
had operated only about 19 months.

1865 A telegraph system between India and England. It took, on
the average, 6 days to telegraph a message overland between
the two countries.

1866, Sept 08 Cyrus West Field (1819–1892, USA) and Lord Kelvin
(1824–1907, England) succeeded in laying a telegraph cable
across the Atlantic Ocean. The Old and the New Worlds
were joined together again, for “better or for worse”.
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Searching for a better filament for his bulbs, Swan dissolved cellulose in
acetic acid and extruded it through narrow jets into a coagulating fluid. Soon
afterwards Chardonnet (1839–1924, France) adopted this process to make
rayon, and it was further developed by Charles Cros (1855–1935, England)
and Edward Beran (1856–1921, England) who, in conjunction with Samuel
Courtaulds (1893–1881, England) laid the foundation of the synthetic textile
industry. Swan also made significant improvement to lead-plate batteries by
designing cellular lead plates which held the lead oxide more securely.

Swan was a self-taught experimentalist and entrepreneur, much like Edison
in the USA. He also elected FRS (1874), knighted (1904), and received many
other honors.

1858 CE Archibald Scott Couper (1831–1892, Scotland). Chemist. In-
troduced the idea of the valence bond and drew the first structural formulas
independently of Kekulé in Germany. Proposed the tetravalency of carbon
and the ability of carbon atoms to bond with each other. Couper recognized
two valencies of carbon, one in CO and one in CO2. He also assumed that
carbon atoms form the basic bone of organic compounds. Couper, who was
only 27, had sent his contribution to his former teacher, Charles Adolphe
Würtz (1817–1884) in Paris, to be presented to the French Academy of Sci-
ences. But Würtz unaccountably neglected to do this. His work first appeared
through the intervention of Jean Baptist André Dumas (1800–1884) a lit-
tle less than a month after Kekulé’s publication, and consequently Kekulé
received most of the credit.

Couper’s health, poor since childhood, thereafter failed, and after a ner-
vous breakdown he made no further contributions to chemistry309. Kekulé,
whose conceptions were not quite as close to modern ideas as Couper’s, went
on to develop the structure of benzene.

Couper was born in Kirkintillach, Scotland.

1858–1862 CE Discovery of the sources of the Nile. For thousands of years
the people of Egypt revered the Nile as a sacred river. They did not know
where it originated, nor what caused its annual flooding. But they did know
that without it their civilization might never have come into being.

With a length of 6650 km from its farthest headstream to the Mediter-
ranean, the Nile is the world’s longest river. Its drainage basin, estimated at
3,349,000 km2, includes parts of 9 countries and encompasses about 1

10 of
Africa’s land area.

309 H.C. Brown, J. Chem. Educ. 11 (1934) 331; 36 (1959) 104–110; O.T. Bently,

ibid., 319–320, and E.N. Hiebert, ibid., 320–327.
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Down through the ages the source of the great river was shrouded in
mystery despite many efforts to discover it. The task was complicated, as it
turned out, by the fact that the Nile has not one but three major sources,
since its northward flow unites the waters of its longest branch, the so-called
White Nile, with those of the Blue Nile and the smaller Atbara.

If the ancient Egyptians knew of the Blue Nile and its source, the knowl-
edge was lost. It was not until 1615 that the Jesuit missionary Pedro Paez
(1564–1622, Spain), working in the service of the Portuguese, visited the
source of the Blue Nile in the Ethiopian highlands (h. 1830 m; 11 ◦N, 37 ◦E),
southeast of Lake Tana. It was rediscovered by James Bruce (1730–1794,
Scotland) in 1770.

The White Nile proved a more difficult problem. In 150 CE, the Greek
astronomer Ptolemy placed its headwaters in a range called the Mountains of
the Moon — a range that has since been identified as the Ruwenzori Mountains
on the border between Uganda and Zaire. Although Ptolemy was not far from
the truth, attempts to confirm his theory were unsuccessful.

In the early 1800’s, European knew little more about Africa than the
Phoenicians had known in 500 BCE. However, the impetus given to research
and exploration in the prosperous Victorian era, made possible the organiza-
tion of a series of British expeditions in an effort to unveil the last mysteries of
the ‘Dark Continent ’. During the second half of the 19th century these expe-
ditions finally discovered the river’s ultimate headstream, the Kagera River,
which rises in the present-day Burundi (h. 2130 m; 2 ◦20′S, 29 ◦20′E) and flows
northeast 400 km into Lake Victoria. The overflow from the northern end of
this lake, in turn, is the beginning of the White Nile proper.

Flowing northward through Lake Kyoga, the White Nile plunges 37 m over
Murchison Falls and begins a rapid descent from the lake plateau to the low
flat plains of southern Sudan. There the river slows drastically as it spreads
out across a broad marshy area, and eventually after a northward journey of
800 km is joined by the Blue Nile at Khartoum. Although much shorter than
the White Nile, with a length of 1370 km, the Blue Nile carries 63% of the
Nile’s total waters (annual average 109 m3), being fed by summer rains on
the Ethiopian highlands. It is this sudden influx of water that accounts for
the annual flooding of the arid lower Nile Valley.

The discovery of the sources of the White Nile is a most exciting human
drama: In January 1858 Lake Tanganyika was discovered by Richard Bur-
ton (1821–1890, England) and John Hanning Speke (1827–1864, England).
On Aug. 03, 1858, Speke discovered Lake Victoria Nyanza (he did not know
at that time that he had reached the head reservoir of the White Nile). On the
28th of July 1862 Speke, at the head of a new expedition, stood by the Ripon
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Falls, where the Nile issues from Lake Victoria. In his journey he discovered
the Kagera River, now known as the most remote headstream of the Nile.

On March 14, 1864, Samuel White Baker (1821–1893, England) reached
Lake Albert Nyanza. These discoveries virtually solved the Nile problem so
far as the source of the main stream was concerned, but there remained much
to be done before the hydrography of the whole Nile basin was made known.

The project was achieved in two steps: During 1874–1889 Henry Mor-
ton Stanley (1841–1904, Wales) filled in the gaps left by Speke and Baker,
exploring the Kagera, Lake Kyoga, Lake Albert Nyanza, and the ‘Mountains
of the Moon’. Between 1891–1908, British and German teams made accurate
surveys of the entire source region.

Stellar Brightness, Magnitudes, Luminosities,

and Spectra

Hipparchos (ca 150 BCE) and Ptolemy (ca 150 CE) used a scale of
magnitude to indicate the apparent brightness of stars on their charts. The
notion of brightness is based on the amounts of light energy, or luminous
flux (erg per sec per cm2) received from stars, which are among the most
important and fundamental observational data of astronomy. It is used in
estimating the distances and the actual output of stellar energy.

By 1856, stellar photometry had developed to such a degree that accu-
rate magnitudes could be determined by visual methods. Photography was
adapted to astronomy at about the same time. John Frederick William
Herschel310 (1792–1871, England) and N.R. Pogson noticed that an av-
erage first-magnitude star was about 100 times brighter than a star of 6th

magnitude, i.e., it delivers to earth somewhat more than 100 times as much

310 His father, William Herschel, devised a simple method to measure the rel-

ative intensity of starlight (photometry): let two stars appear with different

brightness in the field of view of a telescope. They can be made to appear

equally bright, when viewed one at a time, by adjusting the aperture size for

either of them. The ratio of the relative light aperture areas then serves as an

approximate measure of the relative light intensities arriving from the two stars.
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light as a star that is just barely visible on a dark night. Therefore, a difference
of five magnitudes corresponds to a luminous flux ratio of 100: 1.

Since the physiology of sense perception is such that equal differences
of brightness correspond to equal ratios of light flux energies, Pogson sug-
gested that the ratio of light flux corresponding to a step of one magnitude
be 5

√
100 = 2.512. By assigning a magnitude 1.0 to the bright stars Alde-

baran and Altair, Pogson’s new scale gave magnitudes that agreed roughly
with those in current use at the time. Thus, for each difference of ca 5 mag-
nitudes, the ratio of brightness increases (or decreases) by a factor of 100. In
general, if m1 and m2 are the magnitudes corresponding to stars from which
we receive visible light flux in the amounts �1 and �2, the difference between
m1 and m2 is m1 − m2 = 2.5 log10

�2
�1

.

The star possessing the highest apparent brightness, Sirius, sends us about
ten times as much light as the average star of the first magnitude and so
it has the magnitude 1.0 − 2.5 = −1.5. Venus, the brightest planet, is of
magnitude −4. The sun, with a magnitude of −26.5, sends us 1010 as much
light energy as Sirius; and we also receive 1010 times as much light from
Sirius as from the faintest star that can be photographed with a 5 meter
telescope. Magnitudes are determined by eye estimates (visual), by blue-
sensitive photographic plates (photographic magnitude) and with photo cells
(photoelectric magnitude).

Since the stars are not all at the same distance from the sun, it is desirable
to calculate all magnitudes as if all were at the same distance. The term
absolute magnitude means that the magnitude of a star is calculated for a
standard distance of 10 parsecs (32.6 light-years), assuming the light intensity
to vary inversely with the square of the distance [the absolute magnitude of
the sun is about +5]. The extreme range for absolute magnitudes observed for
normal stars in −10 to +19, a range of a factor of more than 1011 in intrinsic
light output [2.51229 = 1011.6].

The difference between the star’s apparent magnitude m and its absolute
magnitude M is a measure of its distance311. The light energy-flux arriving
at the earth is called a star’s brightness and is usually expressed in erg per
cm2 per sec. The eye receives 2.512 times more energy per cm2 per sec from
a 3rd-magnitude star than from a 4th magnitude star.

In determining a star’s absolute magnitude, astronomers must make al-
lowance for non-visible radiation and for the absorption and scattering of light
in the atmosphere. The apparent magnitude of a star that we see in the sky

311 From the definition of magnitudes m − M = 2.5 log10

(10)

(r)

, where r is the

actual distance in parsecs. Combining this with the inverse-square law

(10)

(r)

=
(

r
10

)2
, we obtain m − M = 5 log10

r
10

.
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could be misleading if the star happens to emit a significant fraction of its
radiation at non-visible wavelengths [e.g., a very luminous and hot star with
surface temperature of 35, 000 K appears deceptively dim to our eyes simply
because most of the star’s radiation is emitted at ultraviolet wavelengths. Fur-
thermore, the earth’s atmosphere is opaque to many non-visible wavelengths,
and thus a sizable fraction of the radiation from the hottest stars and the
coolest stars simply does not penetrate the air to get at our eyes or telescopes].

To cope with this difficulty, astronomers have defined the bolometric mag-
nitude of a star as the star’s apparent magnitude measured above the earth’s
atmosphere and over all wavelengths. In recent years, satellites have allowed
us to determine the bolometric magnitude of many stars. The absolute magni-
tude deduced from the bolometric magnitude is called the absolute bolometric
magnitude (Mbol) of a star and is always smaller than the star’s absolute vi-
sual magnitude (M) deduced from ground-based observations at visible wave-
lengths alone, per fixed distance estimate.

By comparing satellite and ground-based data, astronomers have figured
out how much they must subtract from a star’s absolute visual magnitude
to get its absolute bolometric magnitude. This correction is called the bolo-
metric correction (BC). The luminosity (L) of a star312 is its total energy
output in units of erg ·sec−1. The star’s absolute bolometric magnitude is
directly related to its luminosity313, assuming the correct distance was used
in computing the former.

A discovery by P.A. Secchi in 1863, opened the field of stellar spec-
troscopy : in addition to its magnitudes and luminosity, a star could be char-
acterized by its spectrum, or spectral type. The physical interpretation of
this phenomenon became available only in the early 1900’s, when Niels Bohr
explained the structure of the hydrogen atom314.

312 For the sun: absolute bolometric magnitude = +4.75; absolute visual magnitude

= +4.85; L	 = 3.90 × 1033 erg·sec−1; energy flux = E	 =
L�

4πR2
�

= 6.41 × 1010

erg·cm−2·sec−1. Using the Stefan-Boltzmann law, we find for the sun’s surface

temperature T	 =
{

E�
σ

}1/4

= 5800 K.

313 Mbol = 4.75 − 2.5 log10

(
L

L�

)
. Knowing the star’s Mbol and using this equa-

tion, astronomers can calculate how much energy is released from the stars

surface each second.
314 Each dark line in a stellar spectrum is due to the presence of a particular

chemical element in the atmosphere of the star observed. The differences in both

continuous stellar spectra and their elemental absorption lines are due to the

widely differing temperatures in the outer layers of the various stars. Hydrogen,

for example, is by far the most abundant element in all stars, but hydrogen lines
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1858–1866 CE Max Johann Sigismund Schultze (1825–1874, Ger-
many). Anatomist, zoologist and cytologist. Altered the conception of the
cell (1861); advanced the correct theory of retinal function (1866); demon-
strated minute nerve endings in the ear (1858) and nose (1863); introduced
new techniques in histology.

Schultze was born at Freiburg (Baden). He studied medicine in Berlin;
Professor at Halle (1854–1859) and Bonn (1859–1874).

Schultze recognized the protoplasm with its nucleus as the fundamental
common substance for all forms of life (emphasizing the living protoplasm
and not the membrane). Advanced the duplexity theory of retinal function by
identifying the retinal cones as color receptors and the rods for night vision.

1858–1872 CE Siegfried Heinrich Aronhold (1819–1884, Germany)
and Rudolph Friedrich Alfred Clebsch (1833–1872, Germany). Mathe-
maticians. Developed independently a consistent symbolism in invariant the-
ory: a method for systematic investigation of algebraic invariants. We now
recognize in this symbolism as well as in Hamilton’s vectors, Grassmann’s
‘gap’ products and Gibbs’ dyadics — special aspects of tensor algebra.

Clebsch was born at Königsberg in Prussia, and studied at the university
of that town. During 1858–1863 he held the chair of theoretical mechanics
at the Polytechnicum in Carlsruhe. In 1863 he accepted a position at the
University of Giessen. In 1868 he went to Göttingen, and remained there
until his death. He worked successively in the fields of mathematical physics,
the calculus of variations, partial differential equations of the first order, the
general theory of curves and surfaces, the theory of invariants and Abelian
functions. He introduced the topological concept of a genus of a curve.

do not necessarily show up in a star’s spectrum: if the star is much hotter than

10,000 K, high energy photons pouring out of the star’s interior easily knock

electrons out of the hydrogen atoms in the star’s outer layers, ionizing the

gas. The hydrogen ions have no electrons in their lower energy levels to absorb

photons and produce Balmer lines. Conversely, if the star is much cooler than

10,000 K, the majority of photons escaping from the star do not posses enough

energy to boost many electrons up from the ground state of the hydrogen atoms.

These unexcited atoms also fail to produce Balmer lines. A prominent set of

Balmer lines is a clear indication that the star’s surface temperature is about

10,000 K. Only then is an appreciable number of atoms excited to the second

energy level, from which they can absorb additional photons and rise to still

higher levels of excitation. These photons correspond to the wavelengths of the

Balmer series, which is the part of the spectrum that is readily observable.
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Aronhold was born in Angerburg to Jewish parents, and died in Berlin. He
was educated at the University of Königsberg (1841–1845) under Bessel, Ja-
cobi, Hesse and F. Neumann and in Berlin under Dirichlet and Steiner.
From 1852 to 1854 Aronhold taught at the Artillery and Engineer’s School
at Berlin. He also taught at the Royal Academy of Architecture at Berlin
from 1851. Aronhold was appointed professor at the Royal Academy of Arts
and Crafts. In 1864 he became a professor at the Berlin Royal Academy of
Architecture.

1858–1875 CE Joseph William Bazalgette (1819–1891, England).
Civil Engineer. Planned and constructed London’s main drainage system
and Thames embankment (1860–1874). It consisted of 130 km of large inter-
secting sewers, draining more than 250 km2 of buildings, and calculated to
deal with some 1.7 million m3 a day. The cost was 4.6 million pounds.

As late as 1850, towns and cities were plagued by three problems: dispers-
ing of the rain-water which might cause floods, of the miscellaneous rubbish
which in the course of times would make the streets impassable, and of the
decomposing of organic matter which was not merely an offensive nuisance
but a grave danger to health.

Since the Great Fire of London (1666), dumping places for rubbish has
been officially provided in the streets of the City, from which refuse was re-
moved by a paid staff of ‘rakers’. The content of the privies were removed
by ‘night-soil men’ at times when the streets were deserted. Much was sold
for agricultural uses and the rest was tipped into Thames. By the end of
the 18th century a town like London, with more than a million inhabitants,
was driven to attempt a number of solutions, all of which proved increasingly
inadequate. One of those was the water-closet: when flushed, discharged the
content directly to a cesspool (in the basement or under the garden) which
was emptied at something like annual intervals. But the cesspool constituted
a double danger to health, from the effluvia which commonly entered the
house and from the leakage which tainted wells, rivers and water-pipes.

By 1840 the situation in London became horrible: evil-smelling mudbanks
proclaimed the fact that the river fleet and the other rainwater sewers were
discharging vast quantities of household effluent into the Thames, to be carried
to and for on the tide even in the heart of the capital. In 1855, after 20,000
Londoners had died in two cholera epidemics, a Metropolitan Board of Works
was set up, with Bazalgette as its chief engineer.

Bazalgette built five main sewers running parallel to the course of the
Thames, three on the north bank and two on the south, which would be
capable of dealing with all household sewage, together with the normal flow
of rainwater. At first all sewage was discharged into the Thames. Later,
however, chemical clarification of the river waters was established.
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1858–1882 CE Friedrich August Kekulé (von Stradonitz, 1829–1896,
Germany). Distinguished organic chemist. Made far-reaching contributions to
chemical theory, especially in regard to the constitution of carbon compounds.
Established, simultaneously with Couper, the 4-valence315 of carbon (1858)
and the fact that carbon atoms can chemically combine with one another to
form chains. First to perceive the correct structure of Benzene.

Kekulé drew chemical structural formulae in which he represented each
atom in the molecule as possessing a number of hooks, or bonds equal to its
valence, and then wrote those bonds into a formula so that the atoms seemed
held together in tinker-toy fashion. For over a century now, chemists have
been able to use the Kekulé system as a guide to the possible structure of
new compounds and to the number of isomers possible in a given case. The
system has been greatly refined and made at once more complicated and more
flexible, but its main outline still stands.

Kekulé was born in Darmstadt. While studying architecture at Giessen
he came under the influence of Liebig and was induced to take up chemistry.
From Giessen he went to Paris, and then visited England. On his return to
Germany he started a small chemical laboratory at Heidelberg and in 1858
was appointed professor of chemistry at Ghent. In 1865 he was called to Bonn
to fill a similar position.

1858–1901 CE Peter Guthrie Tait (1831–1901, Scotland). Physicist.
Creator of new methods in quaternion analysis, many of which were later
transferred to vector analysis. Changed the emphasis in quaternion analysis
towards its usefulness as a tool for physical science. Extended the ∇ (Nabla)
operator to vector fields, and developed it as a fundamental tool in modern
vector analysis.

Tait did important work on the ‘Four-Color’ problem316, and wrote an
analysis of the physics of golf balls in flight!

He refused fellowship in the Royal Society of London, declaring that a
fellowship in the Royal Society of Edinburgh was quite good enough for him.

315 The name valence (from a Latin word meaning power) was suggested in 1852

by the chemist Edward Frankland (1825–1899, England).
316 For further reading, see:

• Wilson, R., Four Colors Suffice, Princeton University Press, 2005, 262 pp.
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History of Algebraic Equations317

The solution of polynomial equations continued to occupy the center stage
in the algebra of the early 19th century. In the previous century, the efforts
of Euler, Vandermonde, Lagrange and Ruffini to solve algebraically gen-
eral equations of degree greater than 4 came to nought. Indeed, the quintic
equation boggled the minds of the finest mathematicians of Europe for about
300 years!

So ended also the efforts of mathematicians to furnish a general algebraic
solution to the binomial equation xn − 1 = 0. Gauss, however, opened (1801)
the 18th century with the algebraic solvability of the cyclometric equation
xp − 1 = 0 (where p is a prime318), which is the equation of the division of the
circle into p equal parts. The latter refers to the fact that the roots of this
equation are (by de Moivre’s theorem)

xk = cos(k
2π

p
) + i sin(k

2π

p
), k = 1, 2, . . . , p

and the complex numbers xk, when plotted geometrically, are the vertices of
a p-sided regular polygon that lie on the unit circle.

Gauss then showed that the cyclometric equation is solvable in radicals if
and only if p = 1 + 2(2n) [Fermat’s Number], namely

p = 3, 5, 17, 257, 65537, . . ..

For an arbitrary n, Gauss proved that xn − 1 = 0 is solvable in radicals if
and only if n = 2αp1p2p3 . . . pn where all prime factors are distinct Fermat’s

317 For further reading, see:

• Dehn, E., Algebraic equations, Dover Publications Inc: New York, 1960,

208 pp.

318 The case of p prime takes care of xn − 1 = 0. For if n = pq, let y = xq and the

problem reduces to yp − 1 = 0 which is solvable. Moreover xq = const. can be

solved if q is a prime, and if not, q can be decomposed in the same manner that

n was.



2190 4. Abstraction and Unification

Numbers and α is a positive integer or zero. Clearly this implies that a regular
polygon with n sides can be constructed with compass and ruler only when n
is of the above form.

Gauss (1801) proved the Fundamental theorem of Algebra stating that
every polynomial equation of degree n,

f(x) = xn + a1x
n−1 + a2x

n−2 + · · · + an−1x + an = 0

in which the ai ( i = 1, 2, . . . , n) are real or complex numbers, has at least one
solution in the domain of complex numbers. If this solution is denoted by x1,
one finds that f(x) − f(x1) = (x − x1)[xn−1 + · · · + an−1] = 0. By the funda-
mental theorem, the expression in the square brackets also has a solution, say
x2. If this process is iterated, one obtains a product representation of f(x),
from which it follows that an equation of degree n has exactly n roots, which
need not necessarily be distinct from each other.

The question of the solution of general equations of degree higher than
four was settled by Abel (1826). He first proved the theorem:

“The roots of the equation solvable by radicals can be given such a form
that each of the radicals occurring in the expression for the roots is expressible
as a rational function of the roots of the equation and certain roots of unity”.

Abel then used this theorem to prove the impossibility of solving by radi-
cals the general equation of degree greater than four.

In 1828, Abel discussed the general solution of the cyclometric equation.
One of the reasons why it was so difficult to arrive at an understanding of the
solvability of equations of higher degree, was the fact that special equations
of higher degree can be solvable by radicals.

In particular, there are two classes of equations which can be solved; The
first are those in which the polynomial can be written as a product of poly-
nomials of lower degrees. The second class are those whose polynomial can
be decomposed into powers of a polynomial of a lesser degree.

Even for cubic and quadratic equations, the results can be extremely com-
plicated. If the parameters in equations like these are symbolic; there can
also be some subtlety in what the solutions mean: the results you get by
substituting specific values for the symbolic parameters into the solution may
not be the same as what you get by doing the substitutions in the original
equation.

An example of an equation solved by radicals is

x6 − 9x4 − 4x3 + 27x2 − 36x − 23 = 0,
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where one solution is x = 3
√

2 +
√

3.

In another example, the equation

x5 + 20x + 32 = 0

has a root

x1 =
1
5

(

−
5

√

2500
√

5 + 250
√

50 − 10
√

5 − 750
√

50 + 10
√

5

−
5

√

−2500
√

5 + 750
√

50 − 10
√

5 + 250
√

50 + 10
√

5

+
5

√

2500
√

5 + 750
√

50 − 10
√

5 + 250
√

50 + 10
√

5

−
5

√

2500
√

5 − 250
√

50 − 10
√

5 + 750
√

50 + 10
√

5

)

.

Indeed, it was shown (1885) by J.S.C. Glashan (1844–1932), G.P. Young
(1819–1889), and C. Runge (1856–1927) that all irreducible solvable quin-
tics, with the quadratic, cubic and quartic terms missing, have the following
form, with ν and μ rational

x5 +
5μ4(4ν + 3)

ν2 + 1
x +

4μ5(2ν + 1)(4ν + 3)
ν2 + 1

= 0.

The previous quintic example is a special case for μ = 1, ν = 1
2 .

Thus, the next step after Abel’s work was to discover general criteria for
the solvability of algebraic equations with n > 4. This task fell to Galois
(1830–1), using a novel approach that revolutionalized mathematics. An im-
portant point to be emphasized is that “algebraic” solution requires expression
in a finite number of arithmetic steps. Solution of general equations of degree
higher than 4 is possible if an infinite number of steps is permitted. But such
solutions are nonalgebraic, and are sometimes expressed in terms of special
non-algebraic (transcendental) functions. One may think of such functions as
formulated by the infinite series so important in analysis, and in this way
realize that an infinite number of arithmetic steps is involved.

Now, Girard (1629) had already shown that trigonometric functions
(which are nonalgebraic or transcendental functions) are effective in obtain-
ing solutions when the Cardano’s formula yields irreducible results. There-
fore, mathematicians after Galois’ day conceived the idea that the elliptic
functions, which generalize ordinary trigonometric functions, might offer a
means of expressing solutions of some higher-degree equations that are not
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solvable algebraically. Hence, Charles Hermite (1858) succeeded in solving
the general quintic equation (n = 5) in terms of elliptic modular functions.

Another part of Galois’ ideas is his theory of fields, which is needed to
clarify the notion of rational functions. The idea of a field was introduced
by Abel (1826). By a field of numbers he meant (like Galois) a collection
of numbers such that the sum, difference, product, and quotient of any two
numbers in the collection (except division by zero) are also in the collection.
Hence, rational numbers, real numbers and complex numbers form fields. A
polynomial is said to be reducible in a field (usually the field to which its
coefficients belong) if it can be expressed as the product of two lower-degree
polynomials over the field.

After Galois, Bravais (1849), Cayley (1849), Jordan (1869), Sylow
(1872), Sophus Lie (1874), Frobenius (1887) and Hölder (1889) continued
researches in the theory of groups. With them the study of groups assumed
its abstract form (independent of the solution of algebraic equations), and
developed at a rapid pace. The notion of group came to play a major role in
geometry, and in algebra it became an important factor in the 20th century
rise of abstract algebra.

The technique of solving the quintic equation (and higher order equations)
by means of transcendental functions (especially elliptic modular functions)
was perfected over a period of some 200 years. We shall next give a brief
survey of these efforts since E.S. Bring’s reduction of the general quintic
(1786) into a canonical form.

George Birch Jerrard graduated at Trinity College (1827) and heard
about E.S. Bring’s Lund publication (1786) only in 1861. Both achieved
reduction of the quintic be means of the Tschirnhausen substitution (1683)
method, through which the reduction is effected by the extraction of only
square and cubic roots. However, Jerrard found a single Tschirnhausen
transformation that converts an nth degree polynomial equation (n ≥ 5)
into an nth degree polynomial equation in y in which the coefficients of
yn−1, yn−2, yn−3 are all zero.

Thus, the general quintic

x5 + a1x
4 + a2x

3 + a3x
2 + a4x + a5 = 0

can be transformed, via a single Tschirnhausen transformation, into the
Bring-Jerrard form319 y5 − A4y + A5 = 0.

319 This simplification has, however, a ‘price’: The evaluation of (A4, A5) from

{a1, a2, a3, a4, a5} requires the solution of three quadratic equations and one

cubic equation. The final result of the general case is therefore quite messy.
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Starting from the Bring-Jerrard canonical form, mathematician of the sec-
ond half of the 19th century concentrated their efforts on infinite series solu-
tion of the quintic320. Chebyshev (1838), Eisenstein (1844) and others con-
sidered the function y(x) = x5 − x − ρ together with its inverse x = x(y, ρ).

The formal series expansion of x(y; ρ) is then calculated for small y values,
yielding at y = 0,

x(0; ρ) = −ρ − ρ5 − 5ρ9 − 35ρ13 − 285ρ17 − 2530ρ21

− 23, 751ρ25 − 231, 880ρ29 + O(ρ33).

These are the first 8 terms of a series having the general term { −ρ4k+1

4k+1

(5k
k

)
}.

This series can be summed using hypergeometric functions; one of the roots
of the quintic is

x1(ρ) = −ρ 4F3

(
1
5
,
2
5
,
3
5
,
4
5
;
1
2
,
3
4
,
5
4
;
3125
256

ρ4

)

. (1)

In principle this method will work for any polynomial.

During 1860–1862, James Cockle (1819–1895) and Robert Harley
(1828–1910) developed a method for solving algebraic equations of the type
xp + bxq + ρ = 0 based on differential equations. They showed that these
equations have roots that can be represented in terms of hypergeometric
functions of one variable. In particular they solved the quintic equation
x5 − x − ρ = 0.

Their idea was to consider the function x(ρ) and derive for it a linear
differential equation based on the algebraic equation. Assuming the form:

a1
d4x

dρ4
+ a2

d3x

dρ3
+ a3

dx2

dρ2
+ a4

dx

dρ
+ a5x + a6 = 0,

the repeated differentiation of the original algebraic equation w.r.t. ρ leads
to a system of 5 linear equations in the aj , yielding

a1 = (256 − 3125ρ4)/1155, a2 = −6250ρ3/231, a3 = −4875ρ2/77,
a4 = −2125ρ/77, a5 = 1, a6 = 0.

The general solution of the differential equation is then a linear combination
of four independent solutions with as yet unknown four parameters. These

For this reason, mathematician in the second half of the 19th century devised

various ingenious ‘bypasses’ of the Tschirnhausen transformation.
320 Lambert (1757) was first to suggest (based on the ideas of Girard in 1629) a

solution based on infinite series.
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in turn are found by substituting the known general solution back into the
quintic equation, and expand it about ρ = 0.

Collecting terms in ρ and setting the coefficients equal to zero, there results
a system of 4 linear equations for the four parameters. This completes the
procedure of deriving the five roots of the given quintic. The explicit form of
one of them is the same as (1).

Hermite (1858) produced an elliptic function solution of the quintic equa-
tion by combining previous ideas of Galois321 with the Bring-Jerrard solu-
tion. Here indeed, in the case n = 5, the modular equation of order 6 depends
on an equation of order 5. Conversely, the general quintic equation may be
made to depend upon this modular equation of order 6. Thus, assuming the
solution of this modular equation, Hermite was able to solve (not by radicals)
the general quintic equation, analogously to the trigonometric solution of the
cubic equation.

Hermite’s explicit solution of the Bring-Jerrard reduced equation
x5 − x − a = 0 is given in the form: xj = 1

λzj , j = 1, 2, 3, 4, 5, where

λ = 2 · 53/4 · p1/4 · (1 − p2)1/2, p = tan
α

4
, sinα =

16√
55 − a

z1 = (v1 − v2)(v2 − v6)(v4 − v5)

z2 = (v2 − v4)(v3 − v1)(v5 − v6)

z3 = (v3 − v2)(v4 − v3)(v6 − v1)

z4 = (v4 − v2)(v5 − v4)(v1 − v3)

z5 = (v5 − v2)(v1 − v4)(v3 − v4)

vm = p5/4sn(K − 4ωm) sn(K − 8ωm), m = 1, 2, 3, 4, 5, 6
sn u = Jacobi’s elliptic function

321 Among other results demonstrated and announced by Galois may be mentioned

those relating to the modular equations of the theory of elliptic functions (de-

rived by Jacobi in 1829): for the transformations of order 5, 7, 11, the modular

equations of orders 6, 8, 12 are reducible to the orders 5, 7, 11 respectively, but

for n prime and > 11, the reduction is not possible.
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K =
∫ π/2

0

dθ
√

1 − p2 sin2 θ
, K ′ =

∫ π/2

0

dθ
√

1 − p2
1 sin2 θ

, p2 + p2
1 = 1

ω1 =
K

5
, ω2 = i

K

5
, ω3 =

1
5
(K + iK ′),

ω4 =
1
5
(K + 2iK ′), ω5 =

1
5
(K + 3iK ′), ω6 =

1
5
(K + 4iK ′)

In 1877, Klein published Lectures on the Icosahedron and the Solution
of Equation of the Fifth Degree. In this book and a later article he gave a
complete solution of the quintic in terms of ratios of hypergeometric func-
tions.

Klein used a Tschirnhausen transformation to reduce the general quintic
to the form

z5 + 5az2 + 5bz + c = 0.

He found the solution of this reduced quintic by first solving the related icosa-
hedral equation

z5(z10 + 11z5 − 1)5 − λ[z30 − 10005(z20 + z10) + 522(z25 − z5) + 1]2 = 0,

where λ can be expressed in radicals in terms of {a, b, c}. A solution of the
icosahedral equation using hypergeometric function is

z =
λ−1/60

2F1(− 1
60 , 29

60 ; 4
5 ; 1728λ)

λ11/60
2F1( 11

60 , 41
60 ; 6

5 ; 1728λ)
.

Gordan (1878) described an alternative method, avoiding the difficult
Tschirnhaus transformation to the quintic form. Brioschi (1858) found a
simpler Tschirnhausen transformation that takes the general quintic into the
same form

z5 + 5az2 + 5bz + c = 0

and requires only a single square root. Another Tschirnhaus transformation
of the same kind yields the Brioschi quintic

u5 − 10λu3 + 45λ2u − λ2 = 0

which depends on a simple parameter λ. Kiepert (1878) transformed the
Brioschi equation into the Jacobi Sextic equation

s6 +
10
Δ

s3 − 12g2

Δ2
s +

5
Δ2

= 0,
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Δ = −1
5
, g2 =

1
12

3

√
1 − 1728λ

λ2
.

This sextic is then solvable with Weierstrass Elliptic functions.

In 1884 F. von Lindemann expressed the roots of an arbitrary polyno-
mial in terms of theta functions. Birkeland (1905) showed that the roots of
an algebraic equation can be expressed using hypergeometric functions of sev-
eral variables. Mellin (1915) solved an arbitrary polynomial equation with
the aid of Mellin integrals.

One could assume that the quest for new solutions of the quintic would
slow down after the beautiful results given by Hermite and Klein, but this
was not to be: a new generation of mathematicians asked for more, and the
300-year old race continued.

Carl Woldemar Heymann (1855–1910) solved trinomial equations us-
ing integrals. In the same vein, Robert Hjalmar Mellin (1854–1933) solved
an arbitrary polynomial equation, using his Mellin transform. Finally, Paul
Emile Appell (1855–1930) and Joseph Marie Kampe de Fériet (1893–
1982) recognized (1926) the hypergeometric functions in the series solution of
the quintic.
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Table 4.7: Milestones in the History of Algebraic Equations

ca 2000 BCE
• Babylonians solve quadratic in radicals.

ca 300 BCE
• Euclid demonstrates a geometrical construction for solving a quadratic.

1515
• Scipione del Ferro (University of Bologna, Italy) gave an algebraic

closed-form solution of the cubic equation x3 + px = q, probably basing his
work on earlier Arabic sources.

1579
• Francois Viete (France) gave a trigonometric solution for the ‘irre-

ducible’ case of the cubic equation.

1669
• Newton introduced his iterative method for the numerical approxima-

tion of roots.

1757
• Johann Heinrich Lambert gave infinite series solutions of the trino-

mial equation xm + x + r = 0.

1767
• Lagrange expressed the real roots of a polynomial equation in terms

of a continued fraction. He showed (1770) that algebraic equation of degree
five or more cannot be solved by the methods used for quadratics, cubics and
quartics.

1799
• Paolo Ruffini gave an incomplete proof of the unsolvability of the

quintic equation by means of algebraic functions of the coefficients. Abel
(1826) gave a complete proof.

• Gauss proved the fundamental theory of algebra. In 1801 he solved the
cyclotomic equation x17 = 1 in square roots.

1832
• Galois discovered the connection between solutions of algebraic equa-

tions and group theory, and showed that the general equation of degree n > 4
is not solvable in radicals.

1858
• Hermite, Kronecker and Brioschi independently solved a general
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quintic in terms of elliptic modular functions. Earlier studies of Jacobi (1829)
of modular equation (for elliptic functions)

u6 + v6 + 5u2v2(u2 − v2) + 4uv(1 − u4v4) = 0

is fundamental for the Hermite solution.

1870
• Camille Jordan showed that algebraic equations of any degree can be

solved in terms of the modular functions.

1877
• Felix Klein solved the icosahedral equation in terms of hypergeometric

functions, thus rendering a closed-form solution of a principal quintic.

1884–1892
• Ferdinand von Lindemann expressed the roots of an arbitrary poly-

nomial in terms of theta functions.

1895
• Emory McClintock gave series solutions for all the roots of a polyno-

mial.

1905
• R. Birkeland showed that the roots of algebraic equation can be ex-

pressed using hypergeometric functions in several variables.

1915
• Mellin solved an arbitrary equation with the aid of Mellin integrals.
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“From so simple a beginning, endless forms most beautiful and most wonderful
have been, and are being evolved”.

Charles Darwin, in the final words of ‘The Origin of the Species’ (1859)

“God created men because he was disappointed in the monkey”.

Mark Twain

1858–1871 CE Charles Robert Darwin (1809–1882, England). A
British naturalist whose theory of evolution through natural selection caused
a revolution in the biological sciences, and had strong impact on natural phi-
losophy and all of the sciences — especially geoscience, astronomy, chemistry,
linguistics and anthropology. His book “On the Origin of the Species322 by
Means of Natural Selection, or the Preservation of Favoured Races in the
Struggle for Life” (1859), gave facts on which he based his concept of gradual
changes of plants and animals.

According to Darwin, biological evolution is the process whereby new
species arise from earlier by accumulated changes. As this process of spe-
ciation proceeds with time, increasing number of species appear, becoming
increasingly different.

After many years of careful study, Darwin attempted to show that higher
species had come into existence as a result of gradual transformation of lower
species and that the process of transformation could be explained through the
selective effect of the natural environment upon organisms. He thus concluded
that the principles of natural selection and survival of the fittest323 govern all
life. According to Darwin, nature does not optimize the good of the species,
only the good of the individual, upon which natural selection acts. In 1871
Darwin published The Descent of Man, outlining his theory that man came
from the same group of animals as the chimpanzee and other apes.

Darwin was born in Shrewsbury and was educated at the Universities of
Edinburgh and Cambridge. Soon after his graduation at the age of 22 he sailed

322 Species can be defined as a population which reduces all the individuals that

could mate or are likely to mate with one another.
323 This prong of Darwin’s theory is a tautology: who are the fittest? The ones

that survive! So this is a circular statement: Through the process of natural

selection, the “fittest” survive.
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aboard H.M.S. Beagle324 on a 5-year cruise (1831–1836) around the world’s
oceans. During an exploratory voyage along the coast of South America, the
Galapagos325 and other Islands of the Pacific, Darwin searched for fossils and
studies plants, animals and geology.

Destined for the church, Darwin was happily prepared to champion the
Book of Genesis. But everything he encountered on the voyage — from the
primitive people of Tierra del Fuego to the famous finches of the Galapagos
Islands, from earthquakes and eruptions to fossil seashells gathered at 4000 m
elevation in the Andes — conspired to wean the young scientist from the
simple faith of the Beagle’s commander, Captain Robert FitzRoy (1805–
1865)326, and force upon him the subversive conclusions of ‘The Origin of
the Species’. Darwin was influenced in the formulation of his theory by the
writings of the economist Robert Malthus (1766–1834) and the geologist
Charles Lyell (1797–1875).

Lyell, in his “Principles of Geology” (1830–1833), had restated the thesis
already advanced some 50 years earlier by the Scottish physician, Landowner
and agriculturist James Hutton (1726–1797), that the earth’s physical ap-
pearance was the result of the same geological processes that are still active at
the present time. This idea of vast changes brought about by natural causes,
which Lyell had applied to the inorganic world, Darwin applied to the world
of organisms. In searching for an explanation of organic evolution, Darwin
was impressed by Malthus’ account [Essay on Population, 1798] of the intense
competition among mankind for the means of subsistence.

Darwin never stopped working. “When I am obliged to give up observation
and experiment”, he said, “I shall die”. He was working on 17 April, 1882;
he died two days later. He was interred at Westminster Abbey, with Huxley,
Hooker and Wallace among the pall-bearers.

The popular success of The Origin of the Species distinguishes it from most
other novel ideas in the history of science. Isaac Newton’s Principia was, and
still is, inaccessible to the general reader: its mathematical argument is so

324 For further reading, see:

• Moorehead, A., Darwin and the Beagle, Penguin Books: England, 1971,

280 pp.

325 The bishop of Panama reached the Galapagos Ills in 1535 and named them after

their giant tortoises. These creatures allegedly may reach the age of 200 years.

Thus, some of those living there today may have seen Darwin!
326 Later Vice-Admiral, hydrographer and a meteorologist pioneering in weather

prediction. Sick in body and mind, he took his own life in a spasm of righteous

despair.
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obtruse that it took many years of patient analysis before the scientific com-
munity fully understood its implications. Darwin’s book, on the other hand,
is amazingly simple for a major scientific book; it is written in such straight-
forward English that anyone who is capable of following a logical argument
can recognize what it means.

Although Darwin made many important observations of his own, the facts
which would have supported his theory were already known and had been
widely discussed before. Moreover, by 1859 the scientific atmosphere was
saturated with the possibility of evolution. It was only a matter of time
before someone stumbled on this idea. Why then, had no one thought of it
before?

What happened to Darwin’s predecessors (and to some of his contempo-
raries as well) was that their vision was obscured by a strong preconception
(i.e. not because they were short of facts, but because they had reasons for
‘seeing’ these facts in a different way). These were: the Biblical notion of
special creation (Creationism) and the Greek philosophical notion of Ideal
Forms (Essentialism). Darwin’s theory overturned the catastrophic history of
the world (as promulgated by the world’s leading religions), changing it from
a series of separate tableaux into a slow-motion picture.

Although Darwin had already formulated the essential outlines of his the-
ory as early as 1839, he delayed its publication for 20 years, waiting for the
scientific world to become thoroughly familiar with the issue of evolution.
The sources of his scruples were fear of controversy and persecution, his own
religious beliefs, and finally his scientific caution; the mechanism which he
had invoked was contrary to all of the most dearly held beliefs of Victorian
Christianity. In his notebook Darwin had grimly reminded himself of the
persecution meted out to other scientists who had flouted traditional belief.

The most important factor was, however, Darwin’s doubt about the sci-
entific credibility of his own theory. He recognized that evolution could not
be observed directly . The only way of overcoming this difficulty was to collect
such an overwhelming mass of indirect evidence that the deduction could be
inescapable.

The objections to his theory gave Darwin serious trouble. The first was
raised by the zoologist Jackson St. George Mivrat (1827–1900, England),
who argued that although natural selection might account for the success of
well-established adaptations, it could not possibly explain the initial stages of
their development. The biological usefulness of the eye is self-evident, but how
did such an organ get started in the first place? In other words, there must
have been a stage at which the incipient organ had no recognizable function,
and would therefore have conferred no selective advantage. Therefore, useful
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organs must have developed with a view to a function they would eventually
serve!

Darwin’s answer was that a random novelty which gains a foothold by
conferring one kind of biological advantage might end up conferring a different
sort of advantage altogether (e.g., a primitive feather probably served as a heat
insulator, and only subsequently developed its aerodynamical advantage. It
is a mystical nonsense to suppose the feather emerged in order to realize the
remote possibilities of flight!).

The second objection was the absence of intermediate types. Darwin was
confidence that subsequent research would restore the episodes of gaps in the
fossil record, but this has not happened. There is now overwhelming evidence
pointing to the conclusion that certain forms remained stable for long periods
of time, only to be suddenly succeeded by new forms altogether. Thus, whilst
the process of imperceptible change has an all-important part to play in the
origin of the species, it is often superseded by abrupt transformations which
result in the emergence of comprehensively new designs.

The third objection raised against Darwin’s theory arose when Lord
Kelvin calculated from the temperature of the earth’s interior that Darwin
has grossly overestimated the age of the earth and hence that an evolution-
ary mechanism which is based on the slow accumulation of small invisible
novelties simply does not have such huge lengths of time at its disposal.

Darwin rightly suspected that Kelvin’s calculations would turn out to be
wrong. If he’d lived longer, he would have been gratified to discover that the
earth was even older than he supposed327.

Darwin’s theories, although they partially accounted for the origin of the
species, did not at all account for the origin of life. Only since 1953 have we
had the scientific basis to make biochemical guesses about that.

327 Darwin did indeed project a vista of slow, gradual, steady, progressive change.

In his day, it was a temerity to suggest that the earth was older than a few

millions of years. Darwin ventured to ascribe many millions of years to the

earth’s antiquity. There was good circumstantial evidence for it — but, more

than that, he needed what then seemed to be a vast amount of time for his

notions of how evolution works to hold. The fossil record, as it is known today,

suggests that some of the specific ideas that Darwin (and many of his succes-

sors) had on how life evolves, may well be at least partly wrong; rather than

a stately progression, the gross history of life shows a mixture of status quo

and revolutions. But the order is there: more primitive forms antedate more

advanced. Some episodes in evolution proceed faster than others, but the fossil

record abundantly affirms the general notion that life has evolved .
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It is sometimes claimed by historians of science that Darwin ‘borrowed’
material from other writers (e.g. Lamarck, E. Darwin, P.L. Maupertuis)
and lifted his central ideas (without giving due credit) from a number of
precursors, including earlier evolutionists and formulators of the principle of
natural selection (e.g. Blyth, 1835). On the other hand, his defenders claim
that Darwin, like any scientist, had influences, but that he was honest in his
theoretical developments and was working as a bona fide scientist of his day.

Darwin’s theories consist of seven main hypotheses. He was neither origi-
nal nor claimed to be on transmutation, the struggle for existence. He extended
or modified earlier theories of common descent, biogeographical speciation and
natural selection. Sexual selection was his own theory, not influenced either
by earlier formulation or by Wallaces’ independent discoveries. His theory
of heredity was not original except in his specific and mistaken hypothesis of
pangenesis. Table 4.8 summarizes the “evolution of evolution”.

Table 4.8: Origin of Evolutional Hypotheses

Hypothesis Original to

Charles

Darwin

Influenced First author

Transmutation

of species

No Possibly, by Lamarck,

E Darwin, and Lyell’s

anti-Lamarckian

arguments

Lamarck or Erasmus

Darwin in the

scientific tradition

Struggle for

existence

No Yes, by numerous

scientists, and writers

(e.g., Malthus,

Tennyson)

Heraclitos

Common

descent

No, but first

to propose

single ancestor

of all life

Yes, by numerous

scientists, especially

von Baer and Owen

Maupertuis

Biogeographical

speciation

No Numerous scientists,

esp. Wallace

Gmelin, von Buch

Natural

selection

No Yes, by Blyth (1835) Patrick Matthew

(1831) and William

Charles Wells (1813)

Sexual selection Yes Possibly by comments

by Erasmus Darwin

C. Darwin

Heredity (use

and disuse)

No Yes, possibly by

Lamarck

Ancient

Heredity

(pangenesis)

Yes Yes C. Darwin



2204 4. Abstraction and Unification

Details of the hypotheses are given below:

1. Transmutationism (also called by Darwin “Descent with Modification”).
This word means in context that species change (“mutate”, from the Latin)
from one species to another. It is in opposition to the prevailing Aristotelian
views that species were natural kinds that were eternal.

2. Common descent. This is the view (not held by all evolutionists prior to
Darwin or even after) that similar species with similar structures (homologies)
were similar because they were descended from a common ancestor. Darwin
tended to present the cases for limited common descent – i.e., of mammals
or birds – but extended the argument to the view that all life arises from a
common ancestor or small set of common ancestors.

3. Struggle for existence. This is the view that more organisms are born
than can survive. Consequently, most of those zygotes that are fertilized will
die, and of those that reach partition (birth) many will either die or not be
able to reproduce. The competition here is against the environment, which
includes other species (predators and organisms that use the same food and
other resources). This is interspecific (between species) competition.

4. Natural selection. This is a complex view that species naturally have
a spread of variations, and that variants that confer an advantage on the
bearer organisms, and are hereditable, will reproduce more frequently than
competitors, and change the “shape” of the species overall. Notice here that
this competition is mostly intraspecific, i.e., between families of the same
species (and indeed of the same population).

5. Sexual selection. Many features of organisms are obvious hindrances
(such as the tails of birds of paradise), and these often occur in one sex only.
Darwin argued that there was competition for mating opportunities and any
feature that initially singled a member of one gender out as a good mating
opportunity would become exaggerated by the mating choices of the opposite
gender. Competition here is between conspecifics of the same gender.328

328 The struggle for survival is above all a struggle for reproduction. Individuals

are constantly and automatically tested for their ability to multiply under cer-

tain conditions of existence and produce descendants that can live in certain

territories. The struggle between males for the possession of females results in

the strongest and most wily having the most descendants.

The neo-Darwinists of the beginning of the 20th century argued that the deci-

sive factor in natural selection is not the struggle for life (an expression that

came from Herbert Spenser and not from Darwin) but the differential rate of

reproduction within a given species.
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6. Biogeographic distribution. Darwin and Wallace were concerned to
explain why species were found in the areas they were, and argued that dis-
persal of similar, but related, species was due to their evolution in one place
and migration into other regions.

7. Heredity. Darwin knew very little about what we would call the principles
of genetics. He accepted the prevailing and old view that the use of features
of the organism would change the way those features were inherited.

In conclusion, Darwin and Darwin alone can be seen to be responsible for
the theory of sexual selection. He was the first person to scientifically posit
common descent for all life. He and Wallace independently uncovered the
causes of biogeographical distribution, though not of the phenomenon itself,
and of natural selection in a time of limited resources and change, despite
prior sketches. The idea of a transmutation of species was not original to any
19th century scientist, although Darwin and Wallace, along with Huxley,
Haeckel, Gray, Hooker, Lyell and others, were chiefly responsible for its
acceptance by the scientific and general community and the success of the
view of differentiating and branching evolution.

All biologists until Weismann accepted some version of the use and disuse
theory of heredity that is known today as “Lamarckism”. Even then, the views
known as Mendelian genetics were not widely accepted until the turn of the
20th century. Darwin’s pangenesis was a heroic but doomed effort.

D’Arcy Thompson said of him (1915):

“That wise student and pupil of the ant and the bee, who curiously con-
joined the wisdom of antiquity with the learning of today; whose Proven-
cal verse seems set to Dorian music; and who, being of the same blood
and marrow with Plato and Pythagoras, saw in Number le comment et
le pourquoi des choses, and found in it la clef de voûte de l’Univers”.

After Darwin, there were many attempts to extend the idea of evolution
into social affairs and explain everything and anything by the same principle
of the ’survival of the fittest’. Few of these speculations were well founded but
they gave rise to a particular concept of progress and a direction of change.

Evolution did away with the idea that the living world is a finished product.
This opened the door to ideas of progress (and regress) and to speculations
about what the world might be like in the future. These ideas come more
naturally to life scientists. Physical scientists who study the mathematical
laws of nature lay much emphasis upon the unchanging character of those
laws.
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Before the twentieth century, the most successful applications of those
laws were to the motions of the moon and the planets. The changes seen in
the astronomical realm were slower, simpler, and more predictable than those
in the living world. Not until the twentieth century would astronomers have
to come to terms with radical new theories about the origin and evolution of
stars and galaxies, and the discovery of the expansion of the universe.

There is abundant evidence in ancient history and the geological record
for flood and fire catastrophes that can be associated with impacts of objects
such as fireballs, comets and asteroids falling from the heavens in significant
numbers, and causing widespread damage, extinctions and loss of life. Con-
sequently, a preoccupation with the sky was an integral part of the earliest
civilizations; a fear of certain heavenly phenomena was built on an awareness
that the sky presented a real threat to one’s survival.

In contradistinction, the Newtonian world pictured everything to be under
control, ordered on the whole, and unchanging on the average. The ancient
view of a sky filled with arbitrary events capable of devastating civilization
therefore gave way to one in which the universe acts with unthreatening and
clockwork regularity.

The Newtonian approach was seductive because it implied that we live in
a more-or-less predictable and hence comfortable world; the random collision
with a comet did not fit such a picture.

Darwin’s concept of evolution, invoked gradual biological change triggered
by equally gradual changes in otherwise benign environment.

Worldview XXIII: Darwin

∗ ∗∗

“The preservation of favorable variations and the rejection of injurious vari-
ations, I call Natural Selection, or Survival of the Fittest. Variations neither
useful nor injurious would not be affected by natural select and would be left
a fluctuating element.”
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∗ ∗∗

“I believe there exists, and I feel within me, an instinct for truth, or knowledge

or discovery, of something of the same nature as the instinct of virtue, and

that our having such an instinct is reason enough for scientific researches

without any practical results ever ensuing from them.”

∗ ∗∗

“False facts are highly injurious to the progress of science, for they often

endure long; but false views, if supported by some evidence do little harm, for

everyone takes a salutary pleasure in proving their falseness.”

∗ ∗∗

“As many more individuals of each species are born than can possibly survive;

and as consequently there is a frequently recurring struggle for existence, it

follows that any being, if it vary ever so slightly in a manner profitable to itself

. . . will have a better chance of survival, and thus be naturally selected.”

∗ ∗∗

“If insects had not been developed on the face of the earth, our plants would

not have been decked out with beautiful flowers but would have produced

such poor flowers as we see in our fir, oak, nut and ash trees, as grasses, docks

and nettles which are fertilized through the action of the wind.”
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Science Progress Report No. 9

The Oxford Meeting329 (June 19, 1860)

Darwin’s theory was presented to the Linnaean Society of London in 1858.
It had rather little impact. The president (a dentist interested in reptiles)
claimed that the year had not “been marked by any of those striking dis-
coveries which at once revolutionize, so to speak, the department of science
on which they bear; it is only at remote intervals that we can reasonably
expect any sound and brilliant innovation that shall produce a marked and
permanent impression on the character of any brand of knowledge.”

“On the Origin of Species” was put out by the publisher John Murray in
1859, and the first edition of 1250 copies sold out on the day of publication.

“The interest aroused was intense; but the subject was too novel and
heretical and so, most scientists did not take sides, preferring to reserve their
judgment. But it was too revolutionary an issue to lie dormant. What Darwin
was saying, or at any rate suggesting, was that the world had not been created
in a week, and certainly not in the year 4004 BCE, as revealed through the
obscure calculations of James Ussher in 1650. It was inconceivably older
than this, it had changed out of recognition, and was still changing: all living
creatures had changed as well, and man, far from being made in God’s image,
may have begun as something much more primitive. The story of Adam and
Eve, in brief, was a myth. This was intolerable: people were furious at the
idea that they might share a common lineage with animals. They wrongly
thought that he was saying that man had descended from an ape; in fact,
what he did believe was that modern man and modern apes have diverged in
the remote past from a common line of ancestors.”

“Naturally, the church entered the fray: by 1860, when Darwin’s book
had run through 3 editions, the clergy were throughly aroused and chose
to come out and join battle at the meeting of the British Association for
the Advancement of Science, set to take place at Oxford on June 19, 1860.
The clergy arrived at the meeting, led by the formidable figure of Samuel
Wilberforce, the Bishop of Oxford, a man whose impassioned eloquence was
a little too glib for some people (he was known as ‘Soapy Sam’), but whose
influence was very great indeed.”

329 Includes quotations from “Darwin and the Beagle” by Alan Moorehead, Pen-

guin Books, 1971.
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“Wilberforce announced beforehand that he was out to ‘smash Darwin’.
He was supported by the anatomist Richard Owen330, who was a rabid
anti-Darwinist, and who probably supplied the Bishop with scientific ammu-
nition. Darwin was ill and could not come, but his old teacher, J.S. Henslow
presided, and he had two ardent champions in Thomas Henry Huxley
(1825–1895) and the botanist Joseph Hooker.”

“Wilberforce, with his priestly clothes and his air of confident episcopal au-
thority, accused Darwin of merely expressing sensational opinions that flew in
the face of the divine revelations of the Bible. The Bishop, rising to the height
of his peroration, then turned to Huxley, who was sitting on the platform, and
demanded to know if it was through his grandmother of his grandfather that
he claimed to be descended from the apes.”

“Huxley was not a man to provoke lightly. When he heard how ignorantly
the Bishop presented his case, ending with his ‘insolent question’, he said in
an undertone, “The Lord hath delivered him into my hands”. He got up and
announced that he would certainly prefer to descend from an ape rather than
from a cultivated man who prostituted the gifts of culture and eloquence to
the service of prejudice and falsehood.”

“Uproar ensued. The undergraduates clapped and shouted, the clergy an-
grily demanded an apology, and the ladies from their seats under the windows
fluttered their handkerchiefs in consternation. One of them even collapsed
from shock and had to be carried out. Amid the hubbub, a slightly grey-
haired man got to his feet. His thin aristocratic face was clouded with rage,
and he waved a Bible aloft like an avenging prophet. Here was the truth,
he cried, here and nowhere else. Long ago he had warned Darwin about his
dangerous thoughts. Had he but known then that he was carrying in his ship
such a . . . He was shouted down and the rest of his words were lost. There
were those in the audience who recognized Vice-Admiral Robert FitzRoy,
and it must have been disturbing to hear him so passionately denounce his
old shipmate.”

So ended the overture to the future ‘Monkey Trial’ of 1925. Darwin lived
on for another 22 years after the Oxford meeting, and his health somewhat
improved. His reputation grew steadily and he was given an honorary Doctor’s
degree at Cambridge (but not Oxford!), and when he attended a lecture at

330 Richard Owen (1804–1892), a comparative anatomist, knew more than

enough biology to recognize the truth. But he was driven by wounded pride

to write a long spiteful article in which he deliberately twisted the facts in an

effort to discredit the new theory. Darwin wisely disregarded these objections,

insisting that he could have written much more damaging criticism himself.
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the Royal Institution, the whole assembly rose to their feet and applauded
him.

On the Galapagos Islands there is a biological research station maintained
by the Charles Darwin Foundation. Charles Darwin is now recognized as the
man who, as Julian Huxley (1887–1975) said: “provided a foundation for
the entire structure of modern biology”, but during his lifetime he received no
official honor from the state. The Church was strong enough to see to that.

Evolution — Origins and Impact

The idea of evolution was nothing new. Both in the general sense of grad-
ual development of human society from simple to more complex institutions,
and the more narrow biological sense that all organisms had evolved out of
more elemental forms, the concept had deep roots in Western thought. Dar-
win’s major contribution was to provide an observational basis for what has
previously been a mere hypothesis.

The first evolutionist on record was Anaximander (ca 560 BCE) who
believed in dynamical natural hierarchy and taught that man evolved from
aquatic animals.

Aristotle (384–322 BCE) noted that species were characterized by their
reproductive isolation. He wrote extensively on the classification and structure
of over 500 species of animals from the Mediterranean area. He accepted
the idea of the origin of life as a spontaneous event, but was also concerned
about the problem of heredity. His classification of life embraced a complete
gradation from the lowest to the highest organism — man.

Spontaneous generation of living creatures from nonliving matter became
increasingly suspect in the 17th century. The physician Francesco Redi
(1621–1697, Italy) became convinced that the maggots found in meat were
derived not from the meat itself but from eggs laid by flies.
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The voyages of discovery of the 15th and 16th centuries, and the invention
of the microscope revealed a diversity of animal and plant form and function
unknown to Aristotle. With these new observations, changes in classification
took place. John Ray (1627–1705, England), a naturalist, introduced (1686)
the present idea of species (based on common descent) and higher categories
in classification. Ray showed that groups of similar species could be classified
into sets, which he called genera. (This system is the basis for the interna-
tional one still in use today.) In 1749 George Buffon (1707–1788), in the
first volume of his Histoire naturelle, defined species as a group of inbreeding
individuals who cannot breed successfully outside the group.

Carl Linnaeus331(1707–1778, Sweden), a naturalist, developed the
present system and method of biological classification (taxonomy). Erasmus
Darwin (1731–1802, England), grandfather of Charles Darwin, a physician,
poet and naturalist, was impressed by the extent of changes in form — within
the lifetime of individual animals (frogs, for example), by influence of selec-
tive breeding in horses and dogs, and by differences due to climate. He also
noted the close affinities of the mammals, which (he reasoned) implied their
common origin.

The notion of natural hierarchy was further elaborated on by Leibniz,
while Julien Offroy de La Mettrie (1709–1751, France) prefigured the
conception of progress through a struggle for existence in his book Man as
Mechanism (1748). The encyclopedist Denis Diderot (1713–1784) suggested
(1754) that the hierarchy was not static but resulted from continuous devel-
opment through time. The simpler organisms came first, the more complex
ones evolved from them in progressive stages. Thus, the idea of evolution was
there already in the 18th century, although another hundred years were to
elapse before its mechanism was explained plausibly.

Jean Baptiste de Lamarck (1744–1829, France), soldier and biologist,
published (1809) his work ‘Zoological Philosophy’. In it he expounded a consis-
tent and well-reasoned theory according to which species descend from other
species by gradual change over many generations. He argued that species
retain constant characteristics only in unchanging environments, but plants
and animals will change their form to adapt to their new environment (he
thought, of course, that individual organisms change, and knew nothing of
mutations and natural selection).

Lamarck’s work clearly anticipated many fundamental ideas that were
later to be popularized by others, but it was his misfortune to be ahead of

331 Yet, Linnaeus still believed in the biblical story (Gen, 8, 19) that animals and

all other living forms started to migrate over the earth from Noah’s Ark after

the Flood had subsided. Today, it seems ridiculous even to children.
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his time. His theory was strongly criticized by leading naturalists of his day
and, as a result, never received the attention or credit it deserved. Man’s
everyday experience provided little support for species’ development: in spite
of circumstantial evidence, no one had yet seen one species turn into another.
It remained for Darwin, writing 50 years later, to convince the scientific world
of the truth of evolution. To be in this receptive mood biology had to progress
to a point where the existence of evolution should seem reasonable and there-
fore deserve a scientific explanation. This proper climate for evolution theory
was created by advances in five independent scientific fields:

(1) Embryology: The work of Christian Heinrich Pander (1794–1865,
Germany and Russia) and Karl Ernst von Baer (1792–1876, Germany)
showed that the early development of the embryo is similar for wide
classes of animal species (1828–1837).

(2) Paleontology: The emerging understanding of fossils as remains of living
creatures and the realization that many fossils were of species that no
longer existed. The father of paleontology was the naturalist Georges
Cuvier (1769–1832, France), who studied the fossil vertebrates of the
Paris basin and attributed the succession of fossil forms to a series of
simultaneous extinctions caused by natural catastrophes (1796).

(3) Geology: The understanding that the time required for the evolution
was available in the earth’s history — namely, that the development
of geological features required great stretches of time. This step was
necessary since evolution at the species level is not observable during a
human lifetime332. These concepts were introduced by James Hutton
(1727–1797), Abraham Gottlob Werner (1749–1817, Germany, 1774),
Charles Lyell (1797–1875, England, 1830) and Robert Chambers
(1802–1871, Scotland, 1852).

(4) Economy : The “industrial revolution”mostly benefited only a minority,
the middle class, while it brought utmost misery and destitution to the
growing proletariat. A tremendous population growth and large-scale
urbanization inflicted great miseries on the working classes. Robert
Malthus (1766–1834, England), clergyman and economist, was uncon-
vinced that man is perfect. Disbelieving the universal peace, equality
and bounty predicted by the politicians and utilitarian philosophers of
the 18th century, Malthus wrote an anonymous “Essay on Population”

332 Except for organisms of very short lifespan, namely insects and microorganisms.

Such creatures often evolve to adapt themselves to artificial agents (pesticides

and drugs) devised to eradicate them.
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(1798). In it he stated that human population cannot expand indefinitely.
Populations tend to expand at a geometric rate of increase with which
food supplied can never keep pace: Famine, disease and war, Multhus
argued, will limit the increasing size of the human populations. Darwin
read Malthus in 1838, and it struck him at once that in a ‘struggle for ex-
istence’ favorable variations would tend to be preserved and unfavorable
ones to be destroyed333.

(5) Philology: The orientalist William Jones (1746–1794, England) had
drawn attention to the phonetic similarities between certain key words
in Latin, Greek and Sanskrit (1790). By 1816, the philologist Franz
Bopp (1791–1867, Germany) suggested that all European languages had
descended from the same Indo-European root.

Alfred Russel Wallace (1823–1913, England), surveyor and naturalist, in-
dependently suggested the theory of natural selection and its relation to the
geographical distribution334 of the species. Wallace ventured into the Amazon
(1848), expressly for the purpose of solving the problem of the origin of the

333 This also occurred to Karl Marx (1818–1883), who (1848) proclaimed in his

Communist Manifesto that civilization is an organism evolving irresistibly by

circumstantial selection. In Das Kapital (1867) he claimed that “the relation

of the bourgeoisie to society was grossly immoral and disastrous and that it

concealed and defended the most infamous of all tyrannies and the basest of

all robberies”. Marx thus became an inspired prophet in the mind of every

generous soul whom his book reached.
334 The geographical distribution of species was immensely important for Darwin’s

ideas on evolution. The English ornithologist Philip Lustley Sclater (1829–

1913) studied the geographical distribution of birds (1858) and Wallace, elabo-

rating on his ideas, divided the globe into six major biogeographical areas and

eventually published the classic text of 19th century zoogeography, The Geo-

graphical Distribution of Animals (1876).

From earliest times, travelers noted that different kinds of plants and animals

are to be found in different parts of the world. Only in the 18th century, how-

ever, was special attention diverted to questions concerning the geographical

distribution of living things. In the 19th century, the geographic distribution

of plants was studied by Alexander von Humboldt (1769–1859), Augustin

Pyramus de Candolle (1778–1841), Charles Lyell (1797–1875), and Ed-

ward Forbes (1815–1854). The latter hypothesized that the existence of land

bridges in the past explained the similarities among the faunas and floras of

Britain and various continental areas. Recent continental drift theory has rein-

troduced the idea that geographical distribution must be understood in part in

terms of geological history. It is clear today that Wallace reached independently
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species. He could not have gone to a better place for clues: the lowland Ama-
zon basin has an astonishingly high number of species. Overwhelmed with
the abundance of life, he soon began to discern patterns in the jumble of life
around him. He then decided that the rivers, with their forceful water dy-
namics, were creators of much of the diversity, affecting and shaping both the
landscape and the forest animals as well. He argued that the rivers, so broad
and uncrossable, were acting much like fences, keeping the species apart.

Already convinced of the fact of evolution, he conceived the idea of natural
selection while lying sick with fever in the Moluccas (February 1858). He
recalled the Essay of Population by Robert Malthus, which he had read twelve
years before, and saw its application to evolution in a flash of intuition. In
June 1858, Wallace sent Darwin his essay, entitled “On the Tendencies of
Varieties to Depart Indefinitely from the Original Type”. Faced with this
unnerving anticipation of his own hard-won new synthesis, he expedited the
publishing of his theory (1859), and simultaneously arranged for a joint paper
with Wallace to be presented to the Linnean Society the following month.

By applying the idea of evolution to all living organisms, including man,
Darwin destroyed many of the most cherished beliefs of his contemporaries.
Yet, to an age that worshiped science, the thought that man was just as much
subject to the logic of science as was everything else in nature also held a great
fascination. Underlying much of Darwin’s work was the idea of progress, an
idea dear to the 19th century. History, the study of man’s past, suddenly
appeared in a new light — as a march toward some far-off, lofty goal.

The theory of evolution and the origin of species began to change
our sense of human time. The pace of technological change led peo-
ple to wonder about the shape of the future. The notions of natural
and supernatural, which had seemed so firm when science was merely ex-
perimenting and measuring, became shaky when science began construct-
ing and destroying. Things that had seemed fantastic became actual-
ity, from planes and rockets to wonder drugs and superbombs. In re-
sponse to this sense of technological change and fantastic possibilities in
a future that became increasingly more real, new fictional forms began to
emerge.

In order to appreciate the nature of the first future shock, one must imagine
how people of the pre-modern era visualized the future. In ancient times most
people saw the future as being simply a continuation of the present — until
the end of the world. For many, the myth of a golden age, from which men had
fallen and to which they might be restored at the end of time, provided some

the same explanation for evolution as Charles Darwin did. Unfortunately he is

remembered in the history of science as ‘The man who was not Darwin’.
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comfort. But the notion that the world would change regularly was simply not
a part of human thought until modern time. Plato, who saw as far as anyone,
saw only cycles — as tyranny, oligarchy, democracy, anarchy, and, once again,
tyranny succeeded one another in time. Others saw history as having involved
a steady decay from gods to heroes to men, which could only be renewed by
the gods returning to earth, possibly destroying it, and beginning the cycle
again. The idea of steady and irreversible growth in human capabilities was
unthinkable until a few hundred years ago, and the idea of humanity as the
product of an evolution from less highly organized forms of life would have
seemed fantastic beyond blasphemy until the last century.

Darwin’s scheme depends on the interaction between individuals and their
environment: random mutations introduce diversity among individuals and
the environment acts as a filter, selecting through differentiated reproductive
rates the ones best tuned to their surroundings.

Although this mechanism of natural selection acts upon individuals, it is
species that evolve, and through them all higher populational entities, like
the set of species in a given ecological system and in the final account, the
entire biosphere. The ensuing freedom in the choice of evolutional unit has
often led to confusion in the analysis of these phenomena.

Darwin assumed that geological times are long enough to provide oppor-
tunity for major modifications of species, so that they could be transformed
into different species. Yet he never attempted to deal with the origin of life.335

One of Darwin’s opponents was the Swiss naturalist and geologist Jean
Louis Rodolphe Agassiz (1807–1873). He studied many kinds of animals
in Europe and America. As a geologist he showed that glaciers once covered
large areas of the earth. He became noted for his work on fossil forms of
fishes. Agassiz established a zoological laboratory on an island in Buzzard’s

335 Since the early 1960s, developments in the field of molecular biology demon-

strated that all organic life is programmed by the DNA, which is essentially a

specific coded statement (like an alphabetic statement), with digital (discrete)

but also analog aspects. Simplistic calculations show that if the hemoglobin

protein evolved by chance there would be one chance in 10650 of it actually

arising. Similarly, the specificity of the T4 bacteriophage is represented by the

number 1078,000, with only one chance in 1078,000 of it actually occurring by

random shuffling. When these figures are set against the age of the universe

(1018 sec), it seems as if there is no possibility of life evolving through Dar-

win’s theory of natural selection, operating on chance mutations. This paradox

of the apparent statistical impossibility of Darwinism on the molecular level

may just reflect our present ignorance of knowing how to calculate the correct

probabilities of early life processes.
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Bay, off the coast of Massachusetts, to provide a place to study animals in
their natural surroundings. He believed that animal species do not change,
and criticized Darwin’s theory of evolution.

Agassiz, the son of a Protestant pastor, was born in Motier, on the shore of
the Lake of Morat. Educated at first at home, then spending four years at the
gymnasium of Bienne, he completed his elementary studies at the academy of
Lausanne. Having adopted medicine as his profession, he studied successively
at the Universities of Zürich, Heidelberg and Munich, where he extended his
knowledge of natural history. In 1829 he took a degree of doctor of philosophy
at Erlangen, and in 1830 that of doctor of medicine at Munich.

Agassiz came to the United States in 1846, and in 1848 became a professor
of zoology and geology at Harvard.

Another ‘heretic’ was Jean Henri Casimir Fabre (1823–1915, France),
one of the greatest naturalists of the 19th century. He spent his life observing
insects and spiders, mostly in the gardens and fields near his home in Sérignan.
Fabre was called by many the Poet of Science who “thinks as a philosopher,
sees as an artist, and feels and expresses himself like a poet”. Charles Dar-
win, in his Origin of Species, called him ‘the incomparable observer’, and
Victor Hugo crowned him as The Homer of Insects.

Fabre was born in the small upland village of Saint-Léons in the Rouergue
Mountains of southern France. His parents were so poor that, when Henri
was five, they sent him to live with his grandparents on a farm at Malaval;
when he was six, he had already an enormous curiosity about nature. Smock-
clad and barefoot, the boy keenly studied every new and strange animal and
plant — he looked, examined and made mental notes, always driven by his
insatiable desire to know. At seven, Fabre returned to his parents’ home
to begin his schooling. He worked while attending school and in 1842, at
eighteen, he obtained his diploma from the Normal College of Avignon. He
then began his teaching career as a primary schoolteacher at Carpentras.
Here, his meager salary was often in arrears. While at Ajaccio, Corsica,
where he taught science for a few years, he contracted malaria and was forced
to return to the mainland. Finally (1852) he became a teacher at the Lycée
of Avignon. Here he labored for nearly 20 years; when he left, his rank, title
and salary were the same as when he began.

During those years, on his precious Thursday afternoons — the traditional
half-holiday of the French school system — and the summer holidays, the
schoolmaster became a schoolboy again, devoted to the study of insects. The
hours spent along the banks of the Rhone filled his notebooks with entries.

These activities, while doing little to enhance his stature with his school
superiors, gave him a local reputation in this strange field of endeavor. Louis
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Pasteur336 (1822–1895) was sent to see Fabre when he began his study of
the silkworm disease. Victor Duruy, energetic minister of public instruction
during the reign of Napoleon III, was so impressed by the obscure provincial
teacher, that he invited him to Paris, with the hope that he might become a
tutor of the imperial family. He conferred upon him the Ribbon of a chevalier
of the Legion of Honor, but the simple son of the Rouergue peasant was ill-
fitted for life in the royal court. He fled from the great city declaring that he
had “never felt such loneliness before”.

Back in Avignon, he outraged his superiors when he admitted girls to his
science classes. The clergy denounced him from the pulpit, and in 1870, when
the German armies were overrunning France, Fabre was dismissed from the
Lycée and ejected from his house with his wife and five small children. He
was saved by his friend John Stuart Mill (1806–1873, English economist
and philosopher), then living at Avignon. Mill loaned Fabre $600 to see him
through the crisis. During the next 9 years, Fabre found sanctuary in a house
at the edge of Orange and supported himself by writing books on popular
science. He continued, however, to observe and record the life of the insects.
In 1879 he was able to buy a small foothold of earth, sun-scorched and thistle-
ridden, at the edge of the village of Sérignan. It was inhabited by wasps, and
wild bees, and all manner of other creatures — to which he devoted the
remaining years of his life. During the next 3 decades (1879–1907) he issued
his 10-volume saga Souvenirs Entomologiques. Oftentimes, Fabre felt that he
had reached the end of his strength and that his grand scheme would not be
fulfilled. In the final paragraph of Volume III he wrote: “Dear insects, my
study of you has sustained me in my heaviest trials. I must take leave of you
for today. The ranks are thinning around me and the long hopes have fled.
Shall I be able to speak to you again?”.

Fabre never accepted the theory of evolution. He was an empiricist, and
opposed to hypotheses: “I observe, I experiment and I let the facts speak for
themselves”. This attitude, in addition to his isolation and remoteness from
centers of research, his narrow knowledge of entomological literature, and his
not being a trained entomologist, caused him to ignore the role of instincts in
the action of many insects and look upon them as ‘programmed’ machine-like
creatures that stick to their course like a train on its rails. Consequently he
was dominated by the general rule and failed to ascribe much significance
to exceptions to the rule as modern research workers have found they must
do. Yet his harvest of facts is invaluable to students of experimental biology,
since he led the study of living entomology at a time when that science seemed

336 Pasteur questioned the theory of evolution, because Darwin did not base his

ideas on experimental proof. Louis said: “Do not put forward anything you

cannot prove by experimentation.”
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preempted by those whose horizon of interest was limited to the dead insect
and the pinned specimen. Each of his experiments was an adventure — and he
was able to transmit his enthusiasm to others, never losing sight of humanity
in his writings, which possess a charm that defies definition.

His work was recognized when he was already in his eighties. In 1910 the
President of France came to Sérignan to visit him.

Faraday, Maxwell and Kelvin also rejected Darwinian evolution: they
were religious men who adopted without question the view that nature laws
were imposed by Divine decree.

Finally, many other 19th century scientists did not accept the theory of
evolution. Among them: C. Babbage, J.F.W. Herschel, James Joule,
G. Mendel, W. Ramsay, Lord Rayleigh, B. Riemann, G.G. Stokes
and R. Virchow.

1859–1860 CE William Ferrel (1817–1891, USA). Meteorologist. Ap-
plied the theory of the Coriolis effect to the general circulation of atmospheric
and oceanic currents. Accepted the theory of James Pollard Espy (1785–
1860, USA) that the energy of cyclones is largely due to the latent heat of
condensation when air ascends (1840), and went on to show that differential
heating is the initial cause of both cyclones and the general circulation. He
attempted to analyse quantitatively the effect of horizontal temperature gra-
dients on the horizontal pressure field at different levels in the atmosphere.
From this work he derived the concept of the thermal wind.

1859 CE, Aug 27 Birth of the Oil Industry. Edwin Laurentine Drake
(1819–1880, USA), a retired railroad conductor, drilled an oil well at Ti-
tusville, PA, USA. He found oil 21 meters bellow the surface. Drake used a
wooden rig and a steam-operated drill similar to the cable-tool drills of today.
He drove an iron pipe 12 meters long into the ground to solid rock, and drilled
inside the pipe. This pipe served as a casing. Drake put a pump on the well,
which produced 10 to 35 barrels a day. The company sold the oil for $20
a barrel. Other men drilled wells nearby, after Drake showed them how to
do it. As a result, the price of oil dropped to 10 cents a barrel in less than
three years. In the early 1860’s, over 600 oil companies were incorporated in
Pennsylvania.

In early times man used petroleum that seeped to the surface from under-
ground springs. The ancient Egyptians coated mummies with pitch (natural
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asphalt). The Chinese found natural gas while drilling for salt, and used
natural gas for fuel as far back as 1000 BCE. About 600 BCE, King Neb-
uchadnezzar used asphalt to build the walls and pave the streets of Babylon.
the Assyrians and Persians also used asphalt to build their cities. Boatmen
on the Euphrates River made vessels of woven reeds smeared with asphalt.
American Indians used petroleum for fuel and medicine hundreds of years
before the white man came; remains of their ancient oil wells have been found
in the oil regions of Pennsylvania, Kentucky and Ohio.

Some historians believe that the first oil industry began in Romania, which
produced about 2000 barrels of oil already in 1857. Workmen used bags and
buckets to bring up oil from hand-dug wells. Also in 1857, James Miller
Williams of Canada dug an oil well and established a refinery near present-
day Oil Springs, Ontario. He distilled and sold oil for lamps. But most
historians trace the start of the industry on a large scale to Drake’s well
(1859).

James Young (1850, England) started the commercial production of
paraffin from crude oil by slow distillation, thus creating the paraffin oil-shale
industry. The first off-shore oil wells were drilled in 1900.

Drake’s pioneering endeavor started a process that would eventually fund
much large-scale geological research in search for more oil.

1859–1879 CE James Clerk Maxwell337 (1831–1879, Scotland). The
greatest mathematical physicist since Newton, and one of the great theoretical
physicists of all time. Made revolutionary investigations in electromagnetism
and the kinetic theory of gases, along with substantial contributions in sev-
eral other theoretical and experimental fields: (1) Color vision, (2) the theory
of Saturn’s rings, (3) geometrical optics, (4) photoelasticity, (5) thermody-
namics, (6) the theory of servomechanisms, (7) viscoelasticity, (8) relaxation
processes. He wrote 4 books and about 100 papers.

His greatest achievement was the construction of a unified field theory for
electricity and magnetism that integrated the accumulated experimental re-
sults known since Coulomb (1785), Oersted (1820), Ampère (1827), Fara-
day (1831) and Gauss (1833). He then represented all known electromag-
netic phenomena by four partial differential equations, known as Maxwell’s
equations (1873). These represent: absence of magnetic monopoles, elec-
trostatic field of charges (Coulomb’s law in Gauss’ form), law of induction
(Faraday’s law) and the magnetic effect of current (Ampère’s law in Stokes’

337 For further reading, see:

• Everitt, C.W.F., James Clerk Maxwell, Physicist and Natural Philosopher,

Charles Scribner’s Sons: New York, 1975, 205 pp.
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form). This last law was modified by Maxwell by adding a term responsible
for the displacement current, such that the whole system of equations could
render electromagnetic waves.

Thus, Maxwell established the theory of the electromagnetic fields, putting
the field notion of Faraday on a solid mathematical footing. He showed that
these fields can propagate as electromagnetic waves, carry with them a definite
amount of energy and move with the velocity of light.

At one time it was thought that gravity, magnetism and electricity are the
result of bodies acting on each other via ‘action at a distance’. According to
this idea (originated by Newton for the case of gravitation), given any two
bodies there is an ‘action’ between them, that causes them to attract each
other by a force that is proportional to each of their masses and inversely
proportional to the square of the distance between them. In the ‘field ’ picture,
a body surrounds itself by a field of force, which exists whether or not a second
body is present to feel it and be attracted. A field of force is related to a
potential , whose variation in space determines the field (force per unit test
mass; test-charge in the case of electricity).

Maxwell unified the regimes of optics, electricity and magnetism. More-
over, his electromagnetic theory predicted the existence of X-rays, gamma
rays, radio waves and ultraviolet and infrared radiation.

These predictions were soon to be verified. In 1883, George Francis
FitzGerald (1851–1901, Ireland), professor of natural philosophy at Dublin,
pointed out that if Maxwell’s theory were valid, it should be possible to
generate electromagnetic waves purely electrically — by varying an electric
current periodically in a circuit. [Kelvin had demonstrated in 1853 that
the discharges of a Leyden jar, and other electrical condensers, are oscilla-
tory phenomena.] Accordingly, FitzGerald suggested that a discharging con-
denser would be a good source of the electromagnetic radiation predicted by
Maxwell’s theory, and he showed that the shorter their wavelength, the greater
the amount of energy they would carry, and thus the easier they should be to
detect.

During 1886–1889 Heinrich Hertz (1857–1894, Germany) confirmed
Maxwell’s theory by producing, transmitting and receiving electromagnetic
waves in the laboratory. They were shown to be transverse and propagate
with the velocity of light.

In spite of this, Maxwell’s electromagnetic theory was slow to gain general
acceptance. In the words of Max Born (1933): “It seems to be character-
istic of the human mind that familiar concepts are abandoned only with the
greatest reluctance, especially when a concrete picture of phenomena has to be
sacrificed”.



1859 CE 2221

Indeed, Maxwell himself and his followers tried for a long time to describe
the electromagnetic field with the aid of mechanical models. It was only
gradually, as Maxwell’s concepts became more familiar, that the search for an
“explanation” of his equations in terms of mechanical models was abandoned.

In 1861 Maxwell created the science of quantitative colorimetry. He proved
that all colors may be matched by mixtures of 3 spectral stimuli338, provided
that subtraction as well as addition of stimuli is allowed. He revived Thomas
Young’s 3-receptor theory of color vision and demonstrated that color blind-
ness is due to the ineffectiveness of one or more receptors. He also projected
the first color photograph and made other noteworthy contributions to physi-
ological optics. [Helmholtz’ paper of 1852 contained useful work, but he over-
looked the essential step of putting negative quantities in the color equations
and explicitly rejected the 3-color hypothesis.]

In 1859 Maxwell finished his study on the rings of Saturn (Huygens,
1655). He proved mathematically that a model assuming broad, rigid, thin
sheets of matter would break apart and concluded that Saturn’s rings are
composed of “an indefinite number of unconnected particles”. [Supporting
observational evidence came 4 decades later when James Edward Keeler
(1857–1900, U.S.A.), working at Lick Observatory, observed (1895) Doppler
shifts in sunlight reflected from the Saturnian rings.]

The problem of determining the motion of large numbers of colliding bod-
ies came to Maxwell’s attention while he was still investigating Saturn rings.
Then, when he read the new papers by Rudolf Clausius (1858 and 1859)
on the kinetic theory of gases, he set forth to go a step further and remove
the simplifying assumption that all molecules of any one kind have the same
speed. This led him (1860) to a statistical formula for the distribution of ve-
locities in a gas at uniform temperature. Maxwell’s idea of describing actual
physical processes by a statistical function was an extraordinary novelty.

He next applied the distribution function to evaluate coefficients of vis-
cosity, diffusion and heat conduction, as well as other properties of gases not
studied by Clausius. He interpreted viscosity as the transfer of momentum
between successive layers of molecules moving, like Saturn rings, with dif-
ferential transverse velocities. Finally, Maxwell evaluated the distribution of
energy among different modes of motion of the molecules — translational,
rotational, etc. [equipartition law].

338 Artists had indeed known centuries before Maxwell and Helmholtz that the

3 so-called primary pigments, red, yellow and blue, yield any desired hue by

mixture; but the weight of Newton’s claim that the prismatic spectrum contains

7 primary colors clouded interpretation of the phenomenon.
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It is important to note that Maxwell was the first to state that the second
law of thermodynamics339 is statistical in nature (1868).

Maxwell introduced the concepts of ‘curl’, ‘gradient’ and ‘convergence’
(negative ‘divergence’) of vector fields. He also introduced the distinction be-
tween axial and polar vectors, and gave a physical treatment of the two classes
of tensors later distinguished mathematically as covariant and contravariant.
He gave (1871) a simple physical interpretation of the Laplace operator340.

339 Maxwell nevertheless did not quite comprehend The Second Law of Thermo-

dynamics (SLT). In his Theory of Heat (1871) he posed a way to defy SLT,

saying: “The second law is undoubtedly true as long as we can deal with bodies

only in mass, and have no power of pressing or handling the separate molecules

of which they are made up”. But he postulated that a “being” [known as:

“Maxwell’s Demon”] small enough to manipulate molecules, should be able to

defy SLT and use all the available heat energy without expending any in the

process, in effect creating a perpetual motion machine of the 2d kind.

To prove this, Maxwell described a vessel with two chambers, A and B, which

were connected by a tiny hole, which the Demon can quickly open or close so as

to allow only the swifter (hotter) molecules to pass from A to B, and only the

slower (cooler) molecules to pass from B to A. He will thus, without expendi-

ture of work, raise the temperature of B and lower that of A, in contradiction

to SLT [i.e. constructing a virtual air-conditioner that needs no power supply!].

In 1922, within months of submitting his doctoral thesis, Leo Szilard (1898–

1964; then a student of Max von Laue, Max Planck and Albert Einstein in

Berlin) wrote a paper on thermodynamic equilibrium: “On the Decrease of En-

tropy in a Thermodynamic System by the Intervention of Intelligent Beings”. In

it he argued convincingly that thinking generates entropy, demonstrating that

Maxwell’s demon could not decrease entropy in the system (since his selective

opening and closing of the valve must involve what today would be called “data

processing”, a.k.a. thinking)and thus could not violate SLT. It thus turns out

that there is a deep connection between SLT and information theory.

Modern developments in the fields of quantum computing, reversible computing

and nanotechnology continue to provide new twists on the theme of Maxwell’s

Demon and the relations between information, statistics, and thermodynamics.
340 The quantity

∇2Φ

is a measure of the difference between the value of the scalar function Φ at a
given field point and the average values of Φ in an infinitesimal neighborhood

of that point. Indeed, define the average of Φ(r) at P inside a sphere of radius

R centered about P (r),

Φav =
1

V

∫

V

Φ(r + η)d3η,
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In the introduction to his book: Treatise on Electricity and Magnetism
(1873) Maxwell abandoned Faraday’s description of the electric field as a state
of elastic stress in the ether, arguing that under this concept, no measurements
could be made. He exchanged it for a mere mathematical law. This led to a
revolutionary change in our attitude toward the physical world.

Up to Maxwell’s time, physics had been divided into its various disciplines
according to the human senses (the anthropomorphic classification), e.g. op-
tics, acoustics, heat etc.; every observed phenomenon would be reduced to
the appropriate sensing organ and classified accordingly. But with the dis-
covery of new phenomena which could not be classified by this method it
became necessary to divide physical phenomena according to the respective
mathematical laws, as Maxwell did. This approach bears the advantage that
parallels can be drawn between different phenomena that are subjected to the
same mathematical law (say, the Laplace equation ∇2φ = 0 which appears
in hydrodynamics, potential theory, and electricity).

where V = 4π
3

R3, 0 ≤ |η| ≤ R. Expand Φ in a Taylor series about r; for

small R,

φ(r + η) = Φ(r) + η · ∇φ +
1

2
ηη : ∇ ∇φ + O(R3).

Since
1

V

∫

V

φ(r)d3η = φ(r),

1

V

∫

V

ηηd3η =
3

5
R2

I,

1

V

∫

V

η · ∇φd3η ≡ 0

(symmetry), and

I : ∇ ∇Φ = ∇2Φ,

it follows that

∇2Φ =
10

R2
[{Φ(r)}av − Φ(r)].

If Φ is harmonic, the average of Φ inside a sphere is equal to its value at the
sphere’s center. Writing

{φ(r)}av = φ(r) +
1

10
R2∇2Φ(r),

it appears that the average value of Φ in a small sphere equals its value at the

center plus a correction term due to spatial variation. This correction term is

governed by the Laplacian of Φ. Since ∇2Φ is very important in the differential

equations of physics, Maxwell’s interpretation enables us to attach a simple

physico-geometrical meaning to many field equations in physics.
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In the century that followed Maxwell, classical physics was divided into
the following main categories:

• Particle physics, including the mechanics of a particle and systems of
discrete particles and small bodies, kinetic theory of gases, and classi-
cal statistical mechanics. The unifying mathematical law is Newton’s
equation miq̈i(t) = Fi where mi, qi(t), Fi are the respective masses,
generalized coordinates and generalized forces. The mathematical vehicle
is therefore the theory of systems of ordinary differential equations in the
time variable.

• Continuum physics, including the classical physics of rigid bodies, elastic-
ity, electromagnetism, fluid dynamics etc. Here we have functions, each of
a finite number of variables, that vary continuously over a given domain,
constituting a field . The state of the system is governed by field functions
Fi(x1, x2, x3; t) [e.g. the velocity field in a fluid V (x1, x2, x3; t)]. The
appropriate mathematical theory is that of partial differential equations.

Maxwell was born in Edinburgh, Scotland, the son of wealthy parents. His
mother died when he was nine. At age 16 he entered the University of Ed-
inburgh, and at 21 Trinity College, Cambridge. His class included such later
celebrities as Thomson (Kelvin), A. Cayley, Ferrers, Tait and Routh.

In 1858 Maxwell married Katherine Mary Dewar, seven year his senior.
They had no children. Earlier Maxwell had an emotional involvement with
his cousin Elizabeth Cay, a girl of great beauty and intelligence, which they
had to terminate because of the perils of consanguinity in a family already
inbred. From 1860 to 1865, Maxwell served as a professor of natural history
at King’s College, London. In 1865 he retired from regular academic life to
write his celebrated “Treatise on Electricity and Magnetism”. In 1871 he
was appointed professor of experimental physics at Cambridge, and planned
and developed the Cavendish Laboratory. He died of abdominal cancer on 5
November, 1879.

The advance of physics during the two centuries following the publication
of Newton’s ‘Principia’ was made possible largely due to two convictions:

• The elucidation of scientific laws was a prerequisite for the systematic
ordering of empirical data, and reflected the fundamental order within
the realm of objective reality.

• The basic concepts and processes reflected in these laws are mechanical
in nature.
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The usefulness of the second of these two pillars of the Newtonian clockwork
world view reached its zenith, and the beginning of its end, with Maxwell’s
equations of the electromagnetic field. The aptitude with which he combined
the experimental results of Faraday with his own mathematical intuition,
serves as a quintessential example of the scientific method at work.

Maxwell unified electricity, magnetism and light: the electromagnetic
spectrum runs the wavelength (and frequency) gamut from gamma rays,
through X rays to ultraviolet light, to visible light to infrared light to ra-
dio waves, encompassing the technologies of radio, television and radar. His
four equations unified the experimental results of Oersted, Ampère and
Faraday. Light now appeared to behave as waves and to derive from electric
and magnetic fields.

Maxwell has ushered in the age of modern physics – on his own, driven
only by curiosity, costing the government almost nothing, himself unaware
that he was laying the grounds for the next great revolutions in both science
and technology.

Like most other great British scientist (Faraday, Darwin, Dirac and Crick),
Maxwell was never knighted. Moreover, the communications media, the in-
strument of education and entertainment that Maxwell made possible, have
never offered even a mini series on the life and thought of their benefactor
and founder: he is almost forgotten in popular culture.

On Maxwell

“The greatest change in the axiomatic basis of physics — in other words, of
our conception of the structure of reality — since Newton laid the foundation
of theoretical physics, was brought about by Faraday’s and Maxwell’s work
on electromagnetic phenomena.

Before Maxwell people conceived of physical reality as material points,
whose changes consist exclusively of motions, which are subject to total differ-
ential equations. After Maxwell they conceived physical reality as represented
by continuous fields, not mechanically explicable, which are subject to partial
differential equations. This change in the conception of reality is the most
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profound and fruitful one that has come to physics since Newton.”

Albert Einstein341 (1931)

“From a long view of the history of mankind there can be little doubt that
the most significant event of the 19th century will be judged as Maxwell’s
discovery of the laws of electrodynamics. Even the American Civil War,
will pale into provincial insignificance before this more powerful event of the
1860’s.”

Richard Feynman (1964)

“Immortality of the soul, in its old religious sense, had been thoroughly dis-
credited. But there is another and far nobler sense in which the soul truly was
immortal. In living our lives, each of us makes some impression on the world,
good or bad, and then dies; this impression goes on to affect future events for
all times, so that part of us lives after us, diffused through all humanity, more
or less, and all Nature. This is immortality of the soul.”

Oliver Heaviside (1886)

Electromagnetic waves —

from Oersted to Maxwell (1820–1864)

The course of physics up to about 1820 was a triumph of the Newtonian
scientific program. The “forces” of nature – heat, light, electricity, magnetism,
chemical action – were being progressively reduced to instantaneous attrac-
tions and repulsions between the particles of a series of fluids. Magnetism
and static electricity were already known to obey inverse-square laws similar
to the law of gravitation. The first 40 years of the 19th century witnessed a
growing reaction against such division of phenomena in favor of some kind of
“correlation of forces”.

341 Maxwell died in 1879, the year that Einstein was born.
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Oersted’s discovery of electromagnetism (1820) was at once the first vin-
dication and the most powerful stimulus of the new tendency, yet at the same
time it was oddly disturbing; the action he observed between an electric cur-
rent and a magnetic field differed from previous phenomena in two essential
ways:

• It was developed by electricity in motion;

• The magnet was neither attracted to nor repelled by – but set transver-
sally to the wire carrying the current.

To such a strange phenomenon widely different reactions were possible.
Faraday took it as a new irreducible fact by which his other ideas were to
be shaped. He was first to suggest that the force acting between two separate
objects arises because of a field, created by the existence of electric charge.
Faraday went on to a major discovery: Electric fields were not only created
by charges but also by changing magnetic fields. The two heretofore different
forces were thus connected in both directions. But the seminal breakthrough
was still to be made.

Ampère and his followers sought to reconcile electromagnetism with ex-
isting views about instantaneous action at a distance. Indeed, shortly after
Oersted’s discovery, Ampère discovered that a force also exists between two
electric currents and put forward the brilliant hypothesis that all magnetism is
electrical in origin. In 1826 he established a formula which reduced the known
magnetic and electromagnetic phenomena to an inverse-square force along the
line joining two current elements j dl, j′ dl′ separated by a distance r

Fjj′ = G
jj′ dl dl′

r2
, (1)

where G is a geometrical factor involving the angles between r, dl and dl′.

In 1845, F.E. Neumann derived the potential function corresponding to
Ampère’s force and extended the theory to electromagnetic induction. An-
other extension developed by W. Weber was to combine Ampère’s law with
the law of electrostatics to form a new theory, which also accounted for elec-
tromagnetic induction, treating the electric current as the flow of two equal
and opposite groups of charged particles, subject to a force whose direction
was always along the line joining two particles e and e′, but whose magnitude
depended upon their relative velocity

.
r and relative acceleration

..
r along that

line:

Fee′ =
ee′

r2
[1 − 1

c2
(r2 − 2r · ..

r)], (2)

c being a constant with dimensions of velocity.
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In 1856, Weber and F.W.G. Kohlrausch (1840–1910, Germany) deter-
mined c experimentally by measuring the ratio of electrostatic to electrody-
namic forces. Its value in the special units of Weber’s theory was about 2/3
of the velocity of light! Equations (1) and (2) and Neumann’s potential the-
ory provided the starting points for almost all the work done in Europe on
electromagnetic theory until the 1870’s.

The determining influences on Maxwell were Faraday and William
Thomson. He progressively extended their ideas about lines of electric and
magnetic force, and merged it with the result of Kohlrausch and Weber.

By 1863, Maxwell had found a link of a purely phenomenological kind
between electromagnetic quantities and the velocity of light. His paper:
“A Dynamical Theory of the Electromagnetic Field” (1865), clinched mat-
ters. It provided a new theoretical framework for the subject, based on ex-
periment and a few general dynamic principles from which the propagation
of electromagnetic waves through space followed without any special assump-
tions about molecular vortices or the forces between electric particles.

In 1865, Maxwell developed a group of 8 scalar equations describing the
electromagnetic field. The principle they embody is that electromagnetic
processes are transmitted by the separate and independent action of each
charge (or magnetized body) on the surrounding space rather than by direct
action at a distance. Formulas for the forces between moving charged bod-
ies may indeed be derived from Maxwell’s equations, but the action is not
along the line joining them, is not instantaneous, and can be reconciled with
dynamical principles only by taking into account the exchange of momentum
(and energy and angular momentum) with the field.

Maxwell discovered that the data, formulated and reconciled by his math-
ematical equations, produced a permanent marriage of the electric and mag-
netic fields. Not only did changing magnetic fields produce electric fields
but changing electric fields produced magnetic fields. This implied the exis-
tence of self-sustaining and moving electromagnetic waves. These waves were
soon identified with light. The entire spectrum of electromagnetic waves now
stretches from the ultra-low frequencies and hence long wavelengths (kilome-
ters or even larger) through the infrared, the visible region, to the ultraviolet,
to the ultra-short-wave, X- and γ-rays radiated by excited heavy atoms, nuclei
and elementary particle collisions (10−9 m down to 10−15 m and smaller).

We now had two force fields capable of acting through great distances:
gravitation and the electromagnetic field (gravitation was still described as
action-at-a-distance until the advent of GTR). The unification by Maxwell of
three historically diverse phenomena — electricity, magnetism and optics —
led to a deeper understanding of the phenomena and was an inspiring lesson
for what would come later (the theories of Relativity, quantum-mechanical
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matter waves, quantum field theories, and the quest for further field unifica-
tions).

Maxwell’s equations342 for stationary material media and slowly moving
sources, expressed in Gaussian units (E, D, ρ in electrostatic units and H,
B, J in electromagnetic units), are as follows:

(1) curl E = −(1/c)∂B/∂t − (4π/c)Jm, Faraday’s law;

(2) curl H = (1/c)∂D/∂t + (4π/c)Je, Ampère-Maxwell law;

(3) div D = 4πρe, Coulomb’s law;

(4) div B = 4πρm, Gauss’ law.

Here c is the velocity of electromagnetic waves in vacuum, E and B are the
electric and magnetic induction vectors respectively, D is the electric displace-
ment vector, and H is the magnetic-field vector. The entities {ρe, Je} are
the respective free electric charges and free current density, whereas {ρm, Jm}
are the free magnetic charge and free current density.

The current and charge densities are subject to the local conservation laws

(5) div Je = −∂ρe/∂t, div Jm = −∂ρm/∂t,

which are easily verified upon taking the respective divergence of (1) and
(2), using (3) and (4).

For linear, isotropic and non-conducting media, the constitutive relations

(6) D = ε(r)E, B = μ(r)H

are assumed, where the dimensionless point-functions ε, μ are respectively the
dielectric constant (permittivity) and magnetic permeability.

The elimination of H and D between (1), (2) and (6) leads to a wave
equation in the electric field vector, in which the current densities are assumed
to be known:

342 To dig deeper, consult:

• Schwinger, Julian et al., Classical Electrodynamics, Perseus Books, 1998,

569 pp.

• Jackson, J.D., Classical Electrodynamics, John Wiley & Sons: New York,

1975, 848 pp.

• Landau, L.D. and E.M. Lifshitz, Electrodynamics of Continuous Media,

Addison-Wesley, 1960, 417 pp.

• Ben-Menahem, A., “Green’s Tensors and Associated Potentials for Electro-

magnetic Waves in Inhomogeneous Media”, Proc. Roy. Soc. (London) A 426

79–106, 1989.
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(7) curl
(

1
μ curl E

)
+ ε

c2
∂2E
∂t2 = −4π

c2
∂Je

∂t − 4π
c curl

(
1
μJm

)
.

In the special case Je = 0, Jm = 0, ρe = 0 and μ = const. (non-magnetic
insulator with no free electric charges), equation (7) reduces to

(8) ∇2E − (εμ/c2)∂2E/∂t2 = − grad(ε−1∇ε · E).

The corresponding wave equation for the magnetic vector is obtained in a
similar way,

(9) curl(ε−1 curl H) + μ
c2

∂2H
∂t2 = −4π

c2
∂Jm

∂t + 4π
c curl(ε−1Je).

Although physically realizable electromagnetic sources can be described
solely in terms of electric charges and currents, the use of equivalent magnetic
current is sometimes a convenient artifice (for example, a magnetic line current
element in an isotropic medium is equivalent to a circular electric current
flowing around a path of vanishingly small radius in a plane normal to the
element).

In the modern formulation of Maxwell’s electrodynamics (both classic and
quantum), ρm = Jm = 0; all magnetic fields (whether due to macroscopic
electricity flow or single molecules, atoms, ions and electrons) are due to
electric currents; and the full electric current and charge in bulk media (which
determine E and B through the vacuum Maxwell’s equations) are given by

(10) ρtotal = ρe − div P

(11) Jtotal = Je + ∂P
∂t + c curl M

where

(12) P = 1
4π (D − E) = ε(r)−1

4π E

is the electric-dipole-moment density, and

(13) M = 1
4π (B − H) = μ(r)−1

4π H

is the effective magnetic-dipole-moment density, and {ρtotal − ρe, Jtotal − Je}
are the bound charge- and current-density, respectively.

Maxwell’s synthesis (1865) of the empirical laws of electricity and mag-
netism, gathered over the previous 150 years – together with his new “dis-
placement current” term ( 1

c
∂D
∂t ) in equation (2), introduced for mathematical

and aesthetic reasons – and the consequent explanation of the entire field of
optics as an electromagnetic phenomenon – was the most far-reaching advance
of the 19th century theoretical physics. These were previously considered to
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be unrelated phenomena; magnetism appeared with lodestones; current flowed
in wires. Electricity had to do with rubbing amber rods to produce “charged”
objects. These phenomena were known since Thales, and many optical phe-
nomena are so ubiquitous that they were known to most persons since the
dawn of humanity. But now, mathematical descriptions of experimental re-
sults were available. Some of the experiments that provided the data were
obtained by Coulomb, Cavendish, Orsted, Ampère and Faraday.

The Maxwell theory also explained all the known data in geometrical and
wave optics, and predicted all future results in radio wave generation, prop-
agation, and reception. When coupled with STR and quantum mechanics,
Maxwellian electrodynamics became 20th-century QED – a theory that ex-
plains to a very high accuracy all branches of natural science except gravi-
tation, cosmology and nuclear- and particle physics (in particular, it should
be able to explain life). In the 1970’s, QED was successfully unified with the
weak nuclear force, and its gauge principle, in a generalized form, underlining
the entire Standard Model of particle physics.

The Kinetic Theory of Gases, or —

How fared the atoms of Democritos?

The basic ideas of the Greeks were transmitted via Epicuros to the Ro-
man philosopher Lucretius, and through that connection to the Renaissance
scientists, including Galileo. Newton used these hard, massive atoms in his
work on chemistry and optics.

In about 1800, Roger Boscovitch wrote presciently about the primary
elements of matter as point-like entities, having no extension in space but
acting upon one another by forces that he describes in detail: strong repulsion
when the particles are close, attraction when they are more distant.

Experimental techniques for studying matter were improved by chemists,
such as Lavoisier (1783) who began to clarify the idea of chemical elements.
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Dalton, in about 1800, summarized and advanced the idea that an atom is
the simplest structure that contains all the properties of an element, and he
recognized twenty elements. This number would grow to ninety by the end
of the century. A suggestive step in the process of understanding atoms was
made by J.L. Meyer and Mendeleev (1869) who discovered the chemical
periodicity of their properties.

Prout (1815), aware of the simple relation of atomic weights, suggested
that all elements were made of hydrogen (recalling Thales and his contentious
students). That a repetitive pattern in properties of elements would suggest a
complex and similarly repetitive internal structure of the atoms corresponding
to these elements, came much later. The model of atoms, hard, indivisible,
but subject to Newton’s laws, led to new ideas about heat and energy.

Two main ideas, each advocated by a different group of people, were be-
ginning to emerge. Following the Newtonian track, Daniel Bernoulli (1733),
J. Herapath (1820) and T.J. Waterston (1843) advanced the notion that
gas molecules interact by elastic collisions between mutually-repulsive parti-
cles (atoms, molecules, ions) and that heat is a form of motion.

They produced early kinetic gas models, but even as late as 1845, these
models were persistently rejected by the scientific establishment, namely the
London Royal Society.

In another vein, the universal principle of conservation of energy was es-
tablished by the experiments of Rumford (1798), Carnot (1824), Joule
(1843) and Helmholtz (1847). Once this idea became accepted, the treat-
ment of heat as a form of mechanical energy arising from the motion of poly-
atomic molecules made more sense. It was now up to A.K. Krönig (1822–
1879) and Rudolf Clausius to make the final step in forging the kinetic
theory343 of gases as a connection between the physicists’ thermodynamics
and the chemists’ ‘atomic theory’ through Avogadro’s hypothesis. Clausius’
partitioning of the total energy of a system between motions of translation,
rotation and vibration, encouraged work on specific heats, while his introduc-
tion of the concept of average distance traversed by molecules before collision
(‘mean free path’) stimulated the development of a statistical interpretation of
thermodynamics and molecular physics, namely – statistical mechanics. Since
heat was now viewed as the kinetic energy of restless atoms, and since there
are too many atoms to keep track of via their individual Newtonian equations
of motion, they must be treated actuarially.

Here again, with the application of the idea that all matter is made of
atoms, a second great synthesis took place. The jiggling and chattering of

343 The term ‘kinetic theory’ was popularized in the 1870’s by O.E. Meyer (1834–

1915) as a title of a textbook.
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atoms bombarding vessel walls explained “pressure”. The increase in tem-
perature of a gas is simply an increase in average speed of the atoms (faster
jiggling). Heated liquids evaporate because their atoms move fast enough to
escape. An enormous collection of observations on the properties of solids, liq-
uids and gases became understood by this kinetic theory, much of it developed
by James Clerk Maxwell (1859) and Ludwig Boltzmann (1866).

Despite certain difficulties in deriving specific heat capacities (unresolved
until quantum mechanics) most Victorian physicists regarded the kinetic the-
ory as a triumphant example of the mathematization of physics.

History of the Theories of Light III

C. Rebirth of the wave theory (1801–1888)

The 19th century opened with a series of experimental and phenomenological
studies which soon put the wave theory of light on a secure foundation, as a
transverse propagating undulation of the elastic ether, explicable in mechani-
cal terms.

The first step toward this was the enunciation by T. Young (1801) of the
principle of interference, and the explanation of the colors in thin films. His
views, however, were expressed largely in a qualitative manner and therefore
did not gain general recognition. Young was also first to recognize (1817) that
the wave motion of light was transverse. Earlier, in 1808, polarization of light
by reflection was discovered by Etienne Louis Malus (1775–1812, France),
who did not attempt an interpretation of this phenomena.

In the meantime, the corpuscular theory had been developed further by
P.S. de Laplace and J.B. Biot, and under their influence the Paris Acad-
emy proposed the subject of diffraction for the prize question of 1818, in
the expectation that a treatment of this subject would lead to the crowning
triumph of the corpuscular theory.

To their dismay, and in spite of strong opposition, the prize was awarded
to A.J. Fresnel, whose treatment was based on the wave theory. His work
was the first of a succession of investigations, which, in the course of a few
years, were to discredit the corpuscular theory completely. In his memoir
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Fresnel effected a synthesis of Huygens’ envelope construction with Young’s
principle of interference. This was sufficient to explain diffraction phenomena.
Fresnel calculated the diffraction caused by straight edges, small apertures,
and screens. [He was advised by Francois Jean Arago (1786–1853, France)
to read the publications of Grimaldi and Young, but could not follow this
advice because he could read neither English nor Latin.]

Fresnel’s theory predicted that in the center of the shadow of a small disc
there should appear a bright spot. This counter-intuitive fact caused S.D.
Poisson to reject the theory. Fresnel was saved by Arago, who performed the
experiment by himself and verified that Fresnel’s theory was indeed correct.
Poisson acquired his share of fame in the event: the spot became known as
Poisson’s spot!

In 1818 Fresnel developed his theory of the partial convection of the lu-
miniferous ether by matter [a theory apparently confirmed in 1851 by the
direct experiment carried out by A.H.L. Fizeau]. In 1821 Fresnel gave the
first indication of the cause of dispersion, by taking into account the molec-
ular structure of matter. The first terrestrial determination of the speed of
light was performed by Fizeau in 1849. His colleague J.B.L. Foucault then
followed suite and measured the speed of light in water (1851), finding it to
be less than that in air.

In contrast, the corpuscular theory explained refraction in terms of attrac-
tion of the light-corpuscles at the boundary toward the optical denser medium,
and this implies a greater velocity in the denser medium. On the other hand
the wave theory demands, according to Huygens’ construction, that a smaller
velocity is obtained in the optically denser medium. Thus, the direct mea-
surement of the velocity of light in air and water decided unambiguously in
favor of the wave theory.

In another vein, a major effort during 1821–1876 was aimed at establish-
ing the theory of the elastic ether. This theory persisted, in spite of many
difficulties, for a long time and most of the great physicists of the 19th cen-
tury contributed to it. Among these were Lord Kelvin, Lord Rayleigh
and G. Kirchhoff.

While all this was happening in optics, the study of electricity and mag-
netism was also bearing fruits, culminating in the discoveries of M. Faraday
(1839). J.C. Maxwell (1873) succeeded in synthesizing all previous experi-
ences in this field in a system of equations, the most important consequence
of which was to establish the possibility of electromagnetic waves.

Maxwell was able to show, purely theoretically, that the electromagnetic
field could propagate as a transverse wave in the luminiferous ether. Solving
for the velocity of the wave, he arrived at an expression in terms of electric
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and magnetic properties of the vacuum (‘ether’): c = (ε0μ0)−1/2. Upon sub-
stituting empirically determined values for ε0 and μ0 [Rudolph Kohlrausch
(1809–1858) and Wilhelm Weber (1804–1891) in 1856], Maxwell obtained
a numerical result equal to the measured velocity of light. This led Maxwell
to conjecture that light waves are electromagnetic waves.

However, it soon became apparent that the new electromagnetic theory of
light, while capable of explaining all phenomena associated with the propa-
gation of light, failed to elucidate the processes of emission and absorption,
in which the finer features of interaction between matter and light-radiation
are manifested.

As often happens in the sciences, the limits of applicability of a theory
exist in latent form long before the theory itself is demised. Indeed, a body
of stubborn spectroscopical data had been accumulating since the early days
of the 19th century, which 100 years later turned the tide again in favor of a
corpuscular aspect of light:

In 1802, William Hyde Whollaston (1766–1828, England) made the
earliest observations of the dark lines in the solar spectrum. Because of the
slit-shaped aperture generally used in spectroscopes, the output consisted
of narrow colored band of light, the so-called spectral lines. In 1814, Joseph
Fraunhofer (1787–1826, Germany) independently rediscovered the dark lines
in the solar spectrum, since named after him. These were interpreted in 1859
as absorption lines on the basis of experiments by G. Kirchhoff and Robert
Wilhelm Bunsen (1811–1899, Germany), in the following way: The light of
the continuous spectrum of the sun, passing through cooler gases of the sun’s
atmosphere, losses by absorption just those wavelengths which are emitted by
the gases.

This discovery was the beginning of spectrum analysis, which is based on
the recognition that every gaseous chemical element has its own signature of
a characteristic array of spectral lines. The problem of how light is produced
or destroyed in atoms involves the mechanics of the atom itself, and the laws
of spectral lines reveal not so much the nature of light as the structure of the
emitting particles. But this story began to unfold only in the 20th century.
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History of Magnetism II (1600–1894 CE)

(a) Background

Although it was known (since 1581) that unlike magnetic poles attract and
like poles repel, it was difficult to establish experimentally the law of magnetic
force between poles. Thus, an exact determination of the mutual action could
only be made under conditions which were in practice unattainable. The
difficulty was finally overcome by Coulomb (1785), who [by using very long
and thin magnets, so arranged that the action of their distant poles was
negligible] succeeded in establishing the law named after him. It stated that
the force of attraction or repulsion exerted between two magnetic poles varies
inversely as the square of the distance between them.

Several previous attempts had been made to discover the law of force,
with various results,some of which correctly indicated the inverse square law;
in particular John Michell (1750), J. Tobias Mayer (1760) and Johann
Heinrich Lambert (1766) may fairly be credited with having anticipated
the law which was afterwards more satisfactorily established by Coulomb344.
The accuracy of this law was confirmed by Gauss (1832), who employed an
indirect but more rigorous method than that of Coulomb.

Gauss continued to work on terrestrial magnetism (1833)and other mag-
netic phenomena (1838).

H.C. Oersted discovered (1819) that a magnet placed near a wire car-
rying an electric current tended to set itself at right angles to the wire,
a phenomenon which indicated that the current was surrounded by a cir-
culating magnetic field. The discovery constituted the foundation of elec-
tromagnetism345, and its publication (1820) was immediately followed by

344 Joseph Priestley showed (1767) that electric charges obeyed the Newtonian

inverse-square force law. John Michell suspended a magnet by a thread and

brought up another magnet, measuring the repulsive force between them by

means of the twist imparted to the thread. Coulomb rediscovered Michell’s

torsion balance and with it, from 1785 to 1789, demonstrated the inverse-square

law for both electrical and magnetic attractions and repulsions.
345 The German natural philosophers, headed notably by Friedrich Schelling

(1775–1859), believed that there was only one kind of power behind the devel-

opment of nature, namely, that of the World Spirit (weltgeist). They thus held

that light, electricity, magnetism, and chemical forces, were all interconnected;

all where different aspects of the same thing. One of Schelling’s disciples was
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A.M. Ampère’s experimental and theoretical investigation of the mutual
actions of electric currents (1820) and of the equivalence of a closed electric
circuit to a polar magnet.

In the same year D.F. Arago (1820) succeeded in magnetizing a piece of
iron by an electric current and in 1825, W. Sturgeon (1783–1850) exhibited
the first actual electromagnet. The experiments of Michael Faraday, which
ran from 1831 to 1895, established the phenomena of electromagnetic induc-
tion, paramagnetism, diamagnetism and permeability, describing electric and
magnetic field in terms of ‘lines of force’.

The unification of all the known electric and magnetic phenomena was fi-
nally accomplished by James Clerk Maxwell (1873), who translated Fara-
day’s ideas into a mathematical form. Maxwell explained electric and mag-
netic forces, not by the action at a distance assumed by earlier mathemati-
cians, but by stresses in a medium permeating all space, and possessing qual-
ities like those attributed to the old luminiferous ether. In particular, he
found that the calculated velocity with which it transmitted electromagnetic
disturbance, was equal to the observed velocity of light. Hence he was led to
believe, not only that his medium and the ether were one and the same, but,
further, that light itself was an electromagnetic phenomenon.

The hypothesis known as molecular theory of magnetism originated with
Ampère who proposed in 1823 that magnetism was due to electric currents
circulating within matter. The idea was then developed further by W.E. We-
ber who suggested that the molecules of a ferromagnetic metal are small per-
manent magnets, randomly oriented under ordinary conditions. These notions
were based upon two age old observations:

• An unmagnetized bar of steel can be made into a permanent magnet by
stroking the bar with a loadstone. Careful investigation of the process reveals
that nothing material has been imparted to the bar of steel. The presence
of the loadstone apparently had only a directing effect on something already
present in the steel bar.

• If we were to take a steel bar which has been converted into a permanent
magnet and cut it in two, we would find two magnets, and, if the process were
continued until molecular dimensions were approached, each resulting particle
would prove to be a magnet. Thus, the steel bar, even in its unmagnetized
condition, possesses magnetic particles of molecular or atomic dimensions
distributed throughout the bar in perfectly random manner, so that the gross
effect is zero magnetization. The presence of the loadstone with its magnetic

Hans Christian Oersted (1777–1851), who announced (1807) that he was

looking for the connection between magnetism and electricity.
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field had the effect of aligning the elementary particles so that their magnetic
axes are made parallel.

While the identification of the ‘Amperian currents’ with the motion of elec-
trons had to await the discovery of the electron at the turn of the 20th century,
Maxwell’s electromagnetic field theory consolidated the understanding of the
bulk (macroscopic) magnetic properties of isotropic matter that had already
started with Poisson, Gauss, Faraday, Weber, F.E. Neumann and Lord
Kelvin. By 1873, the concepts of magnetic moment, magnetization, magnetic
induction, magnetic susceptibility, paramagnetism, diamagnetism and perme-
ability were in use both in theory and practice.

(b) The Classical Theory

(i) Magnetostatics — the magnetic force

The expression for the magnetic force F between two magnetic point-
monopoles m1 and m2 at distance r apart (force on m2 by m1) is obtained
from the Coulomb law

F =
m1m2

μr2
er, (1)

where er is a unit vector directed from m1 to m2 and μ is a constant
of proportionality, known as the permeability of the medium surrounding the
magnet. It depends on the units chosen and also upon the medium between
the poles. Using electromagnetic units (emu), F is in dynes and r in cm,
and μ = 1 for the vacuum.

The poles themselves are a mathematical fiction, since they cannot ex-
ist isolated but only in pairs, and the force between two current loops is
not even exactly a magnetic dipole-dipole force, except asymptotically for
r � loop sizes. However, if we assume two very long bar magnets with two
poles close together and the other two far apart, the situation is fulfilled in
practice. The sign convention adopted is that a positive pole is one which is
attracted towards the earth’s north magnetic pole.
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(ii) Magnetic field-strength and the Lorentz force law

A pole of strength m is positioned at the origin of a coordinate system,
embedded in an infinite medium of permeability μ. The force it exerts upon a
unit pole at a position P , at position r, defines the magnetic field-strength
H at that point, namely

H =
(

m

μr2

)

er, (2)

with er = r
r , r = |r|.

The force on a pole of m′ units at P , will then be F = m′H. It is
assumed that m′ is not large enough to disturb the field H at the point of
measurement, i.e., m′ � m. In this way the notion of the field is decoupled
from the source in the sense that it becomes a local property of space (locally
in space and time) divorced from the source that created it. In emu, H is in
Oersteds = dynes per unit pole charge. The field H may also be generated
by current flowing in a wire rather than by a pole or poles of magnetized
material.

According to the law of Biot-Savart (1820), the magnetic field at position
r due to an element ds of a straight line wire at the origin, through which a
current J flows, is |dH| = J ds×er

4πr2 with a corresponding force on a pole m′

at r being dF ′ = m′ dH . By Newton’s law of action and reaction there must
be a force on the current equal to

dF = −dF ′ = J ds ×
(

−m′er

4πr2

)

= J ds × B(o),

where B(o) = μH(o) and H(o) is the field strength at the current element
due to m (according to Eq. (2)). This is a derivation of the Lorentz force law.
Note that Newton’s third law can only be applied in the magnetostatic case
(J , ds, m, r static), for otherwise the EM field can absorb momentum.

Note that the molecular Amperian electric-current loops cause magnetic
dipole moments, and spatial variations in the density μM of these magnetic
dipole moments lead to additional atomic currents jmag = c curl M . Ac-

cordingly we have from Maxwell’s equations 4π(j + jmag) = c curl B − ∂D
∂t ,

or

4πj = c curl(B − 4πM) − ∂D

∂t
= c curl H − ∂D

∂t

with the new field H = B − 4πM , analogous to the definition D = E + 4πP ,
where P is the electric polarization – the density of electric dipole moments.
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(iii) Magnetic moment, current loop, magnetic shell

Since the (fictional) magnetic poles always exist in pairs, the fundamental
magnetic entity is the magnetic dipole; two poles of strength +m and −m
separated by distance h. Then the magnetic moment is defined as m = mhe,
the unit vector e extending from the negative pole towards the positive pole.

An example is a very short magnet in the form of a thin sheet with one
face magnetized as an N-pole and the other as an S-pole.

Apart from permanent natural magnets (macroscopic, atomic or scales in
between), a magnetic field is produced by an electric field and/or current: A
small planar loop of wire with area ds and unit normal vector n carrying
a steady current J in a counterclockwise direction about n behaves like a
magnetic dipole of moment dm such that (in vacuo)

dm = λ(J ds)n = λJ ds (3)

Here λ is a constant of proportionality which can be set to λ = 1 by a
proper choice of units346.

If a current flows in a circuit C of finite area S (magnetic shell), it can be
criss-crossed into a virtual net of tiny meshes, each with a current J flowing
around it.

Each such mesh, at position r′, has a magnetic moment dm, with a
magnetic potential dΩ = dm · ∇′ 1

|r−r′ | where P is a point outside the circuit

at position r. The total potential is

Ω(P ) =
∫

S

dm(r′) · ∇′ 1
|r − r′| = J

∫

S

cos θ

|r − r′|2 ds = J

∫

S

dω = Jω, (4)

where cos θ = (r − r′) · n and ω is the solid angle suspended at P by the
loop C. The magnetic field of the circuit is given by H = −∇Ω. It is then

shown that this magnetic field is given by the line integral H(r) = J
∮

c
dl×r

r3 ,

where dl is the vectorial loop element (Biot-Savart law), and the closed curve
C follows the wire loop in the direction of positive current. The work done

346 These are known as electromagnetic units e.m.u for short.

It can be shown that

1 e.m.u = c e.s.u c = 3 × 1010 cm/ sec (velocity of light in vacuum)

1 ampere =
1

10
e.m.u of current
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by the field H can only be approximated by a dipole far from the loop, and
furthermore Ω is not single valued: if a unit magnetic charge is carried in
a closed loop Γ that links C once topologically (in a clockwise sense), the
work done by the wire field is

ΔΩ =
∮

Γ

H · dl = 4πJ

(Ampere circuital theorem).

This result is compatible with (2) since Δω = 4π upon a complete traver-
sal of Γ. For a current flowing in a straight wire, Ampere’s theorem for Γ
a circle of radius r about the wire, yields 4πJ = (2πr)H(r) – or H(r) = 2J

r
for the (circumferential) field at distance r from the axis.

The magnetic moment of a particular volume containing currents of density
jm is defined as

m =
1
2

∫

(ξ × jm) dv (5)

ξ = coordinate vector inside the volume.

If jm = ρu, ρ = charge density moving with velocity u,

m =
1
2

∫

ρ(ξ × u) dv (6)

This is analogous to the expression for mechanical angular momentum s in
term of the velocity of a distribution of mass densities ρm

s =
∫

ρm(ξ × u) dv (7)

It is convenient to define:

Γ =
|m|
|s| = gyromagnetic ratio =

e

2m
for an electron.

This is the classical result, and also holds for orbital electron motions inside
atoms and molecules. For more complex structures Γ = g e

2m . Due to
different masses and g-factors for different particles, atoms and molecules, Γ
for a typical macroscopic bulk medium may be quite complicated to compute.

For the intrinsic electron spin contribution to material magnetic moments
g = 2. For atomic nuclei, the g values are not well understood, though known
empirically.



2242 4. Abstraction and Unification

(iv) Magnetic induction — flux density

If we imagine an isolated positive magnetic pole of m units at the center
of a sphere of radius r, then on the surface B = μH points radially outwards
and |B| = m

r2 , where μ is the permeability of the medium.

B ·n ds is the magnetic flux threading through a vectorial surface element
ds = n ds, and B(r) is called the magnetic induction field. The unit of
induction (in the unit system employed here) is called the gauss347. In air, for
which μ ≈ 1, B and H are numerically equal.

(v) Intensity of Magnetization: moment density; susceptibility

A magnetic body placed in an external magnetic field becomes magne-
tized by induction. The intensity of magnetization is proportional to the
strength of the field and its direction in isotropic materials, is in the direction
of that field. It is defined as the magnetic moment per unit volume, that
is, M = m

v = Me. Practically, this magnetization by induction amounts to
lining up the dipoles of the magnetic material: for this reason M is often
referred to as the magnetic polarization. We write M = kH, where k is
the magnetic susceptibility.

347 International Systems of units (1974) are based on the following six basic enti-

ties:

Length = meter (m); Mass = kilogram (kg); Time = second (s); Electric cur-

rent = ampere (A); Temperature = Kelvin (K); Amount of substance = mole

(mol).

The derived units are:

Force = Newton (N) = kg·m
s2

; Energy, work = Joule (J) = N · m;

Power = Watt (W) = J/s; Electric charge = Coulomb (C) = A · s;

Magnetic induction vector B whose unit is 1 Tesla = N
A·m .

Another unit of this vector is the gauss (G) such that 1T = 104G;

also 1γ = 10−5G = 10−9T .

Magnetic flux =
∫

S
(B · n) dS. Its unit is 1 Weber (Wb) = T · m2.

Hence B has also the meaning of magnetic flux density with the unit

1 T = 1 Wb
m2 . Note that 1 Wb = Volt × sec.
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Table 4.9: Susceptibility of some common substances

Substance Susceptibility, k ×106

Cerium 100
Manganese 80
Chromium 26
Aluminum 1.7
Magnesium 1.2
Tin 0.2
Oxygen 0.15
Air 0.03

Silicon -0.20
Water -0.72
Copper -0.80
NaCl -1.0
Zinc -1.0
Silver -1.5
Mercury -2.4
Gold -3.1
Carbon -8.0
Bismuth -14.0

The value of k is positive for paramagnetic substances and negative for
diamagnetic substances. Most substances have a permeability which differs
only very slightly from unity. Some examples are given in Table 4.9.

Macroscopic permanent magnets (e.g. ferromagnets) may have a perma-
nent component M0 to M but, unless saturated, also have a small-field
susceptibility (which depends on M0):

M − M0 = k P + O(H2).

In a non-isotropic medium, k should be replaced by a susceptibility tensor.
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(vi) Diamagnetism

In 1778 Anton Brugmans (1732–1789, Holland) observed that a small
piece of bismuth was repelled when a magnet was brought up to it. When
a ball of bismuth is suspended from a thread and brought between the poles
of a powerful electromagnet, it is driven out of the field when the current is
switched on. Faraday (1845) was the first to carry out systematic investiga-
tions of the magnetic properties of a range of substances.

The behavior of Bismuth is due to its diamagnetic properties.

Diamagnetism is caused by the variation in the frequency of an electron
circulating in an atom; it occurs upon a change in the magnetic induction due
to the introduction of the atom into a magnetic field or during the ramping-up
of a magnetic field (e.g. by an electromagnet). At the classical level, consider
an undisturbed orbit in the xy plane and equate the centripetal force to some
expression f(r) which is a function of the radius r only, mω2

0r = f(r).
If a uniform magnetic field B is now applied along the z-axis, this field
will exert a force F = e(v × B) which is directed radially outwards if the
electron revolves counterclockwise in the xy plane. The total force on each
electron is therefore

mω2r = f(r) ± evB, (8)

where v = ωr. For moderate fields B, the radius of the orbit will not change
while the electron speed in its orbit will increase or decrease.

Let ω = ω0 + Δω. Then

mr(ω2 − ω2
0) = ±eωrB

or approximately

Δω = ± eB

2m
, (9)

independent of ω0 if |ω − ω0| � ω0.

Thus, an electron in a magnetic field acquires an additional angular ve-
locity characterized by the frequency ωL = |e| B

2m , known as the Larmor fre-
quency. It can be shown that the angular-momentum vector assigned to any
electron orbit precesses about the lines of force of an applied magnetic field
where ωL is the angular velocity of precession.

Since the electron velocity in an atom placed in a magnetic field varies, its
kinetic energy varies as well. On the other hand, since r remains unchanged,
the potential energy also does not change. But since the magnetic field is
always perpendicular to the electron’s velocity, the magnetic field does not
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perform any work. However, according to Faraday’s Law of magnetic induc-
tion, a sudden change in B gives rise to an induced electric field which must
accelerate or decelerate the electron in its orbit.

The angular momentum of the electron is |L| = |m(r × v)| = mωr2. Its
magnetic moment is

|p| = πr2 · e

T
= πr2 · eω

2π
=

1
2
er2ω =

e

2m
|L|.

But the equation of motion of the electron is

dL

dt
= N = torque = −p × B = − e

2m
(B × L).

If we consider the electron’s orbit as a perfectly rigid body rotating with an-

gular velocity v = ω × r, its motion is given by the equation dL
dt = ωL × L.

Therefore ωL = − e
2mB, and the whole atom precesses in a magnetic field

like a gyroscope — the Larmor precession.

Now, a circular current appearing as a result of the Larmor precession
of each electron in an atom causes an additional magnetic induction due to
this induction current which is directed against the magnetic vector of the
external field. The magnetic moment of the atom, appearing as a result of
the precession as well as the magnetization, is directed against the magnetic
induction of the external field. This is the basis if diamagnetism. It can be
shown that the diamagnetic susceptibility is

χd = −μ0
ne2

2m
r2 (10)

where n = number of electron per unit volume, χd = M
H and r2 = mean

square distance between the electrons and the nucleus.

Typical values are r2 ≈ 10−20 meter, m = 9 × 10−31 kg,

μ0 = 12.5 × 10−7 Weber
Amp·meter , e = 1.6 × 10−10 Coul, n = 1028/meter3, so

that χd ∼ 10−5.

The diamagnetic susceptibility is independent of temperature since the
thermal motion and collision of atoms are unable to draw them from the
state of Larmor Precession for any appreciable time.
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(vii) Paramagnetism (Faraday, 1845)

Paramagnetic materials are substances whose molecules have a constant
magnetic moment. The energy that the magnetic moment p has in an
external magnetic field is equal to W = −p · B. The minimum value of
energy is attained when p aligns with the direction of the magnetic field. In
this case, when a paramagnetic material is introduced into a magnetic field, a
preferred orientation of magnetic moments of paramagnetic atoms takes place
in the direction of the magnetic induction in accordance with the Boltzmann
distribution, and the body is accordingly magnetized.

The additional induced field coincides with the direction of the external
field and enhances it. The failure of the magnetic moments of individual
atoms to fully align with the field results from collisions and interaction be-
tween atoms. The fraction that does line up depends on the ratio of the

magnetic energy to the mean thermal energy, f = pB
3kT . Here, the factor

1
3 is geometrical, stemming from an average over dipole orientations. Thus

M = npf = np2B
3kT = χpH where χp = μ0

np2

3kT (The Curie Law). At room

temperature χp ∼ 10−3, which is two orders of magnitude higher than the
diamagnetic susceptibility.

1859 CE Raymond Gaston Planté (1834–1889, France). Physicist. In-
vented the first practical storage battery (accumulator). In improved form,
his invention has become the most wildly used rechargeable battery.

Planté was born in Orthez, France. His academic career began as a lecture
assistant in physics at the Conservatory of Arts and Crafts in Paris (1854).
He then became a professor of physics at the Association Polytechnique, Paris
(1860).

Prior to Planté, primary cell batteries eventually lost all of their electricity
when the chemical reactions were spent. Planté overcame this shortcoming by
constructing his cell with two thin lead plates separated a rubber sheets. He
rolled the combination up and immersed it in a dilute sulfuric acid solution.
Initial capacity was extremely limited since the positive plate had little active
material available for reaction. Therefore, Planté had positively charged one
of his plates, making it lead oxide. The other was simply lead, which has a
negative charge; The created flow of electrons from the negative plate was
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taken out of the battery as electricity and then fed back into the battery, thus
creating a rechargeable battery.

1859 CE Jean Joseph Étienne Lenoir (1822–1900, France). One of the
first to build a practical internal-combustion engine. By 1860 he was pro-
ducing reliable engines equipped with an electric ignition system and using
coal gas as a fuel. Many hundreds of these engines were constructed; they
were used throughout Paris. About 1863, Lenoir built one of the first auto-
mobiles348to use a gas engine. The engine was a one-cylinder unit of his own
design. The efficiency of the engine was, however, very low and it traveled
about 5 km per hour.

1859 CE Richard Christopher Carrington (1826–1875, England). As-
tronomer. Discovered the differential rotation of the sun about its axis, with
equatorial period of about 25 days. This was measured in 1887 by means of
a spectroscopic Doppler effect (light coming from receding and approaching
limbs).

Galileo (1613) first demonstrated that the sun rotates on its axis, by
recording the apparent motions of sun-spots as the turning sun carried them
across its disc. He found that the rotation period was about four weeks. (A
typical sunspot group lasts about two months, so it can be followed for two
periods.)

Earlier, Christoph Scheiner (1573–1650, Germany) announced the dis-
covery of sunspots (1611), although ancient Chinese astronomers recorded
such sightings already in ca 1000 BCE.

Very sensitive Doppler shift measurements over the interval 1973–1977
showed an average period of 24.65 days at the equator and 35 days at latitude
80 ◦.

The sun, with over 99.8 percent of the total mass of the solar system,
contains only 2 percent of all its angular momentum. It rotates in the same
direction as the planets revolve, about an axis inclined at an angle 82 ◦49.5′

to the ecliptic.

1859–1871 CE Zénobe Théophile Gramme (1826–1901, Belgium).
Electrical engineer and inventor. Invented and built the first commercially
practical generator for producing alternating current (1869) and direct cur-
rent (1859). Opened factory (1871) to produce dynamos, armature-rings, etc.

348 Yet, no revolution in transportation occurred until four decades later because

the public was content with horses and railroads!
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1859–1874 CE William Stanely Jevons (1835–1882, England). Eco-
nomist, logician and statistician. Pioneer of mathematical economics and
the application of mathematics to political economy. His main contributions
outside economics are in mathematical logic where he developed the ’logical
piano’, a machine with 21 keys for operations in equational logic. It has many
features which were later incorporated into computer design.

Jevons was born in Liverpool and studied at University College, Lon-
don (1851–1853, 1859–1862). He became a professor of political economy at
Manchester (1866–1879) and University College (1876–1880). He drowned
whilst bathing near Hastings at the age of 47.

Jevons developed marginal utility theory of value349 (1862) and a sunspot
theory350 of business cycles.

1860 CE Gustav Theodor Fechner (1801–1887, Germany). Physicist,
philosopher, psychologist. A founder of psychophysics351. Used the Weber
law352of discriminants to scale responses to stimuli. The Weber-Fechner
law states that in order that the intensity of sensation may increase in an
arithmetical progression, the stimulus must increase in a geometrical progres-
sion. Hence, in general, if M denotes a suitable quantity for scaling sensation,
we get

M = a log s + b

where s is the magnitude of a measurable stimulus, and (a, b) are contents of
a particular phenomenon.

For example, the subjective impression of loudness L (sensation) is related
to the physical intensity of sound (stimulus) I, measured in Watt/m2, via the
experimental relation

L = a log I + b.

349 It was not till after the publication of this work that Jevons became acquainted

with the application of mathematics to political economy made by earlier writ-

ers, notably Antoine Augustin Cournot (1838) and H.H. Gossen (1854).

The theory of utility was developed independently by Carl Manger in Austria

and M.E.L. Walras in Switzerland (1870).
350 Sunspots influence the weather, the weather affects the crops, and the crops

affect business conditions. Although few economists accept this explanation,

some even today devote their efforts to proving the connection between storms

in the sky and storms in the business atmosphere.
351 Usually this term is nowadays avoided because of metaphysical implications.
352 Weber’s law: “Noticeable differences in sensation occur when the increase of

stimulus is a constant percentage (about 5) of the stimulus itself”.
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The constants a and b are determined in the following way: At a frequency
of 1000 Hz, the threshold of audibility (lowest intensity that can be heard) is
nearly I0 = 10−12 Watt/m2. Then L is made equal to

L = 10(log I − log I0) = 10 log(I/I0).

The unit of L is called decibel353and abbreviated by dB. For I = I0, L is
zero decibel. Another application of the Weber-Fechner law is used in the
dose-response relationship in biological assay, assuming that the response of
a chemical drug (vitamin, hormone, poison etc) is linearly dependent on the
logarithm of the dose.

Fechner discovered yet another important application of his law to astron-
omy354: the experienced brightness of a star is by no means proportional to the
light energy received by the eye. Again, we have a linear relationship between
brightness (sensation) and the logarithm of light intensity I (stimulus).

A standard formula is

m = x − 2.5 log I.

Here c is a constant determined by the unit in which I is measured, and m is
called the apparent magnitude of a star [the magnitude of Sirius, the brightest
star, is −1.6, Vega has magnitude 0.1, and Betelgeuse 0.9. The clumsiness of
negative magnitude might have been avoided if the magnitude zero had been
better placed].

Fechner was born at Gross-Särchen, near Muskau, in Lower Lusatia, where
his father was a pastor. He was educated at the University of Leipzig, in
which city he spent the rest of his life. Appointed professor of physics (1834),
but in 1839 contracted an eye disease while studying the phenomena of color

353 1 decibel= 1
10

Bel in honor of Alexander Graham Bell (1847–1922), the in-

ventor of the telephone. For a tone of any frequency other than 1000 Hz the

unit dB cannot be used for the human ear.
354 Fechner found that the eye can distinguish two brightnesses if their ratio (not

difference between them!) amounts to a definite and constant amount (the one

at least about 5 percent greater than the other).

This explains the daytime disappearance of the stars: the difference in bright-

ness between a star and its surrounding is always the same, but the ratio of

the brightnesses in the daytime differs from that at night. As a rule, it may

be said that our visual impressions are determined mainly by the brightness

ratios. This aspect of our sense of vision is of the utmost importance for our

daily life. Thanks to this, the objects around us remain definite, recognizable

entities, even in changing conditions of illuminations.
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and vision, and, after much suffering, resigned. Subsequently recovering, he
turned to the study of the mind and the relations between body and mind.
He set out to prove a universal parallelism expressible through a logarithmic
function355.

1860 CE Wet-plate photographs of the sun’s prominences – the first sig-
nificant astronomical result achieved by photography – taken during a total
eclipse by Warren de la Rue (1815–1889).

The first astronomical photographs were taken by use of the daguerreotype
process, and during the 1840s photographs were obtained of the sun, moon
and solar spectrum. In 1850 the first successful star photograph was secured
at the Harvard College Observatory. With the discovery of the wet collodion
process (1851) more sensitive plates were made available though limited to an
effective exposure time of ten minutes. During the 1870s and 1880s the wet
plate was in turn supplanted by the dry plate, ushering in the modern era of
astronomical photography since the exposure times of the dry plates could be
extended almost indefinitely.

In the late 19th and early 20th centuries photography transformed the
methods of astronomical investigation because instead of having to rely on
visual observations astronomers were now able to record permanently the
light from sources, inspecting the photographs at their leisure.

1860 CE Stanislao Cannizzaro (1826–1910, Italy). Chemist. Employed
Avogadro’s hypothesis in the determination of molecular weights of gaseous
compounds by comparing the weight of a volume of gas to that of an equal
volume of hydrogen. From molecular weights he proceeded to atomic weights,
thus establishing the usefulness of atomic weights in determining the formulae
for organic compounds.

1860–1861 CE Johann Philipp Jacob Reis (1834–1874, Germany).
Physicist and teacher. Invented the first electrical telephone. It could transmit
speech through a wire over 100 meters — a forerunner of Bell’s telephone.

Reis was born to a Jewish family in Gelnhausen. He was a physics teacher
at a private school near Frankfurt-am-Main, and designed and exhibited the
telephone for the entertainment of his pupils. Although Reis lectured on and
demonstrated his machine publicly, he was unable to realize its full potential;
he died at age 40, after a long illness which eventually robbed him of his voice.
Bell (1876) acknowledged that he drew upon Reis’ ideas in the construction
of his telephone.

355 Modern psycho-physics favors a power form of the law.
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1860–1873 CE Émile Léonard Mathieu (1835–1890, France). Math-
ematician. Extended and developed the formulation and solution of PDE’s
for a wide range of physical problems. Discovered (1860, 1873) 5 transitive
permutation groups: M12, M11, M24, M23 and M22, known as the Mathieu
groups. These are simple groups with exceptional properties. In the context
of the 20th century classification of all finite groups, these are a subset of the
special groups. The best-known of his achievements are the Mathieu functions,
which arise in solving the two-dimensional wave equation for the motion of
an elliptic membrane (1868).

Mathieu was born in Metz. He was a student at the École Polytechnique
in Paris and took his D.Sc. in 1859. He worked as a private tutor until 1869,
when he was appointed to a chair of mathematics at Besancon. He moved to
Nancy in 1874, and remained as a professor there until his death.

Mathieu’s shy and retiring nature have accounted, to some extent, for the
lack of worldly success in his life and career.

1860–1889 CE Enrico Betti (1823–1892, Italy). Mathematician. Noted
for his contributions to algebra and topology. Derived important theorems
in the mathematical theory of elasticity (Betti’s relation, Betti’s reciprocity
theorem). In 1871 he did pioneering work in topology (Betti’s numbers)356

and wrote the first rigorous exposition on the theory of equations developed
by E. Galois. Betti thus made an important contribution to the transition
from classical to modern algebra. He showed (1854) that the quintic equation
could be solved in term of integrals resulting in elliptic functions.

Betti was born near Pistoia, Tuscany. He studied at the University of Pisa
where he rose to the rank of professor of mathematics in 1857. Under his lead-
ership the Scuola Normale Superiore in Pisa became the leading Italian center
for mathematical research education. Along with Brioschi and Casorati he
visited mathematical centers in Europe (Göttingen, Berlin, Paris) making
many important mathematical contacts. His work in the theory of elasticity
was inspired by Bernhard Riemann who had visited Pisa in 1863. In 1874
he served for a short time as undersecretary of state for public education. He
died in Pisa.

356 The (first) Betti number of a surface is the largest number of cross cuts which

can be made without dividing the surface into more than one piece. The

concept was extended by Poincaré to n-dimensional manifolds, where n + 1

Betti numbers are defined; bi is the number of independent, boundary-less i-

dimensional submanifolds that are not themselves boundaries of any (i + 1)-

dimensional submanifold. One has b0 = bn = 1 and bi = bn−i, and the alter-

nating sum of Betti numbers is the Euler characteristic of the whole manifold.

Thus for n = 2 (a surface), b0 = b2 = 1, b1 = 2h (number of handles), and

b0 − b1 + b2 = 2(1 − h) = χ, the Euler characteristic.
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Time’s Arrow

The fundamental laws of motion (both classical and relativistic), optics
and electromagnetism that deal with macroscopic physics are governed by
second order partial and ordinary differential equations in space and time.
These equations remain equally valid when the direction of time is reversed.
All phenomena described by these equations are therefore reversible in time.

However, in spite of the fact that these equations permit two symmetrical
solutions, natural macroscopic processes governed by these equations are for
the most part irreversible.

Thus, electromagnetic theory (using Maxwell’s equations) is as compatible
with the outflow of light from stars as with its inflow into them. (retarded
potential solutions vs. advanced potential solutions). Yet we never see light
flow into a star; nature seems to reject the advanced potential solution. This
circumstance creates asymmetry between time and space coordinates, and
also between past and future along the time axis itself.

Physics had, therefore, to devise yet another kind of law to account for the
unidirectional trend of events in the universe – the arrow of time. It turned
out that the observed irreversibility of natural phenomena emerges almost
automatically when we begin to consider the coarse-grained stochastic evolu-
tion of large aggregates of particles, events or processes — despite of the fact
that the underlying microscopic processes (even at the quantum-mechanical
level) are individually reversible357. What Newton’s, Maxwell’s and Einstein’s
macroscopic laws and the governing equations of quantum mechanics had
completely ignored, is accounted for by the science of statistical mechanics.
Its laws are statistical, the laws of crowds of events. A crowd of individually
reversible processes becomes irreversible in the bulk.

By visualizing any macroscopic object as consisting of a very large, but
finite, number of atoms, molecules and/or other fundamental, few-degrees-of-
freedom constituents, one can derive the behavior of substances in thermal
equilibrium (or even away from equilibrium in some cases) by application of
statistics. In particular, the non-occurrence of large fluctuations in the tem-
perature distribution of a system in equilibrium can be understood through
considerations of probabilities. Indeed, if one simplifies the description of a
gas in thermal equilibrium as consisting of a number of fast molecules and an
equal number of slow molecules in random motion within a box, one expects to

357 Except for a sub-variety of weak nuclear force, of negligible relevance in most

situations where a statistical time asymmetry arises.
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find about equal ratios of fast and slow molecules in any given sizable portion
of the box.

Even if a very large number of observations were made, it would be very
improbable to ever find a state realized in which all fast molecules are acci-
dentally in one half of the box and the slow molecules in the other half. Quite
generally, the probability of finding a particular macroscopically-described
state of the gas will be proportional to the number of microscopic states of
realizing that coarse-grained state, and the gas tends towards macroscopic
states of ever-increasing probabilities. The entropy of a state should be con-
nected in a quantitative way with N , the number of possibilities of realizing
that state; this connection would then furnish a statistical-mechanical expla-
nation of the 2nd thermodynamical law (non-decrease in entropy of a closed
system).

To find that connection, consider two separate systems, each in thermal
equilibrium, so that the numbers of possibilities of realizing the respective
states are N1 and N2, and the entropies of the respective systems are S1

and S2. If the two systems are completely independent of each other and
boundary effects are neglected, the entropies will simply add: S = S1 + S2.
The number of possibilities of realizing the combined state, N , however, is
equal to the product N = N1N2.

Thus, if there is any connection between S and N at all, S must be
proportional to the logarithm of N , because no other function f(x) satisfies
the functional relation f(x1x2) = f(x1) + f(x2). One thus has the famous
relation, due to Boltzmann:

S = k log N,

where k is a positive proportionality factor depending on the units in which S
is measured. In the mks (SI) system of units k has the value k = 1.38 × 10−23

J/ ◦K.

Unfortunately, these considerations prove to be of little help when one tries
to answer two questions, arising from the existence of irreversible processes
in nature:

(1) Why is the part of the actual world in which we find ourselves in a state
that appears to be very far from a state of thermal equilibrium? [Indeed,
if we were not living in a part of the universe very far from statistical
equilibrium we would not be here to speculate about this question, since
living organisms and their habitats, including the earth as a whole, are
of necessity open, far-from-equilibrium thermodynamical systems.]
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(2) Why does one observe in irreversible bulk processes, starting from initial
states that are not produced by extremely unlikely statistical fluctuation,
an increase and never a decrease in entropy? [No one has ever observed
measurable entropy decrease in a closed macroscopic system.]

Neither of these two questions would pose a conundrum if the present ac-
tual state of our (observable) part of the universe were the result of a statistical
fluctuation.

Indeed: if the highly ordered state we notice about us – at the terrestrial,
astronomical and cosmological scales – is the result of a statistical fluctuation,
then there is an overwhelming probability that the parts of the universe we
have not yet looked at should be in a state of higher entropy, and appear less
ordered, than the part we are seeing now.

Judging by past experience, when the part of the universe accessible to
observation was much smaller, we venture to predict, however, that every new
advance in the art of telescopy will reveal, as it has time and again in the past,
new distant parts of the universe that are at least as far away from thermal
equilibrium as we are.

All astronomic experience indicates that the universe as a whole is in a
state far away from equilibrium, and has been in such states for a long time.
It should be admitted that a satisfactory answer to question (1) has not yet
been found.

In some authors’ opinion the universe should not be expected to attain
a state resembling thermal equilibrium, on the grounds that the universe is
not an isolated system in a constant environment — because the all-pervasive
gravitational field and the cosmological expansion furnish an environment that
cannot, in principle, remain constant in time.

But even if one could resolve the problem posed by question (1), there
would remain the puzzle of question (2). Practically all initial states that lead
to observation of irreversible processes (for example melting of an ice cube)
are states that were prepared by us or by natural processes and are just not
picked at random from an ensemble of possible states. Apparently, an initial
state (whether of an ice cube in this epoch, or of the entire universe at the
time of the Big Bang) carries within itself the template for its development,
when left alone, into states of higher entropy.

This apparent “miracle” of the arising of an arrow of time in macroscopic
systems is then ultimately traceable to the assumption that the initial con-
ditions of the universe are microscopically random. As time wears on, the
interactions in the universe (or in a closed subsystem) gradually manifest
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this randomless macroscopically, which we perceive as an increase in disorder
(entropy).

This is despite the fact that the laws of mechanics (even quantum mechan-
ics) allow in principle the existence of prepared initial states which, when left
alone, would evolve into states of lesser entropy.

In some authors’ opinion the arrow of time observed in laboratory exper-
iments is tied up with the arrow of time of the universe as a whole; in such a
view there is a mechanism, perhaps gravitation, which makes it in principle
impossible to truly isolate a system, and which imprints the arrow of time of
the entire universe on all its parts.

Others, reluctant to accept the implication that what happens here on
earth inside an isolated box, containing water and an ice cube, should be tied
up with what happens inside another isolated box, with water and ice cube,
on some planet in some distant galaxy, feel it ought to be possible to find
sufficient reason for the arrow of time by considering only relatively small
isolated systems. Thus question (2) is still open.

An individual molecule has no way of distinguishing between the two direc-
tions of time, and its behavior (apart from some tiny components of the weak
nuclear force) is described by the basic time-symmetric laws of nature. Noth-
ing prevents us from speculating about whether individual particles might be
able to travel backwards in time, since there are no laws of physics that forbid
motion backward in time358.

A theory of this sort was proposed in 1949 by Richard Phillips Feyn-
man (1918–1988, U.S.A.) to explain pair-creation and pair-annihilation
(transformation of one or more γ-ray photons into an electron and positron,
or conversely the collision of the latter two to produce γ-ray photons and/or
other quanta) by regarding a positron as a negative-energy electron traveling
backwards in time (time-reversal compensating for charge and energy rever-
sal). Thus, both of the above processes can be described by a single particle
performing occasional “reflections” into the past359.

Though the arrow of time can disappear on the subatomic level, large
fluctuations are extremely unlikely on the macroscopic or even mesoscopic

358 If we allow such motion in a theory of physics, however, care must be taken to

avoid paradoxes, such as a person traveling back in time and killing one of his

grandmothers in time to render his own existence paradoxical! Such care must

be exercised at the microscopic, as well as the macroscopic, level.
359 Feynman’s theory is causal, i.e., it allows the future (or past) quantum states

to be determined from an arbitrary initial (or final) state, so it leads to no

paradoxes. Recently, however, the possibility that Einstein’s theory of gravity

might allow time paradoxes, has aroused renewed interest.



2256 4. Abstraction and Unification

level. [Ice cubes are not created by chance fluctuations — they are made in
refrigerators; wineglasses are not created by chance — they are manufactured.]
This guarantees that the arrow of time will not disappear in the world around
us, and although it depends on statistical averages, it is very real.

Moreover, the arrow of time exists also in the universe as a whole, i.e.
the direction of time is not a local phenomenon. When astronomers look
at the universe, they see low entropy in the past, and they are justified in
expecting that there will be higher entropy in the future. The cosmos, unlike
the electron, is subject to the arrow of time.

The Rise of the New World,360 II

The immigrants (1860–1924)

The first U.S.A. census in 1790 recorded a population of almost 4 million,
of which ca 700, 000 were Negro slaves.

Almost 1
4 of the white population was of non British ancestry: Swedish,

Polish, German, Italian and Dutch, French Huguenots, Jews from Spain and
Portugal, Scotch-Irish Presbyterians and others.

The first great wave of the 19th century immigration (1830–1860) brought
2 million people, half of which were Catholic Irish. Thousands of Eng-
lish, Scottish, Welsh, French, Dutch and Swiss settlers assimilated with rela-
tive ease into American communities established by their predecessors. The
abortive 1848 revolution in Germany brought thousands of its exiled leaders,
students, intellectuals and artisans. By 1900 some 5 million more Germans
(mostly peasants, but also tradesmen and craftsmen) followed.

360 For further reading, see:

• The Story of America, Reader’s Digest Association: New York, 1975, 527 pp.
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Beginning in 1825, “American fever” also swept Scandinavia and Finland,
where political turmoil, overcrowding, feudalism and a series of poor harvests
spurred a peasant exodus, that by 1920 would bring to the United States a
million Swedes and another million Norwegians, Danes and Finns.

The dizzying rush of industrialization following the Civil War, the Home-
stead Act of 1862 and the growth of a railroad network that made virtually
every region accessible to settlement — all these provided new allures for
Europe’s poor. Agents for U.S.A. railroads, shipping companies and other
industrial concerns fanned out across Europe.

This contributed to history’s most massive immigrant tide: 31 million
people arrived in America in the period 1860–1924. The big wave of the 1880’s
was made up largely of Germans, English, Scandinavians, and Canadians.
During the peak years of 1900–1920, more than 3 million immigrants came
from Italy alone. Another 3 million came from the heart of the crumbling
Austro-Hungarian Empire. An additional 3 million arrived from Russia and
Poland, mostly persecuted Jews. [In 1907, the record year for immigration
to the United States, the newcomers came primarily from Russia, Central
Europe, and Italy.] During the same two decades, well over 5 million more
people came from Britain, Scandinavia, Germany, France, Portugal, Greece,
Armenia, Canada, Mexico and other Latin American countries.

By 1890 the population shot up to 63 million and by 1924 to a total of
115 million. Altogether, 40 million people immigrated to the U.S.A. since its
birth in 1776.

Most of the immigrants were uneducated, unskilled, poorly clothed, desti-
tute or nearly so. The vast majority settled in the industrial Northeast: most
of the rest went to the industrial regions of the North Central States. By
1912, for example, there were men and women from 25 nations, speaking 45
tongues, manning the looms of Lawrence, Massachusetts.

The isolationist fervor that gripped the nation after WWI, compelled
congress to pass a law in 1921, that for the first time restricted the num-
ber of immigrants.

1860–1871 CE Hermann Hankel (1839–1873, Germany). Mathemati-
cian. Contributed to theory of functions, special functions and the history of
mathematics.
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Hankel was born at Halle. His father was a professor of physics at Halle and
Leipzig. Hankel acquired a considerable knowledge in Greek at the Leipzig
Gymnasium and improved upon it by reading the ancient mathematicians in
the original. He studied in the University of Leipzig under Möbius and at
Göttingen under Riemann (1860). The following year he studied in Berlin
with K. Weierstrass and L. Kronecker, and in 1862 received his doctorate
at Leipzig. In 1867 he became a full professor at Erlangen.

In 1869 he was called to Tübingen, where he spent the last four years of
his life. His most important contribution to mathematics was his develop-
ment of the theory of Bessel functions (1869), mainly integral representations
and asymptotic expansions. In honor of Hankel, Nielsen denoted the linear
combinations Jν(z) ± iYν(z) by the symbol Hν (1904), and they are known
today as “Bessel functions of the third kind” or simply Hankel functions.

1860–1867 CE Benjamin Peirce (1809–1880, U.S.A.). Mathematician.
Developed the theory of linear associative algebra, a classification of all com-
plex associative algebras of dimension less than seven. He used the, now
familiar, tools of idempotent and nilpotent elements. Defined mathematics as
“the science which draws necessary conclusions”. He worked on a wide range
of mathematical topics from celestial mechanics and geodesy on the applied
side to algebra and number theory on the pure side.

Peire graduated from Harvard and became a professor there. He estab-
lished the Harvard Astronomical Observatory and helped determine the orbit
of Neptune.

1861 CE Massachusetts Institute of Technology (M.I.T.) founded in Boston.
It moved to its present location on the Charles River in Cambridge, Mass., in
1916.

1861 CE Julius Weingarten 1836–1910, Germany). Mathematician.
Worked on the fundamental equations of differential geometry. Weingarten
equations and Weingarten surfaces are named after him. Received his Ph.D.
from Halle (1864).

1861 CE Pierre-Paul Broca (1824–1880, France). Surgeon and anthro-
pologist. Discovered seat of motor control of speech in the brain, now referred
to as ‘Broca’s area’.

Broca was born in the township of Saint-Foy-La-Grande and studied medi-
cine in Paris.
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1861 CE The interpretation of R.W. Bunsen and G. Kirchhoff of the
Fraunhofer lines in the solar spectrum marked the beginning of modern spec-
troscopy, and provided the first observation that led in 1913 to the Bohr model
of the atom.

1861–1865 CE The American Civil War361. A tragic conflict between
northern and southern states over the issue of black slavery and also due to
economic rivalry between the industrial north and the agricultural south. It
took more American lives than any other war in American history. It ended
the southern way of life that depended on slave labor in the cotton and tobacco
fields and cemented the union of states. It granted freedom to the American
black people but not equality.

In 1860, Abraham Lincoln, a Republican whose party wanted to limit
slavery, was elected president. Afraid of being outnumbered by non-slave
states, 11 southern states separated from the union (23 states) into a new
nation, the Confederate States of America. Lincoln refused to recognize this
secession, and fighting broke in April 1861.

The Civil War was expected to be a brief conflict in which the immense
advantages of the North in resources and manpower would prove decisive.
But the South, having the advantage of fighting on its own soil and superior
commanders, put up a valiant fight, and in the early part of the war won some
brilliant victories.

Nobody would have predicted that the war would last four years and
would turn into one of the most costly military ventures up to that time. The
confederacy finally surrendered to the Union forces in April 1865; ca 618,000
had died (out of a total fighting force of some 2.5 million soldiers).

The total cost of the war is estimated at 15 billion dollars (1976). Many
southern cities and towns were destroyed and the economy of the South al-
most completely collapsed. The victory of the North was achieved mostly
due to the military competence of Ulysses S. Grant. It was the first war
to apply new warfare technological such as telegraphy, photography, balloon
reconnaissance, repeated rifles, trenches, railroad transportation, wire entan-
glement, submarines and armored vessels.

1861–1879 CE William Crookes (1832–1919, England). Physicist,
chemist, and inventor. Discovered the element thallium (1861), invented the
radiometer (1873), and investigated passage of electrical discharge through

361 Johnson, Paul, A History of the American People, Harper Collins, 1998,

1088 pp.
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highly rarefied gases. He also pioneered investigations of cathode rays in high-
vacuum tubes of his own design (1878), now known as Crookes’ tubes. This
latter work led directly to the discovery of the electron by J.J. Thomson.

Crooks was born in London and studied at the Royal College of Chemistry.
He set up (1856) a private laboratory in London and made his living as a
chemical consultant and editor of scientific journals. In 1861, while conducting
a spectroscopic examination of the residue left in the manufacture of sulphuric
acid, he observed a bright green line which has not been noticed previously.
He then succeeded in isolating a new element, thallium. He served as president
of the Royal Society (1913–1915).

Between 1874 and 1876 the scientific world has been stirred by Crookes’
experiments with the radiometer. This device is composed of partially evac-
uated chamber containing a paddle wheel with vanes blackened on one side
and silvered on the other, which spins rapidly when radiant heat impinges on
it.

As the invention of the radiometer came shortly after the publication of
Maxwell’s Treatise, some persons (Maxwell included) though that the motion
of the wheels can be ascribed to light pressure, but the forces were much
greater than predicted from the electromagnetic theory, and in the wrong
direction. It soon became evident that the effect is due to the residual gas.
The observed rotation occurs because the light heats up the black faces more
than the white ones. Molecules in the residual gas that drift up against a
black (hotter) side of a vane therefore get a stronger kick than from a white
vane, and the corresponding stronger recoil drive the rotation with the black
sides receding362.

1861–1884 CE Carl von Voit (1831–1908, Germany). Physiologist. Con-
ducted, with the assistance of Max von Pettenkofer (1818–1901, Germany)
pioneering experiments in animal and human metabolism, making first mea-
surements of energy requirements and determinations of oxygen and nutrients
utilization. Professor at Münich (1863–1908).

von Voit was influenced by the conceptions of energy that had become
dominant in physics and chemistry at that time. He was a trained physi-
cian, but studied chemistry under Liebig. He began his physiological work

362 The detailed quantitative behavior of Crookes’ radiometer was much investi-

gated during 1873–1930. Many theoretical papers were written, including im-

portant ones by J.C. Maxwell (1879), and A. Einstein (1924). Many experi-

ments were performed [e.g. H. Marsh et al. (1925). A detailed discussion with

many references is given in I.B. Loeb, The Kinetic Theory of Gases (1934, pp

364–388) and in R.W. Wood Physical Optics (1934, p 794).
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by establishing the fact that healthy adult animals are normally in nitrogen
equilibrium (excepting as much nitrogen as they take in).

In 1865 he showed that combination with oxygen was not the first step in
energy production, but that a large number of intermediary substances were
formed from the original food before the final union with oxygen occurred. Not
all these intermediates were necessarily oxidized completely. Hence, oxygen
did not cause metabolism. Much of modern biochemistry consists of the search
for these products of intermediate metabolism.

1862 CE Astronomers Alvan Clark (1808–1887, USA) and his son Alvan
Graham Clark (1832–1897, USA) discovered Sirius B, a white dwarf. Alvan
Sr. was also a lens maker; his firm, Alvan Clark and Sons made the 66 cm
refraction telescope363 for U.S. Naval observatory and the 91 cm telescope for
the Lick Observatory. His son discovered 16 double stars and made the 102
cm lens for the Yerkes telescope (1897).

Sirius consists of a pair of stars for which individual masses can be deter-
mined. The brighter component had been known since 1844, to be moving
across the sky in a sinuous path, and it was rightly surmised that this sin-
uous motion was the result of orbital motion around an unseen companion.
Its magnitude is +8.7, some 10,000 times fainter than its bright companion.
This makes it very difficult to observe except when the two stars are farthest
apart.

1862–1871 CE Ernst Felix Immanuel Hoppe-Seyler (1825–1895, Ger-
many). Physiologist and chemist. A founder of physiological chemistry.
Identified364and isolated (1862) hemoglobin as the oxygen-carrying substance.
Prepared a crystalline form of hemoglobin (1862) and was able to show

363 A refracting telescope consists of a large long-focus-length objective lens and a

small, short-focus-length eyepiece that magnifies the image formed by the focus

of the objective lens. The magnification, or magnifying power of a refracting

telescope is equal to the focal length of the objective divided by the focal length

of the eyepiece lens. Chromatic aberration is the most severe of a host of optical

problems that must be solved in designing a high-quality refracting telescope.

During the 19th century, master opticians devoted their lives to overcoming

those problems.

Modern astronomers in the 20th century lost interest in this type of telescope,

since all its technical shortcomings can be avoided by using mirrors instead

of lenses. There are now 14 refractors around the world with objective lenses

larger than 65 cm in diameter.
364 This was independently done at about the same time by Otto Funke (1828–

1879, Germany.
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that hemoglobin contains a compound called ‘heme’ as part of its structure.
[‘Heme’ was not an amino acid, but a rather complex atom grouping con-
taining an iron atom.] Measured metabolic phenomena in isolated tissues.
Discovered (1871) the enzyme Invertase, that speeds up conversion of sucrose
into glucose and fructose.

Hoppe-Seyler was born in Freiburg-an der-Unstrut. He was a professor at
Tübingen (1861–1872) and Strasbourg (1872–1895).

1862–1887 CE Julius (von) Sachs (1832–1897, Germany). Botanist and
plant physiologist. The creator of experimental botany. Contributed to all
branches of botany and his name will always be associated with the great
development of plant physiology which marked the latter half of the 19th
century. Under his general and enthusiastic leadership, Wuerzburg became an
international center of plant physiology where some of Europe’s most eminent
botanists were trained.

Sachs discovered that:

• photosynthesis occurs in the chloroplasts (the structure in the plant cell
containing the green pigment chlorophyll) and produces oxygen. Specifically:
chlorophyll is the key component that forms CO2+water into starch while
releasing oxygen (1832).

• Starch in chloroplasts results from absorption of CO2; a simple iodine test
can be used to show the existence of starch in a whole leaf. Starch is then
translocated from the leaf in the form of sugar.

• Light is necessary for the synthesis of chlorophyll.

Sachs also pioneered in studies of the nutritional requirements of plants:
he published the first formula for a standard culture solution, a necessary
basis for identifying the mineral elements essential for growth.

Sachs was born to a poor Jewish family in Breslau, Silesia (also Wroclaw,
Poland). Left high-school early because of the death of his parents. He
managed to find a job as an assistant to the physiologist Johannes Purkinje
in Prague (1850) and was later able to complete his schooling. He attended
Prague University, graduating with PhD (1856). Became a professor of botany
at Wuerzburg (1868), remaining there for nearly 30 years.
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Science and Musicology

“Music is a secret arithmetical exercise and the person who indulges in it
does not realize that he is manipulating numbers”.

Gottfried Wilhelm von Leibniz (1646–1716)

Although music played an important role in the cults of many ancient
civilizations365, it was the Greeks who first discovered the mathematical basis
of music, and thus laid the foundations of the scientific development and
evolution of this discipline.

The Greek μoυσικ’η, from which music is derived, was used very widely
to embrace all those arts over which the Nine Muses (μoυσαι) were held to
preside. Contrasted with gymnastics it included those branches of education
concerned with the development of the mind as opposed to the body. Thus,
such widely different arts and sciences as mathematics, astronomy, poetry, lit-
erature, and even reading and writing would all fall under μoυσικ’η, besides
the singing and setting of lyric poetry. The philosophers placed special em-
phasis on the educational value of music in the formation of character, and
this attitude affected their aesthetic analysis. Aρμoνια (harmony) was the
name given by the Greeks to the art of arranging sounds for the purpose of
creating a definite aesthetic impression.

365 In ancient Egypt, priests trained choirs in singing ritual music, and court mu-

sicians sang and played reed pipes and string instruments such as lyres, lutes,

and harps as early as 4000 BCE. In Babylonia, court musicians played ornate

instruments in the 2600’s BCE. The Bible contains the words of many Hebrew

songs and chants, such as the Psalms. It mentions harps, drums, trumpets,

cymbals, and other instruments. The music in Solomon’s Temple at Jerusalem

in the 900’s BCE included trumpets and choral singing to the accompaniment of

stringed instruments [I Chron 25, mentions a total of 228 skilled musicians in

the service of the temple]. The ancient kingdoms of the Mediterranean recog-

nized dance and music as integral forms of celebration. The early Chinese

thought that music reflected the order in the universe (Chinese music used the

five-tone scale. It had no half-steps, and sounded somewhat like the 5 black keys

of the piano). Musical traditions in India go back to the 1200’s BCE. Hindus

believed that music was directly related to the fundamental processes of human

life. They worked out musical theories by about 300 BCE. Their music was not,

however, based on a system of whole steps and half steps, like the diatonic scale.
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The Greeks were first to use letters of the alphabet to represent musical
tones. They grouped the tones in tetrachords (succession of 4 tones). The
first and fourth tones have a relationship somewhat like that between C on the
piano and the next F above. By combining these tetrachords in various ways,
the Greeks created groups of tones called modes. Modes were the forerunners
of the more modern major and minor scales.

Trepander of Lesbos (710–670 BCE, Sparta) is known as the Father of
Greek music. He founded at Sparta the earliest musical school of Europe. He
improved the cithara (7-chord), by adding a note at the top of the scale and
leaving out the third from the top, so as to attain an octave with one note of
the scale omitted.

Pythagoras (fl. 532 BCE) founded the mathematical theory of acoustics
and music. He established the 7 note diatonic musical scale based on the
primes {2, 3, 5}; the ancient Greeks, with their abundance of string instru-
ments, discovered that when a string (or a flute) is shortened to half its length,
the resulting tone, when played with the original one, resulted in a pleasant
musical sound. Similar experiments with length combinations of 3: 2 (fifth),
4: 3 (fourth), and 5: 4 (third) also resulted in luminous sounds. This led
Pythagoras and his followers to believe that music and mathematics provide
keys to the secrets of the world.

Hippasos of Metapontium (ca 500 BCE) developed the theory of the
harmonic mean. To the three consonant intervals: octave, fifth and fourth he
added the double octave and the fifth beyond the octave. Archytas of Tar-
entum (fl. ca 390 BCE) was a mathematician, mechanician, statesman and
Pythagorean philosopher. He was a friend of Plato and founder of theoretical
mechanics. Ptolemy called him the most important theoretician of music of
the Pythagorean school. He calculated numerical ratios for new musical scales
by means of arithmetical harmonic means.

Plato (in Timaeus, ca 380 BCE) believed that the 7 notes of the musical
scale also embodied the intervals between the 7 known planets as viewed
from an earth-centered perspective (Mercury, Venus, Mars, Jupiter, Saturn,



1862 CE 2265

the sun, and the moon), which he later referred to (in the Republic) as the
“harmony of the Spheres”366.

Aristoxenes of Tarentum (fl. ca 320 BCE) was a pupil of Aristotle,
philosopher and mathematician, and the greatest theoretician of music in
ancient times. Nicomachos (fl. ca 100 CE) wrote a manual on harmony
which is our oldest source on Pythagorean music. Theon of Smyrna (fl.
127–132 CE) was a Platonic philosopher who developed the mathematical
theory of music.

The Italian monk Guido d’Arezzo, in ca 1025, laid the basis for modern
musical notation: the four-line staff, the F clef and the notes ut (do), re, mi,
fa, sol, and la.

The theory of music was considered a part of mathematics almost until
modern times. It was one of the main ingredients of medieval education.

The greatest explorer of musical physics in recent times was Hermann
von Helmholtz (1821–1894), a German physicist who who wrote The Sen-
sations of Tone (1862), the foundation book on sound as it is made and heard.
He was also a talented pianist with a thorough practicing knowledge of his
subject from several points of view. In an address given in 1878, the great
Scottish physicist James Clerk Maxwell said: “Helmholtz, by a series of
daring strides, has effected a passage for himself over that untrodden wild
between acoustics and music — that Serbonian367 bog where whole armies of
scientific musicians and musical men of science have sunk without filling it
up”.

The science of music developed due to the combined efforts of physicists
and musicians, who complemented each other. Thus, we can place opposite
Helmholtz, the musical scientist, the scientific musician Theobald Boehm

366 These connections deeply influenced the neoplatonists of the Renaissance who

felt that, as a result of this connection, the soul must have some kind of ingrained

mathematical structure. Plato’s emphasis on the importance of ratio of small

integers had the greatest influence on Renaissance architecture.
367 Maxwell chose his words with skill: Herodotos described the engulfing of armies

in the mud of Lake Serbonis, a lake in the northern Sinai peninsula, which has

since dried up. Many early musical instruments were made of the kind of cane

which grows to this day in swampy places around the Mediterranean.
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(1794–1881, Germany). The latter was trained as a goldsmith in the family
business, but very quickly showed his ability on the flute. He made solo
concert tours for several years before beginning to feel that many limitations
of the flute of his day could be remedied.

Between 1830 and 1850 he performed an extensive series of carefully chosen
experiments, guided by what little acoustic theory was available to him, and in
the end produced an instrument which was essentially the same as the modern
flute. Not only does this instrument show the excellence of his researches
into sound, but it also reveals Boehm as a first-class engineer. Most of the
improvements which took place in the construction of other woodwinds during
the last half of the 19th century are directly descended from his ideas and from
the stimulus of his success.

The effect of a musical sound upon our ears depends first and foremost
upon its frequency (pitch), i.e., the number of vibrations per second of the
body emitting the sound. To say that we hear middle C, is to say that our
ears register 256 vibrations per second. Therefore a number is associated
with each sound, and conversely, with each number, is associated a sound.
For musical purposes however, we are led to employ only a limited number
of sounds (frequencies), in each octave (if a string produces a certain note,
half the length will produce the octave). Among the 300 discernible sounds
in an octave, one must choose a series of monotonically increasing frequencies
(scale)368.

Once a scale was adopted, it became practically impossible to change it;
the continuity of musical life requires the continuing use of the same scale
or those with practically negligible differences — which is in fact what has
happened in the course of the history of Western music; nearly 2500 years have
passed and the present day scales are in fact only variations of the Greek scale.

368 Colors, too, are differentiated by their frequencies. Indeed our eyes and ears

are analyzers of frequencies, but while a painter can put colors of any frequency

whatever on his canvas, a composer cannot place sounds of arbitrary pitch in his

work. Why is this? First, he must write his music and for this he needs a discrete

alphabet, or else he would need an infinite number of symbols; deciphering such

notation would be very slow in any case. Second, music is made to be played,

and the large majority of our instruments can produce only a limited number

of sounds. Finally, our ear is incapable of discerning two sounds that are too

close, which makes it fruitless to use all frequencies. It is agreed that a practical

ear can distinguish about 300 sounds in one octave; this is still too much for

musical notation and for the capacity of the instruments (a concert piano of 8

octaves would have 2400 keys and a total length of some 100 meters, exceeding

by far the hand span of a human pianist).
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The reasons for this consistency are rooted in the nature of the human
auditory system (anatomy of the ear and the signal processing in the brain);
when two notes are played together or in succession, the resulting sound is
generally more harmonious to the ear when the corresponding frequencies
are in simple ratios, and much music takes advantage of this fact: particular
intervals sounding especially harmonious are those with frequency ratios of
2: 1 (octave), 3: 2 (perfect fifth), 4: 3 (perfect fourth), and 5: 4 (major third).

In general, the aesthetic effect of a chord depends almost exclusively on the
ratio of frequencies. The whole question of harmony is therefore a question
of the choice of ratios369. Furthermore, two sounds will be more agreeable
to the ear, especially if heard simultaneously, to the extent that they offer
harmonics in common (thus, unpleasant sound consists of incommensurable
frequencies). That is why the A produced by a musical instrument such as a
violin sounds richer and more pleasant than the rather mechanical sound of
a pure A from a tuning fork. When two or more notes are sounded together
from different instruments, the ear is pleased if their various overtones have
a harmonic relationship. The more combinations there are of overtones that
are the same as each other, or 2 or 4 times the frequency of each other, the
better the ear likes it.

The Greek diatonic scale consists of 7 tones within its octave (Latin,
for 8th). If we normalize the lowest frequency to unity, the scale will
consist of the numbers

{
1, 9

8 (major interval), 5
4 (major third), 4

3
(fourth), 3

2 (fifth), 5
3 (sixth), 15

8 (seventh), 2 (octave)}. In the Just
C Major scale, the absolute frequencies corresponding to these notes are
{264, 297, 330, 352, 396, 440, 495, 528 Hz}.

These are denoted by the letters {C4, D4, E4, F4, G4, A4, B4, C5} respec-
tively, or by the names {do-re-mi-fa-sol-la-ti-do}. These notes are produced
by the white keys of the piano keyboard. The sequence of frequencies of the
above scale is neither arithmetic nor geometric, but the subset {264, 330, 396}
is geometric (with ratios of 4: 5 : 6) and known as a major triad. Since these
notes have many harmonic overtones that match each other, tonal clusters
which contain them are most pleasant to the ear.

Note that the subsets {352, 440, 528} and {396, 495, 594} are also major
triads. If it were not for the preference of our ears, it might seen logical to
divide the octave into 8 equally spaced tones. However, this is not the way the
standard scale works. As one goes up the scale one meets 3 different ratio’s of

369 For that reason, an interval between two musical notes is understood as the

ratio of the frequencies of these two notes.
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frequencies: 9
8 = 1.125 (known as a whole tone or major whole), 10

9 = 1.111
(minor whole), and 16

15 = 1.067 (half tone or major semitone).

For instance, the ratio of frequencies between D and C (re and do) is 9
8 .

The next step up to mi is almost as large, 10
9 . As one goes on to fa, the

step is only half a tone (as re has a frequency about 12% larger than the do,
whereas the frequency of the fa is only 6 1

2% higher than the mi). As we
proceed on to sol, la and ti, we go up whole tones, but between ti and do there
is only a half tone again370.

The tones of the diatonic scale make up a specific pattern of whole steps
(C − D, D − E, F − G, G − A, A − B) and half steps (E − F, B − C). The
first tone of the scale gives the scale its name. For example, the D major scale
will start with D = 297 Hz and proceeds with the same intervals (ratios)
as the C scale over the frequency set (297, 334, 371, 396, 445, 495, 557, 594,
where the bars indicate rounding-off to the nearest integer).

Likewise, the E major scale proceeds over the set

{330, 372, 413, 440, 495, 550, 618, 658 Hz}.

The Greeks also used the Minor diatonic scale, in which the intervals are
the same as in the Major scale, but in a different order. Thus, for the C minor

scale, the normalized set is
{
1, 9

8 , 6
5 , 4

3 , 3
2 , 8

5 , 9
5 , 2

}
, with the corresponding

frequencies {264, 297, 317, 352, 396, 422, 475, 528 Hz}. This combination of
frequencies includes three subsets with frequency ratios 10: 12: 15, known as
minor triads. They are: {264, 317, 396}, {352, 422, 528}, {396, 475, 594}.
The matching harmonics of this scale also sound pleasant to the ear, but
western culture interprets the result as a sad sound.

If we wish to play more than one scale (say, the above C Major, D Major,
E Major and C Minor) on a single musical instrument, certain complications
arise; changing from one key to another introduces new tones slightly different
from the corresponding tones of the former key, while preserving the ratios. If
a person is playing an instrument with continuous tuning like a slide trombone
or a violin, and that person is very skillful, he can make the slight adjustment
so that the frequency ratios of the notes are exactly right.

370 Note also that D = 1
2
(C + E), E = 1

2
(C + G), F = 2C4C5

C4+C5
(harmonic mean),

G = 1
2
(C4 + C5). With the piano, the C major scale resides in the white keys.

If one wishes to test the pleasantness of a scale made exclusively of whole tones,

one will have to use some of the black keys, which does not sound better!
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With valve instruments, however, that is harder to do, and with a piano it
is impossible. If we had to have a different set of keys and strings on the piano
for every key that might be played, the piano could not fit into a living room
and no human would be able to play it. The most common tuning system
alleviating this problem is called the equally tempered scale371: the octave is
divided into twelve equal intervals 1

12 octave apart.

An interval with a frequency ratio of 21/12 = 1.0595 is called a half step
and corresponds approximately to a semitone 16

15 = 1.0666.

Any two half steps approximate a major interval(
22/12 = 1.1225 ≈ 9

8 = 1.1250
)
,

any four a major third
(
24/12 = 1.2599 ≈ 5

4 = 1.2500
)
,

any five a fourth
(
25/12 = 1.3348 ≈ 4

3 = 1.333
)
,

any seven a fifth372
(
27/12 = 1.4893 ≈ 3

2 = 1.500
)
,

371 The first mention of temperament is found in 1496, in the treatise Practica

musica by the Italian theorist Franchino Gafori.
372 The relation 27/12 ≈ 3

2
was known to the Greeks; the Pythagoreans asked

themselves whether an integral numbers of octaves could be constructed from

the fifth alone by repeated application of the simple frequency ratio 3
2
.

In mathematical notation, the Greeks sought a solution of the equation(
3
2

)n
= 2m in positive integers n and m. But the equation 3n = 2k has

no integer solutions for n > 0. However, the Greeks were not discouraged and,
by trial and error, found the excellent approximation

(
3
2

)12 ≈ 27, which is

based on the near equality of 31/19 and 21/12. A systematic way of finding such
near-coincidences is based on the continued fraction expansion (Daniel Shanks,

A Logarithm Algorithm, Mathematical Tables and Other Aids to Computation

8, 60–64, 1954)

loga0
a1 =

log a1

log a0
=

1

n1 + 1

n2 + 1

n3 + .. .

,

where {n1, n2, n3, . . .} is a sequence of positive integers, and a0 > a1 > 1. The
ni are determined by the relations

ani
i < ai−1 < ani+1

i and ai+1 = ai−1/ani
i , i = 0, 1, 2, . . ..

Thus, for a0 = 3, a1 = 2 the ni sequence [1, 1, 1, 2, 2, 3, 1, . . .] yields an excel-

lent approximation for the musical fifth: log 2/ log 3 ≈ 12/19, from which the

Greek result,
(

3
2

)12 ≈ 27, follows!
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any nine a sixth
(
29/12 = 1.6818 ≈ 5

3 = 1.6667
)
,

and any eleven a seventh
(
211/12 = 1.8877 ≈ 15

8 = 1.8750
)
.

A piano keyboard has 7 white keys and 5 black keys (12 in all) per octave
and can be tuned with such a scheme. Insofar as the human ear cannot

Other results obtained through the above algorithm are

log 3/ log 5 ≈ 13/19 or 31/13 ≈ 51/19,

log 3/ log 7 ≈ 13

23
or 31/13 ≈ 71/23.

These relations find application in musical scales with frequency ratio 3 : 1

(called tritave) for which the basic frequency ratio of a tempered scale is
31/13 = 1.088 . . . .

Note that pk
qk

, the kth convergent to log a1
log a0

, is given by

pk = nkpk−1 + pk−2, qk = nkqk−1 + qk−2

(n0 = 0, p−2 = 0, p−1 = 1, p0 = 0, p1 = 1;

q−2 = 0, q−1 = 0, q0 = 1),

where {pk, qk } are the respective continuants:

pk =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

n2 1
−1 n3 1

−1 n4 1

· · ·
· · ·

nk−1 1

−1 nk

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, k = 2, 3, . . . ;

qk =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

n1 1
−1 n2 1

−1 n3 1

−1 n4 1
· · ·

· · ·
nk−1 1

−1 nk

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, k = 1, 2, 3, . . . .
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perceive the discords caused by the deviations of the tempered ratios for
fifths and fourths from their ideal values, the scheme is satisfactory, although
to some trained listeners the discord in the major third is on the limit of
unpleasantness.

Note that since the fundamental interval is an irrational number, the tem-
pered scale does not possess any simple interval (ratio), a fact which would
have driven Pythagoras to despair! Moreover, the notes of which it is com-
posed have no harmonics in common, which is very far from the physicist’s
conception of the affinity of sounds. Thus the tempered scale is clearly based
upon a more complicated mathematical conception than the diatonic scale
and could not have been conceived before the invention of logarithms, when
nobody could calculate 21/2!

With this system only 12 notes are needed to play all the tones and half
tones of a full scale. The frequencies of the 4th octave are taken as

{262, 277, 294, 311, 330, 349, 370, 392, 415, 440, 466, 494, 523 Hz}

with the corresponding notation

{C, C# = Db, D, D# = Eb, E, F, F# = Gb, G, G# = Ab, A,A# = Bb, B, C}.

The compromise in intonation is rarely greater than 1% for all scales, but
the tones of the well-tempered scale are harsh when compared with tones
corresponding to the ratio of small integers of the Just scale. A close rational
approximation to the well-tempered scale is

{

1,©1615 ,
8
9
,©6

5
,
5
4
,
4
3
,©4532 ,

3
2
,©8

5
,
5
3
,©7

4
,
15
8

, 2
}

,

where the circles denote black keys.

Bela Bartok (1881–1945, Hungary and USA) based the entire structure

of his music on the golden mean
[

1+
√

5
2 = 1.6180339 . . .

]
and Fibonacci series.

His interest in folk music led him to realize that most Eastern European folk
music lies outside the traditional major-minor system. He therefore formed
his own type of harmonic system, one which could accommodate melodies not
based on a major-minor tonality.

Bartok used the pentatonic scale which is perhaps the most ancient human
sound system and lies at the basis of the oldest folk melodies and the simplest
nursery songs. It rests on the Fibonacci sequence {2, 3, 5, 8}, where the
numbers are interpreted as the number of semitone intervals separating a
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note from the fundamental tone in the 12-tone chromatic (well-tempered)
scale. The black keys on the piano make up a pentatonic scale (successions
of 2 and 3 halftones are the intervals between the black notes).

Bartok also used Fibonacci numbers in an another way. Roughly speaking,
the fabric of his music may be imagined to be built up of cells 2, 3, 5, 8 and 13
in size, i.e., the minor second (2 halftones), minor third (3 halftones), fourth
(5 halftones), minor sixth (8 halftones), and augmented octave (13 halftones).

In musical notation the notes are: D, E flat, F, A flat, C sharp or{
9
8 , 6

5 , 4
3 , 8

5

}
. Bartok contrasted this Fibonacci scale with a scale obtained by

subtracting his halftone series from the 12-tone chromatic scale. The result is
(with the exception of one term, the major second 9

8 , and with accuracy of
2%) the arithmetic series

{
1, 9

8 , 10
8 , 11

8 , 12
8 , 13

8 , 14
8 , 15

8 , 16
8

}
. We may consider

this scale as being based on the overtones of the fundamental note. Thus,
the chromatic scale can be separated into Fibonacci and overtone scales, each
being a part of the whole and neither of which can exist apart from the other.

The revolution in orchestral textures (which was one of the most charac-
teristic achievements of the Romantic composers) was only possible because
of the intense period of mechanical invention in the early decades of the 19th

century, which led to radical changes in the wind section of the orchestra. In-
deed, during the relatively short interval 1820–1847, the flute, clarinet, oboe,
and bassoon were improved by means of various mechanical and structural
innovations373.

There appeared new instruments such as the 4-octaves saxophone (1840,
Adolph Joseph Sax, 1814–1894, Belgium), the harmonica (1829, Charles
Wheatstone, 1802–1875, England), the modern orchestral xylophone (1840),
the accordion (1822, Friedrich L. Buschmann, Germany), and the celesta
(1886, Auguste Mustel, France). The revolutionary development in the
brass instrument was the introduction of the valve by Heinrich Stölzel (1818,
Germany).

373 Clarinet: Originated ca 2700 BCE in Egypt. Modernized in 1690 CE by Johann

Christoph Denner (Germany). The orchestral flute was introduced in 1843

by H. Klose and A. Buffet in France; Range — 2 octaves.

Oboe: Originated ca 4000 BCE in Egypt. Its final orchestral form was shaped

in 1876 in France; Range — 3 octaves.

Bassoon: Originated ca 1500 by Afranio, canon of Ferrara. The double bassoon

was introduced in 1620 by Hans Schreiber in Germany. The Contra Bassoon

was introduced in 1739 by Stanesby (England). Improved for orchestral use

by the physicist G. Weber (Germany) in 1825; Range — 3 1
2

octaves.

Flute: Orchestral version introduced in 1847 by Theobald Boehm, with im-

proved acoustics and mechanical hole control; Range — 3 octaves.
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Every musical instrument consists of some source of vibrations and some
arrangement for transmitting the energy to the air with reasonable efficiency.
The basic vibration is rarely sinusoidal, but instead consists of a series of
pulses of various shapes. The vibrating system is part of or is connected to a
resonating system with its own pattern of preferred frequencies of oscillation.

The resonating system responds to the fundamental and overtones of the
driving pulse and radiates these into the air with varying efficiency (spectral
amplitude response) depending on the frequency of each and the shape of the
resonator. The initial vibrator may be a stretched string, or vibrating lips, or
vocal chords, or turbulent air in a constricted channel. The resonating system
may be a carefully shaped wooden box that can vibrate in response to a whole
range of frequencies or it may be a column of air enclosed in a pipe that will
respond only to certain harmonic frequencies374.

Thus, an open end375 instrument like a bugle of effective length L = 1.86 m
produces the fundamental mode f0 = 92 Hz (taking c = 343 m

s for the speed
of sound), and its harmonics fn = 184, 276, 368, 460, 553 corresponding to
the five notes F#(185), C#(278), F#(370), B#(476) and C#(555). A bugler
can sound these different pitches (the fundamental sounds like a nonmusical
growl, and is called the pedal note). The F sharp is the lowest musical pitch,
and comprises two pressure pulses at a time in the tube.

Since most wind instruments act like pipes open at both ends (with the
driving vibration occurring at one end), the fundamental wavelength is ap-
proximately twice the length of the pipe, and the frequency of the lowest note
that can be used is usually twice that of the pedal note. For that note, 2
different pulses are introduced into the instrument during the time for one
round trip.

The length of the pipe is changed by pressing down valves in the case of
the trumpet, by sliding out a length of pipe in the case of the trombone, or by
opening and closing holes in the side of the tube, which effectively changes its
length, in the case of the flute or clarinet. With the violin, the lowest note
produced by the G string is about 4 times the length of the case.

374 In the mechanical siren, for example, compressed air blows through holes in

a rapidly revolving disc. The frequency is strictly determined by the number

of holes passing the air blast each second. Invented in 1820 by the physicist

Charles Cagniard de La Tour (France).
375 A closed end pipe of length L accommodates a series of harmonics with wave-

length λn = 4L
2n+1

(n = 0, 1, 2, 3, . . .), where λ = 4L for the fundamental

mode. An open end pipe of length L has λn = 2L
n+1

(n = 0, 1, 2, 3, . . .) with

λ = 2L for its fundamental mode.
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The fundamental frequency corresponding to the lowest frequency for the
human singing voice is around 60 Hz for a low base, while for the highest pitch
it is about 1300 Hz for a very high soprano voice. The range of any voice,
however, rarely exceeds 2 octaves, although there are Iranian singers capable
of 3 or 4 octaves and there is at least one opera singer (Yma Sumac376, b.
1924) capable of a possible range of 5 octaves.

The frequency ranges for musical instruments are much wider than for
voice. The frequency corresponding to the lowest pitch that the ear recognizes
as sound is about 30 Hz, yet the piano goes down to a frequency of 27 Hz,
and some organs descend to 8 Hz. At the other extreme, the piano can get
up to a frequency of 4186 Hz (7 1

2 octaves). There are organs with pipes 18
mm long that can go to 8372 Hz (the frequencies referred to are those of the
fundamental tones, not the higher overtones). In orchestral instruments, the
lowest frequency is carried by the harp (32 Hz) and bass viola (41 Hz). The
piccolo at 3729 Hz has the highest fundamental frequency of the orchestral
instruments. Overtones that accompany the fundamentals can go beyond the
limits of hearing (20,000 Hz).

The practical invention of the pianoforte (Hammerklavier) is due to the
Italian Bartolomeo di Francesco Cristofori (1655–1731, Padua) who in
1709 had the idea of combining in one the qualities of two keyboard instru-
ments then in use: the clavichord and the harpsichord. Of the former he
borrowed the action (struck string), but replaced the metal blade which set
the strings in vibration by wooden hammers whose heads were covered with
leather. Of the second, the harpsichord, he retained a row of jacks which,
fitted with cloth, formed the dampers.

Although all the mechanical elements of the modern pianoforte are found
in Cristofori’s early specimens, the pianoforte did not have much initial suc-
cess; its wide dynamic range did not quite compensate for the dullness of its
tone in comparison with that of the harpsichord. However, during the 18th

century its mechanism was further perfected and by the 1770’s J.S. Bach,
Haydn and Mozart were writing for it.

The London cabinet-maker John Broadwood invented (1783) the sus-
taining and damper pedals. By 1802 the harpsichord no longer appears in
the titles of Beethoven’s works and the piano was established in the concert
hall. The piano soon became the instrument of the Romantic composers and
performers like Chopin, Liszt, the Schumanns, Mendelssohn and others.

376 Known as the ‘Voice of the Incas’; Allegedly born in a village in the Peruvian

High Andes. The combination of her extraordinary voice, exotic looks and stage

personality, made her a hit with American audiences.
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Vibrations of pianoforte strings: The quantitative laws governing the vi-
brational frequencies have been known since 1713, and can be summarized as
follows: the frequency of a string rises proportionally with the square root of
the tension, varies inversely with its length, and for fixed tension and length,
is inversely proportional to the string’s diameter.

If all strings are to have the same diameter and tension, it turns out that a
string-length of 5 cm for the highest C entails a length of ca 7 meters for the
lowest C! It was also found that one cannot vary the tension parameter much
without affecting low tone quality. If, to avoid these difficulties, one tries to
increase the diameter of the strings at the lower end of the scale, one finds that
the lowest “wires” would have to be little steel bars nearly as thick as a pencil,
with a resulting horrible tone. In addition, a wire of this thickness, length, and
tension vibrates at a frequency considerably higher than the simple formula

f0 = 1
Ld

√
F
πρ (ideal string of length L, diameter d, mass per unit volume ρ,

stretching force F ; Brook Taylor, 1713) would lead us to expect.

A real wire, on the other hand, has some stiffness in an amount that
increases with the diameter. Such a wire vibrates under the influence of two
sets of forces: one set arising from the string tension, and the other from its
stiffness. As a result, the vibrational shapes and frequencies of all the various
modes of oscillation are of a sort of intermediate between those of flexible
string under tension and those of a stiff but unstretched bar whose ends are
clamped. The equation of motion is

ρ
∂2y

∂t2
=

F

S

∂2y

∂x2
− Qk2 ∂4y

∂x4

where S is the area cross-section, k its radius of gyration, and ρ and Q are
the density and modulus of elasticity of the material, respectively.

The usual boundary conditions, corresponding to a wire clamped at both
ends, lead to the approximation for the fundamental mode f = f0(1 + ε),
where ε2 = 4QSk2

L2F and ε � 1. To get a good musical string (in which
harmonics are whole-number multiples of the lowest frequency) the piano
maker wants to use as thin and flexible strings as possible that can stand the
highest possible tension.

Most of the difficulties mentioned above were resolved by practical men
over the years without help of formal technical knowledge. In general, the
piano makers have had to back away from the ideal in order to get an in-
strument of practical size, and have arranged things so that the heavily used
middle of the piano is good, while the tone quality at the high and low ends
is gradually spoiled; down to an octave below the middle C, the strings are
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lengthened by a factor of 1.94 instead of 2 per octave, their diameter is in-
creased by 9.3% per octave, and the tension is reduced to the proper amount
to bring the string into tune.

Below this point the wires lengthen very little, and the pitch is lowered
by using strings wound closely with copper wire, in such a way as to add the
mass without increasing the stiffness unbearably. The diameter, and therefore
the stiffness, of the last unwound string is chosen to match the stiffness of the
first wound one, so that an even-sounding scale is obtained.

Around middle C the notes of almost any honestly built piano can sound
musical and clear, because the string proportions have not been compromised
very much. At the bass end of the scale, however, anyone can hear the dif-
ference between the noble sounds issuing from a first-class concert grand and
the clumping noises from shrunken pianos sold as pieces of furniture. The
reason is that the bass strings of a concert grand are about twice as long as
they are in a small piano, so that they can be pulled up to four times tension
if the thicknesses are the same.

On a concert grand the tension may go as high as 200 kg per string, and
the total pull distributed over the frame is about 20 tons! With forces like
these to contend with, a piano designer must be a good mechanical engineer
as well as a capable vibration physicist.

A piano string is set into forceful vibration by means of a hammer blow.
The place where the hammer strikes, the fact that the hammer may be soft
or hard, wide or narrow, and the strength of the blow are among the prime
factors that determine the spectral content of the pulse around the center
frequency of the struck key.

Thomas Young discovered (1800) that no possible mode of vibration can
be set up that has a node at the position at which the disturbance is applied.
Helmholtz (1862) advised to place the hammer strokes 1

7 to 1
9 along the

length of the string because that was the distance that would make the 7th

and 9th harmonics weak and since these are less consonant, the tone would
be more pleasant without them. Others have found that placing the hammer
close to, but not at 1

8 of the length, enhances the fundamental and gives a
strong and full tone.

The quality of the tone is due to the strength and number of the harmonics,
and these change with the speed of which the hammer strikes the string.
However, when notes are struck simultaneously and in succession, then the
time intervals between them may generally determine the quality of the tone
produced. In general, the duration of a harmonic depends on its amplitude
and because of this, weak harmonics die out sooner than strong ones. The
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duration may be extremely short and a fraction of a second difference between
the onset of two notes can alter the total picture of the number of harmonics
that are present at any instant. It is probably the variation of these extremely
small time sequences between succeeding notes that is meant by touch.

The motion of violin strings: The violin is a peculiarly shaped box on
which 4 strings are stretched so that they run over a bridge that couples their
vibrations to the box and its enclosed air. Sounds are brought out of this
device by rubbing the strings with a bow, and the player chooses different
pitches by pressing down with his fingers on one or the other of the bowed
strings in such a way as to shorten its vibrating length. The 4 strings of the
violin are tuned a fifth apart at G3, D4, A4 and E5.

The highest fundamental that can be played is B7 (3951 Hz). The G-
string is wound with a spiral of fine aluminum or silver wire to provide it
with sufficient mass to have the desired low fundamental. The violin string
is excited by the friction of the moving bow377. The number of bow hairs in

377 The motion of the bow-driven string with friction, moving between two rigid
supports, is governed by the equation:

∂2y

∂t2
+ 2k

∂y

∂t
− c2 ∂2y

∂x2
= f(x, t),

where y is the string’s lateral displacement, T the fixed tension of the string

(given), c =
√

T
μ
, k = R

2μ
, f(x, t) is the applied force per unit mass of the

string [with f(x, t) = 0 for t < 0], R is the frictional force of the medium per
unit length per unit velocity, and μ is the string’s mass per unit length. The

solution can be given in the form

y(x, t) =

∫ b

a

G(x, x0; t)dx0,

where G(x, x0; t) is a solution of the above equation for a point force at x = x0,
namely

∂2G

∂t2
+ 2k

∂G

∂t
− c2 ∂2G

∂x2
= δ(x − x0)f(x0, t),

and (a, b) is that part of the string over which the force is applied. It can be

shown that if

f(x0, t) = f(t) =
1

2
P0ae−a|t|,

then for t > 0,

y(x, x0; t) =
2P0a

2c2

L

∞∑

n=1

{
sin(πnx/L) sin(πnx0/L)

ωnW 2
n

}

e−kt sin(ωnt − 2φn)
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contact with the string is changed by varying the angle and the plane that
the bow makes with the strings. Studies on bowing have shown:

(1) increased bow pressure tends to increase the intensity of the Fourier com-
ponents above the fundamental;

(2) intensity of tone depends on the speed of bowing and the number of bow
hairs in contact with the string;

(3) the closer the bow is to the bridge, the more prominent are the higher
Fourier components.

The air in the box is capable of vibrating at any of a large number of resonant
frequencies. If the motion of the wooden enclosure is at one or another of these
cavity resonance frequencies, the air will radiate strongly into the room by
way of the f -holes cut in the belly of the violin. The top of the bridge vibrates
back and forth on its slim waist when it is driven at certain frequencies, and
thus alters the forces which it passes on to the violin belly in a way strongly
depending on frequency. Thus, the sound radiated from the violin’s body
is controlled by the bow-string-bridge system. Physicists have obtained the
response of a violin to a single exciting frequency (not the same as that for a
bowed violin):

The results show a peak at about 300 Hz (D4), which is due to the air
resonating in the body of the violin, and another due to the vibration of the
body of the violin at about 440 Hz (A4). These peaks may be up or down by
at least a semitone in various different violins. A comparison between good
and poor violins shows that fine instruments seem to have frequency-response

+
P0ae−at

2k′
a

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

sh(k′
ax) sh[k′

a(� − x0)]

sh(k′
aL)

, x < x0

sh(k′
ax0) sh[k′

a(� − x)]
sh(k′

aL)
, x > x0

where

k′
a = a

c

√
1 − 2k

a
, ωn = πnc

L

√
1 −

(
kL
πnc

)2
,

W 2
n = [ω2

n − k2 + a2]2 + 4k2ω2
n, 2φn = tg−1 2ω2

n
Wn

.

The response consists of a term having the behavior of the forcing function plus

a series representing the free vibration of the system caused by the discontinuity

of the forcing function at time t = 0.
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curves that are fairly uniform over the range from 300 to 4000 Hz, and fall
almost linearly from 4000 to 6000 Hz.

If one compares response curves of a violin made by Antonio Stradi-
varius (1644–1737, Italy; made 1116 violins during 1700–1725 of which very
few genuine specimens remain) with those of modern scientifically constructed
violins, one is struck by the similarity of the resonance curves.

Organ: A keyboard musical instrument. While a piano makes sounds
by causing steel strings to vibrate, a pipe organ creates sound by forcing
air through metal or wooden tubes called pipes. It is the largest and most
powerful of all musical instruments, and may have more than 5000 pipes,
each producing a different frequency. The longest pipes, producing the lowest
notes, may be more than 9 meters long and 30 cm in diameter. The smallest
pipes, which produce the highest notes, are only 18 cm long and less than 6
mm in diameter. Some organs have 6 keyboards. Organ pipes are designed to
play only the fundamental frequency. Consequently, there is only one pressure
pulse at a time in the pipe (with other wind instruments, however, the driving
vibrator can be controlled to send in one, two, three, or more pulses into the
pipe before the first one has returned).

In ca 250 BCE, Ctesibios of Alexandria, a Greek engineer and inventor,
built an organ that used water power to force air into the pipes. The major
features of the modern organ were developed during 200–1600 CE. By 1900,
interest in the organ had declined among composers and performers, and the
instrument was played regularly only in churches as part of religious services.
In 1934, Laurens Hammond (U.S.A.) patented the first commercially prac-
tical electronic organ.

Leonard Bernstein on Music

“The genius of Johan Sebastian Bach was to balance so delicately and
so justly the two forces of chromaticism and diatonicism that were equally
powerful and presumably contradictory.

What makes music dramatic? Contrast; duality of two tones, two contrast-
ing ideas or emotions within a single movement. Contrast makes drama —
black against white, good against evil, day and night, grief and joy.

Bach represents the last stand against the dualistic concept. Any single
movement is always concerned with one single idea. He clung to the older
concept of one thing at a time — grief or joy, day or night: once the theme
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is stated at the beginning, the main event is over. The rest of the movement
will be a constant elaboration, recitation, and discussion of that main event.
But if you are expecting any change in mood – say, a sudden yielding to
sentimentality or lyricism – you are not going to get it. Contrast is there
all right, but it is restricted to laud and soft, or key change, or different
instrument grouping, but the dramatic contrast of themes is not there.

Consider the vast catalogue of Bach’s output: songs, dances, suites, parti-
tas, sonatas, tocatas, preludes, fugues, cantatas, oratorios, masses, passions,
fantasies, concertos, chorales, variations, motets, passacalias – the creation
of fifty years. What is that holds all these pages together, that makes it all
inevitably the product of one man — the religious spirit.

For Bach, all music was religion; writing was an act of faith; and perform-
ing was an act of worship. Every note was dedicated to God and nothing else.
This is the spine of Bach’s work: simple faith. Otherwise, how could he have
ever turned out all that glorious stuff to order, meeting deadlines, playing
the organ, directed a choir, taught school, instructed his army of children,
attended board meetings and keeping his eye out for better-paying jobs.

Bach was a man, after all, not a god; but he was a man of God, and his
godliness informs his music from first to last.”

∗ ∗∗

“In the opera, the basic human emotions are pinpointed and magnified
way beyond life size so that you can’t miss them. Each emotion comes at you
gigantically, in a clear direct, uncluttered, full-blown way. One of the chief
reasons for the direct power of opera is that it is sung: Indeed, among of all
the different instruments in the orchestra, there is none that can compete in
any way with the expressivity of the human voice. And when such a voice, or
several, or many together, carry the weight of a drama, then there is nothing
in all the theater to compare with it for shear immediacy of impact. Now
these emotions are not merely presented to us; they are hurled at us. You see,
music is something very special. It does not have to pass through the censor
of the brain before it can reach the heart; it goes directly to the heart.”
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1862–1889 CE Eugenio Beltrami (1835–1899, Italy). Distinguished
differential-geometer. Professor of mathematics at the Universities of Pisa,
Pavia and Rome. Placed hyperbolic geometry on a firm foundation, devel-
oped the Riemannian calculus of n-dimensional manifolds, and discovered the
so-called ‘differential parameters’ that bear his name. Contributed to the
mathematical theory of elasticity, optics and thermodynamics.

He brought Riemann’s work into connection with non-Euclidean geometry.
In his work “An attempt to interpret the non-Euclidean geometry” (1868), he
demonstrated that the plane geometry of Lobachevsky-Bolyai holds on sur-
faces of constant negative curvature embedded in Euclidean space, straight
lines being replaced by geodesics. Such surfaces are capable of a confor-
mal representation on a plane, in which geodesics are represented by straight
lines378. Interest in hyperbolic geometry was rekindled in the 1860’s when un-
published work of Gauss (d. 1855), came to light. Learning that Gauss has
taken hyperbolic geometry seriously, mathematicians became more receptive
to non-Euclidean ideas.

The works of Lobachevsky, Bolyai and Minding were rescued from
obscurity and, approaching them from the viewpoint of differential geometry,
Beltrami was able to give them the concrete explanation that had eluded all
his predecessors. He was interested in the geometry of surfaces and had found
the surfaces which could be mapped onto the plane in such a way that their
geodesics went to straight lines. They turned out to be just the surfaces of
constant curvature. In the case of positive curvature (the sphere), such a
mapping is a central projection onto a tangent plane, though this maps only
half of the sphere onto the whole plane. The mapping of surfaces of constant
negative curvature, on the other hand, take the whole surface onto only part
of the plane.

He derived (1892) the so-called Bertrami-Michell compatibility equation
in linear elasticity theory, serving as integrability conditions in terms of the
components of the stress tensor and the applied forces.

Beltrami was born in Cremona to an aristocratic family. He was edu-
cated at the University of Pavia under Brioschi. During 1856–1861 he was
a secretary to a railroad engineer, but in 1862 returned to the academia as
a professor of rational mechanics in Bologna (1862–1864), Pisa (1864–1866),
Bologna (1866–1873), Rome (1873–1876), Pavia (1876–1891) and again Rome
(1891–1899).

378 Beltrami’s method allows us to map only a part of the Lobachevsky plane on

a part of a surface of negative curvature. Hilbert has shown that it is im-

possible to continue an analytical surface of constant negative curvature indefi-

nitely without meeting singular lines when this surface is embedded in ordinary

Euclidean space.
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1862–1899 CE Ernst Heinrich (Philipp August) Haeckel (1834–1919,
Germany). Biologist, physician, eugenicist and philosopher. Popularized Dar-
winism in Central Europe and applied it to some of the oldest problems of
philosophy and religion. Outlined the essential elements of modern zoological
classification (1864). Hypothesized that the nucleus of a cell contains heredi-
tary information (1866). First to use the term ecology (1866) to describe the
study of living organisms and their interaction with other organisms and with
their environment. Haeckel’s attempt to describe human evolution in racial
terms later became a part of the pseudo-scientific basis for Nazism.

He was born at Potsdam and studied medicine and science at Würzburg,
Berlin and Vienna. Graduated at Berlin as M.D. (1857). At the wish of his
father he began to practice as a doctor in that city, but his patients were few
in number, and after a short time he turned to more congenial pursuits. He
came to the University of Jena in 1861 and was later appointed to the chair of
zoology (1865–1909). He was on scientific expeditions to the Canary Islands
(1866–1867), Red Sea (1873), Ceylon (1881–1882), and Java (1900–1901).

It happened that just when he was beginning his scientific career Darwin’s
Origin of the Species was published (1859), and such was the influence it
exercised over him that he became the apostle of Darwinism in Germany. He
therefore gave a wholehearted adherence to the doctrine of organic evolution
and treated it as the cardinal conception of modern biology. He was first to
draw up a genealogical tree relating all the various orders of animals, showing
the supposed relationship of the various animal groups.

Haeckel tried to discover (1862) the symmetry of crystallization in Radio-
larians (one-celled sea animals). Promoted the theory of recapitulation which
states that the embryo repeats the evolutionary changes that its ancestors
underwent.379

379 Haeckel believed that the development of the embryo imitated an organism’s

entire evolution as a species. He supported his theory with embryo drawings

that have since been shown to deliberately faked to get more support for his

ideas (almost every biology book for the past century has included pictures of

vertebrate embryos made by him, purportedly demonstrating the amazing sim-

ilarity of fish, chickens, and humans in the womb).

In the 1990’s, British embryologist Michael Richardson was looking at ver-

tebrate embryos through a microscope and noticed that they look nothing at

all like Haeckel’s drawings. Richardson and his team of researchers examined

vertebrate embryos and published actual photos of the embryos in the August

1997 issue of the journal Anatomy and Embryology. It turned out that Haeckel

had used the same woodcuts for some of the embryos and doctored others to

make sure that the embryos looked alike. Indeed, Haeckel’s drawings turned

out to be one of the most famous fakes in biology. It turned out that this has
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His integrated views on the philosophical implications of the theory of
evolution were published under the title Die Welträtsel (1899), which in 1901
appeared in English as the Riddle of the Universe. In this book, adopting
an uncompromising monistic attitude, he proposed that all nature is a unity
with life originating in crystals and evolving to man; matter alone is the one
fundamental reality (material monism); the mind depends upon the body, and
hence does not survive after it; animals with a central nervous system possess
consciousness. He believed in the singularity of essence of both the organic
and the inorganic, and rejected religions and their ideas of God.

According to his “carbon theory”, the chemico-physical properties of car-
bon in its complex albuminoid compounds are the sole and the mechanical
cause of the specific phenomena of movement which distinguishes organic
from inorganic substances, and the first development of living protoplasm
arose from such nitrogenous carbon compounds by a process of spontaneous
generation.

He regarded psychology as merely a branch of physiology, and psychical
activity as a group of vital phenomena which depend solely on physiological
actions and material changes taking place in the protoplasm of the organism
in which it is manifested. Every living cell has psychic properties, and the
psychic life of multicellular organisms is the sum-total of the psychic functions
of the cells of which they are composed.

Moreover, just as the highest animals have been evolved from the simplest
forms of life, so the highest faculties of the human mind have been evolved
from the soul of the brute beasts, and more remotely from the simple cell-soul
of the unicellular Protozoa. As a consequence of these views Haeckel was led
to deny the immortality of the soul, the freedom of will, and the existence of
a personal God380.

been known for a century!!. Stephen Jay Gould responded in the March

2000 issue of Natural History magazine, saying he had known all along. But

Darwinists kept mum because Haeckel’s crackpot theory constituted one of the

main pieces of evidence in support of evolution.

Oddly enough, in 2005, the New York Times reported that biology textbooks

were still running Haeckel’s fake drawings. The Times specially singled out the

third edition of Molecular Biology of the Cell, the bedrock text of the field, as

one of the culprits.
380 D’Arcy Wentworth Thompson reacted to these views in his On Growth and

Form (1917): “Many a beautiful protozoan form has lent itself to easy physico-

mathematical explanations; others, no less simple and no more beautiful, prove

harder to explain. Nature keeps some of her secrets longer than others”.



2284 4. Abstraction and Unification

1862–1921 CE Josef Popper-Lynkeus (1838–1921, Austria). Inventor,
scientist, social thinker and humanist. Held in high esteem by Mach, Freud
and Einstein. Foreshadowed some of the fundamental ideas of aerodynamics,
electric power transmission, relativity and quantum physics that were later
formulated by others. Attempted to enunciate a general science of energetics.
Anticipated Freud’s essential characteristics and most significant part of dream
theory (the reduction of dream-distortion to an inner conflict). Rejected, years
ahead of L.E.J. Brouwer, the logical principle of the excluded middle.

Josef Popper was born in the Jewish ghetto at Kohlin, Bohemia and lived
therein up to his 15th year. There he attended the elementary school where
he was educated in a devoutly religious environment. In 1854 he was ad-
mitted to the Polytechnikum in Prague, where for three years he majored in
physics, mathematics and engineering. He continued his studies at the Uni-
versity of Vienna but being a Jew he could not obtain an academic position381

(although recommended by his teachers!). However, his income from his in-
vention royalties enabled him to live humbly and pursue his writings. His
major achievements were:

• Conducted pioneering experiments and proposed ways of transmission
of electric power from its natural sources [1862; Die Physikalischen
Grundsätze der elektrischen Kraftübertragung, 1883); (Physical Princi-
ples of Electric Power Transmission)].

• Suggested a connection between the laws of conservation of mass and
energy (1883).

• Suggested an experiment to establish the existence of an energy-quantum
through which one could interpret the periodic table of the elements. (In
a letter to Mach, 1884.)

• Elaborated on the principles of heavier-than-air flight (Flugtechnik, 1888;
Der Machinen und Vogelflug, 1911 = Mechanical Aviation and the Flight
of Birds).

• Proposed a social reform plan in which he viewed the state as no more
than a utilitarian association to assure security of existence for individ-
uals living on a common soil, and to lighten the burden of their lot on
this earth. He rejected compulsory military service; no one should be
compelled to kill or to be killed. Even the freedom of criminals should
be curtailed no more than the protection of society requires.

381 Unlike Karl Marx and many others he was a proud Jew and refused to convert

to Christianity for the sake of a university position.
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However, every man should give a decade of his lifetime to work for the
state in order to assure (through organized production of all truly neces-
sary means) a secure existence to each individual for the rest of his life.
All other economic endeavor should be completely free. [Das Recht zu
leben und die Pflicht zu sterben (The Right to Live and the Duty to Die),
1878; Das Individum und die Bewertung menschlicher Existenzen (The
Individual and Evaluation of Human Existences), 1910; Die allgemeine
Nährpflicht als lösung der sozialen Frage (The Obligation of Securing a
Guaranteed Subsistence for all as the Solution to the Social Problem),
1912; Krieg, Wherpflicht und Staadsverfassung (War, Military Service
and the State Constitution), 1921.]

Sigmund Frued touched upon the hidden background that linked him with
Popper (1899):

“A special feeling of sympathy drew me to him, since he too had clearly had
painful experience of the bitterness of the life of a Jew and of the hollowness
of the ideals of present-day civilization”.

Albert Einstein elucidated the unique phenomena of a scientist as a
humanist and moralist (1954):

“Popper-Lynkeus was a prophetic and saint person, and at the same time
a thoroughly modern man. In love with the natural sciences and modern
technology, he remained throughout a long, strenuous, and difficult life stead-
fastly true and dedicated to the aim he set for himself — that of contributing
to the improvement of the lot of mankind and to their moral advancement.
He affirmed passionately the technological advancement of our age as a lib-
erator from soul-destroying physical labor and as the originator of cognition
and creativeness which he loved for their own sake, for their own beauty”.

1863 CE Luigi (Antonio Gaudenzio Giuseppe) Cremona (1830–1903,
Italy). Mathematician. Known for his work in projective geometry. The
birational Cremona Transformation382 is named after him.

Cremona was born to Jewish parents. He was a professor in Bologna
(1860), Milan (1866) and Rome (1873). He became senator (1879) and Min-
ister of Education (1898).

382 A transformation of a plane curve in a plane: (x, y) goes into

(R1(x, y), R2(x, y)),

where R1 and R2 are rational algebraic functions. He later generalized it to a

rational transformation in 3-dimensional space.
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1863–1898 CE Underground railway: The growing congestion of 19th cen-
tury urban traffic prompted Charles Pearson (1843) to suggest the build-
ing of underground tunnels in London through which railway lines could be
laid. The project was approved in 1853 and construction began in 1860. The
project was successful, for it transported some 10 million passengers in its first
year of service (1863). The London network expanded and became electrified
(1890). Similar projects followed in Glasgow (1886), Boston, Budapest and
Paris (1898).

1863 CE Pietro Angelo Secchi (1818–1878, Italy). Astronomer. First
to classify stars into four major classes according to the general arrangement
of the dark lines in their spectra. Proved that prominences seen during solar
eclipses are features of the sun itself. This marks the nascence of stellar
spectroscopy.

During 1814–1823, Joseph von Fraunhofer compared the spectra of the
sun and the stars, but the first fairly comprehensive attempt at classification
was undertaken by Secchi “to see if the composition of the stars is as varied as
the stars are innumerable”. He noticed that while the stars are innumerable,
their spectra can be grouped in certain distinct groups. He observed the
spectra visually by attaching a spectroscope to his telescope and pointing it
toward the stars.

In those days, the nature and cause of spectral lines were not well un-
derstood, and astronomers classified each star by assigning a letter from A
through P , depending on the strength of the hydrogen Balmer lines (Johann
Jakob Balmer, 1825–1898, Switzerland) in the star’s spectrum. The A stars
have the strongest Balmer lines and the P stars have the weakest. Secchi was
unable to see the fainter lines, which were not observed until the application
of photography to this study.

Secchi was born at Reggio in Lombardy and entered the Society of Jesus at
an early age. In 1849 he was appointed director of the Vatican Observatory.
There he devoted himself with great perseverance to researches in physical
astronomy and meteorology. He completed the first spectroscopic survey of
stars, cataloging the spectrograms of about 4000 stars (1868).

1863–1864 CE Arminius Vambery (Herman Wamberger, 1832–1913,
Hungary). Orientalist and explorer. The first European to explore Turkestan,
Uzbekistan and Afghanistan.

He was born of poor orthodox Jewish parents at Duna-Szerdahely, a village
on the island of Shütt, on the Danube near Pozsony. The name of the family
was originally Bamberger. He got an orthodox Jewish education, and studied
the Talmud in the village school until the age of 12. His mother destined her
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son, who was lame, for the trade of a dressmaker. After being for a short time
apprentice to a ladies’ tailor, he became a tutor to an innkeeper’s son. With
the aid of friends he was enabled to enter the Gymnasium during the difficult
and unsettled time of the revolution of 1848, but lack of resources forced him
to quit school and go to Slavonia as a tutor. From then on he educated himself
and at 20 gained knowledge in 15 European and ancient languages.

Later he studied at Vienna and Budapest and turned his attention to
the study of Turkish and Arabic. In 1854 he migrated to Constantinople,
where he worked as a tutor. During his 6-year stay there he acquired some
20 oriental languages and Turco-Tartar dialects, and published a Turkish-
German dictionary. He became a secretary to Fuad Pasha and, for all practical
purposes, a Muslim.

In 1861, the Hungarian Academy sponsored his journey to Central Asia.
Under the name of Reshid Effendi, and in the guise of a Sunnite dervish, he
traveled with Muslim pilgrims across the Turkestan desert to Khiva, Bokhara
and Samarkand. He experienced hardships rarely sustained by a European
before, braving the risk of being detected and put to death by the offended
Muslims. He left the pilgrims and continued to travel to Herat in Afghanistan.

In November 1863 Vambery left Herat for Meshed, having joined a caravan
of pilgrims and merchants. This was the first journey of its kind undertaken
by a European; and since it was necessary to avoid suspicion, Vambery could
not take even fragmentary notes except by stealth. He returned to Europe in
1864, and in the next year received the appointment of professor of oriental
languages in the University of Budapest, retiring therefrom in 1905.

Earlier he became an adherent of the Protestant faith. On several occa-
sions he carried out diplomatic missions for Great Britain in the Near East. He
became a personal friend of the Prince of Wales, later King Edward VII. Sul-
tan Abdul Hamid consulted him on problems of foreign policy, and Theodor
Herzl (1860–1904) enlisted Vambery’s aid in his negotiations with the sultan
on behalf of his Zionist movement.

1863–1873 CE John Tyndall (1820–1893, Ireland). Experimental physi-
cist, educator, pioneer researcher of the physics of the atmosphere, science
writer and alpinist. Discovered383 (1869) the Tyndall effect – the scattering
of light by invisibly small colloidal particles in solution, thus making the light

383 Leonardo da Vinci understood the basic phenomenon around 1500 CE. In

particular, his experiments with the scattering of sunlight by wood smoke ob-

served against a dark background [see: The Notebooks of Leonardo da Vinci,

Dover edition]. The phenomenon was confirmed (1871) by theoretical studies

of Lord Rayleigh and known as the Rayleigh scattering.

It is the incoherent scattering of electromagnetic radiation (light) by gas mole-
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beam visible when viewed from the side. Suggested that the blue color of
the sky is due to greater scattering of the shorter wavelength blue light by
the colloidal particles of dust and water vapor in the atmosphere [beyond the
atmosphere the sky is black!]

Tyndall was born in Leighlin-Bridge, County Carlow, Ireland. Self ed-
ucated. Employed as a railway engineer (1844) and college teacher (1847)
before studying physics (1848–1851) at the University of Marburg (under
Bunsen) and Berlin (under Magnus), obtaining his PhD in 1851.

He became professor of natural philosophy at the Royal Institution (1854)
and the Royal School of Mines in London (1859–1868). Tyndall toured the
US 1872–1873. He died from accidental poisoning with chloral. Apart from
the Tyndall effect, his other investigations and discoveries are:

• confirmed Pasteur’s claim of the fallacy of the doctrine of spontaneous
generation by showing that air contains living organisms (1881);

• carried out experimental work on the absorption and transmission of
heat by water vapor and atmospheric gases which was important in the
development of meteorology;

• the first scientist to describe the greenhouse effect for water vapor (1863);

• discovered that the transmission of sound is affected by variation of
density in the atmosphere;

cules or other randomly distributed electric dipole scatterers in accordance with

the {sin4 θ/λ4} distribution of the flux density of an oscillating dipole field [θ =

scattering angle, λ = wavelength]. This explains the blueness of the sky, the

redness of sunrise and sunset, and the scattering of radar waves by droplets of

ice crystals.

The theory correctly describes scattering by molecules, as well as tiny spherical

particles whose radius is smaller than about (0.03)λ. When the diameter is

comparable to the wavelength of the incident radiation, Mie scattering theory

takes into account the particle size and the dipole model is inadequate. The

Mie theory predicts weak dependence of the scattered field on wavelength. This

is significantly different from Rayleigh scattering, and because of this the clouds

are white and the sky is blue.

Rayleigh scattering is also accompanied by polarization. Unpolarized incident

light that is scattered through 90◦, is linearly polarized in the direction perpen-

dicular to the plane of incidence. Thus, unpolarized sunlight becomes almost

completely polarized upon scattering through an angle of 90◦ by air molecules.



1863 CE 2289

• made the first demonstration (1870) of the guiding of light by internal
total reflection. In front of an audience of the Royal Academy of London,
he demonstrated that light illuminating the top surface of water in a pail
can be guided along a semi-arc of water streaming out through a hole
in the side of the pail — a precursor of fiber optics.

1863–1875 CE William Huggins (1824–1910, England). Astronomer.
First to identify some of the lines of stellar spectra with those of known ter-
restrial elements (1863). Huggins made the first radial-velocity determination
of a star in 1868. He observed the Doppler red-shift384 in one of the hydrogen-
lines in the spectrum of Sirius, and found that the star was receding from the
sun at a velocity of about 45 km/sec.

Huggins was born in London. He built in 1856 a private observatory in
the south of London. Kirchhoff’s discoveries in spectrum analysis turned his
attention to the problem of the internal constitution of stars. The advent
of photographic astronomy led him in 1875 to adopt and adapt the gelatin
dry plate, enabling him to obtain stellar spectrograms with exposures of any
desired length and thus produce permanent accurate pictures of celestial ob-
jects so faint as to be completely invisible to the eye, even when aided by a

384 The radial or “line-of sight” velocity of a star can be determined from the
Doppler shift of the lines of its spectrum, using the formula

Δλ

λ
=

√
1 + v/c

1 − v/c
− 1 ≈ v

c

(for small v/c). Here c is the speed of light in vacuum, λ is the wavelength

emitted by the source, and Δλ the difference between λ and the wavelength

measured by the observer . v is the relative line-of-sight velocity of the observer

and the source, which is counted as positive if the velocity is one of recession

and negative if it is one of approach. If a star approaches (recedes) from us, the

wavelengths of light in its continuous spectrum appear shortened (lengthened),

as well as those of the dark lines. However, unless its speed is tens of thousands

of km/sec, the star does not appear noticeably bluer or redder than normal. The

Doppler-shift is thus not easily detected in a continuous spectrum (except for

very remote galaxies) and cannot be measured accurately in such a spectrum.

On the other hand, the wavelengths of the absorption lines can be measured

accurately, and their Doppler-shift is relatively simple to detect. The known

wavelengths of the bright lines in the spectrum of a laboratory source (such

as the bright lines in the spectrum of the arc lamp) serve as standards against

which the wavelengths of the dark lines in the star’s spectrum can be accurately

measured.
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powerful telescope. [His results were, however, affected by serious systematic
errors. During 1888–1891, German astronomers at the Potsdam Observatory
reduced the average probable error in the radial velocity measurements to
only 2.6 km/sec.]

In 1900 Huggins, commenting on the future of radial-velocity determina-
tions, concluded: “This method of work will doubtless be very prominent in
the astronomy of the near future, and to it probably we shall have to look
for the more important discoveries in sidereal astronomy which will be made
during the coming century”.

1863–1875 CE Global attack of cholera. In 1866, ca 300,000 died in
Europe. Worldwide deaths were in the millions.

1863–1892 CE Francis Galton (1822–1911, England). Scientist. A
cousin of Charles Darwin. Pioneer in modern meteorology and statistics.
The father of racist ‘eugenics’, to be later embraced by Hitler in his Mein
Kampf.

Invented the teletype printer (1850). Introduced modern weather-mapping
techniques and established the existence and theory of anticyclones (high-
pressure areas of the atmosphere) in his book Meteorographica (1863); it was
the first serious attempt to chart the weather on an extensive scale.

Noted the uniqueness of each individual’s fingerprints and worked out
a system of classifying them (1885). His work became important for law
enforcement through fingerprint identification.

Introduced the concept of correlation (the measure of interdependence of
two sets of variables) and defined the useful correlation coefficients (1888–
1889). Those he incorporated in his statistical techniques related to genetics
and his pioneer use of statistics in psychological measurements385.

His name, however, is most closely associated with studies in anthropology
and especially heredity , which he expounded in Hereditary Genius (1869),
Human Faculty (1884) and Natural Inheritance (1889).

385 He studied, for example, the familial tendency to inherit brilliance, or the related

problem of the extinction of family surnames. In this connection he raised the

question [known as the Galton problem (1873)]: If each male in a population

has a family with x sons, where the random variable x has the distribution

F (s) =
∑∞

x=0 p(x)sx, |s| � 1; and so on for the next generation, what is the

probability p(x) of any particular male-line dying out?

The first solution of this problem was given by H.A. Watson (1874), and the

complete solution by Steffensen (1930).
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Galton (1883) coined the word ‘eugenics’ (from the Greek ‘good in birth’
or ‘noble in heredity’). Eugenics was defined as the science of improving the
human stock through systematic selective breeding, by checking the birth-
rate of the unfit (paupers, insane, physically impaired and feeble-minded)
and furthering the production of the fit (talented, gifted, healthy, beautiful,
etc.). Galton thus endeavored to improve or impair the racial qualities of fur-
ther generations, either physically or mentally. He thus recommended forced
sterilization of “unfit” humans, saying they could not be persuaded to stop
breeding on their own. Eugenics, he said, “must be introduced into the na-
tional consciousness as a new religion”. Hitler’s worldview was based on the
evolutionary ethic of Galton and his followers.

For Galton, science and progress were almost inseparable. Men could be
improved by scientific methods, in the same way that plant and horse breed-
ers improve their stock. Would it not, he wondered, be “quite practicable to
produce a highly gifted race of men by judicious marriages during several con-
secutive generations?” The scientific assumptions behind this were explicit:
most human attributes are inherited. His program was derived from ideas
about natural selection and evolution. Not only was talent perceived of as
being inherited, so too were pauperism, insanity and any kind of perceived
feeble-mindness.

Galton graduated in medicine from Cambridge (1844). After inheriting
ample fortune he was able to abandon his medical career, holding no scientific
or teaching posts. Instead, he set out to see the world, traveling in Europe,
Asia Minor, the Holy Land and southwest Africa.

Eugenic ideas may be detected as early as Plato (427–347 BCE), but
eugenic became significant only after the publication of Charles Darwin’s
(1809–1882) Origin of the Species (1859), which implied that man was the
outcome of a natural process of evolution. Galton’s campaign on behalf of
eugenic breeding stimulated a popular social movement (from 1900) and the
formation of centers of eugenic study in Britain, America, the Soviet Union
and Nazi Germany386.

386 The ideas of Galton, amplified by Karl Pearson from University College London,

received support from a variety of sources, which included Fabians such as

Bernard Shaw and psychologists like Havelock Ellis.

In the United States, Charles Davenport (1904) came to believe that certain

races were feeble-minded. To this end he favored a selective immigration policy

coupled to the prevention of reproduction of the genetically defective. The

list of distinguished scientists that initially gave eugenics positive support is

impressive: Ronald Aylmer Fisher (1890–1962), J.B.S. Haldane (1892–

1964), J.S. Huxley (1887–1975), W.E. Castle (1867–1962), T.H. Morgan

(1866–1945).
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1864–1875 CE James Croll (1821–1890, Scotland). Geophysicist. Pre-
sented an astronomical theory of the ice ages caused by periodical changes
in the earth’s orbital eccentricity (100,000 year cycle), and the precession of
the equinoxes (22,000 year cycle). Croll noticed the relevance of the periodic
variation in the tilt of the earth’s axis to the insulation and heating of the
polar regions. But since he depended on the calculations of LeVerrier387, he
did not follow the consequences of this important line of reasoning, save the
qualitative notion that ice ages would be more likely to occur during periods
when the axis is closer to vertical, for then the polar regions receive a smaller
amount of heat.

Croll plotted orbital changes during the past 3 million years, and found
cyclical changes with long intervals of low eccentricity and long intervals of
high eccentricity. He then concluded that ice ages occurred during periods of
high eccentricity, alternating from the Northern to the Southern Hemisphere
in response to the 22,000 year precession cycle.

Wrongly believing the crucial factor to be minimum winter solar radiation,
Croll postulated that when the eccentricity is high, the hemisphere whose
winter occurs at the time of the earth’s farthest distance from the sun will

However, in the 1930’s, Huxley, Haldane, Hogben and other biologists at last

began to react against many of the wilder claims for eugenics. But it was too

late, for the ideas had permeated into mainland Europe, and especially into

the ideology of the German National Socialists. They claimed that there is a

biological basis for the diversity of mankind: what makes a Jew a Jew, a Gypsy

a Gypsy is in their blood, that is to say in their genes — all this based on the

genetic ideas of the eugenic movement. Thus it is quite easy to see the direct line

from the eugenic movement to the statement by the animal behaviorist Konrad

Lorenz (1935; Nobel prize, 1973): “It must be the duty of racial hygiene to be

attentive to a more severe elimination of morally inferior human beings than

is the case today . . . . This role must be assumed by a human organization;

otherwise humanity will be annihilated by the degenerative phenomena that

accompany domestication”.

Another metaphor from Lorenz is the ‘analogy between bodies and malignant

tumors on the one hand, and a nation and individuals within it who have become

asocial because of their defective constitution’.

In 1933, the Nazi Cabinet promulgated a Eugenic Sterilization Law which can

be considered as leading to the atrocities by doctors and others in the Nazi

concentration camps.
387 In 1843 LeVerrier used perturbation theory to show that in the past 100,000

years, the earth’s orbital eccentricity has varied from a low near zero to a high

about 6%. He calculated that the tilt of the earth’s axis fluctuates within the

range 23 1
2

◦ ± 1 1
2

◦
, but did not determine the period of this motion.
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experience an ice age. Nevertheless, he was the first scientist to develop the
idea now referred to as positive feedback388.

James Croll was born in a peasant family at Little Whitefield in Perthshire.
Lacking any formal education, he drifted from one occupation to another: me-
chanic, millwright, carpenter, shopkeeper, hotel-keeper, salesman and janitor.
Finally in 1864, at the age of 43, he came across Adhemar’s book Revolu-
tions of the Sea (1842). Although he realized that the French mathematician
was wrong in believing that a change in the length of warm and cold seasons
could cause an ice age, Croll was convinced that some other astronomical
mechanism must lie behind these geological phenomena.

Following the publication of his theory, he received an appointment in
the Scottish Geological Survey (1867), and for 13 years he took charge of
the Edinburgh office. He has been compelled by ill-health to withdraw from
public service in 1880. He was elected Fellow of the Royal Society in 1876.

Croll’s theory created an immediate and profound impression on the world
of science. Here, at last, was a plausible theory of the ice age that could be
tested by comparing its predictions with the known geological record. Over
the next 30 years Croll’s ideas were widely and hotly debated: scientific ex-
peditions were organized to dig for facts in drift deposits all over the world;
articles and scientific journals probed the details of Croll’s theory; and argu-
ments pro and con filled many pages in geological textbooks.

As time went on, however, many geologists in Europe and America became
more and more dissatisfied with Croll’s theory, which maintained that the last
Glacial Epich began about 250,000 years ago and ended some 80,000 years ago.
The new evidence showed that the last ice age ended 10,000 years ago — at
variance with Croll’s results. Moreover, theoretical arguments were advanced
against the theory by meteorologists who calculated that the variations in
solar heating described by Croll were too small to have any noticeable effect
on climate. By the end of the 19th century, the tide of scientific opinion had
turned against Croll, and his astronomical theory came to be treated as an
historical curiosity, interesting but no longer valid. Eventually it was almost
forgotten.

Almost, but not quite, for it would be picked up years later by a Yu-
goslavian astronomer. But in 1890, when James Croll lay on his deathbed in

388 Croll reasoned that a decrease in the amount of sunlight received during winter

favors the accumulation of snow. Any small initial increase in the size of the

area covered by snow must result in an additional loss of heat by reflecting more

sunlight back into space. Therefore, any astronomically induced change in solar

radiation (however small) would be amplified.
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Scotland, Milutin Milankovich was only 11 years old, quite unaware of the
task that the goddess of science had destined for him.

1864–1877 CE Siegfried Marcus (1831–1897, Germany). Engineer and
inventor. Inventor of the automobile389. Built the first horseless carriage
(1864) and in 1875 the second, which was the first 4-stroke engine, petrol-
driven vehicle to function. This he drove about the streets of Vienna, amid
general astonishment.390His automobile patents were registered in Germany
(1882) and it was not until four years later (1886), that the first Daimler
motor-car was built.

Marcus was born in Malchin, Mecklenburg, to Jewish parents and settled
in Vienna (1853). He first began to study medicine, but later turned to elec-
trotechnics and chemistry. Apart from his theoretical studies, he did practical
work and thus acquired a sound knowledge of mechanics. His research work
in chemistry drew his attention to the problem of fuel. In 1864, Marcus built
his first model which he improved in 1875.

This vehicle (now kept in the Technical Museum of Vienna) contained all
the essential parts of todays motorcar. The engine was driven by petrol sup-
plied and mixed with air by a carburetor. This mixture entered the cylinder
through a conic valve operated by a camshaft. The ignition spark was pro-
vided by a magneto at the moment when the piston arrived at the top dead
center. The exhaust gas escaped through an outlet valve. The engine-power
was transmitted by a conical clutch and two belt pulleys to the rear axle. The
body, which looked like a horse-carriage was equipped with shock absorbers
in the form of rubber buffers placed between the body and the rear axle. Two
half-elliptical springs were fitted above the front axle. The steering box was
of the worm gear in use today.

In 1975, on the occasion of a festival in honor of the inventor, Siegfried
Marcus’ car was put to use; the vehicle was ready after minor repairs. Experts
were surprised at the ease with which the car ran.

389 Whilst history records the German Otto as the inventor of the 4-stroke engine

(1877), the German Daimler as the first to use petrol to drive on engine (1885)

and the Frenchman Levassor (1887) as the first to utilize a petrol-engine to

drive a vehicle — in fact, all these inventions had been made previously by one

man, Siegfried Marcus.
390 The first traffic report to the first driver in the first motorcar was made by a

Viennese policeman, when he stopped Siegfried Marcus’ car and forbade him to

continue his journey because of the noise he was making (1875). In doing so,

this policeman had delayed the development of an invention which was destined

to change the face of the earth.



1864 CE 2295

1864–1880 CE Cato Maximilian Guldberg (1836–1902, Norway), che-
mist and mathematician, and Peter Waage (1833–1900, Norway), chemist,
formulated the law of mass action391 (1864–1867), the basic law of chemical
kinetics. In it simplest form, it states that in a state of equilibrium, the frac-
tion of molecules of one kind changing into molecules of another kind is a time
independent constant392.

Guldberg became a professor at the University of Christiania (Oslo) in
1869. With Henrik Mohn (1835–1916, Norway) he published a book on
the circulation of the atmosphere, providing the theoretical foundation for dy-
namic meteorology (1876–1880). In their study, they incorporated the Coriolis
deflection and the friction between the earth and the atmosphere.

391 Berthollet (1803) recognized that the concentrations of the reacting com-

pounds influence the reaction but failed to render a general mathematical for-

mulation.
392 In general, reactants with concentrations A, B, C, . . . may combine in various

well-defined proportions to give products with concentrations G, H, . . . accord-

ing to the stoichiometric equation

νA + μB + ηC + · · · = γG + δH + · · ·,

where the integers ν, μ, η, γ, δ are called stoichiometric coefficients (namely,

the numbers of molecules that partake in the reaction). The law of mass-action

states that at equilibrium

GγHδ · · ·
AνBμCη · · · = K(T, P ),

where K is a constant independent of time. Large values of K indicate the

formation of large quantities of new products.

The law of mass action results in a natural way from the differential equation
governing the reaction kinetics. Consider for example the symbolic reaction

equation A + X�B + Y , which means that whenever a molecule of component

A encounters a molecule of X, there is a certain probability a reaction will take
place and a molecule of B and a molecule of Y will be produced. Likewise, the

collision between molecules of Y and B can set off the opposite reaction.

The total variations in concentrations of the chemicals is given by the balance
between the forward and the reverse reaction. Consequently

dX

dt
=

dA

dt
= − dY

dt
= − dB

dt
= −kAX + k′BY .

In the state of equilibrium the forward and reverse reactions compensate one

another statistically so that there is no longer any overall variation in the con-

centrations
(

dX
dt

= 0
)
. This compensation implies that the ratio between equi-

librium concentrations is given by AX
Y B

= k′

k
= K.
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1864–1884 CE Julius Friedrich Cohnheim (1839–1884, Germany).
Physician. Pioneer of pathological anatomy. Revolutionized medical thought
and practice when he advanced the basic theory of inflammation (1864–1867)
and pus formation. Devised techniques of freezing tissue samples before sec-
tioning. Author of classical textbooks in general pathology (1877–1880).

Cohnheim was born in Demmin, Pommerania, to Jewish parents. Con-
verted to Christianity to advance his career, he studied in Berlin, where he
graduated in medicine and studied for a year with the cellular pathologist
Rudolf Virchow. Professor of Kiel (1868), Breslau (1872), Leipzig (1878).

Cohnheim devised new ways of looking at specimens of human tissue under
the microscope and worked out many of the early cellular events that occur in
inflammation. He showed by experiments how the blood cells vessels respond
in the early stages of inflammation, and proving that the white cells (leuko-
cytes) passed through capillary walls where inflammation was occurring, later
degenerating to become pus corpuscles.393

Cohnheim worked on a whole range of diseases, including tuberculosis,
myocardial infarct and cancer. Metchnikov was among many later workers
who confirmed and extended his early studies.

1864–1886 CE Edmond Nicolas Laguerre (1834–1886, France). Math-
ematician. Although most of his research efforts were in the field of geometry,
this part of his output [foci of algebraic curves (1853), geometric interpretation
of homogeneous forms and their invariants, curves mapped onto themselves
by inversion, 4th order curves, studies of curvature and geodesies and pioneer-
ing investigations of the complex projective plane] has been largely absorbed
by later theories or has passed into the general body of geometry without
acknowledgment394.

393 The essence of the inflammatory response is the migration of white blood cells

to a wound. The inflammatory response results in an increased flow of blood

to the site of injury and an increased permeability of the endothelium (the

tissue that comprises the walls of capillaries). Both of these effects assist the

migration of phagocytic (germ engulfing) white blood cells from the blood to

the interstitial fluid. Here the white blood cells can begin engulfing debris and

any infecting microorganisms.
394 e.g. his work on differential invariants is included in the more comprehensive Lie

group theory. He was also one of the first to point out that a distance function

(metric) can be imposed on the coordinate plane of analytic geometry in more

than one way.
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Laguerre’s current reputation rests on his discovery (1879) of the La-
guerre differential equation and its polynomial solutions (Laguerre polyno-
mials). These functions have wide use in mathematical physics and applied
mathematics — for example, in the solution of the Schrödinger equation for
hydrogen-like atoms and in the study of electrical networks and dynamical
systems. The 1879 memoir of Laguerre is significant not only because of the
discovery of the Laguerre equations and polynomials, but also because it con-
tains one of the earliest infinite continued fractions which are known to be
convergent.395

Laguerre was born in Bar-le-Duc. His education was completed at the
École Polytechnique in Paris. In 1854 he left school and accepted a commission
as an artillery officer (1854–1864), where he published nothing. Upon his
return to Paris he became a tutor at the École Polytechnique and in 1874
was appointed examinateur . In 1883 he accepted, concurrently, the chair of
mathematical physics at the Collège de France. In 1886 his continually poor
health broke down and he returned to Bar-le-Duc, where he died.

In evaluating the life-work of Laguerre one encounters a phenomena com-
mon to many brilliant and innovative minds: his name is little known and his
work so seldom cited because he was primarily occupied with details and did

395 The polynomials

Ln(x) = ex dn

dxn
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satisfies the differential equation xy′′ + (1 − x)y′ − ny = 0 (n = 0, 1, 2, . . .).

The associated Laguerre polynomials Lm
n (x) = (−)m dm

dxm Ln+m(x), satisfy

the generalized equation xy′′ + (m + 1 − x)y′ + ny = 0. Laguerre arrived
at his equation through an investigation of the exponential-integral function
∫ ∞

x
e−u

u
du. for which he obtained the continued-fraction representation

∫ ∞

x

e−u

u
du =

e−x

x + 1 − 1

x + 3 − 4

x + 5 − 9

x + 7 − 16

x + 9 − · · ·

.

Laguerre proved that the mth convergent of the fraction could be written as

e−x [ϕm(x)/fm(x)], where fm(x) is the Laguerre polynomial of degree m,

Lm(−x), and thus demonstrated that a divergent power series can be converted

into a convergent continued fraction.
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not step back to draw together various pieces and put them into a single the-
ory . The result is that his work has mostly come down as various interesting
special cases of more general theories discovered by others.

1865 CE Eugene Charles Catalan (1814–1894, Belgium). Mathemati-
cian. Contributed to the theory of continued fractions and number theory.
The constant396 G =

∑∞
n=0

(−1)n

(2n+1)2 = 0.915, 965, 594 . . . is named after him.

Catalan was in Liouville’s class at Ecole Polytechnique (1833) but was
expelled the following year. Allowed to resume his studies in 1835. With
Liouville’s help he obtained a lectureship in descriptive geometry at the Ecole
Polytechnique (1838) but his career was damaged by being politically active
with strong left-wing views.

1865 CE The London Mathematical Society founded397.

1865 CE Gregor Johann Mendel (1822–1884, Austria). Botanist. Dis-
covered the mathematical principles of heredity. Observing the contrasting
characteristics of different pea plant species, he grew successive generations
of such plants and studied how these characteristics were inherited.

Mendel was born in Heinzendorf, Austria. He became interested in plants
while a youth on his father’s farm. In 1843 he entered the Augustinian

396 It is a special case of the Dirichlet series β(z) =
∑∞

n=0
(−1)n

(2n+1)z . Catalan’s
constant has many series, integral and continued fraction representations.

It is unknown whether G = β(2) is irrational. Ramanujan showed that

G = π
4 3F2(

1
2
, 1

2
, 1

2
, 1, 3

2
) and that

2G = 2 − 1

3 +
22

1 +
22

3 +
42

1 +
42

3 + . . .

397 The following mathematical societies were established in the indicated order:

France (1872), Edinburgh (1883), Palermo (1884), New York (1888), Germany

(1890), India (1907), Spain (1911), U.S.A. (1915).

The first seven International Congresses were held at: Paris (1889), Chicago

(1893), Zürich (1897), Paris (1950), Heidelberg (1904), Rome (1908) and Cam-

bridge (1914).

The number of mathematical periodicals increased as follows: 1700 (17), 1800

(210), 1900 (950), 1990 (ca 3800). This roughly fit the curve

N(t) = 17(1 + t)1/4et/75, where t = 0 corresponds to the year 1700.

About 200,000 new mathematical theorems are being proved each year, since

1990.
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Monastery in Brünn. Except for his education at the University of Vienna
and short periods of teaching natural history at nearby schools, Mendel spent
his life in the monastery.

In 1865, Gregor Mendel read his paper before the Brünn Society for the
Study of Natural Science. The records of the society state that there were
neither questions nor a discussion following his presentation. Like a stone
dropped down a well, Mendel’s work disappeared from view of the scientific
community — without causing so much as a ripple.

It was not until 1900, sixteen years after his death, that biologists came to
appreciate what he had accomplished. At that year his work was rediscovered
by three distinguished biologists: Hugo de Vries (1848–1935), Carl Cor-
rens (1864–1933) and Erich Tschermak (1871–1962). Thereafter, Mendel’s
ideas have steadily gained ground, and came to exert upon biology an influ-
ence not less than that associated with the name of Darwin.

1865 CE Hermann Johann Philipp Sprengel (1834–1906, England).
Chemist, physicist and inventor. Invented the high vacuum pump which had
far reaching effects: for example. it made possible Crooke’s investigations of
radiation in a high vacuum, leading eventually to the discovery of the electron
by J.J. Thomson (1895).

Sprengel was born in Schillerslage, near Hanover, and educated at the
universities of Göttingen and Heidelberg. He moved to England (1859) and
carried out research at Oxford and in the laboratories of several institutions
in London. He mechanized the pump devised by Heinrich Geissler (1858),
making the action of the pump much swifter and more efficient.

1865 CE Immanuel Lazarus Fuchs (1833–1902, Germany). Mathemati-
cian. One of the creators of the modern theory of differential equations.

Fuchs was born to Jewish parents in Moschin, near Posen and studied at
Berlin with Kummer and Weierstrass. He became professor at the Univer-
sity of Berlin (1884), after converting to Christianity. In 1865 he combined two
methods in the study of linear differential equations with complex functions
as coefficients. One, using power series, as elaborated by A.L. Cauchy; the
other method uses the hypergeometric series as has been done by G.F.B. Rie-
mann. A special type of linear ordinary differential equations bear his name.

One of his most able students, Zvi Hermann Shapira (1840–1898), be-
came a professor of mathematics at Heidelberg (1887–1898) and contributed
to the theory of co-functions. He reissued and annotated (1880, Leipzig) the
medieval mathematical treatise of Avraham bar Hiyya. Shapira was also
active in the Zionist movement and suggested the idea of the Jewish National
Fund (1897).
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1865–1877 CE Heinrich Anton de Bary (1831–1888, Germany). Bota-
nist. Founder of science of mycology and of plant pathology. First to work
out life histories, morphology and physiology of many fungi, esp. parasitic
fungi; first to demonstrate heteroecism. Demonstrated symbiotic nature of
lichens.

Born at Frankfurt, Germany. Professor at Freiburg (1855–1866), Halle
(1867–1872), Strasbourg (1872–1888).

1865–1881 CE Carl Gottfried Neumann (1832–1925, Germany).
Mathematician and theoretical physicist. Pioneered in boundary value prob-
lems of potential theory and contributed to the theory of Bessel functions.
He coined the term ‘logarithmic potential’ (1870). Neumann was born in
Königsberg. His father Franz Ernst Neumann (1798–1895) was a known
mineralogist and physicist, and his mother was a sister-in-law of the as-
tronomer F.W. Bessel. From 1868 until 1911 he was a professor at the Uni-
versity of Leipzig.

1866–1882 CE Camille Marie Ennemond Jordan (1838–1922, Fran-
ce). Mathematician. Known for his important contributions to algebra, topol-
ogy and group theory. Gave a generalization of the Serret-Frenet formulae for
a curve in an Rn space, and also established the existence of principal direc-
tions for any subspace of such a manifold. Introduced with Giuseppe Peano
(1858–1932) the concept of ‘Riemann content’ in measure theory. Made sig-
nificant contributions to topology (‘Jordan curve theorem’), group theory and
measure theory. Showed that algebraic equations of any degree can be solved
in terms of modular functions.

Jordan studied mathematics at the Ecole Polytechnique and from 1873
taught there and at the College de France. He introduced important topo-
logical concepts (1866) such as homotopy and defined a homotopy group of a
surface without explicitly using group terminology [he was aware of Riemann’s
work but not of the work of Möbius]. His introduction of group concepts into
geometry (1869) was motivated by studies of crystal structure. Defined the
normal form for matrices (1870) over a finite field, and brought permutation
groups to a central role in mathematics. Originated the concept of functions
of bounded variation and is known especially for his definition of the length
of a curve (1882). He also generalized the criteria for convergence of Fourier
series.

Two of Jordan’s students, Sophus Lie and Felix Klein, drew upon his
studies to produce their own theories of continuous and discontinuous groups.
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1866–1896 CE Robert Whitehead (1828–1905, England). Engineer and
inventor. Father of the modern torpedo. Designed and built the first un-
manned, self-propelled torpedo. It was propelled by a compressed-air engine
and carried 9 kg of dynamite. Its most important feature was a self-regulating
device which kept it at a constant preset depth. Many of the basic component
parts used in his early prototypes were, in fact, still in use during the Sec-
ond World War and the overall form of the torpedo has been retained to the
present day. He was first to use the gyroscope in military equipment (1896).

Whitehead was born near Bolton, Lancaster, UK and came from a family
of engineers. After a long apprenticeship with a company in Manchester he
left in 1840 to seek his fortune abroad. In 1864 he began to work for the
Austrian Navy and undertook to build for them an unmanned, self-propelled
surface boat packed with explosives which could be directed at blockading
ships. In 1870 he brought two of his weapons to England for trial with the
Royal Navy. The larger was 41

2 m long, diameter 40 cm, charged with 9 kg
of dynamite and having a range of ca 1000 m. The Royal Navy were very
impressed and bought the manufacturing rights for 15,000 sterling in 1871.
In 1896, Whitehead used the gyroscope to steady the motion of his torpedo.

Whitehead was clearly one of the greatest British inventors of the 19th
century. The type of torpedo that he invented exerted more influence over the
tactics of naval warfare than all the world’s top admirals and naval architects
put together. Yet although he was honored by many other nations, he received
minimal recognition from his country of birth. Even today, apart from current
and past members of the Royal Navy, his name remains virtually unknown.
(You will not find his name mentioned in any of the Britannica editions prior
to 1975!).

1866 CE Georges Leclanché (1839–1882, France). Engineer. Invented
the first dry cell (Zinc-Carbon cell), where the electrolyte is moist. [It is called
“dry” in comparison with cells like the Daniell cell, in which the electrolytes
are aqueous solutions.]

The container of this dry cell, made of zinc, also serves as one of the
electrodes. The other electrode is a carbon rod in the center of the cell.

The zinc container is lined with porous paper to separate it from the
other materials of the cell. The rest of the cell is filled with a moist mixture
(the cell is not really dry) of ammonium chloride (NH4Cl), manganese oxide
(Mn(IV)O2), zinc chloride (ZnCl2), and a porous, inert filler. Dry cells are
sealed to keep the moisture from evaporating. As the cell operates (the elec-
trodes must be connected externally), the metallic Zn is oxidized to Zn2+,



2302 4. Abstraction and Unification

and the liberated electrons flow along the container to the external circuit.
Thus, the zinc electrode is the anode (negative electrode).

Zn → Zn2+ + 2e− (oxidation, anode)

The carbon rod is the cathode, at which ammonium ions are reduced.

2NH+
4 + 2e− → 2NH3 + H2 (reduction, cathode)

Addition of the half-reactions gives the overall cell reaction

Zn + 2NH+
4 → Zn2+ + 2NH3 + H2, Ecell = 1.6V

As H2 is formed, it is oxidized by MnO2 in the cell, while the Mn is reduced.
This prevents collection of H2 gas on the cathode, which would stop the
reaction.

H2 + 2Mn(IV)O2 → 2Mn(III)O(OH)

The ammonia produced at the cathode combines with zinc ions and forms a
soluble compound containing the complex ions, [Zn(NH3)4]2+:

Zn2+ + 4NH3 → [Zn(NH3)4]2+

Leclanche’s invention, which was quite heavy and prone to breakage, was
steadily improved over the years. The idea of encapsulating both the negative
electrode and porous pot into a zinc cup was first patented by J.A. Thiebaut
in 1881. But it was Carl Gassner of Mainz who is credited as constructing
the first commercially successful “dry” cell. Variations followed. By 1889
there were at least six well-known dry batteries in circulation. Later battery
manufacturing produced smaller, lighter batteries, and the application of the
tungsten filament in 1909 created the impetus to develop batteries for use in
torches (flashlights).

Leclanché was born in Parmain, France, and educated in England. After
completing a technical education in Paris (1860) he began to work as an
engineer.

1866 CE Gabriel Auguste Daubrée (1814–1896, France). Geologist and
mineralogist. Suggested that the center of the earth is a core of iron and nickel.

He was born at Metz and educated at the École Polytechnique in Paris.
Qualified as a mining engineer, he was put in charge of the mines in Alsace
(1838) and was subsequently a professor of mineralogy and geology at Stras-
bourg (1852). In 1861 he was appointed professor of geology at the museum
of natural history in Paris. The minerals daubreeite and daubreelite are named
for him.
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1866–1867 CE Daniel Kirkwood (1814–1895, U.S.A.). Astronomer.
First drew attention to gaps in the distribution of asteroids’ mean distances
from the sun, known today as Kirkwood gaps. He noticed that very few as-
teroids have orbits whose orbital periods correspond to simple fractions (such
as 1

2 , 3
7 , 2

5 , 1
3 ) of Jupiter’s orbital period. Resonant gravitational pertur-

bations due to the repeated alignments with Jupiter have deflected asteroids
away from these orbits and prevented the formation of a planet between Mars
and Jupiter398. Kirkwood pointed out that the divisions in the ring structure
of Saturn may have similar origin (the Cassini divisions, 1675), created by
gravitational perturbations of the Saturnian moons on the icy fragments of
the rings.

The Planet that Failed to Form399

The giant planet Jupiter orbits the sun in an ellipse that is 5 times larger
and somewhat more eccentric (e = 0.048) than the orbit of the earth. It comes
to perihelion at 740, 558, 340 km and recedes to 815, 602, 000 km at aphelion,
so its distance from the sun varies by some 75 million km. Its mean orbital
speed of 13.1 km/sec carries it once around its orbit (sidereal period) in nearly
12 years. Since its synodic period400 is 399 days, it comes to opposition every

398 The inner planets formed when swarms of planetesimals a few kilometers in

size collided at velocities low enough to permit bodies to grow larger by accre-

tion. Numerous resonances from the rapidly growing and massive planet Jupiter

probably permeated the region between 2 and 4 AUs. These resonances may

have pumped up the orbital eccentricities of the planetesimals there, acceler-

ating the objects to velocities so high that successful accretion on a planetary

scale was impossible. Today the asteroids remain in an environment dominated

by collisions, encountering one another at about 5 km/sec.
399 For further reading, see:

• Gallant, R.A., Our Universe, National Geographic Society, 1994, 284 pp.

• Moore, P., Atlas of the Universe, Philips, 2005, 288 pp.

• Caprara, G. (ed.), The Solar System, Firefly Books, 2003, 255 pp.

400 The time taken by the earth to catch up with Jupiter by one lap.
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13 months. Its rapid rotation with a period of only 9h50m has produced a

noticeable flattening at its poles (0.062).

The mass of Jupiter (as determined from the motions of its inner satellites

and the perturbation it produces on the motion of asteroids) is 318 times

the mass of the earth, and it is nearly 11 times the earth in diameter. In

both volume and mass, it is larger than all the other planets put together401.

Jupiter’s gravitation perturbs the motion of the sun and the other planets,

and holds its own satellites in orbit.

During the 18th century, when post-Newtonian astronomers began to seek

for law and order in the solar system, they noticed that all the ratios of

distances of neighboring planets from the sun lie between 1.3 and 2.0 except
the Jupiter-Mars ratio which came to 3.4. Thus, the gap between these two

planets is twice as great as it might be expected to be. It is almost as though

a planet ought to exist between Mars and Jupiter, and doesn’t.

Toward the end of the 1700’s, astronomers were thinking along these lines

and were beginning to plan a telescopic sweep of the sky in order to see if such

a missing planet could be spotted. Between 1800 and 1845, 5 minor planets

were found. Herschel named them asteroids. By 1866, enough asteroids had

been discovered so that one could see that the average distances were spread

out fairly evenly between the orbits of Mars and Jupiter — but not entirely

evenly!

The modern theory of the formation of the solar system has it beginning

in a huge cloud of dust and gas. Slowly this cloud turned and came together

under its own gravitational pull. As the cloud condensed into a smaller and

smaller object, it turned faster and faster. Eventually, the central part of it

condensed into the sun, while some of it at its midsection was kept in the

outskirts by the centrifugal force, like a large equatorial bulge. The thinner

cloud of dust and gas that spread out beyond the sun’s midsection formed

larger and larger objects that kept colliding until the planets were formed, all

circling more or less in the equatorial plane of the sun.

Most of the total angular momentum of the solar system lodges in the

orbital motion of the massive outer planets such as Jupiter and Saturn

401 The center of gravity of the solar system shifts in a complicated fashion as the

planets circle the sun, but most of the time it is about 45,000 km above the sun’s

surface in the general direction of Jupiter, causing the sun to wobble slightly —

making one complete wobble in about 11.86 years, close to the orbital period

of Jupiter.
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(JJup ≈ 16J�)402. The part of the dust cloud lying between the orbits of
Mars and Jupiter has collected into small solid bodies of various sizes, but
could not take the final step of coalescing into a single large body, because
the gravitational influence of Jupiter kept stirring up the asteroids, preventing
them from coming together. Attempts to explain the Kirkwood gaps go all
the way back to Kirkwood. Chief among them is the so-called gravitational
hypothesis; it suggests that asteroids drift away from the commensurable or-
bits under the influence of Jupiter’s gravitational perturbation alone, needing
no help from collisions.

The mechanism of this interaction is as follows: Every time the asteroid
wheels into that part of its orbit which happens to be near Jupiter’s position
at the time, it feels Jupiter’s pull particularly strongly. If Jupiter happens to
be a little ahead of the asteroid at the time of closest approach, it will pull
the asteroid forward. If Jupiter happens to be a little behind, it will pull the
asteroid backward. On the average, the forward and backward pulls will cancel
each other and, in the long run, the asteroid’s orbit will remain unchanged.

If, however, the period of revolution of an asteroid is some simple fraction
of the period of revolution of Jupiter, their relative position will be repeated
periodically every T years; the perturbations will not balance out but tend to
accumulate in a preferred direction, with the consequence that the asteroid
will regularly be pushed out of its orbit closer or farther from the sun. A gap
in the asteroid belt will form at a series of distances which are simple fractions
of the period of revolution of Jupiter.

The asteroids all revolve about the sun in the same direction as the prin-
cipal planets (from west to east), and most of them have orbits that lie near
the plane of the earth’s orbit. The main asteroid belt contains minor planets
with orbits of semimajor axes in the range 2.2 to 3.3 AU, with corresponding
periods of orbital revolution about the sun from 3.3 to 6 years.

Calculations show that perturbations by Jupiter of asteroids near or in the
Kirkwood gaps can result in ejecting asteroids to the part of the solar system
occupied by the earth.

402 The orbital angular momentum of a satellite of mass m in a circular orbit of ra-

dius r around a gravitating center of mass M is proportional to the square root

of r. This follows from Newton’s law of gravitation which requires the satellite’s

centripetal acceleration to have the value v2/r = GM/r2, so that vr =
√

GMr

and therefore the orbital angular momentum is J = mvr = m
√

GMr. One

may thus compare the orbital angular momentum of the planet Jupiter

(m ≈ 10−3M ; M ≈ 2 × 1030 kg; r ≈ 8 × 1011 m) with the spin angular mo-

mentum of the sun J	 = 2
5
MR2ω obtained if one treats the sun approximately

as a rigid sphere (R = 7 × 108 m) rotating with a period of about 25 days (i.e.,

ω ≈ 3 × 10−6 sec−1).
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In recent years (1985–1992), celestial-mechanics theorists brought to bear
a new outlook upon the formation mechanism of the Kirkwood gaps: given
enough time, it seems an asteroid with a period commensurable with that of
Jupiter will experience a chaotic burst of eccentricities, high enough to put it
in an orbit where it is likely, sooner or later, to have a close encounter with
Mars. The modern study of chaos deals with the onset of wild and unpre-
dictable fluctuations in a system governed by simple deterministic equations
from which one would naively expect nothing but good behavior.

When one speaks of chaos, especially in an essentially conservative, Hamil-
tonian system like the solar system, one does not mean the unpredictability
inherent in intrinsically disorderly phenomena such as thermal noise or in-
numerable random collisions. What is meant here is a dependence on initial
conditions so hypersensitive that it thoroughly destroys predictability, despite
the simple, deterministic equations that govern the system. After a few hun-
dred thousand years, two asteroids that were initially traveling together in
one of the Kirkwood gaps will become completely uncorrelated.

During 1866–1981, nobody was able to present an analytically tractable
solution that offer a detailed explanation of the Kirkwood gaps. The explicit
numerical integration of Newton’s equations without radical approximations
consume so much computer time that the orbits of the nine planets, includ-
ing their mutual interactions, have never been explicitly calculated beyond
5 × 105 years into the past and future. A thousand fold increase in comput-
ing speed is gained by a method developed by Boris Chirikov (1979) and
applied by Jack Wisdom (1981) to the study of transition to chaos in the
solar system.

Through this method one replaces the full differential equation describing
the behavior of the system by an algebraic mapping that carries the system
over a sequence of discrete time intervals. Then one looks at the system
only at stroboscopic intervals corresponding to the orbital period of Jupiter.
If there were no longer-term variations in the problem, the mapping point
would remain fixed in phase space from one strobe time to the next. The
movement of the map-point describes only variations slower than the annual
revolution. The thousandfold increase in computing speed is gained because
the mapping algorithm obviates the need to integrate the differential equations
over many smaller time intervals within the 12-year strobe step; and because
the mapping rule is algebraic rather than differential, one has better digital
accuracy .

When the mapping was applied to the 3: 1 Kirkwood gap, the eccentric-
ity variation suddenly shot up chaotically to fluctuations reaching 35% after
behaving itself for 20, 000 years, sufficient for the asteroid to cross the orbit
of Mars.
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The Kirkwood gaps now had a plausible origin. Close encounters (not nec-
essarily collisions) with Mars would eventually perturb these high-eccentricity
orbits out of the commensurable band.

There is a class of asteroids whose orbits come close to or cross that of the
earth. They are divided into 3 groups: The Atens have orbits that cross the
orbit of the earth, but lie wholly within the orbit of Mars. The Apollos are
objects that cross both the orbits of the earth and Mars. The Amors cross the
orbit of Mars but do not, at present (1993), quite come as close as the earth’s
orbit. Some earth-crossing asteroids have been observed at their near-earth
passes: of these, Hermes passed very close to earth in 1937. Icarus missed
our planet by only 6.4 million km on June 14, 1968, and Geographos by only
10 million km in 1969403.

Thus, the missing planet never had a chance to form. What remains today
in the gap between the orbits of Jupiter and Mars appears to be simply a
remnant of the scattered debris from the original solar nebula that elsewhere
accreted into planets. Effects of resonances, or locations where the orbital
period of a body is some exact integer ratio of Jupiter’s orbital period — are
clearly visible.

1866–1884 CE Ludwig Eduard Boltzmann404 (1844–1906, Austria).
One of the greatest physicists of the 19th century. Opened the door to an

403 Asteroid fragments (usually called meteoroids) have in the past collided with

our planet. It resulted in impact crater whose diameter depends on both the

mass and the speed of the impinging object. One of the most impressive and

best preserved impact craters is the Barringer Crater near Winslow, Arizona.

It measures 1200 meters across and is 200 meters deep. The crater was formed

some 25,000 years ago when an iron-rich object measuring 50 meters across

struck the ground with a speed estimated at 11 km/sec. The resulting blast,

was mechanically equivalent to the detonation of a 20-megaton hydrogen bomb.
404 For further reading, see:

• Broda, E., Ludwig Boltzmann: Man. Physicist. Philosopher, Ox Bow Press,

1983, 169 pp.

• Harris, S., An Introduction to the Theory of the Boltzmann Equation, Holt,
Rinehart and Winston, 1971, 221 pp.

• Rumer, Yu.B. and M.S.Ryvkin, Thermodynamics, Statistical Physics and Ki-

netics, Mir Publishers, Moscow, 1980, 600 pp.
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understanding of the macroscopic systems in a manner consistent with their
reversible microscopic molecular dynamics. Among the founders of classical
statistical mechanics. The originality of Boltzmann’s ideas made them dif-
ficult for some of his contemporaries to grasp. His important achievements
are:

• Molecular kinetic gas theory: Boltzmann transport equation405 (non-
linear integro-differential equation for the phase-space distribution func-
tion), Maxwell-Boltzmann distribution, the H-theorem. The probabilis-
tic interpretation of entropy (1866).

• Stress-strain relation for a most general linear viscoelastic solid (1876),
known as the Boltzmann superposition principle406.

• Ergodic hypothesis (1877).

• Reif, F., Fundamentals of Statistical and Thermal Physics, McGraw-Hill,

1965, 651 pp.

• Huang, K., Statistical Mechanics, John Wiley & Sons: New York, 1963,

470 pp.

• Jackson, E.A., Equilibrium Statistical Mechanics, Dover, 2000, 241 pp.

• Schrödinger, E., Statistical Thermodynamics, Cambridge University Press:

Cambridge, 1962, 95 pp.

• Sommerfeld, A., Thermodynamics and Statistical Mechanics (Lectures on

Theoretical Physics), Vol. 5, Academic Press: New York, 1964, 401 pp.

405 Arises in the determination of the phase-space distribution of particles of an
ideal gas in an enclosure on which there act external forces.

Another equation, which also bears Boltzmann’s name, is an equation for the

evolution of a probability density φ(x, t) over time (furnished with an initial
condition),

∂φ(x, t)

∂t
= −λφ(x, t) + λ

∫ ∞

0

K(x, s)φ(s, t) ds

406 A generalization of Hooke’s solid, Newtonian fluid and the viscoelastic models of

Maxwell, Kelvin and Voigt (in retrospect). It has the form of a convolution

integral

T(r, t) =

∫ t

− ∞

4

Ψ(r, t − τ) :
∂E(r, τ)

∂τ
dτ ,

where
4

Ψ is a fourth-order relaxation tensor, T(r, τ) is a stress tensor and E is

a strain tensor .
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• Stefan-Boltzmann law for blackbody radiation (1883–1884), through
which he connected Maxwell’s electrodynamics with thermodynamics.

Boltzmann established the statistical nature of the second law of thermo-
dynamics, which stipulates that heat passes, in a closed system, spontaneously
from a hot (higher temperature) body to a cold (lower temperature) one and
never in the reverse direction. Boltzmann’s statistical proof of the second
law of thermodynamics addresses only the average variation of entropy of an
isolated system and does not rule out the possibility of an occasional decrease
in its value. Fluctuations from the average must , in fact, occur, and their
frequency and typical magnitudes depend on the size of the system. Indeed,
Smoluchowski (1872–1917) has shown that microscopic phenomena can have
no intrinsic arrow of time, as far as internal entropy changes are concerned.

When Boltzmann (1872) first presented a statistical theory purporting to
prove that an improbable distribution will always proceed, when left alone,
to a more probable distribution with higher entropy, his colleague Joseph
Loschmidt is said to have questioned the general validity of Boltzmann’s the-
orem by pointing out that, if a skilled experimentalist would at some instant
reverse all motions in an equilibrium state that had evolved in the manner
envisaged by Boltzmann from a non-equilibrium state, then this reversed equi-
librium state would return (without further interference from the outside) to
a non-equilibrium state, and the entropy would decrease during that return.
This counterexample to Boltzmann’s supposed proof, nowadays known under
the name “Loschmidt’s paradox”, is clearly based on the validity of symmetry
with respect to reversal of motion, as it invokes the existence of the reversed
process to every process that may take place.

Boltzmann is reported to have silenced Loschmidt at the time by pointing
a finger at him and saying, “You reverse the momenta”. Ever since, there has
existed a body of opinion that dismisses Loschmidt’s paradox on the grounds
that simultaneously reversing the motions of a huge number of molecules is a
task in principle beyond the capability of the most skilled experimenters. If
indeed this is what Boltzmann meant by his cryptic remark, then it did not
dispose of Loschmidt’s objection, because there are experiments that precisely
realize the kind of reversal of motion Loschmidt had in mind. A Loschmidt
type of reversal is realized in all so-called spin echo experiments, which are
conducted daily in many laboratories since their first performance by the
American physicist Erwin Hahn (1950). Indeed, if one were considering
a gas of particles of the degree of dynamic simplicity as that dealt with in
spin echo experiments, even Loschmidt might have been able to reverse the
momenta.



2310 4. Abstraction and Unification

To deal with Loschmidt’s objection satisfactorily one must keep in mind
that the precise initial positions and velocities of the molecules remain en-
coded, through the laws of motion, in the future positions and velocities of
the molecules only if the gas remains completely isolated .

Definition and measurement of temperature T and/or entropy S, on the
other hand, require that the gas be put into thermal contact with a heat
bath, thus breaking the condition of isolation. Whenever the gas is in ther-
mal contact with a heat bath, its molecules will be subject, as a matter of
principle, to random changes in their positions and velocities which destroy
the encoded memory of the initial state. In other words, the thermal contact
couples the thermodynamic arrow of time of the measured sample, to that of
its environment.

Thus, if one reverses all motions after the equilibrium temperature T
and/or entropy S have been measured, the gas will not return to a non-
equilibrium state of lesser entropy, but rather evolve into other states whose
entropy is either equal to or larger than S. Furthermore, as shown by L. Szi-
lard (1921) in connection with the Maxwell’s Demon paradox, any micro-
management by a macroscopic (or even microscopic) “Demon” of molecular
degrees of freedom, entails its own entropy increase due to the attendant data
processing. We conclude that sequences of actual measurements of entropy
on a real-life, macroscopic sample of matter will never show a decrease, even
though reversal experiments of the Loschmidt type are possible in certain
special circumstances.

Boltzmann’s principle represents the entropy S in terms of the probability
W of macroscopic states and expresses it in the formula

S = k log W

(carved out on Boltzmann’s tombstone in the Central Cemetery in Vienna].

Boltzmann never wrote down the equation in this form. This was done by
Planck (1906), who also introduced the constant k. Boltzmann only referred
to the proportionality between S and the logarithm of the probability of a
state. The designation of Boltzmann’s principle was advocated by Einstein
for the reverse of this relation, namely:

W = exp{S/k}

in which S is considered to be known empirically.

The insight that the second law of thermodynamics can be understood
only in terms of a connection between entropy and probability, was one of the
seminal achievements of 19th century scientific thought.
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Boltzmann was born in Vienna and received his doctorate there in 1866.
After a few years as assistant to his teacher, Joseph Stefan, he taught at
Graz and then moved on to Heidelberg and Berlin for further studies with
such notables as Gustav Kirchhoff and Hermann von Helmholtz. He
returned to Vienna in 1873 as professor of mathematics, but soon left for
Graz again, where he served this time as a professor of experimental physics
from 1876 to 1889. From Graz Boltzmann went to Münich as professor of
theoretical physics, after refusing an invitation to succeed Kirchhoff in Berlin.

He returned to his native Vienna once more in 1894, this time as professor
in his own field, but his wanderings were not over yet. He was to leave Vienna
for Leipzig in 1900, and then return to his still vacant chair in Vienna in 1902
for the remaining few years of his life. In beginning his inaugural speech in
Vienna in 1902, Boltzmann remarked that he could spare his audience the
conventional hymn of praise for his predecessor since he and the speaker were
identical!

Boltzmann admired the republic of the United States of America and
visited it several times. In 1905 he was invited to give a course of lectures
(in English) in the summer session at the University of California in Berkeley,
where he arrived on 26 June. During his stay he visited Stanford University
and Lick Observatory407.

By 1906, at age 62, Boltzmann had suffered for years from periods of
serious depression, and from the perhaps not unrelated burden of serious
asthma. During his later years he was plagued by an anxiety that his own
wit and memory would suddenly leave him in the midst of a lecture. The
combination of his recurrent depressions and fears became too much for him
to bear, and he took his own life on 5 September 1906, while on a summer
vacation at Duino, near Trieste.

One of the causes of this tragic event was the intense philosophical oppo-
sition to his work, which now forms an integral part of physics. Ironically,

407 His recollections of that summer survive in his well-known popular essay: “Reise

eines deutschen Professor ins Eldorado”. Of James Lick, the founder of the

observatory, he said: “I have often asked myself which is a more remarkable

fact about America: that millionaires are idealistics, or that idealistics become

millionaires. What a fortunate land!. . .”

Boltzmann was generally having a wonderful time in California; he smuggled

wine into Berkeley and was a weekend house guest at the Hearst estate near

Livermore, where he played a Schubert sonata on a Grand Steinway before an

audience after dinner. He was astonished to find in the Berkeley bulletin an

announcement of a course of lectures, by a female colleague, on the preparation

of salads and desserts, alongside the syllabus of his own lectures.
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Boltzmann died just a year after the publication of Einstein’s first paper on
Brownian motion, the harbinger of Boltzmann’s ultimate triumph.

1867 CE Charles-Joseph-Étienne Wolf (1827–1918, France) and
George-Antoine-Pons Rayet (1839–1906, France). Astronomers. First
to observe visually very broad emission lines in several 8th magnitude stars
in Cygnus: the spectra of V1042, MR103 and MR100 was observed by them
(1867), before systematic use of photographic plates. It was the first known
instance of a laser being observed about 100 years before the first artificial
one was built. The ‘bands’ were originally thought to be due to hydrogen
molecules.

Stars of this class are called today ‘Wolf-Rayet Stars’ (WR). They are very
rare (only about 150 in our galaxy of 1011 stars) and represent an important
phase of stellar evolution.

Wolf-Rayet stars have masses in the range 30–50 solar masses (a solar
mass ≈ 2×1033 gram) and lie near the main sequence of the H-R diagram. A
very large percentage of these rare and beautiful stars have been confirmed to
be members of close binary systems. Although such stars are few in number,
they are important in the generation of the chemical elements, and they play
a key role in the life-cycle of stars.

It is believed today that WR stars are at the end of their stellar lives
(≤ 4 × 106 yr). As these stars age, material which the stars have cooked up
in their central nuclear furnaces (like carbon and oxygen) gradually reach the
surface of the star. When enough material reaches the surface, it absorbs so
much of the intense light from the star that an enormously strong wind starts
to flow from the star’s surface. This wind (which, essentially is an ejected
hot gas at a typical velocity of 100 km/sec) becomes so thick that it totally
obscures the star. The amount of material which the wind carries away is
very large. Typically, WR stars lose mass at a rate of about 10−6 −10−5 solar
masses per year. By comparison, our sun loses about 10−14 solar masses per
year in its solar wind.

This mass loss is so large that it significantly shortens the stars’ life.

Astronomers believe that very massive stars become Wolf-Rayet stars just
before they explode as supernovae.

WR stars became an important object of research for astronomers and
continue to challenge our understanding of massive star evolution and the
physics of radiative processes in very dense hot (50,000 to 100,000 degree K)
star winds. It has rather broad astrophysical implications; e.g. vigorous stellar
winds near the very hot WR star HD 56925 (WN4) produces nebulousity with
visible shock fronts.
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Because of their intrinsic brightness and their remarkable spectra, some
WR can be observed in distant galaxies up to 60 Mps away (1 parsec=3.2
LY). It makes these stars excellent candidates for measuring distances signifi-
cantly beyond the Cepheid limit. Because of their remarkable optical spectra,
dominated by strong emission lines, WR can be distinguished easily with low-
resolution spectroscopy, or with narrow-band photometry. Their spectra is
thus useful for determining their atmosphere constituents, radial velocities
and their distance from us.

Recently (1995–2003), WR stars were linked to hypernovae, which in turn
are associated with gamma-ray bursters.

Wolf worked in the Paris observatory from 1862 and was a professor of
astronomy in Paris during 1875–1901.

1867 CE Alfred Bernhard Nobel (1833–1896, Sweden). Invented dyna-
mite (a combination of nitroglycerin with an absorbent substance). Within
a few years, he became one of the world’s richest men. Nobel set up a fund
of about 9 million dollars, the interest from which was to be used for annual
award prizes in six different fields [physics, chemistry, physiology (or medi-
cine), literature, peace and economics]. Prizes for the first five categories were
first presented in 1901.

Dynamite and Peace

The era of modern explosives began in 1739 with the discovery of glycerin
by Carl Wilhelm Scheele (1742–1786, Sweden), a struggling apothecary
who made many first-class contributions to experimental chemistry. Glycerin
— a sweet, syrupy liquid — could be obtained by heating various oils of plant
or animal origin. This organic substance, frequently used as a humectant
in candy, cosmetics, skin lotion, ink and tobacco, was destined to become a
substance of first importance in the manufacturing of modern explosives.

However, organic chemistry began to take shape as a definite branch of
science only about 1830, and it was not until 1858 that its fundamental the-
ory of molecular structure was put forward by Friedrich August Kekulé
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(1829–1896, Germany) and Archibald Scott Couper (1831–1892, Scot-
land). [These dates are significant, because a command of organic chemistry
was essential before an organic explosive could be prepared and applied.]

Thus, in 1846, an Italian chemist, Sorbero, first prepared nitroglycerin
(glycerol trinitrate) by treating glycerin with a mixture of sulphuric and nitric
acids at low temperatures. This oily liquid with its sweet burning taste, deto-
nates violently on the slightest touch: there is sufficient oxygen in the molecule
to convert all the carbon and hydrogen present into carbon dioxide and water,
liberating molecular nitrogen. The reaction instantaneously releases a large
amount of gas (71

2 moles) into small volume, (initially occupied by liquid)
at a relatively high temperature.

This physical process, in turn, results in an explosion and shock-wave of
enormous proportions. [In marked contrast, nitroglycerin has had an interest-
ing pharmaceutical history in the treatment of angina pectoris, as a coronary
vascodilator, when taken in tablet form.] Meanwhile, other developments in
organic chemistry were taking place: in 1838 the French chemists Théophile
Jules Pelouze and Henri Braconnot obtained highly inflammable mater-
ial by treating cotton with strong nitric acid, and thereby opened the way to
the study of materials which became known as nitro-celluloses.

This process was improved in 1845 by Christian Friedrich Schönbein
(1799–1868, Switzerland), by using a mixture of nitric and sulphuric acids for
the nitration of cotton, and resulted (1846) in a new explosive far exceeding
gun powder in its power. It was left for Nobel to unite the two lines of research
starting from glycerin and cotton, and to show that the explosive properties
of nitrated cotton could be tamed for propellant purposes by gelatinizing the
fibrous material with nitroglycerin. This discovery, that the two most powerful
explosives then known could be blended to furnish a slow burning propellant
was so startling that it was received with incredulity, which soon gave place
to astonishment. Table 4.10 summarizes the history of explosives.

1867–1876 CE Ludwig Schläfli (1814–1895, Switzerland). Mathemati-
cian. Pioneered in higher-dimensional point geometry and elliptic modular
functions (1870). Also made significant contributions to the theory of Bessel
functions. The bulk of his work was not published until several years after
his death.

Schläfli was born in Grasswil, Bern. He enrolled in the theological faculty
at Bern but, not wishing to pursue an ecclesiastical career, accepted a post as
a teacher of mathematics and science at the Burgerschule in Thun. He taught
there for ten years, using his few free hours to study higher mathematics. In
the autumn of 1843 he accompanied Steiner, Jacobi and Dirichlet on their
travels in Italy, as an interpreter, and had thus the opportunity to learn
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from the leading mathematicians of his time. It was not until 1868, when he
became a full professor at Bern University, that he was free from financial
concerns.

An examination of his posthumous manuscripts reveal that in 1867, ten
years ahead of Dedekind, Schläfli discovered the domain of discontinuity of
the modular group and used it to make a careful analysis of the Hermite
modular function. We have today the Schläfli modular equation, as well as
Schläfli polynomial, function and hypergeometric series in the theory of Bessel
functions.

Besides his mathematical achievements, Schläfli was an expert on the flora
of the canton of Bern and an accomplished student of languages. He possessed
a profound knowledge of the Veda, and his posthumous manuscripts include
ninety notebooks of Sanskrit and commentary on the Rig-Veda.

1868 CE Felice Casorati (1835–1890, Italy). Mathematician. Proved the
important Casorati-Weierstrass theorem which claims that in any neighbor-
hood of an essential singularity of a function, it comes arbitrarily close to any
given value.

Casorati was a student in Pavia and later taught at Pavia and Milan.
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Table 4.10 Major events in the history of explosive materials
408

900–1000 Gunpowder developed in China.

1242 English monk Roger Bacon (1220–92) described the prepa-
ration of gunpowder (using an anagram).

c.1250 German alchemist Berthold Schwarz claimed to have rein-
vented gunpowder.

1771 French chemist Pierre Woulfe discovered picric acid (origi-
nally used as a yellow dye).

1807 Scottish cleric Alexander Forsyth (1767–1843) discovered
mercury fulminate.

1833 French chemist Henri Braconnot (1781–1855) nitrated
starch, making a highly flammable compound (crude nitro-
cellulose).

1838 French chemist Théophile Pelouze (1807–67) nitrated pa-
per, making crude nitrocellulose.

1845 German chemist Christian Schönbein (1799–1868) ni-
trated cotton, making nitrocellulose.

1846 Italian chemist Ascania Sobrero (1812–88) discovered ni-
troglycerin.

1863 Swedish chemist J. Wilbrand discovered trinitrotoluene
(TNT).

Swedish chemist Alfred Nobel (1833–96) invented a deto-
nating cap based on mercury fulminate.

1867 Alfred Nobel invented dynamite by mixing nitroglycerin and
kieselguhr.

1871 German chemist Hermann Sprengel showed that picric
acid can be used as an explosive.

408 For further reading, see:

• Read, John, Explosives, Pelican Books, 1942, 159 pp.
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1875 Alfred Nobel invented blasting gelatin (nitroglycerin mixed
with nitrocellulose).

1885 French chemist Eugene Turpin discovered ammonium pi-
crate (Mélinite).

1888 Alfred Nobel invented a propellant from nitroglycerin and
nitrocellulose (Ballistite).

1889 British scientists Frederick Abel (1826–1902) and James
Dewar invented a propellant (Cordite) similar to Ballistite.

1891 German chemist Bernhard Tollens (1841–1918) discovered
pentaerythritol tetranitrate (PETN).

1899 Henning discovered cyclotrimethylenetrinitramine (RDX or
cyclonite).

1905 US army officer B.W. Dunn (1860–1936) invented ammo-
nium picrate explosive (Dunnite).

1915 British scientists invented amatol (TNT + ammonium ni-
trate).

1955 US scientists developed ammonium nitrate-fuel oil mixtures
(ANFO) as industrial explosives.

1868 CE, Jan 30 A bright fireball streaked through the sky over the Polish
town of Pultusk (52.42◦N; 21.02◦E; 30 km north of Warsaw): A small asteroid,
with an estimated mass of the order of ten tons ripped through the earth’s
atmosphere at about 20 km/sec and exploded over the town. It pelted the
countryside with a shower of rocks, the fragment of which ranged from the
size of peas to chunks weighing about 10 kg. The bombardment occurred
when the men of Pultusk were at home instead of working in the fields, so
no one was killed or injured. In recent years, scientists have analyzed some
of the fragments. It was found that the original asteroid was a piece of the
primordial material from which the planets formed 4 1

2 × 109 years ago.
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1868 CE Joseph Norman Lockyer (1836–1920, England). Astronomer.
Suggested the existence of a new element, not yet discovered on earth. It was
named Helium (from the Greek word for the sun), because its characteristic
lines were found in the spectrum of solar radiation. In 1895, this sun-element
was discovered on earth.

1868–1870 CE Paul Albert Gordan (1837–1912, Germany). Mathe-
matician. Contributed to invariant theory and algebraic geometry. Proved
that every binary form has an associated finite complete system of invariants
and covariants. He also showed that any finite system of binary forms has
associated with it such a system of invariants and covariants. Gordan was
born in Breslau of Jewish parents. He studied under Kummer and Jacobi
and worked with Clebsch. Emmy Noether was his only doctoral student.

1868–1893 CE Karl Hermann Amandus Schwarz (1843–1921, Ger-
many). Mathematician. A pupil of Weierstrass and his successor as professor
of mathematics at Berlin (1897). One of the most distinguished researchers
on the calculus of variations in the 19th century. Contributed significantly to
many branches of mathematics, including the theory of minimal surfaces, the
theory of functions and its applications to potential theory (Dirichlet prob-
lem), set theory and conformal mappings.

Schwarz showed that smooth parts of a soap film will intersect a smooth
supporting surface perpendicularly: he proved that if a minimal surface has
a free boundary Σ on a support surface S, then it meets S along the curve
Σ at a right angle. Gergonne (1816) posed the problem: Divide a cube into
two parts by a surface M in such a way that M is attached at two inverse
diagonals that lie on opposite faces of the cube, and M is of minimal surface
(Gergonne’s surface). A solution was found by Schwarz in 1872.

H.A. Schwarz was the first to solve the Plateau problem for the simplest
contour which does not lie in a plane (1865). He also discovered two important
reflection principles for minimal surfaces and periodic minimal surfaces known
as Schwarz chain.

Named after him are: Schwarz’ inequality409, Schwarz’ theorem, Schwarz’
lemma, Schwarz-Christoffel transformation, Schwarzian derivative or differ-
ential invariant410 and the Schwarz problem411.

409
∫ b

a
φ2(x)dx

∫ b

a
ψ2(x)dx ≥

{∫ b

a
φ(x)ψ(x)dx

}2

.

410 {z, u} = z′ ′ ′(u)
z′(u)

− 3
2

{
z′ ′(u)
z′(u)

}2

.

411 Schwarz’s problem: Given an acute triangle, find an inscribed triangle with the

smallest possible perimeter . Schwarz discovered that the solution is given by
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Schwarz was the son of a Jewish architect. He held the chair of mathemat-
ics successively at Halle (1867), Zürich (1869), Göttingen (1875) and Berlin
(1892). His research was marked by originality of thought, vivid imagination
and a love of detail. His problems were concretely and clearly outlined and
usually derived from geometrical or mathematical-physics sources. He exer-
cised a decisive influence on the development of mathematics in the second
half of the 19th century.

He was married to Kummer’s daughter.

1869 CE, Nov. 17 The Suez Canal opened (construction began April 25,
1859). Constructed by a French company under the direction of Ferdinand
Marie de Lesseps (1805–1894, France). It is a narrow waterway, 160 km
long, that connects the Mediterranean and the Red Sea. Lesseps, canal builder
and diplomat, was born in Versailles, and during 1825–1849 worked in the
French diplomatic service.

1869 CE John Wesley Hyatt (1837–1920, U.S.A.). Inventor. A printer
in Albany, N.Y., who invented Celluloid, the first synthetic plastics material
to receive wide commercial use. Hyatt was seeking a substitute for ivory to
make billiard balls. Celluloid could be sawed,carved, and made into sheets.
As a result, new plastics products appeared on the market, including the first
photographic roll film. But celluloid was hard to mold and it caught fire
easily.

1869 CE First systematic color photography412 (subtractive method) done
simultaneously by the Frenchmen Emile Hortensius Charles Cros (1842–
1888) and Louis Ducos de Hauron (1837–1920). Both based their system

the altitude triangle, whose vertices are obtained by dropping the perpendicular

from each vertex of the original triangle to its opposite side. It is easy to see

that the altitude triangle must be a light-ray triangle; if we think of a triangular

room with mirror walls, the inscribed triangle represents a closed path of travel

for a ray of light in the room. It can be shown that the perimeter of the inscribed

light-triangle is equal to a cos A + b cos B + c cos C, where ABC is the original

triangle.
412 The first color photograph was demonstrated by James Clerk Maxwell, al-

ready in 1861.

The physicist, Gabriel Jonas Lippman (1845–1921, France) invented in 1891

the first color photographic process (based on the phenomenon of light interfer-

ence). This earned him the physics Nobel prize for 1908. The relative long time

required for a film to develop by this method precluded its commercial success,

and it was therefore superseded by the Maxwell 3-color procedure. However,

Lippman’s plate found new applications in holography (1962).
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on the Young-Maxwell color separation and mixing theory, by superposing
three color positive pictures on one another.

1869–1871 CE Dimitri Ivanovich Mendeleev (1834–1907, Russia).
Chemist. Introduced order into inorganic chemistry by devising the Periodic
Table, that systematized the properties of the elements known at his time and
permitted prediction of the existence of new ones. The later synthesis of new
elements has been based on his work. Various chemists413 had traced numer-
ical sequences among the atomic weights of some of the elements and noted
connections between them and the properties of the different substances, but
it fell to him to give a full expression to the generalization, and to treat it not
merely as a system of classifying the elements according to certain observed
facts, but as a law of nature — which could be relied upon to predict new
facts and to disclose errors in what were supposed to be old facts. Thus in
1871 he was led, by certain gaps in his tables, to assert the existence of 3
new elements, hitherto unknown to chemistry, and to assign them definite
properties [gallium, discovered 1871; scandium, 1879; germanium, 1886].

The youngest of a family of 17, Mendeleev was born at Tobolsk, Siberia.
After attending the gymnasium of his native town, he went to study nat-
ural science at St. Petersburg where he graduated in chemistry (1856), sub-
sequently becoming privatdocent. In 1860 he went to Heidelberg where he
started a laboratory of his own, but returned to St. Petersburg in 1861. He
became professor of chemistry in the technological institute there in 1863,
and three years later succeeded to the same chair at the University. In 1890

413 The periodic law was proposed in 1869 independently by Julius Lothar Meyer

(1830–1895, Germany), who plotted atomic volumes (atomic weight/density) of

the elements against their atomic weight. The resulting curve exhibits period-

icity in the case of other properties, such as expansion by heat, thermal and

electrical conductivities, magnetic susceptibility, melting point, refractive index,

boiling point, crystalline form, compressibility, atomic heat at low temperatures,

heats of formation of oxides and chlorides, hardness, malleability, volatility, vol-

ume change on fusion, viscosity and color of salts in aqueous solution, mobility

of ions, electrode potentials of metals, frequency of atomic vibrations in solids,

distribution of elements in nature, distribution of spectral lines, and valence.

As Mendeleev said, “these regularities can hardly be the result of chance”.

Lothar Meyer pointed out that gaseous elements, occur at the maxima and on

ascending portions of the atomic volume curve.

Lewis Reeve Gibbes (1810–1894, U.S.A.) constructed in 1870 a table of the

chemical elements which arranged the elements into families according to va-

lences. This work was not published until 1886, by which time the tables of

Mendeleev and Meyer were well established.
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he resigned the professorship, and in 1893 he was appointed director of the
Bureau of Weights and Measures, a post which he occupied till his death.

Boyle, who laid the foundations of modern chemistry in the 17th century,
was familiar with the concept of atoms, which may have assisted him in his
attempts to classify all substances into elements, compounds and mixtures.
However, the full importance of the atomic theory in chemistry was not re-
alized until Dalton used it to expound the laws of chemical combinations in
1803. Since the chemical elements react with each other in fixed proportions
by weight, it appeared that atoms of different elements are combining to form
compound atoms or molecules. The success of this idea led to the introduc-
tion of chemical formulae for the simpler compounds, each formula indicating
the atoms present in a single molecule of the compound.

An important development was the introduction of the concept of the
valency concept in 1852 by Edward Frankland (1825–1899, England), which
is, ideally, the number of hydrogen atoms combining with one atom of the
element considered. Through the introduction of single, double, and triple
bonds of the ‘covalent’ type, the greater part of organic chemistry could be
brought into one scheme. It was found, however, that a single valency could
not be assigned for many atoms [e.g. nitrogen and sulphur, which do not form
ions and thus exhibit variable valency].

Mendeleev’s periodic classification was a major development amid the con-
fusion of chemical ideas which prevailed in the middle years of the 19th century.
This table grouped elements with valence properties in vertical columns, num-
bered from I to VIII. The chemical resemblance of the first two rows (lithium
to fluorine and sodium to chlorine) had been recognized for some time. Al-
though the scheme was received with skepticism, its essential correctness was
demonstrated eventually by the discovery of the inert gases (helium, neon,
argon, krypton, and xenon), which provided a completely new column in the
table.

In its modern form (Table 4.11), the periodic table is based on the atomic
number (Z) of the elements, where Z is the number of electrons accommodated
outside the nucleus of the atom. The periodic classification shows immediately
that the electrons in an atom possesses some kind of shell structure. It was
only since 1925, the year of the Pauli exclusion principle, that the ‘7th veil’ was
finally lifted, and the true infrastructure of the periodic table was understood.
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The Elements414

Chemistry started to emerge from its alchemical roots in the 18th century,
partly with the discovery of new elements: between 1735 and 1826, no fewer
than 40 were added to the 9 known to the ancients (copper, silver, gold, iron,
mercury, lead, tin, sulphur and carbon) and the few discovered in the Middle
Ages (arsenic, antimony and bismuth). The discovery of these new elements
forced certain questions on every chemist: How many elements were there?
Was there any limit to their number? Were they all related somehow? And
if so, how could they be classified?

Kinships were recognized among some. Chlorine, bromine and iodine —
all colored, volatile, hungrily reactive — seemed a natural family, the halo-
gens. Calcium, strontium and barium, the alkaline earth metals, were another
family, for they were all light, soft, readily set alight and strongly reactive with
water.

In 1817, Johann Döbereiner observed that the atomic weights of the
alkaline earth metals formed a series, the atomic weight of strontium being
just midway between those of calcium and barium. He later discovered other
such triads, as well as triads in which the elements had similar properties but
almost identical atomic weights.

Döbereiner’s triads convinced many chemists that atomic weight must
represent a fundamental characteristic of all elements. But confusion about
the basics remained — about the difference between atoms and molecules and
about the combining power, or valency, of atoms. As a consequence, many
accepted atomic weights were wrong. Dalton himself — the originator of the
atomic hypothesis — assumed, for instance, that the formula of water was
HO and not H2O, giving him an atomic weight for oxygen that was only half
the correct number.

In 1860, the first international gathering of chemists was convened at Karl-
sruhe, Germany, for the expressed purpose of clearing up this confusion. Here,
Stanislao Cannizzaro proposed a reliable way of calculating atomic weights
from vapor density, and his beautifully argued presentation carried the day,
leading to a consensus: now, at last, with corrected atomic weights and a

414 For further reading, see:

• Emsley, John, Nature’s Building Blocks, Oxford University Press, 2003,
539 pp.
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clear idea of valency, the way was open for a comprehensive classification of
the elements.

It is a remarkable example of synchronicity that no fewer than six such clas-
sifications, all pointing toward the discovery of periodicity, were independently
devised in the next decade. Of these, Dmitri Ivanovich Mendeleev’s sys-
tem was the most comprehensive, and also the most audacious, for it ventured
to make detailed predictions of elements as yet unknown.

Mendeleev was the author of a chemistry text “The Principles of Chem-
istry”, and he had brooded since 1854 on how the chemical elements might
be classified.

With the old, pre-Karlsruhe atomic weights, one could get, as Döbereiner
did, a sense of local triads, or groups. But one could not easily see that there
was a numerical relationship between the groups themselves, Only when Can-
nizzaro showed that the proper atomic weights for the alkaline earth metals,
calcium, strontium and barium, were 40, 88 and 137 did it become clear how
close these were to those of the alkali metals, potassium (39), rubidium (85)
and cesium (133). It was this closeness, and the closeness of the atomic weights
of the halogens — chlorine, bromine and iodine — that incited Mendeleev in
1868 to make a small, two-dimensional grid juxtaposing the three groups:

Cl 35.5
Br 80
I 127

K 39
Rb 85
Cs 133

Ca 40
Sr 88
Ba 137

And it was at this point, seeing that arranging the three groups of elements in
order of atomic weight produced a repetitive pattern — a halogen followed by
an alkali metal followed by an alkaline earth metal — that Mendeleev felt this
must be a fragment of a larger pattern and leaped to the idea of a periodicity
governing all the elements, a periodic law.

Mendeleev’s first small table had to be filled in and then extended in all
directions, as if filling up a crossword puzzle. Alternating between conscious
calculation and hunch, between intuition and analysis, Mendeleev arrived
within a few weeks at a tabulation of 30-odd elements in order of ascending
atomic weight, a tabulation that suggested that there was a recapitulation of
properties with every eighth element.

On the night of Feb. 16, 1869, it is said, Mendeleev had a dream in which
he saw almost all of the 65 known elements arrayed in a grand table. The
following morning, he committed this to paper.

This first table was to undergo considerable revision over the next few
years, but by 1871 it had taken its now familiar form of a chunky rectangle
with intersecting groups and periods.
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It was this table that was to be found in every textbook, lecture room
and museum for a century. One could read the table up and down, going
from one group to another (each vertical group was a family of elements with
similar reactivity and valency) — this was what Döbereiner and the pre-1860
chemists would have done.

But one could also read it horizontally, getting a feel for each period as
it moved through the eight groups. One could see the way in which the
properties of the elements changed with each increment of atomic weight,
until suddenly the period came to an end and one found oneself on the next
row and period, where all the elements echoed the properties of those above.
It was this, above all, that gave one a feel for the mysterious periodicity of
the table, the reality of the great law it enshrined.

The periodic table did not actually tell one the properties of the elements,
but like a family tree, it assigned them places. One could plot the physical and
chemical properties of all the elements against their atomic weights and obtain
the most tantalizing graphs. If one plotted atomic volume against atomic
weight, for example, one would get a many-peaked curve, with summits for
the light Group I metals, valleys for the dense Group VIII metals. Every
property, it seemed, varied periodically and was somehow linked with atomic
weight. But why any of the elements should have the properties they had,
and why such properties should recur in periodicity with atomic weight, were
complete mysteries.

From 1869 to 1871, Mendeleev expanded the table, going so far as to
reposition elements that did not fit, revising their accepted atomic weights to
make them fit, a practice that shocked some of his contemporaries. Further
challenges were presented by two groups of elements, the transition elements
(these included rare metals like vanadium and platinum, as well as common
ones like iron and nickel) and the rare-earth elements. Neither of these seemed
to fit in the neat “octaves” of the earlier periods. To accommodate them,
Mendeleev and others experimented with new forms of the table — helical
forms, pyramidal forms, etc. — that, in a sense, gave it extra dimensions.

In an act of supreme confidence, Mendeleev reserved several empty spaces
in his table for elements “as yet unknown”. He asserted that by extrapolating
from the properties of the elements above and below (and also, to some extent,
from those to either side), one might make a confident prediction as to what
these unknown elements would be like. He did exactly this, predicting in great
detail a new element that would follow aluminum in Group III: it would be a
silvery metal, he thought, with a density of 6.0 and an atomic weight of 68.
Four years later, in 1875, just such an element was found: gallium.

He also predicted with equal precision the existence of scandium and
germanium, and these too were soon discovered. It was this ability to predict
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elements in such detail that stunned his fellow chemists and convinced many
of them that Mendeleev’s system was not just an arbitrary ordering of the
elements but a profound expression of reality.

But Mendeleev was astonished, as everyone was, by the discovery in the
1890’s of an entire new family of elements, the inert gases. He was at first
skeptical of their existence. (He initially thought that argon, the first found,
was just a heavier form of nitrogen.) But with the discovery of helium, neon,
krypton, xenon and finally radon, it was clear that they formed a perfect
periodic group. They were identical in their inability to form compounds;
they had a valency, it seemed, of zero. So to the eight groups of the table,
Mendeleev now added a final Group 0.

With the inert gases in place, the number of elements in each period stood
out: 2 (hydrogen and helium) in the first period; 8 each in the second and
third; 8 typical plus 10 transition elements, or 18 each, in the fourth and
fifth periods; 8 plus 10 plus 14 rare-earth elements, or 32, in the sixth period.
These were the magical numbers — 2, 8, 8, 18, 18, 32. But what did they
mean? And what, in broader terms, was the basis of chemical properties?

Mendeleev constantly returned to these questions. He yearned for a new
“chemical mechanics”, comparable to the classical mechanics of Newton. And
yet one wonders what he might have thought of the actual form of the rev-
olution that took place after his death, a revolution wholly unimaginable in
terms of classical mechanics.

The new insight into the internal constitution of atoms came in 1911, four
years after Mendeleev’s death, when Ernest Rutherford (bombarding gold
foil with alpha particles and finding that, very occasionally, one was deflected
back) inferred that the atom must have a structure like a miniature solar
system, with almost all of its mass concentrated in a minute, very dense, pos-
itively charged nucleus surrounded at relatively great distances by relatively
light electrons.

But the very essence of atoms was their absolute stability. And such an
atom as Rutherford’s, if ruled by the laws of classical mechanics, would not
be stable; its electrons would lose energy (by EM radiation) as they orbited,
eventually diving into the nucleus.

Niels Bohr, working with Rutherford in 1912, was intensely aware of this,
and of the need for a radically new approach. This he found in the quantum
theory, which postulated that electromagnetic energy — light, radiation —
was not emitted or absorbed continuously, but rather in discrete packets, or
“quanta”. Bohr, by an astounding leap, connected these concepts with the
Rutherford model and with the well-known but previously inexplicable nature
of optical spectra — that these were not only characteristic for each element
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but consisted of a multitude of discrete lines or frequencies which obeyed
Ritz’s combination law.

All of these considerations came together in the Bohr atom, where elec-
trons were conceived to occupy a series of orbits, or “shells”, about the nucleus
– of differing radii and energies. Unlike classical orbits, which would decay,
these quantum orbits had a stability that allowed them to maintain them-
selves, potentially, forever. (But if the atom was excited, some of its electrons
might leap to higher energy orbits for a while and in returning to their ground
state emit a quantum of light energy of a certain frequency; it was this that
caused the characteristic absorption and emission lines in their spectra.)

Bohr presented his model of the atom in the spring of 1913. A few months
later, Henry Moseley found a most intimate relationship between the order
of the elements and their X-ray spectra. These spectra could be correlated,
Moseley thought, with the number of positive charge units carried by the
nucleus, and for this the term “atomic number” was used. With atomic
numbers, there were no gaps or fractions or irregularities, as with atomic
weights. It was atomic number, not atomic weight, that determined the order
of the elements. And Moseley could now say with absolute confidence that
there were only 92 elements between hydrogen and uranium, including half
a dozen as yet undiscovered. (Three of these had been predicted, though
vaguely, by Mendeleev.)

Bohr’s model suggested that every element’s chemical properties, its po-
sition in the periodic table, depended on the number of its electrons and how
these were organized in successive shells. Valency and chemical reactivity, the
definers of Mendeleev’s groups, were correlated with the number of valence
electrons in the outer shell: with the maximum of eight electrons, an atom
was chemically inert; with more, or less, than the maximum, it would tend to
be more reactive. Thus the halogens, only one electron short in their outer-
most shells, were avid to pick up an eighth electron, whereas the alkali metals,
with only a single electron in their outer shells, were avid to get rid of it, to
become stable in their own way.

To this basic “eightness”, extra sub-shells were added in the later periods:
two 10-electron shells for the transition elements and two 14-electron shells
for the rare-earth elements.

Bohr and Moseley thus provided a spectacular confirmation of the peri-
odic table, grounding it, as Mendeleev had hoped, in “the invisible world of
chemical atoms”. The periodicity of the elements, it was now clear, emerged
from their electronic structure. And the mysterious numbers that governed
the periodic table — 2, 8, 8, 18, 18, 32 (and eventually, another “32”) —
could now be understood as the number of electrons added in each period.
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Such an electronic periodic table is basically identical with Mendeleev’s ta-

ble, posited nearly half a century earlier on purely chemical grounds. Moseley

and Bohr worked from the inside, with the invisible world of chemical atoms,

and Mendeleev and his contemporaries worked from the outside, with the

visible macroscopic and manifest physico-chemical properties of the elements

— and yet they arrived at the same point. This is the beauty of the periodic

table, indeed, that it looks both ways, uniting classical material science and

chemistry and quantum physics in a magical synthesis.

Given Bohr’s orbits415of different energy levels, together with the property

of electron spin and the Pauli exclusion principle (both discovered in the

1920’s, close on the heels of Quantum Mechanics), one can, in principle, build

up the whole periodic table by adding electrons to the atom (and protons

to its nucleus) one at a time, climbing the rungs of an atomic ladder from

hydrogen to uranium. And it is by such a building-up that we have been able

to create new elements absent in nature, like the 20 elements (93–112) that

now follow uranium in the periodic table, heavier atoms that do not depart

from the regularities of the periodic law.

In principle, one can work out the periodic table to element 200 and beyond

and predict some of the properties of such elements. (These predictions are

largely theoretical, because the highly radioactive transuranic elements tend

to get more and more unstable. One may only be able to produce an atom

at a time, and this may be gone in a few millionths of a second. And there

are theoretical reasons for believing that for atomic numbers above about

137, the intense electric fields near the nucleus might locally destabilize the
vacuum, producing pair-created electrons and positrons and destroying such

heavy nuclei before they have had a chance to form atoms.)

The periodic table is still the icon of chemistry, as it has been since 1869.

It continues to guide chemical research, to suggest new syntheses, to allow

predictions of the properties of never-before-seen materials. It is a marvelous

map to the whole geography of the elements and their compounds and alloys.

415 (later renamed orbitals when quantum mechanics – which supplanted the old

quantum theory of Planck, Einstein and Bohr – showed them to be fuzzy,

variously-shaped, continuous probability distributions rather than Keplerian

orbits.)
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1869–1874 CE Johann Friedrich Miescher (1844–1895, Switzerland).
Chemist and physiologist. Professor at Basel (1871–1895). Discovered (1869)
nucleic acids in cell nuclei. Miescher, isolated (1874) a substance from tissue,
that turned out to be neither carbohydrate, lipid, nor protein. Since he had
obtained it from cell nuclei, he named it nuclein. In time the substance
turned out to have acid properties, so it was renamed nucleic acid, but it
was not connected either to heredity or to chromosomes. This substance was
eventually (1944) found to be joined to the protein of chromosomes, and given
the name nucleoprotein. In Miescher’s time, however, no one understood its
significance. [Miescher later discovered that salmon sperm are almost entirely
nucleic acid plus a simple protein; but he failed to connect this fact with
heredity.]

1869–1877 CE Elwin Bruno Christoffel (1829–1900, Germany). Math-
ematician. Discovered the procedure now known as ‘covariant differentiation’
(1869) and introduced two symbols, now named after him. Independently of
Riemann, he discovered the concepts of space curvature and metric. In 1877
Christoffel derived the cubic equation for the three plane-wave phase velocities
in general anisotropic elastic media. He was also one of the first contributors
to the theory of shock waves.

Christoffel studied at the University of Berlin, where he was taught by
Dirichlet. Obtained his doctorate in 1856 and became eventually a professor
of mathematics at the University of Strasbourg (1872–1892).

1869–1882 CE Rudolf Otto Sigismund Lipschitz (1832–1903, Ger-
many). Mathematician. Invented independently the process of covariant
differentiation (1869). Discovered new theorems concerning subspaces of Rie-
mannian and Euclidean manifolds, the mean curvature vector and minimal
subspaces.

Lipschitz was born to Jewish parents, on his father’s estate near
Königsberg. At the age of 15 he began the study of mathematics at the
Königsberg University. He received his doctorate from the University of Berlin
in 1853. From 1864 onwards he was a full professor at Bonn. Lipschitz was
a corresponding member of the academies of Paris, Berlin, Göttingen and
Rome.

With Christoffel, Aronhold and Clebsch he laid the foundations to Ricci’s
absolute differential calculus416.

416 If f(x, y) is defined in a region S such that, for any two points (x, y) and

(x, y) in S, |f(x, y) − f(x, y)| ≤ N |y − y|α, where N , α are positive constants,

then f(x, y) is said to satisfy the Lipschitz condition in S.



1870 CE 2331

1870 CE417 Eugène Rouché (1832–1910, France). Mathematician.
Worked on complex functions, descriptive geometry, algebra and probability
theory. Was born in Sommiéres, and died in Lunel, France. Known mainly
for Rouché’s Theorem418.

Science Progress Report No. 10

Darwinism ad Absurdum

A scientific theory that had the most revolutionary impact on almost every
facet of Western thought and society in the second half of the 19th century was
Darwin’s theory of evolution. To an age that worshiped science, the thought
that man was just as much subject to the logic of science as was everything
else in nature, also held great fascination.

Underlying much of Darwin’s work was the idea of progress, an idea dear
to the 19th century. History, the study of man’s past, suddenly appeared in a
new light — as a march toward some far-off, lofty goal. The concept of life as a
struggle for existence in which the fittest would survive had particular appeal
to his contemporaries. The philosophy of laissez faire, with its emphasis on
competition, had long been hailed as the root of economic success. With the
advent of Darwinism, this belief seemed to have been given scientific sanction.

If f(x, y) has a continuous partial derivative w.r.t. y in S, and if this partial

derivative is bounded in S, then f(x, y) satisfies the Lipschitz condition with

α = 1.

If f(x, y) is continuous and satisfies the Lipschitz condition with

α = 1 in S{0 ≤ x ≤ b, |y − y0| < c}, then the initial-value problem
dy
dx

= f(x, y), y(0) = y0, M = max |f(x, y)| in S has a unique solution for

0 ≤ x ≤ min
[
b, c

M

]
.

417 In the absence of additional biographical material, this year was arbitrarily

chosen for the inception of the Rouché theorem.
418 Let f(z) and g(z) be analytic within and on a simple closed contour C and

satisfy the inequality |g(z)| < |f(z)| on C, where f(z) does not vanish. Then

f(z) and f(z) + g(z) have the same number of zeros inside C.

This theorem provides a proof that an algebraic equation of degree n has n

roots (cannot be proved by purely algebraic methods!).
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Big business, according to John D. Rockefeller, was “merely a survival of

the fittest. . . the working out of a law of nature and a law of God”. But

not only the Capitalists derived great comfort from Darwin. His emphasis on

the importance of environment for the improvement of man also gave hope

to the socialists in their demands for social and economic reform. More than

ten years before Darwin published his Origin of the Species, Karl Marx, the

“Darwin of the Social Sciences”, had already sketched the evolution of society

through a series of struggles among social classes.

The application of Darwin’s theory to groups and states, rather then indi-

viduals, was promoted by Herbert Spencer and Walter Bagehot (1872),

and is known as ‘Social Darwinism’. It blends evolutionary and nationalist

elements, and argues that the majority of groups which win and conquer are

better than the majority of those which fail and perish.

To a generation that had recently experienced several major wars and that

was actively engaged in numerous colonial expeditions against native peoples

overseas, Social Darwinism with its glorification of war came as welcome ratio-

nalization419 [e.g. President Theodore Roosevelt held that war alone enabled

man to “acquire those virile qualities necessary to win in the stern strife of

actual life”.]

While Darwin’s ideas (1844) were accepted almost everywhere around the

world, they were somehow slow to reach the “Bible belt” in the deep south

of the U.S. It thus came to pass that 81 years later, in the town of Dayton,

Tennessee, a public school science teacher by the name of John T. Scopes

was arrested for violating the Anti-Evolution Law that prohibited teaching

Darwin’s theory of evolution in public schools of that state.

The ensuing trial (known as the “Monkey Trial”) took place in July 1925.

Assisting the state prosecution was William Jennings Bryan (1860–1925),

a famous orator and statesman who strongly advocated literal interpretation

of the Bible and who believed in religious fundamentalism.

Opposite him stood Clarence Seward Darrow (1857–1938), the

renowned criminal lawyer who defended Scopes and the right to teach evolu-

tion.

419 The maxim that ‘might makes right’ had little to do with Darwin’s original

theory. In fact, the emphasis on struggle as a necessary condition for progress

was a narrow and one-sided interpretation of Darwinism, not shared by its au-

thor. In his Descent of Man, Darwin had emphasized that a feeling of sympathy

and coherence, social and moral activities, were needed for the advancement of

society.
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When the legal aspects of the case had been fought to conclusion420, when
both sides had belabored the right of sovereign people to pass any legislation
they saw fit, and when the question of whether the Anti-Evolution Law vi-
olated the Constitution of the United States had been obscured, it was the
fifty questions that Darrow had put to Bryan, which suddenly flashed the trial
into focus an discredited the Anti-Evolution Bill.

However, the anti-evolution laws remained on the books in half a dozen
states for another forty years.

Social Darwinism also led to the clothing of racism in the disguise of a
scientific doctrine. The first ‘theorist’ of the superiority of the Germanic
‘Aryans’ over the inferior Slavs and Jews was the French Joseph Arthur
de Gobineau in his Inequality of the Human Races (1852). The idea of
white, specifically Anglo-Saxon, superiority found its main echo in Germany
but was also popular in England and America. Ever since, it remained one of
the underlying ideological sources and justifications of modern antisemitism.

Recently, a number of authors421 have linked Darwin’s theory of evolution
to the major mass murders and genocides in the 20th century. It seems that
Darwinism has infected the whole culture. Indeed, the world would witness
Nazi Germany, Stalinist gulags and the slaughter of 70 million Chinese at the
hands of their exalted chairman.

Scientists such as Francis Galton and Ernst Haeckel extended Dar-
winism to advance their ideas for selective breeding of humans and forced
sterilization of “unfit”, calling politics “applied biology” — a phrase later
appropriated by the Nazis.

It is impossible to understand Hitler’s monstrous views apart from his be-
lief in natural selection applied to races. He believed Darwin’s theory of nat-
ural selection showed that “science” justified the extermination of the Jews.

420 The real story of the Scopes trial is told in the book Summer of the Gods

(by E.J. Larson, Basic Books: New York, 1997): the trial was nothing but a

publicity stunt. The idea for a trial on evolution was hatched by the ACLU in

New York and seized upon by civic leaders in Dayton, Tennessee as a way to

drum up publicity for their town.
421 In his book “From Darwin to Hitler” (Palgrave MacMillan, 2004), Richard

Weikart documents the proliferation of eugenics organization in Germany

around 1900. Darwin’s theory was quickly and widely accepted among Ger-

man biologists and Darwinism provided the lingo for “scientific” racism. Not

only were all eugenicists Darwinists, but nearly all Darwinists were scientific

racist. See also the last chapter of the Ann Coulter’s book Godless (Crown

Forum Publ.: New York, 2006).
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Hitler embraced an evolutionary ethic that made Darwinian struggle for ex-
istence between races, become the sole arbiter for morality.

Indeed, within one century of the appearance of this book, the ‘theory’ has
been applied by the Germans in a most efficient way, for the “final solution”
of the “Jewish problem” in Europe.

1870–1871 CE The Franco-Prussian War resulted in the foundation of
the German Empire. To it, France ceded Alsace-Lorraine and paid one billion
dollars in reparations. The war led France to withdraw the French troops that
were protecting Rome for the Pope. The Italian army moved into Rome, and
Italy at last included the entire peninsula. The Pope’s territory was reduced
to Vatican City, and Rome became the capital of Italy in 1871.

1870–1893 CE Marius Sophus Lie (1842–1899, Norway). A path-
breaking mathematician whose work has found wide applications in 20th cen-
tury analysis and physics.

Developed his notions of continuous transformation groups and their role
in the theory of differential equations. Today the theory of continuous groups
is a fundamental tool in such diverse areas as analysis, differential geometry,
number theory, differential equations, mechanics, atomic structure and high
energy physics. Lie groups and Lie algebras are named after him.

Lie groups are smooth Riemannian manifolds in which each point is an
element in a continuous group of matrices. A tensor, which in ordinary mani-
folds enters via the study of tangent curves, enters in Lie groups in a two-fold
manner: (1) In the ordinary way on manifolds. (2) Each point on the manifold
is itself a matrix. Lie invented the so-called ‘Lie-derivative’422.

422 The Lie derivative is a covariant process of directional differentiation which is

distinct from “covariant differentiation” (absolute differentiation, based on the
affine connection). The Lie derivative depends only on the tensor field it acts

on and on the vector field defining the local direction, and in this sense is more

natural.

Both derivatives obey the basic laws of differentiation: they are linear, obey

Leibniz’ rule, and reduce to ordinary directional derivative when acting on a
scalar field. Thus, for a scalar field φ(x) and a contravariant vector field vi(x),

the Lie derivative of φ along v is by definition LV φ ≡ vi ∂φ
∂xi = V · ∇φ. When

acting on another contravariant vector field Ai, or on a covariant vector field
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Lie was born at Nordfjordeif, near Bergen, and was educated at the Uni-
versity of Christiania, where he took his doctorate degree in 1868 and became
an associate professor of mathematics four years later423. In 1886 he was cho-

Bi, the Lie derivative is defined as follows:

LV Ai = vk ∂Ai

∂xk
− Ak ∂vi

∂xk
; LV Bi = vk ∂Bi

∂xk
+ Bk

∂vk

∂xi
.

In index-free notation, the above formulae are written as

LV A = V · ∇A − A · ∇V ; LV B = V · ∇B + ∇V · B.

It is straightforward to verify that LV A, LV B again transform as contravariant

and covariant vector fields respectively, and that LV acts on the scalar field AiBi

in accordance with the Leibniz rule. By using this rule on arbitrary dyadic
products of A and B, we easily discover the law of action of LV on any mixed

tensor field; thus

LV T i
·j = vk ∂T i · j

∂xk
− T k

·j
∂vi

∂xk
+ T i

·k
∂vk

∂xj
,

which in index-free notation reads

LV T = V · ∇T − T̃ · ∇V + T · (∇̃V ),

where twiddle (∼) denotes dyadic transposition. Note that the price we pay for
the freedom of the Lie derivative from the concept of connection, is that LV

depends both on the field V and its gradient.

It is possible to introduce the Lie derivative in an alternative way; we associate

with the field V the infinitesimal coordinate transformation xi = xi + λvi(x).

It can then be shown that LV T = limλ→0
T (x)−T (x)

λ
.

When V is a constant vector, LV reduces to the ordinary directional derivative

LV (T) =
dT

dV
= V · ∇T.

If on the other hand the transformation x → x is an infinitesimal rotation
V = ω × r, with ω as a constant vector, we find for a scalar field

LV φ = (ω × r) · ∇φ = ω · (r × ∇φ).

For a contravariant vector field, the result is

LV A = ω · {r × ∇A − I × A}.

423 Because of the French-German war in 1870, Lie left France and decided to go to
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sen to succeed Felix Klein to the chair of geometry at Leipzig. As his fame
grew, a special post was arranged for him in Christiania. But his health had
deteriorated by a life of assiduous study, and he died in Christiania six months
after his return.

Italy. On the way he was arrested as a German spy and his mathematics notes

were assumed to be coded messages. Only after the intervention of Darboux

was Lie released.
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Lie Algebras and Lie Groups424

Consider the set of all three-dimensional vectors A as oriented line seg-
ments. On defining the sum A + B, the negative −A and the scalar multiple
λA such that

λ(μA) = (λμ)A , λ(A + B) = λA + λB

and
(λ + μ)A = λA + μA,

we create a linear vector space over the field of real numbers. If to this
structure we now add the product of two vectors defined via the vector product
A × B, then every three vectors satisfy the relations

A × B = −B × A (anticommutativity) (1)

A × (B × C) + B × (C × A) + C × (A × B) = 0 (2)

We also have

(A + B) × C = (A × C) + (B × C) (distributivity) (3)

(λA) × B = λ(A × B) (associativity) (4)

Consider next all square matrices A of order n under the usual vector-space
laws of addition and multiplication by a scalar. Define a new ‘product’

A � B = AB − BA ≡ [A, B]

where AB is the ordinary matrix product. The symbol [A, B] is called the
commutator of A and B. It satisfies the two conditions

[A, B] = −[B, A]

424 To dig deeper, see:

• Sattinger, D.H. and O.L. Weaver, Lie Groups and Algebras with Applica-

tions to Physics, Geometry and Mechanics, Springer-Verlag: New York, 1986,
215 pp.

• Altmann, S.L., Rotations, Quaternions, and Double Groups, Dover, 1986,

317 pp.

• Srinivasa Rao, K.N., The Rotation and Lorentz Groups, Wiley, 1988, 351 pp.
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[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0

As a third case we specialize to skew-symmetric matrices of order n. They

have the general form

S = (I × V ) =

⎡

⎣
0 −c b
c 0 −a
−b a 0

⎤

⎦ ,

where I is the unit matrix and V (a, b, c) is a vector in R3.

The commutator of any two such matrices

[S1, S2] = (I×V 1) ·(I×V 2)−(I×V 2) ·(I×V 1) ≡ I×(V 1×V 2) = −[S2, S1]

It is not difficult to verify that in this case too

[S1, [S2, S3]] + [S2, [S3, S1]] + [S3, [S1, S2]] = 0.

Note that

(I × V 1) · (I × V 2) = V 2V 1 − I(V 1 · V 2)

and

I × (V 1 × V 2) = V 2V 1 − V 1V 2 = V 2 ∧ V 1 (‘wedge product’).

A fourth case concerns the linear differential operator

X = a · ∇ = a1
∂

∂x1
+ a2

∂

∂x2
+ a3

∂

∂x3

where ai(x1, x2, x3) are three differentiable functions. When this operator

is applied to a smooth function f(x1, x2, x3), it assigns to it a real number

known as the directional derivative along the vector field a:

X(f) = a1
∂f

∂x1
+ a2

∂f

∂x2
+ a3

∂f

∂x3
,

where ( ∂f
∂x1

, ∂f
∂x2

, ∂f
∂x3

) are the components of a vector normal to the sur-

face f = const, at a given point. To each pair of operators X = a · ∇,

Y = b · ∇, we can associate a Lie bracket
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[X, Y ] = XY − Y X = (a · ∇)(b · ∇) − (b · ∇)(a · ∇)

= (a · ∇b − b · ∇a) · ∇ = L1
∂

∂x1
+ L2

∂

∂x2
+ L3

∂

∂x3

where

Li = (a · ∇bi − b · ∇ai) i = 1, 2, 3.

Here also

[X1 + X2, Y ] = [X1, Y ] + [X2, Y ],

[λX, Y ] = λ[X, Y ] (λ constant)

and

[Y, X] = −[X, Y ],

[[X, Y ], Z] + [[Y, Z], X] + [[Z, X], Y ] = 0.

Since systems such as the four described above hold importance in math-

ematics and theoretical physics, it is advantageous to bring them under the

umbrella of a common new algebra, the Lie algebra, abstractly defined as

follows:

A Lie algebra is a vector space L over some field F (typically the real or

complex numbers) together with a binary operation [X, Y ] ∈ L called the Lie
bracket, which satisfies the conditions:

• It is bilinear, i.e. [aX + bY, Z] = a[X, Z] + b[Y, Z]; also

[Z, aX + bY ] = a[Z, X] + b[Z, Y ] for all a, b in F and X, Y, Z in L.

• It is antisymmetric, i.e. [X, Y ] = −[Y, X] for all X, Y in L.

• It satisfies the Jacobi identity,

JXY Z ≡ [[X, Y ], Z] + [[Y, Z], X] + [[Z, X], Y ] = 0

for all X, Y, Z in L.

This mathematical definition requires some clarifications:
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(1) Whenever the binary operation on the vector space is defined as the
commutator of ordinary matrix multiplication, then the above three conditions
are met automatically. However, one must still impose the closure condition,

i.e. that xy − yx, for every x and y in L, belong to the same vector space.

Since every vector space has a basis x1, . . . , xn, then it suffices to demand

that for any i, j (i, j = 1, . . . , n) the entity xixj − xjxi is a linear combination
of xk, where the coefficients belong to the field. We shall soon see how this

condition works, for example, in the case of the generators of the rotation
group and the Lorentz transformation group.

(2) Some Lie algebras of importance in physics and applied mathematics
are of infinite dimensionality. An example is the original Lie group considered

by Lie himself, which is the group of coordinate transformations on a surface.
In the case of infinite dimensional Lie groups, the Jacobi identity is non-trivial
and there are examples where it exhibits “anomalies”.

(3) Lie algebras can be represented or realized: representation is usually
restricted to a set of matrices or operators. Realization is a generalization of

the concept of representation to also include sets of functions or other entities
with appropriate group or algebraic properties.

Note that the Lie bracket is not a multiplication in the usual sense be-
cause it is not associative. If an associative algebra with multiplication (∗)
is given, it can be turned into a Lie algebra by defining the commutator
[X, Y ] = X∗Y − Y ∗X. Conversely, every Lie algebra is embedded into one

that arises from an associative algebra in this fashion. An example is linear
associative algebra w.r.t. ordinary matrix product.

The proof of the Jacobi identity is elementary:

Deleting the star (∗) and assuming the associative law under multiplica-
tion, we have

JXY Z = (XY − Y X)Z − Z(XY − Y X)+

(Y Z − ZY )X − X(Y Z − ZY ) + (ZX − XZ)Y − Y (ZX − XZ) ≡ 0

While the entity [X, Y ] is known as the commutators of X and Y , the entity
JXY Z is known as the associator.

The algebra of commutators leads to expressions for commutators of func-
tions of the elements. Thus if

[A, B] = AB − BA = γ
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then

[A2, B] = A2B − BA2 = AAB − BAA =
A(BA + γ) − BAA = ABA + Aγ − BAA = Aγ + γA;

[A3, B] = A(A2B) − (BA2)A = A(A2B) − (A2B − Aγ − γA)A

= AγA + γA2 + A2(AB − BA) = AγA + γA2 + A2γ

Since eA =
∑∞

m=0
Am

m! , it is not difficult to show that

e−ABeA = B +
1
1!

[B, A] +
1
2!

[[B, A], A] + . . . , and

[eA, B] =
∞∑

m=0

1
m!

[Am, B]

If Aγ = γA (see an example in the footnote425) we have [Am, B] = mγAm−1

and therefore

[eA, B] = γeA, [eA, eB] = (eγ − 1)eBeA

The Campbell-Baker-Hausdorff theorem states that if A and B are ma-
trices which do not necessarily commute, then

eAeB = eC

where

C = A + B +
1
2
[A, B] +

1
12

([A, [A, B]] − [B, [B, A]]) + . . .

and the coefficients are the Bernoulli numbers.

425 valid, for example for A = x, B = d
dx

. In this case [A, B] = −1, so

[A, [A, B]] = 0.

Thus

AAB + BAA = 2ABA,

which is indeed satisfied for any function f since

x2 df

dx
+

d

dx
(x2f) = 2x

d

dx
(xf).



2342 4. Abstraction and Unification

To prove this theorem we consider eC(t) = etAeB , where t is a parameter.
Evaluating via a Taylor’s expansion about t = 0, i.e.

C(t) = C(0) +
1
1!

C ′(0) +
1
2!

C ′ ′(0) + . . ., and setting t = 1,

the desired result is obtained by successively evaluating C(n)(0), n = 1, 2, . . . ,
using C(0) = B and the differential equation

e−BAeB = e−C(t) d

dt

(
eC(t)

)

for C(t).

This theorem is applicable to Wigner’s rotation in the Lorentz group (spe-
cial relativity), the Gibbs formula for addition of finite rotations (geometry
and rotational dynamics), and various problems in quantum mechanics.

We have shown that all 3-dimensional skew-symmetric matrices form a
Lie algebra. We know that proper active rotations in 3-dimensional space are
represented by 3 × 3 orthogonal matrices R with determinant +1. The Lie
group formed under these operations is denoted by the symbol SO(3). We
also know that

R = e(I×V )

where

(I × V ) =

⎡

⎣
0 −v3 v2

v3 0 −v1

−v2 v1 0

⎤

⎦ = v1I1 + v2I2 + v3I3,

I1 =

⎛

⎝
0 0 0
0 0 −1
0 1 0

⎞

⎠ , I2 =

⎛

⎝
0 0 1
0 0 0

−1 0 0

⎞

⎠ , I3 =

⎛

⎝
0 −1 0
1 0 0
0 0 0

⎞

⎠

Consequently, there is a close connection between the geometry of the rotations
R and their composition law on one hand, and the algebra of skew-symmetric
matrices on the other. Given R, the vector V can be explicitly constructed
from the matrix elements of R. It specifies both the direction of the axis of
rotation in space and the finite angle of rotation about that axis, which are
v

|v| and |v|, respectively. The three matrices (I1, I2, I3) are said to generate
the Lie group SO(3), as well as furnishing a basis for the corresponding Lie
Algebra. The parameters (v1, v2, v3) are the “coordinates” or “components”
of (I × V ) relative to this basis.
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Since the elements of (I × V ) and R determine each other uniquely in
small enough neighborhood of I through the relation R = e(I×V ), vi can be
considered as local coordinates of R in the group manifold SO(3).

The matrices Ii obey the commutation relations

I1I2 − I2I1 = I3, I2I3 − I3I2 = I1, I3I1 − I1I3 = I2;

one also has I2
1 + I2

2 + I2
3 = −2I.

We can write V = eθ, where e is a unit vector along the axis of rotation
and θ the angle of rotation. Denoting by (α, β, γ) the three Euler-like angles
representing R, we have R = MαMβMγ where

Mα =

⎡

⎣
1 0 0
0 cos α − sin α
0 sin α cosα

⎤

⎦,

Mβ =

⎡

⎣
cosβ 0 sin β

0 1 0
− sin β 0 cos β

⎤

⎦, Mγ =

⎡

⎣
cos γ − sin γ 0
sin γ cos γ 0

0 0 1

⎤

⎦.

For an infinitesimal rotation, we expand R(α, β, γ) in Taylor series about
α = 0, β = 0, γ = 0. We find

R = I +
∂Mα

∂α

∣
∣
α=0

δα +
∂Mβ

∂β

∣
∣
β=0

δβ +
∂Mγ

∂γ

∣
∣
γ=0

δγ,

where

∂Mα

∂α

∣
∣
α=0

= I1,
∂Mβ

∂β

∣
∣
β=0

= I2,
∂Mγ

∂γ

∣
∣
γ=0

= I3, and

δα = e1δθ, δβ = e2δθ, δγ = e3δθ.

Thus, under an infinitesimal rotation δθ about the z-axis (e1 = e2 = 0, e3 = 1)
we have

Rz = eI3δθ.

The matrices I1, I2, I3 are known as generators of the Lie group.

These generators are associated with the local structure of the Lie group
in the neighborhood of the identity element.
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In general, in n-dimensional Euclidean space the number of generators (i.e.

the number of Euler angles) is N = n(n−1)
2 . We can then write symbolically

for a general rotation:

g(x) = exp[
N∑

i=1

xiTi],

where xi are local coordinates in the N -dimensional group manifold (an ab-
stract set of points, each representing one element of the Lie group). The
operators Ti are the generators of the Lie group in these coordinates.

The point xi = 0 (i = 1, . . . , n) in the manifold is the identity element
g = I. Each Ti is an operator with a matrix representation. This formalism
can be extended to non-vector representations of the rotation groups, and
indeed to any Lie group and its corresponding algebra. Examples are:

• For the vectorial rotation group SO(3), we saw that the generators are
the 3 × 3 matrices

(Tj)ab ≡ (Ij)ab = εjba, 1 ≤ j, a, b ≤ 3,

where εjab is the Levi-Civita symbol.

• For the R3 rotation group of 3D spinors, SU(2), the 3 generators in the
spinor representation are

(Ti)ab =
1
2
i(σj)ab, i =

√
−1, 1 ≤ j ≤ 3, 1 ≤ a, b ≤ 2,

where σj are the Pauli matrices. The SU(2) and SO(3) Lie group manifolds
differ in their global topology (e.g. the SU(2) manifold is topologically equiv-
alent to the 3-sphere S3), but are locally equivalent since they share the same
Lie algebra; there is also a two-to-one mapping from SU(2) to SO(3) which
preserves the rotation-composition law426.

How do we express the “addition law” of the group [namely the law by
which g(x)g(y) gives a new g(z)] in terms of the {Tj}?

For that we have the above-mentioned Campbell-Baker-Hausdorff theorem

eA1eA2 = eA1+A2+φ(A1,A2),

426 To wit, both SU(2) elements ±e
i
2 v·σ correspond under this map to the same

SO(3) element eI×v.
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where

φ(A1, A2) =
∞∑

n=1

∑

{j}
C{j}[. . . [Aj1 , Aj2 ], . . . Ajn+1 ],

C{j} are known constants and the second sum ranges over {jp | 1 ≤ jp ≤ 2,
p = 1, . . . , n + 1}.

Since φ is built by repeatedly commuting A1, A2 with each other, it follows
that if g(x) · g(y) is again to be of the form

g(z) = exp{
∑

j

zjTj},

we must have

[Ti, Tj ] =
∑

k

γijkTk,

where the numbers γijk are called the structure constants of the Lie algebra
and fully characterize it.

Note that all the local structure of a Lie group is contained in its Lie
algebra, since for any two elements A, B of the latter,

[A, B] = AB − BA

is also an element of the algebra (i.e. the algebra is closed under commutation);
in sufficiently small neighborhood of the identity g = I, we have a one-to-one
corresponding between the group and the algebra, namely

g(x) ↔ X =
N∑

j=1

xjTj , g(x) = eX

(the so-called exponential map).

Since the SU(2) and SO(3) generators have the same commutation rela-
tions

[Ti, Tj ] =
∑

k=1

εijkTk, 1 ≤ i, j ≤ 3,

they must have the same Lie algebra and the same local structure as discussed
above.

In the foregoing discussion the matrix R effected the rotation of the coor-
dinate axes or the space coordinates. We may, however, consider the idea of
rotation of a function relative to fixed axes (coordinates) under the definition
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Rf(r) = f(R · r). Let us, for example, apply it to a rotation of a function
about the z-axis with

Rz =

⎡

⎣
cos ϕ sin ϕ 0

− sin ϕ cosϕ 0
0 0 1

⎤

⎦.

This means that

f(x, y, z) → f(x cos ϕ + y sin ϕ,−x sin ϕ + y cosϕ, z).

For ϕ = π
2 , R(ez,

π
2 )f(x, y, z) = f(y,−x, z).

Under an infinitesimal rotation R(ez, δϕ), a Taylor expansion yields

R(ez, δϕ)f(x, y, z) = f(x + yδϕ, y − xδϕ, z)

= f(x, y, z) − δϕ[x
∂

∂y
− y

∂

∂x
]f + O(δϕ)2

= {e−i(δϕ)Lz}f

where

Lz = −i(x
∂

∂y
− y

∂

∂x
).

Similar results are obtained for rotations about the other axes, with

Lx = −i(y
∂

∂z
− z

∂

∂y
), Ly = −i(z

∂

∂x
− x

∂

∂z
).

We note that Lx, Ly, and Lz satisfy exactly the same commutation rela-
tion as iTa: [Li, Lj ] = iεijkLk. It can be shown that the Casimir operator

L2 = L2
x + L2

y + L2
z has vanishing commutators:

[L2, Lx] = [L2, Ly] = [L2, Lz] = 0.

In quantum mechanics, La is the a-th component of the orbital angular mo-
mentum operator, in units where � = 1. The quantum angular-momentum
Casimir operator is related to the Laplacian operator as follows:

∇2 =
1
r2

L2 +
∂2

∂r2
,

where in the partial differentiation r
r is held fixed and r =

√
x2 + y2 + z2.
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In general

f(r + a) =
∞∑

n=0

1
n!

(a · ∇)nf(r) = ea·∇f(r).

But quantum-mechanically

p (momentum operator)= −i�∇, and so f(r + a) = eia·p/�f(r).

The special case (r, θ, ϕ) → (r, θ, ϕ + α) designates a rotation about the z axis

by an angle α; therefore eα ∂
∂ϕ = eiαLz/�, where Lz = −i� ∂

∂ϕ .

It must be emphasized that the basic idea of the Lie group is that from a
generator with elements infinitesimally close to I, such as Lz, which shifts the
point s = (x, y, z) (or in general, the Lie-group representation or realization)
to the point s + ds, one may generate an operator which shifts the point s
into a point s′ at a finite distance along the ‘path curve’ of a one-parameter
group generated by the infinitesimal operator.

This idea can be applied to obtain addition theorems for special functions
of mathematical physics from their respective recursion relations. The infin-
itesimal differential operators which appear in the recursion-relations of the
various special functions, can be used to generate from them finite operators.
For example, the Bessel functions obey the recursion equations

L+{einφJn(r)} = ei(n+1)φJn+1(r);L−{einφJn(r)} = ei(n−1)φJn−1(r)

where

L+ = − ∂

∂x
− i

∂

∂y
, L− =

∂

∂x
− i

∂

∂y
; r =

√
x2 + y2 + z2.

Since [L+,L−] = 0, the composition law within the Lie group is additive:

eαL+ · eβL − = eαL++βL − .

It is then a trivial matter to derive the addition theorem

Jn[
√

r2 + h2]
(r2 + h2)n/2

=
∞∑

m=0

1
m!

(
−h

2

)m

r−n−mJn+m(r).
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Lie algebra and classical mechanics

Hamilton (1835) converted the Lagrange equations (1788) into a set of
coupled, 1st-order ODE’s representing the solution of a conservative mechan-
ical system in phase space:

.
qi =

∂H

∂pi
;

.
pi = −∂H

∂qi
; (pi =

∂L

∂
.
qi

)

where H(q, p, t) =
∑n

i=1 pi
.
qi − L is the Hamilton function (Hamiltonian) and

L(q, q̇, t) is the Lagrangian of the system. Let f(p, q, t) be some function of
the coordinates, momenta and time. Its total time-derivative is

df

dt
=

∂f

∂t
+

∑

k

(
∂f

∂qk

.
qk +

∂f

∂pk

.
pk) =

∂f

∂t
+ [H, f ],

where

[H, f ] =
∑

k

(
∂f

∂qk

∂H

∂pk
− ∂f

∂pk

∂H

∂qk

)

is known as the Poisson bracket of H and f .

For any two given functions of the dynamical variables, u(p, q, t) and
v(p, q, t), the Poisson bracket is defined analogously as

[u, v] =
∑

k

(
∂u

∂pk

∂v

∂qk
− ∂u

∂qk

∂v

∂pk

)

.

It has the following basic properties:

[u, v] = −[v, u]; [u + v, w] = [u, w] + [v, w];

[uv, w] = u[v, w] + v[u, w];

∂

∂t
[u, v] = [

∂u

∂t
, v] + [u,

∂v

∂t
];

d

dt
[u, v] = [

du

dt
, v] + [u,

dv

dt
];

[u, qk] =
∂u

∂pk
; [u, pk] = − ∂u

∂qk
;

[qi, qk] = 0; [pi, pk] = 0; [pi, qk] = δik;
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[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0 (Jacobi’s identity)

If u and v do not depend on time (integrals of the motion) then

d

dt
[u, v] = 0

This follows immediately from the Jacobi identity with w = H. Note that if
M = r × p (regular momentum), then

[Mx, My] = −Mz, [My, Mz] = −Mx, [Mz, Mx] = −My

Lie algebra of the Lorentz group

We know that every Lorentz transformation L between two frames of ref-
erence with arbitrary orientation with respect to each other, is represented by
a (4 × 4) orthogonal matrix acting in Euclideanized Minkowski space (space-
time) having metric δij :

L = eS ,

where S is the (4 × 4) skew-symmetric matrix

S =

⎡

⎢
⎢
⎣

0 −h3 h2 −ie1

h3 0 −h1 −ie2

−h2 h1 0 −ie3

ie1 ie2 ie3 0

⎤

⎥
⎥
⎦ .

In S, (e1, e2, e3) are the direction cosines of a vector and (h1, h2, h3) are the
three components of a pseudo-vector. We can write

S = h · u + e · w = h1u1 + h2u2 + h3u3 + e1w1 + e2w2 + e3w3

where

u1 =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎞

⎟
⎟
⎠ , u2 =

⎛

⎜
⎜
⎝

0 0 1 0
0 0 0 0

−1 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ , u3 =

⎛

⎜
⎜
⎝

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ ,
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and

w1 =

⎛

⎜
⎜
⎝

0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0

⎞

⎟
⎟
⎠ , w2 =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0

⎞

⎟
⎟
⎠ , w3 =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

⎞

⎟
⎟
⎠ ,

The six skew-symmetric matrices ui, wi form a basis in the vector space of
our Lie algebra.

Note that ei, hi are functions of the components of the velocity vector v
and the Euler angles which determine the relative orientation and motion of
the two reference frames. Two limiting cases are simple:

• hi = 0 e ‖ v, |e| = th−1 |v|
c (pure boost)

• ei = 0, vi = 0; hi are functions of the Euler angles (pure rotation)

The Lie group of Euclideanized matrices L is SO(4); in the non-Euclidean
(real) Minkowski space of STR, the Lorentz group is called SO(3, 1).

Lie algebra and the symplectic group (Weyl 1938)

Symplectic transformations preserve skew-symmetric products, which
are abundant in physical applications. We know, for example, that the
“dot” product of two plane vectors A = (Ax, Ay), B = (Bx, By), namely
A · B = AxBx + AyBy is invariant under rotation in the two-dimensional
space. On the other hand, the “cross” product A × B = ez(AxBy − AyBx),
where (AxBy − AyBx) is the area of the parallelogram formed by the two vec-
tors, is invariant under a group of transformations which preserves this skew-
symmetric product and is known as the symplectic group in 2-dimensional
space, or Sp(2). To meet this group, we write

area = AxBy − AyBx = [Ax, Ay]
[

0 1
−1 0

] [
Bx

By

]

= AJB (1)
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where J =
[

0 1
−1 0

]

. Define a 2 × 2 symplectic matrix M such that

A → AMT , B → MB. (2)

Then, the preservation of the area implies A′JB′ = AJB, or

MT JM = J (3)

Even without going into the detailed form of M , we can deduce that the

unit 2 × 2 matrix

[
1 0
0 1

]

is symplectic, that M is nonsingular, that if two

matrices M and N are symplectic, so are MN and NM ; and that the inverse
of a symplectic matrix is also symplectic. From these observations we can
conclude that the 2 × 2 symplectic matrices form a group. It is called Sp(2),
and includes the planar-rotations group, SO(2), as a subgroup.

Geometrical illustration of the Sp(2) group

Consider a unit circle around the origin of a Cartesian system (x, y),
namely x2 + y2 = 1. Next, consider an ellipse, whose equation in another
Cartesian system (X, Y ) is

e−ηU2 + eηV 2 = 1

with

U = X cos
θ

2
+ Y sin

θ

2
, V = X sin

θ

2
− Y cos

θ

2
. (4)

If η > 0, the major and minor axes of this ellipse are eη/2 and e−η/2 respec-
tively. The major axis is along the θ

2 direction. The area of the ellipse is
π (same as that of the unit circle) and remains invariant as we change the
values of θ and η.

The question now arises as to what transformations carry the (x, y) into
the (X, Y ) coordinates such that the area is preserved. One class of such
transformations is [

X
Y

]

= [S(θ, η)]
[
x
y

]

, (5)

where
S(θ, η) = R(θ)S(η)R(−θ)
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=
[
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

] [
eη/2 0
0 e−η/2

] [
cos θ

2 sin θ
2

− sin θ
2 cos θ

2

]

=
[
ch η

2 + sh η
2 cos θ sh η

2 sin θ
sh η

2 sin θ ch η
2 − sh η

2 cos θ

]

. (6)

The matrix S(θ, η) is symmetric, satisfies the symplectic condition ST JS = J ,
and its determinant is unity. Geometrically, S(θ, η) elongates / contracts
along the Cartesian axes tilted by angle θ

2 . It can be shown that the two-
parameter scale-transformation matrices S(θ, η) alone cannot form a group
unless they are supplemented by a rotation matrix R(α), where α is deter-
mined from θ and η. This rotation does not affect the area-preservation
property.

If we introduce the matrices

F1 =
1
2

[
1 0
0 −1

]

, F2 =
1
2

[
0 1
1 0

]

, F3 =
1
2

[
0 −1
1 0

]

, (7)

then we can write

S(0, λ) = eλF1 , S(
π

2
, η) = eηF2 , R(θ) = eθF3 (8)

where F1,F2,F3 are the generators of the Sp(2) group. They satisfy the com-
mutation relations

[F1, F2] = −F3, [F2, F3] = F1, [F3, F1] = F2. (9)

These generators form a system of closed commutation relations, and are a
basis for the Lie algebra for the Sp(2) group.

Assume
S(θ, η) = eaF1+bF2 . (10)

Since F1 and F2 anticommute with each other, and since

(2F1)2 = (2F2)2 = −(2F3)2 = I =
(

1 0
0 1

)

,

(aF1 + bF2)2 =
a2 + b2

4
I,

the expansion of the exponential (10) in a power series yields

S(θ, η) = I ch
η

2
+ (2F1 cos θ + 2F2 sin θ) sh

η

2
(11)
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where

η2 = a2 + b2, tan θ =
b

a
.

Clearly, S(θ, η) in (11) is identical to its form in (6).

Note that

F1 =
1
2
σz, F2 =

1
2
σx, F3 = − i

2
σy, (12)

where (σx, σy, σz) are the Pauli spin matrices.

It can be shown that the Sp(2) group is locally isomorphic to the group
of Lorentz transformations in two-dimensional space (i.e. three-dimensional
pseudo-Euclidean Minkowski spacetime). This group is known as SO(2, 1),
and is a subgroup of the group consisting of Lorentz transformations in
4-dimensional spacetime, consisting of three space- and one time-dimension.
If we use (x, y, z) to specify the coordinates in this (2 + 1) space, then SO(2, 1)
consists of Lorentz transformations along the x and y directions and of a ro-
tation on the xy plane around the z axis. The generators of this group are

T1 =

⎡

⎣
0 0 1
0 0 0
1 0 0

⎤

⎦ , T2 =

⎡

⎣
0 0 0
0 0 1
0 1 0

⎤

⎦ , T3 =

⎡

⎣
0 −1 0
1 0 0
0 0 0

⎤

⎦ . (13)

with the top-to-bottom rows and left-to-right columns corresponding to the
x, y, t directions of Minkowski spacetime, respectively.

They satisfy the commutation relations

[T1, T2] = −T3, [T2, T3] = T1, [T3, T1] = T2, (14)

which are exactly the same like those for the generators of the group Sp(2).

The element L(θ, η) of the Lie-group SO(2, 1) which corresponds to the
element S(θ, η) of Sp(2) is:

L(θ, η) = K(θ)L(0, η)K(−θ)

with

K(θ) = eθT3 =

⎡

⎣
cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎤

⎦ ,

L(0, η) = eηT1 =

⎡

⎣
ch η 0 sh η
0 1 0

sh η 0 ch η

⎤

⎦ = boost along the x direction,
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L(
π

2
, η) = eηT2 =

⎡

⎣
1 0 0
0 ch η sh η
0 sh η ch η

⎤

⎦ = boost along the y direction.

1870–1903 CE Jakob Rosanes (Rosales) (1842–1922, Germany).
Mathematician. Contributed significantly to algebraic geometry and theory
of invariants. Some of his important results were later proved independently
by Max Noether and elaborated on by Castelnuovo.

Rosanes was born in Brody, Austria-Hungary (now the Ukraine) to a
distinguished Jewish family that originated from Castallvi de Rosanes near
Barcelona. With the expulsion of the Jews from Spain in 1492, the family
went to Portugal and from there dispersed into Europe, North-Africa and the
Near-East. In Portugal, they turned into Marranos, and one of their mem-
bers Immanuel Rosales (1593–1668) became a mathematician and a famous
physician.

Rosanes studied at the Universities of Berlin and Breslau, obtaining his
doctorate from Breslau in 1865. In 1876 he became a professor of mathematics
at the latter, where he remained for the rest of his career.

1870–1906 CE Georg Ferdinand Frobenius (1849–1917, Germany).
Mathematician. Contributed to the theory of algebraic equations, number
theory, character theory of finite groups427 (1896) and ordinary differential
equations (Frobenius method).

Frobenius was born in Berlin. He was educated at the University of
Göttingen (1867–1870) and was a professor of mathematics at the Zürich
Polytechnicum (1875–1892) and afterwards at the University of Berlin.

427 Frobenius’ character theory of finite groups was used with great effect by

William Burnside (1852–1927, England), published by him during 1897–1911.

Together they co-founded the theory of finite group representation. Burnside’s

(‘pa × qb theorem’) states that every finite group whose order (number of ele-

ments) is divisible by fewer than 3 distinct primes is solvable. In 1897 Burnside’s

classic work: “theory of Groups of Finite Order” was published. The second

edition (1911) already included a character theory. While first developed for

finite groups, characters were later extended to (infinite) Lie groups. The so-

called Burnside lemma, stated in his book was actually discovered earlier by

Frobenius. Burnside’s conjecture that every finite group of odd order is solv-

able was proved only in 1962 by W. Feit and J.C. Thompson. Burnside was

a student of Stokes, Maxwell and Cayley.
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The ‘Cult of Science’ (1870–1914)

With the rapid advance in all fields of scientific research, the belief in
unlimited progress that had prevailed since the enlightenment seemed happily
confirmed. This created an intellectual climate and a cultural trend whose
outstanding characteristic may be described as an overriding interest and a
deep belief in science. Man had been interested in science before, but it
was only since the second half of the 19th century that a veritable ‘Cult of
Science’ developed. Science offered a positive alternative to the seemingly
futile idealism and Romanticism of the early 19th century.

Scientific research, in the past the domain of a few scientists and gentleman
scholars, now became the concern of large numbers of people, especially as
the application of science to industry gave an incentive for new inventions.
Pure science continued to be of fundamental importance, but applied science
— the marriage of science and technology so characteristic of the Industrial
Revolution — now took precedence in the minds of most people. A virtually
endless series of scientific inventions seemed to provide tangible evidence of
man’s ability to unveil the secrets of nature.

The growing concern of modern man with the material aspects of his civi-
lization was also reflected in late 19th century thought. A few basic scientific
discoveries served as a foundation for an essentially materialistic philosophy
that appealed to the educated middle class. Chemists and physicists earlier in
the century had declared matter and energy to be constant and indestructible.

These scientific findings were translated by certain popularizers of science
into a philosophy of materialism. An early exponent of this philosophy was
Ludwig Feuerbach (1804–1872, Germany). In his scientific socialism, Karl
Marx (1818–1895, Germany) blended the materialistic doctrine of Feuer-
bach, the positivism of Comte, the Evolutionary Naturalism of Spencer
and Darwin, and finally, the dialectic428 of Hegel.

428 A dynamic logic which finds truth through a series of trials: thesis, antithesis,

and synthesis, i.e., every fact will be understood only when related to its oppo-

sites, to those things which the thesis is not. Only by pointing out the many

relationships of any one object to other objects can we establish the truth about

that object. If we unite the idea to its opposite, we discover a different truth

about them which transcends their previous separate meaning. It is like two

conflicting forces that merge to produce a synthesis in the form of a new and

greater reality. Marx applied this logical principle to socio-economic history;

the two socio-economical classes which are antithetical to each other are the
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According to him, history has been determined primarily by economic
factors and punctuated by a series of class-struggles. The existing struggle
of capital and labor was rationalized in terms of the theory of surplus value:
profit seeking capitalists pay labor subsistence wages, and take for themselves
the surplus value which the workers have added to the product through their
labor.

In the second half of the 19th century, less than 9 generations after the
trial of Galileo Galilei, science began to gain the upper hand in its long war
against Christian dogma.

As the state took over the functions of the churches in social welfare and
education, and as some of the material benefits of industrialization spread
among the lower classes, the need for the aid and comfort that religion had
given in the past was no longer so acute. Furthermore, the tendency of the
churches, to favor the political status quo agonized many liberals, and political
anticlericalism became an important issue in most countries. Finally, there
was the appeal that nationalism, socialism, and materialism came to have
for many people (both socialism and materialism were avowed enemies of
religion).

However, the most important reason for the decline in religious interests
was the effect of modern science on Christianity; many scientific discover-
ies, especially in geology and biology, contradicted Christian beliefs, and the
methods of scientific inquiry, when applied to Christianity itself, produced
some disturbing results [e.g. Ernest Renan in his book Life of Jesus (1863)
denied that he performed miracles or had arisen from the dead].

Far more drastic in their effect on the faithful than the attempts to human-
ize Christ were the findings of Darwin and Lyell. These scientists challenged
the biblical view of creation, by making man a non-unique part of the gen-
eral process of creation. Why, one might now ask, should man alone of all
creatures posses an immortal soul, and at what stage of his evolution was he
endowed with it?

In 1864, Pope Pius IX issued “A Syllabus of the Principle Errors of Our
Times” which condemned most of the new scientific tendencies. In 1870, a
general church council, in an effort to strengthen the pope’s position, pro-
claimed the dogma of papal infallibility, which made the pope infallible in all
statements he made officially.

The impact of scientific discoveries on the Protestant church were felt more
deeply, since its doctrine and ritual were almost entirely based on the Bible.

property-owning class (capitalists) and the proletariat (workers who sell their

labor in order to survive). The conflict between them will generate a society of

people who work and own the means of production.
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The further fact, that Protestantism was split into almost 300 sects, made any
uniform stand in the warfare between science and theology very difficult. At
the same time, however, Protestant emphasis on the freedom of the individual
to work out his own relations with God made it possible for many Protestants
to reach their own compromise between faith and reason.

A minority of Protestant ‘fundamentalists’, more influential in the United
States than in Europe, continued to cling to a literal interpretation of the
Bible and insisted on the validity of the account of creation as given in the
Book of Genesis.

Interestingly enough, the conflict between science and theology did not
seriously interfere with the progress of science. The world in 1914 was still
viewed as the intricate mechanism that Newton had supposedly shown it to be,
a mechanism whose secrets would gradually yield to scientific inquiry. Only a
handful of scientists realized that new developments — the discovery of X rays
(1895), the isolation of radium (1898), and, most important, the formulation
of the theory of special relativity and the Planck-Einstein discovery of the
quantum (1905) — had opened up an infinite number of new mysteries and
had brought the world to the threshold of another scientific revolution.

The cult of science that dominated the intellectual climate at the end of
the 19th century also had its impact on art and literature. In the early 19th

century, the Romantic artist escaped from the ugliness of early industrialism
into an ideal world of his imagination set by his concept of natural beauty
of a more glamorous past. Even before the middle of the 19th century, some
artists had begun to be interested in the world as it was, not as they felt
it ought to be. This shift from Romanticism to Realism was more evident
in literature, though less pronounced in painting; and there were hardly any
signs of it in music.

While the Romantic writers had been primarily interested in the un-
usual individual, the realistic novel was concerned with typical everyday so-
ciety. Most of the great novels of the 19th century — by Charles Dickens
(1812–1870, England), Honore de Balzac (1799–1850, France), Gustave
Flaubert (1821–1880, France) and Lev N. Tolstoy (1828–1910, Russia) —
fall into the category of social novels. Not only did authors describe the soci-
ety in which they lived; they dwellt on the problems of that society. Literature
increasingly became a form of social criticism.

The trend toward Realism reached its climax in the 19th century in a
literary movement called Naturalism. It represented a conscious effort on the
artist’s part to apply scientific principles to art.

The naturalistic writers — men like Emile Zola (1840–1902, France),
Henrik Ibsen (1828–1906, Norway) and Gerhart Hauptman (1862–1946,
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Germany) — were not interested in the creation of beauty but, like the scien-
tist, they were interested in truth. To get at truth they discarded subjectivity
and intuition and strove to describe objectively what they had learned from
study and observation. The Naturalist was much impressed with the finding
of modern science, especially in biology, and such new fields as sociology and
psychology, and he made use of the new knowledge in his writing.

It was the application of scientific principles to painting that characterized
the school of Impressionism. Influenced by the scientific discoveries about
the composition of light, painters like Camille Pissaro (1830–1903, France),
Claude Monet (1840–1926, France), Auguste Renoir (1841–1919, France)
and others, used small dabs of color to depict nature in its ever-changing
moods, not as it appeared to the logical mind but as it “impressed” the
eye in viewing a whole scene rather than a series of specific objects. An
Impressionist painting, examined at close range, thus appeared as a maze of
colored dots which, if seen from a distance, merge into recognizable objects
with the vibrant quality imparted by light.

The prevailing school of Naturalism had little use for beauty. To the
Naturalist, art had to serve a purpose and preach a message. In opposition
to this view of art, a group of French poets at the end of the century claimed
that art was sufficient unto itself — “art for art’s sake”.

To these Symbolists [Stephane Mallarme (1842–1898, France), Paul
Verlaine (1844–1896, France), Rainer Maria Rilke (1875–1926, Germany)
and others] — art was not for the masses but only for the few to whom it spoke
in ‘symbols’, using words not merely for their meaning but for the images and
analogies they conveyed, often by sound alone. Symbolism is significant as a
sign that there were people before 1914 who did not live in harmony with a
society that glorified materialistic achievements and accepted the struggle for
wealth as a sign of progress.

The most outspoken critic of the generation before 1914 was the philo-
sopher Friedrich Nietzsche (1844–1900, Germany) who attacked almost
everything his age held sacred — democracy, socialism, materialism, intellec-
tualism, and Christianity. His wholesale condemnation of society was felt far
beyond the first World War.
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Rise of Science in Germany (1870–1930)

In the 17th and 18th century, science moved relatively slowly. The num-
ber of brilliant scientists was limited. But during the 19th century scientific
progress began to be made at a rapidly increasing rate. In the last three
decades of the 19th century, and the first three decades of the 20th century,
the center of science moved to Germany. There, due to a close working be-
tween fundamental science and its technological applications, science grew to
become an integral part of the shaping of modern society in the 20th century.
This monumental rise of German science and technology transformed Ger-
many from a relative destitute and backward country into one of the great
powers on earth. To understand this rapid and unparalleled growth of Ger-
man science and industry, one must look at the factors that led to these
developments.

When the ravages of the Thirty Years’ War had been ended by the West-
phalian peace treaty (1648), Germany was a devastated country. It took more
than a century for it to recover intellectually429, politically, and economically.
In the 18th century, Germany was still quite backward compared to France
and England. During the period of the Enlightenment (second half of the
18th century), the country started to recover intellectually as illustrated by
the names of Schiller, Goethe, Kant and Beethoven. But otherwise the
country was still in a depressed condition; the middle class was poor and had
virtually no influence, compared to that of its counterparts in France and
England. Poverty, starvation, and disease were widespread.

An unexpected factor in the rebirth of German intellectual forces was the
defeat, occupation and humiliation of Germany by Napoleon. Since the re-
building of a strong army was, under French occupation, out of question, the
leadership turned to the creation of a strong intellectual elite through the ex-
pansion of the universities. Thus, Wilhelm von Humboldt was the driving
force in the establishment of the University of Berlin, in the midst of the
Napoleonic wars (1810). New universities were soon established in Breslau
(1811) and Bonn (1818). In 1820, science began to develop at these univer-
sities, but reactionary forces were simultaneously at work: the revolutionary
movement among students in favor of progressive ideas was suppressed by a
massacre carried by troops under the command of Prince Wilhelm (1848),
later to become Kaiser Wilhelm I.

429 With a few exceptions such as Johann Sebastian Bach (1685–1750) and his

family and Gottfried Wilhelm von Leibniz (1646–1716).



2360 4. Abstraction and Unification

The expansion and unification of Germany under Bismarck (1862–1890),
created favorable conditions for the rapid growth of industry and agriculture.
Unlike France and England, Germany was poor in natural resources and had
no empire to exploit. Bismarck and other farsighted leaders recognized the
vital importance of developing science and technology to increase the national
economic wealth.

To this end, the universities were granted strong government financial
support, on a scale unprecedented in the history of any nation. During 1825–
1900, a dozen of fist rate institutes of technology were established throughout
the country. Many of the graduates of these excellent schools became dynamic
leaders in industry. They were fully aware that basic science was the main
source of new inventions and improvements in technology. They established
large research laboratories attached to their manufacturing enterprises.

By the turn of the century, Germany had become the leading industrial
country. It had a gigantic pharmaceutical and chemical industry; it had an
electronic and optical industry of unmatched quality. Close collaboration
between industry and universities was frequent and of mutual benefit430.

Thus, while in 1840, with a population of about 35 million, it was plagued
by poverty, misery, starvation and disease – in 1910, with a population of
70 million, it was a rich country with a highly developed middle class and a
working class with better living conditions and more advanced social institu-
tions than their counterparts in France and England, although both classes
were virtually without political power.

1871 CE Parliament votes to abolish the “religious tests” at Cambridge
University; from this year on degrees and positions could be earned without
the need to adhere to the principles of faith of the Church of England. In the
past, candidates for the M.A. degree and persons elected to fellowships were
required to make subscriptions and declaration that, for non Christians, were
equivalent to conversion431.

430 The United States was the first country to follow Germany’s lead in joining

research and industry as evidences by DuPont, General Electric, among others.

France and England soon fell behind.
431 E.g., James Joseph Sylvester entered St. John’s College, Cambridge in 1831.

Being a Jew, and unwilling to sign the Thirty-nine Articles, he could not com-

pete for one of the Smith’s prizes and was ineligible for a fellowship, nor could
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1871–1890 CE Years of social, economical and political instability in West-
ern Europe: The Paris Commune (1871) — workers and soldiers took over
the government of Paris for 3 months. The Commune was suppressed with
the help of the Prussian Army. About 30,000 communards were executed by
French authorities.

In 1873, there occurred the great world-wide financial crash. The next 17
years held hardship for ordinary people, great profits and consolidation for a
few. Small businessmen (such as Einstein’s father) were badly hit. This was a
time of labor struggles, immigration, the rise of militant socialism, and above
all the beginning of the age of imperialism and monopoly capitalism.

In 1878, Otto von Bismarck (1815–1898, Chancellor of Germany, 1871–
1890) passed anti-socialist laws to suppress working-class political agitation,
and said “The great questions of the day will not be settled by revolutions

and majority votes but by blood and iron”.

In 1879 Wilhelm Marr coined the word anti-semitism and found the
League of Anti-Semites. The league blamed the Jews for the financial crisis.

It was a period of tremendous overall industrial expansion. People
throughout Europe were forced off the land and into the cities. Central to
Germany’s industrialization was the growth of the chemical and electrical in-
dustries and the formation of the cartels of I.G. Farben, Krupp, etc. (by 1913,
half of the world’s trade in electro-chemical products was in German hands).

In 1887, the German government opened the Physikalische-Technische
Reichsanstalt for research in the exact sciences and precision technology.
Werner von Siemens (1816–1892) donated 500,000 marks to the project.
His old friend, Hermann von Helmholtz (1821–1894) of the University of
Berlin circle, was appointed head.

Arms expenditures in Germany nearly tripled between 1870 and 1890;
the officer corps increased from 3000 to 22,500. Three-year military service
became compulsory. Socialist literature was forbidden. Youth were subjected
to intimidation and humiliation. Veteran organizations were state supported:
membership increased from 27,000 in 1873 to 1,000,000 in 1900. Heads of state
all appeared in military uniforms; even taxi drivers wore uniforms. The head
of this military state was Wilhelm I, Emperor of Germany (1871–1888).

he even take a degree; this last, however, he obtained at Trinity College, Dublin,

where religious restrictions were no longer in force. Only in 1883 could he be

appointed (as a Jew) a professor at Oxford.
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1871–1908 CE Discovery of the Aegean Bronze-Age Civilization. In mat-
ters legendary and pre-Classical the antiquarian scholars confined their knowl-
edge to the literary evidence of ancient authors: Homer, Plutarch, Ovid,
Pliny and Virgil.

In the 18th and early 19th centuries travelers to Greece were naturally
impressed by the great walls of Mycenae and Tiryns, still standing and book
were written by scholars who described these impressive remains. But non
of these scholars and explorers was concerned with pre-Classical history, with
proving the relation of the legends of the heroic age to the visible monuments,
by the clear evidence of excavation. For this an entirely new mental attitude
was required, not that of antiquarianism, but of archaeology.

It came with Heinrich Schliemann (1822–1900, Germany), an archae-
ologist and linguist who realized his childhood dreams of rediscovering the
Homeric world of Troy and Mycenae (1871–1884). His work was followed
by Arthur John Evans (1851–1941, England) who conducted excavations
in Crete (1894–1908), discovering pre-Phoenician script and the prehistoric
Palace of Knossos, seat of an early culture he named Minoan. Evans’ opening
up the whole world of Mycenaean palace and state organization, has been one
of the greatest contributions toward our understanding of the Bronze Age.

Scholars all over the world had struggled in vain far 50 years to decipher the
Cretan so-called “Linear B”. This honor fell to a young English architect432.

1871–1909 CE Edward Burnett Tylor (1832–1917, England and
USA). Founder of cultural anthropology. Advanced the new idea that human
history is dominated by the concept of cultures rather than that of Nations
that had spread across Europe after the 15th century. This innovation of
Modern Social Science would be the key to new ways of thinking about the
meaning of history and the future. He saw all cultures as parts of a single
history of human thought, and all evolution that Darwin had described in
biology, Tylor too now saw in society.

Tylor was born in London, the son of a prosperous English Quaker. As
Quaker he could not enter a university and so began life in the family business.
Seeking a climate to cure his tuberculosis, he went to Mexico (1856) where he

432 The Minoan Linear B script was deciphered (1952) by the architect and cryptog-

rapher Michael George Francis Ventris (1922–1956, England) who demon-

strated that it is Greek in oldest known form, predating Homer by some 500

years. He had heard Evans’ lecture in 1936 when he, Ventris, was 14. After

the War, in which he served as a pilot in the Royal Air Force, he continued his

efforts to decipher the linear scripts. He was killed at the age of 34 in a motor

accident.
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accidentally joined a study of Toltec remains. So began Tylor’s lifelong study
of strange and ancient societies and their relation to modern life.

Although he never studied formally at a university, he became a professor
of anthropology at Oxford (1896–1909).

He wrote: Primitive Cultures (1871); Early History of Mankind and the
Development of Civilization (1865).

Tylor wrote:

“The past is continually needed to explain the present, and the whole to
explain the part. There seems to be no human thought so primitive as to have
lost its bearing on our own thought, nor so ancient as to have lost its bearing
on our own thought”.

His work was continued by F. Boas (1911), O. Spengler (1918) and A.J.
Toynbee (1934).

1872 CE Peter Ludwig Mejdell Sylow (1832–1918, Norway). Math-
ematician. Proved a key theorem in the theory of finite groups433. Sylow
studied at the University of Christiania and became a high school teacher
(1858–1898). Lie had a special chair created for Sylow at Christiania from
1898.

1872 CE Ernst Mach (1838–1916, Moravia). Physicist, philosopher and
psychologist. Rejected the Newtonian concepts of absolute space and inher-
ent inertia of material bodies. His qualitative ideas (no quantitative theory!)
stemmed from the realization that Newton’s observations on inertia were en-
tirely local , and no references to the rest of the universe were made.

To measure the rotation of the earth, Newton used a terrestrial experi-
ment, whereas the same rotation can be determined by global or astronomical
measurement via the apparent motion of the stars. This coincidence, Mach
argued, must stem from a causal relationship between the motion of the dis-
tant stars and the local inertial frame of reference, and it must imply that the
inertia of any body is determined by the distribution of distant matter in the
universe.

433 Sylow’s Theorem: If pn is the largest power of the prime p to divide the order
of a group G then

• G has subgroups of order pn (called Sylow p-subgroups)

• any two such subgroups are conjugate

• G has np = 1(mod p) such subgroups, and np is the order of the quotient
group of G by the normalizer of any given Sylow p-subgroup

Almost all work on finite groups uses Sylow’s theorem.
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According to Mach there is no absolute space, and particles’ inertia is due
to unspecified interactions with the rest of the universe; all that matters in
mechanics is the relative motions of all the masses, near and distant (i.e. an
isolated mass has no inertia, centrifugal forces are physical, etc.). The totality
of these ideas can be encapsulated into one statement, known as “Mach’s
principle”:
A body’s inertia and the local structure of space-time are determined by the
mass distribution in the rest of the universe.434

Thus, according to Mach, stars en masse cause inertia435.

Although Einstein’s GTR is local and does not incorporate the ‘Mach prin-
ciple’ in any direct way, the accepted cosmological models based on GTR, do

434 For further reading, see:

Mach, Ernst, The Science of Mechanics, The Open Court Publishing Co., 1989,

634 pp.
435 On an earth covered permanently by clouds, an observer of the peculiar mo-

tions of the free gyrocompass with respect to ground would inevitably (after

having searched in vain for any visible agency to which the spin axis of the gyro

may appear attached) be drawn toward the Newtonian idea of some mysterious

“absolute space” with respect to which the earth happens to be in rotation.

However, if in this state of affairs the cloud cover were suddenly removed, re-

vealing the stars whose average motion with respect to ground happens to cor-

relate with the precession averaged gyro’s axis, the observer would be equally

inevitably drawn toward the thought that the stars are the cause of the gyro’s

previously inexplicable behavior. The formulation of this idea, which goes back

to George Berkeley, is known under the name of Mach’s principle: the local

inertial behavior of any object is somehow determined by the entire actual dis-

tribution of masses and their motions in the universe.

Mach himself did not specify what kind of interaction ought to be held respon-

sible for inertia. From time to time attempts have been made to put Mach’s

principle, which is really not more than a program, on a quantitative basis by

constructing cosmological models in which a particular kind of interaction be-

tween the distant stars and local objects is invoked to explain inertial behavior.

Most of these attempts invoke gravitation as the inertia-producing interaction,

a rather obvious choice in view of the universal proportionality between iner-

tial and gravitational mass (equivalence principle of GTR). There were also

attempts to account for inertia through invention of a special kind of “field”,

other than gravitation, just for this purpose.

None of these attempts has been wholly satisfactory. In particular, no one has

yet been able to construct a cosmological model incorporating Mach’s principle

and also incorporating consistently the velocity of light as the limiting speed

with which physical influences may be propagated.
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satisfy a limited form of Mach’s principle — in the sense that at any location
there is a preferred local frame of reference in which the distant galaxies of
the universe are, on the average, receding isotropically . This frame is best
defined by the cosmic microwave background radiation. Thus, in relativistic
big-bang cosmology the local inertial frames of Newtonian mechanics and STR

are indeed determined to some extent by distant matter — although a body’s
inertia is not .

The most “Machian” effect in GTR is frame-dragging — the ability of a
rotating mass to (partially and locally) drag with it the inertial frame; the
dragging is not rigid, and decreases with distance from the rotating mass. This
is one of the effects to be tested in the “gravity probe B”, a Stanford Uni-
versity Collaborative project with industry436, in which an extremely round
niobium coated gyroscope is set spinning in a box within a satellite, and its
general-relativistic precession measured via induced quantum eddy-currents
in superconducting devices. In this experiment, the frame-dragging, rotating
mass is the nearby earth.

An extreme, though impractical, manifestation of this effect occurs in
the Lense-Thirring-Brill-Cohen thought experiment: an infinitely massive,
spherical shell, when set rotating, drags the inertial frames in its interior
rigidly , at the same angular velocity as that of the rotating shell. Again, the
magnitudes of objects’ inertia are not themselves affected — only the identity
of inertial frames437.

There is evidently a consistent line of thought which goes through the
philosophical doctrines of Spinoza-Leibniz-Berkeley-Mach, that also has a
bearing on the ideas of quantum mechanics: namely, the non-separability of
interacting systems which forces us to treat the observer as part of the physi-
cal system being observed — a Machian notion. Yet at the same time, in the
quantum mechanical description, one is forced to consider higher-dimensional
Hilbert spaces, and when proceeding to gauge theories, one must also reckon
with the geometry of fiber bundles — all increasingly remote from direct
observation. This latter trend in modern physics is in contrast to Mach’s
positivism: he was steadfast in his rejection of non-empirical concepts.

436 This experiment was launched into orbit in April of 2004, and as of this writing

is still taking data.
437 However, according to the standard models of particle physics and cosmology,

the rest masses of electrons and quarks – and thus of all ordinary matter ex-

isting today – were endowed, a fraction of a second after the Big Bang, by

the condensation of a global, vacuum-permeating quantum scalar field; in this

sense and to this extent, modern physics does incorporate the Machian notion

of cosmologically determined inertia, at least as far as rest mass is concerned.
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Mach stands out as a unique figure among physicists. He mounted a
crusade against a universally accepted approach to classical mechanics and
went to extremes in his zeal to purge physics of its scholastic relics438. Thus,
he rejected the existence of atoms, and died unconvinced of the kinetic theory
of gases, Brownian motion and the special theory of relativity. Einstein,
however, considered him as the forerunner of the general theory of relativity.

Mach was born in Turas, Moravia and studied in Vienna. He was a pro-
fessor of mathematics at Graz (1864–1867), of physics at Prague (1867–1895)
and of physics at Vienna (1895–1901).

1872–1876 CE The Challenger expedition. The first systematic attempt
to explore the depth and breadth of the world’s ocean from the chemical,
physical and biological points of view. Spurred by this international compe-
tition (1871), the Royal Society appointed a committee which recommended
that funds be requested immediately from Her Majesty’s Government for an
expedition with the following objectives:

1. To investigate the physical conditions of the deep sea in the great ocean
basins.

2. To determine the chemical composition of seawater at all depths in the
ocean.

3. To ascertain the physical and chemical characters of the deposits at the
sea floor and their origins.

4. To examine the distribution of organic life at all depths in the sea as well
as on the sea floor.

To carry out these objectives, it was recommended that a sizable ship, a staff of
scientists qualified to carry out the desired investigations, and an ample supply
of equipment, instruments, and special apparatus be made available. As a
result of these recommendations, the first great oceanographic expedition, a

438 Mach entered into a debate with Planck about the nature of science, at the

beginning of the 20th century. Mach championed an instrumentalist philosophy

of science. He lodged science in everyday psychological experience and exalted

technology. Being a liberal democrat, Mach was intent on empowering “citizen

scientists”.

Plank, on the other hand, was a realist. He reduced everyday experience to

the ultimate constituents of physics and promoted abstract problem solving.

He was a state corporatist, who thought ordinary folks had no claim on “real

science”.

This debate is emblematic of all such debates since.
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model for all subsequent efforts, was organized. The expedition was a bold
attack upon the unknown in the tradition of the great see explorations of the
15th and 16th centuries.

H.M.S. Challenger was an 18-gun corvette of the British navy that had
been stripped of battle gear and fitted for oceanographic research. It had a
displacement of 2306 tons and was equipped with both sail and steam power.
The British Admiralty provided a crew under the command of Captain George
Nares;

Charles Wyville Thomson (1830–1882), professor of natural philoso-
phy at the University of Edinburgh, headed the research staff. The 240-man
expedition left Portsmouth, England, in December, 1872. The Challenger
criss-crossed the North Atlantic, swerved down through the South Atlantic,
and eastward into the Antarctic Ocean. Leaving the Antarctic, it continued
its way to Australia and the Western Pacific islands, eastward to the Hawai-
ian Islands, on through the Straits of Magellan, and finally back to England
where it landed on May 24, 1876.

In three years the Challenger has sailed 110,500 km and made 362 “oceano-
graphic stations”, gathering data on weather conditions, surface currents, wa-
ter temperature, water composition at various depths, marine organisms, and
bottom sediments. Expedition scientists charted oceanic topography on the
ship’s track, netted and classified 4,717 new species of marine life439, and took
a depth measurement of 8183 m in what came to be known as the Challenger
Deep440.

The official report of the Challenger expedition, filled 29,500 pages in 50
volumes and took 23 years to complete. A total of 76 authors contributed to
the report, and numerous other specialists were consulted. No other expedi-
tion has made so many important contributions to oceanography.

When she left England, the ocean depths were an almost unfathomed
mystery. When she returned, she had sounded the depth of every ocean except
the Arctic and laid the foundation for the modern science of oceanography.

439 One of the most interesting of those organisms is the radiolaria, of which the

expedition collected 3508 new species to add to the 600 then known. The Chal-

lenger discoveries demonstrated that the oceans were teeming with unknown

life waiting to be classified. It proved that life existed at great depth in the sea.
440 It was measured on March 23, 1875, off the Mariana Islands. The deepest

known spot in all the oceans is at 11,033 m below the surface in the Mariana

Trench.
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Oceanography441 — The Conquest of Inner Space

(1000 BCE–1927 CE)

I Historical Background

Ancient and medieval navigation had been largely coastal; mariners did
not sail many days out of sight of land. They knew the sea but not the
Ocean. Indeed, even in the middle of the 15th century, at the time when the
Renaissance is supposed to begin, man’s knowledge at the face of the earth
was still restricted to a very small portion of it, and even in that portion was
very superficial. One of the great tasks to be accomplished was the discovery
of planet earth.

Schematically, the earth can be regarded as being composed of three ma-
terials: rock, water and air, arranged in three layers — the lithosphere, hy-
drosphere, and atmosphere. The earth is also an astronomical body: the
effects of nonuniform distribution of sunlight over the earth and the equally
energetic but more uniform radiation of earth heat into space, acting with
rotational and gravitational forces, produce a complex of interdependent fluid
phenomena which characterize the world as we know it.

Oceanography may be defined as the study of the oceans. It is principally
concerned with the various aspects of sea water442: its motions and chemical
constituents, its physical properties and behavior, its relationships to the solid
earth, the atmosphere, and to living organisms of all kinds, its economic and
technical potentialities, its role as part of the earth’s outer covering.

Thus, oceanographers are drawn from four large areas of science: geology,
chemistry, physics, and biology. Geologic study of oceanic sediments, rock

441 For further reading, see:

• Von Arx, W.S., An Introduction to Physical Oceanography, Addison-Wesley

Publishing Company: Reading, MA, 1962, 422 pp.

• Weyl, P.K., Oceanography , John Wiley & Sons: New York, 1970, 535 pp.

• Yasso, W.E., Oceanography , Holt, Rinehard and Winston: New York, 1965,

176 pp.

442 Gross properties of sea water: Characteristic density = 1.025 gm/cm3; Velocity

of sound at surface = 1448.6 m/sec; Specific heat = 0.932 cal/gm/ ◦C at salinity

of 35%; Adiabatic lapse rate ∼ 0.1 ◦C/km; Maximum surface temperature =

32 ◦C; Minimum surface temperature = −2 ◦C.
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structure, and topography is referred to as submarine geology or geological
oceanography. The study of sea-water chemistry is called marine chemistry
or chemical oceanography. The biological aspects of the ocean environment,
such as fish populations and plant life, are studied by the marine biologist,
or biological oceanographer. Atmospheric processes, circulation of the oceans,
and the physical properties of ocean water fall within the scope of marine
physics, or physical oceanography.

Oceans cover nearly 3
4 of the earth’s surface; the topography of the ocean

floors is more rugged and more mountainous than the topography of the
continents; the greatest oceanic depths are greater than the height of Mt.
Everest. The distance from the top of this mountain to the bottom of the
Mariana Trench is about 20 km. Even so, the solid surface of the earth would
still be much smoother than the surface of an orange if scaled to that size.
But the oceans are even smoother than that.

The volume of the oceans is roughly 1365 million cubic kilometers, with
a mass of 1560 million billion tons. Although these are enormous figures,
they represent only 1/790 of the volume and 1/4200 of the mass of the earth.
Covering a surface area of 362 million square kilometers, the average depth
of this water mass is slightly less than 3.8 kilometers, or about 1/1680 of the
earth’s radius. Truly, the oceans are hardly more than a film of salt water on
the surface of our planet.

Yet, it was in some shallow, near-shore area of this film that life on earth
began two or three billion years ago. Today it is the tremendous abundance
of life in the sea that appears to present the surest solution of the world’s
food problems. Well over half — perhaps as much as 85 percent — of the
food product of all plants is produced by marine plants.

In time the oceans will certainly become a major source of valuable min-
erals and chemicals and an important source of fresh water when these are
no longer available in sufficient quantities on the continents. Also, in recent
years, it has become clear that the oceans play a very important but little-
understood role in determining the earth’s weather and climate patterns. And
finally, it may be that the sediment layers at the bottom of the sea contain
a record going back several billion years — a record of the earth’s history.
For these and many other reasons, the importance of the earth’s oceans can
hardly be overestimated.

The heat content in the oceans does not vary appreciably from year to
year, but maintains a gently shifting balance consistent with external sources
and demands. Several processes serve to heat the oceans:

• Radiation absorbed from the sun and sky.
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• Condensation of water vapor as dew on the sea surface.

• Conduction from the atmosphere.

• Conduction from the sea floor.

• Conversion of mechanical energy into heat.

Other processes serve to cool it:

• Radiation from the sea surface to space.

• Evaporation to the atmosphere.

• Conduction to the atmosphere.

• Conduction to the sea floor.

Of these processes, the conductive and radiative exchanges with the at-
mosphere are of greatest importance. The heat of conversion of the mechanical
energy of winds and ocean currents is generally less than the heat of incoming
radiation from the sun and the sky by a factor of 10−4, but locally may be
somewhat greater where tides are accompanied by strong frictional retarda-
tion, as in some shallow seas.

Conduction to the atmosphere is significant where the ocean temperature
is higher than that of the atmosphere but not in the reverse case. This
difference in conductive efficiency is due to the strong convection that can
develop in cool air over a warm ocean, and the marked stability that develops
when warm air is chilled by a cold ocean. Conduction may amount to some
10% of the evaporative heat loss of the oceans. Conductive exchanges with
the sea floor are thought to be mainly upward, owing to the evolution of
radiogenic heat in the earth’s crust. The important influences are seen to be
associated with radiative exchanges, evaporation processes, and the upward
flux of heat in conduction to the atmosphere.

The flux of sensible heat is directed mostly from the oceans to the at-
mosphere, but not exclusively so. In middle latitudes of the Northern Hemi-
sphere, particularly over the eastern parts of the North Atlantic Ocean, the
heat flux in summer is directed from air to sea. This effect places the region of
maximum atmospheric warming by conduction in the western and northern
portions of the Northern Hemisphere oceans, mainly in association with the
poleward transport of tropical waters in the Kuroshio of the North Pacific
and the Gulf Stream of the North Atlantic Ocean. Over the middle-latitude
portions of these currents the annual average upward flux of sensible heat may
exceed 90 cal/cm2/day over the Kuroshio, and 120 cal/cm2/day over the Gulf
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Stream. The total energy loss of sensible plus latent heat is about four times
as great.

Precipitation, in general, returns sensible but not latent heat to the oceans.
Oceanic warming by latent heat can occur only when there is condensation
directly on the sea surface as dew, or possibly to some extent in very shallow
fogs. In other cases latent heat is released at the level of condensation, and
has only the indirect effect of abating radiation losses from the sea surface.

The sea radiates to the atmosphere and space very nearly as a black body
and therefore contributes outgoing energy in amounts proportional to the
fourth power of its absolute surface temperature. The wavelength of maximum
emission for the sea surface is nearly centered on the 10-μ “window” between
the absorption bands for atmospheric water vapor and carbon dioxide. Water
vapor is, however, such a strong absorber of infrared radiations even in this
window that the amount of outgoing radiation from the ocean surface is more
closely related to the absolute humidity of the lower air than to the ocean
temperature. As the air temperature falls and the absolute humidity of the
lower atmosphere is correspondingly decreased, the radiation losses from the
ocean tend to increase until a skin of ice is formed. Bubble-free ice is nearly as
good a black-body radiator as a free-water surface is, but as soon as bubbles
are trapped in sea ice they reflect radiation back into the ocean and reduce
the intensity of long wavelength emission to the atmosphere. The latter effect
tends to confine heat within the water phase of ice-covered oceans, and indeed
explains in part why the ice in the Arctic Ocean is relatively so thin despite
the very low air temperatures that sometimes prevail.

The average energy of incoming short-wave radiation from the sun and sky
usually exceeds the heat loss through radiative processes from the sea surface.
The excess heat in the ocean is first communicated to the atmosphere by the
process of evaporation and conduction, whereupon the atmosphere radiates
this energy to space.

The movement and circulation of the oceans is tied very closely to the
circulation of the atmosphere: Both are ultimately driven by the distribution
of available solar energy, and their motions are linked by friction at the sea
surface. There exists an imbalance in the latitudinal distribution of energy
that produces an equator-to-pole temperature gradient at the surface — the
driving force for the pattern of earth’s surface wind. These wind patterns are
responsible for the circulation of the ocean surface and the formation of the
world’s major ocean currents. As with the atmosphere, once the ocean starts
to move, it comes under the influence of the Coriolis effect, which plays a
significant role in the resulting circulation patterns.

The oceans are vertically stratified, with more dense water at the bottoms
of the major ocean basins and less-dense water near the surface. The density
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is controlled by the temperature and by the salt content (salinity) of the wa-
ter. The deep-ocean water is separated from the surface layer of the ocean by
a transition zone with sharply defined density, temperature, and salinity gra-
dients. This deep-ocean water moves as a response to small changes in density
that occur over wide areas, and the movement is largely independent of the
surface-ocean circulation. Together, however, both types of ocean circulation
contribute to the redistribution of available energy in the earth system, albeit
over very different time scales. And both play a major role in the distribution
of nutrient supplies in the oceans.

Like the circulation of the atmosphere, the circulation of the ocean is
ultimately driven by solar energy. Figure 12 is a systems diagram of ocean
circulation. The distribution of solar energy over space and time results in the
formation of the global wind belts. These roughly latitudinal wind patterns
in turn produce the ocean currents that determine the circulation patterns
of the upper ocean. The distribution of surface-ocean temperatures, which is
partly a result of these circulation patterns, strongly influences the density
structure of the ocean. It is this density structure that drives the circulation
within the deep ocean. As with the atmosphere, the feedback loops in Fig-
ure 12 are negative — surface-temperature gradients drive the circulations,
but the net effect is to move warmer water poleward and cooler water toward
the tropics. Both the surface-ocean and deep-ocean circulations also play a
vital role in climate. The surface circulation is one of the primary factors con-
trolling climate variability on the order of years to decades, but even the deep
circulation, which generally operates on the time scale of hundreds of years, is
being implicated in short-term climate change. The two different circulation
systems act together in controlling the distribution of the nutrients that are
essential to marine life.

The circulation in the troposphere is caused by atmospheric pressure gra-
dients that result from vertical or horizontal temperature differences. From
a global perspective, these temperature variations are caused by latitudinal
differences in solar heating. But ocean surfaces are also heated by incoming
solar radiation. Do the oceans, therefore, circulate for the same reason as the
atmosphere? The answer is no, because the solar heating of the ocean takes
place at the upper surface of the fluid, whereas the solar heating of the at-
mosphere occurs largely at the lower surface of the fluid-near earth’s surface,
where clouds and the green-house effect warm the atmosphere. Solar heating
results in warmer water at the surface of most of the world’s oceans. But
the sun’s rays warm only the top few hundred meters of the ocean; 90% of
the radiation that penetrates the surface is absorbed in the first 100 m. The
warmer water is less dense than the cooler water below, which is not affected
by the surface heating. This situation is inherently stable, so there is very
little vertical movement.
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Fig. 12: Ocean circulation diagram

It is similar to the situation in the stratosphere. The atmosphere at
this level is stable because the maximum solar heating occurs high in the
stratosphere, the site of peak absorption of ultraviolet radiation by ozone.
Where temperature increases with height, there is no density imbalance, and
convection cannot take place. The fluid – water or air – remains well strati-
fied. The true situation in the ocean is actually more complicated than this,
because the density of seawater is also affected by its salt content. It remains
true, however, that the ocean overturns very slowly.

At the same time, temperature changes in the ocean occur slowly. The
oceans have a high heat capacity — it takes a considerable amount of heat
to produce just small changes in temperature. Slight differences in incom-
ing solar radiation from place to place thus have little impact on the surface
temperature of the ocean, so lateral temperature and density differences are
slight over large areas. Unlike the troposphere, therefore, the surface ocean
does not circulate as a direct response to the surface heating. Instead, surface
temperature plays a more indirect role: The surface temperature influences
the atmospheric circulation, and the resulting pattern of global winds deter-
mines the circulation of the upper ocean.

The content of oceanography, like that of any other science, depends to
a large extent on its history. Man’s exploration of the world’s oceans was
at first largely limited to the surface of the sea and to the mapping of the
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distribution of land and water. Later man turned to the exploration of the
depths of the ocean.

Our current knowledge of the oceans developed in stages: At first the map
of the world was completed. The geographic exploration of the distribution
of land and sea led to an interest in the sea itself. Oceanographic expeditions
were conceived and carried out, and then published scientific reports added
to our store of knowledge. Finally, puzzling observations led to the devel-
opment of a dynamic theory which transformed oceanography from a purely
descriptive to an analytical science.

Although primitive man had explored all the oceans and most of the land
areas of the world, his geographic knowledge was localized. The inhabitant of
a Pacific atoll knew his immediate environment and had stick charts indicating
the locations of neighboring islands. His oral traditions told of the faraway
places from which his ancestors had come to settle the island. While there
was extensive knowledge of the local geography, there was no geography of
the earth as a whole. The gradual evolution of the picture of the world, as
seen from Europe, began with the earliest roots of civilization.

The study of the sea seems always to have been promoted by a practical
rather than an abstract curiosity about the natural world. The maritime
commerce of the Phoenicians, Hebrews and Greeks made the Mediterranean
and adjacent seas reasonably well known even before the time of the Judean
kings [Solomon (ca 940 BCE) II Chron 8, 17; Jehoshaphat (ca 870 BCE) II
Kings 22, 49 and II Chron 20, 36]. The waters of this sea enclosed by three
continents provided a ready means of transport of goods and soldiers. The
conception of the world, about 850 BCE, included only the land immediately
adjacent to the Mediterranean, surrounded by Oceanus, the indefinite land-
encircling ocean which lay everywhere beyond the frontiers of knowledge.

The master merchant mariners, the Phoenicians, passed through the Pil-
lars of Hercules, the Straits of Gibraltar, into the Atlantic Ocean. They cir-
cumnavigated Africa and penetrated north to Great Britain: Indeed, about
600 BCE (according to Herodotos), King Necho of Egypt sent an expedition
manned with Phoenician sailors down to the Red Sea and along the east coast
of Africa. The ship is said to have returned to the Mediterranean, 3 years
later by way of Gibraltar. The expedition should have established that Africa
is a separate continent, but the chronicle was rejected by scholars of that time,
and Greek philosophers continued to support the Homeric map.

In the 4th century BCE443, man’s knowledge was somewhat extended due
to the Indus River expedition of Alexander the Great (329–325 BCE) and
the voyage of Pytheas of Massilia. The former revealed the relationships

443 The book of Jonah was composed at about that time.
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of several bodies of water to one another, namely, the Caspian Sea, Persian
Gulf, and Arabian Sea, and to the then known world around the Red Sea
and the Mediterranean. On a map drawn about 300 BCE by Dinaearchos
of Messina (a pupil of Aristotle), parallels of latitude are used for the first
time.

The geographic knowledge of the Romans was summarized by Ptolemy
(150). He introduced the concepts of latitude and longitude, and presented a
projection of the globe on a map which showed the Indian Ocean surrounded
by land in part unknown.

Although it was relatively easy to measure the latitude by noting the angle
the pole star makes with the vertical, the ancients had no way to measure
longitude directly. Ptolemy therefore estimated distances in the east-west
direction from the time required for voyages.

The Indian Ocean was the first to be used for trade but, strangely, was
one of the last to be thoroughly explored. The ancients carried on a brisk
trade between the Mediterranean and the East by way of the Red Sea and
Indian Ocean. This sea traffic was much influenced by the monsoon. The
wet monsoon of the Northern Hemisphere summer permitted the ships of the
Greek and Arab traders to penetrate the Arabian Sea and Bay of Bengal,
and then during the period of the dry monsoon of the Northern Hemisphere
winter to find favorable winds for the homeward journey.

It was the reversing currents associated with the monsoon winds of the
Northern Indian Ocean that favored this traffic, made fruitful by the ready
markets for oriental products in the Roman world. With the fall of Rome the
trade dwindled, but unwittingly the knowledge that the Greeks and Romans
possessed had been deposited with Arabian scholars for safekeeping during
the Dark Ages444. By this accident the Ptolematic view of the world was
kept intact until the 11th century CE when, as a by-product of the Crusades,
Western civilization was re-educated concerning its own past.

While southern Europe was preoccupied with matters of theology, the
Norsemen were engaged in journeys of discovery, aided by improved climatic
conditions, which reduced the amount of ice in Northern waters. Iceland was
visited by the Picts and the Celts in 650, and settled by the Celts in 770.

In 835, a papal bull referred to Christian settlements in both Iceland and
Greenland. The Vikings began to take over these Northern lands in about

444 The deterioration of geographic knowledge during the Middle Ages is indicated

by the world map of Cosmas Indicopleustes (fl. 548 BCE), an Alexandrian

navigator of the Indian Ocean. He insisted that the earth was a quadrilateral

measuring 20,000 km × 10,000 km.
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870. In 982 Eric the Red crossed the Davis Strait from Greenland to Baffin
Island, in Canada. Three years later he established a colony in Greenland.
His son Leif Ericsson sailed west from Greenland in 995 and spent the winter
in Newfoundland.

Because of a deterioration of the climate beginning in about 1200, the
Viking colonies in Greenland became isolated; the Vikings were therefore
never able to exploit their discovery of America. Were it not for the readvance
of ice in the North Atlantic, the history of America might have been very
different. The Vikings’ conception of the Northern ocean are known to us
through the map of Sigurd Stefansson (1570).

While the Vikings were exploring the Northern seas, Arab traders were
exploring the Indian Ocean and sailed as far as China. A map by Abu ar-
Rayhan al-Biruni (1030) reflects the geographic knowledge of his times.
The Arabs brought the lodestone from China and thus introduced the mag-
netic compass to the West. At first it was viewed with suspicion as being
under the influence of some infernal spirit. However, the mariner’s need for
an instrument with which he could steer a fixed course, regardless of visibility,
led to the rapid adoption of the magnetic compass.

The period from 1492 to 1522 is known as the Age of Discovery because
geographic knowledge expanded at a very rapid rate during these 30 years.
The continents of North and South America were added to the globe, and the
earth was circumnavigated. These daring voyages of discovery were brought
about by a political event. In 1453 the Sultan Muhammad II captured the
capital of Eastern Christendom, Constantinople. As a result, the Mediter-
ranean ports were cut off from the riches of the East.

At the same time, learned Greeks expelled from Constantinople brought
the geographical knowledge of the ancients to Italy, and the introduction
of paper permitted the wide distribution of these works. Thus the Turks
indirectly revived old knowledge, which made it possible to find new sea routes
while creating an economic motivation for exploration.

Meanwhile, the Portuguese and others had been making preparations for
their great voyages of discovery. In 1420 Prince Henry the Navigator es-
tablished a maritime observatory and assembled the best Italian map-makers
and Jewish astronomers to teach navigation to the Portuguese. Until that
time the Portuguese had been afraid to sail out of sight of land, and all expe-
ditions to round Africa had turned back at Cape Bojador (27 ◦N). The Cape
of Good Hope was finally rounded by Bartholomeu Dias in 1488. In 1498,
Vasco da Gama extended the trip around Africa to India445.

445 When da Gama rounded the Cape of Good Hope in April, 1498, he acquired

the services of an Arab navigator, Ahmad Ibn Majid, to guide him across
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In 1474, the Florentine astronomer Toscanelli wrote to the King of Por-
tugal suggesting an expedition to explore a route to the Spice Islands of the
East across the Atlantic Ocean. He appended a map which greatly underes-
timated the distance to the east coast of Asia, placing it at a longitude just
off the west coast of America. Later, on inquiry, he sent a copy of this letter
to Christopher Columbus.

In 1492, Columbus set sail westward to reach the Indies. His underestima-
tion of the distance to China caused him to believe that he had reached the
Indies when he had in fact discovered what we know as the West Indies; actu-
ally he was farther from his goal than when he had left Spain. The Spaniards
and the Portuguese set out to explore the eastern shores of the Americas and
the Indian Ocean. The greatest of the oceans, the Pacific, was not discovered
until 1513, when Vasco Núñez de Balboa sighted it from a mountain in
Panama.

These early voyages of discovery culminated in the circumnavigation of
the globe by Ferdinand Magellan. He left Spain in September 1519 with 5
ships, on a mission to find a passage between the Atlantic and Pacific Oceans.
On the 21th of October 1520 he found a passage to the great Western ocean
at 52 ◦S, now known as the Straits of Magellan. In March 1521 he discovered
the Philippines, and in April of that year met his death, at the hands of
the aborigines of Cebu. On his trip (1521) Magellan made the first recorded
attempt to measure the depth of the open ocean by lowering a weighted line
to a depth of some 370 m, but failed to reach bottom, which is now known to
be 3700 m446.

the Indian Ocean to the Malabar Coast of India. Although the route was not

known to European navigators, the Arabs had an intimate knowledge of sea

routes between the Indian Ocean, Arabian Sea, and Mediterranean Sea.
446 Another measuring problem faced by the mariner was how to determine the

speed at which his ship was moving through the water. Since there are no fixed

reference points at sea, the captain would throw a floating object overboard and

time how long it took the object to drift by a measured interval marked off on

the deck of the ship. An improved method of measuring speed was introduced by

the Dutch near the end of the 16th century. This was the so-called Dutchman’s

log, which has left its traces in nautical jargon.

The Dutchman’s log consists of a piece of wood (the log) attached to a reel

of string, with knots tied in at equal, fixed intervals. When the log is thrown

overboard, an hourglass is inverted. As the sand in the hourglass runs out, the

knots that pass overboard are counted. Thus one obtains the speed of the ship

in knots. The speed is then entered in the logbook with information about the

state of the weather and the sea.
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By the 16th century, the fact of the earth’s rotundity was proven beyond
question by Magellan’s expedition.

By the year 1600 the surface of the known earth was doubled. It was
not only a matter of quantity, but one of quality as well. New climates,
new aspects of nature were revealed, new plants, new animals, new men and
women.

The psychological reverberation of such new vistas was immense. A man
of today can recall the deep emotions he felt when he found himself for the
first time in the middle of the ocean, or in the heart of a tropical jungle,
or when he tried to cross a desert or a glacier. These discoveries, which are
fundamental for each of us individually, were made for the whole of mankind
in the fifteenth and sixteenth centuries.

In the meantime, the intense rivalries of colonizing nations encouraged the
progress of navigation and of the physical sciences which would increase the
accuracy of sailings and minimize their dangers. The main requirements were
geodetic, astronomic (better methods of taking the ship’s bearings), carto-
graphic; one needed faster ships and better instruments to navigate them.
Geodetic improvements were due to Jean Fernel (1528) and Gemma Fri-
sius (1533); better maps were due to the Pedro Nuñez (1530), and Gerhard
Mercator (1568), and Abraham Ortelius (1568). The splendid geographic
atlases which were produced in 1570, provide a large mass of information of
vital importance to navigators.

One of the first fruits of oceanic navigation was a better knowledge of mag-
netic declination, for the compass was one of the sailor’s best instruments, but
its readings could not be trusted without taking occasional deviations into ac-
count. The magnetic observations and other knowledge useful for navigation
were put together by Englishmen like Robert Norman (1581) and William
Barlow (1597) and by Simon Stevin (1599). At the very end of the Re-
naissance, William Gilbert published the first great treatise on magnetism
(1600).

Nearly six decades after Magellan, Francis Drake found the gap between
Tierra del Fuego and the mainland of Antarctica, the Drake Passage (1578).
This provided the closing link in the discovery of the Southern (Antarctic)
Ocean. It remained to be known, however, whether or not land lay to the
south. It was James Cook who suggested that an Antarctic continent existed
(1772–1775). He was one of the first to lead a journey intended to produce
scientific discoveries. [The early discoverers set out, not to discover the se-
crets of nature, but rather to find the riches of the world and claim them
for their royal sponsors. Their successes were measured in treasure-laden
galleons rather than in scientific information recorded in expedition reports.
While the gold of the Aztecs and the Incas has been largely dissipated, the
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scientific treasures of the newer explorers represent a permanent addition to
our store of knowledge.]

Between 1769 and 1779 Cook commanded British vessels on three major
voyages of discovery. On the last Cook set off in search of a northwest passage
between the Atlantic and Pacific Oceans and successfully penetrated into the
Arctic Ocean by way of the Bering Straits. A short distance beyond the
Bering Strait, he was stopped by the Arctic ice pack.

Cook was the first explorer provided with the proper instruments to de-
termine latitude and longitude accurately. On his second voyage he had four
accurate clocks to help in navigation. They had been developed as a result of
a naval disaster in 1707, when 2000 men were lost because of faulty naviga-
tion. To help avoid such occurrences in the future, Parliament established a
prize for a method of determining longitude.

In 1000 days at sea, Cook lost only one sailor out of a crew of 118. He
was the first to conquer the sailor’s disease, scurvy, which results from a lack
of vitamin C. By watching the diet of his sailors and giving them citrus juice,
Cook showed that long sea voyages were possible without detriment to health.
Because they were required to drink lime juice to avoid scurvy, British sailors
were thenceforth called Limeys.

Cook’s third voyage essentially completed the geographical exploration of
the oceans of the world. Only the continent of Antarctica, hidden by a shield of
ice, remained to be discovered. (This was accomplished in 1820 by Nathaniel
Palmer.) Cook’s skill as a navigator set new standards and accurately fixed
the location of many islands that had previously been known only vaguely. He
showed that long voyages of exploration were possible without endangering
the health of the crew. Finally, he demonstrated convincingly that the land
was not distributed symmetrically about the equator: the great southern
continent did not exist unless it was south of 70 ◦, protected by ice.

The depth of the sea, however, remained to be explored. The first expedi-
tion to measure the vertical extent of the ocean and one of the last to map its
southern boundaries was led by James Clark Ross (1800–1862, England)
during the years 1839 to 1843.

A few years before the Ross expedition, the Beagle (1831 to 1836), with
Charles Darwin aboard, made its famous voyage in which so much new knowl-
edge of the “natural history” of the ocean islands was obtained. Darwin
also looked into the geologic structure and possible origins of ocean islands.
This voyage ushered in the succession of cruises devoted to scientific study
of the natural history of the seas which culminated in the efforts of Charles
Wyville Thomson in Lightning (1868), Porcupine (1869 to 1870), and fi-
nally in the Challenger expedition of 1872 to 1876.
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The American interest in the practical aspects of oceanography were ad-
vanced by the efforts of Matthew Fontaine Maury (1806–1873). Having
been injured early in his naval career, Maury was placed in charge of the depot
of naval charts and instruments. There he found a collection of logbooks of
ships’ officers containing a wealth of information about currents and weather
at sea. Maury proceeded to analyze these data systematically and from them
prepared charts of winds and currents which proved to be extremely useful.

In order to obtain even better data, Maury was instrumental in arranging
for the first international oceanographic conference. At the Brussels Maritime
Conference of 1853, uniform methods of making nautical and meteorological
observations at sea were agreed upon. These increased the available data and
made them more reliable. In 1855 Maury published The Physical Geography
of the Sea, a summary of his findings.

The chemistry of seawater was investigated by Johan Georg Forchham-
mer (1794–1865) of Copenhagen, a professor of geology. Over a period of 20
years, Forchhammer analyzed surface samples of seawater brought to him by
sailors from all over the globe. When he published his findings in 1865, he
demonstrated that while the total salt content of seawater differs from place to
place, the relative amounts of the various major salts remain constant. These
findings together with those of the Challenger expedition (1872–1876), pro-
vided the nucleus of present understanding of the architecture of the oceans.
Study of the physical mechanisms that bring these features into existence has
been the main concern of physical oceanography ever since447.

447 Since 1953, oceanographic research has been revolutionized due to a number of

technological advances:

• “Real-time” recording : Prior to 1953, most instruments were mechanical

devices. A program of sampling was laid out before the ship left port, techni-

cians collected the data, and scientists ashore analyzed it months afterwards.

Today, when bathimetry can be surveyed instantly in real time, the course of

the ship can be modified instantly to accommodate, say, a newly discovered

undersea mountain. Moreover, oceanographers had measured the temperature

and salinity of sea water at widely spaced stations by lowering instruments on

vertical wires suspended from ships. Now, they trail electronic temperature

sensors behind the ship, so they could detect the boundaries between ocean

currents as they crossed them.

• Expansion of instrument capabilities: With solid-state electronics instru-

ments which are not so sensitive to the environment, oceanographers could

conduct many kinds of research that were previously impossible.

• On-board computers are used to process many kinds of marine data that

formerly could be analyzed only after return to port. Minute by minute and
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The last volume of the Challenger Report appeared in 1895 — three years
after Robert E. Peary discovered that Greenland was an Island, not part of
a polar continent; one year before a Norwegian explorer, Fridtjof Nansen,
proved that no such continent existed; 14 years before Peary became the first
man to reach the North Pole; 17 years before Roald Amundsen, another
Norwegian explorer, reached the South Pole.

Although the Challenger expedition is one of the great achievements in the
history of scientific exploration, it was nonetheless a candle in a vast darkness.
A quarter of a century later, oceanographers had gained a general picture of
the earth’s oceans; and another quarter of a century after that, oceanography
entered upon a new era with the Meteor expedition of 1925–1927.

During the half-century from the Challenger to the Meteor, oceanographic
research had consisted mostly of isolated and widely scattered observations.
The emphasis was on the amount of territory covered rather than on system-
atic research. The most notable exceptions to this rule were the Norwegian
studies of the North Atlantic and the Norwegian Sea that begun shortly after
the turn of the century.

In the field of physical oceanography proper, major contributions came
from the school of thought stimulated by V.F.K. Bjerkens. In 1898 Bjerkens
published a paper which provided a basis for determining the field of motion
in the sea from measurements of the vertical and horizontal distributions of
pressure. Currents and volumes of water moving in the oceans are difficult to
measure directly because there are no convenient reference marks at sea that
are assuredly at rest. The practical methods for applying dynamical principles

hour by hour the ships collect data and feed them into the computer. It can

print out the ships’ position, its speed and much other information, as one de-

sires.

• SCUBA gear and research submarines. Marine geologists and biologists

can make dives to personally examine at close range the phenomena about

which they had previously speculated. Deep water submersibles with remote

handling (for manipulating the environment outside the submersibles) are open-

ing new lines of research, such as detailed mapping of the Mid-Atlantic rift.

• Special types of research vessels can drill in the deep-sea floor, or be par-

tially flooded so it stands on end for the measurement of the motion of the sea.

• Artificial satellites, coupled to the ship’s on-board computer, provide a

navigational system. The sensors on these satellites are capable of measuring

the temperature of the ocean surface, thereby mapping ocean currents almost

instantly over enormous areas. Other uses of space technology will surely further

revolutionize some oceanography and the utilization of the seas.
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at sea were developed during the first quarter of the 20th century by Björn
Helland-Hansen, J.W. Sandström, and several other Norwegian, Swedish,
and German oceanographers.

II Physical Foundations of Dynamic Oceanography

(1813–1969)

The important forces which drive the large-scale oceanic motions are the
force of gravity (g), the Coriolis force, pressure gradient force, and frictional
forces (F ). (The centrifugal force of the earth’s rotation is usually included
in gravity.) Thus, the Eulerian vector equation for the acceleration of a fluid
element relative to a co-rotating frame, is:

dV

dt
=

∂V

∂t
+ (V · ∇V ) = (−2Ωn × V ) + (−α∇p) + g + F , (1)

where V = (u, v, w) is the velocity vector with components along x (east),
y (north) and z (upward). Here Ω = 0.729 × 10−4 sec−1 is the angular
velocity of the earth’s daily rotation, n is a unit vector pointing from south
to north pole, p is the pressure (dyn/cm2), F is force per unit mass, and
α = 1

ρ = specific volume in units cm3/gm. Under conditions of steady state
(

∂V
∂t = 0

)
, small advective terms (V · ∇V

.= 0), and small frictional force
(F = 0), the motions are said to be geostrophic (earth-turned). In this case
the Coriolis force and the pressure gradient force just balance each other.
Consequently,

1
ρ

∂p

∂x
= (2Ω sin φ)v,

1
ρ

∂ρ

∂y
= (−2Ω sin φ)u,

1
ρ

∂p

∂z
= g. (2)

The above equations govern the motion of major ocean currents. These
are of two general types: vertical and horizontal (both surface and deep).
Lesser and variable currents may be caused by tides and storm conditions.
Some currents are of short duration and cover only a small area; others, such
as the great oceanic circulation systems, are permanent.

A few remarks are needed with regard to Eqs. (1) and (2):

• In the gravitational term, g = (0, 0,−g) represents the apparent grav-
itational acceleration, or the true (central) gravitational acceleration
modified by the small ‘centrifugal’ contribution normal to the axis of
the earth’s rotation. The direction of g defines the local vertical; its
magnitude varies throughout the ocean from its mean value of approx-
imately 981 cm

sec2 by less than 0.3%, and for dynamical purposes it can
be considered constant.
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• The term F represents the resultant of all other forces acting on a unit
volume of the fluid. The most important of these arises from molecular
viscosity. In almost all oceanic circumstances where viscous effects are
important, the water can be regarded as an isotropic, incompressible
Newtonian fluid for which the stress tensor is given by

T = −pI + μ(∇V + V ∇), (3)

and where μ is the fluid’s viscosity. The frictional force per unit volume
in therefore (with div V = 0)

F = μ∇2V (4)

If L is the differential length scale of a given motion in which the ve-
locity varies in magnitude by U , the ratio R = pUL

μ (known as the

Reynolds number) represents the relative magnitudes of the inertial and
viscous terms in the momentum equation. In many oceanic motions,
the Reynolds number is very large, and the viscous form is often quite
negligible over most of the field of motion.

• Using the vector identity V · ∇V = ∇( 1
2V 2) + (ω × V ), where

ω = curl V , Eq. (1) becomes

∂V

∂t
+ 2(Ω + ω) × V +

1
ρ
∇p + ∇

(
1
2
V 2

)

− g = F . (5)

When ρ is in effect constant, (5) goes into

ρ
∂V

∂t
= ρg + μ∇2V − ρ(Ω + ω) × V − ∇(p +

1
2
ρV 2). (6)

The Eulerian mass-acceleration is thus given as a balance between four
forces. The term ρ(Ω + ω) × V can be called total vortex force.

• Sea water is a chemical solution; its density ρ = ρ(p, T, S) where
p = pressure, T = temperature and S = salinity (the mass of dissolved
solids per unit mass of sea water). This dependence has no analytical
form, but various empirical approximations. However, for an ordinary
range of temperature and salinity encountered in the ocean, the equation
of state is approximately given by

ρ = 1 − aT − bS,

where a, b are numerical constants.
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• If in (2) we retain the Coriolis term we shall have

∂p

∂z
= gρ(1 − 2uΩ

g
cos θ)

With fast currents near the equator (e.g. zonal undercurrents of
the Pacific and Atlantic Oceans flowing from west to east), θ ≈ 0◦,
u ∼ 150 cm/sec, and therefore 2uΩ

g cos θ ≈ 2.3 × 10−5, which may be
significant.

• In moving fluids where the velocity varies in space, frictional stresses
are present as a result of momentum transfer between layers of different
velocities. In the case of laminar flow the exchange of momentum is
the result of molecular motion. However, if the fluid is stirred by some
internal or external cause and individual layers are ‘entangled’ by macro-
scopic irregular displacements of water parcels, the rate of momentum
exchange (as well as heat exchange, diffusion of dissolved solids, etc.)
increase considerably. This is called turbulent flow. Turbulence, stirring,
mixing and diffusion play a very important role in both oceanography
and meteorology.

The mechanical energy equation

Forming the scalar product of V with the respective terms of (5) yields

ρ
∂

∂t

(
1
2
V 2

)

+ V · ∇p − ρV · g = V · F . (7)

Now, if ξ measures the vertical displacement of a fluid element (measured
upwards), then

−ρV · g = ρgw = ρg
dξ

dt
(8)

and with use of the continuity equation dρ
dt + ρdiv V = 0, we can express (8)

as

∂

∂t

[
1
2
ρV 2 + ρgξ

]

+ div
[

V

(

p +
1
2
ρV 2 + ρgξ

)]

= pdiv V + V · F . (9)

Since

Σ = V

(

p +
1
2
ρV 2 + ρgξ

)

(10)

is the energy flux density vector, (9) is just a statement that the rate of change
of the Hamiltonian

H =
1
2
ρV 2 + ρgξ (11)



1872 CE 2385

and the divergence of the energy flux density equal the rate of working in
compressing the fluid and against frictional forces. If the fluid is incompress-
ible (div V = 0) and inviscid (F = 0), the energy balance is ∂H

∂t + div Σ = 0.
Coriolis forces do no work, since their direction is always normal to the veloc-
ity V . They can, however, influence the energy flux indirectly by contributing
to the pressure variation in the fluid.

In an incompressible Newtonian fluid F = μ∇2V , so that the rate of
working against viscous forces is

V · F = 2μV · div E = 2μdiv(V · E) − ε, (12)

where ε = 2μ(εii)2. While 2μdiv(V · E) can be interpreted as a viscous
energy flux, the quantity ε (essentially positive) represents the rate of energy
dissipation per unit volume by molecular viscosity.

Summary

A complete set of basic equations of dynamic oceanography is the following
(ν = μ

ρ )

DV

Dt
+ 2(Ω × V ) =

1
ρ
∇p − ∇Ψ − β∇g + ν∇2V conservation of momentum

(13)
Dρ

Dt
=

∂ρ

∂t
+ div(ρV ) = 0 conservation of mass

(14)

ρ = f(p, T, S) equation of state (15)
∂(ρT )

∂t
+ div(ρTV ) = −div ΣT + qT conservation of heat

(16)
∂(ρS)

∂t
+ div(ρSV ) = −div ΣS + qS conservation of salt (17)

These are 7 scalar equations in the 7 unknown scalar functions
(V , p, ρ, T, S), where Ψ is the gravitational potential, T is the temperature, S
is the salinity, ΣT is the flux of T due to heat conduction and diffusion, and
ΣS is the corresponding salinity flux. Note that since div(ρTV ) = ρT div V +
V ·∇(ρT ), the advective term replaces the divergence term for incompressible
ocean. If Fick’s law holds, −div ΣT = κT ∇2T , −div ΣS = κS∇2S, and free
convection ensues.

Note that although the law of conservation of the total energy is not in-
cluded explicitly, it is implicit in the flux vectors ΣT and ΣS . Also β = − 1

p
∂ρ
∂T
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is the thermal expansion coefficient of the fluid. If ρ = ρ(p) only, the first
5 equations constitute a complete set for the functions (V , ρ, p). In the first
equation, incompressibility was assumed for the frictional forces. In Eqs. (16)-
(17), q is the total internal source of heat and salinity respectively.

It is clear from (13)-(17) that the equations of motion are quadratically
nonlinear, i.e., contain products of dynamic variables. This implies that in
principle it is not possible to simply superpose solutions of the equations. In
physical terms, motions on one spatial scale interact with motions on other
scales. There is therefore an a priori possibility that small-scale motions may
influence the large-scale motions. There is in fact evidence that the small-
scale motions, which appear sporadic on larger time scales, act to smooth
and mix properties on the larger scales by processes analogous to molecular,
diffusive transports. This will become apparent in the next section when the
Reynolds stress is introduced.

Nondimensional parameters

Let us return to Eq. (9) and associate with each term a characteristic
dimension by means of the correspondence

Fluid velocity V → U

Scale-time t → T

Coriolis parameter Ω → f = 2Ω sin θ

Frictional force ν∇2V → ν
L2 U (∇ → 1

L )

Gravitational potential Ψ → gH,

where L is some lateral characteristic length, H is a vertical characteristic
length, T is a characteristic time and U is a characteristic speed. Since each
term in equations (13)-(17) is of the same dimension, the relative influence
of terms will be determined by dimensionless numbers. There are seven such
numbers, each named after the person who first stressed its importance in
some fluid system:

Fr = Froude number =
Inertial force

Gravitational force
=

U2

gH

R0 = Rossby number =
Inertial force

Coriolis force
=

U

fL

Re = Reynolds number =
Inertial force

Frictional force
=

ρUL

μ

Ek = Ekman number =
Coriolis force

Frictional force
= L

√
fp

μν
(18)
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Eu = Euler number =
Inertial force

Pressure gradient force
=

ρU2

|∇p|
Pr = Prandtl number =

μ

ρκT

GR = Grashof number = ρ2βgL3 T1 − T0

μ2

The relative magnitudes of the various forces and accelerations can be
compared among each other by dimensional analysis. Ocean currents are
slow enough that pressure can be approximated with high accuracy by the
hydrostatic equation. Consequently, pressure gradients are produced primar-
ily by slopes of the sea surface and variations of density within the interior
of the ocean. Furthermore, the forces due to horizontal gradients of pressure
are balanced primarily by the Coriolis forces. The remaining forces due to
accelerations and friction are generally smaller than the pressure gradient and
Coriolis forces, but can become important in some regions of the ocean.

By evaluating the coefficients R0, Re, Fr for a given flow, we obtain an
appreciation of the magnitudes of the forces involved and can decide which
force needs to be taken into account for a satisfactory interpretation of the
flow in terms of the equations. Conversely, we can examine the coefficients to
determine the horizontal and vertical scales for which any given term of the
equations becomes comparable to unity. For example, the ratio of the nonlin-
ear accelerations to the Coriolis forces is given by the Rossby number, R0. If
we use the observation that steady velocities in the ocean do not exceed 2 or
3 m/sec, we can make the Rossby number comparable to unity only by assum-
ing the current to be sharply confined horizontally (L small), or by assuming
a current near the equator (f small). At mid-latitudes, the Rossby number
approaches unity for horizontal scales of 20 to 30 km for the maximum veloci-
ties given above. Such conditions are approached only in concentrated current
systems such as the Gulf Stream and Kuroshio. Another way to interpret the
Rossby number is to note that the ratio U/L is the characteristic magnitude
of the vertical component of relative vorticity, ∂Uu/∂x1−∂U1/∂x2. Thus, the
Rossby number can be considered as the ratio of the relative vorticity to the
Coriolis parameter. Hence, if the relative vorticity approaches the Coriolis
parameter, the Rossby number will be near unity and nonlinear accelerations
will be of the same magnitude as the Coriolis forces.

Near the turn of the century two other major steps were taken in the
formulation of the modern point of view. Maury’s observation of the close
relationship between surface winds and ocean surface currents was given a
physical explanation by Vagn Walfrid Ekman (1874–1954, Sweden). Dur-
ing 1905–1923 he determined the ocean’s theoretical response both to a steady
wind and to an impulsive horizontally uniform wind, examining particularly
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the influence of the Coriolis force on the dynamical behavior of the ice and
the upper layers of the ocean.

Ekman showed not only that there should be a spiral effect (waters moving
slower and further to the right with depth), but also that the wind-driven
currents should extend only to a depth of about 200 meters.

Near the sea-bed, as the flow becomes influenced by friction with the ocean
bottom, the spiraling is such that the direction of flow moves leftward with
depth (1905). He later (1923) extended his results to non-uniform winds,
variable ocean-bottom topography, and variable latitude.

It was found that major ocean currents are basically produced by two
factors: distribution of density and effect of wind stress on the sea surface.
Variations in density are widely distributed due to differential heating and
evaporation. They cause the waters to move both horizontally and vertically.

Major ocean currents are set in motion by these variations and by the drag
of the wind on the surface layers. Once the water mass begins to move, it is
deflected due to the Coriolis force, and the major surface current circulation
is established. Upwelling and sinking of water masses are similarly caused by
density differences and the blowing away or piling up of waters under the stress
of air currents. Density gradients so light that they are difficult to measure,
may nevertheless be sufficient to produce or to maintain ocean currents.

The Coriolis effect, due to the earth’s rotation, causes surface currents in
the Northern Hemisphere to deflect 45 ◦ to the right of the wind direction,
and in the Southern Hemisphere, 45 ◦ to the left. At the depth at which the
current speed is 1

23 of the surface speed, the current moves exactly opposite
to the direction at the surface, a phenomenon called the Ekman spiral.

The surface circulation of the ocean is a direct result of the circulation of
the atmosphere, where the pattern of gyres results from the winds and the
geography of the continents. While the oceans are separated in the North,
the free passage around Antarctica permits a great current to flow from west
to east around the globe.

The rate of transport of water by the major ocean currents are (in 106

m3sec−1): Antarctic current (200); Gulf Stream — Florida Straits (25); Gulf
Stream — Cape Hatteras (100); Kuroshio (50); North Pacific to Arctic Ocean
(0.7); All the world’s rivers (1); Flux of atmospheric water vapor across a
parallel of latitude (0.7).

Thus, the ocean currents transport a tremendous amount of water and
keep the surface water of the sea relatively well mixed. In closed seas, such
as the Mediterranean Sea and the Red Sea, an arid atmosphere causes great
evaporation: surface water flows in to replace the loss. In humid climate
conditions, the system is reversed due to heavy rainfall.
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In the Atlantic, deep water circulation takes place: below Greenland, the
warm, highly saline waters of the Gulf Stream are cooled, the density in-
creases, and the water sinks to intermediate level where it is displaced to the
south. In the tropical regions of the North Equatorial Current, the surface
waters are in turn heated, evaporated, and displaced by wind stress. Here the
deep waters rise to the surface, completing the cycle448.

1872–1873 CE Elias Ney (1844–1897, England). Explorer of Asia. Led
eight major expeditions to Central Asia, all of them hazardous. His most
famous journey begun in September 1872, when with a Chinese servant, a
camel driver, an interpreter, six camels and two ponies he set out to cross
the Gobi Desert from a location NW of Peking (114 ◦E; 42 ◦N). Traveling NW
across Mongolia, he reached Uliastay, and then crossed the frozen Lake Haar
Us Nuur to reach Hovd. From there he traversed the Altai range to Biysk
in Siberia, on the upper waters of the Ob. Finally a horse-drawn sleigh ride
in the depth of the Siberian winter took him to Nijni-Novgorod. He traveled
altogether some 8000 km.

Ney was born in 1844, the son of Jewish parents. In his time he ranked
with Stanley (both received the Royal Geographical Society’s Founders Medal
for outstanding work in 1873), but is now almost forgotten.

1872–1884 CE Georg (Ferdinand Ludwig Philipp) Cantor449 (1845–
1918, Germany). A great and revolutionary mathematician, whose work on
set theory and the theory of the infinite created a whole new field of mathe-
matical research and exerted profound influence on most branches of contem-
porary mathematics — especially the foundation of mathematics and mathe-
matical logic. In his papers he created an arithmetic of transfinite numbers,

448 Movement of the deeper water masses was unknown until deep-current meters,

buoys, and radioactive trace-element detectors came into use. In 1952, the

Cromwell Current in the equatorial Pacific was discovered by scientists from

the Scripps Institute of Oceanography. This great current, about 400 kilometers

wide, sweeps thousands of kilometers in an eastward direction at a speed of 6.5

km/hr.
449 For further reading, see:

• Dauben, J.W., George Cantor: His Mathematics and Philosophy of the Infi-

nite, Harvard University Press: Cambridge, 1979, 404 pp.
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analogous to the arithmetic of finite numbers, eliminating all metaphysical
elements from the foundations of the exact sciences. Historians of mathe-
matics have ranked his work as “one of the most original contributions to
mathematics in the past 2500 years”.

Cantor’s early interests were in number theory, indeterminate equations
and trigonometric series. The subtle theory of trigonometric series seems to
have inspired him to look into the foundations of analysis.

Ever since the days of Zeno, men had been talking about infinity, in the-
ology as well as mathematics, but no one before 1872 had been able to tell
precisely what he was talking about. Cauchy and Weierstrass saw only
paradoxes in their attempts to identify infinity in mathematics. In fact, there
was a considerable ‘horror infinite’ and mathematicians were reluctant to
accept ‘completed infinity’. Cantor created a theory of the actual infinite
which by its apparent consistency demolished the Aristotelian and scholastic
“proofs” that no such theory could be found.

Some of Cantor’s ideas, simply stated, are as follows:

(1) A transfinite number, unlike a finite number, can always be put into 1–
1 (one to one) correspondence with some part of itself [e.g.: set of all
integers with the set of all even integers].

(2) Although the set of rational numbers is dense (i.e. between any two ra-
tional numbers one can ‘pack in’ an infinity of other rational numbers),
the set of all rationals can be rearranged in such a way that they can
be put into 1–1 correspondence with the set of all integers, which is a
discrete set. [A denumerable infinity is designated by the Hebrew letter
ℵ0. This is the “power” (cardinality) of the set of positive integers and
also the “power” of the positive rationals.]

(3) Any linear continuum, no matter of what length, can be put in 1–1 corre-
spondence with the line-segment from 0 to 1, i.e. the set of real numbers
between 0 and 1 is equivalent to the set of all real numbers450.

(4) The set of real numbers between 0 and 1 (known as a continuum) is not
countable, in the sense that it cannot be put in a 1–1 correspondence
with the aggregate of natural numbers. Its power equals to the power of
the set of all real numbers, and is denoted by C.

(5) A 1–1 correspondence can be set up between points on a one-dimensional
continuum and any finite-dimensional continuum, i.e. there are no more
points in a square or cube than in a line segment [Cn = C].

450 The mapping z′ = [1 + e−z]−1 maps (−∞, ∞) onto (0, 1); the inverse

transformation is z = loge
z′

1−z′ .
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(6) Since any finite set of m elements has 2m subsets, one denotes, for any
set A of power p, the power of the power set of A (set of all subsets) by
2p. It can be shown that 2ℵ0 = C, and in fact N ℵ0 = C, when N ≥ 2
is any finite integer.

(7) As in ordinary arithmetic, numbers are of two kinds: cardinal and
ordinal [e.g. cardinal numbers are 1, 2, 3, 4, . . .; ordinal numbers are
1st, 2nd, 3rd, 4th, . . .]. So, in the arithmetic of transfinites as well, ℵ0 and
C are cardinal transfinite numbers. Cantor conjectured that there is no
cardinal number greater than ℵ0 and smaller than C. This is known as
the continuum hypothesis.

Cantor’s ideas threw new light on the concept of dimension. This concept
presents no great difficulty as long as one deals only with simple geometrical
figures such as points, areas, lines, triangles, and polyhedra. A single point or
any finite set of points has dimension zero, a line segment is one-dimensional,
and the surface of a triangle or of a sphere is two-dimensional.

The set of points in a solid cube is three-dimensional. But when one
attempts to extend this concept to more general point sets, the need for a
precise definition arises. What dimension should be assigned to the point
set R consisting of all points on the x-axis whose coordinates are rational
numbers? The set of rational points is dense on the line and might therefore
be considered to be one-dimensional, like the line itself. On the other hand,
there are irrational gaps between any pair of rational points, as between any
two points of a finite point set, so that the dimension of the set R might also
be considered to be zero.

The problem becomes even more complex as one tries to assign a dimension
to the following curious point-set, first considered by Cantor and known as
the Cantor set C.

From the unit segment remove the middle third, consisting of all points x
such that 1/3 < x < 2/3. Call the remaining set of points C1. Now from C1

remove the middle third of each of its two segments, leaving a set which we
call C2. Repeat this process by removing the middle third of each of the four
intervals of C2, leaving a set C3, and proceed in this manner to form sets C4,
C5, C6, . . .. Denote by C the set of points on the unit segment that are left
after all these intervals have been removed, i.e. C is the set of points common
to the infinite sequence of sets C1, C2, . . .. Since one interval, of length 1/3,
was removed at the first step; two intervals, each of length 1/32, at the second
step; etc.; the total length of the segments removed is

1 · 1
3

+ 2 · 1
32

+ 22 · 1
33

+ · · · =
1
3

[
1 +

(2
3
)

+
(2
3
)2 + . . .

]
.
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The infinite series in parentheses is a geometrical series whose sum is
1/(1 − 2/3) = 3; hence the total length of the segments removed is 1. Still
there remain points in the set C. Such, for example, are the points 1/3, 2/3,
1/9, 2/9, 7/9, 8/9, . . ., by which the successive segments are trisected. As a
matter of fact it is easy to show that C will consist precisely of all those points
x whose base 3 decimal expansions can be written in the form

x =
a1

3
+

a2

32
+

a3

33
+ · · · + an

3n
+ . . . ,

where each ai is either 0 or 2, while the triadic expansion of every point
removed will have at least one of the numbers ai equal to 1.

What shall be the dimension of the set C? The diagonal process used to
prove the non-denumerability of the set of all real numbers can be so modified
as to yield the same result for the set C. It would seem, therefore, that the
set C should be one-dimensional. Yet C contains no complete interval, no
matter how small, so that C might also be thought of as zero-dimensional,
like a finite set of points. In the same spirit, we might ask whether the set
of points of the plane, obtained by erecting at each rational point or at each
point of the Cantor set C a segment of unit length, should be considered to
be one-dimensional or two-dimensional451.

After Cantor, mathematicians based set theory on abstract postulate sys-
tems. One such axiomatization, for example, is due to Ernst Zermelo (1871–
1956, Germany, 1922) and Abraham Halevi Fraenkel (1891–1965, Israel,
1927). Then, in 1938, Kurt Gödel demonstrated that one can safely assume
Cantor’s ‘continuum hypothesis’ as an additional postulate in set theory, i.e. he
proved that the continuum hypothesis is consistent with the Zermelo-Fraenkel

451 An inductive definition of dimensionality is also contained implicitly in Euclid’s

Elements, where a one-dimensional figure is something whose boundary consists

of points, a two-dimensional figure one whose boundary consists of curves, and

a three-dimensional figure one whose boundary consists of surfaces.

Poincaré (1912) first called attention to the need for a deeper analysis and a

precise definition of the concept of dimensionality. Poincaré observed that the

line is one-dimensional because we may separate any two points on it by cutting

it at a single point (which is of dimension 0), while the plane is two-dimensional

because in order to separate a pair of points in the plane we must cut out

a whole closed curve (of dimension 1). This suggests the inductive nature of

dimensionality: a space is n-dimensional if any two points may be separated

by removing an (n − 1)-dimensional subset, and if a lower-dimensional subset

will not always suffice. The introduction of fractal geometry by Mandelbrot

(1977) finally made the theory applicable to many physical problems.
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axioms. The last word however, had not been said, since Gödel had neither
proven the continuum hypothesis452 nor shown that it is indemonstrable.

In 1963 Paul Joseph Cohen (b. 1934, U.S.A.) has shown that Cantor’s
hypothesis is independent of the other axioms of set theory. Hence, the con-
tinuum hypothesis can be assumed or denied depending on the applications
one has in mind, i.e. there are at least two types of mathematics possible —
one that holds that the continuum hypothesis is true, and another in which
it is false.

Cantor was born in St. Petersburg, Russia, of pure Jewish descent on both
sides [though his father converted to Protestantism and his mother had been
born a Catholic]. In 1856 he moved with his parents to Frankfurt, Germany.
He rejected his father’s suggestion of preparing for a career in engineering in
favor of concentrating on philosophy, physics and mathematics. He studied at
Zürich, Göttingen and Berlin, where he came under the influence of Kummer
and Weierstrass and took his Ph.D. degree in 1867.

In 1874 he published his path-breaking paper on the theory of infinite sets.
In the same year Cantor married Vally Guttman; six children were born of
the marriage. The following 10 years were the period of his most original
productivity. All his active professional career was spent at the University of
Halle, a distinctly third-rate institution, where he was appointed full professor
in 1879. He never achieved his ambition of professorship in Berlin, which
at that time was the highest German distinction. It was Kronecker who
blocked his appointment in Berlin453 and was instrumental in rejecting the
publication of Cantor’s papers in Crelle’s Journal. In fact, Kronecker regarded
Cantor’s ideas as a dangerous type of mathematical insanity, and attacked the
hypersensitive author vigorously and viciously with every weapon that came
to his hand. The tragic outcome was that Kronecker’s attack broke the creator
of the theory, who died in a mental hospital in Halle.

David Hilbert (1862–1943), himself one of the greatest mathematicians
of recent times, considered Cantor’s achievement to be: “the most wonderful
flowering of the spirit of mathematics and indeed one of the greatest achieve-
ments of human reason” (1926).

452 The continuum hypothesis problem was the first of Hilbert’s famous 23 prob-

lems delivered to the Second International Congress of Mathematicians in Paris

(1900).
453 Kronecker’s vicious animosity toward Cantor was basically very personal. It

was motivated by a combination of jealousy and fear, disguised under the hyp-

ocritical cover of an academic controversy and enhanced by the fact that both

belonged to an intellectual elité of an assimilated convert minority.
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Infinity, Transfinity and Set Theory454

The idea of infinity has been the subject of deep thought from the time of
the Greeks. Zeno of Elea (ca 450 BCE), with his famous ‘paradoxes’, made
an early major contribution. Other thinkers who had adduced ideas on the
concept of infinity include Aristotle, Descartes, Berkeley and Leibniz.
Albert of Saxony in his Questiones subtilissime in libros de celo et mundi
(1365) proves that a beam of infinite length has the same volume as 3-space.
He proves it by sawing the beam into imaginary pieces which he then assembles
into successive concentric shells which fill space. Thus, by the Middle Ages,
discussion of the infinite had led to comparisons among infinite sets of objects.
Nicolas of Cusa (1440) studied the infinitely large and the infinitely small
and had an intuitive feel for the procedure of the limit.

By the beginning of the 19th century a clear distinction had been estab-
lished between analysis (the study of infinite processes) and algebra, which
deals with operations on discrete entities such as the natural numbers and
polynomials. A major objective of much of the 19th century mathematical
effort was to unify — or, at any rate, to build bridges between — these two
branches of mathematics. This endeavor was termed ‘the arithmetization of
analysis’. It was realized that the prime task was to construct a sound log-
ical foundation of the real number system. Although the basic concepts of
analysis — function, continuity, limit, convergence, infinity and so on — were
progressively clarified and refined during the first half of the 19th century,
mathematicians failed to consider the precise structure and properties of the
real numbers. Even Cauchy lacked the understanding of the structure of
the number system. Indeed — the theory of the arithmetic continuum was
needed.

A step in the direction of an improved understanding of irrational numbers
was the mid-19th century work on algebraic and transcendental numbers455.

454 For further reading, see:

• Aczel, A.D., The Mystery of the Aleph, Washington Square Press, 2001,

258 pp.

• Kaplan, R. and E. Kaplan, The Art of the Infinite, Oxford University Press,

2003, 324 pp.

• Lieber, L.R., Infinity, Reinhart and Company, 1953, 359 pp.

455 Real numbers can be divided into algebraic and transcendental numbers. An

algebraic number is defined as a number which is a root of a polynomial equation
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The interest in this distinction was heightened by the 19th-century work
on the solution of equations, because this work revealed that not all irra-
tionals could be obtained by finite sequences of algebraic operators on rational
numbers456. This grew out of the question of whether there are indeed any
transcendental numbers at all. In 1844, Liouville answered the question in
the affirmative by actually constructing such numbers. He proved, e.g. that
all numbers of the form

a1

101!
+

a2

102!
+

a3

103!
+ · · · = 0.a1a2000a3 . . .

where ai are arbitrary integers in the range 0–9, are nonalgebraic, and there-
fore transcendental.

B. Bolzano considered sets with the following definition:

“An embodiment of the idea or concept which we can conceive when we
regard the arrangement of its parts as a matter of indifference”.

Bolzano defended the concept of an infinite set. At this time many be-
lieved that infinite sets could not exist. He gave examples to show that, unlike
for finite sets, the elements of an infinite set could be put in one-to-one cor-
respondence with elements of one of its proper sets. This idea eventually
came to be used in the definition of a finite set. It was with Cantor’s work,
however, that set theory came to be put on a proper mathematical basis.

In 1873 Hermite proved that e is transcendental; and in 1882 Linde-
mann did the same for π. Finally in 1934, A. Gelfond discovered that if a
is an algebraic number (not equal to 0 or 1) and b is an algebraic irrational

number, then ab is transcendental (e.g. 3
√

2). However, the Mascheroni-Euler
constant

γ = lim
n→∞

(1 +
1
2

+ · · · + 1
n

− log n) = 0.577216 . . .

is not known to be rational, irrational, algebraic or transcendental.

Dedekind (1858) realized that the system of real numbers lacked a firm
logical foundation: the Greeks, with their geometrical predilections, identified
real numbers (rational and irrational) with line segments.

of the form: a0x
n + a1x

n−1 + · · · + an−1x + an = 0, where n and the ai are

integers. A transcendental number is, therefore, any irrational number that is

not algebraic (a rational number is also algebraic, of course). It can be proved

that even if ai are any algebraic numbers (as opposed to integers or rationals),

all roots of
∑n

i=0 aix
n−i are, nevertheless, algebraic.

456 Nor could all algebraic numbers be expressed as finite successions of arithmeti-

cal operations upon integers, even when these operations include the radical

operations n
√

, n integer.
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They tacitly assumed that any such number could be represented by a
unique point on an infinitely extended straight line with a specific origin.
The Greeks, however, while accepting irrational geometric entities (such as
the diagonal of the unit square), could not accept the concept of irrational
numbers, because it was less intuitive and required confrontation with the
concept of infinity, whether by sequences, decimals, or continued fractions.

Western mathematics seemed to follow this trend and until the 19th cen-
tury this seemed to be a good reason for considering geometry to be a better
foundation continuum for mathematics than arithmetic. Then the problems
of geometry came to a head with the advent of non-Euclidean geometry, and
mathematicians began to fear geometric intuition as much as they had previ-
ously feared infinity.

Dedekind then set out to construct irrational numbers from scratch using
sets of rationals. The number

√
2 is determined by the two sets of positive

rationals:

L√
2 = all rational numbers r whose square r2 < 2

U√
2 = all rational numbers r whose square r2 > 2

He decided to identify
√

2 with this pair of sets. In general, any partition of
the positive rationals into sets L, U such that any member of L is less than
any member of U and elements of L can get arbitrary close to elements of U ,
defines a positive real number. This idea (known as a Dedekind cut) gives a
complete and uniform construction of all real numbers, or points on a line,
using just rationals. It is an explanation of the continuous in terms of the
discrete, finally resolving the fundamental conflict in Greek mathematics.

The assumption that the points on a line can be put in one-to-one cor-
respondence with the real numbers is now known as the Dedekind-Cantor
axiom. It must be realized that the logical definition of an irrational number
is rather sophisticated — being not just a single symbol or a pair of symbols
but an infinite collection.

Finally, Dedekind’s theory shows that the ‘arithmetic continuum’ of real
numbers is closed under infinite processes (Dedekind theorem): with real num-
bers we reach, as it were, the end of the road.457

Although Dedekind retained the Greek geometrical model of the number
system as an aid to thought and exposition, the aim of most 19th century

457 However, it turned out there are other roads via which infinite sets of rationals

may be used to define a continuum; these result in the so-called p-adic number

systems, studied by Hensel and others.
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mathematicians was to exclude geometrical considerations altogether, to base
virtually the whole of mathematics on the concept of number. Broadly speak-
ing, this objective had been achieved by the mid 20th century, although some
foundational difficulties (e.g. with the logical basis of set theory) still remain.
The next step in the erection of foundations for the number system was the
definition and deduction of the properties of the rational numbers. Peano
(1889) began this process with five axioms for the natural numbers:

• 1 is a natural number

• 1 is not the successor of any other natural number

• Each natural number a has a successor

• If the successors of a and b are equal, then so are a and b

• If a set S of natural numbers contain 1, and if when S contains any
number a it also contains the successor of a, then S contains all the
natural numbers (axiom of mathematical induction)

On these axioms he built all the familiar properties of natural numbers, and
then established the properties of the negative whole numbers and the ratio-
nal numbers as ordered pairs of integers. Again, suitable definitions of the
operations of addition and multiplication of pairs lead to the usual properties
of the rational numbers.

Thus, once the logical approach to the natural numbers was attained,
the problem of building up the foundations of the real number system was
completed.

Sets

Dedekind seemed to have settled the ancient problem of explaining the
continuous in terms of the discrete, but in penetrating as far as he did, he also
uncovered deeper problems. The central problem is the relationship between
two concepts: completeness and countability. To this end, Cantor (1874)
introduced the notion of a set, which is one of the basic primitive mathematical
concepts which does not lend itself to an accurate definition.

Set is the name for an aggregate, ensemble, or collection of objects that are
combined under a certain criterion or rule, e.g. the set of planets of our solar
system, the set of all roots of a given equation, the set of all natural numbers,
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the set of all points of a line, etc. The mathematical discipline that studies
general properties of sets, i.e. properties that do not depend on the nature of
the constituent objects, is called the theory of sets. The ideas and concepts of
this theory penetrated into all branches of mathematics and changed its face
entirely. It is of particularly great significance for the theory of functions of
real variable.

A countable set is one that can be put in one-to-one correspondence with
the set of all natural numbers N = {1, 2, 3, 4, . . . }. If both sets are infinite and
such a correspondence can be set up, then we say that they have the same
cardinality. If not, then we say that one of them contains more elements than
the other, or that one has a greater cardinality than the other.

Cantor discovered that the set of rationals and the set of algebraic numbers
are countable.458He proved, however, that the set of all real numbers (equiv-
alent to the set of all points of the segment 0 < x < 1) is not countable.459

Thus the non-countability of the continuum was established. Since the real
numbers are uncountable and the algebraic numbers are countable, there must
be transcendental irrationals – and in fact all reals but a subset of vanishing
small relative size must be transcendental! This is Cantor’s nonconstructive
existence proof.

Having demonstrated the existence of infinite sets with the same size (car-
dinality) and different sizes, Cantor introduced the theory of cardinal and
ordinal numbers (1879–1884). He expressed the size (or ‘power’ as he called
it) of an infinite set by means of a transfinite number460. He started with the
infinite set of the natural numbers (i.e. the positive integers), and denoted its
‘size’ by the transfinite number ℵ0, which is the cardinal number of this set.
Since the real numbers cannot be put into one-to-one correspondence with

458 To the layman the former may seem rather counterintuitive for the following

reason: although the integers consist an infinite set, one cannot “pack in” any

integers between two successive integers. Yet one can “pack in” an infinity of

other rational numbers between any two rationals by simply taking the arith-

metic mean between them and repeating the process indefinitely [e.g. take 1
2

and 1
3
; the first average is 5

12
; the second mean is 1

2
( 1
2

+ 5
12

) = 11
24

and so on.]

The rationals are thus called a dense set. Intuitively, there are infinitely ‘more’

rationals than there are integers, yet a 1:1 correspondence is possible between

the two sets — e.g. by a lexicographical ordering of positive rationals m
n

(m,

n positive) by m + n and m, followed by “pruning” from the ordered list all

rationals in which m and n possess a common factor.
459 E.g. by means of the homeomorphism x → tan π(x − 1

2
).

460 This theory is distinct from the concept of infinity wherein one speaks of a

variable becoming infinitely large in a limit.
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the natural numbers, the set of real numbers must have a greater cardinal
number which is denoted by C (first letter of the word continuum). Thus
C > ℵ0. In Cantor’s theory of sets, there is a whole hierarchy of transfinite
numbers. Thus:

• The power of the set of positive rational numbers is also ℵ0.

• Since k + ℵ0 is also denumerable461, we can write k + ℵ0 = ℵ0 (k > 0
integer).

• Since kℵ0 is also denumerable, we can write kℵ0 = ℵ0, where k is any
positive integer (e.g. the union of the sets of even and odd integers, each
countable, is just the set of integers, also countable).

• We construct the table

→ i

j ↓

1 2 3 4 5 6 . . .

1 1 2 4 7 11
2 3 5 8 12
3 6 9 13
4 10 14
5 15
...

i = 1, 2, . . . ,∞
j = 1, 2, . . . ,∞

where the entries in the table are assigned natural numbers along the con-
secutive diagonals, each starting from the upper right and sweeping toward
the lower left. Thus, any pair of natural numbers is uniquely associated with
a definite box (ij). Clearly, the totality of such pairs is represented by the
numbered boxes, and this set of boxes is countable. Hence we see that

ℵ0 · ℵ0 = ℵ0

In general ℵn
0 = ℵ0 (n = finite positive integer).

• Any real number (say between 0 and 1) can be written as the base-2
decimal fraction 0.a1a2a3a4 . . .. Each ai can be filled in by any of the two
binary digits 0 or 1. Hence 2ℵ0 = C.

Another way of demonstrating this is as follows: Let S be a finite set,
and let its number of elements be n. The number of distinct subsets is 2n.

461 e.g.

{a}
⋃

{ 1, 2, 3, 4, . . . }
↓ ↓ ↓ ↓ ↓
1 2, 3, 4, 5, . . .
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Extending this notion to infinite sets leads to the result (or actually, definition)
that the set of all subsets (known as the power set) of N (the set of natural
numbers) has cardinality 2ℵ0 . But this also equals the cardinality of the reals
in the interval (0, 1), since each such real number is uniquely represented by
the set of its binary digits that equal 1 and these sets are precisely the distinct
subsets of the set of decimal positions to the right of the decimal point – i.e.,
the subsets of N = {1, 2, 3, . . .}. Thus we again obtain C = 2ℵ0 .

Furthermore, C · C = 2ℵ0 · 2ℵ0 = 22ℵ0 = 2ℵ0 = C, and in general

Cn = C (n any positive integer)

The geometrical interpretation of this statement is that the ‘number’ of real
points in a unit square (or unit hypercube of any dimension) is the same as the
‘number’ of points in one of its sides. Indeed, it is easy to demonstrate that
there exists a 1-1 correspondence between the points on a line segment and the
points in a square. Likewise, a 1-1 correspondence can be set between points
on a line segment and points in a cube (C3), and in fact in an n-dimensional
continuum Cn for any n > 1.

• A 1-1 correspondence can be set up between all points of a line segment
and any part of itself. This equivalence is demonstrated analytically via the
transformation z′ = a + (b − a)z, where 0 ≤ z ≤ 1 and 0 ≤ a ≤ 1,
0 ≤ b ≤ 1, which maps [0, 1] onto [a, b]. Likewise, the transformation
z′ = ez

1+ez transforms z in the range −∞ < z < +∞ to 0 < z′ < 1. This means
that the set of real numbers between 0 and 1 is equivalent (in its cardinality)
to the set of all real numbers.

•
Cℵ0 = (2ℵ0)ℵ0 = 2ℵ0·ℵ0 = 2ℵ0 = C

means that a continuum of a denumerable (countable) infinity of dimensions
(such as e.g. the set of all Fourier Series on a real interval) still has the same
‘power’ as a one dimensional continuum.

•
ℵ0

ℵ0 = 2ℵ0 = C

Ordinal numbers

The concept of infinity is perplexing to mathematicians and nonmathe-
maticians alike. The ancient Greek philosophers and mathematicians were
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quite wary of infinities except potential infinities. Their lines were never com-

pleted, always what we call line segments. Aristotle distinguished two kinds of

infinity. One can be described by the unlimited extent to which a line segment

can be extended. This is a potential infinity, an unboundedness. Aristotle’s

other infinity can be found within a line segment since that line segment can

be divided without bound. Again a potential infinity.

Through the centuries actual infinities remained suspect. Calculus (in-

finitesimal analysis) would probably have developed sooner had actual infini-

ties been accepted. Actual infinities gained slow acceptance. For instance,

completed lines became standard objects in geometry. Infinity in calculus

remained a problem, though, until Cauchy found a way to define limits as a

foundation for calculus.

Cantor discovered that there were different kinds of infinities in set theory:

one was that of the cardinal numbers (sizes of sets). The other is that of ordinal
numbers (counting numbers: first, second, third, etc.). For finite sets, they

are the same. They differ, however, for infinite sets.

A set is simply ordered if an ordering relation (“<”) can be defined on it

such that any two elements have a definite order — i.e., given m1 and m2 �=
m1, either m1 precedes m2 or m2 precedes m1; the notation is m1 < m2 or

m2 < m1. Further, if m1 < m2 and m2 < m3, then simple order also implies

m1 < m3; that is, the order relationship is transitive. An ordinal number of

a simply ordered set M is the order type of the order in the set.

Two ordered sets are similar if there is a 1-1 correspondence between them

and if when m1 corresponds to n1 and m2 corresponds to n2 and m1 < m2,

then n1 < n2 (and vice versa). Two similar sets have the same type of ordinal

number. The algebra of ordinal numbers is best expounded in the following

words of Morris Kline.462

“The ordinal number of the set of positive integers in their
natural order is denoted by ω. On the other hand, the set of

positive integers in decreasing order, that is . . . , 4, 3, 2, 1 is denoted

by ∗ω. The set of integers with zero in the usual order has the

ordinal number ∗ω + ω.

Next Cantor defined the addition and multiplication of ordinal

numbers. The sum of two ordinal numbers is the ordinal number of

the first ordered set plus the ordinal number of the second ordered

462 Mathematical Thought from Ancient to Modern Time, pp. 1001–1002 (Oxford

University Press, 1972).
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set taken in that specific order. Thus, the set of positive integers
followed by the first five integers, that is,

1, 2, 3, . . . , 1, 2, 3, 4, 5,

has the ordinal number ω + 5. Also the equality and inequality of
ordinal numbers is defined in a rather obvious way.

He next introduced the full set of transfinite ordinals, partly
for their own value and partly to precisely define higher transfinite
cardinal numbers. To introduce these new ordinals he restricted
the simply ordered sets to well-ordered sets. A set is well-ordered if
it has a first element in the ordering and if every subset has a first
element463. There is a hierarchy of ordinal numbers and cardinal
numbers. In the first class, denoted by Z1 , are the finite ordinals

1, 2, 3, . . . .

In the second class, denoted by Z2 are the ordinals

ω, ω+1, ω+2, . . . , 2ω, 2ω+1, . . . , 3ω, 3ω+1, . . . ω2, ω3, . . . , ωω, . . .

Each of these ordinals is the ordinal of a set whose cardinal number
is ℵ0.

The set of ordinals in Z2 has a cardinal number. The set is not
denumerable and so Cantor introduces a new cardinal number ℵ1

as the cardinality of the set Z2. ℵ1 is then shown to be the next
cardinal after ℵ0. The ordinals of the third class, denoted by Z3

are

Ω, Ω + 1, Ω + 2, . . . , 2Ω, . . . .

These are the ordinal numbers of the well-ordered sets, having
ℵ1 elements. However, the set of ordinals Z3 has more than ℵ1

elements, and Cantor denoted the cardinal number of the set Z3

by ℵ2. This hierarchy of ordinals and cardinals can be continued
indefinitely.

Now, Cantor had also shown that given any set, it is always
possible to create a new set, the set of subsets (power set) of the
given set, whose cardinal number is larger than that of the given
set. If ℵ0 is the given set, then the cardinal number of its power
set is 2ℵ0 . As noted above, Cantor proved that 2ℵ0 = C, where C
is the cardinal number of the continuum. On the other hand he

463 Zermelo proved that in the version of Zermelo-Fraenkel set theory where the

axiom of choice is included, every set if well-ordered.
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introduced ℵ1 through the ordinal numbers and proved that ℵ1 is
the next cardinal after ℵ0.

Hence ℵ1 ≤ C, but the question naturally arises as to whether
ℵ1 = C. The conjecture that this holds, known as the continuum
hypothesis, Cantor, despite arduous efforts, could neither prove
nor disprove.

For general sets M and N it is possible that M cannot be
put into one-to-one correspondence with any subset of N and N
cannot be put into one-to-one correspondence with a subset of M .
In this case, though M and N have cardinal numbers α and β,
say, it is not possible to say that β = α, α < β, or α > β. That is,
the two cardinal numbers are not comparable.

For well-ordered sets, Cantor was able to prove that this sit-
uation cannot arise. But it seemed paradoxical that there should
be non-well-ordered sets whose cardinal numbers cannot be com-
pared. But this problem, too, Cantor could not solve.

Ernst Zermelo (1871–1953) took up the problem of what to
do about the comparison of the cardinal numbers of sets that are
not well-ordered. In 1904 he proved, and in 1908 gave a second
proof, that every set can be well-ordered (in some rearrangement).
To construct the proof he had to use what is now known as the
axiom of choice (Zermelo’s axiom), which states that given any
collection of nonempty, disjoint sets, it is possible to choose just
one member from each set and so make up a new set.

The axiom of choice, the well-ordering theorem, and the fact
that any two sets may be compared as to size (that is, if their
cardinal numbers are α and β, either α = β, α < β, or α > β) are
all equivalent principles.”

The issue of whether there are any transfinite numbers between ℵ0 and C
was finally resolved by Paul Cohen (1963) when he proved that the question
is undecidable in the sense that consistent theories of infinite sets can be
constructed which either accept or deny the assumption of the continuum
hypothesis. Its status is, therefore, that of an independent axiom of set theory,
just as Euclid’s parallels axiom was shown by Gauss and others to be an
independent axiom of classical geometry. Cohen also proved that the axiom
of choice (and thus also the cardinality-comparability of any two sets) is itself
undecidable.

In 1930, Kurt Gödel proved that no formal axiomatic system adequate
to embrace arithmetic (and thus number theory) can be both consistent and
complete. If such a system is consistent, then there must be some true state-
ments which can be neither proved nor disproved within this formal system;
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they are undecidable within the system, and so some problems are logically

unsolvable within a give axiomatic framework. (Cohen’s discoveries, men-

tioned in the last section, established both the continuum hypothesis and the

axiom of choice as such undecidable propositions.) In 1933 Gödel proved a

second negative theorem: that there is no constructive procedure whereby an

axiomatic system can establish its own consistency, i.e. freedom from internal

contradictions.

The study of the properties of infinite sets, with their paradoxes and appar-

ent contradictions, has been a major mathematical activity of the twentieth

century. We cannot go into the details of this highly technical field, but to

give a glimpse of the kinds of problems that arise, we end this section with a

well-known story.

A village has only one barber, who claims that he shaves every man in the

village who does not shave himself. The question is: who shaves the barber?

Either answer leads to a contradiction. This paradox is a simple example

of a situation where the use of such words as ‘all’ or ‘every’ can set a trap

for the unwary. Indeed, the argument as to how such difficulties are to be

resolved has divided mathematical logicians into contending camps for most

of the 20th century.

1872–1897 CE Julius Wilhelm Richard Dedekind (1831–1916, Ger-
many). One of the most original mathematicians of the 19th century. He was
educated at Göttingen and became one of Gauss’ last students. His most
influential teachers were Riemann and Dirichlet. In 1858 Dedekind was
appointed professor of mathematics in Zürich, and from 1862 he taught at
the polytechnical school in his native city, Brunswick.

Dedekind’s work is associated with 4 main topics: Theory of positive in-
tegers (1887), theory of irrational numbers (1872)464, the theory of algebraic
numbers (1871) and the idea of the modular grid (1897). His revolutionary
contribution to the first topic is the establishment of the integer concept on
exclusive theoretical-logical basis, using set-theoretic concepts and the intro-
duction of the ‘definition via induction’.

464 W.R. Hamilton made in 1833 one of the first attempts to define irrationals

as partitions of rationals, thus presaging the Dedekind cut.
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In 1872 Dedekind presented a theory of real numbers based on the concept
of Dedekind cut465, in which he proved that every cut in the domain of rational
numbers defines a real number. The principal contribution of Dedekind to
mathematical science is his creation of the theory of algebraic numbers and
the introduction of the concept of the ‘ideal’, which is fundamental to ring
theory.

Dedekind’s brilliance was expressed not only in the theorems and concepts
that he studied: Because of his ability to formulate and express his ideas so
clearly, he introduced a whole new style of mathematics that has been a major
influence on mathematicians ever since.

Richard Dedekind was born in Brunswick (the natal town of Gauss), the
youngest of the four children of Julius Levin Dedekind, a professor of law
of Jewish origin. In 1848 he entered, in the footsteps of Gauss, the Caroline
College and from there he went in 1850 to Göttingen, to become one of Gauss’
last pupils. He stayed there for 7 years and in 1857 was appointed an ordi-
nary professor at the Zürich polytechnic, returning in 1862 to Brunswick as
professor at the technical high school. He stayed there for the next 50 years.
Nobody has as yet been able to explain why Dedekind occupied a relatively
obscure position for half a century, while men who were not fit to lace his shoes
filled important and influential university chairs. Dedekind never married.

465 Dedekind’s idea is this: all rationals can be divided into 2 classes, such that

all the terms in one class are less than all the terms in the other. There are 3

possibilities:

(1) There may be a maximum to the lower section (L) and a minimum to the

upper section (U).

(2) There may be a maximum to L and no minimum to U or vice versa.

(3) There may be neither a maximum to L nor a minimum to U . Example:

The series of decimal approximants to
√

2 where L is the class of all rational

numbers whose square is less than 2 and U is the class of all rational numbers

whose square is greater than 2. In this case, since L has no maximum rational

and U has no minimum rational, there is a hole (cut) in the rational series,

which must be filled, if one desires continuity of the number line. This is done

by postulating that every such ‘cut’ defines an irrational number.
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Algebraic Numbers and Dedekind’s Ideals

The failure of 18th and 19th century mathematics to resolve Fermat’s Last
“Theorem” led to the development of the new arithmetic of algebraic numbers.

An algebraic number is a complex number that is a root of an algebraic
equation p(x) = 0, where p(x) = a0x

m + · · · + am is a polynomial with ratio-
nal coefficients with a0 �= 0 and m > 1. An algebraic number is a root of infi-
nitely many equations of various degrees: e.g. α =

√
3 satisfies the equations

x2 − 3 = 0; x3 − x2 − 3x + 3 = 0; x4 − 9 = 0 etc. But the polynomials for
the last two equations are reducible over the field of rationals, i.e. they can
each be factored into lower-degree polynomials with rational coefficients. If it
is impossible to factor a polynomial p(x) over the rationals into non-constant
factors of lower degree, again with rational coefficients, then p is called irre-
ducible over the rationals. Thus p(x) = x2 − 3 is irreducible.

For any algebraic number α there is exactly one irreducible polynomial φ(x)
over the rationals with leading coefficient 1 such that φ(α) = 0. The degree of
the algebraic number α is defined as the degree of φ(x). For example, every
rational number r is algebraic of the 1st degree, being the root of x − r = 0;
1
2 (1 + i

√
3) is of degree 2, being the root of x2 − x + 1 = 0; and n

√
2 is of degree

n as a root of xn − 2 = 0. If all the coefficients in φ(x) = 0 are integers, then
α is called an algebraic integer. It can be shown that the roots of a polynomial
with algebraic coefficients, are also algebraic.

It is customary to denote the ring of integers by the symbol Z; a ring is a
set of numbers in which operations of addition, subtraction and multiplication
are performed without restriction. Addition in a ring is always commutative,
but multiplication need not be. If it is, the ring is said to be commutative. A
commutative ring in which every nonzero element has a multiplicative inverse,
is called a field. The symbol Q stands for the field of rational numbers. The
symbol Q(

√
d) denotes the field of numbers of the form a + b

√
d, where (a, b)

are arbitrary rational numbers: such a field is known as a quadratic field. If
d > 0, we call it a real quadratic field. If d < 0, we call it complex quadratic
field. If d itself is a square of a rational number, Q(

√
d) is just Q. Just as

Q is the set of all ratios of elements of Z, so Q(
√

d) is the set of ratios a
b

with a ∈ Z(
√

d), b ∈ Z(
√

d), b �= 0, where Z(
√

d) is the ring-subset of Q(
√

d)
consisting of a + b

√
d with a, b integers. All the rings to be considered here

are commutative, have an identity (an element 1 �= 0 such that a ·1 = a for all
a in the ring) and have no zero divisors (i.e. a · b = 0 implies a = 0 or b = 0).
Such a ring is called an integral domain.
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A number α of Q(
√

d) is called a quadratic integer (or just integer for
short) if either α is in Z or α is irrational and the coefficient of x2 in the
defining integer-coefficient polynomial equation for α is 1. The numbers in
Z will be called rational integers. Thus 1

2 (−1 +
√

−3) is an integer because

its defining equation is x2 + x + 1 = 0, while 1
2 (−3 + 6

√
−3) is not an integer

because its defining equation is 4x2 + 12x + 117 = 0. Note that if d belongs
to the ring Z(

√
d) in Q(

√
d), it is a quadratic integer (but the converse need

not hold).

Consider the Diophantine equation y2 + 2 = x3 that has exactly two solu-
tions in positive integers: x = 3, y = ±5. We wish to show that there are no
more solutions in ordinary integers. Although the l.h.s. has no real polyno-
mial factors, we can still factor it into algebraic integers of the form a + b

√
−2,

namely (y +
√

−2)(y −
√

−2) = y2 + 2.

Let us assume for the moment that this factorization has broken y2 + 2
into two mutually prime factors in Z(

√
−2). If that is so, then by the unique

factorization theorem466, each of (y +
√

−2) and (y −
√

−2) must be a cube if
their product is to be x3. That is,

y+
√

−2 = (u+v
√

−2)3 = (u3−6uv2)+(3u2v−2v3)
√

−2, with u, v integers.

Equating the imaginary parts of both sides we find 1 = 3u2v − 2v3 =
v(3u2 − 2v2). Therefore v can only be 1 and u = ±1. Matching the real

parts then yields y = ±1 ∓ 6 = ∓5, and thus x = 3
√

y2 + 2 = 3.

This proof has two major gaps: The first is the assumption that (y ±
√

−2)
are prime in the ring Z(

√
−2), which can be proved. The second missing step is

more serious: how do we know that prime factorization is unique in Z(
√

−2)?
The answer to this question is long and interesting, and involves a complicated
story. It began with 19th century attempts to prove Fermat’s Last Theorem.

Among those who thought for a time that they had proved it was
E. E. Kummer (1810–1893). He assumed as a matter of course that factor-
ization into primes was always unique, even when the integers were of the form
a + b

√
−5 [a, b being regular (rational) integers, i.e. belonging to Z]. But this

happens to a ring Z(
√

−5) in which the Fundamental Theorem of Arithmetic
fails, e.g.

6 = 2 · 3 = (1 +
√

−5)(1 −
√

−5).

Each of 2, 3, (1 +
√

−5) and (1 −
√

−5) can be shown to be a prime number
in this ring. So we have two different prime factorizations of the number 6,
and it appears that no simple arithmetic theory of the algebraic integers could
be possible.

466 This theorem turns out to hold for Z(
√

−2).
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In order to resolve this difficulty, Kummer (1846) created a new kind of
entity that he called an “ideal number”. Although he failed to prove Fermat’s
Last Theorem, he laid the foundation to the theory of algebraic numbers.

Dedekind (1871) reformulated the concept of “ideal number” and gener-
alized it to other rings of algebraic numbers. He replaced algebraic integers
by a new concept which he coined: that of an ideal, one example of which is
the ring R of quadratic integers in a particular quadratic number field. We
now consider ideals and their properties in some detail.

By the use of Euclid’s algorithm it is shown that the factorization of a ratio-
nal integer into prime factors is unique, apart from the order of the factors and
their sign. The same is not true of every integral domain. The first difficulty
that arises is due to the fact that in some integral domains there exist num-
bers besides 1 and −1 which have reciprocals. Thus in Z(

√
2) [i.e., numbers

of the form a + b
√

2 with a, b integers], (
√

2 + 1)(
√

2 − 1) = 1. If such
factorizations were taken into account, then no number could be prime, e.g.
3 = (3

√
2 + 3)(

√
2 − 1). Moreover, we have 6 = 3 · 2 = (3

√
2 + 3)(2

√
2 − 2)

which renders a non-unique factorization. The difficulty is surmounted by
regarding (

√
2 + 1) and (

√
2 − 1) as units. Since 3

√
2 + 3 = 3(

√
2 + 1)

and 2
√

2 − 2 = 2(
√

2 − 1), then 3 · 2 is considered to be equivalent
to (3

√
2 + 3)(2

√
2 − 2) = 3 · 2(

√
2 + 1)(

√
2 − 1) and unique factorization is

restored467.

In Z(
√

5) [i.e., numbers of the form a + b
√

5 with a, b in Z] it is found
that (

√
5 − 1)(

√
5 + 1) = 4 = 2 · 2. Though it might appear at first sight

that unique factorization has failed here (and with it, the theory of con-
gruences and residues!), such is not the case. For 1

2 (1 ±
√

5) are not only
algebraic integers [satisfying x2 − x − 1 = 0] but also units, on account of√

5+1
2

√
5−1
2 = 1. Therefore both

√
5 + 1 and

√
5 − 1 are equivalent to 2. A

complete failure of unique factorization (and of Euclid’s algorithm), however,
occurs, as we saw, in Z[

√
−5]. Thus, the two factorizations of 6, namely,

6 = 3 · 2 = (1 +
√

−5)(1 −
√

−5) cannot be reconciled by any convention.

Dedekind evaded the difficulty by the introduction of a new entity, which
restored uniqueness of prime factorization to domains for which it fails. Let
R be a ring whose elements r may be real or complex. Consider a subset I of
R with the following properties:

(i) If a and b are numbers in I, so is a − b.

(ii) For every number r in R and every number a in I, the product ra also
lies in I.

467 Note that since (
√

2 + 1)n(
√

2 − 1)n = 1, there exist here an infinite number of

units!
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The subsets I of R are called ideals in R. For example, if m is a natural
number, the totality of numbers {0,±m,±2m,±3m, . . . } is an ideal in Z and
will be denoted by [m]. Clearly, the difference of two integer multiples of m is
again a multiple of m, and every multiple of a multiple of m is itself a multiple
of m. Thus, [6] = {. . . ,−18,−12,−6, 0, 6, 12, 18, . . . }.

Ideals consisting of all the multiples of a single element of a ring R (in the
present case m) and no other elements, are called principal ideals. It is easy
to verify that in the ring Z, every ideal is principal, so that all ideals [m] in Z

are obtained by setting in turn m = 0, 1, 2, . . . (in other rings, however, there
exist also ideals which are not principal). The elements of a principal ideal
are all multiples of a single element a which is said to generate the ideal (m in
the above example). Thus, the principal ideal [a] is the set of all elements xa,
when a is a fixed number (element) of the ring and x is any other element.

The product of two ideals is the set of numbers which have the form of a
product of two numbers, one from each ideal, together with all numbers that
can be formed from these by addition and subtraction. The product is easily
shown to itself be an ideal. Thus the product of the principal ideals [2] × [3]
contains the numbers 2 × 3 = 6, 4 × 3 = 12, 2 × 9 = 18, etc., and
forms the ideal [6], in full analogy to arithmetic multiplication. In particular,
[1] is the unit ideal since it clearly satisfies [1][m] = [m]; [1] is in fact the
entire ring (Z in this case). If an ideal cannot be expressed as a product of two
ideals in which neither is the unit ideal, we shall say that it is a prime ideal,
again in analogy to prime factorization of integers in ordinary arithmetic468.

468 Consider the two principal ideals over Z:

[3] = {. . . , −3, 0, 3, 6, 9, 12, . . . }

[10] = {. . . , −10, 0, 10, . . . , }

When any number of [3] is factorized into two factors a, b of Z it is found that

either a or b belong to [3]. The ideal [10] does not share this property since, for
example, 20 = 4 · 5, where neither 4 nor 5 is in [10]. Dedekind therefore said

that [3] is a prime ideal. [In general, an ideal P in a ring R is called a prime

ideal if ab ∈ P implies either a ∈ P or b ∈ P , for all elements of P .]
Thus, in the ring Z(

√
−5), where the elements are of the form (m + n

√
−5),

the ideal [2, 1 +
√

−5] (the sub-ring of elements 2m+(1+
√

5)n with m, n in Z)

is not expressible as a principal ideal as there is no element which divides both
(1 +

√
−5) and 2. In fact

[2] = [2, 2 + 2
√

−5] = [2, 1 +
√

−5][2, 1 +
√

−5]

by the law of ideal multiplication, where [2, 1 +
√

−5] is a prime ideal in

R(
√

−5), but [2] is not!
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The concept of divisibility can also be defined for ideals. One says that
an ideal A is divisible by an ideal B if every element a of A is also element b
of B. When applied to Z, it is seen that [a] is divisible by [b] iff a is divisible
by b.

We next consider a type of non-principal ideal generated by two elements
of the integral domain (ring) and denoted as [a, b]. It consists of all elements
xa + yb, where a and b are fixed members of the domain, and x, y are any
elements whatsoever therein. In general, given an integral domain D, the set
of elements of D which are linear combinations of α1,α2, . . . , αi with any co-
efficients in the domain, constitutes an ideal which is denoted [α1, α2, . . . , αi].

Multiplication of such ideals is defined by the relation

[α1, α2, . . . , αi][[β1, β2, . . . , βj ] = [α1β1, α1β2, . . . , α1βj , α2β1, . . . , αiβj ].

As stated earlier, a principal ideal is an ideal with but one symbol in the
bracket, such as [α1], and consists of the products of α1 with all elements of
D. Ideals in Z are all principal ideals, for any pair of rational integers m, n
have a g.c.d. (greatest common divisor) h, such that Mm + Nn = h for some
M, N in Z, and m and n are multiples of h. Thus [m, n] = [h]. Factorization
of ideals in the ring of rational integers is therefore the same as factorization
of integers.

With s =
√

−5 we define

p = [2, 1 + s]; q = [3, 1 + s]; r = [3, 1 − s]

and find that

pq = [1 + s]; pr = [1 − s]; pp = [2, 2 + 2s] = [2, 2s]; qr = [3, 3s].

Hence the principal ideal [6] can be expressed as either the product of the two
non-prime ideals [2] and [3] or uniquely as the product of the prime ideals

[6] = p2qr.

In general, Dedekind proved his main theorem:

“Every ideal in a ring R, other than R itself and [0], can be represented
as a product of prime ideals, uniquely apart from the order of the factors.”

For the ring Z of rational integers, this means that every principal ideal
[m] is uniquely (apart from the order of the factors) a product of prime ideals
[p1][p2][p3] . . . [pm], which is another way of stating the fundamental theorem
of elementary number theory: m = ±p1p2 . . . pn for any m ∈ Z, where pj

are some (possibly repeating) prime numbers.
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1872–1912 CE Felix Klein (1849–1925, Germany). Mathematician. A
central figure in world mathematics during his lifetime. Known for his novel
approach to geometry and his decisive influence upon the development of
mathematics in the 19th century.

At the age of 23 he was a full professor at the University of Erlangen.
His inaugural lecture there had made mathematical history as the Erlangen
Program — a bold proposal to use the group concept to classify and unify the
many diverse and seemingly unrelated geometries which had developed since
the beginning of the 19th century.

Early in his career he had shown an unusual combination of creative
and organizational abilities and a strong drive to break down barriers be-
tween pure and applied science. His mathematical interests were all-inclusive:
geometry, number theory, group theory, invariant theory, algebra — all were
combined for the development and completion of the Riemannian ideas on
geometric function theory. He made significant contributions to the theory
of automorphic functions, topology (“Klein’s bottle”), group theory (Klein’s
group, Cayley-Klein parameters) and gyroscopic theory. Klein solved (1877)
the icosahedral equation in terms of hypergeometric functions. This allowed
him to give a closed-form solution of the quintic.

Klein was born in Düsseldorf, Prussia. At 17 he was chosen by Julius
Plücker (1801–1868) as his assistant in his physics laboratory at Bonn [the
same laboratory where Plücker had invented what today we call the Geissler
tube]. Plücker had reverted in his later years to his early interest in geome-
try. When he died in 1868, he left an unfinished manuscript, entitled “New
geometry of space, founded on the straight line as element”.

The task of completing the work and issuing the second half of the book
was entrusted to Plücker’s young assistant, Felix Klein. During 1869/70
he was at the University of Berlin, where he hoped to profit from per-
sonal contact with Weierstrass, but the latter was not receptive to Klein’s
ideas. Klein participated in the Franco-German war, serving in the ambu-
lance corps.

Klein married the beautiful Anna Hegel, granddaughter of the philosopher
Hegel. In 1886 he migrated to the University of Göttingen, where he stayed
for the rest of his life.
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“All things near and far
Hiddenly linked are.
Thou canst not stir a flower
Without the troubling of a star”.

William Blake (1757–1827)

1872 CE Francois Felix Tisserand (1845–1896, France). Astronomer.
Suggested that the gravitational force exerted by a moving body might obey
the same laws as the electric and magnetic forces exerted by a moving charge.
His results predicted that the planets would deviate slightly from their New-
tonian orbits around the sun. Such a deviation had been detected in the mo-
tion of Mercury by LeVerrier in 1845, but Tisserand was unable to match
his theory with the observations. The motion of Mercury remained a mystery
until 1915.

This was the first effort at a gravitodynamical extension of Newtonian
theory.

1872–1921 CE Gabriel Jonas Lippmann (1845–1921, France). Physi-
cist and inventor. A multi–talented researcher best known for his contribu-
tions to optics, electricity and thermodynamics:

• Invented (1872), at Heidelberg, the capillary electrometer , which
measures small differences in voltage and was used by Weller and
Einthoven in their early electrocardiographs; it is an instrument in
which small electric currents are detected by movement of a mercury
meniscus in a capillary tube. The instrument consists of a thin glass
tube with a column of mercury beneath sulphuric acid. The mercury
meniscus moves with varying electrical potential and is observed through
a microscope.

• Invented the coelostat, a new astronomical tool that compensated for
the earth’s rotation and allowed a region of the sky to be photographed
without apparent movement. Essentially, it allows long-exposure pho-
tographs of the sky by compensating for the earth’s motion during the
exposure: The device consists of a flat mirror that is turned slowly by
a motor to reflect the sun’s continuously into a fixed telescope. The
mirror is mounted to rotate about an axis through its front surface that
points to a celestial pole and is driven at a rate of one revolution in 48
hours. The telescope image is then stationary and non-rotating. The
coelostat is particularly useful for eclipse expeditions when elaborate
equatorial mounting of telescopes is impossible.
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• Studied induction in superconductor circuits (precursor of Kamer-
lingh–Onees’ validations)

• Did early important work in piezoelectricity (precursor of Pierre
Curie’s work). His research furthered developments in this field.

• The beginning of photography came before 1849 due to the efforts of
such as Niepce, Daguerre, and Talbot. Even though these men made the
foundation for photography, they did not know how to obtain proper
color from the early examples. Edmond Becquerel came close to dis-
covering this, but like many others, failed. After the theories and ex-
periments of other men such as Wilhelm Zenker and Otto Weiner, color
could finally be duplicated, more or less.

Lippmann had evolved the general theory of his process for the pho-
tographic reproduction of color in 1886, but the practical execution
presented great difficulties. However, after years of patient and skillful
experiment, he was able to communicate the process to the Academy
of Sciences in 1891, although the photographs were somewhat defective
due to the varying sensitivity of the photographic film. In 1893, he was
able to present to the Academy photographs taken by A. and L. Lumiere
in which the colors were produced with perfect orthochromatism. He
published the complete theory in 1894.

Lippmann’s color photographic technique was based on interference, the
combining of different light waves arriving simultaneously at the same
point – the same phenomenon that causes color to appear in colorless
substances such as soap bubbles. To receive the image, Lippmann used a
glass plate coated on one side with light-sensitive emulsion, a mixture of
gelatin, grains of silver nitrate, and potassium bromide. In the camera,
the emulsion side of the plate faced a plate holder coated with mercury,
which acted as a mirror.

When the camera lens was opened, light was reflected from the objects in
the lens’s field of view through the lens to the emulsion-coated plate and
through the plate to the mirror; the various wavelengths of this light
corresponded to the various colors of the objects in the field of view.
The incoming light was then reflected back into the emulsion by the
mirror. When the incoming light waves and the light waves reflected by
the mirror met on the surface of the emulsion, they created interference
patterns in the silver grains of the emulsion. These patterns were then
fixed on the plate by chemical baths. When the plate dried, the inter-
ference patterns reflected light in various wavelengths corresponding to
the original colors of the photographic objects. Lippmann’s process was
an important experimental milestone although it proved impractical in
photography: because exposure times were too lengthy, the image had
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to be viewed at a precise angle to a light source, and it could not be
reproduced.

Gabriel Lippmann was born of Jewish parents at Hollerich, Luxembourg.The
family moved to Paris and he received his early education at home. He entered
the Lycée Napoleon (1858) and in 1868 was admitted to the Ecole Normale. In
1873, he was appointed to a Government scientific mission visiting Germany to
study methods for teaching science: he worked with Kirchhoff in Heidelberg
and with Helmholtz in Berlin.

He joined the Faculty of Science in Paris (1878), was appointed Professor
of Mathematical Physics at the Sorbonne (1883) and became a Professor
of Experimental Physics469 there (1886). He then became Director of the
Research Laboratory and retained this position until his death.

Lippmann became a member of the Academy of Sciences (1883) and served
as its President (1912). He was awarded the 1908 Nobel Prize in Physics for
his method of reproducing colors photographically based on the phenomenon
of interference, known as the Lippmann plate.

He died at sea on July 13, 1921, during his return from a journey to North
America.

1873 CE Louis Joseph May (England) and Willoughby Smith (1828–
1891, England) discovered electrical photoconductivity, thus enabling to trans-
form images into electrical signals. They found that the electrical conductivity
of the element selenium470 changes when light falls on it, i.e. when a selenium
bar is exposed to light it becomes a strong conductor of electricity and the
ensuing current is proportional to the amount of light hitting the bar. May
then used selenium to send a signal through the Atlantic cable (laid in 1865).

Both inventors were at the time telegraph operators in Valentin, Ireland.

In the same year Maxwell published his book Treatise on Electricity and
Magnetism, expounding the theory of electromagnetic radiation.

Due to the photoconductive effect, selenium would become the basis for
the manufacture of photoelectric cells471.

469 He was Marie Curie’s thesis advisor at the Sarbonne. Lippmann let her use

his laboratory for her thesis work and helped her find other sources of support.

At that time Lippmann did early studies in a field of electrical effects in crystals.

It was he that introduced Marie to one of his best students, Pierre Curie.
470 Discovered (1818) by J.J. Berzelius.
471 The first photocell was built by Charles Sumner Tainter (1880). The first

practical photoelectric cell was devised through 1900–1904 by Julius Elster
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Willoughby Smith was born in Great Yarmouth. During 1850 he superin-
tended the manufacture and laying of a telegraph cable from Dover to Calais,
and later assisted Charles Wheatstone with his experiments. In 1865 he was
on board the Great Eastern and assisted in laying the transatlantic cable from
Ireland to Newfoundland.

Photoconductivity and photoelectric cells

(1873–1973)

Photoconductivity is an internal photoeffect. The absorption of a photon
by an intrinsic photoconductor results in the generation of a free electron
excited from the valence band to the conduction band, and a corresponding
free hole in the valence band. The application of an electric field in the
material results in the transport of both electrons and holes through the
material and the consequent production of an electric current in the electrical
circuit of the detector.

Photoelectric cell is a device that converts light into electricity. Two main
types of photoelectric cell are in use today: the phototube and the solid-state
photodetector. The phototube is an electron tube in which electrons initiating
an electric current originate through photoelectric emission. In its simplest
form the phototube is composed of a cathode coated with a photosensitive
material, and an anode. Light falling upon the cathode causes the liberation of
electrons, which are then attracted to the positively charged anode, resulting
in a flow of electrons (i.e., current) proportional to the intensity of the light.

Phototubes may be highly evacuated, or filled with an inert gas at low
pressure to achieve greater sensitivity. In a modification called the multi-
plier phototube, or photomultiplier, a series of metal plates are shaped and
arranged so that the photoelectric emission is amplified by secondary electron
emission. The multiplier phototube is capable of detecting radiation of ex-
tremely low intensity; it is an essential tool for nuclear research, astronomy,
and space guidance systems.

(1854–1920) and Hans Geitel (1855–1923). They studied together in Heidel-

berg and Berlin, and worked as high school teachers of mathematics and physics

in Wolfenbüttel.
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The second type of photoelectric cell, the solid-state photodetector, has
replaces the phototube for many applications because it is small, inexpensive,
and uses little power.

The simplest type of solid-state photodetector is the photoconductor — a
semiconductor whose resistance changes when it is exposed to light — that
is, to a flow of photons. Semiconductors are characterized by an energy gap
that separates the electron valence band from the conduction band. When
an electron in the valence band absorbs a photon of energy greater than the
energy gap, it can move from the valence band into the conduction band and
increase the conductivity of the semiconductor. Moving the electron into the
conduction band leaves an excess positive charge, or hole, in the valence band,
which can also contribute to conductivity.

The conductivity of a photoconductor increases (while its resistance de-
creases) as the number of photons increases. When the photoconductor is
connected in an electric circuit, the current through it therefore increases in
proportion to the intensity of the light striking it.

The photoconductor, popularly known as the electric eye, is employed in
operating burglar alarms, traffic-light controls, and door openers. A light
source (which may be infrared and invisible to the human eye) at one end
of the circuit falls on the photocell located some distance away. Interrupting
the beam of light breaks the circuit. This in turn causes a relay to close,
which energizes the burglar alarm or other circuit. Other common uses for
photoconductors include light switching and dimming, and light meters for
cameras.

A more sophisticated photodetector, the CCD (charge-coupled device) is a
small capacitor, composed of metal, oxide, and semiconductor layers, capable
of both photodetection and memory storage. When a positive voltage is
applied to the metal layer (called the gate), electron-hole pairs created in the
semiconductor by the absorption of a photon are separated by an electric field,
and the electrons become trapped in the region under the gate. This trapped
charge represents a small piece of an image known as a pixel. The complete
image can be recreated by reading out a sequence of pixels from an array of
CCDs. These arrays are used to capture images in video and digital cameras.

More stable and precise than a simple photoconductor, the photodiode is
a p-n junction formed by placing a p-type semiconductor against the surface
of an n-type semiconductor The region around the interface between the two
types of semiconductors, called the depletion region, contains an electric field.
If a photon of sufficient energy is absorbed in this region, it creates an electron-
hole pair; the electric field sweeps the electron toward the n region and the
hole toward the p region. If the p and n terminals are connected, or a reverse
voltage is applied, an external current is created.
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The photovoltaic cell, or solar cell, is a well-known application of the
photodiode. “Avalanche” diodes are used to amplify the signal from a light
source. In these devices, a large reverse voltage is applied so that a photon-
created electron in the conduction band gains enough energy to bounce against
atoms in the semiconductor and thus liberate additional electrons. A large
current is therefore produced when light strikes the diode.

Phototransistors are also used to amplify light signals. Their construc-
tion is similar to conventional transistors except that one of the transistor’s
junctions is exposed to radiation. In bipolar phototransistors, it is the base-
emitter junction that is exposed to radiation; in field-effect phototransistors
it is the gate junction.

1873 CE Johannes Diderik van der Waals (1837–1923, Holland). The-
oretical physicist. Established an improved ideal gas law which accounts for
the finite size of gas molecules and for the intermolecular attraction forces.

In 1910, he won the Nobel prize in physics for developing the equation of
state which bears his name.

Van der Waals was born at Leyden, The Netherlands. He served as pro-
fessor of physics at Leyden from 1877 until his retirement in 1907.

1873–1876 CE Carl Paul Gottfried von Linde (1842–1934, Germany).
Engineer. Introduced the first practical cooling compression system (refrigera-
tor), utilizing the Joule-Thomson effect with liquid ammonia as coolant. Ear-
lier experimental cooling systems were produced by Jacob Perkins (U.S.A.,
1834) who developed the first compression machine, and Ferdinand Carré, a
French engineer who built the first absorption system using ammonia (1854).

1873–1878 CE William Kingdon Clifford (1845–1879, England).
Mathematician and philosopher. Generalized the quaternions of Hamilton
to biquaternions. These are used for the study of both Euclidean and non-
Euclidean spaces. Determined the topological equivalence of many-sheeted
surfaces.472

472 He showed, for example, that the Riemann surface of an n-valued function with

w branch-points can be transformed into a topological equivalent of a sphere

with p holes where p = w
2

− n + 1 (i.e. a sphere with p handles).
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In his endeavor to graft Hamilton’s quaternions on to Grassmann’s ex-
tensive algebra, he discovered ‘Clifford algebra’. In 1878 he coined the words
‘divergence’ and ‘curl’473. The term Nabla was contributed by Robertson
Smith. Clifford confessed his belief (1870) that “matter is only a mani-
festation of curvature in a space time manifold”(!!) He made advances in
non-Euclidean geometry. Clifford parallels and Clifford surfaces are named
after him.

Clifford derived his theory of biquaternions (through a generalization of
quaternions), associating them specifically with linear algebra. In this way
he represented motions in three-dimensional non-Euclidean space. He then
suggested (1876) that motion of matter may be due to changes in the geometry
of space.

Clifford was born at Exeter. He was educated at Kings’ College, London
and at Trinity College, Cambridge. In 1871 he was appointed professor of
mathematics at University College, London and in 1874 he became Fellow of
the Royal Society. He died of pulmonary consumption at Madeira.

Clifford Algebras

William Clifford invented his algebras (1876–1879) as an attempt to gen-
eralize the quaternions to higher dimensions. To begin with, he started
from quaternions over the complex number field with 1 and 0 as its unity
and zero elements, i.e. q = a + bj + ck + dl, where (a, b, c, d) are allowed
to be complex numbers. Here, one must distinguish between the quater-
nion conjugate q∗ = a − bj − ck − dl and the ordinary complex conjugate
q̄ = ā + b̄j + c̄k + d̄l. If q∗ = q̄, the quaternion is Hermitian. A quaternion
for which ‖q‖ ≡ a2 + b2 + c2 + d2 = 1 is called a unit quaternion. If ‖q‖ = 0
the quaternion is singular. Hermitian biquaternions (with a real scalar part)
are used to represent space-time in the theory of relativity.

473 The corresponding concepts are, however, due to Maxwell.
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On setting

a = a0, b = ia1, c = ia2, d = −a3, i2 = −1,

j = −ie1, k = −ie2, l = −e1e2,

e2
1 = e2

2 = 1; e1e2 = −e2e1; (e1e2)2 = −1

and remembering that the quaternion units obey the relations

j2 = −1, k2 = −1, l2 = −1;

jk = l, kl = j, lj = k, kj = −l, lk = −j, jl = −k,

the quaternion q is transformed into the new form q → q′ where

q′ = a0 + a1e1 + a2e2 + a3e1e2.

The entity q′ has a base {1, e1, e2, e1e2} with a ‘multiplication table’:

1 e1 e2 e1e2

1 1 e1 e2 e1e2

e1 e1 1 e1e2 e2

e2 e2 −e1e2 1 −e1

e1e2 e1e2 −e2 e1 −1

This new algebra, known as C2, is isomorphic to quaternion algebra such
that

q → q′

p → p′

}

implies q + p ⇒ q′ + p′, qp ⇒ q′p′

λq ⇒ λq′ (λ = complex scalar)

The algebra can be represented by square matrices A, B such that

q → A
p → B

}

implies
λq′ + μp′ ⇒ λA + μB

p′q′ ⇒ AB

(λ, μ = elements of the complex field)
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To this end we infer from the above ‘multiplication table’ that the unit ele-
ments {1, e1, e2, e1e2} can be represented by the matrices

1 ⇒ E4 =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ , e1 =

⎡

⎢
⎢
⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤

⎥
⎥
⎦ ,

e2 =

⎡

⎢
⎢
⎣

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎤

⎥
⎥
⎦ , e1e2 =

⎡

⎢
⎢
⎣

0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

⎤

⎥
⎥
⎦

The algebra C2 may be generalized to an algebra Cn generated by n sym-
bols er (r = 1, 2, . . . , n) satisfying the relations

eres + eser = 2δrs

These algebras are known as the Clifford-Dirac algebras, with applications in
quantum mechanics.

To see the connection we now ‘translate’ our former 4 × 4 matrix represen-
tation of the quaternions (C2 algebra) into the language of the Pauli (spin)
matrices σk:

j = −ie1 ⇒ −iσ1 e1 ⇒ σ1 =
(

0 1
1 0

)

k = −ie2 ⇒ −iσ2 e2 ⇒ σ2 =
(

0 −i
i 0

)

l = −e1e2 ⇒ −iσ3 e1e2 ⇒ iσ3 =
(

i 0
0 −i

)

σ2
1 = σ2

2 = σ2
3 = E =

(
1 0
0 1

)

We then have the isomorphism:

q = q0 + q1j + q2k + q3l ⇒ q0E − iq1σ1 − iq2σ2 − iq3σ3

⇒
[
q0 − iq3 −q2 − iq1

q2 − iq1 q0 + iq3

]

= M, say



1873 CE 2421

with det M = q2
0 + q2

1 + q2
2 + q2

3 . For unit quaternions det M = 1. For real
unit quaternions M = U = unitary matrix: UŪ = E.

If we denote a = q0 − iq3, b = −q2 − iq1, then for a real quaternion

q0 =
1
2
(a + ā); q1 =

i

2
(b − b̄); q2 = −1

2
(b + b̄); q3 =

i

2
(a − ā)

If on the other hand q is a complex unit quaternion , the elements of M are
not complex conjugate of each other and we can only write

q → M =
(

a b
c d

)

=
(

q0 − iq3 −q2 − iq1

q2 − iq1 q0 + iq3

)

,

where (a, b, c, d) only satisfy the condition ad − bc = +1.
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Clifford C3 algebra (biquaternions)

An associative noncommutative 8-dimensional algebra can be generated
by 3 symbols e1, e2, e3, satisfying the relations

e2
1 = e2

2 = e2
3 = 1; eres + eser = 0, s �= r (r, s = 1, 2, 3)

The 8 basis elements of the algebra are

1, e1, e2, e3, e1e2, e1e3, e2e3, e1e2e3,

and their linear combinations are known as biquaternions. The algebra can
be represented by the 2 × 2 Pauli matrices in the following way:

e1 → σ1; e2 → σ2; e3 → σ3

e1e2 → σ1σ2 = iσ3; e2e3 → σ2σ3 = iσ1; e3e1 → σ3σ1 = iσ2

σ2
1 = σ2

2 = σ2
3 = E

−ie1e2e3 → −iσ1σ2σ3 = −i(iσ3)σ3 = σ2
3 = E.

Clifford C4 algebra (‘Clifford numbers’)

An associative noncommutative 16-dimensional algebra is generated by
the 4 symbols e1, e2, e3, e4 satisfying the relations

e2
r = 1; eres + eser = 2δrs (r, s = 1, 2, 3, 4)

{
ek → αk = σ1 × σk k = 1, 2, 3

e4 → α4 = (σ3 × E)

α2
k = (σ1 × σk)(σ1 × σk) = (E × E) = E4, α2

4 = E4,

where × is the Kronecker direct product. Hence

α1 =

⎡

⎢
⎢
⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤

⎥
⎥
⎦ , α2 =

⎡

⎢
⎢
⎣

0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

⎤

⎥
⎥
⎦ ,
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α3 =

⎡

⎢
⎢
⎣

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎤

⎥
⎥
⎦ , α4 =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎤

⎥
⎥
⎦

These 4 × 4 matrices are sometimes recast in the shorthand

k = 1, 2, 3 αk =
[
(0) σk

σk (0)

]

; α4 =
[
E 0
0 −E

]

where (0) =
[
0 0
0 0

]

is the zero 2 × 2 matrix. The 16 basis elements of the

algebra can be grouped into five sets as follows:

1,

e1, e2, e3, e4,

e1e2, e2e3, e3e1, e1e4, e2e4, e3e4,

e1e2e3, e2e3e4, e3e4e1, e4e1e2,

e1e2e3e4.

Note that the anti-commutation relations αrαs + αsαr = 2δrs are sat-
isfied by an infinite number of other matrix representations, but they must be
at least 4 × 4. It is remarkable that Clifford (1876) forged the mathematical
tools used by Dirac (1928) in his formulation of the special relativistic free
electron quantum mechanical wave equation:

[α1
∂

∂x1
+ α2

∂

∂x2
+ α3

∂

∂x3
+

iα4m0c

�
+

1
c
E4

∂

∂t
]Ψ = 0

with xj , j = 1, 2, 3 the spatial coordinates, t time, m0 the electron rest
mass, c the speed of light in vacuum, and Ψ the electron 4-component
complex spinor wavefunction.

Clifford algebras in linear vector spaces

The quaternions, biquaternions and Clifford numbers are examples of hy-
percomplex numbers. But just as we have previously found it convenient to
order sets of scalar components together to form vectors, so it becomes con-
venient to define hypercomplex vectors as linear arrays of components which
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are hypercomplex numbers. We shall next show that the Pauli matrices can
be considered as a vector base in a linear vector space L which obeys Clifford
algebra in 2n dimensions.

Let (α, β, . . . ) be vectors in L with base (e1, e2, . . . , en). Then (employing
the summations convention)

α = αiei, β = βjej

If the symbols ei are ordinary vectors, say in real 3D Euclidean space, we
define the wedge product as the antisymmetric dyadic

α ∧ β =
1
2
(αβ − βα)

=
1
2
(α1β2 − β1α2)(e1e2 − e2e1) +

1
2
(α2β3 − β2α3)(e2e3 − e3e2)

+
1
2
(α3β1 − β3α1)(e3e1 − e1e3) = −1

2
[I × (α × β)]

also known as a bivector.

If however the symbols ei are the Pauli spin matrices

e1 ⇒ σ1 =
(

0 1
1 0

)

e1e2 − e2e1 = 2ie3

e2 ⇒ σ2 =
(

0 −i
i 0

)

e2e3 − e3e2 = 2ie1

e3 ⇒ σ3 =
(

1 0
0 −1

)

e3e1 − e1e3 = 2ie2,

then the wedge product assumes the form

α ∧ β ⇒ iσ · (α × β)

where σ = (σ1, σ2, σ3) is a hypercomplex vector. Now, the formal scalar prod-
uct of α and σ is the hypercomplex vector

(α · σ) =
[

iα3 α1 − iα2

α1 + iα2 −iα3

]

= a (defined)

It then follows that

ab = (α · σ)(β · σ) = (α · β)E + iσ · (α × β).
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Introducing the notation

(a · b) ≡ (α · β)E, a ∧ b = iσ · (α × β),

we find that the ‘product’ rule of two hypercomplex vectors in their vector
space is

ab = (a · b) + a ∧ b.

The wedge product has the usual distributive and associative properties (λ a
scalar)

a ∧ (b + c) = a ∧ b + a ∧ c; (a + b) ∧ c = a ∧ + b ∧ c

λ(a ∧ b) = a ∧ (λb) = (λa) ∧ b; (a ∧ b) ∧ c = a ∧ (b ∧ c).

It is however anti-commutative: a ∧ b = −b ∧ a.

The wedge product of two vectors can be written symbolically in the de-
terminant form

α ∧ β =
1
2
(αβ − βα) =

1
2

∑

i,j

ti,j(ei ∧ ej)

tij = αiβj − βiαj =
∣
∣
∣
∣
αi βi

αj βj

∣
∣
∣
∣

One may then extend the concept of the wedge product to antisymmetric
tensors of higher order. For example, the totally antisymmetric 3rd rank
tensor has the determinant form in m dimensions (i, j, k = 1, . . . , m):

tijk =
1
6

∣
∣
∣
∣
∣
∣

αi βi γi

αj βj γj

αk βk γk

∣
∣
∣
∣
∣
∣

=
1
6
(αiβjγk + αjβkγi + αkβiγj − γiβjαk − γjβkαi − γkβiαj)

or T =
1
6
(αβγ + γαβ + βγα − γβα − αγβ − βαγ)

=
1
6
[(αβ − βα)γ + (γα − αγ)β + (βγ − γβ)α],

where tijk reverses sign under the interchange of any two indices (i.e., in-
terchange of any two rows in the determinant). This tensor is known as a
trivector. It can be represented by the triple wedge product

T = α ∧ β ∧ γ =
1
6

∑

i,j,k

tijk(ei ∧ ej ∧ ek).



2426 4. Abstraction and Unification

This can be naturally expressed in terms of a suitable Clifford algebra. Thus,
for m = 4 (e.g. tensors in spacetime) we have in C4:

(α ·Γ )(β ·Γ )(γ ·Γ ) = (α ·β) γ ·Γ+(β ·γ) α ·Γ−(γ ·α) β ·Γ+α ·Γ∧β ·Γ∧γ ·Γ,

where
ΓiΓk + ΓkΓj = 2δjk, Γi ∧ Γj ∧ Γk ≡ εijklΓ5Γl.

Here εijkl is the totally antisymmetric Levi-Civita tensor (εijkl ≡ 1), and
Γ5 = Γ1Γ2Γ3Γ4.

C4 relations such as this are quite useful in particle-physics quantum field
theory calculations (such as in QED or the Standard Model).

Note that if α, β, γ are orthogonal

T = −1
6
[I × (αα + ββ + γγ)]

and if they are orthonormal

T = −1
6
(I × I) =

1
6
εijk.

The above results can be generalized to entities of the form

a= λI + (α · σ),

b= μI + (β · σ), for which

ab= {λμ + (α · β)}I + [λβ + μα + i(α × β)] · σ.

In this case

a · b= {λμ + (α · β)}I,

a ∧ b= [λβ + μα + i(α × β)] · σ.

Note that

∇ ∧ a =
1
2
(∇a − a∇) = −1

2
I × curl a.

The development of a Clifford calculus is completed by defining the differ-
ential operator ∇ ≡ σk∂k, ∂k = ∂

∂xk , where σk are base vectors.

We call ∇ the gradient operator, and decompose it into a symmetrical
and antisymmetrical parts:

∇a = ∇ · a + ∇ ∧ a = ∇ · a + i∇ × a
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[in line with the vector analog

1
2
(∇a − a∇) = −1

2
I × curl a].

In conclusion: Clifford algebra over the field of real numbers is a linear
vector space, closed w.r.t. the multiplication operation ab, defined for two
hypercomplex vectors a and b.
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Localization of Cerebral function (1810–1876)

As the 19th century progressed, the problem of the relationship of mind
and brain became especially acute as physiologists and psychologists began
to focus on the nature of cerebral function. In a diffuse and general way, the
idea of functional localization had been available since antiquity. A notion of
‘soul’, globally related to the brain, can be found in the works of Pythagoras,
Hippocrates, Plato, Aristotle, Herophilos and Galen. The pneumatic
physiologists of the Middle Ages thought that mental capacities were located
in the fluid of the ventricles.

As belief in animal spirits died, so too did the ventricular hypothesis. By
1784, when Jiri Prochaska published his De functionibus systematis nervosi,
interest had shifted to the brain stem and cerebellum. Despite these early
views, the notion that specific mental processes are correlated with discrete
regions in the brain and the attempts to establish localization by means of
empirical observation – were essentially 19th century achievements.

The first critical steps toward those ends can be traced to the work of
Franz Josef Gall (1758–1828, Germany). His work was followed by Marie-
Jean-Pierre Flourens (1794–1867, France) who provided the first experi-
mental demonstration of localization of function in the brain (1824). However,
Flourens concluded, erroneously, that while sensorimotor functions are differ-
entiated and localized sub-cortically, higher mental functions operate together,
spread throughout the entire cerebellum.

For more than 30 years this was the established view. Then in 1861 the
first studies appeared that would lead to the rejection of this idea and to the
establishment of patterns of functional localization in the cortex.

In the period between 1861 and 1876, Paul Broca (1824–1880), Gustav
Theodor Fritsch (1838–1927), Eduard Hitzig (1838–1907), David Fer-
rier (1843–1928) and John Hughlings Jackson (1835–1911) provided con-
clusive evidence that circumscribed areas of the cortex are involved in move-
ment of the contralateral limbs. Their findings established electrophysiology
as a preferred method for the participation of the hemispheres in motor func-
tion. Ferrier also examined the functions of the spinal cord, the medulla474,
the corpora quadrigemina, and the cerebellum (1876).

474 For further reading, see:
• Bruun, R.D. and B. Bruun, The Human Body Random House, New York,

1982, 96 pp.

• Netter, F.H., Atlas of Human Anatomy, CIBA-GEIGY Corporation, 1993,

514 pp.
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1873–1893 CE Camillo Golgi (1843–1926, Italy). Physician and neuro-
pathologist. Discovered dendritic nerve cells called ‘Golgi cells’ and Golgi
tendon spindle (1880). First to use silver nitrate to stain nerve tissue for
study (1873). Shared with Santiago Ramon y Cajal the 1906 Nobel Prize
for physiology or medicine.

Golgi was born at Corteno near Brescia. He studied medicine at the
University of Pavia. He was a professor of General Pathology at Pavia (1881–
1918) and senator (1900). In 1886 he demonstrated the life cycle and structure
of malarial parasites.

1873–1893 CE Ernst Abbe (1840–1905, Germany). Physicist. Estab-
lished the theoretical basis for the design of microscopes and laid the founda-
tion of Fourier optics already in 1873, ahead of Rayleigh (1896).

Although the inventions of the telescope and microscope date back to the
16th and 17th centuries — with such eminent scientists as Galileo, Huygens,
and Newton contributing to their development — their design was not placed
on a strictly scientific basis until the beginning of the 19th century, with the
work of J. Fraunhofer.

In 1869, Abbe started to develop his theory of image formation which gave
new insight into the laws underlying the formation of an image in the micro-
scope in terms of light wave amplitudes. Abbe’s study revealed that sharp
imaging of surface elements perpendicular to the optical axis is achieved only
under specific conditions (even though these elements were located close to
the axis). Consequently he discovered an unambiguous relationship between
the angles of rays of an arbitrarily wide bundle on the object side and those of
corresponding rays on the image side (Abbe sine condition). The fulfillment
of this condition can provide an optical system (capable of imaging an axial
point without spherical aberration) with the additional ability of imaging the
points of a small surface element lying perpendicular to the axis without the
asymmetrical aberration called coma.

He also formulated the theoretical limits of resolving power (minimum
distance between two points in an object that can be resolved in the image)
and found that the resolving power is limited by the wavelength of the light
used for producing the image, by the angular aperture 2α of the objective

• Hole, J.W. Jr., Human Anatomy and Physiology, Wm.C. Brown Publishers:
Dubuque Iowa, 1987, 966 pp.

• Sherwood, L., Human Physiology – From Cell to Systems, Wadsworth Pub-

lishing Co., 1997, 947 pp.
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and by the refractive index of the medium filling the space between specimen
and objective. As a measure for this, he established the numerical aperture
N = n sin α.

Later, he searched for the basic laws governing the efficiency of optical
instruments in general. Going beyond the findings of Gauss, Listing (1808–
1882), Helmholtz, and Neumann (1832–1925), Abbe established the es-
sential characteristics of any optical image formation in a form of a collinear
relationship between image space and object space, in the geometric-optical
sense. No one before Abbe had dealt with the basic theory of light intensity
in optical instruments.

An illuminated object in front of a thin lens, becomes a source of secondary
Huygens wavelets, and is diffracted by the finite lens.

Under the Fraunhofer approximation (far field), the amplitude distribution
in the focal plane of a lens is the spatial Fourier transform of the amplitude
distribution for the light field on the surface of the object, with an error not
exceeding a certain insignificant phase multiplier, and a scale factor. The
total diffracted field in the focal plane is given explicitly by

Φ(x, y; k, L, f) = Bei k
2f (1− L

f )(x2+y2)

∫ ∫ ∞

− ∞
ψ(x0, y0)e− ik

f (xx0+yy0)dx0dy0,

where B is an arbitrary amplitude. Here k = ω
c is the wavenumber of the

monochromatic plane wave that falls on the object, f is the focal length of
the lens, L is the distance of the object plane in front of the lens, and ψ is
the amplitude aperture function in the object plane.

If L = f > 0 there is no phase distortion in the focal plane of the lens.
If, on the other hand, the amplitude distribution to be imaged is not in
the lens’ focal plane, but at arbitrary distance �, the condition 1

L + 1
� = 1

f

will secure (under the geometrical optics approximation, and more specifically
the stationary phase method in the xy integral) that the diffraction pattern
intensity distribution |Φ(x, y)|2 will be proportional to |ψ(x0, y0)|2 with
(x, y) = −M(x0, y0) and M the magnification factor predicted by the ray
theory. We then say that an image of the object has been formed on a plane
normal to the optical axis at �. The relation between them is

|Φ(x, y)|2 = |B|2
∣
∣
∣
∣ψ

(
−x

M
,
−y

M

)∣
∣
∣
∣

2

,

where M = �
L .

Thus, the diffraction formation of an image can be split into two stages:
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(1) The formation of a diffraction pattern of the object in the focal plane of
a lens, and

(2) the transformation of the diffraction pattern in the focal plane of the lens
into an image of the object in the image plane.

The entire information contained in the image of the object is also con-
tained in the diffraction pattern of the object in the focal plane of the lens.
If the diffraction pattern in the focal plane is altered [for example, if some
maxima are eliminated or attenuated], the image of the object will change ac-
cordingly. The variation in the image of an object through a modification of
its diffraction pattern from which the image is subsequently formed is called
the spatial filtering of the image (Abbe, 1893).

Another model of optical imaging (influenced by earlier work of Airy and
Helmholtz) was proposed by Rayleigh in 1896. The model visualizes an
image as the superposition of Airy patterns (or more complicated patterns if
aberration is present). The Airy pattern is the image (response) of the entire
optical system to a point light source in the object. The wavefronts from it
are limited in their entry into the imaging system by the finite aperture of
the imaging lens, and the diffraction pattern of that aperture is formed in the
image plane. Each point of the object is therefore imaged not as a point but
as the Airy pattern of the aperture of the imaging lens.

The advantage of the Rayleigh method is in its validity even for incoherent
illumination. For then, the Airy intensity patterns due to all the object points
are simply additive. If it is coherent, there is interference, and mathematically
one deals with the combination of the complex-amplitude Airy patterns.

Ernst Abbe was born in Eisenach. In 1861 he received his doctorate at the
University of Jena, where he became a lecturer. In 1866 he met Carl Zeiss
(1816–1888) and started a relationship which shaped his entire life. Zeiss
was at that time running a small microscope factory in Jena. He realized
the shortcomings of the trial-and-error development techniques of that era,
and therefore employed Abbe to help him to improve the construction of
microscopes. They later became partners. After Zeiss’ death in 1888, Abbe
established the Carl Zeiss foundation and transferred to it his entire fortune,
worth millions. In his statute governing the foundation, Abbe introduced the
8-hour work day (before 1900!) and social benefits to his workers, far ahead
of his time. He pondered the problems of human co-existence as deeply and
as methodically as he approached the natural sciences475.

475 An account of Abbe’s life and work is given by H. Volkmann, Applied Optics 5,

1720–1731, 1966.
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Whatever Abbe initiated, be it as an economist, as a social scientist, or
as a man of pure science, all his innovations led to products of unsurpassed
quality.

1873–1895 CE Friedrich Wilhelm Nietzsche476(1844–1900, Germany).
Philosopher and classical scholar. Professor of classical philology, Basel (1869–
1879). Worked chiefly on philology, music, Greek antiquity and especially
philosophy: The Birth of Tragedy (1872); Essays (1873–1878); The Genealogy
of Morals (1887); The Antichrist (1888); Thus Spoke Zarathustra (1883–1892);
Twilight of Idols (1889); Ecce Homo (1888); Beyond Good and Evil (1886);
Will to Power (1888).

Nietzsche did not produce his own systematic doctrine. However, by virtue
of his insight into the existential condition of modern man, his perception of
the culture flattening of the industrial era, and his idea of breeding a new
aristocracy — he has brought about a considerable impact on 20th century
thought; many philosophers, writers and psychologists have been deeply in-
fluenced by him.

Nietzsche criticized religion. In his proclamation ‘God is dying ’ he meant
that religion, in his time, had lost its meaningfulness and power over people.
Thus, he argued, religion could no longer serve as the foundation for moral
values.

Nietzsche sought a re-evaluation of all values; he said that the warriors
who originally dominated society had defined their own strength and nobility
as “good”, and the weakness of the common people as “bad”. Later, when
the priests and the common people came to dominate society, they redefined
their own weakness and humility as “good” and the strength and cruelty of
the warriors whom they feared as “evil”. Nietzsche criticized this second set
of values because it was based on fear and resentment, and he associated these
values with the Judeo-Christian tradition, repeatedly criticizing Christianity
and Judaism.

Nietzsche’s major psychological theory is that all human behavior is basi-
cally motivated by the will of people to overpower each other and gain control
over their unruly passions. He thought that the self-control exhibited by as-
cetics and artists was a higher form of power than the physical bullying of
the weak by the strong. Nietzsche’s ideal, the overman, is the passionate
man who learns to control his passions and use them in a creative manner.

476 For further reading, see:

• A Nietzsche Reader, Penguin Books, 1977, 286 pp.

• Strathern, P., Nietzsche in 90 minutes, Ivan R. Dee: Chicago, 1996, 83 pp.
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Nietzsche unjustly suffered notoriety as a racist and forerunner of Nazism.
This is largely due to the editing and misinterpretation of his ideas by Nazi
propagandists.477

Nietzsche was born in Saxony, the son and grandson of Protestant min-
isters. He studied at the Universities of Bonn and Leipzig. He became a
professor of classics at the age of 24 and retired from academic life (1879)
because of poor health. Collapsing under the weight of the questions that he
posed for himself, he suffered a mental breakdown (1889) from which he never
recovered. Spent his last years in care of his mother at Naumburg and his
racist sister Elizabeth at Weimar. A strong opponent of Wagner in art and
Schopenhauer in philosophy.

Worldview XXIV: Nietzsche

∗ ∗∗

“We live in the age of atoms, in an atomistic chaos. In the Middle Ages the
opposite forces were held together by the Church, to some extent assimilated

477 Nietzsche not only admired Jews for their spiritual mastery and grandeur, but

vehemently dissociated himself from the ‘damnable German antisemitism’, de-

testing ‘the stupidity, crudity and pettiness of German nationalism’. At the

same time he criticized the Jews, whose historic legacy he denounced as be-

ing responsible for ‘the slave-revolt in morals’. This aspect of his approach to

Judaism was posthumously distorted in an effort to turn him into a spiritual

godfather of German Nazism. This was mainly due to the making of his sis-

ter Elizabeth, who ‘edited’ (from various notes and rough drafts) and issued,

posthumously, a book which Nietzsche had abandoned, The Will to Power;

she thus recruited her brother to the Nazi antisemitic and racist propaganda

machinery, promoting him falsely into a Nazi thinker. Nietzsche, however, de-

tested all kinds of nationalism. Nevertheless, in his book The Antichrist (1888)

he launched a vicious crusade against Judaism, which had undoubtedly great

impact on German Nazis’ ideology.
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into each other under the strong pressure it exerted. Since this pressure has
diminished, the opposing forces have rebelled against each other.”

∗ ∗∗

“If you want to achieve piece of mind and happiness — then believe, but if
you want to be a disciple of truth — search.”

∗ ∗∗

“There are no facts, only interpretations.”

∗ ∗∗

“Nobody dies nowadays of fatal truths: there are too many antidotes to
them.”

∗ ∗∗

“Everything that lives — suffers. There you have the essence of existence:
To live is to want, to want is to suffer. We are fugitive, doomed to sickness,
nostalgia and death.”

∗ ∗∗

“It is all over with priests and gods when man becomes scientific. Science is
the first sin, seed of all sin, the original sin. This alone is morality: ‘Thou
shalt not know’ — the rest follows.”

∗ ∗∗

“Do you believe that the sciences would ever have arisen and become great if
there had not beforehand been magicians, alchemists, astrologers and wizards,
who thirsted and hungered after recondite and forbidden powers?”

∗ ∗∗
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“What is it: is man only a blunder of God, or God only a blunder of men?”

∗ ∗∗

“Morality is the best of all devices for leading mankind by the nose.”

∗ ∗∗

“In former times, fanaticism of the lust for power was inflamed by the belief
that one was in possession of the truth. This lust bore such beautiful names
that one could thenceforward venture to be inhuman with a good conscience
(to burn Jews, heretics and good books and exterminate entire higher cultures
such as those of Peru and Mexico). The means employed by the lust for power
have changed, but the same volcano continues to glow, the impatience and the
immoderate love demand their sacrifice: and what one formerly did ‘for the
sake of God’, one now does for the sake of money, that is to say, for the sake
of that which now gives the highest feeling of power and good conscience.”

∗ ∗∗

“The Jews are the most remarkable nation of world history because, faced
with the question of being and not being, they preferred being at any price.
Considered psychologically, the Jewish nation is a nation of the toughest vital
energy, placed in impossible circumstances, voluntarily, from the profoundest
shrewdness of its self-preservation, took the side of all decadence instincts —
not as being dominated by them, but because it divined in them a power by
means of which one can prevail against ‘the world’.”

∗ ∗∗

“The Jews are indeed the strongest, toughest, and purest race now living in
Europe, who could gain mastery over it if so they wished. Yet, they desire
nothing but accommodation and absorption, to put an end to their centuries
of wandering — to which purpose it might be useful and fair to expel the
antisemitic screamers from the country.”
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∗ ∗∗

“There was only one Christian and he died on the cross.”

∗ ∗∗

“The deepest sense of existence is to be found in suffering and only art enables
us to face this suffering and not run away from it.”

∗ ∗∗

“Insanity in individuals is rare — but in groups, parties, nations, and epochs,
it is the rule.”

∗ ∗∗

“A politician divides mankind into two classes: tools and enemies.”

∗ ∗∗

“The Christian conception of God is one of the most corrupt conceptions
of God arrived at on earth; perhaps it even represents the low-water mark
in the descending development of the God type. God degenerated into the
contradiction of life, instead of being its transfiguration and eternal Yes!, into
a declaration of hostility toward life, nature and the will to life, into a formula
for every calumny of ‘this world’, for every lie about ‘the next world’, — into
a God of nothingness denied, into a will to nothingness sanctified...”

∗ ∗∗

“When on a Sunday morning we hear the bells ringing, we ask ourselves: is it
possible that this is going on because of a Jew crucified 2,000 years ago who
said he was the son of God? A God who begets children on a mortal woman,
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a sage who calls upon us no longer to work, no longer to sit in judgment, but
to heed the signs of the imminent end of the world; a justice which accepts
an innocent man as a substitute sacrifice; someone who bids his disciples to
drink his blood; prayers for miraculous interventions; sins perpetrated against
a god atoned for by a god; fear of a Beyond to which death is a gateway; the
figure of the Cross as a symbol in an age which no longer knows the meaning
and shame of the Cross — how gruesomely all this is wafted to us, as if out
of the grave of a primeval past.”

Can one believe that things of this sort are still believed in?”

∗ ∗∗

“One day there will be associated with my name the recollection of something
frightful — of a crisis like no other before on earth, of the profoundest collision
of conscience, of a decision evoked against everything that until then had been
believed in, demanded, sanctified.”

∗ ∗∗

“There will be wars such as there have never yet been on earth.”

∗ ∗∗

“The philosopher is not interested in truth, but only in ‘my truth’.”
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1873–1903 CE The years of the chromosome478: elucidation of the essential
facts of mitosis (the division of the cell nucleus into two daughter nuclei,
during cell multiplication) meiosis (the formation of sex cells, i.e. eggs and
sperms) and their relation to heredity . About ten main actors took part in
this drama, most of them Germans, born in the interval 1831–1862. These
were:

• Anton Schneider (1831–1890, Germany). Cytologist. Discovered visi-
ble changes in the nucleus during cell division. His account was the first
accurate description of mitosis in animal cells (1873).

• Eduard Strassburger (1844–1912, Germany). Botanist. Observed in
plant cells (1875) all the phenomena seen by others in more transparent
animal cells. He noted the difference between mitosis and meiosis and
its meaning for heredity. He coined haploid (a cell with half the usual
complement of chromosomes and diploid (with the normal number). Dis-
covered maturation (reduction division) of plant cells (1888).

• Walther Flemming (1843–1905, Germany). Coined the name mitosis
(1879) and made first accurate accounts of chromosome numbers and
accurately figured the longitudinal splitting of chromosomes (1882). De-
termined chromosome number as 24 in man (1898).

• Edouard van Beneden (1846–1910, Belgium). Zoologist. First studies
meiosis (1883) and stressed the importance of the qualitative and quan-
titative equality of chromosome distribution to daughter cells (1887).

• Wilhelm von Waldeyer-Hartz (1836–1921, Germany). Anatomist.
Coined the name chromosome (1888). Proposed the neuron theory of
the nervous system (1891).

• August Weismann (1834–1914, Germany). Biologist. Proposed a the-
ory of heredity (1892) whereby the germ-plasm, located in the sex cells,
is the carrier of the heredity endowment, half the germ-plasm for an off-
spring coming from the mother and half from the father. The germ-plasm
is transmitted unmodified to offspring such that acquired characteristics
are not inherited. Described the process of meiosis, whereby the number
of chromosomes is halved.

• Oscar Hertwig (1849–1922, Germany), zoologist, and Theodore
Boveri (1862–1915, Germany), biologist. Showed independently that

478 Chromosomes: Dark staining strands in the cell nucleus comprising the material

of heredity and containing two forms of nucleic acid, mostly DNA and some RNA

combined with protein. Lengths of chromosomes constitute the genes and carry

the genetic code. Chromosomes occur in pairs.
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the nature of cell-division was one of maturation, i.e. pairs of chromo-
somes split, replicating each member before dispersing into four separate
nuclei.

• Walter Stanborough Sutton (1877–1916, U.S.A.), biologist, and
Theodore Boveri (1862–1915, Germany). Pointed out (1902) the par-
allelism between chromosome behavior and Mendelism, closing the gap
between cytology and heredity. Sutton coined the name gene (1902),
and proposed that chromosomes carry genes (factors which Mendel said
could be passed from generation to generation).

1874 CE The first practical mechanical typewriter, by present-day stan-
dards, was commercially produced479.

In 1868, Christopher Latham Sholes (1819–1890, USA), a Milwaukee
senator and former postmaster, with his friend Carlos Glidden, an attorney,
presented an improved version of their earlier (1867) invention. In 1873,
E. Remington and Sons, a gun manufacturer, became interested in Sholes’
typewriter and the company put the machine on the market in 1874. The first
key-shift model was produced in 1878. The first successful portable typewriter
appeared in the early 1900’s. The electric typewriter came into use during
the 1920’s. Sholes devised the QWERTY keyboard which has been used from
1874 to the present day. It is the dominant survivor of dozen of keyboard
designs that competed during the early years of the typewriter. The name
derives from the arrangement of the letters in three rows:

Q W E R T Y U I O P

A S D F G H J K L

Z X C V B N M

����������
���������
�������

479 The first recorded typewriter patent was filed in 1714 by the British engineer

Henry Mill, but there is no evidence that Mill actually built his proposed

machine. The Italian Pellegrino Turri constructed a typewriter (1808), which

allowed blind people to write more easily. Over the next six decades, several

dozen inventors filed patents or built prototypes, but none of the machines

entered mass production or attained commercial success.
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1874 CE George Johnstone Stoney (1826–1911, Ireland). Physicist.
Eccentric and original thinker. The first person to show how to deduce
whether or not other planets in the solar system possessed a gaseous at-
mosphere, like the earth, by calculating whether their surface gravity was
strong enough to hold on to one.

Postulated that an electric oscillator exists within the atom which gener-
ates its characteristic spectra. He called this oscillator “electron” and asserted
that the magnitude of its charge is the same as that on a hydrogen atom during
electrolysis.

In 1899, following the discovery of J.J. Thomson in 1897, Lorentz sug-
gested that the name electron be given to the newly discovered particle.

In 1874, Stoney first discussed the possibility that there exist particular
systems of units picked out by nature itself, what we might term ‘natural
units’480. To this end, he advocated the selection of natural constants that
prevail throughout the universe such as the velocity of light, c (because it
connects electrostatic and electromagnetic units); Newton’s gravitation con-
stant, G, and lastly, e, the unit of electric charge deduced from Faraday’s
Law. From these entities, a length, a mass, and a time can be constructed.

480 Compare with Planck’s units (1906):

lP = (
G�

c3
)1/2 ∼ 10−33 cm; tP = (

G�

c5
)1/2 ∼ 5 × 10−44 s;

mP = (
c�

G
)1/2 ∼ 10−5 gm.

Since the ratio e2

�c
is dimensionless and approximately equals 1

137
, we see that

each Stoney’s unit just differs from the corresponding Planck quantities by a

numerical factor ∼ 1√
137

.

For further reading, see:

• Davies, Paul, The Accidental Universe, Cambridge University Press, 1993,

139 pp.

• Cohen-Tannoudji, G., Universal Constants in Physics, McGraw-Hill, 1993,

116 pp.

• Rees, Martin, Just Six Numbers, Basic Books, 2000, 195 pp.

• Barrow, J.D., The Constants of Nature, Vintage, 2003, 352 pp.

• Seife, C., Alpha and Omega, Penguin Books, 2003, 294 pp.
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The values of the units Stoney evaluated from these three standards were:

Ls = (
Ge2

4πε0c4
)1/2 ∼ 10−34 cm; Ts = (

Ge2

4πε0c6
)1/2 ∼ 3 × 10−45 s;

Ms = (
e2

4πε0G
)1/2 ∼ 10−6 gm.

These new natural units attracted little attention. There was no practi-
cal use for them and their significance was hidden to everyone, even Stoney
himself. Natural units needed to be discovered all over again in the 20th

century.

Stoney was a professor at Queen’s College, Galway (1852–1857) and
Queen’s University (1857–1882). His work included also investigations related
to physical optics, molecular physics, kinetic theory of gases and planetary
atmospheres.

Stoney was the uncle of Geoge FitzGerald and also an older distant
cousin of Alan Turing.

1874–1888 CE Henry Morton Stanley (1841–1904, England). Explorer
of Africa, discoverer of the course of the Congo River. With David Living-
stone (1813–1873, England) made the African continent known to the world.
Accomplished more geographical discoveries in Africa than any other explorer.

Stanley was born at Denbigh, Wales, and was baptized John Rowlands.
His father died when the boy was two, and he spent most of his youth in an
orphanage. At 18, he sailed as a cabin boy to New Orleans, La, where he
was adopted by a merchant, Henry Morton Stanley, who gave him his name.
When the Civil War began (1861), Stanley joined the Confederate Army but
was soon captured. He later joined the Union Army.

After the war, Stanley became a newspaper reporter, and the New York
Herald sent him to find Livingstone (1869). After many hardships he met
Livingstone on Lake Tanganyika (1871), greeting him with the famous words:
“Dr. Livingstone, I presume?” They stayed together until March 1872. In
1874 Stanley heard of Livingstone’s death and returned to Africa to carry
on his work. In November 1874 he left Zanzibar on a dangerous trip down
the Congo River from its source to its mouth. The Congo region was rich in
rubber and ivory, and Stanley tried to interest the British in the area. But he
did not succeed, and, instead, the Belgian colonized the region as the Congo
Free State. Stanley then led another expedition for the Belgians (1879–1883).
In 1887 he made his last trip to Africa to rescue Emin Phasha during the
African uprising. Stanley returned to Britain and served in Parliament until
1900.
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The main achievements of Stanley are:

• Traced the Nile’s source.

• Circumnavigated Lakes Victoria and Tanganyika, showing that the lat-
ter was an isolated lake.

• Traced the whole source of the Congo River.

• First to cross Africa from ocean to ocean.

• Traced Lake Albert’s source to Lake Edward and identified the Ruwen-
zori Range as the fabled Mountains of the Moon.
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1874–1895 CE Jacobus Hendricus van’t Hoff (1852–1911, Holland).
Chemist and physicist whose chief aim was the application of mathematics
to chemistry. A founder of stereochemistry (1874). Discovered the laws of
chemical kinetics of weak solutions and osmotic pressure481 (1885–1886), for
which he received the Nobel prize for chemistry in 1901.

Van’t Hoff was born in Rotterdam. During 1869–1871 he studied at the
polytechnic at Delft, in 1871 at the University of Leyden, in 1872 under F.
Kekulé at Bonn, in 1873 at Paris and in 1874 at Utrecht. In 1878 he was
appointed professor of chemistry in Amsterdam University, and in 1896 he
went to Berlin, as professor at the Prussian Academy of Sciences.

In 1848 Louis Pasteur (1822–1895, France) discovered molecular asym-
metry and demonstrated the existence of optical isomers: he had shown that
a compound called sodium ammonium tartrate existed in two different crys-
talline forms. The two crystal types were identical to each other, except that
they were mirror images, like right and left hands. They had identical proper-
ties, but solutions of one crystal would rotate polarized light in one direction
and the other type in the opposite direction. This was among the earliest
works dealing with 3-dimensional structure of molecules.

481 He stated that the osmotic pressure is given by δp = (c2 − c1)
kT
v

, where

{c2, c1} are the concentrations of solutions on both sides of the neutral semi-

permeable membrane, k is the Boltzmann constant, T is the absolute temper-

ature, and v is molecular volume of the pure solvent . In particular, if there is

pure solvent on one side of the membrane (c1 = 0, c2 = c), one arrives at van’t

Hoff’s formula: δp = nkT
V

, where n is the number of molecules of the solute in

a volume V of solvent. (It is similar to the Clapeyron formula, if we replace gas

pressure by osmotic pressure, volume of gas by volume of solution, and number

of particles of gas by number of molecules of the solute.)

Osmosis plays an extremely important role in the world of animals and plants.

Most of the partitions in living organisms and plants are semi-permeable. For

example: the osmotic pressure in plant cells reaches several atmospheres, owing

to which ground water can rise along the trunk of a tree to a large height. In the

human body, osmosis plays an important part in the function of the kidneys.

It also results in the transfer of water and various nutrients between the blood

and the fluid of cells. Chemists use reverse osmosis to purify water.

The practical applications of osmosis were apparently known to Moses as early

as ca 1230 BCE, for it is written in Exodus 15, 23–25: “And when they came to

Marah they could not drink of the waters for they were bitter. And the people

murmured against Moses, saying. What shall we drink? And he cried unto the

Lord; and the Lord showed him a tree, which when he had cast into the waters,

the waters were made sweet”.
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Stimulated by Pasteur’s work, van’t Hoff, and independently Joseph
Achille Le Bell (1847–1930, France), proposed an explanation for this phe-
nomenon in 1874: the bonds formed by carbon could be considered as pointing
to the corners of a regular tetrahedron, where it is attached to 4 different sub-
stituents. The molecule thus formed is nonsuperposable on its mirror image.

The discovery meant that in order to explain the constitution of certain
organic compounds, the tridimensional arrangement of atoms in space must
be taken into account.

When more than one C atom is considered, the possibilities become more
complex, but they still remain mirror images of each other, identical in all
properties except that they rotate polarized light in opposite directions. Such
optically active compounds are of vital importance to the chemistry of life.
This problem, however, could not be successfully attacked from the theoretical
side until knowledge of the structure of atoms had been gained.

From 1874 to 1884 van’t Hoff’s attention was mainly given to the law of
mass action; he classified and defined orders of reactions482 in terms of number
of molecules actively involved in the reaction. In 1884 he defined an index of
chemical affinity as the maximum external work generated from a reversible
isothermal reaction.

482 Reaction-rate (velocity) is the change in concentration of a reactant or product

per unit time. A formula in brackets, for example [A], represents the con-

centration of the indicated species in moles per liter. The reaction velocity is
designated by d

dt
[A], and measured in mole/liter/min. Knowledge of factors

which influence reaction velocity has practical consequences; such information

includes its velocity and the temperature and concentration dependence of the
velocity. An equation relating reaction rate d[p]/dt and concentrations is called

a rate law. The exponent of a concentration factor in the rate is the reaction

order for that species. For example, the rate of oxidation of bromide ion by
bromate ion in acidic aqueous solution

5Br− + BrO−
3 + 6H+ � 3Br2 + 3H2O,

is given by the law
d

dt
[Br2] = k[Br−][BrO−

3 ][H+]2,

where the rate constant k is fixed for a given temperature. The above reaction is

of second order in hydrogen ions. The sum of the exponents is the total reaction
order, namely 4. A rate law is a differential equation, that can be integrated.

The order, and powers of individual species’ concentrations in the rate, can be

modified from their naive-counting values, e.g. by pre-equilibrium of fast steps
in a reaction chain; Thus, in this example, we would have expected the powers

of [Br−] and [H+] to be 5 and 6, respectively, had the reaction proceed in a

single step. Empirical orders can be fractional and even negative.
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From 1885 to 1895 he was engaged in the theory of solutions, and developed
an analogy between dilute solutions and gases. He showed (1886) that the
osmotic pressure of a solution is equal to the gas pressure which the solute
would exert if all the solvent were removed, and the dissolved substance were
left in the space in the condition of an ideal gas. The consequences of this
theory had a remarkable influence on the progress of the science of biology.

1874–1896 CE Marie-Esprit Léon Walras (1834–1910, France). Math-
ematical economist. Made outstanding original contributions to modern eco-
nomic theory; first to apply comprehensive mathematical analysis to general
economic equilibrium in ‘Elements d’economie politique pure’ (1874–1877).
Professor at Lausanne (1871–1892).

He showed how to formulate an independent system of equations relating
to prices and quantities in all markets for the economy as a whole. These
reflected conditions under which the market mechanism maximizes benefits
and minimizes costs for the economy generally. Walras’ model only recently
became a source of inspiration for the new fast-developing specialization of
mathematical economists.

1874–1909 CE Karl Ferdinand Braun (1850–1918, Germany). Physi-
cist and inventor. Discovered the crystal rectifier (1874), and used it for the
detection of radio waves (1901). Invented the cathode483-ray tube (1897). Dis-
covered method in wireless telegraphy of boosting the outgoing signal at the
sending station.

Another example is the reaction:

2HI�H2 + 2I�H2 + I2

with its rate law
d[I2]

dt
= kf [HI]2 − kr[H2][I2].

At equilibrium

kf [HI]2 = kr[H2][I2],

yielding the equilibrium constant

K =
kf

kr
=

[H2][I2]

[HI]2
.

In this example, the empirical reaction orders of the three relevant species are

the same as their naive-counting values.
483 He painted the inside end of a glass tube with fluorescent paint; a cathode inside

the tube emitted electrons which made the paint glow.
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Braun was a professor of physics at the University of Tübingen (1885–
1895), and director of the Physical Institute at Strasbourg (from 1895).
Shared the 1909 Nobel prize for physics with G. Marconi.

One Earth — One Language (1670–1983)

1875 CE, May 20 The Treaty of the Meter. An international conference
signed a treaty to adopt new measurement standards for the kilogram and
meter. Seventeen nations, including the United States, took part in the con-
ference. The treaty set up a permanent organization, the International Bureau
of Weights and Measures in Sèvere, France (IBWM).

In the original metric system (1790), the unit of length equaled 10−7 of
the distance from the North Pole to the equator along the line of longitude
going through Dunkirk, France and Barcelona, Spain. It was named metre,
from the Greek word metron, meaning a measure.

The unit of mass, the gram, was defined (1790) as the mass of a cubic
centimeter of water at the temperature where it weights the most, namely at
4 ◦C (39 ◦F).

Before the development of the metric system, every nation used measure-
ment units that had grown from local customs. However, the rapid devel-
opment of science and technology made scientists realize that the ‘tower of
science’ could not be built unless “the whole earth was of one language and
of one speech” (Genesis XI, 1–6).

Indeed, already in 1670, Gabriel Mouton, the vicar of St. Paul church
in Lyons, France proposed a decimal measurement system, namely the length
of a minute (1/21,600) of the earth’s circumference. In 1671 Jean Picard
(1620–1682), a French astronomer, proposed the length of a pendulum that
swung once per second as a standard of length. Through the years, other
people suggested various systems and standards of measurement.

In 1790, the National Assembly of France requested the French Academy of
Sciences to develop a standard system of weights and measures. A commission
appointed by the Academy (including Laplace, Lagrange, Lavoisier and
Monge) proposed a system that was both simple and scientific. This became
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known as the metric system, and France officially adopted it in 1795 [but the
government did not require the French people to use the new units until 1840].

Thomas Jefferson (1743–1826), then the U.S. Secretary of State, recom-
mended that the United States use a decimal system of measurement, but
Congress rejected the idea.

In 1792, Jean Baptiste Joseph Delambre (1749–1822, France) and
Pierre Mechain (1744–1804, France), began their measurement of the arc
of the meridian from Dunkirk to Barcelona.

In 1821, John Quincy Adams (1767–1848), the U.S. Secretary of State,
proposed conversion to the metric system. Congress again rejected the pro-
posal. In 1866 Congress made the metric system legal in the United States.

The 1875 conference decided that units based on the size of the earth and
mass of water are inaccurate for scientific purposes, and replaced it with a
standard length demarced on a platinum-iridium bar and a standard mass of
platinum-iridium.

In 1899, the new meter and kilogram standards, based on those adopted
by the 1875 conference, were made and sent to all countries who signed the
treaty. The kilogram standard was established in the form of cylinder made
of a platinum-iridium alloy.

In 1960, the meter was redefined on the basis of the frequency of light
emitted by a particular isotope of Krypton.

In 1975, the United States Congress passed the ‘Metric Conversion Act’
which called for voluntary change over to the metric system. At that time,
almost every country in the world had either converted to the system or
planned to do so.

In 1983, IBWM settled on a new basis for the standard of length by making
the meter exactly the distance traveled by light in vacuum in 1/299,792,458
seconds. From then on, every measurement of light’s speed in vacuum, is by
definition really a measurement of the length of one’s laboratory distance-
yardsticks in terms of the new meter !

In 1992 it was discovered that the standard kilogram changed its mass
by the amount 23 microgram. Consequently, a new mass standard will be
established in the beginning of the 21st century.
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1875–1876 CE John Kerr (1824–1907, Scotland). Physicist. Discov-
ered the electro-optical Kerr effect (1875) and the magneto-optical Kerr effect
(1876), among the first non-linear optical phenomena.

Kerr was born in Ardrossan, Ayrshire, the son of a fish merchant. He was
educated at Glasgow University in theology and became a lecturer in math-
ematics at the Free Church Training College for Teachers, Glasgow (1857–
1901), and set up a modest laboratory there. He was one of the first research
students of Kelvin.

Amorphous substances (e.g. glass and other insulators, liquids with in-
version symmetry such as carbon disulphite, paraffin oil, nitrobenzene etc.)
which are isotropic under ordinary conditions, become doubly refracting (bire-
fringent) when subjected to intense electric fields484. They then resemble uni-
axial crystals with their optic axes parallel to the applied field.

Kerr showed that the effect was strongest when the plane of polarization
was 45◦ to the field and zero when perpendicular or parallel. He found that the
extent of the effect is proportional to the square of the applied field strength.

In the magneto-optical effect, a beam of plane polarized light was reflected
from the polished pole of an electromagnet. The beam became elliptically
polarized (with the major axis rotated from the original plane), when the
magnet was switched on. The effect depended on the position of the reflecting
surface w.r.t. the direction of magnetization and to the plane of incidence of
the light.

In 1893 F. Pockels discovered a similar but much weaker effect in several
crystals. Isotropic (cubic) crystals became uniaxial, and uniaxial crystals
became biaxial, in a steady electric field of sufficient intensity, but the effect
is linearly485 proportional to the applied electric field.

484 Because the molecules tend to align under the influence of the electric field.

The existence of the Kerr-effect makes it possible to construct an electrically

controlled “light valve”: a cell with transparent walls contains a liquid between

a pair of parallel plates. The cell is inserted between crossed Nicols; light is

transmitted when an electric field is set up between the plates and is cut off

when the field is removed. Thus one may modulate the intensity of a light beam.
485 The change in the refractive index n due to an applied electric field E is ex-

pressed as δ( 1
n2 ) = r|E| + g|E|2. The first term is linearly proportional to the

applied electric field and is known as the Pockels effect. The second term,
which has quadratic dependence on the applied electric field, is known as the

Kerr electrooptic effect. While the Pockels effect depends upon the polarity of

the applied electric field, the Kerr effect does not.

The most popular crystals which display the electrooptic effect and are used for

electrooptic devices are:
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1875–1885 CE Eduard Suess (1831–1914, Austria). Geologist. Argued
(1875) that mountains and continents were formed not by vertical uplift but
by thrusting movements that crumpled and broke outer portions of the earth’s
crust. Postulated (1883) the existence of Gondwana, a great southern con-
tinent that broke up to form Africa, Antarctica, Australia, India, and South
America. Coined the name biosphere as that part of the earth in which life
exists.

In his five-volume work Das Antlitz der Erde he attempted to explain many
geological features in terms of the earth’s contraction as it cooled.

Suess was born in London. Professor at Vienna (1857–1901). Liberal486

member of the Landtag of Lower Austria (1869–1896) and of the Reichsrat
(1872–1896).

Suess’ tectonic synthesis is one of the most remarkable achievements of
the beginning of the 20th century. For the first time, science acquired an
elaborate survey of the whole earth, a description of all the irregularities of
its crust, the mountains, the seas and lakes, the valleys, the river beds and
deltas — an attempt to explain the deformations and foldings which led to
the earth’s present appearance.

1875–1920 CE Luther Burbank (1849–1926, U.S.A.). Naturalist, plant
breeder and horticulturist. Developed many new trees, fruits, flowers, veg-
etables, grains and grasses. He also improved many plants and trees already
known. Many common foods we eat every day come from his experiments.
Among the plants he developed are the Burbank potato, the Shasta daisy, the
spineless cactus, and the blackberry.

Burbank was born in Lancaster, Mass. He became a gardener to support
his widowed mother. In 1875 he moved to California, and settled in Santa

• Lithium niobate (LiNbO3)

• Lithium tantalate (LiTaO3)

• Potassium dihydrogen phosphate (KH2PO4), known as KDP.

• Ammonium dihydrogen phosphate (NH4H2PO4), known as ADP.

• Gallium arsenide (GaAs).

486 Amidst the surging wave of antisemitism in Austria, Suess had the courage and

the integrity to speak firmly in the Reichstrat (April 1894):

“What has been spoken, written, and done against the Jewish people during

the last few years, has been a flagrant violation not only of our Constitution,

but of the principles of human justice and Christianity.”
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Rosa. Stimulated by the works of Charles Darwin, he improved his crops by
crossing and selection. He usually grew thousands of plants in the effort to
produce one improved species.

The vast range of his experiments (he handled more than a million plants
each year, and sometimes would perform more than a thousand simultaneous
experiments), and his ability to detect and exploit even the smallest variation
in a plant for a fast development of new properties — made him the greatest
plant-creator ever. It is amazing that he could do so much without grasping
the true genetic significance of his achievements, and despite his erroneous
belief in the inheritance of acquired characteristics.

1876–1880 CE Wilhelm Lexis (1837–1914, Germany). Statistician-
economist. A pioneer in the application of statistics to the social sciences.

Graduated from the University of Bonn (1859) in mathematics. Went
to Paris (1861) to study social science and subsequently held positions at
Strasbourg (1872), Dorpat (1874), Freiburg (1876), Breslau (1884) and finally
Göttingen (1887).

1876–1886 CE Eugen Goldstein (1850–1931, Germany). Physicist. Per-
formed many valuable experiments upon discharges through gases. Coined the
names ‘cathode rays’ (1876) and ‘canal rays’ (1886). These were eventually
shown to be electrons and ions respectively by Thompson (1897).

Goldstein was born at Gleiwitz. He was a pupil of Helmholtz and worked
at the Potsdam Observatory from 1888. He was first to suggest that ‘cathode-
rays’ emanating from the sun produce the northern lights and affect the mag-
netic field of the earth.

1876–1891 CE Francois Edouard-Anatole Lucas (1842–1891, France).
Mathematician. Best known for his results in number theory (e.g. the converse
of Fermat’s little theorem487). In particular, he studied (1878) the Fibonacci

487 Fermat’s little theorem (1640), known as FLT, states that for every number a

not divisible by the prime p, the congruence ap−1 = 1(mod p) is satisfied. The

examples
2340 ≡ 1(mod 341), 390 ≡ 1(mod 91)

where 341 = 11 · 31 and 91 = 7 · 13 are sufficient to show that the converse

of FLT is not generally valid. However, it was shown by Lucas (1876) that by

imposing additional restrictions on the number a in the above congruence, it is

possible to express a converse form of FLT.

The theorem of Lucas states: When for some number a the congruence

an−1 ≡ 1(mod n) holds, while no similar congruence with a lower exponent

at = 1(mod n), 0 < t < n − 1 is fulfilled, the module n is prime.
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sequence and the associated Lucas sequence488 named after him. Devised
methods of testing primality, and used them (1876) to prove that the Mersenne
number 2127 − 1 is prime (Lucas test489).

488 The Lucas sequence: Ln = an−1 + an+1, where an is the general term of the

Fibonacci sequence. It follows that Ln = Ln−1 + Ln−2, L0 = 2, and conse-
quently

Ln = αn + βn, α =
1

2
(1 +

√
5 ), β =

1

2
(1 −

√
5 ).

One can also show that if

F (x) =

∞∑

n=1

anxn−1 ≡ (1 − x − x2)−1

then

L(x) =
∞∑

n=1

Lnxn−1.

489 If p is an odd prime, and N = Mp = 2p − 1 is the corresponding Mersenne

number, let {ri} be the sequence defined by r1 = 4, ri = r2
i−1 − 2. Then N

is prime if rp−1 ≡ 0(mod N) and otherwise composite.

Example: Suppose that we want to know if the 5th Mersenne number
25 − 1 = 31 is prime. We start with the number 4 and we repeatedly square

it, and subtract 2. At each step, however, we reduce the result by taking only

the remainder when it is divided by 31. So our test goes like this

r1 = 4

r2 = 42 − 2 = 14

r3 = 142 − 2 = 194 = 6 · 31 + 8

r4 = 82 − 2 = 62 = 2 · 31 + 0.

There is no remainder at the fourth step, and so the fifth Mersenne number is

indeed a prime.

Lucas also sought algorithms for testing the primality of arbitrary numbers,

not necessarily of the Mersenne type. He noticed that the sequence An defined

by the recursion relation An+1 = An−1 + An−2 (known as the Padovan se-

quence) with initial values A0 = 3, A1 = 0, A2 = 0 has the following bizarre

property: Whenever n is a prime number, it divides An exactly! For example,

A19 = 209 and 209
19

= 11. Until 1982 it was an open question whether or not

the converse statement was true, since nobody had found such numbers (known

as Perrin pseudoprimes).

Unfortunately Perrin pseudoprimes do turn out to exist! Adams and Shanks

(1982) discovered the smallest one, 5212 = 271441 and J. Grentham proved
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He used the algebraic identity

4x4 + 1 = (2x2 − 2x + 1)(2x2 + 2x + 1)

to effect the factorization

24n+2 + 1 = (22n+1 − 2n+1 + 1)(22n+1 + 2n+1 + 1)

with x = 2n.

Lucas is also well known for his invention of the Tower of Hanoi490 (1883)
and other mathematical recreations.

that there are many such pseudoprimes. The conjecture that no Perrin pseudo-

primes exist was important, because the remainder on dividing An by n can be

calculated very rapidly. If the conjecture were true this would have provided

a speedy primality test and useful application to secret codes, which nowadays

often hinge on properties of large primes.
490 Three pegs are fastened to a stand. There are n (usually 8) wooden discs, each

with a hole in the center. The discs are of different radii, and at the start of
the game all are placed on one peg in order of size, the biggest at the bottom.

The problem is to shift the pile from one peg to another by a succession of

steps, at each moving just one disc, and seeing to it that at no stage is any disc
underneath a larger one. All three pegs may be used.

Let Tn be the minimum number of moves that will transfer the n discs from

one peg to another under Lucas’ rules. Then obviously T0 = 0 (no moves
are needed to transfer no disc), T1 = 1 and T2 = 3. Experiments with three

discs show that the winning idea is to transfer the top two discs to the middle

peg, then move the third, then bring the other two onto it. This gives us a
clue for transferring n discs in general: We first transfer the n − 1 smallest

to a different peg (requiring Tn−1 moves), then move the largest (requiring one

move), and finally transfer the n − 1 smallest back onto the largest (requiring
another Tn−1 moves). Thus we can transfer n discs (for n > 0) in at most

2Tn−1 + 1 moves:

Tn ≤ 2Tn−1 + 1, for n > 0.

But there is no better way! At some point we must move the largest disc. When
we do, the n − 1 smallest must be on a single peg, and it has taken at least

Tn−1 moves to put them there. We might move the largest disc more than once,
if we are not too alert. But after moving the largest disc for the last time, we

must transfer the n − 1 smallest discs (which must again be on a single peg)

back onto the largest; this too requires Tn−1 moves. Hence

Tn ≥ 2Tn−1 + 1, for n > 0.

These two inequalities, together with the trivial solution for n = 0, yield

T0 = 0,

Tn = 2Tn−1 + 1, for n > 0.
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He was wounded as a result of a freak accident at a banquet when a plate
was dropped and a piece flew up and cut his cheek, and he died of Erysipelas
a few days later.

Lucas Sequences and Primes

The number-sequences of Fibonacci (1202 CE), Fermat (1637 CE), and
Pell (1668), among many others, occupy a central role in modern number
theory. Many particular facts were known about these sequences; however,
the general theory was first developed by Lucas in a seminal paper which
appeared in Volume I of the American Journal of Mathematics (1878). It is a
long memoir with a rich content, relating Lucas sequences to many interesting
topics, like trigonometric functions, continued fractions, the greatest common
divisor and primality tests. R. D. Carmichael (1913) corrected errors and
generalized results.

Consider the polynomial f(t; P, Q) = t2 − Pt + Q where (P, Q) are
nonzero integers. From its roots

α =
1
2
(P +

√
P 2 − 4Q) and

β =
1
2
(P −

√
P 2 − 4Q)

Lucas constructed the sequence of numbers

Un(P, Q) =
αn − βn

α − β
, Vn(P, Q) = αn + βn n ≥ 0

which are called the Lucas sequences associated with the pair (P, Q). They

Substituting Un = Tn + 1 we get U0 = 1, Un = 2Un−1 for n > 0. A solution

to this recurrence relation is Un = 2n, leading to Tn = 2n − 1 for n ≥ 0,

which can easily verified by mathematical induction. Thus, the problem can

always be solved in 2n − 1 steps. Assuming that the player can make one

transfer every second, with never a mistake, he must work more than 500,000

million years for n = 64.
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obey the recurrence relations

Un = PUn−1 − QUn−2; Vn = PVn−1 − QVn−2

U0 = 0, U1 = 1; V0 = 2, V1 = P.

Special cases:

(1) P = 1, Q = −1; Un = Un−1 + Un−2

Un = 0, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, . . .

α =
1
2
[1 +

√
5], β =

1
2
[1 −

√
5]

The {Un} are immediately recognized as the Fibonacci numbers. They
have the properties:

• F (x) =
∑∞

n=1 Unxn−1 ≡ (1 − x − x2)−1

• G(x) =
∑∞

n=1 Vnxn−1 ≡ − log(1 − x − x2)

• (Um, Un) = U(m,n), where (, ) indicate the operation of taking the great-
est common divisor:

e.g. (U45, U30) = (1, 134, 903, 170; 832, 040) = 610 = U15.

The associated series Vn(1,−1) yields the Lucas numbers

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, . . .

(2) P = 3, Q = 2; Un = 3Un−1 − 2Un−2

Un = 2n − 1 (Mersenne numbers); Vn = 2n + 1.

(3) P = 2, Q = −1; Un = 2Un−1 + Un−2

α = 1 +
√

2, β = 1 −
√

2 (Pell numbers)

The Pell numbers (n = 0, 1, 2, 3, . . .)

Un = 0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, . . .

and their companions (n = 0, 1, 2, 3, . . .)

Vn = 2, 2, 6, 14, 34, 82, 198, 478, 1154, 2786, 6726, 16238, 39202, . . .
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are associated with the solutions of the Pell equation

z2
n − 2x2

n = (−1)n,

where zn = 1
2Vn, xn = Un and

zn =
1
2
{
[1 +

√
2]n + [1 −

√
2]n

}
,

xn =
1

2
√

2

{
[1 +

√
2]n − [1 −

√
2]n

}
.

(4) P = 4, Q = 3;

α = 3, β = 1; Un =
1
2
(3n − 1), Vn = 3n + 1.

(5) P = 11, Q = 10;

α = 10, β = 1; Un =
1
9
(10n − 1), Vn = 10n + 1.

The numbers 10n + 1 are known as repunits (repeated units).

Having defined his sequences, Lucas asked: for what values of p and a do

the sequences ap −1
a−1 and ap+1

a+1 yield prime numbers. We know, for example,

that 10n + 1 yields prime numbers for n = 1, 2:

101 + 1 = 1; 102 + 1 = 101.

Clearly, if n contains an odd factor, 10n + 1 cannot be prime because

10(2k+1)d + 1 is divisible by 10d + 1. Factorizations for n > 2 then yield

103 + 1 = 11 × 91,

105 + 1 = 11 × 9091,

107 + 1 = 11 × 909091,

106 + 1 = 101 × 9901,

1010 + 1 = 101 × 99009901,
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and

104 + 1 = 73 × 137,

108 + 1 = 17 × 5882353,

1016 + 1 = 353 × 449 × 641 × 1409 × 69857,

1032 + 1 = 19841 × 976193 × 6187457 × 834427406578561,

1064 + 1 = 1265011073 × 15343168188889137818369
× 515217525265213267447869906815873,

10128 + 1 = 257 × 15361 × 453377 × a prime of 116 digits.

In general, machine calculations have yielded the following results for the
Lucas sequences:

• ap −1
a−1 is prime for:

a = 2; p = 3; 5; 7; 13; 17; 19; 31; 61; 89; 107; 127; 521; 607;
1279; 2203; 2281; 3217; 4253; 4423; 9689; 9941; 11,213;
19,937; 21,701; 23,209; 44,497; 86,243; 110,503; 132,049;
216,091; 756,839; 859,433; 1,257,787; 1,398,269; 2,976,221;
3,021,377; 6,972,593

a = 3; p = 3; 7; 13; 71; 103

a = 5; p = 3; 7; 11; 13; 47; 149; 181

a = 6; p = 3; 71; 127

a = 7; p = 5; 13; 131; 149

a = 10; p = 2; 19; 23; 317; 1031

a = 11; p = 17; 19; 73

a = 12; p = 3; 5; 97; 109

• ap+1
a+1 is prime for:

a = 2; p = 3; 5; 7; 11; 13; 17; 19; 23; 31; 43; 61; 101; 127; 167;
191; 199; 313; 347; 701

a = 3; p = 3; 5; 7; 13; 23; 43; 281

a = 5; p = 5; 67; 101; 103
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a = 6; p = 3; 11; 31; 43; 47; 59; 107

a = 7; p = 3; 17; 23; 29; 47; 61

a = 10; p = 5; 7; 19; 31; 53; 67

a = 11; p = 5; 7

a = 12; p = 5; 11

1876–1916 CE John William Strutt (Lord Rayleigh, 1842–1919, Eng-
land). Distinguished physicist. In 1904 he was awarded the Nobel prize in
physics for his discovery (with William Ramsay) of Argon (1894).

Rayleigh’s life-work included numerous contributions on a wide range of
subjects in chemical physics, capillarity and viscosity, theory of gases, op-
tics, photography, color vision, acoustics, electromagnetism, elasticity, hy-
drodynamics and mathematical physics. His treatise on sound includes much
original work on diffraction and scattering (1877–1878).

In 1885 he predicted the existence of elastic surface-waves produced by
natural and artificial sources in the earth that now bear his name: Rayleigh
waves.

In 1900 he derived the blackbody radiation formula for long waves, known
as Rayleigh’s radiation formula, which later became the starting point for
Planck’s quantum theory491. In 1892 he generalized the principles of dimen-

491 Rayleigh scattering applies where the size of the scatterer is much smaller than

the wavelength of the radiation, e.g.: scattering of light by molecules. For gases

with a moderate number density N and refractive index n, the total scattering

intensity per unit volume of material is given by I = 32π3(n−1)2

3Nλ4 〈S0〉, where

〈S0〉, λ are respectively the mean energy flux density and the wavelength of the

incident wave. It means that air molecules are more effective scatterers of the

shorter wavelength (blue and violet) portion of the ‘white’ sunlight then the

longer wavelength (red and orange) portion.

Thus, when we look in a region of the sky away from direct solar rays, we

see predominantly blue light which was more readily scattered. On the other

hand, the sun appears to have yellowish to reddish tint when viewed near the

horizon; the solar beam must travel through a great deal of atmosphere before

it reaches the observer. Hence most of the blue and violet will be scattered

out, leaving a beam of light composed mostly of red and yellow (crimson). This

latter phenomenon is particularly pronounced on a day when fine dust or smoke

particles are present, or at sunset.
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sional analysis as a logical procedure [Phil. Mag. 34, 59–70].

In scientific stature, he is ranked alongside Stokes and Kelvin. The
special feature of his work is its extreme accuracy and definiteness, combining
highest mathematical acumen with refinement of experimental skill.

Possessing an immense range of knowledge, he has filled up lacunae in
nearly every part of classical physics, and although he made no discovery
which captured the popular imagination, he added analytic refinement to
many branches of physics. His papers are often difficult to read but never dif-
fuse or tedious, and his mathematical treatment is never needlessly abstruse,
for when his analysis is complicated it is only because the subject-matter is
so.

Rayleigh was born in Essex, the son of the second baron of a barony created
in 1821 at George IV’s coronation. He went to Trinity College, graduated as
senior wrangler in 1865, and obtained the first Smith’s prize of the year.
He married in 1871 and from 1879 to 1884 was a Cavendish professor of
experimental physics at the University of Cambridge, in succession to Clerk
Maxwell. In 1887 he became a professor of natural philosophy at the Royal
Institution of Great Britain. In 1908 he became the chancellor of Cambridge
University.

Classical Thermal Physics

Thermal physics492 unites the disciplines of heat thermodynamics and sta-
tistical mechanics. Heat is a form of energy, and the science of heat deals with
the changes in the properties of matter accompanying the transfer of energy
through the mechanisms of work and the heat flow. It is an experimental sci-
ence and the data obtained is represented by empirical laws, many of which
can be justified a posteriori by theory.

The name thermodynamics (from the Greek θερμos = hot, δυναμis =
force) is given to that branch of physics which deals with the relations between

492 For further reading, see:

• Kittel, C., Thermal Physics, John Wiley & Sons: New York, 1969, 418 pp.
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thermal and mechanical energy — the transformations of heat into work and
vice versa.

Thermodynamics is an axiomatic science, and a purely mathematical dis-
cipline. The laws governing the transformation of energy through work and
heat are derived from a few basic postulates, and important relations are
obtained between the properties of systems in thermal equilibrium.

Thermodynamics – both its equilibrium and near-equilibrium branches –
theory contributes to the understanding of matter and the physical world:
it provides quantitative values for various properties of matter, it gives in-
formation about the possibility and impossibility of processes and shows the
direction of evolution of a macroscopic system. It also provides methods for
testing the stability of a given state of the system.

Thermodynamics is with us on a daily basis. With its help, we can un-
derstand how our car functions, predict why water boils, and understand the
formation of clouds, rain, or snow.

The power of thermodynamics lies in the fact that it describes and corre-
lates directly observable properties of diverse substances. This is done with-
out using any detailed knowledge of the internal structure of the bulk matter.
With relatively few laws and variables, an impressive number of remarkable
conclusions can be drawn for complex systems containing a great number of
individual molecules. The specific nature of substances enters into the theory
via a few parameters, such as heat capacities or molar volumes.

The science of thermodynamics introduces the new concept of temperature;
it is absent from classical mechanics, as well as from the theory of electric-
ity and magnetism and from atomic physics493. This concept is introduced
through the Zeroth Law of thermodynamics: There exists a property — tem-
perature — such that the equality of temperature is a condition for thermal
equilibrium between two systems or between two parts of the same system .

Most empirical laws, however fall outside the scope of thermodynamics,
and the irreversibility of thermal processes seems to violate the more basic
laws of mechanics. The fact is that thermodynamics would be an empty
discipline, with no application in nature, were not matter composed of a
myriad of molecules, or at least a large number of degrees of freedom.

The basis for both the empirical laws of heat and the postulates of ther-
modynamics is found in statistical mechanics, and the latter gives a concrete
picture of the abstractions of thermodynamics, such as entropy, temperature,
internal energy and other system variables.

493 Historically, the subject of thermodynamics first arose before the atomic nature

of matter was understood.
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Mechanics is founded on certain general principles, such as the conserva-
tion of energy and momentum, that are applicable to the motion of inter-
acting particles. When Newton’s second law is translated into mathematical
language, the solution of mechanical problem requires in turn the solutions of
systems of 2d order ordinary differential equations, in which difficulties are
encountered already with 3 interacting masses. Properties of matter in bulk
(called macroscopic properties), as we ordinarily observe them, are the result
of a collective actions of a large number of atoms and molecules494.

It is not only practically impossible, but also unnecessary to take into
account the motions of each of these molecules in detail in order to determine
the bulk properties of the matter, such as its pressure and temperature495.
Thus, to describe processes involving a very large number of particles, special
methods must be devised. These methods are, by necessity, of a statistical
nature. An important concept is that of the probability of distribution of the
particles among the different dynamical states in which they may be found.

A short historical survey is adequate at this point; Fire has fascinated and
terrorized the human race throughout its history, but by the time of the great
Ice Ages, humans had learned to tame fire into a constructive source of useful
heat.

Until the end of the 18th century, fire was mainly used for heating, cook-
ing, melting, and as a source of light. In some civilizations of antiquity, fire
was a subject of worship and an agent of purification. In ancient Persia fire
symbolized Ahura Mazda, the god of Zoroastrianism. In Greek mythology,
Prometheus saved the human race by bringing the celestial gift of fire from
the sun. The Aztec, Norse, and Hindu pantheons also had their gods of fire.

That fire generates power can be seen by anyone watching a covered boil-
ing kettle of water. Heron of Alexandria made use of hot vapor in the
construction of the first aeolipile (early gas turbine), which was used as a
miracle agent in temples.

494 In one cubic cm of gas at STP there are about 3 × 1019 molecules. The col-

lective behavior of such a gigantic number of particles is basically the result

of their quantum-mechanical electromagnetic interaction, since gravitational in-

teraction plays only a minor role and the strong and weak interactions affect

mainly nuclear processes. Familiar processes, such as melting and vaporization,

diffusion, viscosity, thermal and electrical conductivities, thermionic emission,

heat capacity, latent heat, etc. fall in this category of collective properties.
495 The temperature of a system in thermal equilibrium is a quantity related to the

average kinetic energy per particle of the system, the relation depending on the

structure of the system.
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The new industrial society at the turn of the 18th century needed coal at
an ever increasing rate. Rising water in coal mines had to be eliminated, and
muscle power was too slow and inefficient to do this. Denis Papin (1690)
conceived the first vacuum-producing steam pump. A few years later such
pumps were operational in English mines thanks to the ingenuity of Thomas
Savery (1698) and Newcomen (1705). In 1765, James Watt modified the
extremely inefficient Newcomen pump into a more efficient device by using a
thermodynamic property, the adiabatic expansion, and also by introducing an
automatic control inside the engine. The pump was transformed by Fulton
(1807) into the first steam engine. This revolutionary discovery opened up
the era of heat engines or machines. Engines drastically changed the nature
of human societies, turning them into industrial societies. The development
of heat engines was followed by a theoretical approach to the interrelationship
between heat and mechanical motion.

The idea that heat is a form of energy was first suggested by the works
of Count Rumford (1798) and Davy (1799). It was then stated explicitly
by R.J. Mayer (1842), but gained acceptance only after the careful exper-
imental work of Joule (1843 to 1849). The first theoretical analysis of heat
engines was given by Sadi Carnot (1824), who thus became the founder of
the new branch of macroscopic science — thermodynamics.

Thermodynamic theory was formulated in consistent form by R.J.E.
Clausius and Lord Kelvin around 1850, and was greatly improved by J.W.
Gibbs in several fundamental papers (1876–1878).

The atomic approach to macroscopic problems began with the study of
the kinetic theory of dilute gases. This subject was developed through the pi-
oneering work of Clausius, J.C. Maxwell and L.E. Boltzmann. Maxwell
discovered the distribution law of molecular velocities in 1859, while Boltz-
mann formulated his fundamental integro-differential transport equation in
1872. The kinetic theory of gases assumed its modern form when S. Chap-
man and D. Enskog (1916–1917) approached the subject by developing sys-
tematic methods for solving the Boltzmann equation.

The more general discipline of statistical mechanics also grew out of the
work of Boltzmann, who (1872) further succeeded in giving a fundamental
microscopic analysis of irreversibility and the approach to equilibrium. He
was first to give the probabilistic interpretation of entropy.

The theory of statistical mechanics was then developed further by the
contributions of J.W. Gibbs (1902). Although the advent of quantum me-
chanics has brought many changes, the basic framework of the modern theory
is still the one which Gibbs formulated.

Beginning in the 1970’s, physicists recognized the close mathematical affin-
ity between the statistical mechanics of condensed matter and fluctuations of
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fields in the second-quantized vacuum, and began applying this connection to

advance both disciplines.

1876–1902 CE Josiah Willard Gibbs (1839–1903, U.S.A.). Theoretical
physicist and chemist. Among the most prominent scientists produced by the
United States.

In a path-breaking paper: “On the Equilibrium of Heterogeneous Sub-
stances” (1876–1878) Gibbs applied the principles of thermodynamics to the
determination of chemical equilibrium (of chemical reactions rates). In this
he helped lay the foundations of chemical thermodynamics and modern phys-
ical chemistry. He actually converted large parts of the physical chemistry
of his day from an empirical to a deductive science. The importance of this
work was soon recognized by Maxwell. The new concepts of ‘free energy’ and
‘chemical potential’ were introduced by Gibbs. Although Gibbs performed
few experiments, his theory led to such practical results as the production of
ammonia, dyes, drugs and plastics.

In his work he preferred a laconic, mathematician’s style, making sure to
say what was necessary for the logical structure of his argument — and little
more. His spare and abstract style, and unwillingness to include a variety
of examples and applications to particular experimental situations, made his
work very difficult for potential readers. As a consequence, the literature
of the 19th century contains many rediscoveries of results already published
by Gibbs. Such major figures as Helmholtz and Planck independently
developed their own thermodynamic methods for treating chemical problems,
quite unaware of the treasures concealed in his 1876–1878 paper496.

While for Clausius and his contemporaries, thermodynamics was the study
of heat and work, Gibbs eliminated these concepts from the foundations of
the subject in favor of state functions — energy and entropy — and thermo-
dynamics became the theory of properties of matter at equilibrium. Among
other innovations, he gave an explicit derivation to Liouville’s equation.

496 In 1892 Rayleigh wrote to Gibbs urging him to expand on his ideas, saying that

the original memoir was “too condensed and too difficult for most, I might say

all, readers”. Gibbs answered that he thought that his paper did seem “too

long”. . . .
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In 1884 Gibbs coined the name ‘statistical mechanics’, but he had not built
molecular concepts into his papers on thermodynamics because he “had no
need for that hypothesis”, to paraphrase Laplace.

Gibbs is the father of our present-day ‘vector analysis’497 (1881). He ab-
stracted the vector and scalar concepts from the framework of Hamilton and
Grassmann (thus disentangling them from the quaternion idea), and put them
within a structure convenient to geometry and physics498. Similarly, he con-
structed the algebra and calculus of second-rank tensors (known as dyadics) on
the basis of Grassmann’s ‘gap’ products. From the point of view of physics,
the Gibbs’ vector calculus was a major simplification and improvement of
Hamilton’s quaternions. When attacked by the quaternionophil P.G. Tait, he
replied: “The world is too large, and the current of modern thought is too
broad, to be confined to the ‘ipse dixit’ even of a Hamilton”.

In 1886 he emphasized the superior generality of Grassmann’s indetermi-
nate product in dyadic and matrix algebra, over the unique product insisted
upon by Hamilton. The vectors of Gibbs gradually displaced quaternions
as a practical applied algebra. In the end, however, quaternions returned
to physics under the guise of Pauli matrices, representing the action of the
angular-momentum operators on quantum-mechanical spinors.

Gibbs was born in New Haven, Connecticut. His father was a professor
of sacred literature in Yale Divinity School. He entered Yale College in 1854,
graduated in 1858, and received his doctorate of engineering in 1863. He
taught Latin and natural philosophy until 1866, when he went to Europe,
studying in Paris (1866–1867), Berlin (1867), and Heidelberg (1868). Re-
turning to New Haven in 1869, he was appointed professor of mathematical
physics at Yale College in 1871499, a position he held until his death. His in-
terest in thermodynamics arose while endeavoring to improve the governor of
James Watt’s steam engine. In analyzing its equilibrium, he began to develop
methods by which equilibriums of chemical processes could be calculated.

Gibbs remained a bachelor, living in the household of his surviving sister.
He was a man of few words. Once, at a gathering of scientists, he was asked to
give a talk on the subject “The role of mathematics in the physical sciences”.
He rose and issued just four words: “Mathematics is a language”.

497 For further reading, see:

• Gibbs, J.W., Vector Analysis, Dover, 1960, 436 pp.

498 Gibbs introduced the notation ∇ · a, ∇ × a for the divergence and curl of

a vector field a, respectively.
499 Yale University refused for seven years to pay a salary to Willard Gibbs, already

famous in Europe, on the ground that his studies were “non relevant”.
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Origins of Classical Statistical Physics500 (1850–1902)

In 1865, Joseph Loschmidt501 (1821–1895) gave the first estimate of
Avogadro’s number N (number of molecules in 22.4 liters of gas at standard
temperature and pressure). Calculating from the newly developed kinetic
theory of gases, he obtained the approximate value of N = 6 × 1023. Thus,
under conditions prevailing (say) in a living room, the number of molecules
in 1 cm3 of nitrogen gas is of the order of 1020. This astronomical size of
N is the major reason why attempts to arrive at thermophysical results from
a purely mechanical point of view are foredoomed to fail without the use of
statistics.

Although a number of statistical problems (e.g., the explanation of some
properties of gases on the basis of the notion of molecular motions), were
considered by Newton, D. Bernoulli, and a number of other scientists back
in the 18th century, the appearance of statistical physics as an independent
branch of physics dates to the second half of the 19th century.

In 1857, Clausius clearly indicated that heat energy is the kinetic energy
of random motions of molecules.

In 1859 he introduced the useful concept of the mean free path and gave a
correct molecular-kinetic explanation of the phenomena of thermal conductiv-
ity and viscosity. Also in 1859, Maxwell fused together statistical ideas with
those of mechanics in a kinetic theory that resulted in the law of distribution
of the velocities of gas molecules, that now bears his name. In his kinetic
theory he analyzed events involving single molecules, making special assump-
tions about the nature of inter-particle forces, while assigning to probability
notions a mere subsidiary role.

500 To dig deeper, see:

• Feynman, R.P., Statistical Mechanics, Perseus Books, 1998, 354 pp.

• Ruhla, C., The Physics of Chance, Oxford University Press, 1992, 222 pp.

• Harris, S., An Introduction to the Theory of the Boltzmann Equation, Dover,

2004, 221 pp.

• Brown, A.F., Statistical Physics, Edinburgh University Press: Edinburgh,
1968, 307 pp.

• Zeldovich, Ya.B. et al., The Almighty Chance, World Scientific, 1990, 316 pp.

501 In the same year Loschmidt also obtained estimates of molecular diameters from

measurements of liquid density and gaseous viscosity.
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A further fundamental development was due to Boltzmann (1877). In-
stead of scrutinizing separate microscopic events, he supplemented the me-
chanical laws of general validity by far-reaching probability hypotheses of com-
parable importance, thus subjecting the atomic particles themselves to sta-
tistical analysis. This choice was made by Maxwell as well in his kinetic
theory, but his efforts were confined to an examination of the distribution of
particles w.r.t. their velocity components only.

Boltzmann generalized this procedure to encompass the distribution of
particles in relation to position coordinates as well. Gibbs (1884–1902)
crowned the achievements of Clausius, Maxwell, and Boltzmann with decisive
researches of his own. In his works, statistical physics obtained a fundamental
substantiation suitable for arbitrary systems, and not only gaseous ones.

The Gibbs ensemble is treated at present as a fundamental principle whose
role in statistical physics can be compared with that played by Newton’s equa-
tions in classical mechanics or by Maxwell’s equations in electrodynamics.
Gibbs’ book Elementary Principles in Statistical Mechanics (1902) played
the same role in statistical physics as Maxwell’s Treatise did in electrody-
namics; the molecular-kinetic substantiation of the phenomenological science
of classical thermodynamics, commenced by Boltzmann, was completed by
Gibbs.

Thus, a new discipline was established that succeeded in deriving the facts
of phenomenological thermodynamics from postulates more fundamental than
the laws of thermodynamics. Moreover, it also provided numerical values for
individual macroscopic properties, and finally alerted us to the possibility
of rarely occurring fluctuation effects — a direct result of the conceptual
researches initiated mainly by Maxwell, Boltzmann, Gibbs and Einstein.
This branch of physics, called statistical thermodynamics, seeks to deduce the
thermodynamic properties of matter and energy from the laws of governing
the behavior of its microscopic, or atomic, constituents.

Let us highlight two fundamental ideas of this approach, beginning with
Gibbs’ derivation of Liouville’s theorem, using concepts of Hamiltonian dy-
namics.

Consider a closed system of gas (molecules, electrons, stars) described
by N generalized coordinate vectors q1, . . . , qN

, and generalized mo-
menta p1, . . . , pN

. The 6N -dimensional space spanned by the vectors
(p1 · · ·p

N
; q1 · · · q

N
) shall be called the Γ-space or the phase space of the

system. A point in Γ-space, having 6N scalar coordinates, represents a state
of the entire gas at a specific moment, and is known as a representative point
or the phase point of the system. In terms of this phase point in Γ-space, the
temporal development of the mechanical system, whose state is represented
by it, can be surveyed geometrically.
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The position of a phase point at a given time t0, corresponding to some
initial state of the system, might be a matter for arbitrary decision. Once
this choice has been made, Hamilton’s equations of motion, viz., q̇i = ∂H

∂pi
,

ṗi = −∂H
∂qi

(i = 1, 2, . . . , 3N), uniquely determines the position of the phase

point at any other (earlier or later) time t. The phase point therefore de-
scribes in the course of time a curve in Γ-space, known as a phase orbit or
trajectory; due to the uniqueness of the solutions of the above equations, each
point in Γ-space is traversed by only one trajectory — that is, trajectories
cannot intersect themselves or one another. Each position of the phase point
at any given time describes a microstate of the system. Since the gas molecules
are continually in motion, every conceivable microstate (compatible with con-
straints and conservation laws) will be approached arbitrarily closely sooner
or later if the allowed Γ-space region is finite in volume.

A complete specification of the system’s state (phase point) requires knowl-
edge of the motions and positions of all microscopic particles at some time.
In practice, however, we do not have (and are not interested in) the detailed
information that is required to specify a particular microstate. We are usually
observing the “average” behavior of a system with a given set of macroscopic
properties (such as density distribution, velocity profile, pressure, tempera-
ture, etc.) which constitute a macrostate of the system.

It is obvious that a very large number of microstates all correspond to a
given macroscopic condition of the gas. Through macroscopic measurements
we would not be able to distinguish between two different microstates that
satisfy the same macroscopic condition. Thus when we speak of gas under
certain macroscopic condition, we are in fact referring to a practically infinite
number of microstates. In other words, we refer to a collection of systems,
identical in composition and macroscopic conditions but existing in different
microstates. Gibbs called such a collection of systems an ensemble.

Each member of the ensemble is a virtual copy of the real system. The
virtual systems are, of course, not identical in all respects. Indeed, the sim-
ilarity extends only as far as the Hamiltonian functions of the systems, and
the virtual systems may differ vastly among themselves and from the real
system with respect to the configuration of the velocities and positions of
their particles. Thus each member of the ensemble is an independent system
with its own phase point. So we turn our attention from the individual phase
point representing the real system to the assembly of phase points in Γ-space
representing the totality of every system of the ensemble.

Because these systems differ in their microscopic states, their correspond-
ing phase points will correspondingly occupy different positions, so that the
assembly of points will spread out in a “cloud” over a finite region in Γ-space.
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This diversity reflects our ignorance about the microstate of the real system
that serves as a prototype for the construction of the virtual systems.

One of the main goals of statistical thermodynamics is to find the correct
statistical distribution of phase points under given macroscopical physical
conditions (mechanical, chemical and thermal forces, initial and boundary
conditions, etc.). To achieve this goal, one must first inquire how an assembly
of phase points, initially arranged in phase space in an arbitrary manner, will
evolve with the passage of time.

The situation may be conveniently described by a density function
ρ(p, q, t), where (p, q) is an abbreviation for (p1 · · ·p

N
; q1 · · · q

N
), so

defined that ρ(p, q, t)d3Npd3Nq is the expected fraction of representative
points which at time t are contained in an infinitesimal volume element
d3Np d3Nq = dq1dq2 · · · dq3Ndp1dp2 · · · dp3N of Γ-space centered about the
point (p, q).

An ensemble is completely specified by ρ(p, q, t): Given ρ(p, q, t) at any
given time, the evolution of the random phase point with time is governed
by the Hamiltonian H(p1 · · · p3N ; q1 · · · q3N ) through to the equations of
motion

ṗi = −∂H

∂qi
, q̇i =

∂H

∂pi
(i = 1, . . . , 3N).

Since H does not depend on time derivatives of p and q, these Hamilton
equations guarantee that the locus of a phase point is either a simple closed
curve or a curve that never intersects itself. Moreover, since the total number
of microstates in an ensemble is conserved, the number of phase points leaving
an arbitrary volume ω in Γ-space with surface S must be equal to the rate of
decrease of the number of phase points in the same volume. Hence

d

dt

∫

ω

ρdω =
∫

S

dS(n · V ρ),

where V is a 6N -dimensional vector with components

V = (ṗ1, ṗ2, . . . , ṗ3N ; q̇1, q̇2, . . . , q̇3N ),

and n is the vector locally normal to the surface S. Using the divergence
theorem in 6N -dimensional space, we obtain the continuity equation for the
phase-space density function:

∂ρ

∂t
+ ∇ · (ρV ) = 0,

where ∇ is the 6N -dimensional gradient operator

∇ ≡
(

∂

∂p1
,

∂

∂p2
, . . . ,

∂

∂p3N
;

∂

∂q1
,

∂

∂q2
, . . . ,

∂

∂q3N

)

.
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Performing the indicated differentiations and using the equations of motion
in the form

∂ṗi

∂pi
+

∂q̇i

∂qi
= 0,

there emerges the mathematical formulation of Liouville’s theorem:

Dρ

Dt
=

∂ρ

∂t
+

3N∑

i=1

(
∂ρ

∂pi
ṗi +

∂ρ

∂qi
q̇i

)

= 0.

Geometrical interpretation: if we ‘ride’ on the trajectory of a phase-point
in Γ-space, we will at all times measure the same density of representative
points in its neighborhood. Hence the distribution of phase-points moves in
Γ-space like an incompressible fluid. Also, the co-moving (Euclidean) spatial
volume element d3Npd3Nq changes its shape, but retains its volume through-
out.

If the virtual systems are required to be closed and conservative502 [so
that H does not depend explicitly on time, and can be put equal to a con-
stant E, the energy of the system], and if ρ = ρ(H) it then follows that
∂ρ
∂t ≡ 0 or ρ = ρ(p, q). This means that the density in phase space does not
vary with time and depends only on energy.503The ensembles defined in this
way is called a stationary ensemble, and is said to be in statistical equilib-
rium. The equilibrium situation is thus guaranteed at all times if the phase
points at an arbitrary instant t0 are distributed in Γ-space with a density
ρ(p, q, t0) = ρ(H).

502 In Gibbs’ large number of similar simultaneous systems (ensemble), all the gases

are composed of the same number of molecules as the gas in the real system, and

they are placed in vessels having the same shape. The energies of the different

systems, however, are allowed to extend from E to E + dE, where dE is very

small. This spread of energy is essential to the proof of Liouville’s theorem, but

once the incompressibility has been established, we may restrict our attention

to the systems of energy E.
503 This means that a sufficiently long time has elapsed so that macroscopic equi-

librium is achieved, and it assumes there are no other conservation laws but

energy, or that if there are, the system constraints prevent the system from ex-

changing the other conserved quantities with its environment. It is also assumed

that the phase point spends on average equal amounts of time in all microstates

compatible with the conservation laws (ergodic hypothesis). If the system is

allowed to exchange with its environment other conserved quantities (molecules

of various species, volume, electric charge etc.), then ρ will in general depend

on all such conserved quantities, not just H.
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Note that ρ(p, q) is actually the probability per unit volume that a phase
point be found in an infinitesimal volume of the Γ-space. Being an N -particle
distribution function we change its notation to f , where

∫

f(W 1, W 2, . . . , W N
, t)d6W 1 · · · d6W

N
= 1

and W i ≡ (qi, pi) denote the location of an individual particle in its 6-
dimensional phase subspace. If the forces are conservative

dpi/dt = −∂Φi/∂qi,

where Φi is the potential at particle i due to the other particles. Liouville’s
theorem then assumes the form

∂f

∂t
+

N∑

i=1

[

pi · ∂f

∂qi

− ∂Φi

∂qi

· ∂f

∂pi

]

= 0.

A special case of Liouville’s theorem is known as the collisionless Boltz-
mann equation. Boltzmann, unlike Gibbs, used a 6-dimensional (not 6N -
dimensional) phase space of a single representative molecule, which Paul
and Tatyana Ehrenfest (1912) later termed the μ-space. A point in this
space is W = (q, p), and the velocity of its flow is given by the 6-vector
Ẇ = (p,−∇Φ).

With this notation, the above Liouville’s theorem is simplified to

Df

Dt
≡ ∂f

∂t
+ p · ∇f − ∇Φ · ∂f

∂p
= 0.

Given Φ, it is a differential equation for the unknown distribution function
f(r, p, t). Here, Df

Dt represents the rate of change of the density of phase
points as seen by an observer who moves through phase space with a molecule
at velocity Ẇ , and Df

Dt = 0 implies that the phase-space density f around
the moving phase point of a given molecule remains the same.

Jeans (1919) first applied the Boltzmann collisionless equation to stellar
dynamics, where the role of gas molecules is played by non-colliding stars.
Integrating the equation over all possible velocities, he assumed that:

(1) the range of velocities over which we are integrating does not depend
on time,

(2) Φ does not depend on p,

(3) f(r, p, t) = 0 for sufficiently large |p| (there are no stars that move
infinitely fast).
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This led him directly to the continuity equation (obtained by integrating
the Boltzmann equation over all p)

∂ν

∂t
+ div(νu) = 0

where

ν =
∫

fd3p, u =
1
ν

∫

fpd3p.

Multiplying the Boltzmann equation by p and integrating again over all
momenta (subject to the former assumptions), one arrives at the analog of
Euler’s equation of fluid flow:

ν
∂u

∂t
+ νu · ∇u = −ν∇Φ − div [ν(Q − uu)],

where Q = 1
ν

∫
uufd3p is a symmetric stress tensor.504

When encounters of molecules (stars) are taken into account, the phase-
space density of individual molecules changes with time and we may write
Df
Dt = M(f), where the collision term M denotes the co-moving rate of change
of f due to encounters (collisions). Boltzmann derived the explicit form of
M under the assumptions:

(1) only binary elastic collisions are taken into account (dilute gas);

(2) the walls of container are ignored;

(3) the effect of the external forces on the collision cross-section is ignored;

(4) the velocity of a molecule is uncorrelated with its position (molecular
chaos, valid for sufficiently low gas densities).

When these assumptions are translated into mathematics, and the physics
of elastic binary collision is applied, the end result is the Boltzmann transport
equation:

(
∂

∂t
+ v · ∇r +

F

m
· ∇v

)

f =
s2

2

∫

|U · e|(f ′f ′
1 − ff1)dωd3v1,

where U = v1 − v, − ∇Φ = F
m , dω = solid angle element about the

vector v1. Here s is the cross-section radius of a molecule, e is an arbitrary

504 Under some further, often reasonable approximations, macroscopic continuum-

mechanics PDE’s such as the Navier-Stokes (NS) equation of fluid dynamics, can

be derived via momentum-averaging techniques such as described above. The

extra term in the NS equation (absent in Euler’s equation) manifests viscosity,

which is a molecular-collision effect.
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unit-vector [that may be taken as e = (0, 0, 1) without loss of generality],
and

f = f(r, v, t); f1 = f(r, v1, t);

f ′ = f [r, v + (U · e)e, t];

f ′
1 = f [r, v1 − (U · e)e, t].

The mathematical problem of the kinetic theory of gases, now consists of
the solution of the preceding non-linear integro-differential equation.

Returning to Gibbs’ 6N -dimensional Γ-space, and having discussed the
law of time-evolution of phase points in an ensemble, the next logical step
is the establishment of a correspondence between a given real system and a
suitable virtual ensemble. In other words, we must specify mathematically
what is meant by the average behavior of a macroscopic system.

There are two types of averages that are of interest. The first of these is
the ordinary average at a given time over all systems of the ensemble, known
as the ensemble average.

The second average of interest is the average of an observable entity for a
given system of the ensemble over some very large time interval.

The ergodic505 hypothesis, first advanced by Boltzmann (1887), states
that for stationary time processes (in which there is no preferred origin in
time for the statistical description of observable entities, i.e., the ensemble is
invariant under a time shift) the two averages are the same.

The ergodic hypothesis expresses the central assumption of classical as well
as quantum statistical thermodynamics.506 Attempts to prove it have given
rise to the renowned ergodic problem, which has bedeviled eminent physicists
and mathematicians for the past century.

So far this hypothesis has been proved for a time average over an infinitely
long time (both in classical and quantum mechanics) under certain assump-
tions that are too abstract to be easily stated and that remain to be justified.
In physical experiments, however, we do not average over an infinite time, but
over a finite time that is very short by macroscopic standards. It is plausi-
ble that this time interval can be effectively considered infinite because it is
to be compared with characteristic molecular times, e.g., molecular collision
mean-free time.

505 The term ergodic is a combination of the Greek words for energy and path.
506 In quantum statistical thermodynamics – of which the classical version is a mere

approximation – the phase-space-density function f is replaced with a Hilbert

space density operator ρ̂, and the Boltzmann transport equation is replaced

by the Fokker-Planck quantum Master-equation.
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Von Neumann (1931–1932) was able to formulate a single necessary and
sufficient condition for the validity of the ergodic hypothesis. At present,
therefore, the ergodic problem appears to have been reduced to the problem
of demonstrating that the von-Neumann condition is fulfilled.

The Rise of the ‘New World’, III

The Coming of American Technology (1876–1966)

One hundred years after its inception, the United States of America began
the marathon race for world supremacy in technology with the inventions of
the telephone (Bell, 1876), the phonograph (Edison, 1877), the light bulb
(Edison, 1884), the movie camera (Edison, 1889), the vacuum tube (de
Forest, 1907) and finally the advent of the mass-produced automobile (Ford,
1908).

The Michelson-Morley experiment (1887), the establishment of the astro-
nomical observatories at Lick (1888) and Yerkes (1900) and the experiments
of Millikan (1910) have put the United States in the first league of the world’s
efforts in physics and astronomy. During the second half of the 19th century,
the U.S.A. continued to share in the leading trends of Europe. American
scholars were trained at foreign universities. However, toward the end of the
century, cultural exchange between Europe and the United States became less
one-sided.

By the early 1960’s America had reluctantly come to realize that it pos-
sessed, as a nation, the most potent scientific complex in the history of the
world. Eighty per cent of all scientific discoveries in the preceding three
decades had been made by Americans. The United States had 75 per cent
of the world’s computers, and 90 per cent of the world’s lasers. The United
States had three and a half times as many scientists as the Soviet Union and
spent three and a half times as much money on research; the U.S. had four
times as many scientists as the European Economic Community and spent
seven times as much on research. Most of this money came, directly or indi-
rectly, from Congress, and Congress felt a great need for men to advise them
on how to spend it.
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1876 CE Alexander Graham Bell (1847–1922, U.S.A.). Scientist, edu-
cator and inventor. Bell was born in Edinburgh, Scotland and educated at
the University of Edinburgh and the University of London. He moved with
his father to Canada in 1870. In 1872 he became a professor of vocal phys-
iology in Boston University. In 1876 he exhibited an apparatus embodying
the results of his studies in the transmission of sound by electricity507, and
this invention, with improvements and modifications, constitutes the modern
commercial telephone.

The telegraph had been invented before Bell’s time. Noises, music and
signals had been sent over electrified wires. But human speech had never been
effectively sent by wire508. Many inventors were working to accomplish this,
but Bell was the first to succeed. His great invention was the result of many
years of scientific training. Bell exhibited his telephone at the Centennial
Exposition in Philadelphia in June 1876.

The first telephone company, The Bell Telephone Company, came into
existence in July 1877. Bell was frequently called upon to testify in lawsuits
brought by men claiming they had invented the telephone earlier. Several of
these suits reached the Supreme Court of the United States. Bell spent most
of his later life at his estate on Cape Breton Island, Nova Scotia. He disliked
the telephone because it interrupted his experiments in his laboratory. He
died at his Nova Scotia home.

507 Bell’s primitive telephone transmitter (1876) consisted of a membrane capable

of moving in the field of a permanent magnet and an electromagnet that was fed

by the dc current of a battery. The undulation of pressure on the membrane,

caused by sound, generated an induced current signal which activated another

membrane at the receiving end. The apparatus at each end acted both as a

receiver and a transmitter. Bell uttered the first telephone message on March

10, 1876. He had spilled some acid on his cloths and was calling to his assis-

tant, Thomas A. Watson, for help: “Mr. Watson, come here. I want you”. In

October 1876 Bell and Watson held the first two-way long distance telephone

conversation between Boston and Cambridge, Mass., a distance of 3 kilometers.

An American inventor, Elisha Gray (1835–1901), disputed Bell’s claims as

the inventor of the telephone. He filed a claim with the United States Patent

Office only two hours after Bell filed a claim for a workable telephone (1876).

Western Union supported Gray’s claim in a bitter suit, but the claims were dis-

allowed (Gray, however, made a fortune on other devices, such as simultaneous

transmission of messages).
508 With perhaps one exception: In 1860, Jacob Reis exhibited the first device

which could transmit speech over a 100 meter wire. Bell acknowledged that he

drew upon Reis’ ideas in the construction of his telephone.
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Efforts to improve the telephone transmitter led to the development of the
microphone — a general device for changing sound waves into electrical signals
(a telephone is essentially a simple type of a microphone). Other independent
microphone inventors and improvers were: Emile Berliner (1877), David
Edward Hughes (1878; also invented the teleprinter), Thomas Edison,
Francis Blake, Henry Humings, Charles Cuttris, Jerome Redding
and E.W. Siemens.

Note that Bell tried to develop a telegraph capable of sending multiple
messages and accidentally discovered the principle of the telephone.

1876 CE Flooding in the Bay of Bengal region. Sea-waves 15 meter high,
poured into the Ganges River delta and flooded an area of 380 km2. Loss
of life estimated at 215,000. It may have been a tsunami of seismic origin
in the Andaman Islands. Again, on Nov. 12, 1970, cyclonic and tidal waves
devastate the same region (now Bangladesh); 300,000 to 500,000 perished.

1876–1877 CE Great crop failure in India led to outbreak of cholera
through which ca 3 million perished.

1876–1880 CE Samuel (Siegfried Karl von) Basch (1837–1919, Ger-
many). Physician. Laid the foundation for the diagnosis of high blood pres-
sure (hypertension). Invented the first simple and reliable apparatus for taking
a person’s blood pressure.

Basch was born in the ghetto of the Old City of Prague and obtained
his medical degree in Vienna (1862). Became the personal physician of the
Emperor Maximilian of Mexico until the latter’s tragic end (1867).

In appreciation for Basch’s loyal services, Kaiser Franz Joseph knighted
him, an honor very rarely bestowed upon a Jew at that time. Two years
later Basch was appointed the first lecturer in Experimental Pathology at the
University of Vienna, but it took many years before he was given a modest
laboratory of his own. Appointed (1877) professor at Vienna. From 1876
he published numerous papers on blood pressure and its measurement. All
non-electronic instruments, so-called sphygmomanometers, are based on the
original one invented by Basch509.

1876–1883 CE Paul Emile Appell (1855–1930, France). Mathematician.
Contributed significantly to the fields of analytical mechanics (non-holonomic
systems), differential equations and special functions (Appell’s polynomials).
Although his work lacks central themes, seminal ideas and dramatic results,

509 Like many other new inventions, the instrument of Basch was at first subjected

to scorn and ridicule.
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he was a technician who used the classical methods of this time to answer open
questions, work out details and make natural extensions in the mainstream
of the late 19th century.

Appell was born in Strasbourg. He was educated at the École Normale
and became a professor at the University of Paris (1903–1925). He married a
niece of Hermite (1881).

1876–1892 CE Isaac (Eduard) Schnitzer (Emin Pasha, 1840–1892,
Austria). Explorer of central Africa, ornithologist, meteorologist and physi-
cian. The southern inlet of Lake Victoria bears his name.

Isaac was born in Oppeln, Upper Schlesia to Jewish parents, and baptized
after their death (1846). He later (1870) converted to Islam and took the
name Emin Pasha. He was appointed governor of the Equatorial Province
of Egypt by General C.G. Gordon (1878) and was murdered (1892) by slave
traders whose activities he opposed.

1876–1897 CE Robert (Heinrich Hermann) Koch (1843–1910, Ger-
many). Physician. The father of modern bacteriology, which he established
as a separate science. He developed new techniques for straining, incubating,
and growing bacteria, which remain the basis of the bacteriological study of
infections.

Koch discovered and isolated the bacilli of anthrax (1876), tuberculosis
(1882) (the first definite discovery of a specific microbe causing specific human
disease), cholera (1883), and bubonic plague (1897). He won the 1905 Nobel
prize for physiology or medicine for his work on tuberculosis.

Koch was born at Klausthal, Hanover and studied medicine at Göttingen.
In 1885 he was appointed a professor at the University of Berlin.

The origins of Microbiology (1676–1900)

Stimulated by development of light microscopy, scientists began the study
of microscopic organism (microorganisms). These organisms (most of which
cannot be seen without a microscope) include: algae, bacteria molds, pro-
tozoans, fungi and viruses. They are sometimes called microbes. Biologists
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specialize in the study of various kinds of microorganisms. For example,
bacteriologists work with bacteria, mycologists are concerned with fungi, and
virologists with viruses.

Nearly all microorganisms measure less than 0.1 mm (100 micron) across,
and many must be studied with microscopes that magnify objects at least
1,000 times. Most viruses are so tiny that they can be seen only with electron
microscopes that magnify many thousands of times.

Viruses are called acellular microorganisms because they do not have true
cell structures. All other microorganisms are cellular. They have cell mem-
branes, cytoplasm, and a nuclear body. Bacteria are the smallest single-celled
organisms. The smallest bacteria may measure only ca 4

10 of a micron.

About 10,000 small viruses could be packed into a cell the size of one of
these bacteria. Over a billion such cells could be packed into one of the largest
microbial cells — the cells of a certain algae.

Microbiology as a discipline is defined by the techniques employed:

• Microscopy and Strains

• Sterilization

• Getting a pure culture

• Composition of culture media

• Anaerobe, aerobe, microaerophile

Bacteria are one-celled organisms, first seen by Leeuwenhoek (1676). Orig-
inally confused with protozoa, bacteria were variously called animalcules or
microbes.

During the 18th century bacteria contributed to the ‘spontaneous gener-
ation controversy’ as Spallanzani (1767–1768) refuted Needham’s assertion
that microbes appeared in sealed flasks of boiled broth. Bacterial studies
outside medicine remained superficial until 1872 when F. J. Cohn (1828–
1898) defined and named bacteria, distinguishing four groups on the basis of
external form and specific fermentative activity. He recognized bacteria that
take nitrogen from simple ammonia compounds, elucidated their life-cycles,
identified spores and suggested that bacteria were motile cells devoid of walls.
Determining bacterial temperature limits, Cohn, Pasteur and Tyndall ef-
fectively ended the spontaneous generation controversy with their studies on
sterilization.
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The link between Leeuwenhoek’s microorganisms (1676) and the induc-
tion of infectious diseases by bacteria was not recognized for another 200
years!510Indeed, proof that microbes cause diseases in humans was first given
by Bassi (1835), anticipating Pasteur and Koch. Semmelweiss (1847)
proved that puerperal fever is contagious.

Casimir Davain (1812–1882, France), physician, was first to produce
experimental infection in animals with blood containing the anthrax bacillus
and first to suggest that the bacillus caused the disease (1850–1863). Joseph
Lister, influenced by the discoveries of Pasteur, introduced carbolic acid as
an antiseptic in surgery (1867). Robert Koch (1876) confirmed Davain’s
suggestions. Koch also developed techniques for handling bacteria, improv-
ing upon Carl Weigert’s (1845–1904) original use of methyl violet to stain
them, introducing solid nutrient media (agar-agar) to grow pure cultures, and
devising methods for fixing bacteria.

Viruses are sub-microscopic, obligate intracellular parasites: they are pro-
duced from the assembly of pre-formed components, whereas other agents
‘grow’ from an increase in the integrated sum of their components & repro-
duce by division. Virus particles (virions) themselves do not ‘grow’ or un-
dergo division. Viruses lack the genetic information which encodes apparatus
necessary for the generation of metabolic energy or for protein synthesis (ribo-
somes). No known virus has the biochemical or genetic potential to generate
the energy necessary for driving all biological processes, e.g. macromolecular
synthesis. They are therefore absolutely dependent on the host cell for this
function.

• Viroids are small (200–400 nm), circular RNA molecules with a rod-like
secondary structure which possess no capsid or envelope.

• Virusoids are satellite, viroid-like molecules, somewhat larger than vi-
roids (e.g. approximately 1000 nm).

• Prions are infectious agents believed to consist of a single type of
abnormally-folded protein molecule with no nucleic acid component.
They are believed to infect other, normal proteins by somehow inducing
in them their own folding abnormality.

Viruses infect all types of living cells — animals, plants & bacteria.

510 Girolamo Fracastoro made the first scientific statement (1546) on the true

nature of contagion and transmission of diseases by germs, but he had no phys-

ical idea about these agents.
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Virology began with Edward Jenner’s vaccination against smallpox
(1796). Pasteur (1881) made the first artificially produced virus vaccine
(rabies). Dimitri Iwanowski (1864–1920, Russia) explained (1892) the in-
fectiousness of tobacco mosaic disease by showing that it can be transmitted
via cell-free filtration from leaves of diseased plants to leaves of healthy plants.
During the 1890s increased knowledge of soil and water bacteria was responsi-
ble for completing the explication of the nitrogen, sulphur and carbon cycles.

Nodule-forming bacteria living in the roots of leguminous plants were
found to fix atmospheric nitrogen. As a result of Winogradski’s (1856–1953)
and M. Beijerinck’s (1851–1931) work on anaerobic bacteria, knowledge of
a whole world of organisms able to live on elementary nitrogen, iron or sulphur
has emerged.

In 1898, Friedrich Loeffler (1852–1915, Germany) and Paul Frosch
(1860–1928, Germany) discovered that a virus is responsible for foot-and-
mouth disease. In 1900, Walter Reed (1851–1902) proved that yellow fever
was caused by a virus spread by mosquitoes. K. Landsteiner (1900) demon-
strated that poliomyelitis is caused by a virus.

1876–1909 CE Otto Wallach (1847–1931, Germany). Organic chemist.
Pioneered in the field of alicyclic compounds which formed the basis for the
perfume industry. Awarded the 1910 Nobel prize in chemistry.

Wallach was born to Jewish parents. Studied under Kekule. Professor at
Bonn (1876) and Göttingen (1889–1915).

1877–1881 CE Wilhelm Friedrich Philipp Pfeffer (1845–1920, Ger-
many). Physiological botanist. First to measure osmotic pressure511 and
determine through it molecular weights of proteins. Made pioneering studies
of respiration, transpiration, photosynthesis, metabolism, transport in plants

511 He used a membrane of Cu2[Fe(CN)6] (discovered in 1864 by Moritz Traube

(1826–1894)), to make accurate measurements of osmotic pressures. The semi-

permeable membrane container was filled with a sugar solution and immersed

in a vessel of water. He then connected a mercury-filled manometer to the top

of the semipermeable container, and was able to show that the pressure was di-

rectly proportional to concentration (and hence inversely to volume), and also

directly to the absolute temperature, i.e. PV = kT . Van’t Hoff used Pfeffer’s

measurements (1886) to derive the law of osmotic pressure.
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and mycorhiza (a fungus entering into symbiotic partnership with roots of
trees). His work on osmosis was of fundamental importance in the study of
cells, because semipermeable membranes surround all cells and play a large
part in controlling their internal environment.

Pfeffer was born in Grebenstein, near Kassel, and was trained as a phar-
macist at Göttingen (Doctorate, 1865), Marburg and Bonn. He became a
professor at Bonn (1873) and at Leipzig (1887–1920).

1877–1887 CE Emile Berliner (1851–1926, U.S.A.). Electrical engineer
and inventor. Invented the variable-resistance microphone (1877, ahead of
Edison), and the gramophone record (1887).

Berliner was born in Hanover, Germany to a Jewish family, and was edu-
cated in his native place and Wolfenbüttel, where he graduated in 1865. He
emigrated to the United States in 1870 and settled in Washington D.C. There
he worked as a clerk, salesman, and assistant in a chemical laboratory. He
studied electrical engineering, and in 1876 began experimenting with Bell’s
newly invented telephone. In 1877 Berliner succeeded in refining it with his
invention of the loose-contact telephone transmitter512. The Bell Telephone

512 In contradistinction to Bell’s telephone transmitter, the electrical resistance at

the contact of two conductors is made to vary with the sound pressure on the

membrane. This variable resistance generates, in turn, a variable electric signal

that flows to the receiver and creates there the inverse effect. Berliner’s patent

was issued on April, 4, 1877. Almost simultaneously with Berliner, on July 21,

1877, Edison improved on this idea by replacing the two conductors in contact

by a small cell of carbon powder.

The overall operation of the modern telephone transmitter (mouth piece) is as

follows: behind the mouth piece of the phone lies a thin metal disc called a

diaphragm. When a person talks into the telephone, the diaphragm vibrates in

accordance with the sound pressure waves. Behind the diaphragm lies a small

cup filled with tiny grains of carbon. A low-voltage electric current, activated

by batteries (at the telephone company), travels through the grains. The elec-

tric resistance of the powder depends on its packing (loose of tight), which in

turn is determined by the sound pressure on the diaphragm. Thus, the electric

current through the powder grains replicates the pattern of the sound waves.

The receiver (ear piece) consists of a permanent magnet and an electromagnet

located at the edge of a diaphragm and causing it to vibrate. The permanent

magnet holds the diaphragm close to it permanently. The electromagnet con-

trols the vibrations of the diaphragm. The electric current from the transmitter

flows through the coils of the electromagnet, which pulls the diaphragm away

from the permanent magnet. This causes the diaphragm to vibrate and set up

sound waves.



2480 4. Abstraction and Unification

Company immediately purchased the rights to his invention, which for the first
time made the telephone practical for long-distant use. In 1887 he improved
Edison’s phonograph by introducing the gramophone record — a laterally cut
shallow grooved disc. He also invented a way to press duplicate records from
one master disc (by making a wax disc from which a ‘negative’ metal ma-
trix was made for producing endless ‘positives’). The patent was acquired by
the Victor Talking Machine Company and served as a basis for the modern
gramophone.

In his later years Berliner engaged in aviation experiments: between 1919
and 1926 he built three helicopters, which he tested in flight himself.

1877–1889 CE Thomas Alva Edison (1847–1931, U.S.A.). Distin-
guished inventor. Invented the phonograph (1877), the carbon-powder micro-
phone transmitter (1877), the incandescent electric light (1879); contributed
to the development of motion pictures (1889) and the memeograph machine
(1887) and patented 1093 inventions in his lifetime. He had only 3 months of
formal schooling in his whole life(!).

Edison was born at Milan, Erie county, Ohio, of mixed Dutch and Scottish
descent. His parents moved to Port Huron, Michigan, when he was 7 years
old. At the age of 12 he became a train news-boy on the railway to Detroit.
At 15 he became a telegraph operator, and was employed in many cities in
the United States and Canada, but frequently neglected his duties in order to
carry on studies and experiments in electrical science. In 1869 Edison came to
New York City, and soon afterwards became connected with the Gold & Stock
Company. He invented an improved printing telegraph for stock quotations,
for which he received $40,000. He then established a laboratory and factory
for further experiments and for the manufacture of his inventions. On Oct.
19, 1879, after many failures, Edison finally succeeded in placing a filament
of carbonized thread in a bulb513. On Dec. 21, 1879 the news of Edison’s

513 Edison can hardly claim to be the bulb’s sole inventor. He was neither the first

to come up with the incandescent light bulb idea. Contrary to popular opinion,

the key ingredient he used for his light bulb — carbon — was certainly not

unique. Carbon had been an ingredient of experimental light bulbs 50 years

before Edison. At least 3 or 4 serious inventors, in England, France and the

United States, were working on the incandescent lamp in the 1870s. They had

the right ingredients and had functioning light bulbs. Joseph Wilson Swan

(1828–1914, England) had lit residences in 1879 with his British bulb. Hiram

Stevens Maxim (1840–1916, England and USA) had filed for incandescent

light patents in 1878 and 1879 and had carbon incandescent lamps burning

for twenty four hours at a time. Hippolyte Fontaine (1833–1917, France)

displayed his version of a carbon-vacuum bulb in 1876. William Eve Sawyer
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invention of the electric incandescent light-bulb astounded the world. Nations
and individuals honored the modern Prometheus as probably no other person
has been honored while alive. He died in West Orange, N.J.

Edison was a poor businessman and his inventions had never made him
the money he thought he was entitled to514.

(England) issued a patent (1878) on a carbon-nitrogen light bulb. It is still

debatable whether he or Edison perfected the first light bulb. [He died in

prison (1883) while serving a sentence for murder.] However, these pioneers

succeeded in producing workable bulbs only on a small scale. Edison, from the

start, designed his lamp to be part of a total electrical system the size of a city,

complete with electric dynamos to produce the electricity and wires and fuses to

distribute and control it. Only Edison discerned that the lamp and the system

had to work as a unit and had to match. In addition, it was Edison’s enormous

wealth, influence, and power that allowed him to create the entire system from

scratch in his New Jersey laboratories, set up a power station to light New York

City with his new bulbs, and influence an eager press and public into believing

his bulb to be the superior to all others.
514 He blamed it all on the Jews. As a close associate of the motor-car tycoon

Henry Ford, he also propagated anti-Semitic views, habitually grousing about

“Jewish conspiracies”.
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History of Sound Reproduction —

from antiquity to Berliner

The ancient Greeks knew that sound as heard by the ear consisted of
vibrations of air which, at certain frequencies, could even cause objects to
vibrate. Records indicate that resonating panels were commonly used to
improve acoustics of Greek theater. Thus, the origins of recorded sounds can
be traced as far back as the ancient Greeks.

The colossal “vocal” statue of Memnon at Thebes was built about
1500 BCE with the ability to make the sound of the harpstring every day
to greet Memnon’s mother, the Goddess of the Dawn. The secret of this
sound was lost when the original statue was destroyed in 27 CE by an earth-
quake. Back in the year 18 BCE, the Romans installed metal vases in their
amphitheaters, specially tuned to certain frequencies.

The wheel was the first mechanism used to record sound, with pegs po-
sitioned to strike chimes as the wheel was rotated by hand. In the Middle
Ages, music was reproduced by cylinders with attached pins that would strike
certain keys or bells when rotated. Automatic carillons were built in the 14th
century and the oldest surviving barrel organ dates from 1502. Renaissance
Europe was fascinated with automata, or automatic music boxes that used
elaborate clockwork gears to produce motions and sounds.

The most famous automata was a mechanical duck by Jacques de Vau-
canson in 1745 that flapped its wings, raised up on its legs, stretched its
neck and moved its intestines that were visible from the outside. Influenced
by Vaucanson and by the flood of new inventions from the Industrial Revolu-
tion, the French silk-weaver Joseph Marie Jacquard was awarded a medal
at the Paris Exhibition of 1801 for an automatic loom that used punched cards
to “record” a complex pattern for textiles woven by a loom with controls con-
nected to spring-loaded keys. The long punched-card strips held down the
keys until a hole allowed a key to open and start a loom operation.

The weavers of Lyons burned Jacquard’s loom in 1808 (where his statue is
now located in Lyons) but Napoleon recognized its significance and awarded
Jacquard a pension and royalties. The punched card was adapted by music
instrument designers such as Charles Dawson who exhibited a “jacquard
organ” at the London Exhibition of 1851 that used cardboard strips to control
the air bellows. From this would come the player piano of the 1880s and
Herman Hollerith’s punch card tabulator for the 1890 census, a precursor
of the modern computer.
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In 1855, the first successful sound recording device was developed by
Edouard-Leon Scott de Martinville (1817–1879, France). He called his
invention the ‘phonautograph’. It used a mouthpiece horn and membrane fixed
to a stylus that recorded sound waves on a rotating cylinder wrapped with
smoke-blackened paper. This device did not record the sound itself, only a
graphical image of the sound. There was no way at the time to play the sound
back515.

In 1877 Thomas Edison (1847–1931, USA) designed his “tinfoil phono-
graph”516. The device consisted of a cylindrical drum wrapped in tinfoil and

515 In March 2008, a group of American audio historians unearthed in an archive

in Paris a recording of the human voice made on April 9, 1860 by Scott. It is a

10-seconds recordings of a singer crooning the folk song “Au Clair de la Lune”.

This phonautogram was made playable (converted from squiggles on paper to

sound) by scientists at the Lawrence Berkeley National Laboratory in Berkeley,

California. The Berkeley scientists used optical imaging and a “virtual stylus”

on high-resolution scans of the phonautogram, deploying modern technology

to extract sound from patterns inscribed on the soot-blackened paper almost a

century and a half ago he recording was played in public on March 28, 2008 at

Stanford University.

Scott’s 1860 phonautogram was made 17 years before Edison received a patent

for the phonograph and 28 years before an Edison associate captured a snippet

of a Handel Oratorio on a wax cylinder.

Scott is in many ways an unlikely hero of recorded sound. He was a man of

letters, not a scientist, who worked in the printing trade and as a librarian.

He published a book on the history of shorthand, and evidently viewed sound

recording as an extension of stenography. In a self-published memoir in 1878, he

railed against Edison for “appropriating” his methods and misconstruing the

purpose of recording technology. In his memoir, Scott scorned his American

rival and made brazen appeals to French nationalism: “What are the rights of

the discoverer versus the improver? Come, Parisians, don’t let them take our

prize.” Thus, Scott went to his grave convinced that credit for his breakthrough

had been improperly bestowed on Edison.
516 The invention of this first “talking machine” is most commonly attributed to

Edison, in part because of the publicity that attended his celebrity and the

theatrical power of his demonstrations, and in part because previous invention

had earned him the means to have the device built. However, the first to build

a phonograph was his top laboratory mechanic John Kruesi. The first to

conceive of a workable design was the Frenchman Charles Cros who delivered

viable plans for a machine that would use disks to the French Academy of Sci-

ences in April 1877, several months before Edison happened on his idea.

Note that Edison was seeking to improve the telephone in 1877, when he dis-

covered the recording device known as the phonograph.
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mounted on a threaded axle. A mouthpiece attached to a diaphragm was con-
nected to a stylus that etched vibrational patterns from a sound source on the
rotating foil. For playback, the mouthpiece was replaced by a “reproducer”.
When the stylus was made to travel over the grooves, it made the membrane
vibrate in response to the depressions in the grooves. Hence the motion of
the stylus could reproduce the original sound.

So far, electricity was not directly involved in this mechanical sound-
recording devices. But after the wheel, electricity would soon become another
method of recording sound. To see the evolution of this process, one must go
back in time to 1832, the year in which Samuel Morse began the design of
the telegraph. The electric telegraph was the stimulus for inventors to search
for better methods of sending and recording all kinds of messages, including
voice and music.

David Edward Hughes, a Professor of Music at St. Joseph’s College
in Kentucky, invented in 1855 a keyboard telegraph with rotating type-wheel
printer that grew into the modern telex industry. In Germany, telegraph
printers were patented as early as 1848 and Philip Reis invented an acoustic
transmitter in 1861 that used a diaphragm to open and close an electrical
circuit. He called it a “telephone” hoping to use it to reproduce speech and
music but was unsuccessful. Elisha Gray and his Western Electric Company
in Chicago had also invented an improved telegraph receiver, calling it a
“telephone” after 1874 because it produced a wide range of sounds, but failed
to make a similar transmitter.

Herman Helmholtz made an electric tuning-fork “sounder” device that
used an electromagnetic coil, tuning fork and cardboard tube “resonator” to
amplify the sound. His purpose was the scientific study of sound that was
published in the influential 1862 book “Sensation of Tone”.

Berliner’s gramophone (1887) was based on Scott’s phonautograph and
Cros’s disc. But in spite of its superiority over Edison’s cylinder machines,
the Berliner gramophone was slow to attract attention. However, a new wax
engraving process improved recording quality dramatically, and by 1901 the
Gramophone company recorded four stars of the Russian Imperial Opera. A
few years later, it recorded the voice of Enrico Caruso, and a worldwide
recording odyssey began.

The invention of the phonograph and other sound reproduction machines
began a new way of producing historical archives. Expressions of the human
voice were no longer limited to their abstraction as words on the page, and
the artistry and passion of a musical performance could be presented outside
human memory. People could bring the sounds of the world into their homes,



1877 CE 2485

and a global culture began to arise out of the mixture of influences that a
broad diversity of recordings could provide. Before radio and sound motion
pictures, the phonograph and other “talking machines” reigned for several
decades as the great modern innovation in audio culture and entertainment.

Evolution of Celestial Mechanics517

Astronomy is the oldest science, and in a certain sense the parent of all
sciences. The relatively simple and regularly recurring celestial phenomena
first taught men, in the days of ancient Greece, that Nature is systematic and
orderly.

For a long time progress was painfully slow. Centuries of observations
and attempts at theories for explaining them were necessary before it was
finally possible for Kepler (1571–1630) to derive his laws, which are first
approximations to the description of the way in which planets move. The
wonder is that, in spite of the distractions of the constant struggles incident
to an unstable social order, there should have been so many men who found
their greatest pleasure in patiently making the laborious observations which
were necessary to establish the laws of celestial motions.

The work of Kepler closed the preliminary epoch of 2000 years or more,
and the discoveries of Newton (1642–1727) opened another. The invention
of the calculus furnished for the first time a mathematical machinery, which
was suitable for grappling with such difficult problems as the disturbing effect
of the sun on the motion of the moon, or the mutual perturbations of the
planets. It was fortunate that the telescope was invented at about the same
time; for without its use, it would not have been possible to acquire the

517 For further reading, see:

• Moulton, F.R., An Introduction to Celestial Mechanics, Dover: New York,
1970, 436 pp.

• Sterne, T.E., An Introduction to Celestial Mechanics, Interscience Publishers,
1960, 206 pp.
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accurate observations which furnished the grist of data for the mill of the new
mathematical theory.

The history of celestial mechanics during the 18th century is one of con-
tinual triumphs. The analytical foundations laid by Clairaut (1713–1765),
d’Alembert (1717–1747) and Euler (1707–1783) formed the basis for the
achievements of Lagrange (1736–1813) and Laplace (1749–1827).

Their successors in the 19th century further developed, largely by the same
methods, the theory of motions of moon and planets. They advanced the
theoretical calculations to higher levels of precision, and compared them with
more and better observations. In this connection, the names of LeVerrier
(1811–1877), Delaunay (1816–1872), Hansen (1795–1874) and Newcomb
(1835–1909) are especially noteworthy.

Near the close of the 19th century, a third epoch was entered. It is dis-
tinguished by new points of view and new methods which, in power and
mathematical rigor, surpassed all that went before. It was inaugurated by
Hill (1838–1914) in his ‘Research on the Lunar Theory’, but owes most to
the contributions of Poincaré (1854–1912) to the problem of three bodies.

Celestial mechanics should be regarded as one of the splendid achieve-
ments of the human mind. No other science is based on so many observations
extending over so long a time. No other scientific theory except Quantum
Electrodynamics, has been empirically vindicated to such an outstanding ac-
curacy.

1877 CE Asaph Hall (1829–1907, U.S.A.). Astronomer. Discovered two
satellites of Mars with diameters 11 km and 6 km respectively, which he named
Phobos (fear) and Deimos (terror). Curiously enough, these satellites were
predicted by Jonathan Swift (1667–1745) already in 1726, in his “Gulliver’s
Travels”!

1877 CE George William Hill (1838–1914, U.S.A.). Mathematical as-
tronomer. Contributed significantly to the theory of lunar motion. Also
developed a theory of the motions of Jupiter and Saturn. Hill was first to use
infinite determinants to analyze the motion of the moon’s perigee. [This work
was published in 1877 under the arcane title: “On the part of the motion of
the lunar perigee which is a function of the mean motions of the sun and the
moon”.] In his work he came across a class of homogeneous, linear, 2nd order
differential equation with real, periodic coefficients. Such an equation is now
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known as “Hill’s equation”518. It has numerous applications to problems in
engineering, physics and astronomy. It includes as special cases the equations
of Mathieu, Lamé, Whittaker-Hill, Hermite and Picard.

Hill was born in New York and educated at Rutgers College. In 1861
he joined the staff of scientists working in Cambridge, Massachusetts, on
the American Ephemeris and Nautical Almanac. There he was assigned the
task of calculating the American ephemeris, work he was later authorized to
continue at his rural home in West Nyack, NY.

During 1881–1892 Hill resided in Washington D.C., working for the Navy
Department in the Nautical Almanac Office. In 1898 he accepted the chair
of astronomy at Columbia University. Since few students were qualified to
comprehend graduate-level work in celestial mechanics, Hill objected to re-
ceiving pay, and finally resigned in 1901. He remained a recluse in West
Nyack, devoted to his researches and to his large scientific library, which he
bequeathed to Columbia University. Illness during his last years reduced his
physical activity, and a failing heart brought his career to a close.

518 Its standard form is y′′ + [λ + Q(x)] y = 0, where λ is a parameter and

Q(x) is a real periodic function of x with period π. The fundamental importance

of Hill’s equation for stability problems was established by Lyapunov in 1907.
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Lunar Theory — Part II (1687–1878)

The mathematical theory of the orbital motion of the moon is known as
lunar theory. It is one of the most complex and difficult problems of dy-
namical astronomy. Its solution required the combined efforts of the greatest
mathematicians since Newton, and its history extends back twenty centuries
or more.

Before Newton, the problem was that of devising empirical curves for
anomalies in the motion of the moon around the earth. After the estab-
lishment of universal gravitation as the primary law of celestial motions, the
problem was reduced to that of integrating the differential equations of the
moon’s motion, and testing the results by comparison with observations.

Modern research developed naturally from the results of the ancients. In
the hands of Hipparchos (ca 135 BCE), observations were brought to a
degree of precision which is truly marvelous in comparison with the level of
other branches of physical science in that age.

Hipparchos discovered the ‘annual equation’ and Ptolemy (150 CE)
discovered ‘evection’. The ‘variation’ was discovered by Tycho Brahe in
about 1600. The inclination of the moon’s orbit and the regression of the
nodes were discovered in 1670 by John Flamsteed (1646–1719, England).

The modern lunar theory began with Newton, and consisted in determin-
ing the motion of the moon from the universal theory of gravitation. Newton
tried to explain the rotation of the line of apsides in his ‘Principia’, but his
predictions accounted for only about half the observed apsidal rotation. In
1749, Clairaut found that Newton had neglected some small terms in the
equations, and he brought theory and fact into agreement by taking such
terms into account. However, more than a century later, in 1872, the correct
calculations were also discovered among Newton’s unpublished papers: he
had detected his own error but had never bothered to correct it in print!

Since the days of Newton, the methods of analysis have succeeded those
of geometry. In the 18th century the development of lunar theory was almost
entirely the work of five men: Euler (1707–1783), Clairaut (1713–1765),
d’Alembert (1717–1783), Lagrange (1736–1813) and Laplace (1749–1827).

The first complete explanation of the irregularities in the motion of the
moon was given by Newton both in his published and unpublished manu-
scripts. Newton regarded lunar theory as being very difficult and he confided
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to Halley in despair that it “made his head ache and kept him awake so often
that he would think of it no more”.

In the 18th century lunar theory was developed analytically by Euler,
Clairaut, d’Alembert, Lagrange and Laplace. This intensive work was
motivated by the general demand, in the 18th century, for accurate lunar
tables for the use of navigators in determining their position at sea. This,
together with the fact that the motions of the moon presented the best test
of the Newtonian Theory, induced the English Government and a number
of scientific societies to offer very substantial prizes for lunar tables agreeing
with observations within certain narrow limits.

Euler published some imperfect lunar tables in 1746. In 1747, Clairaut
and d’Alembert presented to the Paris Academy, on the same day, memoirs
on the lunar theory. Each had trouble in explaining the motion of the perigee.
In 1749, Clairaut found the source of the difficulty (also discovered by Euler
and d’Alembert a little later). In 1787, Laplace explained the cause of the
secular acceleration of the moon’s mean motion.

The immediate successors of Laplace, M.C. Damoiseau (1768–1846) and
Plana (1781–1864), carried out his method to a high degree of approximation.
They integrated the equations of motions by expressing the time in terms of
the moon’s true longitude. Then, by inverting the series, the longitude was
expressed in terms of the time.

A second method was followed by Hansen (1795–1874), Lubbock (1803–
1865), de Pontécoulant (1795–1874) and Delaunay (1816–1872) during the
years 1832–1867. According to this school, the moon’s coordinates are ob-
tained in terms of the time by a direct integration of the differential equations
of motion. The expressions for the longitude, latitude and parallax appear as
infinite trigonometric series, in which the coefficients of the sines and cosines
are themselves infinite power series in small entities [eccentricities of moon
and earth orbits, sine of half the moon’s inclination etc.]. However, by this
method, the series converge slowly and the final expressions of the moon’s
longitude are overlong and complicated.

An entirely different approach, based on a method suggested by Euler,
was taken up by George William Hill (1838–1914) and continued by John
Couch Adams (1819–1892) and Ernest William Brown (1866–1938).

Euler conceived the idea of an iterative scheme, starting with a zeroth
order solution of the problem in which the orbit of the moon is supposed to
lie in the ecliptic and have no eccentricity, while that of the earth is taken to
be circular. The additional terms were then found, which were multiplied by
the first powers of the eccentricities and of the inclination. Then the terms of
the second order were found, and so on to any desired order. This method is
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superior by far to the method of Laplace, since the convergence is faster and
high precision is achieved even after a small number of iterations.

Hill improved on Euler’s method, and worked it out with greater rigor and
detail.

Differential Equations and Special Functions519

(1694–1879)

Most of the special functions of mathematical physics and their corre-
sponding differential equations were discovered during the 18th and 19th cen-
turies. The differential equations were usually encountered in the solutions of

519 To dig deeper, see:

• Andrews, G.E., R. Askey and R. Roy, Special Functions, Cambridge Univer-
sity Press, 2000, 661 pp.

• Vilenkin, N.J., Special Functions and the Theory of Group Representations,

American Mathematical Society, 1968, 613 pp.

• Bell, W.W., Special Functions for Scientists and Engineers, Van Nostrand,

1968, 247 pp.

• Erdélyi, A. (Editor), Higher Transcendental Functions, 3 Volumes, McGraw-

Hill Book Company: New York, 1953–1955.

• Magnus, W., F. Oberhettinger and R.P. Soni, Formulas and Theorems for the

Special Functions of Mathematical Physics, Springer-Verlag: Berlin, 1966,
508 pp.

• Kamke, E., Gewöhnliche Differentialgleichungen, Chelsea Publishing Com-

pany: New York, 1959, 666 pp.

• Zwillinger, D., Handbook of Differential Equations, Academic Press: Boston,

1989, 673 pp.

• Inch, E.L., Ordinary Differential Equations, Dover Publications: New York,

1956, 558 pp.

• Havil, J., Gamma, Princeton University Press, 2003, 266 pp.
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geometrical, astronomical or physical problems. The pioneers in this field were
the illustrious Bernoullis and Euler. They were later followed by Legen-
dre, Gauss, Jacobi and others. In principle, the common special functions
of mathematical physics evolved in a systematic way from the solutions of
the wave-equation, heat-equation and the Laplace equation in the various or-
thogonal curvilinear coordinate systems. Historically, however, many of the
well-known special functions were discovered independently, through solutions
of problems in the various branches of science and engineering.

The historical pattern is as follows:

A. The Gamma function

The first non-elementary function to be discovered after the scientific rev-
olution. Its notation Γ(z) was introduced by Legendre in 1814. Euler’s
formula for this function was given in 1729 and most of its properties520 were
discovered by Gauss, Legendre, Neumann (1848), Weierstrass (1856)
[who also showed that the Gamma-function does not satisfy any differential
equation with rational coefficients] and Hankel [expression of Γ(z) as a con-
tour integral, 1864]. The associated Beta-function was introduced by Euler
(1772).

• Watson, G.N., A Treatise on the Theory of Bessel Functions, Cambridge
University Press, 1966, 804 pp.

• Robin, Louis, Functions Spheriques De Legendre et Functions Spheroidales,
Gauthier Villars: Paris, 1957–1959, Vols I-III (201 pp., 384 pp., 289 pp.)

• Goursat, E., Differential Equations, Ginn and Company, 1945, 300 pp.

• Titchmarsh, E.C., The Theory of the Riemann Zeta-Function, Oxford Uni-
versity Press: Oxford, 1951, 346 pp.

• Edwards, H.M., Riemann’s Zeta Function, Academic Press: New York, 1974,
315 pp.

• Vallée, O. and M. Soares, Airy Functions and Applications to Physics, Impe-
rial College Press, 2004, 194 pp.

520 When � {z} > 0, Γ(z) =
∫ ∞
0

e−ttz−1dt is known as the Eulerian in-

tegral of the second kind. It leads to the basic recursion relation

satisfied by the Gamma-function Γ(z + 1) = zΓ(z). Euler’s formula is

zΓ(z) =
∏∞

n=1

(
1 + 1

n

)z (
1 + z

n

)−1
.
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B. Bessel functions (1694–1824)

In 1694 Johann Bernoulli discovered the so-called Riccati’s equation,
y′ = y2 + x2, in a paper on curves, but did not solve it. In 1703, James
Bernoulli communicated to Leibniz a solution of the above equation in the
form of infinite power series. In 1738 Daniel Bernoulli was engaged in the
problem of the lateral oscillation of a heavy uniform chain. His solution was
given in terms of a series, now described as a Bessel function of order zero.

Euler, returned to this problem in 1781, deriving the equation of motion
for the chain’s horizontal displacement. By an extremely ingenious analysis
he found the three gravest eigenperiods of the chain. Earlier, in 1764, Euler
had investigated the vibrations of a stretched membrane. He wrote the partial
differential equation of its transverse displacement in polar coordinates and
then proceeded to obtain the ordinary differential equation of the motion’s
amplitude, known today as the ‘Bessel equation’. He also gave its explicit
solution in terms of an infinite series. This investigation of Euler contains the
earliest appearance of a Bessel function of general integral order.

In 1770, Lagrange encountered the Bessel-function in the astronomical
problem of the Kepler equation521, and gave an expansion of the radius vector

521 The planetary elliptic orbit is given parametrically by means of the eccentric
anomaly angle E, via the relations

r = a(1 − e cos E), cos θ =
cos E − e

1 − e cos E
,

where e is the eccentricity, θ is the true anomaly and r is the radius-vector. The

auxiliary angle E is a solution of Kepler’s transcendental equation

E − e sin E =
2π

p
(t − T ) = M,

where p is the orbital period and t − T is the time, measured from the peri-

helion passage T . The quantity M , known as the mean anomaly, is the angle
which the radius-vector would have described if it had been moving uniformly

with average rate 2π
p

. Once the Kepler equation E − e sin E = M is solved

for given M , the orbit {r, θ} is known for all times.

It turns out that the Fourier-series expansions of the radius-vector and of E

are:

r = a

[

1 +
1

2
e2 +

∞∑

n=1

Bn cos(nM)

]

,

E = M +

∞∑

n=1

An sin(nM),
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of the orbit in terms of coefficients that are infinite-series representations of
Bessel functions. Fourier (1822) and Poisson (1823) obtained similar series
in problems of heat diffusion in solid circular cylinders and spheres. Finally,
Bessel (1824) made a systematic study of the functions that now bear his
name, in connection with the Kepler’s problem.

C. Legendre functions (1784–1884)

In 1784, Legendre studied the gravitational attraction of spheroids. In
the course of his work he expanded (1 − 2hz + h2)−1/2 in a power series
of z = cos θ. The coefficients of hn in this expansion were named later after
him. These coefficients, Pn(z), are of frequent use not only in potential
theory, but in other branches of analysis as well and are called today Legendre
polynomials.

The algebraic and analytic properties of these polynomials were investi-
gated by Legendre himself and by his followers during the next 100 years
[Rodrigues (1814), Murphy (1833), Dirichlet (1837), Neumann (1848–
1862), Heine (1851–1878), Christoffel (1858), Frobenius (1871), Mehler
(1872), Schläfli (1881), Ferrer (1877), Hobson (1891) and many others].

A more extended class of Legendre functions is the Legendre associated
polynomials and functions. A function connected with the associated Legendre
function Pm

n (z) is the function Cν
n(z), which for integral values of n is

defined to be the coefficient of hn in the expansion of (1 − 2hz + h2)−ν in
ascending powers of h. It has been studied by Gegenbauer (1874–1893).

with

An =
2

n
Jn(ne),

Bn = − e

πn

∫ 2π

0

sin u sin(nu − ne sin u)du = −2
( e

n

)
J ′

n(ne),

where Jn is the Bessel function of order n and J ′
n is its derivative w.r.t. the

argument.
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D. The hypergeometric functions (1755–1879)

This general function includes as special cases most of the familiar func-
tions of elementary analysis [e.g. Chebyshev polynomials]. The function was
known to Euler (1755), who discovered a number of its properties, but it was
studied systematically by Gauss (1811–1812), who gave the earliest satisfac-
tory treatment of the convergence of an infinite series. Gauss’ work initiated
far-reaching development in many branches of analysis, in infinite series, gen-
eral theories of linear differential equations and functions of complex variables.

Another classical differential equation of considerable importance is the
confluent hypergeometric equation522, otherwise known as the Kummer equa-
tion (Kummer, 1836). Special cases and associated functions of this class are:
Parabolic cylinder functions (Weber, 1869), Hermite polynomials (Hermite,
1864), Laguerre polynomials523 and functions (Laguerre, 1879), Error func-
tions524, Gamma functions525 (Euler, 1729; Legendre, 1876; Schlömilch,

522 Gauss’ hypergeometric equation is

x(1 − x)y′′ + [c − (a + b + 1)x] y′ − aby = 0.

A solution which is regular at x = 0 is given by the hypergeometric series

y = 2F1(a, b; c; x) = 1 +
ab

c

x

1!
+

a(a + 1)b(b + 1)

c(c + 1)

x2

2!
+ . . ..

If the independent variable is changed from x to u = bx, the former equation

becomes

u
(
1 − u

b

)
y′′ +

[

(c − u) − (a + 1)

b
u

]

y′ − ay = 0.

If we let b → ∞ it becomes

uy′′ + (c − u)y′ − ay = 0,

which is the confluent equation. A solution of this equation is given by the series

u = 1F1(a; c; x) = 1 +
a

c
x +

a(a + 1)

2!c(c + 1)
x2 +

a(a + 1)(a + 2)

3!c(c + 1)(c + 2)
x3 + . . ..

523 Laguerre and Hermite polynomials have important applications in quantum

mechanics of the hydrogen atom and the linear harmonic oscillator, respectively.

524 Erfc(x) =
∫ ∞

x
e−t2dt and Erf(x) =

∫ x

0
e−t2dt occur in connection with the

theories of probability, observation errors and heat conduction.
525 γ(n, x) =

∫ x

0
tn−1e−tdt.
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1871) and the Logarithmic integral526 (Euler, 1755). Thomas Clausen
(1801–1885) introduced the generalized hypergeometric function (1828)

pFq(a1, . . . , ap; b1, . . . , bq; z) =
∞∑

k=0

Πp
i=1(ai)kzk

Πq
i=1(bi)kk!

,

where the notation (a)k = a(a + 1) · · · (a + k − 1) is known as the Pochham-
mer symbol (Leo Pochhammer, 1841–1920, Germany).

Various mathematical constants, all elementary functions, and many spe-
cial functions can be expressed in the hypergeometric notation; for example:

cos(z) =0F1

(
1
2
;
−z2

4

)

log(z + 1) = z 2F1(1, 1; 2;−z)

erf(z) =
2z√
π

1F1

(
1
2
;
3
2
;−z2

)2

π = 4 − 8
9 3F2

(
1
2
,
1
2
, 1;

5
2
,
5
2
;−1

)

π =
426880

√
10005

13591409

/(

3F2

(
1
6
,
1
2
,
5
6
; 1, 1;

−1
151931373056000

)

− 30285563
1651969144908540723200 3F2

(
7
6
,
3
2
,
11
6

; 2, 2;
−1

151931373056000

))

E. Elliptic functions and integrals
527

(1655–1920)

The study of the theory of elliptic and associated functions is of great
importance for its close relation to the development of the general theory of
functions of complex variable and for its important applications in various
branches of mathematics, physics and engineering. Extensive and detailed
elaboration of the subject has provided a testing ground for discovery and
improvement of the general theorems of complex variable: the theorems of

526 �i(x) =
∫ x

0
dt

log t
.

527 The terminology for elliptic integrals and functions has changed during their

investigation. What were originally called elliptic functions are now called el-

liptic integrals and the term elliptic functions is reserved for a different idea.

We will use modern terminology throughout this section to avoid confusion.
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Liouville528 (1847) and Picard (1879), the theorems of multiple periodic-
ity and many other important results of the theory of functions of complex
variable.

The theory of elliptic and associated functions has a very wide field of
applications in the analytical theory of numbers [Gauss, Jacobi, Hermite,
Hardy, Ramanujan] and in the theory of equations [Hermite, Kronecker,
1858], where the general solution of a quintic equation was obtained in terms
of elliptic functions.

In the field of geometry, elliptic functions are of great use in studying the
properties of certain classes of curves. In mechanics, the earliest applications
were to the problems of the simple pendulum with a finite amplitude (Euler),
the spherical pendulum (Lagrange, Richelot, 1852) and the motion of a rigid
body about a point (Legendre). Further applications appear in the theories
of potential, elasticity, electrostatics and heat conduction.

The first encounter with elliptic integrals resulted from attempts to harness
the calculus for the rectification of the ellipse (Wallis, 1655). What is now
known as an elliptic integral, occurs in the researches of Jakob Bernoulli
on the Elastica (1694). He was first to notice that these integrals cannot be
expressed in terms of elementary functions529.

Giulio Carlo Fagnano dei Toschi (1682–1766, Italy, 1715) made ex-
tensive research of elliptic integrals and proved that the difference of any
two elliptic arcs is algebraic. Euler was acquainted with the results of Fag-
nano in 1751 and obtained from it suggestions for his proof of the addition
theorem of elliptic integrals (1761). He systematically studied the geometri-

528 If f(z) is analytic for all values of z and if |f(z)| < K for all z, where K is a

constant [so that |f(z)| is bounded as z → ∞], then f(z) is constant. This

theorem furnishes short and convenient proofs of some of the most important

results in analysis, e.g. that an elliptic function f(z) with no poles in a cell is

merely a constant.
529 An ellipse has the parametric equations x = a sin θ, y = a cos θ, where a > b

and the eccentric angle θ measured from the minor axis. If s is the arc length
parameter measured clockwise around the curve from the end B of the minor

axis, then

ds2 =
√

(dx2 + dy2) =
√

(a2 cos2 θ + b2 sin2 θ) dθ = a
√

(1 − e2 sin2 θ) dθ

where e =
√

1 − a2

b2
is the eccentricity. Thus, the length arc from B to any

point P were θ = ϕ is given by s = a
∫ ϕ

0

√
1 − e2 sin2 θ dθ = aE(u, e), where

E is the elliptic integral of the second kind.
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cal applications of elliptic integrals, and proposed that they be recognized as
primitive new transcendentals to be investigated on their own merits. Legen-
dre worked more than 40 years on the systematic development of this vast
field.

Abel (1827), Jacobi (1827) and Gauss (1797, unpublished) revolution-
ized this subject, and opened the floodgates to 19th century analysis, with
the simple idea of inverting the elliptic integral530. Abel’s first important dis-
covery in this connection was the double periodicity of this inverse function,
known as an elliptic function, which thus started the study of elliptic func-
tions proper. Abel also generalized the elliptic integrals, and considered the
integrals (and their inverse functions) later named as Abelian integrals and
Abelian functions.

Jacobi (1827–1829) was the principal and most accomplished investigator
of elliptic and theta functions531. He obtained their properties by purely
algebraic methods. His analysis is so complete that practically most of the
results known today are to be found in his works.

530 Instead of directly investigating the elliptic integral

y =

∫ x [
(1 − c2x2)(1 + e2x2)

]−1/2
dx,

they proposed to consider the inverse function x = F (y). This procedure is

similar to that of defining the inverse circular function and the logarithmic

functions by integrals sin−1 x =
∫ x dx√

1−x2
, log x =

∫ x dx
x

respectively, and

then establishing the properties of the circle and exponential functions from the

corresponding inverse functions. The advantage of this artifice is that instead

of having to consider, say, the ∞-ly multiple-valued function y = sin−1 x, re-

stricted to the range −1 < x < 1 (for real values of x), we may, by writing

the same equation as x = sin y, treat x as single valued function of y, which is

much easier to deal with.
531 The four functions

θ1(z, q) = 2

∞∑

n=0

(−)nq(n+ 1
2 )2 sin(2n + 1)z,

θ2(z, q) = 2

∞∑

n=0

q(n+ 1
2 )2 cos(2n + 1)z,

θ3(z, q) = 1 + 2

∞∑

n=1

qn2
cos 2nz,

θ4(z, q) = 1 + 2

∞∑

n=1

(−)nqn2
cos 2nz,
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The next epoch in the development of the theory of elliptic functions
started with the works of Liouville (1844–1851) and Weierstrass (1854). In
their approach, the elliptic functions are not introduced as inverse functions
of primitives of elliptic integrals — instead they are suitably defined by some
important properties, such as double periodicity532, meromorphism etc.

are known as the theta functions. They solve the heat-conduction equation

k
∂2θ

∂z2
=

∂θ

∂t
,

where k is the diffusivity and q = e−4kt. For most applications it is convenient

to pass to complex time τ such that q = eπiτ , Im τ > 0, |q| < 1, to secure

convergence. Clearly θ1, θ2 are periodic with period 2π and θ3, θ4 are periodic
with period π. Interestingly enough, the series are also pseudoperiodic in z with

period πτ , namely θ1(z + πτ, q) = −Nθ1(z, q) where N = q−1e−2iz, etc. The

theta function can also be represented as a product of partition functions, e.g.

θ4(z, q) =

∞∏

n=1

(1 − q2n)(1 − q2n−1e2iz)(1 − q2n−1e−2iz).

[Euler was first to study, in 1748, the partition function
∏∞

m=1(1 − qmx).]
The solution of (

dy

du

)2

= (1 − y2)/(1 − k2y2)

is y = sn(u, k), known as the Jacobian elliptic function of u. It can be shown

that

y =
θ3(0, q)

θ2(0, q)

θ1(x, q)

θ4(x, q)
,

where x = u
[θ3(0,q)]2

with k2 =
[

θ2(0,q)
θ3(0,q)

]4

.

532 In analogy to the relation 1
(sin z)2

=
∑∞

m=− ∞
1

(z−mπ)2
, Weierstrass defined a

new function

℘(z) = z−2 +

′∑

m,n

{
1

(z − Ωm,n)2
− 1

Ω2
m,n

}

where Ωm,n = 2mω1 + 2nω2, and
∑′ =

∑
m,n, (m, n) �= (0, 0).

It turns out that ℘(z) is doubly periodic, with no singularities but poles. Hence

it is an elliptic function, and satisfies the differential equation:

[
℘′(z)

]2
= 4℘2(z) − g2℘(z) − g3

with

g2 = 60
′∑

m,n

Ω−4
m,n, g4 = 140

′∑

m,n

Ω−6
m,n
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The final stage in the development of elliptic functions, involving their
mysterious relations to number theory, is marked by the contributions of Her-
mite, Klein, Kronecker, Dedekind, Poincaré and Ramanujan. Their
approach was based on two novel ideas: one is the concept of automorphic
function introduced by Poincaré, and the other is the concept of modular
function, which arises from the behavior of the modulus k2 as a function f(τ)
in the complex τ -plane, where f(τ) = θ4

2(0,τ)

θ4
3(0,τ)

.

F. Differential equations with periodic coefficients

(1868–1940)

In 1868, Émile Léonard Mathieu (1835–1890, France) determined the
vibrational modes of a stretched membrane having an elliptical boundary.
Solving the two-dimensional wave equation in elliptical coordinates by the
method of separation of variables, a second order equation, known today as
the Mathieu equation

[y′ ′ + (a − 2q cos 2z)y = 0]

is obtained. Its solutions are the Mathieu functions. Other problems of math-
ematical physics which lead to the Mathieu equation are:

(1) Tidal waves in a cylindrical vessel with an elliptical boundary.

(2) Certain forms of steady vortex motions in an elliptical cylinder.

(3) Diffraction of sound and electromagnetic waves by a right elliptical cylin-
der.

(4) Propagation of waves in elliptical wave guides.

(5) Heat conduction in an elliptical cylinder.

(6) Amplitude distortion in a moving-coil loudspeaker.

H.G. Hill (1887) investigated the mean motion of the lunar perigee by
means of a generalized form of Mathieu equation

[y′ ′ + {a − 2qψ(2z)}y = 0 ,

and

z =

∫ ∞

℘

[4t3 − g2t − g3]
−1/2dt.
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where

ψ(2z) = −
∞∑

r=1

θ2r cos 2rz

]

.

In 1883, G. Floquet proved an important theorem concerning the general
nature of the solutions of Hill’s equation. Since then, an extensive literature
has accumulated on the exact, asymptotic and numerical solutions of Mathieu
functions [Lindemann (1883), Stieltjes (1884), Maclaurin (1899), Hilbert
(1904), Sieger (1908), Whittaker (1914), Ince (1924–1939), Erdélyi (1934–
1936), Bickley (1940)].

1877–1902 CE Benjamin Baker (1840–1907, England). Engineer and
bridge constructor. Involved in the construction of Metropolitan railways and
in designing the cylindrical vessel in which Cleopatra’s needle was brought
over from Egypt to England (1877–1878). Designed and erected the Forth
Bridge in Scotland (with John Fowler) in 1890. Directed the construction of
the Assam dam (1902). Pioneered in the construction of intra-urban railways
in deep tubular tunnels built up of cast iron segments. Author of many papers
on engineering subjects.

Baker was born near Bath and received his early training in a South Wales
ironworks. He afterwards became associated with John Fowler in London.

1878–1886 CE Francois Marie Raoult (1830–1901, France). Physicist
and chemist. Discovered (1878) that the depression of the freezing points533

of liquids due to the presence of a substances dissolved in them is propor-
tional to the solute’s molarity (moles per unit solvent weight), and number of
dissociated ions per molecule of solute with a coefficient depending only upon
the solvent (cryoscopic coefficient). Introduced (1886) the law named after
him, stating that in a dilute solution, the lowering of the vapor pressure of
the solvent is proportional to the molecular weight of the substance dissolved,
unless the solvent is an electrolyte. Both phenomena afforded new methods
of determining the molecular weight of substances.

533 The bare fact that the presence of dissolved substances in water lowers its

freezing-point was already known to the English physician Charles Blagden

(1748–1820). [“Experiments on the cooling of water below its freezing point”,

Phil. Trans. 78, 120–130, 1788; and “Experiments on the effect of various

substances in lowering the point of congelation in water”, Phil. Trans. 78,

277–312, 1788.]
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W. Ostwald and J.H. van’t Hoff used Raoult’s laws to support the
hypothesis of electrolytic dissociation.

Raoult was born at Fournes en-Weppes Nord and taught at Grenoble
(1867–1901).

1878–1913 CE Ferdinand de Saussure (1857–1913, Switzerland). Lin-
guist. The father of modern linguistics. His book Memoir on the primitive sys-
tem of vowels in Indo-European languages (1878) was a major breakthrough
in comparative philology. His most famous work Course in General Linguistic
was published posthumously by his students (1915).

de Saussure led the structural movement against the comparative534 meth-
od and formulated many basic principles of structural linguistics (1906) which
apply to all languages. He urged the development of a general science of
signs aided by mathematics — suggestions which were intensively followed by
modern philologists.

de Saussure was born in Geneva. He studied Indo-European languages at
the Leipzig and Berlin Universities. After several years of teaching in Paris,
he returned to his native Geneva (1891) and remained there until his death.

1879 CE Charles Émile Picard (1856–1941, France). Mathematician.
Advanced research in the fields of analysis, algebraic geometry and mechanics.

Developed an existence theorem for differential equations based on the
method of successive approximations.

Picard worked on quadratic forms, Abelian functions and the allied theo-
ries of discontinuous and continuous groups of transformations. His work led
to a study of the algebraic manifold, now known as the Picard variety, which
play a fundamental role in algebraic geometry.

In 1879 Picard proved the theorem named after him. This theorem be-
came the starting point for many important studies in the theory of complex
functions535.

534 The early structuralists believed that the comparativists overemphasized lan-

guages as written in the past, and ignored languages as spoken today. The

structuralists also disagreed with the traditional method of describing languages

by paradigms (patterns) of conjugations and declensions. They studied many

non-Indo-European languages and found that some do not have conjugations

and declensions. Thus, these languages could not be described by the traditional

method.
535 In the neighborhood of an isolated essential singularity, a one-valued function

takes every value, with one possible exception, an infinite number of times.
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During 1878–1899, Picard held various posts with the universities of Paris,
Toulouse and the École Normale Supériere. In 1898 he was appointed profes-
sor at the University of Paris.

1879 CE Edwin Herbert Hall (1855–1938, U.S.A.). Physicist. Discov-
ered the “Hall effect” in which a voltage is produced across a current-carrying
conductor in a magnetic field. The Hall voltage is perpendicular to both the
direction of the current and the direction of the magnetic field, and propor-
tional to the current and the magnetic field. Since different material produce
different Hall voltages, scientists can use the Hall effect as a probe of the
electronic structure of various materials536.

Hall was born at Great Falls, ME. He was a professor at Harvard University
(1888–1921).

1879 CE Joseph Stefan (1835–1893, Austria). Physicist. Empirically
discovered the law that the total energy radiated by a blackbody per unit
area-time (u) is proportional to the 4th power of the temperature T : u = σT 4.
In 1884, L. Boltzmann derived the law theoretically537, and since then it
is known as the “Stefan-Boltzmann law” and σ as the “Stefan-Boltzmann
constant”. At any rate, Stefan’s contribution was the first important step
toward the understanding of black-body radiation, from which sprang the
idea of the quantum of radiation.

Stefan was born at St. Peter, Austria and did his major work at the Uni-
versity of Vienna [lecturer, 1858; full professor, 1863; director of the Physical
Institute, 1866].

536 Hall designed a series of thought experiments which demonstrated that the

magnetic force should deflect the charge carriers and cause them to collect on

one side of the conductor. Charge carries in most metals bear a negative charge,

(electrons were discovered by J.J. Thomson in 1897).

The Hall effect is easily understood in terms of the simple free-electron model

of Drude, but for metals with valence > 1 (e.g. Be, Mg, In and Al), the expla-

nation of experimental results require a quantum treatment of the effect.

In 1980, Klaus von Klitzing discovered the quantized Hall effect (Nobel prize,

1985), in which changes in resistance in a plate kept in a magnetic field at tem-

peratures near absolute zero occur in discrete steps instead of continuously; it

is an example of quantum behavior that is directly observable macroscopically.
537 The laws of Stefan-Boltzmann and Wien follow purely as a result of the general

laws of thermodynamics and the electromagnetic nature of radiation. Indeed,

Boltzmann was able to provide their theoretical basis without the use of Planck’s

radiation formula.
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1879–1906 CE Henri Jules Poincaré (1854–1912, France). Outstanding
and versatile mathematician, theoretical astronomer, and philosopher of sci-
ence. He is known as ‘the last of the universalists’ since he was the last man
to have had a creative command of the whole of mathematics as existed in his
day, including: algebra, geometry, arithmetic and analysis — as well as the
entire gamut of mathematical physics (celestial mechanics, general analytical
mechanics, optics, elasticity, thermodynamics, potential theory, electromag-
netism). He will probably be the last man who will ever be in this position.

Poincaré did not dwell on any particular field long enough to round his
work. A contemporary said of him: “He was a conqueror, not a colonist”.
He had an unusually retentive memory for everything he read, and could
also visualize what he heard. Throughout his life he was able to perform
complex mathematical calculations in his head, and could quickly write a
paper without extensive revisions. He produced more than 30 books and 500
technical papers. His major achievements are:

• Virtually founded the theory of automorphic functions538. He found
that these functions are associated with transformations arising in non-
Euclidean geometry (1879–1887). Such functions are generalizations of
trigonometric functions (a = d = 1, c = 0, b = 2kπ) and elliptic func-
tions. Hermite had studied such transformations for the restricted case
in which the coefficients a, b, c, d are integers, and satisfy ad − bc = 1,
and had discovered a class of elliptic modular functions invariant under
the restricted transformations. But Poincaré’s generalization uncovered
a broader category of functions, known as zeta-Fuchsian functions, which
could be used to solve 2nd order linear differential equations with alge-
braic coefficients.

Poincaré found that two automorphic functions, invariant under the same
group, are connected by an algebraic equation. Conversely, the coordi-
nates of a point on any algebraic curve can be expressed in terms of
automorphic functions, and hence by uniform functions of a single para-
meter [e.g. x2 + y2 = a2 is parametrically represented by x = a cos t,
y = a sin t].

• Developed the theory of asymptotic series representation of functions
(1886).

• Father of algebraic topology (Poincaré Conjecture, 1904).

538 An automorphic function f(z) of the complex variable z is one which is analytic,

except for poles, in a domain D and which is invariant under a denumerably infi-

nite group of linear fractional transformations z′ = az+b
cz+d

, i.e. f
(

az+b
cz+d

)
= f(z).
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• Established combinatorial topology, i.e. the study of intrinsic qualitative
aspects of spatial configurations that remain invariant under continuous
1–1 transformations539.

Among other things, he generalized Euler’s formula V − E + F = 2 to n
dimensional space. Instead of vertices (V ), edges (E) and faces (F ), we
then have 0−, 1−, 2−, . . . , (n − 1)-dimensional entities. If the numbers
of these entities is N0, N1, . . . , Nn−1 respectively, then the equation
N0 − N1 + N2 − · · · = 1 − (−1)n applies to the manifolds corresponding
to the simple polyhedra. For n = 3 this reduces to Euler’s formula.

Poincaré’s generalization furnished a determination of the regular poly-
topes in higher dimensional spaces [in 3 dimensions there are only 5 regular
polyhedra: Tetrahedron (V = 4, E = 6, F = 4); Cube (V = 8, E = 12,
F = 6); Octahedron (V = 6, E = 12, F = 8); Dodecahedron (V = 20,
E = 30, F = 12); Icosahedron (V = 12, E = 30, F = 20)].

• Advanced the qualitative study of nonlinear differential equations by the
introduction of topological arguments. To describe the nature of a singu-
lar point he introduced the notion of an index 540.

539 Transformations which are continuous and which have a continuous inverse

transformation. Such transformations are known as homeomorphisms. Two

homeomorphic manifolds are said to be topologically equivalent .
540 Consider a singular point P0 and a simple closed curve C surrounding it. At

each intersection of C with the solutions of

dy

dx
=

P (x, y)

Q(x, y)
,

there is a direction angle of the trajectory, which we shall denote by φ and

which can have any value from 0 to 2π radians. If a point now moves in

a counterclockwise direction around C, the angle φ will vary; and after
completion of the circuit around C, φ will have the value 2πI where I is an

integer or zero (since the direction angle of the trajectories has returned to its

original value). The quantity I is the index of the curve. It can be proved that
the index of a closed curve that contains several singularities is the algebraic

sum of their indices. The index of a closed trajectory (and of no other simple

closed curve) is +1.
The nature of the trajectories can be determined by the characteristic equation,

and so the index I of a curve should be determinable by knowing just the

differential equation. One can prove that

I =
1

2π

∫

C

d

(

arctan
P

Q

)

=
1

2π

∫

C

Q dP − P dQ

P 2 + Q2
,

where the path of integration is the closed curve C.
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• Proved the recurrence theorem, stating that a non-dissipative dynamical
system having a finite energy and confined to a finite volume, will, after
sufficiently long time, return to an arbitrary small neighborhood of almost
any initial state.

• Contributed541 substantially to the classical ‘n-body problem’ in celestial
mechanics: given the present masses, velocities, and mutual positions
of n bodies, how long will they remain stable in their present orbits?
In his solution, Poincaré initiated the qualitative theory of non-linear
differential equations. He developed new mathematical techniques and
made fundamental discoveries on the behavior of the integral curves of
differential equations near singularities (1889–1895).

541 One of Isaac Newton’s most important discoveries was that two bodies moving

under the influence of each other’s gravitational fields, both follow ellipses (or

hyperbolas or parabolas). The question was: how do three bodies move under

Newtonian gravitational forces? The ‘two-body problems’ is “integrable” —

the laws of conservation of energy and momentum restrict solutions to such an

extent that they are forced to take simple mathematical form. The suspicion

that three bodies can move chaotically (chaos — apparently random motion

with purely deterministic causes — too complicated to occur in an integrable

system) predates the recognition of chaos in mathematics; indeed, it was one of

the key historical steps in its discovery.

In 1887, King Oscar II of Sweden was worried about the stability of the solar

system. Will it persist forever, behaving such as it does today, or will a planet

escape or crash into the sun?

A prize of 2500 crowns, offered by the king to anyone who could solve the

problem, was won by the leading mathematician of the day, Henri Poincaré —

even though he did not answer the question. However, what Poincaré achieved

was more important — the introduction of qualitative geometrical methods into

dynamics. It led him to discover some curious behavior that we now recognize

as chaos.

He found it in the ‘restricted three-body problem’ (an idealization in which one

body is assumed to have such a small (“test”) mass that the other two are not

affected by it). This test body does, of course, respond to the gravitational

fields of the two more massive bodies. The question is: does the chaos persist

if we make the model more realistic by including the very small but non-zero

gravitational effects of the almost massless test body in our calculations?

In 1994, Zhihong Xia of the Georgia Institute of Technology, U.S.A., proved

that a system of three bodies is not integrable (i.e., it has no conserved quantity

other than energy and linear and angular momentum) and that the full three-

body problem is chaotic.
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• Contributed to the theory of numbers by demonstrating how the con-
cept of binary quadratic forms (developed by Gauss) could be cast in a
geometric form (1904).

• Made important contributions to the theory of equilibrium of gravitating
rotating fluid masses. In particular he described the conditions of stabil-
ity of the pear-shaped figures that played a prominent part in evolution
models of celestial bodies.

Many of the problems he tackled were seeds of new ways of thinking,which
have since grown and flourished in 20th century mathematics.

Poincaré was born in Nancy into a distinguished family [his first cousin,
Raymond Poincaré (1860–1934) was president of the French republic during
WWI]. He studied at the École Polytechnique (1872–1875), devoting himself
to scientific mining, and took his doctorate in 1879. He was lecturer at Caen
and then moved to the University of Paris in 1881, where he held several
professorships in mathematics and science.

Poincaré died of embolism, a week after a successful prostate operation.
He was in his 59th year and at the height of his powers — ‘the living brain of
the rational sciences’, in the words of Painlevé.

The Poincaré Conjecture542 (1904–2003)

“One of the early successes of topology was to show that just two topo-
logical invariants, the Euler characteristic and orientability, are all you need
to be able to distinguish any two closed surfaces. That is to say, if two sur-
faces have the same Euler characteristic and are either both orientable or
both non-orientable, then they are in fact the same — even if one is unable
to see how to continuously deform one into the other. This result is called
the classification theorem for surfaces, since it says that one can classify all
surfaces (topologically) by means of just these two attributes.

542 Quotations are from Keith Devlin’s book The Millennium Problems, Basic

Books: New York, 2002.
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Loosely speaking, the classification theorem for surfaces is proved by tak-
ing a sphere as the basic surface and measuring the degree to which any given
surface differs from a sphere — what would one have to do to a sphere to
turn it into that surface. This corresponds to our ordinary intuition that a
sphere is the simplest, most basic, and, some might say, the most aesthetically
perfect closed surface.

It should be pointed out that in this case, the operations to be performed
on a sphere to turn it into some other surface go beyond the normal topolog-
ical operations of continuous deformations. Indeed, if one changes a sphere
by means of twisting, bending, stretching, or shrinking, the resulting object,
topologically, will still be a sphere. To classify surfaces by seeing how they
can be constructed from a sphere, one has to allow cutting and stitching to-
gether in addition to the usual twisting, stretching, etc. Topologists refer to
this process as “surgery.” The term is apt, since a typical surgical operation
involves cutting one or more pieces from the sphere, twisting, turning, stretch-
ing, or shrinking each of those pieces, and then sewing those pieces back into
the sphere again.

The classification theorem tells us that any orientable surface is topolog-
ically equivalent to a sphere with a certain number of “handles” sewn onto
it. You get a handle by cutting two holes into the sphere and joining them
together by means of a tube. Any non-orientable surface is equivalent to a
sphere with a certain number of “crosscaps” sewn in. You get a crosscap by
cutting a hole in the sphere and sewing a Möbius band to the boundary of
the hole. As with the Klein bottle, in ordinary three-dimensional space one
cannot do this without the Möbius band passing through itself; one needs four
dimensions to do it properly.

In the early years of the twentieth century, Poincaré and other mathemati-
cians set out to classify higher-dimensional analogues of surfaces — which they
called “manifolds.” Not surprisingly, they tried an approach similar to the
one that had worked for two-dimensional surfaces. They sought to classify
all three-dimensional manifolds (called “3-manifolds” for short) by taking a
three-dimensional analogue of a sphere (called a “3-sphere”) as basic and
measuring the degree to which any 3-manifold differs from that 3-sphere.

One has to be careful here. A regular surface such as a sphere or a torus is
a two-dimensional object. The figure the surface encloses is three-dimensional,
of course, but the surface itself is two-dimensional. Apart from a plane, any
surface can be constructed only in a space of three or more dimensions. Thus,
any closed surface requires three or more dimensions. For instance, it takes
three dimensions to construct a sphere or a torus, four dimensions to construct
a Klein bottle. Yet a sphere, a torus, or a Klein bottle is a two-dimensional
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object — a surface that has no thickness and can, in principle, be constructed
from a flat, perfectly elastic sheet.

But just as a sphere can be regarded as a two-dimensional analogue (in
three-dimensional space) of a circle (which is a one-dimensional object – a
curved line – in two-dimensional space), so too we can imagine a three-
dimensional analogue (in four-dimensional space) of a sphere. Well, actually,
we can’t imagine it. But we can write down equations that determine such
an object, and study “it” mathematically. Indeed, physicists routinely study
such imaginary objects, and use the results to help understand the universe
we live in. The 3-manifolds, i.e., the three-dimensional analogues of surfaces
(which exist in spaces of four or more dimensions), are sometimes called hy-
persurfaces, with the three-dimensional analogue of a sphere being called a
hypersphere.

There is no mathematical reason to stop at three dimensions. One can
write down equations that determine manifolds of 3, 4, 5, 6, or any number
of dimensions. Once again, these considerations turn out to be more than
idle speculation. The mathematical theories of matter that physicists are
currently working on view the universe we live in as having 11 dimensions.
According to these theories, we are directly aware of three of those dimen-
sions, and the others manifest themselves as various physical features such as
electromagnetic radiation and the forces that hold atoms together.

Poincaré attempted to classify manifolds of three and more dimensions
by taking a “sphere” of the respective dimension as a base figure and then
applying surgery, A natural first step in this endeavor was to look for a simple
topological property that tells you when a given (two-dimensional) surface is
topologically equivalent to a sphere. (Even in the simple case of regular two-
dimensional surfaces, a surface might appear extremely complicated and yet
turn out to be continuously deformable to a sphere.)

In the case of two-dimensional surfaces, there is such a property. Suppose
you were to take a pencil and draw a simple closed loop on the surface of
a sphere. Now imagine the loop shrinking in size, sliding over the surface
as it does so. Is there a limit to how small the loop can shrink? Obviously
not. One can shrink the loop until it becomes indistinguishable from a point.
Mathematically, one cane shrink it until it actually becomes a point.

The same thing is not necessarily true if one starts with a loop drawn on
a torus. One can draw loops on a torus that cannot be shrunk down to a
point. No loop that goes right around the ring of the torus can be shrunk
down indefinitely, nor can any loop that encircles the torus like a belt.

The shrinkability to a point of any loop drawn in a surface is a topological
property of the surface that is unique to spheres. That is to say, if one has
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a surface on which every loop (the “every” is important here) can be shrunk
down to a point without leaving the surface, then that surface is topologically
equivalent to a sphere.

Is the same true for a three-dimensional hypersphere? This is the question
Poincaré asked in the early 1900s, hoping that a speedy positive answer would
be the first step on the road to a classification theorem for three-dimensional
hypersurfaces. He developed a systematic method — called homotopy theory
— for studying (using methods of algebra) what happens to loops when they
are moved around a manifold and deformed.

Actually, that’s not quite what happened. At first, Poincaré tacitly as-
sumed that the loop-shrinking property for 3-manifolds did characterize the
3-sphere. After a while, however, he realized that his assumption might not be
valid, and in 1904 he put his doubts into print, writing (in French): “Consider
a compact three-dimensional manifold V without boundary. Is it possible that
the fundamental group of V could be trivial, even though V is not homeomor-
phic to the three-dimensional sphere?” Stripping away the technical terms,
what Poincaré asked was, “Is it possible that a 3-manifold can have the loop-
shrinking property and not be equivalent to a 3-sphere?” That was the birth
of the Poincaré conjecture.

As it turned out, his question did not get a speedy answer. Nor, indeed,
a slow answer, despite the best efforts of a number of leading topologists. As
a result, finding a proof (or a disproof) of the Poincaré conjecture rose to
become one of the most sought-after prizes in mathematics.”

Thus, in 1904, Poincaré conjectured that every simply connected, closed,
orientable 3-dimensional manifold543 is homeomorphic to the sphere of that
dimension544 (the surface of a 4-dimensional solid sphere). This conjecture
has been generalized to read:

543 A 3-dimensional manifold is a space such that every point has an open neigh-

borhood homeomorphic to a 3-dimensional Euclidean space. From the point of

view of STR, we are living on a 3-dimensional sphere.
544 Earlier, Poincaré asserted that any two closed manifolds that have the same

Betty numbers and torsion coefficients are homeomorphic. But he soon gave an

example of a 3-dimensional manifold that has the Betti numbers and torsion

coefficients of the 3-dimensional sphere but is not connected. Hence he added

simple connectedness as a condition.

He then showed that there are 3-dimensional manifolds with the same Betti

numbers and torsion coefficients but which have different fundamental groups

and so are no homeomorphic. However, James W. Alexander showed (1919)

that two 3-dimensional manifolds may have the same Betti numbers, torsion

coefficients, and fundamental group and yet not be homeomorphic.



2510 4. Abstraction and Unification

“Every simply connected, closed, n-dimensional manifold that has
Betti numbers and torsion coefficients of the n-dimensional sphere,
is homeomorphic to it.”

This generalized conjecture has been proved by Stephen Smale (1960) for
n ≥ 5 and for n = 4 by Michael Freedman (1982). The case n = 2 is
classical (and was known even to 19th century mathematicians), and the case
n = 1 is trivial.

Thus, by 1982, the only unsettled case of the Poincaré conjecture was the
one originally posed by Poincaré, in three dimensions. This happened because
2-dimensional space is too small to have room for any serious complexity,
and 4- or higher dimensional space is so big that the complexities can be
arranged nicely. In 3 dimensions there is a creative tension: big enough
to be complicated; too cramped to be easily simplified. What was needed
was a line of attack that exploited the special properties of 3-dimensional
manifolds. This feat was finally achieved in 2003 by Grigori Perelman, of
the Steklov Institute of Mathematics, of the Russian Academy of Sciences in
St. Petersburg. It carried with it a prize of one million dollars, given by the
Clay Mathematical Institute. (For an account of recent development in this
field see “The Poincare Conjecture” by D. Oshea, Walker and Co. New York
2007, 293 pp.)

Worldview XXV: Poincare

∗ ∗∗

“Mathematics is the art of giving the same name to different things. [As
opposed to the quotation: Poetry is the art of giving different names to the
same thing].”

∗ ∗∗
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“Later generations will regard Mengenlehre (set theory) as a disease from
which one has recovered.”

∗ ∗∗

“What is it indeed that gives us the feeling of elegance in a solution, in a
demonstration? It is the harmony of the diverse parts, their symmetry, their
happy balance; in a word it is all that introduces order, all that gives unity,
that permits us to see clearly at once both the ensemble and the details.”

∗ ∗∗

“Mathematicians do not study objects, but relations between objects. Thus,
they are free to replace some objects by others so long as the relations remain
unchanged. Content to them is irrelevant: they are interested in form only.”

∗ ∗∗

“The mind uses its faculty for creativity only when experience forces it to do
so.”

∗ ∗∗

“Mathematical discoveries, small or great, are never born of spontaneous gen-
eration. They always presuppose a soil seeded with preliminary knowledge
and well prepared by labor, both conscious and subconscious.”

∗ ∗∗

“Absolute space, that is to say, the mark to which it would be necessary to
refer the earth to know whether it really moves, has no objective existence...
The two propositions: “The earth turns round” and “it is more convenient
to suppose the earth turns round” have the same meaning; there is nothing
more in the one than in the other.”

∗ ∗∗
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“...by natural selection our mind has adapted itself to the conditions of the
external world. It has adopted the geometry most advantageous to the species
or, in other words, the most convenient. Geometry is not true, it is advanta-
geous.”

∗ ∗∗

“The problem is not what is the ANSWER, the problem is in what is the
QUESTION.”

∗ ∗∗

“THOUGHT is the lightening between two infinities of blackness. But it is
the lightening which matters.”

1879–1918 CE John Moses Browning (1855–1926, USA). Inventor and
designer of firearms. Designed a series of pistols, rifles and shotguns. The
United States Army adopted his machine-gun (1890) and his automatic rifle
(1918). He became internationally famous for designing and inventing auto-
matic arms, including the Browning automatic rifle. He was born in Ogden,
Utah.

1880 CE Charles Louis Alphonse Laveran (1845–1922, France). Physi-
cian and parasitologist. Discovered the blood parasite causing malaria545 (No-
bel prize for physiology or medicine, 1907).

545 The British physician-bacteriologist Ronald Ross (1857–1932) discovered

(1898) in India that mosquitoes can transmit malaria to birds. For this he

was awarded (1902) the Nobel prize. The Italian zoologist Giovanni Battista

Grassi (1854–1925), building on the work of Ross, determined that malaria is

spread to humans by the Anopheles mosquito (1899). In that year, the complete

life-cycle of the parasite became known.
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Laveran worked as a military physician (1870–1896). While in Algeria to
study malarial fever (1878–1883) he found microscopic parasites in red blood
cells of human victims of the disease. He continued his research with the
Pasteur Institute in Paris (1896–1922). Author of Traité des fievres palustres
(1884) and Traité d’hygienne militaire (1896).

1880 CE Aurel Edmund Voss (1845–1931, Germany). Mathematician.
Was first to derive the contracted Bianchi identity between the covariant deriv-
atives of the components of the Riemann tensor.

It was discovered independently by Ricci in 1889, and then again in 1902
by Bianchi. Voss also derived a generalization of Gauss’ formula. He was a
professor at the University of Münich during 1902–1923.

1880 CE Piezoelectricity discovered by Pierre and Jacques Curie (cer-
tain crystals develop an electric charge on the surface when stretched or com-
pressed along an axis).

1880–1885 CE Charles Sumner Tainter (1854–1940, England and
USA). Engineer and inventor. Constructed the first system that utilized a
photocell to convert sound into light (1880). With A.G. Bell developed a
working prototype of the ‘gramophone’ which used a wax cylinder rather than
Edison’s tinfoil cylinder (1880–1881). Also, with Bell, he invented the ‘pho-
tophone’ (1881) — an apparatus that transformed sound into light signals
which in turn activated a photocell546.

The name malaria was coined in the 17th century by Dr. Francisco Torti by

combining the Italian names for “bad” and “air”, and it has been called the

shakes, the fevers, the ague, and many other things, none affectionate. Hip-

pocrates reported several clinical types of malaria. Untreated malaria may

kill about one percent of those infected. The survivors, prone to relapse, may

suffer from anemia, weakness, sexual impotence, chronic abortion, or secondary

infections — all of which lower the value of the individual to self, family, and

community.

Throughout men’s history, few diseases have played so tragic a role as malaria.

It has killed or incapacitated more people than all plagues, wars, and auto-

mobiles. Endemic malaria contributed to the downfall of Greece (after 400

BCE). Alexander the Great died of it in June 323 BCE, and it was again the

malaria that taxed heavily the vitality of Rome in its declining years. Oliver

Cromwell died of malaria in 1658. Troops in many wars during history were

inactivated by malaria, e.g. over 10 percent of the U.S. overseas armies in 1943

had malaria.
546 According to his futuristic idea, the recording and reproduction of sound utilized

photocells and a magnetic induction sensing device. However, in lack of elec-
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Tainter developed the dictaphone (1885), a machine that could record
dictations.

1880–1885 CE James Alfred Ewing (1855–1935, Japan and Scotland).
Physicist and engineer. Helped John Milne to construct in Japan (1880) the
first useful seismograph system for recording local earthquakes. Investigated
magnetic properties of iron, steel etc. Observed and named the phenomenon
of hysteresis547 (1885).

Ewing was professor at Tokyo (1878–1883), Dundee (1883–1890), Cam-
bridge (1890–1903) and the University of Edinburgh (1916–1929).

1880–1890 CE Wilhelm Killing (1847–1923, Germany). Mathematician.
An original and profound mathematical thinker. His work was neglected, but
his ideas, results, and methods served as a basis to the later works of Élie
Cartan, Hermann Weyl, Noether, Wedderburn, Coxeter and many
others. In his epoch making paper: “Die Zusammenensetzung der stetigen,
endlichen Transformationsgruppen” [Mathematische Ann. 1888–1890; four
parts] he originated such key notions as the rank of an algebra, semi-simple al-
gebra, Cartan algebra, root systems and Cartan integers. Weyl’s theory of the
representation of semi-simple Lie groups would have been impossible without

tronic amplification (in 1886), the typical output of a single cell was not enough

to be ‘audible’. [In fact, it was not enough even to light a small flashlight bulb.]
547 Greek origin meaning: lagging behind. A remarkable aspect of ferromagnetism:

the tendency of ferromagnetic materials to retain initial magnetization, ex-

plained by the fact that the magnetic domains offer resistance to orientation.

The magnetization of weakly magnetized substances varies linearly with the field

strength. However, the magnetization of ferromagnetics (substances capable of

having magnetization in the absence of an external magnetic field) depends on

H in an intricate way: μ depends on H, and consequently B = μH depends

nonlinearly on H. If a sample is initially magnetized, we obtain the first portion

of the curve in which B increases with H until it begins to flatten off due to

saturation. On decreasing the external field, the curve does not follow the same

path and shows a positive value of B when H = 0. This is known as residual

magnetization in the sample. When H is reversed, it is found that B finally be-

comes zero at some negative value of H, known as the coercive force. The other

half of the hysteresis loop is then obtained by making H still more negative un-

til reverse saturation is reached, and then returning H to the original positive

saturation value. From an engineering point of view, these substances are of

immense importance and have very important technological consequences.
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the results of the above paper. Roughly one third of the extraordinary work
of Cartan was based on Killing’s paper548.

Killing’s theorem enumerating all possible structures for finite dimensional
Lie algebra (which he invented in 1880 independently of Sophus Lie) over
the complex numbers, was used by Cartan and Molien as a paradigm for the
development of the structure theory of finite dimensional linear associative
algebras.

It was Killing who discovered the exceptional Lie algebra E8, which today
figures prominently in superstring theory. Killing introduced the notion that
a vector field on a manifold represents a flow, which induces a continuous
change of coordinates on the manifold. A Killing vector of a metric is a flow
that leaves the metric tensor invariant. It manifests a symmetry (isometry)
in the metric. Otherwise stated, the Lie-derivative of the metric tensor along
the Killing vector vanishes on the manifold.

Under a given coordinate transformation x → x′, the metric tensor gμν(x)
is transformed according to the relation

g′
μν(x′) =

∂xρ

∂x′μ
∂xσ

∂x′ν gρσ(x),

or equivalently

gμν(x) =
∂x′ρ

∂xμ

∂x′σ

∂xν
g′

ρσ(x′).

If we require that the transformed metric be the same function of its argument
x′μ as the original metric gμν(x) was of its argument xμ (form-invariance),
we can write the last equation as

gμν(x) =
∂x′ρ

∂xμ

∂x′σ

∂xν
gρν(x′).

In general, this equation is a very complicated restriction on the function
x′μ(x). It can be greatly simplified by descending to the special case of an in-
finitesimal coordinate transformation x′μ = xμ + εξμ(x) with |ε| � 1. Then,
to first order in ε,

0 =
∂ξμ(x)

∂xρ
gμσ(x) +

∂ξν(x)
∂xσ

gρν(x) + ξμ(x)
∂gρν(x)

∂xμ
.

Note that the r.h.s. of this equation is exactly the Lie derivative of the metric
tensor w.r.t. the vector field ξμ(x).

548 John A. Coleman, The greatest mathematical paper of all time. The Math-

ematical Intelligencer 11, 29–38, 1989. Cartan was meticulous in noting his

indebtedness in 63 references to Killing in his 1894 thesis.
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This can be written in terms of derivatives of the covariant components
ξσ = gμσξμ:

0 =
∂ξσ

∂xρ
+

∂ξρ

∂xσ
+ ξμ

[
∂gρσ

∂xμ
− ∂gμσ

∂xρ
− ∂gρμ

∂xσ

]

=
[

∂ξσ

∂xρ
− Γμ

σρξμ

]

+
[

∂ξρ

∂xσ
− Γμ

ρσξμ

]

= ξσ;ρ + ξρ;σ,

where ξσ;ρ is the covariant derivative of ξσ(x).

Any four-vector field ξσ(x) that satisfy the last equation will be said to
form a Killing vector of the metric gμν(x).

It can be shown that Killing vectors have two other useful properties:

• If Ai is a Killing vector, then Ai
dxi

ds is constant along any geodetic.

• A necessary condition for the metric gμν to have a hidden continuous sym-
metry (isometry) is that it admits one Killing vector field per parameter
of the symmetric (Lie) group.

Killing was born in Burbach, Westphalia. He began university studies in
Münster (1865) but quickly moved to Berlin and came under the influence
of Kummer and Weierstrass. In 1872 he completed his dissertation under
Weierstrass. From 1868 to 1882 he was teaching at the gymnasium level in
Berlin. On the recommendation of Weierstrass, Killing was appointed pro-
fessor of mathematics at the Lyzeum Hosianum in Braunsberg, East Prussia
(now Braniewo in the Ulsztyn region of Poland). The main object of the
college was the training of Roman Catholic clergy, so Killing had to teach a
wide range of topics — including the reconciliation of faith and science.

Although he was isolated mathematically during his ten years in Brauns-
berg, this was the most creative period of his mathematical life. He produced
his brilliant work despite worries about the health of his wife and seven chil-
dren, demanding administrative duties as rector of the college and as a mem-
ber and chairman of the city council, and his active role in the church of St.
Catherine.

In 1892 he was called back to his native Westphalia as professor of math-
ematics at the University of Münster, and he stayed there for the rest of his
life.

1880–1894 CE John Milne (1850–1913, England and Japan). One of
the founders of the science of seismology. Constructed the first seismograph
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suitable for world-wide use, and set up seismological observatories to measure
ground movements on a global basis (1892).

Milne was born in Liverpool. After working in Labrador and Newfound-
land as a mining engineer (1873) and serving as a geologist in an expedition to
the Sinai desert (1874), he accepted (1875) a position of professor of geology
and mining at the Imperial College of Engineering, Tokyo.

An earthquake in 1880 near Yokohama prompted him to create the Seis-
mological Society of Japan, the first of its kind. In 1881 he married Tone
Horikawa and stayed in Japan until 1895. During his stay there he traveled
all over the islands and set up a network of seismological stations equipped
with his seismographs. Upon his return to England in 1894, he settled on the
Isle of Wight and established a private seismological station there. His activ-
ity in his later years centered around the establishment of a global network
of seismic stations. He died in Shide, Isle of Wight.

In 1974, the University of Tokyo donated a number of cherry tree saplings
to be planted at Shide and at the Isle of Wight College of Arts and Technology
as ‘a living memorial’ to the pioneer seismologist.

1880–1908 CE Moritz Benedict Cantor (1829–1920, Germany). Dis-
tinguished historian of mathematics. A professor of mathematics, who de-
voted only his final academic years exclusively to the history of his field. His
monumental work Vorlesungen über Geshichte der Mathematic (1880–1908),
which carried the study down to 1799, dwarfed all previous endeavors and is
still unsurpassed.

Moritz Cantor, a relative of Georg Cantor, was born in Mannheim to a
Jewish family; he was appointed a private docent in Heidelberg (1853) and
the rest of his active life was spent in the service of the university (1863–1913).

His treatise on the history of mathematics remains the most elaborate ever
produced, without any equal of all histories of science.
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Science Progress Report No. 11

The Long Arm of Orthodoxy,

or did Moses write the Torah?

The Pentateuch, the first five books of the Bible, has always held a special
place in both Christianity and Judaism. Islam also owes much to these books.
As the Torah (the “five books of Moses”), the books are especially venerated
by Jews; they were the first part of the Bible to be admitted to the Hebrew
canon.

Christianity accepts the entire Hebrew Old Testament as found in the
Masoretic text, including the Pentateuch, as canonical, although there is some
variation in organization. Much of early Christianity art depicts events from
the Pentateuch. Almost everyone in the Western world is early exposed to
stories of Noah and the ark, the passage across the Red Sea, and the story of
Abraham and Isaac.

A passage in the book of Deuteronomy (31, 9), relating that Moses wrote
the Torah, gave rise to the doctrine of the Mosaic authorship of the whole
Pentateuch.

Serious doubts about the traditional Mosaic authorship began to be heard
already in the Middle Ages; Isaac Ibn Yashush (Ibn Kastar; 982–1068,
Spain), grammarian, biblical commentator and personal physician to Muwaf-
fak Mudshaid al Amiri in Toledo, Spain, was first to demonstrate that Moses
could not have been the author of the Pentateuch in his book “Sefer ha-
tserufim”. Consequently, he was ferociously excoriated. His opinion were
later shared by the Jewish scholar Joseph Bonfils (fl. 1370, Damascus) and
by the Bishop of Avilla, Alonso Tostado (fl. 1450, Spain), at the cost of
their being persecuted by their respective religious establishments.

Even in the 17th century, it would have taken a brave person to deny
that Moses personally wrote “his” five books. The philosophers Thomas
Hobbes (Leviathan, 1651), Baruch Spinoza549 (Tractacus Theologico-

549 Spinoza argued that those who believe Moses to be the sole literal author of the

entire text must reconcile the following questions and facts:

• Could: “Now the man Moses was very meek, above all the men which were
upon the face of the earth” [Numbers 12, 3] been written by the meek man

himself?

• The first of Edomite kings [Genesis, 36] includes those who lived many years

after Moses. Especially, how could Moses know [36, 31] about future Israeli

kings? [See also: 2 Samuel 8, 14].
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Politicus, 1670) and the theologian Richard Simon (1638–1712, France;
1678) pioneered the modern historical method of Biblical study and critique,
citing many textural examples.

• How could Moses write Deuteronomy 34, 5–12? He certainly could not had

known that “... there arose not a prophet like Moses...”.

• In Deuteronomy 1, 1 we read: “These are the words which Moses spoke unto
all Israel beyond the Jordan...” This could have only been written by someone

on the West bank of the river, but it could not have been Moses, since Moses

never set foot on the Western side. [From 1, 5 we know that “beyond” means
the side of Moab, namely the Eastern side].

• In Genesis, 12, 6 we read: “And Abraham passed through the land unto the
place of Shechem... and Cannanite was then in the land”. Clearly, this was

written in a post-Mosian era when the Cannanite were not there anymore.

The discrepancy was already noticed by Avraham Ibn Ezra (c. 1140 CE).

• Deuteronomy 3, 11–15 says: “For only Og king of Bashan remained of the

remnant of the Rephaim; behold, his bedstead was a bedstead of iron; is it

not in Rabbah... to this day”. The style and content of this passage could
have been written only after Rabbah was taken by David (a few hundred years

later).

• In Genesis 22, 14 we are told that the mountain is called by Abraham the
mountain of God, whereas the writer of the story called it mount Moriah [22,

2]. This last name, however, was chosen in the days of David for the site of

the Solomon Temple, a fact unknown to Moses [2 Chron 3, 1].

• In Genesis 14, 14 we read: “... and pursued as far as Dan”. However, the

name of this city was given a long time after the death of Joshua [Judges 18,

29].

• The Pentateuch contains many terms which Moses could not have unknown,

description of places which Moses never visited and linguistic forms foreign
to his time.

• Most of the laws in the Pentateuch and most of its narrative were not an

integral part of the day to day living habits of the Hebrews during the time
of Moses.

• Moses was so busy leading his people around the wilderness that he scarcely

had time for extensive writing [Exodus, 18, 14–18].

According to Jewish tradition, the original scrolls of the Pentateuch and ad-

ditional biblical manuscripts were lost in the fire that destroyed the Solomon

Temple (587 BCE). Ezra apparently reconstructed it from duplicate fragmen-

tary documents. [Hazon Ezra 12, 20–22, ca 100 CE].
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For that, Spinoza was excommunicated from Judaism and exiled from
Amsterdam. Simon’s book Histoire critique du Vieux Testament was placed
on the Catholic Index and he himself was expelled from his order just because
he dared deny that Moses personally wrote “his” five books and because his
superiors thought that his attack on Spinoza was insufficiently fierce. Both
Catholics and Protestants joined forces to persecute him; from the 1300 copies
of his book only six were saved from the stake.

The politician John Hampden the younger (1656–1696, England), who
translated Simon’s book into English was imprisoned (1688), and later re-
leased from the Tower only after he publicly renounced his ‘crime’. Depressed
and humiliated, he eventually took his own life.

During the 18th century there were more imprisonments and even assassi-
nation attempts against those who dare suggest that Moses was not the literal
author. But as Victor Hugo once said, no army in the world can suppress an
idea whose time has come. Biblical scholars n Europe, Christian and non
Christian alike, began a modern scholarly textual investigation of sources of
the Pentateuch.

This new trend began already in 1315 CE with Joseph Even Caspi,
[known also by his French name Don Bonafous de L’argentera] (1280–
1340, France and Spain). In his book Tirat ha-kesef (1315) he discovered that
in the book of Genesis there are instances where the same story is being told
twice in entirely different terms, sometimes with contradictions between the
two narratives. Moreover, in some versions God is called Elohim [e.g. Gen 1,
1 – 3, 23] while in the following chapters it is referred to as YHVH.

Caspi, however, did not draw from it any conclusions concerning the layout
and uniformity of the biblical narrative. Only 300 years later was this line
continued by the German priest H.B. Witter. He claimed (1711) that the
book of Genesis was composed of two sources,550 each describing the creation
in a different way, a different style and using a different name of God.

550 Examples:

• Gen 20, Vs. 26, 6–11: If these stories are not independent, they cannot be
reconciled: for why should Abraham repeat his excuse (“She is my sister”)

with Abimelech, when it had already failed with Pharaoh (Gen 20, 10–20).

On the other hand why should Abimelech not learn from his bitter experience
with Abraham and disbelieve Isaac that Rebekah was indeed his sister. The

only logical way out of this dilemma is to assume that the Sarah-Pharaoh and

Rebekah-Abimelech incidents belong to one source while the Sarah-Abimelech
story belongs to another document.

• Gen 15 Vs Gen 21, 9–21; two different stories on the escape of Hagar

• Gen 21, 22–34 Vs 26, 26–38; Abimelech makes covenants with both Abraham

and Isaac?
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The physician Jean Astruc551 (1684–1766, France) began the modern

scholarly textual investigation of sources of the Pentateuch. In his book: Con-
jectures sur les mémoires originaux dont il parait que Moyse s’est servi pour
composer de livre de la Genèse (1753), he developed a method of separation

of the sources in Genesis and Exodus into two parallel stories.

Independently, the orientalist and historian Johann Gottfried Eich-

• Gen 30, 28–43 Vs 31, 11–; two versions on how Jacob tricked Laban.

• Gen 31, 44–54; two versions on the Jacob-Laban covenant.

• Gen 37, 22–30; was Joseph saved by Reuben or Judah?

• Gen 42, 37 Vs 43, 9; who was surety for Benjamin, Reuben or Judah?

• Gen 42, 27 Vs 42, 35; where did the brothers discovered their money?

• The story of the deluge is a remarkable ‘scissors and paste’ work of two in-

consistent sources [Gen 7: 1–5, 7, 10, 12, 16–20 Vs Gen 7: 8–9, 11, 13–16,
where the editor put a line of his own in the intervals!]

• The creation account appears in two inconsistent sources: Gen 2, 4–25 Vs
3, 1–24, where the editor appears in 2, 4. The reason both versions were

included is that both were highly venerated and the redactor unwilling to

discard either one.

• Exodus 20, 1–17 Vs Deuteronomy 5 are two versions of the Decalogue. the

Covenant Code and case law in Exodus 21 is at par with the primitive “law”

of Exodus 34, which does not agree with either of the Decalogue versions. The
case law in Numbers 5 and the religious law in Numbers 28–29 do not agree

with case law of Exodus 21.

• Joshua 1–12 and Judges 1, tell two different stories on the conquest of Is-

rael. The first tells us that the land fell in three swift and decisive military

campaigns. The second describes it as a series of independent tribal actions
that did not result in a complete occupation of the land – a slow and complex

process, which is more in line with archaeological findings; Judges 2–16 tell of

many setbacks and reverses in the process of consolidating control over Israel.

• Could Moses have written both Gen: 19, 31–38 and Lev: 18, 17; 20, 14? Or

else, could he have written both Gen: 38, 18 and Lev: 18, 15?

551 M.D. Montpellier (1703); Prof. of anatomy at Toulouse (1710–1717); Prof. of

Medicine: Montpellier (1717–1730), Paris (1731).
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horn552 (1752–1827, Germany) founded the modern Old Testament criticism
and pioneered scientific study of biblical literature in his book Einleitung in
das Alte Testament (1780–1783). His conclusions:

• most of the writings of the Hebrews have passed through several hands.

• the so-called supernatural facts related to both Testaments were explica-
ble on natural principles. It should be judged from the standpoint of
the ancient world and accounted for by the superstitious beliefs which
were then generally in vogue.

The Protestant theologian Wilhelm Martin Leberecht de Wette553

(1780–1849, Germany) first applied historical criticism to the Pentateuch in
his book Beiträge zur Einleitung in das Alte Testament (1806–7). Showed
that the book of Deuteronomy could not have been written earlier than 622
BCE, when it was found by a priest in the Solomon Temple. It may have
been first written early in the reign of Josiah (ca 640–609 BCE) and edited
later [the general idea was expounded already by Eusebius Hieronymus (c.
380 CE)].

Following de Wette, about a century of biblical research has been devoted
to the analysis of the process by which the books of the Bible emerged from
a welter of traditions, oral and written, and the determination of the main
stages of transmission until the present received text. The principal result
has been the promulgation of the so-called “Documentary hypothesis”, which
is associated with the name of the German scholar Julius Wellhausen554

(1844–1918) who gave it its classical formulation in his book Komposition des
Hexateuch (1889).

In his analysis Wellenhausen demonstrates that the Pentateuch is a com-
posite work of many hands and periods, including priestly editors and pro-
fessional scribes. It is the result of a long period of growth, compilation and
transmission. Much of its narrative content derives from oral traditions which
were subsequently reworked and expanded by revisers of various schools. This
accounts for the fact that the five books of the Pentateuch contain so many

552 Educated at Göttingen (1770–1774), Prof. Oriental Languages, Jena (1775),

Prof. Exegesies of Testament and Political history, Göttingen (1778–1827).
553 Educated in Jena. Prof. of Theology, Heidelberg (1807–1810), Univ. of Berlin

(1810–1819), Univ. of Basel (1822–1849). In 1819 de Wette was dismissed from

Berlin University and banished from the Prussian Kingdom. His subsequent

appointment at Basel was strongly opposed by the orthodox party for obvious

reasons.
554 Professor at Halle (1882), Marburg (1845), Göttingen (1892).
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duplications, inconsistencies, and even contradictions, not to speak of ma-
jor stylistic differences, the result of the blending of diverse traditions and
disparate points of view.

Wellhausen distinguished four sources in the Pentateuch, each of which
is regarded as an independent ‘document’ which has been composed or com-
piled by a single author or editor. Various editors then put these sources
together with necessary modifications, bridges, and adjustments to produce
the connected whole. The dating of these documents is:

• J, E: before the major prophets of the 9th–8th centuries. Covers the
ancient period when festivities, cults, rituals, and ceremonies were connected
to agriculture and nature (Exodus 23, 24) and fertility stage of religion. The
letter J stands for Jehova and the letter E for the Elohim, both the divine
characteristics of God in the respective passages of the book of Genesis, Judges
(in part), Samuel and Kings.

• D (Deuteronomist) in the century before the discovery of the document in
the Temple (622 BCE). This was the final period of the Kingdom of Judah,
where there was a tendency to make the religion feasts into historical national
symbols (Deut 16) and turn the rituals into symbols that unite the nation
under a single kingdom. It is spiritual and ethical stage of religion.

• P(priestly) during and after the exile (6th century BCE555). Feasts and
rituals are independent of agriculture and secular policy. The corresponding
biblical texts are the books of Leviticus, Numbers and parts from Exodus
[Especially: Lev 23, Num 28–29]. It represents the legal stage of religion,
principally concerned with rites, ceremonies, priestly duties, genealogy, and
measurements.

During the 19th century the results of the biblical sources research were
met with vehement opposition by the religious establishment; the entire weight
of Catholicism, Protestantism, and Judaism was arrayed against the scholars:
not only were there four authors (name of which was Moses), but these men
were actually suggesting that the accounts were written at very different times,
centuries removed from each other!

555 Professor Yehezkel Kaufmann (1889–1963, Israel) defended effectively (1937)

an earlier date for P (making it roughly contemporary with D) and argued for

the effective coalescence of J and E. Archaeological discoveries during the 20th

century support his views that although the books of the Pentateuch obtained

their final form in the days of Ezra (ca 445 BCE), the sources of the Torah are

ancient, some dating as far back as the days of Moses.
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One victim of this resistance was William Robertson Smith (1846–
1894), Scottish philologist, physicist, archaeologist, Biblical critic, and chief
editor of the Britannica (from 1881). He was educated in the Universities
of Aberdeen, Edinburgh (1866), Bonn and Göttingen and became Professor
of Oriental Languages and Old Testament exegeses at Free Church College,
Aberdeen. His articles in the 9th edition of the Britannica on the Documentary
hypothesis aroused the anger of his dons and after a Church trial he was
removed from his Chair (1881). He was later appointed Prof. of Arabic at
Cambridge (1883). By the 20th century, the fury abated. Most mainline
Protestants began to see that it really didn’t matter who wrote the books;
the content was the important part. The oppression of the Catholic Church
melted when Pope Pius XII published “Divino Afflante Spiritu” (1943):

“Let the interpreter then, with all care ... endeavor to determine ... the
sources, written or oral, to which he had recourse and the forms of expression
he employed”.

Mark Twain (1835–1910), the most irreverent of writers, was actually a
very religious man, but he did not subscribe to any orthodox set of beliefs,
and he did not believe that the Bible was literally the word of God. He once
said: “It ain’t those parts of the Bible that I can’t understand that bother me,
it is the parts that I do understand”.

1880–1899 CE Adolf Johann Friedrich Wilhelm von Baeyer (1835–
1917, Germany). Among the major contributors to organic chemistry
throughout the 19th century. Did pioneering work on organic dyes and the
hydrochromatic compounds. Known especially for synthesis of indigo (1880)
and formulation of its structure (1883), synthesis of Phthalein dyes, discov-
ery of uric acid derivatives and investigation of polyacetone. He put forward
a strain theory of carbon rings (1885) which explained the stability of ring
compounds in terms of the distortion of their valence bonds from the normal
angles of the tetrahedral carbon atom.

Baeyer’s father was a Prussian general and his mother – an apostate Jew-
ess. He studied under Bunsen and Kekule and held professional positions at
Strasbourg, Berlin and Munich (1875–1915). Awarded the 1905 Nobel Prize
for chemistry.

1881 CE John Venn (1834–1923, England). Logician. His book ‘Sym-
bolic Logic’ contained the ‘Venn diagrams’, a system of overlapping circles (or
ellipses, or other figures) for representing logical propositions.
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Venn was born in Drypool, Hull, a descendant from a Devonshire family
long distinguished for its erudition. Representing the 8th generation of his
family to study at Cambridge, he entered the university in 1853 and studied
mathematics. Ordained a deacon in 1858 and priest in 1859, he served for
a short period in parochial work. He resigned his orders in 1883 to devote
himself entirely to the study and teaching of logic.

1881 CE Charles Roy. Made pioneering experiments demonstrating the
nonlinear elastic behavior of the arteries.

Without the aid of any electronic devices, he constructed a gravity-driven
apparatus that inflated isolated segments of blood vessel from human be-
ings and other mammals, measured instantaneous pressure and volume, and
plotted the results on a rotating drum called a kymograph.556 He also tested
strips of artery wall with an apparatus that plotted the fork-length curves for
the tissue as it was stretched. With these data, Roy determined an artery
wall’s nonlinear elasticity and found that the distensibility of the human aorta
decreases as a function of age. He also showed that the arteries distend consid-
erably at resting blood pressure, which means that the tensile stress is never
zero. Finally, he showed that the aorta is most compliant in the normal range
of blood pressure.

In other experiments, he showed that heating makes the artery wall stiffer,
so that an applied stress produces less strain. Thus Roy recognized that an
artery wall had an elastic mechanism that was thermodynamically like that of
natural latex rubber (caoutchouc) although the physics of this type of elastic
material was not understood in Roy’s time.

Modern research on synthetic rubber-like polymers, as well as on animal
rubbers like elastin, has revealed that the elasticity of such polymer net-
works arises from changes in the entropy of the molecular chains; an imposed
strain increases order in the molecular network, thereby decreasing its en-
tropy. The elastic force arises from the tendency of the network to return to
conformational states of higher entropy (or disorder), according to the laws
of thermodynamics.

1881 CE Clément Ader (1841–1925, France). Engineer and inventor.
Built and flew for 50 meters the Eole, a bat-winged, steam-powered airplane,
13 years ahead of the Wright brothers.

556 An instrument used to record temporal variations of any physiological or mus-

cular process; it consists essentially of a revolving drum bearing a record sheet

(usually of smoked paper) on which a stylus or pen-point travels to and fro at

right angles to the motion of the cylinder. The drum is rotated by a mechanism

at a uniform rate, or the rate is indicated by a time marker which registers on

the sheet.
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Discovered the stereo effect of sound by recording a live performance with
the use of more than one microphone and subsequently delivered it via a
number of phase-different signals to the listener’s ears.

“The musical telephone” was a major attraction at the International Elec-
trical Exhibition in Paris in 1881, where Ader demonstrated stereophonic
transmission by telephone direct from the staged of the Paris Opera House
and the Comédie Francaise. He used 12 stage microphones and laid the lines
through the Paris sewers to the Exhibition Hall at the Palais de l’Industrie.
Up to 48 listeners could hear the opera, using two receivers each, one for each
ear. This first public broadcast entertainment was known as the Theatro-
phone.

In 1890, a commercial company, Compagnie du Theatrophone, was es-
tablished in Paris, distributing music by telephone from various theaters to
special coin-operated telephones installed in hotels, cafés etc., and to domestic
subscribers.

The service continued until 1932. Elsewhere, trials of concerts by telephone
were held, not only on a local basis but also with distribution over longer
distances, e.g. from Paris to Brussels in 1887, and from Paris to London in
1891. A mixed service of news, telephone concerts and lectures was opened
in Budapest in 1893.

1881–1886 CE Lucien Gaulard (1850–1888, France). Engineer and in-
ventor.

Invented the first power transformer with annular core. With John Dixon
Gibbs (England) succeeded in transmitting, for the first time (1883), a volt-
age of 2000 Volts over a distance of 40 km. This was the first effective device
for long-distance transmission of AC power. In 1885, Westinghouse im-
ported a number of Gaulard-Gibbs transformers and a Siemens AC generator
to begin experimenting with AC networks in Pittsburgh, USA.

During his life, his work was not recognized in France. He fell into sever
depression, was sheltered in a clinic and died there in 1888. A street in Paris
now bears his name.

1881–1906 CE The great exodus of Jews from Russia. Organized
government-incited massacres of the Jews in Russia [1871, 1881, 1903, 1905,
1906] was aimed at diverting public attention from serious interior problems
and prevent the collapse of the crumbling Tzar’s regime. The Nazis were to
use exactly the same technique of violence-led legislation 52 years later.

In 1882 500,000 Jews living in the rural areas of the Pale of Settlement,
were forced to leave their homes and live in towns and townlets (shtetls) in
the Pale; 250,000 Jews living along the Western frontiers of Russia were also
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moved into the Pale; 700,000 Jews living east of the Pale were driven into the
Pale by 1881 [e.g. 2000 Jews of Moscow were expelled (1891) and 2000 Jews
were deported from St. Petersburg (1891)]. By 1897 there were 5 million
Jews living in the Pale and 320,000 outside it in Siberia, Baltic provinces,
Caucasus, Russian Central Asia, Astrakhan and Terek regions.

Thus, from 1881 this vicious, mounting and cumulatively overwhelming
pressure on Russian Jewry produced a panic flight from Russia westwards.
This year was the most important year in Jewish history since the expulsion
of the Jews from Spain (1492). It had wide and fundamental consequences in
world history too. During 1881–1914, more than 2 million Jews from Russia,
Poland and Romania moved to the United States. This was a completely new
phenomenon, which in time changed the whole balance of Jewish influence in
the world and had great future impact on American and world science.

1881–1912 CE Paul Ehrlich (1854–1915, Germany). Bacteriologist,
physician and a distinguished ‘microbe-hunter’. Revolutionized the whole
aspect of the preventive and curative treatment of infections. Founded
chemotherapy (1910), modern hematology (1885), and modern immunology
(1897). Became known for discovering Salvarsan (arsphenamine)557, the
‘magic bullet’ remedy for syphilis (1909). Salvarsan is also called “606” be-
cause it was the 606th compound tested. Ehrlich shared the 1908 Nobel prize
for physiology or medicine with Elie Metchnikov for their work on immunity.
He dominated the first phase of the chemotherapeutic revolution which ended
with his death and was not resumed until 20 years later with the discovery
by Domagk of the antibacterial action of the dye prontosil rubrum.

Ehrlich was born in Strehlen, upper Silesia, near Wroclaw to Jewish par-
ents. After graduating in medicine from the University of Leipzig (1878), he
spent a period as medical assistant at the Charité Hospital in Berlin. He
married the 19 year old Hedwig Pinkus (1884). In 1888 tubercle bacilli were
found in his sputum and he was forced to spend the next two years in Egypt,
until he was cured. In 1890 Ehrlich joined Koch in the latter’s new Institute
of Infectious Diseases. In 1896 an institute for serum research and control was
created near Berlin under Ehrlich’s direction. In 1898 he moved to Frankfurt
am Main to head the State Institute for Experimental Therapy. Later the
George Speyer House was built nearby, and from 1906 until his death Ehrlich
directed both institutions.

Ehrlich was a forceful personality, often engaged in controversy yet inspir-
ing great loyalty, smoking more than 25 cigars a day [“burning his life’s candle
at both ends” — as he used to joke], but drinking only mineral water. He
used to mail himself postcards a few days before every family anniversary lest

557 Dioxy-diamino-arseno-benzene-dihydrochloride.
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he forget them, and believed in the four big G’s, the formula for successful
work: Geld (money), Geduld (patience), Geschick (ability) and Glück (luck).

Ehrlich began his work by studying the capacity of aniline dyes for selective
staining; and one can trace almost all his later work back to the specific
interaction between chemical substances and particular biological structures
that dyes reveal, whose full significance he was the first to see. An early
discovery (1881) was the so-called ‘mast-cell’, a large cell with distinctive
granules taking up basic dyes, now known to be rich is histamine and to
mediate many allergic reactions. A year later (1882) he defined the ‘eosinophil’
cells that occur in blood; these cells are now known to be particularly involved
in resistance to parasitic infections. Extending his work to bacteria, he was
the first to stain tubercle bacilli. The same insight led him to recognize
the ‘blood-brain barrier’ (1885), through which only drugs with sufficiently
fat solubility can penetrate, but which otherwise prevents many substances
dissolved in blood from reaching the brain.

Further discoveries in this period were that the dye methylene blue selec-
tively stained nervous tissue in vivo; and that other dyes, which bleach on
removal of oxygen, allowed the study of the varying oxygen demanded of dif-
ferent tissues. In 1890 he demonstrated that antibodies were transmitted in
maternal milk to provide ‘passive immunity’ to a newborn animal. He pro-
duced (1890) a diphteria antitoxin sufficiently concentrated for its first clinical
use. Its success led to the necessity of a standardization of toxin and anti-
toxin, which Ehrlich solved by preparing a dried, evacuated reference sample
of antitoxin as an international standard, with which the toxin was titrated.
With this, Ehrlich established the field of immunology.

His ‘side-chain theory’ (1897) envisaged that a toxin which could combine
with (but not kill) a cell, would give rise to a proliferation of the cellular
binding sites involved558. As this method of ‘immunotherapy’ failed against
diseases such a malaria and syphilis, Ehrlich turned again to chemotherapy,
the use of chemicals – especially constructed ‘magic bullets’ – to find, bind
to, and act on the parasite. A range of phenols proved to be inhibited by
serum and too toxic. The dye ‘trypan red’ was found effective but ‘drug
resistance’ developed — the first description of this phenomenon. Compound

558 Ehrlich postulated that the body’s cells possess a great many “receptors” by

which they combine with the food substances in the body fluids. He theorized

that the metabolic products of certain bacteria combine with the receptors of

some cells, thus injuring the cells. Ehrlich visualized receptors as unsatisfied

chemical side chains. This is not far from the modern idea of receptors as

domains in enzymes or other proteins, with which drugs of appropriate structure

can combine. In fact, knowledge of cell receptors is now on the cutting edge of

pharmacology and drug discovery.
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No. 606 proved effective in human syphilis and, as Salvarsan, revolutionized
its treatment. Adverse reactions, however, led to much controversy, until the
safer No. 914, ‘Neosalvarsan’ (1912) appeared.

The Ehrlichs has two daughters, the youngest of which, Marianne, was
married to the mathematician Edmund Landau.

During the first year of World War I — the last of his life — Ehrlich’s health
deteriorated. Long years of heavy smoking of strong cigars (stimulants needed
to withstand the enormous strain on his physical and intellectual constitution,
and to stave off the effects of exhaustion, irregular meals, and improper food)
took their toll and produced a disastrous effects on his system. He died of a
stroke in Bad Homburg, Germany, and was buried in the Jewish Cemetery of
Frankfurt.

Atop the two high columns at the entrance to the box-edged tomb were,
visible from afar, the Star of David and the Snake of Aesculapius. At the head
of the tomb, on a high stone carved from a natural block of marble, was a large
vase of porphyritic rock containing trailing rose bushes with an abundance of
blossoms. So his resting place was covered with the falling petals of these
glowing flowers.

Ehrlich’s whole life was one long fight for the promotion of medical science
in the service of mankind. He had a deep-rooted and unwavering optimism,
aiming always at perfection and ever more difficult targets, supported always
by an unshakable faith in progress. He could have done much more for hu-
manity had his life not been cut short by his premature death at the age of
sixty-one. Striving for the health and happiness of the world he had overtaxed
his own physical strength, and burnt the candle at both ends.

Ehrlich was a solitary thinker, inspired by humanitarian unselfish motives
rather than by the struggle for power; single-minded, and able to elicit devo-
tion from his followers. He was also a fearless rule-breaker, challenged on all
sides by narrow-minded bureaucrats, and ill-treated by skeptical colleagues,
stubbornly pursuing his research into a disease regarded with shocked abhor-
rence in his day559.

559 Ehrlich’s secretary, Martha Marquardt, worked for him during 1902–1915.

Her first book ‘Paul Ehrlich als Mench und Arbeiter’, was published in memory

of his 70th birthday anniversary (1924). Most of the copies of this book were

burnt by the Nazis on May 10, 1933. An extension of the previous work was

therefore written and finished by her in 1940 in Paris, but remained unpublished

owing to the ongoing war. In December 1946 Marquardt was able to revisit

Frankfurt for a few weeks, and found a number of Ehrlich’s old staff still at

their posts in the Institutes in the Paul Ehrlich Strasse.

Edward G. Robinson (1893–1973; born Emanuel Goldenberg in Bucharest,
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1881–1916 CE Edward Emerson Barnard (1857–1923, U.S.A.). As-
tronomer. Discovered the 5th satellite of Jupiter560, Amalthea (1892) and
Barnard’s star561 (1916). Barnard was a pioneer in celestial photography: he
made the first photographic discovery of a comet (1881). Barnard was also
the first person to report seeing craters on Mars (however, he did not publish
these observations for fear of ridicule). Around 1900, Barnard discovered the
first of the dark nebulae, known today as Barnard objects562.

Romania) played the character of Ehrlich in the movie Dr. Ehrlich’s Magic

Bullet (1940).
560 The first four had been detected by Galileo Galilei (1610). Amalthea is

the last planetary satellite to be discovered without the aid of photography

or spaceprobes.
561 The star with the largest known proper motion (10.3 arcseconds per year). It is

due to the star’s motion perpendicular to the line of sight. The largest proper

motion of any naked-eye star is that of 61 cygni (5′′ per year).

Barnard’s star is at distance of 6.0 light-years from earth, its absolute magnitude

is 13.22, its apparent magnitude is 9.54, color red, surface temperature 3250 K,

radius about 0.2 solar radii. The question of whether it has planets, has not

been answered.
562 For many years, astronomers have suspected that stars are born in cold, dark

clouds of interstellar gas. If an interstellar cloud is warm, its atoms are moving

about so rapidly that there is no chance for a protostar to condense from the

agitated gases. If the temperature is low, however, then the atoms are moving

slowly enough to allow denser portions of the cloud to contract gravitationally

into clumps that collapse to form new stars. Many of these cold clouds are

scattered across the Milky Way. In some cases they appear as dark regions

silhouetted against glowing background nebulosity, such as the famous Horse-

head Nebula. In other cases they appear as dark blobs that obscure background

stars. These are Barnard’s objects.
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The Ether Hypothesis563

Aristotle (ca 350 BCE) supported the theory that all of space is filled
with the four elements: fire, water, earth, air and a fifth element — the ether.
The ether was supposed to serve as a medium through which the stars moved
in their daily courses around the earth. During the following 2200 years, the
term ‘ether’ and ‘vacuum’ became largely synonymous. With the takeover of
the Copernican world-view in the 16th century the ether concept, in its Greek
sense, disappeared from science. It was given, however, a new ‘task’: to serve
as a medium for the transmission of light and gravitation. This view, known
as the ‘ether hypothesis’, was mainly due to Descartes (1637) who specified
the physical properties of the ether as an elastic, weightless material.

Huygens (1678), in his wave theory of light, needed the ether not only as
a medium for the wave motion but also to explain its finite velocity and its
refraction. The later discoveries of stellar aberration (1728) and the Doppler
effect (1842), in which the velocities of the light and of its sources or detectors
were combined, added support to the existence of the ether. The years 1821–
1838 witnessed the development of the elastic ether theory. In 1821, the
engineer C.L.M.H. Navier established the theory of elasticity of solid bodies,
discerning that matter consists of countless particles (mass points, atoms)
exerting on each other forces along the lines joining them. [A.L. Cauchy
(1828) derived the equations of elasticity by means of the continuum concept.]

Further development of this theory was due to S.D. Poisson (1828),
G. Green (1838), J. Maccullagh (1837) and Franz Ernst Neumann
(1798–1895, Germany, 1835). At this point the ether was assumed to be a lu-
miniferous (light-carrying) elastic solid, capable of accommodating transverse
wave-motion. However, all efforts to reach a consensus regarding a mechanical
model of the ether, met with total failure.

Following the advent of the electromagnetic field concept [introduced by
Faraday (1846) and Maxwell (1865)], the discovery of the electromagnetic
nature of light and the recognition that the internal forces in material media

563 For further reading, see:

• Whittaker, E.T., A History of the Theories of Aether and Electricity : From

the Age of Descartes to the Close of the Nineteenth Century , Longmans,
Green and Company: London, 1910, 475 pp.

• Whittaker, E.T., A History of the Theories of Aether and Electricity : The
Modern Theories 1900–1926, Philosophical Library: New York, 1954, 319 pp.
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are of electrical and magnetic origin — the ether concept underwent further
modification: It was stripped of all its material attributes and left with only
the properties of imbuing all space outside and inside matter, and of carrying
electric and magnetic fields.

The state of the ether prior to 1881 was this: The space of mechanics was
regarded as empty wherever material bodies were not present. The space of
optics was filled with ether, which had a certain mass, density and elastic-
ity. The universe no longer consisted of isolated masses separated by empty
space, but was completely filled with a thin rigid, elastic medium of ether in
which the masses were floating. Ether and matter acted upon each other with
mechanical forces and moved according to Newtonian laws.

This doctrine was assisted by an additional working hypothesis, stated as
follows: The ether in astronomical space, far removed from material bodies,
is at rest in an inertial frame. [If this were not the case, parts of the ether
would be accelerated which in turn would bring about changes in density and
elasticity, detectable through analysis of star light reaching us from those
regions.] Hence, absolute space is at rest relative to the ether.

If the ether indeed defined a system of reference which was absolutely
at rest, then the motion of the earth (for example) relative to it, should in
principle be detectable.

Now, the detection of this motion by means of light waves depended on
whether or not the Galilean principle of relativity remains valid for optical
phenomena. The ether theory gives the following answer to this question:
the optical Doppler effect is indeed determined by the relative motion of the
source of light and of the observer in accordance with Galilean relativity —
but only if quantities of second-order are neglected564. Hence, the classical
principle of relativity holds only approximately for optical wave phenomena.

This furnishes us with a means of establishing motions relative to the
ether. Indeed, Maxwell (1879) called attention to the fact that by observing
the eclipses of Jovian moons, it should be possible to ascertain a motion of
the whole solar system relative to the ether, by measuring the variation in the
Roemer apparent 6-month delay of these eclipses, over a 6-year interval (half

564 Let a light source, at rest relative to the ether, be monitored by two observers at

rest in respective frame S (ether frame) and S′ that move with relative uniform
velocity v. The origins of the frames, O and O′, coincide at t′ = t = 0. Let

the train of waves be associated with an electric field E = E0 sin(k · x − ωt),

k2 = ω2

c2
. Since the phase is invariant (representing as it does the number of

wave-crests) we have: k′ · x′ − ω′t′ = k · x − ωt, as seen by the two observers

[k = wave-number vector, x = spatial coordinates, ω = angular frequency, t =

time]. Assuming the Galilean transformation x′ = x − vt, t = t′, one obtains
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the Jovian year). However, the experimental errors in such a measurement
are too large to obtain a meaningful result.

The experiments of Michelson (1881) and Michelson and Morley (1887)
have shown that the velocity of light in terrestrial measurements is not influ-
enced by the motion of the earth even to the extent involving quantities of the
second order.

The immediate result of this experiment was that the ether lost its last
material properties, namely — its ability to move and its specific location:
For if we must assume that light propagates with a fixed velocity relative to
all observers, independent of the velocity of its source and irrespective of the
velocities of its observers [which may move with different velocities relative
to each other], then this ether is totally superfluous565.

k′ = k, ω′ = ω

(

1 − v · k̂

c

)

, c′ = c − v · k̂, ω = 2πν, ω′ = 2πν′,

where k̂ is a unit vector normal to the wave-front, c′ is the phase velocity in

frame S′, and ν, ν′ are the frequencies (in cycles per second) in the respective
frames. In the simple case where v is parallel to k̂ (along the x-axis, say),

c′ = c − v, ν′ = ν
(
1 − v

c

)
.

Here c is the velocity of light measured by an observer at rest relative to the

ether.

If, on the other hand, an observer at rest in the ether measures the frequency

of a moving source with intrinsic frequency ν0 and velocity v0, the observed
frequency is ν = ν0

1− v0
c

. For cases where v0
c

� 1, we find

ν ∼ ν0

(
1 +

v0

c

)
.

If we assume a simultaneous motion of the source of light (v0) and the observer

(v), the observed frequency ν′ is

ν′ = ν
(
1 − v

c

)
∼ ν0

(
1 +

v0 − v

c

)
.

So, to first order , the Galilean relativity principle holds for the optical Doppler

effect.
565 In a sense, though, the 3 ◦K cosmic microwave background radiation (CMBR),

permeating the universe, has replaced the ether in modern cosmology; at least,

the velocity of the solar system w.r.t. it can, and has, been measured through

the terrestrially-observed ‘Doppler shift’ in that cosmic temperature — once
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Sic transit gloria ether. Indeed, after Einstein had expounded the spe-
cial theory of relativity (1905), the ether was banished from classical physics.
After 1915, when the general theory of relativity interpreted gravitation as
the intrinsic geometry of space-time, besides the CMBR, one might say that
another, modern version of the ether entered physics – namely, dynamical
spacetime itself !

This “ether”, though, is locally invariant under non-accelerating changes
of reference frame. Space (the vacuum) is dynamical not just by virtue of
GTR (where undulations in it are called gravitational waves), but also in
Quantum Field Theory.

1881–1933 CE Albert Abraham Michelson (1852–1933, U.S.A.). Ex-
perimental physicist. Established that the velocity of light is not influenced
by the motion of the earth thereby showing that the ether hypothesis must
be abandoned.566

Michelson spent 50 years in improving his measurements of the velocity
of light, ending in 1933 with a value of 299,744 km/sec [2 km/sec higher than
the value accepted in the 1970’s]. Michelson was the first American scientist
to win the Nobel prize in physics (1907).

Michelson was born to Jewish parents in Strelno, Prussia. He came to
the United States with his parents in 1854. At 17 he entered the U.S. Naval
Academy, from which he graduated in 1873, serving as a science instructor
there until 1879. In 1880 he traveled to Europe and during 1880–1881 built an
interferometer by means of which he was able to demonstrate in Berlin (1881)
that there was no motion of the earth relative to the ether. He repeated this
experiment with Edward William Morley (1838–1923, U.S.A.) in 1887,

the shift due to the earth’s motion relative to the sun is subtracted. (The result

is a few hundred km/sec.)
566 The experiment’s “null” result quite obviously dominated the work of Lorentz

and many others. But it was not the road along which special relativity evolved.

Einstein said (1945) that at the time he wrote his basic paper on relativity

(1905) he had never heard of the experiment. Einstein elaboration on STR

began with his rejection of the “luminiferous ether”, and in that sense Michel-

son’s experiment was not decisive. Einstein’s reasoning is sufficiently simple

and logical, and there is every reason to use it in expounding the special theory

of relativity.
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with an improved interferometer which he built with a grant of 200 dollars
obtained from Alexander Graham Bell. In 1883 he accepted a position of
professor of physics at the Case School of Applied Science in Cleveland. At
1892 he was appointed professor and head of the department of physics at the
University of Chicago, a position held until his retirement in 1929. Michelson’s
other achievements in physics are:

(1) Measured the earth’s mean rigidity567.

(2) Measured the diameter of the star Betelguese568 (Alpha Orionis) by
means of the partial coherence of light arriving from its opposite edges
(1920).

567 He used an interferometer to measure the bodily tide in the solid earth by

the disturbance of the water level in two vertical tubes with a long horizontal

connection underground [Astrophys. J. 39, 105–138, 1914; Astrophys. J. 50,

330–345, 1919].
568 Michelson’s stellar interferometer (1890) measures the small angular dimensions

of remote astronomical objects; a star is presumed to be a circular distribution

of partially coherent point sources such that it has a uniform brilliance. If one

were to perform an interference experiment with this source, in which a double-
slit aperture was used, as in Young’s experiment, then the distance between the

slits would have to be less than the lateral coherence width in order to obtain

distinct interference fringes. In practice, a telescope objective, diaphragmed by
two equal small apertures, is used to view the starlight, of effective wavelength
λ (mean wavelength of a narrow spectral band) and angular source diameter θ.

The star’s visibility is shown to be

ϕ = |γ12(0)| = 2

∣
∣
∣
∣
J1(πhθ/λ)

πhθ/λ

∣
∣
∣
∣,

where h is the smallest value of the slit separation for which the visibility of the

fringes is minimum. The first zero of ϕ occur when

πhθ/λ = 3.83, or h = 1.22
λ

θ
.

Once h and λ are known, θ is calculable. Michelson employed mirrors to increase

the effective distance between the slits. This enabled him to measure very small

angular diameters (even for nearby stars, angular diameters are of the order of

hundredths of a second of arc, with corresponding lateral coherence width of the

order of several meters). Pointing the 100 inch reflector telescope of the Mount

Wilson Observatory toward Betelguese (α Orionis), the fringes formed by the

interferometer were made to vanish at h = 121 inches, and with λ = 5800 Å,

θ = 0.047 seconds of arc. Using its known distance (determined from parallax

measurements), the star’s diameter turned out to be about 280 times that of the

sun! (it is a red giant). In the 1990’s, Betelguese’s disc was optically resolved
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(3) Suggested the use of the wave-length of the red line of Cadmium as the
basis for a new standard of length (1893). This suggestion was accepted
in 1960.

Science and Economy

In 1881, Albert Michelson, using a $ 200 grant from Alexander Graham
Bell, had built an instrument called the interferometer, with which he dis-
proved the existence of the mysterious ether that was supposed to fill all
space. Today’s atom smashers, in dramatic contrast, cost hundreds of mil-
lions of dollars to build and operate – and there is no guarantee that anything
as momentous as Michelson’s discovery will result.

By the mid 1970’s, the honeymoon between science and the US Gov-
ernment had ended. Pressures on the Federal Government multiplied, and
Congress was becoming tougher about spending. Scientists were told that
“... the American people cannot afford to finance science as a hobby horse —
science for the fun of it. They envision practical science as a workhorse for
the people — research that produces a better quality of life... Congress wants
scientific research that gets results”.

and imaged (in the usual, ray-optics manner) by the orbiting Hubble space

telescope.
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The Operational Calculus569

Leibniz’ differential notation (1672) made it possible to consider the dif-
ferential operator as an algebraic quantity independent of the function oper-
ated upon. Several mathematicians, among them Lagrange, Laplace (1812)
and Cauchy (1827) employed this idea, so fundamental for the operational
calculus. An explanation of the success of the algebraic treatment of the dif-
ferential operators was sought in other fields of mathematics. Laplace, for
example, explained the operational methods by means of the Laplace trans-
form, whereas Cauchy used the Fourier theorem.

Servois (1814) thought that the reason why algebraic treatment was ap-
plicable to differential operators was that the latter obeyed the commutative
and distributive laws. Boole (1859) created his own version of an abstract
algebraic approach to differential operators.

However, all the above contributions consisted only in the introduction of
operational methods into analysis. It was Oliver Heaviside (1893), whose
work stimulated a systematic use of operational methods in physical and tech-
nical problems. It was he who presented an abundance of mathematical and
physical methods and results. In fact, most of his methods stemmed from his
need to solve practical problems associated with work as an operator of the
great Northern Telegraph Company. However, Heaviside developed a formal
calculus, suited for his own purpose.

The pure mathematicians of his time would not deal with this nonrigor-
ous theory, but in the 20th century several attempts were made to rigorize
Heaviside’s operational calculus. These attempts can be grouped into two
classes: the one leading to a representation of the operational calculus in

569 For further reading, see:

• Van Der Pol, B., Operational Calculus, Cambridge University Press, 1959,
415 pp.

• Scott, E.J., Transform Calculus, Harper and Brothers: New York, 1955,

330 pp.

• McLachlan, N.W., Modern Operational Calculus, Dover: New York, 1962,

218 pp.

• Carslaw, H.S. and J.C. Jaeger, Operational Methods in Applied Mathematics,

Oxford University Press, 1953, 359 pp.
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terms of integral transforms [Bromwich570 (1916), Carson (1917), van der
Pol (1929)] and the other leading to an abstract algebraic formulation [P.
Levy (1926), Mikusinski (1949)]. Also, Schwarz’s creation of the theory of
distributions (1945) was very much inspired by problems in the operational
calculus of Heaviside.

It is remarkable that the theory of linear operators of Hilbert spaces and
Banach spaces and the theory of von Neumann algebras, which was developed
in the period 1900–1940, did not interact at first with the development of the
operational calculus. There are three reasons for this:

(1) The operational calculus had its source in practical applications of dif-
ferential equations whereas operators in Banach spaces developed from theo-
retical interest in integral equations.

(2) The operational calculus was successful in practice but lacked in rigor-
ous interpretation, whereas the theory of integral equations had clear concepts
but no effective methods of solution.

(3) Operational calculus developed at the fringe of the mainstream of
mathematics and was scarcely used by practitioners, while the theory of op-
erators in Banach space occupied a central position in the mathematics of the
20th century and was created by pure mathematicians.

The development of the operational calculus provides an illustrative ex-
ample of how a practical problem — long distance telegraphy — can influence
mathematical theory. Thus, computation techniques that arose in engineering
inspired an essential field of mathematics, namely the theory of distributions.

The Maxwellians (1879–1894)

After Maxwell’s death (1879), a tightly knit group of British physicists, the
self-styled ‘Maxwellians’ transformed the rich but confusing raw material of
James Clerks Maxwell’s Treatise into a solid, concise and well-confirmed the-
ory. Only with that transformation in the two decades after Maxwell’s death

570 The Bromwich inversion integral h(t) = 1
2πi

∫ c+i∞
c−i∞ ept f(p)

p
dp of the Laplace

transform f(p) = p
∫ ∞
0

e−pth(t)dt, was known to Riemann as early as 1859.
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did ‘Maxwell’s equations’ emerge in the form they have since retained, and the
accompanying technological developments begin. Thus, the field-theoretical
ideas of Faraday and Maxwell were clarified, consolidated, completed and
reformulated into the core of thinking and research in physics.

In 1873, Maxwell published a two-volume Treatise on Electricity and Mag-
netism that was destined to change the orthodox picture of physical reality.
This treatise did for electromagnetism what Newton’s Principia had done
from classical mechanics. It not only provided the mathematical tools for the
investigation and representation of the whole electromagnetic theory, but it
altered the very framework of both theoretical and experimental physics. It
was this work that finally displayed action-at-a-distance physics and substi-
tuted the physics of the field.

Like Newton’s Principia, Maxwell’s Treatise did not immediately convince
the scientific community. The concepts in it were strange and the mathematics
was clumsy and involved. Most of the experimental basis was drawn from
the researches of Michael Faraday and one of Maxwell’s purposes in writing
his treatise was to put Faraday’s ideas into the language of mathematical
physics — precisely so that orthodox physicists would be persuaded in their
importance.

Maxwell died in 1879, midway through preparing a second edition of the
treatise. At that time, he had convinced only a very few of his fellow coun-
trymen and none of his continental colleagues. That task fell to his disciples.

During the twenty years that followed Maxwell’s ideas were picked up in
Great Britain, modified, organized and reworked mathematically so that the
Treatise as a whole and Maxwell’s concepts were clarified and made palatable
and irresistible to the physicists of the late 19th century.

James Clerks Maxwell’s theory of the electromagnetic field is generally
acknowledged as one of the outstanding intellectual achievements of the 19th
century. By the mid-1890s the 4 “Maxwell’s equations” were recognized as the
foundation of one of the most successful theories in all of physics, taking their
place as companions to Newton’s laws of mechanics. The equations were by
then also being put to practical use, most dramatically in the emerging new
technology of radio communication, telegraph, telephone, and electric power
industries.

Surprisingly enough, Maxwell’s Treatise (1873) doe not contain the 4 fa-
mous Maxwell’s equations, nor does it even hint at how electromagnetic waves
might be produced or detected. These and many other aspects of the theory
were thoroughly hidden in the version of it given by Maxwell himself.

The task of digging out the “latent” aspects of his theory and of exploring
its wider implications was thus left to a group of younger physicists: Between
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1879 and 1894 these “Maxwellians”571, led by George Francis FitzGer-
ald (1851–1901), Oliver Lodge (1851–1940) and Oliver Heaviside (1850–
1925), with a key contribution from Heinrich Hertz (1857–1894), trans-
formed the rich but confusing raw material of the Treatise into a solid, concise,
and well-confirmed theory (at least for free space) — the “Maxwell’s theory”
we know today. It was they who first explored the possibility of generat-
ing electromagnetic waves and then actually demonstrated their existence; it
was they, along with J.H. Poynting (1852–1914), who first delineated the
paths of energy flow in the electromagnetic field and then followed out the
far-reaching implications of this discovery; it was they who recast the long
list of equations Maxwell had given in his Treatise into the compact set now
universally known as “Maxwell’s”; and it was they who began to apply this
revised theory to problems of electrical communications, with results that
have transformed modern life.

Scientific theories rarely sprig fully formed from the mind of one person;
a theory is likely to be so refined and reinterpreted by later thinkers that by
the time it is codified and passes into general circulation, it often bears little
resemblance to the form in which it was first propounded.

1881–1912 CE Oliver Heaviside572 (1850–1925, England). Eminent
mathematical physicist. Originated modern operational calculus573 (1893),
laid the foundation of modern electric-circuit design and pioneered the ap-
plication of vectors to physics. He developed and reformulated the electro-
magnetic theory of Maxwell, discovered the circuit principle that made the
long-distance telephone possible, and foresaw television and over-the-horizon

571 To dig deeper into the contributions of these “Maxwellians” to Maxwell’s her-

itage, one is advised to read the comprehensive study “The Maxwellians” by

B.J. Hunt, Cornell University Press 1994, 266 pp.
572 For further reading, see:

• Nahin, P.J., Oliver Heaviside: Sage in Solitude, IEEE Press: New York.

573 Heaviside was first to apply the unit-step function (sometimes named after him).

The delta-function, δ(x), was introduced by Dirac in quantum mechanics (1930),

but Heaviside had already used it extensively before him (1893). Cauchy (1815)

knew the unit-step function in the definition U(t) = 1
2
(1 + t√

t2
) which was called

by him ‘restricteur’.
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radio. He virtually ‘invented’ the ionosphere to explain Marconi’s transmis-
sion of radio signals over the Atlantic in 1901.

Stimulated by Maxwell’s “Treatise on Electricity and Magnetism” (1873)
and working independently of Gibbs until 1888, he developed vector analysis
from the quaternion system. Consequently, he vastly simplified Maxwell’s
20 equations in 20 variables by squeezing their essence into 4 equations in
vector form. He eliminated the potentials and emphasized the primacy of
the physical field-vectors574,575 E and B (he also suggested boldface type to
distinguish vectors from scalars).

Heaviside was born in a London slum, “among these dark Satanic mills”,
at the beginning of the mid-Victorian age. His family was at a low social
and economic level. The world of his youth was very grim and Heaviside
might have been a character straight out of Dickens: the youngest of four
sons of a sickly wood engraver who could barely support his family. An early
bout with scarlet fever left his hearing permanently impaired, cutting him off
from the society of other children. [That handicap molded a confrontational
personality and sarcastic style that would sometimes carry him too far in his
published attacks on those with whom he disagreed. Years latter he recalled
his youth with great bitterness, declaring that it had permanently deformed
the course of his life.]

He left school at 16 and thereafter had no formal education, let alone any
university training. After teaching himself the Morse Code and the elements
of electricity, he went at 18 to Denmark to work for the Northern Telegraph
company. He got this job through his uncle, Charles Wheatstone, husband
of his mother’s sister. In Denmark, Heaviside gained practical experience as a
telegraph operator and technical trouble-shooter, and was steadily promoted.

He returned to England in 1871 and embarked on an ambitious program
of self-education in science and mathematics. A paper he published in 1873
merited mention in the 2nd edition of Maxwell’s treatise on ‘Electricity and
Magnetism’. His encounter with this book led him to quit his position in 1874
and devote himself entirely to private study. [Heaviside would never again
hold any other job in his life; he spent the next 35 years in scholarly research,

574 To Maxwell, the magnetic vector potential, not the fields, played the central role

in electrodynamics [an idea enjoying a comeback in modern Quantum Electro-

dynamics, and the other gauge theories inspired by it]. Also, Maxwell’s original

equation display no obvious symmetry in their form.
575 This was done independently by Hertz in Germany (1884). However, the two

men arrived at the same endpoint by two entirely different paths. Heaviside

and Hertz became good friends through an extensive correspondence, but never

met.
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the publication of technical papers and the carrying on a most interesting
correspondence.] This was a momentous decision for a man of 24 without
independent means. Since then he was living as a recluse among and off his
relatives, devoting himself to the extension of Maxwell’s theory.

In 1884, independently of Poynting, he described the flow of electromag-
netic energy in space [Poynting got into print first, which justifies the modern
name of ‘Poynting vector’]. During 1888–1903, Heaviside pushed Maxwell’s
theory beyond the limits set by the master himself: he was speculating on
‘faster-than-light’ charged particles producing a conical wave [electromagnetic
shock-wave, known today as Cherenkov radiation of light in matter].

In 1891 Heaviside was elected a fellow of the Royal Society. Thus, in
17 years he had risen from the obscurity of an unemployed telegraphist to
world fame. In 1896 a state pension was awarded him, at the instigation of
FitzGerald and other distinguished scientists.

Nevertheless, the fact that he was not a university man raised a bar-
rier, a certain antagonism, between him and his contemporaries. The latter
reproached him for his notable lack of mathematical rigor. Yet Heaviside
did develop an abundance of mathematical and physical methods and results
which afterwards, on critical elaboration by various scientists, proved to be
substantially true576. By 1908 Heaviside moved to Torquay, on the southern

576 Heaviside used the abbreviations p = d
dt

, p−1 =
∫ t

0
·dt. One of the problems

considered by him was a semi-infinite cable in series with impedance r and a
voltage source V0H(t). Neglecting the self-induction in the cable and denoting

the potential and current by E(x, t) and I(x, t), respectively, the circuit

equations are

− ∂I

∂x
= C

∂E

∂t
; − ∂E

∂x
= RI,

where C, R are the capacitance and resistance per unit length, respectively.
Eliminating I and putting ∂E

∂t
= pE, Heaviside obtained the ODE:

d2E

dx2
= (RCp)E

with the solution

E(x, p) = A(p)eλx + B(p)e−λx, λ =
√

RCp.

After the determination of A and B from the boundary conditions at x = 0
and x = ∞, he obtained the current I0 and voltage E0 at the end of the line

in the explicit form

I0 = V0

[
r +

√
R/Cp

]−1

; E0 = V0

[

1 + r

√
Cp

R

]−1

.
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coast of England. There, his F.R.S. and other honors meant nothing to his
neighbors, who treated him as a joke. He died there and lies buried in his par-
ents’ grave, his name visible on the tombstone only when the grass is closely
cut.

Homage to Oliver

“Like all creative scientists, he did it because he could not help it. There were
ideas pent up in him which demanded expression at any cost. He developed
scientific ideas as naturally as a poet writes or a bird sings.”

Norbert Wiener, 1936 (1894–1964)

Expanding in ascending powers of p (valid for t → ∞) and proving heuristically

that p1/2H(t) = (πt)−1/2 [a formula known to Sylvestre Lacroix (1819)], he
obtained

E0 = V0 − V0r

√
C

πRt

{

1 − r2C

2Rt
+ 3

(
r2C

2Rt

)2

+ · · ·
}

.

For small values of t, Heaviside expanded the expression for E0 in descending

powers of p, arriving at

E0 = 2V0

√
Rt

πr2C

{

1 +
2Rt

3r2C
+

1

15

(
2Rt

3r2C

)2

+ · · ·
}

− V0

(
e

Rt
r2C − 1

)
.

Thus, Heaviside solved the problem of the electrical transmission-line avoiding

the use of the Laplace transform and without using the term ‘asymptotic series’.

He never employed any of the theories of divergent series which were introduced

at the end of the 19th century, but proceeded quite formally. This caused him

a great deal of trouble with the “Cambridge mathematicians”, who were so

indignant at Heaviside’s unrigorous use of divergent series, that they stopped

the publication of a sequence of his papers. Nevertheless, Heaviside continued

to use his ‘experimental mathematics’.
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“We should now place the operational calculus with Poincaré discovery of
automorphic functions and Ricci’s discovery of the tensor calculus as the three
most important mathematical advances of the last quarter of the 19th century.
Applications, extension, and justifications of it constitute a considerable part
of the mathematical activity of today.”

Edmund Taylor Whittaker (1928)

“The next time you make a long-distance call and the voice on the other end
comes through loud and clear, reflect for a moment on the man who made it
possible.”

Paul J. Nahin577 (1988)

1881–1922 CE Eliezer Ben-Yehuda (1858–1922, Israel). Philologist and
lexicographer. Father of modern Hebrew. Revived the ancient language into
a vernacular that served as a basis for current spoken Hebrew. Compiled
the great modern Hebrew Thesaurus (17 volumes; 1910–1922578), based on
biblical, Talmudic and post-Talmudic sources. It was his fanaticism, aided by
a combination of fortunate circumstances, which finally made a reality of his
dream. If modern Hebrew became a living tongue with time, it was partly
because of his innovations and efforts.

Ben-Yehuda was born as Eliezer Isaac Perelman in Lithuania. Studied at
the Sorbonne, Paris (1878–1881). Settled in Jerusalem (1881), established the
first Hebrew school (1881) and the Hebrew Language Academy (1890).

1881–1925 CE Francis Ysidro Edgeworth (1845–1926, Ireland and
England). Economist. Made important contributions to mathematical eco-
nomics and statistics, notably on general equilibrium theory.

Edgeworth was born in Longford, Ireland (now Irish Republic) of mixed
Irish, Spanish and Huguenot descent. Became professor of political economy
at King’s College, London (1888–1891) and Oxford (1891–1922).

His main achievement (not adequately appreciated until the development
of game theory and related topics after 1944) was to pioneer an approach to
general equilibrium based not (like Walras’s scheme) on an explicit economy-
wide price mechanism, but on direct cooperation between individual agents in
the absence of prices. This approach has subsequently been shown to yield an
optimum effectively identical with the competitive optimum of Walras and
Pareto.

577 P.J. Nahin: “Oliver Heaviside: Sage in Soltitude” IEEE Press, 1988.
578 Completed 1959, by his widow and son.
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1882 CE Electric light in New York.

1882 CE The Albatross expedition, under direction of U.S. Fish Commis-
sion, further extended knowledge of the extent and variety of marine life.

1882 CE Moritz Pasch (1843–1930, Germany). Mathematician. Pioneer
of the pure axiomatic approach to geometry. In his book (1882) Vorlesun-
gen über neuerer Geometrie (Lectures on modern geometry), he developed a
new method of representation of rigorous deductive structures of projective
geometry via axioms. The Pasch Axiom579 is named after him. Hilbert was
influenced by these ideas of Pasch.

Pasch was born to a Jewish family. He was a professor at Giessen (1873–
1911).

1882–1892 CE Carl Louis Ferdinand von Lindemann (1852–1939,
Germany). Mathematician. Proved that π is transcendental. This proof
ended the long odyssey in quest of the squared circle, started by Anaxago-
ras580, ca 434 BCE. Showed (1884, 1892) how to express the roots of an
arbitrary polynomial in terms of theta functions.

1882–1897 CE Friedrich Ratzel (1844–1904, Germany). Geographer
and ethnographer. Had principal influence in the modern development of
both disciplines.

Ratzel was born in Karlsruhe, Germany and studied zoology at the Uni-
versity of Heidelberg, graduating in 1868. During 1869–1875 he traveled ex-
tensively in the Americas, studying urban and cultural life, which later helped
him to lay the foundation of cultural geography and political geography. His
most important works are: Anthropogeographie (1882, 1891) and Politische
Geography (1897).

According to Ratzel, cities are the best place to study people because life
is “blended, compressed, and accelerated” in cities, and they bring out the
“greatest, best, most typical aspects of people.” He believed that once these
facts about urban life are examined, they can serve as a great aid in the study
of cultural history. His interest in cultural geography would soon inspire him
to explore the field of human geography.

579 An axiom of order . If a straight line intersects one side of a triangle and does

not pass through a vertex, it must intersect another side of the triangle. In the

axiomatic system of Pasch, the concepts of point, line and plane are undefined.
580 The side of a square of equal area to a unit circle is x =

√
π. Since π is

transcendental, the equation x2 − π = 0 is not solvable by an algebraic number

and hence π has no construction with compass and straightedge.
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In his Anthropogeographie, he examined the causes of human population
distribution, or the dynamic aspects of geography. He also related geogra-
phy to history. Physical features, such as mountains or bodies of water, are
discussed w.r.t. human migrations. According to Ratzel, religious, linguistic,
and ethnic groupings also determine population distribution.

As an outgrowth of these studies, he began his study of political geogra-
phy. In this book, Ratzel develops the concept that views the state as “a
particular spatial grouping on the earth’s surface.” The state, as defined by
Ratzel, consists of “a human group with definite organization and distribu-
tion.” From these ideas, Ratzel developed the concept of Lebensraum or living
space, Ratzel hypothesized that the state naturally seeks to increase its size.
If the state’s neighbors are weak, the state will grow larger and spread into
other states. As evidenced, Ratzel believed that space was a great political
force.581

1882–1911 CE Adolph Hurwitz (1859–1919, Germany). Mathemati-
cian. Contributed to the theories of special functions, ordinary differential
equations, modular functions, number theory, Riemann surfaces, set the-
ory and Fourier series582. In 1882 he defined the generalized Zeta function

581 Geopolitics is an approach to understanding international politics that seeks to

explain the political behavior of states in terms of geographical variables such

as size or location (a kind of ‘Social Darwinism’).

The ideas of Ratzel in this field were extended by Rudolf Kjellen (1864–1922)

and Karl Haushofer (1869–1946). The latter came to be seen in the 1930s and

during WWII, as providing the geopolitical ideas for the Nazis. However, Nazi

geopoliticians rejected Haushofer’s geopolitics because it failed to incorporate

the ‘race principle’ adequately. Like Ratzel, Haushofer had some of his ideas

hijacked by the Nazis. Nevertheless, Haushofer is still accused of providing the

academic and scientific support for the expansion of the Third Reich. Inciden-

tally, Haushofer’s son, Albrecht, was indicted in the July 20, 1944 attempt to

assassinate Hitler and was executed in 1945 by the SS.

Following the war, Haushofer was interrogated by the allies and put to trial

before the Nuremberg War Crimes Tribunal, but acquitted. Together with his

wife (half-Jewish) Haushofer committed suicide on March 13, 1946, in Pähl, W.

Germany.
582 In 1902, Hurwitz gave an elegant solution to the ancient isoperimetric problem

of finding a simple closed plane curve of given perimeter with maximum area.
Confining himself to continuous piecewise smooth close curves, he put x = x(s),

y = y(s), 0 ≤ s < L as the parametric representation of such a curve of perime-

ter L and area F , s being the arc-length.
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[ζ(s, a) =
∑∞

n=0(a + n)−s] and derived an important formula for it583.

In 1889 he wrote a fundamental paper on the zeros of Bessel functions,
Lommel polynomials and analytic functions in general (Hurwitz theorem).

In 1896 he showed that any rotation in 4-dimensional space E4, could be
expressed in the form q → �qr−1, where q is a quaternion and �, r are unit
quaternions.

Assume the Fourier-series expansions

x(t) =
1

2
a0 +

∞∑

ν=1

[aν cos(νt) + bν sin(νt)],

y(t) =
1

2
c0 +

∞∑

ν=1

[cν cos(νt) + dν sin(νt)]

where t = 2π s
L

. The relations

(dx)2 + (dy)2 = (ds)2 =

(
L

2π

)2

dt2, F =

∫ 2π

0

xẏdt

then lead to

L2 = 2π2
∞∑

ν=1

ν2(a2
ν + b2

ν + c2
ν + d2

ν),

F = π
∞∑

ν=1

ν(aνdν − bνcν).

It follows that

L2 − 4πF = 2π2
∞∑

ν=1

[
(νaν − dν)2 + (νbν + cν)2 + (ν2 − 1)(c2

ν + d2
ν)

]
≥ 0.

For a given L, the equality will hold for a maximal F . In that case one must

have aν = bν = cν = dν ≡ 0 for ν = 2, 3, . . . and b1 + c1 = 0, a1 − d1 = 0.
Hence

x =
1

2
a0 + a1 cos t + b1 sin t, y =

1

2
c0 − b1 cos t + a1 sin t,

which are the parametric equations of a circle. All other curves must satisfy

L2 > 4πF .

583 ζ(s, a) = 2Γ(1−s)

(2π)1−s

{
sin

(
πs
2

) ∑∞
n=1

cos(2πan)

n1−s + cos
(

πs
2

) ∑∞
n=1

sin(2πan)

n1−s

}

for �(s) < 0.
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In 1903 he investigated the properties of Fourier series when the sum does
not necessarily converge, and discovered the Hurwitz-Lyapunov theorem584.

He also derived a criterion for the stability of the solutions of ordinary
linear differential equations. This criterion (necessary, but not sufficient) re-
quired the positivity of certain determinants formed by the coefficients [Hur-
witz criterion, Hurwitz polynomials].

Hurwitz was born at Hildesheim, Germany, into a Jewish family. He
studied at Münich, Berlin and Leipzig under Weierstrass, Kronecker and
Klein. In 1882 he became privatdocent at Göttingen and in 1892 he was
appointed to the vacant chair of Frobenius at the polytechnicum of Zürich.

1883–1894 CE Osborne Reynolds (1842–1912, Ireland). British engi-
neer, physicist and educator. Known for his work in fluid mechanics. In 1883
he demonstrated that the transition from laminar to turbulent flow depends
on a dimensionless characteristic number, known as “Reynolds number”585.
In 1894 Reynolds introduced turbulent shearing stresses or Reynolds’ stresses ,
into hydrodynamics in his paper: “On the Dynamical Theory of Incompress-
ible Viscous Fluids and the Determination of the Criterion” [Phil. Trans. A
186, 123–164]. These concepts are of great importance in fluid flow model-
ing experiments and many geophysical phenomena. Reynolds made significant
contributions to the theories of heat transfer, turbine pumps, turbulence, tidal
motions in rivers and the concept of group velocity.

Reynolds was born in Belfast into a family of Anglican clerics. He grad-
uated at Queen’s College, Cambridge, in mathematics (1867). In 1868 he
became the first professor of engineering at Owen’s College, Manchester, a
position he held until his retirement in 1905.

584 Let f(x) be bounded in the interval (−π, π) and let
∫ π

−π
f(x)dx exist,

so that the Fourier constants an and bn of f(x) exist. Then the series
1
2
a2
0 +

∑∞
n=1(a

2
n + b2

n) is convergent and its sum is 1
π

∫ π

−π
[f(x)]2 dx.

585 In fluid flow through a pipe, for example, Reynolds number R is given by

{vdρ/η}, where v is the average flow velocity, d the pipe’s diameter, ρ the fluid

density and η is the fluid viscosity. The transition from laminar to turbulent

flow occurs when 1000 < R < 5000.



1883 CE 2549

Modern Heat Engines; The Turbine

The chief reason for the low efficiency of steam engines is that they burn
their fuel outside the cylinder. Much of the heat is absorbed by the bulky
equipment that produces the steam. But if the heat is created inside the
cylinder, this major source of energy loss is removed and we have an internal-
combustion engine (ICE).

Early ICE used gas instead of gasoline as fuel. In a gas engine, the working
fluid is a mixture of atmospheric air and an inflammable gas. Early experi-
ments were described already in 1820 in a paper entitled:

“On the Application of Hydrogen Gas to produce a Moving Power in Ma-
chinery, with a description of an Engine which is Moved by the Pressure of
the Atmosphere Upon a Vacuum Caused by the Explosions of Hydrogen Gas
and Atmospheric Air”.

It was read by W. Cecil before the Cambridge Philosophical Society in
England. Cecil mentioned earlier experiments at Cambridge by Farish, who
was said to have operated an engine by gun powder.

Another English inventor, William Barnett, patented (1838) a gas en-
gine which compressed the fuel mixture. Barnett’s engine had a single up-and-
down cylinder with explosions occurring first at the top, then at the bottom
of the piston.

In France, Jean Joseph Étienne Lenoir built the first practical gas
engine in 1860. It used street-lighting gas for fuel. This single-cylinder engine
had a storage battery ignition system. The piston, moving forward for a
portion of its stroke by the energy stored in the fly-wheel, drew into the
cylinder a charge of gas and air at ordinary atmospheric pressure. At about
half-stroke the valves closed, and an explosion, caused by an electric spark,
propelled the piston to the end of its stroke. On the return stroke, the burnt
gases were discharged, just as a steam engine exhausts. These operations were
repeated on both sides of the piston, and the engine was thus double-acting.
These engines were quiet and smooth in running. The gas consumption was,
however, excessive. By 1865 four-hundred of these engines were in use in
Paris for such jobs as powering printing presses, lathes, and water pumps.

To a Frenchman, Alphonse Beau de Rochas, belongs the credit of
proposing the idea of a 4-cycle engine. In a pamphlet published in Paris in
1862 he contemplated such an engine which was to be built 14 years later.
Rochas himself did not, however, put his engine into practice, and probably
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had no idea of the practical difficulties to be overcome. Siegfried Marcus586

built the first successful petrol-driven 4-stroke cycle engine and carriage in
1875, superseding an earlier model (1864). In the same year, Carl Benz
also developed a gasoline engine. These engines were basically the same as
gasoline engines built today.

In a gasoline engine the explosion of the fuel produces hot, expanding
gases which force the piston to move. Four strokes of the piston are required
to complete one cycle of operation — intake, compression, power and exhaust.
Gasoline engines generally use many small cylinders rather than a large one,
because vibration is reduced and the engine can run more slowly without
stalling.

A 4-stroke cycle engine in an automobile or airplane can make 30 revolu-
tions per second. One should imagine the pistons racing up and down, the
valves opening and closing, the sparks igniting the gasoline — all at the right
time for each cylinder! [It seems a wonder that any mechanism so complex
should work at all. Yet such is the skill of modern science and engineering,
that we give the matter hardly a thought when we get into a car or airplane:
we are confident of arriving at our destination in luxurious comfort and with-
out a hitch.]

In spite of the advantages of internal combustion, the average automobile
engine is only about 15–20 percent efficient587. Most of the heat of the ex-
plosion is lost in the hot exhaust gases, in the flow of hot air through the
radiator, and in the friction of moving parts inside the engine.

In 1896, Rudolf Diesel (1858–1913, Germany) invented and built the
diesel engine, which increased the efficiency by a simple method: instead of
compressing an explosive mixture of air and gasoline, only the nonexplosive
air is compressed. Since compression of air alone cannot result in burning,
the air may be compressed to as high as ratio as 18: 1. The high compression

586 Nikolaus August Otto (1832–1881, Germany) built a small experimental gas

engine (1861). He devised the 4-stroke cycle (which bears his name) in 1876

and derived a patent for it in 1877. Gottlieb Daimler used petrol (1885) to

drive the engine.
587 The efficiency of a steam engine is η = Q1−Q2

Q1
= 1 − Q2

Q1
where Q1 is the total

heat supplied (for heating the water and vaporizing it) and Q2 is the heat

given up to the condenser. It is less than T1−T2
T1

, which is the ideal efficiency

of a reversible Carnot cycle which would operate between two reservoirs of

temperatures T1 and T2.

In an ICE the efficiency is η = 1 −
(

v1
v2

)γ−1

, where v2
v1

is the compression-ratio

and γ =
Cp

Cv
� 1.4. For v2

v1
= 7 the limiting theoretical efficiency is 55 percent;

the actual achievable efficiency is much lower.
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heats the air to about 550 ◦C. Then, at the top of the compression stroke,
a powerful pump (fuel injector), squirts fuel into the cylinder and the fuel
ignites as it comes into contact with the very hot compressed air. Cheap oil
can be used in the diesel engine instead of gasoline and an efficiency of up to
40 percent is achieved. However, because of the higher compression and more
powerful explosion, the engine requires stronger and heavier cylinders. The
extra weight makes the diesel engine less practical for light passenger cars.

The steam engine, gasoline engine and diesel engine — all require a pis-
ton which moves back and forth in a cylinder. These engines are known as
reciprocating engines. A part called a crankshaft transforms this reciprocating
motion into rotary motion to turn wheels.

Felix Wankel (1902–1988, Germany) patented in 1929 and built during
the early 1950’s a gasoline engine that uses rotors instead of pistons (known
as a rotary engine or a Wankel engine). The rotors produce rotary motion
directly. A Wankel engine operates more quietly and smoothly than a piston
engine, needs fewer moving parts, weights less, is smaller than a piston engine
of the same power, uses lower octane gasoline but burns more fuel per kilo-
meter. Large-scale production came in 1968 with the Japanese ‘Mazda 110
S’.

A turbine is a wheel turned by the momentum of a moving fluid such as
wind, water, steam or gas. It converts the fluid motion directly into rotary
motion [from the Latin turbo, meaning that which spins or whirls around].
This rotary motion is used to turn generators that produce electricity and
drive huge ocean liners, and serves as an essential component of a jet-propelled
aircraft.

Thus, turbines work on the same principle as the windmill and the water
wheel. Unlike the other important types of engines described earlier, they have
no pistons or cranks. The motion of a current fluid turns a shaft by means of
an arrangement of projecting blades. Steam and internal combustion engines
have to change reciprocatory motion into rotatory motion; turbines produce
rotatory motion directly.

There are two main kinds of turbines: in some the whole available energy
of the fluid is converted into kinetic energy before the fluid acts on the moving
part of the turbine. (In the case of steam, it supplies power after it has com-
pletely expanded, solely at the expense of its kinetic energy.) Such turbines
are termed Impulse or Action Turbines, and they are distinguished by the fact
that the wheel passages are never entirely filled by the fluid.

In the early de Laval turbines, the shaft turned at 30, 000 revolutions per
minute — too rapidly for driving most kind of machinery — so it had to be
reduced with gear wheels, thus lowering the efficiency. High speeds, of course,
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limit the size of these turbines. The centrifugal force in a large wheel would
become so great that the wheel would break apart.

Turbines in which only part of the available energy is converted into ki-
netic energy before the fluid enters the wheel are termed pressure or Reaction
Turbines.

In practice, the fluid (steam, say) passes through a ring of fixed blades
fastened to the turbine casing. These blades are so shaped that the space
between one blade and the next acts like a nozzle; i.e., the blade spacing
at the leading edge is greater than the spacing at the trailing edge. This
means that as the steam leaves the blades, the pressure falls and the steam
expands. The steam now hits a ring of moving blades. These blades are again
so designed that the spaces between them function as nozzles.

The moving blades receive a continuous backward thrust (reaction) from
the steam issuing from them. This makes them rotate in the opposite di-
rection. As it leaves the moving blades, the steam again expands. It goes
through another ring of fixed blades, onto another set of moving blades and
so on. The function of the fixed blades (fastened to the turbine casing) is to
aim the steam so that it strikes the wheels at the correct angle.

Reaction turbines rotate about 3000 revolutions per minute. A turbine
works more efficiently than a piston engine, because the fluid pushes continu-
ously against the turbine wheel. In a 4-cycle piston engine, the exploding fuel
pushes against the piston on only one of the pistons four strokes. The turbine
is also more efficient than piston engines because of its faster running speed,
which makes it possible to deliver more power for its weight and volume. In
addition, they do not have moving valves, spark plugs, carburetors and other
parts which, in other engines, frequently require repair.

The turbine finds its most important use today as a generator of electricity
in power stations. These powerhouse turbines use coal588 — a cheap source
of energy. The burning coal heats water and produces high pressure steam to
drive the wheels.

Water turbines are used to generate electricity at dams and waterfalls.
The power of a water turbine depends on the volume of flowing water and the
distance (head) that water falls before it strikes the turbine wheel.

Reaction turbine wheels are mounted on vertical shafts and are completely
under water. They have either spirally curved vanes or blades with variable
slant that adjust the wheel to differing amounts of water flow. The wheels
of a reaction turbine work best when a large volume of water falls a short

588 Nowadays, nuclear fuel is also used.
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distance, while impulse wheel work best where a small volume of water falls
a great distance.

Steam turbines rank among the most powerful machines in the world: one
steam turbine turning a generator can supply all the electricity used by about
3 million people. Steam enters many turbines at temperatures up to 566 ◦C
and may have pressures of up to 140 kg/cm2. The steam rushes into the
turbine at a speed of 1600 km/h. It strikes the first wheel, giving it a push,
goes on to the next wheel, and so on. A modern steam engine has as many
as 24 wheels mounted on a horizontal shaft. Steam expands to as much as
1000 times its original volume as it passes through the turbine. Therefore,
each succeeding pair of nozzles and wheels must be larger than the last one
to make use of all the expanding steam. This gives the steam turbine its
typical trumpet-like shape. Most modern turbines use both impact-type and
reaction-type wheels at different stages along the shaft.

Gas turbines use hot gases (oil, kerosene, natural gas) instead of steam,
without first using them to heat water into steam. It has three main parts:
first a compressor, a special type of fan that sucks in air and compresses it.
This compressed air mixes with fuel and burns in a combustion chamber. The
burning gases expand enormously and rush through a turbine, spinning the
turbine wheels. Part of the rotary power from the turbine wheels drives the
air compressor, that is mounted on the same shaft as the wheels. The rest of
the rotary power can turn electric generators, run pumps or drive ships and
locomotives. In a jet engine most of the power must rush out the turbine’s
tailpiece to give the plane a forward thrust.

The temperatures generated in gas turbines range from 700 ◦–800 ◦C. Thus
engineers must make gas turbines from metals or ceramic materials that keep
their strength and shape at such temperatures, which would weaken steel.
The hotter a gas turbine runs, the more efficiently it operates. This can be a
disadvantage when the turbine is used to propel ships or locomotives, which
must often move slowly.

Windmills came into use in the Middle East in the 900’s and in Europe in
the 1100’s. In the 1600’s people built the first crude gas turbines by mounting
fans over a cooking fire to turn roasting meat on a spit. The hot gases from
the fire spun the fan, and gears connected the fan to the spit. In 1629 an
Italian engineer, Giovanni Branca, built a crude steam turbine which drove
a machine. In 1791, the Englishman John Barber patented a gas turbine
that was an ancestor of the turbojet. These first forms of turbines worked
inefficiently. In 1832, Benoit Fourneyron (1802–1867, France) developed
the first fully successful enclosed water turbine. It developed 37 KW and
drove hammers used to forge metal.
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C.G. de Laval built a successful impulse steam turbine in 1883. In
1884 Charles Algernon Parsons589 (1854–1931) developed a reaction steam
turbine in England. The American inventor Charles G. Curtis (1860–1953)
developed (1900) the first steam turbine using many sets of wheels. The first
big Curtis turbine was installed in an electric power plant in Chicago in 1903.
It ran a generator that produced 5000 kilowatts of electricity and started a
revolution in power production.

1883 CE, Aug. 26, 1:00 pm and Aug. 27, 10:02 am The volcanic explo-
sion of Krakatoa (Sunda Strait, 6.10 ◦S, 105.42 ◦E). A volcano island, about
halfway between Sumatra and Java, was blown to bits in one of the most
stupendous natural explosions ever recorded. About 20 cubic kilometers of
material were emitted during the paroxysmal eruption.

An explosion of 150 megaton of TNT is required to produce the equiv-
alent of the ensuing air pressure disturbance, and the total energy released
through the Aug. 27 explosion is estimated at 1025 ergs. Actual sound from the
Aug. 27 explosion was heard 5000 km away. Atmospheric ultrasonic acoustic-
gravity waves circled the earth several times before they attenuated below the
recording level. Long-period air-coupled sea-waves traveled as far as 18,000
km (through these waves energy was coupled from the atmosphere to the
ocean via resonant coupling).

Some 36,000 humans perished in the disaster, mostly by a huge tidal wave,
40 meters high, that washed over the shores of nearby islands. A column of
stones, dust, and ashes projected from the volcano shot up into the air to a
height of 80 km — higher than the ozone layer. The finer particles coming
into the higher layers of the atmosphere covered a large part of the surface of
the earth, and gave rise to beautifully brilliant sunset glows and multicolored
twilight effects, that were observed for 3–4 years after the eruption.

1883–1889 CE Carl Gustaf Patrik de Laval (1845–1913, Sweden). En-
gineer and inventor. Built the first practical impulse steam turbine (to power
a cream separator of his invention).

Attempts to design a steam turbine had been made by numerous inven-
tors, but all fell short of practical success — mainly because of the difficulty

589 Son of the Irish astronomer William Parsons (1800–1867), 3d Earl of Rosse,

the first to observe a spiral nebulae (1845).
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of arranging for a sufficiently high velocity in the working parts to utilize a
reasonably large fraction of the steam kinetic energy [the principle involved
requires that, for optimal efficiency, the velocity of the blades should approx-
imate to half the velocity of the jets which strike them]. There was a further
difficulty of getting the energy of the steam collimated in a single direction
without undue dispersion, when it is allowed to expand through an orifice
from a chamber at high pressure.

Laval overcame these difficulties, partly by the special shape of the nozzle
used to produce the steam jet speed and partly by features of design which
allowed an exceptionally high speed to be reached in the wheel carrying the
vanes against which the steam impinged. To increase the velocity of gas in the
nozzle beyond the speed of sound, he designed it such that after converging
to a minimum cross-sectional area, the nozzle was expanded to a larger area.
Laval’s principle of nozzle design is widely employed in contemporary turbines
and jet engines.

1883–1892 CE George Francis FitzGerald (1851–1901, Ireland).
Physicist. Concluded, on the basis of Maxwell’s equations that an oscillating
electric current would produce electromagnetic waves (1883). This finding
was later verified experimentally by Heinrich R. Hertz (1886) and used in
the development of wireless telegraphy.

Independently of H.A. Lorentz, FitzGerald studied the results of the
Michelson-Morley experiment590(1887) and suggested that when in motion, a
body is shorter (along its line of motion) than when at rest and that such
a shortening, or contraction, affects also the instruments used in the exper-
iment. Lorentz arrived at this idea independently (1895) and developed it
considerably. The theory is known as the Lorentz-FitzGerald contraction,
which Albert Einstein used in his special Theory of Relativity (1905).

FitzGerald was born and died in Dublin.

1883–1906 CE Francis Edgar Stanley (1849–1918, USA) and his iden-
tical twin brother Freelan O. Stanley (1849–1940, USA). Inventors and
manufacturers. Invented (1883) a photographic dry plate process and oper-
ated a firm to manufacture the plates. Built (1896) the first steam-engine
powered automobile; founded and directed (1902–1917) Stanley Motor Co. to
produce Stanley Streamers; broke world’s record for fastest mile (28.2 s) in a
steam car (1906). Francis was killed in an automobile accident.

590 The experiment was an attempt to measure the earth’s motion relative to the

pervasive luminiferous ether postulated as the medium in which light waves

were propagated. The attempt failed to detect any such motion.
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1883–1892 CE Ludwig Gumplowicz (1838–1909, Poland and Austria).
Influential economist and sociologist. Maintained that human history is a
result of a continued conflict, first among different ethnic groups, then between
states (that were formed as a result of the conquest of habitable lands by the
strong groups who subdued the weaker groups), and finally between classes
inside the states.

Gumplowicz was born in Krakow, Poland, to a family of Jewish Rabbis,
but later converted to Christianity. Professor (at Graz) from 1883.

1883–1908 CE Svante August Arrhenius (1859–1927, Sweden). Physi-
cist and chemist. One of the founders of physical chemistry. Won the 1903
Nobel prize for his pioneering contributions to the electrolytic theory of dis-
sociation591 (1883–1887) and chemical kinetics (1889–1899).

In 1886 he established the importance of carbon dioxide to the earth’s
heat balance (maintaining that the doubling of the concentration of CO2 in
the atmosphere would result in an average global temperature increase of
about 6 ◦C). He went on to describe the “greenhouse effect” brought about by
CO2 in the atmosphere.

According to the kinetic theory of gases, the pressure exerted by the gas
on the walls of the container is determined by the bulk of molecules, whose
energy is of order the mean value. This means that molecules with very large
energies have practically no perceptible effect on the pressure and also on
the total reserve of energy of the gas. In the case of chemical reactions the
converse is often true. It turns out that precisely the rare molecules with high
energy often determine the course of chemical reactions.

591 His theory states that salts, upon dissolution in water, separate into mobile

oppositely charged ions, even in the absence of an applied electric field. He

used this to rationalize many seemingly puzzling properties pertaining to the

behavior of solutions, e.g. the hydrolysis of salts, acids and bases; the solubility

of salts and its variation with temperature; the constancy of the observed heat

of neutralization of strong acids and strong bases. His theory’s greatest triumph

was that it could render a physical meaning to the parameter n in the van’t

Hoff equation for osmotic pressure PV = nkT , n being the number of ions in

the solution.

Arrhenius did not know about electrons at the time (1883). Disbelieved by most

of the senior chemists in Sweden, his thesis received the lowest grade that the

University of Uppsala could bestow. But Arrhenius seems to have been a stub-

born fellow, not easily put down by rebuffs. He circulated copies of his work to

leading scientists through Europe, and as the years passed the theory gradually

became more and more accepted. Eventually it was judged respectable enough

for Arrhenius to be elected a member of the Swedish Academy of Sciences.



1883 CE 2557

The mystery of chemical reaction timescales stems from the fact that mole-
cules entering into a reaction collide every 10−10 sec whereas a reaction fre-
quently requires several minutes (sometimes hours). It means that at any
given time only an extremely small portion of all collisions result in a chemi-
cal reaction.

Arrhenius theorized that reactions are initiated only by collisions of mole-
cules whose energy exceeds a definite critical value, the so-called activation
energy E

A
. Taking into account a thermodynamic equation of van’t Hoff, he

arrived at an equation which expresses the reaction time, t is proportional to
τe

EA
kT , where τ is the time between collisions, k is the Boltzmann constant

and T is the absolute temperature.

For instance, when molecules of hydrogen and iodine collide, they form
two molecules of hydrogen iodide HI. Taking τ = 10−10 sec, T = 0 ◦C = 273
K, E

A
= 3 × 10−12 erg, kT = 3.8 × 10−14 erg, we get t = 3 × 1017 years!

This result accords with the fact that at 0 ◦C, the reaction H2+I2 → 2HI
is practically unobservable. A characteristic feature of Arrhenius’ formula is
the extremely sharp decrease in reaction-time and increase in reaction rate
for slight lowering of the temperature.

The arrhenius formula can also be recast in the form:

probability of reaction ≈ const.× exp
[

−EA

kT

]

.

For example, the reaction 2H2+O2 → 2H2O+117 kcal/mole although exoter-
mic does not take place even at several hundreds degrees. A spark, or other
such disturbance is required to ignite them: As a result of ignition, a violent
explosion takes place, the hydrogen and oxygen being practically instanta-
neously converted into water vapor (the explosion is an adiabatic process: the
heat cannot escape, but will go into raising the temperature, and consequently
the pressure of the resulting water vapor will rise enormously).

The spark increases T in a localized region, and by Arrhenius’ law, this
increases the probability of the reaction. Once started, the heat liberated by
the reaction near the spark raises the gas in the neighborhood to such a high
temperature, that it in turn can react. This liberates more heat, and allows
gas still further away to react, and so on.

The magnitude of E
A for each reaction can be determined theoretically ,

by solving the associated Schrödinger equation.

It frequently happens that chemical reactions are much more involved
because they may proceed via diverse intermediate stages (reaction pathways).
By way of illustration, the reaction H2+Cl2 → 2HCl does not proceed via
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collisions of a molecule of hydrogen and a molecule of chlorine, but by the
scheme

H2 + Cl2�H2 + Cl + Cl; Cl + H2�HCl + H; H + Cl2�HCl + Cl.

As a result, the actually observed reaction rate involves complicated rela-
tionships. However, for each separate reaction, say, for Cl+H2 � HCl+H,
the Arrhenius law holds true, and the reaction rate is proportional to e− E

A
kT ,

the activation energy E
A

having different values for each reaction592.

The energy of activation E
A
, characterizes the energy barrier that must

be overcome by the system for the reaction to occur. The dependence of the
reaction rate on E

A

kT follows from the Boltzmann distribution among energy
levels: the exponential indicates the fraction of molecules that possess suffi-
cient energy E

A
for the reaction to take place. A chemical reaction proceeds

spontaneously (i.e. is exergenic) only if it is accompanied by a decrease of the
free energy ΔG < 0 (a necessary but not sufficient kinetic condition).

Ahrenius’ theory explains how a persence of a catalyst can accelerate a
chemical reaction by many orders of magnitude – by lowering the activation
energy.

Arrhenius was born at Vik, near Uppsala, the son of a surveyor and land
agent. He studied at Uppsala (1876–1881), Stockholm (1881–1884), and the
Universities of Graz, Amsterdam and Leipzig (1886–1888).

In 1895 he became professor of physics at Stockholm. In 1896 Arrhenius
discovered that the amount of CO2 in the atmosphere determines the global
temperature and theorized that the ice ages occurred because some process
had reduced the level of CO2. [In 1938, G.S. Callendar determined that
human activities were causing increase in the amount of CO2 in the earth’s
atmosphere.] Similar views of the role of CO2 in the earth’s atmosphere were
expounded in 1899 by Thomas Chamberlin (1843–1928, U.S.A.).

In 1907 he put forward the so-called ‘panspermia theory ’ in his book
Worlds in the Making. In it he lifted the rather undeveloped ideas of R.E.
Richter (Germany) and Lord Kelvin (1881), to a level of a serious scientific
theory. Accordingly Arrhenius suggested that life did not originate on earth.
He imagined that simple living forms may have drifted from world to world,
propelled by radiation pressure through interstellar space.

592 In chemical and biochemical reactions, the fraction EA
kT

in the exponent is

usually written as E
RT

, where the universal gas constant R = kNA and

E = EANA relate to a mole of substance rather than to a single molecule

[N4 = 6.02205 × 1023/mole].
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Panspermia and the Quest for Life’s Origin593

In the physical sciences, the question of the origin of life is the study
of the nature in which life evolved from non-life sometime between 3.9 and
3.5 billion years ago. This topic also includes theories and ideas regarding
possible extra-planetary or extra-terrestrial origin of life hypotheses, thought
to have possibly occurred over the last 13.7 billion years in the evolution of
the known universe since the big bang.

Origin of life studies has a profound impact on biology and human un-
derstanding of the natural world. Progress in this field is generally slow and
sporadic, though it still draws the attention of many due to the eminence of
the question being investigated. A few facts give insight into the conditions in
which life may have emerged, but the mechanisms by which non-life became
life are still elusive.

Astronomers now believe that the universe began at least 15 billion years
ago, when the first clouds of the elements hydrogen and helium were formed.
Gravitational forces collapsed these clouds to form stars. These stars con-
verted hydrogen and helium into heavier elements, including those such as
carbon, nitrogen, and oxygen, which are necessary for life. These elements
were returned to interstellar space by explosions of some of these stars to form
clouds in which simple molecules such as water, carbon monoxide, and hydro-
carbons were formed. These clouds then collapsed to form a new generation
of stars and solar systems. In at least one solar system, our own, a variety
of objects were formed, including comets (believed to be the most primitive
objects in our solar system), meteorites, asteroids, and planets. One of the
planets, the earth, formed at a distance from the sun where conditions were

593 For further reading one is referred to the following books:

• Hoyle, Fred and C. Wickramasinghe, Evolution from Space, Simon and Schus-

ter, 1981.

• Dyson, Freeman, Origins of Life, Cambridge University Press, 1989.

• Goldsmith, D. and Tobias Owen, The Search for Life in the Universe, Addison-

Wesley, 1992.

• De Duve, C., Vital Dust: The Origin and Evolution of Life on Earth, Basic

Books, 1996.

• Hazen, R.M., Genesis: The Scientific Quest for Life’s Origins, Joseph Henry

Press, 2005.
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favorable and the necessary chemical ingredients were available for the origin
of life.

The final, most important events leading to the origin of life are perhaps
the least understood of the story. Life began during the first billion years of
an earth history which is 4.5 billion years old. In the early earth, volcanoes,
a gray, lifeless ocean, and a turbulent atmosphere dominated the landscape.
Vigorous chemical activity generated heavy clouds, which were fed by volca-
noes and penetrated both by lightning discharges and solar radiation. The
ocean received organic matter from the land and the atmosphere, as well as
from infalling meteorites and comets. Here, substances such as water, carbon
dioxide, methane, and hydrogen cyanide formed key molecules such as sug-
ars, amino acids, and nucleotides. Such molecules are the building blocks of
proteins and nucleic acids, compounds ubiquitous to all living organisms.

A critical early triumph was the development of RNA and DNA mole-
cules, which directed biological processes and preserved life’s “operation in-
structions” for generations. DNA and RNA first appeared as fragments, then
a fully assembled helices. These helices formed some of the living threads.
However, other threads derived from planetary processes such as ocean chem-
istry and volcanic activity. This evolving bundle of threads thus arose from a
variety of sources, illustrating that the origin of life was triggered not only by
special molecules such as RNA or DNA, but also by the chemical and physical
properties of the earth’s primitive environments.

The evolution of the plants and animals most familiar to us occurred
only in the last 550 million years. The illustration depicts the appearance of
marine invertebrates (such as shell-making ammonites), then fish, amphibians,
reptiles, mammals, and humanity. The life thread which continues on in the
oceans reminds us that the evolution of aquatic life continues even today.
The development of land plant communities was manifested in the relatively
ancient clubmosses, horsetails, and ferns, and the more recent gymnosperms
(for example, conifers) and angiosperms (flowering plants).

Perhaps the most recent significant evolutionary innovation has been hu-
manity’s ability to record and build upon its experience, thus triggering the
rise of civilization and technology. These developments bring us to the present,
and, as the thread of life reaches the summit of a tree-covered hill, we ponder
our future.

Most of life’s history involved the biochemical evolution of single-celled mi-
croorganisms. We find individual fossilized microbes in rocks 3.5 billion years
old, yet we can conclusively identify multicelled fossils only in rocks younger
than 1 billion years. The oldest microbial communities often constructed lay-
ered mound-shaped deposits called stromatolites, whose structures suggest
that those organisms sought light and were therefore photosynthetic. These
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early stromatolites grew along ancient seacoasts and endured harsh sunlight
as well as episodic wetting and drying by tides. Thus it appears that, even as
early as 3.5 billion years ago, microorganisms had become remarkably durable
and sophisticated!

Many important events mark the interval between 1 and 3 billion years
ago. Smaller volcanic terrains were joined by larger, more stable granitic
continents. Life learned how to release oxygen from water, and it populated
the newly expanded continental shelf regions. Finally, between 1 and 2 bil-
lion years ago, the eukaryotic cells with their complex system of organells
and membranes developed and began to experiment with multicelled body
structures.

Given the huge number of stars known to exist in the universe, life has very
likely also developed elsewhere. If this “other” life can control and transmit
energy such as light and radio waves, we just might be able to detect it.

As NASA develops its mission to build a space station and to visit other
solar system bodies such as comets, planets, and moons, it responds to hu-
manity’s need to return to the cosmos, both to understand life’s origins as
well as to expand its horizons.

Panspermia

Since the dawn of history, man has speculated about the possibility that
intelligent life may exist on other worlds beyond the earth. Perhaps the
earliest record of this tradition is found in Genesis 6, 1–4.

As astronomy developed, concepts akin to panspermia (ubiquitous life)
were propounded by various philosophers and scientists: Anaximander (ca
560 BCE) asserted that worlds are created and destroyed. Anaxagoras (ca
460 BCE), one of the first proponents of the heliocentric theory, believed that
invisible seeds of life were dispersed throughout the universe. Epicuros (ca
300 BCE) and his school taught that many habitable worlds, similar to our
world, existed in the vast reaches of space. The Roman philosopher Lucretius
(ca 65 BCE) was a firm believer in the existence of ‘other earths’ inhabited
by ‘other people’.

The concept of life on other worlds was incompatible with the Ptolemaic-
Christian cosmology, and until the 15th century CE the geocentric doctrine
excluded all ‘heretical’ notions of panspermia. The first telescopic observa-
tions by Galileo (1609) opened a new era in astronomy and dealt a mighty
blow to the ideas of many of his contemporaries. It became evident that the
planets were similar to the earth in many respects, and this similarity evoked
the questions of the existence of cities inhabited by intelligent beings there.
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These bold ideas were advanced by Giordano Bruno (1584) who wrote: “In-
numerable suns exist; innumerable earths revolve around these suns. Living
begins inhabit these worlds”.

During 1650–1800, such writers, philosophers and scientists including
Cyrano de Bergerac (1619–1655, France), Christiaan Huygens (1629–
1695, The Netherlands), Bernard de Fontenelle (1657–1757, France), and
Voltaire (1694–1778, France) published works dealing with life on other
planets. Scientists and philosophers such as Immanuel Kant (1724–1804,
Germany), Pierre Simon de Laplace (1749–1827, France), and William
Herschel (1738–1822, England) advocated the hypothesis of the plurality of
habitable worlds. By the end of the 18th century, this hypothesis had gained
almost universal acceptance by scientists and intellectuals.

In 1854, William Whewell (1794–1866, England) , in his book Of the
Plurality of Worlds, argued against the probability of planetary life. During
the late 19th and early 20th centuries various modifications of the panspermia
hypothesis received wide circulation. According to this hypothesis, life in the
universe exists eternally; living organisms never arise from nonliving matter,
but are transmitted from one planet to another.

At the turn of the 20th century, the Swedish chemist, Svante Arrhe-
nius (1907), conjectured that microorganisms — spores or bacteria, probably
adhering to small specks of dust — are propelled by the starlight radiation
pressure from one planet to another. If, by chance, they should land on some
planet where conditions for life are favorable, these spores were thought to
germinate and initiate the local evolution of life.

Although such transmission of life from one planet to another within a
single planetary system cannot be completely discounted, the feasibility of
propagation of panspermia from one planetary system to another has divided
the scientific community: most biologists and astronomers consider the hy-
pothesis to be highly unlikely because ultraviolet light and cosmic X-rays
would prove lethal to Arrhenius’ spores. A minority of diehards, however,
still believes that the complexity of terrestrial life cannot have been caused
by a sequence of random events, but must have come from elsewhere.

Chief among these was the astronomer Fred Hoyle (1915–2001), who re-
sumed the debate in 1981 with a new theory of cosmic creationism, overriding
most of the objections of the negativists. Others have pointed out that radia-
tion pressure is not the only conceivable mechanism for interstellar transport
of living things. One may assume that the Galaxy is populated here and there
by advanced technical civilizations that have discovered and exploited space
travel. A survey party from such a civilization, landing on a clement planet,
may ‘contaminate’ it with diverse microorganisms — intentionally or oth-
erwise. Alternatively, some have speculated that colonizing starships might
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themselves be nanotechnologically designed vehicles, carrying equipment for
automated re-creation of favorable planets. Indeed, it has been suggested that
humankind itself engage in such nano-robotic assisted colonization projects!

Our assessment of the probabilities for the existence of extraterrestrial life
are based on knowledge gained from terrestrial biology and the laws of physics
and chemistry, which make some scenarios more probable than others. These
laws (the summary of our experience in studying the universe around us)
appear to be valid as far as we can test them, including the analysis of light
from stars and from the most distant galaxies.

Can we make any definite statement about the possible chemistry of alien
life — the molecules that form living organisms in faraway places? Life that
is based on chemical reactions (i.e. on the interaction of atoms to form com-
plex molecules) appears to require carbon as its key structural element. Only
carbon can form chemical bonds with hydrogen, oxygen, and nitrogen (as well
as other less abundant elements) in a way that readily promotes the devel-
opment of a wide variety of information-bearing, structure forming, energy
converting polymers.594If carbon is the crucial element in all chemical life, we
are still not much restricted, since carbon has a high abundance everywhere
in the universe — and indeed, some types of stars would not shine without
the catalytic effect of carbon nucleus.

Life also seems to require a solvent, a fluid medium in which atoms, ions
and molecules can encounter one another and undergo chemical reactions.
The great ability of water to dissolve other polar substances makes it one
of the most favored solvents. In addition, water’s heat capacity, its heat of
vaporization, its ability to remain liquid in a temperature range appropriate
for many chemical reactions, its cosmic abundance, and its chemical stability
— all single it out as exceptionally well suited for use by living organisms595.

For all types of life, it seems important to have a variety of individuals,
and thus some sort of chemical mutation, starting from the simplest progen-
itor molecules. Otherwise, the processes of natural selection will not have
enough material on which to operate, as it discriminates among various living
creatures on the basis of reproductive success.

594 Silicon can also form polymers, but these are too stable under ordinary con-

ditions to serve as a basis for life. The chemical affinity of silicon for oxygen

implies that at temperatures low enough for complex molecular structures to

exist, silicon will bound up as silicates.
595 Ammonia or methyl alcohol might serve as a solvent instead of water under

certain highly specialized conditions, but that would restrict the temperature

range that life can tolerate.
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The Greenhouse Effect

The atmosphere is largely transparent to visible light (3000–7000 Å) which

occupies the peak of the solar spectrum (blackbody radiation at 5800 ◦ K).

The earth, warmed by solar light, emits a ‘blackbody’ spectrum (at 300 ◦ K)

peaking in the infrared, at a wavelength of about 10μm. This radiation cannot

escape immediately because it is absorbed by the atmosphere, particularly by

water vapor596 and to a lesser extent by CO2. The atmosphere therefore acts

in the same way as the glass in a greenhouse597, letting through light but

not allowing infrared radiation to escape. It is this infrared radiation that is

mostly responsible for heating the atmosphere whereas the visible radiation

is an inefficient heater.

When gas molecules absorbs light waves, this energy is transformed into

internal molecular motion, which is detectable as a rise in temperature. The

warmed gas eventually radiates this energy away. Some of this reradiated

energy travels upwards, where it may be reabsorbed by other gas molecules,

a possibility less likely with increasing height, because the concentration of

water vapor decreases with altitude. The remainder travels downward, and is

again absorbed by the earth. Thus, the earth’s surface is supplied continually

with heat from the atmosphere, as well as from the sun. Without these

absorptive gases in our atmosphere, the earth would not be a suitable habitat

for humans and numerous other life-forms.

Of all the gases which comprise our atmosphere, N2 is a poor absorber of all

types of incoming radiation. O2 is an efficient absorber of shorter ultraviolet

596 The first scientist to describe the greenhouse effect (for water vapor), was

the physicist John Tyndall (1820–1893, Ireland) in a paper “On Radiation

Through the Earth’s Atmosphere” (1863).
597 Greenhouse effect: short-wave solar radiation passes through the glass and is

absorbed by the objects in the greenhouse. The long wavelengths radiated by

these objects (e.g. infrared) cannot penetrate the glass and are trapped, thus

warming the greenhouse. An important factor in keeping the greenhouse warm

is the fact that it prevents mixing of the air inside with cooler air outside. In

other words, greenhouses are warm mainly because air is not allowed to escape

and convect heat away; a crop of standing corn, a walled garden, a tree-bordered

enclosure, act in the same way and become warmer than their surrounding by

reducing free circulation of air.
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waves in the high atmosphere. Ozone (O3) absorbs longer ultraviolet radiation
in the stratosphere (10–50 km), which accounts for the high temperature
there. Altogether H2O, O2 and O3 absorb 20% of the total solar radiation.

Any reduction in the water vapor or CO2 content of the atmosphere would
weaken the greenhouse effect and allow the earth to cool. However, the con-
centration of CO2 in the atmosphere is now increasing, slowly but steadily.

When humans started to burn fossil fuel on a large scale with the onset
of the Industrial Revolution, they caused a great deal of “locked up” carbon
to be released, and this trend is now being aggravated by burning tropical
forests.

Whereas the level of CO2 in 1850 amounted to 265 ppm, it has now grown
to 340 ppm, and unchecked it could well reach 600 ppm by 2050. The result
is a steady warming of our planet, projected to rise by 3 ◦C above normal
within 50 years. While there will be little change at the equator, the poles
may well become 7 ◦C warmer.

Thus, carbon dioxide, that gas that puts fizz into soft drinks, is one of the
most important components of the atmosphere, and plays a key role in deter-
mining the earth’s climate, even though it amounts to a mere 0.03 percent598.

598 Models and analyses of global warming generally agree that human economic

activity makes the earth warmer than it would otherwise be. Yet discrepancies

between theory and observation persist (1994); the predicted warming based on

recent increases in concentrations of greenhouse gases is slightly more than the

observed warming of the atmosphere. In addition, the warming trend in North

America does not appear to follow the global pattern.

The answer is ironic. In all probability, aerosols primarily composed of sul-

fates, themselves the result of commercial activity, enhance the ability of the

atmosphere to reflect sunlight back into space before it can reach the planet’s

surface and participate in the warming process. The sulfate particles, about

0.1–1.0 micron in diameter, are particularly concentrated over the industrial

areas of the Northern Hemisphere. Their capacity to cool by scattering sunlight

has become a recognized force in climatic change only recently. Clearly, both

the cooling effects of aerosols and the warming caused by greenhouse gases must

be taken into account if we are to attain accurate climate models.

In contrast to industrial effects, agriculture is directly or, at least in some cases,

indirectly responsible for releasing a substantial proportion of greenhouse gases

(CO2, methane, nitrogen oxide and chlorofluorocarbons).

Now, global warming could either enhance or impede agriculture: warmer air

holds more water vapor, and so global warming will bring about more evapora-

tion and precipitation. Areas where crop production is limited by acid condi-
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In addition to absorption, the overall radiation balance depends also on
the part of the solar energy that is reflected back into cosmic space. This
reflection takes place from the outer layers of the atmosphere, clouds, dust,
and the earth’s surface. The coefficient of reflectivity (i.e. the percentage
of solar energy flux reflected back into space) is called the albedo, and for
the earth it averages approximately 0.310. The most important component
affecting the earth’s albedo are the clouds599.

When both reflection and absorption are taken into account an overview of
the radiation balance in the earth-atmosphere system can be set up. Certain
complication arise due to the following factors:

• There are subsystems which can store thermal energy in the hydrosphere
and atmosphere, and these can mutually exchange some of the absorbed
solar energy.

• A significant part of the solar energy is converted to other forms (e.g.
mechanical energy) in the moving atmosphere (winds), energy in the
movement of the hydrosphere (waves), the chemical energy of photosyn-
thesis, and heat which evaporates water from the biosphere.

• There are some small (but non-negligible) sources of energy which are
completely independent of solar energy (geothermal, gravitational, ra-
dioactive).

tions would benefit from a wetter climate. Moreover, given sufficient water and

light, increased ambient CO2 concentrations absorbed during photosynthesis

could act as a fertilizer and facilitate growth in certain plants.

If, however, increased evaporation from soil and plants does not coincide with

more rainfall in a region, more frequent dry spells and droughts would occur,

and a further rise in temperature will reduce crop yields in tropical and sub-

tropical areas.

Finally, global warming will precipitate a thermal swelling of the oceans and

melt polar ice. Higher sea levels may claim low-lying farmland and cause higher

salt concentrations in the coastal groundwater.

The most recent analysis of the impact of climatic change on the world food

supply (1992), concluded that average global food production will decline 5

percent by 2060.
599 Land has an albedo of about 20%, calm sea 8%, stormy sea 40%, fresh snow 80%,

clouds 70%, ice 70%, and forest 12%. Man has changed 17% of the continent’s

surface, that is some 5% of the earth’s surface. This probably changed the global

albedo from 0.305 to the present value of 0.310, corresponding to a decrease in

solar flux of approximately 8.6 × 1011 KW with a resulting global cooling of

∼ 1 ◦K.
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All these factors result in a rather complex (and still imperfectly understood)
system of energy flows which has existed in stable form for million of years.
However, since the Industrial Revolution, these have become somewhat influ-
enced by man’s own technology.

A blackbody’s radiation is governed by the Stefan-Boltzmann radiation
law.

The average total flux (insolation) from the sun, known as the solar con-
stant, is about 1.36 kW/m2 [Watt = Joule/sec = 0.239 cal/sec, of which
40% is in the visible light range (0.4–0.7 micron)]. On a sunny day 75% of
insolation may reach the earth’s surface; on an overcast day only 15%. On
average 51% of insolation is absorbed by the surface as thermal energy – 29%
as direct radiation, and 22% as diffused radiation. The latter comprises light
scattered by atmospheric dust, water vapour, and air molecules. About 4%
of the radiation reaching the surface is directly reflected at the same wave-
lengths,from the surface back into space. Surface reflectance values (albedo)
depend on materials (e.g. 5–10% soils, 15–25% grass, 40–90% snow, etc.)
Of the mean (100 − 51 − 4 = 45%) of insolation not reaching the surface at
all, the breakdown is as follows: 6% (in insolation units) scatters from the
atmosphere back into space; 20% reflected from cloud tops; 3% absorbed by
clouds, and 16% absorbed by the atmosphere. Eventually, all of the visible
(and other) optical radiation absorbed by the atmosphere and earth’s surface
is re-radiated back into space as infrared rays (3–30 microns) peaking at 10
microns. The average result of radiation absorption, scattering, reflection and
re-radiation is that the mean atmospheric surface temperature is maintained
at about 15 ◦C.

Ignoring the atmosphere, and assuming a steady state blackbody radia-
tion, where the influx of energy from the sun equals the outflux of energy
radiated by the earth, the terrestrial temperature Te assumes a value given
by the equation

eaσT 4
e 4πR2

e = feesσT 4
s

(
R2

s

d2

)

πR2
e,

ea = emissivity of earth, es = emissivity of sun, σ = Stefan’s constant,
Ts = 5800 ◦K = sun’s absolute temperature, Rs = 6.96 × 108 m = radius of
sun, d = sun-earth distance = 1.5 × 1011 m, fe = fraction absorbed by earth.
Therefore,

Te = Ts

[

fe
es

ea

R2
s

4d2

]1/4

.

To qualify as a perfect black body, the surface of the planet must be non-
reflecting; that is, all the sunlight reaching it must be absorbed and later
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reradiated as planet light (fe = 1). Also, there can be no gases in its at-
mosphere that absorbed outgoing planet light. Leaving aside such subtleties
the above equation renders a mean surface temperature of about 278 ◦K =
5 ◦C.

If we take into account the sunlight reflected back by clouds, ice caps, and
deserts, the proper value for fe is 0.65. If this be the entire story, the earth’s
surface temperature would instead be −20 ◦C (all water is frozen).

However, the greenhouse blanketing of the absorbing atmospheric gases
keeps the earth’s surface significantly warmer than 250 ◦K. To estimate how
much warmer, we note that the application of the Stefan-Boltzmann law to the
earth-atmosphere system yields T 4 = 2(250)4, where the factor 2 arises from
the fact that the atmosphere radiates outward into space and inwards to the
earth’s surface, whereas the earth’s surface radiates only upwards. Therefore
T = 297 ◦K = 24 ◦C, which is about right. The difference between −20 ◦C
and 24 ◦C is a measure of the greenhouse effect; the empirical result, as noted
above, is actually 15 ◦C.

The energy exchange between the atmosphere and the surface is not en-
tirely radiative: air which is warmed by contact with the surface rises, and
transports heat upward by convection. Also, evaporation of water from the
ocean cools the surface, and when water droplets condense, heat (latent heat
of condensation) is passed into the atmosphere. Thermal conduction also
transports heat from the surface into the air, though to a smaller extent than
convection and evaporation.

For every 100 units of solar radiation incident upon the upper atmosphere,
only 22 reach the surface directly and are absorbed. Of the rest, 35 are
reflected back into space (mostly within the troposphere), 21 are absorbed
by the atmosphere (mostly above the troposphere), and the remainder of 22
reaches the surface after scattering and diffusing through clouds.

The earth radiates some 118 units: 11 escape directly, and 107 are ab-
sorbed by the atmosphere.

The atmosphere radiates 158 units: 54 travel into space and 104 return
to earth.

The outgoing thermal radiation (11 + 54 = 65) therefore just balance the
100 − 35 = 65 units of solar energy that entered altogether into the system.

Radiative processes alone, however, leave the atmosphere with a debit of
30 units (21 + 107 − 158 = −30) and the surface with a credit of the same
amount (44 + 104 − 118 = 30). A net balance is achieved via the processes
of convection, evaporation and conduction.
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1883–1909 CE Wilhelm Maybach (1846–1929, Germany). Automobile
builder. Produced with Daimler (1883) one of the first gasoline motors. Con-
structed the first Mercedes automobile (1900–1901); credited with the inven-
tion of spray-nozzle carburetor, honeycomb radiator, and change-speed gear.
With his son Carl established at Friedrichshafen a company to build aircraft
engines (1909). Maybach automobiles were produced from 1922 to 1939.

1883–1923 CE Alfred Pringsheim (1850–1941, Germany). Mathemati-
cian. made important contributions to the theory of convergence and diver-
gence of infinite series and infinite products. Studied the position of singular-
ities of power series, derived a new test of convergence of complex series and
established theorems on multiplication of infinite series and the convergence
and summability of Fourier series.

Pringsheim was born of Jewish parents and baptized in order to obtain a
university position. All his property was confiscated by the Nazis (1939) and
he was forced to flee to Switzerland.

1883–1932 CE Konstantin Eduardovitch Tsiolkovsky600 (1857–1935,
Russia). A pioneer of astronautical and space travel theory. In an article
written in 1898 [appeared in 1903 in Nautschnoje obozrenije (Science Sur-
vey)] he described a streamlined, rocket-driven vehicle for space travel which
used liquid oxygen and hydrogen as propellants. He was perhaps the first
man to base this project on sound principles601. His proposal included such
practical innovations as gyroscopic control, a jet deflector for navigation in
space, proper rocket shapes, nozzles to ensure supersonic exhaust velocities, a
multistage operation to escape the earth’s gravitational field, the protection
of the passenger chamber from atmospheric frictional heating and a rotating

600 For further reading, see:

• Kosmodemianskii, A.A., Konstantin Tsiolkovsky: His Life and Work, Trans-

lated from the Russian by X. Danko, Foreign Language Pub. House: Moscow,

1956, 101 pp.

• Von Braun, W. and F.I. Ordway, History of Rocketry and Space Travel, 1967.

• Celnikier, L.M., Basics of Space Flight, Editions Frontieres: Gif-sur-Yvette
Cedex: France, 1993, 356 pp.

601 Before him (1881), the German engineer Hermann Ganswindt had recognized

the fundamental importance of the escape velocity
(
11.3 km

sec

)
and had conceived

(with the physicist R.B. Gostkowsky) vehicles that would propel themselves

with a series of chemical explosions and thus escape terrestrial attraction. The

name astronautical was coined (1912) by the Frenchman Robert Esnault-

Pelterie.
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space station. Most of his suggestions are realized today in the design of space
vehicles.

In 1895, Tsiolkovsky introduced the new concept of space elevator , He
imagined placing a “celestial castle” at the end of a spindle-shaped cable,
with the “castle” orbiting the earth in a geosynchronous orbit. The tower
would be built from the ground up to an altitude of 35,790 kilometers above
mean sea level (geostationary orbit).

Tsiolkovsky was born in Izhevsk, southern Siberia, the son of a forester. At
the age of nine he became almost completely deaf following a serious illness.
He was self-educated and made his living as a science teacher during 1880–
1918, first in a sequestered country school in the Borovsk district and then at
Kaluga. Throughout this period he devoted most of his free time to scientific
investigations.

His advanced ideas were slow to gain acceptance; he was met with indif-
ference and disbelief. However, in 1918 he became a member of the Acad-
emy, and in 1921 he was allotted a personal pension. In the mid-1920’s,
Tsiolkovsky’s works on rocket engineering and space flight began to win in-
ternational recognition. Hermann Oberth wrote to him in 1929: “You have
ignited the flame, and we shall not permit it to be extinguished”.

One of the largest craters, on the dark side of the moon, discovered in
1959 by the Soviet spaceship Lunik 3, was named after Tsiolkovsky.

Space Elevator — or, Climbing to the Stars602

(1895–2005)

The Biblical Jacob [Genesis 28, 12] saw in his dream “a ladder set up
on the earth, and the top of it reached to heaven, and . . . the angels of God
ascending and descending on it.” Since his time, ladders have been replaced

602 For further reading, see:

• Celnikier, L.M., Basics of Space Flight, Editions Frontieres: Gif-sur-Yvette

Cedex: France, 1993, 356 pp.

• Pearson, J., The Orbital Tower: a spacecraft launcher using the earth’s rota-

tional energy, Acta Astronautica 2, 1975, pp. 785–799.
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by elevators, and so a modern Jacob might well dream of building an elevator

along which astronauts could ride to space.

Indeed, we know that a satellite at altitude of 35,790 km, whose orbit is

in the plane of the equator, will appear stationary from the earth’s surface:

an electromagnetic signal can be sent from one to the other without adjusting

the direction of the antenna. This is called a geostationary orbit603, much used

by the telecommunication industry.

In principle, one may draw a material cable from a geostationary satel-

lite to the point immediately below it on the terrestrial equator, effectively

creating a physical track along which vehicles could move, driven by an earth-

bound electrical generator, thereby lowering rocket-launch costs and risks to

a minimum.

Next, we expound the basic physics of such an endeavor: Let m be a mass

point in a circular orbit at distance r from the earth’s center, and orbital

angular velocity ω = v
r . No net force acts on the satellite, being in dynamic

equilibrium under the opposing centrifugal force mω2r and the gravitational

force GMEm
r2 .

Consider now a second mass Δm � m attached to m by a weightless wire

or cable (tether) of length l, the link being aligned along the radius vector to

the earth’s center, with Δm closer to earth. Since ω = v
r is common to both

m and Δm (a rigid link constraint), the forces acting on Δm are:

• a centrifugal force (Δm)ω2(r − l) away from the earth’s center

• a gravitational force GME(Δm)/(r − l)2 towards the earth’s center

603 A Geosynchronous Satellite: consider a satellite of mass m in a circular orbit

around the earth at a constant speed v at an altitude h above the earth’s sur-

face. Since its centripetal acceleration is furnished by the gravitational force,

Newton’s second law yields GMEm
r2 = m v2

r
, where G is the gravitational con-

stant, ME is the earth’s mass and r = RE + h is the distance of the satellite

from the earth’s center.

In order to appear to remain over a fixed position on the earth, the pe-

riod of the satellite must be T = 24 hours and the satellite must be

in orbit directly over the equator. Combining the above equation with

v = 2πr
T

we obtain r =
(

GMET2

4π2

)1/3

. Substituting numerical val-

ues G = 6.67 × 10−11 Nm2

kg2 , T = 86, 400 sec, ME = 5.98 × 1024 kg, we obtain

r = 42, 250 km, or h = 35, 790 km.
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Thus, there is a net force tending to pull Δm towards the earth:

ΔF =
GME(Δm)

r2

[(

1 − l

r

)−2

−
(

1 − l

r

)]

≈ GME(Δm)
r2

[

3
l

r

]

for l � r,

(1)

where the relation mω2r = GME(Δm)
r2 was used. The mass Δm is prevented

from falling towards the earth by a tension ΔF in the connecting link.

Instead of a small mass joined to a larger one by a mass-less wire, consider
next a long, massy cylindrical tether sticking out of m towards the earth, the
entire system moving as a rigid body at an angular velocity ω around the
earth. Across an elementary segment of tether, mass dm and distance r from
the earth, there will be a difference in tension dF given by

dF =
GMEdm

r2
− ω2rdm =

GMEρAdr

r2
− ω2rρAdr, (2)

where dm = ρAdr, ρ being the density, A the cross-section, and dr the length
of the segment. Suppose that the cable has a uniform cross-section and den-
sity, and stretches from a geosynchronous satellite to a point whose distance
is a from the earth’s center. The tension Fr at a point on the cable at distance
r from the terrestrial center is obtained by integrating the last equation:

Fr = GMEAρ

(
1
a

− 1
r

)

− 1
2
ω2Aρ(r2 − a2). (3)

Since GME ≈ 1014, ω2 ≈ 5 × 10−9, the second term in the above equation is
negligible compared to the first for cables whose length is a finite fraction of
the geostationary distance. Thus

Fr ≈ GMEAρ

(
1
a

− 1
r

)

≈ GMEAρ

a
for r � a, (4)

directed towards the earth’s center. If the material of which the cylinder is
made must not rupture under its own weight, we have

σA > GMEAρ

(
1
a

− 1
r

)

, (5)

where σ is the strength. This imposes a limit to the length of the cable which
can be suspended in this way. It can be shown that for a uniform tether to
hang all the way from a geostationary satellite to the surface of the earth, the
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strength of the material from which the cable is made must be in the region
of the theoretical upper limit, namely 1011 N/m

2
, or 100GPa604.

Since the tension in the tether is greatest at the height of the geosynchro-
nous satellite and tapers down towards earth, it is advantageous to taper the
structure from the point of greatest force to that of least force, in such a way
that the stress per unit cross-sectional area is constant. Thus, replacing dF
by σdA we recast Eq. (2) in the form

dF = σdA =
GME

r2
ρAdr − ω2rρAdr. (6)

Dividing by A and integrating from ξ to r we obtain

A(r) = A(ξ) e
ρ
σ [ 1

2 ω2(ξ2−r2)+
GME

ξ (1− ξ
r )] (7)

But GME

ξ2 = g(ξ) = the acceleration of gravity at level ξ. Also the first term in

the exponent (centrifugal acceleration) is much smaller than the gravitational
term. Choosing ξ = r0 = earth’s equatorial radius = 6378 km, g0 = g(r0) =
acceleration due to gravity at the cable’s base (earth’s surface) = 9.780 m·s−2;
A(r0) = cross-sectional area of the cable on the earth’s surface, (7) yields

A(r) = A(r0) e
ρ
σ g0r0(1− r0

r ). (8)

This equation gives a shape where the cable thickness initially increases
rapidly in an exponential fashion, but slows at an altitude a few times the
earth’s radius, and then gradually plateaus when it finally reaches maximum
thickness at geostationary orbit. The cable thickness then decreases again out
from geosynchronous orbit.

604 By comparison, most steel has a tensile strength of under 2 GPa, and the

strongest steels no more than 5.5 GPa, but steel is dense, The much lighter

material Kevlar has a tensile strength of 2.6-4.1 GPa, while quartz fiber can

reach upwards of 20 GPa; the tensile strength of diamond filaments would the-

oretically be minimally higher.

Carbon nanotubes appear to have a theoretical tensile strength and density

that are well above the desired minimum for space elevator structures. The

technology to manufacture bulk quantities of this material and fabricate them

into a cable is in early stages of development. While theoretically carbon nan-

otubes can have tensile strengths beyond 120 GPa, in practice the highest tensile

strength ever observed in a single-walled tube is 52 GPa, and such tubes tensile

strength ranges between 30 and 50 GPa. Even the strongest fiber made of nan-

otubes is likely to have notably less strength that its components. Improving

tensile strength depends on further research on purity and different types of

nanotubes.
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Thus the taper of the cable from base to the satellite at
ξ = rG = 42, 250 km is:

A(rG)
A0

= exp
[ρ

s
× 4.832 × 106 m2 · s−2

]
.

Using the density and tensile strength of steel, and assuming a diameter of
1 cm at ground level, yields a diameter of several hundred kilometers (!) at
geostationary orbit height, showing that steel, and indeed most materials used
in present day engineering, are unsuitable for building a space elevator.

The equation shows us that there are four ways of achieving a more rea-
sonable thickness at geostationary orbit:

• Using a lower density material. Not much scope for improvement as
the range of densities of most solids that come into question is rather
narrow, somewhere between 1000 kg m−3 and 5000 kg m−3.

• Using a higher strength material. This is the area where most of the
research is focused. Carbon nanotubes are tens of times stronger than
the strongest types of steel, hugely reducing the cable’s cross-sectional
area at geostationary orbit.

• Increasing the height of a tip of the base station, where the base of
cable is attached. The exponential relationship means a small increase
in base height results in a large decrease in thickness at geostationary
level. Towers of up to 100 km high have been proposed. Not only
would a tower of such height reduce the cable mass, it would also avoid
exposure of the cable to atmospheric processes.

• Making the cable as thin as possible at its base. It still has to be
thick enough to carry a payload however, so the minimum thickness at
base level also depends on tensile strength. A cable made of carbon
nanotubes (a type of fullerene), would typically be just a millimeter
wide at the base.

A space elevator cannot be an elevator in the typical sense (with moving
cables) due to the need for the cable to be significantly wider at the center
than the tips. While designs employing smaller, segmented moving cables
along the length of the main cable have been proposed, most cable designs
call for the “elevator” to climb up a stationary cable.

Climbers cover a wide range of designs. On elevator designs whose cables
are planar ribbons, some have proposed to use pairs of rollers to hold the cable
with friction. Other climber designs involve moving arms containing pads of
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hooks, rollers with retracting hooks, magnetic levitation (unlikely due to the
bulky track required on the cable), and numerous other possibilities.

Power is a significant obstacle for climbers. Available energy storage den-
sities, barring significant technological advances, are unlikely to be able to
store the energy for an entire climb in a single climber without making it
weigh too much. Some potential solutions have involved laser or microwave
power beaming, and solar power. Other possible designs involve the use of:

• energy from regenerative braking of down-climbers passing energy to
up-climbers as they pass,

• magnetospheric braking of the cable to dampen oscillations,

• tropospheric heat differentials in the cable,

• ionospheric discharge through the cable.

The primary power methods (laser and microwave power beaming) have
significant problems with both efficiency and heat dissipation on both sides,
although with optimistic numbers for future technologies, they are feasible.
Electrical power transmitted from earth or from the geostationary station
through the tether cable might require the use of yet to be developed super-
conducting materials which could complicate the cable design and add poten-
tial corrosion and microscopic cracking issues. Carbon nanotubes, while not
superconducting, can be extremely conductive and may represent a solution
to this problem.

Planetary engineering on a scale needed to realize a working space elevator
may seem today hardly more than a science fiction writers’ domain. Yet the
point is that it is not excluded by any physical law!

Space Elevator Timeline

1895 Konstantin Tsiolkovsky imagined the idea of a space elevator. Com-
ments from Nikola Tesla at about the same time suggests that he may
have also conceived this idea.

1957 Yuri N. Artsutanov suggested to extend a counterweight from the
geosynchronous satellite in a direction away from earth, keeping the
center of gravity of the cable motionless relative to earth. He also pro-
posed tapering the cable thickness so that the tension in the cable be
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kept constant. This renders a thin cable at ground level, thickening up
towards the geosynchronous satellite.

There have been two dominant methods proposed for dealing with the
counterweight need: a heavy object, such as a captured asteroid or a
space station, positioned past geosynchronous orbit, or extending the
cable itself well past geosynchronous orbit. The latter idea has gained
more support in recent years due to relative simplicity of the task and
the fact that a payload that went to the end of the counterweight-cable
would acquire considerable velocity relative to the earth, allowing it to
be launched into interplanetary space.

1966 American engineers found that the strength required for a cylindrical
tether would be twice that of any existing material including graphite,
quartz, and diamond.

1975 An American scientist, Jerome Pearson, designed a tapered cross
section that would be better suited to building the elevator. The com-
pleted cable would be thickest at the geosynchronous orbit, where the
tension was greatest, and would be narrowest at the tips to reduce the
amount of weight per unit area of cress section that any point on the ca-
ble would have to bear. He suggested using a counterweight that would
be slowly extended out to 114,000 kilometers (almost half the distance
to the moon) as the lower section of the elevator was built. Without
a large counterweight, the upper portion of the cable would have to be
longer than the lower due to the way gravitational and centrifugal forces
change with distance from earth. His analysis included disturbances
such as the gravitation of the moon, wind and moving payloads up and
down the cable. The weight of the material needed to build the eleva-
tor would have required thousands of Space Shuttle trips, although part
of the material could be transported up the elevator when a minimum
strength strand reached the ground or be manufactured in space from
asteroidal or lunar ore.

1977 Hans Moravec published an article called “A Non-Synchronous Or-
bital Skyhook,” in which he proposed a modification of the space ele-
vator idea into a more feasible tether propulsion system (Journal of the
Astronautical Sciences, Vol. 25, Oct.–Dec. 1977).

1978 Arthur C. Clarke introduced the concept of a space elevator to a
broader audience in his novel, The Fountains of Paradise, in which en-
gineers construct a space elevator on top of a mountain peak in the
fictional island country of Taprobane (which is actually an early name
for Sri Lanka).
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1982 In Robert A. Heinlein’s novel Friday the principal character makes
use of the “Nairobi Beanstalk” in the course of her travels.

1999 Larry Niven authored the book Rainbow Mars which contained a
“Hanging Tree” — an organic ‘Skyhook’ which was capable of interstel-
lar travel. The book skillfully discussed several merits/demerits of such
an approach to the Beanstalk — the primary demerit being that the
water necessary to sustain such an enormous ‘tree’ would require the
drying up of all of its host planet’s water bodies — which is used as a
plot device to explain the drying up of Mars.

2000 Min-Feng Yu et al., publish: “Tensile Loading of Ropes of Single Wall
Carbon Nanotubes and their Mechanical Properties,” Phys. Rev. Lett.
84, pp. 5552–5555.
T. Yildirim et al., publish: “Pressure-induced interlinking of carbon
nanotubes,” Phys. Rev. B 62, pp. 12648–12651.
David Smitherman of NASA / Marshall’s Advanced Projects Office
has compiled plans for such an elevator that could turn science fiction
into reality. His publication, “Space Elevators: An Advanced Earth-
Space Infrastructure for the New Millennium” is based on findings from
a space infrastructure conference held at the Marshall Space Flight Cen-
ter in 1999.

2002 American scientist, Bradley C. Edwards, suggests creating a
100,000 km long paper-thin ribbon, which would stand a greater chance
of surviving impacts by meteors. The work of Edwards has expanded
to cover: the deployment scenario, climber design, power delivery sys-
tem, orbital debris avoidance, anchor system, surviving atomic oxygen,
avoiding lightning and hurricanes by locating the anchor in the west-
ern equatorial pacific, construction costs, construction schedule, and
environmental hazards. Plans are currently being made to complete
engineering developments, material development and begin construc-
tion of the first elevator. Funding to date has been through a grant
from NASA Institute for Advanced Concepts. Future funding is sought
through NASA, the United States Department of Defense, private, and
public sources. The largest holdup to Edwards’ proposed design is the
technological limits of the tether material. His calculations call for a
fiber composed of epoxy-bonded carbon nanotubes with a minimal ten-
sile strength of 130 GPa (including a safety factor of 2); however, tests
in 2000 of individual single-walled carbon nanotubes (SWCNTs), which
should be notably stronger than an epoxy-bonded rope, indicated the
strongest measured as 52 GPa. Multi-walled carbon nanotubes have
been measured with tensile strengths up to 63 GPa.
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1884–1892 CE Heinrich Rudolf Hertz (1857–1894, Germany). The last
of the great physicists of the 19th century. Discovered electromagnetic waves
and opened the way for the development of radio, radar and television. James
Clerk Maxwell had predicted such waves in 1864.

Hertz used a rapidly oscillating electric spark to produce waves of ultra-
high frequency, and showed that these waves induced similar oscillations in
a distance wire loop. He measured the velocity of electromagnetic waves
and demonstrated that their speed, the transverse nature of their vibrations
and their susceptibility to reflection, refraction and polarization are all in
complete correspondence with the properties of light waves and infrared ra-
diation. He thus established beyond doubt the electromagnetic nature of
light.

Hertz discovered the effect of ultraviolet radiation upon electric discharge
and thus laid the foundation to the discovery of the photoelectric effect. In
1892 he experimented with the passage of cathode-rays (electrons) through
thin layers of metals. These experiments were crucial for the eventual identi-
fication of these rays.

Hertz is remembered today for his experimental discovery of electromag-
netic radiation predicted by Maxwell, but he was a gifted theoretician too.
Independent of Heaviside, he reformulated the 20 original Maxwell equation
(in 20 variable), in a compact set, removed the potentials and emphasized the
fields E and B.

Hertz was born at Hamburg to a Jewish family that had converted to
Christianity605 in 1838. He began to study engineering at Münich in 1877,
but soon abandoned it in favor of physical science at Berlin’s University.
During 1877–1878 Hertz prepared himself for his future work by reading the
original works of Laplace and Lagrange and attending the lectures of G.R.
Kirchhoff and H. von Helmholtz. In 1880 he submitted his disserta-
tion and became assistant to Helmholtz in the physical laboratory of the
Berlin Institute. In 1883 he became acquainted with Maxwell’s theory. He
made his discoveries in the Karlsruhe Polytechnic, where he was professor of
physics.

In 1889 Hertz was appointed to succeed R.J. Clausius as professor of
physics at the University of Bonn. He died prematurely, a few weeks short of

605 Nevertheless, Gustav Hertz (1887–1975), a nephew of Heinrich and a physics

Nobel Laurete in 1925, was still considered a Jew by the Nazis in 1933. Conse-

quently he was expelled from the Berlin Polytechnical University.
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his 37th birthday, from jaw cancer — complicated by blood poisoning caused
by surgery.

Standard Time

1884 CE Worldwide Time Zones were established. The meridian of longi-
tude passing through the Greenwich Observatory in England was chosen as
the fiducial point for the world’s time zones. [The mean solar time at Green-
wich is called the Greenwich Mean Time (GMT) or Greenwich Civil Time
(GCT). Astronomers call it Universal Time (UT).]

The international conference in Washington D.C. (1884) set up 12 time
zones west of Greenwich and 12 to its east. These zones divide the world into
23 full zones and two half-zones. The 12th zone east and the 12th zone west
are separated by an imaginary line called the International Date Line (IDL).
This IDL is halfway around the world from Greenwich. A traveler crossing
this line while headed west, toward China, loses a day. If he crosses it traveling
eastward, he gains a day. [In his book ‘Around the World in Eighty Days”,
Jules Verne (1828–1905, France) made use of this fact to dramatize the
conclusion of his story.] A few places, such as the polar regions, use GMT but
not standard time zones.

Before the adoption of standard time, each city in the U.S.A. kept the
local time of its own meridian. With the growth of railroads, these differences
caused difficulties: Railroads that met in the same city sometimes ran on
different times. In 1883 the railroads of the United States and Canada adopted
a system for standard time.

In 1918, the U.S. Congress authorized the establishments of time zones in
the United States. Today, nearly all nations keep standard time.
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1884 CE Paul Gottlieb Nipkow (1860–1940, Germany). Inventor. Dis-
covered the basic scanning principle of television, in which the light intensities
of small portion of an image are successively analyzed and transmitted. This
he accomplished through the invention of a rotating disc with one or more
spirals of apertures that passed successively across the picture.

Nipkow was born in Lauenburg, Pomerania, and died in Berlin during the
second World War.

1884–1885 CE William Le Baron Jenney (1832–1907, USA). Architect.
Designed Home Insurance Co. Building, Chicago, with type of steel skeleton
construction, making it the forerunner of modern skyscraper.

1884–1885 CE John Henry Poynting (1852–1914, England). Physicist.
Defined a vector that quantified the direction and magnitude of energy flow
of electromagnetic waves (Poynting vector).

Poynting also discovered a theorem that states the conservation of energy
for the electromagnetic field606. Poynting was a professor of physics at Mason
Science College, Birmingham, from 1880 until his death.

1884–1886 CE Ottmar Mergenthaler (1854–1899, Germany and USA).
Clockmaker and inventor. Invented the Linotype typesetting machine, re-
garded as the greatest advance in printing since the development of movable
type 400 years earlier.

It went through many stages of experimental development and was first
successfully used commercially in New York City by The Tribune (1886). It
gave a great impact to the development of printing.

Mergenthaler was born in Hachtel, Württemberg, Germany and was
trained as a watch and clockmaker. He arrived in Baltimore USA (1872)
and took a job in a machine shop, eventually working his way up into a
partnership.

His device consisted of a keyboard that composed matrices (molds) for
letters, and then cast an entire line of type at once. He demonstrated the
device and patented the Linotype in 1884. Many improvements have been

606 The time rate of change of electromagnetic energy within a certain volume, plus

the energy flowing out through the boundary surfaces of the volume per unit

time, is equal to the negative of the work done by the field on the sources within

the volume (provided there are no dissipative effects).
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made in the design of the machine since then,607and more than 1500 separate
patents have been taken out in connection with it. The present Blue Streak
Linotypes can set type in all sizes from the very smallest to the larger display
sizes and in thousands of designs. More than 850 languages and dialects are
set on Linotype machines in all parts of the world.

1884–1888 CE Max Eastman (1854–1932, U.S.A.). Inventor. Made it
possible for millions of people to become amateur photographers. Perfected
flexible roll-films and roll holders for winding them. Produced the first light-
weight camera.

1884–1903 CE Gottlob (Friedrich Ludwig) Frege (1848–1925, Ger-
many). Mathematician, logician and philosopher.

Played a crucial role in the emergence of modern logic and analytical phi-
losophy. His writings on the philosophy of logic, mathematics and language
are of major importance. His logical works mark a break between contempo-
rary approaches and the older Aristotelian tradition. Created the first fully
axiomatic system of propositional and first-order logic and also represented
the first treatment of higher-order logic. His theory of meaning, especially his
distinction between the Sense (Sinn) and Reference (Bedeutung) of linguistic
expressions, was important in semantics and the philosophy of language.

His major works are: Begriffsschrift (Concept-Script, 1879); Funktion und
Begriff (‘Function and Concept’, 1891); Über Sinn und Bedeutung (‘on Sense
and Reference, 1892); Grundgesetze der Arithmetic (‘Basic Laws of Arith-
metics, 1893–1902).

607 The operator sits before the keyboard which resembles that of a typewriter but

has 90 keys. He touches a letter key that releases a matrix (brass mold) from

the magazine (metal case) at the top of the machine. A moving belt carries

the matrix to its proper place in the line. Spaces between words are formed by

wedge-shaped spacebands, which are automatically inserted when the operator

presses a key. When the operator has composed the line of matrices they are

transferred to the casting mechanism. Here they are automatically Justified

(spaced) and molten metal forced into the faces of the matrices. The metal

hardens into a slug with raised letters into a shallow, sideless tray that is called

galley. The slugs are used to print books, newspapers, magazines and other

kinds of printed materials. The machine immediately and automatically return

the matrices to their places in the magazine, where it will be used over and over

again.
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Frege’s lifelong project, of showing that mathematics was reducible to
logic, was not successful608.

Frege’s ideas influenced Dedekind, Zermelo, Husserl, Russell, Car-
nap and Wittgenstein. He in turn was influenced by Leibniz, Boole
(1847), de Morgan (1847), Cantor (1872), and C.S. Peirce (1878). It
seems that Frege and Peano, working in parallel along the same time-window
1884–1904, had influenced each other in the field of axiomatic arithmetic and
symbolic logic. Frege rederived the Peano Axioms (governing the natural
numbers) from Hume’s Principle.

Frege was born in the coastal city of Wismar in Northern Germany, and
lived there until 1869. He studied at the University of Jena (1869), receiving
his Ph.D. there in 1873. He then spent all his working life at that university,
rising to a final level of associate professor in 1894. He married (1880) Mar-
garet Liesenburg (1856–1905). They had two children who died young. His
work was unfavorably reviewed by his contemporaries and then completely
ignored for 20 years. In his own country he long remained an obscure pro-
fessor of mathematics609. He was known to be rather anti-semitic and wanted
to see all Jews expelled from Germany. Had he lasted for another decade he
would surely become a Nazi sympathizer. This feature in his personality has
gravely disappointed some of Frege’s intellectual progeny.

608 In 1903, while the second volume of his Grundgesetze was still in Press, Frege

received a letter from Bertrand Russell which left him ‘thunderstruck’: in

it Russell informed him of a contradiction in his logical system (the ‘Russell

Paradox’), Frege never did manage to amend his axioms to his satisfaction.

After Frege’s death, Kurt Gödel showed (1930) in his incompleteness theorems

that Frege’s logistic program was impossible.
609 In her book ‘Frege’, Joan Weiner (Oxford University Press 1999, p.3) quotes

the diary of Frege, written in 1924:

“One can acknowledge that the Jews are of the highest respectability, and yet

regard it as a misfortune that there are so many Jews in Germany and that

they have a complete equality of political rights with citizens of Arian descent;

but how little is achieved by the wish that the Jews in Germany should lose

their political rights, or better yet, vanish from Germany.

If one wanted laws past to remedy this evil, the first question to be answered

would be: how can one distinguish Jew from non-Jew for certain? That may

have been relatively easy 60 years ago. Now it appears to me to be quite difficult.

Perhaps one must be satisfied with fighting the ways of thinking which show

up in the activities of the Jews and are so harmful, and to punish exactly their

activities with the loss of civil rights, and to make the achievement of civil rights

more difficult.”
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1884–1918 CE Alexandr Mikhailovich Lyapunov (1857–1918, Rus-
sia). Mathematician and mechanical engineer. Initiated the modern theory
of stability of autonomous systems of nonlinear differential equations (both
ordinary and partial). By his method, one gains information about the loca-
tion of the solution in phase-space even without solving the equation. The
procedure consists of finding a nonnegative functional of the configuration
(“Lyapunov function”) which has a non-positive time derivative610. Then the
solution of the differential equation will remain in a region described by the
functional and the initial conditions. To date, certain constructive methods
are known for obtaining analytic expressions for Lyapunov functionals.

In today’s terminology, Lyapunov’s theorem (1892) asserts that the equi-
librium state will be an attractor if the Lyapunov function is zero, iff the
configurations is at equilibrium and if the time-derivative of this function has
a fixed sign opposite to that of the function itself. This function plays an
important role in thermodynamic stability theory, since it is identified with
the entropy production function and is a useful concept even for a system
away from thermodynamic equilibrium. Lyapunov’s theory is also important
in nonlinear dynamics and control theory.

Lyapunov was born in Yaroslavl, a son of the astronomer Mikhail
Vasilievich Lyapunov, who worked at Kazan University. Lyapunov’s brother

610 The concept of the stability of an equilibrium is familiar from elementary me-
chanics. It is known, for example, that in a system whose mechanical energy is

conserved (‘conservative system’) — an equilibrium position corresponding to

a local minimum of the potential energy is a stable equilibrium position (La-
grange, 1788).

This idea was generalized by Lyapunov into a simple but powerful method for

studying stability problems in a broader context.
A simple example is provided by the autonomous system

dx

dt
= f(x, y),

dy

dt
= g(x, y)

which is assumed to have an isolated critical point at (x∗, y∗), i.e. f(x∗, y∗) = 0;

g(x∗, y∗) = 0.

Let u = x − x∗, v = y − y∗, (u, v) small. Expanding in Taylor series about
(x∗, y∗) we have

.
u =

.
x = f(x∗ + u, y∗ + v) = u

∂f

∂x

∣
∣
x∗ + v

∂f

∂y

∣
∣
y∗ + O(u2, v2, uv)

.
v =

.
y = g(x∗ + u, y∗ + v) = u

∂g

∂x

∣
∣
x∗ + v

∂g

∂y

∣
∣
y∗ + O(u2, v2, uv),

where ∂f
∂x

∣
∣
x∗ etc are numbers, not functions. Hence the linearized system can



2584 4. Abstraction and Unification

be written as [ .
u
.
v

]

=

[
fx fy

gx gy

] [
u
v

]

,

or simply
.
u = Au where u = (u, v) and

A =

[
fx fy

gx gy

]

(x∗,y∗)

=Jacobian matrix

at the fixed point (also known as the stability matrix).

The general solution of this linearized ODE system is written in terms of the
eigenvalues (λ1, λ2) of A and the corresponding eigenvectors (v1, v2) which

are solutions of Ax = λx, namely:

u(t) = c1e
λ1tv1 + c2e

λ2tv2

under the initial condition x0 = c1v1 + c2v2. [Note that not every matrix A

has two independent eigenvectors – e.g.

(
1 0

1 1

)

has λ1 = λ2 = 1 but only

a single eigenvector

(
0

1

)

, up to a multiplicative constant. In such a case, the

analysis presented here must be slightly revised.]

If τ = trace of A = λ1 + λ2 and Δ = det A = λ1λ2, one finds

λ1,2 =
1

2
[τ ±

√
τ2 − 4Δ],

where λ1, λ2 may or may not be real. Note that the transformation u = x − x∗,

v = y − y∗ has virtually moved the isolated critical point to the origin.
If limt→∞ x(t) = x∗, x∗ is called an attractor; this is guaranteed within some

neighborhood of x∗ (for x0) provided Re λj < 0, j = 1, 2. Assume that we

have shifted x∗ to (0, 0).
Let x = x(t), y = y(t) be a general solution of the above DE system and let

V [x(t), y(t)] ≡ V (t) be a function with continuous first partial derivatives in

the neighborhood of the origin, such that V (0, 0) = 0. Then V is said to be
positive definite if V (x, y) > 0 for (x, y) �= (0, 0) in the neighborhood and

negative definite if V (x, y) < 0 for (x, y) �= (0, 0).

Similarly V is called positive semidefinite if V (x, y) ≥ 0 for (x, y) �= (0, 0)
and negative semidefinite if V (x, y) ≤ 0 for (x, y) �= (0, 0). Clearly, along

trajectory (x(t), y(t)) that solves the DE system,

dV

dt
=

∂V

∂x
f +

∂V

∂y
g.

A positive definite function V (x, y) with the property that dV
dt

is negative
semidefinite is called a Lyapunov function of the above DE system.

The Lyapunov stability theorem states: If there exist a Lyapunov function

V (x, y) for the system {ẋ = f, ẏ = g} in some neighborhood of (0, 0), then
the critical point (0, 0) is stable. If V has the additional property that

dV

dt
=

∂V

∂x
f +

∂V

∂y
g
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is negative, then the critical point (0, 0) is asymptotically stable.

Loosely speaking, a critical point is stable if all paths that get sufficiently close
to the point stay close to the point at all times. Our critical point is said to be

asymptotically stable if it is stable and there exist a circle x2 + y2 = r2
0 such

that every path inside it for some t = t0, approaches the origin as t → ∞.
In the case of a system of n first order ODE

ẋi = fi(x1 · · · xn; t), i = 1, 2, . . . , n,

we write it in a vector form
.
x = f [x(t); t].

The system is autonomous if explicit time dependence of f is absent. Any

solution of this system is denoted by x(t) = x(x0, t0; t) with x0 = x(x0, t0; t0).
A specific solution x∗(t) = x(a, t0; t) is said to be Lyapunov-stable for t ≥ t0
if, for any ε > 0 there exists δ(ε, t0) > 0 such that for any general solution,

|x(t0) − x∗(t0)| = |x0 − a| < δ implies

|x(t) − x∗(t)| < ε for all times t ≥ t0.

In the case of instability, there always exists some ε > 0 and some x0 in an
arbitrary small neighborhood of a such that x(x0, t0; t) will leave the ‘ε-tube’

for some t > t0 (thus, stability is nothing more than a uniformly continuous

dependence on the initial conditions). One and the same DE may have both
stable and unstable solutions (linear DE are an exception).

If a solution is stable for t ≥ t0 and δ is independent of t0, the solution is

uniformly stable for t ≥ t0. A solution x∗(t) is attractive if there exists η > 0
such that |x(t0) − x∗(t0)| < η implies limt→∞ |x(t) − x∗(t)| = 0. If x∗(t) is also

stable it is said to be asymptotically stable.

The transformation y(t) = x(t) − x∗(t) yields

.
y = f [y + x∗(t)] − f [x∗(t)] = g(y, t).

The solution x∗(t) now corresponds to the trivial solution y = 0 and the stability

of this solution corresponds exactly to that of x∗(t). Thus, it is possible to

reduce the concept of stability of a motion to that of a treatment of the special
case of the stability of an equilibrium position. One may therefore restrict

oneself to the treatment of the trivial solutions of
.
x = f(x; t) i.e. assume that

f [0; t] = 0.
The Lyapunov stability theorem for this system then states the following: If

there is a positive definite function v[x(t), t] for the system
.
x = f [x(t), t] such

that for x(t) = (x1, . . . , xn)

dv

dt
≡ .

v[x(t), t] =
∂v

∂t
+ ∇v · f [x(t), t] ≤ 0,

then the trivial solution is stable.
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Sergei was a composer; another brother, Boris, was a specialist in Slavic
philology and a member of the Soviet Academy of Sciences.

After graduating from the Gymnasium in Nizhny Novgorod in 1876, Lya-
punov enrolled in the Physics and Mathematics Faculty of St. Petersburg Uni-
versity, where P.L. Chebyshev greatly influenced him. His master’s thesis,
suggested to him by Chebyshev, led him to become interested in the stability
of ellipsoidal forms of equilibrium of rotating fluids (1884–1885). This, in turn,
led to his classical paper on the general problem of the stability of systems
having a finite number of degrees of freedom (doctoral thesis, 1892)611.

In 1885 Lyapunov moved to the University of Kharkov, where he became
a professor in 1893. In 1901 he occupied the vacant chair of Chebyshev at the
St. Petersburg Academy of Sciences. In a series of papers written between
1903 and 1918, Lyapunov returned to the problem of the figure of equilibrium
of rotating nonhomogeneous fluids. He came to the conclusion that ‘pear-
shaped’ figures, that branch off from the Jacobi ellipsoids, are unstable. (This
instability was confirmed in 1917 by J. Jeans, who used Lyapunov’s results
in his astrophysical models.)

In the summer of 1917 Lyapunov went to Odessa with his wife, who suf-
fered from a serious form of tuberculosis. On the day of her death on 31
October 1918 he shot himself, and died three days later.

Lyapunov and A.A. Markov, who had been schoolmates at St. Peters-
burg University and, later, colleagues at the Academy of Sciences, were Cheby-
shev’s most prominent students, and representatives of the St. Petersburg
mathematics school. Both were outstanding mathematicians and both ex-
erted a powerful influence on the subsequent development of science.

1885 CE, Aug. 20 Ernst Hartwig (Germany). An astronomer. Observed
a new ‘star-light’ from a supernova explosion near the center of the Andromeda
Galaxy that happened ca 2 million years ago.

1885 CE Gottlieb Wilhelm Daimler (1834–1900, Germany) and Carl
Benz (1844–1929, Germany). Engineers. Experimenting separately, they
developed successful gasoline engines.

Daimler powered a two-wheeled motorcycle with his engine. Benz installed
his engine in a three-wheeled carriage. His vehicle had electric ignition, a
water-cooled engine and a differential gear, all of which are still common in

611 Poincaré tackled similar problems by making wide use of geometrical and

topological concepts, while Lyapunov used purely analytical methods. Both

works are fundamental to the qualitative theory of ODE.
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automobiles today. He also designed a float-type carburetor and a transmis-
sion system.

1885 CE Charles Sanders Peirce (1839–1914, U.S.A.). Mathematical lo-
gician. Introduced the concept of truth values of a proposition, the forerunner
of later truth tables. Son of Benjamin Pierce. Studied at Harvard. Worked
as a physicist and mathematician in the United States Coast and Geodetic
Survey (1861–1891). He retired from the USCGS without a pension, to de-
vote himself to writing, and consequently suffered financial hardships during
his retirement. After his death, several hundreds of unpublished manuscripts
were found.

Pierce worked on the 4-color problem and problems of knots and linkages.
He then extended his father’s work on associative algebras and set theory.
Invented a map projection using elliptic functions.

1885–1893 CE William Seward Burroughs (1855–1898, USA). Inven-
tor. Developed mechanical calculating machine (1885). It could do addition
and listing.

He was born in Rochester, N.Y. and began his career as a bank clerk. This
made him aware of the need for labor-saving device in accounting. His poor
health necessitated a move to a warmer climate and he relocated to St. Louis
(1882) where he devoted the next few years to devising an efficient calculating
machine. He improved the machine in 1893, including an oil-filled hydraulic
governor.

By 1898, the year Burroughs died, more than 1,000 machines had been
sold, and by 1926 his company had produced a million machines.

1885–1896 CE Karl Martin Leonhard Albrecht Kossel (1853–1927,
Germany). Biochemist. Discovered the nucleic acids adenine (1885), thymine
(1894) and the amino acid hystidine (1896). Investigated the chemistry of
proteins, the cell, and the cell nucleus. One of the first to apply methods of
analytical chemistry to examine chemical processes in living tissues. Awarded
the Nobel Prize for physiology or medicine (1910). He was a professor at
Heidelberg (1901–1924).

His son Walther Kossel (1888–1956, Germany) is known for his theory
of the physical nature of chemical valence (1916).

1885–1904 CE Carl Freiherr Auer von Welsbach (1858–1929, Aus-
tria). Chemist and inventor. Discovered (1885) the metallic rare earth
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elements612 neodymium (Greek: “new twin”) and praseodymium (Greek:
“green twin”). Invented (1898) first metallic filament for incandescent gas
lamps, which, for a while, competed successfully with Edison’s electric light
(1879).

Auer separated the so-called element didymium into neodymium (Nd;
A = 60) and praseodymium (Pr; A = 59). The ceramic industry uses salts
of neodymium to color glass and in glazes. The metal is present in mich
metal (1904), an alloy with many uses.

1885–1909 CE Edward Herbert Thompson(1860–1935, USA). Ex-
plorer and archaeologist. Discovered Yucatan Maya remains at Chichen-Itza,
including Sacred Well, Great pyramid and astronomical observatory. Un-
earthed many objects of archaeological significance.

Thompson was born in Worcester, Mass. Was US Consul in Merida, Mex-
ico (1885–1909). On March 04, 1904, Thompson began dredging the Cenote of
Sacrifice at the ancient Maya city Chichen-Itza and eventually substantiated
legends613 describing this natural, water-filled, limestone well as a repository
for the precious objects and human victims offered to the gods by the ancient
Maya (ca. 600 AD).

1886 CE The Woods Hole Biological Station was established (on Cape Cod,
Mass., U.S.A.). Out of it emerged (1930) the oceanographic institution for
research and study of marine science.

1886 CE Albert Ladenburg (1842–1911, Germany). Chemist. Made the
first laboratory synthesis of a natural alkaloid, coniine614. Coniine is the toxic
component of hemlock, the poison that ended the life of Socrates in 399 BCE.

612 A group of 14 elements with atomic numbers A = 58–71. The name rare earth is

a misnomer, since they are neither rare nor earths. Rare earths have 3 electrons

in the outer shells of their atoms that take part in valence bonding. Because of

this property, all rare earths have similar properties in water solutions, and all

can exist in the 3-valent state. In nature they are always found in the form of

phosphates, carbonates, fluorides and silicates.

The rare earths have many scientific and industrial uses. Tiny amounts of

separated rare earths are used in lasers.
613 According to the book Relacion de les Cosas de Yucatan (1566) by Fray Diego

de Landa (the bishop of Yucatan) and another book by Don Diego Sarmiento

de Figueroa (1579): in times of drought and disaster, beautiful maidens were

cast into the deep and muddy well as offerings to appease the god of rain. The

well was some 6 m across and 30 m deep.
614 C8H17N: one of the simplest alkaloids; found in the plant Conium maculatum

which was known to the ancient Hebrews as Rosh [Deut 29, 17; 32, 33; Jer 8,
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1886 CE An economical way was discovered to make aluminum from abun-
dant alumina and electric power.

14; 9, 14; 23, 15; Psalms 69, 22; Lament 3, 19; 3, 4; Hoshea 10, 4; Amos 6,

12]. Described also by Theophrastos (320 BCE), Dioscorides (70 CE) and

Pliny (75 CE).
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Aluminum

Aluminum is the most abundant metal in the earth’s crust (about 7.3
percent), and is the third most abundant element. It occurs as silicates in
almost all crystalline rocks615, clay and slate616.

Alum,617from which the element takes its name, was known to the Greeks
and Romans.

The German chemist Andreas Marggraf (1709–1782) was first able
(1754) to isolate alumina (Al2O3) from clay. Humphry Davy (1809), iso-
lated the impure metal, which he called aluminum. A purer metal was ob-
tained by H.C. Oersted (1824) by heating Aluminum chloride with potas-
sium.

Although aluminum currently costs less than $2.00 per kg, it was consid-
ered the most valuable metal in 1827 (16 million dollars for one kilogram!).
Indeed, it was so cherished by royalty in the early to mid 1800s that they alone
ate with aluminum spoons and forks while their lower class guests dined with
cheaper gold and silver service. Why was it originally so expensive?

Aluminum was first prepared by Friedrich Wöhler (1827), using the
following reaction

AlCl3 + 3K → Al + 3KCl,

where potassium was obtained by passing an electric current (from a voltaic
cell) through molten KCl. But copper and zinc used in voltaic cells were
expensive in the early 1800’s and in addition the great cost of energy required

615 Feldspar [KAlSi3O8, or K2O, Al2O3, 6SiO2] is a constituent of primary rocks

such as granite, and by the disintegration of these rocks, either by simple hydrol-

ysis or by combined action of moisture and atmospheric CO2, soluble alkali salts

and insoluble aluminum silicate (clay) pass into the soil; Cryolite (Na3AlF6);

Hornblende; Tourmaline; Augite and Micas.
616 Common clay is a mixture of kaolin [Al2O3, 2SiO2, 2H2O] with limestone,

quartz, and oxide of iron. The oxide alumina, Al2O3 is found either anhydrous

as corundum, or hydrated as diaspore [Al2O3, H2O], gibbsite [Al2O3, 3H2O]

and bauxite [an ore which is a mixture of the minerals AlHO2, Al(OH)3. It

contains also some iron oxide, titanium oxide and other impurities]. Slate is

clay hardened and laminated by pressure.
617 KAl(SO4)2·12H2O; a mixture of clay and limestone constitutes marl, whilst a

mixture of clay and sand is called loam. Bauxite was discovered (1821) by the

mineralogist P. Berthier near Les Baux in Provence, France.
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to melt large quantities of KCl was prohibitive. Thus, it was impractical
to produce aluminum by passing an electric current through molten Al2O3

because it has a high melting point of ca 2000◦C. This high temperature is
difficult to achieve and maintain, and even so, the components of most voltaic
cells melt below this temperature (zinc at 420◦C and copper at 1083◦C).

The cost of aluminum began to drop in the late 1800s as a result of two
major advances:

• The invention of the commercial direct current electric generator (1869)
by the Belgian inventor Zénube Théophile Gramme, which could
produce electricity by steam or water. Although this mode of production
of electricity was much less costly than electricity generated by voltaic
cells, aluminum still cost more than $200,000 a kg.

• Chemists discovered618 (1886) the electrolytic method of producing alu-
minum: they could lower the melting point of aluminum oxides by mix-
ing it with salts such as cryolyte.

Since 1886, the price of aluminum has decreased markedly because of lower
electrical costs, improved production techniques, and recycling of discarded
aluminum products.

Aluminum is not only the most abundant metal but also one of the most
useful because of its unique combination of properties: low density (2.699 g

cm3

at 20◦C), high resistance to corrosion (by forming a very thin protective layer
of Al2O3), good thermal and electrical conductivity, attractive luster, and
lack of toxicity. Its uses range from electric transmission lines to kitchen foil
and cooking utensils. Alloys with magnesium, manganese, and copper have
high mechanical strength and are easily machined, so that they have come
into widespread use in the construction of buildings, automobiles, airplanes,
and ships.

Nowadays, aluminum is of inestimable value in energy conservation:
Around homes one finds storm doors and windows, insulation backed with
aluminum foil, and aluminum siding, Because vehicle weight significantly af-
fects gas mileage, substituting aluminum for heavier metals in cars, trucks,
trains, and aircraft helps preserve petroleum supplies. Aluminum thus helps

618 Charles Martin Hall (1863–1914, USA) and independently, in the same year,

by Paul Louis Toussaint Heroult (1863–1914, France): A carbon-lined iron

box, which serves as a cathode, contains the electrolyte, which is the molten

mineral cryolite (Na3AlF6) in which aluminum oxide Al2O3 is dissolved. The

aluminum oxide is obtained from the ore bauxite. To make a ton of aluminum

in this way requires about 20,000 KW-hours of electricity.
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conserve energy and improve standard of living at the same time. The largest
producers are currently the United States (ca 2 million metric tons in 1990),
Russia and Canada.

Alkaloids — Elixirs of Life and Death

Primitive man had no knowledge of the cause of his physical ailments,
nor did he have effective means of alleviating his suffering. His life span
was relatively short. The slightest injury or the smallest infection frequently
brought him great suffering and death. Little did he know that healing and
pain-killing medicinal substances lay within arm’s length.

Primitive man attributed his ills so “evil spirits” that had invaded and
taken control of his body. He sought the services of the tribal medicine man,
who he believed was endowed with supernatural powers. The medicine man
had many magical ways of “healing” the members of his tribe. Often he
danced and chanted around his patient’s prostrate body, shaking rattles filled
with animal teeth and small bones. Sometimes the patient was instructed to
kill a small animal and wear a string of its teeth around his neck as a “charm”.
Or the “witch doctor” might prepare a foul-tasting concoction of toad’s eyes,
the dried blood of a bird, and a pulverized bone of a deceased enemy soaked
in the urine of a newborn baby. Then he would administer the concoction in
various ways; he might have the patient drink it, or he might rub it on the
patient’s body.

However, as man roamed the land in search of anything edible, he tasted
roots, leaves, stalks, and tree barks — almost anything he thought might
provide nourishment. Through trial and error, he undoubtedly encountered
many plants with both beneficial and malevolent properties. Many of these
plants contained alkaloids that are still valuable in modern medicine. Other
plants had a negative effect on him. For example, the heady fragrance and
delicacy of the lily of the valley with its white bell-shaped flowers belies its
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toxic properties. The plant can cause severe skin lesions in a susceptible
individual. However, modern physicians have found beneficial uses for this
plant as well. It contains a substance that sometimes is incorporated into
diuretics (fluid reducers) and cardiac (heart) tonics.

Many decorative garden plants that we take for granted, such as the rhodo-
dendron, also have toxic properties. Children who have sucked the nectar
from the colorful flowers have suffered severe shock-like symptoms. At one
time rhododendrons were used as an insecticide because of their toxicity. Daf-
fodils, eucalyptus, oleander, azaleas, hyacinth, poinsettia, and bleeding heart
are other common plants that can be deadly if eaten. Undoubtedly early man
tasted them all in his quest for food.

Thus, the curative, narcotic, hallucinogenic and poisonous effects of cer-
tain plant extracts were known already in prehistorical times: The use of
psychoactive drugs is very ancient. The peoples of India (ca 1000 BCE) were
using a potent psychoactive drug called soma (possibly derived from mush-
rooms), and Herodotos records the Scythians inhaling the smoke from burning
hemp seeds.

The linkage between chemistry and the art of healing also goes back to an-
cient times. Recipe books or antidotaries of various mixtures believed to have
curative powers were known in medieval Europe. The Arabs preserved an es-
sentially unbroken contact with ancient medical science; portions of the works
of Hippocrates and other early medical practitioners such as Dioscorides
and Galen had been translated into Arabic by the 9th century. The first
Arabic pharmacopoeia was brought to Europe in the 11th century.

Paracelsus (1493–1541), who was part charlatan and part scientist,
played an important role in furthering the medical applications of chemistry
and in urging a search for new drugs.

Poisons play an important part in history. Every historical figure in power
lived with the constant fear that his life could be abruptly ended with his next
cup of wine or morsel of food. The Duchess of Ferrara, the infamous Lucretia
Borgia of Italy (1480–1519), was notorious for her use of herb poisons, which
she carried concealed in hinged finger rings. The Duchess disposed of an
untold number of persons who threatened the power of her family, or persons
whom she considered menacing.

Alchemists were often members of the royal courts. One of their functions
was to prepare special poisonous potions, as well as to prepare antidotes for
them.

In addition to making protein, carbohydrates, fats, and other compounds
familiar to most people, plants synthesize a huge array of substances that
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are usually found in relatively low quantities. The general name of these
substances is secondary plant products, which gives no idea of the chemical
range of the materials or any idea of their importance. The medicine products,
the natural dyestuffs, products for the chemical industry (gums, resins, etc.),
and a wide variety of common, everyday substances used as flavorings and
essential oils (perfumes, peppermint) are secondary plant products.

Among the secondary plant products that have long played important
roles in human life are the alkaloids. They can be extracted from the roots,
leaves and seeds of certain plants (Table 4.8) and possess marked physiological
activity and are also valuable curative agents. The word alkaloid is a purely
chemical word defined as an organic chemical molecule — one containing
carbon atoms — which also contains at least one atom of nitrogen. All can be
crystallized and, when dissolved in water or in alcohol, they give an alkaline
reaction to the solution. The nitrogen in an alkaloid is usually found in
combination with a ring of carbon atoms, the so-called heterocyclic ring.

Other common replacement for carbon in these structures are oxygen and
sulfur. These compounds are contrasted to carbocyclic compounds, which
contain only carbon in the ring. When an alkaloid is mixed with an acid,
such as hydrochloric, the very water-soluble hydrochloride is formed; this is
the usual way of getting alkaloids into simple solutions. In solutions or as the
crystal, they are colorless, are most soluble in alkaline solutions such as weak
sodium hydroxide, and almost invariably have a bitter taste. The flavor of
tonic water is due to quinine, one of the alkaloids.

There are today about 300 known natural alkaloids and their number
increases with the growth of biochemical research of plants. Among the types
in common use are the sedatives, and analgesics, the narcotics, the stimulants,
the antidepressants, the tranquilizers, and the hallucinogens. Some of these
alkaloids are listed in Table 4.12.

The exploration of the chemical nature of alkaloids has been one of the
boldest and most difficult challenges of analytic organic chemistry, occupy-
ing the minds of the greatest chemists over the past two centuries. The 19th

century in particular, saw an accelerated growth in the discovery and under-
standing of drugs.

A good deal of study of the specific effects of various drugs and of the
relationship between chemistry and physiology took place. An interest in the
synthesis of drugs arose, as opposed to simply isolating them from naturally
occurring materials.
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Table 4.12: Common Alkaloids and their properties

Alkaloid Source Activity or Application

Aconitine Aconite root (Wolfsbane)
(Aconitum napellus)

Poison, sedative, useful in all
febrile and inflammatory
diseases

Atropine Atropa belladonna Mydriatic, antispasmodic

Caffeine Coffee
(Caffea arabica)

Stimulant, diuretic

Cinchonine Bark of the Quina tree
(Cinchona officinalis)

Antipyretic

Cocaine Coca leaf
(Erythroxylom coca)

Local anesthetic

Codeine Opium poppy
(Papaver somniferum)

Cough control, analgesic

Colchicine (Colchicum autumnale) Anti-cancer teraphy;
treatment of gouty-arthritis

Coniine Hemlock (plant)
(Conium maculatum)

Poison

Digoxigenin Purple Foxglove (plant)
(Digitalis purpurea)

Digitalis for treatment of
cardiac insufficiency

Ephedrine Ma huang
(Ephedra vulgaris)

Decongestant (respiratory
ailments); Mydriatic

Epinephrine Body adrenal medulla Hormone controls
metabolism, and adjustment
to stress

Ergonovine Sclerotia of rye grain fungus
(Claviceps purpurea)

Ergotism

Ergotamine Sclerotia of rye grain fungus
(Claviceps purpurea)

Ergotism

Etoposide Mandrake (plant)
(Mandragora officinarum)

Analgesic, soporific,
chemotherapy

Himbacine (Galbulimima belgraviana) Hallucinogenic

Hyoscyamine Henbane
(Hyoscyamus niger)

Hallucinogenic, narcotic,
mydriatic
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Table 4.12: (Cont.)

Alkaloid Source Activity or Application

Lobeline Indian tobacco
(Lobelia inflate)

LSD Sclerotia of rye grain fungus
(Claviceps purpurea)

Hallucinogenic

Mescaline Peyote cactus
(Lophophora williamsii)

Hallucinogenic

Morphine Opium poppy
(Papaver somniferum)

Cough control, analgesic

Nicotine Tobacco
(Nicotiana tabacum)

Insecticide

Papaverine Opium poppy
(Papaver somniferum)

Cough control, analgesic

Piperine Pepper
(Piper nigrum)

Spice, seasoning

Psilocybin Mushroom fungus (Soma)
(Stropharia cubensis and

Psilocybe mexicana,
Amanita muscaria)

Hallucinogenic

Quinine Bark of the Quinea tree Antimalarial

Reserpine Indian snake root
(Rauwolfia serpentina)

Tranquilizer, sedative

Scopolamine Jimson weed
(Datura stramonium)

Sedative, hypnotic, mydriatic
soporific, depressant

Serotonin Body blood platelets, mid
brain and enterochromaffine

cells

Hormone; prevent bleeding

Strychnine Nux Vomica (plant) Poison, tonic

Taxol Bark of yew tree Ovary and lung cancer

THC Hemp (Hashish, Marijuana)
(Cannabis Sativa)

Hallucinogenic, fiber

Thebaine Opium poppy
(Papaver somniferum)

Cough control, analgesic
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Table 4.12: (Cont.)

Alkaloid Source Activity or Application

Tryptamine Yakee, Yato
(Virala calophylla)

Hallucinogenic

Tubocurarine Curare
(Chondodendron)

Poison, treatment of tetanus
and hydrophobia

Valium
(diazepam)

Synthetic Minor tranquilizer

Vinblastine Periwinkle plant Chemotherapy

Vincristine Periwinkle plant Chemotherapy

Vindesine Periwinkle plant Chemotherapy
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Medical vocabulary:

Analgesic: pain-reducing without impairing consciousness.

Anesthetic: capable of producing loss of bodily sensations with or without
loss of consciousness; used in surgery. Whereas general anesthetics
produced a state of coma, local anesthetics work by depressing sensory
endings or blocking the conduction of impulses through the nerves.

Antipyretic: reducing fever.

Antispasmodic: preventing or curing spasms.

Antitoxin: a serum serving to neutralize a toxin.

Aphrodisiac: exciting the sexual organs.

Barbiturate: derivative of barbituric acid, used especially as sedative or
hypnotic. Affects all levels of the central nervous system. Can be
addictive.

Carminative: easing gripping pains and expelling flatulence.

Decongestant: a drug that reduces excessive circulation in an organ by
constricting blood vessels; usually taken to drain nasal passages and
alleviate cold symptoms.

Depressant: an agent that reduces activity of bodily function.

Diuretic: fluid-reducing.

Emetic: cause vomiting.

Emollient: having softening and soothing effect.

Hallucinogenic: having the capability of the perception of objects or the
experiencing of feelings that have no cause outside one’s mind; caused
especially as a result of mental disease or effects of a drug. It has been
suggested that hallucinogens permit people to enter the “real” world,
closed off from childhood by the many layers of culture that surround
us from birth.
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Medical vocabulary (cont.)

Haemostatic: drugs used to control bleeding.

Hypnotic: (= Soporific) sleep-inducing agent.

Mydriatic: a drug that produces dilation of the pupils.

Narcotic: an addictive drug that in moderate doses blunts the senses,
relieves pain and induces sleep. In excessive doses causes stupor, coma
or convulsions.

Sedative: tending to calm or relieve tension and irritability. Both sedative
and hypnotic drugs depress the higher brain centers, decreasing ex-
citement and activity.

Stimulant: an agent that temporarily increases the functional activity or
efficiency of a tissue or an organ. Energy producing.

Sudorific: producing copious perspiration.

Therapy : mode of medical healing. Perhaps from the Hebrew trufa =
medicine; may also be linked to teraph = ancient Hebrew household
god.

Tonic: substance producing a feeling of well-being.

Tranquilizer: drug used to reduce mental disturbance such as anxiety or
tension.
The highly competitive nature of our culture often necessitates the
quick lunch, the fast freeway, the “urgent” telephone call — in general,
a “burning the candle at both ends” way of life. This fast pace tends
to play havoc on many people’s “nerves”. Consequently some people
use tranquilizers to relieve anxiety and tension.
Physicians’ offices are lined daily with victims of modern life who
find that relaxation is difficult to obtain. Patients complain of many
symptoms, from queasy stomach to “sledgehammer” headache. Some
fear that they are developing major diseases because their tensions
“translate” into symptoms of actual diseases.

Vulnerary: used in healing wounds.
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Table 4.13: Milestones of Progress of Alkaloid Research

1776 William Withering recognized the importance of
digitalis in the treatment of heart and kidney dis-
eases.

1805 Friedrich Sertürner extracted morphine from
opium and used it to relieve pain.
Carl Gauss used morphine to relieve pain of moth-
ers in difficult child-birth.

1816 Pierre Pelletier and Joseph Caventou isolated
strychnine and quinine.

1817 The name alkaloid coined by the pharmacist W.
Meissner.

1818–1840 Discovery of caffeine, atropine, codeine, curarine and
other important alkaloids. Gerhardt, Regnault,
Laurent, Andrews and Berzelius developed new
methods for the investigation of alkaloid structure.
Liebig, Würtz and Hoffmann (1848) considered
alkaloids as acids of amonia in which atoms of hy-
drogen were replaced by organic radicals.

1886 Albert Ladenburg synthesized coniine — the first
alkaloid to be synthesized in the laboratory.

1905 Robert Willstätter discovered the chemical struc-
ture of many alkaloids and synthesized some of them
(atrophine, cocaine).

1925 Robert Robinson discovered the chemical struc-
ture of morphine and other alkaloids. Explained the
formation of alkaloids from condensation of amonia,
formaldehyd and amino-acids. Suggested that plant-
alkaloids are end waste-products of their metabolic
chain.

1938 Hoffmann and Stoll discovered LSD. Dustin dis-
covered that colchicine was cytotoxic (blocking cell
division).
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Table 4.13: (Cont.)

1943 Hoffmann discovered that LSD is hallucinogenic.

1944–1956 Robert Woodward synthesized quinine (1944),
strychnine (1947), lysergic acid (1954) and reserpine
(1956).

1965 First synthesis of the active hallucinogen THC.

Additional historical, folkloristic and scientific data concerning alkaloids
is given below.

I. The four genera: Atropa, Datura, Hyoscyamus and Mandragora be-

long to the tomato family (Solanaceae) and each contains one

or more of the tropane alkaloids: Atropine, Scopolamine and

Hyoscyamine.

Atropine is a stimulant of the central nervous system and depressant of
the parasympathetic nervous system.

In minute quantities, atropine is used as an antidote to other poisons; in
moderate doses it causes loss of motor coordination; in higher concentrations
it leads to hallucinations, delirium, stupor; in large quantities it is a deadly
poison.

Greece and Rome knew it as a sedative and an hallucinogen. Bacchana-
lian orgies utilized new wine spiked with small amounts of the sap. With
the spread of Christianity, bacchanalian orgies became a lamented aspect of
the golden age of Rome, but belladonna’s star rose again as witchcraft and
demonology captured people’s imagination.

The name belladona dates from the late Middle Ages: Italian ladies put
drops of diluted nightshade sap in their eyes to induce mydriasis — the deep,
dark mysterious look caused by dilated pupils. Indeed, since atropine blocks
the normal transmission of signals across synaptic junctions between nerves,
opthalmologists used it to prevent the autonomous closing of the pupil in
bright light.

At one time the jimsonweed, which contains the alkaloid scopolamine, was
used in childbirth to alleviate pain. However, it is extremely toxic, and it
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often resulted in coma and death for those women who ingested it. Today,
scopolamine is incorporated into some motion-sickness remedies. It is also
used in the treatment of some symptoms of Parkinson’s disease.

White henbane, another herb with poisonous properties, contains the al-
kaloids hyoscyamine, hyoscine, and atropine. Ancient men found this herb to
be useful in warfare. For example, two enemy camps might hold a “truce” cel-
ebration. The conquered army would serve wine laced with this poison to the
invading army as a “goodwill” gesture, and the two armies would exchange
toasts. The conquered became the conquerors after the first cup of wine. In
modern times this drug has been used for treating mercury poisoning and
morphine addiciton. In small amounts it produces sleep; in larger amounts it
produces death.

Scopolamine as a truth serum may or may not still be used, depending on
whose national intelligence agency is being asked.

The third tropane alkaloid, hyoscyamine, is similar in action to atropine,
but the clinical responses are sufficiently different to suggest that the receptor
sites are not the same. The amounts used medically are very small; practi-
tioners know that even slightly higher dosages, particularly when administered
internally, have grave consequences and may lead to death.

Mandrake, known in biblical times [Gen 30, 14–17; Cant 7, 14] also con-
tains large quantities of the alkaloids hyoscyamine and scopolamine, which are
capable of causing prolonged stupor and alleviating severe pain. Relatives of
victims being crucified brought sponges soaked with a solution of mandrake
and other herbs to help numb the victim’s pain. This was a merciful release
from the tortures of the slow death of crucifixion. It is believed that Christ
was administered this drug by his disciples to help relieve his agony in his last
hours.

Long before the Hebrews, the mandrake had been associated with sexuality
and sins of the flesh. The Ebers medical papyrus of 1500 BCE listed it as
dudajm, the fruit that excites love; Pharaoh Tutankhamen was buried with 11
mandrake roots in the sixth row of his floral collarette to ensure his potency
in the next world. The Greeks named it circeium after Circe who, Homer
reported, lured men to her and changed them into swine, that is, into sexual
pigs. They referred to Aphrodite as Dios Mandragoritis. Mandrake roots,
carved into big-hipped and -breasted fertility figurines, have been unearthed
at Antioch and Damascus and from tombs in Constantinople and Mersina.

Further evidence for the medicinal use of mandrake is found in the writings
of Hippocrates, Plato, Pliny, Theophrastos, Galen and Dioscorides.
Even as late as the 13th century, a mixture of opium, and mandrake juice
compounded in vinegar was taken up in sponges and inserted into the nostrils
of patients undergoing surgery, at the Bologna medical school.
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Datura (Jimsonweeds) contains the three tropane alkaloids mentioned
above. It has been used ritually in India as far back as records have been
kept. It is also known to be used in puberty rites of passage in South and
Central America and from there it diffused into the British colonies in North
America.

Datura was the original knockout drops, and thieves in India and in Europe
used it for centuries. Up until at least the beginning of this century, juice
of datura leaves was added to milk given young Indian girls who were to
be initiated into prostitution. The drink was narcotic and, it was asserted,
aphrodisiac, so that the victim was believed to have actively contributed to
her own downfall. The Chinese, believing that datura was a sexual stimulant,
administered it to brides on their wedding night to calm their nerves and to
make them more sexually receptive.

The European attitude towards datura parallels that in the Far East.
Apollo’s priests drank datura to achieve sedated, prophetic, and oracular
states. The sacerdotal plant of Delphi was undoubtedly datura; the mum-
bling speech, trance states, and known fears of over-dosage are consistent
with datura intoxication. Greek physicians knew it as nuxmetal or neura,
a reference to its sedative action, and when extended unconsciousness was
desirable, as during surgery, datura was mixed with opium.

Rome followed Athens’ lead in ritual and in medicine and added the drug-
induced orgy in which datura mixed with wine was used to induce hallu-
cinogenic states and to heighten sexual activity. Avicenna, a tenth-century
Arabian physician, recommended datura not only for surgery, but as an ex-
cellent treatment of anxiety.

From Arabia, the medical and aphrodisiacal use of datura spread to Spain
and to Western Europe; Northern Europe was too cold to support the growth
of datura with high tropane content.

Datura was an important ingredient in the poisonings that pervaded
Southern Europe from 1400 to 1700. Nobles and merchants sent members
of their family to schools teaching the art of poisoning for much the same rea-
sons as we send our children to graduate schools of business administration.
No love potion worth paying good money for was without datura, usually sup-
plemented with extracts of other solanaceous plants and, for good measure,
attar of roses, marjoram, other herbs, and a newt’s tongue. Witches’ Sabbats,
the infamous black masses that so intrigued prurient Victorians, utilized oint-
ments and unguents containing datura. Whole leaves were inserted into the
rectum or vagina where tropanes are quickly absorbed; the broomstick, devel-
oped as a symbol of this part of the ritual probably because of the “flying”
hallucination experienced by the users of the drug.
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Cocaine, like atropine, belongs to the pyrrolidine family of alkaloids. It is
found in the leaves of the South American coca bush, known to the natives
before the discovery of America.

Cocaine acts as a stimulant to the central nervous system. It produces
euphoria and insensitivity to pain and is a potent antifatigue agent. Although
cocaine has been used as a local anesthetic, its toxic properties have caused
a decline in its medicinal use. Many of its derivatives such as Novocaine and
Lidocaine are widely used in dentistry and plastic surgery and in nerve blocks
to reduced severe pain.

II. The alkaloid family of isoquinoline includes quinine, mescaline,
chinchonine and the opiates — morphine, codein, thebaine and oth-

ers.

Quinine is obtained from the bark of the chinchona tree, found primarily
in the rain-forests on the eastern slopes of the Andes of Peru, Bolivia and
Columbia, at heights of 1000–8000 m. The name of the genera was coined
by Linnaeus (1628) in honor of Count Chinchona, viceroy of Peru. Natives
of Peru used it to cure fevers. After Lima was founded (1520), this became
known to the Spaniards who carried the curative bark to Europe, whereby
1640, it was widely used as an antimalarial.

During WWII, when Japanese overrun the plantations of south-east Asia,
Quinine shortage urged American and British chemists to develop synthetic
antimalarial substitutes.

Mescaline is a hallucinogenic alkaloid. It causes hallucinations, sense dis-
tortions, elevated blood pressure, and profuse sweating, although it is about
7500 times less potent than LSD. Mescaline was obtained from the small cac-
tus plant, the peyote, by the Indians in Mexico as early as the 16th century
for use in their religious ceremonies.
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Peyote grows in the Rio Grande River area. It has buttons or tufts, which
are from a small cactus plant. They are dried and sometimes crushed and
brewed into a beverage. The Aztec Indians used the brew during their re-
ligious festivals, and the early American Indians used it as a hallucinogen
to “communicate” with their “divine spirits”. The drug reached the North-
American Apache Indians (1870), who adopted it as a cult object.

The botanical family Papaveraceae contains 25 genera and 120 species of
flowering plants. Most are herbaceous annuals, although a few die back to
the ground each year and form new shoots from a perennial rootstock. The
family originated in Asia Minor. The genus Papaver contains ten species,
several of which, the Iceland poppy (P. nudicaule) and the oriental poppy (P.
orientalis), are common garden plants. The California poppy (Eschscholzia),
well known to most gardeners, is a member of another genus in the family.
None of these plants produce alkaloids of medical interest. The one that
does is the opium poppy (P. somniferum) whose specific name was chosen by
Linneaus because of the sleep-inducing properties of the gum produced in the
young seed capsule of the plant.

The opium poppy can be grown in many parts of the world where the
growing season is sufficiently long with warm, sunny weather. Because of the
need for cheap labor, it is presently grown in relatively few countries of the
world. India and Pakistan each produce about 100 metric tons of opium each
year, most of it consumed locally, Afghanistan produces the same amount,
but the crop is smuggled into other countries of the Middle East. Turkey has
traditionally been the major supplier of legal (medicinal) opium for the West,
with between 60 and 100 metric tons produced each year. Mexico has only
recently become an opium-producing country, although its production is still
under ten metric tons. Less is known about production in the area of southeast
Asia called the Golden Triangle, an area embracing parts of Burma, Laos, and
Cambodia, but it may well be the greatest producer. Report on production
vary from 250 to over 500 metric tons per year. The world’s production of
raw opium is close to 1000 metric tons per year, of which less than 250 tons
enters legal medical channels; the United States processes about 150 metric
tons to isolate morphine and codeine.

Of the alkaloids found in raw opium, three are of medical importance.
Close to 11 percent of opium is the single alkaloid morphine, while codeine
constitutes about 2 percent and thebaine a bit less than 1 percent of the
weight of the opium gum.

Morphine (C17H19O3N) is the principal component of opium [from the
Greek word opion, for “poppy juice”; mentioned in the Jerusalem Talmud:
Avoda Zara, page 40, side 4], which is obtained as the milky juice that exudes
from unripe poppy seed capsules.
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Morphine acts on the central nervous system and can induce addiction.

The specific action of morphine appears to be related to the ability of the

molecule to fit into and block specific receptor site on a nerve cell; the benzene

group of the morphine molecule fits snugly against the flat part of the protein

that acts as a receptor site, and the neighboring group of carbon atoms is at

the correct distance and orientation to fit into the groove. Beyond the groove

is a group with a negative charge, which can attract the positive charge of
the nitrogen atom. By fitting the shape of the receptor and binding to it,

the incoming morphine molecule eliminates its action. In this respect the

molecule mimics the body’s natural pain killers, the enkephalins.

Raw opium has used medically for centuries. Summerian tablets of 2500
BCE noted that when small balls of opium were eaten or taken after mix-

ing with wine, the drug induced sleep and relieved pain. Homer spoke of

nepenthe, a substance which will “lull pain and bring forgetfulness of sor-

row”. Hippocrates, Theophrastos, Pliny, Dioscorides, and other ancient med-

ical writers recommended opium, and it was the most used analgesic up to

the 20th century.

In the later half of the 19th century, pharmaceutical chemists started al-

tering the morphine molecule in order to make a compound which would be

more effective than the natural alkaloid and less addictive. They came up

with heroin (more “heroic” than morphine), in which morphine’s hydrogen

atoms of two –OH groups have been replaced by acetyl groups (–CO–CH3).

This replacement made heroin more soluble among the hydrocarbon chains of

fats and less soluble in water. When injected directly into the blood, it passes

more rapidly through the blood-brain barrier, the barrier that prevents water-

soluble and large molecules from passing between the two. As a result, it is

more potent than morphine, but its effect does not last as long. Once heroin

is absorbed into the body, the acetyl groups are removed, forming morphine,

which provides its analgesic and euphoric action.

III. The piperidine alkaloid group; (includes coniine and nicotine).

Nicotine, along with about ten other alkaloids, is found in tobacco. When

it is taken into the body through smoking, nicotine increases the blood pres-

sure and pulse rate and constricts the blood vessels. Nicotine contains both a

piperidine ring and a pyrrolidine ring. In concentrated form, it is extremely

toxic and is therefore often used as an insecticide.
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IV. The ergot alkaloid group; includes lysergic acid (LSD), strychnine and

THC (delta-tetra-hydro-cannabinol) which is the active ele-

ment in the resinous exudate of the hemp plant (cannabis).

Nux Vomica, a strychnine-type drug, was once widely used to kill rats
whose parasitic fleas were responsible for spreading plague diseases, such as
the bubonic plague that killed millions of people in Europe for three centuries.
These fleas also spread typhus, another deadly disease. Other strychnine-type
drugs were used to eradicate unwanted spouses, competing heirs, meddling
relatives, and so on. These unfortunate people were often served their last
meal with a “seasoning” of this drug.

Although the use of cannabis as a fiber and food crop dominated its pro-
duction in the Orient for a long time, its medical uses were known and ex-
ploited. In a medical book ascribed to the legendary Emperor Shen-Nung
in 2737 BCE (but probably written in the Han dynasty about 100 BCE) ,
ground, dried leaves of cannabis, known as ma-yo, were recommended for
malaria, beriberi, constipation, as an anesthetic in surgery, and for that dis-
ease of old age — absent mindedness. Shen-Nung noted that its primary
medical value was in calming hysterical women. In India and throughout
southeast Asia, cannabis was also used medically, and its capacity to ease
anxiety was noted in both Hindu and, later, in Buddhist writings, where it
was referred to as the “soother of grief ”.

It seems that cannabis entered India about 1500 BCE, where it was first
formally exploited as an hallucinogen. Knowledge of its hallucinogenic prop-
erties spread from India throughout Asia and Asia Minor about 500–1000
BCE. Herodotos described its uses by the Scythians in 500 BCE. Thebans,
Greeks, Arabs and natives of Africa succumbed in turn to the drug.

Marijuana entered the New World via Mexico when her French rulers
introduced its cultivation for hallucinogenic purposes in the nearly ideal hot,
dry lands around Mexico City. Its use spread very slowly to the native peoples
because the peon preferred native hallucinogenic plants that were sanctified
by usage dating back to Aztec times — marijuana was good for a mild smoke
after a long hard day in the fields or mines. The product entered the United
States through the Southwest and by 1860 was introduced to the Eastern
Seaboard via the immigrants from the Caribbean Islands. In New York, it
was used by the black poor and by the socially chic.

Marijuana is composed of the dried leaves and flowering tops, stems, and
leaves of the female Indian hemp plant. The active component of marijuana
is tetra-hydro-cannabinol (THC). Some slang names for this drug are grass,
pot, and weed.
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Hashish has the same active principle (THC) as marijuana, but it is con-
sidered to be about ten times more potent than the marijuana grown in Amer-
ica. Hashish comes from pure resinous exudate of the female hemp plant. The
Tunisian cannabis is considered three times more potent than the American
varieties. Like marijuana, it is not considered addictive, but can produce
psychic dependence, hallucination, and distortion of time and space.

The word “hashish” is derived from the name of a Persian prince, Hasan-
ibn-Sabbah, whose pirate army, the Hashashins, were paid off partly with
resin [our word “assassins” is derived from these mercenaries].

The introduction of cannabis to “polite” society came when Napoleon’s
army brought hashish back from conquered Egypt. In 1844 a private club,
the Club de Hachichins opened in Paris, dispensing hashish in candy or mixed
with wine. Its founders included P. Gautier, C. Baudelaire, Dumas, and
others of the socially elite literary set. Other clubs sprang up and introduced
smoking. At the same time, French medical authorities began recommending
it as a calming agent for the hysterical, justifying the recommendation of
Emperor Shen-Nung.

Ergot alkaloids

For uncounted centuries, ergot has been one of the cursed scourges of
mankind. It has plagued the body and mind ever since we began to use grasses
for their edible seeds. In Europe it was called the holy fire (ignis sacer), St.
Anthony’s Fire, the ignius beatae, Virginis invisibilis, or the infernalis.

Three major cereal grains have been used to make bread. The common
bread was an unleavened product made from barley, but only wheat and rye
flour make a raised or leavened bread. It is likely that Thrace and Macedonia,
but not Greece, grew some rye, but the plant was not introduced into much
of Europe until the Christian era. France began to grow rye about 300 CE,
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and Britain obtained her starting seed when the Teutons invaded the island.
Rye was not grown as a major cereal grain in Europe and European Russia
until the fifth century, and attempts to pinpoint just when historical records
of ergotism began is difficult.

Thus, an epidemic suspiciously like ergotism broke out among the Spartans
in 430 BCE, and a plague of 857 CE in the Rhineland also matches the clinical
symptoms. A disease “like fire” was reported in Paris in 943, from Aquitaine-
Limousa in 994 with 4000 deaths, and from Rheims in 1041 with 2000 deaths.
From that time on, instances of ergotism have been recorded in sufficient
detail so that we can be sure of its cause.

Ergotism results from the ingestion of sclerotia of ergot ground up in rye
flour. Two major types of ergotism are known, gangrenous and convulsive.
In the former, severe constriction of the blood vessels results in swelling as
blood accumulates in the hands or feet, with burning sensations alternating
with intense cold. Numbness follows within a few days and this, in turn, is
followed by blackening of the limb, horrible odors, and eventually merciful,
but unbearably painful death.

Convulsive ergotism accurately describes the symptoms. Twitching of
head, arms, and hands is followed by contractions of muscles throughout
the whole body. The afflicted typically roll themselves into a ball and then
stretch themselves out at full length, the actions accompanied by terrible
pains. Vomiting, deafness, blindness, and hallucinations usually follow. Feats
of superhuman strength, and the conviction that flying is possible have been
noted. If the victim recovers, and about 30–40 percent do, hallucinations
can continue aperiodically for up to a year. Domestic animals who eat ergot-
contaminated grain or table scraps exhibit identical responses. It is said that
dogs will tear bark from trees until their teeth fall out and that ducks will
strut like roosters, attacking people and other animals.

Depending upon the weather, the genetic constitution of the host and the
fungus, the care taken to eliminate sclerotia before milling grain into flour,
and the amount of bread eaten, devastating outbreaks of ergotism could occur.
And they did occur in Europe on an average of once every five to ten years.

Innumerable people had ergotism before its etiology was recognized in 1673
by a Parisian lawyer-physician, Denis Dodart. Up to the middle of the 11th

century, over 20 massive epidemics were reported in France alone, and by the
middle of the 14th century, over 50 epidemics had been reported from central
Europe. Lacking any knowledge of its cause, it was reasonable to call upon
the saints to intercede with heaven for succor. But which one? St. Anthony
the Great was born in Egypt in the first century CE and established the idea
of monastic life. Long the patron saint for erysipelas, a bacterial disease of the
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skin which causes swelling and burning, it seemed logical for him to become
the intercessor for this disease as well.

In 1039, a French nobleman, Gaston de la Vollaire, built a hospital in
the Rhone Valley, obtained relics of St. Anthony, and asked monks to serve
in the hospital. These men formed the Order of St. Anthony and dedicated
themselves to nursing the survivors of ergotism. In the Book of Hours by the
master of Mary of Burgundy619(1480), St. Anthony is asked for protection
against the disease. The Holy Fire disease was soon called St. Anthony’s fire.
The fantastic paintings of the Dutch painter Hieronymus Bosch (1450–
1516) depict victims of ergotism: crawling cripples and “flyers” out of high
windows.

Although Dodart’s identification of the cause of ergotism was known
among the few educated physicians of the 17th century, the direct connec-
tion between ergot and St. Anthony’s fire did not become general knowledge
until the 18th century. The dark, heavy, sour, but very nourishing bread of
central and eastern Europe contained so much ground-up weed seed that the
dark sclerotia went unnoticed. Since bread was truly the staff of life, the
persistence of the peasants in eating ergot-contaminated bread is not surpris-
ing. When a high probability of starvation had to be weighed against possible
ergotism, people made the only logical choice.

Between 1580 and 1900 there were 65 major ergot epidemics in Europe and
the United States. In 1722, Peter the Great mounted an invasion of Turkey
to obtain for Russia the still-coveted ice-free port to the seas. His cavalry ate
ergotized black bread and 20, 000 men and horses were stricken; the invasion
was called off. Between 1770 and 1780, epidemics raged through Germany
and France with over 8000 documented deaths. In the winter of 1812–1813,
Napoleon’s troops and horses ate bread baked from rye commandeered from
the Ukraine, and the resulting epidemic of ergotism contributed to his Russian
defeat and turned the retreat from Moscow into a horror. In 1812, Austria
passed a law stating that inadequately cleaned rye would be confiscated, and
other European countries quickly passed similar legislation.

There was a severe outbreak on the Soviet Union in 1926 and a smaller
one in England in 1928–1929 when the Jewish community imported rye from
central Europe. During the well-studied Soviet Union epidemic in 1926, flour

619 Mary of Burgundy (1457–1482) was the daughter of Charles the Bold

(1433–1477) by Isabella of Bourbon. The marriage of Mary to the irascible

Maximilian of Austria was a major event in European history. Her accidental

death at the age of 25 took place while out hunting with a falcon. The Book of

Hours was made for her by an anonymous painter.
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containing 2 percent ergot was found to be enough to cause convulsive ergo-
tism and some samples of rye flour contained up to 7 percent sclerotia. It
has been claimed that convulsive and hallucinogenic ergotism struck a town
in Provence in 1951, but the French government denied this, stating that
there was an inadvertent contamination of the flour by an insecticide; this
bureaucratic explanation does not conform to the symptoms noted.

Lysergic acid diethylamide (LSD) is a product of ergot, a parasitic black
fungus that grows on rye. Because it acts on the central nervous system and
has unpredictable effects, LSD is sometimes referred to as a “mind-bending”
drug. Many users have experienced visual and perceptual distortions, strange
sensations, and difficulty in distinguishing between illusion and reality. Oc-
casionally some users have experienced acute terror and other unpleasant
psychological effects.

LSD is one of the most potent drugs known to man. Twenty micrograms
(1 microgram is one millionth of a gram) will cause physiological changes.
Some alleged LSD tablets have been known to contain up to one thousand
micrograms of the drug. In addition other substances have been mixed with
LSD, such as arsenic, strychnine, and atropine. These substances often add
to the many bad LSD “trips”.

LSD is believed to be structurally similar to serotonin, which is a com-
pound found in the brain tissue that may play an important role in thinking
processes. There is some evidence that LSD either replaces or blocks sero-
tonin activity in the brain, which may help explain the variety of eccentric
and bizarre symptoms some users experience. A compound called DMPEA,
which is similar to mescaline, has been found in the urine of 65 percent of
schizophrenic mental patients and LSD users, which suggests an explanation
for the bizarre behavior of some LSD users.

Researchers are now experimenting with one possible medical use for LSD.
They are trying to determine whether it can be used to make the last weeks, or
even months, more tolerable for terminal cancer patients. They believe that
under controlled conditions, LSD could lessen the harsh reality of impending
death and make possible reduced dosages of analgesic drugs.

V. Reserpine has been used in India for a long time under the name Chan-

dra (moon) to treat “lunatic” people.

It was also known as an effective reducer of fever, sedative and a curer of
dysentery. Since 1940 it is used in Western medicine to reduce blood pressure.
Today it is used successfully to treat and control nervous disorders such as
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schizophrenia and for calming psychotic patients so that they can undertake
psychotherapy.

VI. Psilocybin (sometimes called the magic mushroom) is a wild fungus

derivative, which has also been used in religious rites.

Aztec, Inca and Mayan priests, since 1000 BCE, used amanita under the
name teonanacatl (“flesh of the gods”). The same drug, under the name soma
was introduced by the Aryan people that entered India from the north in ca
1500 BCE. The Spaniards brought the drug to North America and it then
became known to the American pioneers.

Early Europeans recognized that fly agaric, a fungus parasite of the
amanita mushroom, could also act as a potent insecticide. They boiled these
mushrooms in milk and placed saucers of the mixture on their windowsills and
in the doorways of their homes and marketplaces. The flies and other insects
that spread disease from home to home and from village to village ingested
this lethal mixture and died. Unfortunately children, dogs, and cats were also
attracted to it and poisoned.

Those addicted to the mushroom cult experience visions, muscular relax-
ation, hilarity, alteration in perceptions of time, feeling of total isolation from
one’s environment. Under its influence, priests would chant the “truth” about
health, disease, success or failure, and how to remedy the affairs of everyday
life. For the Indians of Central America, Psilocybe experience awakened the
forces of creation.

Psychoactive components of hallucinogenic mushrooms are related to those
found at the junction of nerve cells in the body and the brain. If too much is
taken, death by respiratory failure may occur.

VII. Digitalis is a mixture of several naturally occurring cardiac glycosides
synthesized by Digitalis purpurea and related species in the figwort (Scro-
phulariaceae) family. Native to Europe, Western Asia, and Central Asia,
it is grown all over the world.

The Latin generic name, Digitalis, means “little finger” from the Latin
digitis and is directly derived from the German name for the plant, fingerhut.
The Latin term was applied by Hieronymus Tragus in 1539 and was re-
peated in Leonhard Fuchs’s De Historia Stirpium in 1542. Several species
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are native to Europe, and all bear the common name foxglove or variants on
the same theme.

Digitalis was a medicinal herb for centuries; Dioscorides praised it as
a plant whose leaves, applied to the skin, could cure many diseases. Juice
pressed from the leaves became an ingredient of salves applied to cuts, bruises,
and the leg ulcers common in an era of inadequate diets and lack of soap.
Rural people made hot water infusions of leaves and drank foxglove tea to
experience an inexpensive but dangerous intoxication.

Among the ills to which flesh is heir is cardiac insufficiency in which a
weakened heart fails to pump enough blood through the body. Heartbeat is
irregular and fluids collect in the arms, legs, and abdomen because the kid-
neys cannot perform their normal function. The swelling is known as dropsy
or, more formally, as edema. This disease syndrome is not new. Ancient
physicians knew of it, but lacking knowledge of the circulation of the blood
discovered by William Harvey in 1628 and information on the function of
the kidneys, treatment was limited to usually unsuccessful attempts to reduce
edema with medicines which increased urine production (diuretic agents). To-
day, millions of people pop a small pill which regulates and strengthens the
heartbeat and allows the kidneys to expel excess fluid quickly; cardiac insuf-
ficiency kills few people since the discovery of digitalis.

VIII. Minor tranquilizers such as diazepam (Valium) are used to allevi-
ate anxiety tensions; they work as skeletal-muscle relaxants and control
muscle spasms. Other tranquilizers, such as meprobamate (Miltown),
have an antiemetic action that is useful in the treatment of nausea and
vomiting, or “morning sickness”, of early pregnancy.
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Diazepam (Valium)

IX. Curare, a substance obtained from a native shrub in the South

American Amazon region, was used for centuries by Indians as a
weapon in their hunt for small game, such as monkeys. Blowgun darts,
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containing curare-tipped arrows, fatally paralyzed small animals and
caused their respiratory muscles to stop functioning. In modern surgery,
curare is often used when the complete relaxation of the abdominal mus-
cles is required.

X. Colchicin and acunitin are among the most potent and poisonous

alkaloids: few milligrams of pure substance can cause a human’s death.

Alkaloids are at the junction of four major sciences — chemistry, botany,
physiology and medicine.

In spite of a great deal intensive interdisciplinary research, the physio-
logical mode of action of alkaloids in the animal body is poorly understood.
Some, like the caffeine alkaloids in tea and coffee, are stimulants. Others, like
the alkaloids in ergot, cause constriction of smooth muscle, and still others,
like those in the opium poppy, are powerful pair-killers.

It is likely that all operate on or in some part of the central nervous system
and that the responses reflect alterations in control over cellular function by
the brain and peripheral nerve network.

The physiology, pharmacology, and psychology of addiction to alkaloids
like morphine and heroin is even less well understood. Certainly, not all al-
kaloids are addictive or even habit-forming. One can get along without a
morning cup of coffee without experiencing withdrawal symptoms. Even for
those which are addictive, the nature of the addiction and its consequences
are poorly understood, and the same can be said for the response to with-
drawal from the substance. There are certainly psychological factors as well
as biochemical and physiological factors which must be evaluated.

1886–1897 CE Gustave Victor Robin (1855–1897, France). Mathe-
matician. Made significant contributions to potential theory (1886) and ther-
modynamics. Named after him are:
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• A third boundary condition of partial differential equations. (Robin’s
boundary condition; the corresponding Green’s function is known as
Robin’s kernel.

• The logarithmic capacity of a compact set E (Robin’s Constant). This
is related to his original solution to a problem in electrostatics (Robin’s
Problem), where he established a remarkable connection between po-
tential theory and the capacity concept in point-set topology. From it
developed later (N. Wiener, 1924) the concept of capacity in point-set
topology.

• A method for evaluating a single-layered charge distribution over a
closed bounded surface of a conductor. This leads to Robin’s integral
equation for the charge density which is solved by successive approxi-
mation (Robin’s potentials; Robin’s Principle, Robin’s function).

Robin was a professor of mathematical physics at the Sorbonne in Paris.
His idiosyncrasies and early death left him almost unremembered and he died
in obscurity. His collected works were published posthumously (1899–1903)
by his friend and colleague Louis Raffy.

1886–1904 CE Giuseppe Peano (1858–1932, Italy). Mathematician, lin-
guist and logician. One of the founders of symbolic logic. Endeavored to
develop a formalized language which could be used in mathematical logic
and mathematics in its entirety. His major work in this field is ‘Formulaire
de mathémathiques’ (1894–1908) which he wrote with his students and col-
leagues at the University of Turin. This work was intended to flow from its
fundamental postulates using his logic notation. Parts of his method and no-
tation were accepted in the mathematical world and profoundly changed the
outlook of mathematicians.

Following the work of Dedekind, he established in 1899 a system of ax-
ioms for natural numbers that bears his name. In topology, he discovered
a continuous function whose points completely fill the unit square (Peano’s
curve).

He made important contributions to the theory of ordinary differential
equations. Peano presented an abstract form of the theory of vectors based on
Grassmann’s calculus of extensions, and introduced the concept of ‘Riemann
content’.

He created an artificial international language, later called ‘Interlingua’.
It is based upon a synthesis of vocabulary from Latin, French, German and
English, with a greatly simplified grammar.
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Peano was born in Sardinia. He became a professor at the University of
Turin in 1890 and was also a professor at the Military Academy in Turin.

1886–1906 CE Ferdinand-Frederic-Henri Moissan (1852–1907, Fran-
ce). Inorganic chemist. First to isolate the element fluorine (F) in 1886.
Introduced an improved arc furnace for metallurgy (1892). Discovered silicon
carbide (1893). Was awarded the Nobel Prize for chemistry (1906).

Fluorine, the lightest of the halogens, is the most reactive of all the ele-
ments, and it forms compounds with all the elements except the lighter inert
gases. Because its electronegativity620(4) is greater than any other element,
it cannot be prepared by reaction of any other element with a fluoride. It
was by the electrolysis of a solution of KF in liquid HF that fluorine was first
obtained by Moissan.621

Moissan was born in Paris to Jewish parents and studied at the laboratory
of the Natural History Museum. Professor, Ecole de Pharmacie, Paris (1886–
1900), Sorbonne (1900). Fluorine’s poisonous nature is believed to contribute
to his early death at the age of 54.

1886–1908 CE Elie Metchnikov (1845–1916, Russia). Immunologist.
Pioneer ‘microbe hunter’. Hypothesized the role of phagocytes in vertebrate
blood to fight invasion of bacteria. Was awarded the Nobel Prize for physiol-
ogy or Medicine (1908) jointly with Ehrlich.

620 A measure of the relative tendency of an atom to attract electrons to form

anions. Elements with low electronegativities (metals) often loose electrons to

form cations. Oxygen is the second most electronegative element (3.5). Then

come chlorine (3.0), Nitrogen (3.0), Bromine (2.8), Iodine (2.5), Sulfur (2.5),

Carbon (2.5).

Fluorine occurs in large quantities in the minerals fluorspar (CaF2); cryolite

(Na2AlF6); and fluoroapatite [Ca5(PO4)3]. It also occurs in small amounts

in sea water, teeth, bones, and blood. Fluorinated organic compounds, called

fluorocarbons are stable and nonflammable. They are used as refrigerants, lubri-

cants, plastics (such as Teflon), insecticides, and aerosol propellants. Stannous

fluoride, SnF2, is used as toothpaste.
621 Only in 1986 was Moissan’s method of fluorine production superseded by the

discovery of Carl O. Christe that F2 can be obtained in better than 40% yield
by the reaction

2K2MnF6 (solid) + 4SbF5 (liquid)

→ 4KSbF6 (solid) + 2MnF3 (solid) + F2 (gas).
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Born in Ivanovka, the Ukraine to Jewish parents. Graduated from the
University of Kharkov (1864) and received a doctorate from the university of
St. Petersburg (1867). Left Russia (1887) to work with Pasteur, who offered
him the directorship of a laboratory at the Pasteur Institute in Paris.

1887 CE, September to October Yellow River (Huang-ho) in Honan
province, China, overflowed, submerging 130,000 km2 of land and killing about
a million people. Flooding was caused by rain.

1887–1890 CE Augustin (Louis Aimé August) Le Prince (1841–1890,
France, England and U.S.A.). Engineer, artist and inventor. Constructed
the first moving-picture machine (camera and projector), predating Edison’s
claim, and made short moving pictures in Leeds in 1888. He was not the first
to have the idea but the first to succeed.

Le Prince was born in Metz, France. His father was a major in the service
of Louis-Philippe. He studied chemistry and optics at Leipzig and was trained
as a painter. In 1866 he came to Leeds, England to work for a firm that
manufactured components for the local locomotive industry.

He first became interested in moving pictures in 1869 under the inspiration
of Muybridge photography and Houdin’s ‘magic lanterns’ in Paris, but
started to realize his ideas upon his immigration to New York in 1882. His
serious experiments began in 1885. In 1887 he returned to Leeds to avoid
New York’s industrial spies and to take advantage of his father in law’s offer
of support. At first he developed a camera with 16 lenses. The 16 shutters
were operated by electromagnets and armatures controlled by a circuit closer.
The lenses were made to converge on a single point.

He later developed a single-lens camera but did not have the advantage of
celluloid; the paper film from the camera had to be developed into a negative.
The negative frames were then stripped from their paper backings and positive
transparencies were made of them. These were very flimsy and needed a
stronger transparent backing to survive the heat and jerking of the projector,
through which they were transported at a rate of 16 frames per second. He
used gelatin or glass, but non of these could roll without cracking and only
glass was transparent enough. Le Prince had to mount each individual frame
onto a specially designed picture-belt which made it all very heavy.

In 1889 he finally got hold of synthetic celluloid which came in coated
sheets at a foot square but not in long rolls. He had to make his own. When
operating his single-lens camera, the sensitive paper film was intermittently
activated at the rear of the lens by providing it with a properly timed inter-
mittently operated shutter.
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Le Prince died under mysterious circumstances: he disappeared on Sept.
16, 1890 during a train trip from Dijon to Paris. He never arrived to Paris
and was never seen again. No trace of him was ever found. Documents,
discovered recently in the city archives of Leeds, point to the possibility that
he engineered his own disappearance. Financial and technical difficulties were
probably the cause. His failure to patent his single-lens camera in sufficient
detail was a fatal oversight and caused his family to loose their legal claim
against Edison in 1901.

In 1930 a plaque commemorating Le Prince’s pioneering invention was
unveiled in the city of Leeds. A second plaque in that city was unveiled in
1988, commemorating the centennial of his great achievement — the first
moving picture ever, taken on Leeds bridge on Oct. 14, 1888.

1887–1893 CE Paul Tannery (1843–1904, France). The first modern his-
torian of science. He wrote: Pour l’histoire de la science hellene (1887), La
géometrie grecque (1887) and Recherches sur l’histoire de l’astronomie anci-
enne (1893).

Tannery was born at Mantes-la-Jolié and died at Pantin (both localities
near Paris). He entered the École Polytechnique (1860), and graduated among
the ranking members of his class. For the next 40 years he was in the service
of the state monopoly of tobacco, but his evenings and holidays were devoted
to the study of the history of science.

It was only in relatively recent times that the importance and centrality
of the history of science was realized. There were a few pioneers beginning
with the end of the 17th century.

Such men were: Albrecht von Haller (1708–1777); Joseph Priestley
(1733–1804); Adam Smith (1723–1790); Jean Etienne Montucla (1725–
1799) and Jean Sylvain Bailly (1735–1793).

But the first man to introduce this theme in a broader context and to
increase its circulation was the French philosopher, Auguste Comte, who
developed it in his Cours de philosophie positive (1830–1842). His views were
discussed by another French philosopher, Antoine Augustin Cournot, in
1861, but the real inheritor of Comte’s thought and the first great teacher of
the history of science was Paul Tannery.

Tannery’s philosophy is very different from Comte’s, but the greatest dif-
ference between them is that Comte’s knowledge of the history of science was
very superficial, whereas Paul Tannery, being extremely learned and having
at his disposal a mass of historical research work which did not exist in the
thirties, knew more of the history of science than anybody else in the world.
Certainly no man ever was better prepared to write a complete history of
science, at least of European science, than Paul Tannery. It was his dream
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to carry out this great work, but unfortunately he died, before realizing his
ambition. During the 20th century his example has been followed by many
scholars, notably George Sarton.

1887–1898 CE Woldemar Voigt (1850–1919, Germany). Mathemati-
cian. First to write down, in 1887, a mathematical transformation which
leaves the scalar wave-equation, and consequently Maxwell’s equations, in-
variant (later known as the Lorentz transformation). The next pre-relativistic
mention of this transformations was given by Hendrik Antoon Lorentz
(1853–1928, Holland) in 1895, and then in 1898 by Joseph Larmor (1857–
1942, England).

Voigt established the stress-strain relation in a viscoelastic solid in which
the stress is related to a linear combination of the strain and the rate of
strain, known as a Kelvin-Voigt substance622 (1892). In 1898 he reinstated
Hamilton’s term ‘tensor ’ as the entity representing the local state of stress in
an elastic continuum.

Voigt was a tall, thin man with a red beard. He was a truly quiet scholar.
His lectures were like his book on crystals — very hard to understand, but
deep and knowledgeable. He drew beautiful sketches on the blackboard, pol-
ishing and correcting them for five or six minutes. He talked in short, concise
sentences, never looking at his audience. He had reputation for calculating
incredibly and magnificently.

622 It is a generalized Hooke’s law is 3 dimensions:

T =
4

C : E +
4

D :
∂E

∂t
,

where E is the strain tensor and {
4

C,
4

D} are two fourth order tensors. In

isotropic homogeneous materials, the above stress-tensor takes the simplified

form:

T(r, t) =

(

λ + λ′ ∂

∂t

)

I div u + 2

(

μ + μ′ ∂

∂t

)

E.

For λ′ = μ′ = 0 we fall back on the elastic solid, while in the limit

λ div u = −p, μ = 0, μ′ = η, λ′ = λ − 2

3
η

(λ, η — viscosity coefficients), we fall back on the Newtonian fluid.

Likewise, the limiting case λ′ = μ′ = 0, λ = μ → ∞ leads us back to a rigid

body, and the limit λ div u = −p, μ = μ′ = λ′ = 0 renders the ideal fluid.
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1887–1889 CE Lois-Gustave Binger (1856–1936, France). West-African
explorer. The first European to cross the watershed of the Volta River. Trav-
eled widely in the Ivory Coast, Senegal, and (todays) Upper Volta, Ghana,
Guinea and Gambia.

Binger was born to a Jewish family in Strasbourg and became governor of
Ivory Coast (1893).

1887–1901 CE Ernesto Cesàro (1859–1906, Italy). Mathematician.
Contributed mainly to differential geometry, summability of divergent series
(1890) and the theory of numbers. Formulated ‘Intrinsic geometry’ [Lezioni
di geometria intrinseca, 1896], in which he derived coordinate-free (“natural”)
equation of curves by means of the arc length and curvature variables. This
goes back to Euler (1736) who used it for special curves.

Cesàro was born in Naples and continued his studies at Liege (Belgium)
and Paris under Hermite and Darboux. He received his doctorate from
the University of Rome (1887). He held the chair of mathematics at Palermo
until 1891, moving then to Rome, where he held the chair until his death.

1887–1907 CE Vito Volterra (1860–1940, Italy). One of the top mathe-
matical physicists of his time. Made major contributions in the general theory
of functionals623(1887–1889), partial differential equations, integral equations,
integro-differential equations, theory of dislocations (1907), mathematical bi-
ology (1920) and other topics in mathematical physics. His work had strong
influence on the general development of modern calculus.

Volterra contributed to the solution of linear equations in multi- or infinite-
dimensional linear spaces by means of his multiplicative integral. Developing
the general theory of the functional calculus, Volterra invented a way to reduce
calculations with functionals to calculations with usual functions with many
variables.624

623 For further reading, see:

• Volterra, V., The Theory of Functionals, Blackie and Sons, 1930, 225 pp.

624 In this procedure one has to divide the interval from the initial time tin to the
final time tfin into a large, but finite number N of time instants ti, and then

to approximate the functional F [x(t)] with the functions F (. . . , xi+1, xi, . . . ),

where xi gives the value of x(ti). Then, one has to work with this function,
instead of the functional F [x(t)].

This process is called finite-dimensional approximation or discretization, of the
functional F [x(t)], which itself may be considered as a function of infinitely

many variables x(t), with a continuous label t. After performing operations

on the function F (. . . , xi+1, xi, . . . ) in the final result one has to take the limit
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Volterra was born in Ancona, Italy, to a poor Jewish family. His interest in
mathematics started at the age of eleven. At the age of 13 he began to study

N → ∞, keeping tin and tfin fixed.

R.P. Feynman (1942) utilized Volterra’s theory of functionals in his new cal-

culations of averages of quantum mechanical quantities. His formulas give us the
expectations of certain functionals on the paths x(t) in the configuration space

of the classical mechanical system, where the time t runs from some initial time

tin to some final time tfin. As a weight in the averaging procedure, one uses the
complex phase with argument equalling classical action divided by �.

Volterra introduced, for the first time, the beautiful mathematical idea of a
functional derivative (1887), which was developed further by Gateaux (1919)

and Fréchet (1925) in the framework of functional analysis.

The functional F [x(t)] gives a number for each function x(t) that we may

choose.Volterra asked: How much does this number change if we make a very

small change in the argument function x(t)? Thus, for a small η(t), how much
is δF ≡ F [x(t) + η(t)] − F [x(t)]?

To evaluate this, suppose time is divided into very many steps of small intervals
ε, the values of the time being ti where ti+1 = ti + ε. The function x(t) can then

be approximately specified by giving the values xi that it takes on at each of the

times ti, namely xi = x(ti). The functional F [x(t)] is now a number depending
on all the xi, that is, it becomes an ordinary function of the variables xi,

F [x(t)] → F (. . . , xi, xi+1, . . . ).

If we alter the path from x(t) to x(t) + η(t), we change each xi to xi + ηi, where

ηi = η(ti). Then, the first-order change in our multivariable function is

dF ≡ F (. . . , xi + ηi, xi+1 + ηi+1, . . . ) − F (. . . , xi, xi+1, . . . ) =
∑ ∂F

∂xi
ηi,

according to the ordinary rules of partial differentiation.

In the limit ε → 0 (assuming it exists, etc.)

dF → δF ;
∑ ∂F

∂xi
ηi →

∫
δF

δx(s)
η(s) ds,

where δx(s) is the differential change in path at x(s), and the functional deriv-
ative is taken at the point ti = s. Thus, one can show, for example, that if

S =
∫ t2

t1
L(

.
x, x, s) ds, then for any s inside the range t1 to t2

δS

δx(s)
= − d

ds

(
∂L

∂
.
x

)

+
∂L

∂x
,

where the partial derivatives are evaluated at t = s.
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the Three Body Problem and made some progress. He attended the University
of Pisa (1878–1882) and was appointed professor of rational mechanics there
(1883). During that time he began to develop the theory of functionals, which
he applied to the solutions of integral and integro-differential equations. The
important idea of harmonic integrals derives essentially from his functional
analysis.

In 1892 Volterra became professor of mechanics at the University of Turin,
and from 1900 onward he occupied the chair of mathematical physics at the
University of Rome.

In 1905 he became a senator of the Kingdom of Italy. In WWI he joined
the Italian Air Force and was first to propose the use of Helium in airships.
In 1922 Fascism seized Italy and Volterra fought against it in the Italian
Parliament. However by 1930 the Parliament was abolished and Volterra
refused to take an oath of allegiance to the Fascist Government. As a Jew in
Fascist Italy, he was forced to leave the University of Rome (1931) and resign
from all Italian scientific academies. He died in Rome during WWII.

History of Integral Equations625

An integral equation is an equation in which an unknown function ap-
pears under an integral sign and the problem of solving the equation is to

625 For further reading, see:

• Polyanin, A. D. and A. V. Manzhirov, Handbook of Integral Equations, CRC

Press: New York, 1998, 787 pp.

• Hamel, G., Integralgleichungen, Springer-Verlag: Berlin, 1949, 166 pp.

• Kanwal, R. P., Linear Integral Equations, Academic Press, 1971, 296 pp.

• Moiseiwitsch, B. L., Integral Equations, Longman: London, 1977, 161 pp.

• Chambers, Ll. G., Integral Equations, 1976, 198 pp.

• Tricomi , F. G., Integral Equations, Dover: New York, 1985, 238 pp.

• Kondo, J., Integral Equations, Oxford University Press, 1991, 440 pp.
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determine that function. The term ‘integral equation’ was coined by Du
Bois-Reymond (1888).

At first, solving integral equations was described as inverting inte-
grals. Long before the subject acquired a distinct status and method-
ology, Laplace (1782) considered the integral equation for g(t) given by
f(x) =

∫ ∞
− ∞ e−xtg(t) dt, now called the Laplace transform of g(t).

Poisson (1811) discovered its solution, namely,

g(t) =
1

2πi

∫ a+i∞

a−i∞
extf(x) dx

for large enough a.

Another result stems from Fourier’s (1811) paper on the theory of heat
conduction

f(x) =
∫ ∞

0

u(t) cos(xt) dt

and the inversion formula

u(t) =
2
π

∫ ∞

0

f(x) cos(xt) dx

The first conscious direct use and solution of an integral equation go back
to Abel (1823). He considered a mechanical problem which led him to the
equation

f(x) =
∫ x

a

u(ξ)dξ

(x − ξ)λ
0 < λ < 1

He then found the solution

u(z) =
sin(λπ)

π

d

dz

∫ z

a

f(x) dx

(z − x)1−λ

Liouville (1832) showed that the solution of the differential equation

y′ ′ + [p2 − σ(x)]y = 0 or y′ ′ + p2y = σ(x)y

a ≤ x ≤ b, y(a) = 1, y′(a) = 0 p = parameter

is also the solution of the integral equation

y(x) = cos p(x − a) +
1
p

∫ x

a

σ(ξ)y(ξ) sin p(x − ξ) dξ.
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The conversion of differential equations to integral equations became a
major technique for solving initial and boundary-value problems of ODE and
PDE, and this was the strongest impetus for the study of integral equations.

Volterra (1896) is the first founder of a general theory of integral equa-
tions. He set out to solve

f(s) = Φ(s) +
∫ b

a

K(s, t)Φ(t) dt

for Φ(s), where f(s) is known and K(s, t) = 0 for t > s. His solution can
be written in the form

Φ(s) = f(s) +
∫ b

a

K(s, t)f(t) dt

where

K(s, t) = −K(s, t) +
∫ b

a

K(s, τ)K(τ, t) dτ

−
∫ b

a

∫ b

a

K(s, τ)K(τ, ω)K(ω, t) dτdω + . . . .

Volterra also observed that the integral equation

f(s) =
∫ b

a

K(x, s)Φ(x) dx

is a limiting form of a system of n linear equations in n unknowns as n becomes
infinite. Fredholm (1900–3) used this idea to solve

u(x) = f(x) + λ

∫ b

a

K(x, ξ)u(ξ) dξ.

Dividing the x-interval [a, b] into n equal parts (x1, x2, . . . , xn), he presented
his solution in the form

u(x, λ) = f(x) +
∫ b

a

D(x, y, λ)
D(λ)

f(y) dy, D(λ) �= 0, where

D(λ) = 1−λ

∫ b

a

K(ξ1, ξ1) dξ1 +
λ2

2!

∫ b

a

∫ b

a

∣
∣
∣
∣
K(ξ1, ξ1) K(ξ1, ξ2)
K(ξ2, ξ1) K(ξ2, ξ2)

∣
∣
∣
∣ dξ1dξ2 + . . .

D(x, y, λ) = λK(x, y) − λ2

∫ b

a

∣
∣
∣
∣
K(x, y) K(x, ξ1)
K(ξ1, y) K(ξ1, ξ1)

∣
∣
∣
∣ dξ1

+
λ3

2

∫ b

a

∫ b

a

∣
∣
∣
∣
∣
∣

K(x, y) K(x, ξ1) K(x, ξ2)
K(ξ1, y) K(ξ1, ξ1) K(ξ1, ξ2)
K(ξ2, y) K(ξ2, ξ1) K(ξ2, ξ2)

∣
∣
∣
∣
∣
∣

dξ1dξ2 − . . .
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Hilbert (1904–1912) completed Fredholm’s solution by carrying out the lim-
iting process for the infinite number of algebraic equations, dispensing with
Fredholm’s infinite determinants. He then applied his research to a vari-
ety of problems in geometry and physics. Hilbert’s work was simplified by
Schmidt (1907), completed by Fischer (1907) and Riesz (1907), and ex-
tended to nonlinear integral equations. Moreover, the theory was extended to
non-continuous functions f(x) and K(x, ξ) and to infinite limits of integration
(singular integral equations) by Weyl (1908).

1887–1907 CE Emil Hermann Fischer (1852–1919, Germany). Distin-
guished organic chemist. Analyzed the structure of sugars (1887). First to
promote the idea of an encoding of genetic specificity in a spatial arrange-
ments of subunits (1907): proposed the theory of ‘lock and key’ to explain
stereo-specific interaction of enzyme with substrate. Synthesized polypeptide
(1907), a small protein consisting of 18 amino acids, and showed that it could
be broken by digestive juices just as natural proteins are.

His studies on the structures of purines (1882–1901) and polypeptides
(1900–1906), opened the way for an understanding of nitrogen metabolism,
which was essential before the biochemistry of these substances could be de-
veloped.

Fischer was born in Euskirchen, Rhenish Prussia. Studied at Bonn and
Strasbourg. Professor at Wirzburg (1885) and Berlin (1892). Awarded the
Nobel prize for chemistry (1902).

By the turn of the century, with a dozen amino acids isolated from
proteins626, the time was ripe to try to reverse the process and to form a
protein out of amino acids: Fischer, using the technique of organic chemistry
as developed over the previous half-century, painstakingly treated amino acid
mixtures under such conditions as would encourage combination. By 1907
he had managed to build up a molecule made up of 18 amino acid units,
consisting of 15 glycines and 3 leucines627.

626 The major units of the protein molecule were discovered in the following or-

der: Glycine (1820), Leucine (1820), Tyrosine (1849), Serine (1865), Glutamic

Acid (1866), Asparic Acid (1868), Phenylalanine (1881), Alanine (1888), Lysine

(1889), Arginine (1895), Histidine (1896), Cystine (1899).
627 Such relatively small strings of amino acids are called peptides (Greek for “di-

gestion”) because they are produced in the process of digestion.
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In doing this, Fischer demonstrated unequivocally that amino acids are
indeed the building blocks of proteins, for his 18-unit product had all the
properties that might be expected of a very simple protein molecule.

He was further able to show that, in forming a chain, the carboxyl group
of one amino acid combines with the amino group of another via a peptide
bond628.

1887–1910 CE Gaston Jean Darboux (1842–1917, France). Notable
mathematician. Made important contributions to analysis and differential
geometry: Founded the general theory of algebraic manifolds and coined the
phrase ‘repermobile’ (today’s ‘soldering form’, known in GTR as ‘tetrad’ or
‘vierbein’). Applied infinitesimal calculus to geometry in the study of the
differential geometry of curves and surfaces.

628 The general structure of amino acids is

COO−

|
NH3

+ —
�
�

�
�C — H

|
R.

It involves an amino group (H3N
+) and a carboxyl group (COO−), both of which

are bonded to the α-carbon ©C , which is also bonded to a hydrogen and to the

side chain group (R).

The R group determines the identity of the particular amino acid. The two-

dimensional formula shown here can only partially convey the common struc-

ture of amino acids, because one of the most important properties of these

compounds is their 3-dimensional shape (Stereochemistry).

Individual amino acids can be linked together by formation of covalent bonds.

The bond is between the α-carboxyl group of one amino acid and the α-amino

group of the next one. Water is eliminated in the process, and the linked amino

acid residues remain after the elimination of water: e.g.

H O R2 H H O R4 H H O R6

| || | | | || | | | || |
NH3

+— C —C—N— C —C—N— C —C—N— C —C—N— C —C—N— C —COO−

| ↑ | | || ↑ | ↑ | | || ↑ | ↑ | |
R1 | H H O | R3 | H H O | R5 | H H

N-terminal | | | | | C-terminal

residue | | | | residuePeptic bonds

In a protein, many amino acids (usually more than a hundred) are linked by

peptide bonds to form polypeptide chain. The peptide bond can be written as

a resonance hybrid of a single bond between carbon and nitrogen and another

with a double bond between the carbon and nitrogen. The peptide bond is

stronger than an ordinary single bond because of this resonance stabilization.
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He solved Euler’s equations for the rotation of a rigid body about a point,
relative to a fixed inertial frame, when the angular velocity vector is known
in the rotating frame.

Darboux left his mark on several fields of pure and applied mathematics:
We have Darboux surfaces, Darboux vector, Darboux theorem629 and Darboux
integral in the infinitesimal calculus, the Darboux transformation in the the-
ory of linear differential equations and the Darboux equation in modern gas
dynamics630.

In his many papers and books he combined geometrical intuition with mas-
tery of algebra and analysis. His treatises “Lessons on the General Theory
of Surfaces and the Geometrical Applications of Infinitesimal Calculus” and
“Lessons on Orthogonal Systems and Curvilinear Coordinates” (originally in
French) are a vast source of information, and among the best written mathe-
matical books of the 19th century.

Darboux was born in Nimes, France. He was a professor of mathematics
at the Sorbonne during 1873–1890.

1887–1896 CE Gregorio Ricci-Curbastro (1853–1925, Italy). Out-
standing mathematician. Distilled and perfected the tensor calculus as an
independent discipline. He was instrumental in bringing to fruition the ideas
of Christoffel, Beltrami and Lipschitz. In his studies of surfaces, Ricci en-
countered several interesting metric attributes of hyperspaces. One of them
was the Ricci tensor.

This new invariant symbolism, originally constructed to deal with the
transformation theory of partial differential equations and quadratic differen-
tial forms, turned into what he now called the theory of tensors. He elaborated
on the theory and worked out an elegant and comprehensive notation. With
the aid of his pupil Tullio Levi-Civita (1873–1941) he showed that tensors
could provide a unification of many invariant symbolisms, and deal with a
wide variety of problems in analysis, geometry and the physical disciplines of
elasticity, hydrodynamics, electromagnetism and relativity.

Thus, the mathematical machinery demanded by the theory of general
relativity was available a year after the Michelson-Morley experiment, which
was partly responsible for the special theory of relativity in 1905. Without the
tensor calculus, the general relativity theory of 1915–1916 would have been

629 If f(x) is differentiable for a ≤ x ≤ b, f ′(a) = α, f ′(b) = β, and γ lies

between α and β, then there is a ξ between a and b for which f ′(ξ) = γ.

630 (x + y) ∂2Φ
∂x∂y

+ k
(

∂Φ
∂x

+ ∂Φ
∂y

)
= f(x, y), (k > 1).
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impossible. With later modifications and generalizations, tensor methods
quickly induced a vast development of modern differential geometry.

Ricci was a professor at the University of Padua during 1880–1925.

From Vectors to Tensors631; the Principle of Covariance

Vector analysis was born in the middle of the 19th century in the minds
of W.R. Hamilton (1844) and H. Grassmann (1844). The ‘pregnancy’ of
this idea lasted for about 22 centuries, since its ‘conception’ during the era
of Greek science. Aristotle (ca 350 BCE) was aware of the parallelogram of
composition of forces. Stevin (ca 1583) employed the same principle in his
studies of static mechanics and Galileo (ca 1583) recognized the concepts of

631 For further reading, see:

• Sokolnikoff, I. S., Tensor Analysis (Theory and Applications to Geometry and

Mechanics of Continua), John Wiley & Sons: New York, 1964, 361 pp.

• Lass, H., Vector and Tensor Analysis, McGraw-Hill Book Company: New

York, 1950, 347 pp.

• Crowe, M. J., A History of Vector Analysis: Evolution of the Idea of a Vec-

torial System, University of Notre Dame Press: South Bend, 1967, 270 pp.

• Schwartz, M., S. Green, and A. W. Ruthledge, Vector Analysis, Harper and
Brothers: New York, 1960.

• Brand, L., Vector and Tensor Analysis, John Wiley & Sons: New York, 1948,
439 pp.

• Marsden, J. E., and A. J. Tromba, Vector Calculus, W. H. Freeman and

Company: New York, 1988, 655 pp.

• Danielson, D. A., Vectors and Tensors in Engineering and Physics, Addison-

Wesley: Redwood City CA, 1992, 280 pp.

• Lovelock, D., and H. Rund, Tensors, Differential Forms and Variational Prin-

ciples, John Wiley & Sons: New York, 1975, 364 pp.
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parallelogram of forces and velocities. However, no scientist until 1844 ever
comprehended the full scope of the vector concept and its latent potentialities.

From the mathematical point of view, vector and tensor analysis is a study
of geometric entities and algebraic forms independent of the coordinate sys-
tem. This creates a link between the nascence of vectors and the algebraiza-
tion of geometry through the invention of analytic geometry by Fermat and
Descartes during 1629–1637. These mathematicians combined the notation
and problem-solving ability of the algebraist (which originated with the Baby-
lonians) with the geometry of the plane and space developed by the Greeks.
[Apollonios of Perga (ca 230 BCE) produced a characterization of conic
sections in terms of what we now call coordinates.]

The systematic transition from one to another is achieved by means of a
system of coordinates.

With the idea of coordinate system established in the first half of the 17th

century, there came the first strides taken in the geometric representation of
complex numbers632 [Wallis (1673), Wessel (ca 1785), Argand (1806)]. This
was the common geometric and algebraic background against which Hamil-
ton and Grassmann operated in 1884. Yet their concepts were introduced
from quite divergent modes of thought, and in significantly different frame-
works. Hamilton seems to have been inspired mainly by a necessity for appro-
priate mathematical tools with which he could apply Newtonian mechanics
to various aspects of astronomy and physics.

From the strictly mathematical standpoint he was perhaps stimulated by
the desire to introduce a binary operation that could be interpreted physically
by means of rotation in space. On the other hand, Grassmann’s motivations
were of a more philosophical nature. His chief desire seems to have been that
of developing a theoretical algebraic structure on which a geometry of any
number of dimensions could be based. It was Grassmann who introduced for
the first time the concept of indeterminate product, a special case of which
was the 2nd rank tensor, the dyadic633.

In addition to the geometrical and algebraic ingredients of the vector con-
cept, the advent of the infinitesimal calculus added the analytical dimension to
its development. The idea of the arithmetical and geometrical limit appeared

632 Complex numbers are important in the historical background of vectors because

of the analogy between these entities in two dimensions. The term “complex

number” was introduced by Gauss.
633 Grassmann was apparently not aware of the fact that his 2nd rank indeterminate

product could serve as a mathematical representation of the inertia tensor, that

had appeared already in 1785 in Euler’s equations of rotation of a rigid body

about a point.
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already in embryonic form in both Babylonian and Greek mathematics. It
was explicitly introduced by Newton and Leibniz during 1665–1679 via the
concepts of the derivative and integral. This marked the advent of geometrical
analysis and in particular differential geometry, the basic ideas of which were
introduced by Gauss (1827).

Thus, the triple merger of Newtonian analysis, Euclidean geometry and
Cartesian coordinate systems produced the ultimate mathematical vehicle for
the development of tensor analysis. Nevertheless, in 1844 the time was not
yet ripe for the exposition of the full theory. In spite of the great merit
of Grassmann’s work, it made little impression on the scientific world and
because of a lack of pressing need, the tensor theory was slow in coming into
formal being.

However, the first realization of the need for tensors arose with
the doctoral thesis of Riemann in 1854, in which he based the met-
ric properties of n-dimensional space on a fundamental quadratic form:
ds2 =

∑n
α,β=1 gαβdxαdxβ . He generalized the concept of curvature on a sur-

face to n dimensional space, in terms of the metric coefficients gαβ . His
work was followed by E. Beltrami (1864), E.B. Christoffel (1869) and
R. Lipschitz (1869), who introduced further concepts into the algebra and
calculus of n-dimensional manifolds, including the concept of covariant dif-
ferentiation. In other veins, Cayley (1857) created the theory of matrices,
Aronhold and Clebsch (1858–1861) and Gordan (1868–1870) developed
the theory of algebraic invariants and covariants, and Clifford (1873–1878)
invented his algebra.

At the close of the 19th century all these ideas were compiled and inte-
grated by Gregorio Ricci-Curbastro (1887) into what is known today as
the algebra and calculus of tensors. His pupil Tullio Levi-Civita (1901),
generalized the concept of parallelism to Riemannian spaces.

In spite of these developments and the many applications of tensor analy-
sis to both mathematics and physics, the subject was, at the beginning of the
20th century, little more than a plaything of a small group of mathematicians.
Only since 1916, with the advent of Einstein’s theory of general relativity, did
tensors come of age. Wide areas of applications in theoretical physics, applied
mathematics and differential geometry have been found. Due to the remark-
able effectiveness of the tensor apparatus in the study of nature, it is serving
as the universal language which Hamilton and Grassmann envisioned in
their original theories.

In 1915, Einstein said:

“The magic of this theory will hardly fail to impose itself on anybody
who has truly understood it; it represents a genuine triumph of the method



1887 CE 2631

of absolute differential calculus, founded by Gauss, Riemann, Christoffel,
Ricci and Levi-Civita”.

Non-relativistic physical laws are written in terms of scalars, vectors and
tensors. Scalars are entities such as time, volume and mass that are specified
by a single number, the magnitude.

Vectors are entities having a direction as well as a magnitude (examples
are position, velocity and force). They require more than one number for
their specification.

A tensor634 is a more complex entity, specified at each point by an array
of numbers. A rank-2 tensor is a matrix — such as the state of stress or
strain at a given point in an isotropic elastic solid, or the moment of inertia
of a rotating rigid body. The tensor that relates stress and strain in a general
elastic medium, is a tensor of rank 4.

Physical laws are usually mathematical statements that establish alge-
braic, differential and integral relations between tensors. As such they must
assume the same mathematical form, irrespective of the position, orientation
and state of uniform motion of the observer. This is known as the principle
of covariance of physical laws. Had it been otherwise, these laws would be
only of limited local value and loose their universality.

To see how the principle of covariance manifest itself in the mathematical
properties of tensors, we imagine two observers that view a given physical
relation from two different coordinate systems, one being rotated with respect
to the other about the common origin O. This rotation is specified mathe-
matically by a 3 × 3 orthogonal matrix R. The components (Vx, Vy, Vz) of
any vector V are transformed by the rotation into V ′ = (V ′

x, V ′
y , V ′

z ) such

that V = R · V ′. The inverse relation635 V ′ = RT · V is the law of vector
covariance. A triplet of numbers that transforms in this way under rotation
of the axes is defined to be a physical vector.

634 Of rank 2 or higher; technically, scalars and vectors are tensors of ranks 0 and

1, respectively.
635 The axes O(x, y, z) rotate into their new positions O′(x′, y′, z′). Through

this transformation the vector V remains intact, but its components relative to
the new axes are different. In the inverse relation V ′ = R

T · V , R
T is the

transpose (= inverse) of R. For a rotation by an angle θ about the z-axis,

R =

⎡

⎣
cos θ sin θ 0

− sin θ cos θ 0

0 0 1

⎤

⎦.
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Now, consider the law in O, W = F · s, which measures the work W
(scalar) done by a force F that displaces a body over a finite straight-line
path s. How will the same law be observed in O′? To see this we simply
substitute therein the relations F = R · F ′, s = R · s ′ and W = W ′ (a
scalar is invariant under rotation of the axes). The result is

W ′ = (R · F ′) · (R · s ′) = F ′ · {RT · R} · s ′ = F ′ · s ′.

The law thus has the same form in O′ as in O.

The mathematical form of the law is the same for any pair of observers, and
therefore to all inertial-frame observers in space. The law of vector covariance
therefore secures the invariance of the physical law under rotation of the
coordinates.

A tensor of rank 2 in Cartesian 3-dimensional space is an array of 3 × 3
components (with respect to a given coordinate system) that obey a law of
tensor covariance. The tensor is represented by the symbol σij , i, j = 1, 2, 3
(or σ), and the law of covariance can be shown to have the mathematical
form

σ′ = R
T · σ · R

(or σ = R · σ′ · RT in the reciprocal form).

Let σ have the physical meaning of the state of stress at a point O in an
elastic solid and let the physical law associated with it be given in O as

F = σ · n,

where n is the normal vector to a plane passing through O and F (n) the
force vector across this plane at O.

The observer at O′ will read the same law as

R · F ′ = (R · σ′ · RT ) · (R · n′) = R · {σ′ · n′},

or
F ′ = σ′ · n′.

Again, the physical law is of the same form in both coordinate systems.

Tensor analysis deals with abstract objects (entities) that are independent
of the choice of the reference frames used to describe them. A tensor is repre-
sented in a particular reference frame by a set of functions called components.
As we learned in the above discussion, a given set of functions representing
a tensor depends on the law of transformation of these functions from one
coordinate system to another. But the independence of the form of the laws
obeyed by the tensor upon the choice of the reference frame, provides an ideal
tool for the study of natural laws.
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Indeed, whether a logical deduction based upon a conglomerate of obser-
vational facts deserves the name of natural law is often determined by the
generality of such a deduction including its validity in a sufficiently wide class
of reference systems. This is intimately bound up with the possibility of
formulating the deduction in the form of tensor equations. The concept of
covariance of mathematical objects under coordinate transformations, is thus
of prime importance in tensor analysis.

A fundamental concept that permeates the entire calculus of tensors is
that of covariant differentiation (Ricci, 1884). It constitutes a generalization
of partial differentiation that is covariant under general coordinate transfor-
mations.

The basic idea behind the covariant derivative is as follows: consider a
vector field in a 3D Cartesian coordinate system. The physical vectors may
vary from point to point, but the Cartesian unit vectors are the same at each
point. Hence, when we come to compare two field-vectors at two points P (r)
and Q(r + dr) that are infinitesimally close to each other (differentiation
is basically an operation of comparison!), the variation of the vector between
these points is naturally measured in the same coordinate system, and there-
fore reflects the observed physical change of the field, as given by the ordinary
partial derivative of its Cartesian components w.r.t. to the coordinates.

Now, suppose that the same physical vector field is quantified in a curvi-
linear orthogonal system in which, say, spherical coordinate are used. Since
the orientation of the coordinate axes at any two neighboring points is now
different (rotated), the change in the field vector between these points reflects
both a true physical change and a superposed, artificial, change which arises
from the fact that the two measurements are performed in two differently
oriented local Cartesian systems.

This last superfluous effect can be eliminated, simply by displacing the
vector at P parallel to itself to the point Q and making the comparison there!
The result of this process is the so-called covariant derivative which expresses
the rate of change of physical quantities (vectors and higher tensors) in a way
that is independent of the coordinate system used.

Let us put the above idea into quantitative form and apply it to a covari-
ant636 vector field, say, in an affine space, with components Ai(xj) at a
point P (xj). At a neighboring point Q(xj + dxj), the value of the field
is Ai(xj + dxj) = Ai(xj) + dAi. To make the comparison, we transplant Ai

636 A vector is said to be covariant if its component transform from Ai to Bi with

Ai = ∂yk

∂xi Bk upon the transformation yk(xi). It is said to be contravariant if

its components transform instead as Ai = ∂xi

∂yk
Bk.
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to Q parallel to itself. However, at Q the local coordinate axes are different
then those at P and therefore the new components, Âi, are not the same
as they were at P . Rather, Âi(xj + dxj) = Ai(xj) + δAi. The difference
dAi − δAi will yield the true physical change of Ai. Therefore we write
dAi − δAi = Ai‖jdx, where Ai‖j are the components of a rank-2 covariant
tensor known as the covariant derivative of Ai.

Explicitly

dAi − δAi = Ai(xj + dxj) − Âi(xj + dxj)

=
[
Ai(xj + dxj) − Ai(xj)

]
−

[
Âi(xj + dxj) − Ai(xj)

]
.

The first term on the r.h.s. is simply ∂Ai

∂xj dxj . The second term involves the
a priori information of the extent to which the Cartesian axes have rotated

from P to Q. But this is calculable through the covariance law Ai = ∂yj

∂xi Bj ,
where yj(xi) are the transformation functions. If {y} is a Cartesian coordi-

nate system, then δAi = δ
[

∂yj

∂xi Bj

]
= δ

[
∂yj

∂xi

]
Bj since δBj = 0 in parallel

displacement of Cartesian axes.

However,

Bi =
∂xj

∂yi
Aj , δ

[
∂yj

∂xi

]

=
∂2yj

∂xi∂xk
dxk.

Therefore
δAi = Γm

ikAmdxk,

where the entity

Γm
ik =

∂2yj

∂xi∂xk

∂xm

∂yj

is known as the affine connection637 between the points of the space [a space
which is affinely connected or an affine space possesses sufficient structure

637 The coefficients Γm
ik of the affine connection are not components of a tensor.

A given affine connection can always be decomposed into its symmetric and

skew-symmetric parts according to the usual rule

Γm
ik =

1

2
(Γm

ik + Γm
ki) +

1

2
(Γm

ik − Γm
ki).

The connection is said to be symmetric if Γm
ik = Γm

ki. However, T m
ik = Γm

ik − Γm
ki

is a tensor, and is often referred to as the torsion tensor of the connection.

Clearly, if the torsion tensor vanishes in some coordinate system, it will vanish
in any other system, and accordingly, the symmetry condition is independent

of the choice of the coordinate system.

In GTR, spacetime is both a Riemannian space (manifold) and an affine one,
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to permit the operations of tensor calculus. An affine space is more general
than a Riemannian space638 since it does not necessarily have a metric]. An

with the Christoffel connection determined by the metric (and vanishing tor-

sion):

Γm
ik =

1

2
gmσ

(
∂gσi

∂xk
+

∂gσk

∂xi
− ∂gik

∂xσ

)

.

In his efforts to unify the gravitational and electromagnetic field theories, Ein-

stein (1928) hoped to be able to identify the contracted torsion tensor T m
im with

the electromagnetic potential. Previously, Cartan (1922), motivated by work

of Cassirer on non-symmetric stress tensors in magnetic materials, developed

an alternative to GTR in which the affine connection is not symmetric.
638 In a flat Riemannian space a Euclidean (Cartesian) vector A can be written as

A = Aigi, where Ai are its contravariant components in the given curvilinear
coordinate system and gi = ∂r

∂xi are the base vectors. Or it can be written as

A = Aig
i, where Ai are the covariant components and gi is the reciprocal base.

Now,

∂A

∂xj
=

∂

∂xj
(Akgk) =

∂Ak

∂xj
gk + Ak ∂gk

∂xj

=
∂Ak

∂xj
gk + AkΓm

kigm =

[
∂Am

∂xj
+ Γm

kiA
k

]

gm ≡ Am
·j gm

Similarly,

∂A

∂xj
=

∂

∂xj
(Akgk) =

[
∂Am

∂xj
− Γk

mjAk

]

gm = Am,jg
m.

The relation

∇A =

(

gα ∂

∂xα

)

A = Aβ
αgαgβ

shows that the curvilinear components of the gradient tensor are the covariant

derivatives of the vector components.

Note that ∇gα = ∇gα ≡ 0. Moreover, the fundamental tensors gjk and gjk

behave like constants w.r.t. covariant differentiation (Ricci’s Theorem).

Let A(r) = A(0) be a flat-space Cartesian vector field which does not vary

from point to point, i.e. its magnitude and direction are constant. Since in this
case ∂A

∂xk = Am
·kgm ≡ 0, it follows that Am

·k = 0. Thus, the covariant derivative

of a uniform vector field vanishes.

But a uniform field can be regarded as the result of displacing the vector A
parallel to itself from some fiducial (origin) point to every point of the field.

With this interpretation the equation

∂Am

∂xj
+ Γm

kjA
k = 0
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affine space in which there exists, at each point, a coordinate system in which
Γ = 0, is said to be flat. Here the term “space” is synonymous with manifold.

Altogether,

Ai,k =
∂Ai

∂xk
− Γm

ikAm

is the covariant derivative of a covariant vector. Likewise, the covariant deriv-
ative of a contravariant vector is

Ak
·j =

∂Ak

∂xj
+ Γk

mjA
m.

The power of these definitions is that they, and the tensor calculus based
upon them, hold for any affine space — even if it is not flat, i.e. cannot be
locally reduced to a Euclidean space via coordinate transformations. In a
Riemannian space, which is endowed with a (covariant, rank 2) metric tensor
gμν , the Christoffel symbol Γ is that connection for which gμν,α = 0. Thus,
with this connection, index contractions (via gμν) commute with covariant
differentiation.

1888 CE Telescopic photographs reveal the spiral shape of the Andromeda
Nebula. [In 1923, Hubble established its galactic nature.]

1888 CE Henry Louis Le Châtelier (1850–1936, France). Physicist. Es-
tablished a principle, named after him, for the behavior of a thermodynamic
system at equilibrium [its macroscopic parameters such as temperature, pres-
sure, composition, entropy — do not depend on either time or space, i.e.
the system is uniform and either isolated (closed) or in contact with uni-
form environment]. This principle states: “An external influence disturbing
the equilibrium of the system, induces in it processes tending to weaken the
effects of this influence”.

In other words: any change in the equilibrium conditions, results in a shift
of that equilibrium in the direction that will partially nullify the perturbation,
and thus tend to restore the unperturbed state.

becomes the condition for a vector to be its own parallel displacement (in any

coordinate system). Such covariantly-constant vector fields can only exist (if A

is not to be 0 everywhere) in flat (curvature-free) spaces.
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This law, valid for quasistatical thermodynamics, is actually valid for a
wider class of phenomena. Example: the law of electromagnetic induction
introduced by Heinrich Friedrich Emil Lenz (1804–1865, Russia, 1834).

In 1947, Ilya Prigogine (1917–2003, Belgium), extended the thermo-
dynamic principle to a wider class of stationary states, namely open non-
equilibrium stationary states639, where entropy-producing processes are sus-
tained by a continual flux of energy (or matter and energy) between the system
and its surrounding. In that case the stationary state is the configuration of
minimum entropy. This generalization enables us to include processes with
thermal diffusion under the umbrella of the Le Châtelier principle, where the
entropy production is a Lyapunov function (1892).

The theory of open systems has been applied with success to many spe-
cific problems of biology, thus demonstrating that thermodynamic principles
related to open systems lie at the core of central biological problems. Pri-
gogine’s theory accounts for many features of life, which can thus be treated
as physical phenomena.

1888 CE Wilhelm Hallwachs (1859–1922, Germany). Physicist. Stimu-
lated by Hertz’s work, he showed that irradiation with ultraviolet light causes
uncharged metallic bodies to acquire a positive charge (emit electrons). The
earliest speculations on the nature of the effect predate the discovery of the
electron in 1897.

Hallwachs demonstrated the possibility of using photoelectric cells in cam-
eras. This property, called photoemission, was applied in the 20th century in
the creation of the electronic television camera.

1888 CE Frank Julian Sprague (1857–1934, U.S.A.). Electrical engi-
neer and inventor. Built the first large electric passenger railway system, in
Richmond, VA (20 km long).

1888 CE The American Mathematical Society established. Lick Astronom-
ical Observatory established on Mount Hamilton, California, equipped with a
36-inch refractor telescope.

1888–1891 CE Pierre Paul Émile Roux (1853–1933, France). Physi-
cian, bacteriologist and immunologist. Discoverer of the anti-diphtheria

639 Definitions:

Isolated system: Completely disconnected from its surroundings. No exchange

of energy or matter possible.

Closed system: May exchange energy with its surroundings, but not matter.

Open system: May exchange energy and matter with its surroundings.
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serum, the first effective therapy for this disease. One of the close collab-
orators of Louis Pasteur.

Roux joined Pasteur’s laboratory as a research assistant (1878–1883) at
the École Normale Supérieure in Paris. He worked with Pasteur in Avian
cholera (1879–1880), anthrax (1879–1890) and rabies (1881–1883).

In 1888 he published with Alexandre Yersin (1863–1943) the first of his
works on the causation of diphtheria by the Klebs-Loeffler bacillus. He then
began (1891) to develop an effective serum to treat the disease, following
the demonstration by Emil von Behring (1854–1917) and Shibasaburo
Kitasato(1852–1931) that antibodies against the diphtheric toxin could be
produced in animals. He demonstrated successfully this antitoxin in the Hos-
pital des Enfants-Malades (1891).

In the following years, Roux dedicated himself to the immunology of
tetanus, tuberculosis, syphilis and pneumonia. He became the director of
the Pasteur Institute in 1916.

1888–1903 CE Nikola Tesla640 (1856–1943, U.S.A.). An American in-
ventor of Croatian origin. A key figure in the history of electrical technology.
Invented the alternating current induction motor (electric alternator, known
also as the electromagnetic motor) and polyphase power transmission. He
also invented the Tesla coil transformer (produces high voltage at high fre-
quencies), arc lightning, a system of wireless transmission (in 1893, two years
ahead of Marconi (1874–1937)), a telephone repeater, rotating magnetic field
principle, fluorescent light and more than 700 other patents.641

Tesla was born of Serbian parents in Smiljan Lika, Croatia and was raised
and educated in the Austro-Hungarian kingdom. In 1882 he conceived the
ideas that would form the foundation of his only truly successful inventions:
the induction motor and polyphase power transmission.

In 1884, while working in Paris for the Continental Edison Company, he
obtained a letter of introduction to Edison and immigrated to New York. He
worked for Edison for about a year before having some kind of falling out642.

640 For further reading, see:

• Cheney, M., Tesla: Man Out of Time, A Laurel Book, Dell Publishing: New
York, 1981, 320 pp.

641 Tesla patented (1903) the electrical logical circuits that become crucial to ad-

dition, subtraction, and multiplication in later computer machines.
642 The standard story is that Edison told Tesla it would be worth $50,000 to him

if he could improve upon Edison’s electric generators significantly. Tesla did

this and then asked Edison for his money. “Tesla”, Edison replied, “you don’t
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Tesla then caught the attention of George Westinghouse (1846–1914), in-
ventor of the air-brake (1868), who was looking to break into electrical tech-
nology and thought Tesla’s ideas on electric power distribution had merit.
Using the ideas of Tesla, Tesla and Westinghouse made commercial use of
AC motors, generators and transmission lines (1891) and the polyphase AC
power transmission (1893). At this time Tesla further developed his induction
motor and his high voltage generator known as the Tesla coil643. In the next
few years Tesla would install the world’s first true commercial electric power
station at Niagara Falls. He would continue to produce remarkable ideas for
decades but would never again be able to finish what he started.

Tesla developed all the components needed to construct a practical radio
system, but then seems to have lost interest — he never took his ideas beyond
some very short-range demonstrations. This left the field to Marconi, who
proved the feasibility of long-range wireless communication just a few years
later. Although he anticipated Marconi and others in many ways, histories of
early radio make only incidental mention of Tesla.

A U.S. supreme court decision (June 21, 1943) found that Tesla antici-
pated the four-circuit tuned combination of Marconi, and ruled that Tesla
had anticipated all other contenders with his fundamental radio patents. [Yet
the Nobel prize in physics for 1909 had gone to Marconi and K.F. Braun.]

Tesla was obsessed with the idea of wireless transmission of electric power
(in contradistinction to wireless transmission of information via low-energy
electromagnetic waves). He also talked of making the upper atmosphere flu-
oresce — abolishing the dark night forever. None of these ideas was ever
realized.

Although a millionaire in the 1890’s, Tesla had so indulged his appetite
for expensive experiments that from the early 1920’s until his death in 1943
he was nearly destitute.

In his honor, the physical mks (SI) unit of magnetic flux density, is named
the ‘tesla’.

understand our American humor”.

643 Tesla coil: a specialized electrical transformer and spark gaps, used in circuits

that produce high-voltage at high frequencies. Large Tesla coils can produce

millions of volts and are used to make spectacular electrical displays, but have no

important scientific or industrial applications. Today’s scientists and engineers

have far superior methods of producing high voltage — methods that do not

derive from Tesla’s work .
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Science Progress Report No. 12

Tesla vs. Edison, or — the ‘War of the Currents’

Alternating currents technology is rooted in the discovery of Joseph
Henry (1830, USA) and Michael Faraday (1831, England) that a chang-
ing magnetic field near an electric circuit, or a static one through which the
circuit moves, is capable of inducing an electric current in the circuit. Earlier
studies had been confined to static magnetic fields.644 Faraday is usually given
credit for the discovery since he published his results first.

The principle of the voltage transformer was applied in 1851 by Heinrich
Daniel Ruhmkorff (1803–1877, Germany and France) in his induction-coil
(also known as the Ruhmkorff-coil). Through this device he generated a train
of unidirectional high-voltage pulses in an open secondary coil circuit induced
by rapid mechanical make-and-break switching in a primary direct-current low
resistance coil circuit. The alternations of the magnetic flux induce an emf
between the ends of the secondary coil, and a high voltage is produced that
tends to cause a spark or an arc to pass. If, e.g. an X-ray tube is connected
between the secondary terminals, the magnetic-field energy is transformed
partly into X-ray energy and partly into heat.

Exploitation of the discoveries of Henry and Faraday began in 1887, with
the construction of the first commercial alternating current (AC) power trans-
former by the engineers Lucien Gaulard (1850–1888, France) and John
Gibbs (England). Improvements were introduced in Budapest by Otto
Blathy (1860–1939, Hungary), Max Deri (1854–1938, Hungary) and Karl
Zipernowsky (1853–1942, Hungary) during 1881–1885.

The American electrical engineer and inventor William Stanley (1858–
1916), using the patents of Gaulard and Gibbs built a transformer system
to form an integral part of the first multiple-voltage AC power system in
Great Barrington (Massachusetts, U.S.A., 1886). The network was driven by
a hydropower generator producing 500 Volts AC. It was stepped up to 3 kV for
transmission, then stepped down to 100 V to power electric lights. Stanley also
invented two-phase motors and patented a carbonized filament incandescent
lamp.

George Westinghouse (1846–1914, USA), Stanley’s employer (an ad-
venturous Pittsburgh industrialist and the inventor of railroad air breaks),
was an early advocate of AC with great plans for the electrification of Amer-
ica. He bought the American rights to the Gaulard and Gibbs’ patents (1885).

644 Whether generated by naturally-occurring magnets or electric currents, and

whether acting upon magnetic/magnetizable materials or electric currents.
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Three-phase currents were introduced into electrical engineering by Nikola

Tesla (1887) and the Italian engineer Gallileo Ferraris (1847–1897), (1888).

A decisive factor in bringing about the subsequent almost universal adoption

of three-phase currents for the transmission of power over large distances was

the successful transmission of electric power between Lauffen-on-the-Neckar

and Frankfurt-on-the-Main on the occasion of the important exhibition at

Frankfurt (1891), a distance of 175 km. It was accomplished by the Berlin

engineer M. Von Dolivo-Dobrowolski.

Elihu Thomson (1853–1937, USA), electrical engineer and inventor,

invented the standard three-phase alternating current generator, the high-

frequency transformer, the high-frequency generator(1890), the centrifugal

cream-separator, the common Watt-meter, the street arc lamp (fed by alter-

nating currents, 1878–9) and 700 other patented inventions. He became one

of the great pioneers of the electrical manufacturing industry in the USA.

Thomson and Edwin James Houston founded the Thomson-Houston Elec-

tric Company (1883), which merged with Edison’s firm (1892) to form the

General Electric company.

Electricity was first introduced to New York in the late 1870s. Edison’s

incandescent lamp had created an astonishing demand for electric power, and

his DC power station on Pearl Street in lower Manhattan was quickly becom-

ing a monopoly. Edison knew little of alternating current and did not care to

learn more about it. In short, AC power sounded like competition to Edison.

In November and December of 1887, Tesla filed for seven U.S.patents in

the field of polyphase AC motors and power transmission. These comprise

a complete system of generators, transformers, transmissions, motors and

lighting. George Westinghouse heard about Tesla’s invention and thought

it could be the missing link in long-distance power transmission.645

645 The main advantage of AC over DC (direct current) is the ease and efficiency

with which AC voltages can be raised or lowered. When electric power is trans-

mitted over long distances it is economical to use high voltage and low current to

minimize the I2R heating losses (R = resistance, I = current) in the transmis-

sion lines for the same amount of power transmitted. The voltages are stepped

up or down by passive devices called transformers which usually operate with

an efficiency of 99 percent.

In practice, the generator’s voltage is stepped up to around 230,000 V at the

generating station, then stepped down to around 20,000 V at a distributing

station, and finally stepped down to 110–120 V at the customers utility poles.

DC power is useful only in the vicinity of the generator. Its use over larger

distances would require very thick wires to decrease resistance to energy flow.
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He came to Tesla’s laboratory and purchased his patents for $60,000.With

the breakthrough provided by Tesla’s patents, a full scale industrial war

erupted. At stake, in effect, was the path of industrial development in the

United States, and whether the Tesla-Westinghouse alternating current or

Edison’s direct current would be the chosen technology.

It was at this time that Edison launched a propaganda war against al-

ternating current.646 He even hired a professor who went around talking to

audiences and electrocuting dogs and old horses right on stage, to show how

dangerous alternating current was.

In spite of bad press, good things were happening for Westinghouse and

Tesla. The Westinghouse Corporation won the bid for illuminating The

Chicago World’s Fair, the first all-electric fair in history. The fair was also

called the Columbian Exposition — in celebration of the 400th Anniversary

of Columbus discovering America. Up against the newly formed General

Electric Company (the company that had taken over the Edison Company),

Westinghouse undercut GE’s million-dollar bid by half. Much of GE’s pro-

posed expenses were tied to the amount of copper wire necessary to utilize DC

power. Westinghouse’s winning bid proposed a more efficient, cost-effective

AC system.

The Columbian Exposition opened on May 1, 1893. That evening, Presi-

dent Grover Cleveland pushed a button and a hundred thousand incandescent

lamps illuminated the fairground’s neoclassical buildings. This “City of Light”

was the work of Tesla, Westinghouse and twelve new thousand-horsepower AC

generation units located in the Hall of Machinery.

In the Great Hall of Electricity, the Tesla polyphase system of alternating

current power generation and transmission was proudly displayed. For the

twenty-seven million people who attended that fair, it was dramatically clear

that the power of the future was AC. From that point forward more than

80 percent of all the electrical devices ordered in the United States were for

alternating current.

646 This must be attributed to Edison’s lack of education and ignorance of some

basic principles of physics. Tesla had a formal European education and knew

better.
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1888–1906 CE Friedrich Wilhelm Ostwald (1853–1932, Germany).
Chemist. With Arrhenius and van’t Hoff he established physical chem-
istry as a separate discipline of science. Developed new methods for measur-
ing the rate of chemical reactions. Rediscovered catalysis, pointing out that
its essence lay in its accelerating the rate of the reaction, but not creating
it. Was awarded the Nobel prize for chemistry (1909). Ostwald was born in
Riga, and was a professor at Leipzig University (1888–1906).

1888–1906 CE Fridtjof Nansen (1861–1930, Norway). Arctic explorer,
marine zoologist, pioneer oceanographer, and statesman. Began the first sci-
entific study of the Arctic Ocean (1893–1896), obtaining information about
the ocean’s bed, current, ice, weather, and wildlife.

In the summer of 1888, he and five other men crossed Greenland by land
from east to west, a feat that experts had declared impossible. This expedition
confirmed that Greenland is nearly completely covered with ice. Detailed
meteorological conditions compiled during the winter of 1889 led to a better
understanding of weather conditions in Northern Europe.

In 1893 he led the Fram expedition to the North pole. To this end he
had a ship specially built to withstand the grinding ice floes647. The Fram
sailed from Christiania (Oslo) in June 1893, provisioned for 5 years with a
crew of 13, sailing along the coast of Siberia. On Sept. 27, upon encountering
an impassable ice barrier, its engine was dismantled, a windmill set up to
work the dynamo, and the Fram froze in and began to drift through the ice,
while the crew carried on their various scientific tasks. They took meteoro-
logical, astronomical, electrical, magnetic, and hydrodynamical observations,
and collected wildlife and underwater specimens.

647 In 1881, the steam yacht Jeannette, of the De-Long expedition, was crushed

by the ice of the Arctic Ocean, and sank 240 km off the New Siberian Islands.

Nansen had planned a ship that, skillfully reinforced, would ride up under the

pressure of ice and rest on its surface until a thaw released it to float again —

“that the whole craft should be able to slip like an eel out of the embraces of the

ice”.

Nansen noted that 1100 days after the sinking of the Jeannette, some of its

objects were found by Eskimoes in drift-ice near Julianehab, on the southwest

coast of Greenland, some 4600 km from where it sunk. He saw this as an

evidence of the existence of a slow steady current across the polar basin. It

convinced him that it was possible to drift across it in a vessel, traveling with

the ice instead of fighting against it, and possibly, at the same time, reach the

pole, providing that the right sort of vessel could be constructed. Nansen’s plan

was greeted with skepticism, if not derision, by most Arctic experts. However,

the Fram (forward) did drift for 35 months, carrying Nansen and his crew to

within about 640 km south of the Pole.



2644 4. Abstraction and Unification

In March 1895, at 84 ◦N, Nansen and Hjalmar Johansen left the Fram,
taking with them 2 kayaks, three sledges and 28 dogs. On April 8 Nansen
hoisted the Norwegian flag in 86.13 ◦N, 95 ◦E, 438 km of the North Pole,
nearer than anyone before him. They could go no further. On June 17, 1896
they reached Cape Flora and met some of their friends.

Nansen used his fame to facilitate his entry into Norwegian and inter-
national politics, as organizer of the Leage of Nations Refugee Work, and
inventor of the ‘Nansen Passport for Stateless Persons’ (resulting from the
collapse of the European empires and the revolution of 1917–1922). For that
he was awarded the Nobel Peace prize in 1922.

1888–1906 CE Georges Fernand Isidore Widal (1862–1929, France).
Distinguished physician. Laid the foundations to citodiagnosis and con-
tributed to pathological physiology. Known for his pioneering work on bacteria
agglutination and its applications (‘Widal reaction’) to the serological diag-
nosis of typhoid fever (1896). Recognized (1906) the value of salt-deprivation
in nephritis and cardiac edema.

Widal was born to Jewish parents in Alger, studied medicine in Paris and
served as a professor at the University of Paris (1911–1929).

1888–1910 CE Salvatore Pincherle (1853–1936, Italy). Mathematician.
Founded (together with Volterra) functional analysis. Contributed to func-
tional equations, the theory of functions, the expansion of functions in infinite
series,648and to abstract linear spaces.

Pincherle was born in Trieste of a Jewish family. A student of Betti.
Professor at the University of Bologna (1881–1928). Pincherle worked on
a formal theory of linear operators on an infinite dimensional vector spaces,
basing his work on the abstract operator theory of Leibniz and d’Alembert,
but not on that of Peano. His work had little immediate impact. Axiomatic
infinite dimensional vector spaces were not studied again until Banach and
his associates took up the subject in the 1920’s.

1889 CE Sophia (Sonya) Vasilyevna Kovalevsky649 (1850–1891, Rus-
sia). Outstanding woman mathematician of the 19th century. A favorite pupil

648 Pincherle’s expansion (1896): for every Φ(z), analytic near z = 0, the series

f(z) =

∞∑

n=0

[1 + λnez]
dnΦ(z)

dzn
,

where λn(z) = −1 + z − z2

2!
+ z3

3!
− · · · + (−)n+1 zn

n!
, is convergent near z = 0,

and f ′(z) = f(z) − Φ(z).
649 For further reading, see:



1889 CE 2645

of Weierstrass. She is remembered today mainly because of her solution of
Euler’s equations for the motion of a spinning symmetrical top under gravity.
She was able to find a third integral for the special case A = B = 2C where
the center of gravity lies in the equatorial plane of the body. The solution
can be made to depend on integrals of the form

∫
dx

f(x) , where f(x) is an
rational function of the fifth degree. She also contributed to the theory of
partial differential equations, where the ‘Cauchy-Kovalevsky theorem’ bears
her name.

Recently her name was assigned to a crater on the moon. She is thus one
of less than a dozen women from all of history to be so honored.

1889 CE Alexandre Gustave Eiffel (1832–1923, France). Structural and
aeronautical engineer. Designed the Eiffel Tower in Paris for the World’s Fair
of 1889. The tower rises 300 meters from a base 101 m2. Elevators and
stairways lead to the top. It contains about 6400 tons of iron and steel and
cost over one million dollars650.

1889 CE Otto Ludwig Hölder (1859–1937, Germany). Mathematician.
Discovered one of the most useful inequalities of analysis, the Hölder Inequal-
ity. This states that if x and y are positive, if x + y = 1 and if the numbers
a1, . . . , an and b1, . . . , bn are nonnegative, then

n∑

1

ax
i by

i ≤ (
n∑

1

ai)x · (
n∑

1

bi)y

• Kennedy, D.H., Little Sparrow : A Portrait of Sophia Kovalevsky , Ohio Uni-

versity Press: Athens, OH, 1983, 341 pp.

• Cooke, R., The Mathematics of Sonya Kovalevskaya, Springer-Verlag: New

York, 1984, 234 pp.

650 In order to minimize construction materials cost (steel, iron), the compressive
strength of the structure was fully exploited. To this end, it must be required

that the gravitational compressive stress at any horizontal cross-section is made

independent of the height of this section above the ground. Mathematically:
ρg

∫ ∞
x

A(x)dx/A(x) = K, where A(x) is the area of the cross-section at level

x, ρ is the density of steel, and g is the acceleration of gravity.

Differentiation yield a differential equation for A(x), the solution of which is
A(x) = A0e

−λx, where A0 is the base area, and λ = ρg/K.

The shape of the tower’s profile is therefore:

y(x) = y0 exp
[

− ρgx

2K

]

.
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or equivalently
n∑

1

aibi ≤ (
n∑

1

a
1
x
i )x(

n∑

1

b
1
y

i )y.

Equality holds iff a
1
x
i = Kb

1
y

i , K constant. The special case x = y = 1
2 is

known as Cauchy–Schwarz Inequality (1821) and has a simple geometrical
interpretation (i.e. the cosine of the angle between two vectors may not exceed
1).

Hölder’s Inequality holds for complex numbers: If p > 1 and 1
p + 1

q = 1

then |
∑n

1 aibi| ≤ (
∑n

1 |ai|p)
1
p (

∑n
1 |bi|q)

1
q . Moreover, it holds also for integrals,

where integration takes the role of summation: if f and g are continuous real-
valued functions defined on [a, b], if p > 1, and if 1

p + 1
q = 1, then

|
∫ b

a

f(t)g(t) dt| ≤
∫ b

a

|f(t)g(t)| dt ≤ (
∫ b

a

|f(s)|p ds)
1
p (

∫ b

a

|g(t)|q dt)
1
q .

Hölder was born in Stuttgart. He studied at Berlin under Weierstrass,
Kronecker and Kummer (1877–1882), and became a professor at Tübingen
(from 1889).

1889 CE Oskar Minkowski (1858–1931, Germany). Distinguished physi-
cian and endocrinologist. With Joseph von Mering discovered the direct
connection between the pancreas and diabetes which led to the discovery of
insulin (they found that the pancreas supplies a hormone essential to glucose
metabolism).

Oskar was born in Lithuania, to Jewish parents. He was professor at Stras-
bourg (1891–1904), Cologne (1904), Greifswald (1905–1909), Breslau (1909–
1926). He was the brother of the physicist Hermann Minkowski. Both
converted to Christianity to be able to pursue their academic careers.

1889–1890 CE Great influenza epidemic afflicted 40 percent of the world
population. Millions died.

1889 CE Otto Lilienthal (1848–1896, Germany). Inventor and aeronaut.
Designed (with the assistance of his brother Gustav) and flew the first gliders
that can soar above the height of takeoff. Their observation of the takeoff of
storks against the wind, brought to aviation one of its first breakthroughs at
the end of the 19th century.

Born in Anklam, Pomerania, Lilienthal and his brother studied the flight
of birds and while still at school succeeded in constructing s glider. Lilienthal’s
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theory was that artificial flight must follow the principles of bird-flight. His
experiments extended over a period of 20 years — building many gliders
and executing over 2000 flights. He demonstrated (1891) the superiority of
curved wings over flat-surfaced type. Wrote pioneering book on aeronautics
(Des Vogelflug als Grundlage der Fliegekunst, 1889; Die Flugapparate, 1894).
While on flight on Aug 9, 1896, near Rhinow, Germany, his machine was
upset by a sudden gust of wind and he was killed. His work was continued by
the Wright brothers (1903) who inherited his tenacity and perseverance.

1889–1899 CE Rudolf Christian Karl Diesel (1858–1913, Germany).
Mechanical engineer, inventor, industrialist. Invented the ‘compression-
ignition’ engine. In a paper ‘The theory and construction of an economi-
cal heat engine’ (1889) he proposed a more efficient engine than the petrol
engine in which no carburetor or ignition system would be required since
spontaneous ignition would occur as the fresh-air mixture was compressed at
constant pressure.651

651 The ordinary petrol engine draws its heat supply from the combustion of petrol

vapor in the pressure of air: vapor and air are mixed in the carburetor. A

suitable mechanism causes the inlet and exhaust valves to open and close at the

appropriate times, and a spark to pass through the compressed charge at the

right moment.

In the Diesel cycle, the working substance (air) is raised to a very high temper-

ature by adiabatic compression. The fuel is injected in a liquid form into the

cylinder during the first part of the outward motion of the piston. The rate of

injection is carefully controlled so that the pressure on the piston during the

supply of the fuel is maintained constant. Thus the air is heated at constant

pressure, instead of at constant volume as in the petrol engine.

The Diesel cycle, while less efficient than the Carnot cycle, is more efficient than

the Otto cycle working between the same temperatures.

The thermal efficiency (ability to convert stored chemical energy in the fuel into

mechanical energy) of the Otto cycle, assuming the air-fuel mixture to be an

ideal gas, is e = 1 −
(

v2
v1

)γ−1

. For a typical compression ratio of v2
v1

= 1
8

and

γ = 1.4 a theoretical efficiency of 56% is predicted for an engine operating in the

idealized Otto cycle. This is much higher than what is achieved in real engines

(15% or 20%) because of such effects as friction, heat loss to the cylinder walls

and incomplete combustion of the air-fuel mixture.

The efficiency of an idealized Diesel cycle is given by e ≈ 1 − 1
γ

(
v2
v1

)γ−1

. With
v2
v1

= 1
16

, the theoretical limit is 76.4%. The difference is due to both a higher

compression ratio and a higher combustion temperature. The realizable effi-

ciency is about 30 or 35 percent.

A two-stroke gas engine was patented (1881) by the Scottish engineer and
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Applying the idea of Sadi Carnot (1824), according to which the output
from a reversible movement motor depends on the temperature at which it
operates, Diesel sought to modify the piston cycle, for that was what caused
the heat loss. In a first patent (1892), revised in 1893, Diesel proposed to
obtain the necessary heat for the air-fuel mixture in the classical combustion
engine to burn, not by using a spark but by a very high compression of air
alone which would be enough to bring the air to the required temperature.
The injected fuel then burns to vapor in the cylinder and the pressure of the
hot gases pushes the piston.

Up to this point the principle of the diesel engine is not much different from
the 4-stroke engine, except that the spark is removed. But in other respects
Diesel modified the design of his engine in such a way that the compression of
the air took place outside the cylinder; thus it was the compressed air which
injected directly into the cylinder. Moreover, the injection of compressed air
pushes the gases from the burnt fuel through openings at the base of the
cylinders; the track of the piston is reduced for it no longer has the space to
descend to the base of the cylinder. Thus heat loss was reduced by further
reduction of the piston track. In this respect, Diesel was following an idea
of James Joule (1885) who was first to try to design Carnot’s ideal engine,
which he did by using a porous piston through which the exhaust escaped.

Diesel also introduced a significant factor of economy : since the high
volatility of high grade petrol (such as gasoline) is not required, heavier and
less refined fuel oil are sufficient. Indeed, in his first engine, Diesel had used
coal dust as a fuel, but he later discarded this along with several other types
in a favor of a form of refined mineral oil.

The Diesel motor rapidly proved its reliability and the superiority of its
output: it is easy to manufacture, strong and hardly ever breaks down and
it costs less to operate since unrefined oil is decidedly cheaper. On the other
hand, the Diesel engines are heavier than petrol engines of comparable horse-
power, for the cylinders must withstand the high pressure and the engine must
also accommodate a separate fuel pump to inject the oil into the cylinder at
high pressure. This engine thwarted the intellectual habits of the engineers of
the time and it took 20 years to become widely used. It was criticized firstly
for its weight and for the noise it made when working and the particularly
unpleasant smell of its exhaust.

Diesel himself was one of the main reasons why industry took so long to
adopt his engine: until his death the engineer actually demanded that the
engines built under license fitted his rigorous specifications and, in particular,

inventor Dugald Clerk (1854–1932), known as the Clerk Cycle engine. It

was used for large gas and small petrol engines.
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that they were designed to function at a constant temperature, for he wanted
to keep strictly faithful to Carnot’s theory. The problem was that the engine
functioned much too slowly when kept at constant temperature; in order to
attain the desired output it had to be much more powerful (higher running
speeds).

The diesel engine fulfilled its true potential when it was improved after its
inventor’s death. The automotive diesel was first built in the US (1923), and
became popular among farmers during the Depression.

The diesel engines has greatly increased the efficiency of industry and
transportation. They are used chiefly for heavy-duty work: they drive high
freight trucks, large buses, tractors, and heavy road-building equipment. They
are also used to power submarines and ships, and the generating of electric-
power stations in small cities.

Diesel was born in Paris, France of German parents. They moved to
Germany after the outbreak of the Franco-Prussian War (1870) and Rudolf
studied at Munich Polytechnic. He was trained as a refrigeration engineer
and the idea of the compression-ignition first occurred to him at the age of 19
(1878). When he first built his engine (1893), it exploded and almost killed
him, but it proved that fuel could be ignited without a spark. At the same
year he had taken his first patent. Friedrich Krupp backed the project and
the engine bearing Diesel’s name was created (1897). In 1899 he founded his
own manufacturing company in Augsburg.

License fees on Diesel engine soon made him a millionaire. Diesel was a
proverbial success for 15 years. He combined his inventive talents with the
social skill of a modern executive, being competent, widely traveled, and fluent
in various languages. He apparently committed suicide when he vanished
without trace from a cross-Channel steamer (29 April, 1913).

1889–1907 CE Henri Louis Bergson (1859–1941, France). A philo-
sopher, who at the end of the 19th century undertook a search for an ac-
ceptable alternative to the science of his time. His philosophical system rep-
resents the revolt against the 19th century materialism and the reduction of
psychology to physics.

The primacy of mathematics and mechanics in the development of modern
science, and the reciprocal stimulation of industry and physics under the
common pressure of expanding needs, lent to speculation a materialistic flavor;
and the most successful of the sciences became the models of philosophy.
Despite Descartes’ insistence that philosophy should begin with the self and
travel outward, the industrialization of Western Europe drove thought in the
direction of material things. It was Schopenhauer who first emphasized in
modern thought the possibility of making the concept of life more fundamental
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and inclusive than that of force; it is Bergson who has taken up this idea, and
has almost converted a skeptical world to it by the impact of his sincerity and
eloquence.

Bergson was born in Paris of Jewish parentage652. He specialized first in
mathematics and physics, but in 1881 turned spontaneously to philosophy. He
was a professor of philosophy at the École Normale Superieure (1897–1900)
and the College de France (1900–1921). Awarded the Nobel prize for literature
in 1927. His influence extended far beyond the realm of philosophy into such
areas as literature, the social sciences and religion (e.g., the various attempts
of writers such as Virginia Woolf, Luigi Pirandello, Marcel Proust to penetrate
beneath the static images and facsimiles of the self and to render the flux of
consciousness, owe much to him). Moreover, Bergson’s philosophy originated
a new philosophical attitude, revolutionary in its impact on thought. It was
a great liberating force from over-intellectualized modes of thought.

Bergson recognized the three weak cleavage planes of modern knowledge:
between matter and life, between body and mind , and between determinism
and choice. On the first issue, after a hundred years of theory (since Pasteur),
and many vain experiments, the materialists were no nearer than before to
solving the problem of the origin of life. On the second issue, the mode
of connection of thought and brain was as mysterious as it had ever been;
consciousness could not be yet explained in terms of an electromechanical
neural model. Finally, he rejected any materialistic mechanism that would
claim that a sonnet of Shakespeare ‘evolved’ from the primeval nebula of the
solar system.

In his three major works: Time and the Free Will (1889), Matter and
Memory (1896), and Creative Evolution (1907), Bergson advanced his basic
psycho-physical credo, which he believed capable of tackling the above three
tasks:

• Time: One must take a sharp distinction between “mathematical time”
(objective Newtonian time) and lived time (duration). The former is
just a succession of instantaneous states linked by a deterministic law, a
quantity without quality, a form of space.

Duration, on the other hand, is the essence of life, and perhaps all of
reality. It exhibits itself in memory . Lived time (duration) means that

652 The name Bergson stems from Berkson (the son of Behr), an illustrious Jewish

family of Warsaw, Poland, that descended from Samuel Zbitkower, the financial

advisor of the last Polish King Stanislas Poniatowski (king: 1764–1795). In

1891, Bergson married a cousin of the novelist Marcel Proust (1871–1922),

whose own writings were influenced by the philosophy of Bergson.
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the past endures and nothing of it is quite lost. Life is a matter of time
rather than of space. It is not being , it is becoming and change. It is not
redistribution of matter and motion, it is fluid and persistent creation, a
constant flow from the past into the future.

• Intellect versus intuition (instinct): Pure perception, which is the lowest
degree of the mind (mind without memory) is really part of matter.

The brain is a system of images and reaction-patterns. The part of our
minds which we call the intellect was developed, in the process of evo-
lution, to understand and deal with material, spatial objects; from this
field it derives all its concepts and its “laws”, and its notion of a fatal-
istic and predictive regularity everywhere. Our intellect is intended to
secure the perfect fitting of our body to its environment, to represent the
relations of external things among themselves. It is at home with solid,
inert things; it sees all becoming as being, as series of states; it misses
the connective tissue of things.

In other words, the intellect, for practical purposes, introduces measure-
ments and substitutes for qualitative processes as abstract, spatialized
representations of reality; whereas the intellect is connected with space,
intuition is associated with time. It is a way of thinking in duration.
Intuition apprehends the true nature of things. It is essentially the most
trustworthy guide to understanding. It does not falsify things by an-
alyzing them. Consciousness is the recall of images and the choice of
reactions.

• Strict determinism is unacceptable. To break the chain of deterministic
evolution one must relate time to life, to mind, to choice and free-will.

• The concepts of physics are inappropriate in the world of the mind. The
essence of life is mind, not matter; time, not space; action, not passivity;
choice, not mechanism. Intuition, as a form of speculative knowledge,
is the only means through which we can restore primary flexibility into
scientific methods. Geometrical predictability, which is the ultimate goal
of a mechanical science, is only an intellectual delusion653.

At the end of his life, Bergson leaned toward Catholicism, but the per-
secution of the Jews by the Nazis caused him to identify with the Jewish

653 Bergson had obviously misunderstood Einstein’s theory of relativity. An his-

toric scene took place on April 6, 1922, when Henri Bergson attempted to defend

the cause of multiplicity of coexisting “lived” times against Einstein. Einstein’s

reply was absolute: he categorically rejected “philosopher’s time”, stating that

lived experience cannot save what has been denied by science.
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cause. After the collapse of France (1940), the Vichy government offered
him exemption from the Jewish laws, patterned after the Nuremberg Laws.
Bergson declined the offer and resigned his professorship from the College de
France. Sick and enfeebled he stood for hours in que lines for food and daily
commodities, with his coreligionists, loyal to the end to his brethren.

Over a century has passed since Bergson published his first book. With
hindsight perspective we can say that

“his grand attempt to limit the scope of modern science, as well as to open
new avenues alien to those of science — has failed654. He has failed insofar as
the methaphysics based on intuition he wished to create has not materialized,
although the problems which he identified are still our problems. The limi-
tation of the science of his day (which he erroneously attributed to science
in general) are beginning to be overcome, not by abandoning the scientific
approach or abstract thinking but by perceiving the limitations of the con-
cepts of classical dynamics and by discovering new formulations valid in more
general situations.

Bergson’s case convinces us that only an opening, a widening of science
can end the dichotomy between science and philosophy. This widening of
science is possible only if we revise our conception of time. To deny time —
that is, to reduce it to a mere deployment of a reversible law — is to abandon
the possibility of defining a conception of nature coherent with the hypothesis
that nature produced living beings, particularly man. It dooms us to choosing
between an antiscientific philosophy and an alienating science”.

1889–1928 CE Santiago Ramon y Cajal (1852–1934, Spain). Histolo-
gist. A pioneer of modern neurophysiology. First to formulate the neuronal
theory (based on the individuality of the nerve cell) which replaced the older
view of a reticular system of nerve channels through which impulses were dis-
tributed. In his research he was able for the first time, to display the structure
of individual cells and the contact of dendrites with adjacent cells by modi-
fying a hitherto unreliable method of staining . This new staining technique

654 Quoted from Order Out of Chaos by Ilya Prigogine and Isabelle Stengers, Ban-

tam Books, New York, 1984.

Bergson failed in this respect because he was too deeply versed into the physical

doctrine of his time: The equilibrium thermodynamics of the 19th century was

based on the second law, which predicted a gradual disorganization of the sys-

tem. It could not account for the daily observations which showed the reverse

phenomena. Consequently, vitalistic theories were invoked whereby it was sug-

gested that biological organisms obey laws that are not part of ordinary physics

and chemistry.



1889 CE 2653

also provided for long-distance tracing of axons to other parts of the brain or
junction with other nerve bundles.

Cajal was born in Petilla de Aragon, Navarra. After taking his degree
in medicine at Zaragoza University in 1873, he joined the Spanish army as a
medical officer, serving in Cuba during the Spanish-American war. From 1892
he held the chair of histology at Madrid University, and in 1906 he received
the Nobel prize for medicine, shared with Camillo Golgi.

1889–1930 CE Herbert Henry Dow (1866–1930, USA). Chemist and
manufacturer. Discovered electrolytic method for extracting bromine from
brine (1889); organized chlorine-extracting firm (1895); founded Dow Chem-
ical Co. (1897). Developed and patented over 100 chemical processes.

Dow was born in Belleville in Ontario, Canada. He graduated from Case
School of Applied Science (1888) with a B.S. degree.

During Dow’s lifetime, the company obtained its bromine, chlorine,
sodium, calcium, and magnesium from the brine (sea water) of ancient seas
under Midland, Ohio. But Dow, like Fritz Haber, in Germany, developed
experimental processes to mine modern seas.

Three years after his death, his company opened its first seawater plant in
North Carolina. By WWII, Dow plants on the Gulf Coast were in position to
supply magnesium for firebombs and to make lightweight parts for airplanes.

1890 CE Alfred Marshall (1842–1924, England). Economist. A founder
of the school of neoclassical economics. Professor at Cambridge University
(1845–1908).

Previously, the mechanism of supply and demand was considered only in a
single market that is assumed to be an infinitesimally small but representative
fraction of the whole economic system (microeconomics). Marshall’s analysis
covered markets for factors of production (labor, land, etc) as well as com-
modities; and it made pioneering contributions to the study of adjustment
processes and stability, notably in applying the concept of elasticity655 and in
distinguishing among time periods required for different types of adjustment
(capital costs and the like being fixed in the short run but variable in the long
run).

655 A quantitative method to measure the public’s responsiveness to a price change.

Such a measure is given by the ratio of the percentage of change in demand to

the percentage of change in price. The ratio when x units are sold is known as
the price elasticity:

If the price p is regarded as a function of the demand x, and a change in demand

Δx corresponds to a change of price Δp, then the elasticity E(x) of the price
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1890 CE Herman Hollerith (1860–1929, U.S.A.). Statistician. Invented
the electromechanical punched-card calculating machine. It was the first ma-
jor advance of automatic computing since Babbage.

In 1886, the returns of the 1880 U.S. census were still being counted and
sorted and it was clear that, with the methods then existing, the job would still
be unfinished in 1890, when the next census was due. Hollerith, on the staff
of the U.S. Bureau of the Census, saw that the solution lay in some measure
of mechanization, and set about the task of devising suitable equipment. He
was familiar with the punched-card system of control used on the Jacquard
looms (1805), and realized that the answer to many census questions, which
are of the ‘yes’ or ‘no’ type, could be represented by the presence or absence
of a hole in a particular position on a Jacquard type card. The answers to
more complex questions could be represented in coded form by the presence
or absence of holes in a group of positions. He also realized that the positions
of holes in a card could be detected by electrical means: the presence of a
hole would allow a current to flow through; the absence of a hole would stop
it.

Hollerith experimented with devices based on this principle for sorting
and counting — the main census operations — and some of his machines
were used for analyzing the U.S. Census in 1890. Thereafter progress was
rapid: the range of ‘Hollerith’ machines was extended to deal with most of
the operations of office arithmetic.

During the first half of the 20th century, punched-card equipment has been
extensively applied to the ever increasing mass of clerical work in commerce,
industry, and administration — and to a lesser extent, to scientific and tech-
nical calculations.

1890–1901 CE Emil Adolf von Behring (1854–1917, Germany).
Microbe-hunter, bacteriologist, physiologist. Pioneer in immunology. Discov-
ered antibodies. Explained that both tetanus and diphtheria immunity depend

with respect to the demand is defined by

E(x) = − p(x)

xp′(x)

where p(x) is the price per unit of an item when x units are demanded, or

sold. The price function is said to be elastic when E(x) > 1 and inelastic for

E(x) < 1. The second case indicates that a decrease in price is accompanied

by a decrease in total revenue, while in the first case a decrease in price will

increase the total revenue. The concept of ‘elasticity of demand’ was previously

introduced by Cournot (1838).
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on the capacity of the cell-free blood serum to neutralize the toxic substance
produced by the tetanus/diphtheria bacilli. Developed vaccine against tetanus
and introduced the concepts of passive immunization and antitoxins656 (1890).

Behring was born at Deutsch-Eylau. Worked at the Koch Institute of Hy-
giene, Berlin (1889–1994); professor at Hale University (1894–1851), Marburg
(1895 ff). Won the Nobel prize for physiology or medicine (1901).

Seismology657 — Birth of a New Science (1889–1936)

Early historical records contain references to earthquakes as far back as
2000 BCE. Aristotle (ca 340 BCE) gave a classification of earthquakes into six
types, according to the nature of the earth movement observed; for example,
those which caused an upward earth movement, those which shook the ground
from side to side, etc.

656 Antitoxin: A substance with the ability to counteract the effect of toxin or

poison; the specific antibody capable of neutralizing the pathogenic toxin.

Toxin: The Greek word for bow is toxon. The Greeks used toxikon for the

poison in which the arrow was dipped; hence the English toxin, toxic, antitoxin.

Poison: Was originally a harmless draught which the Old French borrowed

from the Latin potionem from potare, potum = to drink; but with the medieval

practice of lethal beverages it took on its fatal sense.

This etymology has yet another twist: the word tocsin is composed of two parts

toc (knock on a door) + the Latin signum which together implies: alarm, bell!
657 For further reading, see:

• Ben-Menahem, A. and S.J. Singh, Seismic Waves and Sources, Dover: New

York, 2000, 1102 pp.
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The earliest instrument made to respond to earthquake ground motion,
known to us, is the seismoscope, invented in 132 CE by the Chinese scholar
Chang Heng. It consisted of a column so suspended that it could move
in one of 8 directions; a ball was held lightly along each of these lines and,
when thrown down by the rod, was caught in a cup below and so revealed
the direction of motion. [Later seismoscopes were designed to give the time of
occurrence of a shock: They were equipped with horizontal rod lightly pivoted
at one end and provided with teeth below so that, when the rod fell, the teeth
caught a pin projecting from the pendulum of a clock.] This instrument is
reputed to have detected some earthquakes not felt locally.

The ancients attributed earthquakes to supernatural powers; indeed, a
writer in the Philosophic Transactions of the Royal Society of London, as
late as 1750 CE, deemed it expedient to apologize to ‘those who are apt
to be offended at any attempts to give a natural account of earthquakes’.
Notwithstanding, stubborn facts of earthquake effects continued to accumu-
late, especially in the wake of the disastrous Lisbon earthquake of 1755.

Finally it was firmly established in 1760 by John Michell (England) that
earthquakes originate within the earth. He declared that “earthquakes were
waves set up by the shifting masses of rock miles below the surface. . . the
motion of the earth in earthquakes is partly tremulous and partly propagated
by waves which succeed each another”, and he estimated that the earthquake
waves after the Lisbon earthquake had traveled outward at 530 m/sec.

Most of the work on earthquakes during 1760–1840 was concerned with
appraisals of geological effects of earthquakes, and of effects on buildings.
Early in the 19th century, earthquakes lists were being regularly published,
and in 1840 there appeared the first earthquake catalogue for the whole world.

Meanwhile a great deal of progress had been taking place on the theoret-
ical front, namely the theory of elasticity. In 1638, Galileo investigated the
behavior of a loaded beam attached at one end to a wall. He found that with
increasing load the beam bends around an axis perpendicular to its length
and situated in the plane of the wall. Even though he did not give any math-
ematical relations between load and deformation, his works were pioneering
in elasticity theory.

In 1660 Robert Hooke established the linear relationship between stress
and strain in one dimension, which forms the basis for the mathematical
theory of elasticity, and still serves as a good first approximation to the elastic
conditions in the earth.

During 1821–1830, the French mathematicians Navier, Cauchy and
Poisson laid the foundation to the mathematical theory of dynamic elasticity
relevant to seismology. In particular, Poisson (1828) predicted the existence
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of longitudinal and transverse waves, moving with different speeds in the in-
terior of perfectly elastic substances (known in seismology as P and S waves,
respectively). In 1845 Stokes defined the moduli of compressibility and rigid-
ity for isotropic elastic bodies, and in 1849 he conceived the first mathematical
model of an earthquake point-source.

In 1857, the first true seismologist (as we would now recognize the term
in hindsight), appeared on the scene: He was Robert Mallet658 (1810–1881,
Ireland), the engineer who laid the foundation of instrumental seismology.

The first seismometer659, worthy of the name, was designed in 1841 by
the physicist James David Forbes (1809–1868, Scotland). It consisted of
an inverted pendulum, hinged below by a cylindrical steel wire. A pencil
attached to the top of the pendulum rod, recorded the motion on paper.

658 He was born in Dublin, and after taking his degree at Trinity College in that

city, he went into his father’s small engineering factory. After building a light-

house and a number of bridges, he became interested in global seismicity and

earthquake engineering problems. His detailed study of the damage caused by

the Napolitan earthquake of 1857 led him to suggest the setting up of a network

of observatories over the earth’s surface. He published the first world seismicity

map (including material from many books) and made the first systematic at-

tempt to apply physical principles to earthquake effects (1860–1862). He made

estimates of the epicentral depth and also carried out a number of experiments

to determine the velocity of earth waves, by setting off charges of explosives in

different soils and by measuring the effects on bowls of mercury set at varying

distances up to 800 meters away.
659 The name was coined by David Milne Home in 1841. A few years later, the

name seismograph was given to an instrument built by Luigi Palmieri (1855)

in the observatory on Vesuvius.

The word derives from the Greek σεισμóδ = earthquake. A seismometer is an

instrument that amplifies and records small movements of the ground. Most

sensitive seismographs magnify ground motion by as much as ten million times.

It consists of a weight suspended from a frame by a spring. The frame moves

with the ground, but the mass, due to its inertia, tends to remain stationary

(evidently, any instrument containing a pendulum can be considered as a kind

of seismograph). The relative motion between the mass and the frame is mag-

nified by using an electromagnetic transducer and an electronic amplifier. The

amplified signal controls a recording device that displays the ground motion in

analog or digital form. Seismographs can detect ground movements of the order

of an Angström (10−8 cm). Most seismographs are designed to measure ground

velocity . Others are capable of monitoring ground displacements, accelerations,

and strains (extensions, tilts, rotations).
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The first useful seismograph system was constructed in Japan in 1880
by John Milne and his assistants James Alfred Ewing and Thomas
Gray. But this instrument had insufficient magnification and could record
only Japanese earthquakes. However, on April 1889, Ernst von Rebeur-
Paschwitz (1861–1895, Germany) was experimenting in Potsdam with a
modified form of Zöllner’s horizontal pendulum (V0 = 50, T0 = 18 sec, no
damping) when an earthquake from Japan was recorded. This event marks
the birth of instrumental seismology in its world-wide sense.

Stimulated by these observations, Milne was able by 1893 to design, con-
struct and test the now famous seismograph which bears his name. It was
capable of detecting earthquake waves which had traveled many thousands
of kilometers from their origin. Moreover, it was sufficiently compact and
simple in operation to enable it to be installed and used in many parts of the
world. It could record all three components of the ground motion (up-down,
east-west, north-south). From this time onwards, precise instrumental data
on earthquakes began to accumulate, and seismology has developed from the
qualitative towards the quantitative side.

The seismograph is to the earth scientist what the telescope is to the as-
tronomer — a tool for peering into inaccessible regions. For that reasons one
may consider the year of the deployment of the Milne seismographs as an im-
portant milestone in the history of seismology. Indeed, since 1893, the number
of instrumentally recorded earthquakes steady increased; the earliest known
list of earthquakes with computed origin-times and epicenters is that for the
period 1899–1903. Further improvement in the design of seismographs was
due to Emil Wiechert (1861–1928, Germany) who gave a detailed account
of his mechanical seismograph660 (1900) and Boris Borisovich Golitzin
(1862–1916, Russia) who designed the first electromagnetic seismograph with

660 Wiechert designed a seismograph in which the pendulum is vertical and in-

verted, being maintained by small springs pressing against supports rigidly at-

tached to the ground. The mass of the pendulum is large (up to several tons),

and the seismograph records both horizontal components at once. A cardi-

nal development took place when Golitzin introduced the idea of recording

ground motion by means of a ray of light reflected from the moving mirror

of a galvanometer: the motion of the mirror is excited by an electric current

generated by electromagnetic induction when the pendulum of the seismometer

moves. The strain seismometer measures the variation in the distance between

two points, some 30 meters apart, caused by the passage of seismic waves. Be-

nioff ’s recording was electromagnetic, the original galvanometer period being

40 sec, subsequently increased to 480 sec. His strain seismograph was the first

to record earth motions with periods up to the order of one hour, such as the

gravest mode of the free oscillations of the earth (1952).
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photographic recording (1906). The next development came in 1935, when
Hugo Benioff (1899–1968, U.S.A.) designed and constructed an instrument
to measure a component of ground strain, instead of the usual ground dis-
placement.

The science of seismology aims simultaneously to obtain the infrastructure
of the earth’s interior with the aid of seismic wave phenomena, and to study
the nature of earthquake sources with the ultimate goal of mitigating and
eventually controlling the phenomenon. This double feature is apparent from
the early days of the science.

The achievements toward the first goal began in 1799, when Cavendish
employed Newton’s law of universal gravitation to estimate the earth’s mean
density

[
〈ρ〉 = 3

4πG
g(R)

R � 5.5 g
cm3

]
. As this density exceeded the density of

surface rocks, the conclusion was that the density must increase with depth in
the earth. By means of observations of the tidal effect in the solid earth, Lord
Kelvin claimed in 1863 that the earth as a whole is more rigid than glass.
[This opinion has been confirmed later, when it was found that steel offers a
better comparison, where the gravest mode of the earth’s free oscillation is
concerned.]

In 1897, Wiechert conjectured from theoretical calculations that the
earth’s interior consists of a mantle of silicates, surrounded a core of iron.
The existence of the earth’s core was established by Richard Dixon Old-
ham (1858–1936, India and England) in 1906, from observations of earth-
quake waves.

In 1909, Andrija Mohorovic̆ic (1857–1936, Croatia) discovered661 a
sharp material discontinuity at some level below the earth’s surface (known

661 This was known to John Milne already in or prior to 1906! In his Bakerian

Lecture delivered March 22, 1906, and published in the Proceedings of the Royal

Society of London A 77, 365–376, he reported an outcome of recent seismological

research in the following words: “Preceding the large waves of a teleseismic dis-

turbance we find preliminary tremors. . . for (ray paths) which lie within a depth

of 30 miles, the recorded speeds do not exceed those which we would expect

for waves of compression in rocky material. This, therefore, is the maximum

depth at which we should look for materials having similar physical properties

to those we see on the earth’s surface. Beneath this limit, the materials of the

outer part of this planet appear rapidly to merge into a fairly homogeneous

nucleus with high rigidity”.

In the same lecture Milne was also the first to observe (1906) that breaks in the

trajectory of the secular motion of the earth’s North Pole (relative to its mean

position) could be correlated with the occurrence of major earthquakes during

1892–1904. A quantitative theory of this effect was only given in 1970.
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today as the Moho), which could explain the travel-times of seismic rays from
a local earthquake. It was subsequently found to demarcate the base of the
earth’s crust. This discovery demonstrated that the structure of the earth’s
outer layers could be deduced from travel-times of reflected and refracted
seismic signals.

In 1914, Beno Gutenberg (1889–1960, Germany and U.S.A.), published
his accurate determination of the depth of the boundary of the earth’s core
at 2900 km below the surface. He speculated that this discontinuity divides a
liquid core of radius 3500 km from a solid mantle662. [In 1955 he discovered
a global low velocity zone at depth 70–250 km in the earth’s mantle663]. In
1936, Inge Lehmann (1888–1993, Denmark) produced the first evidence of
the existence of the earth’s solid inner core with a radius of ca 1400 km.

The advent of elastodynamics began with the discovery of longitudinal
and transverse waves by Poisson in 1828, and their physical interpretation by
Stokes in 1845. In 1885, Lord Rayleigh discovered, ahead of observations,
another type of elastic waves (to be known later as the Rayleigh wave) that
is associated with material discontinuities such as a free surface of a body.

In 1897, Oldham664 identified on earthquake recordings (seismograms)
the three main types of waves predicted by Poisson and Rayleigh, thus con-
firming that, at least for short period wave-motion (dominating periods: 0.1–1
sec), the earth indeed behaves like an elastic body for which Hooke’s law may

662 In his treatise Principles of philosophy (1644), Descartes made one of the first

attempts to speculate about the earth’s interior. He wrote that the earth had a

central nucleus made of primordial, sun-like fluid surrounded by a solid, opaque

layer. Succeeding concentric layers of rock, metal, water and air made up the

rest of the planet. In the current view, the earth possesses a solid inner core and

a molten outer core. Both consist of iron-rich alloys. The earth’s composition

changes abruptly about 2900 km below the surface, where the core gives way

to a mantle made of solid magnesium-iron silicate minerals. Another significant

discontinuity, located 670 km below the surface marks the boundary between

the upper and lower mantle (the lattice structure of the mantle minerals changes

across that boundary because of high pressure).
663 Known as the Astenosphere. Now believed to be due to partial melting (1–

10%) of basaltic magma. The major mineral in the earth’s mantle is Olivine

(Mg2SiO4 with Fe2SiO4). In the Astenosphere, shear-wave velocities take low

value and seismic waves are more strongly attenuated.
664 Joined the Geological Survey of India in 1879. Retired in 1903.
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apply. In 1899, Cargill Gilston Knott (1856–1922, Scotland) derived the
general equations for reflection and refraction of plane elastic waves at plane
boundaries. This was needed to relate the amplitudes of the waves activat-
ing the seismometer to the corresponding seismogram traces, modified by the
presence of the free surface of the earth.

In 1904, Horace Lamb (1849–1934, England) came forth with the first
mathematical theory of a point-source earthquake in a half-space earth model.
He thus laid the theoretical foundation for the propagation of seismic waves
in layered media.

The first inverse problem in geophysics was formulated and solved in 1907
by Gustav (Ferdinand Joseph) Herglotz (1881–1953, Germany), enabling
the intrinsic compressional and shear velocities to be determined from travel-
time data665. By 1909 E. Wiechert, K. Zoeppritz, and L. Geiger ex-

665 In seismology, observations are mostly made at seismograph stations on the

earth’s surface. Rays emitted from an earthquake source (focus), eventually
reach the stations located at various distances from the point of the earth’s

surface above the source (epicenter). The distance from the epicenter to the

observing point is the epicentral distance. For the case when both the source
and the receiver are on the earth’s surface, we have the relation:

Δ(p) = 2p

∫ a

rm

d(ln r)
√

r2/V 2 − p2
,

where Δ is the angle subtended by the seismic ray at the earth’s center (equal

in this case to the angular source-receiver distance), and p = dT
dΔ

is the ray-
parameter. [This relation was discovered by Hans Benndorf (1870–1953,

Germany) in 1905.] T is the travel-time along the curved ray, rm is the distance

from the earth’s center to the lowest point of the ray, and V (r) is the intrinsic
wave velocity at radial coordinate r and a is the earth’s radius.

Knowing p(Δ) (travel-time data) for a sufficiently dense grid of points in some

interval 0 ≤ Δ ≤ Δ1, the above equation turns into an integral equation for
V (r). It leads to the Abel integral equation

f(x) =

∫ b

x

u(y)dy

(y − x)k
(0 < k < 1)

for the unknown u(y) = d
dy

ln r with y =
(

r
aV

)2
, x =

(
rm

aVm

)2

, and

f(x) = 1
2

√
x
Δ(x).

Its explicit solution:

u(y) = − sin πk

π

d

dy

∫ b

y

f(x)dx

(x − y)1−k
,
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ploited this method to obtain for the first time a profile of compressional
wave velocity in the earth’s mantle.

A significant contribution to theoretical seismology was made in 1911 by
A.E.H. Love666 (1863–1940, England) with his discovery of a horizontally-
polarized surface-wave (now known as the Love-wave), from the analysis of
which seismologists could derive estimates of the thickness of the earth’s crust
and its rigidity.

Further advance during 1915–1936 was made by Harold Jeffreys (1891–
1989, England), who brought to bear mathematical and statistical methods
and a great knowledge of wider geodynamical problems. His attention to
scientific method and statistical detail has been one of the main forces through
which pre-WWII seismology has attained its level of precision.

Significant progress in seismology has been made through the first four
decades of the 20th century: In 1901, the first Geophysical Institute was
founded in Göttingen (Germany), and the number of seismic observatories
capable of teleseismic recording did not exceed 25 (compared to 8 in 1894).
By 1940, there were about 10 major seismic research centers and 250 seismic
stations around the globe.

An international Association of Seismology was founded in 1905 at a meet-
ing of representative of 23 countries in Berlin, and met in Rome in 1906 where
it was decided to establish an international center at Strasbourg. The year
1919 saw the appearance of a bulletin for global recordings of earthquakes,
published at Oxford, under the name International Seismological Summary
(I.S.S.).

Following the catastrophic San-Francisco earthquake of April 18, 1906,
Harry Fielding Reid (1859–1944, U.S.A.), advanced his elastic rebound
theory (1910). Earthquakes are associated with large fractures, or faults, in

can be recast in the form:

V (r1) =
a

p(Δ1)
exp

[

− 1

π

∫ Δ1

0

ch−1

{
p(Δ)

p(Δ1)

}

dΔ

]

,

where a is the radius of the earth and Δ1 is the epicentral distance for a ray

that bottoms at r = r1. The integration extends over a family of rays for each

specific depth.
666 Augustus Edward Hough Love was a Sedleian professor of natural phi-

losophy at Oxford University during 1899–1940. He discovered a horizontally-

polarized guided shear wave that propagates in the earth’s crust (1911). It was

subsequently named after him (‘Love wave’). His name is also associated with

a dimensionless number in the theory of earth tides (‘Love number’).
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the earth’s crust and upper mantle. As the rock is strained, elastic energy
is stored in the same way that it is stored in a wound-up watch spring. The
strain builds up until the frictional bond that locks the fault can no longer
hold at some point on the fault, and it breaks. Consequently, the blocks
suddenly slip at this point, which is the focus of the earthquake.

Once the rupture is initiated it will travel at a speed of about 3.5 km/sec667,
continuing as much as 1000 kilometers. In great earthquakes, the slip, or
offset, of the two blocks can be as large as 15 meters. Once the frictional
bond is broken, the elastic strain energy, which had been slowly stored over
tens or hundreds of years, is suddenly released in the form of intense seismic
vibrations — which constitute the earthquake668. The process through which
the frictional bond is ‘lubricated’ to enable the commencement of the slip is
yet not understood.

The time between great earthquakes is about 50–100 years in California
and somewhat less in more active seismic regions, such as Japan or the Aleu-
tians. Thus the time required to build up the elastic strain energy in the rocks
adjacent to a fault is enormous compared with the time that elapses during
the release of stored energy.

The present state of knowledge of earthquake phenomena precludes the
reliable prediction of the time of occurrence of the next major earthquake in
any given location. Perhaps the most adequate answer to such questions was
given long ago by Mark Twain: “I was gratified to be able to answer promptly,
and I did. I said I did not know”.

Since 1556, an estimated 3.5 million persons were killed by earthquakes.

667 This was first discovered, both experimentally and theoretically, by Ari Ben-

Menahem (Ph.D thesis, CALTECH, 1960). It led to establishing of a novel

intrinsic magnitude scale of earthquakes based on the physical concept of ‘earth-

quake moment’ (A. Ben-Menahem and D.G. Harkrider, Journal of Geo-

physical Research 69 2605–2620, 1964).
668 About 109 erg of strain-energy is released from each cubic meter of the earth-

quake source volume. The greatest earthquakes release such energy from a

strained volume of 1000 km × 100 km × 100 km = 1016 m3, which gives a

total of 1025 erg. This is about the equivalent of 1000 nuclear explosions, each

with strength of 1 megaton (1 million tons) of TNT.

It is of interest to note that the few large earthquakes each year release more

energy than hundred of thousands of small shocks combined. About 1026 erg of

seismic energy are released each year. This is about 1 percent of yearly amount

of the heat energy reaching the earth’s surface from the interior.
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The Primeval ‘Seismologist’

Homo sapiens invented the seismograph and discovered Rayleigh waves
some hundred years ago. Nature, however, produced 60 million years ago
an arthropod, devoid of visual, auditory or olfactory senses, but equipped
(in modern terminology) with a mobile array of 8 seismometers, ampli-
fiers, and a minicomputer that enables it to locate its subsurface prey
from amplitudes and travel-times of P waves and Rayleigh waves in the
sand.669

The sand scorpion Paruroctonus mesaentis, a nocturnal hunter of the Mo-
jave Desert, has receptors on its legs that are extraordinary sensitive to subtle
disturbances of the sand. With this unusual prey-detection mechanism it de-
rives information needed to locate its prey. It essentially locates the source
of a signal by detecting and interpreting minute differences in the time and
amplitude of mechanical waves through the sand by means of its spatially
separated sensors.

The sand scorpion is one of the largest dune arthropods, growing to a
length of 8 centimeters and a weight of 4 grams over the course of its 5- to
6-year lifetime. It can detect disturbances as far away as 30 centimeters. At a
distance of 10 centimeters or less their estimates of target angle and distance
are virtually perfect. It determined the turning angle towards its prey by
integrating the input from all its legs.

As a granular disaggregated medium, sand acts as a reasonably good con-
ductor of mechanical waves up to a distance of several decimeters in the 1 to 5
kilohertz bandwidth; lower frequencies are damped and higher frequencies are
scattered. Of the four types of elastic waves that can propagate in solids, sand
conducts only P waves and Rayleigh waves. Typical group velocities of P
waves are 150 m/sec at 5 kilohertz and those of Rayleigh waves are 50 m/sec
at the same frequency. The wavelengths corresponding to these frequencies
commensurate with the size of the scorpion.

Two types of mechanoreceptors on the tarsal (terminal) leg segment of the
scorpion are sensitive to subtle vibrations of the substrate: Hairs protruding

669 Philip H. Brownell, Compressional and surface waves in sand: used by desert

scorpions to located prey , Science 197, 479–482, 1977. (Also in Scientific Amer-

ican, December 1984).
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from the sides and bottom of the tarsus rest on and between sand grains. The
basitarsal slit sensillum consists of regions where the cuticle folds in on itself.
The slit sensillum is particularly sensitive to vibrations that compress the
slits in a direction perpendicular to their long axis; it is capable of detecting
movements in the substrate that have amplitudes of about one Angström
unit (10−8 cm). Experiments have shown the hairs detect the compressional
waves, and the slit sensila register the arrival of Rayleigh waves. The adult
scorpion’s eight legs form a roughly circular sensor “array” about 4 to 6
centimeters across.

When the sand is disturbed, the first signals to arrive at the tarsus are
compressional waves, which stimulate the tarsal hairs, causing large amplitude
action potentials to ascend the leg nerve. A few milliseconds later, the vertical
ground particle motion associated with the slower-traveling Rayleigh wave
compresses the slit sensillum, triggering smaller-amplitude signals.

Rayleigh-wave stimulation of the slit sensillum appears to be the basis of
the scorpion’s perception of target direction. It may also exploit the time-
delays of both P and Rayleigh waves across his “array”; assuming a sensory
field of 5 centimeters in diameter, this time delay would be about one mil-
lisecond for a Rayleigh wave, and 0.3 millisecond for a compressional wave. It
might then determine the direction of the source from the time delay between
stimulation of sensors close to the source and those further away; that is, the
scorpion might simply turn in the direction of the sensors that are stimulated
first (many animals use smaller time delays to locate the source of compres-
sional waves propagated in the air; humans, for example, can easily judge the
direction of a sound source on the basis of a time delay between the two ears
of less than 10 microseconds).

Alternatively, a scorpion might gauge the direction of a wave source from
differences in the intensity with which the wave stimulates different sensors;
as a wave propagates, its amplitude decreases, partly because the wave front
expands geometrically, spreading out the energy of the wave, and partly be-
cause the signal is absorbed by the medium. Sensors nearest to the source
should thus be stimulated most intensely.

Experiments have shown that the scorpion can detect time delays as small
as 0.2 milliseconds, but they respond most consistently to delays of one to
two milliseconds — roughly the time it takes for a Rayleigh wave to traverse
the span of their legs. There remains only the question of how the scorpion
perceives the distance to its prey, i.e., how does it translate time delays into
distance.

Field observations showed that it rarely missed at 10 centimeters or less.
One possibility is that the animal times the delay between the arrival of
the fast-moving compressional wave and the slow-moving Rayleigh waves.
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The delay would be proportional to the distance of the source. The second
possibility would involve sensing the gradient of the amplitude of the wave
across the “array”, which increases with the decrease of its distance from the
prey.

In any case, the evolutionary process endowed this creature with a suit-
able “computer” to achieve this task since its mere existence must rely so
exclusively on information transmitted through the ground.

1890–1897 CE David Schwarz (1845–1897, Germany). Invented, de-
signed and built the first airship (metal dirigible balloon). It was made of
aluminum, filled with gas and driven by a Daimler benzine motor [length =
48 m, diameter = 14 m, volume = 3700 m3, weight = 3100 kg, speed = 27
km/h].

It was tested in Berlin in 1897: after flying for 4 hours, a driving belt
slipped, and in descent the balloon was damaged beyond repair. Among the
spectators was Ferdinand von Zeppelin (1838–1917), of the German army,
who foresaw the potentialities of the airship for the military. He bought
all plans and models of Schwarz’s airship from his widow, and developed it
further.

Schwarz was born in Hungary to Jewish parents and started as a successful
lumber merchant in Zagreb. He then studied mechanical engineering on his
own. Impressed by the special properties of the aluminum metal (its large-
scale industrial production began during 1886–7 in America, England and
France), he set forth to harness it to the construction of light airships. In
1890 he flew his first model in Austria and Russia, but failed to interest the
respective governments. Finally, when in 1897 the Germans were ready to
support his invention, the excitement caused his untimely death.

1890–1903 CE Samuel Pierpont Langley (1834–1906, USA). As-
tronomer, physicist, pioneer in aerodynamics and inventor. His steam-driven
aeroplane flew for 90 seconds (1896) — the first flight by an heavier-then-air,
engine-equipped, aircraft (uncrewed).

Langley was born in Roxbury, MA and attended Boston Latin School.
He spent several years studying architecture and engineering before turning
to astronomy. His several inventions included an instrument called bolome-
ter, which measures the sun’s radiation. He was a professor of physics and
astronomy at the Western University of Pennsylvania (1866–1887), studying
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the infrared portions of the sun’s spectrum. In 1890 he turned to pioneering
work in aerodynamics, contributing greatly to the design of early aircraft wing
shape.

The United States government gave Langley 50,000 dollars to build a man-
carrying “aerodrome”. After two failed attempts (1903) to get his flying
machine off the ground, Samuel Pierpont Langley was criticized by the new
York Times for wasting government funds on and idle dream.

A third attempt using a smaller model succeeded. The subsequent
catapult-launched flights of the Wright brothers at Kitty Hawk owed much to
Langley’s principles as well as to the more powerful engines available by the
early 1900’s. The Langley design was tested in later years by using a model
with a modern engine; it flew successfully with a pilot aboard.

1890–1908 CE Edouard-Eugene Branly (1844–1940, France). Physi-
cist, physician and inventor. Invented the coherer (1890), a primitive form
of radio detector that made wireless telegraphy possible. He thus established
the principles later developed by Marconi. He also evolved the forerunner of
the receiving antennae.

Branly was born in Amiens. He obtained a doctorate from the Sorbonne
and a medical degree from the University of Paris. By 1908670, he developed
the remote-controlled torpedo, fired from a torpedo-boat and operated by
electromagnetic waves via a relay system.

1890–1911 CE Sebastian Ziani de Ferranti (1864–1930, England). En-
gineer and inventor. Innovator in the development of electrical engineering
who led the application of power generation and distribution.

Ferranti was born in Liverpool, where his father had a photographic art
studio. At the age of 22 he became Chief Engineer of the London Electric
Supply Corporation, and was deeply involved in the planning, generation and
distribution of electricity. He was one of the first people to advocate large
power generating stations sited outside of population centers and established
the principle of the national grid, using alternating current transmission.

1891 CE California Institute of Technology (Caltech) founded.

1891 CE Seth Carlo Chandler (1846–1913, U.S.A.). Astronomer. Dis-
covered a periodicity of 428 mean solar days in the spectrum of the latitude

670 By 1868, Robert Whitehead (1823–1905, England), engineer, had devel-

oped the first real torpedo. Powered by compressed air, it was completely

self-propelled.
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variation. This value exceeds Euler’s (1765) theoretical value for the free pre-
cession of a rigid ellipsoid of revolution, by about 4 months. In 1892 Simon
Newcomb (1835–1909, U.S.A.) explained this period lengthening as being
due to the elastic yield of the earth.

The Chandler Wobble (1765–1909)

The equations of rigid gyroscopic motion were given by Euler in 1758. On
the basis of this theory, he suggested in 1765 that the earth might undergo
a free precession with period A/(C − A) sidereal days. Assuming this to
be true, a spectator, partaking in the earth’s motion, should observe periodic
changes in latitude relative to the fixed stars. Indeed, Lord Kelvin urged
astronomers in 1876 to look for a period of 10 months, as predicted by Euler.
However, no such period could be found.

Instead, S.C. Chandler established in 1891 the existence of a 428-days
period in the spectrum of the latitude variation.

The lengthening of the period was explained by S. Newcomb (1892) to
be the result of the earth’s elasticity. A theoretical verification was given by
A.E.H. Love (1863–1940, England) and J. Larmor (1857–1942, England),
based on first order theory of the figure of the earth.

This 14-month precessional motion of the instantaneous axis of rotation
about the earth’s axis of figure is known today as the Chandler Wobble. The
source of excitation of this motion has not been fully accounted for.

The Chandler Wobble is accompanied by two additional observed phe-
nomena:

(1) Secular (transient polar shifts resulting from impulses and jumps in the
source of excitation);

(2) Changes in the length of day due to such excitations.

The French novelist Jules Verne (1828–1905) cleverly used realistic, be-
lievable explanations to support incredible tales of adventure. In his book
“Sens dessous dessous” (1890) he concoted a plot in which a colossal missile
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of mass 180, 000 tons is launched at latitude 45 ◦, in order to displace the pole
by 23.5 ◦ and so remove the obliquity of the ecliptic. Working out the physics
of this problem for an earth model with no equatorial bulge (A = B = C),
one discovers a little fact which Verne did not bother to tell his readers —
the earth will require ‘only’ 108 years to creep to the desired state!

1891–1892 CE Arthur Moritz Schönflies (1853–1928, Germany).
Mathematician and crystallographer. Classified the complete list of 230 space
groups. Introduced the known Schönflies notation for point groups.671

Schönflies was born to Jewish parents in Landberg an der Warthe. Was a
student at Berlin and did his doctorate (1877) under Kummer and Weier-
strass. He taught in Berlin, Colmar, Göttingen, Königsberg and Frankfurt
a. M. He worked mainly on set theory and crystallography.

1891–1892 CE Almon Brown Strowger (1839–1902, USA). Undertaker
and inventor. Invented, patented and installed the first automatic telephone
exchange system, known at that time as ‘Strowger’s switch’. It replaced the
switchboard operator for placing local cells.

The first automatic exchange began operating in La Porte, Indiana (1892);
the central office switch worked in concert with a similar switch at the sub-
scribers home, operated by push buttons. The contact electromechanical
switch, which operated the telephone, could select a line of a wanted sub-
scriber. Later (1894) A.E. Keith, J. Erickson and C.J. Erickson invented
the rotating finger-wheel needed for a dial which first began operating in Mil-
waukee’s City Hall (1896).

671 The most important type of group in crystallography is the one which consists

of the symmetry operations pertaining to molecular structure. For such a group

the combining rule is one operation followed by another. Since the application

of any symmetry operation leaves a molecule physically unchanged and with

the same orientation in space, its center of mass must also remain fixed in

space under all symmetry operations. From this it follows that all the axes and

planes of symmetry of a molecule must intersect in at least one common point.

Such groups are called point groups. For a crystal of infinite size we can have

symmetry operations, e.g. translation, that leaves no point fixed in space; these

give rise to space groups.
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The automatic dial system changed telephony forever — it became “girl-
less, cuss-less, out-of-order-less, and wait-less”, and expedited the extension
of the telephone network.

Strowger was born in Penfield, New York, a suburb of Rochester. He went
to a New York state university, served in the Civil War (1861–1865), ending
as a lieutenant. He then taught school in Kansas and Ohio and wound up
first in Topeka and then in Kansas City as an undertaker (1886), an unlikely
profession for an inspired inventor.672

1891–1896 CE Edward Goodrich Acheson (1856–1931, USA). Engi-
neer and inventor. Produced silicon carbide, or carborundum673 (1891). In-
vented a process for manufacturing graphite by heating a mixture of coke and
clay (1896).

The discovery of carborundum, which is the hardest surface made by man
and second only to diamond in hardness, ended the search for a highly effective
and durable abrasive needed by industry to manufacture precision-ground
interchangeable metal parts. One of the byproducts of the carborundum
manufacturing process was graphite, which proved useful as a lubricant.

Acheson was born in Washington, Pennsylvania. In 1880 he had secured
a position with Thomas Edison in his Menlo Park, N.J. laboratories and was
involved in the development and installation of electrical lighting, including
working on the lamp exhibit at the Paris Exhibition (1881).

1891–1913 CE Alfred Werner (1866–1919, Switzerland). Distinguished
chemist. Father of coordination chemistry. First to put forward ideas on
bonding which were eventually to revolutionize inorganic chemistry. His the-
ory led to the discovery of many cases of isomerism. The importance of his
ideas was amplified in modern times since it was discovered that the mode of
action of many enzymes catalysts, that are essential for life processes, depends
on the formation of metal ion coordination complexes.

The idea of a privileged central metal atom or ion surrounded by a
group of tightly bound molecules or ions (e.g., as Mg in chlorophyll or Fe
in hemoglobin) puts Werner in a class with Kekulé and van’t Hoff before
him, and Pauling after him as far as our present day understanding of mole-
cular architecture is concerned.

672 The story surrounding his motivation to invent the automatic switch is odder

still: the wife of his competitor, working as a switchboard operator, gave busy

signals to customers calling Strowger, thus stealing his business.
673 By mixing clay with carbon and fusing it electrically
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Werner argued that the factor determining the structure of coordination
compounds was not the primary valency of the central atom but the number
of ions, atoms, radicals or molecules directly bonded to the metal674, now
known collectively as ligands. The ligands were postulated to be arranged in
simple, spatially geometric structures, with the octahedron as the commonest
arrangement. A corollary of this theory was that some coordination complexes
should exist as optically active isomers.

Werner was awarded the Nobel Prize in chemistry (1913).

1891–1914 CE Paul Painlevé (1863–1933, France). Mathematician and
statesman. Developed the theory of functions defined by non-linear differ-

674 Werner was faced with a need to explain a perplexing experimental fact;

cobalt chloride can bind itself to ammonia in 4 different ways: CoCl3·6NH3,

CoCl3·5NH3, CoCl3·4NH3 and CoCl3·3NH3. There were two questions in-

volved here: first, why was there such arbitrariness about the number of am-

monia molecules. Second, when these cobalt complexes were dissolved in water

and AgNO3 added, one obtained strikingly different quantities of insoluble sil-

ver chloride precipitating from one mole of the complex:

CoCl3·3NH3 −→ no precipitate at all;

CoCl3·4NH3 −→ 1 mole AgCl precipitate;

CoCl3·5NH3 −→ 2 mole AgCl precipitate;

CoCl3·6NH3 −→ 3 mole AgCl precipitate.

Why not 3 moles of AgCl in each case? After all, aren’t there 3 moles of chlorine

available?

Werner suggested correctly that the cobalt ions form octahedral complexes with

6 surrounding groups (octahedron = a regular polyhedron with 6 vertices and 8

equilateral triangles faces). For CoCl3·6NH3, all three chlorines are loosely held

in an ionic bond [Co(NH3)6]
+++ 3Cl− (like NaCl); for CoCl3·3NH3, all three

chlorine atoms are tightly held as [Co(NH3)3Cl3] such that Ag could not pull

the chlorine atoms from this complex. The other two cases fall in between.

Another important aspect of coordination theory concerns the possible alternate

spatial arrangements of the six different ligand groups coordinated about the

metal atom. For example, in the case of [Co(NH3)4Cl2]
+, the two chlorines can

be on the same or opposite sides of the octahedron. That makes for electronic

differences, and results in slightly different properties. The two isomers, as

such compound are called, differ only in the spatial geometry or arrangements

of atoms. Most evident immediately are their different colored solutions: the

trans form, in which the chlorine are opposite, is green while the cis form, in

which the coordination complex has the chlorines on the same side, is violet.

Such spatial isomers are common in nature and of great importance in living

systems.
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ential equations of the first and second order. (Painlevé property, Painlevé
transcendents675, Painlevé function).

Painlevé was born in Paris, the son of a lithographic draughtsman, and
was educated at the École Normale Superiere. He became a professor at the
Sorbonne and the École Polytechnique in 1898.

His interest in dynamics led Painlevé to take part in the early development
of aeronautics, on the practical as well as on the theoretical side: he was, in
fact, one of the first passengers of Wilbur Wright.

From his 40th year on, public affairs occupied a greater and greater portion
of his time. In 1917 he became Minister of War in the government of M. Ribot;
on Sept. 1917 he became Prime Minister. In 1925 he became Prime Minister
for the second time. In 1930–1931 and 1932–1933 he was Air Minister. He died
suddenly of heart failure, and was accorded public funeral in the Panthéon.

1891–1916 CE Charles Proteus (Karl August Rudolf) Steinmetz
(1865–1923, US). Electrical engineer and inventor. Developed the theory of
alternating-current (AC) phenomena (using complex numbers a la Heaviside).
This enabled the design of AC machines to be made more efficient and consol-
idated the victory of AC over DC gained by Tesla in fierce competition with
Edison.

Worked on the design of AC transmission, developing lightning arresters
for high-power transmission lines; patented over 200 inventions, including
improvements on generators and motors. Formulated the Steinmetz hysteresis
law (1891), which describes the dissipation of energy that occurs when a
system is subject to an alternating magnetic field. This made it possible to
reduce loss of efficiency in electromagnetic systems.

675 In the course of classifying nonlinear differential equations, he considered all

equations of the form w′′ = R(z, w)(w′)2 + S(z, w)w′ + T (z, w) where R, S, T

are rational functions of w (but have arbitrary dependence on z). The solutions

may have various kinds of fixed singularities (poles, branch points, essential sin-

gularities), but may not have movable singularities (its location depending on

the initial conditions) except for poles. There are 50 distinct types of equations

having these properties. Of those, 44 types are soluble in terms of elementary

transcendents (sines, cosines, exponentials), functions defined by linear second-

order equations (Bessel functions, Legendre functions, and so on) or elliptic

functions. The remaining 6 equations define the 6 Painlevé transcendents, one

of which is y′′ = 6y2 + x. Painlevé transcendents have recently found an appli-

cation in the theory of random surfaces and two-dimensional quantum gravity
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Steinmetz was born in Breslau (now Wroclaw, Poland) to Jewish parents.
Educated there and at the Technical High School, Berlin. Forced to flee Ger-
many (1888) because of his socialist activities just before receiving his Ph.D.
from Breslau University, he completed his studies in Zürich. Migrating to
the US (1889), he worked for an electrical firm in Yonkers until his mono-
graphs attracted wide attention. In 1893 he became chief consulting engineer
in General Electric’s Schenectady plant, where he spent the rest of his life
experimenting with electrical appliances and machinery. He was a Professor
of Electrophysics at Union College, Schenectady (from 1902) and authored
several books on electrical theory.

Throughout his life, Steinmetz retained his belief in socialism and in later
years favored Zionism.

1891–1917 CE Roland von Eötvös (1848–1919, Hungary). Experimen-
tal physicist. Established through his torsion-balance experiments that iner-
tial and gravitational mass are equivalent to accuracy of 1 part in 109.

Eötvös was born in Budapest. In 1872 he was appointed professor of
physics at the University of Budapest. During 1894–1895 he was Minister of
Education.

1891–1921 CE Eugene Dubois (1858–1940, Holland). Physician,
anatomist and paleontologist. The man who found the Missing Link in the
Darwinian evolutionary trail from ape to human.

While serving as military surgeon in the Dutch East Indies (1887–1895), he
discovered in Java the bones of a hominid, apparently intermediate between
man and simian ancestors, which he named (1891) Pithecanthropus erectus
(now Hominid erectus).

Dubois gave up a promising post at the University of Amsterdam to go to
Java with the aim of finding a fossil of a prehuman that would be demonstrably
the “Missing Link”. After finding what he believed to be such a fossil he had to
spend some thirty years defending his claim. He has been an underestimated
scientist.

1891–1923 CE George Ellery Hale (1868–1938, U.S.A.). Astronomer.
Advanced solar and stellar spectroscopy, discovered the existence of magnetic
fields in sunspots676and founded three large observatories in the United States:
Yerkes (1895), Mount Wilson (1904) and Palomar (1948).

676 Sunspots are one of many phenomena associated with the 22-year solar cy-

cle; they are irregularly-shaped dark regions in the photosphere of the sun.

Although they vary greatly in size, typical sunspots measure a few tens of thou-

sands of kilometers across. On very rare occasions, a sunspot is so large that

it can be seen with the naked eye (using special dark filters!). Ancient Chinese
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The last two were formally known as the Hale observatory, The Palomar
Observatory’s Hale telescope has a diameter of 508 cm (200 inch677).

astronomers recorded such sightings 2000 years ago. Galileo (1612) was the

first person to examine sunspots in detail and Schwabe (1843) discovered that

the number of sunspots varies in a periodic fashion (sunspot cycle of about 11

years). Maunder (1904) discovered also a spatial periodicity, i.e. that the lo-

cation of sunspots varies in a regular fashion over the sunspot-cycle: the first

sunspots of a cycle appear at large distance from the solar equator, whereas the

last spots of a cycle are formed very near the equator. At sunspot maximum

in the middle of the cycle, most sunspots occur at latitude of 10 ◦ to 15 ◦ north

and south of the equator.

In 1908, Hale observed the splitting of the Fe I spectral line into three lines

corresponding to a very intense magnetic field of 4130 Gauss (compared to the

terrestrial dipolar field of 0.7 Gauss). Hale also discovered that sunspot groups

are bipolar and that the polarity pattern reverses itself every 11 years, making

a complete cycle of 22 years through which the solar surface features vary (the

average number of sunspots still increases and decreases in a regular 11-year-

cycle). Hale’s discovery demonstrates that sunspots are places where a powerful,

concentrated magnetic field protrudes through the hot gases of the photosphere.

Because of the temperature, many of the atoms in the photosphere are ionized,

so that the photosphere is a mixture of electric charges. This plasma is an ex-

tremely good conductor of electricity, and it interacts vigorously with magnetic

fields, which in turn, restricts and contains the motions of a plasma and inhibits

the natural convective motions. Since energy cannot flow freely upward from

the sun’s convective zone, the plasma within sunspot cools off . This is why

temperatures in a sunspot are typically 4000–4500 K, i.e. more than 1000 K

cooler than the surrounding undisturbed photosphere. Because of this lowered

temperature, sunspots look dark in contrast to their brighter surroundings.

A host of exotic phenomena occur around and above sunspots as a direct result

of their intense magnetic fields. One of them – the solar flare – is a brief erup-

tion of very hot ionized gases from a sunspot group; vast quantities of particles

and radiation are blasted into space. When the resulting UV and X-rays, and

solar wind surges, arrive at the earth a day or so later, they produce aurorae

and interact with the gases of the upper atmosphere.

In 1960, the astronomer Horace Babcock put forward a magnetic-dynamo

model which makes use of the sun’s differential rotation and its convective en-

velope to explain the sunspot cycle as the result of the wrapping of a magnetic

field around the sun: sunspots appear where the concentrated magnetic field

has broken through the solar surface.
677 The Mount Wilson 150 cm reflecting telescope began observations in 1908,

and the second, Hooker telescope (250 cm; 1917) was used to revolutionize

astronomy, astrophysics, and cosmology in the 1920’s and beyond. The 508 cm
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Hale was born in Chicago, studied at M.I.T. and was professor at the Uni-
versity of Chicago (1897–1904). He invented the spectroheliograph [1891, with
Henri Deslandres (1853–1948, France)], an instrument used to photograph
the sun at a single wavelength. Founded the Astrophysical Journal (1895).

In 1908, Hale examined solar magnetic storms and determined that the
Zeeman effect (1896) is apparent in the spectra of sunspots, namely, the split-
ting of spectral lines due to the strong magnetic fields associated with these
sunspots. This led to his discovery (1919) of the periodic reversal in the
polarization of their magnetic fields.

1891–1933 CE Sven Andreas Hedin (1865–1952, Sweden). Central Asia
explorer. Drew the first maps and gathered information about areas in Persia,
Turkestan, Tibet, China, and Mongolia. During his early travels, Hedin un-
earthed ancient cities in Turkestan deserts, and the Lop Nor basin of Western
China. In 1893, he began a three-year trip over the Pamir, a mountainous
plateau in Central Asia and the plateaus of Tibet. In the early 1900’s Hedin
explored the high sources of the Brahmaputra River, locating mountains and
waters never before known. In 1933 he mapped the ancient silk trade route
that extended 16,000 km from Asia to Europe.

Hedin was born in Stockholm to Jewish ancestry. By the time he was
22 he had already crossed the Elburz Mountains, traveled through Persia
on horseback, crossed the Kara Kum, visited Bokhara and Samarkand, and
crossed Tien Shan from Andizhan, in Ferghana, to Kashzar. Even an outline
map of the routes he followed looks as if it was the work of a centipede whose
feet had been dipped in ink. He described his travels in many books. During
WWI, Hedin was a Nazi sympathizer.

1892 CE Dmitri Iosifovich Ivanowski (1864–1920, Russia). Microbiol-
ogist. Discovered a disease-causing agent smaller than bacteria — the virus.

Explained the infectiousness of tobacco mosaic disease (1892) by showing
it can be transmitted via cell-free filtrates678 of diseased plants to leaves of
healthy plants.

1892–1894 CE Richard Friedrich Johannes Pfeiffer (1858–1945, Ger-
many). Bacteriologist. First to observe a complex immune reaction (1894) of
the body to an invading microbe. He injected live cholera vibrios (bacteria)

Palomar (Hale) telescope was completed in 1908; It was the world’s largest until

1976, and retired in 1987 because of air and light pollution.
678 An agent in the sap of leaves is not filtered out of the sap even with the so-called

chamberlands’ bacteriological filter. The term filterable virus was thus coined.

Later, ‘filterable’ was dropped and virus took its modern meaning.
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into guinea pigs which had already been immunized, then extracted some of
the germs. Examining the extract under a microscope, he observed the germs
becoming motionless, then swelling and finally disintegrating (a process he
named bacteriolysis).

He showed that the same process occurred in vitro, and that the reaction
would cease when heated over 60◦C [This let J. Bordet to study the immune
system and discover the complement (1898).] During the influenza epidemic
of 1889–1892 he discovered the bacillus Haemophilus influenzae (1892), later
found to be responsible for many of the complications of the influenza viral
infection.

Pfeiffer was born near Posen and educated in Berlin as a military surgeon.
He worked under Koch at the institute for Hygiene (1894) and became a
professor of hygiene at Koenigsberg (1899) and Breslau (1909).

1892–1899 CE Henri Eugene Padé (1863–1953, France). Mathemati-
cian. Developed an important analytical method through which a function
with singularities can be approximated as a ratio of two polynomials.

Padé was educated at the Ecole Normale Superieure in Paris and at Leipzig
and Göttingen under Klein and Schwarz (1889–1890). He returned to France
and obtained his doctorate under Hermite’s supervision. He held positions
at Besancon, Dijon and Aix-Marseilles.

Historically, Padé was motivated by the work of Stieltjes on the analytic
theory of continued fractions (1889), which he came to know on his visit to
Göttingen in 1890. His starting point, however, was the work of Frobenius
(1881) who made a systematic study of those rational fractions.

1892–1905 CE James Dewar (1842–1923, Scotland). Chemist and physi-
cist. First to produce liquid hydrogen (1898), later (1899) obtaining it as a
solid. Studied the properties of matter at low temperatures. Invented the
Dewar vessel (1892), forerunner of the vacuum bottle.

Dewar demonstrated (1898) that hydrogen, a gas which at normal tem-
peratures tends to warm upon expansion, exhibits the normal Joule-Thomson
cooling (1852) at temperatures below −80 ◦C. Hence, below −80 ◦C the Joule-
Thomson effect allows a mechanism for further cooling of hydrogen to below
its critical temperature for liquefaction.

Dewar was born at Kincardine-on-Forth, Scotland. He was educated at
the universities of Edinburgh (under Playfair) and Ghent (under Kekulé).
In 1877 he became Fullerian professor of chemistry in the Royal Institution,
London. In 1904, he was the first British subject to receive the Lavoisier
medal of the French Academy of Sciences. He was also a professor of natural
experimental philosophy at Cambridge (1875–1923).
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1892–1923 CE Michael (Mihailo) Idvorsky Pupin (1858–1935,
U.S.A.). Physicist and inventor. His inventions led to great advances in
long-distance telephone systems, telegraphy and radio transmission networks.

His main contributions:

• Multiplex telegraphy accomplished by electrical tunning (1892–1894)

• Extending the range of long-distance telephony by amplifying the signal
at intervals along the line without distortion (1894)

• A rapid method for X-ray photography, shortening the time of exposure
from about an hour to a few seconds (1896)

• Discovered the Secondary X-ray Radiation (1896)

Pupin was born in Idvor, Austria-Hungary (now Yugoslavia), a son of
illiterate parents who encouraged his education. He arrived in America, a
penniless immigrant, in 1874, and set out to understand the Maxwell theory
like a knight in quest of the Holy Grail. First he went to Columbia Uni-
versity, but found nobody there who could explain Maxwell. Then he went
to Cambridge, England, where Maxwell had worked; but Maxwell was dead,
and Pupin’s tutors were mainly interested in getting him good marks in the
mathematical tripos.

Finally he went to Berlin, and there he found Ludwig Boltzmann, who
taught Pupin what he knew about Maxwell’s equations. Pupin was amazed
to find out how few were the physicists who had caught the meaning of the
theory, even 20 years after it was stated by Maxwell in 1865. He obtained
his PhD degree at the University of Berlin (1888) and returned to the US in
1889.

After various adventures he became a professor of electromechanics at
Columbia University in 1892. In 1923 he published his autobiography From
Immigrant to Inventor , which won the 1924 Pulitzer prize.679

1892–1924 CE Maxim Gorky (Aleksei Maksimovich Peshkov
1868–1936, Russia). Novelist, humanist, social reformer and pioneer social-
democratic thinker. The Socrates of modern times.

679 It was estimated that Pupin’s invention of the ‘Pupin’s coils’ (loading a tele-

phone wire with inductance coils) had saved over 100 million dollars in the first

22 years. Pupin asked: “Where are those one hundred million dollars which the

invention has saved? I know that not even a microscopic part of them is in the

pockets of the inventor”.
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Gorky was born in Nizhny Novgorod. He became orphan at age nine and
was raised by his grandparents. At age 19 he traveled on foot across the
Russian Empire, changing jobs and accumulating impressions used later in
his novels, stories and plays.

In 1887 Gorky witnessed a Pogrom in Nizhny Novgorod. Deeply shocked
by what he saw, Gorky became a life-long opponent of racism. Gorky worked
with the Liberation of Labor group and in October, 1889 was arrested and
accused of spreading revolutionary propaganda. He was later released because
they did not have enough evidence to gain a conviction. However, the Okhrana
decided to keep him under police surveillance.

In 1891 Gorky moved to Tiflis where he found employment as a painter in a
railway yard. The following year his first short-story, Makar Chudra, appeared
in the Tiflis newspaper, Kavkaz. The story appeared under the name Maxim
Gorky (Maxim the Bitter). The story was popular with the readers and
soon others began appearing in other journals such as the successful Russian
Wealth.

Gorky also began writing articles on politics and literature for newspapers.
In 1895 he began writing a daily column under the heading, By the Way.
In this articles he campaigned against the eviction of peasants from their
land and the persecution of trade unionists in Russia. He also criticized
the country’s poor educational standards, the government’s treatment of the
Jewish community and the growth in foreign investment in Russia.

His short stories such as Twenty-six Men and a Girl, often showed Gorky’s
interest in social reform. In a letter to a friend, Gorky argued that “the aim
of literature is to help man to understand himself, to strengthen the trust in
himself, and to develop in him the striving toward truth; it is to fight meanness
in people, to learn how to find the good in them, to awake in their souls shame,
anger, courage; to do all in order that man become nobly strong.”

In 1898 Gorky published his first collection of short-stories. The book was
a great success and he was now one of the country’s most read and discussed
writers. His choice of heroes and themes helped him emerge as the champion
of the poor and the oppressed. The Okhrana became greatly concerned with
Gorky’s outspoken views, especially his articles and stories about the police,
but his increasing popularity with the public made it difficult for them to take
action against him.

Gorky secretly began helping illegal organizations such as the Socialist
Revolutionaries and the Social Democratic Labor Party. He donated money
to party funds and helped with the distribution of radical newspapers such as
Iskra.
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On the 4th March, 1901, Gorky witnessed a police attack on a student
demonstration in Kazan. After publishing a statement attacking the way
the police treated the demonstrators, Gorky was arrested and imprisoned.
Gorky’s health deteriorated and afraid he would die, the authorities released
him after a month. He was put under house arrest, his correspondence was
monitored and restrictions were placed on his movement around the country.
When he was allowed to travel to the Crimea, he was greeted on the route by
large crowds bearing banners with the words: “Long live Gorky, the bard of
Freedom exiled without investigation or trial.”

After Blood Sunday Gorky was arrested and charged with inciting the
people to revolt. Following a world-wide protest at Gorky’s imprisonment in
the Peter and Paul Fortress, Nicholas II agreed for him to be deported from
Russia.

In 1906 Gorky toured Europe and the United States. He arrived in New
York on 28th March, 1906 and the New York Times reported that “the recep-
tion given to Gorky rivaled that of Kossuth and Garibaldi.” His campaign tour
was organized by a group of writers that included Ernest Poole, William
Dean Howells, Jack London, Mark Twain, Charles Beard and Upton
Sinclair.

In 1907 Gorky attended the Fifth Congress of the Social Democratic La-
bor Party. While there he met Vladimir Lenin, Julius Martov, George
Plekhanov, Leon Trotsky and other leaders of the party. Gorky preferred
Martov and the Mensheviks and was highly critical of Lenin’s attempts to
create a small party of professional revolutionaries.

Gorky continued to write and his most successful novels include Three of
Them (1900), Mother (1906), A Confession (1908), Okurov City (1909) and
the Life of Matvey Kozhemyakin (1910).

Gorky was strongly opposed the First World War and he was attacked in
the Russian press as being unpatriotic. In 1915 he established the political-
literary journal, Letopis (Chronicle) and helped establish the Russian Society
of the Life of the Jews, an organization that protested against the persecution
of the Jewish community in Russia.

Gorky started a newspaper, New Life, in 1917, and used it to attack
the idea that the Bolsheviks were planning to overthrow the government of
Alexander Kerensky. On 16th October, 1917, he called on Vladimir Lenin to
deny these rumors and show he was “capable of leading the masses, and not
a weapon in the hands of shameless adventurers of fanatics gone mad.”

In January, 1918, Gorky led the attack on Lenin’s decision to close down
the Constituent Assembly. Gorky wrote in the New Life that the Bolsheviks
had betrayed the ideals of generations of reformers: “For a hundred years the
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best people of Russia lived with the hope of a Constituent Assembly. In this
struggle for this idea thousands of the intelligentsia perished along with tens
of thousands of workers and peasants.”

The Bolshevik government controlled the distribution of newsprint and in
July, 1918, it cut off supplies to New Life and Gorky was forced to close his
newspaper. The government also took action making it impossible for Gorky
to get his work published in Russia.

In 1921 Gorky once again clashed with the Soviet government over the
suppression of the Kronstadt Uprising. Gorky blamed Gregory Zinoviev
for the way the sailors were treated after the rebellion. Gorky failed to save
the life of the writer, Nikolai Gumilev, who was arrested and executed for
his support for the Kronstadt sailors. He was also unsuccessful in obtaining
an exit visa for the poet, Alexander Blok, who was dangerously ill. By the
time Zinoviev gave permission for Blok to leave the country, he was dead.

During the terrible famine of 1921, Gorky used his world fame to appeal
for funds to provide food for the people starving in Russia. One of those who
responded was Herbert Hoover, head of the American Relief Administration
(ARA).

Gorky continued to criticize the Soviet government and after coming under
considerable pressure from Vladimir Lenin, he agreed to leave the country. In
October, 1921, Gorky went to live in Germany where he joined a community
of around 600,000 Russian émigrés. He continued to criticize Lenin and in
one article wrote: “Russia is not of any concern to Lenin but as a charred log
to set the bourgeois world on fire.” In July, 1922, Gorky campaigned against
the decision to sentence to death twelve leading members of the Socialist
Revolutionary Party.

Gorky stayed in Germany for two and half years before moving to Sorrento
in Italy.

Joseph Stalin attempted to bring an end to Gorky’s exile by inviting him
back to his homeland to celebrate the author’s sixtieth birthday. Gorky ac-
cepted the invitation and returned on 20th May, 1928. Stalin wanted Gorky
to write a biography of him. He refused but did take the opportunity to seek
help for those writers being persecuted in the Soviet Union.

It is unlikely that Gorky ever discovered the full picture of what Joseph
Stalin was doing in the Soviet Union. He was kept under close surveillance
by the NKVD and his private correspondence reveals that he believed Stalin
that Leon Trotsky and his followers were behind the assassination of Sergey
Kirov.

Maxim Gorky died of a heart attack on 18th June, 1936. Rumors began
circulating that Stalin had arranged for him to be murdered. This story was
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given some support when Yagoda, the head of the NKVD at the time of his
death, was convicted of Gorky’s murder in 1938.

Asteroid 2768 Gorky, was named after him.

∗ ∗∗
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Worldview XXVI: Maxim Gorky

∗ ∗∗

Happiness always looks small while you hold it in your hands, but let it go,
and you learn at once how big and precious it is.

∗ ∗∗

In the carriages of the past you can’t go anywhere.

∗ ∗∗

Be good, be kind, be humane, and charitable; love your fellows; console the
afflicted; pardon those who have done you wrong.

∗ ∗∗

Only mothers can think of the future — because they give birth to it in their
children.

∗ ∗∗

There is no one on earth more disgusting and repulsive than he who gives
alms. Even as there is no one so miserable as he who accepts them.

∗ ∗∗

When everything is easy one quickly gets stupid.

∗ ∗∗

When one loves somebody everything is clear – where to go, what to do – it
all takes care of itself and one doesn’t have to ask anybody about anything.
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∗ ∗∗

You can’t do without philosophy, since everything has its hidden meaning
which we must know.

∗ ∗∗

You must write for children in the same way as you do for adults, only better.

∗ ∗∗

When work is a pleasure, life is a joy! When work is a duty, life is slavery.

∗ ∗∗

A good man can be stupid and still be good. But a bad man must have brains.

∗ ∗∗

Everybody, my friend, everybody lives for something better to come. That’s
why we want to be considerate of every man — Who knows what’s in him,
why he was born and what he can do?

(1902)

∗ ∗∗

The aim of literature is to help man to understand himself, to strengthen the
trust in himself, and to develop in him the striving toward truth; it is to fight
meanness in people, to learn how to find the good in them, to awake in their
souls shame, anger, courage; to do all in order that man become nobly strong.

(1901)

∗ ∗∗

Lenin and Trotsky and all who follow them are dishonoring the Revolution,
and the working-class. Imagining themselves Napoleons of socialism. The
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proletariat is for Lenin the same as iron ore is for a metallurgist. Is it possible,
taking into consideration the present conditions, to cast out of this ore a
socialist state? Obviously this is impossible. Conscious workers who follow
Lenin must understand that a pitiless experiment is being carried out with
the Russian people which is going to destroy the best forces of the workers,
and which will stop the normal growth of the Russian Revolution for a long
time.

(1917)

∗ ∗∗

Lenin and Trotsky don’t have any idea about freedom or human rights. They
are already corrupted by dirty poison of the power, this is visible by their
shameful disrespect of freedom of speech and all other civil liberties for which
the democracy was fighting.

(1917)

∗ ∗∗

If the trial of the Socialist Revolutionaries will end with a death sentence, then
this will be a premeditated murder, a foul murder. I beg of you to inform
Leon Trotsky and the others that this is my contention. I hope this will not
surprise you since I had told the Soviet authorities a thousand times that it
is a senseless and criminal to decimate the ranks of our intelligentsia in our
illiterate and lacking of culture country.

(1922)

∗ ∗∗
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1892–1934 CE Hayyim Nachman Bialik (1873–1934, Ukraine and Is-
rael). Poet, essayist, scholar, linguist, translator and rejuvenator of the He-
brew language. In his scientific work, Bialik turned to the lore of Jewish
antiquity (especially medieval Hebrew poetry and the Talmudic legendary lit-
erature) to bring about the renaissance of the classical Jewish heritage, giving
life and verve to modern Hebrew. He restored to the almost defunct Hebrew
language its elasticity and originality, showing that it is capable of expressing
all the effects of light, sound and color.

Bialik was born in the small hamlet of Radi, in the Volhynia district of the
Ukraine and educated by his paternal grandfather in Zhitomir. He studied
in the famous Lithuanian Talmudic Academy (“Yeshiva”) of Volozhin. He
then worked as a timber trader, teacher and publisher. Settled in Tel-Aviv680

(1923) and became the symbol and leader of Hebrew national and cultural
revival in the old-new homeland of Israel. There are few examples in history
of real poetry influencing a generation so deeply and so directly. His poem
“In the City of Slaughter” prophetically depicts the 1903 Russian pogrom
in Kishinev as a prelude to world tragedy. This poem caused thousands of
youths in Russia to joint the underground to fight the Czar and tyranny.

With an exceptional mastery of every layer of the Hebrew language, Bialik
confronted head-on the struggle of Judaism with other civilizations. Breaking
away from the traditional upbringing of the Talmudic scholar, he came under
the influence of the enlightenment. He elevated the mathmid, that perpetual
student of Talmudic scholasticism, to the height of an extraordinary man
to whom pure intellect, ascetism, self-sacrifice for ‘learning for the sake of
learning’, had become unity in the highest degree681. In this poem Bialik
portrayed the rapidly vanishing life of the traditional Jewish past.

To save this heritage and incorporate it into the values of the new age he
foreshadowed a new beginning of a more complete life in which not all that
is old will be cast away for the sake of the new, but only that part which has
become obsolete, and in place of it a new Jewish life would absorb all that is
best in the new age. Among his many translations into Hebrew are works of
Shakespeare, Schiller and Cervantes.

1893 CE Albert Londe (1858–1917, France). Photographer. Published
the first book on medical photography.

1893 CE Wilhelm (Carl Werner Otto Fritz Franz) Wien (1864–1928,
Germany). Physicist discovered his displacement-law concerning the radiation

680 Maxim Gorky helped him obtain a permission to leave the Soviet Union.
681 From these seeds sprang the great Jewish mathematicians, physicists and bio-

chemists of the 19th and 20th centuries.
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emitted by a perfectly efficient blackbody. This law states that the spectral
peak wavelength is inversely proportional to the absolute temperature of the
body. This law led Planck to discover his quantum theory of radiation.

Wien was born in Gaffken, East Prussia. He served as a professor of
physics at the Universities of Giessen (1899) and Münich (1920). He received
the Nobel Prize for physics in 1911.

1893–1894 CE Renewed worldwide outbreak of cholera. Millions perished.

1893–1896 CE Mordecai Wolfe (Waldemar) Haffkine (1857–1930,
Russia, France and England). Bacteriologist, immunologist and microbe-
hunter. Discovered and used an improved successful method of inoculation
against cholera, plague, and typhoid, which reduced significantly the mortality
rate of these diseases.

Haffkine was born to Jewish parents at Odessa, Russia, and graduated
from the University of Odessa (D.Sc., 1884). Since he could not obtain a
suitable position without conversion, he went to Paris to work under Pasteur
(1888). Here he developed an attenuated strain of the cholera which he tested
on himself (1892). The next year he used it on 45,000 people in India where
it reduced the death rate by 70% among those inoculated. In 1896 he was
deputed by the Indian government to inquire into the bacteriology of the
plague. He discovered an effective method of inoculation, and succeeded in
reducing the mortality by 80 percent. The same method was used successfully
in Egypt (1947).

1893–1912 CE Karl Pearson (1857–1936, England). Mathematician.
One of the founders of modern statistics. His work established statistics as a
subject in its own right.

Pearson defined the standard deviation of a set of measurements and the
Chi-square test of goodness of fit682 (1900). Stimulated by the evolutionary

682 The χ2 (Chi-squared) test determines the goodness of fit of a given model to
noisy data. Let a sample consist of N trials and let F (n) be the frequency of

event n (i.e. the number of occurrences of the value n). If the parent distri-

bution (model) which we are testing is f(n), then the frequency predicted by
the parent distribution is just Nf(n). The difference Nf(n) − F (n) for each n

characterizes the difference in the two frequencies. A measure of goodness of fit

is

χ2 =
∑

n

[Nf(n) − F (n)]2

Nf(n)
,

yielding the a weighted mean of the square of the fractional difference of the

expected and observed frequency distributions. A mathematical table then
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writings of Francis Galton (1822–1911, England), he became immersed in
the application of statistics to biological problems of heredity and evolution683.
Pearson’s other discoveries included the Pearson coefficient of correlation
(1892), the theory of multiple and partial correlation (1896), the coefficient
of variation (1898), work on errors of judgment (1902), and the theory of
random walk (1905).

Pearson was born in London and educated at University College, London
and King’s College, Cambridge. He began his career as a lawyer (1881–1884)
and also published literary works (1880–1882). During 1884–1933 he taught
at University College, under the varied titles of professor of mathematics and
mechanics (1884), geometry (1891) and eugenics (1911). He wrote books on
the philosophy of science, and on statistics.

1893–1920 CE Max Weber (1846–1920, Germany) and Emile Durk-
heim (1858–1917, France). Founding fathers of modern sociology.684

Durkheim produced the first major sociological work (1853) employing
a rigorous scientific methodology and single-handedly established sociology
as an independent academic discipline. His thinking derived from French
rationalism through which he sought to develop elementary forms as building-
blocks of a theory of society; e.g. endeavored to explain religion in terms of
totemism as an elementary form.

The heart of his sociology is a rejection of the individual basis of
society685and the notion that society was prior to the individual. Therefore,
methodologically, the social could not be reduced to the psychological.

converts the values of (χ2) and the number of degrees of freedom (DoF) to the

probability that the model is correct. The integer DoF is N – the number of

parameters in f(n).
683 He showed that a wide variety of frequency distribution functions (including

the ‘Gaussian’) can evolve from a single differential equation

[
1

y

dy

dx
= (x + a)/(b0 + b1x + b2x

2)

]

by suitable choices of its coefficients.
684 The science of sociology was invented at least twice; once during 1830–1842 by

Auguste Comte (1898–1857, France), who gave it its name by combining the

Latin term societas with the Greek logos.
685 The utilitarian idea of Hobbes and Bentham that the individual and his self-

interest comprise the unit of society and that the community is a superstructure

that to succeed must bribe individuals into cooperation based on their material

self-interest (social contract, minimalist government).
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Thus Durkheim attacked the notion that society was simply a ‘contract’
between individuals, for the norms which govern contracts are embedded in
a broader context of moral understanding or social solidarity. To him, the
religious bond was simply the symbolic representation of the social bond,
expressed through ritual.

Durkheim was born in Espinal, in the Lorraine, France to Jewish parents.
Taught philosophy at Bordeaux (1887–1902) and was professor of sociology
and education at the Sorbonne (1902–1917). He lost a son in WWI, where
half of the 1913 class of the Ecole Normale (the school of France intellectual
elite) was killed.

His books: Suicide (1897); The Elementary Forms of Religious Life
(1912).

Max Weber, economist and sociologist, was born at Erfurt, Germany.
Professor at Berlin (1893), Freiburg (1894), Heidelberg (1897–1903) and Mu-
nich (1919). His theory derived from German historical thinking. Taking
his cue from Nietzsche, he claimed that successful capitalism in the Protes-
tant countries derived from the value-positing of their charismatic founders
(Calvin, Luther). What mattered to him was not the truth of religious expe-
riences but the values it instilles in people.

The Modern Bicycle (1893)

Bicycle, a light two-wheeled steerable vehicle, propelled by human mus-
cular power, evolved in the 19th century into an important popular means of
transportation and recreation all over the world.

Suggestions of vehicles having two or more wheels and propelled by mus-
cular effort of the rider (or riders) are to be found in very early times, even
on the bas-reliefs of Egypt and Babylon and the frescoes of Pompeii. There
is some evidence for the presence of such vehicles in medieval England.

A primitive version of the bicycle appeared in France in 1779; it was known
as a velocipede, and invented by Blanchard and Magurier. It differed little
from a later version known as célérifère, proposed by Mede de Sivrac (1790).
His model consisted of a wooden bar rigidly connecting two wheels placed one
in front of the other, and was propelled by the rider, seated astride the bar,
pushing against the ground with his feet.
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The next advance was made in 1816 by the Baron Karl Drais von Sauer-
bronn (1785–1851, Germany). In his contraption, the front wheel was pivoted
on the frame so that it could be turned sideways by a handle, thus serving
to steer the machine. It was known as the draisine. A similar machine, the
celeripede, also with a movable front wheel, is said to have been ridden by
Joseph Nicèphore Niépce (1765–1833, France) in Paris in 1816. The Scot
blacksmith Kirkpatrick Macmillan added in 1839 to the draisine connect-
ing rods working on the rear axle. Thus fitted, the draisine had wooden wheels
with iron tires, the leading one about 75 cm in diameter and the rear driving
one about 100 cm. It formed a prototype, though not the ancestor, of the
modern rear-driven safety bicycle.

About 1865, Pierre Lallement in Paris constructed a bicycle in which
the front wheel was driven by pedals and cranks attached directly to its axle,
but it is unclear whether the origin of this idea should be attributed to him
or to Ernest Michaux, the son of his employer, who was a carriage repairer.
(Lallement took his machine to the United States, and in 1866 was granted
a patent which had an important influence on the subsequent course of the
cycle industry in that country.) This machine, consisting of a wooden frame
supported on two wooden wheels, soon became popular in England as well as
in France and America, and came to be called bicycle (or bysicle) by those
who took it seriously and bone-shaker by those who did not.

Improvements quickly followed, chiefly in England, for the popularity of
the machine in America was short-lived, and in France the industry was
checked by the Franco-German war. Rubber tires, in place of iron ones,
appeared in 1868 the chain-drive was invented by J.F. Tretz in Germany
in 1869, and applied to bicycles by Guilmet (France) in 1870. Suspension
wheels with wire spokes in tension were seen in London.

During the 1870’s, a new type of a bicycle appeared with a large driving
wheel in front and a small trailing behind. The same type retained its
supremacy until 1885. The same year saw the first commercially successful
safety bicycle produced by John Kemp Starley (England); it had equal-
sized wire-spoked wheels, “diamond shape” steel-tubing frames, cone (and
then ball) bearings at points of friction, crank and pedals in the center with
a chain and sprocket drive to the back wheel. The rider sat so far back that
he could not be thrown forward over the handles. Finally, the machine was
made more stable with a curved front wheel fork686

686 A stable bicycle is one whose forkpoint (the point of intersection of a projection

along the front steering axis and a horizontal line through the wheel center) falls

as the wheel turns into a lean when the bike is tilted. Gyroscopic effects have

little to do with riding stability, although if the bike is pushed off riderless, then

the gyroscopic effect from the wheels will help stabilize the bike for a while.
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With the invention of air-filled rubber tires by John Boyd Dunlop

(1840–1921, Scotland) in 1888, and the addition of coaster brakes and ad-

justable handle bars — the modern version of the bicycle was ready by 1893.
Early forms of the gear shift came into use soon after 1900.

By 1897 about 4 million Americans were riding bicycles regularly, more

than at any previous time. During the early 1900’s, the rapid development

of the automobile caused many people to lose interest in bicycles, but in the

early 1970’s bicycle riding in the United States became more popular than

ever before, and 75 million bike riders were on the roads. In 1990 this number

climbed to 100 million in the United States alone. The Annual Tour de France
(began 1903), the most famous bicycle road-race, covers 4800 km and takes

21 days. The cyclist with the shortest total riding time is the winner.

About 100 million bicycles were produced worldwide in 2000: China (60

m); India (11 m), Taiwan (7.5 m); Japan (4.7 m); Italy (3.2 m); UK (1.2 m);

USA (1.1 m).

The first motorcycle687 was invented by Gottlieb Daimler in 1885, who

attached a 4-stroke piston engine to a wooden bicycle frame. During the

1900’s, with continual improvements, motorcycles developed into useful, de-

pendable vehicle.

[D.E.H. Jones, “The Stability of the Bicycle”, Phys. Today , April 1970; S.S.

Wilson, “Bicycle Technology”, Sci. Amer., March 1973; A.T. Jones, “Physics

and Bicycles, Am. J. Phys. 10, 332, 1942.]
687 Two-wheeled vehicles powered by internal combustion engines comprise mo-

torcycles, motor scooters and mopeds [abbr. for ‘motor-assisted pedal cycle’].

These all are similar in principle. The motorcycle comprises four main sections:

the frame, the engine with gearbox and drive components (chain or drive shaft),

the road wheels, and the petrol tank. Two-stroke and four-stroke engines are

used as power units for motorcycles. The power is transmitted to the rear

wheel through a gearbox and thence through sprockets and chains or through a

drive shaft. Motorcycles and mopeds have wire-spoked wheels, whereas scooters

generally have solid wheels like those of a car.
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The Last Great Naturalists688

“When white man first come to Canada, he shoot all big animals, haul off
meat. Next trip he trap all small animals, haul off fur. Third time he cut
down all big trees, haul off lumber. Fourth time, cut down all small trees,
make paper. Now he haul off all rocks”.

Indian Chief’s lament

The accelerated advance of science and technology that followed in the wake
of the Industrial Revolution was mostly accomplished in the laboratories and
the institutions of European universities and industrial research centers. Yet,
the 19th century was still abundant with a different breed of natural scien-
tists who sought to study nature in its own milieu and for its own sake. These
were explorers, geographers, ornithologists, entomologists and other natural-
ists who went out of the cities and away from the centers of higher learning
to rediscover nature and our place in it.

John James Audubon (1785–1851, U.S.A.). Naturalist and artist. Cap-
tured for posterity the images of contemporary birds and animals of North
America.

Henry Baker Tristram (1822–1906, England). Naturalist, ornithologist,
and the first scientific explorer of the Sahara (1855–1857) and the Lands of the
Bible (1863–64, 1872, 1880–81, 1894–95). Among the first ardent Darwinists.

Jean Henri (Casimir) Fabre (1823–1915, France). One of the greatest
entomologists ever. His keen observations, patience, extraordinary intuitive
power and unsurpassed ability to transmit the mysteries of the insect world
to his fellow men, made him a unique figure in the history of science.

John Muir (1838–1914, U.S.A.). Explorer, naturalist and writer. The
first man to explain the glacial origin of the Yosemite Valley. Explored Alaska,
the Arctic, Africa, Asia and the United States.

Ernest Thompson-Seton (1860–1946, Scotland and Canada). Natural-
ist, artist, animal observer and writer.

688 For further reading, see:

• Adams, A.B., Eternal Quest: The Story of the Great Naturalists, Isaac Put-
nam’s Sons: New York, 1969, 509 pp.
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Charles William Beebe (1877–1962, U.S.A.). Naturalist, explorer and
writer. Explored the tropical jungles of Borneo, Guyana and Trinidad (1916–
1925). He was first to dive into the depths of the ocean in a diving chamber
(bathysphere), reaching a depth of 800 m (1930).

Beebe was born in Brooklyn, NY. He became curator of ornithology (bird
studies) at the New York Zoological Society in 1899. He helped found the
Society’s Tropical Research Department in 1916, and wrote numerous books
about his adventures.

1894 CE Bacteriologists Shibasaburo Kitasato (1852–1931, Japan) and
Alexandre Yersin (1863–1943, Switzerland) discovered simultaneously and
independently the causative organism, Pasteurella pestis, of bubonic plague,
during an outbreak at Hong Kong.

Prevention was found to be possible by inoculation with a killed vaccine or
by injection of a live avirulent organism i.e. a relatively harmless strain of the
bacteria. Antibiotic drugs, give good results when administered to infected
patients.

1894, Feb 15 A group of anarchists attempted to blow up the Greenwich
Observatory.689

1894 CE Thomas Jan Stieltjes (1856–1894, Netherlands and France).
Dutch-born French mathematician. Made notable contributions to the ana-
lytic theory of continued fractions and integration theory.

Stieltjes was born in Zwolle, Netherlands, and educated at the universities
of Delft, Leyden and Groningen. He moved to France in 1885 and became a
professor of mathematics at the University of Toulouse, where he remained
for the rest of his life. Stieltjes contributed to the fields of divergent and
conditionally convergent series, number theory and spherical harmonics. He
proposed the Riemann-Stieltjes integrals690 and the Lebesgue-Stieltjes inte-

689 The event prompted Joseph Conrad (1857–1924) to write his masterpiece The

Secret Agent (1907). In this political-detective novel Conrad expressed society’s

disillusionment from science, the late 19th century ‘god-substitute’ that failed.
690

∫ b

a
f(x)dg(x) = limmax |xi −xi−1|→0

∑m
i=1 f(ξi) [g(xi) − g(xi−1)] for arbitrary se-

quence of partitions

a = x0 < ξ1 < x1 < ξ2 < x2 < · · · < ξm < xm = b.
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grals which have wide applications in probability, distribution and Laplace-
transform theories.

1894–1897 CE George Oliver (1841–1915, England), physician and phys-
iologist and Edward Albert Sharpey-Schäfer (1850–1935, England) first
demonstrated the action of a specific hormone: the effect of an extract of the
adrenal gland (adrenaline or epinephrine) on blood vessels and muscle con-
traction. Upon injection into normal animals it produced a striking elevation
in blood pressure.

John Jacob Abel (1857–1938, U.S.A.), pharmacologist and physiological
chemist first isolated epinephrine (1897). He also developed artificial kidney
(1914) and crystallized insulin (1926).

1894–1914 CE Jean Léon Jaures (1859–1914, France). Social philo-
sopher, father of social democracy and socialist leader. With his political
instincts inspired by the French Revolution, Jaures opposed imperialism in
all its forms, yet he believed in the rights of the individual over the state.

Jaures was born in Castres and attended the Ecole Normale Superieure
in Paris. After graduating he lectured on philosophy at the University of
Toulouse (1883–1885) and earned his doctorate in philosophy there (1891).
During 1885–1889 and 1893–1914 he was a member of the Chamber of
Deputies as an independent socialist.

Involved in the Dreyfus affair in 1894 as a supporter of Dreyfus, Jaures ar-
gued that Alfred Dreyfus’ treason conviction was based upon forged evidence.

A co-founder in 1904 of the socialist newspaper L’Humanite (along with
Rene Viviani and Aristide Briand, both future French Prime Ministers), Jau-
res was a man of numerous talents. A prolific writer, he proved himself as
capable at giving a speech as penning it.

A firm advocate of the Second International socialist movement, he ac-
cepted their argument preventing its members from participating in so-called
‘bourgeois’ governments. As such he never accepted a position within the
French cabinet; which meant, given his leadership of the party (since 1905),
that the Socialist Party was also denied a role in government.

As the storm clouds of war approached, Jaures’ popularity waned some-
what, as he continued to advocate closer relations with Germany. Indeed, at
the height of the July Crisis of 1914 he traveled to Brussels to try to persuade
German socialists to strike against potential war in Europe.

The limit exists whenever g(x) is of bounded variation and f(x) is continuous

in [a, b].
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Shortly after his return from Brussels to Paris, on 31 July 1914, Jaures
was murdered by a 29 year old nationalist fanatic, Raoul Villain; three days
later Germany declared war with France.

1894–1925 CE Schlomo Sigmund Freud (1856–1939, Austria). Neurol-
ogist and founder of psychoanalysis. One of the most influential thinkers in
modern times. Revolutionized our view of human nature and affected almost
every department of our culture. His method of treatment led to the use of
psychotherapy, and greatly extended our sensitivity about human relations
in general, and between doctor and patient in particular. Freud’s work on
the origin and treatment of mental illness helped form the basis of modern
psychiatry. He especially influenced the field of abnormal psychology and the
study of personality.

Freud’s theories on sexual development led to open discussion and treat-
ment of sexual matters and problems. His stress on the importance of child-
hood helped teach the value of giving children an emotionally nourishing en-
vironment. His insight also influenced the fields of anthropology and sociology.
In art and literature, Freud’s theories encouraged understanding of surreal-
ism, which like psychoanalysis explores the inner depths of the unconscious
mind. Freudian concepts have provided subject matter for many authors and
artists.

Some of the Freud’s theories are controversial. Future science will have
to settle these problems, and it will be probably a long time before the value
of his achievement is ultimately determined. But at face value, Freud was
the discoverer of a new humanistic discipline whose significance went beyond
the boundaries of psychiatry. He brought into the world a new definition of
human fate, because he placed in the hands of man the means with which to
alter impediments which were previously considered irremediable.

Freud at times stated that the psychic apparatus was free from any anatomical
implications, but it is certain that he hoped for an eventual integration of his
theory with neurology and that he always considered the biological facts to
be quite relevant to his decisions about his own model. The following five
biological facts become familiar to us only since his death and they decisively
refute the model of passive reflex mechanism:

1. The nervous system is perpetually active. Electroencephalographic
(EEG) data have shown that even in the deepest sleep and in coma
the brain does not cease its activity; at these times of minimal input
and behavioral output, hypersynchrony seems to produce the most mas-
sive discharges, the resting nerve cell periodically fires (produces a spike
potential), and its nontransmitted activity waxes and wanes, all without
any outside stimulation.
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2. Thus, the effect of stimulation is primarily to modulate the activity of
the nervous system. It may step up the frequency of discharge but
mainly imposes an order and pattering on it; that is to say, encodes it.

3. The nervous system does not conduct energy; the nervous impulse is
rather propagated. An appropriate physical analogy is not current flow-
ing along a wired circuit, but a signal traveling along the axon to the
synapses which in turn pass signals on to the dendrites of other cells.

4. The energies of the nervous system, whether or not triggered by the
sensory organs, are different in kind from the impinging external stimuli.
The sensory surface acts as a transducer.

5. The tiny energies of the nerves bear encoded information and are quan-
titatively negligible; their amount bear no relation to the motivational
state of the person. The electrical phenomena associated with the neu-
ron are accessible to quantitative study today, but this work offers no
basis for the economic point of new — the assumption that mental events
might be meaningfully examined from the standpoint of the ‘volumes
of excitation’ involved. Rather than this kind of ‘power engineering’,
‘information engineering’ seems to be relevant discipline.

It stands to reason that most of Freuds provisional ideas in psychology will
presumably some day be based upon an organic substructure.

Freud was born to Jewish parents (of Chassidic rabbinic stock on both
sides) in the town of Freiberg, Moravia, which is today part of the Czech
Republic, but was then part of the Austrio-Hungarian Empire. His father’s
family was settled for a long period at Cologne, but fled eastward as a result
of the persecution of the Jews during the 14th century. In the course of the
19th century they migrated from Lithuania through Galicia (Buczacz) into
the Habsburg Empire.

In 1859 his father Jacob Freud (1815–1896), moved to Vienna. Earlier
(1855) he married, the second time, to Amalie Nathanson (1835–1930), the
descendant of a famous Talmudic scholar, Nathan Halevi Charmaz of Brody,
Poland. Sigmund was the eldest and favorite of her 8 children. From an
early age, Freud dedicated himself to learning which remained a unique trait
identified with the Jewish ethics. Yet due to the liberal spirit prevailing then
among the Viennese Jews, he was subjected to non-Jewish upbringing.
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A youthful interest in science and human personality691 led him to enter
the University of Vienna medical school (1873). He took his degree in medicine
(1881) and married (1882) Martha Bernays (1861–1951), a granddaughter of
the chief Rabi of Hamburg.

After serving as intern and resident physician in a hospital, he decided
to specialize in neurology (the treatment of disorders of the nervous system)
and went to Paris (1885) to study under Jean-Martin Charcot, a leading
authority of hysteria.

He returned to Vienna692 (1886) and began medical practice, specializing
in nervous diseases. The case histories of his patients convinced him that
sexual causes played a major role in many forms of neurosis. He gradually
formed ideas about the origin of mental illness, using the term psychoanalysis
for both his theory and his method of treatment.

When he first presented his ideas in the 1890’s, other physicians rejected
with hostility, but Freud eventually attracted a group of followers (1902), and
by 1910, gained international recognition and acclaim. During the following

691 It is important to note that there is a link between psychoanalysis and Jew-

ish mysticism: Freud himself mentioned the 16th century Jewish physician

Solomon Almoli (1490–1542, Turkey) whose book The Solution of Dreams

(1516) gives a description of sexual symbolism, wish fulfillment and word-play

as elements found in dreams. Many counterparts of Freudian theory were found

in the Zohar (the mystical writings of Moshe de Leon, 1286 CE), such as the

portrayal of primordial man where the divine act of creation was given an erotic

character and where sex relations were treated as avenues of salvation.

Another great sage, who anticipated so many of Freud’s views was Baruch

Spinoza (1632–1677). Indeed the essence of his philosophy which was ex-

pressed in his dictum: Humanus actiones non ridere, nec lugere, nec detestera,

sed intelligere (Human actions should not be mocked, should not be lamented,

nor execrated, but should be understood), could be taken as the source and

origin of Freud’s whole system.

A more recent connection of psychoanalytic thought to chassidism was sug-

gested by Freud, whose father Jacob, came from chassidic stock.
692 Vienna in the 1890s was famous for its Blue Danube, its wit, sensuality, waltzes

and cafés. But it had a darker side: the Empire was in deep economic trouble.

The jobless were crowded in slums and flophouses. Karl Lueger, Mayor of

Vienna, made anti-Semitism politically fashionable. Austria’s first anti-Semitic

party was formed in 1880 and during the next 60 years or so anti-Semitism was

made the central issue of both municipal and state elections. Between 1880 and

1914, almost two million Jews came to the United States from Eastern Europe.

Throughout his entire adult life Freud’s Vienna continued to remain a virulently

anti-Semitic city. In fact, anti-Semitism pursued him all his life.
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decade, Freud’s reputation continued to grow, but two of his early disciples,
Alfred Adler and Carl Jung693 split with him. By 1914–1915 Freud had
developed his earlier theory of infantile sexuality to cover and explain the
distinction between conscious and unconscious functioning by means of the
concept of repression.

In 1919 Freud was finally made full professor at the University of Vienna.
But his appointment did not allow him the privilege of a seat on the board of
the faculty.694

By the beginning of 1920, the work of Freud had contributed gradually to
establish the category of the ‘neuroses’ in contemporary psychiatry. He went
on (1923–1927) to develop his earlier views by stressing the role of the ego695

693 Freud’s former disciple (1906–1913). Many years later (ca 1935), Jung con-

trasted Freud’s inferior “Jewish” psychology with Hitler’s perfect scientific doc-

trines of Aryan superiority. After Freud’s books were burned in public by the

German Nazis (May 1933), Jung published books and articles asserting the

negative foundations of Freud’s psychology. His primary function was to show

that as Jews, Freud and his followers were unable to understand the “supe-

rior German psyche embodied in the powerful National Socialism, at which the

whole world looks on in astonishment” (1935). Freud not wishing to degrade

himself in nonsential arguments, remarked slyly: “What Jung contributed to

psychoanalysis, we can dispense with. . .”.
694 It took Freud 38 years to climb the academic ladder from MD (1881), through

the ranks of privatdocent (1885–1902) and associate professor (1902–1919). The

fact that he was Jewish was one reason for the delay. The other was that he

established himself as a pioneer in a new field of research which was looked

upon by the leading men in psychology and psychiatry as fantastic and even

indecent! When, at 70 (1926) congratulation arrived from leading scientists

all over the world, the University of Vienna did not send him even a letter of

felicitation.
695 The mind consists of three parts:

• id: mental representation of the biological instincts, such as the drive to

satisfy hunger and the drive to satisfy sexual needs. It does not distinguish

between the internal mind (e.g. mental image of food) and the outside environ-

ment (the food itself).

• ego: controls the behavior that bridges the gap between mental images and

the outside world. It distinguishes between the internal mind and the external

reality, e.g. the ego directs a hungry person to look for and eat real food.

• superego: governs moral behavior. It is the mental representation of soci-

ety’s moral code. It seeks to limit behavior based on the drives of the id.

In mentally healthy individuals, the three parts of the mind work in harmony.



2698 4. Abstraction and Unification

and the super-ego and to apply his ideas (1927–1930) to account for religious
belief, social discontent, and produce a range of new concepts to describe and
explain human reactivity.

In 1923 Freud was operated for cancer of the jaw and palate, the first of
33 operations. For the last 16 years, Freud often suffered agonizing pain; his
speech and hearing were affected and eating was difficult.

When the Nazis invaded Austria (1938) they burned his books and banned
his theories. Friends got him out of Austria to England.696 He left his home
in Vienna in which he lived continuously for 42 years: in the same house, in
the same street, in the same Jewish section. The British Medical Journal said
(1938): “The medical profession of Great Britain will feel proud that their

But in others the parts may conflict, resulting in psychological disturbances.

Freud observed that many patients behaved according to drives and experi-

ences of which they were not consciously aware. He thus concluded that the

unconscious plays a major role in shaping behavior. He also concluded that the

unconscious is full of memories of events from early childhood — sometimes as

far back as infancy; if these memories were especially painful, people kept them

out of conscious awareness (defense mechanisms). Freud believed that patients

used vast amounts of energy in forming defense mechanisms. This tied energy

could affect a person’s ability to lead a productive life, causing an illness that

Freud called neurosis.

Freud also concluded that many childhood memories dealt with sex. He theo-

rized that sexual functioning begins at birth, and that a person passes through

several psychological stages of development from infant sexuality to adult sexu-

ality. If for some reason, the normal pattern of sexual development is interrupted

in some individuals, mental illness in adulthood could result.
696 Shortly after the Anschluss (Mar. 11, 1939), Freud’s home in Berggasse was

invaded by a gang of German Storm Troopers who helped themselves to what-

ever money was in the house, including 6000 Austrian schillings (then about

840 dollars) which belonged to the Psychoanalytic Association. Freud reacted

to this “house-call”, saying: “I’ve been a doctor for fifty years, but I never got

6000 schillings for a visit to an old, sick man”.

In June 1938, thanks to the intervention of Marie Bonaparte (who paid the

Nazis a ransom of 35,000 dollars), the American ambassador to France, and

the British Home Secretary, Freud and the members of his immediate fam-

ily received permission to leave Vienna for London. Before his departure, the

Gestapo forced him to sign a certificate declaring that he had been well treated

by the authorities. Freud complied, but added a sentence of his own in an

advertising copywriter style: “Ich kann die Gestapo jedermann auf das beste

empfehlen” (“I can heartly recommend the Gestapo to anyone”).
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country has offered an asylum to professor Freud and that he chose it as his
new home”. He died of the jaw and palate cancer in London on Sept 23, 1939.

His most important writings include: The Interpretation of Dreams (1900);
Three Essays on the Theory of Sexuality (1905); Totem and Taboo (1913);
General Introduction to Psychoanalysis (1920); The Ego and the Id (1923);
Civilization and Its Discontents (1930).



2700 4. Abstraction and Unification

Worldview XXVII: Freud

∗ ∗∗

“I have often felt as if I had inherited all the passions of our ancestors when
they defended their Temple, as if I could joyfully cast away my life in a great
cause.”

(1886)

∗ ∗∗

“If you do not let your son grow up as a Jew, you will deprive him of those
sources of energy which cannot be replaced by anything else. He will have to
struggle as a Jew and you ought to develop in him all the energy he will need
for the struggle. Do not deprive him of that advantage.”

(to Max Graf, 1895)

∗ ∗∗

“I found the essential characteristic and most significant part of my dream
theory — the reduction of dream-distortion to an inner conflict — later in
a writer who was familiar with philosophy though not with medicine, the
engineer Josef Popper-Lynkeus. A special feeling of sympathy drew me to
him, since he too had clearly painful experience of the bitterness of the life of
a Jew and the hollowness of the ideals of present-day civilization.”

(1899)

∗ ∗∗

“I am not really a man of science, not an observer, nor an experimenter,
and not a philosopher. I am by temperament nothing but a conquistador. . .
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with the curiosity, the boldness and the tenacity that belong to that type of
person.”

∗ ∗∗

“Poets are masters of us ordinary men, in knowledge of the mind, because
they drink at streams which we have not yet made accessible to science.”

∗ ∗∗

“My life and work has been aimed at one goal only: to infer or guess how the
mental apparatus is constructed and what forces interplay and counteract in
it.”

∗ ∗∗

“I have no concern with any economic criticism of the communistic system: I
cannot inquire into whether the abolition of private property is advantageous
and expedient. But I am able to recognize that psychologically it is founded
on an untenable illusion. By abolishing private property one deprives the
human love of aggression of one of its instruments. . . This instinct did not
arise as a result of property; it reigned almost supreme in primitive times
when possessions were still extremely scanty . . .”

∗ ∗∗

“Hatred of Judaism is at bottom hatred of Christianity.”

∗ ∗∗

“Toward the person who has died we adopt a special attitude: something like
admiration for someone who has accomplished a very difficult task.”

∗ ∗∗

“From error to error one discovers the entire truth.”
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∗ ∗∗

“Analogies make one venture to regard obsessional neurosis as a private reli-
gious system and religion as a universal obsessional neurosis.”

(1907)

∗ ∗∗

“There are no such things as Aryan or Jewish science. Results in science must
be identical, though the presentation of them may vary. If these differences
mirror themselves in the apprehension of objective relationships in science,
there must be something wrong.”

(1913)

∗ ∗∗

“God is nothing other than an exalted father.”

(1913)

∗ ∗∗

“Totemism, with its worship of a father substitute, may be regarded as the
earliest appearance of religion in the history of mankind, and it illustrates
the close connection existing from the very beginning of time between social
institutions and moral obligations.”

(1913)

∗ ∗∗

“You may be sure that if my name were Oberhuber, my new ideas would,
despite all the other factors, have met with far less resistance.”
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∗ ∗∗

“Only to my Jewish nature did I owe the two qualities which had been in-
dispensable to me on my hard road: because I was a Jew I found myself free
from many prejudices which limited others in the use of their intellect, and,
being a Jew, I was prepared to enter opposition and to renounce agreement
with the ‘compact majority’.”

(1926)

∗ ∗∗

“They will always throw stones at me. You see, I have troubled humanity’s

sleep.”

∗ ∗∗

“Religion is an attempt to get control over the sensory world, in which we are

placed, by means of the wish-world, which we have developed within us as a

result of biological and psychological necessities. But it cannot achieve its end.

Its doctrines carry with them the stamp of the times in which they originated,

the ignorant childhood days of the human race. . . The ethical commands, to

which religion seek to lend its weight, require some other foundation instead,

since human society cannot do without them, and it is dangerous to link up

obedience to them with religion itself .”

∗ ∗∗

“You need not be the victim of your own past, or your own environment.”

∗ ∗∗

“Sometimes a cigar is just a cigar.”
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History of Biology and Medicine, IV – The 19th century

During this epoch, biology progressed along four major avenues: cytology
(cell theory), genetics, bacteriology and physiological chemistry.

Into the 19th century, explorer-naturalists such as Alexander von Hum-
boldt tried to elucidate the interactions between organisms and their envi-
ronment, and the ways these relationships depend on geography-creating the
foundations for biogeography, ecology and ethology. Many naturalists began
to reject essentialism and seriously consider the possibilities of extinction and
the mutability of species. These developments, as well as the results of new
fields such as embryology and paleontology, were synthesized in Darwin’s the-
ory of evolution by natural selection. The end of the 19th century saw debates
over spontaneous generation and the rise of the germ theory of disease and the
fields of cytology, bacteriology and physiological chemistry, though the problem
of inheritance was still a mystery.

Wöhler showed In 1828 that organic molecules, such as urea, can be
created by synthetic means that do not involve life, and thus provided a
powerful argument against vitalism. The first enzyme, diastase, was described
in 1833, and the science of biochemistry may be said to have begun.

By the mid 1850’s the miasma theory of disease was largely superseded
by the germ theory of disease, and antisepsis became a medically important
invention. Surgery and medicine was advanced in 1858 when Gray’s Anatomy
was first published.

In about the 1880’s the science of bacteriology began to be formed, espe-
cially through the work of Robert Koch, who introduced methods for grow-
ing pure cultures on agar gels containing specific nutrients in Petri dishes. He
also introduced the “Koch’s postulates” for the reliable determination of when
a proposed microorganism caused a specific disease. The long-held idea that
living organisms could easily originate from nonliving matter (spontaneous
generation) was finally discredited in a series of experiments carried out by
Louis Pasteur.

Schleiden and Schwann proposed the cell theory in 1839: the basic unit
of organisms is the cell and all cells come from preexisting cells.

The British naturalist Charles Darwin’s seminal work On the Origin of
Species (1859) described natural selection, the primary mechanism for evolu-
tion.

In 1866 genetics had its beginnings in the work of the Austrian monk
Gregor Mendel who formulated his laws of inheritance. However, his work
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was not recognized until 35 years afterward. Three years after his publication,
in 1869 Friedrich Miescher discovered what he called nuclein, which was
later realized to be a crude preparation of DNA.

The cytologist Walther Flemming in 1882 was the first to demonstrate
that the discrete stages of mitosis were not an artifact of staining, but oc-
curred in living cells, and moreover, that chromosomes doubled in number
just before the cell divided and a daughter cell was produced. In 1887 Au-
gust Weismann proposed that the chromosome number must then be halved
in the case of the sexual cells, the gametes. This was shortly proved to be the
case and the process of meiosis began to be understood.

In medicine, the rapid advancement of physical and chemical theories to-
gether with their corresponding industrial technologies induced important
medical inventions, Thus we witness the stethoscope (1816, T. Laennec);
dental plate (1817, A. Plantson); endoscope (1827, P. Segalas); anesthetics
(1846, W. Morton); ophthalmoscope (1851, H. von Helmholtz); hypoder-
mic syringe (1893, A. Wood); barbiturate (1863, A. Von Bayer); antiseptic
(1865, J. Lister); rabies vaccination (1885, L. Pasteur); contact lens (1887,
A. Frick).

Cytology

It is the study of the internal structure and organization of cells. Mi-
croscopic studies of the structure of the cell provided an explanation of cell
division and served as a foundation for genetics. These studies also showed
that each structure has some function, and that each cell activity is related to
changes in chemicals that make up the cell. Structures now recognizable as
cell nuclei were described by many early microscopists. The term, however,
was coined by Robert Brown (1833).

The term ‘cell theory’ was introduced by T. Schwann (1839) to include
the principle of construction of all organic products. The studies of Hugo von
Mohl and Max Schultze clarified that plant cells alone possessed walls; what
they shared with animals was the material within their walls, the primordial
protoplasm. Evidence also accumulated that cells were formed by division of
existing cells. This new model of cell formation, developed for animals by
Robert Remak, was generalized and popularized by the anatomist Rudolf
Virchow (1858).

Embryonic development appeared as successive cell divisions from an egg
cell formed in the mother. By 1900 it was generally accepted that plants and
animals were made up of discrete masses of nucleated protoplasm propagated
by division.
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Bacteriology

Bacteria, one-celled organisms, were first seen by Leeuvenhoek. Origi-
nally confused with protozoa, bacteria were variously called animalcules, mi-
crobes or vibrionia.

During the 18th century bacteria contributed to the spontaneous gener-
ation controversy, as Spallanzani (1729–99) refuted the assertion that mi-
crobes appeared in sealed flasks of boiled broth. Spallanzani demonstrated
microbes appeared only after inadequate heating or the admission of air into
the vessel. Bacterial studies outside medicine remained superficial until 1872
when F.J. Cohn defined and named bacteria, distinguishing four groups
on the basis of external form and specific fermentative activity. He recog-
nized bacteria take nitrogen from simple ammonia compounds, elucidated
their life-cycles, identified spores and suggested bacteria were motile cells de-
void of walls. Determining bacterial temperature limits, Cohn, Pasteur and
Tyndall effectively ended the spontaneous generation controversy with their
studies on sterilization.

Some bacteria were suggested to be pathogenic by Casimir Davaine’s
experiments (1850) indicating anthrax was caused by rod-shaped organisms,
‘bacteridia’, found in the blood of diseased animals. Robert Koch’s classic
experiments confirmed these suggestions in 1876. Koch also developed tech-
niques for handling bacteria, introducing solid nutrient media (agar-agar) to
grow pure cultures, and devising methods for fixing bacteria.

Dimitri Ivanovski using Chamberland’s bacteriological filter (1884)
explained the infectiousness of tobacco mosaic disease (1892) by showing it
can be transmitted via cell-free filtrates from leaves of diseased plants to
leaves of healthy plants. Thus the term ‘filterable virus’ was coined; later
filterable was dropped and ‘virus’ took on its modern meaning. F. Loeffler
and P.Frosch’s work on foot-and-mouth disease first demonstrated (1898) an
animal disease in which a virus was the causative agent. Yellow fever was the
first human disease proved (1901) to be caused by a filterable virus by W.
Reed.

During the 1890’s increased knowledge of soil and water bacteria was re-
sponsible for completion of the nitrogen, sulfur and carbon cycles. Nodule-
forming bacteria living in the roots of leguminous plants were found to fix
atmospheric nitrogen. As a result of Winogradsky’s and Beijerinck’s work
on anaerobic bacteria, knowledge of a whole world of organisms able to live
on elementary nitrogen, iron or sulfur has emerged.
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Evolution Theory, Darwinism and Mendelian Genetics

The first broad theory of the transmutation of organic forms was by Jean-
Baptiste Lamarck (1800–1809). He advanced the idea that the simplest
forms of life had been spontaneously generated and that from there all other
forms of life had been successively produced.

Lamarck explained organic change as the result of two factors: the ‘power
of life’, which was responsible for the general scale of increasing complexity
formed by the different animal classes; and the influence of particular environ-
ments, accounting for the fact that species and genera could not be aligned in
a single series [natural order]. Explaining how animals change in response to
different environments Lamarck affiliated himself with the idea of the inheri-
tance of acquired characters. In his view, animals responded to environmental
changes by developing new habits, leading to changes in the animals’ struc-
tures which were then passed on to offspring. It took many generations for
the effects of this to become appreciable.

Lamarck had relatively little evidence for his theory beyond the structural
similarities among living things. He believed the earth’s age to be immeasur-
ably greater than his predecessors had supposed, a prerequisite for any theory
of the gradual change of living things over time. In Lamarck’s day, however,
the study of fossils, a primary impetus for enlarged views of the earth’s antiq-
uity, could not confirm the reality of evolution. Opponents such as Georges
Cuvier argued the fossil record did not reveal the translation between forms
that theories such as Lamarck’s demanded. Also Cuvier’s system of classifi-
cation, identifying four fundamentally different types of animal organization,
denied a chain of being and hence the idea of linear progression central to
Lamarck’s thinking.

In 1813, William Charles Wells produced essays assuming that there
had been evolution of humans, and recognized the principle of natural selec-
tion. Charles Darwin and Alfred Russel Wallace were unaware of this
work when they jointly published the theory in 1858, but Darwin later ac-
knowledged that Wells had recognized the principle before them. Augustin
de Candolle’s natural system of classification laid emphasis on the “war”
between competing species.

By 1833 the geologist Charles Lyell in the second volume of his Principles
of Geology had set out a gradualist variation of creation beliefs in which each
species had its “center of creation” and was designed for the habitat, but
would go extinct when the habitat changed.

Lamarckism became discredited as experiments simply did not support
the concept that purely “acquired traits” were inherited. The mechanisms of
inheritance were not elucidated until later in the 19th century, after Lamarck’s
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death. Lamarckism in toto has largely been discredited as a mechanism in
evolution.

Although paleontologists and embryologists’ evidence appeared to confirm
the reality of evolution, its mechanism remained unresolved at the end of
the century, being vigorously debated by proponents of neo-Darwinism, neo-
Lamarckism, orthogenesis and other views. Darwin had not explained the
causes of variation or the means by which characters are passed on from
one generation to the next. Without an adequate theory of heredity it was
unclear how important natural selection was in the evolutionary process. For
example, inheritance of acquired characters might account for the creative
side of evolution, leaving natural selection with merely the negative function
of weeding out the unfit.

Though in retrospect it appears that what Darwin lacked was the theory
of particulate inheritance proposed in the 1860’s by Gregor Mendel, when
Mendel’s work first came to be appreciated in 1900 people saw it as an alterna-
tive rather than complementing Darwin’s theory. The three Mendelians most
interested in evolution, Hugo de Vries, William Bateson and Wilhelm
Johannsen, were all highly critical of the theory of evolution by natural
selection.

Thus, while the scientific community generally accepted that evolution
had occurred, many disagreed that it had happened under the conditions or
mechanisms provided by Darwin. In the years immediately following Dar-
win’s death, evolutionary thought fractured into a number of interpretations,
include neo-Darwinism, neo-Lamarckism, orthogenesis, Mendelism, the bio-
metric approach, and mutation theory. Eventually this boiled down to a
debate between two camps. The Mendelians, advocating discrete variation,
were led by William Bateson (who coined the word genetics) and Hugo
de Vries (who coined the word mutation). Their opponents were the bio-
metricians, advocating continuous variation; their leaders Karl Pearson and
Walter Frank Raphael Weldon, following in the tradition of Francis
Galton.

An important issue in the debate between the Mendelians and the biome-
tricians was the nature of variation in species. Darwin and Wallace believed
that small variations were more important than large ones, since small vari-
ations hewed closely to an already-proven model. The biometricians agreed
with this position, while the Mendelians insisted that discontinuous species
were unlikely to arise from a continuous process of change. While the imme-
diate issue of speciation was resolved in large part by the clear definition of
a species as a reproductively isolated population, the rate of evolution would
arise again as a point of contention in the late 20th century with the proposal
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of punctuated equilibrium. Most other questions resolving variation were re-
solved with the recognition that the size of a genotypic change did not always
correspond with the size of the resulting phenotypic change.

Another source of clashes between Mendelians and biometricians was the
debate over the origins of variation. Mendelians argued for intrinsic variations
originating from genetic transmission; biometricians, observing primarily the
phenotype of the organism, were not yet prepared to abandon Lamarckian
views on the heritability of acquired characteristics. August Weismann
was among those who demonstrated that acquired characteristics were not
always inherited, pointing out the existence of worker ants and worker bees,
and the importance of ‘germ plasm’ or gametes in the biology of reproduction.
The recognition of means of postnatal adaptation as inherited traits did much
to explain acquired characteristics.

Heredity

It was known from the 1840’s that the organic cell reproduced asexually by
fission, the nucleus dividing first. Mendel’s hybridization experiments (1865)
showed that independently transmitted characters separated and recombined
in hybrid progeny.

From the 1870’s a number of technical advances were made in the field
of experimental biology which allowed the processes occurring in the asexual
reproduction of cells and in the union of sexual cells to be observed more
closely: The achromatic microscope was further improved by the introduction
of the high-power immersion lens and substage illumination, while the newly
discovered aniline dyes, together with natural dyes and some inorganic salts,
were found to stain selectively certain parts of the organic cell, particularly
the nucleus.

For the next four decades, biologists succeeded to close the gap between
cytology and heredity: In the 1870’s it was shown by Hertwig, at Berlin, and
Fol, at Geneva, working on animals, and Strassburger, at Bonn, working on
plants, that sexual reproduction involved the union of the nuclei of the male
and female cells, from which they suggested (1884) that the nucleus of the
cell was the physical basis for heredity. Walter Flemming (1879) coined the
name mitosis and made first accurate accounts of chromosome numbers and
figured their longitudinal splitting (1882). He then determined chromosome
number (24) in man (1898).

Edoúard van Beneden, zoologist, first studied meiosis (1883) and Wil-
helm von Valdeyer-Hartz coined the name chromosome (1888). August
Weismann, biologist, proposed a germ-plasm theory of heredity and de-
scribed the process of meiosis, whereby the number of chromosomes is halved.
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Oscar Hertwig and Theodore Bovery (1889–1892) showed independently
that pairs of chromosome split, replicating each member before dispersing into
four separate nuclei.

Finally, Walter Sutton and Theodore Bovery pointed out (1902) the
parallelism between chromosome behavior and Mendelism. Sutton coined the
name gene (1902) and proposed that chromosomes carry genes.

Anatomy and physiology

Form (anatomy) and function (physiology) were traditionally conceived
as a single integrated subject, but experimental techniques, particularly in
the 19th century, gradually divorced the two: Francois Magandie (1783–
1855), Claude Bernard (1813–1878), Johannes Müller (1801–1858), Carl
Ludwig (1816–1895), Emil Du Bois-Reymond (1818–1896), William
Sharpey (1802–1880), Michael Foster (1836–1907) and H. Bowditch
(1840–1911) — helped create an autonomous discipline of physiology, with
its research schools, professional societies and specialized journals.

Organic chemistry

Using inorganic chemistry as its paradigm, 19th century chemists created
organic chemistry, whence emerged the powerful ideas of valence and struc-
ture. The advent of the periodic law in the 1870s finally provided chemists
with a comprehensive classificatory system of elements.

By the 1880s physics and chemistry were drawing closer together in the
sub-discipline of physical chemistry. Finally, the discovery of the electron
enabled the chemists to solve the fundamental problem of chemical affinity.

The dawn of biochemistry

Chemists of the 19th century were so busy with their own science that
for a long time they did not attempt to systemize the chemistry of biological
processes. Most of their biochemical discoveries were incidental to their major
chemical work. The most important result of the development of organic
chemistry at first, from the viewpoint of biochemistry, was the demonstration
that natural organic compounds were responsive to the same laws as inorganic
substances.

The urea synthesis of Wöhler (1828) and the subsequent advances in
organic synthesis struck telling blows at the vitalistic hypothesis that a spe-
cial force controlled living matter. Toward the middle of the century a few
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chemists (chief among them was Liebig) really did begin to integrate their
work with that of biological investigators.

Meanwhile physiology was developing as a science in its own right, much
as was chemistry. Physiologists were chiefly concerned with the mechanics
of bodily organs and with studies of the nervous system. Nevertheless, it
was from the physiologists that most of the advances in biochemistry came
until the end of the century. The approach of these men was usually related
to their studies of special systems and organs, and so an overall view of the
biochemical functioning of the body was not obtained.

Many important discoveries were made in this century, but they were like
isolated pieces of a jigsaw puzzle. The science was properly called physiological
chemistry at this period, since it was used mostly to help understand specific
physiological problems.

It was only at the end of the 19th century and in the 20th that the pieces
began to fit together so that a unified picture of the chemical changes in the
cells and their significance for the body as a whole could be obtained.

The borderline between chemistry and physiology then became a science
in its own right, and to this the name biochemistry, the chemistry of life, can
more properly be applied.

By about 1920 biochemistry possessed the basic principles upon which it is
still developing. The chemical nature of the body constituents was fairly well
understood, the nutritional requirements could be seen, and the enzymatic
and hormonal mechanisms by which metabolic processes occurred were at
least known to exist.697

Modern medicine

Medicine was revolutionized in the 19th century by advances in chemistry
and laboratory techniques and equipment, old ideas of infectious disease epi-
demiology were replaced with bacteriology.

697 Chlorophyll was isolated by Pelletier and Caventou in 1817, though at first

its importance was not appreciated because the full significance of the photo-

synthetic process could not be realized until the concept of energy was better

understood. Indeed, J.R. Mayer, who propounded the law of conservation of

energy pointed out in 1845 that plants supplied sunlight energy as a source on

which humans depended. In the meantime, the mechanism by which animals

released the stored energy of plants, was clarified. By the middle of the 19th

century many of the important principles of nutrition has been established, but

the nature of “ferments”, as enzymes were called during the first three quarters

of the century, was the subject of much discussion.
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Ignaz Semmelweis (1818–1865) in 1847 dramatically reduced the death
rate of new mothers from childbed fever by the simple expedient of requiring
physicians to clean their hands before attending to women in childbirth. His
discovery predated the germ theory of disease. However, his discoveries were
not appreciated by his contemporaries and came into general use only with
discoveries of British surgeon Joseph Lister, who in 1865 proved the prin-
ciples of antisepsis; However, medical conservatism on new breakthroughs in
pre-existing science prevented them from being generally well received during
the 19th century.

After Charles Darwin’s 1859 publication of The Origin of Species, Gre-
gor Mendel (1822–1884) published in 1865 his books on pea plants, which
would be later known as Mendel’s laws. Re-discovered at the turn of the cen-
tury, they would form the basis of classical genetics. The 1953 discovery of the
structure of DNA by Watson and Crick would open the door to molecular
biology and modern genetics. During the late 19th century and the first part
of the 20th century, several physicians, such as Nobel prize winner Alexis
Carrel, supported eugenics, a theory first formulated in 1865 by Francis
Galton. Eugenics was discredited as a science after the Nazis’ experiments
in World War II became known; however, compulsory sterilization programs
continued to be used in modern countries (including the US, Sweden or Peru)
until much later.

Semmelweis’ work was supported by the discoveries made by Louis Pas-
teur, who produced in 1880 the vaccine against rabies. Linking microor-
ganisms with disease, Pasteur brought about a revolution in medicine. He
also invented with Claude Bernard (1813–1878) the process of pasteuriza-
tion still in use today. His experiments confirmed the germ theory. Claude
Bernard aimed at establishing scientific method in medicine; he published An
Introduction to the Study of Experimental Medicine in 1865. Beside this,
Pasteur, along with Robert Koch (who was awarded the Nobel Prize in
1905), founded bacteriology. Koch was also famous for the discovery of the
tubercle bacillus (1882) and the cholera bacillus (1883).

For the first time actual cures were developed for certain endemic infectious
diseases. However the decline in many of the most lethal diseases was more
due to improvements in public health and nutrition than to medicine.
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Table 4.14: Notable Biologists and Men of Medicine (1800–1900)

Key:

A = Anatomy E = Ecology EN = Entomology
BI = Biochemistry EB = Evolutionary Biology MI = Microbiology
BO = Botany B = Biology AN = Anthropology
H = Heredity M = Marine Biology OL = Origin of Life
PL = Paleontology P = Physiology T = Taxonomy
ZO = Zoology CL = Chemistry of Life EM = Embryology
MY = Mycology CY = Cytology PA = Pathology
S = Surgery BG = Biogeography BA = Bacteriology
IM = Immunology NA = Naturalist

Name fl. Specialization

Jean-Baptiste Lamarck 1800–1829 EB

G.R. Treviranus 1802–1837 P

K.F. Burdach 1802 A, P, M

P-J. Pelletier 1820 CL

J-B. Caventou 1820 CL

Christian Eherenberg 1820–1875 B

Jan Purkyne 1823–1839 P

Christian Pander 1825–1865 EM

Karl von Baer 1826–1876 EM

Henri Dutrochet 1826–1839 BO, CY

Robert Brown 1827–1839 BO, CY

John James Audubon 1827–1839

Friedrich Wöhler 1828–1832 CL

Jean-Pierre Flourens 1830–1865 B, P

Marshall Hall 1830–1833 M, P

Augustino Bassi 1835 MI

Edward Blyth 1835–1837 EB

Theodor Schwann 1835–1839 M, P, CY

Jean Marie Poiseuffe 1835–1846 M, P

Robert Remak 1836–1858 M, CY, B, EM

Matthias Schleiden 1838–1839 BO, CY

Gerhardus Müller 1838 CL
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Table 4.14: (Cont.)

Name fl. Specialization

Friedrich Henle 1840 A, PA

Karl Schimper 1840–1865 B, BO

Wilhelm Schimper 1840–1890 BO

Edward Forbes 1841–1847

David Gruby 1841–1852 MI, PA

Julius Robert Mayer 1842 M

Crawford Long 1842 S, M

Gabril Gustav Valentin 1844 M, P, CL

Carl Friedrich Ludwig 1844–1859 P

Alexander von Humboldt 1845–1859 BG

Hugo von Mohl 1846 BO, P, CY

Ernest Heinrich Weber 1846 A, P, CL

Louis Pasteur 1846–1885 MI, B, CL

Ignaz Semmelweis 1847 BA, M

Herman von Helmholtz 1847–1894 M, P

Emil Du Bois-Reymond 1849–1877 P

Casimir Davaine 1850–1882 M

Julius Ferdinand Cohn 1850–1881 BO, MI

Rudolf Ludwig Virchow 1856–1858 PA

Nathanael Pringsheim 1855–1868 BO

Adolf Eugen Fick 1856 P

Claude Bernard 1857 CY

Max Schultze 1858–1866 A, ZO, CY

Charles Robert Darwin 1858–1871 EB

Alfred Russel Wallace 1858 EB

Jackson St. George Mivrat 1860–1900 B

Pierre-Paul Broca 1861 M, A, AN

Carl von Voit 1861–1884 P

Ernst Hoppe-Seyler 1862–1871 P, CL

Julius Sachs 1862–1887 BO, P

Ernst Haeckel 1862–1899 B, M, EB

Henri Baker Tristram 1863–1895 ZO, OR
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Table 4.14: (Cont.)

Name fl. Specialization

Julius Friedrich Cohenheim 1864–1884 A, PA

Gregor Johann Mendel 1865 BO, G, EB

Heinrich Anton de Bary 1865–1877 PA, MY

Friedrich August Kekulé 1865 P, CL

John Hughlings 1865–1911

Joseph Lister 1867 M, S

Johann Friedrich Miescher 1868–1874 P, CY

John Muir 1868–1916

Jean Henri Fabre 1870–1913 EN

Carl Weigert 1870–1904

Gustav Theodor Fritsch 1870–1927 P, CL

Eduard Hitzig 1870–1907 P

Charles Wyville Thomson 1872–1876 B, A

Camilo Golgi 1873–1893 P, M, A

Anton Schneider 1873 CY, G

Jacobus Van’t Hoff 1874 CL

Joseph-Achille Le Bel 1874 CL

Santigo Ramon y Cajal 1875–1928 A, P, M

Luther Burbank 1875–1920 BO

David Ferrier 1875–1925 P

Robert Koch 1876–1897 M, BA, P

Oscar Hertwig 1876 B, CY

Herman Fol 1876 B, CY

Wilhelm Friedrich Pffefer 1877–1881 BO

Emile Roux 1879–1891 BA, IM

Walter Flemming 1879–1898 CY, G

Charles Louis Laveran 1880 M, P

Hugo de Vries 1880–1935 H

Walter Reed 1881–1902 S, BA

Charles Roy 1881 P

Paul Ehrlich 1881–1912 M, MI, BA

Edouard van Beneden 1883–1887 CY, G, ZO
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Table 4.14: (Cont.)

Name fl. Specialization

Emil Fischer 1884 CL

Karl Martin Kossel 1885–1896 BI

Elie Metchnikov 1886–1908 IM

Ernest Thompson-Seton 1886–1940 NA

Eduard Strassburger 1888 CY, G, BO

Wilhelm von Waldeyer-Hartz 1888–1891 CY, G, A

Georges Fernand Widal 1888–1906 M, P, PA

Theobald Smith 1889–1895 BA

Oscar Hertwig 1889 CY, G, ZO

Oskar Minkowski 1889 M, P

Joseph von Mering 1889 M, P

Emil von Behring 1890–1901 IM, P, MI

Eugene Dubois 1891–1921 M, A, PA

August Weismann 1892 CY, G, B

Theodore Boveri 1892–1903 CY, G, B

Dimitri Ivanovski 1892 MI, BO

Richard Friedrich Pffifer 1892–1894 MI, IM, BA

Morde Wolfe Haffkine 1893–1896 BA, IM, MI

Zigmund Freud 1894–1925 M

Georg Oliver 1894–1897 M, P

Edward Sharpey-Schäfer 1894–1897 M, P, BI

Carl Correns 1895–1933 BO, H

David Bruce 1895–1915 MI, PA

Giovanni Batista Grassi 1895– BA

John Jacob Abel 1897–1926 P, BI

Ronald Ross 1897–1916 M, P

Paul Frosch 1898 MI, BA

Friedrich Loeffler 1898 MI, BA

Sergei Winogradsky 1888–1905 MI, E, BA

Martinus Beijerinck 1898 MI, BO
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Darwin, Erasmus, 2203, 2211

Dase, Johann Martin Zacharias,
1986, 1988
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2489

Democritos, of Abdera, 1919, 2231

Denner, Johann Christoph, 2272

Deri, Max, 2640

Desargues, Girard, 1765

Descartes, René du Perron, 1789,
1847, 1923–1925, 1929, 2012,
2394, 2531, 2629, 2649, 2660
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Kekulé, Friedrich August, 2181,
2188, 2313, 2443, 2670, 2676

Kelvin, Lord, 1778, 1792, 1799,
1957, 1966, 1967, 1984, 2048,
2135, 2137, 2142, 2202, 2218,
2220, 2224, 2234, 2238, 2242,
2308, 2448, 2458, 2461, 2558,
2619, 2659, 2668

Kempe, Arthur Bray, 2147

Kepler, Johannes, 1772, 1828, 1892,
1923, 2016, 2016, 2117, 2485,
2492

Kerr, John, 2448

Kiepert, 2195

Kierkegaard, Søren Aabye, 1976,
1978

Killing, Wilhelm, 2514, 2516

Kirchhoff, Gustav Robert, 1758,
1788, 1790, 1973, 2040, 2167,
2234, 2259, 2289, 2311, 2578

Kirkwood, Daniel, 2303, 2305–
2307

Kitasato, Shibasaburo, 2638, 2692

Klein, Felix Christian, 1788, 1836,
1936, 2069, 2143, 2147, 2167,
2336, 2411, 2499, 2548

Klein, Johann, 2046

Klitzing, Klaus von, 2502

Klose, H., 2272

Knott, Cargill Gilston, 2661

Koch, Robert Heinrich Hermann,
1892, 1962, 2122, 2475, 2477,
2527, 2655, 2676, 2704, 2712,
2715

Kohlrausch, F. W. G., 2228, 2235

Kossel, Karl Martin Leonhard Al-
brecht, 2587

Kossel, Walther, 2587

Kovalevsky, Sophia (Sonya) Vasi-
lyevna, 2066, 2644



2742 4. Abstraction and Unification

Krochmal, Nachman (Kohen, RA-
NAK), 1898

Kronecker, Leopold, 1763, 1993,
2197, 2258, 2393, 2422, 2496,
2499, 2548, 2646

Krönig, A. K., 2232

Kruesi, John, 2483

Krupp, Friedrich, 2361, 2649

Kummer, Ernst Eduard, 1764,
1980, 1989, 1994, 2299, 2318,
2393, 2407, 2494, 2516, 2646,
2669

Künhe, Wilhelm, 1897

L

L’argentera, Don Bonafous de,
2520

La Mettrie, Julien Offroy de, 2211

La Tour, Charles Cagniard de (see:
Tour, Charles Cagniard de la)

Lacroix, Sylvestre Francois, 2543

Ladenburg, Albert, 2588, 2600

Lagrange, Joseph Louis, 1757, 1761,
1784, 1799, 1802–1805, 1815,
1818, 1830, 1847, 1900, 1982,
1992, 2043, 2166, 2189, 2197,
2348, 2446, 2486, 2488, 2492,
2496, 2537, 2578, 2583

Laguerre, Edmond Nicolas, 2296,
2494

Lallement, Pierre, 2689

Lamarck, Jean Baptiste Pierre An-
toine de Monet de Chevalier,
2203, 2211, 2707, 2713

Lamb, Charles, 1926

Lamb, Horace, 2661

Lambert, Johann Heinrich, 1796,
1982, 2138, 2193, 2197, 2236
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Padé, Henri Eugene, 2676

Paez, Pedro, 2182

Page, C. G., 1936
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Poincaré, Henri Jules, 1788, 1792,
1981, 1986, 1995, 2033, 2037,
2040, 2251, 2392, 2486, 2499,
2503, 2503–2510, 2544, 2586

Poinsot, Louis, 2016, 2046, 2142

Poiseulle, Jean Léonard (Louis)
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célérifère, 2688

celeripede, 2689

celestial mechanics, 1886, 1935,
2046, 2258, 2485–2487, 2503

cell biology, 1876, 1995, 2705

cell division, 1769, 1869, 1932,
2438, 2600

cell membrane, 1940

cell nucleus, 1876, 1938, 2438, 2587

cellular pathology, 2173

celluloid, 1882, 2319, 2617

center of gravity, 2143, 2304, 2645

ceramic industry, 2588

cesium, 2168, 2325

Challenger expedition, 1963, 2366,
2367, 2381

Chandler Wobble, 2668

chaos, 2132, 2306, 2433, 2470,
2505, 2652

characteristic polynomial, 2067

Chebyshev polynomials, 1904

chemical affinity, 2444, 2563

chemical homeostasis, 1939

chemical kinetics, 2295, 2443, 2556

chemical oceanography, 2369

chemical potential, 2462

chemical telegraph, 1965

chemotherapy, 2527, 2595, 2597

Cherenkov radiation, 2542

Chi-square test, 2686

chloroform, 1770, 1940, 1972

chlorophyll, 2262, 2670

cholera epidemics, 1997, 1998, 2187
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cithara, 2264
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Clapeyron formula, 2443
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Clifford algebra, 2418, 2424, 2427
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Clifford surfaces, 2418

closed system, 1803, 2309, 2465,
2637

cocaine, 1752, 2595, 2600, 2604

codeine, 2595, 2600, 2605

coercive force, 2514
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coma, 2176, 2429, 2602–2599, 2694
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commutator, 1784, 2337, 2340
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2421
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complexes, 1787, 2040, 2670
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compressibility, 2320, 2657
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conduction, 1847, 1935, 2177, 2221,
2415, 2494, 2498, 2499, 2568,
2598

confluent hypergeometric equation,
2494
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conical wave, 2542

coniine, 2588, 2595, 2600, 2606
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contact lenses, 2177
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continuity equation, 2467
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continuous transformation, 1789,
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Continuum hypothesis, 2391, 2392,
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contravariant components, 2222,
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2300, 2394, 2490, 2494, 2498,
2569
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2239, 2629, 2632–2634

coordination chemistry, 2670

Coriolis effect, 1895, 2140, 2178,
2218, 2388

correlation coefficients, 2290
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cosmic microwave radiation, 2365

covalent bonds, 2626
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covariant components, 2516, 2635

covariant derivative, 2516, 2633–
2636

covariant differentiation, 2330, 2334,
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Crelle’s Journal der Mathematik,
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Crimean War, 2121

Cromwell Current, 2389

cross-cap, 2028

Cryolite, 2590, 2616

crystal rectifier, 2445

crystalline rocks, 2590

curare, 2597, 2613

curarine, 2600

Curie Law, 2246

curvilinear coordinates, 1935, 2126,
2627

curvilinear orthogonal coordinate
frames, 2126

cyclometric equation, 2189, 2197
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cytochemistry, 1995
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D’Alembert’s paradox, 1934

daguerreotype, 1766, 1954, 2250

Daniell-cell, 1753

Darboux equation, 2627

Darboux integral, 2627

Darboux surface, 2627

Darboux theorem, 2627

Darboux transformation, 2627

Darboux vector, 2627

Darwinism, 2215, 2282, 2331
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De Laval turbine, 2551

De Morgan’s laws, 2153

Dedekind cut, 2396, 2405

Dedekind theorem, 2396

Dedekind-Cantor axiom, 2396

Deimos, 2486

delta-function, 1785, 2540
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denumeration, 1890

depressant, 2601, 2596, 2598

detergent, 1767

determinants, 1760, 1817, 1891,
1948, 2068, 2167, 2486, 2548,
2625

determinism, 2052, 2650

dew-point hydrometer, 1753

Dewar vessel, 2676

diagonal matrix, 2101

dial telegraph, 1973

diamagnetism susceptibility, 2245

diastolic pressure, 1909

diatonic musical scale, 2264

dictophone, 2514

diesel engine, 2550, 2648

difference engine, 1883

differential analyzer, 2136
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differential topology, 1794
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diffusivity, 2498

digestion, 1981, 1989, 2625

Digitalis purpurea, 2595, 2612

dihedral group, 2163

dimensional analysis, 2458

dimorphism, 1766

diploid, 2438

direct current, 2247, 2591, 2641

directional derivative, 2334, 2338

directive effect, 2237

Dirichlet boundary value problem,
1785

Dirichlet conditions, 1785

Dirichlet divisor function, 2139

Dirichlet function, 1785

Dirichlet principle, 1785

Dirichlet series, 1786, 2129, 2298

Dirichlet test, 1785

Dirichlet theorem, 1785

disjunction, 2153

dispersion, 1869, 1913, 1921, 1929,
1931, 2234, 2555

displacement current, 2220

distortion, 1915, 2031, 2176, 2284,
2430, 2499, 2524, 2608, 2677,
2700

distribution function, 2118, 2221,
2308, 2469

distributive law, 1807, 2153, 2425,
2537

diuretic, 2595, 2598, 2613

divergence coefficient, 1914
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division ring, 1859

divisor problem, 2139

DNA 2215, 2438
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Doppler Effect, 1967, 2064, 2247,
2532

Doppler-shift, 2289, 2533

double periodicity, 1822, 1826,
2497, 2498

doubly refracting, 2448

Dr. Ehrlich’s Magic Bullet, 2530

drag force, 1985

draisine, 2689

Drake Passage, 2378

dream theory, 2284, 2700

dry cell, 2301

dry plate, 2250, 2289, 2555

Duhamel superposition integral,
1886

Duhamel’s Theorem, 1886

duplexity theory, 2186

dyadic product, 1812, 1989
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earth’s solid inner core, 2660
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2224, 2293, 2298, 2367, 2473,
2514, 2524, 2676

efficiency of a steam engine, 2550
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2263, 2272, 2374, 2475, 2500,
2527, 2608, 2609, 2686, 2688

Eiffel Tower, 2645

eigenvalues, 1891, 2132, 2584

Eisenstein integers, 1952

Eisenstein primes, 1952

Ekman number, 2386

Ekman spiral, 2388

elastic force, 2525

elastic rebound theory, 2662

elastic solid, 1759, 1928, 1983,
2120, 2531, 2619, 2631, 2632

elasticity, 1751, 1756–1760, 1928,
2004, 2120, 2167, 2224, 2251,
2275, 2281, 2457, 2496, 2503,
2525, 2531, 2627, 2653, 2656,
2668, 2685

elastin, 2525

elastodynamics, 2121, 2660

electric alternator, 2638

electric charge, 1943, 2227, 2229,
2236, 2242, 2440, 2513, 2674

electric current, 1752, 1765, 1876,
1890, 1936, 1959, 1964, 2115,
2148, 2178, 2220, 2227, 2230,
2236, 2242, 2415, 2479, 2555,
2590, 2640, 2658

electric generator, 2591

electric light, 2178, 2480, 2545,
2588
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electric typewriter, 2439

electrical clock, 1965

electrical networks, 1790, 2040,
2297

electrical photoconductivity, 2414

electrical telephone, 2250

electricity, 1752, 1794, 1798, 1877,
1889, 1958, 1964, 2048, 2115,
2125, 2168, 2219, 2223–2231,
2234, 2236, 2246, 2320, 2414,
2459, 2473, 2481, 2484, 2539–
2541, 2551, 2554, 2591, 2641,
2667, 2674

electrochemical gradient, 1943–1944,
1949

electrolysis, 1958, 2148, 2440, 2616

electrolytic dissociation, 2501

electromagnet, 1784, 1933, 1936,
2237, 2244, 2448, 2473, 2479

electromagnetic induction, 1876,
2227, 2237, 2637, 2658

electromagnetic interaction, 2460

electromagnetic seismograph, 2658

electromagnetic self-inductance, 1878

electromagnetic telegraph, 1887

electromagnetic telephone, 2115

electromagnetic units, 2229, 2238,
2440

electromagnetic waves, 1876, 1913,
1934, 2049, 2220, 2226, 2228,
2234, 2499, 2539, 2555, 2578,
2580, 2639, 2667

electromagnetism, 1750, 1752, 1763,
1933, 2219, 2224, 2227, 2236,
2252, 2457, 2503, 2539, 2627

electron, 1806, 1815, 1849, 1941,
1948, 1985, 2169, 2238, 2241,
2244–2245, 2255, 2299, 2328,
2415, 2423, 2440, 2476, 2502,
2637

electronegativity, 2616

electrophysiology, 2115, 2428

electroplating process, 1973

electrostatic induction, 1890

ellipse, 1908, 2036, 2174, 2303,
2351, 2496

elliptic function, 1826, 1880, 2030,
2194, 2496–2498

elliptic integral, 1817, 1822, 1827,
2496

embriology, 2212

emission spectrum, 2168

emissivity, 2168, 2567

encyclopedists, 1871

energy barrier, 2558

energy conservation, 1980, 2591

energy density, 1799, 2045, 2121

energy-quantum, 2284

ensemble average, 2471

enzyme, 1897, 2262, 2625

epicenter, 2661

epicentral distance, 2661
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epinephrine, 2595, 2693

epsilontics, 2065

equation of continuity, 1894, 1984,
2043

equation of state, 1984, 2044, 2119

equipartition law, 2221

equitangential curve, 1950

equivalence transformation, 2161

ergodic hypothesis, 2308, 2471

ergodic problem, 2471

ergot alkaloid, 2607

Erlangen program, 1789, 2167,
2411

Eros, 1783

erythrocytes, 1908

erythroxylom coca, 2595

escape velocity, 2569

Escherichia coli, 1945

Eschscholzia, 2605

essential singularities, 1991, 2672

Ether hypothesis, 2531

Euclid’s algorithm, 2408

Euclidean geometry, 1763, 1788,
1835–1846, 1950, 2039, 2126,
2281, 2396, 2418, 2503, 2630

Euclidean space, 1793, 1813, 1994,
2033, 2037, 2126, 2156, 2281,
2344, 2418, 2424, 2636

Euler angles, 1811, 2343, 2350

Euler characteristic, 2019, 2029,
2147, 2251, 2506

Euler number, 2386

Euler’s equation of motion, 1984

Euler’s formula, 1789, 2017, 2039,
2491, 2504

Euler’s product, 2129, 2133

eulerian path, 2038

eutrophication, 1768

evaporation, 2388, 2565, 2568

Everest, 2171, 2369

existentialism, 1976

Exodus, 2257, 2443, 2519, 2521,
2523, 2526

experimental psychology, 1996

explosive materials, 2316

extraterrestrial life, 2563

F

facsimile, 1964

Fahrenheit, 1777

fax (see: facsimile)

Fejer kernel, 1904

Fejer Theorem, 1903

Feldspar, 2590
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2451

Fick’s law, 2176
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finite groups, 2068, 2354, 2363
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fixed point, 1777, 2033, 2142, 2584

fluorescence, 1985

fluorine, 2321, 2616
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fluorocarbons, 2616

fluorspar, 2616

flute, 2264, 2266, 2272–2273

flux density, 1750, 2242, 2288,
2457, 2639

focal plane, 2430

fossil fuel, 2565

Foucault pendulum, 2140

fountain pen, 1991

four-color conjecture, 1790, 2134,
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Fourier optics, 2429

Fourier series, 1785, 1903, 1975,
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Fourier theorem, 2537

Fourier transform, 2430
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2474, 2477, 2480, 2483, 2499–
2501, 2503, 2512, 2519, 2520,
2525, 2549, 2553, 2562, 2579,
2590, 2608, 2614–2620, 2626,
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2411, 2689
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free energy, 2048, 2462, 2558

free oscillations of the earth, 2658

free precession, 2668

free vortex, 2047

friction, 1780, 1934, 1968, 2277,
2295, 2388, 2550, 2647, 2689

Frobenius method, 2354

Froude number, 2386

fuel cell, 1958

fullerine, 2016

functional analysis, 1793, 2621,
2644

functional derivative, 2621

fundamental frequency, 2274, 2279

Fundamental theorem of algebra,
1790

Fundamental theorem of arith-
metic, 2407

fungus, 1892, 2479, 2595, 2609–
2612

G

Galilean transformation, 2063, 2532

gallium arsenide, 2449

Galois groups, 1831

Galton problem, 2290

galvanometer, 1752, 1784, 2136,
2658

game theory, 1790, 2544

gamma function, 2491

gas turbines, 2553

gasoline engine, 2550

gauge symmetry, 1999

Gauss integers, 1952

Gauss sum, 1994

Gauss’ linkage formula, 2034

Gauss-Bonnet theorem, 1990
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2030, 2126

Gaussian elimination, 2071, 2073

Gaussian geocentric dipole, 1875

Gaussian optics, 2176

Geissler tube, 2411

generalized hypergeometric func-
tion, 2495

generating function, 1891

genetic code, 2438

genetics, 2205, 2290, 2707

genus, 2019, 2023, 2186, 2605

geocentric dipole field, 1875

geodesic dome, 2016

geodesic map, 2031

geodesics, 1952, 1991, 2031, 2126,
2128, 2281, 2378, 2516
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Geographos, 2307

geological oceanography, 2369

geology, 1870, 1920, 1962, 2136,
2200, 2212, 2216, 2302, 2356,
2368, 2380, 2517

geomagnetic poles, 1872, 1875

geometrical optics, 1799, 1806,
1818, 1913, 1923, 2043, 2219,
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geostationary orbit, 2571
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Gibbs distribution, 2465

Gibbs’ phenomenon, 1903

global cooling, 2566

glutamic acid, 2625

glycerine, 2313

glycine, 2625

glycogen, 1981

golden section, 1828, 2271

Gondwana, 2449

goodness of fit, 2686

Göttingen University, 1766, 1783–
1785, 1787, 1791, 1796, 1887,
1953, 2064, 2067, 2125, 2132,
2186, 2251, 2258, 2299, 2319,
2330, 2354, 2393, 2404, 2411,
2450, 2475, 2478, 2522–2524,
2548, 2662, 2669, 2676

gradient operator, 1812, 1821, 2426,
2467

Graham’s law of diffusion, 1848

gramophone, 2479, 2484, 2513

graph theory, 1790, 2038–2040,
2134, 2148

graphite, 2670

Grashof number, 2386

gravitational perturbations, 2303

gravity surveying, 2173

Great Britain, 1848, 1957, 2050,
2287, 2374, 2458, 2539, 2698

greatest common divisor, 1850,
1936, 2453
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Greek diatonic scale, 2267

Green’s identity, 1819

Green’s theorem in the plane, 1798

greenhouse effect, 2288, 2556, 2564,
2568

Greenwich Mean Time, 2579

Greenwich Observatory, 1884, 2579,
2692

Gregonne’s surface, 2318

group manifold, 2343

group of transformations, 1787,
2165, 2350

group theory, 1791, 1830, 2037,
2158, 2166, 2300, 2411

group velocity, 1799, 2548

Grove Cell, 1959

Gudermannian, 2066

Gulf Stream, 2388

Gulliver’s Travels, 2486

guncotton, 1958, 1972

gunpowder, 2316

gyro-compass, 2143–2144

gyro-pendulum, 2144

gyroscope, 2140–2144, 2245, 2301,
2365

gyroscopic effects, 2689

gyroscopic horizon, 2143

H

Haemophilus influenzae, 2676

Hagen-Poiseulle flow, 1907

Hale Observatories, 2674

half tone, 2268

Hall effect, 2502

hallucinogenic, 2593, 2595–2598,
2601, 2604, 2607, 2611

Hamilton’s equations, 1799, 1803,
1818

Hamilton’s principle, 1802, 2126

Hamilton-Jacobi equation, 1804

Hamiltonian dynamics, 1880, 2465

Hankel functions, 2258

haploid, 2438

harmonic integrals, 2622

harmonic mean, 2264, 2268

harmonica, 2272

hashish, 2596, 2608

heat engines, 1754, 1779, 1782,
2118, 2461, 2549

heat of combustion, 1960

heat of formation, 1960
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heavier-than-air flight, 2284

Hebrew, 1800, 1980, 1994, 2055,
2263, 2390, 2518, 2544, 2599,
2685

Hegelian dialectic, 2052

Heidelberg University, 1766, 1796,
1815, 1881, 1897, 1962, 1973,
2049, 2168, 2188, 2216, 2298,
2311, 2320, 2415, 2463, 2517,
2522, 2587, 2688

Helium, 2318, 2321, 2327, 2622

Hellenes, 1919

Helmholtz equation, 2045

hematology, 2527

hemlock, 2588, 2595

hemoglobin, 1941, 2215, 2261,
2670

Hermes, 2307

Hermite functions, 1983

Hermite polynomials, 1983, 2494

Hermitian forms, 1983

Hermitian matrices, 1983

heroin, 2606, 2614

Hess’ Law, 1960

Hessian determinant, 1972

Hessian function, 1972

Hessian matrix, 1972

Hessian normal form, 1972

heterocyclic ring, 2594

heteroecism, 2300

hidden symmetry, 2516

hierarchy, 1789, 1871, 2138, 2210,
2399, 2402

higher aberrations, 2176

Hilbert spaces, 2365, 2538

Hill’s equation, 2487, 2500

histidine, 2625

historical materialism, 2052

Hölder inequality, 2645

holography, 2319

homeomorphism, 1791, 2504

Hominid erectus, 2673

homogeneous coordinates, 1787,
1815

homology, 1793

homotopy theory, 2037, 2509

Hooke’s Law, 1758, 2619, 2660

Hooke’s solid, 2308

Hornblende, 2590

Hurwitz criterion, 2548

Hurwitz polynomials, 2548

Hurwitz-Lyapunov theorem, 2548

Huygens’ envelope construction,
2234

Huygens’ Principle, 1806, 1925,
2048

hydrogen Balmer lines, 2286
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hydrosphere, 2368, 2566

hydrostatic equilibrium, 2173

hydrostatic pressure, 1945

hyoscyamine, 1752, 2601, 2602

hyperbolic functions, 1825

hyperbolic geometry, 1952, 2281

hyperbolic plane, 1952

hypercomplex numbers, 1989, 2423

hypercomplex vector, 2424

hypergeometric functions, 2193–
2196, 2198, 2411, 2494

hysteresis, 2514, 2672

hystidine, 2587

I

Icarus, 2307

ice-ages, 1962, 1969, 2293

icosahedral equation, 2195, 2198,
2411

icosahedron, 1828, 2012, 2014–
2018, 2195, 2504

id, 1803, 2126, 2697

ideal engine, 1778, 1780, 2648

ideal fluid, 2619

ideal gas, 1778, 1781, 2120, 2308,
2417, 2445, 2647

ideal number, 2408

image formation, 2429

immune reaction, 2675

immunology, 2527, 2654

immunotherapy, 2528

impact crater, 2307

impedance, 2045, 2542

incandescent electric light, 2480

incompressibility, 2044, 2468

incompressible fluid, 1880, 1893,
2468

indeterminate product, 2629
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1980, 2011, 2170, 2263, 2298,
2376, 2449, 2474, 2512, 2593,
2603, 2605, 2607, 2611, 2659,
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indigo, 1912, 2524

induced electric field, 2245

induction-coil, 1931, 2123,2640

inductive logic, 1975

industrial revolution, 1900, 2054,
2050, 2212, 2355, 2482, 2565,
2567, 2691

inertia tensor, 2629

infinite group, 2159, 2503

infinite series, 1760, 1862, 1899,
2065, 2191, 2392, 2492, 2569,
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infinite sets, 2393, 2400, 2401–2404
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infinite trigonometric series, 2489

infinitesimal rotation, 2164, 2335,
2343

infinitesimal transformation, 2166,
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inflammation, 2174, 2296

information theory, 2222

inner product, 1813

Inquisition, 1784, 1923
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nucleoprotein, 2330
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Personae

Wilhelm Röntgen 2825 · August and Louis Lumiére 2825 · Hendrik

Lorentz 2825 · Guglielmo Marconi 2826 · Georg Wulff 2826 · Wallace

Sabine 2827 · Horace Lamb 2827 · Thorvald Thiele 2827 · Herbert

George Wells 2833 · Charles Sherrington 2869 · Arthur Schuster 2871 ·
Max von Gruber 2871 · Jacques Hadamard 2871 · Henry Ford 2874 ·
Antoine Henri Becquerel 2874 · Hjalmar Mellin 2875 · Arnold Som-

merfeld 2876 · Vilfredo Pareto 2877 · Émil Borel 2878 · Joseph John

Thomson 2888 · Alfred Tauber 2890 · Frederick Lanchester 2892 ·
Ernest Barnes 2893 · Adolf Loos 2892 · Vilhelm Bjerkens 2893 · Ivan

Bloch 2894 · Marie Curie 2895 · Martinus Beijerinck 2896 · Joseph

Larmor 2896 · Valdemar Poulsen 2896 · Jules Bordet 2897 · René-

Louis Baire 2900 · Jacques Loeb 2904 · Karl Schwarzschild 2905 ·
Kurt Hensel 2908 · Edmund Landau 2924 · Ivar Fredholm 2929 ·
David Hilbert 2930 · Reginald Fessenden 2937 · Hugo de Vries 2938 ·
Ernst Zermelo 2938 · Max Planck 2939 · Georg Simmel 2942 · Louis

Bachelier 2942 · Max Dehn 2943 · Edmund Husserl 2943 · Marc

Aurel Stein 2945 · Franz Boas 2944 · Wilhelm Kutta 2946 · Henri

Lebesgue 2950 · Wilhelm Weinberg 2962 · Roald Amundsen 2963 · Is-

sai Schur 2965 · Karl Landsteiner 2965 · Luigi Bianchi 2967 · William

Bayliss 2968 · Archibald Garrod 2975 · Hantaro Nagaoka 2976 ·
Willem Einthoven 2976 · Waclaw Sierpinski 2976 · Wilbur and

Orville Wright 2982 · Carl Neuberg 2982 · John Ambrose Flem-

ing 3004 · Bertram Boltwood 3004 · Ludwig Prandtl 3004 · Frigyes

Riesz 3006 · Emanuel Lasker 3010 · Richard Willstätter 3012 · Arthur

Harden 3016 · Albert Einstein 3017 · Ejnar Hertzsprung 3047 · Otto
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Toeplitz 3048 · Joseph Wedderburn 3053 · Eugen Lauste 3055 · Wal-

ter Nernst 3055 · August Wassermann 3055 · Greenleaf Pickard 3057 ·
Henri Dunwoody 3057 · Bernard Brunhes 3058 · Andrei Markov 3058 ·
William Gossett 3058 · Boris Golitzin 3059 · Paul Langevin 3060 ·
Marian von Smolan Smoluchovski 3062 · Pierre Duhem 3070 · Mau-

rice Fréchet 3071 · Paul Ehrenfest 3073 · Oswald Veblen 3074 · Harry

Bateman 3074 · Werner Alexanderson 3074 · Pierre Weiss 3075 · Lee

de Forest 3082 · Hermann Minkowski 3089 · Ernst Rutherford 3141 ·
Ellsworth Huntington 3142 · Jean Perrin 3144 · Wilhelm Geiger 3144 ·
Hermann Anschütz-Kaempfe 3149 · Fritz Haber 3149 · Carl Char-

lier 3150 · Godfrey Harold Hardy 3151 · Axel Thue 3167 · Sören

Sörensen 3183 · William Coolidge 3182 · Peter Debye 3184 · Aaron

Levene 3184 · Alfred Haar 3186 · Constantin Carathéodory 3186 ·
Richard von Mises 3187 · George Claude 3190 · Thomas Hunt Mor-

gan 3190 · Ernst Steinitz 3190 · Jan Lukasiewicz 3190 · Robert Mil-

likan 3192 · Heike Kamerlingh-Onnes 3193 · Victor Hess 3194 · Hi-

ram Bingham 3194 · Elmer Sperry 3194 · John Littlewood 3194 ·
Alfred North Whitehead 3198 · Sergei Bernstein 3204 · Theodore

von Kármán 3204 · Charles Kettering 3204 · Max von Laue 3207 ·
Casimir Funk 3216 · Franz Kafka 3216 · Chaim Weizmann 3216 ·
Charles Wilson 3229 · Henrietta Swan Leavitt 3232 · Gunnar Nord-

ström 3233 · Alfred Wegener 3234 · Melvin Slipher 3239 · Eduard

Helly 3239 · Edwin Armstrong 3240 · Milutin Milankovich 3245 · Max

Wertheimer 3248 · Ludwig von Mises 3249 · Leonor Michaelis 3261 ·
Henry Moseley 3263 · Johann Radon 3264 · Elmer McCollum 3272 ·
Irving Langmuir 3272 ·George Birkhoff 3273 ·Georg von Hevesy 3274 ·
Igor Sikorsky 3277 · Bela Schick 3277 · Niels Bohr 3281 · Adrian

Fokker 3285 · Edgar Buckingham 3287 · James Franck 3287 · Ernest

Swinton 3289 · Felix Hausdorff 3289 · Srinivasa Ramanujan 3290 ·
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Beno Gutenberg 3302 · Frederick Twort 3302 · Felix d’Herelle 3303 ·
Adolf Windaus 3324 · Harold Jeffreys 3324 · Thomas Bromwich 3329 ·
Willem de Sitter 3329 · Gerhard Hassenberg 3373 · D’Arcy Thomp-

son 3373 · Harlow Shapley 3418 · Tullio Levi-Cività 3419 · Hermann

Staudinger 3422 · Robert Robinson 3423 · Hans Thirring 3425 · Paul

Finsler 3425 · Otto Meyerhof 3426 · Gaston Julia 3426 · Oswald

Spengler 3445 · Emmy Noether 3458 · Alexander Ostrowski 3457 ·
Hermann Weyl 3471 · Le Corbusier 3492 · Léon Theremin 3511 ·
Heinrich Barkhausen 3501 · Theodor Kaluza 3502 · Abraham Halevi

Fraenkel 3508 · Francis Aston 3509 · Lewis Richardson 3512 · Balt-

hazar van der Pol 3515 · Albert Skolem 3519 · Andrew Douglass 3519 ·
Quirino Majorana 3519 · William Harkins 3520 · Otto Stern 3520 ·
Otto Loewi 3536 · Emil Post 3537 · Solomon Lefschetz 3539 ·
Arthur Compton 3539 · Pavel Uryson 3540 · Max Born 3542 · Al-

fred Korzybski 3545 · Emil Artin 3548 · Ludwig Wittgenstein 3548 ·
Norbert Wiener 3556 · Léon Brillouin 3566 · Joell Mordell 3584 ·
Alexandr Friedmann 3585 · Philo Taylor Farnsworth 3585 · Stefan

Banach 3586 · Leo Szilard 3591 · Johannes Brönsted 3596 · Vladimir

Zworykin 3597 · Hermann Oberth 3599 · Victor Goldschmidt 3600 ·
Francesco Tricomi 3600 · Louis de Broglie 3602 · Edward Apple-

ton 3605 · Edwin Hubble 3607 · Frank Ramsey 3611 · Pavel Alexan-

drov 3611 · Walter Shewhart 3614 · Wolfgang Pauli 3618 · Hendrik

Kramers 3622 · Richard Courant 3623 · Alexander Oparin 3627 · Ti-

bor Radó 3632 · Edward Titchmarsh 3632 · John Bernal 3632 · Jan

Oort 3683 · Samuel Goudsmit 3647 · George Uhlenbeck 3647 · Erwin

Schrödinger 3649 · Salomon Bochner 3685 · Raymond Dart 3682 ·
Andrei Tikhonov 3684 · Vladimir Vernadsky 3686 · Robert God-

dard 3686 · John Logie Baird 3688 · Oscar Klein 3690 · Werner Heisen-

berg 3695 · Alexander Aitken 3722 · Eugene Wigner 3723 · John von
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Neumann 3724 · Douglas Hartree 3746 · Eugène Freyssinet 3756 ·
Martin Heidegger 3757 · Georges Lemaitre 3763 · R.V.L. Hart-

ley 3769 · Bronislaw Malinowski 3770 · George Sarton 3770 · Bar-

bara McClintock 3777 · Otto Neugebauer 3778 · Ludwig Mies van

der Rohe 3778 · Abram Besicovitch 3779 · Alexander Fleming 3780 ·
Otto Diels 3780 · Venkata Raman 3781 · Jerzy Neyman 3784 ·
Jesse Douglas 3784 · Paul Adrien Maurice Dirac 3785 · Frank Whit-

tle 3795 · Felix Bloch 3796 · George Gamow 3797 · Georg von

Békésy 3799 · Maurits Escher 3808 · José Ortega y Gasset 3833 ·
Max Knoll 3836 · Ernst Ruska 3836 · Carl Siegel 3838 · Alexandr

Gelfond 3838 · Andrei Kolmogorov 3842 · Adolf Butenandt 3847 ·
Vannevar Bush 3857 · Kurt Gödel 3880 · Pier Nervi 3885 · Auguste

Piccard 3940 · Wiley Post 3940 · Karl Jansky 3940 · Robert van de

Graaff 3957 · Lars Onsager 4095 · Linus Pauling 4101 · Henry John

Kaiser 4102 · Sewall Wright 4104 · James Chadwick 4109 · August

Dvorak 4110 · Gerhard Domagk 4115 · Juliusz Schauder 3879 · Harold

Urey 4116 · Hans Krebs 4117 · Eduard Cech 4118 · Karl Jaspers 4119 ·
Walter Meissner 4178 · Max Delbrück 4179 · Alfred Tarski 4180 ·
S.P. Korolev 4181 · Hans Jonas 4183 · Fritz Zwicky 4191 · Wallace

Carothers 4256 · Pavel Cherenkov 4256 ·Geoffrey Taylor 4259 ·Marcus

Oliphant 4260 · Rudolf Schoenheimer 4261 · Edmund Germer 4261 ·
Karl Popper 4262 · R.M. Rilke 4289 · F. Fessoa 4293 · E.E. Cum-

mings 4296 · Emile Cioran 4311 · H. Yukawa 4319 · Arthur Demp-

ster 4320 · W.M. Stanley 4320 · N. Rosen 4331 · Gerti Cori 4349 ·
Carl Cori 4349 · Konrad Zuse 4350 · Fritz Zernike 4351 ·
Alan Turing 4360 · Israel Gelfand 4389 · Leo Strauss 4390 ·
Rudolf Mandl 4403 · Heinrich Focke 4413 · Leopold Infeld 4413 ·
Lloyd Espenshied 4415 · Hermann Affel 4415 · John Maynard
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Keynes 4415 · Eugene Néel 4424 · Alonzo Church 4428 · Samuel Eilen-

berg 4429 · H.A. Rademacher 4462 · Harold Marston Morse 4463 ·
Max Horkheimer 4464 · A.W.K. Tiselius 4465 · George Stibitz 4466 ·
Isidor Rabi 4467 · W.W. Hansen 4467 · Emilio Gino Segrè 4468 ·
Arthur Erdélyi 4468 · Nahum Il’ich Akhiezer 4469 · Roy Plun-

kett 4472 · Hans Bethe 4473 · Russell Harrison Varian 4475 · Sig-

urd Fergus Varian 4475 · Chester Carlson 4479 · Oscar Zariski 4479 ·
Robert Oppenheimer 4484 · Otto Hahn 4487 · Claude Shannon 4498 ·
Robert Merton 4503 · M.M. Schiffer 4504 · B.W. Tuchmann 4505 ·
Lise Meitner 4506 · John Atanasoff 4508 · C.S. Draper 4509 · Carl

Rossby 4509 · Max Perutz 4511 · Hannes Alfvén 4515 · W.M. El-

sasser 4518 · Howard Florey 4522 · E.B. Chain 4522 · W.F. Fried-

man 4525 · David Kamen 4526 · Hedy Lamarr 4526 · Edwin McMil-

lan 4531 · Philip Abelson 4531 · A.S. Waxsman 4531 · Pierre-Michel

Duffieux 4532 · Yoel Racah 4532 · Alfred Hershey 4533 · Charles Ehres-

mann 4556 · Friedrich von Hayek 4577 · Bengt Edlen 4578 · William

Hanford 4579 · N.E. Steenrod 4579 · Salvador Luria 4580 · Charlotte

Auerbach 4580 · Oswald Avery 4581 · William Kolff 4581 · Abra-

ham Wald 4582 · Shichiro Tomonaga 4582 · Shiing-Shen Chern 4583 ·
B. Levich 4600 · M.A. Naimark 4604 · Howard Aiken 4623 ·
A.J.P. Martin 4623 · Richard Synge 4623 · Rudolff Luneburg 4624 ·
Henrik van de Hulst 4625 · Stanislaw Ulam 4626 · Gregory Pin-

cus 4636 · R.B. Woodward 4637 · Wilfred Thesiger 4648 · Alan

Hodgkin 4649 · Andrew Huxley 4649 · Werner von Braun 4649 · Pres-

per Eckert 4650 · Willard Libby 4690 · André Weil 4691 · Claude

Levi-Strauss 4692 · Eric Hoffer 4695 · Marshall McLuhan 4699 ·
J.A.E. Dieudonn 4706 · Hyman Rickover 4706 · J.G. Charney 4708 ·
Charles Yeager 4729 · N.E. Lamb 4729 · C.F. Powel 4732 ·
André Marechal 4732 · John Bardeen 4744 · Walter Brattain 4744 ·
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William Shockley 4744 · Fritz Albert Lipmann 4744 · D.O. Hebb 4812 ·
George Dantzig 4813 · Richard Buckminster Fuller 4821 · Richard

Hamming 4831 · J.G. Mikusinski 4834 · H.B.G. Casimir 4848 · Den-

nis Gabor 4851 · Peter Carl Goldmark 4851 · Imre Lakatos 4877 ·
A.I. Akhiezer 4878 · Yakov B. Zeldovich 4878 · Julian Schwinger 4879 ·
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Environmental Events

that Impacted Civilization

1898–1923 Bubonic plague pandemic kills 20 million people in China, In-
dia, North Africa and South America

1900 The Galveston (TX, USA) hurricane kills 8000 persons

1902 The eruption of the Mt. Pelée volcano (Martinique) kills
30, 000 people

1906 The San-Francisco earthquake

1908 The Messina earthquake kills 160, 000 people

1908 The Tunguska bolide explosion

1912 The ‘Titanic’ disaster

1917–1920 Worldwide Influenza pandemic kills 80 million people, mostly
in Europe and Asia

1921–1930 Cholera, smallpox and typhus pandemic in India kills ca 2 mil-
lion people

1923 The Tokyo earthquake

1931–1950 Floods of the Yellow and Yangtze Rivers in China (1928, 1929,
1931, 1936, 1938, 1950) kill 22 million people

1942 Hurricane at the Bay of Bengal kills 40, 000 people

1970 Cyclone storm and tsunami kill 500, 000 people at the Bay of
Bengal

1976 Earthquake in Tangshan (China) kills 650, 000 people

1983–1985 Famine in Ethiopia kills ca 1 million people
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Political and Religious Events

that Impacted World Order

1904–1905 Russia and Japan at war

1917 The Bolshevik Revolution

1914–1918 World War I

1936–1939 The Spanish Civil War

1939–1945 World War II and the Holocaust

1947–1949 The rebirth of Israel

1949 Independence of India

1949 Foundation of the Republic of China

1949–1989 The ‘Cold War’

1950–1953 The Korean War

1965–1975 The Vietnam War

1991 The Soviet Union officially ceased to exist

2001 The ‘Nine-Eleven’ event – Muslim terror
hits the USA
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1895 CE Wilhelm Conrad Röntgen (1845–1923, Germany). Physicist.
Discovered X-rays while experimenting with electric current flow in partially
evacuated glass tube (cathode-ray tube). In 1912, Max von Laue (1879–
1960, Germany) determined its wave-lengths by means of diffraction through
regularly-spaced atoms in crystals.

Although Röntgen was unaware of the true nature of these ‘rays’, he found
that they affected photographic plates, and took the first anatomical X-ray
photograph [the bones of his wife’s hand]. His discovery heralded the age of
modern physics and revolutionized diagnostic medicine. He was the recipient
of the first Noble prize for physics, in 1901.

Röntgen was educated at Zürich and was then professor of physics at
the universities of Strasbourg (1876–1879), Giessen (1879–1888), Würzburg
(1888–1900) and finally Münich (1900–1920).

1895 CE Auguste (Marie Louis) Lumière (1862–1954, France) and his
brother Louis Jean (1864–1948) developed a satisfactory camera and pro-
jector and made the first motion-picture film-show to the general public.

Inspired by Edison’s kinematoscope they invented the cinematograph: a
claw mechanism to pull the film a fixed distance past the projection (and
camera) lens while the light was cut off by a shutter. Their choice of 16
frames per second remained the standard filming and projection rate through
all the years of silent films.

1895–1896 CE Hendrik Antoon Lorentz (1853–1928, Holland). A lead-
ing physicist. Established the notion that electromagnetic radiation originates
due to harmonic oscillations of charged particles inside atoms or molecules1.
Lorentz suggested that a strong magnetic field ought to affect these oscilla-
tions and change the wavelength of the emitted radiation. This prediction was
verified in 1896 by Pieter Zeeman (1865–1943, Holland), a pupil of Lorentz,
and in 1902 they were awarded the Nobel prize in physics for their discovery.

Since the electron theory of Lorentz could not explain the results of the
Michelson-Morley experiment, he was forced to concoct the ‘Lorentz trans-
formation’ equations as an ad hoc device to overcome the difficulty.

Lorentz was born in Arnhem. During 1878–1923 he was a professor of
theoretical physics at Leyden University.

1 According to Maxwell’s theory, electromagnetic radiation is produced by oscilla-

tions of electric charges, but charges that produce visible light were not known at

that time.
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1895–1909 CE Georg (Yuri Viktorovich) Wulff (1863–1925, Russia).
Crystallographer. Discovered that the shape of small crystals can be ex-
plained, to some extent, by a variational principle similar to that of the
isoperimetric problem2, and that their remarkable difference in structure re-
sults from the difference in the corresponding potential energies; physically,
a crystal with small surface irregularities will tend to lower its free surface
energy and this becomes the dominating factor in its shape formation.

Wulff was born in Nezhin, the Ukraine. He studied at the Universities
of Warsaw (1880–1892) and Odessa (1892–1899). He then held professorial
positions at Kazan and Moscow (1918–1925). Wulff showed that for every
given volume, there is a unique convex body whose boundary surface has less
energy than does the boundary surface of any piecewise smooth body of the
same volume. In his 1895 thesis, Wulff showed that for a constant volume,
the surface energy per unit area at any point on the surface depends only on
the direction of the tangent plane to the surface at that point.

Moreover, the total surface energy would be minimized when the specific
surface energies for each face (Ki) were proportional to the perpendicular
distances (ni or Wulff vectors) from a central point to each face such that
K1 : K2 : K3 : · · · = n1 : n2 : n3 : . . .. In modern studies of crystal growth the
geometric algorithm for determining the equilibrium form derived from the
theorem is known as Wulff’s construction.

1895–1901 CE Guglielmo Marconi (1874–1937, Italy). Inventor and
electrical engineer. Became the first person to send radio communication
signals through the air3. In 1895 he sent a wireless telegraph code signal to a
distance of 2 km and in 1901 he send a code signal across the Atlantic Ocean
from England to Newfoundland.

Marconi was the last in the long chain of contributors during 1884–1897:
He combined Ruhmkorff’s induction-coil, the stable spark oscillator of Au-
gusto Righi (1850–1920, Italy), the coherer of Eugene Branly (1844–1940,

2 In three dimensions, the perfectly smooth symmetrical sphere has the smallest

free surface energy (area) when compared to all other smooth shape-sake bodies

of the same volume. If however a region in space is bounded by a finite collec-

tion of pieces of smooth surfaces (piecewise smooth) there is an infinite number

of possible surface energies; nevertheless, for each such admissible energy, the

unique minimum is a convex region bounded by planes. The solution to this

minimal problem, the optimal crystalline region, can be determined by the Wulff

construction.
3 The Russian claim to fame in this field is Alexander Stepanovich Popov

(1859–1906), a physicist who devised the first aerial (1897), although he did not

use it for radio communication. He also invented a detector for radio waves (1895).
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France), T.C. Onesti4 and Oliver Lodge, and the antenna of Alexander
Popov into a workable system.

1895–1904 CE Horace Lamb (1849–1934, England). Applied mathe-
matician. A student of Stokes and Maxwell; Professor at Adelaide, Aus-
tralia (1875–1885) and University of Manchester (1885–1920). Author of Hy-
drodynamics (1895). Laid the foundation to modern theoretical seismology
and contributed to the theory of the tides.

1895–1906 CE Pierre Curie (1859–1906, France). Physical chemist.
Among the founders of modern physics. Discovered radium and polonium
with his wife Marie Curie (1898), and the law that relates some magnetic
properties to changes in temperature (Curie’s law; Curie point). Established
an analogy between paramagnetic materials and perfect gases and between
ferromagnetic materials and condensed fluids.

Curie was a son of a Paris physician. Studied and taught physics at the
Sorbonne, where he was appointed professor in 1904. He was run over by a
dray in the rue Dauphine in Paris in 1906 and died instantly.

1895–1909 CE Thorvald Nicolai Thiele (1838–1910, Denmark). Math-
ematician with interest in astronomy. Derived a continued-fraction expansion
of a given function, the convergents of which serve as rational approximations
of the function (1909). Thiele taught in Copenhagen as well as being chief
actuary of an insurance company.

1895–1915 CE Wallace Clement Sabine (1868–1919, U.S.A.). Physi-
cist. Founded the science of architectural acoustics. Until 1895, criteria for
what constituted a good acoustic hall were lacking. Sabine, a young physics
instructor at Harvard University, was called on to attempt a remedy of the
intolerable acoustics of the auditorium of the recently completed Fogg Art
Museum5. He defined the parameters for good acoustical qualities before try-
ing to translate them into practical considerations — dimensions, shapes, and
building materials. He became later Hollis Professor of Mathematics and
Natural Philosophy at Harvard.

4 Temistocle Calzecchi Onesti (1853–1922).
5 In the Fogg Art Museum it was almost impossible to understand speakers in the

lecture room.
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Architectural Acoustics

Before Sabine, good acoustical design consisted chiefly of imitating halls
in which music sounded good. Poor acoustic design consisted of superstitious
practices, such as stringing useless wires across the upper spaces of a church
or auditorium. Sabine identified the persistence of sound (i.e., the excessive
reverberation) as the factor that rendered speech unintelligible. He reduced
the reverberation by placing felt on particular walls.

Sabine was the first to define reverberation time, one important parameter
of lecture halls and auditoriums. His definition was the time that it takes, after
a sound is turned off, for the reverberant sound level to become barely audible.
(When accurate electronic measurement of sound level became possible many
years later, this turned out to be a fall in sound level of 60 db.)

From a series of ingenious experiments Sabine deduced a mathematical
model that has a relation to the full-wave model (wave equation plus boundary
conditions) of classical acoustics similar to that of radiative heat transfer
to electromagnetic theory or of kinetic theory to classical mechanics. His
idealization that sound fills a reverberant room in such a way that the average
energy per unit volume in any region is nearly the same as in any other region,
applies best to large rooms whose characteristic dimensions are substantially
larger than a typical wavelength.

It also applies to live rooms, for which the time determined by the ratio of
the total propagating energy within the room to the time rate at which energy
is being lost from the room is considerably larger than the time required for
a sound wave to travel across a representative dimension of the room.

When a sound source is in a room, sound waves emanating from the source
will propagate until they strike the walls. Some energy will be absorbed by it
and a weaker wave will be reflected back. The reflected wave will propagate
until it reaches another wall where it is again reflected with partial absorption.
This process continues until all the sound energy is eventually absorbed. The
overall array of randomly criss-crossing rays is called the reverberant sound
field.

The basic assumption of geometrical acoustics is that the room walls are ir-
regular enough so that the acoustic energy density W is distributed uniformly
through the room. For this to be true, a large number of standing waves must
be involved. Since each standing waves can be considered to be made up of
a number of plane traveling waves, reflecting from the walls at appropriate
angles, the sound in the room at the point characterized by the position vector
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r can be represented by an assemblage of harmonic plane waves, each going
in a direction (ϕ, θ), each with pressure amplitude A(r, ϕ, θ; ω), intensity

I = |A|2
ρc (ρ = density; c = sound velocity), and energy density W = |A|2

ρc2 .

These entities are given by the corresponding integrals

p(r, ω) =
∫ 2π

0

dϕ

∫ π

0

A(r, θ, ϕ)eik·r−iωt sin θdθ

(k = wave number vector; k, θ, ϕ its spherical components),

I(r, ω) =
1
ρc

∫ 2π

0

dϕ

∫ π/2

0

|A(r, θ, ϕ; ω)|2 cos θ sin θdθ

(power per unit area normal to k),

W (r, ω) =
1

ρc2

∫ 2π

0

dϕ

∫ π

0

|A(r, θ, ϕ; ω)|2 sin θdθ.

Geometric acoustics makes here two basic assumptions:

(1) The energy flow I is homogeneous and isotropic, i.e., the average value
of |A|2 over a small region in space is independent of r, θ and ϕ.

(2) The absorptive properties of the wall surface are represented by a single
parameter, averaged over all directions of incidence and integrated over the
total wall area of the room. This quantity a, called the absorption of the
room, has dimensions of area.

The first assumption leads to the simple relation I = 1
4cW for the dif-

fused sound field in a room, when each direction of propagation is equally
likely (compared with I = cW for unidirectional plane wave). The second
assumption, when coupled to the energy balance equation

V
dW

dt
+ Ia = 0

(V = volume of the room), leads to the solution

I = I0e
−( ac

4V )t,

where I0 is the initial value of the intensity.

The reverberation time τ is defined to be the time at which I/I0 = 10−6,
or τ = V

ac 55.3 (Sabine, 1895). The reverberation time can be calculated
from the room’s volume and the total absorption. If τ is too long, it can
easily be decreased by hanging additional curtains or sound absorbent panels.
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When it is too short, electronic feedback system is used; a microphone on the
ceiling picks up the incoming signal which is delayed and then re-emitted by
loudspeakers.

Although τ is an important parameter related to a room’s acoustic be-
havior, it is by no means the only one. Typical values of τ are about 0.3 sec
for living rooms or up to 10 sec for large churches. Most large rooms have
reverberation times between 0.7 and 2 sec. If the reverberation time is too
short, sounds appear ‘dead’ as the lack of echo produces a very clipped sound.
If τ is too long, speech becomes incoherent, and echoes drown the speaker.

Sabine appreciated both the physical aspect of measuring and predicting
the transmission and decay of sound in concert halls, and the psychological
aspect: what makes a good hall good? He experimented to find the preferred
reverberation time for musical performance.

There are two general problems in architectural acoustics, and each has
many aspects. One problem is, what do we want? (e.g., what enables per-
formers to play well? When they do play well, what is it that make them
sound good?). The other problem is, how can we attain what is good for the
performers and what is good for the audience?

Thus, concert-hall design requires great attention both to excluding exter-
nal noise and to not producing noise. Satisfactory ensemble playing depends
on early reflections of sound from behind and above the performers; each
player must hear all the rest by means of reflected sound that is not too much
delayed.

In spite of the progress made since Sabine’s time, major errors have been
committed in the design of music halls. Philharmonic Hall in Lincoln Center,
Manhattan, opened on September 12, 1962. There were echoes at some seat
locations. The members of the orchestra couldn’t hear themselves and others
play. There was a lack of subjectively felt reverberation. There was inade-
quate diffusion of sound through the hall. Worst of all, there was an apparent
absence of low frequencies: it was difficult to hear the celli and double basses.
In short — it was a disaster.

It turned out that the overhead acoustic panels did not reflect low-
frequency components with sufficient strength into the main audience area.
This was partly the result of poor scaling (to properly reflect musical notes
of different wavelengths from an acoustic panel, the panel’s geometric dimen-
sions must be at least comparable in size with the longest wavelength present
in the sound. In actual fact they were much too small).

During 1967–1974, Manfred Schroeder (Germany) and his collabora-
tors, undertook to compare more than 20 European concert halls. They played
back a certain piece of music (a multichannel tape recording of Mozart’s
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Jupiter symphony played by the BBC orchestra in an anechoic room) over
several loudspeakers on the stages of various concert halls. In each hall they
made two channel tapes of what a dummy head heard when seated in sev-
eral locations. They then put listeners in an anechoic room at Göttingen and
played back to them what the dummy head heard in various concert halls.
By analyzing the judgments of these listeners, Schroeder and his colleagues
learned that listeners liked:

• Long reverberation times (below 2.2 seconds).

• Sound to differ at their two ears.

• Narrow halls better than wide halls. (In a wide hall the first reflected
sound rays reach the listener from the ceiling. In narrow halls the first
reflections reach the listener from the left and right walls, and these two
reflections are different.) The less preferred halls revealed a consistent
absence of strong laterally traveling sound waves.

Thus, good acoustics — given proper reverberation time, frequency balance,
and absence of disturbing echoes — is mediated by the presence of strong
lateral sound waves that give rise to preferred stereophonic sound. In old-
style high and narrow halls, such lateral sound is naturally provided by the
architecture.

By contrast, in many modern fan-shaped halls with low ceiling, a mono-
phonic sound, arriving in the symmetry plane through the listener’s head,
predominates, giving rise to an undesirable sensation of detachment from the
music. To increase the amount of laterally traveling sound in a modern hall,
highly efficient sound scattering surfaces have been recently invented (1990).

These reflection phase gratings are based on number-theoretic principles
and have the remarkable property of scattering nearly equal acoustic inten-
sities into all directions. Such broadly scattering surfaces are now being in-
troduced into recording studios, churches, and even individual living rooms.
The sound, dispersed from the ceiling, is scattered into a broad lateral ra-
diation pattern (horizontal plane). The far-field (Fraunhofer diffraction) of
such grating is approximated by the spatial Fourier transform of the acoustic
signal.
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The Korteweg–de Vries Equation (1895)6

In 1834, the British engineer John Scott Russell (1808–1882) was con-
sulted as to the possibility of utilizing steam navigation on the Edinburgh-
Glasgow canal. He then undertook a series of experiments, in which he ob-
served and reported (1844) the existence of solitary gravity waves in the canal.
He deduced the empirical equation U2 = g(h0 + η0), where U is the wave’s
speed, h0 the undisturbed depth of water, g the acceleration of gravity and
η0 the amplitude of the wave.

A theoretical study of wave motion in inviscid incompressible fluid by J.
Boussinesq7 (1871) and Lord Rayleigh (1876) verified Russell’s equation
and showed that the wave profile z = η(x, t) is given by

η(x, t) =
η0

cosh2{β(x − Ut)}
where

β =
1

2h0

√

3
η0

h0
,

η0

h0
� 1,

U ≈
√

gh0

(

1 +
1
2

η0

h0

)

.

These authors did not, however, write down the equation for which η(x, t)
was a solution. This final step was completed in 1895 by D.J. Korteweg8

6 To dig deeper, see:
• Drazin, P.G. and R.S. Johnson, Solitons: An Introduction, Cambridge Uni-

versity Press: Cambridge, 1990, 226 pp.

• Tabor, M., Chaos and Integrability in Nonlinear Dynamics, Wiley, 1989,
364 pp.

• Shen, S.S., A Course on Nonlinear Waves, Kluwer, 1994, 327 pp.

• Lamb, G.L. Jr., Elements of Soliton Theory, Wiley, 1980, 289 pp.

7 Boussinesq (1842–1929, France).
8 Diederik Johannes Korteweg (1848–1941, Holland). Applied mathematician.

Educated at Delft as an engineer but later turned to mathematics. Was a professor

of mathematics at the University of Amsterdam (1881–1918). Collaborated with

J.D. van der Waals on various research topics in statistical mechanics and

thermodynamics.
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and G. de Vries. Their equation, for waves on the surface of shallow water,

was
∂η

∂t
+ c0

(

1 +
3

2h0
η

)
∂η

∂x
+

1
6
c0h

2
0

∂3η

∂x3
= 0

where c0 =
√

gh0.

This is essentially a one-dimensional wave equation in which non-linearity

and dispersion occur together. It is known today as the ‘KdV equation’ and

it has solutions known as solitons. It is characteristic of non-linear wave

propagation in weakly dispersive media governed by a dispersion relation
ω = c0k − βk3, in which the relation between frequency ω and wave number

k, involves the amplitude.

Note that the soliton solution is exact and describes a traveling permanent
profile, which does not change its shape and propagates with constant speed.

This is due to a balance between the two competing effects of non-linearity

and dispersion. It is this property which gives the KdV equation its universal

nature.

Indeed, it was discovered throughout the 20th century that the equation

and its modifications have many diverse applications such as: waves in a

rotating atmosphere (Rossby waves), ion-acoustic waves in plasma, pressure

waves in a liquid-gas bubble mixture, the non-linear Schrödinger equation and

anharmonic lattice vibrations.

1895–1915 CE Herbert George Wells (1866–1946, England). Novelist,
sociologist, and historian. Wrote fantastic scientific romances in which he
combined scientific speculations with a strain of sociological idealism: The
Time Machine (1895), The Island of Doctor Moreau (1896), The Wheels of
Chance (1896), The Invisible Man (1897), The War in the Air (1908), The
War of the Worlds (1898), First Men in the Moon (1901), The Food of the
Gods (1904), A Modern Utopia (1905). His novel The World Set Free (1914),
predicted atomic bombs, atomic war and world government.

1895–1949 CE Élie Joseph Cartan (1869–1951, France). One of the
foremost mathematician of the 20th century, and one of the architects of mod-
ern mathematics. A principal founder of the modern theory of Lie groups and
Lie algebras, a contributor to the theory of subalgebras and discoverer of the
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general mathematical form of spinors9 (1913), 14 years ahead of physics. His
work achieved a synthesis between continuous group, Lie algebras, differential
equations and geometry.

Cartan’s thesis (1894) was on the structure of continuous groups of trans-
formations, and most of the ideas which directed all his subsequent work are
to be found in it. The principal part of the thesis was devoted to the clas-
sification of simple Lie algebras over the complex field, and it completed the
work of Lie and Killing on this subject.

About 1897 Cartan turned his attention to linear associative algebras over
real and complex fields. In 1899 he began his work on Pfaffian forms, including
such topics as contact transformations, invariant integrals and Hamiltonian
dynamics, and his great contributions to differential geometry. Within this
framework he invented the calculus of differential forms (1897) and introduced
the concept of wedge product. His exterior calculus is anchored in the pioneer-
ing studies of Poincaré and Édouard Jean Baptist Goursat (1858–1936).

During 1904–1909 Cartan made substantial contributions to the theory of
infinite continuous groups. In 1913 he developed systematically the theory
of spinors, by giving a purely geometrical definition of these mathematical
entities. This geometrical origin made it easy to introduce spinors into Rie-
mannian geometry, and particularly to apply to them the idea of parallel
transport.

Cartan further contributed to geometry with his theory of symmetric
spaces which have their origin in papers he wrote in 1926. It developed ideas
first studied by Clifford and Cayley and used topological methods developed
by Weyl. This work was completed by 1932.

The discovery of the general theory of relativity in 1916 turned the at-
tention of many mathematicians, including Cartan, to the general concept of
geometry, and nearly all of Cartan’s work from this time onwards is devoted
to the development of a general theory of differential geometry (1917–1949).
It forms a most vital contribution to modern mathematics.

Thus, in 1922 he proposed and developed a gravitational theory with non-
symmetric connection (geometry with torsion). The result was the Einstein-
Cartan equations which include, in addition to Einstein’s ten equations for
the metric gμν , a system of equations for the torsion tensor. The source
in the torsion equation is represented by a tensor that is defined by the spin
properties of matter.

9 For further reading, see: Cartan, E., The Theory of Spinors, Dover Publications:

New York, 1981, 157 pp.
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It is indeed remarkable that this work was begun when he was nearly 50,
and carried on until he was 80 — a most striking exception to Hardy’s dictum
that mathematics is a young man’s game.

Cartan was born in Dolomien, a village in the south of France. His father
was a blacksmith. Cartan’s elementary education was made possible by a state
stipend for gifted children. In 1888 he entered the École Normale Superieur,
where he learned higher mathematics from Picard, Darboux and Hermite.
His research work started with his famous thesis on continuous groups, a
subject suggested to him by a fellow student, recently returned from studying
with Sophus Lie in Leipzig.

He was made a professor at the Sorbonne in 1912. The report on his
work, which was the basis for this promotion, was written by Poincaré. He
remained in the Sorbonne until his retirement in 1940.

In 1903 Cartan married Mlle Marie-Louis Bianconi. Besides a daughter,
there were three sons of the marriage — Henri Paul Cartan (b. 1904), a
distinguished mathematician in his own right who made significant advances
in the theory of analytic functions, theory of sheaves, homological theory,
algebraic topology and potential theory.

His other son, Jean, oriented himself toward music, and had already
emerged as one of the most gifted composers of his generation, when he was
cruelly taken by death. His third son, Louis Cartan, a professor of physics,
was arrested by the Germans at the beginning of the Resistance and murdered
by them in 1943.

Besides several books, Cartan published about 200 mathematical papers.
His mathematical works can be roughly classified under three headings: group
theory, systems of differential equations and geometry. These themes are
constantly interwoven with each other in his work. Almost everything Cartan
did is more or less connected with the theory of Lie groups.
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The Calculus of Differential Forms10

The calculus of alternating differential forms (also known as the exterior
calculus or Cartan calculus) enables one to make a systematic generalization to
n-dimensional spaces of vector analysis in the plane and in three dimensional
space. Thus, the theory provides a convenient and elegant way of phrasing
Green’s, Stokes’, and Gauss’ theorems. In fact, the use of differential forms
shows that these theorems are all manifestations of a single underlying math-
ematical theory and provides the necessary language to generalize them to n
dimensions.

This calculus has applications, among other things, to differential geom-
etry and theoretical physics (e.g., relativity theory, electrodynamics, ther-
modynamics, analytical mechanics, particle physics). There is a very close
connection between alternating differential forms and skew-symmetric ten-
sors. The calculus of differential forms carries to manifolds (especially those
that do not include a metric or a covariant derivative) such basic notions as
gradient, curl and integral. Further, it enables an index-free treatment of
differential geometry.

In the following, the algebraic structure of differential forms (DF) will be
outlined from an axiomatic viewpoint. Then, the deep-seated reasons for the
apparently arbitrary definitions will be anchored in vector analysis, and finally
motivated by physical applications.

• A real-valued twice-differentiable function f(x, y, z) is an 0-form. It can
be considered as a rule that assigns to each point in R3 a real number.
This generalizes to any n-dimensional manifold.

• Formal expressions such as

ω = A(x, y)dx + B(x, y)dy and

ω = A(x, y, z)dx + B(x, y, z)dy + C(x, y, z) dz

are 1-forms. The first is a 1-form in the XY plane (or any 2-dimensional
manifold), while the second is a 1-form in 3-dimensional space. [A, B,
C will be assumed to be real-valued infinitely differentiable functions,
although this is not necessary for the derivation of some of the results.]

10 To dig deeper, see:

• Flanders, H., Differential Forms with Applications to the Physical Sciences,

Dover, 1989, 205 pp.
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• The formal expression

η = A(x, y, z)dxdy + B(x, y, z)dydz + C(x, y, z)dzdx

is a 2-form in a 3-space (i.e. a 3-dimensional manifold or R3). The 2-form
η = A(x, y)dxdy is a special case for B = 0, C = 0, ∂A

∂Z = 0, and also the
general case in two dimensions. The order of the differentials is essential
in this product-notation; dxdy = −dydx, etc. In general ω1ω2 = −ω2ω1

for any pair of 1-forms.

• The formal expression μ = A(x, y, z)dxdydz is a 3-form. The or-
der of the differentials is again essential, modulo cyclic permutation:
dxdydz = dzdxdy = −dzdydx, etc.

In 3-space there exist only 0-forms, 1-forms, 2-forms, and 3-forms, while
in 2-space, there are only 0-forms, 1-forms, and 2-forms. In the manifold
case, the above expressions hold in any given local coordinate system.

Algebraic structure: The system of DF in 3-space, for instance, is a
linear associative algebra (Grassman algebra) with a basis of 8 elements:

1, dx, dy, dz, dxdy, dydz, dzdx, dxdydz

whose coefficients belong to the field of continuous functions, and whose mul-
tiplication table is specified by:

dxdy = −dydx, dydz = −dzdy, dzdx = −dxdz,

dxdx = 0, dydy = 0, dzdz = 0.

The product of a k-form and an m-form is a (k + m) form, where the integer
prefix is the form’s degree (dx is a 1-form, dxdy a 2-form, etc.).

If m + k > n, the number of variables, then there will be repetitions,
and such a product will be zero. Since a 0-form is merely a function, mul-
tiplication by a 0-form does not affect the degree of the form. [Example:
(xdx − zdy + y2dz)(x2dydz + 2dzdx − ydxdy) = (x3 − 2z − y3)dxdydz.]

Geometrical structure: One can naturally define the line integral of
a 1-form ω = Adx + Bdy + Cdz along a curve γ. Let γ be a smooth simple
curve, with parametric equations x = x(t), y = y(t), z = z(t), a ≤ t ≤ b,
and oriented in such a way that the positive direction of γ is associated with
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the direction which x(t), y(t), z(t) traverse as t increases from a to b; the
same curve with the opposite orientation is denoted −γ. Then

∫

γ

ω ≡
∫ b

a

[

A{x(t), y(t), z(t)}dx

dt
+ B{x(t), y(t), z(t)}dy

dt

+C{x(t), y(t), z(t)}dz

dt

]

dt.

In this way a 1-form can be thought of as a rule that assigns a real number to
each oriented curve11. Note that

∫
−γ

ω = −
∫

γ
ω since reversal of orientation

of a curve changes the sign of the integral.

A 2-form may be similarly interpreted as a surface functional, namely a
function that associates with each oriented 2D surface a real number. Again,
using the local parametrization x = x(u, v), y = y(u, v), z = z(u, v) with
(u, v) belonging to a domain D in R2, we have for a surface S and 2-form η:

∫

S

η =
∫

S

(Adxdy + Bdydz + Cdzdx)

=
∫

D

[

A{x(u, v), y(u, v), z(u, v)}∂(x, y)
∂(u, v)

+ B{x(u, v), y(u, v), z(u, v)}∂(y, z)
∂(u, v)

+C{x(u, v), y(u, v), z(u, v)}∂(z, x)
∂(u, v)

]

dudv

where

∂(x, y)
∂(u, v)

=
∣
∣
∣
∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣
∣
∣
∣;

∂(y, z)
∂(u, v)

=
∣
∣
∣
∣

∂y
∂u

∂y
∂v

∂z
∂u

∂z
∂v

∣
∣
∣
∣;

∂(z, x)
∂(u, v)

=
∣
∣
∣
∣

∂z
∂u

∂z
∂v

∂x
∂u

∂x
∂v

∣
∣
∣
∣.

Note that, if η would have a dxdx term (which formally vanishes), the de-

terminant ∂(x,x)
∂(u,v) has equal rows, and hence vanishes. Also, if we interchange

11 In general, given a 1-form and a smooth curve γ, the value of the line integral

will depend on γ. However, when two curves are parametrically equivalent , then

a 1-form will assign the same value to both. The same is true for smoothly

equivalent surfaces and 2-forms. All these integrals can be extended to curves

and surfaces embedded in any n-space (n ≥ 2). If the space is a manifold, the

integrals need to be broken up into single–coordinate–system pieces.

Parametrical equivalence: if (in any coordinate–system neighborhood through

which γ passes) x = φ(t) on γ1 with a ≤ t ≤ b and γ2 is given by x = φ [f(t)]

over α ≤ t ≤ β, and the function f(t) maps the interval [α, β] onto [a, b] in

a one-to-one, differentiable manner with f ′(t) > 0, then (and only then) are the

curves γ1 and γ2 said to be parametrically equivalent.
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x and y, the corresponding determinant changes sign; etc. This renders a
geometrical motivation for the rules dxdx = 0, dydx = −dxdy, with similar
results for the other Jacobian determinants.

Finally, a 3-form ν in 3-space assigns a real number to each 3D submani-
fold Ω of the 3-space in question. The number is

∫
Ω

ν =
∫
Ω

f(x, y, z)dxdydz
which is just the ordinary triple integral of f over Ω.

All these integrals are true geometric entities – because they do not depend
on the choice of local manifold coordinate systems, nor upon the parameter-
izations (coordinate systems) of the submanifolds integrated over (curves,
surfaces and higher submanifolds). This concludes the description of the geo-
metrical hierarchy.

Differentiation of forms in 3-space: In general, if ω is a k-form,
its differential dω will be a k + 1 form. Thus if A is a 0-form (function)
then dA is (locally) the 1-form dA = ∂A

∂x dx + ∂A
∂y dy + ∂A

∂z dz. If ω is a 1-form
Adx + Bdy + Cdz whose local coefficients are functions, then dω is the 2-form
dω = (dA)dx + (dB)dy + (dC)dz.

If ω is a 2-form in 3-space Adydz + Bdzdx + Cdxdy, then dω is the
3-form dω = (dA)dydz + (dB)dzdx + (dC)dxdy, where dω is to be locally
computed by evaluating dA, dB, and dC, and then computing the indicated
products.

Since dA is a 1-form, (dA)dx is indeed a 2-form and (dA)dydz is
a 3-form. [For example: ω = x2ydydz − xzdxdy, dω = (2xy − x)dxdydz.]
The operator d is known as the exterior derivative12. The derivative of a
3-form may be computed in the same fashion, but since it will be a 4-form in
three variables, it will automatically be zero. Differentiation of forms in two
variables is done in the same fashion13. The foregoing rules for multiplication
and differentiation have in store for us a number of surprises:

12 There are three kinds of derivatives in differential geometry and tensor analysis:

• The covariant derivative in the direction of the contravariant vector A (∇A);

acts on any tensor; it depends only on A but not its derivatives.

• The Lie derivative (LA); depends on A and its derivatives.

• The exterior derivative; acts on any totally antisymmetric, covariant tensor

(= differential form) to yield a form with rank higher by one; it is also covariant.

The last two derivatives exist even in spaces without an affine connection, Γm
ik,

but ∇A exist only in an affine space (a space endowed with a connection).
13 The rules may seem arbitrary, but in fact they “happen” to fit with the rule of

the transformation of the area element through a coordinate transformation.
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• The product of two 1-forms in R3 yields the general formula

ω1ω2 = (Adx + Bdy + Cdz)(adx + bdy + cdz)

=
∣
∣
∣
∣
B C
b c

∣
∣
∣
∣ dydz +

∣
∣
∣
∣
C A
c a

∣
∣
∣
∣ dzdx +

∣
∣
∣
∣
A B
a b

∣
∣
∣
∣ dxdy ⇒ (ω1 × ω2).

In the above equation we treat (A, B, C) and (a, b, c) as
the respective components of the vectors ω1 = Aex + Bey + Cez,
ω2 = aex + bey + cez, and (×) is the usual vector product operation.

• The product of a 1-form ω = Adx + Bdy + Cdz by the 2-form
ν = adydz + bdzdx + cdxdy in a 3-space yields the 3-form
(aA + bB + cC)dxdydz. Its scalar function coefficient can be written
as the scalar product of the local vectors ω = Aex + Bey + Cez and
ν = aex + bey + cez, namely: (ω · ν).

• If ω = A(x, y, z)dx + B(x, y, z)dy + C(x, y, z)dz, then

dω =
(

∂C

∂y
− ∂B

∂z

)

dydz+
(

∂A

∂z
− ∂C

∂x

)

dzdx+
(

∂B

∂x
− ∂A

∂y

)

dxdy ⇒ curl ω,

where ω = Aex + Bey + Cez.

• If ν = a(x, y, z)dydz + b(x, y, z)dzdx + c(x, y, z)dxdy, then

dν =
(

∂a

∂x
+

∂b

∂y
+

∂c

∂z

)

dxdydz ⇒ div ν,

where ν = aex + bey + cez.

The above examples hint to a strong link between vector analysis and differ-
ential forms. But prior to the establishment of the nature of these connections
one must summarize the historical background:

Let u = f(x, y), v = g(x, y), then du = ∂f
∂x

dx + ∂f
∂y

dy, dv = ∂g
∂x

dx + ∂g
∂y

dy and

dudv =

(
∂f

∂x
dx +

∂f

∂y
dy

)(
∂g

∂x
dx +

∂g

∂y
dy

)

=

(
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x

)

dxdy =
∂(u, v)

∂(x, y)
dxdy.

This ensures that a surface integral
∫

S
η, for any 2-form η and 2-submanifold

S in any 2-space, does not depend on local coordinate–system choices. Similar

reasoning applies to forms of any degree in any dimensionality.
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Early efforts to establish an algebra for points of the plane (which has the
same rules as the algebra of numbers) met with success because a suitable de-
finition for multiplication could be found, namely, the (commutative) product
of ordered–real–pair points

(x1, x2)(y1, y2) = (x1y1 − x2y2, x1y2 + x2y1).

The motivation for this rule may be seen by making the correspondence
(a, b) ↔ a + bi between the plane and the field of complex numbers. If
p = (x1, x2) corresponds to z = x1 + ix2 and q = (y1, y2) corresponds
to w = y1 + iy2, then we see that

zw = (x1 + ix2)(y1 + iy2) = (x1y1 − x2y2) + i(x1y2 + x2y1)

which corresponds to the point which is given as the product of p and q.

With this example in mind, one may attempt to find a similar definition
for multiplication of points in 3-space. By algebraic methods, it can be shown
that no such formula exists (if we require that the ordinary algebraic rules
remain valid).

However, going to the next higher dimension, Hamilton (1843) discovered
that a definition for multiplication of points in E4 could be given which yields
a system obeying all the algebraic rules which apply to real numbers (i.e.,
the field axioms) except one; multiplication is no longer commutative, so that
(pq) and (qp) may be different points. This system is called the algebra of
quaternions.

It was soon seen that it could be used to great advantage in analytical
mechanics. By restricting points to a particular 3-space embedded in E4,
Gibbs and others developed a modification of the algebra of quaternions
which was called vector analysis, and which gained widespread acceptance
and importance, particularly in physics.

Let us now compare the system of vector analysis with the system of dif-
ferential forms in three variables based on the four examples given above. We
first notice that there is a certain formal similarity between the multiplication

table for the unit vectors ei × ej =
3∑

k=1

εijkek and the corresponding table

for the basic differential forms dx, dy, and dz. In the latter, however, we
do not have the identification dxdy = dz which corresponds to the relation
ex × ey = ez. This suggests that we link elements in pairs:

dx
dydz

↔ ex
dy

dzdx
↔ ey

dz
dxdy

↔ ez.
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To complete these, and take into account 0-forms and 3-forms, we adjoin one

more correspondence:

1
dxdydz

↔ 1.

We are now ready to set up a two-to-one correspondence between differen-

tial forms on one hand, and vector- and scalar-valued functions on the other.

To any 1-form or 2-form will correspond a vector function, and to any 0-form
or 3-form will correspond a scalar function. The rule of correspondence is

indicated below:

Adx + B dy + C dz

Ady dz + B dz dx + C dxdy

}

↔ Aex + Bey + Cez,

f(x, y, z)

f(x, y, z) dx dy dz

}

↔ f(x, y, z).

In the opposite direction, we see that a vector-valued function corresponds

to both a 1-form and to a 2-form, and a scalar function to a 0-form and to

a 3-form. It then transpires that the single notion of multiplication among
differential forms corresponds to both the scalar and vector products among
vectors.

What vector operations correspond to differentiation of forms? Let us

compare the differential of an 0-form df = ∂f
∂xdx + ∂f

∂y dy + ∂f
∂z dz with the

vector gradient of a scalar function grad f = ∂f
∂xex + ∂f

∂y ey + ∂f
∂z ez. These

are tied through the relation df = dr · ∇f .

As we proceed to 1-forms, it was shown earlier that its differential corre-

sponds to the curl of the corresponding vector function. Finally, it was shown

that the differential of a 2-form corresponds to the divergence of the corre-

sponding vector function. Briefly, then, the single operation of differentiation

in the system of differential forms corresponds in turn to the operations of

taking the gradient of a scalar field and taking the curl and the divergence of

a vector field. This is indicated schematically as follows:
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f f df grad(f)
scalar −→ 0-form −→ 1-form −→ vector

function function

ω dω curl(V )
1-form −→ 2-form −→ vector function

V ↗
vector

function ↘
ω∗ −→ dω∗ −→ div(V )

2-form 3-form scalar function

Next, let ω = A(x, y, z)dx. Then

dω = d(A) dx =
∂A

∂x
dxdx +

∂A

∂y
dydx +

∂A

∂z
dzdx =

∂A

∂y
dydx +

∂A

∂z
dzdx

and

ddω = d

(
∂A

∂y

)

dydx + d

(
∂A

∂z

)

dzdx =
∂2A

∂z∂y
dzdydx +

∂2A

∂y∂z
dydzdx = 0,

where we have used the symmetry of the mixed derivatives and the fact that
dydzdx = −dzdydx. A similar argument holds for Bdy and Cdz.

Using the above results we see that the statement ddf = 0, holding for
a 0-form f , corresponds to the vector identity curl(grad f) = 0 and the
statement ddω = 0, holding for a 1-form, corresponds to the vector identity
div(curl V ) = 0.

Our final connections between vector analysis and differential forms will be
made by relating the integral of a form to integrals of certain scalar functions
which are obtained by vector operations.

To see this we let F = Aex + Bey + Cez define a continuous vector field
in some region in space, and let ω = Adx + Bdy + Cdz be the corresponding
1-form. If γ is a smooth curve in the said region, and t(s) is a unit tangent
vector to γ(s) (where s is the arc length) then

F · t = (Aex + Bey + Cez) ·
(

dx

ds
ex +

dy

ds
ey +

dz

ds
ez

)

= A
dx

ds
+ B

dy

ds
+ C

dz

ds
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and ∫

γ

F · tds =
∫ �

0

(

A
dx

ds
+ B

dy

ds
+ C

dz

ds

)

ds =
∫

γ

ω,

with 
 the length of the curve γ. The situation for integrals of 2-forms is
similar.

The theorems of Green, Stokes, and Gauss can be translated into the
language of differential forms. They are all shown to be special cases of what
is called the generalized Stokes’ theorem, connecting an integral of a differential
form ω with an integral of its derivative dω. Symbolically

∫

∂M

ω =
∫

M

dω,

where M is a k + 1 dimensional manifold with boundary manifold ∂M and
ω is a k-form.

The demonstration14 of this statement in the case of Green’s theorem is
immediate since

∫

γ

ω =
∫

∂D

(Pdx + Qdy) =
∫

D

(
∂Q

∂x
− ∂P

∂y

)

dxdy =
∫

D

dω,

where D is a region in the xy plane and ∂D is its boundary curve γ. Similarly,
for Stokes’ theorem, if Σ be and oriented 2D surface embedded in R3 and
∂Σ its closed bounding curve (suitably oriented), we find:

∫

∂Σ

ω =
∫

∂Σ

F · ds =
∫

∂Σ

(Adx + Bdy + Cdz)

=
∫

Σ

[(
∂C

∂y
− ∂B

∂z

)

dydz +
(

∂A

∂z
− ∂C

∂x

)

dzdx +
(

∂B

∂x
− ∂A

∂y

)

dxdy

]

=
∫

Σ

dω.

Finally, for a region R in R3 and its closed-surface boundary ∂R, with
suitable orientations:

∫

∂R

ω =
∫

∂R

[Adydz + Bdzdx + Cdxdy]

=
∫

R

[
∂A

∂x
+

∂B

∂y
+

∂C

∂z

]

dxdydz =
∫

R

dω.

14 These are not in lieu of rigorous mathematical proofs.
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This statement is the supercompact form of Gauss’ divergence theorem, stat-
ing that the flux of a vector field out of an oriented closed surface equals the
integral of the divergence of that vector field over the volume enclosed by the
surface. [In all these cases the orientations of volumes, curves and surfaces
are related via the right hand rule]

Exact differential forms constitute a special class of DF for
which ω = dη [e.g., ω = 2xydx + x2dy + 2zdz = d(x2y + z)]. Clearly,∫

γ
ω = f(p1) − f(p0), where integration extends from p0 on γ to p1 on γ.

If γ is closed and f single-valued, then p0 = p1 and
∫

γ
ω = 0. In this

case the line integral is path-independent. Furthermore, it follows directly
from ω = df that dω = ddf = 0 throughout the region. This can be sum-
marized by the flow-diagram

1-form ω −−−−−−−−−−−−→
∫

γ

ω independent
exact in Ω of path in Ω ,↘ ↗

dω = 0
in Ω

where Ω is any sub-region in Rn.

The notions of exactness and of path independence may also be given in
vector form: If a vector field F can be written as F = grad f , where f is
the potential of the field, then

∫
γ

F · ds = f(p1) − f(p0). For instance, if we
let U = −f be the potential energy, then F represents its force field.

The wedge product (WP): It is convenient to denote the multiplication
of differential forms with a special symbol, the wedge ∧, instead of just a
juxtaposition that we used hitherto.

Thus, for example, the product of the 1-forms ω = aμdxμ and ω′ = bνdxν

(both covariant vectors!) will be written as

ω ∧ ω′ =
1
2
(aμbν − aνbμ)dxμ ∧ dxν

and called the wedge product.

With x1 = x, x2 = y, x3 = z, we find as before

ω ∧ ω′ = (a1b2 − a2b1)dx ∧ dy + (a2b3 − a3b2)dy ∧ dz

+ (a3b1 − a1b3)dz ∧ dx.
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With this notation, the product of differential 1-forms appear in a new light
— as a totally antisymmetric form which takes in the vectors a(a1, a2, a3),
b(b1, b2, b3) and yields a number.

Now, since in dyadic notation

ab − ba = (a1b2 − a2b1) (exey − eyex) + (a2b3 − a3b2) (eyez − ezey)
+ (a3b1 − a1b3) (ezex − exez),

we can set a one-to-one correspondence between the components of this totally
antisymmetric tensor of the second rank and the terms of the wedge product
ω×ω′, provided we also set the correspondence dx ↔ ex, dy ↔ ey, dz ↔ ez,
and also dx ∧ dy ↔ exey − eyex, etc. In this sense

ω ∧ ω′ ⇔ ab − ba ≡ I × (b × a).

Because of this correspondence, we may speak of the wedge product of
1-forms in the sense of DF , and at the same time write

a ∧ b = ab − ba

for the associated vectors. Note that a1b2 − a2b1 is the signed area of the
projection of the ab parallelogram on the xy plane, etc.

The wedge product has the usual distributive and associative properties
of abstract algebra over a field:

a ∧ (b + c) = a ∧ b + a ∧ c,

(a + b) ∧ c = a ∧ b + b ∧ c,

α(a ∧ b) = a ∧ αb = αa ∧ b,

with a, b any forms and α is a scalar (0-form).

But it is anticommutative (if a, b are 1-forms, or in general, if the degrees
of a, b are both odd):

a ∧ b = −b ∧ a.

Specializing again to the case where a, b are 1-forms, the antisymmetric
tensor a ∧ b can be written symbolically in determinant form

∣
∣
∣
∣
ai bi

aj bj

∣
∣
∣
∣.
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One can then extend ∧ to triple and higher products. For example, the totally
antisymmetric tensor of the third rank a ∧ b ∧ c has the determinant form

Tijk =

⎡

⎣
ai bi ci

aj bj cj

ak bk ck

⎤

⎦.

Explicitly, in triadic form,

T = abc + cab + bca − cba − acb − bac

is the proper definition of the triple wedge product a ∧ b ∧ c. This rank-3
tensor, or triadic, also known as a trivector, is antisymmetric in all its indices.

The associated 3-form is obtained by the triple wedge product of three
1-forms corresponding to a, b and c:

ω∧ω′∧ω′ ′ = (a1dx+a2dy+a3dz)∧(b1dx+b2dy+b3dz)∧(c1dx+c2dy+c3dz)

=

∣
∣
∣
∣
∣
∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣
∣
∣
∣
∣
∣
dx ∧ dy ∧ dz,

where the determinant is the 3-dimensional oriented volume of the paral-
lelepiped spanned by the vectors a, b and c.
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Science and Non-Science

The perspectives of science are, like those of philosophy and religion,
thought-structures for viewing the world. Science aims to attain objective
truth, and scientific ideas ought to be ones in which we can trust as a matter
of fact rather than opinion, and which are not subject to doubt and fads as
are the beliefs of the religions, or even philosophies. Thus, the overall purpose
of the scientific method is to make valid distinctions between the false and the
true in nature, so as to render a true picture of realities and their underlying
mechanisms and principles.

Nevertheless, the average scientist (by the very nature of his textbook-
oriented education and the fact that his progress and success depend in many
cases on the acceptance of given ideas) is as narrow, rigid and dogmatic as
the orthodox theologician.

In contradistinction to science and the scientific method we recognize cer-
tain related disciplines: pseudoscience is false science, a body of ‘knowledge’
which is a mere belief, like astrology, alchemy, phrenology, Mesmerism, pan-
genesis, creationism, etc. Many of the theories of science, like the phlogiston
and caloric theories, were not so much pseudoscience as protoscience: early
first guesses that served well in their time. Indeed, the Ptolemaic geocentric
astronomy, with its complex system of epicycles, would have quite adequately
predicted planetary motion if only those astronomers who credited it had ac-
cess to Fourier Analysis.

Theories for which there is no concrete evidence like panspermia belong
to the realm of quasi-science.

At the frontiers of science, the scientific method leads us sometimes to a
multiplicity of doubts, where questions rather than answers prevail. There —
we have no immutable answers, but rather hypotheses embracing the observ-
able evidence15.

This condition gave rise to a popular kind of imaginative literature known
as science fiction (SF) which deals principally with the impact of actual and
imagined science on society and individuals.

Unlike fantasy, which deals with the impossible, SF describes events that
could actually occur, according to accepted possible theories. While ordinary

15 Thomas S. Kuhn in his book “The Structure of Scientific Revolutions”, Chicago

Univ. Press, 1970) went as far as saying that scientists are ‘puzzle solvers’, not

problem solvers.
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‘fiction’ concerns itself more centrally with faith, psychology or history, SF is
motivated by scientific knowledge.

Hence, the essential difference between SF and other forms of literature
is, of course, that we are dealing with science fiction. In some respects the
very term seems to suggest a contradiction: how can the known and the
make believe be part and parcel of the same creation. How can we reconcile
the world of reason, manifest in technology, and the mysticism of spiritual
experience?

The basic themes of SF include space travel, time travel, and marvelous
discoveries or inventions. Most modern SF stories are set in the future, but
some take place in the past or even in the present day. Some are set in another
universe. Some SF stories give detailed scientific explanations. Other stories
simply thrust the reader into a strange time or place.

Like all fiction, SF make frequent use of myths, those archetypal stories
which provide the symbols that help us shape our world. The roots of SF,
like the roots science itself are in magic and mythology.

Science fiction is not like other writing about science; it looks forward
where other kinds usually look back, speculate — where other consolidate.

The good SF writer is essentially a creative artist first, who knows or
understands and sympathizes with one or more scientific thought. In a world
where even group of scientists (e.g., physicists and geneticists) can scarcely
understand each other, the SF writer sets himself as a kind of translator
between different ways of seeing the world, not just todays, but tomorrow’s
world.

SF recognizes the germ of future development and enlarges upon it from
different angles and in fanciful ways. It presupposes in its readers a willingness
to consider possibility rather than fact. Prophetic accuracy is neither essential
nor important ingredient of SF.
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History16

The history of SF is also the history of humanity’s changing attitude toward
space and time. It is the history of our growing understanding of the universe
and the position of our species in that universe. Like the history of science
itself, the history of this literary form is thin and episodic until about four
centuries ago, when the scientific method began to replace more authoritarian
and dogmatic modes of thought, and people at last could see that the earth
is not the center of the universe.

In the following survey of the history of SF we see it as a movement away
from mythology toward realism; from a mythic way of seeing the world to a
rational or empirical way of seeing it. As human science developed, human
fiction changed with it. This movement involves a change in the world from
one which lacks a clear distinction between natural and supernatural to a
world in which the distinction is very clear and from which supernatural
events are excluded17.

The history of SF until 1950 is divided into five stages:

I. Collective prehistoric myths

Human beings felt the world to be alive with spiritual presence: divinities
inhabited every bush and waterfall. People learned to fear and worship espe-
cially those gods they sensed behind the most awesome of natural phenomena
— tempests, earthquakes, and the fertility of plants and animals. Our primi-
tive ancestors knew a world that was timeless in one sense and tightly bound
up by time in another.

16 For further reading, see:

• Wuckel, D. and B. Cassiday, The Illustrated History of Science Fiction, Ungar:

New York, 1989, 251 pp.

• Bleiler, E.F., Science Fiction – The Early years, The Kent State University

Press, 1990.

• Scholes, R. and E.S. Rabkin, Science Fiction: History. Science. Vision, OUP,
1977, 258 pp.

• Bleiler, E.F., Ed. Science-Fiction Writers, Charles Scribner’s Sons: New York,

1982.

17 Fiction which is aware of this difference but deliberately presents supernatural

events, is called fantasy .
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It was a world without history, with no sense of historical change that
might lead to situations different from those which people already knew; it
was a world bound to the seasonal flow of time, planting and harvesting,
sweating and shivering, thanking the gods for blessings and begging them to
end punishments. The seasons required religious rituals, which were held to
contribute to the great temporal cycle, without which humanity would surely
perish. The rituals enacted episodes from the lives of the gods, explaining the
creation of the world, and preserving in the memory of humanity the values
of which the gods were believed to approve. These memories and values,
when separated from their ritual enactment, we call myths. Myths are the
ancestors of all other fictions. They have immense inertia, persisting in time
as a conservative force, teaching the old values, the old ways — resisting the
new.

Prehistoric myths abound with tales of fantastic voyages and adventures.
The richest source of myths is the Bible (the creation story etc.). Greek
mythology gave us the story of the pioneer aviators Daedalos and Icaros.

II. Ancient social utopias and fantasies (ca 800 BCE–200 CE)

Utopias were the creation of an age of arbitrary authority and frequent (albeit
creative) disorder, in which the security and prosperity of the majority could
be imperiled at any moment by the willful behavior of a determined and
powerful individual or minority. These were the wishful systems devised, by
men of good will, for the constraint of the turbulent individual by means
of institutions and laws. Their objective was order, their by-products were
general prosperity and peace, and their foundation were a strict hierarchy in
which each person not only knew and kept his proper station but enjoyed it.
During this period scientific fantasy showed itself as a mingling of literature,
science, and social theory.

Hesiod (ca 800 BCE) in his Dreams of the Golden Age, the Biblical visions
of the Hebrew prophets (ca 800–300 BCE) and Aeschylos (ca 525–456 BCE)
contain such elements. Aristophanes (ca 450–388 BCE) also investigated
fundamental problems by distancing them through fantasy, as in The Birds,
The Frogs, and the Ecclesiazusae.

Social utopias rose to special importance in the prehellenist period; in the
5th century BCE up to the beginning of the 4th century BCE Hippodamos
of Miletos and Phaleas of Chalcedon sketched hierarchical social models,
which anticipated some of the thoughts of Plato (427–347 BCE). In The
Republic, Plato advocated the abolition of private wealth and the introduction
of a kind of consumer communism.
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Other utopias were sketched by Euhemeros (ca 340–260 BCE) and Jam-

bulos (ca 200 BCE).

The first true SF on record is that of the Greek writer Lucian of

Samosata (125–190 BCE). In about 160 CE he wrote Vera Historica (The

True History) in which he described trips to the moon.

III. The late Renaissance, reformation and the scientific revolution

(1492–1752)

Science fiction’s roots lie deep in the Renaissance, an epoch characterized

above all by violent socio-economical changes caused by a transition from

feudalism to capitalism. The explosive technological development seen during

the Renaissance was intricately bound up with the progress of science in open-

ing up the world. The new methods of research that were thereby perfected

were founded upon experiment, observation, and experience.

Copernicus’ heliocentric cosmos, Gutenberg’s invention of the printing

press with movable type, the voyages of discovery led by Columbus, da

Gama and Magellan — each was an immense achievement in its own right;

together they were the basis for a flowering of the sciences, arts, and literature

on an unprecedented scale.

The alterations in the means of production led to a transition from a

theocentric to an anthropocentric world views. The emphasis was now on

people and the power of the personality, the might of the individual. The

revolutions of the epoch became the objective sources for the later humanist

movement and for the development of a deeply humanist view of the world

and mankind.

Philosophy strove for the liberation of humanity from the fetters of the-

ological dogma. Renaissance art did away with medieval conventions and

turned towards the realities of life, to the activities of humans in their chang-

ing world. From these contradictory processes new genres of literature pecu-

liar to the new age sprang up. The modern novel began to crystallize; the

epic was already loosing its importance. The Renaissance gave rise to the

gradual merging of traditional imaginative fantasy with scientific ideas. Thus

the Renaissance saw the birth of scientific fantasy, or, what is now called —

science fiction.

The main contributors to SF during this period were:
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Thomas More [Morus, 1478–1535 (executed)]. En English statesman
and humanist18. In his Utopia (1516) he set his ideal society on an island at
the very edge of the world. (The word utopia literally means: nowhereland).

Ludovico Ariosto (Italy, 1474–1533). In his Orlando Furioso (1532) he
describes a fictional voyage to the moon.

The idea of the first robot, the legendary Golem, is attributed to the
chief Rabbi of Prague, the philosopher, savant and Kabbalist, Yehuda Liwa
(1588). He was an historical figure, a friend of Tycho Brahe and Johannes
Kepler. In real life he was a sober theologian, not a man to meddle with
magic, but the legend about him was rather different.

To protect his people against the pogroms, the tale goes, Liwa and two
assistants went in the dead of the night to the River Moldau, and from the
clay of the riverbank they fashioned a human figure. When Liwa inscribed
the Holy Name upon its forehead, the golem opened its eyes and came to
life. It was incapable of speech, but had superhuman strength. It became
Liwa’s servant and worked as a sanitary within the temple. Only Liwa could
control it, but eventually the golem could not be controlled at all. It ran
amok, attacking its creator. Its career of destruction ended only when Liwa
plucked the sacred name from its forehead. Magically, the golem was once
again reduced to clay.

Thommaso Campanella (Italy, 1568–1639) was a Dominican friar. His
utopia (1602) Civitas Solis (The Sun State) describes an ideal communal
society which, like More’s, is located at the furthermost reaches of the known
world.

Christopher Marlowe (1564–1593, England) wrote (1604) The Tragical
History of Dr. Faustus.

18 He was born in London. During his college years in Oxford, he became familiar

with representatives of the “new learning” (which meant Greek learning), and he

would fain have followed in their footsteps, but his father, Justice Sir Thomas,

wanted him to make law his career. Toward the end of the century he became

acquainted with Erasmus, who influenced him deeply in many ways. His Epistola

ad Martinum Dorpium was a defense of Erasmus’ Moriae encomium and of the

new learning; his masterpiece, Utopia, revealed not only his piety and love of

education and learning, but also his consciousness of social wrongs. It is a

satire on English (or European) conditions, for life in Utopia is the reverse in

almost every respect of English life. More gives an elaborate description of the

good society, which brotherhood, universal education, and religion combined

with toleration would make possible. Not only was he one of the first defenders

of the education of women, but he suggested that women be admitted to the

priesthood.
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Francis Bacon (1561–1626, England) wrote New Atlantis (1627). This
work uses the theme of a marvelous voyage to describe a society based on
experimental science and the practical wonders that science could create.

Johannes Kepler (1571–1630, Germany) described a trip to the moon
in his Somnium (1634). This book was the first SF that tried to tell a story
with scientific accuracy.

Cyrano de Bergerac (1619–1655, France), in his L’autre mondes (1642,
1650), combined the philosophical systems of Descartes and Gassendi in
two SF stories: in the first he describes for the first time a motorized lift-off
into space in a rocket propelled spaceship through which he reaches the moon.
In his second he describes a flying machine which takes him into the realm of
the sun.

In 1719, after economic and social ups and downs and tireless work in a
multitude of fields, Daniel Defoe (1660–1731, England) at 59 published his
book The Life and Strange and Surprising Adventures of Robinson Crusoe of
York. This book owes its origin to the Renaissance sailor-discoveries and the
picaresque fictions of many literary predecessors, and to various portrayals of
island life. It follows the philosophy of John Locke, that nature and common
sense are motivating forces at the source of all individual and social evolu-
tion; knowledge won from experience triumphs, and achieves success for the
individual.

The astronomical discoveries of the 17th century and Torricelli’s discov-
ery of outer space (1643) have shown how precarious was man’s grip of the
universe, and enhanced man’s primordial fears — fears that science itself
helped to create.

Science fiction tried to deal with these fears in two ways: first, by al-
leviating it through rationalization (inventing myths to limit and control
these fears); second, use of the scientific method to modify his environment
and therefore, ultimately, his density. These two themes occur and reoccur,
through the history of SF, since the scientific revolution to the present day.

As SF developed during the 1700’s, it produced its first literary master-
piece; Gulliver’s Travels (1726) by Jonathan Swift (1667–1745, England).
In his book Swift subjected to rational analysis, the economic and social as-
pects of the postrevolutionary age in England19.

19 We find in Gulliver’s Travels (1726) a literary reference to the two moons of

Mars. But these moons were first observed by Asaph Hall in 1877. How could

have Swift known? The answer is quite simple: In 1610 Galileo used one of

the earliest astronomical telescopes to discover the 4 moons of Jupiter. When

Kepler heard of this, he immediately assumed that Mars must have two moons.
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The first story of visitors from other planets was Micromégas (1752) by
Voltaire (1694–1778, France).

Many of the basic ingredients for science fiction had appeared in embryo
form by the early 18th century. Even if SF is taken as no more than a kind of
fictional humanism, it was clearly not sufficient for its growth merely to have
a widespread inculcation of scientific ‘facts’, acceptance of the experimental
method or the stimulus of apocalyptic forebodings.

These, however tenuously, in the shape of biblical fundamentalist dogma,
the beginning of experimental science in Roger Bacon, the experimental
laboratories of the Renaissance, and the conviction of an imminent call to
final judgment – are all influences on medieval literature which yet produced
no science fiction.

It was additionally necessary for the belief to be established, amongst at
least a substantial minority, that Man could, through the use of the scientific
method, modify his environment and therefore, ultimately, his destiny.

IV. The industrial revolution, the Victorian period and the turn
of the 20th century [1776 (first steam engine) –1913]

The second great epoch for SF literature is closely related to the scientific
and technical, political and social, military and intellectual developments in
Western civilization during the 19th century.

Indeed, the palpable progressiveness of science and technology, and the
similar concreteness of political change in revolutionary Europe and America
at the end of the 18th century, forced people to begin perceiving the world in
new ways. Above all, humanity was finally faced with a future at once real
and unknown, stimulating and terrifying.

The industrial revolution, via the steam engine, had a profound effect on
the very structure of society; on one hand, it increased mass misery, poverty
and hardship. These elements influenced the Gothic novel, which featured
horror, violence and the supernatural.

After all, the planets are organized according to geometrical law: Venus has no

moons, the earth has one, and so Mars — between earth and Jupiter — must

have two to form a geometrical progression! This conclusion has always been

accepted as true, and well known to Swift.

[Jupiter, incidentally, has 14 moons (1994)]. Kepler was lucky enough to have

his belief seem right, and hence scientific. But the scientific knowledge was still

based, in part, on belief.
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On the other hand, most authors were deeply impressed by the fact that
the new machines were able to multiply a hundredfold the muscle power of
the worker, that new secrets were being wrung from nature every day, that
products were being moved to and fro on the world market quicker than
ever before, and that radio created the means of immediate communication
worldwide.

The belief soon surfaced that science alone would be able to bring into
being a superior mode of life. Thus this second phase of SF is characterized
primarily by its sense of euphoria. The leading authors of this era are:

Ernst Theodor Amadeus Hoffmann (1776–1822, Germany) was in-
tensely preoccupied with the Mesmerian theory of animal magnetism (1813)
and intelligent machines (1814). Other fantasy tales by Hoffmann contain
ideas that play important roles throughout SF: vampirism, strange beings in
animal form, non-decaying dead bodies and much more.

Mary Wollstonecraft Shelley (1797–1851, England) created (1818) the
monstrous figure of Frankenstein — the archetype of the restless scientist
not to be deflected from his own research and experimentation. Like his fa-
mous predecessor, the single-minded quester, Marlowe’s Faust, Frankenstein
is ready to break down the boundaries of knowledge, giving not a moment’s
thought to considerations of the rightness or morality of his activities. Not
satisfied with half solutions or compromise, he must aim directly at the sum-
mit, become a godlike figure, a second creator. This over-reaching, of course,
means his eventual fall is so much the greater.

Mary Shelley blended the old theme of the artificial creation of life with the
new contemporary genre of the Gothic novel. She thus introduced the hideous,
the heinous, the cryptic, and the criminal into literature and combined them
with “scientific” elements.

Edgar Allan Poe (1809–1849, U.S.A.) developed the SF short story.
In ‘The Unparalleled Adventures of One Hans Pfaall ’ (1835), he describes a
journey to the moon. Perhaps under the influence of Cook’s voyages (1773–
1774) he wrote ‘The Narrative of Arthur Gordon Pym at Nantucket ’.

Under the combined influence of Mary Shelley and Poe, the Scottish
poet Robert Louis Stevenson (1850–1894) wrote ‘Dr. Jekyll and Mr. Hide
(1886), where a scientist, obsessed with his pursuit of knowledge and enlight-
enment, is temporarily changed into a monstrous alter ego. He thus layed the
foundations for an investigation into the duality of human nature by splitting
it clearly into good and bad.

Henry Rider Haggard (1856–1925, England) wrote 34 novels of history
and adventure. His best novels are based on his experience in Africa; King
Solomon’s Mines (1885) became a young people’s classic. It is the story of



1895 CE 2857

search for the legendary lost treasure of King Solomon. She (1887) is the
story of Ayesha (‘She who must be obeyed’), a white goddess of Africa who
is 2000 years old but still appears young and beautiful.

Haggard was a firm believer in the evolutionary theories of Darwin. The
memorable fantasy element in the book is Ayesh’s surprising death as She
baths herself in a “life-giving” flame (that seems strangely prophetic of nu-
clear power!) and slowly reverts — in a reverse of Darwinian “ontogeny
recapitulates phylogeny” — from a smashingly beautiful woman to a 2000-
year-old ugly ape.

Ayesha’s memorable transformation in death recurs in the mainstream
utopian novel Lost Horizon (1933) by James Hilton20 (1900–1954, England)
— when a beautiful “immortal” woman living well beyond her years in the
salubrious atmosphere of Shangri-La (a secret Tibetian monastery) leaves her
home with her new English lover only to turn wrenchingly into an ugly, aged
crone during her passage out. The utopianism of Shangri-La has its ingenious
combination of the careless rapture of an unpolluted “magic” atmosphere and
the practice of passive Eastern mysticism. The message is clear — an utopian
place of ideal perfection is an impractical scheme for social improvement.

When Poe needed a fiction catalyzer to set off his moon voyage, he invented
an atomic component of hydrogen discovered by a chemist at Nantes, France.
Poe had no way of knowing that there had just been born at Nantes someone
who would become the most catalytic figure in the history of SF.

Jules Verne (1828–1905, France) was the first classic writer of SF liter-
ature, who specialized in science fiction. His subject is nature. The voyages
extraordinaires explore worlds known and unknown: the interior of Africa,
the interior of the earth, the deeps of the sea, the deeps of space. Char-
acteristically, Verne’s voyagers travel in vehicles that are themselves closed
worlds, snug interiors from which the immensity of nature can be appreciated
in upholstered comfort (e.g., the Nautilus). The basic activity in Verne is the
construction of closed and safe spaces, the enslavement and appropriation of
nature to make place for man to live in comfort. Verne’s novel is built upon
an unresolvable incompatibility between a fundamental materialistic ideology
and a literary form that projects the world as ultimately magical in nature. He
thus produced narratives that mediate between spiritualistic and materialistic
world views.

Verne draws on new discoveries, experiments in physics and chemistry, and
and technological discoveries of his immediate present. He led his characters
to parts of the world that at the time were largely unknown and unexplored.

20 He went on to write his masterwork Good Bye, Mr. Chips (1934). In 1935 he

came to live in Hollywood, where he wrote film screenplays.
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These backgrounds enhanced the exotic nature of the adventurers described.
For instance, Verne describes Africa (Five Weeks in a Balloon, 1863); the delta
swamps of Florida (North Against South, 1873); Siberia and China (Michael
Strogoff , 1871); the Arctic and the North Pole (The Adventures of Captain
Hatteras, 1866); India (Around the World in 80 Days, 1873); the depths of
the ocean (20,000 Leagues Under the Sea, 1869); the interior of the earth
(Journey to the Center of the Earth, 1864); the deeps of space (From the
Earth to the Moon, 1865)21.

21 An unknown manuscript, written by Verne in 1863, was discovered in 1989 by

his great grandson Jean Verne in Toulouse. The novel Paris in the 20th Century

centers on the year 1963 and describes a society run by high finance and tech-

nology. In the story Verne anticipates the Daimler automobile (invented 1885),

the electric chair (invented 1888) and the modern telefax machine.

The principle of the 4-stroke internal combustion engine was proposed in 1862

by Alphonse Beau de Rochas, of which Verne may have read!

Hard as it is to believe, the fax machine is older than the telephone and patents

for the first prototype date back to 1843. The first commercial fax system called

the pantelegraph was invented by the Italian priest Giovanni Caselli (1855).

This was a relatively complicated system: an iron point crossed by a current was

used to write onto a paper impregnated with a solution of potassium cyanate

which is decomposed, leaving a blue mark on the paper. Despite the difficulties

in synchronizing the transmitting needle and the receiving needle, the Caselli

system was installed between Paris Amiens and Marseille in 1856. Verne must

have known about this enterprise prior to 1863.

In 1980, modern fax machines came into being with a fax standard that allows

digital signal to be sent over regular telephone lines in one minute or less. The

pictures or text are converted to binary form and sent via standard telephone

lines. On the other end, the fax machine decodes the bits and reconstructs the

image.

However, Verne sometimes abused science for primarily fictional purposes: In

From the Earth to the Moon (1865), for example, Verne has his ballistic space-

ship fired from a mine 35 meters deep hole in Florida. He knew perfectly well that

a hole of that depth anywhere in Florida would be under water; his straight-faced

show of scientific accuracy ironically masked a satire on American ingenuity.

In Purchase of the North Pole (1889), some amateur scientists conspire to change

the earth’s axis by explosives, thus melting the polar ice cap and making acces-

sible vast mineral wealth. Verne chose to ignore what he knew perfectly well —

that the experiment would be likely to devastate all coastal cities as it would free

the ice-bound land masses — not for the purpose of satire but for the simpler joy

of working out the problem of axis-shifting, and the consequences be damned!

The great claim made for 20,000 Leagues Under the Sea is that Nemo’s Nautilus
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The era in which Verne was writing was an era of unbounded belief in
science. Mankind rules the natural world and the limitless power of technol-
ogy was the tool through which he ruled. This was the credo of the 19th

century bourgeoisie, and was the formula according to which Verne created
the characters in his fictions.

Enlightenment had paved the way to compulsory education which — ac-
cording to the demands of the new forms of production — was accomplished
in more and more countries and led to the growth of the reading public. The
need for information in all classes of society, but especially the new middle
classes, continued to increase with the growth of international trade — and
as traveling became easier.

Apart from books, there were newspapers and magazines of all kinds, and
in particular, family journals, which bridged the gap between knowledge and
entertainment. The now very high turnover in books helped finance research
in high grade paper production and in printing itself. This led to the invention
of the cylindrical paper-making machine (John Dickinson, 1809, England),
the new steam press (Friedrich König, 1810–1811, Germany) and machine-
aided book-sewing and book-binding methods.

Through such developments, book production was simplified and the prod-
uct made cheaper to buy. Print run multiplied and the structure of literary
genres was irrevocably changed, with more and more authors working for the
press.

New forms of publicity, pamphlets and early eye-witness reports had an
effect on the purer forms of storytelling: the serialization of novels, stories,
and travel books in magazine was tried, first of all in France, and found to be
highly popular. Writers adapted their techniques to these new conditions by
developing literary methods of creating and maintaining suspense. Other fun-
damental aspects of sale were the increasing members of new lending libraries
spreading like wild fire.

accurately predicts the development of the submarine. In fact, Verne was cre-

ating the fictional context, fully against the facts of contemporary science, that

would give the submarine the thrill of the fantastic — and then he used much

of the book to make this fantasy plausible.

Without detracting from such inventive detail as electric lighting, chemical oxy-

gen production, seaweed cigars, and so on, one should note that David Bush-

nell, who coined the name submarine, first successfully tested his Turtle in

1775; Robert Fulton demonstrated a functional steam submarine in the Seine

in 1807 (this ship, incidentally, was named Nautilus); and the Confederate States

of America, in 1864, successfully used the 9-man submarine Huntley — to sink

the United States frigate Housatonic. Verne doubtless knew all this.



2860 5. Demise of the Dogmatic Universe

Only when set against this background can the far-reaching effectiveness
of Jules Verne work be fully appreciated.

Since Verne was so extraordinarily successful with his basic structure, it
is really not to be wondered at that many writers sought to borrow his for-
mula. Elements of his concepts were common in adventure fiction up through
the middle years of our century. Moreover, Verne’s best works still rank at
the forefront of SF. Versions are produced on stage, on film, or on television;
famous actors do not turn down the chance to play the parts of Verne’s char-
acters. The roots of this success may be traced to Verne’s skill in combining
strenuous and exciting action with accurate observation of human capacity
and value under most adverse conditions, in addition to immense optimism
conveyed in his books.

In the 130 years that passed since Verne embarked on his career, science
and technology have made advances of which it was impossible for the author
of From the Earth to the Moon even to dream.

Edward Everett Hale (1822–1909, U.S.A.), an American Unitarian cler-
gyman (and chaplain to the U.S. Senate), editor and humanitarian. In his
SF book The Brick Moon and Other Stories (1869) he rendered the first seri-
ous, extended consideration of an artificial satellite launched into space. This
story, however, did not have much historical influence.

Edward George Earle Bulwer-Lytton (1803–1873, England). First
Baron. Historical novelist and playwright in Victorian England and politician.
Best known for his novel The Last Days of Pompeii (1834) and the SF The
Coming Race (1871). In the last novel he describes a world inside the earth
inhabited by a strange underground race with superman technology (robots,
death-rays, non-conventional power sources etc.).

Samuel Butler (1835–1901, England) is best known for his satirical SF
novel Erewhon (1872) that ridicules English institutions and customs through
the eyes of a traveler in a strange new world. [Erewhon — a backward rendi-
tion (almost) of the word “nowhere”.] The Butler’s new society is developed
not from the scientific penetration of political and social problems but rather
from the individual extrapolation of Darwinian ideas, to which Butler vehe-
mently objected.

The similarities between Butler and Bulwer-Lytton lie in the fact that
both envisage a future in which the social structure they know stays largely
unchanged and both have little belief in the possibility of a social flowering
of mankind. They unite against the loss of individual identity, and place
their hope for change principally in the use of technological and scientific
discoveries.
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Sir Arthur Conan Doyle (1859–1930, England) is most known for his
detective fiction hero Sherlock Holmes (1887–1915), but he wrote also a SF
series based on the figure of Professor Challenger. One of these novels is The
Lost World (1912), his most important contribution to the literature of SF. It
is also most central in illustrating his artistic and scientific vision. The novel
tells about an expedition to the upper Amazon where the group discovers
an ape-man society thought to be the missing link in human evolution. The
power of The Lost World lies in a consummate balance of adventure, skilled
characterization, novelty of story line, and adept use of scientific themes.
Doyle’s use of concepts taken from paleontology and evolutionary theory gives
the action verisimilitude.

In The Poison Belt (1913) Doyle speculates that humanity may not be the
culmination of evolution, but only a temporary development to be surpassed
and supplanted by other higher organisms unlike it in form. The power of
the story lies in Doyle’s moral thesis that humanity is given a second chance
to fulfill its moral destiny on earth. It must recognize its feebleness before
the infinite latent power of the universe. Thus, Doyle’s vision of the future of
mankind is shaped, not in scientific progress, but in progressing to a higher
level of moral awareness through a recognition of a world beyond this life;
materialism and conventional religion only further distort our view.

Herbert George Wells (1866–1946, England). Novelist, historian, sci-
ence writer and one of the most important pioneers of modern SF.

He was born some three years after Verne’s first major success with Five
Weeks in a Balloon. His fiction embodies stimulating ideas of unrivaled origi-
nality. Wells the man is as entertaining as his fiction, for he retained until the
end a diabolical mixture of a sentimentalist, a moralist, a patriot, a racist, a
member of a secret society and a dreamer. Out of the 120 books that bear
his name — a small but significant proportion of them are SF. Among his
best known novels in this field are: The Time Machine (1895), The Invisible
Man (1897), The War of the Worlds (1898) and The First Men in the Moon
(1901).

Wells made significant strides forward from the Vernian model of SF. He
did not confine himself to the fictional conquest of geographical areas of the
natural world known to exist though as yet still not fully explored. Wells
toyed with ideas wholly new — time travel, contact with other beings, aliens,
wars between worlds etc. He thus first introduced into literature those ideas
and themes that for nearly a century have formed the basis of SF throughout
the world and that still inspire authors now to try new variations.

The Time Machine (1895) includes references to contemporary prerela-
tivistic interpretation of time as a 4th dimension. Wells was by no means the
first writer to confront the present with either the past or the future.
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In Mark Twain’s humorous novel A Connecticut Yankee in King Arthur’s
Court (1899) and Edward Bellamy’s Looking Backward (1888), the heroes
are sent into the past and the future respectively.

The Time Machine was however the first SF story wherein a machine is
envisaged that enables travel through time at will, and in this respect it can
claim to be the first example of a new branch of SF.

The War of the Worlds (1898) was certainly motivated by the “discovery”
of Schiaparelli (1877) of canals on Mars. Wells took Lowell’s premise of
intelligent Martians (1896), added to it the aggressive nature attributed since
ancient times to the blood red planet named for the god of war, and used
Lowell’s scientific descriptions of Mars to extrapolate the nature and aims of
the race which invades earth. This line was later extended by Edgar Rice
Burroughs in his novel A Princess of Mars (1912).

Nowadays, people believe anything, and they exist in a world-situation of
insecurity. The Victorians of the 1890’s were reasonably secure, reasonably
arrogant. Wells took advantage of that situation: instead of our being the im-
perialists, the conquerors — supposing something arrived that fully intended
to conquer us? Wells’ nastiness really wounds because there is the poison
of moral purpose at its tip. The Martians are what we may become! The
conquering Martians are at once the products and victims of evolution. For
all their pride, they fall prey to bacteria.

The most important novel exploring technology and its future in the epoch
under consideration is The Tunnel (1913) by Bernhard Kellerman (1879–
1951, Germany). Kellerman’s fantasy tells of a tunnel dug out under the
Atlantic Ocean connecting Europe and America. It followed the spectacular
sinking of the Titanic in the Atlantic by only two years. The impression of this
catastrophe was still vivid in the minds of readers, rendering them particularly
receptive to the notions of the author with his suboceanic borrowings.

Apart from the concessions to the age in which he lived (for example,
anti-Semitic elements, which are incidentally also to be found in the work of
Jules Verne), this novel is a model of exploiting futuristic technology. Keller-
man presents on the one hand the possibilities inherent in modern industrial
society, and on the other hand, explores the dangers that threaten humanity
through its existing contradictions.

The name of Edgar Rice Burroughs (1875–1950, U.S.A.) burst onto the
world scene in 1912 with two novels published one after the other in the pulp
magazine All-Story. The first was a serial titled Under the Moons of Mars
(republished in book form in 1917 as A Princess of Mars); the second was
Tarzan of the Apes. His biggest success in terms of popularity and monetary
reward came from the Tarzan stories and films. However, Burroughs was
known from the start, far and wide, for his non-Tarzan science fiction as well.
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Although science per se plays little part in his work (and it is safe to
say that he knew and cared little about it), owing to their huge commercial
success, they found countless imitators and did have a profound effect on the
development of SF form in America after WWI. Tarzan became one of the
most famous characters in fiction and outlived Burroughs in novels and film.

By 1975, more than 36 million copies of Tarzan books, in 56 languages,
had been sold, making Tarzan an international superman folk-hero.

Prior to becoming a best-selling novelist, Burroughs had behind him a ca-
reer as a soldier, policeman, Sears Roebuck manager, gold-miner, cowboy and
storekeeper. He had two towns named after him, but never visited Africa. His
stories, according to many critics, belong to the lowest stratum of literature:
narrow mental world, weak plotting, paper-thin characters, cumbersome and
amateurish style. Yet the readers gobbled up Burroughs, always seemingly
hungry for more.

The glorification of strength and the outdoor life and simplistic solutions
to the problems of a rapidly changing world were popular ideas during the
time of Theodore Roosevelt. Tarzan was also a unique superman, since he
reconciled elitism and democracy.

V. Dystopia (1921–1950)

Social and political arguments, which appeared in much early science fiction,
were emphasized even more in the 1900’s. One of the main literary currents
that dominated SF during the above epoch was the newly formed dystopia or
anti-utopia; while utopian fiction portrays ideal worlds, anti-utopian fiction
sees these ideal worlds as nightmares.

Since the 18th century, some prophetic anticipations of scientific achieve-
ments were made by physicists and SF writers alike: Newton (1728) in
The System of the World (a popular version of the third book of the Prin-
cipia) envisaged man-made satellites. Jules Verne (1863) anticipated rocket-
launching, non-classical power source through which his Nautilus was pro-
pelled, incandescent lighting (1870, nine years before Edison’s patent was
granted) and ocean-landing of spacecraft22. Mark Twain (1898) forecasted
television, which he named telectroscope. Cleve Cartmill (1944) correctly
hypothesized, in a story called Deadline, how one may construct an atom
bomb — as the Manhattan project was then doing in extreme secrecy. (He

22 F.R. Molton stated unequivocally in an astronomy textbook (1930) that SF

stories about interplanetary travel were totally impossible and that anyone know-

ing the physical forces involved would know them to be so!
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was interrogated by military intelligence). Frank Quattrochi (1955) pre-
dicted the heart-lung machine.

In the United States, magazines called pulps have played the major role
in development of SF. Hugo Gernsback founded the first pulp, Amazing
Stories (1926). In 1930 he became the first person to use the term science
fiction. The early pulp magazines concentrated on scientific marvels, but
turned increasingly to major social concerns after John W. Campbell Jr.
became editor of Astounding Science Fiction (1937). Campbell developed a
group of writers who dominated the field in the mid-1900’s, including Isaac
Asimov and L. Sprague de Camp.

Science fiction gained a wider audience after WWII ended in 1945. Its pop-
ularity grew as developments in atomic energy and space exploration showed
that much SF was more realistic than many people believed.

Karel C̆apek (1890–1938, Czechoslovakia), Czech humanist, prolific man
of letters and a working journalist throughout his career. A critical observer
of certain manifestations of the time. C̆apek did most of his writing during
the unsettled period between the first and second World Wars. In his travels
in numerous countries throughout the world, and in his own country, he recog-
nized an increase in violence, and saw the dangers inherent in manipulating
people and subjecting them to faceless power. In these circumstances, it is
perfectly understandable that C̆apek should choose to estrange himself from
individual and social trends by means of SF at the beginning of the 1920’s.

In rapid succession he published a series of works that are of equal interest
in terms of the history of mainstream literature and in terms of the history
of SF literature. Chief among those are the play R.U.R. (Rossum’s Univer-
sal Robots23, 1920) and Krakatit24 (1924). In the years succeeding this burst
of literary fantasy, C̆apek turned his attention to the small everyday things
in life. Only in 1936 did he revert to the metaphorical mode of SF in The
War with the Newts. In all these works, C̆apek shows his concern of man’s
destruction of himself by science; the danger to mankind arising from con-
tradictions between the advances of technology and the stagnation in human
ethical maturation.

In R.U.R. the robots represent a complex of symbolic meanings; the threat-
ening aspects of the industrial dehumanization of the work force as well as
the pathos that surrounds the victims of the assembly line. Through this

23 Taken from the Czech robota, meaning ‘forced labor’. This word was invented

by C̆apek’s brother Josef.
24 A name of a castle planted in the same unstable soil as Franz Kafka’s (1883–

1924). Both men inevitably responded to the same cultural traumas as the

Austro-Hungarian Empire entered its death throes.
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ambivalence, the image of the robot represents the logical outcome for the
helpless masses. (In the play, the robots are not mechanical metallic crea-
tures but androids-living organic simulacra–indistinguishable at first glance
from humans.)

The title of Krakatit gives an immediate hint of what is to come by re-
calling the devastating aftermath of the famous 1883 eruption of the volcano
Krakatoa. In the novel, Krakatit is a superexplosive atomic substance, some-
thing like an atomic bomb, through which a dictator wants to conquer the
world. Instead, Krakatit destroys those who try to misuse it.

The War with the Newts is one of the masterworks of SF. It is basically an
anti-Nazi satire and a grim sense of what the future might hold in store for
mankind. It is not surprising that the Gestapo tried to arrest the dead C̆apek.
But C̆apek died before the Germans could kill him and before WWII could
provide him with material that might simultaneously inspire the intensity
of Krakatit and the complex thrust of The War with the Newts. C̆apek’s
influence has been for the most part indirect, although his humane breeziness
arguably infuses the work of some SF writers today.

Aldous Huxley (1894–1963, England) wrote the classic dystopia Brave
New World (1932), a title taken from Shakespeare’s Tempest. It describes
a male-dominated world in which the population is perfectly controlled and
people are genetically engineered in carefully regulated mental and physical
sizes and types. The author employs characters as mouthpieces for the di-
alectic of his tale. They engage in Socratic dialogues. In Brave New World,
the products of science have overwhelmed the poise of human reason.

Huxley’s great fear was not that what science could do should not be done,
but that science would become the only thing that man did — and, after all,
this turns to be too little.

The brave new world is boring. In the use of science to find safety, dis-
cipline and courage have become obsolete. A civilization ordered solely by
science, sex, and drugs kills the spirit. People become mere cattle. Savagery
may be preferable. The savage knows little joy and ecstasy, but by the almost
limitless capacity for pain that he had learned, he can imagine, dream of, and
therefore in a way attain a transcendence of the richest possible pleasure of
his body. Other persons in the novel might die, but only the death of the
savage can be profoundly tragic.

Virtually all that Huxley had to say in his SF centered on earth and on
mankind. He tried to anatomize the confusion of human science, art, and
spirit.

George Orwell (1903–1950, England), novelist and political writer; can
be considered as a SF writer if we define utopia as a socio-political subgenre
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of science fiction. He wrote Animal Farm (1945), a political allegory — a
satire on the Russian revolution and its monstrous perversion of the vision of
democratic socialism. His last novel 1984 (1949), a nightmare, is a culmina-
tion of Orwell’s intellectual and artistic development: a dystopian nightmare
that fuses all the themes derived from his reading, his personal history, and
his involvement with some of he more significant socio-political issues of his
time.

1984 most fully dramatized Orwell’s fear that a totalitarian state could
legitimize its power by “altering” the past, present and future, that it could
control its subjects’ perception of reality by consciously manipulating lan-
guage. The interpretation of language and experience, which constitutes one
of the major themes of the novel, has interested thinkers from Aristotle to
Karl Marx;

The specific relationship between language and political power had been
discussed before, but after the Holocaust, born of the masterful evil rhetoric
of the Nazi Führer, Orwell’s brilliant dramatization of these themes takes on
additional significance and power. (The Nazis used symbols in such a way
that people did not only think about hate, but expressed hate. The Führer did
not use language to teach the Germans to think; he provided them with forms
through which they could act .) Orwell’s socio-political legacy is therefore
two-fold:

• “Reality” and “meaning” are not identical with “fact”. Meaning arises
in social relationship that exist in and through the communication of
significant symbols, most notably in language.

• History was not something to be created but rather discovered25, and
intellectual freedom lay in being able to report this history. If people
cannot know, cannot be certain about events, they all fall victims to the
most irresponsible propaganda.

Orwell meant, 1984 to be a warning, not a prophecy. The book’s gloom is
often referred to his illness and his growing conviction of the manipulability

25 At his point Orwell’s position is at par with arguments from such historians as

Benedetto Croce (1866–1952, Italy), who insisted that all history is “present”

history in the sense that it is impossible to create an objective historical narrative.

History is not a mere description of the past, but an evaluation of it, with each

generation rendering its own value judgment of it. The interpretation

of history creates history, by constructing the mind’s self-creative value judgment

of events. Since the philosophical interpretation of the present generation will

one day be history, philosophy and history must be considered identical.
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of the human mind. The book’s despair comes not just from the fact that
tyranny is universal and that the individual is doomed, but from the bottomless
selfishness of the human being .

Born Eric Arthur Blair in Bengal, India, son of an official in the Indian
civil service. He returned with his parents to England, and after education
at Eton, joined the Burmese police. Returning to Europe (1927) he chose to
live among the deprived, and completed his rebirth by adopting a new name.
Until 1935 he lived with the poor, tramped over the English countryside.
He participated one year (1936–1937) as a common soldier in the Spanish
Civil War on the side of the Republicans, where he became disillusioned with
Communism. After Animal Farm appeared, Orwell took a house on Jura in
the Hebrides. He died of tuberculosis soon after writing his last novel, 1984 .

As scientific ways of understanding the world developed in the 17th and
18th centuries, fiction became more and more realistic, and the realistic novel
came more and more to dominate the world of fiction. Fantasy was considered
a minor form, suitable for children or as light reading for adults, but not really
“literature”, not really serious.

In the 19th century, realism developed new techniques for representing
a whole social scene accurately and finally new ways of making individual
psychology available to readers. The realistic novel presented this world in
this time, competing with history and journalism as a way of recording the
truth of contemporary experience. So powerful was this fictional form, that
many writers and critics believed it to be the end of a long process of evolution.
At last we had learned how to tell the truth in fiction! But truth is elusive
and has a way of turning to dust and ashes whenever we try to stop it from
growing and changing.

All during the time of the rise of realism, a number of things had been
going on which tended to counteract the realistic movement and prepared
the way for a great shift in human awareness. The physical scientists, as
they perfected their instruments of vision and measurement, began to explore
worlds which in relation to ordinary human experience seem fantastic. Cosmic
space and atomic space began to reveal their secrets, and in doing so posed
problems which only “fantastic” speculation seemed able to solve.

Arthur Charles Clarke (b. 1917, England). Science fiction novelist,
scientist and prophet of space flight. Anticipated (1945) artificial commu-
nication satellites in synchronous orbits. Established in his novels futuristic
technologies and scientific developments.

Clarke joined the fledgling British Interplanetary Society at 17, becoming
its chairman while completing his B.Sc. at Kings College, London, in the late
1940’s. In Interplanetary Flight (1950) and The Exploration of Space (1951)
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he expounded his technical knowledge and enthusiasm for the ‘space age’ to
a wide public and made him a foremost popularizer of space travel.

At the same time he made his debut in the front rank of postwar SF
writers. With Stanley Kubrick he wrote the script for 2001 : a Space Odyssey
(1968), perhaps the most imaginative of all SF films. In his novels he portrays
man’s encounter with alien intelligence as the chief turning point in a future
which is cosmic and evolutionary rather than mundane and catastrophic. He
conceives of man as on a continuous odyssey, facing that giant staircase as
a challenge his heritage demands that he accept. Clarke has been a most
influential voice in shaping SF in the epoch of the recent and continuing
scientific revolution.

Isaac Asimov (1920–1992, U.S.A.). Influential writer of SF during the
second half of the 20th century. He wrote nearly 500 books on a wide gamut
of scientific and non-scientific subjects. He was a pioneer in elevating the SF
genre from pulp-magazine adventure to a more intellectual level that dealt
with sociology, history and science.

The special character in Asimov’s work derives from the last fact that the
robots stand side by side with the humans. His robot stories are consistent
with his ‘three rules of robotics’ (1942):

(1) A robot may not injure a human being, or through inaction allow a
human being come to harm.

(2) A robot must obey the orders given it by human beings except when
such orders would conflict with the First Law.

(3) A robot must protect its own existence as long as such protection does
not conflict with the First or Second Laws.

Asimov was born to Jewish parents in a suburb of Smolensk called Petro-
vich. His parents Judah and Rachel Berman Asimov moved to New York in
1923 and settled in Brooklyn. He graduated from Columbia University (1948)
with a Ph.D. in chemistry and gained the rank of associate professor in bio-
chemistry at the Boston University (1955). In 1958 he reached an agreement
with that University whereby he would perform no substantial duties and
receive no salary, but would retain his faculty rank and status.

Early 20th century science fiction was inspired largely by astronomy and to
a lesser extent by physics and mathematics. These sciences, together with the
preoccupation with gadgets and with a little chemistry thrown in, dominated
the scene until about 1948.

After WWII the biological sciences emerge as major elements in the genre.
Having escaped at last from the unpromising side track into which this fiction
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had long been diverted by the man-made bug-eyed monsters sired, or rather
dammed, biology began to emerge as an SF inspiration with early 20th century
writers but it was slow to gain prominence until the WWII, when plastic
surgery in particular made a considerable impact.

By the early 1960s psychology and sociology had become a major source
of science fiction stimulus and the mathematical sciences, including economics
and cybernetics, were also in great evidence. The 1970s saw an even greater
change, the almost total rejection of scientific reason.

Until 1945 science could be seen as the friend of mankind; modern medicine
has brought about a great increase not only in longevity but in the capacity
to enjoy life physically, an increase which has affected our aspirations.

However, after the explosion of the first atomic bomb its evident capacity
to destroy humanity turned science into a potential enemy; the prospect of
a sudden cataclysmic end to all human life has destroyed the hope slowly
engendered through the 18th and 19th centuries that science and reason would
bring about an inevitable millennium. Thus we resurrected the monster of Dr.
Frankenstein and the devil of Faust — forbidden, uncontrollable and therefore
dangerous knowledge.

Modern man has now come full cycle again to the more vigorous fears and
uncertainties of earlier time. This is amplified by the fact that today, the sheer
mass of scientific knowledge is beyond individual comprehension, despite the
far higher level of general education. We have to some extent returned to
the situation of the primitive man who required his myths and mysteries as
protection against forces which he could neither fully understand nor control.

Because of all this, SF was firmly established as a particularly sensitive
form of literature for reflecting the moods and psychoses of its host society.

1895–1932 CE Charles Scott Sherrington (1857–1952, England). Neu-
rophysiologist. Formed the scientific basis of modern neurology; coined the
terms neuron and synapse; demonstrated that reflexes in higher animals are
integrated activities of the total organism; made lifelong study of the mam-
malian nervous function. Shared (with Edgar Douglas Adrian) the Nobel
Prize for physiology or medicine (1932).

Postulated (1906) that neural reflexes must use more than one neuron; so
he proposed a synapse and a neurotransmitter substance to connect the two
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nerve cells. Developed (1913–1930) modern techniques for recording nerve ac-
tivity and outlining the nature of communication between nerves and between
nerves and muscles.

Sherrington was born in London. He took his medical degree at Cambridge
(1885). Taught at London University, where he became professor of pathology
(1891–1895). He was then professor of physiology at Liverpool (1895–1913)
and Oxford (1913–1931).

1895–1945 CE Leading Western poets and novelists from the turn of the
20th century to WWII:

• Oscar Wilde 1854–1900
• Joseph Conrad 1857–1924
• Axel Munthe 1857–1949
• Arthur Conann Doyle 1859–1930
• Rudiard Kipling 1865–1941
• Ladislas Stanislas Reymont 1867–1925
• John Galsworthy 1867–1933
• Maxim Gorky 1868–1936
• Felix Salten 1869–1945
• Ivan Bunin 1870–1953
• Marcel Proust 1871–1922
• Hayim Nahman Bialik 1873–1934
• Robert Frost 1874–1963
• R.M. Rilke 1875–1926
• Thomas Mann 1875–1955
• Jack London 1876–1916
• Carl Sandburg 1878–1967
• Upton Sinclair 1878–1968
• James Joyce 1882–1941
• Jaroslav Hasek 1883–1923
• Franz Kafka 1883–1924
• Sinclair Lewis 1885–1951
• S.Y. Agnon 1887–1970
• Fernando Pessoa 1888–1935
• T.S. Eliot 1888–1965
• Karl Capek 1890–1938
• Franz Werfel 1890–1945
• Lajos Zilahy 1891–1974
• Edna St. Vincent Millay 1892–1950
• E.E. Cummings 1894–1962
• Erich Maria Remarque 1898–1970
• Bertolt Brecht 1898–1956
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• Ernest Hemingway 1899–1961
• John Steinbeck 1902–1968
• William Saroyan 1908–1978
• Dylan Thomas 1914–1953

1896 CE First modern Olympic Games in Athens, Greece; the first known
Olympic contest took place in the Stadium of Olympia in 776 BCE.

In 394 CE, Emperor Theodosius ordered the games ended, but they con-
tinued until 426 CE (304th Olympiad), when an earthquake destroyed the
Stadium of Olympia. A second earthquake (521 CE) buried the ruins of the
structure.

The Olympics were held every four years, and were used in Greece as a
system of dating for literary purposes (but never adopted in every-day life); all
events were dated from 776 BCE. The beginning of the year of the Olympiad
was determined by the first full moon after the summer solstice, the longest
day of the year. The full moon fell about the first of July. Each interval of
four years was known as an Olympiad.

1896 CE Arthur Schuster (1851–1934, England). Applied Fourier analy-
sis to determine periodicities of geophysical and astronomical time-series.

1896 CE Max von Gruber (1853–1927, Austria). Bacteriologist and
physician. Discovered the specific agglutination of bacteria by the serum of
an organism immune to a certain disease, such as typhoid fever and cholera.
This reaction, which bears his name, is used to identify unknown bacteria
and was first utilized by Fernand Widal in his test for diagnosis of typhoid
fever. This discovery paved the road for clinical diagnosis of many contagious
diseases.

Gruber studied in Vienna and Münich. He was professor at Graz (1883–
1887), Vienna (1887–1902) and Münich (1902–1923).

1896 CE Jacques Solomon Hadamard (1865–1963, France). Outstand-
ing mathematician. Proved the ‘Prime-number theorem’26, which states that

26 After proving the ‘Prime-number theorem’, Hadamard was fascinated by what

went on in the mind of a creative mathematician. He set down his ideas in a

book entitled The Psychology of Invention in the Mathematical Field (1945), in

which he made a powerful case for the role of the subconscious. In his book he di-

vided the act of mathematical discovery into four stages: preparation, incubation,

illumination and verification.
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π(n), the number of primes less or equal to n, approaches
{

n
ln n

}
for large

value of n. This conjecture was made by Gauss (1792) and Legendre (1778).

In 1852 and 1859 Chebyshev and Riemann, respectively, provided in-
complete proofs to this theorem. Riemann was able to link the zeros of the
Zeta function to the properties of π(n), but he did not supply any proof
for this connection. For about thirty years, other mathematicians tried to
prove the main result enunciated in Riemann’s paper — but to no avail. Only
in 1896 was it proven independently and simultaneously by Hadamard and
Charles de la Vallée-Poussin (1866–1962, Belgium), both using analytic
methods27. Interestingly enough, the complex-variable methods used by Ha-
damard in his proof found applications in the theory of radio waves.

In 1932 Edmund Landau (1877–1938, Germany) and Norbert Wiener,
using ‘Tauberian theorems’, simplified Hadamard’s proof. Hadamard intro-
duced the word functional (1903) when he studied

F (f) = lim
n→∞

∫ b

a

f(x)gn(x) dx.

Fréchet (1904) defined the derivative of a functional.

Hadamard also obtained important results in the theory of functions of
complex variable [multiplication theorem, 3-circles theorem, gap theorem and
the factorization theorem], partial differential equations, theory of variations,
functional analysis, geometry, hydrodynamics, theory of determinants and
integral equations.

Hadamard’s contributions are partly reflected in such terms as Hadamard’s
inequality, Hadamard variational formula, Hadamard matrices28 and Hada-
mard transform optics.

27 In 1892 Hadamard proved that ξ(t) = Γ
(

s
2

+ 1
)
(s − 1)π−s/2ζ(s), is of the form

ξ(t) = C
∏∞

1

(
1 − t2

λ2
n

)
,

∑∞
1

1
|λ2

n | < ∞ where s = 1
2

+ it.

28 A Hadamard matrix Hn of order n is an n × n array, the elements of which

are either +1 or −1, such that the scalar product of any two distinct rows or

columns is zero. Thus Hn must satisfy HnHT
n = HT

n Hn = nIn. Examples are

H1 = [1], H2 =

[
1 1

1 −1

]

. Its determinant is ±nn/2 (n even), its maximum

eigenvalue is
√

n and its inverse is H−1
n = 1

n
HT

n .

Hadamard matrices are realized in optical spectroscopy and image processing,

with applications in chemistry, medical diagnosis, infrared astronomy, high en-

ergy physics and radar. The basic method which underlines these various appli-

cations is multiplexing . In conventional spectroscopy, for example, electromag-

netic radiation is sorted into distinct bundles of rays corresponding to different

colors. Thus each bundle is labeled by the appropriate frequency, wavelength
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Hadamard was born in Versailles. He originated from a Jewish family of
Lorraine. There are traces of Hadamards, printers in Metz, in the 18th cen-
tury, and also a remarkable great grandmother who lived during the French
Revolution. Before Jacques was born the family settled in the Paris area.
His father taught humanities in high school; his mother was a good pianist.
He achieved the highest score ever obtained in the entrance examinations to
the École Polytechnique, France’s greatest school of science and, in Hada-
mard’s youth, the foremost world institution of its type. He chose, however,
École Normale Superier (1884), where he studied under Jules Tannery29and
Émile Picard.

or wavenumber. The spectrum of the radiation is found by measuring the in-

tensity of each bundle. Alternatively, the bundles can be multiplexed: instead

of measuring the intensity of each bundle separately, we can measure the total

intensity of various combinations of bundles. After measuring n suitably chosen

combinations, the individual intensities of n different bundles can be calculated,

and the spectrum obtained. Finally, by combining multiplexed radiation from

different parts of the picture and from different frequency bands, it is possible

to reconstruct a color picture of a scene.

The primary purpose of multiplexing is to maximize the radiant flux incident on

the detector, in order to improve the signal-to-noise ratio of the final intensity

display.

So where does Hadamard enter in the scheme of things? — in the design of

the mask which splits the source beam into bundles! This mask is essentially a

two-dimensional grid made of two basic elements: open and closed slots. Each

element of the beam is either transmitted or absorbed. [To overcome the dif-

ficulty that there is no way of registering a negative signal with an ordinary

light detector, a Hadamard matrix can always by written as difference of special

matrices whose elements are 1 or 0.] Knowing the special algebra of Hadamard

matrices, one can design the multiplexing spectrometer accordingly.
29 Jules Tannery (1848–1910, France). Known primarily for his treatise on elliptic

functions and his contributions to the history and philosophy of mathematics.

Discovered the summation formula

∞∑

n=1

x2n−1

x2n − 1
=

{ 1
x−1

, if |x| > 1,
x

x−1
, if |x| < 1.

The special case x = 2 yields the interesting result

∞∑

n=1

22n−1

22n − 1
= 1.
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He was a professor of mathematics at Bordeaux (1893–1896), Sorbonne
(1896–1909), College de France (1897–1935) and École Polytechnique (1912–
1935).

As a brother-in-law of Alfred Dreyfus, Hadamard took an active interest
in the Dreyfus case. The dangers of Hitlerism were recognized by Hadamard
at an early stage and he worked to alleviate the plight of German Jewry. He
escaped from France in 1941 to the United States, and moved to England to
engage in operational research with the Royal Air Force. He had three sons
and two daughters. The two elder sons were killed in action in WWI within
an interval of less than two months. The third son was killed in North Africa
in WWII.

Hadamard loved music and used to have a small orchestra for amateurs
in his house: Einstein played in it whenever he was in Paris. Duhamel,
the writer, was the flautist, Hadamard played the violin and Mme Hadamard
played the piano, supplementing by playing the parts of the brass instruments
when required.

1896 CE Henry Ford (1863–1947) and Charles Brady King drove their
first gasoline cars in Detroit, MI. That same year, Ransom Eli Olds (1864–
1950), drove his first gasoline car in Lansing, MI. Also in 1896, Alexander
Winton successfully tested his own automobile in Cleveland. In 1903, David
Dunbar Buick (1854–1929) built his first car in Detroit. Most of these
pioneer American automakers later began the mass production of cars in the
United States.

1896–1900 CE Antoine Henri Becquerel (1852–1908, France). Physi-
cist. Discovered radioactivity in uranium ores and identified beta particles
with Thomson’s electrons.

He embarked on the subject through his interest in the relation between
absorption of light and the stimulated emission of phosphorescence in some
uranium compounds. Influenced by the discovery of X-rays by Röntgen, he
decided to test an hypothesis that uranium salts emit X-rays when irradiated
by sunlight. He found in 1896 that the uranium salts would eject penetrating
radiation (as revealed by their effect on a photographic plate) even when
they were not excited by the ultraviolet in sunlight. He then postulated the
existence of invisible phosphorescence.

Becquerel was a member of a scientific family extending through several
generations30. He received his formal scientific education at the École Poly-
technique (1872–1874) and engineering training at the school of Bridges and

30 This family of physicists includes:
• Antoine-César (1788–1878). Professor, Musée d’Histoire Naturelle (1837–

1878); one of the creators of the science of electrochemistry.
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Highways (1874–1877). In addition to his teaching and research posts he was
for many years an engineer in the department of Bridges and Highways. He
became a professor of physics in 1895. For his discovery of radioactivity he
shared the 1903 Nobel prize for physics with the Curies.

1896–1902 CE Walter Reed (1851–1902, US). Surgeon and pioneer med-
ical researcher who led to the eventual eradication of Yellow fever and typhoid
fever.

Born in Belroi, Virginia and received his MD degree from the University
of Virginia. He joined the Army Medical Corps (1875), served as an army
surgeon in Arizona (1876–1889) and Baltimore (1890–1893), and was professor
of bacteriology at the Army Medical College (1893–1902).

Much of his work was centered on epidemic diseases: malaria, diphtheria,
hog cholera, typhoid fever and Yellow fever, showing them to be caused by
bacilli or viruses. Discovered (1898) that the Yellow fever virus was trans-
mitted by the mosquito Aedes aegypti. Walter Reed Hospital in Washington
D.C. was named after him.

1896–1902 CE Robert Hjalmar Mellin (1854–1933, Finland). Mathe-
matician. Introduced the Mellin transform31 into linear applied mathematics

• Alexandre-Edmond (1820–1891). Son of the above. Succeeded to his pro-

fessorship (1878–1891). Contributed to photochemistry. Discovered (1839)

that when two pieces of metal were immersed in an electrolyte, an electric
charge developed when one of the pieces was illuminated. But although he

discovered the electrochemical effects of light, he did not offer any practical

suggestion for its use.

• Antoine-Henry (1852–1908). Son of the above. Succeeded to his professor-
ship (1892).

31 Let f(r) be a real function defined in the interval (0, ∞) such that f(r) is piece-
wise continuous and of bounded variation in every finite subinterval [a, b], where

0 < a < b < ∞. If in addition both integrals

∫ 1

0

rσ1−1|f(r)| dr,

∫ 1

0

rσ2−1|f(r)| dr

are finite for suitably chosen real numbers σ1 and σ2, then the Mellin transform
of f(r) is defined by the formula

F (s) =

∫ ∞

0

f(r)rs−1 dr,

where s = σ + iτ is any complex number in the strip σ1 < Re s < σ2. The
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as a powerful tool of solving problems in elasticity theory and potential theory.
The Mellin transform arises from the multiplicative structure of the real line
in the same way as the Fourier transform arises from its additive structure.

Mellin was pupil of Mittag-Leffler and then studied in Berlin (1881–
1882). He was later a professor of mathematics at the University of Helsinki.

1896–1916 CE Arnold (Johannes Wilhelm) Sommerfeld (1868–1951,
Germany). Outstanding physicist, and a prodigious producer of future Nobel
prize winners. Introduced the quantization of the action integral

∫
pdq, which

paved the way for modern quantum theory (1911). Defined the fine-structure
constant of electromagnetic interaction, α = 2πe2/hc � 1/137. In classical
physics, he is known for his contributions to the theories of the gyroscope,
diffraction of light (1896), and propagation of radio waves.

Sommerfeld’s investigations of atomic spectra led him to suggest that, in
the Bohr model of the atom, the electrons move in elliptical orbits as well as
circular ones. From this idea he postulated the azimuthal quantum number.
He later introduced the magnetic quantum number as well. Sommerfeld also
did detailed work on wave mechanics, and his theory of electrons in metals
proved valuable in the study of thermoelectricity and metallic conduction.

Sommerfeld was born in Königsberg, Prussia. He was educated in his
native city and then became an assistant at the University of Göttingen. He
served as a professor of physics at Munich (1906–1931), where he did most
of his important work. Sommerfeld was a gifted teacher and educator. His
5-volume treatise ‘Lectures on Theoretical Physics’ still serves today as a
graduate textbook. Among his students were W. Pauli, W. Heisenberg
and H. Bethe.

inversion of F (s) is given by the formula

f(r) =
1

2πi

∫

Γ

F (s)r−s ds,

where Γ is a straight line parallel to the imaginary axis lying inside the strip.

The Mellin transform is related to the Laplace and Fourier transforms and is the

appropriate tool to use for solving problems in two-dimensional elasticity theory

and potential theory involving angular regions.

The Mellin transform pair appeared in Riemann’s famous memoir on prime

numbers and it was later formulated more explicitly by E. Cahen (1894). But

the first one to put it on a rigorous basis and point some of its applications was

Mellin, and that is why the transforms bears his name.
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1896–1920 CE Vilfredo Pareto (1848–1923, Italy and Switzerland).
Economist, sociologist and engineer. Developed methods of mathematical
analysis in the study of economic and sociological problems.

Pareto extended Walras’ theory of general economic equilibrium, and
sought to extend it to the entire range of social phenomena. In his socio-
logical theories, Pareto argued for the superiority of the elite, claiming that
society was always composed of elites and masses.

While his sociological theories are controversial, Pareto’s contributions to
economics have come to be recognized as immensely important during the
second half of the 20th century.

In his economic theory, Pareto rejected the treatment of utility as a car-
dinally measurable quantity whose maximization involved the comparisons
of one person’s happiness with another’s; instead, he treated it as ordinal
concept (i.e. one implying only a ranking by each individual of alternatives
available to him), and defined a corresponding optimum as a condition of
society from which it is impossible to make any one individual subjectively
better off without simultaneously making at least one other individual worse
off. This idea of ‘Pareto optimum’ — according to which the economic system
can, in principle, generate an optimal distribution function of welfare among
its individual members — is the fundamental concept of modern welfare eco-
nomics.

Pareto’s work led modern economists to the finding that the conditions for
such an optimum will be satisfied by a Walrasian general equilibrium, where
each consumer is maximizing utility and each producer maximizing profits,
all under conditions of perfect competition (i.e. with no single consumer or
producer able to influence, on his own, any market price).

Pareto also made significant contributions to the empirical study of income
distribution, enunciating what came to be known as Pareto’s Law, or the
Pareto distribution of incomes. This purported to describe the pattern of
inequality of incomes which any society will tend to generate, regardless of its
economic system.

Pareto was born in Paris, France, and embarked on his research after a
successful career in industry. He then became a professor at Lausanne (from
1893). In his book Mind and Society (1916), he stressed the irrational el-
ements in social life and emphasized the role of leading groups (elites) in
society. He criticized democracy and saw history as a succession of aristocra-
cies. Because of his antidemocratic attitudes, he is considered an intellectual
forerunner of fascism. Indeed, the ideology of Italian fascism was largely based
on his theory.
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1896–1927 CE Felix Édouard Justin Émil Borel (1871–1956, France).
Mathematician. Created the first effective and general theory of the measures
of sets points in topological spaces, and contributed [with H. Lebesgue] to
the development of the modern theory of functions of real variable.

Émil Borel was born in Sain-Affrique, France. His father was a Protestant
village pastor and his mother came from a family of merchants. In 1889 he
enrolled in the École Normale. After graduation he taught at the University of
Lille, and was appointed to the faculty of the École Normale Supériere, Paris.
One of the famous results of his University thesis is the so called Heine-
Borel theorem. In 1896, Borel discovered an elementary proof of Picard’s
theorem. He then formulated the theory of integral functions and was first
to develop (1899) a systematic theory of divergent series. During 1921–1927,
Borel became the first to define games of strategy in game theory. Borel was
the immediate predecessor of Lebesgue in the development of measure theory.

Borel married Marguerite Appel in 1901, but they had no children. From
1924 to 1940 he was heavily involved in politics; he served as a minister
of the navy (1925–1940). In 1940 he was arrested and imprisoned by the
Vichy regime. He later returned to his native village and participated in the
Résistance.

In 1955, while Borel was returning from a scientific meeting in Brazil, he
was injured in a fall aboard his ship and died the following year.

The ‘sum’ of a divergent series

In 1850, Stokes introduced the integral formula

w =
∫ ∞

0

cos
π

2
(ω3 − mω) dω

representing the strength of diffracted light near a caustic (known as an Airy
integral). Stokes proved that for large positive n = (π

2 )2/3m, the integral can
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be represented by a divergent series, but one still useful for calculations, if a
finite number of terms are retained.

It thus became clear to him that divergent series could be used to solve
differential equations. The full recognition of the nature of those divergent
series that are useful in the representation and calculation of functions, and
a formal definition of these series, were achieved by Poincaré (1886) and
Stieltjes (1886). They defined

f(x) ∼ a0 +
a1

x
+

a2

x2
+ . . .

whenever

lim
x→∞

xn[f(x) −
(

a0 +
a1

x
+

a2

x2
+ · · · + an

xn

)

] = 0.

Such series are asymptotic expansions32 of functions in the neighborhood
of x = ∞. Likewise one speaks of the series f(x) ∼ a0 + a1x + a2x

2 + . . . as
asymptotic to f(x) at x = 0, if

lim
x→0

1
xn

[

f(x) −
n−1∑

0

aix
i

]

= an.

Though in the case of some asymptotic series one knows or can estimate
the error incurred by stopping at a definite term, no such information about
the numerical error is known for general asymptotic series. However, asymp-
totic series can be used to give rather accurate numerical results for large x
by employing only those terms for which the magnitude of successive terms is
still decreasing as one includes further terms. The order of magnitude of the
error at any stage is equal to that of the first term omitted. The theory of
asymptotic series, whether used for the evaluation of integrals or the approx-
imate solution of differential equations, has been vastly extended in recent
decades.

32 For further reading, see:

• Sirovich, L., Techniques of Asymptotic Analysis, Springer-Verlag, 1971,

306 pp.

• Jeffrey, A. and T. Kawahara, Asymptotic Methods in Nonlinear Wave Theory,
Pitman, 1982, 256 pp.

• Jeffreys, H., Asymptotic Approximations, Oxford University Press, 1962,
144 pp.

• Copson, E.T., Asymptotic Expansions, Cambridge University Press, 1965,

120 pp.
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The work on divergent series described so far has dealt with finding asymp-

totic series to represent functions either known explicitly or existing implicitly

as solutions of ODE’s or PDE’s.

Another problem that mathematicians tackled from about 1880 on is es-

sentially the converse of finding asymptotic series: Given a series divergent

in Cauchy’s sense, can a “sum” be assigned to the series? As in so many

other cases, the traces lead us back to Euler, who first considered (1755) the

‘sum’ of a non-convergent series as the finite numerical value of the algebraic

expression, from the formal expansion of which the series was derived. For

instance:

1 − 1 + 1 − 1 + · · · = lim
x→1−0

(1 − x + x2 − x3 + . . . ) = lim
x→1−0

1
1 + x

=
1
2

1−2+3−4+5−· · · = lim
x→1−0

(1−2x+3x2−4x3 + . . . ) = lim
x→1−0

1
(1 + x)2

=
1
4

In general, Euler’s idea implies that33

∞∑

n=0

an = lim
x→1−0

( ∞∑

n=0

anxn

)

,

for any power series with radius of convergence 1 and for which the limit

exists.

It is clear that this convention has no general or compelling basis, since

there is no reason why the same series should not result from quite different

33 For example

∞∑

n=0

(−1)n

3n + 1
= lim

x→1−

∞∑

n=0

(−1)n

3n + 1
x3n+1 = lim

x→1−

∫ x

0

∞∑

n=0

(−1)nx3n dx

= lim
x→1−

∫ x

0

dx

1 + x3
= lim

x→1−

{
1

6
ln

(x + 1)2

x2 − x + 1
+

1√
3

arctan
2x − 1√

3
+

π

6
√

3

}

=
1

3
ln 2 +

π

3
√

3
.

In general
∞∑

n=0

(−1)n

αn + 1
= lim

x→1−

∫ x

0

dx

1 + xα
=

1

α
β

(
1

α

)

.
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analytical expressions which leads to a different value. Take for example

1 + x

1 + x + x2
= 1 − x2 + x3 − x5 + x6 − x8 + . . ..

Setting x = 1 renders 1 − 1 + 1 − 1 + · · · = 2
3 , different from the result given

above. To eliminate such ambiguities, Frobenius (1880) defined summability
of a series as:

lim
x→1−0

( ∞∑

n=0

anxn

)

= lim
n→∞

S0 + S1 + · · · + Sn

n + 1
,

whenever the r.h.s. limit (of the average of the partial sums) exists. Indeed,
in Euler’s first example Sn = 1, 0, 1, 0, 1, 0, · · · = 1

2 [1 + (−1)n] so that

S0 + S1 + · · · + Sn

n + 1
=

(n + 1) + [1 + (−1)n]
2(n + 1)

→ 1
2
.

Similarly, the above series 1 − x2 + x3 − . . . gives the partial sums of
1, 2, 3, 4, 5, 6, . . . terms as 1, 1, 0, 1, 1, 0, . . . so that the average sum is

S0 + S1 + · · · + Sn

n + 1
=

(n + 1) − {integer part of 1
3 (n + 1)}

n + 1
→ 1 − 1

3
=

2
3
.

Considering the fact that Euler and other mathematicians made numerous
valid mathematical discoveries by using series which do not converge, we con-
clude that these “pre–rigor” mathematicians had sufficiently good “experi-
mental evidence” that the use of such series as if they were convergent led
to correct results in the majority of cases when they presented themselves
naturally.

Consider Fourier’s own example in his Theorie Analytique de la Chaleur,
where he obtained the sine series for the function f(x) = π sh x

2 sh π in the interval
[0, π], and found that the coefficient of sin nx is

(−1)n−1
[ 1
n
− 1

n3
+

1
n5

− . . .
]

= (−1)n−1 n

1 + n2
.

Thus, the coefficient of sin x appears as 1 − 1 + 1 − 1 + . . ., and may there-
fore be expected to be 1

2 , if we adopt Euler’s summation principle. And
indeed, this is correct, since

∫
sh x sin x dx = 1

2 (chx sin x − sh x cos x), so

that 2
π

∫ π

0
f(x) sin x dx = 1

2 .

We see from these examples that Euler had views which do not differ
greatly, at bottom, from those held by modern workers on this subject. It
was his unusual instinct for what is mathematically correct which in general
saved him from false conclusions.
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Clearly, if
∑

an converges, then Frobenius’ procedure gives the usual sum.

The Frobenius summability was generalized by Hölder (1882) and Cesaro

(1890). Further progress in finding ‘sums’ for divergent series received its

motivation from a totally different direction which, again, started with Euler.

Euler (1754), in seeking a sum for the divergent series

1 − 2! + 3! − 4! + 5! − . . . ,

proved that y(x) = x − (1!)x2 + (2!)x3 − (3!)x4 + . . . formally satisfies the dif-

ferential equation x2y′ + y = x, for which he obtained the integral34

y(x) =
∫ ∞

0

xe−t

1 + xt
dt.

On the other hand, by using the rules which he had obtained for the trans-

formation of convergent series into continued fractions, Euler found

y(x) =
x

1 +
x

1 +
x

1 +
2x

1 +
2x

1 +
3x

1 +
3x

1 + . . .

From this he subsequently calculated

1 − y(1) = 1 − 2! + 3! − 4! + · · · = 0.596 347 4 . . .

This work contains two features. First, Euler obtained an integral that can be

taken to be the ‘sum’ of the divergent series (the latter is in fact asymptotic to

the integral). Then, he showed how to convert divergent series into continued

fractions.

Euler’s pioneering work was continued by Laguerre (1879), Stielt-

jes (1886–95), Borel (1895–99), Tauber (1897) and Fejer (1904) along

two main routes that can be summed up in the following scheme:

34 The substitution 1 + xt = xu leads to y(x) = e
1
x
∫ ∞

1
x

e−u

u
du ≡ e

1
x E1

(
1
x

)
.
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Numerical divergent series
∑

an!
"

Functional divergent series
∑

anxn

���������� �

������
�����

Differential equation

Integral

�

Continued fraction
������� �

			
 Integral

Continued fractionNumerical
value
at x = 1

Asymptotic
series

Borel (1901) discovered a new method of summation of divergent series. First
he proved the theorem that if f(z) =

∑∞
n=0 anzn is analytic when |z| < r, then

f(z) =
∫ ∞
0

e−tΦ(zt) dt where Φ(z) =
∑∞

n=0
an

n! z
n.

If the integral exists at points z outside the circle of convergence, we define
the ‘Borel sum’ of

∑∞
n=0 anzn to mean the integral.

The function Φ(z) is called the Borel function associated with
∑∞

n=0 anzn.
If

S =
∞∑

n=0

an

is divergent and

Φ(z) =
∞∑

n=0

an

n!
zn

exists and if we can establish the relation

S =
∫ ∞

0

e−tΦ(t) dt,

with the r.h.s integral convergent, then the series S is said to be ‘Borel sum-
mable’ or ‘summable (B)’.

The above result implies that a Taylor series representing an analytic
function is summable (B).

For example, the ‘Borel sum’ of the series
∑∞

n=0 zn is

∫ ∞

0

e−tetz dt =
1

1 − z
.
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These studies in the theory of divergent series have clarified a number of
hidden connections:

(i) Functional divergent series have functional equivalents in the form of an
integral and a continued fraction. The divergent series belongs to one
or more functions, which can each be taken to be the sum of the series
in a new sense of sum (summability).

(ii) A divergent series, if summable, can be manipulated precisely as a con-
vergent series.

(iii) If a given infinite series were to arise in a physical situation, the appro-
priateness of any definition of its sum would depend entirely on whether
the sum is physically significant.

Cauchy’s (classical) definition of a sum is the one that usually fits, be-
cause it says basically that the sum is what one gets by continually
adding more and more terms in the ordinary sense. But there is no
logical reason to prefer this concept to the others that have been intro-
duced.

A general lesson here is that when a concept or technique proves to be
useful even though the logic of it is confused or even nonexistent, persistent
research will likely uncover a logical justification.

Thus, although concepts like summability may seem artificial, man-made,
and contrived, their justification as naturally arising in mathematical solution
of physical problems is now sufficient grounds for admitting them into the
domain of legitimate mathematics. (This applies also to concepts such as
generalized functions, non-standard analysis, and even the Newton-Leibniz
non-rigorous, pre-Cauchy calculus.)

Ramanujan, devoid of any physical principles and completely innocent
of rigor, drove Euler’s concepts of divergent series ‘ad absurdum’. In 1913 he
presented some ‘impossible’ results of his own:

1 + 2 + 3 + 4 + 5 + · · · = − 1
12

13 + 23 + 33 + · · · =
1

120
He obtained these results regarding the values of the Riemann zeta-function
at s = −1 and s = −3 respectively; they then follow from the general formula

ζ(1 − 2m) = (−1)m Bm

2m
,
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where Bm are the Bernoulli numbers. Ramanujan also stated (without proof)
that

1 − 11 + 22 − 33 + · · · =
∫ ∞

1

dx

xx
= 0.704 169 96 . . . ,

where the integral can be computed by the Euler-Maclaurin formula to yield
the numerical value stated on the r.h.s. We have no idea how Ramanujan
reached this result, but G.N. Watson (1929) offered the following proof:
since

∫ ∞
0

tne−t dt = n!, we write formally

1 − 11 + 22 − 33 + . . . = 1 +
∞∑

n=1

(−1)nnn

n!

∫ ∞

0

tne−t dt

≡
∫ ∞

0

{1 +
∞∑

n=1

(−1)n

n!
nntn}e−t dt.

When u is sufficiently small, a Lagrange expansion of eu in powers of ueu

yields

eu = 1 + ueu +
∞∑

n=2

(−1)n−1(n − 1)n−1unenu

n!

and hence, by differentiation,

eu = (1 + u)eu[1 +
∞∑

n=2

(−1)n−1(n − 1)n−1(ueu)n−1

(n − 1)!
].

Thus 1
1+u = 1 +

∑∞
n=1

(−1)nnn(ueu)n

n! . Putting ueu = t in the last integral,

1−11+22−33+· · · =
∫ ∞

0

1
1 + u

e−(ueu) d(ueu)
du

du =
∫ ∞

0

eu−ueu

du =
∫ ∞

1

dx

xx
.

Independently, John Bernoulli (1696) proved that

s =
∫ 1

0

xx dx = 1 − 2−2 + 3−3 − 4−4 + . . .

in the following way: s =
∫ 1

0
ex ln x dx =

∑∞
n=0

1
n!

∫ 1

0
xn(ln x)n dx. The integral

is then evaluated by means of the substitution y = ln 1
x :

∫ 1

0

xn(ln x)n dx = (−1)n

∫ ∞

0

dy yne−(n+1)y = (−1)n n!
(n + 1)n+1

.
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The Automobile (1770–1950)

The first road vehicles that could travel autonomously were powered by
steam engines.

In 1770, N.J. Cugnot of France successfully operated a three-wheeled
steam-powered transportation vehicle. In 1801, Richard Trevithick, an
English inventor, built a 4-wheeled steam wagon. By the mid-1830’s, English
steam carriages were providing regular passenger service. Some of these car-
riages carried as many as 20 persons. These early cars were noisy, polluted
the air with smoke and scattered hot coals. Sometimes the coals set fire to
crops or wooden bridges.

Operators of railroads and stagecoach lines opposed steam carriages be-
cause they were becoming successful rivals. The opposition resulted in an
English law that put severe limits on the operation of steam carriages. This
law, the locomotive act of 1865, limited the speed of the steam vehicles to
6 km/h on country roads and 3 km/h in towns. It required that a signalman
walk ahead of each steam carriage to warn of its approach. The signalman
carried a red flag during the day, and a red lantern at night (Red Flag Law).
This law, repealed in 1896, discouraged automobile development in England
for 30 years.

Steam cars proved impractical because they were hard to start and to
operate. Their boilers generated steam too slowly for long-distance travel.
Also, many people were afraid to drive a vehicle that depended for power on
an open fire and hot steam.

In the late 1890’s and early 1900’s, the electric car became popular in
America. It was easy to operate, ran quietly, and did not give off smelly
fumes. But few of the cars traveled faster than 30 km/h and their batteries
had to be recharged about every 80 km. The gasoline car gradually replaced
the steam and electric cars.

In 1863, Jean Joseph Étienne Lenoir (1822–1900), a French inventor,
installed his one-cylinder internal-combustion engine in a clumsy vehicle that
traveled 10 kilometers in 2 hours.

In 1864, the electromechanical engineer and inventor Siegfried Marcus
(1831–1898, Germany) built in his Vienna workshops the first gasoline-driven
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carriage. His second model (1875) was already equipped with most modern

technical features. It was patented in Germany (1882). He thus deserves the

credit for building the first practical gasoline motorcar applicable for urban

transportation. He did not, however, pursue its mass-production, and it had

remained just a museum item.

Marcus was born in Mecklenburg and worked for Werner von Siemens

during 1848–1860. In 1885, Gottlieb Wilhelm Daimler with Wilhelm

Maybach and Carl Benz, in Germany, separately installed their respective

engines in carriages.

The general design of present day automobiles was developed in France,

during 1890–1898 mainly by René Panhard and Emile Levassor (1891).

The cars used chains to carry the engine’s power to the rear wheels. In 1898,
Louis Renault replaced the chain with a drive shaft.

Many American inventors experimented with gasoline-powered vehicles

in the early 1890’s. Of these, the brothers Charles E. Duryea (1861–1938)

and Frank J. Duryea (1869–1967) built the first successful gasoline-powered

automobile in America in 1893–1894.

Two developments in 1901 accelerated the growth of the automobile in-

dustry: the sharp drop in the price of gasoline and the introduction of mass

production methods into the manufacture of cars. Gasoline prices were re-

duced after the discovery of rich oil fields in eastern Texas. Automobiles could

now be operated relatively inexpensively, and they became a popular means

of transportation.

With the assembly-line method, the Olds company built 425 cars in 1901
and 5000 in 1903.

Henry Ford35 improved the assembly-line methods to cut production

costs. His goal was a low-priced car that many people in all walks of life could

35 Ford was the foremost advocate of anti-Semitism in America. His weekly The

Dearborn Independence systematically defamed American Jews for seven years

(1920–1927).
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afford36. Ford achieved this goal with his Model T.

In 1910 Hermann Föttinger (Germany) invented the automatic gear
changer. It was made using a special drive belt system mounted between the
drive shaft and the propeller shaft. It enabled the suppression of the clutch.

In 1912 General Motors introduced the electric starter. Balloon tires were
introduced in 1922, and the automatic transmission in 1939. Finally, power
steering was installed in cars in 1950.

During the 1890’s automobiles were so new and so strange that they were
shown in circuses. In 1990, about 350 million passenger cars traveled on the
highways of the world.

1897 CE Joseph John Thomson (1856–1940, England). Physicist. Dis-
covered the electron37, the first known particle smaller than the atom [he called

Ford had a 4-volume reissue of the anti-Semitic articles of his weekly separately

reprinted under the title The International Jew; this work was highly praised by

Adolf Hitler who said to an American reporter: “I regard Heinrich [sic] Ford as

my inspiration”.

Although Ford retracted publicly [July 7, 1927] all he said about the Jews, he

clung to his prejudice for the rest of his life. In any case, a considerable damage

had already been done:

Anti-Semitism has come to be a particularly ugly and obscene climax in the 20th

century, and if any one American were to be singled out for his contribution to

the evils of Nazism, it would have been Henry Ford. His republished articles and

the currency which he gave to the Protocols of the Learned Elders of Zion had

considerable impact on Germany in the early 1920’s — a vulnerable and, as it

proved, crucial formative time. Hitler, still an obscure figure in those days, read

Ford’s books, hung Henry’s picture on his wall, and cited him frequently as an

inspiration. He even based several sections of Mein Kampf upon Ford’s words

and accorded Henry the unhappy distinction of being the only American to be

mentioned in that work.
36 Ford produced cars “in any color that the customer wanted — as long as it is

black.”
37 This statement is an oversimplification. The idea of an atomic unit of charge

was probably formulated for the first time by Faraday in connection with his

experiments on electrolysis. But this idea did not easily fit in with the notion of

an electromagnetic field. Hendrik Antoon Lorentz modified and completed



1897 CE 2889

them ‘corpuscles’]. He came by his discovery in his attempts to explain the
nature of cathode rays. By applying improved vacuum techniques, Thomson
was able to demonstrate that these rays were composed of identical parti-
cles carrying negative charge. He concluded that the particles were present
in all kinds of matter and could also be produced from hot metals. In 1906
he received the Nobel prize in physics for his researches into the electrical
conductivity of gases.

Thomson was born in a suburb of Manchester, the son of a bookseller.
In 1876 he obtained a scholarship at Trinity College, Cambridge, where he
remained for the rest of his life. In 1884 he was appointed to the chair of
physics at the Cavendish Laboratory.

Thomson entered physics at a critical point in its history. Following the
great discoveries of the 19th century in electricity, magnetism, and thermo-
dynamics, many physicists in the 1880’s were saying that their science was

Maxwell’s theory of electromagnetism. In his theory, the electric and magnetic

properties of matter are interpreted in terms of the motion of charged atomic par-

ticles. A magnetic field exerts a force on these particles, now called the “Lorentz

force”. In 1896 Pieter Zeeman, then an experimental physicist in Leiden, made

a surprising discovery: the splitting of spectral lines by a magnetic field. Lorentz

was able to explain the new phenomenon with his electron theory. He concluded

that the radiation of atoms consisted of negatively charged particles with a very

small mass. Also, German physicists were breathing hard on Thomson’s neck

throughout 1897. On Jan. 7, 1897, Emil Wiechert (1861–1928) issued the first

statement that there may exist particles about 2000 to 4000 times lighter than

the hydrogen atom. Independent of Thomson, Wiechert determined the ratio

of mass to charge of the particles by deflecting them with electric and magnetic

fields. Simultaneously, Walter Kaufmann determined the ratio of the mass to

charge for cathode rays.

The Greek name ‘electron’ was used for amber for the first time in the third

century BCE by Theophrastos, a pupil of Aristotle. The name suggests ‘lus-

trous metal’. Perhaps the clear lustrous yellow color of amber, so enhanced with

cutting and polishing, led Theophrastos to choose such a name. The ancient

Romans knew that when amber was rubbed with a piece of cloth, it picked up

small particles. This was actually discovered in the 6th century BCE by the

Greek philosopher Thales of Miletos. Later, when it was proved that this

was the action of electricity, the energy was derived from the Greek word for

amber — ‘electron’. The modern name ‘electron’ was coined by Stoney (1911)

for the unit of charge carried by the ion of a monovalent element in electrolysis.

Abraham Pais coined the collective names Lepton (1946) and Baryon (1954) to

classes of elementary particles, while L.B. Okun gave the name Hadron (1962)

to another class.
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coming to an end, much as an exhausted mine. By 1900, however, only el-
derly conservatives held this view, and by 1914 a new physics was in existence,
which raised, indeed, more questions than it could answer. The new physics
was wildly exciting to those who saw its boundless possibilities. Probably not
more than a half dozen great physicists were associated with bringing about
this change.

Thomson was an outstanding teacher; his importance in physics depended
almost as much on the work he inspired in others as on that which he did
himself. The group of men that gathered around him between 1895 and 1914
came from all over the world, and after working under him, many accepted
professorships abroad. Seven Nobel prizes were awarded to those who worked
under him. Thomson took his teaching duties very seriously: he lectured
regularly to elementary classes in the morning and to postgraduates in the
afternoon. He considered teaching to be helpful for a researcher, since it re-
quired him to reconsider basic ideas that otherwise might be taken for granted.
He never advised a man entering a new research field to begin by reading the
work already done. Rather, Thomson thought it wise that he first clarify his
own ideas. Then he could safely read the reports of others, without having
his own views influenced by assumptions that he might find difficult to throw
off.

1897 CE Alfred Tauber (1866–1942, Slovakia & Austria). Mathemati-
cian. Discovered an important theorem through which ordinary convergence
of power series is deduced from some type of summability; known as the
Tauberian theorem38.

38 “Abel’s theorem” states that if
∑∞

n=0 an is convergent with a sum S,
then the series f(z) =

∑∞
n=0 anzn is uniformly convergent for |z| < 1 and

limz→1

∑∞
0 anzn = S.

The direct converse of Abel’s theorem is false, as is shown by the simple counter-
example f(z) =

∑∞
n=0(−1)nzn = 1

1+z
with f(1) = 2. Since

∑∞
0 an is not conver-

gent. If, however, we impose a restriction on an as to their order of magnitude,

it is possible to prove the converse theorem.
Tauber’s theorem: If an = o

(
1
n

)
and f(z) → S as z → 1, then

∑∞
0 an converges

to the sum S.

In short
∞∑

n=0

an = lim
z→1

∞∑

n=0

anzn (Abel),

lim
z→1

∞∑

n=0

anzn ⇒
∞∑

n=0

an, if lim
n→∞

(nan) = 0 (Tauber).

Tauber’s theorem became essential to the operational calculus (especially for

Laplace and Fourier integral transform theory) since it enables one to use the

known behavior of a linear system at large times in order to deduce its behavior
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Tauber was born on Pressburg (now Bratislava), Slovakia to Jewish par-
ents. He was sent by the Nazis to Theresienstadt concentration camp on
June 28, 1942 and was hauled from there to the Auschwitz Gas Chambers
with another 53,000 Jewish inhabitants of the camp.

1897 CE, August 29 The First Zionist Congress opened in Basel, Switzer-
land, under the leadership of Theodor Herzl (1860–1904), the founder of the
Zionist movement. It approved the programme for re-establishing a Jewish
homeland in the Land of Israel.

Herzl was a product of late 19th century positivism, of the age of spring-
time of the nations. It was also the time of the pogroms in Russia and the
Dreyfuss Affair. Herzl saw the suffering of his people as the outcome of the
curse of Exile and held that political sovereignty for the Jews was the solu-
tion to the problem of antisemitism. After the terrible lesson of the Holocaust
(1939–1945), it became the credo of the State of Israel.

Not only did antisemitism not “fall silent immediately”, but the Jewish
state itself became the focus of world Judeophobia. This is what actually
occurred even if the hatred was transformed among the nations into “anti-
Zionism”. In its short history, the Jewish state has faced those who wanted to
destroy her in five large-scale wars (1948, 1956, 1967, 1973, 1982) and through
unrelenting terrorism within and on her frontiers (1990–2008).

Many are the praises and merits of Zionism: the renewal of a dead lan-
guage, the ingathering of the exiles, and the re-establishment of a state for
a persecuted, ancient people that co-founded Western Civilization and gave
the world so much. The movement of revival of the Jewish nation expressed
a combination of will power and the victory of man’s spirit, worthy of the
grave duty of the descendants of the ancient Israelites, who may take pride in
about one fourth of all Nobel prizes for science since 190139.

at zero frequency (and vice versa). For example, in the case of the Laplace

transform f(p) = p
∫ ∞
0

e−pth(t) dt we have:

lim
t→∞

h(t) = lim
p→+0

f(p) (Abel),

lim
p→+0

f(p) = lim
t→∞

h(t), if lim
t→∞

t[h(t) − h(t − 1)] = 0 (Tauber).

39 Jews and persons of half-Jewish ancestry have been awarded at least 161 Nobel

Prizes, accounting for 22% of all such prizes awarded to individuals worldwide

between 1901 and 2003, and constituting 36% of all US Nobel Prize winners dur-
ing the same period. In the scientific research fields of Chemistry, Economics,

Medicine, and Physics, the corresponding world and US percentages are 26% and

39%, respectively. (Jews currently make up approximately 0.25% of the world’s
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1897–1908 CE Frederick William Lanchester (1868–1946, England).
Aeronautics pioneer who expounded, ahead of his time, the principles of
heavier-than-air flight. He was a practical engineer, amateur mathematician
and by trade, an automobile builder who began the construction of the first
Lanchester motorcar in 1894. In 1897 he developed the circulation theory of
flight40. Two books by him, containing his well-developed ideas, appeared
in 1907 and 1908. He contributed to many branches of applied mathemat-
ics (e.g. operations research), and continued to produce technical inventions
throughout his life.

Lanchester was born in London. After attending college he went in 1891
to work for a gas-engine works in Birmingham. In 1896 he left to set up his
own automobile manufacturing firm, producing his first car the same year.
He later founded the Lanchester engine company which produced cars which
were relatively vibration-free and had a graceful appearance.

1897–1910 CE Adolf Loos (1870–1933, Austria). Modernist Viennese
architect. Developed a simplified style of architecture marked by uncluttered
lines and flat surfaces, setting great value on precision and economy in design.
Claimed that buildings must be appropriate to their use and nothing more.
His architecture was designed to show in the modern its relationship to the
classic. His use of reinforced concrete (a new material at the time), utter lack

population and less than 2% of the US population.)

• Chemistry (25 prize winners, 18% of world total, 26% of US total)

• Economics (21 prize winners, 40% of world total, 54% of US total)

• Literature (11 prize winners, 11% of world total, 27% of US total)

• Physiology or Medicine (51 prize winners, 28% of world total, 42% of US total)

• Peace (9 prize winners, 10% of world total, 11% of US total)

• Physics (44 prize winners, 26% of world total, 37% of US total)

This enumeration constitutes an update and an expansion of the information

on Jewish Nobel Prize winners contained in the 1997 CD ROM edition of the

Encyclopedia Judaica.
40 He discovered that the wing can be effectively replaced by a vortex system con-

sisting of a bound vortex which travels with the wing and free vortices springing

from the wing tips. He was also the first to recognize the importance of aspect-

ratio of the wing in connection with the work required for sustentation. [The

slope of the line of lift versus the angle of attack depends on the aspect ratio

and decreases with its decrease.]
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of ornament and severe cubic form and treatment of interior space, his work
become a landmark in architectural history, chiefly influencing architects in
the United States.

Loos condemned art nouveau. In his articles in Viennese journals he struc-
tured his arguments within broad socio-political and cultural frameworks. He
argued that while ornament had a place in the past, it was degenerate in
modern culture. He also criticized the modern practice of architecture for
lack of craftsmanship and for working in a cultural vacuum. His buildings
relentlessly expressed his theories.

Loos was born in Brno (now in the Czech Republic). During his stay in
the USA (1893–1896) he was strongly influenced by the Chicago School. He
lived in Vienna from 1897 until his death, except for six years (1922–1928)
spent in Paris.

1897–1910 CE Ernest William Barnes (1874–1953, England). Math-
ematician and bishop. Discovered a contour integral representation for the
hypergeometric function41 (1908). Made significant contributions to the the-
ory of transcendental functions (such as the G-function42) and proved the
so-called Barnes lemma.

Barnes was born in the small Oxfordshire town of Charlbury, and edu-
cated at Trinity College, Cambridge. He graduated Sc.D. in 1907. He was
ordained in the Anglican Church (1902). In 1924 he was appointed by Ramsay
MacDonald to the Bishopric of Birmingham.

1897–1921 CE Vilhelm Frimann Koren Bjerkens (1862–1951, Nor-
way). Meteorologist and physicist. One of the founders of the science of
weather forecasting.

Discovered the circulation theorems that led him to the synthesis of hy-
drodynamics and thermodynamics applicable to large-scale motions in the
atmosphere and the ocean. This work ultimately resulted in the theory of
motion of air-masses, which is essential to modern weather forecasting (1919–
1921)43.

41
2F1(a, b, c; z) = Γ(c)

2πiΓ(a)Γ(b)

∫ i∞
−i∞

Γ(a+t)Γ(b+t)Γ(−t)
Γ(c+t)

(−z)tdt.

42 G
(

z+1
τ

)
= Γ

(
z
τ

)
G

(
z
τ

)
, where τ is a constant.

43 This work was done in collaboration with his son Jacob Aall Bonnevie

Bjerkens (1897–1975, Norway and U.S.A.). In 1919 they coined the term front

for an advancing discontinuity surface separating air masses of different densities,

and formed when warm and cold air masses meet. They suggested that cyclones

originate as waves along the front.
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Bjerkens was born in Christiania, Norway. In 1890 he went to Germany
and collaborated with Heinrich Hertz. In 1895 he became professor of
applied mechanics and mathematical physics at the University of Stockholm.
He served later as professor in Christiania (1907), Leipzig (1912), Bergen
(1917) and Oslo (1926–1932).

1898 CE Ivan Stanislavovic Bloch (1836–1901, Poland). Banker and
railway financier who devoted his private life to the study of modern industrial
warfare. In his six volume master work, La Guerre Future (Paris, 1898) he
presented a detailed analysis of modern warfare, its tactical, strategic and
political implications. His main argument was that:

• New arms technology has rendered maneuvers over open ground (such
as bayonet and cavalry charges) obsolete. War between Great Powers
would be a war of entrenchment and that rapid attacks and decisive
victories were likewise a thing of the past.

• Industrial societies would have to settle the resultant stalemate by com-
mitting armies numbering in the millions, as opposed to the tens of
thousands of preceding wars. An enormous battlefront would develop.
A war of this type could not be resolved quickly.

• The war would become a duel of industrial fight, a matter of total eco-
nomic attrition. Severe economic and social dislocations would result in
the imminent risk of famine, disease, the break-up of the whole social
organization and revolutions from below.

Europe’s patriots were unmoved. French cavalry and British infantry com-
manders only learned Bloch’s lessons the hard way during WWI. The Russian
and German monarchies proved equally incapable of assimilating Bloch’s cau-
tionary words concerning revolutions, paying the price with summary execu-
tion and exile, respectively.

Bloch was born into a Jewish family at Radom, Poland and died at War-
saw. In his late twenties he adopted Christianity in the form of Calvinism
to ease his way up in the Russo-Polish banking system. With the banker
Kronenberg of Warsaw, whose sister he married, Bloch participated in the
construction of railroads in Russia.
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1898 CE John Philip Holland (1840–1914, U.S.A.). An Irish-American
inventor who built the first practical submarine. It became a model on which
later submarines were developed44.

In 1898, after 28 years of development, he privately built and launched
the Holland (so named in 1900 by the U.S. Navy). It was a 16 m submarine,
powered by a gasoline engine and electric batteries. It could reach a speed of
some 15 km/h, submerged.

Holland was born in County Clare, Ireland. He began work on the idea
of a submarine while a school teacher in Ireland during 1858–1872. By 1870
he had completed the first plans for his invention. In 1873, Holland came
to the United States and earned his living as a school teacher in Paterson,
NJ. He submitted his submarine plans to the U.S. Navy in 1875, but they
were rejected. However, the Fenian Society, a group of Irish patriots in the
United States, who hoped to destroy England’s naval power, became inter-
ested. They supported Holland’s experiments and gave him money to build
two submarines. In 1900, the Navy bought the Holland and asked the inventor
to build several more ships like it.

Holland died in poverty, because the company which he formed ran into
difficulties.

1898 CE Marie Sklodowska Curie (1867–1934, France). Polish-born
French physicist. Discovered the atomic origin of radioactivity and the ele-
ments radium and polonium [with Pierre Curie (1867–1906, France, 1898)].
She coined the word ‘radioactivity’. In 1911 she was awarded the Nobel prize
for chemistry, for her isolation of pure radium from pitchblende.

Marie went to Paris in 1891. She married Pierre Curie in 1895 and gave
birth to two daughters, Irène (1897) and Éve (1904). Following the sudden
death of Pierre in 1906, she devoted all her energy to completing alone the

44 Other pioneers also contributed to the design and development of modern naval

submarines:

Gustave Zedé (1825–1891, France). A naval engineer. Built in 1888 an

electricity-driven submarine (30 tons, 17 m long) that reached a range of 59

km at a speed of 15 km/h. In 1896 he invented the periscope.

Thorsten Nordenfeldt (1842–1920, Sweden) was first to equip submarines

with torpedoes (1888).

Simon Lake (1886–1945, U.S.A.) built submarines driven with Diesel engines.

His submarine Argonaut I was first to make long journeys in the open ocean

(1898). In 1902 he developed a periscope with magnifying lenses to sight distant

targets. He also built submarines with wheels, so that they could roll along the

sea bottom.
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scientific work that they had undertaken. In 1908 she was appointed to the
professorship that had been left vacant on her husband’s death. She died of
leukemia caused by the exposure to radiation, a few months after the discov-
eries of the neutron and artificial radioactivity.

1898 CE Martinus Willem Beijerinck (1851–1931, Holland). Botanist.
Introduced the name Virus45 for the infective microorganism found in the
tobacco mosaic disease. It was coined earlier (1801) by Dominique Jean
Larrey (head surgeon of Napoleon’s Egyptian campaign) as the specific ex-
ternal agent causing diseases.

1898–1900 CE Joseph Larmor (1857–1942, England). Irish mathemati-
cal physicist. Derived the Lorentz transformation equations before Lorentz in
his prize-winning essay ‘Aether and Matter’ [completed 1898, published 1900].
It contains not only the exact transformations, but also the proof that one
arrives at the FitzGerald-Lorentz contraction with the help of these transfor-
mations. In this work Larmor already suggested that moving clocks must run
slow, and by how much.

Larmor was first to calculate the rate at which energy is radiated by an ac-
celerated charge. He also discovered the classical effect of an applied magnetic
field B on an electron revolving in a circular orbit [it results in the ‘Larmor
precession’ of the electron’s orbital angular momentum about the magnetic
field direction. The angular velocity of precession is equal to ± e|B|

2m , where
e/m is the ratio of the electron’s charge to its mass.] Through this model he
explained the splitting of spectral lines by a magnetic field.

Larmor was born at Magheragall in Ireland and was educated at Queen’s
University, Belfast and St. John’s College, Cambridge. He taught at Queen’s
College, Galway (1880–1885) and at Cambridge (1885–1932), becoming a Lu-
casian professor there. During 1911–1922 he was member of Parliament for
Cambridge.

1898–1923 CE Repeated outbreak of plague in India. Death toll as high
as 12 million.

1898–1907 CE Valdemar Poulsen (1869–1942, Denmark). Electrical
engineer and inventor. Became known as the Danish Edison. Developed the

45 Virus is the Latin word for ‘poison’. The average virus is about 0.2 micron in

diameter, as compared to 2 micron for the diameter of an average bacterium.

It was found in 1936 that the tobacco mosaic virus was 94 percent protein and

6 percent nucleic acid. Today, we may say that just as a bacterium could be

viewed as a kind of a isolated cell nucleus, a virus could be viewed as an isolated

cell chromosome.
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first magnetic sound recorder (1899). He later invented the arc-transmitter
(1902), important for wireless telegraphy.

Poulsen’s Telegraphone (1898) was the first practical apparatus for mag-
netic sound recording and reproduction. It recorded, in a magnetized steel
piano wire46, the varying magnetic fields produced by a sound. The magne-
tized wire could then be used to play back the sound.

The Telegraphone received considerable attention when it was exhibited at
the Exposition Universelle in Paris (1900). The few words that the Austrian
emperor Francis Joseph spoke into it at that exhibition are believed to be the
earliest surviving magnetic recording.

Poulsen’s arc-transmitter47 was the first device for generating continuous
radio waves, thus aiding the development of radio broadcasting. In 1904 he
was transmitting voice over appreciable distances.

Poulsen was born in Copenhagen. He made his invention while working at
the Copenhagen Telephone Company as an assistant in the technical section.

The Telegraphone was offered commercially in the US in the 1920’s. Some-
times in the 1950’s a workable Telegraphone was found during cleaning in the
cellar at the Interior Department. It could play back a part of a radio broad-
cast from 1921.

In 1927, the American inventor J.A. O’Neill replaced the wire with a
magnetically coated ribbon and since then magnetic tape recorders have dom-
inated the recording industry.

1898–1919 CE Jules-Jean-Baptiste-Vincent Bordet (1870–1961, Bel-
gium). Bacteriologist and immunologist. Discovered the role of blood serum
in the human immune system response (1898) [the complement is the com-
ponent of blood needed for antibodies48 to react with invading bacteria]. His
work made possible new techniques for the diagnosis and control of infectious

46 It recorded continuously for 30 minutes at a speed of 2/3 cm per second. He

stretched his wire across his laboratory and put the recording apparatus on a

trolley that traveled along that wire. He would run along with the moving

trolley, talking into its microphone to record sound on the wire. To play back

this sounds, he would roll a second trolley containing the playback equipment

along the wire, and it would reproduce the sound.
47 The arc was formed between a copper cathode (positive terminal) and a carbon

anode (negative terminal) in an atmosphere of a hydrocarbon gas and a trans-

verse magnetic field. Subsequent efforts with this device by Poulsen and others

made long-wave radio broadcasting possible by 1920.
48 This discovery plus the discovery of other serum factors gave rise to humoral the-

ory of immunity, and the term antigen and antibody came into use. This humoral
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diseases. In 1901, Bordet further showed that complement is used up when an
antibody reacts with an antigen. He was first to isolate (1906) the whooping-
cough bacillus and isolated (1909) the germs for bovine peripneumonia and
Avium diphtheria.

Bordet was born in Soignies and received his MD from the University of
Brussels (1892). Went to Paris (1894) to work in Metchnikoff’s laboratory at
the Pasteur Institute. Became Director of the Pasteur Institute in Brussels
(1901), where he remained until he was succeeded by his son Paul (1940). He
was awarded the Nobel Prize for Physiology or Medicine (1919) for his studies
in immunology.

1899 CE The drug aspirin (acetyl-salicylic acid; C9H8O4) became available
as an effective remedy in relieving minor pain and in reducing fever. It was
introduced by the German chemical firm of Bayer.

The Alsatian chemist Charles-Frederic (Karl) Gerhardt (1816–1856)
discovered aspirin (1853) as a natural by-product of coal tar. It was first syn-
thesized (1859) by the German organic chemist Adolf Wilhelm Hermann
Kolbe (1818–1884) in a reaction named after him, through which salicylic
acid and acetic acid are combined. The result is a colorless odorless powder
with bitter taste; its structural formula consists of a benzene-ring in which

one hydrogen atom is replaced by the radical
—C—OH

‖
O

, and a neighboring

hydrogen atom by the radical
—O— C —CH3

‖
O

.

The discovery of aspirin was motivated by the shortage of the drug quinine,
which led chemists to search for a substitute pain reliever. The medical value
of aspirin was recognized only in 1899 when Heinrich Dreser, a German
scientist, wrote about its effectiveness as a mild sedative. Consequently, its
large-scale manufacturing started at the same year by the German Firm Bayer,
where Felix Hoffman used Kolbe’s synthesizing reaction. Today, aspirin is
used as a antipyretic analgesic agent in relieving the symptoms of headache,
neuralgia, arthritis, rheumatism, common cold and influenza.

view was vigorously contested by Elie Metchnikoff (1845–1916) who described

phagocytosis (the ingestion of bacteria by white blood cells) and proposed a cel-

lular theory of immunity (inflammation). Later, Almroth Wright (1861–1947)

combined both views by showing serum factors necessary for phagocytosis.
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Aspirin

Aspirin is found naturally in certain plants and trees: e.g. the barks of the
willow tree and the silver birch tree as well as the leaves of meadowsweet and
wintergreen plants.

In the summer of 1758, the Rev. Edward Stone, of Chipping Norton,
in Oxfordshire, England, was suffering another of his bouts of fever and
rheumatic twinges. By accident, he chewed on a twig of the white willow tree
(Salix alba), and despite its “extraordinary bitterness”, he was astounded to
find that it relieved his “ague”. He devised a method of drying and pulver-
izing the bark, and then experimented to discover the best dosage. Over the
next five years, he gave his remedy to 50 others, and it “never failed in the
cure”. Enthusiastic at his discovery, on 25 April 1763 he wrote to the Earl of
Macclesfield, President of the Royal Society, but was ignored.

In the 1820s, the Swiss Pharmacist Johann Pagenstecher began ex-
tracting a substance from the leaves of the plant Spirea ulmaria, commonly
called meadowsweet and well known as a pain reliever in folk medicine. His
report in a scientific journal was read in 1835 by the German chemist Karl
Jacob Löwig, who, using the extract, obtained an acid, later to be known
as salicylic acid.

Earlier (1829), the French pharmacist H. Leroux identified the active
element in willow bark to be salicin. In 1838, the Italian R. Piria extracted
pure salicylic acid from methyl salicylate taken from birch tree bark. The Al-
satian chemist Karl Friedrich Gerhardt (1816–1856), a chemistry professor
at France’s Montpellier University, discovered (1853) the molecular structure
of salicylic acid. He also tried to modify its rather severe side effect — the
painful irritation of the stomach lining — but he found the procedure so
time-consuming that he abandoned the drug as “of no further significance”.

But in 1860, the German organic chemist Hermann Kolbe (1818–1884)
first synthesized salicylic acid — a colorless odorless powder with bitter taste.
In the following years the shortage of the drug quinine motivated chemists
to search for a substitute fever reducing and pain reliever medicine. Salicylic
acid, however, continued to be used by people whose pain was worse than
that caused by the drug itself. One of these was a Herr Hoffman, who lived in
the German town of Elberfeld and was crippled by arthritis. His son, Felix
Hoffman, worked as a chemist at the huge Bayer drug plant nearby, and in
1895 he decided to try to change salicylic acid to end his father’s suffering.
He simplified Kolbe’s method and came up with acetylsalicylic acid.
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Hoffman’s colleague, Heinrich Dreser, investigated the overall medical
effects of the new drug and recognized it to be effective not only as a mild
sedative, but also as a reducer of fever and inflammations. In 1899, Hoffman
and Dreser coined a new name for that new drug: aspirin — ‘a’ for ‘acetyl’,
‘spir’ for the Spirea plant family and ‘in’ to round it off.

The following year, the Bayer drug company took out patents on aspirin,
on the intermediate compounds in its manufacture, and on the design of the
manufacturing equipment, and began to make huge amounts of what was to
become their bestselling product all over the world.

In 1914, in anticipation to the outbreak of war and a halt in supplies from
Germany, the British and Australian government offered a prize of £25,000
to anyone in Britain or the British Commonwealth who could come up with
a new formulation for aspirin that could circumvent Bayer’s patents. The
chemist George Nicholas took up the challenge and devised a process that
yielded exceptionally pure aspirin — and won the prize. Following Germany’s
defeat, the victors confiscated the name ‘aspirin’, and the Bayer company lost
its exclusive rights to both the name and the manufacture of the drug.

Since its discovery, aspirin is used as an antipyretic analgesic agent in re-
lieving the symptoms of headache, neuralgia, arthritis, rheumatism, common
cold, influenza, inflammation, swelling and even as a blood thinner for pre-
venting ailments — but with no known clue for its effectiveness. It was only in
1971 that researchers in Britain came up with at least one reason why aspirin
works. Prostaglandins, a group of hormone-like substances found in virtually
all the tissues of the body, seem to increase the sensitivity of nerve endings
at sites of inflammation — and aspirin appears to interfere with the effective
action of these substances.

Aspirin eventually became part of a group known as non-steroidal anti-
inflammatory drugs (NSAIDs) which now include the more recent drug ibupro-
fen. In the 1980s, aspirin was superseded by paracetamol (first used in 1891,
but first marketed in 1953) as a popular painkiller for all ages.

1899–1905 CE René-Louis Baire (1874–1932, France). Mathematician.
Made significant contributions to the analysis of real functions and functionals
and the concept of limit. Introduced the new notions of semicontinuity49 of

49 The condition of continuity of a function f(x) at a point x states that, given ε, an

open interval (x − h, x + h) exists that for any point x′ in it, |f(x′) − f(x)| < ε.
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functionals and classified them into the ‘Baire-functions’. His books on analy-
sis include: Theorie des nombres irrationels, des limites et de la continuite
(1905) and Lecons sur les theories generales de l’analyse (1907–8). Baire was
a student of Volterra and Darboux. Became a professor of mathematics at
the Universities of Montpellier and Dijon.

The limit function of a pointwise converging sequence of continuous func-
tions defined on a metric space is not necessarily continuous; a simple but
profound example suffices to exhibit this property: consider an isosceles tri-
angle with sides AC = BC = 10 units and base AB = 5 units. The sum of
lengths of its sides is therefore 20 units. Mark the midpoints of AC, BC, AB
at E, D, F respectively and draw the 4-segment zigzag line AEFDB whose
length is again 20 units. Repeat this process to each of the triangles AEF and
FDB, thus producing a new 8-segment zigzag line of total length 20 units.
As the process continues, the zigzag line (whose total length is always 20) will
get closer and closer to the 5 unit base AB, and its vertical height will get
smaller and smaller.

Clearly, the length of the zigzag line is a functional of its shape. This
functional is not continuous at the base of the triangle, since the length of
the zigzag line does not necessarily approximate closely the length of the base
as the position of the lines gets close to the position of the base. However,
the functional has the property that Baire called lower semicontinuity, since
all the different zigzag lines we can possibly draw, as close to the base as we
please, have a lower bound, namely 5 units, but no upper bound.

This can be split into two separate conditions:

(i) f(x′) < f(x) + ε,

(ii): f(x′) > f(x) − ε. It is possible that at a point x one of these conditions may

be satisfied and not the other. If for every point x′ in the above open interval

the first condition is satisfied then the point x is said to be a point of upper

semi-continuity of the function f(x). If an open neighborhood of the point x

can be determined for each ε, such that f(x′) > f(x) − ε, then the point x is

said to be a point of lower semi-continuity. A function f(x) is said to be upper

semi-continuous in the interval (a, b), if every point in it is a point of upper

semi-continuity.

Baire (1899) introduced the following classification: continuous functions are

functions of class 0; a function that is a pointwise limit of a sequence of contin-

uous functions is a function of at most class 1. A function is said to be of class

1 if it is of at most class 1 and not of class 0. He similarly defined the notion

of class n for arbitrary natural number n. For example the Dirichlet function

f(x) = limν→∞[limk→∞(cos ν!πx)2k] is of class 2; it takes the value 1 at rational

points and 0 at irrational points.
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The Magnetic Recording Story (1888–1964)

Early attempts to record sound centered about experiments to trace the
vibrations of bodies emitting sound, such as tuning-forks and membranes. In
1807 Thomas Young described a method of recording the vibration of a
tuning-fork on the surface of a drum; his method was fully carried out by
Wilhelm Wertheim in 1842.

Recording the vibrations of a membrane was first accomplished by the
French typographer and painter Léon Scott de Martinville in 1857 by the
invention of the phonautograph, which may be regarded as the precursor of
the phonograph.

This ingenious device consisted of a horn with a thin membrane stretched
over the end, to which was attached a stiff bristle. Rotating beneath the
bristle and advanced by means of a lead screw was a smoked drum. Sounds
directed into the horn caused the bristle to move back and forth across the
smoked paper and trace out a wave-form. For the first time in history it was
possible to see sound.

The dazzling possibility that has escaped both Scott and the acoustic
experimentalist Karl Rudolph König (who actually constructed the first
phonautograph) was the simple idea of reversing the process and retrieving
the original sound which had been recorded.

Edison’s phonograph (1877) operated by indenting, or embossing, a tinfoil-
covered cylinder to a varying depth corresponding to the sound pressure. The
sound track was, therefore, a spiral of varying depth around a cylinder.

In 1888 Oberlin Smith wrote an article in the magazine Electrical World
in which he suggested, probably for the first time, the use of permanent mag-
netic impressions for sound recording. Smith visualized a cotton or silk thread
in which steel dust or short clippings of fine wire were suspended, these par-
ticles to be magnetized in accordance with the undulatory current delivered
from a microphone. He discussed the possibility of employing a hard steel
wire, but did not believe that a wire would divide itself up properly into a
number of short magnets to establish a magnetic pattern that is a replica of
the microphone current. Smith never built an instrument to implement his
idea.

In 1887, Emile Berliner (1851–1929, Germany and U.S.A.), invented
the gramophone. It had a flat disc instead of a cylinder. At the turn of the
century, Berliner made further commercial development of the phonograph
by working out methods of mass-producing shellac records.
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It is at this very moment in the history of recorded sound that Poulsen
appeared on the scene; he came from a good family — his father was supreme
court judge in Copenhagen and wanted his son to be a doctor. Valdemar
accordingly enrolled in medical school, but in 1893 he left that school to work
in the technical section of the Copenhagen Telephone Company.

It is not known how he got the idea of recording sound by varying the
magnetization of a steel wire. It is believed that he never read Smith’s article.
Moreover, there was no theoretical basis for believing that one could magnetize
just one spot on a bar and leave the rest unaffected, and granted that, for
knowing how permanent the record would actually be.

It was an amazing and counter-intuitive idea, and it was Poulsen’s alone!
In contradistinction to the telephone and countless other major inventions
throughout the history of science, nobody else, so far as is known, even claimed
to have invented the telegraphone, as Poulsen named his invention.

In Poulsen’s machine, a large brass cylinder had spiral grooves running
the length of the cylinder. Lying in the groove was a steel wire, against which
rested two poles of an electromagnet, which carried the current generated
by the microphone. The electromagnet was rotating, and thus magnetizing
portion after portion of the spiral wire. When the recording was completed,
the microphone was switched out of the circuit and a telephone receiver con-
nected in its place. Then, by placing the recording head (which now served as
a reproducing head) at the beginning of the wire spiral, the original message
was heard, as the varying magnetization of the wire generated current in the
windings of the electromagnet.

The low playback level (which required the use of earphone) was the beset-
ting weakness of early magnetic recording. When it became obvious with the
passage of a number of years that this obstacle was basic, magnetic recording
dropped out of sight, and interest was not revived until electronic amplifiers
became available.

In the late 1920’s, engineers found a more efficient and convenient substi-
tute for the steel wire used in Poulsen’s recorder. They worked out a method
for using plastic tape coated with magnetic material. Thus J.A. O’Neil
(1927) replaced wire with a diamagnetic ribbon (coated with a metallic
substance such as ferric oxides, chrome dioxide on a mylar tape) while
F. Pfleumer introduced a magnetic tape made of paper coated with magnetic
particles. By 1930, tape recorders based on this principle were developed in
Germany. In 1935, AEG (Germany) introduced the first model of commercial
tape recorder using plastic tape coated with magnetic particles; it was called
the Magnetophone.

Further improvements were made by Joseph Begun (1905–1995, Ger-
many and USA) who built the first tape recorder for broadcasting, later used
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in the 1936 Berlin Olympics. During WWII (1939–1945), the Germans further
developed the process of recording on magnetic tape. After the war, engineers
in the United States continued the German experiments.

Begun, who was born in Danzig (now Gdansk, Poland) and graduated
(1929) with a PhD from the Berlin Institute of Technology, moved to the
United States in 1935 and continued to develop tape recording.

By 1950, tape had largely replaced phonograph records for radio recording.
Stereo tape recorders were introduced in the United States in 1955. About
the same time, television stations began recording programs on videotape. In
the early 1960’s, engineers in the Netherlands developed the cassette audio
tape recorder, which was introduced in the United States in 1964.

1899–1913 CE Jacques Loeb (1859–1924, Germany and USA). Biologist
and pioneer of the mechanistic view of life (The Mechanistic Conception of
Life, 1912). Found a way to remove the eggs from a female of sea-urchin
and make them start their embryonic development, just as if they had been
fertilized by a sperm — but without sperm50. He found that a dose of certain
lifeless chemicals would launch the development of an organism from a single
cell. This he used as a confirmation of the mechanistic view of life, i.e. that
life is essentially a mechanical process which can be entirely explained by the
laws of physics and chemistry.

Loeb was confident that the mechanics of life would prove simple enough
to create life in the laboratory! He in fact prophesied self-assembly, i.e. that
certain molecules assemble themselves into specific, predictable structures,
because their shapes, their own physics and chemistry, will allow them to
assemble only in those patterns. In the next 50 years biochemists would
apply a barely reductionist approach to the study of life, and vindicate the
mechanistic view with the discovery of the double helix of DNA and the
cracking of the genetic code.

Loeb was born to a Jewish family in Mayen, Germany. Educated in phi-
losophy at Berlin and in medicine at Strasbourg (MD, 1884). Assistant pro-
fessor at Würzburg (1886). An interest in the philosophy of the will led to
research which attempted to show, in the animal world, phenomena analogous
to plant tropism. Emigrated to the USA (1891), and held various university

50 Nowadays the procedure is quite routine and is performed even in high school

biology classes to demonstrate the early stages of embryonic development.
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appointments before becoming head of the general physiology division of the
Rockefeller Institute for Medical Research (1910–1024). Sinclair Lewis made
Loeb the model for Max Gottlieb, in his book “Arrowsmith”. Loeb will be
remembered as a champion of materialism in philosophy and the mechanical
view of life in biology.

1899–1916 CE Karl Schwarzschild (1873–1916, Germany). A gifted as-
tronomer whose contributions, both practical and theoretical, were of primary
importance in the development of 20th century astronomy and cosmology. His
name is associated with a number of discoveries: Schwarzschild radiation equi-
librium, ‘distribution function’, ‘velocity ellipsoid’, ‘metric’, ‘horizon’, ‘radius’
and ‘exponent ’.

Schwarzschild was first to suggest that heat and light in stellar atmospheres
are transported mainly by radiation. He enunciated the principle of radiative
equilibrium51, and was first to reorganize clearly the role of radiative processes
in energy transport in the stellar atmospheres.

He found, already in 1899, that the changes in luminosity of cepheids
are accompanied by changes in effective temperature, suggesting that the
variability is a temperature effect. In 1900, when GTR was still unknown,
Schwarzschild apprehended the importance of non-Euclidean geometry.

He concluded that “it is possible, without contradicting the evidence, to
think of the universe as contained within a hyperbolic space with a radius of
curvature larger than 4, 000, 000 radii of the earth’s orbit, or within a finite,
elliptical space with a radius of curvature larger than 1, 000, 000 radii of the
earth’s orbit, while assuming in the latter case an absorption of light equal to
40 magnitudes in a journey around this space”.

Although it is now known that the possible radius of curvature of the
universe must be much larger than the minimum values quoted by him, his
paper represents a pioneering effort in the field now referred to as cosmology.

In 1906 he showed that in the sun’s photosphere (the layers that send
out most of the radiation) the transport of energy outwards from the interior
is performed by radiation. He calculated the increase of temperature with
optical depth on the assumption of radiative equilibrium and showed that one
thereby derives the correct center-to-limb darkening of the solar disc.

Schwarzschild’s work on the solar eclipse of Aug. 30, 1905 is a masterpiece
of insight into observation and theory.

In 1914 he investigated theoretically, and by spectrophotometric measure-
ments, the radiative exchange and the broad H-and K lines (3933, 3968 Å)

51 The idea was later followed up by A.S. Eddington (1916).
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of the solar spectrum. He clearly saw that the further prosecution of his un-
dertakings required an atomistic theory of absorption coefficients, i.e. of the
interaction of radiation and matter . He thus turned with enthusiasm to the
quantum theory of atomic structure found by N. Bohr in 1913. This effort
resulted in his famous works on the quantum theory of the Stark effect and on
band spectra. Independently of A. Sommerfeld, he developed the general
rules of quantization and initiated the quantum theory of molecular spectra.

In December 1915, one month after the publication of Einstein’s series
of four papers outlining GTR, Schwarzschild derived (1916) the first rigorous
solution of Einstein’s full gravitational field equations for the static isotropic
field surrounding a spherical mass. In a second paper of that year, he gave the
solution for the motion of a mass point in the gravitational field of an incom-
pressible fluid sphere. It is there that the ‘Schwarzschild radius’ is introduced
for the first time.

Schwarzschild sent his paper to Einstein to transmit to the Berlin Acad-
emy. In his reply Einstein wrote: “I had not expected that the exact solution
to the problem could be formulated. Your analytical treatment of the problem
appears to be splendid”.

Neither of them, nor anybody else at that time knew that Schwarzschild’s
solution contained a complete description of the external field of a spherically
symmetric, electrically neutral nonrotating black hole. Today we refer to it
as “Schwarzschild’s black hole”.

Schwarzschild was born in Frankfurt am Main and attended a Jewish
school until the age of 11. His exceptional ability in science became evident at
the age of 16, when his paper on the theory of celestial orbits was published.
He was then educated at the University of München. In 1901 he became
professor and director of the observatory at the University of Göttingen, and in
1909 was appointed director of the Astrophysical Observatory at Potsdam. In
1909 he married a non-Jewish woman, against the objections of both families.

He participated actively in WWI as a German soldier and died on May 11,
1916, following a short illness contracted at the Russian front. His son Martin
Schwarzschild (1912–1997) fled Nazi Germany in 1935 and emigrated to the
U.S. in 1937. He became a professor of astrophysics at Princeton in 1947 and
made significant contributions to our knowledge of variable stars and stellar
evolution.

1899–1917 CE Georg Alexander Pick52 (1859–1942, Austria and
Czechoslovakia). Mathematician. Contributed to linear algebra, invariant

52 To dig deeper, see:
• Varberg, D.E., Pick’s Theorem Revisited, Am. Math. Monthly, 1985, 92,

584–587 pp.
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theory, potential theory, functional analysis, differential geometry and dis-
crete (reticular) geometry. Terms like ‘Pick matrices’, ‘Pick–Nevanlinna in-
terpolation’, and the ‘Schwarz–Pick lemma’ are sometimes used today. But
from a lifelong work covering a wide range of topics he is best remembered,
however, for ‘Pick’s theorem’ 53 (1899).

Georg Pick was born in Vienna into a Jewish family. He entered the Uni-
versity of Vienna (1875) and was awarded his doctorate there in mathematics
(1880). He was then appointed as an assistant to Ernest Mach, at the
Charles–Ferdinand University of Prague and later promoted to full professor-
ship at the German University in Prague (1892)54. After his retirement (1927)
he returned to Vienna, only to return to Prague after the Anschluss (1938).

• Funkenbusch W.W., From Euler’s Formula to Pick’s Formula etc., Am. Math.
Monthly, 1974, 81, 647–648 pp.

• Bruckheimer, M. and A., Arcavi, Farey Series and Pick’s Area Theorem, The

Mathematical Intelligencer, 1995, 17, 64–67 pp.

• Coxeter, H.S.M, Introduction to Geometry, John Wiley & Sons: New York,
1969, 469 pp.; 208–210 pp.

• Grünbaum, B. and G.C., Shepard, Pick’s Theorem, Am. Math. Monthly,

1993, 100, 150–161 pp.

53 Pick’s theorem: The area of any simple polygon whose vertices are lattice points,

is given by the formula 1
2
b + c − 1, where b is the number of lattice points on

the boundary while c is the number of lattice points inside (by ‘simple’ polygon

we mean one whose sides do not cross each other). There is no analog of Pick’s

theorem in 3 dimensions that expresses the volume of a polytope by counting its

interior and boundary points.

This theorem was brought to wide attention in 1969 through the popular Math-

ematical Snapshots by H. Steinhaus. It then attracted much attention due to

its simplicity and elegance. Pick’s theorem is linked to several other beautiful

results like the celebrated Euler’s formula and the basic property of the Farey

Series.
54 There is another aspect of Pick’s life which merits attention: Pick was the driving

force behind the appointment of Albert Einstein to the chair of mathemat-

ical physics at the German University of Prague (1911–1913). In 1911 Pick

introduced Einstein to the tensor calculus of Gregorio Ricci–Curbastro and

Tullio Levi–Civita, which later (1915) helped Einstein formulate General Rel-

ativity.

During the years the two were close friends who also shared passionate interest

in music (in fact Pick’s quartet consisted of four professors from the University).
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In July 1942 the Nazis moved him to Theresienstadt and he died there two
weeks later aged 82.

1899–1918 CE Kurt Hensel (1861–1941, Germany). Mathematician.
First to introduce p-adic numbers55 (1899) and p-adic analysis. In recent
years, p-adic arithmetic and analysis has been recognized as an important,
widely generalizable field of mathematics and mathematical physics.

Hensel was born in Königsberg, a descendant of a Jewish illustrious fam-
ily56. He studied mathematics at Bonn and Berlin and came under the influ-
ence of R. Lipschitz, K. Weierstrass, G. Kirchhoff, von Helmholtz and
especially L. Kronecker, under whose guidance he took his Ph.D. in 1884.
In 1901, Hensel became full professor at the University of Marburg, where he
remained for the next 40 years.

From 1901 he was editor of the influential Crelle’s Journal. Hensel’s scien-
tific work is based upon Kronecker’s arithmetical theory of algebraic number
fields and the Weierstrass method of power series development for algebraic
functions. This led Hensel in 1899 to the conception of an analogue in the
theory of algebraic numbers: p-adic numbers57 which he developed into a sys-

55 Though they are fore-shadowed in the work of his predecessor E. Kummer (ca

1829).
56 The four mathematicians: P.G. Lejeune-Dirichlet, E.E. Kummer, H.A.

Schwarz and K. Hensel were all members of the Mendelssohn family in the

following way: Dirichlet married Rebecca (1811–1858), a sister of the composer

Felix Mendelssohn. Felix’s other sister, Fanny (1805–1847) was the paternal

grandmother of Kurt Hensel. The second wife of Kummer, Ottilie Mendelssohn

(1819–1848), was a daughter of a cousin of Fanny. Their daughter, Marie Elisa-

beth Kummer (1842–1921), was married to H.A. Schwarz.
57 The Archimedean property of the real-number system: If x > 0 and if y is an

arbitrary real number, there exists a positive integer n such that nx > y.

To prove the theorem we first show that the set of positive integers in unbounded

above, from which it follows that for every real x there exists a positive inte-

ger n such that n > x. In this theorem we replace x by y
x
, which proves the

Archimedean property (AP) (also known as The theorem of Eudoxos).

Geometrically, AP means that any line segment, no matter how long, may be

covered by a finite number of line segments of a given positive length, no matter

how small. In other words, a small ruler used often enough can measure arbitrar-

ily large distances. Archimedes realized that this was a fundamental property of

the straight line and stated it explicitly as one of the axioms of geometry.

In the 19th and 20th centuries, non-Archimedean geometries have been con-

structed in which this axiom is rejected.
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tematic theory . His pupil, Helmut Hasse further developed p-adic analysis
(1923), and applied it to the theory of algebras over number fields.

Non-Archimedean mathematics —

the strange world of p-adic numbers

The sequence of rational numbers

1.414 213 5
1.414 213 56
1.414 213 562
1.414 213 562 3
1.414 213 562 37
1.414 213 562 373
. . .

get ever closer to
√

2. The central idea here is that we have a sequence of
numbers whose members get closer and closer to each other – they constitute
what is called a Cauchy sequence [i.e. upon picking a positive distance no
matter how small, there always exists some member beyond which any two
members will be within that distance of each other] and therefore ought to
converge to something.

Normally (i.e., with distance defined in the standard way on the real axis),
if we want to know whether two rational numbers are close to each other, and
we have their decimal expansions, we can start from the left, comparing digits,
and the further right you can get before you run into a discrepancy, the closer
together the numbers are.

Now suppose we choose to translate decimal numbers into the binary sys-
tem, e.g.

519 = 1 · 29 + 0 · 28 + 0 · 27 + 0 · 26 + 0 · 25 + 0 · 24 + 0 · 23

+1 · 22 + 1 · 21 + 1 · 20

7 = 1 · 22 + 1 · 21 + 1 · 20
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and write these in the 2-adic form

100 000 011 1. (519)
000 000 011 1. (7)

If we agree to read these numbers from right to left, we may think of them
as being relatively close to each other, differing only in a single digit 1 in the
tenth place. On the other hand, when applying the same thinking to

111. (7)
101. (5),

we may think of them as being rather far apart, since they differ already in
the second digit from the right. We may therefore establish the ‘rule’ that
two 2-adic numbers are ‘close’ if their difference is a multiple of some large
power of 2. This rule can be made more precise, as we will see, and thus be
elevated into a new (so-called 2-adic) norm for rationals – an alternative to
the standard definition of norms as absolute value.

Carrying this logic one step further we can consider sequences of 2-adically
expressed integers that are Cauchy sequences in the 2-adic (though not stan-
dard) sense, and thus – one feels – “ought” to converge in the 2-adic sense,
for example

111. (7)
1 111. (15)

11 111. (31)
111 111. (63)

1 111 111. (127)
11 111 111. (255)

. . .

This looks as if we claim that the number . . . 11 111 111. tends to
some limit. Of course, this looks a bit silly; obviously the sequence
{7, 15, 31, 63, 127, 255, . . . , 2k − 1, . . . } marches straight off to infinity as mea-
sured by the standard norm. Hensel asserted that this sequence converges
(2-adically) to the rational number −1 with the understanding that two num-
bers are close if their difference is a multiple of some large power of 2, and
they get closer and closer as the power of 2 increases. Indeed,

63 = (−1) + 26

255 = (−1) + 28, etc.,

so these numbers are getting closer, converging, to −1 such that we may write

. . . 111 111 111 111. = −1
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We might then ask about . . . 101010101, with its ‘10’ pattern repeating off
to the left. Multiplying this number by 3 (multiplying by 2 and adding the
original) we get

. . . 1 010 101 010.
. . . 101 010 101.

. . . 1 111 111 111. = −1

leading to the results:

. . . 101 010 101. = − 1
3

. . . 010 101 010. = −2
3

. . . 010 101 011. = 1 + 2 · (− 1
3 ) = 1

3

Now, ordinary decimal (or digital in any other base) expansions of fractions
repeating off to the right converge in the standard sense to rationals with
denominators that are not powers of 10 – e.g.58:

0.142 857 = 1
7

0.09 = 1
11

In similar fashion, the binary expansions repeating off to the left converge
2-adically to rationals with denominators that are not powers of 2:

0 01101. = 1
5

0111. = 1
7

0 111 010 0011. = 1
11

011 101 100 0101. = 1
13

It can be shown that non-periodic binary expansions going off to the left do
not 2-adically converge to rational numbers. Yet such expansion are Cauchy
sequences under the 2-adic norm. So, the next logical development was to
define non-periodic 2-adic expansions to be new 2-adic numbers59, just as ir-
rational reals are augmented to the rationals using standard norm. These new

58 A bar over a contiguous of digits, means the group is to repeated ad infinitum.
59 Formally, this procedure is referred to as the topological completion of the set Q

of rationals under the new, 2-adic norm.
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numbers, together with the rationals Q1 comprise the topologically complete
algebraic field (under ordinary arithmetical operations) Q2 of 2-adic numbers.
Proceeding similarly with any other prime base p creates the Qp field of p-adic
numbers. Qp really is a field, since within it one may add, subtract, multiply
and divide (except by 0).

Following this heuristic introduction we turn to a summary of the math-
ematical foundations of p-adic analysis. Since Euclid’s time the three-
dimensional Euclidean space (and its geometry) has been described by means
of real numbers and treated as the physical space. Since the time of Newton
and Leibniz, differential equations, integrals, and other limits involving the
real (and complex) algebraic fields have been used in mathematical physics.

Important extensions of this point of view have been introduced by Rie-
mann, and later by Einstein using the pseudo-Riemannian geometry, but
locally R3 is still our mathematical model for space and R4 for space-time.
It is not customary to discuss why exactly real numbers should be used, and
why this happened. The point is that physical processes take place in space
and time, and space-time coordinates are usually considered as real numbers –
obtained from rationals via topological completion under the standard norm.

In computations of everyday life, in scientific experiments and in computer
based representation of numbers, one is dealing with integers and fractions,
that is with rational numbers; irrational numbers — infinite nonperiodic dec-
imal expressions — are not manipulated directly (only via formal procedures
or rational approximations). Results of any practical action we can express
only in terms of rational numbers. There exists, however, a generally ac-
cepted expectation that if we carry out measurements and calculations more
and more precisely, then in principle we can measure and compute physical
quantities out to any large number of decimal digits and interpret the result
as a real number. This of course is an idealization60.

Thus, let us take as our starting point the field Q of rational numbers. A
geometric notion of distance corresponds to topological notion of norm (and
thus also a metric – i.e. a distance – defined as the norm of a difference) on Q.
A norm on a field is a real-valued function |x| with the following properties:

1) |x| ≥ 0, |x| = 0 iff x = 0

2) |xy| = |x||y|

3) |x + y| ≤ |x| + |y|

60 In the case of purely mathematical manipulations – solving equations and the

like – these expectations are rooted in rigorously-proven theorems.
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The last property is the well-known triangle inequality, which – for the usual
absolute-value norm on the real or rational fields – is a direct consequence of
the definition of the absolute value61.

61 Basic concepts: consider a set X of elements. For each two elements (x, y) we

form a real function d(x, y) with the following properties:

(i) d(x, y) ≥ 0, d(x, y) = 0 iff x = y;

(ii) d(x, y) = d(y, x);

(iii) d(x, y) ≤ d(x, z) + d(z, y) for all z of X.

The function d is called a distance or metric on X. The set X, when endowed

with a metric d(·, ·), is a metric space (X, d). The same set X can give rise to

many different metric spaces (X, d). The set X will mostly be a field in this
discussion of p-adics. [A field F is a set together with two operations + and ·
such that F is a commutative group under +, F − {0} is a commutative group

under ·, and the distributive law holds.] The most common examples, apart
from Q, are the field of real numbers R and the field of complex numbers, C.

In the first case the standard distance between two points on the number line is

the norm d(x, y) = |x − y|. In two (real) dimensions, the norm of the complex
number |a + ib| =

√
a2 + b2 leads to the distance between two complex numbers

d(a + ib, c + id) =
√

(a − c)2 + (b − d)2. Property (iii) is then the actual tri-

angular inequality d(x, y) ≤ d(x, z) + d(z, y) with the geometrical interpretation
that the sum of two sides of any triangle is never smaller than the third side.

The proof of 3) and thus iii) for the real line with the standard absolute-value
norm is simple: adding the inequalities −|x| ≤ x ≤ |x| and −|y| ≤ y ≤ |y| we ob-

tain −[|x| + |y|] ≤ x + y ≤ |x| + |y|.
But if x + y > 0, we have |x + y| = x + y ≤ |x| + |y|;
whereas if x + y ≤ 0, we have |x + y| = −(x + y) ≤ |x| + |y|.
Hence we conclude that |x + y| ≤ |x| + |y| always.

Since a field possesses a unit element “1” (its identity when considered as a mul-

tiplicative group), 2) implies |1| = | − 1| = 1 and thus also | − x| ≡ |x|; the latter

implies (ii) for the metric d(x, y) = |x − y|.

Standard notation

P Set of prime numbers

N Set of natural numbers

Z Ring of integers

Q Field of rational numbers

R Field of real numbers
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Are there any other norms on Q besides the standard absolute-value one?
There is a remarkable theorem by Ostrowski (1921) to the effect that apart
from the standard norm, there is but one other nontrivial way to construct a
metric (norm) on the field of rational numbers — or, more precisely, one such
way per prime number. This norm is called non-Archimedean, and is based
on a non-Archimedean absolute value with the properties 1)–3) and with the
additional requirement that

4) |x + y| ≤ max{|x|, |y|} for all x, y.

This condition implies 3), since max{|x|, |y|} is certainly smaller than the sum
|x| + |y|.

To understand the new, non-standard, p-adic Q-norms, we begin with
a basic property of all rational numbers: Let p be any prime number
(p = 2, 3, 5, 7, 11, . . .). Then any rational number x can be uniquely repre-
sented in the form

x = pν a

b
,

where ν is an integer and a, b are integers not divisible by p, i.e. ν is the
highest positive, or lowest negative power of p which divides x. We denote this
number as

ν = ordpx or νp(x) = p-adic valuation on Q,

and by definition,

x = pνp(x) a

b
, p � |a, b.

For example:

35 = 5 · 7 · 1 ν5(35) = 1
250 = 53 · 2 ν5(250) = 3
96 = 25 · 3 ν2(96) = 5
97 = 20 · 97 ν2(97) = 0
20
3 = 22 · 5

3 ν2( 20
3 ) = 2

1 = 20 · 1 ν2(1) = 0
0 = p∞ · 0 (p-adically) νp(0) = +∞ (formally!)

C Field of complex numbers

Rn n-dimensional Euclidean space

Qp Field of p-adic numbers

Zp Ring of p-adic integers



1899 CE 2915

The basic properties of the p-adic valuation are readily proven to be:

(1) νp(xy) = νp(x) + νp(y);

(2) νp(x + y) ≥ min{νp(x), νp(y)}

with the convention νp(0) = +∞. We note that νp behaves somewhat like a
logarithm would. If we compare the above two properties with the conditions
2) and 4) in the definition of the non-Archimedean norm, we see that they are
very similar, except that the product in 2) has been turned into a sum (as when
taking a logarithm), and that the inequality in 4) has been reversed. We can
“un–reverse” the inequality by changing the sign, and then turn the sum into a
product by putting it into an exponent. This suggests the following realization
of the non-Archimedean norm (otherwise known as the p-adic norm):

|x|p =
{ 1

pνp(x) , if x �= 0
0, if x = 0

Examples:

6 = 31 · 2; ν3(6) = 1; |6|3 = 1
31 = 1

3
15 = 31 · 5; ν3(15) = 1; |15|3 = 1

3
137 = 20 · 137; ν2(137) = 0; |137|2 = 1

Since for x = a
b , νp(x) = νp(a) − νp(b), we have for example:

1
4

=
20

22
; ν2(

1
4
) = ν2(1) − ν2(4) = 0 − 2 = −2

|1
4
|2 =

1
2−2

= 4; | 1
2n

|2 = 2n.

Thus, for a given prime p, two rational numbers are considered to be p-adically
close if their difference is divisible by a large power of p.

The p-adic norm possesses the characteristic properties 1) through 4) above.
Geometrically, the p-adic norm provides us with a notion of “size”: we can
use it to measure distances between numbers, i.e. to put a metric on our
field. Having the metric, we can define open and closed sets and in general
investigate the topology of the field Qp. On other hand, | · |p measures the
degree of p-divisibility of any rational number; hence the importance of the
p-adic norm concept in both number theory and topology. The p-adic metric
is non-Archimedean, – meaning an interval cannot be segmented into shorter
ones; and this metric also leads to rather strange topological properties of
plane figures and 3-dimensional objects, in Qp, such as:
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• all triangles are isosceles;

• any point in a disc is its center;

• any two balls are either disjoint or contained one in another (like two
drops of mercury!)

Thus the geometry of the topological space Qp (the field obtained by
topological completion of Q under the norm | · |p) is surprisingly unlike the
geometry of the field R (reals) obtained by topological completion of Q under
the standard norm. That is a consequence of the stricter version 4) of the
third property of the norm.

p-adic numbers and arithmetic

Any standard-norm real number x can be expanded in an infinite decimal
representation

x = ±10ν [x0 + x1
1
10 + x2

1
102 + . . . ]

= ±10ν
∞∑

0
xn10−n , x0 �= 0, xj = 0, 1, . . . , 9

where ν is the highest power of 10 such that 10ν ≤ |x| < 10ν+1. In general, an
infinite sequence an of digits [0, . . . , p − 1] (p prime) can represent an element
of two distinct additive groups:

• a real fractional number in the interval [0, 1] expressed to base p

• a formal power series a0 + a1x + a2x
2 + · · · + anxn + . . .

The latter polynomial form a ring, in which the two group operations are
formal power-series addition and multiplication modulo p.

Hensel (1908) introduced a third option based upon the observations:

(1) Any ordinary integer D can be uniquely expressed as a finite sum of
powers of a prime p. That is

D = d0 + d1p + · · · + dkpk
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in which di is some integer from 0 to p − 1 [e.g. 14 = 2 · 30 + 1 · 31 + 1 · 32;
216 = 2 · 33 + 2 · 34].

(2) Any nonzero rational number x (not 0) can be written in the form

x = pν a

b
, p � |a, b; ν = integer

where the integer ν is the above defined p-adic valuation.

Hensel then generalized from these two observations and introduced the
Hensel series, known as p-adic numbers

x =
∞∑

i=−ρ

cip
i

where ρ is an integer, c−ρ �= 0, p is a prime and the coefficients, the ci, are
ordinary rational numbers reduced to their lowest form whose denominator
and numerator are not divisible by p. Such expressions need not in general
have values as ordinary rational numbers– nor are they in general real numbers
(for the series is as likely as not to diverge in the standard norm). However,
Hensel’s p-adic numbers do converge under the p-adic norm. We can regard
the Hensel series as analogous to the decimal (or other basis) representations
of real numbers, and rewrite it as

x = pν
∑

0≤n<∞
xnpn

where xn are integers 0 ≤ xn ≤ p − 1. If x0 �= 0, then the representation is
unique and since the p-adic norm of each partial sum is p−ν (again assuming
x0 �= 0), we may extend the p-adic valuation (2) to all p-adic numbers x ∈ Qp

whether rational or not:
∣
∣
∣
∣p

ν
∞∑

n=0

xnpn

∣
∣
∣
∣
p

= p−ν .

Hensel’s series converges with respect to the norm |x|p because one has

|pνxnpn|p = p−ν−n, n = 0, 1, . . .

The above p-adic number representation means that any p-adic num-
ber – i.e. any x in Qp – is a limit (w.r.t. the p-adic norm) of a sequence
{x(n), n → ∞} of rational numbers

x(n) = pν(x0 + x1p + · · · + xnpn).
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According to this scheme, any rational number, including negative num-
bers, can be represented in the p-adic form. For example: (subscript indicate
the prime p used)

−1 = (p − 1) + (p − 1)p + (p − 1)p2 + . . .

(
1
2

)
7

= 8−7
2 = 4 − 1

2 · 7 = 4 + 7·3
1−7

= 4 + 3(7 + 72 + . . . ) = 4 + 3 · 7 + 3 · 72 + . . .

(
1
24

)
3

= 2
3 + 2+3

1−9 = 2 · 1
3 + (2 + 3)[1 + 32 + 34 + . . . ]

= 2 · 1
3 + 2 + 3 + 2 · 32 + 33 + . . .

(−5)3 = 4 − 9 = 4 + 18
1−3 = 4 + 2 · 32 + 2 · 33 + . . .

(
24
17

)
3

= 2·3+2·32

2+2·3+32 = 3 + 33 + 2 · 35 + 37 + 38 + 2 · 39

(
−1

2

)
3

= 1
1−3 = 1 + 3 + 32 + 33 + . . .

This last example can also be derived thus62:

62 Another example serves to show that sometimes p-adics allow a more con-

ceptual proof of a fact that seems obscure and hard to prove otherwise.

Consider the usual Taylor series ln(1 + x) = x − x2

2
+ x3

3
− x4

4
+ . . .. Work-

ing in the field Q2 of 2-adic numbers, we know that powers of 2 are

“small”. We then put x = −2 to compute the natural logarithm of −1:

ln(−1) = ln(1 − 2) = −(2 + 22

2
+ 23

3
+ 24

4
+ . . . ). This is of course divergent in

R, but it turns out to be convergent in Q2. Now, if the series converges, it must
converge to zero, by the property of the logarithm:

2 ln(−1) = ln(−1)2 = ln(1) = 0

This last does not hold in R, because ln(−1) (like
√

−1) is not in R but rather

in C, and is multi-valued. But under | · |2, ln(−1) is in Qp and is unique – and

in fact it vanishes (
√

−1 does not exist in Qp, though).

We conclude that the partial sums

2 +
22

2
+

23

3
+

24

4
+ · · · +

2n

n

must tend (2-adically) to zero as n grows. What this means is that the terms

in the 2-adic expansion “disappear to the right”, – that is to say: the partial
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Consider the equation X = 1 + 3X. This is of course easy to solve, but let
us look at it as a fixed-point problem, i.e., as the problem of finding a solution
for f(x) = x for some function f(x). Such problems are often solved by iter-
ation, plugging in an arbitrary initial value, then computing f(x) repeatedly
in the hope of converging to a fixed point. To try that in our case, we take
x0 = 1 and iterate, so that xn+1 = 1 + 3xn. We get:

x0 = 1
x1 = 1 + 3x0 = 1 + 3
x2 = 1 + 3x1 = 1 + 3 + 32

. . .

xn = 1 + 3 + 32 + ... + 3n.

The sum of the p-adic numbers

x = pν(x)(x0 + x1p + x2p
2 + . . . ), 0 ≤ xj ≤ p − 1, x0 > 0

and

y = pν(y)(y0 + y1p + y2p
2 + . . . ), 0 ≤ yj ≤ p − 1, y0 > 0

is again represented in the canonical form

x+y = pν(x+y)(c0 +c1p+c2p
2 + . . . ), 0 ≤ cj ≤ p−1, c0 > 0,

where the numbers ν(x + y) and cj are uniquely determined from the equation

pν(x)[x0 + x1p + . . . ] + pν(y)[y0 + y1p + . . . ] = pν(x+y)[c0 + c1p + . . . ]

by the method of indefinite coefficients modulo p.

Thus, addition, subtraction, multiplication and division of p-adic numbers
is carried out as for power series. In practice, the mechanics of these operations

sums, written in base 2, begin with longer and longer stretches of zeros. The

translation of this into R results in the theorem:

For each integer M > 0 there exists an n such that the partial sum

2 +
22

2
+

23

3
+

24

4
+ · · · +

2n

n

is divisible by 2M .

What this example points to is that using p-adic methods, and in particular the

methods of the calculus in the p-adic context, we can often prove facts about

divisibility by powers of p which are otherwise quite hard to understand.



2920 5. Demise of the Dogmatic Universe

is therefore very much like the corresponding operations on decimals – with
the exception that “carrying”, “borrowing”, “long multiplication”, etc. go
from left to right rather than from right to left. For example:

3+ 6 · 7+ 2 · 72 + . . .×
4+ 5 · 7+ 1 · 72 + . . .
5+ 4 · 7+ 4 · 72 + . . .

1 · 7+ 4 · 72 + . . .
3 · 72 + . . .

5+ 5 · 7+ 4 · 72 + . . .

1 + 2 · 7 + 4 · 72 + . . .

3 + 5 · 7 + 1 · 72 + . . .
= 5 + 1 · 7 + 6 · 72 + . . .

Thus, in contradistinction to operations with power series (no carrying)
and real numbers (carrying proceeds leftward), carrying is done to the right.
This fact explains why small perturbations can change every digit in the real
case but not in power series and not in Hensel series – where one cannot
disturb digits lying before those that are changed.

Extracting roots in p-adic arithmetic is interesting: Let us try to extract√
6 in Q5, i.e. we want to find {a0, a1, a2, . . . }, 0 ≤ ai ≤ 4 such that

a2 = [a0 + a1 · 5 + a2 · 52 + . . . ]2 = 1 + 1 · 5.

Comparing coefficients of 1 = 50 on both sides gives a2
0 ≡ 1 (mod 5), which

admits the two solutions a0 = 1, 4. Let’s select a0 = 1. Then, compar-
ing coefficients of 5 on both sides gives 2a1 × 5 ≡ 1 × 5 (mod 52), so that
2a1 ≡ 1 (mod 5), and hence a1 = 3. At the next step we have:

1 + 1 · 5 ≡ (1 + 3 · 5 + a2 · 52)2 = 1 + 1 · 5 + 2a2 · 52 (mod 53).

Hence 2a2 ≡ 0 (mod 5), and a2 = 0. Proceeding in this way, we obtain a series

a = 1 + 3 · 5 + 0 · 52 + 4 · 53 + a4 · 54 + a5 · 55 + . . .

where each ai after a0 is uniquely determined. If we had chosen 4 instead of
1 for a0 we would have obtained

a = 4 + 1 · 5 + 4 · 52 + 0 · 53 + (4 − a4)54 + (4 − a5)55 + . . .

The fact that we had two choices for a0, and then, once we chose a0, only
a single possibility for a1, a2, a3, . . ., merely reflects the fact that a nonzero
element in any field – such as Q or R or Qp – always has exactly two square
roots in the field if it has any.
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Do all numbers in Q5 have square roots? We saw that 6 does; what about
7? If we had

(a0 + a1 × 5 + . . . )2 = 7 = 2 + 1 · 5,

it would follow that a2
0 ≡ 2 (mod 5). But this is impossible, as we see by

checking the possible values a0 = 0, 1, 2, 3, 4. Thus (
√

7)5 does not exist (as√
−1 does not exist in R!).

The method, displayed above, of solving the equation x2 − 6 = 0 in Q5

— by solving the congruence a2
0 − 6 ≡ 0 (mod 5) and then solving for the

remaining ai in a step-by-step algorithm — is actually quite general63.

The next table lists some 2-adic square and cube roots that exist in Qp

out to 32 bits, expressed as decimals (base 10) integers.

Note that the Q2 square root of (−7), for instance, has nothing to do with
the square root of (−7) that lives in C, namely 0 + i2.645 751 311 06 . . .. Thus
R, C and Qp are distinct topological spaces that all happen to be fields and
all happen to contain Q (the field of rationals) as a subset. But the question
remains — can one adjoin to Qp roots that do not exist within it, in the same
way that one adjoins

√
−1 to the real numbers?

In the standard norm one can adjoin a single root of x2 + 1 = 0 to the
field R and get an entity that is both algebraically closed (i.e. has all roots of
all polynomials with coefficients in that field) and topologically complete (i.e.
all sequences that ought to converge – i.e. are Cauchy sequences – do indeed
converge). For the p-adics, on the other hand, one has to adjoin an infinite
number of roots and then take another topological completion to fill the gaps.
But the resulting space is, again algebraically incomplete! The procedure can
be iterated, but never actually terminates.

63 Hensel’s lemma (also known as the p-adic Newton’s method of finding a real root
of a polynomial):

Let F (x) = c0 + c1x + · · · + cnxn be a polynomial whose coefficients are p-adic

integers (that is, elements x ∈ Qp such that |x|p ≤ 1, so that x is the p-
adic-norm of a sequence of integers xn =

∑n
k=0 akpk, with ak integers and

0 ≤ ak ≤ p − 1. Any ordinary integer is also a p-adic integer). Let

F ′(x) = c1 + 2c2x + 3c3x
2 + · · · + ncnxn−1 be the derivative of F (x). Let a0 be

an integer 0 ≤ a0 ≤ p − 1 such that F (a0) ≡ 0 (mod p) and F ′(a0) �≡ 0 (mod p).

Then there exists a unique p-adic integer a such that

F (a) = 0 and a ≡ a0 (mod p).

Conversely, if a0 does not exist neither does a.

In the special case treated above, we had

p = 5, F (x) = x2 − 6 F ′(x) = 2x, a0 = 1.

The ring (not field!) of p-adic integers, is denoted Zp.
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Table 5.1: 2-adic square and cube roots

x
√

x(mod 232)

−103 900474053
−95 280134481
−87 667878003
−79 188523961
−71 539081963
−63 708165089
−55 162937693
−47 593439177
−39 884702309
−31 597776241
−23 203854803
−15 34716455
−7 479772853

1 1
9 3

17 869476073
25 5
33 633169809
41 13395661
49 7
57 176171605
65 766918177
73 208539805
81 9
89 662884443
97 1052232783

105 638489235
113 75016423

x 3
√

x(mod 232)

−41 2012075911
−39 840847113
−37 −1681700029
−35 −664015323
−33 −1677128033
−31 903300769
−29 −1627424485
−27 −3
−25 −502320585
−23 1013543353
−21 1982165363
−19 −1098587307
−17 236600911
−15 −1369322415
−13 1526247499
−11 207361069
−9 −259969305
−7 −1885318551
−5 1690153379
−3 819859077
−1 −1

1 1
3 −819859077
5 −1690153379
7 1885318551
9 259969305

11 −207361069
13 −1526247499
15 1369322415
17 −236600911
19 1098587307
21 −1982165363
23 −1013543353
25 502320585
27 3
29 1627424485
31 −903300769
33 1677128033
35 664015323
37 1681700029
39 −840847113
41 −2012075911



1899 CE 2923

In general, the p-adic expansion of a in Qp terminates (i.e. ai = 0 for all i
greater than some N) iff a is a positive rational number whose reduced–form
denominator is a power p. Also, the p-adic expansion of a in Qp has repeating
digits from some point on iff a is rational.

Hensel defined the four basic arithmetical operations with the p-adic num-
bers in Qp and showed that it is a field. A subset of the p-adic numbers can
be put into one-to-one correspondence with the ordinary rational numbers,
and in fact this subset is isomorphic to the rational numbers in the full sense
of an isomorphism between two fields. In the field of p-adic numbers, Hensel
defined units, integral p-adic numbers, and other notions analogous to those
of the ordinary rational numbers.

By introducing polynomials whose coefficients are p-adic numbers, Hensel
was able to speak of p-adic roots of polynomial equations and extend to these
roots all of the concepts of algebraic number fields. Thus there are p-adic
integral algebraic numbers and more general p-adic algebraic numbers, and
one can form fields of p-adic algebraic numbers that are extensions of the
“rational” p-adic numbers. In fact, all of the ordinary theory of algebraic
numbers is carried over to p-adic numbers. Surprisingly perhaps, the theory
of p-adic algebraic numbers leads to results on ordinary algebraic numbers.
It has also been useful in treating quadratic forms and has led to the notion
of valuation fields.

The p-adic numbers can be regarded as a completion of the rational num-
bers in a different way than the usual completion which leads to the real
numbers. Over the last century the p-adic universe became the meeting point
of algebra and analysis; p-adic numbers and p-adic analysis have come to
play a central role in modern number theory. This importance results from
the fact that they afford a natural and powerful language for talking about
congruences between integers.

More recently, p-adic numbers have turned up in other areas of modern
mathematics (algebraic geometry, representation theory) and even in physics.
There is a natural scale–hierarchical and fractal-like structure in the field of
p-adic numbers; and the complications of the interplay between algebraic and
topological completions, and between discreteness and continuum, for those
found in standard real and complex analysis.

Therefore p-adic analysis and non-Archimedean geometry might find a
use the description of quantum–gravity spacetime geometry at small distances
(of order of the Planck scale); indeed, there have been attempts to apply p-
adics to string theories. They have also been applied to study the behavior of
complicated systems such as spin-glasses, as well as chaos, in the framework
of traditional theoretical and mathematical physics.
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1899–1929 CE Edmund (Georg Hermann) Landau (1877–1938, Ger-
many). A leading pure64 mathematician of his time. Was educated in Berlin
and was appointed professor of mathematics at Göttingen (1909–1933), fol-
lowing the death of Minkowski.

Apart from important work on Lambert and Dirichlet series65 (1899–1906)
and the theory of functions, his main interest was in analytic number theory,
especially the distribution of prime numbers and prime ideals. In his books:
“Handbuch der Lehre von der Verteilung der Primzahlen”66 (1909) and “Vor-
lesungen über die Zahlentheorie” (1927), he presented for the first time a

64 Landau had an absolute contempt for applied mathematics.
65 Landau showed that the function

ξ(s) =

(
4

π

) 1+s
2

Γ

(
s + 1

2

)

L(s)

where

L(s) =
1

1s
− 1

3s
+

1

5s
− · · · =

∞∑

n=0

(−)n 1

(2n + 1)s

obeys the functional equation ξ(s) = ξ(1 − s). The proof hinges on the relations

L(1 − s) =

(
2

π

)s

Γ(s) sin
(πs

2

)
L(s)

Γ
( s

2

)
Γ
(
1 − s

2

)
sin

(πs

2

)
= π

√
πΓ(s) = 2s−1Γ

( s

2

)
Γ

(
1 + s

2

)

66 In 1909 Landau introduced the {o, O} notation: the notation f(x) = O {g(x)}
as x → ∞ means that there is a constant K and a value x0 of x such that

|f(x)| < Kg(x) whenever x ≥ x0, i.e. the modulus of f grows no faster than a

constant times g as x → ∞.

The notation f(x) = o {g(x)} as x → ∞, means that for every ε > 0 there

is a value x0 of x such that |f(x)| < εg(x) whenever x ≥ x0. In words: the

modulus of f grows more slowly than g as x → ∞.

There are various obvious extensions of this notation, such as f(x) = O {g(x)}
as x → 0, which means that there exist K, x0 such that |f(x)| < Kg(x)

whenever |x| < x0, or f(x) = F (x) + O {g(x)} as x → ∞, which means

f(x) − F (x) = O {g(x)} as x → ∞, etc. Thus the function 2x + 3x2 is O(x)

when x → 0, but O(x2) when x → ∞. If x is an infinitesimal quantity, then

x2 = o(x), 1 − cos x = o(x). If x is an infinitely large quantity, then x = o(x2).
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systematic account of the analytic number theory. These books stimulated
further research in the field.

During the 1920’s he was the center of a fantastic flowering in the analytic
theory of numbers. In lectures, as in books, his ideal was absolute rigor
and completeness. The assistant was instructed to interrupt if the professor
omitted anything at all. Standing before the big blackboards in the lecture
halls of the new building, Landau wrote rapidly — theorem, proof, theorem,
proof — while a menial with a sponge hastened after him to erase what he
had written so that there would be room for him to write more. He never gave
any explanation of where he was going, but he had organized his material so
well that there was a quality of incredible clarity about his lectures.

Landau was a full member in most European academies. From 1927 to
1928 he was a visiting professor at the Hebrew University in Jerusalem. It
was hoped that he would head the Institute of Mathematics there, but he
declined and returned to Göttingen, only to be forced to resign his chair by
the Nazi regime in 1933.

Landau continued to lecture, but when he announced a course in calculus,
an unruly mob prevented his entering the lecture hall. Hardy arranged for
him to deliver a series of lectures in England, but he returned to Germany,
being tied to his native land by the fact of his wealth and possessions. He
died heartbroken in 1938.

Landau was married to Maria Ehrlich, daughter of Paul Ehrlich (1854–
1915) [discovered the “magic bullet” treatment for syphilis]. His father
Leopold (1848–1920) was a known professor of gynecology at the University
of Berlin, and a descendant of the famous Talmudic scholar Ezekiel Landau
(1713–1793).

Does a Cicada ‘Know’ that 17 is a Fermat-Prime?

History shows us that mathematics has, to a great extent, been developed
by pure mathematicians who were under the spell of the beauty of it; who were
entranced by its mysterious generality and who spent their lives discovering
new facts and relations in this very wide and wondrous domain. Whether
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their results could be applied to astronomy, physics, chemistry, biology or
technology was not, as a rule, their primary concern.

However, the state of the art of the Natural sciences has today reached
a stage where ideas, methods and results, belonging even to such an arcane
branch of mathematics as advanced Number Theory can be applied with great
success. The following examples are instructive:

• In X-ray crystallography of cubic crystals it had been noted that certain
reflections are absent. These correspond to the integers n = 7, 15, 23, 28, . . .,
all of the form

n = 4k(8m + 7) k, m = positive integers.

Number theory tells us that these are numbers which cannot be represented
as the sum of three or less squares. Clearly, this fact is closely related to the
3 dimensions of our Euclidean space.

• The theory of potentials inside a crystal lattice (e.g., the well-known
Madelung constant) can best be derived with the aid of the Jacobi ellip-
tic theta-functions which at the same time form the basis of the analytical
derivation in Number Theory of the representation of an integer as a sum of
squares.

• Several aspects of Planck’s radiation formula and of the Bose-Einstein and
Fermi statistics are closely related to Riemann’s zeta-function ζ(s) defined by

ζ(s) =
1
1s

+
1
2s

+
1
3s

+ · · · =
1

Γ(s)

∫ ∞

0

xs−1

ex − 1
dx (Re s > 1)

and which is at the base of practically all arithmetical investigations on the
distribution of the prime numbers67.

• The partition function p(n) enumerates the number of ways in which the
integer n can be written as a sum of any positive integers, repetition being
allowed. It is defined by the generating function

∞∏

k=1

1
1 − xk

= 1 +
∑

p(n)xn (|x| > 1)

e.g.
6 = 5 + 1 = 4 + 2 = 4 + 1 + 1 = 3 + 3 = 3 + 2 + 1

= 3 + 1 + 1 + 1 = 2 + 2 + 2 = 2 + 2 + 1 + 1
= 2 + 1 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 + 1,

and therefore p(6) = 11.

67 During WWII, even purely mathematical researches on the properties of the

ζ-function were classified
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Application of this partition function and its asymptotic behavior are now

being made in different parts of physics, such as the theory of crystal growth.

• Kelvin’s expression for the capacitance Ca,b of two mutually external

spheres of radii a and b respectively, with their centers a distance c apart,

can be written in the form

Ca,b =
EI

c

∞∑

n=1

{
d(n) − d

(n

2

)}
αn, α =

E − I

E + I

where E and I are the length of the external and internal tangents, respec-

tively, to the circles obtained by cutting the spheres with a plane through

their centers. The symbol d(n) stands for the number of divisors of n [e.g.

d(6) = 4 since the four divisors are 1, 2, 3, 6]. Here d
(

n
2

)
= 0 for any odd n.

• The “sawtooth” function Sa(x) = [x] − x + 1
2 where [x] is the “staircase”

function, equal to the integer part of x (i.e. [x] = n for n ≤ x < n + 1). This

function of time is used in any television transmitter and receiver in order to

scan periodically the lines and frames of the picture. As it turns out, Sa(x),
used so extensively in Radio technology, is a most fundamental function in

Number Theory. Some of the properties of Sa(x) are:

(i)
1
s
ζ(s) =

∫ ∞

0

Sa(u)
us+1

du − 1 < Re s < 0

(ii) Sa(x) =
∞∑

k=1

sin 2πkx

πk

(iii)
n∑

k=1

Sa(x − k

n
) = Sa(nx)

This means that a superposition of n sawtooth functions, each one shifted

over a phase difference of 1
n w.r.t. the preceding one, yields a further sawtooth

function, but of n times the frequency.

(iv) Sa(x) − Sa(x − 1
2
) =

1
2

in(2πx),

where in represents the ‘square-sine’ function which jumps from −1 to +1 at

x = . . . ,−1, 0, 1, 2, 3, . . . and from +1 to −1 at x = . . . ,−1
2 , 1

2 , 3
2 , 5

2 , . . . whereas
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it stays constant at 1 or −1 in the intervals between the jumps. It can be also
written in the forms

in(2πx) =
sin 2πx

| sin 2πx| = (−1)[2x]

= 4Sa(x) − 2Sa(2x)

It can be shown that Sa(x) can be expanded in a series of square-sine functions
of frequency 2n

(v) Sa(x) =
∞∑

n=1

1
2n+1

in(2n−1 · 2πx) =
∞∑

n=1

1
2n+1

(−1)[2
nx]

In contradistinction to the Fourier synthesis, the square-sine synthesis has
the clear advantage that the so-called Gibbs’ phenomenon is absent here! (no
‘overshoot’ at the discontinuities).

(vi)
Sa(Sa(x)) =−Sa(x + 1

2 )

Sa(Sa(Sa(x))) = Sa(x)

Thus, any odd number of iteration always reproduces the original function.
Edmund Landau (1927) discovered the relation

(vii)
∫ 1

0

Sa(mx) · Sa(nx) dx =
1
12

(m, n)
{m, n}

In this beautiful ‘orthogonality relation’,

m, n = positive integers
(m, n) = highest common divisor of m, n

{m, n} = least common multiple of m, n

The Sa(x) function is connected to the first Bernoullian polynomial
B1(x) = x − 1

2 when the latter is extended periodically outside the range
0 < x ≤ 1, namely

(viii) Sa(x) = −B1(x − [x]).

The Landau ‘orthogonality relation’ can then be extended in the form

(ix)

∫ 1

0
Bk(mx − [mx]) ·Bk(nx − [nx]) dx

= (−)k+1 (k!)2

(2k)!B2k(0)
(

(m,n)
{m,n}

)k

.
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These examples suffice to show that the theory of integers, properly com-
bined with modern analysis, can link the beautiful and the applicable, and
thus provide unexpected answers to real-world problems.

Number theory has been considered since time immemorial to be the very
paradigm of pure (and useless) mathematics. This attitude is reflected in
the name integers — meaning the ‘untouched ones’. Yet the role of integer
ratios in musical scales had been widely appreciated ever since Pythagoras
first pointed out their importance.

The occurrence of integers in biology — from plant morphology (e.g. Fi-
bonacci Numbers) to the genetic code — is pervasive. It has been hypoth-
esized (Robert M. May, 1979) that the North American 17-year cicada
selected its life-cycle because 17 is a prime number, prime cycles offering bet-
ter protection from predators than nonprime cycles. The suggestion that the
17-year cicada ‘knows’ that 17 is a Fermat prime has yet to be touted though.

1900 CE, Sept. 08 A hurricane killed about 8000 persons in the Galveston,
Texas, area. It was the worst natural disaster in United States history. The
strength of the storm, coupled with the lack of adequate warning, caught the
population by surprise68.

1900 CE Ivar Erik Fredholm (1866–1927, Sweden). Mathematician.
Among the founders of modern integral-equation theory.

He was educated at the universities of Uppsala (1886) and Stockholm
(1888–1893) and became interested mainly in mathematical physics. In 1898
he received his Ph.D. from Uppsala, and turned to integral equations. He
worked as an actuary until 1906, when he was appointed professor of theoret-
ical physics at the University of Stockholm. In 1900 he developed the essential
part of what is now known as the theory of Fredholm integral equations. This
theory inspired the later investigations of Hilbert.

Previously, integral equations had received the attention of N.H. Abel,
J. Liouville and Eugène Rouché (1832–1910) of Paris, but were quite
neglected. In 1823, Abel had proposed a generalization of the tautochrone

68 Since the successful launching of TIROS (Television and Infra-Red Observation

Satellite) in April 1960, which inaugurated the era of weather observation by

satellites, meteorologists have been able to identify and track tropical storms

even before they become hurricanes.
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problem, the solution of which involved an integral equation that has since
been designated as being of the first kind. Liouville (1837), showed that a
particular solution of a linear differential equation of the second order could
be found by solving an integral equation, now designated as of the second
kind. A method of solving integral equations of the second kind was given
by C.G. Neumann (1877). Fredholm studied integral equations from the
point of view of an immediate generalization of a system of linear algebraic
equations.

1900 CE Yerkes Astronomical Observatory (established 1895) in Williams
Bay, Wisconsin, U.S.A., was equipped with a 40-inch refractor telescope.

1900 CE David Hilbert69 (1862–1943, Germany). The man who set the
course for 20th century mathematics. A professor of mathematics at Göttingen
during 1895–1930.

His mathematical interests were wide ranging: algebraic invariant theory
(until 1892); algebraic number theory (1892–1899); foundations of geometry
(1898–1903); calculus of variations and the Dirichlet principle (1899–1905);
integral equations (1901–1912); mathematical foundations of physics (1912–
1917); logic (1917–1943); foundations of mathematics (1934–1935, with Paul
Bernays70). Hilbert developed the theory of integral equations into a tool
which enabled scientists to make breakthroughs in regions once muddy with
confusion. At the International Congress of Mathematics in 1900 Hilbert
presented his famous list of 23 difficult but inspiring problems, to which he
believed mathematicians should address themselves. Several of these, includ-
ing the Riemann conjecture, remain unsolved to this day.

Hilbert was born in Whelau, near Königsberg, East Prussia, into a Protes-
tant family. Their Biblical names seem to indicate that they were Pietists,
members of a fundamentalist sect which emphasized faith and an attitude of
the heart. His father was a country judge. His mother Therese was an unusual
woman — interested in philosophy and astronomy, and fascinated by prime
numbers.

69 For further reading, see:

• Reid, C., Hilbert, Springer-Verlag: New York, 1970, 290 pp.

• Gustafson, K.E., Introduction to PDE and Hilbert Space Methods, Dover,
1999, 448 pp.

70 Paul Isaac Bernays (1888–1977). Mathematician and philosopher. Of il-

lustrious rabbinic ancestry. Collaborated with Hilbert in his research on the

foundations of mathematics. Contributed to Axiomatic Set Theory and symbolic

logic. Professor of mathematics at Göttingen and Zürich.
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Hilbert grew up in Königsberg, the city of Immanuel Kant and of the
famous seven great bridges through which this city entered the history of
mathematics71 [they had provided the problem, solved a century before by
Euler, which lies at the foundation of the field now known as ‘topology’].

In 1880 Hilbert entered the University of Königsberg where he studied un-
der Heinrich Weber (1804–1891) and Adolf Hurwitz (1859–1919) and met
fellow-student Hermann Minkowski (1864–1909). In 1885 he received his
Ph.D. and went to Paris, where he met the French mathematicians Poincaré,
Darboux, Picard and Gordan. He then returned to his native town and
stayed at the university, where he was appointed ordinary professor of mathe-
matics in 1895. In the same year he accepted a professorship in mathematics
at the University of Göttingen, where he remained for the rest of his life.

The University of Göttingen had a flourishing tradition in mathemat-
ics and physics which persisted over 150 years of uninterrupted great-
ness. It is associated with the names of: Gauss, Weber, Dirichlet,
Riemann, F. Klein, Hurwitz, Hilbert, Minkowski, Nernst, Landau,
Noether, Born, Debye, Weyl, Courant72, Heisenberg, Franck, Runge,
Carathéodory, Voigt, Prandtl, Wiechert, Schwarzschild, Zermelo,
Landé, von Neumann, Wiener, Jordan, Pauli, Wigner, Birkhoff, von
Laue, von Kármán, Siegel, Veblen and many others.

The last decade of Hilbert’s life was darkened by the tragedy brought
upon himself, Göttingen and many of his students and colleagues by the Nazi
regime. In 1935, Hilbert’s antecedents were examined. There was a joke that
there was only one Aryan mathematician in Göttingen and in his veins Jewish
blood was flowing. The joke was based upon the fact that during Hilbert’s
illness, he had received a blood transfusion from Courant. Now the question
was seriously raised if it was not suspicious for an Aryan mathematician to
have the name David. It finally became necessary for Hilbert to produce the
autobiography of his great grandfather Christian David Hilbert to show that
David was a family name.

71 There was at that time a rare concentration of youthful scientific talent in

Königsberg: at one point, Wilhelm Wien, Arnold Sommerfeld and Her-

mann Minkowski were all simultaneously in attendance at the Altstadt Gym-

nasium (1882–1884). David Hilbert attended another school and did not have

the opportunity to become acquainted with any of these boys during his school

days.
72 For further reading, see:

Courant, R. and D. Hilbert, Methods of Mathematical Physics, Interscience Pub-

lishers, 1953, Vols I-II.
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Hilbert died of complications arising from the physical inactivity that re-
sulted from an accident. Not more than a dozen people attended the morning
funeral service in the living room of the house on Wilhelm Weber Strasse in
Göttingen. Arnold Sommerfeld spoke of Hilbert’s work.

At the time of his death, there was scarcely a mathematician in the world
whose work did not derive in some way from that of Hilbert. There are
Hilbert spaces, Hilbert inequality, Hilbert transform73, Hilbert invariant inte-
gral, Hilbert irreducibility theorem, Hilbert base theorem, Hilbert axiom, Hilbert
subgroups, Hilbert class-field.

A Hilbert space (H) is a linear vector space of infinite dimensionality. By a
vector x in such an infinite-dimensional space, we mean an infinite sequence
of complex numbers x = (x1, x2, . . .), where we always assume that these
numbers obey the condition that the series

∑∞
1 |xk|2 converges.

The basic operations on vectors are defined for the vectors of H in just
the same way as for ordinary vectors, since the convergence of the above sum
guarantees the meaningfulness of the sum of vectors and their product by a
finite scalar, as well as of the scalar product

(x, y) =
∞∑

k=1

xkȳk

of two vectors in H (the bar denoting complex conjugate).

73 The infinite Hilbert transform of a function f(x) is defined as

g(u) =
1

π
P

∫ ∞

− ∞

f(x)dx

x − u
.

When viewed as an integral equation for the unknown f(x) in terms of the

known g(x), it has the explicit solution: f(x) = 1
π
P

∫ ∞
− ∞

g(u)du
x−u

. The transform

is thus its own inverse.

The finite Hilbert transform is defined as g(u) = 1
π
P

∫ +1

−1

f(x)dx
x−u

, −1 ≤ u ≤ 1. Its

solution (inverse) takes the form f(x) = 1√
1−x2

{
C + 1

π
P

∫ +1

−1

√
1 − u2 g(u)du

u−x

}
,

where −1 < x < 1, and C is an arbitrary constant. Note that C√
1−x2

is a

solution of the homogeneous equation 1
π
P

∫ 1

−1

f(x)dx
x−u

= 0.

Finite Hilbert transforms are encountered in the theory of dislocations and in the

aerodynamic theory of a thin airfoil. In this context it is known as the airfoil

equation (Prandtl, 1918).
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The sum

(x, x) =
∞∑

k=1

|xk|2 ≡ ‖x‖2 ≥ 0

defines the square of the norm (length) of the vector x. The scalar product
obeys the same basic rules as in finite dimensional spaces. In particular, the
inequality

|(x, y)| ≤ ‖x‖‖y‖
holds, and so does the triangle inequality

‖x + y‖ ≤ ‖x‖ + ‖y‖.

Also, the square of the norm of a sum of orthogonal vectors equals the sum
of the squares of the norms of the summands (Pythagorean theorem).

The fundamental basis vectors in the Hilbert space H described
above are the unit orthogonal (orthonormal) vectors a(1) = (1, 0, 0, . . .),
a2 = (0, 1, 0, . . .), etc. The components xk of a vector x can be expressed
as the scalar products xk = (x, a(k)). Another Hilbert space, denoted by F ,
is the function space, where continuously varying functions of one or several
variables play the role of vectors.

Let f(x) be a function defined on the interval a ≤ x ≤ b. We can regard
f(x) as a vector, where the value of f(x0) is associated with the point x0

in the interval and gives the “component of f(x) with index x0”.

Thus in this case the independent variable x, which varies continuously
through all values in the interval, plays the role of an index for the components,
i.e., f(x) has a continuous set of components. In general H is complex:
f(x) = f1(x) + if2(x), with f1(x), f2(x) real functions defined on the finite
interval a ≤ x ≤ b of the real axis.

To define the norm and the scalar product in F , we need only replace
summation by integration everywhere in the previous formulas. We define the
scalar product by

{ϕ(x), ψ(x)} =
∫ b

a

ϕ(x)ψ(x)dx

and the square of the norm by

‖f(x)‖2 = {f(x), f(x)} =
∫ b

a

|f(x)|2dx.

Let ϕk(x) (k – a discrete index) be an orthonormal system, i.e.,
∫ b

a

ϕp(x)ϕq(x)dx = δpq,
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and let f(x) be any function (vector) in F . We introduce the (generalized)
Fourier coefficients

ak = {f(x), ϕk(x)} =
∫ b

a

f(x)ϕk(x)dx

of the function f(x), which are the magnitudes of the projections of f(x)
onto the vectors ϕk(x) in F . It can be shown that if

∞∑

k=1

|ak|2 =
∫ b

a

|f(x)|2dx,

then the infinite sum
∑∞

k=1 akϕk(x) is the generalized Fourier series of the
function f(x).

In direct analogy with the definition of the distance between points
in an n-dimensional space as the length of the vector x − y [namely,√∑n

1 |xk − yk|2], one defines the “distance” between two functions f(x)

and g(x) in a functional space as
√∫ b

a
|f(x) − g(x)|2dx. The expression

∫ b

a
|f(x) − g(x)|2dx is (up to a normalization constant) the mean-square de-

viation between the functions f(x) and g(x).

Now, in an n-dimensional space, the angle between the vectors x and y is
defined as

cosφ =
∑n

1 xkyk
√∑n

1 x2
k

∑n
1 y2

k

.

The function-space analog is (for real-valued functions)

cos φ =

∫ b

a
f(x)g(x)dx

√∫ b

a
f2(x)dx

∫ b

a
g2(x)dx

, | cosφ| ≤ 1 ,

the latter following from the Cauchy inequality.

Much of modern quantum theory employs infinite-dimensional vector
spaces (Hilbert spaces) in which the unit vectors are quantum state vectors74.

Hilbert was a small, quiet, unpretentious man, but with such an alert mind
and air of deep concentration that in a little while one was under his spell. He

74 These are often describable as complex wave functions of particle positions or

velocities, or (in quantum field theories) as complex functionals of a field dis-

tribution (e.g. electric or magnetic) in R3 space at a fixed time-slice of an R4

spacetime.
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quickly saw relationships which illuminated dark areas and led to solutions
of problems on which other mathematicians had worked without success for
years.

Hilbert’s interests were purely scientific. He cared only for basic theory.
He was not too interested in undergraduate students, but could be easily upset
if a promising graduate student decided to leave mathematics for marriage or
such similar frivolity. He cared little for broad educational questions and less
for practical applications of science, but he was a great teacher, one who puts
his finger on the heart of a problem and lights up the mind with a flash of
understanding.

Students flocked to him as to no one else on the continent. Many of
the 20th century’s most influential mathematicians and physicists, including
von Kármán, Toeplitz, Zermelo, Courant75, Born, Heisenberg and
Oppenheimer, were his devoted disciples. Hilbert held the view that nature
is inherently mathematical, and therefore urged his students to search for
mathematical solutions in areas where practical men saw only insurmountable
chaos.

Hilbert’s greatest heritage is the notion that there is no gap between pure
and applied mathematics and that between mathematics and science as a
whole, a fruitful community can be established. This optimism echoes in
an epitaph of his own words (1930) that has been placed over his grave in
Göttingen:

“Wir müssen wissen. Wir werden wissen”.

75 For further reading, see:

• Courant, R. and D., Hilbert, Methods of Mathematical Physics, Interscience
Publishers, 1953, vols I–II.
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Worldview XXVIII: David Hilbert

∗ ∗∗

“Before beginning I should put in three years of intensive study, and I haven’t
that much time to squander on a probable failure.”
[On why he didn’t try to solve Fermat’s last theorem]

∗ ∗∗

“Galileo was no idiot. Only an idiot could believe that science requires mar-
tyrdom – that may be necessary in religion, but in time a scientific result will
establish itself.”

∗ ∗∗

“Mathematics is a game played according to certain simple rules with mean-
ingless marks on paper.”

∗ ∗∗

“Physics is much too hard for physicists.”

∗ ∗∗

“How thoroughly it is ingrained in mathematical science that every real ad-
vance goes hand in hand with the invention of sharper tools and simpler
methods which, at the same time, assist in understanding earlier theories and
in casting aside some more complicated developments.
The art of doing mathematics consists in finding that special case which con-
tains all the germs of generality.”

∗ ∗∗
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“The further a mathematical theory is developed, the more harmoniously
and uniformly does its construction proceed, and unsuspected relations are
disclosed between hitherto separated branches of the science.”

∗ ∗∗

“One can measure the importance of a scientific work by the number of earlier
publications rendered superfluous by it.”

∗ ∗∗

“Mathematics knows no races or geographic boundaries; for mathematics, the
cultural world is one country.”

∗ ∗∗

“The infinite! No other question has ever moved so profoundly the spirit of
man.”

1900–1906 CE Reginald Aubrey Fessenden (1866–1932, U.S.A.). Pio-
neer radio engineer and inventor. Made first radio broadcast of human voice
and music over the air (Dec. 24, 1906). The first to experiment with modula-
tion of radio waves (1902).

Fessenden was born in East Bolton, Quebec, Canada, of American parent-
age. He was chief chemist of Edison Laboratory (1887–1890); professor at the
University of Pittsburgh (1893–1900); headed National Signaling Co. (1902–
1910). Invented the electrolytic detector (1900), and the heterodyne receiver.

Patented some 300 inventions, including a radio compass, sonic depth
finder, submarine signaling devices and turbo-electric drive for battleships.
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In his 1906 radio broadcast, he spoke from Brant Rock, Mass. to ships
offshore in the Atlantic Ocean on a carrier frequency of 50 kHz with a trans-
mitter of power 1 kilowatt. He put two musical tunes, a poem and a talk on
the air, and they were heard by radio operators several hundred kilometers
away.

1900–1907 CE Hugo Marie de Vries (1848–1935, Holland). Botanist
and geneticist. Rediscovered and verified Mendel’s principle76, marking the
beginning of modern genetics (1900–1903). His studies of osmosis in plant cells
brought to light the crucial role of osmosis in animal and plant physiology.

After a lengthy series of experiments in plant breeding (1890–1900), de
Vries deduced the laws of heredity. He then began to reexamine Darwin’s
concept of evolution in the context of Mendel’s results, and asserted that
mutations77 account for the key evolutionary steps in the creation of new
species.

de Vries was highly critical of the theory of evolution by natural selection
and stressed the importance of mutations in plant evolution, believing that
the genes provide a mechanism through which natural selection can operate.

He was born in Haarlem, Holland and was a professor at Amsterdam
(1878–1918).

1900–1908 CE Ernst Friedrich Ferdinand Zermelo (1871–1953, Ger-
many). Mathematician. Made important contributions to the development of
set theory, particularly in developing the axiomatic set theory that now bears
his name. Following the pioneering work of Georg Cantor he provided (1900)

76 Mendelism: The study of heredity stemming from the ideas of Gregor Mendel

whose key assertion was that the reproductive cells of living organism con-

tain ‘factors’ transmitting discrete characters. A hybrid pea-plant, for example,

formed by crossing tall and dwarf varieties, would receive a factor for tallness

from one parent, and one for dwarfness from the other. Half of its reproduc-

tive cells would contain one factor, and half the other, with no blending. Such

suppositions explained observable distributions of types found in the offspring

of hybrids. Mendel’s work was neglected until rediscovered by de Vries (1900).

Modern Mendelism, however, stems from T.H. Morgan and his colleagues who

successfully identified ‘factors’ as genes (parts of chromosomes) present in the

nucleus of every cell. At first, genes were thought to control visible characters

of the organism on a one-for-one basis. Later it was realized that the genotype-

phenotype relation is more complex.
77 Mutation: Sudden discontinuous changes in an organism which are transmitted

to offsprings, as opposed to the very slight variations described by Darwin (1859).
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an ingenious proof to the ‘well-ordering theorem’78 which led him to identify
(1904) a crucial, but hitherto unrecognized, set-theoretic axiom: the axiom of
choice.

Before Zermelo’s work, this axiom was implicitly assumed in mathematical
logical reasoning, and it is, in fact, a necessary hypothesis in his well-ordering
theorem, as well. It states that if A is a set of non-null disjoint sets a, there
exists a set C containing precisely one element of each a ∈ A.

In 1908 he gave the first axiomatic description of set theory including
seven axioms: Axiom of extensionability, Axiom of elementary sets, Axiom of
separation, Power set axiom, Union axiom, Axiom of choice and Axiom of
infinity. Though later modified to avoid the paradoxes discovered by Bertrand
Russell and others, it remains one of the standard methods of axiomatizing
set theory. In particular, the axiom of choice remained a key result in many
mathematical applications of set theory. Zermelo also contributed to the
calculus of variations and to statistical mechanics.

Zermelo was born n Berlin and studied at Halle and Freiburg. Became
a professor at Göttingen (1905), eventually moving to Freiburg, where he
resigned his post (1935) in protest against the Nazi regime, but was reinstated
in 1946.

1900–1912 CE Max (Karl Ernst Ludwig) Planck (1858–1947, Ger-
many). Distinguished theoretical physicist. Originated quantum theory. As-
serted that radiated energy is emitted in discrete, finite, irreducible units, or
quanta.The amount of energy E contained in each quantum is proportional
to the radiation’s frequency ν, the proportionality factor being a universal
constant, h. It is termed “the elementary quantum of action”, and became
known later as Planck’s constant79 [h = 6.626 075 5 × 10−27 erg-second]. In

78 The ‘well-ordering theorem’: Every set can in principle be arranged in a series

(endowed with a total ordering) for which each subset has a least term. A total

ordering is a relation a ≤ b (a comes before b) so that for any two statements a

and b, either a ≤ b or b ≤ a, and a = b iff a ≤ b and b ≤ a. If there are three

elements a, b and c such that a ≤ b and b ≤ c, then a ≤ c (transitivity property

of the relation).
79 Max Planck first pointed out that a new fundamental length scale could be con-

structed from the constants �, c, and G (� = h/(2π)).

According to the Heisenberg uncertainty principle, the measured energy of a

system is subject to a minimal uncertainty ΔE if measured over a time period

Δt, where ΔE and Δt are related by ΔEΔt ∼ �. If this principle is applied

to the gravitational field, one can expect sudden and unpredictable changes in

the measured energy, momentum and stress distributions, which in turn cause

fluctuations in spacetime curvature by GTR. To estimate the scale of these fluc-
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1900 Planck formulated the correct mathematical description of thermal elec-
tromagnetic radiation from a perfect absorber (black body) in which energy
is emitted and absorbed in discrete energy packets, or ‘quanta’, each of energy
E = hν.

Einstein later showed (1905) that the radiation is also propagated in such
discrete quanta (named ‘photons’) and that these photons carry momentum
(and angular momentum) as well as energy.

A hypothetical body (assumed for simplicity to be surrounded by vac-
uum) that completely absorbs all radiant electromagnetic energy falling on
it, reaches some steady-state temperature, and then re-emits that energy as
quickly as it absorbs it. Since this scenario, although realistic enough in many
actual cases, is thermodynamically out-of-equilibrium, it is usually recast as
the following thought experiment: one considers a box (shape unimportant),
with thick walls composed of the perfect absorber. The equilibrium radiation
spectrum inside this box (‘blackbody radiation’) is then measured outside by
drilling a small hole in the blackbody wall.

Planck assumed that the sources of radiation are oscillating atoms, capable
of jumping from one discrete energy level E2 to another discrete lower level
E1, such that the frequency of the ensuing radiation is ν = E2−E1

h . The
amount of radiant energy in the box per unit volume and per unit wavelength
is given by a distribution law that depends both on the wavelength

(
c
ν

)
and

tuations we may assume that the ripples of geometry produced by the quantum

effects propagate like gravitational waves at the speed of light.

If the uncertainty in spatial position is represented by a sphere of radius r, the

corresponding uncertainty in time is Δt = r
c
. The corresponding energy fluctu-

ations are then of order ΔE ∼ �c
r

. The gravitational self-energy of these fluc-

tuations, i.e., the negative of the energy required to pull the energy ΔE (mass
ΔE
c2

) apart against its own gravity is of order − GM2

r
= − G

r

(
ΔE
c2

)2 ∼ − G�2

r3c2
.

If we choose the length scale r small enough, a point is reached where the

quantum energy will occasionally fluctuate into existence (zero-point motion)

without any external work. This happens when the gravitational binding self-

energy reaches a value comparable to the energy ΔE itself, so that the net

“energy penalty” incurred by the quantum fluctuation may vanish (which is

also the regime where black holes, baby-universes and spacetime wormholes may

arise). This disruptive regime is approached when G(ΔE)2

rc4
∼ ΔE ∼ �c

r
, or

when ΔE ∼
√

�c5

G
∼ 2 × 109 Joule ∼ 1017 GeV. This corresponds to a mass of

√
�c
G

∼ 2 × 10−8 kg, a characteristic fluctuation time
√

�G
c5

∼ 10−44 sec, and

a length scale �c
ΔE

∼
√

�G
c3

∼ 10−35 m, known as the Planck length. At Planck

scales, it is expected that quantum gravity effects would be of great importance.
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the equilibrium absolute temperature T , according to the universal law of
‘blackbody radiation’:

Eλ(λ; T ) =
8πhc

λ5

[
e

hc
kλT − 1

]−1

,

where c, h, k are three universal constants: the speed of light in vacuum,
Planck’s constant and Boltzmann’s constant, respectively.

For blackbody temperatures up to several hundred degrees Kelvin, most
of the radiation is in the infrared region of the electromagnetic spectrum. At
increasingly higher temperatures, the total radiated energy increases and its
peak shifts to shorter wavelengths, so that a significant portion of the black-
body spectrum is radiated as visible light (beginning with red and progressing
to cover more of the visible colors of the rainbow as T increases).

The total energy density (per unit volume) is E =
∫ ∞
0

Eλdλ. The in-
troduction of a new variable ξ = 1

λ

(
hc
kT

)
yields the “Stefan-Boltzmann law”

(1884):

E = 8π
(kT )4

h3c3

∫ ∞

0

ξ3dξ

eξ − 1
= σT 4,

where

σ =
8π4k4

15c3h3
= 7.56 × 10−15erg·cm−3 · deg−4

is the “Stefan-Boltzmann constant”.

The peak of the curve Eλ(λ, T ) is at λ = λm, where
(

∂E
∂λ

)
max

= 0. It
yields “Wien’s displacement law” (1896):

λmT =
hc

(4.965)k
= (0.2898) cm· ◦K.

This law relates a star’s color to its surface temperature: the intensity of light
from a cool star peaks at long wavelengths, and thus the star appears red .

A hot star’s intensity curve is skewed toward short wavelengths, and thus
the star appears blue. The maximum intensity of a star of intermediate tem-
perature (such as the sun) occurs near the middle of the visible spectrum,
giving the star a yellow-white color.

Planck was born in Kiel. He studied at the universities of Münich80 and
Berlin and was appointed a professor in Kiel (1885) and in Berlin (1889),

80 Planck’s teacher, Philipp Johann Gustav von Jolly (1809–1884, Germany),

advised him (1876) against the study of physics, since after all it was essentially

finished (!), so that for anyone who wanted to do active scientific research, it

would scarcely be worthwhile to go into this field.
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where he resided for the rest of his life. In 1918 he was awarded the No-
bel prize in physics. Albert Einstein and Niels Bohr applied Planck’s
quantum theory to problems of photoelectric emission and atomic structure,
respectively. The new theory succeeded in explaining the structure of the
outer part of the atom.

1900–1918 CE Georg Simmel (1858–1918, Germany). Philosopher and
sociologist. Insisted that the natural sciences as well as history offer only an
image of reality that is transformed by the theoretical or historical a priori ;
Philosophy and sociology offer two different aspects of the situation of man
in the world; They are two autonomous interpretations of mental life. He
admitted the influence of economic facts on intellectual attitudes but insisted
that the effects of intellectual patterns on economics act likewise.

He maintained that the decisive factor of human attitude is antecedent to
changes of social and economic institutions. Sociology is conceived by Simmel
as the doctrine of the forms of the relations between individuals, independent
of spiritual contents which are subject to historical change. It is the “geometry
of social life”.

Religion and the arts represent to Simmel autonomous worlds which are
independent of science but accessible to the philosopher, provided he does not
disregard their autonomous foundations; the poet and the artist while forming
their own image of life, (although determined by the historical situation of his
lifetime), transcends historical conditions and testifies that life always hints
beyond itself. The principal problem of influence is formulated by Simmel as
the difficulty to seize life without violating it.

Simmel was born in Berlin to Jewish parents who converted to Christian-
ity. Taught at the University of Berlin (1885–1914) and the University of
Strasbourg. He did not form a school; many of his former pupils died on the
battlefields of WWI. His works have been influential in the United States.

1900–1921 CE Louis Bachelier (1870–1946, France). Mathematician. In
his dissertation (1900) he described the mathematical theory of Brownian mo-
tion, namely — the one-dimensional diffusion of probability. (5 years before
Einstein!). Prior to Wiener he obtained (1913) some important properties
of the so-called Wiener-Lévy process (1923). Bachelier applied the theory to
economy and claimed that successive price-changes are statistically indepen-
dent and follow a one-dimensional Brownian motion.

Bachelier was a professor at the University of Besancon.
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1900–1922 CE Max Wilhelm Dehn (1878–1952, Germany and USA).
Mathematician. Contributed to the foundation of geometry (1900–1906), the-
ory of groups, and topology (1906–1922). Solved the third of Hilbert’s 23 Paris
problems on the congruence of polyhedra.

He showed, as Hilbert conjectured, that a regular tetrahedron cannot be
cut up and reassembled into a cube of equal volume (1900–1901). Dehn wrote
one of the first systematic expositions on topology (1907) and later formulated
important problems on group presentations, namely the word problem81 and
the isomorphism problem.

Dehn was born in Hamburg to Jewish parents. He studied at Göttingen
under Hilbert’s supervision, obtaining his doctorate in 1900. Converted to
Christianity (1900) under Hilbert’s influence. Held academic positions at
the Universities of Münster, Kiel and Breslau (1900–1915). Served in the
German army during WWI (1915–1918). Held the chair of Mathematics at
the University of Frankfurt on M. (1921–1935). Dismissed (1935) by the Nazis
and lived as a refugee in various European countries (1935–1939). Immigrated
to the US (1940) in the wake of the brain-drain82 and held minor academic
positions at the Universities of Idaho, Chicago and Maryland. Finally he
became a professor of Mathematics in Black Mountain College, North Carolina
(1945–1952), where he died at the age of 74.

Two areas, or two volumes, P and Q, are said to be congruent by addition
if they can be dissected into corresponding pairs of congruent pieces (e.g.
familiar proofs of the Pythagorean theorem). Any two equal polygon areas
are congruent by addition, and the dissection can always be carried out with
a straightedge and compasses. Likewise, congruence by subtraction refers to a
case where corresponding pairs of congruent pieces can be added to P and Q
to give two new figures which are congruent by addition. Max Dehn showed
that two equal polyhedral volumes are not necessarily congruent by either
addition or subtraction.

1900–1936 CE Edmund Husserl (1859–1938, Germany). Philosopher
and mathematician. The father of modern existentialism. Developed the

81 The word problem asks the fundamental question of whether there is an algorithm

to determine if a word in a group given by a presentation is trivial. It has since

been shown that no such algorithm exists in general.
82 The United States found itself immeasurably enriched, for almost all the mem-

bers of the Hilbert school and many other European scientists emigrated to that

country. This exodus included: Artin, Courant, Debye, Einstein, Ewald,

Feller, Franck, Friedrichs, Gödel, Hellinger, von Karman, Landé, Lewy,

Neugebauer, von Neumann, Emmy Noether, Nordheim, Ore, Polya,

Szegö, Szilard, Tarski, Olga Taussky, Teller, Weyl, Wigner.



2944 5. Demise of the Dogmatic Universe

philosophy of phenomenology (the study of relationship of the conscious mind
to objects, stressing the existence of an inner reality in the mind). Claimed
that the correct procedure for any philosophy must be the understanding of
things as they are presented in the form of empirical evidence to experience,
and that such understanding must be intuitive.

Concluded that the proper objects of all exact disciplines, philosophy as
well as logic and mathematics, are essences (abstract entities present to the
mind but not themselves states of mind). Where Husserl mainly concerned
himself with the mind’s intellectual activities and their objects, Heidegger
applied the phenomenological method to the emotions.

Husserl was born to Jewish parents in Prossnitz, Moravia and was baptized
as a Christian (1887). Studied in Leipzig and Berlin (where he worked with
Karl Weierstrass) before coming under the influence of the philosopher
Franz Brentano in Vienna (1883). He held posts at Halle (1887–1901),
Göttingen (1901–1916), where he was a colleague of David Hilbert. He
finally settled as professor at Freiburg (1916–1928).

Husserl fell victim to the Nazi academic purge, while his successor and for-
mer pupil, Martin Heidegger, became a Nazi sympathizer. His most influen-
tial books: Logische Untersuchungen (Investigation in Logic, 1900), Ideen zu
einer reinen phänomenologie (Ideas concerning pure phenomenology, 1913),
Die Krisis der europäischen Wissenschaften (The crisis of European Science,
1936).

1900–1938 CE Franz Boas (1858–1942, Germany and USA). Founder of
the science of cultural anthropology. Contributed to ethnology, linguistics
and physical anthropology, especially to the understanding of the mentality,
art, religion, and folklore of primitive societies.

Boas was born to Jewish parents in Minden, Rhine-Westphalia, Germany
and received his doctorate at Kiel (1881). Trained initially as a geographer,
he shifted his interests to ethnology as a result of contacts with Eskimos in
the course of an Arctic expedition. Work in British Columbia, among the
Kwakiutl, led him to devote himself entirely to anthropology and also to
emigrate to the USA (1886).

Between 1900–1905 he provided the first specific proof of cultural relation-
ship between Siberians, Eskimos and American Indians. He demonstrated
that races of man are mixed to some extent and objected to evolutionary
assumptions, geographical determinism and racial determinism.

Boas maintained that culture was a more or less autonomous realm which
could not be explained in terms of other factors and that the complexity
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of cultural phenomena was inevitably overwhelmed by detail.83 His writings
include The mind of Primitive Man (1911) and Anthropology and Modern Life
(1928).

1900–1942 CE Marc Aurel Stein (1862–1943, Hungary and England).
Archaeological surveyor, scholar and explorer. Provided the basis of modern
knowledge of the geography, history and cultures of Central Asia.

As a result of more than 15 journeys on foot and horseback (two of which
alone totaled 40,000 km) through some of the highest and most isolated moun-
tains and deserts in the world, he established for the first time the extent of
the intercourse between Indian, Iranian, Hellenistic and Chinese civilizations,
and the overland lines of communication between China and the West during
the many centuries before these were finally replaced by the sea route.

In his first three journeys (1900–1916) he crossed the Hindukush and
Pamirs, and explored Chinese Turkestan. His most famous discovery was
the Cave of the Thousand Buddhas at Ch’ien-fo-tung, from which he brought
back a great cache of documents in several languages and works of art, dating
from the 5th–10th centuries and which had been walled up in the 11th century.
It was the greatest archaeological discovery ever made in Asia.

Stein undertook a series of jurneys to trace the vestiges of the prehistoric
Indus civilization westward to the Tigris. Other expeditions established the
line of Alexander’s route and of Marco Polo’s journeys. At the age of 80 he
was exploring the gorges of the Indus climbing a succession of passes 4600
meters high.

Stein was born to Jewish parents in Budapest, and educated in his native
city, and at Vienna, Tübingen, Oxford and London, where he took up orien-
tal studies. In 1888 he was appointed registrar of the Punjab University at
Lahore, India, and principal of the Oriental College in the same university. In
1900–1901 Stein directed archaeological expeditions in Chinese Turkestan for
the Indian government. He lived most of his life in India and died at Kabul,
Afghanistan.

83 Boas’ critique of evolutionary and racial assumptions sprang from his Germanic

heritage and a disillusionment with Victorian civilization. This led him to insist

that ‘laws’ of cultural development must be derived from the comparison of

reconstructed histories of particular cultures rather than of characteristics of

various racial groups assumed to be at different stages of development (cultural

relativism).

After WWII, there was a reaction against cultural relativism and a reassertion of

evolutionary themes. After more than a century of serious study, the concept of

culture still evidences the unresolved tension between an evolutionary perspective

and a humanistic orientation toward distinctive species characteristic of man.
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1901 CE On the invitation of Felix Klein (1849–1925, Germany), Ricci-
Curbastro and Levi-Civita published a joint expository memoir illustrating
the application of the tensor methods to geometry and physics, and offering
abundant evidence of the utility of tensor analysis in applied mathematics.

They showed that tensor calculus comes near to being a universal language
in mathematical physics. It allows for compact expression of equations and
provides a guide to the selection of physical laws. In particular, if a system of
equations is expressible as the vanishing of a tensor, then the system will be
invariant under a wide class of transformations of all variables in the system.
But this is precisely the covariance condition imposed by one of the postulates
of General Relativity on a system of equations, if the system is to be an
admissible mathematical formulation of an observable sequence of events in
physics.

Indeed, the theory of tensors was presented essentially in the form used
by Einstein fifteen years later. Marcel Grossmann (1878–1936, Zürich), a
Swiss geometer, mastered the new calculus and taught it to Einstein. This
was timely, since tensor calculus was the particular kind of generalized vector
analysis appropriate for expressing the differential equations of the gravita-
tional field, and the effects of gravity on the flat four-dimensional space of
STR.

1901–1902 CE Martin Wilhelm Kutta (1867–1944, Germany). Applied
mathematician. Known for the Runge-Kutta method (1901) for numerically
solving ordinary differential equations and for his important pioneering work
on the aerodynamic theory of aerofoils (1902). His particular aim was to
understand the effect of curvature — why a horizontally placed curved surface
produced a positive lift.

Kutta studied at Breslau (1885–1890), Munich (1891–1894) and Cam-
bridge (1898–1899). He became a professor at Stuttgart (1914) and remained
there until his retirement (1939).
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On the Wing84

The circulation theory of lift for two-dimensional wings of infinite span
(1902–1909) is anchored in the studies of Lord Rayleigh (1878) on the flow
around a circular cylinder and the discovery by Helmholtz (1858) concerning
the creation of vorticity by sharp edges.

In general, a fluid element in a flow can experience translation, rotation
and distortion. If rotation is absent, the result is a potential flow or a vortex-
free flow; whereas, if the element also rotates, we have a rotation flow or
a vortex flow. Parallel flow with uniform velocity is the simplest example of
vortex-free flow, because the fluid elements just travel parallel with no rotation
nor distortion. In a parallel shear-flow in two dimensions, the velocity is
uniform in the stream direction but non-uniform in a perpendicular direction;
consequently the element is both rotated and distorted. This is the simplest
example of vortex-flow (every element rotates, but the fluid as a whole does
not necessarily rotate).

In a circulatory flow (circular streamline) with constant angular velocity,
there is a vortex flow with no distortion. In this case the tangential velocity
u of each element, though constant in magnitude along a given streamline,
increases linearly from the center outwards.

It is easy to show that if one chooses a velocity distribution along a radial
ray of radius r such that the product ru =constant, the flow is vortex-free.
The expression 2πru is known as circulation; so constant circulation guaran-
tees a potential flow.

To avoid a singularity at r = 0, let us assume a circulatory flow around
a ball or cylinder. Then we already know through the Magnus effect that
when the body is given an additional translatory motion, the combined flows
produce (by Bernoulli’s theorem) a pressure difference, and hence a ‘lift’ force,
perpendicular to the trajectory of the body.

The cylinder, however, has an unsuitable shape for a wing, because the
air’s viscosity creates around it a boundary layer that greatly increases the
body’s resistance to motion. To minimize this effect, the cylinder must be

84 For further reading, see:

• von Karman, T., Aerodynamics, McGraw-Hill, 1963, 203 pp.

• Ashley, H. and M. Landahl, Aerodynamics of Wings and Bodies, Dover, 1965,
279 pp.
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‘streamlined’ in order to make it a good aerofoil. Observations of anatomy
of birds and fishes, together with numerous experiments, have taught man
that the boundary of the leading edge of the moving object should curve as
gradually as possible (large radius of curvature) while the trailing edge be
made as sharp as possible.

All this was known before 1902. But then Kutta (1902) and independently
Joukowski (1906) discovered that when a cylindrical body of arbitrary cross-
section moves with velocity U in a fluid85of density ρ and there is a circulation
of magnitude Γ around it, a force is produced equal to the product ρUΓ per
unit length of the cylinder. The direction of the force is normal to both the
velocity U and the axis of the cylinder.

For a cylindrical body with arbitrary cross-section the circulation is un-
derstood as the product of the mean value of the component of the velocity
along an arbitrary closed curve encircling the body, multiplied by the length
of arc of that curve.

If the flow is vortex-free, this product has the same value independent of
the choice of curve. The calculation of the lift thus reduces to the mathe-
matical problem of the determination of the magnitude of the circulation as
a function of the velocity and as a function of the shape of the wing section.

Now, apart from being able to calculate the circulation, there is the phys-
ical problem of how to generate circulation in the first place. The answer
to this last question was, however, known already to Helmholtz; he showed
that if there is no initial vorticity in the fluid (e.g., if the fluid is originally at
rest), vorticity can only be created by friction or by a presence of sharp edges
on a body.

This means that if the process of putting a wing section in motion creates
a vortex (i.e. a rotation of a part of the fluid), a rotation in the opposite sense
is created in the rest of the fluid, simply by Newton’s principle of action and
reaction. This rotary motion of the fluid appears as the circulation around
the wing section.

So Kutta and Joukowski set forth (1902–1909) to calculate the circulation
generated by a 2-D wing-section with infinite span and having a sharp trailing
edge. In earlier times, the instinctive impression was that air hits the inclined
wing surface and that the airplane is therefore carried by the air below. It is
now clear that the airplane wing is at least partially hung up or sucked up by
the air passing along the upper surface. In fact, the contribution to the total
lift from the negative pressure or suction developed at the upper surface is
larger than the contribution from the positive pressure at the lower surface.

85 U is also equivalently equal to the wind (fluid) speed past a stationary object.
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What happens to the vortex created near the trailing edge? Kutta and
Joukowski showed that this starting vortex is swept away and that conditions
of smooth flow prevail at the trailing edge as the motion develops (‘Kutta-
Joukowski condition’). This allows one to calculate the circulation as if the
vortex did not exist, turning the whole problem of lift into a purely mathemat-
ical exercise86. The assumption was indeed borne out by visual observations,
and the fit of circulation theory with experimental results.

A comparison between Newton’s theory of lift and circulation theory shows
that Newton’s result is in error by an order of magnitude.

If the span of the wing is infinite, no work is required to obtain lift. More-
over, if we neglect friction and assume that the fluid closes around the wing,
the motion can be described by the mathematical solution for nonviscous
fluids (‘d’Alembert’s Paradox’). In real fluids, however, because of frictional
effects, the streamlines do not follow the surface of the body back to the rear
end, but separate from the surface somewhere, thus leaving downstream an
eddying part called the wake.

Consequently, the pressure over the rear part of the body cannot reach such
high values as are calculated for the nonviscous fluid. Because the pressures at
the front and the rear are no longer balanced, a pressure drag occurs, known
as the wake drag. In addition, work must be expanded to obtain lift, known
as induced drag.

To sum up: When the streamlines passing around an obstacle in their path
are not symmetric, the velocity of the flow on one side of an object may be
different from the velocity on the other side. If the flow satisfies Bernoulli’s
law, then there will be lower pressure on the side with higher velocity. The
resulting force on the object will have a major component perpendicular to the
flow. There is a way to create asymmetry of streamlines with a symmetrical
obstacle by imparting it with a rotational motion relative to the surrounding
fluid.

When the body, however, has an intrinsic geometrical asymmetry, like an
aerofoil for example, it is the fluid that is ‘rotated’ around the body, thus
creating the lift. The ‘lift’ on an aircraft’s wing or aerofoil enables it to rise
from the ground. The shape of the wing is designed to produce the circulation.

86 In order to avoid the mathematical difficulty of calculating the circulation in-

tegral for the aerofoil, Kutta and Joukowski found an ingenious method that

automatically reduces the problem to that of a flow past a circular cylinder;

because of the two-dimensional nature of the problem, the conformal transfor-

mation z = ζ + 	
ζ2 (with � constant) maps the aerofoil’s ζ-plane onto the circular

cylinder z-plane, for which an exact solution was known for an incompressible

inviscid fluid (Rayleigh 1878).
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The circulation adjusts itself so that the velocity at the trailing edge (where
a singularity can occur) is finite. Thus a definite value of the lift is obtained
for any given wing speed when steady motion is reached.

1901–1906 CE Henri Léon Lebesgue (1875–1941, France). A leading
mathematician of his day. Revolutionized the field of integration with his
generalization of the Riemann integral. Introduced the ‘Lebesgue measure’,
which deals with the determination of the content of geometrical configura-
tions, or more generally, of point sets.

He began his career at the universities of Rennes and Poitiers. In 1912
he became a professor at Collège de France. Also contributed to the fields of
topology (‘pavement theorem’), Fourier series and potential theory.

Towards the end of the 19th century, mathematical analysis was effectively
limited to continuous functions, and artificial restrictions were necessary to
cope with discontinuities that cropped up with greater frequency as more
exotic functions were encountered. The Riemann method of integration was
applicable only to continuous (and a few discontinuous) functions.

Influenced by the work of E. Borel, C. Jordan and other theories of
measure and content, Lebesgue formulated his theory of measure in 1901. In
1902 he framed a new definition of the definite integral. With the Lebesgue
integration, any bounded summable function is the derivative of its indefinite
integral, except possibly at an ensemble of points with zero measure.

Lebesgue integration was also instrumental in greatly expanding the scope
of Fourier analysis.
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Measure and modern integration (1894–1906)

(A) The Riemann-Stieltjes Integral

Fourier (1822) discovered that the Fourier series expansion depends on
integrals. Assuming that

f(x) =
1
2
a0 +

∞∑

n=1

(an cosnπx + bn sinnπx),

Fourier derived the formulas

an =
∫ 1

−1

f(x) cos nπx dx, bn =
∫ 1

−1

f(x) sin nπx dx

Thus the existence of the series depends on the existence of the integrals
for an and bn, and this in turn depends on how discontinuous f is. It was
known (though not rigorously proved) that every continuous function had an
integral, so the next question was how the integral should, or could, be defined
for discontinuous functions. The first precise answer was the Riemann [1854]
integral concept, based on approximating the integral by step functions.

We recall the definition of the Riemann integral of a bounded func-
tion in the closed interval [a, b]. Suppose that f(x) is bounded over (a, b);
we subdivide this interval by means of the points x0, x1, . . . , xn so that
a = x0 < x1 < x2 · · · < xn−1 < xn = b. Let mν , Mν be the lower and upper
bounds of f(x) in the interval xν−1 < x ≤ xν , and let

s =
n∑

ν=1

mν(xν − xν−1), S =
n∑

ν=1

Mν(xν − xν−1).

When the number of division points is increased indefinitely so that the great-
est interval xν − xν−1 tends to zero, each of the sums s and S tends to a limit.
If the limits are the same for every sequence of partitions

a = x0 < ξ1 < x1 < ξ2 < x2 · · · < ξn < xn = b

as max |xν − xν−1| → 0, then their common value is the Riemann Integral

I = lim
max |xν −xν−1|→0

n→ ∞

n∑

ν=1

f(ξν)(xν − xν−1) ≡
∫ b

a

f(x) dx.
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Stieltjes (1894) showed that it is also possible to integrate f(x) w.r.t. a
function g(x) over the bounded interval [a, b]. He defined

lim
max |xν −xν−1|→0

n→ ∞

n∑

ν=1

f(ξν)(g(xν) − g(xν−1)) =
∫ b

x=a

f(x) dg(x)

for an arbitrary sequence of partitions

a = x0 < ξ1 < x1 < ξ2 < x2 · · · < ξn < xn = b

This generalization is known as the Riemann-Stieltjes integral. One must not
write here the limits of integration as g(a) to g(b) because g(x) may not be
monotonic. It is x, not g(x), that is required to increase steadily throughout
the integration domain.

Stieltjes integrals often have an “intuitive” meaning (line integrals, surface
integrals, volume integrals; integrals over distributions of mass, charge, and
probability). Note that Stieltjes integrals include ordinary integrals and sums
as special cases:

∫ b

a

f(x) dg(x) =
∫ b

a

f(x)g′(x) dx

whenever g(x) is continuously differentiable on (a, b), and

∑

k

f(k) =
∫ ∞

− ∞
f(x) d

∑

k

U−(x − k)
[

U−(x) =
{

0 if x < 0
1 if x ≥ 0

]

The Riemann-Stieltjes integral
∫

f dg exists when f is continuous and g is
of bounded variation. It is then shown that

∫ b

x=a

g df = [fg]ba −
∫ b

x=a

f dg,

which is of much wider validity than the Riemann integration by parts result

∫ b

a

f(x)g′(x) dx = [f(x)g(x)]ba −
∫ b

a

f ′(x)g(x) dx,

valid when both f and g are differentiable for all a ≤ x ≤ b.
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(B) Countable sets; measure

The Riemann integral is valid for a wide class of functions. Any function
with a finite number of discontinuities belongs to this class, and indeed so do
all functions bounded over a finite interval and having a countable infinity of
discontinuities87. Yet, the Riemann integral suffers from several difficulties;
Consider, for example, the classic function of Dirichlet (1829):

f(x) =
{

1 if x is rational
0 if x is irrational

Now, since there are “very few” rationals, only a countable number in fact,
we strongly suspect that the integral of this function is zero. However, if we
form the upper and lower Riemann integrals by partitioning [0, 1] into small
segments Δxi and write

−∫

f(x) dx =
∑

i

Δxi max[f(x)], xi ≤ x ≤ xi + Δxi

∫

−

f(x) dx =
∑

i

Δxi min[f(x)], xi ≤ x ≤ xi + Δxi

in the usual way, we see that no matter how small the subinterval, Δxi, the
maximum of f(x) on this interval is always 1 and the minimum is always zero.
Thus

−∫

f(x) dx = 1 and
∫

−

f(x) dx = 0

so the Riemann integral does not exist.

To cope with such functions, a more general integral, the Lebesgue integral,
was introduced. To this end, mathematicians have invented a new concept —
measure.

Measure generalizes the concept of length (on a line), area (in a plane),
and so on, to quite general set of points. It has its roots in metric geometry,
where a number is assigned to a length, an area or a volume.

In antiquity, measurement was at first considered just a case of comparison
with a standard unit. Then the problem of incommensurables revealed that

87 A necessary and sufficient condition that a bounded function f(x) on (a, b) be

Riemann-integrable is that the points of discontinuity of f(x) form a set of mea-

sure zero.
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the question was not as simple as intuition suggests, and that it requires a
consideration of infinite processes. When calculus was fully developed, there
came the more sophisticated point of view that, for most figures, measures do
not exist a priori but are contingent on the existence of associated limits. The
evaluation of such limits became the task of integral calculus, a tool that also
gives measures for many physical entities such as mass, work, force, charge,
etc.

As scientific history advanced, both physical and abstract geometrical con-
cepts became more complicated, and there arose an ever greater need for
precise mathematical formulation.

In Cantor’s theory of the infinite, one-to-one correspondence is the cri-
terion for determining whether two sets have the same cardinal number or
whether one aggregate “has more elements” than the other. But this does
not give the “length” (or area or volume) of a point set. In fact, the interval
[0, 3] has the same cardinal number of points, C, as [0, 1], although Euclid-
ean geometry says the former is three times the latter in length. (We have
used the bracket [ ] symbolism to indicate that the intervals in question
include the end-points: 0 and 3 in the first case, 0 and 1 in the second.)

What sort of rule can we apply to infinite sets to obtain a suitable measure
for such abstractions as ‘length’, ‘area’ or ‘volume’, so that there may be
applications to their counterparts in the physical world? In dealing with the
set of all real numbers, the Cartesian picture is the number axis. Here one
uses a standard length for the unit interval [0, 1] and marks it off repeatedly
to obtain the intervals [1, 2], [2, 3], etc.

If measure is to be just a generalization of length, it would seem a good idea
to say that the measure of the set of real numbers in each of these intervals is
also one unit. Thus one can readily measure point sets that are either simple
intervals or finite unions of nonoverlapping intervals.

But certain other questions naturally present themselves: If from the set
of all real numbers between 0 and 1 we remove the end-points 0 and 1, what
is the length or measure of the remaining set, that is, the open interval (0, 1)?
Or suppose that we remove all the rational fractions that have 1 as numerator:
1/1, 1/2, 1/3, 1/4, 1/5, . . .; what is the measure of the residue? Or suppose
that we go further and remove all the rational points in [0, 1]; what length
remains?

In the last years of the nineteenth century, Émil Borel gave much cre-
ative thought to these and many more difficult questions of the same kind.
Then, in 1902, with Borel’s ideas as background, Henri Lebesgue (1875–
1941) established a general theory of measure. He abstracted its structure
from all the particular “measure theories” of the past — empirical, abstract
geometrical, Borelian, etc.
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In geometrical measurements, perimeters of polygons are obtained by to-

taling the lengths of individual sides, and area is sometimes found by sub-

dividing a polygon into triangles, measuring these, then adding up. Such

procedures assume: The whole is equal to the sum of its parts. In Lebesgue’s

generalization this becomes: The measure of the logical sum, or union, of
a finite or countably infinite number of nonoverlapping sets is equal to the
sum of their measures. (Where the number of sets is countably infinite, the

existence of a measure will involve the question of convergence of a series.)

On the other hand, generalizations of measures do not illustrate the classic

postulate which asserts that the whole is greater than one of its parts. That

axiom applies to finite sets only. The essence of infinity is that the whole of

an infinite collection does equal a part. Then, in general measure theory, a

statement which combines finite and infinite attributes is: The measure of a
set is either equal to or greater than the measure of a proper subset.

Again, abstraction from particular measures leads to the assumption: The
measure of a set is zero or some positive real number. Also, it is postulated

that the measure of the empty set ∅ is zero.

That “nothing” and zero are not identical is indicated by the fact that the

converse of the axiom just stated is false. If the Lebesgue measure of a set

is zero, this aggregate is not necessarily empty. In general measure theory,

a set consisting of a single point like the origin, or the point x = 1 on the

X-axis, or the point x = 3, etc. measures zero. (The reason for this is that

the interval is the basis of linear measure, and a single point can be covered

by an arbitrarily small interval.)

If we accept a postulate stating that for finite and countably infinite sets

the whole is equal to the sum of its parts, then the measure of a set containing

two isolated points is zero, as is the measure of any finite or countably infinite

collection of isolated points.

Now, referring to a question raised earlier, the aggregate of all fractions

with numerator 1 can be shown to measure zero, and the same is true of

the class of all rational numbers between 0 and 1. For this reason, when

such sets are removed from the interval [0, 1], the residual set still measures 1
unit. Thus the aggregate of irrational numbers in [0, 1] measures 1 unit. More

formally, if we symbolize the class removed by E and the residue by E′, the

logical sum or union of E and E′ is the unit interval. Therefore

(measure of E) + (measure of E′) = measure of [0, 1]
0 + measure of E′ = 1

measure of E′ = 1
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Here the measure of the whole interval is equal to the measure of the part E′,
but is greater than the measure of the part E.

Let us agree that the measure of the interval [0, 1] is its length, 1. The
measure of an arbitrary interval [a, b] is obviously its length, b − a. Similarly,
if we have two disjoint intervals [a1, b1] and [a2, b2], it is natural to inter-
pret the length of the set E consisting of these two intervals as the number
(b1 − a1) + (b2 − a2).

However, the concept of length (measure) of a set in the line requires a
rigorous mathematical definition. The problem of defining the length of sets
or, as we may now say, of measuring sets is very important, because it is
of vital significance in generalizing the concept of an integral88. The concept
of measure of a set also has applications to other problems in the theory of
functions, in probability, topology, functional analysis, etc.

Harnack (1885) discovered that any countable subset {x0, x1, x2, . . . } of
the line continuum R could be covered by a collection of intervals of arbitrarily
small total length: For one can cover x0 by an interval of length ε

2 , x1 by an
interval of length ε

22 , x2 by an interval of length ε
23 , . . ., so that the total

length of the intervals used is ≤ ε.

This seemed to show that countable sets were of measure zero. Yet, mathe-
maticians were reluctant to say this of dense countable sets, like the rationals.
Jordan (1892) demonstrated that dense countable sets like the rationals also
have measure zero.

It can be shown that a set may have the cardinality of the continuum and
yet have measure zero! Indeed, construct the set P (known as Cantor’s perfect
set) as follows: delete from the closed interval [0, 1] the open interval

(
1
3 , 2

3

)
,

which forms the middle third. From each of the remaining intervals
[
0, 1

3

]
and[

2
3 , 1

]
we delete its middle third. This process of deleting the middle third of

the remaining intervals can be continued infinitely and generally, at the nth
step we have thrown out 2n−1 adjacent intervals of length 1

3n . The sum of all
removed intervals is then equal to

S =
1
3

+
2
9

+
4
27

+ . . .
2n−1

3n
+ · · · =

1/3
1 − 2/3

= 1

Thus, the sum of the lengths removed to form the Cantor set is 1; Therefore,
the set itself has the measure zero89.

88 Since an integral can be viewed as the area under a graph, its dependence on

the concept of measure is clear.
89 Alternative proof : Consider all numbers of the form 0.a1a2a3 . . . (in base 3) with

ai = 0 or 2. Evidently, this set covers part of the real numbers in [0, 1]. Now, the
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Armed with this preliminary background, we may next proceed to a more
rigorous treatment of the Lebesgue integral.

(C) The measure of a set of points

We shall now define a new generalization of ‘length’, starting from an open
set, which may contain an infinity of intervals.

The measure of an open subset of the interval (a, b) is defined to be the
sum of the lengths of its constituent intervals. It is always convergent, since
the sum of any finite number of terms is the sum of the lengths of a finite
number of non-overlapping intervals, all contained in an interval (a, b), and
so is not greater than b − a. Hence, the measure of any open set contained in
(a, b) does not exceed b − a.

The exterior measure me(S) of any bounded linear point-set S is the
highest lower bound of the combined length of any set of intervals covering
S. Clearly,

0 ≤ me(S) ≤ b − a

The interior measure mi(S) of S is defined as the difference between
the length b − a of any bounded interval (a, b) containing S and the exterior
measure of the complement of S w.r.t. (a, b):

mi(S) = b − a − me{(a, b) − S}

The set S is a measurable set with the Lebesgue measure m(S) if and only if

me(S) = mi(S) = m(S)

set is non-denumerable since each ai can take two values such that the cardinality

is 2ℵ0 = C. Yet it can be shown that the measure of this set is zero.



2958 5. Demise of the Dogmatic Universe

(D) The measure of a function

A bounded function f(s) defined on (a, b) is measurable on (a, b) if and
only if the set of points x in (a, b), such that f(x) ≤ c, is measurable for every
real value of c.

A continuous function is measurable. All the ordinary functions of analysis
may be obtained by limiting processes from continuous functions, and so are
measurable. An extreme example is

f(x) = lim
m→∞

[
lim

n→∞
{cos m!πx}2n

]

If x is rational, m!x is an integer if m is large enough. Hence

f(x) =
{

1, x rational
0, otherwise

This function presented by Dirichlet — which, as we saw earlier, has no Rie-
mann integral — is therefore measurable.

(E) The Lebesgue integral

Let there be given a real function y = f(x), measurable and bounded on
the bounded interval (a, b). Let c and d be the highest lower bound and the
lowest upper bound of f(x), respectively. As in the Riemann integration, the
integral is obtained by dividing the interval of variation of f(x)

c = y0 < η1 < y1 < η2 < · · · < ηn < yn = d.

Let eν be the set of points x in (a, b) such that yν−1 < f(x) ≤ yν

(ν = 1, 2, . . . , n). Since f(x) is measurable, the sum
∑n

ν=1 ηνm(eν) can

be shown to tend to a unique finite limit I for every sequence of partitions
as max |yν − yν−1| → 0. The quantity

I = lim
max |yν −yν−1|→0

n∑

ν=1

ηνm(eν) ≡
∫ b

a

f(x) dx

is the definite integral of f(x) over (a, b) in the sense of Lebesgue. The
Lebesgue integral can also be defined for an unbounded function, as well
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as for an unbounded interval. If a function has a Riemann integral, then it
also has a Lebesgue integral, and the two are equal.

We have demonstrated above that the Dirichlet function does not have a
Riemann integral. Since it is measurable it has a Lebesgue integral, the value
of which is readily seen to equal zero. Thus, a function can be discontinuous
almost everywhere (except on a set of measure zero) and yet have a Lebesgue
integral.

During the first quarter of the 20th century, the notion of the integral was
further extended. Radon (1913) invented an integral transform that bears
his name. His transform embraces both the Stieltjes and Lebesgue’s integral
and is in fact known as the Lebesgue-Stieltjes integral. The generalizations
cover not only broader or different notions of integrals on point sets of n-
dimensional Euclidean spaces but even domains in more general spaces such
as spaces of functions. The applications of these more general concepts are
now found in the theory of probability and stochastic processes, statistical
mechanics, quantum mechanics and quantum field theory, ergodic theory,
spectral theory, and harmonic analysis (generalized Fourier analysis).

Genetics and Evolution (1901–1909)

The theory of evolution did not arise fully formed in 1859. Of course nei-
ther Wallace nor Darwin knew exactly how isolation and heredity could create
new species, because they did not know genetics90. Modern evolutionists con-

90 Only in the 1940s, as the nature of the gene was becoming clear could Harvard

biologist Ernst Mayr offer an explanation: a new species is a result of some

change in the environment that splits the population. The sudden rise of a

mountain, a prolonged climatic change, the shift of a river — any of these will

suffice. If the two groups are kept apart for a sufficiently long time, unable to

breed with each other, natural selection and random mutations will force their

gene pools to diverge. If the old barrier to the two populations then drops and

the organisms mingle again, they might no longer be able to interbreed because

their genes are no longer compatible (or their interbreeding might result in sterile

individuals). They have become two species.
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tinue to improve on Darwin and Wallace: Hugo Marie de Vries (1848–
1935, Holland), a Dutch botanist, discovered mutations and pointed out the
importance of mutations in the process of evolution (1900). Shortly there-
after (1903) it was recognized that chromosomes, minute threadlike struc-
tures in the cell nucleus, are the carriers of hereditary characteristics. This
discovery, which also showed a linkage of characteristics that Mendel had
not suspected, was made independently by Walter Stanborough Sutton
(1877–1916, U.S.A.), Theodor Boveri (1862–1905, Germany), and Thomas
Hunt Morgan (1866–1945, U.S.A.).

Finally, in 1909, Wilhelm Ludvig Johannsen (1857–1927, Holland), a
plant physiologist, discovered the unit of heredity — the gene — and coined
the terms genotype and phenotype. The particular combination of genes that
an organism has – is called its genotype (genos = race, kind). An organism’s
genotype represents the actual genes that are present in the cells. The effect
caused in the organism by these genes is called its phenotype (pheno = to
show).

The word phenotype refers to what you can see [e.g. the genotype of a pure
tall plant is TT ; its phenotype is tall. The genotype of a pure short plant is tt;
its phenotype is short. The genotype of an F1 pea plant is Tt; its phenotype
is tall. In such a plant the dominant trait appears, or is expressed. The
recessive trait is hidden. Thus the phenotype tall can result from two different
genotypes, TT or Tt. Plants pure for tallness have two T genes. When both
genes of the pair are the same, the organism is said to be homozygous for that
trait. An organism may be homozygous dominant or homozygous recessive.

If the paired genes are not the same, the organism is heterozygous for that
trait. Heterozygous organisms are also called hybrid. Plants that have the
mixed genotype Tt are heterozygous (or hybrid) tall.

Genes that have contrasting effects on a characteristic are called alleles.
Tallness (T ) and shortness (t) are alleles. Genes that have more than two
alleles are said to have multiple alleles (e.g. genes for blood type in humans
have 3 alleles). However, an individual can have only 2 alleles for a particular
characteristic, even when the gene has more than 2 alleles. An individual
inherits just 2 alleles, one from each parent, for each paired gene location on
its chromosomes.

Over the generations, the gene pool of a population (i.e. the total genetic
material) changes. A gene pool changes when the frequency of the alleles in
the gene pool change. Allele frequency is the term used to describe how often
a particular allele occur in a population.

Evolution by natural selection depends on the genetic makeup of an organ-
ism. If a trait is determined by genes, then when a trait is selected, the genes
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for it are also selected. The frequency of traits in a population is determined
simply by observing the members of the population.

In 1908, G.H. Hardy (1877–1947) and W. Weinberg (1862–1937) dis-
covered independently the mathematical result that in a sexually-reproducing
population the frequency of the allele does not change if :

• mating is random

• mutations do not occur

• there is no immigration or emigration

• the population is large and the allele frequencies are high (to prevent
genetic drift, i.e. random changes in gene pool).

Under these ideal conditions, the allele frequencies are related to trait frequen-
cies through an algebraic equation. The conclusion is known as the Hardy-
Weinberg principle and implies that under the above conditions evolution does
not occur.

Random mating means that there is no preference shown for any particular
phenotype when mating [e.g. an individual that is Aa is not preferred over
an aa individual].

Mutations are changes in the genetic material. When mutations occur
in reproductive cells, they can be inherited. Gene mutations introduce new
alleles into a population and are the main source of genetic variation. The
rate is generally very low in any population, but its effects may be amplified
by natural selection.

Migration, the movement of organisms from one location to another, allows
for evolutionary change in two ways. First, it causes gene flow in or out of a
population and consequently the appearance of new traits. Since some traits
may be beneficial for survival in the new environment, gene combinations
that cause these traits would persist or even be preferentially enhanced in
succeeding generations, thus changing their frequency in the gene pool. In
small populations, random events may drastically affect gene frequencies even
in the absence of migration or mutations and cause genetic drift.

The Hardy-Weinberg principle is important in understanding evolution
because it implies that reproduction by itself does not lead to evolutionary
change in large populations. However, changes in the conditions listed above
will result in changes in the gene pool and thus cause evolution. Since the
rigid conditions required for the operation of the Hardy-Weinberg principle are
probably never met in the real world, one mathematically expects evolution
to occur.
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Natural selection is probably the most important factor in changing gene
pools. When environmental conditions favor a particular trait, the frequency
of the alleles that produce that trait will tend to increase in the next genera-
tion. If the environment does not favor a particular trait, the frequency of its
alleles will tend to decrease. Thus, natural selection can lead to the formation
of new species and the extinction of old ones.

1901–1912 CE Wilhelm Weinberg (1862–1937, Germany). Physician
and founder of population genetics. Discovered in 1908 (independently of G.H.
Hardy and slightly ahead of him) the equilibrium law of monohybrid popu-
lations91 and the varied processes of attainment of equilibria in polyhybrid
population. In his studies of population genetics, Weinberg’s derivations of
the correlation between relatives expected under Mendelian heredity took into
account both genetic and environmental factors: he was the first to partition
the total variance of phenotypes into genetic and environmental components.
He was also first to construct morbidity tables modeled after the long-known
mortality tables.

Weinberg was born to a Jewish father and a Protestant mother. He studied
medicine at the Universities of Tübingen and Münich and obtained his Ph.D.
in 1886. After clinical experience in Berlin, Vienna and Frankfurt he estab-
lished himself in Stuttgart as a general practitioner and obstetrician (1889).

91 Hardy-Weinberg principle. In the absence of mutation and selection, the fre-

quencies of genés allele in any large, randomly mating population will reach an

equilibrium distribution in one generation and remain in equilibrium thereafter

regardless of whether the alleles are dominant or recessive. Let A and a be two

different alleles that are passed down in the population from one generation to

the next in a given gene (in standard Mendelian notation, ‘A’ is dominant and ‘a’

is recessive). A given individual could then have one of the three combinations

AA, Aa or aa. Let mating be random and let all three combinations have an

equal likelihood of surviving to produce offsprings. If p and q = 1 − p be the rel-

ative frequencies of A and a respectively in the population, the three genotypes

AA, Aa and aa, occur with relative frequencies p2, 2pq, q2, respectively. The

proportions p2 : 2pq : q2 are reached already in a single generation of random

mating, and are kept stable for all successive generations as long as the basic

assumptions underlying the process do not change.

When there is no alternative way to ascertain whether mating is random, the

Hardy-Weinberg ratio becomes a useful criterion for random mating.
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For 42 years he had a large private practice and also acted in public capaci-
ties as physician to the poor. He attended more than 3500 births, including
more than 120 twin births. He thus came to be interested in the incidence of
monozygotic and dizygotic twin births in his statistical data (1901). He pro-
ceeded to discover differences between mono- and dizygotic twins in a variety
of traits, including the inheritance of a twinning tendency for dizygotic but
not for monozygotic twins.

When Weinberg became aware of Mendelism he asked himself “how would
different laws of inheritance influence the composition of the relatives of given
individuals”. This eventually led him to the Hardy-Weinberg law. Weinberg
had no personal collaborators or students. Only in his later years did a new
generation begin to explore his field of research.

1901–1928 CE Roald Amundsen (1872–1928, Norway). Polar explorer.
First to navigate and chart the Northwest passage and to fix the position of
the North Magnetic Pole (1903–1905); First to reach the South Pole (Dec 14,
1911). Flew across the North Pole with Lincoln Ellsworth and Umberto
Nobile (1926); Disappeared on flight to rescue Nobile who was lost returning
from the North Pole.

Author of North West Passage (1908); The South Pole (1912); The North
East Passage (1918–1920); Our Polar Flight (1925); First Crossing of the
Polar Sea (1927); My Life as an Explorer (1927).

Amundsen was born at Borge, a village near Oslo to a family of Viking
ancestry. From boyhood days his life was singularly purposeful — he wished
to be a polar explorer. Like Fridjof Nansen before him he devoted a great
deal of time to training and strengthening his physique to be ready for the
hazardous adventures he was determined to undertake. He bowed however to
his mother’s wish that he study medicine. But at the age of 21, when both
his parents died, Roald Amundsen sold his medical textbooks, packed away
the cranium he had studied and announced his intention of becoming a polar
explorer.

From his painstaking study of polar expedition literature, Amundsen had
learned their inability to captain a vessel. Consequently he went to sea (1894)
aboard a sealing vessel, gaining his master’s ticket commanding the “Belgica”
expedition to Antarctica (1897–1899). His next project was to head an arctic
expedition, in search of the sea route north of the North American Continent
(so-called Northwest Passage). His scientific goal was to reach the magnetic
north pole. He therefore left for Hamburg, where he studied earth magnetism,
and at the same time laid meticulous plans for his expedition.

He set out from Christiana (now Oslo) in June 1903 on board the Gjoa.
For two years the expedition stayed on King William Island, studying the
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polar magnetic field and learning the Eskimos’ way of life (clothing, food,
customs, dog-team transportation, etc.). In October 1905 he traveled 800 km
with dog-teams across the ice to Eagle City in Alaska to tell the world of the
expedition’s achievement. While making plans to drift with Nansen’s Fram
with the ice from Siberia toward the North Pole, he changed his plans (1910)
and won the race to the South Pole, beating Robert Falcon Scott to it.

Amundsen’s victory in the race for the South Pole by no means satisfied his
desire to reach new goals. On his return from Antarctica, he immediately set
preparations in motion for a new expedition. The Arctic was still Amundsen’s
first love, and he aimed to explore its remaining unknown areas and to repeat
Nansen’s attempt to drift over the Pole. WWI delayed the execution of the
plan, but in June 1918 the expedition left Norway. The “Fram” was no longer
seaworthy, so Amundsen designed his own ship, the “Maud”, christening it —
characteristically enough — not with champagne, but with a block of ice.

The “Maud” expedition, loaded with apparata for oceanographic, me-
teorological and earth-magnetism measurements, was the biggest and best
equipped geophysical expedition ever to have embarked on a polar explo-
ration. But the project was to bring one disappointment after another.

Sailing into the Arctic, the ship froze into the coastal ice and lay helpless
for the two first winters. It soon needed extensive repairs. These were carried
out in Seattle where the “Maud” was equipped for more years in the ice.
In June of 1922 the ship again moved north, only to freeze fast by Wrangel
Island, on the far northeast of the USSR.

The ship moved with the ice onto the continental shelf off northeastern
Siberia, where it remained for three years.

The ambitious expedition had failed to attain its geographical goals,
but the geophysical data which was compiled, largely by meteorolo-
gist/oceanographer Harald Ulrik Sverdrup, earned the “Maud” expedi-
tion the reputation of being one of the most important research projects ever
carried out in the Arctic.

In May 1926 Amundsen left Spitsbergen aboard the airship Norge. With
him were Lincoln Ellsworth, the Italian Umberto Nobile — who had con-
structed the vessel and flew it — and the pilot Hjalmar Riiser-Larsen, who
served as navigator. In addition there was a crew of 12.

After a flight of only 16 hours, the men were able to drop the Norwegian,
American and Italian flags over the North Pole. On 14 May the “Norge”
landed at Teller in Alaska. The crew had covered 5,456 kilometers in 72
hours, and were the first men to have flown from Europe to America. The
route of the “Norge” had been plotted right across unknown polar territory,
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and Amundsen was able to state that there were no land areas there. The
last remaining blank on the world map had been filled in.

The acclaim of the world reached new heights. In the USA and Japan
in particular, his name was especially revered. But the period was saddened
by an unfortunate enmity that had arisen between Amundsen and Umberto
Nobile, who tried to detract from Amundsen’s part in the “Norge” flight,
while Amundsen criticized the airship.

Nevertheless, he showed his magnanimity to the full when the news came
in May, 1928 that Nobile’s new airship, the “Italia” had crashed in the Arctic.

Without hesitation Amundsen volunteered to take part in a rescue at-
tempt, and in June he was one of the six men who took off from the town of
Tromsø in a French aircraft, the Latham. Nobile and his crew were rescued
on 22 June. But three hours after Amundsen’s plane took off it transmitted
what were to be its final signals. The aircraft never returned.

In a letter, describing his reactions at the time he reached the South Pole
on Dec 14, 1911, Amundsen openly confessed that “no man has ever stood
at the spot so diametrically opposed to the object of his real desires”. For
Amundsen, the man who went where none have gone before, a new goal
always beckoned. He himself described his life as a “contest journey towards
the final destination.”

1901–1935 CE Issai Schur (1875–1941, Germany and Israel). Mathe-
matician. Contributed to number theory and algebra. Laid the foundations
to the theory of linear representations of groups. Extended finite group theory
to compact groups. Named after him are: Schur’s canonical form (triangu-
lar matrices), Schur index, ‘S-functions’, Schur’s inequality, Schur’s lemma
(irreducible matrices) and Schur-Toeplitz theorem92.

Schur was born in Mohilev, the Ukraine, and was educated at the Uni-
versity of Berlin (1894–1901). He was a pupil of Frobenius. In 1920 he was
appointed a professor of mathematics in Berlin, but was forced to relinquish
his position in 1935 because of the Nazi race laws. Schur came to Israel in
1939, and died in Tel-Aviv.

1901–1940 CE Karl Landsteiner (1868–1943, Austria-Hungary and
U.S.A.). Immunologist and pathologist. Elucidated the fundamental basis
of immunological processes. One of the founders of immunochemistry and
the discoverer of the basic blood types. Defined the relationships between an-
tibody and antigen with chemical precision. Awarded (1930) the Nobel prize
for physiology or medicine for the discovery of the blood groups.

92 A matrix is unitarily similar to a diagonal matrix iff it is normal.
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Discovered (1901) the A, B, O human blood types, the ABO classification,
and showed that there are also many subsidiary groupings (1927), one of
which, Rh (Rhesus) is important in the aetiology of hemolytic disease of the
newborn (1940). This discovery made possible the development of safe blood
transfusions. It also provided useful techniques for establishing paternity and
for genetic studies on the origins of human populations. Discovered (1908)
that a virus causes poliomyelitis.

Landsteiner explored and defined the various types of immune response
and was the first to realize that allergies have an immunological basis. In 1927
he reported (with Philip Levine) the discovery of the M and N agglutinogens.

Landsteiner was born in Vienna to Jewish parents93. After graduating
in medicine (1891) he studied chemistry under Emil Hermann Fischer.
In 1898 he returned to Vienna to begin the lifelong studies which were to
transform the science of immunology and greatly increase our understanding
of the body’s mechanism for protection against disease. From 1909 he was a
professor of pathological anatomy, but in 1922 he fled the chaos of postwar
Vienna and eventually reached the U.S.A. to join the Rockefeller Institute in
New York (1922–1929).

1902 CE, May 08, 07:52 LT Eruption of Mont Pelée on the Island of
Martinique destroyed the Caribbean coastal town of St. Pierre, and all but
two of its 28,000 inhabitants perished within minutes by a nuée ardente94.
The hot-gas hurricane avalanche plunged down the slopes at a speed of about
100 km/h and engulfed the town with a searing 800 ◦C emulsion of gas, glass
and dust. The gas was mostly CO2. The city was burned to ashes by a fire
storm, similar to that which occurred in several German cities during WWII

and the atomic destruction of Hiroshima (and perhaps the fire and brimstone
of Sodom and Gomorrah!).

93 Landsteiner filed an injunction to prevent his inclusion in Who’s Who in Amer-

ican Jewry. He explained:

“It will be detrimental to me to emphasize publicly the religion of my ancestors,

first as a matter of convenience, and, secondly, I want nothing in the slightest

degree to cause any mental anguish, pain, or suffering to any members of my

family. My son is now nineteen years old and he has no suspicion that any of his

ancestors were Jewish.”
94 Hot ash and dust fragments and gases are ejected in a glowing cloud that runs

downhill with amazing speed. The solid particles are actually buoyed up by

the hot gases, so that there is little frictional resistance to this incandescent,

fluidized avalanche. It is a silent and swift killer. Frank Alvord Perret (1867–

1943, U.S.A.) made extensive observations of hundreds of nuées ardentes at close

quartes since 1902, and provided the basis for much of the later work in this field.
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It is sobering to scientists who render advice to others to recall the state-
ment of Professor Landes of St. Pierre College, issued a day before the cat-
aclysm: “The Montagne Pelée presents no more danger to the inhabitants
of Saint Pierre than does Vesuvius to those of Naples”. Professor Landes
perished with the others.

1902–1903 CE Walter Stanborough Sutton (1877–1916, USA). Physi-
cian and geneticist. Provided first conclusive evidence that chromosomes carry
units of inheritance and occur in distinct pairs. His work formed the basis for
the chromosomal theory of heredity.

He suggested that Mendel’s “factors” are located on chromosomes. Af-
ter observing chromosomal movements during meiosis, Sutton developed the
chromosomal theory of heredity. He noticed that chromosomes occur as pairs,
and that gametes (egg and sperm cells) receive only one chromosomes from
each pair when they form during meiosis. This corroborated Mendel’s theory
that the genetic “factors” were segregated. Sutton gave Mendel’s “factors”
the name we use today: “genes”.

In 1903 Sutton [and independently Theodor Boveri (1862–1915, Ger-
many) proposed that each egg or sperm cell contains only one of each chro-
mosomes pair. This connected two phenomena: the patterns by which pairs
of Mendel’s factors assort themselves and the precisely similar sorting and
recombination of the chromosomes in the formation of the germ cells and the
fertilization of the egg.

Sutton was born in Utica, NY. Had private surgical practice in Kansas
city.

1902 CE Luigi Bianchi (1856–1928, Italy). Mathematician. Obtained
cyclic relations between the covariant derivatives of Riemann’s symbols. These
identities have proven to be of the greatest importance for subsequent re-
searches, both in differential geometry and relativity. In any space with an
affine connection, not necessarily Riemannian, one can define the Riemann
curvature tensor. The Bianchi identity is then a differential relation satisfied
by the Riemann tensor components, their first derivatives and the connection.

These identities can be extended to the curvature on an arbitrary fiber
bundle, where they take on the simple form95 DΩ = 0, in the powerful

95 Starting from the Riemann-Christoffel curvature tensor

Ri
jk	 = Γi

rkΓr
j	 − Γi

r	Γ
r
jk +

∂Γi
j	

∂xk
−

∂Γi
jk

∂x	
,

we assume that the affine connection Γi
jk is symmetric in its lower indices and

employ geodetic coordinates (in which locally Γ = 0) at the point being consid-
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Cartan notation. The deep significance of the Bianchi identity is its pivotal
role in proving the relation between analytical integrals over a manifold and
topological indices.

Bianchi was born in Parma and died at Pisa. He studied under Betti and
Dini at the University of Pisa and then continued his studies at Münich and
Göttingen under Klein. From 1881 onwards he was a professor at Pisa.

In the context of general relativity, the contracted form of these identities
ensure automatic local energy-momentum conservation in the Einstein field
equations.

1902–1908 CE William Maddock Bayliss (1860–1924, England). Phys-
iologist. With Ernest Henry Starling (1866–1927, England), physiologist,
found (1902) the first evidence of the existence of hormones through their
discovery of the digestion hormone secretin (secreted by the intestine and
activating the pancreas to liberate digestive fluids). Starling used the word
hormone96 (1905) to describe secretin and other substances produced in one

ered. The covariant derivative of the above expression is then simply

Ri
jk	;m =

∂Ri
jk	

∂xm
=

∂2Γi
j	

∂xm∂xk
−

∂2Γi
jk

∂xm∂x	
,

since the Γi
jk (but not their derivatives necessarily) all vanish at this point.

Cyclically permuting the indices k, �, m in the above equation and adding the

three resulting equations yields the identity

Ri
jk	;m + Ri

j	m;k + Ri
jmk;	 = 0.

But this is a tensor equation and, having been proved true in the geodetic frame,

must be true in all frames. Also, since the chosen point can be any point, it

is valid at all points in space (i.e. on the manifold). It is the Bianchi identity,

and applies not only to affine manifolds but to fiber bundles, constructed on a

spacetime “base manifold” with a particular symmetry Lie group as the “fiber”.

In modern Gauge Theories, thought to describe all known particle and field inter-

actions, the vector potentials constitute the bundle connection, the field strengths

make up the curvature tensor, and the Bianchi identity DΩ = 0 is simply a gen-

eralization of the two source-free Maxwell equations in electromagnetism. For

an n-dimensional base manifold, the fiber-bundle version of Bianchi’s identity

reduces to the Riemann-curvature version if the fiber is chosen to be the Lie

group GL(n, R) of local tangent-space base changes; the resulting fiber bundle

is known as the frame bundle of the given base manifold.
96 From the Greek Horman = to set in motion, to arouse. Name chosen because

of the marked stimulating effect of the endocrine secretions on various organs of

the body.
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part of the body but active elsewhere. Their joint work helped to estab-
lish endocrinology as a special area of scientific knowledge. Bayliss was the
first to describe (1908) the action of hormones and put forward the theory of
hormonal control.

Starling was a professor at University College, London (1899–1923).
Bayliss taught physiology at the same university (1888–1924).

Hormones

Endocrinology is concerned with the study of the biosynthesis, storage,
chemistry, and physiological function of hormones and with the cells of the
endocrine glands and tissues that secrete them. In medicine, endocrinology
deals with disorders of the endocrine system and its specific secretions, hor-
mones. Most hormones reach their targets via the blood. Although every
organ system secretes and responds to hormones (including the brain, lungs,
heart, intestine, skin, and the kidney), the clinical specialty of endocrinology
focuses primarily on the endocrine organs, meaning the organs whose primary
function is hormone secretion. These organs include the pituitary, thyroid,
adrenals, ovaries and testes, and pancreas.

All multicellular organisms need coordinating systems to regulate and in-
tegrate the function of differentiating cells. Two mechanisms perform this
function in higher animals: the nervous system and the endocrine system.
The endocrine system acts through the release (generally into the blood) of
chemical agents and is vital to the proper development and function of organ-
isms. The integration of developmental events such as proliferation, growth,
and differentiation (including histogenesis and organogenesis) and the coor-
dination of metabolism, respiration, excretion, movement, reproduction, and
sensory perception depend on chemical cues, substances synthesized and se-
creted by the specialized cells within the animal.

Hormones serve as a means of communication among various parts of an
organism. They act as ‘chemical messengers’ that help these parts function
together in a coordinated way. In plants, hormones regulate many aspects
of growth. In man and other animals, hormones control and regulate such
important body activities as growth, development, metabolism and reproduc-
tion.
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Since 1902, more than 30 hormones produced by the human body have
been identified, e.g.: insulin, thyroxine, cortisone, testosterone (C19H28O2),
estrogen, adrenalin (C9H13O3N), relaxin. Ways were found of removing hor-
mones from living tissues. The first hormone to ever be synthesized was
oxytocin (1954).

Most human hormones are either steroids (sex hormones and the hormones
of the adrenal cortex) or contain some form of amino acids. The chemical
structure of hormones enable it to combine with a receptor in the cells of its
target. The union of the hormone with the receptor triggers a change in the
chemical processes of the cell. This change, in turn, modifies many of the
hundreds of chemical activities of the cell and cause the target to behave in a
certain way.

Hormones are biologically effective in small amounts and are produced by
endocrine glands within the body that empty their secretions directly into
the lymph and the bloodstream. They can be divided into three classes of
compounds: proteins, amino-acid derivatives, and steroids.

Protein type of hormones are produced by the pituitary glands, parathy-
roid glands, islets of Langerhans and cells of the gastrointensinal tract.

Amino-acid based types are produced by the thyroid glands and the
adrenal glands. These hormones unite with receptors on the outer membrane
of the target cell and this union may change the structure of the cell mem-
brane, allowing certain substances to enter or leave the cell. These substances
alter the chemical activities of the cell. In other cases, the union seems to
influence the activities of enzymes located on the membrane.

Steroid types of hormones are produced by the testes, ovaries, placenta,
corpus luteum, and adrenal cortex. These hormones become attached to
receptors and then enter the nucleus of the target cell. In the nucleus, the
hormone affects the activity of the genes.97

97 An estimated 1 million people in the United States, half of them adolescents,

abuse anabolic steroids, a group of synthetic hormones. Anabolic steroids are

synthetic androgens (male reproductive hormones) that were developed in the

1930s to prevent muscle atrophy in patients with diseases that prevented them

from moving about. In the 1950s, anabolic steroids became popular with profes-

sional athletes, who used them to increase muscle mass, physical strength, en-

durance, and aggressiveness. In truth, their athletic performance was probably

enhanced, at least in part, by drug-induced euphoria and increased enthusiasm

for training.

As with other hormones, the concentration of steroids circulating in the body is

precisely regulated, so use of anabolic steroids interferes with normal physiolog-

ical processes. Even during short-term use and at relatively low doses, anabolic
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If an organism fails to produce the proper kind or amount of hormones,
serious disturbances may result98.

steroids have a significant effect on mood and behavior. At higher doses, users

experience disturbed thought processes, forgetfulness, and confusion, and often

find themselves easily distracted. The term “steroid rage” refers to the mood

swings, unpredictable anger, increased aggressiveness, and irrational behavior

exhibited by many users.

Anabolic steroids elevate blood pressure, damage the liver, and increase low-

density lipoprotein (LDL) concentration, raising the risk of cardiovascular dis-

ease. In adolescents, these steroids cause severe acne and stunt growth by prema-

ture closing the growth plates in bones. Abuse of these hormones reduces sexual

function and can shrink the testes, leading to sterility. These drugs remain in the

body for a long time. Their metabolites (breakdown products) can be detected

in the urine for up to six months.

When their serious side effects became known in the 1960s, anabolic steroid use

became controversial, and in 1973 the Olympic Committee banned their use.

They are now prohibited worldwide by amateur and professional sports organi-

zations. However, according to the U.S. Drug Enforcement Administration, a

multimillion-dollar black market exists for these synthetic hormones. They are

both injected and taken in pill form. Steroid abusers who share needles or use

nonsterile techniques when they inject steroids are at risk for contracting hepati-

tis, HIV, and other serious infections.

The typical anabolic steroid user is a male (95%) athlete (65%), most often a

football player, weight lifter, or wrestler. Surprisingly, though, about 10% of

male high school students have used anabolic steroids and about one third of

these students are not even on a high school team. These adolescents use the

hormone only to change their physical appearance — to pump up their mus-

cles (“bulk up”) — and increase endurance. Many anabolic steroid users have

difficulty realistically perceiving their body images. They remain unhappy even

after dramatic increases in muscle mass.

People also abuse other hormones, including human growth hormone (GH) and

erythropoietin. Human growth hormone, like anabolic steroids, helps build mus-

cle mass but also causes acromegaly. Erythropoietin increases the concentration

of red blood cells. Although increased oxygen transport enhances the perfor-

mance of an endurance athlete up to 10%, abnormally high concentrations of

red blood cells can cause serious cardiovascular problems. Erythropoietin abuse

has caused the deaths of several athletes.
98 In primitive men, dysfunction of their hormones resulted in disturbed behavior

that was sometimes interpreted by their tribesmen as a manifestation of super-

natural powers; perhaps such primitive man merely had a severe hyperthyroid

condition, causing his eyeballs to bulge so strangely. His sometimes rapid, ex-

citable speech may have given the impression that he was ‘communicating’ with
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The hormone concept consolidated earlier anatomical, physiological and
clinical observations: 17th century anatomists [e.g., Marcello Malpighi
(1628–1694, Italy); Thomas Wharton (1614–1673, England)] had been fas-
cinated by the ‘glands’ (pancreas, thyroid, parotid, ovaries, etc.), postulating
various physiological roles.

The study of endocrinology began when A.A. Berthold (1812–1886)
noted (1849) that castrated cockerels did not develop combs and wattles or
exhibit overtly male behavior. He found that replacement of testes back into
the abdominal cavity of the same bird or another castrated bird resulted in
normal behavioral and morphological development, and he concluded (erro-
neously) that the testes secreted a substance that “conditioned” the blood
that, in turn, acted on the body of the cockerel. In fact, one of two other
things could have been true: that the testes modified or activated a con-
stituent of the blood or that the testes removed an inhibitory factor from the
blood. It was not proven that the testes released a substance that engenders
male characteristics until it was shown that the extract of testes could replace
their function in castrated animals.

The concept of internal secretion developed in the 19th century; Claude
Bernard described it in 1855, but did not specifically address the possibil-
ity of secretions of one organ acting as messengers to others. Still, various
endocrine conditions were recognized and even treated adequately (e.g., hy-
pothyroidism with extract of thyroid glands).

Hermann Boerhaave (1668–1739, Holland) elaborated mechanical mod-
els of secretion. Glands’ secretions were firmly implicated in disease by 19th

century clinicians.

In 1894, Edward Albert Sharpey-Schäfer (1850–1935, England) and
George Oliver (1841–1915, England) identified a physiologically active sub-
stance called adrenaline, secreted by the adrenal medulla.

Many of the hormones’ metabolic effects have been elucidated. Some have
been synthesized and replacement therapy is frequently possible in cases of
insufficiency.

unseen spirits, and he would consequently be allowed to take over the role of the

witch doctor. Sometimes a disturbance of the pituitary glands would result in

either giantism or dwarfism, through which an individual could convince others

of his special ‘powers’.
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The Insulin Story – or, the Nobel Committee goofs
again

In 1869 Paul Langerhans, a medical student in Berlin, was studying the
structure of the pancreas under a microscope when he noticed some previously
unidentified cells scattered in the exocrine tissue. The function of the “little
heaps of cells,” later known as the Islets of Langerhans, was unknown, but
Edouard Laguesse later suggested that they may produce a secretion that
plays a regulatory role in digestion.

In 1889, the physician Oscar Minkowski in collaboration with Joseph
von Mehring removed the pancreas from a healthy dog to demonstrate this
assumed role in digestion. Several days after the dog’s pancreas was removed,
Minkowski’s animal keeper noticed a swarm of flies feeding on the dog’s urine.
On testing the urine they found that there was sugar in the dog’s urine,
demonstrating for the first time a relationship between the pancreas and di-
abetes. In 1901, another major step was taken by Eugene Opie, when he
clearly established the link between the Islets of Langerhans and diabetes:
Diabetes mellitus is caused by destruction of the islets of Langerhans and
occurs only when these bodies are in part or wholly destroyed. Before this
demonstration, the link between the pancreas and diabetes was clear, but not
the specific role of the Islets.

Over the next two decades, several attempts were made to isolate the secre-
tion of the Islets as a potential treatment. In 1906 George Ludwig Zuelzer
was partially successful treating dogs with pancreatic extract, but was unable
to continue his work. Between 1911 and 1912, E.L. Scott at the University
of Chicago used aqueous pancreatic extracts and noted a slight diminution of
glycosuria, but was unable to convince his director and the research was shut
down. Israel Kleiner demonstrated similar effects at Rockefeller University
in 1919, but his work was interrupted by World War I and he was unable to
return to it. Nicolae Paulescu, a professor of physiology at the Romanian
School of Medicine, published similar work in 1921 that was carried out in
France and patented in Romania, and it has been argued ever since that he
is the rightful discoverer.

However, the Nobel Prize committee in 1923 credited the practical ex-
traction of insulin to a team at the University of Toronto. In October 1920,
Frederick Banting was reading one of Minkowski’s papers and concluded
that it is the very digestive secretions that Minkowski had originally studied
that were breaking down the Islet secretion(s), thereby making it impossible
to extract successfully. He jotted a note to himself: Ligate pancreatic ducts
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of the dog. Keep dogs alive till acini degenerate leaving Islets. Try to isolate
internal secretion of these and relieve glycosurea.

He traveled to Toronto to meet with J.J.R. Macleod, who was not en-
tirely impressed with his idea. Nevertheless, he supplied Banting with a lab at
the University, an assistant (medical student Charles Best), and ten dogs,
while he left on vacation during the summer of 1921. Their method was tying
a ligature (string) around the pancreatic duct, and, when examined several
weeks later, the pancreatic digestive cells had died and been absorbed by the
immune system, leaving thousands of Islets. They then isolated the protein
from these Islets to produce what they called isletin. Banting and Best were
then able to keep a pancreatectomized dog alive all summer.

Macleod saw the value of the research on his return from Europe, but
demanded a re-run to prove the method actually worked. Several weeks later
it was clear the second run was also a success, and he helped publish their
results privately in Toronto that November. However, they needed six weeks
to extract the isletin, dramatically slowing testing. Banting suggested that
they try to use fetal calf pancreas, which had not yet developed digestive
glands; he was relieved to find that this method worked well. With the supply
problem solved, the next major effort was to purify the extract. In December
1921, Macleod invited the biochemist James Collip to help with this task,
and, within a month, the team felt ready for a clinical test.

On January 11, 1922, Leonard Thompson, a fourteen-year-old diabetic,
was given the first injection of insulin. However, the extract was so impure
that he suffered a severe allergic reaction, and further injections were canceled.
Over the next 12 days, Collip worked day and night to improve the extract,
and a second dose injected on the 23rd. This was completely successful, not
only in not having obvious side-effects, but in completely eliminating the
symptoms of diabetes. However, Banting and Best never worked well with
Collip, regarding him as something of an interloper, and Collip left the project
soon after.

Over the spring of 1922, Best managed to improve his techniques to the
point where large quantities of insulin could be extracted on demand, but
the extract remained impure. However, they had been approached by Eli
Lilly with an offer of help shortly after their first publications in 1921, and
they took Lilly up on the offer in April. In November, Lilly made a major
breakthrough, and they were able to produce large quantities of purer insulin.
Insulin was offered for sale shortly thereafter.

Macleod and Banting were awarded the Nobel Prize in Physiology or Medi-
cine in 1923 for the discovery of insulin. Banting, insulted that Best was not
mentioned, shared his prize with Best, and Macleod immediately shared his
with Collip. The patent for insulin was sold to the University of Toronto
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for one dollar. The exact sequence of amino acids comprising the insulin
molecule, the so-called primary structure, was determined by British molecu-
lar biologist Frederick Sanger. It was the first protein to have its structure
be completely determined. He was awarded the Nobel Prize in Chemistry in
1958. In 1967, after decades of work, Dorothy Crowfoot Hodgkin deter-
mined the spatial configuration of the molecule, by means of X-ray diffraction
studies. She had been awarded a Nobel Prize in Chemistry in 1964 for the de-
velopment of crystallography. Rosalyn Sussman Yalow received the 1977
Nobel Prize in Medicine for the development of the radioimmunoassay for
insulin.

1902–1909 CE Archibald Edward Garrod (1857–1936, England).
Physician and biochemical geneticist. Pioneered the study of inherited hu-
man metabolic diseases and first to link it to genetic causes (1908). Recog-
nized that gene products are proteins and that a gene is a recipe for a single
chemical. Proposed the mode of action of the hereditary substance known as
‘one gene-one enzyme’99 (1902). By this it is meant that every gene acts by
initiating the synthesis of an enzyme which catalyzes a specific reaction.

Professor at Oxford (1920–1928).

1902–1911 CE Willis Haviland Carrier (1876–1950, USA). Engineer
and inventor. Designed the first scientific system to clean, circulate, and con-
trol the temperature and humidity of air (1902). He developed the first safe,
low pressure centrifugal refrigeration machine using nontoxic, nonflammable
refrigerant.

Born near Angola in western New York, Carrier attended Cornell Uni-
versity, graduating in 1901. He formed (1915) the Carrier Engineering Cor-
poration. By controlling humidity as well as temperature, he invented air
conditioning100 as we know it today.

99 The idea was not developed, however, until the introduction of the genetic analy-

sis of the lower organisms and of techniques of mutagenesis. When in the 1960’s

the relation between gene and enzyme was analyzed at the molecular level, it

became clear that the one gene-one enzyme hypothesis needed to be replaced by

one gene-one polypeptide chain. At any rate, Garrod was far ahead of his time.
100 The term “air conditioning” was used for the first time by Stuart W. Cramer,

a textile engineer from Charlotte, N.C. It became a recognized branch of engi-

neering in 1911.
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1903 CE Hantaro Nagaoka (1865–1950, Japan). Theoretical physicist.
Postulated an atomic model in which electrons revolve around a positive
charged nucleus, ahead of Rutherford101 (1871–1937).

Nagaoka adopted his idea from Maxwell’s paper (1859) on the stability
of motion of Saturnian rings. His atomic model consists of a central attract-
ing mass surrounded by rings of revolving electrons. The model was soon
rejected because of its mechanical instability102. By 1911, however, quan-
tum effects had brought physicists to believe that ordinary mechanics and
electrodynamics could not describe the behavior of atoms. In 1913, Niels
Bohr (1885–1962) quantized the Nagaoka-Rutherford atom, restricting the
electrons to paths in which the ratio of their kinetic energy to their orbital
frequency equals a multiple of Planck’s constant.

1903–1913 CE Willem Einthoven (1860–1927, Holland). Dutch physi-
ologist. Discoverer of the electrical properties of the heart and the founder of
electrocardiography103. In 1903 he invented his famous string galvanometer,
with which he was able to measure changes of electrical potential caused by
contractions of the heart’s muscle. On this basis he developed, during 1908–
1913, the graphical diagnostics of cardiopathology. He received the 1924 Nobel
prize for his investigations of the electrical currents of the heart.

Einthoven was born in Semarang, Java. His family moved to the Nether-
lands in 1870. He studied at the University of Utrecht and became a professor
of physiology at the University of Leyden, in 1885.

1903–1964 CE Waclaw Sierpinski (1882–1969, Poland). Mathemati-
cian. Made important contributions to set theory and number theory. His

101 Rutherford’s biographers agree that Rutherford was unaware of Nagaoka’s paper

until March 11, 1911. But Nagaoka did visit him at Manchester sometime prior

to July 1910.
102 The rings of Saturn are stable because the force operating between the parti-

cles of debris that make them up is attractive. In Nagaoka’s model, the force

operating between the electrons is repulsive.
103 The first electrocardiogram, however, was obtained earlier by the physiologist

Augustus D. Waller (1856–1922) in 1887. He reported: “I dipped my right

hand and my left foot into a couple of basins, ... which were connected with

the two poles of the electrometer, and at once had the pleasure of seeing the

mercury column pulsate.” This pulsating mercury recorded the heart’s electrical

tracings via a light beam that then created an image on photographic plates

being carried by a toy train and thus provided the first noninvasive procedure

to examine the heart.
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contributions to number theory (e.g. in the theory of equipartitions) were con-
tinued and developed by G.H. Hardy, E. Landau and H. Weyl. His many
papers (ca 700) contain new and important theorems (some of which bear
his name), geometrical constructions (Sierpinski curves104), and original and
improved proofs of earlier theorems. His findings stimulated further research
by mathematicians throughout the world.

Sierpinski was educated at the University of Warsaw during 1900–1904
under the guidance of G. Voronoi. He lectured at the University of Lvov until
1914 and then, after WWI, at the University of Warsaw, where he established
with others the Polish School of Mathematics.

Birth of Cinematography (1883–1903)

The idea of portraying things in motion has interested man since earliest
times. In painting in Altamira Cave in Spain, prehistoric artists tried to show
animals running by painting them with many legs. Ancient Egyptian and
Greek bas-reliefs portray figures in the act of moving.

About 65 BCE, the Roman poet Lucretius discovered the principle of
persistence of vision105. About 200 years later, the astronomer Ptolemy of
Alexandria experimentally proved the principle.

104 In todays terminology these are the triadic Sierpinski carpet (with fractal di-

mension D = 1.8928), Sierpinski gasket and Sierpinski arrowhead.
105 When light falls on the retina, a chemical change takes place in its tissues,

which is manifested by a change in color in the retinal pigment or visual purple.

How this chemical change gives rise to the sensation of light is not known.

Immediately after being affected by light, the retina loses its power of vision at

the region excited, owing to the chemical change in the visual purple. The brain

does not see a light until about 1
10

sec after the light is turned on. The image

persists (lasts) about 1
10

sec after the light is turned off . This persistence of

the visual image explains why a glowing matchstick seems to leave a trail behind

it when thrown away in the dark. A motion-picture projector throws about 24

still pictures on the screen in a second, but we see a continuous movement.

Each picture on the screen is presented to the eye before the previous image in

the brain fades out.
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In 1798, the Belgian physicist Etienne Gaspard Roberts developed

a sophisticated version of the Magic Lantern which he called phantascope,
presenting shows to the public.

During the 1800’s many men experimented with devices that would make

pictures appear to move. However, a scientific study of the optical appear-

ances of moving objects had began in 1824 with the rediscovery of the per-

sistence of vision by the physician Peter Mark Roget106 (1779–1869, Eng-

land). Roget’s paper, presented before the Royal Society, inspired several

scientists to engage in experimental research, among them the Belgian physi-

cist J.A.F. Plateau.

In 1832, Plateau discovered a method for viewing a series of pictures,

representing phases of motion. The pictures were mounted in chronological

sequence on the rim of a disc and were observed through slots in a similar disc

mounted on the same rotating shaft. The pictures, antedating photography,

were necessarily drawings of assumed phases of motion. Franz von Uchatius

(1811–1881), an Austrian artillery officer, in 1853, combined the disc device

with the magic lantern and projected the pictures upon a screen.

In 1860 Coleman Sellers, a mechanical engineer, in Philadelphia, made

the first known endeavor to harness photography to the recording of motion.

He posed his sons in a series of photographs showing them, in successive

phases of a cycle of action, driving a nail into a box. The photographs were

mounted on the blades of a paddle wheel, which when revolved from a given

point of view produced the illusion of motion. The Machine was patented

as the kinematoscope in 1861. However, photography at that time required

exposures so long that a true record of motion was not possible.

The first successful photography of motion was made in 1872 by the San

Francisco photographer Eadweard Muybridge (1830–1904), who recorded

the progressive motion of race-horses through the use of a series of coordinated

cameras [he set 24 cameras in a row, with strings stretched across the race

track to the shutter of each camera. When the horse ran by, it broke each

string in succession, tripping the shutters]. His experiments were carried out

at the ranch of Leland Stanford — the future site of the campus of Stanford

University.

106 Roget was a physician and philologist, remembered for his Thesaurus of English

Words and Phrases (1852) — a comprehensive classification of synonyms or

verbal equivalents that is still popular in modern editions. He studied medicine

at the University of Edinburgh and later helped found the medical school at

Manchester. From 1808 to 1840 he practiced in London.
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During the late 1800’s, inventors in France, Great Britain, and the United
States tried to find ways to make and project motion pictures. These ex-
perimenters included Thomas Armat (1866–1948), Charles F. Jenkins,
and Woodville Latham of the United States; William Friese-Greene
and Robert W. Paul (1869–1943) of Great Britain, Charles-Émile Rey-
naud107 (1844–1918), the brothers Lumière108 of France and Max Sklad-
nowsky (1863–1939) of Germany. After many failures, success came to sev-
eral pioneers at about the same time.

The first motion-picture camera was invented in 1887 by Augustin Le
Prince in Leeds, England, after ten years of laborious efforts. However, in
lack of a suitable material for projection (a coated celluloid film of sufficient
strength), he could not perfect his machine for commercial uses.

At about the same time, the French physiologist Étienne Jules Marey
(1830–1904), who was in communication with Muybridge, demonstrated
(1888) to the French Academy of Sciences his chambre chronophotographic,
embodying the essential principles of the cine-camera. His camera, however,
was inferior to that of Le Prince and non of his films were projected until ten
years later. [Marey is known for his work on the physiology of the heart and
circulation, human and animal locomotion and the flight of birds and insects.]

In 1887 Thomas A. Edison began work on a device to make pictures appear
to move. Influenced by the technological achievements of Le Prince and
Marey, he made some progress in 1889, after Hannibal W. Goodwin
had developed the transparent nitro-celluloid film base that was tough but
flexible such that it could hold a coating, or film, of chemicals sensitive to light
(celluloid film first introduced in 1883 by John Carbutt of Philadelphia);

Thus, a series of pictures could be photographed on the film and moved
rapidly through a camera. Previously, most photographs were taken on glass

107 This inventor presented (1892) in Paris moving cartoons of animated drawings.

One cartoon involved more than 600 painstakingly drawn images on a 45 me-

ter ribbon projected on a permanent background scene. To this end he used

two projectors: the animated drawing passed in front of a lens and were then

projected off a mirror into the screen. The Lumières saw it and promptly made

use of his ideas.
108 The pioneer motion-picture tycoon Charles Pathé (1863–1957, France) ac-

quired the Lumière patents (1902) and by 1912 had established one of the

largest film production organizations in the world. He introduced the newsreel

in France (1909) and shortly after in the USA and Britain. He dominated the

world film market during the first years of the 20th century. Before 1918, 60

percent of all films were shot with Pathé.
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plates that had to be changed after each exposure. George Eastman, a
pioneer in making photographic equipment, manufactured the film.

Using the Eastman film, Edison’s assistant William Kennedy Laurie
Dickson invented the kinetoscope, a cabinet in which 15 meters of film re-
volved on spools. A peephole in the cabinet enabled a person to watch the
pictures move.

In 1892, Ottomar Anschutz (1846–1907, Prussia) was first to show in
public (Europe and USA) moving photographs. In 1894 he projected moving
sequences of animals and human figures on large screens. His viewing ma-
chines were developed from 1886. The first had a wooden disc with 24 glass
positives fixed onto it; a Gessler tube fashioned into a spiral form and powered
by a Ruhmkorff induction coil fed from batteries, was the light source. This
flashed briefly as each picture passed the viewing aperture.

Birt Acres (1854–1918, USA and England) was an inventor who devel-
oped (1895) a modified version of Edison’s kinetoscope. This was the first am-
ateur Cine Camera. On March 30, 1895 Acres filmed the Oxford-Cambridge
boat race and on May 29, 1895 he filmed the Derby.

Projected on a screen picture at a rate of 40 frames per second, he showed
short films of men boxing, a review of the German Emperor, Epsom Downs
Derby race, serpentine dancing and the sea breaking against the embankment.

In 1894, the Kinetoscope Parlor was opened in New York City and later
that year in London and Paris, including coin-operated kinetoscopes. In spite
of its success, Edison believed that moving pictures were only of passing in-
terest. However, other inventors disagreed. On Dec. 28, 1895, motion pictures
were projected for the first time on a screen in a Paris café by the Lumière
brothers. Some simple scenes, including that of a train arriving at a station,
were shown.

Within few months, ‘movies’ were being shown in all the major cities of
Europe. Edison was quick to adapt to the new situation and using a projector
invented by Armat, he presented the first public exhibition of motion pictures
projected on a screen in New York City on April 23, 1896. The program
included a few scenes from a prize fight, a performance by a dancer, and
scenes of waves rolling onto a beach. By 1900, motion pictures had become
a popular attraction in music halls, fairs, museums and theaters in many
countries.

Soon, however, spectators became bored, attendance declined, and the
motion picture faced extinction. One development saved the movies — they
began to tell stories. As early as 1899, the movies received their next impetus
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from George Méliès (1861–1938), French magician and theater owner. He

saw the movie as a mechanical extension of magical illusion, with which he

could achieve effects never before conceived. Within a few years Méliès in-

vented or stumbled upon double exposure, stop motion, fast and slow motion,

animation, fades, dissolves, almost the entire repertory of the optical tricks

used in film making from that time until the nascence of computer-generated
special effects.

In 1900 he filmed the old fairy tale Cinderella. Though the film, less

than 350 meters long, was little more than picture-book illustration, it had

a beginning, middle, and end — it told a story. Méliès’ imaginative films

astonished and delighted movie-goers the world over. He flung himself into

the work of writing scenarios, designing and painting scenery, and appearing

in his own films. But this versatile and ingenious pioneer was no businessman.

In 1914 the war ended his career as a producer; in 1925 he lost his theater,

destroyed all the films in his possession and vanished.

Edwin S. Porter — filming for the Edison company in America — was

influenced by Méliès and, in 1903, made the first motion picture using modern

film techniques to tell a story; “The Great Train Robbery”, an 11-minute

Western describing a train robbery and the pursuit and capture of the robbers.

Porter was perhaps the first director to recognize that a motion picture

need not be filmed in the strict sequence of the action. The story switched

back and forth between a number of settings, and so Porter realized that it

was impractical to shoot the story in sequence. His pioneer work in filming

and editing set the standard for directors throughout the world for several

years.

In 1904, Edison made the first attempt to produce a sound moving picture

by synchronizing the projector with the phonograph. In 1906, Eugen Au-

gustin Lauste (France) invented the production of sound from photographed

vibrations on a film, projected upon a selenium cell. This was a crucial step

in the development of the sound motion picture.

In the mid 1920’s, Bell Telephone Laboratories finally developed a system

that successfully coordinated sound on records with the projector: The era

of the silent movie ended in 1928 when sound was directly photographed on

the film.
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1903 CE, Dec. 17 The brothers Wilbur (1867–1912) and Orville
(1871–1948) Wright (U.S.A.). Made the world’s first successful flight in a
power-driven, heavier-then-air machine which they invented and built.109

The flight was made at Kitty Hawk, NC. The plane flew about 40 meters
and remained airborne for 12 seconds.

The brothers became interested in aviation after reading about the death
of pioneer glider Otto Lilienthal in 1896. They experimented with model
wings in a small wind tunnel, which they built in their shop, in order to obtain
reliable data of air pressure on curved surfaces. Then, in the summer of 1902,
they built a glider based on their new figures. This glider had aerodynamic
qualities far in advance of any tried before. With it they solved most of the
problems of balance in flight. They then made some 1000 glides in this model,
before equipping it with an engine. They were so sure of the accuracy of their
calculations that they were not surprised when the machine flew.

1903–1911 CE Carl Neuberg (1877–1956, Germany, Israel and U.S.A.).
Physician, engineer, jurist, chemist, biologist and biochemist. First used the
term Biochemistry (1903) and founded the first biochemistry journal: Bio-
chemische Zeitschrift (1906). Discovered (1911) carboxylase in yeast which
was the first indication that the energy on the cellular level is essentially sup-
plied by burning hydrogen rather then carbon. Made other contributions to
the understanding of fermentation.

Neuberg was born in Hanover to a Jewish family. Studied in Berlin and
Breslau. Professor at Berlin (1919–1938), Jerusalem (1939–1941), New York
(1941–1950), Brooklyn Polytechnic (1951 ff.).

109 In 1906, Scientific American magazine sneered at the “alleged” flights of the

Wright brothers. One hundred years later (in connection with another matter)

the magazine apologized, saying scientists had “dazzled us with their fancy

fossils, their radiocarbon dating, and their tens of thousands of peer-reviewed

journal articles. As editors, we had no business being persuaded by mountains

of evidence.”
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Development of Aeronautical Science

Part I: Aviation, from Aristotle to the
Wright Brothers (1903)

“There are three things which are too wonderful for me, yea, four which I
know not: The way of an eagle in the air. . .”

Proverbs 30, 18

Aeronautics is the art of ‘navigating the air’. It is divisible into the main
branches — aerostation, dealing properly with machines which, like balloons,
are lighter than air, and aviation, dealing with the problem of artificial dy-
namic flight by means of flying machines (aircraft) which, like birds, are
heavier than air.

Historically, aviation is the older of the two. In the legends and myths of
men or animals which are supposed to have traveled through the air, such as:
Pegasus, Medea’s dragons, Daedalus and Ezekiel’s flying creatures [Ezekiel
I , 5–26] as well as in Egyptian bas-reliefs — wings appear as the means by
which aerial locomotion is effected.

The above quotation serves to show that as early as the 4th century BCE,
man admitted his ignorance of aerodynamics. Aristotle (384–322 BCE) is
no exception: although he mentioned the problem of solid bodies moving in
the air, he believed there is always a force necessary to sustain a uniform or
even decelerated motion. He thus looked for a force which pushes forward a
flying ball, instead of looking for a force which resists the motion. With such
a “negative” approach to dynamical processes, no understanding of flight was
possible.

Many great men with artistic imagination studied the fundamentals of bird
flight and speculated on the possibilities of human flight. The drawings and
notes of Leonardo da Vinci (1452–1519) represent an excellent example of
such studies. He considered two methods of flight. One method is an imitation
of bird flight (a man equipped with a pair of wings, beating them like a bird.
An aircraft of this type is called today an ornithopter).

The other method was based on a screw, called now the screw of
Archimedes — which would penetrate the air. This is the predecessor of the
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present day helicopter. The characteristic feature underlying both proposed
systems, was the general belief that lift and propulsion should be accom-
plished by the same mechanism. This is true for the bird, whose propulsion
and sustentation are produced by the motion of the same wings. It is also
correct in the case of the helicopter.

The idea of imitating bird flight was predominant for centuries in the
minds of inventors. Some, however, recognized the limitations of mere imita-
tion of nature, as one pioneer in aeronautics once remarked: “The successful
locomotive was not based upon an imitation of an elephant”. It is thus clear
that the concept of sustentation by flapping wings or by a screw preceded
that of a rigid (fixed-wing) airplane.

A step forward in the latter direction was taken by the father of modern
dynamics: Galileo Galilei (1564–1642) recognized the law of inertia and
had a correct notion of air resistance. He observed that the movement of
a pendulum was slowly amortized by air resistance, and actually tried to
determine the dependence of air resistance on velocity. This task was however
left to Isaac Newton (1642–1727). From the fundamental laws of mechanics
he derived the formula, known generally as Newton’s sine-square law of air
resistance, for the force acting on an inclined flat plate exposed to a uniform
air-stream110.

Newton stated clearly that the forces acting between the solid and the
fluid depend on their relative motion. [This was already understood by da
Vinci, who said: “The resistance of an object against air at rest is equal to
the resistance of the air moving against the object at rest”.]

In the 216 years that elapsed between the publication of Newton’s Prin-
cipia (1687) and the date of the first mechanical flight (1903), a great number
of observations were made to determine the resistance experienced by a body,
in water as well as in air.

In the long list of experimenters, engineers, and physicists we find the
names of many generally known scientists: Edme Mariotte (1620–1684),

110 F = ρSV 2 sin2 α, where F is the change of momentum of the fluid mass hitting

the plane in unit time at inclination α. Here V is the relative velocity of fluid and

plate, S is the plate’s area and ρ is the fluid’s density. The force F is directed

normal to the plate. The quantity (ρSV sin α) is evidently the mass flow in

unit time through a cross-section (S sin α), equal to the projection of the plate

area perpendicular to the original flow direction; and this must be multiplied

by the velocity component (V sin α) created by the impact. The dependence

of the force on sin2 α is not found in Newton’s work and was deduced by

other investigators, based on a method of calculation which Newton used for

comparison of the air-resistance of bodies of different geometrical shapes.



1903 CE 2985

Benjamin Robins (1707–1751), Jean le Rond d’Alembert (1717–1783),

Charles Bossut (1730–1814), Jean Charles de Borda (1733–1799), and

Antoine Condorcet (1743–1794).

Remarkable experiments were carried out at the end of the 19th century

and the beginning of the 20th century by Alexandre Gustave Eiffel (1832–

1923, France) and his collaborators, who used the tower named after Eiffel

in Paris. The best method for measuring air resistance is to put a model

in an artificial stream of air, i.e. the method of the wind tunnel. The first

man to make such an installation was Francis Herbert Wenham (1824–

1908, England), who in 1871 designed it for the Aeronautical Society of Great

Britain.

In 1891 Nikolai E. Joukowski (1847–1921), at the University of Moscow,

built a tunnel two feet in diameter. No wind tunnel built before 1910 had more

than 100 horsepower [today, wind tunnels may employ 250, 000 horsepower

for driving the air-stream].

The experimental evidence has shown that the dependence of the resis-

tance on the sine of the inclination angle is nearly linear, and not square

as Newton had stated. It is believed that Newton’s law contributed to pes-

simistic forecasts on the possibilities of powered flight and thus delayed its

development111.

The idea that lift can be accomplished by moving inclined surfaces in the

flight direction, provided we have mechanical power to compensate for the

air resistance that hinders this motion, was clearly enunciated for the first

time by George Cayley (1773–1857, England) in 1809–1810. He was first

to announce the principle of the airplane as we know it today. It can be said

111 According to Newton, the lift (vertical component of F ) is proportional to

sin2 α cos α while the drag is proportional to sin3 α. Being very small for

small values of α, the airplane designer needs tremendous wing area to obtain

a sufficient amount of lift. On the other hand the ratio between lift and drag

(horizontal component of force) is equal to cotα, which is large only if α

is small. If Newton’s law is correct, the poor designer has only the choice of

either making a huge contraption having a very large wing area, and therefore

a heavy structural weight, or building a machine with reasonable wing area but

low lift-drag ratio, which means a heavy engine for propulsion.
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that Cayley was the man who founded the science of aerodynamics112, and
was probably the first man to describe fixed-wing, powered airplane moved by
propellers.

In 1842, William Samuel Henson (1805–1888), a British inventor,
patented plans for the first plane with a steam engine, two propellers, fixed
wings and a passenger cabin. But Henson’s “airliner” was never built. In
1848 a friend of Henson, John Stringfellow, built a small model plane using
Henson’s design. The model was successfully launched but was able to stay
in the air for only a short time.

Throughout the 19th century, two practically unrelated developments took
place side by side. On one hand, flight enthusiasts developed their own rather
primitive theories of bird flight, and tried to apply their results to the re-
quirements of human flight. On the other hand, a mathematical theory of
fluid dynamics was developed by scientists, who did not provide much useful
advice to those who wanted to fly.

In the experimental vein, interdisciplinary efforts by physicists, aeronau-
ticists, and physiologists, during 1868–1910, were directed towards the de-
termination of the power required for flight. The fact that birds actually fly
through the air furnished a certain solid support for the speculations.

It was shown by Herman von Helmholtz (1868–1873), Charles Re-
nard (1847–1905, France, 1889–1903), Étienne Jules Marey (1830–1904,
France, 1873–1890) and R. Henry (1891) that the ratio W/S [W = weight,
S = wing area, ρ = density of the air], known as wing loading, is related to
the ratio W/P [P = expended power], known as power loading, through
the equation

P/W = constant ×

√
W

ρS
.

For soaring birds it was found that wing-loading increases like the cube of the
weight, which means that flying becomes more of a problem for a large bird
than for a small one and that there is a certain size beyond which a living
creature is unable to fly.

A second problem that bothered the experimentalists was to find the most
efficient shapes for wings. Helmholtz (1858) showed that if there is no initial

112 For further reading, see:

• Von Karman, T., Aerodynamics, McGraw-Hill Book Company: New York,

1954, 203 pp.

• Milne-Thomson, L.M., Theoretical Aerodynamics, Dover Publications: New
York, 1958, 430 pp.
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vorticity in the fluid, e.g., if the fluid is originally at rest, vorticity can only be
created by friction or by the presence of sharp edges on the body. Following
this lead, experiments began either in wind tunnels or by means of actual
flying in gliders.

It was found by H. Phillips (1885), Octave Chanute (1832–1910,
U.S.A., 1894–1897), Alphonse Pénaud (1850–1880, France), Samuel P.
Langley (1834–1906, U.S.A.), Otto Lilienthal (1848–1896, Germany, 1889)
and Charles M. Manly (1876–1927, U.S.A.) that curved wing surfaces are
superior to flat surfaces in their lift-drag ratio, and also because they show
positive lift in the case of zero angle of attack.

Wilbur (1867–1912) and Orville (1871–1948) Wright were familiar
with all practical aerodynamical ideas developed before them by various re-
searchers. In addition to a remarkable talent for construction, they had the
ability to utilize model experiments for their full-scale design113.

However, at the time of the first human flight (1903), no theory existed
that would explain the support obtained by means of a curved surface. It
seems that the mathematical theory of fluid motion was unable to explain the
fundamental facts revealed by experimental aerodynamics.

On the theoretical front, it became clear to the scientists of the 18th and
19th centuries that the problem is not as simple as Newton thought, and that
one cannot replace the flow by parallel motion. In 1878, Lord Rayleigh
(1842–1919) found that the superposition of a circulatory flow around a cir-
cular cylinder, upon a uniform flow perpendicular to it, produces a force per-
pendicular to the direction of the original flow (or to the direction of motion
of the cylinder through stationary air). This result was used to explain the
so-called Magnus effect, which had been known to artillerists since the begin-
ning of the 19th century. Rayleigh himself undertook his study to elucidate
the swerving flight of a “cut” tennis ball114.

Anton Flettner (1885–1961, Germany), an engineer from the University
of Göttingen, harnessed the Magnus effect to drive a boat by wind power
(1924). In lieu of the usual sail (which is nothing but an airfoil), a circular
cylinder was erected vertically on the boat and made to spin around its axis
some 2 revolutions per second. This spin created the circulation, that when
added to the laminar wind flow invoked the ‘Magnus-force’, that drove the

113 Their airplane had the following parameters: W = 340 kg, S = 46.45 m2,

W/S = 7.32 kg/m2 (a little larger than that of a vulture), P = 595kg·m/sec,

P/W = 1.75 m/sec. According to Renard’s formula, the value of the power

required per unit weight would be 1.35 m/sec.
114 Lord Rayleigh, “On the Irregular Flight of a Tennis-Ball”, Messenger of Math-

ematics 7, 14–16 (1878).



2988 5. Demise of the Dogmatic Universe

ship in a direction that is normal both to the cylinder-axis and the wind flow.
By rotating two tandem cylinders in opposite directions, the boat could be
made to turn around. In 1925 a Flettner ‘rotorship’, 680 tons, crossed the
Atlantic Ocean. The ultimate failure of the invention, however, was due to
economic reasons115.

The connection between the lift of airplane wings and the circulatory mo-
tion of the air around them was recognized and developed by 3 persons of very
different mentality and training: Frederick W. Lanchester (1878–1946),
Wilhelm Martin Kutta (1867–1944) and Nikolai Egorovich Joukowski
(1847–1921, Russia).

Kutta, a pure mathematician, became interested in Otto Lilienthal’s glid-
ing experiments and therefore in aerodynamic theory. His particular aim was
to understand the effect of curvature — why a horizontally placed curved
surface produces a positive lift (1902). Joukowski had extensive training in
mathematics and physics, obtained originally in Russia and Paris. In 1872
he became professor of mechanics at the Polytechnical Institute, and in 1886
at the University of Moscow. During 1902–1909, independently of Kutta and
Lanchester, he developed the mathematical foundations of the theory of lift,
at least for two-dimensional flow, i.e. for wings of infinite span and constant
cross section.

Although Cayley described the propeller116 already in 1809 and Henson

115 In 1926 Flettner established in Berlin an aircraft company that produced he-

licopters much used in WWII. After the war he emigrated to the U.S.A., and

became president of the Flettner Aircraft Co., Queens, NY.
116 A propeller is a device which converts the engine torque into a thrust, which

must be enough to overcome the drag of the entire aircraft and also provide

additional power to enable the aircraft to climb. It does this by making use of

the resistance of the air, whole reaction on the blades produces two forces: one

of which is the desired thrust along the axis of rotation, while the other acts

as a brake on the engine shaft. In steady flight, the torque developed by the

engine exactly balances the breaking action due to air resistance.

The thrust of the propeller is obtained by giving a backward momentum to

the air with which it comes in contact, and to do this effectively, the propeller

blades are given first an aerofoil shape and then a twist. The actual thrust

is caused by the difference in pressure in front and behind the propeller disc.

From the viewpoint of general principles of mechanics, the propeller, like the

rocket, is a device for propulsion by reaction.

There is an economic upper limit to the speed at which the blades can rotate

and still work efficiently. This limit is reached when the tip speed approaches

that of sound. A forward speed of 950 km/hour may represent the limit which

a propeller-driven aircraft can attain in still air at altitude. Apart from these
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designed it as an integral part of powered flight in 1842, the physics of the

propeller began to be understood during 1865–1909 due to the momentum
theory of W.J.M. Rankine (1865) and the blade-element theory of William

Froude (1878, England) and Stefan Drzewiecki (1844–1938, Poland and

France, 1892–1909).

Part II: Balloons and Airships (1783–1937)

The dove of Archytas of Tarentum (c. 428–347 BCE) is the earliest

suggestion of true aerostation. It may conceivably represent an anticipation

of the hot-air balloon.

In the middle ages, vague ideas appear of some ethereal substance so light

that vessels containing it would remain suspended in the air. Roger Bacon

(1214–1294) wrote that man might fly if he were attached to a large hollow

globe made of very thin metal and filled with ethereal air or liquid fire, which

would float on the atmosphere like a ship on water. But Bacon never tried to

put this idea into practice.

This state of affairs persisted for the next 500 years. It was generally

believed that if a substance lighter than air were found, human flying would

be possible. Thus, when Henry Cavendish discovered hydrogen in 1766 and

Joseph Priestley elaborated in 1774 on the lighter density of hot air, these

discoveries were immediately put to use;

In 1766, it occurred to Joseph Black of Edinburgh, that a thin bag filled

with hydrogen gas would rise to the ceiling of a room. But for some reason the

experiment failed and Black did not repeat it, thus allowing a great discovery,

almost within his reach, to escape him.

In 1782, Tiberius Cavallo (1749–1809), an Italian experimental physi-

cist living in England, was first to show that soap bubbles filled with hydrogen

considerations, however, the propeller shows serious faults of an aerodynamic

nature even at moderate speeds: the vortex system developed by the blades

represent so much wasted power, for the rotational motion adds nothing to

the thrust, and the disturbances thus created can interfere seriously with the

otherwise smooth flow over the wings.
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would float upward when they were released. A year later, the French broth-
ers Joseph Michel Montgolfier (1740–1810) and Jacque Étienne Mont-
golfier (1745–1799) made a hot-air balloon117 that successfully carried a man
[Jean Francois Pilâtre de Rozier, historian to King Louis XVI of France; Oct.
15, 1783. He was killed in 1785 in the explosion of a combination hydrogen
and hot-air balloon].

The Montgolfier brothers arrived at their idea of hot air in their balloon
after a careful study of Priestley’s book on gases. In this balloon, no source
of heat was taken up, so that the air inside rapidly cooled and the balloon
soon descended.

In the same year (1783), another group launched a hydrogen-filled balloon.
The group consisted of two brothers of the Robert family under the supervi-
sion of the French physicist J.A.C. Charles (who discovered one of the gas
laws, which bears his name). The balloon, 4 m in diameter, was made of thin
silk varnished with a solution of elastic gum. The hydrogen gas was obtained
by the action of dilute sulphuric acid upon iron filings, and was introduced
through leaden pipes.

Since 1784 the balloon has been applied to the study of the atmosphere,
via barometric, thermometric, hygrometric, gravimetric and magnetic obser-
vations. Thus, for example, J.L. Gay-Lussac and J.B. Biot ascended up to
the height of 7 km in 1804 to measure the variation of the earth’s magnetic
and gravity fields with elevation.

No sooner was the balloon discovered than it received a military status.
It was used in the French Revolutionary was (1794), the French campaign in
Italy (1859), the American Civil War (1861) and the Franco-Prussian War
(1870–1871) for reconnaissance, transportation (e.g. carrying pigeons), com-
munication and even bomb-throwing. The first air-raid in history took place
in 1849, when the Austrians sent balloons over the city of Venice during the
Italian uprising. Each balloon carried some 14 kg bomb with a time fuse [the
first bombs dropped from airplanes in warfare were released over Lybia in
1911 by Italian aviators during a war between Italy and Turkey].

In 1914, the balloonist Hans Berliner traveled some 3053 km from Ger-
many to the U.S.S.R. In 1961 Victor G. Prather and Malcolm Ross of
the United States ascended to the height of 34.6 km.

117 An airtight bag that is able to rise in the air because it is filled with light gases.

Early balloons were usually made of silk or cotton cloth that was coated with

rubber to make the balloon airtight. Today, balloons are made of plastic. The

earliest balloons were filled only with heated air, since it is about half as dense

as cold air.
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From the very first invention of balloons, the problem has been how to
navigate them by propulsion. Experiments with airships118 started with the
French engineer Henri Giffard (1825–1882), who in 1852 ascended in a cigar-
shaped balloon (length = 44 m; diameter = 12 m; total weight = 1475 kg)
driven by a 3 horsepower (2.2 kilowatt) steam engine linked to a propeller. It
drove the craft about 8 km/hour for 27 km, from Paris to the city’s outskirts.
Giffard’s engine lacked the power to turn the balloon completely around and
return to the starting point.

Many men continued to work on airships through the 19th century. The
first rigid ship was built by the Austrian engineer David Schwarz in Berlin.
It crashed on its first flight on Nov. 3, 1897. The work of Schwarz influenced
Ferdinand von Zeppelin (1838–1917), a retired German army officer, to be-
gin work on airships. Throughout 1900–1937, rigid airships built by Zeppelin
and other Germans regularly plied the world skies.

During 1910–1914, the German Airship Transportation Company carried
about 35, 000 passengers without a single death, though there were several
accidents. The fastest airship built by Zeppelin could fly about 80 km/hour.
During WWI, the German used airships for scouting, observation and supply
work. They made over 50 bombing raids on England.

In 1928, the Germans completed the Graf Zeppelin, a giant airship [length
= 240 m, diameter = 30 m] that carried 50 passengers and their baggage at
a speed of 110 km/hour. It was used for regular commercial service between
Germany and South America. The largest airships ever built was the Hin-
denburg [length = 247 m, diameter = 41 m, 1936]. It burst into flames on
May 6, 1937, while approaching Lakehurst, NJ. This marked the end of the
use of airships for regular passenger service.

In World war II, small airships called blimps played a vital part in protect-
ing ships against submarine attacks: Blimps located submarines and attacked
them with depth charges and other weapons. Today, blimps are used mainly
for advertisement over the skies of major cities.

118 Lighter-than-air aircraft that have their own motive power and can be steered in

any direction by their crews. Airships were once called dirigibles, which comes

from the Latin word dirigere, meaning to steer .
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Part III: Rocket and Jet Propulsion (1232–1945)

When air is allowed to escape from an inflated balloon, the balloon moves
in a direction opposite to the escaping air. This principle, in its varied forms, is
so obvious that it could not have escaped the observant eyes and the inquisitive
minds of erudite men of antiquity. Granted the invention of the wheel, it must
have occurred to some of them to watch the recoil of a cart, say, when an object
was being thrown from it in the opposite direction.

Indeed, ca 100 BCE, Heron of Alexandria built a steam jet engine,
called an aeolipile: a spherical cauldron was supported by a vertical axis.
Escaping from the cauldron through elbow-shaped pipes, the steam pushed
these pipes in opposite directions, and the sphere rotated.

Nature, of course, preceded man in the field of rocket propulsion: it is used
for locomotion by jellyfish and mollusks like the octopus and squid. The large
brown jellyfish swims by pulsations of its bell, which expands and contracts
like an umbrella being opened and closed. Cephalopods, on the other hand,
contract their mantle, forcing a narrow stream of high pressure water out
through a flexible siphon.

The rocket probably evolved in a simple way from the incendiary arrow. It
is known that the Greeks used flying incendiary objects to burn enemy cities
in their wars. Thus it is even possible that they already knew how to prepare
explosive mixtures. As early as 1044, the Chinese learned that salpeter added
to charcoal and sulfur made it fizz alarmingly.

Somebody in China, between 1044 and 1232, discovered that if charcoal,
sulfur and salpeter are grounded very finely, mixed thoroughly in the propor-
tion of 1: 4 : 4 and the mixture packed into a close container it will, when
ignited, explode with a delightful bang. The mixture was applied both to
fireworks and to primitive military devices in the war of 1232 against the
Mongols. There we encounter the earliest version of a ‘rocket-arrow’: The
powder was packed in a long thin tube to keep it from going off all at once.
The tube was open at the rear end such that the reactive thrust made the use
of the bow redundant.

The new weapon spread quickly, and by 1300 it was well established in
Europe, the realms of Islam and the Far East. As with printing and the clock
escapement, we do not know just how this knowledge traveled from China
westward: whether over the northern route through Russia (then under the
Mongol yoke), or south through Muslim lands.

The next step was taken by William Congreve (1805), the father of mili-
tary rocketry. Although Newton’s laws had by then been known for more than
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a century, it was the practical needs of warfare which brought about the de-
velopment of the rocket and not the indulgence of savants in the consequences
and uses of Newtonian theory.

The Congreve rockets were about 100 cm in length, 9 cm in diameter,
weighted as much as 30 kg and were equipped with a stabilizing wooden tail
rod, some 5 m in length. It could travel 2.4 km with rather poor accuracy,
and chiefly effective for its noise, glare and incandescent power. It was thus
used against masses of troops within easy range, or to set fire to buildings.
The rocket consisted of two parts: a head projectile made of hollow metal
that could be filled either with explosives (acting as a bursting anti-personnel
shell) or incandescent material. Screwed to the head was an iron casing in
the rear, containing the propellant gun-powder.

An English inventor, William Hale, improved the accuracy of military
rockets by substituting three fins for the long wooden tail that had been used
to guide the rocket.

The modern era of rocketry begins with the pioneering work of Kon-
stantin E. Tsiolkovsky, who first stated the correct theory of rocket propul-
sion in 1903. But the indifference of the Russian government to his new ideas,
and the political events that overwhelmed Russia during 1914–1932, prevented
the penetration of his revolutionary ideas into Europe and the United States.

Consequently, his notions were rediscovered by Robert H. Goddard
(1918) in the United States and Hermann Oberth in Germany (1923). Of
these three pioneer thinkers, Goddard was the first to undertake specific trans-
lation of his theories into shootable rockets and patentable devices. But even
so, Goddard’s development of a successful solid-fuel ballistic rocket by 1918,
lay unused for 25 years.

Oberth began his study of the space flight problem about the time of
WWI, and presented his first treatment in his book Die Rakete zu den Plan-
etenraum (The rocket into interplanetary space), published in 1923. It is the
first book to contain the notion of escape velocity (although the concept was
recognized by Goddard already in 1912). This book stimulated the foundation
in Germany of The Society for Space Travel (1927).

In 1926, Goddard conducted the first successful launch of a liquid propel-
lant rocket. It climbed 56 meters into the air at a speed of about 100 km/hour.

The three pioneers had one thing in common — their funds were extremely
limited. None had a financially strong sponsor (eccentric inventors with new
ideas, do not usually get such sponsors). They all had excellent ideas imagi-
nation, and even skill, but they failed to perceive the development costs and
the amount of hard work required before attaining convincing results.
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The history of technology proves that when the time is ripe, people are
to be found thinking about or working on the same problems in almost all
civilized countries. Indeed, since the early 1920’s, with the development of in-
expensive, mass-produced light metals, highly efficient oxidizers which could
be handled, and reliable, accurate electronic equipment — three basic ele-
ments became available for the revival of the ancient art of rocketry.

Thus we see, since 1928, private groups, inventors and engineers in many
countries working on rocket propulsion. Particularly in Germany, serious
study had begun on rocket-propulsion as a means of aircraft locomotion. In
1928, Max Valier became one of the first individuals to experiment with a
liquid-propellant rocket motor, which he used to drive a small racing car. In
1928, rocket powered winged flight was demonstrated in its first primitive form
with glider flights in Germany. In 1929, a seaplane made a solid-propellant
rocket-assisted takeoff at Dessau, Germany. Later, Fritz von Opel (1899–
1971) flew a glider almost 3 km from Frankfurt-am-Main, Germany, with 16
rockets of 25 kg thrust each.

Above all, however, it was the military potential, an art lost to artillery
in the 19th century, which created missilery as a strategic weapons system,
and brought forth the technology that made possible the birth of practical
astronautics.

The treaty of Versailles prohibited military aviation, and thus prompted
the German Army in 1931 to initiate a serious, albeit modest and secret,
investment in the possible military potential of the rocket as a carrier of
explosives. Now, for the first time, rocketry had a sponsor: private industry
or government would not have spent hundreds of millions of dollars for a new
technical idea which, in the foreseeable future, would not produce any profit.
The Germans were looking for a new superior weapon system which has not
prohibited to them by the Treaty of Versailles. This called for strict secrecy,
and hence no involvement of private industry.

In 1935, Werner von Braun worked on liquid propellant rocket engines
for aircraft application, and in 1936 he mounted a 300 kg thrust engine onto
small aircraft in the first airplane ground test, using a propulsion system of
this type.

Hardly anyone in the world knew before 1943 that such a development
was underway. Yet by 1945 the Peenemuende team (1936–1945) had a rocket
lead of approximately ten years. The product of this effort, namely, the V-2
guided ballistic missile, was used by von Braun and his colleagues to bombard
London. Some 1100 such flying bombs fell in England between Sept. 1944 and
March 1945. American forces captures many of these V-2 missiles and sent
them (together with some 200 German rocketeers) to the United States for
use and research. The history of rocketry is summarized in table 5.2.
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Table 5.2: Rockets (1232–1981 CE)

• c. 25,000 BCE The bow and arrow are invented; The idea of the rocket
probably followed the sight of flaming arrows flying through the air —
a military technique of ancient times (c. 3500 BCE).

• c. 360 BCE Archytas of Tarentum built the first known device
that operated on reaction principle: thrusts from jets of stream moved
pigeon-shaped device.

• c. 210 BCE Earliest recorded mention of gunpowder from China.
Bamboo tubes filled with salpeter, sulphur and charcoal used as primi-
tive bombs tossed into ceremonial fires.

• 1045 CE Use of gunpowder and rockets formed an integral aspect of
Chinese military tactics.

• 1232 CE Rocket fire-arrows used by the Chinese Sung Dynasty to
repel Mongol invaders at the battle of Kai-fung-fu (capital of the Chinese
kingdom of Honan). The huge rockets could be heard for about 24 km
away and at the point of impact, devastated an area with radius of 700
m. Apparently these large military rockets carried incendiary material
and iron shrapnel.

• 1248 CE Mongols brought the Chinese rockets to Europe, and used
them against Magyar forces at the battle of Sejo which preceded their
capture of Buda (Dec 25), and at the battle of Legnica in Silesia. [Ac-
counts also describe Mongols use of a noxious smoke screen — possibly
the first instance of chemical warfare.]

• 1258 CE Mongols use rockets to capture the city of Baghdad (Feb
15).

• 1268–1288 CE Arabs adopted the rocket into their own arm inventory
and used them against the French army of King Louis IX during the
7th Crusade (1268). The Arabs used them again during their attack on
Valencia, Spain.

• 1300–1750 CE Rockets found their way into European arsenals, and
thenceforth many armies adopted and improved the technology of these
‘flying bombs’. The French used rockets at the Siege of Orleans during
the Hundred Years War against the English (1429). Rockets reached
Italy (1500), England (1647), The Netherlands (1650) and Germany
(1668). By 1730 the Germans were manufacturing rockets weighing
24–54 kilograms.
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It is known that the construction of these bombs was rudimentary, and
their use undoubtedly hazardous, for they were made of paper which
was lacquered or pasted with starch, thus forming a tube which was
narrow at one end, the mouth, and was sealed at the front. The tube,
loaded with charcoal, salpetre and sulphur, was the ancestor of solid
fuel rockets, in which the combustion forced the ejection of a mass of
warm air which propelled the whole rocket.

• 1379 CE The word rocket was first used (in Italian, rocketta).

• 1650 CE Writer Cyrano de Bergerac suggested rockets as means
of traveling from earth to moon.

Rockets reached a remarkable degree of perfection:

– Rockets have fins.

– Multi-stage accelerating rockets were invented: this consisted of a
main rocket to which back-up rockets were connected.

• 1687 CE Isaac Newton published his laws of motion. His third law
— for every action there is an equal and opposite reaction — explains
the basic motive force of rocket engines.

• 1715 CE The first military rocket factory in the world was built near
St. Petersburg by Peter the Great.

• 1792–1798 CE In the Battle of Seringapatam, India between the Eng-
lish and the army of Tippu Sultan, the English ranks are overwhelmed
by a barrage of thousands of rockets. These rockets were metal-made
with a range of about 1 km; improvements were made in their manu-
facture and firing method.

• 1804–1865 CE William Congreve (England), the true pioneer of
modern rockets, improved their ballistic stability, range and destruc-
tive power, turning rockets into a powerful military weapon. He was
first to think of igniting the explosive charge separately from the pro-
pellant charge, which were placed in different compartments. His 27
kg models were launched from inclined ramps for aerial bombing and
horizontal ramps for field bombing. His rockets played a major role in
the bombing of Boulogne (1806), Copenhagen (1807), Leipzig (1813),
Baltimore (1814), Mexico (1847), and in the North American Civil War
(1861–1865).

• 1850 CE Further improvement of rockets by William Hale (Eng-
land).
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• 1883 CE Konstantin Tsiolkovsky (Russia) pioneered in application
of rocketry to space travel. He laid the theoretical groundwork for space
flight such as calculating the escape velocity and use of liquid fuel rocket.

• 1909–1941 CE Robert H. Goddard (USA) built and tested for the
first time liquid-propellant rockets, thus making many basic advances
in rocketry. Speculated (1919) on sending rockets to the moon. First
launched rocket carrying instruments (camera, barometer, thermometer,
1926).

• 1923 CE Hermann Oberth (Germany) promoted development of
rocketry and space travel.

• 1933 CE Soviet liquid-propellant sounding rocket reached 5 km alti-
tude.

• 1942 CE First successful test of German V-2 rocket at Peenemünde.
Powered by liquid oxygen and alcohol. It traveled 200 km, reached an
altitude of over 80 km and landed 31

2 km from target.

• 1957 CE US Jupiter C, three-stage ICBM (Inter Continental Ballistic
Missile) was launched. Recoverable nose cone traveled 460 km up into
space.

• 1958 CE US Atlas ICBM missile fired; had maximum range up to
14,400 km.

• 1959 CE US two-stage ICBM, Titan 1, was tested successfully. It had
a maximum range of 9600 km.

• 1969 CE Saturn 5 rocket launched 43.2 ton Apollo 11 command mod-
ule and lunar lander on successful manned voyage to the moon. The
110 m tall, three-stage liquid-fuel rocket developed about 3.5 million
kg of lift-off thrust from five first-stage engines. Four smaller second-
stage engines produced about 0.45 million kg of thrust, while a single
third-stage engine produced enough thrust to orbit the earth and later
to break away for the moon.

• 1981 CE First flight of the first reusable rocket, the US space shuttle
Columbia. Shuttle was powered by three variable-thrust liquid-fuel en-
gines (burning liquid oxygen and liquid hydrogen). Shuttle’s two solid-
fuel rocket boosters (for lift-off) developed 0.8 million kg of thrust. The
Columbia exploded during its return voyage on Feb 01, ‘03, killing all
seven astronauts on board at height of 65 km over Texas.
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Aircraft Jet Propulsion (1909–1960)

The theory of the propeller came to completion during the period 1918–
1929 in Germany, England and Italy. It thus took over half a century for
a progressive clarification of ideas on the functioning of the propeller: from
the analogy with a screw jack to a complete theory based on the principles
of scientific fluid mechanics, and using all the mathematical methods of this
science.

From a practical point of view, great progress had also been made in the
construction of propellers. However, the difficulties that arose in relation
to the supersonic propeller caused both theoreticians and engineers to look
elsewhere for different solutions. In fact, the quest for jet propulsion goes back
to 1909, the year in which the French engineer René Lorin first proposed
the idea of the ramjet engine119, the simplest of all jet engines.

If we imagine that an airplane is flying very fast, say over 650 km/h (e.g.
if the plane is first being set into motion by an auxiliary rocket), then the air
that enters the engine through a front inlet is being compressed (rammed)
without any auxiliary device, since the air cannot move through the engine
fast enough to make room for new air coming in. The compressed air becomes
very hot. The hot air then flows past the fuel inlets and ignites the fuel. The
mixture of air and fuel burns continuously in a combustion chamber. The
pressure generated by the burning fuel and air sends a flaming exhaust out
the jet nozzle and drives the engine forward.

Thus, using the ram effect, one can simplify the turbojet engine by virtu-
ally discarding the compressor and the turbine. The resulting device is called
a ramjet. It possesses extreme mechanical simplicity but is penalized in com-
parison with other jet engines by higher fuel consumption — at least up to
the flight-speed range of high supersonic Mach-numbers; and by the fact that
without a specific starting drive it functions only above a certain threshold
flight velocity.

The ramjet was displayed for the first time in Paris by the French engineer
René Leduc in 1938. It has since been used for the propulsion of guided
missiles such as the U.S. Bomarc.

An ingenious device that functions right from zero flight speed is the pulse-
jet. Like the ramjet, it works without compression, and therefore does not
need a turbine for compressor drive. It differs from the ramjet in that the

119 Lorin, R., “La propulsion à grande vitesse des véhicules aériens: Étude d’un

propulseur à réaction directe”, L’Aérophile 17 (1909) 463–465. “Propulsion par

réaction directe et son application à l’aviation”, ibid 18 (1910) 322–325.
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process is not continuous, but periodic. This device has intake valves which
open and close somewhat as in a reciprocating engine, but the valves are
controlled automatically, principally by resonance with the periodic process
of successive compression, combustion, and outflow.

The first practical application of this idea was made by the Germans in the
design of their V-1 flying bomb (1944). These were automatically controlled
unmanned aeroplanes, airborne by wings.The V-1 carried an explosive charge
of 300 kg to a distance of the order of 240 km, at a speed of 650 km/h.
The propulsive unit of this device, which was carried above the fuselage and
aft of the short and extremely simple wings, consisted mainly of a slightly
tapered sheet steel tube, the forward portion of which formed the combustion
chamber.

As the aircraft moved forward (usually launched by a catapult), the dy-
namic pressure of the air on the forward end of the steel tube forced open an
assembly of spring-leaf flap valves; a quantity of fuel was then injected into
the chamber and the mixture fired by an electric spark. The resultant gas
pressure was large enough to close the spring-leaf valves on the forward end, so
that a high-speed jet of gas rushed out at the rear end — giving the machine
a forward impulse. As the gas emerged, the pressure in the combustion cham-
ber fell, the valves opened and the whole process started again, giving the
characteristic ‘motor-cycle’ sound (frequency of about 40 per second) which
Londoners soon learned to recognize. This primitive engine developed 600
h.p.

It is hard to conceive of anything simpler and more suitable for rapid
production in time of war120, but as a weapon it failed completely once the
initial surprise was over. An aircraft which flies straight and level and at
constant speed is a choice target for anti-aircraft gunners, who with the aid
of radar, reaped a rich harvest.

Certainly, the ramjet and the pulsejet were not the answer for all the needs
of commercial and military aviation. Already in the early 1920’s engineers
began to realize that jet propulsion, and propellers driven by gas turbines,
showed promise.

Indeed, aircraft designers had long lamented the fact that the task of
propelling a plane by pushing air from fore to aft (propeller) was achieved
inefficiently; obviously dissipating energy by additional friction, and requir-
ing an extra amount of engine weight. The blast of the exploding air-petrol
mixture is first used to push a piston, whose reciprocating movement is trans-
formed by means of a connecting rod and crank into rotation of the main
shaft, which finally produces by means of a propeller, the necessary thrust to

120 With the exception of the Japanese “suicide planes”.
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push the plane forward. Quite a number of links, gliding parts, and bearings
are required for each of the many cylinders of the 2, 4 or 6 engines of a plane,
each item incurring frictional losses.

Was there no shortcut for transforming the blast of the burnt gases into
the final forward thrust on the plane?

A.A. Griffith, one of the pioneers in aircraft gas-turbine research ex-
pounded his early theories in England (1926). In 1930 Frank Whittle (Eng-
land) patented a design for a jet-aircraft engine. In the early 1930’s, engineers
in the United States and several European countries worked to develop a prac-
tical jet engine. Whittle had tested some of his designs by 1938. Finally, in
1939, the Heinkel Company in Germany built and flew the first jet-engine air-
plane designed by Hans Joachim Pabst von Ohain. Its compressor was
of the centrifugal type and the turbine had radial inflow.

The first successful turbojet airplane (with an engine designed by Whittle)
was flown in Great Britain in 1941. The first successful jet-propelled combat
airplane was flown in Germany in 1942. In 1944, jet airplanes began to be
used by the German fighter squadrons, eliciting the astonishment of allied
aviators.

In the turbojet engine, air is compressed mechanically instead of ramming
it by the aircrafts motion through the air. A compressor takes air from the
outside and brings it to a certain pressure in order to make the combustion
and the transformation of heat into mechanical energy more economical. The
air stream mixed with the injected fuel is burned in a combustion chamber.
The exhaust of this chamber drives the turbine and then escapes from the
rear. The shaft-output of the turbine drives the compressor. Ordinarily the
gas leaves the turbine at high velocity, and forms the jet that furnishes the
thrust. Thus, the turbine-compressor combination ultimately serves as a gas
generator for producing the jet.

Turbojets produce thrusts ranging from 10, 000 to 150, 000 Newton. A
turbojet of moderate size uses about 250, 000 kg of air per hour. It also
requires about 4500 liters of fuel per hour. If a 4-engine turbojet airplane
flies at 1000 km/h, it travels only about 50 meters per liter. The turbine
wheel must be made of materials which can withstand temperatures as high
as 870 ◦C, caused by the hot gases (such materials were not available in the
pre WWII years).

Two kinds of compressors may be used in turbojets:

(1) A centrifugal-flow compressor squeezes the air by bringing it into the
center of a rapidly spinning wheel, which throws the air towards the rim.
There it enters a nearly circular expanding passage, where its speed decreases
and its pressure increases.



1903 CE 3001

(2) An axial-flow compressor which raises the pressure of the air up to 12
times that at the inlet.

Turbojet engines power most military aircraft. An afterburner gives the
turbojet extra power by spraying additional fuel into the burning mixtures of
air and fuel.

A turboprop engine is similar to the turbojet, except that most of its thrust
comes from a propeller driven by the gas turbine. The jet exhaust adds only a
slight extra thrust. It usually contains two turbines; one drives the propeller
and the other drives the compressor. The turboprop is most efficient for short
flights at relatively low speeds, and is well suited for business aircraft.

A turbofan is another modification of the turbojet, and is employed by
many commercial airliners, including the Boeing 727. Turbofan engines have
fans at their front end that act like ordinary propellers. These fans take
in large amounts of air through the engine, making it more powerful at low
speeds than a turbojet. As a result, the airplane can take off in a shorter
distance. Also, the fanjet burns less fuel for the thrust it produces, increasing
the distance the airplane can fly without having to refuel.

The fans (propeller-like wheels) at the front end push air back into the
engine. This air divides into two streams: one stream goes through the com-
pressor, combustion chambers and turbines of an enclosed turbojet engine.
The other stream flows around the engine. The two air streams finally com-
bine at the jet nozzle to produce the thrust. A low speeds, turbofan engines
are more powerful than turbojets because the huge fans suck greater amounts
of air through the engine.

The first scheduled airline flights by jet transports were launched in 1952
by Great Britain. In 1958, commercial jet passenger service began between
New York and London. The turbofan engine was introduced into commercial
use in 1960.

A rocket engine ejects a stream of rapidly moving gas particles through
nozzles located at its rear. There hot gases are the result of burning fuel in a
combustion chamber of the rocket as the fuel and oxidizer are consumed and
ejected.

Let m(t) be the mass of the burnt fuel and oxidizer that is ejected up
until time t through the rocket nozzle, and M(t) the mass of the rocket
(including the remaining fuel and oxidizer).

Let u and v be the respective center of mass velocities of m and M at
time t, relative to some suitable inertial frame (the same for both) and let F e

represent the total external force acting on the craft in the same frame.
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During a time interval Δt, a mass Δm is ejected and the rocket’s velocity
changes by Δv. Clearly ΔM = −Δm. Consider the system of all particles
of which the rocket is composed at time t. Its momentum is Mv. At time
t + Δt the momentum is (M − Δm)(v + Δv) + (Δm)u. The total rate of
change of momentum (of ejecta plus craft) is then

{
M dv

dt + dm
dt (u − v)

}
, and

this must be equal to F e, according to Newton’s second law.

Denoting by w = u − v the relative instantaneous velocity of the center
of mass of the ejected mass w.r.t. the center of mass of the rocket, one arrives
at the rocket equation

M
dv

dt
= F e + w

dM

dt
= F e − w

dm

dt
.

The term
{
w dM

dt

}
is referred to as the thrust (or reactive force) of the rocket

engine.

The rocket equation can be written in the alternative form

d(Mv)
dt

= F e + F R,

where F R = udM
dt = −udm

dt is the reactive force relative to the inertial frame.
In this form, Newton’s second law is applied to the rocket proper, and the
thrust appears as an additional external force on the system of the instanta-
neous mass M(t).

Since dM
dt < 0 and the direction of w is opposite the rocket’s motion, the

thrust gives a contribution to M dv
dt that produces a positive acceleration. To

achieve large accelerations design engineers must deal with ejection speeds w
that are very high, with combustion chambers and nozzles that are capable
of large through-put.

For one-dimensional motion with F e = 0, fixed |w| = w0, initial velocity
v0 and initial rocket mass M0, the rocket equation reduces to −dM

M = dv
w0

,
yielding the Tsiolkovsky formula (1914) applicable to spaceflight,

v = v0 + w0 ln
M0

M
.

In order for v to exceed the rocket-frame exhaust speed w0 by a factor N ,
we must have {Minitial/Mfinal} = eN (assuming v0 = 0); thus, to exceed the
exhaust velocity by any substantial factor, the payload Mfinal must be a
small fraction of the entire rocket mass.

Consequently, a rocket is a jet-propelled missile which carries along with
it the source of its propulsion energy, and its basic functioning is independent
of the presence of the atmosphere.
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Rocket propulsion is the only autonomous active propulsion system that
can function in vacuum. It is in this respect that a rocket differs from an
aircraft jet engine. The latter uses air to burn its fuel, and can therefore
operate only in the atmosphere.

The equation of the jet engine is therefore somewhat more involved: air
enters at the front intake of the engine and, after compression, supports the
combustion of the fuel; the exhaust gases are ejected with high velocities at
the rear of the engine. The above rocket equation is then modified to read
(ignoring air drag)

M
dv

dt
=

{

−w
dm

dt
− u

dμ

dt

}

≡ thrust,

where μ(t) is the mass of air processed by the engine up to time t, m(t) is
the mass of fuel ejected up to time t, w is the relative velocity of the exhaust
gases w.r.t. the engine and u is the ejection velocity relative to the inertial
frame.

Since both dm
dt and dμ

dt are positive and u is in the same direction as w,
both terms of the thrust represent positive acceleration. In fact, even though
|w| > |u|, the term udμ

dt contributes the major part of the thrust because
dμ
dt is usually 20 or so times greater than dm

dt (that is, the air-to-fuel mass
ratio is 20 or more). The relative exhaust speed, w, is usually at least several
times greater than the forward speed of the engine w.r.t. the still air.

The propulsive efficiency of engines that furnish a reactive thrust is esti-
mated as follows: let the craft (ship or aircraft) propel itself by taking in a
mass M of fluid per second, of velocity u1 relative to itself, and eject it behind
it at higher velocity u2 > u1. The thrust of the craft is M(u2 − u1), and
the power employed in the propulsion is Mu1(u2 − u1), since the craft is
moving forward with velocity u1.

Now, the engine must supply the power
{

1
2Mu2

2 − 1
2Mu2

1

}
per second in

order to sustain the motion. This is equal to 1
2M(u2 + u1)(u2 − u1). The

power efficiency is then:

η =
power useful in propulsion

power expended
=

Mu1(u2 − u1)
1
2M(u2 + u1)(u2 − u1)

=
2u1

u2 + u1
< 1.

This ratio may be made close to unity by making u2 tend to u1 and by making
M greater in order to keep the thrust M(u2 − u1) invariant. If u2 = 2u1,
i.e., if the acceleration is 100 percent, the efficiency is only 67 percent.

The above calculation ignores the fuel mass relative to that of the air; it
also does not include all the losses — such as, for example, the loss due to
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the rotational motion imparted to the fluid or the friction on the propeller
blades.

The principle that an efficient propulsion requires as small a value as pos-
sible for the velocity increment of fluid passing through it, applies to other
propulsive devices based on the reaction principle. We often have to tolerate
jet velocities that are high compared to the flight velocity, although we know
that the propulsive efficiency will be poor.

For example, with rockets the outflow velocity of gas may be equal to 2
km/sec whereas the flight velocity may be only around 300 m/sec. One can
easily calculate how poor a rocket airplane would be for commercial purposes.

1904 CE Mount Wilson Astronomical Observatory founded by George
Ellery Hale (1868–1938, U.S.A.) on Mount Wilson, California (1740 m above
sea level). Equipped with a 100-inch reflector telescope in 1917.

1904 CE John Ambrose Fleming (1849–1945, England). Engineer. In-
ventor of the diode vacuum tube that acts as a rectifier for the detection of
“wireless” radio signals. The Fleming valve was the first practical radio tube,
and the first practical application of the Edison effect. Fleming made nu-
merous contributions to electronics, photometry, electric measurements and
wireless telegraphy.

Fleming was born in Lancaster, Lancashire. He was educated at University
College, London and Cambridge University under James Clerk Maxwell.
He was first to hold the title of professor of electrical engineering at University
College.

1904–1907 CE Bertram Borden Boltwood (1870–1927, U.S.A.). Sci-
entist. First proposed to use radioactivity data to date minerals. Determined
radium to be a decay product of uranium (1904) and developed a radioactive
dating method for uranium bearing rocks (1907). Discoverer of ionium, iso-
tope of thorium (atomic mass 230), which naturally transforms into radium
(1907).

Boldwood was born at Amherst, MA. Professor at Yale (1897–1927).

1904–1930 CE Ludwig Prandtl (1875–1953, Germany). Pioneer in mod-
ern fluid mechanics. Made fundamental contributions in the theory of bound-
ary layers (1904) and the field of wing theory (1918). An engineer by training,



1904 CE 3005

he was endowed with an unusual ability of putting physical phenomena into
relatively simple mathematical form and establishing systems of simplified
equation which expressed the essential physical relations.

Through his far-reaching concept of the boundary layer , he showed the
way to treat satisfactorily the flow past a streamlined body at high Reynolds
numbers121. This discovery led to an understanding of skin friction drag, and
the way in which streamlining reduces the drag of airplane wings and other
moving bodies. In 1918, Prandtl formulated the flow past a finite wing for
straight wings with large aspect ratio. This was done independent of a similar
work published in 1897 by F.W. Lanchester122, and is known today as the
Lanchester-Prandtl wing theory.

Prandtl made important advances in the theories of heat transfer in in-
compressible fluid (Prandtl number123), subsonic and supersonic flows and
turbulence (mixing length). He also made notable innovations in the design
of wind tunnels and other aerodynamic equipment. His advocacy of mono-
planes greatly advanced heavier-than-air aviation.

Prandtl was born in Freising. In 1901 he became professor of mechanics at
the University of Hanover, where he continued his earlier efforts to provide a
sound theoretical basis for fluid mechanics. He served as professor of applied
mechanics at the University of Göttingen from 1904 to 1953, and established
there a school of aerodynamics and hydrodynamics that achieved world re-
known. In 1925 he became director of the Kaiser Wilhelm (later the Max
Planck) Institute for Fluid Mechanics.

121 When a fluid flows past a fixed body, because of the effect of viscosity, no

matter how small, the layer of the fluid immediately adjacent to the body’s

surface is at rest. The viscosity is then virtually confined to a very thin layer

close to the body and a thin wake extending from the body. In this region,

the spatial velocity gradient normal to the body is large, and consequently the

viscous forces would not be negligible even if the viscosity were small. In the

boundary layer the flow may be laminar, turbulent or a combination of both.

Under certain circumstances a reverse flow can develop close to the wall.
122 Both established a conceptual model for lift and drag based on vorticity. It

is hard for an active and creative mind to remember from which readings or

conversations the first inspiration arose. Some feel however, that Prandtl did

not fully acknowledge his debt to Lanchester in his publications.
123 Prandtl’s number σ = μ/ρ

κ/ρcp
=

μcp

κ
= kinematic viscosity

thermal diffusivity , is an index of a fluid’s

capacity to diffuse momentum as compared with its capacity to diffuse heat.

It is a material property that depends on its pressure and temperature [air =

0.733; water = 6.75; mercury = 0.044; glycerin = 7250, at standard temperature

and pressure].



3006 5. Demise of the Dogmatic Universe

1904–1930 CE Frigyes (Friedrich) Riesz (1880–1956, Hungary). Math-
ematician. Foremost among the founders of functional analysis, which has
found important applications to mathematical physics [Riesz-Fischer theo-
rem, Riesz representation theorem]. Discovered general Lp spaces for p > 1,
p �= 2 and their adjoints. Was first to introduce the concepts of the abstract
operator, the adjoint operator and the sufficient conditions for the existence
of the inverse operator. During 1924–1930 Riesz created the theory of sub-
harmonic functions.

Riesz was born to Jewish parents in Györ. He studied at the polytechnic
in Zürich and then at Budapest and Göttingen before taking his doctorate at
Budapest. He then taught mathematics at the University of Cluj (1911–1922)
and was appointed professor of mathematics at the University of Budapest in
1946.

1905 CE The first geothermal power station was built at Larderello, Italy.

Energy: Availability, Consumption, and Conversion

Prior to the Industrial Revolution, the sun was the only source of energy

widely available to humankind. Wood-burning has been used, where available,

since prehistory. Sails to harness sun-created wind power were first hoisted

5000 years ago, windmills were erected 2000 years later, and water-wheels,
which use water raised by the sun, were used 2000 years after that. Coal
came into general use just 300 years ago, and oil and gas only in the last 100
years. Not until the 20th century did non-solar derived energy arrive, in the

forms of geothermal and nuclear power.

The natural flows of energy that have been used for millennia are known as

renewable sources. The amount of energy fossil fuels can supply is ultimately

limited by geology. These are known as non-renewable sources. As global

energy demand grows and non-renewable sources are depleted, attention is

turning back to the renewables [biomass (plant or animal matter that can be
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converted into fuel), hydropower, solar, power from the sea, geothermal , wind,
and nuclear power]124.

The standard of living of a population seems to be, in first approximation,
a function of the amount of power available per capita. Judging by the present
energy consumption in countries such as the United States or Canada, a sup-
ply of about 10 KW per capita would appear to satisfy the energy requirement
in an industrial society. This number includes all forms of energy put to work
in the service of man, such as the fuel powering our cars, the food we ingest,
and the power needed to operate machine tools and household appliances,
heat and light habitats, etc.

Supposing one can stabilize the world population at about 9 × 109 people,
one arrives at a figure of 9 × 1010 KW as the power requirement of humanity.
The power accessible at present is still far short of this goal. Large areas of
the world are still underdeveloped, as indicated by the estimated total present
power of 3 × 109 KW, corresponding to a world average of only about 1 KW
per capita.There is a need, then, to increase the world power supply about
thirtyfold125.

124 Nearly half of the world’s population rely on biomass, mostly in the form of

wood. Falling water generates 25% of the world’s electricity, yet this technology

is still underexploited. The sun already contributes significantly to the energy

needs of buildings through walls and windows, and there is a massive increase

in investment in technologies to make efficient use of the sun’s energy.

Ocean power comes in four main forms: wave power, tidal power, current power

and ocean thermal energy conversion — which exploits temperature differences

between the surface and depths. The ultimate energy potential is massive but

only a small fraction is likely to be harnessed.

The earth’s temperature rises 1 ◦C every 30 m down: more in geologically active

areas. Geothermal power makes use of this heat, either directly as hot water or

to produce electricity.

Winds are caused by uneven heating of the earth’s surface. The power of winds

is proportional to the cube of wind speed. Windmills can be used either to

generate electricity or to do mechanical work.

Oil is the world’s largest energy source, but the time when this will no longer

be so is already in sight. Coal is the most plentiful fossil fuel. Its use is growing

at a rate (3% per year) that will intensify problems of acid rain and carbon

dioxide. Natural gas accounts for 18% of the world’s current annual energy

budget.
125 If one wants to make 9 × 1010 KW available entirely through conversion of

nuclear energy into useful work, one gram of rest mass must be converted into

other forms of energy each second!

A possible source of nuclear energy is the heavy hydrogen or “deuterium”, D,
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Volta’s battery (1795) that converts chemical energy (without moving
mechanical parts) into electrical energy, gave Ampère, Oersted, and Fara-
day their first experimental supplies of electricity. The lessons they learned
about electrical energy and its intimate relation with magnetism spawned the
mighty turboelectric energy converters — steam and hydroelectric turbines
— which power modern civilization.

Forms of energy are interchangeable. When gasoline is burned in an auto-
mobile engine, potential chemical energy is first turned into heat. A portion
of this heat, say 25%, is then converted into mechanical motion. The remain-
der of the heat is wasted and must be removed from the engine. A multitude
of processes and devices have been found which facilitate these transforma-
tions from one form of energy to another. To date we recognize seven forms
of macroscopic interconvertible energy: Electromagnetic, chemical, nuclear,
thermal, kinetic, electrical and gravitational.

Some examples are: Gravitational to kinetic to electric via watermills and
hydroelectric plants; chemical to thermal to kinetic to electric via turbines
and electric power stations; electromagnetic to chemical via photosynthesis
(in plants) and photochemistry (in photographic films); Electromagnetic to
electrical via photoelectricity, radio antenna and solar cells; chemical to elec-
tromagnetic via chemiluminescence (fireflies); chemical to kinetic in muscles,
rockets and firearms; electrical to electromagnetic via electromagnetic radia-
tion (radio, TV etc.) and electroluminescence; thermal to chemical via boil-
ing and dissociation; electrical to chemical through electrolysis and battery
charging; chemical to electrical through batteries and fuel cells; thermal to
electromagnetic via thermal radiation; nuclear to thermal via radioactivity
fission and fusion. (From the 42 combinatorial conversion possibilities, 13 are
as yet unknown.)

The general laws governing energy conversion are the laws of thermody-
namics, which can be paraphrased thus:

• You can’t win (conservation of mass-energy and other quantities).

• You can’t break even (some energy will unavoidably be lost in all heat
engines — the ‘Second Law of Thermodynamics’). This law is less restric-
tive for some processes, such as those where kinetic or chemical energy
are converted into or produced from electricity without turning into heat
first. We can then escape the Carnot efficiency straitjacket. Chemical

present in seawater. In certain fusion reactions about 1/200 of the rest mass of

D is converted into useful energy. The total amount of D in the sea is about

6 × 1016 kg. If this supply is used at a rate of 9 × 1010 KW, it will last for

1010 years.
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batteries perform this trick. So do fuel cells, solar cells, and many other
direct conversion devices (energy transformation without moving parts,
such as shafts and pistons).

Direct conversion is desirable in places where energy conversion equipment
must run for years without maintenance or breakdown. Also, direct conver-
sion is required where the ultimate in reliability is required, such as on sci-
entific satellites and manned space flights. Under these circumstances, direct
conversion will be more reliable and trustworthy than dynamic conversion.

Some methods of direct energy conversion include nuclear-heated thermoelec-
tric generators, thermionic converters and magnetohydrodynamic converters,
hydrogen-oxygen fuel cells and nuclear batteries126.

An example of man’s effort to harness natural energy sources is the tapping
of geothermal energy.

For years man has viewed with awe the spectacular bursts of natural steam
from volcanoes, geysers, and boiling springs. Although the use of hot springs
for baths dates to ancient times, the use of natural steam for the manufacture
of electric power did not begin until the turn of the 20th century. For the next
several decades, there was no other major development in the field. During
1950–1972, production of power from geothermal sources began in the United
States, Japan, New Zealand, Iceland, and the Soviet Union.

Most of the promising areas for geothermal power development are within
belts of volcanic activity. A major belt, called “the ring of fire”, surrounds the
Pacific Ocean. The “hot spots” favorable for geothermal energy are related
to volcanic activity in the present and the past 10 million years.

Volcanoes produce the most dramatic displays of natural steam. Wa-
ter that comes into contact with molten lava (temperatures of 2000 ◦C and
higher) near the earth’s surface can exist only as steam. Rapid expansion
of steam and other gases below the surface cause some of nature’s most vi-
olent and explosive eruptions. That of Mt. Vesuvius in 79 CE, for example,
destroyed the city of Pompeii.

126 In a nuclear battery, a central rod is coated with an electron-emitting radioiso-

tope (a beta-emitter; say strontium-90). The high-velocity electrons emitted by

the radioisotope cross the gap between the cylinders and are collected by a sim-

ple metallic sleeve and sent to the load. Space charge effects do not prevent the

electrons from crossing the gap as they do in the thermionic converter because

the nuclear electrons have a million times more kinetic energy than those boiled

off the thermionic emitter surface: Consequently, they are too powerful to be

stopped by any space charge in the narrow gap.
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Almost all active volcanoes have fumaroles, or vents, that discharge steam
and other hot gases. But, despite the large quantities of steam discharged
during active volcanism, the energy cannot be harnessed as a dependable
source of power. In some areas the emission of steam cannot be controlled,
and in other areas the costs of controlling the steam would exceed the value
of the power obtained.

More promising sources of commercial steam are certain in other subsur-
face hot spots or geothermal reservoirs that are generally found in areas of
volcanism. These reservoirs contain larger and more dependable volumes of
steam or hot water. Wells are drilled into the reservoirs to tap the naturally
hot fluids that may drive power generators.

Most known geothermal reservoirs contain hot water rather than steam.
Water at depth and under high pressure remains liquid at temperatures far
above 100 ◦C (the boiling point of water at sea level). When this water is
tapped by drilled wells and rises to the surface, the pressure falls. As the
pressure decreases, the water boils, perhaps violently, and the resulting steam
is separated from the remaining liquid water. Because the well itself acts as
a continuously erupting geyser, the expanding steam propels the liquid water
to the surface and pumping costs are obviated.

Generally speaking, geothermal fields are either hot-spring systems or deep
insulated reservoirs that have little leakage of heated fluids to the surface.
Yellowstone National Park and Weirakei, New Zealand are examples of large
hot spring systems. Larderello in Italy and the Salton Sea area of California
are examples of insulated reservoirs.

Hot springs have a plumbing system of interconnected channels within
rocks. Water from rain or snow seeps underground. If the water reaches
a local region of greater heat it expands and rises, pushed onward by the
pressure from new cold and heavy water that is just entering the system. The
hot water is discharged as hot springs and geysers.

1905 CE Emanuel Lasker (1868–1941, Germany). World chess cham-
pion127 (1894–1921) and mathematician. He proved (1905) that every polyno-

127 Unlike many chess geniuses, Lasker’s interests were far from narrow, and his

concern with philosophical matters led to a deep consideration of what he called

the “philosophy of struggle”. For Lasker, the chessboard was a stage reflecting

the struggle of life in its purest form, a view encapsulated in his well-known
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mial ideal is a finite intersection of primary ideals. In 1921, Emmy Noether
generalized this result in the framework of her foundation of abstract algebra.

Lasker, a mathematician by training, gave up mathematics for chess be-
cause, as a Jew, his chances of obtaining a professorship in a German univer-
sity were practically nill. Later, fleeing the Nazi Holocaust, he had to leave
all his possessions in Germany. Neither experience made him bitter. As he
explained to a friend: “In mathematics, if I find a new approach to a prob-
lem, another mathematician might claim that he has a better, more elegant
solution. In chess, if anybody claims he is better than I, I can checkmate
him”.

Lasker was born in Poland. He studied mathematics and philosophy at
several German universities and was a student of Hilbert, receiving his Ph.D.
in 1902. When the Nazis came to power (1933), he was forced to leave Ger-
many and had to come out of retirement in chess to earn his living. He first
stayed in Russia during 1934–1938 as a professor of mathematics. Emigrated
in 1938 to the United States, where he taught mathematics in several univer-
sities. Died in New-York.

1905–1917 CE Years of revolution and terror in Russia which had great
impact on World history throughout the 20th century. The traits of the rev-
olutionary situation was engineered by industrial revolution and unwittingly
sponsored by a doomed regime. One result of this transformation was the
attempt made by the new technicians of espionage, provocation and counter-
revolution to dominate the new proletarian masses by creating government
rather than police-sponsored worker’s unions which were managed and di-
rected by police agents. All this paved the way for chaos, intrigue, hypocrisy
and betrayal and heralded upcoming social upheavals.

The 1905 revolution was the melting pot from which emerged one of the
greatest revolutionary transformations in modern Jewish history. It proved
to be a renaissance for political, spiritual, literary and ideological factors.

The trends which were born from this great upheaval encompassed a new
Jewish revival from which a new Zionist revolution sprang. Side by side,
an enormous mass emigration to the New World laid the foundation for the
flourishing Jewish centers in America. The sons, grandchildren and great

remark, “On the chessboard lies and hypocrisy do not long survive.” He went

on to note that “there are 64 squares on the chessboard, if you control 33 of

them you must have an advantage.” While this is a vast oversimplification of

the situation it points out the importance of positional play in the thinking of

chess masters.



3012 5. Demise of the Dogmatic Universe

grandsons of these immigrant would later contribute most significantly to the
cultural and scientific milieu of the United States of America.

1905–1925 CE Richard Martin Willstätter (1872–1942, Germany).
One of the leading organic chemists and biochemists of the early 20th cen-
tury. Discovered the structure of many natural substances of biological sig-
nificance. Laid the foundations for the later elucidation of the structure of
alkaloids, chlorophyll and photosynthesis. His chemical researches on enzymes,
ferments and cholesterol (in relation to longevity) led to further important de-
velopments in this field. The preeminence of the German dye industry was to
a great extent due to his discoveries. His overall research on complex organic
substances, especially on the coloring matter (anthocyanins and chlorophyll)
in plants and on enzymes earned him the Nobel prize for chemistry (1915).

Willstätter was born in Karlsruhe to Jewish parents of rabbinic ancestry.
In 1890 he entered the University of Münich, and later served as a professor of
organic chemistry in Zürich (1905–1912). He then became the director of the
Kaiser Wilhelm Institute in Berlin (1912–1916) and eventually a professor at
Münich University. Willstätter retired prematurely (1924) in protest of the
increasing anti-Semitism among his colleagues. His property was confiscated
and he fled to Switzerland (1939) to escape the Gestapo128.

128 Of all the prominent Jewish scientists in Germany, Willstätter presents the most

complex, most puzzling, and probably the most tragic picture in his impervi-

ousness toward the Jewish problem in Germany. In 1933 Willstätter visited

England and the United States. He was received enthusiastically everywhere,

honored in many ways and offered several excellent positions. He turned them

down and stayed in Germany, even when the situation became threatening and

humiliating for the Jews. It seems difficult to understand the psychology of a

man, conscious of his illustrious Jewish ancestry, who had suffered all his life

from anti-Semitism and witnessed the horrible persecution of the Jews prevail-

ing in Germany. When Chaim Weizmann asked him, “Professor Willstätter,

why do you not leave Germany?”, he replied that “one does not leave his mother

even when she behaves badly.” He thus continued to stay in Germany until the

end of 1938 and decided to leave only when conditions became unbearable and

his life was threatened.
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The Chemistry of Plant Metabolism

The overall process by which plants absorb, use, and store radiant energy
is called photosynthesis. Through this process the chlorophyll of green plants
catalyzes the formation of carbohydrates from atmospheric carbon dioxide
and water through the action of sunlight. Schematically

sunlight + CO2 + H2O
chlorophyll−−−−−−→ O2 + carbohydrates.

In the reverse process (arrow points in the opposite direction) known as animal
respiration, cellular oxidation of food (carbohydrates proteins, fats) releases
carbon dioxide, water and liberate thermal energy at a rate of 683 kcal per
mole.

The concepts involved in these metabolic processes developed slowly along-
side the fundamental mainstream ideas of physics and chemistry in the past
three centuries:

Van Helmont (1620) had been the first to discover the existence of differ-
ent gases; in particular, he described the properties of carbon dioxide. After
conducting many experiments, he concluded that plants were nourished not
from the soil but exclusively from water. Through the next century, research
on various gases continued at an intensifying pace and in 1723 Stephen Hales
(1677–1761, England) found that plant growth depended on the very carbon
dioxide129 that Van Helmont had discovered.

Joseph Priestley concluded (1772) that plants not only consumed CO2

but gave off oxygen, while animals consumed oxygen and gave off CO2.

Jan Ingenhousz (1779) showed that plants absorbed CO2 from the at-
mosphere and water in the presence of sunlight, while their green portion gave
off oxygen. In the absence of light the roots, flowers and fruits gave off CO2.
He was the first to recognize (1796) clearly two distinct respiratory cycles in

129 Although CO2 makes up only 0.03 percent of the volume of the atmosphere,

the total amount of carbon in the CO2 of the atmosphere is 4 × 1014 kilograms.

Fifty times as much as this is dissolved in the ocean, either as CO2 or CO−
3 ,

so that the total mass of carbon available for life, in the air and sea together is

2 × 1016 kilograms. This amounts to 80 times the carbon existing in all living

things. If the carbon of CO2 is considered the general food supply of all life,

there is enough of it to spare to support all the individual organisms our planet

now carries.
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plants, and that sunlight was essential for the production of oxygen by the
leaves.

At about the same time (1782), Jean Senebier (1742–1809, Switzerland),
botanist, demonstrated that green plants convert CO2 to oxygen under the
influence of light and suggested that CO2 nourishes the plant.

With the growing appreciation of catalysis that came about in the early
19th century, it was suspected that some catalyst is associated with the “green-
ness” of plants.

Consequently, the chemists Pierre Joseph Pelletier (1778–1842, France)
and Joseph Bienaimé Caventou (1795–1877, France), extracted (1817)
the green substance of plants and named it chlorophyll (from the Greek green
leaf ). Caventou also discovered strychnine (1818), quinine (1820) and caffeine
(1821).

Nicholas de Saussure (1767–1845, Switzerland) showed (1804) that
green plants absorb water and require CO2 from the air and nitrogen from
the soil. It was asserted in 1840 by the agricultural chemist Jean Baptiste
Joseph Dieudonné Boussingault (1802–1887, France) that higher plants
cannot utilize atmospheric nitrogen but only nitrogen from nitrates in the soil.

It was later found that other elements, too, are engaged in cyclic processes:
sulfur, phosphorus, iron, chlorine, magnesium, potassium, sodium and calcium
are absorbed from the soil by the plants and incorporated into their tissue.
All these elements must be in a water-soluble salt or ionic form in the soil
solution, being taken up with the water that all living cells require130.

130 These minerals originate in the soil as it is formed from rock, and they are nor-

mally replaced in the soil as plants and animals die and decay. Small amounts

arrive as rain washes down particulate matter suspended in the air. Thus, there

are mineral cycles in which a molecule of, say, potassium phosphate moves from

the soil to plant to animal to bacterium or fungus and then back to soil. If the

cycle is broken when a plant is harvested, a need to replenish the soil is es-

tablished. Of the required minerals, nitrogen is frequently in limited supply.

Although 78 percent of air is nitrogen gas (N2), elemental nitrogen must be

transformed into an ionic form [ammonium ion −NH+
4 or nitrate ion −NO−

3 ]

before plants can absorb and use it. Since most chemical constituents of life are

either nitrogen-containing (e.g., 16 percent of protein is nitrogen) or have their

synthesis and degradation controlled by proteinaceous enzymes, cellular growth

and development is directly limited by the supply of nitrogen.

Phosphorous, as the phosphate ion (−PO+3
4 ) is built into nucleic acid and the

phosphate-phosphate bond in ATP, bears the chemical-physical energy needed

for every energy-requiring process in cells.

Potassium plays many different roles: It is the primary regulator of the move-
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Henri Dutrochet (1776–1847, France) showed (1837) that CO2 is ab-
sorbed only by those plant cells that contain chlorophyll and only in the
presence of light.

Julius von Sachs (1832–1897, Germany) discovered (1865) that chloro-
phyll in plants is found only in small bodies (later termed chloroplasts), and
that chlorophyll is the key compound that turns CO2 + water into starch
while releasing oxygen.

The concept of photosynthesis was introduced in 1893 to signify the new
biochemical approach. It stood for the chemical activity of plants and their
ability to synthesize carbohydrates. It was coined by the German-born
George Engelmann (1809–1884, U.S.A.). He was a meteorologist, physi-
cian and botanist, who practiced medicine in St. Louis (from 1835) and made
meteorological and botanical observations during the rest of his life.

A century after the isolation of chlorophyll, its structure was finally
worked out (1910) by Richard Willstätter (1872–1942, Germany) and

ment of water into and out of plant cells; it is part of many enzymes, and it

forms complexes with organic acids within the cells. Sodium acts much like

potassium.

Calcium and magnesium are enzyme activators, serve as carriers for other ions

through plant cell membranes, and reduce the toxicity of other ions which may

be in excess.

Magnesium, as part of the chlorophyll molecule, has a vital role in photosynthe-

sis.

Sulfur’s main roles are as constituents of certain amino acids, cysteine and me-

thionine, that determine the 3-dimensional shape of proteins and as parts of

compounds that regulate the oxidation-reduction state of cells.

Chlorine is needed in the form of a chloride ion as part of the enzyme com-

plex that breaks water in photosynthesis, releasing molecular oxygen into the

atmosphere.

Iron ions are involved in cellular energy transmission in both respiration and

photosynthesis. It is also required for the synthesis of chlorophyll.

In addition to these minerals, at least five other are required in very small or

trace amounts:

Zinc and copper are required as parts of certain enzymes.

Manganese, is part of the enzyme complex that releases oxygen in photosyn-

thesis.

Plant cells will not divide without boron, and growing tissues of the root and

shoot meristem will die without continuous supplies of borate ions.

All plants require molybdenum in order to carry on normal nitrogen metabolism,

and many plants also require silicon, germanium, vanadium, or gallium for rea-

sons which are completely obscure.
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Hans Fischer131 (1881–1945, Germany). They took the molecule of chloro-

phyll apart and deduced its composition from the nature of the fragments

(C55H72MgN4O5).

As it turned out, chlorophyll closely resembles, in its basic structural pat-

tern, the molecule of heme, which is found in hemoglobin, catalase, and the

cytochromes. Its chief points of difference are, first, that it contains an atom

of magnesium in the center of the molecule, where heme contains an atom

of iron. Secondly, attached to it is a long hydrocarbon molecule of the type

known as carotenoid .

The chlorophyll molecule absorbs both violet and red light, hence vegeta-

tion is green. It thus acts as a selective antenna that plants use to harvest

the sun and open the way to the processes of life.

Carotene (C40H56) accompanies chlorophyll in photosynthetic organisms.

Its role is partly to harvest some sunlight that is not absorbed by chlorophyll,

as well as to react with energetic oxygen molecules so as to protect the cell

from degradation. The yellow-orange of carotene remains masked by the

chlorophyll until the fall, when the chlorophyll molecule decays and is not

replaced; that leaves sturdier carotene molecule to exhibit its powers of light

absorption, and the leaves turn yellow.

The light-activated chlorophyll is raised to a high-energy state. It can

then expend its energy and return to “ground state” by bringing about some

energy-consuming reaction that is central to the process of photosynthesis.

The discovery of this key chemical reaction had to await the days of isotope

tagging.

1905 CE Arthur Harden (1865–1940, England). First to detect and iden-
tify inorganic phosphate in metabolic intermediates132. It marked the birth
of the systematic study of intermediary metabolism. Discovered (1904) the

131 Won the Nobel prize (1930) for chemistry for studying the coloring matter of

blood and leaves and synthesizing hemin.

132 Compounds required for the reaction to take place but are not involved as the

original compound or as the final ones.
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first coenzyme133 zymase (with W.J. Young) which they have obtained from
yeast.

Harden was professor of biochemistry (from 1912) in London. Awarded
the Nobel prize for chemistry (1929).

He found (1905) that when the rate at which yeast cells produce CO2

begins to fall off, it can be restored by the addition of an inorganic phos-
phate (e.g. KH2PO4); as the evolution of CO2 proceeded, the quantity of the
phosphate remaining in solution decreased. The organic compound found to
combine with the phosphate group was later identified as fructose diphosphate,
the first known metabolic intermediate.

1905 CE Albert Einstein134 (1879–1955, Switzerland, U.S.A.). One of
the greatest scientists of all times. Revolutionized scientific thought with new
conceptions of time, space, mass, energy and gravitation. He treated matter
and energy as interchangeable, rather than distinct categories, and showed
that energy and momentum on the one hand, and time and space on the
other, are “rotated” into each other when the observer changes his state of
motion. He also deduced, on purely theoretical grounds, the relativity of
measured time durations and of simultaneity, as well as the dynamical nature
of space-time and the effects of gravitation upon geometry and the flow of
time. His deductions concerning the inter-convertibility of mass and energy
revealed the theoretical possibility of releasing vast amounts of energy bound
up in atomic nuclei. Thus, Einstein was one of the harbingers of the atomic
age.

In his two theories of relativity, as in his bold contributions to statistical
physics and to early quantum theory, he established new paradigms for how
hypotheses and theories of modern physics should be enunciated, thus playing
a central role in the demise of the dogmatic universe. His most astonishing

133 A compound that is not a protein but which is required for the protein to act

as an enzyme. Beginning with the 1920’s and continuing to the present day, the

chemical nature of various coenzymes was worked out. Most coenzymes proved

to contain phosphorus atoms as part of their molecules.
134 For further reading, see:

• Fölsing, A., Albert Einstein, Penguin Books: New York, 1997, 882 pp.

• Pais, A., ‘Subtle is the Lord. . .’, The Science and the Life of Albert Einstein,

Oxford University Press: Oxford, 1983, 552 pp.

• Calaprice, A. (ed), The Quotable Einstein, Princeton University Press, 1996,
269 pp.
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achievement, the General Theory of Relativity (GTR), finally made cosmol-
ogy a full-fledged branch of physics. GTR has also initiated a far-reaching
geometrization and algebraization of our conception of physical reality, that
is still in full swing at the dawn of the 21th century.

He was the first to grasp that Planck’s discovery had far-reaching implica-
tions for the nature of light, and he introduced the revolutionary concept of
the wave-particle duality of light, in the process explaining the photo-electric
effect and developing the theoretical underpinnings of laser theory and pho-
tonics.

In 1905 Einstein contributed 4 papers to Annalen der Physik, each of
which became the basis of a new branch of physics135:

(1) The paper: “Die von der molekularkinetischen Theorie der Wärme
gefordete Bewegung von in ruhenden Flüssigkeiten suspendierten Teil-
chen” (On the movement of small particles suspended in a stationary
liquid governed by the molecular kinetic theory of heat)136. Between 1905
and 1908, Einstein published 5 papers on this subject. The 1905 paper
developed the mathematical theory of the irregular motion of microscopic
particles suspended in a liquid or gas137. Einstein used this phenomenon
to support both the atomic hypothesis and the molecular kinetic theory
of heat. This work, along with later experimental confirmation by Jean

135 The year 1905 is known in science as the “miraculous year” with its Latin

counterpart “annus mirabilis”, long used to describe the year 1686, during which

Isaac Newton laid the foundations for much of physics and mathematics and

revolutionized 17th-century science. It seems entirely fitting to apply the same

phrase to the year 1905, during which Albert Einstein not only brought to

fruition parts of that Newtonian legacy, but laid the foundation for the break

with it that has revolutionized 20th-century science.

Incidentally, the phrase was coined without reference to Newton. In a long

poem entitled Annus Mirabilis: The Year of Wonders, 1666, John Dryden,

the famed Restoration poet, celebrated the victory of the English fleet over the

Dutch as well as the city of London’s survival of the Great Fire.
136 For further reading, see:

Einstein, Albert, Investigations on the Theory of the Brownian Movement,

Dover, 1956, 119 pp.
137 Einstein’s equation for the mean square displacement r2 of spherical particles

of radius r0, moving in a gas of viscosity η at an absolute temperature T after

an observation time t, is r2 =
[

kT
3πηr0

]
t.
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Perrin (1909), provided the most convincing evidence available up to that
time for the existence of molecules and atoms.

In this paper Einstein did not set out to explain old 19th century obser-
vations, as he stated very clearly at the beginning of his paper: “In this
paper, it will be shown that according to the molecular-kinetic theory of
heat, bodies of microscopically visible size suspended in a liquid, will per-
form movements of such magnitude that they can be easily observed in
a microscope, on account of the molecular motions of heat. It is possible
that the movements to be discussed here are identical with the so-called
“Brownian molecular motion”; however, the information available to me
regarding the latter is so lacking in precision, that I can form no judgment
in the matter”.

It took a long time for Brownian motion to work itself into the main
stream of physics. But when it was finally recognized as a phenomenon
worthy of serious study, the consequences were striking138. Eventually,
the theories of Brownian motion made contact with the quantum theories
of the 20th century.

(2) The paper: “Über einen die Erzeugung und Verwandlung des Lichtes
betreffenden heuristischen Gesichtspunkt” (On the heuristic viewpoint
concerning the production and transformation of light). Scientists before
Einstein had discovered that certain metals eject electrons when struck
by light139, but scientists could not explain this phenomenon on the basis
of the classical electromagnetic theory. Einstein boldly adopted Planck’s
hypothesis of 1900 (that radiant energy is emitted and absorbed not
in continuously divisible amounts, but rather in discrete units (quanta)
depending on the frequency of light. Einstein, however, took it more
seriously than Planck ever did — by positing that light also exists and
propagates in these discrete quanta (later called photons), and that these
light-particles carry momentum as well as energy — both determined

138 The physical phenomenon described by Robert Brown (1827) was the complex

and erratic motion of grains of pollen suspended in a liquid. In the many years

which have passed since this description, Brownian motion has become an object

of study in pure as well as applied mathematics. Even now many of its important

properties are being discovered.
139 The photoelectric effect (1902). The number of electrons emitted per second is

proportional to the intensity of the incident light. The maximum energy of the

electrons, however, does not depend on the intensity but on the frequency of

the incident radiation. No photoelectric emission occurs at all below a certain

threshold frequency, whatever the light intensity. Note that Planck’s discovery

remained isolated until Einstein presented the first general interpretation of h.
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from its frequency via Planck’s constant, h. In so doing, Einstein in-
troduced into physics the revolutionary concept of particle-wave duality .
Later (1920’s) de Broglie and Schrödinger extended these concepts to
matter and enshrined it in Quantum Mechanics. Einstein supposed that
in the photoelectric effect, each ejected electron received its energy and
momentum from one quantum of the incident light.

Einstein’s photoelectric equation
[
1
2mv2 = h(ν − ν0)

]
was tested exper-

imentally by Hughes and Millikan, who established its accuracy over a
wide range of frequencies, and measured the value of h. It was thus made
clear that the new quantum theory of radiation gave a correct account of
the photoelectric effect in metals, and that the classical wave theory was
inadequate to deal with the interactions between atoms and radiation.

(3) In a paper: “Zur Elektrodynamik bewegter Körpen” (On the electrody-
namics of moving bodies)140, Albert Einstein introduced his special theory
of relativity (STR). It replaced Newtonian concepts of space and of sepa-
rate absolute time, with a single geometrical framework of space-time. It
is the greatest contribution, since the 17th century, to our understanding
of time and of classical (non-quantum) dynamics.

In formulating the STR, Einstein was motivated by two basic facts:

140 For further reading, see:

• Landau, L.D. and G.B. Rumer, What is Relativity?, Basic Books: New York,

1962, 72 pp.

• Pauli, W., Theory of Relativity , Dover Publications: New York, 1958, 241 pp.

• Aharoni, J., The Special Theory of Relativity , Dover Publications: New York,
1965, 331 pp.

• Smith, J.H., Introduction to Special Relativity, Dover: New York, 1965,

218 pp.

• Ugarov, V.A., Special Theory of Relativity, Mir: Moscow, 1979, 406 pp.

• Sartori, Leo, Understanding Relativity, University of California Press, 1996,
367 pp.

• Jammer, M., Concepts of Space, Dover: New York, 1993 (Forward by Albert
Einstein).

• Jammer, M., Concepts of Force, Dover: New York, 1999.

• Jammer, M., Concepts of Mass, Dover: New York, 1997.
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• The equations of the electromagnetic field are not covariant w.r.t. the
Galilean transformation.

• Experimentally, the velocity of light is the same for all unaccelerated
observers, independent of the apparatus employed for its measurement.

His idea was then to look for another linear transformation between in-
ertial frames [it must be linear, because only for a linear transformation
is the unaccelerated motion of a particle in one frame, seen as unac-
celerated motion in the other]. Maxwell’s equations then are covariant
with respect to that new transformation. Simple algebra leads one to the
so-called Lorentz transformation141.

Thus, STR is based on two fundamental principles:

(1) A principle of covariance under change of inertial frame (generalization
of the Newton-Galilei relativity principle to encompass all laws of physics).

(2) The constancy of the velocity of light142.

When these principles are translated into mathematics, the results yield
the Lorentz transformation law between the coordinates (x, y, z, t) and
(x′, y′, z′, t′) of a physical event as seen in any two inertial systems mov-
ing relative to each other with uniform velocity143.

141 x′ = x−vt√
1 −

(
v
c

)2
; y′ = y; z′ = z; t′ =

t− v
c2

x
√

1 −
(

v
c

)2
. These formulae connect

the coordinates (x, y, z, t) and (x′, y′, z′, t′) of two reference systems K′ and

K, such that K′ moves relative to K with uniform velocity v in the positive

x-direction.
142 This second principle is really an amalgam of two sub-hypotheses: the indepen-

dence of the speed of light upon (a) source motion, and (b) observer (inertial)

motion. If we assume, as Einstein did, that light propagation obeys Maxwell’s

equation in any inertial frame, this makes (a) obvious; (b) then follows as spe-

cial case of the first principle.

Furthermore, since Maxwell’s equations are assumed to hold in all inertial

frames, the raison d’etre for the ether hypothesis ‘softly and suddenly vanishes

away’, as Lewis Carroll might have put it!
143 The famous “Twin paradox”; one of a pair of twins stays at home, remaining at

rest in an inertial frame of reference at all times, while the other goes on a space

flight, traveling with, say, speed v = 3
5
c for two years of his own time, then

switching to another inertial frame for the return journey at the same speed
3
5
c. The total time ticked off by the traveler’s clock will be four years, while

an identical clock carried by the homebody twin will have ticked off five years
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If one accepts that the equations of the electromagnetic field are true
for all observers in inertial frames (they are Lorentz covariant), then one
must discard the principle of Galilean covariance, and the equations of
particle mechanics must be rendered Lorentz covariant instead.

Although the mathematical results are expressed in simple algebra that
can be understood by high-school students, its physical implications are
revolutionary and profound. For example: the rate of flow of time depend
on the state of motion of the observer. Also, two events at two different
locations, can be seen to be simultaneous by one observer, and yet will
not appear so to a second observer moving w.r.t. the first.

Since the Lorentz transformation depends only on the relative velocity
and not on acceleration, STR holds for an accelerated observer, pro-
vided the rules for synchronizing clocks at different locations are suitably
modified to include acceleration effects — similar to the way in which
Newton’s second law must be modified by non-inertial forces in an ac-
celerated frame. However, it is much easier to work out the physics of
an accelerated laboratory in a continuous succession of instantaneous co-
moving inertial frames, performing a succession of infinitesimal Lorentz
transformations between such frames.

A physicist in an accelerated laboratory knows he is being accelerated,
because his accelerometers do not read zero and he cannot play three di-
mensional billiards. But his instantaneous inertial frame is continuously
changing according to a specific, known rule, and the Lorentz transfor-
mation can be adjusted for him each instant anew.

The Lorentz-covariantization of the laws of dynamics, necessitated by STR,
caused a fundamental change in our notions of the properties of space, time,
velocity, acceleration, force, mass, momentum, energy, power and field.

(4) In a paper: “Ist Die Trägheit eines körpers von seinem Energiegehalt
abhänging?” (Does the inertia of a body depend on its energy content?)
Einstein expounded the revolutionary idea that the conservation of total
energy is equivalent to the conservation of mass. That is, the invariance of
total energy implies the invariance of total relativistic mass. The ensuing

between departure and arrival of the traveling twin. There is no contradiction

with the principle of equivalence of inertial observers because the traveling twin

switches Newtonian frames at one point in the journey. The twins are therefore

not equivalent observers, because one can tell from inertial effects which of the

twins changed rest frames and which did not.
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relation E = mc2 expresses the fact that mass-energy can be expressed
in energy units as E, or equivalently in mass units, as144 m = E/c2.

144 Around the year 1850 physicists began to realize that one can extend the law

of conservation of energy from the realm of mechanics into other branches of

physics, by conceiving, for example, of heat and electricity as other forms of
energy. The heat content of an object was soon recognized as the disordered ki-

netic energy of its atoms or molecules, moving randomly in all directions so that

the net momentum vanishes. (In contrast, the ordinary kinetic energy 1
2
mv2

is always accompanied by a net momentum mv of the object.) Other forms of

energy were noticed soon afterward that truly deserve the name of “internal” en-

ergies because they are not associated with any (classical) motion of any objects.
Such a form of internal energy is represented by the various chemical bonds of

molecules, which are of essentially electromagnetic and quantum-mechanical na-

ture (although they do involve motions of electrons and nuclei). By convention,
one talks about a binding energy of a molecule if one has to do work to break

the bond between its constituents. Accordingly, during the formation of such

a bond, positive energy must be given up to the environment, for example, as
heat in most oxidation processes.

Nevertheless, matter and energy were considered two separate and distinct en-
tities existing in an all-pervading ether.

This was justified because the speed of light c is so large, that for any non-
nuclear process observed before the advent of STR, the mass changes ΔE

c2
are

negligible. Thus, for all energy-conversion processes then known, rest-mass and

energy may be assumed to be separately conserved to a high degree of accuracy.

The relation E = mc2 can be derived theoretically in STR, in many different

ways. For example, if a point-mass’ momentum is to be p = mv as in Newtonian
mechanics, and if momentum is to be conserved in billiard-ball collisions, the

conservation law Δ (
∑

pi) = 0 must be Lorentz covariant, and thus is math-

ematically possible if the inertia of a mass m depends upon its velocity in any
given frame in accordance with the expression m = m(v) = m0√

1− v2
c2

; m0 is

called the rest mass.

Applying Newton’s second law in one dimension,

F =
d

dt
m(v)v =

d

dt

⎡

⎣ m0v
√

1 − v2

c2

⎤

⎦ ,

the work done by accelerating the body from v = 0 to |v| = V is

W =

∫ V

v=0

(F · v) dt == m0

∫ V

0

v d

⎡

⎣ v
√

1 − v2

c2

⎤

⎦ = [m(v) − m0]c
2 = E − E0.
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Classical electromagnetism is consistent, ab initio, with STR: Maxwell’s

Hence E = mc2 = m0c2√

1− v2
c2

, with the accompanying momentum

p = m(v)v =
m0v

√
1 − v2

c2

.

Furthermore, E and p are tied up by the algebraic relation E2 − p2c2 = m2
0c

4.

For particle of zero rest mass (e.g., a photon), m0 = 0 and therefore E = |p|c or

p = E
c
. Clearly, E2

c2
− p2 = m2

0c
2 is invariant under the Lorentz transformation.

At rest, or low (non-relativistic) speeds |v| 
 c, the relation E = mc2 yields

the “rest energy” of an object of mass m — some of which is transferred into

other forms of energy whenever the object takes part in some exothermic trans-

mutation, such as in a nuclear reaction, in which this mass is not conserved.

(This is true for chemical reactions too, but the conversion of energy into rest-

mass is negligible in this case.)

The great technological impact made by the discovery of methods for con-

verting rest energy into useful work stems from the fact that light’s speed c

happens to be so large in everyday units. The work that can in principle be ex-

tracted from the conversion of 1 kg of mass is, in mks units (c = 3 × 108 m/sec;

1 J = 5
18

× 10−6 kilowatt-hour): W = 1 × (3 × 108)2 = 9 × 1016 J = 2.5 × 1010

KWh. Otherwise stated: one gram of matter is equivalent to 3000 tons of coal!

The relation E = mc2 also states the mass equivalence of the binding gravi-

tational energy between masses. For example, when two spherical masses m1

and m2 form a two-body system, part of their combined mass is eaten up by

the gravitational binding energy: Gm1m2
2Rc2

. Here R is the separation between

the mass-centers of the co-orbiting masses and the factor 1
2

indicates that the

gravitational mass-defect arising from the mutual potential energy is partially

offset by the masses orbital kinetic energy. The mass-equivalent of the binding

energy of the earth-moon system is about 4 × 1014 grams. It is the mass of

a small mountain, ca 400 meters high, which constitutes about 5 · 10−12 of the

moon’s mass.

Similarly, the mass defect of a self-gravitating non-rotating earth of mass M

and radius a is ΔM = 2
5

GM2

ac2
. If a deranged accountant could tally the total

mass defect ΔM from the knowledge of the exact distribution and composition

of its constituent materials, he would discover a shortfall of 1.6 × 1018 grams,

which is of the order of 3 · 10−10 of the earth’s mass. GTR introduces some

extremely small correction to the STR expression for mass defects we have used

here.
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equations are invariant under the Lorentz transformation and do not need
to be modified. However, STR gives us a new point of view, enhances our
understanding of electromagnetism and introduces relativistic corrections to
the interactions of charged masses with electromagnetic fields.

Other realms of physics are also affected, including the microscopic world
of elementary particles that abide by the rules of quantum mechanics, special
relativity and quantum electrodynamics. All laws are written so as to be co-
variant under the Lorentz transformation. This encompasses also the theories
of weak interactions, responsible for β-decay, and the strong nuclear interac-
tions which hold the nucleus together. Nowhere yet is there evidence for the
breakdown of STR over the many scale decades in energy, time, distance and
mass accessible to modern particle accelerators.

The metric of the new, “Minkowski” 4-dimensional space-time intro-
duced into physics with STR is pseudo-Euclidean145. Laws of Euclidean
geometry are still valid for the spatial part of space-time, but only in in-
ertial frames; they are violated in a non-inertial frame. [To see this, consider
a rigidly rotating disc in a Minkowski space-time. An inertial observer, who
is not participating in the rotation, attaches a non-rotating circle under the
rotating disc, measures the circumference L and diameter D of the disc, and
finds L/D = π. But in a frame set up by an observer on the rotating disc,
one finds that L′/D′ > π, as a careful use of the Lorentz transformation
shows.]

The year 1905 was ripe for the discovery of relativity. In 1900, Larmor
(1857–1942) had already suggested that moving clocks must run slow, and by
how much. Lorentz had published the final version of his transformation in
1903. In 1904 Poincaré attached the name of Lorentz to the transformation,
and stated that there must be a new dynamics in which no velocity can exceed
the velocity of light.

The sun loses a mass-equivalent of radiation at the rate of 4.5 million tons per

second. At this rate it loses a moon-mass once every 500,000 years, and an

earth-mass every 40 million years. The sun’s radiation incident each second on

the earth’s surface has a mass equivalent of order 2 kilograms.
145 The distance (interval, ds) between two closely neighboring points is given

by ds2 = −c2dt2 + dx2
1 + dx2

2 + dx2
3. Writing −c2dt2 = −dx2

0, we have

ds2 = −dx2
0 + dx2

1 + dx2
2 + dx2

3, which is the analog of the Pythagorean the-

orem in Minkowski geometry. For two events having a time-like separation —

i.e. there exists an inertial frame in which they occur at the same spatial point

— ds2 < 0, so technically ds is imaginary in this case.
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Lorentz himself, in spite of his early involvement, was not happy with
relativity and felt, to his last day, that time and space are completely distinct
and a universal true time must exist.

Einstein was born in Ulm, Württemberg, Germany, the son of Hermann
and Paulina (neé Koch) Einstein. After public school in Münich and in Aarau,
Switzerland, Einstein studied mathematics and physics at the Swiss Polytech-
nic Institute in Zürich. He graduated in 1900.

From 1902 to 1909 he worked as an examiner at the Swiss Patent Office,
in Bern. This job allowed him much free time, which he spent in scientific
investigations. In 1903 Einstein married a fellow member of his class at Zürich
— Mileva Maric (1875–1948) from Serbia. They had two sons: Hans Albert
(1904–1973) and Edward (1910–1964). He became a Swiss citizen in 1905.
The year 1905 was Einstein’s ‘annus mirabilis’ — a year to rank alongside
1543 (when Copernicus published ‘De Revolutionibus Orbium Coalestium’)
and 1686 (when Newton completed his ‘Principia’).

One of the great ironies in the history of physics, is that Einstein submitted
his 1905 paper on special relativity to the University of Bern in support of his
candidacy for an affiliation giving him the right to practice as a Privatdocent
(entitled to offer instruction under the auspices of the university) — and it
was rejected! However, his work attracted the interest of greater men, in
particular Max Planck in Germany and H.A. Lorentz in Holland. It is
amazing how a junior civil servant with only the formal training of a school-
teacher could rearrange the structure of physics created by such giants as
Maxwell, Boltzmann, Lorentz and Planck.

Einstein once remarked that he had never met a real physicist until he was
30. The only person he was able to discuss his ideas with was an engineer,
Michelangelo Besso (1873–1955), then also an employee at the patent office,
whom Einstein had known since his student days in Zürich, and whom he has
immortalized in the last sentence of his 1905 paper: “In conclusion I wish
to say that in working at the problem here dealt with, I have had the loyal
assistance of my friend and colleague M. Besso, and that I am indebted to
him for several valuable suggestions”.

Immediately after the publication of that paper, Einstein was offered an
associate professorship at the University of Zürich, which he held for three
semesters146. In 1911 he joined the German University in Prague, where he
held the position of professor ordinarius in physics, the highest academic rank.

146 His boss at the Patent Office had no idea what a great scientist he was harboring

within his walls, and when Einstein announced his resignation from his post he

was greatly surprised and asked him for his reasons. Einstein told him that

he had been offered the post of Professor at the University of Zürich. ‘Now
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Despite his absorption in his scholarly pursuits, he could not fail to notice
the political strife and quarrels between the rival nationalists, and felt great
sympathy for the Czechs and their aspirations. In 1912 Einstein returned to
Switzerland, where he taught at the Polytechnic, the same place to which he
had come as a poor student in 1896. His friend and colleague, Max Planck,
succeeded in obtaining for him a professorship at the Prussian Academy of
Science in Berlin, a research institute where Einstein could devote all his time
to research.

Einstein took up his new position in April 1914. Very soon after making
the move to Berlin with her husband, Mileva Einstein returned to Zürich with
their two boys. As the war raged on unabated, Einstein remained separated
from his family in the German capital, where he was putting the finishing
touches to the general theory of relativity.

The stress of the war147, many years of overwork and a catalogue of per-
sonal catastrophes were to take their toll on Einstein with unexpected ferocity.
In the early part of 1917, he fell into a period of a severe sickness from which
he did not fully recover until 1920 and which severely hampered his work.
With the help of his cousin, Elsa Löwenthal, Einstein dragged himself out of
his depression which had accompanied the physical symptoms. He divorced
Mileva in 1919, giving her and the children the entire proceeds from the No-
bel prize which he was certain to receive within a few years (1922). He later
married Elsa who became his lifelong companion.

International fame came to Einstein in 1919, with the announcements that
a prediction of his general theory of relativity was verified. In 1921 he was
awarded the Nobel prize in Physics for his work on the photoelectric effect. In
1932 Einstein accepted an invitation to spend the winter term at the California
Institute of Technology. By January 1933, Einstein resigned from his position
at the Royal Prussian Academy of Sciences, and never returned to Germany.
Many positions were offered him, but he finally accepted a professorship at
the new Institute for Advanced Study in Princeton148, New Jersey, and later
became an American citizen.

Einstein’, he answered, ‘don’t make any foolish jokes. Nobody would believe

such an absurdity.’
147 One of his friends, a physician, described Einstein’s lifestyle during the first half

of the war thus: “. . . he sleeps until he is wakened; he stays awake until he is

told to go to bed; he will go hungry until he is given something to eat; and

then he eats until he is stopped”. During the first three months of his illness,

diagnosed as a stomach ulcer, Einstein lost some 25 kg.
148 His first impressions of Princeton were: “A quaint ceremonious village of puny

demigods on stilts”.
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During WWII secret news reached U.S. physicists that the German ura-
nium project was progressing. Einstein, when approached by his friend Leo
Szilard (1898–1964), signed a letter to President Roosevelt pointing out the
feasibility of atomic energy. It was that letter which sparked the Manhattan
Project and future developments of atomic energy. In 1945 Einstein retired
from his position at the institute, but continued to work there. Despite his
advancing age he continued to work on the “Unified Field Theory”, which
attempted as a first step to unify gravitation and electromagnetism into one
theory.

Einstein was not only one of the greatest scientists of all time, but also
a generous person, who took out time and effort to help others and spoke
out openly for his beliefs and principles. He never forgot that he had been
a refugee himself, and lent a helping hand to the many who asked for his
intervention. The man who refused to write popular articles for his own profit,
devoted hours to raising money for refugees and other worthwhile causes.

Einstein was a Jew, not only by birth but also by belief and action. He was
in full harmony with the two fountain heads of Judaism: Justice and Charity.
The democratic and humanitarian character of the Mosaic Law was deeply
embedded in his conscience, and the magnificent poetry of the Old Testament
prophets filled him with awe. He took an active part in Jewish affairs, wrote
extensively, and attended many functions in order to raise money for Jewish
causes. He was first introduced to Zionism during his stay in Prague, where
Jewish intellectuals gathered in each other’s homes talking about their dream
of a Jewish homeland.

In 1921, Chaim Weizmann (1874–1952), then president of the World
Zionist movement, asked Einstein to join him on a fund-raising tour of Amer-
ica to seek aid for the nascent Hebrew University. Einstein readily agreed,
since his interest in the university had been growing. The tour was highly
successful. He visited the land of Israel and was greatly impressed by what
he saw. Einstein appeared before the Anglo-American Committee of Inquiry
in 1946, and entered a strong plea for a Jewish homeland.

When the State of Israel was established, he hailed the event as the ful-
fillment of an ancient dream, providing conditions in which the spiritual and
cultural life of a Hebrew society could find free expression. After Weizmann’s
death he was asked by David Ben-Gurion (1886–1973), then the Prime
Minister of Israel, to stand as a candidate for the presidency of the young
state, which he declined “being deeply touched by the offer but not suited for
the position”. When he was hospitalized for the illness which proved to be
his last, he took with him the notes he had made for the television address
he was to give on Israel’s seventh Independence Day.
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Some of the theoretical physicists who collaborated with Einstein in
Princeton were: Boris Podolsky (1896–1966; coll.: 1931–1935), Leopold
Infeld (1898–1968; coll.: 1936–1939), Nathan N. Rosen (1909–1992; coll.:
1932–1937). Rosen worked with Einstein on the foundations of Quantum
Mechanics, gravitational lenses, and on two-sheeted spaces (‘Einstein-Rosen
bridge’). Infeld also collaborated with Max Born on non-linear corrections to
Maxwell’s equations under conditions of strong fields.

As Einstein’s own mathematical skills were not exceptional, he had em-
ployed the assistance of an outstanding mathematician in his work on GTR.
He was Jakob Grommer (ca 1883–1933), with whom he coauthored a num-
ber of papers and was acknowledged in others, during 1917–1929. It means
that Grommer collaborated with Einstein for twelve years — longer than any-
one else. Grommer was born in Brest-Litovsk. He was a studious disciple in
the local Yeshiva, intending to become a Rabbi. A burning interest in math-
ematics brought him to Göttingen. In an incredibly short time, he not only
acquired a deep knowledge of mathematics but produced an essay which so
impressed David Hilbert that the faculty decided to grant him a doctorate
in spite of the fact that he had never graduated from high school. If one
considers that he was disfigured as the result of a malignant disease, and that
he was, moreover, physically weak, then one can appreciate how uncommon
the talents were which this man brought into the world. In 1929 Grommer
returned to his homeland. He became a professor in Minsk and a member of
the Academy of the Belorussian Soviet Republic.

Worldview XXIX: Einstein

God, Nature and Quantum Mechanics

∗ ∗∗

“The eternal mystery of the world is its comprehensibility.”

∗ ∗∗



3030 5. Demise of the Dogmatic Universe

“How insidious Nature is when one is trying to get at it experimentally.”

(1915)

∗ ∗∗

“Coincidence is God’s way of remaining anonymous.”

∗ ∗∗

“Nature conceals her secret by exaltedness, but not by cunning.”

(1930)

∗ ∗∗

“Nature is showing us only the tail of the lion. But I have no doubt that the
lion belongs to it, even though, because of its Colossal dimensions, it cannot
directly reveal itself to the beholder.”

(1914)

∗ ∗∗

“I want to know how God created this world. I am not interested in this or
that phenomenon, in the spectrum of this or that element. I want to know
His thoughts, the rest are details.”

∗ ∗∗

“Raffiniert ist der Herr Gott, aber boshaft ist er icht. (“God is subtle, but he
is not malicious.”)

∗ ∗∗

“What really interests me is whether God could have made the world differ-
ently; in other words, whether the demand for logical simplicity leaves any
freedom at all.”
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∗ ∗∗

“When I am judging a theory, I ask myself whether, if I were God, I would
have arranged the world in such a way.”

∗ ∗∗

“The more success the quantum theory has, the sillier it looks.”

∗ ∗∗

“...undoubtedly a piece of definite truth – but not the whole truth, let alone
the definite truth.”

(1931, on quantum mechanics)

∗ ∗∗

“It is hard to sneak a look at God’s cards. But that he would choose to play
dice with the world is something that I cannot believe for a single moment.”

(1942)

∗ ∗∗

“I can, if the worse comes to the worst, still realize that God may have created
a world in which there are no natural laws. In short, a chaos. But that there
should be statistical laws with definite solutions, i.e., laws that compel God
to throw dice in each individual case, I find highly disagreeable.”

∗ ∗∗

“Quantum mechanics is very worthy of regard. But an inner voice tells me
that this is not the true Jacob. The theory yields much, but it hardly brings
us close to the secrets of the Ancient One. In any case, I am convinced that
He does not play dice.”

(1926)
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∗ ∗∗

“I admire to the highest degree the achievement of the younger generation
of physicists which goes by the name of quantum mechanics and believe in
the deep level of truth of that theory; but I believe that the restriction to
statistical laws will be a passing one.”

(1929)

∗ ∗∗

“You believe in a God who plays dice, and I in complete law and order in a
world which objectively exists, and which I, in a wildly speculative way, am
trying to capture... Even the great initial success of the quantum theory does
not make me believe in the fundamental dice game.”

Albert Einstein, in a letter to Max Born, December 4, 1926

Mathematics

∗ ∗∗

“As far as the laws of mathematics refer to reality, they are not certain; and
as far as they are certain, they do not refer to reality.”

∗ ∗∗

“How can it be that mathematics, being after all a product of human thought
independent of experience, is so admirably adapted to the objects of reality?”

∗ ∗∗

“Since the mathematicians have invaded the theory of relativity, I do not
understand it myself anymore.”
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∗ ∗∗

“Do not worry about your difficulties in mathematics, I assure you that mine
are greater.” (replying to a letter from a little school-girl)

∗ ∗∗

“I don’t believe in mathematics.”

∗ ∗∗

“God does not care about our mathematical difficulties. He integrates empir-
ically.

Music

∗ ∗∗

“Music does not influence research work, but both are nourished by the same
sort of longing, and they complement each other in the release they offer.”

(1928)

∗ ∗∗

“First I improvise and if that doesn’t help, then I seek solace in Mozart; but
when I’m improvising and it appears that something may come of it, I require
the clear constructions of Bach in order to follow through.”

∗ ∗∗

“Bach and Mozart are my favorites; also Schubert, because of the com-
poser’s ability to express emotions. I am considerably less fond of Beethoven,
since his music is too dramatic and personal.
Handel is technically good but displays shallowness. Schumann’s
shorter works are attractive because they are original and rich in feelings.
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Mendelssohn had considerable talent but lacked depth. I like some lieder
and chamber music by Brahms.
I find Wagner’s musical personality indescribably offensive so that for the
most part I can listen to him with disgust. I consider Richard Strauss gifted
but without inner truth and concerned too much with outside effects.”

(1939)

Science and mankind

∗ ∗∗

“Why does this magnificent applied science which saves work and makes life
easier bring us so little happiness? The simple answer: because we have not
yet learned to make sensible use of it. Concern for man himself and his fate
must always be the chief interest of all technical endeavors... in order that the
creations of our mind shall be a blessing and not a curse to mankind. Never
forget this in the midst of your diagrams and equations.”

From an address at the California Institute of Technology,

Pasadena, February 1931

∗ ∗∗

“One thing I have learned in a long life: that all our science, measured against
reality is primitive and childlike – and yet it is the most precious thing we
have.”

∗ ∗∗

“Science without religion is lame; religion without science is blind.”

∗ ∗∗

“ Science will stagnate if it is made to serve practical goals.”
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∗ ∗∗

“ Physical concepts are free creation of the human mind and are not, however
it may seem, uniquely determined by the external world.”

(1937)

∗ ∗∗

“The most beautiful thing we can experience is the mysterious. It is the source
of all true art and science.”

∗ ∗∗

“The whole of science is nothing more than the refined thinking... Most of
the fundamental ideas of science are essentially simple, and as a rule, can be
expressed in a language comprehensible to everyone.”

(1936)

∗ ∗∗

“A theory, in order to deserve confidence, has to be based on generalizable
facts... Never has a truly useful and profound theory been discovered by pure
speculation.”

(1918)

∗ ∗∗

“Only the theory decides what can and what cannot be observed.”

(1926)

∗ ∗∗

“No amount of experimentation can ever prove me right; a single experiment
can prove me wrong.”
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∗ ∗∗

“Development of Western Science is based on two great achievements: the
invention of the formal logical system (in Euclidean geometry) by the Greek
Philosophers, and the discovery of the possibility to find out causal relation-
ships by systematic experiment (Renaissance).”

(1953)

Judaism

∗ ∗∗

“The Jewish religion is... a way of sublimating everyday existence... It de-
mands no act of faith – in the popular sense of the term – on the part of its
members. And for that reason there has never been a conflict between our
religious outlook and the world outlook of science.”

(1930)

∗ ∗∗

“The support for cultural life is of primary concern to the Jewish people. We
would not be in existence today as people without this activity in learning.”

(1950)

∗ ∗∗

“The pursuit of knowledge for its own sake, and almost fanatical love of justice
and the desire for personal independence – these are the features of the Jewish
tradition which makes me thank my stars that I belong to it.”

(1934)

∗ ∗∗
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“Were I wrong, one professor would have been quite enough.”

In response to a manifesto in which 100 Nazi
professors charged him with scientific error

On the Human Condition

∗ ∗∗

“Comfort and happiness have never appeared to me as a goal... The trite
objects of human efforts – possessions, outward success, luxury – have always
seemed to me contemptible, since early youth.

I live in that solitude which is painful in youth, but delicious in the years
of maturity.”

∗ ∗∗

“Of what is significant in one’s own existence, one is hardly aware, and it
certainly should not bother the other fellow. What does a fish know about
the water in which he swims all his life?

The bitter and the sweet come from the outside, the hard from within,
from one’s own efforts. For the most part I do the thing which my own nature
drives me to do. It is embarrassing to earn so much respect and love for it.
Arrows of hate have been shot at me too, but they never hit me, because
somehow they belonged to another world, with which I have no connection
whatsoever.”

∗ ∗∗

“The years of anxious searching in the dark, with their intense longing, their
alternations of confidence and exhaustion and final emergence into light – only
those who have experienced it can understand it.”
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∗ ∗∗

“Personalities are not formed by what is heard or said, but by labor and
activity. The most important method of education accordingly always has
consisted of that in which the pupil was urged to actual performance.”

∗ ∗∗

“I believe with Schopenhauer that one of the strongest motives that leads
men to art and science is escape from everyday life with its painful crudity
and hopeless dreariness from the fetters of one’s own ever-shifting desires. A
finely tempered nature longs to escape from personal life into the world of
objective perception and thought.”

∗ ∗∗

“I cannot imagine a God who rewards and punishes the objects of his creation,
whose purposes are modeled after our own – a God, in short, who is but a
reflection of human frailty... It is enough for me to contemplate the mystery
of conscious life perpetuating itself through all eternity, to reflect upon the
marvelous structure of the universe which we can dimly perceive and try
humbly to comprehend even an infinitesimal part of the intelligence manifested
in Nature.

(1932)

∗ ∗∗

“The most precious things in life are not those one gets for money.”

(1946)
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∗ ∗∗

“Morality is of the highest importance – but for us, not for God.”

(1927)

∗ ∗∗

“Try not to become a man of success, but rather try to become a man of
value.”

(1955)

∗ ∗∗

“I soon learned to ferret out that which might lead to the bottom of things, to
disregard everything else, to disregard the multitude of things that the mind
but detract from the essential.”

(1948)

∗ ∗∗

“To us believing physicists the distinction between past, present, and future
has only the significance of a stubborn illusion.”

(1955)

∗ ∗∗

“I believe that the terrible decline in man’s ethical behavior is due primarily to
the mechanization and depersonalization of our lives – a disastrous by-product
of the development of the technological-scientific intellect.”

(1946)

∗ ∗∗

“Politics is for the present, while an equation is for eternity.”
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∗ ∗∗

“Death is an old debt that one eventually pays. Yet instinctively one does
everything possible to postpone this final settlement. Such is the game that
nature plays with us.”

(1955)

∗ ∗∗

“If all efforts are in vain and mankind ends in self-destruction, the universe
will not shed a single tear over it.”

(1946)

∗ ∗∗

“I do not know how the Third World War will be fought, but I do know how
the Fourth will: with sticks and stones.”

∗ ∗∗

“If you want to live a happy life, tie it to a goal, not to people or things.”

∗ ∗∗

“A life directed chiefly toward the fulfillment of personal desires sooner or
later always leads to bitter disappointment.”

(1954)

∗ ∗∗

“What is the meaning of human life, or for that matter, of the life of any
creature? To know an answer to this question means to be religious.”
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∗ ∗∗

“Mankind remains as idiotic as it always was, and it’s no great pity; but that
no one would then play Bach or Mozart any more – that is a pity.”

(1950)

∗ ∗∗

“The rarest and most valuable of all intellectual traits is the capacity to doubt
the obvious.”

∗ ∗∗

“Everything is determined, the beginning as well as the end, by forces over
which we have no control. It is determined for the insect as well as for the
star. Human beings, vegetables, or cosmic dust, we all dance to a mysterious
tune, intoned in the distance by an invisible player.”

∗ ∗∗

“Academia places a young person under a kind of compulsion to produce
impressive quantities of scientific publications – a temptation to superficiality,
which only strong characters can resist.”

∗ ∗∗

“Great spirits have always encountered violent opposition from mediocre
minds.”

∗ ∗∗

“Imagination is more important than knowledge.”

∗ ∗∗

“Everything should be made as simple as possible, but not simpler.”
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∗ ∗∗

“The search for truth is more precious than its possession.

∗ ∗∗

“I never worry about the future. It comes soon enough.”

(1945)
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Others on Einstein

∗ ∗∗

“Einstein is a typical Old Testament figure, with the Jehovah-type attitude
that there is a law and one must find it.”

Abraham Pais

∗ ∗∗

“Einstein’s struggle is our struggle today; It is the search for a final theory.”

Steven Weinberg, 1993

∗ ∗∗

“Few scientists have ever poised their ambitions as poetically or as nakedly
as Einstein who spoke sometimes as if God were someone he met for coffee
every day... To Einstein, God was a code word for the mystery and grandeur
of the universe, the wellspring of awe, a reminder that there was something at
the core of existence that all his equations could only graze, as he said once,
“something we cannot penetrate”.”

(Dennis Overbye, 1998)

∗ ∗∗

“When I read a book on Einstein’s physics of which I understood nothing, it
doesn’t matter: that will make me understand something else.”

(Pablo Picasso, 1956)

∗ ∗∗

“I was able to appreciate the clarity of his mind, the breadth of his documen-
tation, and the profundity of his knowledge... One has every right to build
the greatest hopes on him and to see in him one of the leading theoreticians
of the future.”

Marie Curie, 1911
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∗ ∗∗

“Einstein would be one of the greatest theoretical physicists of all time even
if he had not written a single line on Relativity.”

Max Born

∗ ∗∗

“What we must particularly admire in him is the facility with which he adapts
himself to new concepts and knows how to draw from them every conclusion.”

Henri Poincaré, 1911

∗ ∗∗

“Even though without writing each other, we are in mental communication
for we respond to our dreadful times in the same way and tremble together
for the future of mankind... I like it that we have the same given name.”

Albert Schweitzer, 1955

∗ ∗∗

“The revolutionary proletariat salutes the great revolutionary of the natural
sciences as a fellow fighter against the dark forces of ignorance, barbarism and
reaction.”

(Soviet ‘Pravda’ on Einstein 50th

birthday, March 14, 1929)

∗ ∗∗

“An Englishman would scarcely have produced this theory; perhaps it reflects
the abstract-conceptual character of the Semite...”

(Sommerfeld to Wien (1907) on the
Theory of Relativity)

∗ ∗∗
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“Unconfined by conventional restrictions, he confronted the world spirit as a
laughing philosopher, and his witty sarcasm mercilessly castigated all vanity
and artificiality”.

Hans Byland (Einstein’s classmate), 1928

∗ ∗∗

“As befits a genius, Einstein ideas on gravitation had been irrational – a
mixture of philosophical requirements with a powerful physical insight and a
progressive penetration into the preparatory studies of the mathematicians.”

(Felix Klein, 1921)

∗ ∗∗

“Ptolemy made a universe, which lasted 1400 years. Newton, also, made a
universe, which lasted 300 years. Einstein has made a universe, and I can’t
tell you how long that will last.”

George Bernard Shaw

∗ ∗∗

“One of the greatest – perhaps the greatest – of achievements in the history
of human thought.”

Joseph John Thomson, discoverer of the electron,

referring to Einstein’s work on General Relativity, 1919

∗ ∗∗

“Einstein was a physicist and not a philosopher. But the naive directness of
his questions was philosophical.”

C.F. von Weiszaecker

∗ ∗∗
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“Einstein explained his theory to me every day, and soon I was fully convinced
that he understood it.”

Chaim Weizmann, 1929

∗ ∗∗

“Einstein was indisputably one of the greatest men of our time. He had,
in a high degree, the simplicity characteristic of the best men of science –
a simplicity which comes of a single-minded desire to know and understand
things that are completely impersonal.”

∗ ∗∗

“He removed the mystery from gravitation, which everybody since Newton
had accepted with a reluctant feeling that it was unintelligible.”

∗ ∗∗

“Of all the public figures that I have known, Einstein was the one who com-
manded my most wholehearted admiration... Einstein was not only a great
scientist, he was a great man. He stood for peace in a world drifting towards
war. He remained sane in a mad world, and liberal in a world of fanatics.”

Bertrand Russell, 1955

∗ ∗∗

“A generation or more ahead of his time, he gave physicists the theoretical
tools to describe the big bang, quasars, pulsars and black holes. We live
in Einstein’s universe, and the only way to end our account of his scientific
achievements is by looking at his description of the universe in which we live.”

∗ ∗∗

“At the end of the 1980s, a satellite known as COBE (from Cosmic Back-
ground Explorer) was launched by NASA to study the background radiation
with more precision than ever before. In 1992, the NASA team announced
that they had discovered exactly the kind of ripples in time that the theory
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had predicted. It was headline news around the world – the combination of
Einstein’s general theory, the big-bang model, and the added ingredient of
dark matter, had been vindicated. This was, and is, the most compelling
evidence ever that the universe we live in is described by the equations of the
General Theory of Relativity – that it is, indeed, Einstein’s universe.”

M. White and J. Gribbin, 1993

1905–1911 CE Ejnar Hertzsprung (1873–1967, Denmark). Astronomer.
Discovered the most important graph ever plotted by astrophysicists. It re-
lates the total energy output of each group of stars to the corresponding
stellar temperature (known as “Hertzsprung-Russell diagram” (or ‘R-H dia-
gram’). His discovery, although just a method of two-dimensional spectral
classification149 of stars, led astronomers to extremely important discoveries
concerning the relations between the luminosities and surface temperatures
of stars which eventually resulted in the understanding of processes of stellar
evolution.

Hertzsprung specialized in the study of binary stars and star clusters, and
in 1905–1907 announced the discovery of giant stars (more voluminous than
the mean; brightness and spectral class increase together). He was the first
to recognize the distinction between giant and dwarf stars.

In 1908 Hertzsprung plotted a scatter diagram of stellar absolute magni-
tude against spectral class and in 1911 he compared colors and luminosities of
stars within several clusters by plotting their magnitudes against their colors.
In 1913 he calculated the distance of the Small Magellanic Cloud from the
solar system.

Hertzsprung was born in Fredericksberg, Denmark. In 1898 he graduated
from the Polytechnical Institute in Copenhagen in chemical engineering and
then spent the next several years as a chemist in St. Petersburg, Russia. In

149 “Classification is one method, probably the simplest method, of discovering

order in the world. By noting similarities between numerous distinct individuals

as forming one class or kind, the many are in a sense reduced to one, and to that

extent simplicity and order are introduced into the bewildering multiplicity of

nature”. (A. Wolf, “Classification”, Encyclopedia Britannica 5 (1954), 778.)
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1901 he went to Leipzig to study photochemistry and returned to Denmark
in 1902 to begin his study of astronomy. In 1909 he was invited by Karl
Schwarzschild to Göttingen and later followed him to the Potsdam Obser-
vatory. From 1919 to 1944 he was a professor at the University of Leyden,
Holland.

1905–1933 CE Otto Toeplitz (1881–1940, Germany and Israel). Math-
ematician. Toeplitz was born in Breslau (now Wroclaw, Poland). His fa-
ther, Emil, and his grandfather, Julius, were both Gymnasium teachers of
mathematics; and they themselves published several mathematical papers. In
Breslau, Toeplitz completed his classical Gymnasium and then studied at the
university, where he specialized in algebraic geometry and received his Ph.D.
in 1905.

He began his academic career in Göttingen as a disciple of David Hilbert.
Toeplitz was later a professor at Kiel (1913–1927) and Bonn (1927–1933).
His scientific work centered around the theory of integral equations, theory of
matrices150, theory of quadratic forms and the theory of functions of infinitely
many variables, fields to which he has made lasting contributions. The Nazis
expelled him from Germany in 1938, whereupon he became a professor of
mathematics at the Hebrew University in Jerusalem.

The Harvard Women (1882–1924)

There is some irony to the fact that Harvard University, long a strong-
hold of the all-male tradition in American colleges, was the institution that
nurtured some of America’s first leading women astronomers.

Edward Charles Pickering (1846–1919, U.S.A.) was a pioneer as-
tronomer in the study of stellar spectroscopy, and especially in the study of
the spectra of binary stars. In 1877 he became director of the Harvard College
Observatory. The work of Pietro Angelo Secchi (1818–1878, Italy), based

150 Introduced the n × n Toeplitz matrices having equal elements along diagonals

parallel to the principal diagonal; circulant matrices are special cases of Toeplitz

matrices.
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on visual inspection of stellar spectra through a spectroscope, was the only
attempt to classify stars according to the appearance of their spectra.

Henry Draper (1837–1882, U.S.A.), an amateur astronomer, had in 1872
became the first to photograph the spectrum of a star. Upon Draper’s death,
his widow endowed a new department of stellar spectroscopy at Harvard. As
director, Pickering hired among his assistants a number of women, several of
whom went to work on the problem of classifying spectra of stars:

Williamina P. Fleming (1857–1911) published in 1890 the first Draper
Catalog of Stellar Spectra. This catalog assigned some 10, 350 stars in the
Northern Hemisphere to spectral classes A through N , in a simple elaboration
of a rudimentary classification scheme adopted earlier by Secchi.

Antonia C. Maury (1866–1952), a niece of Henry Draper, classified
during 1889–1905 the brighter stars from the north pole to declination 30 ◦

south of the equator. One of her classes, denoted by the letter C, was later
recognized as giant stars. Maury’s discovery helped Hertzsprung confirm
the distinction he had found between giant and main-sequence stars, and he
thought her work to be of fundamental importance. Another of her discoveries
was a periodic doubling of lines in the case of Mizar, one of the stars in
the handle of the Big Dipper. This was the first star to be recognized as a
“spectroscopic binary”.

The most important of the Harvard workers in spectral classification ar-
rived on the scene in 1896. Her name was Annie Jump Cannon (1863–
1941), and she gradually modified the classification system to the present
sequence, finding that the arrangement O, B, A, F , G, K, M151 was a logi-
cal ordering, with smooth transitions from one type to the next152. Cannon
was able to distinguish the gradation so finely that she established the ten
subclasses for each major division that are in use today. During her career
at Harvard she personally classified 500, 000 stars whose spectra appeared
on survey plates covering both hemispheres. Cannon layed the groundwork
for modern stellar spectroscopy, so fundamental to our understanding of the
stars.

Henrietta Swan Leavitt (1868–1921) joined the group as a volunteer in
1894 and subsequently played a leading role in the study of variable stars.

151 H.N. Russell proposed a scheme by which every student can remember the

order of classes in the spectral sequence: The class letters are the first letters

in the words, “Oh, Be A Fine Girl, Kiss Me!”
152 At this time, there was still no inkling of the fact that this was a temperature

sequence.
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The Harvard women, including those mentioned here and several whose
names are now obscure, were a remarkable group. They were responsible for
a number of major advances in the science of astronomy at a time when its
basis in physics was just becoming clear.

Conquest of the Polar Regions (1906–1912)

The explorers who followed Columbus soon found that North America was
not a part of Asia, as they believed at first. At this time, British, French,
and Dutch adventurers were more interested in finding the easy route to Asia
than they were in exploring and settling North America. So they began to
look for the Northwest passage, or waterway, that would take them through
the continent.

Man had long known that the North Pole lay in the midst of the Arctic
Ocean, 640 kilometers from Cape Columbia, Canada. The Arctic is a frozen
sea; tides and currents keep the ice pack in motion, making surface travel
hazardous. During the brief Arctic summer, when the sun never sets, the
surface of the ice pack melts. Great stretches of water open between the
ice floes. Many men braved these waters in search of the Northwest passage
and their quest is a tale of adventure and heroism. No country tried harder
than England to find the passage. Martin Forbisher (1535–1594) began
a series of English expeditions in 1576. Other Englishmen continued these
explorations for 300 years.

After the defeat of Napoleon at Waterloo in 1815, Britain pledged herself
to maintain the freedom of the seas, and the new Hydrographic Department of
the Royal Navy, which has been established in 1811, began to carry intensive
scientific surveys to make navigation safer for merchant shipping. Thus the
Navy returned to the quest for the Northwest passage. It was interested in the
passage for scientific reasons, but there was also alarm at the rapid extension
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of Russian influence on the shores of the Arctic Ocean, the Bering Sea and
the Pacific seaboard.

It seemed possible that the British and Americans might have to contend
with a third power on the American continent and it was only a matter
of time before the Russians began to search for the passage between the
Pacific and the Atlantic. In 1847, John Franklin (1786–1847, England)
perished with his 129 men, and were only recently found. Finally, in 1906,
Roald Amundsen153 (1872–1928, Norway) completed the first trip through
the Northwest passage with his ship Gjöa, traveling from east to west, bringing
to an end a 400 year long saga.

At the turn of the 20th century it was realized that the best time for polar
exploration was not during the summer, but during the long, dark winter.
Temperatures plunge and savage winds rage across the Arctic in winter, yet
the sea is frozen solid, providing a route to the pole for men with dog sleds.

In 1891, the Philadelphia Academy of Natural Sciences put Robert Ed-
win Peary (1856–1920, U.S.A.) in charge of an expedition to northern Green-
land. The knowledge gained from his experiments on this trip was proof that
Greenland is an island. Other expeditions between 1893 and 1897 resulted in
important scientific discoveries about the nature of the polar regions. Peary
tried to reach the pole in 1898 and 1905 but failed. The final assault began
in July 1908; with four Eskimos and his chief assistant, Matthew Henson,
he reached the North Pole on April 6, 1909154.

The South Pole lies in a high, mountain-rimmed plateau in the midst of
the frozen Antarctic continent. It is the coldest and most desolate region

153 During the International Geophysical Year (1957–1958), the U.S. Navy discov-

ered a deep-channel route close to Amundsen’s path. Through this channel, the

U.S. atomic submarine Seadragon made in 1960 the first underwater crossing

of the Northwest passage. It traveled 1368 km from Lancaster Sound, through

the Canadian Arctic Islands, and into the McClure Strait. In 1969, the U.S.

icebreaker-tanker Manhattan became the first commercial ship to complete the

passage.
154 Nearly 50 years after Peary’s expedition reached the North Pole, the U.S. Navy

atomic-powered submarine Nautilus slipped under the polar icecap off Point

Barrow, Alaska, on Aug. 1, 1958. Guided by inertial navigation devices, Com-

mander William R. Anderson pointed the submarine toward the North Pole.

It was cruising as fast as 40 km/hr, with closed-circuit television plotting the

outline of the icecap overhead. At 11:45 PM on Aug. 3, the Nautilus reached

the North Pole, some 120 meters beneath the ice. Two days later the submarine

surfaced in the Greenland Sea. The 5069-kilometer voyage extended through

the back door of the Northwest passage, from the Pacific to the Atlantic.
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on earth, larger in area than Europe and the United States together. In
complete contrast to the Arctic — an ocean hemmed in by land — Antarctica
is a landmass, hemmed in by sea and, for most of the year, by a rampart of
pack-ice. Two great indentations, the Ross and Weddell seas, on the coastline
of the continent closest to the South Pole itself, offered explorers the most
promising entrances to the heart of the continent.

Roald Amundsen left Norway in 1910 aboard his ship, the Fram. He hoped
at first to reach the North Pole by drifting with the ice floes in the Arctic
seas. But just as he was about to sail, he learned that Admiral R.E. Peary
had arrived at the North Pole. Amundsen changed his plans and headed
south to the Antarctic. In January 1911 he pitched camp on the Ross Ice
Shelf and in October, when spring came to the Antarctic, Amundsen and four
companions started inland across the ice. They had four sledges drawn by
dogs. They traveled much of the time across the lofty plateau (3350 meters
high and crisscrossed by dangerous cracks in the ice). On Dec. 14, 1911, the
little group reached the South Pole.

A month later, on Jan. 18, 1912, Robert Falcon Scott (1868–1912,
England), leading a rival expedition, found Amundsen’s tent and flag still
standing. Broken in spirit and body they began the long march to their
base. It ended in a tragedy: Scott and his two remaining companions died
on March 29, 1912, of hunger an cold, only 18 km from a supply depot. The
three bodies, as well as Scott’s own Journal were found by a search party on
November 12, 1912. The epitaph on Scott’s tomb reads: “To strive, to find,
and not to yield”.

This race for the South Pole was one of the most dramatic events of the
20th century; the protagonists — Scott and Amundsen — were both highly
capable, dedicated professionals. Their backgrounds, however, were very dif-
ferent, as were their characters. Scott was, by nature and training, a man in
whom the desire for discovery for its own sake overlaid by the realization of
the importance of scientific discovery, which had perhaps to some extent been
forced upon him by the nature of the sponsored, semi-official expeditions that
he had commanded.

Amundsen was a free lance who had been inspired by his spirit of adventure
to make the almost impossible Northwest passage in a puny vessel. In the
Arctic he had learned that survival could best be ensured by copying the
way of life of its inhabitants, the Eskimos, and this he did with conspicuous
success. Like Peary, he employed dog teams to draw his sledges, sacrificing
them in what to dog lovers seems a ruthless way, and he used Eskimo clothing .

Scott seems to have had no intention of taking dogs. He was a believer
in woolen clothing, worn with waterproof gabardine smocks, although these
tended to freeze solid.
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In May 1926 Amundsen and Lincoln Ellsworth, an American explorer,

crossed the North Pole in a dirigible, The Norge. The pilot of the Norge was

Umberto Nobile, an Italian explorer. He organized a North Pole expedition

in 1928, but it met with disaster. For six weeks, Nobile was believed dead.

Amundsen led a party to find him. It was Amundsen’s last expedition. He

was lost in the Arctic while flying in an airplane with five other men. No one

knows how the men died. Soon after their disappearance, Nobile was rescued.

1905–1907 CE Joseph Henry Maclagen Wedderburn (1882–1948,
USA). Mathematician. Made advances in algebra, especially in the theory
of rings, algebras and matrix theory. Discovered two fundamental theorems
known by his name, one on the classification of semi-simple algebras, and
the other on finite division rings: He showed (1907) that every semisimple
algebra is a direct sum of simple algebras and that a simple algebra was a
matrix algebra over a division ring. He showed (1905) that non-commutative
finite field could not exist. This had as a corollary the complete structure of
all finite projective geometries, showing that in all these geometries Pascal’s
theorem is a consequence of Desargues’ theorem.

Wedderburn was born in Forlar, Angus, Scotland. He entered Edinburgh
University (1898), obtaining a degree in mathematics (1903). He then pur-
sued postgraduate studies in Leipzig, Berlin and Chicago, and returned to
Edinburgh as lecturer (1905–1909). In 1909 he moved to Princeton, New Jer-
sey, but returned to fight in the British army during WWI. After the war he
settled at Princeton University until his retirement in 1945.

1905–1936 CE Alexis Carrel (1873–1944, France and U.S.A.). Surgeon
and biologist. Developed techniques for rejoining severed blood vessels (1905)
and transplantation of organs. Performed the first successful heart surgery
on a dog (1914). Developed a form of artificial heart that was used during
cardiac surgery (1936). Successful in cultivating chicken heart tissue outside
the body for many years. Constructed a perfusion pump, for keeping organs
alive outside the body.

Carrel was born in Lion, France and educated there. Professor at the
University of Lion (1900–1902); to U.S.A. (1904). On the staff of the Rock-
efeller Institute for Medical Research (1906–1938). Awarded the Nobel prize
for physiology or medicine (1912) for vascular grafting of blood vessels.
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1905–1945 CE Henry Joseph Round (1881–1966, England). Electronic
engineer. Discoverer of the phenomenon of electroluminescence155 (the emis-
sion of light from a semiconductor diode). After the application of a potential
of ten volts between two points on a crystal of carborundum, the crystal gave
out a yellowish bright light (1907).156,157

Round is also known for numerous inventions that contributed to the de-
velopment of radio communications. He worked with Marconi’s Wireless Tele-
graph Company, both in the United States and England (1902–1914), where
he build early radio direction finders and radio telephones. During WWI
he installed networks of radio direction finders for military intelligence pur-
poses.158

Rejoining the Marconi company after the war, Round designed and in-
stalled several important transmitters: from one, the first radio telephone
messages were sent from Europe across the Atlantic. As a consultant to the
Admiralty during WWII, Round worked on submarine-detection through echo
sounding.

1906 CE Lord Kelvin disputed the developing theory of radioactive disin-
tegration of atoms, suggesting that radium (discovered 1898) is not an element
but a molecular compound of lead and helium. In 1911, Marie Curie proved
him wrong.

1906 CE, April 18, 05:12 PST A major earthquake hit the city of San
Francisco, causing 700 casualties, massive destruction, and marking the end
of the Golden West159.

155 See: Loebner, E.E., Subhistories of the light-emitting diode, IEEE Transactions

on Electron Devices, pp. 675–699 (1976).
156 Round, H.J., A Note on Carborundum, Electrical World, 49, p. 308 (1907).
157 In 1962, four research groups in the U.S. simultaneously reported a functioning

LED semiconductor laser based on gallium arsenide crystals, thus opening the

field of solid-state optoelectronics.
158 One of these alerted the British Admiralty to the departure of the German fleet

from Wilhelmshaven on May 30, 1916; the fleet’s interception on the following

day by the British occasioned the Battle of Jutland.
159 Without California’s mountain-building and faulting it would be hard to imag-

ine the Central Valley, San-Francisco Bay, and the Peninsula. The same features

that make California earthquake-prone make it resource-rich as well as visually

beautiful!



1906 CE 3055

1906–1913 CE Eugen Augustin Lauste (1857–1935, France). Inventor.
The Father of Sound-on-Film. Invented the production of sound from pho-
tographed vibrations on a film, projected upon a selenium cell. This was a
crucial step in the development of the sound motion picture.

Although he achieved synchronization by photographing the sound and
picture on the same strip of film, his invention was hindered by problems of
amplification.

In 1913, Lauste took his equipment to the USA in search of support and
funds, but he was met with lack of enthusiasm from the film industry.

In the mid 1920’s, Bell Telephone Laboratories finally developed a system
that successfully coordinated sound on records with the projector: The era of
the silent movie ended in 1928 when sound was directly photographed on the
film.

1906 CE August Paul von Wassermann (1866–1925, Germany). Physi-
cist, bacteriologist and immunologist. One of the founders of immunology.
Discovered and gave his name to a blood-serum test for syphilis (1906): an in-
fected person will produce syphilis antibodies in the blood and in the Wasser-
mann test these will react with known antigens to form a chemical complex.

Wassermann was born in Bamberg, Germany to Jewish parents and re-
mained in close contact with Judaism throughout his life. Worked in Koch
Institute for Infectious Diseases, Berlin (1890–1913) and in the Kaiser Wil-
helm Institute in Berlin-Dahlem (1913–1925). Professor at the University of
Berlin (1906–1911); Appointed full professor there in 1911. Worked under
Robert Koch (1901).

1906 CE Hermann Walther Nernst (1864–1941, Germany). Physicist
and chemist. Made extensive contributions to thermodynamics and electro-
chemistry. A founder of modern physical chemistry.

Formulated the third law of thermodynamics. It states that the entropy of
any body vanishes at absolute zero. This theorem is deduced from quantum
statistics and depends on the concept of discrete quantum states. It cannot
be derived from purely classical statistics, in which entropy is only defined to
within an arbitrary additive constant.

He also contributed to the theory of galvanic cells, thermodynamics of
chemical equilibrium, theories of ions160, properties of vapors at high temper-
atures and of solids at low temperature, and the mechanism of photochemistry.

160 Nernst’s application of the Boltzmann factor (by which the number of mi-

crostates in a reservoir decrease when the reservoir gives up energy) is widely

used in physiology. Suppose that certain ions can pass easily through a semiper-

meable membrane of a neuron cell. An electrical potential is then established
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His work had important applications in industry and science. He received the
Nobel prize for chemistry on his researches in thermochemistry (1920).

Nernst was born in Briesen, Prussia and was educated at the universities
of Zürich, Graz and Würzburg. In 1887 he became assistant to Wilhelm
Ostwald, who with Jacobus van’t Hoff and Svante Arrhenius estab-
lished the independence of physical chemistry. He was a professor of physical
chemistry at Göttingen (1890–1905) and Berlin (1905–1933).

Nernst was an exception to all the formality of Göttingen. He frightened
everyone with his automobile. It was the first car in Göttingen, and Nernst
was proud of it. One day he tried to show his students that it was safer
than a fiacre (a coach and two horses). While several of them watched, he
waved, started the motor, over-optimistically turned a corner with a roar,
and promptly crashed into a shop window. There were no injuries, except for
Nernst’s dignity, but the incident helped to humanize life in Göttingen.

Nernst had two sons and three daughters. The two sons were killed in
WWI. Two of his daughters were married to Jews and forced to leave Ger-
many under the Nazis. Nernst retired in 1933. Thanks to the generosity of
Lindemann he was invited to Oxford (1937). As for countless other German
scientists, the Nazi period was for him a personal disaster in many respects.

Nernst was one of the first scientists to recognize Einstein, following the
latter’s publication in the Miraculous Year (1905). By 1909, Nernst had
verified experimentally Einstein’s conclusions concerning the law of Dulong
and Petit that followed from the quantum-theoretical interpretation of the
specific heat of solids.

Thus, Nernst came to believe that Einstein quantum theory of solids best
fitted both the measured values and his theorem, and was ready to follow,
pragmatically, Einstein’s quantum ideas in his own specialized field.

In 1922 Nernst and Einstein issued together a new refrigerating patent.

across the cell. If the concentrations of the ions are C1 and C2, inside and

outside respectively, then the resulting potential is V = kT
q

loge

(
C1
C2

)
, where q

is the charge on each ion, T is the absolute temperature, and k is Boltzmann’s

constant (Nernst equation).

The ions most important to the cell membrane potential are sodium (Na+)

and potassium (K+). Each ionic species has associated with it a membrane

potential that is maintained by a ‘pump’ in the membrane that forces Na+

out and K+ into the cell. At equilibrium, the Nernst equation shows that

VNa = kT
q

loge(C
Na
0 /CNa

i ) = 55 millivolt, VK = kT
q

loge(C
K
0 /CK

i ) = −70 milli-

volt. These are referred to as the sodium and potassium resting potentials.
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In an obituary in 1942, Einstein paid tribute to Walther Nernst, who died
in 1941; Just as if there were no war, he gave homage to the liberal-mindedness
of his sometime patron and colleague.

1906 CE Greenleaf Whittier Pickard (1877–1956, USA). Electrical en-
gineer and inventor. Discovered the crystal detector — the point-contact
rectifier that was the forerunner of the transistor (1948).

He found that the contact between a fine metallic wire (“cat whisker”)
and the surface of a certain crystalline materials (notably silicon) rectifies
and demodulates high-frequency alternating currents, such as those produced
in a receiving antenna of radio waves. This device, called a crystal detector
(patented by Pickard in 1906) was an essential component of the crystal set,
a form of radio receiver that was popular until it was replaced by the triode
vacuum tube.

Pickard was one of the first to demonstrate the wireless electromagnetic
transmission of speech. In 1899, at the Blue Hills Observatory at Milton MA,
he transmitted spoken messages by radio over a distance of 15 km, using a
carbon-steel detector to recover the audible signal that had been impressed
on the radio-frequency carrier waves.

Pickard (a grandnephew of the poet John Greenleaf Whittier, 1807–1892)
was educated at Harvard University and M.I.T., Cambridge. He worked as
an engineer at the American Telephone and Telegraph Company (1902–1906)
and after 1945 headed the electronics engineering firm of Pickard and Burns.

Crystal radio receivers were inconvenient, however, because the signal re-
ceived was very weak and in order to hear it, it had to be connected to a
loudspeaker, which itself was connected to a headset. The completion of the
first diaphragm and trumpet loudspeakers encouraged David Sarnoff to un-
dertake the industrial manufacture of diode and triode radio sets, which were
enclosed in wooden boxes so that it was possible to listen in as a group with-
out any special equipment. This was an enormous success and it prepared
the arrival of radiotransmission to a large audience. Most of these receivers
appeared in 1921.

1906 CE Henry Harrison Chase Dunwoody (1842–1906, USA). Army
General and inventor. Patented silicon carbide (carborundum) crystal radio
detector. It allows current to flow in one direction, so that only the upper half
of the modulated wave is allowed to pass. It lead to the advent of ‘crystal set’
(1910), making it possible for amateurs to build their own wireless receivers
and listen to early radio transmissions.
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1906 CE Bernard Brunhes (1867–1910, France). Physicist. Discovered
the phenomenon of geomagnetic reversal in ancient lava flows from the Massif
Central mountain range in France.

Many rock samples (containing iron-rich minerals particles) of different
ages and from different localities have shown a magnetic polarization opposite
to that of the present field. Brunhes found evidence of the latest of such
reversals, occurring some 700,000 years ago, in iron-rich particles in an ancient
lava flow in France.

Since then, examples have been found in almost every part of the world.
It is believed that the earth’s field reversed its polarity several times during
the past 20 million years — the duration of the reversal process being of the
order of 10,000 years.

1906–1907 CE Andrei Andreyevich Markov (1856–1922, Russia).
Mathematician. Developed the theory of linked probabilities where the oc-
currence of one event determines the probability distribution of the following
event, so that the future distribution of a variable depends only upon the
present value and not on the sequence of past events. These sequences are
named for him since he was first to study them systematically. Usually the
term Markov process is restricted to sequences of events in which the random
variables can assume continuous values. The analogous sequences of discrete-
valued variables are called Markov chains.161

Markov was born in Ryazan, Russia. From 1886 he taught at the Univer-
sity of St. Petersburg. His early work was devoted to number theory, analysis
and continued fractions, but after 1900 he was chiefly occupied with proba-
bility theory. He derived his results without using the notion of measurable
functions and modern theories of integration. His theory is widely applied in
many natural phenomena, especially in the biological and social sciences.

1906–1908 CE William Sealy Gossett162(1876–1937, England). Mathe-
matician. Made notable contributions to statistical theory, especially to small-

161 For further reading, see:

• Wentzel, E. and L. Ovcharov, Applied Problems in Probability Theory, Mir

Publishers, Moscow, 1986, 413 pp.

• Parzen, E., Modern Probability Theory and its Applications, Wiley, 1960,
464 pp.

162 For further reading, see:

• Larsen, R. and M. Marx, An Introduction to Mathematical Statistics and its

Applications, 1981, 536 pp.

• Bailey, N.T., The Elements of Stochastic Processes, Wiley, 1964, 249 pp.
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sample theory. Discovered the “Student’s” t-distribution163 (1907). His work
with the t-ratio was destined to become a cornerstone of modern statistical
methodology due to its fundamentality for inference. In particular it paved
the way for the analysis of variance, which was to occupy an important place
in the next generation of statistical research.

Gossett was born in Canterbury. After earning an Oxford degree in math-
ematics and chemistry under Airy, he began working in 1899 for Messrs.
Guinness, a Dublin brewery.

Fluctuations in materials and temperature and the necessity for more ac-
curate statistical analysis of a variety of processes, from barley production
to yeast fermentation, urged him to seek mathematical advice. In 1906 he
was therefore sent to work under Karl Pearson at University College, Lon-
don. In the next few years Gossett made his most important contributions to
statistics. He worked for the Guinness Company throughout his entire life.

1906–1914 CE Boris Borisovich Golitzin (1862–1916, Russia). Physi-
cist and seismologist. Invented and built the electromagnetic seismograph164

163 Because of his company’s policy, which forbade publication by employees,

it was necessary for Gossett to publish his scientific papers under a pen

name. The pseudonym he chose was “Student”. The Student ’s distribu-

tion with ν degrees of freedom is specified by the probability density func-

tion f(x) = 1√
πν

Γ( ν+1
2 )

Γ( ν
2 )

(
1 + x2

ν

)−(ν+1)/2

. For ν = 1 it coincides with the

Cauchy probability law. The nth moment E[xn] exists only for n < ν. If

n = ν and n is odd then E[xn] = 0, but if n < ν and n is even, then

E[xn] = νn/2 Γ( ν+1
2 )Γ( ν−n

2 )

Γ( 1
2 )Γ( ν

2 )
. If X0, X1, . . . , Xn are (n + 1) independent ran-

dom variables, each normally distributed with parameters μ = 0 and σ > 0,

then the random variable X0√
1
n

∑n
k=1 X2

k

has as its probability law the Student’s

distribution with parameter n, which is independent of σ.

Gosset discovered the t-distribution by a combination of mathematical and em-

pirical work with random numbers, an early application of the Monte-Carlo

method.
164 In older seismographs (of the mechanical type), the motion is transferred from

the pendulum to the recording pens in a purely mechanical way, and simulta-

neously magnified. In addition, the recording is mechanical (stylus on smoked

paper). These requirements imply that the seismograph becomes rather bulky,

and that friction is introduced both in the mechanical transmission and record-

ing. To overcome friction it is necessary to use large pendulum masses, and

indeed, pendulum masses of as much as 20 tons were used. In the Golitzin
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with photographic recording (1906). This invention was a cardinal develop-
ment in the science of seismology, since it enabled seismologists to obtain
higher-quality data, with greater magnification over a wider spectral window.

Golitzin was born and educated in St. Petersburg. He studied first at
the Naval Academy and then at the University. He completed his studies at
the University of Strasbourg (1887–1891), and became in 1893 a professor of
physics at Dorpat. In 1912 he received a D.Sc. degree from the University of
Manchester. He died of pneumonia, contracted while traveling across Russia
to establish a network of seismic stations equipped with his seismographs.

1906–1915 CE Paul Langevin (1872–1946, France). Physicist and in-
ventor. Known for his fundamental work on the theory of paramagnetic sub-
stances (1906), the Kerr effect (1907), the Bohr magneton (1911) and the
invention of sonar (1918). In 1908, Langevin derived a stochastic ordinary
differential equation modeling Brownian motion.

Langevin’s approach to the Brownian motion was different than those of
Einstein and Smoluchovski: A Brownian particle of radius a, moving under
the action of a random force, will obey the equation

m
d2x

dt2
+ γ

dx

dt
= F (t),

where x(t) is the position of the particle, m its mass, γ ≈ 6πηa is the
frictional resistance coefficient and F (t) represents the random force which
fluctuates both in direction and magnitude, transferring momentum via col-
lisions to m.

The force F (t) is microscopically complicated, since each Brownian parti-
cle is typically subjected to some 1016 consecutive random impacts per second.
However, on a macroscopic scale it can be considered as a stochastic process
with independent, stationary distribution at each instance. One notes that
the averages

x̄(t) =
1

Δt

∫ t+Δt

t

x(τ)dτ ;

electromagnetic seismograph one or several coils are attached to the pendulum

such that they are moving in the field of a permanent magnet. The magnet is

attached to the frame and the coils are connected to a galvanometer. On the

arrival of seismic waves, the coil is set in motion relative to the magnet, and

induced current is used to deflect a galvanometer mirror. In this construction,

friction is avoided.
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F̄ (t) =
1

Δt

∫ t+Δt

t

F (τ)dτ

satisfy the above equation of motion, when x(t) and F (t) are the actual
position and force.

Our eye, or whatever measuring instrument is used, observes not x(t) but
rather the average x̄. A solution of the Langevin’s equation leads directly to
Einstein’s equation

〈x(t)2〉 = kT t/3πηa,

where the absolute temperature of the ambient fluid enters via equipartition.

Einstein’s own treatment of Brownian motion is formulated as follows. De-
note the average density of particles at point x and time t as n(x, t), and the
fraction of particles which shift from point x to within (x + Δ, x + Δ + dΔ)
in a short time τ as ϕ(Δ).

It is assumed that
∫ ∞

− ∞ ϕdΔ = 1 (particle conservation),
∫ ∞

− ∞ ϕΔdΔ = 0

[symmetry: ϕ(−Δ) = ϕ(Δ)], and that the probability of large shifts is small,
i.e. ϕ(Δ) is concentrated at small values of Δ.

Clearly,

n(x, t + τ) =
∫ ∞

− ∞
n(x − Δ, t)ϕ(Δ)dΔ.

Expanding the density in Taylor series

n(x − Δ, t) = n(x, t) − ∂n

∂x
Δ +

∂2n

∂x2

Δ2

2
− · · ·;

substituting this expansion into the integral and performing the integration,
one obtains, in the limit τ → 0, for n > 1:

∂n(x, t)
∂t

= D
∂2n

∂x2
,

D =
1
2τ

∫ ∞

− ∞
ϕΔ2dΔ (diffusivity).

It follows from this equation, that if initially the particles were concen-
trated at the point x0, then at moment t later we have

n(x, t) =
1√

2πDt
e− (x−x0)2

2Dt .

This implies that the root mean square of the deviation of the Brownian path
is 〈(x − x0)2〉1/2 =

√
2Dt.
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To derive an explicit expression for D, Einstein assumed that the particles
suspended in the fluid fall under gravity and rise again by diffusion; the two
competing tendencies balance on average to yield a Boltzmann distribution
in the heights of the suspended particles, on account of the concentration
gradient that gravity tends to set up.

The steady-state velocity of a particle subject to force F is given by Stokes’
law v = F

6πηa , where a is the particle’s radius and η the viscosity of the
medium. Now, the statistical equilibrium condition is nv = (−)D ∂n

∂x where
the +x direction is up, since the r.h.s. is the average number of particles
crossing a unit surface area downwards per unit time (due to gravity) and
the l.h.s. is the number of particles which cross by diffusion in the opposite
direction (by definition of D). Also

n = n0 exp
(
(−)

χ

kT

)
,

where χ is the potential of the force F , i.e. F = ∂χ
∂x . Hence:

(−)D
∂n

∂x
= Dn

1
kT

∂χ

∂x
=

D

kT
(nF ) = nv =

Fn

6πηa
,

namely

D =
kT

6πηa

(Einstein-Smoluchovski relation). This relation, when combined with the
above root mean square derivation, yields the Langevin expression for 〈x(t)2〉.

1906–1916 CE Marian Ritter von Smolan-Smoluchovski (1872–1917,
Poland). Outstanding theoretical physicist and a fine experimentalist as well.
Developed the theory of the Brownian motion on the basis of the molec-
ular kinetic theory, independently of Einstein, using a somewhat different
method165.

Smoluchovski, born to a Polish family, spent his early years in Vienna,
where he also received his university education. After finishing his studies

165 Smoluchowski showed that in the presence of a force-field, Einstein’s equation

∂P (t,x)
∂t

= D ∂2

∂x2 P (x, t) for the probability density P (x, t) that a particle is at

x at time t, should be replaced by ∂P
∂t

= − 1
f

∂
∂x

(PF ) + D ∂2P
∂x2 . Here f is

a frictional coefficient which can be expressed in terms of the viscosity of the

ambient fluid and the size of the particles. The symbol F stands for either a

constant force (F = −a) or an elastic restoring force (F = −bx).
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in 1894, he worked in several laboratories abroad, then returned to Vienna,
where he became Privatdocent. In 1900 he became a professor of theoretical
physics in Lemberg (now Lviv), where he stayed until 1913. In that period
he did his major work. In 1913 he took over the directorship of the Institute
for Experimental Physics at the Jagiellonian University in Cracow. There he
died, the victim of a dysentery epidemic. Einstein called him an ingenious
man of research and a noble and subtle human being.

Functional Analysis (1900–1928)

Functional analysis (FA) seeks to discover deep-seated abstract relations
that are common to certain branches of analysis, such as integral equations,
the calculus of variations, differential equations, operator calculus, the theory
of functions of a real variable, the theory of approximation of functions, linear
algebra, and topology.

The rise and spread of functional analysis in the 20th century had two
main causes. On the one hand it became desirable to interpret from a uniform
point of view the copious factual material accumulated in the course of the
19th century in various, often hardly connected, branches of mathematics.

The beginnings of FA lies in the recognition that widely different kinds of
mathematical operations, from the basic operations of arithmetic to differen-
tiation and integration, have strikingly many features in common; and that
the mathematical objects subjected to these operations exhibit the same or
similar properties in relation to the operations, although they originate from
quite different fields of mathematics.

Moreover, FA permitted an understanding of many results in the above
domains from a single point of view and often promoted the derivation of new
ones. In recent decades the preparatory concepts and apparatus were then
used in a new branch of mathematical physics — quantum mechanics.

On the other hand, the investigation of mathematical problems connected
with quantum mechanics became a crucial feature in the further development
of FA itself; It created, and still creates fundamental branches of this devel-
opment: numerous new concepts, which have become the basis of FA, are
frequently used in modern mathematics.
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Thus, FA has not yet reached its completion by far. On the contrary,
undoubtedly in its further development the questions and requirements of
contemporary physics will have the same significance for it as classical me-
chanics had for the rise and development of the infinitesimal calculus in the
18th century. Some of the main topics of FA are: Abstract spaces (metric
spaces, normed spaces); functionals, approximation theory, operators (quan-
tum mechanics makes extensive use of the mathematical apparatus of the
theory of self-adjoint-operators).

A brief history

FA was born in the early years of the 20th century as a part of a larger
trend toward abstraction. This same trend contributed to the foundations
of abstract linear algebra, modern geometry and topology. Historically, the
roots of FA must be sought in the period 1822–1837 in connection with early
attempts to solve integral equations: Fourier (1822) offered the solution
g(x) = 1

2π

∫ ∞
− ∞ e−itxf(t) dt to the equation

f(x) =
∫ ∞

− ∞
eitxg(t) dt.

Abel (1823) followed with the solution g(x) = 1
π

∫ x

a
f ′(y)√

x−y
dy to the equation

f(x) =
∫ x

a

g(y)√
x − y

dy

where a ≤ x ≤ b, f(a) = 0.

Liouville (1837) discovered that the ODE f ′ ′(x) + f ′(x) = g(x) with
the initial conditions f(a) = 1, f ′(a) = 0 can be converted into the integral
equation

f(x) = cos(x − a) +
∫ x

a

sin(x − y)g(y) dy.

By the middle of the 19th century, interest in integral equations centered
around the solution of certain boundary-value problems involving the Laplace

equation ∂2u
∂x2 + ∂2u

∂y2 = 0, which were known to be equivalent to integral
equations. It was then discovered that the study of integral equations is
closely related to the study of systems of linear equations of infinitely many
unknowns.
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The first rigorous treatment of the general theory of integral equations
was given by the Swedish astronomer and mathematician Ivar Fredholm
in a series of papers from 1900 to 1903. His work was quite influential and
attracted a great deal of attention although, curiously, his techniques were
largely ignored for years.

David Hilbert continued Fredholm’s work in a series of seminal papers
(1904–1910). The importance of Hilbert’s contribution is that he completely
abandoned the integral equations, showing it to be a special case of the theory
of systems of linear equations, thus beginning the algebraization of analysis.

In another vein, Fréchet, building on Voltera’s concept of functionals,
advanced a new ‘Functional Calculus’ which was based on two very general
principles:

• Basic notions from set theory,

• A notion of limit, which was assumed to be available in the particular
class of spaces he considered.

In modern terms, Fréchet’s ‘Functional Analysis’ was an early example of
what we would now call ‘point set topology’. In particular, it was Fréchet who
formalized the notion of a metric space. The main results in his 1906 thesis
were generalizations of the work of

� Cantor (by generalizing the notions of the interior of a set, a derived
set, compactness, perfect set)

� Baire (by generalizing the notion of semi-continuous functions)

� Cesare Arzelà (by extending the notion of compactness to set of func-
tions)

All these developments did not stem from Hilbert’s work. Fréchet’s approach
was so revolutionary, that he felt the need to justify it even as late as 1950.

Hilbert’s successors were Erhard Schmidt (1907), Friedrich Riesz
(1907) and Ernst Fischer (1908) who considered the notion of convergence
in the mean for square-summable functions. Other important players in the
story of FA were Eduard Helly (1922) and Hans Hahn (1922), but it was
Stefan Banach (1922) who gave the first complete treatment of abstract
normed vector spaces.

As an example we consider the generalization of the classical concept of
differentiation such that it can meet the needs of wider applications:
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Traditionally, differentiation enables us to find the tangent to a curve at
a given point. Very often, in a diagram showing a curve with a tangent,
there is a considerable stretch where the eye cannot distinguish the curve
from the tangent. In other words, over a single interval the tangent gives an
excellent approximation to the curve. If (x, y) is a point on the tangent to
the graph y = f(x) at the point (x0, y0), then the equation of the tangent
is y − y0 = f ′(x0)(x − x0), which is a linear relation. So, the problem of
differentiation is equivalent to the problem of finding a linear function, relating
the change in input to the approximate change in output, the approximation
being good for small changes.

In order to clarify what we mean by ‘a good approximation’ we turn
to the traditional calculus. For instance, when f(x) = x3 we find that
f(x0 + h) − f(x0) = 3hx2

0 + (3h2x0 + h3). If x0 is of order 1 and h is of
the order, say, of 10−6, then h2 and h3 are of the orders 10−12 and 10−18

respectively, and we may well write f(x0 + h) − f(x0) = 3hx2
0 + · · ·, where

the dots represent nonlinear terms in h that are small compared with h. If
we use e(h) to represent the terms omitted — “e” for error — a formal
statement is that if f(x0 + h) − f(x0) = mh + e(h), where e(h)/h → 0 as
h → 0, then f ′(x0) exists and has the value m.

We now take a very small step in the direction of generalization, and con-
sider a function f that maps the vector u = (x, y) to w = (q, p), where
p = xy, q = x2 + y2. Let h = (a, b). When (x, y) change to (x + a, y + b),
the corresponding changes in the mapping are Δp = ya + xb + · · · and
Δq = 2xa + 2yb + · · ·, where the omitted terms involve a2, ab and b2. Thus

we may write

(
Δq
Δp

)

=
(

2x 2y
y x

)(
a
b

)

. The vector (a, b) in this equation

represents h (the change in input) and the approximate change in output is
given by Mh, where M is the 2 × 2 matrix in the above equation. The error
in our approximation is given by e(h) = (ab, a2 + b2).

We cannot keep our earlier condition, e(h)/h → 0, since in general it is not
possible to divide one vector by another. However, we are not really interested
in the direction of the vector e(h), since we propose to neglect this vector.
All we want to be sure of, is that its size is negligible compared with that
of h. Sizes are measured by norms166. So the condition, ‖e(h)‖/‖h‖ → 0,
as ‖h‖ → 0, is meaningful and is all we need demand. We are thus led
to reformulate our definition of differentiation in a way that suits the above
example and works equally well for a function f in any Banach space:

If
f(u0 + h) − f(u0) = Mh + e(h),

166 ‖v‖, the norm, is the length of the vector v in a Euclidean space.
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where M is a bounded linear operator and ‖e(h)‖/‖h‖ → 0 as ‖h‖ → 0,
the function f is called Fréchet-differentiable at the point u0, and we define
f ′(u0) = M as the Fréchet derivative at a point u0. (Maurice Fréchet,
1925).

Requiring M to be bounded is much like requiring the number m = f ′(x0)
in traditional calculus to be finite. Note that the Fréchet derivative in our
example is a matrix, and not a single number, since it transforms a vector into
another nonparallel vector (in general). Multiplication by a number cannot
do this, for it leaves the direction of the vector invariant. Multiplication by
a matrix can change both length and direction, and f ′(u) turns out to be
such a transformation.

The availability of a generalized derivative does not mean that all theorems
of the traditional calculus have counterpart in functional analysis. Roll’s
theorem, for one, does not have such counterpart167. This means that the
mean value theorem can only be generalized as an inequality.

1906 CE Albert Einstein completed a paper on the specific heat of solids,
the first paper ever written on the quantum theory of the solid state (pub-
lished, 1907) and the first attempt to deal with the problem of specific heats in
the context of the quantum theory. Until 1906, Planck’s quantum had played
a role only in the rather isolated problem of blackbody radiation and in Ein-
stein’s explanation for the photoelectric effect in terms of the light quantum
(photon). Einstein’s work on specific heats made it clear for the first time
that quantum concepts have a far more general applicability.

In the classical model of a monatomic solid, each atom vibrates about an
equilibrium position; these vibrations constitute the thermal agitation of the
crystal. The specific heat at constant volume is then defined as Cv =

(
∂E
∂T

)
v
,

167 A counter-example: let φ map t → (x, y) with x = t − t2, y = t − t5. Then

φ′(t) = (1 − 2t, 1 − 5t4). Now φ(0) = (0, 0) and φ(1) = (0, 0), but there need

be no T with 0 < T < 1 such that φ′(T ) = 0. When we are dealing with a

single number that starts at 0 and returns to 0, there will be a moment when

its stops growing and begins to decrease, or vice versa. But when the output

involves two numbers, x and y, there need be no such special moment (the

number x ceases growing when t = 0.5, but y continues to grow until t = 0.67

approximately).
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where E is the energy of vibration of the atoms and T is the absolute temper-
ature. To within an additive constant, this energy E is the internal energy U
of the solid.

Invoking the principle of equipartition of energy, adumbrated by Clausius
and stated clearly by Maxwell (1860), each atom has 1

2kT of energy per
degree of freedom (on average), with 6 degrees of freedom. Therefore N atoms
have a total of E = 6N

(
1
2kT

)
= 3NkT . The heat capacity associated with

these atoms is Cv = dE
dT = 3Nk in this classical model.

The value 3Nk agrees with experimental results fairly well for most el-
emental solids at high temperatures; at low temperatures Cv is much lower
than the constant 3Nk value. Experimentally, Cv for non-metals is found to
be approximately proportional to T 3 at low temperatures, approaching zero
as T → 0.

Einstein set forth to explain the discrepancy and his work, like his inno-
vative articles of 1905, proceeded directly and succinctly to the heart of the
matter: He realized that the gradual disappearance of the atomic heat in
approaching absolute zero is a typical quantum effect .

It is due to the fact that, in contrast to the fundamental assumptions of
the classical law of equipartition, the oscillating lattice constituents cannot
take up arbitrarily small amounts of thermal energy but (according to quan-
tum mechanics) only integral energy quanta168 hν true for every oscillator of
eigenfrequency ν. With decreasing temperature, the mean thermal energy
kT finally becomes smaller than one vibrational quantum hν for any given
oscillation mode of frequency ν. Below that temperature, less and less energy
quanta are available to the crystal — more and more modes of vibration are
“frozen out”.

Consequently, with decreasing number of the degrees of freedom which are
able to absorb thermal energy, the specific heat decreases toward zero. The
lighter the atoms of a specific crystal are, the higher is the temperature at
which this “starving” of degrees of freedom occurs. This is due to the fact
that the vibrational energy quanta are the larger the smaller the oscillating
masses are.

The statistical computation is very similar to that of the cavity oscillations
which lead to Planck’s radiation formula and the result reflects this similar-
ity. If we assume a single eigenfrequency ν0 of the crystal atoms, Einstein’s

168 These mechanical vibrational quanta are known today as phonons, rhyming

with photons. A phonon is the quantum of sound or elastic waves in a crystal

lattice.
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theory169 leads to the atomic heat

Cv = 3Nkξ2 eξ

(eξ − 1)2
,

where ξ = hν0
kT , instead of the classical result Cv = 3Nk. At sufficiently

high temperature (ξ → 0), this expression approaches 3Nk in agreement
with the law of Dulong and Petit. The characteristic eigenfrequency ν0 was
determined by Einstein from a comparison of his formula with the empirical
temperature dependence of the specific heats. (For alkali halide crystals, he
obtained values of ν0 that agreed within 20 percent with the frequencies of
the optical fundamental vibrations.)

169 Einstein wrote the energy per each of the 3N one-dimensional oscillators as

U(ν, T ) =

∫
εe−ε/kT ω(ν, ε)dε

∫
e−ε/kT ω(ν, ε)dε

.

The exponential factor denotes the statistical Boltzmann factor for the energy

ε. The weight factor ω contains the dynamic information about the density of

states between ε and ε + dε. For the case at hand (linear oscillators), the classi-

cal theory requires ω ≡ 1, which leads to the equipartition result U = kT . Ein-

stein’s assumption, written in modern notation, is ω =
∑

n δ
[
ε −

(
n + 1

2

)
hν

]
.

A straightforward integration then yields E = 3NU = 3N
2

hν + 3N hν

ehν/kT −1
.

Taking the derivative w.r.t. T , Einstein’s final expression for Cv is obtained.

Debye’s analysis (1912) begins with the results for the characteristic vibra-

tions of an enclosure of volume V in which two kinds of elastic waves can

propagate with the respective velocities v	 (longitudinal) and vt (transverse).

The number of characteristic frequencies and of corresponding lattice models

(coupled-atom modes) between ν and ν + dν, counting all types of waves, is

dn = 4πV
(

1
v3

�
+ 1

v3
t

)
ν2dν. Altogether, 3N of them are found, going up to ν0

such that 3N = 4πV
3

(
1

v3
�

+ 2
v3

t

)
ν3
0 . Hence dn ≡ g(ν)dν = 9N

ν3
0

ν2dν. To each

degree of freedom (mode) having frequency ν, Debye assigned the average energy

found in Einstein’s single-mode analysis. Hence dn′ =
[

9N
ν3
0

ν2dν
]

1

e
hν
kT −1

. The

total vibrational energy of the solid is E − E0 =
∫ ν0
0

hνdn′ = 9Nh
ν3
0

∫ ν0
0

ν3dν

ehν/kT −1

where E0 is the energy at absolute zero, corresponding to atoms executing zero-

point motion. The expression for Cv =
(

∂E
∂T

)
v

then leads to the Debye integral.
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In spite of this success, it was clear that the basic assumption of Einstein’s
theory, the existence of only one eigenfrequency of the crystal, is too much of
a simplification. Thus it was not surprising that this model failed to yield the
observed relation Cv ∝ T 3 at low temperatures, since the higher frequency
did not “freeze” at the same temperature values for lower frequencies.

Debye (1912) first carried out the quantization of the eigenfrequencies of
the entire lattice (coupled-atoms eigenmodes of vibration). The crystal in his
theory is treated as one atomic system the states of which are characterized by
different eigenfrequencies, with a limiting maximal cut-off vibration frequency.

His final formula is

Cv = 9Nk

(
T

ΘD

)3 ∫ Θ
D

/T

0

x4ex

(ex − 1)2
dx,

where ΘD = hνc

k is the Debye temperature, and the cut-off frequency νc is

determined from 3N = 4π
3 V

(
1
v3

�
+ 2

v3
t

)
ν3

c . Here V is the volume of the sam-

ple, and {v�, vt} are the respective longitudinal and transverse propagation
velocities of elastic waves in the crystal.

Certain deviations from the Debye theory are still to be observed at low
temperatures as well as very high temperatures, due to the still insufficient
treatment of details of the vibrational spectrum. These include the anhar-
monicity of the vibrations, which causes a decrease of the higher vibrational
quanta and may be though of as due to collisions among phonon pairs. For
metals, a small contribution of free electrons to the observed specific heat has
also to be taken into account at low temperatures.

1906–1916 CE Pierre Maurice Duhem (1861–1916, France). Historian
of science. Uncovered unsuspected aspects of medieval science and contra-
dicted the myth of medieval scientific backwardness. He brought to light the
Parisian school, in particular the work of Jean Buridan (1295–1358), Nicole
Oresme (1323–1382) and Albert of Saxony170 (1316–1390, Germany) and
showed how their work on mechanics was known to Leonardo da Vinci and
subsequently led in the 17th century to the development of such basic notions
of Galilean and Newtonian physics as impetus (momentum) and inertia.

170 Also known as Albert von Helmstädt. German scholastic philosopher. Rector

of University of Paris (1353–1362) and of University of Vienna (1365–1366).

Bishop of Halberstadt (1366). Wrote on mathematics, physics, logic. Helped

spread the logic of William of Ockham.
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Duhem taught at Lille (1887–1893), Rennes (1893–1894), and Bordeaux
(1894–1916). In his early work (1903) he made pioneering attempts to estab-
lish a theory of irreversible thermodynamic processes, but these ideas were
in advance of their time and did not receive recognition in his lifetime. This
was partly because he disproved a favorite theorem of Berthelot, an influen-
tial chemist and minister of education who saw to it that Duhem was never
elected to a chair at Paris.

1906–1925 CE Maurice Rene Fréchet (1878–1973, France). Distin-
guished mathematician. Created a geometry of abstract metric spaces. Devel-
oped further the functional calculus of Volterra and introduced the concept
of the ‘Fréchet derivative’.

Fréchet was born in Maligny, France. He was a professor of mechanics at
the University of Poitiers (1910–1919), a professor of higher calculus at the
University of Strasbourg (1920–1927) and a professor of mathematics at the
University of Paris (1928–1948).

The Fréchet derivative of a nonlinear operator is a generalization of the
derivative of a real-valued function based on the idea of local linearization; it
enables us to find a linear approximation to a nonlinear operator in a neigh-
borhood of some given point. Regarding this as a point in the appropriate
function space, we can find a local linearization of the original nonlinear op-
erator equation in a neighborhood of this point. We can iterate this process,
and it is a generalization of Newton’s method for solving an equation in a
single real variable.

Let P : S → B2, S ⊆ B1 be an operator mapping of a subset S of Banach
space B1 into a Banach space B2. Let x0 be an element of B1 such that S
contains a neighborhood of x0.

Then P is said to be Fréchet differentiable at x0 if there is a continuous lin-
ear operator L : B1 → B2 such that P (x) = P (x0) + L(x − x0) + G(x, x0),
with G : B1 → B2 defined by G(x, x0) = P (x) − P (x0) − L(x, x0), satisfy-
ing

lim
‖x−x0‖ →0

{
‖G(x, x0)‖B2

‖x − x0‖B1

}

= 0.

If such a continuous (bound) linear operator L exists for a particular x0 in B1

we denote it P ′(x0), the Fréchet derivative P at x0, and write

P (x) = P (x0) + P ′(x0)(x − x0) + G(x, x0)

where G(x, x0) satisfies the condition given above.

Consider the following examples:
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• Denote the real line by R and let [a, b] be an interval in R.
Now R is a Banach space with norm ‖x‖ = |x| for x in R. Let
f : [a, b] → R be a real valued function, and let x0 be in [a, b];
then the Fréchet derivative of f(x) at x0 is the ordinary deriva-
tive f ′(x0). Since f ′(x0) = lim|x−x0|→0

f(x)−f(x0)
x−x0

, it follows that

f(x) = f(x0) + f ′(x0)(x − x0) + G(x, x0) with lim |G(x,x0)|
|x−x0| = 0.

• The n-dimensional Euclidean space, En, with norm ‖x‖ =
(∑n

i=1 x2
i

)1/2

is also a Banach space.

Let P : S → En, S ⊆ En be a mapping defined on a subset S of En which
contains a neighborhood of a point x0. It is not hard to show that P ′(x0),

if it exists, is the Jacobian matrix with elements ∂Pi

∂xj

∣
∣
∣
x0

, i, j = 1, 2, . . . , n.

A sufficient condition for the existence of P ′(x0) is the con-
tinuity, at x0, of the partial derivatives. In this case, we have

Pi(x) = Pi(x0) +
∑n

j=1
∂Pi

∂xj

∣
∣
∣
x0

(x − x0)j + Gi(x, x0), i = 1, 2, . . . , n. The

limit DP (x0)(y) = limη→0
P (x0+ηy)−P (x0)

η , if it exists, is called the Gâteau

derivative (1919) of P at x0 in the direction y, where y ∈ En.

As a special application of the foregoing theory consider the mapping of
the complex number x + iy in E2 to f(x, y) = u(x, y) + iv(x, y). This

function corresponds to f(x, y) =
(

u
v

)

in column vector notation for the

mapping f .

The Fréchet derivative f ′(z0) exists at z0 = x0 + iy0 and is express-

ible as the Jacobian matrix f ′(z0) = J(z0) given by J(z0) =
(

ux uy

vx vy

)

where ux = ∂u
∂x

∣
∣
z0

, etc., provided that for every w in E2 the limit

Df(z0)(w) = lima→0
f(z0+aw)−f(z0)

a exists and Df(z0)w = J0(z)w.

Now suppose that the limit does exist for every w in E2 and that
Df(z0)w = J0(z)w. Then, regarding w and f ′(z0)w as complex numbers,
we have (with w = w1 + iw2),

f ′(z0)w = J0(z)w =
(

ux uy

vx vy

)(
w1

w2

)

=
(

uxw1 + uyw2

vxw1 + vyw2

)

.
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Applying the rules of complex multiplication, we find

f ′(z0) =
uxw2

1 + vyw2
2 + (uy + vx)w1w2 + i{vxw2

1 − uyw2
2 + (vy − ux)w1w2}

w2
1 + w2

2

.

Since f ′(z0) is independent of w we must have ux = vy and uy = −vx (the
Cauchy-Riemann relations!), leading to f ′(z0) = ux + ivx = vy − iuy. Thus

f ′(z0) =
(

ux −vx

vx ux

)

= uxI + vxJ

where

I =
(

1 0
0 1

)

and J =
(

0 −1
1 0

)

.

This matrix representation can be seen to be algebraically equivalent to the
complex number f ′(z0) = ux + ivy by means of an isomorphism between the
complex number field and 2 × 2 matrices of the form aI + bJ . (In fact,
we have I2 = 1, J2 = −1 so that, putting I ∼ 1 and J ∼ i we have
aI + bJ ∼ a + bi for any real numbers a and b.)

1906–1931 CE Paul Ehrenfest (1880–1933, Austria). Theoretical physi-
cist. Clarified many of the basis assumptions of statistical mechanics171, and
contributed a variety of particular results172. He tackled the basic problem
of reconciling the reversibility of classical mechanics with the irreversibility
of the events of ordinary experience, showing that this is due to the extreme
improbability of processes in which order spontaneously increases.

Ehrenfest was born in Vienna to Jewish parents who moved to the capital
in 1860 from their home in Loschwitz, a little village in Moravia. He was edu-
cated in the University of Vienna and was a student of Ludwig Boltzmann.
In 1912 he succeeded H.A. Lorentz to the chair of theoretical physics in
Leyden.

During his entire academic life he was fully committed to maintaining
clarity and intelligibility in the flood of new development, and in doing so
extended himself up to and beyond the limits of his resources. Despite his

171 Collaborated in part of his work with his wife Tatyana Alexeyevna Ehren-

fest-Affanasyeva (1876–1964).
172 For example, in 1913 Ehrenfest was first to suggest the correct quantization of

the energy levels of the rigid molecular rotor with moment of inertia I: starting

from the classical expression E = 1
8π2I

(action)2, he derived En = n2h2

8π2I
,

n = 1, 2, . . . .
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achievements in science he was dissatisfied with his own development. Thus,
the problems of his own life, exacerbated by the persecution of the Jews by
the Nazis, led him to take his own life.

Albert Einstein, a dear friend of Ehrenfest, sought the origin of the tragedy
in that “he suffered incessantly from the fact that his critical faculties tran-
scended his constructive capacities”.

1906–1932 CE Oswald Veblen (1880–1960, U.S.A.). Distinguished
mathematician. Made major contributions to projective geometry, and dif-
ferential geometry; laid the foundation to modern topology.

Was among the few American scholars who came forth publicly against
the Nazi persecution of Jewish mathematicians.

He was the nephew of Thorstein Bunde Veblen (1857–1929, U.S.A.),
the known economist and social critic. Weblen taught mathematics at Prince-
ton University (1905–1932). In 1932 he helped organize the Institute of Ad-
vanced Study in Princeton and became a professor there.

1906–1936 CE Harry Bateman (1882–1946, U.S.A.). Applied mathe-
matician. Made important contributions to the theory of partial differential
equations of mathematical physics, especially in hydrodynamics and electro-
dynamics. He also wrote much on integral equations and special functions.
One of the first to apply Laplace transforms to integral equations (1906).

Bateman was born in Manchester, England to Jewish parents and studied
at Cambridge (1900–1904), Göttingen (1905) and Paris (1906). In 1910 he
removed to the United States, and in 1917 became a professor of mathematics,
theoretical physics and aeronautics at the California Institute of Technology in
Pasadena, CA. He accumulated a vast store of information on all the familiar
special functions of mathematical physics and on his death the publication
of his manuscript was undertaken by Arthur Erdélyi and his associates in
the form of the series Higher Transcendental Functions and Tables of Integral
Transforms.

1906–1955 CE Ernst Frederik Werner Alexanderson (1878–1975,
U.S.A.). Electrical engineer and inventor. Pioneer in electrical power en-
gineering and broadcasting.

Born in Uppsala, Sweden and studied at Lund University (1896), Royal
Institute of Technology, Stockholm (1897–1900), and received a Ph.D. from
the Technical University of Berlin (1901). He came to the US (1901) and
designed for Fessenden the high-frequency generator (1906). Associated with
General Electric Co. (1902–1948), and with RCA from 1952.



1907 CE 3075

Invented a high-frequency (2 kW, 100 kHz) alternator173 that greatly im-
proved transoceanic radio (1906), multiple-tuned antenna, and selective radio
tunning circuit (1916). Improved transoceanic communication and firmly es-
tablished the wireless as an important tool in shipping and warfare. Made
the first transmission (1924) of a fax message across the Atlantic. Among his
other inventions: vacuum-tube telephone transmitter; electric ship propulsion,
railroad electrification, and power transmission. Also made significant contri-
butions to television (1927) and color television (1955). Issued 322 patents in
radio, television and computer technologies.

1907 CE Pierre Weiss (1865–1949, France). Physicist. Contributed to
modern theory of magnetism, especially ferromagnetism.

Suggested the theoretical existence of small magnetic domains174 and de-
veloped a domain theory of ferromagnetic materials: when the dipoles of the
domain are aligned, a strong and stable magnetic field results. Weiss treated
phenomenologically spontaneous magnetization of metals like iron by his the-
ory175 — a prototype of many attempts to describe cooperative condensed–
matter effects like melting of solids, order-disorder transition in alloys etc.

The Curie-Weiss Law of ferromagnetism describes the behavior of the
magnetic susceptibility of many solids. Weiss also determined a unit of mag-
netic moment known as Weiss magneton. He was first to introduce the useful
concept of mean-field approximation, called Weiss field.

Weiss was born in Mulhouse, France, and was a professor at Zürich (1902)
and Strasbourg (1919).

173 Alternator : a device that converts direct current into alternating current capa-

ble of producing continuous radio-frequency waves and thereby revolutionizing

radio communication.
174 He suggested that each piece of a paramagnetic material consists of regions

(domains) already magnetized and that the direction of their magnetization

differs from one region to another so as to cancel out in the whole piece. When

the piece is subjected to a uniform magnetic field from outside, the direction

of magnetization within each domain turns toward alignment with that field,

and a net magnetization appears in the material. It turns out that a domain

cannot choose the direction of its magnetization at random; it must choose

that direction from among a very few easy directions of magnetization in the

crystalline structure of the material.
175 According to this scheme, each magnetic atom experiences a field proportional

to the magnetization Beffective = λM where λ is a constant independent of

temperature. This means that each spin sees the average magnetization of all

other spins (in truth, it can only “see” its nearby neighbors).
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History of Magnetism III176 (1895–1928)

Matter is essentially electrical in nature, and magnetic effects arise from
the distribution of currents of the electrical charges in matter and from the
quantum-mechanical spin of charged electrons and nuclei. According to the
view now accepted by physicists, the magnetic properties of matter are ex-
plained in terms of the quantum states and orbitals of electrons within atoms
and molecules and (macroscopically) in multi-atom condensed matter. As
early as 1820, Ampere suggested that magnetism was due to electric current
circulating within matter. However, the identification of these “Amperian
currents” with orbital motion of electrons is a later achievement due princi-
pally to J.J. Thomson (1897), Lord Rutherford (1911), and Niels Bohr
(1913). In fact, Maxwell himself endeavored (1861) to detect such gyroscopic
effects, but without success. The Stern-Gerlach experiment (1920-1) showed
that the electron’s intrinsic quantum angular momentum (spin) makes it a
permanent magnet, and in fact it is spin rather than orbital electron mo-
tion that came to be understood as the main source of macroscopic magnetic
effects. Spin is not directly associated with actual spatial motion, but is inter-
convertible with orbital angular momentum and, like it, exhibits gyroscopic
inertia.

In 1915, Albert Einstein and Johannes de Haas (1878–1960) con-
ducted an experiment that gave the first proof of the existence of mechanical
rotation induced by magnetization: An iron cylinder hung vertically by means
of a wire. A fixed solenoid was placed coaxially around the cylinder. The iron
was magnetized by an alternating current run through the solenoid. If the
magnetic moment M of the magnetized body (at rest) is due to circulating
hidden (molecular, atomic and/or macroscopic) electric currents, the current
due to the flow of electrons in their closed orbits with orbital angular momen-
tum J will induce the magnetization M = − e

2mgJ per electron, where (e, m)

176 For further reading, see:

• Livingston, J.D., Driving Force – the Natural Magic of Magnets, Harvard

University Press, 1996, 311 pp.

• Chaikin, P.M. and T.C. Lubenski, Principles of Condensed Matter Physics,

Cambridge University Press, 1997, 699 pp.

• Kittel, C., Introduction to Solid State Physics, Wiley, 1986, 646 pp.

• Epifanov, G.I., Solid State Physics, Mir publishers: Moscow, 1979, 333 pp.
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are the charge and mass of the electron respectively and the dimensionless
factor g > 0 is now called the Lande factor or gyromagnetic ratio.

Einstein argued that g = 1 per classical theory. To see this consider
one electron moving with uniform velocity v = 2πrν in a circular orbit
with radius r and frequency ν. The angular momentum has the magni-
tude mvr = 2πr2mν. An amount of electric charge (−eν) passes per second
through a point of the orbit. The magnetic moment is therefore equal to
(−eν)(πr2). Hence g = 1.

Einstein and de Haas obtained the mean experimental value g = 1.02, ap-
parently confirming the classical value. By the 1920’s however, their measure-
ments were considered to have been in error, because the new experimental
value of g was found to lie close to 2. Ampere’s molecular currents were then
abandoned in favor of the spin theory of electron magnetism. However, in the
pre-spin days of 1915, any dynamical theory of ferromagnetism had necessar-
ily to be incorrect. Einstein could not know that his theoretical prediction for
iron was wrong by a factor of 2.

Electrons may give rise to a magnetic field in two ways:

(1) An electron revolving in an orbit about the nucleus of an atom (or
the nuclei of a molecule) is equivalent to a tiny current which gives rise to
a magnetic field; this classical phenomenon extends to quantum–mechanical
orbitals, as well as to conduction electrons in meso- or macroscopic matter
(e.g. in metallic conduction – band orbitals).

(2) It has also been found necessary to make the hypothesis that electrons
always spin about any given axis in a manner loosely analogous to the spin
of the earth about its axis. This quantum-mechanical spin also gives rise to a
magnetic field quite independently of any orbital motion the electron may pos-
sess. The observed Cartesian components of both spin an orbital angular mo-
menta take discrete values: {−�

2 , �
2} for the former, {−l�, −(l − 1)�, . . . l�}

for the latter, � = h/2π being the reduced Planck’s constant. The pure-spin
Lande factor twice the classical value, while the purely orbital value equals
the classical result.

In an atom containing many electrons, it is possible that the orbits of the
electrons and their spins may be so oriented that the atom as a whole possesses
a resultant magnetic moment, i.e., acts like a tiny magnet. We say that the
atom then possesses a permanent magnetic moment. (The same holds for an
ion or molecule.) If such an atom is placed in an external magnetic field, two
things occur. First, the external field tends to turn the tiny magnet parallel
to the field, thus adding the field due to the Amperian current to the external
field. This phenomenon is called paramagnetism.
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Second, the atom, because of its intrinsic electrical character, will have
induced currents set up due to asymmetric response of oppositely-orbiting
electrons to the applied field. The net magnetic field due to these currents is
opposite to the external field, resulting in the phenomenon of diamagnetism.
In general, the diamagnetism effects are masked by the larger paramagnetic
effects if the latter are present, though their relative strengths depend on the
temperature.

If an atom or molecule does not possess a permanent magnetic moment
— that is to say, its orbits and spins are so oriented that their individual
fields cancel in the absence of an external field177 — such an atom or molecule
exhibits diamagnetism only.

In the case of ferromagnetic materials such as iron, not only is the under-
lying atom or molecule paramagnetic, but a new and unusual phenomenon is
present that accounts for the very conspicuous magnetic properties of such
(usually solid) materials. It was found from the experimental work of Weiss
(1907) that iron in the bulk, even when not magnetized as a whole, consists of
a large number of grains or domains that act as permanent magnets. These
domains are small compared to ordinary macroscopic dimensions but large
compared with atomic sizes.

There are typically some 1017 to 1021 atoms in each domain. At suffi-
ciently low temperatures the magnetic moments of the atoms, ions or mole-
cules within a domain are forced by quantum nearest-neighbor couplings (such
as covalent bonds and Pauli exchange forces) to be parallel, rise to a large
magnetic moment per domain. The process of magnetization of macroscopic
samples of iron consists in bringing the magnetic moments of the domains
into parallelism with the external field. Magnetic saturation is present when

177 One reason for that cancellation is that electrons usually occupy their permitted

state in pairs; in each pair one electron’s spin is oriented ‘up’ and the other’s

‘down’ (along any given axis of measurement). In some molecules or atoms,

however, the elementary magnets are odd in number and/or they do not can-

cel one another’s effect which thus add up to yield a net atomic or molecular

magnetic–dipole moment. The material may then be paramagnetic or ferro-

magnetic. The former involves only independent responses of each molecule to

an external field, and so can occur in any phase (gaseous, liquid, solid). Fer-

romagnetism involves collective behavior of nearby molecular magnets, so does

not arise in gases and disappears above the material’s Curie temperature.

Iron, Cobalt, Nickel and the loadstone of the ancients are among the ferro-

magnetic materials that had long been known, and more are constantly being

discovered. Antiferromagnetism and ferrimagnetism are allied, similar phenom-

ena.



1907 CE 3079

all the domains have their moments parallel. is explained by the fact that the
domains offer resistance to orientation.

Experimental evidence for this grain-like structure is found in the
Barkhausen effect (1919), observed when a sample of iron is being magne-
tized. If a B-H curve is determined very accurately, it is found that the
increase in magnetization of iron occurs in jumps rather than continuously.
These jumps correspond to reorientation of the magnetic moments. By suit-
able amplification of the induced currents it is possible to actually observe (or
rather, listen to) the orientation of a simple domain.

A domain cannot select the direction of its magnetization at random; it
must choose that direction from among a very few easy directions of mag-
netization in the crystalline structure of the material. More recently, it has
become clear that the magnetization within a domain does not “flop” in so
abrupt a fashion. Instead, the magnetizing force makes the favorably dis-
posed domains grow at the expense of those less favorably disposed. The
wall between two adjacent domains moves more or less smoothly, providing a
gradually increasing region of favorable magnetization.

Even on the atomic scale the wall itself is not abrupt; the elementary
magnets in the wall also change their directions smoothly. The wall moves
by a smooth and orderly change in the directions of the elementary magnets,
subject to the “fuzziness” of quantum mechanics (there is an uncertainty
relation between different Cartesian components of spin magnetization). The
approximate, semiclassical picture is as follows: induced by a magnetizing
force applied from outside, the directions of magnetization of the elementary
magnets rotates about a line perpendicular to the wall, and thus the wall
moves, overcoming various obstacles: pinning, inertia, eddy-current losses,
etc.

The Critical Temperature

With the aid of this picture of moving domain walls, the process of mag-
netizing a ferromagnet can be traced:

As the external magnetizing field Hext increases, the magnetization in-
creases because more domain walls are enabled to move. But the magnetiza-
tion cannot increase indefinitely; when there are no walls left to be moved, the
torque due to the field (Hext plus that due to the already–aligned domains)
can do little to increase the magnetization further. That final saturation mag-
netization represents the magnetization that each domain had already, which
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did not appear macroscopically because the many domains were magnetized
in random directions.

When the magnetizing external field is removed, the piece still exhibit a
net magnetization (Fig. 5.1.1b) because the domains cannot easily return
to randomized orientations. This remanence magnetization can be made to
disappear only by exerting a magnetizing field in the opposite direction (Fig.
5.1.1c). Increasing that reverse field still further (Fig. 5.1.1d) can magnetize
the piece in the other direction until it is again saturated. If this process is
continued by cycling the direction of the magnetizing field, the plot of mag-
netization against field (Fig. 5.1.1e) traces a closed curve called a hysteresis
loop.

In the technological uses of magnets, the form of that loop is extremely
important. The magnetization that remains when the magnetizing field is
removed, for example, is a measure of how strong a permanent magnet can
be made of the material. The area of the loop is a measure of how much
power will be lost to heat, sound etc. if the material is used to make cores in
transformers.

Of more fundamental concern, however, is the saturation magnetization
of the material. Since that represents the spontaneous magnetization within
each domain, it is a property of the substance that is independent of how it
is fabricated into pieces. Again, as with electrical conduction, the clearest
insights come from examining how the property varies with temperature.

The form of that variation in nickel is shown in Fig. 5.1.2. As the metal
is heated, the saturation magnetization declines, and at a critical temperature
(631 degrees absolute, or 358 degrees centigrade), it falls precipitously to zero.
Above that temperature, the substance is no longer a ferromagnet; it behaves
like many other metals and non-metals, and is paramagnetic.

When it is cooled again, the magnetization within the domains reappears
and traverses the same curve in the opposite direction. In other words, the
spontaneous magnetization of the material varies simply and reversibly with
the temperature and vanishes above a critical temperature. Iron behaves
similarly but with a different critical temperature (1043 degrees absolute, or
770 degrees centigrade).

The Internal Field

This phase–transition behavior is somewhat reminiscent of melting. When
a solid material melts, the orderliness characteristic of crystallinity abruptly
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disappears and the crystals fall apart into a disorderly liquid. The vigor of the
atomic vibrations becomes sufficient to overcome the forces tending to hold
the atoms in their orderly arrays.

The analogy between the critical temperature at which a crystal melts
and the critical temperature at which ferromagnetism disappears suggests
examining the heat capacity of a ferromagnet. Heating an ordinary solid will
raise its temperature progressively up to its melting point. Then, as the solid
begins to melt, enough heat must be supplied to melt it completely before the
temperature of the liquid will rise further. In other words, at that melting
temperature the heat capacity of the material is infinitely large; supplying
heat makes no change in its temperature.

The heat capacity of a ferromagnet behaves somewhat similarly (Fig.
5.1.3); it shows a sharp spike at the critical temperature. To be sure, the
heat capacity is not infinite; the temperature of the material will not stay
constant while heat is supplied. Nevertheless, the behavior of the heat ca-
pacity is anomalous — a conspicuous departure from the smooth behavior
observed in other metals.

It was Weiss again who suggested in 1907 a way to account for the variation
of the spontaneous magnetization in the domains with varying temperature.
He imagined a force originating in the material itself and tending to align all
the elementary magnets in a domain in the same direction — a force directly
proportional to the magnetization already present in the domain.

Notice how neatly that idea can explain the behavior diagrammed in Figs.
5.1.2 and 5.1.3. The heat vibrations tend to disturb the alignment of the
elementary magnets, increasingly so as the temperature rises. The more that
alignment is disturbed, the lower is the spontaneous magnetization. But, ac-
cording to Weiss, the force (actually torque) tending to align the elementary
magnets is itself proportional to the extent of alignment that it achieves.
Hence, as the temperature increases, the magnetization decreases calami-
tously; as the temperature decreases, the magnetization again lifts itself “by
its own bootstraps.”

At the critical temperature, the heat capacity displays a peak because
a small increase of temperature induces a large increase of disorder in the
arrangement of the elementary magnets. For disordering that arrangement,
heat is required, just as heat is required to disorder the atomic arrangement
in a melting solid.

In order to explain the origin of the internal forces that Weiss imagined, it
seemed natural at first to turn to the magnetic forces between the elementary
magnets; the van der Waals forces between molecules suggested ways in which
those magnets might tend to align one another. If the magnets were arranged
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in strings, for example, they would adopt a head-to-tail arrangement (Fig.
5.1.4a) of the sort required rather than an arrangement (Fig. 5.1.4b) that has
no net magnetization.

Unfortunately, when numbers were put into Weiss’ theory, it turned out
that magnetic forces between the elementary magnets are 103 times too small
to account for the measured behavior of ferromagnets. The Weiss internal
field, so necessary to the picture of ferromagnetic behavior, had to be accepted
for many years without explanation of its origin.

It was clear that the needed factor of 103 could not be found in the mag-
netic forces between the elementary magnets. And it was also clear that
electrostatic forces operating on the electronic constituents of atoms might
have the needed magnitude. Is there a way for electrostatic forces to align
the spinning electrons? Werner Heisenberg was the first to recognize that
quantum mechanics offers a positive answer to this question.

Until now we have spoken of quantum states, orbitals and spins for each
electron separately, as if we could lay hands on it and label it. But when
many electrons are crowded into a solid, there is no way to distinguish one
from another. The Pauli exclusion principle (Fermi-Dirac statistics) comes
into play in atoms, molecules and conduction bands, dictating that no two
electrons with their spins aligned may occupy the same orbital. This result
in “exclusion” or “exchange” forces among electrons, a key effect in chemical
bonds and all aspects of condensed matter and atomic physics. In particu-
lar, a conjunction of exclusion and electrostatic forces between electrons in
molecular orbitals often causes their spins to align.

The principles of quantum mechanics have been brought to bear in or-
der to treat the entire assembly of electrons (and nuclei) as a single physical
system. But as so often happens in physical science, the application of those
principles to special cases is difficult – and the quantum many-body models we
have for describing ferromagnetism, ferrimagnetism and antiferromagnetism,
while promising, are greatly oversimplified. Much of the present research in
the physical theory of solids and other phases of condensed matter is devoted
to perfecting methods for applying quantum-mechanical principles to eluci-
date the collective behavior of electrons, atoms, ions, molecules, and then
mesoscopic and macroscopic structures.

1907 CE Lee de Forest (1873–1961, U.S.A.). Inventor. Pioneered in
wireless telegraphy and radio broadcasting. Invented the triode vacuum tube
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Smooth change in direction of magnetization within a domain wall.

The magnetization of a ferromagnet with changing magnetizing force.

Fig. 5.1.1
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Fig. 5.1.2: Changing of saturation magnetization with temperature in nickel

Fig. 5.1.3: Change of heat capacity with temperature in nickel

Fig. 5.1.4: The arrangement of magnets a has a lower energy than the arrange-
ment b
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and with it the radio amplifier, as a direct application of the Edison effect
(1883). He obtained patents on more than 300 inventions. Forest staged the
first musical radio broadcast in history, from the Metropolitan Opera House
in New York City (1910).

Forest was born in Council Bluffs, Iowa. He graduated from Yale Univer-
sity in 1896 and moved to the Pacific coast in 1911. He worked on methods
for photographing sound waves on motion picture films.

How the Triode was Invented178 (1907–1914)

The triode vacuum tube was the first electronic device capable of am-
plification. Unfortunately, de Forest did not understand how his invention
actually worked, having stumbled upon it by way of circuitous (and occasion-
ally unethical) routes:

The vacuum tube actually traces its ancestry to the lowly incandescent
light bulb of Thomas Edison. Edison’s bulbs had a problem with progres-
sive darkening caused by the accumulation of soot (given off by the carbon
filaments) on the inner surface of the bulb. In an attempt to cure the prob-
lem, he inserted a metal electrode, hoping somehow to attract the soot to
this plate rather than to the glass. Ever the experimentalist, he applied both
positive and negative voltages (relative to one of the filament connections)
to this plate, and noted in 1883 that a current mysteriously flowed when the
plate was positive, but none flowed when the plate was negative. Further-
more, the current that flowed depended on how hot he made the filament.
He had no theory to explain these observations (remember, the word electron
wasn’t even coined until 1891, and the particle itself wasn’t unambiguously
identified until J.J. Thomson’s experiments of 1897), but Edison went ahead
and patented in 1884 the first electronic (as opposed to electrical) device, one
that exploited the dependence of plate current on filament temperature to
measure line voltage indirectly. This instrument never made it into produc-
tion since it was inferior to a standard voltmeter; Edison just wanted another
patent, that’s all (that’s one way he ended up with over 1000 of them).

178 Adapted from: Lee, Thomas H., The Design of CMOS Radio-Frequency Inte-

grated Circuits, Cambridge University Press, 2003.
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The funny thing about this episode is that Edison arguably had never
invented anything in the fundamental sense of the term, and here he had
stumbled across an electronic rectifier but nevertheless failed to recognize
the implications of what he had found. Part of this blindness was no doubt
related to his emotional (and financial) fixation on the DC transmission of
power, where a rectifier had no role.

At about this time a consultant to the British Edison Company named
John Ambrose Fleming happened to attend a conference in Canada. He
dropped down to the U.S. to visit his brother in New Jersey and also stopped
by Edison’s lab. He was greatly intrigued by the “Edison effect” (much more
so than Edison, who found it difficult to understand Fleming’s excitement
over something that had no obvious promise of practical application), and
eventually published papers on the Edison effect from 1890 to 1896. Although
his experiments created an initial stir, Röntgen’s announcement in January
1896 of the discovery of X-rays as well as the discovery of natural radioactivity
later that same year soon dominated the interest of the physics community,
and the Edison effect quickly lapsed into obscurity.

Several years later, though, Fleming became a consultant to British Mar-
coni and joined in the search for improved detectors. Recalling the Edison
effect, he tested some bulbs, found out that they worked all right as RF rec-
tifiers, and patented the Fleming valve (vacuum tubes are thus still known
as valves in the U.K.) in 1905. The nearly-deaf Fleming used a mirror gal-
vanometer to provide a visual indication of the received signal, and included
this feature as part of his patent.

While not particularly sensitive, the Fleming valve was at least continually
responsive, and required no mechanical adjustments. Various Marconi instal-
lations used them (largely out of contractual obligations), but the Fleming
valve never was popular (contrary to the assertions of some poorly researched
histories) — it needed too much power, filament life was poor, the thing was
expensive, and it was remarkably insensitive detector compared with, say,
Fessenden’s barretter, and well-made crystal detectors.

De Forest, meanwhile, was busy in America setting up shady wireless
companies whose sole purpose was to earn money via the sale of stock. “Soon,
we believe, the suckers will begin to bite,” he wrote in his journal in early 1902.
As soon as the stock in one wireless installation was sold, he and his cronies
picked up stakes (whether or not the station was actually completed), and
moved on to the next town. In another demonstration of his sterling character,
he just outright stole Fessenden’s barretter (simply reforming the Wollaston
wire into the shape of a spade) after visiting Fessenden’s laboratory, and even
had the audacity to claim a prize for his invention. In this case, however,
justice did prevail and Fessenden won an infringement suit against de Forest.
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Fortunately for de Forest, Dunwoody invented the carborundum detec-
tor just in time to save him from bankruptcy. Not content to develop this
legitimate invention, though, de Forest proceeded to steal Fleming’s vacuum
tube diode, and actually received a patent for it in 1905. He simply replaced
the mirror galvanometer with a headphone, and added a huge forward bias
(thus reducing sensitivity of an already insensitive detector). De Forest re-
peatedly and unconvincingly denied throughout his life that he was aware of
Fleming’s prior work (even though Fleming published in professional journals
that de Forest habitually and assiduously scanned) and to bolster his claims,
de Forest pointed to his use of bias, where Fleming used none. Conclusive
evidence that de Forest had lied outright finally came to light when historian
Gerald Tyne obtained the business records of W. McCandless, the man who
made all of de Forest’s vacuum tubes (de Forest called them audions). The
records clearly show that de Forest had asked McCandless to duplicate some
Fleming valves months before he filed his patent. There is thus no room for
a charitable interpretation that de Forest independently invented the vacuum
tube diode.

His crowning achievement came soon after, however. He added a zigzag
wire electrode, which he called the grid, between the filament and wing elec-
trode (later known as the plate), and thus the triode was born. This three-
element audion was capable of amplification, but de Forest did not realize this
fact until years later. In fact, his patent application only mentioned the triode
audion as a detector, not as an amplifier. Motivation for the addition of the
grid is thus still curiously unclear. He certainly did not add the grid as the
consequence of careful reasoning, as some histories claim. The fact is that he
added electrodes all over the place. He even tried “control electrodes” outside
of the plate! We must therefore regard his addition of the grid as merely the
result of haphazard but persistent tinkering in his search for a detector to call
his own. It would not be inaccurate to say that he stumbled onto the triode,
and it is certainly true that others had to explain its operation to him.

From the available evidence, neither de Forest nor anyone else thought
much of the audion for a number of years (1906–1909 saw essentially no ac-
tivity on the audion). In fact, when de Forest barely escaped conviction and a
jail sentence for stock fraud after the collapse of one of his companies, he had
to relinquish interest in all of his inventions as a condition of the subsequent
reorganization of his companies, with just one exception: the lawyers let him
keep the patent for the audion, thinking it worthless.

He intermittently puttered around with the audion and eventually discov-
ered its amplifying potential, as did others almost simultaneously (including
rocket pioneer Robert Goddard). He managed to sell the device to AT&T in
1912 as a telephone repeater amplifier, but initially had a tough time because
of the erratic behavior of the audion. Reproducibility of device characteristics
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was rather poor and the tube had a limited dynamic range. It functioned well

for small signals, but behaved badly upon overload (the residual gas in the

tube would ionize, resulting in a blue glow and a frying noise in the output

signal). To top things off, the audion filaments (made of tantalum) had a life

of only about 100–200 hours. It would be a while before the vacuum tube

could take over the world.

Fortunately, some gifted people finally became interested in the audion.

Irving Langmuir at GE Lab in Schenectady worked to achieve high vacua,

thus eliminating the erratic behavior caused by the presence of (easily ionized)

residual gases. De Forest never thought to do this (in fact, warned against

it, believing that it would reduce the sensitivity) because he never really
believed in thermionic emission of electrons (indeed, it isn’t clear he even
believed in electrons at the time), asserting instead that the audion depended
fundamentally on ionized gas for its operation.

After Langmuir’s achievement, the way was paved for a bright engineer

to devise useful circuits to exploit the audion’s potential. That bright engi-

neer was Edwin Howard Armstrong who invented the regenerative ampli-

fier/detector in 1912 at the tender age of 21. This circuit employed positive

feedback (via a “tickler coil” that coupled some of the output energy back

to the input with the right phase) to boost the gain and Q of the system

simultaneously. Thus high gain (for good sensitivity) and narrow bandwidth

(for good selectivity) could be obtained rather simply from one tube. Addi-

tionally, the nonlinearity of the tube demodulated the signal. Furthermore,

over-coupling the output to the input turned the thing into a wonderfully

compact RF oscillator.

In a 1914 paper titled “Operating Features of the Audion,” Armstrong

published the first correct explanation for how the triode worked, and provided

experimental evidence to support his claims. He followed this paper with

another (“Some Recent Developments in the Audion Receiver”) in which he

additionally explained the operation of the regenerative amplifier/detector,

and showed how to make an oscillator out of it. The paper is a model of

clarity and quite readable even to modern audiences. De Forest, however,

was quite upset at Armstrong’s presumptuousness. In a published discussion

section following the paper, de Forest repeatedly attacked Armstrong. It is

clear from the published exchange that, in sharp contrast with Armstrong, de

Forest had difficulty with certain basic concepts (e.g., that the average value

of a sine-wave is zero), and didn’t even understand how the triode, his own
invention (more of a discovery, really) actually worked.

The bitter lifelong enmity that arose between these two men never waned.
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1907–1908 CE Hermann Minkowski (1864–1909, Germany). Out-
standing mathematician and theoretical physicist. Developed the geometrical
theory of numbers and used geometrical methods to solve difficult problems in
number theory, mathematical physics and the Theory of Relativity. His con-
cept of ‘space-time’ has proved to be one of the most valuable contributions
ever made to theoretical physics by a mathematician, and made it possible
for Einstein to formulate the theory of General Relativity.

Minkowski’s early work was in number theory and n-dimensional geometry.
In 1883, while only 18 years old, he shared with Henry Smith the Grand
Prix des Sciences Mathematiques of the Paris Academy, for his work on the
problem of representation of a number as a sum of 5 squares. In his book
Geometrie der Zahlen (1896), the connection between geometry and number
theory was forged into a strong link. In this book he proved many beautiful
relationships at the interface of geometry and number theory.

His most famous result, known as Minkowski’s theorem, states that any
convex planar region symmetrical about (0, 0) and having an area greater
than 4 contains integer lattice points apart from (0, 0). This theorem, and
its generalization to higher dimensional spaces, is particularly useful in proofs
concerning the representation of numbers by quadratic forms, such as the
decomposition of certain primes into sums of squares.

In an address before the Göttingen Mathematical Society in 1905,
Minkowski hypothesized that someday soon, number theory would triumph
in physics and that, for example, the decomposition of primes into the sum
of 2 squares would be seen to be related to important properties of matter.

Another intriguing geometrical concept due to Minkowski is that of a ‘ray
body ’ (strahlkörper), defined as a region in n-dimensional Euclidean space
containing the origin and whose surface, as seen from the origin, exhibits
only one point in any direction. In other words, if the inner region were
made of transparent glass and only the surface were opaque, then the origin
would be visible from each surface point of the ‘ray body’ with no intervening
surface points (any convex region is a ray body, but the converse does not
hold). Minkowski proved the bizarre theorem that if the volume of such a
body does not exceed ζ(n) [Riemann zeta function], a volume-preserving
linear transformation exists such that the transformed body has no points in
common with the integer lattice, other than the origin.

Around 1902, Minkowski became increasingly fascinated by the rid-
dles of electromagnetism, as had recently been formulated in the works of
H.A. Lorentz. His earlier friendship with H. Hertz may have also con-
tributed to these interests. In 1907 he was able to show that the electromag-
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netic scalar and vector potentials as well as the charge-current densities are
4-vectors w.r.t. the Lorentz symmetry group of Special Relativity, while the
electromagnetic field-strengths form a second rank skew-symmetric 4-tensor.
On Nov. 5, 1907 he gave in Göttingen a colloquium about relativity, in which
he identified the Lorentz transformation with pseudorotations179.

Then, in 1908, he presented the Maxwell-Lorentz equations in four-
dimension tensor form180.

At a scientific gathering in Cologne in 1908, Minkowski introduced the
concept of space-time. A point in space at an instant in time (an event) he
called a ‘world point’, and the totality of all conceivable world-points is a

179 In 1905 Hilbert and Minkowski conducted a joint seminar on the ‘electro-

dynamics of moving bodies’, with Max Born as one of the students. The

FitzGerald contraction, Lorentz time dilation and the Michelson-Morley exper-

iments were discussed. However, the name of Einstein was never mentioned.

When the work of the Bern patent clerk finally reached Göttingen, Minkowski

recalled his former student in Zürich and remarked: “Oh, that Einstein, al-

ways missing lectures — I really would not have believed him capable of it!”

(translated).
180 The Lorentz covariant tensor formulation of the Maxwell theory was a natural

consequence of Einstein’s postulate of equivalence of inertial systems, since it

implies that all the equations of physics must be form-invariant under Lorentz
transformations. Consequently, it should be possible to express them as ab-

solute or covariant relations between four-tensors, and the transformation laws

of the tensors become the transformation laws of the fields, current-charge dis-
tribution, positions, times, etc.

Consider first the inhomogeneous pair of Maxwell equations in empty space with

sources: curl B − 1
c2

∂E
∂t

= 1
c2

J , div E = ρ and introduce x4 = ict, J4 = icρ,

where i =
√

−1 and boldface quantities are spatial vectors (3-vectors). These

equations become,

0 +
∂(cB3)

∂x2
− ∂(cB2)

∂x3
− ∂(iE1)

∂x4
=

1

c
J1,

− ∂(cB3)

∂x1
+0 +

∂(cB1)

∂x3
− ∂(iE2)

∂x4
=

1

c
J2,

∂(cB2)

∂x1
− ∂(cB1)

∂x2
+0 − ∂(iE3)

∂x4
=

1

c
J3,

∂(iE1)

∂x1
+

∂(iE2)

∂x2
+

∂(iE3)

∂x3
+0 =

1

c
J4.

Here, the left-hand sides of the four equations can be recast in terms of a 4 × 4

antisymmetric matrix, which hints at the possibility of defining a four-tensor of
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second rank, known as the field-strength tensor , according to the scheme

F =

⎡

⎢
⎢
⎣

0 B3 −B2 −iE1/c
−B3 0 B1 −iE2/c

B2 −B1 0 −iE3/c

iE1/c iE2/c iE3/c 0

⎤

⎥
⎥
⎦.

We can then write the above pair of Maxwell equations in the form

4∑

ν=1

∂Fμν

∂xν
=

1

c2
Jμ (μ = 1, 2, 3, 4),

or simply

div F = − 1

c2
J.

The remaining (homogeneous) Maxwell equations curl E + ∂B
∂t

= 0, div B = 0,
can be similarly expressed in tensor form if we introduce a second antisymmetric

tensor Gμν defined as follows:

G =

⎡

⎢
⎢
⎣

0 −E3/c E2/c −iB1

E3/c 0 −E1/c −iB2

−E2/c E1/c 0 −iB3

iB1 iB2 iB3 0

⎤

⎥
⎥
⎦.

We then write the homogeneous Maxwell equation pair as

4∑

ν=1

∂Gμν

∂xν
= 0 (μ = 1, 2, 3, 4),

or div G = 0.
The tensor Gμν is known as the dual to Fμν and is related to it via the equa-

tion Gαλ = −iFμν , where α, λ, μ, ν is an even permutation of 1, 2, 3, 4.

It can be shown that G is a 4-tensor (transforms as a tensor under Lorentz-
transformations) F is. It is readily seen that div G = 0 is equivalent to

∂Fαλ

∂xμ
+

∂Fλμ

∂xα
+

∂Fμα

∂xλ
= 0.

In the absence of sources, div F = 0, div G = 0 express the full set of Maxwell’s
equations in covariant form in terms of a single tensor and its dual. The co-

variance of Maxwell’s equations w.r.t. Lorentz transformations is thus made

manifest.
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‘world’. A particle of matter or light enduring for a finite time interval will
correspond to a curve which he called ‘world line’, the points of which can be
labeled by successive readings of the time that would be exhibited by a clock
carried by the particle.

In the language of Cartan’s exterior-form calculus,

F =
∑

μ,ν

Fμνdxμ ∧ dxν

and
∗F = G =

∑

μ,ν

Gμνdxμ ∧ dxν

are a pair of dual 2-forms which are both closed in the no-source case:

dF = dG = 0. With a source Jμ present, dF = 0 still, but the inhomogeneous
Maxwell equations become d∗F = 1

c

∗
J , the 3-form ∗J being the dual of the

4-current 1-form, J =
∑

μ

Jμdxμ. Viewing the 2-form F as the curvature of

a fiber bundle, with Minkowski spacetime as its base manifold and the abelian

U(1) group of complex phases as its fiber, the homogeneous half of Maxwell’s

equations, dF = 0, is seen to be the Bianchi identity for the connection Aμ

(= 4-vector potential (A, i
c
Φ)). This is valid because F = dA is an exact, and

therefore also closed, 2-form in Minkowski 4-space, where the 1-form A is defined

as A =
∑

μ Aμdxμ. For non-abelian fiber groups, this Bianchi identity and the
corresponding inhomogeneous field equations generalize to

dFa +
∑

b,c

gfabcAb ∧ Fc = 0

and

d∗Fa +
∑

b,c

gfabcAb ∧∗Fc =
1

c2

∗Ja ,

where: a, b, c are indices in the adjoint representation of the (Lie) group,

Aa =
4∑

μ=1

Aμadxμ is the connection 1-form, fabc are group structure constants,

and g is a coupling constant (generalization of electric charge). These are the
field equations of the Yang-Milles (YM) gauge theory for the given (Lie) group.

In the 1970s and 1980s it was discovered that all known subnuclear forces are

described by Yang-Milles gauge field theories. Unlike Maxwell’s equations the
YM eqs. are nonlinear and the abelian relation between fields (curvature) and

potentials (connection) is likewise modified:

Fα = dAα +
∑

b,c

gfabcAb ∧ Ac
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The Newtonian absolute time and space, discarded by Einstein, are sup-
planted by the absolute ‘world’ of fused space-time. The distance between
points in this space-time is a space-time interval that is invariant, as measured
by all observers (via their respective reference frames) in inertial motion. This
invariant space-time interval can be real, zero or imaginary, and is defined by
the rule that its square is equal to the difference between the squares of the
temporal interval and spatial distance between the two world points con-
cerned, where c, the speed of light in vacuum, is used to inter-convert units of
space and time. One of the peculiarities of the geometry of Minkowski space
(space-time) is that on the world-lines of light, the space-time intervals are of
zero length.

Following Minkowski, Einstein came to the conclusion that the objective
world of physics is essentially a 4-dimensional structure. Its resolution into
three-dimensional space and one-dimensional time is not the same for all ob-
servers.

Minkowski was born in Alexotas, near Kovno, to a family that left their
native Russia [because of the persecution to which Jews were subjected by the
Czar’s government] and moved to Königsberg, Prussia (1872). He studied in
the local high school, and completed his higher education at the universities
of Königsberg and Berlin.

Among his teachers were Kronecker, Weierstrass and Kirchhoff. He
received his Ph.D. at the University of Königsberg and served as a professor
at Zürich (1896–1902) and Göttingen (1902–1909).

On Jan. 10, 1909 he was suddenly stricken with acute appendicitis. He
died two days later, not having yet attained his 45th year, at the height of
his scientific creativity. On Wednesday, Jan. 11, 1909, the announcement was
made to the students. One of the students recalled: “Because of the great
position of a professor in those days and the distance between him and the
students, it was almost more of a shock for us to see Hilbert weep than to
hear that Minkowski was dead”.
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The Special Theory of Relativity181 (1905–1908)

(I) Historical background and fundamental principles

At the end of the 19th century an optimistic view was taken of the achieve-
ments of theoretical physics. Few problems, so it seemed, remained to be
solved. There were, however, some details which marred this general pic-
ture. For example, the rate of advance of the perihelion of Mercury’s orbit
exceeded the predicted amount by nearly 10 percent. Attempts to describe
the interaction of radiation and matter led to a formula which disagreed with
experiment. Certain problems in the optics of moving media were still unre-
solved, and atomic spectra as well as the dynamical stability of atoms were
not yet understood. The billions–of–years age of the solar system required
that the sun shine steadily for a duration exceeding by far that accounted
for by its gravitational collapse upon formation from cold gases. But few
physicists would have thought at the time that these particular features of
nature would require for their explanation a complete revolution in physical
ideas. To see why this was unavoidable, a reexamination of the fundamentals
of Newtonian mechanics and the wave theory of light is called for.

In Newton’s hand mechanics was formulated based on the notions of ab-
solute space and time. The time variable occupied a unique position as the
independent variable in terms of which the position of a particle is described.
Its measure and flow is unrelated to the choice of the particular reference
system used for the description of mechanical problems.

By a system (or frame) of reference we mean a system of coordinates used
to measure and indicate the position of a particle in space, as well as mutually
synchronized clocks fixed in this system, serving to indicate time. Reference
systems which move with uniform velocity relative to the idealized “fixed

181 To dig deeper, see:

• Landau, L.D. and E.M. Lifshitz, The Classical Theory of Fields, Pergamon

Press, 1962, 404 pp.

• Low, F.E., Classical Field Theory, Wiley, 1997, 427 pp.

• Stephenson, G. and C.W., Kilmister, Special Relativity for Physicists, Wiley,

1962, 108 pp.

• Jammer, M., Concepts of Simultaneity: From Antiquity to Einstein and Be-

yond, John Hopkins University Press, 2006.
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stars” (in which Newton’s first law is valid) are known as inertial frames.
Consider a reference frame S and another reference frame S̄ moving uniformly
relative to S with finite velocity v.

A physical event occurs at a point in space and at an instance of time and
is specified by the entities (r, t) in S and (r′, t′) in S̄. According to classical
mechanics these entities are related by the Galilean transformation equations

t′ = t, r′ = r − vt (1)

Clearly, if the first law is valid in S, then it is also valid in S̄, and in all other
inertial frames as well. In fact, all three Newton’s laws are the same in all
inertial frames, and no frame has any preference over another.

The laws of mechanics are thus independent of the uniform rectilinear
velocity of the system, and one cannot determine it by means of any internal
mechanical experiment. This last statement is known as Newton’s principle
of relativity.

It can thus be said that the idea of an absolute coordinate-system can
be replaced by that of the whole set of inertial frames, no one of which is
preeminent. The situation in Newtonian dynamics at the end of the 19th
century was therefore that the need for an absolute space had been replaced
by that of a set of inertial frames. The problem of specifying the frames
was still unresolved. Likewise, the concept of absolute time has been left
untouched.

How fared (then relatively new) the Maxwell equations w.r.t. the Galilean
transformation and the ensuing Newtonian principle of relativity?

In empty space the fields H (and E) satisfy the wave equation

∇2H = 1
c2

∂2H
∂t2 , etc. where c, with dimensions of velocity is the ratio of

electromagnetic and electrostatic units of charge. Already in 1856 Weber
and Kohlrauch compared the capacity of a Leyden jar as measured by an
electrostatic method, with that calculated from the effects of current pro-
duced by discharging the jar. These experiments gave a value of c equal to
3.1 × 1010 cm

sec , close to the speed of light in vacuo. This suggested the identifi-
cation of light and electromagnetic radiation, and such an identification gave
a very satisfactory explanation to optical phenomena.

The wave equation, however, contains no reference to the velocity of the
source of the light and this naturally suggests that the velocity of light must
be independent of the velocity of its source. This is in agreement with obser-
vations. For example, there exist certain ‘double stars’ consisting of two stars
moving in orbits about their common center of gravity. At one point in the
orbit one star will be traveling towards the earth, and the other away from it.
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If their center of gravity is at a distance h from the earth, the light will
reach the earth at a time of order h/c after it has been emitted, where c is the
speed of light. For any small change Δc in c, we have a change δt = −(h/c2)Δc
in the time of arrival. This change would produce apparent irregularities in
the motion of such stars. No such irregularities have ever been observed and
we are forced to conclude that the velocity of light is independent of the
velocity of the source.

However, this independence of the velocity of light on the velocity of its
source poses the problem of the coordinate-system with respect to which c is
to be measured. In the theory of sound a similar problem arises, but there it
is easily resolved since the speed is to be measured relative to the still air.

In the nineteenth century, it seemed reasonable to give a similar answer
in the case of light. This required the postulation of an unobserved, all-
pervasive medium — the luminiferous aether or ether — in which the wave
motion took place (first introduced by Hooke in 1667). This ether could have
the great advantage of linking the hitherto separated theories of mechanics
and electromagnetism.

But alas, Maxwell’s equations are not invariant in form w.r.t. the Galilean
transformation! In other words: the speed of light is not invariant under this
transformation. Indeed, since

∂

∂t
=

∂

∂t′ − v · ∇′; ∇ = ∇′,

the wave equation for H, say, in S̄, becomes

∇′2H − 1
c2

∂2H

∂t′2 =
(v

c
· ∇′

)(
v

c
· ∇′H − 2

c

∂H

∂t′

)

.

There are therefore three logical possibilities:

(a) In electrodynamics there is a preferred inertial frame, the so-called ether
rest-frame S, in which Maxwell’s equations are valid and in which light
is propagated at exactly the speed c. In a frame S̄ moving at a constant
velocity v with respect to this ether frame an observer would measure
a different light velocity, ranging in magnitude from c − v to c + v. By
an optical experiment in S̄ one could determine the value of v. Galilean
transformations apply to all physical laws.

(b) A relativity principle exists for both mechanics and electrodynamics but
the laws of electrodynamics are not correct. Experiment should be able
to detect deviations from Maxwell’s laws, which should then be reformu-
lated. The Galilean transformation would apply to the corrected laws.
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(c) A relativity principle exists for both mechanics and electrodynamics but
Newton’s laws are not correct. Experiments should show deviations from
Newtonian mechanics and those laws must be reformulated. The Galilean
transformation does not apply and a new transformation must be found
which leaves Maxwell’s equations and the new mechanical laws invariant.

The critical experiment of Michelson and Morley (1887) failed to detect a
motion of the earth relative to a preferred reference frame. This led Einstein to
assume that (1) must be replaced by new equations such that consistency with
experiment is attained without having to discard either Maxwell’s equations
or Newton’s principle of relativity. Einstein’s theory of relativity accepts (c)
and is based on two fundamental postulates:

(A) The principle of relativity182

182 Note that accelerated motion of a reference frame relative to an inertial frame

of reference can, of course be detected. A mechanical experiment of this kind

was designed (1851) by Foucault, optical variants of the experiment were car-
ried out by Francis Harress (1911) and the French physicist George Sagnac

(1869–1926) in 1913 (Published in Comptes Rendus de l’Academie des Sciences,

157, 708–710, 1410–1413, 1915).
According to the Sagnac-Harress experiment, two pulses of light are sent (by

means of reflections) from a split source in opposite directions around a station-

ary circular loop of radius R. Clearly, since they will travel the same distance at
the same speed, they will each travel full-circle and arrive at the light detector,

near the light source, simultaneously.

If the loop itself is rotating during this procedure, however, the pulse travel-
ing in the same direction as the rotation of the loop must traverse a slightly

greater distance than the pulse traveling in the opposite direction. As a result,

the counter-rotating pulse arrives at the end point slightly earlier than the co-
rotating pulse. Quantitatively, if we let ω denote the angular speed of the loop,

then the circumferential tangent speed of the end point is v = ωR, and the

relative speed of the wave front and the receiver at the end point is c − v in the
co-rotating direction and c + v in the counter- rotating direction. Both pulses

begin with an initial separation of 2πR from the end point, so the difference

between the travel times is

Δt = 2πR

(
1

c − v
− 1

c + v

)

=
4πRv

c2 − v2
=

4Aω

c2 − v2
≈ 4Aω

c2

where A = πR2 is the area enclosed by the loop. This analysis is perfectly valid

in both the classical and the relativistic contexts. The interference of the two

coherent beams will result in a fringe shift Δϕ = Δt c
λ

= 4Aω
cλ

. Indeed Sagnac,

using an area of 863cm2, a mercury lamp with wavelength λ = 0.436 micron

as light source and an angular velocity of about 14 rad/sec, predicted a fringe

shift of Δϕ = 0.037 – which agreed nicely with the observations.
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One cannot determine the uniform rectilinear motion of a reference sys-
tem by means of any internal experiment (non existence of absolute mo-
tion).

(B) The principle of the constancy of the velocity of light183

The velocity of light is one and the same in all inertial systems, inde-
pendent of the observer’s velocity with respect to the frame in which the
light source is at rest.

(A) has an equivalent form known as the principle of covariance. It states
that if a physical event or process is observed from any inertial frame, then
the physical entities such as time, spatial coordinates, velocities etc., will
change in such a way that the laws of nature remain invariant with respect
to transformation of these entities from one inertial frame to another. When
these laws are written in terms of the coordinates, times and other physical
attributes in different inertial frames they will have one and the same form.
If it were otherwise, the experimental laws deduced by means of internal
measurements would depend on the frame’s uniform rectilinear motion.

(A) has two important consequences. The first states that there is no
preferred coordinate system in which the laws of nature are simpler than in

The shift can be used to determine the angular velocity ω.

If the Earth is used as the turntable its angular velocity can likewise be de-

termined. This experiment was carried out in 1925 by Michelson and Gale.

The angular velocity corresponded to the component of the angular velocity of

rotation of the Earth along a plumb line at the point of observation. For the

experiment two kilometers of pipes were laid and a second circuit was built to

determine the zero point of displacement of the fringes.

Michelson and Gale used a circuit of area 0.2km2. The formula becomes

Δϕ = 4Aω
cλ

sinφ, where φ is the latitude. Michelson was at latitude 41.8◦ and

looked for a fringe shift of Δϕ = 0.236 ± 0.002. The observed fringe shift was

0.230 ± 0.005. Excellent agreement! Thus, unlike uniform translational motion

of the earth, its rotation can be determined by various physical experiments.

The fringe shift is known as the Sagnac effect and the modern fiber-optic ex-

perimental set-up is known as Sagnac interferometer.

Sagnac belonged to a group of friends that notably included Pierre and Marie

Curie, Paul Langevin, Jean Perrin and the mathematician Emil Borel.

The Sagnac effect is at the basis of interferometers and laser gyroscopes devel-

oped since the 1970s.
183 In recent years [see e.g Amelino–Camelia, G., Doubly – Special Relativity, Int.

J. Mod. Phys., 2002, D11, 1643 pp] there arose a modified theory of Special

Relativity in which there is not only an observer-independent maximum velocity

(the speed of light), but an observer-independent minimum length (the Planck

length). Doubly–Special Relativity is also called Deformed Special Relativity.
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other inertial frames, since the existence of such a system is ruled out by
the principle of covariance. The second consequence of (A) is that a light
ray emitted from a source at rest in S will appear to an observer at rest
with respect to S, to move in one and the same velocity c irrespective of the
constant rectilinear motion of S relative to the fixed stars. This is in fact an
application of the principle of relativity to electromagnetic phenomena.

This consequence is not trivial. It does not hold in acoustics. For if a
sound source is placed on a uniformly moving platform the velocity of sound
with respect to the stationary air is always c, say, irrespective of the source
motion. But it is c − v relative to the source observed in the line of motion
ahead of the source and c + v in the other direction.

Note that (B) follows from the principle of covariance provided that the
validity of Maxwell’s electrodynamics is assumed, for both Maxwell’s equa-
tions and the velocity c are laws of nature, and as such must be the same for
all inertial frames.

Einstein (1905) then set forth to deduce a new transformation law in
accord with his two postulates. Based on a few simple optical thought-
experiments, it was found to be

r′ = γ(r1 − vt), t′ = γ(t − v · r
c2

) (2)

where

r1 =
1
γ

r +
γ − 1
γv2

(v · r)v, γ =
1

√
1 − v2

c2

.

This is known as the Lorentz transformation.

Defining the dyadic

Φ = I +
γ − 1
v2

vv, Φ−1 = I − γ − 1
v2

vv, (3)

the transformation law and its inverse are

r′ = Φ · r − γtv; r = Φ · r′ + γt′v;

t′ = γ
(
t − r · v

c2

)
; t = γ

(

t′ +
r′ · v
c2

) (4)

Also

∂

∂t
=

∂t′

∂t

∂

∂t′ +
∂r′

∂t
· ∂

∂r′ = γ

(
∂

∂t′ − v · ∇′
)

∇ =
∂

∂r
=

∂r′

∂r
· ∂

∂r′ +
∂t′

∂r

∂

∂t′ = ∇′ + v

[
γ−1
v2

v · ∇′ − γ

c2

∂

∂t′

]

.

(5)



3100 5. Demise of the Dogmatic Universe

Some algebra is needed to show from this that indeed

∇2 − 1
c2

∂2

∂t2
= ∇′2 − 1

c2

∂2

∂t′2 (6)

This result was expected since it just reflects the postulate of the constancy
of the velocity of light, upon which the Lorentz transformation is based.

(II) The 4-dimensional ‘space-time’ world (Minkowski 1908)

and relativistic electrodynamics

It follows directly from (2, I) that

r′2 − c2t′2 = r2 − c2t2. (1)

This can be rewritten as

x′
1
2 + x′

2
2 + x′

3
2 + x′

4
2 = x2

1 + x2
2 + x2

3 + x2
4, (2)

provided we introduce the coordinates (x1, x2, x3, x4 = ict), or simply (r, ict).
In other words: the pseudonorm of the spacetime positional 4-vector, is in-
variant under both ordinary 3-rotation and Lorentz transformations. (It is
called a pseudonorm because it lacks the positive–definiteness of an actual
norm.) Eq. (6, I) can be recast in terms of a 4-dimensional gradient operator,

∇μ = (∇,
1
ic

∂

∂t
) (μ = 1, 2, 3, 4) (3)

to read
4∑

μ=1

∇′
μ
2 =

4∑

μ=1

∇2
μ. (4)

These considerations prompted Minkowski to define a general 4-vector (real
3-vector and a imaginary scalar) as an ordered pair (A, iθ) which transforms
like (r, ict) under a general Lorentz transformation; namely

A → A′ = A +
γ−1
v2

(v · A)v − 1
c
γvθ

θ → θ′ = γ
(
θ − v · A

c

)

⎫
⎪⎬

⎪⎭
(5)

For example (J , icρ) is a 4-vector. To see this we recall the continuity equa-
tion ∇ · J + ∂ρ

∂t = 0 (expressing local charge conservation) Upon substitution

of the operators ∇ and ∂
∂t from (4, I), we obtain

∂

∂t′
(
γρ − γ

c2
v · J

)
+ ∇′ ·

[
J +

γ−1
v2

v(v · J) − γρv
]

= 0.
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This will yield ∇′ · J ′ + ∂ρ′

∂t′ = 0 guaranteeing the covariance of charge conser-
vation – if and only if:

ρ′ = γ
(
ρ − 1

c2
v · J

)
; J ′ = J +

γ−1
v2

v(v · J) − γρv (6)

which complies with the definition (5, II). In a similar way, it is shown that
(A, iφ

c ) is a four-vector on the strength of the invariance of the Lorentz-gauge

condition ∇ · A + 1
c

∂φ
∂t = 0.

The covariance of 4-vectors suggests that for any two 4-vectors, their scalar
product is invariant under the Lorentz transformation. Indeed, using (5, II),
it is easily shown that

(A, iθ) · (B, iφ) = (A · B) − θφ (7)

is invariant. In particular, the square of the pseudonorm of a 4-vector is a
4-scalar or Lorentz invariant:

(A, iθ) · (A, iθ) = |A|2 − θ2 = |A′|2 − θ′2 (8)

4-vectors thereby divide into 3 categories: space-like |A|2 − θ2 > 0, time-like
|A|2 − θ2 < 0 and light-like |A|2 = θ2.

We saw earlier (cf. Minkowski) that the electromagnetic fields, E and B
can be arranged into Fμν , the skew-symmetric rank 2 field-strength 4-tensor.
This transforms as aμbν − aνbμ where a, b are any two 4-vectors. From this
and Eq. (5, II), the Lorentz transformation law for E and B is readily found:

[cB,−iE] ⇒

⎧
⎪⎪⎨

⎪⎪⎩

E′ = γE − γ−1
v2

(v · E)v + γ(v × B)

B′ = γB − γ−1
v2

(v · B)v − γ

c2
(v × E)

(9)

These equations were first obtained by Minkowski in 1908.

As we saw, the field–strength (or electromagnetic field) 4-tensor is

Fαβ = [B,−iE/c] =

⎡

⎢
⎢
⎢
⎢
⎣

−iEx/c

−(I × B)ij −iEy/c

−iEz/c

iEx/c iEy/c iEz/c 0

⎤

⎥
⎥
⎥
⎥
⎦

(10)
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The tensor Fαβ is called the electromagnetic field tensor and
Fαβ = ∇αAβ − ∇βAα in terms of the 4-vector potential. The sourceless
Maxwell equations, dF = 0, is then satisfied automatically; while the source
Maxwell equations,

4∑

α=1

∇αFαβ = − 1
c2

Jβ

become (in the Lorentz gauge the 4-vector wave equation)

�Aμ = − 1
c2

Jμ (11)

where � ≡ ∇2 − 1
c2

∂2

∂t2 is the D’Alembertian operator.

• Since ∇μJμ = 0 is a 4-scalar while ∇μ is a vector, Jμ must trans-
form like a 4-vector (Eq. (6, II)). The charge in a volume element is
q = ρ dx1 dx2 dx3. It can be shown that q integrated over a volume τ out-
side of which ρ = 0, is a Lorentz invariant. This is the law of invariance of
electric charge. Moreover

d

dt

∫

τ

ρ dx1 dx2 dx3 =
∫

τ

dρ

dt
dx1 dx2 dx3

=
∫

τ

(
∂ρ

∂t
+ div J) dx1 dx2 dx3 ≡ 0,

(12)

meaning that the total charge present in all space is time-independent.

(III) Matrix representation

The Lorentz transformation in (2, I) can be put in a convenient ma-
trix form. Introducing a unit vector n in the direction of the velocity v,
n = 1

|v| v = n1e1 + n2e2 + n3e3, the transformation equations are recast as

r′ = Φ · r − γβn(ct), Φ = I + (γ − 1)nn

ct′ = −γβ(n · r) + γ(ct), β =
v

c
, γ =

1
√

1 − β2

(1)

or
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y′

z′

x′

ct′

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 + (γ − 1)n2
2 (γ − 1)n2n3 (γ − 1)n1n2 −γβn2

(γ − 1)n2n3 1 + (γ − 1)n2
3 (γ − 1)n1n3 −γβn3

(γ − 1)n1n2 (γ − 1)n1n3 1 + (γ − 1)n2
1 −γβn1

−γβn2 −γβn3 −γβn1 γ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y

z

x

ct

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2)

The case in which the direction of v is chosen in the e1 direction
(n2 = n3 = 0) degenerates into

⎡

⎢
⎢
⎣

y′

z′

x′

ct′

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1 · · ·
· 1 · ·
· · γ −βγ
· · −βγ γ

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

y
z
x
ct

⎤

⎥
⎥
⎦ (3)

Eq. (1, III) can be written in the compact form

xν ′ = Λν
μxμ (ν, μ = 1, 2, 3, 4) (4)

or in index-free form

x′ = L(n, β) · x, x = L−1 · x′ = L(−n, β) · x′ (5)

We recall next the Lorentz invariant

ds2 = c2 dτ2 = c2 dt2−dx2−dy2−dz2 = −
∑

μ,ν

gμν dxμ dxν μ, ν = 1, 2, 3, 4

The tensor

G = gμν =

⎡

⎢
⎢
⎣

1
1

1
−1

⎤

⎥
⎥
⎦ (6)

is called the metric tensor corresponding to the line element. It is a metric
of a pseudo-Euclidean 4-dimensional space-time world known as Minkowski
space. It is immediately noticed that

LGL̃ = G, (∼ is transpose), (7)

There is an alternative way to represent the Lorentz transformation as an
imaginary rotation in 4-dimensional Euclidean space. To see this we choose

x4 = ict, γ = cos η, iβγ = sin η n2 = n3 = 0 (8)
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The Lorentz transformation equations in the new variable, can be exhibited as

⎡

⎢
⎢
⎣

x′
2

x′
3

x′
1

x′
4

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 cos η sin η
0 0 − sin η cos η

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x2

x3

x1

x4

⎤

⎥
⎥
⎦ (9)

The orthogonal matrix in (9, III) represents a rotation in the x1x4 plane by
an imaginary angle η = ith −1

(
v
c

)
. The corresponding metric is gμν = δμν .

The transformation in (9, III) is then written as

x′
μ = qμνxν (10)

where

qμν =

⎡

⎢
⎢
⎣

1
1

γ iβγ
−iβγ γ

⎤

⎥
⎥
⎦ (11)

(IV) The Lorentz Group; Wigner’s rotation

In (9, III) we put η = iθ. Then γ = ch θ, γβ = sh θ and the trans-
formed coordinates (x1, x4) undergo the 2 × 2 orthogonal matrix rotation

[
x′

1

x′
4

]

=
[

ch θ ish θ
−ish θ ch θ

] [
x1

x4

]

or [x′] = A(v)[x] (1)

The set of all such matrices A(v) forms a Lie group. A(v) depends continu-
ously on the velocity parameter v such that

A(v1)A(v2) = A(v3), v3 =
v1 + v2

1 + v1v2
c2

(2)

(law of relativistic collinear velocity addition) and the matrices A(v) have a
determinant of +1 for γ > 0.
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Since

A(v) = ch θ

[
1 0
0 1

]

+ sh θ

[
0 i
−i 0

]

= exp
{
θ

[
0 i
−i 0

]}
, (3)

we say that the matrix

[
0 i
−i 0

]

is the generator of this representation.

Returning to the general case, when the relative velocity v between frames
is not parallel to any space axis, it can be shown that the generator is the
4 × 4 matrix

σ =

⎡

⎢
⎢
⎣

0 0 0 iλ
0 0 0 iμ
0 0 0 iν

−iλ −iμ −iν 0

⎤

⎥
⎥
⎦ (14)

where (λ, μ, ν) are the direction cosines of v. The transformation itself is
given by the 4 × 4 matrix

L(v) = eθσ = I + σsh θ + σ2(ch θ − 1) (5)

In this general case, however, the product of two Lorentz transformations
matrices L(v1) and L(v2), yield a third Lorentz transformation L(v3) only if
the two velocities v1 and v2 are parallel. If not, we find that

L(v3) = RL(v2)L(v1), (6)

where R is a 3 × 3 real space rotation matrix, representing the so-called
Wigner’s rotation (Wigner 1939). The parameters of the rotation are

R = R(e, ψ); e =
v2 × v1

|v2 × v1|
; ψ = 2 tan−1

{
sin ϕ

τ + cosϕ

}

, (7)

where e is a unit vector in the direction of the axis of rotation, ϕ is the angle

between the vectors v1 and v2, τ =
√

(γ1+1)(γ2+1)
(γ1−1)(γ2−1) and ψ is the Wigner

rotation angle. Wigner’s rotation is a purely kinematic relativistic phenom-
enon, with the following dynamical consequence: a rigidly accelerated body
(for which the instantaneous acceleration is not parallel to the instantaneous
velocity exhibits an instantaneous rigid rotation relative to an external iner-
tial frame, even in the absence of torques as measured in an instantaneous
inertial rest frame. A comoving observer will observe no centrifugal or Cori-
olis effects, yet an external observer would find that the body at rest in it, is
rotating.
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Because of the presence of the Wigner rotation, the L(v) matrices them-
selves do not form a group. This rotation is also the origin of the Thomas
precession (Thomas 1926). The latter is the phenomenon according to which
a spinning mass like an electron in an atom, say, or the earth orbiting the sun,
exhibits a precession of its axis of spin about the orbital axis as it follows its
orbit (or orbital) in a central potential field, such that the ratio of the preces-

sional period to the orbital period is 2 c2

v2 .

The Thomas precession is manifested as a factor 2 reduction in the torque
related spin-orbit coupling effect in atomic physics. It is encountered in the
fine structure of atomic levels, where it causes the magnetic field, as seen by
the electron, to be half as effective as one would naively expect. This field
itself results by Lorentz–transforming the nuclear electric field to the elec-
tron’s comoving frame; all possible Lorentz and 3-rotation transformations
do, however, form one – the Lorentz Lie group SO(3, 1) – of which 3-rotations
comprise the SO(3) subgroup.

When this result became known, it surprised many, including Pauli and
even Einstein himself. The gravitational (classical) version of the Thomas
precession, called geodetic precession in GTR, is one of several effects being
tested by the relativistic spinning–gyro experiment which was put into orbit
in 2004.

As stated previously, the matrix L has the property

LGL̃ = G, (∼ is transpose)

where G is the metric matrix 4-tensor of Minkowski space.

The real contravariant space time position 4-vector xμ, 0 ≤ μ ≤ 3 ; x0 = ct1
x = r = (x1, x2, x3) can be represented by the hermitian matrix

X =
[
ct + z x − iy
x + iy ct − z

]

, (8)

whose determinant |X| = c2t2 − x2 − y2 − z2 is the Lorentz invariant pseudonorm.
We note that

X = ct

[
1 0
0 1

]

+ x

[
0 1
1 0

]

+ y

[
0 −i
i 0

]

+ z

[
1 0
0 −1

]

= ctI + xσx + yσy + zσz = xμσμ,

(9)
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where σμ = (I, σ), I being the 2 × 2 unit matrix and σj (j = 1, 2, 3) are the
Pauli spin matrices and the Einstein summation convention (for repeating
indices) is used. Note that in this representation of 4-vectors, imaginary 4th

coordinates are replaced with real 0th coordinates, and a covariant 4-vector
is related to its contravariant counterpart via aμ = ημνaν , where

η =

⎛

⎜
⎜
⎝

1
−1

−1
−1

⎞

⎟
⎟
⎠

is the pseudo–Euclidean Minkowski metric tensor. It can easily be shown that
if we represent the Lorentz transformation by the 2 × 2 matrix

L =
[

ch θ
2 − n3sh θ

2 −(n1 − in2)sh θ
2

−(n1 + in2)sh θ
2 ch θ

2 + n3sh θ
2

]

≡ exp
[

−1
2
θ(n · σ)

]

(10)

then [
ct′ + z′ x′ − iy′

x′ + iy′ ct′ − z′

]

= L

[
ct + z x − iy
x + iy ct − z

]

L∗ (11)

Note that L in this representation is not unitary, but its determinant is unity.
All 4-vectors A will transform like X,

A′ = LAL∗; with A = aμσμ, A′ = a′μσμ. (12)

(V) Relativistic mechanics

Consider a point moving with velocity u(t) relative to S. In S̄, connected
to S by the Lorentz transformation (2, I), the transformed velocity is u′(t′),
where

u =
dr

dt
, u′ =

dr′

dt′

But since dr = Φ · dr′ + γv dt′ and dt = γ (dt′ + 1
c2 v · dr′)

u =
v + 1

γ Φ · u′

1 + 1
c2 (v · u′)

(1)
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We observe that u in (1, V ) does not transform like a part of a 4-vector.
Instead, it has much more complicated transformation properties. The reason
for this complexity is that although r is a part of a 4-vector (r, ict), dt
is not invariant as it is in the Newtonian theory, and consequently dr

dt is not
a part of a 4-vector. In place of dr

dt we thus consider dr
dτ , where

dτ2 = dt2 − (dr)2

c2
(2)

is a Lorentz invariant. In fact, dτ = dt when dr ≡ 0, i.e. in an inertial
frame where the particle is momentarily at rest; in other words, in a frame
co-moving with the particle – one of its instantaneous rest frames. dτ is an
infinitesimal increment of the particle’s proper time. The entity dr

dt is the
spatial part of a 4-vector and thus transforms simply. We have

dτ = dt

√

1 − 1
c2

(
dr

dt
)2 = dt

√

1 − u2

c2
(3)

Since (r, ict) is a 4-vector, we are led to consider the 4-vector

uμ =
(

dr

dτ
, ic

dt

dτ

)

= (γu, iγc),
4∑

μ=1

u2
μ = −c2,

where γ =
(
1 − u2

c2

)−1/2

, and u = dr
dt is the Newtonian velocity.

Next, we define a 4-scalar m0 to be the mass of the particle at rest (i.e.
in its instantaneous rest frame S̄). Then pμ is also a 4-vector – known as

the 4-momentum: pμ = (γm0u, iγm0c). Furthermore, the entity
dpμ

dτ is
also a 4-vector, known as the Minkowski force 4-vector or 4-force

Kν =
dpμ

dτ
= m0

duν

dτ
= m0

d2xν(s)
dτ2

= m0γ
d

dt
[γu, iγc] = [γF , K4], (4)

where F is the 3-dimensional vector d
dt (m0γu) equal to the ordinary

time derivative of the momentum (because the instantaneous inertia of the
particle in a general inertial frame is m(u) = m0γ(u) ≥ m0). Differentiating
the identity

∑
u2

μ = −c2 w.r.t. particle proper time τ we obtain the identity∑
Kμuμ = 0, from which we derive

K4 =
i

c
γ(F · u). (5)

Eq. (4, V ) is the covariant equation of motion for a massive particle. It
relates the Minkowski force, which is determined by the environment (fields
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and other particles) to the rate of change of the 4-velocity w.r.t. the proper
time τ of the particle. The spatial components of (4, V ) generalize Newton’s
2nd law of motion, whilst its 4th (time) component is a statement of relativistic
energy conservation.

We next apply the above to a “particle” defined as a spatially–infinitesimal
volume element of a charged medium subject to electromagnetic fields. The
force F per unit volume (in any frame) is then the Lorentz force per unit
volume f = ρ [E + (u × B)] and

i

c
E = (F41, F42, F43); B = (F23, F31, F12);

(ρu

c
, iρ

)
=

1
c
(J1, J2, J3, J4)

and f = (f1, f2, f3, f4), we thus find the covariant form: (summation con-
vention employed)

fν = FνμJμ = Fνμc2 ∂Fμλ

∂xλ
= F · div F

The 4th component of fν in this equation is simply

f4 =
i

c
(E · J) = i

ρ

c
(E · u) =

i

c
(f · u).

Apart from the Minkowski–geometric conversion factor i
c , this has the mean-

ing of the rate at which the field does work on the sources per unit volume.
The spatial part of fμ is the rate of change of mechanical momentum (i.e.
3-force) per unit volume. Altogether, the force density is the 4-vector density
(i.e., its volume integral transforms as a 4-vector)

fμ = ρ

[

(E + u × B),
i

c
E · u

]

. (6)

From (4, V ) and (5, V ) we have

d

dt

⎡

⎣ m0c
2

√
1 − u2

c2

⎤

⎦ = F · u (7)

Since F · u is the total rate of work done by the force or the particle; the
expression in square brackets on the left is the total motion energy (rest plus
kinetic) of the particle. If we write

m0c
2

√
1 − u2

c2

= m0c
2 + m0c

2

⎡

⎣ 1
√

1 − u2

c2

− 1

⎤

⎦ , (8)
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the part m0c
2 is the rest energy, or intrinsic energy, whereas the remaining

part is the relativistic kinetic energy which is approximated by 1
2mu2 for

|u|
c � 1.

It is easily seen that the spatial part of (4, V ), namely

d

dt

⎡

⎣ m0u√
1 − u2

c2

⎤

⎦ = F , (9)

approximates Newton’s second law in an inertial coordinate system when
|u|
c � 1, in which regime m(u) ≈ m0 is approximately motion-independent.

If we define

E =
m0c

2

√
1 − u2

c2

,

Then, since the spatial part of pμ is p = γm0u, it follows that

E2 = c2p2 + m2
0c

4, (10)

a generalization of the classical nonrelativistic relation E = P 2

2m .

Note that

pμ = (mu, i
E

c
) = (p, i

E

c
), m = m(u) =

m0√
1 − u2

c2

(motion − mass)

(11)
where

p2
μ = −m2

0c
2.
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(VI) The ‘Twin Paradox’ — a one-way time machine

Einstein’s STR brought with it some remarkable implications. There were
consequences that seemed opposed to our intuition and common sense, in a
way that classical theories were not; e.g., the increase of inertia with speed and
the so-called ‘twin paradox’. It was aspects such as these which conferred on
it a glamor and popular interest probably never equaled in the whole history
of physics.

Of all the supposed paradoxes engendered by relativity theory, the ‘twin
paradox’ (or ‘clock paradox’) is most famous, and has been the most contro-
versial (although it is extremely well supported by experiments). It asserts
that if one clock remains at rest in an inertial frame, and another, initially
synchronized with it, is taken off on any sort of path and finally brought back
to its starting point, the second clock will have lost time as compared with the
first. It is not that the traveling clock is somehow damaged by the excursion;
indeed a co-traveling astronaut will end up by becoming younger than his
twin brother who stayed with the stationary clock.

This result, which was stated by Einstein in his very first relativity paper
(1905), became the subject of raging controversy in the physical literature
during the years 1939–1959. The matter was finally settled by experimental
tests in nuclear physics during 1960–1963, and later tests – involving the haul-
ing of atomic clocks aboard aircraft – established the effect for macroscopic
objects184.

The experiments thus far accessible to us are not those of spaceships travel-
ing at near-light speeds; rather, they involve high-precision nuclear and atomic
processes, and atomic clocks moving at aircraft and satellite speeds. Thus, in
the early 60’s, several measurements utilizing the Mössbauer effect — recoil-
less, extremely narrow-linewidth gamma ray emission from radioisotopes em-
bedded in crystal lattices — were carried out to verify the special-relativistic
time dilatations. In one such experiment (Hay et al. 1960), a rotating cylin-
der carried a gamma-ray source (57Co) wrapped in a band around it. A
larger, concentric band, containing the isotope 57Fe, was supported via a pair
of perpendicular discs.

184 In both types of experiments, a gravitation part of the twin–paradox effect,

predicted by Einstein’s GTR, must sometimes be added to the motional (STR)

effect, to obtain agreement with experiment. Both effects must be (and are)

accounted for in GPS technology, since it depends on satellite–borne atomic

clocks.
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When the apparatus was at rest, the 57Fe nuclei could optimally absorb
photons emitted by the inner 57Co band. But when the apparatus was spun
about the cylinder axis (at 500 revolutions per second) the different linear ve-
locities of emitter and absorber resulted in a degraded absorption efficiency —
by an amount found to agree with the prediction of STR. In effect, the inner-
radius emitter atoms constitute the stay-at-home twin, while the absorber
atoms represent the traveling twin. The central frequencies of the emission
and absorption bands represent the rate of “ticking” of the respective twins’
gamma-ray “clocks”.

In this language, the outer clock ticks slower than the inner one — the
“traveling twin” ages less, as predicted by STR. Actually, both clocks in the
experiment execute (literally) round trips; but the emitter is accelerated to
lower speeds in the (approximately inertial) laboratory frame. For that reason,
its “clock ticks” will be more closely spaced in time — as reckoned by a non-
rotating observer – than the “ticks” of the absorber “clock”.

The Mössbauer effect also figured in the celebrated Pound-Rebka experi-
ment (1959), which verified that clocks tick faster the higher their altitudes
in the Earth’s gravitational field — as predicted by GTR. Later, in the 70’s,
both types of time dilatation were also verified using pairs of atomic (MASER)
clocks – one of which went on a round-trip aboard a plane.

Consider a flat pseudo-Euclidean 4-space (a.k.a. Minkowski space); a
point is labeled (t, x), where x belongs to ordinary Euclidean 3-space.
(Such a point is called an “event”.) The difference between two events,
(t2, x2) − (t1, x1) = (t2 − t1, x2 − x1), is a 4-vector, and is labeled “timelike”,
“lightlike” or “spacelike” according as the value of c2(t2 − t1)2 − (x2 − x1)2

is positive, zero or negative. Each point (t, x) is the apex of a local future light-
cone, consisting of all future points (t′, x′) so that the interval (t′, x′) − (t, x)
is lightlike; the interior of this cone consists of all future points for which the
interval is timelike.

For any vector a = (α, β), we define its “square” or “pseudo-norm” to be:
a2 = α2 − β2 where β2 is the usual norm in 3-dimensional Euclidean space.
Accordingly, a scalar product in Minkowski space is defined: if

a(i) = (a(i)
0 , a(i)), i = 1, 2,

then

a(1) · a(2) ≡ 1
2
{
(a(1) + a(2))2 − (a(1))2 − (a(2))2

}
.

The above-defined square is clearly not a norm, since a2 = 0 for all lightlike
vectors; nor is it even a seminorm, as a2 < 0 for all spacelike vectors. That is
why we refer to it as a “pseudo-norm”.
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We next investigate how the triangle inequality of Euclidean norms fares
for this pseudo-norm of Minkowski space, & how this relates to the STR Twin
Paradox.

Consider three points (events) A, B, C in Minkowski space; let C and B
be inside the future light cone of A. We also assume C to be in the future
light cone of B (Fig. 5.2). We denote the timelike vectors AB, BC, AC by c,
a, b, respectively; in some inertial frame, let

c = (c0, c)
b = (b0, b)
a = (a0, a),

where the 0-components are the (real) time coordinates of the three events in
this frame, and we select units in which the speed of light equals 1.

Since b = a + c we have

b2 = (a0 + c0)2 − (a + c)2 = a2 + c2 + 2a · c = a2 + c2 + 2(a0c0 − a · c). (1)

Now, the “length” of these three intervals by their pseudo-norms, are:

τ1 =
√

c2 =
√

(c0)2 − c2; τ2 =
√

a2; τ3 =
√

b2.

Physically, these are the proper times of the respective intervals; e.g. τ1 is
the time interval between events A and B as reckoned aboard a spaceship of
uniform velocity whose worldline intersects events A and B.

We rewrite the above equation (1, V I) as

(τ3)2 = (τ2)2 + (τ1)2 + 2(
√

(τ2)2 + a2
√

(τ1)2 + c2 − a · c) (2)

But on the strength of the identity

(α2 + β2)(γ2 + δ2) ≡ (αγ + βδ)2 + (αδ − βγ)2,

we have:

[(τ2)2 + a2][(τ1)2 + c2] ≡ [|a||c| + τ1τ2]2 + [τ2|c| − τ1|a|]2

≥ (|a||c| + τ1τ2)2 ≥ (a · c + τ1τ2)2,

so √
(τ2)2 + a2

√
(τ1)2 + c2 ≥ a · c + τ1τ2,

hence (2) implies

(τ3)2 ≥ (τ1 + τ2)2 ⇒ τ3 ≥ τ1 + τ2.
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Fig. 5.2: A triangle of timelike vectors (=intervals) in Minkowski space. Local
future light-cones are shown; the vertical direction is time (in some reference
frame), while the horizontal directions are spatial in the same frame

By the above interpretation of τi as proper times, it follows that the jour-
ney A → B → C (which is accelerated in the immediate vicinity of B) takes
less proper time than the unaccelerated worldline A → C. Hence the Twin
Paradox!

In this way a variant of the Euclidean triangle inequality, which holds for
Minkowski space is used to furnish a 4-geometrical proof of the twin paradox
of STR (Note that in a Euclidean space one would instead have τ3 ≤ τ1+τ2).

(VII) Relativistic wave phenomena

Acoustic Doppler shifts are derived on the assumption that the radiation
propagation speed is constant relative to the medium, whereas the wave’s
frequency is affected by the motion of both source and observer. Electromag-
netic theory, however, requires a modification of these assumptions for two
reasons:

• Non-existence of ‘medium’ for vacuum propagation;

• The replacement of the Galilean transformation by the Lorentz trans-
formation
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Consider a source of electromagnetic waves moving with uniform velocity
v relative to an observer in S. If the source is at rest in S′, then an observer
at 0′ (the origin of S′) describes a monochromatic plane-wave emitted from
the source as being proportional to ei(k′ ·r′ −ω′t′). Similarly, an observer at 0
in S describes the same wave as being proportional to ei(k·r−ωt).

Due to the form-invariance of the basic wave equation

∇2Φ − 1
c2

∂2Φ
∂t2

= ∇′2Φ − 1
c2

∂2Φ
∂t′2 ,

the phase of the plane-wave solution of this equation is itself a 4-scalar

k′r′ − ω′t′ = kr − ωt. (1)

Working in the imaginary–4th–component representation of Minkowski space,
this scalar can be written as a dot product of the position 4-vector (r, ict)
and the 4-vector

kμ = (k1, k2, k3,
iω

c
) = (k, i

ω

c
), (2)

namely

(r, ict) · (k,
iω

c
) = k1x1 + k2x2 + k3x3 + k4x4 = k · r − ωt (3)

The entity kμ is therefore a covariant 4-vector of zero magnitude

kμkμ = k2
1 + k2

2 + k2
3 + k2

4 = |k|2 − ω2

c2
= 0 (4)

It transforms according to the equations

k′ = k +
[
γ − 1
v2

(v · k) − γ
ω

c2

]

v; ω′ = γ(ω − v · k) (5)

Putting v · k = ω v
c cos θ, we obtain

ω′ = ω
1 − v

c cos θ
√

1 − v2

c2

(6)

and by symmetry

ω = ω′ 1 + v
c cos θ′

√
1 − v2

c2

(7)

where θ′ is the angle between v and k′.
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Eliminating both ω and ω′ between these equations we derive the relation:

cos θ′ =
cos θ − v

c

1 − v
c cos θ

; cos θ =
cos θ′ + v

c

1 + v
c cos θ′ (8)

Finally, from (5, V II), k × v = k′ × v, which implies

sin θ′ =
k

k′ sin θ =
ω

ω′ sin θ = sin θ

√
1 − v2

c2

1 − v
c cos θ

sin θ = sin θ′

√
1 − v2

c2

1 + v
c cos θ′

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(9)

Combining (8, V II) and (9, V II), we have

tan θ = sin θ′

√
1 − v2

c2

cos θ′ + v
c

; tan
θ′

2
= tan

θ

2

√
1 + v

c

1 − v
c

(10)

Equations (6, V II)–(10, V II) give the apparent frequency and direction of
an electromagnetic radiation source which is moving uniformly relative to the
observer S. For v

c � 1, the relativistic formulae reduce to the well-known
classical ones:

ω ≈ ω′(1 +
v cos θ′

c
); ω′ ≈ ω(1 − v cos θ

c
); (11)

For light in vacuo, as contrasted with sound, it has been proved impossible to
identify a medium of transmission relative to which the source and observer are
moving. Hence, the statements ‘source receding from observer’ and ‘observer
receding from source’ are physically identical situations and must exhibit the
same Doppler shift. The familiar observed effects of ‘red-shift’, ‘blue-shift’, and
the aberration of star light, are all direct consequences of (6, V II)–(10, V II).

Note however that at θ = π
2 , ω = ω′

√
1 − v2

c2 = ω′(1 − 1
2

v2

c2 + . . . ) predicts the

purely relativistic transverse Doppler shift.
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(VIII) Lagrangian and Hamiltonian of Electrodynamics

Consider first the noncovariant Lagrangian formulation of electrodynam-
ics (Schwarzschild 1903). In the presence of charged bodies or a charged
medium, and in the Lorentz gauge, Maxwell’s equations mean that the po-
tentials comply with the equations

∇2A − 1
c2

∂2A

∂t2
= − 1

c2
J , ∇2φ − 1

c2

∂2φ

∂t2
= −ρ

div A +
1
c2

∂φ

∂t
= 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(1)

For a charge distribution with local density ρ and velocity v, J = ρv. The
Lagrangian density of sourceless electromagnetic fields is L = 1

2 (E2 − c2B2)
where E = −∇φ − ∂A

∂t , B = curl A. In the presence of sources, we must
add to it the term (A · J − ρφ), resulting in

L =
1
2

[(

−∇φ − ∂A

∂t

)2

− c2(curl A)2
]

+ (A · J − ρφ) (2)

Then the Euler-Lagrange equations – resulting from the condition that the
action

∫
d4xL be extremal at the actual field configuration in Minkowski space

– are:

∂L
∂φ

− div
[

∂L
∂(∇φ)

]

− ∂

∂t

(
∂L
∂

.
φ

)

= 0 (3)

∂L
∂A

− div
[

∂L
∂(∇A)

]

− ∂

∂t

(
∂L
∂

.
A

)

= 0 (4)

To establish that Maxwell’s equations (1, V III) indeed follow from
(2, V III)–(4, V III) we verify that

∂L
∂φ

= −ρ;
∂L
∂

.

φ
= 0;

∂L
∂(∇φ)

=
(

∇φ +
∂A

∂t

)

;

div
∂L

∂(∇φ)
=

(

∇2φ +
∂div A

∂t

)

=
(

∇2φ − 1
c2

∂2φ

∂t2

)

;
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∂L
∂A

= J ;
∂L
∂

.
A

=
(

∇φ +
∂A

∂t

)

;
∂

∂t

∂L
∂

.
A

=
[
∂2A

∂t2
− c2 grad div A

]

(5)

∂L
∂(∇A)

= −c2

2
∂

∂∇A
(curl A)2

=
c2

4
∂

∂∇A
[(∇A − A∇) : (∇A − A∇)] = (I × curl A);

div
∂L

∂(∇A)
= c2curl curl A

In order to build the Lorentz-invariant Lagrangian density (Born 1909),
we start from the expression (equation(2, V III))

L =
1
2
(E2 − c2B2) + (A · J − ρφ) (6)

where {E, B, A, J} are ordinary 3-vectors, and express it in terms of 4-vectors
and 4-tensors. We have already shown that (summation convention)

(A,
i

c
φ) · (1

c
J , iρ) =

1
c

(A · J − ρφ) =
1
c

JαAα α = 1, 2, 3, 4 (7)

We also know that

Fμν =
∂Aμ

∂xν
− ∂Aν

∂xμ

(8)

It then follows that

−c2

2
(FμνFμν) = E2 − c2B2. (9)

Hence manifestly covariant (relativistic) form of the Lagrangian density is:

L = −c2

4
(FαβFαβ) + JαAα (10)
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From the principle of least (or more precisely extremal) action one derives the
covariant form of the Euler-Lagrange equation

∂L
∂Aα

− ∂

∂xβ

(
∂L

∂(∂Aα/∂xβ)

)

= 0 (11)

where

∂L
∂Aα

= Jα,
∂L

∂(∂Aα/∂xβ)
= c2Fαβ ,

∂

∂xβ
Fαβ =

1
c2

Jα (12)

We must still add to the Lagrangian density the matter kinetic energy. Thus,
in the case of a charged point-particle of mass m, charge e and trajectory
r(t) and velocity v(t) = dr

dt , the particle–dependent term in the Lagrangian
L =

∫
d3x L is:

Lp{r(t), v(t); t} =
1
2
mv2(t) +

1
c
ev(t) · A{r(t), t} − eφ{r(t), t} (13)

(the particle is assumed to move much slower then light, |v| � c, so the
Newtonian kinetic energy can be used).

In this representation, the principle of least action renders the particle
equation of motion

d

dt

(
∂L

∂v

)

− ∂L

∂r
= 0 (14)

Carrying out the differentiation with

∂L

∂v
= mv + A, mv = p = mechanical momentum

∂L

∂r
= e grad (A · v) − e∇φ = e (v · ∇A) + e v × curl A − e∇φ,

the particle equation of motion becomes

d

dt
(p + eA) = e (v · ∇A) + ev × curl A − e∇φ, (15)

But the total time-derivative dA
dt consists of two parts: the change ∂A

∂t of the
vector potential with time at a fixed point in space, and the change due to
motion of the charged particle:

dA

dt
=

∂A

∂t
+ v · ∇A (16)
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Therefore

m
d2r

dt2
= m

dv

dt
=

dp

dt
= −e

[
∂A

∂t
+ ∇φ

]

+ v × curl A

= eE + e (v × B) = the Lorentz force
(17)

(A, φ, E and B are evaluated at the particle’s trajectory).

The foregoing results can be made Lorentz invariant upon the introduction
of the relativistic particle Lagrangian

Lp = −m0c
2

√

1 − v2

c2
+ e A · v − eφ (18)

The corresponding particle Hamiltonian is

Hp = v · ∂L

∂v
− L =

m0c
2

√
1 − v2

c2

+ eφ (19)

with the 3-vector mechanical momentum

p =
m0v√
1 − v2

c2

, (20)

and the corresponding canonical 3-vector momentum

π =
∂L

∂v
= p + e A (21)

Note that the potential A does not appear explicitly in H because the mag-
netic field is perpendicular to the Lorentz force and thus does not exert work
upon the charged particle. The first term on the r.h.s. of (18, V III) arises
from the Lorentz-invariant of the action integral of a particle

−m0c
2

∫ t2

t1

dτ = −
∫ t2

t1

m0c
2

√

1 − v2

c2
dt

where τ is the proper time (time elapsed in the particle’s rest-frame).

We express the Hamiltonian in terms of the canonical momentum defined
above:

(Hp − eφ)2 = c2(π − eA)2 + m2
0c

4. (22)

The canonical (Hamilton) equations are then equivalent to the relativistic
equation of motion of the charged particle acted upon by the Lorentz force
law.
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(IX) The equations of electrodynamics

in the presence of a gravitational field

The Lorentz-covariant electromagnetic field equations can easily be gener-
alized so that they are applicable in an arbitrary 4-dimensional curved pseudo-
Riemannian (i.e. locally Minkowskian) manifold, i.e., in the presence of an
external gravitational field.

As seen above the Lorentz–covariant equations of the electromagnetic field
in STR (no gravity) are

div F = − 1
c2

J, div J = 0, Jμ = (J , icρ)

F = Fμν =
∂Aν

∂xμ
− ∂Aμ

∂xν
= (B,− iE

c
) ,

where, as usual, Greek letters are used for 4-space indices. Switching from
flat Minkowski space to locally Minkowski, 4-dimensional manifold of metric
gμν and curvilinear coordinates xμ –also switching from imaginary–4th–
coordinate notation to the more modern real–0th–coordinate representation
for the local Minkowski space – these equations take on the form:

1√−g

∂

∂xν
(
√
−gFμν) =

1
c2

Jμ (Maxwell’s source equations)

1√−g

∂

∂xμ
(
√
−gJμ) = 0 (Continuity equation)

where g = −det|gμν | and

gμν =

⎛

⎜
⎜
⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟
⎟
⎠

In a locally free-falling coordinate system (frame).

The equations of motion of a charged particle in the presence of
both gravitational and electromagnetic fields is then a generalization of
m0

duμ

dτ = e uν F νμ (uμ = components of the 4-velocity vector), namely

e

c
uνF νμ = m0c

(
duμ

dτ
+ Γμ

νλuνuλ

)

,

where Γ is the manifold’s affine connection (expressible in terms of gαβ and
their derivatives) and

gμλgλα = δμ
α(Kronecker delta), Fαβ = gαμFμνgνβ
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(X) Stress-energy-momentum tensor

Minkowski (1908) recast the electromagnetic field equations via a
continuum–mechanics covariant representation by means of a single entity —
the symmetric zero-traced 2-indexed 4-dimensional, covariant electromagnetic
stress-energy-momentum tensor in free space

Sμν =

⎡

⎢
⎢
⎢
⎢
⎣

−T11 −T12 −T13 −icQ1

−T21 −T22 −T23 −icQ2

−T31 −T32 −T33 −icQ3

−icQ1 −icQ2 −icQ3 W

⎤

⎥
⎥
⎥
⎥
⎦

; Sμν = Sνμ; Sμμ = 0 (1)

with

Tij = EE + c2 BB − 1
2
I(E2 + c2 B2), i, j = 1, 2, 3

Q = [E × B] (2)

W =
1
2
(E2 + c2 B2)

Where Q is the Poynting vector, W is the electromagnetic field energy density
and τij is the electromagnetic field stress 3-tensor, and where the imaginary–
4th–component representation of Minkowski 4-space is used. In terms of
the skew – symmetric electromagnetic field 4-tensor, this symmetric stress–
energy–momentum tensor can be elegantly represented as follows:

Sμν = c2(FμαFαν +
1
4
FαβFαβδμν) = c2(F ·F +

1
4
(F : F )I)

where δμν is the Kronecker delta and I = I4 is the 4× 4 unit matrix. Taking
the 4-divergence and using the covariant form of Maxwell’s equations, we
readily obtain

∂Sμν

∂xμ
= −JαFαν = fν , (3)

where Jμ is the 4-current density and fμ is the Lorentz 4-force density; that
is Jμ = (J , ics) and fμ = (f , f4 = i

cP ) with f = ρE + J × B the Lorentz
3-force per unit volume exerted by the fields on the sources, and P = J ·E
the power (work per unit time) exerted by the fields upon a unit volume of
sources.

In terms of the Newtonian (3D space, 1D time) block–decomposition of
the 4-matrix S (given by Eqs. (1, X) and (2, X) above) (1, X) becomes:
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{
∇(c2Q) + ∂W

∂t = −P ν = 4 : local energy conservation

∇·T + ∂Q
∂t = −f ν = 1, 2, 3 : local momentum conservation

(4)

From Eqs. (4, X) we see that the Poynting vector has a dual interpretation:
it is both the local 3-momentum density and the local energy – current density
of the electromagnetic fields in empty space (i.e. without a medium).

(XI) Quantum correction to the Maxwell equations

An electromagnetic field (classical or quantum) may produce charged
electron-positron pairs (as well as heavier pairs such as proton-antiproton)
as a consequence of quantum effects and these charged particles – whether
real or virtual – have a real effect upon the fields themselves (back–reaction).
This means that the dynamics of a classical field contain nonlinear quantum
corrections to the Maxwell equations, even in empty space.

A way to think of these corrections is to realize that the vacuum is not
empty, but rather it is a complicated nonlinear medium — especially when
probed with high fields and/or at high frequencies. It is, however, an isotropic,
homogeneous and Lorentz invariant medium — not an “ether” in the 19th

century sense.

One may define an effective Lagrangian density Leff = L0 + δL, where
L0 is the classical term while δL includes the quantum corrections and can

be expanded perturbatively as a joint Taylor expansion in α = e2

4π�c (fine-
structure constant), eE and eB.

W. Heisenberg and H. Euler have derived (1936) an analytical ap-
proximation to the nonlinear correction term, valid in the low frequency limit

(f � mec2

h ∼ 1020 Hz, me = the electron mass) and to all orders in eE, eB
but zeroth order in α (at fixed eE, eB). To lowest (4th order) in the fields,
their transcendental–function expression for δL reduces to the quartic form

δL(4) =
( α

4π

)2 2�3

45m4
ec

5

[
(E2 − c2B2)2 + 7(E · B)2c2

]
.

This expression is Lorentz covariant, since

E2 − c2B2 = −c2

2
F : F and E · B = − c

4
F : G .



3124 5. Demise of the Dogmatic Universe

in terms of the (imaginary–4th–component representation) Minkowski skew–
symmetric electromagnetic field 4-tensor, Fμν, and its dual, Gμν = ∗Fμν .

Their approximation applies at wavelengths which are much longer than
the electron’s Compton wavelength. The correction becomes non-negligible

only at field strengths of the order
m2

ec3

e�
∼ 1016 Volt

cm . The latter quantity
has been known as the Schwinger critical field ever since Julian Schwinger
(1951) reanalyzed the problem using his elegant functional methods. The non-
quadratic correction δL to the classical Lagrangian, results from the virtual
production of an electron-positron pair in the external EM field. Two ex-
amples of observable physical effects which result from the Euler-Heisenberg
correction are: ‘light by light’ scattering (the collision of two γ rays), and
the Delbrück effect (1933; scattering of a photon by the Coulomb field of the
nucleus).

The fundamental reason that quantum theory engenders nonlinear cor-
rections to the Maxwell empty-space equations is this: the coupled Maxwell-
Dirac operator field equations are themselves nonlinear185. Even in the ab-
sence of physical (‘on shell’, i.e. non-virtual) electrons or positrons, the vac-
uum itself has a finite quantum amplitude to occasionally-produced virtual
{e+, e−} pairs for short periods of time (of order 10−21 sec). Upon integrat-
ing out these electronic vacuum fluctuations, the nonlinearity of the original
Maxwell-Dirac equations is manifested as nonlinear corrections to the purely
EM sector of the theory. At the classical level Maxwell’s equations in vac-
uum receive nonlinear corrections. At the level of quantized EM fields, the
nonlinearities result in effects such as photon splitting in a strong magnetic
field, as well as the above-mentioned light-by-light and light-by-field scattering
processes.

We note in passing that the nonlinear modifications to classical EM theory
in vacuo are not all quantum in origin; the minimal framework needed to en-
compass both Maxwell’s theory and Einstein’s GTR is the Einstein–Maxwell
coupled field equations, which are nonlinear and yet completely classical (i.e.
non-quantum) in origin.

Further work on nonlinear corrections to Maxwell’s equations under con-
ditions of strong fields was done by Infeld and Born.

185 As are even the coupled classical Maxwell-Lorentz equations of motion for a

charged electron interacting with dynamical electromagnetic fields.
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1907–1909 CE Leo Hendrik Baekeland (1863–1944, U.S.A.). Chemist
and inventor. Invented the first synthetic plastic material, Bakelite186, that
had no counterpart in nature. Bakelite is the prototype of a phenomenally
comprehensive family of synthetic polymers called plastics and resins.

Baekeland was born in Ghent, Belgium. He received his Ph.D. from the
University of Ghent (1884) and emigrated to the U.S. (1889). Before he was
30 he sold a new type of photographic paper of his own invention to Eastman
Kodak for a million dollars (which in those days was really worth a million –
no income tax either). Baekeland, an extraordinary gifted young chemist and
entrepreneur, began his search for a synthetic substitute for shellac187.

Earlier work by Adolf von Baeyer (1835–1917, Germany), who had
mixed phenol with formaldehyde, pointed Baekeland down the right road to
his discovery. What was a nuisance material for Baeyer, became a cornerstone
for Baekeland. Bakelite was unusually strong in spite of its relatively light
weight and it was inert to acids and bases, unaffected by heat and effective
as an electrical insulator. It could be colored or dyed to suit customer taste.

1907–1923 CE Luitzen Egbertus Jan Brouwer (1881–1966, Holland).
Dutch mathematician. The founder of topology188 and mathematical neo-
intuitionism. Some of his well known results are the plane translation theorem
(1907) and the fixed-point theorems189 (1907) that are of special importance
in game theory and differential geometry.

186 Made from phenol and formaldehyde. The result of the polymerizing reaction

is polyphenolformaldehyde. Upon heating, cross-links are formed between the

chains of the polymer and a thermosetic material is obtained.
187 Shellac is a natural product made from the resinous secretions of the tiny lac

bugs common to India and Southeast Asia. It is found in lacquers, varnishes,

waxes, and other protective agents for coating a variety of surface materials.

Lac bugs pierce the bark of a tree and feed on the sap, discharging a quantity of

lac as a protective agent. This sticky resin accumulates about the bug until it

is all but completely encapsulated, leaving only an opening or two for breathing

and for the worm-like larvae of the next generation to exit. The female dies

after feeding, leaving colonies of bodies to be collected and processed to make

shellac. A few hundred thousands of these little bugs are needed to each pound

of shellac produced. At the turn of the 20th century, more than 3000 ton of

shellac were imported to the United States each year.
188 The study of the most basic properties of geometrical surfaces and configura-

tions, that remain unchanged upon continuous transformations.
189 A Fixed-Point property is illustrated in the following simple example: consider

the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 in the first quadrant of a Cartesian coordinate

system. We place one dot anywhere on each of the two vertical sides of the

square (the lines x = 0 and x = 1). We then draw a continuous curve connecting
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In 1911 he discovered his theorems of topological invariance. In addition he
merged the ideas of Cantor with the early topological concepts that existed
before his time. In his doctoral thesis “On the Foundations of Mathematics”
he shaped the beginnings of the neo-intuitionist school. In 1908 he rejected
as invalid the use in mathematical proofs of the principle of the excluded
middle, according to which every mathematical statement is either true or
false, no other possibility allowed. During 1918–1923 he reformulated set
theory, theory of measure and a theory of functions, without using the above
principle.

In 1907 Brouwer also took up Kronecker’s program of the “arithmetization”
of mathematics through the elimination from it of all “non-constructive con-
cepts”190, but his “intuitionism” made little headway among practicing math-

the two dots. This curve must necessarily cut the diagonal (x = y) in at least one

point. Here is why: Any continuous curve C(x) can be regarded as a mapping

of the unit interval 0 ≤ x ≤ 1 into itself, since it associates every point x on this

interval with another such point C(x) that also lies in the range between 0 and

1. The diagonal line, however, corresponds to points that map to themselves

under this transformation; they remain fixed. Consequently, any point x that

maps to a point on the diagonal is a fixed point of the transformation. In other

words, it is a point for which C(x) = x. It is then argued that every such curve

mapping the unit interval to itself must possess at least one such point. Since

the fixed points are given by C(x) = x, it follows that determining fixed points

is the same as solving equations.

Brower’s “fixed-point” theorem’ : If X is a closed disc, then every continuous

map into itself X → X has a fixed point. In general, we say that a subset X of 3-

dimensional space has a fixed point property iff every continuous transformation

of X into itself has a fixed point. It is easy to see that a closed disc with the

center point removed does not have this property (e.g. rotation).

Every vector field on an even-dimensional sphere must have at least one singular

point. In applications of topology to other branches of mathematics, “fixed

point” theorems play an important role. In particular, these theorems provide a

powerful method for the proof of many mathematical ‘existence theorems’ which

at first sight may not seem to be of geometrical character (e.g. the fundamental

theorem of Algebra). A famous example is a fixed point theorem conjectured

by Poincare (1912) and proved by G.D. Birkhoff (1916). This theorem has

as an immediate consequence the existence of an infinite number of periodic

orbits in the restricted problem of 3 bodies. Since then topological methods

have been applied with great success to the study of the qualitative behavior of

dynamical systems.
190 In Kronecker’s view transcendental numbers do not exist, since they require an

infinite number of fractions or operations for their representation. According
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ematicians, who feared Brouwer’s views would unnaturally and unnecessarily
limit the development of mathematics.

Hermann Weyl (1951) summarized this state of affairs: “At the end of the
19th century it became clear that the unrestricted formation of sets, subsets,
sets of sets, etc., together with an unimpeded application as to the original
elements of the logical quantifiers ‘there exists’ and ‘all” . . . inexorably leads
to antinomies.

The 3 most characteristic contributions of the 20th century to the solution
of this Gordian knot are associated with the names of L.E.J. Brouwer, David
Hilbert and Kurt Gödel. Brouwer’s critique of ‘mathematical existentialism’
not only dissolved the antimonies completely but also destroyed a good part
of classical mathematics that had heretofore been universally accepted. . .

Brouwer served as a professor of mathematics at the University of Amster-
dam during 1909–1951, with the exclusion of 1945–1946 since he was suspected
of collaborating with the Nazis in WWII.

to him nothing could be said to have a mathematical existence unless it could

actually be constructed in terms of finite number of positive integers. Kronecker

is thus a mathematician in whom a computer can believe.
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“Have You Seen a Molecule?” (1803–1908)

“This conclusion, that heat consists in mechanical processes, in motion,
has spread over the whole cultivated world like wildfire. There is a huge
mass of literature on this subject, and now people are everywhere eagerly
bent on explaining heat by means of motions. They determine the velocities,
the average distances, and the paths of the molecules, and there is hardly a
single problem which could not, people say, be completely solved in this way
by means of sufficiently long calculations. If, then, we are astonished at the
discovery that heat is motion, we are astonished at something which has never
been discovered. It is quite irrelevant for scientific purposes whether we think
of heat as a substance or not”.

Ernst Mach, 1909 (1838–1916)

“Atoms are only hypothetical things”.

Friedrich Wilhelm Ostwald, 1906 (1853–1932)

“. . . merely statistical validity of the Second Law is not good enough; irre-
versibility is a fundamental property of natural processes, and any molecular
hypothesis — or perhaps all conceivable molecular hypotheses based on New-
tonian mechanics — that permits any exception, must be wrong”.

Ernst Zermelo, 1906 (1871–1956)

The success of Newton’s planetary laws of motion led to attempts at more
theories similarly based on the laws of motion. Could not some theory of gases
be constructed, to account for Boyle’s law (1660) by “predicting it”, and to
make other predictions and increase our general understanding? Gases move
easily, diffuse among each other and seep through porous walls. Could these
properties be “explained” in terms of some mechanical picture? Newton’s
contemporaries revived the Greek philosopher’s idea of matter being made of
“fiery atoms” in constant motion.

Indeed, in 1738, Daniel Bernoulli published a ‘bombardment’ theory
in which he pointed out that moving particles would produce pressure by
bombarding the container, and he suggested that heating it, must make its
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particles move faster. However, his outline was incomplete. This idea stayed
dormant for more than a century, when Joule (1847), Clausius (1850),
Maxwell (1860) and Boltzmann (1860) set forth the kinetic theory of gases
based on the assumption that a gas consists of small elastic particles in rapid
motion, and the pressure on the walls is simply the accumulated effect of
bombardment.

In the field of chemistry, molecules seemed useful: a helpful concept that
made the regularities of chemical combinations easy to understand and pro-
vided a good start for a simple theory of gases (Dalton, 1803; Avogadro,
1811). But did they really exist? There was only circumstantial evidence that
made the idea plausible. Many scientists were skeptical, and at least one great
chemist maintained his right to disbelieve in molecules and atoms even until
the beginning of the 20th century191. Yet one piece of experimental evidence
appeared as early as 1827: the Brownian motion.

The Scottish botanist Robert Brown (1773–1858) made an amazing dis-
covery — he practically saw molecular motion: Looking through his micro-
scope at small specks of solid suspended in water, he saw them dancing with
an incessant jiggling motion. The microscopic dance made the specks look
alive. Brown was in fact watching the effects of water molecules jostling the
solid specks. If the molecules were infinitely small and infinitely numerous,
they would bombard a big speck symmetrically from all sides and there would
be no Brownian motion to see. At the other extreme, if there were only a few,
very big molecules of surrounding water, the speck would execute infrequent,
violent jumps when it did get hit. From what we see, we infer something be-
tween these extremes: there must be many molecules in the container, hitting
the speck from all sides, many times a second.

In a short time, many hundreds of molecules hit the speck from every
direction, and occasionally a few hundreds more hit one side than the other
and drive it noticeably in one direction. A big jump is rare, but several tiny
random motions in the same general direction may pile up into a visible shift.
Detailed observations and calculations from later knowledge tell us that what
we see under the microscope are those gross resultant shifts; but, although the
individual movements are too small to see, we can still estimate their speed
by cataloging the gross staggers and analyzing them statistically.

The kinetic theory was successful not only in providing a theoretical in-
terpretation to the ideal gas equation and the Avogadro hypothesis, but also
in yielding a gamut of molecular properties such as speed, number, mass and

191 It is a matter of record that as late as 1908, distinguished scientists such as

Ernst Zermelo, Wilhelm Ostwald and Ernst Mach, doubted the atomic

theory of matter. Mach died unconvinced.
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size. Already in 1865, Loschmidt obtained estimates of molecular diameters
from measurements of liquid density and gaseous viscosity, a method which
is now of historical interest only.

A number of independent methods were devised to measure Avogadro’s
number N0: Since N0 = R/k [where k is the Boltzmann constant and R
the universal gas constant], k was determined from physical laws in which
it appeared [e.g. Stefan-Boltzmann law, Planck’s law, Einstein’s mean-square
displacement law of Brownian motion, and Boltzmann’s energy partition for-
mula as applied by Perrin]. In addition, N0 could be directly obtained from
Faraday’s law of electrolysis and the calculation of a voluminal element of a
crystal lattice [N0 = (6.0225 ± 0.0003) × 1023 molecules/mole].

So, by 1908, molecules have graduated from speculative tiny ad-hoc en-
tities into full-fledged ‘citizens’ of the real physical world, except for one
attribute — visibility. Could we actually see a molecule? That would indeed
be convincing. Scientists of the 19th century agreed that seeing is hopeless —
not just unlikely but impossible, for a sound physical reason.

Seeing uses light, which consists of waves, ranging in wave-length from
7000 Å for red to 4000 Å for violet: with the naked eye we can see the shape of
a pin’s head, a millimeter across (107 Å = 103 microns). With a magnifying
glass we examine a fine hair, 0.1 millimeter thick (106 Å = 102 microns). A
smoke speck is 0.01 millimeter in size (105 Å = 10 microns). With a high-
power microscope we see the smallest bacteria (103 Å = 0.1 microns) or
a typical particle in Brownian motion. But beyond that scale, vision using
ordinary light stops, as the light’s wave-length becomes comparable to the
object’s size. So, viruses (ca 100 Å) and molecules (ca 1–10 Å) cannot be
seen with light waves.

However, early in this century, X-rays offered indirect information: X-
ray diffraction patterns revealed both the arrangements of atoms in crystals
and the spacing of their layers. Such measurements confirmed estimates on
molecule’s size and even the general shape of some big molecules.

With the advent of the electron microscope, virus particles and big mole-
cules are “seen”, and recently the tunneling microscope has allowed us to see,
under favorable conditions, individual atoms. These glimpses of molecular
structure agree well with the speculative pictures drawn by chemists, arguing
from chemical behavior.

The vicissitudes of scientific atomism is clearly reflected in the quotations
at the head of this article. It took almost the whole of the nineteenth century
to establish atomism on a sound experimental basis and this required an
immense amount of chemical investigation. When success was finally in sight,
a number of men of science and philosophers rejected atomism as a kind
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of illusion. Antiatomic views were published by such men as Ernst Mach
(1838–1916), Pierre Duhem192 (1861–1916), even by a practical chemist like
Wilhelm Ostwald (1853–1932); these men were fighting a rearguard action
at the very time when atomism had ceased to be a hypothesis, when atoms
could be counted and weighed, yet ceased to be atoms in the literal sense, for
they were reduced to other elements incredibly smaller than themselves.

Our Material Culture — Metals, Ceramics

and Plastics193

Metals have been known since ancient times [Au, Ag, Cu, Fe, Pb]. The
basic characteristic of metals is that they loose their electrons rather easily. A
sample of a pure metal may be regarded as a framework or lattice of positive
metal ions suspended in a sea of electrons. The “free electrons” composing the
sea have been liberated by the metallic atoms. Unlike covalent compounds and
many nonmetals, the electrons are not localized between pairs of atoms but
move freely about through the whole system. These freely moving electrons
account for the high electrical conductivity of metals. Electrons carry kinetic
energy as well as negative charge; hence metals tend to be good conductors of

192 Duhem also erroneously pictured the mechanism of an explosive reaction as

the breakdown of a “false-equilibrium”, failing to see that it is a question of

activation energy, or energy necessary to break some bonds in the molecule of

the explosive substance [see “Thermodynamique” by Y. Rocard, Masson et

Cie 1952].
193 For further reading, see:

• Dobbs, F.W., The Age of the Molecule, Harper and Row, 1976, 336 pp.

• Atkins, P.W., Molecules, W.H. Freeman, 1987, 197 pp.
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heat as well as electricity. Because metals have no specifically directed bonds,
layers of metal ions can glide over each other with relative ease. For this
reason metals can be deformed readily without breaking, and they possess
such properties as high malleability and ductility.

Metallurgy is concerned with obtaining pure metals from naturally occur-
ring materials. First it is necessary to separate the ore (chemical compound
containing the metal) from the various other substances with which it is found.
Then, it is necessary to carry out a chemical reaction or reactions to liberate
the metal from its compound. Metals almost always occur naturally in ionic
compounds in which they have lost their electrons and become positive ions.

Obtaining the pure metal means, in chemical terms, restoring the electrons
to the metal ion so that it becomes a neutral atom. This process of gaining
electrons is called reduction. The most easily reduced metals, those lowest
in the activity series, were discovered first. The most active metals, such
as sodium (1807) and aluminum (1825), were discovered more recently. The
most active metals are reduced by electrolysis; less active ones are produced
by reduction with carbon. Aluminum is an example of the former, iron of the
latter.

The earth’s crust is made of about 8 percent (by weight) of aluminum, 5
percent of iron and 4 percent of calcium. Potassium, sodium, and magnesium
(extracted from sea water and dolomite) also occur in large amounts. The
core of the earth is believed to be made up mainly of nickel and iron.

Gold was used for ornaments, plates, and utensils as early as 3500 BCE.
Silver was used as early as 2400 BCE, and many ancients considered it to
be more valuable than gold, because it was rarer in the native state. Native
copper also was used at an early date in tools and utensils, because it was found
near the surface of the ground, and could easily worked and shaped. Since
about 1000 BCE, iron and steel have been the chief materials for construction.

There are 81 metals in the periodic table of the elements.

Ceramics (from the Greek Keramos = potters, clay) are generally com-
plex silicates that have been heated so that they are hard and fire resistant.
The chief feature of ceramics is their great resistance to chemicals and high
temperatures. China, pottery, porcelain, brick, tile, sewer pipe and refracto-
ries are all typical ceramics. The three principal raw materials used in making
ceramics are clay, feldspar, and sand.

Pottery, the oldest form of ceramic products, dates back to prehistoric
times. Examples of pottery more than 6000 years old have been found in sev-
eral parts of the world. Industrial uses of ceramics began during the 1900’s.
Military requirements of WWII (1939–1945) created a need for high perfor-
mance materials and helped speed the development of ceramic science and
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engineering. During the 1960’s and early 1970’s, advances in atomic energy,
communications, and space travel required new kinds of ceramics.

Within the last 200 years, man’s knowledge of the nature and structure
of matter has had an impact on his ability to create or alter materials for
particular purposes. According to a recent estimate there are some 6 million
known chemical compounds. Man’s ability to synthesize many of them and
construct such a variety of new materials from them has had an enormous
impact on his material culture. A great many of the substances that are
directly involved in our daily lives have been developed in their present-form
through a knowledge of chemistry.

The manufacture of chemical compounds and materials is so complex and
varied that it defies any effective categorization. Some of the different types
of materials in whose manufacture or processing chemistry plays some role
are: drugs, agrichemicals (fertilizers, pesticides), coloring materials (paints,
dyes, inks), explosives, photographic materials, industrial chemicals (H2SO4,
HCl, HNO3, petrochemicals), modified naturally occurring substances (sugar,
starch, gelatin, leather, soap, paper), materials used for building, constructing
and manufacturing (ceramics, metals, polymeric materials), and a miscellany
of other materials (adhesives, oils, waxes, detergents, flavors, fragrances, cos-
metics).

A polymer194 (from the Greek polis = many, and meros = part, together
“something of many parts”) is a giant molecule composed of recurring identi-
cal units called monomers. The number of monomers in a polymer may reach
hundreds of thousands and its molecular weight varies between 5000 and 20
million. [Water has a molecular weight of 18, polyisoprene (natural rubber)
has a molecular weight of about one million; that means that a mole of water
weights about an ounce, while that of rubber weights a ton!]

Polymers are created by a process of polymerization, in which many iden-
tical molecules are combined together, sometimes to form a long chain, some-
times to form a more complex network with cross-linkages.

Recognition of the special properties of the natural polymers began al-
ready in the middle of the 19th century, long before their structure became
known. Berthelot discussed (1863) the polymerization of olefins and effected
the polymerization of ethylene in 1869. Eugen Bamberger (1857–1932,
Switzerland) synthesized polyethylene in 1900.

The most important kind of non-living materials that are polymeric in
their structure are: plastics, synthetic fibers and synthetic rubber.

194 The name was coined by Berzelius (1833) for a member of a subclass of iso-

mers.
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Plastics (from the Greek plastikos = able to be molded) are synthetic
polymers. Polymers used in plastics may be classified into two types based on
the type of linkage of the monomers — addition polymers, and condensation
polymers.

Another classification divides polymers into two groups based on their be-
havior when subjected to heat. A polymer that is readily softened by heat is
referred to as being thermoplastic. Each polymer can be repeatedly heated and
softened (e.g., polyethylene, rubber, synthetic fibers, polypropylene, teflon,
polyvinyl chloride (PVC), acrylic, cellulose, acetate).

In contrast, some polymers are composed of chain of polymers which are
cross-linked. These polymers do not soften upon heating and remain rigid.
They are called thermoset plastics (e.g., a Melamine dinner ware, Epoxy,
Polyester, Silicone).

The product formed by the polymerization of different monomers is called
a copolymer. An example of this type of reaction is the production of S rubber.
The addition of one part styrene to three parts butadiene polymerizes in the
presence of the catalyst sodium and results in an excellent rubber substitute.

The properties of plastics can also be affected by the use of various ad-
ditives. Some types used include foamers, fillers, solvents, plasticizers, dyes,
lubricants, and stabilizers.

Manufacturers make plastics from raw materials such as coal, limestone,
petroleum, salt, and water. Solid plastics can be made to look and act like
glass, wood, metal, and other materials. But they can usually be manufac-
tured more cheaply than these materials. Liquid plastics may be used as
adhesives and paints. Scientists and engineers have developed hundreds of
plastics. These made materials have a wide variety of characteristics such as
hardness, softness and transparency.

Fabrics woven from plastic fibers feel soft, but the fibers are made from
hard plastics. Nylon is hard enough to be used to make gears for machin-
ery, yet when drawn into fine threads, nylon can be used to weave delicate
stockings and lingerie.

Some plastics are foamed to make soft sponge-like materials used in cush-
ions for furniture and automobiles.

Transparent plastics such as vinyls, polystyrenes and polyethylenes are
used as envelops to package food, medicines, toys, and many other products.
Contact lenses made of acrylic are more transparent and less fragile than
lenses made of glass. Decorative plastics often look like gold, silver, marble,
wood or leather.
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Plastics are used in industry, home building, medicine and science. In
medicine, certain plastics have important uses because they do not harm the
body and are not affected by its chemicals. Doctors use plastics rivets, screws
and plates to join broken bones. They sew up wounds and surgical incisions
with plastic threads. In science polyethylene plastics made good shields for
nuclear reactors; they absorb neutrons better than an equally thick shield of
concrete or water, yet are much lighter. Other plastics, called scintillation
plastics, can detect radioactivity or passage of charged particles.

Polymer science and the plastic industry, both of which continue to exert
an incredibly large impact on Western culture, trace their beginning to natural
rubber .

On his second voyage (1494), Columbus found the natives of Haiti playing
with rubber balls. Earlier, in the 13th century, articles of rubber (including
balls for games), were in common use among the Mayas and Aztecs. The ex-
plorers learned that the Indians made “water proof ” rubber shoes by dipping
their feet in latex, the milky white ooze of the rubber tree. The Indians also
made waterproof bottles by smoothing latex on a bottle-shaped clay mold.
They dried the latex over a fire, and then washed out the clay. The South
American Indians called the rubber tree cahuchu, which means weeping wood .

Since 1615, the Spaniards conquerers were themselves using rubber to
weatherproof soldiers’ cloaks, but no one in Europe was aware of the existence
of rubber. It was left for the French, more than a century later, to carry the
study and the use of rubber to Europe; Charles de la Condamine (1701–
1774), who had been sent by the French Academy of Sciences on an expedition
to Peru, brought back (1736) caoutchouc, as the substance was then called.
But only in 1751, fifteen years after the expedition, he gave an account of it
to the Academy. Rubber received its name when (1770) Joseph Priestley
found it would rub off pencil marks.

By the late 1700’s, chemists had found that hardened latex dissolved in
turpentine made a waterproofing liquid for cloth. In 1823, the Scottish chemist
Charles Macintosh (1766–1843) began manufacturing the “mackintosh”
raincoats that became world-famous. Early rubber products became sticky in
hot weather, and stiff and brittle in cold weather.

In 1826, Michael Faraday, discovered that rubber is a hydrocarbon.

In 1839, Charles Goodyear (1800–1860, U.S.A.) made a serendipitous
discovery of the process of vulcanization through which rubber could be made
stronger and resistant to heat and cold, by heating it together with sulfur
[Vulcan, the Roman god of fire]. With vulcanization, the rubber industry
grew rapidly: vulcanized rubber was elastic, airtight and watertight.
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In 1860, Greville Williams (1829–1910, England) discovered that nat-
ural rubber yields, upon heating, a colorless liquid that he called isoprene.
His was, in fact, a process of depolymerization.

At first, manufacturers used only wild rubber which came mostly from
the Amazon Valley of Brazil. At the request of the British government, an
amateur botanist Henry A. Wickham (1846–1928) took about 70, 000 seeds
of the Hevea brasiliensis tree from Brazil to England (1876). Seedling from
the sprouted seeds in a Kew Gardens greenhouse were then taken to Ceylon
and Malaya for replanting on plantations.

The invention of the automobile in the late 1800’s created a tremendous
demand for rubber. By 1914, the yearly production of plantation rubber had
exceeded that of wild rubber.

The importance of rubber in wartime became obvious during WWI. Armies
needed rubber-tired vehicles to carry troops and supplies. The German were
cut off from their natural-rubber supplies by the Allied blockade, and began
to make synthetic rubber. But it did not work well. Experiments in producing
synthetic rubber continued in the 1920’s chiefly by scientists in Germany and
the United States.

In 1942, the Japanese invaded Southeast Asia and cut off over 3
4 of the

West’s supply of natural rubber. As early as 1939, perceptive governments
and rubber corporations realized the dangers inherent in fighting wars that
would involve reduction of rubber supplies. Germany, the Soviet Union,
Britain, and the United States began stepping up their efforts to produce
synthetic rubbers.

The first synthetic was based on the discovery of the priest Julius
Arthur Nieuwland (1878–1936, Belgium and U.S.A.) at Notre Dame Uni-
versity. He worked on (1904–1924) the synthesis of rubber from acetylene
and sold his patents to the DuPont Company in 1925. At DuPont, Wal-
lace Carothers (1896–1936, U.S.A.) further developed Nieuwland’s ideas
into neoprene (1932), and made important contributions to the understanding
of polymers in general. Isoprene, the monomer of natural rubber, is difficult
to synthesize, and the attention of the German I.G. Farben group and the
Standard Oil was directed toward rubber synthesis from butadiene.

Alongside with the development of synthetic rubber, chemists had the
good fortune to discover other plastic materials, based also on natural poly-
mers.

Natural cellulose (C6H10O5)n, like starch and glycogen, is a polymer of
glucose (C6H12O6), but neighboring glucose units are linked differently. This
one difference — a simple twist of a link — makes cellulose indigestible by
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humans (termites and herbivorous animals can digest cellulose if certain en-
zymes are present). The major part of the rigid portion of many plants is
cellulose. Cotton and linen are about 98 percent cellulose. The explosive cel-
lulose nitrate [C6H7O2(O·NO2)3] was discovered (1846) by Schönbein by
treating cotton fibers with certain acids.

Alexander Parkes (1813–1890, England) tried to create a moldable ma-
terial from it by treating it with a variety of solvents. The plastic material that
he created, called Parksine (1862), was used to produce a variety of objects,
such as combs. His associate Daniel Spill (1832–1887, England), invented
Xylonite (1867). However, Parksine had an unfortunate habit of shriveling and
wrinkling. John Wesley Hyatt (1837–1920, U.S.A.), a printer in Albany,
N.Y., who sought to win a $10,000 prize for developing the best substitute for
ivory in billiard balls remedied the deficiencies of Parksine. Although he did
not win the prize, the material, Celluloid (1869), which he prepared by mixing
camphor with cellulose nitrate and a solvent, was a superior product. Cellu-
loid could be sawed, carved and made into sheets. As a result, new plastic
products appeared on the market. Common Celluloid articles included combs,
collars, dentures, carriage curtains, clock cases and the first photographic roll
film. But Celluloid was hard to mold and it caught fire easily.

Soon after the invention of Celluloid, chemists developed other products
made from plant fibers. In 1884 the French chemist Hilaire Chardonnet
(1839–1924) invented viscose rayon, the first man-made fiber. The chemist
Jacques Edwin Brandenberger (1872–1954, Switzerland) invented cello-
phane (1908) [when one presses on a cellophane sheet or tries to tear it, one
is experiencing the strength of the hydrogen bonds!]

During the 1800’s English and German chemists experimented with combi-
nations of carbolic acid (phenol, C6H5OH) and formaldehyde (CH2O). This
combination produced a resin, but the chemists could not control the violent
reaction. Leo Hendrik Baekeland (1863–1944, U.S.A.) succeeded (1909)
in controlling the reaction and invented the first completely synthetic resin,
Bakelite.

Baekeland produced his resin while trying to make a better kind of varnish.
At first, he did not recognize the value of Bakelite as a plastic material.
Richard W. Seabury (1883–1970, U.S.A.), a rubber manufacturer, showed
that the new resin could be molded. He mixed Bakelite with asbestos fibers,
and molded a part for an electrical instrument.

Bakelite became widely used to make telephones and handles for pots
and irons. The electrical and automative industries used Bakelite for many
products. Unlike celluloid, Bakelite was not flammable.

Synthetic fibers, like plastics, had their origin in experiments with cellulose.
At the end of the 19th century, two different processes for preparing a cellulose
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thread called rayon were developed. In 1931, Wallace Carothers (1896–
1937, U.S.A.) synthesized a material stronger than silk, which is now called
nylon.

Other plastic materials were synthesized all through the 20th century,
each with its own specific use: Cellulose Acetate (1927); Urea-formaldehyde
(1928); Perspex (1936); Polyurethane (1939); Polyester resins (1942); Silicone
(1943); Teflon (1943); Epoxy resins (1947); Polypropylene (1957); Polycarbon-
ate (1958).

Polymers195

Unsaturated monomers under high pressure and temperature and in the
presence of a catalyst , link to each other to form long chains. For example,
with the aid of a catalyst, one molecule of ethene combines with a second
molecule of ethene to form a dimer:

H H H H H H H H
| | | | | | | |

H — C —— C + H — C —— C −→ H — C — C — C —— C
| | | | |
H H H H H

This molecule in turn links to a third molecule, and a fourth, and continuous
on to form a giant molecule consisting of up to several thousands units of
ethene, called polyethylene

H H H H H H H H H
| | | | | | | | |

H — C — C — C — C — C — C — C . . . etc., . . . — C —— C
| | | | | | | |
H H H H H H H H

195 To dig deeper, see:

• Perepechko I.I., An Introduction to Polymer Physics, Mir Publishers:
Moscow, 1981, 266 pp.
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We thus write that the monomer CH2 —— CH2 was transformed into the
polymer (—CH2—CH2—)n. The brand name of this plastic is Handi-Wrap
and it is used for food wrappings, tubing, molding objects, and electrical
insulation.

If the hydrogens of the monomer ethylene are replaced by fluorines, the
monomer tetrafluoroethylene (CF2 —— CF2) becomes upon polymerization
polytetrafluoroethylene (teflon) used for lining in cooking utensils.

A number of additional polymers are made from hydrocarbon compounds
with a carbon-carbon double bond (alkenes); propylene is similar to ethylene,

but one of the ethene hydrogens is replaced by a methyl group

H
|

CH3—C——C
| |

H H

.

When polymerization occurs, polypropylene is obtained [CH(CH3)CH2]n.

Special catalysts are used in synthesis to ensure that there is little chain
branching and that {—CH3} groups all point in the same direction. This
yields an extremely orderly solid (crystalline-like) with many useful proper-
ties, namely — stiffness, resistance to abrasion and high enough melting point
for objects made from it to be sterilized. However, because the CH3 groups
are liable to oxidation, polypropylene articles usually have antioxidants in-
corporated into them to divert attack by oxygen. Polypropylene is used for
ropes, fishing-nets, toys, housewares, baby bottles, wire insulation, pipe and
fittings.

Vinyl chloride (C2H3Cl), is derived from an ethylene molecule by replacing
a hydrogen atom with a chlorine atom. It can be polymerized to form polyvinyl
chloride (CHClCH2)n or PVC , one of the most versatile and adaptable of all
plastics. The addition to it of certain synthetic resins (plasticizers), makes
PVC softer and more flexible. Moreover, PVC can be mixed with a very wide
range of additives chosen to tailor its properties to many different applications.
When properly protected by additives, it is chemically resistant to attack and
degradation.

PVC is used for imitation leather, phonograph records, packaging, pipes,
credit cards, baby pants, rain coats. About 3 million tons are used annually
in the United States alone, of which 10,000 tons are used for making credit
cards.

Vinylidene chloride (C2H2Cl2) may be polymerized on its own or copoly-
merized with vinyl chloride to give the polymers known collectively as saran
(CCl2CH2)n, used for upholstery covers and as a protective film (saran wrap).
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If the monomer is styrene (a benzene ring in which one hydrogen atom
was replaced by CH —— CH2; discovered in 1839 by a Berlin pharmacist by
the name of Simon), the polymer is polystyrene used for styrofoam, insula-
tion, combs, toys, models, and household articles. Likewise, the monomer
acrylonitrile

H — CH——CH
|

CN

yields upon polymerization the polymer polyacrylonitrile

(—CH2— CH—)n

|
CN

known commercially as Acrilan (or Orlon). It is used for fibers in the produc-
tion of carpeting, clothing, etc.

Rubber is a polymer of a five-carbon compound called isoprene

CH2——CH— C ——CH2

|
CH3

The polymer may be linear, cross-linked, or it can exist in more complex con-
figurations. Polymer molecules of unstretched rubber fold back on themselves
somewhat like irregular coils. Stretching the rubber straightens the chain of
folded molecules. Releasing the rubber lets the chain return to its coiled po-
sition. The sulfur that combines with the rubber during vulcanization sets up
“cross links” between the rubber chains so that the chains are bound together
and cannot slip past one another. This gives elasticity and strength to the
vulcanized product.

The number of cross links increases with the amount of sulfur, such that
the rubber becomes stiffer, tougher, and less stretchable (chemists use the
word elastomer for any substance, including rubber, that stretches easily to
several times its length, and returns to its original shape).

The molecule that has proved most useful in synthetic rubber is butadiene:
CH2——CH—CH——CH2, easily obtained from coal tar, coal gas or from ethyl
alcohol (obtained from grain fermentation). It was later found that addition
of styrene stabilizes synthetic rubber. These styrene butadiene rubbers (SBR)
are the most common general purpose rubbers. Another synthetic product,
polymerized chloroprene (CH2——CCl—CH——CH2), known as neoprene is
particularly heat and weather resistant.

Methyl methacrylate (C5H8O2) is the monomer from which the polymer
known as lucite, plexiglass, or perspex is derived. Bulky, irregular side groups
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attached to the basic ethylene fragment cause the polymer chains to lie to-

gether in a very irregular way, so that the solid is internally very chaotic.

Since the solid is amorphous on a molecular scale, it does not scatter light

that passes through. Consequently, blocks of the polymer are brilliantly trans-

parent, like clean water.

If one of the side groups (—CH3) of the monomer, that is responsible

for its rigidity, is removed, the resulting substance serves as a base for acrylic
paints.

The polymerization of adipic acid (C6H10O4) with hexamethylene di-

amine (C6H16N2) by condensation, yields the polymer polyhexamethylene

adipamide [CO(CH2)4CONH(CH2)6NH]n, known as nylon, the first com-

pletely synthetic fiber. It is strong, springy, resists abrasion, and has good

electrical qualities. Used for fabrics, gears, bearings, hardware, brush bristles,

electrical appliances.

Artificial (as well as natural) fibers should consist of long molecules that

can be made to lie parallel to each other as they are drawn out into a thread.

This can be achieved by linking together an acid and an alcohol molecule as

in the process of ester formation, but in such a way that the ester molecule

can go on growing at each end. This results in indefinitely long molecules

of repeating units called polyesters. Thus, if terephthalic acid (C8H6O4) is

allowed to react with ethylene glycol (C2H6O2), the result is the polymer

polyethylene terephthalate [O2CC6H4CO2C2H4]n. It can be made into either

a fiber (Dacron) or a film (Mylar).

The first synthetic heart was made of Dacron. Mylar is used in cassette
tapes.

1907–1920 CE Ernest Rutherford (1871–1937, England). Physicist.
Proposed the concept of a nuclear atom in which a smaller center is sur-
rounded by electrons (1911). Discovered the proton (1919) and suggested the
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existence of the neutron. Rutherford inspired two generations of physicists,
and his discoveries had a major influence on the scientific thought of his era196.

Rutherford was born in Spring Grove, New Zealand. He was educated at
Canterbury College, Christchurch, and went to the Cavendish Laboratory at
Cambridge to work under J.J. Thomson. In 1902 he discovered Thorium X
with Frederick Soddy (1877–1956) and during 1906–1909 he showed alpha-
particles to be nuclei of helium atoms. For these discoveries he won the
Nobel prize for chemistry in 1908. In 1919 he succeeded J.J. Thomson to the
Cavendish chair at Cambridge.

1907–1945 CE Ellsworth Huntington (1876–1947, U.S.A.). Geog-
rapher and explorer. Was concerned with the complex origins and causes of
the world’s major civilizations and why they had emerged in particular lo-
cations. He laid particular emphasis on climatic factors and contended that
certain types of climate were favorable to a high level of civilization. This
climate is characterized by a moderate temperature, and by the passage of
frequent barometric depressions which give a sufficient rainfall and changeable
stimulating weather. He argued that the location of the hearths of particular
civilizations could be matched with critical environmental limits, and saw in
climatic changes the clues to unexplained shifts in these centers197.

196 Yet, four years before his death (1933), Rutherford said, firmly and explicitly,

that he did not believe the energy of the nucleus would ever be released. Nine

years later (1942), in Chicago, the first fission pile began to run.
197 Huntington gives three interesting examples:

• The level of civilization in ancient Greece was critically affected by the aver-

age rainfall : Up to about 400 BCE Greece had been well watered and forested,

with perennial streams unsuited to the development of mosquitoes, but after

that date the rainfall diminishes greatly. The streams were reduced in summer

to stagnant pools and swamps, with the result that malaria became endemic

and undermined the vitality of the population.

• The level of civilization in Rome fluctuated with the average rainfall : The

rigorous Roman life of the early Republic (450–420 BCE) was based on intensive

agriculture. This was a period of very high civilization and very heavy rainfall.

Towards 250 BCE the spirit of discipline and rural simplicity began to decay.

The period from 225 to 200 BCE was one of economic stress — marked by de-

creasing rainfall. The second century BCE with its low fain-fall witnessed great

decline in agriculture. During this period malaria became endemic because of

formation of stagnant pools and marshes. From 100–50 BCE heavy rains again

brought an increase in general luxury and comfort. From 80 CE onwards, as

rain fall decreases there was a gradual decline and 180–190 CE were years of

famine and pestilence. 193–210 CE saw a slight increase in prosperity, but then

began in full force the long “decline and fall of the Roman Empire”.
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Huntington was born in New England into a congregational family, stud-
ied at Harvard and later held a post at Yale. Took part in expeditions to
Mesopotamia, Turkestan and later to all the continents. Authored many
books and papers, among them: The Pulse of Asia (1907), Civilization and
Climate (1915), Mainsprings of Civilization (1945).

Huntington advanced (1923) an hypothesis that solar activity has an on-
going effects on terrestrial climates. He went further to suggest a correlation
of sunspot activity with terrestrial weathers and especially linked high sunspot
with intensified terrestrial atmospheric circulation. He pointed out that in the
northern hemisphere, cyclonic storm-belt centers more nearly on the magnetic
pole rather than on the geographic pole, just as do auroral displays which are
more obviously related to sunspots.

Moreover, he found correlation between sunspot extremes and severe
droughts and indicated that hurricane activity increased at times of high
sunspots. On the other hand he pointed out that during the Little Ice Age in
Europe (1430–1850 CE) the sun seems to have gone through a calm period,
in which sunspots were practically absent198.

Due to the great complexity of the problem, work on climatic changes
must be restricted more to correlation than to mechanism. Yet, Huntington
suggested a crude model for the interaction of the sun’s photosphere with the
earth’s atmosphere: Increasing sunspot indicate increased emission of charged
particles. Many of these become trapped in the earth’s magnetosphere from
which they filter down to the lower atmosphere, mainly near the magnetic
poles. From there they exert pressure over air-mass formations, as in northern
Canada. These rapid pressure changes may occur simultaneously in several
widely separated areas and intensify cyclonic activity in the mid latitudes;
under favorable conditions, comparatively small causes may have dispropor-
tionately large effects.

• There were four great waves of emigration from Arabia; the first during

the 4th millennium BCE, the second (Amorite) about 2000 BCE, the third

(Aramean) mainly around 1350 BCE, and the fourth (Arabian) culminated in

the Islamic expansion of the 7th century CE. All of them are attributed to dry

periods preceding the actual outbursts.
198 Sunspot-free periods, known as Maunder-minimum occurred at irregular inter-

vals in earlier times.

A recent study of tree-rings has revealed an apparent correspondence between

periods of drought in the high plains of the Western U.S. and the minimum of

the 22-year sunspot cycle.
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1908–1911 CE Jean Baptiste Perrin (1870–1942, France). Physicist.
Designed experiments that established the reality of atoms and gave a macro-
scopic confirmation to the Einstein-Smoluchovski theory of Brownian mo-
tion. Determined the ‘Avogadro number’ and molecular size through an in-
genious experiment in which he used colloidal suspensions of gum resins of
uniform size in water, and registered via microscope199 the dependence of the
concentration of these grains on height.

Since the suspended particles obtained kinetic energy from their collision
with the water molecules (Brownian motion), they attain a stationary sus-
pension at constant temperature in a uniform gravitational field.

The application of Boltzmann’s energy partition function for the number
of molecules at energy level ε [N = N0e

−ε/kT ] where ε is the gravitational
potential energy mgH, [m, mass of a colloidal particle and H, height above
a reference level], yields the density of gum particles (concentration) at any
level, through the Laplace ‘isothermal atmosphere’ formula ρ = ρ0e

−mgH/kT .
When m is corrected for buoyancy of the liquid and ρ/ρ0 is measured, k can
be calculated, and through it the Avogadro number.

In 1895 Perrin found evidence that cathode rays are negatively charged
particles. In 1901 he presciently proposed a “nucleo-planetary” model of
atomic structure, with a positively-charged “sun” surrounded by many smaller
negatively charged “planets”. The periods of rotation of these planets might
correspond to different wavelengths in the emission spectrum.

Perrin emphasized an analogy of Brownian movement paths with non-
differentiable functions (previously studied by Riemann and Weierst-
rass200). This analogy seems to have stimulated some of the later research on
functional integrals, notably by Wiener.

1908–1928 CE Wilhelm Geiger (1882–1945, Germany). Physicist. De-
veloped the Geiger counter [used for the detection of radioactivity]. His work

199 The introduction of the ultramicroscope in 1903 rendered visible small colloidal

particles whose greater activity could be measured more easily.
200 Weierstrass (1872) constructed a function, defined by the Fourier-series:

f(x) =
∑∞

n=0 an cos(πbnx) where a, b are real, b > 1, 0 < a < 1, ab ≥ 1. The

series is uniformly convergent in any interval, so that f(x) is everywhere contin-

uous. However, the series obtained via term by term differentiation is divergent.

This property is maintained if we choose a = bD−2, 1 < D < 2, where D has

the modern meaning of fractal dimension. One can consider the above function

to be the real part of the complex Weierstrass function W (t) =
∑∞

n=0 aneπibnt.

It yields a 3-dimensional Brownian surface that renders a visual realization of

the stochastic Brownian process (Mandelbrot, 1982).
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on the deflection of α-particles by thin metal foils led E. Rutherford to dis-
cover his model of atomic structure in 1911. Geiger and Walther Müller
improved the 1908 counter and made it more sensitive and durable (1928).

The counter is usually in the form of a thin metal cylinder enclosed in a
glass tube. The metal will serve as one electrode. A straight wire projected
into the cylinder is the other electrode. The electrodes are maintained at a
voltage which is just short of breakdown potential of the air or other gas in the
cylinder. If ionizing radiation enters the cylinder, the gas will ionize, setting
up a weak current, which is revealed by light signals, by clicks picked up by
earthphones or by readings on a meter.

Geiger was born in Neustadt, Germany. He was Rutherford’s assistant
from 1906 to 1912. He later became a professor of experimental physics at
Tübingen University. When Hans Bethe was dismissed (1933) from his
position as theoretical physicist at that university, Geiger turned his back on
him. With Heisenberg, Hahn and other notable physicists, Geiger joined
the Nazi nuclear war-effort.

1908 CE, June 30, 00:14:28 GMT A mysterious object exploded in the
sky at altitude ca 8 km over the basin of the River Podkamennaya Tunguska
in central Siberia (60 ◦55′N, 101 ◦57′E).

The explosion itself took the form of a vertical column of fire, and spewed
up incandescent matter to a height of 20 km. Heat radiation was felt at 70
km from the epicenter. The event was seen in the sunlight at distance of 500
km and heard over a distance of 1270 km.

Near the epicenter, trees of a coniferous forest were uprooted within a
radius of 25 km and burnt inside a radius of 15 km, their tops charcoaled.
The total energy of the object was calculated to be equivalent to 12 megaton
of TNT201. There was lack of evidence for either an impact crater or sizable
debris. Had the object arrived 4h27m later, it would have landed on the city
of Petrograd, then capital of the Russian empire. No other event of its kind
has ever been recorded.

201

• Ben-Menahem, Ari, The Siberian Explosion of June 30, 1908, Phys. Earth

Planet. Interiors, 1975, 11, 1–35 pp.

• Foschini, L., A solution for the Tunguska Event, Astron. Astrophys,, 1999,
342, L1–L4 pp.

• Farinella, P. et al., Probable Asteroidal Origin of the Tunguska Cosmic Body,
Astron. Astrophys., 2001, 377, 1081–1091 pp.
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Punctuated Evolution — the Evils and Blessings of

Planetesimal Bombardment

The surfaces of Mercury, Venus, Mars and moon are dotted with many
thousands of craters, most of which were made within a few hundred million
years after the solar system formed. During this epoch, meteoroids by the
millions must have rained down on all the planets of the inner solar system as
the last chunks of matter to reach the planets encountered the new planetary
surfaces. This earlier bombardment included comets as well as asteroids. The
earlier bombardment essentially ended 3.5 × 109 years ago. Our own planet
shows only a few large meteorite craters, representing relatively recent impact.

Although the earth surely did not escape this rain of terror, the first
few hundred million years of our geological record have vanished because of
erosion and the movement of crustal plates. Comets (which spend most of
their lives in the frozen depths of space at the boundaries of the solar system)
represent the best preserved primitive material, that is relatively accessible
to us, because they orbit the sun in highly elongated trajectories that carry
them much further from the sun than any of the planets.

At this huge distance from their central star, no heating has disturbed the
original state of the condensed material. Individual comet nuclei are generally
only a few kilometers in diameter and consist of frozen “snowballs” of water,
carbon dioxide and other gases, silicate dust plus more complex molecules
including organic compounds.

Upon approaching the sun, some of the cometary ice vaporize, producing
a gauzy cone around the nucleus and a long, rarefied tail that streams away
from the sun for millions of kilometers. Another source of somewhat primitive
matter resides in the lumps of debris called asteroids and meteoroids, which,
like short period comets, orbit the sun in rather elongated trajectories, but
which always remain fairly close to the sun.

Although the delivery of life seeds to earth via comets seems unlikely,
comets may have provided earth with the basic materials necessary for life to
form. Scientists have suggested that collisions of comets and the accretion of
cometary matter to the earth provided a plausible mechanism for supplying
part of the earth’s early atmosphere. The same collisions might form local
concentrations of organic molecules and liquid water on the earth’s surface,
where, in the presence of solar ultraviolet radiation, amino acids and other
biochemical compounds could form spontaneously.

Comets may have provided much of the earth’s water, volatiles, and organic
molecules, thus depositing some of the biogenic material from which primitive
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life ultimately formed. Subsequent impacts, however, could easily have erased
many of the earth’s life forms, leaving only the most adaptable to develop
further.

This duality of comets, as both life giving and life threatening, is a theme
that began with Isaac Newton and Edmund Halley (1688), the latter
suggesting (1694) that cometary collisions might well cause a major extinction
of species, but the fine debris would then settle onto the earth’s surface and
render the soil more suitable for vegetable production and animal life. In
1750 De Maupertuis wrote that comets could crash into the planets, and
the resultant heat and contamination of atmosphere and water would lead to
mass extinction.

It has been concluded recently from the fossil record (1992) that through-
out the history of multicellular life — from 600 million years ago — some 60
percent of all species extinctions may have been caused by impacts of aster-
oids, comets or other extraterrestrial bodies. Some of these impacts would
have eliminated 2

3 or more of species living at the time. The mass extinction
at the end of the Cretaceous period, 65 million years ago, that accounted for
the demise of the dinosaurs, is widely thought to be an example of such a
calamity202.

Other collisions would have destroyed between 5 and 60% of the stand-
ing population of species. Extinction levels up to 5% fall into the range of
“background” extinction, the result of biotic effects including the overwhelm-
ing success of one species over another, or local disasters such as a hurricane
that destroys animals and plants unique to one island.

Throughout history, background extinction has cumulatively accounted
for the loss of 40% of species, a much lower figure than most biologists have
guessed. The above conclusions were reached by dating asteroid collisions
from their impact craters and checking them against known mass extinctions.
If it is true that throughout earth history, 60% of all species have gone ex-
tinct through asteroid impact, then the odds are better than even that Homo
sapiens will end its tenure in the same way.

It might then turn out that those planets where mass extinction periodi-
cally “clear the undergrowth” for new species to dominate, will allow evolu-
tion to proceed more rapidly than it can on planets where no mass extinction
occur. In other words, a precondition for a planet to evolve intelligent life

202 It has been estimated that the said extinction could have been precipitated

by an asteroid measuring about 10 kilometers across that slammed into the

Yucatan with a yield equivalent of 100 million megatons of TNT. This event is

just one of a dozen or more such mass extinctions found at intervals of about

26 million years through the fossil record of life.
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sooner rather then later could be that at long intervals, large impacts did
occur, eliminating most species of life, which were then replaced with new
species.

In 1978, an explosion equivalent to 100 kilotons of TNT was detected in the
South Pacific. Once suspected of being a clandestine nuclear test, the event
is now considered to have been an asteroid strike. In Jan. 1991 an asteroid
10 meters in diameter passed between the earth and the moon, scoring a near
miss.

Countless millions of asteroids hug an orbit between Mars and Jupiter,
forming a belt that normally poses no threat to life on earth. Occasionally,
however, some are jostled out of the belt to assume earth-crossing orbits.
Some 150 such asteroids with a diameter of at least 1 km have been detected,
with 2 or 3 new ones discovered every month.

It is estimated that between 1000 and 4000 earth-crossing asteroids exist
with diameters equal to or larger than 1 km. An equal number of comets may
pose a similar threat. Most asteroids with diameters ranging from 10 to 100
meters explode on hitting the earth’s atmosphere, usually with no harmful
effects. The larger and denser ones in this range penetrate further.

The Siberian bolide, is thought to have been 90–190 meters across203. It
is estimated that impacts of this magnitude occur once every 2000 years.
The impact of a 1-km or larger object occur once every 300, 000 years, and
carries the potential to severely disrupt or even terminate our civilization;
huge quantities of ash, dust and vapor would penetrate into the atmosphere,
shrouding the sun and triggering the equivalent of a “nuclear winter”. Objects
up to 5 kilometers in diameter arrive once every million years and cause mass
extinction; agriculture and civilization would certainly collapse and the future
existence of the human species would be in doubt.

1908 CE, Dec. 28 A major earthquake destroyed the cities of Messina and
Reggio, killing some 80,000 people in Calabria and Sicily204.

203 Z. Sekanina, The Tunguska event: No cometary signature in evidence, Astro-

phys. Jour. 88, 1382–1414, 1983.
204 Global statistics confirm that earthquakes in the 20th century still take an

average toll of 10,000 lives and cost $400 million a year worldwide. Earthquakes

are still difficult to forecast: seismology, soil mechanics, and engineering cannot

prevent vast damage. But most engineers believe that improved education,
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1908 CE Hermann Anschütz-Kaempfe (1872–1931, Germany). Engi-
neer. Invented the gyrocompass.

1908–1909 CE Fritz Haber (1868–1934, Germany). Chemist. One of the
first chemists to bridge the gap between pure and theoretical chemistry on one
hand and its industrial applications on the other. His most important work
was on high-pressure synthesis of ammonia from its elements nitrogen and
hydrogen205. This process known as the Haber process of ammonia synthesis
(1909) (for which he was awarded the Nobel prize in 1919), laid the foundation
of the fertilizer and explosive industries.

Haber was born in Breslau, Silesia, Germany (now Wroc̆lav, Poland), the
son of a Jewish dye-stuffs merchant. His early training was in organic chem-
istry with a view to his entering the family firm. At Karlsruhe, however, he
took up the study of physical chemistry, and started to apply it to chemical
problems of practical importance. He became a professor at Karlsruhe (1898),
and director of the Kaiser Wilhelm Institute for Physical Chemistry, Berlin
(1911–1933). During WWI he put all his energies into the German war effort,
working on explosives, petrol, and the poison-gas chlorine206.

Haber believed that his development of the use of chlorine gas for the
German general staff would help bring a swift victory and thus limit overall
suffering. On the eve of the first use of the gas against Allied troops in
1915, Haber’s wife committed suicide, tormented by her husband’s horrific
contribution to the war.

Haber207 then came up with a far more potent poison, the mustard gas
(C4H8SCl2) which was used with devastating results by Germans at Ypres
in 1917. It is a volatile liquid, odorless and therefore is not immediately
detectable by smell. Where it touches the skin and is inhaled, it forms blisters.

warning systems, maps of fault lines and expected hazards, better building

design, careful zoning, and stricter building codes can reduce risk to life.
205 The process operates at a high temperature (ca 450◦C) and pressure (up to 1000

atmospheres) with iron as a catalyst: N2+3H2 � 2NH3. The gases are cooled

and the ammonia is separated. Only about 15% of the mixture is converted to

ammonia. The unreacted substances are recycled.
206 Consequently, the award to him of the Nobel prize for chemistry led to some

criticism from scientists in the allied countries. His work is said to have pro-

longed the first World War by two years, as it enabled Germany to manufacture

explosives long after natural supplies of ammonia-yielding compounds had been

exhausted.
207 His colleague Gerhard Schroeder produced the nerve gas (C6H14O3PF) but

it was never used by the Germans in WWII.
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Those who do not die at once, or from infections that follow the blistering,
suffer a generalized poisoning that renders them ill for the rest of their lives.

About 100,000 allied soldiers in WWI died due to gas poisoning. After
the Armistice, the Allied considered Haber a war criminal. Haber was de-
moralized, but he continued to conduct research and provided the Nazis with
Cyclone B, used in their Gas Chambers to murder six million of his own peo-
ple during WWII. In 1920 he became involved in the futile effort to pay off
the German war debts by means of gold extracted from seawater(!)

Upon the rise of the Nazis to power in Germany (1933), Haber was forced
to resign his directorship of the Kaiser Wilhelm Institute208. He removed to
Switzerland and died there, heartbroken, a year later.

1908–1922 CE Carl Vilhelm Ludvig Charlier (1862–1934, Sweden).
Astronomer. Developed a cosmological theory of an “hierarchical” fractal
universe along the lines of Lambert (1761), in which galaxies form clusters,
clusters form superclusters and so on ad infinitum. By arranging the dimen-
sions suitably, it is possible in this way to construct a universe with zero
average density . [Example: A cluster of order n contains pn stars of mass

m in a volume kqn; its average density ρ =
(

m
k

) (
p
q

)n

→ 0 as n → ∞ if
p < q.] Thus, one avoids the infinities inherent in the Newtonian treatment
of an homogeneous universe with a finite average density.

Charlier universes are inhomogeneous, and no volume V is large enough
to be typical. This model eliminates Olbers’ paradox if the average density of
matter in a cluster is less for higher order clusters than for lower order clusters,

208 Haber’s conversion to Christianity and all the services rendered by him to Ger-

many’s war-effort, industry and science did not make him less of a Jew in the

eyes of the Nazis.

In May 1933, Max Planck went to congratulate the newly elected Führer. He

seized upon the opportunity to plead on behalf of his friend Haber, who was

already blacklisted. Planck spoke of Haber’s major contributions to Germany’s

war-effort and postwar chemical industry. “There are”, he said, “nevertheless,

Jews of various kinds, and distinction should be made in favor of those among

them who are of great value to humanity and of distinguished German families

of high culture. . .”. The Führer stopped him there and remarked: “It is not

true, a Jew is a Jew, . . . I have to act against all of them in the same way”.

Planck then went on to say that Germany needs its Jewish scientists and their

dismissal will cause many of them to leave Germany, which will have a grave

consequences for German science. But the Führer went into a frenzy and Planck

had to leave.
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and is probably the only explanation which does not invoke a systematic
motion of all stars209.

Charlier was educated at the University of Uppsala and the Stockholm
Observatory. He then became the observatory director at the University of
Lund (1897–1927). After working in celestial mechanics, the calibration of
photographic photometry, and the theory of lenses, he turned to statistics
where he made extensive statistical studies of the distribution and motion of
stars in the solar neighborhood. Named after him are: Gram-Charlier se-
ries, Lunar crater Charlier, Martian crater Charlier and Minor Planet #8677
Charlier. He was a 1933 Bruce Medalist.

1908–1928 CE Godfrey Harold Hardy210 (1877–1947, England). One
of the greatest pure mathematicians of the 20th century. Helped foster, more

209 Carl Charlier’s first publication on hierarchy “Wie eine unendliche Welt

aufebauen sein kann” (1908), contains mathematical errors. The correct re-

sult was first derived in 1909 by Hugo von Seeliger in a letter to Charlier,

who acknowledged and used this result in a second article (1922).

John Herschel (1848), in his review of the first volume of Alexander von

Humboldt’s Kosmos, hinted at the possibility of hierarchical structure as a so-

lution to Olbers’ paradox. Richard A. Proctor (1837–1888, England), an

astronomer and popularizer of science, presented in Other Worlds than Ours

(1871) a semiquantitative treatment of a hierarchical solution. But neither

Herschel nor Proctor derived the conditions with any generality and precision.

Edward Fournier d’Albe (England), in his book Two New Worlds (1907),

dismissed absorption as a possible rescue mechanism for the Olbers’ paradox

and revived a long-forgotten idea of Lord Kelvin (1901): if the universe began

in the finite past, then only a finite part is visible. The rest — the part be-

yond a certain distance — cannot be seen because the light from this part has

not had time to reach us. Moreover, Fournier d’Albe championed the notion

of hierarchy and elaborated on the idea that our visible universe is just one in

a multiuniverse. All universes have similar structure, he suggested, and differ

only in scale.

Fournier d’Albe’s fractal theory of the universe, greatly influenced Charlier and

stimulated him to derive the mathematical conditions for a hierarchical solution

to the riddle of darkness.
210 For further reading, see:

• Hardy, G.H., A Mathematician’s Apology, Cambridge University Press, 1976,

153 pp.

• Hardy, G.H. and E.M. Wright, An Introduction to the Theory of Numbers,

Oxford University Press, 1989, 426 pp.

• Hardy, G.H., Ramanujan, Chelsea: New York, 1940, 236 pp.
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than anyone else, analytic methods for the resolution of discrete problems of
higher arithmetic.

Hardy contributed fundamentally to many realms in mathematics, includ-
ing analytic number theory, Diophantine analysis, Fourier series211, divergent
series, integral equations, inequalities, distribution of primes and the Rie-
mann zeta function212. His books and articles had a decisive influence on the
development of the above topics.

Hardy collaborated with J.E. Littlewood (1885–1977), S. Ramanujan
(1887–1920) and E. Landau (1877–1938).

Although Hardy boasted that he had never done anything useful in the
sense of practical applications, he discovered [concurrently with the German
physician Wilhelm Weinberg] an important and useful law in population
genetics. It became centrally important in the study of many genetic prob-
lems, including Rh blood group distribution and hemolytic diseases.

He showed that in large enough populations obeying Mendelian laws of
heredity, and in the absence of outside influences and of mutations, random
mating will produce within one generation, a stationary genotype distribution
with unchanged gene frequency.

Hardy was born in Cranleigh, Surrey. Both his parents were extremely
able people and mathematically minded, but want of funds had prevented
them from acquiring a university training.

• Hardy, G.H., A Course of Pure Mathematics, Cambridge University Press,

1967, 509 pp.

211 Riemann conjectured that the function
∑∞

n=1
sin(πn2t)

n2 is continuous but

nowhere differentiable. However, neither he nor Weierstrass succeeded in

proving this. Hardy (1916) showed that the function is not differentiable

at any irrational point and at some specific rationals. Finally (1971), math-

ematicians were able to show that it is differentiable at any rational point P
Q

with P ≡ Q ≡ 1 (mod 2). Weierstrass (1872) introduced his famous function

σ(t) =
∑∞

n=1 αn cos(βnt), 0 < α < 1. He showed that this function is contin-

uous but nowhere differentiable whenever αβ exceeds a certain value. Hardy

(1916) showed that αβ > 1 is all that is needed.
212 He proved that there are an infinity of roots of ζ(x + iy) = 0 on the line 1

2
+ iy

(y �= 0). The Riemann hypothesis claims that all zeros of ζ(x + iy) are of that

form.
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He was a child prodigy213. He went to Trinity College, Cambridge, in 1896,
was first wrangler in 1900 and was awarded (with Jeans) the Smith’s prize
in 1901. He taught mathematics at Cambridge during 1900–1919. In 1919
he was appointed to the Savilian chair of geometry at Oxford University. He
returned to Cambridge in 1931 as Sadleirian professor of pure mathematics,
and remained there until his death.

Hardy is credited with the following toast in a meeting of the London
Mathematical Society: “Here is to pure mathematics, let it be of no use to
anybody”. Hardy described himself as a problem-solver , and did not claim
to have introduced any new system of ideas. Yet he had a profound influence
on the mathematics of his time.

213 May this explain his interest in Ramanujan and also his preoccupation with

population genetics?
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Worldview XXX: Hardy

∗ ∗∗

“The function of a mathematician is to do something, to prove new theorems,
to add to mathematics, and not to talk about what he or other mathematicians
have done. Painters despise art-critics, and physicists, or mathematicians have
usually similar feelings. Exposition, criticism, appreciation, is the work for
second rate minds.”

∗ ∗∗

“Most people can do nothing at all well; perhaps five or even ten percent of
men can do something rather well.It is a tiny minority who can do anything
really well, and the number of people who can do two things well is negligible.”

∗ ∗∗

“Mathematics, more than any other art or science, is a young man’s game.
Newton, who was one of the world’s three greatest mathematicians, gave
up mathematics at fifty ... His greatest ideas of all, fluxions and the law
of gravitation, came to him when he was twenty-four(1666). He made big
discoveries until he was nearly forty, but after that he did little but polish
and perfect. Galois died at twenty-one, Abel at twenty seven, Ramanujan at
thirty-three, Riemann at forty. There have been men who have done great
work a good deal later; Gauss’ great memoir on differential geometry was
published when he was fifty (thought he had the fundamental ideas ten years
before), I do not know an instance of a major mathematical advance initiated
by a man past fifty.”

∗ ∗∗

“If intellectual curiosity, professional pride, and ambition are the dominant
incentives to research, then assuredly no one has a finer chance of gratifying
them than a mathematician. His subject is the most curious of all – there is
none in which truth plays such odd pranks. It has the most elaborate and the
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most fascinating technique, and gives unrivaled openings for the display of
sheer professional skills. Finally, as history proves abundantly, mathematical
achievement, whatever its intrinsic worth, is the most enduring of all. We can
see this even in semi-historic civilization. The Babylonian and Assyrian civi-
lizations have perished; Hammurabi, Sargon, and Nebuchadnezzar are empty
names; yet Babylonian mathematics is still interesting, and the Babylonian
scale of 60 is still used in astronomy. But of course the crucial case is that of
the Greeks.

The Greeks were the first mathematicians who are still ‘real’ to us today.
Oriental mathematics may be an interesting curiosity, but Greek mathematics
is the real thing. The Greeks first spoke a language which modern mathe-
maticians can understand; as Littlewood said to me once, they are not clever
schoolboys or ‘scholarship candidates’, ‘but fellows of another college’. Im-
mortality may be a silly word, but probably a mathematician has the best
chance of whatever it may mean... Mathematical game, if you have the cash
to pay for it, is one of the soundest and steadiest of investments.”

∗ ∗∗

“Immortality is often ridiculous or cruel: few of us would have chosen to be Og
or Ananias or Gallio. Even in mathematics, history sometimes plays strange
tricks; Rolle figures in the text-books of elementary mathematics like Newton;
Farey is immortal because he failed to understand a theorem which Haros have
proved perfectly fourteen years before; the names of five worthy Norwegians
still stand in Abel’s Life, just for one act of conscientious imbecility, dutifully
performed at the expense of their country’s greatest man. But on the whole
the history of science is fair, and this is particularly true in mathematics. No
other subject has such clearcut of unanimously accepted standards, and the
men who are remembered are almost always the men who merit it.”

∗ ∗∗

“A mathematician like a painter or a poet, is a maker of patterns... The
mathematicians’ patterns, like painters’ or the poet’s, must be beautiful; the
ideas, like the colors or the words, must fit together in a harmonious way.
It may be very hard to define mathematical beauty, but that is just as true
of beauty of any kind – we may not know quite what we mean by a beauti-
ful poem, but that does not prevent us from recognizing one when we read
it. Every chess-player can recognize and appreciate a ‘beautiful’ game or a
problem. Yet a chess problem is simply an exercise in pure mathematics.”
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∗ ∗∗

A chess problem is genuine mathematics, but it is in some way ‘trivial’ math-
ematics. However ingenious and intricate, however original and surprising the
moves, there is something essential lacking. Chess problems are unimportant.
The best of mathematics is serious as well as beautiful... The ‘seriousness’
of a mathematical theorem lie, not in its practical consequences, which are
usually negligible, but in the significance of the mathematical ideas which it
connects. We may say, roughly, that a mathematical idea is ‘significant’ if it
can be connected, in natural and illuminating way, with a large complex of
other mathematical ideas. Thus a serious mathematical theorem, a theorem
which connects significant ideas, is likely to lead to important advances in
mathematics itself and even in other sciences. No chess problem has ever af-
fected the general development of scientific thought. The chess problem is the
product of an ingenious but very limited complex of ideas, which do not differ
from one another very fundamentally and had no external repercussions. We
should think in the same way if chess had never been invented, whereas the
theorems of Euclid and Pythagoras have influenced thought profoundly even
outside mathematics.”

∗ ∗∗

Euclid’s theorem (existence of the infinity of prime numbers) is vital for the
whole structure of arithmetics. The primes are the raw material out of which
arithmetics is built, and Euclid’s theorem assures us that we have plenty of
material for the task. But the theorem of Pythagoras (irrationality of

√
2)

and its extensions (to very wide class of ‘irrationals’) has wider applications:
Euclid’s theorem tells us that we have a good supply of material for the con-
struction of a coherent arithmetics of the integers. Pythagoras’ theorem and
it’s extensions tell us that, when we have constructed this arithmetic, it will
not prove sufficient for our needs, since there will be many magnitudes which
obtrude themselves upon our attention and which it will be unable to measure.
Pythagoras discovery led to the construction of the much more profound the-
ory of Eudoxos , the finest achievements of Greek mathematics. This theory
is astonishingly modern in spirit, and may be regarded as the beginning of the
modern theory of irrational numbers, which has revolutionized mathematical
analysis and had much influence on recent philosophy... It is obvious that
irrationals are uninteresting to an engineer, since he is concerned only with
approximations, and all approximations are rational.”

∗ ∗∗
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“A serious theorem is a theorem which contains ‘significant’ ideas. There are
two things which seem essential, a certain generality and a certain depth:

The idea should be one which is a consistent in many mathematical con-
structions, even if stated originally in a fully special form, is capable of con-
siderable extension and is typical of a whole class of theorems of its kind.
The relation revealed by the proof should be such as connect many different
mathematical ideas.

Depth is difficult to define. It has something to do with difficulty. It
seems that mathematical ideas are arranged somehow in strata, the ideas in
each stratum being linked by a complex of relations both among themselves
and above and below. The lower the stratum, the deeper (and is general the
more difficult) the idea. Thus the idea of an ‘irrational’ is deeper than that
of an integer, but there are many theorems about integers which we cannot
appreciate properly, and still less prove, without digging deeper considering
what happens below”.

∗ ∗∗

“A physicist is trying to correlate the incoherent body of crude fact con-
fronting him with some definite orderly scheme of abstract relations, the kind
of schema which he can borrow only from mathematics.

A mathematician, on the other hand, is working with his own reality. Of
this reality, I take a ‘realistic’ and not an idealistic view.

This realistic view is much more plausible of mathematical than of physical
reality, because mathematical objects are so much more what they seem. A
chair or a star is not in the least like what it seems to be; the more we think of
it, the fuzzier its outline become in the haze of sensation which surrounds it;
but 2 or 317 has nothing to do with sensations, and its properties stand out
the more clearly the more we scrutinize it. Pure mathematics seems to me a
rock on which all idealism founders: 317 is a prime, not because we think so,
or because our minds are shaped in one way rather than another, but because
it is so, because mathematical reality is built that way.”

∗ ∗∗

“A science or an art may be said to be ‘useful’ if its development increases,
even indirectly, the material well-being and comfort of men, if it promotes
happiness. It is undeniable that a good deal of elementary mathematics (in-
cluding calculus) has considerable practical utility; the engineers could not
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do their job without a fair working of mathematics, and mathematics is be-
ginning to find applications in medicine and biology and the social sciences.
These parts of mathematics are, on the whole, rather dull; they are just the
parts which have least aesthetic value. The ‘real’ mathematics of the ‘real’
mathematicians, the mathematics of Fermat and Euler and Gauss and Abel
and Jacobi and Riemann and Ramanujan, is almost wholly ‘useless’. It is
the dull and elementary parts of applied mathematics, as the dull and ele-
mentary parts of pure mathematics, that work for good and ill214. It is the
commonplace and dull that counts for practical life.”

∗ ∗∗

“In great mathematics there is a very high degree of unexpectedness, combined
with inevitability and economy.”

∗ ∗∗

“Young Men should prove theorems, old-men should write books”

∗ ∗∗

“The mathematician’s patterns, like the painter’s or the poet’s must be beau-
tiful; the ideas, like the colors or the words must fit together in a harmonious
way. Beauty is the first test: there is no permanent place in this world for
ugly mathematics.”

∗ ∗∗

“I believe that mathematical reality lies outside us, that our function is to
discover or observe it and that the theorems which we prove, and which we
describe grandiloquently as our “creations,” are simply the notes of our ob-
servations.”

∗ ∗∗

214 During WWI Hardy took this to extreme, saying that:“a science is said to

be useful if its development tends to accentuate the existing inequalities in the

distribution of wealth, or more directly promotes the destruction of human life.”
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“Archimedes will be remembered when Aeschylos is forgotten, because lan-
guages die and mathematical ideas do not. “Immortality” may be a silly
word, but probably a mathematician has the best chance of whatever it may
mean.”

∗ ∗∗

“The fact is that there are few more “popular” subjects than mathematics.
Most people have some appreciation of mathematics, just as most people can
enjoy a pleasant tune; and there are probably more people really interested in
mathematics than in music. Appearances may suggest the contrary, but there
are easy explanations. Music can be used to stimulate mass emotion, while
mathematics cannot; and musical incapacity is recognized (no doubt rightly)
as mildly discreditable, whereas most people are so frightened of the name of
mathematics that they are ready, quite unaffectedly, to exaggerate their own
mathematical stupidity.”

∗ ∗∗

“I had better say at once that by ‘mathematics I mean real mathematics, the
mathematics of Fermat and Euler and Gauss and Abel; and not the stuff
that passes for mathematics in an engineering laboratory. I am not thinking
of “ ‘pure mathematics” (though naturally that is my first concern), I count
Maxwell and Einstein and Eddington and Dirac among real mathemati-
cians.”

∗ ∗∗

“It seems to me that no philosophy can possibly be sympathetic to a math-
ematician which does not admit, in one manner of other, the immutability
and unconditional validity of mathematical truth. Mathematical theorems are
true or false; their truth or falsity is absolutely independent of our knowledge
of them. In some sense, mathematical truth is part of objective reality.”
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Hardy-Littlewood conjecture —

the clustering of Prime Numbers (1919–1922)

The prime number theorem tells us that the average density of primes

around x is approximately215 x/ ln x
x = 1

ln x . This means that if we consider an
interval of length Δx about x and choose any integer t in this interval, then
the probability of t being a prime will approach 1

ln xΔx as x → ∞, if Δx
is small compared to x.

This implies that the primes tend to thin out as x grows larger. The law
that governs the distribution of primes as we go higher up in the number
series has boggled the minds of number-theorists since the time of Euler. We
know, for example that the so-called “twin primes” (i.e., pairs of primes of
the form x, x + 2), occur very high up in the number series. The largest pair
discovered up to 1995 is

242, 206, 083 · 238,880 ± 1,

and has 11, 713 decimal digits. Statistics indicate that twins tend to thin out
as we move higher up in the number series since, if p is a prime, it becomes
less and less likely that p + 2 is also a prime on account of the thinning out
of the primes themselves. Indeed, Viggo Brun (1885–1978) proved that the
sum of 1

p taken over all twin primes converges:

B =
(

1
3

+
1
5

)

+
(

1
5

+
1
7

)

+
(

1
11

+
1
13

)

+
(

1
17

+
1
19

)

+ . . .

= 1.902 160 54 . . .

where B is known as the Brun constant. This theorem (1919) tells us that
there are not very many twin primes compared with the total number of
primes, since

∑
1
p taken over only the twin converges, while

∑
1
p extended

over all primes diverges.

A study of prime tables has shown that constellations of primes
other than twins reoccur in the number series. Of special interest are
prime triplets (p, p + 2, p + 6) and (p, p + 4, p + 6), and prime quadruplets
(p, p + 2, p + 6, p + 8). These constellations are exemplified in (41, 43, 47),
(37, 41, 43) and (11, 13, 17, 19), (101, 103, 107, 109) respectively.

215 The nth prime has therefore the approximate value pn ∼ n ln n.
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Hardy and Littlewood (1922) made the following conjecture: Px, the
number of prime constellations p ≤ x, as x → ∞ is asymptotic to

π2(x) = Px(p, p + 2) ∼ 2C2

∫ x

2

du

(ln u)2
≤ 2C2

x

(ln x)2

C2 =
∏

p≥3

{

1 − 1
(p − 1)2

}

=
∏

p≥3

p(p − 2)
(p − 1)2

= 0.660 16 . . .

The ‘twin-prime constant’ C2 was calculated in 1961. Numerical evidence
shows (1976) that π2(1011) = 224, 376, 048. For other prime constellations,
the Hardy-Littlewood formulae are:

π3(x) = Px(p, p + 2, p + 6) ∼ Px(p, p + 4, p + 6) ∼ 9
2
C3

∫ x

2

du

(lnu)3

9
2
C3 =

9
2

∏

p≥5

p2(p − 3)
(p − 1)3

= 2.858 248 596 . . .

π4(x) = Px(p, p+2, p+6, p+8) ∼ 1
2
Px(p, p+4, p+6, p+10) ∼ 27

2
C4

∫ x

2

du

(lnu)4

27
2

C4 =
27
2

∏

p≥5

p3(p − 4)
(p − 1)4

= 4.151 180 863 237 4 . . .

Some of the largest known prime quadruplets (p, p + 2, p + 6, p + 8) are:

p = 1099 + 349, 781, 731 (1995)

p = 10499 + 883, 750, 143, 961 (1996)

p = 10599 + 1, 394, 283, 756, 151 (1997)

The table below compares the computer-count against calculation made by
means of the Hardy-Littlewood formulas for x ≤ 108:

Constellation Count Approximation

(p, p + 2) 440, 312 440, 368

(p, p + 2, p + 6) 55, 600 55, 490

(p, p + 4, p + 6) 55, 556 55, 490

(p, p + 2, p + 6, p + 8) 4, 768 4, 734
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The Hardy-Littlewood conjecture can be extended to longer finite constella-

tions, for example it can be shown that

Px(p + 11, p + 13, p + 17, . . . , p + 59, p + 61, p + 67) ∼ 187, 823 · 7
∫ x

2

du

(ln u)15

where the numerical constant is equal to

214

115
· 314

215
· 514

415
· 714

615
· 1114

1015
· 1314

1215
· 4 · 1714

1615
· 6 · 1914

1815
· 9 · 2314

2215
·
∏

p≥29

p14(p − 15)
(p − 1)15

.

Despite the fact that the primes are not all individually known, these constants

can be computed to any desired accuracy! This astonishing result is due to the

fact that the constants are expressible in terms of the prime zeta-function.216

An Unbelievable Identity (1917)

The classical theory of numbers was based, up to the 18th century, on

the unique representation of an integer as a product of prime numbers; these

multiplicative building blocks, and the concept of divisibility — are central to

the theory. Euler (1748) laid the foundations to a new branch of number

theory centered on the representation of integers as sums of other integers –

216 e.g.:

ln C2 =
∑

p≥3

ln
p(p − 2)

(p − 1)2
=

∑

p≥3

{

ln

(

1 − 2

p

)

− 2 ln

(

1 − 1

p

)}

=
∑

p≥3

{

− 2

p
− 1

2
· 4

p2
− 1

3
· 8

p3
− · · · +

2

p
+

1

2
· 2

p2
+

1

3
· 2

p3
+ . . .

}

=
∑

p≥3

∞∑

j=2

2 − 2j

j
· 1

pj
= −

∞∑

j=2

2j − 2

j

∑

p≥3

1

pj
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an additive theory, based on the concept of partition217. The word “partition”
has numerous meanings in mathematics. Any time a division of some object
into subobjects is undertaken, the word partition is likely to pop up. In
the present context, the partitions of a number are the ways of writing that
number as a sum of positive integers218. For example, the five partitions of 4
are

4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1

and we write p(4) = 5. Surprisingly, such a simple matter requires some deep
mathematics for its study.

The theory of partitions has an interesting history. Certain special prob-
lems in partition date back to the Middle Ages; however, the first discoveries
of any depth were made when Euler proved many beautiful and significant
partition theorems. Other great mathematicians — Lagrange (ca 1775),
Legendre (1801), Gauss (1808), Jacobi (1829), Sylvester (1855), Cayley
(1876), Ramanujan (1917) and Hardy (1917) have contributed to the de-
velopment of the theory. The various theoretical aspects of this subject have
recently found applications to statistical mechanics, combinatorics, analysis
and number theory. In these diverse applications, one is struck by the inter-
play of combinatorial and asymptotic methods.

Returning to the concept of partition of a positive integer n, we define it
as a finite nonincreasing sequence of positive integers λ1, λ2, . . . , λr, such that∑r

i=1 λi = n. The partition function p(n) is the number of partitions of n.

For example

p(0) = 1 [an empty sequence forms the only partition of zero]

p(1) = 1

p(2) = 2 ;2, 1 + 1

217 To dig deeper, see:

• Andrews, G.E., The Theory of Partitions, Cambridge University Press, 1998,
255 pp.

218 In the general problem of additive arithmetic we are given a system A of integers

a1, a2, a3, . . ., where A might contain all the positive integers, or the squares,

or the primes. We then consider all possible representations of an arbitrary

positive integer in the form n = ai1 + ai2 + · · · + ais , where s may be fixed or

unrestricted, the a’s may or may not be necessarily different, and order may

or may not be relevant, according to the particular problem considered. We

denote by p(n) the number of such representations. We then ask, what can be

said about p(n)? e.g., is there always one representation for every n?
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p(3) = 3 ;3, 2 + 1, 1 + 1 + 1

p(4) = 5 ;4, 3 + 1, 2 + 1 + 1, 1 + 1 + 1 + 1

p(5) = 7 ;5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1

p(6) = 11

p(7) = 15

p(8) = 22

p(9) = 30

p(10) = 42

p(20) = 627

p(50) = 204, 226

p(100) = 190, 569, 292

p(200) = 3, 972, 999, 029, 388

p(721) = 161, 061, 755, 750, 279, 477, 635, 534, 762

To evaluate p(n), Euler invented a powerful weapon provided by the theory of
generating functions; namely, he was seeking a function F (x), whose power-
series expansion has p(n) for its general coefficient. Indeed, he discovered
that

F (x) =
∞∏

n=1

(1 − xn)−1 =
1

(1 − x)(1 − x2)(1 − x3) . . .
= 1 +

∞∑

n=1

p(n)xn

=
∞∑

n=0

p(n)xn.

(1)

To see this, one writes the infinite product as

(1 + x + x2 + . . . )(1 + x2 + x4 + . . . )(1 + x3 + x6 + . . . ) . . .

and multiplies the series together: Every partition of n contributes
just 1 to the coefficient of xn. It is obvious that the finite product[
(1 − x)(1 − x2) . . . (1 − xm)]−1 enumerates the partitions of n into parts

which do not exceed m or (what is the same thing) into at most m distinct
parts.

Hardy and Ramanujan (1917) set forth to invert (1), namely solve for
p(n) in terms of F (x). Clearly, Cauchy’s integral theorem implies that

p(n) =
1

2πi

∫

C

F (x)
xn+1

dx, (2)
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where, say, C is a circle centered in the origin and inside the unit circle

|x| = 1. The evaluation of this integral leads eventually to the exact result (as

completed by Rademacher in 1937):

p(n) =
1

π
√

2

∞∑

k=1

Ak(n)
√

k
[ d

dx

sh
{

π
k

√
2
3 (x − 1

24 )
}

√
x − 1

24

]

x=n
, (3)

where

Ak(n) =
∑

h

ωh,ke− 2πinh
k ,

the sum being over h values prime to k and less then it, ωh,k being a certain

24qth root of unity219.

As one may discern, p(n) grows astronomically. Actual enumeration of the

3, 972, 999, 029, 388 partitions of 200 by hand would certainly take more than

a lifetime. However, the first 5 terms of the remarkable Hardy-Ramanujan

formula give the correct value of p(200).

This unbelievable identity wherein the left-hand side is the humble arith-

metic function p(n) and the right-hand side is an infinite series involving π,

square roots, complex roots of unity, and derivatives of hyperbolic functions

provided not only a theoretical formula for p(n) but also a formula which

admits relatively rapid computation.

For example, comparing the first 8 terms of the series for n = 200, we find

that the result is

219 Hardy and Ramanujan actually proved that p(n) is the integer nearest to
∑ν

k=1,

where ν is of the order
√

n. One thus obtains the exact value of p(n) with a

finite number of terms. Ramanujan (1913), in his famous letter to Hardy

(problem 14), actually suggested that the first term of the series may suffice.

“Ramanujan’s false statement” Hardy later said, “was one of the most fruitful

he ever made.”
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1st term +3, 972, 988, 993, 185.896
2nd term +36, 282.978
3rd term −87.555
4th term +5.147
5th term +1.424
6th term +0.071
7th term +0.000
8th term +0.043

3, 972, 999, 029, 388.004

which is the correct value of p(n) within 0.004.

The Hardy-Ramanujan formula is connected also to the theory of modular
functions. To see this we put x = q2 = e2πiτ (Im τ > 0) into Euler’s formula.

It then follows that q
1
12

∏∞
1 (1 − q2n) = x

1
24 /F (x).

Prior to 1917, p(n) were calculated either directly from Euler’s formula

(1) or from the known recursion formula220

p(n) =
1
n

n∑

k=1

σ(k)p(n − k), (4)

where σ(k) is the sum of divisors of k. Thus p(n) was calculated for n ≤ 200
by Percy Alexander MacMahon221 (1916). Ramanujan used his data to

discover, with the aid of the theory of modular functions, that:

p(5m + 4) ≡ 0 (mod 5)

p(7m + 5) ≡ 0 (mod 7)

p(11m + 6) ≡ 0 (mod 11)

p(25m + 24) ≡ 0 (mod 52)

p(49m + 47) ≡ 0 (mod 72)

220 Proved with the aid of Euler’s formula

(1 − x)(1 − x2)(1 − x3) · · · =

∞∑

n=− ∞
(−1)nx

1
2 n(3n+1).

221 Soldier and mathematician (1854–1928, England). Served as a major in the

Artillery before seriously taking up mathematics. He then became a professor

of mathematics at the Woolrich army school. Since 1904 had been associated

with St. John’s college in Cambridge. Contributed to combinatorics.
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For large values of n, one obtains from (3) the asymptotic law (with k = 1,
Ak(n) = 1):

p(n) ≈ 1
4n

√
3
eπ
√

2n
3 (5)

For example, with n = 243, (5) yields p(n) ≈ 1.38 × 1014 while the exact
result is

p(243) = 133, 978, 259, 344, 888.

In deriving the analytic expression for p(n), Ramanujan supplied the central
idea in the form of a conjecture and Hardy furnished the technical skill. Hans
Adolph Rademacher (1892–1969, Germany) made the formula exact in
1937.

Hardy and Ramanujan were a formidable pair; as a mathematical team,
they would remind us of the story of the two men, one blind and the other
lame, who together could do what no normal man could. Whatever the proper
assignment of credit, “we owe the theorem” Littlewood would write, “to a
singularly happy collaboration of two men, of quite unlike gifts, in which each
contributed the best, most characteristic, and most fortunate work that was
in him. Ramanujan’s genius did have this one opportunity worthy of it.”

1909 CE William Bateson (1861–1926, England). Geneticist. Coined the
term genetics. One of the founders of the science of genetics. Experimentally
confirmed Mendel’s reports and demonstrated genetic linkage.

1909 CE Axel Thue (1863–1922, Norway). Mathematician. Proved222

that for all integers m �= 0 and n ≥ 3, the Diophantine equation with integer
coefficients

g(x, y) = a0x
n + a1x

n−1y + · · · + an−1xyn−1 + anyn = m

has at most a finite number of integer solutions x, y.

Thue was born in Tönsberg. He enrolled at Oslo University in 1883. He
was a professor of applied mathematics at Oslo from 1903 to 1922. During

222 Thue’s theorem was characterized by Edmund Landau (1922) as “the most

important discovery in elementary number theory that I know”. In 1967, Alan

Baker (England) proved that for any solution, both |x| and |y| cannot exceed

a certain constant C whose value can be calculated explicitly in terms of m, n

and the coefficients a0, a1, . . . , an.
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1890–1891 he studied at Leipzig under Sophus Lie, but his works do not re-
veal Lie’s influence, probably because of Thue’s unwillingness to follow anyone
else’s line of thought.

1909 CE A. Wieferich (Germany). Mathematician. Proved that if p is a
prime and if xyz is not a multiple of p, the equation xp + yp = zp cannot be
solved in integers unless p2 divides (2p−1 − 1). This criterion is sufficient to
preclude solutions for all p < 100, 000, except 1093 and 3511. (No one has
proven that there are infinitely many p values which satisfy p2 � 2p−1 − 1).
In 1910, D. Mirimanoff showed that p2 � 3p−1 − 1 is an equally valid
criterion.

In 1914, H.S. Vandiver proved that p2 � (5p−1 − 1) is also a necessary
condition for xp + yp = zp to be soluble. Then Frobenius arrived with 11
and 17, and it has also been shown that if p is a prime of the form 6x − 1,
then 7p−1 − 1, 13p−1 − 1 and 19p−1 − 1 must each be divisible by p2 if
Fermat’s conjecture is to be violated for power p. Under such restrictions, the
minimal prime exponent p required was continually raised, and in 1941 it was
shown that if xp + yp + zp = 0 and no member of the triple x, y, and z is a
multiple of p, then p must be not less than 253, 747, 889.
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Prime Numbers223 — The Inexplicable Secret

∗ ∗∗

“And Joseph gathered corn as the sand of the sea, very much, until he stopped
numbering; for it was without number.”

(Genesis 41, 49; ca 1750 BCE)

“The sequence of Prime numbers is a mystery that the human mind will never
penetrate.”

(Leonhard Euler)

“There are two facts about the distribution of prime numbers which I hope
to convince you so overwhelmingly that they will be permanently engraved
in your hearts. The first is that despite their simple definition and role as
the building blocks of the natural numbers, the prime numbers belong to the
most arbitrary and ornery objects studied by mathematicians: they grow like
weeds among the natural numbers, seeming to obey no other law than that
of chance, and nobody can predict where the next one will sprout.

The second fact is even more astonishing, for it states just the opposite: that
the prime numbers exhibit stunning regularity, that there are laws governing
their behavior, and that they obey these laws with almost military precision.”

(Don Zagier, Inaugural lecture, Bonn University; May 05, 1975 CE)

223 To dig deeper, see:

• Du Sautoy, M., The Music of the Primes, Perennial, 2004, 335 pp.

• Derbyshire, J., Prime Obsession, Joseph Henry Press: Washington, D.C.,

2003, 422 pp.

• Conway, J.H. and R.K. Guy, The Book of Numbers, Copernicus, 1995, 310 pp.

• Landau, E., Hendbuch Der Lehre Von Der Veteilung Der Primzahlen, Chelsea,
1953, vol I–II.
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An integer greater than one is called a prime number if its only positive
divisors (factors) are one and itself. For example, the prime divisors of 10 are
2 and 5; and the first six primes are 2, 3, 5, 7, 11 and 13. The Fundamental
Theorem of Arithmetic states that the primes are the building blocks of the
positive integers: every positive integer is a product of prime numbers in one
and only one way, except for the order of the factors. (This is the key to their
importance: the prime factors of an integer determine its properties.)

The ancient Greeks proved (ca 300 BC) that there were infinitely many
primes and that they were irregularly spaced (there can be arbitrarily large
gaps between successive primes). On the other hand, in the nineteenth century
it was shown that the number of primes less than or equal to n approaches
a constant times n/(ln n) (as n becomes very large); so a rough estimate for
the nth prime is n ln n.

The Sieve of Eratosthenes is still the most efficient way of finding all very
small primes (e.g., those less than 1, 000, 000). However, most of the largest
primes are found using special cases of Lagrange’s Theorem from group theory.

In 1984 Samuel Yates defined a titanic prime to be any prime with at
least 1, 000 decimal digits. When he introduced this term there were only
110 such primes known; now there are over 1000 times that many! And as
computers and cryptology continually provide new impetus to search for ever
larger primes, this number will continue to grow. Before long we expect to
see the first ten-million digit prime.

The factorization of a number into two large prime numbers, found in 1997 by

Samuel Wagstaff and colleagues at the University of Indiana.

(3349 − 1)/2
=

163, 790, 195, 580, 536, 623, 921, 741, 301, 546, 724, 495, 839, 239, 656, 848,
327, 040, 249, 837, 817, 092, 396, 946, 863, 513, 212, 041, 565, 096, 492, 200,
805, 419, 718, 247, 075, 557, 971, 445, 689, 690, 738, 777, 729, 730, 388, 837,

174, 490, 306, 288, 873, 892, 840, 41
=

940, 428, 508, 899, 845, 109, 982, 891, 523, 204, 385, 417, 985,
320, 180, 216, 539, 562, 837, 411, 932, 116, 540, 252, 801, 854, 59

×
174, 165, 497, 408, 752, 564, 647, 463, 889, 994, 805, 339, 909,

443, 342, 668, 496, 870, 546, 115, 249, 228, 788, 407, 082, 066, 088, 604, 99
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The ten largest known primes as of this writing are:

Prime Decimal Digits Discovered

213466917 − 1 4053946 2001

26972593 − 1 2098960 1999

23021377 − 1 909526 1998

22976221 − 1 895932 1997

21398269 − 1 420921 1996

148307665536 + 1 404434 2003

147803665536 + 1 404337 2002

54767 · 21337287 + 1 402569 2002

136184665536 + 1 402007 2002

126606265536 + 1 399931 2002

Up to 1800, the theory of numbers consisted of a collection of isolated results.
Gauss’ work (1801) heralded the modern theory of numbers and determined
the directions of work in the subject up to the present time. Subsequent inno-
vations were made by Dirichlet (1837–41) and Riemann (1859) in analytic
number theory, which uses analysis in addition to algebra to treat problems
involving the integers.

Positive integers can be partitioned into three classes: the unit, 1; the
primes, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, . . .; and the composite
numbers, 4, 6, 8, 9, 10, . . .. A number greater than 1 is prime if its only
positive divisors are 1 and itself; otherwise it is composite.

Primes have interested mathematicians at least since Euclid, who proved
they were infinitely many. The general problem of determining whether a
large number is prime or composite, and in the latter case determining its
factors, has fascinated number theorists down the ages. With the advent of
high speed computers in the second half of the 20th century, considerable
advances have been made, although most fundamental problems in number
theory still remain unsolved224, awaiting the mathematicians of genius in fu-

224 For example:

• To find a prime number greater than a given prime.

• To find the prime number which follows a given prime.
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ture centuries225.

Prime numbers do not distinguish themselves from composite numbers in
any obvious way. If we look, for example, at the list of all prime and some
odd composite numbers up to 100,

prime: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,
53, 59, 61, 67, 71, 73, 79, 83, 89, 97

composite: 9, 15, 21, 25, 27, 33, 35, 39, 45, 49, 51, 55, 57, 63,
65, 69, 75, 77, 81, 85, 87, 91, 93, 95, 99,

and list the primes among the 100 numbers immediately preceding and the
same number immediately following 10 million:

9, 999, 901 10, 000, 019

9, 999, 907 10, 000, 079,

9, 999, 929

9, 999, 931

9, 999, 937

9, 999, 943

9, 999, 971

9, 999, 973

9, 999, 991,

we see no apparent reason why one number is prime and another is composite.
To the contrary, upon looking at these numbers one has the feeling of being in
the presence of one of the inexplicable secrets of creation. That mathemati-
cians have not penetrated this secret is perhaps most convincingly shown by

• To compute directly the nth prime number, when n is given.

• To find the number of primes not greater than a given prime (exact formula).

225 The twelve greatest number theorists during the past 25 centuries are:

Pythagoras (ca 580–500 BCE, Greece); Euclid (330–260 BCE, Greece); Dio-

phantos (206–290 CE, Greece); Fermat (1601–1665, France); Euler (1707–

1783, Switzerland); Lagrange (1736–1813, France); Legendre (1752–1833,

France); Gauss (1777–1855, Germany); Jacobi (1804–1851, Germany); Rie-

mann (1826–1866, Germany); Hardy (1877–1947, England); Ramanujan

(1887–1920, India).
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the ardor with which they search for bigger and bigger primes. With numbers
which grow regularly, like squares or powers of two, nobody would ever bother
writing down examples larger than the previously known ones, but for prime
numbers, people have gone to a great deal of trouble to do just that.

Moreover, it was found that the inquiry into composite numbers is not
easier than investigations about prime numbers! Thus, for example, we are not
yet able to answer the question whether or not, among the Fermat numbers
Fn = 22n

+ 1 (n = 1, 2, 3, . . . ), there are infinitely many composite numbers.
So far we only know about 100 such composites, of which the greatest is F23471

(year 1999).

A composite number C can always be written as a product in at least two
ways (since 1 · C and C · 1 are always possible). Call these two products

C = ab = cd,

then it is obviously the case that c divides ab. Set

c = mn,

where m is the part which divides a, and n the part which divides b. Then
there are integers p and q such that

a = mp

b = nq.

Solving ab = cd for d gives

d =
ab

c
=

(mp)(nq)
mn

= pq.

It then follows that

S ≡ a2 + b2 + c2 + d2

= m2p2 + n2q2 + m2n2 + p2q2

= (m2 + q2)(n2 + p2).

Consequently, a2 + b2 + c2 + d2 is never prime! In fact, the more general
result that

S ≡ ak + bk + ck + dk

is never prime for k an integer ≥ 0, also holds.
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Divisors, sums of divisors and aliquot parts

Let n be any natural number greater than 1 and let the distinct primes
in its factorization be p1, p2, p3, . . . , pk. Suppose that the prime p1 occurs
α1 times in the factorization of n, the prime p2 occurs α2 times, and so on.
Then, the fundamental theorem of arithmetic226 states that the unique prime
factorization of n is:

n = pα1
1 pα2

2 . . . pαk

k . (1)

The divisors of n are all possible products of prime powers where the power of
pj can assume the values 0, 1, 2, . . . , αj . We can then count d(n), the number
of different divisors of a number n (including 1 and n)

d(n) = (α1 + 1)(α2 + 1) . . . (αk + 1). (2)

One may also consider the sum of all divisors (again, including 1 and n)

σ(n) = (1 + p1 + p2
1 + · · · + pα1

1 )(1 + p2 + p2
2 + · · · + pα2

2 )

× . . . (1 + pk + p2
k + · · · + pαk

k ) (3)

=
pα1+1
1 − 1
p1 − 1

· pα2+1
2 − 1
p2 − 1

· · · · · pαk+1
k − 1
pk − 1

.

Thus e.g.

d(pα) = α + 1; σ(pα) =
pα+1 − 1

p − 1
.

The function σ(n) − n yields the sum of divisors of n other than n itself.
This is known as aliquot parts of a number.

Examples of theorems:

• Prove that log n ≥ k · log 2, where n is any natural number and k is
the number of distinct primes that divide n.

This obviously holds for n = 1 (k = 0) Let n = pα1
1 pα2

2 . . . pαk

k , where
n is a natural number greater than 1 and p1, p2, . . . , pk its prime
divisors. Since none of the pi is less than 2 and each αi ≥ 1, then
n ≥ 2α1+α2+···+αk ≥ 2k. Taking the natural logarithm of this yields the
desired result: log n ≥ k · log 2.

226 This theorem does not seem to have been stated explicitly before Gauss. It

was, of course, familiar to earlier mathematicians, but Gauss was the first to

develop arithmetic as a systematic science.
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• Every composite number n has at least one prime divisor less than or
equal to

√
n. Indeed, if n is a composite number, then n = ab, where

a and b are natural numbers < n. Without loss of generality, we may
assume that a ≤ b. Hence n = ab ≥ a2 so that a ≤

√
n. But the number

a is > 1, because if a = 1, then we should have n = b while at the same
time b < n. However, the number a has a prime divisor p which is
obviously ≤ a and so ≤

√
n. But p, being a divisor of a divisor a of the

number n, is also a divisor of n. The number n has therefore a prime
divisor p ≤

√
n.

• For any number, the least divisor greater than 1 must be a prime num-
ber.

If the number is a prime, its least divisor greater than 1 is the number
itself, which is a prime. If it is not a prime, and it has a composite least
divisor, this number has lesser divisors (> 1) of its own so it cannot be
the least.

Degree of compositeness

There are two ways in which it is natural to “measure”, or quantify, the
degree of compositeness of a number227 n:

• By its number of divisors, d(n).

• By its number of prime factors: Let f(n) denote the number of different
prime factors and F (n) denote the number of total prime factors. For
example,

f(23 · 32 · 5) = 3; F (23 · 32 · 5) = 6; F (2k) = k.

[For a prime number n: f(n) = F (n) = 1.]

Dirichlet (1838) showed that

lim
n→∞

{
1
n

[d(1) + d(2) + · · · + d(n)]
}

⇒ ln n.

227 In this section, “number” means “natural number” unless stated otherwise.
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Ramanujan (1917) proved that

lim
n→∞

1
n

[f(1) + f(2) + · · · + f(n)] ⇒ log log n,

lim
n→∞

1
n

[F (1) + F (2) + · · · + F (n)] ⇒ log log n.

Twin primes

Clearly, there are no successive primes except 2 and 3, since all primes > 2
are odd. However, there are many pairs of successive odd primes, known as
twin primes, such as (3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43). There
are 152, 892 such pairs of numbers less than 30 million. We do not know
whether the number of such primes is infinite. In other words, we do not
know whether the number 2 can be written as a difference of two primes in
an infinity of ways.

The probability that two random numbers near x are both prime is of

order
(

1
log x

)2
; i.e. in an interval from x to x + a one may expect of order

a
(log x)2 such numbers. Actually, we should expect a bit more, since the fact

that n is already a prime slightly changes the chance that n + 2 is prime

(e.g. n + 2 is certainly odd). An easy heuristic argument gives c a
(log x)2

where c = 1.320 323 631 6 . . .. Thus, for example, in the interval between
1015 → 1015 + 150, 000, the expected number of twin primes is 166 against
161 actually found. This extremely good agreement is especially surprising,
since it has not yet even been proved that there are infinitely many such pairs,
let alone that they are distributed according to the conjectured law.

According to Hardy and Littlewood (1922), the number of prime
quadruplets (4-tuples of successive odd primes) with p < x is asymptotic to228

Q(x) = c

∫ x

2

dt

(log t)4
, c = 4.151 180 863 237 4 . . . ,

228 In this chapter and elsewhere in this book we sometimes use the British notation

log x for ln x.
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where c is known as the Hardy-Littlewood constant. In the vicinity of a large
x, the average density of prime quadruplets ∼ dQ

dx = c
(log x)4 .

It is easy to prove that there exist arbitrarily long sequences of nat-
ural numbers which contain no prime numbers. A sequence of m such suc-
cessive numbers is, for example, the sequence (m + 1)! + 2, (m + 1)! + 3,
(m + 1)! + 4, . . . , (m + 1)! + (m + 1), because the first number of this se-
quence is divisible by 2, the second by 3, etc., and the last by m + 1; thus they
are all composite. For m = 100 the numbers would be gigantic, but between
the prime numbers 370, 261 and 370, 373 there lie 111 successive composite
numbers. Among the hundred and one successive numbers from 1, 671, 800 to
1, 671, 900 there is no prime number.

It is difficult to prove that there exist prime numbers on both sides of which
there are arbitrarily many composite numbers, i.e. that for every natural m
there exist prime numbers p such that each of the numbers p − k and p + k,
where k = 1, 2, . . . , m, is composite.

In 1975, the largest known twin primes were

76 · 3139 ± 1 = 158, 733, 282, 881, 841, 916, 274, 491, 012, 923, 328, 901, 749,
236, 259, 319, 203, 520, 296, 443, 150, 620, 292± 1.

By 1995, the record grew to numbers with 11, 713 digits!
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Fermat’s Last Theorem229 (250–1980 CE)

The history of FLT starts in ca 250 CE with Diophantos, whose Arith-
metica considered many problems in elementary number theory. A typical
problem, taken from Book II, Problem 8, would be to divide a given square
into the sum of two squares. His solution, in modern notation, is as fol-
lows: let a2 be the given square for which one wants to find x and y such
that a2 = x2 + y2. As usual, Diophantos asks for rational solutions. For a
suitably chosen number m, one can write y = mx − a. When this is sub-
stituted into the former equation, one finds x = 2am

m2+1 . Here m may be any
rational number. Diophantos must have proceeded only by illustrating the
method on a sample. He chooses a = 4 and takes a solution that corre-
sponds to m = 2 in our formula, giving x = 16

5 , y = 12
5 . One verifies that

indeed
(

16
5

)2 +
(

12
5

)2 = 42.

To us this problem is quite straightforward, but it was not always so. In
the oldest preserved Diophantos manuscript, copied in the 13th century, we
find at this point the following heartfelt remark by the scribe: “Thy soul,
Diophantos, to Satanos, for the difficulty of thy problems and this one in
particular”.

The Arithmetica was one of the last Greek mathematical works translated
into Latin (1575). Fermat (1601–1665) had a copy of Bachet’s translation
of 1621 and made a series of intriguing annotations in its margins. Sometime
in the late 1630’s, while reading the section which solves the problem given
above, he added in the margin: “On the other hand, it is impossible to sepa-
rate a cube into two cubes, or a biquadrate into two biquadrates, or generally
any power except a square into two powers with the same exponent. I have
discovered a truly marvelous proof of this, which however the margin is not
large enough to contain”.

Thus, the basic claim of Fermat’s Last Theorem is that the equation
xn + yn = zn has no solutions when x, y, z are nonzero integers and n > 2.

229 To dig deeper, see:

• Stewart, I. and D. Tall, Algebraic Number Theory and Fermat’s Last Theo-
rem, A K Peters, 2002, 218 pp.

• Van der Poorten, A., Notes on Fermat’s Last Theorem, Wiley, 1996, 222 pp.

• Ribenboim, P., 13 Lectures on Fermat’s Last Theorem, Springer-Verlag, 1979,

302 pp.
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Generations of mathematical historians have debated whether Fermat really
did have a proof, through many experts doubt that he did. For one thing,
the equation xn + yn = zn was atypical for Fermat — the vast majority of
the other equations he studied dealt with exponents ≤ 4. Also, in his cor-
respondence, he only stated FLT for the exponent n = 3. As for Fermat’s
“marvelous proof ”, it probably used his technique of infinite descent.

His ‘descent proof’ for n = 4 is actually known: it follows from a theorem
of Fermat’s on the area of a right triangle with integral sides not being able to
be a square. This proof is given in one of his marginal notes — this time the
margin was big enough. It seems likely that Fermat thought that his proofs
for n = 3 and 4 can be generalized, but that they actually did not230.

After Fermat’s death, in 1670, his marginal notes were published by his
son.

In 1729, Goldbach wrote Euler and mentioned the conjectures of Fer-
mat presented in the published notes. This got Euler, only 22 at the time,
thinking about number theory. Three years later, Euler wrote his first paper
on number theory, disproving a conjecture of Fermat on primes of the form
22n

+ 1. For the next forty years, Euler proved many of Fermat’s conjectures
and in so doing, transformed number theory from a collection of miscellaneous
facts and results into an organized body of knowledge at the very center of
mathematics.

Consider an example of what Euler did: In Book VI of the Arithmetica,
Fermat had claimed in a marginal note that the only integer solutions to
x3 = y2 + 2 are given by (x, y) = (3,±5). To prove this, Euler uses numbers
of the form a + b

√
−2, with a, b integers.

Here is his proof : x3 = y2 + 2 = (y +
√
−2 )(y −

√
−2 ). One can show

that y +
√
−2 and y −

√
−2 are relatively prime231, and since their product

230 Fermat claimed to have found a proof of the theorem at an early stage in his

career (1637). Much later (1659) he spent his time and effort proving the cases

n = 4 and n = 5. Had he had a proof to his theorem earlier, there would have

been no need for him to study specific cases.

Furthermore, if he really thought he had a proof, he would have announced the

result publicly, or challenge some English mathematician to prove it. It is likely

that he found a flaw in his own proof, and never bothered to erase the marginal

comment because it never occurred to him that anyone would see it there. All

the facts indicate that Fermat quickly became aware of the incompleteness of

the (allegedly general) “proof” of 1637. Of course, there was no reason for a

public retraction of his privately made conjecture.
231 No common factor p + q

√
−2 for any integer p, q. These complex numbers

p + i
√

2q, form a ring.
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is a cube of (x+0
√
−2,) each of them must also be a cube of a number of the

form: integer + integer
√
−2, so

y +
√
−2 = (p + q

√
−2 )3 = p3 − 6pq2 + (3p2q − 2q3)

√
−2

⇒ 1 = 3p2q − 2q3 = q(3p2 − 2q2).

The last equation implies p = ±1 and q = 1. Substituting this in, we get
y = p3 − 6pq2 = ±5 and x = 3, as claimed.

This proof, while elegant, is incomplete, for we have not shown that num-
bers of the form a + b

√
−2 have unique factorizations into primes, or even

for that matter, that there are primes in this ring, or that any ring element
factorizes into them (although it is relatively easy to prove that the numbers
a + b

√
−2 do have these properties). There are three reasons why the above

example is important:

� It reminds us that there are many Diophantine equations besides just
FLT, and that what we really want is a method for dealing with as many
of them as possible.

� It generalizes the integers to a set of numbers which has much of the
same arithmetic structure (addition, multiplication, etc.). This sort of
generalization occurs frequently in mathematics.

� Finally, the equation y2 = x3 − 2 is an example of an elliptic curve.
Elliptic curves play a crucial role in the eventual 1990s proof by A. Wiles
of FLT, which uses analytical number theory.

Clearly it is sufficient to prove FLT for n = 4 (done by Fermat) and for n
an odd prime, since we can factor the exponent. It can also be assumed that
x, y, z are nonzero relatively prime integers, because we can cancel common
factors. By the early 1800’s, all of Fermat’s problems were solved except for
FLT (thus engendering the name, Fermat’s Last Theorem). That being said,
the highlights of the 19th century work on the FLT is given by the following
chronological list:

• 1816 — The French Academy announces a prize for resolutions of FLT
(either proof of the conjecture or of its falsehood).

• In the 1820’s, Sophie Germain showed that if p and 2p + 1 are prime,
then xp + yp = zp has no solution with p � xyz. This latter condition
defines the so-called Case I of FLT. [Case II is where p | xyz and is
usually regarded as being much harder.]

• 1825 — Dirichlet and Legendre prove FLT for n = 5.
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• 1832 — Dirichlet, after trying to prove it for n = 7, proved it for n = 14.

• 1839 — Lamé proved FLT for n = 7.

• 1847 — Lamé and Cauchy presented false proofs of FLT.

• 1844–1857 — Kummer’s work on FLT.

Kummer (and Cauchy and Lamé) started, á la Euler, by factoring the
right hand side of the FLT equation as

xp = zp − yp = (z − y)(z − ζy)(z − ζ2y · · · (z − ζp−1y)

where ζ = e2πi/p = cos(2π/p) + i sin(2π/p) is a pth root of unity and satisfies
ζp = 1. In general, working with roots of unity will require us to use number
rings of the form a0 + a1ζ + · · · + ap−1ζ

p−1, a1 · · · ap−1 ∈ Z which are called
cyclotomic integers (Z is the ring of integers: 0, ±1, ±2, . . . ). But a problem
arises when unique factorization, one of our main tools, fails for the cyclotomic
integers. As Kummer discovered in 1844, this first occurs for p = 23 (and
now we know that unique factorization fails for all larger primes as well).

Kummer’s solution to this was twofold. First, he introduced a general-
ization of cyclotomic integers, called ideal numbers, which make up for the
lack of unique factorization. Second, he defined the class number h, which
measures how badly unique factorization is violated.

Here is a summary of Kummer’s results:

• 1847 — Theorem: FLT holds for p if p � h (such p are called regular
primes).

• 1847 — Theorem: p is regular iff p does not divide the numerator of the
Bernoulli numbers B2, B4, . . . , Bp−3.

We can define the Bernoulli numbers by the Taylor expansion
x

ex −1 =
∑∞

n=1
Bn

n! xn. A corollary of this result is that for p < 100, only
37, 59, and 67 are irregular.

• 1850 — The French Academy offers a second prize for a solution to FLT,
withdraws it, and then awards a medal to Kummer.

• 1857 — Kummer develops complicated criteria for proving FLT for cer-
tain irregular primes. There are some gaps in his proofs which are later
filled by H.S. Vandiver in the 1920’s. These results establish FLT for
p < 100.

Further developments occurred as follows:
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• 1908 — The Wolfskehl prize for a solution to FLT is announced. Later
inflation of the Deutschmark reduced the value of this prize considerably,
but did not reduce the flow of crank solutions submitted.

• 1909 — Wieferich proved that if xp + yp = zp and p � xyz (Case I
of FLT), then 2p−1 ≡ 1 mod p2. This is a strong congruence which is
particularly easy to check on a computer.

• 1953 — Kustaa Adolf Inkeri (1908–1997, Finland) proved that if
xp + yp = zp and x < y < z, then x > p3p−4.

• 1971 — Brillhart, Tonascia and Weinberger showed that Case I of
FLT is true for all primes less than 3 · 109.

• 1976 — Wagstaff showed that FLT is true for all primes less than
125, 000.

The conclusion of all this work is that any counter-example to FLT must
involve p > 125, 003 and z > y > x > (125, 003)375,005 ≈ 4.5 · 101,911,370.

Missing from the present account of FLT is the work of the many mathe-
maticians who created the theories of reciprocity theorems, class field theory,
elliptic curves, modular forms and Galois representations, and searched out
the amazing connections between them232; and also the work in the 1980s and
1990s, including the first valid proof of FLT by A. Wiles in the 1990s.

1909–1913 CE William David Coolidge (1873–1975, USA). Physicist
and inventor. Developed a method of producing fine tungsten wires for use
as filaments of light bulbs (1909). Invented the ‘Coolidge tube’, a device for
emitting X-rays (1913). This invention completely revolutionized the genera-
tion of X-rays and remains to this day the model upon which all X-ray tubes
for medical applications are patterned.

232 For example, it was discovered only in 1984 by R.C. Mason that the proof of

Fermat’s theorem for polynomials is rather trivial!

Let x(t), y(t), z(t) be relatively prime polynomials in one variable over

the field of complex numbers. Then [x(t)]n + [y(t)]n = [z(t)]n is valid

only for n ≤ 2. The proof follows as a corollary of Mason’s theorem

(1984): If a(t), b(t), c(t) = a(t) + b(t) be relatively prime polynomials, then

max deg{a, b, c} = n0(abc) − 1, where n0(f) = number of distinct roots of f .
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Coolidge was born in Hudson, MA and graduated from M.I.T. (1896),
majoring in electrical engineering. He received his Ph.D. from the University
of Leipzig. During WWII he contributed to the development of radar.

1909–1917 CE Sören Peter Lauritz Sörensen (1868–1939, Denmark).
Chemist. Introduced the symbol pH to denote the negative logarithm of the
concentration of the hydrogen-ion in a Sörensen scale that serves as a measure
of acidity or alkalinity of a solution. Pointed out the effect of pH on enzyme
activity.

Sörensen was director of Chemical Department, Carlsberg Laboratory,
Copenhagen (1901–1939).

Acidic solutions contain hydrogen-ions, H+ (actually hydroniom-ions,
H3O+). A basic solution contains hydroxide-ions, OH−. Pure water at 25◦C
contain hydrogen-ions in concentration 1 × 10−7 mole/liter, and hydroxide-
ions in the same concentration. These ions are formed by the dissociation of
water233: H2O � H+ + OH−. Acidic solutions contain hydrogen-ion in large
concentration and hydroxide-ion in a very small concentration. The range of
acidities and basicities for aqueous solutions fall between 1 mole/liter solutions
of strong acids and 1 mole/liter of strong bases. It includes practically all the
solutions associated with the metabolism of living organisms as well as most of
the aqueous solutions taking part in geological processes. The corresponding
hydrogen-ion concentrations lie between 1 and 10−14 mole/liter.

Sörensen expressed the acidities of aqueous solutions on a logarithmic
scale, defined as: pH = − log10[H3O+]. The symbol pH was intended origi-
nally as an abbreviation for the phrase “potential of hydrogen-ion”. Electric
potential difference between the electrodes for certain types of galvanic cells
vary linearly with this particular property of the electrolyte. So called “pH
meters” operate on this principle.

Sörensen reported in 1917 that egg albumin has a molecular weight of
34,000 (determined through osmotic pressure measurements).

233 The reaction H+ + OH−�H2O has an ion-product

KW = [H] × [OH−] = 1.0 × 10−14mole2/l2

at room temperature (25◦C). The quantity pH is defined as the negative

logarithm of the hydrogen ion-concentration. At the neutral point where

[H+] = [OH−], the pH is 7. If pH < 7, the solution is acid ; if pH > 7,

the solution is alkaline.
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1909–1925 CE Karl Bosch (1874–1940, Germany). Chemist. Developed
the nitrogen fixation process for the synthesis of ammonia (invented by Fritz
Haber) to an industrial scale (1914), enabling the Germans to manufacture
explosives without relying on foreign imports of nitrogen bearing materials,
capable of being blocked by the allies in WWI. In peacetime, the process
allowed the cheap manufacture of fertilizers, equally vital to the survival of a
country. Invented a process for manufacture of hydrogen (1925).

Bosch was born in Cologne and studied chemistry at the University of
Leipzig, taking his doctorate in 1898. He became chairman of the vast in-
dustrial conglomerate IG Farbenindustrie AG (1925). In 1931 he received the
Nobel Prize for Chemistry (jointly with Friedrich Bergius) for their work
on high-pressure synthesis reactions.

1909–1926 CE Peter (Joseph William) Debye (1884–1966, Nether-
lands and U.S.A.). Physicist. Contributed widely to physical chemistry and
particularly to our understanding of solids. His theory on the thermal vi-
bration of a solid (1911) is among his best known works. Studied molecular
structure through investigations on dipole moments and on diffraction of X-
rays and electrons in crystals and gases (1916). Proposed (with Giauque,
1926) that paramagnetic salts could be used for achieving very low tempera-
tures.

Revised Pierre Dulong and Alexis Petit’s value of 6 cal/mole/ ◦C for
the molar heat capacity of most substances (1819) by correcting at low tem-
peratures for quantum freeze-out of vibrational modes of the atoms (1912).
The resulting theoretical curve, which descends to 0 cal/mole/ ◦C at 0 ◦K, is
found to agree with experiment and was seen as an early success for quantum
physics.

Discovered (1909) a useful asymptotic expansion of Bessel functions for
large real argument x and index ν (ν/x fixed). Awarded the 1936 Nobel
prize in chemistry.

Debye was born in Maastricht, Holland. Director of Kaiser Wilhelm Insti-
tute for Physics, Berlin (1935–1940). Professor at Cornell University (1940–
1950). Debye was a Nazi sympathizer and intensely supported the German
Nazi Party and Hitler from May 1933 together with his friends Werner
Heisenberg and George Braque.

However, being a Dutch citizen, he was forced to leave Germany after the
German occupation of the Netherlands.

1909–1929 CE Phoebus Aaron Theodor Levene (Fishel Aarono-
vich Levin, 1869–1940, U.S.A.). Biochemist. Discoverer of RNA and DNA.
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First to identify sugar ribose (1909) and deoxyribose (1929) in nucleic acids234.
Levene maintained that, in the nucleic acid molecule, each ribose (or deoxyri-
bose) portion has a phosphorous group attached to one side and a purine or
pyrimidine to the other. This combination of groups is called a nucleotide. In
his pioneering work Levene determined the formation of nucleotides and how
they combine in chains.

Levene was born in Sagor, Russia to Jewish parents and immigrated to the
U.S. in 1892. He was a member of the Rockefeller Institute (now Rockefeller
University) during 1905–1939.

1909–1930 CE Otto Selz (1881–1943; Germany). Father of modern
cognitive psychology. Had decisive influence on the key ideas of Popper’s
philosophy of science with its emphasis on the method of trial and error. His
theory of problem solving and scientific discovery laid the foundation for much
of contemporary cognitive psychology. Expounded his views in his books:
“Über die Gesetze des geordneten Denkverlaufs” (1913) and “Zur Psychologie
des produktiven Denkens und des Irrtums” (1922).

Otto Selz was born in Munich to Jewish parents. Studied law and phi-
losophy in Munich and Berlin (Ph.D. 1909; Habilitation at the University of
Bonn 1912).

234 Ribose differs from glucose, fructose, and galactose in that it has 5 carbons
instead of 6. This five-carbon chain tends to form a ring with an oxygen atom

connecting the first and 4-th carbon atoms

H

|
H — O — C — H O O — H

� � � �

C H H C

� � | | � �

H C — C H

� �

O O ←− missing in deoxyribose
| |
H H

Later, Levene discovered that not all nucleic acid molecules contain ribose; some

contain a closely related sugar, which differs only in the absence of one of the

oxygen atoms of ribose. Its name is, therefore, deoxyribose.

It is on the basis of these two sugars that nucleic acid came to be divided into two

groups: ribonucleic acid (RNA), which contained ribose; and deoxyribonucleic

acid (DNA), which contained deoxyribose.
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After serving on the Western front in WWI (1915–1918) he occupied posi-
tions in psychology and philosophy at the Universities of Bonn and Mannheim
(1920–1932).

In 1933 he was dismissed from his academic positions because of his Jewish
descent and he went into exile in the Netherlands. In 1942 the Nazis confined
him to the Amsterdam Ghetto. He was arrested (1943) and soon thereafter
perished with his entire family in the gas chambers of Auschwitz.

1909–1933 Alfred Haar (1885–1933, Hungary). Mathematician. Worked
in analysis, studying orthogonal systems of functions, partial differential equa-
tions, Chebyshev approximations, linear inequalities and compact continuous
groups.

In his doctoral thesis (under Hilbert, 1909) he discovered the first
wavelet235 basis (system of compactly supported orthonormal functions gener-
ated from a single function by translation and dilation) known as Haar-basis.
Introduced (1932) a measure on groups, now called the Haar measure, which
allows an analogue of Lebesgue integrals to be defined on locally compact
topological groups [it was used by von Neumann, by Pontryagin (1934)
and Weil (1940) to set up an abstract theory of commutative harmonic analy-
sis].

Haar was born in Budapest and died in Szeged. He traveled to Germany
(1904) to study at Göttingen. He taught there until 1912, when he returned
to Hungary and held chairs at Budapest and Szeged universities.

1909–1937 CE Constantin Carathéodory (1873–1950, Greece and Ger-
many). Pure and applied mathematician. Made significant contributions
to the calculus of variations, theory of real and complex functions, confor-
mal mapping and the theory of point-set measure. An outer measure and
a pseudomeasure in complex analytic space are named after him. His inter-
ests also extended beyond pure mathematics into applications to mechanics,
thermodynamics, relativity theory and geometrical optics.

235 Wavelet theory is based upon a multiresolution spectral decomposition that al-

lows information in both time and frequency domains (or space and wavenumber

domains) to be retained. Earlier pioneers (except Alfred Haar) include Paul

Levy; Eugene Wigner (Wigner distribution, 1932); Dennis Gabor (Gabor

expansion, 1946). Jean Morlet and Alex Grossman (1975–1981) initiated

modern wavelet theory while developing the previous idea of Windowed Fourier

Transform (D. Gabor). It has since found extensive applications in digital sig-

nal processing, image processing and music. Important later contributions were

made by Y. Mayer and Stephane Mallot (1986), I. Daubechies (1988) and

L. Cohen (Cohen classes, 1989).
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Carathéodory was born in Berlin and attended Belgium’s École Militaire
(1891–1895), then worked as engineer on the Asyut Dam in Egypt. In 1900 he
begun to study mathematics at the University of Berlin. Transferred (1902) to
Göttingen and received his Ph.D. (1904) there under Hermann Minkowski.
He held professorships at various universities in Germany and, 1920–1924, in
Greece. From 1924 he was at th University of Munich; where he stayed
throughout the entire Nazi regime and WWII.

1909–1944 CE Richard Martin von Mises (1883–1953, Austria and
U.S.A.). Applied mathematician. Contributed significantly to the fields of
statistics, probability, mechanics, aerodynamics and philosophy of science.

His primary work in statistics concerned the theory of measure, and in-
troduced the use of statistical functions. Suggested axiomatic systems for
the logical foundation of the theory of probability [in his book: “Probability,
Statistics and Truth”]. In aerodynamics, he made fundamental advances in
boundary-layer-flow theory and air-foil design. In elasticity theory, he origi-
nated criteria for fracture (Von Mises yield-criteria).

Von Mises was born to Jewish parents in Lvov, Poland and was educated
in Vienna. He was a professor of applied mathematics at the University of
Strasbourg (1909–1916). He served as a pilot in the German army during
WWI. After the war he moved to the University of Dresden and then became
professor of applied mathematics and director of the Institute for Applied
Mathematics at the University of Berlin (1920–1933). With the rise of the
Nazis to power in 1933 he became a professor of mathematics at the Univer-
sity of Istanbul (1933–1939). Finally, in 1939, he joined the staff of Harvard
University, where in 1944 he became professor of aerodynamics. His philo-
sophical views are summarized in his book: “Positivism: A Study in Human
Understanding” (1951).

1909–1915 CE Howard Robard Hughes, Sr. (1869–1924, USA).
Inventor. Revolutionized the process of drilling for oil with his invention of
the first rotary rock bit .

Hughes was born in Lancaster, Missouri and spent his boyhood in Keokuk,
Iowa, where his father maintained a law practice. He studied law at Harvard
University and the University of Iowa, but in 1901 he joined the ‘Oil Rush’ in
Texas.

Around 1906, Hughes became interested in finding a solution to the prob-
lem of drilling through hard rock formations and began experimenting. While
working in 1908 in Oil City, Louisiana with his business associate, Walter
Sharp, Hughes produced a small wooden model of a roller-type bit with
cone-shaped tooth cutters. The following year, he successfully tested the first
rotary bit in an oil well at the Goose Creek field, just east of Houston. Since
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it was the first cone-type rock bit featuring rolling cutters, capable of drilling
faster and more efficiently, he formed, with Walter Sharp, the Sharp-Hughes
Tool Company to manufacture and market his new bit and tool joints.

Hughes is credited with the invention of numerous other time and money
saving drilling services. With his operation headquartered in Houston, his
early advances in rotary drilling technology focused attention on the city as
the world’s leading manufacturer of drilling equipment and tool joints. After
Sharp’s death in 1912, Hughes bought Sharp’s share of the business, and in
1915 renamed the firm the Hughes Tool Company.

Hughes died at the age of 54, leaving the bulk of his million dollar oil
well drilling equipment firm to his son Howard Robard Hughes, Jr.236

(1905–1976), an 18-year old student at Rice Institute.

1909–1949 CE Maria Montessori (1870–1952, Italy). Physician and
educator. Developed a special method of teaching young children through

236 Aviation-pioneer film producer and industrialist. At one time he owned the

Hughes Tool Company, the Hughes Aircraft Company, RKO Pictures Corpo-

ration, and a controlling interest in Trans World Airlines. At the time of his

death, his financial empire was worth about two billion dollars, becoming one

of the richest men in the world.

He designed and raced airplanes and set several speed records including (1938)

around-the-world mark of 3 days, 19 hours, 14 minutes. In the 1940’s he de-

signed the largest plane ever built up to that time. This 8-engine wooden flying

boat (nicknamed the Spruce Goose), had room for 700 passengers and weighed

about 200 tons.

His aircraft company pioneered many innovations in aerospace technology. In

the 1950’s and beyond, Hughes manufactured spy satellites.

In the mid-1950’s, Hughes deliberately dropped out of sight. He became a

mysterious figure who never appeared in public and even refused to be pho-

tographed.

Hughes died en route by private jet to a hospital in Houston. His drastically

changed appearance and the fact that he had been seen by so few people for so

long forced the Treasury Department to use fingerprints to identify his body.

Four hundred prospective heirs tried to inherit his $2 billion estate, but it

eventually went to 22 cousins on both sides of the family. Texas, Nevada and

California claimed inheritance-tax in disputes reviewed by the Supreme Court

three times. Hughes Aircraft ended in the hands of Hughes Medical Institute,

which sold it to General Motors (1985) for $5 billion.

Hughes never graduated from high-school. Nonetheless, his father arranged for

him to audit mathematics and engineering classes at CalTech in Pasadena, Cal-

ifornia, by donating money to the school.

Houston’s airport was renamed in his honor.
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work rather than play, and aimed at creating a scientific pedagogy. According
to the Montessori method, children should be helped to learn by themselves
and gain confidence in themselves while making use of their abilities.

Maria Montessori was born in Ancona and was the first woman in Italy to
earn a medical degree (1894). She became a professor of anthropology (1904–
1908) and opened the first Montessori school for children in Rome (1907).
Later she traveled throughout the world, writing and lecturing about her
teaching method. She inspired many devoted supporters in the USA, Britain
and on the Continent who sought to implement her ideas in schools, societies
and associations.

1910 CE, May 20 Comet Halley237 came within 23 million km (0.153 AU)
of earth, traveling with relative velocity of 83 km

sec (52 km
sec w.r.t. sun). On

May 21, earth passed through the tail of the comet with no ill effects; many
people feared that the inhabitants of earth would be wiped out by cyanogen
gas detected in the nucleus of the comet.

1910 CE The International Geological Congress at Stockholm first made the
majority of geologists familiar with the existence of a warm period interlaced
between the ice-age and the present. Up to the turn of the 20th century the
post-glacial period was supposed to show merely a more or less rapid warming
up to the present level, followed by a long period in which the climate of the
different parts of the world were exactly as we now find them.

About the same time (1908), a number of investigations in different coun-
tries combined to prove that the ice-age itself was not so remote as it had
seemed to be, and that in fact the post-glacial “geology” of Europe was partly
contemporaneous with the “history” of Egypt. The beginning of the “period
of unchanging climate” has advanced later and later until it stopped only a
few centuries BCE.

Moreover, it became clear that the present does not differ from the past in
the sense that variations of climate are still in progress, which are similar in
kind, though not in extent, to the climatic vicissitudes of the ice-age. There is,
however, one point in which the “historical” period may be said to differ from
the “geological” periods — any climatic changes in the “historical” period

237 Mark Twain told his biographer, Albert Bigelow Paine (1909):

“I came in with the Halley Comet in 1835. it is coming again next year, and I

expect to go out with it. The Almighty had said, no doubt: ‘Now here are these

two unaccountable freaks; they came in together, they must go out together.’

Oh! I am looking forward to that.”

As fate would have it, it happened just that way.
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must be attributed to non-geographical factors, and most probably due to
variations in solar radiation.

1910 CE Georges Claude (1871–1966, France). Chemist, physicist and
inventor. Invented neon light (first used commercially in 1923). Showed that
acetylene dissolved in acetone can be safely transported (1897). Produced
liquid air by expansion method (1902) and separated from it the various gases
of the air; invented new method for synthesis of ammonia (1917). Imprisoned
(1945–1949) as Nazi collaborator in WWII.

1910 CE L. Southerns showed that the ratios between mass and weight
for uranium oxide and lead oxide, respectively, differed at most by 5 parts
per million. Since the binding energy of uranium oxide is particularly high,
this experiment proves that the proportionality of inertial and gravitational
mass (“weak equivalence principle”) applies also to atomic binding energy
(via E = mc2).

1910–1913 CE Bubonic plague in China. Death toll reached millions.

1910–1927 CE Thomas Hunt Morgan (1866–1945, U.S.A.). Geneticist.
Proposed a theory of sex-linked inheritance including the principle of linkage.
Established the importance of the gene and the chromosome in transmitting
inherited characteristics. From his examination of hundreds of mutant char-
acters in Drosophila he established that inherited characters are connected to
paired Mendelian factors or genes and that genes are linearly joined into chro-
mosomes. Although the inheritance of characteristics from genes positioned
along different chromosomes occurs independently, as in Gregor Mendel’s
second law, this does not apply for characteristics from genes along the same
chromosome. These later characteristics tend to be inherited as a group.

Morgan was born in Lexington, KY. He was professor at Columbia Uni-
versity (1904–1928) and from 1928, at CALTECH. Awarded the Nobel prize
for physiology or medicine (1933).

1910–1928 CE Ernst Steinitz (1871–1928, Germany). Mathematician.
Made substantial contributions to the algebraic theory of fields (Steinitz’s
‘replacement theorem’), algebraic geometry and the theory of polyhedra.

Steinitz was born to Jewish parents in Silesia and was educated at the
University of Breslau (Ph.D., 1894). He began his career at the Technical
College in Berlin-Charlottenburg and ended it at the University of Kiel.

1910–1939 CE Jan Lukasiewicz (1878–1956, Poland). Influential math-
ematical logician. One of the founders of the school of logicians in Poland
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after WWI. Made important contributions to modal logic (in which ‘is pos-
sible’ is allowed as a fundamental notion) and many-valued logics (in which
truth-values additional to ‘true’ and ‘false’ are admitted). In particular he
developed a three-valued propositional calculus (1917) and devised a notation
system for syllogistic propositions. Made detailed study of Aristotle’s syllogis-
tic (1910) and reevaluated ancient and medieval logic by employing modern
formal techniques of logic. He also introduced into logic the ‘Polish notation’
which has found favor in computing for its avoidance of brackets.

Lukasiewicz was born in Lvov (Lemberg). Was Polish Minister of Edu-
cation (1919) and professor at Warsaw University (1920–1939). When the
Russians occupied Poland (1945), Lukasiewicz was politically persecuted and
had to seek asylum in Dublin (Irish Republic), where he was appointed to the
Royal Irish Academy. He died in Dublin.

1910–1943 CE Janusz Korczak (1878–1943, Poland). Physician, child
psychologist, writer and educator. Founder of an original system of education
and one of the finest examples of selflessness and caring for others in human
history.

Born in Warsaw as Henryk Goldszmit, he was one of the few Jews to
be accepted for medical studies of the University of Warsaw, graduating in
1905. He continued his training in pediatrics both in Berlin and Paris under
Virchow, Marfan and Charcot. During the Russo-Japanese War he served in
field hospitals and wards in the Ukraine and in Manchuria.

Early in his medical career he began to write poetry and fiction under the
pseudonym Janusz Korczak. In 1910 he decided to give up both his successful
pediatric practice and his literary career to become the director of orphanages.
In these “children’s republics” he experimented with his progressive ideas by
allowing children to govern themselves with as much independence as possible.
Disinterested in personal affairs, he lived a monastic existence.

With the German take-over of Poland, the orphanages were closed on
Aug 06, 1942 and Korczak with his two hundred children were deported to
Treblinka where they perished in the Gas-Chambers on August 5, 1943. (Be-
cause of his fame,, he was offered safe passage out of the Warsaw Getto, but
he refused a chance to save himself and was voluntarily deported with the
children).

1910–1940 CE Pre WWII Western music. Its leading composers are:

• Ermanno Wolf-Ferrari 1876–1948
• Earnst Bloch 1880–1959
• Bela Bartok 1881–1945
• Zultan Kodály 1882–1967
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• Igor Stravinsky 1882–1971
• Joseph Achron 1886–1943
• Arthur Honegger 1892–1955
• George Gershwin 1898–1937
• Francis Poulenc 1899–1963
• Aaron Copland 1900–1990
• Aram Khachaturian 1903–1978
• Richard Addinsel 1904–1977
• Samuel Barber 1910–1981

1911 CE Robert Andrews Millikan (1868–1953, U.S.A.). Distinguished
experimental physicist. Determined the charge of the electron and established
it as a fundamental unit of electricity. Verified the Einstein photoelectric
equation, and obtained a precise value for the Planck constant.

Prior to 1911, the ratio e/m of the electron’s charge to its mass had been
determined experimentally by J.J. Thomson and others. It remained to
find the magnitude of the charge (e) so that the mass (m) of a single particle
might be calculated.

In his famous ‘oil-drop experiment’238Millikan obtained the first direct and
compelling measurement of the electric charge of a single electron, with an
accuracy of one percent [owing to errors in the viscosity coefficient as applied
to very small droplets].

Millikan found that the charge of an oil drop is an integral multiple, ne,
of some basic unit, which is identified as the charge on one electron. The
most important feature of the ‘oil-drop experiment’ is its clear demonstration
that electric charge is quantized . With the aid of e and e

m , the electronic
mass could finally be fixed, and was found to be 1

1837 of the mass of a

238 A vertical electric field E (which could be switched on and off) was set up

between two parallel plates. The upper plate had at its center a few small per-

forations through which oil drops, produced by an atomizer, could pass. Most of

the oil drops were charged by friction with the nozzle of the atomizer. With the

electric field switched off, a single droplet of mass m = 4π
3

r3ρ, density ρ, and

radius r is acted upon by its own weight mg and the opposing frictional Stokes-

force 6πηrv. In equilibrium (no acceleration), the drop’s downwards terminal

velocity is v1 = 2r2g
9η

(ρ − ρa), where ρa is the air density accounting for buoy-

ancy. With the (upward) field switched on, the new terminal velocity (upward)

is v2 = neE
6πηr

− v1, where ne is the charge (taken positive). Expressing r in

terms of v1, η, g and (ρ − ρa), one finds ne = 6πη(v1+v2)
E

√
9ηv1

2g(ρ−ρa)
.
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neutral hydrogen atom. The electron is by far the most important particle in
theoretical chemistry, as well as in atomic physics.

Millikan was born in Morrison, Illinois. After studying at the Universities
of Berlin and Göttingen, he joined the faculty of the University of Chicago.
In 1921 he became director of the Norman Bridge Laboratory of Physics at
the California Institute of Technology, Pasadena. He won the Nobel prize for
physics in 1923.

1911 CE Heike Kamerlingh Onnes (1853–1926, Holland). Dutch physi-
cist. Discovered ‘superconductivity ’239 of metals with the aid of liquefied he-
lium. Won the Nobel prize for physics in 1913 for his work on low-temperature
physics and his production of liquid helium (1908).

239 The complete and sudden vanishing of electrical resistance in certain pure met-

als, when cooled to a temperature near absolute zero. For materials that are

good conductors, such as copper and silver, the resistivity decreases essentially

linearly with temperature down to 10 K. As the temperature decreases further,

the resistivity assumes a constant value that is maintained up to the lowest tem-

peratures investigated (ca 0.05 K). In certain materials, called superconductors,

there occurs at low temperatures a remarkable interaction among the electrons

and the ionic lattice. In the superconducting state, pairs of electrons with spin

and momenta antialigned, develop an extremely weak electrical attraction for

each other by interaction with the lattice [the attraction of the two electrons

may be thought of as a two-step process in which the passage of one electron

creates a distortion in the lattice to which the second electron is attracted]. The

bound state of the two electrons is called a Cooper pair. The size of the Cooper

pair is far larger than the size of an atom, and they all have the same center-of-

mass drift speed. A Cooper pair is bound by an energy of the order 10−3 eV,

and the energy required to break this bond is not available at low temperatures.

Thus, at least in principle, the mean free path of the pair becomes infinite and

the resistivity becomes zero (not just very small, but zero!). The temperature

that marks the transition between the normal phase and the superconducting

phase of a material is called the critical temperature Tc (e.g. 4.15 K for mercury,

observed by Onnes). A current, once initiated in a superconducting material,

will continue to flow (essentially) forever, even in the absence of any driving

electric field.

The superconductors discovered by Onnes are not merely perfect conductors,

they have the additional property that there is a zero magnetic field inside the

superconductor (except for a thin surface layer). This class of superconductors

is called type-1. Thirty pure elements (Be, Al, Ti, V, Zn, Ga, Zr, Nb, Mo, Tc,

Ru, Rh, Cd, In, Sn, Lu, Hf, Ta, W, Re, Os, Ir, Hg, Tl, Pb, La, Gd, Th, Pa, U)

are type-1 superconductors at low temperatures.
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During 1871–1873 Kamerlingh Onnes studied and worked at Heidelberg
University, notably with Kirchhoff. From 1882 to 1923 he served as professor
of experimental physics at the University of Leyden.

1911 CE, July 24 Hiram Bingham (1875–1956, USA). Explorer, histo-
rian, archaeologist and politician. Found the “lost city” of Machu Picchu near
Cuzco in the Peruvian Andes, the fortified city that was the sanctuary of the
Inca king Pachacuti (d. 1470). It lies in the saddle between two peaks, 660
m above the rapids of the Urubamba river. Machu Picchu was one of a series
of stone-laid cities which constituted a veritable chain of fortress-sanctuaries,
built to defend the empire from raids of the wilder jungle tribes. All the cities,
approximately 15 km apart, are bound together by a stone-laid road.

Machu Picchu was never mentioned by the Inca to the Spaniards, and
dates from the first Inca, about 1000 CE.

Bingham was born in Honolulu. He graduated from Yale University and
later taught history there. From 1926 to 1933, he served as a Republican U.S.
Senator from Connecticut.

1911 CE Victor Hess (1883–1964, Austria). Physicist. Discovered cosmic
radiation (cosmic rays) by sending electroscopes aloft in balloons. He was able
to show that the ionization effect was more pronounced at high altitudes rather
than less so. To explain this phenomenon, Hess advanced the hypothesis that
the ionizing radiation responsible for the observed effects is incident upon the
earth’s atmosphere from outside.

1911–1914 CE Elmer Ambrose Sperry (1860–1930, U.S.A.). Inventor
and industrialist. Developed the gyrocompass and the gyroscopic stabilizer
for ships and aircraft. From his gyrocompass, Sperry developed the gyropilot,
which steers a ship automatically. Later he installed giant gyroscopes which
could steady the rolling motions of ships. He also produced an aerial torpedo
controlled by a gyroscope. Today’s naval gunnery methods would be impos-
sible without inventions which grew out of Sperry’s original gyroscope. His
inventions were equally important for use in navigating aircraft.

Sperry was born in Cortland, New York. He set up his Sperry Gyroscope
Company in Brooklyn in 1910. His gyrocompass was first installed on the U.S.
battleship Delaware in 1911. In his lifetime, Sperry founded 8 manufacturing
companies and took out more than 400 patents.

1911–1919 CE John Edensor Littlewood240 (1885–1977, England).
Distinguish mathematician. Made significant contributions to the theory of

240 For further reading, see:
• Du Sautoy, M., The Music of the Primes, Perennial, 2004, 335 pp.
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functions, theory of numbers, summability of series, inequalities and Fourier
series theory. Along with G.H. Hardy, with whom he collaborated for 35
years, he was instrumental in establishing the school of mathematics in 20th

century Great Britain241. The Hardy-Littlewood partnership was extremely
successful and the individual contributions are mostly inseparable, especially
as far as proofs of the theorems are concerned242.

In 1912, Littlewood showed that
∫ n

2
dx

log x switches from being an overes-
timate (to the number of primes less than or equal to n) to an underestimate,
and back again, an infinite number of times as n keeps increasing (Littlewood’s
theorem)243.

Littlewood was born in Rochester, England. He entered Trinity College,
Cambridge in 1903, and started research in 1906 under the tutorship of E.W.

241 Compared with the mathematics of continental Europe, 19th century British

mathematics was rather barren of significant figures, and was most emphatically

subordinate to the natural sciences.
242 Norbert Wiener (1894–1964) spend the early years of his career working in

England. The story goes that when he met Littlewood he said: “Oh, so you

really exist. I thought that ‘Littlewood’ was just a pseudonym that Hardy put

on his weaker papers”. It is also told that Edmund Landau (1877–1938) so

doubted the existence of Littlewood that he made a special trip to Great Britain

to see the man with his own eyes.
243 Gauss conjectured that the logarithmic integral Li(N) would always overes-

timate the number of primes – it would never predict that there were fewer

primes than there really were in the range from 1 to N.

Littlewood proved Gauss to be wrong (although Gauss’ conjecture held true

(1912) for all numbers up to 10 million!). He proved that as you counted

higher, you would eventually come to regions of numbers where Gauss’ guess

would switch from overestimating to underestimating the number of primes.

S. Skewes proved in 1955 that the first switch occurs before n reaches 10101034

,

though he had to assume the truth of the Riemann conjecture. This is known

as the Skewes number [by way of comparison — there are “only” about 1080

protons in the observable universe]. G.H. Hardy thought it ‘the largest num-

ber which has ever served any definite purpose in mathematics’, and suggested

that if a game of chess was played with all the particles in the universe as pieces,

one move being the interchange of a pair of particles and the game terminat-

ing when the same position recurred for the third time, the number of possible

games would be about Skewes’ number.

In 1986, H.J.J. te Riele demonstrated that the “Littlewood constant” can be

much better bounded, to some n below 6.69 × 10370, still an enormously large

number, well beyond human grasp. [A computer search, made as far as 109,

failed to reach the first switch.]
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Barnes (1874–1953), who assigned to him the problem of proving the Rie-
mann hypothesis(!) [It is an amazing illustration of the insularity of British
mathematics at that time that Barnes should have thought it suitable for a
research student to tackle this problem.]

Characteristically, Littlewood was able to report: “As a matter of fact this

heroic suggestion was not without result. . . there was a consolation prize”.
During 1915–1919, Littlewood collaborated with Hardy in Cambridge. He
authored a steady flow of papers well into the 9th decade of his life. Many
of the later papers are on differential equations, and many show his interest
in astronomy, physics and probability, as well as in problems of pure analysis
which filled most of his life. His power at the age of 85 was shown when he
solved a problem which “raised difficulties which defeated me for some time.

I have now overcome them”.

Some of his keen observations, based on long experience, are: (quoted from
his publication “The Mathematician’s Art at Work”, 1967)

• “Try a hard problem. You may not solve it, but you will prove something

else”.

• “There are four phases in mathematical creativity : preparation, incu-

bation, illumination and verification. Preparation needs roots in an in-

tense curiosity; the essential problem, stripped of its accidentals, must be

brought and kept before the mind. The resulting drive is communicated

to the subconscious, ‘which does all the real work and would seem to

be always on duty ’. Incubation is the work of the subconscious during

the waiting time, which may be several years. Illumination, which can

happen in a fraction of a second, is the emergence of the creative idea

into the conscious”.

• “Mathematics is very hard work, and dons tend to be above the average

in health and vigor. Below a certain threshold a man cracks up, but

above it — hard mental work makes for health and vigor (also — on

much historical evidence throughout the ages — for longevity)”.

• “A Ph.D. was a degree which you had to take if you failed to get a Re-

search Fellowship, just to show that you had been at Cambridge”.

1911–1935 CE Julius Edgar Lilienfeld (1881–1963, Germany and
USA). Physicist and inventor. Pioneer of semiconductor devices. Proposed
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the basic principle behind the MOSFET244 (Metal – Oxide – Semiconductor
Field Effect Transistor) in 1925, some twenty years ahead of Shockley and
Bardeen. Patented a high-vacuum X-ray tube with hot tungsten filament in
1911, five years ahead of W.D. Coolidge in the USA.

Lilienfeld was born in Lemberg, Galicia (now Lvov, Ukraine) to Jewish
parents. He entered the Polytechnic University of Berlin (1899) and earned
a Ph.D. degree in experimental physics (1905). He then joined the Physics
Institute at the University of Leipzig and patented a high-vacuum X-ray tube
(1911). At the same time he operated the first large-scale hydrogen liquifica-
tion facility used to fill the Zeppelines and for cryogenic research.

He continued to work on electrical discharges, extending his investigations
to field-emission of electrons, and applied this to the development of cold-
cathode high-vacuum X-ray tubes. He discovered (1919) a polarized light
coming from the vicinity of the target of an X-ray tube due to time variation
of the virtual dipole between the electrons and their image charges formed
near the surface of the tube’s target.

In 1926, Lilienfeld resigned his professorship position at Leipzig and emi-
grated to the USA. He then began experimenting with solid-state electronic
devices. During 1925–1928 he developed and patented (1930) several devices
which could now be referred to as field-effect (or, point junction) transistors245.

244 A unipolar device where current flows through a narrow channel between two

electrodes (the gate) from one region called the source, to another called the

drain. A modulating signal is applied to the gate (Figure 5.3).

In practice, a wafer of a semiconductor material has two highly doped regions

of opposite polarity diffused into it, to form a source and drain regions.

An insulating layer of silicon oxide is formed on the surface between these re-

gions and a metal conductor is evaporated on to the top of this layer to form

the gate.

When a positive voltage is applied to the gate, electrons move along the sur-

face of the p-type substrate below the gate, producing a thin surface of n-type

material, which forms the channel between the source and the drain. This sur-

face layer is called an inversion layer, as it has opposite carriers to that of the

substrate. The number of induced electrons is directly proportional to the gate

voltage, thus the conductivity of the channel increases with gate voltage.
245 The word ‘transistor’ had its beginning in 1946 at the Bell Telephone Labora-

tories that used high-purity germanium to create solid-state amplifying devices.

While Lilienfeld’s devices did not perform to todays standards, signal amplifi-

cation was detected. In 1935, Oscar Heil described a structure similar to the

junction field-effect transistor. However, practical implementations were impos-

sible until 1960 due to material-related problems. The technology to produce

such devices on a commercial basis did not yet exist.
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Fig. 5.3: MOSFET

In 1928, Lilienfeld began work on the electrochemistry of anodic aluminum-
oxide films and their application in the manufacture of electrolytic capacitors,
essential compounds in much electronic components. In 1935, he moved with
his wife to the US Virgin Islands, where he died in 1963.

Although Lilienfeld’s work on high-vacuum X-ray tubes and on field-effect
transistors came at the wrong time to bring him fame, he deserves recognition
as a pioneer scientist and prolific inventor.

In 1988, the American Physical Society established the Julius Edgar Lilien-
feld Prize, in recognition of a most outstanding contribution to physics.

1911–1938 CE Alfred North Whitehead (1861–1947, England) and
Bertrand Arthur William Russell (1872–1970, England), both mathe-
maticians, logicians, metaphysicians and philosophers, published their joint
work: “Principia Mathematica” — an attempt to anchor arithmetic to a sys-
tem of formal procedures, based on Peano’s axioms and symbolic logic. The
program, intended to prove that all pure mathematics can be derived from a
small number of fundamental logical principles, is in line with Russell’s view
that mathematics is indistinguishable from logic.

This system left unanswered Hilbert’s query whether the numerical con-
tinuum can be considered a well ordered set, to which Gödel in 1931 gave a
definite answer.

Whitehead was born at Ramsgate, Isle of Thanet, Kent, England. His
father, a vicar, taught him at home until he was 14. He was then sent to
Sherborne School, Dorset, where he received classical education. In 1880 he
entered Trinity College, Cambridge. He met Russell in 1890 when the latter
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was a freshman studying mathematics at Trinity. Gradually, the two men
became close friends.

In 1910 Whitehead left Cambridge: his future there was uncertain, since
he did not produce any discoveries that could earn him a Cambridge profes-
sorship in mathematics [his interest was always philosophical, grasping the
nature of mathematics in its widest aspects and organizing its ideas rather
then discovering new theorems]. He moved to London and became a teacher
of applied mathematics at the Imperial College of Science and Technology
(1914). He became interested in education, university administration, and
philosophy of science. His shrewdness, common sense and goodwill put him
in great demand as a committee man.

Whitehead was a pacific man but not a pacifist; he felt that WWI was
hideous but that England’s part in it was necessary. His elder son, North,
fought throughout the war, and his daughter, Jessie, worked in the Foreign
Office. In 1918 his younger son, Eric, was killed in action, and after that it was
only by immense effort that Whitehead could go on working. To Whitehead,
Russell’s pacifism was simplistic; yet he visited him in prison, remained his
friend, and, as Russell later said, showed him greater tolerance than he could
return.

Whitehead emigrated to the U.S. in 1924 and became a professor of
philosophy at Harvard University (1924–1938). His metaphysical system
was influenced by Plato, Aristotle, Leibniz, William James, Bergson,
Minkowski and Einstein. He set out in his philosophy to rectify what he
considered to be the great error in the philosophical tradition — the doctrine
of the duality of reality (which held that reality is a compound of mind and
matter). This “bifurcation of matter”, as he called it, was initially posited by
Descartes, and, according to Whitehead, had poisoned philosophical think-
ing ever since.

Whitehead claimed that there is only one reality : reality consists only
in what appears, in what is perceived, in whatever is in the experience of a
subject (subject meaning any actual entity). There are neither concepts nor
substances in the world: only a network of events. All such events are actual
extensions of the unified whole of the space-time relation. Hence, reality is
based on the patterned process of events.

His writings did much to narrow the gap between philosophy and science.
He insisted that scientific knowledge, though precise, is incomplete. It must be
supplemented, he said, by philosophical principles and the insight of poets(!)
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Whitehead’s nephew, J.H.C. Whitehead246 (1904–1960, England), was
a mathematician who specialized in topology and applied the subject to the
study of generalized spaces. He was born in Madras, India and taught at
Oxford (1932–1960).

Bertrand Russell was born near Trelleck, Wales. His father was a vis-
count and his grandfather, John Russell, was twice prime minister and became
the 1st Earl Russell. His parents died when he was 3 years old, and he and
his brother were brought up by their grandparents. He entered Trinity Col-
lege in 1890, where he graduated in 1894. His first wife was a Quaker from
Philadelphia (1894). He married again in 1921.

Russell outspokenness and liberal views involved him in many controver-
sies. During WWI he was dismissed from Cambridge University and impris-
oned because of his pacifist views. In 1940, protests against his radical views
on religion and morals caused the college of the city of New York to cancel
his appointment as a professor, and he was almost dismissed from Harvard
University. In 1961 he was imprisoned for his political activities.

Russell maintained that logic is not a function of philosophy but a general
theory of science. He further insisted that the proper function of philosophy
is to deal with the problems raised by the sciences, not with theological or
ethical problems. Hence, philosophy should devote itself to analyzing the
empirical data of science, because the primary problems of human life consist
in the relation between individual experience and general scientific knowledge.
Knowledge itself is a relatively unimportant feature of the universe; It can also
be a corruptive influence in the search for truth, since it is so subject to the
interpretations of human experience. To counter this, philosophy must limit
itself to simple, objective descriptions of the phenomena of the world, keeping
such descriptions free of the self-same corrupt influences of experience.

Russell defined himself thus: “Liberal, anarchistic, left-wing skeptical
atheist”.

246 J.H.C. Whitehead was often asked for his views on the work of his uncle. Even-

tually he developed a standard answer. When asked “What do you think of your

uncle’s philosophy?”, he would reply “I really haven’t thought much about it

— but what do you think of your uncle’s philosophy?”.
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Worldview XXXI: Russell

∗ ∗∗

“Aristotle maintained that women have fewer teeth than men; although he was
twice married, it never occurred to him to verify this statement by examining
his wives’ mouths.”

∗ ∗∗

“The desire to understand the world and the desire to reform it are the two
great engines of progress.”

∗ ∗∗

“It can be shown that a mathematical web of some kind can be woven about
any universe containing several objects. The fact that our universe lends
itself to mathematical treatment is not a fact of any great philosophical sig-
nificance.”

∗ ∗∗

“The fact that all Mathematics is Symbolic Logic is one of the greatest dis-
coveries of our age; and when this fact has been established, the remainder
of the principles of mathematics consists in the analysis of Symbolic Logic
itself.”

∗ ∗∗

“With equal passion I have sought knowledge. I have wished to understand
the hearts of men. I have wished to know why the stars shine. And I have
tried to apprehend the Pythagorean power by which number holds sway about
the flux. A little of this, but not much, I have achieved.”

∗ ∗∗
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“A good notation has a subtlety and suggestiveness which at times make it
almost seem like a live teacher.”

∗ ∗∗

The conventional wisdom is that systems of reasoning must be consistent.
That is, no statement can be both true and false. If so, then the system
collapses because there remain no restrictions on what is true or false: every
statement can be proved true (and false as well!).

When Bertrand Russell once made this claim during a public lecture he
was challenged by a skeptical heckler to prove that the questioner was the
Pope if twice 2 were 5. Russell replied, ‘if twice 2 is 5, then 4 is 5, subtract
3; then 1 = 2. But you and the Pope are 2; therefore you and the Pope are
one.’ !

∗ ∗∗

“How dare we speak of the laws of chance? Is not chance the antithesis of all
law?”

∗ ∗∗

“Mathematics takes us into the region of absolute necessity, to which not only
the actual word, but every possible word, must conform.”

∗ ∗∗

“Perhaps the oddest thing about Modern Science is its return to Pythagore-
anism.”

∗ ∗∗

“At the age of eleven, I began Euclid, with my brother as my tutor. This
was one of the great events of my life, as dazzling as first love. I had not
imagined there was anything so delicious in the world. From that moment
until I was thirty-eight, mathematics was my chief interest and my chief source
of happiness.”
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Worldview XXXII: Whitehead

∗ ∗∗

“The aim of science is to seek the simplest explanation of complex facts. We
are apt to fall into the error of thinking that the facts are simple because
simplicity is the goal of our quest. The guiding motto in the life of every
natural philosopher should be ‘seek simplicity and distrust it’.”

∗ ∗∗

“The aims of scientific thought are to see the general in the particular and
the eternal in the transitory.”

∗ ∗∗

“Now it cannot be too clearly understood that, in science, technical terms are
names arbitrarily assigned, like Christian names to children.”

∗ ∗∗

“Not ignorance, but ignorance of ignorance, is the death of knowledge.”

∗ ∗∗

“We think in generalities, we live in detail.”

∗ ∗∗

“Everything of importance has been said before by somebody who did not
discover it.”
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1911–1942 CE Sergei Natanovich Bernstein (1880–1968, Russia).
Mathematician. Contributed to the theory of probability and the theory of
approximation of functions. There are polynomials247, an inequality and a
constant named after him.

Bernstein was born in Odessa to Jewish parents. He went to Paris (1898)
and studied at the Sorbonne. In his doctoral dissertation (1904) he solved
Hilbert’s 19th problem (to determine whether the solutions of “regular” prob-
lems in the calculus of variations are necessarily analytic). On his return to
Russia (1905) he had to do a second doctorate (1913) in order to qualify
for a university post. Through this work he solved Hilbert’s 20th problem
(concerning the analytic solution of Dirichlet’s problem for a wide class of
non-linear elliptic equations). Bernstein then taught at Kharkov University
(1907–1932), Leningrad University, the Mathematical Institute of the USSR
Academy of Sciences (1933–1942), and Moscow University (1943–1950).

1911–1947 CE Charles Franklin Kettering (1876–1958, USA). Engi-
neer and inventor. Developed such varied industrial products as a self-starter
for automobiles (1911), engine ignition system, ethyl gasoline, lightweight
two-cycle diesel engine for trams, a high-compression automobile engine, four-
wheel brakes, safety glass, the refrigerant Freon and many other items.

Kettering was born near Loudonville, Ohio. Bad eyesight slowed his edu-
cation, but he graduated from Ohio State University in 1904 as an engineer
and then joined the National Cash Register Company. In 1909 he left NCR
and set up the Dayton Engineering Laboratories Company or Delco, where
he invented his most significant engine devices. Kettering’s engine-driven
generator, named the ‘Delco’, provided electricity on millions of farms.

1911–1950 CE Theodore von Kármán (1881–1963, Hungary, Germany
and U.S.A.). Founder of aeronautical and astronautical sciences in the 20th

century. Father of the supersonic age. Made important contributions to fluid
mechanics, turbulence theory, supersonic flight, mathematics in engineering,

247 Let f(x) be defined on [], 0, 1 ]. The n-th (n ≥ 1) Bernstein polynomial for f(x)
is given by
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The Bernstein expansion often provides useful approximations to various func-
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aircraft structures and wind erosion of soil. In 1940 he showed together with
Frank J. Malina, for the first time since the invention of the black-powder
rocket in China in 969 CE, that it was possible to design a stable, long-
duration, solid-propellant rocket engine.

Von Kármán participated in a number of major contributions to rocket
technology, America’s first assisted takeoff of aircraft with solid- and liquid-
propellant rockets, flight of an aircraft with rocket propulsion alone, and de-
velopment of spontaneously igniting liquid propellants of the kind that were
to be used in the Apollo Command and Lunar Excursion modules in the late
60’s.

Von Kármán was born in Budapest to Jewish parents, and was educated
in Budapest and Göttingen. He became an assistant to Ludwig Prandtl
on dirigible research, and came under the influence of David Hilbert and
Felix Klein. The latter stressed the fullest use of mathematics and the basic
sciences in engineering to increase technological efficiency.

In 1911 he discovered that at large Reynolds-numbers, the eddies in the
wake behind an elliptic cylinder do not remain stationary with the cylinder
but shed alternatively to form the ‘Von Kármán vortex street’ (consisting of
two staggered rows of counter-rotating vortices). In 1921 he obtained an ap-
proximate solution for two-dimensional laminar boundary layer flow, which he
converted into a momentum integral equation (Kármán-Polhausen equation).

A law describing the shear forces which turbulent flows exert at boundaries
was proposed by von Kárman (1930) and Prandtl (1933). It states that a
fluid’s average velocity is proportional to the logarithm of the distance from
the boundary and known as Universal Law of the Wall. The logarithmic
velocity distribution was first found for flow between two walls, but it could
be applied to the calculation of the skin friction of a flat plate which is covered
by a turbulent boundary layer248.

In 1912 he became director of the Aeronautical Institute at Aachen, Ger-
many, remaining there until 1930. He then moved to the United States, as-
suming the direction of the Guggenheim Aeronautical Laboratory at the Cali-
fornia Institute of Technology, which in 1944 became the NASA Jet Propulsion
Laboratory in Pasadena. Shortly after his arrival at CALTECH, his laboratory
became a Mecca of the world of aeronautical sciences.

In 1932 he extended the Joukowski transformation so as to obtain an
airfoil with a finite trailing edge [Kármán-Trefftz airfoil]. In 1938 he put
forward a statistical theory of isotropic turbulence [Kármán-Howarth theory],

248 Some scientists claimed that the law may be in disagreement with experiment

by up to 65 per cent, but this conclusion remains controversial.
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and in 1941 he advanced the Kármán-Tsien approximation for steady two-
dimensional subsonic flow. Also in 1941, von Kármán participated in the
founding of the Aerojet General Corporation, the first American manufacturer
of liquid- and solid-propellant rocket engines. In 1960, his efforts brought into
being the International Academy of Astronautics. A crater on the moon has
carried his name since 1970.

Von Kármán was a unique man in many ways: as a classroom teacher his
clarity and imagination were superbly effective. At the blackboard he would
run into, and extricate himself from, mathematical traps and blind alleys of
his own making with such agility as to make the class hold its breath and then
applaud. Mathematical equations were almost alive, performing like puppets
before the class.

As head of the Aeronautical Institute of Aachen, and late of CALTECH’s
Guggenheim Aeronautical Laboratory at Pasadena, von Kármán guided two
generations of scientists and engineers into pioneering areas that led to the
establishment of aviation and astronautics on firm scientific foundations. His
vivid and dynamic personality held people spellbound with his Old World wit,
showmanship, and crusty insights into natural phenomena and human nature.
The following story serves to illuminate both his wisdom and the ‘name of
the game’ in applied mathematics:

Once, during a laboratory session, a student reported that he had made
a peculiar observation which he couldn’t explain. Von Kármán adjusted his
hearing aid and listened intently. Then he gave a plausible explanation for
the student’s puzzling observation. The fellow thanked him profusely. As
he turned to leave, von Kármán called him back. “Wait”, he said. “Just in
case you made a mistake and the effect is negative [just the opposite], then
the explanation is as follows”, and he proceeded to give an equally clear and
plausible explanation for the opposite effect.

Von Kármán expected great respect from the students, and he had clever
ways of chiding those who were deceived by his gentle ways and tried to take
advantage of him. Once a student came to class, unfolded a newspaper and
proceeded to read while the professor was lecturing. He did this for several
days, and each day von Kármán’s annoyance grew. Finally, unable to stand
the inattention any more, he hired a boy to bring up a cup of coffee and set
it in front of the offensive student. The class roared with laughter. The poor
fellow never opened his paper in class again.

When President Kennedy presented him with a special medal in the White
House (February 1963), von Kármán responded:

“I hope that I have shown that the college professor is of use.”
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1912 CE, April 14–15 The Titanic disaster; the largest ship in the world
at the time (269 meters long; 46,328 tons), struck an iceberg on its maiden
voyage from England to New York City, and sank to a depth of 4000 m. The
Titanic sighted the iceberg just before the crash (11:40 PM ships-time, April
14; 2570 km northeast of New York), but too late to avoid it. The lifeboats
held less than half of the approximately 2200 passengers. The ship sank at
41◦44′N, 49◦57′E in 2h40m hours (02:20 AM). The liner Carpathia picked
up 705 survivors. Among the victims were 670 crew members, including the
captain E.J. Smith. It was a moonless night and the iceberg was not seen.

Not until 1985, searches led by oceanographer Robert Ballard revealed
the Titanic resting in two pieces on the ocean floor.

In 1914, International Ice Patrol was established as a result of the sinking
of the Titanic. Thirteen maritime nations, using shipping lanes in the ice
regions, met at the International Conference on the Safety of Life at Sea,
and on January 20 signed an agreement to establish the patrol and pay its
expenses.

1912 CE Max Theodor Felix von Laue (1879–1960, Germany). Physi-
cist. Discovered the diffraction of X-rays in crystals and as a result was able to
measure the wavelengths of X-rays and to study the structure of crystals. Con-
tributed to the developments of the theories of relativity, electromagnetism,
and diffraction of light. Awarded (1914) the Nobel prize for physics.

Prior to 1912, X-rays had resisted being diffracted even by the most precise
gratings. While studying the theory of 3-D gratings, von Laue recognized
that since atoms had dimensions and separations that were so much smaller
than the wavelength of visible light, a crystal might very well serve as a
natural diffraction grating for X-rays. Accordingly, his associates directed
a beam of X-rays at a crystal of copper sulfate (they also later tested zinc
sulfate, diamond, rock salt, and copper) and exposed a photographic plate for
several hours to the transmitted radiation. The outcome was a remarkable
concentric pattern of spots that showed that the X-rays were indeed subject
to diffraction.

By working backwards from the observed diffraction angles, it became
possible to deduce the geometry of the “grating”. These experiments con-
firmed the electromagnetic wave nature of X-rays, allowed measurements of
their wavelengths, and opened the way to the determination of interatomic
distances in crystals. It was one of the most important scientific discoveries
of the 20th century, and illustrates once again the role of creative imagination
in scientific discovery.

Far from simply “looking at the facts”, a popular misconception of the sci-
entific method, Max von Laue was inspired to a new world of facts to examine.
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His discovery immediately led to Moseley’s investigation of X-ray spectra and
his discovery of atomic number. Many scientists were soon working in the new
field of crystal structure determination, and X-ray crystallography rapidly ex-
panded into a major branch of chemistry249 and physics.

Von Laue’s method had some series disadvantages and has been superseded
by other methods in which X-rays of a single wavelength are reflected from
crystal faces. Because X-rays penetrate deeply into the crystal, the geometric
condition for diffraction differ from that of optical diffraction: the grating or
lattice has 3 effective dimensions instead of only two, and the diffraction angles
θ are determined by the ratio of wavelength λ to the spacing d between parallel
planes through sites occupied by atoms in the crystal according to Bragg’s
equation (1912) for constructive interference: 2d sin θ = nλ (n = 1, 2, 3, . . .).
If monochromatic X-rays were used, then, even if their wavelength is not
known, the relative interplanar spacing for different set of planes within the
crystal can be determined250.

249 Some of the most exciting applications of X-ray diffraction have been in molecu-

lar biology: J.C. Kendrew and M.F. Perutz were awarded the Nobel prize in

chemistry (1962) for their studies of myoglobin and hemoglobin. The award for

1964 went to Dorothy Crowfoot Hodgkin for her solution of the structure

of vitamin B12, work that required the application of an electronic computer to

analyze the complex crystallographic data.
250 Absolute determination of d requires, however, a preknowledge of λ. Early at-

tempts to measure the wavelength of X-rays with ruled gratings failed because of

the large disparity between the grating spacing (several thousands Ångstroms)

and the wavelengths (a few Ångstroms). Finally, Compton (1923) was suc-

cessful in obtaining diffraction patterns when X-rays fell on ruled gratings at

grazing incidence: by passing the radiation in a fine beam very close to the

surface of the grating it is possible to obtain total reflection of the beam. In

addition to the reflected rays, diffracted beams of different orders are found and

these are used to standardize the X-ray wavelengths in terms of metric units.

In this way lattice constants can be measured very accurately from X-ray crys-

tal diffraction patterns and the method further leads to a determination of the

electronic charge via the ionic theory of solids.
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Crystals and Quasicrystals

For the majority of chemical compounds, a most striking aspect of the
solid state is crystallinity : the solid consists of crystals having a recognizable
natural shape, bounded by plane surfaces which meet at characteristic angles.
Because of the forces acting between the atoms or ions of the solid (crystal),
a stable equilibrium is possible only if constituents are arranged in a regular
repetitive geometric pattern called a crystal lattice. Group-theoretical meth-
ods show that there is a finite but large number of crystal systems which are
possible arrangements of the lattice constituents in a crystal. In which one
of these systems a particular material crystallizes, depends upon the size of
the atomic or ionic constituents and upon the magnitude and orientation of
the forces acting between them. The same material may crystallize in dif-
ferent configurations depending upon the type of binding forces (carbon, for
example, can crystallize in the graphite or diamond lattice).

A fundamental property of crystals is their symmetry. It is possible to
pick the smallest part of the structure that has all the symmetry elements
of the entire 3-dimensional pattern. This is called the unit cell, or elemen-
tary cell, and the entire crystal can then be built by translational repetition
along the crystal axes. In the cubic NaCl crystal, for instance, the elementary
cell is a small cube. For a cubic lattice, the smallest distance of two equiv-
alent constituents is designated as the lattice constant a; the distance of two
neighboring lattice planes as the lattice distance, d. If a coordinate system
is introduced with its axes parallel to the edges of the crystal, each crystal
plane (and thus the whole crystal as determined by the crystal planes) may
be characterized by specifying the lengths from the origin to the intersections
of the crystal plane with the axes. These lengths are measured in units of the
corresponding edges of the elementary cell.

The principal classification of crystals is on the basis of their symmetry. An
object has symmetry if some operation can be carried out on it that converts it
into itself. For example, a three-bladed propeller can be rotated about its axis
by 120◦ (one-third of a revolution), and it is then indistinguishable from its
original condition, provided that the three blades are exactly identical to one
another. Similarly it can be rotated by 240◦ (two-thirds of a revolution), again
becoming indistinguishable from its original condition. These operations of
rotation by 1

3 of a revolution and rotation by 2
3 of a revolution, together with

the original operation involving no change — constitute the symmetry group
corresponding to a 3-fold axis of symmetry.

Only a few symmetry elements are manifested by crystals. These include:
center of symmetry, 2-fold axis, 3-fold axis, 4-fold axis, 6-fold inversion axis,
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3-fold inversion axis, and symmetry plane (a 5-fold axis does not occur in
crystals because the angle of a pentagon, 108◦, is not a factor of 360◦).

There are 32 combinations of these symmetry elements that are repre-
sented by crystals. These combinations are called the 32 crystal classes. They
can be divided in 6 crystal systems, as follows:

(a) Cubic crystals, with both 3-fold and 4-fold symmetry axes (the 4-fold axis
can be of the rotation-inversion type); three equal mutually orthogonal
axes of symmetry. The body-centered cubic lattice has one lattice point at
each corner plus one lattice point in the center of the cubic volume. The
face-centered cubic lattice has one lattice point at each corner plus one
lattice point at the center of each of the 6 faces of the cube [octahedral,
tetrahedral and dodecahedral crystals belong to the cubic system].

(b) Tetragonal crystals, with one 4-fold axis; two equal symmetry axes with
length a, and a third axis with length c, all at right angles.

(c) Hexagonal (or trigonal) crystals (including rhombohedral crystals), with
one 6-fold axis or 3-fold axis; two equal axes of symmetry with length
a and oriented at 120◦ to each other, and a third axis with length c, at
right angles to the other two [bipyramidal, rhombohedral and trigonal
trapezohedral crystals belong to the hexagonal system].

(d) Orthorhombic crystals, with two or three planes of symmetry or twofold
axes at right angles to each other; three axes, with lengths a, b, c at right
angles to one another.

(e) Monoclinic crystals, with one plane of symmetry, or one twofold axis, or
both; two axes of symmetry, a and c, at the angle β with one another,
and the third axis b, at right angles to a and c.

(f) Triclinic crystals, with either a center of symmetry or none; three axes
of symmetry a, b, c, with angles α, β and γ between them.

The faces of the crystals must be related to the axes in a rational way; the
intercepts of a face with the three axes are related to the lengths of the axes
a, b, c, in the ratio of integers.

The use of symmetry arguments can tell us whether a molecule has a
dipole moment and along which line it lies. Since a symmetry operation
leaves a molecule in a configuration physically indistinguishable from the one
before the operation, the direction of the dipole moment vector must also
remain unchanged after the symmetry operation. Therefore, if a molecule has
a n-fold axis of rotation, the dipole moment must lie along this axis. But if we
have two or more non-coincident symmetry axes, the molecule cannot have a
dipole moment because it cannot lie on two axes at the same time.
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Methane (CH4) has 4 non-coincident axes and therefore has no dipole
moment. If there are several symmetry planes, the dipole moment must lie
along their intersection. In ammonia (NH4) the dipole moment lies along the
3-fold symmetry axis which is also the intersection of 3 symmetry planes. A
molecule having a center of symmetry cannot have a dipole moment, since
inversion reverses the direction of any vector.

X-ray diffraction studies have shown that nearly all metallic elements crys-
tallize in either a cubic face-centered lattice, hexagonal close-packed lattice, or
a body-centered cubic lattice.

The noble gases neon, argon, krypton and xenon at sufficiently low tem-
peratures crystallize in a face-centered cubic lattice.

Quasicrystals

Until the early 1980’s, scientists believed that all crystal solids were
arranged periodically at a microscopic level. It was assumed that the only
way to achieve order in the bulk is by having some basic structural unit which
repeats itself infinitely in all directions, filling up all space. This is much like
the way in which a floor can be covered in patterns of identical squares or
hexagons, without leaving gaps. However, covering the floor with pentagon or
decagons results in a patchwork of empty space because under this arrange-
ment the tiles cannot stretch to infinity in a regularly repeated pattern, i.e.
the pattern lacks periodicity. (In periodic patterns, if one tile is surrounded,
say, by six neighbors, then every tile is surrounded by six neighbors.)

In nature we observe this regularity in the way in which bees arrange
their honeycombs in periodic hexagonal arrays. (The artist M.C. Escher
has exhibited many periodic 2D and 3 D structures in his drawings.)

A perfect crystal consists of a space-filling array of periodically repeated
identical copies of a single structural unit containing some distribution of
matter and charge. In the simplest case, the structural unit contains a single
atom. More generally, it may contain many different atoms or a continuous
variation in the mass density about some mean. The repeated structural unit
is called the unit-cell.
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Equivalent points in unit cells in a D-dimensional perfect crystal lie on a
periodic lattice, called a Bravais lattice, consisting of a mathematical array of
points.

Any lattice point can be specified by an integral linear combination of
independent translation vectors a1, ..., aD

Rl = l1a1 + l2a2 + · · · + lDaD

where l = (l1...lD) is a D-dimensional vector with components li (l indexes a
particular unit cell, Rl specifies its position in real space). The set of vectors
a1...aD completely define the mathematical lattice. A translation vector (or
lattice vector) connects equivalent points in the lattice:

T = Rl − Rl′ .

If an infinite crystal is translated through a lattice vector T , it will be ab-
solutely indistinguishable from the untranslated crystal to a fixed observer in
some laboratory frame of reference.

Translations by lattice vectors are symmetry operations that leave the
physical properties of the crystal invariant. The set of all lattice translations
form a (commutative) group, and the crystal is said to be invariant under
operations of this group.

Crystals are also invariant under point-group operations consisting of ro-
tations, reflections, and inversions about special symmetry points.

Molecules and other finite size objects can have symmetry axes of arbitrary
order. But the requirement that a crystal be invariant under translations
through any vector on its lattice (the set of which can be shown to contain no
vector shorter than some minimum length vector) places severe restrictions
on possible rotational symmetries. Thus, e.g., it is impossible for a periodic
crystal to have a 5-fold symmetry, i.e. to be invariant w.r.t. rotations through
2π/5.

To see this assume that a crystal does have 5-fold symmetry and let
a0 = (1, 0) be the shortest vector in the lattice. Since the crystal is assumed
to have a 5-fold symmetry, the vectors

an =
(

cos
2πn

5
, sin

2πn

5

)

,

with n an integer, must also be in its lattice. But by the closure property of
any lattice, the vector

T = a4 + a1 =
(

cos
8π

5
+ cos

2π

5
, sin

8π

5
+ sin

2π

5

)

= τ −1(1, 0) = τ −1a0
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where

τ = 2 cos
π

5
=

1
2
(1 +

√
5),

must also be in the lattice, [τ2 = τ + 1, τ = the golden mean].

However, T is shorter than a0, contradicting the assumption that a0 was
the shortest vector in the lattice. Thus, it is impossible for a periodic lattice
in two dimensions to have a 5-fold symmetry. Similar arguments rule out
all periodic lattices in two dimensions with other than 2-, 3-, 4-, or 6-fold
symmetry. It can be shown that these restrictions lead to only five distinct
two-dimensional Bravais lattices: square, oblique, rectangular, centered rec-
tangular and hexagonal.

In three dimensions, the existence of a periodic crystal with the point-
group symmetry of an icosahedron251 (six 5-fold, ten 3-fold and fifteen 2-fold
axes) is similarly ruled out.

As a result, a fundamental tenet of classical crystallography252 was that
materials exhibiting icosahedral symmetry could not exist.

In 1984, Dan Schechtman and his colleagues shook the foundation of
crystallography253 when they reported an electron diffraction pattern for an
alloy of aluminum and manganese formed by rapid cooling of a mixture of two
molten metals; it showed a clear point-group symmetry of an icosahedron,
namely: 5-, 3-, and 2-fold axes characteristic of icosahedral symmetry. The
density of Bragg peaks in each plane was higher than one would expect from

251 One can stack atoms together in 3D lattice arrays that have 3-fold, 4-fold and 6-

fold symmetries, but 5-fold symmetric periodic stacking is not possible: A cubic

lattice – a stacking of perfect cubes – exhibits not only the easily recognized 4-

fold symmetry, but also 3-fold, when viewed along cube diagonals. But the two

regular polyhedra with 5-fold symmetry – the dodecahedron and icosahedron –

cannot be stacked together in a way that fills 3-dimensional space without gaps.
252 The idea that crystals are periodically ordered first emerged in the works of

Kepler (1619) and Hooke (1660) as a direct result of the advent of microscopy.

These ideas were then formalized into the theory of crystallography by René-

Just Haüy (1822). With the discovery of X-ray diffraction in crystals (von

Laue, 1912) and the subsequent development of X-ray crystallography (W.H.

and W.L. Bragg 1915), the periodicity of crystals received an unequivocal

stamp of approval because light diffracted from crystals produced sharp, crisp

patterns indicative of periodicity.
253 Linus Pauling, however, was not convinced and in the ensuing years slowed

the bandwagon. Finally his alternative theory lost to the prevailing views of

quasicrystalists.
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a periodic crystal254. There were 10 bright spots in the ring around the bright
central blob, implying that the alloy was a crystal with a “forbidden” 10-fold
symmetry. Rotating the crystal lattice by 72 ◦would leave it unchanged.

The aluminum/manganese alloy, as well as many other metal alloys that
have since been found to produce diffraction patterns with forbidden 5-, 8-,
10-, and 12-fold symmetries, cannot be true crystals in the sense of possessing
a genuine unit cell which repeats throughout the material. In other words, the
position of their constituent atoms cannot be orderly over large distances. The
geometric ban on crystals with these symmetries is mathematically absolute.

These alloys, which appear to be neither crystalline nor wholly noncrys-
talline, have been given the name “quasicrystals”255 (short for “quasiperiodic
crystals”).

We have seen that the closure property of any lattice implies that a lattice
with 5-fold symmetry has collinear vectors with irrational magnitude ratios,
and has vectors with arbitrary small separations. However, atoms in real
space cannot be arbitrary close together. In a periodic solid, the existence
of a shortest length in a unit cell ensures that distances between atoms are
greater than some minimum distance. How can there be a minimum distance
in a quasicrystal?

The answer is provided by tiling of a 2-dimensional plane with 5-fold sym-
metry invented by Roger Penrose256 (1974) and by their generalization to

254 Disordered, amorphous materials, in contrast, produce smeared-out scattering

patterns, from which rather little can be deduced about the structure. Sym-

metry properties of the diffraction pattern give an indication of that of the

crystal.
255 In 1991 the International Union of Crystallography decided to redefine the term

“crystal” to mean any solid having an essentially discrete diffraction diagram,

thereby shifting the essential attribute of crystallinity from position space to

Fourier space. This broader definition reflects our current understanding that

microscopic periodicity is a sufficient but not a necessary condition for crys-

tallinity.

One can also use the diffraction diagram to distinguish between periodic crys-

tals and quasicrystals as follows: Each Bragg peak in the discrete diffraction

diagram defines a wave vector which points from the center of the diagram to

the peak, and at which the density has a nonvanishing coefficient in its Fourier

expansion.
256 Penrose, a mathematical physicist, had become captivated by the post-WWII

work of artist Maurits C. Escher. His tilings represent an exploration of ways

in which a plane can be filled completely by identical tiles without producing

long-range order (that is, in an aperiodic manner).
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icosahedral symmetry in 3 dimensions. The basic idea here is to fill the plane
with two types unit cells (tiles) rather than a single unit cell required to tile
a plane periodically. Adjacent tiles must be joined so that they obey cer-
tain matching rules. There is a shortest distance between tile vertices and it
is possible to “decorate” the tiles with atoms in such a way that the atoms
have a minimum separation. The diffraction pattern (Fourier transform), first
calculated by D. Levine and P.J. Steinhardt (1984), of the icosahedral
generalization of Penrose tiles, agrees well with the experimental observed
pattern.

Why do atoms form a complex, quasiperiodic pattern rather than a
regularly-repeating, crystal arrangement? Scientists suggested that the con-
ditions necessary to form quasicrystals are significantly more complex than
conditions for forming crystals. Yet, the energetics of the process are as yet
not well understood.

There is no doubt that quasicrystals represent a new kind of a solid. Much
of the research now focuses on how their unusual structure affects properties
such as electrical conductivity or magnetism. A stimulating aspect of the
discovery of quasicrystals is that it has led to a new appreciation of the im-
portance of 5-fold symmetric objects in many spheres of science, from the
shape of viruses257 and flowers to the patterns of fluid flow close to the onset
of turbulence.

257 Simian virus 40 (SV40) is an example of a DNA virus. It appears to be spherical,

but it is actually an icosahedron, a geometric figure with 20 faces that are

equilateral triangles. The genome of this virus is a closed circle of double-

stranded DNA, with genes that encode the amino acid sequences of five proteins.

Three of the five proteins are coat proteins. Of the remaining two proteins, one,

the large-T protein, is involved in the development of the virus when it infects a

cell. The function of the fifth protein, the small-T protein, is not known. In the

complete virus particle (called a virion), the coat proteins are packed around

the DNA to give the observed icosahedral shape.
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1912 CE Casimir Funk (1884–1967, Poland, U.S.A.), and Frederick G.
Hopkins (1861–1947, England, 1906) independently discovered the vitamin
concept. Funk isolated the crystalline B-complex and named it vitamine
(= vit amine = amine essential to life). Later, the name was changed to
vitamin when it was determined that the labeled substances were not all
amines.

1912 CE Chaim Weizmann (1874–1952, England and Israel). Chemist
and statesman. Found (1912) a bacterium Clostridium acetobutylum which
would convert carbohydrate into acetone. This process proved of great impor-
tance in WWI as acetone is used in large quantities to plasticize the propellant
cordite.

Weizmann was born in Motol, Russia. He obtained his Doctorate from the
University of Fribourg, Switzerland (1899) and then moved to the University
of Geneva, where he produced a number of patents on dyestuffs (1901). By this
time he was already an important figure in the Zionist movement. In 1904 he
moved to Manchester, England, to work with William Henry Perkin, Jr.

Weizmann became the president of the World Zionist Movement (1921).
He founded (1934) the Weizmann Institute of Science in Rehovot and became
the first President of Israel (1948).

1912–1924 CE Franz Kafka (1883–1924, Czechoslovakia). Novelist and
one of the most influential thinkers of the 20-th century. Virtually unknown
during his lifetime, his surreal works have become synonymous with the
grotesque alienation of modern man in an unintelligible, hostile, or at least
indifferent world.

In his novels ‘The Trial ’ (1914–1916, published posthumously 1925) and
‘The Castle’ (1922–1924, published posthumously 1926), one finds authority
a hierarchical, abstract, and impersonal “apparatus” whose operation is con-
trolled by procedures which remain shadowy even to those carrying out its
orders and a fortiori to those being manipulated. A modern citizen realizes
that his fate is being determined by brutal, petty, and sordid characters (the
bureaucrats), who themselves are cogs in this machine.

Kafka’s critique of the state touches anonymous impersonal character in-
sofar as this alienated, hypostatized and autonomous bureaucratic system is
becoming transformed into an end-in-itself.

Kafka had a profound insight into the way the bureaucratic machine op-
erates like a blind network of gears. When he speaks to us of the state, it is
in the form of “administration” or “justice” as an impersonal system of dom-



1912 CE 3217

ination which crushes, suffocates, or kills individuals. This is an agonizing,
opaque, and unintelligible world where unfreedom prevails.

“The Trial” is often presented as a prophetic work. With his visionary
imagination, the author had foreseen the ‘justice’ of the totalitarian state and
the Nazi or Stalinist show trials.

It is no accident that the word “kafkaesque” has entered our current vo-
cabulary. The term denotes an aspect of social reality that sociology and
political science tend to overlook. With his libertarian sensibility, Kafka has
succeeded marvelously in capturing the oppressive and absurd nature of the
bureaucratic nightmare, the opacity, the impenetrable and incomprehensible
character of the rules of the state hierarchy as they are seen from below and
the outside. This runs contrary to social science which generally confines it-
self to examining the bureaucratic machine from the “inside” and taking the
point of view of those “at the top.”

Social science has not yet formulated a concept for the “oppressive effect”
of a reified bureaucratic apparatus which undoubtedly constitutes one of the
most characteristic phenomena of modern societies which millions of men and
women run across daily. Meanwhile, this essential dimension of social reality
will continue to be conjured up by reference to Kafka’s work.

In his story “Penal Colony” (1915), written three months after the out-
break of WWI, the main character is the machine itself — a sinister apparatus
which does not exist to execute a man, but rather the victim exists for the
sake of the apparatus. Thus saw Kafka the Great War as an “apparatus of
Authority,” sacrificing human lives.

The work of Franz Kafka cannot be reduced to a political doctrine of any
kind. The symbolic world of literature cannot be reduced to the discursive
world of ideologies. It is not an abstract conceptual system similar to philo-
sophical or political doctrines, but rather the creation of a concrete imaginary
universe of individuals and things.

Kafka’s works have been interpreted through certain schools as literary
criticism such as existentialism, Marxism, anarchism, Freudianism and Ju-
daism. It seems, however, that a combination of major biographical factors
permeated and dominated the Kafkaesque world. These are

• Ill-health and consequent perpetual fear of physical and mental collapse.
He was a bit of hypochondriac and anorexic. His prodigious consump-
tion of unpasteurized milk was the source of his tuberculosis, which
finally killed him at age 41.
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• The complex relations with his father. Herman Kafka was a domestic
tyrant, who directed his anger against his son. Kafka himself attributed
much of his outlook on life to the affects of the relationship with his
father. In Letter to His Father (1919) he stated: “My writing was all
about you; all I did there, after all, was to bemoan what I could not
bemoan upon your breast. It was an intentionally long-drawn-out leave-
taking from you.” His work was often fraught with cold, authoritarian
figures that persecuted and threatened for reasons barely understood
and often unexplained — a situation which perfectly summed up Kafka’s
childhood sense of his own father.

• The institutionalized system of control of the post Austro-Hungarian
Empire, composed of: “a stand of soldiers, a sitting army of officials, a
kneeling priests, and creeping army of informers.”

• The Virgin/Whore complex258 that made him virtually incapable of a
“normal” sexual affair with a “nice girl” owing to his neurotic attitude
toward sex.

• The historical Hassidic-Kabbalistic Jewish mystique.259

• The pervasive Czech-German anti-semitism in Prague [Kafka grew up
in an atmosphere of familial tensions and social rejection that he expe-
rienced as a member of Prague’s Jewish minority].

Franz Kafka was born in Prague to the Jewish family of Hermann (1852–
1931) and Julie Loewy (1856–1934), who operated a small business for linen
thread and cotton. In 1901 he graduated from a German High School and
went on to the Karl Ferdinand University in Prague, where he graduated
(1906) with a doctorate in law. During 1908–1922 he was employed by the
“Institute for Worker Accident Insurance” in Prague. There he made reports
on industrial accidents and health hazards. His profession marked the formal,
legalistic language of his stories which avoided all sentimentality and moral
interpretations — all conclusions are left to the reader.

258 In this syndrome, every woman is either a “nice girl” or slut, with no room in

between. So a normal adult affair with a woman he liked and respected would

prove all but impossible, as Felice Bauer soon found out.
259 Kafka was not a religious writer, and at face value, his writings have nothing to

do with Judaism. However, his works incorporate and reinterpret many Jewish

religious themes. Kafka had a positive relationship vis-à-vis his Judaism – it

was not one of rejection or apathy. He had a strong Jewish identity albeit a

highly troubled one.
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He attended synagogue but four times a year, spoke mainly German and
had little cultural involvement with the Jewish community, with the excep-
tion of Jewish theater groups. In 1911 he made a trip to Paris, Italy and
Switzerland.

Kafka had three sisters: Gabriele (Eli): 1889–1942, Valerie (Vali): 1892–
1943 and Ottilie (Ottla): 1890–1943. All of them, with their families, perished
in the Nazi Holocaust: Eli and Vali at the Lodz Ghetto and Ottla gassed in
Auschwitz on Oct 5, 1943.

His attitudes toward sexuality was marked by extreme neurosis. Unable
to reconcile his physical urges (which were visited upon prostitutes and loose
women) with his romantic longings, he had a series of prolonged, probably
chaste, engagements that invariably ended in his breaking off the relation-
ship. Despite this fact, and despite his being overwhelmed with feelings of
inadequacy and self-loathing, he was much liked by friends (including women
friends260) for his gentle, cool demeanor, his wry wit, and his obvious intelli-
gence. He was further viewed not as weak and repulsive, his own fear, but as
boyishly good looking, as well as neat and austere.

During 1907–1923, Kafka had intimate relations with at least eight women,
some of whom impacted his creative work in one way or another. In order of
occurrence they are:

• Hedwig Weiler (1887–1953), 1907–1908

• Flice Bauer (1887–1960), 1912–1917; engaged to

• Greta Bloch (1892–1944), 1913–1915

• Gerti Wasner (1895–?), 1913

• Julie Wohryzek (1891–1944), 1919–1920; engaged to

• Minze Eisner (?–?), 1920

• Milena Jesenská (1896–1944), 1920–1922

260 He once met a little girl in the streets of Berlin — five years old, or something

like that — who was crying, and he asked her why she was crying, and she said

it was because she’d lost her doll. And he said, ‘You haven’t lost your doll;

she’s gone on holiday.’ And for the next weeks, Kafka wrote letters as from the

doll to this little girl. Well, a man who can do that has a heart as big as all

outdoors, as they say. So it was no wonder that his friends loved him, there’s

no wonder that his girlfriends loved him, despite all this maddening neuroticism

and indecision.
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• Dora Diamant (1898–1952), 1923–1924; lived with

Of these, Gerta Bloch, Julie Wohryzek and Milena Jesenska perished in the
Holocaust.

Franz Kafka died in 1924 in the Kierling Sanatorium from complications
related to tuberculosis. It has been noted that due to the great pain in his
throat, from this condition, he was unable to eat and barely to drink in his
last days. He often complained of thirst in his letters home to his father, and
at the end may have simply starved to death. His body is buried in Prague,
in the Jewish section of the Strasnice cemetery.

He remained self-deprecating about his writing, as he was about himself
in general, and on his death bed asked his close lifelong friend Max Brod
to burn all his unpublished works, including journals and correspondence.
It was a promise Brod did not keep. Instead Brod, who had always been
impressed with Kafka’s literary abilities, edited a portion of what remained
and had it published. Interest in Kafka’s work soared and, over the years, has
continued to garner a following. While Kafka holds a considerable following
among existentialists, who find in his gloom and doom anxiety about life an
expression of deepest truth (that we are meaningless and alone, yet can’t help
but yearn for it all to matter), he also finds sympathetic response among
magical realists and others who favor an absurdest, surreal representation of
life.

Kafka has become an icon of sorts, emblematic of modern times. His
popularity increased exponentially after publication of his stories in the 20s
and 30s of the 20th century. He is now an institution, his own adjective. In
1995, somebody bought the manuscript of The Trial for to two million dollars,
not bad for an uncompleted manuscript meant for the flames. Few writers
had such an effect on their times as he had.

The asteroid 3412 Kafka, a small main belt bolide (discovered 1988) was
named after him.
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Worldview XXXIII: Franz Kafka

∗ ∗∗

Logic is doubtless unshakable, but it cannot withstand a man who wants to
go on living.

(The Trial)

∗ ∗∗

The metaphysical urge is only the urge toward death.

(1912)

∗ ∗∗

Beyond a certain point there is no return. This point has to be reached.

∗ ∗∗

In the fight between you and the world, back the world.

∗ ∗∗

Every revolution evaporates and leaves only the slime of a new bureaucracy.

∗ ∗∗

The chains of the tortured humanity are made of the official papers of minis-
ters.
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∗ ∗∗

If it had been possible to build
the Tower of

Babel without ascending it, the
work would

have been permitted.

∗ ∗∗

Anyone who believes cannot experience miracles. By day one cannot see any
stars.

∗ ∗∗

We were expelled from Paradise, but Paradise was not destroyed. In a sense
our expulsion from Paradise was a stroke of luck, for had we not been expelled,
Paradise would have had to be destroyed.

∗ ∗∗

You are free and that is why you are lost.

∗ ∗∗

Anything that has real and lasting value is always a gift from within.

∗ ∗∗

Either the world is so tiny or we are enormous; in either case we fill it com-
pletely.

∗ ∗∗
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All knowledge, the totality of all questions and all answers is contained in the
dog.

∗ ∗∗

There is a goal, but no way; but what we call a way is hesitation.

∗ ∗∗

In science one tries to tell people, in such a way as to be understood by
everyone, something that no one ever knew before. But in poetry, it’s the
exact opposite.

∗ ∗∗

Altogether, I think we ought to read only books that bite and sting us. If the
book does not shake us awake like a blow to the skull, why bother reading it
in the first place? So that it can make us happy, as you put it? Good God,
we’d be just as happy if we had no books at all; books that make us happy we
could, in a pinch, also write ourselves. What we need are books that hit us
like a most painful misfortune, like the death of someone we loved more than
ourselves, that make us feel as though we had been banished to the woods,
far from any human presence, like a suicide. A book must be the ax for the
frozen sea within us. That is what I believe.

∗ ∗∗

To die would mean nothing else than to surrender a nothing to the nothing,
but that would be impossible to conceive, for how could a person, even only
as a nothing, consciously surrender himself to the nothing, and not merely to
an empty nothing but rather to a roaring nothing whose nothingness consists
only in its incomprehensibility.

(1913)

∗ ∗∗
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It is entirely conceivable that life’s splendor forever lies in wait about each of
us in all its fullness, but veiled from view, deep down, invisible, far off.

(1921)

∗ ∗∗

Youth is happy because it has the ability to see beauty. Anyone who keeps
the ability to see beauty never grows old.

∗ ∗∗

Discoveries have forced themselves on people.

(1913)

∗ ∗∗

The meaning of life is that it stops.

∗ ∗∗

The life of society moves in a circle. Only those burdened with a common
affliction understand each other.

(1914)

∗ ∗∗

We are sinful not merely because we have eaten of the tree of knowledge but
also because we have not eaten of the tree of life.

∗ ∗∗

Many a book is like a key to unknown chambers within the castle of one’s
own self.

(1903)
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∗ ∗∗

Writing sustains me. But wouldn’t it be more accurate to say that it sustains
this kind of life? Which does not, of course, mean that my life is any better
when I don’t write. On the contrary, at such times it is far worse, wholly
unbearable, and inevitably ends in madness. This is, of course, only on the
assumption that I am a writer even when I don’t write — which is indeed the
case; and a non-writing writer is, in fact, a monster courting insanity.

(1922)

∗ ∗∗

When it became clear in my organism that writing was the most productive
direction for my being to take, everything rushed in that direction and left
empty all those abilities which were directed toward the joys of sex, eating,
drinking, philosophical reflection and above all music.

(1912)

∗ ∗∗

God doesn’t want me to write, but I — I must.

∗ ∗∗

These revolting doctors! Businesslike, determined and so ignorant of healing
that, if this businesslike determination were to leave them, they would stand
at sickbeds like schoolboys. I wished I had the strength to found a nature-cure
society.

(March 5, 1912)

∗ ∗∗

The priest: “We are not obliged to accept everything he says as true. It suf-
fices that it is accepted as necessary.”
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Josef K.: “A mournful opinion; It elevates the lie to the stature of a world
principle.”

∗ ∗∗

Coitus is the punishment for the happiness of being together.
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On Kafka

∗ ∗∗

The look in Kafka’s eyes was always a little puzzled, full of the wisdom of
children and of melancholy slightly counterpointed by an enigmatic smile. He
always seemed to be somewhat embarrassed.

John Urzidil

∗ ∗∗

The fact is we all seem capable of living, because at some time or other we
have taken refuge in a lie, in blindness, in enthusiasm, in optimism, in some
conviction, in pessimism or something of the sort. He has never taken refuge
in anything. He is absolutely incapable of lying, just as he is incapable of
getting drunk.

Milena Jesenská

∗ ∗∗

He marvels at everything, including typewriters and women. He will never
understand.

Milena Jesenská

∗ ∗∗

My Franz was a saint.

Felice Bauer

∗ ∗∗

I couldn’t read it for its perversity. The human mind isn’t complicated enough.

Albert Einstein, after returning a Kafka novel loaned
to him by Thomas Mann.
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∗ ∗∗

And his is — on another plane — the curse and grace of an almost saint-like
abstemiousness . . . a readiness to let go, not to cling, which may be offensively
modest and gentle in its inevitable gesture of refusal — a saintly, mild, almost
Christlike gesture which is nonetheless ambiguous since it arouses, at the same
time, the suspicion of a diabolical arrogance to the point where one would want
to shout at him: “Don’t pretend to be that small, you are not that great!”

Peter Heller

∗ ∗∗

To do justice to the figure of Kafka in its purity and its peculiar beauty, one
must never lose sight of one thing: it is the purity and beauty of a failure.

Walter Benjamin

∗ ∗∗

In Kafka we have the modern mind, seemingly self-sufficient, intelligent, skep-
tical, ironical, splendidly trained for the great game of pretending that the
world it comprehends in sterilized sobriety is the only and ultimate real one
— yet a mind living in sin with the soul of Abraham. Thus he knows two
things at once, and both with equal assurance: that there is no God, and that
there must be God.

Erich Heller

∗ ∗∗

A final paradox decrees that Kafka’s books are among literature’s least diffi-
cult. There is nothing subjective, arbitrary, or doubtful in them: Amerika is
not the truth according to Karl, or The Trial the truth according to Joseph
K. Dickens is hard to understand, not Kafka. We have only to keep in mind
all the events and characters of Amerika or The Trial or The Castle — a truth
that stands far above or lies much deeper than Karl, Joseph K., K. and Kafka
— will burst forth by itself, dazzlingly.

Pietro Citati

∗ ∗∗
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1912 CE Charles (Thomson Rees) Wilson (1869–1959, England).
Physicist. Invented the Wilson Cloud Chamber . This device made the tracks
of high-speed atomic and nuclear particles visible, by means of trails of wa-
ter droplets condensed on the ions produced along particle paths. For this
achievement he won the physics Nobel prize in 1927. Wilson was born in
Glencorse, Scotland.

1912–1925 CE Henry Norris Russell (1877–1957, U.S.A.). One of the
leading astrophysicist of the era when physical understanding of stars was first
emerging. Discovered, independently of Hertzsprung, the main sequence
of stars by plotting the absolute magnitudes of stars against their spectral
classes261.

In 1912 he presented the earliest systematic analysis of the variation of the
light received from eclipsing binary stars; he later pointed out the importance
of the motion of the periastron of the orbit which provides information about
the internal structure of the component stars. On the basis of his parallax
studies, Russell developed the theory of stellar evolution that at the time
was in good agreement with the data. This work stimulated Eddington and
other astrophysicists. In 1925 Russell presented a reliable determination of
the abundance of various chemical elements in the solar atmosphere. This
work provided clear evidence of the predominance of hydrogen in the sun
and, by inference, in most stars.

Russell was born in Oyster Bay, New York. He graduated from Princeton
University in 1897 and remained there to obtain his doctorate in 1900. During
1902–1905 he stayed at Cambridge University, and since 1911 served as a
professor of astronomy at Princeton. In 1921 Russell began his association
with the Mt. Wilson Observatory, where he was a research associate until his
retirement.

261 The spectral types O, B, A, F , G, K, M and N , are essentially measures of

the surface temperatures of the stars, running from about 20,000 ◦ at spectral

class B to about 2500 ◦ at class N .
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Fundamental Stellar Properties — H–R Diagrams

A number of fundamental quantities characterize a star; these include
luminosity, temperature, radius and above all, mass. It is also important to
know the distance to stars — in order to determine luminosity from apparent
magnitude.

The luminosity of a star is the total rate of energy it emits from its surface,
and is usually measured in units of ergs per second. To measure it, it is
necessary to take into account the distance to a star and the radiation received
from it at all wavelengths, not just those to which the human eye responds.
While stellar magnitudes (both apparent and absolute) refer to visible light,
the bolometric magnitude is based on the star’s radiation emitted over a
much broader wavelength band than the eye can see. On the other hand, the
wavelength at which the star emits most strongly depends on its temperature.
Thus, by measuring a star’s brightness at two different wavelengths, it is
possible to learn something about its temperature.

One can thus speak about a B (blue) magnitude and a V (visual, or yellow)
magnitude. Since a hot star emits more light in blue than in yellow, its B
magnitude is smaller than its V magnitude. For a cool star, the situation is
reversed. The difference between the B and V magnitudes is called the Color
index. Stellar surface temperatures range from about 2000 K for the coolest
M stars to 50, 000 K or more for the hottest O stars.

In the first decade of the 20th century E. Hertzsprung and H.N. Rus-
sell began to consider how luminosity and spectral class might be related
to each other. Each gathered data on stars whose luminosities (or absolute
magnitudes) were known, and found a close link between spectral lines (tem-
peratures) and absolute magnitudes (luminosities). This relationship is now
called the Hertzsprung-Russell or H-R diagram. In this plot of absolute mag-
nitude (on the vertical scale) versus spectral class (on the horizontal scale),
stars fall into narrowly defined regions, rather than being randomly distrib-
uted.

A star of a given spectral class cannot have just any absolute magnitude,
and vice versa. In fact, the great majority of stars fall into a diagonal strip
running from the upper left (high temperature, high luminosity) to the lower
right (low temperature, low luminosity) of the H–R diagram. This strip has
been given the name main sequence.

One group of a few stars fails to fall on the main sequence but appears
in the upper right (low temperature, high luminosity) of the diagram. The
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only way one star can be much more luminous than another of the same
temperature is if it has a lot more surface area. Hertzsprung and Russell
realized that these extra-luminous stars sitting above the main sequence must
be much larger than those on the main sequence, and they called them giants
and supergiants. Another group of stars appear off the main sequence in the
lower left (high temperature, low luminosity) of the diagram. Since these
stars are hot but not very luminous, they must be very small, and they have
been given the name white dwarfs.

The H–R diagram can be used to find the distance to a star, provided we
can place it on the H–R diagram by determining its spectral class (i.e. as long
as we know whether it is on the main sequence or is a giant, supergiant or
dwarf ). Once it has been placed on the diagram, its absolute magnitude is
read off the vertical axis. A comparison of its absolute magnitude with its
observed apparent magnitude then yields the star’s distance from earth.

In a telescope all stars appear simply as points of light, so it is usually
impossible to measure the size of a star directly. The radii of a few stars
have been measured with an instrument called a stellar interferometer. Oth-
ers can be deduced for stars that are members of binary systems. For most
stars, however, the H–R diagram provides means to estimate their size in
the following way: since luminosity is related to total surface area, a star’s
position in the H–R diagram depends partly on its size. We know that the
Stefan-Boltzmann law specifically relates the three quantities luminosity, tem-
perature and radius; use of this law allows the radius to be determined if the
other two quantities are known262.

It has already been noted that the temperature attained by a star depends
almost entirely on the initial mass of the star. Indeed, studies of binary stars
have provided knowledge of the masses of over a hundred individual stars.
When the masses and luminosities of those stars for which both of these
quantities are determined are compared, it is found that, in general, the more

262 The Stefan-Boltzmann law states that the emitted flux (measured in units of

erg·cm−2·sec−1) is related to the temperature (in kelvins) by E = σT 4 where

σ = 5.67 × 10−5 erg·cm−2sec−1( ◦K)−4 is the Stefan-Boltzmann constant. The

corresponding luminosity is L = 4πR2σT 4, where R is the star’s radius. Solv-

ing for R we find R = 1
T2

√
L

4πσ
. Scaling the quantities L, R, and T to those of

the sun, we obtain L
L�

=
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R
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. These relations make it possible to

transform the original H–R diagram into another in which the horizontal scale

is not the temperature but the radius. In this representation (radius-luminosity

relation), the main characteristics of the H–R diagram are retained, but the

sequences are tilted in slightly different manner.
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massive stars are also more luminous. This observation is known as the mass-
luminosity relation.

The law seems to be L ∝ M3.7. It provides a useful means of estimating
the masses of stars of known luminosity that do not happen to be members
of visual or eclipsing binary systems. The range of stellar masses seems to be
between 0.1 and 50 solar masses. According to the mass-luminosity relation,
the corresponding luminosities range from 0.01 to 106 solar luminosities — a
much greater range indeed.

During 1913–1962, a large amount of information has been accumulated
concerning the parameters of stars. It was then deduced that the relations
are statistical in nature; actually there are very few, if any, parts of the radii-
masses-luminosities space which are “prohibited”, i.e. representative points
may be found in many parts of the R-M -L octant which where previously
believed to be completely empty. This result should not be confused with
the well-established statistical tendency of the stars in our galaxy to occur in
preferential bands within the model.

It has been estimated that approximately 1011 stars of the Milky Way
system belong to the main sequence and obey the mass-luminosity relation.
The total number of white dwarfs may be one hundred times less. The giants
are probably 10, 000 times less frequent than the main sequence stars.

1912 CE Henrietta Swan Leavitt (1868–1921, U.S.A.). Astronomer.
Elucidated the properties of a class of pulsating stars (Cepheid variables263)
via predictable relation between period and intrinsic brightness and used them
for calculating distances to remote and even extra-galactic stars. This enabled
Hubble in 1929 to formulate his law of expansion.

Leavitt graduated from the women’s college that was affiliated with Har-
vard College, in 1892. In 1902, after working as a volunteer research assistant,
Leavitt became a permanent staff member of the Harvard College Observa-
tory. She conducted studies of stellar magnitudes (star brightness) and be-
came head of the department of photographic stellar photometry.

263 Pulsating stars that vary regularly in brightness, with periods ranging from a

few days to several months. First identified in the 18th century. We now know

that the variations are caused by periodic expansions and contractions of the

stellar surface.
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In 1912, after about five years of single-minded study, she found that
the periods of the Cepheids were proportional to their luminosity. Such a
relationship can be calibrated for nearby Cepheids, where the distance is
known. Then it can be used to gauge the distances to remote Cepheid stars.
If it is necessary to know the distance to a globular cluster or nebula or
galaxy, the astronomer simply has to identify a Cepheid star inside it. For
this reason, Leavitt’s relationship became important to the measurement of
interstellar and intergalactic distances. Leavitt also discovered four novae
(stars that suddenly become brighter and within a few months gradually fade
away) and more than 2,400 variable stars.

1912–1913 CE Gunnar Nordström (1881–1923, Finland). Physicist.
Presented a pre-general-relativity theory of gravitation, which was the first
logically consistent relativistic field theory of gravitation ever formulated. The
theory is Lorentz invariant, and satisfies the conservation laws, but the equiv-
alence principle appears in it as a statistical law. Later (1914) Nordström
proposed to use a five-dimensional space for the unification of electromag-
netism with a scalar gravitational field264.

1912–1915 CE Einstein’s work stimulated an outpouring of short-lived
abortive gravitational and unified-field theories, by physicists and mathemati-
cians alike. Noted among them were Max Abraham (1875–1923), Gustave
Mie (1868–1957) and David Hilbert (1862–1943).

1912 CE Opening of the Kaiser-Wilhelm Institutes in Berlin-Dahlem, Ger-
many, marks the pinnacle of German science. A year earlier (1911) the Kaiser
Wilhelm Society was established. The first president of the Society and the In-
stitute was the historian Adolf von Harnack265 (1851–1930), to be followed
by Max Planck.

The first institute was that of chemistry, including Ernst Beckman,
Richard Willstätter, Otto Hahn, and Lise Meitner. The second insti-
tute was that of physical chemistry of which Fritz Haber became the director.
The third institute was that for experimental therapy under the directorship
of August von Wasserman. The building of the fourth institute, for bi-
ology, was finished in 1915. Einstein was supposed to be the director of the
institute for physics, but the plans were suspended because of the War and
taken up only in the 1930s, when it was built with the financial support of
the Rockefeller Foundation. When it was finished, Einstein had already left.

264 This is one of the abortive ‘STR gravitation’ theories.
265 Harnack belonged to a large family, prominent in universities, industry, and

government. Because of its well-known liberal and progressive attitude many

members of the family were executed by the Nazis.
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The Kaiser Institutes were destined to become one of the greatest and
most brilliant centers of that era.

After the turmoil of the first postwar years, an extraordinary renaissance
also took place in literature, art, music, theaters, operas and other areas. It is
thus not surprising that Berlin, in the 1920s, impressed visitors from abroad
as the scientific and intellectual capital of the world, in spite of the lost war.
Indeed, in the mid 1920s the Kaiser Wilhelm Institutes became one of the
world’s greatest centers, particularly in chemistry, physical chemistry, and
the biological sciences.

In physics there were centers of great attraction, especially in atomic
physics:

at the University of Berlin, with Planck, Einstein, Schrödinger, von
Laue, and Nernst;

at the University of Göttingen, with Franck and Born and their intimate
collaboration with the famous mathematicians there;

at the University of Hamburg, with Otto Stern;

at the University of Munich, with Sommerfeld;

and at the University of Leipzig, with Werner Heisenberg.

1912–1922 CE Alfred Lothar Wegener (1880–1930, Germany). Meteo-
rologist, geophysicist and Arctic explorer who mixed research with adventure.
First to propound in exhaustive detail his then-revolutionary hypothesis of
continental drift based on fossil and glacial evidence.

He contended that evidence of past climates, supported by evidence from
widely scattered disciplines, could not be reconciled with the fixed position of
the continents and of the north and south magnetic poles.

Wegener was then led to assume that the now-separated continents must at
one time have formed a single large mass, which he named Pangaea (pan=all,
gaia=earth; meaning “all land”). He maintained that some 200 million years
ago, Pangaea began breaking into smaller continents that “drifted” to their
present position. Ancient climatic similarities, fossil evidence, and rock struc-
tures — all seemed to bridge together these now separate landmasses.

Other geologists refined Wegener’s theory, arguing that Pangaea first split
into two smaller supercontinents they called Laurasia and Gondwanaland ,
separated by what was called the Tethys. Gondwanaland later split into Africa
and South America, while Laurasia divided to become North America and
Eurasia. The Mediterranean Sea, according to this theory, is a surviving
remnant of the ancient Tethys Sea.
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Wegener was born in Berlin and took his doctorate in astronomy. He was a
Renaissance man, also studying meteorology, biology, paleontology and much
besides. He was selected as meteorologist to a Danish expedition to northeast
Greenland. A second expedition to Greenland in 1912, included the longest
crossing of the ice cap ever undertaken.

Wegener first presented his continental-drift hypothesis in 1912 in a lecture
before the German Geological Association in Frankfurt am Main. His fuller
development of the theory appeared in his 1915 book Die Entstehung der
Kontinente und Ozeane (The Origin of Continents and Oceans).

Wegener’s ideas were initially met with ridicule and scorn and he suffered
criticism from the pillars of orthodoxy in geophysics and geology. His theory
was too radical for the time, and his book brought him more notoriety than
praise. Although it was generally accepted that the continents do float in
a denser, somewhat plastic mantle beneath them, few could accept the idea
that entire continents could move around the earth at speeds that must be
as great as several centimeters per year. He was also ridiculed for failing to
explain the origin of a force that would permit “continents of granite to flow
through oceans of rock”.

Wegener lost his life on the Greenland ice sheet during a mission to estab-
lish a mid-ice observatory. The proofs he was seeking were found years later,
quite by chance and on another frontier — at the bottom of the sea.

Continents Adrift266 (1912–1968)

The idea of continental drift is very old267; the notion that continents,
particularly South America and Africa, fit together like pieces of a puzzle has

266 For further reading, see:
• Tarling, D. and M. Tarling, Continental Drift, Anchor Books: New York,

1975, 142 pp.

267 Genesis 1, 9–10 “And God said, Let the waters under the heaven be gathered

together unto one place, and let the dry land appear: and it was. And God

called the dry land Earth; and the gathering together of the waters called he

Seas: and God saw that it was good”.

Genesis 10, 25: “And unto Eber were born two sons: the name of one was

Peleg; for in his days was the earth divided”. [Also, Chronicles 1, 19.]
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been around as long as world maps. Francis Bacon (Novum Organum, 1620)

had already wondered about the coincidence of coastlines. In 1668 a French

monk, Francois Placet, suggested that the continents had been broken apart

by the Deluge. Another theological scholar, Theodore Lilienthal (1756),

also found biblical evidence for the separation of a single land mass into the

present continents.

In 1858, Antonio Snider-Pelligrini made the first geological (as opposed

to geometrical) survey of similarities of the continents on either side of the

Atlantic. Charles Darwin found convincing signs of vertical movements of

land masses, but did not see evidence for large-scale horizontal movements.

His son, George Howard Darwin (1845–1912), suggested in 1878 that the

moon originated by being thrown off from the Pacific area of the spinning

earth or being drawn from it by gravitational attraction of a passing star.

This idea was extended by Osmond Fisher in 1882, when he suggested

that the continents broke up at the same time of the moon’s separation, and

subsequently readjusted their positions to the new shape of the earth.

In 1908 Frank B. Taylor (U.S.A.) suggested that the tidal pull of the

moon might have tugged the continents about on the surface of the planet. In

1911, Howard B. Baker (U.S.A.) revived Darwin’s idea that the continent

might have been set in motion by the planet Venus, who had swooped close

enough to tear out a chunk of the Pacific floor, which became the moon.

Wegener’s intriguing idea did not die with him. After decades of skepti-

cism, evidence has come to light to confirm the essence of his theory. Indeed,

during the years that followed his proposal, great strides in technology per-

mitted mapping of the ocean floor, and extensive data on seismic activity and

the earth’s magnetic field became available. By 1968 these developments led

to the unfolding of a far more encompassing theory, known as plate tecton-
ics. It became one of the most important geological discoveries of the 20th

century; in essence it is the realization that our planet has an active, con-

stantly changing crust. This crust is divided into huge plates that jostle each

other, producing earthquakes, volcanoes and oceanic trenches. Plate tecton-

ics is responsible for many details of the earth’s surface, including mountain

ranges.

A careful examination of the currently active features of the land and the

ocean floor has suggested that the earth now consists of 6 large blocks which

are in motion relative to each other. These are:

• The Pacific block consists of most of the Pacific Ocean and includes small

fragments of the west coast of North America.
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• The American block consists of North and South America as well as the
western half of the Atlantic Ocean. The Caribbean region forms a small
subblock.

• The Eurasian block is almost entirely continental, consisting of all of
Europe and most of Asia, including the East Indies and the Philippines.

• The African block consists of the continent of Africa, Madagascar, the
eastern half of the South Atlantic Ocean, and the western half of the
Indian Ocean.

• The Indian block stretches from the Arabian peninsula to New Zealand.
The block contains the portion of Asia south of the great mountain range
from Turkey on the west to the Himalayas, and the west coast of Burma
on the east. The eastern half of the Indian Ocean, New Guinea, and
Australia are included in this block.

• The Antarctica block consists of the continent of Antarctica and the
Southern Ocean. It includes a strip of the Pacific between the East
Pacific Rise and the west coast of South America.

The differential motions of these 6 blocks lead to the formation of new ocean
floor where the blocks are moving apart, and to a loss of surface where the
blocks are forced against each other. The areas where new surface is created
correspond to the mid-ocean ridges. Where all blocks are driven into each
other, the surface expression is more complex: Some of these areas correspond
to ocean trenches. Along other segments where the blocks are pressing against
each other, we find active mountain belts, such as the Himalayas. While these
appear to be compressional features, trenches seem to be the result of tension.

It appears that the rigid surface of the earth, the lithosphere, which is
tens of kilometers thick, rests on a weaker layer, the asthenosphere. The
lithosphere is divided in large blocks which move relative to each other. The
boundaries between the blocks are zones of weakness, where earthquake ac-
tivity reveals relative motion. The fact that the present blocks have existed
for tens of million of years indicates that the breaks in the lithosphere tend to
be preserved. However, over long periods, these breaks heal and new breaks
develop; thus the pattern of blocks may change.

The existence of a more plastic asthenosphere under the relatively rigid
lithosphere (though elastic as far as seismic waves are concerned) facilitates
the motion. Nevertheless, frictional forces at the bottom of the blocks and at
the points where the blocks are converging would tend to stop the drift in the
absence of a driving force.

The main force within the earth is thermal energy, which results from the
radioactive decay of uranium, thorium, and an isotope of potassium. This
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outward flux of heat amounts to about 1.5 × 10−6 cal
sec·cm2 . This is much less

heat than is received from the sun, so that the heat flux from the interior does
not directly affects the climate on earth. The total heat flux, however, is 60

ergs
sec·cm2 , which is 109 times the kinetic energy of the lithosphere in motion.

The heat from the interior can be transferred by conduction, radiation,
and convection. Of these, only convection is associated with motion, and so
could be the driving force for continental drift.

Convection currents result if a fluid is heated from below. The density
difference between the heated and cool fluids results in vertical motion, since
the heated fluid rises and the cooled fluid sinks. The vertical motions become
spatially organized and result in a pattern of vertical convection cells. The
horizontal motion at the top of the asthenosphere exert forces on the blocks of
the lithosphere. The direction of the net force will depend on the disposition
of the blocks relative to the convection cells268.

268 Although the theory of plate tectonics is well established, the engine that drives

the motion of the lithospheric plates continues to defy easy analysis because it

is so utterly hidden from view.

Among the regions offering the best access to the earth’s insides are the mid-

ocean ridges. These ridges dissect all major oceans. They actually make up

a system that winds around the globe, stretching a total of more than 60,000

km. The Mid-Atlantic Ridge (MAR) is a part of that global ridge system; a

huge north-south scar in the ocean floor, it forms as the eastern and western

parts of the Atlantic move apart at a speed of roughly 1 cm
year . In addition to

the frequent earthquakes that take place there, the summit of the MAR spews

out hot magma during frequent volcanic eruptions. The magma cools and so-

lidifies, thus forming new oceanic crust. The magma that rises in the MAR

originates in the upper mantle and forms a common kind of rock known as

basalt . It is known, however, that the upper mantle is made of peridotite which

consists mostly of three silicon-based minerals: olivine (a dense silicate con-

taining magnesium and iron); orthopyroxene (a similar and less dense mineral);

clinopyroxene (incorporates some aluminum and calcium) and spinel (an oxide

of chromium, aluminum, magnesium and iron).

Hot peridotite rises under the mid-ocean ridges from depths exceeding 100 km

below the seafloor. As it moves upward, it decompresses and partially melts.

The melted part takes on the composition of basaltic magma and separates from

the peridotite that did not melt.
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1912–1925 CE Vesto Melvin Slipher (1875–1965, U.S.A.). Astronomer.
Made systematic observations of radial velocities of spiral galaxies269 (then
known as Nebulae). These observations provided the first evidence supporting
the expanding-universe theory.

Slipher was born at Mulberry, Indiana. In 1901 he joined the staff of the
Lowell Observatory at Flagstaff, Arizona, and in 1916 became its director.
There he organized and guided the search that resulted in the discovery of
Pluto, the ninth known planet of the solar system. Slipher’s extensive inves-
tigations led to the determination of the rotational periods of several planets.
His discovery of dark absorption bands in the spectra of Jupiter, Saturn, and
Neptune led to the identification of some of the chemical constituents of their
atmospheres. He demonstrated that many diffuse nebulae (clouds of dust and
gas) shine by the reflected light of nearby stars.

1912–1930 CE Eduard Helly (1884–1943, Austria and USA). Mathe-
matician. Worked on functional analysis and proved the Hahn-Banach theo-
rem (1912), 15 years before Hahn published essentially the same proof, and
20 years before Banach gave his new setting. He is remembered for the Helly
Theorem270 (published by him in 1923).

Helly came from a Jewish family in Vienna. He studied at the University
of Vienna and was awarded his doctorate in 1907 after writing his thesis un-
der the direction of Mertens. He worked in the field of mathematics until
he enlisted in the army at the beginning of World War I. He was wounded in
September 1915 and became a Russian prisoner of war in Siberia. After re-
turning to Vienna in 1920, Helly was unable to secure permanent employment
as a mathematician and worked as a bank clerk and insurance actuary until
1938 when Austria was taken into the Third Reich and Helly and his family
escaped to the U.S. He was able to work at various mathematically-related
positions until his death of a heart attack in 1943.

Had Helly succeeded in staying in the mainstream of mathematics, as
an academician who published and participated in seminars, he would have
undoubtedly have capitalized on his earlier contributions. He not only might

269 He found that the Andromeda galaxy approaches us at a speed of 200 km/sec

(‘violet shift’).
270 It states that if there are given n convex subsets of a d-dimensional euclidean

space with n ≥ d + 1 and if each collection of d + 1 of the subsets has a point

in common, then there is a common point of the n subsets. His 1912 paper

also includes the Helly Selection principle which says that given a sequence

of functions of bounded variation which are of uniform bounded variation and

uniformly bounded at a point, then there exists a subsequence which converges

to a function of bounded variation.
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have seen to it that proper credit should be ascribed, but it is likely that
he would have extended his results further. In most careers there are some
disappointments and failures, but Helly’s career derailed early, and life never
gave him a chance to get back on the right track.

1912–1933 CE Edwin Howard Armstrong (1890–1954, U.S.A.). In-
ventor and electrical engineer who made important contributions to radio
communications. He developed the superheterodyne circuit which became
widely used in radio receivers (1918). In 1933 he invented the frequency mod-
ulation (FM) system for short-wave broadcasting. Armstrong was born in
New York city.

His invention of the regenerative (feedback) circuit271 in 1912, while he
was still in college, was challenged by Lee de Forest in a series of lengthy
patent suits. Although Armstrong lost the case, the scientific community
continued to support his claims. His invention of the heterodyne principle
(1918) was also challenged in a patent suit. In poor health, with most of his
money gone, he committed suicide272.

Armstrong has posthumously received increasing recognition for his many
important inventions. He was the father of FM radio, the grandfather of radar
and a great grandfather of space communication.

1912–1935 CE Otto Heinrich Warburg (1883–1970, Germany). Distin-
guished biochemist and cell-physiologist. His researches had a seminal effects

271 When the feedback was increased beyond a critical level, the triode tube turned

into an oscillator (instead of just being a receiver) which not only amplified radio

signals but generated them as well, and this advance made all the difference.

As a radiowave generator (transmitter), this circuit is still at the heart of all

radio-television broadcasting. By the end of WWII, Armstrong developed his

continuous wave FM radar to a point where he was able to bounce a radio

signal 400,000 km to the moon and back again. He had proven that FM waves,

unlike AM waves, could penetrate the ionosphere. That paved the way to radio

communication in space.
272 By 1934, Armstrong had helped create an industry which was worth almost 2

billion dollars. Thus, RCA, Zenith, Philco, Magnavox and everybody else were

all turning fantastic profits, using Armstrong inventions without paying him

royalties. In 1948 he took RCA to court but legal fees exhausted his assets.

After his suicidal death, RCA offered his widow a million dollars (much less

than one percent of their profits from Armstrong inventions), the same amount

David Sarnoff (RCA president) offered Armstrong in 1940. In effect Sarnoff had

finally got an answer to the question: “Do you want me to pay you, or your

widow?”
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on the development of biochemistry throughout the 20th century. Elucidated
the main biochemical processes of respiration, fermentation and photosynthe-
sis, together with the enzymatic mechanisms that activate them. Discovered
the respiratory enzymes (1912–1923) and was first to note the action of coen-
zyme (1935).

Warburg’s major achievements:

• Devised techniques, particularly of manometry273 and spectrophotome-
try, which have been the mainstays of many biochemical laboratories
over a span of 60 years and used them to investigate oxidative processes
occurring in living cells. In particular, developed a method of studying
respiration in thin slices of tissue.

• Clarified the biocatalytic function of iron in the enzymes of biological
oxidation. Discovered the ‘respiration ferment’274 in which he saw the
activator of the molecular oxygen for the absorption of hydrogen from
the substrate (dehydrogenization).

• Isolated and characterized many of the enzymes and their coenzymes,
thus laying much of the foundation on which rests the present under-
standing of the cell’s energy metabolism. The methods he devised for
the isolation of enzymes have found widespread industrial applications
and the techniques he developed for their assay are still widely used,
especially in clinical diagnosis.

• Developed a theory for the biochemical basis of cancer formation. This
theory was not fully verified275 but fertilized the biochemical research of
tumors.

273 Metabolic processes are accompanied by production or absorption of gases. The

manometric method accurately measures changes in the pressure of these gases.

His manometric apparatus became a standard tool for measuring metabolism

in living cells.
274 Oxidation-reduction reactions are concerned with the production of heat and

energy in the body. The enzymes involved include the oxidases, which activate

molecular oxygen; the dehydrogenases, which catalyze the removal of hydrogen

of a substrate to an easily reducible substance; and the peroxidases, which cat-

alyze the decomposition of organic peroxides and hydrogen peroxide. Warburg’s

‘respiration ferment’ was identified with the cytochrome oxidase, at the end of

the oxidation chain.
275 Warburg’s intolerance of criticism and obsession with some of his own theories

estranged him from the mainstream of thought in these areas. Toward the end

of his life he was clinging to views almost universally rejected by other scientists.
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Warburg was a descendant of an illustrious Jewish family of scientists,
bankers and philanthropists, whose ancestors came to the town of Warburg
in Westphalia from Bologna, Italy in the 17th century. His father Emil (1846–
1931), a known physicist in Strasbourg and Berlin, converted to Christianity.
His uncle Otto (1859–1938), professor of botany, became the president of the
World Zionist Organization (1912–1920).

Warburg was born in Freiburg-im-Breisgau. Studied chemistry under
Emil Fischer (Ph.D.: Berlin, 1906) and medicine at Heidelberg (M.D.:
1911); professor in Berlin (1915–1952), Göttingen (1953 ff.). Awarded two
Nobel prizes in physiology or medicine (1931, 1944276).

Warburg continued to work during the whole duration of the Nazi regime
and was never disturbed or harmed by the Nazis. According to Nazi ideol-
ogy, he would be considered as a half-Jew (his father was baptized and his
mother came from an old distinguished non-Jewish German family). How-
ever, influential friends succeeded in convincing Hitler that Warburg was the
only scientist who offered serious hope of producing a cure for cancer some
day. Hitler apparently suffered from a strong phobia of cancer, and this factor
induced Göring to arrange a recalculation of Warburg’s ancestry — with the
result that he was considered to be a quarter-Jew.

In 1943, air attack made his life in Berlin dangerous and Warburg moved
his laboratory to an estate 50 km north of Berlin. Here he worked undis-
turbed until 1945, when the Russians occupied the area and removed all the
equipment from the laboratory. The Russian commander-in-chief, Marshall
Zhukov, told Warburg in the name of the Russian government that the dis-
mantling of the laboratory was an error. Although the Marshall ordered the
return of the equipment and the books, they could not be traced.

Enzymes

None of the chemical reactions taking place in the human body such as
digestion, respiration and metabolism, would be possible without enzymes,
which are the most important tools of the living cell. It has been estimated

276 By Hitler’s decree he was unable to receive the second.
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that there are as many as 1000 separate enzymes in a single cell, each re-
sponsible for a specific chemical reaction. The absence or inaction of a single
enzyme can disrupt a key process and result in dysfunction or death of the
organism.

Enzymes are organic catalysts formed by living cells, but their actions are
independent of the presence of living cells. All enzymes have been found to
be proteins in nature. While some enzymes consist entirely of proteins, other
require non-protein components in order to be active. The component firmly
attached to the enzyme that makes it active is said to occupy the active site.
If the activating component is easily separated, it is known as a coenzyme.
Several vitamins of the B complex group have been found to be constituents
of certain coenzymes. The most important coenzymes are:

Nicotinamide adenine dinucleotide (NAD),

Nicotinamide adenine dinucleotide phosphate (NADP),

Flavin mononucleotide (FMN),

Flavin adenine dinucleotide (FAD),

Coenzyme A (CoA).

The first four coenzymes are involved in oxidation-reduction reactions.
NAD and NADP accept hydrogen atoms from a substrate and transfer them
to FMN and FAD, and FMN and FAD transfer the hydrogen atoms to the
cytochromes. The cytochromes in turn transfer the hydrogen atoms to an
enzyme called cytochrome oxidase, which activates oxygen so that it may
combine with the hydrogen to form water.

Coenzyme A is involved in the metabolism of carbohydrates (citric acid
cycle) and the biological synthesis and degradations of fatty acids.

Some enzymes are first produced in an inactive form. Such a precursor of
an active enzyme is called a proenzyme (or zymogen). The proenzyme must
be activated by some other substance. For example: the inactive proenzyme
pepsinogen is converted into active pepsin by the HCl in the gastric juice.

The generally accepted theory for enzyme action is that the enzyme (E)
first combines with the substrate (S) to form an enzyme-substrate complex
(ES). The enzyme substrate complex undergoes a chemical change and then
dissociates, yielding the reaction products and liberating the original enzyme:
E + S → ES → E + products.

Enzyme specificity has been explained by the lock and key theory, which
postulates that each enzyme has an active catalytic center of precise chemical
structure or surface shape to which the substrate fits perfectly.
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Enzymes catalyze a reaction by lowering the activation energy required to
initiate it. Without enzymes, chemical reactions in the body would proceed
too slowly to maintain life.

Unlike inorganic catalysts, such as platinum, which catalyze many reac-
tions, enzymes are highly specific in their action. Thus lipase will catalyze
the hydrolysis of lipids, but not of carbohydrates or proteins. Sucrase will
hydrolyze sucrose, but not lactose or maltose.

Enzymes are also more efficient than inorganic catalysts. Sucrase, for
example, is 106 times more powerful than the hydrogen ion in the hydrolysis
of sucrose. Another difference between enzymes and inorganic catalysts is
that enzymes are easily destroyed by heat, while inorganic catalysts are not
affected by high temperatures. Among the factors influencing the rate of
enzyme action are: the concentrations of the substrate and of the enzyme,
the temperature, the pH, and the accumulation of end products which slow
down the reaction according to the law of mass action.

Some enzymes require the presence of a metallic ion for their activity (e.g.
Fe+2, Fe+3, Co+2, Zn+2, Mn+2, Mg+2, Mo+2).

Certain chemicals have a toxic or inhibitory effect upon enzyme activ-
ity. Among these are formaldehyde, chloroform, carbon tetrachloride, arsenic
compounds, cyanides, and heavy metals like mercury and silver.

Other inhibitors include antibiotics (streptomycin, auremycin), antien-
zymes (e.g. antitrypsin from soybeans), and antimetabolites (such as sulfanil-
amide).

Example of a specific enzyme: oxygen enters the red blood cells where
it combined with hemoglobin to form oxyhemoglobin. This oxyhemoglobin
reacts with bicarbonates to form carbonic acid (H2CO3) and a basic form of
oxyhemoglobin. The carbonic acid, in the presence of the enzyme carbonic
anhydrase, decomposes into carbon dioxide and water:

H2CO3
unhydrase

carbonic−−−−−−→ CO2 + H2O

The basic oxyhemoglobin is carried to the tissues by the blood. Because of the
low partial pressure of oxygen in the tissues (40 mm Hg as against 100 mm
Hg in the lungs), the basic oxyhemoglobin decomposes to oxygen and basic
hemoglobin. The oxygen, thus released, diffuses into the tissue cells where it
enters into metabolic reactions. The reduced hemoglobin returns to the lungs
in the venous blood.

The CO2 formed by metabolic reactions in the tissues diffuses into the
plasma and enters the red cells where the enzyme carbonic anhydrase, now
working in reverse, catalyzes its combination with water to form H2CO3. The
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carbonic acid reacts with the basic hemoglobin to form bicarbonates and acid-
reacting hemoglobin. As the bicarbonate ion concentration increases, these
ions diffuse out of the red cells and into the plasma. To balance the loss of
the negative ions from the red cells, an equal number of chloride ions enter
the red cells from the plasma. CO2, mainly as bicarbonates, is returned to
the lungs.

1912–1942 CE Milutin Milankovitch277 (1879–1958, Yugoslavia). Ap-
plied mathematician, engineer and astronomer. Proposed (1920) an astronom-
ical theory of Ice Ages. He concluded that variations in summertime radiation
at high latitudes in both hemispheres result primarily from variations in ax-
ial tilt (41,000 year cycle), but include also the effect of equinoxial precession
(22,000 year cycle). Taking into account changes in the reflective power of the
earth, he calculated how the geographic positions of ice-sheet margins varied
over the past million years. The essential feature of the Milankovitch theory
is a curve that shows how the intensity of summer sunlight278 varied over the
past 600,000 years at any given latitude. He identified certain low points on
the 65 ◦ curve with 4 European Ice Ages.

277 For further reading, see:

• Milankovitch, M., Canon of Insolation and the Ice-Age Problem, Translated

from German by the Israel Program for Scientific Translations, Jerusalem,
1969, 484 pp.

• Imbrie, J. and K. Palmer Imbrie, Ice Ages: Solving the Mystery, Enslow
Publications: New Jersey, 1979, 224 pp.

278 He reasoned that changes in winter radiation could hardly have much effect on

the annual snow budget, because temperatures in Arctic regions are cold enough

for snow to accumulate even in modern times. During the summer, however,

modern glaciers melt. Therefore any decrease in the intensity of summer sun-

light would inhibit melting, render the annual snow budget positive, and lead

to glacial expansion.

The effect of tilt on the distribution of sunlight was as follows: when the tilt is

decreased from its present value of 23 1
2

◦
, the polar regions receive less sunlight

than they do today. When the tilt is increased, polar regions receive more sun-

light. The possible limits of these effects (never actually achieved) would be a

tilt of 0 ◦, when the poles would receive no sunlight and a tilt of 54 ◦, when all

points on earth would receive the same amount of sunlight annually.
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With the publications of these radiation curves, geologists understood for
the first time how two of the astronomical cycles influenced the pattern of
incoming solar radiation: It was now clear that the strength of these effects
varied systematically with latitude.

The influence of the tilt cycle (41,000 years) is large at the poles and
decreases towards the equator. In contrast, the influence of the precession
cycle (22,000 years) is small at the poles and becomes large near the equator.
This meant that the curves calculated for high latitudes are dominated by the
41,000-year cycle, while those for low latitudes are dominated by the 22,000-
year precession cycle279.

279 The radiant energy available at the top of the atmosphere at latitude ϕ, is a

single-valued function of the solar constant S0, the semi-major axis a of the

earth’s elliptic orbit in the ecliptic, its eccentricity e =
√

a2 − b2, the earth’s
axial tilt (obliquity) relative to the normal to the ecliptic, ε, and the longitude

of the perihelion ω = Π + Ψ, measured from the moving vernal equinox. [Ψ

is the precession in longitude which describes the absolute motion of the vernal
equinox along the earth’s orbit relative to the fixed stars. Π is the longitude

of the perihelion, measured from the reference vernal equinox of 1950 CE, and

describes the absolute motion of the perihelion relative to the fixed stars.]
The time variation of insolation thus requires the long-term variations of the

orbital elements of the earth. These are expanded in trigonometric series

e = e0 +
∑

Ei cos(λit + φi),

e sin ω =
∑

Pi sin(αit + βi),

ε = ε +
∑

Ai cos(γit + δi),

with e0 = 0.028 706, ε = 23.320 556 ◦ and time t = 0 refers to 1950 CE.

In these series, the values of the {Ei, λi, φi, Pi, αi, βi, Ai, γi, δi } have been

calculated for many terms. The series provide us directly with a power spectral

analysis of the time variation of the orbital elements. It turns out that the

four largest terms of the precessional component e sin ω̄ have period of 23,716;

22,428; 18,976; 19,155 years. The first two and the last two clearly correspond,

respectively, to the 24,000- and 19,500-years periods found in 1976 in deep sea

cores.

In the obliquity term, not only does the dominant component has a period of

41,000 years, but also 5 of the next 10 largest components have periods very

close to 41,000 years.

For the eccentricity the situation is more complicated: the mean period over the

past 5 million years is 95,800 years, while the leading first term has a periodicity

of 412,085 years — too long to stand out clearly in the analysis of deep-sea cores.
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Milankovitch had acquired his Ph.D. in 1904 at the Vienna Institute of
Technology. After graduating he worked for five years as a practical engineer.
In 1909 he joined the University of Belgrade as a professor of applied mathe-
matics. He started to work on Ice Age problems in 1911 and it took him 25
years to complete his calculations. Basing his work on earlier results of Pil-
grim280, he still had to calculate how much solar radiation strikes the surface
of the planet during each season and at each latitude, taking into account its
spinning, revolving, wobbling and tilting motions. Later he wrote: “I set out
on this hunt in my best years. Had I been somewhat younger I would not
have the necessary knowledge and experience. Had I been older I would not
have had enough of that self-confidence that only youth can offer in the form
of rashness”.

The most valuable feature of the Milankovitch theory was that it made
testable predictions about the geological record of climate. It predicted how
many Ice-Age deposits geologists would find, and it pinpointed when these
deposits had been formed during the past 650,000 years.

During the 1930’s and 1940’s, most European geologists were won over to
the Milankovitch theory since both the radiation diagrams and the climatic
diagrams matched at four Pleistocene Ice Ages. But the early 1950’s saw a
dramatic about-face. By 1955 the astronomical theory was rejected by most
geologists: the downfall of the theory was the development of the radiocarbon
dating method281 developed by Willard F. Libby during 1946–1949.

Geologists, by using the radiocarbon dates beyond the reliable range of
the method (40,000 years), and basing their case solely on evidence collected
from the surface of the land, have found that major glacial advances occurred
60,000, 40,000, and 18,000 years ago. Only the youngest of these advances had
been predicted by Milankovitch. There were more glacial advances during an
interval of time they believed to be the last 80,000 years than could be explained
by the Milankovitch theory. By 1965, the astronomical theory of the Ice Ages
had lost most of its supporters.

280 The German Ludwig Pilgrim calculated in 1904 how the eccentricity, tilt and

precession of the earth’s orbit varied over the past million years.
281 A radioactive isotope of carbon, 14C, is produced in small quantities in the

upper atmosphere by cosmic rays. Eventually, the radiocarbon atoms in the

atmosphere are absorbed into the bodies of all living plants and animals. But

organisms continue to acquire 14C only as long as they live. After death, the

radiocarbon atoms in the organic tissues disintegrate, changing into stable-

nucleus atoms of nitrogen at a measurable rate. Libby reasoned that it should

be possible to use this rate to calculate the time of death for any fossil: all that

was necessary was to measure what proportion of carbon atoms in the fossil

were still radioactive.
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However, during 1965–1976 a global record of Pleistocene climate was ex-
tracted from deep-sea cores. This investigation established that major changes
in climate have followed variations in earth’s tilt and precession over the past
500,000 years — as predicted by the astronomical theory of the Ice Ages282. In
1950, Dirk Brouwer and A.J.J. van Woerkom recalculated Milankovitch
solar radiation curves on the basis of more recent solutions for the planetary
masses and orbital coefficients, and showed, among other things, how sensi-
tive such computations can be to small errors when extended over periods of
geologic time.

1912–1943 CE Max Wertheimer (1880–1943, Germany and USA). Psy-
chologist and philosopher. Founded Gestalt283 Psychology when he published
Experimental Studies of the Perception of Movement (1912). Gestalt psy-
chology was concerned with the organization of mental processes. It believes
that humans (and animals) tend to perceive organized patterns, not individ-
ual parts that are merely added together. Accordingly, relationships between
different parts of a stimulus, which we perceive as a pattern, gives it perceived
meaning. This applies to seeing, hearing and feeling. In contradistinction, the
structuralists’ view is that experience can be broken down into its component
parts.

Gestalt theory applies to all aspects of human learning, although it applies
most directly to perception and problem-solving. The classical example is the
illusion that there is apparent movement when a series of separate still images
are seen rapidly (the basis for ‘movies’ at a rate of 28 frames per second).

Wertheimer was born in Prague to Jewish parents. After studying phi-
losophy and psychology at the universities of Prague, Berlin and Würzburg
(1901–1904), he received his doctorate in 1905. He then became a professor at
Berlin (1918) and Frankfurt (1929). The rise of the Nazi regime in Germany
forced him to emigrate to the United States (1933), where he settled in the
New School for Social Research in New York City (1933–1943).

Gestalt psychology came under attack from bio-psychologists and neuro-
psychologists. Authorities such as John Searle and Patricia Smith
Churchland claim that there is no need to suppose that there are any rules
on top of the neurophysiological structures. They claim that mental states may
be functional states, but this does not imply that the specification of their

282 Spectral analysis of the isotopic record of two Indian Ocean cores showed a

dominant climatic peak at a 100,000-year cycle and three other peaks at 43,000

years, 24,000 years, and 19,000 years long — confirming predictions of the

Milankovitch theory. [J.D. Hays, J. Imbrie, and N.J. Shackelton, Variations in

the earth’s orbit: pacemaker of the ice ages, Science 194, 1121–1132, 1976.]
283 Gestalt is a German word which loosely means “form”, “shape”, “pattern”.
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functional profile based on folk psychology is correct, either in general or in
detail. Nor does it imply that psychology cannot be reduced to neuroscience.

1912–1962 CE Ludwig von Mises (1881–1973, Austria and USA). Eco-
nomist and social philosopher. One of the most influential economists of the
20th century. Best known for his part in a debate that raged during the
early part of the 20th century about the possibility of successful economic
coordination under socialism: Misses claimed (1920) that socialism must fail
economically, i.e. a socialist government (state ownership of the means of
production) could never make the best assignment of capital goods, due to
the absence of a market price system to calculate profits and losses. He was
vindicated by history.

In the course of a long and highly productive life, he developed an inte-
grated, deductive science of economics based on the fundamental axiom that
individual human beings act purposely to achieve desired goals. Mises con-
cluded that the only viable economic policy for the human race was a policy
of unrestricted laissez-faire, of free markets and the unhampered exercise of
the right of private property, with government strictly limited to the defense
of person and property within its territorial domain.

Mises was able to demonstrate that:

• Free markets, the division of labor, and private capital investment is the
only possible path to the prosperity and flourishing of the human race.

• Socialism would be disastrous for modern economy because the absence
of private ownership of land and capital goods prevents any sort of
rational pricing or estimate of costs.

• Government intervention, in addition to hampering and crippling the
market, would prove counter-productive and cumulative, leading in-
evitably to socialism unless the entire tissue of interventions was re-
pealed (Libertarian284 economic view).

284 Libertarians favor separation of government and economy and oppose all collu-

sion between government and corporations that would override the free market

and would seek to forcibly redistribute resources in an egalitarian manner. They

believe that welfare programs serve as a perverse incentive to keep individuals

from working to earn a living and that they tend to perpetuate unemployment

and poverty. Government interventions such as taxation and regulation are at

best necessary evils.
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Holding these views, and hewing to truth indomitably in the face of a century
increasingly devoted to statism and collectivism, Mises became famous for his
intransigence in insisting on a non-inflationary gold standard and on laissez-
faire.

The major works of Ludwig von Mises are:
The Theory of Money and Credit (1912); Nation, State and Economy (1919);
Socialism (1922); Liberalism (1927); Critique of Interventionism (1929); Epis-
temological Problems of Economics (1933); Bureaucracy (1944); Omnipotent
Government (1944); Human Action (1949); Planning for Freedom (1952);
Theory and History (1957); The Ultimate Foundation of Economic Science
(1962).

Mises was born to Arthur Mises and Adele neé Landau, devout practi-
tioners of their Jewish faith. The year he was born (1881), his grandfather
was ennobled with the title Edler (The Noble), a distinction for Jews in the
Austro-Hungarian Empire. His birthplace, Lemberg, became “Lwow” (a part
of Poland) after WWI, and after WWII, “Lvov” (a part of Ukraine in the
USSR); then in December 1991, “Lviv” in the newly independent republic of
the Ukraine.

Ludwig’s father285, educated at Zürich Polytechnic, was a construction
engineer, employed in the Austrian Railroad Ministry. Ludwig was the oldest
of three boys, one died as a child; Richard von Mises became well known
as an applied mathematician.

He moved to Vienna with his family and attended there a gymnasium
(1892–1900) and the University of Vienna286, where he was awarded his
Dr.Jur. (1906). He was a front-line soldier in WWI (1914–1918), an unsalaried
lecturer at the University of Vienna (1913, 1918–1934), a member of the Aus-
trian Chamber of Commerce (1918–1938) and a professor of Economics in
the Graduate Institute of International Studies (Geneva, Switzerland, 1934–
1940).

285 The recorded history of the Mises family as real estate owners and businessmen

in Lemberg goes back to the 17th century. Before WWII, Jews made up 50

percent of the business community in Central Europe and 90 percent of the

business community in Eastern Europe. In Eastern Europe, modern civilization

was predominantly an achievement of Jews.
286 In the 1890s, during Mises’ time at the school, 44 percent of the student body

was Jewish. In the first decade of the 20th century, almost 21 percent of the

student body of the Vienna University was Jewish. Professors of Jewish descent

constituted 37 percent of the law faculty, 51 percent of the medical faculty, and

21 percent of the philosophy faculty.
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He emigrated to the United States (1940) and was a visiting professor at
the New York University Graduate School of Business Administration (1945–
1969). He married Margit Sereny (1938) in Geneva.

Mises was effectively barred from any payed university post both in Austria
and the U.S., i.e. he never became a full professor. In Austria it was pure
antisemitism. In the U.S., he seemed an eccentric ‘Germanic’ thinker with
far too systematic, rigid and uncompromising way of reasoning which would
not “assimilate” to his surroundings.287 During those years his salary was
paid by a private foundation. His work was continued by others, notably by
F.A. von Hayek288.

Worldview XXXIV: Ludwig von Mises

∗ ∗∗

The essential characteristic of Western civilization that distinguishes it from
the arrested and petrified civilizations of the East was and is its concern for
freedom from the state. The history of the West, from the age of the Greek
polis down to the present-day resistance to socialism, is essentially the history
of the fight for liberty against the encroachments of the officeholders.

287 Mises’ ideas on economic reasoning and on economic theory were out of fashion

during the Keynesian revolution that took over American economic thinking

during ca 1935–1965. A resurgent Austrian school in the United States owes

itself in no small part to Mises’ persistence.

Many brilliant minds were not connected with the university, e.g.: Schopen-

hauer, Freud, Spengler. Mises quickly discovered that in the U.S., academic

America was rearing to the left.
288 Friedrich August von Hayek (1899–1992), Austrian-born British econo-

mist found solutions to problems proposed by Keynesian economics. Held

that inflation, unemployment and recession result from government interfer-

ence. Awarded the Nobel Prize in Economics for Misesian Cycle theory in 1974

(one year after Mises’ death!).
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∗ ∗∗

Human civilization is not something achieved against nature; it is rather the
outcome of the working of the innate qualities of man.

∗ ∗∗

Science does not give us absolute and final certainty. It only gives us assurance
within the limits of our mental abilities and the prevailing state of scientific
thought.

∗ ∗∗

Each epoch has found in the Gospels what it sought to find there, and has
overlooked what it wished to overlook.

∗ ∗∗

The criterion of truth is that it works even if nobody is prepared to acknowl-
edge it.

∗ ∗∗

The methods of the natural sciences cannot be applied to human behavior
because this behavior. . . lacks the peculiarity that characterizes events in the
field of the natural sciences, viz., regularity.

∗ ∗∗

Against nature and within nature there is no freedom.

∗ ∗∗

Education rears disciples, imitators, and routinists, not pioneers of new ideas
and creative geniuses. The schools are not nurseries of progress and improve-
ment, but conservatories of tradition and unvarying modes of thought.
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∗ ∗∗

. . . economic history is a long record of government policies that failed because
they were designed with a bold disregard for the laws of economics.

∗ ∗∗

Economics is not about things and tangible material objects; it is about men,
their meanings and actions.

∗ ∗∗

Economics is a theoretical science and as such abstains from any judgment of
value. It is not its task to tell people what ends they should aim at. It is a
science of the means to be applied for attainment of ends chosen, not, to be
sure, a science of the choosing of ends. Ultimate decisions, the valuations and
the choosing of ends, are beyond the scope of any science. Science never tells
a man how he should act; it merely shows how a man must act if he wants to
attain definite ends.

∗ ∗∗

The rich adopt novelties and become accustomed to their use. This sets a
fashion which others imitate. Once the richer classes have adopted a certain
way of living, producers have an incentive to improve the methods of manu-
facture so that soon it is possible for the poorer classes to follow suit. Thus
luxury furthers progress. Innovation “is the whim of an elite before it be-
comes a need of the public. The luxury today is the necessity of tomorrow.”
Luxury is the roadmaker of progress: it develops latent needs and makes peo-
ple discontented. In so far as they think consistently, moralists who condemn
luxury must recommend the comparatively desireless existence of the wild life
roaming in the woods as the ultimate ideal of civilized life.

∗ ∗∗

Profits are the driving force of the market economy. The greater the profits,
the better the needs of the consumers are supplied.
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∗ ∗∗

. . . it is solely bigness in business which makes it possible to supply the masses
with all those products the present-day American common man does not want
to do without. Luxury goods for the few can be produced in small shops.
Luxury goods for the many require big business.

∗ ∗∗

If history could teach us anything, it would be that private property is inex-
tricably linked with civilization.

∗ ∗∗

There is in the universe something for the description and analysis of which
the natural sciences cannot contribute anything. There are events beyond the
range of those events that the procedures of the natural sciences are fit to
observe and describe. There is human action.

∗ ∗∗

People do not cooperate under the division of labor because they love or should
love one another. They cooperate because this best serves their own interests.
Neither love nor charity nor any other sympathetic sentiments but rightly
understood selfishness is what originally impelled man to adjust himself to
the requirements of society, to respect the rights and freedoms of his fellow
men and to substitute peaceful collaboration for enmity and conflict.

∗ ∗∗

Facts per se can neither prove nor refute anything. Everything is decided by
the interpretation and explanation of the facts, by the ideas and the theories.

∗ ∗∗

Reason’s biological function is to preserve and promote life and to postpone
its extinction as long as possible. Thinking and acting are not contrary to
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nature; they are, rather, the foremost features of man’s nature. The most
appropriate description of man as differentiated from nonhuman beings is: a
being purposively struggling against the forces adverse to his life.

∗ ∗∗

Society cannot contribute anything to the breeding and growing of ingenious
men. A creative genius cannot be trained. There are no schools for creative-
ness. A genius is precisely a man who defies all schools and rules, who deviates
from the traditional roads of routine and opens up new paths through land
inaccessible before. A genius is always a teacher, never a pupil; he is always
self-made.

∗ ∗∗

Society is joint action and cooperation in which each participant sees the other
partner’s success as a means for the attainment of his own.
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Science Progress Report No. 13

The Piltdown Forgery, or — the ‘War of the Skulls’,

or — the greatest scientific fraud of all time (1912–1953)

Piltdown was an archaeological site in England where in 1908 and 1912
fossil remains of human, ape and other mammals were found. In 1913 at a
nearby site was found an ape’s jaw with a canine tooth worn down like a
human’s. To make a long story short, papers were published and the general
community of paleoanthropologists came to accept the idea that the fossil
remains belonged to a single creature who had a human cranium and an ape’s
jaw. The lower jaw was too big for a human skull but, significantly, the
upper jaw was entirely missing, and with it part of the lower jaw — and the
important lower canine teeth. Also missing were the mating parts for the jaw
hinge. That which was missing was exactly that which would have shown

(1) whether or not the lower jaw, which was ape-like, was from a human
or a ape and

(2) whether the lower jaw fitted with the upper skull bones, which were
obviously human.

The skull itself had only several pieces. This meant that the size of the
braincase could not be determined. The pieces might fit a larger braincase or
a small one; there was no way of knowing.

With this miserly collection of a few bone fragments, the scientists “recon-
structed” the entire head of what they proudly proclaimed to be “Piltdown
Man.” Here at last, they triumphantly declared, was the “long-awaited miss-
ing link.” Since Latin names are always supposed to prove something, they
named it Eoanthropus Dawsoni, which stands for “Dawson’s Dawn Man.”
That name made everything sound scientific.

On December 16, 1912, the discovery was officially announced at the Ge-
ological Society. The press went wild. Here was a sensation that would sell
newspapers. Many people accepted it; many others did not.

By August 1913, when the British Association for the Advancement of
Science discussed the Piltdown bones, another molar tooth and two nasal
bones “had been found” in that same gravel pit. It was marvelous how many
pieces of bone kept appearing in that gravel pit!

Here we have bones well-preserved after 300,000 years in that damp gravel,
whereas all the other millions upon millions of bones of animals and men who
had lived and died in that area during that supposed time span were not to
be found. Just that one set of skull pieces, jawbone, and teeth, and that was
it. So close to the surface.
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In their final reconstruction of the bones, the men put their solitary canine
tooth on the right side of the lower jaw at an angle suggestive of an ape. That
helped the cause! It does not take much to fool people, and the reconstruc-
tionists worked with care and forethought. With a human skull and an ape
skull jaw before them as they worked, they shaped the plaster to produce an
“ape-man.”

At first, fraud wasn’t even suspected. The fossils were, after all, cleverly
done, and no money was involved. There were other European finds — Nean-
derthal, Cro-Magnon, and Heidelberg — so another European “missing link”
wasn’t too surprising. But not all were satisfied. Some scientists argued that
the jaw and skull did not belong to the same individual. It was also observed
that the few skull pieces could be arranged in a number of shapes and sizes
to match any desired braincase and head shape that might be desired.

In reality, that is exactly what had been done. The parts had been carefully
selected with consummate skill to provide only certain evidence while omitting
certain other facts. The objective was to afterward reconstruct the head along
ape lines, for the nearer the “reconstruction” could be pushed toward the
brute beast, the more convincing it would appear as “scientific evidence” of
evolution.

The objections offered were tossed aside and given little attention in sci-
entific societies and even less in the public press. A whole generation grew
up with “Piltdown Man” as their supposed ancestor. Textbooks, exhibits,
displays, encyclopedias — all spread the good news that we came from apes
after all.

Oil paintings of the discoverers were executed. The bones were named after
Dawson, and the other men (Keith, Woodward and Grafton) were knighted
by British royalty for their part in the great discovery.

As for the bones of Piltdown Man? Too many people were finding fault
with them, so they were carefully placed under lock and key in the British
Museum. Even such authorities as Louis Leakey were permitted to examine
nothing better than plaster casts of the bones. Only the originals could re-
veal the fraud, not casts of them. Plaster casts of the half-man / half-ape
“reconstruction” were sent to museums all over the world.

As recently as 1946, the Encyclopedia Britannica (Vol. 14, p. 763) stated
authoritatively:

“Amongst British authorities there is agreement that the skull and jaw
are parts of the same individual.”

More than 500 articles, memoirs (including Doctoral Dissertations!) have
been written about the Piltdown man.
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Adding to the embarrassment of a government and nation, three years be-
fore the expose the National Nature Conservancy had spent a sizable amount
of taxpayers’ money in transforming the area in and around that pit into the
Piltdown Gravel Pit National Monument.

Turn-of-the-century evolutionary theory predicted and believed in the im-
minent discovery of the “missing link”, an ape-man earlier than Neanderthal,
who would truly connect modern man with beast. What was needed was a
half-million-year-old half-ape / half-man. And indeed, this ‘magnificent
discovery’ came at just the right time: Suddenly, in 1912, the fossil-prophet
appeared, not in Africa or Asia, but conveniently in Sussex, England. And
what better a place to find such old bones than in perpetually damp Eng-
land, where even bones half a century old normally have already turned back
to dust.

The Piltdown forgery is perhaps the most engaging display of ratiocina-
tion since The Gold Bug. It beats Sherlock Holmes at its best. Indeed, a
Darwinian might have said that if Piltdown man did not exist, we’d have to
invent him. The hoax was so successful that for 40 years, anatomists, pa-
leontologists, theologicians and brilliant academics everywhere attempted to
define when Eoanthropus Dawsoni (man-like cranium, ape-like jaw) fit in the
evolutionary scheme. Yet the ‘evidence’ that early Man developed intelligence
before developing in certain other way — sunk in.

In 1953, chemical tests proved that the fossils were frauds. Someone had
taken a slightly odd “modern” human skull, and the jaw of an orangutan.
They had been stained, filed, smashed, and so on, in a fairly clever way. The
fluorine test is a method of determining whether several bones were buried at
the same time or at different times. This is done by measuring the amount of
fluorine they have absorbed from ground water. It cannot give ages in years,
but is a high-tech method of establishing ages of bones relative to each other.

Microscopic analysis of the wear found on the molars determined it to
be unnatural. In fact it looked very much like the type of wear one would
expect not from the normal chewing process but from a metal file. Other tests
revealed that the specimens had been covered with an ochre colored paint to
make them look more authentic. Obviously Piltdown was a well planned out
forgery and hoax.

Additional examination revealed that the bones of Piltdown Man had
been carefully stained with bichromate in order to make them appear aged.
Drillings into the bones produced shavings, but should have produced powder
if the bones had been ancient; powder, however, was not produced. Then
that canine tooth was brought out — and found to have been filed, stained
brown with potassium biochromate, and then packed with grains of sand. No
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wonder it took so long before the discovery could be announced; a lot of work
had to first be done on those bones and teeth.

The House of Commons was so disturbed by the announcements of the
fraud, that it came close to passing a measure declaring “that the House
has no confidence in the Trustees of the British Museum ... because of the
tardiness of their discovery that the skull of the Piltdown Man is a partial
fake”. A member of the British Parliament proposed a vote of ‘no confidence’
in the scientific leadership of the British Museum. The motion failed to carry
when another member of Parliament reminded his colleagues that politicians
had ‘enough skeletons in their own closets’.

We will never be completely sure why anyone would try to fool the world
into believing that Piltdown was the long sought – after Missing Link. We do
know that whoever it was that planned such a scheme had to have a pretty
extensive understanding of chemistry, geology and human anatomy in order
to pull it off at all. They also had to have contacts that would provide them
with access to bones outside Great Britain, for many of the animal bones
found at the site came from places such as Malta and North Africa.

So, who dunnit? The list of suspects includes the following characters:

• Charles Dawson, a Sussex lawyer and amateur archaeologist, who
brought the first cranial fragments from Piltdown; a person with a long record
of fraud.

• Sir Arthur Smith Woodward (1864–1944), head of the Department of
Geology at the British Museum of Natural History (BMNH). Woodward was
motivated by his desire to obtain the directorship of the BMNH. What better
mean to obtain public acclaim than discovering the “missing link” on English
soil, thus creating the English cradle of humankind.

Given the many possible risks to his reputation and career, Arthur Smith
Woodward has been considered an implausible confederate to Charles Dawson
in the Piltdown affair. Woodward’s seeming lack of motive has distracted
many. Yet it is clear that ASW did serve to benefit from the acclaim of the
“discovery” and had undertaken many other questionable practices in order to
advance his desire to be appointed to the Directorship of the Natural History
Museum.

Woodward maintained a thirty year association with Charles Dawson,
which suggests a close and complex relationship beyond that of any other
“suspect”. Without such ties the trust essential for the conspiracy to occur
would have been inexplicable. Dawson had access to the Sussex localities but
lacked appropriate specimens and expertise to succeed alone. Woodward’s
close association with sites that serve as plausible sources for materials used
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in the fraud provide important physical evidence pointing toward his involve-
ment.

Woodward’s participation in the fraud also explains many of the puz-
zling episodes and “oversights” that surround the discoveries. A Dawson-
Woodward nexus appears to draw together all the necessary elements to pro-
vide a satisfying resolution of the Piltdown fraud.

Woodward was with Dawson on the day he found the all-important jaw-
bone at the gravel pit. As Woodward looked on — Dawson dug down and
there it was!

• Sir Arthur Keith, MD (1866–1955). Anatomist. One of the most highly
respected scientist in England. Author of several classic works. Fellow of the
Royal College of Surgeons, President of the Royal Anthropological Institute
and member of the British Association for the Advancement of Science.

• Grafton Eliot Smith, a renown brain specialist.

• Pierre-Tielhard de Chardin (1881–1955). Philosopher and paleonthol-
ogist. Accompanied Dawson on Aug 29, 1913 to the Piltdown pit where they
‘discovered’ the missing link canine teeth. It was duely reported in the 1913
meeting of the British Geological Society.

• W.J. Solass. Professor of Geology at Oxford.

• Martin A.C. Hinton, a curator of zoology. A trunk with Hinton’s initials
was recently found in an attic in London’s Natural History Museum. The
trunk contained bones stained and carved in the same way as the Piltdown
fossils.

• Arthur Conan Doyle (1859–1930). Physician and writer. Creator of
Sherlock Holmes. It is believed that he was along with Dowson in initially
developing the idea for the fraudulent placement and later “discovery” of the
bones.

1913 CE Archibald Vivian Hill (1886–1977, England). Physiologist.
Discovered that muscle cells respire (use oxygen) after contraction is finished.
Awarded the Nobel prize for physiology or medicine (1922).
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The muscle, after having become charged with lactic acid during anaerobic
glycolysis, consumes oxygen while resting, at a rate greater than normal. The
oxygen that would ordinarily have produced energy by combining directly with
glucose, and which was short-circuited during the glycolysis, is now making
up for what it had missed (“oxygen debt”). Oxygen is supplied as rapidly as
possible to discharge the debt289.

Hill was a professor at Manchester (1920–1923) and University College,
London (1923–1925) and secretary of the Royal Society (1935–1945).

1913 CE Leonor Michaelis (1875–1949, Germany and U.S.A.). Phys-
iologist and chemist. Discovered the first important mechanism of enzyme
kinetics. Worked out the Michaelis-Menton290 equation that describes the
dependence of the rate at which enzymes catalyze reactions on the concen-
tration of the substrate. In developing the theory, Michaelis adopted the
assumption291 that the enzyme and the substrate form an intermediate tem-
porary complex. [It was only in 1965 that this mechanism was verified at the
atomic level by David Phillips and his coworkers in London.]

Michaelis was born in Berlin, Germany to Jewish parents. He was assis-
tant to Paul Ehrlich (1898–1899). During 1902–1926 he worked in various
research centers, and later at Johns Hopkins University and the Rockefeller
Institute (1929–1940).

1913 CE William Henry Bragg (1862–1942, England) and his son
William Lawrence Bragg (1890–1971, England). Physicists. Shared the
Nobel prize in 1915 for research on the structure of crystals by means of X-
rays. They developed the X-ray spectrometer, and discovered much about the
structure of the atom and the atomic arrangement in crystals292.

289 The debt is discharged by the breakdown of lactic acid to water and carbon

dioxide, releasing 650 kilocalories per mole. This yields 18 times more energy

than that which arises from the conversion of glucose to lactic acid.
290 Maud Menton (1879–1960), Michaelis’ assistant.
291 First suggested (1902) by the French biochemist V. Henri. The enzyme-

substrate free radical is a far more stable system than the substrate free radical.

The net effect is that the enzyme successfully catalyzes the reaction.
292 X-rays of wavelength λ are incident on a crystal face, at angle θ to the nor-

mal. The face plane contains rows of surface atoms spaced at nearest-neighbor

distances �. The waves are scattered, and by Huygens’ principle reinforce each

other in the direction making the angle θ with the normal, such that the scat-

tered beams obey the law of reflection. If successive atom layers lie beneath

each other at spacing d, the path difference between waves scattered by a sur-

face atom and its interior neighbor at angle θ to the normal is simply 2d cos θ.
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Bragg the elder was born at Wigton, Cumberland, and studied at Cam-
bridge University. He served as a professor of physics at the universities of
Adelaide, Leeds and London and became professor of chemistry at the Royal
Institution, director of the Davy-Faraday Research Laboratory, and director
of the Royal Institution.

1913 CE Frederick Soddy (1877–1956, England). Chemist. With
Rutherford he developed the theory of radioactive elements. Investigated
the origin and nature of isotopes, the name of which he coined himself (Iso-
tope = ‘same place’ in Greek). Their existence was discovered after nearly a
decade of experimenting with naturally radioactive materials293.

Isotopes of a given element are atoms with the same number of protons
and electrons but different numbers of neutrons. Having the same number of
electrons, they are almost identical in chemical behavior, and having different
number of neutrons, they differ in weight. Certain isotopes are unstable and
undergo a process of decay during which they emit ionizing radiation. Such
isotopes are called radioisotopes.

Soddy began his career in McGill University, Montreal, where he did re-
search in radioactivity with Rutherford (1900–1902). He worked at the Uni-
versities of Glasgow (1904–1914) and Aberdeen (1914–1919) before moving to
Oxford294 (1919–1936). He was awarded the Nobel prize for chemistry in the
same year that Albert Einstein got it for physics (1921).

If this path difference is an integral multiple of the wave length, strong Bragg re-

flection peak will occur from this crystal face; the condition is that 2d cos θ = nλ

(n = 1, 2, 3, . . .). Hence d can be measured by observing the angles where re-

flection peaks, provided λ is known.
293 William Crookes (1832–1919, England) speculated (1886) that not all atoms

of a given element have the same atomic weight. J.J. Thomson (1910, 1911)

showed (by measuring deflections of positive rays in a cathode ray tube) Neon,

with average atomic weight 20.183, to consist of appropriate proportions of

isotopes of masses 20 and 22.
294 In one of his extracurricular activities, Soddy rediscovered a geometrical

theorem, which he published in the form of a poem in Nature (137,

1021; June 20, 1936). The theorem states that if 4 circles touch each
other externally, and if ε1, ε2, ε3, ε4 denote their curvatures (that is, the

reciprocals of their radii), then the following relation holds between them:

2(ε21 + ε22 + ε23 + ε24) = (ε1 + ε2 + ε3 + ε4)
2. The theorem is an interesting one

because it can be viewed from a number of different mathematical angles.

Furthermore, it can be generalized to n hyperspheres in (n − 2)-dimensional

Euclidean space (n ≥ 3), such that each is tangent to all the others at distinct
points. The theorem then states: “Let C1, . . . , Cn be the centers of these

spheres; r1, . . . , rn their radii, and ε1, . . . , εn their curvatures. Then either all

of the spheres touch each other externally, or one of them contains all the oth-
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1913–1914 CE Henry Gwyn-Jeffreys Moseley (1887–1915, England).
Atomic physicist. First to discover a definite way of determining the atomic
number of elements. It enabled scientists to determine the atomic number
of unknown elements and to correct Mendeleev’s periodic table. Discovered
experimentally a simple relation between the atomic number of an element
and its corresponding X-ray radiation frequency, thus establishing conclusively
that the atomic number does truly represent the number of electrons of each
neutral atom.

Moseley belonged to a scientific family; his father and his two grandfathers
were fellows of the Royal Society. He entered Eaton at the age of 13 and
Trinity College, Oxford at 18. He graduated in 1910 and soon after was
appointed lecturer in the Physics Department of the University of Manchester,
working under the guidance of Rutherford. His life work was done in four
years.

ers, and the curvatures satisfy the formula
(∑n

i=1 εi

)2
= (n − 2)

∑n
i=1 ε2i [for

n = 4 we have 4 circles in 2D, for n = 5 we have 5 spheres in 3D, etc.]. The

radius and curvature of a containing sphere (if any), are taken to be negative.
Soddy published the theorem for n = 4 with no proof. It was later found that

the theorem for this case was known to Descartes and Steiner. A simple

proof, using just vector algebra was given by S. Brown [Am. Math. Monthly 76,
662, 1969] and runs as follows: Let x1, x2, . . . , xn−1 be vectors from Cn to

C1, . . . , Cn−1 respectively. The tangency conditions are

x2
i = (ri + rn)2 (i = 1, . . . , n − 1)

(xi − xj)
2 = (ri + rj)

2 (i �= j).

On the other hand, since the vectors lie in a space of n − 2 dimensions, they

are linearly independent, and therefore det[xi · xj ] = 0 (i, j = 1, . . . , n − 1).
From the above tangency conditions, we find

x2
i =

(εi + εn)2

ε2i ε
2
n

(i = 1, . . . , n − 1)

(xi · xj) =
(εi + εn)(εj + εn) − 2ε2n

εiεjε2n
(i �= j).

With these relations, the determinant can be reduced to

det[xi · xj ] =
2n−2

ε21 · · · ε2n

[( n∑

i=1

εi

)2

− (n − 2)

n∑

i=1

ε2i

]

which proves the theorem. The converse of the theorem is also true.
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When WWI broke out, Moseley was offered work suited to his scientific
capacity at home, but he preferred to share with others the dangers of active
service. He took part in the severe fighting of the battle of Sari Bair against
the Turks in the Dardanelles, and was killed on Aug. 10, 1915. Because of
this loss, Britain restricted its scientists to noncombat duties during WWII.

In a paper The high-frequency spectra of the elements [Phil. Mag. 26
(1913 ) 1024–1034 . Part II: Ibid. 27 (1914 ) 703–713 ] Moseley investigated
the X-ray spectra of over 50 elements and found that the wavelength of the
shortwave principal line Kα became shorter in a regular manner in going from
the light to the heavy elements. He determined the frequency ν of the Kα

lines of all atoms to be ν = 3
4R(N − 1)2, where R is the so-called Rydberg

constant and N increases by one in going from one element to the next in the
Periodic Table, and was identified with the atomic number N of the element.
It was shown a little later that Moseley atomic number N was identical with
the charge of the Nucleus Z, a conclusion confirmed (1920) by the scattering
experiment of Chadwick.

Upon the reordering of the periodic table according to the atomic numbers
N rather than atomic weights, hydrogen remains the first element, with atomic
number 1, but a few elements do change position (e.g., argon now precedes
potassium), improving the periodicity.

Moseley predicted the discovery of 3 missing elements, those with atomic
numbers 43, 61 and 75.

While the Braggs were using X-rays to explore the intricacies of crystalline
structure, Moseley used them to detect the fundamental modes of vibration
of the atoms. His discovery completed the new atomic theories.

1913–1917 CE Johann Radon (1887–1956, Germany and Austria).
Mathematician. Contributed to measure theory (1913), but is mainly known
today for his discovery of the Radon transform295 (1917), which furnishes

295 The 3D surface integral

f̂(p, ξ) =

∫

f(x)δ(p − ξ · x)d3x

is known as the Radon transform of a function f(x1, x2, x3) over the plane

p = ξ · x = ξ1x1 + ξ2x2 + ξ3x3.

Geometrically, p is the perpendicular distance from the origin to the plane, and

ξ is a unit vector along p, that defines the orientation of the plane. The symbol
δ denotes the Dirac δ-function.

This transform has a unique inverse and is linked to F (k)|kξ, the 3D Fourier
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the basic mathematical framework common to a large class of reconstruction
(imaging) methods, such as the modern computer assisted tomography (CAT).

Born in Tetschen (Bohemia), Radon was educated at the University of
Vienna. Taught mathematics at the Universities of Brno and the École Poly-
technique and later became a professor at the Universities of Hamburg (1919),
Greisswald (1922), Erlangen (1925) and Breslau (1928). He returned to Vi-
enna in 1947.

transform of f(x), via the one-dimensional Fourier integral

F (kξ) =

∫ ∞

− ∞
f̂(p, ξ)eikpdp.

When the Radon transform is defined in 2 dimensions, it reads

f̂(p, ξ) =

∫

D

f(x, y)δ(p − ξ1x − ξ2y)dxdy.

Here p = ξ1x + ξ2y is an equation of a line L whose normal is ξ. The Radon

transform for this case reduces to a line integral of f(x, y) along L.

Introduce the normal form of the line L, p = x cos φ + y sin φ, where
ξ = (cos φ, sin φ) and (p, s) are Cartesian axes, rotated by an angle φ rel-

ative to (x, y).

Suppose that we can evaluate the line integral of the unknown function f(x, y)
along the given direction φ in the xy plane, and for a fixed value of p, i.e.

f̂(p, φ) =

∫

L

f(x, y)ds =

∫ ∞

− ∞
f(p cos φ − s sin φ, p sin φ + s cos φ)ds.

As we move the line L parallel to itself, the corresponding line integrals

of f(x, y) will define f̂(p, φ) for all p-values but fixed φ. The funda-

mental Projection-Slice theorem (R.N. Bracewell, 1956), then states: the

one-dimensional Fourier transform of f̂(p, φ) w.r.t. p is equal to the two-

dimensional Fourier-transform of f(x, y) in the (Kx, Ky) plane, along the

slice φ = tg−1(Ky/Kx). When this process is carried out for all angles φ, we

may calculate F (Kx, Ky) in the whole (Kx, Ky) plane. The Fourier inversion
of F then recovers f(x, y).

In medical applications, for example, f(x, y) may be identified with some

physical property of tissues on a plane section of the organ under examination.
To dig deeper, see:

• Deans, S.R., The Radon Transform and Some of Its Applications, John Wiley

& Sons: New York, 1983, 289 pp.
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Radon’s original paper went almost unnoticed for half a century. The ma-
jor developments in areas of application of the transform, did not come as
a result of Radon’s work and were already highly developed before connec-
tion with Radon’s transform were recognized. It was Bracewell (1956) who
truly illuminated the connection between the Radon and the Fourier trans-
forms. During 1956–1971, there were many rediscoveries of Radon’s results
throughout the applied literature. These rediscoveries ended in 1972 when
it was pointed out that Radon’s work was fundamental to the problem of
reconstruction from projections (Allan M. Cormack, Nobel prize address,
1979).

Indeed, it was found since then that reconstruction problems in optics,
astronomy, molecular biology, geophysics, magnetic resonance imaging, ma-
terial science and medicine, may be united within the framework of the theory
of Radon’s transform in Euclidean space. The common denominator to the sit-
uations that arise in these diverse fields is the need to determine (reconstruct)
certain structural properties of an object, utilizing data obtained by methods
that leave the entity under consideration in an undamaged and undisturbed
state.

Computerized Tomographic Imaging296 (1895–1985)

Since 1956 there has been renewed interest in what is known as the recon-
struction problem. This is the problem of determining the internal structure
(or, more precisely, some property of the internal structure) of an object with-
out having to cut, crack, or otherwise macroscopically damage the object.

Various probes, including: X-rays, gamma rays, visible light, microwaves,
sound waves, electrons, protons, neutrons, heavy ions, and nuclear magnetic
resonance signals have been used to study a large variety of objects whose size
vary over an enormous range, from complex molecules studied by the electron
microscopist to distant radio sources studied by the radio astronomer.

296 To dig deeper, see:

• Kak, A.C. and M. Slaney, Principles of Computerized Tomographic Imaging,

IEEE Press, 1988, 327 pp.



1913 CE 3267

These nondestructive reconstruction methods have been applied to a wide
range of fields such as: medicine, astronomy, astrophysics, geophysics, mole-
cular biology, electron microscopy, optics, aerodynamics, archaeology, mater-
ial science, engineering (e.g. stress analysis, air-pollution monitoring), plasma
physics, and various military applications.

Perhaps in no other field of modern science were the results so overwhelm-
ing as in medicine. Here the advent of the digital electronic computer and
new imaging techniques such as ultrasound, magnetic resonance imaging and
computerized tomographic imaging, have combined to create an explosion of
diagnostic techniques in the past 25 years.

Tomography refers to the cross-sectional imaging of an object from either
transmission or reflection data collected by illuminating the object from many
different directions. The impact of this technique in diagnostic medicine has
been revolutionary, since it has enabled doctors to view internal organs with
unprecedented precision and safety to the patient. The first application uti-
lized X-rays for forming images of tissues based on the spatial distribution of
their X-ray attenuation coefficient297. More recently, however, medical imag-
ing has also been successfully accomplished with radioisotopes, ultrasound,
and magnetic resonance; the imaged parameter being different in each case.

There are numerous nonmedical imaging applications which lend them-
selves to the use of methods of computerized tomography. Researchers have
already applied this methodology to the mapping of underground resources
via cross-borehole imaging, some specialized cases of cross-sectional imaging
for nondestructive testing, the determination of brightness distribution over a
celestial sphere, and 3-dimensional imaging with electron microscopy.

Fundamentally, tomographic imaging deals with reconstructing an image
from its projections. In the strict sense of the word, a projection at a given
angle consists of the integrals of the image along many parallel lines at the
common direction specified by that angle (in the 3D case two angles are re-
quired, of course). However, in a loose sense, projection means the information
derived from the transmitted energies, when an object is illuminated from a
particular angle.

297 X-ray photons interact with matter in several ways. At photon energies in

the neighborhood of 70 keV, which are typical of CT scanners, the combined

effects of scattering (Compton effect and Rayleigh scattering) and absorption

(photoelectronic effect) result in exponential attenuation of the beam as it passes

through homogeneous matter. The great drawback to X-ray photographs of the

body is that they provide only an integrated value of the attenuation coefficient

along lines of sight, which makes 3D reconstruction non-unique.
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In recent years, the X-ray image formation technique has been extended
to nuclear medicine and magnetic resonance on the one hand, and ultrasound
and microwaves on the other.

In nuclear medicine, our interest is in reconstructing a 3D radioactive
isotope distribution within the human body. In imaging with magnetic reso-
nance we wish to reconstruct the local magnetic properties of the object. In
both these cases, the problems can be set up as reconstructing an image from
its projections, as in X-ray tomography.

This is not the case when ultrasound and microwaves are used as radiant
energy sources, though the aim is the same as with X-rays (viz. to recon-
struct the cross-sectional images of, say, the attenuation coefficient). In body
tissues, X-rays are nondiffracting, i.e. they travel in straight lines, whereas
microwaves and ultrasound are diffracting. When an object is illuminated
with a diffracting source, the wave-field that impinges on the object is scat-
tered in practically all directions. When, however, the inhomogeneities are
much larger than the wavelength, one might be able to get away with the
assumption of straight-line propagation.

For situations when one must take diffraction effects into account, to-
mographic imaging can in principle be accomplished for weakly diffracting
objects if reconstruction theory is based on the wave equation rather than on
ray theory (geometric optics).

Timeline

1895 Wilhelm Röntgen (Germany) discovered X-rays; produced the
first radiation image of the body (his wife’s hand).

1897 Pierre and Marie Curie (France) isolated radium.

1900 Chest X-ray used to diagnose tuberculosis; Radiology began as a
medical sub-specialty.

1903 Willem Einthoven (Holland) created the prototype of the mod-
ern electrocardiograph (EKG) to monitor and record the electric
signature of the heart.

1906–1912 Contrast media agents were administered (orally or via vascular
injection) to help visualize organs and blood vessels with better
image contrast.
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1917 Johann Radon (Germany) discovered the Radon transform. He
thus laid the foundation for the basic mathematical framework
common to a large class of image reconstruction problems. His
paper went unnoticed for 40 years.

1924–1958 Development of radiology: primary examination creates an image
by focusing X-rays through the body part of interest and directly
onto a single piece of film inside a special cassette. In the earliest
days, a head X-ray could require up to 11 minutes of exposure time
(now, modern X-ray images are made in milliseconds and the X-ray
dose currently used is as little as 2% of what was used then). Ra-
diographic imaging of the gallbladder, bile duct and blood vessels
began in 1924 and coronary artery imaging was first done in 1945.

The next development involved the use of fluorescent scans and
special glasses so that the doctor could see X-ray images in real
time. In 1946, the film cassette changer allowed a series of cassettes
to be exposed at a movie frame rate of 1.5 cassettes per second.
By 1953, this technique had been improved to allow frame rates
up to 6 frames per second.

In 1955, an X-ray image intensifier was developed which allowed
the pick-up and display of the X-ray movie using TV camera and
monitor. Together with the cut-film changer, the image intensifier
opened the way for a new radiological sub-specialty known as an-
giography, allowing the routine imaging of blood vessels and the
heart (1958).

1932 Transmission electron microscope constructed by M. Knoll and
E. Ruska (Germany).

1956–1971 Rediscoveries of Radon’s results throughout the applied litera-
ture.

1956–1979 Ronald N. Bracewell and Allan Cormack (1956) show how
Radon’s theory could be used for image reconstruction. Bracewell
(1956) illuminated the connection between the Radon and Fourier
transforms (‘Projection-slice theorem’). He then applied the the-
ory to obtain a solution to a practical problem in radio-astronomy,
namely, to map the regions of emitted microwave radiation from
the sun’s disc (1956–1979)298.

298 From solar eclipse observations, it was clear by the early 1950’s that microwaves

were emitted from rather compact regions in the chromosphere and lower

corona. But due to the inadequate resolving power of microwave antennas,

it was not possible to study these emissions in much detail during the period
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1972 Godfrey Hounsfield (England) invented the computed tomog-
raphy scanner or CT scanner — the first practical tomographic
machine for clinical use. He showed that it is possible to compute
high quality cross-sectional images with an accuracy of 1 part in
1000. Hounsfield used gamma rays (and later X-rays) and a de-
tector mounted on a special rotating frame together with a digital
computer to create detailed cross-sectional images of objects. His
original CT scan took hours to acquire a single slice of image data
and more than 24 hours to reconstruct data into a single image
(today’s state of the art CT systems can acquire a single image in
less than a second).

1973–1984 Paul Lauterbur (England) developed magnetic resonance imag-
ing or MRI (1973). It is a tomographic techniques in which for ex-
ample the density distribution of hydrogen nuclei is reconstructed.
The proton density in turn is diagnostic of tissue structure299. MRI
of the brain was first done on a clinical patient in 1980. It was
cleared for commercial clinical use by the FDA in 1984 and its use
throughout the world has spread rapidly since.

between two eclipses.

As seen from earth, the angular diameter of the sun is about 30 minutes of arc.

To map the emitted microwave radiation over the solar disc, an antenna with

an angular resolution small compared to 30 minutes of arc is needed. Adequate

spot resolution using a single antenna would require an antenna of enormous

dimensions, impractical to construct. The way around this is to use several

antennas along a line, thus achieving good resolution in one direction and poor

resolution in a perpendicular direction. It thus proved practical to construct

arrays of antennas with a beamwidth, 3 minutes of arc. Such an array would be

sensitive to microwave radiation from sources inside a narrow strip in the sky,

3 minutes of arc wide and several degrees long. In radio astronomy, a reception

pattern of this type is known as a fan beam. When the fan beam system is aimed

toward the sun, the received signal approximates a line integral of microwave

intensity. Since the antenna array is attached to the earth, the sensitive strip

region sweeps across the sun as the earth rotates, and the received power as a

function of angle represents a two-dimensional map of microwave intensity. To

obtain scans for different angles, it is only necessary to allow some time and do

the scan again. As time passes, the position angle φ varies automatically and

may be computed from cot φ = (sin δ)(tan h), where δ is the declination and

h the hour angle of the source.
299 “Chemical shifts” in the resonance radio frequency yields further data about

the molecular environment of the H atoms.
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1974–1980 Ultrasound computer tomography was developed by J.E. Green-
leaf and S.A. Johnson (1974) to look at the abdomen and kid-
neys, fetal tissues, carotid blood vessels and the heart. The process
involves placing a small device (transducer) against the skin of the
patient near the region of interest. The transducer produces in-
audible high frequency sound waves which penetrate into the body
and bounce off the organs inside. The transducer detects the echo
from the internal structures and contours of the organs.

When diffraction effects are ignored, ultrasonic CT is similar to
X-ray tomography: in both cases a transmitter illuminates the
object and a line integral of the attenuation can be estimated by
measuring the energy on the far side of the object.

Ultrasound, however, differs from X-rays because the propagation
speed is much lower and much more dependent upon medium com-
position, and thus it is possible to measure and extract informa-
tion from not only the attenuation of the pressure field but also the
time-delay of the signal induced by the object. This yields both the
attenuation coefficient and the refractive index of the object.

Most medical ultrasonic images are done using reflected signals and
the discipline belongs to the field of reflection tomography. As in
radar, the echoes are sent along a narrow beam and the image is
formed by displaying the reflected signal as a function of time and
direction of the beam. It is not necessary to encircle the object
with transmitters and receivers for gathering the ‘projection’ data;
transmission and reception are now done from the same side.

1978–1985 Emission computed tomography (ECT): Isotopes are administered
to the patient in the form of radio-pharmaceuticals either by injec-
tion or by inhalation. The decay of these radio isotopes is associ-
ated with the emission of quanta, which in turn yields information
on their distribution (location and concentration) as a function
of time. The radioactive isotopes used are characterized by the
emission of gamma-ray photons or positrons. The concentration
of such an isotope in any cross section changes with time due to
radioactive decay, flow, and biochemical kinetics within the body.

This implies that all the data for generating one cross-sectional im-
age must be collected in a time interval that is short compared to
the time constant associated with the changing concentration. By
analyzing the images taken at different times for the same cross-
section we can determine the functional state of various organs in
a patient’s body. There are two types of emission CT:
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(a) Single Photon Emission Computed Tomography (using e.g.
Iodine-131, technetium-99m) or SPECT (1979)

(b) Positron Emission Tomography (e.g. Carbon-11; Oxygen-15)
or PET (1985). Two gamma-ray photons, traveling in oppo-
site directions, are created by the annihilation300 of an elec-
tron and a positron.

1913–1922 CE Elmer Verner McCollum (1879–1967, USA). Bio-
chemist and nutritionist. Pioneered in the study of vitamins and originated
the letter system of naming them. Identified (with Margaret Davis) vita-
min A (1913). Collaborated in the discovery of vitamin D in cod liver oil
(1922), and used it for treating rickets.

McCollum was born in Fort Scott, Kansas and studied at Yale University.
From 1917 he was Professor of Biochemistry at John Hopkins University.

1913–1928 CE Irving Langmuir (1881–1957, U.S.A.). Versatile scientist,
engineer and inventor. Invented the high-vacuum electron tube and the gas-
filled incandescent electric lamp301 at atmospheric pressure. Used the term
plasma for the first time to describe a collection of charged particles in his

300 Pair annihilation is the opposite phenomenon of pair production. A pair of op-

positely charged particles – an electron and its anti-particle, a positron – briefly

attract one another to form a kind of “atom” called positronium. Within 10−10

seconds, the two particles spiral into one another and annihilate. In their place

two (or occasionally three) γ-ray photons are produced. In the positronium rest

frame, the two γ-rays move away from each other in opposite directions with

equal energies, frequencies, and wavelengths. Therefore, the vector sum of their

linear momenta is zero (just one γ-ray could not have zero momentum, so two or

three must be created). Since the orbital e− and e+ speeds prior to annihilation

are negligible, the conservation of mass-energy yields m2
0c

2 + m2
0c

2 = 2hνmin

or m0c
2 = hνmin. The minimum γ-ray energy is thus 0.511 MeV, equal to

an electron’s rest-mass energy; for proton-antiproton pair annihilation it is

938.3 MeV.
301 He found that the higher pressure did reduce evaporation of the tungsten, but so

much heat was conducted away by the gas that the lamp efficiency was reduced.

He discovered that coiling the filament decreased the effective area exposed to

the gas and thus minimized the loss of heat. Coiled filament gas-filled lamps in

500, 750 and 1000 watt sizes were introduced in 1913. They gave a much

better light at higher efficiency with the same life as former lamps. Nitrogen
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study of oscillations in electric discharges. He realized that the matter inside
the glow discharge was different from ordinary gases.

Langmuir had an unusually wide range of interests: While he is known to
physicists for his work with plasmas, he won in 1932 a Nobel prize in chemistry
for studies on molecular surface effects that have had important applications
in medical research. Toward the end of his life he pioneered experiments on
weather modification, and was the guiding force behind the first successful
cloud seeding in which man-made snow was produced.

Langmuir was born in Brooklyn, NY and studied at Columbia University
(1903) and in Göttingen, Germany under Nernst (1906). He conducted re-
search in General Electric Laboratory in Schenectady, NY during 1909–1950.

Langmuir was a man of brilliant ideas, for which he always sought practi-
cal applications. With the rapid advance of technology, his scientific achieve-
ments were used for the developments of many instruments and production
processes.

1913–1931 CE George David Birkhoff (1884–1944, U.S.A.). The only
American mathematician of his generation with major international reputa-
tion. Birkhoff proved in 1913 a conjecture made by Poincaré in 1912 (known
as Poincaré last “theorem”)302. In 1923 he proved a theorem which states
that any spherically symmetric vacuum solutions of Einstein equations must
be static and must agree with the Schwarzschild solution, apart from a co-
ordinate transformation. This means that when the spacetime surrounding
any object has spherical symmetry and is free of matter and of all fields other
than gravity, then one can introduce coordinates in which the metric is that
of Schwarzschild.

Thus, the exterior field of any electrically-neutral, spherical star (regard-
less of whether it is static, collapsing, expanding or pulsating), satisfies the
conditions of Birkhoff’s theorem.

gas was used in the first lamps but argon was substituted in 1914. Argon has

lower heat conductivity than nitrogen. These lamps could be made smaller than

carbon lamps and produced three times the light per watt.
302 The conjecture, which Poincaré did not live to prove, belongs to the field of

topological dynamics: if a one-to-one continuous transformation carries the ring

bounded by two concentric circles into itself in such a way as to preserve areas

and to move the points of the inner circle clockwise and those of the outer circle

anticlockwise, then at least two points must remain fixed. This theorem has

important applications to the classical problem of 3-bodies. Birkhoff astonished

the French, who had not believed that Americans were mathematically capable.

Birkhoff later told a student that he had lost thirty pounds working out that

proof.
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The theorem generalizes to the case where the exterior space is spherically
symmetric, free of matter but allowed to have an electromagnetic field. In
this case the exterior metric must be (again, in appropriate coordinates) the
Reissner-Nordström metric (characterizing a charged black hole).

In 1931, Birkhoff proved the general ergodic theorem, building on the mean
ergodic theorem proven earlier by John von Neumann. Birkhoff systemati-
cally kept Jews out of his department and acted generally to hinder their entry
into Harvard. He thus opposed the appointment of Oscar Zariski (1926).
He vehemently objected to the appointment of Solomon Lefschetz for pres-
ident of AMS (1934) on the grounds that the Jews “... will use the Annals
as a good deal of racial prerequisite. The racial interests will get deeper as
Einstein’s and all of them will do”.

Albert Einstein said: “G.D. Birkhoff is one of the world’s great anti-
semites”.

1913–1935 CE Georg (György) Karl von Hevesy (1885–1966; Hun-
gary, Switzerland and Denmark). Chemist. The first303 (1913) to use a ra-
dioactive isotope to follow the steps of chemical and biological processes, for
which he won the Nobel Prize for Chemistry (1943). Discovered (1923, with
Dirk Coster) the element Hafnium304.

Hevesy was born to Jewish parents in Budapest and educated in Ger-
many, Switzerland and England, studying in Manchester under E. Ruther-
ford (1911). He moved to Vienna (1912), and after service in the Austro-
Hungarian army during WWI, he worked in Copenhagen (1920–1926) under
N. Bohr. He then became a professor at Freiburg (1923–1933), Copenhagen
(1933–1942), and Stockholm (1942–1945) to where he fled during WWII. He
died in Freiburg.

Hevesy’s work on isotopes has been very influential in physics, chemistry
and medicine: he worked to find ways of separating isotopes by physical
means. Thus in 1934 he used radioactive phosphorus isotope to study phos-
phorus metabolism in plants and in the human body and used heavy water
to study the mechanism of water exchange between goldfish and their sur-
roundings, and also within the human body. He then showed that chemical
changes are continually taking place in all living tissues. In 1935 he began to
calculate the relative abundance of elements in the universe.

303 With K.A. Paneth he used radioactive lead to trace the solubility of lead

salts, demonstrating that even a small amount of the chemical can be used as

a radioactive tracer.
304 The Latin name for Copenhagen, where the discovery was made.



1913 CE 3275

1913–1928 CE William Mulholland (1855–1935, USA). Chief architect
of the Owens Valley Aqueduct that brought water to semi-arid Los Angeles
from the lush Owens Valley (1913), thus making this modern metropolis pos-
sible and forever changing the course of Southern California’s history. His
career was ended on March 12, 1928 with the collapse of the St. Francis Dam
(over 400 people killed and damage estimated at $20 million).

William Mulholland was born in Belfast, Ireland. In 1877 he arrived in Los
Angeles, having worked his way from Ireland as a sailor, lumberjack, Apache
fighter and mine prospector. He would, in time, engineer a historic feat and
have a great impact upon the future of Los Angeles.

Mulholland saw that a burgeoning and thirsty Los Angeles would soon
need much more water than it had available and foresaw the need of open-
ing a new water source by tapping into the Eastern Sierra water from the
Owens Valley, thus becoming obsessed with an engineering challenge of epic
proportions.

Although he possessed no formal training in engineering, Mulholland pur-
sued intense personal interest in geology, hydraulics and engineering by edu-
cating himself at the public library. Living in a shack, he worked as a ditch
tender. By 1886, he had worked his way up to become the City Water Com-
pany’s superintendent.

After the City of Los Angeles bought out the Los Angeles City Water
Company (1902), Mulholland oversaw the formation of the new Los Angeles
Bureau of Water Works and Supply (which would eventually become Los An-
geles Department of Water and Power in the 1920s). He was the department’s
first superintendent and chief engineer. He also became the first American
engineer to build a dam utilizing hydraulic sluicing (Silver Lake Reservoir,
1906).

Calling forth the deepest resources of his character: organization, vision
and dogged determination, he would, over the next years, be entrusted with
building a 375 km aqueduct (the world’s longest at the time), to bring water
from the Owens River north of Los Angeles to the San Fernando Valley, where
developers awaited conversion of dry land into farms and housing tracts.305

305 While Mulholland began to look longingly at the Owens River, more than

320 km away, the residents of Owen Valley had plans for the water as well. Most

of them raised crops and ranched, and they were anticipating an economic bo-

nanza once the newly-founded Reclamation Service completed its Owens Valley

irrigation project. Mulholland realized that to acquire the Owens River for Los

Angeles, they would have to put an end to this irrigation project. Thus started

“the Owens Valley War” which reached its climax in 1924. It was a struggle

for economic and political power between the landowners of the San Fernando
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The project required massing of 3900 workers and digging and blasting
of 164 tunnels, almost 86 km in all, over desert and mountain terrain. It
called for carving out sluiceways, clearing roads, laying railroad tracks and
running power lines. When machines broke down, Mulholland used mules,
when men perished, he hired more. He was creating one of the engineering
marvels of the age, and nothing would get in his way. No wonder, this project
was dubbed the “Panama Canal of the West”. It was the largest and most
difficult municipal engineering project in U.S. history at the time.

The first Owens River water flowed into a San Fernando Valley reservoir on
Nov 5, 1913. At the ceremony marking the occasion, the laconic Mulholland
uttered to exuberant crowds what may be the five most famous words in
the city’s history “There it is. Take it.”. This was the first step toward
making Los Angeles into an international metropolis: the achievement gave
the city the ability to grow beyond a population of 500,000 and leverage
water to expand city territory into San Fernando Valley and other surrounding
communities. The massive project was completed ahead of schedule under
budget of $24.5 million in municipal bonds approved by voters.

In 1923, the City of Los Angeles honored Mulholland by means of a new
scenic highway that ran along the spine of the Santa Monica Mountains. It
was named Mulholland Drive.

Five years later, on March 12, 1928, Mulholland’s career took a tragic turn
when the St. Francis Dam, one of several dams built to increase storage of
Owens River water, collapsed, sending about 50 million m3 of water into the
Santa Clara Valley, north of Los Angeles — one of the greatest civil disasters
in American history.306

Valley growers (who benefited from Mulholland’s plan) and the Owen Valley

farmers and ranchers.

At the end the residents of the Owens valley were out-maneuvered by Mulhol-

land and his aids, who eventually took ownership of 95 percent of farmland and

towns of Owen’s Valley.

The film “Chinatown” (starring Jack Nicholson) portrays in fictional form some

of the events surrounding Mulholland’s quest for water. Mulholland’s persona

in the film is loosely split between two characters in the film: water department

chief Hollis Mulwray and water tycoon Noah Cross (played by John Huston).
306 The waters swept through the Santa Clara Valley toward the Pacific Ocean,

about 87 km away. 104 km of Valley was devastated before the water finally

made its way into the Ocean between Oxnard and Ventura. At its peak the

wall of water was said to be 23 m high. By the time it hit Santa Paula, 67 km

south of the dam, the water was estimated to be 8 m deep. Almost everything

in its path was destroyed: livestock, structures, railways, bridges and orchards.

By the time it was over, parts of Ventura County lay under 20 m of mud and

debris.
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In the end, the jury found that the disaster was caused by the failure of
the rock formations on which the dam was built, but responsibility was placed
on the governmental organizations behind the construction of the dam, and
on its chief designer, William Mulholland. No criminal charges were brought
against him. A 1992 examination of the disaster concluded that, given the
geological knowledge of the time, Mulholland was in fact innocent of criminal
negligence — that the break was caused by the anchoring of the dam’s eastern
edge to an ancient landslide impossible to detect in the 1920’s.

Mulholland was forced to resign in disgrace. He took full responsibility,
saying: “If there is an error of human judgment, I am human”. His final years
were lived in the shadow of the disaster. He died in 1935.

1913–1940 CE Igor Ivanovich Sikorsky (1889–1972, Russia and
U.S.A.). An aircraft designer and manufacturer. Pioneered in multi-engine
airplanes, helicopters and transoceanic flying boats. Designed the world’s
first 4-engine aircraft in 1913. Built the first practical single-rotor helicopter
in 1939 and flew it in 1940.

Sikorsky was born in Kiev, the Ukraine. He was educated at the Petro-
grad Naval College and at engineering schools in Paris and Kiev. He rose to
prominent position in Russian aviation, designing one of the most successful
bombers of WWI.

Sikorsky came to the United States in 1919. In 1923 he founded a company
which produced flying boats. He then designed and built helicopters.

1913–1942 CE Bela Schick (1877–1967, Austria and U.S.A.). Distin-
guished physician. Known for a skin test for diphteria immunity which carries
his name (Schick Test, 1913)307. Did important research on such childhood
diseases as scarlet fever, tuberculosis, serum sickness.

307 In the Schick Test a very small amount of diphteria toxin is injected under the

skin. There is no effect if the person is immune to the disease, but the area

around the injection becomes inflamed if he is not.

Clemens von Pirquet (Austria), pediatrician, discovered that the adverse

reaction of the diphteria antitoxin was caused by the horse serum in which the

antitoxin was carried.

Von Pirquet devised the term “allergy” by combining two Greek words: allos

(= different or changed) and ergos (= work or action). An allergy denoted that,

in this adverse reaction, the action of a substance in the body was somehow

changed.
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Schick worked in Vienna with Theodor Escherich and Clemens von
Pirquet. With the latter he laid the foundation of our knowledge of serum
sickness and allergy.

Schick was born in Bogllár, Hungary to Jewish parents. He was a clinical
professor of childhood diseases at the University of Vienna (1902–1923). Came
to the United States (1923) and became chief pediatrician at Mt. Sinai Hos-
pital, N.Y.C. (1923–1943) and professor of medicine at Columbia University
(1923–1942).

Prequantum Atomic and Subatomic Physics

During the 20th century the detailed study of atomic and nuclear structure
has developed into a subject of immense scope and forbidding complexity. But
the atomic theory of matter is over two thousand years old, having originated
in the philosophy of the ancient Greeks. For centuries the idea that matter
consists of indivisible atoms was a commonplace of speculative thought, but
the concept became valuable only when it could be applied quantitatively —
to an explanation of the gas laws (commencing in the 18th century) and the
laws of chemical combination (in the early 19th century).

Even in the 1900’s scientists as eminent as Mach and Ostwald could
still regard the existence of atoms as a hypothesis, with little experimental
support. In the same period, however, a series of brilliant discoveries opened
the way to novel investigations that established the atom as the smallest unit
of a chemical element, although it could no longer be thought of as indivisible.

The atomic theory of matter originated in the speculations of Leucippos
and Democritos, who lived in Greece during the 5th century BCE. Nowadays
we may wonder why these philosophers should have adopted so bold a theory
without possessing any experimental evidence on the subject. The answer may
lie in the difficult logical questions raised by the Eleatics, an earlier school of
philosophers headed by Parmenides. The Eleatic thinkers became famous
for their use of uncompromising logic in analyzing the nature of matter and
motion, and they certainly reached some astonishing conclusions.

As an example of Parmenides’ arguments we may consider his contention
that all space is filled with matter, that is, a vacuum cannot occur. The
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statement was based on the proposition “That which does not exist does not

exist”. If we accept this and the additional hypothesis that no two bodies

can occupy the same place, it follows that motion is impossible, or at best

illusory. This conclusion was supported by Zeno, a disciple of Parmenides,

in four famous “paradoxes” concerning the concepts of time and space.

Possibly the most significant paradox concerns a flying arrow. The arrow

is imagined to be at rest at any given instant of time; but, if it is stationary at

all possible instants, how can it ever move from place to place? Of course the

validity of such a result depends on the assumption granted — in this case,

the concept of an “instant” is essential to the analysis. In their historical

context, Zeno’s paradoxes were powerful arguments for treating space and

time as intrinsically continuous, whatever the nature of matter may be.

The work of the Eleatics caused a crisis in Greek thought and out of this

crisis new theories of matter arose. Leucippos and Democritos boldly postu-

lated the existence of a vacuum separating the indivisible atoms of matter.

In this way they were able to account for the compression and rarefaction

of gases, and also to explain the properties of different substances as being

due to different atomic species. Democritos clearly enunciated the principle

of conservation of matter, based on the indestructibility of atoms.

Later, the ideas of the atomists were revived by Epicuros, and they found

remarkable expression in Lucretius’ poem De Rerum Natura, which includes

a sustained panegyric on the beauties of atomic theory.

However, several philosophers, including Aristotle, argued in favor of

a continuous theory of matter, partly on the grounds that atoms separated

by a vacuum cannot conceivably interact except at contact. In the third

century BCE the Stoic philosophers observed waves spreading on the surface

of water and supposed that sound travels in a similar way through air. By

considering the propagation of waves in a medium, they were led to postulate

the existence of a rarefied continuum, later called “the ether”, pervading all

space and linking material bodies together in some way. Ideas based on the

properties of a continuum were not easily reconciled with the tenets of atomic

theory.

It is important to recognize that the existence of particles in the physical

world raises complex problems when we try to describe their behavior mathe-

matically. For example, relativity theory is framed in terms of point-particles

and continuous electromagnetic fields, but a charged point-particle should

have infinite self-energy if the self-reaction of its electromagnetic field is taken

into account. Moreover, the entire question of interaction between different

particles requires elaborate treatment in the context of any field theory.
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These difficulties persists in modern physics, were we have, on the one

hand, field theories (such as Maxwell’s electromagnetic theory and its quan-

tum extension, QED) and, on the other, particles interacting with and emit-

ting, absorbing or annihilating each other, and also produced in pairs from the

vacuum. Despite the many successes of quantum mechanics and of quantum

field theories, the interactions of particles and fields are still not described

completely satisfactorily in mathematical terms.

The philosophical problems raised by Zeno still require consideration, al-

though the original mathematical difficulties he raised in his paradoxes have

been resolved. It can be argued that, in our range of experience, all actual

events are atomic or discrete in nature, but potential occurrences must be

described in terms of continuity. Thus a particle is regarded in quantum

mechanics as potentially located anywhere in the universe, yet its existence

is recognized experimentally only by discrete events localized in space-time.

Some kind of reconciliation between these two paradigms is necessary for any

understanding of present-day physics; needless to say, the last paper on the

subject has not yet been written.

The study of nuclear physics commenced in 1896 with the discovery of

Becquerel that salts of uranium emit rays which penetrate matter to some

extent and affect photographic plates. The study of radioactivity was pursued

energetically by Pierre and Marie Curie, who isolated the new radioactive

elements Polonium and Radium, and by E. Rutherford, who with various

collaborators investigated radioactive series and the properties of alpha rays.

Remarkable features of the new phenomenon were the apparently spontaneous

release of considerable amounts of energy, and the random sequence exhib-

ited by individual radioactive decay processes. It was found that the activity

displayed by a given quantity of a radioactive element is quite unaffected by

chemical combination and by normal changes in physical conditions. More-

over, radioactive characteristics differ markedly from one isotope to another

of the same element; it follows that radioactivity is a property of the massive,

positively-charged part of an atom.

Although immense progress was made between 1900 and 1910 in the quan-

tum theory of radiation, no successful model of atomic structure was evolved,

possibly because too much importance was attached to the old concept of

the atom as an impenetrable entity. The essential new idea was provided

in 1911 by Rutherford, who analyzed the results of alpha-particle scattering

experiments and showed that the positive charge in an atom is concentrated

in a very small nucleus at the center. It then became possible to regard the

electrons as loosely bound planetary particles, organized into shells by virtue

of their orbital motion.
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In 1913 Niels Bohr succeeded in giving a description for electron orbits
in terms of quantized angular momentum and action, and he used this model
to explain the spectrum of atomic hydrogen. Despite the inconsistencies of
the Bohr theory, it remains a major landmark in scientific thought and it is
still valuable as a model for calculating the orders of magnitude of classically
conceived quantities, such as electron speeds and orbital radii, in simple atoms
(the so-called “semiclassical” analysis of a quantum system).

1913–1915 CE Niels (Henrik David) Bohr (1885–1962, Denmark). One
of the leading physicists of the 20th century. Linked the new quantum physics
to the structure of atoms (and later of molecules). Major contributor to the
development of quantum physics for almost 50 years. Suggested a model for
the hydrogen atom with discrete energy levels for the orbiting electron, which
enabled him to explain the ‘Balmer lines’ (discovered in 1885). He is also
responsible for the liquid-drop model of the atomic nucleus.

The great achievement of the Rutherford group in establishing the exis-
tence of a small positively charged nucleus in each atom, led physicists to
the next problem — to discover the correct description of the possible elec-
tron orbits about the nucleus. In 1912 J.W. Nicholson showed that the
angular momentum of a “planetary” electron should change by a definite
amount whenever it emitted or absorbed radiant energy. The quantum law of
spectroscopy �ωmn = Em − En [ωmn — angular frequency of spectral line
emitted or absorbed when the atom makes a transition from state m of energy
Em to state n with energy En] was known to be accurate in several instances,
including the infrared spectra of molecules.

The combination of these ideas enabled Bohr to expound the first partially
successful theory of atomic structure. In a series of papers between 1913 and
1915, Bohr outlined an elementary semiclassical theory of orbital electrons,
which accounted for the spectrum of the hydrogen atom and certain other
phenomena in atomic physics. His theory was based on two postulates:

(1) Each electron in an atom revolves about the nucleus in a fixed orbit sat-
isfying the condition that the angular momentum is an integral multiple
of the quantum unit � = �/2π. The rational for this quantization law
comes from the Hamilton-Jacobi formulation of mechanics. Imposing it
guarantees that the photon emitted when the orbiting electron transi-
tions from orbit (n + 1) to orbit n, has a frequency approximating that
of the two orbits for n � 1 (classical limit).
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(2) An electron does not radiate while occupying one of the quantized orbits,
but light is emitted or absorbed when an electron changes from one orbit
to another, the angular frequency of the radiation ωmn being given by
the known equation �ω = Em − En.

Bohr made no attempt to describe the process whereby electrons are as-
sumed to change from one orbit to another. Moreover, the basic postulate
of fixed orbit for electrons is contrary to the classical electromagnetic theory ,
since any electron which is accelerated should radiate energy away, and the
continual loss of energy would cause the electron to eventually spiral into the
nucleus. Nonetheless, the theory remained classical in the sense that details
of the electron motions are worked out mechanically, in close analogy with
the system of planets revolving the sun308.

Bohr’s theory failed to explain the fine structure of the spectral lines.
Sommerfeld was able to explain it by treating the electrons as relativistic
particles. Later, the hyperfine structure of the spectral lines was explained in
terms of the very small magnetic interaction between the spins of the electron
and the nucleus. This type of interaction is often important in determining
the structure of spectral lines emitted by heavy atoms.

308 In the single-electron hydrogen atom, the attractive Coulomb force e2/r2 sup-

plies the centripetal acceleration, i.e. e2/r2 = mrω2 where (e, m) are the

electron’s charge and mass respectively, r is the radius of its (assumed cir-

cular) orbit and ω is the orbit’s angular frequency. The quantization of its

angular momentum reads mvr = n� where v = ωr is its orbital speed. The

two equations yield rn = h2n2

4π2me2 ; ωn = 8π3me4

h3n3 ; vn = 2πe2

hn
. In the hydro-

gen atom, the first orbit (n = 1) has a radius r1 = 0.5291Å in which the

electron moves with the velocity v1 = 2.2 × 108 cm/sec. The energy of the

atom, En, is the sum of the kinetic and potential energies, the sum being neg-

ative for any bound electron [on this energy scale, the zero corresponds to the

case of an electron at rest at an infinite distance from the nucleus, and the

negative E values are referred to as binding energies of the electron]. Thus

En = 1
2
mv2

n − e2

rn
= − 2π2me4

h2n2 , with E1 = −13.6 electron-Volts. The expres-

sion for the wavenumbers of the spectral lines of the H atom (reciprocal wave-

lengths) is 1
λ�n

= 1
hc

(E	 − En) = 2π2me4

h3c

(
1

n2 − 1
	2

)
, � > n. When this relation

was compared with the empirical formula for the Balmer series for visible hydro-

gen spectral lines, 1
λ

= R
(

1
22 − 1

n2

)
, n = 3, 4, 5, . . . , the constant R [known

as the Rydberg constant ] was found to be equal to 2π2me4

ch3(1+m/M)
[corrected for

the motion of both electron and proton about their common mass-center]. The

calculated value of 109, 677.576 ± 0.012 cm−1 for R was found to be in excel-

lent agreement with the empirical spectroscopic value. This was an outstanding

triumph for the Bohr theory.
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Bohr was the son of the physiologist Christian Bohr and a Jewish mother.
He studied physics at Copenhagen, earning his doctorate in 1911. He then
went to England, and worked at Cambridge under J.J. Thomson and in
Manchester under E. Rutherford, where he stayed until 1916, returning to
Copenhagen in 1916 as professor, and in 1922 was awarded the Nobel prize for
physics. Bohr took active part in the anti-Nazi resistance movement (1940–
1943). In 1943, under threat of immediate arrest, he escaped to Sweden on
his family fishing boat.

Bohr’s brother, Harald August Bohr (1887–1951, Denmark), was an
outstanding mathematician, known for his studies of the Riemann zeta func-
tion and almost-periodic functions309. Bohr’s son Aage Niels Bohr (b. 1922)
is a physicist who shared the Nobel prize for physics in 1975 for his work in
determining the asymmetrical shapes of certain atomic nuclei.

Bohr contemplated the philosophical significance of quantum physics, es-
pecially the cognitive contradictions inherent in the wave-particle duality. He
thus came to suggest his principle of complementarity stating that the model
we use is determined by the nature of the measurement: if a measurement
proves the wave character of radiation or matter, then it is impossible to ob-
serve the particle character in the same measurement, and conversely. Hence,
radiation and matter are not simply waves nor simply particles. A more gen-
eral and complicated model is needed to describe their behavior, even though
in extreme situations a simple wave model or a simple particle model may
apply.

309 Almost periodic function: a function which satisfies f(x + τ) = f(x) with an

error that can be made arbitrary small, when τ denotes any number of an infi-

nite set of values spread over the whole range (−∞, ∞) in such a way as not to
leave empty intervals of arbitrary great length.

Example: f(x) = sin px + cos qx, where p and q are noncommensurable

numbers. Indeed, let integers (m, n) be found such that pτ = 2πn + ε,
qτ = 2πm + ε where ε is arbitrarily small positive number. Then

f(x + τ) = sin(px + ε) + cos(qx + ε) = sin px + cos qx + 2θε, |θ| < 1.

An almost periodic function can be expanded in a series f(x) =
∑∞

n=0 Aneiλnx

provided
∑

|An|2 converges. This is a special case of Dirichlet series, which

in turn includes Fourier series as a special case. The Bohr-Landau theorem

(1914) describes the conditions under which the Riemann zeta function is equal

to zero. Bohr founded the theory of almost periodic functions in 1924 through

his studies of representation of functions by Dirichlet series. He was a professor

at the Copenhagen College of Technology (1915–1930) and then a professor of

mathematics at the University of Copenhagen.
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Bohr was also preoccupied with the philosophy of biology, regarding life,
free will and consciousness as manifestations of a principle that deviates from
the domain of the physical sciences.

Spectroscopy (1666–1913)

The history of science is intimately connected with the history of tools
and instruments. With a telescope he had made, Galileo observed the four
small bodies which revolve around the planet Jupiter — a miniature solar
system which helped substantiate the Copernican theory. Indeed, without
optical and radio telescopes, modern astronomy would be virtually nonexis-
tent. Bacteriology is equally dependent on the microscope. Cloud, bubble and
drift chambers trace the paths of invisible subatomic particles. The cyclotron
and its descendants infuse them with energies which result in wholly new phe-
nomena. The atomic clock and the interferometer provide measurements of
extraordinary accuracy. The camera fixes visual evidence for permanent study
and reference. The computer analyzes data and models with a thoroughness
and speed otherwise impossible.

One of the most important of scientific instruments is the spectroscope.
Spectroscopy is the scientific development of the simple fact of observation
that light has different colors. In essence, the spectroscope is a sophisticated
development of the triangular glass prism which Isaac Newton used in 1666
to discover that “white” light is a combination of all other colors.

Thomas Melville (1752), observed that a flame in which a salt or metal
was placed, gave out a spectrum of bright lines whose pattern varied with the
material used; however, it was not until 1823 that John Herschel made the
seemingly obvious suggestion that the technique might be applied to chem-
ical analysis. Meanwhile, Whollaston (1802) had observed that the solar
spectrum contained a number of dark lines. Fraunhofer (1814) perfected
the spectroscope by using several prisms to increase the dispersion of light,
substituting a slit for a hole, and using a telescope for observation. He also
made the first diffraction gratings by ruling glass plates with diamond points.
As a result of these improvements he discovered many hundreds of dark lines
in the solar spectrum — still known as Fraunhofer lines — mapped them
carefully, and noticed that certain lines varied from star to star.
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In 1859, the two types of observation, terrestrial and astronomical, made
contact. Bunsen and Kirchhoff showed that a double line — the D line —
in the solar spectrum was due to the element sodium and concluded that it
must therefore be present in the sun; and by similar methods that lithium
could be present, if at all, only in quantities too small for them to observe.
Now it became possible to determine the constituents of objects hundreds
of millions of miles away in space! In the course of their investigations, the
collaborators discovered two new elements, caesium and rubidium.

In 1868, Lockyer and Frankland went further still. Observing a hitherto
unknown line in the sun’s spectrum, they attributed it to an undiscovered ele-
ment which they named helium. In 1895, Ramsey discovered the new element
as a constituent of the mineral cleveite. A thorough history of spectroscopy
would include numerous other scientists, such as Anders Jonas Angström
(1814–1874, Sweden) who worked out accurate measurements of wavelengths;
Henry Augustus Rowland (1848–1901, U.S.A.) who invented the concave
diffraction grating; and George Ellery Hale (1868–1938, U.S.A.) whose
spectroheliograph offered a new technique for observation of the sun. The
discoveries made possible by these developments were startling. Among other
achievements, they contributed to the founding of the modern science of as-
trophysics.

Prior to Bohr (1913), physicists failed to interpret the physical mecha-
nisms underlying discrete spectra. In the first place, they did not conceive
the possibility of discrete states for an atom. They simply assigned dipole ra-
diation due to orbital revolutions of the electron, and identified the frequency
of this revolution with the frequency of the emitted light. Consequently, they
attributed the whole spectrum simultaneously to each atom.

1914 CE Adrian Daniel Fokker (1887–1972, Holland). Dutch physicist.
Derived the Fokker-Planck equation for Gaussian-Markov processes310. Col-
laborated with Einstein on his first treatment of general relativity.

310 Consider unrestricted random walk on a discretized x-axis, with spacing Δx
and discrete time-step Δt, starting at x = 0, at t = 0 with probabilities p,

q = 1 − p of a transition at any stage of one unit to the right or left. Let

u(x, t) be a probability that the particle be at coordinate x at time t. In

this Markov process u(x; t + Δt) = pu(x − Δx; t) + qu(x + Δx, t), since the

coordinate x can be reached either from the left or the right. The boundary

conditions are u(0, 0) = 1, u(x, 0) = 0, x �= 0. The particle makes [t/Δt]
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Fokker was born in Buitenzorg, Dutch Indies. He received his Ph.D. in
1913 under Lorentz. His thesis dealt with Brownian motions of electrons in
a radiation field and contained an equation which later became known as the
Fokker-Planck equation. After this work was completed, Lorentz sent Fokker
to Zürich to work with Einstein. Their collaboration led to a brief paper,
which contains Einstein’s first treatment of a gravitation theory in which
general covariance is strictly obeyed. In later years, Fokker wrote several
papers on relativity. He held a professorship at Leyden.

independent steps during time t, each taking the value Δx or −Δx with prob-

abilities p and q respectively. Each step thus has a mean (p − q)Δx and

variance 4pq(Δx)2. The overall mean and variance of the displacement in time

t are therefore approximately t(p − q)Δx
Δt

and 4pqt (Δx)2

Δt
, respectively. If

the mean and variance are to remain finite in the continuum limit Δx → 0,

Δt → 0, we must have (Δx)2/Δt = O(1), p − q = O(Δx). These conditions

will be satisfied if (Δx)2

Δt
= 2D, p = 1

2
+ c

2D
Δx, q = 1

2
− c

2D
Δx where 2c and

D are constants with the interpretations of drift velocity and diffusion coeffi-
cient , respectively. The mean and the variance are now given in the limit by

2ct and 2Dt respectively. Expanding the Markov equation by means of Taylor’s

theorem yields ∂u
∂t

Δt = ∂u
∂x

(q − p)Δx + ∂2u
∂x2

(Δx)2

2!
, neglecting terms on the left

of order (Δt)2 and on the right of order (Δx)3. The limiting form then yields

the Fokker-Planck equation

∂u

∂t
= −2c

∂u

∂x
+ D

∂2u

∂x2

for diffusion with drift. In this continuum limit, u(x, t) becomes a probability

density. It has the particular solution

u(x, t) =
1√

4πDt
e

−(x−2ct)2

4Dt .

For c = 0 one finds

∫ ∞

− ∞
u(x, t)dx = 1,

∫ ∞

− ∞
xu(x, t)dx = 0 and

∫ ∞

− ∞
x2u(x, t) = 2Dt = 〈x2〉.

If one interprets the single particle probability density u(x, t) as the num-

ber of particles per unit volume around x at time t, the Fokker-Planck equa-

tion then becomes Einstein’s diffusion equation for the Brownian motion with

〈x2〉 = 2Dt, where 2D = kT
3πηa

. Today we could say that in 1905, Einstein

treated diffusion as a Markovian process, thereby establishing a link between

the random walk of a single particle and the diffusion of an ensemble of Brown-

ian particles.
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1914 CE Edgar Buckingham (1867–1940, U.S.A.). Physicist. Developed
the present basic philosophy of the nature of dimensions, and the algebraic
theorems311 involved in the applications of dimensional analysis312. These
ideas were presented in his paper: On Physically Similar Systems (Phys.
Rev. 4, 345, October 1914), which he authored while working at the National
Bureau of Standards.

1914 CE James Franck (1882–1964, Germany and USA) and Gustav
Ludwig Hertz (1887–1979, Germany). Physicists. Confirmed experimen-
tally Bohr’s atomic theory, for which they received the Nobel Prize for physics
(1925); in their simple experiment (1914) they rendered one of the most strik-
ing proofs of the existence of stationary atomic states by means of inelastic
collisions between electrons and atoms. In this process, part of the kinetic
energy of the electron is transferred as internal energy of the target atom.

Their experimental arrangement was thus: a heated filament F emits elec-
trons which are accelerated toward the grid G by a variable potential V . The

311 Buckingham’s Pi Theorem: If a physical phenomenon involves N1 variables,

and if these variables can be expressed in terms of N2 fundamental dimensions,

the physical law describing the phenomenon can be expressed as a function of

(N1 − N2) dimensionless products of the variables, called “Pi terms” (π).

Stated as an equation, F (π1, π2, π3, . . . , πn) = 0, where n = N1 − N2.
312 The concept of dimensional analysis can be traced back at least as far as 1822,

when Joseph Fourier used it in his Theorie Analytique de la Chaleur . Various

scientists, notably Osborne Reynolds and Lord Rayleigh made use of some

form of dimensional technique in the latter half of the 19th century. All physical

quantities can be reduced to combinations of basic properties which are referred

to broadly as dimensions. The dimensions M (mass), L (length), and T (time)

are sufficient for all branches of mechanics. In electrical and electromagnetic

measurements, it is necessary only to add one dimension — that of electric

charge Q — to the M , L, and T dimensions of mechanics in order to create

a system which will provide dimensional combinations for all electrical and

magnetic entities. In thermal problems, we need to add only the dimension of

temperature — symbolized usually by θ — to M , L, and T .

Specifically, dimensional analysis involves the deduction of information about a

physical phenomenon from the premise that it can be described by an equation

defined only dimensionally and relating the pertinent dimensional variables in

a homogeneous, linear algebraic form (although dependencies on dimensionless

quantities can be much more complicated). The analysis entails the formation of

complete sets of dimensionless monomials of the variables. These products are

often called numbers and, because of their frequent use in engineering analysis

and physical theory, have come to be recognized by the names of their inventors

— Reynolds, Cauchy, Prandtl etc.
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space between F and G is filled with mercury vapor. Between the grid G
and the collecting plate P a small retarding potential V ′, of approximately
0.5 Volt, is applied so that those electrons which are left with very little ki-
netic energy after one or more inelastic collisions, cannot reach the plate and
are not registered by the galvanometer. As V increases, the plate current I
fluctuates, the peaks occurring at a spacing of about 4.9 Volts. The first dip
corresponds to electrons that lose all their kinetic energy after one inelastic
collision with the mercury atom, which is left in an excited state. The second
dip corresponds to those electrons that suffered two inelastic collisions with
two mercury atoms (one with each) losing all their kinetic energy, and so on.

The excited mercury atoms return to their ground state by emission of a
photon according to Hg∗ → Hg + hν with hν = E2 − E1. From spectro-
scopic evidence we know that mercury vapor, when excited, emits radiation
whose wavelength is 2536 A, corresponding to a photon of energy hν equal
to 4.86 eV. Radiation of this wavelength is observed coming from the mercury
during the passage of the electron through the vapor.

Thus, the quantized energy transfer from kinetic energy to electromagnetic
light energy was demonstrated. It proved the reality of the energy quantum,
postulated by Planck (1900), adopted by Einstein (1905) and modeled by
Bohr (1913).

James Franck was born in Hamburg to a Jewish rabbinical family. He
received his Ph.D. at the University of Berlin (1906) where he met his younger
colleague, Gustav Hertz (1911). He was a professor at Göttingen (1920–1933).

His position as the leading experimental physicist in Germany, a holder of
a Nobel Prize and his active military duty as an officer in the German army in
WWI meant nothing to the Nazis. What counted was his “non Aryan” status.
He left Germany (1933) and emigrated to the United States (1935), settling
eventually in the University of Chicago (1938–1949). He died in Göttingen.

Gustav Hertz was also born in Hamburg to a half-Jewish family; his uncle
was Heinrich Hertz, the physicist who demonstrated the existence of elec-
tromagnetic waves. He studied mathematics and mathematical physics under
Hilbert at Göttingen and under Sommerfeld in Munich and received his
Ph.D. in experimental physics in Berlin (1911).

During WWI, Hertz was gravely wounded and returned to academic life
only in 1925 at Halle (1925–1928). He then moved to Berlin (1928–1945) and
when the Nazis came to power he refused to take the loyalty oath and was
removed (1934) from his position — to them he was a Jew. He became the
chief physicist of the Siemens concern. After WWII he went to the Soviet
Union (1945–1954) to help build the atom bomb for Stalin. He returned to
East Germany (1954–1961) to the University of Leipzig.
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1914–1917 CE Ernest Dunlop Swinton (1868–1951, England). Military
engineer, historian and inventor. Invented and designed the first tank — a
motor driven combat vehicle enclosed in an armor plate, mounted on heavy
caterpillar tracks and carrying heavy and light weapons, such as cannon,
machine guns, and flame throwers.

Swinton took part in the South African war as commander of the 1st
railway pioneer regiment (1904). After the outbreak of WWI he went to
France as the official military correspondent. His proposals (1914) became
the first link in the evolution of the tank. He became the secretary of the war
cabinet (1915) and had much to do with the preparation of the first tank.
Appointed (1925) professor of military history at Oxford University.

The prototype ‘Little Willie’ was built with the collaboration of Lieu-
tenant Walter Gordon Wilson and William Tritton in Lincoln, UK. For
secrecy’s sake, they were called ‘Water Carriers’, hence the word ‘tank ’. The
British first used the tanks in the Battle of the Somme (1916). These tanks
were slow and clumsy (Mark I), but they terrified the Germans. By Nov. 1917
some 450 improved British Mark IV tanks attacked the Hindenburg Line at
Cambrai. Finally, in the decisive battle of Amiens (22 August 1918), 580 tanks
overrun the German lines and inflicted the coup de grace.

Tanks can cover any kind of ground. They can climb and descend slopes
as steep as 35 degrees. They can travel 48 km/hour on level ground, and
turn in their own length. They can travel in water and in land. Others can
be carried to the front by air. Modern military tanks combine fast-moving
attack with the fire-power of light artillery. Tanks are used against infantry,
to destroy armored vehicles, and to demolish positions.

Leonardo da Vinci (1482) designed a tank-like vehicle.

1914–1919 CE Felix Hausdorff (1868–1942, Germany). Distinguished
mathematician. Extended the work of Fréchet and introduced the concept
of topological and metric spaces. In 1919 he discovered the ‘Hausdorff di-
mension’, the forerunner of todays concept of ‘fractal dimension’313. He also
worked in set theory and introduced the concept of partially ordered set (1906–
1909).

Hausdorff was born in Breslau to a Jewish family. He studied mathemat-
ics and astronomy at Leipzig, Freiburg and Berlin, receiving his Ph.D. from
Leipzig in 1891. Until the age of 35, he devoted most of his time to philoso-
phy, poetry, writing, directing plays and similar endeavors. In 1902 Hausdorff

313 A fractal is by definition a set for which the Hausdorff-Besicovitch dimension

strictly exceeds the topological dimension.
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became associate professor at Leipzig. In 1910 he went to Bonn, where he
wrote the monograph Grundzüge der Mengenlehre, which appeared in 1914.

Felix Hausdorff perished with his family in the Nazi Holocaust.314

1914–1920 CE Srinivasa Ramanujan Aiyangar315 (1887–1920, India).
An extraordinary mathematical genius who left a remarkable arithmetic
legacy to posterity. His contribution to mathematics could have been much
greater had he received a proper university education, and had his health not
failed him at the age of 32. Few individuals in the annals of human intellec-
tual endeavor have excited more admiration for their sheer genius and their
achievements under adverse conditions.

An obscure and poor young Hindu, from a sequestered town in India,
wrote a letter to Godfrey Harold Hardy (1877–1947), the leading English
mathematician of the day. Hardy, accustomed to receiving crank mail, was
inclined to disregard Ramanujan’s letter at first glance the day it arrived,
January 16, 1913. But after dinner that night, Hardy and a close colleague,

314 Sins of omission: Modern textbooks often hide from their readers certain grue-

some biographical facts. Thus, in “Elementary Linear Algebra” (Wiley, 2000),

the authors Howard Anton and Chris Rorrers write (p. 663):

“In 1919 the German mathematician Felix Hausdorff (1868–1942) defined the

‘Hausdorff dimension’...”

The fact that the Nazis exterminated Hausdorff in 1942 just for being a Jew

AND IN SPITE OF HIM BEING a ‘German mathematician’ does not merit

mention. Instead, the innocent reader is led to believe that Hausdorff died nat-

urally in 1942. In this connection, it is of interest to mention that the Nazis

denounced Hausdorff’s dimension as being a ‘fraudulent Jewish mathematics’

as opposed to their ‘Pure Arian mathematics’.
315 For further reading, see:

• Ramanujan, S., Collected Papers, Cambridge University Press, 1927, 355 pp.

• Berndt, B.C., Ramanujan’s Notebooks, Springer-Verlag: New York, 1985–
1991, Part I, 357 pp., Part II, 510 pp., Part III, 510 pp., Part IV, 451 pp.,

Part V, 624 pp.

• Hardy, G.H., Ramanujan, Chelsea Publishing Company:New York, 1940,

236 pp.

• Kanigel, R., The Man Who Knew Infinity (A life of the genius Ramanujan),

Charles Scribner’s Sons: New York, 1991, 438 pp.
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John E. Littlewood, sat down to puzzle through a list of 120 formulas and
theorems Ramanujan had appended to his letter: The letter betrayed signs of
inadequate training, it was intuitive and disorganized, but Hardy recognized
in it brilliant pearls of mathematics. Consequently he invited Ramanujan to
London on a special fellowship in 1914. Through these efforts Ramanujan
became known to the mathematical world.

One of the “pearls” which Ramanujan challenged Hardy to prove was the
continued fraction [g is the golden ratio, 1

2 (51/2 + 1) = 1.618 · · ·]

1 +
e−2π

1 +
e−4π

1 +
e−6π

1 + · · ·

= e− 2π
5 (51/4g1/2 − g)−1.

Another magic result is the following: given the infinite continued fractions,

u =
x

1 +
x5

1 +
x10

1 +
x15

1 +
x20

1 + . . .

, v =
5
√

x

1 +
x

1 +
x2

1 +
x3

1 +
x4

1 + . . .

, (1)

x can be eliminated (!) to tie u and v in the simple algebraic relation

v5 = u
1 − 2u + 4u2 − 3u3 + u4

1 + 3u + 4u2 + 2u3 + u4
. (2)

Nobody knows how Ramanujan arrived at this result. He was always fearful
that English mathematicians would steal his secrets while he was in England.
It seems that not only did English mathematicians not steal his secrets, but
generations of mathematicians since have not discovered his secrets either.

Nine years after Ramanujan’s death, G.N. Watson (1929), going through
the late mathematician’s notebooks, constructed a proof that Ramanujan
could have concocted. Using certain known identities of Euler and Jacobi,
plus new identities of his own, Watson reduced the problem to the relations

u−1−1−u = x−1
∞∏

m=1

(
1 − xm

1 − x25m

)

; u−5−11−u5 = x−5
∞∏

m=1

(
1 − x5m

1 − x25m

)6

;

v−5 − 11 − v5 = x−1
∞∏

m=1

(
1 − xm

1 − x5m

)6

.
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Of (1) and (2) Hardy commented: “It defeated me completely; I had never
seen anything in the least like it before. A single look at it is enough to show
that it must be true because, if it were not true, no one would have had the
imagination to invent it”.

Another result of Ramanujan,
∫ ∞

0

e−3πx2 sinh(πx)
sinh(8πx)

dx =

=
1

e2π/3
√

3

∞∑

n=0

e−2n(n+1)π

[1 + e−π]2[1 + e−2π]2 · · · [1 + e−(2n+1)π]2
,

prompted G.N. Watson to say: “It gives me a thrill which is indistinguishable
from the thrill which I feel when I enter the Sagrestia Nuova of the Capella
Medici and see before me the austere beauty of the four statues representing
‘Day ’, ‘Night ’, ‘Evening ’, and ‘Dawn’, which Michelangelo has set over the
tomb of Giuliano dé Medici and Lorenzo dé Medici”.

Ramanujan, like his great predecessors Euler and Jacobi, was a grand
master of summation and integration. Many of his unique results are still
buried in his Notebooks316. These are personal records in which he jotted down

316 Ramanujan arrived, for example, at the following bizarre identity:

tan−1
{
e− πn

2

}
= π

4
−

{
tan−1 n

1
− tan−1 n

3
+ tan−1 n

5
− · · ·

}
. He apparently

worked his way backwards from a known infinite sum through integration term

by term:
− π

2 e
− πn

2

1+e−πn = −
[

1
1+( n

1 )2
− 1/3

1+( n
3 )2

+ 1/5

1+( n
5 )2

− · · ·
]
. This can be recast

as the well-known result: 1
ch x

= 4π
∑∞

	=0
(−)�(2	+1)

4x2+(2	+1)2π2 ; x = πn
2

.

Another example is: given f(λ) =
√

λ
∫ ∞
0

e−x2

ch λx
dx, to show that f(λ) = f(π

λ
).

This he proved as follows: since

1

ch λx
= 2

∫ ∞

0

cos 2λxz

ch πz
dz,

then

√
λ

∫ ∞

0

e−x2

ch λx
dx = 2

√
λ

∫ ∞

0

∫ ∞

0

e−x2 cos 2λxz

ch πz
dx dz

=
√

λπ

∫ ∞

0

e−λ2z2

ch πz
dz =

√
π

λ

∫ ∞

0

e−z2

ch
(

πz
λ

) dz

=

√
π

λ

∫ ∞

0

e−x2

ch π
λ
x

dx.
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his formulas, which embody subtle relations among numbers and functions.
Others have had to compile, edit and prove them (Ramanujan did not bother
to include formal proofs). One such result from his Notebooks is

ζ(3) = 1 +
1

2.2 + 13

1 + 13

6.2 + 23

1 + 23

10.2 + · · ·

.

Ramanujan’s unique capacity for working intuitively with complicated formu-
las enabled him to plant seeds that are only now coming into bloom: some
of his results are being applied today in other fields and even in theoretical
physics. Some of his conjectures have just recently been verified317.

Hardy on Ramanujan

“He had been carrying an impossible handicap, a poor and solitary Hindu,
pitting his brains against the accumulating wisdom of Europe”.

“. . . a man whose career seems full of paradoxes and contradictions, who defies
almost all the canons by which we are accustomed to judge one another, and

317 The tau conjecture: In 1916, Ramanujan was studying the arithmetical function

σs(n), which denotes the sum of the sth powers of the divisors of n (1 and n

included). Through his efforts to calculate σs(n), he was led to define the tau
function τ(n) via the relation

∞∑

1

τ(n)xn−1 =
[
(1 − x)(1 − x2)(1 − x3) · · ·

]24
= [1 − 3x + 5x3 − 7x6 + · · · ]8.

He calculated the first 30 values of τ(n) [1; −24; 252; −1472; 4830; −6048;
−16, 744; 84, 400; −113, 643; −115, 920; etc.] and conjectured that

τ(n) = O(n
11
5 +ε).

This conjecture was proved only in 1974 by Pierre Deligne (b. 1944, Belgium),

using tools supplied by algebraic geometry.
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about whom all of us will probably agree in one judgment only, that he was
in some sense a very great mathematician”.

“He would probably have been a greater mathematician if he could have been
caught and tamed a little in his youth; he would have discovered more that
was new, and that, no doubt, of greater importance. On the other hand he
would have been less of a Ramanujan, and more of a European professor, and
the loss might have been greater than the gain”.

“It was Littlewood who said that every positive integer was one of Ramanu-
jan’s personal friends318. I remember going to see him once when he was
lying ill in Putney. I had ridden in taxi-cab No. 1729, and remarked that the
number seemed to me rather a dull one and that I hoped that it was not an
unfavorable omen. “No”, he replied, “it is a very interesting number; it is
the smallest number expressible as a sum of two cubes in two different ways”
(1729 = 123 + 13 = 103 + 93).

“It was his insight into algebraical formulae, transformation of infinite series,
and so forth, that he was most amazing. On this side most certainly I have
never met his equal, and I can compare him only with Euler and Jacobi. . . with
his memory, his patience, and his power of calculation he combined a power
of generalization, a feeling for form, and a capacity for rapid modification of
his hypotheses, that were often really startling, and made him, in his own
peculiar field, without a rival in his day”.

318 On this, Littlewood remarked:

I read in the proof sheets of Hardy on Ramanujan: “As someone said, each

of the positive integers was one of his personal friends.” My reaction was, “I

wonder who said that; I wish I had.” In the next proof-sheets I read (that now

stands), “It was Littlewood who said...”.



1914 CE 3295

Ramanujan’s Approximation to π

The theory of the modular functions had its origin in the pioneering works of
John Landen319 in 1771–1775 and A.M. Legendre, C.G.J. Jacobi and
N.H. Abel during 1825–1829. Later developments were due to L. Kro-
necker (1857–1863), K.T.W. Weierstrass (1860), H. Weber (1842–1913,
Germany, 1881) and F. Klein (1890).

Just how much of this ‘accumulated wisdom of Europe’ was known to Ra-
manujan in 1913, is a great mystery. On this issue, L.J. Mordell surmised
that the English textbooks by Greenhill and A. Cayley on the subjects of el-
liptic functions were easily accessible to him. But even so, his own innovations
and intriguing results in the field of modular functions surpassed those of his
predecessors.

In 1914 he developed new ways of calculating π with extraordinary effi-
ciency. His starting point was the interesting result that for any given rational
number n, the infinite product

Gn = 2− 1
4 e

π
√

n
24 (1 + e−π

√
n)(1 + e−3π

√
n)(1 + e−5π

√
n) · · ·

can always be expressed as the root of an algebraical equation. (Explicit values

of Gn are known for many n’s, e.g. G1 = 1; G3 = 12
√

2; G5 =
(

1+
√

5
2

)1/4

;

G7 = 4
√

2; G9 =
[

4
√

2(1 +
√

3)
]1/3

; G13 = (3 +
√

13)1/4.)

The Gn’s have the remarkable property that Gn = G1/n, namely,

q−1/24(1 + q)(1 + q3)(1 + q5) · · · = p−1/24(1 + p)(1 + p3)(1 + p5) · · ·

where p = q1/n = e−π/
√

n. For large values of n,

Gn = 2− 1
4 e

π
√

n
24

[
1 + O(e−π

√
n)
]
,

and hence π ≈ 24√
n

loge(21/4Gn), with an error of nearly 24√
n
e−π

√
n. For320

n = 1225 , this value of π is correct to 47 decimals. (39 places of π suffice

319 English surveyor (1719–1790) whose interest in mathematics was a leisure ac-

tivity. Elected fellow of the Royal Society (1766).

320 G1225 = 1+
√

5
2

(6 +
√

35)1/4

{
71/4+

√
4+

√
7

2

}3/2 [√
A+43

8
+

√
A+35

8

]
, where

A = 15
√

7 + (8 + 3
√

7)
√

10
√

7.
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for computing the circumference of a circle girdling the known universe with
an error no greater than the radius of a hydrogen atom.)

When Ramanujan was dealing with these large values of n (for which
no modular equation was even available), he must have been guided by his
superb intuition. For otherwise, how could one produce an exact solution to
an algebraical equation of degree 1225, without even having the equation on
hand? G.N. Watson believed that Ramanujan was in possession of general
formulae by means of which he constructed his solutions.

Although this evaluation is not without a certain charm, it is not in it-
self a milestone in the history of π for two reasons: Firstly, the method of
approximating π by means of equations eπ

√
n = m (where m is nearly an

integer), was already known to C. Hermite (1859); and secondly, the value
of π was known correctly to 527 decimals, as early as 1853.

But Ramanujan’s paper321, barely exposed the tip of the iceberg. In his
Notebook322, he combined it with an iterative algorithm, through which π was
calculated in 1987 on superfast computers, to many millions of digits323

This algorithm led Ramanujan from the innocent-looking

π ≈ 24√
n

loge(21/4Gn) to the formidable expression for π that appears in his

Notebook, namely,

1
π

=
√

8
9801

∞∑

n=0

(4n)![1103 + 26390n]
(n!)4(396)4n

.

It was found that each successive term in this series adds roughly 8 more
correct digits [a pocket calculator yields for the first term π = 3.141 592 . . .].

321 Quart. J. Math. 45 (1914) 350–372.
322 1957, Tata Institute, Bombay, India.
323 J.M. Borwein and P.B. Borwein, Scientific American.
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Science Progress Report No. 14

World-War I (July 28, 1914 – Nov. 11, 1918)

— The Inauguration of Chemical Warfare

The era of the splendor and glory of Europe came abruptly to an end:
two pistol shots signaled the start of a war that ended four years later. The
‘central powers’ of Austria-Hungary, Bulgaria, Germany and the Ottoman
Empire fought and lost against the ‘allied forces’ of Belgium, Brazil, the
British Empire, China, Costa Rica, Cuba, France, Greece, Guatemala, Haiti,
Honduras, Italy, Japan, Liberia, Montenegro, Nicaragua, Panama, Portugal,
Romania, Russia, San-Marino, Serbia, Siam and the United States.

65 million servicemen on both sides were engaged in the war. By the end
of hostilities, 9 millions had died, 20.5 millions were wounded and 7.2 millions
were prisoners or missing in action; among the dead — two million Frenchmen
(of a population of 38 million) and over two million Germans (of a population
of 70 million). This large-scale slaughter324 wiped out a whole generation,
among them the elite and the many geniuses in all fields. In addition, 5
millions civilians325died in areas of actual combat and about 30 million people

324 The appalling bloodbaths of WWI were augmented by the introduction of

the first truly automatic machine-gun, invented in 1884 by Hiram Stevens

Maxim (1840–1916; USA and England). It spewed more than 600 rounds a

minute. The British learned its devastating power the hard way, loosing 60,000

men on the first day of the Battle of the Somme (July 01, 1916).

The 19th century officers and commanders were accustomed to thinking in terms

of human intrepidity and courage as the most important attributes to carry the

day in the battlefields. Machine-guns were the first specific application of the

technique and logic of the industrial revolution in military combat. Firing an

inordinate stream of bullets, machine-guns came to be the definitive symbols

of the machine age in military history, regardless of marksmanship or easy tar-

gets. Nevertheless, ingrained beliefs die hard. The militaries in all major powers

continued to cling to the idea of the irreplaceability of the infantry and cavalry

charges, with bayonets, swords and lances, as the final judge of victory or defeat

in military matters.

The first mechanical-gun (hand-turned) was invented in 1861 by Richard Jor-

dan Gatling (1818–1903, USA), firing 616 shots in two minutes. This gun was

used late in the American Civil War and by the British army in the Matabele

War (1893–1894), where 50 soldiers fought off 5,000 Zulu warriors with just

four Maxim guns.
325 The historian Eric Hobsbawm (“Age of Extremes”, 1994) wrote:

“The first World War led to the killing of an uncounted number of Armenians
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died in India, Europe, USA and South Africa of the Spanish influenza epidemic
that broke out in 1918 as a direct result of undernourishment and lack of coal
caused by the war326. Costs of the war (both direct and indirect) amounted
to 337 billion dollars.

In 1919, Austria-Hungary was no more; Vienna, once the imperial center
of 50 million subjects of mixed race, was now a capital of a small, impover-
ished and insignificant Alpine republic of little more than six million, mostly
German, inhabitants327.

WWI interfered with the full implementation of the momentous discov-
eries of the turn of the century. Also, among the war casualties were sci-
entists, artists and poets of the first rank (Franz Marc, Egon Schiele,
Rupert Brooke, Henri Gaudier, Karl Schwarzschild328, Henry Gwyn-
Jeffreys Moseley).

by Turkey – the most usual figure is 1.5 millions – which can count as the first

modern attempt to eliminate an entire population.”
326 This pandemic was one of the worst disasters in history! Influenza deaths tolled

as many as 650,000 in the United States alone. World War I killed 15 million

in four years, flu killed twice as much in six months. Even bubonic plague

did not kill so many people so fast. The word “influenza” entered English

from Italian in 1743. It means influence of the stars. Individual pandemics

have often been named for their supposed origins, sometimes accurately (Asian

flu) and sometimes not (Spanish flu). The infection’s ultimate origin is farm

animals (pigs, ducks and horses). Human flu probably dates no further back

than their domestication in the period 2000–5000 BCE. The virus owes much

of its biological success to surface mutation that occur as it shuttles between

humans and various domesticated animals.

The first pandemic probably occurred in the 16th century; there were 5–10 more

in the 18th and 19th centuries. Most of these began in Russia and Central Asia

and traveled by land and by ship, even to remote Pacific Islands. The pandemic

of 1833 was especially virulent in European cities. The one of 1889 moved with

the speed of trains and steamships. The mortality rate is usually 0.01 percent,

mostly from ensuing pneumonia.
327 In 1919 the majority voted for Anschluss with Germany. The option was denied

them by the Allies, who also, through the war reparations demanded by the

Treaties of Versailles and St. Germain, ensured that the German people of both

German states would remain poor, resentful and revengeful throughout the

inter-war period.
328 100,000 Jews fought on the German side, 80,000 of them in the trenches. Of

these, 12,000 died for the ‘Vaterland ’ and 35,000 merited decorations [as com-

pared with 7000 Jewish patriots who fought in the 19th century against France

and Austria]. Among the slain were many university teachers and students.

The greatest War Ace of WWI, Baron Manfred von Richthofen (1892–
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WWI was a scientific disaster for France: more than half the students of
École Polytechnique and École Normale Supérieure were killed (among them
the two sons of Jacques Hadamard and the son of Emile Durkheim).

The major reason why there was little movement on many fronts during the
first world war was that defensive strategy and weapons were better developed
than those of an offensive nature.

The opposing armies found it better to stay put than to attempt to ad-
vance. When an army did attempt to advance, the defensive capabilities of
the opposing army meant that massive casualties would occur for the sake of
a few hundred meters gain of ground329.

This situation beget chemical gas warfare, intended to force soldiers out of
their trenches: on April 23, 1915, the Germans first used poison gas (chlorine)
in the Second Battle of Ypres. They then used the more potent mustard gas
(1917) in the Third Battle of Ypres. About 100,000 perished by gas during
the war330.

The alliance between the natural sciences and the military has a tradition
of at least 2200 years, if one can believe the stories of the terrifying stone

1918), who shot down 80 enemy warplanes, was of Jewish descent. This did

not prevent the German generals who lost the war to blame the defeat on a

“stab in the back” by the Jews. But the fact was that the German armed forces

had mutinied, unwilling to die for either Kaiser or Vaterland ! The Wehrma-

cht mutiny did not begin with exhausted soldiers on the front, but with sailors

resting in Kiel, where the German Navy had been tucked away ever since its

inglorious defeat by the British in 1916. There were no Jews on the decks of

those German warships, only Arian Germans hoisting the Red flag of rebellion

that spread through German military columns. Even the Kaiser’s most trusted

regiments deserted. Not even the Kaiser was willing to die for the Vaterland ; In

the dark of the night he slipped across the frontier of Holland, begging asylum,

and Germany sued for peace.
329 By the time World War Two had arrived, the offensive capability of the military

had overtaken the defensive capabilities of the opposing army, allowing new

tactics such as the Blitzkrieg, (lightning war).
330 The following gases were also used: Acrolein, Benzyl Bromide, Blue-Cross

Gas, Bromacetone, Bromo-Benzyl-Cyanide, Chloropicrin, Cyanogen Bromide,

Cyanogen Chlorine, Dimethyl Sulphate, Diphenylchlorarsine, Ethyldichlorar-

sine, Green Cross Gas, Phenyldichlorarsine, Phosgene, Xylyl Bromide. For

example, Dimethyl Sulphate, (CH3O)2SO2, known also as DMSO4, is a col-

orless liquid having a vapor with faint onion-like odor. It is extremely toxic

— a few whiffs could be fatal. Corrosive to tissues and carcinogenic. Lethal

concentrations as low as 97 ppm/10 minutes have been reported in humans.
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slings and burning mirrors which Archimedes is said to have built for the
defense of Syracuse against the besieging Romans (215 BCE). Clearly, war
was a stimulus in the development of modern physics: the study of parabolic
trajectories by Niccolo Tartajlia and Galileo Galilei stemmed from the
need to calculate the trajectories of cannonballs.

Fritz Haber had inaugurated chemical warfare, to be used subsequently
by Italy in Ethiopia (1935–1936), by the Nazis in the gas chambers of Poland
(1942–1945), by Egypt in Yemen (1962–1965) and by Iraq in Iran (1980–1987).

WWI showed that science could play an important role in the outcome of
a war. In Germany, more than 100 laboratories were involved in scientific
research for the military. During the years after the war, governments east
and west started actively funding science, thus speeding up the growth of
applied science during the 20th century, especially in the United States.

The rapid growth of German chemical industry occurred during the 19th
century. It led her to become the world’s greatest chemical power. The
German solution to industrial scale up involved teaming research chemists
and mechanical engineers to take a reaction from the laboratory bench to the
factory floor. They believed that this allowed the research chemist to remain
creative by not being tied down with the drudgery of engineering practice.
Because of this method the chemical engineer was entirely unneeded, being
instead replaced by a chemist and a mechanical engineer.

Thus, prior to WWI, Germany had reigned supreme in organic chemistry
and chemical technology. It was said that in 1905 America lagged 50 years be-
hind the Germans in organic chemical processing. Even America’s chemistry
and chemical engineering professors had been primarily trained in German
universities, and a working knowledge of the German language was essential
to keep up with the latest chemical advances. All in all, America’s chemical
industry was very narrow, concentrating in only a few high volume chemical
products, such as sulfuric acid331.

331 American Chemical Society (ACS) was organized in 1876. However, the Amer-

ican chemical industry was fundamentally different from the German indus-

try in several ways. Instead of specializing in fine chemicals or complicated

dyestuffs (often made in batch reactors, something all chemists are familiar

with), the American industries produced only a few simple but widely used

chemicals such as sulfuric acid and alkali (both made in continuous reactors,

something chemists have little experience with). These bulk chemicals were

produced using straightforward chemistry, but required complex engineering set

on vast scales. American chemical reactors were no longer just big pots, instead

they involved complex plumbing systems where chemistry and engineering were
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When the war started in Europe in 1914, only 528 workers were employed
in U.S. plants producing such coal-tar chemicals as dyes and drugs. America
was importing more than 90 percent of its dyes, mainly from Germany. There
was not one U.S. plant for extracting nitrogen from the air and transforming
it into the chemicals so vital for the armed forces, agriculture and industry in
general. The U.S. depended on Chile for natural nitrates used in fertilizers and
explosives. Starting almost from scratch to gain independence from foreign
producers during the war, the U.S. chemical industry moved to a position of
world leadership in the years thereafter.

After the war, many large corporations established laboratories in which
scientists were encouraged to seek knowledge for its own sake without worrying
about whether their work would be of practical use. Most advances in more
abstract fields, such as physics, however, continued to be made in university
environments.

1914–1921 CE About 3 million people in Europe die of typhus332. At the
start of WWI (Nov 1914 – April 1915) it wiped out 150,000 soldiers in Serbia,

inseparably rolled together. Because of this, the chemistry and engineering as-

pects of production could not be as easily divided as they were in Germany.

The chemical engineer therefore found a role to play in America despite their

absence in the German system.

The American chemical industry (initially following the German example) em-

ployed chemists and mechanical engineers to perform the functions that would

later be the chemical engineer’s specialty. However these chemists were of an

entirely different nature. The prominent research chemists employed in Ger-

many were almost non-existent in America until after World War I. Instead the

American chemical industry employed analytical chemists (involved in materi-

als testing and quality control) and a few production chemists.

With the goal of claiming their industrial territory, the American Institute of

Chemical Engineers (AICHE) was formed in 1908 to bridge the gap between

laboratory processes and full-scale industrial production.
332 In the years 1490–1920 typhus had killed more people than armies had. Bacte-

riologist Hans Zinsser (1878–1940, USA) wrote:

“Soldiers have rarely won wars. They more often mop up after the barrage

of epidemics. And typhus, with its brothers and sisters — plague, cholera,

typhoid, dysentery, — has decided more campaigns than Caesar, Hannibal,

Napoleon and the inspectors general of history. The epidemics get the blame

for defeat, the generals get the credit for victory. It ought to be the other way

around.”
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virtually removing that region from the war. Typhus later spread through
eastern Europe, accelerating with the collapse of civil order in Russia. From
1917 through 1921, it infected 20 million Russians and killed 2.5–3 million.
At the height of the epidemic, Lenin declared, “Either socialism will defeat
the louse or the louse will defeat socialism”. The louse lost, but it had been
a close call.

Public health, hygiene and social developments prevented further out-
breaks in the Soviet Union during WWII. However, Italian soldiers returning
from North Africa and Sicily brought the disease to Naples (1943). The dis-
ease was also common in many of the Nazi concentration camps.

H. da Roche Lima isolated the causative bacteria (1916) and named
it after the American Howard Taylor Ricketts who died while investigat-
ing the disease. The epidemic spread by the human body louse. Crowding,
uncleanliness, and human misery (malnutrition and sordid living conditions)
during wartime favor the transfer of the infection from one person to an-
other.

1914–1955 CE Beno Gutenberg (1889–1960, Germany and USA). Geo-
physicist. Made the first correct determination of the size of the earth’s core
(1914), which he concluded to be liquid333.

He deduced the existence of a global low-velocity zone in the earth’s upper
mantle (1955) from the analysis of travel-times and amplitudes of seismic
waves.

Gutenberg was born in Darmstadt, Germany to Jewish parents and gained
his doctorate from Göttingen University (1911). Professor, Frankfurt (1926–
1930); to U.S. (1930); professor, California Institute of Technology (1930–
1957).

1915–1917 CE Frederick William Twort (1877–1950, England) and
independently Felix d’Herelle (1873–1949, Canada) discovered bacterio-
phage334 (viruses that attack bacteria).

333 The existence of some sort of core had already been deduced by Richard Dixon

Oldham (1906). In 1936 Inge Lehman produced the first evidence of the

existence of an inner solid core with a radius of ca 1400 km.
334 A fictional but relatively accurate account of the discovery of bacteriophages

and of efforts to use them to treat plague epidemic is included in Arrowsmith, a

novel by Sinclair Lewis (1885–1951, USA). As in Lewis’ story, phage therapy

did not prove effective.
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Twort, a bacteriologist, superintendent of Brown Animal Sanatory Insti-
tute, London (1907–1944), was first to describe a bacteriophage (1915).

d’Herelle, a microbiologist, conducted field studies in Guatemala and Mex-
ico (1901–1909) and later worked as assistant at Pasteur Institute, Paris
(1909–1921), professor at Leiden (1921–1923), director of Bacteriological Ser-
vice, Egypt (1923–1927), and professor at Yale (1928–1934). He discov-
ered and named the bacteriophage (1916–1917); Author of Le Bacteriophage
(1921).

1915–1919 CE James Hopwood Jeans (1877–1946, England). Mathe-
matician, theoretical physicist and astronomer. Produced a theory for the for-
mation of galaxies and clusters of galaxies by gravitational instability (‘Jeans
instability’): small, large-scale density fluctuations are enhanced and finally
result in the formation of a star, a galaxy or even a cluster of galaxies. The
minimum mass required for the onset of instability is the ‘Jeans mass’ with a
‘Jeans radius’ (1915).

In 1919 he applied the collisionless Boltzmann transport equation to galac-
tic dynamics, in particular for models of evolution of spherical stellar systems.

Jeans was first to propose that matter is continuously created throughout
the universe. His work included investigations of spiral nebulae, the source of
stellar energy, binary and multiple star systems, and giant and dwarf stars.
He also analyzed the breakup of rapidly spinning bodies under the stress of
centrifugal force and concluded that the nebular hypothesis of Laplace, which
stated that the planets and sun condensed from a single gaseous cloud, was
invalid. He proposed the catastrophic or tidal theory, according to which a
star narrowly missed colliding with the sun and, in passing, drew away from
the sun stellar debris that condensed to form the planets. (However, Laplace’s
hypothesis now appears to have been correct.)

Jeans was born in London. He taught at Cambridge (1904–1905, 1910–
1912) and Princeton (1905–1909). During 1923–1944 he stayed at Mt. Wilson
Observatory, Pasadena, California.
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History of Creation Theories — I

(2500 BCE–1916 CE)

In cosmology an attempt is made to answer several questions. How is the
universe built up as a whole? Do the laws of nature, which we derive from
experience gained in our ‘neighborhood’ — be it the earth, solar system or
the galaxy — remain applicable if we imagine this ‘neighborhood’ extended
until it comprises the whole universe? is an infinite world compatible with
the laws of nature, or must we restrict the universe to a finite size if we wish
to avoid insurmountable difficulties of principle?

Cosmology has to face the problem of infinity not as a mathematical ab-
straction but as physical reality. This has always conferred on all its problems
a particularly speculative character and, at the same time, a particular attrac-
tion. Through the history of science men were anxious to obtain the answer
to these questions.

Prologue: Epoch of Early Myths (2500–600 BCE)

The earliest creation myths that we know of were written down in
Mesopotamia and Egypt about 2500 BCE. These civilizations were based on
extensive irrigation agriculture, organized by a centralized priesthood headed
by an all-powerful and divine king. The creation stories tell of these societies’
origin, how their people had organized the lands (between the Tigris and the
Euphrates rivers and in the Nile valley) by literally separating the earth from
the waters by channeling swamps into canals. It was this channeling which
superseded the chaos of agriculture dependent on fickle and sparse rains. The
priests gave the credit for this vast social enterprise to the gods.

According to these myths the task was accomplished not with reason and
planning, but by fertility-based magic; creation is a magical-biological repro-
duction: gods emerge from a primeval ocean and mate with one another to
produce additional deities — the earth, the sky, the heavens, and the oceans.

Thus, although the earliest civilizations developed essential inventions such
as metallurgy, writing, arithmetic, geometry, and astronomy — their societies
had little use for reason. And so, once these agricultural improvements were
instituted by neolithic farmers or by the first priesthoods that organized the
irrigation works, these societies persisted without further technical advance
for over 1500 years. The social organization set up to create the irrigation
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works — a king and priesthood directing the works of thousands of peasants
— itself prevented further progress.

The peasants who grew food and the artisans who worked in royal work-
shops were totally isolated from the literate priesthood, who held absolute
power. The material traditions of peasants and artisans, and the scientific
knowledge of the priesthood, separated from each other, were passed un-
changed from generation to generation mystified by ritual and magic. So the
myths of the priests gave divine sanction to the workings of society. The
kings and priests inherited magical powers from the gods and this justified
and enforced their absolute power over society. Magic and ritual ruled here
on earth, and so it must have been in the heavens, in the beginning335.

Act I: The Greek Secular Infinite Universe — Observation vs. Pure
Reason (600–150 BCE)

With a fixed technical basis, the priestly authorities of the Bronze Age civi-
lization could support its increasing population only by expanding geograph-
ically, and when the natural limits of cultivation within the alluvial valleys
were reached — it began to collapse. The efforts of kings and pharaohs to
squeeze more wealth out of a stagnant production systems led to rapid deple-
tion of the population, decay of irrigation works, and finally the disintegration
of society.

Egypt and the Near East, however, gave rise to a new society which sprang
into existence out of the ruined shell of the old. The new society brought with
it new technology related to new perceptions of the cosmos. It required new
ideas, because it was based on trade and, in part, on free labor. While reliance

335 The Hebrew account of creation as reflected in Genesis, recalls Babylonian,

Ugaritic and Canaanite cosmogonies. [From Isaiah II (40, 26–28; 42, 5; 45,

7, 12, 18; 54, 9) we gather that the Biblical creation narrative must have been

canonized by 550 BCE at the latest. In fact, some modern Biblical scholars

believe that these texts had previously been written by the scribes of the early

Judean kings.] But while most non-Biblical myths deal with gods and god-

desses who take sides in human affairs, each favoring rival heroes — the Bible

acknowledges only a single universal God who created the heavens and the earth

by organizing a preexisting chaos. (The Bible nevertheless still harbors vestigial

accounts of ancient gods and goddesses — disguised as men, women, angles, or

demons.) In contradistinction to the Platonic creation stories (ca 400 BCE),

Genesis demotes the sun and the moon to mere functional objects, created in

the same manner as the earth.
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on authority may suit a priesthood, it is a poor guide for an enterprising
trader or craftsman. Instead, the merchant had to learn by observing the
world around him — the winds and tides. And the free craftsmen learned by
changing nature, by experimenting with new materials and methods.

The strict division between those who learned and those who worked began
to break down; learning was democratized to serve the needs of independent
merchants and artisans. The economical Phoenician alphabet superseded the
elaborate hieroglyphics and cuneiforms of the ancient priests. Nowhere were
the changes so thorough as in the trading colonies established by Greeks in
Ionia. As is generally the case with colonies, the inherited social patterns were
left behind in favor of a more adventurous setup.

By 700 BCE, the Ionian trading cities, increasingly dependent on trade
in specialized agriculture and craft products such as textiles, had thrown off
the earlier subordination to the great landowners of mainland Greece. They
established new societies of traders, craftsmen, and free-holding peasants —
the first limited attempts at democracies and republics. They needed new
ideas to run such new societies.

This change is evident in the Ionian conception of the universe and its
origin. Around 580 BCE Thales, a native of the trading and textile center of
Miletos, first asserted that the world was formed by natural processes which
could be observed in the world. He secularized the old creation myths —
natural processes without divine intervention.

While Bronze Age priests had seen a static society ruled by the unchang-
ing cycles of the seasons, the Ionian saw a society in the midst of convulsive
changes as aristocratic landholders, merchants, artisans, and peasants battled
for power. Having experienced tumultuous overthrows of government, Hera-
clitos (ca 500 BCE) concluded that the universe was in constant flux, like a
fire, ever changing. After Ionia was conquered by the Persians, the new ideas
spread to Athens in mainland Greece. Here some of the most striking theories
of early cosmology were born.

Anaxagoras (ca 460 BCE) derived his theory of origins from close obser-
vations of nature: Seeing how whirlpools in nature order the chaotic flow of
water and separate materials of different densities — mud and wood are drawn
to the center, while stones and pebbles are flung outward — he reasoned that
such vortices, driven by primeval power, could separate by air from the earth.
The sun and stars would have been torn loose from earth, flung outward, and
heated by friction to their present fiery state. Stars, he correctly guessed, are
suns too far away from us to feel their heat336. Then from observations of

336 In his own words (ca 450 BCE): “The formation of the world began with a

vortex, formed out of chaos by energy. This vortex started at the center and
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whirlpools, the glowing hot metal of the blacksmith’s forge, the distant light
of merchant’s signal fires — he hypothesized a naturalistic theory of cosmic
origins which was essentially correct in its broad outline.

In Anaxagoras’ view the universe is infinite, populated by a host of differ-
ent worlds — many of them inhabited. His cosmos, imagined by extrapolation
of his earthbound observations to remote parts of the universe, was unlim-
ited in space and time. Thus, the Ionian school of Thales, Democritos and
Anaxagoras assumed a world knowable by observation, where thought and
work joined together. It was the world view of the free craftsman and peas-
ant. Knowledge was available to all.

On the other hand, Plato’s doctrine described a cosmos knowable only by
pure reason of the few — who thus had the right to rule over the many, even
as the heaven rules earth, the soul rules the body, or as the master rules the
slave. According to the cosmology of Plato (ca 385 BCE) the creator molded
preexisting, chaotic matter into approximations of ideal geometrical forms,
creating a universe ruled by eternal mathematical laws.

The battle between these two views of the cosmos have been linked to
the most crucial questions of society and history: Is progress, the continual
betterment of human life, possible? Must there always be rulers and ruled,
or should those who work decide what work is to be done?

In hindsight view, neither authoritarian Sparta nor free Ionia became the
model for the social evolution of the Mediterranean world. Instead, slavery,
free labor, and expanded trade all coexisted in the centuries that followed the
fall of Athens. Similarly, there resulted a synthesis of the two rival cosmolo-
gies, incorporating mathematical myth with the observational method into
one system.

How did all this come about? Where Athenian imperialism failed, Mace-
donian imperialism succeeded spectacularly. Beginning in 330 BCE, Alexan-
der the Great conquered the area now occupied by Turkey, Syria, Israel, Jor-
dan, Iraq, Iran, and Egypt, and established colonies of Greek freeholders,

gradually spread. It separated matter into two regions, the rare, hot, dry and

light material, the ether, in the outer regions, and the heavier, cooler, moist

material, the air, in the inner regions. The air condensed in the center of the

vortex, and out of the air, the clouds, water and earth separated. But after

the formation of earth, because of the growing violence of the rotary motion,

the surrounding fiery ether tore stones away from the earth and kindled them

to stars, just as stones in a whirlpool rush outward more than water. The

sun, moon and all the stars are stones on fire, which are moved round by the

revolution of the ether”.
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artisans, and merchants. The free population increased, Mediterranean-wide

trade flourished, and living standards rose.

Unlike the nobles of Sparta, the merchants of the Hellenistic world needed

observations of nature to speed their ships across the Mediterranean and to

ports in India. Even before Alexander’s conquests, Plato’s students had be-

gun systematic astronomical observations in order to convert his ideas about

perfect circular motions into an explanation of the observed motions of the

planets. One such disciple, Eudoxos (ca 360 BCE), created a system of mov-

ing spheres, with the earth at their center, which carried the planets, sun, and

moon on their complex travels. This was the cosmological system of perfect

motion that Aristotle then popularized (ca 340 BCE).

Following Alexander’s death, the ruling Ptolemies in Egypt established

the Museum at Alexandria as a liberally endowed research library to generate

and centralize systematic observations. Alexandrian astronomy, for example,

used observation to solve practical problems of navigation.

From these observations, startling theoretical results followed. Using

Euclid’s discoveries in geometry, Aristarchos (ca 250 BCE) estimated from

astronomical observations that the sun was 8 million km away and 6 times as

large as the earth (the correct figures being each about 18 times larger). To

him, the idea that a much larger sun should circle at a great distance around

a small earth did not seem sensible. More important, the increasing accuracy

of observations led him to conclude that the idea of heavenly bodies moving

in perfect circles around the earth must be wrong. Instead, observation could

be much better accounted for if it was assumed that the earth and planets

orbit the sun, the moon orbits the earth, and the earth spins on its axis.

Aristarchos’ correct views were rejected by other ancient astronomers in-

cluding Hipparchos (ca 150 BCE), who himself calculated that the sun is far

larger than even Aristarchos thought. The time was simply not ripe yet for

the acceptance of the heliocentric system. Since the astronomers could neither

abandon the Platonic hierarchy of the heavens and the earth, nor wholly ac-

cept Plato’s disdain for observations, they compromised — and in the process

forged a scientific method which contained within it the tensions of ancient

society: On one hand, the basic assumptions about the universe must come

from pure reason, which can accommodate the perfect mathematical laws of

the heavens. On the other hand, observation serves to correct these basic

mathematical laws (uniform motion in a circle etc.) in practice, modifying

them as needed to “save the phenomenon” or to fit observations.
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Interlude: Geocentric, Static and Finite Universe (100 BCE–200 CE)

The immense accumulation of wealth in the Mediterranean after 100 BCE were
based on conquest and imperialism. In the battle over Alexander’s empire
Rome emerged to swallow up the whole of the Mediterranean. The Roman
legions enforced ruinous taxation, looting existing wealth but creating none.
Slavery was massively extended and living standards dropped precipitously
throughout the empire. Hellenistic society’s dependence on slavery prevented
any further advance in the technologies of production.

By the end of the first century CE Roman defeats at the hands of the
Germanic tribes terminated the northern expansion of the empire. With the
supply of slaves cut off, Rome’s internal depredations increased: taxes soared
and the population began to decline. Toward the end of the second century
CE, the empire entered a period of crisis and revolt, and persecution spread
everywhere.

Against this stormy background, the advance of the cosmological ideas of
the Greeks which culminated in the brilliant discoveries of Aristarchos, was
arrested. Rather than junking geocentricism and the Platonic philosophy that
went with it, Hipparchos and his successors — notably Ptolemy (ca 150 CE)
— added new assumptions consistent with their mathematical ideas of how
best to bridge the gap between theory and observations.

Act II: Creation ‘ex nihilo’ (200–400 CE)

The early Christians began attacking slavery together with Platonic dualism,
thus eroding the main ideological, social, and economic obstacles that had
impeded scientific advance in the preceding centuries. In the long epoch of
increasing misery and oppression that extended through the first two centuries
CE, Christianity became the only empire-wide opposition to Rome’s slave
system.

The early Christian message of universal brotherhood of all humanity,
the antithesis of the legion’s robber-rule, appealed to the enslaved and the
poor. As wider sections of the population defected from allegiance to Rome,
educated Christians formulated a potent antidualistic rationalistic argument
against the ideology that justified the empire.

Clement of Alexandria (150–200 CE) attacked the Platonic division
between heaven and earth, freeman and slave. While he admired Plato’s
glorification of reason, he denied the Platonic view of matter as the origin
of evil. It was in this social context that the Biblical idea of creation from
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nothing (Genesis, 1) was revived by the early Christians who, being clearly
related to second Temple Judaism and of partially Jewish stock, were deeply
versed in the Hebraic story of creation.

According to this doctrine the universe had begun at a moment in time,
out of nothing, and it would end at a certain moment, returning to nothing.
Although such statements were later quoted in the Talmud, they were first
clearly formulated by Tertullian337 (ca 200 CE). Creation ex nihilo was for
him what separated the finite and decaying earth from the infinite and divine
heaven338.

Augustine (ca 400 CE) adopted this doctrine as a cosmological justifica-
tion for his political philosophy of the reconciliation of Christianity with the
worldview of pagans who ran the empire, the new alliance of church and state.
The foundation of this doctrine was a new cosmological myth, and creation
ex nihilo was central to that myth. Thoroughly impregnated with the Judaic
notion of creation out of nothing, Augustine set himself the task of countering
the Greek pantheistic view, for which God is the world, and adopt the creator
of the Old Testament, a God outside the world, a timeless spirit, not himself
subject to causality or historical development; when he created the world, he
created time and eschatology along with it.

Interlude: Dominance of the Hierarchical Christian Cosmos (400–
1400 CE)

The medieval universe in men’s minds, finite in time and space, graded into
celestial spheres, and knowable through reason and authority was hostile to

337 Quintus Septimius Florens Tertullianus (155–222 CE). Latin ecclesiastical

writer. Born at Carthage. Worked as jurist in Rome; returned to Carthage

and converted to Christianity (190 CE). Withdrew (210 CE) from the orthodox

church and formed his own sect.

Tertullian embraced Platonic dualism but rejected its rationalism. To him, as

to the pagan neoplatonists, the material world is evil. Such a world could have

been created by an omnipotent and beneficent God only for a limited period

of time; finiteness implies imperfection, source of evil, and eventual decay. By

contrast, only God, who is eternal and infinite, can be wholly good and divine.
338 Modern cosmology, thermodynamics and quantum physics – while neutral in

matters of good and evil – support the inherent connection between an initial

preparation of a physical system and its tendencies to decay – although they

also allow for the possibility of local order and life arising spontaneously (if only

for a limited cosmological epoch).
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the least vestige of science. Yet, during the long dark ages that preceded the
Renaissance and Reformation, there were three abortive attempts to develop
a new scientific view of the universe:

• Revival of the ancient Ionian idea of a nature knowable by observation and
experiments by Pelagius (409 CE) and John (Joannes) Philoponus (500
CE). Severus of Antioch (518 CE) revived the idea of causality, countering
the anti-historical Platonic-Augustinian worldview. His philosophical notions
implied a cosmos that unified heaven and earth, a universe not created by
fiat, but developing by a historical process.

• The Muslim renaissance (1000–1100 CE), centered around the scientific
achievements of Alhazen and Avicenna. But despite the great strides made
by Islamic science, their renaissance lacked a staying power; the 11th century
thinkers had attacked an important part of the existing worldview, but had not
formulated a comprehensive alternative. Their scientific method did not probe
too deeply into matters that, in the Islamic east as well as in the Christian
west, were so closely linked to religious orthodoxy. For the Muslim empires
were just as closely linked to religious hierarchies as were the European feudal
states. And while the Muslims encouraged trade, and, to a limited extent,
manufacturing, political power rested with a land-lording class, whose power
was centralized in the powerful caliphs.

The conflicts between the wealthy landlords, who exploited enserfed peas-
ants and slaves, and tradesmen and manufacturers, who relied on free labor,
broke out again in violent struggle. In the end, the power of the caliphs was
gathered into the hands of the invading Turks, who crushed the budding mer-
chant economies and dispersed the scientific institutions they had supported.
Fundamentalists attacked philosophers like Ibn Sina as impious and heretical.
The first serious effort to establish self-sustaining scientific enterprises had
failed. The crucial breakthrough — a new scientific cosmology — would be
achieved by the West.

• Robert Grosseteste (1220 CE) and Roger Bacon (1267 CE), under
the influence of the scientific method of Islam, advocated observations and
experimentation, and asserted that the highest purpose of scientific work is its
eventual practical application. This new trend in Western thinking reflects the
rise of more developed technology, economic growth, free labor, and expansion
of trade. Yet, the scope of technological and economic expansion was limited
by the old order and the scientific theory of Bacon was more utopian than
practical. On the social front — feudalism needed new lands to cultivate.

As arable land became scarce around 1300, the nobility borrowed on a
grand scale to finance their luxuries and wars, taxing their subjects to pay
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the debts. Peasant grain reserves were squandered, famine repeatedly swept
over Europe, hunger pervaded the filthy towns, and in 1348 feudal society
collapsed in the grip of the Black Death. This catastrophic event cleared the
way for the development of science and for modern society. Over the next 300
years, the old cosmology crumbled and a new worldview took over.

Act III: Revival of the Ionian Non-Geocentric Infinite Universe
(1440–1660 CE)

The catastrophe of the Black Death undermined the ideological authority of
both church and state. The tremendous shortage of labor created by the
plague made serfdom unworkable in much of Europe. The doctrines of Au-
gustine and Aquinas, in which the people owed obedience to secular and eccle-
siastical authority, no longer held sway. Revolts in England and continental
Europe shook the trading towns. The free towns of artisans, merchants, and
manufacturers, allied with the free peasants, clashed with the great lords and
bishops, kings, and popes.

The first serious attempt to undermine the basic notions of the hierarchical
geocentric medieval cosmos was made by a German-born bishop, Nicolas
of Cusa. In his major work entitled On Learned Ignorance (1440 CE) he
returned to the central idea of Anaxagoras — an infinite, centerless universe,
unlimited in space and time. The earth, he reasoned, is no different from the
stars, moving like everything else in the universe. Although his work (radical
as it was in its implications) remained abstract philosophy — his influence
spread in a number of parallel channels. It finally led through Leonardo
da Vinci (1482 to 1519) to the modern experimental method, and to the
cosmology of Copernicus (1543).

While Copernicus worked, the voyages of discovery provided a sharp incen-
tive for a new astronomy — moreover, a practical astronomy. If the motions
of the moon and planets could be accurately known, they could act as a ce-
lestial clock, enabling sailors to gauge their course precisely in crossing the
Atlantic. For this task the Ptolemaic system with its epicycles and deferents
was far too cumbersome and inaccurate.

During the centuries-long effort to conform the geocentric worldview to
the observations of planetary motions, complexity after complexity had been
added. It was well known that the geocentric view accounted approximately
for the positions of the planets and moon. Yet the obvious changes in their
brightness (a direct consequence of their changing distance from earth) was
inexplicable. For the moon, whose distance is actually nearly constant, the
epicycles introduced a variation in the distance — thus in its apparent size —
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that was not observed. It was so absurd that King Alfonso of Spain remarked,
“If I had been present at the creation, I could have rendered profound advice”.

Nicolaus Copernicus studied in Italy from 1501 until 1506. There he
absorbed the writings of Aristarchos, Nicolas of Cusa’s idea that the earth
moves, and Leonardo’s conception that the sun is immobile. It is likely that he
connected these new-old ideas with the well-known inadequacy of the Ptolemy
system; indeed, before Copernicus left Italy, he had developed the basis of the
heliocentric system.

So radical were the implications of Copernicus’ view that the leaders of the
Reformation rejected it in horror, even as their followers in the universities
turned to it with interest. But in England, where the power of the church
had been uprooted by Henry VIII’s decrees, the new ideas found fertile soil.

Yet despite its widespread acceptance in England, there was still relatively
little observational evidence for the Copernical model. Tycho Brahe, the
most accurate observer of his day, formulated a compromise alternative in
which the planets revolve around the sun, which in turn revolves around an
immobile earth.

After Brahe’s death Johannes Kepler used his observations, which were
100-fold more precise than Ptolemy’s, to find an accurate description of the so-
lar system. Starting with the traditional conception of perfect circles, Kepler
labored for years. After enormous struggle he broke with this last remnant of
the ancient cosmology.

By trial and error, he discovered in 1609 that the planets moved in el-
lipses, not circles, about the sun and not at constant speeds, but at such a
rate that the areas swept by the sun-planet line in a given time remained
constant throughout the orbit of a given planet. Furthermore, a simple al-
gebraic formula governs the relation of the planetary orbital periods to their
sizes. According to the later mechanistic understanding of these three laws of
Kepler by Newton: As a planet approaches the sun, which occupies one focus
of its elliptical orbit, the gravitational attraction increases, and it speeds up;
when it has passed the perihelion (closest approach to the sun), its trajectory
carries it further away from the sun, and the (weakened) force of gravity then
slows it down. The immensely complex system of epicycles, deferents, and
eccentric spheres was replaced by simple ellipses.

Kepler’s system was far more accurate than any other. It could not be
translated to Tycho Brahe’s, since then the paths of the planets would not be
simple ellipses but complex compound motions.

That same year, Hans Lippershey introduced the telescope in Holland.
Within a year, Galileo in Italy and other astronomers had trained the new
instrument upon the heavens. Galileo discovered the existence of the moons
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of Jupiter, the phases of Venus, and the mountains of the moon. The change-
less, perfect heaven so crucial to Aristotelian cosmology was shattered by
observation.

Armed with his new observations, Galileo immediately became a propa-
gandist for the Copernical worldview, actively trying to win over the Catholic
hierarchy. Cardinal Bellarmine, warned by the case of Bruno, moved to quash
Galileo’s effort. No conflict with the literal interpretation of scripture is pos-
sible, he informed Galileo: the sun is described in the Bible as moving, rising,
and setting — anything else is heretical. In 1616 Copernicus’ work was added
to the index of prohibited works: the new doctrine was officially condemned.

Galileo, however, continued his efforts, which culminated with the publi-
cation in 1632 of his great defense of Copernicus, the Dialogue on Two World
Systems. The response came swiftly: he was forced, with the example of
Bruno before him, to recant and was placed under house arrest. The new
science remained forbidden in Catholic countries for over a century.

It was only in those countries where the new society was victorious that
the new science became self-sustaining — above all, in England.

Act IV: Infinite, Gravitating, Evolutionary, Quasi-Static, Euclidean
Universe (1687–1860 CE)

The English revolution of 1642 led to a decisive (though to some extent
temporary) defeat of the aristocratic landowning classes and their absorption
into the new mercantile and manufacturing regime. During the period of the
Commonwealth the revolutionaries, though led by Bible–inspired Puritans,
also proudly identified their movement with scientific rationalism and the
rejection of myths and superstitions. English scientists rapidly synthesized
Kepler’s laws of planetary motion with Galileo’s investigations in mechanics,
published in 1638.

Taken together, these two scientific developments led Robert Hooke and
others in England to ask whether planetary motion could be explained by
attraction spreading from the sun with an inverse-square dependence on the
distance (1679). Isaac Newton (1680 to 1687) elevated the notion from the
merely speculative to the quantitatively predictive, and extended the realm
of its application to universal gravitation.

Thus, the scientific revolution of the 16th and 17th centuries had, at least in
England, displaced the hierarchical, finite universe with an infinite one, and
the appeal to authority and pure, scholastic reason with the observational
method. But, unlike the Ionians, 17th-century scientists had not developed a
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naturalistic theory of the origins of the world, an alternative to the creation

from nothing of the medieval cosmology. Philosophers such as Nicolas of Cusa

and Giordano Bruno had advocated the idea of a universe unlimited in time

and space, eternal and without beginning. But no scientist could corroborate

these notions with hard data.

For many scientists, it was in this realm of origins that religion still inter-

sected with science. Isaac Newton, for example, argued that God is needed

to form the solar system and to maintain it.

In the period after the English revolution, the Restoration, and the ensuing

Glorious Revolution (ushering in constitutional monarchy), English society

settled into a conservative phase. The idea of change, implicit in any concept

of evolution in nature, lost its popularity. The universe was a finished product

brought into being by events that could not recur.

It was not until the middle of the 18th century, when the winds of change

started to blow in Europe and America, that the problem of origins was again

tackled. In 1755 the philosopher Immanuel Kant formulated a naturalis-

tic explanation for the origin of the earth and solar system in many ways

strikingly similar to that of Anaxagoras.

Kant, who was familiar with the latest astronomical research, argued that

observation showed that stars are not randomly scattered throughout the

universe, but appear to be grouped into a huge disc, the Milky Way. He

speculated, correctly, that the distant fuzzy nebulae astronomers were then

studying are similar vast agglomerations of stars, what we now term galaxies.
By analogy he reasoned that these, too, probably formed still larger systems

of clusters — once again a guess later confirmed by observation.

Starting with this concept of an infinite universe, arranged into a hierarchy

of larger and larger spinning agglomerations of matter, Kant proposed the

idea that in the remote past the universe was a nearly homogeneous, infinite

gas. Certain regions, which by accident happened to be denser than others,

started to attract matter by gravitation. The random motions of the gas

gave to each agglomeration a slight spin, creating huge vortices, within which

galaxies, then stars, then planets coalesced339. Since Kant assumed that this

process started in one place in the universe, and spread outward, he believed

that creation was and remains a continuous process, which spreads through

the infinite universe.

339 Newtonian mechanics, as well as further astronomical research, confirmed these

mechanisms, basing them upon conservation of angular momentum and growth

of gravitational instabilities.
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In the years following Kant’s “Theory of the Heavens”, Europe and Amer-
ica were convulsed by sweeping revolutions that sought to complete the over-
throw of the old hierarchical societies and to replace them with democracies.
By the century’s end, the spectacular changes of government and society
brought about by these revolutions led their supporters to conceive of a gen-
eral and continual process of human social change — the idea of progress. To
both the Founding Fathers in the United States, and the French revolutionar-
ies, their respective revolutions were part of the inevitable advance of society,
perfecting its institutions and improving without limit the material well-being
of mankind.

The revolutionary political concept that society is not a fixed entity, that it
continuously evolves through effort and struggle, through science and technol-
ogy, toward higher forms of organization and material well-being, was swiftly
taken up in the field of science. In late-18th-century England geological knowl-
edge advanced rapidly as coal became central to the steam-powered industry
of the industrial revolution. Geological observation led James Hutton, an
amateur scientist, to develop a theory of the continuous evolution of the earth
itself.

By observing such processes as the compaction of clay into sedimentary
rock, Hutton concluded in his 1795 work, Theory of the Earth, that mountains,
rivers, oceans, and the sedimentary and igneous rocks of the world today
were formed over many millions of years, not by miraculous floods or one-
time cataclysms. He emphasizes that a scientific history of the world can be
obtained only by examining current processes and working backward in time,
not by speculating about origins and working forward. The idea of a world
finite in time, with a supernatural origin, is rejected: “The result, therefore,
of this physical inquiry is that we find no vestige of a beginning, no prospect
of an end”.

Within a decade, the French mathematician Pierre Simon de Laplace
had taken Hutton’s approach a step further into the past and given a firm
scientific basis to Kant’s vortex theory of origin. Using Newtonian mechanics,
Laplace demonstrated in 1796 that, if the sun had condensed from a spinning
sphere of gas, it would have thrown off material as it contracted, since as it
contracted it would have spun faster (by angular–momentum conservation).
The material thrown off would form into rings, which would, in turn, condense
gravitationally into planets. The nearly circular orbits of the planets would
therefore be neatly accounted for.

Hutton and his supporters rapidly accepted Laplace’s nebular theory, pro-
ducing an integrated approach to the history of the world since its origins.
Others quickly applied the historical approach to the development of life it-
self. Erasmus Darwin (Charles’ grandfather), in the same year as Laplace’s
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theory, proposed that the fossils found in geological strata represent the evo-
lution of various species of animal from one another, leading to a greater and
greater perfection of life over vast stretches of time.

By the 1840s the new geology and cosmology enjoyed widespread accep-
tance among scientists and the public, and socialist concepts of societal evo-
lution spread throughout Europe.

In 1859 Charles Darwin systematized and popularized the theory of
biological evolution, ironically seizing on Malthus’ theory of limited resources
to formulate a vision of continual evolution and change. By the 1860s, despite
continued religious opposition, the evolutionary and historical approaches in
the sciences had become dominant, as had the related idea of human progress.

Neither religion nor philosophy could place limits on the natural universe
in time or space, yet it was clearly evolving, not static. The triumph of the
scientific revolution was the triumph of the infinite universe — a universe of
unlimited progress from an infinite past to an infinite future.

Interlude: Vestige of a Beginning and Prospect of an End
(1823–1916 CE)

The concept of an infinite universe was questioned even after the scientific
revolution. Newton was undecided on whether his laws of gravitation pre-
clude an infinite collection of matter. He thought that only a divinely precise
positioning of all the stars could prevent such an infinite collection of matter
from collapsing into a series of heaps.

The efforts to solve the cosmological problem within the framework of
Newton’s Law of Gravitation and Newtonian mechanics met a serious ob-
stacle; if space is infinite and the density of matter is everywhere finite, an
infinite world filled with an infinite amount of gravitating matter would result.
Is such a universe conceivable? Are we permitted to perform this transition
to infinity without encountering difficulties of principle340?

If the world contained infinitely many bright stars, then, if one’s line of
sight were extended far enough in any direction from earth, it would intersect
a star. This implied that the sky should be uniformly bright — as bright as
the surface of the sun, which it obviously is not.

340 In a world in which the mean density ρ of matter is finite, even if its value is as

small as we please, the gravitational potential φ =
∫

V
ρ dV

r
has no definite value

when V , the volume, tends to infinity. Also, the expression for the gravitational

stress becomes indefinite.
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This objection (Olbers paradox) was first raised by J.P.L. de Cheseaux
(1744) and again by H.W.M. Olbers (1826). It can be removed, within the
realm of classical physics, by applying the idea of a hierarchic structure of the
universe which prescribes a special type of distribution of the infinite amount
of matter over the infinite Euclidean space, such as to avoid the singularities
mentioned above. The first idea in this direction came from J.H. Lambert
(1761).

By a “hierarchic structure” the following is meant: matter is distributed
in space so that the stars combine to form greater systems, star-systems or
galaxies; galaxies again combine to form still greater systems, supergalaxies
and so on. From each rank on the hierarchic ladder we can step to a rank
of higher order consisting of elements of the preceding rank, and so forth to
infinity. If we impose certain additional restrictions on such a hierarchy341,
the singularities mentioned above need not appear. In the resulting universe
the mean density of matter becomes zero.

In this hierarchic regime, the gravitational potential at each point con-
verges to a finite value in spite of the infinity in the universe’s size, mass,
and number of stars. Likewise, the brightness of the night sky could be kept
sufficiently low, providing a solution to Olbers’ Paradox. In such a universe
the mean density of matter, taken over a volume increasing toward the infi-
nite Euclidean space, converges to zero, although the total amount of matter
would increase to infinity. [The hierarchic structure was hypothesis revived
in the 20th century by Hugo von Seeliger (1909) and C.V.I. Charlier
(1922).]

Another difficulty which was encountered in the first attempts to solve
the cosmological problem, was the expectation of unduly high velocities in
an infinite universe containing an infinite amount of matter. However, at the
time when the idea of a hierarchic world order was developed, the high and
systematic velocities of distant spiral systems were still unknown — and the
necessity had not yet been realized of formulating the cosmological problem
as a dynamical342, and not a static problem.

341 Let us attribute to all systems spherical shapes of radii R0, R1, R2, . . . , Ri, . . .,

each system having the total mass M0, M1, M2, . . . , Mi, . . . and consist-

ing respectively of N0, N1, N2, . . . , Ni, . . . objects such that M1 = N1M0,

M2 = N2M1 = N1N2M0 etc. Then the condition is Ri
Ri−1

≥ 1
γ
Ni, where γ < 1.

The convergence of the gravitational potential can be shown to be independent

of the assumption of the spherical shape of each system.
342 The universe could be called ‘static’ if — despite local motions of celestial bodies

(for instance, the orbital motions of the planets around the sun) — no large-
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The idea that the universe had a finite lifetime also existed in the mid-19th

century, although only on the popular fringes of science. The first suggestion
that the universe originated in a creative explosion — the first Big Bang —
actually came from the pen of Edgar Allan Poe in 1849. Poe was not only
a well-known poet and writer, he was also a scientific popularizer who kept
himself up-to-date on the latest in astronomical research. In the book-length
essay Eureka Poe rejected the idea of an infinite universe, citing Olbers’ ob-
jections. He reasoned that a universe governed by gravitation would collapse
in a heap if not kept apart by some form of repulsion. He postulated that
God had, in an enormous explosion at the creation, thrust all the stars apart.
Like a rocket racing into the sky, the universe of stars and galaxies would first
expand, and then contract into a final catastrophe, the end of the world.

However, questions about the infinity of the cosmos remained marginal to
the mainstream of science through the mid-19th century. The swift advance
of technological progress and the equally swift transformation of society con-
vinced most scientists that the basic methods of science correctly yield results
provable in practice, and that the thesis of an unlimited, evolutionary uni-
verse is valid. It was not until social and economic progress slowed that the
corresponding scientific assumptions came under serious attack.

In the latter third of the 19th century, from around 1870 on, the na-
ture of the rapid social and economic evolution of Western society began to
change. By this time, the last institutional vestiges of compulsory labor had
been wiped out by social revolutions in Europe, the Civil War in the United
States, and the liberation of the serfs in Russia. After the defeat of the Paris
Commune — the 1871 attempt to establish a workers’ rule — Europe entered
a period of relative political stability.

The sixty years from 1820 to 1880 witnessed the fastest economic growth
in history. But by 1880, the limits of capitalist markets were being reached:
European and American goods were penetrating virtually every corner of the

scale changes in the distribution of matter in the universe were occurring. In

such a “static” world, the mean density in the distribution of matter would

remain constant when referred to sufficiently large volumes of space and suffi-

ciently long intervals of time.

When our knowledge extended far beyond the limits of our galaxy and the

high velocities of distant spiral stellar systems were discovered, not small even

when compared with the velocity of light — these velocities were of a character

very different from the high velocities expected on account of increasingly large

potential differences. This discovery, together with the new methods of deter-

mining stellar distances, extended our “neighborhood” far beyond the limits

reached until then and changed the whole outlook on the cosmological problem

to such an extent that all previous results had to be completely revised.
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globe, as Britain, France, and Germany rushed to carve up the only remaining
land — Africa. While the actual need for goods remained immense, the market
for goods that could be sold at a profit was nearing the end of its growth.
For centuries, millions of new farmers and peasants had been drawn into the
developing capitalist market system as feudal regimes fell apart and as new
colonies were conquered and absorbed. When this expansion lost its frontiers
with the formation of the first global market at the end of the 19th century,
the industrial economies could no longer continue their vigorous expansion.

After 1880, the production of iron and steel and the laying of new rail lines
practically ceased their growth. Real wages continued to increase, but more
slowly, peaking in Europe by 1900. Manufacturers turned to the European
states for new markets, leading to the growth of a gigantic arms industry.
Manufacturers found that two battleships are always better than one, unlike
two railroads from Liverpool to London. These arms, in turn, were used
to maneuver for a greater share of the precious world markets and of the
resources of the colonies.

It was in this era of slowing growth that the first real scientific challenge
to the unlimited universe appeared. Steam power had developed throughout
the 19th century, as did the study of heat and its transformations — ther-
modynamics. In the early part of the century, scientists had discovered that
energy can be transformed in various ways, but never created or destroyed,
a fundamental principle that came to be known as the first law of thermody-
namics.

In 1850, Rudolf Clausius discovered another fundamental principle, the
second law of thermodynamics. A quantity (macroscopic state–variable) which
Clausius dubbed “entropy”, always exhibits an overall increase in any trans-
formation of energy — for example, in a steam engine. This principle encodes
the irreversible aspect of thermal processes. The entropy of a physical subsys-
tem was defined by its infinitesimal change — the quantity of heat transferred
into the subsystem from the outside, divided by its absolute temperature.

In 1877, Ludwig Boltzmann attempted to derive the macroscopic second
law from the newly emerging atomic theory of matter. He redefined entropy
as a function of the probability distribution of microscopic states compatible
with a given macroscopic state of matter and energy: if the microstates are
more numerous for one macrostate then for another, the former macrostate
has a higher entropy. Thus, if a million atoms of oxygen mixed with a million
atoms of nitrogen, it would be far more probable to find them evenly mixed
than segregated. The well-mixed state has a higher entropy; and left to itself,
a container with oxygen on one side and nitrogen on the other will rapidly go
to the higher entropy state of an even mixture.
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Boltzmann, using his new definition of entropy, went on to demonstrate,
so he claimed, that all closed systems tend toward a state of thermodynamic
equilibrium — defined as the state in which there is no net flow of energy. Thus
a hot object and a cold object placed in contact are not in equilibrium, since
heat will flow from one to another until they are at the same temperature,
which is a state of equilibrium — and also a state of maximal entropy if the
two-object system is isolated from its environment.

From this proof, Boltzmann propounded a new concept with profound cos-
mological implications. The universe as a whole must, like any closed system,
tend toward an equilibrium state of maximal entropy: it will be completely
homogeneous, the same temperature everywhere, the stars will cool, their life-
giving energy flow will cease and their atoms and molecules will evaporate to
fill space. The universe will suffer a “heat death”. Any closed system must
thus go from an ordered to a less ordered state — the opposite of progress.

Boltzmann was aware that his ideas contradicted the notion, then widely
accepted, of a universe without beginning or end. The present-day universe is
far from a state of equilibrium, comprising as it does hot stars and cold space.
If all natural systems “run down” to disorder, the present state of order must
have been created by some process that violates the second law at a finite
time in the past. Conversely, at a finite time in the future, the universe will
become a lifeless homogeneous mass: human progress is but an ephemeral
and inconsequential episode in a universal decay.

Boltzmann found his results disturbing. Since he rejected a supernatural
origin of the universe, he tried to argue that, in an infinite amount of time,
extremely improbable events do occur, such as the spontaneous organization
of a universe, or a large section of it, from a prior state of equilibrium. The
second law is, after all, a statistical one stating what is likely to happen, not
what must happen. Just as there is an incredibly small chance that all the
air molecules in a room will rush to one side, there is a smaller chance that
all the atoms in a homogeneous part of an infinite universe will suddenly rush
together into one spot of low entropy. Boltzmann’s argument did not much
impress his fellow scientists, since by his own theories the probability of these
occurrences was, in fact, so tiny that it was equivalent to an impossibility.

But scientists had other reasons for not accepting the second law’s impli-
cation that the universe necessarily had a beginning from which it was now
running down. The predictions of thermodynamics appeared to contradict
what was known of geological and biological evolution. In the 1890s a debate
broke out between thermodynamicists and geologists over the age of the earth.
The physicist Lord Kelvin argued that, from the cooling rate of the earth
as estimated from measurement of heat in mines, the earth must have been
nearly molten as recently as twenty million years ago. Geologists countered
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that the formation of certain rock deposits must have taken at least twenty
times as long, four hundred million years. Backed up not by theory but by a
vast accumulation of observation, geologists doubted the physicists’ theories.

In addition, some thermodynamicists pointed out that Boltzmann had
proved far less than he claimed. He assumed that gas began in a high degree
of disorder, close to equilibrium, and never got far from it. Moreover, he only
allowed for atomic collisions, but took no long-range forces, such as electro-
magnetism or gravity, into account. In most real physical situations, though,
these restrictions are not valid, so Boltzmann’s proof is not applicable. A cen-
tury later scientists were to demonstrate that Boltzmann’s law of increasing
disorder does not apply to systems far from any state of equilibrium.

Beyond these scientific objections, though, were cultural ones. At any
moment, scientists must decide which problems or apparent paradoxes are
worthwhile and which should simply be dismissed — it is here that the ideol-
ogy of the age — of society as a whole — sometimes affects what scientists feel
“makes sense”. And Boltzmann’s concept of a world running down simply
did not make sense to most 19th-century scientists.

In the late 19th century, while material advance had slowed and the omi-
nous trends leading toward the crises of the 20th century were beginning to
emerge, progress remained the overwhelmingly dominant idea of the epoch.
Standards of living continued to rise, albeit more slowly, until 1900. Tech-
nological progress was more rapid than at any other time in human history:
someone born in 1870 would have grown up in a world of gaslight and horse-
drawn carriages, but by age forty he or she would live in a world of elec-
tricity, telephones, phonographs, movies, radio-telegraphs, automobiles, and
airplanes.

Science, too, advanced dramatically in the same period. Biology and medi-
cine were transformed in the 1880s by the germ theory of disease, leading to
the widespread use of antiseptics in surgery, and the general use of vaccina-
tion. Physics saw the blossoming of the study of electromagnetism, put on a
firm foundation in 1865 by James Clerk Maxwell, and later radioactivity,
X-rays, Einstein’s special theory of relativity, and the beginning of quantum
theory.

The reality of progress in science and society was so apparent to the aver-
age scientist, that Boltzmann’s vision of a universe in continual decay seemed
too bizarre. In practice, Boltzmann’s laws were very useful in dealing with
steam engines and simple gaseous systems, and were widely applied. But his
broad generalizations about cosmology, which implied that the universe must
have had a beginning, must have been “wound up”and will inevitably wind
down and decay — had no significant impact for more than a generation.
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Nevertheless, the finite universe did return: The European and Ameri-
can confidence in progress was shattered in August of 1914. In the following
four years the vast economic power and technological achievements of the
prior century were thrown into the barbaric enterprise of slaughtering twenty
million human beings. In the wake of war came revolution and counter-
revolution: working-class living standards had plummeted during WWI, and
workers’ movements had seized power in Russia and tried to do so in Ger-
many. Throughout Europe and America, employers and governments battled
strikers.

At this very moment in history, came the first public announcement of the
observational verification of Einstein’s Theory of Relativity. On Nov. 9, 1919,
the New York Times announced that the solar eclipse of May 29, 1919 had
confirmed Einstein’s prediction of the bending of light from distant stars by
the sun’s gravity.

1915–1925 CE Bedrich Hrozny (1879–1952; Czechoslovakia). Archae-
ologist, orientalist and philologist. Deciphered the Hittite language and laid
the foundation to a new scientific branch — Hittitology.

Born in Lysa na Labem (near Prague), and attended grammar school
in Prague and in Kolin. He then studied in Vienna Semitic and Oriental
Philology and worked there as librarian and lecturer (1905–1918). During
1919–1952 he was a professor at Charles University in Prague.

Working with inscriptions from the Hittite royal archives discovered (1906)
at the ancient capital site of Hattusas (near the Turkish village of Bogazköy,
east of Ankara), Hrozny concluded (1915) that Hittite was an Indo-European
language because of the similarity of its endings for nouns and verbs to those
of other early Indo-European languages. Hittite has provided significant in-
formation about the early Indo-European sound system. Some years earlier
the existence of an Indo-European idiom in some cuneiform343 letters found

343 Cuneiform: system of writing used in the ancient Middle East. The name, a

coinage from Latin and Middle French roots meaning “wedge-shaped”, has been

the modern designation from the early 18th century onward. Cuneiform was

the most widespread and historically significant writing system in the ancient

Middle East. Its active history comprised the last three millennia BCE; its long

development and geographic expansion involved numerous successive cultures

and languages. Its overall significance as an international graphic medium of

civilization is second only to that of the Phoenician-Greek-Latin alphabet.
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in the Egyptian diplomatic archives of the 18th dynasty at Tell el-Amarna,
had been suspected by Johan Knudtzon (1902).

The Hittite language is the most important of the extinct Indo-European
languages of Anatolia; it was closely related to Luwian, Lydian, Lycian, and
Palaic. Hittite is known primarily from the approximately 25,000 cuneiform
tablets or fragments of tablets preserved in the archives of Bogazköy, the
majority of which are from the period of the Hittite empire (c. 1400–c. 1190
BCE) and are concerned with religious and other subjects. Old Hittite texts,
from about 1650 to 1595 BC, are preserved in copies from the empire period
and are the earliest Indo-European texts that have thus far been found.

In his Sprache der Hethiter (1915) and Hethitische Keilschrifttexte aus
Boghazköi (1919), Hrozny substantiated his claim by translating a number
of documents, including a Hittite legal code. In 1925 he led a Czechoslovak
expedition to Kültepe, Turkey, recovered some 1,000 Old Assyrian tablets
nearby, and excavated the ancient city of Kanesh, revealing much about its
everyday life. During the remainder of his career, he addressed himself to
problems of deciphering.

1915–1938 CE Adolf Otto Reinhold Windaus (1876–1959, Germany).
Chemist. Discovered the structure of cholesterol344 (1932), its relation to
vitamin D and linked the roles of sunlight and vitamin D in the prevention
of Rickets. Isolated vitamin D1 from yeast, and discovered histamine.

Received the Nobel Prize for Chemistry (1928). Windaus’ influence on
junior colleagues, led to studies of steroidal sex hormones by Adolf Bute-
nandt (1903–1995, Germany) and the study of the stereochemistry of steroids
by Erich Hückel (1896–1980, Germany).

Windaus first studied medicine at the University of Berlin (1895) but aban-
doned medicine for chemistry (1899). He was professor of medical chemistry
at Freiburg (1905–1913), Innsbruck (1913–1915) and Göttingen (1915–1944).

1915–1975 CE Harold Jeffreys (1891–1989, England). Mathemati-
cian, geophysicist and astronomer. Discovered the discontinuity between the

344 Cholesterol (C27H46O) is synthesized in the liver and is present in edible food.

It is found particularly in the brain, nerve tissues, and gallstones of animals.

It aids in absorption of fatty acids from the small intestine. Since it does

not produce ions, and therefore does not carry a current, cholesterol is a good

electrical insulator in the brain and the nervous system. It is also essential for

the production of sex hormones, vitamin D, and the adrenal cortex hormones. It

is suspected that excessive ingestion of carbohydrates may result in cholesterol

deposits on the wall of the blood vessels, leading to heart disease.
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Earth’s upper and lower mantle, found evidence for the fluid nature of the
core and did much pioneering work on the shape and strength of the earth.
His analysis of seismic travel times was published as the Jeffreys-Bullen Tables
(1940), which remains a standard reference. This work led him to Bayesian
theory of probability applicable to a wide range of sciences, including econo-
metrics and statistics. Among his works are The Earth: Its Origin, History
and Physical Constitution (1924); Methods of Mathematical Physics (1946;
with B.S. Jeffreys).

Jeffreys was born in Fatfield (near Durham), England. He was educated in
Armstrong College, Newcastle upon Tyne, and St. John College, Cambridge,
where he graduated in 1913. Jeffreys worked in the Cavendish Laboratories
on war related work (1915–1917) and then joined the Meteorological Office
(1917–1922), working on hydrodynamical problems. Returning to Cambridge
(1922), he held various teaching appointments and later became Plumian
Professor of Astronomy (1946–1958). He was knighted in 1953.

1915–1939 CE David Sarnoff (1891–1971, USA). A Pioneer in radio
and television broadcasting (1915); formed National Broadcasting Corpora-
tion (1926) as subsidiary of RCA; established experimental television station
(1928); gave demonstration of television at New York World’s Fair (1938).

Sarnoff was born in Minsk, Russia to Jewish parents. Emigrated to USA
(1900); a myth has it that while a telegraph operator (from 1906), was first
to pick up distress signal from the Titanic (1912). Rose from commercial
manager (1919) to president of Radio Corporation of America (RCA, 1947–
1970).

Sarnoff, largely self-taught, was perhaps the key figure in the shaping of
the modern broadcast and communication system in USA. He was involved
with the whole history of 20th century communication system from marine
telegraphy, through radio to television. He was not an engineer and never
held a single patent, but he had a crucial flair for foreseeing and shaping the
applications of the new electronic technology.

1916, February 21–December 19 CE The Battle of Verdun: Perhaps
the bloodiest and most demanding battle in history, between Germany and
France. In the end, the front lines were nearly the same as when the battle
started while over 260,000 French and Germans were killed and over 750,000
were wounded.

During the First World War, Verdun was a fortified French garrison town
on the River Meuse 200 km east of Paris. The town, surrounded by a ring
of forts, was an important stronghold that projected into the German lines
and guarded the direct route to Paris. Rather than a traditional military
victory, Verdun was planned as a vehicle for destroying the French army on
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account of its holding a great symbolic value in the minds of the French people.
The German plan was to subject Verdun to intense bombardment (1,000,000
artillery shells were fired by 1200 guns on a front of 40 km on the day of 21,
February 1916, alone!), thus drawing in and diverting French troops from all
over the Western Front to the 12 km wide front around Verdun. On the first
day of the German attack, a million troops faced only about 200,000 French
defenders.

Vowing that “they shall not pass”, the French were eventually able to stop
the German advance, and after ten months of bloody combat the German
gains had been virtually wiped out.

Verdun was a “victory” that would haunt French military and political
leaders for a generation.

1916–1918 CE Physicists H. Reissner (Germany, 1916) and Gunnar
Nordström (1881–1923, Finland, 1918) presented a study of the gravita-
tional field of an electrically-charged, non-spinning point mass (i.e., a point
singularity of the Einstein field-equation) with an energy-momentum tensor
due to its electromagnetic field. This is known as the Reissner-Nordström
solution.

1916–1923 CE Gilbert Newton Lewis (1875–1946, USA). Theoretical
physical chemist. Advanced the theory of the chemical bond. Did pioneering
work on the electronic theory of valency, in which he developed the concept
of electron-pair bond. Broadened the definitions of acids and bases. In the
field of chemical thermodynamics he listed the free energies of 143 substances.
His later work was on deuterium (heavy hydrogen), photochemistry, and the
excited electron states of organic molecules. Through these studies he con-
tributed to the understanding of the color of organic substances, and the
complex phenomena of phosphorescence and fluorescence.

Lewis was born in Weymouth, MA, USA and obtained his Ph.D. from
Harvard University (1899). He later worked at Leipzig (under Ostwald), and
Göttingen (under Nernst), and MIT (1905–1912); he subsequently moved to
the University of California, Berkeley, where he remained until his death.

Lewis showed (1916) the significance of completed shells of 2 and 8 elec-
trons. He defined a base as a substance that supplies a pair of electrons for a
chemical bond, and an acid as a substance that accepts such a pair. He postu-
lated that the atoms of elements whose atomic mass is higher than Helium’s
have inner shells of electrons with the structure of the preceding rare gas.
The valency electrons lie outside these shells and form ionic bonds, prefer-
ably covalent bonds. The covalent bond was identified with a pair of electrons
shared by two atoms and occupying jointly an outer-shell orbital belonging
to each atom (1919, with I. Langmuir).
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Lewis coined the name ‘photon’.

“I hope I shall not shock the experimental physicists too much if I add
that it is also a good rule not to put over-much confidence in the observational
results that are put forward until they been confirmed by theory.”

Arthur Eddington

1916–1926 CE Arthur Stanley Eddington (1882–1944, England). A
leading astronomer of the first half of the 20th century and the most distin-
guished astrophysicist of his time.

His work on the internal constitution of stars formed the prelude to the
whole development of modern astrophysics. Following the older work of
J.H. Lane (1819–1880, U.S.A.; 1870), A. Ritter (1878–1889), R. Em-
den (1862–1940, Switzerland; 1907) and K. Schwarzschild (1906–1914),
Eddington succeeded in combining their classical results with the theory of
radiative equilibrium and Bohr’s theory of atomic structure (which had mean-
while been developed) into a set of equations governing stellar interiors and
luminosities345.

345 Normal stars are assumed to be in hydrostatic equilibrium and thermodynamic

steady state. Hydrostatic equilibrium arises when there is a balance between

the attractive force of gravity and the outward force caused by the pressure gra-

dient dP
dr

. If spherical symmetry is assumed, only spherical mass shells need

be considered. Assuming the temperature gradients are sufficient to trigger

convection, and ignoring non-radiative diffusive heat conduction, the standard

equations of the theory of the internal constitution of stars are as follows (see

legend below):

(1) Hydrostatic equilibrium dP
dr

= −ρGM(r)

r2 ; dM(r)
dr

= 4πρ(r)r2;

(2) Net steady-state energy-flux balance equation dL
dr

= 4πr2ρε;

(3) Radiative energy transfer dT
dr

= − 3
16σ

χρ
T3

L(r)

4πr2 ;

(4) Convective energy transfer dT
dr

=
(
1 − 1

γ

)
T
P

dP
dr

, γ =
cp

cv
;
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Eddington empirically verified Einstein’s prediction of the deflection of
starlight in the sun’s gravitational field (1919). In 1920 he suggested that the
sun might derive its energy from the fusion of hydrogen into helium. In 1923
he tried to unify electromagnetism and gravitation via a geometrization of the
electromagnetic field.

In 1924 he formulated the mass-luminosity law for stars and defined the
Eddington limit (critical luminosity above which radiation pressure exceeds
gravity, preventing further accretion by small-particle infall). He then esti-
mated the size of a white dwarf star — one such being the companion of
Sirius. (White dwarves were identified ca. 1913 by Hertzsprung.)

Also in that year, he put the Schwarzschild solution (to the field equations
of GTR) in a new form, from which the later Kerr solution for the spacetime
metric outside a spinning mass could be derived (1963).

Yet, since 1935, Eddington rejected Chandrasekhar’s limit and never
accepted it. He saw that it would lead to the ‘black hole’ concept, which he
thought to be a physical absurdity. Eddington’s shortsightedness regarding
black holes delayed the development of this field some 30 years, due to his
supreme authority at that time.

Eddington was born in Kendal, England. He was educated at Owen’s
College, Manchester and Trinity College, Cambridge, where he was senior
Wrangler in 1904 and Smith’s prizeman in 1907. From 1906 to 1913 he held
the post of chief assistant at the Royal Observatory at Greenwich. In 1913 he
became Plumian professor of astronomy at Cambridge and in the same year
was elected fellow of the Royal Society.

His work on stellar evolution, relativity, gravitation and cosmology led him
to search for a relationship between all the fundamental constants of nature346.

(5) Gas equation of state Pg = ρRT/μ;

(6) Nuclear rate equation f(ε, ρ; T ) = 0.

The functions and parameters appearing in (1)–(6) are: T (absolute temper-

ature), Pg (gas partial pressure), P (combined gas and radiation pressure),

ρ (mass density), M (mass), r (radial coordinate), μ (mean molecular/ionic

weight), L (luminosity, in ergs per second), σ the Stefan-Boltzmann constant, ε

(energy generated per second per gram of stellar matter by nuclear reactions at

T , ρ), χ (mass absorption coefficient of radiation); cp and cv denote the specific

heats at constant pressure and volume, respectively.
346 Eddington’s quest was a remarkable combination of the profound, the mys-

tic and the fantastic, setting in motion a never-ending progression of attempts

to explain constants of nature by feats of pure Pythagorean numerology. He
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Eddington wrote several books that explained the nature of the universe
in popular terms. In one of them, “The Nature of the Physical World” (1928)
he said: “I know passages written in mathematical symbols which in their
sublimity might vie with a sonnet of Shakespeare”.

1916–1928 CE Thomas John I’Anson Bromwich (1875–1929, Eng-
land). Mathematical physicist. Contributed significantly to the theory and
applications of the operational calculus (The Bromwich Integral).

Bromwich spent his youth in Natal and was educated in Durban. He
studied at Cambridge and became a university lecturer from 1909 to 1926.
He died by suicide.

1916–1932 CE Willem de Sitter (1872–1934, Holland). A noted Dutch
astronomer and cosmologist. Solved Einstein’s field equations for a static
universe and found that his solution possessed the peculiar property that
light from great distances is redshifted. In 1928 Howard Percy Robertson
(1903–1961, U.S.A.) showed the de Sitter’s universe could be mathematically
transformed into an expanding universe.

In 1916, de Sitter applied GTR to the earth-moon-sun system to find the
modification of the moon’s orbit required by the new law of gravitation. He
found that Einstein’s theory predicted new radial and transverse perturbing
forces in addition to Newtonian dynamics. Accordingly, the leading correction
to the lunar theory obtained from Einstein’s equations is a precessional motion
in which the moon’s node and perigee advance about 0.02 arcseconds per year.

thus ‘proved’ (1930) that the reciprocal of the fine structure constant, α (mod-

ern experimental value: α−1 = 137.035989561 . . .) is a whole number equal to
162−16

2
+ 16 + 1 = 137. He also concocted a “theory” (1935) for the mass ratio

of the proton and electron (experimental value = 1847.6...), according to which

this number is equal to the ratio of the solutions of the quadratic equation

10m2 − 136m + 1 = 0, the form of which he believed to be dictated by the

number of directions that characterize our 4 dimensions of space and time.

Few if any of Eddington’s peers and colleagues accepted his views. The great

theoretical physicists of his day, such as Einstein, Dirac, Bohr and Born,

found his approach useless and politely confessed that they couldn’t under-

stand it. Yet, his attempts to ‘explain’ the constants of nature by algebraic and

numerical gymnastics had enduring effects on readers of his popular books; for

he conveyed to them the overwhelming impression that it might be possible to

unlock some of the most deeply hidden secrets of the universe by a little bit

of inspired ‘Kabbalah-style’ guesswork and numerology. Indeed, the physicist

V. Weisskopf jokingly pointed out that the numerical value of the Hebrew word

“Kabbalah” itself equals 137!
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According to GTR this phenomenon is a property of the space surrounding
the earth — a precession of the inertial frame in this region relative to the
asymptotic inertial frame of the sidereal system. This was first pointed our in
1918, by Jan A. Schouten (1883–1971, Holland), and later by Eddington.

Sitter was born at Sneek, Holland and was educated at the University of
Gröningen. He went (1897) to the Cape of Good Hope to work at the Cape
University for 2 years. He became professor of astronomy at the University
of Leyden (1908) and the director of its observatory (1919–1934). His papers,
published in London during WWI, aroused scientific interest in Einstein’s GTR

among British scientists.

During Einstein’s second visit to California (1932) he published a joint
note with de Sitter in which a spatially flat universe (Euclidean space, curved
spacetime) was proposed without a cosmological term and with zero pressure.

1917 CE, Nov. 07 The so-called October347 Revolution began in Russia.
A forerunner (the so-called February Revolution) began on March 08 with
strikes, riots, and mutinies by the troops in the capital Petrograd (later called
Leningrad, now called St. Petersburg). The unrest was sparked by Russian
defeats in WWI and bad governance which had led to food shortages.

The revolution strongly affected the history of Europe and the rest of the
world during the next 70 years. Under Communism, free thought and ex-
pression were suppressed in Russia (and after WWII — in Eastern Europe
and East Germany too) for three generations. During this time, acceptable
science was exclusively that endorsed by the Communist party of the USSR,
whose intellectual despotism rivaled that of the Catholic Church in the Mid-
dle Ages. Consequently, the development of certain sciences was arrested and
even perverted. For example, the whole of biology (especially genetics) was
ravaged by ideological conflict; serious scientists were pilloried, and laborato-
ries were closed or transformed into havens of ‘Communist-style’ biology led
by the agronomist Trofim Denisovich Lysenko348 (1898–1976).

The Bolshevik Revolution was the bloodiest ever in human history. About
30 million people were executed in the Soviet Union during 1917–1987, es-

347 Oct. 25 in Russia was the same as Nov. 7 elsewhere. By 1917, the Russian

calendar was 13 days behind the rest of the world; the new regime brought it

into line, but the old name for the uprising, persisted.
348 With Joseph Stalin as his chief supporter, Lysenko gained control of Soviet

biological research (1928–1965), and imposed his view regarding heritability of

acquired characteristics.
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pecially under the dictatorships of Lenin349 (1870–1924) and Stalin350 (1879–
1953).

1917 CE, Dec. 06 The Halifax Explosion, Nova Scotia, Canada. Largest,
most devastating man-made explosion in the pre-nuclear age.

During WWI, A Belgian ship, Imo, collided with a French ammunition
ship, Mont Blanc, causing an explosion of about 200 ton of TNT in the city’s
harbor. The unfortunate disaster killed about 2000 persons, injure 9000 more,
and wrecked much of Halifax (about 1630 houses were obliterated and 12,000
more damaged).

1917 CE Albert Einstein (1879–1955, U.S.A.) established the theory of
spontaneous and induced (stimulated) radiative transitions resulting from the
interaction of radiation with atoms. During 1953–1960, this theory was ap-
plied to develop masers and lasers.

Consider two atomic or molecular states of energies E1 and E2 > E1, oc-
cupied by N1 and N2 atoms (or molecules), respectively. The photons corre-
sponding to transitions between these two levels must have an energy close
to hν = E2 − E1, ν being the photons’ frequency. Atoms at level E2 may
jump spontaneously into level E1, emitting a photon. Let us call A21 the
corresponding spontaneous emission transition probability per unit time per
atom. If ambient radiation of frequency ν is present and its energy density is
ε(ν), absorption transitions from E1 into E2 are also produced.

It is natural to assume that the number of such transitions per unit time
is proportional to the energy density ε(ν); that is, the induced absorption
transition probability per unit time is B12ε(ν), where B12 is the transition

349 Born in Simbirsk, Russia, the son of Ilya Nikolaevich Ulyanov (1831–1886, a

Russian civil service official) and Maria Alexandrovna Blank (1835–1916). Her

father was Srul Moishevich Blank, born to a Jewish family in Zhitomir and

baptized as Alexander Dimitrievich Blank. Vladimir Ulyanov, renamed himself

Lenin after the River Lena. He was 1/4 Jewish, 1/4 German, 1/4 Mongol and

1/4 Russian.
350 Jews played a major part in the Bolshevik Revolution. Among them: Leon

Trotsky (Bronstein) 1879–1940; Lazar M. Kaganovich, 1893–1991; Grig-

ory Zinoviev (Apfelbaum), 1883–1936; Maxim Litvinov (Wallach), 1876–

1951; Lev Kamenev (Rosenfeld), 1883–1936; Nikolai Yezhov, 1895–1939;

Alexei Rykov, 1881–1938; Genrikh Yagoda, 1891–1938; Yakov Sverdlov

(Solomon), 1885–1919; Mikhail I. Kalinin, 1875–1946; Yuri Andropov.

Also, Stalin, Molotov, Kruschev, Voroshilov and Brezhnev — were mar-

ried to Jewish women.
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probability per unit time, unit intensity of the radiation, and per single lower-
level atom.

But the radiation, because of its interaction with excited atoms at level E2,
also produces emission transitions from E2 to E1 with an induced emission
transition probability per unit time and per atom B21ε(ν). Therefore the
total emission probability per atom per unit time from level E2 to level E1

is A21 + B21ε(ν). If there are N2 atoms in level E2, the mean number of
atoms that jump per unit time from E2 to E1 is [A21 + B21ε(ν)] N2. At the
same time, the mean number of atoms that jump from E1 to E2 per unit
time is B12ε(ν)N1. If N1, N2 are large enough, the statistical uncertainties
in these rates are small as fractions of the rates themselves, and the actual
jump (transition) rates may be taken to equal the respective mean rates.

Therefore the net change per unit time of the atom population in level E2

is equal to the rate of gain by absorption minus the rate of loss by emission,
or

dN2

dt
= B12ε(ν)N1

︸ ︷︷ ︸
Absorption

− [A21 + B21ε(ν)]N2
︸ ︷︷ ︸

Emission

with an equal (but opposite) gain for the lower level.

When equilibrium is established between the atoms and the radiation
(which will eventually occur at fixed thermodynamic conditions), we must
have −dN/dt = dN2/dt = 0, or B12ε(ν)N1 = [A21 + B21ε(ν)] N2, so that
the numbers of absorption and emission transitions per unit time (that is, the
transition rates, in the 1 → 2 and in the 2 → 1 directions) are the same.

If the atoms are in thermal equilibrium and follow Maxwell-Boltzmann
statistics (which is a reasonable approximation in most cases), then

N1/N2 = e(E2−E1)kT = ehν/kT ,

so that
B12ε(ν)ehν/kT = A21 + B21ε(ν)

or

ε(ν) =
A21/B12

ehν/kT − B21/B12
.

When we compare this spectrum with Planck’s formula

ε(ν) =
8πhν3

c3

1
ehν/kT − 1

,

which gives the energy density for electromagnetic radiation in equilibrium
with matter, we find that

A21

B12
=

8πhν3

c3
and

B21

B12
= 1,
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a result first obtained by Einstein in 1917. The second relation shows that
the induced emission and absorption probabilities per unit time are equal and
actually follows merely from time-reversal symmetry plus the wave aspect of
light. The above calculation does not allow us to obtain the absolute val-
ues of A21, B21, and B12; they must be derived using quantum-mechanical
considerations. With B12 = B21, we obtain the ratio between the sponta-
neous emission probability rate A21 and the induced emission probability rate
B21ε(ν) when matter is in equilibrium with radiation as

Spontaneous emission probability

Induced emission probability
=

A21

B21ε(ν)
= ehν/kT − 1.

Therefore, if hν � kT , spontaneous emission is much more probable than
induced emission, which can then be completely neglected. This usually holds
true in the case of electronic transition in atoms and molecules and in the case
of radiative transitions in nuclei unless a far-from-equilibrium regime is set up
(e.g. by inverting the normal level populations, as done by pumping in lasers
and masers). But if hν � kT , as in the microwave region of the spectrum
at room temperature, induced or stimulated emission becomes important.

In the same year351, Einstein found a coordinate-invariant generalization of
the Bohr-Sommerfeld semiclassical quantization conditions for a system with
l degrees of freedom.

Bohr obtained the semiclassically–stable orbits of an electron revolving
around the nucleus, for the case of circular orbits, by assuming that the total
orbital angular momentum of these orbits must be quantized, i.e. be an integer
times � = h

2π . But it was soon realized that more generally, the quantity which
should be quantized is the (classical) action — i.e.

∮
p dq = nh where p is

the relevant canonical momentum and q the conjugate coordinate, integrated
over a cycle (period) of the motion. This was an acceptable answer for circular
orbits, which could be characterized by a single parameter, namely the radius
of the orbit. But we can equally well have elliptical orbits, which had to
be characterized by two parameters (apart from the space orientation of the
orbit).

Generally, the question arose as to how to quantize systems of arbitrary
numbers of degrees of freedom. Sommerfeld gave a partial answer for the case

351 ‘Zum Quantensatz von Sommerfeld und Epstein‘. Verh. Deutsch. Phys.

Ges. 19, 82, 1917. A little known remark of Einstein, made in a lecture at a

meeting of the German Physical Society and only published in its proceedings.

He never returned to this subject nor, for a long time, did others show much

interest in it. However, since 1980, the importance and pioneering character

of this work has been recognized by mathematicians, quantum physicists and

quantum chemists.
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of ‘separable systems’. This is the case in which the classical Hamiltonian
function could be written as a sum of functions, each one involving only a
pair of conjugate variables:

H = H1(p1, q1) + H2(p2, q2) + · · · + Hk(pk, qk).

In this case we could write down the necessary and sufficient quantization
conditions as

∮
pi dqi = nih, i = 1, 2, . . . k. Thus, the conditions, if at all

realizable, depend on the choice of a particular coordinate system. Moreover,
such a procedure was not unique since if a system was separable in different
coordinate system (e.g., an isotropic 3-D harmonic oscillator is separable in
both Cartesian and polar coordinates), inequivalent quantization rules might
be obtained.

Einstein could not believe that the particular coordinate system, in which
the Hamiltonian function was accidentally separable, should have a decisive
significance for the physical phenomenon. He found a coordinate-invariant
generalization of these quantization conditions which, moreover, did not re-
quire the motion to be separable, but only multiply periodic; he formed the
sum of all the equations

∮
pi dqi = nih, obtaining

∮ ∑k
i=1 pi dqi = nh,

where n is a new integer. Since pi = ∂S
∂qi

with S the Hamilton-Jacobi
action, we obtain

∮ k∑

i=1

pi dqi =
∮ k∑

i=1

∂S

∂qi
dqi =

∮

dS = ΔS = nh,

where the integral is taken over any possible closed path in configuration
space. The ‘action’ function S has absolute meaning. If S were a single-valued
function, then, traversing a periodic orbit in configuration space and returning
to the initial point, ΔS would be zero. But S is, in fact, a multivalued
function.

While classically it is in principle possible to proceed along any closed
circuit, in quantum theory only those circuits in configuration space have
physical significance for which the change of S in this process is equal to
a multiple of h. If we now choose a path for which all coordinates remain
constants except p1 and q1, then we obtain the first quantum condition, and
so on. Thus, Einstein’s single condition is equivalent, in (any) separable
classical phase–space coordinates, to the entire set of the Bohr-Sommerfeld
quantum conditions352.

352 Einstein, of course, was not aware at the time of wave mechanics and the

Schrödinger Equation (1924), and therefore missed the connection between

the Bohr-Sommerfeld semiclassical theory and the exact (fully quantum-
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The General Theory of Relativity353

During 1915–1917 Albert Einstein presented the general theory of rela-
tivity (GTR), on which he had been working since 1907. It is an extension of
his special theory to include gravitational effects354.

In addition to electromagnetic fields, there exist in nature long-range fields
of another type — so-called gravitational fields, or fields of gravity. These
fields have the basic property that all (small and light enough) test bod-
ies move in them in the same manner, independent of mass, composition or
charge, provided the initial conditions are the same. For example, the laws

mechanical) picture, yielding (in the WKBJ or semiclassical approximation)
∮

dS = (n + k/2)h. Interestingly enough, Einstein’s remark became relevant

in recent years to classical chaos theory in the following way: In a holonomic

integrable mechanical system the number of conservation laws is equal to the

number of degrees of freedom of the system. Here, the trajectory can be written

analytically and no chaos is possible. A necessary condition for the existence

of chaos is that the number of conservation laws is less than the number of

degrees of freedom. But each quantum number corresponds to a certain con-

servation law. Hence the connection between integrability, conservation, chaos

and quantization conditions.
353 For further reading, see:

• Weinberg, S., Gravitation and Cosmology, Wiley, 1972, 657 pp.

• Ohanian, H.C., Gravitation and Spacetime, W.W. Norton, 1976, 461 pp.

• D’inverno, R., Introducing Einstein’s Relativity Clarendon Press: Oxford Uni-
versity Press, 1992, 383 pp.

• Eddington, A.S., The Mathematical Theory of Relativity, Cambridge Univer-

sity Press: Cambridge, 1963, 270 pp.

• Martin, J.T., General Relativity, Ellis Horwood, 1988, 176 pp.

• Kenyon, I.R., General Relativity, Oxford University Press, 1990, 234 pp.

354 If we regard his STR paper (1905) as the unification of the concepts of space

and time, and his E = mc2 paper (1905) as the unification of the concepts

of energy and matter , then GTR (1915) is the unification of the above four

concepts with gravitation and with the Newtonian concept of inertial frames.

GTR is the greatest discovery in connection with gravitation that has been made

since Newton first enunciated his universal law of gravitation.



3336 5. Demise of the Dogmatic Universe

of free fall in the gravity field of the earth (in vacuo) are the same for all
bodies; whatever their mass, all acquire one and the same acceleration under
identical initial conditions.

The theory of gravitational fields, constructed on the basis of this princi-
ple and the local applicability of the theory of Special Relativity, is called the
general theory of special relativity (GTR). It was established by Albert Ein-
stein and finally formulated by him in 1916. It represents the most pristinely
beautiful of all existing theories in the natural sciences. It was developed by
him in a purely deductive manner from a small set of axioms and assumptions,
and only later was substantiated by astronomical observations.

GTR is the culmination of theories of time and space in modern times;
like STR before it, it is also a framework into which non-gravitational forces
and fields may be accommodated. Three roads led to this summit:

• the physics trail with the beacons of Galilei (1609), Newton (1687)
and Maxwell (1873).

• The mathematics trail of Gauss (1827), Riemann (1854) and Ricci
(1887).

• The Philosophy trail of Spinoza (1676) and Mach (1872).

Einstein’s theories of relativity (special and general) represented – and
precipitated further – major revolutions in physics and astronomy during the
20th century. They introduced to science the modified concept of ‘relativity’,
thus superseding the 200 year old Newtonian mechanics. Einstein showed
that we reside not in a flat Euclidean space and uniform absolute time of
everyday experience, but in another environment: curved, locally Minkowski
space-time. The theory of STR played a role in advances in physics that led
to the nuclear era, with its potential for benefit as well as for destruction.
Its unification with quantum mechanics led to QED and other quantum field
theories, predicted antimatter, and made possible an understanding of the
microworld of elementary particles and fields and their interactions. The dif-
ferential geometry of GTR inspired quantum field theories based upon the
Gauge Principle, and GTR itself has also revolutionized our view of cosmol-
ogy with its predictions (alone and in conjunction with nuclear and particle
physics) of apparently bizarre astronomical phenomena such as the big bang,
neutron stars, cosmological constant (dark energy), (primordial and eternal)
inflation, black holes355, gravitational lensing and gravitational waves.

355 Albert Einstein’s general theory of relativity and the discoveries by himself

and others in quantum theory are the foundation for all speculations about the
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Einstein was not satisfied with STR because it arbitrarily selected a certain
class of reference frames, namely, inertial frames, among which the laws of
physics are invariant. He believed that physical laws should not depend at all
upon the choice of reference frame. He was also strongly influenced by Mach’s
criticism of the foundations of mechanics, and the resulting Mach Principle
according to which inertial forces have their origin in the total distribution of
mass in the universe. For example, Newton had argued that the centripetal
force of a rotating mass was a demonstration of its absolute motion. Mach,
however, ascribed that (and other inertial) force to motion w.r.t. other masses
in the universe, especially those of the fixed stars.

Einstein knew that it is possible to make gravity disappear in certain local-
ized regions in space and time by a nonlinear transformation of the reference
frame. For example, freely falling sky divers (with acceleration = g) do not
initially observe the force of gravity in their moving reference frame. Simi-
larly, observers in an orbiting space shuttle are weightless, as the shuttle is
free-falling and has a constant acceleration directed towards the earth and
shared by its passengers. These results are consequences of the equivalence of
gravitational mass and inertial mass, but there is no single accelerated frame
of reference that can cause gravity to disappear at all points of space-time.

Thus Einstein asked himself, “Is it possible to find a geometry of space-
time that accounts for all the gravitational effects of the masses in the uni-
verse, and yet in a small enough region of spacetime reduces to an ordinary
accelerated, instantaneously inertial, STR frame of reference?”

Part of the mathematical answer to this question was already at hand, in
the generalized geometry of curved spaces devised by Riemann in 1854. For
example, the surface of a sphere is a 2-dimensional curved space embedded
in an Euclidean space of 3 dimensions. A very small area of the surface
has essentially the properties of a flat Euclidean space. Einstein required a
4-dimensional curved space-time. Such a space-time can be embedded in a
10-dimensional Euclidean space, but it is much easier to deal with the intrinsic
curvature of 4 dimensions and to discard Euclidean (or even Minkowskian)
geometry altogether.

Einstein used tensor calculus in the mathematical formulation of GTR,
since both are concerned with the behavior of various entities under the tran-
sition from a given coordinate system to another. In his own words (1915):

physics of black holes. Yet Einstein rejected the idea of such bizarre singularities

and repeatedly argued against their existence. In the late 20th century numer-

ous galactic – center and stellar black hole candidates have been identified by

astronomers, but the close observation (let alone manipulation or creation) of

black holes with empirical verification of their more exotic properties – remain

a distant dream.
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“Sie (the gravitational equations) bedeutet einem wahren triumph der
durch Gauss, Riemann, Christoffel, Ricci, . . ., begründeten methoden des
allgemeinen differentialkalkulus”.

Through this theory, tensor analysis came into vogue. The combined ef-
forts of Grassmann, Riemann, Christoffel, Ricci, Minkowski and others
were blended here in harmony to form the most beautiful physical theory yet
concocted by the human mind. It gave a great impetus to tensor theory and
opened wide new areas in theoretical physics and applied mathematics.

After 1916, with the advent of general relativity, the several special brands
of vector analysis were supplanted by tensor algebra and analysis. Riemann
and Clifford, in the intermediate stage leading from Grassmann to tensors,
had presciently predicted the 20th century geometrization of some parts of
mathematical physics.

This remarkable prophecy was indeed realized in Einstein’s theory of grav-
itation and its developments since 1916, as well as in the ‘non-Abelian’ gen-
eralizations of electrodynamics (Yang-Mills field theories) partially inspired
by it. Furthermore, in the 1920’s, the general theory of relativity stimulated
development of differential geometry.

Underlying principles

Newton’s law of gravitation, which requires instantaneous action at a dis-
tance is not compatible with STR (= Special Theory of Relativity) since the
latter requires that the velocity of signal propagation be finite and that the
gravitational laws be Lorentz-covariant. During 1912–1918 various physi-
cists356 attempted to formulate gravitation within the framework of STR.
But all these theories employ fields that inhabit the same Minkowski space-
time as does the Maxwell field, and as such suffer from two fatal flaws — no
gravitational redshift and no light deflection. They are thus untenable by our
current experimental knowledge.

Einstein based his theory upon four basic principles:

• The principle of equivalence

356 Max Abrahem (1912); G. Nordström (1918) and others. In these attempts

gravitation was formulated as carried by a scalar, vector or even a tensor field,

inhabiting the same Minkowski space-time as does the Maxwell field.
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• The principle of general covariance (alternate form of Equivalence Prin-
ciple)

• The principle of correspondence

• The principle of minimal gravitational coupling

In Newtonian theory, a system in a homogeneous gravitational field is com-
pletely equivalent to a uniformly accelerated reference frame from a mechanical
point of view [famous ‘elevator in free fall thought – experiment’]. Einstein
then postulated that this equivalence be extended to all physical processes
embedded in a locally homogeneous gravitational fields. This is the restricted
form of the principle of equivalence.

Combining this postulate with STR, Einstein derived the result that the
rate of clocks at points of lower gravitational potential is slower than that
for higher gravitational potential, and already then he pointed out that this
entails a shift toward the red spectra of light emitted by the sun, compared
with that emitted by terrestrial sources. A further result was that the velocity
of light is not constant357 in a gravitational field, so that light rays curve
(Fermat’s principle). He also argued that on the strength of the equivalence
principle and STR, energy E must be ascribed not only an inertial mass but
also a gravitational mass m = E/c2.

The next step was to generalize the principle of equivalence to apply to
inhomogeneous gravitational fields. This, he claimed, can be done in an in-
finitesimally small region of space-time. Here gravitation can be transformed

357 In GTR the principles of STR hold in any instantaneous, local, inertial Lorentz

frame. In particular, this implies the local constancy of the speed of light. How-

ever, when one describes the geodetic world line of light ray or massive particle,

any curvilinear coordinate system used, cannot be a Lorentz frame, because it

extends over a finite volume of spacetime.

Therefore, any experiment in GTR that involves finite lengths and time–

intervals will, in general, violate the postulates of STR. This was demonstrated

quite clearly in the sun – grazing radar – ranging experiment by I. Shapiro

(1970s), in which radar beams were found to slow down in the vicinity of the

sun relative to a reference frame defined by earth and Mars, as predicted by

GTR.

The converse effect may also occur: in a de Sitter universe, any two particles of

matter recede from each other exponentially fast, and thus transluminally, as

reckoned by an extended reference system. The now-accepted inflationary ver-

sion of Big–Bang cosmology states that such a de Sitter phase indeed occurred

in the very early universe and satellite observations in the 1970s showed that

we may be entering a new de Sitter phase.
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away in a local coordinate system realized by a freely falling, sufficiently small

cabin, which is not subjected to any external forces apart from gravity. The

formulation of the equivalence principle in this case is:

“For every infinitely small world region, in which spatial and temporal

variations of gravity can be neglected, there always exists a coordinate system

in which gravitation has no influence either on the motion of particles or any

other physical processes”.

This ‘transforming away’ is only possible because the gravitational field

has the fundamental property that it imparts the same acceleration to all

bodies, or stated differently, because the gravitational mass is always equal
to the inertial mass (Newton, Eötvös). This is sometimes called the ‘weak

equivalence principle’ when the falling mass (or cabin) has a low enough mass

for self-gravity to be negligible.

These two different statements are equivalent: When gravitation acts on

a body, it acts on the “gravitational mass”, but the result of the Newtonian

gravity force is an acceleration determined by the body’s inertial mass. Both

statements imply at once that the path followed by a test particle in space and

time under purely gravitational forces is independent of the mass and compo-

sition of the test-particles. Moreover, the curvature of space-time is a direct
consequence of the fact, evident in Newtonian gravity, that the equivalence

principle breaks down over finite world-volumes for a non-uniform gravita-

tional field (“tidal effects”).

When Einstein proposed his equivalence principle in 1907, he was not

aware of all the experiments that predated him, and arrived at it by noticing

that inertial forces (centrifugal, Coriolis) share the same property as gravita-

tional forces, in that they all are proportional to the masses they act upon,

unlike electric or magnetic forces. This similarity makes it impossible to tell

them apart in the small cabin postulated above.

The equality of inertial and gravitational mass for different materials is

quite mysterious in Newton’s work.

At this point, Mach’s principle comes to mind as a feasible explanation of

the identity of gravitational and inertial mass, via Mach’s idea that the origin
of inertia is gravitational. Indeed, in 1912 Einstein calculated the effect of

a heavy spinning spherical shell on an enclosed particle. The calculations

showed that the effect of the rotating massive shell is to change the inertial

frame in the spatial vicinity of the particle, which now tends to rotate in the

same sense as the shell. This calculation foreshadowed the ‘Lense-Thirring
effect’ (1918).
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With the aid of the equivalence principle, STR was reinstated as a tool
for handling physical problems in the presence of gravity on a local basis. An
alternative statement for the principle of equivalence is:

“The laws of special relativity hold locally in a space-time, in a sufficiently
small, freely falling frame of reference”.

Clearly, the Principle of Equivalence is strictly valid only in the presence of
a static homogeneous gravitational field. Had the gravitational field depended
on r or t, we would not have been able to eliminate it from the equation of
motion by the acceleration. For example, the earth is in free fall about the
sun, and for the most part we on earth do not feel the sun’s gravitational
field, but the slight inhomogeneity in this field (about 1 part in 6000 from
noon to midnight) is enough to raise impressive tides in our ocean. Even
the observers in Einstein’s freely falling cabin would, in principle, be able to
detect the earth’s field because objects in the cabin would be falling radially
toward the center of the earth, and hence would approach each other laterally
as the elevator descended.

Nevertheless, it is sufficient for the construction of GTR (General theory
of Relativity) to accept the weak Principle of Equivalence stating the observed
equality of gravitational and inertial mass for systems of small enough mass.

Equivalently, the Principle of Equivalence says that at any point in space-
time we may erect a locally inertial coordinate system in which matter and
energy satisfy the laws of special relativity.

In this form, there exists a certain resemblance to the Gauss assumption
that at any point on a curved surface we may erect a locally Cartesian coordi-
nate system in which distances obey the laws of Euclid Pythagoras. Because
of this analogy, we should expect the laws of gravitation to bear strong re-
semblance to the formulas of Riemannian geometry.

In particular, Gauss’ assumption implies that all intrinsic geometric prop-
erties of a curved surface can be described in terms of the quantities gij

(metric tensor) in some “atlas” of overlapping, mutually-transformable, local
coordinate systems.

In light of this analogy, the principle of equivalence can be reformulated as
the principle that gravitation is just an effect of the curvature of Minkowskian
spacetime — a principle from which Einstein’s theory of gravitation follows
almost uniquely.

An alternative version of the Principle of Equivalence is known as the
Principle of General Covariance. It states that a physical equation holds in
a general gravitational field if two conditions are met:



3342 5. Demise of the Dogmatic Universe

(1) The equation holds in the absence of gravitation, i.e. it agrees with
the laws of special relativity when the metric tensor gαβ equals the
Minkowski tensor ηαβ (i.e. diag{−1, 1, 1, 1} in the real–0th–component
representation) and when the affine connection Γα

βγ vanishes.

(2) The equation is generally covariant; i.e., it preserves its form under a
general local coordinate transformation.

It should be stressed that part (2) of general covariance by itself is devoid
of physical content. Any law of nature can be made generally covariant by
writing it in any one coordinate system, and then working out what it looks
like in other arbitrary coordinate systems. Indeed, physicists have long been
familiar with the appearance of physical equations in non-Cartesian systems,
such as polar coordinates, and in noninertial systems, such as rotating co-
ordinates. The significance of the Principle of General Covariance lies in its
statement about the effects of gravitation: that a physical equation, by virtue
of its general covariance, will hold in a gravitational field if its flat–Minkowski–
space limit represent the correct dynamics in the absence of gravitation and
if, in the latter case, it is Lorentz covariant and obeys the principles of Special
Relativity.

The meaning of general covariance can be elucidated by comparing it with
Lorentz invariance/covariance. Just as any equation can be made generally
covariant, so any equation can be made Lorentz-covariant, by writing it in
one inertial coordinate system and then working out what it looks like after
a Lorentz transformation.

However, if we do this with a nonrelativistic equation like Newton’s second
law, we find after making it Lorentz-covariant that a new quantity has entered
the equation, which of course is the velocity of the coordinate frame with
respect to the original, privileged reference frame. The requirement that this
velocity not appear in the transformed equation is what we call the Principle
of Special Relativity, or “Lorentz invariance” for short, and this requirement
places very powerful restrictions on the original equation. Thus part (1) of
the General Covariance Principle is what bestows content upon it.

Similarly, when we make an equation generally covariant, new entities will
enter — that is, the metric tensor gμν , the affine connection Γλ

μν , the
Riemann curvature tensor, and its covariant derivatives. The difference is
that we do not require that these quantities drop out at the end, and hence
we do not obtain any new restrictions on the equation we start with; rather,
we exploit the presence of gμν and Γλ

μν to represent gravitational fields.

To put this succinctly: The Principle of General Covariance is not an
invariance principle, like the Principle of Galilean or Einsteinian (Special)
Relativity. Taken together with part (1), however, it becomes a statement
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about the effects of gravitation and its local (approximate) equivalent to ac-
celeration relative to STR inertial frames. In particular, part (2) of general
covariance does not imply Lorentz invariance — there are generally covariant
theories of gravitation that allow the construction of inertial frames at any
point in a gravitational field, but that satisfy Galilean relativity rather than
special relativity in these frames.

Any physical principle, such as general covariance, which takes the form of
a local covariance principle but whose content actually involves the introduc-
tion of a new class of interactions into otherwise known dynamics, is called a
dynamical local symmetry. There are other dynamic symmetries of importance
in physics, such as the GTR-inspired local gauge invariance, which governs
the interactions of the electromagnetic field and all nuclear and subnuclear
forces save gravitation.

The Principle of General Covariance can only be applied on a scale that
is small compared with the space-time distances typical of the gravitational
field, for it is only on this small scale that we are assured by the Principle of
Equivalence of being able to construct a coordinate system in which the effects
of gravitation are absent. However trough the magic of differential geometry,
this allows one to deduce gravitational effects at all scales, provided a few
other simple assumptions are made.

There are in general many generally covariant systems of equations, that
reduce to a given special-relativistic theory (e.g. the Maxwell–Lorentz equa-
tions) in the absence of gravitation. However, once two additional assump-
tions are made – namely, that Newton’s theory of gravity is recovered for
speeds v � c and weak fields, and that only gμν and its first and second
order partial derivatives enter our generally covariant equations – we shall see
that the Principle of General Covariance makes an almost unambiguous state-
ment about the effects of gravitational fields on any physical system (planets,
galaxies, fluids, or even the universe as a whole).

Observers are intimately tied up with their reference systems or coordi-
nate systems. One ramification of GTR is that any observer can discover the
laws of physics, employing any coordinate system. The situation is somewhat
different in special relativity, where, because the metric is flat and the connec-
tion integrable, there exists a set of canonical or preferred coordinate systems;
namely, Minkowski coordinates. In a curved space-time, that is, a manifold
with a non-flat metric, there is in general no canonical coordinate system.
This is just another statement of the non-existence of a global inertial frames.

However, this statement needs to be treated with caution, because in many
applications, there will be preferred coordinate systems. For example, many
problems possess symmetries and the simplest thing to do is to adapt the
coordinate system to the underlying symmetry.
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Any new theory must be consistent with any acceptable earlier theories
within their range of validity. GTR must therefore agree on the one hand
with STR in the absence of gravitation and on the other hand with New-
tonian gravitational theory in the limit of weak gravitational fields and low
velocities (compared with the speed of light). This gives rise to a correspon-
dence principle for general relativity.

The principles discussed so far almost suffice to obtain equations governing
systems in general relativity when the corresponding equations are known in
special relativity. The principle of minimal gravitational coupling – which is
somewhat stronger than the above restriction on the number of times the met-
ric is differentiated – is a simplicity principle or Occam’s razor that essentially
states that we should not add unnecessary terms in making the transition from
the special to the general theory.

Consider, for example, the law of local conservation of energy-momentum
in STR

∂Tμν

∂xμ
= 0

The simplest generalization of this to GTR is the tensor equation

∇μTμν = 0

where ∇μ, denotes covariant differentiation. However, we could equally well
posit

∇μTμν + gνλRμ
αμβ∇λTαβ = 0

since the Riemann curvature tensor Rμ
αμβ vanishes in STR.

Einstein, although not stating it explicitly, used this minimal-coupling
principle in establishing the gravitational field equations.

The principle of minimal gravitational coupling can thus be stated: “no
terms explicitly containing the curvature tensor should be un-necessarily in-
troduced in making transition from STR to GTR, and no covariant derivatives
of the curvature tensor shall be introduced at all”.

This ‘principle’ is equivalent to the a priori assumption that the equations
of general relativity must be second-order partial differential equations in the
metric tensor and in all non-gravitational dynamical fields and variables and
that they are linear in second-order partial derivatives of gμν . In 1915 – and
indeed to this day – the most important equations of non-gravitational funda-
mental theoretical physics were second-order PDE’s obeying this restriction,
including of course, the Maxwell equations themselves.

Any terms in the curved–spacetime equation involving non-minimal grav-
itational couplings would not make much of a difference in any astronomical



1917 CE 3345

observations. Einstein could have made his equations fourth-order differen-
tial equations, but he did not. In this sense Einstein’s theory, as we view
it today, is an approximation valid at long distances, and as such, cannot be
expected to deal successfully with infinities and singularities — any more then
the Navier–Strokes PDEs of fluid dynamics can be expected to account for
the molecular motions at the center of a vortex flow.

We note that arbitrary coordinate transformations obviously include a
subset of transformations that take us locally from any non-inertial frame
to an inertial frame. In the latter frames — locally freely–falling frames —
gravitational forces on small enough objects are negligible; this is nothing
but the equivalence principle. The abstract form of this statement is “general
covariance” — if a generally covariant equation is known to be true in a locally
inertial frame (in absence of gravitation, curvature or connection), it is true
in every frame, i.e. the equation is true in the presence of gravitation.

This is not strictly true for finite laboratories. The precise statement is
that gravitational forces are not detectable in the limit where:

(I) the freely–falling laboratory, containing the measuring apparata, is
infinitesimally small;

(II) the total mass of the said laboratory is also infinitesimal.

Gravitational effects are observed in a non-ideal ‘locally inertial’ frame,
such as Einstein’s famous freely-falling elevator. Such an elevator is not in-
finitesimal — it encompasses a sufficient volume of space-time to reveal tidal
effects in any realistic (non-uniform) gravitational field.

We must dwell on this important issue in some detail: Consider a non-
spinning space capsule, whose center of mass moves in a free-falling orbit
of instantaneous distance r from the earth of mass M (or other attracting
center of mass). A test particle at the center of the capsule, will experience a
zero-g environment: it is ‘weightless’, acted upon by no gravitational force as
reckoned in the capsule frame.Thus, the astronaut does not know whether he
is falling in a gravitational field or at rest in some region far away from any
attracting masses. (Clearly, this elimination of the earth’s gravitational field is
only possible under the assumption of equivalence of inertial and gravitational
mass for all bodies.

Now, to another observer, at rest relative to the (idealized) “fixed stars”,
the capsule is in accelerated motion, and such an observer will refute the
astronaut’s claim that he is in an inertial frame by saying that both the space
capsule and the test particle in it are falling at the same rate and that the
astronaut is being fooled by appearances.

Suppose, however, that the astronaut places a drop of liquid of radius R at
the center of the capsule. He will find that this drop is not exactly spherical
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but has two bulges; one bulge points toward the earth, one away. Since, in the
absence of external forces, surface tension would make the drop spherical, the
deviation from a sphere indicates the existence of a gravitational field. The
bulges result from the inhomogeneity of the gravitational field; the capsule as
a whole is accelerated toward the mass M by an amount aG

= GM
r2 , the end

of the drop nearer to the earth is subjected to a slightly larger acceleration

anear = GM
(r−R)2 , while the far end experiences the slightly smaller acceleration

afar = GM
(r+R)2 .

Accordingly, the relative acceleration of the two ends will cause them to
drift away from each other and the center . Assuming R � r, each will drift

with a tidal acceleration atidal = 1
2 (anear − afar) ≈ 2GMR

r3 = aG

2R
r . Similarly

the tidal effect on two diametrically opposite points on the drop’s surface

which lie on the plane perpendicular to the first pair, is shown to be aG

R
r ,

and these points will tend to drift toward each other at one-half the former
(‘longitudinal’) rate.

Thus, the drop experiences a deformation due to a quadrupole force-field
such that it is stretched at its ‘poles’ and compressed at its ‘equator’. Next,
imagine the drop is a planetesimal, devoid of surface tension but held to-
gether by its self-gravity. Denote by g the acceleration of gravity that the
drop produces at its own surface, and by Δh the differential tidal deforma-
tion (difference between ‘high-tide’ and ‘low-tide’). The equilibrium equa-

tion gΔh = GMR2

r3 [2 − (−1)] = 3GMR2

r3 in which g = 4π
3 ρGR, then yields

Δh
R = 9M

4πρr3 . This shows that the shape of the tidal ellipsoid is independent

of its size. Even in the limit R → 0, the tidal deformation persists. We can
therefore regard the prolateness of the tidal ellipsoid as a local measure of the
gravitational tidal force.

This principle has been embedded in a sensitive instrument known as the
gravity gradiometer (R.L. Forward, 1971). The device consists of a Greek
cross with four masses at the ends of its arms. The arms are held together
at the center by a torsional spring; when the arms are pressed together and
then released they oscillate with their own natural frequency. If the cross is
placed in a tidal field, it will be deformed.

The tidal force is then used to drive the cross at resonance, where large
amplitudes can be built up. Such an instrument, if made small enough, can
be used to make local measurements of the tidal field, in an arbitrarily small
neighborhood of a given point. The limitations on the minimum size of the
neighborhood that is needed to perform measurements of a given precision do
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not arise from any intrinsic properties of the gravitational field; rather, these
limitations arise from the quantum nature of matter.

To summarize, local experiments can distinguish between a reference frame
in free fall in a gravitational field and a truly inertial reference frame placed far
away from all gravitational fields. Gravitational effects are not truly equivalent
to the effects arising from the observer’s acceleration. Thus, the equivalence of
gravitation and acceleration is only true in a limited sense: they are equivalent
only as far as the translational motion of infinitesimal-mass point particles is
concerned.

If the rotational degrees of freedom of the motion of masses are taken
into account, then the equivalence fails in yet other ways. However, the
unambiguous equality m

I
= m

G
is necessary and, to a large extent, sufficient

for the construction of GTR. And this becomes a physical principle when
one posits that all physical laws (including gravitational dynamics itself) are
expressible via generally – covariant equations, and that STR holds in local
free–falling frames for any non–gravitational experiment. This reformulation
is very important because it is strictly valid in general relativity; whereas
the equivalence principle itself, which inspired it, is not even strictly true in
Newtonian mechanics — as the above example demonstrates.

On the other hand, one way ask whether residual gravitational effects
within a small enough frame – such as the tidal effects in the liquid drop
discussed above, or a Cavendish–type experiment to measure G – can reveal
the difference between a free–falling frame and an inertial frame far from any
external masses. If so, we say that the strong equivalence principle (SEP)
hold; and it has indeed been shown to hold in GTR.

The principle of general covariance gives us a precise358 prescription
through which we can introduce gravitational forces into a physical situation,
if we know the equations describing the system in the absence of gravitation.
For the latter equations, one takes the laws of special-relativistic physics. To
modify these non–gravitational dynamical equations in the presence of gravi-
tation, one takes the corresponding Lorentz–covariant equations and renders
them generally covariant. As for gravitation itself, one chooses the minimally–
complicated generally covariant extension of Newtonian gravitation, in which
Newton’s gravitational potential becomes an element in the metric tensor.

358 Though not unique: one may add to the covariantized physical equations any

number of arbitrary–coefficient, covariant terms involving the Riemann curva-

ture tensor or its covariant derivatives, since such terms vanish in the absence

of gravitation. Such terms can, however, be estimated and bounded, and their

effects are negligible in all post-Newtonian observational and experimental tests

of GTR carried out to date.
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The mathematical tool through which the principle of general covariance
can be easily implemented and verified is that of general tensor calculus.

In Newtonian mechanics, the trajectory of a free particle is a straight spa-
tial (Euclidean) line, traversed with constant velocity. In STR it is a straight
line in the Minkowski spacetime. In GTR, the world line of an infinitesimal
inertial (freely falling) observer is a time-like curve with extremal proper time
— the geodesic curve, or locally straightest world line. Along this line the
proper time of the particle (the register of a clock attached to it) is extremal.

The geometrical interpretation of the gravitational field is that a gravitat-
ing body actually distorts the very fabric of space-time around it. A small
test-body entering the vicinity of another, finite mass merely responds to the
distortion of space-time that it encounters. This distortion is the geometrical
curvature of space-time.

In GTR the earth, for example, does not rotate around the sun because of
the sun’s gravity. Instead, the earth is moving in a locally-straight line, but
in a space-time curved by the mass of the sun.

The Field Equations

The other crucial ingredient of Einstein’s GTR, apart from general co-
variance, is the prescription that determined exactly how a given matter
distribution distorts space-time. The prescription consists of the Einstein
gravitational field equations359 — consisting, in any local spacetime coordi-
nate system, of 10 nonlinear, second order, partial differential equations, for
the ten components of the metric tensor.

The field equations determine the Ricci tensor of space-time (contracted
Riemann curvature tensor) in terms of the energy-momentum tensor, and re-
quire local energy-momentum conservation (in local freely falling frames) for
consistency. If one extends the equivalence principle to also mean that grav-
itational experiments in the small, freely-falling cabin yield the same results
as Newtonian theory (for slowly-moving, sufficiently small masses), it is in
fact possible to derive the minimal GTR field equations from this emended
equivalence principle.

359 According to Einstein: “Fields are not states of a medium (the ether) and are

not bound down to any bearer, but they are independent realities which are not

reducible to anything else”.
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Let us take a brief look at the mathematics underlying space-time-
gravitation. In a non-Euclidean but locally Euclidean (Riemannian) space
in two dimensions, in any local coordinate system (x1, x2), an infinites-
imal vector is drawn from a point P to a point Q. The square of
the distance between P and Q is a quadratic form in dx1 and dx2,

ds2 = g11dx2
1 + 2g12dx1dx2 + g22dx2

2. For a space of any dimension, the cor-

responding expression is ds2 = gijdxidxj , where gij is the metric tensor

and the Einstein summation convention is understood. The gij are functions
of xk — they may vary from point to point in spacetime. The metric ten-
sor provides a distance definition between neighboring points in space. Thus
Riemannian geometry is a metric geometry.

In GTR, the curvature of space-time is quantified by the curvature
tensor360 (sometimes known as the Riemann-Christoffel tensor), which is de-

360 The anti-symmetric part of the affine connection Γν
βμ, namely T ν

βμ = Γν
βμ − Γν

μβ

is the torsion tensor. It is – aside from the curvature tensor and their contrac-

tions, covariant derivatives and combinations thereof – the tensor that can be

formed from the affine connection. Γα
βγ is not a tensor. If the torsion tensor

vanishes, then the connection is symmetric. Einstein formulated his theory of

gravitation in terms of the symmetric (Schwartz–Christoffel) connection derived

from the spacetime metric tensor, partly because the spin of the electron was

as yet unknown in 1915.

In the simplest extension of GTR to include torsion, it couples to intrinsic spin,

but has no direct effect on cosmology/astrophysics because torsion vanishes out-

side stars and planets. That leaves open the possibility of some torsion effects

inside stars or in the early universe. Although torsion appears to play no sig-

nificant role in the macroscopic realm, it features prominently in supergravity

models of quantum fields. In these models, when one looks at the Planck scale

of distances, times and energies, conventional GTR is modified. One feature

of supergravity field theories, is that any spinning particle creates a torsion in

spacetime in addition to curvature. So far (2008), supergravity theories were

not shown to be valid.

The classical spin of a Kerr black hole, as well of a spinning planet or galaxy

etc. does not count as far as torsion goes, because torsion is only excited by

genuinely intrinsic spin, whereas the former examples are all manifestations of

orbital spin.

As far as observational signatures in the real world go, torsion turns out to be

a disappointment — the deviations it causes from GTR are miniscule, and are

only significant in extreme conditions, such as the Planck or GUT eras right

after the Big Bang.
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fined by

Rα
βμν = Γα

βν,μ − Γα
βμ,ν + Γα

σμΓσ
βν − Γα

σνΓσ
βμ,

where the spacetime manifold is now locally Minkowskian, and Greek in-

dices (covariant and contravariant) range from 0 through 3. Covariant and

contravariant Greek “world” indices are converted into one another via con-

tractions with the metric tensor, and gαβ is the inverse 4 × 4 matrix to gαβ .

The Γ’s, called Christoffel symbols, are related to partial derivatives of the

components of the metric tensor:

Γν
βμ =

1
2
gαν(gαβ,μ + gαμ,β − gβμ,α),

where gαβ,μ ≡ ∂gαβ

∂xμ .

The distribution and flux of mass-energy-momentum-stress in the world

is represented by the energy-momentum tensor, Tαβ , defined as the flux of α

component of 4-momentum across a surface of constant xβ (since x0 is the time

coordinate, and Tα0 is a 4–momentum density. Yet by symmetry Tα0 = T0α

so it is also a 4–current–density of energy. Thus, for free Maxwell fields in a

locally free-falling frame Tμν is the electromagnetic energy–momentum–stress

tensor (cf. Minkowski and STR entries).

Einstein was striving to relate the curvature of space-time to the dis-

tribution of Tαβ . He found that the only two tensors related to space-time

geometric structure that follow the (covariant) divergence-theorem (local con-

servation) of the energy-momentum tensor (and involve at most 2nd-order

spacetime derivatives of the metric — and is linear in those) are gμν and

Gμν = Rμν − 1
2
Rgμν .

Here Gμν is called the Einstein tensor, Rμν is the Ricci tensor (a

contraction of the curvature tensor), and R = gμνRμν is the curvature scalar
(covariant trace of Rμν). Thus, he set Gμν proportional to Tμν ;

Rμν − 1
2
Rgμν ≡ Gμν = κTμν .

Due to a now–irrelevant cosmological prejudice against an expanding-

universe solution, Einstein later added a term λgμν where λ was called
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the cosmological constant361, thus obtaining the final form of his field equa-
tions as

Rμν − 1
2
Rgμν + λgμν = κTμν

Requiring that this reduce to Newtonian gravity for slowly (v � c) moving
masses, sub-cosmological distances and low spacetime curvatures, it is found

that κ = 8πG
c4 , where G is Newton’s gravitational constant.

If the tensor Tμν is zero everywhere, that is, if there is no matter-energy
in the universe, one solution of the field equations is the Minkowski “flat”
space-time. Another relatively simple exact solution of the field equations
concerns a spherical body in an empty space.

If we consider the sun as a spherically symmetric, finite-radius mass–
energy–momentum–stress distribution, and assume that space is empty
around it, the field equations render the curvature of space-time in that space.
The metric tensor around the sun is called the Schwarzschild metric (1916)

361 The cosmological constant of GTR physically represents the possibility that

there is an energy density and pressure associated with “empty” space. The

relative sign and magnitude of mass–energy density and pressure are dictated

by the STR relativity principle, as applied to the vacuum in locally free-falling

frames. The inclusion of this term (although first allowed by Einstein as a math-

ematical fix) can greatly affect cosmological theories. In its simplest form, GTR

predicts that the universe must either expand or contract. Einstein thought the

universe was static, so he added this new term to balance the self-gravitational

collapse of a uniform dust (pressure-free) universe. Friedmann realized that

this was an unstable solution and proposed an expanding universe model, now

part of the Big Bang theory. When Hubble’s survey of galaxies showed that the

universe was expanding, Einstein regretted having modified his elegant theory

and viewed the cosmological constant term as his “greatest mistake”. The net

effect of a positive cosmological constant is to create a repulsive gravitational

force that acts to expand the universe (eventually at an exponential rate). Also,

λ need not be an actual constant; it is now thought to have been evolving, as a

function of local proper time. Modern field theory associates this term with the

energy density of the vacuum. Modern observational cosmology has revealed

that the cosmological constant today (“dark energy”) comprises about 70% of

the energy density of the universe, implying that the extrapolated age of the

universe is larger then for λ ≡ 0. Adding an early-universe cosmological con-

stant term during a very brief cosmological era (when the proper–time age of

the universe was much less than a picosecond) is a hallmark of inflationary

models (a class of extensions of the Big Bang theory); such models appear to be

consistent with the observed large-scale distribution of galaxies, and with the

observed microwave background fluctuations.
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and corresponds to a line element which, in a particular system of polar co-
ordinates (one of many!) is

ds2 = c2
(
1 − rs

r

)
dt2 − dr2

(
1 − rs

r

) − r2(dθ2 + sin2 θdϕ2)

where rs = 2GM
c2 is the Schwarzschild radius.

We observe that if the total mass M of the body which gives rise to the

gravitational field is very small, relative to rc2

G at a given distance r from
the body’s center of symmetry, space-time geometry is approximated there
by the Minkowski space-time. As a next step we omit terms of relative order

1
c2 assuming that 2GM

c2 � r, and obtain

ds2 ≈
(

c2 − 2GM

r

)

dt2 − dr2 − r2(dθ2 + sin2 θdϕ2).

When working with this line-element to lowest order in GM
c2r this is the New-

tonian approximation, because it reproduces the results of Newton’s theory
for the motion of the planets. That is, in this approximation the orbits of
the planets are the ellipses given by Newton’s law of gravitational attrac-
tion. However, gravitational red-shifts already appear, even at this level of
approximation (although no gravitational bending of light).

Einstein did not ‘derive’ his field equations from pre-existing principles,
nor was he guided by a need to explain particular sets of experimental data
or observations. He was guided only by his quest for two abstract ideals:
beauty and simplicity. The equivalence of gravitational and inertial mass and
the need to make all the equations independent of any particular choice of
coordinates were basic requirements as well as the conditions that Newton’s
theory be recovered in the small-G, large-c regime; and that STR be locally
recovered in the fixed −c, G → 0 limit.

The second and fourth of these four conditions are met automatically
through the general covariance of GTR, and the fact that it predicts a vanish-
ing Riemannian curvature at spacetime regions far from matter and energy.
The first condition was met by requiring that the dynamic paths of bodies be
geodesics in a pseudo-Riemannian space-time whose curvature is determined
by the distribution of mass-energy. And we have just seen how the 3rd con-
dition is verified (although this needs to be, and has been, generalized to any
non-symmetric mass distribution).

As an added Occamian bonus, Einstein and Infeld have shown that the
geodetic motion of test particles is a consequence of the field equations!
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As mentioned above, one may always add to the gravitational field equa-
tions (as to the covariant matter equations of motion) an infinity of non-
minimal terms which cannot be determined by the principles discussed here.

The Einstein field equations in the presence of matter-energy are the sim-
plest possible under the above postulates of GTR, but they lack the stark
beauty of the empty-space field equations, since the source term (proportional
to the energy-momentum tensor) is non-geometrical. It is this esthetic and
conceptual blemish that unified theories, from Kaluza-Klein to superstring
models, have sought to redress.

In 1919 Einstein suggested that perhaps electrically-charged particles are
held together by gravitational forces, such that electromagnetism constrains
gravitation. This idea may be considered Einstein’s first attempt at a unified
field theory362. Since this idea implies that the energy momentum tensor Tμν

362 Einstein did not contribute much to the progress of physics after 1926: the last

thirty years of his life were largely devoted to a search for a so-called Unified

Field Theory that would unify Maxwell’s theory of electromagnetism with GTR.
Einstein’s attempt was not successful, and with hindsight we can now see why

this was so: electromagnetism and gravitation were the only forces that were

known when Einstein was young, but we know today that there are other kinds
of forces in nature, including the weak and strong nuclear forces. Indeed, the

progress that has been made toward unification has been in unifying Maxwell’s

theory of the electromagnetic force with the theory of the weak nuclear force,
not with the theory of gravitation, which is a much harder problem to solve.

A solution of the coupled Einstein–Maxwell (EM) equations representing a
source possessing mass, electric charge, and an angular momentum was given by

E.T. Newman (1965). The solution has a ring singularity on a circle lying in

a plane normal to the direction of the angular momentum. F.J. Ernst (1968,
1974) showed that the coupled EM equations can be reduced to the solution of

two coupled equations for a pair of complex potentials E and Φ

(Re E + ΦΦ∗)∇2E = (∇ E + 2Φ∗ ∇Φ) · ∇ E

(Re E + ΦΦ∗)∇2Φ = (∇ E + 2Φ∗ ∇Φ) · ∇Φ

In 1925, Einstein missed the opportunity of predicting the positron (antielec-

tron) before P.A.M. Dirac. In his paper entitled Electron and General Rel-
ativity he proved that for every elementary particle of mass m and charge e

there must exist an “antiparticle” of the same mass m but with charge −e. If

only Einstein had interpreted his theorem to mean that alongside the negative
electron there must also exist an as yet undiscovered positively charged “an-

tiparticle” of identical mass, he would have predicted antimatter! This was left

to P.A.M. Dirac in 1928.
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is due purely to electromagnetism, Maxwell–Minkowski energy-momentum-
stress tensor is substituted for Tμν in Einstein’s field equations. The result is
known as the Einstein-Maxwell equations. In 1927, Einstein wrote a further
short note on the mathematical properties of this model, but never returned
to it again. Others, however, have continued since then to seek solution to
this hybrid theory.

Light rays follow curvilinear paths in space (and spacetime) when bent in
the presence of gravitational fields, and their velocity may vary accordingly
(although not as reckoned by a locally inertial frame!). Thus, GTR extends
the Faraday-Maxwell field concept as it does the Galilei-Newton principle of
equivalence.

The GTR has much to say about the possible structure and history of
the universe as a whole. In 1917, Einstein began to apply his theory to the
large-scale features of the entire universe. At that time, this was a bold step,
because it was not yet known whether there was anything but void outside
our own Milky Way galaxy. Thus, the Andromeda galaxy (then called a neb-
ula) was still believed to lie inside the Milky Way. Yet Einstein assumed
that the universe could be idealized as a homogeneous distribution of matter.
Eventually, this assumption was seen to be valid, at least to first approxima-
tion. For a variety of philosophical reasons, he chose a model for the universe
having a 3D geometry that is spatially closed (in the sense of a spherical sur-
face: finite but unbounded), and for which both 3-geometry and mean–energy
distribution are static (unchanging with time).

Since his theory did not admit static solutions, but only expanding or con-
tracting universes, he felt compelled to modify the original field equations by
adding an ad hoc term called the cosmological constant term363. The modified

Other ramifications of GTR are:

• Feynman derived the Einstein Field Equations without the use of curved mass-
less space. He only assumed the equivalence principle and the existence of a

spin-2 (dyadic) graviton field, minimally coupled.

• Using an idea of Einstein-Infeld (1932–1934), A. Papapetru generalized the

relativistic point-mass into a small extended particle, obtaining a relativistic

version of McCullagh moments–expansion. He achieved this via a multipolar
expansion for the motion of a small mass in an external field. The first term

is a geodesic and the second term in the momentum expansion is the first

interesting one.

363 Ad hoc yet unique: it is the only term that can be added to Einstein field

equations without violating any of his assumptions and principles, although it

does have an undetermined constant coefficient – the cosmological “constant”,

which is now knows to actually exist and to not be constant (it varies with the
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equations did accommodate a static universe. The discovery of cosmological
expansion by Hubble and his colleagues in the 20’s seemed to obviate the
need for this term, but its small observed value (discerned only in the 1990’s)
remains an enduring mystery for cosmologists and particle theorists to re-
solve.364

The non-linear field equations of GTR can accommodate a variety of math-
ematical solutions, among which physicists must choose those that can be
verified by observations. Cosmological solutions applying to the universe as
a whole and based on the assumption that the large-scale structure of the
universe is uniform (homogeneous and isotropic) are said to obey the ‘cosmo-
logical principle’.

Before relativity, Lorentz had conjectured (1900) that gravitation “can be
attributed to action which does not propagate with a velocity larger than
that of light”. The term gravitational wave (onde gravifique) appeared for
the first time in 1905, when Poincaré discussed the extension of Lorentz in-
variance to gravitation. In June 1916, Einstein became the first to cast these
qualitative ideas into explicit forms, showing that gravitational waves are a
direct consequence of the GTR field equation. In standard Newtonian theory,
gravitational interaction between two bodies in instantaneous, but according
to STR this should be impossible, because no process can propagate with a
velocity higher than c. Since GTR was designed to be compatible with STR,
it must incorporate such a limiting velocity for gravitational interaction.

It was not until the 1960’s, with the revival of astronomical interest in
GTR, that physicists began to look for ways and means to detect gravita-
tional waves.

Einstein was greatly influenced by Spinoza, to whom he is bound ide-
ologically and philosophically. In fact, Einstein completed the Copernican
revolution and the work which Spinoza had started, namely: destroying the
mechanistic, anthropocentric concepts of a dogmatic universe and adopting a
holistic-deterministic view into which space (geometry), time and matter are
integrated. Yet he said: “The most incomprehensible thing about the world
is that it is comprehensible”.

local, proper–time age of the universe). It is believed that when we know the full,

correct quantum field theory (including gravitation) governing the evolution of

our observable universe, it will be possible to predict the cosmological evolution

of this term in Einsteins GTR field equations.
364 Generic quantum field theories predict a value of λ so large as to explode

any macroscopic sample of matter, and space itself, to emptiness within a small

fraction of a second. The observed value of λ is extremely small in comparison.
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He sided with Newton in the matter of causality: “It is only in the quantum

theory that Newton’s differential method becomes inadequate, and indeed

strict causality fails us. But the last word has not yet been said”.

Einstein was motivated by the quest for simplicity (Occam’s Razor),

beauty and unity and he was unique among scientists of the 20th century

in the degree to which his work bears the mark of his individual identity.

Asked how he would have felt had there been no experimental confirmation

of his general theory of relativity, Albert Einstein remarked, “Then I would

have felt sorry for the dear Lord — the theory is correct”365,366.

365 Planck embraced STR and was the first to apply relativity to quantum theory.

But when Einstein told him in 1913 what he was trying to accomplish in his

GTR, he reacted: “As an older friend I must advise you against it for in the first

place you will not succeed, and even if you succeed, no one will believe you”.
366 Most physicists today agree that GTR must be modified in order to accom-

modate the consequences of Big-Bang theory, singularities due to gravitational

collapse, (if true) quantum field theory and string theory:

• Big-Bang theory, combined with the singularity theorems of Hawking and
Penrose (1973–1980), lead to the conclusion that unless GTR is modified,

there existed (early enough in the history of the Universe) places and times

at which physical quantities (density, pressure, temperature etc) diverge —
an unacceptable attribute of any physical theory (such divergences are called

“singularities”). This problem also arises in the GTR description of the for-

mation of Black Foles in the gravitational collapse of heavy stars and galactic
centers.

• Since, by the equivalence principle, all forms of matter couple to the metric

tensor, the existence of any quantum field leads automatically to modifications

of Einstein field equations caused by quantum vacuum fluctuations. It is well
known that finite “radiative corrections” to GTR can eliminate singularities.

However, no one has been able to tame the short–distance divergences in

any quantum version of GTR, so we do not yet know how to compute such
radiative corrections.

• The currently popular String Theory of quantum gravity modifies the field con-

cept, by replacing point-particles with extended strings. This tends to smear

any singularity over a finite region of spacetime, and there is mathematical
evidence that this might render all physical quantities finite. However three

decades of intense work by thousands of people has not yet unified these sce-

narios into a single, well–defined and predictive theory, and there is recent
evidence that string theorists are despairing of ever achieving this goal, or of

making contact with experiment.
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Experimental Tests of General Relativity (1919–1975)

Because the effects predicted by GTR are very small in the solar vicinity,
they are difficult to establish experimentally. However, the so-called ‘crucial
tests’ (predicted by Einstein himself ) have been confirmed with reasonable
accuracy. They are:

(1) The perihelion advance of Mercury.

(2) The relativistic red-shift.

(3) The gravitational deflection of starlight rays grazing the sun.

These three tests of GTR are not equally stringent: (2) only tests the weak
equivalence principle, while (1) and (3) also test Einstein’s field equations367.

We next review the status of these tests, and others devised later.

The earliest attempts to provide experimental proofs of GTR were made
by Einstein’s disciple, assistant and colleague, the astronomer Erwin Fin-
lay Freundlich368 (1885–1964, Germany and Scotland), during 1911–1918.
Years before the theory was perfected and published in 1916, Einstein was ad-
vising and encouraging Freundlich, an astronomer at the Royal Observatory
in Berlin, to conduct experiments to measure effects (1) and (3) that could
prove or disprove his revolutionary concept of space, time and gravitation.
Freundlich was perhaps the first scientist to become thoroughly acquainted
with the fundamental principles of Einstein’s theory. As such he was a mod-
erately important figure in Einstein’s career during its early years.

367 The qualitative fact that light is deflected in a gravitational field, though, does

follow from the equivalence principle alone. This can easily be seen by con-

sidering a small, freely falling frame in which we shine a beam of light. The

equivalence principle then demands that the beam describes a straight line in

this frame, which implies that the beam is bent in a non-inertial frame.
368 Freundlich was born in Biebrich, Germany to a German father and Scottish

mother. After earning a doctorate at Göttingen University, he went to work

at the Berlin Observatory, where he was introduced to Einstein, who at the

time was having trouble finding astronomers to search for experimental proofs

to his still unpublished general theory. In 1918, Freundlich became Einstein’s

full-time assistant. After the war time he raised money to establish the Einstein

Observatory in Potsdam, becoming its first director and working alongside Ein-

stein. Freundlich left Germany after the Nazis came to power and wound up

his career as an astronomer at St. Andrew University in Scotland.
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Freundlich’s telescopic studies between 1911 and 1913 confirmed that Mer-
cury’s position conformed to Einstein predictions based on the equations of
GTR as they pertained to the sun’s gravitational effect in warping space-time.
These Mercury results left Einstein speechless for several days with excite-
ment, but remained controversial until they were duplicated by Eddington
(1916).

In 1914, Freundlich was in Russia on his way to the Crimea to observe
a total eclipse of the sun, to test (3), when the outbreak of WWI canceled
the whole project. Not until 1919 was the crucial eclipse test conducted by
Eddington, applying the very technique elaborated by Freundlich in 1914.
(Eddington later said: “It seems unfair that Dr. Freundlich, who was first in
the field, should not have had the satisfaction of accomplishing the experi-
mental test of GTR”.)

Freundlich drew attention to test (2), though he lacked the facilities for
making the necessary observations.

A. Perihelion/Periastron advance of planets or stellar companions

Astronomical observation show that the elliptical orbit of the planet Mercury
rotates in its plane of motion about 5, 599.7 seconds of arc per century. Using
Newtonian mechanics, one can ascribe this phenomenon to the perturbing ef-
fects of other planets, mostly Venus, and obtain a theoretical value of 5, 557.2
seconds of arc per century. The difference of about 43′ ′/century, has puzzled
astronomers since 1860. An oblateness of the sun amounting to .028 percent
could account for this “anomalous” precession, but would lead to additional
phenomena which have not been detected.

Einstein has shown that GTR predicts an added ΔΦ = 43′ ′/century

[ΔΦ = 6πGM/ac2(1− e2) per revolution, with M the solar mass, GM/c2 = 1.4

km, a = 58 × 106 km, (semi-major axis of Mercury’s orbit), and e = 0.2 (that
orbit’s eccentricity)]. Other planets, such as Venus or earth, have smaller
GTR-caused precession rates; Mercury is most suitable because of its prox-
imity to the sun.

In 1972 Irvin I. Shapiro (b. 1929, U.S.A.) et al., succeeded in a deter-
mination of the anomalous perihelion advance of Mercury, after five years of
observation with Haystack (Massachusetts) and Arecibo (Puerto Rico) radio
telescopes. They found that the observed and GTR-calculated values agreed
to within the uncertainty of the observation (∼ 2%).

In 1975 Hulse and Taylor measured the periastron advance of the binary
pulsar, PSR 1913 + 16, and found it to agree with the GTR value within the
observational error. Further observations of this system over the following
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two decades, have improved the agreement.What is more, Hulse and Tylor
found an additional anomalous effect in this stellar system – a slow secular
orbital decay unaccounted for by any known process – which agrees very well
with kinetics energy loss due to gravitational-wave radiation as predicted by
GTR.

Previously, Clemence (1947) showed that the Mercury precession pro-
duced by the solar oblateness is negligible because of the non-uniform density
of the sun, but the final verdict is not yet in on this issue.

B. Gravitational time dilation (red shift)

According to GTR, the gravitational field effects the rate of clocks [‘clock’ in
this context stands for any localized time measurement procedure], such that

Δτ2 = Δτ1

[
1 + ΔΦ

c2

]
where ΔΦ is the change in gravitational potential369

difference between clock II (time interval Δτ2) and clock I (time interval
Δτ1).

Hence, if clock II is at the higher potential (ΔΦ > 0), then Δτ2 > Δτ1.
The signals sent out from clock I at (say) one-second intervals, are measured
by clock II to arrive at intervals larger than one second. Clock I, which is
closer to the source of the field, is thus observed to run slow . If the two
clocks are near the earth’s surface, ΔΦ ≈ g(Δr) where Δr is the vertical
distance (altitude difference) between the clocks. If we denote Δτ1 = T ,

Δτ2 − Δτ1 = ΔT , the above relation will yield ΔT/T ≈ g Δr
c2 , which can be

verified experimentally with modern atomic clocks. In terms of clock-rate, or

frequency, Δν
ν ≈ −∇T

T ≈ −g Δr
c2 .

369 Gravitational potential is a Newtonian concept. What is meant here is that,

when the two clocks are infinitesimally close and at rest in a static space time

which is nearly Newtonian (such as that outside the sun), then their rates are

related in the above manner – which follows simply from the weak equivalence

principle (no need to invoke the field equations).

By considering a string of neighboring clocks, we can define Δτ2/Δτ1 for any

two stationary clocks, even far apart. The relation Δτ2 = Δτ1

[
1 + ΔΦ

c2

]
is

then modified to Δτ2 = Δτ1

√
g00(2)
g00(1)

. In the ‘post Newtonian’ (weak gravity)

approximation, which holds in the solar system, g00(r) ≈ 1 + 2Φ(r)

c2
, and the

previous expression is recovered.
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It then follows that a periodic signal emitted at r1 in step with the ticking
of clock I, will appear to have reduced its frequency when it arrives and is
measured at r2 by clock II. In particular, the spectral lines in the light emitted
by an atom placed deep in a gravitational potential, should be found to be
red-shifted when compared with the spectral lines emitted by an identical
atom placed at higher in the potential370.

The experimental tests of this effect serve as direct evidence that space-
time is not flat but curved. Two kinds of earth-bound experiments were
performed. In the first, by Pound and Rebka (1959), an emitter of γ-rays
(the isotope Fe57) was placed at ground level, and these γ-rays detected via
absorption by another Fe57 sample, placed at the top of a tower Δr = 22.6 m

above the emitter
[ ∇ν

ν = −g Δr
c2 = −2.46 × 10−15

]
. The measurement of such

a small frequency shift necessitates a high-Q resonant absorption of Fe57; the
experiment thus relies on the Mössbauer effect to prevent shifts of the γ’s
energy through recoil of the nuclei during emission or absorption. The most
recent version of the experiment (Pound and Snider, 1964) gave the result
(Δν)exp/(Δν)theo = 1.00 ± 0.01.

In the second kind of experiment, J.C. Hafele and R.E. Keating (1972)
took Cesium-beam clocks on flights around the world in commercial jets.
The clocks, carried to high altitude by the aircraft, were found to have
gained time when brought back to a laboratory clock that stayed on the
ground [purely gravitational ‘gain’ was obtained from the ‘apparent gain’ af-
ter subtracting special relativistic time-dilation (‘kinematic correction’)]. Here
(Δν)exp/(Δν)theo = 0.9 ± 0.2.

Gravitational red-shifts have also been measured for light emitted by atoms

on the surface of the sun
[

Δν
ν = −GM�

R�c2 = −2.12 × 10−6
]

by J.W. Brault

(1962) and J.L. Snider (1971), and found to be in good agreement with
theory. Greenstein et al. (1971) measured red-shifts of H lines on Sirius B,
with a figure of merit 1.07 ± 0.2.

Such measurements are sometimes difficult, since the gravitational red-
shift is masked by large and uncertain kinematic Doppler shifts.

370 In other words: the wavelength of light should be increased while climbing

a strong gravitational well such as the sun’s, owing to a loss of some energy

by photons (recall E = hν) as the light or any other radiation escapes the

gravitational field.
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C. Deflection of light by the gravitational field of a star

The GTR value for the angular deflection of light that passes at distance b ≥ R
from the center of a spherical mass M of radius R, is α = 4GM/c2b radians.
For a ray grazing the limb of the sun, this amounts to 1.75 seconds of arc. A
simple calculation of this effect, based on Newtonian gravitation theory371and
the corpuscular theory of light (Soldner, 1801), yielded half the above value.
[He evaluated the transverse momentum acquired by a photon in passing the
sun, by integrating the component of the gravitational force normal to the
approximated linear trajectory.]

The first relevant astronomical measurement was done by A. Eddington
and Frank Dyson during the solar eclipse of May 29, 1919 on the islands of
Sobral (off Brazil) and Principe (Gulf of Guinea). They photographed the star
field around the sun during total eclipse, and measured the displacement of
star image relative to those on plates taken when the same stars are supposed
to appear in the same place in the night sky (about six months later or earlier).
The observational problems were:

(1) observations are limited to b > 2R because of glare from the Corona;

(2) ‘paths of totality’ for solar eclipses usually do not pass through observa-
tories with big telescopes;

(3) it is necessary to compare separate plates acquired and developed inde-
pendently at an interval of some months.

During that time the magnification of the system must be kept constant to
within one part in 104! Because of the extreme difficulty of the experiment, the
systematic errors are much larger than the errors indicated by the consistency
of the data.

The experiment has been performed 12 times in the interval between 1919
and 1973, and the results have the spread 1.3′ ′–2.7′ ′. It may be taken as
consistent with α(R) = 1.75′ ′ to within an error ∼25%.

More precise results have been obtained during 1970–1975 with the use of
radio-waves rather then optical light. In this case it is not necessary to wait
for an eclipse; rather one must wait for the sun’s limb to approach a radio
source. Results were consistent with α(R) = 1.75′ ′ with errors ∼10%, and

371 Newton, in the appendix to his book Opticks (1704) asked:

“Do not bodies act upon light at a distance, and by their action bend its rays,

and is not this action, strongest at the least distance?”

In view of Newton’s concept of light as a stream of minute particles, this seemed

a reasonable question.
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provided evidence against the Brans–Dicke scalar-tensor theory of gravitation
(an alternative to GTR).

The technology of these radio-wave measurements utilized long baseline
interferometry to determine the change in the apparent position in the sky
of the quasar372 3C279 during its annual occultation by the sun (October 8).
The relative phase of the signals received by two radio telescopes is moni-
tored during occultation and compared with the relative phase of the signals
received from the quasar 3C273 when it is not occulted, and is 9.5 ◦ away from
3C279. The wavelengths used are in the range 3–15 cm, and most baselines
are in the range 1–845 km.

372 Quasars: With the advent of new radio telescopes in the late 1950s and the

improvement of the techniques for using them, radio astronomers were able to

map more accurately the coordinates of radio sources in the sky.

In 1960, Thomas Matthews (CalTech, U.S.A.) discovered the first QUASAR

denoted 3C48 (Quasi-S tellar Source; a double misnomer since they are quasi-

stellar only in the sense that they were first mistaken for stars, and most are

not radio sources. By the time that quasars were better understood, it was too

late to change the term).

Allan Sandage (U.S.A.), Jesse L. Greenstein (U.S.A.) and Maarten

Schmidt (U.S.A.) investigated the line spectra of observed quasars and found

that the lines could be identified, provided huge Doppler red-shifts were as-

sumed. These in turn indicated that quasars could be among the most distant

objects known — billions of light years away. An absorption line in the 21

centimeter region showed that quasars were indeed beyond the hydrogen cloud

constellation Virgo (40 million light years away). It was deduced that quasars

must be of small volume but extraordinary luminosity (30 to 100 times that of

an entire typical galaxy) to be able to emit such huge quantities of microwaves

and visible light.

The possibility that quasar red-shifts were not caused by Hubble–expansion ve-

locity at all but were gravitational in origin (GTR effect) was dismissed since

no characteristic side effects supporting it were observed. The year 1960 also

saw the establishment of the Kitt Peak National Observatory (Arizona, U.S.A.;

2096 m). It houses the largest solar telescope in the world (146 m diameter): It

uses a system of three mirrors to produce a real image of the sun that is 86 cm

in diameter. A flat mirror, called a ‘heliostat ’, 208 cm in diameter, follows the

path of the sun. It reflects the sun light to a curved mirror 152 cm in diameter

at the bottom of the 146 m telescope shaft. Another mirror reflects the sun’s

image into an observing room. Astronomers use the telescope to study sunspots

and solar flares, both of which affect radio communication on earth.

In 1973, an optical telescope with a main mirror of 401 cm in diameter started

to operate for the study of faint galaxies, quasars and other objects important

to man’s understanding of the universe.
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D. Retardation of light

GTR predicts that gravitation reduces the speed of propagation of light sig-
nals grazing the sun (this velocity change is frequency independent — no
dispersion]. This is an “effective” retardation, measured with respect to
asymptotically-Minkowskian standards of time and length, far from the source
of the gravitational field. An observer measuring the speed of light in situ,
near the sun, with local clocks and length standards, would find the usual
speed of 3 × 1010 cm/sec. The theoretical extra time delay for the round
trip of a sun-grazing radar signal bounced off one planet from another is{
2GM log 4z1z2

b2

}
, where b is the grazing distance (closest radar-beam ap-

proach to sun’s center) and z1, z2 are the distances of the two planets from
the sun (they are assumed to be on diametrically opposed sides of the sun).

For the earth-sun-Mercury system the maximum possible extra time delay
is about 0.11 milliseconds. To compare this value with experiment, one must
make a correction to convert the above expression to proper time on earth
by multiplying it by

{
1 − GM

rc2

}
, where r is the radius of the earth’s orbit.

In addition, since the earth is moving, the time-dilation of special relativity
must also be taken into account. Further, non-gravitational corrections must
be made for the change of velocity of propagation of the radio signal caused
by the solar corona and interplanetary plasma.

Shapiro et al. (1968, 1971) measured delays of radar echoes from Mer-
cury, Venus and Mars, using the Haystack and Arecibo radio telescopes. The
theoretical and experimental values agreed to within two percent.

E. Gyroscopic precession

This test of GTR was proposed by Georg E. Pugh (U.S.A.) and Leonard
I. Schiff (1905–1971, U.S.A.) in 1959.

The experiment (launched in spring 2004 and still taking data) consists of
two gyroscopes in a 800-km polar orbit around the earth (period of revolution
� 1.5 hours). The first gyroscope, with its spin axis in the orbital plane, is
subjected to the so-called ‘geodetic precession’, namely a slow rotation of its
inertial spin axis relative to the inertial axes at infinity (or the background
microwave radiation frame, or some fixed stars373) about the normal to the
polar orbital plane. The direction of this ‘precession’ is in the same sense as
that of the orbit, i.e.: after one orbit, the direction of the gyroscope axis has
rotated relative to its initial direction in the same sense. The cumulative net

373 In the actual experiment, an on-board telescope is used to measure the preces-

sion w.r.t. a star.
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effect over one year (5000 orbits) is ∼ 6.9 arcseconds374. It amounts to a full
rotation of 360 ◦ in 200, 000 years. This effect depends only on the earth’s
mass but not on its spin.

The gyroscope is in a freely falling frame, but the principle of equivalence
[which translates the problem into an equivalent STR one in a locally flat
inertial frame, in which the spinning mass is instantaneously at rest] must
be applied with caution, since the ‘Einstein elevator’ has a window through
which the telescope watches a fixed star! In fact the non-flat metric causes
the gyroscope to precess at a rate that is three fold faster than the ordinary,
(STR) Thomas precession.

The second gyroscope has its spin axis parallel to the equatorial plane of
the earth and normal to the plane of its orbit around the earth. A classical
GTR spin-orbit interaction cause the gyroscope’s spin-axis to rotate slowly

with the angular velocity vector Ω = G
c2r3 [3er(er · J) − J ], where er is a unit

radius vector from earth’s center to the gyro and J is the angular momentum

vector of the earth. When the gyro is at the pole, Ω = 2G
c2r3 J , and when it

is at the equator Ω = − G
c2r3 J , with the opposite sign. The net precession

is 0.055′ ′ (R
r

)3
sec/year, where R is the earth’s radius. This is precisely

the Lense-Thirring effect of frame-dragging — the partial dragging of the
local, free–falling inertial frames at the gyroscope’s instantaneous location to
the earth’s spin — that can be thought of in terms of the so-called Mach
principle (it also plays the same role for a gravitational orbit as does the
hyperfine interaction in an atomic orbital caused by electromagnetism).

According to this way of thinking, the gyroscope’s inertial frame is acted
upon by the earth: the inertial frame fixed to the gyroscope tries to follow the
rotation (spin) of the earth, but lags behind due to the persistent interference
of the cumulative effect of the entire universe.

The goal of the combined experiment is to measure both the geodetic
precession and the fame-dragging effect to an accuracy better than a milliarc-
second per year, which is of order 2 percent of the smaller frame-dragging
effect. The task of building an orbiting gyroscope laboratory that can mea-
sure such tiny effects has put scientists at the very frontiers of experimental
physics and precision-fabrication technology.

374 The theoretical value of this precession is 3
2

GM
c2r2

√
GM

r
≈ 6.9′′/year, where M, r

are the earth’s mass and the gyro’s orbital radius, respectively. The above

expression can also be written as
(

R
r

)5/2 × 8.4′′/year, R being the earth’s

radius.
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The gyroscopes are spheres of fused quartz, about 4 cm in diameter. Their
uniformity in shape and density must be better than one part in 107 in order
to prevent interaction of stray gravitational forces with material irregularities,
which can cause enormous precessions375 relative to the effects sought. The
gyros are coated with a thin uniform layer of niobium, a material that becomes
a superconductor when cooled to temperatures approaching absolute zero.
Eddy currents trapped in this layer create a magnetic field that is aligned
with the spin axis of the ball.

Very precise (so called SQUID) magnetometers, also utilizing superconduc-
tors and likewise operating near absolute zero, can determine the orientation
of the magnetic field, and thereby the spin axis. The gyros are suspended in
free fall to keep them away from the walls of the satellite. A liquid helium
Dewar surrounding the gyros keeps the balls at the required low temperature.
Each ball is sprayed tangentially with tiny jets of helium, using friction to set
them spinning. The air around the gyros was pumped, so that they spin in
an almost perfect vacuum; their rotation should slow down by less than one
part in 103 per year.

Since the gyros precess relative to distant stars, a very accurate telescope
aboard the spacecraft is constantly kept trained on the bright star Rigel in the
constellation Orion. The instantaneous orientation of the gyros is continually
determined relative to this fixed direction to the desired milliarcsecond-level
(per year) precision.

This experiment is believed to be the most important ever to be performed
in space, and a crucial test for GTR. In recent years there was a growing feeling
among physicists that GTR has never been completely verified. The difficulties
encountered in unifying it with quantum mechanics and its mathematical
complexity added to the feeling that the theory is incomplete376. It is hoped
that the result of this experiment may help to decide some of these crucial
issues, although no mere post-Newtonian measurement is likely to shed much
light on the puzzles of quantum gravity.

375 If any of these spheres could be inflated to the size of the earth, its highest

mountain would not surpass 64 centimeters!
376 Although some physicists believe that it is quantum mechanics which is to blame

for the difficulties in unification, and that gravitational physics must underline

quantum mechanics itself!
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F. Black holes377

A black hole is a self-gravitating object whose gravitational field is so strong
that even light cannot escape. The event horizon is the surface where light
loses the ability to escape from the black hole. Nothing that crosses to the
interior of the event horizon can ever get back out again — not even light.

Black holes can be created by the gravitational collapse of large stars that
are at least twice as massive as our sun. Normally, stars balance the gravita-
tional force with the pressure from the nuclear fusion reactions inside. When
a star gets old and burns up all of its hydrogen into helium, and then fuses
the helium into heavier elements (carbon, oxygen, and eventually iron and
nickel), it can have three fates. The first two fates occur for stars less than
about twice the mass of our sun (and one of them will be our sun’s eventual
fate). These two fates both depend on the fermionic (Pauli-exclusion) repul-
sion pressure prescribed by quantum mechanics –two same – species fermions
cannot be in the same quantum state at the same time. This means that the
two possible stable destinies for the collapsing star will be:

(1) A white dwarf supported by the fermionic repulsion pressure of the
electrons in the heavy atoms in the core.

(2) A neutron star supported by the fermionic repulsion pressure of the
neutrons in the nuclei of the heavy atoms in the core (all the protons
having been ‘squeezed’ into reverse-beta-decaying to neutrons, positrons
and neutrinos by the collapse pressure).

If the mass of the collapsing star is too large (bigger than twice the mass
of our sun), the fermionic repulsion pressure of the electrons and the neutrons
are not enough to prevent the ultimate gravitational collapse into a black hole.

The estimated age of the universe is several times the lifespan of an average
star. This means there must have been many stars heavier than twice the
mass of our sun that have burned their nuclear fuel and collapsed since the
universe began. Our universe ought to contain many black holes, if the model
that astrophysicists use to describe their formation is correct. Black holes
created by the collapse of individual stars should only be about 2 to 100
times as massive as our sun.

377 For further reading, see:

• Shapiro, S.L. and S.A. Teukolsky, Black Holes, White Dwarves and Neutron

Stars, Wiley, 1983, 645 pp.
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Another way that black holes can be created is the gravitational collapse
of the center of a large cluster of stars. These types of black holes can be very
much more massive than our sun. There may be one of them in the center
of every galaxy, including our galaxy, the Milky Way. There is one in the
middle of the galaxy called NGC 7052, surrounded by a bright cloud of dust
3,700 light-years in diameter. The mass of this black hole is about 300 million
times the mass of our sun.

The Schwarzschild solution (1916)

Certain problems in GTR can not be treated by a linear approximation of
the field equations and require an exact solution. The first and most important
exact solution was found by Schwarzschild (1916). It is a metric for the
spacetime around a spherically symmetric mass distribution of total mass m.

Near a body of mass m (e.g., the sun), spacetime is curved. The world
lines of particles and lightrays in the gravitational field of m are approximately
geodesics.

To find these, it is necessary to know the metric tensor gμν in some useful
coordinate system. We choose x0 to be the time and (x1, x2, x3) to be some
type of spherical polar coordinates (r, θ, φ) with the mass m at the origin 0.

Thus, we have a series of concentric spheres which, in a flat 3D space,
would have radii r and surface areas 4πr2. If m were zero spacetime would be
flat and Minkowskian and thus, from STR, the pseudo–norm of the separation
of two infinitesimally close events would be

ημν ΔxμΔxν = (Δt)2 − 1
c2

[
(Δx)2 + (Δy)2 + (Δz)

]
= (Δt)2 − (dσ)2

c2
(1)

with gμν = ημν , the Minkowski metric tensor. For m = 0 the 3-space is
Euclidean, and it has the metric

(dσ)2 = (dr)2 + r2
[
dθ2 + sin2θdφ2

]
. (2)

If we can now ‘switch on’ the mass m, two things happen: the position
(3D) space become curved, so that the r-spheres no longer have radii related
to the respective areas via A = 4πr2; and clocks on each r-sphere are no



3368 5. Demise of the Dogmatic Universe

longer observed from other r-spheres to run at the same rate. To allow for
these effects we write the separation pseudo–norm as

gμν ΔxμΔxν = e(r)(Δτ)2 − 1
c2

[
f(r)(Δr)2 + r2(Δθ)2 + r2sin2θ(dφ)2

]
, (3)

where e(r) and f(r) are positive functions to be determined, subject to the
boundary conditions that far from m spacetime is asymptotically flat, so that
e(∞) = f(∞) = 1. We have chosen a coordinate system where a 3-sphere of
radius

√
f(r) has area 4πr2.

Schwarzschild, by rigorously solving the Einstein field equations, obtained

e(r) = 1 − 2Gm

c2r
; f(r) =

1
1 − 2Gm

c2r

(4)

The corresponding metric tensor, known as the ‘Schwarzschild metric’, is

gμν =

⎛

⎜
⎜
⎜
⎝

1 − 2Gm
c2r 0 0 0

0 − 1/c2

1− 2Gm
c2r

0 0

0 0 − r2

c2 0
0 0 0 − r2 sin2 θ

c2

⎞

⎟
⎟
⎟
⎠

(5)

and

gμν δxμδxν = dτ2 =
(

1 − 2Gm

c2r

)

dt2− 1
c2

(
dr2

1 − 2Gm
c2r

+ r2dθ2 + r2sin2θdφ2

)

(6)

In (6), dt is the interval of time between two events at the same distance
from the mass centroid (e.g. events aboard a spaceship held at fixed r by firing
its rockets towards the r = 0 mass centroid), as measured by an observer
using a clock which is in a region remote enough that space-time is effectively
flat. However, dτ (when a real number) is the proper time interval measured
on a clock carried by someone moving in such a way as to be present at the
two events labeled as (t, r, θ, φ) and (t + dt, r + dr, θ + dθ, φ + dφ). (This is
only possible if the two events have a timelike separation: dτ2 > 0.)

Note that the metric components do not depend on time, and so the
Schwarzschild metric is static. It can, however, be shown that even when the
mass distribution is undergoing spherically symmetric radial motions or flows,
the external structure of space-time is described by the Schwarzschild metric
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and is hence static. This result applies in the case of a stellar core collapsed to
a neutron star or to a black hole while maintaining perfect spherical symmetry.

Furthermore, it is believed that the gravitational collapse of any nonrotat-
ing, electrically neutral star will necessarily lead to the Schwarzschild geome-
try; any deviation from the symmetric field will ultimately be radiated away
in the form of gravitational waves.

The solution in the interior of a mass distribution can be carried out
analytically only in some exceptional cases, such as the case of a fluid without
pressure (cloud of dust). The solution for the case of matter with a realistic
equation of state can usually only be carried out numerically.

The dimensionless quantity Gm
rc2 appearing in (5) and (6) may be regarded

as a measure of the local strength of the gravitational field. This quantity en-
ters into the formulae for light deflection, light retardation, redshift, perihelion
precession, etc.

Note that the Schwarzschild solution develops a singularity at r → 2Gm
c2

(g00 → 0, g11 → −∞). The quantity

rs =
2Gm

c2
(7)

is called the Schwarzschild radius of the mass. For the mass of the sun (m =
2 × 1033g) we calculate rs = 3.0 km. The corresponding value for earth
is 8.86 mm. In most cases rs is far smaller than the actual radius of the
body concerned. However, the Schwarzschild metric applies only in the space
outside the gravitating body; inside, a different formula holds, and there g11

is not singular at rs. Furthermore, even if the sphere r = rs is exterior to the
mass distribution, it can be shown that the r = rs singularity is only apparent
– an artifact of the coordinate choice. The ‘Schwarzschild singularity’ is thus
unphysical (a small enough object can fall through the event horizon with
no ill effects, though it can never exit again, nor communicate to the outside
universe). However, but a real physical singularity occurs at r → 0 when the
mass distribution is pointlike. That in itself is unremarkable, as it is the case
in Newtonian gravitation too.

However, astrophysicists have calculated that the ultimate stage in the
evolution of stars several times more massive than the sun would be ‘gravita-
tional collapse’. In this process, the star has exhausted its nuclear fuel and no
longer radiates, and the pressure of its matter cannot resist the gravitational
self-attraction of the star, which therefore shrinks down within its Schwarz-
schild sphere at r = rS . Such collapsed stars, and other objects smaller than
their Schwarzschild radii, are called black holes. No known mechanism can
halt such a collapse, and GTR must be somehow modified to describe the fate
of the collapsed energy–matter near r = 0.
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Black holes are very strange objects. Their most astonishing property is
that anything inside the Schwarzschild sphere must fall into the center r = 0.
This applies to the matter constituting the star whose collapse formed the
black hole, and implies that the collapse continues until the star is a point
singularity at r = 0. (The implication holds if general relativity remains valid
in the unimaginably dense and hot conditions near the end point of the col-
lapse. If quantum or other effects intervene, the singularity might be avoided.
However, no consistent theory of ‘quantum gravity’ has yet been devised, and
this is still very much an open question.) Thus, the r = 0 singularity is worse
in GTR than in Newton’s physics, as nothing can prevent it.

The ‘collapse’ property also applies to any light emitted by the star when
its radius is less than rS , and implies that no light can escape, so that these
objects cannot be seen from outside – hence the name ‘black holes’. (This
is not to say that black holes exert no influence on their surroundings; their
gravitational effects on external bodies are perfectly normal, because these
effects arise from the Schwarzschild metric for r > rS .)

The simplest (Schwarzschild) black holes have no angular momentum or
charge. The most general black hole known mathematically has mass, angu-
lar momentum (spin) and electric charge, and is a solution of the Einstein–
Maxwell field equations. Anyone outside a black hole cannot follow what
happens to material or energy once they cross the horizon. This raises the
question of whether it is possible to make any distinction between black holes,
beyond differences in mass.

Hawking (1972) and others have proven rigorously that a full description
of any black hole requires just three parameters; these are the total mass M ,
the total charge Q, and the total angular momentum or spin J of the black
hole. In a neat phrase, black holes are said to ‘have no hair’, which means
that they have no externally observable detailed features

As far as we know, matter on the large scale, and in particular stellar
matter, appears to be electrically neutral – though it is almost always spinning
(and thus, so are astrophysical black holes). The space-time around a neutral,
but rotating collapsed star is described by the Kerr metric (1963).
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Table 5.3: Timeline of Black-Hole Physics

1784 John Michell discussed classical bodies which have escape ve-
locities greater than the speed of light

1795 Pierre Laplace discussed classical bodies which have escape ve-
locities greater than the speed of light

1916 Karl Schwarzschild solved the Einstein vacuum field equations
for uncharged spherically symmetric systems

1918 H. Reissner and G. Nordstrøm solved the Einstein-Maxwell
field equations for charged spherically symmetric systems

1923 George Birkhoff proved that the Schwarzschild spacetime geom-
etry is the unique spherically symmetric solution of the Einstein
vacuum field equations

1939 Robert Oppenheimer and Hartland Snyder calculated the
collapse of a pressure-free homogeneous fluid sphere and found
that it cuts itself off from communication with the rest of the
universe

1963 Roy Kerr solved the Einstein vacuum field equations for un-
charged rotating systems

1964 Roger Penrose proved that an imploding star will necessarily
produce a singularity once it has formed an event horizon

1965 Ezra Newman, et al. solved the Einstein-Maxwell field equa-
tions for charged rotating systems

1968 Brandon Carter used Hamilton-Jacobi theory to derive first-
order equations of motion for a charged particle moving in the
external fields of a Kerr-Newman black hole

1969 Roger Penrose discussed the Penrose process for the extraction
of the spin energy from a Kerr black hole

1969 Roger Penrose proposed the cosmic censorship hypothesis (no
“naked singularities”, i.e. no singularities un-enveloped by event
horizons).
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Table 5.3: (Cont.)

1971 Identification of Cygnus X-1/HDE 226868 as a binary black hole
candidate system

1972 Stephen Hawking proved that the area of a classical black hole’s
event horizon cannot decrease

1972 James Bardeen, Brandon Carter, and Stephen Hawking pro-
posed four laws of black-hole mechanics in analogy with the laws
of thermodynamics

1972 Jacob Bekenstein suggested that black holes have an entropies
proportional to their surface area due to information loss effects

1974 Stephen Hawking applied quantum field theory to black hole
spacetimes and showed that black holes will radiate particles with
a blackbody spectrum, which can cause black hole evaporation

1989 Identification of GS2023+338/V404 Cygni as a binary black hole
candidate system
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1917 CE Gerhard Hassenberg (1874–1925, Germany). Mathematician.
Stressed the advantages of representing tensors as homogeneous invariant mul-
tilinear forms in primary base-vectors (polyadic form), and consequently as
hyper-numbers in the Grassmannian sense.

1917 CE D’Arcy Wentworth Thompson (1860–1948, England). Clas-
sical naturalist and scientist, whose impact thrives in evolutionary biology,
biomechanics and architecture. Was mainly concerned with the explanation
of biological growth and form in physico-mathematical terms and disregarded
the mainstream reductionist approach based on biochemistry and genetics.
He believed that forms are shaped by physical causes , such as gravity, surface
tension etc., and that growth is governed by physical laws.

In his masterpiece On Growth and Form, he pursued the undeniable unity
of living organisms, and tried to reduce all patterns to a single system of gen-
erating forces. He thought of life as always in motion, always responding to
rhythms — the “deep-seated rhythms of growth” which he believed created
universal forms. He seemed to sense what this unity, if proven, might mean
for the science of organic form. Moreover, he argued that mathematical pat-
terns exist in living organisms, and that these patterns must therefore have
mathematical causes!

In this sense, modern biology bypassed him; at the turn of the century,
biology was already turning toward methods that reduced organisms to their
constituent functioning parts: Reductionism prevailed in molecular biology,
everywhere from evolution to medicine. Processes in cells were being inter-
preted in terms of membranes, nuclei, proteins, enzymes and chromosoms.

Against this tide, Thompson valiantly put his credo: “It may be that all
the laws of energy, and all the properties of matter, and all the chemistry of
all the colloids are as powerless to explain the body as they are impotent to
comprehend the soul. For my part, I think not”.

On Growth and Form has become a classic in natural philosophy. Biolo-
gists have conceded that it has had a great, though “intangible and indirect”,
influence. Mathematicians, on the other hand, were and still are fascinated
by Thompson’s considerations.
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Worldview XXXV: D’Arcy Thompson

∗ ∗∗

“The reflection of mathematical beauty is such that whatsoever is most beau-
tiful and regular is also found to be most useful and excellent.”

∗ ∗∗

“Forms are not simply the result of heredity and behavior, but are shaped by
physical forces.”

∗ ∗∗

“We known immeasurably more about the universe than our ancestors did,
and yet it increasingly seems they knew something more essential about it
than we do.”

∗ ∗∗

“Ancients knew the stars far better than we do; our city streets shut out the
sky, and new lamps blind us to the old. Our calendar is ready-made for us,
and ask not how.”

∗ ∗∗

“It behooves us always to remember that in physics it has taken great men
to discover simple things. They are very great names indeed which we couple
with the explanation of the path of a stone, the droop of a chain, the tints of
a bubble, the shadows of a cup.”
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On D’Arcy Thompson

∗ ∗∗

“An aristocrat of great learning whose intellectual endowments are not likely
ever again to be combined in one man.”

Peter Medawar (1958)

∗ ∗∗

“Hovered, as it were, on the fringes of both the scientific and the classical
worlds, making, apparently, no deep impression on either.”

“He ignored chemistry, misunderstood the cell, and could not have pre-
dicted the explosive development of genetics... No modern biologist has to
read him. Yet somehow the greatest biologist find themselves drawn to this
book. This classicist, polyglot, mathematician, zoologist tried to see life
whole, just as biology was turning so productively towards methods that
reduced organisms to their constituent functioning parts. Reductionism tri-
umphed.”

Ruth Thompson (1958)

∗ ∗∗

“Thompson is no Euclid of the plant world, and there is no Thompson’s equa-
tion for an animal. Nonetheless, circumstantial evidence in every corner of the
living world convinced Thompson that there is real mathematical patterns in
living organisms and that the organic world is just as mathematical as the
inorganic world.”

Ian Stewart (1998)
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The mathematics of life378 —

structures, patterns and processes

The universe has its endless gamut of great and small, of near and far of
brief and enduring, of sudden and slow; of many and few. Yet, the physical
laws that govern it, depend to a large extent on the relative scales of the
physical entities that partake in these laws.

It was known already to Archimedes (ca 250 BCE), that in similar figures
the surface increases as the square, and the volume as a cube, of the linear
dimensions. Thus, a fish, in doubling in length and breadth, multiplies its
weight no less than eight times. Some physical forces are proportional to the
surface area of the body on which they act (such as the wind force on a ship’s
sail or the lift of a bird’s wing) or else, like gravity, exert a force proportional
to the volume (actually mass) of the body.

378 For further reading, see:

• Murray, J.D., Mathematical Biology, Springer-Verlag: Berlin, 1989, 767 pp.

• Berg, H.C., Random Walks in Biology, Princeton University Press: Princeton,

N.J., 1993, 152 pp.

• Jones, D.S. and B.D. Sleeman, Differential Equations and Mathematical Bi-
ology, George Allen and Unwin: London, 1983, 339 pp.

• Calder III, W.A, Size, Function and Life History, Dover Publications: New

York, 1996, 431 pp.

• Pavlidis, T., Biological Oscillators, Academic Press: New York, 1973, 207 pp.

• D’Arcy, W. Thompson, On Growth and Form, (Abridged Edition by J.T.

Bonner), Cambridge University Press: Cambridge, 1961, 346 pp.

• Nicolis, G. and I. Prigogine, Self-Organization in Nonequilibrium Systems,

John Wiley & Sons: New York, 1977, 491 pp.

• Vogel, S., Life’s Devices, Princeton University Press, 1988, 367 pp.

• Smith, J. Maynard, Mathematical Ideas in Biology, Cambridge University

Press, 1980, 152 pp.

• Lotka, A.J., Elements of Mathematical Biology, Dover, 1956, 465 pp.
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It was Galileo (1638) who first laid down the general principle of simili-
tude; and he did so with the utmost possible clarity, and with a great wealth of
illustrations drawn from structures in both the animate and inanimate worlds.
He said that if we tried building ships, palaces or temples of enormous sizes,
yards, beams and bolts would cease to hold together; or can nature grow a
tree nor construct an animal beyond a certain size379, while retaining the pro-
portions and employing the materials and design principles which suffice in
the case of smaller structures. The thing will fall to pieces of its own weight
unless we either change its relative proportions (which will at length cause
it to become clumsy, monstrous and inefficient) or else find new materials,
harder and stronger than used before380 (e.g., the discoveries of cement and
steel).

379 A trivial, but amusing, example concerns the size limits on prehistoric creatures.

We know that the largest land animal of all time was the giant sauropod di-

nosaur named diplodocus. It has been compared to a walking suspension bridge

with an overall length of 40 meters, height of 18 meters (as high as a 6-story

building), and weighing about 100 tons. It lived in the Jurassic (208–114 mil-

lion years ago) and became extinct some 65 million years ago. Managing its

vast bulk was partly an engineering problem and partly mechanical, a matter of

force and leverage. It needed powerful muscles, solidly anchored, for walking,

running and eating.

It is clear that the interplay of gravity and the strength of biological materials

imposes limits on the size to which animals can grow. To calculate this we con-

struct the following toy model: A land animal is, basically, a mass (the trunk)

M ≈ ρL3 standing in a column (the legs combined) of height h, having a square

section of side d ≤ L, where ρ is the density.

To support the animal trunk above ground level requires the expenditure of

energy ρhd2Q, where Q is the amount of energy per unit mass required by the

support. If the structure collapses under its own weight, then gravity will sup-

ply an energy Mgh, where g is the acceleration of gravity at earth’s surface.

If the structure is to survive under its own weight ρd2hQ > Mgh, whence:
d
L

>
√

L
√

g
Q

. The smaller the animal, the thinner its legs can be; inversely, the

larger it is, the fatter the legs. An ultimate limit is reached when the legs are

as thick as the trunk — but then the animal becomes immobile.

At this limit
(

d
L

≈ 1
)

we have L(m) ≈ Q(m2·sec−2)

g(m·sec−2)
. For typical biological

structures Q
g

≈ 44 m, which is close to the right answer. This shows that the

size of a land animal is strictly limited; it also shows that structures can be

studies without knowing the details of their constitution and construction, just

some general principles and constraints.
380 Galileo was, of course, careful to explain that besides the questions of pure stress

and strain there is the important question of bending moments which affect the

whole form of the skeleton, and set limits to the height of a tall tree.
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Another phenomenon, and one which is observed throughout the whole
field of morphology, is the tendency (due to some definite cause) for body
surface to keep pace with volume, through some alteration of its form. The
lobulation of the kidney in large animals, and the vast increase of respiratory
surface in the air-sacs and alveoli of the lung, are a few of the many cases
in which more or less constant ratios tends to be maintained between mass
and surface. A leafy wood, a piece of sponge, a reef of coral, are all instances
of a like phenomenon, namely, devices for an increased surface in order to
stimulate diffusion of molecules or absorption of energy.

Consider, for example, an organ of azimuthal symmetry, whose
cross-section in the plane φ = const. is given by the polar equation
r(θ, t) = a(t)f(θ), with the origin at r = 0. Assume that the material, needed
for growth, is drained from this center toward the periphery at a rate inde-
pendent of the polar angle θ in such a way that the quantity deposited per
unit time per unit diameter length is fixed381. What is the expected shape of
f(θ)? Clearly, f(θ) = const. would correspond to a sphere. But the above
condition can accommodate a wider class of plane curves, since it is required
only that at any given moment t we shall have

r(θ) + r(θ + π) = D = const.

One can show that the general solution has the form

r(θ) = b0 +
∞∑

1,3,5,...

(an sin nθ + bn cosnθ).

Apart from a circle (an = bn = 0, n = 1, 3, 5), the simplest such curve is
the leaf-shaped r(θ) = a[1 + sin θ]. This figure has all its diameters the same
— yet it is obviously not round! The brain, heart and kidney possess shapes
approximated by this equation.

Another example is the Fibonacci sequence 1, 2, 3, 5, 8, 13, 21, 34, 55,
89, 144, . . . manifested in the number of petals, sepals, stamens, and other
components of flowers. For instance, lilies have 3 petals, buttercups have 5,
delphiniums have 8, marigolds 13, asters 21, and most daisies have 34, 55, or

381 The majority of marine shells are based on a spiral form. e.g. the Nautilus has a

shape known to mathematicians as the logarithmic spiral, first studied by Jacob

Bernoulli. It has this shape because the animal pattern of growth increases

by a fixed proportion as the growing shell turns through a fixed angle. On the

other hand, the shell of the fossil Ammonite (an extinct relative of Nautilus) is

closer to an Archimedean spiral, in which the growth increases by fixed amounts

for a fixed angle.
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89. Fibonacci numbers are also hidden in sunflower-seed patterns. Although
the biological origin of these numbers is not understood, their pattern might
provide the plant with some evolutionary advantage, or it may have evolved
through certain physical constraint (i.e. constraints imposed by the laws of
physics) on what biology can do, in the same sense that the form of a bird’s
tail depends heavily on aerodynamics.

The human body contains about 1014 cells, of more than a hundred types
— nerve cells, blood cells, liver cells, bone cells, muscle cells and so on —
but the body is not merely a vast cellular conglomerate. In order to function
collectively as a human being, those cells must be put together in a specific,
complex manner. The human brain, for instance, has abilities that the largest
supercomputer cannot match — such as being able to recognize a face, or
look at a landscape and instantly pick out a sheepdog in a distant field. No
human–devised technology can as yet assemble a single human cell.

D’Arcy Thompson was concerned with some mathematical aspects of cell-
division. He assembled some of the microscopists’ pictures and discerned,
amidst the daunting complexity, clear patterns and regularities.

He noticed arithmetical patterns in the arrangement of those organelles
known as chromosomes, which contain (most of) the cell’s genetic material.
He pointed out analogies between cell division and the theories of electricity
and gravitation; he also found analogies with chemical diffusion, in a homely
experiment using ink in salt water. The shape of a cell — just before, during,
and just after division — is mathematical. In cross section, the shape is a
simple curve: a circle that develops a waist, which narrows, pinches into a
figure-eight shape, and breaks apart to create two circles. This simple shape
indicated to Thompson that there must be a connection between the division
of cells and the physical principles that govern the forms of soap bubbles and
foams.

One of the key principles of physics is the idea that the inorganic world
generally behaves in whatever manner that requires the least expenditure of
energy. The energy of a soap bubble comes from the tension that holds its
molecules together. (In blowing a balloon one has to provide energy to set up
elastic tension in the balloon’s rubber surface. The formation of soap bubbles
requires much the same type of expenditure of energy). Just as it takes more
effort to inflate a bigger balloon than a smaller one, it takes relatively more
energy to produce a soap bubble or film with a larger surface area than a
smaller one — so soap films with the least energy also have the least surface
area.

The French mathematical physicist Joseph Plateau discovered that the
form of soap bubbles and films can be deduced completely from the princi-
ple that they adopt the shape that has the smallest surface area subject to
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boundary – curve or volume constraints. For example, an isolated bubble is

spherical because the surface of a sphere is the smallest surface area that con-

tains a specified volume of trapped air. Dividing cells start as a sphere and

end as two, passing from one minimal-area surface to another. The figure-

eight shape in between is also a minimal-area surface, but a more esoteric

one.

Thompson was fascinated by such surfaces, and he saw them — or at least

thought he saw them — everywhere in living creatures. He glimpsed them

in cell membranes, in the shapes of jellyfish, in algae, in fungi — even in the

skeletons of microscopic creatures. When four soap bubbles meet, they do so

along six common surfaces, meeting each other in pairs at an angle of 109◦. If

a fifth, smaller bubble is trapped at the common intersection, it distorts into

a rounded pyramid. Exactly the same shape, with the correct angles, can be

seen in the silica skeleton of the diminutive organism Callimitra agnesae.

Thompson saw other mathematical patterns, too. There were obvious

ones in radiolarians, which are also microscopic marine creatures with a hard

silica skeleton. The bodily scaffolding of these tiny animals displays innu-

merable and beautiful mathematical patterns, some of which bear a striking

resemblance to Euclid’s regular solids — the octahedron, dodecahedron, and

icosahedron.

Clearly, his discussion made no contact with what is now the dominant

theme in modern biology: genetics. What Thompson could not possibly have

known is what Crick and Watson recognized in 1953. Their epic discovery was

that every cell of every living organism contains a symbolic recipe for that

kind of organism, written in a molecular code. This recipe is the organism’s

genome, its total genetic makeup, written in the language of DNA.

DNA plays two linked but distinct roles that make living organisms differ-

ent from the rest of the physical universe. First, DNA prescribes the growth

and the form — and indeed even the behavior — of the organism, using a

molecular code. Second, that code recombines and occasionally mutates —

changes because of random chemical mistakes — allowing the organism to

evolve. So instead of the first–principles mathematics of growth with which

D’Arcy Thompson was familiar, life is perpetually and blindly tinkering with

its own mathematical basis — nudging its development in preferred directions

and away from undesirable ones.

How much of the mathematics of growth survives this nudging? The DNA

sequence for an organism can, in principle, create any physically realizable

form or pattern — and, in principle, any form whatsoever can also evolve,

provided the evolutionary change offers an advantage.
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Yet Thompson’s key argument is still valid — mathematical patterns exist
in living organisms, and these patterns must therefore have mathematical
causes.

There are known today (2008 CE) good reasons why the underlying math-
ematics should have survived such tinkering: living creatures make use of the
structures and processes that unfettered physics provides, but those processes
have to be modified and controlled before a true living organism can result.
Chemical reactions, for instance, tend to slowly run out of important ingre-
dients and grind to a halt.

Organisms solve this problem by replenishing their supply of key chemicals,
a trick known as “food.” No simple physical or chemical system goes looking
for food, but some of the necessary ingredients of such a system can be found
in the inorganic world. Chemicals can diffuse, spread out from their source;
the farther away you are from that source, the weaker the concentration of the
chemical is. Reversing that process, anything looking for that chemical can
climb the gradient, moving in whichever direction increases the concentration.
So the physical universe supplies a trick that could be used by an organism
to search for food.

Genes come into the picture by making sure that this trick is used. Genes
add a lot of flexibility to growth and form because they control and select
the physical patterns that the organism needs. With the help of evolution,
any genetic tinkering that works — does something new and useful — may
gradually becomes more and more sophisticated. Nevertheless, most of the
time, nature employs relatively uncontrived mathematical patterns: spots,
stripes, patches, blobs, and other patterns of a type that are explainable by
mathematical models. The surface markings of tropical fish, despite their
intricacy, are similar to those produced by entirely straightforward mathe-
matical processes, and the same goes for markings on seashells, insects, and
mammals.

It is true that in birds, the forms and patterns do indeed become consider-
ably more exotic. Birds of paradise, for instance, are famous for their fringes,
curlicues, spikes, and crests. Also, the basic unit of bird pattern is the feather,
which is not a shape traditionally employed by mathematicians. Bird pattern
can even change, often in dramatic ways, when the bird changes its position
and alters the register of the feathers — the way they are configured next to
each other.

Nevertheless, the patterns found on birds are made from mathematical
ingredients. The pattern-making mechanism fits those ingredients together in
rather arbitrary ways — but that’s because evolutionary pressures on mark-
ings seem to have been very strong for birds. An exotically marked bird is
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rather like what would be produced by a mad mathematician with a big pat-
tern book and a pair of scissors — a collage of different mathematical forms,
rather than a unified whole. Nonetheless, the mathematics is still present.

Although genetics and evolution are very flexible, they cannot actually do
anything. They can find clever ways to harness physical laws to counterintu-
itive ends, such as reproduction, but they can’t break those laws.

Consider also the hemoglobin molecule, which picks up oxygen from our
lungs, carries it in our bloodstream, and releases it where it is needed.
Hemoglobin is a highly complex molecule, a protein made by sticking together
a large number of units known as “amino acids.” A complete hemoglobin
molecule acts rather like a pair of pincers: It snaps shut around an oxygen
molecule, holds it in its jaws, and opens to release it again sometime later.
These abilities depend very sensitively on the precise shape of the hemoglobin
molecule, and on its ability to click into slightly different positions — open
and shut, so to speak.

Genes prescribe the amino acids that must be put together to make a
hemoglobin molecule, but they do not prescribe its actual shape. Indeed the
protein folding problem — to predict the three-dimensional geometry of a
protein molecule from its sequence of amino acids — lies at the very frontiers
of today’s science, and we do not understand it at all well. We do understand,
however, that the shape of a protein molecule is controlled by more than
its genetic code. The shape is a consequence of deep laws of physics and
chemistry, which are expressible in mathematical form. So, ultimately, the
shape of hemoglobin depends on mathematics.

Genes are not the laws of life; they are what the laws use to operate. As
a loose analogy, the current state of the solar system is determined by two
things: mathematical laws of motion and gravitation, plus a list of initial
conditions that tell us where all the planets were at some chosen instant.
Plug the initial conditions into the laws, and all of the intricacies of the solar
system follow.

There is a strong tendency to think of genes as constituting the laws of
biological development, but that’s not so; their role is much closer to that of
initial conditions. In other words, genes are not the key to life. They are a
key, and an enormously important one, but behind them lies something much
deeper. There must be more fundamental theories, the true laws of biology,
the mathematical rules into which the genetic code is plugged.

Physics provides a range of patterns and structures that are available. Evo-
lution and genetics can modify those structures and patterns, fine-tune them,
and put them together in ways that would not be natural for raw physics;
nevertheless, the mathematical patterns provide building blocks and a point
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from which genetics and evolution can operate. Moreover, if it so happens that
these freely available forms do their job effectively without modification, then
evolution will select them, and genetics will respect them. In this manner,
these structures and patterns have been built into the very fabric of life.

Quantification of Nonlinear Biological Phenomena

(1917–1985)

Biology deals with phenomena that are intrinsically more complex and
more difficult to investigate than those normally studied in the ‘hard’ sci-
ences such as physics, and not everything which seems obvious is true. Con-
sequently, it is more susceptible to the introduction of hypotheses whose cor-
rectness cannot be adequately tested.

Furthermore, mathematical models of biological systems, with their inher-
ent propensity for simplification and idealization, are sometimes so specula-
tive that they have only the merest pretense of accounting for to biological
observations.

One must therefore take the mathematical models of these phenomena only
as metaphors, and not as “laws” as in astronomy or physics. Nevertheless,
there is a body of mathematical ideas and models that is so closely intertwined
with biological observations, that it has established a place in the literature of
modern biology. The day, furthermore, may come when biological forms and
processes can be described with the same mathematical precision as those in
physics.

We shall treat here eight topics:

• Dynamics of non-interacting populations.

• Dynamics of interacting species and stability theory.
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• The Fisher-Kolmogorov equation.

• Enzyme kinetics.

• Heart-beat equation.

• General models of epidemics

• Cellular slime molds

• Chemotaxis

Dynamics of non-interacting populations

The use of mathematics in attempts at formulating biological principles
has a long history. As far back as 1202, Leonardo of Pisa (Fibonacci)had
clearly thought about population growth in connection with rabbit popula-
tions. Giovanni Alfonso Borelli (1608–1679, Italy) presented a quantita-
tive geometrico-mechanical approach to animals’ motion in his book De motu
animalium (posthumous, 1680; several years before Newton’s Principia).

During the 19th century there was an upsurge of interest in interdisci-
plinary research among several of the great mathematicians and scientists of
the age. D’Arcy Thompson, influenced by the 19th century attempts at
more rigorous biological formalisms, published (1917) his work On Growth
and Form, a book which marks the advent of modern theoretical biology.

The works of Hardy (1908), Lotka (1920), J.B.S. Haldane (1892–1964,
England, 1924), Volterra (1926, 1931), R.A. Fisher (1930) and N. Ra-
shevsky382 (1933 to 1946) advanced the diffusion of mathematical tools and
techniques into biological research. In return, biology has confronted math-
ematicians with a variety of challenging problems which have stimulated de-
velopments in the theory of nonlinear (ordinary and partial) differential equa-
tions. A few typical examples, chosen from the vast literature of classical
mathematical biology, illuminate some of the scenes of nature’s drama of life.

382 Nicolas Rashevsky (1899–1972, U.S.A.). Pioneering mathematical biologist.

Among the first to model the detailed structure of individual organisms and the

relations of the fundamental parts of each organism to the physical inorganic

world. Contributed to mathematical biophysics of nerve conduction, excitation

and inhibition.
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Let N represent the number of individuals N(t) in a given spatial

region at any time t. The growth law dN
dt = g(N) = Nλ(N), represents the

excess of birth rate over death rate, and λ(N) = 1
N

dN
dt is the growth rate.

If λ = const > 0, the ensuing law N(t) = N0e
λt predicts an exponential

growth without limit (Euler 1760; Malthus 1798), where N(0) = N0 is the
initial size of the population.

Although this law may accurately reflect experiments in the early stages of
population increase, it obviously cannot hold over an infinitely long period383.
For once the population grows sufficiently large, it will begin to interact with
the environment, with itself, and with other species due to limited sources of
nutrients and also due to competition. All this will cause the birth rate to
decrease, the death rate to increase, or both. Thus, crowding may have the
same effect as limiting the food supply; space can be considered necessary to
sustain life for many species. The simplest model of this kind (Verhulst384,
1838) assumes that normal growth is inhibited by a term proportional to N2.

At the beginning of the 20th century, mathematical models were widely
used for describing the growth of bacterial populations and the progress of
various diseases, such as malaria. These problems were discussed in terms of
ordinary differential equations in which time is the dependent variable and
the unknown functions are the average values of the populations densities.

An example is the growth of a microbial colony; when cells divide, they
grow in number but as we know, a colony of bacteria or other microorganisms
embedded in a nutrient medium will not grow indefinitely. There are many
possible reasons for this: first, multiplication in numbers introduces crowding
effects. Biochemically, this may be due to lack of nutrients, shortage of oxygen,
the appearance of toxic substances, or changes in ion concentration in the
medium, especially pH. Whatever the cause, the natural growth is inhibited
due to inter-cell interaction.

383 The bacterium E. Coli would, under ideal circumstances, divide (on average)

every 20 minutes. In this way, one cell (mass ≈ 3 × 10−10 gm) could produce

2144 ≈ 2 × 1043 cells within 48 hours — a supercolony whose size and weight

are comparable to those of the sun! This never actually happens, for the simple

reason that growth cannot continue indefinitely under “ideal circumstances”.

Even in the absence of competition and predators, nutrients runs out and oxygen

runs out: local conditions within the colony change and check the growth of the

organisms.
384 P.F. Verhulst (1804–1849, Belgium). Initiated his investigations under stim-

ulation from L.A.J. Quetelet (1796–1874, Belgium), a statistician and as-

tronomer. The term ‘logistic’ was first used by Edward Wright (1599) to

describe an S-shaped curve.
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Thus, the population N(t) at any time t is represented by the ordinary

differential equation dN
dt = λN − βN2, λ > 0, β > 0. Here again, the term

λN represents the excess of the birth rate over the death rate in the absence
of interactions. Since the number of intercellular interactions of N cells is
of the order N2, the plausibility of the inhibition term is explained (e.g.: a
given cell detects the cumulative toxic effect of all N cells, if the toxic material
diffuses freely throughout the intercellular medium. Thus, the toxic effect on
a given cell is proportional to N . The toxic effect on all N cells is N times
the effect on one cell and hence proportional to N2).385

The stationary value
(

dN
dt = 0

)
occur at both N = 0 and Ne = λ

β , of

which the first is an unstable equilibrium point while the second is stable386.
The exact solution is known as the logistic law of growth

N(t) =
Ne

1 + (Ne

N0
− 1)e−λt

.

As t → ∞, a stable population N = Ne is asymptotically attained, with
zero growth. The logistic law found applications to various problems in chem-
ical kinetics, biology and economy. In ecology, the growth of populations is
inhibited by intra-species deleterious paired encounters (due to competition
for food, habitat and other limited resources) proportional to N2.

The alternative functional dependence λ(N) = a1 + a2N − a3N
2

(a1, a2, a3 > 0) found a biological application in populations having a max-
imum growth rate at intermediate density, an effect that may stem from a
difficulty of finding mates at very low density of population.

A law similar to the Verhulst model applies to the law of mass action in the
chemical kinetics of reactions of the second order: dN

dt = λ(A − N)(B − N),
where λ, A, B > 0, λ now being the specific reaction rate at a constantly held
temperature. A solution satisfying the initial condition N(0) = 0 is

N(t) = A

[

1 +
B − A

A − Beλ(B−A)t

]

.

When t → ∞, N tends either to A, if A < B, or to B, if A > B.

385 Thus, population-dynamics differential equations — whether it be of genome al-

lele frequencies, cells or larger organisms — bear a strong resemblance to chem-

ical kinetics equations, governing reaction rates of species of simple molecules.
386 In general, the equilibrium points of a system governed by the differential equa-

tion dN
dt

= g(N) are determined from g(Ne) = 0. Near each of these points

g(N) � g′(Ne)(N − Ne), from which the stability can be determined by the

sign of g′(Ne).
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The autocatalytic reaction dN
dt = λ(N + N0)(B − N), with N(0) = 0,

yields the logistic curve N0 + N = B+N0
1+ B

N0
e−λ(B+N0)t . Here, an initial con-

centration N(0) = 0 increases initially, as the molecular species in question
is produced and eliminated by several pathways: production from steadily–
supplied reagents (with or without its own participation), and its elimination
(via reactions involving one or two molecules of the species).

The law λ(N) = −λ0 lnN (Gompertz387, 1825) is popular in clinical
oncology. It is also used by actuaries to estimate the risk of death in life
insurance.

Dynamics of two interacting species

In most ecosystems the conflict between different species must be taken
into account, since the growth and decline of populations in nature is strongly
affected by the struggle of species to predominate over or prey upon one an-
other. In addition, environmental effects, chance random effects, and spatial
heterogeneity, cannot be ignored.

Deterministic mathematical models for the behavior of two interacting
species (e.g., trees in a forest, fishes in the oceans, animals on land, etc.) are
governed by a system of differential equations

dN1

dt
= g1(N1, N2),

dN2

dt
= g2(N1, N2).

387 Benjamin Gompertz (1779–1865, England). Mathematician and actuary.

Collected data on mortality by natural causes (number of surviving individuals

as a function of time).

Gompertz was self-educated, reading Newton and Maclaurin, since he was de-

nied admission to universities on account of being Jewish. He showed (1825)

that mortality rate increases in a geometric progression. He became a Fellow

of the Royal Society (1819). Gompertz — an illustrious Jewish family (since

1600) in Germany, Holland, Britain, United States and Austria-Hungary. The

name derived from Gumpel — a medieval nickname for Mordechai.
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If we ignore the effects of each population on itself, there are three distinct
types of interaction between two species: both populations enhance each other
(symbiosis), both populations conflict with each other (competition), and
the hybrid predator-prey interaction such as the plant-herbivore system, the
parasite-host system and the fish-shark system.

In 1925, the Italian biologist Umberto d’Ancona observed a puzzling
biological trend in the fish population of the upper Adriatic: During WWI

(1914–1918), commercial fishing in the Adriatic Sea fell to rather low levels.
It was anticipated that this would cause a rise in the availability of fish for
harvest. Instead, the population of commercially available fish declined on
average while the number of sharks and other voracious species, which are
their predators, increased! The two populations were also perceived to oscil-
late. D’Ancona then interested his mathematical colleague, Vito Volterra388

in this problem, and the latter suggested (1926) a somewhat naive model to
describe the predator-prey interaction:

Let N1(t) denote the fish population (prey) and N2(t) the predator (shark)
population at any given time t. The fish population finds ample food (plank-
ton) all the time, and if not for the sharks would grow in proportion to their
number N1(t). However, their number is constantly reduced due to encounters
with sharks, and this decrease rate is proportional both to their density and
the density of their predators. Hence

dN1

dt
= aN1 − bN1N2 a, b > 0.

On the other hand, in absence of prey, shark will naturally be demised
at a rate proportional to their own number. Their rate of increase will de-
pend solely on their food intake, which is again proportional to the rate of
encounters with their prey, namely in proportion to N1N2.

All told
dN2

dt
= −cN2 + dN1N2 c, d > 0.

These two simultaneous differential equations in {N1, N2}, known as the
Lotka-Volterra predator-prey equations, have no exact solutions in terms of el-
ementary functions. (The most that can be shown through a straightforward

388 Volterra, V., Variazioni e fluttuazioni del numero d’individui in specie animal

conviventi, Mem. Acad. Lincei 2, 31–113, 1926.

A similar set of equations was independently derived by Alfred James Lotka

(1880–1949, U.S.A.) to model observed oscillations in concentrations observed

in second order chemical reactions. [Undamped oscillations derived from the

law of mass action, J. Amer. Chem. Soc. 42, 1595–1599, 1920.]
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analysis is that t =
∫

dv
vu(v) , where u(v) is a solution of the implicit tran-

scendental relation (a − u)aeu = Kecvv−c, K = integration constant, and
N1 = c

dv. Similar results are obtained for N2, and u = a − bN2.)

Yet, Volterra was able to extract the salient features of the system’s behav-
ior without the explicit knowledge of N1(t) and N2(t). Denoting x(t) = N1,
y(t) = N2 and excluding the trivial solution x = 0, y = 0, there is one

nontrivial, static solution with equilibrium populations xe = c
d , ye = a

b . Ef-

fecting a small perturbation x = xe + X, y = ye + Y about equilibrium, the
linearized equations yield the small-amplitude solution

X =
√

xeQx cos [ω(t − t0)],

Y =
√

yeQy cos
[
ω(t − t0) −

π

2

]
,

with

Qx =
(x0 − xe)2

xe
+

(y0 − ye)2

ye

b

d
,

ω =
√

ac =
2π

T
, Qy =

d

b
Qx.

This result means that, starting from given initial populations {x0, y0} at
time t0, the trajectories of x(t) and y(t) are closed curves enclosing (xe, ye),
whose scales shapes asymptotically become ellipses as they shrink to size zero;
moreover, the motion [x(t), y(t)] becomes simple harmonic motion in that
regime, and the family of ellipses are centered at (xe, ye). The initial state
places the system at a point on an approximate ellipse and this point moves,
with increasing time, on the ellipse, completing one revolution with a period
T = 2π√

ac
.

Volterra then proceeded to show that the qualitative behavior of the sys-
tem at points which are not necessarily near equilibrium retains the same
character: the paths in the xy plane are still closed curves enclosing the equi-
librium point, meaning that both N1(t) and N2(t) are periodic functions of
time, with N1 lagging a quarter of a period behind N2. Thus

N1(t + T ) = N1(t) , N2(t + T ) = N2(t).

Integrating Ṅ1
N1

= a − bN2 from 0 to T , we find

a

b
=

1
T

∫ T

0

N2(t)dt = average value of N2(t)
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over one cycle. Likewise,

c

d
= average value of N1(t) over one cycle.

Thus, both populations vary periodically such that their time-averages coin-
cide with their respective equilibrium values.

This mathematical picture is reasonable: assuming the population of the
fish to increase, the sharks would have enough food to sustain a larger popula-
tion and thus pose a severe threat to the fish. Eventually the population of the
plankton-eating fish would diminish. After a while food becomes sparse for
the sharks, causing their own population to decrease. A shortage of predators
then leads to a resurgence of the fish population. This process may continue
indefinitely, in which case, the ecosystem would consist of periodic population
variations — an example of biological rhythms.

Fishing decreases the populations of both species. To account for this we
modify the equations of the system into

Ṅ1 = aN1 − bN1N2 − εN1,

Ṅ2 = −cN2 + dN1N2 − εN2,

where ε is a parameter that reflects the density of fishing (number of boats,
nets, etc.). For a − ε > 0, the new system is of the same type as before with

new average values N1 = c+ε
d , N2 = a−ε

b and a new period. So, on average,

a moderate amount of fishing increases the number of fish389and decreases the
number of sharks. If, however, fishing is reduced from the new fiducial level

389 The consequence that the prey always recovers more rapidly from a catastrophic

event that decimates both species in proportion to their population sizes (e.g.,

overhunting, fishing, forest fire, etc.), is known as the Volterra principle.

A remarkable confirmation comes from the cottony cushion scale insect (Icerya

purchasi), which, when accidentally introduced from Australia in 1868, threat-

ened to destroy the American citrus industry. Thereupon, its natural Australian

predator, a ladybird beetle (Novius Cardinalis) was introduced, and the beetles

reduced the scale insects to a low level. When DDT was discovered to kill scale

insects, it was applied by the orchardists in the hope of further reducing the

scale insects. However, in agreement with Volterra’s principle, the effect was an

increase of the scale insect. Sometimes the predator is so efficient that no cycle

emerges at all, though other unexpected side effects may evolve:

An island in the Pacific was a pleasant place and fertile but it had one draw-

back; it was infested by snakes. In desperation, the natives imported a cage

full of mongooses, brought by some sailors especially for them. In no time, the

mongooses bred and lived on the snakes to the complete satisfaction of the is-
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{c + ε, a − ε}, then w.r.t. this new level, the number of sharks will increase,
and the number of food fish will decrease. This explains the observations of
d’Ancona.

These are somewhat counter-intuitive results. For assume a situation
where farmers are dissatisfied with the large number of rabbits in a fox-rabbit
ecosystem. Their instinctive impulse would be to introduce more foxes. But
the above theory shows that this will only increase the magnitude of the os-
cillation without changing the mean-values of both species. Only a gradual
elimination of both species by (selective!) animal traps will do. Thus, man’s
intervention in the role of a superpredator, preying with equal or unequal
intensity on both species, can changes nature’s delicate balance.

Volterra’s theory has spectacular applications to insecticide treatments
which destroy both insect predators and their insect prey. It implies that
the application of insecticides will actually increase the population of those
insects which are kept in control by other predatory insects. Oddly enough,
many ecologists and biologists refused to accept Volterra’s model as accurate.

One objection is based on the fact that the model predicts an oscillation
whose amplitude is sensitive to the initial conditions. Although this seems
reasonable for the sharks and fish of the Adriatic, it is entirely unbelievable
that lynx and hare populations should oscillate in a manner determined by
events a hundred (or more) years ago. Thus a predator-prey model is sought
which perhaps indicates oscillation of a type inherent to the system rather than
determined by initial conditions. (Predator-prey models can be constructed
in which the amplitude of oscillation decay as time goes on, as though nature
seeks to restore predators and prey to an ecological balance.)

A more general model of predator-prey interaction is the system

ẋ = ax − bxy − ex2,

ẏ = −cy + dxy − fy2,

which include competition among prey for their limited external resources,
and also competition among the predators for the limited number of prey. The
solutions of this system are not in general periodic. Indeed, if a, b, c, d, e, f > 0

landers. But as the snakes were disappearing, the mongooses were multiplying.

There were none of their natural enemies on the island, so there was no check

to their growth. With diminishing snakes and increasing mongooses, food for

the later grew scarcer and they started to feed on the islander’s chickens. So

the last state of these islanders was worse than the first. They ended up trying

to import some animal that kills mongooses. . .
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and x(0) > 0, y(0) > 0, every solution approaches the equilibrium solution

x = a
e , y = 0 as t → ∞ if c

d > a
e .

Finally, special atypical types of predators have their own equations; and

several predator-prey interactions in nature cannot be modeled by any system

of ODE. These situations occur when the prey are provided with refuge that
is inaccessible to the predators. In these situations it is impossible to make

any definitive statements about the future numbers of predators and preys,

since we cannot predict how many prey will be stupid enough to leave their
refuge. In other words, this process is random rather than deterministic, and

therefore cannot be modeled by a system of ODE.

Not all species form predator-prey relationship. Two species in an ecosys-

tem may compete for the same limited source of nutrients. It is assumed that

the effect of competition is to reduce each species’ growth-rate by an amount
proportional to the other species’ population. Consequently,

Ṅ1 = aN1 − bN2
1 − kN1N2,

Ṅ2 = cN2 − dN2
2 − σN1N2.

Volterra showed that if k
d < a

c = b
σ , species N2 will die out and N1 will

approach the value a
b . This is known as the Volterra principle of competitive

exclusion.

The stability theory of the Volterra-Lotka equations is analyzed with the

aid of the Lyapunov function. Consider the nonlinear system of ODE govern-

ing the interaction of n species

.

N i = kiNi +
1
βi

n∑

j=1

aijNiNj = Ni

⎡

⎣ki +
1
βi

n∑

j=1

aijNj

⎤

⎦

where aii ≤ 0, βi > 0, i = 1, 2, . . . , n, det|aij | > 0 and aij = −aji

(a loss for one species in an interaction produces a gain for the other).

The different efficiencies of the species are accounted for by the factors βi.

If we set Vi = ln
(

Ni

qi

)
, where qi > 0 are arbitrary, then

.

V i = ki +
1
βi

n∑

j=1

aijqje
Vj .
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Assume (without loss of generality) that kiβi = −
∑n

j=1 aijqj is satisfied.
Then

βi

.

V i =
n∑

j=1

aijqj(eVj − 1),

and Vj = 0 is the only fixed point. Following Volterra, we multiply the last
equation by (eVi − 1)qi and sum on i to obtain (using aij = −aji and
aii ≤ 0),

d

dt

n∑

i=1

βiqi

[
eVi − Vi

]
≤ 0

But since (eVi − Vi) ≥ 1 for all values of Vi, the definition of the new function

L(V ) =
n∑

i=1

βiqi

[
eVi − Vi − 1

]

ensures L(0) = 0, L(V ) > 0 and dL
dt ≤ 0 for all |V | > 0.

Hence L(V ) is a global Lyapunov function. Since no Vi can become
arbitrarily large, the system is of bounded stability under the said conditions.

Moreover, if aii < 0 (does not vanish), Vi = 0 is asymptotically stable.

Stability of food chains: an ecosystem is composed of n members (chains
with up to 6 members are found in nature). The first population is the prey
for the second, which is a prey for the third etc. . . . up to the n-th, which is at
the top of the food chain. Taking competition within each species into account,
and assuming interaction terms with constant coefficients, one obtains

.

N1 = N1(k1 − a11N1 − a12N2),
.

N j = Nj(−kj + aj,j−1Nj−1 − ajjNj − aj,j+1Nj+1), j = 2, . . . , n − 1,
.

Nn = Nn(−kn + an,n−1Nn−1 − annNn).

If all kj , aij > 0, it can be shown that the above system of ODE admits a
stable equilibrium point, just as in the case of the prey-preditor case n = 2.

Cyclic competition: If three or more species compete, a rather curious thing
can occur. It may look for some time as if species 1 were bound to be the
unique survivor; then, suddenly, its density drops, species 2 takes its place
and seems to dominate the ecosystem; after some time, it in turn collapses,
and leaves the field to species 3, which appears to be the ultimate winner;
but then, species 1 suddenly rallies and outcompetes its rivals, and so another
“round” starts. The species supersede each other in cyclic fashion: the time
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spans during which one species predominates grows larger and larger. Such a
behavior is represented by the ODE system:

.

N1 = N1(1 − N1 − αN2 − βN3),
.

N2 = N2(1 − βN1 − N2 − αN3),
.

N3 = N3(1 − αN1 − βN2 − N3)

The special symmetry assumption behind the model is that of a cyclic in-
teraction between the species: if we replace 1 by 2, 2 by 3 and 3 by 1, the
equation will remain unchanged. The system admits a unique interior rest

point m at m1 = m2 = m3 = 1
1+α+β .

The Jacobian at the point m is the circulant matrix390

1
1 + α + β

⎡

⎣
−1 −α −β
−β −1 −α
−α −β −1

⎤

⎦.

Its eigenvalues are γ0 = −1 [with eigenvector (1, 1, 1)] and

γ1 = γ̄2 =
1

1 + α + β
(−1 − αe

2πi
3 − βe

4πi
3 ).

The real part of γ1 and γ2 is thus 1
1+α+β (−1 + α+β

2 ), assumed positive.

Hence m is a saddle point. There are four other rest points: the origin 0
and the saddles e1, e2, e3 (the coordinate axes unit vectors).

A study of stability in the N1N2N3 space then shows that the state remains
for some time close to the rest-point e1, then travels to the vicinity of the rest-
point e2, lingers there for a still longer time, then transitions to the vicinity of

390 An n × n matrix is said to be a circulant if it is of the form

⎡

⎢
⎢
⎢
⎣

c0 c1 c2 . . . cn−1

cn−1 c0 c1 . . . cn−2

...
...

...
...

c1 c2 c3 . . . c0

⎤

⎥
⎥
⎥
⎦

,

where a cyclic permutation sends the elements of each row into those of the next

one. Its eigenvalues are γk =
∑n−1

j=0 cjλ
jk, k = 0, . . . , n − 1 and eigenvectors

yk =
(
1, λk, λ2k, . . . λ(n−1)k

)
where λ is the nth root of unity λ = e2πi/n.
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the rest-point e3, and so on in cyclic fits and starts. This model thus suggests
a surprising mechanism for sudden upheavals in ecological communities.

The Fisher-Kolmogorov equation

A single species grows to saturation and diffuses according to the partial
differential equation

∂u

∂t
= D

∂2u

∂x2
+ au − bu2, D > 0, a > 0, (1)

where D is the diffusion coefficient (diffusivity) and (a, b) are the parameters
of the logistic growth.

This equation describes nonlinear evolution of a population u in a one-
dimensional habitat. It was introduced by R.A. Fisher (1936) to describe
the propagation of a virile mutant in an infinitely long habitat. It also repre-
sents, with a minor variation, a model equation for the evolution of a neutron
population in a nuclear reactor (a finite domain). A complex version (Nonlin-
ear Schrödinger Equation) models laser dynamics in a medium of two-state
atoms or molecules.

Equation (1) describes a balance between linear diffusion and nonlinear
local multiplication and admits shock-like solutions.

Special case:

b = 0 (simple growth with diffusion) 0 ≤ x ≤ L (finite region).

Diffusion is proportional to surface area while growth (reproduction) is
proportional to volume. For a sphere of radius R, the ratio of surface area
to volume is proportional to 1

R ≈ diffusion
growth . As R decreases, diffusion plays

an increasingly important role and eventually a limit is reached beyond which
growth can no longer compensate for loss due to diffusion. This is the critical
size Lc = f(D, a). Dimensional analysis yields

[D] = L2T −1, [a] = T −1, ⇒ Lc = γ

√
D

a
or (a − γ2 D

L2
c

) = 0,

where γ is a non-dimensional constant of order unity. Assuming boundary
conditions u(0, t) = u(L, t) = 0 and initial condition u(x, 0) = f(x), a
Fourier-series solution for the one-dimensional case is

u(x, t) =
∑∞

n=1 An sin(nπx
L )e(a− Dπ2n2

L2 )t

An = 2
L

∫ L

0
f(x) sin(πnx

L ) dx

⎫
⎪⎬

⎪⎭
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If a < Dπ2

L2 , the population will be unable to maintain itself against diffusion

and disappear. If a > Dπ2

L2 , at least the first term will increase indefinitely
with time. Therefore

Lc = π

√
D

a
in one dimension

and it can be shown that:

Lc = 4.81

√
D

a
in two dimensions (2)

Now, the exact solution of ∂u
∂t = D ∂2u

∂x2 + au, a > 0 with u(x, 0) = f(x) =
u0δ(x) (Dirac delta–function) and as the boundaries are removed to infinity,
is

u(x, t) =
u0

2
√

πDt
exp

(

at − x2

4Dt

)

.

The exponent is zero at x
t = 2

√
aD = V (defined). We can say that the

surface u = const propagates with approximate velocity v. A similar result
holds in higher dimensions.

Traveling wavefront solutions (Kolmogorov, 1936)

The substitution

u =
a

b
ū, t =

1
a
t̄, x =

√
D

a
x̄

transforms the Fisher equation into the nondimensional form

∂ū

∂t̄
=

∂2ū

∂x̄2
+ ū(1 − ū) (3)

We seek solutions of (3) which have a ‘plane wave’ form of speed c:

ū(x̄, t̄) = U(x̄ − t̄) = U(s), c =
√

aD c̄, c̄ > 0 (4)

Substitution into (3), shows U to satisfy equation of the Liénard type

U ′ ′ + c̄U ′ + U(1 − U) = 0, (5)
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where c̄ is chosen such that

U(∞) = 0 (before wavefront’s arrival),
U(−∞) = 1 (after front’s departure).

(6)

Eq. (5) can be replaced by a system of two coupled first-order ODEs

dU

ds
= V

dV

ds
= −c̄V − U(1 − U)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(7)

This flow has two singular points in the phase plane (U, V ), namely (0, 0) and
(1, 0), which are obviously steady states: U ′ = 0, V ′ = 0. A linear stability
analysis shows that the eigenvalues λ for the singular points are

(0, 0) λ± = 1
2 [−c̄ ±

√
c̄2 − 4] ⇒ stable node if c̄2 ≥ 4

stable spiral if c̄2 < 4

(1, 0) λ± = 1
2 [−c̄ ±

√
c̄2 + 4] ⇒ saddle point

(8)

From this, one is able to show that for all wave speeds

c ≥ cmin = 2
√

aD (9)

there exists a progressive wave that satisfies the Fisher equation such that
0 ≤ U ≤ 1, U(∞) = 0, U(−∞) = 1. The remarkable result here is that
there is a continuum of waves, all having different speeds (as with solitary
waves in hydrodynamics).

A key question still to be answered is: what kind of initial conditions
u(x, 0) for the original Fisher equation will evolve into a traveling wave
solution, and if such a solution exists, what is its wave speed c. Kolmogorov
(1937) gave the following answer:

If ū(x̄, 0) =

{
1 x̄ ≤ x̄1

0 x̄ ≥ x̄2

where x̄1 < x̄2 and ū(x̄, 0) is arbitrary but

continuous in x̄1 < x̄ < x̄2, then the solution ū(x̄, t) of (3) evolves to a
traveling wavefront with z̄ = x̄ − 2t (minimal speed). It can also be shown
that in general, the wavefront solution of

∂ū

∂t̄
= f(ū) +

∂2ū

∂x2
, (10)



3398 5. Demise of the Dogmatic Universe

[where f(ū) has only two zeros (say u1 and u2 > u1), f ′(u1) > 0 and
f ′(u2) < 0] evolve with ū going monotonically from u1 to u2 with wave
speeds

c̄ ≥ c̄min = 2
√

f ′(u1). (11)

Enzyme kinetics

Biochemical reactions are continually taking place in all living organisms
and most of them involve large proteins molecules called enzymes, which act
as remarkably efficient catalysts. A catalyst accelerates the rate of a reac-
tion but is not consumed in the overall process. Enzymes react selectively
on definite compounds undergoing chemical reaction, called substrates. For
example, hemoglobin in red blood cells is an enzyme and oxygen, with which
it combines, is a substrate. Enzymes are important in regulating biological
processes, for example as activators or inhibitors in a reaction.

Biological catalysts differ from all other catalysts known to chemistry in
two essential ways. First, they are exceptionally efficient under the mild con-
ditions holding in the normal physiological state: aqueous medium, standard
pressure, and physiological pH and temperature ranges. Second, a single en-
zyme molecule can transform 103 to 106 molecules of substrate per minute.
That is why their catalytic function in a cell can be performed rapidly and
why extremely small quantities of enzyme suffice to enable cellular processes.

One of the most basic enzymatic reaction mechanisms, first proposed
(1913) for the yeast-catalyzed conversion of sucrose to glucose and fructose by
Leonor Michaelis (1875–1949, Germany, U.S.A.) and M.I. Menten [and
later represented mathematically by Haldane (1925)], has been successful in
describing most enzymatically controlled reactions.

A substrate molecule S reacts with an enzyme molecule E to form a
complex molecule C which in turn is converted into a product P and the
enzyme. The reactions in question can be symbolized by

E + S
k1�

k−1

C
k2→ E + P.

Let e(t), s(t), c(t) and p(t) denote the molar concentrations of the respec-
tive molecular species. Applying the law of mass action, one finds that the



1917 CE 3399

following are the differential equations and initial conditions that correspond
to the above reaction:

ds

dt
= −k1es + k−1c,

de

dt
= −k1es + (k−1 + k2)c,

dp

dt
= k2c,

dc

dt
= k1es − (k−1 + k2)c,

s(0) = s0, e(0) = e0, c(0) = 0, p(0) = 0.

Since e(t) + c(t) = e0, and p(t) = k2

∫ t

0
c(t′)dt′, the above system, after

scaling out dimensionful quantities, reduces to the system

du

dτ
= −u + (u + K − λ)v,

ε
dv

dτ
= u − (u + K)v,

u(0) = 1, v(0) = 0, τ = (k1e0)t,

u(τ) =
s(t)
s0

, v(τ) =
c(t)
e0

, λ =
k2

k1s0
,

K =
k−1 + k2

k1s0
, ε =

e0

s0
.

This system consists of two nonlinear differential equations in the unknown
concentration of the substrate S and the complex C.

Biochemists commonly wish to determine the velocity of reaction, which
is usually defined as either the rate of appearance of the product P , or the
rate of disappearance of the substrate S. Since an exact analytical solution is
not available, and even the numerical solution of the equations is hampered391

by the smallness of ε, an approximation is sought which renders a theoretical
value for the measured initial velocity of reaction.

An assumption is made that a quasi-steady state (“pre-equilibrium”) is
established very rapidly, so that the concentration of C is changing very

391 ε is typically in the range 10−2 to 10−7. Since ε multiplies the highest derivative

in the second equation, this is a singular perturbation problem with an ensuing

boundary layer near the time origin τ = 0.
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slowly with time. Thus, we assume that dv
dτ = 0. With this assumption the

second equation becomes algebraic, rendering v = u
u+K .

Substituting this value into the first equation we obtain ds
dt |t=0 = − k2e0s0

s0+km
,

where km = k−1+k2
k1

is the Michaelis constant. This rate, based on the quasi-
steady state hypothesis, is what is usually needed from a biological point of
view.

The above set of nonlinear equations serve to model a variety of reaction
pathways in molecular biology; for example — the way in which bacteria
consume organic substance such as glucose392.

Thermodynamic principles can be invoked to show that catalysts lower the
free energy of activation, thus exponentially increasing the effective reaction
rate constant which, in turn, speeds up the process. Still, the lowering of
the free energy barrier (activation energy) must be explained in terms of a
plausible molecular physical mechanism. Obviously, the energy that can be
expended by the enzyme in order to speed up the reaction can come only
from one source — it is a part of the free energy liberated upon binding of
the substrate to the enzyme393. That energy is recovered when the enzyme
separates from the reaction product(s), and the enzyme molecule is then ready
to catalyze the next reaction.

392 Most water-soluble molecules are unable to pass through the hydrophobic en-

vironment of the cell membrane directly and must be carried across by special

means. Typically, molecular receptors embedded in the bacterial cell membrane

are involved in “capturing” these polar molecules in a loose complex , conveying

them across the membrane barrier, and releasing them to the interior of the

cell. The mechanism for nutrient uptake can be described by Michaelis-Menten

kinetics.
393 No universal physical model valid for all known enzyme reactions has been

found. Thus, electrostatic dipole interactions were found to be important in

lysozyme catalysis. In other cases, a hypothesis has been advanced, according to

which the liberated free energy is transformed to the energy of elastic vibrations

of the enzyme globule, which behaves like a liquid drop. The frequencies of such

vibrations lie in the hypersonic region — up to 1013 sec−1. The standing waves

in the liquid drop can then activate the substrate molecule.
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Heart-beat equations

The heart is a large hollow muscle which acts as a machine that pumps
blood to all parts of the body. Tubes called veins bring blood to the heart.
Other tubes called arteries carry blood away from the heart. Four regulators
called valves control the flow of blood through the heart itself. The heart is
divided, lengthwise, by a muscular wall (septum). Two chambers, one above
the other, are on each side of the septum. The upper chamber on each side
is called an atrium. The atria collect the blood flowing into the heart from
the veins. Below each atrium is another chamber called a ventricle. The two
ventricles pump the blood into the arteries.

The tricuspid valve is between the right atrium and the right ventricle. The
mitral valve is between the left atrium and the left ventricle. The semilunar
valve controls the flow of blood from the ventricles to the arteries.

The right hand side of the heart is a low pressure pump that takes blood
from the body and pumps it to the lungs (where carbon dioxide is removed and
oxygen is added). It is a low-pressure circuit to avoid damaging the delicate
membranes in the lungs.

The left-hand side is a high-pressure pump that collects blood from the
lungs and delivers it to the body. The high pressure is needed in order for the
blood to get down to the feet and up again.

The two sides of the heart simultaneously undergo two basic states: relax
and fill (diastole state), contract and empty (systole state). The atria contract
only a split second before the ventricles do. The action felt as a heartbeat is
the systole. The sequence of events is divided into four phases:

(1) Blood flows into the heart from the veins, filling both atria. The tricuspid
and mitral valves are closed. The heart relaxes in the diastolic phase.

(2) The atria contract. The mitral and tricuspid valves open, and through
them the blood flows into the ventricles (one way only!). Ventricles are
still relaxed.

(3) Ventricles contract , mitral and tricuspid valves shut, semilunar valves
open. Blood enters the body via the aorta on the left side and to the
lungs via the pulmonary artery on the right side.

(4) Semilunar valves close and the atria expand and fill with blood. A new
diastole begins.

The blood in the circulatory system is always under pressure, as is water in
the pipes of a water system. Blood pressure depends upon the amount of
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blood in the system, the strength and rate of the heart’s contraction, and the
elasticity of the arteries. The systolic pressure is the blood pressure when the
heart is contracted (high). The diastolic pressure is the pressure when the
heart relaxes between beats.

What makes the heart beat is the presence of a pacemaker which is located
on the top of the atria. It triggers an electrochemical impulse which spreads
slowly over the atria, causing the muscle fibers to contract and push blood into
the ventricles, and then spread rapidly over the ventricles causing the whole
ventricle to contract into systole and deliver a big pump of blood down the
arteries. The muscle fiber then rapidly relax and return the heart to diastole.

In order to develop a mathematical model which reflects the behavior of
the heartbeat action described above, the following features are singled out:

I. The rate of change of the muscle fiber contraction depends, at any par-
ticular instant, on the tension of the fiber and on the chemical control.

II. The chemical control changes at a rate directly proportional to the muscle
fiber extension.

III. The model must exhibit an equilibrium state corresponding to diastole.

IV. The model should contain a threshold, i.e., a definite point where the ven-
tricles begin their rapid contraction. While this contraction is going on,
the chemical control variable will be rising to a new value corresponding
to a systole.

V. The model should reflect the rapid return to the equilibrium state.

Let x(t) denote the length of a typical muscle fiber, and y(t) the chemical
control that governs the electrochemical pulse. A coupling that incorporates
all the above features renders the heart-beat equations

ε
dx

dt
= −(x3 − ax + y),

dy

dt
= x − x0 + (x0 − x1)u = x − xm.

Here, ε is a small parameter, which guarantees the rapid decrease of x(t)
(and at the same time the fast increase of dx

dt ) through the transition from
diastole (x0, y0) to systole (x1, y1). u is a control parameter associated with
the pacemaker, and is defined as follows:

u = 1 for

{
y0 ≤ y ≤ y1 and x3 − ax + y > 0
or: y > y1 and all x

}

u = 0 otherwise.
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The elimination of y from the above equations yields the Van der Pol equa-
tion394 εẍ − ẋ(a − 3x2) + x − xm = 0.

394 In 1927, Van der Pol was first to suggest a relaxation oscillation model of heart-

beats. His electrical model of the heart consisted of three connected relaxation

oscillators (one for the pacemaker, one for the atria, and one for the ventricles),

each governed by the equation ẍ − ε(1 − x2)ẋ + ω2x = 0. The model given in

the text is due to E.C. Zeeman (1972).

The Van der Pol equation also appears in certain ecological problems, where a

population of herbivores interacts with vegetation in such a way that a stable

limit cycle is established. The equations are du
dt

= ε
(
u − u3

3

)
+ v, dv

dt
= −u,

where ε is a fixed small, positive number, and {u, v} are interpreted as (scaled)

deviations of herbivore and vegetative biomasses from reference equilibrium val-

ues.
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General models of epidemics

The Great Plague of London in 1665 started in June; its peak came in Sep-
tember and its decline in October. The secondary rise occurred in November
and cases of the disease were reported as late as March of the following year.
The people of the city followed with anxiety the rise and fall in the number
of deaths from the plague, hoping always to see the sharp decline which they
knew from past experience indicated that the epidemic was nearing its end.

When the decline came, the refugees, mostly from the nobility and wealthy
merchants, returned to the city, and then for a time the mortality rose again as
the disease attacked these new arrivals. The cause of these periodic outbreaks
was, however, attributed to evil spirits. Even as late as 1865 it was still
believed in scientific circles that the periodicity of outbreaks of pestilence
corresponds with the period of revolution of the lunar node.

The first mathematical model, involving a nonlinear ordinary differential
equation, was produced by Daniel Bernoulli (1760), who considered the
effect of cow-pox inoculation on the spread of smallpox.

Some of the earliest classic works on the theory of epidemics is due to
Kermack and McKendrick395 (1927), who for the first time modeled some
general aspects of disease transmission and the temporal development of epi-
demics. In their model, the total population is taken to be constant (the
disease is of short duration relative to natural birth and death processes).

Consider a host population, subdivided at time t into three distinct classes
according to the health state of its members: S(t) susceptible individuals (not
yet sick), I(t) infected who may transmit the disease, and the removed class,
R(t), who can no longer contract the disease because they have recovered
with immunity, have been placed in isolation, or have died. The progress
of individuals is schematically described by S → I → R, and therefore the
model is called the SIR model. The assumptions made about the transmission
of the infection and incubation are these:

(1) The gain of the infected class is at a rate proportional to the numbers of
infected and susceptible.

(2) The rate of removal of the infected to the removed class is proportional
to the number of infected.

395 Kermack, W.O. and A.G. McKendrick, ‘Contribution to the mathematical

theory of epidemics’, Jour. Roy. Statis. Soc. 115, 700–721, 1927.
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(3) The incubation period is short enough to be negligible; that is — a sus-
ceptible who contracts the disease is infected right away (not a valid
assumption for many diseases!).

(4) Every pair of individuals has equal probability of coming into contact
with each other.

The rate equations then become

dS

dt
= −βSI,

dI

dt
= βSI − αI,

dR

dt
= αI, with S(t) + I(t) + R(t) = N = total size of population.

α, β > 0, S(0) = S0, I(0) = I0 > 0, R(0) = 0.

Here β is the rate of transmission while α is the rate of removal. A key
question in any epidemic situation is: given {β, α, S0, I0}, will the infection
spread or not, and if it does — when will it start to decline.

As in many other examples of nonlinear differential equations, the exact
analytical solution of the Kermack-McKendrick system cannot be presented in
a form which renders answers to the above questions. On the other hand, the
questions can be answered by squeezing out information from the equations
themselves without actually solving them. The following logical steps are
taken:

(A) Since S(t) is nonnegative, the equation dS
dt = −βSI implies that for

t > t1 > 0, S(t) < S(t1) < S(0). Furthermore, the limit of S(t) exists
as t → ∞. Only solutions for which S(t) > 0, I(t) > 0 are of concern.

(B) From dI
dt = (βS − α)I and (A), it follows that if βS0 < α, dI

dt < 0
for all t, I0 > I(t) → 0 as t → ∞ and the infection is eventually wiped
out, and no epidemic can occur.

For a disease to spread (i.e., to have an epidemic), S0 must exceed the
critical threshold value Sc = α

β . The term epidemic means that I(t) > I0

for some t > 0.

In this model, as time proceeds, S decreases and I increases until
S = Sc and I = Imax. The function I(t) then starts to decrease un-
til lim

t→∞
I(t) = 0, so the epidemic asymptotically stops.
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(C) dR
dt = αI tells us that R(t) increases monotonically while R ≤ N . Hence
R(∞) exists, and so does I(∞) = 0. The quantity 1

N [I(∞) + R(∞)] is
a measure of the extent to which the infection swept through the popu-
lation.

(D) From the first and the third equations we deduce dS
dR = −β

αS so that

S = S0e
− β

α R. Since R ≤ N, it is true that S ≥ S0e
− Nβ

α , which in turn
implies that S(∞) > 0, i.e., the disease dies out from lack of potential
infecteds and not from a lack of susceptibles.

(E) The first two equations yield, upon their division,

dI

dS
= −1 +

α

βS

whence

I = N − S +
α

β
loge

(
S

S0

)

.

Clearly

Imax = N − Sc +
α

β
loge

(
Sc

S0

)

.

As time goes on I(t) declines and eventually I(∞) = 0. The value of
S(∞) is determined from the transcendental equation

S(∞) = S(0)e− β
α [N −S(∞)].

This equation is satisfied by only one positive value of S(∞) < α
β = Sc.

Once S(∞) is known, R(∞) can be calculated from R(∞) = N − S(∞).

(F) The exact equation for R(t) is

dR

dt
= α

[
N − R − S0e

− β
α R

]
, R(0) = 0,

which can be integrated numerically provided α, β, S0 and N are known.

(G) When the infection spreads to unacceptable levels, immunity can be in-
troduced by means of vaccination. It is then assumed that vaccination re-
moves the individual instantaneously from S to R without joining group
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I, and a screening is available which prevents the infected from being
vaccinated. Consequently, the first equation is modified into

dS

dt
= −βSI − γ(t),

while a fourth equation is added dV
dt = γ(t), where V (t) is the group

of vaccinated individuals; the conservation constraint then becomes:
S + I + R = N − V .

So far it has been assumed that the population is thoroughly mixed, so that
there is no distinction between individuals in one place and those in another.
When this is not so, the disease may spread faster in some regions than in
others, and it is necessary to allow for the dependent variables to depend
on space as well as on time. The geographic spread of infections has indeed
been well observed in the form of spatial epidemic waves, in addition to the
temporal variation in specific regions that was discussed above.

The best known historical example is the medieval Black Death of 1347–
1350. A less known example is the plague bacillus that was brought by ship to
the northwest of America around 1900; It has been carried ever since, with an
average speed of about 55 km/year, via a large number of wild native animals
(rats, squirrels, coyotes, mice, bats and domestic pets). Epidemics such as
Asian flu appear to travel like a wave across the earth.

If the spatial dispersal of I and S is modeled by simple diffusion with the
same diffusion coefficient, and the population is assumed to consist only of
susceptibles S(x, t) and infecteds I(x, t), the Kermack-McKendrick equations
are generalized into

∂S

∂t
= −βSI + D

∂2S

∂x2
,

∂I

∂t
= βSI − αI + D

∂2I

∂x2
,

where α, β, D > 0. The non-dimensionalization

I =
I

S0
, S =

S

S0
,

x =

(√
βS0

D

)

x, τ = (βS0)t, λ =
α

βS0

yields
∂S

∂τ
= −I S +

∂2S

∂x2 ,
∂I

∂τ
= I S − λI +

∂2I

∂x2 .
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We assume the existence of a traveling wave solution of constant shape,
through which the infection spreads spatially into a uniform population of
susceptibles, i.e.,

I(x, t) = I(x − c̄τ), S(x, t) = S(x − c̄τ),

where c is the dimensionless wave speed, as yet unspecified. Substituting
these into the above partial differential equations yields a pair of coupled
nonlinear ordinary differential equations:

I
′ ′

+ c̄I
′
+ I(S − λ) = 0,

S
′ ′

+ c̄S
′ − I S = 0,

I(∞) = I(−∞) = 0,

0 ≤ S(−∞) < S(∞) = 1, I ≥ 0, S ≥ 0.

Here, a prime denotes differentiation w.r.t. ξ = x − c̄t.

It can be shown that the minimum (dimensionful) wave speed is given
explicitly by

V = 2
√

D(βS0 − α) if S0 >
α

β
= Sc.

Also:

(1) There is a minimum critical population density Sc = α
β necessary for an

epidemic wave to occur (e.g., a sudden influx of population can raise S0

above Sc, and hence initiate an epidemic).

(2) For a given population S0 and mortality rate α, there is a critical trans-
mission coefficient βc = α

S0
such that for β < βc the infection cannot

spread.

(3) With a given transmission rate β and an initial susceptible population S0

there is a threshold mortality rate αc = βS0, which if exceeded, prevents
an epidemic. So, the more rapidly fatal the disease is, the less chance
there is of an epidemic wave propagating through a population.

During 1975–1985, advances were made by Robert May and his cowork-
ers in our understanding of the role of infectious diseases in the regulation
of natural populations of plants and animals and the interactions between
population of viruses and immune system cells.
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Slime molds

Occasionally during summer, gardeners notice a jelly-like mass situated
on the lawn. The same type of matter is often seen in the woods on decaying
logs.

Known as ‘slime molds’ these organisms live in cool, shady, moist places on
decaying wood, leaves or other organic matter, retaining abundant moisture.
Over 700 species are reported to exist.

The colonies of slime mold living on logs and bark mulch can be strikingly
colorful in yellow, orange or red. Some produce cream-colored masses of cells
along grass blades. Slime molds often appear in the same area of the lawn
year after year, in 10 to 15 cm patches in various shades of purple, grey, white
or cream.

Slime molds feed on decaying organic matter, bacteria, protozoa, and other
minute organisms which it engulfs and digests.

Historically, slime molds were first regarded as members of the Fungi King-
dom but later classified with the Protista (Protoctista) Kingdom. In a recent
system of classification based on analysis of nucleic acid (genetic material) se-
quences, slime molds have been classified in a major group called the Eukarya
Domain (Superkingdom) including the four kingdoms of Protista, Fungi, Plan-
tae and Animalia.

Mycologists now consider slime molds to belong to a class called Myx-
omycetes396 [myxa = slime; myketes = fungi].

Slime molds have left almost no fossil record. However, fossils of members
of the Kingdom Protoctista, known as Ediacaran biota, produced deposits
that date back 600 million years ago. Some of these ancient protoctists may
have been ancestral to certain animal and plant phyla.

There are two main groups of slime molds:

• Plasmodial slime molds: basically enormous single cells with thousands
of nuclei and no definite cell wall. They are formed when individual
flagellated cells swarm together and fuse. The result is one large bag of
cytoplasm with many diploid nuclei.

396 Heinrich Anton de Bary (1831–1888, Germany). Botanist and founder of

the science of mycology and plant pathology. He called slime molds Mycetozoa

(1887), form the Greek myketes (fungi), and zoon (animals). This name was in

use until the 1970’s.
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• Cellular slime molds spend most of their lives as separate single-celled
amoeboid protists, but upon the release of a chemical signal, the individ-
ual cells aggregate into a great swarm. Cellular slime molds are thus of
great interest to cell and developmental biologists, because they provide
a comparatively simple and easily manipulated system for understanding
how cells interact to generate a multicellular organism.

What these two groups have in common is a life cycle. Before entering the
reproductive stage, a plasmodium moves to a drier, better-lit place, such as
the top of a log. In the amoeba-like or cellular slime molds, up to 125,000 in-
dividual cells aggregate and flow together, forming a multicellular mass called
a pseudoplasmodium that resembles a slug and crawls about before settling in
a location with acceptable warmth and brightness. When conditions become
unfavorable, these slime molds form sporangia clusters of spores, often on
the tips of stalks. Spores from the sporangia are dispersed to new habitats,
“germinate” into small amoebae, and the life cycle begins again.

Certain aspects of the ‘life’ of a slime molds lend themselves to mathemat-
ical formulation.

Marston Morse (1949) mentioned slime molds as an example of “equilib-
ria in nature”. Evelyn Keller and Lee A. Segel (1970), using classical PDE
ideas in a biological context, first formulated and analyzed equations to show
how aggregation might be regarded as an instability of secreting chemotactic
cells.

Athanasius F.M. Marće and Paulien Hogeweg (2001) have provided
a computer simulation of the transformation of slug into fruiting body by a
process of self-organization.

We now present a simplified model governing the slime mold amoebae
aggregation as an instability. Let us first recapitulate the essential behavioral
and anatomical data:

As mentioned above, slime molds have a complex life cycle that may be
divided into an animal-like motile phase (in which growth and feeding occur)
and a plantlike, immotile, reproduction phase. The motile phase is commonly
found under rotting logs and damp leaves where cellulose is abundant. It
consists in the cellular slime molds of solitary, amoeba-like cells, and in Myx-
omycota of a multinucleate mass of protoplasm called plasmodium, which
creeps about by ameboid movement.

Plasmodia often grow to a diameter of several inches. Both types ingest
solid food particles using a process called phagocytosis. They feed on living
microorganisms, such as bacteria and yeasts, as well as decaying vegetation.
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In the reproductive stage, the plasmodium or pseudo-plasmodium is trans-
formed into one or more reproductive structures called fruiting bodies, each
consisting of a stalk topped by a spore-producing capsule that resembles the
reproductive structure of many fungi.

Eventually, the cellulose-walled spores are released and dispersed; They
germinate in wet places, releasing naked cells. In a typical plasmodial slime
mold, the germinated spores go through an ameboid or flagellated swimming
stage, followed by sexual fusions and cell-divisions. The diploid ameboid cell
grows and its nucleus divides repeatedly, resulting in the formation of a new
plasmodium. Under adverse conditions, a plasmodium may be transformed
into a hard, dry, inactive mass which becomes a plasmodium again when
favorable conditions return.

In the case of the cellular slime molds, each spore released becomes a single
amoeba, which feeds individually until starving cells release a chemical signals
that causes them to aggregate into new pseudo-plasmodium, and the progress
is repeated.

In sexual reproduction two haploid amoeba fuse, then engulf surrounding
amoebas, forming a single organism called a macrocyst. It then undergoes
meiosis and released haploid individuals.

In the morphogenetic development of many species of cellular slime mold
(Acrasiales) some interesting effects of long-range intercellular interaction can
be observed. The interaction may be of a repulsive or attractive nature, de-
pending on the stage of the cells’ life cycle. Immediately following germina-
tion, the cells disperse as if acting under a mutual repulsion. When a source
of food (bacteria) is present, the cells move toward it with a high positive
chemotactic index. After exhausting their food supply, the amoebae first
tend to distribute themselves uniformly over the space available to them, but
later they begin to aggregate in a number of “collecting points” or centers.
At each center a slug forms, migrates and eventually forms a multicellular
fruiting body.

The basic biological facts which serve as a basis for the mathematical
model are:

• Amoebae spread out uniformly when sufficient food (bacteria) is avail-
able.

• Shortage of food causes the amoebae to start secreting a certain chemical
(an attractant) which attracts other amoebae.

• Further depletion of the food supply leads to an aggregation followed by
formation of spores.
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• Spores develop into new amoebae when conditions are favorable.

It is therefore necessary to quantify the following statements describing
the aggregation process:

• Amoebae diffuse due to concentration gradients

• Amoebae move towards higher concentration of attractant

• Amoebae secrete more attractant when there is shortage of food

• The attractant breaks down in time due to a chemical reaction

• The attractant itself diffuses in the solution due to diffusion gradients

We thus define:

a(x, y, t) = concentration (mass per unit area) of amoebae. The func-
tion is continuous (and sufficiently differentiable) in the
two-dimensional spatial coordinates (x,y) and the time t.

ρ(x, y, t) = concentration of attractant.

We now invoke:

(i) The conservation (continuity) equations for the concentration of amoe-
bae a(x, y, t) and the chemical attractant ρ(x, y, t);

(ii) The linear dependence of the transport flux of amoebae upon both dif-
fusive amoeba concentration gradient and the concentration gradient of
the attractant.

These statements translates into a pair of coupled nonlinear partial differ-
ential equations (two space, one time dimension):

∂a

∂t
= div[D2grad a − D1grad ρ], (1)

∂ρ

∂t
= −k(ρ)ρ + af(ρ) + Dρ∇2ρ. (2)

The term D2∇a represents a diffusion-like contribution to the amoebae
flux due to random motion, where D2(ρ, a) is a measure of the vigor of the
random motion of the individual amoebae; while D1(ρ, a) is a measure of the
strength of the influence of the attractant gradient on the flow of the amoebae.
The signs of the terms in (1) are chosen so that D1 and D2 will be positive,
since amoebae flow toward a relatively high value of attractant concentration
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and a relatively low value of amoebae concentration. In (2), af(ρ) is the
formation rate of attractant by the amoebae, and −ρk(ρ) is the decay rate,
while Dρ is the constant attractant diffusivity.

Eqs. (1)–(2) possess uniform equilibrium solutions

a = a0, ρ = ρ0, (3)

where
a0f(ρ0) = k(ρ0)ρ0. (4)

We now look for solutions of (1) and (2) near equilibrium. Of particu-
lar importance is the time dependence of these solutions. If the deviations
ρ−ρ0, a−a0 decrease with time, then any random perturbation which might
occur in the equilibrium state would decay. If, on the other hand, we found
a solution which these deviations increased with time, the appearance of any
spontaneous perturbation would mark the onset of instability. The perturba-
tion would grow until the system could no longer be described by equilibrium
or near-equilibrium equations.

Near equilibrium, we assume that the right-hand sides of equations (1) and
(2) can be replaced by Taylor expansions in ρ and a around the equilibrium
point (ρ0, a0). That is, we consider small perturbations of a0 and ρ0

a = a0 + a(x, y, t) |a| << a0,
ρ = ρ0 + ρ(x, y, t) |ρ| << ρ0

(5)

and expand any term in which a and ρ appear as follows

F (ρ, a) = F (ρ0, a0) +
(

∂F

∂ρ

)

ρ0,a0

ρ(x, y, t) +
(

∂F

∂a

)

ρ0,a0

a(x, y, t) + · · ·

As long as a and ρ are small we can ignore higher order terms containing
factors such as a2, aρ, ρ2, a3 etc. The linearized (small–signal) equations
which result are

∂ρ

∂t
= −kρ + a0f

′(ρ0)ρ + f(ρ0)a + Dρ∇2ρ, (6)

∂a

∂t
= −D1(a0, ρ0)∇2ρ + D2(a0, ρ0)∇2a, (7)

where prime denotes differentiation and k = k(ρ0) + ρ0k
′(ρ0). We look for

solutions to (6) and (7) of the form

a =
∧
a cos(q1x + q2y)eσt; ρ =

∧
ρ cos(q1x + q2y)eσt, (8)



3414 5. Demise of the Dogmatic Universe

where σ,
∧
a,

∧
ρ, q1, q2 are constants. Substitution of (8) into (6) and (7) leads

to a quadratic equation for σ

σ2 + bσ + c = 0

with

b = (q2
1 + q2

2)D2(a0, ρ0) + [k + (q2
1 + q2

2)Dρ − f ′(ρ0)a0]
c = −(q2

1 + q2
2)D2[f ′(ρ0)a0 − k − (q2

1 + q2
2)Dρ] − (q2

1 + q2
2)f(ρ0)D1

The roots of the quadratic equation are real (since b2 > 4c) and will both be
negative iff b > 0 and c > 0. It thus follows that instabilities (σ > 0) can arise
when:

• The diffusive mobility of the amoebae is low.

• The decay of attractant is slow.

• The production of attractant is high.

• The mobility of the amoebae is high.

It is conceivable that this mechanism is qualitatively related to what we
see in reality. However, the form of the aggregation patterns may be quite
complicated. Yet, the central contribution of the theory is the idea that
the onset of slime mold aggregation can be regarded as an instability of the
uniform distribution, triggered when the amoebae cease feeding. The merit
of this point of view is independent of the particular simplifying assumptions
which the model employs.

Chemotaxis

A taxis is an innate response by an organism (or cell) to a stimulus from
a particular direction, whereby the motile organism moves either toward or
away from the stimulus. For example, flagellate protozoans of the Genus Eu-
glena move towards a light source – a phenomenon known as phototaxis (a re-
sponse to light stimulus). Many other types of taxis that have been identified
are: Anemotaxis (stimulated by wind); Barotaxis (stimulated by pressure);
Chemotaxis (stimulated by chemicals); Galvanotaxis (stimulated by electrical
current); Geotaxis (stimulated by gravity); Hydrotaxis (stimulated by mois-
ture); Rheotaxis (stimulated by current flow); Thermotaxis (stimulated by
temperature change); Thigmotaxis (stimulated by contact).
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Taxis is classified as klinotaxis when an organism continuously samples the
environment to determine the direction of the stimulus.

In an assembly of particles (cells, bacteria, chemicals, animals) each par-
ticle moves around in a random way. When this microscopic irregular move-
ment results in some macroscopic gross regular motion of the group, it is
manifested as a diffusion process governed by the diffusion equation in the
continuum limit.

A large number of insects and animals rely on an acute sense of smell for
conveying information between members of the species. Chemicals which are
involved in this process are called pheromones. For example, the female silk
moth Bombyx mori exudes a pheromone, called bombykol, as a sex attractant
for the male, which has a remarkably efficient antenna filter to measure the
bombykol concentration, and it moves in the direction of increasing concentra-
tion. This chemically directed movement, that is chemotaxis, directs (unlike
diffusion) the motion up a concentration gradient.

It is not only in animal and insect ecology that chemotaxis is important.
It can be equally crucial in many biological processes, e.g.:

(a) A bacterium find food (e.g. glucose) by swimming towards the highest
concentration of food molecules, or employs the opposite behavior to flee
from poisons (e.g. phenol).

(b) Leukocyte cells in the blood move towards a region of bacterial inflam-
mation, to counter it, by following a chemical gradient caused by the
infection.

(c) Single-cell amoebae in the slime mold Dictyostelium discoideum move
toward regions of relatively high concentration of a chemical called cyclic-
AMP, which is produced by the amoebae themselves.

The first erudite description of chemotaxis and phototaxis was made by
the German botanists T.W. Engelmann (1881) and W.T.P. Pfeffer (1845–
1920, 1884) in bacteria and the American biologist H.S. Jennings (1868–
1947, 1906) in ciliates. Eli Metchnikov (1845–1916) also contributed to
the study of the field with investigations of chemotaxis as an initial step of
phagocytosis.

The kinetics involved in (c) can be derived via a continuum model equation
for the global behavior in terms of a particle concentration:

Assume that the presence of a gradient in an attractant concentration,
a(x, t), gives rise to a movement, of cells say, up that gradient. We then write
the chemotaxis–caused flux vector j of cells as

jchemotaxis = nχ(a) grad a, (9)
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where χ(a) is a function of the attractant concentration. The conservation of
matter equation for n(x, t), then becomes

∂n

∂t
+ div j = f(n), (10)

where f(n) represents the growth term for the cells, and

j = jdiffusion + jchemotaxis = −D gradn + nχ(a) grad a. (11)

Here D is the diffusion coefficient of the cells. Combining (10) and (11) one
obtains a PDE for chemotaxis

∂n

∂t
= f(n) − div[nχ(a) grad a] + div[D gradn] (12)

Since the attractant a(x, t) is a chemical, it also diffuses and is produced (by
the amoebae), so we need a further equation for a(x, t). Typically it takes
the form

∂a

∂t
= g(a, n) + div[Da grad a], (13)

where Da is the diffusion coefficient of a and g(a, n) is the source term. Nor-
mally we would expect Da > D. In many cases: f(n) = 0, g(a, n) = hn− ka,
χ = χ0 = const. and D, Da, h, k are also constants. Then, the model in one
space dimension is governed by the system

∂n

∂t
= D

∂2n

∂x2
− χ0

∂

∂x

(

n
∂a

∂x

)

;
∂a

∂t
= hn − ka + Da

∂2a

∂x2
(14)

Note the sign difference in (12) and (14), between the diffusion and chemotaxis
terms. Each has a Laplacian contribution. Whereas diffusion in generally a
stabilizing force, chemotaxis is generally destabilizing – a negative diffusion,
as it were. It is therefore reasonable to suppose that the balance between sta-
bilizing and destabilizing forces in the model system (14) could result in some
steady-state spatial patterns in n and a, or in the appearance of nonuniform
spatial patterns in the cell density.

1917–1919 CE Worldwide Influenza epidemic; estimates of deaths range
as high as 50 million. Typhus claims as high as 3 million lives in Russia.

1917–1921 CE Albert Wallace Hull (1880–1966, U.S.A.). Physicist and
inventor. Discovered (1917), independently of Peter Debye and P.H. Scher-
rer [1916; Swiss physicist, 1890–1969], the method of diffraction analysis in
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X-ray crystallography. Invented the thyratron397 and magnetron (1921) elec-
tron tubes.

The Hull magnetron consisted of an electron-emitting cathode surrounded
concentrically by a cylindrical anode. Electrons move from the cathode to
the anode under the action of an applied voltage V and form a current I
in the external circuit. The path of the electron is radial. If a magnetic
field B is applied in the direction of the tube axis, the electron will travel in
curved path, and if the field strength is increased, a condition will be reached
in which no electrons reach the anode and the current is cut off. Since the
velocity of thermal agitation is small in comparison, all electrons will have
approximately the same velocity. Thus there will exist a critical field Bc,
above which the anode current is wholly suppressed. The Hull magnetron
could therefore be used as a relay, but was not meant to act as an oscillator.
Sometimes, however, by setting B to barely exceed Bc, feeble oscillations were
found to be generated at very high frequencies.

The physical basis of the Hull magnetron hinges on the theory of motion
of charged particles in crossed electric and magnetic fields: Let a particle be
emitted from a surface in the plane x = 0 and accelerated by a uniform
electrostatic field E toward a collector plate in the plane x = 
. A uniform
magnetic field B is applied parallel to the OZ direction with the result that
the particle is deflected in the negative OY direction. The motion of a particle
of mass m and charge e in the XY plane is then described by the coupled
ODE

mẍ = eE − Beẏ; mÿ = Beẋ.

Applying the initial conditions ẋ(0) = ẏ(0) = 0, the solution of the above
ODE system yields the cycloid

x(t) = x0(1 − cosωt), y(t) = x0(ωt − sin ωt)

x0 =
E

ωB
, ω =

eB

m
.

The cut-off condition xmax = 
 = 2x0 = 2mE
B2

c e yields B2
c = 2mV

e�2 , where

V = E
 is the interplate voltage-drop.

397 A gas-filled triode with a thermionically heated cathode. It operates under arc

discharge conditions: The gas ionizes when sufficient current flows, reducing the

internal resistance. When the grid is sufficiently negative no electron current

flows. Less negative potential values cause electrons to flow, ionizing the gas;

the valve conducts heavily until the anode potential is reduced. The valve can

thus be used as a relay, or as a rectifier of variable output.
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A similar procedure may be followed in analyzing a cylindrical magnetron,

with the approximate result B2
c = 8mV

er2
a

, where ra is the anode radius.

Further study of the oscillations generated by the Hull magnetron led a
group of Japanese physicists (1927) to devise the split-anode magnetron. The
multi-cavity magnetron was developed in England (1941) by several research
groups for use in wartime RADAR systems.

Hull was born in Southington, CT. He was on the research staff of General
Electric Co. (1914–1950).

1917–1930 CE Harlow Shapley (1885–1972, U.S.A.). Astronomer. Rev-
olutionized galactic astronomy by obtaining the first realistic estimate for the
actual size of the Milky Way galaxy and “removing” the solar system from its
center. This was achieved through Shapley’s investigation of the distribution
of the globular clusters398.

In 1917–1918, Shapley determined the location of the solar system in the
Milky Way galaxy. In 1930 he calculated the diameter of the galaxy to be
about 100,000 light years. Shapley developed a method to measure the dis-
tance to globular clusters using variable stars as yardsticks.

It is possible to determine the distance to an object if both its absolute
and apparent magnitudes are known. It was discovered in 1912, through
observations of variable stars in the Magellanic clouds, that there is a definite
relationship between the pulsation period of these stars and their luminosities.
For Cepheids, the period increases with increasing luminosity (or decreasing
absolute magnitude) while with another type of pulsating variable, the RR
Lyrae stars, all have the same luminosity. This had a profound implication:

When a star is recognized as a variable belonging to one of these classes, its
absolute magnitude can be determined simply by measuring its period and us-
ing the established period-luminosity relations. Once the absolute magnitude
is known, the distance can be found by comparing the absolute and apparent
magnitudes. Because Cepheids are giant stars, they are very luminous, and

398 Before Shapley, the galaxy was generally believed to be centered approximately

at the sun and to extend only a few thousand light years from it. Shapley

placed the sun near the galactic central plane, at the outer edge, some 30,000

light years away from the center. Globular clusters are immense, densely packed

groups of stars (some containing as many as a million members). Because of

their brilliance and the fact that they are not confined to the central galactic

plane (where they would be largely obscured by interstellar dust), they can be

observed out to very large distances.
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can be observed out to great distances. This makes them very powerful tools
for measuring distances beyond those reached by other techniques.

From their directions and derived distances, Shapley, was able (1917) to
map out the 3-dimensional spatial distribution of the 93 globular clusters
then known. He found that the clusters formed a roughly spheroidal system,
with the highest concentration of clusters at the center. That center was not
near the sun, but a point in the middle of the Milky Way in the direction of
Sagittarius.

Shapley was born in Nashville, MO. He joined the staff of the Mt. Wil-
son Observatory, California, in 1914. He became professor of astronomy at
Harvard University and director of its observatory (1921–1952).

1917–1933 CE Tullio Levi-Civita399 (1873–1941, Italy). Outstanding
mathematician. One of the founders of the tensor calculus. Introduced the
concept of parallel displacement in Riemannian spaces; this was instrumental
in the development of the modern differential geometry of generalized spaces.

Parallel displacement (or parallel transport): Let C be a curve in three-
dimensional space R3 and let the coordinates xi(t), t ≥ 0 i = 1, 2, 3 of a
point P on C be functions of a parameter t along it (e.g., arc-length, time,
etc.), in any particular (possibly curvilinear) coordinate system.

Define400 a contravariant vector field A(P ) = Ak(x)gk(x) at a general
point P in R3, with gk the natural basis of contravariant vectors (frame)
corresponding to the given401 coordinate system. Ak are the components of
A in this system.

399 For further reading, see:

• Levi-Civita, T., The Absolute Differential Calculus, Dover, 1977, 452 pp.

• McConnell, A.J., Applications of Tensor Calculus, Dover, 1957, 318 pp.

400 We employ the summation convention: pairs of identical-symbol indices are

summed over.
401 The definition of parallel transport readily generalizes to any n-dimensional

manifold, not necessarily equivalent topologically to Rn; thus the coordinates

and frames might need to be differently defined on different “patches” of the

manifold, with suitably smooth transition functions furnished between any pair

of coordinate systems on the overlap of their respective patches. Furthermore,

such a multiplicity of coordinate–systems patches may be required even in an

Rn manifold, in the case of curvilinear coordinates (e.g spherical coordinates in

R3).
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The contravariant – vector basis {gk (x)} is in general not orthogonal,
but we can construct a dual base {gk(x)}, such that gj · gk = δj

k (Kronecker
delta) at each point in R3; this dual basis is a local basis (frame) for covariant
vectors, in the same coordinate system.

Next, we construct at every point P
(
x(t)

)
of C a vector equal in magnitude

to A(Q) (where Q ≡ P
(
x(0)

)
and parallel to it in direction (in the Euclidean

R3 geometry). We thus obtain a contravariant vector field B(t|C) on the
curve C, where t is a parameter along C.

Clearly, while this curve–restricted vector field is a constant in
absolute terms [B(t|C) ≡ A(Q) is t−independent], its local components
Bk = B · gk

(
x(t)

)
will vary along C, since they are measured at each point

w.r.t a local base that changes along the curve. There changes are determined
by the equation

dB

dt
=

d

dt
(Bkgk) =

[
∂Bk

∂t
+

dxi

dt
BjΓk

ij

]

gk

(
x(t)

)
≡ 0,

where we have used the chain rule of differentiation along the curve C,

dgk

(
x(t)

)

dt
=

dxi

dt

∂gk

∂xi
,

and defined anywhere in R3:

Γk
ij(x) ≡ gk(x) ·

∂gj(x)
∂xi

.

It can be shown that Γk
ij ≡ Γk

ji .
The condition of parallel transport of a vector along C – which defined B(t|C)
– thus results in the system of coupled linear ODE’s:

dBm

dt
+

dx�

dt
BkΓm

k� = 0.

for the components {Bk(t|C)}, in any given coordinate system.

The solution of this system of differential equations yields the parallel
vector field along C for given fiducial point Q and A(Q).

Expressed in other terms, if we are given a closed curve and, starting
with a given vector at a point of this curve, we parallel-transport the vector
along the curve, then there is no a priori reason why we should arrive at the
same initial vector when we have completed the circuit! In fact, the parallel
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transport of a vector round a closed circuit in a curved Riemannian space
generally results in a new vector when we have returned to at the initial
point.402

Consider, for example, the curved-triangle boundary of one octant of a
sphere: as we move a vector parallel to itself along the equatorial side of
the curved triangle (one quarter of the equatorial circumference) such that it
is always normal to the equator (say, pointing north), our intuitive concept
of parallelism is not violated. If, however, we further parallel–transport the
vector along the two meridional portions of the closed curve, then when we

402 The concept of parallel vector fields along a curve embedded in Euclidean

R3-space (E3) was generalized by Levi-Civita to curves embedded in a (pos-

sibly curved) Riemannian space (manifold) of dimension n: The Riemannian

space has an affine connection Γi
jk(x), which defines the covariant derivatives

Am
;l = ∂Am

∂xl +Γm
lkAk, transforming as a tensor under a general coordinate trans-

formation (while Γ is not a tensor, nor is ∂Am

∂xl ).

For an infinitesimal displacement dxi of P along C, DAm = Am
;l (P ) dxl can

be interpreted geometrically as the difference between Am(x + dx) and the

parallel transport of Am(P ) to the point P ′ with coordinates x + dx. The
coordinates xi, dxi depend on an arbitrary choice of local coordinate system

and the local patches in which they hold; yet the points P , P ′, and the tensor of
which Am and Am

;l are local components, are genuine and invariant geometrical

entities on the manifold. In a curved region of a Riemann space, a vector field

Am not identically zero cannot satisfy Am
;l ≡ 0j . One can however, create

a new field Ãm(t), defined only along C, by parallel-transporting Am from

t = t1 to any point along C; and this construction is covariant under change of

coordinates403. Ãm satisfies the 1st-order system of nonlinear ODE’s

DÃm

Dt
≡ dÃm

dt
+ Γm

ij
dxi(t)

dt
Ãj(t) = 0,

with initial conditions Ãm(t1) = Am
(
x(t1)

)
.

When n = 3 (x1, x2, x3) is Euclidean space, Am(x) is the velocity field and t

is Newtonian time, one example of parallel transport (in a flat space) is free-

streaming in fluid dynamics, where D
Dt

is the material (comoving) derivative.

For n = 3N , an example is the Boltzmann transport equation (for N particles)

without collision and external-field terms.

In GTR, n = 4, t becomes proper time, and the parallel-transport condition is

an approximation to the equations of motion (for 4-velocity, intrinsic spin and

other energy-momentum moments) in the case of a small object free-falling in

an external gravitational field.
403 Indeed, the variation of tensor fields caused by parallel transport around in-

finitesimal closed loops at different points P , can be used to define and fully

characterize the rank-4 Riemann curvature tensor on the manifold.
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return to the equatorial starting point, it is easily seen that the vector, orig-
inally pointing north, now points parallel to the equator. This is, obviously,
due to the uniform scalar curvature of the sphere.

Levi-Civita’s researches covered a vast field in the no-man’s land between
pure and applied mathematics. Their subjects include the absolute differential
calculus, integral equations, differential geometry, general relativity (1929),
hydrodynamics, partial differential equations, N -body problems and problems
of engineering.

Levi-Civita was born in Padua, Italy to a Jewish family, a son of Giaccomo
Levi-Civita and his wife Bice Lattis. The family was a wealthy one, well known
for its strong liberal tradition. His father was a barrister, jurist and politician
and was for many years Mayor of Padua and a Senator of the Kingdom of
Italy. As a young man he had fought with Garibaldi in the campaign of 1866.

At the age of 17 Tullio entered the University of Padua. One of his teachers
was Ricci-Curbastro, with whom he later collaborated. In 1902 he became
a professor of rational mechanics, and in 1918 he was called to the chair of
mechanics at the University of Rome, a post which he held for another 20
years.

Levi-Civita was a man of small stature, handicapped throughout his life by
defective eyesight. Nevertheless, he was very robust and in his younger days
was an avid mountaineer and cyclist. In 1914 he married Libera Trevesani, a
former pupil. He always remained true to the liberal tradition of his family.
The bond between him and his father was very close, and the father’s portrait
always hung, beside that of Garibaldi, in his study. He viewed with strong
displeasure the advent of fascism in Italy.

His scientific renown protected him from persecution until the introduction
of the anti-Jewish laws in Italy in 1938, when he was removed from his chair
in Rome. This was a heavy blow to him, from which he never recovered.
He received offers of asylum from many parts of the world, but severe heart
trouble prevented his traveling to accept any of these. He died in Rome as a
result of a stroke.

1917–1953 CE Hermann Staudinger (1881–1965, Germany). Organic
and macromolecular chemist. Deciphered the polymer structure. His pioneer
work on macromolecular chemistry constitutes a major foundation of modern
molecular biology.

His early (1917) synthesis of the hydrocarbon isoprene (the constituent
monomer of rubber) led him to the long-chain-molecule theory of the struc-
ture of polymers (1920). As early as 1926, Staudinger appreciated the im-
portance of macromolecules to biology and visualized the molecular biology
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of the future (1947). Recognition of his work as a whole came belatedly with
the award of a Nobel prize in 1953.

Before Staudinger it was accepted that polymers consist of an aggregate
of small molecules connected through mysterious secondary forces that no-
body could define. Staudinger was first to put forward a model through
which the molecular chain is held together by covalent bonds. Subsequently
he produced in his laboratory synthetic polymers used as models for natural
polymers. Thus was born the concept of polymer as a macromolecule. This
breakthrough led to a wide theoretical, experimental and industrial develop-
ment of macromolecular chemistry.

1917–1971 CE Robert Robinson (1886–1975, England). Organic che-
mist. One of the founders of modern organic chemistry. Made fundamental
contributions in four major areas: the structure of natural substances (many
of major biological importance); synthesis; biosynthesis; and mechanistic or-
ganic chemistry. For his work on natural products of biological importance
he was awarded the Nobel prize in chemistry (1947). It covered alkaloids
[morphine (1925), strychnine and tropinone], the plant pigments of the an-
thocyanin and anthoxantin group, steroids and penicillin.

His work led to the elucidation of patterns of biosynthesis; he suggested
the importance of the aldol condensation of carbinolamines in alkaloid biosyn-
thesis, and emphasized that the biosynthesis of organic compounds follows
recognizable chemical reactions and mechanisms. He also worked out an elec-
trochemical (electronic) theory of organic reactions.

Robinson was born in Chesterfield, Derbyshire, England. From 1912 he
held a series of appointments at Sydney, Liverpool (1915–1919), St. Andrews
(1920), Manchester (1922), University College, London (1928), and culminat-
ing in his appointment at Oxford (1930–1955).
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The Third ‘Copernican Revolution’ —

The Extragalactic Universe (1918–1924)

In 1543, Copernicus shifted the center of the universe from the earth to
the sun. In 1610, Galileo described his telescopic observations of the Milky
Way, which showed it to be composed of a multitude of individual stars. In
1750 Thomas Wright published a speculative explanation which turned out
to be substantially correct — that the sun is located within a disc-shaped
system of stars, and that the Milky Way is the light from the surrounding
stars that lie more or less in the plane of the disc. The disc shape of the
stellar system to which the sun belongs (the galaxy404) was demonstrated
quantitatively in 1785 by Herschel’s “star gauging”.

At the opening of the 20th century, very little was known about our
galaxy’s size and shape and where we are located in it, let alone that there
were galaxies beyond our own. Harlow Shapley established in 1918 the ex-
istence of clusters of stars out at the edge of the Milky Way and “pushed” the
sun away from the center of the galaxy towards its rim. He insisted, however,
that the visible nebulae did not extend beyond the Milky Way.

Heber Doust Curtis (1872–1942, U.S.A.) discovered in 1918 that the
great spiral nebula in Andromeda was far beyond our galaxy405. On April
27, 1920 these two astronomers met in a formal debate before the NAS in
Washington D.C., to decide whether the newly observed so-called nebulae,
were inside (Shapley) or outside (Curtis) the ‘Milky Way’. Shapley used
correct arguments but came to the wrong conclusion. Curtis, whose intuition
was better in this case, gave a rather weak and sometimes incorrect argument
but reached the correct conclusion. The nebulae were indeed distant galaxies.

Curtis’ findings substantiated the predictions of Kant (1755) and Ed-
dington (1914), and were finally confirmed at a meeting of the American
Astronomical Society by E.P. Hubble (1924). Before long, astronomers had
determined that many of the faint nebulae were, in fact, entire galaxies. With

404 From the Greek galaxias = gala-aktos = milk. The word Galaxy pertains to

the Milky Way, which contains about 1011 visible stars, as well as 1010 solar

masses (M⊕) of gas, distributed in tens of thousands of gas clouds with a wide

range of masses and sizes (M⊕ = 1.99 × 1033 gram).
405 The diameter of the ‘Milky Way’ is about 105 LY; the center of Andromeda is

at a distance of 2 × 106 LY from earth; the farthest star in the Local Group is

about 3 × 106 LY from earth.
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this knowledge came a new and larger view of the cosmos. Attention turned
to galaxies.

On average, galaxies are separated by about 107 light-years, or about 100
times the diameter of one galaxy. Thus, space would appear to be mostly
empty, with islands of stars, scattered here and there.

From another perspective, however, galaxies are far closer together than
stars. Individual stars in a galaxy, are separated by an average toll of 10
light-years, or 108 times the diameter of one star.

1918 CE Hans Thirring (1888–1976, Austria) and J. Lense (Germany).
Physicists. Tested whether the theory of general relativity incorporates the
‘Mach principle’. They solved the GTR linear ‘weak field approximation’
inside a large spherical shell rotating relative to an asymptotic inertial frame406

in an otherwise empty universe.

A small dragging effect from the shell, partially tugging the interior local-
inertial frames, was found — in accord with Mach’s principle; i.e. a test
mass inside the shell behaves as if it was acted upon by centrifugal407 and
other inertial forces usually attributed to absolute space, but caused by the
rotating shell. The predicted effect is known as the Lense-Thirring effect or
frame dragging .

1918 CE Paul Finsler (1894–1970, Germany). Mathematician. Provided
a generalization of Riemannian geometry, in which the metric form is replaced
by a more general function of the coordinates and the differentials. The re-
strictions on this function F (x, dx) are mostly those that insure the regularity

of the problem of minimizing the integral
∫

F
(
x, dx

dt

)
dt. His work is related

to that of Emmy Noether (1882–1935) on differential invariants.

Many attempts have been made since 1918 to reformulate the theory of
the gravitational field on the basis of Finsler’s metric, but there is yet no

406 Far outside the matter distribution, space-time is Minkowskian and one can

choose a fiducial STR-type inertial frame covering this exterior region. The

Minkowskian approximation becomes asymptotically exact in this region.
407 A sphere of mass M and radius R rotating with angular velocity ω w.r.t.

the distant stars produces near its center a centrifugal acceleration of amount

ω2r
(

GM
c2R

)
.
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experimental evidence to suggest that Riemannian geometry should be sup-
planted by the Finslerian generalization to describe the properties of physical
space-time.

1918 CE Otto Fritz Meyerhof (1884–1951, Germany and U.S.A.). Bio-
chemist. Broke new grounds in the field of conversion and transport of energy
in biological systems. Showed that muscular activity involves the anaerobic
conversion of glucose and glycogen (a process known as glycolysis) into lac-
tic acid408. During muscle rest lactic acid combines with oxygen to restore
glycogen level.

Furthermore, Meyerhof showed that yeast and muscle possessed the same
coenzymes. This made it appear possible that both types of cells broke down
glucose by similar series of reactions. It was the beginning of the demonstra-
tion that the metabolic pathways of all organisms were essentially similar. All
researches since Meyerhof’s time have strengthened this view.

Meyerhof was born in Hanover to Jewish parents. He first studied psychol-
ogy and philosophy but later switched to medicine and biochemistry. Profes-
sor of physiological chemistry at the University of Kiel (1918–1924); member
of Kaiser Wilhelm Institute for Biology, Berlin (1924–1928); director of de-
partment of physiology there (1929–1938).

Fled Germany (due to Nazi persecutions) to Paris (1938–1940). Came
to the U.S. in 1940 and became professor at the University of Pennsylvania
(1940–1951). Awarded the Nobel prize for physiology or medicine (1922).

1918–1920 CE Gaston Maurice Julia (1893–1979, France). Mathemati-
cian. Forefather of modern dynamical system theory and is best remembered
for his Julia set. Opened the floodgates of what is now known as ‘fractal
geometry ’.

408

H OH

| |
H — C — C — COOH , or simply C3H6O3 .

| |
H H

It is formed in sour milk (its taste!) when lactose (milk sugar) is fermented

by bacteria. Lactic acid is used for leavening dough (a process where dough is

made to rise) because the acid reacts with the sodium bicarbonate to produce

carbon dioxide, which lightens the dough by raising it (increase of volume).

In the fermentation action of yeast , lactic acid is subjected to a further split

C3H6O3 → C2H6O (ethyl alcohol) + CO2.
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With Pierre Fatou409 (1878–1929) he was first to study the iteration in
the complex plane of the mapping z → z2 + c, where z = x + iy and c
is a complex parameter. However, making his debut some 63 years before the
advent of computer graphics, he could not visualize the startling results and
the striking beauty of his maps.

Julia was born in Sidi-Bel-Abbès, Algeria. As a soldier in the first World
War, Julia was severely wounded in a German attack on the French front
designed to celebrate the Kaiser’s birthday. Consequently he lost his nose
and had to wear a leather strap across his face for the rest of his life.

Between several painful operations he carried on his mathematical re-
searches in the hospital. In 1918 Julia published Memoir sur l’iteration des
functions rationalles [Journal de Math. Pure et Appl. 8, 47–245], for which
he received the Grand Prix de l’Academie des Sciences.

In this work he gave a precise analytical description of the set of complex
points in C for which the nth iterate of the function f(z) stays bounded
as n → ∞. Seminars were organized in Berlin (1925) to study his work,
which included the first visualization of a Julia set. Although Julia became
famous in the 1920’s, his work was essentially forgotten until Benoit Man-
delbrot brought it back to prominence in the 1970’s through his computer
experiments.

409 Pierre Fatou (1906) ‘Sur les solutions uniformes des certain equations func-

tionales’. Comptes rendus (Paris) 143, 546–548.
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Deterministic Chaos and Fractal Geometry410 —
the Map is the Treasure

Most natural phenomena are nonlinear; yet even today, theoretical analy-
sis of physical systems is usually based on linear mathematical models, or ones
allowing only small deviations from linearity. Linear models are still routinely
used because they are much easier to solve than the correct nonlinear ones.
Within the last several decades, however, both theoretical and experimen-
tal investigations of nonlinear phenomena have shown that often, behavior
which appears to be random or chaotic is actually deterministic in its origin.
Nonlinear deterministic systems under these conditions are predictable only
for short times. This paradoxical situation exists because the deterministic
solutions depend very sensitively on initial conditions. Such systems are said
to exhibit deterministic chaos.

410 For further reading, see:

• Mandelbrot, B., The Fractal Geometry of Nature, W.H. Freeman and Com-

pany: New York, 1983, 468 pp.

• Lauwerier, H., Fractals, Penguin books, 1991, 203 pp.

• Takayasu, H., Fractals in the Physical Sciences, Manchester University Press,

1989, 170 pp.

• Schroeder, M.R., Fractals, Chaos, Power Laws,W.H. Freeman and Company:

New York, 1990, 429 pp.

• Peitgen, H.O., Jürgens, H. and D. Saupe, Chaos and Fractals, Springer-Verlag,

2004, 864 pp.

• Glass, L. and M.C. Mackey, From Clocks to Chaos, The Rhythms of Life,

Princeton University Press: Princeton, NJ, 1988, 248 pp.

• Pickover, C.A., Computers, Pattern, Chaos and Beauty (Graphics From an

Unseen World), St. Martin’s Press: New York, 1990, 391 pp.

• Hall, N. Ed., Exploring Chaos, W.W. Norton & Company: New York, 1993,

223 pp.

• Holden, A.V. (Editor), Chaos, Princeton University Press: Princeton, NJ,
1986, 324 pp.

• Peterson, I., Newton’s Clock, W.H. Freeman, 1993, 317 pp.
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It has also been found that several classes of systems show universal be-
havior at the onset of chaos411. Thus, systems as diverse as a dripping faucet
and a heart in ventricular fibrillation show many common features in their
dynamics.

Fractal structure

A set of points which fully (or “almost” fully, in a measure-theoretical
sense) covers a line segment is said to be of topological dimension unity; a
set of points which fills a plane area is of topological dimension 2, etc. One
may, however, construct sets of points which intuitively may be assigned a
fractional ‘dimension’.

Consider the following example: start with a line segment of unit length,
which we shall call the zeroth generation curve (n = 0) or the initiator. From
this initiator we construct the generator curve by removing the inner third of
the initiator and replacing it by the two other sides of an equilateral triangle,
built with the removed segment serving as the base; each new side also has
length 1

3 . This is the first generation curve (n = 1): it has N1 = 4 segments,
each of length δ1 = 1

3 and total length L1 = 4
3 [the initiator had δ0 = 1,

N0 = 1, L0 = 1].

We now take each segment of the generator and build upon it the same
pattern reduced by a factor of 3; we then obtain a second generation curve

with N2 = 42 segments, δ1 = 1
32 and L2 =

(
4
3

)2
.

By replacing with a suitably reduced generator each segment of a given
generation of the curve, a new generation is obtained. The nth generation of
this construction is a normal polygonal curve with a finite length, having the

parameters Nn = 4n, δn = 3−n and Ln =
(

4
3

)n
.

The set of points defined in the limit of infinite number of iterations
(n → ∞; δn → 0), known as the Koch curve412, is a curve for which length
is not a useful parameter (Ln → ∞). It is continuous but does not possess
a tangent at any point!

411 The word chaos was first used in a technical context by T.Y. Li and J. Yorke

in Amer. Math. Monthly 82, 985–992, 1975.
412 Helge von Koch (1870–1924, Sweden). Mathematician. Principally known for

his work on the theory of infinite systems of linear equations. E.I. Fredholm

used his results in his method of solution of linear integral equations.
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Instead of length, we define a new characteristic parameter in the following
way: we force Nn into the algebraic form Nn = (δn)−d, where d is found
from log Nn = −d log δn. This yields the Hausdorff-Besicovitch dimension

d =
log Nn

log
(

1
δn

) .

In our example d = log 4
log 3 � 1.262 8 . . .. The definition leads to

Ln = δnNn = (δn)1−d (the normalization is such that for d = 1, Ln → con-
stant, as the case should be for a curve whose length is independent of n, i.e.
independent of the resolution at which it is studied, in the continuum limit
n → ∞). A fractal413 is a shape made of parts similar to the whole in some
way. The Koch curve is a fractal set with a fractal dimension d = log 4

log 3 . Note
that if the initiator is an equilateral triangle of unit side with the same gen-
erator as above, the resulting shape is the Koch ‘snowflake’ curve, having the
same fractal dimension. In this variant, while again Ln → ∞, the enclosed
area tends to a limit Sn → 8

5S0.

413 Georg Cantor (1833) thought up the oldest fractal. This is the so-called Can-

tor point-set. To construct an example, we start with a line-segment (including

its end points). Of this we leave out the middle third, but not its end points.

We are then left with two line-segments with a total of 4 endpoints. We treat

each of these two line-segments like the original one: the middle thirds are re-

moved, so that a total of 4 line-segments with 8 end-points remain. We continue

this procedure. Eventually we will be left with discrete points only: the Cantor

point-set (or fractal) built up from discrete points. It is now called a Cantor

set or Cantor dust. If we take the length of the original line-segment as 1, then

after n steps we have generated 2n line-segments, each of length 3−n with total

length of
(

2
3

)n → 0 as n → ∞. Clearly, the Cantor set consists of the real

numbers x =
∑∞

k=1(ak/3k), where each base-3 digit ak equals either zero or

two (but not one). In base three fraction notation this becomes x = .a1a2 . . . .

Note, for example, that the point x = 1
3
, which is in the Cantor set, is given

by x = 0.022 . . . , because the above sum becomes (2/32)

1− 1
3

= 1
3
.

Kolmogorov (1958) defined the capacity of a point-set on a straight line [which

Mandelbrot later (1977) called the fractal dimension] as d = limh→0
log N(h)

log( 1
h )

where N(h) is the smallest number of neighborhoods of size h needed

to cover the set. In our example h = 3−n, N(h) = 2n, leading to

d = log 2
log 3

= 0.6309 . . ..
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While sets of fractional Hausdorff dimension have been studied for many
years in harmonic analysis, geometric measure theory and in the theory of
singularities, the new term ‘fractal’ was coined and popularized by Benoit
Mandelbrot (1975).

However, fractal geometry is today at the stage perhaps analogous to
that at which the Newtonian calculus was in the days of George Berkeley
(1734): it is still a discipline with few rigorous definitions or theorems, and
– unlike the early calculus – not a single problem has been solved by it. In
fractal geometry one uses some mathematics to generate a picture — which
generates more pictures. Then one asks more questions about the new picture,
and so on. It thus consists mainly of algorithmic techniques for generating
graphic images on a computer systems.

The Logistic Map

The simplest model for continuous growth of a species with population
N(t), limited by self-interaction effects (such as competition for food sup-
ply, or toxicity effects), is dN

dt = cN(1 − N
k ), N ≥ 0, where c and k are

positive constants and the initial condition satisfies 0 ≤ N0 = N(0) ≤ k. This
so-called logistic model (Verhulst, 1845), an example of the Riccati equation,
is a relatively unexciting equation, having the deterministic solution

N(t) =
N0kect

k + N0(ect − 1)
→ k as t → ∞.

The form of an ordinary differential equation presupposes that population
variations at any given time t only depend upon their instantaneous values
at that same time. (It also assumes that the population itself is sufficiently
numerous to allow a continuous, non-stochastic approximation.) However, in
most natural populations the delayed effects of a number of regulating factors
prove to be fairly important. Thus, presentation of a population in the form
of discrete variable Nt, taking on different values at fixed times (e.g. at yearly
intervals), is more realistic.

This scheme exactly reflects the census-taking process for natural popu-
lations (in laboratory or field studies), which is usually realized at discrete
points in time. The appropriate mathematical tool is thus that of difference
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equations, where the population at time t depends in some definite way upon
its values in a discrete set of past times.

Consider the case where the population of every successive generation
Nt+1 depends only on the population of the previous generation Nt, namely
Nt+1 = f(Nt) (t ≥ 0 integer). Of course, this is valid only under the as-
sumption of non-overlapping generations, i.e. when a new generation reaches
maturity, the previous one already declines to extinction. It is also assumed
that the main environmental properties are unchanging (thus no explicit t
dependence), and that no part of the population is laid aside in diapause for
a length of time that exceeds the span of one generation.

Some restrictions on f immediately follow from obvious considerations:

Since for biological reasons Nt ≥ 0, clearly f(N) ≥ 0 for all possible
N > 0. Naturally f(0) = 0, and at small N the population increases
(natural competition, negligible competition).

On the other hand, resource limitations require that f(N) → 0, as
N → ∞.

Substituting ΔN
Δt for dN

dt , where ΔN = Nt+1 − Nt and Δt = 1,
the above logistic equation becomes

Nt+1 = Nt

[

1 + c(1 − Nt

k
)
]

.

If at some time Nt > k(1 + 1
c ), this equation yields a negative value of

Nt+1, which is not the case in the continuous model. From this point of view
the discrete analogue of the continuous logistic growth model is biologically
incorrect. But even if we disregard this, it turns out that their solutions are
very different. The reason for this is that since t increases in discrete steps,
there is an inherent delay in the development of changes, and the difference
equation is in fact equivalent to a delay functional equation which is known

to have oscillatory solutions [e.g. N(t) = 1
aN(t − T ), t ≥ T, a ≥ 1 is

solved by N(t) = e− ln a
T tf(t), with f(t) periodic with period T such that

f(t) = at/T N(t) in the initial interval 0 ≤ t < T ].

Our logistic difference equation can be simplified into

xn+1 = rxn(1 − xn),

where r = 1 + c, t = n units of time, and Nt = k(1 + 1
c )xt.

In this form it is known as the logistic map. Here xn ≥ 0 is a dimen-
sionless measure of the population of the n-th generation and r > 0 is the
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intrinsic growth rate, appearing as an adjustable parameter; a realistic solu-
tion must have xn ≤ 1 as well, to ensure xn+1 ≥ 0. Though r = 1 + c > 1
in the above derivation, the logistic map is usually studied for all r > o.

Given and initial population value x = x0, and a particular value of r,
the equation is solved numerically by iteration to any desirable n value. The
graph of rx(1 − x) is a parabola with a peak value r

4 at x = 1
2 ,

restricting the control parameter r to the range 0 ≤ r ≤ 4 (to ensure
xn ≤ 1). It will map the interval 0 ≤ x ≤ 1 into itself, so the iteration will
not take us out of the interval [0, 1].

Suppose that we fix r, choose some initial population x0, and then use
xn+1 = rxn(1 − xn) to generate the sequence x1, x2, x3, . . . xn, . . .

What happens?

Numerical experiments exhibit the following results:

• The initial value x0 = 0 invariably renders xn ≡ 0 at all later times (n
values ≥ 1) and for all r values. The initial value x0 = 1 likewise yield the
same result.

• For small growth rate r < 1, the population always goes extinct: xn → 0.
We say that 0 is an attractor (limit point). Thus, extinction is nature’s ‘pun-
ishment’ for insufficient fertility.

• For 1 < r < 3 the population grows and eventually reaches a nonzero
steady state, as can be seen when we plot the resulting time-series xn

vs. n. Let us take a closer look at this interval:

Define an equilibrium point x̄, of the system as a fixed point of the map,
i.e. one for which xn = x̄ guarantees xn+1 = xn = x̄. Mathematically it
means that x̄ = rx̄(1 − x̄). This equation has two roots, one at x̄ = 0
(which we already encountered before) and the other at x̄ = 1 − 1

r . For
r < 1, the second fixed point renders negative values for xn, which we
dismiss as being unrealistic.

For r > 1, however, there will be two fixed points, one at x̄ = 0, and
the other at x̄ = 1 − 1

r . Now, an equilibrium (fixed) point may be either
stable or unstable, according as small perturbations about the point result in
dynamics that drive the numbers back to it or away from it, respectively.

It can be shown that in the general case
∣
∣
∣
df(x)

dx

∣
∣
∣
x̄

< 1 implies stability

(attractor), while
∣
∣
∣
df(x)

dx

∣
∣
∣
x̄

> 1 implies instability (repeller). In our case,

since f ′(x) = r(1 − 2x), we have for the first fixed point f ′(0) = r and
for the second f ′(1 − 1

r ) = 2 − r.
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Consequently, when r < 1, x̄ = 0 is the only fixed point, and it is
stable;

But for 1 < r < 3, the origin becomes an unstable fixed point (repeller),
while the second fixed point is stable (attractor). The map at r = 1 represents
a bifurcation in the systems behavior: as r passes through this value, the
single, stable fixed-point x̄ = 0 splits continuously into two fixed points – an
unstable one remains at x̄ = 0, while the new fixed point (at x̄ = 1 − 1

r ) is
stable.

Similarly, there is a second bifurcation at r = 3 corresponding to the
onset of instability of the non-zero equilibrium point at x̄ = 1 − 1

r .

Thus, for 1 < r < 3 there are two equilibrium points of which the origin
is unstable, and the other is stable. For 2 < r < 3 numerical experiments
show that the sequence x1, x2, x3, . . . approaches the limit value 1 − 1

r
through oscillations on both sides of this limit. Our biological model is stable
— there is balance in nature.

However, as soon as r becomes even a little greater than 3, a new
phenomenon appears: the population builds up again and oscillates about
the fixed point, alternating between a large population in one generation and
a smaller population in the next. This type of oscillation, in which xn

repeats every two iterations, is called a period 2-cycle.

Thus at r = 3.1, after 200 iterations, xn repeatedly hops back
and forth between the two values 0.76456 . . . and 0.55801 . . ., while the (now
unstable) fixed point x̄ = 1 − 1

3.1 = 0.6774 . . . remains unapproached. The

2-cycle orbit is stable414 up to r = 1 +
√

6 = 3.449 . . .

414 Asking for a fixed point of the second-iterate map, f [f(x̄)] = f2(x̄) = x̄, ren-

ders a quartic polynomial equation for x̄. However since f(x̄) = x̄ im-
plies f2(x̄) = x̄, the two solutions of the first-iterate map [namely, x̄ = 0,

x̄ = 1 − 1
r
] are automatically included. After factoring out x and x − (1 − 1

r
)

by long polynomial division, the equation f2(x) − x = 0 simplifies to a
quadratic equation with the solutions

p, q =
1

2r
[(r + 1) ±

√
(r − 3)(r + 1)],

which are real for r > 3. Thus a 2-cycle exists for all r > 3 as claimed,and
f(p) = q, f(q) = p. At r = 3, the roots coincide and equal x̄ = 1 − 1

r
= 2

3
,

which shows that the 2-cycle bifurcates continuously from x̄. For r < 3 the

roots are complex, which means that a 2-cycle does not exist.
To determine the r region of stability for the 2-cycle, we impose that p and q

are stable fixed points of the second-iterate f2(x). Analytically,

d

dx

(
f2(x)

)
x=p

= f ′[f(p)]f ′(p) = f ′(q)f ′(p) = 4 + 2r − r2.
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Fig. 5.4: The solution sequence of the Logistic – map recursion xn+1 =
rxn(1 − xn) for some values of the parameter r
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At still larger r, the population approaches a stable cycle that now repeats

every four generations: the previous cycle has doubled its period to period-4
[e.g. at r = 3.45 we find the values 0.87499 . . .; 0.38281 . . .; 0.82694 . . .;

0.50088 . . ., while the fixed point is at 0.71014 . . .]. Further bifurcations results

in progressive period-doubling to stable cycles of period 8, 16, 32 . . . as r

increases, each cycle becomes unstable at the r−value at which the next,

longer-period cycle continuously “peels off” it – replacing it (until the next
bifurcation) as the stable limit cycle.

Specifically, let rn denote the value of r where a 2n-cycle first appears.

Computer experiments reveal that these threshold parameter values are:

r1 = 3 (period 2 is born)

r2 = 3.449 · · · = 1 +
√

6 4
r3 = 3.54409 . . . 8
r4 = 3.5644 . . . 16
r5 = 3.568759 . . . 32
...

...
r∞ = 3.569946 . . . ∞

Note that the successive bifurcations occur at progressively smaller r intervals

as we sweep through increasing values of r. Ultimately the sequence rn con-

verges to a limiting value r∞. The convergence is asymptotically geometric:

in the limit of large n, the distance between successive transitions shrinks by

a constant factor

δ = lim
n→∞

rn − rn−1

rn+1 − rn
= 4.669 . . .

We list the attractors corresponding to the various r-values:

Therefore the 2-cycle is linearly stable for |4 + 2r − r2| < 1, i.e. for

3 < r < 1 +
√

6 = 3.449 . . ..
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Interval Attractor
at fixed point X

0 ≤ r ≤ 1 X = 0

1 < r ≤ 3 X = 1 − 1
r

3 < r ≤ r2 21-cycle

r2 < r ≤ r3 22-cycle

r3 < r ≤ r4 23-cycle

. . . . . .

rk < r ≤ rk+1 2k-cycle

. . . . . .

r∞ = 3.56994 . . .

The limit ratio δ is called the Feigenbaum number415, after the physicist
who discovered the properties of this map (M. Feigenbaum, 1978). Beyond

415 The emergence of chaos as a research subject unto itself was a story not only of

new theories and new discoveries, but also of the belated understanding of old

ideas. Many pieces of the puzzle had been understood long ago by Poincaré,

Maxwell, even by Einstein — and then forgotten. But when Feigenbaum

first discovered the universality of chaos, the discovery was greeted with surprise,

disbelief, and excitement. It soon became evident that there were structures in

nonlinear systems that are fundamentally the same if one looked at them the

right way. However, reserved attitudes still prevailed among mathematicians,

who were unhappy with numerics and demanded a proof. In 1979, Feigenbaum

supplied a ‘reasonable proof’ that finally convinced the diehards416.
416 The universality of certain scaling laws – manifested in period–doubling bifur-

cation sequences when general, iterated nonlinear maps are varied – is closely

related to the universality of scaling laws of physical observables as a phase tran-

sition is approached in quasi–equilibrium, many-body interacting systems, such

as condensed matter systems. Many such phenomena are known empirically;

the longest-known example is the
√

T − Tc behavior of bulk magnetization as

a ferromagnetic sample’s temperature T approaches the critical Curie temper-

ature, Tc, from below.

Through the pioneering work of L. Kadanoff , K. Wilson, Migdal and others

in the 1970s (involving theory and simulations), it was found that such critical

behavior involving power laws is usually universal, in the sense that many dis-
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r∞ chaotic evolution can occur (“strange attractor”); that is, the long-term
behavior of the iterated sequence {xn} does not settle down to any simple
periodic motion.

The interval (r∞, 4) contains an infinite number of narrow windows of r-
values for which there exist stable m-cycles. The first such cycles to appear
beyond r∞ are of even period. Next odd cycles appear in descending order.
The period 3-cycle417 first appears for r = 3.828427 . . . and stays stable
up to r = 3.841499 . . .. At the end of the 3-window begins a stable 6-cycle

parate condensed–matter physical systems – each with a different microscopic

Hamiltonian (classical or quantum) – all undergo the same dynamics near crit-

icality. And through the deep analogy between condensed–matter systems and

relativistic Quantum Field Theories – especially the mathematical correspon-

dence between partition sums and path integrals – such critical behavior analy-

ses were also fruitfully applied to the physics of elementary particles and their

fields, the quantum vacuum, astrophysics and the early universe.

Apart from advance Monte-Carlo computer simulations, the main mathemat-

ical tool used in such studies is the renormalization group: a method of it-

eratively mapping the relevant effective Hamiltonian or action across many

scales of space and or time. The universality of critical behavior was thus

related to fixed points and asymptotic behaviors of nonlinear maps in various

dimensions. The dimensions referred to here are those of thermodynamic phase

diagrams; but renormalization–group methods were also applied to condensed–

matter and quantum-field systems in various numbers of spacetime dimensions.

These methods rely on the fact that thermodynamical phase transitions involve

cooperative phenomena at many distance scales (fluctuations, excitations, cor-

relations etc.)

The idea of universal bifurcation, fixed points, limit cycles, stability analysis,

etc., was also extended to continuous – time maps (e.g. systems of ODEs de-

scribing mechanical, optical, chemical or biological systems), and to the dynam-

ics of systems continuous in both space and time. For example, I. Prigogine

and coworkers applied these methods to the study of the spontaneous emer-

gence of spatial and temporal order and structure in far–from–equilibrium open

thermodynamic systems, described by nonlinear systems of PDEs (Reaction –

Diffusion – Advection equations).

In general, bifurcations – whether in the discrete Logistic map or more complex

systems – are intrinsically topological in nature.
417 The period-3 window that occurs in 3.8284 · · · ≤ r ≤ 3.8415 . . . is the most

conspicuous. Suddenly, against a backdrop of chaos, a stable 3-cycle appears

out of the blue. This is explained as follows: starting from an n-iterate

xn+1 = f(xn), we generate the next iterate xn+2 = f(xn+1) = f2(xn). Simi-

larly xn+3 = f3(xn). Now, any point p in a period-3 cycle repeats every three

iterates, by definition. So such points satisfy p = f3(p) and are therefore
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followed by further period doubling. The same is true for all other stable
cycles of odd order. Figure 5.4 exhibits the behavior of the solution xn(n, r)
for some r values in the parameter range 2.8 ≤ r ≤ 3.9.

Outside the windows there are no stable periodic orbits, although there
are an infinite number of unstable cycles. The dynamic behavior of the map
is then called chaotic. The most chaotic case, r = 4, deserves special atten-
tion since in that case the iterative map can be represented explicitly by an
elementary function. Indeed, xn+1 = 4xn(1 − xn) is solved exactly by

xn = sin2(2nθ0π), where 0 ≤ θ0 < 1, θ0 = 1
π sin−1 √x0. It is helpful to

write θ0 in base-2 form as

θ0 = 0.b1b2b3 · · · =
b1

21
+

b2

22
+ . . .

where
x0 = sin2(πθ0), x1 = sin2(2πθ0) . . . etc.

Then at each iteration step the foremost binary digit is lost. If x0 is an
arbitrary starting point, then as a rule θ0 is an irrational number with an
infinite string of zeros and ones, as in tossing a coin. This means that as
a rule the orbit is aperiodic. Periodic orbits, always unstable, are produced
by rational values of θ0. Indeed, defining θn = 2nθ0 (mod 1) we have
xn = sin2(πθn).

For example, if θ0 = 1
3 (or x0 = 3

4 ), then {θn} = { 1
3 , 2

3 , 1
3 , 2

3 , . . . }

and xn = 3
4 is a fixed point. If θ0 = 1

5 , then {θn} = { 1
5 , 2

5 , 4
5 , 3

5 , 1
5 , 2

5 , . . . }

and xn settles on the 2-cycle 5±
√

5
8 . For θ0 = 1

7 we have the 3-cycle

0.188; 0.611; 0.950, and for θ0 = 1
9 the 3-cycle 0.117; 0.413; 0.970.

fixed points of the third-iterate map. Since f3(x) is an 8-th degree polynomial,

we cannot solve it explicitly for its fixed points. We may however plot y = f3(x)

vs x in the interval 0 ≤ x ≤ 1 and intersect it with the diagonal y = x. There

are in general 8 intersections, of which two are imposters [period-1 points for

which f(x̄) = x̄]. Of the remaining six, only 3 are consistent with the stability

of the cycle, while the other 3 are unstable. The graphical solution shows that

as r decreases through 1 +
√

8 = 3.8284 . . . , the graph of f3(x) becomes tan-

gent to the diagonal. At this critical value of r, the stable and unstable pair

of period-3 limit cycles (which have been continuously approaching each other

as r decreases) coalesce and annihilate in a so called tangent bifurcation! This

transition marks the beginning of the periodic window. As as r increases it lasts

until r exceeds 3.84149 . . .
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All the periodic sequences are unstable, because each rational value of θ0

is arbitrary close to an irrational value of θ0 which generates an aperiodic
sequence {θn}. This means that the sequence {xn}, for large values of n,
depends sensitively on the initial value x0, with exponentially growing sepa-
ration of neighboring orbits.

This sensitivity was demonstrated above for the special value r = 4 be-
cause there it can be made explicit, but a similar situation occurs for other
values of r for which there is an attractor which is infinite. The attractor
is the same set for all initial values within the domain of attraction, but the
position of xn within the attractor for a given large value of n depends so
sensitively upon x0 as to be, in effect, random. Many other one-dimensional
and higher-dimensional nonlinear ordinary differential equations and other
nonlinear systems also display sensitive dependence on initial conditions.

An issue associated with the logistic map is of fundamental importance
that goes beyond this particular example:

A given recursion equation determines xn precisely in terms of x0, yet in
some respects a sequence {xn} which wanders nearby an infinite set of un-
stable limit–cycles may be regarded as a sequence of random numbers. Thus,
although a particular value xn may depend sensitively on x0, the statistical
properties of the sequence {xn} are the same for all values of x0 which corre-
spond to irrational values of θ0. And yet, for a given value of x0, the sequence
{xn} is in principle determined completely and precisely by an algorithm,
namely iteration of the map f .

But in practice the sequence may be indistinguishable from a sequence of
random numbers. In laboratory experiments, however careful, observations
are not absolutely precise, and there is no possibility of distinguishing an
irrational from rational value of a datum. Also, numerical errors (such as
round-off error) are inevitable in the practice of processing the data to find
xn+1 from xn.

So we could not predict the precise long-range future of a chaotic system,
even if we had an exact model on which to base our predictions. The errors
in prediction grow exponentially in time (or in n, in the discrete-time case at
hand) because of our lack of exact knowledge of the present, so that doubling
the accuracy of our measurements and data processing will avail only a little:
we may predict with confidence only the near future of chaotic solutions and
their statistical properties over a long time. It is because of this feature that
such chaos is called deterministic chaos.

It is therefore possible to make such statements as: “In the next 100
iterations, the following approximate state values are more likely to occur
than others. . ..”
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Though they are less exact than one might expect of deterministic time
series, such predictions are potentially valuable nonetheless. Even though
it may never be possible to precisely predict phenomena like the weather,
earthquakes, population dynamics, the stock market or the sudden collapse
of sand piles, one might foresee the global patters of their behavior — the
“order within the chaos”.

The logistic map is the simplest example that exhibits chaotic dynamics,
and indeed serves as a paradigm for chaos.

It has been shown that other maps xn+1 = f(xn), behave in a similar
manner with the same scaling law. Thus, the phenomenon of period-doubling
coupled with bifurcation-parameter scaling is an example of a universal prop-
erty for a certain class of one-dimensional difference equations modeling dy-
namic processes.

Moreover, period doubling and Feigenbaum scaling have been observed in
many physical experiments.

The forgoing analysis shows that simple and fully deterministic models
in which all the biological parameters are exactly known, can nonetheless (if
the nonlinearities are sufficiently severe) lead to population dynamics which
are in effect indistinguishable from sample drawn from a random process.
Apparently chaotic population fluctuations need not necessarily be due to
random environmental or genetic fluctuations, or sampling errors, but may
reflect the workings of some deterministic, but strongly density dependent,
population model.

Taking a practical point of view we can say that randomness occurs to
the extent that something cannot be predicted. Unpredictability can arise for
many reasons; prime among these is shear ignorance: If we do not know the
forces that cause something to change, then we cannot predict its behavior.
For example, a common way to choose something randomly is to flip a coin:
In the absence of any other information “heads” is just a likely as “tails”, and
the outcome is unpredictable. However, if we made precise measurements of
the motion of the coin as it left our hand, we could predict the final outcome.
People who are skilled in flipping a coin properly can do this.

Another classical example of randomness is the game of roulette — the final
resting position of the ball is uncertain, but in fact the motion of roulette balls
can be predicted using simple physical laws, to a sufficient degree of accuracy
to give a significant advantage over the house. Thus we see that when one
knows the dynamics and has enough information about the state of the system,
some classical examples of randomness cease to be random.
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Aside from ignorance, three basic causes of randomness are known (at this
point of time):

• Quantum mechanics: there exists an intrinsic limit to the accuracy of
measurements and to our knowledge of, or even the in-principle knowability
of, intermediate physical variables between measurements. These are limits
that no observer, sentient or automated, can go beyond, no matter how much
we know or how careful we are.

• Complexity: a dynamic system that involves many irreducible degrees of
freedom as measured in terms of the dimension of the motional phase or state
space, e.g. the motion of gas particles or atoms in condensed–matter systems.
Even setting Quantum Mechanics aside, we can never hope to keep track of all
degrees of freedom in such a system, even if we know all relevant microscopic
interactions. Yet, the simplest collective modes of behavior of the system
– such as spatially smooth wave excitations, low-order statistical moments
of various distributions, and the like – may be described by simple physical
laws and their behavior predicted through tools such as equilibrium or near–
equilibrium statistical mechanics, Landau–Ginsburg effective field theory, etc.

Consequently, while the behavior of the individual particles is random,
many bulk properties of the system are not.

Sometimes, however, microscopic fluctuations interact with collective dy-
namics at many scales of space and times, to produce complex behavior that
is difficult to analyze; an example of this is turbulence in fluid dynamics.

• Chaos: a sensitive dependence on initial conditions. For a deterministic
dynamical system, chaos occurs when on the average, nearby trajectories sep-
arate at an exponential rate. This is measured by the Lyapunov exponents: if
any of them are positive, then there is exponential separation and the system
is chaotic. Chaos can cause random behavior even in systems with only a
few degrees of freedom (such as the logistic map, the Lorentz, attractor – a
dissipative nonlinear system of 3 coupled ODE’s – or the kicked rotor). Here
randomness emerges through the agency of deterministic evolution, without
the need for a large number of system components, ignorance–caused uncer-
tainties or quantum effects.

Chaos and complexity by no means preclude each other. Chaos also occurs
in systems with many degrees of freedom. On the other hand, complex dy-
namical systems can often be approximately truncated into simplified systems
with only a few degrees of freedom, thereby losing much of their complexity,
while maintaining chaos and randomness. Thus, some of the randomness of
turbulent motion derives from chaos.
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If in the recursive logistic map xn+1 = rxn(1 − xn) we change variable to

xn = 1
2 − 1

r zn, we obtain the new form zn+1 = z2
n + c, where c = r

2 − r2

4 .

In the logistic map, xn and r are, of course, real numbers since they typically
represent populations and reproduction rates.

Fatou (1906) and Julia (1918) formally extended such maps into the
complex plane by letting z = x + iy, c = cr + ici, in the hope of discovering
new dynamic features and gaining better understanding of the classical logistic
case.

Indeed, the compact form zn+1 = z2
n + c then splits into a system of

two coupled equations in real variables:

xn+1 = x2
n − y2

n + cr

yn+1 = 2xnyn + ci

This map produces dynamics in the so-called phase plane (x, y) which depends
on the value of the parameter c in the control plane (cr, ci). For fixed c, the
set of points in the phase plane which remain bounded for all n is called the
filled-in Julia set. Points which start outside this set rapidly iterate away to
infinity. The boundary of the filled-in Julia set is often itself called the Julia
set. For some points of the control plane set may not have any interior points
(as occurs for a cloud of points or a curve).

If c = 0, all point in the z-plane either go to z = 0 [if |z0| < 1], to
|z| = ∞ [if |z0| > 1] or to |z| = 1 [if |z0| = 1]. Thus, the unit circle is
the boundary between the two basins of attraction at z = 0 and z = ∞.

However, if c �= 0, regions of the filled-in Julia set can take on an incredible
variety of forms, highly self–similar, that may resemble clouds, branches of a
bramble bush, sea horses, etc.

In 1982, mathematicians extended the logistic map even further, into
the field of quaternions — iterating Qn+1 = Q2

n + q, where for each n
Qn = a0 + a1i + a2j + a3k is a 4-dimensional variable quaternions and q
is a constant quaternion; a 2-dimensional slice in the (a0, a2) plane at fixed
(a1, a3), then exhibits beautiful Julia sets.

The beauty of these sets has stimulated the esthetic senses of mathe-
maticians, scientists, and artists alike (Gaston Julia himself, never saw
a Julia set!) Using computer graphics it was found, for example, that if
c = −0.124 + 0.565i, the Julia set has a fractal structure which is a self-similar
connected set, in the sense that any arbitrary piece of the set can be used to
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construct the entire set by finite number of iterations. For c = 0.12 + 0.74i,
the Julia set becomes more involved but is still connected.

Benoit Mandelbrot (1980) was first to consider the changes in the Julia
set as a function of the complex control parameter. Just as we can distinguish
two sets of points in the phase-plane (x, y), two sets can also be distinguished
in the control-plane. In the c-plane the Mandelbrot set is the set of points
(cr, ci) such that z0 = 0 yields a bounded sequence of planar points zn.

Like the Julia set, the Mandelbrot set is a connected set, but it has an
amazingly complex structure in the c-plane. A new geometry, known as fractal
geometry, thus emerged. More general studies involve the complex maps

zn+1 = zn − f(zn)
f ′(zn) , known as Newton maps418, since Newton’s method of

obtaining the zeros of f(z) is based on the convergence of the iterates of the
above recursion to a complex root of the function f(z).

1918 CE, Dec.–1921, Apr. Sixty thousand Jews were killed in the
Ukraine in antisemitic riots.

In March and April 1918 the Ukraine declared its independence and the
“independent” citizens killed the Jews. Subsequent fightings between the
Bolsheviks and the Ukrainian separatists led to the worst riots that had taken
place since the 17th century.

418 Consider the first-order differential equation dx
dt

= f(x). Choosing h as a

suitable small positive number, we define xn = x(nh) for n = 0, 1, . . .

and approximate the derivative dx
dt

at t = nh by the Euler forward

difference 1
h
(xn+1 − xn). It follows that

xn+1−xn

h
= f(xn) approximately,

or xn+1 = xn + hf(xn). Numerical analysts have studied the efficiency of

this method and its convergence as the ‘time’ step h → 0. Yet if we seek only

equilibrium solutions, then we need only seek the zeros of f(x). A well-known

equation follows by the Newton-Raphson method. For this we assume that

f(x) is continuously differentiable, take xn to be estimates of zeros of f(x) and

construct an improved estimate xn+1 by approximating the curve y = f(x) by

its tangent y = f(xn) + (x − xn)f ′(xn) at the point (xn, f(xn)). This gives

the next approximation xn+1 = xn − f(xn)/f ′(xn), if f ′(xn) �= 0. In practice,

we start by guessing x0 from what knowledge of f(x) we have at the start, and

compute successive approximations x1, x2, . . ., stopping when we have reason

to believe that xn approximates the exact zero with desired accuracy.
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1918–1922 CE Oswald Spengler419 (1880–1936, Germany). Philosopher
of history and a mathematical scholar. His reputation rests on his book The
Decline of the West (Der Untergang des Abendlandes), conceived before WWI,
and finished in 1917.

Spengler sought to initiate a ‘Copernican revolution’ in historiography:
history is devoid of any fixed point of reference or unifying meaning. The
unit of history is not a nation but a civilization, and instead of the traditional
linear succession of ancient, medieval and modern times he regarded history
as a study of comparative cultures or civilizations420.

Each culture was, in his view, an organism which like any other living thing
went through a regular and predictable life cycle421 of birth, growth, maturity
and decay. History has not happened to others ; Western civilization and its
scientific revolutions are no less vulnerable than the now extinct civilizations of
the Aztecs and the Incas, the Sumerians and the Hittites, the early civilization

419 For further reading, see:

• Spengler, O., The Decline of the West (Abridged Edition by A. Knopf), New

York, 1962, 415 pp.

420 Spengler makes a distinction between culture and civilization; the former is

a period of creative activity of a society where the ‘soul ’ of the country-side

predominates. It comprises the spring, summer, and autumn of a society. Civ-

ilization is the era of theoretical elaboration and material comfort, dominated

by the ‘intellect ’ of the city. It comprises the winter of the society. Most civ-

ilizations continue hundreds, even thousands of years after their creativity is

spent; so long as the culture phase lasts, the leading figures in a society mani-

fest a sure sense of artistic ‘style’ and a personal ‘form’. The breakdown of style

and form most clearly marks the transition from culture to civilization. In this

sense Rome is the civilization stage of the Greek culture. Together they form

the classical world.
421 As a cyclic historian, Spengler’s three precursors were: The monk Joachim

of Floris (1145–1202, Italy). He taught that each stage of history rose to its

own climax, and each successive stage represents a higher level of spiritual de-

velopment. Yet within each stage, the course of its unfolding bore a detailed

resemblance to the course of its predecessor. The second precursor was Gi-

ambattista Vico (1668–1744, Italy), who advanced (1725) the doctrine that

history is a spiral of progress: every turn is higher than the one before; his-

tory never repeats itself because it is viewed from a loftier position than before,

enabling us to see wider horizons; history is the process of total liberation of

human spirit, with each spiral bringing it closer to freedom.

The third precursor, Nikolai Danilevsky (1822–1885, Russia), most directly

anticipated Spengler’s major theories.
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of China, and the so-called Greco-Roman civilization. The West is doomed to
extinction, and another Chinese civilization, having entered its proper phase,
will in time replace it.

Each culture is deeply rooted in its natural environment. It is a spiritual
phenomenon, manifested in a world-view common to a specific society. If
engulfs the entire field of its activity and is characterized by a specific percep-
tion of depth and space. Of these cultures, the two about which he knew most
were the classical Greco-Roman and his own Western society. What was tra-
ditionally accepted as ancient history Spengler redefined as the history of the
classical culture, plus a brief sketch of two preceding cultures, the Egyptian
and the Babylonian, and the garbled account of a successor culture, which he
called Magian (Iranian, Hebrew, Arabic).

Similarly, the conventional medieval and modern periods, together formed
the history of the West, with side-glances at such non-European societies as
China, India, and Aztec-Mexico. Every culture formed a distinct bloc of
spiritual and physical reality, clearly delimited from its predecessors, contem-
poraries and successors. Yet each one went through the same morphological
stages.

Within each culture, certain basic attitudes permeated all of life and
thought. Properly defined and understood, these attitudes would give the
key to the history of the whole culture. While they could most readily be
identified in the realm of aesthetics (in the plastic arts and music, and above
all in architecture) they exercised an equally pervasive influence over the forms
of economics, war, and politics, and even over so unlikely a field as mathe-
matics). Taken together, these basic attitudes formed a master pattern — a
characteristic cast of human spirit working itself out in the history of every
culture of which any record remains.

Spengler calls the first stage in the life cycle of a culture, a spring :
Agricultural-based economy, life centered around the village in a feudal sys-
tem. Its people exist in a ‘precultural stage’, characterized by mystical sym-
bolism and primitive expressions. There is yet no philosophy, ideology, or
technology.

Next comes summer : an effervescent aristocracy living in provincial towns
brings about the decline of religion and the rise of science (the Greek Polis,
the Renaissance). This period culminates in the first philosophical frameworks
and new intellectual clubs.

It is followed by autumn, the zenith of intellectual creativeness, the era of
big systems. Power is shifted from elite to business, from property to money.
It is the era of maturity , the final attempt to refine all forms of intellectual
development. Culture showing signs of fatigue is centered in big cities — a
centralized monarchistic regime (Athens at its peak; 18th century in Western
Europe.)
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The only way to go from here is down to the final winter stage: Cul-
ture declines into a civilization that exploits materialistic and organizational
accomplishments. Uprooted proletariat inhabit world-cities subjected to ex-
pansionist war-mongering despots (e.g. Caesar, Napoleon). It is a dying cul-
ture characterized by a cult of science, degradation of artistic creativity and
abstract thinking, dissolution of old norms, meaningless luxuries, outlets in
sports, and rapidly changing fashions.

Each new cycle, however, was not simply a repetition of its predeces-
sor. In the meantime, fresh cultural elements had appeared, which gave new
spiritual content to the cycle. Thus the Apollonian man (classical culture)
invented geometry, Magian man algebra, and Faustian man (Western) the
calculus. For different culture, numbers mean totally different things. The
space perception of the Apollonian man was local and limited and its artistic
expression was the free-standing nude statue. It was manifested also in the
political structure of the city-state.

The Faustian man, on the other hand, experienced the endless vistas of
limitless space. He has lived in eternal restlessness, and was longing for the
unattainable. It began with skyward striving of the medieval cathedrals,
found a new outlet in the perspective and color of Renaissance and 17th cen-
tury painting, and ended in music, which alone spoke a language sufficiently
abstract to convey a sense of spiritual infinity. In the will to conquer dis-
tance, Faustian man has created his most eloquent symbols: the Copernical
view of the universe, the faith of the explorer, and the machines that decade
by decade have produced more and traveled faster than ever their inventors
had considered possible. The entire activity of the Faustian man aims to fill
his unlimited, endless space.

For Spengler, Western history does not start, as in schoolbooks, with the
fall of Rome in 476 CE. The first 5 centuries of medieval history he regards as
a kind of twilight era, in which the memories of Greco-Roman civilization, the
omnipresence of the Judeo-Islamic forms, and the stirrings of a new indigenous
spirit, struggled for possession of the Western European soul.

It was not until the 10th century that the Faustian culture was born. With
the reform of the Papacy, the reestablishment of an imperial authority, the
articulation of feudal society, and the emergence of Romanesque architec-
ture, the new culture manifests itself in clear and vigorous form. Its focal
point is Christianity — an aspiring faith which gives to the Middle Ages, the
springtime of Western culture, a quality of high tension overflowing with the
excitement of passionate deeds and spiritual discovery.

After unfolding its full possibilities in the triumph of Ghotic architecture,
and the theological constructions of scholastics and mystics, the summer phase
of Faustian culture breaks down in internal contradictions. One of these is
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the so-called ‘Renaissance’ (essentially an affair of the nobility). Its spiritual
counterpart, the Reformation, represented a change of orientation for the
clergy . It formed part of the shift in the cultural center of gravity from the
countryside to the city, and provided a religious foundation for a third social
class, the new bourgeoisie.

In the new society of the cities, Faustian culture reached its maturity. The
artistic embodiment of ripe culture is the architecture of the Baroque and the
art of the great painters of the 17th century. Ultimately the Faustian spirit
found its manifestation in the realm of music which, since ca 1670, dominates
the cultural life of the West. Intellectually, the era is one of free inquiry and
scientific speculation. Its characteristic thinker is Descartes, the philosophical
equivalent of the pre-Socratic.

The 18th century is the autumn of the Faustian soul. It offers the last,
most exquisite creations of fully-realized style and form: the art of the Rococo;
the music of Mozart, the philosophical writings of Kant and Goethe, who like
Plato and Aristotle in the Apollonian world, give a conclusive formulation to
the deepest speculation of their culture.

As against this positive, creative aspect, the contrasting tendency of crit-
icism and destruction comes more and more to predominate as the century
advances. Where earlier a host of cities, strongly differentiated and with in-
tense local consciousness, produced the most varied artistic and intellectual
life, now a few great cities like Paris and London draw all aspiring talents
into an ever-tightening circle. The century ends in the great 1789 revolution
in which the middle class assumes authority. In the struggle between the
monarchy and its enemies, the victory goes to Napoleon — the “romantic”
tyrant and “contemporary” of Alexander the Great.

With the 19th century begins the winter of the West, the ‘civilization’
phase of the Western spirit. Its 900 years of ‘culture’ have passed, and there is
no creativity left in it: The popular preachers of materialism and skepticism
are to the 19th century what the Cynics and Epicurians were to antiquity.
Socialism — a philosophy of resignation — performs the same function of
ethical transvaluation as Stoicism in the Apollonian world and Buddhism in
China.

Equally meaningless are the forms of political life. The most characteristic
of them, parliamentarism, is nothing more than a transition device, serving
to obscure with hollow rhetoric the basic political reality — the triumph of
money. Before the power of financial speculation, everything else must give
way: Politicians have no choice but to become the paid agents of the financiers.

With the 20th century an age of wars is opening. This phase, which
regularly occupies at least the first two centuries of each ‘civilization’, has



1918 CE 3449

actually been in progress ever since the time of Napoleon. As opposed to the
old wars between national armies, they will be the battles grouped around
born leaders of rare political and military talent — the new Caesars, struggling
for the mastery of the world. Eventually one of the Ceasars will win out over
all his rivals and establish a universal imperium.

Long before this time, life will have descended to a level of general uni-
formity, in which local and national differences will have virtually ceased to
exist. The only places that will matter will be a handful of world-cities —
the ‘megalopolis’, like New York or London, as opposed to the 18th-century
city of culture, which still retained some connection with the living tradition.
These ‘barrack cities’ will be what Hellenistic Alexandria and imperial Rome
were to the ancient world — vast assemblages of people living all on top of
each other, a shiftless mob, willing to obey any leader who will keep them
amused.

Their life will be a meaningless repetition of purely mechanical tasks and
vulgar brute diversions. Even intellectual activity will have become mecha-
nized, practical, cold, and merely ‘clever’. The educated will have lost their
feeling for language, and the same ‘basic’ speech will be on the lips of intellec-
tuals and common laborers alike. Eventually, when every trace of form and
style will have disappeared, a new primitivism will begin to pervade all human
activity. Even the feeling for scientific norms — which will have survived the
dissolution of culture — will grow vague and uncertain. Men will be ready to
believe anything; they will regain their appetite for the mysterious and the
supernatural. In vulgar credulity, they will find an escape from the universal
drabness and mechanization. Out of the desolation of the cities there will
arise a ‘second religiosity’, a fusion of popular cults and the memory of nearly
forgotten piety.

We cannot choose our destiny, and we have no alternative but to make
the best of the historical situation in which we have been placed. But within
the established master-plan, there still is room for individual initiative422: the
‘themes’ are foreseen, but their ‘modulations’ — the precise fashion is which
predetermined development will play themselves out in the actual performance
of history — depend on the character and capacities of the individual players.

Hopefully, the Vico-Spengler cyclic ‘law’ can be modified and generalized
such that we can still buy time to develop the proper methodology and employ
it to improve our long-term chances to stem the tide of decay.

Oswald Spengler was born at Blankenburg, in the Harz, Germany. On his
father’s side he came from a line of mining technicians, to which he owed his

422 In line with the famous maxim of Rabbi Akiva (ca 100 CE) “All is foreseen

and free will is given”.
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mathematical and scientific talents. His mother’s family provided the artistic
bent. After his graduation from a classical high school in Halle, Spengler
followed the customary German practice of attending two or three universi-
ties in turn: Münich, Berlin and finally Halle, majoring in mathematics and
the natural sciences. Meanwhile he had upheld another tradition of making
several trips to Italy, which the august example of Goethe had established as
the goal of the young German’s cultural pilgrimage.

This rare blend of education in mathematics, physics, natural history, his-
tory and art is the foundation of the peculiar character of Spengler’s work. In
it, unexpected parallels between scientific truths of physics and mathematics
and the artistic and other cultural achievements of an epoch of history, are
drawn.

Spengler received his doctor’s degree from the University of Halle in 1904.
In 1908 he received a teaching appointment in a Hamburg high school, teach-
ing mathematics, science and history. In 1911 he gave up his teaching career
and moved to Münich, making his living as a private scholar. With the out-
break of the First World War, Spengler fell into serious financial difficulties.
Since he suffered from both a heart condition and acute nearsightedness, he
was never called up for military service.

During the war years, Spengler lodged in a dreary slum, took his meals
in cheap working-class restaurants, and wrote much of the Decline by candle-
light. As a bachelor and city-dweller, he found it difficult to obtain even the
bare necessities of food, heat and clothing. He was sustained by the conviction
that a great, inchoate idea was germinating inside him and that he must fight
his way through the laborious process of bringing it to expression.

In the summer of 1918, only a few months before the final defeat of the
German Empire in WWI, the Decline began to appear in the bookstores of
Germany and Austria. After a few weeks of public hesitation, the book started
to sell, and it has continued to sell ever since.

The year 1919 was the “Spengler year”. Everyone seems to be reading him;
everyone was wondering just who he was. Within 8 years after the original
publication, total sales had reached 100,000. Spengler, like Schopenhauer
and Nietzsche before him, had become the philosopher of the hour. Quite
understandably, the Decline appealed to lay people who where frantically
seeking rationalizations for the despair they already felt. The scholars and
specialists, however, recoiled from the notion of predetermined future, and
reproached him for shallowness, incompetence and charlatanism.

As early as 1920, the general public had begun to lose interest, and by
1924 even the scholarly furor had largely subsided. The German public —
driven to distraction by a galloping inflation and endemic civil war — had



1918 CE 3451

turned to more immediate and practical concerns. Spengler never won an
academic appointment and his attempts to establish himself as a political
commentator were unsuccessful. His political ideas had some affinity with
those of the National Socialists (which fact they indeed exploited), but his
hopes of influencing them came to nothing: after their rise to power he was
denied, and later died in isolation.

In retrospect, one may conclude that Spengler’s failure to establish a num-
ber of vital links in the sequence of future events (relative to 1923), reflects the
inadequacy of his personal preconceptions. His faulty economics, his ‘meta-
physical’ and unrealistic definition of social classes, drastically limit his com-
prehension of 20th century political movements.

Yet, the basic idea is there, even when the formulation is faulty: More
poignantly than any of his predecessors, Spengler has sensed the unprece-
dented character of our time — the resurgence of those primitive values that
so sharply divide the 20th century from the centuries that went before it.

Under the crude phraseology of a “colored peril”, for example, Spengler
expresses something of a tragic cultural misunderstanding between Asia and
the West — an incompatibility far transcending the clash of political insti-
tutions and economic interests. And beyond this inter-continental struggle,
he sees the terrible outlines of a whole world delivered over to conquest and
virtually perpetual war. He grasps the dilemma of creative endeavor in an era
of mass culture — its fatal division between a merely repetitive popular art
and the esoteric experiments of the ‘progressive’ schools. And he understands
the implications of mass culture itself.

He sees the whole ‘phoneyness’ of contemporary life — the depressing
uniformity of great city society and its deadening effect on democratic pro-
cedures. Finally, he comprehends the emptiness and despair that are leading
so many of our contemporaries — the untutored and the highly sophisticated
alike — to seek solace in a return to dogmatic religion.

It is somewhere between literature and prophecy that the Decline has
made its most telling contribution. It is a symptom, a synthesis, a symbol of
a whole age that Spengler’s book remains one of the major works of the 20th

century. Indeed, it has gained in stature as the passage of time has enabled
us to place it in the context of the events of the past nine decades and the
further catastrophes that many anticipate. For when everything else has been
said, The Decline of the West , and the state of mind it expresses, set before
us the spectre of a new barbarism. It formulates, more comprehensively than
any other single book, the now familiar pessimism of the 21th century West
with regard to its own historical future.
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Worldview XXXVI: Spengler

∗ ∗∗

“Egyptian pyramids, Doric temples, and Gothic cathedrals are mathematics
in stone”.

∗ ∗∗

“The sense of form of the sculptor, the painter, the composer, is essentially
mathematical in its nature; The same inspired ordering of an infinite world
which manifested itself in the projective geometry of the 17th century, could
vivify, energize and suffuse contemporary music with the harmony that it
developed out of sound physics, and contemporary painting with the principle
of perspective (the felt geometry of space that only the West knows). For
it was the wish, intensified to the point of longing, to fill a spatial infinity
with sound which produced (in contrast to the classical lyre and reed) the
two great families of keyboard instruments (organ, pianoforte etc.) and bow
instruments, and that as early as the Gothic time. It was then that the organ
was developed into the space-commanding giant that we know, an instrument
the like of which does not exist in all musical history. The free organ-playing
of Bach and his time was nothing if it was not analysis — analysis of a strange
and vast tone-world”.

∗ ∗∗

“When, about 540 BCE, the circle of the Pythagoreans arrived at the idea
that number is the essence of all things, a wholly new mathematics was born.
It came forth from the depths of the Classical soul as a formulated theory, a
mathematics born in one act at one great historical moment.

To Euclid, the triangle is the bounding surface of a figure, never a sys-
tem of 3 intersecting lines or a group of three points in 3-dimensional space.
Euclidean geometry is only in agreement with the phenomenal world within
the limits of the drawing board. For Euclidean parallels meet already at a line
of the horizon (a simple fact upon which all our art perspective is grounded),
let alone the triangle formed by an observer and two parallel lines to distant
stars.
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In the famous treatise on the grains of sand, Archimedes proves that the
filling of Aristarchos’ Cosmos with atoms of sand leads to very high, but
not infinite number. The exhaustion method of Archimedes through which
he achieved the quadrature of the parabola section by means of inscribed
triangles, are in sharp contrast to the idea of the Riemann integral. Nowhere
else did the two mathematical ideas approach each other more closely then in
this instance, and nowhere is it more evident that the gulf between the two
is impassable. It was the instinct that guided Nicolaus Cusanus (ca 1450),
from the idea of the unendingness of God in nature to the elements of the
infinitesimal calculus”.

∗ ∗∗

“The Cartesian geometry expresses the emancipation of geometry from servi-
tude to optically realizable constructions and measurable lines. With that
the analysis of the infinite became a fact. The clearest example of this is the
conversion of angular functions into periodic functions, and their passage into
the realm of infinite numbers”.

∗ ∗∗

“The time of the great mathematicians is past. Our tasks today are those of
preserving, rounding off, refining, selection — in place of big dynamic creation,
the same clever detail which characterized the Alexandrian mathematics of
the late Hellenism”.

∗ ∗∗

“Only in the 19th century was the infinitesimal calculus made logically secure
by Cauchy’s definitive elucidation of the limit idea; the limit is no longer that
which is approximated to but the approximation, the process, the operation
itself. It is not ‘an infinitely small quantity’ but the ‘lower limit of every
possible finite magnitude — a relation”.

∗ ∗∗

“The liberation of geometry from the visual, and of algebra from the notion
of magnitude, and the union of both in the great structure of the theory of
functions — this was the grand course of Western number — thought. The
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constant number of the classical mathematics was dissolved into the variable.
Geometry became analytical, replacing the mathematical figures by abstract
spatial relations”.

1918–1926 CE Arthur Scherbius (1878–1929, Germany). Electrical
engineer and inventor of the rotary electro-mechanical enciphering machine,
the Enigma. It played a major role in the Intelligence-war of WWII.

Scherbius was born in Frankfurt-am-Main and was the son of a small busi-
nessman. He studied electricity at the Technical College in Munich, and then
went on to study at the Technical College in Hanover, finishing in March 1903.
The next year, he completed a dissertation, “Proposal for the Construction
of an Indirect Water Turbine Governor”, and was awarded a doctorate in
engineering.

Scherbius subsequently worked for several electrical firms in Germany and
Switzerland. In 1918, he founded the firm of Scherbius & Ritter. He made a
number of inventions, e.g. asynchronous motors, electric pillows and ceramic
heating parts; his research contributions led to his name being associated with
the Scherbius principle for asynchronous motors.

The Enigma machine was primarily intended to allow business to commu-
nicate confidential documents efficiently without the need for slow codebooks.
There were several commercial models (1918–1923), and one of them (in some-
what modified version) was adopted by the German Navy (1926). Another
modified version was adopted a few years later by the German Army. Scher-
bius was killed (1929) in a horse carriage accident.

The Enigma was essentially an electrical version of Alberti’s cipher disc.
The basic form of Scherbius’ invention consists of 3 elements connected by
wires: a keyboard for inputting each plaintext letter, a scrambling unit that
encrypts each plaintext letter into a corresponding ciphertext letter, and a
display board consisting of various lamps for indicating the ciphertext let-
ter.

In order to encrypt a plaintext letter, the operator presses the appropri-
ate plaintext letter on the keyboard, which sends an electric pulse through
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the central scrambling unit and out the other side, where it illuminates the
corresponding ciphertext letter on the lampboard. Now, the scrambler disc
automatically rotates by 1

26 of a revolution each time a letter is encrypted.
Thus, the cipher alphabet changes after each encryption. Consequently, the
encryption of the same letter is constantly changing. With this rotating setup,
the scrambler essentially defines 26 cipher alphabets, implementing a polyal-
phabetic cipher that beats frequency analysis.

However, as it stands, the machine suffers from one obvious weakness:
typing a given letter 26 times will return the scrambler to its original position,
and typing that letter again will repeat the pattern of encryption. In general,
cryptographers are keen to avoid repetition because it leads to regularity and
structure in the ciphertext, symptoms of a weak cipher.

Scherbius alleviated this weakness by introducing a second scrambler disc.
Through this device, the pattern of encryption is not repeated until the second
scrambler is back where it started, which requires 26 complete revolutions of
the first scrambler, or the encryption of 26×26 letters in total. In other words,
there are 676 distinct scrambler settings, which is equivalent to switching
between 676 cipher alphabets.

For extra complexity, Scherbius added a third disc, providing 17, 576 dis-
tinct scrambler arrangements. Now, the initial settings of these 3 discs provide
the key, and are dictated by a codebook, which lists the key for each day.

Once the scramblers have been set according to the codebook’s daily re-
quirement, the sender can begin encrypting. He types in the first letter of
the message, sees which letter is illuminated on the lampboard, and notes it
down as the first letter of the ciphertext. Then, the first scrambler having
automatically stepped on by one place, the sender inputs the second letter of
the message, and so on. Once he has generated the complete ciphertext, he
hands it to a radio operator who transmits it to the intended receiver.

In order to decipher the message, the receiver needs to have another
Enigma machine and a copy of the codebook that contains the initial scram-
bler settings for that day. He sets up the machine according to the book, types
in the ciphertext letter by letter, and the lampboard indicates the plaintext.
In other words, the sender typed in the plaintext to generate the ciphertext,
and now the receiver types in the ciphertext to generate the plaintext —
encipherment and decipherment are mirror processes.

It is clear that the key, and the codebook that contains it, must never be
allowed to fall into enemy hands. It is quite possible that the enemy might
capture an Enigma machine, but without knowing the initial settings used
for encryption, they cannot easily decrypt an intercepted message. Without
the codebook, the enemy cryptanalyst must resort to checking all the possible
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keys, which means trying all the 17, 576 possible initial scrambler settings.
The desperate cryptanalyst would set up the captured Enigma machine with
a particular scrambler arrangement, input a short piece of ciphertext, and see
if the output makes any sense. If not, he would change to a different scrambler
arrangement and try again. If he can check one scrambler arrangement each
minute and works night and day, it would take almost two weeks to check
all the settings. This is a moderate level of security, but if the enemy set
a dozen people on the task, then all the settings could be checked within a
day. Scherbius therefore decided to improve the security of his invention by
increasing the number of initial settings and thus the number of possible keys.

He could have increased security by adding more scramblers (each new
scrambler increases the number of keys by a factor of 26), but this would
have increased the size of the Enigma machine. Instead, he added two other
features. First, he simply made the scramblers removable and interchange-
able. So, for example, the first scrambler disc could be moved to the third
position, and the third scrambler disc to the first position. The arrangement
of the scramblers affects the encryption, so the exact arrangement is crucial to
encipherment and decipherment. There are six different ways to arrange the
three scramblers, so this feature increases the number of keys, or the number
of possible initial settings, by a factor of six.

The second new feature was the insertion of a plugboard between the key-
board and the first scrambler. The plugboard allows the sender to insert
cables which have the effect of swapping some of the letters before they enter
the scrambler. For example, a cable could be used to connect the a and b
sockets of the plugboard, so that when the cryptographer wants to encrypt
the letter b, the electrical signal actually follows the path through the scram-
blers that previously would have been the path for the letter a, and vice
versa. The Enigma operator had six cables, which meant that six pairs of
letters could be swapped, leaving fourteen letters unplugged and unswapped.
The letters swapped by the plugboard are part of the machine’s setting, and
so must be specified in the codebook.

Each month, Enigma operators would receive a new codebook which spec-
ified which key should be used for each day. For example, on the first day of
the month, the codebook might specify the following day key :

(1) Plugboard settings: A/L-P/R-T/D-B/W-K/F-O/Y.
(2) Scrambler arrangement : 2-3-1.
(3) Scrambler orientations: Q-C-W.

Together, the scrambler arrangement and orientations are known as the scram-
bler settings. To implement this particular day key, the Enigma operator
would set up his Enigma machine as follows:
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(1) Plugboard settings: Swap the letter A and L by connecting them via a
lead on the plugboard, and similarly swap P and R, then T and D, then
B and W, then K and F, and then O and Y.

(2) Scrambler arrangement : Place the 2nd scrambler in the 1st slot of the
machine, the 3rd scrambler in the 2nd slot, and the 1st scrambler in the
3rd slot.

(3) Scrambler orientations: Each scrambler has an alphabet engraved on its
outer rim, which allows the operator to set it in a particular orientation.
In this case, the operator would rotate the scrambler in slot 1 so that Q is
facing upward, rotate the scrambler in slot 2 so that C is facing upward,
and rotate the scrambler in slot 3 so that W is facing upward.

The following list shows each variable of the machine and the corresponding
number of possibilities for each one:

Scrambler orientations. Each of the 3 scramblers
can be set in one of 26 orientations. There are
therefore 26 × 26 × 26 settings: 17, 576

Scrambler arrangements. The three scramblers
(1, 2 and 3)can be positioned in any of the following
six orders: 123, 132, 213, 231, 312, 321. 6

Plugboard. The number of ways of connecting, thereby
swapping, six pairs of letters out of 26 is enormous: 100, 391, 791, 500

Total. The total number of keys is the multiple of these
three numbers: 17, 576 × 6 × 100, 391, 791, 500

≈ 10, 000, 000, 000, 000, 000

Scherbius believed that Enigma was impregnable. The Poles (1933) and
the British (1940) proved him wrong.

1918–1929 CE Alexander Marcus Ostrowski (1893–1986, Germany
and Switzerland). Mathematician. A leading contributor to the theory of
p-adic numbers423. Established important theorems in the fields if algebraic

423 Ostrowki’s Theorem: The norms |x| and |x|p p = 2, 3, . . . exhaust all

nonequivalent norms on the field of rational numbers.
In 1918, Ostrowski created the novel concept of the p-adic valuation, defined as

follows: For each integer n �= 0 and fixed prime number p, the valuation νp(n)

is the unique positive integer satisfying:

n = pνp(n)n′ with p not dividing n′.
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geometry, and the theory of functions (quasi-analytic functions, meromorphic
functions and convex functions).

Ostrowski was born in Kiev (Ukraine) to Jewish parents. Studied at the
University of Marburg and Göttingen (Ph.D. 1921). Assistant to Felix Klein
at Göttingen (1921–1923). Oxford and Cambridge Universities (1924–1926).
Professor at Basel University since 1927. On the staff of the National Bureau
of Standards, Washington D.C. USA, 1927–1958.

1918–1933 CE Emmy (Amalie) Noether424 (1882–1935, Germany,
U.S.A.). Distinguished mathematician. A founder of modern algebra. Her
innovations gained her recognition as the most creative abstract algebraist of
modern times.

During 1920–1927 her investigations centered on the general theory of
ideals (special subsets of rings) for which her residual theorem is an im-
portant part. She put forward an axiomatic basis for a completely general
theory of ideals. From 1927 on, Noether concentrated on non-commutative
algebras, their linear transformations and their application to commutative
number fields by means of the concept of cross-product. She also studied
hypercomplex number systems and their representation. Much of her work
appeared in the publications of students and colleagues. [Emil Artin (1898–
1962); Helmut Hasse (1898–1979); Richard Brauer (1901–1977); Werner
Schmeidler (1890–1969); Van der Waerden (1903–1996); Max Deuring
(1907–1984); Issai Schur (1875–1941); P.S. Alexandrov (1896–1982); L.S.
Pontryagin (1908–1988).]

Some of her pupils became famous algebraists in their own right and spread
her ideas throughout the world. Oftentimes, a suggestion or even a casual

The p-adic absolute value of a rational number x is then defined via

|x|p = p−νp(x) with x = pνp(x) a
b
, p not dividing a, b.

424 For further reading, see:

• Van der Waerden, B.L., A History of Algebra From Al-Khwarizmi to Emmy
Noether, Springer-Verlag: Berlin, 1980.

• Dick, A. (Editor), Emmy Noether, Birkhäuser Verlag: Basel, 1970, 72 pp.

• Doughty, N.A., Lagrangian Interaction, Addison-Wesley, 1990, 569 pp

• Low, E.F., Classical Field Theory, Wiley, 1997, 427 pp.

• Itzykson C. and J-B. Zuber, Quantum Field Theory, McGraw-Hill, 1980,
705 pp.

• Zee, A., Quantum Field Theory, Princeton University Press, 2003, 518 pp.
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remark revealed her great insight, and stimulated another to complete and
perfect the idea.

In 1918, Noether discovered a theorem (Noether’s theorem) in which she
stated that conservation laws of certain physical systems are consequences
of corresponding symmetry transformations (such as translations, rotations
etc.). The theorem provides a method for constructing (under certain condi-
tions) a complete set of integrals of motion for any system of fields for which
the action integral is invariant with respect to a certain group of infinitesimal
continuous transformations (Lie group).425

Emmy Noether was born in Erlangen, Germany. She was the daughter of
the mathematician Max Noether (1844–1921). [Professor in Erlangen since
1875. One of the leaders of 19th century algebraic geometry.] She received
her Ph.D. in 1907, with a dissertation on algebraic invariants. At Erlangen
she published half a dozen papers, and had lectured to her father’s classes
from time to time when he was ill. She came to Göttingen in 1916. Being a
woman, she could not obtain any academic position — in spite of the efforts
made on her behalf by the greatest mathematicians of the day426. Finally, in
1919, she won formal admission as an academic lecturer. In 1922 she became
an unofficial associate professor (with no salary and no obligations).

425 A conservation law is any rule, derived from the basic laws of physics, that says

that the total amount of some quantity is constant and does not change with

time. A notable example is energy which can be neither created nor destroyed

but only transformed from one form to another. What Emmy Noether showed

was that for every symmetry of the laws of physics there is a corresponding

conservation law (with some exceptions). We now know that the converse is

also true: Every conservation law must be associated with a corresponding sym-

metry.

Thus Noether’s theorem can be promoted to Noether’s principle: The laws of

physics must be such that every symmetry of nature corresponds to a conser-

vation law, and vice versa.

During the last 50 years it was discovered that many, and maybe all, of the

laws of physics themselves can be generated from symmetry principles. It now

seems that all the interactions of physics are caused by a special kind of field

called a gauge field, whose structure and behavior are completely dictated by a

new symmetry requirement of local symmetry.
426 Even Hilbert failed to avert the decision of the Göttingen senate, to which

he reacted: “Meine Herren, I do not see that the sex of the candidate is an

argument against her admission as a Privatdocent. After all, the Senate is not

a bathhouse”. He solved the problem of keeping her at Göttingen in his own

way: Lectures would be announced under his name but delivered by Fräulein

Noether.
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When the Nazis came to power in 1933, Noether, along with many other
Jewish professors at Göttingen, was dismissed. She then left for the United
States, to become visiting professor of mathematics at Bryn Mawr College
and to lecture and conduct research at the Institute for Advanced Study,
Princeton, NJ.

She died at Bryn Mawr, PA following an operation. In his office at the
Institute for Advanced Study, Einstein wrote a letter to the editor of The New
York Times, in which he reported her death only briefly:

“In the judgment of most competent living mathematicians, Fräulein
Noether was the most significant creative female mathematician427 thus far
produced”.

Her brother, Fritz Noether (1884–1941), was a professor of mathematics
at the Breslau Technical Highschool and left Germany in 1933 for a research
institute in Tomsk, Siberia428. Thus, the Noether family is a striking example
of the hereditary nature of mathematical talent.

427 Edmund Landau, when asked for a testimony to the effect that Emmy Noether

was a great woman mathematician, said:

“I can testify that she is a great mathematician, but that she is a woman, I

cannot swear.”
428 Arrested (1937) in Tomsk by the NKVD and executed (shot) in the summer of

1941 on the charge of being a German spy(!). This became known only after

the dissolution of the Soviet Union (1991).
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Noether’s Theorem —

Symmetry and Conservation Laws

When the equations of motion of a physical theory are derivable from
a variational principle (Hamilton’s principle), a general and systematic pro-
cedure for the establishment of the theory’s conservation theorems can be
developed from a direct study of the integral over dynamical history (“action
functional”), the variation of which is set to zero. Since the general equa-
tions of mechanics, electromagnetic theory, quantum field theories, GTR etc.
are derivable from such variational principles, this procedure furnishes the
most suitable basis for the systematic study of conservation laws in physics.
Noether’s theorem results from such considerations.

Her theorem is used, for example, in classical or quantum electrodynam-
ics to show that electric charge conservation is the result of the equations of
motion of the field theory, rather then proving this directly. A simpler exam-
ple is the derivation of the conservation of energy from the invariance of a
mechanical system under a time-translation transformation t → t + δτ , with
δτ an infinitesimal real constant.

Under this transformation, and assuming a closed system (no explicit time
dependence in the Lagrangian L), the action integral is transformed from

A =
∞∫

− ∞
L(qi, q̇i) dt into

A + δτA =

∞∫

− ∞

L
(
qi{t + δτ(t)}, d

dt
qi{t + δτ(t)}

)
dt .

Noether’s approach was to make the constant time shift δτ into a function
of t, δτ = δτ(t), where δτ is still an infinitesimal — although δA vanishes
identically only for δτ = const.

Redefining the integration variable to t′ = t + τ(t), and noting that by
the chain rule:

d

dt
qi(t + δτ(t)) = q̇i(t + δτ(t))(1 + δτ̇(t)),

we obtain (quadratic and higher order terms in δτ ignored):

δτA =
∞∫

− ∞

(
n∑

i=1

∂L
∂q̇i

q̇i − L
)

δτ̇ dt

=
∞∫

− ∞

(
n∑

i=1

piq̇i − L
)

δτ̇ dt ,

where pi = ∂L
∂qi

are the generalized momenta ant t′ has been renamed “t”.
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Although δA is not identically zero for any non-physical trajectory
{qi(t)}n

i=1 if δτ̇ �= 0, it does vanish for any actual system trajectory, because
the latter satisfying the equations of motion (Euler-Lagrange equations),

∂L
∂qi

=
d

dt

∂L
∂q̇i

.

Thus, integrating by parts the above integral expression for δA and as-

suming δτ(t) → 0 as t → ±∞, we conclude that d
dt [

∑n
i=1 piq̇i − L] = 0 for

any actual system trajectory; thus

H =
n∑

i=1

piq̇i − L = const.,

which is the equation for the conservation of energy in a closed system (since
H is the Hamiltonian of the system).

Other simple symmetry transformations and their attendant conservation
laws are: rigid spatial translations (conservation of linear momentum); rigid
spatial rotations (conservation of angular momentum); Lorentz transforma-
tions (rectilinear motion of relativistic center-of-mass). In any of these sym-
metry transformations, the “rigid” (spacetime independent) transformation
parameters — such as displacement vector, rotation angles, frame velocity,
etc. — are made time dependent, and the Noether method is then used to
prove that the corresponding quantity is conserved for actual trajectories of
the physical system, by using δA = 0.

In this connection, a brief discussion on the significance of the concepts of
energy, momentum and angular momentum in modern physics is called for:

In quantum mechanics in general, and in field theory (both classical and
quantum) in particular, apart from the orbital part of the density of angular
momentum, there is also the spin density of angular momentum; neither of
these alone need be conserved — in general the conservation applies to their
sum only. A scalar field possesses no spin. Furthermore, the conservation of
orbital angular momentum in a scalar field theory implies that the canonical
energy – momentum stress 4–tensor is of necessity symmetrical (and vice
versa).

In field theories involving non-scalar fields, there are sometimes several
useful ways to define a conserved energy-momentum tensor — and some of
these (e.g., the one resulting from a straightforward application of Noether’s
theorem) are indeed non-symmetrical .
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The question as to which of these definitions is the ‘correct’ one is moot,
since an experiment designed to measure, say, the energy content of an imag-
inary volume element, will change the field configuration. This is true even
in classical electromagnetism, let alone in quantum physics, where the un-
certainty principle renders the space-time localization of energy-momentum a
notoriously tricky enterprise.

The above is true for theories where gravitation is negligible. In the pres-
ence of gravitation (GTR), global energy, momentum, and angular momentum
are not even well defined in general, let alone conserved, owing to the curva-
ture of spacetime and the local nature of the Equivalence Principle.

The only generally-valid vestige of these conservation laws is the local
conservation of the non-gravitational energy-momentum tensor in an infin-
itesimal, locally inertial spacetime frame. Through general covariance, this
is translated into the statement that the absolute (covariant) 4-divergence of
the energy-momentum–stress tensor vanishes.

But as for global conservation laws, there are only four special cases where
one can extend the conservation of energy-momentum and/or angular mo-
mentum to GTR. These are:

• Weak gravity (post-Newtonian) approximation. Here, global conservation
is restored by adding to the energy-momentum tensor a term represent-
ing the contribution of the gravitational field. This term, however, is
coordinate-system dependent, and hence the resulting conserved global
entities are not covariant.

• Asymptotically-flat spacetimes; this case occurs when the non-gravitational
field–matter distribution is localized in space — although special care
must be used in treating the contribution of outgoing radiation at infin-
ity (both gravitational and electromagnetic) to the conserved quantities.
This case includes the former as a special case.

• Motion of localized energy-momentum packets (either classical or quan-
tum) through an external, slowly – varying (in space and time) and clas-
sical gravitational field. In this case the motion can be analyzed by the
Maccullagh-like moment-expansion of the packets (the first moments are
total 4-momentum, total angular momentum, relative to center–of–mass
(classical or quantum spin), moments of inertia, etc.). In this formalism,
the total momentum and angular momentum of the packet are not con-
served, since they comprise a non-closed system due to the influence of
the external (background) curved spacetime; however, the rates of change
of these quantities can be calculated. This case includes the former two
as special cases.
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• Spacetimes with special symmetries ; when spacetime has Killing vector
fields (isometries), it also possesses true, covariant, global conservation
laws — one for each Killing vector field. This correspondence stems from
Noether’s theorem. Each such symmetry, when it exists, is an extension
to GTR of the invariance under shifting time or space by a constant, or
rigid rotations of space, or other symmetry transformations (such as a
combined shift and Lorentz–transformation (boost) for certain expanding-
universe cosmologies).

Thus, all homogeneous, isotropic, expanding-universe spacetimes have ver-
sions of global linear and angular momentum conservations, but few of them
enjoy a version of global energy conservation – because shifts of time coordi-
nates can never leave the physics of such spacetimes invariant. Furthermore,
since cosmological isotropy and homogeneity hold only in an average sense,
none of these conservation laws is as useful as it is for sub-cosmological scales
of space and time.

The global conservation of energy, momentum and angular momentum
are very useful concepts for describing terrestrial experiments, the dynamics
of a star, or even the calorimetry, rotation, evolution and collisions of entire
galaxies and galaxy clusters or super clusters — but they are apparently in-
valid for the universe as a whole, or else hold only in an average (homogenized
sense).

Finally, it is of interest to note that there is an extension of GTR in
which intrinsic spin angular momentum is regarded as being as fundamental
as energy-momentum. This is known as the Einstein-Cartan-Kibble-Sciama
theory; in it the standard Einstein field equations are augmented by new
ones, in which the r.h.s. represents spin density whereas the l.h.s. involves the
torsion (i.e., the nonsymmetrical piece of the affine connection).

In the 2nd half of the 20th century, the deep Noether relation between sym-
metries and conservation laws became a powerful tool in developing the new
field theories needed to describe the interactions and structure of subnuclear
particles and fields. At the same time, it was discovered that quantum effects
sometimes lead to the breaking of Noether symmetries (and associated conser-
vation laws) that hold in the classical limit. Such anomalies often involve deep
differential–geometric and topological principles, and play important roles in
the Standard Model of Particle Physics, as well as in string theory.
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Table 5.4: Timeline of Symmetry in Mathematics, Physics and

Chemistry

ca 400 BCE Description of the 5 Platonic solids.

ca 300 BCE The 3D geometry of polyhedra described by Euclid.

1528 CE ‘De symmetria partium’ by Albrecht Dürer, a study of
symmetry in art.

1596 CE In ‘Mysterium Cosmographicum’ Johannes Kepler sug-
gested that the orbits of the then – known planets are
defined by nested inscribed Platonic solids.

1609 CE Kepler published ‘Astronomia Nova’ where he announces
his three famous laws of planetary motion. The second
law we can now understand as the conservation of angular
momentum, a consequence of the SO(3) symmetry of the
gravitational force from the sun.

1611 CE In ‘De nive sexangula’ Kepler studied the hexagonal sym-
metry of snowflake crystals.

1669 CE Investigation of crystal angles published in ‘De solido intra
sodium naturaliter contendo’ by Nicolaus Steno. Prob-
ably the first instance of the ‘law of constancy of angles’
for quartz crystals.

1687 CE ‘Principia’ by Isaac Newton, where the first law states
the conservation of momentum due to the homogeneity of
space (translation invariance).

1770 CE Permutations first studied by Joseph-Louis Lagrange
in a paper on algebraic equations.

1772 CE Jean-Baptiste Rome de Lisle published ‘Essai de
Cristallographie’. He confirmed the observations of Steno,
and later tried to order crystals into symmetry classes.

1784 CE Rene-Just Hauy published ‘Essai d’une theorie sur
la structure des cristaux’ describing experiments on the
cleaving of crystals. Proposed that a crystalline solid con-
sists of replicas of a unit cell, and the ‘law of rational
indices’.
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Table 5.4: (Cont.)

1830 CE J.F.C. Hessel derived the 32 crystal classes, starting
from the law of rational indices.

1832 CE Evariste Galois is the first to understand the relation
between the algebraic solutions of an equation and the
structure of a group of permutations associated with the
equation. This work was not published until 1846.

1844 CE A.L. Cauchy studied the group properties of permuta-
tions. The permutations of a fixed number of N elements
is now called the symmetric group SN .

1849 CE Auguste Bravais derived the 14 space lattices in 3
dimensions.

1860 CE Louis Pasteur discovered the connection between optical
activity and enantiomorphic molecular structures. Chiral
molecules which are mirror images of one another rotate
light in opposite senses.

1872 CE Felix Klein proposed the Erlangen program where geom-
etry is classified by invariance groups.

1878 CE Arthur Cayley formulated the abstract group concept.

1890–1891 CE Derivation of the 230 space groups in 3 dimensions by
A.M. Schonflies.

1893 CE Sophus Lie and Friedrich Engel published ‘Theorie der
Transformationsgruppen’.

1886–1904 CE FitzGerald suggested what is later called the FitzGerald-
Lorentz contraction.

Larmor, Lorentz and Poincaré introduced the trans-
formations which make up what is now called the Lorentz
group. It was shown that they leave Maxwell’s equations
invariant. The Lorentz group (Lorentz transformations
and rotations), together with spacetime translations, is a
group of spacetime symmetry transformations often called
the Poincare group.



1918 CE 3467

Table 5.4: (Cont.)

1905 CE In his most famous paper Einstein adduced a set of phys-
ical assumptions, from which the Lorentz transformations
follow via a few simple thought experiments. He thus cre-
ated Special Relativity as a physical theory and an alterna-
tive to the Newtonian theory. The latter uses a different
set of symmetry transformations connecting the inertial
reference frames — namely the Galilean group.

1895–1910 CE F.G. Frobenius and I. Schur created the theory of
group representations.

1912 CE Experimental evidence for the lattice structure of crystals,
following the discovery of X-rays diffraction in crystals by
von Laue.

1918 CE Emmy Noether showed the general connection be-
tween symmetries and conserved quantities in Lagrangian
dynamics.

1918 CE Hermann Weyl introduced a classical unified field the-
ory for gravitation and electromagnetism. It includes in-
variance under local scale transformations, called gauge
invariance, which implies the conservation of electric
charge.

1924 CE S.N. Bose introduced what is now called Bose-Einstein
statistics for photons. In 1925, Einstein generalized the
results to particles or quanta we now call bosons. Any two
same–species bosons in a many-quanta state are indistin-
guishable by any labeling except momenta, positions, po-
larizations and the like; i.e. such states are invariant under
all permutations among bosons.

1925 CE Wolfgang Pauli proposed the ‘exclusion principle’ —
later called the ‘Pauli principle’ — for the allowable quan-
tum states of multi–electron systems.

1926 CE Max Born, Werner Heisenberg and Pascual Jordan
introduced the quantum theory of particles with angular
momentum and spin 1/2.
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Table 5.4: (Cont.)

1926 CE Fermi-Dirac statistics introduced for half–integer–spin
particles and systems (e.g. electrons) we now call fermi-
ons. Their many-particle quantum state vectors (wave
functions) change sign under odd permutations. Later,
the list of fermions grew to include many other elemen-
tary particles (such as protons, neutrons, quarks, neutri-
nos, antiparticles) besides electrons, as well as some nuclei
and atoms – and similarly for bosons.

1927–1928 CE Fritz London and Weyl introduced gauge transforma-
tions (and the associated local symmetry) into quantum
mechanics, with total electric charge as the conserved
quantity.

1928 CE Dirac proposed a relativistic wave equation for spin 1/2
particles, i.e. one covariant under the spinor representa-
tion of the Poincaré group.

1928 CE Weyl published ‘Gruppentheorie und Quantenmechanik’.

1929 CE Felix Bloch described the electron wave functions in pe-
riodic potentials, allowing a quantum–mechanical under-
standing of crystalline symmetry groups.

1929 CE Hans Bethe derived the splitting of atomic levels result-
ing from the crystal field symmetry.

1930 CE Eugene Wigner studied the effects of the symmetry of
molecular configurations on their vibrational spectrum.

1931 CE Wigner introduced the discrete time–reversal symmetry
operation symmetry (T) into quantum theory and pub-
lishes ‘Gruppentheorie und ihre Anwendung auf der Quan-
tenmechanik der Atomspektren’.

1931 CE L.C. Pauling studied the theory of chemical bonding us-
ing the symmetries of orbitals.

1932 CE W. Heisenberg proposed an approximate internal (non-
spacetime) a symmetry between protons and neutrons (to
be understood as two “orientations”, in an internal space,
of a single fermion species — a nucleon), in nuclear theory,
— later called isospin symmetry.
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Table 5.4: (Cont.)

1932 CE Carl Anderson discovered the positron in a cosmic ray
experiment, the first of the antiparticles (predicted by
Dirac in 1931).

1932 CE B.L van der Waerden: ‘Die gruppentheoretische Meth-
ode in der Quantenmechanik’.

1935 CE V. Fock derived the spectrum of the hydrogen atom from
an accidental SO(4) (4-dimensional rotation) symmetry
possessed by its Hamiltonian operator.

1936 CE Heisenberg introduced charge conjugation (C) as a dis-
crete symmetry operation connecting particle and antipar-
ticle states.

1936 CE Frederick Seitz worked out the representation theory of
space groups, the symmetry groups of crystal lattices.

1937 CE H.A. Jahn and E. Teller derived a connection between
the symmetries of molecular configurations and the stabil-
ity of degenerate molecular electron orbitals (Jahn-Teller
effect): for a non-linear molecule there is always a distor-
tion into a shape of lower symmetry to remove any orbital
degeneracy of its electronic state.

1939 CE Wigner studied the unitary representations of the
Poincaré group. The results allow the classification of
all relativistic wave equations and of the transformation
properties of quantum fields.

1940 CE Pauli proved the spin-statistics theorem: particles with
half-integer spin have Fermi-Dirac statistics, those with
integer spin are Bosons.

1954 CE C.N. Yang and Roger Mills introduced local isospin
transformations as an internal symmetry, i.e. non–
spacetime Lie–group transformations of fields which de-
pend on the spacetime point. They showed how
such a non–Abelian local (gauge) symmetry prescribes a
minimal–Coupling dynamics, in a manner similar to the
role of general covariance in GTR.

1954 CE G.C. Wick, A.S. Wightman and E. Wigner intro-
duced the notion of superselection rule.
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1954–1955 CE The CPT theorem was proved by G. Lüders and
W. Pauli, involving space inversion of Parity (P), charge
conjugation (C) and time reversal (T): in a local, relativis-
tic quantum field theory the composition product CPT of
these transformations is always an unbroken symmetry.

1956–1957 CE A parity breaking weak nuclear interaction is proposed by
C.N. Yang and T-D. Lee and verified experimentally
by C.S. Wu.

1959–1961 CE W. Heisenberg, J. Goldstone and Y. Nambu sug-
gested that the ground state (vacuum) of a relativistic
quantum field theory may lack the full global (rigid) in-
ternal symmetry manifested by the Hamiltonian, and that
massless excitations (Goldstone bosons) must accompany
this ‘spontaneous symmetry breaking’. In 1964 P. Higgs
and others find that for spontaneously broken gauge (lo-
cal) symmetries there are no Goldstone bosons but instead
massive vector mesons (Higgs mechanism).

1961 CE Murray Gell-Mann proposed the Lie group of unit–
determinant, unitary, complex 3×3 matrices – as a global
(rigid) internal symmetry for the strong interactions (the
Eightfold Way). This includes the isospin symmetry as
part of a larger symmetry Lie group which also acts on
the so-called strangeness quantum number. In 1964 Gell-
Mann and G. Zweig proposed a new sub-nucleon level of
quanta – which they named quarks – to account for the
SU(3) symmetry.

1964 CE The discrete–symmetry composition product CP — and
thus, by the CPT theorem, also time -reversal symmetry,
T — is found to be violated (broken); this is observed
experimentally –via certain anomalous K-meson decays –
by J.W. Cronin and W.L. Fitch.

1965 CE R.B. Woodward and R. Hoffmann described how the
conservation of orbital symmetry influences the course of
molecular reactions, the ‘Woodward-Hoffman rules’.

1973–1974 CE The essential features of the presently accepted Standard
Model of particle physics are established.
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1977 CE Roger Penrose mathematically demonstrated an aperi-
odic tiling of the plane using only two different tiles and
an approximate 5-fold symmetry.

1984 CE Dan Schechtman found the first quasicrystal phase in
the laboratory, produced via slow cooling (annealing). Its
X-ray crystallography exhibited a 5-fold symmetry – one
not expected to exist by conventional wisdom.

1985 CE Robert F. Curl, Harold W. Kroto and Richard E.
Smalley produced the first observed C60 molecules by
laser-vaporizing graphite in a jet of helium (Nobel Prize in
chemistry, 1996). This useful “Buckyball” cage structure
is highly symmetrical – a truncated icosahedron with 12
perfect–pentagon and 20 perfect–hexagon faces.

1918–1935 CE Hermann Weyl (1885–1955, Germany and U.S.A.). Dis-
tinguished mathematician. Made major attempts to embed the theory of the
electromagnetic field into the geometric framework of an extended theory of
general relativity. Established the importance of gauge invariance in classical
and quantum electrodynamics (1929).

Weyl was first to construct a non-Riemannian geometry in an effort to
produce the required unified field theory. Extended the concept of parallel
displacement of a vector for manifolds in which the line element is undefined.
He rendered a full treatment of spinors429 with reference to finite rotations.

429 The collective designation ‘spinor’ has been given to these quantities because of

the role they play in the theory of the spinning electron. The name ‘spinor’ was

coined by Paul Ehrenfest (1880–1933, Leyden) in 1929. In the same year, van

der Waerden (1903–1996) introduced a notation of spinors by means of dotted

and undotted indices. This latter formalism is based on the fundamental rep-

resentation of the pseudorotation group in 4-dimensional Minkowski space (or,

more precisely, of SL (2, c), the maximal cover of the Lorentz group SO (3, 1))

in terms of two sets of Pauli spin matrices and complex rotation angles.
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During 1923–1938 Weyl used Clifford algebras in order to obtain two-
valued matrix representation of the group of rotation in n-dimensions, thus
developing Cartan’s theory of spinors in n dimensions. He evolved a general
theory of continuous groups, and found that many of the regularities of quan-
tum phenomena on the atomic level can be most simply understood using
group theory. Weyl made original contributions in many areas of mathemat-
ics. His findings were fundamental to later progress in the analytic theory of
numbers.

Weyl was born in Elmshorn, near Hamburg. As a student at Göttingen,
he came under the influence of Hilbert430. He graduated in 1908 and in 1913
became a professor of mathematics at the Technische Hochschule, Zürich,
where he was a colleague of Albert Einstein. In 1930 he was appointed a
professor of mathematics at the University of Göttingen. The Nazi dismissal
of many of his colleagues prompted him to leave Germany in 1933 and accept
a position at the Institute for Advanced Study, Princeton. He became a U.S.
citizen in 1939. After his retirement he divided his time between Princeton
and Zürich.

430 H.A. Lorentz conjectured in a Göttingen seminar (1910) that the asymptotic

behavior of the eigenvalues for differential equations with constant coefficients

does not depend on the shape but only on the size of the vibrating domain. His

host, Hilbert, immediately predicted the problem to be unprovable in his life-

time. Weyl, who listened to the lecture in the audience, did not share Hilbert’s

pessimism. Indeed, within a short time (1912) Weyl was able to prove that, as-

ymptotically, for large value of the frequency f and for 3D vibrating domains

(e.g. a concert hall) with sufficiently smooth boundaries, but otherwise of arbi-

trary shape, the number of eigenvalues (room modes) whose frequencies are less

than a given value of f is determined by N3(f) = 4π
3

V
(

f
c

)3
, where V is the

domain volume and c is the wave velocity inside the domain. The correspond-

ing formula for 2-dimensional enclosures is N2(f) = πA
(

f
c

)2
, where A is the

area of the resonator. The result is asymptotically correct, to order f2, again

independent of the shape of the boundary (perimeter). These results are impor-

tant in thermodynamics (for calculating specific heat of solids) and concert hall

acoustics. It was later shown (1939) that Weyl’s formula can be improved for

rectangular rooms to yield N3(f) = 4π
3

V
(

f
c

)3
+ π

4
S
(

f
c

)2
+ 1

8
L f

c
+ 1

8
, where

S is the total surface area of the room and L is the total length of the edges of

the room. In the limit V � 3S
16(f/c)

, the first term predominates, independent

of the room’s shape.
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The Gauge Principle

Introduction

Gauge theory developed, during 1917–1954, by a group of leading the-
oretical physicists and mathematicians, among them: A. Einstein (1917);
T. Levi-Civita (1917); E. Noether (1918); H. Weyl (1918, 1929); Th.
Kaluza (1920); E. Schrödinger (1922), E. Cartan (1923). O. Klein (1926,
1939); F. London (1927); V. Fock (1927); P. Dirac (1928); W. Pauli
(1933); C.N. Yang (1954); R. Mills (1954).

Two interrelated concepts are involved:

• Gauge principle: The requirement that all physical quantities, including
actions and equations of motion, should be invariant or covariant under
certain local internal transformations, known as gauge transformations.
This property is called gauge invariance. It has evolved into a uniform
organizing principle of the standard model of particle physics. The gauge
principle can also be viewed as an algorithm used to build a dynamical
(classical or quantum field) theory starting from the postulate of gauge-
invariance.

• Gauge choice: A way to get rid of the ambiguity due to gauge free-
dom (the freedom of arbitrary local gauge transformations) by fixing
the gauge [e.g. the Lorentz gauge or Coulomb gauge in EM theory].

The gauge principle works differently in different theories. There are three
basic kinds of relevant physical theories:

(a) Macroscopic classical electrodynamics of particles or effective fields, cur-
rents and charges: i.e. Maxwell equations in free space and matter and/or
plasma. These theories can be nonlinear, as in the case of MHD, nonlin-
ear optics, Landau–Ginsburg effective field theories in superconductors,
or models of ferromagnetic media.

(b) Classical or quantum electrodynamics of fundamental charged fields (al-
ways nonlinear).

(c) Non-Abelian Yang-Mills field theories (classical or quantum): there are
several 4-potentials (gauge fields), with their associated field–strength
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tensors, interacting with one another and with (optional) matter fields.

Always nonlinear.

In theories of type (a), gauge invariance is just a mathematical artifice that

is not essential, since E and B are the observable fields. The vector potential

A and scalar potential Φ need not appear explicitly in the field equations.

In (c), even on the classical level alone and with no other non-gauge fields,

the field equations can be written only by means of the covariant derivatives
of (the several copies of) E and B, and these involve the (several) four-vector

potential explicitly and non-linearly.431

Electromagnetism as gauge theory

The variational formulation of electromagnetism was expounded by K.

Schwarzschild (1903), A. Lorentz and H. Poincare (1905–6), while the

corresponding relativistic theory was developed by H. Minkowski (1908)

and M. Born (1909). The theory of the classical electromagnetic field, that

began with Maxwell’s equations (1865–1873) and their simplification in the

hands of O. Heaviside (1873–1888), H.R. Hertz (1884) and J.H. Poynting

(1884) – was thus complete.

We recall that in vacuum, Maxwell’s equations are:

431 Similarly, in theories of type (b), Aμ appears in the field equations for the

charged fields. In both cases (b) and (c) (and also some effective field theories

in category (a)), Aμ plays the role that the affine connection does in GTR,

but the corresponding differential-geometric structure is different: a vector fiber

bundle together with a Lie-group principal fiber-bundle (In the special case of

GTR, these are the tangent and frame bundles of the spacetime manifold, re-

spectively).

In a field theory of type (b) or (c), the gauge potentials are essential not only to

make the underlying differential geometry manifest, but in order for the dynam-

ical wave equations (of the one or several EM-like field types and of the charged

fields, if any) to be at all local. And if a theory of type (b) or (c) is quantized, the

vector potentials become even more essential for the mathematical formulation

of the dynamics. Thus in the Aharonov–Bohm effect, an electron wave function

senses (and observably responds to) the B−field in a thin current solenoid, even

far from the B �= 0 region; this is most easily described as the electron being

acted upon directly by A, which is nonzero in that region.
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curl B =
1
c2

∂E

∂t
+

1
c2

j Ampere′s law (1)

div E = ρ Coulomb′s law (2)

−curl E =
∂B

∂t
Faraday′s law (3)

div B = 0 Gauss′ law (4)

Here ρ is the charge density, j is the current density, and no magnetic
monopole charges are present. From (1) and (2) one derives the local charge
conservation

div j +
∂ρ

∂t
= 0. (5)

Since the last two of Maxwell’s equations make no reference to charge or
current (the so-called sourceless pair of field equations), they can be identically
satisfied by introducing potentials through the definitions [Lord Kelvin 1851,
Maxwell432 1855]

B = curlA, E = −∂A

∂t
− grad Φ (6)

The potentials A and Φ are not uniquely determined, since the transfor-
mations

A → A + grad λ, Φ → Φ − ∂λ

∂t
, (7)

where λ is an arbitrary function, leave B and E unchanged.

The transformed set of potentials is as acceptable as the original one since
the fields B and E are the physically measurable EM fields, and they are
unaffected. This arbitrariness in the choice of the potentials is called the
gauge freedom of the theory or gauge invariance, while the corresponding
transformations are called gauge transformations.

432 The vector potential in B = curl A was first introduced, as a mathematical

artifice, by W. Thomson (Lord Kelvin) in 1851. Maxwell borrowed the

idea from Thomson in 1855 when he wrote E = − ∂A
∂t

− ∇Φ, upon integrating

Faraday’s law: curl E = − ∂B
∂t

.
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We exploit this freedom in the following manner: substitute (6) into (1)
and (2) to obtain a pair of coupled partial differential equations for the po-
tentials A and Φ:

−
(

∇2 − 1
c2

∂2

∂t2

)

A = −∇
(

divA +
1
c2

∂Φ
∂t

)

+
1
c2

j (8)

−∇2Φ − ∂

∂t
(divA) = ρ (9)

We may now simplify (8)–(9) by utilizing the gauge freedom in defining
the potentials. The two most convenient and common choices are:

I. The Coulomb gauge433

divA = 0 (10)

In this gauge (8)–(9) reduce to

�A =
1
c2

j − 1
c2

∂

∂t
(gradΦ) , � ≡ −∇2 +

1
c2

∂2

∂t2
(11)

−∇2Φ = ρ (12)

The equation for Φ is just the same as that in electrostatics (Poisson equa-
tion): Hence the term ‘Coulomb gauge’. If we take the divergence of (11),
using the Coulomb gauge condition, and also use (12), we regain the law of
local charge conservation, equation (5).

II. The Lorentz gauge

divA +
1
c2

∂Φ
∂t

= 0 (13)

In this gauge, the source differential equations for A and Φ have the sim-
pler form

�A =
1
c2

j, �Φ = ρ. (14)

433 This can be always chosen, because if one starts with A0 such that divA0 �= 0,

the transformation A0 → A0 + gradλ leads to ∇2λ = −divA0, which can be

solved for λ
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Again, charge is locally conserved:

0 = �
(

divA +
1
c2

∂Φ
∂t

)

=
1
c2

[

divj +
∂ρ

∂t

]

(15)

Thus far we dealt with Maxwell’s theory in its non-Lorentz-covariant form.
In its real-0th-component Minkowski form, we compute the change in the
skew-symmetric electromagnetic field-tensor Fμν = ∂μAν − ∂νAμ following
the gauge transformation

Aμ(x) → A′
μ(x) = Aμ(x) + ∂μλ(x),

is

Fμν → F ′
μν = ∂μ(Aν + ∂νλ) − ∂ν(Aμ + ∂μλ) (16)

= ∂μAν − ∂νAμ = Fμν ;

where ∂μ ≡ ∂
∂xμ ; x0 = ct, xi = 3D (spatial) ith position component;

Greek (Latin) indices range from 0 to 3 (1 to 3);

ημν =

⎛

⎜
⎜
⎝

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟
⎟
⎠

is the covariant–indices Minkowski (pseudo-) metric tensor; Minkowski
(“world”) indices are raised and lowered via vμ = ημνvν , vμ = ημνvν

with ημν = ημν numerically; � = ∂μ∂μ = ημν∂μ∂ν and the summation
convention is understood; and (c ρ, j) = jμ (φ/c, A) = Aμ are the
4-current and 4-potential, respectively434.

Note that the Coulomb gauge divA = 0 where A is a spatial 3-vector,
is not invariant under a general gauge transformation; for A → A + ∇λ to
preserve this gauge, it is required that ∇2λ = 0. This restricts λ to be of the
form (λi functions of time alone):

λ = λ0 + λ1x1 + λ2x2 + λ3x3

if the gauge transformation is to hold throughout space.

434 Eq. (16) confirms that the field strengths are gauge invariant. Note that

F0i = 1
c
Fi , Fij = −εijkBk , where εijk is the 3D Levi–Civita tensor :

εijk = εjki = −εjik, ε123 = 1.
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The Lorentz gauge, on the other hand, when applied to the Lorentz co-
variant 4-vector potential Aμ, is invariant under the gauge transformation
Aμ → A′

μ = Aμ + ∂μλ provided λ satisfies the wave equation

�λ = 0, (17)

Thus, the Lorentz gauge fixes the potentials modulo a sum of fictitious
waves propagating with the speed of light.

The Lagrangian density for the EM fields in the presence of given external
sources, is:

L = −1
4
(c2 Fμν Fμν − jμ Aμ), (18)

This covariant form is due to Minkowski (1908) and Born (1909)

The action integral is then

S =
∫

d4xL (19)

Upon setting the variation of this action w.r.t. Aμ to zero, the Euler–
Lagrange equation again yield the two Maxwell equations with sources

∂μFμν =
1
c2

jν (20)

Eq. (20) implies that the current is conserved ∂μjμ = 0 and this, in turn,
leads to gauge invariance of the action (19) via integration by parts, provided
λ(x) decreases rapidly enough at spacetime infinity. Indeed, the action for
the field A′

μ = Aμ + ∂μλ is equal to

S(A′) = S(A) +
∫

d4xjμ∂μλ (21)

The last integral reduces, when ∂μjμ = 0 is taken into account, to an
integral over an infinitely distant surface in 4-dimensional space-time

∫

d4xjμ∂μλ = −
∫

dΣμλ(x)jμ

Maxwell’s equations have profoundly influenced most aspects of 20th cen-
tury technology. What may not have been sufficiently emphasized is that
they have also, through their two invariances (symmetries), — profoundly
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shaped basic theoretical physics in that century. These invariances are the
STR Lorentz invariance (invariance under a rigid, finite-dimensional Lie group
of symmetry transformations) and gauge invariance (invariance under a local,
infinite-dimensional Lie group of symmetry transformations).

Gauge Theory of Charged Scalar or Spinor Fields

In 1926 Schrödinger was endeavoring to generalize his wave–mechanical
equation such that it becomes invariant under the Lorentz transformation,
and thus suitable to govern the quantum matter-waves of a free particle that
has speeds approaching that of light. Starting with the relativistic kinematical
equation

E =
√

c2p2 + m2
0c

4 (m0 = rest mass) (1)

and replacing E → �ω → i � ∂
∂t (Planck) and p → � k → �

i ∇ (de Broglie),
one obtains a new Schrödinger equation:

i�
∂Φ
∂t

= HΦ = c

√

m2
0c

2 − �2∇2 (2)

which, however, is fundamentally asymmetrical w.r.t space and time deriva-
tives and hence not relativistic.

Schrödinger transformed (2) instead into

1
c2

∂2Ψ
∂t2

= ∇2Ψ − m2
0c

2

�2 Ψ (3)

to be known later as the Klein-Gordon wave equation. For m0 = 0 (e.g. a
photon) it reduces to Maxwell’s electromagnetic wave equation (but for the
complex single-photon probability amplitude — although the real E, B fields
satisfy the same equation).

In order to derive a relativistic Schrödinger-like equation for an electron
matter-wave interacting with an external electromagnetic field, Eq.(1) is re-
placed by

(E − eΦ)2 = c2 (p − e A)2 + m2
0c

4, (4)
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where A is the vector potential and Φ the scalar potential.435

Putting again P → �
i ∇, E → i� ∂

∂t we obtain:

(

∂μ +
ie

�
Aμ

)(
∂μ + ie

�
Aμ

)
Ψ + m2

0c
2

�2 Ψ = 0 (5)

where, as seen above ∂μ∂μ = �
If we specify the Lorentz gauge condition ∂μ Aμ = 0, equation (5) is

equivalent to

(
� +

m0 c

�

)2

Ψ =
e2

�2 c2

(
−c2 A2 + Φ2

)
Ψ − 2ie

�

[

A · ∇Ψ +
1
c2

Φ
∂Ψ
∂t

]

, (6)

which was Schrödinger’s result for the interacting relativistic spinless Klein-
Gordon (1926). However, at that time it was immediately rejected – along
with its free (Aμ = 0) version – for two reasons: first, it possesses negative
energy solutions (since it admits negative frequencies). Second, it leads to
negative probability densities. Note that (5) is an inhomogeneous version
of the free Klein–Gordon equation in which the four-indexed partial deriva-
tive operator ∂μ is replaced by a gauge–covariant (and Lorentz covariant436

spacetime derivative operator)

Dμ = ∂μ +
ie

�
Aμ (7)

435 This is justified at the classical (non-quantum) level by the fact that the rela-

tivistic Lagrangian of a charged point-particle in an external EM field

−m0c
2

√

1 − v2

c2
− eΦ (r(t), t) + ev(t) · A (r(t), t) ,

leads to the Hamiltonian

H = eΦ + c

√

(p − eA)2 + m2
0c

2 ,

where p − eA = m0v√

1− v2
c2

is the particle’s physical 3-momentum and p is its

canonical momentum (the one obeying the uncertainty principle).
436 The correct quantum gauge transformation – under which both (5) and the

Dirac Eq. (13) (below) are covariant, is Aμ → Aμ + ∂μλ(x),

Ψ → Ψ · exp{ − ie
�

λ(x)}, the latter being a local phase change. In retrospect,

gauge theories should have actually been named phase theories!
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The foibles of the Klein–Gordon equation seemed at the time to make it a
poor candidate for a matter–wave equation for the electron437, but those imag-
ined weaknesses helped to point Dirac in the right direction and to develop
the correct relativistic field equation for the electron.

The relativistic first-order Dirac equation (1928), which governs the elec-
tromagnetic interaction of the electron (or any other spin – 1/2 charged
fermion) field, is

i�
∂Ψ
∂t

=
[

c α ·
(

�

i
∇ − e A

)

+ βm0c
2 + e ΦI

]

Ψ. (8)

Here Ψ is a 4-wave-component electron field Ψ =

⎡

⎢
⎢
⎣

Ψ1

Ψ2

Ψ3

Ψ4

⎤

⎥
⎥
⎦,

(with spin, not spacetime, indices!); e, m0 are respectively the charge and
rest-mass of the electron, c is the speed of light in vacuum, and {α, β} are
the 4 × 4 complex hermitian matrices

α1 =

⎡

⎢
⎢
⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤

⎥
⎥
⎦ , α2 =

⎡

⎢
⎢
⎣

0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

⎤

⎥
⎥
⎦ , α3 =

⎡

⎢
⎢
⎣

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎤

⎥
⎥
⎦ (9)

β =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎤

⎥
⎥
⎦ I =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ (10)

where i =
√
−1. Introducing the further notation (μ, k are Minkowski and

3D Cartesian indices respectively)

γμ = (γ0, γ) , γ0 = β , (11)

437 It was later realized that the correct interpretation for Ψ in (5) was the operator-

valued quantum field of the (electron/positron or other) charged (or neutral if

e = 0) particle–antiparticle pair – and, not a probability amplitude. Thus, today

both the Klein-Gordon (KG) and the Dirac equations are used as operatorial

field equations; both hold (with spin–dependent corrections in the KG) for the

electron, while only the KG equation holds for boson fields.
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we denote m = m0 c
�

(the inverse reduced Compton wavelength of the spinor

field), and recast (8) in the compact form

(iγμDμ − mI) Ψ(x) = 0 (12)

with the 4-vector of gauge–covariant spacetime derivatives, Dμ, again given

by (7); the γμ matrices form a Clifford Algebra

γμγν + γνγμ = 2ημν (13)

Equation (12) – the Dirac equation for charged spinor field – is gauge
covariant (as in (5)). It also looks Lorentz covariant – as does (13). And they

actually are, since a spinor version of the SO(3, 1) Lorentz–transformation

Lie group exists.

Thus, under a Lorentz transformation xμ → x,μ = Λμ
νxν , the electron (or

any spinor) field transforms as Ψ(x) → Ψ,(x,) = UΨ(x), where the 4 × 4
unitary matrix U obeys U −1γμU = Λμ

νγν .

Therefore, γμ (the Dirac Matrices) can indeed be considered a Lorentz

4-vector.

Upon left-multiplying both sides of (13) by the operator (−iγμDμ − mI)
and taking into account the anti-commutation relations of the γ-matrices, we

obtain (
DμDμ + m2I +

e

�
σμνFμν

)
Ψ(x) = 0 (14)

where

σμν =
i

4
(γμγν − γνγμ); Fμν = ∂μAν − ∂νAμ. (15)

Eq. (15) is just the electromagnetic Klein-Gordon equation Eq.(5) obtained

by Schrödinger, except that it includes the missing spin magnetic moment
term that is the result of the interaction of the electron (or other charged

spinor particle) intrinsic spin with the external magnetic field. (Note that the

relativistic Klein-Gordon does include the interaction of the electromagnetic

field with the orbital angular momentum of the charged particle represented

by the quantum field Ψ).

In this connection, it is worth emphasizing that the appearance of the

correct gyromagnetic ratio in the spin magnetic moment for the electron or

positron in Dirac’s theory – namely twice the classical value – is not only

due to the relativistic nature of the theory, but also due to the fact that the
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gauge principle is applied to obtain the minimal coupling438 of a spin one-half
charged field to an external EM field.

Mathematically, the reason a 4D Dirac field has four components is that
the all–important Clifford algebra [Eg. (13)] cannot be realized with smaller
matrices439.

Physically, these 4 = 2 × 2 components represent two spin states for the
electron, plus two for the opposite–charge antiparticle (positron).

It can be shown that the correct action for the minimally-coupled electro-
dynamics of our charged Dirac field is the following: (from here on we use a
unit system in which � = c = 1, so m = m0).

S = −1
4

∫

Fμν(x)Fμν(x)d4x +
∫

Ψ∗(iγμDμ − mI)Ψd4x

where d4x = d3x dt and Ψ∗(x) is the hermitian conjugate of the field Ψ(x)
if Ψ is interpreted as an operator in Hilbert space, or the complex conjugate
if Ψ is interpreted as a wavefunction; either way Ψ has a Dirac 4-value index,
so e.g.440

Ψ∗γμΨ =
4∑

a=1

4∑

b=1

Ψ∗
a(γμ)abΨb .

If Ψ is instead a bosonic spin-0 charged field — e.g. the field of a charged
pion, or the wavefunction of a Cooper pair of bound conduction electrons in
a superconductor, etc. — the fundamental charged-field equation of motion
is the gauge-covariant KG equation (15) (without the spin term); then the
minimally coupled “Maxwell-Klein-Gordon” action becomes:

S = −1
4

∫

Fμν(x)Fμν(x)d4x +
1
2

∫
[
(DμΨ)∗ (DμΨ) − m2Ψ∗Ψ

]
d4x (16)

438 In both the Dirac and KG equations, minimal coupling to the EM field consist

in simply replacing any spacetime derivative with its gauge covariant version.

This minimal coupling to EM in exactly the same sense that one converts any

STR–compatible theory to a GTR–compatible theory, by replacing spacetime

derivative with generally covariant derivative.
439 The equality of this number to spacetime dimensionality is accidental; in general

the Dirac field has 2[D/2] components in D-dimensional spacetime, with

�x� ≡ maximal integer ≤ x. This is relevant in higher–dimensional quantum

theories – such as Kaluza–Klein, supergravity or superstring theories.
440 From here on, Latin indices will sometimes be used to represent non-spatial

degrees of freedom. Greek indices will still represent Minkowski spacetime com-

ponents.
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The Euler-Lagrange equations corresponding to S are Maxwell’s equations
(1)–(4) (but in units ε0 = 1), and the spinless minimally coupled KG equation,

(DμDμ − m2)Ψ = 0 .

In (16):

DμΨ = (∂μ + ieAμ)Ψ

DμΨ∗ = (DμΨ)∗ = (∂μ − ieAμ)Ψ∗

(∗) = complex or hermitian conjugate

(17)

The accompanying Maxwell’s equations are

∂νFνμ = jμ(x) ≡ ie

2
[−Ψ(x)DμΨ∗(x) + Ψ∗(x)DμΨ(x)] (18)

Eq. (17) are known as the gauge covariant derivatives of Ψ(x). Note
that in contradistinction to the classical Maxwell’s equations, the four-current
jμ(x) depends explicitly on the gauge-potential Aμ as well as on the field
Ψ(x). Because of Noether’s theorem, the invariance of the action (18) under
the global symmetry operation represented by the transformation

Ψ(x) → eiεΨ(x) , (19)

where ε is an infinitesimal real constant parameter, implies the local conserva-
tion of the electric 4-current: ∂μjμ = 0. This conservation (charge continuity
equation) is also guaranteed from Eq. (18) by making use of the KG wave
equation (DμDμ + m2)Ψ = 0. Note that the 4-current jμ(x) is real.

Furthermore, the action (for either the Dirac or KG cases) is also invariant
under the following simultaneous local transformations

Ψ(x) → e−iΛ(x)Ψ(x),

Aμ → Aμ + 1
e∂μΛ(x),

(20)

where Λ(x) is an arbitrary real function of space and time. The local gauge
symmetry transformation (20) – already introduced as a symmetry under
which both (5) and (12) are covariant – is known as an Abelian gauge trans-
formation.

Mathematically, it is the analogue, in a general Fiber Bundle, to gen-
eral coordinate transformation in a Riemannian manifold and its associated
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frame bundle. It is readily verified that the gauge covariant derivative de-
fined above is indeed covariant under the gauge transformation (20). In other
words DμΨ(x) transforms under the gauge transformation exactly as does
Ψ(x) itself. The covariant gauge derivatives are clearly analogous to the co-
variant derivatives of Riemannian geometry (and thus of general relativity),
and the four-vector potential field Aμ(x) (also known as a ‘gauge field’) is
thus analogous to the Christoffel symbols. Also, the field-strength tensor Fμν

plays the same role played by the Riemann curvature tensor in the tangent
(or frame) bundles of Riemannian geometry.

So far we have considered Lagrangians densities (in the action integral)
which are quadratic in the charged fields Ψ; also, the purely EM part (first
term) of the action (17) (or its Dirac counterpart) is quadratic in {Aμ} (al-
though the minimally-coupled KG term in (17) is quartic in the full set of fields
{Aμ, Ψ, Ψ∗}). The Euler–Lagrange equation stemming from S thus lead to
linear equations for the charged field Ψ for fixed external EM fields, for both
the Dirac and KG cases.

However, when the Lagrangian contains terms of order higher then
quadratic in the Ψ fields there arise field interactions with corresponding non-
linear terms in {Ψ, Ψ∗} appearing in the KG or Dirac wave equation.

Such a theory of interacting fields will be invariant under translations
(shifts) in space and time and under Lorentz transformation, if the Lagrangian
– density term for the interaction is a Lorentz scalar which does not depend
explicitly on space-time coordinates. The simplest example arises in the the-
ory of a real scalar field, if for the Lagrangian of the interaction one chooses
some non-quadratic function of the field, VI(Ψ), such that the action is

S =
∫

d4x

[
1
2
(∂μΨ)2 − V (Ψ)

]

, (21)

where

V (Ψ) =
m2

2
Ψ2 + VI(Ψ).

VI should contain terms of type Ψ3,Ψ4, etc.

In quantum field theory, compelling technical considerations (renormaliz-
ability) favor choosing VI(Ψ) to be a polynomial in Ψ of degree at most four in
four-dimensional space-time (in two-dimensional space time there are essen-
tially no restrictions on the form of VI(Ψ)). We shall see in the next section
that in generalizations of the “scalar electrodynamics” theory (18) obeying a
non-Abelian local gauge principle, the action and wave equations of motion
become inherently more nonlinear than in the Abelian (EM) case.



3486 5. Demise of the Dogmatic Universe

To lay the foundation for the non-Abelian case, we return to Eqs. (22) and
recast them in the form441

Ψ(x) → g−1(x)Ψ(x)

eAμ(x) → g−1(x)eAμ(x)g(x) − ig−1(x)∂μg(x)
(22)

where g(x) = eiΛ(x).

One advantage of this notation is that g(x) at any point x can be inter-
preted as an element of an Abelian group U(1), which is the multiplicative
group of complex numbers of unit modulus. Then, the non-derivative parts
of transformation (24) looks like a transformation of the fundamental repre-
sentation of this group, whereas g−1(x)∂μg(x) at any point is an element of
the Lie algebra (tangent space) of this group. Generalizations of the transfor-
mation (23) to cases of other (non-Abelian) Lie groups leads to non-Abelian
gauge fields, and their associates transformation and dynamics, as we explore
in the next section.

We stress again that in the theory of interacting fields, the Lagrangian
density contain both terms quadratic in the fields and terms of degree three,
four and higher in the fields. The quadratic terms lead to equations linear
in the fields, while higher-order terms lead to nonlinear terms. It is usually
impossible to find general solutions of nonlinear field equations (integrable
models form an exception).

In quantum field theories, excitations corresponding to elementary par-
ticles are sometimes small. In that case the nonlinear terms in the field
equations are small in comparison with the linear terms and may be treated
perturbatively.

Non-Abelian Gauge Theory – Yang-Mills Fields (1954)

Let us first restrict our attention to SU(2), the Lie group of unitary
(2×2) complex matrices of unit determinant. By the well known Cayley-Klein

441 For the remainder of this and the next section, we restrict our attention (in

the inherent of simplicity) to the KG (scalar matter field) case although the

minimal coupling of Dirac matter fields to non-Abelian gauge fields is just as

straightforward – and is, in fact, of more fundamental importance in particle

physics.
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parameters representation any such matrix can be thought of a representing
a real, 3 × 3 orthogonal rotation matrix. The general Cayley-Klein SU(2)
matrix can be written as

G = ei
∑3

a=1 baτa/2 (1)

where: ba (a = 1, 2, 3) are three real numbers related to the Euler angles
of the corresponding 3D rotation matrices, and τa are the three 2 × 2 Pauli
matrices:

τ1 =
(

0 1
1 0

)

, τ2 =
(

0 −i
i 0

)

, τ3 =
(

1 0
0 −1

)

(2)

obeying

τaτb = δabI + iεabcτc (3)

where I =
(

1 0
0 1

)

, δab is the Kroneker delta and εabc is the Levi-Civita

symbol, and the summation convention is henceforth understood over both
Lorentz and internal (“isospin”) indices — denoted by Greek and Latin indices
(μ, ν, γ, . . . and a, b, c, . . .), respectively.

Defining the hermitian matrix field

Ψ(x) = Ψa(x)
τa

2
(4)

with442 Ψa = Ψ∗
a,the Non-Abelian Gauge Transformation law, becomes

Ψ(x) → G−1Ψ(x)G (5)

442 Ψa can either be real classical fields, or hermitian quantum field–operators. In

the latter case(*) denotes hermitian conjugation, rather then complex conju-

gation. We emphasize that neither the 3D rotations nor the spin-like Pauli

matrices referred to in this example, have anything to do with spatial dimen-

sions μ = 1, 2, 3 of Minkowski space, nor with angular–momentum spin. Rather,

they pertain to continuous rotation-like transformations in an internal, mathe-

matical space which is the so-called fiber of the Fiber–Bundle referred to above,

at each spacetime point x. Minkowski space itself, M4 is referred to as the base

manifold of the Fiber Bundle. The internal fiber-space could arise from extra

curled-up of a “primordial” Minkowski space MN with N > 4 dimensions – as

in Kaluza–Klein theories – but this need not be the case.
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Aμ → G−1Aμ(x)G − i

e
G−1(∂μG) (6)

where G = G(x) is a general spacetime-dependent element of SU(2),

Aμ(x) ≡ Aa
μ(x)

τa

2
(7)

are hermitian matrix-fields, (Aa
μ)∗ = Aa

μ encode three copies of EM-like 4-
vector potentials, and the non-Abelian gauge covariant spacetime derivative
operators are defined as follows:

DμΨ ≡ ∂μΨ + ie[AμΨ − ΨAμ] (8)

By (3), (4), (7) and (8)

DμΨa = ∂μΨa − eεabcA
b
μΨc (9)

One readily verifies that the just-defined non-Abelian gauge covariant
derivative via (8) – (9), are indeed gauge–covariant, in the sense that DμΨ(x)
transforms just as Ψ(x) does under the gauge transformations443 (5)–(6).

Recall that, the Abelian gauge-invariant action for the complex charged
scalar matter field in an external Abelian (U(1)) gauge field is given by the
second term on the r.h.s. of Eq. (18) of the previous section, namely the
second (Klein–Gordon) term in

Stotal = Sgauge field + Smatter (10)

= −1
4

∫

Fμν(x)Fμν(x)d4x +
1
2

∫
[
(DμΨ)∗(DμΨ) − m2Ψ∗Ψ

]
d4x.

This can be generalized to the non-Abelian case (for instance, to the SU(2)
gauge group of the present example) by replacing the real fields Re Φ, Im Φ
by the three real fields Ψa (a = 1, 2, 3), and then updating the covariant
derivatives DμΨa to their non-Abelian SU(2) versions (Eq. (9)):

443 It is also straightforward to verify that equations (4) through (7) are equivalent
to the non-Abelian transformations law (23) of the previous section, provided

Aμ and Ψ of that latter equation are now interpreted as the matrix iAb
μεabc and

the vector Ψa, respectively, and we also identify the 3 × 3 matrix g−1 as

(g−1)ab =
1

2
tr(GτaG−1τb).
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Smatter =
1
2

∫

d4x
[
(DμΨa)(DμΨa) − m2Ψ2

a

]
. (11)

The matter action in (11) is invariant under the general local gauge trans-
formation (5)–(6), and is the SU(2) non-Abelian version of the minimally
coupled charged-field KG action term in (18) of the previous section. To
complete the action formulation – i.e. to also extend the pure-gauge action
term in (10) to the non-Abelian case – a non-Abelian version of the electro-
magnetic field strength tensor Fμν is needed, which will be gauge covariant.

It can readily be shown that the SU(2) matrix Fμν of spacetime skew-
symmetric tensors

Fμν ≡ F a
μν

τa

2
= ∂μAν − ∂νAμ + ie[AμAν − AνAμ] (12)

transforms in the same way as does Ψ(x) under the local gauge transforma-
tions (6).

Note that (12) consists of 3 real field tensors, F a
μν(x). Each of those is

antisymmetric in its two spacetime indices μν, as in the U(1) or Abelian
(electromagnetic) case. However, these non-Abelian field-strength tensors are
non-linear in the gauge potential fields.444

We can also write

F a
μν = (∂μAa

ν − ∂νAa
μ) − eεabcA

b
μAc

ν (13)

The simplest possible (“minimal”) non-Abelian generalization of the EM
action is thus the pure Yang-Mills action:

SY M = Sgauge fields = −1
4

∫

F a
μνF aμνd4x (14)

It can be proven that (14) is the unique action for the SU(2) non-Abelian
gauge fields which satisfies the following three conditions:

• Invariant under the local gauge transformation (6).

444 From the differential-geometric point of view, the matrix-field skew-symmetric

field strength tensor Fμν(x) is interpreted as the Cartan curvature 2-form of

the principal fiber bundle, with Minkowski space as its base manifold, and the

Lie group SU(2) (homeomorphic to the 3-sphere) as the fiber erected at each

point x of Minkowski space (=spacetime).
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• Yields field equations which are 2d order PDE and are linear in the
highest-order spacetime derivatives.

• Reduces to 3 uncoupled non-interacting copies of Maxwell’s EM theory
in either the limit of weak gauge fields (Aa

μ → 0) or the e → 0 limit.

We may now combine (14) with (11) to yield the generalization of the total
(gauge-fields plus charged no space matter) action (10) to SU(2) non-Abelian
Y M gauge fields minimally coupled to a scalar charged field in the adjoint
(vector) representation of the Lie group SU(2):

S = −1
4

∫

F a
μν(x)F aμν(x)d4x +

1
2

∫
[
(DμΨa)(DμΨa) − m2ΨaΨa

]
d4x (15)

Because the field strength tensors F a
μν are nonlinear in the gauge poten-

tials, even the pure Yang-Mills action term SY M yields nonlinear field equa-
tions: The non-Abelian generalizations of Maxwell equations are nonlinear
even in the absence of matter (non-gauge-fields) sources.

This establishes that the gauge fields act as their own source445. In fact,
the nonlinearity of the pure Y M theory (means that the matter–independent
currents in the three copies of Maxwell’s equations are quadratic in the gauge
fields).

By infinitesimally varying both the gauge fields and the scalar fields in Eq.
(15) and requiring that the action S be stationary under any such variation,
the field equations for both types of fields are obtained as the Euler-Lagrange
equations of the action S:

DμF aμν = eεabcΨb(x)DνΨc(x) (16a)

(DμDμ + m2)Ψa = 0 (16b)

Eq. (16a), the field equations for the gauge fields, is the SU(2) non-Abelian
version of (20) (previous section), while (16b), the field equation for the scalar

445 Even in the Abelian theory, the conserved four-current jμ(x) (Eq. (20), previous

section) – which generates the gauge field strength through Maxwell’s equations

— itself depends on these same gauge fields – through the covariant derivative.

However, in the Abelian case, the four-current vanishes when the charged scalar

field does; whilst in the non-Abelian case, the gauge field strength can be entirely

self-generated.
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field, is the non-Abelian version of the minimally-coupled charged field KG
wave equation.

Eq. (16b) is also the free Klein-Gordon field equation in which partial
derivatives have been replaced by non-Abelian gauge–covariant derivatives;
the scalar charged field is thus said to be minimally coupled to the non-
Abelian gauge fields in the action (15).

It should be noted that although our derivation of the non-Abelian gauge
(YM) theory and its underlying non-Abelian gauge principle (local gauge
symmetry and minimal coupling) was developed for the particular gauge group
SU(2), the main results – those expressed in matrix form – hold without
modification for any gauge group, whether Abelian or not.

These main results are as follows: the gauge transformation laws for matter
and gauge fields, Eqs. (5), (6); the covariant derivatives for matter fields, (8);
the field-strength (a.k.a. fiber-bundle curvature) tensor in terms of the gauge
potential fields, (12); and the field equations (16a)–(16b), provided they are
written in the following matrix form:

DμF aμν = −ie[Ψ, DνΨ], (17a)

(DμDμ + m2)Ψ = 0. (17b)

1918–1936 CE Leonid Isaakovich Mandelstam (1879–1944; Rus-
sia). Physicist. Established the Soviet school of nonlinear dynamics. Did
significant research in optics, radiophysics and quantum mechanics.

Discovered Raman scattering in crystals independently of Raman and Kr-
ishnan’s work on liquids. Contributed to electrotechnology, including the
theory of oscillators with time-varying parameters.

Mandelstam was born in Mogilev (now Belarus) to Jewish parents. Ex-
pelled from Odessa University after student riots in 1899, he continued his
undergraduate and postgraduate studies in Strasbourg, returning to Russia
in 1914. A variety of scientific and academic posts followed, culminating in
the chair of Theoretical Physics at Moscow State University in 1925 and full
membership of the Soviet Academy of Sciences in 1929.
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Due to his Jewish ethnic origin and his close academic links to Germany,
he was politically attacked during the Stalinist purges (1937–1938).

1918–1964 CE Le Corbusier [ps. of Charles-Edouard Jeaneret-Gris
(1887–1965, Switzerland and France)]. Architect and city planner. Often
considered the most important architect of the 20th century. Used certain
characteristics of reinforced concrete construction to enclose and use space in
new ways.

Le Corbusier was born in Switzerland and trained initially as an engraver
and goldsmith. He was largely self-taught during travels in Greece, Italy,
France, Germany. Settled in Paris (1917) and developed purism (1918) based
on architectural equilibrium and functional simplicity, in which he expounded
his revolutionary concept of mass-produced housing based on a ferroconcrete
modular skeleton. In his Vers une architecture (1923) he developed a personal
version of International style, utilizing pillar supports, roof terraces, unorna-
mental facades, strip windows. It contained the idea of high-rise residential
complexes surrounded by green spaces. This he implemented in numerous
private residences in Europe, North Africa and South America.

In the 1920’s Le Corbusier published the first of his town-planning projects
for futuristic cities focused upon a central complex of identical skyscrapers.
His new approach to a structure’s form and use was part of what he called
the New Spirit that man set free for his own full development (1920–1925).

During the 1930’s and 1940’s, Le Corbusier built few buildings and cen-
tered his interests on city planning. He proposed the demolition of urban areas
and their complete rebuilding according to his ideas. His major achievement
was his plan and design for the new city of Chandigrah, India in the 1950’s.

After WWII, he moved away from functionalism to explore possibilities
of an irrational, expressionistic sculptural style. In his final buildings (1952–
1964), Le Corbusier continued to demonstrate his understanding for architec-
tural forms interacting with a variety of functional and social conditions.

1919 CE Karl Ereky (Hungary). Agricultural engineer. Coined the word
Biotechnology. He defined it as

• “All lines of work by which products are produced from raw materials
with the aid of living things.”

Ereky envisioned a biochemical age similar to the stone and iron ages.

Newer and more comprehensive definitions are:
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• “Any technique that uses living organisms to make or modify products,
to improve plants or animals, or to develop microorganisms for specific
purposes” (Office of Technology Assessment of the U.S. Congress)

• “The integration of natural sciences and engineering sciences in order to
achieve the application of organisms, cells, parts thereof and molecular
analogues for products and services” (European Federation of Biotech-
nologists)

• “A collection of scientific techniques that use living cells and their mole-
cules to make products or solve problem intended to modify human
health and the human environment”.

• “Systematic industrial use of biological processes to manufacture med-
ical, agricultural and consumer products”.
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Biotechnology Chronicles, I

I: Early Applications and Speculations

6000 BCE–1700 CE

Biotechnology is technology based on biology, especially when used in agri-
culture, food science and medicine. It includes the directed use of organisms
for the manufacture of organic products446.

Biotechnology is not new — humans have been manipulating living things
to solve problems and improve their way of life for millennia.

The origins of biotechnology date back nearly 10,000 years ago to early
agrarian societies in which people collected seeds of plants with the most
desirable traits for planting the next year. There is evidence that Babyloni-
ans, Egyptians and Romans used these same selective breeding practices for
improving livestock.

Certain practices that we would now classify as applications of biotech-
nology have been in use since man’s earliest days. Nearly 6000 years ago,
our ancestors were producing wine, beer, and bread by using fermentation, a
natural process in which the biological activity of one-celled organisms plays
a critical role.

In fermentation, microorganisms such as bacteria, yeasts, and molds are
mixed with ingredients that provide them with food. As they digest this
food, the organisms produce two critical by-products, carbon dioxide gas and
alcohol.

In beer making, yeast cells break down starch and sugar (present in cereal
grains) to form alcohol; the froth, or head, of the beer results from the carbon
dioxide gas that the cells produce. In simple terms, the living cells rearrange
chemical elements to form new products that they need to live and reproduce.
By happy coincidence, in the process of doing so they help make a popular
beverage.

446 One aspect of biotechnology is the directed use of organisms for the manu-

facture of organic products. Examples include beer and milk products. For

another example, naturally present bacteria are utilized by the mining industry

in bioleaching. Biotechnology is also used to recycle, treat waste, clean up sites

contaminated by industrial activities (bioremediation), and produce biological

weapons.

There are also applications of biotechnology that do not use living organisms.

Example are DNA microarrays used in genetics and radioactive tracers used in

medicine.
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Bread baking is also dependent on the action of yeast cells. The bread
dough contains nutrients that these cells digest for their own sustenance.
The digestion process generates alcohol (which contributes to that wonderful
aroma of baking bread) and carbon dioxide gas (which makes the dough rise
and forms the honeycomb texture of the baked loaf).

Discovery of the fermentation process allowed early peoples to produce
foods by allowing live organisms to act on other ingredients. But our ancestors
also found that, by manipulating the conditions under which the fermentation
took place, they could improve both the quality and the yield of the ingredients
themselves.

By 4000 B.CE, the Chinese were using lactic-acid-producing bacteria mak-
ing yogurt, molds for making cheese and acetic acid bacteria for making wine
vinegar.

By 500 B.CE the Chinese were using moldy soybean curds as an antibiotic
treatment for pustules and open sores. By 250 B.CE Greeks practiced crop
rotation to preserve soil fertility. One hundred and fifty years later the first
insecticide was used by the Chinese, namely — that of powdered Chrysan-
themum.

The first millennia CE witnessed a consolidation of food processing tech-
nologies, with the Romans in particular, diversifying and exploring cheese,
and winemaking methods throughout their Empire. Beer making too, be-
came more sophisticated and spread rapidly throughout Europe. The Dark
Ages stemmed the flow of biotechnology and its products, with the Church
coveting wine and beer making techniques. In 1300 CE the Aztecs in Mex-
ico harvested algae from lakes as a food source. By 1400 CE, distillation of
a variety of spirits from fermented grain was widespread. Egypt and Per-
sia, however largely gave up brewing as a result of the influence of Islam.
Fermented breads and cereals still maintained their hold in the African diet.

By 1500 CE, plant-collecting expeditions became quite common across the
globe. The collections led to the establishment of the first plant gene banks.
Plants with desirable traits, including resistance to disease, were stored for
future breeding purposes.

These examples suffice to show that humankind has been using Mother
Nature’s own remedies for thousands of years to preserve the environment
and heal damage done to it.

It was not until 1590 that the first microscope was engineered and 75
years later, that Hooke described cells. In 1675 Leeuwenhoek discovered
bacteria.

Major events throughout the stage I are summarized in Table 5.5.
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Table 5.5: Milestones in the progress of biotechnology

4000 BCE–1900 CE

ca 4000 BCE • Yeast was used to brew beer by Sumerian and Babyloni-
ans.

• Egyptians discovered how to bake bread using yeast.

• Other fermentation processes were established in the an-
cient world, notably in China: The preservation of milk by
lactic acid bacteria resulted in yogurt. Molds were used to
produce cheese, and vinegar and wine were manufactured
by fermentation.

ca 1000 BCE Babylonians celebrated the pollination of palm trees with
religious rituals.

ca 500 BCE The Chinese used moldy soybeans curds as an antibiotic to
treat boils.

ca 400 BCE Hippocrates determined that the male contribution to
the child’s heredity is carried by a semen. He guessed there
is a similar fluid in women, since children clearly receive
traits from each in approximately equal proportion.

ca 250 BCE The Greek practice crop rotation to maximize soil fertility.

ca 100 CE Powdered chrysanthemum is used in China as an insecticide.

ca 1000 CE Hindus observed that certain diseases may “run in the fam-
ily” and that children inherit all their parent’s characteris-
tics.

ca 1300 CE Aztecs in Mexico harvested algae from lakes as a food
source.

1590 CE The microscope was invented by Janssen in the Nether-
lands.

1630 CE William Harvey speculated that plants and animals alike
reproduce through the joining of an egg and sperm, 200
years before a mammalian egg was finally observed.

1663 CE Cells were first described by Robert Hooke: he observed
the cellular structure of cork. But it was not until almost
200 years later hat scientists, armed with better micro-
scopes, realized that the human body is divided into very
small components.
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1660–1675 CE Marcello Malpighi used the microscope to study details
of blood capillaries, nerve fibers, silkworm anatomy and
plant anatomy.

1668 CE Francesco Redi disproved spontaneous generation through
pioneering controlled experiments.

1673 CE Anton van Leeuwenhoek used the microscope to dis-
cover protoza and bacteria. First to recognize that such
microorganisms might play a role in fermentation.

1701 CE Giacomo Pylarini, the first immunologist, practiced in-
oculation447 of children with smallpox in Constantinople.

1724 CE Cross-fertilization in corn was discovered.

1750 CE Lazzaro Spallanzani suggested preserving food by sealing
it in heated containers.

1797 CE Edward Jenner vaccinated448 a child with a viral vaccine
to protect him from smallpox.

1802 CE The word “biology” first appeared.

1809 CE Nicolas Appert devised a technique using heat to sterilize
and can food.

1820 CE First amino acid discovered.

1827 CE First observation of canine eggs.

1830 CE Proteins were discovered.

1833 CE The first enzymes were discovered.

1836 CE Heinrich von Valdeyer-Hartz coined the name chromo-
some.

1847 CE Ignaz Semmelweis used epidemiological observations to
propose that childhood fever can be spread to mother by
physicians.

447 inoculation: intentionally infecting humans with a putatively mild strain of

smallpox to induce resistance to severe strain of the disease, thus preventing a

serious case later in life.
448 vaccination: intentionally infecting humans cowpox to induce resistance to

smallpox.
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1851 CE Charles Chamberland discovered organisms smaller
then bacteria, later known as viruses.

1855 CE The Escherichia Coli bacterium is discovered. It later be-
came a major research, development and production tool
for biotechnology.

1855 CE Louis Pasteur first to introduce the notion that microbes
are the cause, not the result of a disease; asserted that mi-
crobes are responsible for fermentation (result of activity
of yeasts and bacteria); invented the process of pasteuriza-
tion (heating wine sufficiently to inactivate microbes, while
at the same time not ruining the flavor of the wine); the-
orized that decayed organisms are found as ‘germs’ in the
air; developed the germ theory of disease (1865); developed
a rabies vaccine.

1856 CE Karl Ludwig discovered a technique for keeping animal
organs alive outside the body, by pumping blood through
them.

1859 CE Charles Darwin theorized his principle of “natural selec-
tion”: only the creatures best suited to their environment
survive to reproduce.

1865 CE Gregor Mendel discovered that traits were transmitted
from parents to progeny by discrete, independent units,
later called genes.

Mendel’s work remained unnoticed, languishing in the
shadow of Darwin’s more sensational theory (1859), until
1900, when Hugo de Vries, Erich von Tschermak, and
Carl Correns published research corroborating Mendel’s
mechanism of heredity.

1868 CE Friedrich Miescher successfully isolated nuclein, a com-
pound that includes nucleic acid, from pus cells. He was
not, however, investigating heredity. Instead, he was try-
ing to identify the chemicals in cells. Several generations of
scientists would pass before the connection would be made
between the DNA found by Miescher and the laws of hered-
ity described by Mendel just three years previously.

1870 CE Walther Flemming discovered the mechanism of cell di-
vision (mitosis) and the notion of chromosomes.
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1871 CE Ernst Hoppe-Seyler discovered invertase, an enzyme
that cuts disaccharide sucrose into glucose and fructose.

1877–1885 CE Robert Koch developed a technique for staining and iden-
tifying bacteria, a single most important discovery in the
rise of bacteriology (1877).

He also became the first to uncover the cause of a human
microbial disease – tuberculosis (1882).

1878 CE The term ‘microbe’ was first used.

1882 CE Elie Metchnikoff developed a cell theory to explain the
action of vaccines.

1883 CE August Weismann asserted that chromosomes must be
the bearers of heredity.

1885–1895 CE Robert Koch and Paul Ehrlich identified a host of hu-
man disease-causing organisms. Emil von Behring devel-
oped the first antitoxin for diphtheria.

1887 CE Eduard van Beneden discovered that each species has a
fixed number of chromosomes; he also discovered the for-
mation of haploid cells during cell-division of sperm and ova
(meiosis).

1892 CE Dmitri Ivanovsky reported that the causal agent of the
tobacco mosaic disease is transmitted and is smaller than
bacteria. Such agents are later called viruses.

1898 CE Friedrich Löffler and Paul Frosch discovered that foot-
and-moth disease is caused by viruses.

1899 CE Walter Reed established that yellow fever is caused by a
virus.
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II: The Age of the Industrial Revolution

1700–1900

The 18th and 19th centuries witnessed technological and scientific explo-
sions, the diversity and inventiveness of which will likely never be equaled.
The Industrial Revolution was matched by the Scientific Revolution. These
phenomena were to ultimately fuse in the later part of the 19th century, es-
pecially in the agricultural, medical and environmental settings. Thus, the
empirical method and the Industrial Revolution brought monumental changes
to farming and industry, while the biological sciences were inspired by the
work of Darwin and Pasteur. The microbial nature of many diseases was
established.

The 18th century beheld the first inoculation techniques (Pylarini,
1701), successful vaccinations (Jenner, 1797) and an explosion in engineering
processes. The 1800s were the dawning century of modern scientific thought.
The word biology was coined in 1802, Appert invented the canning process
(1809), proteins were discovered (1830), the first enzymes were isolated (1833),
and during the 1850s industrially processed animal foods, inorganic fertilizers
and a wide range of seed drill harrows, automated mowers, cultivators etc.
came into use.

In 1855 Escherichia coli was isolated, a bacterium which has remained
an indispensable tool in a wide range of production and research fields. In
1856 Karl Ludwig described a method by which animal organs could be
maintained outside the body — necessary prerequisite to organ transplants
and in vitro methods. Mendel laid the groundwork of the modem field of
genetics in 1863, while in 1865, Lister began using disinfectants.

1869 bore witness to the first isolation of DNA — from brown trout sperm
— by Friedrich Miescher (1844–1895) and a year afterwards, Flemming
recorded mitosis. Between 1870 and 1880, Hoppe-Seyler discovered inver-
tase, which is still widely used for making sweeteners; Koch (1893) developed
staining methods for bacteria; Lister’s antiseptic surgery was an important
leap in the understanding of infectious diseases; the word “microbe” was used
for the first time; chromosomes were described by Flemming; Pasteur pub-
lished his work on attenuated strains of bacteria, and the first centrifuge was
manufactured by C.G.P. de Laval.

From 1881–1900, the first rabies vaccines appeared, Metchnikoff laid the
foundations of the study of immunology; Vavilov mapped the worlds centers
of biodiversity; Galton coined the term eugenics; C. Gram described his
differential staining techniques for bacteria; von Behring developed the first
antitoxin; Petri introduced the glass plates still widely used in microbiology;
the self-propelled tractor was marketed, and nitrogen fixation described.
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Toward the end of the 19th century, Buchner demonstrated that fer-
mentation can occur with yeast extracts — a defining moment in modern
biochemistry and enzymology.

1919 CE

• First commercial airplane service between London and Paris.

• First transatlantic flight: Vickers Vimy , piloted by the British aviators
Captain John Alcock and Lieutenant Arthur Whitten-Brown from New-
foundland to Ireland, taking almost 16 hours.

1919 CE Heinrich Georg Barkhausen (1881–1956, Germany). Physi-
cist. Discovered that the magnetization of iron proceeds in small discrete
steps accompanied by tiny clicks and devised a loudspeaker system to render
this discontinuity audible. This phenomenon is now known as the Barkhausen
effect449. It can be explained by the domain theory of magnetization: as small
magnetic domains become aligned, one at a time,the magnetic field changes

449 Because the ferromagnetic elements Fe, Ni, and Co, have an unusual configu-

ration of electrons orbital and spin states, the angular momenta of these atoms

have abnormally large electron spin components. These produce a strong quan-

tum mechanical and electrical interaction between neighboring atoms that leads

to maximum stability when the atomic magnetic moments are aligned. This

spontaneous tendency to align produces mesoscopic regions (domains) in which

the moments are all aligned. In these domains, which have volumes of about or-

der 10−7 mm3 and 1015 atoms, the local magnetization has its maximum value

Nm0 [m0 = atomic magnetic moment for a paramagnetic substance, typically

about one Bohr magneton, mB ; N = atoms/m3]. If an increasing external

magnetic field is applied to an unmagnetized sample of iron below the critical

(Curie) temperature, those domains that have moments aligned with the field,

increase in size at the expense of those not favorably aligned. At first, when the

applied field is relatively weak, this process is reversible. That is, if the external

field is reduced to zero, the domain boundaries return to their original positions

and the bulk sample is again unmagnetized. For stronger applied fields, how-

ever, the domain boundaries do not recover completely and the sample acquires

a permanent magnetism that remains after the external field is removed.

A strong field can also produce permanent magnetization by causing unaligned

domains to rotate and become nearly parallel to the field direction. The shifts

of the domain boundaries and the domain rotations both occur in discrete steps.
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induce electric pulses, and forces between neighboring domains also directly
generate sound vibrations – causing the audible clicks. The Barkhausen ef-
fect is the main source of noise and hiss in almost all magnetic recording
equipment.

Barkhausen was born in Bremen, son of a district judge. In 1911 he was
appointed Professor of Low-Current Technology in the Technische Hochschule,
Dresden, the first chair anywhere devoted to the relatively new field of
electrical communication. He carried out fundamental research on electron
tubes and electrical oscillations at ultra-high frequencies phenomena which
were later utilized in high–power microwave devices. His Institute of High-
Frequency and Electron-Tube Technology was destroyed by Allies bombing in
1945.

1919–1921 CE Theodor Franz Eduard Kaluza (1885–1954, Poland and
Germany). Mathematician. A pioneer of unified field theories. First to sug-
gest that unification of electromagnetism and gravitation might be achieved
by extending space-time to a five-dimensional cylinder world. The electro-
magnetic vector-potential appears in his scheme as the cross components of
the metric tensor (between the 5th, compact dimension and the usual four
spacetime dimensions). This scheme also gives rise to a scalar (‘Brans-Dicke’
or dilaton field), and the Einstein–Maxwell field equations in the four macro-
scopic space–time dimensions follow directly from the pure vacuum Einstein
field equations of general relativity in 5 dimensions.

In April 1919, Einstein received a letter that left him speechless. It
was from an unknown mathematician, Theodor Kaluza, at the University
of Königsberg (today Kaliningrad in Russia). In a short article, only a few
pages long, this obscure mathematician was proposing a union of Einstein’s
theory of gravitation with Maxwell’s theory of light by introducing a 5th di-
mension (4 dimensions of space and one dimension of time). Kaluza’s idea was
to write down the pseudo-Riemann metric in 5 spacetime dimensions. The
5th column and 5th row are identified as the electromagnetic vector and scalar
potentials of Maxwell, the g55 component is the Lorentz–scalar dilation field,
while the remaining 4 × 4 block is the 4-dimensional metric of Einstein. It
seemed incredible to Einstein that such a simple idea could explain the (then
known) two fundamental forces of nature: gravity and electromagnetism.

In fact, it is possible to detect the electric impulses due to the induction effect

as these realignments occur — this is called the Barkhausen effect.

The magnetization of an iron sample by an applied external field is a compli-

cated nonlinear process that depends on the particular way that the sample was

formed (cast, hot-rolled, alloyed etc).
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After the initial shock of confronting the 5th dimension, Kaluza’s theory
was found to raise more questions than it answered. Since all observations
and experiments – then as now – show that we live in a universe with 3 + 1
dimensions of space-time, the embarrassing question: “Where is the 5th di-
mension?” still remained. Kaluza responded that the 5th dimension collapsed
down to a circle so small that even atoms could not fit inside it. It was a
physical dimension (not a mathematical trick) that provided the glue to unite
the two fundamental long–range forces of nature, yet it was simply too small
to measure. Since the universe (Kaluza claimed) is topologically identical
to the direct product space M4 × S1 (a type of “hyper cylinder”) with M4

the ordinary Minkowski 4-space (spacetime) of STR, and the 5th dimension
topologically equivalent to a circle, anyone walking in the direction of the
5th dimension would find himself back where he started after traveling a sub-
atomic (indeed subnuclear!) distance.

In 1926, Oscar Klein made several improvements upon the theory, stating
that perhaps quantum theory could explain why the 5th dimension rolled up.
On this basis he calculated that the 5th dimension should be of the order of
10−33 cm (The Planck length).

By the 1930’s the Kaluza-Klein theory was “clinically dead” although des-
tined to be resurrected, in the context of the other (weak and strong nuclear
forces) 10 or 11 dimensions string–theory scenarios and Grand Unified quan-
tum field theories, in the 1980’s. On the one hand, physicists were not con-
vinced that the 5th dimension really existed (Klein’s conjecture was and still
is untestable), and it has never been clear why the hidden (curled–up) di-
mensions should not expand to macroscopic – indeed cosmological–scales via
a Big–Bang like process. On the other hand, the rising quantum mechanics
challenged the smooth, geometric interpretation of forces, replacing it with
stochastic quanta and Hilbert-space states and operators450.

Kaluza was born in Ratibor, Germany (now Raciborz, Poland) to a family
which had lived there for around 300 years. He was educated at the University
of Köningsberg (1902–1909). After writing his habilitation thesis on Tschirn-
hausen transformation (1909) he became a Privatdozent and remained in that
position for the next 20 years. Only after the intervention of Einstein on his
behalf was he promoted to the rank of a professor at Kiel university (1929).

450 The Kaluza-Klein theory furnished one of the several avenues – linking the

gauge principle to differential geometry – along which Yang-Mills theories were

ultimately discovered. It was recently revealed that Oscar Klein had indepen-

dently invented the Yang-Mills field (1954) already in 1938! A Kaluza-Klein

renaissance began in the 1980’s as part of supergravity and superstring theo-

ries, but these remain untested (indeed, perhaps untestable), non-unique and

mathematically ill-defined conjectures.
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In 1935 he was made a full professor at Göttingen, where he remained until
his death in 1954.

Merger of Gravitation with Electromagnetism –
Kaluza-Klein Theory (1919–1926)

The ancient Greek philosophers began the quest for the source of all ma-
terial diversity from which all the different forms and laws of nature emerge.
This quest for unification persisted throughout the evolution of physics, and
was a major drive that motivated the great achievements of Newton (1687),
Maxwell (1865) and Einstein (1917).

Thus, in the mid 19th century James Clerk Maxwell formulated the
first genuine field – that of theory of electromagnetism, unifying the then
separate classical phenomena of electricity, magnetism and optics. Then, in
the early 20th century, Albert Einstein developed general relativity, a field
theory of gravitation. Later, Einstein and others attempted to construct a
unified field theory in which electromagnetism and gravity would emerge as
different aspects of a single fundamental field.

Back in 1919, the strong and weak nuclear interactions were unknown
except in barest outline, and full–fledged quantum mechanics had not yet
been discovered. In searching for a unified theory of fundamental forces, it
was therefore natural to attempt to merge gravity with Maxwellian electrody-
namics and generalize Einstein’s GTR while remaining within the framework
of pseudo–Riemannian geometry. The idea was that since the increase of
dimensions from 3 to 4 had led to Einstein’s gravitational theory, a further
increase from 4 to 5, using the 5-dimensional version of Einstein’s theory,
might describe both gravitation and electromagnetism as (unified) geometrical
effects.

The first attempt at such a theory was made by Kaluza in his 1921 paper.

To construct a five-dimensional General Relativity, Kaluza considered a
five-dimensional pseudo–Riemannian line element for which

ds2 = γjkdxjdxk,
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where the summation convention is understood; Latin indices will range from
0 through 4, while Greek ones will range from 0 through 3. (Thus x4 is the
“fifth”, curled–up dimension in this notation). The

(
5
2

)
+ 5 = 15 quantities

γjk are the covariant components of a five-dimensional symmetric tensor. To
relate them to the usual quantities gμν and Aμ of standard GTR and generally-
covariant electrodynamics, one must make special assumptions.

First, the extra spatial dimension x4 must coordinatize a topological circle.
Second, the quantities γik should not depend on this fifth451 coordinate x4.

From this it follows that the permitted general coordinate transformations
are restricted to the following group

x′4 = x4 + Ψ({xν}) ,
x′μ = x′μ ({xν}) (1)

It can then easily be shown that γ44 is a 4-dimensional scalar field w.r.t.
the transformation (1). The assumption γ44 = const. = α is therefore permis-
sible. It can also be shown that for fixed x4 (Ψ = 0) the four γ4μ transform
as the covariant components of a 4-vector. But if x4 is transformed, yet xμ

are not, then the 4-gradient of the 4-scalar αΨ is added:

γ′
4μ ({xν}) = γ4μ ({xν}) − α∂μΨ ,

So γ4μ can be interpreted as the EM gauge-potential 4-vector, with the 4-
scalar αΨ playing the role of the local gauge-transformation Lorentz scalar
function. This means that the quantities

∂γ4ν

∂xμ
− ∂γ4μ

∂xν

transform like the covariant components Fμν of the electromagnetic field-
strength skew-symmetric 4-tensor.

In fact it is convenient to rescale:

γ4μ = αβAμ, β = const. (2)

451 Since the fifth dimension is assumed to be curled-up into a circle of circumference

∼ 10−33 cm, all fields γij(x
μ, x4) (μ = 0, 1, 2, 3, 4) must be periodic in x4.

It can be shown that the non-constant (in x4) Fourier components are Klein–

Gordon fields in the ordinary spacetime dimensions x4, with masses of order

of the Planck mass (1019GeV/c2), which can be neglected at normal scales of

energy, space and time (and even those encountered in accelerators, cosmic rays

and the most violent cosmological and astrophysical cataclysms known).
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According to the generally-covariant formulation of electromagnetism, the
electromagnetic field-tensor in a source-free medium is given by

Fμν =
∂Aμ

∂xν
− ∂Aν

∂xμ
(3)

We would like to relate the 5D differential ds2 with the usual 4D relativistic
one. We therefore combine ds2 = γjkdxjdxk with

γ44 = α , γ4μ = γμ4 = αβAμ , γμν = gμν + αβ2AμAν (4)

The 4D metric gμν has been chosen so that in locally Minkowskian coor-
dinates we have

(ds(4))2 ≡ gμνdxμdxν = −(dx2 + dy2 + dz2) + c2dt2 (5)

There remains the problem of constructing field equations for the γjk which
will lead to the usual Einstein-Maxwell field equations for gμν and Aμ. To
this end one constructs the Lagrangian density

L = γjkRl
jkl, (6)

where γjk are the contravariant components of the five-dimensional metric
tensor determined by, Aμ, matrix-inversion and Eq. (4); Rl

jkl is the 5D
Ricci tensor, and (6) is the generalization of the Hilbert-Einstein Lagrangian
density of GTR to the Kaluza 5-dimensional world.

As explained above, we assume that all γjk (and thus γjk) components,
and therefore the 5D Ricci tensor as well, are independent of x4 and that
γ44 = α. Let us now consider the 5D Hilbert-Einstein action integral

J =
∫ √

−γ dx0dx1dx2dx3dx4L , (7)

taken over the five-dimensional space, where γ denotes the determinant of
γjk. We express δJ in terms of a variation of the quantities γjk and

∂γjk

∂xl

where the variation vanishes sufficiently rapidly at 4D spacetime infinity and
α is regarded as constant (not varied). The variational principle δJ = 0 then
leads to the following Euler-Lagrange equations:

Rμν − 1
2
gμνR +

αβ2

2
Tμν = 0 , (8)

∂
(√

gFμν
)

∂xμ
= 0 , (9)
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where R is the Einstein 4D scalar curvature, Rμν are the contravariant compo-
nents of the Einstein 4D Ricci tensor, gμν are the contravariant components
of the 4D metric tensor, Tμν are the contravariant components of the 4D
electromagnetic energy-momentum-stress tensor, g is the determinant of gμν ,
and finally Fμν are the contravariant components of the electromagnetic field
tensor. If we set

αβ2

2
= k (10)

where k = 8πG
c4 is the usual 4D Einstein gravitational constant, we see that

equations (8) and (9) are in fact identical with the matter-free field equations
for the gravitational field (with only EM fields as sources) and the generally-
covariant Maxwell equations, respectively.

While the Kaluza-Klein theory was an impressive accomplishment, it was
a failure as a unification attempt, at least in its original form. This is because
unlike Maxwell’s unification (and the 20th century unifications of quantum
mechanics with STR, and of Feynman et al.’s QED with the weak nuclear
force), no new physics is predicted (apart from the possible scalar-tensor or
Brans-Dicke extension of GTR).

Both the original Kaluza–Klein model and more modern versions (in which
several spatial dimensions are curled–up into compact, sub–nuclear–sized sym-
metrical spaces452) have the serious – and thus for unmet – challenge of ex-
plaining why the extra dimension or dimensions are curled up, and why nature
would settle on a particular version of this “compactification” among the in-
finite possibilities.

The enduring value of the Kaluza-Klein model to theoretical physics, how-
ever, lies in the tantalizing hint it provides that not only gravity, but also en-
ergy and matter could be geometrical in origin. Furthermore, the connection
– pointed to by this model – between the EM gauge principle and general
covariance, helped point the way to the mathematical existence and physical
relevance of non-Abelian, fiber-bundle-based gauge field theories.

It’s plausible, though by no means certain, that the varied and complicated
chemical species and interactions necessary for life to arise would not be pos-
sible if one had fewer than three uncompactified spatial dimensions. similar
“anthropic”–type arguments are nowadays adduced by many leading string

452 In such higher–dimensional extensions of the Kaluza–Klein theory – motivated

by supergravity and superstring candidate theories and studied in detail in the

1980s – GTR is unified, superficially at least, with all sorts of (matter and

non-Abelian gauge–) fields. Such extensions are thought necessary in order to

unify (at least) the four known forces, and all matter besides, into a single,

geometrical framework.
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theorists to attempt to pare down and choose among the myriad possible sce-
narios uncovered in their own higher–dimensional speculations. However, it
is not clear that life could not thrive in a universe of more than three open
dimensions (although some philosophers have valiantly tried to adduce such
arguments!). Perhaps one clue is that non-Abelian gauge field theories cannot
be consistently quantized at low energies (of order those governing chemistry
and nuclear physics) in any spacetime dimensions higher than 4, without fine-
tuning the constants of nature at the Planck scale. (This is an example of
a “Platonic” (first–principles) argument in physics that may – or may not –
have anthropic overtones.)

So if one were to imagine there were an infinite or very large number
of universes (or different spacetime regions of one universe) with different
numbers of dimensions or uncompactified dimensions, we would be looking
at a biased sample – since our existing here to ask such questions, already
implies that certain attributes and laws must locally hold in our observable
universe.

In fact, even for fixed dimensionality, different compactifications schemes
could result in different manifest laws of (4D) nature at low energy scales.

1919–1925 CE Avraham (Adolf) Halevi Fraenkel (1891–1965, Ger-
many and Israel) Mathematician. Put set theory into an axiomatic setting
that avoids paradoxes, improving the definitions of Zermelo and proving the
independence of the axiom of choice within the Zermelo axiom system (1919).
His system of axioms was modified by Skolem (1922) to give what is today
known as the ZFS system453 (Zermelo-Fraenkel-Skolem). The independence
of the axiom of choice within this system was proved by Cohen (1963).

Fraenkel was born in Munich and studied at the Universities of Munich,
Marburg, Berlin and Breslau. He became a professor of Mathematics at Mar-
burg University (1922) and spent one year at Kiel (1928). Being a fervent
Zionist he moved to the newly established Hebrew University of Jerusalem

453 Within this system it is harder to prove the independence of the axiom of choice

and this was not achieved until the work of Paul Cohen (1963). By virtue

of Gödel’s incompleteness theorem, there is no possibility of proving that the

axioms of ZFS are consistent, but they certainly appear to avoid paradoxes,

such as Russel’s paradox, and most mathematicians believe that they will not

lead to any contradictions at all.
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(1929) and spent there the rest of his career. His major work is Einleitung in
die Mengenlehre (1919).

1919–1927 CE Francis William Aston (1877–1945, England). Physi-
cist. Discovered a number of isotopes in several nonradioactive elements by
means of a mass spectrograph454 of his own devising (1919). In all, discovered
212 out of 287 natural isotopes.

Aston was assistant to J.J. Thomson (1910–1919) and fellow of Trinity
College, Cambridge (from 1919). Awarded the Nobel prize for chemistry
(1922).

454 J.J. Thomson (1913) demonstrated that charged particles with different masses

(nuclei with the same number of protons but with different number of neutrons

are isotopes of the same chemical element) can be separated by using combined

electric and magnetic fields. Thomson’s crude device was improved upon by

Aston and by A.J. Dempster. By 1919, atomic masses were being measured

with a precision of 1 part in 103; the best modern instruments are capable

of precision of about 1 part in 107. The principle of operation of the mass

spectrograph is as follows: positively charged ions are produced in a source

chamber and are accelerated through a potential difference V . The ions enter a

region with uniform magnetic field B such that they are deflected in semicircular

arcs in the plane of motion.

The ions are then recorded on a photographic plate so that the distance x

from the entrance slit (the diameter of the orbit) can be measured. The entire

system is maintained under vacuum to prevent scattering of the ions by gas

molecules. Consider singly ionized positive ion (q = +e) with a mass M that

enters the magnetic field with a velocity v obtained from eV = 1
2
Mv2. Within

the magnetic field the force on the ion is always perpendicular to its velocity

vector, which thus has a constant magnitude (i.e. no work is done upon the

charge by the magnetic field). Therefore, the ion follows a circular path with

radius R = 1
2
x. The centripetal acceleration is provided by the magnetic field.

Thus ac = v2

R
= v2

1
2 x

= F
M

= evB
M

. Expressing v in terms of V and solving for M

gives M =
(

eB2

8V

)
x2. Thus, the mass of the ion is obtained from measurements

of B, V , and x. The relative masses of two ions accelerated at the same time

involve only measurements of x and so can be obtained with high precision.

Clearly, the mass spectrograph places each of the isotopes of the same chemical

element at different distances x along the plate.
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The Berlin Colloquia (1919–1933)

One of the most characteristic and central features of the scientific and in-
tellectual life in Berlin-Dahlen Kaiser Wilhelm Institute became the famous
Haber Colloquia, which took place every second Monday afternoon. There
were many famous guests speakers in different fields and many of the depart-
ment heads or senior scientists of different institutes presented papers.

Haber’s aim was to break down the barriers between physics, chemistry,
physical chemistry, and the biological sciences. The presentation of a pa-
per was followed by a vigorous discussion, deliberately stimulated by Haber,
in which scientists of different disciplines participated. Thus the discussions
automatically stimulated interests beyond one’s own field and frequently sug-
gested ways for trying a new approach. Young people were encouraged to
participate. Controversies were considered an essential element for clarifying
a subject. The young people taking part in these colloquia became immunized
against authoritative and dogmatic thinking. Science in all fields was in rapid
expansion. Nobody could claim to have the right answers.

It was an illuminating experience to listen to the opposing views of so
many illustrious people — a fascinating demonstration of the limitation of our
knowledge, a warning to be flexible and to avoid rigidity of views. Moreover,
non of these great scientists hesitated to admit errors. The spirit of searching
for the truth, not worrying about reputation or prestige when one was wrong,
was one of the most extraordinary features of the Colloquia. They became
an intellectual center in the lives of scientists of various fields, outlooks, and
interests of exchanging views and learning about developments in other fields.

Walter Nernst’s department at the University of Berlin had similar Col-
loquia in which an exciting atmosphere prevailed and in which vigorous dis-
cussions and controversies took place455. Sitting in the front row were Max
Planck, Albert Einstein, Max Von Laue and Erwin Schrödinger. Stu-
dents sat in the back and for them it must have been an experience similar
to that felt at the Haber Colloquia.

455 In Anglo-Saxon countries, controversies seem to be considered “unpleasant and

distasteful”. The Haber colloquia were a particularly great stimulus for the

remarkable development of biological sciences in the Kaiser Wilhelm Institutes.

In them, the revolutionary developments in the fields of physics, chemistry, and

physical chemistry were brought to the attention of biologists, thus providing

them with new insight and later with important tools for the analysis of the

processes taking place in the living cell.
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1919–1928 CE Edgar Douglas Adrian (1889–1977, England). Physi-
cian and psychologist. His studies on the electrophysiology of the brain and
the nervous system provided a new quantitative basis of nerve’s behavior.

Adrian was born in London and studied at Cambridge University. Was
professor of Clinical neurology at Cambridge (1937–1951), master of Trinity
College (1951–1965) and chancellor (1968–1975). Shared the Nobel Prize for
physiology and medicine (1932) with Charles Sherrington.

1919–1938 CE Léon Theremin (Lev Sergeyevich Termen, 1896–
1993, Russia). Inventor, electronic engineer and electronic music pioneer.
Invented the theremin, one of the earliest fully electronic musical instrument.
The theremin is unusual in that it requires no physical contact in order to
produce music and was designed to be played without being touched.456

Léon Theremin was born in St. Petersburg. His ancestors were Huguenots
who escaped France in 1572, following the Massacre of Saint Bartholomew’s
Day. His invention came at a time when his country was in the midst of the
Russian Civil War. After a lengthy tour of Europe, during which time he
demonstrated his invention to packed houses, he found his way to the U.S.,
playing the theremin with the New York Philharmonic (1928). He patented
his invention (1929) and subsequently granted production rights to RCA. Al-
though the RCA Theremin, released immediately following the Stock Market

456 The original design resembled a gramophone cabinet on 4 legs with a protrud-

ing metal antenae and a metal loop. The instrument was played by moving the

hands around the metal loop for volume and around the antenae for pitch. The

output was a monophonic continuous tone modulated by the performer. The

timbre of the instrument was fixed and resembled a violin string sound. The

sound was produced directly by the heterodyning combination of two radio-

frequency oscillators: one performing at a fixed frequency of 170,000 Hz, the

other with a variable frequency between 168,000 and 170,000 Hz, the frequency

of the second oscillator being determined by the proximity of the musician’s

hand to the pitch antenna. The difference of the fixed and variable radio fre-

quencies results in an audible beat frequency between 0 and 2,000 Hz. The

audible sound came from the oscillators, later models adding an amplifier and

large triangular loudspeaker. This Theremin model was first shown to the pub-

lic at the Moscow Industrial Fair in 1920 and was witnessed by Lenin who

requested lessons on the instrument. Lenin later commissioned 600 models of

the Theremin to be built and toured around the Soviet Union.
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Crash (1929), was not a commercial success, it fascinated audiences in Amer-
ica and abroad. Clara Rockmore (1911–1998; born Reisenberg in Vilnius,
Lithuania), widely considered the greatest therminist ever, met Theremin in
1927 and toured to wide acclaim, performing a classic repertoire in concert
halls around the United States.

In 1938, Theremin was kidnapped from his New York apartment by Soviet
agents, and forced to return to the U.S.S.R.. He was then sent to work in
the gold mines in Kolyma and later put to work in a sharashka, together with
Tupolev, Korolev and other well-known scientists and engineers on several
tasks.457 He was rehabilitated in 1956.

After his rehabilitation Theremin took up a teaching position at the
Moscow conservatory of music. However he was ejected for continuing his
researches in the field of electronic music. Post war Soviet ideology decreed
that modern music was pernicious. Theremin was reportedly told that elec-
tricity should be reserved for the execution of traitors. After this episode
Theremin took up a technical position, and worked upon non-music related
electronics. Ironically his invention, the Theremin, was becoming vastly in-
fluential in America, a development of which he was completely unaware.

Before his death in 1993 Theremin made one final visit to America lec-
turing, and demonstrating his Theremin. Indeed the instrument is still being
used today, and has an avid following of Theremin-o-philes458.

1919–1953 CE Lewis Fry Richardson (1881–1953, England). Distin-
guished applied mathematician. A most original and versatile mind that

457 There he invented a sophisticated electronic eavesdropping device. His “bug”

was the first to use induced energy from radio waves of one frequency to trans-

mit an audio signal to another. This made the device difficult to detect since it

did not radiate any signal unless it was actively being powered and listened to

remotely. This feature also endowed it with (potentially) unlimited life.

“The Thing”, as it was called, was very simple by today’s standards, having

only a capacitive membrane (a condenser microphone) connected to an an-

tenna. Thus the impedance seen by the quarter-wavelength antenna was altered

by sound, and the reflections of the 330 MHz signal impinging on the device

were modulated, allowing the audio to be detected. A bug of this nature was

embedded in a wooden plaque and presented to the American ambassador in

Moscow by Russian schoolchildren where it hung in his office until detected by

a professional bug sweeper. For this work Theremin was awarded the Stalin

Prize.
458 The famous theme music of the original 1960’s Star Trek television series, which

seems to be hummed by a choir of female voices, is actually Theremin music!
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concerned himself with the solutions of difficult problems, and made funda-
mental contributions in physics, mathematics, meteorology and psychology.
Published about 90 papers and 4 books. His novel ideas have led to the
following results:

• Fractal geometry459: Rechardson is certainly among the progenitors of
the fractal concept, and had much influence on the genesis of fractal
geometry.

• Weather prediction by numerical process (1922): He was the first man to
compute the weather. Developed the application of the method of finite
differences to the major problem of meteorology viz., the computation
of the physical state of the atmosphere (rainfall, transfer of heat and
moisture, etc.) for an epoch finitely subsequent to that for which the
state is known by observations.

• Atmospheric turbulence (1920–1926). We are indebted to him for some
of the most profound and most durable ideas regarding the nature of
turbulence, notably the notion that over a wide range of scales, turbulence
is decomposable into a hierarchy of self-similar eddies. He introduced a
fundamental dimensionless parameter that controls eddy-diffusion in the
atmosphere, later termed the Richardson number.

• Studies of the causation of wars (1919–1953). Developed the application
of mathematics to the study of relations between nations, especially to
elucidate the effects of armaments, trade, communications, rivalry and
grievances on the stability of the regime and the feasibility of armed
conflicts. He published 3 books on this subject [Mathematical Psychology
of War (1919), Arms and Insecurity (1949), Statistics of Deadly Quarrels
(1950)]. It was one of the first serious applications of science to human
situations.

459 Richardson had noticed that the results of measuring the length of a coast-

line from a map depends heavily on the scale of the map used. Thus, he

set out to make an experimental measurement of the west coast of Britain

as a function of the map’s scale. The same phenomenon can also be ex-

pressed by considering one map only, on which all detail can be seen, but

using a smaller measuring unit each time. Denoting the measured length

by L and the length of the measuring unit by ε, the plot of L against ε

yielded the line: log10 L = −0.22 log10 ε + log10 L0, where L0 is the coastal

length when using a measuring unit of 1 km. This can be expressed as

L = L0ε
−0.22 or as L = L0

(
1
ε

)0.22
. If we reduce ε by a factor of 32, s will

double. Clearly limε→0 L = ∞. This is known as the Richardson effect, and

denoted as L(ε) = L0

(
1
ε

)D−1
, where D is now called the fractal dimension of

that coastline.
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Richardson constructed a mathematical model which describes the relation
between two nations, each determined to defend itself against a possible attack
by the other. Each nation considers the possibility of attack quite real, and
reasonably enough, bases its apprehensions on the readiness of the other to
wage war. The theory is not an attempt to make scientific statements about
foreign politics or to predict the date at which the next war will break out.
It only predicts what will occur if instinct and tradition were allowed to act
uncontrolled.

Let x = x(t) denote the war potential or armaments, of the first nation
(called X) and let y(t) denote the war potential of the second nation, Y .
The rate of change of x(t) depends on the war readiness y(t) of Y and on
the grievances that X feels towards Y . We represent these terms by ky and g
respectively, where k and g are positive constants. On the other hand, the cost
of armament has a restraining effect on dx

dt . We represent this term by −αx,
where α is a positive constant. A similar analysis holds for dy

dt . Consequently
{x(t) y(t)} is a solution of the linear system of ordinary differential equations

dx

dt
= ky − αx + g,

dy

dt
= 
x − βy + h.

This model is not limited to two nations; it can also represent the relation
between two alliances. Note also that these equations accommodate conflict-
ing political theories about the causes of war. Those who maintain that arma-
ments cause war (like Thucydides) will take g � k, h � 
, whereas those
who believe that the grievance factor dominates will take k � g, 
 � h).
The equations imply:

• If g = h = 0, then x(t) = 0, y(t) = 0 is an equilibrium solution of the
system, i.e., if x, y, g, h are all made zero simultaneously, then x(t) and
y(t) will always remain zero. This ideal condition is permanent peace by
disarmament and satisfaction.

• If at some time t = t0, x(t0) = y(t0) = 0, then at this stage dx
dt = g and

dy
dt = h. Thus, x and y will not remain zero if g and h are positive, and
both nation will rearm. Hence: mutual disarmament without satisfaction
is not permanent .

• If y = 0 at some time (unilateral disarmament), then at this time
dy
dt = 
x + h. This implies that y will not remain zero if either h or
x remain positive. Thus, unilateral disarmament is never permanent .

• A race in armament occurs when the “defense” terms predominate. In
this case dx

dt = ky, dy
dt = 
x, having the solution x(t) = Aeλt + Be−λt,
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y(t) =
√

�
k [Aeλt + Be−λt], λ =

√
k
. Therefore, both x(t) and y(t) ap-

proach infinity if A > 0. This can be interpreted as war.

Richardson was born in Newcastle-on-Tyne, the youngest of seven chil-
dren of a Quaker family, well known for owning a profitable leather works for
about 300 years. He attended Cambridge University (1900), where he earned
his B.A. in mathematics and the natural sciences (1903). His formal education
then ended, but 20 years later he studied psychology as an external student
of University College, London, where he received D.Sc. in physics on his pub-
lished researches (1926), and a B.Sc. in psychology (1929). During 1903–1940
he held a sequence of different appointments as physicist and meteorologist
in colleges and government institutions. In 1940 he retired to do research on
wars and eddy-diffusion.

1919–1956 CE Balthazar Van der Pol (1889–1959, Holland). Applied
mathematician. Pioneer in the field of radio; pursued the mathematical prob-
lems encountered in radio applications so far that his work has formed the
basis of much of the modern theory of nonlinear oscillations460 (1924). His
name was given to a typical equation of that theory.

460 To dig deeper, see:

• Jackson, E.A., Perspectives of Nonlinear Dynamics, Cambridge University
Press, 1993, vol I–II (496 pp + 633 pp).

• Shen, S.S., A Course on Nonlinear Waves, Kluwer, 1993, 327 pp.

• Jordan, D.W. and P. Smith, Nonlinear Ordinary Differential Equations, Ox-

ford University Press: Oxford, 1977, 360 pp.

• Davis, H.T., Introduction to Nonlinear Differential and Integral Equations,
Dover Publications: New York, 1962, 566 pp.

• Saaty, T.L., Modern Nonlinear Equations, Dover Publications: New York,

1981, 471 pp.

• Drazin, P.G., Nonlinear Systems, Cambridge University Press, 1992, 317 pp.

• Huntly, I. and R.M. Johnson, Linear and Nonlinear Differential Equations,

Ellis Horwood: Chichester, England, 1983, 190 pp.

• Strogaz, S.H., Nonlinear Dynamics and Chaos, Addison-Wesley, 1994, 498 pp.

• Verhulst, F., Nonlinear Differential Equations and Dynamical Systems,

Springer-Verlag, 1985, 277 pp.
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The Van der Pol equation is the differential equation of the triode oscilla-
tor

ẍ − ε(1 − x2)ẋ + x = 0, ε > 0,

or with a forcing term

ẍ − ε(1 − x2)ẋ + x = F cosωt.

For arbitrary initial conditions, the solution to the unforced equation ap-
proaches a limit cycle, with radius approximately 2 and period approximately
2π. The limit cycle is generated by the balance between internal energy loss
and energy generation, and the forcing term will alter this balance.

If F is small (weak excitation), its effect depends on whether or not ω is
close to the natural frequency. If it is, an oscillation is generated which is a
perturbation of the limit cycle. If F is not small (hard excitation) or if the
natural and imposed frequencies are not close, the ‘natural oscillation’ will be
extinguished, as occurs with the corresponding linear equation.

Rayleigh (1883) was first to treat equations of this kind. He arrived at
them in the following way: The solution of the equation

u′ ′ + ku′ + ω2u = 0

defines a steady vibration if k = 0; but if k > 0, the vibrations will die
down, and if k < 0 they will increase without limit. Let us add to the above
equation a term proportional to the cube of u′, i.e.,

u′ ′ + ku′ + λu′3 + ω2u = 0.

If k > 0, λ > 0, the resulting motion will again die out, and if k < 0,
λ < 0, the motion will increase without limit.

But if k and λ have different signs, then the two terms which contain
them can be written ku′(1 − au′2), a > 0 and the motion is no longer
unidirectional. If k is initially negative and the initial value of u′ is sufficiently
small so that the term in parentheses is positive, the motion will expand until
(1 − au′2) becomes negative. Thereupon the motion will begin to damp, u′

will diminish until the term ku′(1 − au′2) is again negative, and the motion
once more increases.

For small value of k and λ Rayleigh gave the following approximate solu-
tion

u = A sin ωt +
λωA3

32
cos 3ωt,

where A is defined by k + 3
4λω2A2 = 0.
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Writing Rayleigh’s equation in the form

d2u

dt2
+

[

−b + c

(
du

dt

)2
]

du

dt
+ ω2u = 0,

the variables pt = x, q du
dt = y, yields p

q
dy
dx +

(
−b + c

q2 y2
)

y
q + ω2u = 0. Dif-

ferentiating this equation, simplifying, and introducing the notation p = ω2,

q =
√

3c
b , ε = b

p , we finally arrive at the van der Pol equation

d2y

dx2
− ε(1 − y2)

dy

dx
+ y = 0.

Van der Pol was born at Utrecht. He studied at the University of Utrecht
during 1911–1916. In 1917 he worked at the Cavendish Laboratory in Cam-
bridge under J.J. Thomson, and met with E.V. Appleton (1892–1965,
England). From 1919 to 1922 he was assistant to H.A. Lorentz in Haarlem.
He was concurrently head physicist in the Phillips Research Laboratory at
Eindhoven and a professor of theoretical electricity at the Technical Univer-
sity, Delft.

1920 CE, July 12 Official opening of the Panama Canal, a 81.6 km long
waterway that cuts across the Isthmus of Panama and connects the Atlantic
and Pacific oceans. It ranks as one of man’s greatest engineering achievements
and is perhaps the greatest construction project in 4000 years.

The Panama canal was built by the United States at a total cost of 600
million dollars. Work started in 1904 with improving sanitary conditions and
required the removal of 161 million cubic meters of earth and rock. The canal
has three sets of locks, or water-filled chambers, that raise and lower ships
from one level to another; each lock has a usable length of 300 m, a width
of 34 m and a depth of 21 m. (U.S. Navy supercarriers are too wide to pass
through the canal.)

Dreams of a canal cutting through the isthmus of Panama date from the
16th century. Concrete plans began to take shape in the American mind about
1825. The Mexican War and the discovery of gold in California turned the
attention of the people of the United States to the importance of improvement
of communications between the coasts. The French organized a company in
1876 to build a canal across the isthmus and began working in 1882, spending
more than 200 million dollars on it. The Canal was only about 40 per cent
complete when the United States took over the project in 1903. The French
failed in their efforts to complete the canal because of improper financing,
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bad sanitary conditions (Yellow fever, malaria) that killed their workmen by
the thousands and the lack of system for removal of excavation debris.

President Theodore Roosevelt gave great impetus to the project. Opera-
tions began in 1904 with the appointment of John F. Stevens (1853–1943),
a railroad civil engineer, to direct the excavation and William C. Gorgas
(1854–1920) to direct the effective eradication of the mosquitoes that transmit
Yellow fever and malaria461.

The physical difficulties at Panama were enormous: The climate is deadly
to most races. On the Atlantic side a tempestuous river, the Chagras, had
to be controlled. Next came the Continental Divide, a ridge over 100 meters
high which must be sliced before the canal could be dropped down to the
Pacific.

Stevens was the right man to overcome these difficulties and command the
conquest of both nature and geography. Before resuming the excavation he
directed a wide sanitation plan to eradicate the mosquitoes, built an adequate
railway system for the removal of earth rocks and debris, acquired heavy
dredging and excavation machinery and mobilized a new work force of over
100,000 men, He then blocked off the Chargas River by a huge earth dam,
forming the inland Gatan Lake, at an elevation of 30 meters above sea level.
A devious channel through this lake constitutes the middle half of the entire
canal. Beyond the lake the Culbera Cut was sliced through the ridge.

Nothing like this excavation, carried to a total depth of 90 m, had ever
been attempted anywhere. The excavation and transportation of the ridge
material presented problems of a magnitude never before encountered. Since
sea-level passage is not feasible under the said geographical conditions, Stevens
devised the lock gates system, enabling ship transportation at a level of 30 m
above sea-level by means of three steps of twin concrete locks with chambers
35 × 330 m built on the Atlantic side and three more on the Pacific side giving
a total of twelve lock chambers in all, six in each direction. Stevens resigned
in 1907, and his plans were completed by the United States Army Core of
Engineers.

1920 CE, Dec. 16 A landslide in Kansu Province, China, kills ca 200,000
people.

461 The success of the American effort was due not only to adequate generous

financing, but also of two monumental medical discoveries made in 1898 and

1900. The first was that the Anopheles mosquito transmits malaria from one

person to another; the second was that the Stegomyra fasiata mosquito carries

Yellow fever.
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1920 CE Licensed radio broadcasts on a regular basis began in the United
States.

1920 CE Andrew Elliot Douglass (1867–1962, USA). Astronomer, fa-
ther of dendrochronology — a technique for dating objects based on the char-
acteristic growth rings of trees in their given region.

Douglas was born in Windsor, Vermont. After research work at the Low-
ell Observatory at Flagstaff, Arizona, he became professor of Physics and
Astronomy at Arizona University (1906) and later Director of the Stewart
Observatory (1918–1938). He investigated the relationship between sunspots
and climate by examining and measuring the annual growth-rings of long lived
Arizona pines and sequoias; he noted that the variations in their width corre-
spond to the specific climatic cycles, creating patterns which can be discerned
in timbers from prehistoric archaeological sites providing a time-sequence for
dating purposes. He coined the term ‘dendrochronology’ (tree-dating).

1920–1940 CE Thoralf Albert Skolem (1887–1963, Norway). Mathe-
matician. Did important work in Diophantine equations and helped to provide
the axiomatic foundation for set theory in logic. Before such subjects as model
theory, recursive function theory, and axiomatic set theory had become sep-
arate branches of mathematics, he introduced a number of the fundamental
notions that gave rise to them. Contributed also to Diophantine equations,
group theory and lattice theory. Wrote 182 scientific papers, but they re-
mained largely unread.

Skolem was born at Sandsvaer and educated at Oslo, where he became
professor (1938). His main work was in the field of mathematical logic. He
created what is now known as the Löwenheim-Skolem theorem, one conse-
quence of which is Skolem’s Paradox 462. In this work, Skolem was ahead of
his time. From 1933 he did pioneering work in metalogic and contributed a
nonstandard model for arithmetic.

1920 CE CE Quirino Majorana (1871–1957, Italy). Physicist. Proposed
a modification of Newton’s inverse-square law, including a factor of shielding.
The weak equivalence principle is violated in his model.

462 If an axiomatic system (such as Ernst Zermelo’s axiomatic set theory, which

intends to generate arithmetic, including the natural numbers, as part of set

theory) is consistent, then it must be satisfiable within a countable domain; but

Georg Cantor had shown the existence of a never-ending sequence of transfinite

powers in mathematics (that is, uncountability). Skolem resolved this paradox

by saying that there is no complete axiomatization of mathematics: certain

concept must be interpreted only relatively, i.e. they can have no ‘absolute’

meaning.
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1920–1927 CE William Draper Harkins (1873–1951, U.S.A.). Nuclear
chemist. Discovered nuclear fusion463, the fundamental process underlying
stellar luminosity and the thermonuclear bomb. Previously, in 1920, he pro-
posed (independent of simultaneous notions by Rutherford) the existence of
the neutron. He believed that the neutron could be formed from a proton
and an electron. Chadwick’s discovery of the neutron (1932) confirmed his
prediction. He also predicted the existence of deuterium, and introduced the
concept of packing fraction, a measure of energy involved in the association
of protons and neutrons within the nucleus.

Utilizing Einstein’s concept of the equivalence of mass and energy, he
demonstrated that by combining four hydrogen atoms to produce one helium
atom, a small amount of mass would be converted to energy; he correctly
theorized that this process was a source of stellar energy. Harkins made one
of the first attempts to calculate the abundance of elements in the universe.

Harkins was born in Titusville, PA. He received his Ph.D. from Stanford
University (1908) and spent most of his career at the University of Chicago.

1920–1933 CE Otto Stern (1888–1969, Germany and USA). Physicist.
Demonstrated clearly and directly the fundamental fact of the dual nature of
matter, i.e. the wave-like vs. matter property of elementary particles, thus
verifying the space-quantization theory of atoms. For that he was awarded
the Nobel Prize in Physics (1943).

Stern was born in Sohrau, Germany to Jewish parents. He studied physical
chemistry at Breslau University (Ph.D. 1912) and later held posts at the
Universities of Prague (1912), Zurich (1913), Frankfurt (1914–1921), Rostock
(1921–1923) and Hamburg (1923–1933). He worked in Prague and Zurich
with Albert Einstein. With the rise of the Nazis, he moved to the USA and
appointed Professor at the Carnegie Tech., Pittsburgh (1933–1945). Stern’s
main experimental results are:

463 Fusion takes place when light nuclei fuse to form a heavier nucleus, releasing

energy in the process. Fusion reactions are often called thermonuclear reactions

because they are endothermic and are ignited only at temperatures higher than

100 million degrees. The sun’s energy comes, essentially, from the fusion of light

hydrogen atoms to form a helium atom. The energy of the hydrogen bomb comes

from the fusion of deuterium and tritium (two heavy isotopes of hydrogen) into

helium. Efforts have been underway for decades to achieve sustained controlled

fusion in suitable reactors, a process that may become an important new source

of energy for commercial use.
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• 1920–1: by projecting a beam of neutral silver atoms through a non-
uniform magnetic field [Stern-Gerlach464 apparatus] showed that two distinct
beams could be produced465. this provided proof of the quantum theory pre-
diction that atoms possessing a magnetic moment could be oriented in two
fixed directions to the external magnetic field [atoms and molecules behave
like tiny magnets on account of the electric charges of the proton and the
electron].

• 1933: Using molecular beams he measured the magnetic moment of the
proton and deuteron and demonstrated that the proton’s magnetic moment
was 2.5 times greater than predicted by P.A.M. Dirac466.

464 Walther Gerlach (1899–1979, Germany).
465 Since Bohr arrived at the appropriate energy levels for the hydrogen atom by

postulating that angular momentum is quantized, it is reasonable to expect that

in quantum mechanics other quantities than energy might be subjected to quan-

tum conditions: A beam of neutral atoms is passed through an evacuated region

between two specially designed magnetic pole faces which set up a strongly in-

homogeneous field transverse to the beam. The field exerts a deflecting force

on the magnetic-dipole moment μ of each of the moving atoms of magnitude

Fz = μz
∂Bz
∂z

, where μz is the component of μ along the field-gradient direction.

Classically, the random orientations of the dipole moments should be expected

to render spreading of the beam i.e a continuous range of deflections on either

side of the original beam. Stern and Gerlach observed, however, a splitting of

the beam into two discrete components, indicating the existence of only two

possible values for μz. Now, according to quantum theory, spatial quantiza-

tion requires the vectors to adopt only certain angles of orientation and the

components μz must all be multiple of the Bohr magneton. Accordingly, the

beam should split into (2n + 1) different beams, each one corresponding to a

certain value of the magnetic quantum number mn, where μz = mnμB

with μB = e�

2m
. The results of the experiment show that n = 1

2
. Since the

experiment was done four years before the intrinsic spin angular momentum of

the electron was suggested, the Stern-Gerlach experiment indicates that while

the principal quantum number n fixes the energy levels in hydrogen-like atoms,

it does not determine the angular momentum of individual electrons. In due

course this result led to the recognition of the electron spin as an extra angular

momentum variable, with an associated magnetic moment.

In hindsight we say that the since the Ag atom with its ground state 2s 1
2

has a

total angular momentum J = 1
2
, the only possible orientations in the magnetic

field are M = ± 1
2
, i.e. M = + 1

2
for one beam and M = − 1

2
for the other.

466 No existing theory of the proton is able to account for this discrepancy. However,

physicists believe that it arises because the proton is, unlike the electron, not
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The Ice-Age Mystery467 (1787–1987)

“Great clocks of eternity beat ages as ours beat seconds”.

Anon

The present is the key to the past, but there have been many strange meteoro-
logical situations for which we have no present parallel to guide us. Moreover,
the meteorology of the present has yet to solve many problems of its own,
and we are even encouraged to hope that the meteorology of the past may
at times help in the study of the present. The theory of the circulation of
the earth’s atmosphere, for instance, is not yet complete; and it may be that
data on modifications of the circulation during the varied climatic history of
the globe, as deduced from past distributions of rainfall and temperature, will
provide just the additional information required for a solution.

a point particle obeying the Dirac equation, but rather a composite, made up

of 3 valence quarks, in addition to a so-called ‘sea’ of quark-antiquark pairs

and gluons, as described by modern QCD (1964). The theory, however, is able

to explain the observed ratio of the magnetic moments of the proton and the

neutron, namely μP /μN = 2.79/(−1.91) ≈ − 3
2
.

Victor Weisskopf told the following story: There was a seminar held by the

theoretical group at Göttingen in 1920, and Otto Stern gave a talk on the

measurements he was about to finish of the magnetic moment of the proton.

He explained his apparatus, but did not tell us the result. He took a piece of

paper and went to each of us, saying, “What is your prediction of the magnetic

moment of the proton?” Every theoretical physicist from Max Born down to

Victor Weisskopf said, “Well, of course the great thing about the Dirac equation

is that it predicts a magnetic moment of one Bohr magneton for a particle of

spin one-half.” Then he asked us to write down the predictions; everyone wrote

“one magneton.” Then, two months later, he came again to give a talk about

the finished experiment, which showed that the value was 2.5. He projected the

paper with our predictions on the screen. It was a sobering experience.
467 For further reading, see:

• Imbrie, J. and K.P. Imbrie, Ice Ages, Harvard University Press, 2002, 224 pp.

• Graedel, T.E. and P.J. Crutzen, Atmosphere, climate and Change, Scientific

American Library, 1995, 196 pp.
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Swiss naturalists, who lived and worked in the mountains, had long been
coming into daily contact with evidence of an extensive past glaciation. As
early as 1787, Bernard Friedrich Kuhn (1762–1825, Switzerland), a Swiss
minister, concluded that the Grindelwald glacier had been more extensive at
some time in the past. In 1794, James Hutton (1726–1797) visited the Jura
and reached the same conclusions, namely: that erratic boulders far down-
stream from current glaciers suggested the former existence of more extensive
glaciation. In 1815, Jean Pierre Perraudin (1767–1858, Switzerland), a
mountaineer and guide in the Swiss Alps, conjectured that Alpine glaciers
formerly extended well beyond their present limits. In 1829 he announced to
the Swiss Society of Natural Sciences his thesis that the glaciers of the Alps
once covered the Jura Mountains and extended northward beyond the moun-
tains into the plains. These and other early pioneers developed their ideas
completely independently, through personal observation and deduction. On
the other hand, until the 18th century, it was conventional to assume that the
observed blanket of glacial sediments had been transported and deposited by
the great flood described in the Bible!

So deeply entrenched was this accepted explanation, that none of these
men was able to make their revolutionary ideas widely known. It would
demand the combined efforts of some of the greatest scientific minds of the
age, over a period of 25 years, to overthrow the established “theory”. It is
not surprising that in such a religious age scientists and laymen alike believed
that the local boulders had been transported by unimaginably huge currents
of water and mud deriving from the biblical deluge of Noah’s time.

In 1834, Johann (Jean) von Charpentier (1786–1855, Germany), in a
talk before the Swiss Society of Natural Sciences, outlined evidence supporting
the claims that Alpine glaciers have extended to lower elevations in the past.
In 1836 he convinced Louis Agassiz (1807–1873, Switzerland and U.S.A.)
that many features in the currently unglaciated landscape were formed in
the past by glaciers. Once convinced, Agassiz assimilated the evidence, de-
veloped a broader-scale theory, and moved toward publication and vigorous
advocation of the theory.

In 1837, Agassiz announced his theory of a Great Ice Age468 at a meeting
of the aforementioned society in Neuchatel. So it was that glacial theory —
born from observations of amateur scientists, developed by Ignace Venetz
(1788–1859, Switzerland, 1829–1836), and systematized by Charpentier —
at last found a forceful spokesman in the person of Louis Agassiz. By 1840,

468 Defined as a period in the earth’s history during which ice sheets covered large

regions of land. The name Eiszeit was coined by Karl Schimper (1803–1867,

Germany), in 1836.
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Agassiz was able to convert the British geologists William Buckland (1784–
1856) and Charles Lyell (1797–1875) to his ice-age theory, and by 1860, most
European geologists were on his side.

Why did this theory, whose validity now seems self-evident, encounter so
much resistance? In part, its slow acceptance may be attributed to natural
resistance to new ideas — particularly if those ideas run counter to long-held
scientific principles or to religious convictions. The Agassiz theory challenged
both biblical dogma and scientific orthodoxy.

Once science was persuaded that an age of ice had occurred in the past,
there began a period of intensive search for clues that would enable geologists
to deduce details of what happened thousands of years earlier. It seemed that
Agassiz had chosen an opportune moment in history to propose his theory.
For in the prosperous years of Queen Victoria’s reign, the wealth generated by
the industrial revolution and the resources of a far-flung empire made possible
the organization of geological expeditions to the farthest corners of the earth.

Victorian geologists had both theoretical and practical motives for search-
ing so persistently for evidence about the ice-age world. There was, of course,
a natural desire to fill in the pieces of the puzzle with which Agassiz had pre-
sented them, but economics provided an additional motive: In every civilized
country, geological surveys were organized to assess the potential economic
value of little-known regions. (Nowhere is this better illustrated than in the
United States where, in the years following the Civil War, the West was ex-
plored and mapped by geologists on horseback. To carry on this work, the
U.S. Geological Survey was created by act of Congress in 1879.)

Victorian geologists were surprised to find that the great ice sheets in
the Northern Hemisphere had a northern, as well, as southern a boundary.
Thus, Agassiz’ idea that a single ice sheet had spread out to cover most of
the Northern Hemisphere from a center at the North Pole, was found to be
incorrect. In fact, individual ice sheets had expanded from different spreading
centers.

Calculations showed that continental ice sheets in the Northern Hemi-
sphere were about 1.5 km thick. Worldwide lowering of sea levels caused
shorelines to move downwards by about 110 m. By 1875 geologists had com-
pleted their initial survey of what the world of the last ice age was like. They
had mapped its glaciers, measured its sea level, and determined which areas
had been cold and wet, which cold and dry. They had also discovered that
the ice age was not a unique event — that, in fact, there had been a suc-
cession of ice ages, each separated by warmer, interglacial ages similar to the
present one. Armed with these observations geologists were ready to turn
their attention from facts to theories.
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Since instrumental records of climatic elements go back only a couple of
centuries (at best), how do scientists study climates and climatic changes
prior to that time?

They must reconstruct past climates from indirect evidence, i.e., they
must examine and analyze accessible records of phenomena that respond to
and reflect changing atmospheric conditions.

Today the hippopotamus is confined to the tropics of East Africa, but
100, 000 years ago herds of these giant mammals lived far to the north, in
present-day England. The plant Armeria sibirica, found today only in the
Arctic tundra of northern Canada, grew in southeastern Massachusetts 12, 000
years ago; clearly, England must have been more tropical, and Massachusetts
must have resembled Arctic Canada during those respective epochs.

The fossilized remains of animal and plant life as those just cited, provide
important clues from which inferences are made about the duration and ge-
ographic extent of climatic conditions in the geologic past. However, since
fossil evidence is meager or nonexistent in the geologic record prior to about
550 × 106 years ago (the so-called pre–Cambrian explosion of new life–forms),
the very history of our planet, from its formation 4.6 × 109 years ago until
the start of the Paleozoic era, is not sufficiently well known to determine these
most ancient climatic changes.

In addition to fossils, other types of geological evidence yield indications
of past climatic conditions: coral reef terraces in New Guinea, glacial features
in Africa, solidified sand dune outcroppings in humid regions, and countless
other examples have been made available to climatology from the science of
geology. Much of this evidence provides us with only a broad and generalized
picture of past climatic changes on the scale of thousands to millions of years.

Among the most interesting and important techniques for analyzing the
climatic history on earth on time scales of 100’s to 1000’s of years, are the
study of ocean floor sediments and oxygen isotope analysis.

Although seafloor sediments are of many types, most contain the remains
of organisms that once lived near the sea surface (the ocean-atmosphere inter-
face). When such near-surface organisms die, their shells slowly settle to the
floor of the ocean where they become part of the sedimentary record. Work-
ing on the basic assumption that changes in climate in the ocean/atmosphere
interface (i.e., temperature equilibrium between surface seawater and the air
above it) should be reflected in changes in organisms living near the surface of
the deep sea leads us to the notion that the temperature sensitivity of the shell
organisms found in the sediments is somehow connected to climatic changes
on earth.
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The second technique, oxygen isotope analysis, is based on a precise mea-
surement of the ratio between two isotopes of oxygen — 16O (which is the
most common), and the heavier 18O. Since the lighter isotope 16O evaporates
more readily from the oceans, precipitation (and hence the glacial ice that it
may form) is enriched in 16O. Of course, this leaves a greater concentration
of the heavier isotope, 18O, in the ocean water. Thus, during periods when
glaciers are extensive, the concentration of 18O in seawater increases. Con-

versely, during the warmer interglacial periods, when the amount of glacial ice
drops dramatically, the ratio {18O/16O} in ocean water also drops. As cer-
tain microorganisms secrete their shells of CaCO3 which later settle in seafloor
sedimentary layers, the prevailing {18O/16O} ratio at the epochs in which
the organisms lived and metabolized, can be inferred from the isotope ratios
of corresponding layers. Consequently, periods of glacial activity can be de-
termined from variations in {18O/16O} found in the shells of microorganisms

buried in deep sea sediments.

A second use of the {18O/16O} ratio technique is applied to the study
of cores taken from ice sheets, such as the one that covers Greenland. In this

application another cause for variation of the oxygen isotope ratio is used,
namely its temperature dependence; more 18O is evaporated from the oceans
when the temperatures are high and less is evaporated when temperatures are
low. Thus, the heavy isotope is more abundant in the precipitation of warm
eras and less abundant during colder periods. Using this principle, scientists
studying the layers of ice and snow in Greenland have been able to produce
a record of past temperature changes469.

469 Since the 1980’s several studies of ice cores drilled from thick glaciers in Green-

land and Antarctica have offered evidence of a correlation between CO2 and

global climate. Those cores showed that CO2 levels in the atmosphere were

much lower during ice ages than during comparatively warm periods such as

the present. The finding has amplified concerns regarding the allegedly ominous

implications of the large quantities of CO2 that humans continue to dump into

the air. However, in 1993, the ice core data on atmospheric CO2 have come

under assault: an alternative method of extracting air from a 35,000-year-old

ice sheet from the Greenland ice sample yielded 250 ppm of CO2, only slightly

below the modern but preindustrial levels of about 270 ppm. This indicates

that the relation between CO2 and ice ages is still far from clear.

Studies of ice cores also revealed that the temperatures recorded in the Green-

land ice cores fluctuated rapidly during the last ice age, warming and cooling

over the course of a decade or less. These short-term climate fluctuations may

result from changes in atmospheric circulation patterns, which in turn may

result from variations in the brightness of the sun.
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The theories that have been proposed to explain climatic changes are many
and varied. Four of the leading theories, unrelated to human activities, include
changes brought about by: continental drift, volcanic activity, fluctuations in
solar output and changes in the earth’s orbital elements. No single theory
explains climatic change on all time scales; A theory that explains variations
over millions of years, for example, is generally not satisfactory when dealing
with fluctuations over a span of mere hundreds of centuries.

It is now believed that during the geologic past, continental drift accounted
for many climatic changes as land masses shifted in relation to one another
and moved to different latitudinal positions. Changes in oceanic circulation
must also have occurred, altering the transport of heat and moisture, and
consequently the climate as well.

Since the rate of movement of the continent–carrying tectonic plates is
very slow (of the order of a few centimeters per year), appreciable changes in
position of the continents occur only over great spans of geological time. Thus,
climatic changes brought about by continental drift are extremely gradual and
happen on a scale of millions of years. As a result, the theory of plate tectonics
is not useful for explaining climatic variations that occur over periods less
than, say, a million years.

Some aspects of climatic variability can be explained by the volcanic dust
theory: Explosive volcanic eruptions emit great quantities of fine-grained de-
bris into the atmosphere. Some of the biggest are sufficiently powerful to inject
dust and ash into the stratosphere, where it is spread around the globe and
where it may remain for several years. The basic premise of the volcanic dust
theory is that this suspended volcanic material will filter out a portion of the
incoming solar radiation which, in turn, will lead to lower air temperatures.

For volcanic activity to have a pronounced impact, many great eruptions,
closely spaced in time, would have to occur470. (Episodes like the Krakatoa

470 About 50 to 100 major eruptions per century would be needed to maintain solar

radiation levels at about 20 percent below normal. It has been calculated that

the rate at which eruptions were occurring at the end of the last century was

probably comparable with that during the last Ice Age. For example, many of

the great volcanoes in the Andes seem to have been constructed wholly within

the past few million years, but few of them show much evidence of activity after

the end of the Ice Age — which lasted in all about a million years. Sediment

cores obtained by the Deep Sea Drilling Project (1974) revealed evidence for

a world-wide wave of volcanic activity during the period of the last Ice Age.

However, there is always the possibility that an ice age could cause volcanic

activity!

The eruption of Mt. Pinatubo in the Philippines on June 15–16, 1991 provided
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event of Aug. 27, 1883 or the Mount St. Helens eruption of May 18, 1980 —
do not count.) Since no such period of explosive volcanism is known to have
occurred in historic times, the volcanic dust theory is most often mentioned
as a possible cause for prehistoric climatic shifts, such as the Ice Ages.

Although the analysis of deep-sea sediment cores indicated that there was
a much higher rate of explosive volcanism during the past 2 million years
than during the previous 18 million years, the data is not sufficiently accurate
to deal with glacial-interglacial episodes which require alternating periods
of explosive volcanism. The variable sun theory is based on the idea that
the sun is a variable star and that its output of energy varies through time.
Unfortunately for the theory, no major variation in the total intensity of solar
radiation has yet been measured outside the atmosphere, and each ground-
based observation must be corrected for large atmospheric effects.

Nevertheless some correlation has been established between climatic
changes during the past 5000 years and a certain aspect of solar activity,
namely: sunspot cycles471. In 1890, Edward Walter Maunder (1851–1928,
England), superintendent of the Royal Greenwich Observatory in London,
after a search through old books and journals, discovered that during 1645–
1715, sunspots and other solar activity had all but vanished from the sun
(no induced aurora borealis activity and no coronal streamers). This meant
that the sun was not the regular and predictable star as had previously been
believed.

definite evidence for the cooling of the earth’s surface. The 20 × 106 tons of

sulphur oxides that were ejected into the stratosphere caused dramatic climatic

changes in the Middle East and Europe, manifesting itself through stormy win-

ter and cooler summer in 1991–1992. The Pinatubo eruption affected also the

ozone layer , through the emission of chlorine. Although volcanic eruptions tend

to cool the earth, in contrast to greenhouse gases, Pinatubo is nonetheless pro-

viding critical data for climate models that seek to predict the effect of human

induced changes.

Some mega-explosions of the past, however, dwarf the last century’s eruptions.

These biggest perturbations of climate really show what a large volcanic erup-

tion can do. Eruptions of massive flood basalts, for example, seem to have been

linked to mass extinctions of life. Huge asteroid impacts may also alter climate.
471 Sunspots — dark blemishes on the surface of the sun. Although their origin

is uncertain, sunspots have been established to be huge magnetic storms that

extend from the sun’s surface deep into the interior. Further, these spots are as-

sociated with the sun’s ejection of huge masses of particles which, upon reaching

its upper atmosphere, interact with the gases there to produce auroral displays.

Data since the early 1700’s indicates an almost regular cycle of 11 years in

annual number of sunspots.
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The above sunspot-quiescence period is now known as the ‘Maunder min-
imum’472. This minimum corresponds very closely to the coldest portion of
a 400-year interval known in climatic history as the ‘Little Ice Age’ (1450–
1850 CE). It is a well-documented cold period that saw Alpine glaciers in
Europe, Alaska and New Zealand advance farther than at any time since the
last major glaciation 15, 000 years ago473. There is a very powerful, modern
technique that sheds further light upon this subject and enables us to extend
the discussion to very ancient times.

Radioactive 14C is continually formed in the upper atmosphere through
the action of cosmic rays. When the sun is very active, its extended magnetic
fields shield the earth from cosmic rays (beyond the shielding effect of earth’s
own field), with the result that very little 14C is formed. When the sun is less
active, as during the Maunder minimum, the reverse is true. It is fortunate
that trees provide a record of the amount of 14C in the atmosphere. By
analyzing the wood in the annual growth rings of very old trees, the ratio of
14C to the common stable isotope of carbon, 12C, can be determined.

From an analysis of 14C data over the past 5000 years it is found that there
have been at least 12 solar excursions as prominent as the Maunder minimum;
A search of old records of Alpine glacial advances and retreats correlates
exactly with period of greater or lesser sunspot activity as determined from
14C data. Therefore it appears that for the past 5000 years, all climatological
curves rise and fall in response to the long-term level of solar activity.

472 In 1887, Gustav Spörer (Germany) noticed the sunspot-deficient period, and

first brought it to the attention of Maunder. In 1977, J.A. Eddy et al. (Scientific

American 236, 80–92) compared old drawings of sunspots made by Christoph

Scheiner in 1625–1626 with those made by Johannes Hevelius in 1642–1644,

and concluded from these patterns that the rotation of the sun’s equator speeded

up (completing a rotation one full day faster than it had in 1625) just before

the onset of the Maunder minimum! It is not known whether this was a cause

or an effect of the Maunder minimum.
473 Snow lay for months on the high mountains of Ethiopia (where it is now un-

known). Global climate generally was 1 ◦C cooler than now. Colonists in New

England endured winters far more severe than any today. The 17th century

Dutch grandmasters Rembrandt van Rijn, Frans Hals, and Jan Vermeer

painted winter landscapes, which feature spectacular snowdrifts, frozen canals,

and skaters everywhere. (The canals were built in the early 17th century to link

the Netherlands’ biggest cities. During many winters in those days, the canals

really were frozen and impassable, sometimes for as long as three months. To-

day, the canals of Holland rarely freeze over — yet the great painters did not

lie.) The detailed books kept by French winemakers show that the abnormally

cold period 1617–1650 were bad years for the wineries of Bordeaux.
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In addition to solar variability, terrestrial climate could be affected by
changes in earth’s circumsolar orbit. Newton (1687) worried that the behav-
ior of the solar system (a many-body problem in celestial mechanics) is inher-
ently unstable – and in order for it not to fly apart, he postulated that God
might be obliged to step in every now and then to set things right. Laplace,
however, proved (1773) in his treatise Mécanique Céleste that long-term sta-
bility of the solar system has “no need for that hypothesis”. Laplace used
perturbation theory (that he invented). It begins from planetary (planetary–
moon) orbits that are precisely Keplerian, and then worked out the (assumed
second–order) effects of perturbation – due to the gravitational effects or other
planets and moons upon the exactly calculable, 1st−order orbits. In the case
of the orbits of moons about their planets, the sun itself is viewed as one of
the perturbing bodies.

As late as 1820, William Buckland, then an Oxford Professor of Miner-
alogy and Geology, wrote:

[The objective of geology is] “to confirm the evidences of natural reli-
gion; and to show that the facts developed by it are consistent with the
accounts of the creation and deluge recorded in the Mosaic writings.”

Yet in 1840 it was understood that one cause of climatic changes could
be astronomy. So when the existence of long-term changes of climate were
discovered, it was natural to investigate whether they could be attributed to
astronomical causes. Indeed, by the 1840s, astronomers had already shown
that the orbit of the earth undergoes slow changes.

It is not the same ellipse this year that it was last year. The orbit would
be an unchanging ellipse, if the Sun were the only source of attraction474.
The main deviations come about because of the presence of the moon and
other planets. Gravitational perturbations due to these objects means that
the force on the earth is not a simple inverse square centered on the sun, and
the natural result is that the orbit is not a simple repeating ellipse.

However the effects of the planets are relatively small. Jupiter has 10−3

of the mass of the sun, and it is, on average, about 5 times further away.
Venus, although having a mass 390 times smaller than Jupiter, can come
much closer, within 0.28 AU (where the Astronomical Unit, or AU, is the
average earth-sun distance) vs. 4.2 AU for Jupiter. Since gravity varies as
l/(distance squared) and tidal gradients vary as 1/(distance cubed), the effect

474 We ignore effects due to Einsteinian GTR, which are negligible for earth, and

secular variations due to tidal forces which take billions of years to effect signif-

icant orbital changes.
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of Venus is often more important than that of Jupiter. But all these effects are

small enough that they can be treated as perturbations, small changes, to the

classical elliptical orbit. A convenient consequence of this is that the earth’s

orbit is always approximately an ellipse, and we can treat the perturbations of

the planets as extra forces that gradually alter the parameters of that ellipse.

For example, the major axis of earth’s orbit slowly precesses (rotates) relative

to the “fixed” stars. This effect is big enough that it was discovered exper-

imentally in 120 BCE by the astronomer Hipparchos, who found differences

between his own measurements and those of earlier Babylonian records.

By 1749, Alexis Claude Clairaut had shown, using Newton’s laws, that

the north pole of the earth precesses with a period of 25,800 years. So, for

example, 13,000 years from now, the North Pole of earth will not be pointing

towards the “North Star”, but will be pointing in a direction close to the star

Vega.

This happens because the Sun and Moon exert a torque on the (spin–

rotation caused) equatorial bulge of the Earth. This causes the axis of rotation

of the Earth to wobble, an effect completely analogous to the wobble of a tilted

top – spinning while supported on a table or pivot – under the torque exerted

by terrestrial gravity.

This spin precession causes a precession of the equinoxes – a gradual calen-

drical advance of the autumnal and vernal equinoxes, solstices and the seasons

in general. This also implies that the signs of the zodiac change, or “advance”.

When astrology was defined, about two thousand years ago, a person born

in January was said to be under the sign of Capricorn, since the sun was in

the constellation Capricorn at that time of year. Since then, the precession

of the axis of the earth has changed by 2000/26000 = 1/13 of a cycle; this

corresponds to a change by about one sign of the zodiac. This means that a

person who is born in January any time in the last few hundred years, was

born when the sun was actually in Sagittarius — not Capricorn. Nevertheless,

following tradition, such a person is still said to be “born under the sign of

Capricorn”. The more educated astrologers are aware of this change (and, of

course, claim that they compensate for it!).

Another consequence of the Earth’s precession, noted above, is that the

celestial location of the sun at the spring equinox also changes. It is presently

leaving the constellation Pisces and entering Aquarius. Astrologers say that

this change could have a profound effect on our lives, and it is why they talk

about the future (and sometimes the present; it depends on exactly where

you draw the constellation boundaries) as “the Age of Aquarius”.
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The astronomical theory of climate variation is based on the idea that
changes in the amount of solar energy received by the earth are caused by
quasi-periodicities in the earth’s orbital elements. These are475:

1. Variations in the shape (eccentricity) of the earth’s elliptic orbit about
the sun, through a cycle of ca 100, 000 years.

2. Changes in the season–controlling angle (obliquity) that the earth’s ellip-
tic axis of rotation makes with the plane of the ecliptic (plane of earth’s
orbit) during a cycle that averages about 41, 000 years.

3. The slow axial precession of the earth’s axis that takes place during a
cycle of ca 22, 000 years.

This theory was originated by James Croll (1864) and developed by Mi-
lankovich (1920). To establish the validity of the theory, the following ques-
tions must be addressed:

• Are the periodicities of the earth’s orbital elements significantly reflected
in the geological record?

• Is there a significant correlation between insolation curves (sunlight re-
ceived at given latitude as a function of time) and geological data?

• Can these insolation changes be correlated with climatic changes?

Although variations in the distance between the earth and sun are of minor
significance in understanding current seasonal temperature fluctuations, they
may play a very important role in producing global climatic changes on a
time scale of tens of thousands years. A difference of only 3% exists between
aphelion (∼July 4th, in the middle of Northern Hemisphere summer), and
perihelion (∼January 3rd, in the middle of Northern Hemisphere winter).

This small difference in distance amounts to about 6% in excess solar
energy. However, this is not always the case. The shape of the earth’s or-
bit changes during a cycle that astronomers say takes between 90, 000 and
100, 000 years: It stretches into a longer ellipse and returns to a more circular
shape. When the orbit is very eccentric, the amount of radiation received at
closest approach (perihelion) could be on the order of 20–30% greater than at

475 Apart from the just–discussed spin–axis precession, which shifts the seasons

through the calendar. Both this and the ellipse – axis (perihelion) precession

can vary the climate, since they both affect the synchronization of the interplay

between earth’s distance from the sun and the angle at which its rays fall.
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aphelion. This would most certainly result in a substantially different climate
from what we now have.

The theory predicts a change in obliquity (tilt of the rotation axis) that
varies between 22.1 ◦–24.5 ◦ during a cycle of 41, 000 years (current value:
23.5 ◦). The smaller the tilt, the smaller the temperature difference between
winter and summer. It is believed that a reduced seasonal contrast (warmer
winters, cooler summers) could promote the growth of ice sheets: since win-
ters could be warmer, more snow would fall because the capacity of air to
hold moisture increases with temperature. Conversely, summer temperatures
would be cooler, meaning that less snow would melt. The result could be the
growth of ice sheets.

The combined equinoctial and elliptic–axis precessions eventually resulted
(and will again in the future) in the Northern Hemisphere experiencing winter
near aphelion and summer near perihelion. Thus, seasonal contrasts will be
enhanced in the future, because winters will be colder and summers will be
warmer than at present.

Using these factors, Milankovich calculated variations in insolation and
the corresponding surface temperatures of the earth back into the past, in an
attempt to correlate these changes with the climatic fluctuations of the Ice
Ages. In explaining climatic changes that result from these orbital variations,
it should be pointed out that they cause little or no variation in the total
annual amount of solar energy reaching the ground. Instead, their impact is
felt because the same energy is redistributed in time and coordinates on the
earth’s surface, i.e., they change the degree of contrast between the seasons
and the latitudes.

Among studies that have added credibility and support to the astronomical
theory is one in which deep-sea sediments were examined (1976). Through
oxygen isotope analysis of certain climatically sensitive microorganisms, a
chronology of temperature changes going back 450, 000 years was established.
This time – scale of climatic change was then compared to astronomical cal-
culations of eccentricity, obliquity, and precession in order to determine if a
correlation did indeed exist. It was found that major variations in climate
over the past half a million years or so, were closely associated with changes
in geometry of the earth’s orbit.

Clearly, any predictions based on these results cannot account for climatic
changes over scales of tens to hundreds of years, because the cycles in the
astronomical theory are too long for this purpose. Also, prediction apply only
to the natural component of climatic change, since human influence when
and if significant was ignored. In addition, the astronomical theory does not
provide the full mechanisms via which the climate is modified by the orbital
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variables – only the insolation changes, which are assumed to trigger these

mechanisms.

If the astronomical theory does indeed explain alternating glacial-

interglacial periods, the question may arise as to why glaciers have been absent

throughout most of the earth history. The advent of plate-tectonics can sup-

ply the answer: since glaciers can form only on the continents, land masses

must exist somewhere in the higher latitudes before an ice age can com-

mence. Long-term temperature fluctuations are not great enough to create

widespread glacial conditions in the tropics. Consequently, ice ages have only

occurred when the earth’s shifting crustal plates have carried the continents

from tropical latitudes to more poleward positions.

The results of all studies indicate that the earth may have undergone 6
to 20 glaciations during the past 2 million years. A typical glaciation lasted

about 40–60 thousand years, and a typical interglacial lasted about 40, 000
years. The last ice retreat began less than 20, 000 years ago. In North Amer-

ica, the main center was near Hudson Bay. Ice piled up from 2400 to 3000
meters thick. The pressure of its weight caused the ice to flow westward and

southward. It spread over most of North America down to about the present

valleys of the Missouri and Ohio rivers. In Europe, the Scandinavian Penin-

sula was the center of glaciation, and it flowed southeast about 1300 km,

almost to Moscow. It also covered northern England, Denmark, and Ger-

many. As the glaciers retreated, the low places they had scoured out filled up

with water, forming lakes, such as the Great Lakes of North America.

During the Ice Ages Europe was for long periods extensively connected to

Africa, either across the Straits of Gibraltar or by way of the Italian peninsula

via Sicily and Malta. Likewise North America was connected to Asia via the

Bering Strait; when the icecaps pushed down from the North, they drove

the animals southward. Then, during interglacial periods, the animals could

follow the melting ice northward. The ancestors of today’s horse and camel

originated in North America, then crossed the Bering Strait millions of years

ago and spread into Asia.

Putting together all the information gathered over the last two centuries

on past climates, we have learned that changes of various durations occurred.

The planet has gone through alternating periods of cold and warm climates.

Some changes extended over millions of years, others over tens of thousands of

years; others still over one or several centuries. The causes of these variations

are diverse, and the processes that regulate them numerous. Sooner or later,

earth will undergo another cold period that may last for thousands of years,

but it is difficult to predict when.



1920 CE 3535

At present476, we have no absolute proof that human activities actually
influence our climates. The human influence on climatic processes has perhaps
been exaggerated, recent political fashions notwithstanding. Some scientists
have estimated that termites release during their respiration as much CO2

as all industrial activities combined! The human species may thus play only

476 Milankovitch concluded, somewhat prematurely, that the problem was com-

pletely solved.

But Milankovitch’s theory was abandoned when precise age estimates, made

possible by Willard Libby’s invention of radiocarbon dating, appeared to

show that the timing of the ice ages were in conflict with Milankovitch’s de-

tailed calculations. In retrospect, this was not justified. The Milankovitch

theory actually explains many of the phenomena that we now see in the data.

Do we throw out the astronomical theory of the seasons, simply because the

first day of Spring is not always Spring-like? The warm weather of Spring can

be delayed by a month, or it can come early by a month; the important fact

is that it always comes. With complex phenomena, it is sometimes too much

to demand of a theory that it predict all the details in addition to the major

behavior.

In fact, it was the observations of the regularity of the ice age cycles that led to

the revival of the insolation theory. Scientists developed and promoted the use

of isotopes to measure records of past changes in the earth. The technology for

obtaining sea floor cores rapidly improved. In 1970, it was shown for the first

time that the dominant variation in the ice ages was a repeating cycle of 100,000

years. This was a frequency that appeared in the insolation theory. The use of

geomagnetic reversals in sea floor cores allowed a vastly improved time scale.

In 1976, it was shown that the presence of both a 41,000 and 23,000 years cycle

existed in the data derived from sea floor sediments. The same frequencies were

dominant in spectral analysis of the insolation predicted by the theory. Even

if the details of the theory were wrong, the presence of the same frequencies

as those present in the orbits of the planets was a strong reason to revive the

astronomical theory.

But the growing number of problems with the insolation theory is cause for

serious concern. It may be the fact that insolation theory predicted the cor-

rect values of the frequencies that leads to its tenacity in holding the minds

of paleoclimatologists. But there are alternatives now appearing. In 1993, it

was discovered that there is another astronomical oscillation (orbital inclina-

tion) that could contribute to climate variation; it has a spectrum that is an

excellent match to the narrow 100 kyr peak. The theory based on this does not

have a causality problem. It does not predict a nonexistent 400 kyr peak, and it

accounts in a natural way (no adjustable parameters) for the shift of frequencies

that took place about one million years ago, when the dominant frequency of

ice age oscillation changed from 41 kyr to the present value of 100 kyr.
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a minor role in the history of climate. Furthermore, compared to natural
catastrophes and variations, human activities are perhaps minor: our scientific
knowledge and technological prowess do not allow us as yet to channel solar
winds, to prevent volcanic eruptions, regulate the rotation of the earth, change
the size of giant ice-caps, decimate the deserts encroaching upon our meadows,
push back the oceans drowning our coastlines, ward off endless droughts or
avert hurricanes and torrential rains.

To forecast the climates of coming centuries remains a difficult task be-
cause too many poorly known factors have to be dealt with: volcanic erup-
tions, increase of CO2 in the atmosphere, jet stream and ocean currents,
nebulousity, albedo, changes in polar ice cover, and human activities. Our
forecasts therefore remain theoretical, and our working models vague. Much
remains to be known before climatic forecasting can become an exact science.

1920–1929 CE Otto Loewi (1873–1961, Germany and USA) and Henry
Hallet Dale (1875–1968, England) independently isolated acetylcholine, the
substance released by the vagus nerve, thus providing evidence for chemi-
cal transmission of nerve impulses across the synapse477. Both focused their

477 The neuromuscular junction: Each skeleton muscle fiber is connected to a fiber

of a nerve cell. Such a nerve fiber is an extension of a motor neuron that passes
outward from the brain or spinal cord. Usually a skeleton muscle fiber contracts

only when it is stimulated by the action of a motor neuron. The site where the

nerve fiber and the muscle meet is called a neuromuscular junction. At this
junction the muscle fiber membrane is specialized to form a motor end plate.

The end of the motor nerve fiber is branched, and the ends of these branches

project into recesses (synaptic clefts) of the muscle fiber membrane. The cy-
toplasm at the ends of the nerve fibers is rich in mitochondria and contains

many tiny vesicles that store chemicals called neurotransmitters. When a nerve

impulse traveling from the brain or spinal cord reaches the end of a motor nerve
fiber, some of the vesicle release a neurotransmitter into the gap between the

nerve and the motor end plate. This action stimulates the muscle fiber to con-

tract.
The neurotransmitter is a compound called acetylcholine, the general formula

of which is
O

‖
CH3—C—O—CH2CH2—N+(CH3)3

This substance is synthesized in the cytoplasm at the distal end of the motor
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work on the physiology and pharmacology of chemicals occurring naturally in
animals.

Loewi was born in Frankfurt to a Jewish family and educated at Strasbourg
and Munich and appointed professor of pharmacology at Graz (1909–1938).
He was forced to leave Nazi Germany (1938) and became research professor
at New York University College of Medicine (1940–1961). He demonstrated
(1920) the release of stimulating and inhibitory substance (acetylcholine) from
terminal branches of nerve fibers. This discovery led to the concept of nerve
impulse transmission across junctions by means of chemical mediators or neu-
rotransmitters.

Dale was born in London and studied at Trinity College, Cambridge, quali-
fying in medicine from St. Bartholomew’s Hospital (1902). He became director
of National Institute for Medical Research, London (1928–1942). Identified
histamine (1910); Isolated acetylcholine from biological material (1914) and
later (1929) showed it to be produced at the ending of parasympathetic nerves.
Both shared the Nobel Prize for Physiology or Medicine (1936).

1920–1947 CE Emil Leon Post (1897–1954, USA). Mathematical logi-
cian. Initiated the modern metamathematical method in logic. Obtained
results similar to Gödel, Turing and Church in the 1920’s but did not pub-
lish them. Modern proof theory, and likewise the modern theory of machine

neuron and stored in its vesticles. When a nerve impulse reaches the end of the

nerve fiber (it travels at a speed of 91 m
sec

in man’s largest nerves and at a speed

of 0.5–1.8 m
sec

in the smaller fibers of the autonomic nervous system), many

of these vesicles discharge their acetylcholine into the gap between the nerve

fiber and the motor end plate. The acetylcholine diffuses rapidly across the gap

(∼ 10−3 sec), combines with certain molecules (receptors) in the muscle fiber

membrane, and thus stimulates the membrane. As a result of this stimulus, a

muscle impulse (action potential), very much like a nerve impulse, passes in all

directions over the surface of the muscle fiber membrane and deep into the fiber.

In response to the muscle impulse, the membrane becomes more permeable to

calcium ions (which are present there). This motion of Calcium ions within the

muscle membrane cause, in turn, to the muscle contraction. Due to this very

contraction, the calcium concentration is lowered, and within a fraction of a

second the muscle fiber relaxes. Meanwhile, the acetylcholine that stimulates

the muscle fiber in the first place is rapidly decomposed by the action of an

enzyme called cholinesterase, which is present at the neuromuscular junction

within the membrane of the motor end plate. This action prevents a single

nerve impulse from causing a continued stimulation of the muscle fiber. The

energy used in muscle fiber contraction comes from ATP molecules, which are

supplied by numerous mitochondria positioned within the myofibriles.
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computation, hinge on the concept of the recursive function. This important
number-theoretic concept was discovered independently by four mathemati-
cians, and one of these was Post. Subsequent work by Post was instrumental
to the further progress of the theory of recursive functions.

Post was born in Augustow, Poland to Jewish parents. He arrived in New
York City (1904), and lived there for the remainder of his life. His life was
plagued by tragic problems: he lost his left arm while still a child and was
troubled as an adult by recurring episodes of disabling mental illness.

While still an undergraduate at City College, he worked out (1917) a gen-
eralization of the differential calculus which later turned out to be of practical
importance. In his doctoral dissertation at Columbia University (1920) he
proved the consistency of the propositional calculus described in Whitehead
and Russell’s ‘Principia Mathematica’. His work marks the beginning of proof
theory. His researches while a postdoctoral fellow at Princeton (1921–1923)
anticipated later work by Gödel and Turing, but remained unpublished un-
til much later, partly because of the lack of a receptive atmosphere for such
work at the time. In 1924 Post went to Cornell. Because of recurring bouts
of his illness he resumed work as a high school teacher in New York (1929),
but in 1935 was appointed a professor of mathematics at City College NY
and remained there until his death. In 1936 he proposed what is now known
as a Post machine, a kind of automaton which predates the notion of a pro-
gram which von Neumann studied in 1946. Post showed (1947) that the word
problem for semigroups was recursive insolvable, a problem posed by Thue in
1914.

His work in computability theory includes the independent discovery of
Turing’s analysis of the computation process, various important unsolvability
results, and the first investigations into degree of unsolvability, which provide
a classification of unsolvable problems. He died quite unexpectedly while
under medical care.

1920–1951 CE James Waddell Alexander (1888–1971, USA). Mathe-
matician. Contributed to algebraic topology. Began his research career by
putting the ideas of Poincare on a more rigorous foundations. In collab-
oration with Veblen he showed (1920) that topology of manifolds could be
extended to polyhedra and that the homology of a simplicial complex is a topo-
logical invariant. Around that time he also made fundamental contributions
to the theory of algebraic surfaces and to the study of Cremona transforma-
tions.

In his work on the Jordan-Brower separation theorem he discovered his
Alexander Duality Theorem and Alexander’s lemma on the n − sphere. In
1924 he introduced the Alexander horned space. In 1928 he discovered the
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Alexander polynomial which is much used today in knot theory and opened the
field of combinatorial theory of complexes. In 1935 he discovered Cohomology
theory (independently discovered by Kolmogorov in 1936).

Alexander was born in Sea Bright, New Jersey. Educated at the univer-
sities of Princeton (B.S. 1910, M.S. 1911, Ph.D. 1915), Paris and Bologna.
He spent most of his academic career as a member of the Institute for Ad-
vanced Study in Princeton (1933–1951). He had become a millionaire through
inherited wealth and never drew a salary from the Institute.

1920–1965 CE Solomon Lefschetz (1884–1972, USA). Mathematician.
Made major contributions to the theories of algebraic topology, differen-
tial equations and the stability of nonlinear control systems. Lefschetz had
widened the use of topological methods in algebraic geometry as well as in
differential equations, and consolidated the use of algebraic methods in topol-
ogy.

Lefschetz was born in Moscow to Jewish parents. He studied engineering
in Paris but later turned to mathematics478. He took his doctorate and taught
at Kansas University, USA (1913–1925), where he soon made a reputation by
his work in algebraic topology. In 1925 he moved to Princeton where he
remained until his retirement (1953), when he became a visiting professor at
Brown University. Lefschetz was the leading topologist of his generation in the
USA and an important theorem on the existence of fixed points of mapping
bears his name.

His work during WWII roused his interest in differential equations, and
he continued to work on their qualitative theory. In his 80’s he worked on the
topology of Feynman Integrals.

1921 CE Development of the teleprinter greatly speeded the transmission
of long-distance information.

1921–1923 CE Arthur Holly Compton (1892–1962, U.S.A.). Physicist.
One of the pioneers of high-energy physics. Discovered the ‘Compton effect’
through which a high energy photon is scattered by an electron. The electron,
initially stationary, recoils with some energy, and the scattered photon, ini-
tially with energy hν0, is left with a smaller energy hν, which varies with angle
θ. The ensuing change in the photon’s wavelength is Δλ = �

m0c (1 − cos θ),

478 He had the misfortune to lose both his hands in a laboratory accident (1910).

This mishap was fortunate for mathematics for at the age of 36 Lefschetz went to

the USA and turned to mathematics. He had two artificial hands over which he

always wore shiny black gloves. First thing every morning, a graduate student

had to push a piece of chalk into his hand and remove it at the end of the day.
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where �
m0c = 0.024 Å is the electron’s Compton wavelength. This effect was

detected by Compton experimentally, using X-rays scattered from carbon with
a Bragg spectrometer (1923). The agreement between theory and experiment
indicates that the STR energy-momentum formulation is correct.

The Compton effect has also been detected with protons as the scattering
particles. The probability of occurrence of the Compton effect (including the
probability distribution of the scattering angle θ) must be calculated with
the aid of quantum mechanics, which was developed in the years immediately
after Compton’s discovery. In 1921 Compton speculated that “the electron is
spinning like a tiny gyroscope”.

During 1913–1915 Compton devised (at Princeton) an elegant method
providing a nonastronomical measurement of latitude and an additional ex-
perimental proof of the earth’s rotation479.

Compton was born at Wooster, Ohio, the son of Elias Compton, Professor
of Philosophy and Dean of the College of Wooster. He was educated at the
college graduating B.Sc. (1913) and spent three years in postgraduate study
at Princeton University; M.A (1914); Ph.D. (1916). Professor of Physics
at Washington University, St. Louis (1920); University of Chicago (1923);
Washington University (1945–1961).

He won the Nobel prize for physics in 1927.

1921–1924 CE Pavel Samuilovich Uryson (1898–1924, Russia). Math-
ematician. Creator of theories of abstract topology that influenced the sub-
sequent development of this field480. His main results are the introduction
and investigation of a class of so-called normal spaces, and metrization the-
orems, including a theorem on the existence of a topological mapping of any
normed space with a countable base into a Hilbert space. The principal tool
used in all the recent investigations of normed spaces is the classical Uryson’s
Lemma481. In his theory, Uryson presented an inductive definition of dimen-
sionality (1921–1922).

479 A.H. Compton, 1913; “A Laboratory Method of Demonstrating the Earth’s

Rotation”, Science, 37: 803–806; “A Determination of Latitude, Azimuth, and

the Length of the Day Independent of Astronomical Observations”, Phys. Rev.,

2, 5: 109–117. 1915.
480 In particular, by Andrei N. Tikhonov (1906–1993) and Juliusz P. Schauder

(1899–1943).
481 Uryson’s Lemma: Given two disjoint closed sets in a normal (T4) topological

space, there exists a continuous real-valued function that is 0 on one of the sets

and 1 on the other.
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Uryson was born in Odessa to Jewish parents. He was educated at the
University of Moscow (1915–1919) and in 1921 became an assistant professor
there. The reports he delivered at the Mathematical Society of Göttingen
in 1923 attracted the attention of Hilbert, and in the summer of 1924, while
touring Germany, Holland and France, he met L.E.J. Brouwer and Felix Haus-
dorff, who praised his works highly. Uryson drowned off the coast of Brittany
(Batz-sur-Mer , a small town on the Atlantic Ocean) at the age of 26, while
on vacation.

Interaction of Radiation with Matter (1860–1921)

One of the greatest achievements of 19th century physics was the elec-
tromagnetic theory of radiation, formulated by Maxwell in the early 1860’s.
Not only did this theory put physical optics on an entirely new basis, but it
suggested a means by which radiation can act and be acted upon by atoms,
namely, through the interactions of electric and magnetic fields with charged
particles forming part of the atomic structure. The growing body of evidence
concerning the existence of such particles led in due course to the classical
electron theory of Lorentz, in which the classical interactions of electrons
with the electromagnetic field were fully developed. This theory was able to
account for many observed phenomena like dispersion, scattering, and the
Zeeman effect.

However, a detailed theory of atomic interactions must aim to explain the
vast amount of spectroscopic data concerning spectral lines emitted by the
atoms of different elements. The work of Balmer, Rydberg482, and others
showed that hydrogen and the alkali metals emit discrete spectral lines which
form distinct series, but all attempts to account for these series by classical
methods failed. It became clear that light possesses certain properties which
are not embodied in the electromagnetic theory, despite the successes of that
theory in the realms of radio propagation and physical optics.

482 Johannes Robert Rydberg (1854–1919, Sweden). Physicist. Discovered

(1890) the Rydberg constant, a spectral parameter that appears in Bohr’s atomic

theory (1913).
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The new properties of radiation were realized in a different context by

Planck in 1900. His studies of the continuous “blackbody” radiation con-

vinced him that the equipartition theorem of classical statistical mechanics

cannot apply to an assembly of electromagnetic waves in an enclosure, and he

boldly introduced the quantum hypothesis, according to which radiant energy

is emitted and absorbed only in discrete amounts. The provisional quantum

theory accounted for the blackbody energy distribution, and was successfully

applied by Einstein to the photoelectric effect in metals and the specific

heats of solids. Not only did the new theory explain thermal phenomena

in which equipartition breaks down, but it also provided the essential clue

toward solving the problem of the interaction between atoms and radiation.

The discovery of X-rays by Röntgen in 1895 stimulated research in many

fields, but the electromagnetic character of the rays was not established for

several years. Indeed, the development of quantum theory raised profound

questions concerning the nature of radiation in general.

As early as 1910 W.H. Bragg pointed out that X-rays probably partake

in the nature of both electromagnetic waves and corpuscles possessing defi-

nite energy and momentum. On the one hand, experiments on polarization

and diffraction phenomena demonstrated the wavelike behavior of X-rays; on

the other hand, studies of the photoelectric and Compton effects revealed

properties similar to those of particles. The introduction of quantum theory

therefore meant that models based on Maxwell’s theory are incomplete in the

realm of optics — a fully developed theory must include within its formalism

both the wave and corpuscular aspects of radiation.

1921–1926 CE Max Born (1882–1970, Germany). Distinguished physi-
cist. Gave the probabilistic and statistical interpretation to quantum (wave,
matrix ) mechanics. He was first to recognize that the square of the modulus
of the complex Schrödinger wave-function can be interpreted as a statistical
distribution which describes the behavior of a single subatomic particle in
space and time.

The time-independent form of Schrödinger’s wave equation in three di-
mensions is

∇2ψ +
8π2m

h2
[E − U(r)] ψ = 0.
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Here h is Planck’s constant, m is the mass of the particle, E is the energy
level (discrete or continuous), U(r) the potential energy and ψ the wave-
function483. Although this formalism is successful in determining energy lev-
els in atomic systems, there remains the question of the significance to be
attached to the function ψ(r). For bound states, or for free (near-continuum)
states in a large but finite box, a physically meaningful solution is achieved
only when ψ(r) is square-integrable over the entire space. Each such solution
is a state function describing the state of the atomic system. This complex
function – also known as a probability amplitude – is related to the probability
density for a particle being detected at any chosen point, when the system is
in the appropriate state.

Born’s interpretation of the state function is that the square of its modulus
at any point,

|ψ(r)|2 = ψ∗(r)ψ(r) [∗ = complex conjugate],

is the probability density function, that is, the probability per unit volume
of the particle being at the point r. This principle enables us to impose a
normalization condition for the particle, since the total probability is unity if
we integrate over all space

∫

ψ∗(r)ψ(r)d3r = 1.

This interpretation extends to a time-dependent probability distribution, over
space and internal degrees of freedom, for a particle (or system of particles) in
a non-stationary state, that is, a superposition of different eigenvectors. The
spatial Fourier transform of the wave function Ψ(r, t) is yet another kind of
probability amplitude; its modulus-squared is the probability density function
for values of the particle’s momentum vector, when measured at time t.

Born’s interpretation served to emphasize that a particle cannot in gen-
eral be precisely located, especially when it is in a well-defined energy state
(Heisenberg’s uncertainty principle). The motion of particles follows prob-
ability laws, but probability amplitudes themselves propagate in conformity

483 A value of E for which mathematically well-behaved solutions ψ exist, is an

eigenvalue of the Hamiltonian operator H = − �2

2m
∇2 + U (� = h/2π being the

reduced Planck constant), and ψ is then the corresponding eigenvector (in the

sense of functional vector-spaces) or eigenfunction for that energy level. ψ may

be an undulatory wave spread over all space (for E in the continuum — e.g.

for an ionized electron), or a localized wave (‘bound state’ — e.g. an electron

occupying an orbital in an atom).

For bound states, E takes discrete values and Emin corresponds to the ‘ground

state’; for continuum states, E ranges freely over some interval Ec < E < ∞.
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with the laws of causality. When the particle is free (a ‘continuum state’), an
initially-localized state function spreads with time over the entire accessible
volume. The degree of spread depends, in general, on the mass of the particle,
and is greatest for small values of the mass, since the particle’s (de Broglie)
wavelength is inversely proportional to the momentum484.

One result of this general principle is that electrons cannot be completely
localized by any method inside an atom without completely destroying its
original energy state (orbital). On the other hand, atoms themselves are much
more massive than electrons and can be located with fair precision in most
physical situations, for example, by X-rays in crystal analysis, or individually
using tunneling microscopes. Macroscopic or even mesoscopic or nanoscopic
objects (DNA nucleotides, Buckeyballs, quantum wires, protein molecules,
viruses, cells, magnetic domains, colloidal particles, etc.) possess very short
de Broglie wavelengths, so a classical description of the motion of such objects
is accurate enough for all ordinary purposes.

Born arrived at his interpretation by analogy with optics, where the cal-
culated intensity of the light at a given place is taken as a measure of the
probability of finding a photon at that place. He suggested a similar probabil-
ity interpretation of matter waves.

He also introduced a useful technique, known as the Born approxima-
tion485, for solving scattering problems in quantum mechanics by perturba-
tions.

Throughout his life Born was a quick and prolific writer, publishing more
than 300 scientific papers, about 31 books, as well as numerous articles on
nonscientific topics. He had an encyclopedic knowledge of physics and what-
ever problem one brought to him, he was able to offer a useful insight or
suggest a pertinent reference.

Born was born in Breslau486, Germany, where his father Gustav Jacob
Born was a professor of anatomy.

484 More generally, one may superpose many states (continuum and/or bound) to

form localized wave packets; the higher the mass, the slower the spread of the

packet, and the more accurate it becomes to treat the wave packet as a classical

particle.
485 Although Born wrote the basic paper on the subject, he was rather irritated

when the Born approximation was mentioned. He once said to his collaborator

Emil Wolf: “I developed in that paper the whole perturbation expansion for

the scattered field, valid for all orders, yet I am only given credit for the first

term in the series”!
486 Wroclaw (Breslau); a city on the Oder River. Founded around 1000 CE. Early

in the 11th century it was made the seat of a bishop and its cathedral dates
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He became professor of theoretical physics at Göttingen in 1921. Although
he had dissociated himself publicly from the Jewish community (baptized,
1913), he was not spared by the Nazis and was ejected from Göttingen in
1933 because of his Jewish origin. He settled in England, lecturing on applied
mathematics at Edinburgh University487 (1936–1953). On his retirement in
1953, he returned to Göttingen and remained there. He shared the Nobel
prize for physics in 1954.

Unlike Einstein, Born was not proud of his Jewish heritage and did not
draw the necessary conclusions from the Nazi holocaust. The establishment
of the state of Israel (1948) meant nothing to him, and he never bothered to
visit it. He rushed, however, back to Germany at the first opportunity and
died in his ‘Fatherland’.

1921–1933 CE Alfred (Habdank Skarbek) Korzybski (1879–1950,
Poland and USA). Scholar and philosopher of language. Originator of a sys-
tem of linguistic philosophy and expression based on man’s “time-binding
capacity” to transmit ideas from generation to generation. Highly eclectic
and in some respects eccentric thinker who nevertheless had considerable in-
fluence. He linked a wide range of social, psychological, intellectual and even

from the 1100’s. After having formed part of Poland, it became the capital of an

independent duchy (1163). Destroyed by the Mongols (1241) but soon recovered

its former prosperity and received a large influx of Germans. When Henry VI,

the last duke of Breslau, died (1335), it was bought by John, king of Bohemia,

whose successors retained it until 1460. Austria took over the city (1526) and

Prussia seized it in 1741. It was, however recovered by the Austrians (1757)

but regained by Frederick the Great in the same year. The French took over

(1807) after the battle of Jena, and again (1813) after the battle of Bautzen.

It became Prussian through 1814–1870 and then German (1871). Under the

new German Empire it turned into one of the most important cultural centers,

having some of the best academic institutions in Germany [p. 630,000 (1938)].

The city was almost totally destroyed under the Red Army siege in 1945. It

then came under Polish rule. Jews lived in Wroclaw since the end of the 12th

century. The entire community was eliminated (1453) by the bloody inquisitor

Giovanni di Capistrano, and was Bereft of Jews for the next 200 years. In

the 19th century it began to absorb Jews from both Poland and Prussia, but

the entire Jewish community was destroyed in the Holocaust [p. 4400 (1817);

20,300 (1900); 20,200 (1933); 0 (1940); 8000 (1962)]. Its community furnished

Germany with many distinguished scientists.
487 One of his best students there was Klaus Fuchs. He and his father Emil, a

protestant pastor, were German refugees because they were avowed communists.

Fuchs later transmitted secrets of the atom bomb to the Soviets.
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medical ills to linguistic causes and emphasized the importance of language
in the transmission of knowledge.

Author of Manhood of Humanity (1921), Science and Sanity (1933). Ko-
rzybski proposed a system called “general semantics”488, whose basic postu-
lates are:

• words are not to be confused with things,

• words can never say all about anything,

• words about words about words, and so on, can go on indefinitely.

He thought that his philosophy could significantly improve the quality of
life of the individual who freed himself from the confusions engendered by
language.

Korzybski was born in Warsaw. Educated as an engineer, he served in
Russian military intelligence in WWI. Sent to the USA in 1915 on a Russian
military mission, he remained there, becoming naturalized American citizen
in 1940.

1921–1942 CE Ronald Aylmer Fisher (1890–1962, England). Statisti-
cian and geneticist. Prominent contributor to the development of both applied
and mathematical statistics, especially in the theory of statistical inference,
test of significance, estimation and experimental design.

His main contributions:

• Modernized Darwin’s theory of evolution through the development of
quantitative arguments in support of the theory of natural selection489 (1930–
1937). In his book “The Genetical Theory of Natural Selection” (1930) he ap-
plied his new statistical techniques to genetics in order to show that Mendel’s

488 Semantics: the study of the conditions under which signs, symbols and words

are meaningful. It is also the study of how human behavior is affected by words

(spoken to others or to oneself in thought), In philology (the scientific study

of languages), semantics is concerned with the historical study of changes in

the meaning of words. Semantics deals with the relations between words and

the things talked about and with meanings as a factor in human relations.

Humans are the only creatures that talk themselves into trouble, and semantics

is concerned with how to avoid doing so.
489 Fisher’s Equation: Consider a population of individuals carrying an advanta-

geous allele (call it a) of some gene and migrating randomly into a region in
which only the allele A is initially present. If p is the frequency of a in the

population and q = 1 − p the frequency of A, it can be shown that under the

assumption of Hardy-Weinberg genetics, the rate of change of the frequency p
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discoveries support Darwin’s theory. He thus secured the key biological con-
cept of genetic change by natural selection.

• Introduced the concept of likelihood (1921). The likelihood of a para-
meter involves a function usually having a single maximum value, which he
called the maximum likelihood.

• Gave a new definition of statistics; It’s purpose was the reduction of data
and he identified three fundamental problems:

(i) specification of the kind of population that the data came from;

(ii) estimation;

(iii) distribution.

Developed methods suitable for small samples (like those of Gosset), dis-
covered the precise distributions of many sample statistics and invented the
analysis of variance.

• Evolved statistical rules for decision making that are now used univer-
sally, and many other methods that have since been extended to virtually
every academic field to which statistical analysis can be applied.

at a given location is governed by the equation

∂p

∂t
= D

∂2p

∂x2
+ αp(1 − p),

where α is a constant coefficient that represents the intensity of selection. His-

torically, this model elicited considerable interest and was thoroughly investi-
gated. The equation has a variety of solutions depending on other constraints

(such as boundary conditions). Among these are traveling waves solutions on

an infinite domain. Indeed, putting z = x − V t, p(x, t) = P (z), one obtains
the second-order ODE

V
dP

dz
= D

d2P

dz2
+ αP (1 − P ).

It can be converted into a non-linear system of first order ODEs:

dP

dz
= −S;

dS

dz
=

α

D
P (1 − P ) − V

D
S.

Kolmogorov (1937) has shown that if suitable initial conditions are assumed,

the solution of the Fisher Equation would evolve into a traveling wave that

propagates at the minimal speed Vmin = 2
√

αD.
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• Contributed to the contemporary understanding of genetic dominance

Fisher was born in London, educated at Harrow and graduated in mathe-
matics at Cambridge. In 1919 he became a statistician at the Rothamsted
Agricultural Research Institute. There he developed his techniques for the
design and analysis of experiments which he expanded in Statistical Methods
for Research Workers (1925). He also studied the genetics of human groups,
elucidating the Rhesus factor. He became professor of Eugenics at University
College London (1933–1943) and Professor of Genetics at Cambridge (1943–
1957).

1921–1944 CE Emil Artin (1898–1962, Germany and U.S.A.). Mathe-
matician. Played a major role in the development of the class field theory,
abstract algebra and hypercomplex numbers (noncommutative rings). Ex-
panded the theory of algebras of associative rings (Artin rings), and the the-
ory of braids. He also made contributions to the theory of the Zeta function,
algebraic number theory (Artin’s conjecture490) and Dirichlet series.

Artin was born in Vienna, a son of an art dealer and an opera singer.
He grew up in Bohemia and held professorial positions at the Universities of
Leipzig and Hamburg (1923–1937). In 1937 he emigrated to the United States
and became a professor of mathematics at Princeton University (1946–1958).
He returned to Hamburg in 1958.

1921–1947 CE Ludwig Josef Wittgenstein491 (1889–1951, Austria and
England). A thinker interested in the limits of meaning, language and
thought, whose philosophical perspectives differ radically from that of profes-
sional philosophers of the 20th century. Had considerable influence on linguis-
tic philosophy and the philosophy of mathematics, through which he inspired

490 Artin (1927) conjectured that if n is not (−1) and not a square, then the set

S(n) of all primes for which n is a primitive root, must be infinite.

Artin further conjectured that if n is not an rth power for any r > 1, then,
independently of the choice of n

∞∏

k=1

[

1 − 1

pk(pk − 1)

]

= 0.373 955 813 6 · · · = Artin’s Constant,

where the product is restricted to values of k such that pk are members of

the set S(n).
491 For further reading, see:

• Monk, Ray, Ludwig Wittgenstein, Penguin Books, 1990, 654 pp.
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other thinkers like Bertrand Russell, Alan Turing, Moritz Schlick and
Alfred Whitehead.

Wittgenstein’s philosophy of mathematics is not a contribution to the
debate on the foundations of the subject that was fought during the first
half of the 20th century by the opposing camps of logicists (led by Frege and
Russell), formalists (led by Hilbert) and intuitionists (led by Brouwer and
Weyl). It is, instead, an attempt to undermine the whole basis of this debate
— to undermine the idea that mathematics needs foundations.

All the branches of mathematics that were inspired by this search for
‘foundations’ — Set Theory, Proof Theory, Mathematical Logic, Recursive
Function Theory , etc. — he regarded as based on philosophical confusion492.

In his book Tractatus Logico – Philosophicus (1921) he offered a gen-
eral means of removing philosophical difficulties by investigating the logical
structure of language. He developed the view that all truths of logic are tau-
tological, claiming that the inability to see through the logic of language is the
cause of many apparently insoluble problems. He set up a system of linguistic
analysis by which any statement must satisfy certain logical conditions before
being admitted as proper philosophical statement.

Many Western philosophers considered Tractatus their ‘bible’ and much of
American and British philosophy in our times has been affected in one way or
another by Wittgenstein philosophy of language. It consists of remarks on the

492 Hilbert once said: “No one is going to turn us out of the paradise which Cantor

has created”.

Wittgenstein told his class (1939): “I would try to show you that it is not a

paradise — so that you’ll leave of your own accord”.

Indeed, Wittgenstein’s quixotic assault on the status of pure mathematics

reached a peak during the academic year 1932–33, at Cambridge. In his lecture

“Philosophy for Mathematicians” he would read out extracts from Hardy’s

Pure Mathematics and use them to illustrate the philosophical fog that he be-

lieved surrounded the whole discipline of pure mathematics. Since the time

of Plato, philosophers have traditionally been divided between those who say

that mathematical statements are true about the physical world and those who

say that they are true of the mathematical world — Plato’s eternal world of

ideas or forms. To this division Kant added a third view, which is that math-

ematical statements are true manifestation of the ‘form of our intuition’ and

this was roughly the view of Brouwer and the intuitionist school. But for

Wittgenstein, the whole idea that mathematics is concerned with the discovery

of truths is a mistake that has arisen with the growth of pure mathematics and

the separation of mathematics from physical science (in the words of Willard

Gibbs — “Mathematics is a language”).
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essence of language, the nature of logic, mathematics, science and philosophy,
and ending with comments on ethics, religion and mysticism.

There are many reasons for the wide acceptance of the Tractatus. Chief
among them are:

• The failure of Einstein’s attempts to develop an all-embracing unified
field-theory and his futile efforts to crush the subjectivistic ‘psychological
ghosts’ introduced into the scientific interpretation of quantum theory,
marked the withdrawal of philosophy from physics and physics from
philosophy.

• The collapse of the Austrian Empire and consequently Vienna’s loss
of political and intellectual leadership, caused members of the ‘Vienna
Circle’ to direct their mind upon themselves rather than face external
events.

• The rise of Soviet Communism and dialectical materialism.

The outcome was inevitable: Western thought declined, philosophy was
cornered, scientism flourished, and ideology ended up in a dead-end street.
The ‘inward trend’ of the Tractatus seemed the adequate answer.

Wittgenstein was a descendant of a wealthy Jewish family in Vienna.
His parental great grandfather, Moses Maier, worked as a land-agent for
the princely family of Wittgenstein and after the Napoleonic decree of 1808
(which demanded that Jews adopt a surname), took the name of his em-
ployers. Ludwig’s grandfather, Hermann, and his family converted to Protes-
tantism (1838), moved to Vienna and were assimilated into the local German
elité, shunning any contact with their former fatesakes.

Wittgenstein’s father, Karl, became one of the most astute industrialists
in the Austro-Hungarian Empire. Because of the Catholic denomination of
his half-Jewish spouse, all his offsprings were baptized into the Catholic faith
and raised as accepted and proud members of the Austria high-bourgeoisie.
The Wittgensteins were thus at the center of Vienneese Germanic cultural life
for three generations493. [Johannes Brahms gave piano lessons to Ludwig’s
aunts and Gustav Klimt was commissioned to paint Ludwig’s sister portrait

493 After the Anschluss of Austria by the Nazis (1938), the Wittgensteins discov-

ered, to their horror, that according to the Nuremburg Laws they still count as

Jews, unless they produced evidence for a second Aryan grandparent! So, some

fled to Switzerland, some gave a sworn affidavit that Hermann was known as an

antisemite who, in adult life, avoided association with the Jewish community

and did not allow his offsprings to marry Jews (the Nazis saw some advantage

to themselves in accepting it), while others (like Ludwig’s sisters) earned their
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(1905); Mahler was a frequent visitor to the musical evening at Ludwig’s
childhood home and young Casals played there.]

The fin de siécle Vienna of Ludwig’s childhood was characterized by a
‘nervous splendor’: beneath the all-pervading atmosphere of culture and hu-
manity, lay doubt, tension and conflict. Its tensions prefigured those that have
dominated the history of Europe during the 20th century. From these tensions
sprang many of the intellectual and cultural movements that have shaped that
history: It was the birthplace of both Zionism and Nazism, the place where
Freud developed psychoanalysis, where Klimt, Schiele and Kokoschka inau-
gurated the Jugendstil movement in art, where Schönberg developed atonal
music and Adolf Loos (1870–1933), the pioneer of modern architecture, intro-
duced the starkly functional, unadorned style that characterized the buildings
of the modern age.

Wittgenstein came to England in 1911, studying aeronautical engineering
until he moved to Cambridge to pursue a philosophical interest in mathemat-
ics. Frege, to whom he had written, advised him to seek out Bertrand Russell
and the contact was fruitful.

Wittgenstein served in WWI in the Austrian army. He was made an of-
ficer, involved in heavy fighting during 1916–1918 and taken prisoner on the
Italian front (1918); he thus experienced the dehumanizing results of modern,
mechanized combat, the ‘grand strategies’ of Total War which engineered the
slaughter of millions of men in conditions of unimaginable horror.

In 1919 he dedicated himself to a life of simple asceticism (perhaps under
the influence of the religious writings of Leo Tolstoy). He gave his money away
to his relations and abandoned philosophy. In the following years he worked
as an elementary school teacher in the Austrian countryside (until that ended
in disaster), an amateur architect and a convent-gardener.

He returned to Cambridge (1929), where he was the center of a small,
intensely loyal cult494. In 1939 he succeeded G.E. Moore as professor of phi-

Aryan papers by handing over all their foreign currency to the Third Reich. Sic

transit the Wittgenstein’s wealth.
494 “God has arrived. I met him on the 5:15 train”. Thus was Wittgenstein’s re-

turn to Cambridge announced by one of his disciples.

Soon after his arrival, he was hurriedly awarded a Ph.D. for his thesis, the Trac-

tatus, a work that had been in print for seven years and was already regarded

by many as a philosophical classic. The examiners were Moore and Russell and

the exam was a farce: as Russell walked into the examination room with Moore,

he smiled and said: “I have never known anything so absurd in my life”. The

examination began with a chat between old friends. Then Russell, relishing the

absurdity of the situation, said to Moore: “Go on, you’ve got to ask him some
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losophy and logic, but he was absent on menial war work soon afterwards
and resigned altogether in 1947. Four years later he died from cancer of the
prostate after a period of severe illness. For a long time he had meditated sui-
cide495 fearing that he shared the pronounced strain of insanity in his family
(all his three brothers killed themselves).

Wittgenstein was an imposing figure with a fearless independent spirit.
People tended to be fascinated or repelled by him, as he was very direct in his
approach and impatient of any pretentiousness. The magic of his personality
and style was infectious and pupils tended to imitate him. He was a deeply
serious man and put his soul into everything he did. He was not learned or
widely read, but would only read what he could wholeheartedly assimilate.
He was not religious in the conventional sense, but had a deep respect to the
Bible and some religious authors (e.g. Kierkegaard).

He was an engineer by training and his knowledge was intimately con-
nected with doing. Music was central to his life, and he had no interest in
modern music: the music of Bach, Beethoven, Schubert and Schumann
were amongst his favorites. He intensely disliked academic life, avoided any
publicity and regarded the Press as one of the disasters of modern life. Mod-
ern times to him were a dark age: the idols of progress and the belief that
technology will solve all our problems, he felt were profoundly wrong. He
believed that only a change in our way of life would heal the sickness of our
age — and this is only to happen when disaster confronts us.

questions — you’re the professor”. There followed a short discussion in which

Russell advanced his view that Wittgenstein was inconsistent in claiming to

have expressed unassailable truths by means of meaningless propositions. He

was, of course, unable to convince Wittgenstein, who brought the proceeding

to an end by clapping each of his examiners on the shoulder and remarking

consolingly: “Don’t worry, I know you’ll never understand it”.
495 Some of his biographers believe that his homosexuality provided a key to his

tormented personality, and even his philosophy.
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Worldview XXXVII: Wittgenstein

∗ ∗∗

“We could present spatially an atomic fact which contradicted the laws of
physics, but not which contradicted the laws of geometry.”

∗ ∗∗

“Whereof one cannot speak, thereof one must be silent.”

∗ ∗∗

“In order to draw a limit to thinking, we should have to think both sides of
the limit.”

∗ ∗∗

“Is logic the foundation of mathematics? In my view mathematical logic is
simply part of mathematics. Russell’s calculus is not fundamental; it is just
another calculus. There is nothing wrong with a science before the foundations
are laid.”

∗ ∗∗

“The theory he496has constructed, is not metamathematics, but mathematics.
It is another calculus, just like any other one. It offers a series of rules and
proofs, when what is needed is a clear view. A proof cannot dispel the fog. If
I am unclear about the nature of mathematics, no proof can help me and the
question about its consistency cannot arise at all.”

496 Hilbert (1904) endeavored to construct a formalist approach to the foundation

of logic and arithmetic. It was a ‘meta-theory’ of mathematics, seeking to lay

a provably consistent foundation for arithmetic.
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∗ ∗∗

“The sole remaining task of philosophy is the critique of language.”

∗ ∗∗

“To pray is to think about the meaning of life. To believe in God means to
see that life has a meaning; The meaning of life, i.e. the meaning of the world,
we can call God.”

∗ ∗∗

“I am my world.”

∗ ∗∗

“Don’t try to improve the world. Just improve yourself; that is the only thing
you can do to better the world.”

∗ ∗∗

“Philosophy is not a theory but an activity; the purpose of philosophy is
the logical clarification of thoughts; a philosophical work consists mainly of
elucidations; philosophy should take thoughts that are otherwise turbid and
blurred, so to speak, and make them clear and sharp.”

∗ ∗∗

“I never use notes – thoughts become stale that way.”

∗ ∗∗

“I strongly advise you against becoming academic philosophers. The tempta-
tion to fake thinking amongst them is very great.”

∗ ∗∗
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“Philosophy is a battle against bewitchment of our intelligence by means of
language.”

∗ ∗∗

“There is no compulsion making one thing happen because another has hap-
pened. The only necessity that exists is logical necessity. The whole modern
conception of the world is founded on the illusion that the so-called laws of
nature are the explanations of natural phenomena.”

∗ ∗∗

“I should not like my writing to spare other people the trouble of thinking.
But, if possible, to stimulate someone to thoughts of his own.”

∗ ∗∗

“The riddle does not exist. If a question can be put at all, then it can also be
answered.”

∗ ∗∗

“Mathematics is a logical method... Mathematical propositions express no
thoughts. In life it is never a mathematical proposition which we need, but
we use the mathematical propositions only in order to infer from propositions
which do not belong to mathematics to others which equally do not belong
to mathematics.”
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1921–1948 CE Norbert Wiener497 (1894–1964, U.S.A.). Outstanding
mathematician and logician. Invented the science of cybernetics. He opened
up to mathematical analysis many practical areas in physics and engineering
which are basically statistical in nature. Wiener’s work led to the treatment,
solution and interpretation of many physical problems, as well as to the de-
velopment of computer and communication equipment.

Wiener had a major influence on advances in radar, high-speed electronic
computers, control theory, and quantum theory. He contributed in a most
significant way to the mathematical analysis of the theory of feedback and
automated processes, set theory, group theory, probability and mathematical
logic.

Wiener was born in Columbia, MO. His father, Leo Wiener, was a historian
of Yiddish culture, who later became a professor of Slavic languages and
literature. He made incessant intellectual demands on his son (and did not
reveal to him that they were Jews — a fact discovered by Norbert only when
he was in his teens).

Wiener was a child prodigy. He could read and write at the age of 3 and
read scientific books at 4. He entered Tufts University at 11, and obtained
his Ph.D. from Harvard at 18. He then went to Europe and was strongly in-
fluenced by Bertrand Russell, G.H. Hardy and D. Hilbert, under whom
he studied mathematical logic and pure mathematics.

For five years (1914–1919) he tried various occupations in search of his self
realization. Finally, in 1919, he was hired as an instructor by the mathemat-
ics department at the Massachusetts Institute of Technology (MIT). Wiener
remained at MIT until his retirement in 1960.

His main work started in the early twenties, on the subject of linear spaces
and his development of the theory of Banach spaces. In 1930 he published a
paper in Acta Mathematica on “Generalized harmonic analysis”498, in which
he generalized the theory of the Fourier integral to functions whose average

497 For further reading, see:

• Wiener, Norbert, The Fourier Integral, Dover, 1958, 201 pp.

• Wiener, Norbert, Time Series, M.I.T. Press, 1964, 163 pp.

498 From about 1900 to 1930, Heaviside’s methods dominated the whole of com-

munication engineering, and their rigorous mathematical justification was con-

sidered a moot question. Toward the end of this period, rigorous mathematical

justifications of the formal Heaviside calculus were found, and with this it came

to be appreciated that Heaviside’s work belonged together with the theory of

the Laplace and Fourier integrals.
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power is finite. He defined the autocorrelation, cross correlations, and power
spectral density functions and established relations between them (Wiener-
Khinchin theorem).

He demonstrated convincingly for the first time that the Fourier integral
could be used as a link between two distinct branches of mathematics — sta-
tistics and analysis. Through 1921–1931, Wiener did highly innovative work
on stochastic processes, in particular on the theory of the Brownian motion.
During WWII Wiener worked on gunfire control (the problem of pointing a
gun at a moving target). The ideas that evolved led to the theory of predic-
tion of stationary time-series. There he introduced certain statistical methods
into control and communication engineering, which led him eventually to the
formulation of his concept of cybernetics [a word coined from the Greek work
for “Navigator”, meaning the study of control. The word is etymologically
related to the English “govern” and also appears in Hebrew in the connotation
of a ship captain].

In his book Cybernetics (1948), Wiener opened a new branch of science
that deals with control mechanisms and the transmission of information.
Wiener noted that the means for internal control and communication in an
animal, such as its nervous system, were similar to those in a machine. He also
realized that biologists who studied animals, and engineers who designed au-
tomatic control equipment, did not usually know each other’s fields of work.
He proposed that control and communication in both fields be studied to-
gether as the science of cybernetics. An important part of cybernetics is the
study of feedback , where information concerning the error in the operation of
a system is fed back to the controlling device, which then acts to correct the
error.

Wiener lived up to the stereotype of the absentminded professor. He was
worried about the quality of his work and his standing as a mathematician.
He was a vegetarian and something of a puritan. He was also an extremely
generous man, with a strong sense of social and moral responsibility.

He will be remembered for his marvelously versatile contributions, pro-
foundly original, ranging from pure to applied mathematics, and penetrating
boldly into engineering and biological sciences.
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Worldview XXXVIII: Norbert Wiener

∗ ∗∗

“A professor is one who can speak on any subject – for precisely fifty minutes.”

∗ ∗∗

“The modern physicist is a quantum theorist on Monday, Wednesday, and

Friday and a student of gravitational relativity theory on Tuesday, Thursday,

and Saturday. On Sunday he is neither, but is praying to his God that some-

one, preferably himself, will find the reconciliation between the two views.”

∗ ∗∗

“Progress imposes not only new possibilities for the future but new restric-

tions.”

∗ ∗∗

“We are raising a generation of young men who will not look at any scientific

project which does not have millions of dollars invested in it... We are for

the first time finding a scientific career well paid and attractive to a large

number of our best young go-getters. The trouble is that scientific work

of the first quality is seldom done by go-getters, and that the dilution of the

intellectual milieu makes it progressively harder for the individual worker with

any ideas to get a hearing... The degradation of a position of the scientist as

an independent worker and thinker to that of a morally irresponsible stooge

in a science-factory has proceeded even more rapidly and devastatingly than

I had expected.”
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The Wiener Process (1922–1930)

Whereas from a physical viewpoint Einstein’s calculations and Perrin’s
experiments (1909) had explained Brownian motion quite adequately, from a
mathematical viewpoint the subject was still tantalizingly confused. The heart
of the difficulty was to make precise mathematical sense out of the notion of a
particle moving “at random”. Everyone knows what it means to pick between
heads and tails at random; it means each alternative has a probability of 1

2
(fair toss). The Brownian particle follows a path that is in some sense chosen
at random from among all possible paths.

The set of all possible paths, however, is a very large and complicated one,
and it was one of the Wiener’s major achievements in pure mathematics to
show in what sense one can speak about choosing an element from this set at
random. He studied the phenomenon of Brownian motion from a new point
of view (1922–1930), expanding the concept of probability further than his
predecessors, thereby bringing the term ‘Brownian motion’ into the language
of mathematics.

An intuitive notion of what is involved can be obtained by considering the
path traced out in a finite time period (say, an hour) by a one-dimensional
motion, which changes direction only at the instances t = one second, t = two
seconds and so on. In this case there are only a finite number of possible paths
(23600, to be exact), and one could say that the Brownian particle chooses one
path at random in the sense each path has a probability of 2−3600.

In the Wiener process, the distances traveled are distributed according to
a Gaussian curve, just as they are in Einstein’s physical model of Brownian
motion. Moreover, Wiener proved that almost certainly (with a probability
1) the path is continuous but nowhere smooth.

When a series of discrete events is taking place at random times [e.g. cos-
mic rays striking a detector or raindrops falling on a demarked area of ground],
the probability that the time interval (between two consecutive events or be-
tween a fiducial time and a given event) will fall within the range dt centered
around t is ρ(t) dt, where ρ(t) is the corresponding probability distribu-
tion. We write the probability distribution of x as ρ(x) if ρ(x) dx is the
probability that the variable lies in the range dx about x. In two variables,
the probability distribution of x and y is ρ(x, y), which means that the
probability of finding the variables x and y in the region A of the xy plane

is given by
∫

A
ρ(x, y) dx dy.
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Thus Wiener asked:

“What is the probability of the Brownian particle following a certain path in
space?” Since in one dimension, the time history of the particle is represented
by a continuous function x(t), the question is equivalent to: “What is the
probability of obtaining a particular time history x(t)?” To this end he con-
sidered the space of paths, focusing not on the distribution of a single variable
but of complete curves. This entails the construction of functionals499, using
mathematical tools provided by the Volterra theory of functionals (1887).

If x = 0 at t = 0, then at time t the probability that the particle’s

position is between a and b is
∫ b

a
ρ(x, t) dx. Similarly, the probability that a

particle starting at (0, 0) is between a1 and b1 positions at time t1, between
a2 and b2 at time t2, . . ., and between aN and bN at time tN (ai < bi,
ti < ti+1) is

∫ b1

a1

dx1 . . .

∫ bN

aN

dxNρ(x1, t1)ρ(x2 − x1, t2 − t1) . . . ρ(xN − xN −1, tN − tN −1),

where the appearance of the arguments xi − xi−1 and ti − ti−1 reflects
the homogeneity in space and in time of this diffusion process and ρ(x, t)
is the Gaussian distribution defined above. This distribution fits physical
phenomena which are the result of the combination of a large number of
independent events occurring randomly. This is the conclusion of the central
limit theorem of probability theory.

For us, the quantity of interest is the conditional probability that the path
of the particle [starting at (0, 0)] satisfies

ai < x(ti) < bi at times ti, i = 1, 2, . . . , N − 1

given that x(tN ) = xN . This conditional probability500 density is given by

499 Functional : A mapping from a space of functions to some set of numbers (such

as the real or complex fields). Thus ρ[f(t)] assigns to each function a number,

in the same way that ρ(t) assigns a number ρ(t) to each value of t. In fact,

ρ(t) is a special case of ρ[f(t)] for f(t) = t.

Phenomena in which the probability distribution of a function is involved may

include such diverse cases as the voltage in a resistor, the price of a commodity

(both as functions of time), or the shape of the surface of the sea as a function

of latitude and longitude.
500 Conditional probability of an event A, given the event B, is

P (A | B) =
P (A and B)

P (B)

It tells us the probability of an event within a restricted set of possible outcomes.
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the above multivariable integral without the integral over xN and divided by
ρ(xN , tN ). It measures the probability that the path of the particle passes
through each of the given “portals” at the associated times, given the path’s
endpoints at times 0 and tN .

As we increase the density at which a specification of (ai, bi) is made as
|ai − bi| → 0, the path of the particle is pinned down more and more precisely.
Substituting the Gaussian distribution for each factor in the integral, we can
write the product of the densities for the individual intervals

ρ(x1, t1) . . . ρ(xN − xN −1, tN − tN −1)

=
N∏

j=1

1
√

π(tj − tj−1)
exp

{
− (xj − xj−1)2

tj − tj−1

}
.

In the limit N → ∞, as the time intervals go to zero, the integration of the
above expression defines a measure on the set of all paths x = x(t), known as

the Wiener measure which we denote in the abbreviated notation
∫

dW [x(t)],

where

dW [x(t)] =
ρ [x(t)] Dx(t)

∫
A

ρ [x(t)] Dx(t)
=

1
C

e−
∫ 1
0 ẋ(τ)2 dτ

t∏

0

dx(t).

Here, A is the space of allowed paths,
∏t

0 dx(t) is the limit of
∏N

1 dxi

and the integral in the exponent is just twice the time integral of the kinetic
energy of the particle with unit mass. C is a constant which normalizes the

infinite-dimensional integral under the condition
∫

A
dW [x(t)] = 1.

The concept of measure underpins the modern interpretation of probabil-
ity, defined in terms of a measure on the space Ω of elementary events. A
general event is a set of elementary events, i.e. a subset of Ω, and its proba-
bility is equal to the measure of the corresponding set of events, divided by
the measure of the whole space Ω. As a rule, the measure is conveniently
chosen such that the measure of the whole Ω is unity. Over the space of
elementary events we can construct certain functions whose properties are
practically independent of the structure of this space and the detailed defini-
tion of probability.

As an example, we consider the simplest case where the Brownian-motion
path is unrestricted: (ai, bi) → (−∞,∞). Then the iterated integral (with
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Δt = tj − tj−1, fixed)

lim
N →∞

[ 1√
πΔt

]N
∫ ∞

− ∞
. . .

∫ ∞

− ∞
exp

{
−

N∑

j=1

(xj − xj−1)2

Δt

}
dx1 . . . dxN

can be transformed, with yj = xj − xj−1, into the product of ordinary inte-

grals, which all equal 1√
πΔt

∫ ∞
− ∞ exp

{
− y2

Δt

}
dy = 1. The considered Wiener

integral is equal to unity, which equals the total volume of the space of ele-

mentary events (particle paths in this case). Thus, the measure of the total

space of paths is equal to unity.

The Wiener measure of an event A is given by the Wiener path integral
∫

A
ρ [x(t)] Dx(t), which weighs each path with a Gaussian probability density

functional, and then sums the weighted contribution for all possible paths

between two given end-points. This process can, of course, be generalized to

probability density functions other than the Gaussian. In fact, we could say

that, in general, the integrand has the form ρ(x1, x2 . . . xN ) dx1 dx2 . . . dxN .

This, in turn, can be viewed as a discretization of the functional ρ [x(t)],
where xi = x(ti). Once the path integral has been defined, the analogy to the

probability density function of a variable can be stretched further to include

the concept of the mean value of any functional Q [x(t)] on the random path

x(t).

Thus, the expectation of the function Q(x) of the random variable x,

namely
∫ ∞

− ∞ Q(x)P (x) dx = 〈Q(x)〉, with P (x) the probability distribution

function, takes on an analogous form for the functional Q[x(t)]:

〈Q [x(t)]〉 =
∫

Q [x(t)] dW [x(t)]

=
∫

Q [x(t)] ρ [x(t)] Dx(t)
∫

ρ [x(t)] Dx(t)
,

where the functional integrals extend over the allowed histories (paths) of the

particles.

Likewise, for the mean-square value of the path function at a particular

time, t = a:
〈
[x(a)]2

〉
=

∫
[x(a)]2 ρ [x(t)] Dx(t)
∫

ρ [x(t)] Dx(t)
.
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Also, the concept of the characteristic function (i.e. the Fourier transform of
p(x), known as the moment-generating function)

φ(k) =
〈
eikx

〉
=

∫ ∞

− ∞
eikxp(x) dx

has its analog in the characteristic functional

Φ [k(t)] =
∫

ei
∫

k(t)x(t) dtρ [x(t)] Dx(t)
∫

ρ [x(t)] Dx(t)
,

where ei
∫

k(t)x(t) dt is the limit of the product eik1x1eik2x2 . . . for an infinite
number of time intervals, with ki = k(tj) Δti. The possibility of performing
the inverse transform ρ(x) =

∫ ∞
− ∞ e−ikxφ(k) dk, leads, in principle, to the

analogue expression

ρ [x(t)] =
∫

e−i
∫

k(t)x(t) dtΦ [k(t)] Dk(t),

where the path integral is now carried out over the space of possible k-
functions. In this way Wiener showed the close connection of the Brownian
motion to the Fourier transform.

Returning to the Brownian motion, we assume that Q [x(t)] is some
functional of the path x(t). Let Q(x1, . . . , xn) be the value Q takes on the

broken (discrete) line path from (0, 0) to (t1, x1) to . . . (xN −1, tN −1) to

(x, t), with tj = j t
N . Then, the mean value of Q is

〈Q〉 = lim
N →∞

∫ ∞

− ∞
dx1

∫ ∞

− ∞
dx2 . . .

∫ ∞

− ∞
dxN −1 ρ(x1, t1)ρ(x2−x1, t2− t1) . . .

× ρ(xN − xN −1, tN − tN −1)Q(x1, . . . , xN −1)

It can be shown that the special case W (x, t) =
〈
e
∫ t
0 U [x(t)] dt

〉
obeys the

integral equation

W (x, t) = W0(x, t) +
∫ t

0

dτ

∫

dξ W0(x − ξ, t − τ)U(ξ)W (ξ, τ)

with

W0(x, t) = 〈1〉 = (4πDt)−1/2e− x2
4Dt = ρ(x, t).

Recalling that
(

∂
∂t − D ∂2

∂x2

)
W0 = 0 and that W (x, 0) = δ(x), this integral

equation for W implies that W satisfies the differential equation governing
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diffusion with random coordinate-dependent growth

∂W (x, t)
∂t

= D
∂2W (x, t)

∂x2
+ U(x)W (x, t)

For constant U = U0 > 0, the explicit deterministic solution has two remark-

able features:

(1) there exists a critical length scale Lc = π
√

D
U0

at which gain (ampli-

fication) and dissipative loss are in equilibrium.

(2) The surface ψ(x, t) = 1√
4πDt

exp
[
U0t − x2

4Dt

]
= constant propagates

with the velocity v = 2
√

DU0.

The physical meaning of this result is as follows: in the course of evolution,

the field W is diffusively transported in space and simultaneously changes at

a rate U which, although constant in this example, generally varies from one

position to another; e.g. the evolution of a bacterial population in a medium

with randomly distributed food supply and other environmental factors when

the population is able to spread via diffusion in space. This model predicts

that the bacteria gather in comparatively stable clusters at places where the

environment is most favorable for their development. This picture is a sur-

prisingly good description of the distribution of human populations on levels

of concentration that range from villages to towns, cities and megalopolises.

Path integrals are used today in fields ranging from finance to radiophysics

and statistical mechanics to quantum field theory.

Although the task of calculating a path integral by superposing an infinite

number of paths may seem insurmountable, the Wiener integrals can be cal-

culated numerically, and pioneering results in this direction began to appear

in the 1950s as computational mathematics grew in the wake of the advent of

electronic computers. The most convenient approach considers the integral as

an average over the Wiener measure rather as a limit of an iterated integral.

It is sufficient to consider three dozens typical Wiener paths and calculate

the average over them — the central limit theorem guarantees that the result

approximates the Wiener integral. There are however certain inherent diffi-

culties here: first, the construction of the Wiener paths requires generators

of random numbers which is sometimes accompanied by the onset of chaos.
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Another difficulty is that the numerical calculation of Wiener integrals is as-
sociated with intermittent501 random quantities, and is due to the fact that
some of the Wiener integrals are determined by unlikely events (non-typical
paths).

A similar difficulty is also known for ordinary integrals of rapidly oscillating
functions. These two kinds of difficulties are actually intrinsically connected:
the more exotic the paths that make principal contributions to the Wiener
integral, the tougher are the requirements that arise for the reproduction of
these paths via random number generators.

Notwithstanding these difficulties, the simplest Wiener integrals are within
the reach of modern numerical methods. In this connection we point out a
remarkable and surprising peculiarity of computational mathematics: This
field of science is generally connected with pure mathematics, the science
which exists in the name of rigorous proof.

In modern computational mathematics, however, even if in some cases
irreproachable mathematical proofs can be given, they prove to be almost
useless after a deeper analysis. As a result, modern computational mathe-
matics is also unexpectedly close to experimental physics in the nature of its
heuristic arguments: in both cases, the principal instrument of verification is
experimentation, either in a laboratory or numerical.

Let us clarify this by the following example: When computing an ordinary
integral, one replaces the integrand by a polygonal line or by using the more
precise Simpson’s parabolic rule. One should know how many mesh points
must be taken in order to reach the desired accuracy. This proof can be made
as rigorous as possible for theorems of calculus. However, the result itself is
practically useless. At least, nobody thinks of incorporating it into standard
software. The reason for this is simple: the desired estimate of the required
fineness of the mesh depends on the maximum continuous derivative of the
integrand.

For other interpolations, even higher derivatives are involved. The compu-
tation of those is much more complicated than the computation of an integral.

Therefore, instead of this rigorously proved estimate, the so-called Runge’s
empirical estimate is usually applied, which is based on the presumption that
the result of the computations is close to the true value of the integral when
the doubling of the number of mesh points does not lead to a considerable
change in the result. This estimate cannot be proved while the examples that

501 Similar to a Gaussian-distributed random quantity which typically arises as the

sum of many random numbers, the intermittent random quantity is typically a

result of the multiplication of many random numbers.



3566 5. Demise of the Dogmatic Universe

directly contradict to it can be given explicitly. Nevertheless, in the hands of
a judicious person, this empirical estimate gives excellent results.

1921–1954 CE Léon Nicolas Brillouin (1889–1969, France and U.S.A.).
Physicist. Made significant contributions to mathematical physics (WKBJ,
1926), electromagnetic wave theory (signal velocity; diffraction of light by
ultrasonic waves, 1921; optics of metals, 1949), and quantum theory of solid
state physics (Brillouin scattering of light, Brillouin function, Brillouin zones).

He was a professor at College de France (1932–1939), Brown University
(1941–1943), Harvard University (1946–1949), and director of research at
I.B.M. (1949–1954). His father Marcel Louis Brillouin (1854–1948, France)
was a physics professor at College de France (1900–1931), and known for his
work on structure of crystals, kinetic theory, and the viscosity of liquids and
gases.

1921–1994 CE Leopold Vietoris (June 04, 1891 – April 09, 2002, Aus-
tria). Mathematician. Contributed to general and algebraic topology and
other branches of mathematics. Originated the modern convergence concepts
in topology. The Mayer-Vietoris sequence (1927), Vietoris complex, the Vi-
etoris-Begle theorem and the Vietoris inequalities502 (1958) are named after
him.

502 Vietoris inequality : If C2k = C2k+1 =
1

22k

(
2k
k

)

, k ≥ 0, then

n∑

k=1

Ck sin kx > 0, 0 < x < π

n∑

k=1

Ck cos kx > 0, 0 < x < π

An equivalent theorem states: Let a0,a1, . . . , an and t be real numbers. If
a0 ≥ a1 ≥ a2 ≥ · · · ≥ an > 0, and 2ka2k ≤ (2k − 1)a2k−1 where 1 ≤ k ≤ n

2
,

then

n∑

k=1

ak sin kt > 0, and

n∑

k=1

ak cos kt > 0 (0 < t < π)

Putting a0 = 1, ak = 1
k

(k = 1, 2, . . . , n) gives the Fejer-Jackson in-

equality
∑n

k=1
sin kt

k
> 0 (0 < t < π), and the W.H. Young inequality

1 +
∑n

k=1
cos kt

k
> 0, (0 < t < π).
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Vietoris was born in Radkersburg, Austria, and was educated at the Tech-
nical University of Vienna (Ph.D. 1919). He was a soldier in WWI (1914–
1918). He then worked with Brouwer in Amsterdam (1925–1926) and be-
came a full professor at the University of Innsbruck (1930), where he remained
for the rest of his life.

He was an avid skier (up to the age of 92!), keen alpinist and an ac-
complished mountain climber. He also became an expert on the formation of
glaciers in his later years, and researched into the physics of blocks of glaciers.

He lived to be 110 years and 309 days old; In his time he was believed to
be the oldest living mathematician and the oldest living Austrian. His last
paper was written at the age of 94. He died a few weeks after the death of
his wife (101), with whom he had been married for 66 years.
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History of Meteorology and Weather Prediction503

I. Historical Background

Weather phenomena have profoundly affected the social customs, economic
activities and personal experiences of human beings everywhere and in every
age; weather prophets and ‘weather makers’ have practiced their arts for thou-
sands of years. In ancient times, weather was often associated with religious
cults, and so we have the thunder-God Zeus and the Germanic God Thor. In
the old Testament Jehovah spoke to Moses from a cloud (Ex 19), accompa-
nied by flashes of lightning, and to Job out of the whirlwind (Job 38, 1; 40,
6)504.

503 For further reading, see:

• Hess, S.L., Introduction to Theoretical Meteorology, Krieger, 1978, 362 pp.

• Lutgens, F.K. and E.J. Tarbuck, The Atmosphere, Prentice-Hall: New Jersey,
1982, 478 pp.

• Humphreys, W.J., Physics of the Air, Dover Publications: New York, 1964.

• Brancazio, P.J. and A.G.W. Cameron (Editors), The Origin and Evolution of

Atmospheres and Oceans, John Wiley & Sons: New York, 1964, 314 pp.

• Thompson, P.D., Numerical Weather Analysis and Prediction, Macmillan and

Company: New York, 1961, 170 pp.

• Whitaker (Ed), R., Weather Watching, Fog City Press, 2003, 480 pp.

• Firor, J., The Changing Atmosphere, Yale University Press, 1990, 145 pp.

• Reynolds, Ross, Guide to Weather, Firefly Books, 2005, 208 pp.

• Lawrence, E. and B. van Loon, An Instant Guide to Weather, Gramercy
Books: New York, 2000, 125 pp.

504 When the results of modern meteorological observations are compared with the

picture of weather conditions reflected in the Bible, it seems that the climate

and weather phenomena of Israel in the first millennium BCE were essentially

the same as today. Incidentally, first references to rainfall records had been

made in the Old Testament.
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In Britain, it was not too long ago that a 16th century law requiring
‘witches and weather prophets to be condemned to death, was struck from the
books’. Even today there are primitive tribes to whom weather is still an act of
the gods, and many of them are really quite expert at weather forecasting: The
inhabitants of the Marshall Islands in the Pacific, for example, can recognize
the characteristic high clouds, composed entirely of ice crystals, which precede
a hurricane.

Aristotle (ca 335 BCE) was first to attribute the global winds to the
heating of the sun in his Meteorologica. It was the first systematic study on
meteorology. The ancient Greeks knew their weather signs, as we know from
Theophrastos505.

Not much was added to weather lore during the next 2000 years, and the
progress of meteorology has been coincident with the progress of physics and
chemistry in general. Exceptions are the works of Alhazen (1050) on twilight
and Vitelo (1250) on the rainbow. Minor activity is noted during 1300–1600:
the first extant record of daily visual weather observations (no instruments
yet available!) was due to William Merle506 (d. 1347, England) during
1331–1338. Nicolas of Cusa designed in 1450 the first Western Hygrometer.

With the rise of the new physics in the 17th century, the discipline of
meteorology entered its empirical stage. The main stimuli came from the
works of Galileo (1607) on the thermometer, on the laws of inertia, and on
the weight of air, the work of Torricelli (1642) on the barometer, the work of
Boyle (1659) on fluid pressure, and the work of Newton (1673) on optics.

The response was immediate: Benedetto Castelli (1578–1643, Italy)
used, in 1639, a cylindrical glass container to measure rainfall. It was the
first rain-gauge in Western civilization. In 1657, the newly founded society
Accademia del Cimento (1657–1667) established a network of meteorological
observers in Italian cities (later extended to Paris, Warsaw and Innsbruck)
for the recording of pressure, humidity, wind direction and the state of the
sky.

Earlier, in 1653, Ferdinand II of Tuscany (1616–1670, Italy) orga-
nized a local system of stations for daily recording of weather conditions
(1655–1670). He provided the observers of the Accademia with thermometers,
barometers, hygrometers and other instruments. This effort was discontinued,
however, in 1670.

505 Theophrastos of Eresos (372–288 BCE, Greece). Philosopher and scientist.

The founder of botanical science. Pupil of Plato and Aristotle and successor of

the latter as head of the Lyceum (323–288 BCE). Wrote a number of books on

many different subjects. Wrote on winds and weather signs.
506 Rector of Dirby monastery. The records were found in the monastic diary.
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In England, Robert Hooke (1663) encouraged the systematic recording

of standardized weather observations, including: wind direction and strength,

moisture, temperature, pressure, movement of clouds, and precipitation. In

response to his call, Richard Townely (1629–1707, England) recorded de-

tailed rainfall measurements during 1677–1704.

Edmund Halley published (1686) the first meteorological chart: a map

indicating prevailing winds over the tropical oceans. He outlined a thermal

circulation (over a non-rotating earth) with warm air rising in the zone of

maximum heating in the low latitudes, producing simple equator-ward flow

in the trade winds507 and a poleward flow aloft. This model was improved by

George Hadley (1735). He incorporated the effects of the earth’s rotation,

deflecting flows to the right in the Northern Hemisphere and to the left in

the Southern Hemisphere, with northeasterly and southeasterly trade winds

resulting at the surface. Thus, the circulation according to Hadley consisted

of convection cells.

In 1699, William Dampier (1652–1715, England) suggested that major

ocean currents are caused by winds. James Jurin, secretary of the Royal So-

ciety (England) organized in 1723 a system of meteorological observatories in

Europe, North America and India. These were equipped with specific instru-

ments for standard daily measurements and recordings. Monthly and yearly

averages of these measurements were calculated at each station. In 1728,

Isaac Greenwood (1702–1745, pre-U.S.A.) recommended that the Royal

Society extend its meteorology observations to ships on the high seas.

Jean Jacques d’Ortous de Mairan (1678–1771, France) suggested in

1733 that Northern Lights (Aurora Borealis) are caused by the sun’s at-

mosphere. Charles Le Roy (1726–1779, France) introduced (1751) the con-

cepts of relative humidity (the actual amount of water in the air relative to

507 We owe the classification of cloud forms to the English apothecary Luke

Howard (1803). They were accepted partly because of their simplicity, but also

because of the support they received from the German poet Johann Wolfgang

von Goethe (1749–1832), who was an enthusiastic cloud watcher because of

his great sensitivity to weather changes. He mentioned these cloud forms in

several of his poems, as well as in a guide to weather watching which he wrote.

The first network of weather stations promoted and financed by a government

was in the small state of Sachsen-Weimar, where Goethe was a minister respon-

sible for this activity. Unfortunately, however, shortly after his withdrawal from

government, financial difficulties forced the dissolution of the organization he

had created.
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the maximum possible at a given temperature) and Dew point508, and conjec-
tured that the atmospheric moisture is the origin of precipitation (rain, hail,
snowfall). In the same year, Henry Ellis (1721–1806, England) found that
ocean temperature at depth (1630 m; 25 ◦13′N, 25 ◦12′W) was lower (12 ◦C)
than the surface value (29 ◦C).

In Germany, the meteorological society of the Palatinate in Manheim (So-
cietas Meteorologica Palatine) was founded in 1780 by Karl Theodor of
Bavaria. The society (disbanded in 1795) established 57 observatories in the
Northern Hemisphere, each equipped with barometer, thermometer, hygrom-
eter, rain gauge, wind vane and electrometer. In 1784, Benjamin Franklin
(1706–1790, U.S.A.) attributed the severe winter of 1783–1784 to the volcanic
eruption of Laki fissure in Iceland (June 8, 1783), where solar insolation was
reduced by the spread of volcanic ash through the atmosphere.

In 1783, Horace Benedict de Saussure (1740–1799, Switzerland) devel-
oped a sensitive hair-hygrometer for the measurement of relative humidity. In
England, John Dalton conducted weather observations during 1787–1844.
The period 1752–1783 is marked by a collective effort to study the nature
of the atmosphere and finally establish its character as a simple mixture of
gases. This was contributed by Black (1752), Cavendish (1760–1777), D.
Rutherford (1772), Priestley and Scheele (1775), and Lavoisier (1783).

To obtain a true picture of the seemingly random sequence of diverse
weather conditions, it is necessary to record on one chart the observations
made simultaneously at many points. This was done for the first time by
Brandes (1817, Germany) at the University of Leipzig. He based his work
on the observations made over many decades by the first international network
of weather stations (that of the Meteorological Society of the Palatinate in
Manheim, 1781–1795). We call the recording of simultaneous meteorological
phenomena ‘synoptic meteorology’. [The invention of the telegraph and all the
means of communication based on it – such as radio and teleprinters – , has
made it possible for synoptic meteorology to cover vast areas, and nowadays
the entire globe.]

Fourier suggested in 1827 that human activities have an effect on earth’s
climate. Matthew Fontaine Maury (1806–1876, U.S.A.) was one of the
first to treat the oceans and the atmosphere as a unified system: in 1847 he
published wind and current charts for the North Atlantic, and during 1850–
1857 he extended his charts to include surface winds over world oceans.

508 The Dew point is that temperature at which the relative humidity becomes 100%

(i.e., the air is saturated) and condensation accordingly takes place, invisible

water vapor changing into visible water drops. It is the temperature at which

an invisible air-stream will breed clouds, and decreases with humidity.
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A major advance in the understanding of the motion of air-masses509 in the

509 The Polar Regions can be regarded as the two great ‘air-conditioning ’ areas for

the earth’s atmosphere, while the Tropics are the great ‘central heating ’ areas.

Within the Tropics, from Cancer across the equator to Capricorn, day and night

are nearly equal throughout the year. The heating by day and the cooling by

night are similarly balanced and it is always hot. The daily average tempera-

tures remain steadily high. The path of the rising sun is a steep climb upward

in the east. Within an hour it is high enough and strong enough to cancel the

heat-loss of the night. Although the downward path of the sun to its setting

in the west is as steep as its morning rise, not until several hours after sunset

do surface temperatures fall appreciably. (Surprisingly, really intolerable heat

is found not on or near the equator but between latitudes 15 ◦ and 30 ◦ north

and south of the equator, and well away from the sea — in the hot desert lands

of the world.)

Air masses are huge masses of air with approximately uniform temperature and

humidity. They are caused when an area of air, hundreds of kilometers wide,

rests on a sea or land mass that has fairly even temperature and humidity. The

air takes on the characteristics of the surface below. There are two extreme

kinds of air masses — tropical ones, which are warm, and polar ones, which are

cold.

Air moves over the earth’s surface, tending to even out the distribution of heat.

As air masses leave the place where they formed, they become modified, warm-

ing up or cooling down, becoming drier or moister, according to the different

surfaces they travel over. Meanwhile, fresh supplies of polar or tropical air are

being produced at the Poles and in the Tropics.

Very different air masses do not mix together when they meet. There is a polar

front in each hemisphere, a boundary between modified polar and tropical air

masses. These boundaries are belts of unsettled weather.

On weather maps, air masses are labeled to show where they came from. Air

masses from the Poles are labeled P ; air masses from the Tropics, T . If they

formed over land, they are labeled c; if they formed over sea or ocean, m. So

an air mass labeled cP came from a polar land mass, like Alaska, for example,

while an air mass labeled mT came from a tropical sea, like the Caribbean.

Air masses play a vital role in the type of weather experienced all over the world.

The basic reason for these air masses moving the way they do is pressure, the

compressive atmospheric force per unit area at any point and upon any surface,

and equivalent at equilibrium to the weight of a unit-area-base column of air

extending upwards from the given point.

This weight varies, depending on temperature (warm air lighter than cold air)

and humidity (wet air lighter than dry air). Barometers react to changes in local

pressure by ‘rising’ when the pressure is high (usually indicating good weather),

and falling when low (bad weather).
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atmosphere came with the discovery of the Coriolis force510 (1835); William
Ferrel (1817–1891, U.S.A.) improved on Hadley’s model, producing the first
reasonably complete model of major wind systems — the first 3-cell model.
He made a quantitative use of the Coriolis effect to explain the easterly trade
winds in low latitudes. Thus, Ferrel included a belt of southwesterly winds
in middle latitudes, between the easterlies of high and low latitudes, with
subsidence in the subtropical highs and ascent at higher latitudes, at the
limit of what is now known as the Ferrel cell.

He also explained the counterclockwise rotation of cyclons (low pressure
areas) in the Northern Hemisphere and the clockwise rotation of anticyclones
(high pressure areas) in the Southern Hemisphere. Ferrel also described the
effects of the earth’s rotation on the distribution of ocean currents caused by
the wind, and derived, in 1874, the equation relating the barometric gradi-
ent of pressure to the velocity of the wind. In the same year M. Leverrier
presented a weather map of France, constructed from observations at 10 sta-
tions. The modern method of mapping the weather was introduced in 1863 by
Francis Galton (1822–1911, England). In 1869, the meteorologist Cleve-
land Abbe (1838–1916, U.S.A.) began to send out weather bulletins from the
Cincinati observatory. In 1885 Albert I of Monaco (1848–1922, Monaco)
provided evidence (through the expedition of his ship Hirondelle) that the
Gulf-stream is transatlantic.

While atmospheric pressure and air density decrease rapidly with altitude,
the vertical temperature structure of the atmosphere is not as simple as was
once believed. At the end of the 19th century it seemed reasonable that a de-
crease in temperature should accompany the lowering of pressure at the outer

Arctic and sub-tropical areas are normally recognized as being high pressure

zones, while the temperate latitude area (ca 40 ◦N–60 ◦N) and the equatorial

belt (ca 15 ◦N–15 ◦S) as being low pressure zones. High pressure forces air

masses towards low pressure: this is a vital clue to all movements of air masses.
510 It is a direct consequence of the conservation of the component of the angular

momentum of the air-mass, parallel to the earth’s rotation axis: to maintain

the constancy of the quantity {VΘR cos Θ} per unit mass [R = earth’s ra-

dius, Θ = latitude, VΘ = linear velocity in west-east direction tangential to

latitude circle], VΘ must increase as cosΘ decreases; hence the effect. The

magnitude of the Coriolis force is shown to be {2V ω sin Θ} per unit mass,

where ω = 7.29 × 10−5 rad/sec and V is the wind’s speed. Upper-level winds

are deflected until the Coriolis force just balances the pressure gradient force

(normal to isobars). Above 600 meters, where friction is negligible, these winds

will flow nearly parallel to the isobars, and are called geostrophic winds. This

was asserted in 1857 by Christoph Buys Ballot (1817–1890, Holland).
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limits of the atmosphere. The lower temperatures recorded on mountain sum-
mits confirmed this assumption. At the turn of the 20th century Teisserenc
de Bort (1855–1913, France), working from an observatory near Versailles,
explored the structure of the atmosphere using balloons carrying recording
thermometers. His observations during 1898–1902 showed that above 11 km,
over Europe, temperatures cease to fall and may even increase with height. He
had in fact discovered the stratosphere511, a name which he gave to this region
of the atmosphere in 1908. In 1918, Vladimir Peter Köppen (1846–1940,
Germany) developed an empirical climatic classification based on tempera-
ture and precipitation, yielding 5 major climate types: tropical, dry, warm
temperature, snow, and ice512.

The basic features of Atlantic circulation were explained in 1922 by Al-
fred Merz (1880–1925, Germany), and Georg Adolf Wüst (1890–1977,
Germany), emphasizing cross-equatorial exchange. In the same year, Fred-
erick Alexander Lindemann (1886–1957, England) and G.M.B. Dobson
(England) determined atmospheric temperatures at levels above those reached
by balloon soundings, by examining meteor trail records, for brightness, height
and length of trail. From these they derived air densities, and then calculated
temperatures from the density and other variables. They concluded that air
is warmer at 50 km than at lower levels.

During 1919–1936, Andrew Douglass (1867–1962, U.S.A.) correlated
climatic cycles and tree growth, using the tree-rings for dating.

Alongside with the development of the art of measurement and observa-
tion, meteorology benefited from the independent evolution of the sciences
of hydrodynamics and thermodynamics developed from the works of Newton
(1670), Euler (1736), Laplace (1780), Fourier (1785), Poisson (1815), and
Stokes (1851).

511 Today it is customary to divide the lower part of the atmosphere into two layers:

a lower layer called the troposphere (from the Greek ‘tropos’, meaning ‘turn’),

which is descriptive of the layer’s convective and mixing characteristics. This,

the lowest layer of the atmosphere, contains 75% of the total atmospheric mass,

and is the most important in terms of weather. It contains virtually all the

water vapor and clouds, and the atmospheric pollution. The layer above it is

the stratosphere (from the Latin ‘stratum’ means ‘a layer’), which is descriptive

of its stratified, non-convective nature. It extends up to about 50 km. It

contains the ozone (O3), which although present in only very small amounts is

vital for the existence of life on earth, for it absorbs and filters out the ultraviolet

radiation wavelength (0.23–0.32 microns).
512 Strabo, in ca 5 BCE, divided the world into frigid, temperate and tropic zones.
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II. The Physical foundations

The theoretical branch of meteorology is based upon the fundamental
postulate that the behavior of the atmosphere is capable of being analyzed and
understood in terms of the basic laws and concepts of physics. The three fields
of physics which are most applicable to the atmosphere are thermodynamics,
optics and hydrodynamics.

From the field of thermodynamics we set down three laws:

• The equation of state of a perfect gas.

• The first law of thermodynamics.

• The second law of thermodynamics.

The relevant laws governing the emission, propagation and absorption of

optical radiation are:

• Kirchhoff’s law.

• Planck’s law.

• Beer’s law.

• The equation of radiative transfer.

In hydrodynamics we make use of:

• Newton’s three laws of motion and the law of universal gravitation.

• The laws of conservation of mass and energy.

• The Navier-Stokes equation incorporating Newtonian viscosity.

The ultimate aim of theoretical meteorology is to express the above laws
and ideas in forms applicable to the atmosphere, and to apply the resultant
equations to the modeling and prediction of atmospheric dynamics.
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III. The Helmholtz system of equations and its consequences

(1858)

For ease of application to meteorological data, it is convenient to choose

a Cartesian coordinate system tangent to the earth surface, and co-rotating

with the earth: the x-y plane coincides with a hypothetical sea-surface, with

the y-axis pointing northward, the x-axis pointing eastward and the z-axis

pointing upward. If V is the velocity vector relative to this local co-rotating

frame, the corresponding acceleration is

DV

Dt
= −1

ρ
grad p − 2[Ω × V ] − gradφ + F

Here, Ω is the earth’s rotation vector (|Ω| = 7.29× 10−5rad/sec); φ

is the geopotential = sum of the terrestrial Newtonian gravitational potential

and the centrifugal potential, and is equal to a constant at standard sea level.

Within the first several hundred km above sea level, the surfaces of constant

φ are sufficiently spherical and Δφ = g − Ω × (Ω × r) is sufficiently uniform

that for purposes of atmospheric dynamics the earth may be considered to

be a sphere of constant radius a (6370 km) and φ can be set equal to gz,

where g is constant and z is height above sea-level. Spherical coordinates λ

(eastward longitude), Θ (latitude), and r = a + z can thus be used with

little error. F represents friction per unit mass (and any additional forces, if

needed) that is caused by molecular viscosity of the air and eddy stresses due

to vortex motions.

The first term on the r.h.s. of the above equation derives from the pressure

gradient, where ρ is the density of the air. The second term is the Coriolis
acceleration, which causes only a change of direction of the moving air relative

to the ground.

Denoting the local Cartesian components of the air velocity by V (u, v, w), we

have

−2[Ω × V ] = 2(vΩz − wΩy)ex + 2(wΩx − uΩz)ey + 2(uΩy − vΩx)ez

with

Ωz = Ω sin Θ, Ωy = Ω cosΘ, Ωx = 0
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Therefore, the above Helmholtz equation decomposes into the three scalar
equations:

Du

Dt
=

∂u

∂t
+

(

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)

= 2Ω(v sinΘ − w cosΘ) − 1
ρ

∂p

∂x
+ Fx

Dv

Dt
=

∂v

∂t
+

(

u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)

= −2Ωu sin Θ − 1
ρ

∂p

∂y
+ Fy

Dw

Dt
=

∂w

∂t
+

(

u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)

= 2Ωu cosΘ − 1
ρ

∂p

∂z
− g + Fz

In 1858 Helmholtz began the study of the complete set of hydrodynam-
ical equations as a possible means of dealing with meteorological problems.
It comprised a system of 6 partial differential equations involving the six
unknown functions: temperature, pressure, density, and 3 components of
particle velocity. The form of these equations is such that their solution is
determined for all time by the values of all 6 variables at a single instant and
at every point in the atmosphere.

For large-scale motions of the atmosphere relative to the earth, various
terms in Newton’s second law can be neglected. In particular, since vertical
accelerations are very much less than the gravitational acceleration, the grav-
itational acceleration is almost exactly balanced by the acceleration due to
the atmosphere’s buoyancy.

Thus, for meteorological purposes, it is permissible to treat the atmosphere
as if it were always in a state of local vertical hydrostatic equilibrium. Next,
owing to the large horizontal scale of weather disturbances, it turns out that
the horizontal components of the force of internal viscosity (due to the mole-
cular transfer of momentum) are also negligible, when compared with the
Coriolis and horizontal pressure-gradient forces.

Moreover, although the horizontal accelerations of air are not negligible,
there is a tendency for the Coriolis and horizontal pressure-gradient forces to
balance each other. Thus, the approximate form of the equations of motion
that are generally employed in the analysis of meteorological problems is

Du

Dt
− fv +

1
ρ

∂p

∂x
= 0,

Dv

Dt
+ fu +

1
ρ

∂p

∂x
= 0,

∂p

∂z
+ gρ = 0
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where v(u, v) is the horizontal velocity field, f = 2Ω sin Θ, Θ is latitude,
p is the pressure, ρ the density and Ω is the angular velocity of the earth’s
rotation513. To the above equations, we add the equation of continuity (local
conservation of mass):

∂ρ

∂t
+ div(ρV ) = 0.

The last of the physical principles essential to the theory of dynamic
weather prediction are the ideal gas law (equation of state) and the first law
of thermodynamics for adiabatic non-viscous flow, through which the temper-
ature, pressure and specific volume of a moving air-mass may change without
addition of heat energy.

These processes are governed by the two equations

pα = RT,
D

Dt

{

T

(
p0

p

)k
}

= 0,

where α is air volume per mole, R the universal gas constant, T is the absolute
temperature ( ◦K), k = R/Cp, Cp = specific heat at constant pressure, and
p0 is some fiducial pressure.

In all, there are 6 equations in 6 variables. Although the system is com-
plete, it remains to be investigated whether or not it is determinate. If heat is
being added to and transported in the atmosphere through physical processes
of absorption, radiation, condensation, and eddy heat conduction, the last
equation is modified into the general expression for non-adiabatic flow

dθ

dt
=

θ

CpT

dq

dt
,

where

θ = T

(
p0

p

)k

is known as potential temperature, and dq
dt is the rate at which heat is added

to a unit mass of air.

In local Cartesian coordinates (x, y, z), the horizontal gradient of p(x, y, z)
for any fixed level z is denoted by

∇zp = ex

(
∂p

∂x

)

z

+ ey

(
∂p

∂y

)

z

.

513 Since V ≈ ez × 1
ρf

∇p, this ‘geostrophic wind ’ relationship shows that winds

tend to blow parallel to the isobars.
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However, on a given (fixed) isobar, we can define

∇pz = ex

(
∂z

∂x

)

p

+ ey

(
∂z

∂y

)

p

,

where z = z(x, y; p), for a fixed pressure p, is the equation of the isobaric

surface itself. Since ∂p
∂z = −gρ, it follows that

(
∂z
∂p

)
x,y

= − 1
gρ , and hence

1
ρ
∇zp = g∇pz.

Consequently, the geostrophic wind relationship takes the form

ez × fV + g∇pz ≈ 0.

Differentiating this equation w.r.t. p and making use of the vertical hydrostatic
equation and the ideal-gas equation of state, one obtains

ez × f
∂V

∂p
≈ ∇p

(
1
ρ

)

= β
R

p
∇pT ,

where β is the number of atmospheric-composition moles per unit atmospheric
mass.

This equation, known as the thermal-wind equation, tells us that horizontal
temperature gradients induce pressure gradients that in turn produce change
in the local geostrophic wind (with height and across isobars).

This variation of flow ‘blows’ parallel to the mean isothermals

f
∂V

∂p
≈ β

R

p
∇pT × ez

with low temperatures to the right of the flow variation ∂V
∂p (i.e. to the left

of ∂V
∂z ) in the Northern Hemisphere, and its magnitude proportional to the

thermal gradient in the layer.

Thus, high-level isobars depend not only on the pattern of sea-level isobars,
but also on the horizontal temperature distribution. This situation will arise
when cold and warm air lie alongside each other [as they do in a frontal system,
and in general wherever polar and sub-tropical air meet]. The thermal wind
must then be added vectorially to the geostrophic wind.

In principle, the above system of equations (including the inertia term
deviations from the approximate geostrophic wind relationship) provides the
basis for a mathematical system of weather forecasting; the problem is es-
sentially one of integrating a system of partial differential equations, starting
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with known initial conditions. At this point in the history of science (1858),
meteorology was thus finally put on equal footing with astronomy, where the
positions of suns, planets, and satellites are predicted from Newton’s equa-
tions of motion.

However, the interest in the equations of dynamic meteorology in 1858
was somewhat premature; in the first place, the equations are too difficult
to solve. In mathematical terms, the difficulty is one of solving a general
boundary and initial-value problem for a simultaneous system of 6 non-linear
partial differential equations in 3 dimensions. Even today, there are no known
methods by which the solution of such equations can be related explicitly to
general boundary and initial conditions.

With exact analytical methods failing, the most satisfactory course would
have been to solve the equations by purely numerical methods. These, how-
ever, were not fully developed until early in the 20th century, and in any case,
would have required enormous computational power.

Caught between two complementary difficulties, several generations of dy-
namical meteorologists were forced to tailor their problems to fit their limited
mathematical means — i.e., to introduce such approximations and simplifica-
tions into the equations as were necessary to make them amenable to known
methods of exact mathematical analysis. It is not surprising that the solu-
tions of the approximate equations reflected little of the actual meteorological
behavior of the atmosphere.

The second, and more important, obstacle to early development of dy-
namical weather prediction was the lack of adequate data; Before the turn of
the 20th century, the main source of meteorological data was a rather loose
network of surface observation stations, with only scattered and spasmodic
kite and tethered-balloon soundings through the lower troposphere.

With the advantage of long hindsight, it is easy to see that the dynamical
meteorologist of that day did not really know what kind of phenomena he
had to explain, and could not fully test any theory that he might propose
to account for the behavior of large-scale weather disturbances (which as
we now know, extend through great depths of the atmosphere). He had no
direct way of checking his assumptions, either by preliminary estimate or by
verification of their mathematical consequences. To some extent, although
upper-air observations are now much more frequent, more dense, and more
accurate, and extend to higher altitudes, the meteorologist is still confronted
by the problem of inadequate data.

The first concerted attack on the problem of dynamical weather prediction
was begun by the Norwegian (Bergen) school of frontal meteorology, led by
Vilhelm Bjerkens (1862–1951) and continued by Jacob Bjerkens (fils;
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1897–1975). Their outstanding achievement was to build a bridge between
classical hydrodynamics and thermodynamics, which brought the atmosphere
and the oceans within the scope of those two disciplines and opened up the
field of applications for the quantitative treatment of motion on various scales
in the atmosphere and the oceans.

Building on Helmholtz’s theoretical foundations, the Norwegian school ad-
dressed the problem of general circulation of the atmosphere and carried out a
systematic study of idealized mathematical models, directed toward the clas-
sification of atmospheric motions and their identification with the solutions
of linearized forms of the hydrodynamic equations. But although their work
contributed to our understanding of the kinds of phenomena occurring in the
atmosphere, they still failed to find a satisfactory formulation to the central
problem of weather prediction.

One of the turning points in the development of dynamic weather pre-
diction was the meteorologists’ realization that the general hydrodynamical
equations could be solved in principle by purely numerical methods. The form
of these equations is such that the instantaneous local time derivative of each
variable can be expressed in terms of space derivatives of variables in the same
set.

Accordingly, if we observe the initial values of all variables at a network of
discrete points, filling the entire atmosphere, we can approximate the relevant
space derivatives by the method of finite differences and compute the initial
rates of spatial change of each variables. Knowing the initial value and initial
spatial rate of change of each variable, we can then extrapolate its value over
a very short interval of time at each point in the network. Finally, we regard
this very short-range forecast as a new set of initial data and repeat the
process. Thus, it is possible (in principle) to build up a prediction scheme
over any desired period of time as a series of successive forecasts over very
short intervals of time.

This possibility occurred first to Lewis Fry Richardson (1881–1953), a
highly original applied mathematician who also had a lively interest in the
new finite-difference methods. Richardson’s experiment failed, however, for
reasons which became clear only in the late 40’s. Richardson himself estimated
that it would take about 64, 000 human computers just to predict weather
as fast as it happened, let alone gain on nature. This figure was alarming
enough that no one had the courage or enthusiasm to repeat his calculations
under more closely controlled conditions, and interest in dynamical weather
prediction withered and lay dormant for almost 20 years.

The study of the atmospheric sciences has conventionally been divided
into two main subject areas: meteorology and climatology.
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Meteorology seeks to analyze, explain and ultimately to predict at-
mospheric processes and their behavior over time. It is the science of the
atmosphere, and thus the science of the weather.

Climatology endeavors to document, analyze and explain the variations
of meteorological processes with geography and on a number of time-scales,
as related to the human environment. The climate of a particular place is
an abstraction; it is a statistical generalization for the place rather than an
actual reality, for it is misleading in most cases to assume that the climate of
a place is simply its ‘average weather’.

For many locations, particularly in temperate latitudes, the average
weather is rarely the weather that is experienced at any given time. The
weather systems which determine the climate of a locality are governed by
many interactions and complex feedback processes involving the underlying
surface (whether land, sea, snow, ice, mountains, forest or cities), and the
overlying atmosphere, with its variable winds and clouds. All these elements
and their interactions vary with time; climatic variability about the average
state is therefore only to be expected. This variability is the very essence of
the climate. It is thus preferable to consider a climate as being the integration
of the spectrum of weather, likely to be experienced over time at a particular
place.

Traditionally, meteorology has tended to be taught and studied in a uni-
versity department of physics and mathematics, where students are familiar
with the laws of radiation, thermodynamics and hydrodynamics. Because of
the spatial and environmental aspects of climatology, the subjects has tended
to be taught in university departments of geography, where it is studied as a
component of physical environment.

The division between the two branches of the atmospheric sciences is now
fading. A climate can only be understood in terms of meteorological mech-
anisms, no matter what the spatial and temporal scales. Climatology in its
modern form can be looked upon perhaps as spatial long-term meteorology on
a variety of spatial scales (global, regional and local) and time periods..

Moreover, there is a growing interest in the interaction of man and his
climatic environment. Climatic extremes such as drought, floods, storms,
frosts, fogs and blizzards have economic repercussions for industry, transport,
agriculture, tourism and health. Increases in global concentrations of carbon
dioxide, sulfur – and nitrogen oxides and methane, depletion of stratospheric
ozone levels, and the regional problems of acid rain may also have serious and
fully understood consequences for man’s well-being (contributions to global
warming, global dimming, etc.), while the nightmare possibility of the nuclear
winter is one scientific experiment which must never be tested.
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Linked to these two developments is the study of climate change. This may
operate on a variety of temporal scales, and the problems of understanding
and modeling the meteorological and complex feedback processes in the earth-
atmosphere-ocean system, together with the documentation of past climatic
changes, represent some of the most important areas of climatological research
today.

The general circulation of the atmosphere manifests itself in the persistent
easterly (from the east) wind belt of the trade winds in the tropics, and the
prevailing westerly wind belt of temperate latitudes. Apart from long-term
fluctuations, this is a constant arrangement, indicating an underlying order
in the general pattern of circulation of the global atmosphere. The general
circulation can be considered as the long-period average circulation of the
atmosphere, free from all but the largest-scale seasonal trends of airflow. It
is this which determines the patterns of world climate and their main charac-
teristics.

Nevertheless, major climatic anomalies perturb the world’s weather from
time to time. One of these is the El-Niño syndrome — the largest disturbance
oceanographers and meteorologists have recognized in the planet’s weather
patterns. El-Niño (Spanish for “The Child”, because it usually appears off
the coast of Peru around Christmas time) is a heat wave in the Pacific, cou-
pled with heavier than usual rainfall in the western portions of the Americas.
Some recent occasions were in 1965, 1972, 1982–3, 1986–8. The opposite con-
figuration is termed La-Niña; both seem to have become more frequent as of
recent decades.

Sometimes before the onset of El-Niño, the trade winds stop blowing, or
even reverse themselves and blow from west to east.

Then, the warm water piled up off the coast of Asia, sloshes back to the
Americas (trade winds, by blowing from east to west, normally heap up surface
water on the eastern shores of the Pacific Ocean. Sea level near New Guinea
and the Philippines is several feet higher than near Peru.) It spreads out over
the Eastern Pacific, creating a ceiling of hot water some 150 meters thick.
When this happens, the cold, nutrient-rich waters from the bottom cannot
penetrate the hot layer and are sealed in. The hot surface waters warm the
air above them, preventing the trade winds from reasserting themselves. In a
long chain reaction, the disruption of the atmosphere above the Pacific sets
off a series of storms and droughts elsewhere.

Thus, the El-Niño of 1982–3 signaled vast changes in the atmosphere’s
global circulation, – alterations that made for strange weather around the
world; there were torrential storms in parts of Ecuador, Bolivia, Brazil, and
Peru — some desert regions got 4000 mm of rain. In the United States, there
were huge storms and rains along the West Coast, and even in Florida —
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causing more than $ 1 billion in property damage, and killing at least 100
people. The tranquil island of Tahiti, which had not seen a single typhoon
earlier in the century, was struck by one after another. Meanwhile, in South-
ern Africa, perturbations of the global weather, coming after two dry years,
contributed to the terrible drought that has devastated Botswana, and also
led to droughts in Indonesia, India, Sri Lanka, and Australia.

The underlying causes of the El-Niño are not completely understood yet.
It is known, however, that average global temperatures have risen about 0.5 ◦C
since 1880. The year 1987 was the warmest, on average, around the globe
in the 100-year record of instrumentally recorded temperatures. The recent
warming surge since 1965 is pushing the earth to temperatures that rival the
warmest since the last ice age.

1922, Nov 04 CE Discovery of the tomb of Egyptian Pharaoh Tu-
tankhamen in Valley of the Kings near Thebes by archaeologist Howard
Carter (1873–1939, England). Inside he found an abundance of ancient
Egyptian artifacts that have laid untouched since 1342 BCE.

Tutankhamen died at the age of 19 in 1352 BCE.

1922 CE The mathematicians Oswald Veblen (1880–1960, U.S.A.) and
Luther Pfahler Eisenhart (1876–1965, U.S.A.) generalized Levi-Civita’s
parallelism into displacement and the concept of geodesic into path in a non-
Riemannian geometry, and established the ‘geometry of paths’.

1922 CE Louis Joel Mordell (1888–1972, England). Pure mathemati-
cian. Proved important theorems in number theory. Conjectured514 (1922)

514 Mordell’s conjecture is actually more general: Let K be an algebraic number
field and let C be a nonsingular projective curve over K with genus g ≥ 2.

The set of points on C which are K-rational (that is, have coordinates in K) is

necessarily finite. If this turns out to be true [taking K = field of rationals and
the Fermat curve xn + yn + zn = 0, with n ≥ 4], then there would be only

finitely many such solutions in rational numbers, or equivalently, in integers.

Since C is projective, (x, y, z) and (λx, λy, λz) are identified (λ ∈ K).
A simple example of a Diophantine equation with finite number of solutions

was found by W. Ljunggrens (1942): x2 + 1 = 2y4 has exactly two solutions

(x, y) = (1, 1); (239, 13).
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that if, for some n > 2, the equation xn + yn = zn has a solution in non-
zero integers [with (x, y, z) mutually prime], then it has at most finitely many
such solutions for that value of n [proved in 1983 by G. Faltings (Germany)].

Mordell was born in Philadelphia of Jewish Lithuanian parents who had
emigrated to the U.S. in 1881. His father, Phineas Mordell (1861–1934) was
a Hebrew grammarian and scholar. In 1906 Louis went to St. John’s Col-
lege, Cambridge, where he graduated in 1912. He was a professor of pure
mathematics at the Universities of Manchester (1923–1945) and Cambridge
(1945–1958).

1922–1924 CE Alexandr Alexandrovich Friedmann (1888–1925, Rus-
sia). Applied mathematician and meteorologist. Showed that Einstein’s field
equations of general relativity admit non-static solutions with isotropic and
homogeneous matter distributions, corresponding to an expanding universe.
His solution was the first to postulate the ‘big-bang’ cosmology.

Friedmann was born in St. Petersburg to a Jewish family. He entered
the university of his native city in 1906 and obtained his master degree in
applied mathematics in 1914. He took part in WWI (1914–1918) in an aviation
detachment and participated in military flights. During 1918–1922 he did
research in the field of theoretical meteorology at the physics laboratory of
the U.S.S.R. Academy of Sciences. He died of typhoid fever at the age of 37.

1922–1928 CE Philo Taylor Farnsworth (1906–1971, USA). Invented
electronic television. Farnsworth was a 16-year-old Mormon boy from Rugby,
Idaho, with virtually no knowledge of electronics when he first sketched his
idea for electronic video system on a blackboard for his high-school science
teacher in 1922. He successfully displayed his first TV picture on Sept 07,
1927, and soon after patented the idea at a tender age of 21. He then suc-
cessfully fought off the combined might of one of the largest corporations,
RCA, and its massive team of lawyers and finally won the battle. The whole
of RCA’s research effort — at an expense that cost more than $50 million
— was intended to circumvent Farnsworth patents515. Unfortunately, RCA

515 In 1923, Zworykin applied for a patent. In 1927, Farnsworth produced the first

successful transmission of a television image by wholly electronic means — and

Zworykin application was still pending. Farnsworth’s patent #1,773,980 was

issued in August 1930 — and Zworykin’s application was still pending. In fact,

the 1923 Zworykin application would be all but forgotten — except that a patent

was finally issued in 1938 — a long fifteen years after the original application,

and then only after many modifications has been made to the original applica-

tion. Furthermore, the eventual patent on the 1923 application — #2,141,059

was issued by a court, not the patent office. In the end, RCA was forced to pay



3586 5. Demise of the Dogmatic Universe

managed to maneuver its way around the patents and effectively degraded
Farnsworth’s status to that of ‘just another contributor’ in the field.

Born in Beaver, Utah, Farnsworth was educated in the Utah and Idaho
public school system. He attended high school at Provo (1923) and enrolled in
Brigham Young University (1924) but left it at the end of his second year due
to the death of his father. In 1926 he joined the Crocker Research Laboratories
in San Francisco. Farnsworth’s basic television patents covered scanning,
focusing, synchronizing, contrast, controls, and power. When he died at age
64, he held more than 300 U.S. and foreign patents516.

1922–1932 CE Stefan Banach (1892–1945, Poland). Mathematician.
One of the founders of modern functional analysis, and among the devel-
opers of the theory of topological vector spaces. Utilizing concepts of Riesz,
he introduced the notion of complete normed linear spaces, whose elements
need not be defined with respect to the complex number field. These are
now called ‘Banach spaces’. The spaces named after Hilbert are special

royalties to Farnsworth for the Image Dissector.

Zworykin did not have a clue how to create a high-resolution television signal

by wholly electronic means until he visited Farnsworth’s lab in 1930. As soon

as he saw what Farnsworth had achieved, he got busy, not only duplicating

Farnsworth’s equipment, but using all the might of RCA to claim Farnsworth’s

achievement for his own. He failed in that effort and RCA was left with no

choice but to accept a patent license from Farnsworth in 1939. At the end,

however, Zworykin created the standards on which television was based.
516 One of his patents, known today as the Farnsworth-Hirsch Fusor ,is a device for

producing nuclear fusion reactions which has since become a practical neutron-

source, and is produced commercially for this role.

In the late 1950’s and early 1960’s Farnsworth was adapting an earlier device

of his, connected with his television work, thus arriving at his fusion reactor.

Robert Hirsch worked an Farnsworth’s development team in the mid 1960’s

and made significant contributions to the device, which was patented in June

1966.

A deuterium gas is introduced into a high vacuum chamber. An accelerating

voltage of several kV is high enough to cause the deuterium (electron orbiting

a nucleus containing a proton and a neutron) nuclei to fuse, thus producing

free neutrons. Farnsworth and Hirsch could obtain a neutron flux up to 1012

neutron/sec. Although hopes were high that it could be developed into a prac-

tical power source, later experiments that intended to turn it into a generator

have failed.

The resulting neutrons are cheaper and lighter than standard ones and therefore

could find applications in material science, nuclear research and medicine.
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cases of normed linear spaces whose norm has the parallelogram property
‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2.

Banach contributed to the theory of orthogonal series and made innova-
tions in the theory of measure and integration. His major publication is his
book Théorie des Opérations linéaires (1932). His textbook Mechanics517

(1938) is among the best treatises ever written on this subject.

Banach was born at Kraków. He started his academic career as a lecturer
in mathematics at the Lwów Polytechnic Institute (1919), and became a full
professor in 1927.

1922–1941 CE Oleg Vladimirovich Losev518 (1903–1942, Russia). A
self-taught radio engineer and inventor. Pioneer of semiconductor electronics:
first to discover (1927) that semiconductor junctions emit light519 (what we
now know as LED) and first to foresee its use in telecommunications520. His
observations languished for half a century before being recognized in the late
20th and early 21th century. In addition, Losev developed novel kinds of

517 For further reading, see:

• Banach, S., Mechanics, Nakladem Polskiego Towarzystwa Matematycznego:
Warszawa-Wroclaw, 1951, 546 pp.

518 See: Loebner, E.E., Subhistories of the light-emitting diode, IEEE Transactions

on Electron Devices, pp. 675–699 (1976). Also: Zheludev, N., The life and times

of the LED – a 100-year history, Nature Photonics 11, pp. 189–192 (2007).
519 See:

• Losev, O.V., Luminous Carborundum Detector and Detection with Crystals,

Phil. Mag. 6, pp. 1024–1044 (1928) and Telegrafia i Telefoniya bez Provodov
44, pp. 485–494 (1927).

• Losev, O.V., Physik Zeitschr 30, pp. 920–923 (1929); 32, pp. 692–696 (1931);
34, pp. 397–403 (1933).

• Losev, O.V., Soviet Patent #12191 (1929).

520 In February 1907, Henry J. Round (1881–1966), one of Marconi’s assistants

in England, published a 24-line note in Electrical World reporting a “bright

glow” from a carborundum diode. There was no follow-up publication, and

apparently this small note was not known to Losev. It is not appropriate to

credit Round with the invention of LED, but he should be recognized as the

discoverer of the phenomenon of electroluminescence. In 1962, four research

groups in the U.S. simultaneously reported a functioning LED semiconductor

laser based on gallium arsenide crystals, thus opening the field of solid-state

optoelectronics.
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crystal radio sets (with new crystals he fabricated himself) and was the first
to study the effects of bias voltage upon the functioning of crystal diodes
in circuits, essentially discovering “negative resistance” before the tunneling
diode, as well as a pre-ATT version of the transistor and associated amplifiers.
He then constructed completely solid-state radios that function up to 5 MHz,
a quarter century before the transistor (1956).

Losev was born in Nizhniy to a high-ranking family in imperial Russia and
served as a captain in the Czarist military. He received no formal education
but during the span of his short research career he published 43 papers in
leading Russian, British and German research journals and was granted 16
patents, of which he was the sole author.

In the mid 1920s Losev observed light emission from zinc oxide and sili-
con carbide crystal rectifier used in radio receivers when a current was passed
through them. Losev’s first paper on the emission of silicon carbide diodes,
entitled “Luminous carborundum [silicon carbide] detector and detection with
crystals,” was published in 1927 by the journal Telegrafiya i Telefoniya bez
Provodov (Wireless Telegraphy and Telephony) in Nizhniy Novgorod, Russia.
Important publications in British and German journals soon followed. In his
first paper on the LED, Losev established the current threshold for the onset
of light emission from the point contact between a metal wire and a silicon
carbide crystal, and recorded the spectrum of this light. In the 16 papers
published between 1924 and 1930 he provided a comprehensive study of the
LED and outlined its applications. Losev understood the ‘cold’ (non-thermal)
nature of the emission, measured its current threshold, recognized that LED
emission is related to diode action and measured the current-voltage charac-
teristics of the device in detail. He also studied the temperature dependence
of the emission down to the temperature of liquefied air (a predominantly
nitrogen-based mixture of gases used at the time) and modulated the LED
emission up to the frequency of 78.5 kHz by applying an a.c. current to the
contact.

Most remarkably for a young technician with no academic qualifications,
Losev was acutely aware of many contemporary developments in physics. He
used Einstein’s quantum theory to explain the action of the LED and called
the emission process the “inverse photo-electric effect.” In addition, he pro-
posed a formula relating the voltage drop on the diode contact, V , the elec-
tronic charge, e, and the light emission frequency, ν, through Planck’s con-
stant, h, that is ν = eV/h. The formula is still in use to this day. Despite the
fact that semiconductor band theory had not yet been fully developed, Losev
was able to relate the effect in silicon carbide to the diffraction of the elec-
tron de Broglie matter waves. According to the prominent Russian physicist
Abram Ioffe, Losev wrote to Einstein asking him for help in further developing
the theory, but received no reply.
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In 1929, Losev published detailed measurements of LED spectra and
clearly observed their dependence on current. It is incredibly interesting to
see this data now, with the hindsight that the narrowing of the spectrum is
evidence of laser action: the 1962 reports of laser action in gallium-arsenide-
based diodes were underpinned by such spectral measurements. Did Losev
see, without understanding its importance, coherent laser radiation from an
LED in 1929? Perhaps not, but remarkably, the first significant blue LEDs
reinvented at the start of the 1990s used silicon carbide.

Losev was the first to understand the potential of the LED for telecom-
munications. In the introduction to his patent entitled ‘Light Relay’, which
was filed in 1927 and granted on 31 December 1929, he wrote: “The proposed
invention uses the known phenomenon of luminescence of a carborundum de-
tector and consists of the use of such a detector in an optical relay for the
purpose of fast telegraphic and telephone communication, transmission of im-
ages and other applications when a light luminescence contact point is used
as the light source connected directly to a circuit of modulated current.” Un-
known and uncelebrated, this should have been the beginning of the photonic
telecommunication revolution.

Losev was a lonely scientist who left no disciples and never had a co-
author. Being born into the noble family of a Russian Imperial Army officer
was not exactly a good starting point in Bolshevik Russia, where people of
such descent were banned from the career ladder. A self-made scientist who
attended a few university courses but never formally completed his education,
Losev was eventually awarded a PhD without a formal thesis by the Ioffe In-
stitute in 1938. The happiest and most productive years of his research work
were spent at the Nizhniy Novgorod Radio Laboratory before he moved to
Leningrad where, after years of hardship, he eventually found himself a posi-
tion as a humble technician at the Leningrad Medical Institute. According to
Losev’s recently discovered autobiography, he was nevertheless able to con-
tinue his research in Leningrad. He discovered that “using semiconductors,
a tree-terminal system may be constructed analogous to a [vacuum] triode”.
However, in November 1941 he was unable to pass the finished paper (pre-
sumably on an important silicon device) from the besieged city of Leningrad
to the evacuated editorial office of the Soviet Physics JETP (now Journal of
Experimental and Theoretical Physics) in Kazan. Was it a paper on what we
now know as a transistor? We shall never know for certain unless his manu-
script is found. Sadly, after he passed away in Leningrad during World War
II, his name was simply forgotten. In the difficult years that followed nobody
took the opportunity to propagate his knowledge or follow up the potential
revealed by his discoveries.
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1922–1942 CE Enrico Fermi (1901–1954, Italy and U.S.A.). Distin-
guished physicist. One of the chief architects of the nuclear age. Developed
the correct quantum-mechanical statistics for a class of subatomic particles,
discovered neutron-induced radioactivity and directed the first controlled nu-
clear chain-reaction in the framework of the Manhattan Project521. He was
awarded the 1938 Nobel prize for physics.

In 1922, Fermi generalized and extended the concepts of parallel vector
transport and geodetic coordinates. His constructions are known today as
‘Fermi transport’ and ‘Fermi coordinates’, respectively.

In 1926 he was first to develop a quantum-mechanical treatment of a gas
obeying the Pauli exclusion principle (‘Fermi-Dirac statistics). The class of
particles obeying these statistics are known as ‘fermions’, in his honor. In
1933, Fermi suggested for the first time the existence of the weak interactions
in the theory of beta decay, and coined the name ‘neutrino’ (“little neutral
one”).

Bombarding many elements with neutrons, Fermi showed in 1934 that
slow thermal neutrons are very effective in producing radioactive elements. He
presumed them (erroneously) to be heavier than uranium, not realizing that he
had actually split the atom. This work was taken up by Otto Hahn at Berlin,
who by 1937 had claimed the preparation of several trans-uranic elements with
atomic numbers ranging from 93 to 96. However, Frèdèric Joliot (1900–
1958, France) and Irène Joliot-Curie (1897–1956), working in Paris in 1938,
pointed out that the radioactive characteristics of the substances produced by
bombarding uranium with neutrons resemble those of much lighter radioactive
elements. They further showed in 1939 that the fission of uranium produces

521 Among the many stories told about Fermi, the following is most instructive: En-

listing in the Manhattan nuclear weapon project, the newly arrived immigrant

was brought face-to-face with U.S. flag officers. On being told that so-and-so

is a great general, Fermi asked for the definition of a ‘great general’. “A gen-

eral who won many battles”, he was told. “How many”, Fermi continued to

ask. They settled on five. “What fraction of American generals are great”,

asked Fermi again. The officers agreed on a few percent. Fermi was totally

unimpressed and explained why: Assume that there is no such thing as a great

general, that all armies are equally matched, and that winning a battle is purely

a matter of chance, like flipping an unbiased coin. Then the chance of winning

five consecutive battles is 1/32 which is about 3 percent. On the other hand,

the chance of winning ten consecutive battles is 1/1024, which is about 0.1 per-

cent. So few percent of American generals are expected to win five consecutive

battles, purely by chance, and that does not make them great ! Now, has any of

them won ten consecutive battles..?
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neutrons, which under suitable circumstances, could cause further fission in
other atoms in their vicinity.

Fermi designed the first atomic piles and produced the first nuclear chain
reaction in 1942. He later worked on the atomic bomb project at Los Alamos,
NM. After WWII, he pioneered in research on high energy physics.

Fermi was born in Rome. He studied at the University of Rome and
received a doctor’s degree from the University of Pisa in 1922. He became a
professor of theoretical physics at the University of Rome in 1926.

Fermi left Italy in 1938 to escape the Fascist regime, and settled in the
United States. He became a professor of physics at Columbia University in
1939. He then moved to the University of Chicago as a professor of physics
in 1942. Element number 100 was named after him (fermium).

1922–1964 CE Leo Szilard522 (1898–1964, Hungary, Germany and USA).
Physicist, biophysicist, inventor and “scientist of conscience”. A most cre-
ative, versatile and practical scientist, and politically far-sighted. A key-figure
in the birth of the nuclear age — “The man behind the Bomb”.

Pioneered in the development of nuclear energy. Szilard’s ideas included
modern information theory523, electromagnetic pump for refrigeration (with
Einstein), the linear accelerator, cyclotron, electron microscope, nuclear chain-
reaction, isotope separation, chemostat. He was instrumental in establishing
the Manhattan Project, but at the same time insisted that scientists accept
moral responsibility for the consequence of their work.

Born Leo Spitz524 in Budapest to an assimilated Jewish family. Young
Szilard grew up with no personal religious beliefs or traditions. Yet from

522 For further reading, see:

• Lanouette, W., Genius in the Shadows, University of Chicago Press, 1992,
587 pp.

523 Some 30 years ahead of Claude E. Shannon, Szilard (1922) linked the con-

cepts of information and entropy. In 1947, John von Neumann reconsidered

Szilard’s ideas and later urged Shannon to use the term”entropy” in his work.

By the early 1950’s, around Columbia University, Szilard also discussed his

information-entropy ideas with physicist Léon Brillouin. Szilard did not seek

to tie his early insights to later commercial developments. Not until the 1970s

and 1980s, however, did Szilard’s role in information theory gain the attention

of a wider scientific community.
524 In 1900, his father Louis Spitz, a prosperous building contractor, changed his

name to Szilard, yielding to growing government pressure for the magyarization

of foreign-sounding names. In Hungarian, Szilard means “solid”.
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his mother he did acquire a strongly held ethical views, abstract ideals such
as honesty and loyalty, independence of mind and defiance of social conven-
tions. He escaped from Hungary (1919) to study engineering at the Technical
Institute in Berlin. He transferred (1920) to the physics department of the
University of Berlin, where he studied under physicists Max Planck, Max
von Laue, James Franck and Albert Einstein. His thesis, under von Laue
(1922), became a cornerstone of modern information theory. Filed a patent
with Einstein (1927) for an electromagnetic pump, which became the basis of
cooling systems in “breeder” nuclear reactors in the 1950’s and 1960’s.

A refugee in England (1933–1938), he turned to nuclear physics, seeking
the element which would yield a nuclear chain-reaction and lead to atomic
power and bombs. Developed the idea of a nuclear “chain-reaction” (1933;
patented 1934) and the concept of “critical mass” to create it.

With T.A. Chalmers, developed (1934) first method of separating iso-
topes of artificial radioactive elements.

Szilard came to the US in 1938 and collaborated with Fermi to design the
first nuclear reactor at Columbia University (1939). Early in 1939 (after the
discovery of Uranium fission in Germany) prompted, with Wigner, Einstein’s
letter to President Roosevelt warning him of atomic weapons — an alert that
led to the creation of the Manhattan Project to develop A-bombs.

With Fermi (1942), he put at Chicago into operation the world’s first
chain-reaction atomic “pile” (reactor) of their design.

Szilard became a central figure in the Manhattan Project, and after WWII
became a strong proponent of the peaceful uses of atomic energy. He then
turned to biology, developed the chemostat and theories of aging and of mem-
ory and recall. He died at La Jolla, California.
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Worldview XXXIX: Szilard

∗ ∗∗

“An expert is a man who knows what cannot be done.”

∗ ∗∗

“If you want to succeed in the world you don’t have to be much cleverer than
other people; you just have to be one day earlier...”

∗ ∗∗

“Here in America you are expected to keep busy all the time - it does not
matter so much what you are doing as long as you are doing it fast.”

∗ ∗∗

“In our society, there is a market for skills and knowledge. But I have some
doubts if there is much of a market for wisdom.”

∗ ∗∗

“A university runs on the happiness of the faculty: see that they are well
paid, that their offices are comfortable, their graduate assistants are bright
and eager, and that the faculty club food is appetizing. Then you will have a
first-rate university.”

∗ ∗∗

“That is not how my brain works. I have no idea where my thought come
from and no control over where they go”

(As he refused to sign an agreement that his inventions were ‘General
Atomic’ property)
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∗ ∗∗

“Logical thinking and an analytical ability are necessary attributes to a sci-
entist, but they are far from sufficient for creative work. Those insights in
science which have led to a breakthrough were not logically derived from pre-
existing knowledge; the creative process on which the progress of science is
based operate on the level of the subconscious.”

∗ ∗∗

“There were those who would never forgive me for being right.”

On Szilard

∗ ∗∗

“During a long life among scientists, I have met no one with more imagination
and originality, with more independence of thought and opinion”.

(Eugene Wigner)

∗ ∗∗

“If the uranium project could have been run on ideas alone, no one but Leo
Szilard would have been needed”.

(Eugene Wigner)

∗ ∗∗
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“The only secrets then, worth protecting were not in government files but
solely in the minds of “enemy aliens” Fermi and Szilard”.

(William Lanouette)

[ Refereeing to U.S. military security report (1940) on Szilard, recommending

to discontinue his work on the A-bomb for being an enemy agent]

∗ ∗∗

“What he had to say was always of profound and original kind”.

(Erwin Schrödinger)

∗ ∗∗

“Szilard belongs to the group of people who, through their richness of ideas,
create an intellectual environment for others”.

Albert Einstein

∗ ∗∗

“ Exotically original, versatile, and innovative intellect. A very rare example
of a man, because of his combination of great purely scientific acumen and
his ability to immerse himself in and solve technical problems”.

(Paul Ehrenfest)

∗ ∗∗

“Szilard was as generous with his ideas as a Maori chief with his wives.”

(Jacques Monod)
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1923 CE Johannes Nicolaus Brönsted (1879–1947, Denmark). Che-
mist. Professor at Copenhagen (1908–1947). Developed (with T.M. Lowry)
a theory of acids and bases525 (1923); suggested that acids give up a hydrogen
ion in a solution and that bases accept a hydrogen ion in a solution, virtually
the modern concept of acids and bases. It is known as the donor-acceptor
theory and is especially useful for reactions in aqueous solutions. It is widely
used in medicine and the biological sciences.

According to the theory an acid is a proton donor, H+, and a base is
defined as a proton acceptor. These definitions are sufficiently broad that
any hydrogen-containing molecule or ion capable of releasing one or more
protons, H+, is an acid, whereas any molecule or ion that can accept a proton
(or several) is a base. An acid-base reaction is the transfer of a proton from
an acid to a base.526

Brönsted and Lowry presented logical extensions of the Arrhenius theory:
H+ ions in water are not bare ions but exist as H+(H2O)n in which n is a
small number (due to hydrogen bonds). This is because of the attraction of
the H+ ions (protons) to the oxygen end of the water molecule. Indeed, when
two water molecules collide, the collision sometimes results in auto-protolysis,
creating a hydronium

H3O+ ∼ H—
..

O—H+ ∼ H+(H2O)
|
H

and a hydroxide:
2H2O � H3O+ + OH−.

For example, the complete ionization of hydrogen chloride, HCl (a strong
acid) in water, is an acid-base reaction in which water acts as a base (a
proton acceptor):

525 The history of this concept goes back to Robert Boyle (1680) who noted that

acids dissolve many substances, change the colors of some natural dyes and

lose their characteristic properties when mixed with alkalis (bases). By 1814,

Gay-Lussac concluded that acids neutralize bases and that the two classes of

substances should be defined in terms of their reaction with each other.

In 1844 Svante Arrhenius presented his theory of base reactions. In his view

acid is a substance that contains hydrogen and produces H+ in aqueous solution.

A base is a substance that contains the OH group and produces hydroxide ions,

OH−, in aqueous solution. Neutralization is defined as a combination of H+

ions with OH− ions to form H2O molecules.
526 However, another definition by Lewis holds that a base donates electron pairs

(Lewis base), while an acid accepts electron pairs (Lewis acid).
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Step 1: HCl (aq) → H+ (aq) + Cl− (aq) (Arrhenius description)

Step 2: H+ + H2O → H3O+

Overall: HCl (aq) + H2O → H3O+ + Cl− (aq)

Due to this reaction, every liter of pure neutral water at STP has 10−7 mol527

of protons in the form of hydronium, counterbalanced by 10−7 mol of OH−.
This is responsible for the electrical conductivity of pure water. When the
water is not pure it may become more conductive due to the presence of ions.

1923, Sept 01 CE Earthquake destroys Yokohama, Japan and much of
Tokyo; over 140,000 perish in the quake and its subsequent fire.

The industrial society of the 20th century made earthquakes more haz-
ardous, mainly by gathering more people into cities528.

1923–1928 CE Juan de la Cierva Codorniu (1896–1936, Spain). Aero-
nautical engineer. Invented the first successful Autogiro, forerunner of the
helicopter. This aircraft was first flown in 1923. In 1928, Cierva piloted an
Autogiro across the English Channel.

Autogiro is a type of heavier-than air craft that is supported in the air by
a rotor instead of by fixed wings, as an airplane is. The rotor spins by itself
freely as it passes through the air. The Autogiro’s engine rotates a propeller
on the front of the fuselage.

In contradistinction to the helicopter, which always has its rotor revolve
by an engine, an autogiro must run along the ground before the rotors can
revolve fast enough to lift it. While flying, the rotor is disconnected from the
engine, but the blades continue to revolve because of the air pressure against
them. Thus, while the nose propeller pulls the plane forward, the generated
air stream creates a lift force on the rotor blades. The blades are hinged at
their hubs and made slightly flexible; the advancing blades thus yield to the
air pressure and rise, while the retreating blades flap downward against the
rise. The tilt of the rotor blades can be controlled, in order to turn the craft
in a desired direction.

1923–1929 CE Vladimir Kosma Zworykin (1889–1982, Russia and
U.S.A.). Physicist, electronic engineer and inventor. Invented the icono-
scope, the first television transmission tube [an electronic tube that converts

527 We say that the pH of pure water is 7, where pH = − log[H+].
528 In a sparsely settled rural areas, huge release of energy may harm few. The

New Madrid earthquakes of Dec 16, 1811 – Feb 07, 1812 were strong enough

to reshape the landscape, alter the course of the Mississippi and cause damage

hundreds kilometers away from the epicenter. Yet but a few lives were lost.



3598 5. Demise of the Dogmatic Universe

light rays into electric signals and acts as a television camera suitable for
broadcasting] and the kinescope [the picture tube used in television receivers].

He was also largely responsible for developing and perfecting the electron
microscope (1939).

Zworykin was born in Murom, 320 km east of Moscow. He studied at the
St. Petersburg Institute of Technology. There he came under the influence
of Boris Rosing, a professor who was trying in 1910 to transmit pictures
by wire in his own laboratory employing a mechanical disc scanner in the
transmitter and the primitive K. F. Braun cathode ray tube in the receiver.

After graduation (1912), Zworykin went to College de France in Paris
where he studied X-rays under Paul Langevin. With the Russian Revolu-
tion, Rosing went into exile and died. Zworykin carried on his work: he left
for the United States (1919) and soon joined the staff of the Westinghouse
laboratory in Pittsburgh. In 1923 he demonstrated his scanner before offi-
cials at Westinghouse, but the company did not find his system worthy of
investment.

He continued to perfect it and after using a key idea of Farnsworth
(1930), demonstrated his all electronic television system to the Institute of
Radio Engineers. In attendance was David Sarnoff who hired Zworykin to
develop his commercial television system for RCA. By 1933 a complete elec-
tronic system was being employed with a resolution of 240 lines, Zworykin’s
television system provided the impetus for the development of modern tele-
vision as an entertainment and educational medium.

He also developed a color-television system (1928) and made innovations
in the electron microscope. His electron image tube, sensitive to infrared light,
was the basis for the sniperscope and the snooperscope, devices first used in
WWII for seeing in the dark. His secondary-emission multiplier was used in
the scintillation counter, one of the most sensitive radiation detectors.

In later life Zworykin lamented the way television had been abused to
titillate and trivialize subjects rather that being used for the educational and
cultural enrichment of audiences.

The Advent of Television

Black-and-white television camera (iconoscope) utilizes the cinemato-
graphic projection principle; a picture rate of at least 25 frames per second
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produces the visual impression of a continuous motion: The image is divided
into a large number of “picture elements”. This means that the picture is
divided into a number of lines (say, 625), and each line must contain several
hundred individually identifiable light values. This is known as scanning. To
obtain a reasonably good picture, the image must be thus analyzed into at
least 200, 000 picture elements.

In the television camera the image is focused on a plate called the sig-
nal plate whose surface is covered with a mosaic of photosensitive elements.
Each of these points, corresponding to one picture element, acquires a positive
electric charge whose magnitude depends on the strength of the illumination
falling on it. An electron beam, forming a scanning spot on the signal plate,
zig-zags its way, line by line, across the plate every 1

25 second and thus dis-
charges each photosensitive point 25 times per second. Each point thus gives
an electric impulse whose strength corresponds to the strength of illumination
at that point at that particular instant. These impulses (forming the picture
signal) are amplified and transmitted.

In the television receiver, the incoming impulses, after amplification, are
fed to the control electrode of the picture tube (cathode ray tube), in which
an electron beam is zig-zagged across a fluorescent screen synchronously with
the beam in the camera tube and with an intensity varying with the strength
of the incoming electric impulses. In this way a pattern of luminous points of
varying brightness, and formed in rapid succession, is produced on the screen,
thus making the picture that the viewer sees.

The picture signal can be conveyed to the receiver by cable or by wireless
broadcasting of high-frequency short waves. These signals are only able to
travel in straight paths from the transmitter, so that, because of the earth’s
curvature the range is limited to the visual horizon. It is for this reason that
television transmitters are installed on tall masts or towers, which have to
be spaced about 75 km apart in order to provide good television coverage
throughout the region529.

1923–1929 CE Hermann Julius Oberth (1894–1989, Romania and Ger-
many). Among the three pioneering progenitors of the modern space age.

529 At the turn of the 21st century, commercial television broadcasts via satellites

are widely being used.
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Published The Rocket into Interplanetary Space in 1923. In this book,
Oberth discussed many technical problems of space flight. He even described
what a spaceship should look like.

Interest in Oberth’s book in Germany led to the formation of the German
Society for Space Travel. The members of this society helped develop the first
successful guided missile during WWII. In 1924 Oberth published his second
book, Way to Space Travel (Wege zur Raumschiffahrt).

Oberth was born in Sibiu, on the northern slopes of the Transylvania Alps
(now in Romania). After serving in the German medical corps in WWI, he
graduated in physics and astronomy from Heidelberg University. His preoccu-
pation with spaceships and space-travel problems was not appreciated by his
peers and he spent most of his scientific career as a university teacher in Ro-
mania. During WWII he was distrusted by the Nazis and was not permitted
to do serious work in Peenemuenda.

After the war he was arrested by the Americans, together with Werner
von Braun and Walter R. Dornberger. But while the latter were moved
to the U.S.A. to help develop American space rockets, Oberth was ignored,
despite his potential theoretical capabilities. Yet, when new theoretical prob-
lems hindered the development of the big rockets at Huntsville, Alabama,
Oberth was rushed there. He returned to West Germany in 1958.

1923–1947 CE Victor Moritz Goldschmidt (1888–1947, Norway and
England). A pioneer geochemist. Justly called the father of geochemistry .
Devoted most of his professional life to an attempt to find the laws underlying
the frequency and distribution of the various chemical elements in the earth.
His discovery of the fundamental relationship between crystal structure and
chemical constitution laid the foundation of crystal chemistry. He was first
to predict the formation of specific minerals from specific combinations of
elements and geological conditions.

Goldschmidt was born in Zürich, a son of a distinguished physical chemist.
In 1905 he moved with his family to Oslo. After studying geology, mineralogy
and chemistry at Oslo, he was appointed full professor and director of the
Minerological Institute (1914). In 1929 he accepted a similar appointment at
Göttingen, Germany. As a Jew, he was forced to resign shortly after the Nazis
came to power. He was immediately granted a chair at Oslo but became a
refugee when the Germans invaded Norway. He escaped to England, where
he spent most of the remainder of his life.

1923–1955 CE Francesco Giacomo Tricomi (1897–1978, Italy and
USA). Applied mathematician. Contributed to the theories of differential
and integral equations, functional transforms, special functions, probability
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theory and its applications to number theory. Certain equations530 and spe-
cial functions are named after him.

Tricomi studied at the University of Bologna, then at the University of
Naples. Prior to WWII he held academic appointments at the universities of
Padua, Rome, Florence and Torino.

In 1946 Tricomi joined the Bateman-project team (headed by Arthur
Erdelyi at the California Institute of Technology). He returned to Torino
(1950) and continued to work there on various topics of applied mathematics.

1924 CE Ethel Browne Harvey (1885–1965, U.S.A.). Biologist and em-
bryologist whose studies of induction preceded those of Nobel laureate Hans
Spemann (1935) by more than 10 years. An investigator at Princeton Uni-
versity for 25 years, she was never made a full professor.

Harvey, working on the mechanics of embryologic development, was first
to discover the directive function (embryonic induction) of certain tissues.

1924 CE Paul Marsh Ramey531 (b. 1896, United States). Inventor and
electrical engineer. Invented and completely worked out the signal trans-
mission method of Pulse Code Modulation (PCM). It is the basics of digital
audio and used in voice transmission and reproduction. This ground-breaking
work was then apparently forgotten. The idea was reinvented (1939) by
A.H. Reeves (1902–1971; England), forgotten again and finally resurrected
during WWII by the Bell Labs during a research into the method of encoding
phone conversation.

Modulation, in communication, is a process in which some characteristic of
a wave (the carrier wave) such as: amplitude, frequency or phase, is made to
vary in accordance with an information-bearing signal wave (the modulating
wave); demodulation is the inverse process by which the original signal is
recovered from the modulated wave. The original, unmodulated wave may be
of any kind, such as sound or, most often, electromagnetic radiation including

530 He studied (1923) the equation y ∂2u
∂x2 + ∂2u

∂y2 = 0 now known as the ‘Tricomi

equation’. This equation became important in describing an object moving at

supersonic speed, but in 1923 there were no supersonic aircraft yet.
531 The Ramey (Remi, Remy) family tree goes back to a tribe in Gaul (Northern

France and Belgium). The family was represented in French history by Bishop

Saint Remi of Rheims (437–533). A millennium later, Jacques Remy (b. 1547)

became a Hugenot and was killed, and so was his son Pierre. Pierre’s son,

Jacques fled to England and them emigrated to Virginia (1654), establishing

the Remy-Ramey branch in North America.
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optical waves. When the carrier is a train of regularly recurrent pulses, PCM
ensues.

The modulation, in this case, might vary the amplitude (PAM = Pulse
Amplitude Modulation), the duration of the pulse (PDM = Pulse Duration
Modulation) or the presence of the pulses (PCM). PCM can be used to send
digital data532; (audio signals on a compact disc use pulse code modulation).
PCM is the most important form of pulse modulation because it can be used
to transmit information over long distances with very little interference or
distortion. For this reason it has become increasingly important in the trans-
mission of data in the space program and between computers. Although PCM
transmits digital instead of analog signals, the modulating wave-train is con-
tinuous.

1924 CE First circumnavigation of the globe by four United States Army
airplanes.

1924 CE Louis Victor de Broglie (1892–1987, France). Distinguished
physicist. Expressed the idea of general wave-particle dualism and attributed,
for the first time, wave qualities to material particles. This was the final
synthesis of the 300-year old debate that started in the days of Newton and
Huygens.

Broglie was led by two trains of thought to this assumption:

(1) An interpretation of Bohr’s stationary state of the atom in terms of
standing waves of discrete vibrational states, like those of a string or a drum
but with azimuthal sinusoidal variation (for circular orbits).

(2) The application of the basic Planck energy relation E = hν to material
particles as well as to photons. By using special relativity, this becomes the
covariant relation pμ = �kμ, where � = h

2π , pμ = (E, pc) is the particle
four-momentum, and kμ = (ω, kc) is the wave 4-vector.

532 The input is sampled periodically at a rate of 8000 times per second for tele-

phone systems (8 bit) and at a rate of 44, 000 times a second for audio CD (16

bit). Shannon’s sampling criterion (which state that the sampling frequency

must at least be double the highest frequency to be transmitted) has been

taken into account. Since digitizing assigns a specific (binary) number for any

input amplitude, and only a given number of amplitudes are available (e.g. 256

for 8-bit digitizing of phone conversations), chances are that the assigned num-

ber will be a little too big or a little too low compared to the actual input.

This creates an error called quantization error, producing quantization noise at

the output. To partially remedy this situation, digitization values are assigned

closer together for long signal levels.
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This idea led him to associate with a particle of mass m a wave
exp {i(ωt − k · x)}, with the de Broglie wavelength λ = h

p , where p = |p| is
the particle’s momentum. These matter-waves satisfy the uncertainty princi-
ple, and possess a phase velocity u = ω

k = E
p , where E =

√
m2c4 + p2c2.

Here u exceeds c, but is dispersive; hence (just as in an electromagnetic
waveguide), the group-velocity of a wave-packet of average momentum p, is
V g = dω(k)

dk = pc2

E , the correct relativistic particle velocity.

Thus, although the crucial Schrödinger equation and probabilistic interpre-
tation are still lacking in de Broglie’s matter-wave theory, it already contains
much of the machinery of the nascent quantum mechanics. For the non-
relativistic regime, one obtains

λ =
h

p
=

h

mv
.

The theoretical predictions of de Broglie were verified through the first ex-
periments of electron diffraction by Clinton Joseph Davisson (1881–1958,
U.S.A.), Lester Halbert Germer (1896–1971, U.S.A.) and G.P. Thom-
son in 1927. These diffraction patterns are completely analogous to the X-ray
diffraction patterns of von Laue.

From electron diffraction measurements with crystal lattices of known lat-
tice constants, the wavelength of the material waves corresponding to a beam
of electrons may be determined. For electrons having velocity v after be-
ing accelerated through a potential difference V , one uses eV = 1

2mv2 and
λ = h

mv to obtain λe = 12.3√
V

Å, where V is measured in volts. For example,
an electron which has passed through a potential increase of 10,000 volts has
a wavelength of 0.12 Å, corresponding to hard X-rays.

De Broglie was born in Diepp [his grandfather, Albert, was prime minister
of France in 1877]. He was educated in Paris, became a professor of theoretical
physics at the Sorbonne in 1928 and won the Nobel prize for physics in 1929.

Broglie is the name of a noble French family which emigrated to France
from Italy in 1643. The head of the family, Francois Marie (1611–1656), took
the title of comte de Broglie. He distinguished himself as a soldier and died
as a general at the siege of Valenza. During the next 200 years, members of
this family served as marshals of France, statesmen, diplomats and cabinet
members.

The development of quantum theory in France was aborted by de Broglie,
despite his personal contribution to this theory in its early stages533.

533 S.P. Novikov, Amer. Math. Soc. Trans. (2) vol. 212, 2004.
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1924 CE Satyendra Nath Bose (1894–1974, India). Physicist. First in-
vestigated the statistics of identical and indistinguishable particles that are
not restricted by the exclusion principle534. This yielded the quantum theory
of the ideal gas (following the classical statistical thermodynamics of Boltz-
mann, with the sole change being the counting rule for microscopic states).

Bose gave a new derivation of Planck’s radiation formula, divesting it of
all supererogatory elements of electromagnetic theory and basing it on the
bare essentials535. Together with Einstein536 he established the new quantum

534 A principle unknown to Bose at that time (Pauli, 1925).
535 His derivation rests on replacing the counting of wave frequencies by the count-

ing of cells in one-particle phase space. Bose’s theory assumed a spin value of

1 for the light quanta (photon), at a time when the concept of the photon spin

had not yet been established (!). In all, Bose made three bold assumptions

(actually, shots in the dark) which later proved to be correct: photon num-

ber nonconservation, statistical independence of cells (not particles!) and the

removal of Boltzmann’s axiom of distinguishability.
536 Maxwell-Boltzmann statistics gives the probability distributions for systems of

distinguishable particles that are well described by the laws of classical New-

tonian physics. However, when the quantum nature of the particles becomes

important (such as at high enough densities or low enough temperatures), other

types of statistics must be used.

Quantum systems of indistinguishable, identical particles are distributed dif-

ferently depending on whether only one particle can be put into each state

(fermions) or there is no such limitations (bosons). Bose-Einstein statistics are

derived for indistinguishable, identical particles of integral spin angular mo-

mentum quantum number , s (particles called bosons for which s = 0, 1, . . . .)

Examples of bosons include photons, 4He atoms and Cooper electron pairs. The

Bose-Einstein distribution function is f(E) = 1

eαeE/kT −1
, where α = 0 if the

total number of particles is not conserved within the overall closed system (such

as photons in a cavity in blackbody radiation). For systems having a constant

total number of particles, α decreases to zero as the temperature is lowered.

Near a particular low temperature, this behavior causes the particles to drop

rapidly into the ground energy level. This “condensation” of particles is called

Bose-Einstein condensates (BEC) and is part of the explanation for superfluid-

ity (zero viscosity) of liquid helium, for BEC and for superconductivity .

Another “particle” that follows the Bose-Einstein statistics is the phonon, which

is the quantum of energy of the mechanical vibrational mode of a solid-state lat-

tice (actually a quasiparticle as it can exist only in solid lattice crystals). Since

the total number of phonons is not conserved we have eα = 1. It then follows

directly from the expression for f(E) that the average number of phonons per

lattice vibration mode (energy state), for frequencies that are much less than
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statistics, known thereafter as the Bose-Einstein statistics. It is one of two
known ways in which a collection of indistinguishable particles may occupy a
set of available discrete energy states. Aggregation of particles in the same
state, characteristic of particles obeying Bose-Einstein statistics, accounts for
the coherent streaming of laser light and the frictionless creeping of superfluid
helium as well as for the novel optical and acoustical properties of Bose-
Einstein Condensates (BEC).

Bose was born in Calcutta, India, and was educated there. He sent his
1924 paper to the Philosophical Magazine. It was rejected, and Bose sent it
to Einstein, asking him to consider it. Einstein personally translated it into
German and submitted it to the Zeitschrift für Physik .

1924–1926 CE Edward Victor Appleton (1892–1965, England). Physi-
cist. Explorer of the ionosphere. Discovered that the upper layer of the
ionosphere, called the F-region or Appleton layer, reflects radio waves. The
discovery established the possibility of radio communication over long dis-
tances, and was also fundamental to the development of radar. He was
awarded the Nobel Prize for physics (1947) for his discovery.

Appleton was born in Branford and matriculated at the University of Lon-
don at the age of 16. He was trained at St. John’s College, Cambridge and
studied under J.J. Thomson and Rutherford. Since 1919 he devoted himself
to scientific problems in atmospheric physics, using mainly radio waves. In
1924 Appleton began a series of experiments which proved the existence of
a reflecting layer in the upper atmosphere. By periodically varying the fre-
quency of the BBC transmitter at Bournemouth and measuring the intensity
of the received transmission 100 km away, Appleton found that there was a
regular fading in and fading out of the signals at night but that this effect
diminished considerable at dawn as the Kennely – Heaviside layer broke up.

Radio waves continued to be reflected by the atmosphere during the day
but by a higher-level ionized layer. By 1926 this layer (250 km above the
earth’s surface — the first distance measurement made by means of radio)
became generally known as the Appleton layer.

Appleton was involved in the initial work on the atom bomb.

(
k
h

)
T , is proportional to the temperature. At the other extreme (low temper-

atures), the average number of phonons per energy state will be proportional

to e−hν/kT .
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1924–1929 CE Hans Berger (1873–1941, Germany). Psychiatrist.
Recorded the first human electro-encephalogram (EEG). Discoverer of the
electric activity of the human brain537.

Electroencephalography (EEG) uses electrodes (made of lead, zinc, plat-
inum, etc.) attached to the intact skull and connected to an oscillograph. The
result is a visual picture of brain wave rhythms. Berger made seventy-three
EEG recordings from his fifteen-years-old son, Klaus. The first frequency he
encountered was the 10-hertz range, (8 to 12 Hz) which at first was called the
Berger rhythm, currently called Alpha rhythm brain wave. After five years of
investigation and re-examination of his results, he published his findings.

He reported that the brain generates electrical impulses or ‘brain waves’.
The brain waves changed dramatically if the subject simply shifts from sitting
quietly with eyes closed (short or alpha waves) to sitting quietly with eyes
opened (long or beta waves). Furthermore, brain waves also changed when
the subject sat quietly with eyes closed, “focusing” on solving a math problem
(beta waves). That is, the electrical brain wave pattern shifts with attention.
The publication of Hans Berger’s “On the Electroencephalogram of Man” in
1929 changed neurophysiology forever. Hans Berger thus earned recognition
as the “Father of Electroencephalography”.

Berger was born in Neuses, Thüringia, Germany. Received his M.D (1897)
from the University of Jena and in 1919 was appointed to the chair of psychia-
try and neurology. He was rector of the University (1927–1928) and professor
(1935–1938). He retired in 1938 and committed suicide in 1941.

After his findings were confirmed, the electroencephalogram was launched
into use for the study of normal and abnormal human brain activity. The
EEG revolutionized neurological and psychiatric diagnosis and made possible
specialized research in the neurological sciences. Today, the EEG is used in

537 In developing electroencephalography, Berger was fully aware that Richard

Caton (1842–1926), a Liverpool surgeon, had succeeded in 1875 in measuring

electrical potentials on the exposed cortex of experimental animals (rabbit and

monkey), and that he was thus the discoverer of the electrical activity of the

brain. Berger also knew about the further successes along this line achieved by

the Polish physiologist Adolf Beck (1863–1939) in 1891, and of the findings

of Russian workers. In 1912 a paper by the Russian physiologist Pravdich-

Neminski (1879–1952) for the first time illustrated a photographic record of the

electrical activity of the brain. He called it an “electrocerebrogram”. Pravdich-

Neminski’s electrocerebrogram was recorded from dogs with intact skulls by

means of the string galvanometer (Willem Einthoven, 1860–1927). Having

suffered many setbacks in his experiments, Berger’s reaction to this demonstra-

tion was that he should work harder.
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the clinical diagnosis of serious head injuries, brain tumors, cerebral infections,
epilepsy, and various degenerative diseases of the nervous system.

1924–1929 CE Edwin Powell Hubble (1889–1953, U.S.A.). As-
tronomer. Provided the first conclusive observational evidence for the expan-
sion of the universe, thus confirming the Friedmann-Lemâıtre solution of the
Einstein field equations of general relativity (1929). Founder of extragalactic
astronomy (1924).

Hubble was born in Marshfield, MO. At the University of Chicago he
earned undergraduate degrees in mathematics and astronomy, and was in-
spired by the astronomer George E. Hale (1910). However, he turned away
from astronomy and athletics (he was a fine boxer too), preferring to continue
the study law at Oxford University. In 1913 he joined the Kentucky bar, but
soon abandoned his law practice and returned to continue the study of astron-
omy at the University of Chicago and its Yerkes Observatory. He obtained
his Ph.D. in astronomy in 1917, and then served in WWI before settling down
to work at the Mount Wilson Observatory.

During 1922–1924 he centered his research on extragalactic phenomena,
and discovered that not all nebulae in the sky are part of the Milky Way
Galaxy, the vast star system to which the sun belongs. He found that certain
nebulae contain stars called Cepheid variables, for which a correlation was
already known to exist between periodicity and absolute magnitude.

Using the further relationship among distance, apparent magnitude, and
absolute magnitude, Hubble determined that these Cepheids are several hun-
dred thousand light-years away, and thus outside the Milky Way system, and
that the nebulae in which they are located are actually galaxies distinct from
the Milky Way.

This discovery, announced in 1924, forced astronomers to revise their ideas
about the cosmos. He thus settled the Shapley-Curtis debate once and for all:
the universe was recognized to be far larger and populated with far bigger
objects than anyone had seriously imagined — the realm of the galaxies.

Soon after discovering the existence of these external galaxies, Hubble un-
dertook the task of classifying them according to their shapes (1926) and ex-
ploring their stellar contents and brightness patterns. In studying the galaxies
Hubble made his second remarkable discovery — namely, that these galaxies
are apparently receding from ours, and that the further away they are, the
faster they are receding (1927).

The implications of this discovery were immense: the universe, long con-
sidered static, was expanding. Even more remarkably, Hubble discovered in
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1929, from observations of spectral redshift of starlight538, that the universe
was expanding in such a way that the ratio of the speed of a galaxy to its dis-
tance from us is nearly a constant (Hubble’s law). This constant is now called

538 A distant galaxy emits light that astronomers later (in today’s epoch) detect

on Earth. As the light travels through expanding space toward our Galaxy, its

wavelengths are steadily stretched. Finally, the light enters a telescope, and

the astronomers compare its spectrum with the spectra of other sources of light

in the laboratory and within our Galaxy, and in this way they measure the

amount of redshift. Invoking the cosmological principle, they assume that the

light-emitting atoms in the distant galaxy are identical to the corresponding

atoms in our Galaxy. The amount of redshift detected depends on how much

the universe has expanded between the time of emission and the time of recep-

tion. The redshift applies to the whole spectrum, extending from radio waves

to visible light to X-rays, and when one wavelength is doubled, all wavelengths

are doubled in the spectrum of the source.

The cosmic redshift is best interpreted as a result of the expansion of space in

the framework of GTR. Although the frequency shifts are in agreement with

a Special-Relativistic Big Bang model for low redshifts
(
z = Δν

ν

 1

)
, the fre-

quency of light is also affected by the gravitational field (and attendant space-

time curvature) of the universe, and it is not strictly correct to interpret the fre-

quency shifts of light from very distant sources in terms of a special-relativistic

Doppler effect alone (i.e., the frequency shift is not wholly the result of a rela-

tive motion in Minkowski spacetime that results in an STR Doppler redshift).

Distances between locally-comoving galaxies in an expanding homogeneous uni-

verse are proportional to the metric scale factor R(t).

The locally-measured wavelength λ of a ray of light traveling in extragalactic

space varies as R(t) (in the adiabatic approximation), t being the epoch — the

standard cosmological time (i.e. proper time since the Big Bang, as reckoned

by a comoving local frame) at the observing creatures’ galaxy. If λ0 is the

present (detected) wavelength and R(t0) = R0 the value of the scaling factor

at the present epoch, then λ
λ0

= R(t)
R(t0)

, where t, λ are, respectively, the epoch

at which the light was emitted and its wavelength as reckoned in the locally-

Minkowskian coordinate system comoving with its galaxy of origin. Redshift is

defined by z = λ0−λ
λ

, and hence the cosmic redshift is z = R(t0)
R(t)

− 1.

Assuming that (t0 − t) is small, we may Taylor-expand R(t) to find

R(t) = R0 − Ṙ0(t0 − t) + · · · , where Ṙ0 denotes the derivative of R w.r.t.

time, calculated at t = t0. It then follows that z = Ṙ0
R0

(t0 − t) + · · · . We

also have approximately, for the comoving coordinate of radial distance r,

R0r = c(t0 − t) + · · · . (In this comoving coordinate system r = const. for an

average galaxy, ignoring intra-cluster “peculiar” motions.)
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Hubble’s constant, H. Derived from theoretical considerations and confirmed
by observations, most astronomers believe the velocity-distance law has made
secure the concept of an expanding universe. (There are nonlinear GTR cor-
rections to the Hubble law at large redshifts.) It is not really a constant, since
it varies with the epoch.

Hubble’s original value for H in our present epoch was 150 km per sec-
ond per 1,000,000 light-years. Modern estimates, using more precise distance
measurements, place the value of H between 15 and 30 km per second per
1,000,000 light-years. The reciprocal of Hubble’s constant thus lies between
10 billion and 20 billion years, and this cosmic time scale serves as an approxi-
mate measure of the age of the universe. More precisely, H = Ṙ(t)/R(t) and
as R(t) ∼ t2/3 in today’s nearly flat, matter-dominated universe (it has been
thus since t ≈ t0/103), H ≈ 2

3t ; so, the current age of the universe as tallied
by a co-moving clock in our local galaxy cluster is estimated at t ≈ 2

3H .

Measurements in the 1990’s, utilizing tools such as the Hubble Space Tele-
scope and certain types of well-understood supernova explosions (replacing the
old Cepheid-variable stars as a distance yardstick to remote galaxies), have
narrowed the range of values considerably, and the age of the universe is now
thought to be about 14 billion years.

Whether in its Newtonian, STR or GTR form, Hubble’s law implies that,
on average, the universe and its evolution are seen to be independent of the
galaxy in which the observer happens to reside.

Since for small values of v
c

(c is the velocity of light in empty space,

v is the velocity of the receding source of light relative to the observer)

we can write z = λ0
λ

− 1 ≈ v
c

from the known STR Doppler formula, the

relation v = cz = HR0r embodies Hubble’s experimental results. Thus,

z ≈ Ṙ0
R0

(t0 − t) ≈ Ṙ0
R0

R0r
c

implies cz ≈ Ṙ0
R0

· R0r, which in turn yields H = Ṙ0
R0

(R0r is the approximate Euclidean distance from observer to the location of the

emitting object at the time of emission).

These linear relations, including Hubble’s law, require nonlinear modifications

for z of order 1 and higher. Quasars and many known galaxies have such high

z values.

The latest astronomical surveys have pushed the largest observable z values

to between 2 and 3 for discrete objects. The 2.7 ◦K background radiation has

undergone a redshift of order 103, since that radiation was emitted in the re-

combination epoch, when the comoving-frame cosmic average temperature was

T ∼ 3000 ◦K. (T (t) scales with 1
R(t)

and R(t) ∼ t2/3 in the post-recombination,

matter-dominate epoch, so t0/trecomb ∼ (103)3/2; with t0 ∼ 1.4 × 1010 y,

trecomb ∼ 400, 000 y.)
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Thus, the prophetic words of cardinal Nicolas of Cusa (1401–1464) and
Blaise Pascal (1623–1662) were vindicated: “The fabric of nature has its
center everywhere and its circumference nowhere”.

How old is the Universe?

The age of the Universe has been a subject of religious, mythological and
scientific importance. On the scientific side, Newton’s guess for the age
of the Universe was only a few thousand years. Einstein, the developer
of the General Theory of Relativity, preferred to believe that the Universe
was ageless and eternal. However, in 1929, observational evidence proved his
fantasy was not to be fulfilled by nature.

In order to understand this evidence, let’s think about how a train sounds
to a person standing on the platform. An arriving train emits tones that are
higher pitched as the train approaches the listener while a departing train
emits tones that get lower pitched as the train recedes from the listener. This
change in the observed pitch of the train sounds is called a Doppler shift.

The Doppler shift happens with light as well as with sound. A source of
light that is approaching the viewer will seem to have a higher frequency than
a source of light that is receding from that viewer. In 1929, observations of
distant galaxies showed that the light from distant galaxies behaved as if they
were going away from us. If all the distant galaxies are receding from us on
the average, that means that the Universe as a whole could be expanding. It
could be blowing up like a balloon, retaining the relative distances of its main
“landmarks”, on average.

This is what tells us that the Universe probably does have a finite age; it
probably is not eternal and ageless as Einstein wanted to believe.

We know from studies of radioactivity of the earth and nuclear reactions
in the sun that our solar system probably formed about 4.5 billions years
ago, which means that the universe must be at least twice that old, because
before our solar system formed, our Milky Way galaxy had to form, and
that probably took several billions years by itself (besides which, our galaxy
contains older stars than the sun, in some of which the heavier-than-Lithium
atoms comprising the sun were formed).
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However, we can’t do radioactive dating on distant stars and galaxies. The
best we can do is balance a lot of different measurements of the brightness
and distance of stars and the red shifting of their light to come up with some
ballpark figure. The oldest star clusters whose age we can estimate are about
12 to 15 billions years old.

So it seems safe to estimate that the age of the universe is at least about
15 billion years old, but probably not more than 20 billion years old.

As far as we can tell, the expansion of the universe started from a very
hot and dense state. From that state, it mushroomed and evolved into the
universe we know today. Cosmologists call that process of expansion the Big
Bang because in some phases, especially in the beginning, the process was
rather like an explosion.

Much of our understanding the Big Bang is gleaned by extrapolating be-
tween knowledge of particle physics today, projections from the mathematical
models of an expanding universe in general relativity, and astronomical and
astrophysical data. The Einstein equations give us a mathematical model for
describing how fast the universe would be expanding at what size and time,
given the energy densities of matter and radiation at that time. Our estimates
of the matter and radiation density of the early universe are based on the an-
cient light reaching us from the past in our night skies, and what we have
learned about elementary particle physics, through theory and experiment.

1924–1930 CE Frank Plumpton Ramsey (1903–1930, England). Phi-
losopher, mathematician and economist. Made important contributions to
the above-named disciplines. In each case the fields of investigation that he
opened came to be extensively developed only some thirty years after his
death. In mathematics he established a pair of theorems about infinite sets
which gave rise to an extensive new field, subsequently called ‘Ramsey the-
ory’. He is also known for translating Wittgenstein’s Tractatus into English
(1922).

1924–1935 CE Pavel Sergeevich Alexandrov (1896–1982, USSR).
Mathematician. Contributed to the development of algebraic topology (as
founded by Poincaré) and created a homological theory of dimension.

1924–1936 CE The Vienna Circle (Wiener Kreis): A philosophical move-
ment active during the period between the two World Wars; brought together
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a group of Logical Positivists, led by Moritz Schlick539(1882–1936). The ma-
jority were scientists and mathematicians uninterested in metaphysical prob-
lems as such.

Leading figures in the Vienna Circle were: Otto Neurath (1882–1945);
Rudolf Carnap (1891–1970); Richard von Mises (1883–1953); Hans Re-
ichenbach (1891–1953); Kurt Gödel (1906–1978) and others. With the rise
of Nazism, many of the Vienna group fled Austria and joined the faculties of
British or American universities.

According to the Vienna Circle, Logical Positivism (alias Logical Em-
pirism, Neo-Positivism or Analytic Philosophy) dethrones all philosophies,
except the philosophy of language. It differs from Comte’s positivism in
holding that all rational doctrines are meaningless. It claims that the unan-
swerable questions about causality and determinism are unanswerable just
because they are not genuine questions at al; What is left for philosophy is
the critique of language. Its result is to show that all genuine knowledge
about nature can be expressed in a single language common to all sciences;
Emphasis was given to the study of the limitations of the true sentences about
nature. Thus, any ‘necessary truth’ was conceived as derivable from a rule of
language or mathematics.

Although Wittgenstein (1889–1951) was not a member of the Vienna Cir-
cle, his Tractatus Logico-Philosophicus (1921) became one of the foundation
treatises of Logical Positivism.

The Chemical Structure of Sex Hormones (1927–1935)

The sex hormones, cortisone, cholesterol and vitamin D — all have a ‘bee’s
honeycomb’ structure containing 4 saturated hydrocarbon rings, known as the
steroid ring structure.

The male sex hormones (androgens) are produced in the testes. Of these,
testosterone (C19H28O2) stimulate the development of the secondary male
sexual characteristics, such as a deep voice and facial hair. It is converted in

539 Assassinated by a Nazi student on the steps of the Vienna University library

on June 22, 1936.



1924 CE 3613

the body into androsterone (C19H30O2), which is excreted in the urine. Its
principal function is to stimulate the development of the male reproductive
organs.

The female sex hormones are formed in the ovaries, It consists of es-
trogens [estrone (C18H22O2); estradiol (C18H24O2); estriol] and progesterone
(C21H30O2).

Estrogens help to develop the secondary female sexual characteristics that
take place at puberty, control the menstrual cycle and are active during preg-
nancy, e.g. estrone is responsible for the cycle of ovulation. Both estradiol
and estrone are found in the urine during pregnancy. Progesterone inhibits
the release of ova (eggs) from the ovaries and aids in the maintenance of preg-
nancy. Relatively small quantities of sex hormones are required to instigate a
particular activity. A great deal of effort, however, is required to exhibit even
small quantities of sex hormones from animal tissues. Only 16 mg of estradiol
can be obtained from 20 tons of hog ovaries.

The road to chemical identification of the sex hormones was opened in
1927 when Selmar Aschheim (1878–1965) and Bernhard Zondek (1891–
1966), then in Berlin, discovered that the urine of pregnant women contained
amounts of the hormone, sufficient to produce sexual heat in mice or rats.
Adolf Windaus540 (1876–1959) was asked by a German chemical firm to ex-
plore this substance. Involved at the time in the vitamin D research, he elected
to turn over the new problem to his student Adolf Butenandt (1903–1995).
The student plunged into the task of isolating the hormone. In the meantime
Edward Adelbert Doisy (1893–1986, USA), of the ST. Louis University
School of Medicine, also set to identify the active substance. Working inde-
pendently, both Butenandt and Doisy succeeded to isolate the first known sex
hormone — estrone. Soon after, Butenandt deduced the correct structure of
estrone.

The discovery and analysis of the male sex hormone testosterone followed
a similar pattern. In 1931 Butenandt isolated from 15, 000 liters of male urine,
15 milligrams of a hormonal substance which he named androsterone. From
his tiny pile of crystals, hardly enough to cover the tip of a small spatula, Bu-
tenandt derived a great deal of information about the nature of the molecule.
He tentatively deduced its structure, and his deduction was independently
proved correct by Leopold Ruzicka (1887–1976) of Zurich, who produced
androsterone by splitting off the eight-carbon side chain from a derivative of
cholesterol through oxidation.

540 Received the Nobel Prize for chemistry (1928) for studying sterols and their

connection with vitamins.



3614 5. Demise of the Dogmatic Universe

Androsterone was obtainable only in very small amounts, either by syn-
thesis or by extraction from urine, but Butenandt, Ruzicka and others soon
succeeded in synthesizing a related substance which could be produced in
more plentiful yield. This substance, named hydroepiandrosterone, was made
from cholesterol by burning off the side chain, while the essential hydroxyl
group attached to the first ring and the double bond at the 5, 6 position
in the second ring were protected by stable chemical combinations of those
positions. With the more plentiful working material at hand, the investiga-
tors were able to synthesize a number of interesting products, some of which
proved more potent than androsterone in hormonal activity.

Meanwhile Ernst Laqueur extracted pure testosterone from bull’s tes-
ticles. Shortly thereafter, Butenandt and Ruzicka synthesized testosterone
from dehydroepiandrosterone. It became clear that testosterone was the true
hormone.

In 1934, four research groups isolated from the corpus luteum tissue in
sow ovaries the pregnancy hormone — progesterone. Butenandt obtained 20
milligrams of the hormone from the ovaries of 50, 000 sows. The structure
of progesterone, very similar to that of testosterone, was soon inferred from
its chemical properties and ultraviolet analysis. Butenandt promptly syn-
thesized progesterone by two methods, one of which was the oxidation of a
substance called pregnenolone, a by-product of the production of testosterone
from cholesterol.

At this dramatic point in the development of the chemistry of the sex
hormones, and after the establishing of the structure of cholesterol (1932),
there came a breakthrough in another field which was to open a more fertile
route for production of the hormones — a new surge of intensive research on
the extraction of hormones from plants.

1924–1939 CE Walter Andrew Shewhart (1891–1967, USA). Statisti-
cian. Pioneered modern thinking and developed statistical methods for quality
control of industrial processes, which were subsequently applied to measure-
ment processes in science. To this end he brought together the disciplines of
statistics, engineering and economics. His main idea was to use statistics to
distinguish between ‘legitimate’ statistical fluctuations and sub-performances
that are more likely to be due to systematic errors such as a faulty machine,
under-qualified workers etc. In the sciences, his methods came handy in dis-
tinguishing ‘suspect’ data sets in empirical work.
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Shewhart was born in New Canton, Ill. He studied at the universities
of Illinois and California, receiving his Ph.D. in Physics from UC Berkeley
(1917). Most of his professional career was spent as an engineer at Western
Electric (1918–1924) and at Bell Telephone Laboratories (1925–1956).

Shewhart presented a powerful and convincing case for establishing stan-
dards of economic quality using a statistical methodology that recognized the
importance of achieving and maintaining stability in the processes of pro-
duction and supply. And he showed how these standards of quality must be
standards by which the consumer may judge the quality of product, and which
in themselves represent the goal of the producer.

In conclusion, Shewhart observed that the engineer always likes to have
a goal to attain, and suggests that he and his superiors must have available
quantitative equations based on statistical understanding to define standards
of economic quality. Shewhart also noted that in the development of pro-
ductive science and the meeting of human want there is a balance between
economic value to the consumer of a development, and the cost to the pro-
ducer of such a development.

Quality Control

While studying physics Shewhart had become inculcated with the con-
cept of the exactness of physical laws, but when he became a practicing en-
gineer with Western Electric he increasingly realized that another, fresher,
concept was needed which matched more closely the real world of production
and business.

In May 1924 he presented his concept of a production control chart which
would “give at a glance the greatest amount of accurate information” about an
ongoing process and how to ensure that it is maintained in a state of economic
control.

He was thus the first person to identify the vital importance of removing
variation from all processes of production of goods and services, while at the
same time recognizing that at the human level this same understanding would
inevitably favor those organization that chose to replace win-lose competition
with win-win cooperation.
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In his 1931 book on the subject, Economic Control of Quality of Manufac-
tured Product, he encouraged his readers to ponder the subjects of psychology,
philosophy and logic so as to better understand the mechanism by which the
mind, its reasoning, and the practical world all work.

In May 1932 Shewhart was invited to London to present a series of papers
at University College where his work received a warmer welcome than in the
United States. The English response to Application of Statistical Methods to
Industrial Standardization and Quality Control (1935) stimulated a reawak-
ening of interest in the subject in the US.

The win-win cooperation is a better strategy from the point of view of
game theory: Indeed, before Shewhart, a great part of the thought and inter-
est of management and workmen in manufacturing establishments has been
centered upon the proper division of surplus resulting from their joint efforts.
The management have been looking for as large a profit as possible, and the
workers have been looking to maximize wages: the surplus was the balance
of selling price and the non-payroll costs associated with the manufacture of
an article sold. From the surplus would come both the workmen’s wages and
the management’s profit; the division of this surplus has generally been the
source of most trouble between management and labor.

Frequently, when management found the selling price going down they
have turned toward a cut in wages — toward reducing the workman’s share
of the surplus — as their way of preserving their profits intact. Gradually
the two sides have come to look upon one another as antagonists, and at
times even as enemies — putting their strength against each other bargaining,
strikes, layoffs etc.

While profit is clearly a prime measure of success of any organization
operating in an open market, it is not the only parameter within the complex
equation which defines human happiness and which must guide the thinking
of engineers and managers alike. There are other, less tangible parameters by
which management’s efforts must be gauged, such as quality, satisfaction etc.,
but profit is the most broadly accepted and therefore most universally useful.

Yet profit may be seen in two ways. Firstly, it can be the margin by which
the grand total cost of supply differs from the market price. Or it can be
seen as the margin between the market price and the lowest possible cost of
supply. In the first case profit is the seller’s margin; in the second it is the
buyer’s margin.

It was the early telephone that served to drive managements to discover
new levels of reliable performance.

In the early part of the 20th century America was pioneering the wide-
spread use of telephony with transcontinental landlines and improving levels
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of reliability. Conventional handsets consisted of a few hundred pieces while
the switching arrangements between handsets would account for upward of
100,000 separate, but interdependent, parts — undreamed of complexity! Ex-
cessive failures of handsets, switching units and buried amplifiers caused by
variations in manufacture could not be tolerated if public demand for reliable
and instant communication at a distance was to be met.

When America entered WWII, the demand for war supplies increased
greatly and the need for weapons perfection was of paramount importance.

But with the war ended and a massive redirection of industrial capacity
from war to peace, the marketplace of the mid-forties shifted from one of
national survival to one of a sellers’ paradise. The hard work and discipline of
designing quality into controlled production dissipated, and the more laissez
faire approach of sorting bad quality out from ad hoc production, or even
shipping products regardless of quality, took over. Quantity was now the
issue, moving boxes the preoccupation, easy profits the Pyrrhic prize. In the
five postwar years until 1950, when this run-down of quality management took
place in the US, precisely the opposite was happening in the Far East.

There are two ways to accept or reject lots of merchandise in a production
line:

• Sampling inspection is a method for protecting the purchaser against poor
quality after the product has been manufactured. From a consumer point of
view, there is a maximum percentage of defectives that he or she will tolerate.
This percentage is expressed by p. Clearly, without a 100 percent inspection,
it may be impossible to be certain that the quality is better then the level
expresses by p. However, the sampling practice arises from the fact that it
is often more economical to tolerate small percentages of defectives than to
bear the cost of 100 percent inspection. The sampling inspection procedure
ensures the quality of the product with a certain probability.

• Quality control (QC) is a method of finding and correcting flaws in the
manufacturing process to ensure that the product meets the standards of the
company. After the bugs are ironed out of a production process, its output is
stable and is said to be “in control”. Keeping it in control is a major statistical
and engineering task.

Statistical theory tells us that the proportion of successes x
n will be approx-

imately normally distributed with mean p and standard deviation σ =
√

pq
n

(where q = 1 − p), if n is sufficiently large. Now, suppose we want to test
whether daily percentages of defectives p may be treated as independent trials
of an experiment for which p is constant from trial to trial.
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One plots a graph of the observed p vs time (in units of days) and then
draws three parallel lines parallel to the time axis at p̄ + 3σ, p̄, p̄ − 3σ where

p̄ is the mean of past daily proportions x
n , and σ2 = 1

n p̄(1 − p̄).

Now, if the production process behaves in an idealized manner and if the
normal approximation to the binomial distribution may be used, the prob-
ability that a daily proportion (when plotted on this chart) will fall outside
the control band is approximately equal to the probability that a normally-
distributed variable will assume a value more than three standard deviations
away from its mean, which is calculated to be 0.03.

Because of this small probability, it is reasonable to assume that the pro-
duction process is no longer behaving properly when a point falls outside the
control band; consequently, the production engineer checks over the various
steps in the process when this event occurs. Industrial experience shows that
only rarely does a production process behave in this idealized manner when
the control-chart technique is first applied. Nevertheless, the technique is
highly useful because it enables one to discover causes of a lack of control and
thus improve on the production process until gradually statistical control has
been obtained.

Note that a lot of items is sampled according to a scheme guaranteed to
reject a good lot with a certain probability α (supplier’s risk), and to accept a
defective lot with a certain probability β (consumer’s risk). A lot is considered
under control if the demerit parameter that characterizes its quality (such as
p) does not exceed a certain limiting value and defective if this parameter has
a value not smaller than another limiting value.

1924–1940 CE Wolfgang Pauli (1900–1958, Switzerland). One of the
most influential physicists of the 20th century. Won the Nobel prize for physics
in 1945 for his discoveries in quantum theory. His major achievements are:

(1) In 1924 he was first to propose a fourth spin quantum number for the
specification of the atomic single–electron energy state541, which may take

541 The orbital angular momentum is quantized both in magnitude and direction.

In classical physics, the angular momentum L = r × p of a system relative

to the center of a central or contact force is constant in magnitude and direc-

tion. In quantum mechanics the magnitude of the orbital angular momentum
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is |L| =
√

�(� + 1) � with the quantum number � a non-negative integer. In a

nuclear Coulomb field (or that of a nucleus plus closed inner electron shells), for

each value of n specifying a single–electron energy level, there are n distinct val-

ues of the orbital angular momentum of each electron, from � = 0 to � = n − 1.

The quantum restriction of L shows that the vector L cannot make arbitrary

angles with a given direction (the z-direction, say); allowed values of its ob-

served component in the z direction are quantized, Lz = m	�. For each value

of �, there are 2� + 1 values of m	 (−�, −�+1, . . . , �), or 2� + 1 different orien-

tations of L. It is impossible to know exactly more than one component of the

angular momentum; i.e. if we know |L| and Lz, our knowledge of Lx and Ly is

at best within the uncertainties ΔLx and ΔLy such that (ΔLx)(ΔLy) ≥ �

2
|Lz |.

Thus, for given (�, m	), L points in an unknown direction along a cone. Such

uncertainty relations follow from L = r × p and from the position-momentum

uncertainty relation.

The so-called magnetic quantum number m	 manifests itself when the electron’s

motion is disturbed by an applied magnetic field (in the z direction, say). Under

a magnetic field, each spectral line in a one-electron atom is observed to split

into a number of closely spaced lines [1897; Pieter Zeeman (1865–1943, Hol-

land)]. The orbital magnetic dipole moment of the electron is ML = − e
2me

L,

which entails {ML }z = −μBm	 where μB = e�

2me
is the Bohr magneton.

Thus, when an atom is placed in a weak magnetic field B, the interaction of

this field with the magnetic dipole moment of the orbiting electron causes L to

precess around B, where the tilt of L is quantized. In addition, the electron ac-

quires the energy shift −(ML · B) = −μBBm	 which is also quantized , taking

2� + 1 distinct values, corresponding to the 2� + 1 possible orientations of L

relative to B (the application of the external field B automatically selects its

direction as the z-axis appropriate for quantization). That is, each energy level

{n, �} splits into 2� + 1 levels. This explains the Zeeman effect, which thus

turns out to provide evidence for (orbital) angular momentum quantization.

A major shortcoming of the Schrödinger theory of hydrogen-like atoms was its

failure to account for the fine structure of spectral lines, including those of hy-

drogen. Several lines of evidence converged to indicate that an electron possesses

intrinsic angular momentum. In 1925 Uhlenbeck and Goudsmit suggested

that this intrinsic (spin) angular momentum has observable component values

± 1
2
�. In retrospect, this explained the Stern-Gerlach experiment (1921) where

the neutral silver atoms could only carry spin angular momentum, due to the

single S-orbital (� = 0) valence electron in each atom (the other electrons resid-

ing in a inner core with zero overall spin and orbital angular momenta). The

nonuniform magnetic field in that experiment thus provided a spin-dependent

semiclassical force, which split the beam into two components.

The spin angular momentum of the electron S adds another level of complex-

ity to atomic physics. Because the electron is a charged particle, its spin re-

sults in an intrinsic magnetic dipole MS , related to S via MS = −ge
e

2me
S,
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the numerical values542 +1
2 or − 1

2 in � units.

(2) In 1925, Pauli introduced his exclusion principle, which states that there
can be no two electrons in any atom that have the same set of quantum
numbers (spin included). With the aid of this principle it was possible to
explain the atomic shell structure and the periodic system of the elements.
In 1940, Pauli generalized the exclusion principle to include all fermions.

(3) In 1927 Pauli proceeded to incorporate the electron spin into the
Schrödinger formalism. In his theory the state of the electron was speci-
fied by a two–component wave-function, known as the Pauli spinor, with
a transformation law under rotations given by the general unitary uni-
modular complex matrix in 2 dimensions. This led to the recognition
(by physicists!) that for every unitary unimodular transformation in
two complex dimensions there is an orthogonal transformation in three
dimensions corresponding to a proper rotation. This fact had been pre-
viously known in mathematics, under the guise of the relation between
Euler angles and the Cayley-Klein parameters. In this formalism, the
three Pauli matrices (σ1, σ2, σ3) act as generators. When multiplied by
(−i), these new matrices obey the multiplication laws of quaternions.
Van der Waerden later extended Pauli spinors to 4 spacetime dimen-
sions such that the entire Lorentz group SO(3, 1) can be represented by
them (via the locally-isomorphic SL(2, C) Lie group). However, spin
angular momentum does not arise naturally from the solutions of the
nonrelativistic Schrödinger wave equation; a better understanding of it
thus had to await the advent of the Dirac equation, in 1928.
Pauli’s theory helped to explain the Stern-Gerlach experiment (1921), the

where ge is the (spin) gyromagnetic ratio of the electron, with an experimen-

tal value of 2.0024. The total magnetic dipole moment of an orbiting electron

is M = ML + MS = − e
2m�

(L + gsS). Since the Stern-Gerlach experiment

showed that the electron spin may have only two orientations relative to the

magnetic field, the solution of the equation 2 = 2s + 1 yields s = 1
2
, where

ms = ± 1
2
. The only two permitted values of Sz = �ms with regard to a se-

lected measurement (z) axis correspond to the two possible orientations of S.

For brevity, they are referred to as spin up (↑) and spin down (↓), although

the spin is never actually directed along the z-axis or opposite to it, due to the

uncertainty in Sx and Sy.
542 Quantum physicists often employ units � = c = 1 where mass, energy, momen-

tum, length and time units are all inter-convertible. In � units, Bohr’s orbital

angular momentum takes integer values.
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atomic Zeeman effect (1896) and the experiment of Phipps and Taylor
(1927).

(4) In 1931 Pauli proposed a new particle, to account for the apparent vio-
lation of the law of conservation of energy in nuclear β decays543. It was

543 Around the year 1930 the skill of experimental physicists had revealed an appar-

ent non-conservation of energy (and momentum) in the radioactive decay of the

bismuth nucleus (210Bi), which emits an electron (e−) and thereupon becomes

a polonium nucleus (210Po). The combined total energy of the 210Po and the

electron e− turned out to vary in amount in various such events, but was always

less than the energy of the initial 210Bi. The angular momentum balance also

seemed to be upset by this reaction, because both 210Bi and 210Po nuclei are

bosons, possessing integer spin in atomic units, (because they each have the

even number 210 of fermionic nucleons, which – like the electron – have spin

S = 1
2
); whereas the electron is a fermion possessing half integer (S = 1

2
) spin.

Since the orbital angular momentum had never been observed to be anything

but an integer number of �

2
units, the reaction seemed to violate the conserva-

tion of angular momentum as well. The faith in conservation laws drove Pauli

to predict the neutrino as the carrier of the “missing” energy, momentum and

angular momentum of the reaction.

Strong experimental confirmation of Pauli’s hypothesis was gained in 1956,

when physicists from Los Alamos succeeded in inducing reactions of a beam

of neutrinos from a nuclear reactor with nuclei. It is now known that the neu-

trinos emitted in the radioactive decay of nuclei consists of two types. The

quanta appearing in conjunction with the emission of positive electrons (e+)

always have their angular momentum pointing in a direction opposite the ve-

locity, i.e. their spin aligned opposite to their momentum (“left-handed”) and

are called neutrinos (ν). The quanta of the neutrino field appearing in conjunc-

tion with the emission of negative electrons (e−) always have their spin aligned

parallel to their momentum (“righthanded”) and are called antineutrinos (ν).

Thus the all but invisible quantum emitted in the decay of 210Bi is actually an

antineutrino. In later decades two more species of ν and ν (muon neutrinos –

νμ, νμ – and τau neutrinos ντ and νe), associated with much heavier (and

radioactive) versions of the electron (the μ−, τ − leptons and their antiparti-

cles). All the neutrinos have small but finite masses, and slowly interconvert

(mix coherently) when traveling astronomical distances, or through the earth

or sun.

The helicity of a particle is defined as the component of its intrinsic angular

momentum (S) in the direction of its velocity vector (v) : H = 1
S|v| (S · v).

All neutrinos observed in nature are found to have negative helicity, while all

antineutrinos observed in nature are found to have positive helicity. Note that

since the neutrino is almost massless (several eV
c2

), its speed is almost equal to
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later named ‘neutrino’ (“little neutral one”) by E. Fermi. The neutrino
was finally observed in 1956; it is a spin-1

2 fermion, like the electron but
devoid of electron charge, nearly massless, and interacting only weakly
and gravitationally.

Pauli was born in Vienna, son of a Jewish physician whose name was
Paschkes before he converted to Christianity. At the age of 21 he wrote a
200-page encyclopedia article on the theory of relativity, which today is still
one of the best expositions of this subject. He studied at Münich and was a
student of Sommerfeld. Later he was an assistant to Max Born and Niels
Bohr.

In 1928 Pauli became professor of theoretical physics at the Federal Insti-
tute of Technology, Zürich. In 1940 he was appointed to the chair of theoretical
physics at the Institute for Advanced Study, Princeton, NJ. Following WWII

he returned to Zürich.

1924–1941 CE Hendrik Anthony Kramers (1894–1952, Holland).
Physicist. Made significant contributions to mathematical and theoretical
physics.

In 1924 he predicted the existence of the Raman effect (an inelastic scatter-
ing of light off molecules). Discovered, independently of H. Jeffreys (1923)
G. Wentzel544 and L.N. Brillouin, the WKBJ approximation method
(1926). Together with R.L. Kronig, in their study of optical X-ray dis-
persion, derived basic relations between the real and imaginary parts of the
Fourier transform of a causal function (1927). These are known today as the
Kramers-Kronig dispersion relations545 and play an important role in many
branches of physics and engineering [they are linked to the Cauchy integral
formula and the Hilbert transform].

In 1937 Kramers introduced the quantum–mechanical charge conjugation
operation (replacing particles by their antiparticles) and the law of invariance

the speed of light; in the limit in which it were truly devoid of (rest) mass,

it could not be stopped nor reversed by a Lorentz transformation (i.e. there

would be no frame in which the neutrino is moving in the opposite direction

with opposite helicity).
544 Gregor Wentzel (1898–1978; Germany, Switzerland and USA). A student of

Sommerfeld in Munich (Ph.D. 1921). Professor of Mathematical physics at

Leipzig (1926), Zurich (1928–1947), Chicago (1948–1970).
545 Originally, they derived relations between absorption and dispersion of EM

radiation. In the context of electrical engineering, these causality constraints

are known as the Bode integral theorem.
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(symmetry) under this operation which turned out, like E. Wigner’s parity
invariance (spatial reflection), to be valid for all known interactions except
the weak nuclear force. Kramers contributed to the mathematical structure
of quantum mechanics, theory of phase transitions in ferromagnetism and the
one-dimensional Ising model (1941) [a chain of N spins, each spin interacting
with its two nearest neighbors].

Just before he died, he had surgery postponed because he wanted to finish
a paper.

1924–1953 CE Richard Courant (1888–1972, Germany and USA).
Mathematician and educator. Founded the famous Mathematical Institute
at Göttingen University and directed it (1920–1933). Founded (1953) and
directed the Courant Institute of Mathematical Sciences — an applied math-
ematics research center in New York, based on the Göttingen model.

Courant was born in Lublinitz, Prussia (now Lubliniez, Poland) to Jewish
parents. He obtained his doctorate under Hilbert’s supervision. He taught
mathematics at Göttingen, where he was Klein’s successor, until the start
of WWI. A few years after the war he returned to Göttingen, becoming a
professor (1920). Contributed to various branches in mathematical physics.

In 1924 he published, jointly with Hilbert, an important text Methoden
der mathematischen Physik. When the Nazis purged Göttingen of its Jewish
mathematicians (1933), he left for England, and thence to New York (1934).

Although Courant did not originate new ideas or techniques in mathemat-
ics, his contribution lies mainly in transplanting the heritage of the German
school of mathematics to the United States at a most opportune time on
the eve of WWII, thus securing the uninterrupted continuity and growth of
mathematical physics in the free Western culture.

1924–1957 CE Felix Heinrich Wankel (1902–1988, Germany). Inventor
of the Wankel rotary engine – a type of internal combustion engine which uses
a rotor instead of pistons.

In the Wankel engine, the 4 strokes of a typical Otto cycle occur in the
space between a three-sided rotor [having a shape approximating a Reuleaux
Triangle546] and the inside of an oval-like housing (Fig. 5.6).

546 The Reuleaux Triangle (Fig. 5.5) forms the basis of the Wankel rotary internal

combustion engine. It is named after the engineer Franz Reuleaux (1829–

1905, Germany) who did pioneering work on ways that machines translate one

type of motion into another (1861–1875).

Reuleaux believed that machines could be abstracted into chains of ideal ele-

ments constrained in their motions by adjacent parts in the kinematic chain.
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Fig. 5.5: The Reuleaux triangle is a constant – width curve based on an
equilateral triangle. The distances from any point on a side to the opposite
vertex are all equal

Fig. 5.6: The Wankel cycle. “A” marks one of the three apexes of the rotor.
“B” marks the eccentric shaft, and the inner white region – a gear – toothed
circular hole bored about the rotor center – is the lobe of the housing– centered
eccentric shaft. The shaft turns three times for each clockwise spin of the rotor
around the lobe and once for each orbital revolution of the rotor within the
housing
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The central drive shaft, also called an eccentric shaft or E-shaft, passes
through the central borehole (offset lobe) of the rotor; it is half the lobe’s
radius and engages its boundary via gear teeth, and is supported by bearings.
The rotor both rotates about the offset lobe and makes orbital revolutions
around the engaged central shaft. Seals at the corners apexes of the rotor seal
against the periphery of the housing, dividing it into three moving combustion
chambers. Fixed gears mounted on each side of the housing engage with ring
gears attached to the rotor to ensure the proper orientation as the rotor moves.

As the rotor rotates and orbitally revolves, each side of the rotor gets
periodically closer and farther from the oval walls of the housing, in the process
compressing and expanding the combustion chambers similarly to the strokes
of a piston in a reciprocating engine. While a four-stroke piston engine makes
one combustion stroke per cylinder for every two rotations of the crankshaft
(that is, one half power stroke per crankshaft rotation per cylinder), each
combustion chamber in the Wankel generates one combustion stroke per each
driveshaft rotation, i.e. one power stroke per rotor orbital revolution and three
power strokes per rotor rotation. Thus, power output of a Wankel engine is
generally higher than that of a four-stroke piston engine of similar engine
displacement in a similar state of tune, and also higher than that of a four-
stroke piston engine of similar physical dimensions and weight.

He developed a compact symbolic notation to describe the topology of a very

wide variety of mechanisms, and showed how it could be used to classify them

and even lead to the invention of new useful mechanisms. At the expense of

the German government, he directed the design and manufacture of over 300

beautiful models of simple mechanisms, such as the four bar linkage and the

crank. These were sold to universities for pedagogical purposes. Today, the

most complete set are at Cornell University College of Engineering. Using his

notation and methods for systematically varying the elements (e.g. inversions,

changing relative sizes of the links, etc.) he showed how the four bar linkage

could be mutated into 54 mechanisms, which fall within 12 classes.

Today, he may be best remembered for the Reuleaux triangle, a curve of con-

stant width that he helped develop as a useful mechanical form.

To construct the Reuleaux triangle, start with an equilateral triangle. Center

a compass at one vertex and sweep out the (minor) arc between the other two

vertices. Do the same with the compass centered at each of the other two ver-

tices. Delete the original triangle. The result is a curve of constant width.

The total area of the Reuleaux Triangle is 1
2
(π −

√
3)r2, where r is the circular

arc radius. It can be rotated inside a square of side r, covering a fractional

area of 2
√

3+ π
6

− 3 = 0.9877003908 . . .. By the Blaschke-Lebesgue theorem, the

Reuleaux Triangle has the least area of any curve of given constant width.
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Wankel engines have several major advantages over reciprocating piston
designs, in addition to having higher output for similar displacement and
physical size. Wankel engines are considerably simpler and contain far fewer
moving parts. For instance, because valving is accomplished by simple ports
cut into the walls of the rotor housing, they have no valves or complex valve
trains; in addition, since the rotor is geared directly to the output shaft, there
is no need for connecting rods, a conventional crankshaft, crankshaft balance
weights, etc. The elimination of these parts not only makes a Wankel engine
much lighter (typically half that of a conventional engine of equivalent power),
but it also completely eliminates the reciprocating mass of a piston engine
with its internal strain and inherent vibration due to repeated acceleration
and deceleration, producing not only a smoother flow of power but also the
ability to produce more power by running at higher RPM.

In addition to the enhanced reliability by virtue of the elimination of this
reciprocating strain on internal parts, the engine is constructed with an iron
rotor within a housing made of aluminum, which has greater thermal expan-
sion coefficient. This ensures that even a severely overheated Wankel engine
cannot seize, as would likely occur in an overheated piston engine. This is
a substantial safety benefit in aircraft use, since no valves can burn out. A
further advantage of the Wankel engine for use in aircraft is the fact that a
Wankel engine can have a smaller frontal area than a piston engine of equiv-
alent power. The simplicity of design and smaller size of the Wankel engine
also allows for savings in construction costs, compared to piston engines of
comparable power output.

As another advantage, the dynamical shape of the Wankel combustion
chambers and the turbulence induced by the moving rotor prevent localized
hot spots from forming, thereby allowing the use of fuel of very low octane
number or very low ignition power requirement without preignition or deto-
nation, a particular advantage for hydrogen cars. Four-stroke reciprocating
engines are less suitable for hydrogen. The hydrogen can misfire on hot parts
like the exhaust valve and spark plugs. Another problem concerns the hydro-
genate attack on the lubricating film in reciprocating engines. In a Wankel
engine this problem is circumvented by using a ceramic apex seal against a
ceramic surface: no oil film means no hydrogenate attack. Since a piston ring
of ceramic material is not possible, a similar fix is unworkable with the recip-
rocating engine. The piston shell must be lubricated and also cooled with oil,
which substantially increases the lubricating oil consumption in a four-stroke
engine.

Disadvantages

Compared to piston engines, the time available for fuel to be injected into
a Wankel engine is significantly shorter, due to the way the three chambers
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rotate. The fuel-air mixture cannot be pre-stored as there is no intake valve.
This means that to get good performance out of a Wankel engine, more com-
plicated fuel injection technologies are required than for regular four-stroke
engines. This difference in intake times also causes Wankel engines to be more
susceptible to pressure loss at low RPM compared to regular piston engines.

In terms of fuel economy, Wankel engines are generally less efficient than
four stroke piston engines. Problems also occur with exhaust gases at the
Wankel’s peripheral port exhaust, where the concentrations of hydrocarbons
can be higher than from the exhausts of regular piston engines.

The reason Wankel-cycle engines have higher fuel consumption and emis-
sions than Otto-cycle engines is that the combustion chambers in a Wankel
are quite large at ignition, so the compression ratio is lower. This lowers the
thermal efficiency and thus the fuel economy. Additionally, some fuel may
get too far from the flame front during combustion to be fully burned. This
is why there can be more carbon monoxide and unburnt hydrocarbons in a
Wankel’s exhausts stream.

Wankel was born in Lahr (upper Rhine Valley), Germany. Although he
had no university education, he was able to teach himself technical subjects
and conceived the idea of the Wankel engine in 1924. In the 1930s, he was
imprisoned by the Nazis for some months.

During World War II, he developed rotary valves for German air force
aircraft and navy torpedoes. After the war, he was imprisoned by the Allies
for several months; his laboratory was closed, his work confiscated, and he
was prohibited from doing further work. In 1951, he began development of
this engine, leading to the first running prototype on February 1, 1957. The
engine has been successfully used by Mazda in several generations of their
RX-series of coupés.

1924–1957 CE Alexander Ivanovich Oparin (1894–1980, Russia). Bio-
chemist. A pioneer of modern theories of the origin of life. Put forward the
idea that life evolved in random chemical processes in the ocean, which be-
came a ‘biochemical soup’ conducive to early life forms. His ideas became the
basis of many modern scientific theories of the origin of life.

Oparin’s theory of the origin of life rests on the belief that the earth’s early
atmosphere contained mostly ammonia, hydrogen, methane, and water vapor
— not nitrogen and oxygen as it does today. He suggested that the chem-
icals necessary for life formed spontaneously in such an atmosphere. These
molecules combined and formed more complex molecules. These molecules
formed still larger compounds and structures, and finally they developed into
the first living cells over the course of hundreds of millions of years.
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It is, of course, a long leap from an atmosphere containing methane and
ammonia to even the simplest living systems, but at least the atmospheric
evidence suggests that most of the elements now found in organisms were also
abundant on the earth early in its history.

In 1953, Stanley L. Miller performed a laboratory experiment on the
origin of life. He constructed an apparatus for producing amino acids under
primitive earth conditions: steam was passed through a mixtures of gaseous
methane (CH4), ammonia (NH3), and hydrogen (H2), and then exposed to a
high-energy electric spark before being recondensed as water. After a week of
operation of the apparatus, the water was found to contain amino acids, the
fundamental building blocks of proteins and organisms.

Miller’s simple experiment showed that electrical discharges, such as light-
ning, in an early reducing atmosphere, could have led to the production of
some complex molecules of living systems547.

Oparin was born in Uglich, near Moscow. He graduated from Moscow
State University in 1917. His theory was described in a book The Origin of
Life on Earth in 1924, long before anything was known about the structure
and chemical nature of genes. In the third edition of his book (1957) he
proposed that the order of events in the origin of life was: cells first, enzymes
second, genes third .

The Oparin picture was generally accepted by biologists for half a century,
because it seems to be the only alternative to biblical creationism. But since
the discovery of the double helix (1953) showed that genes are structurally
simpler than enzymes, it became natural to think of the nucleic acids as
primary and of the proteins as secondary structures. For that reason, the
sequential order of Oparin was changed to: genes first, enzymes second and
cells third (Manfred Eigen, 1981), and Oparin’s theory was neglected.

547 Yet, for the next 20 years, scientists could not get close to the next step, which

is to produce proteins. Simple amino acids are not even proteins, much less life,

so the bridge between nonlife and life remained elusive.

In the early 1970s, geochemists realized that the earth’s early atmosphere was

probably nothing like the gases used in the Miller-Urey experiment. This exper-

iment used an “atmosphere” modeled on what we knew of Jupiter, composed

of methane, ammonia, hydrogen, and water. In the 1970s, geochemists discred-

ited this theory of the earth’s early atmosphere and concluded that it probably

contained more carbon dioxide, almost no hydrogen, and possibly some oxygen.

Creation of even simple amino acids would have been impossible in such an

environment. There is still (2006) no plausible account for the origin of life.

Yet, the Miller-Urey experiment is still taught in biology textbooks!
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Recently, however, Freeman Dyson (1985) chose to base his mathemat-
ical model of the origin of life on Oparin’s theory, because it allows early
evolution to proceed in spite of high transcription-error rates.
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Origin and Evolution of Terrestrial Atmospheres

As soon as the solid earth formed, the natural decay of radioactive ele-
ments below the surface heated up the crustal rocks, causing the chemical
decomposition of some of the minerals present there. In the process water
(H2O), carbon dioxide (CO2), and other gases were liberated from chemical
compounds. These substances outgased to the surface, especially through
volcanism. Water was the most plentiful compound to be released from the
earth’s crust; once it reached the cooler surface, it condensed to form the
oceans where most of it remains today.

Next most important was CO2, with about 1
10 of the abundance of

water. Much of it dissolved in the oceans and some recombined (at surface
temperatures) with surface rocks to re-form carbonates, which remain on the
ground today. Perhaps only 1

5 of the abundance of the CO2 represented
nitrogen gas, but nitrogen is relatively inactive chemically, and now remains
in the atmosphere as its major constituent (about 78 percent). Another, even
more inert gas to be released was argon-40, formed by the radioactive decay
of potassium-40. Argon today comprises about 1 percent of the atmosphere.

The early atmosphere of the earth may have been made of nitrogen, CO2,
argon, H2O, methane (CH4), ammonia (NH3), and hydrogen, the last three
having originated either from outgassing or from chemical activity at the sur-
face. These would quickly escape or decompose, but their temporary presence,
bathed in solar radiation, would create a chemical environment favorable to
the formation of more complex molecules.

With energy supplied by sunlight, some water vapor in the upper at-
mosphere may have broken down to hydrogen and oxygen by a process called
photolysis (‘breaking by light’). Any oxygen so formed would not have re-
mained free (uncombined) because it is highly reactive and would have quickly
combined with gases like methane and carbon monoxide to form water and
carbon dioxide. It would have also combined with crustal materials (with
metals like iron in olivines and pyroxenes) to form iron oxides like hamatite
(Fe2O3). The production of significant amounts of free oxygen, and its persis-
tence in the atmosphere, probably came about only after life evolved at least
to the complexity of green algae548.

548 Although the general course of events described here is based on physical plau-

sibility and extrapolation from experiment, the scenario for the details of each

stage is but one of several hypotheses currently extant.
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Of all the solar-system’s planets, the earth alone has appreciable free oxy-
gen in its atmosphere. It came about because of the development of life.
Green plant life, mainly in the oceans, flourished during the first few billion
years of the earth’s existence. This vegetation removed the CO2 from the air
by the process of photosynthesis, building itself with the carbon and releasing
the oxygen into the atmosphere. When the vegetable organisms died, they
decayed (or oxidized), removing the oxygen from the air again.

However, part of the dead vegetation escaped the decay process, by being
preserved in the ground in the form of fossil fuels, where much of it remains
today. Thus, most of the oxygen is removed from the air by the decay of
dead plant matter (and later by decay of animals, by combustion and by
respiration), but a little (somewhere between one part in 104 and one part in
105) of that produced by photosynthesis remains in the atmosphere, gradually
building up the oxygen concentration. It is estimated that oxygen comprised
only about 1 percent of the atmosphere 600 millions years ago, but since then
it has gradually accumulated to about 21 percent.

In recent years man has upset this delicate balance. It is estimated that the
amount of oxygen used in the technosphere in relation to the net production of
oxygen in the biosphere is about 11 percent. This arises from our consumption
of fossil fuels (coal and oil) extracted from the earth. At the present rate it
would still take thousands of years to use up our oxygen (the easily available
coal and oil will be used up much sooner than this), but the resulting increase
in the concentration of CO2 in the atmosphere could have a profound effect
on the climate by increasing the world’s average temperature enough to melt
the polar caps and flood several countries (the greenhouse effect).

All life today is protected from deadly doses of the sun’s ultraviolet ra-
diation by atmospheric oxygen; under the intense radiation present in the
upper atmosphere, this oxygen forms a layer of ozone (O3) which absorbs
most of the sun’s ultraviolet rays and prevents them from reaching the lower
atmosphere and the earth’s surface. Without this ozone screen, life would
be possible only under rocks, in deep water, or in other places where direct
sunlight could not penetrate. Only after free oxygen, and a consequent ozone
screen, began accumulating in the atmosphere was life first possible in shallow
waters and, ultimately, on the surface of the land.

Land life did not become abundant before the time when free atmospheric
oxygen and ozone first attained approximately their present-day levels (ca 400
millions years ago).
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1924–1962 CE Tibor Radó (1895–1965, Hungary and U.S.A.). Mathe-
matician. Made important contributions to the calculus of variations, alge-
braic topology, measure and integration theory and “Turing programs”. He
proved (1924) that every manifold of dimension 2 can be triangulated. Proved
(1930) the existence of a surface of minimal area bounded by a given closed
contour in space (The Plateau Problem). Discovered (1962) a noncomputable
function (Turing Machine).

Radó was born in Budapest, Hungary to Jewish parents. He began his
university studies in civil engineering at the Technical University in Budapest.
In 1915 he enlisted in the army, was trained and then commissioned as sec-
ond lieutenant in the infantry. He took part in two major battles on the
Russian front before being captured on a scouting mission. His four years in
prison camps (1916–1920) read like a scenario of an action movie: prior to
the revolution he was imprisoned in Tobolsk, Siberia, where the only books
he could obtain happened to be on mathematics. After the revolution he was
transported thousands of kilometers under harrowing conditions. During the
confusion he and three fellow officers traded names with four private soldiers.
As far as his family knew, Radó was dead. He spent the next year working
as a laborer in railroad yards. Then, he and a group of prisoners escaped by
hijacking a train.

Finally, in 1920 he returned to Budapest on an American-financed boat
which was assisting the return of war prisoners. Back at the University of
Szeged, he re-enrolled, this time as a mathematics major, and in 1922 he re-
ceived his Ph.D. under Frigyes Riesz. In 1929 he emigrated to the United
States and in 1930 moved to Ohio State University as full professor of mathe-
matics. At the end of WWII, he went to Europe to recruit German scientists
needed by the United States.

1924–1962 CE Edward Charles Titchmarsh (1899–1963, England).
Pure mathematician. A dominant figure in Oxford mathematics during 1931–
1949. Did important work on Fourier integrals, integral equations, Fourier
series, integral functions, the Riemann zeta-function and eigenfunctions of
second order differential equations.

Titchmarsh was born in Newbury and educated at Oxford. He served
in World War I (1917–1919) and succeeded Hardy as Savilian professor at
Oxford.

1924–1968 CE John Desmond Bernal (1901–1971, England). Crystal-
lographer and biophysicist. Developed modern crystallography and was a
founder of molecular biology. First to take X-ray photographs (1934) of bi-
ologically important molecules, plants, viruses, amino acids, proteins, sterols
and nucleoproteins. First to determine the structure of graphite (1924).
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Bernal was born Nenagh, Tipperary County, Ireland to a Sephardic Jew-
ish family on his father’s side. He graduated (1922) from Emmanuel Collage,
Cambridge. After graduating he started research under William Bragg.
He was later a professor of physics at the University of London (1937–
1968). It was here that he did the major pioneering work in crystallography.
Other prominent scientists who worked or studied with him were Dorothy
Hodgkin, Rosalind Franklin, Aaron Klug and Max Perutz.

Bernal was convinced that from an understanding of the physical molecular
structure of biologically important molecules would come a clearer insight into
the way the living processes worked. His researches were dominated by the
quest for the origin of life.

During his wartime service, he contributed substantially to the scientific
underpinning of the invasion of the European Continent.

He joined the Communist Party of Great Britain (1923) during his student
days and was awarded the Lenin Peace Prize (1953) for being active in the
international peace movement during the Cold War.

White Dwarf — Death of a Small Star

White dwarves are faint stars with absolute magnitudes typically more
than 10, making them at least 100 times fainter than the sun. They have
temperatures around 10, 000 ◦K and appear to be white.

A typical such star is about one solar mass with a density of ca 106 g/cm3.
It has exhausted all its thermonuclear fuel and contracted to a size roughly
that of the earth. It is slowly cooling as it radiates away its residual thermal
energy, and supports itself against gravity by the pressure of degenerate elec-
trons. Its radius is inversely proportional to the cube root of its mass, i.e. the
more massive a white dwarf is — the smaller it is.

The first white dwarf was discovered as early as 1844: the motion of the
bright, nearby star Sirius had been found to be slightly irregular. Its proper
motion of roughly 1 second of arc per year was not along a perfectly straight
line across the sky, but rather a slightly wavy path. Astronomers concluded
that Sirius was a double star, and that its wavy proper motion is due to an
orbital motion around a companion.
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This hypothesis was confirmed in 1862 when Alvan Graham Clark
(1832–1897, U.S.A.) saw it through a new 46 cm refracting telescope at the
Dearborn Observatory in Illinois. The star’s companion was given the name
Sirius B. The strange characteristics of this star were soon discovered: Its
effective temperature is 32, 000 ◦K, its radius 5400 km and its mean density
3 × 106 g/cm3. Astronomers of the late 19th century were justifiably skepti-
cal. However, new discoveries of white dwarves soon poured in. A renewed
interest in the internal structure of these stars arose after the new theories of
matter and gravitation were established during the first quarter of the 20th

century.

Walter Sydney Adams (1876–1956, U.S.A.) measured, in 1925, gravita-
tional red-shifts of several spectral lines from Sirius B, and A.S. Eddington
(1926) used GTR to obtain the M/R ratio. Since the mass M was known
from the binary orbit, Eddington could estimate its radius R and hence its
density. In this way both the validity of GTR and the star’s geometry were
tested simultaneously.

In 1926 R.H. Fowler applied Fermi-Dirac statistics to explain the puz-
zling nature of the white dwarves. He identified the pressure, preventing
gravitational collapse, with electron degeneracy pressure.

In 1930 S. Chandrasekhar calculated that a white dwarf can exists only
if its mass is less than 1.4 solar masses [known as the Chandrasekhar limit].

The demise of a normal star in that mass range, is thought to proceed as
follows: As it grows older, it steadily converts protons into helium nuclei at
its center. As the supply of protons there runs low, the star loses its ability
to maintain a constant rate of energy liberation. For a time, the star can
compensate for its dwindling resources of protons by contracting its central
region, thereby raising the temperature to fuse the remaining protons at an
ever-increasing rate. This contraction actually increases the rate of energy
liberation: part of the extra kinetic energy expands the star’s outer layers,
cooling them slightly and producing a red-giant star. Its core will eventually
contract to the point where helium begins to fuse into carbon. This helium
ignition temporarily expands the core, and sets the stage for a period of
instability during which the star is likely to pulsate in size and brightness.
This is the stage of the Cepheid stars.

When the helium nuclei have fused into carbon, most stars will become
degenerate in their centers. At this point, the central regions have such high
density that the Pauli exclusion principle (1925) prevents the electrons from
packing any tighter. The electrons hold the nuclei by electromagnetic forces,
so the exclusion principle supports the entire star against its self-gravitation.
After the star’s outer layers evaporate, the core remains as a white dwarf.
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Quantum Mechanics — The Formative Years549

Despite the initial success of the Bohr theory, and other developments
of the original quantum theory of Planck, it became increasingly evident in
the early 1920’s that many features of atomic physics cannot be described in
semiclassical terms. The discovery and interpretation of the Compton effect
in 1923 stressed the photon aspect of radiation, but the necessary connection
between the wave and corpuscle treatments remained elusive. Shortly after
this discovery de Broglie suggested that beams of particles should exhibit
wave properties, the effective wavelength being inversely proportional to the
momentum per particle. This idea was widely accepted, but it was not until
1927 that full experimental confirmation was obtained, by Davisson and
Germer and by G.P. Thomson.

The initial development of full-fledged quantum mechanics stemmed from
the problem of calculating the probabilities of transitions between various
atomic states. The theory was put in the form of matrix mechanics by
Heisenberg, Born, and Jordan, whose ideas expressed a new philosophy of
physical epistemology and ontology. Briefly, quantum mechanics is connected
only with the calculation of observable quantities (including statistical prob-
abilities); detailed mechanical models of observable entities are regarded as
misleading and unnecessary.

An alternative approach, explored by Schrödinger in 1926, led to a sys-
tem of wave mechanics based on de Broglie’s hypothesis, and this system
admits of a somewhat different interpretation than matrix mechanics. In
wave mechanics an atomic state is described by a function Ψ, which is related
to (but contains more information than) the probability distribution of the
positions of (one or several) electrons in the given atomic state.

An important consequence of any form of quantum mechanics is the “un-
certainty” principle, stated by Heisenberg in 1927, limiting the accuracy with

549 For further reading, see:

• Guillemin, V., The Story of Quantum Mechanics, Charles Scribner’s Sons:
New York, 1968, 332 pp.

• Finkelnburg, W., Structure of Matter, Springer-Verlag: Berlin, 1964, 511 pp.
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which physical measurements can ever ascertain the point occupied by a phys-
ical system in classical phase space. The principle stresses the essentially sta-
tistical nature of the new quantum theory, which cannot, in general, predict
the exact behavior of any atomic system, but is rather confined to the cal-
culation of probabilities, such as the transition probabilities of Heisenberg’s
matrix mechanics.

While the quantum mechanical scheme was still being worked out, many
difficulties in atomic theory were removed by Uhlenbeck and Goudsmit’s
hypothesis that the electron possesses intrinsic angular momentum or “spin”.
The entire periodic classification of the chemical elements could now be un-
derstood with the aid of the spin variables and Pauli’s exclusion principle.
The incorporation of electron spin into a fully relativistic theory of particles
was achieved in 1928 by Dirac, whose treatment of the electron was partic-
ularly significant in that it predicted the existence of an antiparticle, in this
case the positron — discovered soon thereafter.

Among the many applications of quantum mechanics to systems contain-
ing several particles, the most general are the laws governing the statistical
behavior of large assemblies. A new form of physical statistics was discovered
in 1924 by Bose and Einstein, who treated all identical particles in an assem-
bly as strictly indistinguishable (such particles are known as bosons; examples
are the photon, 4He, H2, the graviton, π-mesons). The special properties of
particles which are indistinguishable and in addition550 obey Pauli’s exclu-
sion principle, were expressed in the Fermi-Dirac statistics of 1926 (these

550 Let a system (unit volume, say) consist of a total of N noninteracting fermions

distributed among a finite number of energy states, such that there are ni of
them at energy level εi [

∑
ni = N ;

∑
niεi = E = total energy of system].

Each energy level εi has gi different quantum states with the same energy; gi is
known as the degeneracy of that level. For free particles of spin 1

2
, not subject

to magnetic fields, each particle may have spin up or down, so gi = 2 for all

levels. We specialize to this case in what follows; m will denote the fermion
mass.

The number ni/gi is the occupancy number of each degenerate state.

According to the Fermi-Dirac distribution law for fermions, the statistical ex-
pectation of ni is ni = gifi(εi), where fi(εi) expresses the probability that a

given quantum state of energy εi is occupied by a fermion [0 ≤ fi ≤ 1]. Ex-

plicitly, for the Fermi-Dirac distribution in equilibrium, one has

fi =
1

1 + exp
(

εi − εF

kT

) ,

where k is the Boltzmann constant, T the absolute temperature in ◦K and

εF is the Fermi energy; T and εF are adjusted to satisfy the two constraints
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particles are fermions, e.g.: electron, neutrino, muon, proton, neutron). Two

or more bosons, in contradistinction, may occupy the same quantum state.

Under suitable almost-classical conditions, both these forms of quantum sta-

tistics can be replaced approximately by the classical Boltzmann scheme,

but the quantum theory is essential in dealing with problems such as the be-

havior of photons in an enclosure, atoms in a superfluid or a Bose-Einstein

Condensate, electrons in a metal or white dwarf star, nucleons in an atomic

nucleus or neutron star, or in atomic and molecular electron orbitals.

Quantum mechanics provides a method for the theoretical treatment of

atomic or subatomic systems, for calculating their energy levels and for pre-

dicting the probability of transition from one state to another. When we

consider the properties of matter in bulk, new problems arise because of the

complicated interactions between atoms.

Even in the gaseous phase, intermolecular forces affect the behavior con-

siderably, although it is usually possible to describe deviations from the gas

laws in terms of simple two-body interactions. In the solid or liquid state, the

close proximity of atoms gives rise to strong forces affecting many particles.

At the same time, the fundamental rules of quantum statistics become im-

portant in dealing with the vibrations of the crystal lattice or with conduction

electrons in metals. Despite the mathematical difficulties, condensed-matter

physics has made great progress in accounting for many collective (many-

body) phenomena which admits of no classical explanation. Moreover, its

results have great practical significance and wide implications in many fields

of physical research.

As an illustration, consider the study of magnetic effects in solids. The

classical statistics of Boltzmann can be applied to assemblies of paramag-

netic atoms which are weakly interacting. The basic theory of level splitting

in magnetic fields is well known, and can be used directly in such cases to

calculate the paramagnetic susceptibility.

However, in the solid state, atoms and ions interact strongly with each

other and complex collective phenomena are observed, notably the phenom-

enon of ferromagnetism. The spontaneous magnetization of metals like iron

was treated phenomenologically in Weiss’ theory, the prototype of many at-

∑
ni = N ,

∑
niεi = E. At zero temperature and for free electrons, one finds

εF =
h2

8m

(
3N

π

)2/3

.

For T = 0, all energy states up to ε = εF are fully occupied (ni = gi) while
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all states with ε > εF are empty (ni = 0). In contradistinction, at T = 0,
in Maxwell-Boltzmann statistics, all particles should be at the ground energy

level with T = 0. In Fermi-Dirac statistics, this accumulation at the ground

level is prevented by the exclusion principle, and particles at T = 0 occupy
the lowest energy levels available up to energy εF . At higher temperatures, the

population of the fermions is spread out among the quantum states: electrons

with energies within O(kT ) of εF typically absorb thermal energy of the same
order, and move to higher levels, in accordance to the distribution fi(εi).

Thus, for temperatures kT 
 εF , only states with energies close to εF are af-

fected since the low-energy states are fully occupied and the exclusion principle
prevents the addition of further electrons to those states. Consequently, only

those fermions with energy close to εF can move into higher unoccupied states

by absorbing a relatively small amount of energy, of order kT .
At sufficiently high temperatures, the Fermi-Dirac distribution becomes essen-

tially a Maxwell-Boltzmann distribution, i.e.

n(ε1)/n(ε2) = e(ε2−ε1)/kT .

This occurs in the regime

T � T0 =
h2

8mk

(
3

π
N

)2/3

;

for electrons when T0 = 300 ◦K (room temperature), N ∼ 1013 per cm3.
In cases where the energy spectrum of the fermions is practically continuous,

such as free electrons in a macroscopic box, there are numerous discrete levels

(with gi = 2 each) in any reasonable energy interval Δε, so we may replace gi

with the continuous distribution g(ε)dε, and ni by dN . One finds that

g(ε) =
8π

h3

√
2m3ε

(again per unit volume) and thus the number of electrons with a kinetic energy

between ε and ε + dε is

dN =
g(ε)dε

1 + e(ε−εF )/kT
.

This theory can be applied successfully to the problem of finding the energy dis-
tribution of a large number of independent nearly free electrons in an enclosure

(applicable to conduction electrons in a metal too). Indeed, at low temperatures

for ε ≤ εF ,

N =

ε=εF∑

ε=0

gi(εi) ⇒ 8π

h3
(2m3)1/2

∫ εF

0

ε1/2dε =
16π

3h3
(2m3)1/2ε

3/2
F ,

from which the above expression for εF was derived.
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tempts to describe cooperative effects, which include the melting of solids and
order-disorder transitions in alloys.

Some success has been achieved in theoretical descriptions of such effects,
but it is not always easy to formulate a fundamental account of the interactions
responsible for them.

Our Galaxy (1925–1983)551

“Poor mankind. We began with the belief that we were the center of the
universe. At each step of our growing knowledge, we become less central.
Frankly, whenever I think of our insignificant place in the cosmos, and con-
template the fact that we live on one of its hundred billion stars, I become
more firm in my belief that we cannot be the only intelligent creatures in the
Galaxy”.

Robert DeWitt Chapman (1978)

Our sun is located in a stellar system called the Milky Way or simply the
Galaxy (on clear dark nights552 the cumulative light from the myriad of its
faint stars is visible as a luminous band stretching across the sky).

551 For further reading, see:

• Kaufmann, W.J., III. Universe, W.H. Freeman, 1985, 594 pp.

552 During WWII cities on the west coast of the United States were routinely blacked

out at nights to hamper attacks from the sea. This included Los Angeles, whose

city lights normally interfered with observations from Mount Wilson, site of the

2.5 meter Hooker Telescope. At the time this was the biggest and best telescope

in the world, but the increasingly bright skies due to the development of Los An-

geles limited its usefulness. Thus, the war provided excellent opportunities for
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The Milky Way, a spiral galaxy, is a dynamic entity with its own structure
and evolution governed by complex interactions of stars with each other and
with the interstellar gas and dust. It is vastly more complicated than a single
star, and its life story is correspondingly more difficult to unravel.

About the turn of the century, following upon the star gauging of W.
Herschel and J. Herschel, astronomers tried to investigate the structure of
the Milky Way system by the methods of stellar statistics. Even if the goal
was not attained, the incredible labor of these undertakings has nevertheless
proved to be very valuable in other connections.

H. Shapley’s method (1918) of photometric distance determinations us-
ing cepheids, brought the decisive advance. The period-luminosity relation
(i.e. the relation between the period P of the luminosity variation and the
absolute magnitude M), made it possible to measure the distance of every
cosmic system in which one could detect any sort of cepheids. The distance of
the cepheids determined by Shapley implied that these clusters form a slightly
flattened system whose center lies at a distance of about 30, 000 light years
in the direction of Sagittarius. The present picture of our Milky Way system
developed rapidly from these beginnings.

Shapley’s picture of our Galaxy was not universally accepted among as-
tronomers at first, but when in 1923 Hubble’s observations showed that the
Great Andromeda galaxy was similar in size and content to our galaxy, as-
tronomers accepted the hypothesis that the universe is filled with galaxies and
turned their attention to studying the detailed structure of our own.

In 1926, Bertil Lindblad (1895–1965, Sweden) came forward with the
hypothesis of differential rotation of the Galaxy. The first clues of this rotation
came from examining the motions of stars in the sky. Because of differential
rotation, the sun is like a car on a circular freeway with the fast lane on one
side and the slow lane on the other side; stars on the fast lane are passing the
sun and thus appear to be moving in one direction, while stars in the slow

astronomers to observe faint objects. Most American astronomers were unable

to take advantage of these opportunities, however, being assigned to war-related

duties elsewhere. One exception was Walter Baade (1893–1960) (exempted

from war duties), who took excellent photographs of the Andromeda galaxy,

a spiral much like our own. This allowed him to determine the characteristics

of individual stars in that galaxy, something never before possible. From the

study of these stellar characteristics emerged the recognition of stellar popula-

tions and their profound implications for galactic evolution.

After the war the conditions at Mount Wilson became worse and worse due to

city lights and pollution, and the 100-inch telescope was closed in 1985.
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lane are being overtaken by the sun and therefore appear to be moving in the
opposite direction.

However, not all of the stars in the sky move in this orderly pattern.
Extra-galactic objects and some components of our galaxy do not seem to
participate in the general rotation of the Galaxy; instead they display more-
or-less random motions.

Lindblad took the average of these random motions as a background, using
Doppler shifts of optical spectral lines to measure the sun’s speed w.r.t. the
background in various directions. From these measurements, he concluded
that sun moves along its orbit about the galactic center at a speed of 250 km

sec .

Observational evidence confirming Lindblad’s hypothesis was provided a
year later (1927) by Jan H. Oort. The work of Lindblad and Oort thus
showed that our galaxy rotates around a point which agrees with the center
as determined by Shapley. The agreements of these results established the
sun’s off-center position in the Galaxy once and for all.

Toward the 1930’s, astronomers gathered sufficient data to be able to
quantify the salient geometrical and kinematical features of the Galaxy: the
main body of stars forms a flat disc of about 30 kpc in diameter (∼ 1023

cm or 100, 000 light years) and about 2000 light years-thick. The galactic
center (nucleus) is surrounded by a spherical distribution of stars called the
galactic bulge which is hidden from us by clouds of dark interstellar matter.
We ourselves are situated far out in the disc, some 10 kpc from its center.
The disc is surrounded by the much less flattened halo to which the globular
clusters and certain other classes of stars belong.

The stars of the disc revolve round the galactic center under the gravita-
tional attraction of the masses that are concentrated there. In particular, the
sun describes a circular path of radius about 10 kpc with a speed of about
V = 250 km

sec in about 250 million years553. The Galaxy contains about 1011

553 The Galaxy must rotate — otherwise all stars would have fallen into the galac-

tic center. Suppose that the sun S moves in a Keplerian circular orbit with

radius rs about C, the galactic center. Draw a line-of-sight to a star P (tan-

gent to the circular orbit of this star about C). The polar coordinates of the

star relative to C are (r, θ). Erect a Cartesian coordinate system, with ori-

gin at the sun such that the star’s motion is in the galactic plane with SC as

the x-axis, and the sun’s velocity vector along the y-axis. Let � be the an-

gle CSP (galactic longitude). It then follows from elementary plane-geometry

considerations that the velocity of approach of P along the line-of-sight is:

U(r, �) =
[
θ̇(r) − θ̇(rs)

]
rs sin �. Since for a Keplerian motion d

dr
θ̇ < 0, it is

evident that U(r, �) is positive in quadrants I and III of the Cartesian system
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visible stars, gas and dust with a total mass of about 1.5 × 1011 solar masses
(1M
 = 1.99 × 1033 g). Since the gas contains only 1

6 of the total mass,
it has little direct influence on the dynamics, but the dense gas clouds are
the sites of new star formation and thereby play an important role in the
long-term evolution of the Galaxy.

Since the age of the Galaxy is about 1010 years, a typical disc star has
completed over 30 revolutions, and hence it is reasonable to assume that
the Galaxy is approximately in a steady state at the present time. Simple
calculations show that collisions between stars are exceedingly rare and have
absolutely no importance to the dynamics of the Galaxy. (This rarity of
encounters is fortunate, since the passage of a star within even 109 km of
the sun would cause major perturbations to the earth’s orbit and hence have
disastrous consequences for life on earth.)

Because interstellar dust effectively obscures our visual views in the galac-
tic plane, a detailed understanding of the structure of the galactic disc had to
await the development of radio astronomy. Because of their long wavelength,
radio waves easily penetrate the interstellar medium without being scattered
or absorbed.

Indeed, radio observations (via Doppler shifted 21-cm interstellar hydro-
gen emission554, 1951) revealed that our Galaxy has spiral arms (concentra-
tions of gas and dust) unwinding from the center in a shape reminiscent of

so that stars and gas in these direction should appear to approach, and their

spectra should be blue-shifted . In quadrants II and IV stellar spectra should

appear red-shifted . This, in fact, is what Oort observed in 1927. At any given

galactic longitude, the highest velocity should be observed at P , where the line-

of-sight is tangential. By noting the maximal velocity at given � one can derive

the distance of the sun from the galactic center. Present results yield rs ∼ 9.5

kpc ± 1.5 kpc. Using Lindblad’s value of Vs = 250 km
sec , and rs = 10 kpc,

G = 6.668 × 10−8 dyn cm2 g−2, Kepler’s law V 2
s = GM

rs
yields the mass of

the matter inside the sun’s orbit: M = 2.9 × 1044 g = 1.5 × 1011 solar masses.

Also T = 2πrs
Vs

= 2.3 × 108 years is the period of the sun’s orbit around the

galactic center.
554 When the electron and proton spins of a hydrogen atom are parallel, the atom

is in a slightly higher energy level than when they are antiparallel. As a result,

an atom with parallel spins will eventually flip the electron spin over to reach

a lower energy level. This spin flip is accompanied by the emission of a photon

that carries away just the energy difference between the two spin states. An av-

erage hydrogen atom will spend 10 million years in the parallel spin state before

the electron spin flips over, but our Galaxy contains so many hydrogen atoms

that about 1054 spin flips, and accompanying photon emissions, occur each sec-
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a pinwheel. By measuring Doppler shifts, astronomers can determine speeds
parallel to our line-of-sight across the Galaxy. These observations clearly in-
dicate that our Galaxy does not rotate like a rigid body but rather exhibits
differential rotation.

Thus, the important result of the work of Lindblad and Oort was that
the portion of the galaxy in the vicinity of the sun behaves like a fluid, with
each star moving in a Keplerian orbit as an independent particle. Near the
center of the galaxy this is not true: here the entire system does rotate like
a rigid object. The stars in the inner part of the Galaxy are subject to the
combined gravitational pull of all the stars around them (there, speeds of
individual stars increase with distance from the center, whereas they decrease
with distance in the outer portion); There is an intermediate distance, just
inside the sun’s orbit, where a transition between rigid-body and Keplerian
orbits occurs, and it is there that stars have the greatest orbital velocities555.

ond. Collisions among atoms tend to flip some of the antiparallel-spin atoms

back into the parallel-spin configuration. At any given time, 3
4

of the hydro-

gen atoms have parallel spins, while the remaining ones have antiparallel spins.

The parallel-antiparallel spin energy difference amounts to 9.5 × 10−18 erg, and

the corresponding frequency is ΔE
h

= 1420.4058 megahertz, corresponding to

a wavelength = hc
ΔE

= 21.10611 centimeters. The astronomer points his radio

telescope in a particular direction in the plane of the Galaxy and measures the

intensity of the 21-cm hydrogen emission received (proportional to the number

of hydrogen atoms in that direction). The receiver is swept in frequency around

the 21-cm frequency, and a profile of intensity versus frequency is compiled. The

detected emission is not exactly at 21-cm wavelength: The telescope receives

21-cm emission from each segment of spiral arm in that direction, but because

of differential rotation, a given arm segment has a distinct velocity from the

others that are closer to the center or farther out. Therefore, instead of a single

emission peak at 21.1 cm, what we see is a cluster of emission lines near this

wavelength but separated from each other by the Doppler effect.

Now, by measuring Doppler shifts away from the standard frequency, as-

tronomers can determine the relative velocity toward or away from us that

characterizes a particular group of hydrogen atoms. If we assume that all the

atoms move in circular orbits around the galactic center, we can correlate a

distance along our line-of-sight to each particular Doppler shift. (The assump-

tion of perfectly circular orbits introduces some imprecision, but the distances

derived from this assumption are thought to be rather accurate.)

Using this method, astronomers have mapped the hydrogen distribution in the

galactic plane. It showed that hydrogen does concentrate in particular “arms”

that exhibit a vaguely spiral pattern.
555 In the Galaxy, the deviation of a star’s motion from a perfect circular orbit is

called its peculiar velocity . The sun has a velocity of about 20 km/sec w.r.t. a
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However, the orbital velocities do not drop off to lower and lower velocities
beyond the sun’s orbit, (as it would if all the mass of the galaxy were concen-
trated at its center). In fact, the orbital velocity of stars and gas is observed
to increase out to a distance of at least 60, 000 light years from the galactic
center. This indicates that a surprising amount of matter must be scattered
around the edges of our Galaxy, raising the total galactic mass to a total of
some 6 × 1011 M
. This outlying matter is dark; it does not show up on
photographs. Many astronomers suspect that it is spherically distributed all
around the galaxy, along with the globular clusters. Thus our Galaxy halo is
more massive than previously expected.

Almost half the galaxies we know are spiral galaxies like the Milky Way,
with a spiral-arm pattern of young, bright stars and interstellar hydrogen gas.
When we consider the fact that the inner parts of these spiral galaxies rotate
with a higher angular velocity than the outer parts, we would expect that the
spiral arms would be wound up after a few revolutions (the farthest regions
complete one revolution in 400 million years, while close to the center it takes
only 100 million years). Why, then, does the spiral pattern persist? We know
that it does persist, for we would not otherwise see so many spiral galaxies.

Bertil Lindblad was first to argue that the spiral arms of a galaxy are
merely a pattern (density wave) that propagates among the actual stars. Lind-
blad struggled with the problem from 1927 until his death in 1965. He cor-
rectly recognized that spiral structure arises through the interaction between
the orbits and the gravitational forces of the stars of the disc, and thus should
be investigated using stellar dynamics.

Lindblad recognized that such density waves would be caused by gravita-
tional perturbations on the circular Keplerian orbit of a star by the motion of
other matter in the galaxy. This will cause the star to rotate counterclockwise
around an epicycle while the epicycle itself moves clockwise along the undis-
turbed path. The final path of the star is a precessing ellipse. The gravity of
this star in turn affects the motions of its neighbors, and thus a wave distur-
bance, called a kinematic density wave, propagates from one stellar orbit to
the next.

The density-wave theory was greatly elaborated and mathematically em-
bellished by the American astronomers C.C. Lin and Frank Shu during
1964–1969. They made the crucial step that elucidated the theory toward
which Lindblad had been groping. They have shown that the spiral structure
represents a local increase in density and that this enhanced density spiral

circular orbit, in a direction about 45 ◦ from the galactic center and slightly out

of the plane of the disc.
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travels around the galaxy like a wave, at a “pattern” velocity different from
that of the speed of the stars involved556.

Stars and gas overtake the spiral pattern, and as they enter it, the gas
density increases to 5 or 10 times its density outside. This increase in gas
density has an important effect. It triggers the formation and collapse of
large gas clouds, which condense into protostars within a million years or
so — producing clumps of young, bright stars. Thus, within a few million
years after the gas enters a dense part of the pattern, some of it becomes
incorporated into one of the bright stars that outline spiral arms for a few
million years before fading away into obscurity. After a few million (or tens
of millions) of years, these stars, known as Blue giants, burn themselves out,
because they burn their nuclear fuel so prodigiously.

By the time the pattern has moved a significant distance around the galaxy
relative to the stars, the stars that once outlined the spiral arm will be fading
away, while a new group of stars forms the gas that has entered the dense
part of the pattern more recently. Thus the density-wave pattern persists
even as the individual bright stars perish. It is not known how such a spiral
density-wave pattern gets started; one theory suggests that it originates with a
close encounter between galaxies. Another theory suggests that spiral galaxies
generate their own density-wave pattern.

In 1973, A.J. Kalnajs elaborated on the theory of Lin and Shu and
showed that each of their precessing elliptical orbit is tilted w.r.t. its neighbor
through a specific angle, resulting in a spiral pattern which arises in those
locations where the ellipses are bunched together. Thus, in spite of the natural
random scatter of the stars in their orbits, the orbits become correlated such
that some of the stars happen to get close together along the high arching
spiral arms. This in turn enhances the gravitational attraction upon the
lightweight atoms and molecules in the interstellar gas and dust, which are
readily sucked into the gravitational well along the spiral — forming the crest
of the density wave.

In Kalnajs’ spiral pattern process, the density wave moves through the
material of the Galaxy at a speed of about 30 km/sec, slower than the stars
themselves. On its own, however, the interstellar gas can transport a com-
pressional disturbance at a speed of only 10 km/sec, which is the speed of
sound in the interstellar medium. The density wave is therefore supersonic

556 When a slow truck heads uphill on a highway, with cars passing as they can, we

have a one-dimensional analogue to a kinematic density wave: The pattern of

bunched cars persists, even though a given car passes into and then out of the

denser part of the pattern. Furthermore, the pattern moves at a slower speed

than that of the average car.
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— creating a shock wave along the leading edge of the density wave, which
causes a violent compression of the gas.

As the spiral density waves sweep through the plane of the Galaxy, they
recycle the interstellar medium. Old dust and gas left behind from ancient,
dead stars are recompressed into new nebulae in which new stars are formed.
Because the material left over from the deaths of ancient stars is enriched in
heavy elements, new generations of stars are more metal-rich than were their
predecessors.

This theory still leaves many open questions. For example: what keeps
the density wave going? Why don’t they dissipate? The compression of
the interstellar gas and dust requires enormous amounts of energy. What
mechanism is constantly replenishing this energy? A possible source is the
galactic nucleus.

The center of our Galaxy is a mysterious region forever blocked from our
view by the intervening interstellar medium. From Shapley’s work on the dis-
tribution of the globular clusters, as well as Oort’s analysis of stellar motions,
it was known in the 1920’s that the center of our great stellar pinwheel lies
in the direction of the constellation Sagitarius. The distribution of infrared
radiation from the nucleus at wavelengths around 2.2 microns looks just like
the distribution of visible light from the nucleus of the Andromeda Galaxy.
The center of our Galaxy contains a million stars per cubic persec [1 pc equals
206, 000 AU], compared to one star per cubic parsec near the sun.

Longer-wavelengths infrared observations (around 20 microns) show sev-
eral intensely bright sources near the center of the Galaxy. The center is also
a copious emitter of electromagnetic radiation of other kinds. It emits syn-
chrotron radiation, thermal radiation, 21-cm radiation, molecular radiation,
and X-rays. The motion of gas clouds within a few light years of the galactic
center were studied in the 1970’s. It was shown that a certain spectral line
of singly ionized neon, which normally has a wavelength of about 12.80 mi-
crons in the infrared, is extremely broad. This line is broadened by motion
of gas clouds in which neon is a minor constituent. The broadening has been
interpreted as a result of the speed at which ionized gas orbits the galactic
nucleus; radiation from gas coming toward us is blueshifted, while radiation
from receding gas is redshifted. The final result is to smear out a spectral
line over a range of wavelengths corresponding to a range of line-of-sight ve-
locities. The broadening of the line then reveals a velocity spread of about
400 km/sec. On one side of the galactic nucleus, gas is coming toward us at
speeds up to 200 km/sec, while on the other side of the galactic nucleus, it is
rushing away from us at speeds up to 200 km/sec.

Something must be holding this high-speed gas in orbit about the galactic
center. Using Kepler’s third law, it is estimated that 106 M
 of material
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is needed to prevent this gas from flying off into interstellar space. These
observations therefore imply that an object with the mass of million suns is
concentrated at Sagittarius A West. This object must be extremely compact
— much smaller than a few light years over which the infrared neon source
extended.

1925 CE, March 18 The most devastating tornado on record, and the
greatest tornado disaster in the United States. Known as the Tri-State tor-
nado (Indiana, Illinois and Missouri), it remained on the ground for 350 km.
The resulting losses included 695 dead, 2027 injured, and damages of about
43 billion in 1970 dollars.

1925 CE, April 1 The Hebrew University in Jerusalem opened with a
keynote address by Albert Einstein. The first academic institution for
secular studies in Israel, ever.

1925 CE, Oct. 13 Scripps Institution of Oceanography of the University
of California came into existence at a site overlooking the Pacific Ocean, just
north of La Jolla, California.

1925 CE Samuel Abraham Goudsmit (1902–1978, Holland) and
George Eugene Uhlenbeck (1900–1988, Holland) suggested the electron
spin angular momentum. At the same time Ralph de Laer Kronig (1904–
1995, Holland) had the same idea. He asked W. Pauli for his opinion before
publication, and Pauli convinced him that the idea had no merit.

1925–1927 CE The Atlantic Meteor expedition: One of the first systematic
studies of a single ocean was carried out by the German research ship Me-
teor557, which made 13 crossings of the Atlantic between 20 ◦S and 60 ◦S. The
results of this survey were published in a series of atlases. The Meteor was
the first expedition to use the echo sounder (sonar) to measure the depth of
the ocean almost continuously along its track. As a result, a more accurate
idea of the shape of the ocean floor was obtained than it was possible to form
with isolated sounding.

557 Designed to recover gold from the ocean to repay Germany’s WWI debts, al-

though it was an unsuccessful enterprise in this respect. The ship was commis-

sioned by the Hydrographic Department of the German Navy.
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In 1925, the expedition discovered the Mid-Atlantic Ridge. The data ob-
tained — gathered day and night, in all weathers and all seasons — included
some 70,000 soundings of the ocean depths over a period of 25 months. There
was nothing to equal it for another 30 years: it was not until the International
Geophysical Year of 1957–1958 that oceanographers once again undertook to
survey an entire ocean.

1925–1932 CE Rise and decline of the ‘talking machines’. Research in
wireless telephony conducted during WWI yielded viable microphones and
amplifiers that made radio broadcast possible. By 1925, the studio experience
and the quality of the recordings improved dramatically. Individual micro-
phones replaced shared recording horns, and artists could now overdub mis-
takes. Electric amplification made it possible for studio acoustics to emulate
the atmosphere and clarity of live performances. A much-expanded frequency
range allowed for the improved definition of sharper treble and the weighty
force of deep bass.

These innovations sparked another surge in enthusiasm for recorded music
that now appeared to complement the popularity of radio. A number of radio-
phonograph combination machines were marketed successfully. The grandest
symbol of corporate confidence in the alliance was RCA Victor, the result
of the Radio Company of America’s acquisition in early 1929 of the Victor
Talking Machine Company.

Later in the same year, however, the predicted death of the phonograph
seemed to suddenly become a reality. The industry ground to a halt almost
overnight in October when the stock market crashed. People saw little point
in spending bread money on records when the radio continued to provide free
entertainment. In November, eighty-two year old Edison and his corporate
allies discontinued production of records and phonographs. Cylinder records
had already begun a sharp and steady decline since the advent of electronic
recording. The Edison announcement finally rendered them extinct. Thomas
Edison died in 1931.

In 1927, 987, 000 machines were produced and 104, 000, 000 records were
sold. In 1932 those numbers dropped to 40, 000 and 6, 000, 000 respectively.
With the exception of a few die-hard collectors, consumers not only quit buy-
ing records, they also began to think of the whole phenomenon of “canned
music” as part of an outdated culture. Free live radio and the first sound mo-
tion pictures (the first feature-length “talkie”, The Jazz Singer, was released
in 1929) seemed to provide more vibrant, immediate and modern cultural
outlets. Millions of machines and records found their way into attics and
junkpiles. In decades to come, of course, recording would be revived and go
through even more dramatic technological, cultural and corporate transfor-
mations. However, the Depression, the death of the phonograph’s inventor,
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the drastic decline in consumer interest, and the competition from new forms
of audio technology marked the end of the beginning for talking machines.

1925–1934 CE Ida Eva Tacke Noddack (1896–1979, Germany). Che-
mist. Discovered the element Rhenium [Re, atomic weight = 186.2; atomic
number = 75] with Walter Karl Noddack (1893–1960) and Otto Berg. It
was discovered through X-ray spectra, in a sample of the mineral Columbite.

In 1934 she proposed, counter to Enrico Fermi, that heavy nuclei bom-
barded by neutrons break down into isotopes of known elements but not
neighbors of transuranium element, as Fermi and all other nuclear physicists
then believed. In that she was ahead of her time; Bohr’s liquid-drop model
of the nucleus had not yet been formulated, and so there was at hand no
accepted way to calculate whether breaking up into several large fragments
was energetically allowed.

Noddack’s physics was avant garde. By 1938 her article was gathering
dust on back shelves. But in 1939, her belief in nuclear fission was confirmed
by Lise Meitner and Otto Hahn.

1925–1944 CE Erwin Schrödinger558 (1887–1961, Austria). Path-
breaking theoretical physicist. Created quantum wave-mechanics559 and es-
tablished the fundamental wave equation governing submicroscopic phenom-
ena. The formulation of the ‘Schrödinger equation’ (1925) put quantum the-
ory on a firm mathematical basis, and provided the foundation for its further
rapid development. It plays a role in modern physics comparable to that
played by the equations established by Newton, Lagrange and Hamilton in
classical physics.

The Schrödinger equation describes the evolution of the probability-
amplitude function that governs the dynamics of any physical system (the
simplest case being that of a single particle), and specifies how these waves
are altered by external influences.

The probabilistic aspect of quantum theory made Schrödinger and other
leading physicists profoundly unhappy, and he devoted much of his later life to
formulating philosophical objections to the generally accepted interpretation
of the theory that he has done so much to create!

558 For further reading, see:

• Moore, W., Schrödinger, Cambridge University Press, 1990, 513 pp.

559 Its equivalence to Heisenberg’s matrix-mechanics was later established by

Dirac, Jordan and Born.



3650 5. Demise of the Dogmatic Universe

The Schrödinger equation had an enormous impact on chemistry since the
nature of the chemical bond could be formulated in terms of physical concepts.

Schrödinger established the correctness of his equation by applying it to
the hydrogen atom, predicting many of its properties with remarkable accu-
racy. The equation is used extensively in atomic, molecular, nuclear, particle,
and condensed-matter physics.

During 1941–1943, while in exile in Dublin, Schrödinger devoted consid-
erable effort to working out a nonlinear classical electromagnetic theory pre-
viously outlined by Born560 and Infeld (1934). His conviction that nonlinear
theories would be essential for future progress of physics has turned out to be
abundantly justified.

From 1943 to 1951, Schrödinger’s work was dedicated almost exclusively
to a search for a unified field theory that would encompass both gravitation
and electromagnetism561. Like Einstein, he was inspired by a metaphysical
belief in the unity of nature which induced in him a feeling of wonder at
the simplicity and beauty of the universe as revealed through the window

560 The Maxwell equations are linear, i.e. the fields and their derivatives occur

only in terms of the first degree. A fundamental property of such linear equa-

tions is that the fields cannot generate themselves — sources (dynamical or

external) must be introduced. In this case, for example, if one introduces a

point charge such as an electron, the fields diverge at this point — which is

physically unreasonable. Moreover, the mass and charge of the electron are not

deducible from the linear theory.

The idea of a nonlinear modification of Maxwell’s equations had occurred to

Born in 1933. He aimed at developing a theory in which an electron of finite

radius arises naturally out of the field equations. Born and Infeld (1934)

pointed out that the relation of matter to the electromagnetic field can be in-

terpreted from two opposite standpoints: (1) Unitarian — only the field exists

and particles are singularities of the field, their masses are derivable from the

field energy. (2) Dualistic — particles are sources of the field, acted upon by

the field but not part of it; they have the characteristic intrinsic property of

inertia, measured by mass.

The development of quantum electrodynamics followed a quite different path,

starting with Dirac’s relativistic quantum theory of the electron and culmi-

nating in the work of Schwinger, Feynman and Tomonaga from 1948 to

1953.
561 Schrödinger and Einstein turned to unified field theories because of their dis-

enchantment with the prevailing state of quantum mechanics. Einstein hoped

that field theory would eventually include both the macroscopic systems of cos-

mology and the microscopic systems of elementary particles and quanta.
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of mathematical theory562. Schrödinger believed that technology had caused
deterioration in the quality of man’s relation to the deeper sources of his
being.

In 1944, he wrote his popular masterpiece ‘What is Life’. It deals with the
impact of quantum ideas on biology, and above all on the molecular processes
that underline the laws of heredity. While a good deal of what the book had
to say is now dated, it has had a great influence on physicists and biologists
because it suggested how the two disciplines join together at their base.

Schrödinger was born in Vienna. He entered the University of Vienna in
1906, served in WWI and moved to Zürich, where he stayed until 1926. In
1927 he was invited to succeed Max Planck at the University of Berlin, thus
becoming a colleague of Albert Einstein. In 1933 he was deeply affected by
the political climate in Germany, and realized that he could no longer live in
a country in which the persecution of the Jews had become national policy.
Consequently he began a seven-year odyssey that took him to Austria, Great
Britain, Belgium, the Pontifical Academy of Science in Rome, and finally —
in 1940 — the Dublin Institute for Advanced Studies (founded under the
influence of Premier Eamon de Valera, who had been a mathematician before
turning to politics). Schrödinger remained in Ireland for the next 15 years,
doing research both in physics and in the philosophy and history of science.
In 1956 Schrödinger retired and returned to Vienna as professor emeritus at
the University.

Schrödinger was a man with great charm and a fascinating personality
and thus attracted many interesting women in his life. He married Annemarie
Bertel in 1920. It was a childless marriage based on friendship alone, providing
him a secure haven from importune mistresses. Out of his numerous amorous
affairs he had three daughters from three different women: Ruth (b. 1934),

562 Einstein was 36 years old when he published his general theory of relativity;

Schrödinger was 38 when he discovered wave mechanics. By 1940, when he be-

gan to consider generalized field theory, he was 53. Einstein, then 61, had been

working on the problem for twenty-five years without apparent success. In the

annals of physics it is unusual to find anyone who had made a major theoretical

discovery after the age of 40. Thus it might seem that Einstein and Schrödinger

were facing an insurmountable psychological barrier. Revolutionaries in physics

must be young people whose minds have not had time to become habituated to

well-worn pathways of thought. Thus Schrödinger and Einstein may have had

little chance of success in their efforts to discover a unified field theory in the

1940’s using methods of the 1920’s. Richard Feynman summed up this notion,

saying (1962): “None of these unified field theories has been successful. . . Most

of them are mathematical games, invented by mathematically minded people...

and most of them are not understandable”.
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Nicole (b. 1945), and Linda (b. 1946). He believed that scientific creativity
would be promoted and sustained by erotic excitement, and that love is not
an impediment to great efforts but its carrier.

Schrödinger was also an amateur poet, and a book of his poems appeared
in 1949. Many of these were love poems which he wrote for his women.
Appreciation of one of his poems gave him much more pleasure than any
amount of praise for his scientific papers.

By the end of his life, he must have mastered as much general culture —
scientific and nonscientific — as it is possible for any single person to absorb
in this age of technical specialization. He read widely in several languages,
and wrote perceptively about the relation between science and the humanities
and about Greek science, in which he was particularly interested.

Of all the physicists of his generation, with the possible exception of Ein-
stein, Schrödinger stands out on account of his extraordinary intellectual ver-
satility and his significant contributions to nearly all branches of science and
philosophy.
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Worldview XL: Erwin Schrödinger on all that and
physics too

∗ ∗∗

“I don’t like it, and I’m sorry I ever had anything to do with it.”

(on “Schrödinger’s Cat”)

∗ ∗∗

“Only metaphysics can inspire the hard work of theoretical physics.”

∗ ∗∗

“Actions are transitory while works remain.”

∗ ∗∗

“What is Life?, I asked in 1943. In 1944, Sheila May told me. Glory be to
God!”

∗ ∗∗

“In Germany, if a thing was not allowed, it was forbidden. In England, if a
thing was not forbidden, it was allowed. In Austria and Ireland, whether it
was allowed or forbidden, they all did it if they wanted.”

∗ ∗∗

“One cannot derive philosophical conclusion from physics. In contrast, how-
ever, philosophy could influence physics.”

∗ ∗∗
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“All great things in the world are worked through love. It produces everything.
Love is not an impediment to great effort but its carrier.”

∗ ∗∗

“Thus, the task is, not so much to see what no one has yet seen; but to think
what nobody has yet thought, about that which everybody sees.”

∗ ∗∗

“When you feel your own equal in the body of a beautiful woman, just as
ready to forget the world for you as you for her – oh my good Lord – who can
describe what happiness then. You can live it, now and again – you cannot
speak of it.”
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The Schrödinger Equation563 (1925)

For a free, non-relativistic spinless particle of mass m, the associ-
ated de Broglie wave can be written ψ = e−i 1

�
χ(r,t), with χ satisfying

∂χ
∂t = 1

2m (∇χ)2. If this particle/wave moves in a potential field with po-
tential V (r, t) one may draw parallels with the Hamilton-Jacobi equation of
analytic mechanics and identify χ with the action. This analogy leads to an
equation

∂χ

∂t
=

1
2m

(∇χ)2 + V (r, t).

But on the other hand, one would like the de Broglie wave to satisfy a wave
equation.

Schrödinger then (1925) came up with a wave equation that no one had seen
before:

563 For further reading, see:

• Schiff, L.I., Quantum Mechanics, McGraw-Hill Book Company: New York,
1968, 544 pp.

• Park, D., Introduction to the Quantum Theory, Dover, 2005, 601 pp.

• Griffiths, D.J., Introduction to the Quantum Mechanics, Prentice Hall, 1995,

394 pp.

• Zettili, N., Quantum Mechanics, Wiley, 2001, 649 pp.

• Blinder, S.M., Introduction to the Quantum Mechanics in Chemistry, Mate-

rials Science and Biology, Elsevier, 2004, 319 pp.

• Treiman, S., The Odd Quantum, Princeton University Press, 1999, 262 pp.

• Becker, R., Quantum Theory of Atoms and Radiation, Blackie & Son: London,

1964, 403 pp.

• Bethe, H. and E.E. Salpeter, Quantum Mechanics of One and Two-Electron

Atoms, Plenum Publishing Corporation: New York, 1977, 369 pp.

• Feynman, R.P., R.B. Leighton and M. Sands, The Feynman Lectures on

Physics, 3 Volumes, Addison-Wesley Publishing Company: Reading, MA,

1963–1965.

• Landau, L.D. and E.M. Lifshitz, Quantum Mechanics, Pergamon Press.



3656 5. Demise of the Dogmatic Universe

i�
∂ψ

∂t
= − �2

2m
∇2ψ + V (r, t)ψ = Hψ (1)

He arrived at this equation by starting from the classical energy equation for

a particle E = 1
2mp2 + V (r, t) and representing the energy and momentum

by the respective differential operators

E → i�
∂

∂t
, p → −i�∇,

acting on the wave function ψ(r, t), where V (r, t) is a real potential, not
depending on p or E. The Hamiltonian operator now bears the form

H = − �

2m
∇2 + V (r, t). (2)

Note that there is no source term for ψ; rather, ψ acts as a source for itself
in conjunction with the external field V .

Born (1926) interpreted ψ as a probability wave-function, in the sense
that it is large where the particle is ‘likely to be’ and small elsewhere. In
the physical microworld it replaces the deterministic classical trajectory r(t).
Thus (1) is assumed to provide a quantum-mechanical complete description
of the behavior of a particle of mass m with potential energy V (r, t).

It turned out that in the semiclassical limit � → 0, an approximation
(known in optics as the eikonal approximation, and in quantum mechan-
ics as the WKB or WKBJ approximation) holds, wherein the Schrödinger
equation becomes the Hamilton-Jacobi equation. To see this we put
ψ(r, t) = Aei 1

�
W (r,t) into (1) (A constant) and obtain

∂W

∂t
+

1
2m

(∇W )2 + V − i�

2m
∇2W = 0 (3)

In the limit � → 0, (3) is the same as the Hamilton-Jacobi PDE for the prin-
cipal function W :

∂W

∂t
+ H(r, p) = 0 p = ∇W. (4)

Since the momentum of the particle is the gradient of W , the possible trajec-
tories are orthogonal to the surfaces of constant W and hence, in the classical
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limit, to the surfaces of constant phase of the wave function ψ. Thus, in this
limit, the rays associated with ψ (orthogonal trajectories to the surfaces of
constant phase) are the possible paths of the classical particle.

Let us now split the variables in W (r, t), putting W (r, t) = S(r) − Et,
namely

ψ(r, t) = Aei 1
�

S(r)e−i 1
�

Et = u(r)e−i 1
�

Et.

We shall then have an equation for S(r)

1
2m

(∇S)2 − [E − V (r)] − i�

2m
∇2S = 0 (5)

The WKB approximation starts from (5) and expands S(r), the logarithm of
the wavefunction, in powers of � in the one dimensional case. The leading
term, S0, is real and approximates the phase of the wave-function (times �),
while the next term, S1, both corrects the phase (real part) and approximates
the amplitude (imaginary part).564

Returning to (1) we note that the wave function ψ∗ satisfies the complex-
conjugate equation

−i�
∂ψ∗

∂t
= − �2

2m
∇2ψ∗ + V (r)ψ∗. (6)

For any fixed volume τ , the combined use of (1), (6) and Green’s third identity
yield,

∂

∂t

∫

τ

ψψ∗ dτ =
∫

τ

[

ψ∗ ∂ψ

∂t
+

∂ψ∗

∂t
ψ

]

dτ

=
i�

2m

∫

τ

[
ψ∗∇2ψ −∇2ψ∗ψ

]
dτ (7)

=
i�

2m

∫

τ

div [ψ∗(∇ψ) − (∇ψ∗)ψ] dτ

=
i�

2m

∫

S

[ψ∗(∇ψ) − (∇ψ∗)ψ] · n dS.

If we let τ engulf the entire space and recede S to infinity under proper
behavior conditions of Ψ at infinity, we obtain

564 The phase-correction part of S1 vanishes, but this is not so for higher �n terms.
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∂

∂t

∫

all
space

ψ∗ψ dτ = 0 ⇒
∫

all
space

ψ∗ψ dτ = constant.

By proper normalization the constant can be chosen as unity. The entity
ρ = ψ∗ψ, which obeys ∫

all
space

ρ(r, t) d3r = 1 (8)

is given the interpretation of position probability density (Born 1926).

Returning to (3), one defines the probability current density vector

J =
�

2im
[ψ∗(∇ψ) − (∇ψ∗)ψ] . (9)

It is linked to the probability density ρ(r, t) via the differential relation

∂ρ(r, t)
∂t

+ div J(r, t) = 0. (10)

This has the familiar form associated with the conservation of flows of fluid
of density ρ and current density J , in which there are no sources or sinks.
The vector J is thus interpreted as a probability current density. Also, with

H = − �2

2m∇2 + V we have

ψ∗Hψ − ψHψ∗ = i�
∂ρ

∂t
. (11)

Ehrenfest (1927) gave a semiclassical interpretation of the Schrödinger field
by linking the motion of a wave packet centroid and the trajectory and dynam-
ics of the corresponding classical particle, whenever the potential V changes
by negligible amount over the dimensions of the packet (which is the condition
for the WKBJ expansion to be useful). This is equivalent to the statement
that Newton’s second law of motion holds for average quantities.

To see this we note that if the quantities ρ and J are both multiplied by
m, the mass of the particle, we obtain mass density ρm = mρ and momen-
tum density P = mJ , and the equation of continuity may be interpreted
as the law of mass conservation. In the same way, a multiplication by the
particle charge e·, yields the charge density ρe = eρ and the electric current
density Je = eJ , and (10) becomes the law of charge conservation. The
conservation laws of both mass and charge are identical because one particle,
by its probability flow, caused both.
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Mathematically, we get from (9) the expression of the statistical expecta-

tion of the total momentum operator in the quantum state Ψ:

〈p〉 =
∫

τ
Ψ∗pΨ d3x = �

2i

∫
τ

[ψ∗∇ψ − ψ∇ψ∗] d3x

= �
i

∫
τ

ψ∗∇ψ d3x = m
∫

τ
J d3x

(12)

where the second term in the middle equation is reduced by partial integration.

It can also be shown (by use of (1), (6) and partial integration) that the

semiclassical force acting on the particle is

F = −〈∇V 〉 =
d〈p〉
dt

=
�

i

∫

τ

∂

∂t
(Ψ∗∇Ψ) d3x. (13)

By a similar derivation it is found that if we define the expected (mean)

particle position as

〈r〉 =
∫

τ

ψ∗rψ d3x, (14)

then
d

dt
〈r〉 =

1
m
〈p〉, d2

dt2
〈r〉 =

1
m
〈−∇V 〉. (15)

These relations are analogous to the classical equations of motion

dr

dt
=

1
m

p,
dp

dt
= −∇V. (16)

Likewise, the quantum analogs of the laws of the classical angular motion

conservation are derived from T (torque) = r × F and T = dL
dt (L = par-

ticle angular momentum) where

L =
�

i

∫

τ

Ψ∗(r × ∇)Ψ d3x =
∫

τ

mr × J d3x , (17)

T = −�i

∫

τ

∂

∂t
(Ψ∗(r × ∇)Ψ) d3x =

∫

τ

r × (−∇V )Ψ∗Ψ d3x , (18)

where the time derivatives in the 2nd equation can be calculated from (1), (6)
(note that in general L �= 〈r〉 × 〈p〉, T �= 〈r〉 × F ).
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Finally, we define the total energy

E =
∫

τ

ψ∗Hψ d3x =
∫

τ

ψ∗
{

− �2

2m
∇2 + V

}

ψ d3x. (19)

Making use of the identity ψ∗∇2ψ = div(ψ∗∇ψ) − (∇ψ∗ · ∇ψ), assum-
ing that at large distances Ψ tends to zero rapidly enough, and using Gauss’

divergence theorem,
∫

div(ψ∗∇ψ) d3x vanishes when taken over an infinitely

remote sphere, so that (19) can be recast in the form

E =
∫

d3x

[
�2

2m
(∇ψ∗) · (∇ψ) + ψ∗V ψ

]

=
∫

d3xW, (20)

where the energy density is

W =
�2

2m
(∇ψ∗) · (∇ψ) + ψ∗V ψ. (21)

Using the Schrödinger equation, it is easy to demonstrate that the law of
energy conservation should be

∂W

∂t
+ div Σ = 0, (22)

where the expected (mean) energy flux vector is

Σ =
�2

2m

h

2mi
(∇Ψ∗ · ∇∇Ψ −∇∇Ψ∗ · ∇Ψ) + V J . (23)

The Ehrenfest analogy [(12)–(17)] provides an example of the correspon-
dence principle, since it shows that the probability-centroid of a wave packet
moves like a classical particle subject to the position and velocity uncertainties
inherent in the wave function and the uncertainty principle. The correspon-
dence is mainly useful in the macroscopic limit in which the finite size and
the internal structure of the packet can be ignored.

When V is time-independent (as we have so far been assuming), any so-
lution ψ(x, t) of Schrödinger’s equation can be decomposed as

ψ(x, t) =
∑

j

e−i(Ei/�)tψj(x), (24)

where j ranges over all eigenstates, ψj(x), of the Hamiltonian operator

H = 1
2mp2 + V (x), with corresponding eigenvalues (energy levels) Ej .



1925 CE 3661

Note that
∑

j usually includes a discrete summation over the bound states,
and an integration over the continuum states. The eigenstate condition on ψj

is known as the time-independent (stationary) Schrödinger equation

− �2

2m
∇2ψj + U(x)ψj = Ejψj , (25)

and describes e.g. a single, stationary atomic energy state.

A transition between different energy levels (induced e.g. by an exter-
nal time-varying electromagnetic field) is described by the time-dependent
equation, with time-dependent U . It governs atomic and molecular processes
that vary with time, such as absorption and emission of photons and elec-
trons, scattering, and chemical reactions. The Schrödinger equation (SE) in
its above form (which is not the most general) is not Lorentz-covariant, and
hence requires relativistic corrections.

For the stationary case, if we multiply both sides of the equation
Hψ = Eψ by ψ∗ and integrate over the coordinates, we obtain:

E =
∫

ψ∗Hψdτ
∫

ψ∗ψdτ
.

This formula enables us to calculate E when ψ is known. If ψ is not known
exactly, the Rayleigh-Ritz variational principle565 asserts that the above ratio

565 We seek a complex wave-function ψ for which the functional

J [ψ] =

∫ ∫ ∫

ψ∗(Hψ)dx dy dz

is stationary, subject to the probability-normalization constraint∫∫∫
ψψ∗dx dy dz = 1, and with

H = − �2

2m
∇2 + V (x, y, z).

Assuming that ψ satisfies appropriate spatial boundary conditions we find
∫

ψ∗ ∇2ψd3r = −
∫
(∇ψ∗) · (∇ψ)d3r. Utilizing a Lagrange multiplier λ for the

constraint, the condition δJ = 0 now reads δ
∫

Fd3r = 0, where

F =
�2

2m
(∇ψ∗) · (∇ψ) + V ψ∗ψ − λψ∗ψ.

The Euler-Lagrange equations are:

∂F

∂ψ
− ∂

∂x

∂F

∂ψx
− ∂

∂y

∂F

∂ψy
− ∂

∂z

∂F

∂ψz
= 0

and a similar (equivalent) equation for ψ∗. These equations reduce to

Hψ = λψ.
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has a (global) minimal value equal to the ground state energy of the system;
choosing a reasonable trial form for ψ with some free parameter, one can find
approximations to E by varying w.r.t. these parameters.

A solution of the time-independent SE for the electron in a hydrogen
atom (Coulomb field) is obtained through the method of separation of vari-
ables in spherical coordinates (r, θ, φ). It yields eigenfunctions of the form
Rn�(r)Pm

� (cos θ)eimφ, where {n, 
, m} are known as the orbital quantum
numbers.

Of these, n is associated with the total energy (permissible
values = 1, 2, 3, . . .); 
 is the magnitude of the orbital angular momentum
in units of � (permissible values = 0, 1, 2, . . . , n − 1), and m� is the projec-
tion of the orbital angular momentum along a given axis in the same units
(axis chosen to be z; permissible values = −
,−
 + 1, . . . , 0, . . . , 
 − 1, 
). It
was established experimentally that a fourth quantum number is needed to
describe the quantized spin (internal) angular momentum of the electron (this
is the component of spin angular momentum in units �; permissible values
ms = ±1

2 ).

The electron orbital angular momentum states of atoms are designated by
the letters s, p, d, f (and alphabetically ordered thereafter: g, h, . . . ) which
were borrowed from early spectroscopic work and describe those states which
give rise to sharp, principal, diffuse, and fundamental spectral lines.
The letter s is used for 
 = 0, p for 
 = 1, d for 
 = 2, f for 
 = 3, etc.

To identify λ we multiply it by ψ∗ and integrate over x, y, z. The result is

λ = E where

E =

∫ ∫ ∫

ψ∗(Hψ)d3r.

Further inspection shows the energy E to be a minimum rather than a maximum
(except when the spectrum of the operator H is bounded and E is the maximal

energy level). Note that the expression for F (above) can be modified to yield

the Lagrangian density for the time-dependent Schrödinger equation

L = − �2

2m
(∇ψ∗) · (∇ψ) − �

2i

(

ψ∗ ∂ψ

∂t
− ∂ψ∗

∂t
ψ

)

− ψ∗V ψ.

Indeed, applying the principle of least action to
∫∫∫∫

Ld3rdt yields:

− �2

2m
∇2ψ + V ψ = i�

∂ψ

∂t
.

In his dissertation (1942), R.P. Feynman derived the Schrödinger equation

in this way, thus founding Quantum Mechanics on the Lagrangian method in

contradistinction to the traditional Hamiltonian theory of classical mechanics.
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Each different combination of n, 
 and m corresponds to a unique (except
for spin) quantum state called an orbital. For cataloging the elements it
suffices to designate only the numbers of electrons having various values of
these two quantum numbers in the atom’s ground (lowest energy) state. Thus,
(1s)1 represents the ground state of the hydrogen atom with one electron in
the level n = 1, 
 = 0. Likewise (1s)2 represents helium with 2 electrons in
the orbital n = 1, 
 = 0 (one each for spin ± 1

2 ).

The maximum number of electrons in energy level n is 2n2 (2, 8, 18, 32, . . .
etc.); the (l, m) orbitals of given n are together called a shell (because mean
orbital radius increases with n). The configurations and designations of filled
shells for the first four energy levels are: (1s)2 (n = 1); (2s)2(2p)6 (n = 2);
(3s)2(3p)6(3d)10 (n = 3); (4s)2(4p)6(4d)10(4f)14 (n = 4).

Due to inter-electron repulsion, inner electron shell partially shield outer
electrons from the nuclear charge, and the amount of shielding increases with
the 
-value of the outer electrons. Consequently, the single-electron energy
levels do vary somewhat within a given n shell. Thus np is higher in energy
than ns and filled later; nd is only filled after (n+1)s (but before (n+1)p)
for n = 3, 4.

In Oxygen, for example, the second shell is not filled and has only 6 elec-
trons. Two of them are in the states

{
n = 2, 
 = 0, m� = 0, ms = ±1

2

}
,

while the other four may, for example, occupy the states{
n = 2, 
 = 1, m� = ±1, ms = ±1

2

}
. This shell is not closed, and its defi-

ciency (2) is the valence of oxygen.

The directionality, rigidity, length, etc. of an inter-atomic bond depends
on the spatial symmetry of these orbitals around the nucleus. The quantum
numbers 
, m determine the angular dependence of the non-radial factor of
the Schrödinger probability amplitude; only the orbital with 
 = 0 has a
spherically symmetric probability distribution566. The sum of the probability
distributions for the three orbitals n = 2, 
 = 1, m� = −1, 0, +1 is spheri-
cally symmetric; in general, a full shell of electrons (for any given value of n)
presents a spherically symmetric charge distribution around the nucleus.

The three orthogonal basis 2p orbitals (n = 2, 
 = 1) are sometimes
chosen to be px, py, and pz, which correspond to certain linear combi-

566 The fact that � = 0 does not mean that the electron is at rest but only that

its motion is as probable in any one direction as in any other. The spherically

symmetric “probability cloud” is the statistical amalgam (a sort of “time expo-

sure” photograph) of all possible classical � = 0 orbits, which are line segments

(degenerate ellipses) with all possible spatial orientations, emanating from the

origin (nucleus).
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nations of the waves for the m� values +1, −1 and 0567. Their proba-
bility amplitude patterns are {sin θ cosφ, sin θ sin φ, cos θ}, and contain
one angular node each on a plane with null electron density. The 3d or-
bitals (n = 3, 
 = 2, m = ±2,±1, 0) split into dz2 (m = 0, 3 cos2 θ − 1),
dxz (m = ±1, sin θ cos θ cosφ), dyz (m = ±1, sin θ cos θ sin φ), dxy

(m = ±2, sin2 θ sin 2φ) and dx2−y2 (m = ±2, sin2 θ cos 2φ).

If two electrons in the same atom have the same values of {n, 
, m�}, they
share the same orbital and are said to be paired. This is because they must
have opposite spins (by the exclusion principle), but are identical in every
other respect. Since one electron has the spin quantum number ms = 1

2 and
the other has ms = −1

2 , the magnetic moments associated with these spins
cancel.

For an atom or molecule with an unpaired electron, the electron spin inter-
acts with an external magnetic field, because the spin magnetic moment of the
unpaired electron tends to align itself in the direction of the external field568.
A substance is paramagnetic, if its bulk magnetization is entirely due to the
average alignment by an external magnetic field of its atomic (or molecular)
moments. These moments may be due to orbital angular momentum, spin,
or both; the atomic nucleus, too, may possess spin.

The following examples serve to show possible electron configurations of
two key atoms:

divalent Oxygen atom: (1s)2(2s)2(2pz)2(2px)1(2py)1

2 paired electrons in n = 1, 
 = 0, m� = 0, ms = ±1
2

2 paired electrons in n = 2, 
 = 0, m� = 0, ms = ±1
2

2 paired electrons in n = 2, 
 = 1, m� = 0, ms = ±1
2

2 unpaired electrons in n = 2, 
 = 1
{

m� = +1 ms = 1
2 or − 1

2
m� = −1 ms = 1

2 or − 1
2

divalent Carbon atom: (1s)2(2s)2(2px)1(2py)1

567 The linear combinations are chosen such that the corresponding probability

distributions for the electron are peaked about the x, y, z axes, respectively.

This makes it easier to visualize the orbitals geometrically — especially when

it comes to multi-atomic bonds and molecules.
568 This also happens when two or more unpaired electrons, each occupying a dis-

tinct atomic (or molecular) orbital, because such electrons tend to have mutually

aligned spins (due to a combination of electrostatic and Pauli Exclusion effects)

and can thus align as one magnet with the external field.
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2 paired electrons in n = 1, 
 = 0, m� = 0, ms = ±1
2

2 paired electrons in n = 2, 
 = 0, m� = 0, ms = ±1
2

2 unpaired electrons in n = 2, 
 = 1
{

m� = +1 ms = 1
2 or − 1

2
m� = −1 ms = 1

2 or − 1
2

tetravalent Carbon atom: (1s)2(2s)1(2px)1(2py)1(2pz)1

2 paired electrons in n = 1, 
 = 0, m� = 0, ms = ±1
2

2 unpaired electrons in n = 2

⎧
⎪⎪⎨

⎪⎪⎩


 = 0 m� = 0 ms = 1
2 or − 1

2

 = 1 m� = 0 ms = 1

2 or − 1
2


 = 1 m� = +1 ms = 1
2 or − 1

2

 = 1 m� = −1 ms = 1

2 or − 1
2

In the last case a 2s electron was excited into the (slightly higher-energy)
empty 2pz orbital, thus conferring on the carbon the ability to bond to more
surrounding atoms (hybridization) on its transition from 
 = 0 to 
 = 1. The
maximum number of electrons in the nth energy shell is 2n2.

The solution of the SE for a one-electron atom is of little practical value.
All atoms — except hydrogen and certain ions of the light elements — contain
several electrons. In these atoms, the Hamiltonian of the whole atom includes
the interaction of each electron with the nucleus, and in addition the interac-
tion of the electrons among themselves. Since the motion and quantum state
of each electron depends on those of all the others, any modification in the
state of one electron must affect the state of all the other electrons.

Therefore we can talk only of the energy of the whole atom (or ion or,
indeed molecule) and for the same reason, of a wave function for the complete
atom or molecule. But the inter-dependence is more insidious in quantum-
mechanics than in a classical system (say, the planets in the solar system),
since the motion of a single planet is a valid concept; here there is no single-
electron state (although this is often a useful approximate concept). This
impossibility of describing the motion (or even quantum state) of an individual
electron means that many-electron atoms, ions and molecules are difficult to
quantify exactly, and certain approximations are required. In general, this
leads to complex numerical calculations.

As a first approximation, one may ignore the electron-electron electrostatic

interaction term
∑

all pairs

e2

rij
. This is equivalent to assuming that each electron

moves independently of the others. Thus we may call this approximation the
‘independent-particle model ’ in which each electron can be described by a
hydrogen-like wave function.



3666 5. Demise of the Dogmatic Universe

In cases where the known energy levels En of a system with Hamiltonian
H0 are slightly perturbed due to an additional term in the Hamiltonian, the
first order perturbation in the energy levels is:

(ΔE)n ≈
∫

ψ∗
nH ′ψndτ ,

where H ′ is the first order perturbation of H0 and ψn are the eigenfunctions

of H0. The new eigenfunctions are given by ψ′
n ≈

∑
j a

(n)
j ψj where

a
(n)
k =

1
En − Ek

∫

ψ∗
kH ′ψndτ, k �= n (an = 1).

The foregoing technique may be used to solve approximately the problems
of the helium atom and the normal Zeeman effect. In the latter case the
classical Hamiltonian for an electron of mass me carrying a charge −e and
moving in a magnetic field whose vector potential is A is

H =
1

2me
{p2 + 2eA · p + e2A2} + U(r).

For a weak field we may neglect the A2 term, whence H becomes the oper-

ator − �2

2me
∇2 − i�e

me
A · ∇ + V (r). In the non-relativistic limit of the Dirac

equation, H is found to acquire the additional term e�
2me

σ · B, with σ the
Pauli spin matrices and B = ∇ × A the external field.

First order perturbation of the energy levels of hydrogen is found to be

ΔE =
[

e�
2me

B
]
(me + 2ms), in agreement with experiment. When an atom

containing more than one electron is treated quantum-mechanically, a useful
first approximation is that the electrons do not interact with one another. In
this approximation, the wave function describing each electron is a ‘hydrogen-
like’ wavefunction, characterized by the quantum numbers {n, 
, m�, ms}.
The Pauli exclusion principle states that in a multielectron system no two
electrons can have identical sets of quantum numbers. In other words, no two
electrons may have the same spatial distribution and spin orientation of their
wavefunctions569.

Thus, for example, for the shell with n = 1, we must have 
 = 0,
m� = 0 and ms = ±1

2 . Hence, at most 2 electrons may have n = 1 in
a single atom. For n = 2 there are 2(2
 + 1) = 6 possible sets for 
 = 1

569 Where spin is included in the wavefunction by definition.
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(m� = −1, 0, +1; ms = ±1
2 ) and 2 possible sets for 
 = 0, yielding at most

8 electrons in the n = 2 shell.

The Pauli principle correctly predicts the numbers of electrons in the closed
atomic shells of the periodic table of the elements.

Further elaboration on this important principle is linked to the concept of
exchange symmetry of wave functions.

In classical mechanics, the existence of sharply definable trajectories for
individual particles makes it possible in principle to distinguish between parti-
cles that are identical except for their paths, since each particle can be followed
during the course of an experiment. In quantum mechanics, the uncertainty
principle limits our ability to follow the motions of the particles without dis-
turbing the system, so that we can never be certain which one of a number
of identical particles we have actually found at a given point — because the
particles are indeed physically indistinguishable. This places certain restric-
tions upon the mathematical form that the wave-function for several identical
particles may have.

In the modern view of atoms, the electrons in the space surrounding the
dense, point-like nucleus may be thought of as existing in motional orbitals,
but these are smeared into continuous, overlapping spatial distributions. At
most two electrons, in opposite spin states, can occupy a single orbital —
according to Pauli’s exclusion principle. The orbital occupied by a pair of
electrons of opposite spin is filled : no more electrons may enter it until one
of the pair vacates the orbital. Moreover, the exclusion principle extends to
a wider exchange-symmetry rule.

An example will serve to explain this principle: A helium-like atom or ion
has a nucleus of charge Ze surrounded by two electrons, which we label as 1
and 2. In the ‘independent-particle

model ’ it follows from the Schrödinger equation that the wave function of
the atom should be the product of the wave functions for each electron, or
a linear combination of such products. If we designate the orbital quantum
numbers {n, 
, m�} of electron 1 by a and the corresponding quantum num-
bers of electron 2 by b, we may then write ψatom = ψa(1)ψb(2), where the
arguments 1 and 2 of the wavefunctions are shorthand for r1 and r2, respec-
tively. This result in a joint spatial probability distribution |ψa(1)|2|ψb(2)|2.

Since the electrons are identical and indistinguishable, ψatom must be con-
structed in such a way that the exchange of electrons 1 and 2 will not affect
|ψatom|2, i.e. the joint spatial distribution will be symmetric between the two
electrons. This will be achieved if we construct either of the two linear com-
binations ψatom = ψa(1)ψb(2) ± ψa(2)ψb(1). (All wave functions thus far are
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spatial — no reference to spin, yet). The plus sign yields a symmetric wave-
function whereas the negative sign represents the antisymmetric counterpart,
namely

ψS (1, 2) = ψa(1)ψb(2) + ψa(2)ψb(1), ψA = ψa(1)ψb(2) − ψa(2)ψb(1).

It can be shown that the energy of the atom associated with ψA is larger570

(less strongly bound) than that associated with ψS .

Thus, a two-electron atom has two sets of stationary states and energy
levels, one described by symmetric orbital wave functions and the other by
antisymmetric orbital wave functions. An exception occurs when a = b (the
two sets of orbital quantum numbers of the electrons are identical), for which
ψ

A
= 0.

When the electron’s spin is taken into account, the vectorial sum of the
spins of the two electrons can either be zero (S = 0; singlet state-Parahelium)
or S = 1 [triplet, orthohelium; with M

S
= +1, (both spins with positive

components), or M
S

= 0 (vanishing z component, vectorial sum normal to
z axis), or Ms = −1 (both spins with negative z component)].

The total spin wave function of the singlet state (S = 0) is antisymmetric
in the two electrons

χA =
1√
2

[χ+(1)χ−(2) − χ+(2)χ−(1)],

where χ are spin wavefunctions; χ±(1) are the 1 electron wavefunctions for
the cases of spin up

(
ms = +1

2

)
, for subscript “+”, or spin down for “−”. On

the other hand, the total spin wave functions of the triplet (S = 1) are sym-

metric in the two electrons: χ
S

= χ+(1)χ+(2) for M
S

= 1, χ
S

= χ−(1)χ−(2)

for MS = −1 and

χ
S

=
1√
2

[χ+(1)χ−(2) + χ+(2)χ−(1)]

for M
S

= 0.

The total wave function of the atom for each state is the direct product

ψtotal = [orbital (space) wave functions] × [spin wave function].

570 Because ΨA vanishes at more spatial configurations and thus confines the elec-

trons to a smaller average volume, resulting in higher zero-point kinetic energy

by virtue of the uncertainty principle.
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Now, an empirical examination of the energy levels of the helium atom
(e.g. by spectroscopic methods) reveals that the state described by symmetric
orbital wave functions ψ

S
are always spin singlets (S = 0), while the states

described by antisymmetric orbital wave functions ψA are always triplets
(S = 1). In either case ψtotal is antisymmetric. We know from spectro-
scopic experience that this result is not restricted to the helium atom, and
can be elevated to the level of a general principle, stating that the total wave
function of a system of electrons must be totally antisymmetric.

This may be considered as an alternative, and more general, statement of
the exclusion principle since the antisymmetry of the wave function implies
the validity of the exclusion principle.

This can be seen in a simple way by writing the total wave function of an
atom with N electrons in the independent-particle model. Designating by a
single letter (a, say) the orbital-spin state {n, 
, m�, ms}, the configuration
in which one electron is in state a, another in state b etc. may be expressed
by the Slater determinant representation of the wave-function:

ψabc··· =
1√
N !

∣
∣
∣
∣
∣
∣
∣
∣
∣

ψa(1) ψa(2) ψa(3) · · ·
ψb(1) ψb(2) ψb(3) · · ·
ψc(1) · · · · · · · · ·

...
...

...
...

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

This expression is antisymmetric since the interchange of any two columns
(two electrons) changes the sign of the determinant. Moreover, if any two
electrons have the same quantum number, the determinant is identically zero;
thus the exclusion principle follows from the antisymmetry of the multielec-
tron wave-function when the independent-particle model is used.

For a concrete example we return to the helium atom with S = MS = 1.
Then

ψ = ψ
A
χ

S
=

1√
2

[ψa(1)ψb(2) − ψa(2)ψb(1)] χ+(1)χ+(2)

=
1√
2

∣
∣
∣
∣
ψa(1)χ+(1) ψa(2)χ+(2)
ψb(1)χ+(1) ψb(2)χ+(2)

∣
∣
∣
∣ .

In this triplet state (spins parallel, antisymmetric spatial wave-function,
S = 1), when electrons 1 and 2 are close together, the value of |ψA

| is
very small. The result is that the probability density is such that there is
little chance of finding them close together. This has nothing to do with
a Coulomb repulsion because we assumed ab initio that there is no explicit
interaction between the electrons.
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This tendency of the electrons in the triplet state to be relatively far apart,

can be interpreted as being due to an exchange or Pauli force, that repels the

electrons from each other. In the singlet state (S = 0, spins antiparallel,

symmetric spatial wave-function), when electrons have almost the same co-

ordinates, the probability density has the value 2|ψa(1)|2|ψb(2)|2, which is

twice the value expected without Pauli’s principle.

Thus, in the singlet state, the two electrons of opposite spin act as if they

attract each other, i.e. are under the influence of an attractive exchange force;
again, this force has nothing to do with the electromagnetic forces between

the two like charged, oppositely-magnetized electrons.

Exchange forces arise not only between two electrons of the same atom;

they are an important factor in inter-atomic and molecular forces. The Pauli

force is of a purely quantum origin and has no classical counterpart.

Exchange symmetry rules can be generalized as follows:

(1) Identical particles having an integral quantum number for their intrinsic

spin can be described only by wave functions which are symmetric with

respect to the interchange of the space and spin coordinates of any two

such identical particles. [Such particles are said to obey the Bose-Einstein

statistics; examples are the photon (spin 1), graviton (spin 2), α-particle

(spin 0), π-meson (spin 0) of given charge, etc.]

(2) Identical particles having a half integral quantum numbers for their in-

trinsic spin can be described only by wave functions which are antisym-
metric with respect to the interchange of the space and spin coordinates

of any two such identical particles. [Particles obeying the Fermi-Dirac

statistics – such as electrons, protons, neutrons, neutrinos, μ-mesons,

quarks, etc.]571

The Pauli principle, in both of its alternative formulations, cannot be de-

rived from a more general basic principle. We do not know yet why nature

571 In case the identical particles are endowed with other intrinsic quantum num-

bers besides spin – such as isospin, color (in the sense of quark-gluon forces),

strangeness, charm, etc. – the above rules are generalized to include these

further degrees of freedom within the spin coordinates.
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seems to prefer antisymmetric state functions for fermions rather than sym-
metric functions and vice-versa for bosons; although the problem is definitely
linked to causality via the ‘spin-statistics’ theorem572.

The above rules have the effect of limiting our choice of wave functions
for a system containing several identical particles, to those which exhibit the
proper type of exchange symmetry. This introduces fundamental new physical
effects which are of importance in many phenomena. Some of them are:

• As compared with the behavior of hypothetical equal but distinguish-
able particles, Bosons exhibit an additional mutual attraction. Identical
fermions of the same spin state, on the other hand, repel one another.

• At a given temperature, the energy content and pressure of a system of
Bose particles are less than (and those of a system of Fermi particles are
greater than) the respective energy content and pressure of a correspond-
ing system of equal but distinguishable particles.573

• If the individual particles of a system are acted upon by some outside force
(but do not interact with each other), the quantum states of the system
correspond to the various particles occupying certain of the eigenstates
available to a single particle. Bosons tend to occupy the same quantum
states, while fermions cannot occupy the same quantum states.

The above properties are responsible for such diverse phenomena as the
saturation of chemical bonding forces, the condensation of liquid helium into
a superfluid state, the periodic system of the elements, superconductivity and
lasers.

572 This theorem states that in a relativistic quantum field theory, any attempt to

assign the wrong statistics to particles results in the violation of causality . It

follows that the Dirac field (spin 1
2

relativistic field) must be quantized using

anticommutator relations. This was unknown to Pauli when he formulated

his exclusion principle. Furthermore, a strong candidate for a spontaneously

broken symmetry of unified field theories of particle physics, is supersymmetry

— in which each boson is linked to a corresponding fermion via an intrinsic

“rotation”.

Supersymmetry extends the concepts of differential geometry to non-commuting

coordinates. It is related to such abstract algebra structures as graded Lie

algebras and affine Lie algebras, and plays a key role in superstring theories

and (probably) in the ultimate theory of quantum gravity.
573 This has important consequences for lasers, superconductors, metals, semi-

conductors, superfluids, Bose-Einstein condensates, neutron stars, white-dwarf

stars, and early-universe cosmology.
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The quantitative analysis of the helium two-electron system proceeds
schematically as follows: take the nucleus (positive charge 2e) at coordinate
0, and two electrons at P1(r1) and P2(r2). The potential function will be

V (r) = −2e2

r1
− 2e2

r2
+

e2

r12
, r12 = |r1 − r2|.

If we write ∇2
i = ∂2

∂x2
i

+ ∂2

∂y2
i

+ ∂2

∂z2
i

(i = 1, 2), the time independent

Schrödinger equation is

− �2

2m
(∇2

1ψ + ∇2
2ψ) − 2e2(

1
r1

+
1
r2

)ψ +
e2

r12
ψ = Eψ,

with ψ = ψ(r1, r2).

Since the spin does not occur explicitly in this equation574, one need not
carry along the spin nomenclature. In the absence of the term {e2/r12},
solutions are known in the form

ψ = ψn,�,m(1)ψn′,�′,m′ (2), Ψn,�,m;i = Rn,�(ri)Ym,�(θi, φi), En = − 8
n2

R∞.

For n = 1 we have E0 = −8 × 13.6 eV = −108.8 eV. Here R∞ is the
Rydberg constant.

Consider now the case for which both electrons are in the lowest (ground)
state, corresponding to n = 1, 
 = 0 (this is allowed since the two spins are
opposite); and H = e/r12 is considered as a perturbation to the Hamiltonian.
The first order correction to the energy, W ′, is given by the Coulomb integral

W ′ =
∫

τ1

∫

τ2

[ψ1,0,0(1)ψ1,0,0(2)]2
e2

r12
dτ1dτ2,

ψ1,0,0(ri) = Y0,0R1,0(ri) =
1√
π

(
2
a0

)3/2

e− 2
a0

ri ,

a0 =
�2

me2
= first Bohr radius.

This integral represents the positive energy contribution due to the mutual
electrostatic repulsion of the two electrons.

The exact integrals in this approximation yield W ′ = 5
4

e2

a0
= 34 eV. Using

the earlier zeroth-approximation, the energy of the ground state of helium is

574 We are ignoring all spin effects, for the moment, except that the two electrons

have opposite spins, so they may be spatially distinguishable.
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calculated to be W = E0 + W ′ = −108.8 + 34.0 eV = −74.8 eV. The exper-
imental value is −78.62 eV.

More refined calculations (E.A. Hylleraas, 1930), using a variational
method, gave a theoretical value in excellent agreement with the observed
value.

If the two electrons do not have the same orbital quantum numbers, and
are in a singlet or triplet spin state, the total energy perturbation integral is

W ′
± =

1
2

∫

τ1

∫

τ2

[ψa(1)ψb(2) ± ψb(1)ψa(2)]
e2

r12
[ψ∗

a(1)ψ∗
b (2) ± ψ∗

b (1)ψ∗
a(2)] dτ1dτ2

or W ′
± = Ja,b ± Ka,b, where

Ja,b =
∫

τ1

∫

τ2

e2

r12
|ψa(1)|2|ψb(2)|2dτ1dτ2;

Ka,b =
∫

τ1

∫

τ2

e2

r12
ψa(1)ψb(2)ψ∗

a(2)ψ∗
b (1)dτ1dτ2.

The quantity Ja,b is the Coulomb integral, calculated earlier for the ground
state. It is the interaction energy of the two electrons, assuming that they
are distributed with charge densities ρ1 = −e|ψa(1)|2, ρ2 = −e|ψb(2)|2,
respectively.

The quantity Ka,b, the exchange integral, giving the interaction energy
of charges with effective (sometimes complex!) densities ρ′

1 = −eψa(1)ψ∗
b (1)

and ρ2 = −eψb(2)ψ∗
a(2). It results from quantum interference between the

two exchanged configurations.

An important solution of the SE with a periodic potential field, was ob-
tained in 1931 by Kronig and Penney. It could be directly applied to the
electron motion in a periodic structure, such as a crystal lattice.

Consider a periodic square-well potential in one dimension with height V0,
width b and spacing a. If this is caused by regularly spaced atomic nuclei, we
would expect to find a similar periodicity in the electron charge distribution,
and thus in the wave function modulus. The wave equation will be

d2ψ

dx2
+

2m

�2
(E − V0)ψ = 0 (0 ≤ x ≤ b)

and
d2ψ

dx2
+

2m

�2
Eψ = 0 (b ≤ x ≤ a + b).
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Let us consider a lattice with volume L = N(a + b). We look for periodic
solutions ψ = u(x)eiαx with u periodic with period (a + b) (F. Bloch575,
1928). Imposing also the periodic boundary condition ψ(x + L) = ψ(x),

we find α = 2πK
N(a+b) (K = 0,±1,±2, . . . ,±M), with M = N −1

2 (N odd),

M = N
2 (N even).

A substitution of the ‘Bloch function’ into the above pair of Schrödinger
equations, yields a pair of ordinary second-order differential equation for u(x),
whose solutions are

u1 = e−iαx[A ch γx + B sh γx] (0 ≤ x ≤ b),

u2 = e−iαx[C cos βx + D sin βx] (b ≤ x ≤ a + b),

subject to the boundary conditions

u1(b) = u2(b), u′
1(b) = u′

2(b), u1(0) = u2(a + b), u′
1(0) = u′

2(a + b).

The parameters β, γ are defined as follows:

β =

√
2mE

�2
, γ =

√
2m(V0 − E)

�2
.

These conditions impose an algebraic system of 4 equations in A, B, C,
D. For non-trivial solution this requires the determinant to vanish, leading
to the characteristic equation

(
γ2 − β2

2βγ

)

sh γb · sin βa + ch γb · cosβa = cos α(a + b).

It is instructive to consider the limiting case V0 → ∞, b → 0 such that

lim γ2ab
2 = P (a finite constant); physically, this means that the lattice atoms

(nuclei and their localized valence electrons) interact with a moving (conduc-
tion) electron through a periodic delta-function potential.

The characteristic equation then reduces to

P
sin βa

βa
+ cosβa = cosαa.

575 Bloch Theorem: The eigenfunctions of the SE for a periodic potential are of

the form ψk(r) = uk(r)ei(k·r), where uk(r) has the periodicity of the crystal

lattice, i.e., ψk(r + Λ) = ei(k·Λ)ei(k·r)uk(r + Λ) = ei(k·Λ)ψk(r).
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This is an implicit equation for a set of energy levels that depend on the
geometrical and physical parameters of the lattice. The possible values of
βa (i.e., those solving the equation for some Bloch wavenumber α) fall into
separate bands. Thus the spectrum of β, and therefore of E, consists of
a number of continuous bands separated by intervals in which there are no
energy levels. Note that α is continuous, since we take the infinite volume
limit N → ∞.

The number P represents the strength of the binding of the moving
(conduction) electrons to the lattice. Thus, P = 0 leads to the solutions
βa = 2nπ ± αa (n integer), and since α can vary continuously, this means
that all continuous energies are allowed; the conduction electrons are now free.

On the other hand, as P → ∞ we must have sin βa = 0, that is,
βa = nπ (n = ±1,±2, . . .) and the energy spectrum is now discrete with

values En = n2h2

8ma2 . These are exactly the levels of a particle confined to
move between two impenetrable potential barriers a distance a apart. The
electrons are now completely bound.

For finite P values, only certain bands of energy are allowed to an elec-
tron, and these bands are separated by forbidden regions representing energies
which the electron cannot have.

The problem of solving the SE with a periodic structure in 3 dimensions
is very complicated. Nevertheless, the problem has been solved in many cases
of special interest. The general result, however, is qualitatively very similar
to that which has been obtained for a one-dimensional crystal.

Consider, for example, bringing together a large number of isolated atoms
to form a crystal. The electrons in each isolated atom can occupy a series of
discrete energy levels. As the atoms are brought closer and closer together,
these discrete energy levels split up into bands of energy, so that the resulting
allowed energies for that separation of the atoms which finally correspond to
the atomic spacing in the crystal are qualitatively similar to the energy bands
which we have seen in the one-dimensional case above.

Modern material science allows scientists to adjust and select the effective
lattice spacings almost at will, enabling the creation of so-called engineer-
ing bandgaps — with numerous applications in microelectronics, photonics,
telecommunications and computers.
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History of the Theories of Light IV (1900–1925)

D. The Ultimate Synthesis: Wave-Particle Duality576

It follows directly from Kirchhoff’s law of blackbody radiation (1859) that the
spectral EM energy density can be written as uν(T ) = 8π

c Kν(T ), where c is
the velocity of light in vacuum, T is the absolute temperature, ν the radiation’s
frequency and Kν(T ) is a universal function independent of the nature of the
bodies in equilibrium with the radiation field. The four decades that followed
Kirchhoff’s discovery of the said law, witnessed many unsuccessful attempts
to derive the correct form of Kν(T ), or what amounts to the same thing — the
spectrum of blackbody radiation as a function of frequency and temperature.

The first formula, derived by W. Wien (1893) on the basis of ther-
modynamics is known as Wien’s displacement law. According to this law
Kν(T ) = ν3F

(
ν
T

)
. However, thermodynamics did not specify the form of

this function. Using a somewhat heuristic argument, Wien proposed (1896)
the explicit form F = αe−β ν

T , leading to the so-called Wien’s radiation law.
The values of the constants α and β that appear in this law did not follow
from Wien’s arguments and had to be determined empirically.

Subsequently (1900), Lord Rayleigh showed that the application of the
equipartition theorem of classical statistical mechanics to electromagnetic vi-
brations in a cavity leads to a certain radiation law. When later corrected by
J.H. Jeans (1905) for a simple error, it became known as the Rayleigh-Jeans
law: Kν(T ) =

(
ν
c

)2
kT .

We note that both Wien’s radiation law and the Rayleigh-Jeans law are
of the form required by Wien’s displacement law. However, careful measure-
ments carried out around the turn of the century revealed that neither of them
completely agrees with the experimentally determined energy distribution in
the spectrum of blackbody radiation. It turned out that Wien’s radiation law
was a good approximation for sufficiently high frequencies and low enough
temperatures, whereas the Rayleigh-Jeans law was a good approximation for
the opposite regime.

Thus, both thermodynamics and electromagnetic theory failed to predict
the energy distribution in the spectrum of blackbody radiation.

576 Adapted from: “Einstein’s Researches on the Nature of Light” by Emil Wolf ,

Optics News 5, 24–39, 1979.
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Just a few months after the 1900 publication of Rayleigh’s paper, Max
Planck discovered the correct law that is in complete agreement with exper-
iment:

Kν(T ) =
hν3

c2
(ehν/kT − 1).

(He outlined the essential features of his new derivation at a meeting of the
German Physical Society in Berlin on Dec. 14, 1900.)

Planck’s radiation law reduces to the Wien’s radiation law when ν/T � 1
with α = h

c2 ; β = h
k . When T/ν � 1 it yields precisely the Rayleigh-Jeans

law. In deriving the law, Planck found it necessary to introduce the notion
of the quantum of energy E = hν, which represents the smallest amount of
energy that an oscillator can emit or absorb at a given frequency. The need of
introducing such a quantum of energy was in flat contradiction to Maxwell’s
electromagnetic theory and Lorentz’ classical electron theory, which places no
restriction on the amount of energy that an oscillator can emit or absorb.

Even though Planck’s introduction of the concept of energy quanta led
eventually to one of the greatest scientific revolutions of all times, his heuristic
derivation did not, at first, attract much attention. One of the first scientists
who clearly recognized that Planck’s discovery initiated a new era in physics
was a young man who was just appointed (1902) to the rank of “Technical
Expert, Third Class” at the Swiss patent office.

In 1905, this man, as yet unknown to the scientific world, published a pa-
per in the 17th volume of the journal Annalen der Physik entitled (in trans-
lation) “On the heuristic point of view concerning the creation

and conversion of light”. In modern textbooks it is usually referred to
as “Einstein’s paper on the photoelectric effect”. Actually it contains appre-
ciably more. In fact, Einstein’s whole discussion of the photoelectric effect
covers less than 4 pages; but as in most of his writings, Einstein was able to
get to the root of the problem in a few lines, with simple language that was
remarkably free of complicated mathematics.

What Einstein essentially did in this paper was to put forward a great
deal of evidence that not only do the processes of emission and absorption of
radiation take place in discrete amounts of energy (as appears to have been
established by Planck) but that radiation itself behaves under certain circum-
stances as if it consisted of a collection of particles (photons)577. Thus in this

577 Einstein’s argument runs as follows: If n particles are thrown into a box of

volume V , the probability that all n particles will end up in a subregion ΔV

is p(n) =
(

ΔV
V

)n
. On the other hand, invoking Wien’s radiation law and some

general principles of thermodynamics, Einstein showed that the probability that

at a given instant all the energy E will be concentrated in this subregion is
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paper Einstein reintroduced a corpuscular theory of light — first advanced
by Newton in the 17th century. This was 90 years after the corpuscular the-
ory was completely discredited by Fresnel’s wave theory and 40 years after
Maxwell put the wave theory of light on firm foundations.

Another example that Einstein gave in this paper in support of his view re-
garding the corpuscular nature of radiation, was the photoelectric effect. This
is the phenomenon of ejection of electrons from a metal when electromagnetic
radiation of short enough wavelength impinges on a metal surface. The effect
was discovered by Heinrich Hertz (1887).

Experiments conducted during 1899–1902 by P.E.A. Lenard (1862–1947,
Germany) disclosed that the electron energy did not depend on the intensity
of the light illuminating the metal surface, but did depend on the frequency
of the light. The number of ejected electrons was found to increase with the
light intensity. Einstein’s photoelectric equation578explained at once Lenard’s
experiments.

Einstein’s analysis showed the need for more drastic changes than those
brought about by Planck’s assumption of quantized energy of the emitting and
absorbing oscillators. It indicated that not only do emission and absorption of
energy take place in discrete energy quanta, but that the radiation field itself
behaves, in certain situations, as if it consisted of such corpuscles of energy.

In spite of the clarity and simplicity of Einstein’s arguments, his views
about the particle structure of radiation were strongly opposed at that time
— and for a long time afterwards — by many eminent physicists, including
Planck. Undeterred by opposition, Einstein continued to explore the conse-
quences of his corpuscular theory, and to probe more deeply into the nature
of radiation.

In 1909, Einstein published a paper with the title: “On the present status
of the problem of radiation”, in which he showed that Planck’s radiation law
itself implies that the radiation field exhibits not only wave features but also
corpuscular features. This result was the first clear indication of the so-called

p (all E ∈ ΔV ) =
(

ΔV
V

)E/hν
. Comparison of the two results shows that this

probability is the same as if the radiation field consisted of n particles, where

n = E
hν

, i.e., of n particles each carrying energy hν.
578 (Ekin)max = hν − W , where W is the work required to remove the electron

from the metal. In 1905, when Einstein put forward his equation, quantita-

tive studies of the photoelectric effect were in their infancy. It took nearly a

decade of difficult experimentation before Einstein’s equation could be tested.

It was largely confirmed by the work of R.A. Millikan, who at first completely

disbelieved Einstein theory.
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wave-particle duality, that many years later became an accepted feature of
modern quantum physics.

Bohr’s quantum theory of the hydrogen atom (1913) did not give any in-
dication of the laws governing the amplitudes of the atomic spectral lines.
Moreover, Bohr’s frequency condition ΔE = hν was simply assumed. Ein-
stein’s epochal paper “On the quantum theory of radiation” (1917) provided
the first real insight into the laws that govern the transitions from one al-
lowed state of the atom to another. Einstein showed therein that Planck’s
law follows directly from the interaction between radiation and matter. The
probabilities that Einstein assumed for each of the elementary processes tak-
ing part in the interaction are examples of what is known today as transition
probabilities between states.

In the above paper, Einstein also considered the question of momentum
transfer between gas molecules and the radiation field. He showed that, when
a molecule absorbs or emits a quantum of energy hν under the influence of
external radiation from a definite direction, momentum of magnitude hν

c is
transferred to the molecule; and that the change in the momentum of the
molecule is in the direction of the incident radiation if the energy is absorbed,
or in the opposite direction if the energy is emitted. More surprisingly, Ein-
stein showed that if an energy quantum is emitted in the absence of any
external influence (spontaneous emission), the momentum transfer is also a
directed process.

In Einstein’s words (1917):

“There is no radiation in spherical waves. In a spontaneous emission
process the molecule suffers a recoil of magnitude hν

c in a direction that in the
present state of the theory is determined only by ‘chance’. . . These properties
of elementary processes. . . make it seem practically unavoidable that one must
construct an essentially quantum mechanical theory of radiation”.

Einstein’s conclusion that a quantum of energy hν carries a momentum
whose magnitude is hν

c and has a definite direction, was verified by H.A.
Compton (1923) in his experiments on scattering of X-rays.

Successful as Einstein’s notion of radiation field quanta was in elucidating
various phenomena involving the interaction of light and matter, many puz-
zles surrounded it. All the derivations of Planck’s radiation law, including
Einstein’s 1917 derivation, appealed at some point to classical electromag-
netic theory, which is in direct contradiction with the quantum features of
the radiation field. Being well aware of these difficulties (quantum mechanics
was only formulated about 8 years later), Einstein took a few important steps
in this direction that have a bearing on the question of the nature of light,
particularly with regard to its statistical properties.
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S. Bose (1924) published a manuscript in which he essentially treated
the light quanta as particles of a gas, with the difference that those particles
that belong to the same elementary cell of phase space, of volume h3, are
intrinsically indistinguishable. This assumed property of the quanta led to a
statistical procedure that differs from that of classical statistic mechanics, and
indeed provided a complete derivation of Planck’s radiation law —, without
any appeal to classical electromagnetic theory.

Einstein (1925) applied Bose’s method not to a gas of light quanta, but to
a real gas, consisting of monoatomic molecules, thus establishing the quantum
theory of an ideal gas579.

Bose’s and Einstein’s papers are the foundation of the Bose-Einstein sta-
tistics. It applies to photons and to many other elementary particles and
antiparticles which were as yet unknown in 1925.

Between the appearance of Einstein’s first and second papers on the quan-
tum theory of an ideal gas (a period spanning less than five months), Louis
de Broglie put forward his theory of matter waves. In his second paper, Ein-
stein outlined the connection that he believed to exist between de Broglie’s
hypothesis of matter waves and his own investigations on the quantum theory
of the ideal gas. These remarks have stimulated Ervin Schrödinger only
a few months later to develop one form of modern quantum mechanics —
namely wave mechanics.

Thus, the structure that Einstein built with his 1905 “photoelectric pa-
per”, his 1909 paper containing the first clear evidence for the wave-particle
duality, his 1917 paper on the elementary processes of interaction between
molecules and radiation, and his 1924 and 1925 papers on the quantum the-
ory of an ideal gas — not only elucidate the nature of light and radiation in
general, but also proved to be of fundamental importance to the gestation
and final formulation of wave mechanics.

579 Einstein showed that the variance of the energy fluctuations of an ideal gas

is expressible as the sum of two terms; the first term can be attributed to

classical particles and can be understood on the basis of the Maxwell-Boltzmann

statistics of noninteracting molecules. The second term, which is analogous to

the contribution from wave interference in the radiation problem, cannot be

understood from the classical particle theory.
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1925–1956 CE Marietta Blau580 (1894–1970, Austria and USA). Experi-
mental nuclear physicist. Pioneer in the field of nuclear emulsions (i.e. tracking
nuclear particles in photographic emulsions). First to use nuclear emulsions
to detect neutrons by observing recoil protons in the emulsions (1925). First
to identify (1925) proton tracks resulting from either the elastic scattering
of α-particles by protons in the hydrogen in the emulsion or the reaction of
α’s with the nuclei of the emulsion. Also determined for the first time the
spectrum of neutrons resulting from specific nuclear reaction processes.

Her life and career were tragically disrupted by the Nazi Germans and
Austrians in 1938. She maintained, however, a life line to the world physics
through her simple portable technique she subsequently created. Einstein
and Born praised her work highly, and Erwin Schrödinger nominated her
for the Nobel Physics Prize, to no avail — others received the prize she so
rightly deserved.

Blau was born in Vienna and received her Ph.D. (1919) from the University
of that city. Between 1923 and 1938 Blau’s investigations were centered at the
Institut für Radiumforschung in Vienna and at the Second Physical Institute.
But she was never paid and never promoted because, as she was told by a
professor: “...you are a woman and a Jew, and the two together are simply
too much”.

On Friday, 11 March 1938, the Germans entered Vienna. Blau fled first to
Oslo, but could not find a permanent employment there. Desperate to rescue
her mother from Vienna she began exploring the possibility of getting to Mex-
ico. With the recommendation of Einstein, Blau was appointed professor at
the Technical University in Mexico City. She took a German ship to America;
en route the Gestapo confiscated all her scientific papers, including work on
particle tracks in nuclear emulsions.

In May 1944 Blau moved to New York City and then moved (1950) to
the Brookhaven National Laboratory. Although this place initially seemed
congenial, even that resting spot did not last: personal friction with some
staff members, coupled with dire financial difficulties and health problems,
led her back to Vienna (1960).

Marietta Blau had moved some ten times, lost all her scientific papers
and notebooks and still had no clear path to a permanent position. Several
physicists tried to gather funds for her. Erwin Schrödinger put her up for
the Schrödinger Prize (which she won) and Otto Frish tried to convince the
big film companies to grant her a sinecure in recognition of the industry of
nuclear emulsions that she helped create. All they were willing to contribute

580 Peter L. Galison: “Marietta Blau: Between Nazis and Nuclei” Physics Today,

November 1997, pp 42–48
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were £100 per annum which she declined despite her poverty (1964). She
died five years later poor and virtually unknown.

1925–1958 CE Raymond Dart (1893–1988, South Africa). Anatomist
and paleoanthropologist. Discovered and pioneered the pre-human evolution-
ary stage formed by the australopithecines. This species, found in Southern
Africa and recognized as Australopithecus africanus, spans a period from 3 to
2.5 million years ago.

At the start of the 20th century the search for the supposed “missing link”
between apes and human focused on the Far East and Europe, where finds
such as “Pithecanthropus erectus” (“Java man”) had been made. This is now
identified as Homo erectus, some way along the human line.

In 1925, the anatomist Raymond Dart dared to identify a new kind of ape-
man on the basis of the isolated skull of a young primate found during mining
work at Taung, near Kimberley, South Africa, the previous year. He knew
he was challenging a powerful, if poorly founded assumption that human first
evolved in Europe, and that their big brains developed before other human
features.

According to Dart, the shape of the skull and probable shape of the brain,
together with the design of the teeth and jaws and the upright angle of the
skull where it would have topped the (vanished) spinal column, all announced
a recruit that was more human than any known ape. Dart labored for decades
before he and another researcher Robert Broom (1866–1951, South Africa)
eventually began to establish a new genus with the help of more skulls, jaws,
teeth, and post-craniel bones from additional cave sites.

Dart was born in Brisbane, Queensland, Australia. He graduated from the
universities of Brisbane and Sydney, and after holding a number of posts and
fellowships in the UK and the USA, was appointed to the chair of anatomy
at Witwatersrand University, Johannesburg (1923).

It is now well established that the australopithecines represent an early
stage in the evolutionary differentiation of man and that these fossils demon-
strate that one of the first features to be evolved was terrestrial bipedalism.
Only later came the substantial brain expansion and jaw reduction which
characterize modern man.

The significance of bipedalism was that it completely emancipated the
arms and hands from support of and locomotive function. Whether the South
African australopithecines actually made tools is uncertain.
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After an initial burst of praise, the scientific establishment in Britain re-
jected the Taung baby581 as an ape. Virtually the only supporter of Dart
was Robert Broom. Dart did travel to London (1930) to try and win support
for his Taung baby, but his find was overshadowed by the recently discovered
Peking Man skull.

Dart gave up fossil hunting for many years, concentrating instead on his
work at the Witwatersrand anatomy department. In the late 1930s and early
1940s Broom found many more australopithecines fossils in South Africa, and
in the late 1940’s Dart’s position was vindicated when many scientists finally
accepted that australopithecines were hominids. Once Piltdown Man was out
of the picture, the center of gravity of physical anthropology moved to Africa,
where it belonged.

1925–1965 CE Jan Hendrik Oort (1900–1992, Holland). Astronomer.
Elucidated the kinematics and dynamics of the Milky Way system through
his pioneering work on the differential galactic rotation (1925–1927) and the
21 cm radiation associated with the hydrogen flow along the spiral arms of
the galaxy (1951). Established (1950) the now accepted hypothesis about the
source (if not the ultimate origin) of comets; He concluded that the observed
distribution of cometary orbits could be explained by supposing a cloud of
1.9 × 1011 comets surrounds the sun as far as 50,000 to 150,000 AU and
affected from time to time by the perturbing effects of passing stars. This
reservoir of cometary nuclei is called the Oort cloud582.

581 At the time, Piltdown Man was widely accepted as a human ancestor, and

Taung, with its apelike skull and human-like teeth, seemed difficult to reconcile

with Piltdown’s human skull and apelike jaw.

Piltdown Man: name given to fossil remains found (1908) at Piltdown, England,

thought to be human and 200,000 to 1 million years old. In 1950, fluorine tests

and X-ray analysis proved that Piltdown Man was a forgery. The fraud endured

for more than 40 years in part because of the desire of European scientists to

find evidence for the European origin of man.
582 Astronomers discover long-period comets (orbital periods of 100,000 years to 1

million years) at a rate of about one per month. These comets travel along ex-

tremely elongated orbits and consequently spend most of their time at distances

of ca 4000 to 20,000 AU from the sun — comprising the inner Oort cloud; the

tenuous, weakly bound outer cloud extends out to ca 50,000 AU from the sun,

i.e about 1
5

of the way to the nearest star. Thus it is reasonable to suppose

that there is an enormous population of comets on the outskirts of the solar

system. Only with such a large reserve of cometary nuclei can we understand

why we see so many long-period comets even though each one takes up to 1

million years to travel once around its orbit.

Oort determined that stellar perturbations of cometary orbits over the lifetime
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Oort was born in Franeker, Friesland. He completed his training at Leyden
Observatory, where he remained for the rest of his career, becoming director
in 1945.

In 1932 he estimated the mass density of the galactic disc in the solar
neighborhood, known as the Oort limit583. By measuring the expansion rate
of the dissipating material from the Crab Nebula he confirmed that it was the
remnant of the exploding star seen as the 1054 CE supernova.

1925–1966 CE Andrei Nikolaevich Tikhonov (1906–1993, Russia).
Mathematician. Obtained fundamental results in a wide range of modern
mathematical fields: topology and functional analysis (1925–1935), ordinary
and partial differential equations and their application to problems in math-
ematical physics (1948–1960), and computational mathematics (1960–1966).

Tikhonov was born in Gzhatska, Smolensk region, Russia. He graduated
from Moscow University (1927) and became a professor there (1936).

His initial works (1925–1930) are related to the pioneering results of
Uryson on the condition for the metrization of a topological space. He

of the solar system would completely rearrange the orbital orientations into

a random distribution, even if their initial orbits began with a preference for

the ecliptic plane. Thus the wide variation of orbital inclinations for observed

comets with nearly parabolic orbits was explained in a natural way. Oort then

asked how many comets would be required in the cloud to explain the observed

flux of one dynamically new comet passing each year inside a sun-centered

sphere with a radius of 1.5 AU. Assuming only the effects of stellar perturba-

tions, he determined some 1.9 × 1011 comets with a total mass of about 1027

grams, of order of the mass of the earth! Much of the work on the source of

comets since 1950 has supported Oort’s basic ideas concerning the provenance

of long-period comets.
583 It is possible to estimate the mass density of the galactic disc in the solar neigh-

borhood, using Jeans’ equations in cylindrical coordinates R, z (which in turn

are derived from the collisionless Boltzmann transport equation of statistical

mechanics), in conjunction with the Poisson equation. Oort’s analysis yielded
the relation

∂

∂z

[
1

ν

∂

∂R
(νV 2

z )

]

= −4πGρ,

where ν = ν0e
−2.4R/R0 is the spatial density of stars, R0 the sun’s distance

from the galaxy’s rotational axis, and V 2
z is the mean-square vertical velocity.

He thus concluded (1932) that

ρ0 = ρ(R0, z = 0) � 0.15 M �pc−3,

which is known as the Oort limit.
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then defined the product-space of topological spaces and went on to prove
that the product-space of any set of compact topological spaces is compact.
Tikhonov’s ‘embedding theorem’ concerns the mapping of a topological space
into an infinite-dimensional space584. He later (1935) found conditions for a
topological space to be metrizable. His work led from topology to functional
analysis with his fixed-point theorem for continuous maps (1935). These re-
sults are of importance in both topology and functional analysis and were
applied by him to solve problems of mathematical physics. In the 1960’s
he shifted his attention to numerical methods for the solution of nonlinear
ill-posed problems.

1925–1969 CE Salomon Bochner (1899–1982, Germany and USA).
Mathematician. Made important contributions to harmonic analysis, proba-
bility theory, algebraic geometry and topology of harmonic vector fields. His
research profoundly influenced development of a wide area of analysis in the
second half of the 20th century such as:

• Classification of compact manifolds.

• Higher-dimensional geometry in String Theory.

• Infinite-dimensional representation of non-compact semi-simple Lee
groups.

• Complex analysis in several variables.

He also presaged the Zorn Lemma (1933) already in 1928.

Bochner was born into an orthodox Jewish family in Podgorze (near
Krakow), Poland. In 1915, the family moved to Germany, seeking greater
security. After graduating from a Berlin Gymnasium, Bochner entered the
University of Berlin (1918) and received his doctorate there in mathematics
(1921). He then worked with Harald Bohr in Copenhagen, G.H. Hardy in Ox-
ford, and J.E. Littlewood in Cambridge. In 1933 he came to the United States
and spent the next 35 years at Princeton University. During 1968–1975 he was
the chairman of the Mathematical Department of Rice University, Houston,
Texas.

584 Infinite dimensional spaces are relevant to mathematical physics, with appli-

cations to differential equations and to functional equations via fixed-point

theorems extending those long known for finite–dimensional spaces. In 1930

Schauder proved a fixed-point theorem for continuous mapping of a closed

convex subset of a Banach space onto a countably-compact subset of itself.

In 1935 Tikhonov proved a similar theorem. In 1922, Birkhoff and Kellos

extended Brouwer’s fixed point theorem to functional spaces.
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During 1966–1969, Bochner contributed to the history of Science through
his books: The Role of Mathematics in the Rise of Science (1966) and Eclosion
and Synthesis: Perspective in the History of Knowledge (1969). Therein,
he attempted to differentiate periods in science according to their peculiar
thought-patterns.

1926 CE Vladimir Ivanovich Vernadsky (1863–1945, Russia). Geo-
chemist and mineralogist. Founder of modern biogeochemistry . In his book
La Biosphere he developed the ideas of Eduard Suess (1875) and Jean
Baptiste Lamarck to those we accept today.

Moscow University (1898–1911); State Radium Institute, Leningrad
(1926–1938); Founder and director of biogeochemical laboratory of Leningrad
Academy of Sciences.

Vernadsky was a Russian liberal who grew up in the 19th century. Ac-
cepting the Russian Revolution, he did much of his work after 1917, although
his numerous philosophical references were far from Marxist.

1926 CE Carl Eckart (1902–1971, U.S.A.). Physicist. Establishes inde-
pendently that Schrödinger’s wave mechanics is mathematically equivalent
to the matrix mechanics of W. Heisenberg, M. Born and P. Jordan.

1926–1928 CE Kalman Tihanyi (1897–1947, Hungary). Electrical engi-
neer and inventor. Electronic television pioneer. Patented his fully electronic
television system in 1926.

The idea to utilize the cathode ray tube as image converter on the side of
transmission surfaced in 1908, and was described in detail by A.A. Campbell
Swinton in a paper he published in 1911. In the 1920’s, variations on the
Campbell Swinton design were proposed by Zworykin. All were electrical
analogues of mechanical scanners, in that electron emission would occur only
during the momentary contact by the scanning ray of each elemental area of
the photocell. In 1925 a demonstration by Zworykin with his system produced
discouraging results.

The decisive solution — television operating on the basis of continuous
electron emission with accumulation and storage of released secondary elec-
trons during the entire scansion cycle — was first described by Kalman Ti-
hanyi in 1926, with further refined versions patented by him in 1928.

Tihanyi was born in Uzbeg and studied electrical engineering and physics
in Budapest.

1926 CE Robert Hutchings Goddard (1882–1945, U.S.A.). Among the
pioneers of modern rocketry and space flight. Experimented during 1909–
1945 with solid and liquid propellant rockets which led to the development of
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intercontinental missiles, earth-orbiting satellites and the exploration of space.
He was first to develop rockets equipped with propellant pumps, gyro-controls,
and other instrumentation. Goddard foresaw many of the space flight ideas
that later became reality.

In his treatise “A Method of Reaching Extreme Altitudes” (1919) he pro-
posed trying to reach the moon by rocket. In 1926 he successfully launched
a liquid fuel rocket. Ridiculed585 as a “moon man”, Goddard lived to see his
work win recognition for putting man on the threshold of space.

1926–1927 CE The WKBJ method586 for the approximate treatment of

585 On January 30, 1920, an anonymous editorial-page writer from the New York

Times mocked Robert Goddard for suggesting that a rocket could someday

reach the moon: “That Professor Goddard, with his ‘chair’ in Clark College, and

the countenancing of the Smithsonian Institution, does not know the relation

of action to reaction and of the need to have something better than a vacuum

against which to react — to say that would be an absurd. Of course, he only

seems to lack the knowledge ladled out in high schools”.

The Times went on to cite “the same mistake” in Jules Verne’s description of

firing a rocket to adjust the course of a manned moonship: “The Frenchman,

having got his travelers to the moon in a desperate fix of riding a satellite of a

satellite, saved them from circling it forever by means of an explosion, rocket

fashion, where it could not have had in the slightest degree the effect of releasing

them from their dreadful slavery”.

Such ignorant criticisms of Goddard’s work scared off many supporters for ten

years, until Charles Lindbergh courageously laid his own prestige on the line to

boost Goddard’s.

Almost 50 years later, after two manned lunar expeditions had already used a

pure Vernesian rocket maneuver to escape from lunar orbit and return to earth,

the Apollo 11 moon-landing expedition was launched. In a special section of

the newspaper, the Times printed a small box titled: “A Correction”. In it,

the newspaper’s original Goddard criticism was quoted and retracted: “Further

investigation and experimentation have confirmed Isaac Newton in the 17th

century and it is now definitely established that a rocket can function in a

vacuum as well as in the atmosphere. The Times regrets the error”.
586 The method treats the asymptotic solutions of the equation

d2W

dz2
+ ν2Q(z, ν)W = 0,

where the parameter ν is taken to be large and positive and where Q(z, ν)

tends to a limit as ν → ∞ for fixed z. A change of variables from

(z, W ) to (u, X) through the relations z = z(u), W = X
(

dz
du

)1/2
trans-
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the Schrödinger wave equation is discovered independently by Léon Bril-
louin (1889–1969, France), Hendrik Anthony Kramers (1894–1952, Hol-
land) and Gregor Wentzel (1898–1978, Germany and U.S.A.). This general
mathematical technique had been used earlier by Liouville (1837), Rayleigh
(1912) and Harold Jeffreys (1891–1989, England) in 1923.

1926–1929 CE John Logie Baird (1888–1946, Scotland). Engineer and
inventor. Pioneer of television. A self-taught inventor, who matched inventive
wits against the accumulated wisdom and vast resources of great laboratory
physicists and engineers. Invented the noctovision (1926), a television system
that uses infrared rays to take pictures in the dark. In the same year he gave
the first public demonstration of television broadcasting in England, using a
high-speed electro-mechanical scanning system.

forms the original equation into d2X
du2 +

[
ν2Qz′2

]
X =

[
3
4

(
z′ ′

z′

)2

− 1
2

z′ ′ ′

z′

]

X,

( ′ = d
du

)
. One then chooses z(u) such that ν2Q

(
dz
du

)2
= −u, thereby yielding

u = (±i)2/3ν2/3Φ(z) where Φ(z) =
[

3
2

∫ z

z0

√
Qdz

]2/3

. The differential equation

thus assumes the form d2X
du2 − uX = ν−4/3r1(u)X with r1(u) = − 1

2
ν4/3{z, u}

and {z, u} = z′ ′ ′

z′ − 3
2

(
z′ ′

z′

)2

is the Schwarzian derivative of z with respect to

u. Since dz
du

∝ ν−2/3, d2z
du2 ∝ ν−4/3, d3z

du3 ∝ ν−2, it follows that r1(u) tends to
a ν-independent limit. Neglecting the r.h.s. of the last differential equation, the

solutions of this equation tend to those of the Airy equation d2X
du2 − uX = 0.

Its general solution is known to be (in the original variables)

W ≈ ν−1/3

[
Φ

Q

]1/4 [
c1Ai

{
e−2πi/3ν2/3Φ

}
+ c2Ai

{
−e−2πi/3ν2/3Φ

}]

where c1 and c2 are constants and Ai(z) = 1
π

∫ ∞
0

cos
(
zs + 1

3
s3
)
ds. Away from

turning points [roots of Q = 0], and in regions where Q > 0, the above solution

simplifies to the WKBJ modified plane wave

W ≈ ν−1/2Q−1/4
[
c1e

iν
∫ z
z0

√
Qdz

+ c2e
−iν

∫ z
z0

√
Qdz

]
.

In optics, this is related to the ray approximation for a high-frequency wave,

propagating in an inhomogeneous medium; whereas in quantum mechanics, it

describes the semiclassical motion of a particle when � is small relative to the

classical scales set by the energy, potential, mass etc.
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Baird’s electro-mechanical system consisted of a light sensitive camera
behind a rotating disc. It delivered a crude picture consisting of 30 lines at 12
frames per second to a television receiver that displayed an uneven and tiny
orange and black image. By 1932 Baird had developed the first commercially
viable television system and had sold 10,000 sets. He was unable to obtain
a patent protection to his device, because it contained the already patented
Nipkow disc. He transmitted a television image between London and Glasgow
by telephone lines in 1927, and between London and New York by radio in
1928. He also experimented with color and three-dimensional television.

The British Broadcasting Corporation adopted Baird’s system for their
first television programme in 1929, but in 1937 it was abandoned in favor of
an electronic scanning system.

Baird was born in Helensburgh, Scotland and studied at Glasgow Univer-
sity. He came to Trinidad (1919), escaping from the harsh Scottish climate
that was plaguing him with colds and fevers and bronchial infections. During
his nine months in Santa Cruz he made his basic breakthrough in television.

Back in Britain, he made his first public demonstration in 1925. He devel-
oped a system for televising onto large cinema screens, and covered the 1931
and 1932 Derby live. Although by the mid 1930’s mechanical television was
being overshadowed by the all-electronic technology developed in the United
States, what really interested governments all over the world was not the
entertainment or commercial value of television, but its military applications.

Thus, Baird was secretly working on new uses for television which had
profound impact on WWII587.

Baird probably had a lot to do with the chain of radar stations built along
Britain’s vulnerable coasts in preparation for war as early as 1935, with radar-
controlled anti-aircraft guns that appeared around London in 1940. He also
contributed to the system which guided high-flying bombers to their targets
while flying above cloud and with high-speed wartime signaling techniques
which used television for facsimile transmission of maps and written material
without interception.

In 1943, when the battle for the Atlantic was at its height, Baird was seen
in Port of Spain, Trinidad, for several weeks. Trinidad was an assembly point
for trans-Atlantic oil convoys, and the battle against the German submarines
which preyed on them was being won, largely through improved methods of
detection and radar-surveillance. He was now being deployed in defense of

587 Some even claim the 1936 Crystal Palace fire, where Baird’s research and pro-

duction was based, was the work of Nazi Germany, intended to destroy Baird’s

work.



3690 5. Demise of the Dogmatic Universe

Trinidad’s lumbering convoys and the Western World’s struggle against Nazi
Germany.

1926–1929 CE Oscar Klein (1894–1977, Sweden and USA). Theoretical
physicist. His work had broad impact on 20th century physics and his name
is associated with several major accomplishments: Klein-Gordon Equation
(1926), Kaluza-Klein Theory (1926), Jordan-Klein matrices (1927), Klein-
Nishina scattering (1929). Contributed also to statistical mechanics, thermo-
dynamics, superconductivity and cosmology.

Klein was born in Mörby, Sweden, the youngest son of Sweden’s chief
Rabbi, Gottlieb Klein, who arrived there from Germany. He was educated at
the Universities of Stockholm (Ph.D., 1921) and Copenhagen. Collaborated
from an early age with Arrhenius, Bohr and Kramers. Held professorial
positions at the Universities of Ann Arbor, Michigan (1923–1925), Copen-
hagen (1927) and Stockholm (1930–1962).

Let us summarize briefly the achievements of Klein:

• In his work with Y. Nishina on the Compton scattering of photons by
free electrons in the framework of quantum mechanics, he derived the
differential and total cross-sections. Through this work he was able to
convince physicists of the soundness of Dirac’s relativistic wave equation.

• His work with Pascual Jordan (1902–1980, Germany) on the second
quantization problem in quantum mechanics demonstrated the close con-
nection between quantum fields and quantum statistics. It was shown
that second quantization guarantees that photons obey Bose-Einstein
statistics, and that one can quantize the wave function of the non-
relativistic Schrödinger equation.

• With Walter Gordon (1893–1939) introduced a Lorentz-covariant rela-
tivistic wave-equation for the electron, known as the Klein-Gordon equa-
tion

∂2u

∂t2
= c2∇2u − m2

ec
4

�2
u

with me the electron rest–mass. This marks the beginning of relativis-
tic quantum mechanics. Oddly enough, Schrödinger himself privately
developed the equation slightly earlier (1926) – even including minimal
coupling to EM fields – but he never published his results. The equation
turned out to be fundamental only for spinless bosonic particles.



1926 CE 3691

• In 1938, suggested that a spin-1 particle mediates beta-decay and plays
a role in weak interactions in a similar manner to a photon in electro-
magnetic theory. This idea was resurrected by J. Schwinger only in 1957,
and a decade later it was incorporated into the unified (“electroweak”)
theory of weak–nuclear and electromagnetic forces.

• Introduced major modifications to the 5-dimensional Kaluza unifica-
tion scheme of Maxwell’s electromagnetic theory with Einstein’s GTR.
Kaluza’s theory suffered from two defects: first, classical behavior of the
fields was assumed without considering the effects of quantum mechan-
ics. Second, the theory did not describe the nature of the 5th dimension.

To rectify this, Klein assumed that the extra fifth dimension was curled
up into a circle that was of the order of Planck’s length, 10−33 cm.
This extra dimension, albeit curled up, was still Euclidean in nature.
Klein also assumed it to be periodic with a period τ = �c

e

√
2κ, with e

the electron’s charge (in absolute value) and κ Einstein’s gravitational
constant in 4-dimensional spacetime, 8πG

c4 . The extra dimension was
not observable but was a physical quantity conjugate to the electron’s
charge. By this Klein attempted to explain the atomicity of electricity
as a quantum law.

The combined theory is known as the Kaluza-Klein Theory588. Over the
80 year period since its inception, physicists have had difficulty correlating the
Kaluza-Klein Theory or the now-popular higher dimensional extensions of it,
to physical reality. However, the last decades of the 20th century witnessed a
revival of the theory and its amalgamation into various unification programs.
In particular, those involving superstrings and supergravity could e.g. have 6
or 7 (rather than 1) curled-up dimensions. But it now seems doubtful that
any given scheme for curling up the “small” spatial dimensions can be shown
to be unique, stable, or dynamically feasible.

A Centennial Nobel Symposium was held in September 19–21, 1994 in
honor of Oscar Klein.

588 A 5-dimensional unification scheme was apparently discovered independently by

two other physicists at about the same time. The first was Heinrich Mandel

(Germany) and the second was Vladimir Alexandrovich Fock (1898–1974,

Russia). Fock, a theoretical physicist, was born in St. Petersburg, graduated

from its University in 1922, and became a professor there (1932).
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Applied Group Theory589

In the 19th century the theory of groups arose primarily as the theory of
transformation groups. However, in the course of time it became more and
more clear that the most significant of the results obtained depend only on
the fact that transformations can be multiplied and that this operation has a
number of characteristic properties. On the other hand, objects were found
having nothing to do with transformations, but to which the main theorems
of the theory of transformation groups could be applied. As a result, the
concept of a group was applied not only to systems of transformations, but
also to systems of arbitrary elements.

For the physicist, group theory is an extraordinarily useful tool for for-
malizing semi-intuitive concepts and for exploiting symmetries. Group the-
ory became a useful tool for the development of crystallography, solid state
physics, atomic, nuclear and particle physics and even cosmology.

The extension of group theory to continuous groups (groups with an in-
finite number of elements, where a general element depends on one or more
parameters which vary continuously), has led to applications to special rela-
tivity, quantum theory and the particles, fields and high energy physics.

As knowledge of our physical world expanded explosively in the first third
of the 20th century, new mathematical structures were revealed which were
already anticipated by mathematicians of the 19th century. Chief among them
was M.S. Lie.

The importance of Lie groups (and their associated algebras) in mod-
ern physics (especially quantum field theory, STR and GTR) stems from the
demand for covariant590 physical laws under space and time translations, ro-

589 To dig deeper, see:

• Bishop, D.M., Group Theory and Chemistry, Dover Publications: New York,
1993, 300 pp.

• Tinkham, M., Group Theory and Quantum Mechanics, McGraw-Hill, 1964,
340 pp.

• Lyubarskii, G.Ya. The Application of Group Theory in Physics, Pergamon

Press, 1960, 381 pp.

590 Covariant equations have the same form in different coordinate systems so that

there is no preferred fiducial reference system w.r.t. the given group of trans-

formations.
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tations in real 3-dimensional space, Lorentz transformations and rotations in
various abstract spaces.

The demand for covariance under translation is based on the homogeneity
of space and time. Covariance under rotation is an assertion of the isotropy
of space. The requirement of Lorentz covariance is based on the acceptance
of special relativity. Together, the above three transformations form the in-
homogeneous Lorentz group, also known as the Poincaré group.

From the point of view of pure mathematics, a number of results were
obtained for Lie algebras at the turn of the 20th century that are similar
to the fundamental results on associative algebras, although the proofs and
statements are here more complicated. This was mainly due to the efforts of
Killing and Cartan, who classified all simple Lie algebras over the field of
real and complex numbers.

In the early 1930’s the theory of representations of Lie algebras by matri-
ces was constructed, principally by Cartan and Weyl, and proved to be a
remarkable tool for the solution of many problems.

A Lie group that plays an important role in relativity theory, electrody-
namics and relativistic quantum mechanics is the Lorentz group, the “one-
dimensional boosts” subgroups of which depend on a single real parameter.
It is represented by the one-dimensional (x, t) Lorentz transformation (LT)

[
x′

t′

]

= γ

[
1 −v

−v
c2 1

] [
x
t

]

, γ =
(

1 − v2

c2

)−1/2

.

Indeed, the set of all matrices

A(v) =
[

1 −v
− v

c2 1

]

form a continuous group with A(v1)A(v2) = A(v3) where v3 = v1+v2
1+

v1v2
c2

. The

inverse transformation is obtained by replacing v by −v.

Upon the substitution γ = cosh θ, γ v
c = sinh θ, x4 = ict, the LT can

be recast in the form of an orthogonal transformation

[
x′

1

x′
4

]

=
[

cosh θ i sinh θ
−i sinh θ cosh θ

] [
x1

x4

]

.

A LT for which the determinant of the transformation is equal to +1 is said
to be proper (choice γ > 0). This condition is equivalent to requiring that
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t′ → ∞ as t → ∞ for fixed x1, which corresponds to the invariance of the
direction in which time is measured. Such a LT is said to be orthochronous591.

Since
[

cosh θ i sinh θ
−i sinh θ cosh θ

]

≡ I cosh θ − σ2 sinh θ = e−θσ2 ,

where I =
[
1 0
0 1

]

, σ2 =
[
0 −i
i 0

]

, we can say that σ2 generates represen-

tation of this Lorentz transformation.

Returning to the case of three space dimensions, when the relative velocity
v is not parallel to any coordinate axis, it can be shown that the generator is
the 4 × 4 matrix

σ =

⎡

⎢
⎢
⎣

0 0 0 −iλ
0 0 0 −iμ
0 0 0 −iν
iλ iμ iν 0

⎤

⎥
⎥
⎦,

where (λ, μ, ν) are the direction cosines of v.

The transformation itself is given by the 4 × 4 matrix

L(v) = e−θσ = I − σ sinh θ + σ2(cosh θ − 1).

In this general case, however, the product of two Lorentz transformation ma-
trices L(v1) and L(v2) yields a third Lorentz transformation L(v3) only
if the two velocities v1 and v2 are parallel. If v1 and v2 are not parallel we
find that L(v3) = RL(v2)L(v1), where R is a 3 × 3 space rotation matrix
(Wigner’s rotation).

The matrix L has the property that LGLT = G, where

G =

⎡

⎢
⎢
⎣

1 0
1

1
0 −1

⎤

⎥
⎥
⎦

is the metric matrix of Minkowski space (in its imaginary – 4th component
representation).

591 The basic relation x2 − c2t2 = x′2 − c2t′2 can accommodate both γ > 0 and

γ < 0.
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Together with the spatial-rotations Lie group SO(3), the set of orthochro-
nous boosts L(v) forms a 6 parameter Lie group of linear transformation in
3 + 1 dimensions, SO(3, 1) the Lorentz group.

Another important Lie group applicable to relativistic spinors is Sp(2n),
the symplectic group of all matrices A of dimension 2n × 2n which satisfy
the equation AGAT = G, where G is a given skew-symmetric matrix and is
usually taken as

G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1
−1 0

0 1
−1 0

. . .

0 1
−1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

1926–1932 CE Werner Karl Heisenberg (1901–1976, Germany). Dis-
tinguished theoretical physicist. One of the major figures in the transition
from classical to quantum physics. Together with M. Born and P. Jordan
developed Quantum Matrix Mechanics based on non-commutative matrix al-
gebras592, the germ of which had existed in the quaternions of Hamilton, 83
years before.

In 1927 he published his Uncertainty principle, for which he is best known;
he showed that quantum mechanics embodies a very general principle through
which the least possible errors in measurement of position are necessarily cor-
related with the least possible errors in measurement of momentum. A similar

592 When Heisenberg discovered matrix mechanics (1925), neither Heisenberg nor

Born knew what to make of the appearance of matrices in the concept of the

atom. David Hilbert told them to go look for a differential equation with the

same eigenvalues. They did not follow Hilbert’s advice and thereby may have

missed discovering the Schrödinger wave equation.
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‘uncertainty ’ relation exists between energy and time, angle and angular mo-
mentum, different components of spin or orbital angular momentum, phase
and intensity of a light wave, electric and magnetic fields, as well as other
pairs of so-called ‘canonically conjugate observables’.

Heisenberg studied theoretical physics at Münich under A. Sommerfeld,
receiving his doctorate degree in 1923. In the same year he became assistant to
Max Born at Göttingen. He then worked under Niels Bohr at Copenhagen
(1924–1927). During 1927–1941 he was professor of theoretical physics at
Leipzig. From 1942 on he was associated with the Max Planck Institute for
physics at Göttingen. He was awarded the Nobel prize for physics in 1932.

Werner Heisenberg was among the few renowned scientists who stayed in
Nazi Germany. In his youth, he was associated with organizations whose phi-
losophy was close to that of the Nationalist socialist party (e.g. The White
Knights). The organizations were elitist, opposed to the Weimar Republic,
willing to submit unquestioningly to a leader, fanatically devoted to a roman-
ticized German culture, and strongly convinced of German superiority. He
decided early on that he would not leave Germany. When Jewish professors
were dismissed from the universities, he made vigorous efforts to replace them
by Dutch professors (non-Jewish, of course); they all turned him down.

Clearly, to Heisenberg at that juncture, maintaining a strong physics es-
tablishment took precedence over human rights, justice or dignity. From the
beginning, Heisenberg was sympathetic to the Nazi’s national aims. He later
participated in the German war effort and made propaganda trips to occupied
countries, thus becoming a willing, active participant in Germany’s politics
and war aims. Even after the war Heisenberg never gave up his strong belief in
the superiority of German culture and science. There was perennial conceit,
continued arrogance and more than a touch of condescension in his attitude
toward U.S. science, as well as a strong tendency to trivialize U.S. scientific
accomplishments during the war.

He was accused by physicists of collaboration with the Nazis, and after
the war was virtually ostracized by the international scientific community.
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The Uncertainty Principle and the Copenhagen
formulation of Quantum Mechanics (1925–1930)

Schrödinger (1925–1926) transformed de Broglie’s (1924) rather vague
ideas about electron waves into a precise and coherent mathematical formal-
ism that applied to electrons or other particles. At the heart of Schrödinger’s
approach was a dynamical equation that dictated the way any given parti-
cle or system of particles would evolve with time. Schrödinger’s equation is
mathematically of a kind similar to those that had been used since the 19th
century to study waves of sound, light and radio. Physicists in the 1920’s were
immediately able to set about calculating the energies and other properties of
all sorts of atoms and molecules. Despite this success, nobody at first knew
what physical quantity was oscillating in an electron wave, especially since the
wave amplitude is complex. Born (1926) suggested that the wave function at
any point tells us (through its squared modulus) the probability density that
the electron is near that point.

Neither Schrödinger nor de Broglie were comfortable with this interpre-
tation of electron waves. However, Heisenberg (1927) adopted the Born
interpretation to arrive at his uncertainty principle, claiming that electrons
have neither a definite position nor a definite momentum.

Physicists continued to wrangle over the interpretation of quantum me-
chanics for years after they had become used to solving the Schrödinger equa-
tion; they still do. While Einstein rejected quantum mechanics altogether,
most physicists were simply trying to understand it.

Much of this debate went on at the University Institute for Theoretical
Physics in Copenhagen, under the guidance of Niels Bohr. By 1930 the
discussion at Bohr’s Institute led to an orthodox ‘Copenhagen’ formulation of
quantum mechanics. The essence of this interpretation is a sharp separation
between the system itself and the apparatus used to measure its configuration:

During the time intervals between measurements the wave function of the
quantum system evolves in a continuous and deterministic way, dictated by
its Schrödinger equation. While this is going on, the system cannot be said
to be in any definite configuration of classical phase space. If we measure the
configuration of the system (e.g. by measuring all the particles’ position or all
their momenta, or one’s position and another’s momentum, or a combination
of momentum and position for each particle), the system jumps into a state
that is definitely in one configuration or another of the measured variables,
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with joint probability density given by the square modulus of the one– or
many– particle wave function593 just before the measurement.

While human beings had no special status in Newtonian physics, in the
Copenhagen interpretation of quantum mechanics humans (or at least, macro-
scopic measuring devices) play an essential role in giving meaning to the wave
function by the act of measurement. Where the Newtonian physicist spoke of
precise prediction, the quantum mechanician now offers mainly calculation of
probabilities.594

Although it seems weird at first, quantum mechanics provides a precise
framework for calculating energies, spectra, bulk properties of matter, transi-
tion rates and probabilities.

An idealized plane electromagnetic wave of total energy E transmits a
linear momentum p = E

c . Since for a single photon (of frequency ν and

wavelength λ) E = hν, the momentum of a single photon is p = hν
c = h

λ ,

i.e. λ = h
p . This particle aspect of radiation – first understood by Einstein

– is borne out by many experiments, such as the photoelectric and Compton
effects.

The complementary wave aspects of material particles, predicted by de
Broglie and Schrödinger, were confirmed via the experiments of Davisson
and Germer (1927), who showed that a beam of electrons reflected from the
surface of a nickel crystal form diffraction patterns, exactly analogous to the
Bragg diffraction of X-ray electromagnetic radiation from the same crystal.
This is successfully explained by assigning a de Broglie wavelength λ = h

mv
to an electron of mass m and velocity v.

Thus, for both light waves/photons and electron particles/waves, the du-
alism of wave and particle is governed by the simple relation p = h

λ . It has a
fundamental consequence regarding the unambiguous and complete descrip-
tion of a subatomic system’s behavior in space and time:

Consider, for example, the free electron in one dimension: the correspond-
ing time-dependent Schrödinger equation is

∂2ψ

∂x2
=

4πm

hi

∂ψ

∂t

593 Or some linear transform of it. In case it is the particle momenta that are being

measured, it is the 3n dimensional Fourier transform, with n the number of

particles.
594 Although many predictions — such as atomic spectra, laser or maser frequen-

cies and some low-temperature many-body observables — are more precise in

quantum mechanics than is possible in classical physics.
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and its general solution is

ψ(x, t) =

∞∫

− ∞

g(p) exp
[
2πi

h
(px − Et)

]

dp

where

E = E(p) =
p2

2m

is the classical Newtonian relation of momentum to kinetic energy.

We assume that g(p) is only appreciably different from zero in the neigh-
borhood of a given momentum p0 and has the form of a Gaussian wave-packet,

g(p) = A exp
[

− (p − p0)2

4s2

]

.

Clearly the packet group velocity is
(

∂E
∂p

)

0
= v0 = p0

m . Then, the

stationary-phase approximation to the integral yields (� = h
2π is the reduced

Planck’s constant):

ψ(x, t) = 2sA

[

1 +
2its2

m�

]−1/2

exp
{

i

�
(p0x − E0t)

}

· exp

{

− s2

�2

(x − v0t)2

1 + 2its2

m�

}

.

This means that the coordinate probability distribution of the electron is

|ψ(x, t)|2 = 4s2|A|2
[

1 +
4t2s4

m2�2

]−1/2

exp

{

−2s2

�2

(x − v0t)2

1 + 4t2s4

m2�2

}

while its momentum probability distribution is

|g(p)|2 = |A|2 exp
{

− (p − p0)2

2s2

}

.

Both distributions are represented by Gaussian functions: the root mean
square deviations from the most probable values (x0 and p0 respectively) are

given by the respective widths Δp = s, Δx = �
2s

[
1 + 4t2s4

m2�2

]1/2

at time t.

At t = 0, these indeterminacies are reciprocal, such that

Δx · Δp =
1
2

�.
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As t increases, Δp stays unchanged, but Δx increases towards the asymp-

tote Δx ≈ st
m = (Δp)t

m , which is merely the classical position uncertainty due
to the initial spread in velocities.

It can be shown that Gaussian wave packets are actually optimal , as
far as simultaneous measurements of x and p is concerned; thus in gen-
eral, (Δx)(Δp) ≥ 1

2�, which is the celebrated Heisenberg uncertainty relation
(Mathematically, it follows from the Cauchy–Schwartz inequality).

The simultaneous measurement of the position and momentum of an elec-
tron necessarily involve minimal uncertainties which are related in accordance
with this inequality.

If one attempts to localize a particle of mass m to within a Δx of order
or less than its Compton wavelength, Δx��/(mc), one enters the realm of
field quantization, or in other words, quantum field theory — the union of
special relativity and quantum mechanics. In that regime (Δx� 10−11 cm
for electrons), the very number of particles becomes uncertain, for the zero-
point energy associated with the act of measurement — i.e. the kinetic energy
due to the “fuzziness” in momentum created by measuring x to an accuracy of
Δx — culls out of the vacuum virtual particles rendering them real (actual).595

Field quantization introduces its own set of uncertainty relations; these are
simple functional extensions of Heisenberg’s original, ‘first-quantized’ version.
Thus, in Quantum Electrodynamics, the electric and magnetic fields measured
in the same small volume element, obey such an uncertainty relation; so do
the intensity and phase of a light wave (the latter fact has found applications
in the technology of quantum optics).

Quantum Electrodynamics itself was originated, along with second quan-
tization (known today, more accurately, as “field quantization”) by Heisen-
berg and W. Pauli.

Descending to even smaller values of Δx (implying more accurate position
measurements), it is known today — from considerations involving quantum
gravity — that problems with the very concept of a smooth spacetime con-

tinuum, dictate a lower bound to Δx, of order 
P =
√

�G
c3 . (Here � is

the reduced Planck constant, c the speed of light in vacuo, and G the
constant of universal gravitation.) 
P is known as the Planck length and it is
an extremely small length scale — approximately 10−33 cm; twenty orders
of magnitude smaller than typical nuclear sizes.

Qualitatively, the implied inequality is of fundamental importance since it
states that measuring distances smaller than the Planck length is meaningless,

595 This is possible since for Δx� �

mc
, the zero-point energy is of order �mc2.
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at least within the classical (or even Minkowskian or General-Relativistic) de-
scription of spacetime. This circumstance is somewhat reminiscent of the
situation in ‘p-adic’ number systems — in which the Archimedean axiom (ac-
cording to which any given segment on a straight line can be refined by di-
viding it into smaller segments) is abandoned.

This has suggested to some physicists that spatial geometry on a small
enough scale is not only non-euclidean (as follows from GTR) and quantized
(as shown from what little we know of quantum gravity), but is furthermore
based on non-Archimedean arithmetic. However, these latter speculations
have thus far not proven fruitful.

It is inaccurate to regard the uncertainty relations as a restriction which
nature places on our knowledge of the microworld596. The meaning of the rela-
tion (Δx)(Δp) ≥ 1

2� (and the other similar relations in first–quantization and
for quantized fields) is rather that instantaneous, simultaneous and sharply
defined numerical pairs of values of position and momentum (or angle and
angular momentum, electric and magnetic field, etc.) are simply not objec-
tive properties of micro-systems — and that this is just the way things are.
Micro-objects are neither particles nor classical waves and it is impossible
to fully describe them in terms of “common sense” classical notions. The
wave-particle duality of micro-objects should be interpreted as their poten-
tial ability to behave differently under different conditions, or even in two
classically-contradictory ways at the same time. The following consequences
of the uncertainty principle will illustrate this:

596 Prior to 1925, physics recognized only one type of fundamental uncertainty: sta-

tistical mechanics (thermal) uncertainty. It stems from the physical fact that

there are of order 1023 particles in one mole of matter, subject to statistical laws

summarized by the second law of t hermodynamics and its non-equilibrium ex-

tensions. While Maxwell posited that super-fast, microscopic and sentient “De-

mon” might micro–manage molecules and violate the Second Law, Szilard and

Brillouin showed that the Demon’s requisite information processing must gen-

erate heat – thereby restoring the “thermal uncertainty”. While we do not yet

possess a theory of quantum gravity, its severe challenges have led to various

bold approaches to the problem of spacetime description at or below the Planck

(�p) length scale. One approach posits that twistors (spinor variables underly-

ing local light cones) replace spacetime as the fundamental variables of quantum

gravity.

The Heisenberg uncertainty relations express the fact that while we inhabit a

deterministic infinite-dimensional Hilbert-space, our macroscopic sense percep-

tion force a description of nature in terms of a 4-dimensional space-time, and

the former fact severely constrains one’s ability to so describe a microscopic

system.
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• Why does an atom not collapse? This question remained unanswered in
Bohr’s model; why does an electron, when revolving about the nucleus
in the lowest Bohr orbit, not radiate EM wave-energy (which would lead
to its eventual fall into the nucleus)?

An electron in its ground state (lowest–energy quantum orbital) is moving
in a localized region of about 10−8 cm in size. If it falls into the nucleus, it
will be localized in a much smaller region, of about 10−13 cm in size. But
then, on the strength of the uncertainty principle, the random components
added to its velocity by this very precise “measurement” of its position by the
nucleus electric field, increases by a factor of order 100,000. The electrostatic
attractive force of the atomic nucleus would not be able to hold such a fast-
moving electron within the nucleus. The uncertainty principle thus does not
allow the electron to fall. Had the velocity uncertainty been a mere statistical
matter (i.e., were the electron’s velocity is well defined, albeit unknown to
us), then occasionally, some atom in its ground state would radiate. Yet in
quantum mechanics this never happens (another example of an instance in
which quantum reality actually renders physics less uncertain!).

• Do electron orbits exist? From classical physics, an electron in an atom
has a speed of the order of 108 cm/sec. Since the dimensions of the atom
are ∼ 10−8 cm, the uncertainty relation yields a velocity uncertainty of

Δv ∼ �
m(Δx) � 10−27

9×10−28×10−8 � 108 cm/sec, that is to say, the error in

determining the velocity is comparable with the velocity itself!

Thus, the notion of electron orbits turns out to be invalid (except for very
high quantum numbers n), and we see again that, to describe micro-objects,
new concepts must be introduced. (Atomic physicists and physical chemists
speak instead of smeared-out orbitals.) Of these, the concept of probability
is, perhaps, the most important in quantum mechanics; we may not speak of
orbits, it is only meaningful to speak of the probability density of finding the
electron at a given velocity or given distance from the nucleus. Yet, as we
noted above, the stochasticity of quantum mechanics is different in character
from classical (or thermal) stochasticity.

In some sense, the use of probabilities to describe quantum mechanics
is due to our own predilection, as macroscopic, almost classical atomic ag-
gregates, for a phase-space description of subatomic motion! The fact that
the probabilistic interpretation of quantum mechanics is not required as an
independent postulate of quantum mechanics, was first exposed clearly by
Hugh Everett III (1930–1982), in his so-called ‘Many-World’ interpreta-
tion of quantum mechanics.

Systems containing large numbers of particles, whether classical or quan-
tum, require for their description an entirely new approach, that of statistical
physics. In classical physics one solves Newton’s equations and, provided the
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initial conditions are specified, the future motion of all particles is fully de-

termined – as so vividly expressed in Laplace’s famous dictum. The laws of

classical physics are therefore deterministic, and elements of randomness (sta-

tistical description) are only relevant when we study systems of large number

of particles (e.g. gases) — to compensate for our imperfect knowledge of initial

conditions.

In quantum mechanics of a single or a few microparticles, the situation is

quite different. The statistical, or probabilistic, approach is applied even to

the motion of one single particle; whether or not we shall find the electron at

a given region near the nucleus — this is a matter of chance. However, unlike

statistical mechanics, few-particle quantum mechanics is fully deterministic

— as long as we describe its evolution in terms of wavefunctions rather than

classical phase space! In quantum mechanics of a many-body system, the two

kinds of uncertainty are both operative. To illustrate this, we consider the

following example:

Conversion of a disordered state into an ordered state, such as putting

a mixed deck of cards back into a properly ordered sequence, may be ac-

complished by any intelligent person (or computer). Similarly, the task of

converting the probable Maxwellian velocity distribution into an improbable

distribution might be accomplished if there existed a supremely deft intelli-

gent agent, traditionally known as “Maxwell’s demon”, keeping watch at a

small sliding panel between two halves of a box (each half enclosing molecule

samples at nearly equal temperatures), which he opens briefly whenever a fast

molecule approaches from the left or a slow molecule from the right. By this

procedure the demon should be able to separate slow and fast molecules in a

time very much shorter than the time needed for this separation to occur by

a statistical fluctuation without any panel.

Clearly, the demon cannot operate successfully unless he can distinguish

fast molecules from slow ones. Now, knowledge whether a molecule is fast

or slow requires about one bit of information. This has led some authors to

consider “information” as a source of “negative entropy”, which Maxwell’s

demon transfers to the gas whenever he uses one bit of information during

one operation of the panel. In this fashion the total entropy of the system

need not decrease during the demon’s operations, provided the demon and

his store of negative entropy are counted as part of the system.

This proposal becomes quantitatively feasible if one assigns to one bit

of information a negative entropy of amount S0 = −k log 2 (k = Boltz-

mann’s constant), with the understanding that entropy is additive — thus

making two bits of information equivalent to a negative entropy of amount
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2S0 = −k log 2 − k log 2 = −k log 22, and generally n bits of information rep-
resent a store of negative entropy of amount nS0 = −k log 2n. This inter-
convertibility of information and entropy is further justified on the grounds
that the demon’s velocity measurement, and subsequent action (opening, or
closing the panel), involve data processing, which in turn converts some useful
energy source into heat.

The above discussion implies that Maxwell’s demon will always be capable
of acquiring the information necessary for performance of his task. However,
quantum mechanics places a further fundamental limitation on any such de-
mon. If the temperature of a gas consisting of N molecules of mass m in a
volume V is held below a critical value

T0 =
�2

mk

(
N

V

)2/3

(� = 1.05 × 10−27 erg sec)

the demon is incapable of distinguishing fast and slow molecules with suffi-
cient accuracy, on account of the uncertainty relation ΔpΔx = mΔvΔx��

— which states that localization of a molecule to within a length Δx engen-
ders an inevitable uncertainty in the knowledge of its velocity by the amount
Δv��/mΔx.

To see this we note that at temperature T , the difference in speed between
the slowest and the fastest molecules is of order (kT/m)1/2, and the uncer-
tainty in the demon’s knowledge of the velocity, must clearly be less than
that for his project to succeed: (kT/m)1/2�Δv. However, if the average
speed of the molecules is v and the area of the panel d2, about vd2N/V
molecules will hit the panel per second, giving the demon not more time than
Δt ≈ V/(vd2N) between successive openings and closings of the panel.

This amounts to a localization of the passing molecule of amount
Δx ≈ vΔt ≈ V/(d2N), thus engendering an uncertainty in the knowledge

of its velocity Δv��d2N
mV .

The dimension d of the opening will also require a (transverse) localization
of the particle during passage; in order that the corresponding quantum un-
certainty in the particle’s velocity is not larger than the overall Δv, one must
give this opening at least the size d� �

mΔv ; so that one has the combined

inequality Δv� �3N
m3V (Δv)2 , which when solved for δv yields Δv� �

m

(
N
V

)1/3
.

By substitution into (kT/m)1/2�Δv, one thus finds that successful operation
of the demon requires a temperature

T� �2

mk

(
N

V

)2/3

≡ T0.
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The value of T0 for the case of helium molecules (m = 6.5 × 10−24 g), com-
pressed to a density near that of liquid water (about 1 g/cm3) is T0 ≈ 3.5 ◦K.

Heisenberg based his new mechanics on the postulate that the atomic the-
ory rests solely on such geometrical or physical entities as are measurable;
e.g. the locus of the electron’s entire orbit must be excluded, but frequencies
and amplitudes of spectral lines that are emitted by the atom are legitimate
observables, as are (for instance) any position or momentum Cartesian com-
ponents (but not both along non-perpendicular directions) of the electron at
a given time.

He thus developed a mathematical scheme, based on matrices, that was
suitable for the description of the new sub-atomic reality597. This new math-
ematical framework enabled him to explain various observation that defied
Bohr’s semiclassical approach.

Schrödinger’s and Heisenberg’s work on quantum theory had a profound
impact on the development of physics and many other branches of fundamen-
tal and applied science – in particular molecular, atomic, nuclear and particle
physics; material science; chemistry; biology; optics; electrical engineering,
astrophysics, and cosmology.

In 1932 Heisenberg introduced the concept of isospin598and expounded its
mathematical theory. [isospin = isotopic spin or isobaric spin. The former is a

597 As an illustration of how matrices entered his scheme, consider a hydrogen atom

emitting a photon in a transition between the Bohr orbits m, n. Classically,

the strength of the radiation is proportional to
[
Ẍ(t)

]2

, where X(t) is the

trajectory of the emitting electron (Larmor’s law). Heisenberg treated X(t) as

an operator (an infinite-rank matrix) and suggested that the strength of the

spectral line is related to the square of the modulus of the complex amplitude

[x(t)]mn, and that the time dependence of this complex matrix element is

proportional to eiωmnt, where ωmn = 1
�
(Em − En). This explains nicely,

among other things, the hitherto-unexplainable (empirical) ‘Ritz Combination

Law ’ of atomic spectra.
598 Since the strong nuclear forces are charge-independent in the sense that the

proton-proton and neutron-neutron strong forces are the same (and qualita-

tively similar to the neutron-proton strong forces), and since these two con-

stituents of the nucleus may be transformed into each other and are close in

mass, it is physically meaningful to consider them to be 2 different “states” of

one heavy nuclear particle — the nucleon. In contradistinction to our common

concept of different states of one system, these 2 nucleonic states differ w.r.t.

their charge. It is convenient for the theory of the nucleus to distinguish the 2

states formally by the components [Tz = 1
2

(proton) and Tz = − 1
2

(neutron)]

of a new quantum number called isospin. The (weak–nuclear–force mediated)
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misnomer since the proton and neutron are not really isotopes, as they differ
in charge.] The isospin symmetry, although approximate, predicts various
successful relations between nuclear energy levels and probabilities of different
nuclear reactions and transitions.

In the standard model of particle physics, the proton, neutron, pions and
other hadrons are understood to be made of quarks; isospin invariance (sym-
metry) is understood to be an approximate accidental symmetry, but other
“internal” (i.e. non-spacetime rotations in internal space) are fundamental
symmetries in this theory. These are the non-abelian gauge transformations
under which a quark’s “color” or a lepton’s charge are changed; and under
which (for example) an up-quark (charge +2

3e) can be converted to a quantum
– coherent mixture of down- and strange quark states (both of charge −1

3e),
with color unchanged.

β-decay, where a neutron is transformed into a proton, then corresponds to the

quantum transition ΔTz = 1 (isospin flip). Since nucleons are fermions, the

nuclear wave function must be totally antisymmetric w.r.t. the combined spa-

tial, spin and isospin degrees of freedom.

The mathematical transformation of a proton into a neutron, or vice versa, is

then a special case of rotation in abstract isospin space. The strong nuclear

interactions are covariant under such iso-rotations, and the corresponding “an-

gular momentum” T (of which Tz is but one component) is thus conserved

by these interactions. This limited charge-independence does not mean that

the nn and pp forces are exactly the same. The (small) electromagnetic and

weak corrections to these forces violate isospin conservation, and are responsible

for the observed charge-dependence of nuclear masses, lifetimes and scattering

cross sections (electromagnetic effects are by far the dominant isospin-violating

nuclear effect).
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Causality and Determinism in Quantum Theory599 —
or, Where is the particle when no one is looking?

(1925–1965)

Science, the systematic effort of man to explore natural phenomena,
started with the Greek school of Thales and Anaximander in the 6th century
BCE. It reached its pinnacle during the period 400–200 BCE, the period of
Democritos, Socrates, Plato, Aristotle and Chrysippos, referred to as the
classical period of Greek philosophy. It was followed by the Hellenistic period,
which lasted up to the 2nd century CE. Then an era of decline set in, although
the investigative efforts continued to some extent until the 6th century CE.

Except in a very few fields such as astronomy and geometry, Greek philos-
ophy is based on speculations, hypotheses and theories. However, the extra-
ordinary intuition and perspicacity of Greek philosophers produced concepts
that are in some respects amazingly close to the ideas of modern science,
particularly physics.

Thus, the concept of the atom was first proposed by Democritos and
Leucippos. Anaximander was first to envision the possibility of the trans-
formation of one primary substance into another one. Heraclitos’ foremost
fundamental principle — that everything is in constant flux (the famous
παντα ρει) — is the forerunner of the notion that energy transformations
are at the base of all changes in the world. He assumed fire to be the basic
element, but if one replaces ‘fire’ with ‘energy’, the doctrine of Heraclitos is
in some ways quite close to the story told by modern physics.

Plato, contrary to Democritos, held that the smallest units of matter are
geometrical forms (platonic regular solids) transformable into each other. In
the last analysis, the elementary particles are for Plato not substance but
mathematical forms. In modern physics, too, elementary particles are consid-
ered as forms — moving configurations of energy, irreducible representations

599 For further reading, see:

• Jammer, M., The Conceptual Development of Quantum Mechanics, Amer.

Inst. Phys.: New York, 1989.

• Jammer, M., The Philosophy of Quantum Mechanics, Wiley–Interscience:
New York, 1974.

• Rae, A., Quantum Physics: Illusion or Reality? Cambridge University Press:

Cambridge, 1986, 123 pp.
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of symmetry groups, states in Hilbert space, et cetera. In Greek philosophy,
however, these forms were considered to be static, whereas modern physics
stresses their dynamic nature.

Since the beginning of modern science in the 16th and 17th centuries, there
has been a continuous parallel development of new philosophical ideas and
systems stimulated by concepts emerging from the new scientific knowledge600.

Among the outstanding philosophers of the early period were Francis Ba-
con (1561–1626) in England and Rene Descartes (1596–1659) in France.
Bacon, primarily a philosopher, understood the importance of mathematics,
and stressed empiricism and the skeptical observation of Nature. He wrote
the first classical works in which serious attempts were made to build bridges
between the new information resulting from scientific observations and knowl-
edge on the one hand; and philosophical thinking — hitherto still strongly
influenced by Aristotelian philosophy — on the other.

Since the days of Descartes and Newton scientists have regarded the phys-
ical universe as a system in which all events proceed in an unbroken chain of
cause and effect, according to a universal principle of causality. In a universe
in which the principle of strict determinism is meaningful and holds, the laws
of nature are at least partially deterministic601; experimental verification of
determinism is furnished by the predictability of events. The principle of strict
determinism asserts that, if all pertinent details concerning the present state
of an isolated system are known, it is possible by means of suitable laws of
nature (governing causal agencies) to predict that system’s state at any later
(or, indeed, earlier) time. The conclusion is drawn that everything that ever
did or will happen in such a system, is completely determined (at least in
principle) by its present state.

600 These movements became particularly strong in the 20th century; quantum

mechanics and the theory of relativity had a profound impact on philosophical

thinking. Indeed, Einstein, Bohr, Born, Heisenberg and Pauli analyzed in

their writings and lectures the philosophical implications of the newly gained

knowledge and experience.
601 Determinism: the ability to determine the state of a system at a given time on

the basis of information about the state at an earlier time.

Newtonian Causality : causes precede effects (and are best described via me-

chanical contact forces or influence).

Classical Causality : If a system is perturbed at time t0, as reckoned in a

locally–inertial frame, the perturbation at infinitesimal distance R away (as

measured in that frame) cannot arrive before time (t0 + R
c
), where c is the

velocity of light in vacuo.
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Within the confines of classical physics, Newtonian (or, later, relativis-
tic local) causality and determinism were thus largely synonymous. One
could, perhaps, imagine a universe in which successful quantitative prediction
schemes — such as Babylonian astronomy — exist without any underlying
mechanism (‘laws of nature’). In such a putative universe, causation would
reduce to its narrow empiricist definition as rendered by David Hume: A
causes B whenever it is found to always precede it, all other circumstances
being allowed to vary.

One could also imagine a causal universe in which some casual agencies
are inherently difficult to measure or predict, thus rendering determinism less
than perfect (as, indeed, happens in thermal physics).

However, the universe in which Newton and his successors thought they
found themselves, was one in which relatively simple mechanisms could, and
did, account for far-flung chains of causation. The concepts of ‘causality’ and
‘determinism’ were thus conflated in classical physics — a situation which was
to change with the rise of quantum mechanics, as we shall see.

Determinism was automatically built into Newtonian mechanics in the
17th century. Thus, treating the solar system as an isolated system, the plan-
etary positions and velocities at one moment suffice to determine uniquely, via
Newton’s laws, their positions and velocities at all subsequent times. More-
over, since these laws contain no directionality of time, the present state
suffices to uniquely fix all past states as well: one may predict eclipses into
the far future, and also retrodict their occurrences in the past.

In a causal, deterministic world, the past and future are contained in the
present in the sense that the data needed to construct the past and future
states of the world are implicit in its present state. The entire cosmos is
then, in effect, a gigantic machine or clockwork, slavishly following a pathway
of change already laid down from the beginning of time; God is thereafter
reduced to a mere archivist turning the pages of a cosmic history book already
written. In the words of the astronomer-poet Omar Khayyam in his Rubaiyat
(ca 1100 CE):

‘With Earth’s first clay they did the last man knead,
And there of the last harvest sow’d the seed:
And the first morning of creation wrote
What the last Dawn of reckoning shall read.’

Immanuel Kant (1724–1804) concluded (1781), like other philosophers
before him, that only part of our knowledge is based upon experience. What
we would now call the ‘raw data’ of experience is acquired by our senses,
but it is our mind (reason, thought, intelligence) that brings law, order and
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regularity into the phenomena observed. We understand these phenomena
because we approach them with certain notions and concepts which Kant
characterized as a priori. Among such necessary notions are space, time and
the law of causality.

Without these three a priori notions we would be unable to perceive a well-
ordered universe. These a priori concepts are, of course, based on Newtonian
mechanics, which strongly influenced not only Kant’s philosophical thinking
but that of 19th century thinkers as well. Their limited applicability only
became apparent in the 20th century, through the results of modern physics.
Moreover, the geometry that formed an essential basis of Newton’s physics
was that of Euclid.

Not till the 19th century were new kinds of geometry developed, particu-
larly through the pioneering work of Gauss (1777–1855); this greatly influ-
enced later thinking in physics and astronomy. Kant obviously could not have
foreseen the startling developments of modern physics — neither the theories
of relativity (which forced changes in the ‘a priori’ concepts of space and time)
nor quantum mechanics, which profoundly transformed the law of causality
for microscopic systems and divorced it from any direct connection with the
determination of results of future measurements.

Indeed, prediction is quite impossible for the trajectory of a photon or
electron in Young’s or similar apparata; its motion after passing the two slits
is not determined by its condition immediately before it reached the plane
of the slits. Two photons, identical in every observable way, could pass from
source to plane in the same way and yet reach quite different destinations
thereafter. And yet, despite this quantum indeterminacy, any single photon
passing through the apparatus obeys the principle of causality! The seeming
contradiction is resolved as follows. The only attribute of the photon that
evolves causally is its wave function (a ‘ray’ in an abstract, infinite dimensional
vector space known as Hilbert space).

This (complex) wave function is created, along with the photon it de-
scribes, at the light source; thereafter it evolves smoothly in time, according
to a Schrödinger equation, subject to the boundary conditions imposed by the
two slits. However, this mathematical wave is quite different in nature from
classical waves (such as acoustic or elastic waves in bulk matter, many-photon
electromagnetic waves in vacuo, etc.). The difference is that the amplitude of
the quantum wave does not represent any observable physical attribute of the
photon.

Its only relation to such observables is indirect and stochastic in nature
— when the photon is observed (e.g. by allowing it to impinge upon a pho-
tographic screen at some distance downstream of the slits plane), the distri-
bution of its measured attribute (whether position, momentum etc.) can be
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predicted from the pre-measurement quantum wave amplitude. Thus causal-
ity is relegated to operate in an abstract mathematical space; and should we
nonetheless insist (as we must!) on describing a quantum system in terms of
observable entities (such as positions, velocities, electric fields, polarizations,
etc.) — the price that must be paid is determinism: future (or past) states
of the system cannot be fully predicted, irrespective of how much we know
about its present state.

These remarkable observations hold quite generally for optical, electrical,
mechanical or any other phenomena: it is impossible to predict the behavior
of individual photons, electrons etc., no matter how carefully conditions are
controlled. Yet the quantum wave pattern does predict, to any desired pre-
cision, the statistical distribution of large numbers of the quanta per given
arrangements of the measurement apparata. This is true whether the parti-
cles are passed through the apparatus one by one or in a volley (for the case
of light, if the volley is sufficiently dense, quantum theory predicts that the
light is approximately describable as a classical electromagnetic wave — the
(real) amplitudes of which are directly observable as electric or magnetic field
components.)

Starting in the 19th century — long before the photon aspect of light
was recognized — statistical methods were used to describe the observable
properties of gases in terms of the (Newtonian) mechanical behavior of their
component molecules. Yet in spite of the superficial similarity, there is a
fundamental difference between the two situations. In the case of gases, sta-
tistical methods are employed because the large number of molecules involved
makes it impractical to ever carry out a detailed analysis. But for the pho-
tons, electrons etc., in our above discussion – and for molecules too, since they
obey quantum mechanics as well – statistical considerations enter in a more
fundamental manner. It is entirely possible to preserve all wave-optical effects
in an optical experiment while making the light intensity so low that there is
only one photon present at a time in the entire apparatus. Nonetheless, it is
impossible (as we saw above) to determine the behavior of this single photon
— for the laws to which its quantum evolution is ascribed, yield no more than
statistical prediction concerning the position, energy or polarization of the
photon at the downstream screen602.

602 It is worth noting, though, that for phases of bulk matter cold and/or dense

enough — such as many liquids and solids, as well as the recently achieved

Bose-Einstein Condensate phase of monoatomic gases at ultra-low tempera-

tures — the quantum ‘fuzziness’ of individual atoms competes with (or even

take precedence over) the Newtonian (thermal) uncertainties. And conversely,

photon gases in which individual photons interact frequently with matter or

with each other — as happens inside the sun or an incandescent light bulb —
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Modern physics has taught us that this peculiar quantum description holds
for matter particles as well as for light. Thus electrons, neutrons, whole atoms
and other particles can be diffracted (one by one or en masse) as waves through
crystal lattices; again it is found that causal evolution applies to an abstract
‘quantum amplitude’ wave, and that the information encoded in this wave
concerning future or past experiments is indirect, incomplete and statistical
in nature.

As another example, consider a radioactive radium nucleus, which can
(and eventually must) emit an α-particle. The precise emission time of
the α-particle cannot be predicted; only the average time of emission is
determinable. In observing the emission one does not — indeed cannot —
identify any preceding event that determined the emission to occur at the
precise instant it did.

Nevertheless, the causal mechanism for the α-decay is known — but it op-
erates at the rarefied heights of abstract Hilbert space; this precise knowledge,
when converted to actual observation of the actual decay, becomes diluted into
a mere statistical distribution.

Thus, practically speaking, the forces in the radium nucleus responsible
for the α-decay cannot be determined accurately, but only as a probability
distribution of possible outcomes (decay time and α-particle momentum).

According to Max Born’s statistical interpretation of the complex de
Broglie-Schrödinger wave, the squared modulus of the wave gives the proba-
bility density for finding the particle at that position. All that quantum theory
could do, he realized, was predict the wave-shape, and hence the probability
distribution of various attributes of a quantum particle or system. In most
cases it could not predict with certainty the outcome of any single measure-
ment of those properties, as did the old classical physics. Thus, the description
of the motion of a quantum particle is inherently statistical, and the waves are
not material, as de Broglie and Schrödinger wrongly supposed. Furthermore,
not all observable attributes are even simultaneously measurable; there is no
sense in which an electron’s position and velocity vectors, for example, both
have definite values at the same instant of time — even in principle.

How are we supposed to think about the atomic world of the quanta?
Atoms, photons, and electrons really exist as particles, but their attributes
— such as their locations in space, momentum, energy, discrete angular mo-
mentum state and sometimes even their numbers and types — exist only on a
contingency basis (unless we are willing to view these observables as operators
rather than knowable numbers).

often behave similarly to Newtonian ideal gases, with the photons playing the

role of atoms (a mole of photons is called an einstein).
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An important feature of quantum probability distributions — one which
distinguishes them from the probability distributions of card hands, dice or
roulettes — is that quantum probabilities propagate through space as waves
rather than diffusively; This is the Schrödinger wave. The predictive power of
quantum theory resides in the fact that it determines precisely the shape of
the wave and how it moves — how the potential probabilities of all possible
measurements change in space and time. Here we see for the first time a new
meaning of causality in quantum theory — it is probability of possible outcomes
of potential measurements that is causally determined into the future, not
individual events603.

The randomness at the foundation of the material world does not mean
that knowledge is impossible or that physics has failed. To the contrary,
the discovery of the indeterminate universe is a triumph of modern physics
and reveals a wholly novel aspect of nature; one without which matter would
not have the stability allowing an emergent classic approximation to arise.
The new quantum theory makes many predictions — all in agreement with
experiment. But most of these predictions are for distributions of events, not
individual events — like predicting how many times a specific hand of cards
gets dealt on the average.

In the wake of Born’s statistical interpretation, physicists struggled to
deepen the understanding of the new quantum theory. What knowledge of
nature was possible in the framework of the new theory? For example, the
mathematics of quantum theory permitted both particle-like and wave-like
representations for the electron. But clearly these two representations were
opposed, and this duality thus comes into conflict with any common sense
ideas.

Is the electron a wave or a particle? Bohr, Heisenberg, and Pauli
in Copenhagen, and many others debated these questions for over a year.
Frustration set in, but Bohr’s persistent optimism kept up a spirit of inquiry.

603 However, as stressed by Everett and others, wavefunctions are more than prob-

ability amplitudes. For one thing, a quantum measurement is properly viewed

as a continuous (though limited in time) interaction with a macroscopic (many–

body system) measuring apparatus. This measurement is itself describable (in

principle) by a deterministic Schrödinger equation of the combined system (ob-

served system plus apparatus). Thus, the notorious subjective “collapse” of the

wave function upon measurement is merely a useful simplification — whereas

with cards, the probabilities really are subjective (dependent on one’s state of

knowledge). Furthermore, a wavefunction contains more information than its

modulus — its phase too can, in some cases, be partially measured (e.g. in

Bohm-Aharonov type experiments.)
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Finally in 1927, Bohr and Heisenberg each in his own style had come

to new ideas which were conceptually equivalent: Heisenberg had discovered

the uncertainty principle, and Bohr had discovered the principle of comple-
mentarity. Together these two principles constituted what became known as

the Copenhagen interpretation of quantum mechanics. This interpretation

revealed the internal consistency of the quantum theory, a consistency which

was purchased at the price of modifying age-old notions of determinism and

objectivity in the natural world.

Heisenberg’s uncertainty relation (first of many such) states that the prod-

uct of the simultaneous uncertainties (root-mean-square random deviation) in

a position component (Δq) and in the corresponding momentum component

(Δp) (were one or the other to be exactly measured at any given, common

instant of time) must be greater than a fixed quantity — essentially, Planck’s

constant. If this constant were equal to zero in the real world rather than a

tiny finite number, then we could simultaneously measure both the position

and momentum of a particle. But because Planck’s constant is not zero, this

is impossible604. Heisenberg’s relation does not apply to a single measurement

on a single particle: it is a statement about a statistical average over many

measurements of position and moment.

Let us consider Zeno’s arrow paradox in the light of quantum mechanics:

Suppose that the arrow were of the dimensions of a single atomic particle. Ac-

cording to classical Newtonian physics the ‘arrow-particle’ has determinate

and measurable volume, velocity and position at all times. Zeno supposed that

because the particle always occupies a determinate position, the possibility of

motion is thereby excluded. Contemporary physics tells us that the precise

simultaneous determination of the particle’s position and velocity is impossi-

604 To get a feel for what the Heisenberg relation implies for various objects, we

can compare the product of the size of an object times its typical momentum to

Planck’s constant, h — a measure of how important quantum effects are. For

a flying tennis ball, the uncertainties due to quantum theory are only of order

one part in 1034. Hence a tennis ball, to a high degree of accuracy, obeys the

deterministic rules of classical physics. Even for a bacterium the effects are only

about one part in a billion (10−9), and it really does not experience the quantum

world either as a whole body. For atoms in a crystal we are getting down to the

quantum world: the uncertainties can be of order one part in a hundred (10−2)

although it can be larger (e.g for Helium atoms in the solid state). Finally,

for electrons moving in an atom, molecule or metal the quantum uncertainties

completely dominate, and we have entered the true quantum world governed

by quantum mechanics.
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ble605. Zeno’s insight seems to have been that motion and precise localization
at an instant have an element of contradiction between them. (Indeed, this
element appears in our common sense visualization of a moving body, since
when we think of it as being at a definite position we cannot simultaneously
form an image of what is its rate of motion!) In this sense, then, Zeno is closer
to modern physics than to Newtonian physics.

However, Zeno’s paradox is fallacious also in the realm of quantum me-
chanics, because there is nothing in quantum physics to prevent our measuring
the precise positions of a particle at two different times, and then calculating
what the intervening motion was on average.

But there is one more twist in this comparison of quantum mechanics
with Eleatic philosophy. Theoretically an over-zealous observer, applying
a sequence of too-frequent measurements to the arrow’s wavefunction, may
completely alter its Schrödinger equation, and actually prevent the arrow from
ever hitting its target! A version of this seemingly Carrollian scenario was
actually observed experimentally at the U.S. National Bureau of Standards.
The experiment involved, instead of an arrow, a transition of one atomic
energy level into another. It was found, in agreement with quantum theory,
that looking for the decay too frequently (by spectroscopic means, in this
case) tends to inhibit it!

Bohr emphasized that when we are asking a question of nature we must
also specify the experimental apparatus that we will use to determine the
answer. In classical physics we do not have to perennially take into account
the fact that in answering the question (doing an experiment) we alter the
state of the object. We can ignore the interaction of the apparatus and the
object under investigation, at least in principle. For quantum objects like
electrons this is no longer the case; the very act of observation changes the
state of the electron in a way that drastically alters its subsequent evolution.

Particle and wave are what Bohr called complementary descriptive con-
cepts, meaning they exclude each other. Bohr’s principle of complementarity
asserts that there exist complementary pairs of properties of the same object
(such as position and momentum), one of which, if known, to some accuracy
will exclude precise knowledge of the other. We may therefore describe an ob-
ject such as an electron in ways which are mutually exclusive, without logical
contradiction: for instance, as a wave of definite de Broglie wavelength and
momentum, or as a particle of definite position, or sometimes as a wave packet

605 Indeed, the particle does not even possess these attributes simultaneously, and

any assumption to the contrary leads to predictions at variance with both quan-

tum mechanics and experiment, as we discuss below.
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with fuzzy, but approximately defined, values for both momentum and posi-
tion. The contradiction is eliminated because the experimental arrangements
that determine these descriptions are similarly mutually exclusive.

Thus, two crucial points about the quantum world emerge from the Copen-
hagen interpretation:

(1) Quantum reality — or, more precisely, its classical phase-space manifes-
tations — is statistical, not deterministic. Even after the experimental
arrangement bas been specified for measuring some quantum property
with utmost precision, individual measurement outcomes are generally
unpredictable. The microworld is empirically knowable only as statistical
distributions of measurements, and these distributions can be predicted
and verified by physics. The attempt to form a mental picture of the
position and momentum of a single electron consistent with a series of
measurements results in the fuzzy electron. This is a human construct,
attempting to fit the quantum world into the limitations of macroscopic
observations, sense-perceptions and mental conceptualizations.

(2) It is meaningless to talk about the physical properties of quantum ob-
jects without precisely specifying the experimental arrangement by which
one intends to measure them. Quantum reality is in part an observer-
created reality — although observing apparata are themselves subject to
its laws. The idealized classical physical world unfolds itself according
to immutable laws independent of the experimenter, who may watch the
physical process much as the audience watches a play in a theater. In
quantum theory the observed structure of a microscopic system is inher-
ently dependent upon the nature of its interaction with the ‘observing’
macro-system — which, as noted above, could be human, artificial or
natural606.

In summary, at the level of observable attributes of a microscopic system,
the Copenhagen interpretation of the quantum theory rejected determin-
ism, accepting instead the statistical nature of reality; and it also rejected

606 In the early decades of quantum mechanics, it was supposed by some practition-

ers (such as Wigner) that human consciousness somehow plays a special role

in quantum measurement. However, the following two lines of investigations

have gradually made it quite clear that any entanglement of the micro-system

wavefunction with that of a macroscopic object is a form of quantum measure-

ment. Von Neumann pioneered the theoretical modeling of mechanized (au-

tomated) measurement, while Everett systematically described measurement

interactions without wavefunction collapse in his ‘Many Worlds’ interpretation

of quantum mechanics.
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objectivity — accepting instead that material reality depended in some
sense on how we choose to observe it. After hundreds of years of hold-
ing sway in the Western mind, the world view of classical physics fell —
although causality, determinism and objective reality survive, albeit at
a more abstract, holistic level of mathematical description. Thus, from
the very substance of the universe — the atom — the physicists learned
a new lesson about reality607.

Einstein, however, was unconvinced. Distressed by the indeterminism of
the new quantum theory, he disputed that the theory gave a complete and
objective description of nature. But that objection was not the main one that
stood in the way of his accepting the theory’s picture of reality. A principle
of physics that he held even more dear than determinism was the principle
of relativistic local causality — that distant events cannot instantaneously
influence local objects without any mediation.

Together with N. Rosen and B. Podolsky he produced (1935) an argu-
ment (known as the EPR paradox608) which endeavored to show that quantum
theory violated local causality. The EPR argument seemed to indicate that
quantum theory had either to violate the principle of local causality or be

607 In the Many-World interpretation objectivity and determinism are retained,

though at the heavy price of renouncing either the separate objectivity of any

system smaller than the entire universe, or the ontological reality of a single

universe (as opposed to an infinite ensembles of possible universes).
608 Nathan N. Rosen (1909–1992, USA and Israel). Collaborated with Ein-

stein at Princeton during 1935–1937 on the foundations of Quantum Mechan-

ics, gravitational lenses, and the singularity-free solution of the gravitational-

electromagnetic field equations.

Boris Podolsky (1896–1966, U.S.A.). Born in Taganrog, Russia; emigrated

to the United States in 1913. Collaborated with Einstein during 1931–1935 at

Caltech (Pasadena, CA) and at the Institute of Advanced Study, Princeton.

The EPR paper showed how quantum physics requires that a property, such as

the polarization of a photon, could be measured at a distance by measuring the

polarization of a second photon that had interacted with the first some time

in the past. If it is deemed unacceptable that the polarization measurement

could instantaneously influence the distant object, it follows (EPR claimed)

that the first (now distant) photon must have possessed the measured property

before the measurement was carried out. As the property measured can be var-

ied by the experimenter adjusting the polarization – measurement apparatus,

EPR concluded that all physical properties (in our example — values of polar-

izations in all possible directions) must be ‘real’ before they are measured, in

direct contradiction to the Copenhagen interpretation.
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incomplete; the EPR team concluded that quantum theory had to be incom-
plete.

Bohr himself considered the EPR paper as an ‘onslaught that came down
upon us like a bolt from the blue’. He made valiant efforts to refute the new

challenge, commenting: ‘They (EPR) do it smartly, but what counts is to do

it right’.

For over thirty years physicists debated the conclusions of the EPR article.

Then, in 1965, John Bell proposed a (doable) EPR-type thought experiment

(involving an entangled pair of particles), the outcome of which — assuming
it verified the predictions of quantum mechanics — would require a choice

between two physical interpretations: either the world was not describable in

terms of a classical-physics set of variables (abandonment of physical realism),

or it was nonlocal (i.e. instantaneous observations or other disturbances at
distinct spatial locations are not independent). Bell derived a mathematical

formula — an inequality — which holds classically, is violated in quantum

mechanics, and could be checked experimentally.

Variants of the experiment were repeatedly performed starting in the

1970s; and Bell’s inequality — and thus by implication the central assump-
tion used in its proof (that both locality and physical realism hold in the mi-

croworld) — was found to be violated. The world, it seems, is either not locally

describable, or not classically objective. Either alternative — a nonobjective

or nonlocal reality — is somewhat unpalatable, but perfectly consistent. A
deeper analysis of the Bell thought-experiment shows that regardless of which

of the two interpretations of reality we choose, relativistic local causality is

preserved, i.e. influences cannot be transmitted instantaneously, or indeed
faster than the speed of light in vacuo609.

609 The local causality principle, which Einstein insisted upon, is thus weaker than

the locality assumption. In fact, if Bell’s inequality is violated (as all experi-

ments have hitherto demonstrated), there exist instantaneous statistical correla-

tions between the results of various potential polarization measurements on the

two entangled EPR photons, however far they have flown apart. However — as

is well known even in classical physics — correlation does not imply causation;

more specifically, one can prove that the Bell quantum correlations do not al-

low an observer measuring one of the photons to thereby send an instantaneous

message (through the collapsing joint wavefunction of the two photons) to the

observer who subsequently measures some polarization component of the other

photon. Such a superluminal communication scheme — which is possible in

some modified, nonlinear-Schrödinger equation versions of quantum mechanics

— are whimsically known as “Bell Telephone”.
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Contrary to what EPR believed, the Hilbert space description of reality
used in quantum mechanics can be complete without violating relativistic
local causality; in fact, quantum field theory — the marriage of quantum
mechanics and special relativity — is not only locally causal, but fully local
when described as interacting operator–valued fields: local wave equations
hold for all quantum fields (such as the electromagnetic fields, the electronic
Dirac field, etc.), although the value of such a field at any point in spacetime
should be understood as a Hilbert–space operator rather than a real num-
ber. Hilbert-space correlations of observables, though, are still nonzero even
outside the light cone, just as in the non-relativistic quantum description of
EPR-type experiments.

In retrospect, although EPR misconstrued the implications of quantum
mechanics for the principle of local causality, their thought experiment led
to a refined understanding of these implications. In addition, the EPR/Bell
analyses are the lithmus test against which all extensions or generalizations
of quantum mechanics are tested, and continue to inspire high-precision ex-
periments to probe the foundations of quantum reality.

1926–1935 CE William Francis Giauque (1895–1982, U.S.A.). Che-
mist. Won the 1949 Nobel prize in chemistry for pioneer work in the field
of very low temperatures. He was first to achieve (1933) a temperature close
to −273 ◦C, the absolute zero, by applying the new principle of cooling by
adiabatic demagnetization which he and P. Debye discovered independently
(1926). From information gained at these low temperatures, he accurately
predicted the existence of two isotopes of oxygen O17 and O18, eventually re-
sulting in abandonment of the oxygen-16 standard for atomic mass (1961) and
its replacement by carbon-12 standard. In 1935 he succeeded in the magnetic
cooling of helium to a temperature of 0.1 ◦K.

Giauque was born in Canada, in Niagara Falls, Ontario. He was professor
at the University of California, Berkeley (1934–1981).

Cooling by adiabatic demagnetization: there are elements which, when in
a crystal lattice, can form ions whose outer shells are only partially filled.
The unpaired electron spins give rise to independent ionic magnetic moments
(paramagnetism).

Gadolinium, iron, chromium, and cerium are examples. When these ele-
ments are chemically combined with a large number of nonmagnetic molecules
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or radicals, the individual magnetic ions are so far removed from other mag-
netic ions that their magnetic moments behave almost independently, like
the atoms of an ideal gas, even though they vibrate about equilibrium posi-
tions in the lattice. The paramagnetic salt Gadolinium sulfate octahydrate
[Gd2(SO4)3 · 8H2O] is an example in which one magnetic ion is surrounded
by many nonmagnetic atoms and is therefore, magnetically, very dilute.

Pierre Curie, and later Léon Brillouin, established the dependence of
the magnetization M of such materials on the ratio H

T (H — applied external
magnetic field; T — absolute ambient temperature) in the form M = C H

T

for small values of H
T . This is known as Curie’s law and C is called the Curie

constant. The larger the Curie constant, the smaller the value of H
T that is

needed to produce a given magnetization.

The nature of the method of magnetic cooling is made clear by comparing
it with a mechanical analogue:

Suppose that it is desired to cool a gas by means of mechanical work.
The gas is in a piston–equipped container, and is initially in thermal contact
with a heat bath at temperature T1. In the first step of the cycle, the gas is
isothermally compressed from volume V0 to a volume V1. In this process work
is done on the gas, but since it can give off heat to the bath its temperature
is not changed. In the second step, the gas is thermally insulated (e.g., by
removing the bath) and is allowed to expand adiabatically back to V = V0.
In this process the gas does work at the expense of its internal energy and, as
a result, its temperature falls to some value T2 < T1.

One can then complete the cycle by re-attaching the gas container to
the heat bath, allowing it to absorb heat at fixed volume until it returns to
temperature T = T1. This cycle can be repeated to continually cool (extract
heat from) the gas–container’s environment.

The method of magnetic cooling by adiabatic demagnetization is very sim-
ilar: The system of interest is a magnetic sample (e.g., Gadolinium sulfate)
initially in thermal contact with a heat bath at temperature T1. In practice
this heat bath is liquid helium near 1 ◦K, and thermal contact of the sample
with the bath is established by heat conduction via helium gas at low pressure.
A magnetic field is now switched on, until it attains some value H1. In this
process the sample becomes magnetized and energy is released in orienting
the magnetic moments of the ions along the direction of the magnetic field
(lowering of entropy, increase of order).

During the magnetization, the sample gives off heat to the bath, as the
ion’s magnetic potential energy lowers. The sample remains at temperature T1

after equilibrium has been reached. The sample is then thermally insulated
(e.g., by pumping off the helium gas which provided the contact with the
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bath) and the magnetic field is reduced to a lower value H2. While the first
step of isothermal magnetization is an “entropy squeezing” operation, like
compressing a gas, the second step, namely the adiabatic demagnetization,
takes place at constant entropy.

For the entropy to remain constant, a “disorder-increasing” process like
demagnetization, in which orientations of ionic magnets are randomized , must
be compensated by a “disorder decreasing” process, which can only be a drop
in temperature. Thus, the temperature of the sample drops to T2 < T1. The
sample is then put in contact again with the heat bath (still at H = H2) and
allowed to absorb heat from it, until the sample has returned to T = T0. If
this process is repeated several times, the continual absorption of heat from
the sample’s environment can result in the attainment of temperatures as
low as 0.01 ◦K. Indeed, temperatures close to 10−6 ◦K have been achieved by
elaboration of this method. In the 1990’s, other cooling methods — using
combinations of lasers, RF, magnetic fields and gravity — were developed.
The latest low-temperature record (2004) using such techniques is about 0.5
pico-Kelvins.

1926–1938 CE Llewellyn Hilleth Thomas (b. 1903, England). Physi-
cist. Discovered a relativistic kinematic phenomenon, according to which a
spinning and orbiting relativistic mass (electron, say) exhibits a precession of
its axis of spin, such that the ratio of the precessional period to the orbital pe-
riod610 is 2c2/v2. The effect is known as ‘Thomas precession’ and is a special
case of the more general ‘Wigner rotation’611 (Wigner, 1939): an accelerated
frame rotates, relative to an inertial frame, even in the absence of torques
as measured in the instantaneous inertial frame. A comoving observer will

610 This expression is modified when v
c

is of order unity; it is valid as it stands for

v 
 c.
611 Wigner’s rotation: Consider 3 STR reference frames S, S′ and S′′, with S and

S′ related by a Lorentz transformation L(v1), and S′ and S′′ related by L(v2).

If the velocity of S′′ relative to original system S is v3, S′′ is not obtained from

S by L(v3) alone. Rather, we find that L(v3) = RL(v2)L(v1), where R

is a 3D space rotation. With v1 and v2 not parallel, R �= I and the final

system S′′ is rotated relative to S (Wigner’s rotation). This rotation is the

origin of the Kinematical Thomas precession which is manifested as a spin-orbit
coupling terms in atomic and nuclear physics. Because of the presence of the

Wigner rotation, the L(v) (“pure boosts”) themselves do not form a group –

but together with the Lie group of 3D rotations (SO(3)), the set of boosts L(v)
do form a Lie group: the 4D Lorentz group (denoted SO(3, n)), of which SO(3)

forms a subgroup.

Explicitly, L(v) = I − σ sh θ + σ2(ch θ − 1), where I is the unit tensor in 4
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observe no centrifugal or Coriolis effects, yet an external observer would find
that the frame, and any body at rest in it, is rotating.

An application of the Thomas precession is encountered in the fine struc-
ture of atomic levels, where it causes the magnetic field, as seen by the elec-
tron, in its instantaneous inertial frame, to be half as effective at causing the
electron’s spin to precess. When this result became known, it surprised many,
including Goudsmit, Pauli and even Einstein himself.612

Thomas suggested (1938) a modification in the design of cyclotrons such
that the magnetic field should be varied in azimuth (i.e. round the perimeter of
the orbit), as well as in the radial direction. This AVF (Azimuthally Varying
Field) concept has been realized in the ‘spiral ridge cyclotron’, where especially
strong magnetic field regions are produced by spiral sectors built into the pole
faces. This provides extra focusing action to overcome the defocusing effects
of the radial field variations.

1926–1939 CE Alexander Aitken (1895–1967, New Zealand and Scot-
land). Mathematician. Influential researcher in statistics, numerical analysis
and the theory of determinants and matrices; Aitken’s δ2 process and Aitken’s
iterative interpolation in numerical analysis, are named after him. Showed
how invariant theory came under the theory of groups.

Aitken was born in Dudedin, New Zealand. His university career was
interrupted by WWI; he enlisted (1915) and served in Gallipoli, Egypt and

dimension, ch θ = 1√
1−( v

c )2
= γ(v), sh θ = v

c
γ, v = |v|, and,

σ =

⎡

⎢
⎢
⎣

0 0 0 −λ

0 0 0 −μ

0 0 0 −ν
λ μ ν 0

⎤

⎥
⎥
⎦ ,

with (λ, μ, ν) the direction cosines of v. The parameters of the above–defined

Wigner rotation are: R = R(e, ψ), e = v2×v1
|v1×v2| , ψ = 2 tan−1

{
sin φ

τ+cos φ

}
, where

e is a unit vector in the direction of the axis of rotation and ψ is the Wigner

angle. Here, τ =
√

(γ1+1)(γ2+1)
(γ1−1)(γ2−1)

(
γ1 = γ(v1), γ2 = γ(v2)

)
and φ the angle

between v1 and v2. For a more detailed analysis see A. Ben-Menahem,

“Wigner’s rotation revisited”, Am J. Phys. 53, 62–66, 1985.
612 A gravitational variant of Thomas precession is known as “geodetic precession”

and is one of the GTR effects being investigated in the relativistic gyro (gravity

Probe B) experiment, launched into orbit in 2004.
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France, being wounded at the battle of the Somme. His war experience was to
haunt him for the rest of his life. Aitken came to Edinburgh, Scotland (1923)
and studied for a Ph.D. under Whittaker, to whose chair he was appointed
in 1946. He spent the rest of his life there.

Aitken had an incredible photographic memory; he knew π to 2000
places613 and could instantly multiply, divide and take roots of large num-
bers. But his memory was also a problem for him. For most people memories
fade in time which is particularly fortunate for the unpleasant things that
happen. However, with Aitken memories did not fade and his horrific memo-
ries of the battle of the Somme lived with him as real as the day he lived them.
These memories have contributed to the ill health he suffered and eventually
led to his death.

1926–1939 CE Eugene Paul Wigner (1902–1995, Hungary, Germany
and U.S.A.). Influential mathematician and physicist whose contributions
had a decisive impact on modern theoretical physics, especially in quantum
mechanics and nuclear physics.

In 1926 he was first to apply group theory to quantum mechanics. In
1927 he created the concept of parity614 for atomic states and formulated

613 Before the days of computing machines there was a kind of human competition

in seeing how far one could calculate π. In 1873, Shanks carried this out to 707

decimals; it was not until 1948 that it was discovered that the last 180 of them

were wrong. In 1927, Aitken had memorized those 707 digits for an informal

demonstration to a student society and naturally was chagrined in 1948 that

he had memorized something erroneous. When π was calculated anew to 1000

decimals Aitken rememorized it, but had to suppress his earliest memory of

those 180 erroneous digits which he could not forget! For this reason, Aitken

found it much harder to recite the second 500 digits.
614 For all isolated atomic or nuclear systems, parity is defined as the multiplicative

sign acquired by their wavefunction upon reflection of all coordinates w.r.t. the
origin: even or positive parity for a “+” sign, odd or negative parity for a

“−” sign. The parity of any state remains unchanged throughout its time

evolution, provided that the Hamiltonian of the system is unchanged by the
reflection of the coordinates (conservation of parity). The concept of parity

was later extended to quantum field theories. The parity of a field or a system

of particles is not just a matter of whether the relevant wavefunction is an
even or odd function of spatial position: in analogy with angular momentum,

particles and their fields often also possess internal parity. Thus, the electric

and magnetic field transform as polar and axial vector fields, respectively:

E(r, t) −→ −E(−r, t)

B(r, t) −→ B(−r, t)
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the law of conservation of (or, equivalently, invariance under) parity. In
1932 he evolved the concept of invariance under time reversal, that marks
the behavior of subatomic particles615. In 1936 he worked out the theory of
neutron absorption which later proved important in nuclear fission and the
operation of nuclear reactors.

His book on group theory (1931) served as a basis for research on the
molecular structure and band theory in solids.

With his Hungarian compatriots Leo Szilard and Edward Teller,
Wigner helped persuade Albert Einstein (1939) to write the historic let-
ter to President F.D. Roosevelt that set in motion the U.S. atomic bomb
project. During WWII, he helped Enrico Fermi construct the first atomic
pile.

Wigner was born in Budapest to a Jewish family. He received his higher
education at the Technische Hochschule in Berlin. In 1930 he moved to the
United States, and spent most of his academic life at Princeton University as
a professor of mathematical physics (1938–1971). In 1963 he won the Nobel
prize in physics.

1926–1944 CE John von Neumann616 (1903–1957, Hungary and
U.S.A.). A phenomenal mathematician (both pure and applied) who made
major contributions in quantum physics, computer science, game theory and
meteorology. About 20 of his 150 papers are on physics. The rest are dis-
tributed evenly throughout pure mathematics [set theory, logic, topological

the pseudoscalar pi–meson fields have intrinsic parity values of (−1), etc. In

the spirit of Noether’s theorem, one may view the conservation of the parity

quantum number either as a conservation law or as a symmetry law. (The the-

orem refers to continuous symmetry groups, and thus does not strictly apply to

discrete symmetries such as parity — although it can be modified to accommo-

date them.) Electromagnetic, gravitational and strong nuclear forces conserve

parity; the world of physics was astonished when it was discovered in the 1950’s

that the weak nuclear force violates this symmetry.
615 Again, with the exception of (some forms of) the weak nuclear interactions.
616 For further reading, see:

• Von Neumann, J., Theory of Self-Reproducing Automata, Urbana, Ill, Uni-

versity of Illinois Press, 1966.

• Von Neumann, J., The Computer and the Brain, Yale University Press: New
Haven, CT, 1958, 82 pp.
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groups, measure theory, ergodic theory, operator theory (von Neumann’s al-
gebras)] and applied mathematics [statistics, numerical analysis, shock waves,
flow problems, hydrodynamics, aerodynamics, ballistics, problems of detona-
tion, meteorology, games and computers].

Von Neumann’s thought processes were rapid, and his associates often
found it difficult to keep up with his rapid flow of ideas. He was also a
linguist, and could converse in 7 European languages. He preferred general to
special problems, and rarely worried about mathematical elegance617. He got
to the root of the matter by concentrating on the basic properties (axioms)
from which all else follows. His insights were illuminating and his statements
precise.

His book “Theory of Games and Economic Behavior” (1944, jointly with
Oskar Morgenstern) had a significant influence upon economics. In the
framework of their theory, the authors modeled the behavior of individuals
in economic and adversarial situations. An individual’s choices are ranked
according to some payoff function, which assigns a numerical worth to the
consequences of each choice.

Within game theory, individuals behave rationally: they choose the ac-
tion that yields the highest payoff618. (Real people may not be consistently

617 In connection with a long-winded but straightforward proof, he is quoted as

saying that he did not have the time to make the subject difficult .
618 Beginning in the second half of the 20th century, powerful computers have been

pressed into service to simulate of social behavior of groups in an overall effort

to understand the dynamics of social dilemmas. A social dilemma involves a

group of people attempting to provide themselves with a common good in the

absence of central authority. The computer experiments gloss over the complex-

ities of human nature, but it is believed that they can help elucidate some of

the principles that govern interaction of many participants. The results indicate

that overall cooperation cannot generally be sustained in groups that exceed a

critical size. The size depends on how long individuals expect to remain part of

the group as well as on the amount of information available to them. Moreover,

both general cooperation and defection can appear suddenly and unexpectedly

(nonlinear phenomena!). These results can serve as aids for interpreting histor-

ical trends and as guidelines for constructively reorganizing cooperations, trade

unions, governments and other group enterprises.

To study the evolution of social cooperation, methods were borrowed from sta-

tistical thermodynamics. This branch of physics attempts to derive the macro-

scopic properties of matter from the interaction of its constituent molecules and

other quanta.

Diversity strongly affects the dynamics of social dilemmas. A heterogeneous

group can display two different types of diversity: variations around a common
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rational, but they do behave that way when presented with simple choices
and straightforward situations.) In 1929 he gave Hilbert spaces their name,
their first axiomatization and their present highly abstract form.

Neumann’s war effort convinced him of the need for high-speed computers.
He was instrumental in the development of MANIAC (Mathematical Analyzer
Numerical Integrator And Computer). In computer theory, he did much of
the pioneering work in logical design, in the problem of obtaining reliable
answers from a machine with unreliable components, the function of memory ,
machine imitation of randomness, and the problem of constructing automata
that can reproduce their own kind. These contributions were important in
the development of the hydrogen bomb.

Neumann was born in Budapest to a Jewish family. Many anecdotes,
from childhood on, tell of his phenomenal speed in absorbing ideas and solv-
ing problems, and of his equally phenomenal memory. He received his high
school education at the Minta, the famous Budapest school, known for its
high standards, liberal teacher-pupil relations and competitive training for its
science students619. He studied chemistry at the University of Berlin and at

average or segregating into factions. Relations within subgroups may powerfully

influence the evolution of cooperation, especially in large hierarchical organiza-

tions.

The study of social dilemmas provides insight into a central issue of behavior:

how global cooperation among individuals confronted with conflicting choices

can be secured. Recent studies (1994) have shown that cooperative behavior

can rise spontaneously in social settings, provided that the groups are small and

diverse in composition and that their constituents have a long outlook . Even

more significantly, when cooperation does appear, it does so suddenly and un-

predictably after a long period of stasis.

The fall of the Berlin wall and the breakdown of the centralized Soviet Union

into many autonomous republics are examples of abrupt global defections from

prevailing social compacts. The member countries of the European union cur-

rently face their own social dilemma as they try to secure supranational coop-

eration.

Hopefully, nonlinear dynamics will play an ever growing role in solving problems

in the social sciences.
619 Most of the other famous expatriate Hungarian scientists, such as: Edward

Teller (b. 1908), Leo Szilard (b. 1898), George Polya (b. 1888), Theodore

von Kármán (b. 1881), Eugene Wigner (b. 1902), Michael Polanyi (b.

1891) and Georg von Hevesy (b. 1885) also graduated from this school. All

eight were of Jewish middle class stock. All left Hungary as young men; all

proved unusually versatile and made major contributions to 20th century science

and technology. Two among them eventually won Nobel prizes (see Table 5.6).
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the Technische Hochschulle in Zürich. In 1926 he received both a diploma
in chemical engineering and a Ph.D. in mathematics from the University of
Budapest. He accepted a chair at Princeton University in 1931. In 1933
he was appointed the first professor of mathematical physics at the newly
formed Institute of Advanced Study at Princeton. In 1954 his health began
to deteriorate, and he died after a prolonged illness.

Game theory — Analysis of Conflicts and Cooperation

(a) Overview and history

Game theory, one of the most useful branches of modern mathematics,
was anticipated in 1921 by Émil Borel, but it was not until 1926 that John
von Neumann gave his proof of the minimax theorem, the fundamental the-
orem of game theory. On this cornerstone he built almost single-handedly the
basis structure of the theory. His classic work (1944), Theory of Games and
Economic Behavior, written with the economist Oscar Morgenstern, created
a tremendous stir in economic circles. Since then game theory has devel-
oped into an amalgam of algebra, geometry, set theory, and topology, with
applications to competitive and cooperative situations in business, warfare,
politics, biology and economics. It has been employed by folks as diverse as
philosophers, political scientists, arms-control negotiators and evolutionary
biologists.

Game-theoretic analysis has insidiously penetrated the literature of macro-
and microeconomics, international trade, labor, public policy, natural re-
sources and development. Recurring themes include: threatening, bluff-
ing, punishing, rewarding, building reputations, signaling one’s unobservable
“type” and sustaining cooperation in apparently noncooperative environment
through repeated interactions. Answers through Game Theory have been
sought to such questions as: “What is the nation’s optimal strategy in the
Cold War Game?”; “Is the Golden Rule the best strategy for maximizing
happiness payoffs in the Great Game of Life?”; “How can a scientist best play
the Induction Game against his formidable opponent, Nature?”

The theory of games in intended mainly as a theory of rational behavior in
practical situations that involve conflicting interests and in which the outcome
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is determined by the “best” strategies chosen by intelligent opponents. The
players may be commercial rivals engaged in a competition, union leaders
and management in an industry trying to reach a labor contract, campaign
managers of candidates trying to get elected to a political office, military
generals in an army trying to win a war, attorneys in a lawsuit trying for
the best settlement for their clients, and so on; The theory of games finds
applications in all situations in which parties involved have opposing goals, use
their best strategy620, and yet cannot completely dominate the final outcome.

In the life sciences, game theory is used as a mathematical tool for under-
standing the behavior of a species and how it evolved and interact with other
species.

A game621 begins with, and is centered around, a specified set of decision
makers who are called “players”. Each player has some array of resources
at his disposal, some spectrum of alternative courses of action (including at-
tempts to communicate and collaborate), and some inherent system of pref-
erences or utility concerning the possible outcomes. Outside the game model
all players are alike — the theory refuses to distinguish among them. This
is known as the principle of external symmetry. In such game models it will
be always assumed that the identified players are rational, conscious decision
makers having well-defined goals and exercising freedom of choice within pre-
scribed limits. What they do with that freedom is a question for the solution
theories to answer, not the rules of the game. The answers will generally fall
far short of a deterministic prescription of behavior. Despite this essential
element of free will, the rules of the game may nevertheless severely restrict
the player’s behavior.

Virtually all game models involve a special kind of uncertainty that is
caused by not knowing what other players are going to do: this is called
strategic uncertainty. Some games also allow random moves, by players or by
nature, thus bringing the factor of risk (uncertainty with known probabilities)
into the player’s calculations. Historically, game theory has operated for the

620 Strategy : a programmed way of behavior in pairwise contests. In the context

of chess, for example, or war, strategy suggests a nicely calculated sequence of

moves. The term two-person means that two players with conflicting interests

are making use of their ingenuity to outwit each other. Zero sum means that

any loss of one player is the gain of another.
621 The word “game” was an unfortunate choice for a technical term. The usual

sense of the word has connotations of fun and amusements, and of removal from

the mainstream and the major problems of life. These connotations should

not be allowed to obscure the more serious role of game theory in providing a

mathematical basis for the study of conflict, competition and cooperation.
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most part under the assumption of complete information: all the players know
all the rules and can make all necessary calculations622.

The modern history of Game Theory goes back to the 18th century:
James Waldegrave (1684–1741, England) provided (1713) the first known
minimax mixed strategy solution to a two-person game. Augustin Cournot
(1838) discussed the special case of duopoly and utilized a solution concept
that is a restricted version of the Nash equation. Francis Edgeworth (1881)
proposed the contract curve as a solution to the problem of determining the
outcome of trading between individuals. The concept of the core is a gener-
alization of Edgeworth’s contract curve.

Zermelo (1913) asserted (Zermelo’s Theorem) that chess has only one in-
dividually rational payoff profile in pure strategies, i.e. chess is strictly deter-
mined. Borel (1921–1927) gave the first modern formulation of a mixed strat-
egy along with finding the minimax solution for specific two-person games.
John von Neumann (1928) proved that every two-person zero-sum game
with finitely many pure strategies for each layer is determined, i.e. when mixed
strategies are admitted this variety of game has precisely one individually ra-
tional payoff vector.

Game theory continued its rapid development after WWII; The game now
known as the Prisoners Dilemma was introduced at the Rand Corporation
in California (1950) and in the same year John Nash made important con-
tributions to both non-cooperative game theory and bargaining theory. He
proved the existence of a type of strategic equilibrium — the Nash equilib-
rium for non-cooperative games. The first explicit application to evolutionary
biology was made by R.C. Lewontin (1961).

(b) Theoretical background

We consider non-cooperative zero-sum games:

A zero-sum game is one in which the pay-offs to all the players add up
to zero (similarly for a constant-sum game). Such games can be completely
specified by a rectangular array of numbers (known as the game or payoff
matrix) together with certain conventions on how to read it. The entries aij

of this matrix represent the pay-offs to one of the players, call him R. Since

622 Since 1957, progress has been made in extending the theory to game-like situa-

tions in which the rules are incompletely known, such as forecasting of demand

(i.e. unknown preferences).
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the game is zero-sum, the pay-offs to the other player, C are – aij . The index

i conventionally ranges over R’s strategies (i.e. rows of the matrix), while j

ranges over C’s strategies (i.e. columns of the matrix).

To be more specific, it is assumed that player R has a choice of m moves,

which may be identified as R1, R2, ..., Rm. After he has selected a move,

player C (column), makes his own move (based on whatever knowledge char-

acterizing the game, and on whatever strategy or algorithm) among several

alternatives C1, C2, ..., Cn. The moves of the two players are then compared

and the winner declared according to the rules of the game. The payoffs,

which are assigned numerical values, are generally presented in the form of

an m × n matrix A = [aij ] such as the following:

player C

player R

⎡

⎢
⎢
⎣

a11 a12 . . . a1n

a21 a22 . . . a2n

. . .
am1 am2 . . . amn

⎤

⎥
⎥
⎦

Each row of the matrix corresponds to one of the m possible moves of

player R, while each column corresponds to one of n possible choices C may

move for his own move. The element aij represents the payoff to R when

he selects move Ri and C selects move Cj . Positive amounts correspond to

payments C makes to R (or benefit occurring to R at the expense of C), while

negative amounts represent amounts or benefits player R makes or loses to

player C.

An important question that arises in the theory of games is whether one

can determine a best move for players who wish to maximize their gains or

at least minimize their losses, i.e. whether one player should prefer one move

over another to maximize his resulting advantage.

To illustrate, let us consider the following example, in which we propose

to determine the best move for each player.

R and C agree to play a game: First R chooses a number from a set

{1,2,3}, then C (not knowing the choice of R) chooses a number from the set

{1,2,3,4}. The numbers are then compared by a referee who determines the

winner and announce the reward or penalty according to the following payoff
matrix (ignore the circle and cross-hairs for now):
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Assuming that both players wish to maximize their profits, the best move
for each player is determined by the following rationale. First consider the
game from R’s point of view:

• If I choose the first row, I am sure to win at least $2, no matter what
C will do. If I chose the second row, I’m guaranteed at least $5 and
if I choose the third row, I will gain at least $3. These minima are
{2, 5, 3}; so my best move is to choose the maximum of these minima —

i.e.
max min

i j
[aij ] = 5. I therefore select the second row.

C, unaware of R’s choice, argues as follows:

• If I choose the first column, I will lose at most $6; likewise $8 in the
second column, 5 in the third, and $9 in the fourth column. Since
I’m interesting in minimizing my losses, I must choose the minimum

of the maxima; The maxima are {6, 8, 5, 9}, i.e.
max min

i j
[aij ] = 5.

Therefore I select the third column.

Thus R would play row 2 while C would play column 3. Those choices
guarantee R to win 5 dollars – the amount that C loses in the game.

As long as either player uses his optimal strategy he is sure to receive a
payoff equal to or better (from his perspective) than 5.

Note that the intersection of the second row and the third column indicated
in the above matrix is the element that holds the minimax = maximin. In
other words, the element a23 = 5 which determines the winning of R (and
the loss of C) has the unique property of being the minimum in its row and
the maximum in its column. Such an entry is called a saddle point and the
numerical value V = 5 associated with it is the value of the game. In this
case the game matrix A is said to be strictly determined.

If V = 0 the game is called fair (e.g. with A =

⎡

⎣
0 2 4
−2 0 2
−4 −2 0

⎤

⎦ ,

V = a11 = 0).
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The mode of play of R and C in this case is known as pure strategy with

R having a dominant strategy. It appears that the solution of a strictly de-

termined game is easy to find, since each player can determine his opponents

strategy and make his moves accordingly. However, most payoff matrices

do not have saddle-points and the theory must be extended. i.e. one must

consider general conditions under which games have values but players do not

have good pure strategies. Consider, for example, the following pay-off matrix

that has no saddle point,

A =
[

−1 7
6 −2

]

If players choose to play this game only once, there exist no professional

advice for them at this stage and they will have to use their own rational

thinking as to what strategy is best for them.

But suppose that the game is played more than once. A reasonable ap-

proach for player R in the above game is to choose row 1, since he has a

chance of winning $7 or may at worst lose $1 in some cases. If he uses this

strategy too often and plays it most of the time, his opponent can foil him by

choosing column 1 and thus receive $1 from him instead of loosing $7 to him.

It is thus reasonable for R to sometimes play row 2 so as to win $6 at best or

loose $2.

Thus, C would be advised to chose column 1 if his opponent selects row 1

and select column 2 if R chooses row 2 This would work very nicely for C if

he knew in advance precisely what R plans to do – which he generally does

not.

How then can each player outsmart his opponent? The only way for them

is to mix their strategies so as not to establish any pattern at all. The mixed

strategies will keep R from winning two much, and protect C from losing too

much, in the long run.

Let us consider a version of a game known as two-finger Morra; there are

two players (R and C). Each player holds up either one or two fingers. If

they hold up the same number of fingers, R gets the sum (in dollars) of the

digits, and if they hold up a different number, C gets the sum. R’s pay-off

matrix is

C

1 finger 2 finger

R
1 finger
2 finger

[
2 − 3
−3 4

]
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Neither R nor C has a dominant strategy, and the maximin of R (-3) in
not equal to the minimax of C(2). This means that the game is not solvable
in terms of pure strategies.

Suppose that R will show 1 finger for a fraction p1 of the time and 2
fingers for a fraction p2 of the time, such that his average pay-off will be
(2p1 − 3p2) if C shows 1 finger and (−3p1 + 4p2) if C shows 2 fingers. But
this only holds if C does adopt pure strategy. However, if C adopts a mixed
strategy of his own, say with probabilities [q1, q2], the average pay-off to R
will be (2p1 − 3p2)q1 + (−3p1 + 4p2)q2 where q1 + q2 = 1, p1 + p2 = 1. The
expected value of the game, E(P, Q), can be written conventionally as the
matrix product

E(P, Q) = [p1, p2]
[

2 −3
−3 4

] [
q1

q2

]

= PAQT

Where P is a row vector of probabilities that the row player selects for
his strategies, and QT is the column vector of probabilities the column player
selects for his own strategies. The object of the row-player is to choose P so
as to maximize his expected pay-off (PAQT ) given that the column player
can choose any QT ; while the column player tries to minimize it, given that
the row player van choose any P .

This is just a generalization of the former maximin and minimax of pure
strategy cases. For any given vector P , R sees what happens when C picks
the Q = Q∗(P ) that does R worst damage (=least benefit) and subsequently
picks that P such that, when Q = Q∗(P ) is selected by C, will do R the
least harm (or most good). This strategy for R is achieved by the equality
2p∗

1 − 3p∗
2 = −3p∗

1 + 4p∗
2 yielding p∗ =

[
7
12 , 5

12

]
.

Player R should therefore play one finger with probability 7
12 . If R adopts

this strategy his expected pay-off is 2p∗
1 − 3p∗

2 = − 1
12 whatever C does.

So the best R can guarantee himself via his statistical strategy, is to expect
to make on the average a small loss623 from every play of the game.

The strategy for C is given by the solution of the equation
2q∗

1 − 3q∗
2 = −3q∗

1 + 4q∗
2 , namely Q∗ =

[
7
12 , 5

12

]
. C’s expected loss is then

2q∗
1 − 3q∗

2 = − 1
12 i.e. a gain of 1

12 .

As long as R plays his best strategy, the 7 : 5 mixture, he holds his average
loss per game to at most 1

12 of a dollar. As long as C plays his best mixture,
the 7 : 5, he ensures an average win per game of at least 1

12 of a dollar. Had

623 Pay-offs are always given as payments from C to R even when the money (or

benefit) actually goes that way, in which case the payment to R is indicated by

a minus sign.
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the pay-off matrix been

[
1 −2
−7 8

]

, the best strategy for R would be the

mixture 5:1 and that of C 5 : 4, with E(P, Q) = − 1
3 .

In the general case of 2 × 2 nonstrictly determined game matrix A =[
a b
c d

]

one has624 (a, d) > (b, c) or (b, c) > (a, d), where the strategies of

the players R and C are P = [x, 1 − x] and Q = [y, 1 − y] respectively, the
expected value of the game is

E(x, y) = [x, 1 − x]
[

a b
c d

] [
y

1 − y

]

= (a + d − b − c)xy + x(b − d) + y(c − d) + d

= (a + d − b − c)(x − x0)(y − y0) + E(x0, y0),

where

x0 =
d − c

a + d − b − c
is a solution of ax0 + c(1 − x0) = bx0 + d(1 − x0)

y0 =
d − b

a + d − b − c
is a solution of ay0 + b(1 − y0) = cy0 + d(1 − y0)

The explicit value of the game is

E(x0, y0) = [x0, 1 − x0]
[

a b
c d

] [
y0

1 − y0

]

=

= ax0 + c(1 − x0) =
ad − bc

a + d − b − c

From the algebraic form of E(x, y) it is clear that R’s choice of the
(probabilistic) strategy, x = x0 assures him of a maximal expectation of
E = E(x0, y0), no matter what C’s strategy is. But whereas in the case of
pure strategy he was guaranteed a maximum payoff, here he selects a mixed
strategy that will guarantee him the maximum expectation or maximum av-
erage winning in the long run. This is R’s optimum strategy. On the other
hand, if C chooses the strategy y = y0, no strategy of R can increase C’s
average loss beyond E(x0, y0).

Thus the mixed strategy y = y0 is optimum for C, since it corresponds to
E(x0, y0), the minimum expected payoff to R.

Note that E(x, y) has a saddle-point at x = x0, y = y0, since Δ = ExxEyy−
E2

xy = −(a + d − bc)2 < 0. In this sense, the case of mixed strategies is a

624 In this notation (x, y) > (z, w) means min(x, y) > max(z, w).
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generalization of the simple case of pure strategies: the equal minimax and
maximin are associated with an expectation function E(x, y) rather than with
the payoff itself.

Mixed strategy introduced an all-important aspect of game theory: to be
effective, the mixing must be done by a randomizing device. It is easy to
see why nonrandom mixing is dangerous; Suppose that in two-finger Morra,
R mixes by using the pattern {1 1 2 1 1 1 2 2 1 1 2 2}. C catches on and
plays to win every time. R can adopt a subtler mixing pattern, but there is
always a chance that C will discover it. If he tries to randomize in his head,
unconscious biases creep in. The only way to achieve optimal strategy is to
use a randomizer (die or machine).

Von Neumann proved that in every matrix game, regardless of size, there
exists at least one optimal strategy for each player. This fundamental propo-
sition is called the minimax theorem. It states that for all matrix orders
[x = (x1, x2, . . . , xn); y = (y1, y2, . . . , yn)]

maximum
for all x

[
minimum E(x, y)

for all y

]

=
minimum
for all y

[
maximum E(x, y)

for all x

]

Most two-person board games, such as chess and checkers, are played in
a sequence of alternating moves that continues, until either one player wins
or the game is drawn. Since the number of possible sequences is vast and
so is the number of possible strategies, the matrix is much too enormous to
draw. Even as simple a game as ticktacktoe would require a matrix with tens
of thousands of cells, each labeled 1, -1 or 0.

If the game is finite (each player has a finite number of moves and a finite
number of choices at each move) and has perfect information (both players
know the complete state of the game at every stage before the current move),
it can be proved (von Neumann was the first to do it) that the game is strictly
determined. This means that either there is at least one best pure strategy
that always wins for the first or for the second player, or that both of the
players have pure strategies that can ensure a draw.

Example 1: Aerial Warfare

White repeatedly sends two-plane missions to attack one of Blue’s instal-
lations. One plane carries bombs, and the other (identical in appearance) flies
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cover for the plane carrying the bombs. Suppose the lead plane can be de-
fended better by the guns of the plane in the second position than vice versa,
so that the chance of the lead plane surviving an attack by Blue’s fighter is
80 %, while the chance of the plane in the second position surviving such
an attack is only 60 %. Suppose further that Blue can attack just one of
White’s planes and that Blue’s sole concern is the protection of his instal-
lation, while White’s sole concern is the destruction of Blue’s installation.
Which of White’s planes should carry the bombs, and which plane should
Blue attack?

Let White’s payoff be the probability of accomplishing the mission. Then

A =
[

0.8 1
1 0.6

]

, p1 =
0.4
0.6

=
2
3
; p2 =

0.2
0.6

=
1
3

Thus always putting the bombs in the lead plane is not White’s best
strategy, although this plane is less likely to be shot down than the other. In
fact, if White always puts the bombs in the lead plane, then Blue will always
attack this plane and the resulting probability of the mission succeeding will
be 0.8. On the other hand, if White adopts the optimal mixed strategy and
puts the bombs in the lead plane only two times out of three he will increase
his probability of accomplishing the mission by 1

15 , since the value of the game
is:

v =
2
3
· 8
10

+
1
3
· 1 =

13
15

By the same token, Blue’s best strategy is to attack the lead plane only
one time out of three and the other plane the rest of the time.

Example 2: The Prisoner’s Dilemma

Two prisoners kept in separate cells are asked to confess a joint crime.
If both confess, both remain in jail for 9 years. If only one confesses, he
will instantly be freed (as witness for the prosecution), while the other gets
sentenced to 10 years. If none of them confess, both will be sentenced for one
year, pending investigation. Writing the pay-offs as -n (for n years in prison),
we get for R



1926 CE 3737

C
confess keep quiet

R
confess
keep quiet

[
−9 0
−10 − 1

]

The value of the game is −9 (saddle point), indicating that the best policy

for both R and C is to confess which is worse than (−1,−1) if both keep quiet.

Most people would regard the latter as the ’best’ solution but the self-interest

of the two ‘players’ leads to an outcome which is disastrous for both.

This game has exercised an overwhelming fascination upon game theorists

and psychologists. It encapsulates some of the major dilemmas in conflict sit-

uations and also models problems as diverse as nuclear disarmament, preda-

tor/pray competition, “arms races” in evolutionary biology, wage negotiation,

and the controversy of whooping cough vaccinations. The first dilemma is what

should be the player’s objective – to do what is best for him as an individ-

ual, or him as part of a group? This conflict is between individual rationality
which would lead one to confess, and group rationality which would suggest

keeping quiet. Which tendency predominates depends very much on the indi-

viduals involved, and their previous experience with other people, including

each other. This obviously explains psychologist’s interest in the game.

The second problem is whether to think of Prisoner’s Dilemma as a one-off

game or as one that will be played repeatedly. In a one-off game it seems best

to confess, because there is no reason to build up ones opponent’s trust in

oneself. If, however, the number of games to be played is not known by the

players the ‘keep silent’ strategy should be played all the time!

Example 3: Evolutionary Biological systems – battle of the

sexes

Much of game theory is static in the sense that time does not enter ex-

plicitly and dynamic considerations, if any, are implicit. In certain situations,

however, the underlying dynamics can be modeled by nonlinear differential
equations of the Volter-Lotka type.
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In our section on zero-sum games, It was shown that the expected value
of the game for the case of mixed strategies was given by the mathematical
expression

E(P, Q) =
∑

ij

piaijqj

with aij the pay-off matrix and {pi}, {qj} the strategies (probability patterns)
of the two players. When applying the theory to evolutionary biological sys-
tems, one must interpret the relevant entities in accord with the following
“dictionary”:

probabilities −→ frequencies of phenotypes in the
population, or of behavioral
strategies for given phenotype

pay off matrix −→ Darwinian fitness; eventually
manifested in the number of
offsprings

Realization of strategy −→ phenotype (behavioral pattern
determined by the genes or
genotype)

Pure strategy −→ (e.g.:‘produce only sons’, ‘pro-
duce only daughters’ in the sex-
ratio game.)

Assume a population divided into n phenotypes E1, E2, ..., En with time-
dependent frequencies x1(t), x2(t), . . . , xn(t). Ei corresponds to a (pure
or mixed) strategy, and its fitness fi will be a function of the state
x(x1, x2, . . . , xn) of the population.

If the population is very large, and if the generations blend continually
into each other, we may assume that the state x(t) is a differentiable function
of t. The fractional rate of increase ẋi

xi
of the phenotype Ei is a measure of its

evolutionary success. Following the basic ideas of Darwinism, we may express
this success metric as the difference between the fitness fi(x) of Ei and
the average fitness

f(x) =
∑

xifi(x)

of the population (i.e., the so-called field of game theory). Thus we obtain

ẋi = xi

[
fi(x) − f(x)

]
, i = 1, 2, ..., n.
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This model does not explicitly treat sexual reproduction, which – together

with competition, cooperation and conflict, is implicitly encoded within the

fi functions.

Consider a linear game with n strategies (i.e phenotypes) and pay-off ma-

trix U . The pay-off for a “strategist” (category of phenotype) with genotype–

determined strategy vector pi in a field pj opponents is

aij = pi · Upj

and the fitness fi(x) of the phenotype Ei is the superposition (mean) ex-

pressed by

fi(x) =
∑

j

aijxj = (Ax)i

where A is the n× n fitness pay-off matrix. The differential equations for the

linear game are then

ẋi = xi [(Ax)i − xAx] , i = 1, 2, 3, ..., n

In the case n = 2, by setting x = x1 and 1 − x1 = x2 we obtain

ẋ = x(1 − x) [(Ax)1 − (Ax)2] .

If aij = −aji hold for all i and j, the game is a zero-sum game. In that case

ẋi = xi(Ax)i.

Conflicts among animals (especially with heavily armed species) are often

settled by displays rather then all out fighting, with escalated contests rare.

The following thought experiment explains the high frequency of conventional

contests, and with it evolutionary stability, in terms of game theory.

Consider a conflict between males and females concerning their respective

share in parental investment.

In many species, raising an offspring requires a considerable amount of

time and energy. Each parent might attempt to reduce its own share at the

expense of the other. The outcome might depend on which sex is in a position

to desert first. Whenever fertilization is internal, for example, females risk

being deserted even before giving birth to the offspring. The game is still

further “rigged” against females by the fact that they produce relatively few,

large gametes, and males many small ones. Females are thereby much more

committed and can less afford to lose an offspring. Thus males are in many

cases in a better position to desert. They can invest the corresponding gain in
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time and energy into increasing the number of their offsprings with the help
of new mates625.

The female counterstrategy is “coyness”, i.e. the insistence upon a long
engagement period before copulation. Rather than undergoing a second costly
engagement (for which it might be too late in the mating season), males would
do better to stay faithfully home and help raise their offspring. Roughly
speaking, in a population of coy females, males would have to be faithful.

Among faithful males, it would not pay a female to be coy, however: the
long engagement period is an unnecessary cost. Thus the proportion of “fast”
females would grow. But then “philandering” males will have their chance
and spread. Females, therefore, would do well to be coy. The argument thus
runs full circle.

In order to model this game theoretically, let us assume that there are two
phenotypes in the male population X, namely E1 (“philandering”) and E2

(“faithful”), with frequencies x1 and x2; and two phenotypes in the female
population Y , namely F1 (“coy”) and F2 (“fast”) with frequencies y1 and y2.
Let us suppose that the successful raising of an offspring increases the fitness
of both parents by G. The parental investment C will be entirely borne by the
female if the male deserts. Otherwise, it is shared equally by both parents. A
long engagement period represents a cost E to both partners.

If a “faithful” male mates with a “coy” female, the pay-off is (G− C
2 −E)

for both. A “faithful” male and a “fast” female skip the engagement cost and
their pay-off is (G − C

2 ).

But a “philandering” male meeting a “fast” female makes off with G,
while her payoff is G − C. Finally, if a “philandering” male encounters a
“coy” female nothing much happens and their payoff for both is zero. The
male (A) and female (B) payoff matrices therefore are

A =

[
0 G

G − C
2 − E G − C

2

]

; B =

[
0 G − C

2 − E

G − C G − C
2

]

;

where: the rows of A and columns of B are, in order, E1 and E2; whilst the
columns of A and rows of B are the two female categories (F1 and F2).

No pair of male and female phenotypes is evolutionary stable in conjunc-
tion. There does, however, exist a unique pair of mixed strategies p and q

625 The underlying assumption is that each individual’s behavior aims – or is ge-

netically programmed – to maximize his or her progeny. The genotypes not

resulting in such a drive tend, of course, to have their frequencies severely cur-

tailed over the generations.
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(of males and females, respectively) in Nash equilibrium. It is given by the
solution of

a11q1 + a12q2 = a21q1 + a22q2 (q2 = 1 − q1)

b11p1 + b12p2 = b21p1 + b22p2 (p2 = 1 − p1)

i.e. by

p1 =
E

C − G + E
, q1 =

C

2(G − E)
.

This equilibrium is not stable. If a fluctuation decreases the frequency
of philandering males, then the payoff of the males will not change; each
phenotype has the same payoff, which depends only on the state of the female
population. One cannot expect the frequency of philanderers to return to p1.

As to the female population, their payoff will even increase but “fast”
females gain more than “coy” ones since their risk of being deserted decreases.
It is only when the “fast” female population increases that the male payoff
changes. Again, they increase: but philanderers gain more than faithful males;
hence more philanderers, hence more coy females, hence fewer philanderers,
and so on.

This looks like an oscillating system. The appropriate differential equa-
tions are

ẋ = x(1 − x)
[
C

2
− (G − E)y

]

ẏ = y(1 − y) [−E + (C + E − G)x)]

This resembles a Volterra-Lotka prey-predator system

[ẋ = x(a − by); ẏ = y(−c + dx)]

and, like it, is doomed to perpetual oscillations.
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Example 4: The Voter’s Paradox - or, is Democracy

mathematically Sound?

In the following we review the applications of Game Theory to the social
sciences from Condorcet (1788) to Arrow (1951).

Much of the economic and social behavior in which we are interested is
either group behavior or that of an individual acting for a group. Group
preferences may be regarded either as derived from individual preferences by
some process of aggregation or as a direct attribute of the group itself.

Game-theoretic methods provide an intriguing alternative to treating a
group as though it were a sentient individual: we can cast the members of
the group as players in an internal organizational subgame, vying for control
of the group’s action in the larger game.

As early as 1785, the French mathematician Marie-Jean-Antoine-
Nicolas Caritat (Marquis de Condorcet) discovered that society often
has collective preferences that, if held by an individual, would be dismissed
as irrational.

This is the famous Voter’s Paradox: three individuals use simple majority
rule to decide what to do as a group. Their personal preferences orderings are

First individual: A > B > C
Second individual: C > A > B
Third individual: B > C > A

In this example, if the choice is between policies A and B, then the group
will choose A by a 2 : 1 vote. Similarly, they will choose B over C, and C
over A. hence the preferences of the group are described by the relations

A > B, B > C, C > A

But this relation is not transitive! Hence a group utility scale cannot be
constructed. Given that all possible individual preferences are equally likely,

the chance of intransitivity is
12
3!3

≈ 5.6 percent. This may not seem like

much, but one must keep in mind that this percentage is only for the simplest
case of three people and three alternatives. It turns out that the probability
increase both as the number of alternatives increases and as the number of
voters increase (being more sensitive to the number of alternatives) as the
following table show:
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Clearly, group preferences come solely from the preferences of the indi-
viduals, unless one wishes other considerations to enter. In either case there
is one simple and compelling condition called the principle of unanimity or
the Pareto Principle: If every member of the group prefers x to y, then the
group itself, in its corporate judgment, also prefers x to y.

This principle, obvious thought it may appear, has some far-reaching log-
ical consequences. In some settings it may even lead to transitivity for the
group preferences relation, contrary to what the Voters’ Paradox would lead
us to expect.

Building upon Condorcet’s Voters’ Paradox and the Pareto Principle,
Kenneth Arrow (1951) astounded mathematicians and economists alike
with his “impossibility theorem” - a landmark in the application of rigorous
mathematical methods to the social sciences.

The thrust of the theorem is that no mathematical function exists that sat-
isfies all of a certain set of arguably reasonable or desirable properties (restric-
tions); These are: monotonicity, independence, unanimity (Pareto Principle)
and nondictatorship. An immediate corollary of this theorem is the state-
ment that any conceivable democratic voting system can yield undemocratic
result626.

626 Arrow’s unsettling game-theoretic demonstration was commented on by Paul

Samuelson (1952) in these words: “The search of the great minds of recorded

history for perfect democracy, is the search for a chimera, for a logical self-

contradiction. Now scholars all over the world – in mathematics, politics, phi-

losophy, and economics – are trying to salvage what can be salvaged from Ar-

row’s devastating discovery that is to mathematical politics what Kurt Gödel’s

(1931) impossibility-of-proving-consistency theorem is to mathematical logic.”

Arrow’s demonstration helped earn him the Nobel Prize in economics (1972).

It is one of the earliest astonishing results in game theory.
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Conflicts between individual and group behavior, already encountered ear-
lier, has an interesting analogue in sociology through the bizarre phenomenon
of altruism, which is a particular challenge to theories of evolution by natural
selection.

An animal behaves in a altruistic way if it promotes the welfare of another
at the expense of it’s own. This seems difficult to reconcile with the notion of
survival value, but it occurs nevertheless — and indeed quite frequently. The
alarm call which warns a flock but attracts the attention of the predator upon
the caller, is a common example. True, a group may benefit from altruistic
traits among its members: it reduces the probability of extinction of the group.
But selection at the group level is, as a rule, slow and much less effective than
on the level of the individual: if a mutant gene, promoting altruistic behavior
reduces the fitness of it’s carrier, it will tend to be eliminated in spite of the
boost it provides for the group. One must therefore find explanations in terms
of gene selection and individual survival values. One such explanation is kin
selection: a gene complex programming altruistic acts which benefit relatives
may spread because it occurs, with a certain probability, amongst relatives
whose overall (familial) reproductive success is thereby increased.

Apart from this genetic explanation there is a strategic explanation, which
claims that in certain situations an altruistic act may increase the reproductive
success of the individual performing it; Game-theoretical considerations show
that conflicting interests can lead to the evolution of stable and apparently
cooperative traits of behavior (e.g., wolves refrain from dealing the killing bite
if their opponent offers his throat in a gesture of surrender). This strategic
explanation relies on the notion of frequency-dependent fitness: the fitness of
an individual may depend on what the others are doing.

Finally, an economic explanation relies on the notion of reciprocal altruism;
e.g. unrelated young male baboons team up – while one of them mounts a
female, the other one fights off its consort. The roles are reversed on a later
occasion.

Consider the voting system consisting of a plurality election followed by a
runoff between the top two vote getters out of three candidates. Suppose the
votes of 17 voters distribute as follows:

Class Number of votes Preferences (Best to worse)

I 6 A B C
II 5 C A B
III 4 B C A
IV 2 B A C
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If all the voters vote sincerely, and do not change their preference rankings,

A (with 6 votes) and B (also with 6) will end up in the runoff, which A will

win, 11 votes to 6.

Now imagine that the preferences are the same, except that the last class

of voters elevate A from second choice to first choice:

Class Number of votes Preferences (Best to worse)

I 6 A B C
II 5 C A B
III 4 B C A
IV 2 A B C

On the first ballot, A (8 votes) and C (5 votes) make the runoff. But A then

loses, 8 votes to 9, because B’s 4 supporters switch to C. Thus A’s increased

support has perversely torpedoed his victory! We witness here a situation

where a candidate may be hurt if he receives additional votes: more votes can

make a winner a looser! Similar situation arises in a straightforward plurality

election without a runoff when public announcement of how candidates fared

in a preelection are made.

Other methods of voting, such as the “Hare voting system”627, are also

not immune to perverse results. It can be shown that in the Hare system, a

candidate who wins in two separate districts can loose in a combined tally of

the two districts!

627 Advocated by Thomas Hare (1806–1891). English reformer and barrister.

Best known for his proposed election system, giving each class of votes in the

electorate a representation in proportion to its numerical strength (1858). De-

fined a quota as the greatest integer less then
[
1 + V

n+1

]
, where V is the number

of voters and n the number of open seats. Each voter lists a number of m can-

didates in his own order of preference. The first -choice votes are tabulated and

the candidates who achieve the quota are the winners.

If, however, a candidate does not meet the quota, the least popular candidate

on the first-preference list is eliminated and his/her supporters transfer their

votes to the next higher choice from bottom. If this transfer causes another

candidate to meet the quota, he is elected. If seats remain unfilled, the process

continues until all the seats are filled. If at any point there is an open seat but

no surplus of votes to transfer, the process continues until the candidates with

lowest number of votes is eliminated and his supporters simply transfer their

votes to their next-higher choice who still is in the race. The idea is that no

vote should be wasted.
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1926–1946 CE Douglas Rayner Hartree628 (1897–1958, England). Ap-
plied mathematician. Developed ingenious approximation methods for the
calculation of atomic wavefunctions of many-electron atoms629. He also ap-
plied his methods of numerical analysis to problems in ballistics, atmospheric
physics, hydrodynamics and control of chemical engineering processes. Much
of his work was of importance to Britain’s war effort (1939–1945). Hartree
was one of the first (1945) to use the electronic computer (ENIAC = Electric
Numerical Integrator and Calculator) as a general-purpose computer.

Hartree was born in Cambridge and received his higher education there.
During 1929–1937 he held the chair of applied mathematics at the University
of Manchester. From 1946 until his death Hartree was Plummer professor of
mathematical physics at Cambridge University.

1926–1949 CE Pascual (Ernst) Jordan (1902–1980, Germany). Physi-
cist. Founded, with Max Born and Werner Heisenberg, quantum matrix
mechanics. In 1949, Jordan suggested a cosmological model of ‘creation out
of nothing ’, such that the sum of the mass-energy in the universe is always
zero.

Jordan was a professor of theoretical physics in Rostock, Germany (1929–
1944) and after 1947 in Hamburg.

628 For further reading, see:

• Hartree, D.R., The Calculations of Atomic Structures, John Wiley & Sons:
New York, 1957, 181 pp.

629 In the Hartree approximation (1928) it is assumed that each electron moves in a

central field that can be calculated from the nuclear potential and the wave func-

tions of all the other electrons, by assuming that the charge density associated

with an electron is (-e) times its position probability density. The Schrödinger

equation is then solved for each electron in its own central field. Clearly, the

approximation neglects correlations between the position of the electrons, since

the entire wave function for all electrons is assumed to be a simple product

of one-electron functions (but antisymmetrized in spin and spatial dependence,

to confirm to Pauli’s exclusion principle). From the atomic wave-functions it

is possible to calculate the average distribution of negative electronic charge

as a function of distance from the nucleus, which in turn determine the self-

consistent electrostatic potential in which each electron orbital evolves. These

charge distributions are of great importance in the theoretical calculation of

macroscopic properties of matter.
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Quaternions and Spinors: Hamilton to Pauli630

(1843–1927)

If one tries to define three–dimensional vector division by seeking a vector
C such that B × C = A (or C × B = A), for two given vectors A and B,
one discovers that this operation is:

(I) well-defined only when A · B = 0;

(II) non-unique, on account of the identity B × C = B × (C − αB).

It was this effort, to extend 3-dimensional vector analysis to include both
multiplication and division, which led Hamilton (1843) to invent a new di-
vision algebra for quadruples of numbers.

Hamilton considered a 4-dimensional real vector space with abstract unit
base elements {e0, e1, e2, e3}. A general vector in this space, known as a
quaternion, is written in the form

q = q0e0 + (q1e1 + q2e2 + q3e3) = q0e0 + q.

with q0, q real.

Quaternions obey the rules of ordinary algebra w.r.t. addition and scalar
(in this case, real number) multiplication. With the definitions

e2
1 = e2

2 = e2
3 = −e0, e1e2 = −e2e1 = e3,

e2
0 = e0; e2e3 = −e3e2 = e1,

e3e1 = −e1e3 = e2, eke0 = e0ek = ek, k = 1, 2, 3

the product of two quaternions assumes the form

pq = (p0q0 − p · q)e0 + p0q + q0p + (p × q).

This reduces to the ordinary vector cross-product for p0 = q0 ≡ 0, if we
ignore the invariant part (scalar product) of the total product. If on the

630 For further reading, see:

• Cartan, E., The Theory of Spinors, Dover, 1966, 157 pp.

• Altmann, S.L., Rotations, Quaternions and Double Groups, Dover, 2005,

317 pp.
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other hand p2 = q2 = p3 = q3 ≡ 0, e0 = 1, e1 =
√
−1, it reduces to the

complex multiplication of p0 + ip1 and q0 + iq1.

Quaternions can thus be viewed as 4-dimensional numbers forming a vec-
tor space generated by unity (e0 = 1) and three other base vectors, each of
the latter being an independent square root of −1. We shall soon see that
this number system provides a description of rotation in 3-dimensions, just as
ordinary complex numbers do in 2 dimensions.

This is achieved at the cost of sacrificing the law of commutative multipli-
cation (since e1e2 = −e2e1, etc.).

Division of quaternions is realized through the definition of the inverse
quaternion

q−1 =
q0e0 − q

q2
0 + q2

1 + q2
2 + q2

3

,

yielding qq−1 = e0. Thus, quaternions form a non-commutative division
algebra over the real numbers.

The further useful definitions

n =
q1e1 + q2e2 + q3e3√

q2
1 + q2

2 + q2
3

(n2 = −e0),

q0 = h cos
ϕ

2
,

√
q2
1 + q2

2 + q2
3 = h sin

ϕ

2
,

h =
√

q2
0 + q2

1 + q2
2 + q2

3

reduce every quaternion to the standard form

q = h
(
cos

ϕ

2
e0 + sin

ϕ

2
n
)
.

It then follows that

qrq−1 = R · r, for all r = xe1 + ye2 + ze3

where R is a q-dependent orthogonal, real 3 × 3 matrix that represents a
rotation of the axes by an angle ϕ about the axis n relative to the fixed axes
{e1, e2, e3}.

In fact, it turns out that one can set up a 2: 1 correspondence between
unit modulus (h = 1) quaternions and the continuous Lie–group of finite
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rotations, in the sense that for every pair ±q of unit-modulus quaternions we
can generate a distinct rotation about the axis n defined above, by an angle

ϕ = 2 tan−1

{
1
q0

√
q2
1 + q2

2 + q2
3

}

[e.g. q = e0+e3√
2

represents a rotation by 90 ◦ about the z-axis].

So far we have not specified the nature of the abstract base elements
{e0, e1, e2, e3}, except through their ‘multiplication table’. We saw, however,
that in two limiting cases they can assume either the role of unit vectors in
the 3-dimensional Euclidean vector space R3 (e1 = e1, e2 = e2, e3 = e3) or
unit complex numbers in (e0 = 1, e1 = i).

Another interesting case arises when we represent the base elements as
2 × 2 matrices such that:

e0 =
[
1 0
0 1

]

≡ I,

e1 = −i

[
0 1
1 0

]

≡ −iσ1,

e2 = −i

[
0 −i
i 0

]

≡ −iσ2,

e3 = −i

[
1 0
0 −1

]

≡ −iσ3,

where σ = {σ1, σ2, σ3} later became known as the 3 Pauli matrices (in the
context of quantum mechanics). These ei matrices obey the quaternionic

laws of multiplication. The Pauli matrices are Hermitian631 (σ†
i = σi) and

traceless.

Keeping this in mind, we can write the standard form of a unit-modulus
quaternion as

q(n, ϕ) = I cos
ϕ

2
− i sin

ϕ

2
(σ · n),

631 A† ≡ transpose of the element–wise complex conjugate of A, for any complex

matrix A.
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where

σ · n =
[

n3 n1 − in2

n1 + in2 −n3

]

and (n, ϕ) are, as before, the (real) parameters of a rotation of the axes

about the unit vector n with an angle ϕ.

Any such rotation can be decomposed into 3 successive rotations by Euler
angles (α, β, γ) about the respective fixed-space axes {ez, ey, ez}, and indeed

we find that

q(n, ϕ) = q(ez, α)q(ey, β)q(ez, γ) =

[
e−i α

2 0
0 e+i α

2

] [
cos β

2 − sin β
2

sin β
2 cos β

2

] [
e−i γ

2 0
0 e+i γ

2

]

=

[
cos β

2 e− i
2 (γ+α) − sin β

2 e
i
2 (γ−α)

sin β
2 e− i

2 (γ−α) cos β
2 e

i
2 (γ+α)

]

=
[
q0 − iq3 −(q2 + iq1)
q2 − iq1 q0 + iq3

]

which is the most general 2× 2 complex, unimodular (unit–determinant) and

unitary matrix. If we shift ϕ to ϕ + 2π (or by any odd multiple of 2π),

R(n, ϕ) remains the same while q(n, ϕ) changes its sign. Thus, the quater-

nions ±q represent the same 3D rotation, and the 2 ↔ 1 correspondence

between unimodular quaternions and 3D rotations is thereby established.

Spinors in 3 Dimensions (Pauli)

We have seen that the relations r′ = R · r and r′ = qrq† (since q−1 = q†

– in other words q is unitary) represent the same rotation, if one uses the base

quaternions (ek = −iσk; k = 1, 2, 3) as unit basis vectors in 3D space. The

quaternion relation can be put in a convenient form that involves multiplica-

tion of 2 × 2 matrices:

S′ = USU †, S =
[

z x − iy
x + iy −z

]

Let U i
j denote the (i, j) element of the unitary matrix q(n, ϕ). Denoting the

elements of S by Sk�, and carrying out the matrix multiplication, we find

the explicit transformation equations (a bar represents complex conjugation)
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S11′
= U1

1 U
1

1S
11 + U1

2 U
1

1S
21 + U1

1 U
1

2S
12 + U1

2 U
1

2S
22

S21′
= U2

1 U
1

1S
11 + U2

2 U
1

1S
21 + U2

1 U
1

2S
12 + U2

2 U
1

2S
22

S12′
= U1

1 U
2

1S
11 + U1

2 U
2

1S
21 + U1

1 U
2

2S
12 + U1

2 U
2

2S
22

S22′
= U2

1 U
2

1S
11 + U2

2 U
2

1S
21 + U2

1 U
2

2S
12 + U2

2 U
2

2S
22.

Now we recall that under a rotation of the axes R, the components of a vector
transforms as r′ = R · r, while the components of a second rank tensor T

(represented as a matrix) transform according to T′ = R · T · RT

. We may
then draw an immediate analogy to S′ = USU †, and posit a two component
complex entity ξ (analogous to a vector r in 3D) that transforms according
to the law

ξ′ = Uξ,

or explicitly

[
ξ1′

ξ2′

]

=
[
U1

1 U1
2

U2
1 U2

2

] [
ξ1

ξ2

]

.

Let another entity

η =
[
η1

η2

]

transform according to the different law η′ = Uη. We can then form Cartesian
(tensor) products which transform as:

ξ1′
η1′

= (U1
1 ξ1 + U1

2 ξ2)(U
1

1η
1 + U

1

2η
2)

= U1
1 U

1

1(ξ
1η1) + U1

2 U
1

1(ξ
2η1) + U1

1 U
1

2(ξ
1η2) + U1

2 U
1

2(ξ
2η2),

etc.

Comparing this, term by term, with the laws of transformation of SAB ,
we find that ξAηB transform in exactly the same way; here A, B = 1, 2.

Since S is also a 3D vector, we may call ξA and ηB semi-vectors, since the
transformation law of S was split into two separate transformation laws

ξ′A = UA
B ξB , η′A = U

A

BηB ,
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where U is a unitary 2 × 2 matrix (U −1 = U
T
) and the summation con-

vention is employed for repeating indices. In terms of the Euler angles, the
transformation law of ξ (for example) is

[
ξ1′

ξ2′

]

=
[
cos β

2 e− i
2 (γ+α) − sin β

2 e
i
2 (γ−α)

sin β
2 e− i

2 (γ−α) cos β
2 e

i
2 (γ+α)

] [
ξ1

ξ2

]

.

The norm of ξ is defined as

ξ1ξ
1

+ ξ2ξ
2

= ξ1′
ξ
1′

+ ξ2′
ξ
2′

and is invariant under rotations.

We can improve the above notation by using dotted index (
.
1,

.
2, or

.
A,

.
B etc.)

for the U – transforming semi–vectors, for then one may distinguish the two

transformation laws at a glance. Thus for instance ξĀ = ξ̄
.
A, where a dotted

index632 is taken to mean that the spinor transforms via U ; it ranges over

(
.
1,

.
2), while A, B etc. take values (1, 2).

632 This notation was introduced in 1929 by van der Waerden (1903–1996) to

accommodate 4-dimensional relativistic spinors and the action of rotations and

Lorentz-transformations on them; in this case U is not necessarily unitary but is
still unimodular (that is, det U = 1). In this application, there are four types of

spinors and the algebraic notation requires both upper and lower indices, each

dotted or undotted, with four types of transformation laws. Thus, similar to
the practice in ordinary differential – geometric tensor algebra, one introduces

covariant and contravariant components (of both dotted and undotted spinors).

Raising and lowering of spinor indices is done by the skew-symmetric spinor
metric (known as the symplectic)

εBA = εAB = ε
.
B

.
A = ε .

A
.
B

=

(
0 1

−1 0

)

which satisfies:

ε
AB

εBC = δC

A
, ε .

A
.
B

ε
.
B

.
C = δC

A
= δ

.
C
.
A

,

ε
AB

= −ε
BA

, ε .
A
.
B

= −ε .
B

.
A

,

ξA = εABξ
B

, ξ
B

= ξAε
BA

,

ξ
.
A

= ε
.
A
.
Bξ .

B
, ξ .

B
= ξ

.
A

ε .
B

.
A

.

with δC
A

, etc. representing the Kronecker delta. The scalar product of two
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Having introduced spinors as building-block entities from which vectors
can be constructed633, one may ask whether one can construct a spinor from
a given vector. The answer is that one cannot build a unique spinor from

dotted or two undotted spinors may then be defined as

φ
A

ψA = −φAψ
A

= εABφ
A

ψ
B

= −ε
AB

φAψB ,

φ .
A

ψ
.
A

= −φ
.
A

ψ .
A

= ε
.
A
.
Bφ .

A
ψ .

B
= −ε .

A
.
B

φ
.
A

ψ
.
B

.

In particular we have

φ
A

φA = [ξ1 ξ2]

[
0 −1
1 0

] [
ξ1

ξ2

]

= −ξ1ξ2 + ξ2ξ1 = 0.

In the 4D (Minkowski/STR) case the matrix S = r · σ is replaced with

S
A
.
B

= c t · I + r · σ =

[
ct + z x − iy

x + iy ct − z

]

,

and its transformation law by

S,

A
.
B

= UC
A U

.
D.
B

S
C

.
D

,

where UC
A is the (A, C) component of a quaternion q0 − iq · σ with complex

(q0, q) (corresponding to complex Euler angles); the angles are real for pure 3D

rotations, and complex for pure boosts (Lorentz transformation).

Returning to the case where U is both unimodular and unitary (representing

3D rotations), φ
.
1
ψ1 + φ

.
2
ψ2 invariant under the transformation, so we may

identify, for any spinor, φ, φA = ξ .
A
, where ξ is a different spinor. Hence,

only two types of indices arise for 3D rotations, but four kinds are needed to

accommodate Lorentz transformations as well.

633 For any given spinor

[
a + ib

c + id

]

=

[
u

v

]

with unit norm (a2 + b2 + c2 + d2 = 1),

we may create the real unit vector
[
2(ac + bd), 2(ad − bc), a2 + b2 − c2 − d2

]
.

For example, (0, 0, 1) is obtained from the spinor

[
1

0

]

and also from
[
(1 + i)/

√
2

0

]

. In general, from u = u0 cos β
2
e− i

2 (γ+α), v = u0 sin β
2
e− i

2 (γ−α),

there emerges the vector [u2
0 sin β cos α, u2

0 sin β sin α, u2
0 cos β]. Denoting

u2
0 = S, the length of the 3D position vector, the magnitude of the correspond-

ing spinor must be
√

uu + vv =
√

S.
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three given components of a single vector since a spinor is specified by 4 real
parameters, whereas a vector requires only 3.

A simple geometrical description of a spinor can, however, be given, anal-
ogous to that of a vector. A vector can be visualized as an arrow of length
R and two polar angles ϕ (azimuth) and θ (colatitude) relative to some fixed
axes.

To visualize a spinor we may think of an axe, letting the handle represent
the magnitude S and direction (θ, ϕ), just as the arrow does in the case of a
vector. Once we have fixed these specifications, the axe still has one degree
of freedom left, since it can still rotate about the axis of the handle.

To fix this degree of freedom, we imagine a short line segment perpendic-
ular to the handle at its tip and call it the blade. The angular position is
now measured as the angle ψ between the southbound local meridian [pass-
ing through the point (θ, ψ) on the unit sphere], directed from the north pole
toward the south pole, and the blade itself .

1927 CE Eugène Freyssinet (1879–1962, France). Civil engineer. Devel-
oped prestressed concrete and made it into a successful worldwide building
material for bridges, shell roofs, airship hangars, concrete sea-going ships and
mass-produced pylons.

1927 CE First actual transmission of television signals (New York to Wash-
ington) by the American Telephone and Telegraph Company.

1927 CE First transatlantic telephone service opened.

1927 CE Bernardus (Dominicus Hubertus) Tellegen (1900–1990,
Holland). Engineer and inventor. Invented the Pentode: a 5-electrode elec-
tric vacuum tube. It was developed from the tetrode by inserting the fifth
electrode, called the suppressor grid (or grid No 3) in order to avoid tetrode
secondary emission which reduces plate current. The suppressor grid has neg-
ative voltage w.r.t. the other electrodes because it is connected directly to
the cathode. When the electrons emitted from the cathode strike the anode
plate, secondary emission will occur.

In the tetrode this secondary emission is attracted to the screen grid,
creating a screen grid current. The negative voltage of the suppressor grid
will push the secondary electrons back to the plate, thus eliminating the dip
(kink) found in the voltage-current curve of the tetrode.
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Consequently the pentode may be considered as a constant-current device
over a wide range of plate voltages, with non-linear characteristics only below
the knee of the curve.

Tellegen worked at the Phillips Research Laboratory and was a professor
at the University of Delft.

1927–1928 CE Warren Alvin Marrison (1896–1980, U.S.A.) and
Joseph W. Horton (U.S.A.) built the first clock based on a quartz crystal
oscillator.

Marrison was born in Kingston, Ontario. After earning a Master’s degree
from Harvard (1921), he went to work for Western Electric in New York City,
and then for Bell Laboratories in New Jersey (1925). During his career, he
invented 65 patents.

Marrison and others demonstrated that the quartz oscillator used in this
way was more accurate than the best existing mechanical clocks used in as-
tronomical observatories as time standards. During the 1940s, time standard
laboratories throughout the world switched from mechanical clocks to quartz.
The fundamental standard of time remained the rotation of the earth relative
to the stars, but quartz clocks confirmed that the earth was an unreliable
timekeeper.

Today electronic watches, cell phones, computers and many other devices
use the same timekeeping standard as Marrison’s clock — the regular vibra-
tions of a quartz crystal. The world’s fundamental time standard, though, is
now based on atomic clock.

1927–1929 CE Martin Heidegger (1889–1976, Germany). Metaphysical
thinker. The founder of modern existentialism. Exercised a great influence
on the philosophers of continental Europe, South America, and Japan. His
work stimulated much that is original and compelling in modern thought.

Heidegger found the obscure and fragmentary writings of the pre-Socratic
philosophers to be an agreeably, plastic sort of raw material for his specula-
tions, which came to be expressed in an increasingly sibylline form.

His Sein und Zeit (1927), a 20th century version of Kierkegaard’s634 an-
guished acknowledgment of the contingent and the irrational, was the most
potent and influential presentation of the existentialism that dominated Eu-
rope in WWII and for some years thereafter.

634 Sören Kierkegaard (1813–1855, Denmark). Religious philosopher and social

thinker. Held that Christianity stands opposed to the world, to time, and to

reason, and that the interminable paradoxes of life are the inevitable result of

man’s reflections.



3758 5. Demise of the Dogmatic Universe

Heidegger’s work is an attempt to understand the nature of Being (sein).
To this end he analyzed human existence (Dasein), because it is the form of
Being we can best know. His extensive discussions of human existence empha-
sizes anxiety (angst), alienation and death. This particular kind of existence
peculiar to human beings is what differentiates men from the inert material
surroundings within which they find they have been arbitrarily ‘thrown’; it is a
condition characterized by anxious awareness of the future, and as containing
both the necessity of choice and death, the cessation of being.

Most people distract their attention from the fact of death and extinction
and trivialize their freedom of choice, satisfied to follow conventional routine.
But authentic life is only possible if death is resolutely confronted and freedom
exercised with a sense of its essentially creative nature.

The superficial, practical business of man has the effect of hiding Being
from him, although it is always present and we can make ourselves ‘open’ to
it. The basic mood of man is anxiety , and the fundamental structure of man
is concern. Anxiety is caused by man’s encountering the indeterminate and
indefinable nothingness.

Man’s life is oriented from a standpoint of his consciousness of death, which
makes the difference in the choices an individual makes during life. Death is a
singular experience in that each person must encounter his own, without any
possibility of delegating it to another.

Man, being summoned by his consciousness to the numerous possibilities
among which he may choose, experiences the frustrating awareness that what-
ever choice he makes leaves others behind. The realization of certain choices
allows the unfulfilled choices to plague him with guilt . Guilt is an indelible
quality of Dasein; human Beings always feel guilty.

However, despite his anxiety, guilt, finitude and the nothingness of the
world, man’s present existence can attain values by moving through time with
resoluteness against his background of historical fate, i.e. gaining authentic
existence by being prepared for anxiety.

In this state, which Heidegger calls histericality , the individual moves from
the past into the future, being driven by the past and oriented by the future;
the past is futural in the sense that it is not finished, because it holds future
possibilities and things which bear repetition.

While Heidegger’s philosophy itself is comprehensible and, in its psycho-
logical orientation, quite sensible — the method of presenting his philosophy
is extremely abstract, complex and obscure: In his attempt to understand Be-
ing, he often sought philosophical enlightenment in the etymologies of words
and the insights of poets, especially his favorite — Friedrich Hölderlin
(1770–1843, Germany).
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Heidegger was born in Messkirch, Baden-Württemburg, the son of a
Catholic sexton. He entered the Jesuit order as a novice and later stud-
ied philosophy at the University of Freiburg under Edmund Husserl. Then
became a professor at Marburg (1923–1927) and Freiburg (1927–1944), where
he succeeded his old teacher.

Possessing a seductive classroom presence, he attracted Germany’s bright-
est young intellects during the 1920’s.635 He was thus able to inspire gifted
disciples who produced political theories very different from the ideology en-
dorsed by the master. Yet troubling residues remain not far beneath the
surface of their influential work636.

In 1933, Heidegger cast his lot with National Socialism. He squelched the
careers of Jewish students and denounced fellow professors whom he consid-
ered insufficiently radical. For years, he signed letters and opened lectures

635 Many were Jews, who would ultimately have to reconcile their philosophical and,

often, personal commitments to Heidegger with his nefarious political views.

Four of his most influential students came to grip with his Nazi association and

it affected their thinking: Hannah Arendt (1906–1975), who was Heidegger’s

lover as well as his student; Karl Lowith (1897–1973) returned to Germany

in 1953; Hans Jonas (1903–1993) grew famous as Germany’s premier philo-

sopher of environmentalism; Herbert Marcuse (1898–1979) gained celebrity

as mentor to the New Left. Why did these Heideggerians fail to see what was in

Heidegger’s heart and Germany’s future? In his book “Heidegger’s Children”,

Richard Wolin locates this paradox in the wider cruel irony that European

Jews experienced their greatest calamity immediately following their fullest as-

similation, and he finds in their responses answers to questions about the nature

of existential disillusionment and junction between politics and ideas.

Another important student of Heidegger was Hans-Georg Gadamer (1900–

2002), who elaborated on the subject of human understanding. In his book

Truth and Method (1960) Gadamer argued that ‘truth’ and ‘method’ were at

odd with each other. He maintained that people have a ‘historically effected

consciousness’ (wirkungsgeschichtliches Bewußtsein) and that they are embed-

ded in the particular history and culture that shaped them.
636 Much of the damage that this intellectual poison – disseminated by Jewish and

non-Jewish thinkers alike, all deeply influenced by Heidegger and ultimately

Nietzsche – caused in post–WWII America, can be traced to failure to see the

deep connection between German philosophy and the rise of Nazism. On this

blinkered view, the only trouble with Weimar was that the wrong side just

“happened” to win. According to Leo Strauss and his school, this enables

a Weimar – like moral catastrophe to recur; the 1960’s anarchy was one step

down that road, while post–modernism and todays rampart moral relativism

and appeasement of tyranny are another.
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with “Heil Hitler!” He paid dues to the Nazi party until the bitter end.
Equally problematic for his former students were his sordid efforts to make
existential thought serviceable to Nazi ends, and his failure to ever renounce
their actions.

Heidegger hailed Hitler as the great protagonist of a new European cul-
ture and leaned toward the socio-political views of the Third Reich. On the
strength of these views he was made rector of Freiburg University (1933),
but soon quarreled with his new masters, resigned and moved to Switzerland
(1934).

Heidegger was an active and fanatic member of the Nazi party until the end
of World War II. His involvement with the party and his support of its world-
view are undisputed. Even more disturbing than his active participation in
Nazism637, Heidegger never attempted to account for his support of the Nazis
outside of calling his involvement with them “a blunder”.

Moreover, he never publicly condemned Hitler nor the horrible crimes of
Nazi Germany against the Jews. In this light Heidegger stands as a great
embarrassment for philosophers. The key focus of recent years, however, has
been to decide whether or not his philosophy somehow reflects his political
ideology, to see if Being and Nazism are somehow related. The most likely
connection is his account of human beings.

If human beings are Dasein, meaning they have no common essence, then
there is no reason to expect that a particular group of Dasein will respect the
rights of another. The only sense of security a Dasein can attain, comes from
their given society. Consequently, Heidegger’s account of Dasein can lead
to absolute nationalism. At this point we can only wait to see if Heidegger
the philosopher can be salvaged from Heidegger the political figure; it might
ultimately not be worth the effort.

After the war, Heidegger was prohibited from teaching until the ban was
lifted in 1951.

637 Heidegger used the phrase ‘Verjudung ’, coined by Hitler in his ‘Mein Kampf’.

He informed on Staudinger to the Gestapo and insisted that they take action

against him. He also had great influence on a whole generation of young German

students and mobilized them to the Nazi movement.
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Worldview XLI: Heidegger

∗ ∗∗

“Mathematics itself is only a particular formulation of the mathematical.”

∗ ∗∗

“The mathematical is the fundamental presupposition of the knowledge of
things.”

∗ ∗∗

“We are too late for the Gods and too early for Being.”

∗ ∗∗

“You never come to thoughts. They come to you.”

∗ ∗∗

“The oldest of the old follows behind us in our thinking, and yet it comes to
meet us.”

∗ ∗∗

“Why is there something rather than nothing at all?”

∗ ∗∗

“Teaching is more difficult then learning, for only he who can truly learn –
and only as long as he can do it – can truly teach. The genuine teacher differs
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from the pupil only in that he can learn better and he more genuinely wants
to learn. In all teaching the teacher learns the most.”

∗ ∗∗

“It is not we that speak the language but it is the language that speaks us.”

∗ ∗∗

“We are constantly projecting ourselves into the future.”
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1927–1931 CE Georges Henri Lemâıtre (1894–1966, Belgium). As-
tronomer and cosmologist. Proposed that the universe was created by an
explosion of concentrated energy and may still be expanding. This became
known as the ‘Big Bang ’ hypothesis. He inferred it from the instability of
the static general-relativistic models of the universe. Thus (independently of
Friedmann), he discovered the simplest family of solutions to Einstein’s
field equations of relativistic gravitation (GTR) that describe the expanding
universe.

Lemâıtre was educated as a civil engineer and served as an artillery offi-
cer in WWI. After the war he entered a seminary and in 1923 was ordained
a priest. He studied at the University of Cambridge’s solar physics labo-
ratory (1923–1924) and then at the Massachusetts Institute of Technology,
Cambridge, Massachusetts (1925–1927), where he became acquainted with
the findings of the American astronomers Edwin P. Hubble and Harlow
Shapley on the expanding universe.

In 1927, the year he became professor of astrophysics at the University of
Louvain, he proposed his Big Bang theory, which explained the recession of
the galaxies within the framework of Einstein’s theory of general relativity.

Models of the expanding universe had been considered earlier, notably by
the Dutch astronomer Willem de Sitter (1872–1934) but Lemâıtre’s theory
— as modified (on the nuclear/particle physics side) by George Gamow
(1904–1968) and by inflationary scenarios (1980’s and 1990’s), has explained
much empirical data and thus became the leading theory of cosmology.

Cosmological solutions of Einstein equations

One can show that for a homogeneous and isotropic universe, the pseudo-
norm line element ds2 (proper–time interval squared) – encoding the space-
time metric tensor – can be written as

ds2 = c2dt2 − R2(t)dσ2, dσ2 =
dr2 + r2(dθ2 + sin2 θdϕ2)

(1 + 1
4εr2)2

where ε can be always chosen 0 or ±1. Here R(t) is the cosmic scale factor as
function of standard cosmic time, t; (r, θ, ϕ) are curved spherical coordinates
on the spatial submanifolds (“slices”) at fixed t, with the origin at r = 0. The
range of r is [0, 2), except when ε = 0, for which case r may range from 0
to ∞.
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This line element was first derived by Howard Percy Robertson (1903–
1961, U.S.A.) and Arthur Geoffrey Walker (1909–2001, England), and is
known as the

Friedmann–Robertson–Walker (FRW) metric (1935–1936). This met-
ric holds for every homogeneous and isotropic spacetime, independently of
whether Einstein’s equations hold or not. In it, the scale factor R(t) describes
the universe’s expansion. The true distance of a given galaxy from a galaxy
fixed at the origin is rR(t), where R increases with time [with R(0) = 0 for
realistic solutions, where t = 0 at the initial Big Bang singularity]; r is a
constant dimensionless parameter depending on the galaxy. If ε = 0, the
space is Euclidean, if ε = −1 the space is “hyperbolic”, while if ε = 1, it is
“hyperspherical”. In the first two cases the universe is spatially infinite, and
topologically a t = const. “slice” of it is R3; while for ε = 1 it is spatially
finite, and constant-t slice is topologically 3-spheres (S3).

We substitute the Friedmann–Robertson–Walker metric into Einstein’s
field equations

Gμν + λgμν = −kTμν .

In the above equation μ, ν = 0, 1, 2, 3, k = 8πG
c2 , G is the constant of

universal gravitation, λ is the cosmological constant, gμν is the metric ten-
sor, Gμν is the Einstein tensor (related to the symmetric, rank-2 contracted
(Ricci) curvature tensor), and Tμν is the stress-energy-momentum tensor.

We then find for a pressure-free (“matter-dominated dust”) universe that
R(t) must satisfy these two conditions:

M =
4π

3
R3ρ = constant > 0

with ρ the mass density in any of the locally-comoving (galaxy–centered)
frames; and

1
2

(
dR

dt

)2

=
GM

R
+

λ

6
R2c2 − 1

2
εc2

(Lemâıtre, 1927).

The first condition means that the mass-energy of a sphere of radius R

does not change as R increases with the expansion of the universe, i.e., no
matter or energy is created out of nothing; instead, the density drops because
of the expansion.
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The second condition leads to a solvable ODE for R(t)638. Every solution
of this equation represents a different model of the universe.

For a static universe

dR

dt
= 0, ε = 1, λ = λc =

64π2

9k2M2
, Rc =

1√
λc

(Einstein, 1917).

Lemâıtre showed that this solution is unstable. Indeed, it is easy to show
that if R (or λ) is slightly perturbed away from the value Rc (or λc), then
dR(t)

dt , as calculated from the above ODE, will not remain zero but start in-
creasing (or decreasing) with time at an ever faster rate. That is, the universe
will either start expanding, or contracting, at a continuously accelerated rate.

Depending on the values of ε and λ �= 0, there are two fundamental
optional scenarios for an expanding universe:

• Continuously expanding universe: ε = 0, λ > 0; ε = −1, λ > 0; ε = 1,
λ > λc. The density of the universe tends to zero as t → ∞ and its scale
factor expands exponentially fast. This is the process thought to have
occurred during the brief inflationary period in the particle physics era
of the early universe (a small fraction of a second after t = 0). In the

first case R = R0 exp
(√

λ
3 c t

)

in the zero–mass–density (ρ → 0) limit

(de Sitter, 1917].

• Pulsating (“anti-de Sitter”) universe: ε = 0, λ < 0; ε = −1, λ < 0; or
ε = 1, 0 < λ < λc. The function R(t) increases initially from zero up
to a maximum value Rmax and afterwards decreases to zero again.

For λ = 0 we have the following possibilities:

638 Our universe at the present epoch is quite well approximated by a pressure-

free self-gravitating dust, with galaxy clusters playing the role of ‘dust par-

ticles’. It is only during the so-called ‘radiation dominated’ era (before the

recombination of ionized matter into neutral hydrogen at ca 300,000 years af-

ter the Big-Bang) that pressure was cosmologically important. Exact Fried-

mann-Robertson-Walker solutions of Einstein’s equations are also obtainable

for the radiation-dominated universe. A pulsating universe may or may not

“bounce” back from its final “Big Crunch” R < 0 singularity; if it does, the

Big–Bang/expansion/contraction/Big Crunch cycle repeats ed infinitum, per-

haps with random variations in each new repetition. Our present understanding

of quantum gravity is too meager to tell what happens before a Big Bang (or

after a Big Crunch) singularity.
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1. The universe is pulsating if ε = 1 (Friedmann, 1922).

2. The universe is continuously expanding if ε = 0, or −1.

Thus, in this case, the spatial geometry of the universe is clearly corre-
lated to whether the universe is expanding continuously or pulsating; it may
be hyperbolic (ε = −1) or spatially Euclidean (ε = 0) and continuously
expanding, or else it is hyperspherical (ε = 1), and pulsating. The universe is
spatially infinite in the first case, and finite without boundaries in the second.
(The case of a Euclidean universe (ε = 0), which is continuously expanding,
is a limiting special case of the hyperbolic universe.)

The light which comes to earth from a galaxy follows a null geodesic along
which ds = 0 and dθ = dϕ = 0. (in the Milky-Way centered frame). The
Friedmann–Robertson–Walker line element equation then yields

0 = c2dt2 − R2(t)dr2

(
1 + ε

4r2
)2

or
dt

R(t)
=

−dr

c
(
1 + ε

4r2
) ,

where the minus sign is employed to indicate that the light comes towards us,
i.e., propagates to smaller r.

For galaxies whose light has taken a small fraction of the age of the universe
to reach earth, the above relation leads directly to Hubble’s law for the redshift
(relative wavelength lengthening) of light arriving from a galaxy at current
distance d = R(t0)r from earth:

c
Δ




≈ Hd − H2d2

2c
(1 − q), q = −R0R̈0

Ṙ2
0

,

where 
 is light wavelength, R0 = R(t0), t0 is the time that a light ray
(that left the galaxy at time t) reaches earth, H = Ṙ0/R0 is the Hub-
ble’s “constant” at the present cosmic epoch, and q is the present–epoch
(dimensionless) deceleration parameter.

Using the above cosmological–dynamics ODE of Lemâıtre together with
the assumption λ = 0, we find:

q =
4πGρ

3H2
, ε =

8πGρR2

3qc2

(

q − 1
2

)

.

The universe, therefore, is spatially hyperspherical if q > 1
2 (i.e., ε > 0),

hyperbolic if q < 1
2 (i.e., ε < 0), and flat if q = 1

2 . Since q is related to the
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density of the universe, there is a critical value of ρ corresponding to q = 1
2 ,

and given by ρc = 3H2

8πG .

If ρ > ρc the universe is hyperspherical (finite) and pulsating, while
for ρ ≤ ρc it is hyperbolic or flat and expanding forever. If we put
H = 50 km/sec/megaparsec (approximately corresponding to the latest
empirical value for the universe’s age t0) in the last formula, we obtain
ρc = 5 × 10−30 gm/cm3.

Refined cosmological observations since the mid-1990’s have established
that the cosmological “constant” λ is small and positive at the present epoch
(λ ≈ 5 × 10−53 meter−2). (We know from particle physics and the success
of the inflationary scenarios for the very early universe, that λ is actually
dynamical and epoch–dependent).

Therefore, the above λ = 0 equations must be modified accordingly. It is
also believed, based on these observations, that we live in a ε = 0 universe.
And yet, ρ ≈ 0.3ρc ; the balance of the spatial curvature needed to close the
universe, is supplied by the cosmological constant (nowadays referred to as
dark energy).

1927–1937 CE Fritz Wolfgang London (1900–1954, Germany and
USA). Physicist. Contributed to the quantum theory of valence, and the
theories of superconductivity and superfluidity.

With Walter Heitler639 (1927) he derived the first quantum-mechanical
model of the hydrogen molecule (H2), their wave-equations forming the basis
for valence-bond approach to molecular quantum mechanics.

With his brother Heinz London (1935), he discovered a phenomenological
modification of Maxwell’s electrodynamics for a superconductor; it included
both infinite conductivity and the Meissner effect. The London equation states
that the time-derivative of the superconducting current density J is propor-
tional to the electric field: ∂J

∂t = aE, which implies that in a superconductor,
the current can be nonzero even if the electric field is zero; He was then able

639 Walter Heitler (1904–1981, Germany and Switzerland) one of the pioneers of

quantum field theory and quantum chemistry. A student of A. Sommerfeld in

Munich (Ph.D. 1926). Escaped the Nazis to Dublin (1941–1948). Professor of

theoretical physics in Zurich since 1949.
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to show that the magnetic field is zero inside the superconductor, except for
a thin skin layer near its surface640.

London (1936) was first to point out that superfluidity641 may be related
to Bose statistics.

640 In a normal conductor and a Drude-type (classical) conduction model, the elec-
tric field E provides the force needed to keep the electrons moving with a drift

speed vd = eEτ
m

, where e and m are the charge and mass of an electron, re-

spectively, and τ is a time proportional to the electron mean free time between

collisions; Thus J = σE, where the conductivity σ is directly proportional

to the mean free path. In the superconducting phase, all the Cooper (electron)
pairs (call their density n) have the same drift velocity vd, yielding a current

J = 2nevd. Taking the time derivative and writing the electron acceleration as

the electric force divided by the electron mass, we have

∂J

∂t
= 2ne

∂vd

∂t
= 2ne

(
eE

m

)

= 2
ne2

m
E = aE.

Taking the curl of both sides of the London equation, and using Faraday’s law

∇ × E = − ∂B
∂t

the magnetic Gauss’– law (Δ · B) = 0 and Ampere’s law (with

∂E
∂t

= 0) ∇ × B = μ0J , we obtain: ∇2B = aμ0B. The only uniform magnetic
field that satisfies this equation is B = 0, which is Meissner’s result.

If an external magnetic field is applied to the superconducting sample, the

London theory predicts the B field will decay exponentially inwards of the
sample’s surface, with skin-layer thickness 1√

aμ0
. Note that the London theory

is in full accord with quantum physics. Indeed, the expression for the current
density in terms of the Cooper-pair macroscopic (complex) wavefunction Ψ(r)

and the vector potential A is known to be

J(r) = J0(r) − 2e2n

m
Ψ∗ΨA

where

J0(r) =
ne�

2mi
(Ψ∗ ∇Ψ − Ψ∇Ψ∗)

Since Ψ is a pure phase (Ψ∗Ψ = 1),

∂J

∂t
= − 2e2n

m

∂A

∂t
=

2e2n

m

(

− ∂A

∂t

)

=
2e2n

m
E

(the gauge A0 = 0 was assumed) and London’s result again follows.
641 According to the quantum-mechanical treatment of the Pauli Exclusion Prin-

ciple, a gas of a normal He4 atoms, each with its two protons, two neutrons,

and two electrons is described by a wave-function which is symmetrical w.r.t.

Helium–atom exchanges; it obeys Bose-Einstein statistics (since the total num-
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He was born to Jewish parents in Breslau (now Wroclaw, Poland) and
was educated at the universities of Bonn, Frankfurt, Göttingen and Munich
(Ph.D., 1921). He was a Rockefeller research fellow at Zurich and Rome and
lecturer at the University of Berlin. During 1933–1936 he was a research
fellow at the Universities of Oxford and Paris, but Nazi persecution caused
him to leave Europe. In 1939 he emigrated to the United States, becoming a
professor of chemical physics at Duke University (1939–1954).

1927–1942 CE R.V.L. Hartley (1890–1970, U.S.A.). Electrical engineer,
inventor and applied mathematician. Made the first serious attempt to intro-
duce a scientific measure of information in the field of electrical communica-

ber of fermions in each atom is even).

Since the He4 atoms are bosons, they may in principle “condense” in the low-

est per-atom quantum state of the system as absolute zero temperature is ap-

proached. In this state they would not carry out any thermal motion, but they

would nevertheless not form a crystal lattice since the zero-point energy of the

light helium atoms, according to the uncertainty principle, is larger than their

very small Van-der-Waals bond energy in a lattice.

The vanishing viscosity of superfluid Helium-4 (i.e., the vanishing dissipative

collisions between its helium atoms) would then be due to the impossibility to

transfer energy from one atom to another if the thermal energy is smaller than

the first energy excitation gap of the system. This is so because the energy of

the many-particle system of the superfluid helium atom is quantized.

Thus, treating the system of Helium atoms as a degenerate (ground state) bo-

son gas, the lowering of the temperature below a critical value (Tc) of several

degrees–Kelvin condenses a macroscopic fraction of the helium atoms into the

ground state, forming what is called a superfluid. The process is known as

Bose-Einstein condensation. An atom of the rare He3 isotope – containing one

less neutron – is a fermion; but it was discovered (D. Osheroff et al., 1970’s)

that at very low temperatures (a few milli-Kelvin), He3 atoms form bosonic

(Cooper-like) pairs; these condense, and therefore pure He3 liquid, too, can be-

come superfluid.

The dynamics of inter–atomic interactions in liquid (and thus also superfluid)

phase helium is quite complicated. Beginning with the pioneering work of

E. Cornell (1995), however, physicists have been able to use advanced cryogen-

ics (in Magneto–Optical–Gravitational traps) to produce mesoscopic samples of

Bose–Einstein Condensates (BEC’s) comprising gases of alkaline atoms (e.g Rb

or Cs). This new state of matter – being gaseous and thus weakly–interacting

and easily analyzed via simple quantum mechanics – has remarkable electromag-

netic and mechanical properties, with many possible technological applications.
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tion. To this end he defined (1927) what we now call the information capacity
of a message642.

Hartley formulated (1942) a real integral transform that is fully equivalent
to the Fourier integral transform, but dispenses with complex representation.
It is known as the Hartley transform643. It has certain advantages over the
traditional Fourier transform, especially in saving computer time.

1927–1942 CE Bronislaw Kasper Malinowski (1884–1942, England).
Founder of Social anthropology. Known for his intensive studies of the culture
of Southwest-Pacific and African natives, and for his contributions to the
theories of human culture in general.

Malinowski was born in Poland and studied at the University of London.
He taught there for many years, and at Yale University from 1939.

Author of Argonauts of the Western Pacific (1922), Myth in Primitive
Psychology (1926), and A Scientific Theory of Culture (1944).

1927–1948 CE George Alfred Léon Sarton (1884–1956, Belgium and
U.S.A.). One of the outstanding historians of science in modern times.

Embarked on a mission to make the history of science an articulate dis-
cipline, believing that this would provide a history of human thought and a
better understanding of the nature of man. In this he intended to achieve the
‘new humanism’, a holistic and all-embracing synthesis based on appreciation
of science in history.

He began a monumental Introduction to the History of Science (3 volumes,
ca 6000 pp., 1927–1948), which only reached the third volume, and the year
1400.

642 He regarded the sender of a message as equipped with a set of symbols (the

letters of the alphabet for instance) from which he selects symbol after symbol,

thus generating a sequence of symbols. He then defined H, the information of

the message, as the logarithm of the number of possible sequences of symbols

which might have been selected; clearly H = s log n. Here s is the number

of symbols selected, and n is the number of different symbols in the set from

which symbols are selected.
643 The Hartley transform reads:

F (ω) =
1√
2π

∫ ∞

− ∞
f(t)[cos ωt + sin ωt] dt,

f(t) =
1√
2π

∫ ∞

− ∞
F (ω)[cos ωt + sin ωt] dω.
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Sarton’s legacy, in addition to the subject’s professional identity, lay pri-
marily in his bibliographies, documentation and fact finding (15 books, over
300 articles and notes, and 79 critical bibliographies).

Sarton was born in Ghent, E. Flanders, Belgium and educated in philoso-
phy and the natural sciences. He obtained his doctor’s degree in mathematics
at Ghent University in 1911, and emigrated to the United States in 1915.
His lifework at Harvard was financed by the Carnegie Institution. In 1912 he
founded Isis, still a major journal in the subject. In the U.S.A. he created a
learned society and established the identity of science history and its claim to
a place in universities.

Sarton worked on the three volumes of his history for 37 years, finishing
the last one, on the 14th century, in 1948. He figured that dealing with the
15th century alone would cost him 15 additional years, of which he said: “At
my age this would be tempting Providence”.

He then added:

“Looking back to the dreams of my youth, the creation of a chronological
survey of scientific efforts down to the 20th century, to be followed by two
series of complementary surveys.

I may seem to have failed egregiously, for my Introductions stops five
centuries short of the goal. The scholarly reader will agree with me that it is
better to do something as well as one can than to do considerably more less
well. Other scholars will complete my task and may be able to do it much
better”.



3772 5. Demise of the Dogmatic Universe

Worldview XLII: Sarton

∗ ∗∗

“Early historians of science were tempted, in their ignorance and their bump-
tiousness, to consider the science of the 16th and 17th centuries as a continu-
ation of ancient science, and so it was, but a continuation which would have
been impossible or utterly different without the medieval gropings which inter-
vened. Galilean physics is the climax of centuries of such gropings, and even
the Newtonian fluxions and gravitation have medieval roots (whether Newton
was explicitly aware of them or not does not matter much). The 17th-century
mathematicians were generally well acquainted with Greek mathematics down
to Diophantos and Pappos, and they believed in good faith that they were
taking up the work where those ancients had left it. They did not realize
how much they owed to the slow incubation of ideas which was the medieval
indispensable contribution. This was hidden from them because Renaissance
scholars had tried to obliterate the Middle Ages; that obliteration, whether
conscious or not, continued in the field of art and letters until the Romantic
age, and in the field of science until our very own.”

∗ ∗∗

“The history of science describes man’s exploration of the universe, his dis-
covery of existing relations in time and space, his defense of whatever truth
has been attained, his fight against errors and superstitions. Hence, it is full
of lessons which one could not expect from political history, wherein human
passions have introduced too much arbitrariness. Moreover, it is an account
of definite progress, the only progress clearly and unmistakably discernible in
human evolution. Of course, this does not mean that scientific progress is
never interrupted; there are moments of stagnation and even regression here
or there; but the general sweep across the times and across the countries is
progressive and measurable. The history of science includes the most glorious,
the purest, and the most encouraging deeds in the whole past.”

∗ ∗∗

“In order to explain 14th-century thought, it is not enough to deal with 14th-
century authors; one must deal as well with many authors of earlier times
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whose thought was still living in the 14th century. It has already been re-
marked that though Archimedes was killed in 212 BCE, his spirit is still living
today. As a matter of fact that particular spirit was not much in evidence in
the 14th century, but older ones, those of Hippocrates of Cos, Plato, Aristo-
tle, Euclid were going strong. Medieval men were not chronologically minded,
they spoke of Hippocrates and Aristotle in the same way as of their own con-
temporaries, and those ancient sages were indeed to that extent their contem-
poraries.”

∗ ∗∗

“The scientific results of the past may generally be neglected, for they have
been incorporated into later ones; the scientific achievements, however, can
never be superseded, and they keep their value eternally. Mathematicians
have no technical reasons for reading Euclid, but they will never cease to
admire him, and their appreciation of his genius is bound to increase together
with their own knowledge.”

∗ ∗∗

“The history of science is to a large extent a history of rationalism, rationalism
in action. It is a history of the gradual emancipation of men from superstition
and ambiguities, a history of the growth of light in dark or darkened corners,
a history of our salvation not only from lies but also from other evils, from
servitude and intolerance. The medieval part of that history is meager in
tangible results, but such results are not always a fair measure of the efforts.
The difficulties which the medieval heroes of thought had to overcome were
immense. Results are the fruit of all preceding efforts, not only of the latest
ones. The triumph of modern science was partly due to medieval efforts.

Great men were not rarer in the 14th century than in the 20th, but the old
institutions (the church and the empire) were shaking and the new institutions
(universities, parliaments, etc.) not yet sufficiently well established.”

∗ ∗∗

“One universal characteristic of mystical thinking is the distrust of intellec-
tualism. The great weakness of mysticism, always and everywhere, is its
individualism. It is necessarily and paradoxically dogmatic, for the mystic,
however sincere and convinced he may be, cannot give his reasons. His convic-
tion cannot be communicated to others, except if they are exactly in the same
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mood. He cannot completely justify himself; he can only oppose dialectical
dogmatism with his own intuitive dogmatism.”

∗ ∗∗

“The Greeks laid stress upon truth and beauty; the Romans upon strength
and usefulness. The ruin of science, begun by Roman utilitarianism, was
in danger of being completed by Christian piety which considered scientific
research not only useless but pernicious.”

∗ ∗∗

“From the point of view of the history of science, transmission is as essential as
discovery. If the results of Ptolemy’s investigations had been hidden instead
of published, or if they had been lost in transit, they would be almost as if
they had never been.

Now, the question “How did Ptolemy’s knowledge came down to us?” opens
up the study of medieval science and justifies it. If there were no other reason
to study medieval science than to find out how ancient knowledge was handed
down to us, that reason would be sufficient”.

∗ ∗∗

“In the beginning astrology was a sound body of knowledge, based upon
a premise, which proved to be erroneous, but which was not unreasonable,
namely, that planets and stars can and do influence human events. Thus,
a scientific study of planetary motions would enable one to interpret and to
foretell these events.

It is easy enough to understand the growth of that fallacy if one realizes the
appeal which periodical phenomena have never ceased to make upon people
of all kinds, whether educated or not. Symmetry and periodicity form the
very substance of science and also of art, and the more intricate, the subtler
they are, the more impressive once they have been discovered. We may as-
sume that even at the very dawn of civilization, the more thoughtful men had
been awed by the extraordinary periodicities in the motion of the stars, of the
moon, and the sun. And, by and by, as they discovered the more complicated
periodicities involved in the apparently erratic displacements of the planets,
their awe and trust in cosmic harmony increased in proportion. Thus were
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the astrological assumptions naturally introduced. They received an extraor-
dinary confirmation from two terrestrial phenomena which exhibited similar
periodicities and were immensely impressive because of their universality, of
their complexity, and of their mathematical rigor: the tides of the sea and
the menstruation of women. Both phenomena were explained by planetary
influences; the explanation was essentially right in the first case and wrong
in the second. That error was a very pardonable one. And if some of the
planets could thus affect the bodies of women nay, their very souls, was it un-
reasonable to assume that they might influence as well the destinies of men?
These theories, being erroneous, were naturally sterile and unprogressive; as
they could not progress, they deteriorated, and as they blocked the stream of
thought, they gathered around them all the superstitions which it carried.”

∗ ∗∗

“The historian of science can not devote much attention of the study of super-
stition and magic, that is, of unreason, because this does not help him very
much to understand human progress. Magic is essentially unprogressive, and
conservative; science is essentially progressive. We can not possibly deal with
both movements at once except to indicate their constant strife, and even that
is not very instructive, because that strife had hardly varied throughout the
ages. Human folly being once unprogressive, unchangeable, and unlimited,
its study is a hopeless undertaking!

The history of astrology, however, must be carefully considered since a large
part of it is so intimately connected with the history of science that it cannot
be dissociated from it. This applies with even greater force to alchemy, for in
this case there was considerably more scope for the continual integration of
new experimental facts, which were valuable in spite of wrong interpretations:
the alchemical facts outlasted the alchemical structure, and many of them are
now integral parts of our chemical knowledge.”

∗ ∗∗

“To take a step forward in the right direction is always a great thing, and the
first steps are always the most difficult and the most creditable. We forget
it but too often, and our histories are full of injustice, because we are almost
always too generous toward those who made the last steps and reaped the
result to all antecedent efforts, and too little generous to those who made the
first and least profitable steps.”
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∗ ∗∗

“A large part of our knowledge and of our technique was attained, not at all
in a logical way, but by the method of trial and error, which works well, but
is exceedingly slow. The whole history of thought points to the conclusion
that some errors at least were unavoidable, that is, mankind could learn how
to avoid them only by making them. Thus we were spared some errors only
because our ancestors had made them before us. Indeed, these medieval
scientists are our direct ancestors; if they had been such idiots, how could
we be so clever? It is extremely probable that if we had been living under
the same circumstances as they, we should not have proceeded much faster.
The progress of science is on the whole, an accelerated one; thus, in any
retrospective survey, we must expect the progress to become slower and slower
as we penetrate more deep by into the past. And above all we must remember
that science could not progress along certain lines without traversing vested
interests and prejudices and without hurting the feelings of the community.
To proceed in the face of such opposition has always required a great deal of
intellectual courage. There were many more such sensitive lines in the Middle
Ages than now, and thus there was a far greater need for that particular kind of
heroism. In the whole sweep of history there is nothing more impressive than
the spectacle of noble men who had the spirit to fight unreason and ignorance
and who did not hesitate, not only to renounce material advantages, but even
to jeopardize life and happiness in order to increase the amount of beauty,
justice, and of truth which is the essential part of our patrimony.”

∗ ∗∗

“And this is the very spirit of science — the continual alteration of exper-
imental research, of mathematical elaboration, of theoretical deduction and
discussion suggesting new experiments. Or, in other words, the continual al-
terations of analysis and synthesis: analytical investigations without synthetic
attempts must necessarily degenerate into crude empiricism and into super-
stition; synthetic constructions without periodic experimental contact must
necessarily degenerate into a sterile dogmatism. Science is not a being, but a
becoming.”

∗ ∗∗

“There are no discontinuities in the intellectual life of the world if we take
into account the achievements of all peoples in every direction. Whenever a
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nation dropped out of the race, another was ready to take up the torch and
to continue mankind’s eternal quest.”

∗ ∗∗

“Science slowly emerges from philosophy and religion, chemistry from
alchemy, astronomy from astrology.”

1927–1950 CE Barbara McClintock (1902–1992, US). Geneticist. Rev-
olutionized the field through her observation in maize genetics that genes are
not stable — thus overturning one of the main tenets of heredity laid down
by Gregory Mendel. This had enormous implications and explained, for
example, how resistance to antibiotic drugs can be transmitted between en-
tirely different bacterial types. McClintock novel ideas were not accepted for
many years. She won, however, the Nobel Prize in Physiology or Medicine
(1983), the 5th woman to be so honored.

McClintock was born in Hartford, CT and received a Ph.D. in botany
(1927) from Cornell University – where she stayed (1927–1935). Later held
posts at the University of Missouri (1936–1941) and the Carnegie Institute,
New York (1941–1992).

She showed (1927–1931, with Harriet Creighton) that genes can change
their position on a chromosome (‘jumping genes’644) from generation to gen-
eration. This would explain how originally identical cells take on specialized

644 She observed that the patterns on twin sectors of maize seedlings were the

inverse of one another, and that pigmentation of certain kernels did not corre-

spond to their genetic makeup. Realizing that a single cell divided into sister

cells, one gained what the other had lost, she deduced that not all genes behave

in the same way: some genes can switch others on and off, moving from one

place to another on the chromosome, or even ‘jumping’ from one chromosome

to another. These jumping genes act as regulators and were later discovered in

bacteria and fruit flies.
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functions as skin, muscle, bone, and nerve cells, and also how evolution could
give rise to multiplicity of species.

In the 1940’s she showed how genes in maize are activated and deactivated
by ‘controlling elements’ — genes that control other genes and which can
be copied from chromosome to chromosome. She presented her work in a
symposium in 1951, but its significance was lost on the attendees, who mainly
worked with bacteria. It was not until the 1970’s, after the work of Jacob
and Monod, that her work began to be appreciated.

1927–1956 CE Bernhard Zondek (1891–1966, Germany and Israel). Gy-
necologist and endocrinologist. Discovered gonadotrophine. Developed the
first reliable hormonal pregnancy test [1927, with Selmar Aschheim (1878–
1965)] and the assistance of his brother Herman Zondek (1887–1979).

Zondek was born in Wronke, Germany. He was trained in medicine at
the University of Berlin, becoming a professor (1926–8) and Director of its
Department of obstetrics and Gynecology (1929–1933). He left Nazi Germany
(1933) to become Professor at the Hebrew University, Jerusalem (1934–1966).

During this period he discovered that the anterior pituitary gland produced
hormones called gonadotrophins, which in turn stimulated other endocrine
glands, such as the ovary, to release their hormones. This work provided
important evidence of control mechanisms in reproduction, which has had
widespread significance in the development of medical and social attitudes
towards questions of fertility, infertility, contraceptions and abortion.

1927–1957 CE Otto Neugebauer (1899–1990, USA). A foremost his-
torian of premodern science. Made important contributions to the history
of mathematics and astronomy. His coverage of Egyptian and Babylonian
science and its transmission to the Hellenistic world released the surprising
sophistication of certain areas of early science.

Many of his discoveries have revolutionized earlier understandings. He
thus showed that Babylonian strength in algebraic and numerical work re-
veals a level of mathematical development in many aspects comparable to
the mathematics of the early Renaissance in Europe (in contrast to the rel-
atively primitive Egyptian mathematics). In the realm of astronomy, too,
Neugebauer discovered an unexpected sophistication which he ascribed to a
competent mathematical approach rather than to the result of millennia of
observations (as used to be the interpretation).

Neugebauer was born in Austria to Jewish parents. He emigrated to the
USA (1940).

1927–1958 CE Ludwig Mies van der Rohe (1886–1969, Germany and
USA). Architect and teacher. One of the founders of the modern movement
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in architecture; won fame for the clean, uncluttered design of his buildings of
brick, steel, and glass. The sparse appearance of his buildings illustrated his
motto: “Less is more”.

Mies was born in Aachen (N. Rhine – Westphalia), Germany. He built his
first steel-framed building in 1927. In 1929 he designed the German pavilion
at the Barcelona exhibition, with its marble walls reaching out beyond the
building, its hovering roof slab, and its great expanse of glass. In 1930 he
became director of the Bauhaus school in Dessau, but closed the school in
1933 as a protest against the Nazis.

In 1938 he emigrated to the USA and was appointed director of the school
of architecture at the Illinois Institute of Technology. He is said to have
based his attitudes to architecture and the teaching of it on Thomas Aquinas’
proposition: ‘Reason is the first principle of all human work ’.

The curriculum at his school was designed to teach general principles
with a strong emphasis on construction, encouraging general rather than spe-
cialized solutions. This approach contrasted with most other contemporary
schools of architecture in which the aim was to engender individuality of ex-
pression.

Mies’ buildings are models of structured clarity and simple geometry. They
had enormous influence on his contemporaries and indeed on many present-
day architects, who respect his handling of the high-rise skeleton-frame tower
block, exemplified in the twin towers on Lake Shore Drive (Chicago, 1948–51)
and the Seagram building (New York, 1954–8).

1927–1960 CE Abram Shmulovich Besicovitch (1891–1970).
Karaite645 mathematician. A geometric analyst of extraordinary power646.

645 Karaism — a sect that broke away from Judaism in 760 CE. They bear the name

Karaim, “Scripturalists”, believers in the Bible only, excluding later traditions.

They claimed that the original intentions of the Holy Book were lost in the

countless laws built on top of the biblical words. Their belief was that each

Jew had a right to explain the biblical statements in accordance with his own

views, without regard to the “official” explanation offered by the scribes and

their followers.
646 The following anecdote may serve as a typical example of his sharp wit: One

day, during his lecture at Cambridge, the class chuckled at his fractured English.

Besicovitch turned to the audience and said: “Gentlemen, there are fifty million

Englishmen speak English you speak; there are two hundred million Russian

speak English I speak”. The chuckle ceased.
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One of the founders of the theory of fractals (Hausdorff-Besicovitch dimen-
sion), on which he published a series of path-breaking papers during 1928–
1937. In 1927, Besicovitch solved the Kakeya problem647, proposed in 1917
by Soichi Kakeya (1886–1947, Japan). [It required to find a figure of least
area in which a segment of unit length could be turned through 360 ◦ by a
continuous movement.] Known for his work on almost periodic functions.

Besicovitch was born in Berdyansk, Russia. He was taught by Markov
at St. Petersburg. He left Russia (1924) and worked with Harald Bohr. In
1927 he moved to Cambridge. His wife remained in Russia and the marriage
was dissolved (1928). He then married (1930) the 16 year old daughter of a
previous girlfriend.

1928 CE Alexander Fleming (1881–1955, Scotland). Bacteriologist. Dis-
covered penicillin at St. Mary’s Hospital, Paddington, London. (It was made
stable enough for medical use only in 1943.) Shared the Nobel prize for
physiology or medicine (1945) with Howard Walter Florey (1898–1968,
England) and Ernst Boris Chain (1906–1979, England) for isolating and
purifying penicillin for general clinical use.

1928 CE Otto Paul Hermann Diels (1876–1954, Germany) and Kurt
Alder (1902–1958, Germany). Chemists; developed a synthesis known as
the Diels-Alder reaction648: a technique for combining atoms into molecules
that is useful in forming many compounds, especially synthetic rubber and
plastics. For this they were awarded the Nobel Prize for Chemistry (1950).

647 For a time it was believed that a hypocycloid of area π
8

was the desired figure.

However, Besicovitch proved that Kakeya’s problem has no solution by showing

that there are figures of arbitrary small area having the Kakeya property.
648 Alkanes are those hydrocarbones in which adjacent carbon atoms are joined to-

gether by a stable single bond. They are called saturated hydrocarbons because

the carbon atoms are covalently bonded to as many hydrogens as the carbon-

backbone connectivity allows. They have the general formula CnH2n+2 (e.g.

Methane CH4, Ethane C2H6 etc.)

Alkenes contain two carbon atoms joined together by a double bond, and there-

fore two hydrogen atoms less than the corresponding alkanes. They are unsat-

urated, having the general formula CnH2n (e.g. Ethylene C2H4).

Dienes contain two double carbon bonds (e.g. Butadiene C4H6). Because of

the unstable double bond, Alkenes and Dienes are chemically more active and

form addition compounds with H2, Cl2, Br2, HCl, HBr, H2SO4, etc.

In the Diels-Alder reaction, a conjugated diene reacts with an alkene:
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Reactions that create new carbon-carbon bonds are very important in or-
ganic synthesis because only through such reactions can small organic mole-
cules be converted into larger ones. The Diels-Alder reaction is a particularly
important reaction because it creates two new carbon-carbon bonds in a man-
ner that results in a formation of a cyclic molecule (aromatic compound).

1928 CE Chandrasekhar Venkata Raman (1888–1970, India). Phy-
sicist. Observed experimentally the existence of displacement (lowering or
raising) of frequencies in the electromagnetic radiation scattered by a mole-
cule, known as the spontaneous Raman effect or Raman scattering. The effect
had been predicted (1923) by Adolf Smekal (Germany) and involves at least
three quantum states, and three transitions among them, in a molecule or a
radical. The magnitude of the frequency change, and its dependence upon
the properties of the absorbing species, constituted a compelling proof for the
veracity of the quantum theory which had, at the time, only recently emerged.

The Raman effect is related to molecular vibrations and rotations and to
electron orbitals. When a gas sample (for example) is illuminated with mono-
chromatic radiation of frequency ν0, it is observed that the radiation scattered
in a direction at right angles to that of incidence, contains, in addition to the
primary frequency component ν0 (which is the result of coherent Rayleigh
scattering of the incident radiation), secondary radiation components of fre-
quencies ν0 ± νs, where νs corresponds to a frequency of the vibrational or
rotational spectrum of the molecule. This is called Raman scattering649.

Its quantum-mechanical interpretation is as follows: suppose that a
molecule is initially in a (ground or excited) vibrational and/or rotational

H H H H
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where Δ signifies the addition of heat.
649 The Raman effect can be explained in the framework of classical physics on the

basis of the polarizability of the electron orbitals of molecules: A light wave

with frequency ν0 incident upon an isotropic molecule induces in this molecule

an electric dipole moment Mi = αE0 sin(2πν0t), where α is characteristic of a
specific molecule and is called polarizability (it is a measure of the deformability

in the electron orbitals), and E0 is the amplitude of the electric field vector of

the impinging light. Assume that α is not constant but changes linearly with the
intra-molecular atomic positions as the atoms in the molecule vibrate against

each other with the frequency νs, or as optically anisotropic molecules rotate

around their center of gravity. By setting α = α0 + α1 sin(2πνst) and inserting
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state650, and also in some electronic-orbital configuration (ground state or ex-
cited). When an electron in the molecule absorbs a photon of frequency ν0

it transitions to an excited electronic state (with the atomic-nuclei quantum
state unchanged). If the excited state is not a metastable one, there is a
virtually immediate re-radiation of a photon.

The molecule may return to the initial state, emitting radiation of the same
frequency as the incident light; this is Rayleigh scattering. The molecule may,
however, return to another vibrational or rotational level immediately above
or below the initial level, with the emitted radiation having the frequency
ν0 − νs or ν0 + νs, respectively; this is the quantum explanation of Raman
Scattering651. The Raman effect has been observed for both vibrational and
rotational spectra; for the latter the selection rule for the electronic-orbital
sector of the transition is Δ
 = 0,±2 (compared to Δ
 = ±1 in the vibra-
tional case)652.

the expression into the equation for Mi, we obtain

Mi = α0E0 sin(2πν0t) +
1

2
α1E0 [cos 2π(ν0 − νs)t − cos 2π(ν0 + νs)t].

While the first term represents an induced dipole moment that vibrates with the

exciting frequency ν0 and thus causes the classical Rayleigh scattering, the two

terms in brackets are responsible for radiation of two light waves, the frequencies

of which are shifted against that of the exciting wave by ±νs. This is the Raman

effect, which is very important in molecular physics.
650 Vibrational and rotational states are orbitals of the atoms within a molecule, i.e.

they are solutions of the Schrödinger equation for the nuclear-position wavefunc-

tion. Since electron motions are much more rapid than those of atoms (because

nuclei are much heavier), the Born-Oppenheimer approximation allows one to

first solve for the electron’s wavefunctions with nuclei held fixed, and then use

the dependence of the electronic energy levels upon nuclear positions to derive

effective inter-atomic potentials — which are in turn used to set up and solve

the nuclear-position wave equation.
651 Such a transition involves changes of both the electron wavefunction and the

nuclear-positions wavefunction. (νs is a frequency characteristic of the vibra-

tional or rotational transition.)
652 The effect had been predicted earlier by Kramers, Heisenberg, Schrödinger

and Dirac. In fact it was seen by Lommel (1878), but discounted as noise.

At first, the effect was difficult to put to actual use because one needed strong

sources (usually Hg discharges were used) and large samples. Often the ultra-

violet from the source would further complicate matters by decomposing the

specimen. And so it is not surprising that little sustained interest was aroused

by the promising practical aspects of the Raman effect.
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The ν0 + νs spectral component of the Raman effect depends on the ini-
tial molecular state being excited in its atomic-nuclear-positions sector; such
vibrational and rotational excitations occur naturally due to thermal fluctu-
ations.

The Raman effect provides a direct method for the investigation of the
structure of molecules and molecular fragments in solid, liquid and gaseous
state. It permits measurements of their natural vibration frequencies, and
(through the transition selection rules) helps in studying the symmetries of
molecules, intramolecular forces, molecular dynamics etc.

The Raman spectra characterize a molecule with such precision that their
analysis can be used for determining the composition of mixtures of molecules
when the ordinary methods of chemical analysis fail to provide needed results.

Raman was born in Tiruchirappali, Tamil Nadu, India. He received his
bachelor degree at Presidency College, Madras (1904). During 1907–1917 he
was employed as a civil servant in a finance department in Calcutta. In his
spare time he cultivated his interest in acoustical problems and their relevance
to the theory of musical instruments, and worked irregular hours in the lab-
oratory of the Indian Association for the Cultivation of Science. In 1917 he
became professor of physics at the University of Calcutta.

His most renowned contribution came in 1928 when he telegrammed his
letter to Nature describing ‘A New Type of Secondary Radiation’, for which he
was awarded the Nobel prize for physics (1930). From 1933 onwards he lived
and worked in Bangalore, where he founded the Indian Academy of Science
(1934), and later directed the Raman Research Institute (1948).

The situation was changed dramatically when laser light sources became a re-

ality. Raman spectroscopy is now a unique and powerful analytical tool; the

laser is an ideal source for spontaneous Raman scattering. It is bright, highly

monochromatic, and available in a wide range of frequencies.

In 1962, Eric J. Woodbury and Wan K. Ng fortuitously discovered a re-

lated effect known as stimulated Raman scattering, where part of the incident

energy (at the wavelength 6943 Å in their experiment) was shifted in wavelength

and appeared as a coherent scattered beam at 7660 Å. It was subsequently de-

termined that the corresponding frequency shift of about 45 × 1012 Hz was

characteristic of one of the vibrational modes of the molecule of nitrobenzene

(the scatterer used by them).

By the turn of the 21st century, active and passive photonic-device products be-

came available that utilize intense pump lasers to provide the initial-frequency

photons; the stimulated longer-wavelength lightwaves, present to begin with

but amplified, near-infrared telecommunication signals propagating in ordinary

optical fibers, with the fiber medium itself providing the scatterer molecules.
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He was a prolific writer (there are more than 500 articles bearing his
name), and a key figure in the foundation of modern Indian science. Along
with Ramanujan, Tagore, M. Gandhi and S. Radhakrishnan, he was
conspicuous in the flowering of Indian culture in the first part of the 20th

century. The astrophysicist S. Chandrasekhar (1910–1995) was his nephew.

1928–1933 CE Raymond (Edward Alan Christopher) Payley (1907–
1933, England and USA). Mathematician. Made important contributions to
the theories of Fourier series, Fourier transforms, quasi-analytic functions
and related topics.

Paley was educated at Eton. From there he entered Trinity College, Cam-
bridge where he was taught by Hardy. He then collaborated with Little-
wood, Zygmund and Polya. In the United States he worked with Norbert
Wiener653.

While skiing near Banff he was killed by an avalanche. Thus ended the
meteoric career of a brilliant mathematician who had the potential to rise to
the level of the great mathematicians with whom he collaborated.

1928–1931 CE Jesse Douglas (1897–1965, USA). Mathematician. First
to prove the existence of a surface of minimal area bounded by a contour
(the Plateau problem, 1873; first posed by Lagrange in 1760 and studied by
Riemann, Weierstrass and Schwarz).

Before Douglass’ solution only special cases had been solved.

Douglass studied at Columbia College (1920–1926). Visited Princeton,
Harvard, Chicago, Paris and Göttingen (1926–1930).

1928–1937 CE Jerzy Neyman (1894–1981, Poland and U.S.A.). Statisti-
cian. Produced the Neyman-Pearson system of hypothesis testing654: a set of

653 Payley-Wiener condition: A necessary and sufficient condition for a square-
integrable function A(ω) ≥ 0 to be the Fourier spectrum of a causal function

is the convergence of the integral

∫ ∞

− ∞

|ln A(ω)|
1 + ω2

dω < ∞

654 Based on the Neyman-Pearson lemma which states (verbally) that an hypothe-

sis is not invalidated because it makes observed events improbable; there must

be a realistic alternative hypothesis that does better.

While the structure of this lemma is too restrictive for the result to have much

practical significance, it does have enormous importance from a conceptual

standpoint.
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criteria for maximizing efficiency in the design of tests which is the foundation
of modern quality control.

Faulty items found in an inspected sample may be ineradicable errors or
a signal to close down and reset a machine. The theory then looks at the cost
and risk of stopping a good machine and compares it to the cost and risk of
running a bad one, to obtain the best criterion and sample size.

In 1934 Neyman tackled the problem of using random samples in human
populations. He proposed a general principle: to take linear combinations of
data items and balance them, first to eliminate bias and then to minimize
variance. This provides rules for deciding how intensively to sample, and
where.

In 1937 he formulated the classical theory of confidence intervals.

1928–1937 CE Antisemitism in Austria soared to unprecedental levels;
violent antisemitic riots. Dr. Seipel, leader of the clericals and Prime minister,
preceded to profess his hatred of the Jews. The Archbishop of Vienna endorsed
the appeal to boycott Jewish merchants (1928). Governmental discrimination
against appointment of Jews to the civil service continued.

By 1933, Jews were virtually eliminated from the university life. An edict
was promulgated forbidding Jews to practice medicine in Austrian hospitals.
In May 1934, a new Austrian constitution established a fascist-corporatist
state on Christian principles. Chancellor Dollfuss was shot to death by Nazi
storm troopers in Vienna (1934).

By the end of the year only 12 Jewish teachers in the Vienna elementary
school system remain of a former total of 5000. Nearly 60,000 out of the
176,000 Vienese Jews were registered (1936) in the welfare department as
applicants for relief. As of July 1937, Jewish doctors were not allowed to
practice privately. The elimination of “Jewish influence” in education, the
theater, the press, the arts, and the sciences was now achieved (1937).

On March 11, 1938 Vienna becomes the second largest city of the Third
Reich; the fate of the Jews was finally sealed.

1928–1938 CE Paul Adrien Maurice Dirac (1902–1984, England). Dis-
tinguished physicist. A major contributor to relativistic quantum mechanics
and quantum statistics, and the originator of the concept of antimatter.

Egon Sharpe Pearson (1895–1980, England; son of Karl Pearson) con-

tributed to the theory of statistical inference and developed the concepts of

likelihood ratio test of an hypothesis.
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In 1926, while still a graduate student, he derived his own version of quan-
tum mechanics, lagging only a few months behind Born and Jordan. In this
same year he formulated, independently of Fermi, what is known today as
Fermi-Dirac statistics. His major work was presented in 1928: he discovered
a first-order partial differential wave equation for a free particle, which is in-
variant under the Lorentz transformation and incorporates spin in a natural
way. This Dirac equation is consistent with the Klein-Gordon equation, and
Dirac suggested the former as the fundamental relativistic wave equation for
the electron – for which the Klein-Gordon equation is not sufficient655.

He found that his new linear equation is a matrix equation of rank 4, the
wave-function solutions of which are 4 component spinors. The associated
algebra is the Clifford algebra in 4 dimensions, and each spinor component
also obeys the Klein-Gordon equation.

Dirac’s equation — when interpreted as a first – quantized (Schrödinger)
wave equation — showed that there must be states of negative energy . The
latter conclusion did not seem to correspond to physical reality. In a later
paper, in 1929, Dirac suggested that a deficiency of an electron is one of
these (otherwise completely filled) states, would be equivalent to a positively
charged particle.

According to this idea, the vacuum is not empty, but rather contains an
infinite sea of completely-filled negative energy states; localized energy, such
as a high-energy photon, can occasionally knock one of these electrons into a
positive energy state. To an observer, this would appear as the materializa-
tion, out of the vacuum, of a pair of particles — an ordinary electron, and a
“positive electron” — a hole in the sea of negative, otherwise — filled energy

655 One of the motivations at that time to reject the Klein-Gordon equation as

a fundamental quantum-mechanical wave equation, was that the Born proba-

bilistic interpretation seemed to lead to probability distributions that can go

negative, clearly a nonsensical result. Soon, however, Dirac’s own work on

antimatter led to second quantization (nowadays called field quantization), in

which there is a distinction between a particle’s field equation on the one hand,

and the Schrödinger wave equation of the whole (multiparticle) system on the

other. Thus, in quantum electrodynamics — a second-quantized theory — we

distinguish between Maxwell’s equations (the photon’s field equations) and the

Schrödinger equation. When all this became clear, the Klein-Gordon equation

was restored to grace as a valid equation, on equal footing for some (integer–

spin, bosonic) particles with the Dirac equation (which holds for fields of spin- 1
2

fermions). The Klein-Gordon equation follows from the Dirac equation, since

the former is simply the quantum-mechanical version of Einstein’s STR kine-

matical relation pμpμ = m2c2, obeyed by any free particle of rest mass m.
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levels. Similarly, an electron can annihilate its positive counterpart, by drop-
ping from positive to negative energy (emitting radiation in the process) and
re-filling a negative level.

This picture — while literally true for quasiparticles in conducting solids,
for which the positive quasiparticles is the hole familiar from semiconduc-
tor physics656 — requires some modifications in the more elegant field–
quantization picture later adopted, in which the Dirac sea of negative–energy
states is dispensed with. In the modern picture, fermions and anti–fermions
are treated on equal footing, with a manifest charge–conjugation discrete sym-
metry between them.

Dirac’s theory was confirmed when C.D. Anderson obtained a cloud
chamber photograph with tracks showing the existence of positrons. Thus,
an apparent fatal flaw of Dirac’s theory turned into the successful prediction
of antimatter. This development made it clear that the successful marriage
of STR and quantum-mechanics requires a new foundation of the latter — in
which particle numbers are not conserved, and even the vacuum is a complex
many-body system657. Dirac’s theory emerged triumphant.

Dirac also (1933) raised the question of what corresponds in the quantum
theory to the Lagrangian method in classical theory. He pointed out that
the function K(x2, t2; x1, t1) which carries the wave function ψ(x1, t1) at
time t1 to the wave function ψ(x2, t2) at time t2, is analogous to e

i
h S , where

S(x2, t2; x1, t1) is the classical action.

This function S was first introduced by Hamilton, and was computed
from the classical trajectory x(t) linking the coordinate x1 of the classical
particle at the instant t1 to the coordinate x2 at time t2; the related Hamil-
tonian enables one to describe the classical evolution as a canonical transfor-
mation developing in time. Hamilton’s action is obtained by integrating the
Lagrangian of the system over the yet unknown classical path from the point
with the coordinate x1 at instant t1 to he point with the coordinate x2 at
time t2,

S = S(x2, t2; x1, t1) =
∫ t2

t1

L [ẋ(t), x(t), t] dt.

656 However, in the condensed–mater case there is less symmetry: no STR (the

lattice frame is preferred!); no actual negative energies expending to – ∞ (just

a valence band); and electrons have different effective mass than holes.
657 At first, Dirac erroneously identified the ‘positive electron’ with the proton! It

is now accepted, on very strong theoretical and experimental grounds, that the

mass and spin of any particle are exactly equal to those of its anti-particle (CPT

theorem).
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The principle of least action then states that the classical path x̄(t) cho-
sen by the system out of all possible paths is that for which S is extremal.
This condition of extremum leads, mathematically, to the path-equation
d
dt

(
∂L
∂ẋ

)
− ∂L

∂x = 0, where L is a priori known [e.g. for a single particle of

mass m, moving in a potential V (x, t), we have L = m
2 ẋ2 − V (x, t)].

During 1937–1938 (and later, 1973–1979), Dirac proposed a new cosmo-
logical theory (“large number theory”) based on the notion that there are
some very large dimensionless numbers in physics with hitherto unknown sig-
nificance, which are approximately equal to one another. These numbers (all
of which are of the order 1040) are:

(1) The ratio of the electromagnetic force between a proton and an electron
to the gravitational force between them.

(2) The square root of the number of particles N in the observable universe.

(3) The age of the universe, in units of the time required for light to traverse
the classical ‘electron radius’.

Dirac suggested that this coincidence expresses some fundamental (al-
though still unexplained) truth, and that therefore all three numbers should
be equated.

It then followed that one or more of the ‘constants’ � (Planck’s reduced
constant), G (gravitational constant), e (the fundamental charge unit), c (ve-
locity of light in vacuo), me and mp (electron and proton masses) must vary
over cosmic time-scales. In order to avoid the reformulation of atomic and nu-
clear physics, Dirac chose G as that fundamental ‘constant’ that varies with
time. This requires that G(t) decrease with time like t−1, where t is time
elapsed since the Big Bang in any frame of reference at rest relative to the
local Cosmic Microwave Background Radiation. [In GTR, G must be kept
fixed and unalterable, since there is no mechanism within the theory for G
to depend either on the distribution of matter or time. In the Brans–Dicke
(scalar–tensor) modification of GTR, in which the strong equivalence principle
is relaxed, the effective G is a function of the scalar field, and so may depend
on time (or even space). In modern inflationary and/or higher–dimensional
QFT versions of Big–Bang cosmology, G, me, mp and (to some extent) e may
vary with cosmological epoch; � and G (in most theories) may not.]

Thus, Dirac’s cosmology requires that GTR be replaced with some other
field theory of gravitation, which he never supplied. Previously, Eddington
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tried unsuccessfully to explain the fine-structure constant
{

e2

4πε0�c
≈ 1

137

}

and other dimensionless parameters.

Dirac’s theory is now in conflict with observations on two counts. First,
his relation t = 1

3H−1
0 (H0 is Hubble’s constant at the present epoch) leads

to an age of the universe that is too small. Second, recent observations (1981)
have shown that 1

G

∣
∣dG

dt

∣
∣ ≤ 6 × 10−11/year, and even as small a value for

1
G

∣
∣dG

dt

∣
∣ as this bound, if extrapolated backwards over billions of years, is

unacceptable: it predicts a surface temperature of the earth 109 years ago,
that reach that of boiling water , which in turn, preclude the evolution of life
to its present form.

Carter (1974) gave an entirely different explanation for the coincidence of
large numbers: perhaps, at epochs much before these numbers approximately
coincided, the physical conditions were such that life, and especially intelligent
life like man, could not yet exist! Therefore, the coincidence of Dirac’s large
numbers is just a necessary prerequisite for man to appear in the universe.
This is a version of the “anthropic principle”.

Dirac was born in Bristol. His mathematical ability manifested itself at an
early age. At the school he attended in Bristol, he was given rather advanced
books on mathematics to study independently. His father, a Swiss by birth
who was the French master at the same school, encouraged his son to develop
his mathematical ability. He wished him to also become fluent in French,
to the extent that, according to the son’s report, the elder Dirac refused to
speak to him unless he was addressed in the French language. This may
have fostered Dirac’s pronounced tendency to seldom speak, and to choose
his words with utmost care. He avoided company, preferring to work alone.
His main leisure pastime was solitary walks.

Toward the practical end of earning a living, Dirac studied engineering
at the University of Bristol. The use of approximations that he acquired in
these studies had a strong influence on his later work: it strengthened his
confidence in the intuitive approach to problem solving. He came to believe
that a theory expressing fundamental laws of nature could be constructed
solely on the basis of approximations, guided by intuition rather than exact
knowledge of the actualities. He declared that the actual phenomena were
too complex ever to be pinned down in a precise way; a physicist must be
satisfied to work with only approximate knowledge of reality.

Dirac’s study of theoretical physics began only after he received a degree
in electronic engineering, failed to find work in this field, and, aided by a
grant, entered St. John’s College, Cambridge. From R.H. Fowler, his faculty
supervisor, who had collaborated with Niels Bohr in his pioneering work in
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atomic physics, Dirac learned the current state of that science. Dirac was
awarded the Nobel prize for physics in 1933.

Dirac taught at Cambridge after receiving his doctorate there, and in 1932
was appointed Lucasian professor of mathematics, the chair once held by Isaac
Newton. He served in that capacity until 1968, shortly after which he moved
to the United States. In 1971 he was made professor emeritus at Florida State
University, Tallahassee, FL.

Dirac had no school or following and had produced (like Einstein) very
few students. He had essentially no collaborators and once, when asked about
this, had remarked that “the really good ideas in physics are had by only one
person”.

The Dirac Equation

The development of quantum mechanics took place historically through
the wave-mechanics of Schrödinger, based on the pioneering work of de
Broglie, and simultaneously through the matrix mechanics of Heisenberg,
Born and Jordan. The latter scheme was concerned chiefly with the literal
observables of an atomic system, such as the spectral lines obtained in transi-
tions between pairs of states or the particle velocities and positions. The two
approaches were unified in the work of Dirac, who based quantum mechan-
ics on the classical mechanics of Poisson, Hamilton and Jacobi, with a new
interpretation of Hamilton’s ‘canonical ’ variables.

The successful representation of electron spin by the matrices of Pauli,
paved the way for many advances in quantum mechanics. However, the the-
ory was still inadequate for dealing with fast-moving particles, because the
Schrödinger equation is not invariant under the Lorentz transformation of
STR.

In order to derive a relativistic Schrödinger-like wave equation658 for an
electron interacting with an electromagnetic field (atomic and/or external),
one must first derive a suitable Hamiltonian function for a particle of rest mass

658 At that time, prior to the discovery of second (field) quantization, no distinction

was made between probability – amplitude wave-equations and field equations.
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m, and charge e, free or in an external electromagnetic field characterized (in a
particular gauge) by a vector potential A and scalar potential φ. The classical
Lorentz-covariant Hamiltonian is

H =
3∑

i=1

piq̇i − L , pi =
∂L

∂ẋi

with xi(t) the spatial particle trajectory in a particular inertial frame, where
p (t) is the canonical (not mechanical) 3-momentum and the Lagrangian is

L = −mc2

(

1 − v2

c2

)1/2

+ e(v · A) − eφ.

This leads to

H = eφ + c
[
(p − eA)2 + m2c2

]1/2
,

or,
(H − eφ)2 − (p − eA)2c2 = m2c4.

With the usual quantum mechanical correspondence

p → �

i
∇, H → �i

∂

∂t
,

the relativistic wave equation for a charged particle devoid of intrinsic angular
momentum (spin) becomes:

[(
�

i

∂

∂t
+ eφ

)2

−
(

�

i
∇ − eA

)2

c2

]

ψ = m2c4ψ ,

with ψ(x, t) complex wave function. This is the Klein-Gordon equation for
a charged scalar particle under the influence of an external EM field. For
e = m = 0 (photon), the Klein-Gordon equation simply reduces to Maxwell’s
electromagnetic wave equation.

The Klein-Gordon equation was first discovered by Schrödinger, but was
almost immediately rejected by him for two reasons: firstly, it possesses
negative-frequency solutions, which are also (by H → �i ∂

∂t ) negative-energy
solutions. This is not really fatal, since one can discard all such solutions, al-
though this is a suspiciously artificial procedure, and leads to problems with
causality.

A more serious objection is that it would lead to negative probabilities in
Born’s interpretation of the wave function.
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Dirac sought to avoid both problems by finding a wave equation with a
differential operator linear in ∇. That is, he sought to replace

[
(p − eA)2 + m2

ec
2
]1/2

with

α · (p − eA) + βmec,

in such a way that the squares of both operators coincide. Clearly, such an
equality cannot be valid if the quantities α and β are regarded as an ordinary
vector and scalar, since squaring both expressions and equating coefficients of
similar terms leads to the contradictory requirements

α = (α1, α2, α3), α2
1 = 1, α2

2 = 1, α2
3 = 1, β2 = 1,

α1α2 + α2α1 = 0, α1β + βα1 = 0,

α2α3 + α3α2 = 0, α2β + βα2 = 0,

α3α1 + α1α3 = 0, α3β + βα3 = 0.

However, it is possible to satisfy these equations if α1, α2, α3 and β
are not numbers, but rather 4 × 4 anticommuting matrices (called Dirac
matrices659):

659 This is only one of an infinite number of matrix representations for α, β; how-

ever, the matrices must be at least 4 × 4 (in 4 dimensions, the Clifford algebra

can only be implemented using at least 4 × 4 matrices). The three 2 × 2 Pauli

matrices are the simplest realization of a Clifford algebra in three dimensions.

In D spacetime dimensions, the Dirac matrices must be at least 2n by 2n,

where n is the largest integer not greater than D/2. In our 4 spacetime dimen-

sions, 2 × 2 Dirac matrices are allowed if the fermion has zero rest mass (Weyl

spinors). Neutrinos were once thought to be massless. Now, these spin −1/2

leptonic fermions are known to have small but finite masses, but — due to pe-

culiarities of the weak nuclear forces that endowed them with their rest-masses

a fraction of a second after the Big Bang – must still be described by (several

copies of) a Weyl spinor. But charged leptons (e.g electrons) are described as

Dirac spinors, with 4 × 4 Dirac matrices.
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α =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞

⎟
⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭

β =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟
⎟
⎠

The corresponding Dirac equation for a charged particle in an electromagnetic

field then assumes the form

Hψ =
[

cα ·
(

�

i
∇ − eA

)

+ βmc2 + eφ

]

ψ = �i
∂ψ

∂t
,

where the quantum Hamiltonian matrix-differential operator on the L.H.S.

acts on both the position dependence and the discrete index of the four-

component, complex Dirac–spinor wavefunction,

ψ =

⎡

⎢
⎢
⎣

ψ1

ψ2

ψ3

ψ4

⎤

⎥
⎥
⎦ ; ψa = ψa(r, t), a = 1, 2, 3, 4.

The Dirac equation is equivalent to 4 simultaneous, linear, first-order dif-

ferential equations in the components of ψ. It has been solved exactly for

several important problems, including that of the hydrogen (or any hydrogen–

like) atom with infinitely–massive nucleus, and an electron in any plane EM

wavepacket. In the special case of a free particle

ψ = exp
[

i

�
(p · r − Et)

]
⎡

⎢
⎢
⎣

c1

c2

c3

c4

⎤

⎥
⎥
⎦,

with E2 = −p2c2 = m2c4 and two of the four complex constant ca components

being independent per given value of p and given energy sign. This represents

the two possible spin states (“spin up”, ↑, and “spin down”, ↓) of an electron

(or positron) relative to any given rest-frame spatial direction. Thus, the
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Dirac equation actually predicts the existence of electron spin660. Better yet:
in the non-relativistic (|p| � mc) regime in a weak external magnetic field,
the Dirac equation predicts the electron spin gyromagnetic ratio of ge = 2 —
very close to the empirical value, which before Dirac was totally inexplicable
(the orbital ratio has the classical value of 1 in Dirac’s theory, in agreement
with experiment). For the hydrogen atom, Dirac’s equation correctly predicts
the fine structure of line spectra (due to the spin-orbit magnetic coupling also
predicted by semiclassical relativistic electrodynamics; and also due, in part,
to the STR velocity dependence of mass).

Substituting the above representation for ψ into the Dirac equation (with
A = φ = 0) we obtain a system of 4 simultaneous homogeneous, linear alge-
braic equations, whose solubility condition is: E = ±(p2c2 + m2c4)1/2. From
this we conclude that the permissible energy values for a free particle in Dirac’s
theory range from mc2 to +∞ and from −mc2 to −∞. The first of
these results is of course just what we expect for a free relativistic particle

660 A Weyl spinor has only one spin state when moving at extremely relativistic

speeds (|p| � mc), and correspondingly it needs only two Dirac components;

such is the case for neutrinos. These spin −1/2 fermions have very small masses,

so they are usually emitted (and absorbed) traveling vary near light–speed, and

spinning clockwise relative to their direction of motion. If one could slow them

down substantially — or chase them in a frame in which they are at rest —

one would, of course, observe them to occur in both spin states (if all else fails,

one could then use a magnetic field to rotate them – like neutron, neutrinos

are electrically neutral but have magnetic dipole moments – or, overtake them.

So they will now appear to spin counter–clockwise relative to their direction of

motion!)

This apparent paradox can be resolved by noting that, in any quantum field

theory in which a Weyl spinor acquires mass, there is a certain probability

(especially at non-relativistic speeds) for a neutrino to turn into an anti-neutrino

(or vice versa) — and antineutrinos (at near-light speeds) are always observed

to spin counter–clockwise relative to their velocity direction. This postulated

weak inter–conversion of matter and antimatter may partly explain cosmological

baryogenesis — the phase transition (a fraction of a second after the Big Bang)

which generated a small (ca 1 part in 1010) excess of matter over antimatter.

Subsequently, the antimatter annihilated almost entirely with matter, leaving

only radiation and the small matter excess: the universe we observe today.

In some extensions of the Standard Model of particle physics, the existence of

counter–clockwise–spinning (“right handed”), low–mass neutrino states, is due

in part to a quantum mixing between massless, left-handed neutrinos moving

at light–speed, and ultra-heavy, right–handed, Weyl spinor neutrinos.
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— that its total energy can have any value greater than or equalling its rest
energy. But the second allowed energy band is quite puzzling, since it implies
the existence of states of negative energy!

Furthermore, there is nothing to prevent — and indeed the theory requires
— the occurrence of transitions between states of positive and negative energy.
These rather remarkable features of Dirac’s theory led him to predict the
positron (e+), which was indeed discovered in 1932 by Anderson, but not
really understood until the advent of quantum electrodynamics (QED) in the
30’s and the 40’s.661

1928–1941 CE Frank Whittle (1907–1996, England). Engineer, inventor
and fighter pilot. Father of the jet age. The leading pioneer in the development

661 QED results when the coupled Maxwell and Dirac equations are second-

quantized. According to QED, a positron propagating forward in time can

be interpreted as a negative energy electron propagating backward in time (!)

— and yet, overall the theory does obey STR’s local causality. The small de-

viations of empirical results from Dirac’s predictions – e.g. for ge – have been

explained to very high accuracy by QED effects (“radiative corrections”), such

as vacuum polarization due to virtual e+e− pairs.

It is ironic that the two reasons for the original rejection of the Klein-Gordon

(KG) equation, were invalid! for the negative energy solutions occur in Dirac’s

equation as well, and turn out to be necessary to describe antimatter ; while

the negative-probability problem disappears when one second-quantizes the KG

equation.

Today, the KG is used as a field equation for fundamental scalar and other

integer–spin (bosonic) quantum fields, while the Dirac equation is used for fun-

damental spinor (fermionic) fields (such as the spin −1/2 neutrinos, electrons

and quarks). Hypothetical fundamental spin − 3
2

fermions — the so-called grav-

itinos of supergravity theories — are described by the Rarita–Schwinger equa-

tion, which is essentially the Dirac equation for a field ψμa(x) with both a

spacetime and a Dirac index, and with a few additional auxiliary conditions.

The spin-statistics theorem of Quantum Field Theory states that local causal-

ity requires that integer-spin fields (such as scalars, photons non-abelian gauge

fields and gravitons) describe bosons (i.e. obey Bose-Einstein quantum statis-

tics), while half-odd-integer-spin fields (such as electrons, neutrinos, quarks,

protons) describe fermions (i.e. their associated particles obey Fermi-Dirac

statistics and the Pauli Exclusion principle).
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of the turbojet engine. This engine powered Britain’s first jet plane in 1941
and became the model for the first U.S. turbojet.

Whittle was born in Coventry, England, the son of an inventor. He joined
the Royal Air Force when he was 16 and distinguished himself already in 1928
with his first patent, after the Air Ministry rejected his jet engine proposals.

Whittle’s basic patents lapsed in 1935 because he did not have enough
money to pay patent fees. Later that year, a group of engineers became
interested in his work and, with the British government and Whittle, formed
Power Jets Ltd, to produce engines. Whittle had joined the RAF in 1924 as
an apprentice, later training as a fighter pilot.

During 1937–1946 he worked on jet propulsion. In May 1941, the Gloster
E 28/39 first flew with the Whittle engine. Both the German and the US jet
aircraft were built using his principles. He retired from the RAF (1948) and
took up a university appointment in the USA.

While others (e.g. the British Rolls-Royce Co.), made many billions off
his invention — which revolutionized transportation in the 20th century —
the inventor himself was merely granted the lump sum of $100,000. Even in
his own country he never received the recognition he deserved. The jet age
started without Whittle.

1928–1952 CE Felix Bloch (1905–1983, U.S.A.). Distinguished physicist.
Among the first to apply quantum theory to solid state physics, particularly to
the magnetic properties of matter. Discovered (with Edward Mills Purcell)
the phenomenon of nuclear magnetic resonance (1946), and developed it as a
means of studying solids and liquids by measuring the magnetic behavior of
their atomic nuclei. For this work they were both awarded the Nobel prize
for physics (1952).

Bloch was born in Zürich, Switzerland, to Jewish parents. He studied first
at the Federal Institute of Technology in Zürich and in 1927 under Heisen-
berg, at Leipzig, where he became a lecturer in physics (1932). He left
Germany in 1933 and in 1934 went to Stanford University where, apart from
a period during WWII, he remained as a professor of physics (1934–1971). In
1954–5 he took leave to become director of CERN, Geneva. His main contri-
butions to quantum physics were:

• Modern theory of electrical conduction in metals (1928). Developed and
applied methods for solving the Schrödinger equation of an electron in
periodic structure (metallic lattice). Introduced Bloch theorem; Bloch
wavefunctions; and Bloch wavenumber. Showed that the electrical resis-
tance of a metal is mainly due to imperfections in the arrangements of its
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constituent atoms. Investigated the conductivity of metals at low tem-
peratures and determined the dependence of spontaneous magnetization
upon temperature (1930).

• Measured the magnetic moment of the neutron (with L.W. Alvarez,
1939); devised methods of polarizing neutrons, separating them according
to the direction of their intrinsic spin (neutron beams).

• Solved several problems concerned with the properties of ferromagnetic
materials (such as iron). These materials are divided into small meso-
scopic regions called domains, in each of which the magnetization points
in a different direction. Bloch showed which factors influenced the forma-
tion of the boundaries (or ‘walls’) between these domains, and calculated
their thickness and dynamics.

• Introduced the model of ‘spin waves’ in magnetic materials, which has
proved extremely valuable in understanding how magnetic properties de-
teriorate when the temperature of the material is raised.

• First successful NMR experiment with bulk matter; Bloch equations
(1946).

1928–1968 CE George Anthony Gamow (1904–1968, Russia and
U.S.A.). Distinguished astrophysicist. One of a handful of scientists who
made a distinctive mark on 20th century science:

• Developed the quantum theory of radioactivity (1928) including the tun-
neling effect662.

662 An important quantum-mechanical phenomenon (directly observable), also

called barrier penetration – which is responsible for such physical phenomena

as field emission of electrons from metals, nuclear fusion in the solar core, and

α-particle radioactivity. The particle wave-function acquires an exponentially

decreasing spatial dependence — the matter-wave analogue of optical evanes-

cence. This, in turn, makes it possible for a particle with insufficient classical

kinetic energy for passing over a potential barrier, to occasionally penetrate

it nonetheless, with a computable, finite probability per “attempt”. Our sun

could not shine without quantum tunneling, since its core temperature is too

low for thermal energy alone to allow fusing protons to overcome their mutual

Coulomb repulsion at sufficient rates.

In 1933, Clarence Melvin Zenner (1905–1994, USA) first explained the elec-

trical breakdown of insulators in terms of tunneling effects [known as Zenner

effect or Zenner breakdown and put to use in the Zenner diode]. A very similar

effect occurs in the Esaki diode (1957), where an external electric field is ap-

plied across a thin film of insulator separating heavily doped p-type and n-type

semiconductors.
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• Originated (with Edward Teller) the liquid-drop model of atomic nuclei
(1928–1929).

• Postulated (with Fritz Houtermans) that the sun’s radiant energy de-
rives from thermonuclear processes (1929), i.e., that nuclear fusion is the
primary source of energy in stars.

• Formulated the Gamow-Teller theory of beta decay (1936) and the theory
of internal structure and energy source of red giant stars (1942).

• Sorted out the role played by neutrinos in the supernova explosions of
stars.

• His application of nuclear processes to cosmology led him to become
a leading advocate of the ‘Big-Bang ’ theory of the origin of the uni-
verse663. Already in the late 1930’s he applied his wide knowledge of
nuclear physics to stellar evolution studies and in work concerning the
mass-luminosity relationship for stars.

As early as 1946 Gamow and his collaborators began theoretical research
regarding the origin of the elements during the first 4 minutes of the expan-
sion of the universe, hypothesizing that the elements were created by neutron
capture664. By 1948, Gamow had coined the term ‘Big Bang’ for the cos-
mological model that described the Universe as beginning in a highly dense,
compact fireball, whose explosive expansion we are still witnessing through
the recession of the distant galaxies.

Gamow’s work on big-bang cosmology led him to predict the cosmic abun-
dance of Helium and the presence of a low-temperature cosmic microwave

663 Einstein himself did not believe in the existence of singularities in nature [Ann.

Math. 40, 922, 1939]. On the subject of the big bang, Einstein’s last words were:

“One may. . . not assume the validity of the equations for very high density of

field and matter, and one may not conclude that the ‘beginning of explosion’

must mean a singularity in the mathematical sense” [A. Einstein and N. Rosen,

Phys. Rev. 48, 73, 1935]. Modern Quantum Field Theorists concur; for example,

in string theories Einstein’s GTR is but a long-wavelength approximation, to

be replaced by an effective, non-local field theory at epochs approaching the

Planck scale (times of order 10−43 sec after Big Bang). These effective field

theories avoid the far-past singularities which S. Hawking and others proved

must afflict any GTR-based cosmology (under reasonable assumptions).
664 Expounded in a paper by Alpher, Bethe and Gamow (1948), in which Hans

Bethe’s name was borrowed for comical effect.
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background radiation665. [The latter prediction was confirmed observationally
by Arno Penzias and Robert Wilson (1965); light-element abundance
predictions based on Big Bang models have also been brilliantly confirmed by
astrophysical and cosmological observations.]

• First to suggest (1954) a three–nucleotide–symbol for genetic coding
scheme; it was inaccurate, but later acknowledged as a key milestone
in the development of molecular biology. The correct DNA genetic code
— which indeed utilized codons three nucleotides long — was worked out
by M. Nirenberg et al. in the 1960’s.

Gamow was born in Odessa, Russia. He was educated in the USSR, stud-
ied nuclear physics at Göttingen, Germany (1928) and spent some time in
Cambridge at the Cavendish Laboratory (1929), where Rutherford asked
him to calculate the energy required to split the atom. He then emigrated to
the United States (1933). Became a professor of physics at George Washing-
ton University (1934–1956), and later professor of physics at the University
of Colorado (1956–1968).

1928–1960 CE Georg von Békésy (1899–1972, Hungary and U.S.A.).
Physicist. Established a new theory of hearing based on waves formed by
fluids in the cochlea of the inner ear. This auditory mechanism replaced a
theory put forward by Helmholtz (1857), and won Von Békésy the Nobel
Prize for physiology in 1961.

He showed that the tympanic membrane is almost critically damped, that
the middle ear is nonlinear, and that receptions in various regions of the
cochlear duct are sensitive to different frequencies of vibrations. He was first
to suggest (1960) that the inner hair cilia in the cochlea were the transducers

665 This radiation, which bathes the earth almost exactly isotropically from all di-

rections in the universe, corresponds at the current epoch to the microwave

radiation of a black body at a temperature of 2.7 ◦K. The only plausible expla-

nation for the origin of this radiation is that it is the remnant of an early phase

in the expansion of the Universe – the so-called recombination era (ca 3 × 105

years after the Big Bang). The near–visible photons of that epoch – when

electrons combined with photons to form neutral hydrogen and the universe be-

came transparent to EM radiation and also matter–dominated gravitationally

– spread throughout space and lost their energy through the adiabatic cosmic

expansion (i.e through red–shifting), so that the corresponding temperature

dropped – from about 3000 ◦K at recombination to its present value of 2.7 ◦K.
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which convert an acoustic signal into a neural signal (traveling along a nerve
fiber), and all recent evidence has fully confirmed that hypothesis.

Békésy became interested in hearing as director of the Hungarian Tele-
phone System Research Laboratory (1923–1946), and was later Senior Re-
search Fellow in psychophysics at Harvard.

Mechanics of Hearing (1561–1991)

“Anyone familiar with how extraordinarily various systems have been refined
during 200, 000, 000 years of mammalian evolution by natural selection, has
to sit up very respectfully indeed in front of well attested evidence of anything
so potentially valuable to an animal’s survival as an auditory response curve
which, around its peak, becomes more and more sensitive as sound levels get
lower and lower. Immediately one is tempted to puzzle over what special sort
of mechanism might have evolved to allow such an advantageous increase of
sensitivity at low stimulus level”.

James Michael Lighthill, J. Vib. Acoust. 113, 1–13 (1991)

Four hundred years had to pass from the first application of the scientific
method to the subject before man could gain some basic knowledge of the
structure and auditory mechanism of the human ear. This is not surprising
in view of the complexity of the inner ear and the strong dependence of
its physiology upon acoustic principles and phenomena that were not fully
understood before the end of the 19th century.

The first period (1561–1772) is marked by the efforts of Italian physicians
and anatomists to ‘map’ the anatomy of the ear: Gabriele Fallopio (1523–
1562) gave the first modern description of the organs of the inner ear (1561).
His contemporary Bartolomeo Eustachi (1520–1574) published a treatise
on the organ of hearing in which he rediscovered the Eustachian tube (named
after him although it was discovered some 2000 years earlier by Alcmaeon
of Crotona), the tympanic membrane and the cochlea (1564).
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Giulio Casseri (1522–1616) wrote a book on the anatomy of voice and
hearing in which he discussed the physiology of hearing. The Italian anatomist
Antonio Maria Valsalva (1666–1723) provided (1704) the first detailed
description of the physiology of the ear, and Antonio Scarpa (1747–1832)
discovered in 1772 the semicircular canals, vestibule and the internal structure
of the cochlea.

During the second half of the 19th century, physicists and physiologists be-
gan to harness acoustical theory to investigate the passage of sound through
the ear. Chief among these was Helmholtz (1857–1864), who proposed a
resonance theory of hearing, based on the argument that the transverse fibers
of the basiliar membrane in the cochlea of the inner ear act as tuned res-
onators (1857). In 1864 he advanced the theory that the pitch (frequency)
is detected by a series of resonators of different sizes in the cochlea, and that
overtones and beats based on different frequencies, determine the quality of
the perceived sound. In 1870, Galtz recognized that the vestibular process
is for maintenance of directional equilibrium and is not involved in hearing.
In 1886, William Rutherford (1839–1899) discovered that tiny hairs in the
cochlea are set in motion and thus convey sound.

The first practical commercial electrical hearing aid was patented in 1902
by Miller Reese Hutchinson (U.S.A.).

On other fronts of the science of hearing, the pioneering work of W.C.
Sabine (1898–1900) laid the foundation of the acoustics of buildings and
rooms; The first systematic explorations of binaural hearing were made by the
physicist Irving Langmuir, while working on the detection of submarines
during WWI. The physicist Harvey Fletcher (1884–1981, U.S.A.) first used
precise and effective electronic apparata in studies of sound and hearing (1923–
1929). At Bell Laboratories, he led a wide range of experiments on speech,
hearing and sound reproduction, using vacuum-tube electronics, microphones,
headphones, amplifiers and loudspeakers.

Like the eyes, the ears perform two functions — they detect sound and
gather information about the position and movement of the body. But unlike
the eyes, two separate receptors are involved — the so-called cochlea is sensi-
tive to sound, and the semicircular canals and vestibule detect movement.

As with vision, the body faces the problem of converting an external stim-
ulus into a code understood by the brain. Sound is produced by waves of
alternating-sign pressure fluctuations spreading out from a source, rather like
ripples on a pond. These waves can pass through solids, liquids and gases.
Sound reaches the ears by the vibration of molecules in the air (or in water,
if the listener is diving).

Before nerve impulses are produced in response to sound, the vibrations
are first converted into the mechanical movement of 3 tiny bones, the last
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of which sets up a wave in a tube (cochlea) filled with liquid. Rows of tiny
nerve cells respond to this wave movement by firing off signals which carry
information about the amplitude, phase and frequency content of the incoming
sound. This 3-stage auditory system gives humans a dynamic range of 1014

from the softest to the loudest detectable signal. The frequency range of the
human ear is between 20–20, 000 Hz (although it is significantly narrower, in
actual fact, for most individuals).

Many animals can detect sound of far higher frequencies than those de-
tected by humans. (Some bats can produce and detect frequencies up to
120, 000 Hz.) Humans are most sensitive to sounds between 1000 and 6000
Hz, the range in which speech sounds fall. In this region, the ear can distin-
guish between two different pitches separated by 2 to 6 Hz, and between two
clicks when the second follows the first after only 10 milliseconds.

The anatomy and physiology of the ear is briefly as follows: The external
ear consists of a funnel-like structure (auricle) which helps direct the air
pressure changes down into an S-shaped canal that leads inward for about
27 millimeters. Without the auricle one could not hear very well (and would
not have any place to hang one’s glasses!). The auditory canal (meatus) leads
to the diaphragm, or eardrum (tympanic membrane). Thus, the meatus acts
like an organ pipe with one closed end, and sets up a standing wave whose
fundamental wavelength is four times its length, or about 108 millimeters.

Since the speed of sound is 354 m/sec at body temperature, the frequency
is 3280 Hz. The meatus666 provides an amplification of 5–10 dB for frequen-

666 During the 1920’s, when routine measurements of sound amplitudes first be-

came practical, the wide dynamic range of magnitudes made it customary to

plot data on a logarithmic scale. Harvey Fletcher introduced (1923) a defini-

tion of a sound-pressure level (s.p.l) relative to an arbitrary reference standard,

L = 10 log10

[
(p2)ave

p2
ref

]

, the resulting number having the units of decibels (db).

This definition implies that L = 0 at the level p2 = p2
ref and L = 1 (dB)

for p2 = 101/10p2
ref = 1.2589P 2

ref. In general, a second pressure level exceeds

the first by 1 dB unit if there is an increment of 0.1 in the logarithm to base 10

of their corresponding mean square pressures. The mean square pressure may

correspond either to the acoustic pressure, to that of one frequency component,

or to a band of frequencies.

The above definition is sometimes written in terms of an intensity level in the

form 10 log10
I
I0

, where I = 〈p2〉ave
2ρ0c

is the sound intensity (acoustic energy

flow per unit area per unit time), and ρ, c are respectively the mass density

and speed of sound in air at the ambient temperature and pressure; the denom-

inator z = ρ0c is the acoustic impedance. The reference intensity is usually

chosen to be 10−12 watt
m2 which is about the threshold of human hearing at



1928 CE 3803

cies between 2000–5000 Hz, and this frequency range is the region in which
the ear is most sensitive.

While the outer ear helps direct the miniscule air-pressure changes (as
small as 10−9 atmospheres) down into the ear canal with some initial ampli-
fication, the problem still confronted by the ear is how to convert (transduce)
air-motion into some other physical excitation that will stimulate the nerves
to send messages on to the brain. This is done in two steps: in the first step

1000 Hz. [Note that if the actual intensity doubles (I = 2I0), the ear hears an

increase of 10 log10 2 = 3 dB, whereas if the intensity increases tenfold, there

is an increase of 10 dB.]

The following auditory conditions are parametrized by the corresponding sound

intensity (in watt
m2 ) and dB level as heard by our ears: human breathing (10−11,

10); rustling of leaves, or whispers (10−10, 20); two person conversation (10−6,

60); vacuum cleaner (10−4, 80); accelerating motorcycle (at 5 meters: 10−1,

110); rock concert (1, 120); threshold of pain (100, 140); large rocket launch

vehicle (107, 190).

Some amusing comparisons can be constructed from these figures: since a hu-

man shout generates a power of 10−5 watts, the acoustic power generated by

all the world’s population shouting at once is about 105 watts. This power is

emitted by a single large jet transport at take-off! Also, the total energy radi-

ated by the combined shouts of the Wembly cup final crowd during an exciting

soccer game is about that required to fry one egg! Finally, a 40 W light bulb

illuminating an area of 1 cm2 at distance of 1 cm produces the same power as

1500 bass voices singing fortissimo.

In the human ear, the range of acoustic intensities at the threshold of audibility

on the one hand and the threshold of pain on the other, spans over 14 orders of

magnitude; no single mechanical instrument is capable of such a vast dynamic

range [Analogy : imagine a balance sensitive enough to weigh a single human

hair with reasonable precision. If this same balance had the wide range of the

human ear, it could also weigh an aircraft-carrier.] Note also that at the thresh-

old of hearing, the vibration amplitude is about 10−9 cm at 1 KHz, that is, only

some 10−3 of the mean free molecular path length in the surrounding air, or 0.1

of the Bohr atomic radius (detail : assume a displacement of the tympanic mem-

brane y = A sin ωt with u = ẏ = Aω cos ωt; I0 = (p2)ave
2z

= 10−12 watt/m2;

(p2)ave = z2(u2)ave = 1
2
z2A2ω2. Hence A = 2

ω

√
I0
z

, with

ω = 2π × 103 sec−1 = 6280 sec−1, z = ρ0c = 450 kg m
−2

s
−1, yields A = 1.5 × 10−11

meters. Since one atmosphere is equal to p0 = 105 Newton
m2 , and I0 corresponds

to a peak-to-trough pressure change of Δp � 4
√

I0ρ0c = 8 × 10−5 Newton
m2 , we

find that Δp
p0

≈ 10−9 at the threshold of audibility].
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the vibrations of the tympanic membrane are converted into vibrations in the
liquid, in which receptors are located.

Under normal circumstances the efficiency of vibration transfer from air to
liquid is less than 0.1 percent. The ear gets around this by using three small
bones (ossicles)667 of the so-called middle ear, which form a bridge connecting
the eardrum to the inner ear and function to transmit vibrations between these
parts. Because of the lever action of the bones, the force delivered to the last
bone is 1.4 times greater than that applied to the tympanic membrane.

The force delivered by the shapes is further increased because the surface
area of the membrane is about 25 times that of the oval window, which is where
the bone applies its movement. Overall, then, the construction of the middle
ear serves to amplify the air vibrations by 35 — a very clever mechanical
structure indeed!

The inner ear consists of a complex system of intercommunicating cham-
bers and tubes called the labyrinth. The parts of the labyrinth include a
cochlea668 that functions in hearing, and three semicircular canals that func-
tion in providing a sense of equilibrium. A bony chamber, called the vestibule,
which is located between the cochlea and the semicircular canals, contains
membraneous structures that serve both for hearing and equilibrium.

If one cuts the cochlea tube lengthwise, it is seen that it is divided into
two major compartments by the basiliar membrane; the two compartments
interconnect. When the stapes pushes the membrane of the oval window, the
fluid in the two compartments is compressed, so much so that the membrane
covering the round window669 at the other end of the tube bulges out. The
motion of the fluid sets the basiliar membrane into motion. A standing wave

667 The auditory ossicles (malleus, incus, stapes) never grow, and keep their size

invariant throughout life. The malleus vibrates in unison with the eardrum, and

causes the incus to vibrate, which in turn passes the movement onto the stapes.

Vibration of the stapes at the oval window of the inner ear causes motion in a

fluid within the inner ear.
668 The total length of the uncoiled cochlea is about 35 mm. Its coiled diameter is

about 1.5 mm. Its two galleries are filled with perilymph fluid. The partition

between the galleries consists of 3 membranes of which the basiliar membrane

is the lowest one. The partition between the galleries is filled with a highly

viscous substance called the endolymph.
669 The role of the round window is to relieve any pressure of the perilymph fluid

due to mass movement of the fluid (caused by low-frequency thumps) from

the oval window. High-frequency clicks do not produce a mass movement of

perylimph, but cause the whole partition between the galleries to move.
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is established in the membrane, the characteristics of which are determined
by the frequency of the sound.

The location of nodes and antinodes of the vibrating basiliar membrane
will depend on the frequency of the exciting vibration in the fluid, while the
displacement at each point along the membrane will depend on the spectral
amplitude of the corresponding frequency.

Thus, receptors that are linked up along the length of the basiliar mem-
brane could “read” the frequency and amplitude of a given Fourier component
of an incoming sound signal from the amplitude pattern formed along the axis
of the membrane.

The basiliar membrane is not as simple as we have implied: At its upper
surface is located the organ of Corti which stretches from the apex to the
base of the cochlea. Its receptor cells, which are called hair cells, are arranged
in rows, of which there is a total of 23, 500 in each ear. Above these cells
is a tectorial membrane that is attached to the bony shelf of the cochlea and
passes like a roof over the receptor cells, making contact with the tips of their
hairs.

As sound vibrations pass through the inner ear, the hairs shear back and
forth against the tectorial membrane, and the mechanical deformation of the
hairs stimulate the receptor cells, thereby initiating a nerve impulse from the
hair cells, along the sensory fibers to the cochlear nerve, which later forms
the auditory nerve. Various receptor cells, however, have slightly different
sensitivities to such deformation of their hairs.

Thus, a sound that produces a particular frequency of vibration will excite
certain receptor cells, while sound involving another frequency will stimulate
a different set of cells. The inner hair cells are less sensitive than the outer row
and therefore require greater mechanical stimulation before discharging. This
arrangement therefore adds a further dimension of intensity discrimination.
The auditory nerve carries auditory information to the temporal lobe of the
auditory cortex, passing through the thalamus on the way. Both ears send
information to the cerebral hemispheres.

In recent decades (1970–1990) great progress has been made in our knowl-
edge of the macro- and micromechanics of the cochlea. First, experiments have
shown that waves propagated along the basilar membrane are indeed disper-
sive; William Rhode (1971, University of Wisconsin, U.S.A.) used surgical
procedure allowing two small Mössbauer sources (measuring time-variation of
Doppler shifted frequencies of source-emitted gamma rays) of diameter 0.06
mm, and 1.5 mm apart, to be implanted on the basilar membrane of a live
squirrel monkey. Another Mössbauer source was placed on the point of the
eardrum which is in direct contact with the handle of the malleus bone in the
middle ear.
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Thus, when the ear was stimulated acoustically by a pure tone, the si-
nusoidal vibrations of both the basilar membrane and the malleus — which
drives it — could be determined in both amplitude and phase. From the
amplitude ratio and the phase difference, the group velocity U could be eval-
uated at each frequency as a function of a coordinate xr along the basilar
membrane. It was found that, for any given frequency ω, U tended to zero
at a different location, thus permitting the energy to “pile up” at a char-
acteristic, frequency-dependent position xr(ω)! In other words, each Fourier
component of an acoustic signal will propagate along the cochlea as far as its
characteristic place.

How is the basilar membrane able to achieve this feat of frequency selec-
tivity? Experiments (1978) have shown that the mechanical behavior of the
basilar membrane in vivo is highly anisotropic, to the extent that neighboring
short sections of the membrane vibrate almost independently of one another.
This results in a continuous variation in stiffness along its length by about
four orders of magnitude. This massive increase in compliance from base to
apex is primarily due to a gradual increase in width (from 0.1 mm to 0.5 mm)
and a corresponding decrease in thickness.

This property facilitates the dispersive behavior mentioned above, as it
permits the traveling wave at a given frequency to undergo a progressive
reduction in wavelength, and therefore in group velocity, to zero as the char-
acteristic position is approached. Then its amplitude must build up in a way
limited only by viscous dissipation, which allows a very sharp tuning in the
basilar membrane vibrations. This is how the different frequency components
of an acoustical signal “find their way” to different characteristic positions
along the cochlea.

Nevertheless, even the modest level of energy dissipation by viscous action
is now believed to prevent this remarkable mechanism of frequency selectiv-
ity (based on passive mechanical properties of the basilar membrane) from
entirely accounting for the extreme sharpness of tuning observed in the best
recent measurements. Compelling evidence has been amassed to the effect
that an active feedback mechanism, residing in the outer hair cells, produces
a further sharpening of the basilar membrane’s response at low amplitudes.

Some 4000 inner hair cells are stretched along the length of the human
cochlea, and each sends a signal to the brain along a group of nerve fibers,
which together form part of the complete auditory nerve. Each of these nerve
fibers comes from a particular place along the cochlea and predominantly
carries information about acoustic signals at frequencies for which that is
the characteristic position. Indeed, electrophysiological measurements of the
neural activity in one of those fibers show a level of response to acoustic signals
which has a very sharp maximum at the corresponding frequency (1965–1974).
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In addition, there are 12, 000 outer hair cells. These cells are endowed with
efferent nerve fibers carrying to them (from more central parts of the nervous
system) neural signals which can be presumed to control their function.

Experiments using Mössbauer source implantation on the basilar mem-
branes of guinea pigs (1982) have shown that the threshold sound (sound
pressure level in db) required to generate vibrations of the basilar membrane
(at a particular place where a Mössbauer source was implanted) decreases
with the decrease of frequency.

In addition, the basilar membrane response has a very sharp maximum at
the frequency for which that point is the characteristic position. The (also
very sharp) tuning of auditory nerve fibers — that is, their sharp maximum
of response to acoustic signals at a characteristic frequency for each fiber —
is found to be fully matched by the sharp tuning of the basilar-membrane
mechanism in the inner hair cells which simply converts vibration velocities
into neural activity.

Experiments (1987) have revealed that pure tone signals are able to evoke
from the ear an acoustic response, taking the form of an emission of sound
from it at the same frequency, known as the otoacoustic emission. This means
that the low-level incoming acoustic signal stimulates in the cochlea an ac-
tive process, utilizing metabolic energy, that gives rise to a backward travel-
ing wave. This backward wave exerts a pressure on the oval window which,
through the same linkage acting in reverse, causes the eardrum to generate a
signal that enhances the weak external signal.

How then is the otoacoustic emission generated? It is believed that the
vibrations of the outer hair cells vibrations are the source of the positive
mechanical feedback (1987–1989).

So far we mainly discussed that part of the ear which responds to acoustic
signals. The ear, however, is also designed to respond to accelerations and
rotations of the head; the relevant sensors are used by the brain to control the
position, attitude and movements of the body — much as inertial navigation
systems do in human-engineered air, sea and space craft. The sense of equilib-
rium actually involves two senses — a sense of static equilibrium (stability of
the head and body when these parts are motionless), and a sense of dynamic
equilibrium (maintaining balance upon sudden motion or rotation).

The organs of static equilibrium are located within the vestibule, the bony
chamber between the semicircular canals and the cochlea. They are the utricle
and the saccule. The dynamic equilibrium is monitored by the three bony
semicircular canals.

These two groups of receptors all work in basically the same way — that is,
there are hairlike nerve cells within the tubes that pick up the swirl of internal
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fluid caused by tilting or rotational movement of the head. The saccule and
utricle are simply short tubes in the same plane. The canals, on the other
hand, are three tubes arranged at right angles to each other. In this way they
can detect movement of the head in any plane670. Signals from these two
groups of receptor organs are largely responsible for inflicting motion sickness
on the occasional unfortunate traveler.

Among other interesting features of the ear which determine its quality as
an auditory sensor is the persistence of hearing. In the optical case, persistence
of vision is of the order of 0.02 sec. In the aural case, regardless of the
original intensity, the sound level decays to threshold in about 0.14 sec after
stimulation has ceased.

1928–1968 CE Maurits Cornelius Escher (1898–1971, Holland). A
most original, unique and imaginative artist who created images of the ob-
served world through which he represented concepts of groups, fractals, man-
ifolds, non-Euclidean geometries and topology.

Most of his life was spent in making various kinds of analytic compositions
out of his subjects by means of graphic processes such as wood-engraving or
lithography. He was at the same time photographer, architect and visionary,
and his images are of equal interest to cognitive psychologists, mathemati-
cians and laymen. Some of his works treat landscapes and natural forms
in a fantastic fashion using distorted geometries. Others combine seemingly
meticulous realism with paradoxical visual and perspective effects.

Scientists are fascinated by Escher’s work because they recognize in it
elements of the world with which they are familiar671. For them the plurality
of Escher’s world signifies neither absurdity nor chaos, but a challenge to look
for new logical relationships between phenomena: the strangeness or absurdity
that seems at first sight to be present in his work can, in the final analysis,
be resolved and explained.

670 It is amazing how nature, via the process of evolution, created a dynamical

system that man could not improve on, if he had to construct it himself on the

basis of modern science and technology.
671 It is bizarre how very little of 20th-century science has been assimilated into

20th-century art. Besides Escher, the topological sculptures of Henry Spencer

Moore (1898–1986, England) come to mind.



1928 CE 3809

The main source of fascination in Escher’s prints is in the obvious message
they convey: reality is wondrous and at the same time comprehensible.

Escher was born in Leeuwarden, the capital of the province of Friesland in
the northern part of the Netherlands. He spent most of his youth in the city of
Arnheim, where he attended secondary school. He later went to Haarlem, on
his father’s advice, to study architecture; there he came under the influence of
the Jewish artist Samuel Jessurun de Mesquita, (1868–1944) who advised
him to drop architecture and pursue his education in the graphic medium
under his guidance (1919–1922).

Escher lived in Rome from 1923 to 1935, being greatly fascinated by Italy
and its cultural heritage. He traveled extensively throughout the country. The
rise of fascism caused him to leave Italy in 1935 and travel in Switzerland and
Spain. He returned to Holland in 1941, and stayed there for the rest of his
life.

Radio Communication and the Fourth State of Matter

During the early years of the 19th century, several major discoveries were
made concerning the properties of electric current. In 1800 W. Nicholson
(1753–1815, England) and A. Carlisle (1768–1840, England) discovered the
phenomenon of electrolysis, in which the chemical bonds of certain compounds
(known as electrolytes) are broken by the passage of a current.

The laws of electrolysis were stated by Faraday in 1832, and these could
be explained most simply in terms of ionic migration. According to the ionic
theory, an electrolyte consists of free positive and negative ions which move
to opposite electrodes during electrolysis. This idea was applied successfully
to many problems of physical chemistry by Arrhenius and others. As a
result, it appeared probable that in certain substances chemical combination
depends on the electrostatic attraction between opposite charges attached to
different atoms or parts of molecules.

Some of the most important advances in late 19th century physics came
from the study of electrical conduction in gases. After 1855, improved vacuum
techniques enabled Plücker, Hittorf (1824–1914, Germany), and Crookes
(1832–1919, England) to investigate the properties of cathode rays. In 1897,
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J.J. Thomson produced strong evidence in favor of the theory that cathode
rays are beams of subatomic particles, now called electrons (and identical
to the earlier–discovered negatively charged beta rays emitted by radioactive
substances). The electron theory was rapidly applied in many branches of
physics, and Millikan’s experiments (from 1911 onward) made it clear that
the electronic charge is the fundamental unit of electricity.

J.J. Thomson went on to analyze the positive rays occurring in discharge
tubes and by 1912 he had evolved a technique for separating ions of different
atomic masses and charges (mass spectrometry). In isolating two stable iso-
topes of neon he provided part of the explanation of fractional atomic weights
in chemistry. By this time both the massive positive ions and the much
lighter electron had been identified; E. Rutherford (1911) adduced strong
evidence indicating that electrons orbit oppositely–charged nuclei within neu-
tral atoms. Although the details of atomic structure remained obscure until
the maturation of the quantum theory in the 1920s. It was evident that the
stability of atoms depends on electrostatic forces.

With the advent of radio communication, Arthur Kennely (1861–1939,
U.S.A.) and Oliver Heaviside (1850–1925, England) tried to explain the
perplexing observation that radio-waves could bend around the earth’s curva-
ture and get across the ocean. [Maxwell’s theory seemed to predict that radio
waves should sail off into space!]

Both Kennely and Heaviside, neither knowing of the other’s work, sug-
gested in 1902 that there was a layer of electrified gases high up in the earth’s
atmosphere that reflected radio waves. This was quickly found to be true,
and that region of the atmosphere is known today as the Heaviside layer, or
simply the ionosphere.

The ionosphere consists of various layers of partially ionized gases — plas-
mas — that reflect a certain range of radio frequencies. The altitudes of the
different layers vary considerably from day to day, depending largely on the
activity of the sun. Low, medium and high frequency radio waves are re-
flected at different altitudes, and thus allow long-range radio broadcasts to
span oceans and continents. But very high frequencies (VHF) and ultra high
frequencies (UHF), which are used for television broadcasts, are not reflected
by the ionosphere. Thus, TV signals can only be sent as far as the horizon,
unless they are relayed. The aurorae are thought to be caused by ions and
electrons of the ionosphere that are excited to the point where they glow.

By the 1920’s, radio communication was big business. Large industrial
research laboratories such as General Electric Laboratories were deeply en-
gaged in investigating the basic physical phenomena of radio communication,
and seeking ways to make better electronic equipment.



1928 CE 3811

It was at the GE Labs that Irving Langmuir (1881–1957, U.S.A.) carried
out basic studies of electrified gases in vacuum tubes (as did Crookes half a
century earlier) and coined the term plasma.

One of the prime differences between gases and plasmas is that plasmas
can conduct electricity, and its constituent particles can exert electromagnetic
forces on each other. A plasma as a whole is usually electrically neutral on
average (although charged particle beams, generated in particle accelerators
or even in simple vacuum tubes, are not neutral). Most plasmas consist of
a mixture of free electrons, positive ions and neutral atoms. A plasma may
be lightly ionized (neutral atoms outnumbering the electrons and ions), or it
may be fully ionized (almost no neutral atoms). Free electrons and ions may
carry bulk electrical currents, and both electrons and ions can be energized
by electromagnetic fields or by injected particle-beams.

Plasma physics is the study of charged particles collected in sufficient
numbers, so that the long-range Coulomb force is a factor in determining
their statistical properties, yet low enough in density so that short–range
forces due to nearest-neighbor particles are negligible in comparison with the
long-range electromagnetic forces exerted by the many distant particles. It is
the study of low-density ionized gases.

The most characteristic aspect of the plasma state — to wit, the long
rang of the Coulomb (and other electrodynamic) forces and the consequent
collective behavior of the charged particles — was known much earlier, and
was probably first described by Lord Rayleigh, in 1906, in his analysis of
electron oscillations in the Thomson model of the atom.

The term “fourth state of matter”, often used to describe the plasma state,
was coined by W. Crookes in 1879 to describe the ionized medium created
in a gas discharge. The term follows from the idea that as heat is added
to a solid, it eventually undergoes a phase transition to a new state, usually
liquid. If heat is added to a liquid, it eventually undergoes a phase transition
to the gaseous state. The addition of still more energy to the gas results
in the ionization of some of the atoms. At a temperature above 100, 000 ◦K
most matter exists in an ionized state — the fourth state. A plasma state can
exist at temperatures lower than 100, 000 ◦K provided there is a mechanism
for ionizing the gas, and if the density is low enough so that recombination is
not too rapid.

Early researches into the nature of plasmas, from glow discharge tubes to
the Heaviside layer, dealt essentially with plasma at rest. When WWII ended,
many physicists turned their attention to the nature of plasmas flow. This
study is called plasma dynamics.

During the late 30’s and the War-torn 40’s, astronomers and physicists
began to realize that the matter in the universe (stars, nebulae and galaxies)
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is made up almost entirely of plasma: from the ionosphere, a 100 km or so
over our heads, out to the deepest reaches of the cosmos (outward in space
and backward in time), plasma is by far the most common known form of
matter. Planets and interstellar dust, made up of the more familiar forms of
matter, constitute a minor portion of the universe’s mass672. Yet this means
that plasma must be artificially created in terrestrial laboratories in order to
be studied, as we happen to inhabit a planet!

Plasma physics generally involves the well-known physics of classical me-
chanics, electromagnetism, and nonrelativistic statistical mechanics.673 The
challenge of plasma physics comes from the fact that many plasma properties
arise from the long-range Coulomb and magnetic interactions, and therefore
involve complex collective phenomena with many particles interacting simul-
taneously via, and with, long-range EM fields.

672 Nevertheless, it now appears quite likely that the universe also contains large

quantities of dark matter , not yet directly observed or studied directly; and

according to the successful Big Bang cosmological theory, dark matter is far

more massive overall than visible matter – by about two orders of magnitude.

Some of this dark matter is theorized to be novel not just in its phase (state)

but even in the very elementary particles it is made of — such as neutrinos,

‘strange’ quarks, axions, heavy “supersymmetric partners” of known particles,

black holes, etc. These are not made of electrons, protons and neutrons (and/or

their antiparticles), as is all known (so-called baryonic) matter that is either

observable from afar or can be examined directly.

Apart from these exotica, the observed matter – from the earth’s vicinity to

the farthest galaxies – seems to be not only baryonic but also overwhelmingly

made of matter as apposed to antimatter (i.e. positrons, antiprotons, etc.). The

latter are few and short-lived due to their rapid annihilation (by their normal-

matter counterparts) into pure radiant energy (mostly photons and neutrons,

ultimately).

However, modern cosmology asserts that, a fraction of a second after the Big

Bang, the entire universe was a plasma, but with no nuclei – nor even nucleons;

rather it consisted of equal (or almost equal) amounts of particles and antipar-

ticles, as well as quanta that are their own antiparticles such as photons and

other so-called gauge bosons. The mechanisms that ultimately gave rise to our

present matter – dominated observed universe (∼ 1010 electrons and nucleons

per photon, and almost no antiparticles) are not yet fully understood; they are

being studied at several accelerator laboratories around the world.
673 Yet, STR relativistic effects are important in the sun, in many nuclear reactions

and decays, in some aspects of chemistry and atomic physics, and in plasmas

naturally produced by cosmic ray cascades; and also in modern klystron tubes

and particle accelerating structures.
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In its simplest form, a plasma is a collection of protons and electrons at

sufficiently low density so that two-body (short-range) interactions are negli-

gible. Many-body theory, or the many-body problem, is the proper framework

for the study of the properties of such a medium. When a collection of cations

(protons and other atomic ions) and electrons coexist in an equilibrium state,

the properties of this state are described by equilibrium statistical mechan-

ics with the appropriate Gibbs ensemble. However, most of the interesting

features of plasmas occur for nonequilibrium situations.

Equations of Magnetohydrodynamics
674

(Magnetic Fluid Dynamics)

Consider the behavior of an (approximately) locally electrically neutral,

conducting fluid in ambient, dynamical electromagnetic fields. It is described

by a matter density ρ(t, t), a velocity profile v(r, t), a pressure field p(r, t),
a current density j(r, t), a magnetic permeability μ and a real constant con-

ductivity σ. We assume that the displacement current can be neglected (slow

motions), that μ and σ are approximately non-dispersive and homogeneous,

and that the fluid is non-relativistic and inviscid. The combined hydrody-

674 To dig deeper, see:

• Landau, L.D. and E.M. Lifshitz, Electrodynamics of Continuous Media,
Addison-Wesley, 1960, 417 pp.

• Thompson, W.B., An Introduction to Plasma Physics, Pergamon Press, 1962,
256 pp.

• Jackson, J.D., Classical Electrodynamics, Wiley, 1975, 848 pp.

• Alfven, H., Cosmic Electrodynamics, Oxford University Press, 1950.

• Cowling, T.G., Magnetohydrodynamics, Interscience, 1957.
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namical and Maxwell equations, under adiabatic conditions, then read:

∂ρ

∂t
+ div(ρv) = 0 Equation of fluid mass continuity (1)

ρDv
Dt ≡ ρ

(
∂v
∂t + v · ∇v

)

= −∇p + (j × B)

Local conservation of linear momentum
where (j×B) is the magnetic (Lorentz)
force per unit volume

(2)

j = σ[E + v × B]
Generalized Ohm’s law for a conduct-
ing fluid (Ohm’s law in local co-moving
frame)

(3)

1
μ

curl B = j Ampere’s law (4)

div B = 0, div E = 0 Magnetic and Electric Gauss’ law (5)

curl E = −∂B

∂t
Faraday’s law (6)

DS

Dt
=

∂S

∂t
+ v · ∇S = 0 Isentropic flow, (7)

with S(r, t) the entropy density. This system (together with an equation

of state S = S(ρ, p)), comprising 15 independent scalar equations in 15

unknown scalar functions, can be further reduced675. Indeed, combining (3)

through (6) we obtain

∂B

∂t
= curl(v × B) +

1
μσ

∇2B (8)

Combining (2) and (4) we further have

ρ
Dv

Dt
= −∇p − 1

2μ
∇(B2) +

1
μ

(B · ∇B) (9)

Equations (1), (5), (7), (8) and (9) constitute (together with the equation

of state) a system of 8 independent scalar partial differential equations in

the 8 unknown scalar functions ρ, p, B, v, under condition of isentropic

675 Note that due to the approximations involved, Eqs. (3)–(4) are not exactly

consistent unless irrotational flow is assumed. Indeed, (4) implies div j = 0,

consistent with strict local charge-neutrality; yet taking the div of (3) and

neglecting a term of order 1
c2

yields div E = −(curl v) · B, which by the

electric Gauss’ law part of (5) contradicts strict charge neutrality.
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flow.676 It can be shown that these equations permit the propagation of small
perturbations as undamped hydromagnetic waves.

676 Eq. (8) yields only two independent scalar PDE’s, since taking the divergence

of both sides results in an identity due to (5).
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History of Creation Theories — II

Act V: Expanding Pseudo Riemannian Universe and Big Bang
Cosmology (1917–1983)

Cosmology is the study of the large-scale structure of the Universe in space
and time — what it is now, what it was in the past and what it is likely to be
in the future. Since the only long–range forces at work among the galaxies and
(as yet unknown) dark–matter particles that make up the material universe
are those forces of gravity, the cosmological problem is closely connected with
the theory of gravitation — in particular with its modern version as formulated
in Albert Einstein’s general theory of relativity. In the framework of this
theory the properties of space, time and gravitation are merged into one
harmonious and elegant picture.

Thus, from 1917 on, cosmology has again been in the foreground of inter-
est in connection with the development of the general theory of relativity. It
seemed as if this theory could bring us a decisive step nearer to the solution
of the cosmological problem. The actual situation, however, was not so sim-
ple. The progress made was predominantly due to the amazing advance of
astronomical knowledge beyond the realm of our galaxy into remote depths
of the universe. Our ‘neighborhood’, until then confined to small parts of
the galaxy, was extended thereby into the extragalactic space, to distances
which possibly may no longer be considered negligibly small as compared with
the dimensions of the whole universe. Cosmological theory responded to this
enrichment of our observational knowledge:

The general theory of relativity was published in 1916 and its first ap-
plication to our solar system had already been made before 1920. But only
a very few bold mathematicians and astronomers had the idea of extending
its consequences to the whole universe. The first people to construct mod-
els of an expanding universe were de Sitter (1917), Friedmann (1922) and
Lemâıtre (1927). However, the majority of astronomers did not take these
models seriously. The situation lasted until Hubble discovered (1929) the
expansion of the universe. This indeed is the event which we must mark as
heralding beginning of the new science of cosmology.

The whole way of thinking about the origin, evolution and destiny of the
cosmos was altered after that. For the first time the study of the universe as a
whole ceased being the realm of subjective speculations and became the sub-
ject of scientific research. The great advancement of cosmology that followed
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was due to systematic research involving both observations and theory. How-
ever, the phenomenon of the expansion of the universe was so enormous, so
amazing, that many people disputed it. Many efforts were made to attribute
the red shift of light from distant galaxies to causes other than the expansion
of the universe. All these efforts failed and today there is no serious dispute
of the reality of the expansion.

The observational basis for our belief in the expansion of the universe and
the evaluation of its density distribution is based upon the use of various stan-
dard candles (widespread luminous objects such as variable stars, supernovae
etc. with known absolute magnitude), in conjunction with galaxy recession –
velocity measurements. The latter are done by measuring red shifts.

• The redshift: Observed systematic increase in wavelength λ of the spec-
tral lines with cosmic source distances, considered to result from a recession
of the light source. It is related to the source-observer distance r and the
instantaneous speed of recession (at emission epoch t) by the approximate
relation dr

dt = cΔλ
λ = Hr, where H is constant (Hubble law; requires GTR

non-linear corrections for redshifts z = Δλ
λ of order 1). This law for the gen-

eral expansion of the universe (calibrated for the nearer systems with known
distances), furnished a further possibility of estimating distances when only
observed red-shifts are available. In this way our knowledge concerning the
distribution of matter in space and time was widened step by step through a
great variety of methods of measuring or estimating distances (the so-called
‘cosmic distance ladder’).

When the problem of cosmology was revived in connection with the theory
of General Relativity, the surveyed part of the observable universe extended to
distances of nearly 3 × 1021 km, containing in its volume about 108 galaxies,
each consisting of some 1011 stars. This was an empirical background very
different from that on which astronomy had to rely when it first attempted
to tackle this complex problem.

Experimental evidence, based on this vast reservoir of matter, has shown
that beyond a certain distance positive values of Δλ

λ prevail, indicating a
general recession of the more distant galaxy clusters which definitely no longer
belong to the cluster of which our galaxy is a member. Hence, a general
expansion of the universe is indicated. Moreover, observations disclose that
to the first approximation, this expansion is isotropic (as viewed from any
observatory at rest relative to his local cluster).

In addition, theoretical considerations show that no stable solution of the
cosmological problem is expected to yield a static world in which gravitating
matter fills the universe with a fixed average density. A universe at rest, filled
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with gravitating matter, is not possible. This conclusion is common to both

GTR and Newtonian gravity.

Newtonian Cosmology

Assume the universe to be an infinite Euclidean space filled by galaxies,

which will be treated like the molecules of a fluid distributed uniformly (on

average) through space. Assume at first that Newtonian physics holds; we also

impose for philosophical reasons, the cosmological principle — which states

that the universe appears, on average, identical to two observers residing

in any two of its galaxies. This principle is an extension of the Copernican

notion — that earth is not privileged — to the cosmos at large. It follows that

the mass–density ρ and the hydrostatic pressure p are functions of the time t

only. Moreover, it also follows from this principle that — in any inertial frame

with its spatial origin within any galaxy and co-moving with it — the mean

hydrodynamical streaming velocity field v(r) of all other galaxies must be a

homogeneous linear function of the space coordinate vector r = (x1, x2, x3).

Furthermore, such a cosmos expanding (or contracting) symmetrically in

all directions (i.e. isotropically) corresponds to a trajectory xi(t) = x0
i R(t),

for any galaxy (or center–of–mass of local galaxy cluster) relative to any given

galactic frame as described above; here R(t) is a universal scale factor, while x0
i

are constants that, however, depend on the galaxy whose trajectory is traced

(and also on the galaxy where our observer sets up his comoving metrical

frame).

The expansion is described by the equations:

vi =
dxi

dt
= x0

i

dR

dt
= xi

Ṙ

R
.

We thus obtain a law of expansion corresponding to that derived from the ob-

served red-shift of the galaxies but with the “constant” H actually depending

on the emission epoch t.

So far the considerations have been of a purely kinematical nature; they

have not taken into account of the fact that all matter in the universe is

gravitating. The following equations thus have to be satisfied:

• Local conservation of mass: ∂ρ
∂t + div(ρv) = 0.
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• Local conservation of linear momentum: ∂
∂t (ρv) + div(ρvv) + ρ grad φ = 0

where φ is the Newtonian gravitational potential; and no term depend-
ing on the hydrostatic pressure677 enters, since p = p(t).

• Poisson’s equation: ∇2φ = 4πGρ.

If we impose the cosmological principle and restrict consideration to the case
of isotropic expansion, namely v1 = ax1, v2 = ax2, v3 = ax3, it then follows

from the above equations that a = Ṙ
R = − 1

3
ρ̇
ρ , d

dt

(
ρ̇
ρ

)
= 4πGρ + 3a2. In

these equations, ρ̇ = 0 entails a = 0 and ρ = 0. Hence, it is impossible
to construct a Newtonian universe in which gravitating matter remains at
rest; it is also impossible to let matter stream in such a way that the density
remains constant.

Now, due to the cosmological principle, the gravitational potential must
be such that its derivatives ∂φ

∂xi
= 0 for xi = 0 (no preferred direction!).

Consequently, the representation of φ by power series in xi must begin with
terms of at least the second order. In fact the above system of differential
equations, along with v = a(t)r, imply

φ(x) =
2πGρ(t)

3
(x2

1 + x2
2 + x2

3)

up to an additive constant.

This quadratic potential with a time–dependent “spring constant” is an
exact solution to the above equations of self gravitating flow.

In any of our galactic comoving inertial frames, the gravitational force
upon a unit test-mass at position r,

−∇φ(r, t) = −4πGρ(t)
3

r,

is readily seen to be the Newtonian gravity force due to a spherical radius –
|r| ball of galaxies, centered at the frame’s galaxy-origin; the test mass lies
on this ball’s boundary sphere, and galaxies external to it exert no net force
upon the test mass.

677 In our dilute–gas fluid approximation of the universe, “pressure” stems from

the random motions of galaxy clusters relative to their local comoving galactic

frames. Cosmologists refer to these as peculiar motions. Strictly speaking the

R.H.S of the streaming–motion law v(r) = Ṙ
R

r should have a random peculiar–

motion term added to it.
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This “screening”, or cancellation, of the gravitational effects of galaxies
outside such a ball is well known – Newton himself derived it; but it is prob-
lematical in its cosmological application, for the outside galaxies extend to
infinity and the relevant integrals diverge. This problem can only be resolved
within the General Relativistic (GTR) formulation of cosmology.

But since the screening assumption is vindicated in GTR, we will adopt
it within the Newtonian cosmology, as well.

Introducing the trajectory r = r0R(t) for a general galaxy in any one of
our frames into the equation of motion678

d2r

dt2
= −GM(r)

r2

r

r
,

for a galaxy at the surface of a radius - r sphere (r = |r|) containing

mass M(r), the differential equation for R follows: d2R
dt2 = −GM

R2 , where
M = 4

3πρR3 is a constant; it is the mass contained in a volume of one of
our expanding spheres of radius r = r0R(t) with r0 = 1. The mass remains
unchanged within any expanding volume with the galaxies upon its surface
fixed relative to that surface.

The differential equation immediately yields the integral 1
2 Ṙ2 = GM

R + h,
where the constant of integration h may be negative, positive, or zero. Ac-
cordingly, we obtain various types of expansions which may be called “el-
liptic”, “hyperbolic”, and “parabolic”, since the character of the solutions
closely resembles solutions obtained in the theory of rectilinear motion of two
gravitating bodies.

From the preceding general discussion it follows that the dynamical prob-
lem of an expanding or contracting universe always gives rise to a singularity
when, for R = 0, ρ becomes infinite. The singularity can be removed by
amending Poisson’s equation for the gravitational potential by an additional
term.

If the quadratic gravitational potential φ(r, t) derived above is supple-
mented by a term with the new constant λ:

φ =
2πG

3
ρ(t)r2 − λ

6
r2 =

1
2

GM(r)
r

− λ

6
r2 ,

678 The equation results either from the above “screening” assumption or (equiva-

lently) it can be derived from the equation for d
dt

(
ρ̇
ρ

)
, which was itself derived

above from local conservation laws, the Poisson equation, and the (isotropic)

cosmological condition.
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the ordinary differential equation for the scale factor R(t) (with all other
assumptions left unchanged) becomes

d2R

dt2
= −GM

R2
+

λ

3
R

and yields the integral

1
2
Ṙ2 =

GM

R
+

λ

6
R2 + h =

(
4πGρ

3
+

λ

6

)

R2 + h .

The singularity ρ → ∞, which formerly occurred for R = 0, does not
appear now, provided λ is chosen > 0, h < 0, and the mean cosmic density
is suitably small (ρ < λ

4πG at any given epoch t).

In this case the equation GM
R + λ

6 R2 + h = 0, corresponding to the case

Ṙ = 0, yields in general two solutions, say, R = R1 and R = R2, where
R1 < R2. For R > R2, real solutions exist for which R, coming from infin-
ity — corresponding thus to a contracting universe — approaches the limit
R = R2, where Ṙ becomes zero. The contraction comes to a standstill at a
finite value of ρ and changes into an expansion; at this turning point the new
repulsive force (characterized by the cosmological constant λ) just balances
the attraction due to the gravitational attraction.

According as λ and h are chosen to have various sign combinations and
the appropriate density regimes are chosen, a variety of solutions results.
But only the case, just mentioned, corresponding to λ > 0, h < 0, and
ρ small enough, yields solutions which are free from singularities and hence
do not necessitate the assumption that the universe has to pass through a
phase of infinitely large densities, pressures and temperatures. But it must be
emphasized that such regular solutions are obtainable only by introducing the
ad hoc hypothesis of a new, and otherwise not motivated, universal long–range
repulsive force in the universe.

The constant λ is the Newtonian manifestation of the GTR cosmological
constant. Its introduction, however, is rather ad hoc within the Newtonian
framework. In the Einsteinian universe, on the other hand, it is the observed
smallness of λ which is “unnatural” especially when quantum effects are
considered; and this smallness is one of the deep outstanding puzzles of our
current models of particles and fields.

Studies of the CMBR (Cosmic Microwave Background Radiation) and its
anisotropies support the assumption of uniform matter density; while galactic
surveys indicate (if the evidence in favor of a hierarchic structure is disre-
garded) a more or less uniform distribution of luminous (non-dark) matter
in space in accordance with the equation log Nm = 0.6 m+ const., where
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Nm is the number of galaxies brighter than the limiting magnitude m. If the
unit volume is taken sufficiently large to smooth out local irregularities in the
distribution, the resulting number of star-systems per unit volume is roughly
constant at all distances and in all directions. Spreading the non-dark matter,
concentrated mainly in stars, evenly over the whole space, a constant value
of ρ for the density of matter is obtained679.

The widely accepted current theory for the origin of the universe is the
Big Bang theory . We accept, based on many pieces of evidence, that the
universe started with a huge explosion from a superdense and superhot stage.
Theoretically, if GTR is accepted without modifications, the universe must
have started from a mathematical singularity with infinite density (R(t) → 0
as t → 0). Further, the derivative of R is infinite at this time; that is,
the initial explosion happened with infinite velocity. However, it is virtually
certain that classical GTR requires major modifications for t less than the
Planck time (∼ 10−43 sec), so singularities predicted by GTR, are not very
worrisome for theorists.

The Big Bang was not an ordinary explosion of the familiar kind, where
material is ejected from some central point into a pre-existing space. Here,
space itself is created by the explosion, and there is, no central point! The

679 Strictly speaking, observations do not unconditionally agree with the hypothesis

of an expanding universe filled with matter of a constant mean density ρ. Nev-

ertheless, the cosmological models of the universe have hitherto been developed

on this assumption. Otherwise, the problem would still defy all our efforts to

find a solution. In fact, all cosmological problems are approached by making the

postulate that the observed phenomena (averaged over distance scales typical

of galaxy super-clusters) are representative of the universe at large; only with

this bold extrapolation can we obtain a truly cosmological theory. Cosmolo-

gists’ faith in this postulate is greatly buttressed by the remarkable degree of

observed isotropy of the Cosmic Microwave Background Radiation (to several

parts of a million). This cosmological principle, precisely stated, is:

Every observer, wherever placed in the universe, describes the observed (large-

scale) phenomena identically, and observes itself to inhabit an isotropically ex-

panding universe in which matter is evenly distributed .

This postulate (which also includes the statement that the microscopic con-

stants and laws of nature are the same for observers in any galaxy) brings to

conclusion a development in science which had its beginning with Copernicus

and Kepler. In much the same way as they removed the earth, and thus man as

well, from the central position which he had hitherto claimed for himself in his

restricted picture of the world, the cosmological principle deprives the picture

of the entire universe of any features that tend to grant to man (or even his

local galaxy super-cluster!) any privileged or central position.
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material blasted out in the Big Bang is spread out uniformly over the entire
spatial extent of the observable universe, and every point in this universe
appears to be the center of the explosion.

How did this theory evolve? Einstein had first formulated his model of a
static, finite universe in 1917, two years after developing the general theory
of relativity. But he soon saw the flaws of this model. A static, closed
universe could not remain static, because its own gravitation would cause it
to collapse. This was a problem not only for his theory, but any theory of
gravity, including Newton’s. As the poet Edgar Allen Poe had noted seventy
years earlier, unless a body of matter rotates, it will collapse under its own
gravity — only rotation stabilizes bodies such as the galaxy and the solar
system. But Einstein ruled out a rotating universe on philosophical grounds.

First, he believed that rotation itself is relative, like all other motion,
and the universe’s putative rotation would have to occur relative to a frame
external to it, an impossibility by definition.

Second, rotation implies a central axis, but such an axis would be a distinct
direction in space, different from all others — this contradicted his belief that
space is the same everywhere and in every direction.

Clearly, Einstein reasoned, something prevents the collapse of the uni-
verse — something like the centrifugal force of rotation, but not rotation
itself. This force must somehow increase with distance: it had never been
observed on earth or in the solar system, but it must be strong enough at
cosmological distances to overcome gravity. He introduced a new term into
his equations of gravity, the “cosmological constant”, a repulsive force whose
strength increases proportionally to the distance between two objects, just
as the centrifugal force in a rigidly rotating body increase proportionally to
distance from its axis of rotation. But this new force, he reasoned, must act
in all directions equally, like gravity, so it does not disturb the rotational
symmetry of the universe.

To preserve his conception of a static universe, Einstein set the cosmologi-
cal constant to a level that would exactly balance gravity, so that its repulsive
force neutralized the tendency of the universe to collapse.

In 1924 new observations changed the picture radically. For a decade,
astronomers had been measuring the spectra of stars in nearby galaxies. In
nearly all cases, the spectra shifted slightly toward the red. Scientists had
long known the simplest explanation for these redshifts is that the galaxies are
moving away, shifting the frequency of light to the red (the Doppler shift; an
analogous phenomenon makes the pitch of a train whistle rise as it approaches
and fall as it recedes). It seemed strange that, rather than moving randomly,
the galaxies seemed to mostly be moving away from each other and from us.
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Carl Wirtz, a German astronomer, put all the forty-odd observations
together in 1924 and noted a correlation — the fainter the galaxy the higher
its redshift, thus the faster it is receding. Assuming that fainter galaxies are
more distant, then velocity increases with distance. The conclusion was ten-
tative, since the distances to the galaxies were uncertain. But the American
astronomer Edwin Hubble and his assistant Milton Humason soon began
to systematically examine Wirtz’s findings. Hubble had developed a new way
of measuring the distance to a galaxy, based on the known intrinsic bright-
ness of certain peculiar stars called Cepheid variables. Word soon filtered
through the astronomical community that Hubble’s data seemed to confirm
the relation between redshift and distance.

The news was of immense interest to a young Belgian, Georges Henri
Lemâıtre. Lemâıtre received his doctorate in physics in 1920, and shortly
thereafter entered a seminary to study for the priesthood. While at the Sem-
inary of Maline, he became fascinated with the new field of general relativity,
and after being ordained in 1923, went to England to study under Eddington.
He then spent the winter of 1924–1925 at Harvard Observatory, where he
heard Hubble lecture and learned of the growing evidence for the redshift-
distance relation.

Over the next two years Lemâıtre developed a new cosmological theory.
Studying Einstein’s equations, he found, as others had before him, that the
solution Einstein proposed was unstable; a slight expansion would cause the
repulsive force to increase and gravity to weaken, leading to unlimited fur-
ther expansion; or a slight contraction would, vice versa, lead to collapse.
Lemâıtre, independently reaching conclusions achieved five years earlier by
Alexandr Friedmann, showed that Einstein’s universe is only one special
solution among an infinity of possible cosmologies — some expanding, some
contracting, depending on the value of the cosmological constant and the
“initial conditions” of the universe.

Lemâıtre synthesized this purely mathematical result with Wirtz’s and
Hubble’s tentative observations, and concluded that the universe as a whole
must be expanding, driving the galaxies apart. And if the universe is ex-
panding, then any of the cosmological scenarios that led to expansion could
be a valid description of the universe. Cosmic repulsion and gravity are not
delicately balanced within a static large–scale cosmos; rather the combined
effect of repulsion and relative galactic motions predominate in an expanding
universe.

Lemâıtre put forward his hypothesis of an expanding universe in a little-
known publication (1927), and within two years his work and Friedmann’s
had become widely known and accepted in the tiny cosmology fraternity. By
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this time (1929) Hubble had published the first results showing the redshift–
distance relation, apparently confirming Lemâıtre idea of an expanding uni-
verse.

This was not yet the Big Bang, though. The solutions of the equations of
general relativity derived by Friedmann, and later by Lemâıtre, only showed
that many solutions led to universal expansion. Some solutions did indeed
produce a singularity — a collapse into, or an expansion from, a universe
of zero radius. If the universe were dense enough, and repulsion weak, the
universe would collapse to a point. But if the repulsive force were strong (or
the mean cosmic density small enough), there would be no singular state:
the universe could be diverging from a state near Einstein’s balance, moving
away faster and faster with the passage of time; or it could have contracted
from an indefinitely large radius in the infinite past to a minimal radius, and
then begin expanding. These nonsingular solutions would imply a universe
of infinite age. Indeed not all possible solutions are spatially finite, closed
hyperspheres, as Einstein envisioned — some are infinite in spatial extent.

In general when equations describing physical reality produce singularities
— solutions involving infinite values for observable quantities — it is a sign
that something is wrong, since scientists assume that only measurable, finite
quantities should be predicted. So initially the solutions without singularities
attracted the most attention.

This, then, was as far as general relativity alone could take the cosmolog-
ical problem.

In 1928, James Jeans, one of the most prominent astronomers of the
time, revived Boltzmann’s old arguments about the “heat–death” fate of the
universe. The second law of thermodynamics, Jeans reasoned, shows that
the universe must have begun from a finite time in the past, and must move
from a minimal to a maximal entropy. Incorporating Einstein’s equivalence
of matter and energy, Jeans argued that entropy increases when matter is
converted to energy, because energy is more chaotically dissipated. Thus the
end state of the universe must be the complete conversion of matter to energy.
“The second law of thermodynamics compels the materials in the universe to
move ever in the same direction along the same road, a road which ends only
in death and annihilation”, he gloomily wrote.

At the same time Eddington was reaching a similar conclusion. Curiously
enough, he begins his book The Nature of the Physical World with philosophi-
cal premises similar to those used by Giordano Bruno’s enemies three centuries
earlier. Like Bruno’s persecutors, Eddington was viscerally repelled by an in-
finite universe: “The difficulty of an infinite past is appalling”, he writes. “It
is inconceivable that we are the heirs of an infinite time of preparation”. He
too concludes that the second law implies a beginning in time. He was not
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pleased by this idea either, but felt that it follows naturally from Boltzmann’s
laws.

Lemâıtre, hearing his former teacher’s views in March of 1931, was deeply
impressed. He had been viewing his recent mathematical work in a philo-
sophical light; Einstein’s ideas of a hyperspherical space showed that a finite
universe was again conceivable.

But if the universe is finite in space, then it should be finite in time as
well, Lemâıtre argued (and the GTR equations support this latter inference
for weak enough repulsion). Thus the nonsingular solutions that Lemâıtre had
found — in which the universe has no beginning — were unacceptable. The
only ones that corresponded to Lemâıtre’s philosophical views were closed in
space and limited in time. Eddington had given him a further rationale for
looking at the singular solutions — the second law indicates that the universe
must have originated in a state of low entropy.

From these two philosophical premises, Lemâıtre developed his concept of
the “primeval atom”, the first version of the Big Bang. At a 1931 meeting
of the British Association of the Evolution of the universe, he put forth these
ideas for the first time. Beginning from the idea that entropy is everywhere
increasing, he reasoned, quantum mechanics (developed in the twenties) shows
that as entropy increases, the number of quanta — individual particles in the
universe — increases.

Thus, if we trace it back in time, the entire universe must have been a
single particle, a vast primeval atom with zero radius. He identified this
instant with the singularity of some relativistic solutions. Just as uranium
and radium nuclei decay into subatomic particles, so this giant nucleus, as
the universe expanded, explosively split up into smaller and smaller units,
atoms of the eventual size of galaxies decaying into atoms that later become
suns, and so on down to the scale of actual, present-day atoms.

During WWII cosmological research was suspended, along with other
peacetime pursuits, as scientists were drawn into the war effort. By the war’s
end, though, the field was transformed. Prior to the war the creation of ele-
ments that compose the universe had been a speculative theoretical subject
— too little had been known of nuclear reactions. Now, with the successful
production of atomic bombs — the creation of the elements was no longer a
hypothesis, but a technological fact. The fuel for one of the bombs unleashed
on Japan was itself a created element — plutonium — generated from ura-
nium.

Nuclear piles (reactors) and the A-bombs had transformed common el-
ements into new and exotic elements and isotopes, which scientists found in
analyzing the fallout from the bombs — especially that of the Trinity test in
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the New Mexico desert. And the vast expansion of nuclear research that grew
out of the Manhattan Project continued to yield data about nuclear reactions.

To one of the Manhattan Project scientists, George Gamow, the deto-
nation of an A-bomb constituted an analogy for the origin of the universe:
if an A-bomb can, in a hundred-millionth of a second, create elements still
detected in the desert years later, why can’t a universal explosion lasting a
few seconds have produced the elements we see today, billions of years later,
throughout the cosmos?

In a paper in the fall of 1946, Gamow put forward his idea, a second version
of the Big Bang. Unlike Lemâıtre, he took as observational verification of his
hypothesis the abundance of the elements; but like him, Gamow assumed that
this abundance could not have been produced by any process continuing in
the present-day universe.

Gamow proceeded (1948) to investigate the characteristics of the super-
dense condition of the first moments of the universe. He concluded that the
temperature must have been enormous at this stage. Under these conditions,
the protons and neutrons must have formed the various chemical elements.
The theory satisfactorily explains the formation of deuterium and helium.
Perhaps it might also explain the formation of all the elements up to ura-
nium, by progressive fusion with protons and neutrons to yield more and
more complex nuclei.

It soon became clear, however, that since there is no stable nucleus with
mass number 5, the formation of the elements just after the Big Bang must
have stopped at helium. Thus, cosmic nucleosynthesis was necessarily re-
stricted to light elements, up to helium680 4

2He.

After this failure, the theory was put aside altogether. The next theory
about the formation of the chemical elements was the B2FH theory, so named
after G. Burbidge, M. Burbidge, W.A. Fowler (1911–1995; Nobel prize,
1983) and Fred Hoyle. According to this theory, all the elements beyond

680 It was later shown that the isotopes of Lithium, as well, have present-day cos-

mic abundances that can be accounted for by the cosmological nucleosynthesis

reactions which the Big Bang theory predicts to have occurred during the first

few minutes of the universe.

The isotopes thought to have been largely created at that epoch are: 1H (pro-

ton); 2H (deuterium); 3He; 4He; 6Li; and 7Li. Some of the higher-mass isotopes

(created in exploding stars) catalyze the fusion of hydrogen into Helium in the

nuclear combustion within later generations of stars, but the accumulated im-

pact of stellar fusion upon the cosmic helium abundance (which is ∼ 25% by

mass) is calculated to be small.
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1H (proton) have been formed in stellar interiors. In particular, the heavier
elements were formed during supernova explosions.

Edwin E. Salpeter had already shown (1952) that three nuclei of helium
4
2He may combine to produce carbon, and other heavier elements may similarly
be formed by addition of further helium nuclei, in the interiors of stars rich in
helium, where temperatures may reach 108K. Still heavier elements may be
formed during the final stages of stellar evolution, when a supernova explosion
may occur.

The B2FH theory was very successful. However, as Hoyle and Taylor
realized (1964), it could not account for the amount of helium observed in
stars, which constitutes 25% of their mass. According to the theory of nuclear
reactions in stellar interiors, only 1–4% of the amount of matter locked up in
stars would be helium if this element were produced entirely inside stars —
and this is 6–25 times less than the spectroscopically observed amount. This
result made Hoyle revisit the formation of elements in the Big Bang theory.

Thus, in 1967, R.V. Wagoner, Fowler and Hoyle calculated once again
the amount of helium which may be formed in the early universe, and came
to the same conclusion as Gamow and his collaborators.

The situation is similar for deuterium, which is observed to have a cosmic
abundance of 2 × 10−5. This amount is much more than the amount expected
to form in stars, because deuterium is not expected to survive for very long
in stars. The deuterium we observe today, therefore, must have been formed
in the early universe.

There are therefore two ways by which the elements of matter were formed.
The first way, the cosmological one, produced only the light elements (mainly
deuterium and helium) during the first four minutes after the Big Bang. The
elements heavier than helium were formed later on, in the interiors of stars.
This secondary process for generating elements started as soon as the first
stars were formed (t ∼ 109 yr after the Big Bang), and continues today.

Another indication in support of the Big Bang theory is the estimated
age of the universe. Independent estimates, based on the expansion of the
universe, the age of the oldest stars in the galaxies, or the age of terrestrial
rocks based on the lifetimes of radioactive elements, give numbers of the same
order of magnitude. All three methods agree that the age of the universe is
between 10 and 20 billion years. If the universe did not have a beginning,
there would not be an a priori reason for such a good agreement between
these three different calculations.

Finally, an important piece of evidence for the Big Bang is the cosmic
microwave background radiation. This radiation comes to us from all direc-
tions with almost uniform intensity (isotropically), and corresponds to the
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radiation from a black body at a temperature of approximately 2.7 ◦K. The
radiation does not appear to be clumpy — unlike the distribution of matter;
furthermore, the (parts per million) deviations from isotropic flux seem to be
well explained by inflationary cosmology681. The only credible explanation for
this radiation is that it consists of the photons which filled the universe during
the “radiation dominated era”, early in cosmic history, and became largely
decoupled from matter during the “recombination era” (t ≈ 3×105 years after
the Big Bang) — when the electron-proton plasma of the universe combined
to form transparent, neutral hydrogen. These photons have since (during
the t > 3 × 105 yr “matter dominated” era we are still in now) undergone
a cosmological redshift due to universal expansion, with their wavelengths
thus stretched to their current value (∼ 3 mm/2.7 ∼ 1 millimeter by Wien’s
Law). No other plausible explanation has thus far been suggested. The pow-
erful combination of quantum theory, GTR, and nuclear and particle physics
allows detailed quantitative calculations — such as the abundances of light
elements — that can be compared with empirical observations.

To recapitulate, we note that the basic evidence in support of the Big
Bang theory is:

• Solutions of Einstein’s equations (themselves well-confirmed in indepen-
dent, solar–system and astrophysical tests).

• The observed helium, deuterium and lithium cosmic abundances.

• The agreement between the various independent estimates of the age of
the universe.

• The cosmic microwave background radiation.

None of the above-listed arguments in support of the Big Bang theory became
immediately accepted. In particular, the solutions of Einstein’s equations
referred to homogeneous and isotropic models of the universe. So the question
arises, what happens if the universe is not entirely homogeneous and isotropic
after all? is it possible, in that case, to avoid the mathematical singularity
and the initial explosion, by accepting (for example) that the universe has

681 A variant of the Big Bang theory, developed in the 1980’s, involving a brief re-

heating episode – a fraction of a second after the initial t = 0 instant, well before

nucleosynthesis – in which the universe expanded exponentially. This event was

powered by the energy released when a super cooled vacuum converted to its

true ground state.
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some rotation? (In Newton’s theory, a rotating star which collapses does not
form a singularity — unlike the collapse of a non-rotating star.)

Much effort has been expended by mathematicians to answer this question
in the framework of GTR. The most important advances were made by S.W.
Hawking and Roger Penrose682 (1969), who showed that any reasonable
model of the universe which has the observed characteristics of (approximate)
homogeneity and isotropy, must start from a singularity. This theorem, which
does not require absolute homogeneity and isotropy, is one of the most im-
portant achievements in the field of relativity.

We see, therefore, that the general theory of relativity leads to an initial
singularity of the universe. Would this change if we were not using Ein-
stein’s theory? Several competing theories have been developed683, includ-
ing the Brans-Dicke scalar-tensor theory and (more fundamentally) various

682 The Hawking-Penrose theorem holds under the following assumptions: (1) The

general theory of relativity holds. (2) The total energy density is locally positive.

(3) There are no closed timelike or lightlike geodesics (i.e. no time paradoxes).

(4) Space is not everywhere flat along all timelike or lightlike geodesics (it is

unlikely that this is not the case). (5) There is at least one closed spacelike

surface.

Since the assumptions on which the theorem is based are not very restrictive,

there is little doubt that they apply to the actual universe.
683 Cosmologists have speculated that if we add the non-relativistic kinetic energy

of the expansion of the observable universe, the rest mass energy of all masses

in it and its Newtonian potential energy (which is negative), the resulting sum
is:
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∑
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to a high degree of accuracy. [The summations
∑

refer to all particles in the

universe and rij is the distance between any two particles.]

This seems to be roughly true for the known (luminous) matter – which led P.

Jordan (1949) to introduce the assumption that the sum of the mass-energy in

the universe is always zero. Since the universe expands, however, the potential

and kinetic energy terms both become smaller. For the total mass-energy of the

universe to remain zero, Jordan then assumed that new matter is created, at

appropriate distances and with appropriate velocities. This theory is essentially

a revival of the old view that the universe has been created ex nihilo. The theory

cannot explain the microwave background radiation and other observational

data and is not relativistic. The steady–state cosmology of Hoyle Bondi and

Gold is a variant of brans–Dicke theory (thus generally covariant) which allows

for such continuous creation, but it fails to account for the CMBR or light–

element nucleosynthesis.
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string-theory-inspired modifications of GTR. However, so far none of them

has managed to replace general relativity. Whenever observational tests were

carried out in order to distinguish between relativity and another theory, rel-

ativity was vindicated. Consequently, most researchers today work on GTR

cosmology, rather than on other competing theories.

It is quite likely that the singular beginning of the Universe is avoided

via quantum mechanical phenomena. Such phenomena were very important

when the age of the universe was of order 10−43 sec (Planck time), but we

cannot yet calculate their effects since we lack a theory of gravity.

Objections concerning the formation of helium, lithium and deuterium,

arise from doubts as to whether the observed abundances are universal or

not. Much effort has been devoted to detecting stars with a helium abundance

well below the generally accepted value (∼25%). It seems, however, that the

“exceptions” observed are not due to reduced helium content but rather to

peculiarities in the spectra of certain stars. Besides, the most recent satellite

observations confirm the idea that the observed deuterium has primordial

origin, rather than having been formed in more recent stages of the evolution

of the universe.

The objections with respect to the age of the universe are based on the

uncertainties involved in the various methods of calculating or bounding it.

However, despite some false alarms in the early 1990’s, the best cosmological

estimates for the present age of the universe–based on data gathered by the

Hubble Space Telescope – have converged on a figure of ∼ 1.4 × 1010 yr,

exceeding the age of that of the oldest known stars or galaxies. Other theories,

like the theory of continuous creation, claim that there is an infinite number

of galaxies older than this limit (although they may be too distant for us to

observe) – but, again there is no evidence that such is the case.

Finally, attempts were made to attribute the microwave background radi-

ation to other (non-cosmological) effects. Observations, however, have shown

the amazingly high degree of isotropy of this radiation and therefore, any non-

cosmological origin of it is highly unlikely. Indeed, if this radiation were due

to galaxies or stars, its anisotropy would be much higher. It is particularly

significant that it has a black-body spectrum, something which would be very

unlikely if it were non-cosmological in origin. And finally, even the minute

deviations of the CMBR from strict isotropicity, seem to be explainable in

terms of the Big Bang scenarios known as inflationary cosmology.

Is the universe spatially finite or not? In principle, we can answer this

question by calculating the “deceleration parameter” q = 4πGρ
3H2 = ρ

2ρc
from
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the redshift of the galaxies of known distances and by using the GTR correc-
tion to Hubble’s Law (r = galaxy’s distance at emission)

c
Δλ

λ
≈ Hr +

H2r2

2c
(q − 1).

If q ≤ 1
2 the universe is spatially infinite, otherwise it is finite684.

In practice it is very difficult to measure the distances of the farthest
galaxies, so the calculation of q from the above equation is very inaccurate;
the observational data are not yet accurate enough to show any meaningful
deviation from cΔλ

λ = Hr. We may only say that 1.5 > q > 0, so this method
cannot yet be used in practice to answer the question of whether the universe
is finite or not. Furthermore, the above redshift-distance relation assumes
that the cosmological constant, λ, vanishes — yet recent (1990’s) observations
indicate that the cosmic expansion is actually somewhat accelerating, meaning
that λ must be nonzero and positive. However, the redshift equation can easily
be modified to account for finite λ.

To answer the question of whether the universe is open or closed in view of
these difficulties, we must determine the density ρ and examine if it is above
or below the critical density ρc.

We may then say that if ρ > ρc, the gravitational attraction of the matter
in the universe would be enough to decelerate its expansion (were it not for
the cosmological constant), and to eventually stop it and cause a contraction
— leading to a pulsating universe or a “Big Crunch”.

On the other hand, if ρ ≤ ρc the gravitational attraction is inadequate
to stop the expansion which will continue forever, whether λ = 0 or λ > 0.
[This phenomenon is similar to the ejection of a particle from a celestial body:
the escape velocity from a body of mass M is v2 = 2GM

r . If we set v = Hr

from Hubble’s law, and M = 4π
3 r3ρ, we obtain ρc = 3H2

8πG as above.]

An independent determination of the average galactic mass density leads
to a value of 0.12ρc for the density of luminous matter. To this we must add
intergalactic gas and dust, intergalactic stars, possible exotic matter (made
of particles other than electrons, protons and neutrons), small black holes,
brown dwarves, etc., so-called dark matter as well as the effect of λ (“dark
energy”). The inflationary versions of the Big Bang theory suggest that ρ
has been naturally tuned to be very close to ρc in the first fraction of a second
after the initial explosion, which explains why ρ/ρc is roughly of order unity.

684 This formula should be corrected for the cosmological constant as discussed

below.



1929 CE 3833

Also, the recent (1990’s) evidence for positive cosmological constant suggests
that the universe is spatially open, although just barely.

1929 CE José Ortega y Gasset (1883–1955, Spain). Philosopher and
essayist. In his works he purported to find patterns of development in Euro-
pean history by which the present could be explained or its ills exposed. This
approach to historical situations was also an extension of his philosophical
concern with the interrelationship of individuals and their circumstances.

Ortega claimed life to be more important than thought; because life is
ever-shifting and mutating, a proper understanding of man demands the aban-
donment of the immobile concepts postulated by logical theory and the de-
velopment of mobile thinking processes.

To him, the conceptual reality posited by idealism is not reality at all;
reality is to be found in history, especially in personal history (i.e. in individ-
ual autobiographies). Thus, history considered through reason is the proper
approach to reality; the two are co-existent components of truth.

Hence, reality does not consist in Being , but rather in Becoming , for what
does the rational consideration of history demonstrate except the eternal evo-
lutionary processes in nature? Consciousness is historical, but the importance
of history is not exhausted with the past. Historical knowledge is valued as a
preparation for the future.

His key works are: The Theme of Our Time (1923), The Revolt of the
Masses (1929) and Leibniz and Evolution of Deductive Theory (1959).

Ortega was born in Madrid. After an early Jesuit education, he studied
at the Central University of Madrid, graduating in 1902. Following further
studies at the Universities of Leipzig, Berlin and Marburg he became professor
of metaphysics at the University of Madrid (1910 to 1936). After the estab-
lishment of the republic (1931) he became a member of Parliament. Because
of his opposition to the Franco regime he embarked on voluntary exile, living
for a time in Buenos Aires and later settling in Lisbon.

In his The Revolt of the Masses (1929) and Mission of the University
(1930), Ortega foresaw the ever-growing impact of science on Western culture
and civilization. Beginning with the observation that from 1200 to 1800 CE,
the population of the Western world remained almost constant, while in the
last one hundred years the population in Europe and America has tripled in
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number, Ortega showed how out of this has risen the phenomenon of the mass-
man. Can Western culture survive the encroachment of the mass-man? Can
republican institutions survive this chaotic democracy? These are problems
to which he sought a realistic solution.

Ortega addressed the question of the role of genius in science. To what
extent are new ideas, and the whole progress of science, determined by the
work of scientists of genius? Building on a similar idea of Francis Bacon
(1620), Ortega asserts that genius is not necessary and that “experimental
science has progressed — thanks in great part to the work of men astoundingly
mediocre, and even less than mediocre”.

Science accommodates and even needs the intellectually commonplace.
According to this view, science proceeds, in certain areas at least, by addition
of small if not tiny steps, and there are no real breakthrough685.

685 Some evidence against this idea comes from analysis (1990) of the use of the

scientific literature. It turns out that 85 percent of papers in scientific journals

are quoted in other papers once or not at all each year, while only 1 percent are

quoted five or more times. This supports the argument that an extremely small

proportion of the literature is dominant. However, it is not clear to what extent

this dominant literature relies on the infrastructure created by lesser scientists.

The question is less one of breakthroughs than of significant contributions.
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Worldview XLIII: Ortega y Gasset

∗ ∗∗

“Civilization becomes more complex and difficult in proportion as it advances.
The problems which it sets before us today are quite intricate. The number of
people whose minds are equal to these problems becomes increasingly smaller.
This disproportion between the complex subtlety of the problems and the
minds that should study them will become still greater if a remedy is not
found, and it constitutes the basic tragedy of our civilization. By reasons
of the very fertility and certainty of its formulative principles, its production
increases in quantity and subtlety, so as to exceed the receptive powers of
normal man. This has never happened in the past. All previous civilizations
have died through insufficiency of their underlying principles. That of Europe
is beginning to succumb for the opposite reason.”

∗ ∗∗

“In Greece and Rome it was not man as such that failed, but principles. The
Roman Empire came to an end for lack of technique. When it reached a
high level of population, and this vast community demanded the solution of
certain material problems which technique alone could furnish, the ancient
world started on a process of involution, retrogression and decay.

But today it is man who is the failure, because he is unable to keep pace with
the progress of his own civilization.”

∗ ∗∗

“I do not believe in the absolute determinism of history. On the contrary, I
believe that all life, and consequently the life of history, is made up of simple
moments, each of them relatively determined in respect of the previous one,
so that in it reality hesitates, walks up and down, and is uncertain whether
to decide for one or other of various possibilities. It is this metaphysical hesi-
tancy which gives to everything living its unmistakable character of tremulous
vibration.”
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∗ ∗∗

“We live with our technical requirements, but not by them. These give neither
nourishment nor breath to themselves, they are not causae sui, but a useful,
practical precipitate of superfluous, unpractical activities.”

1929 CE Max Knoll (1897–1969, Germany) and Ernst August
Friedrich Ruska (1906–1988, Germany). Physicists and inventors. Invented
the electron microscope. Three years earlier they had set out to investigate
the discovery made by Hans Busch (1884–1973) of Jena that when a beam
of electrons passes through a wire-coil, which acts as a magnet, the beam can
be focused. By 1933, Ruska’s ‘supermicroscope’ achieved magnifications up to
12,000, and a linear resolution686 well beyond that of the optical microscope.
Ruska was awarded the Nobel prize for physics in 1986.

686 The linear resolution of a microscope (Abbe, 1868) is the smallest distance of

two object points that can still be discerned as being separate. It is given by the

number λ
2n sin α

, where λ is the wavelength of the light used, n is the refractive

index of the fluid filling the space between the object and the objective lens, and

α is half the angle of the lens subtended at the object. The numerical aperture

{n sin α} is a measure of the effective angular opening of the lens for gathering

light from the object (with oil immersion numerical apertures up to about 1.6

are possible). For visible light with λ = 5500 Å, one then finds a linear res-

olution of 1700 Å for the minimum separation between resolved objects. This

imposes a limitation on the ability to resolve specific detail in the image. This

limitation is due to diffraction effects.

As the resolution of the light microscope is limited by the wavelength of light, ef-

forts were made to utilize rays of shorter wavelength which can also be detected

and used to form images. The fact that energetic electrons have extremely

short de Broglie (quantum matter–wave) wavelengths has been put to practical

use in electron microscopes. In these devices, electric and magnetic fields are

used to focus electrons by means of electromagnetic forces that are exerted on

moving charges. The resulting deflections are similar to the refraction effects

produced by glass lenses used to focus light in optical microscopes. By using
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1929–1935 CE Bernhard Voldemar Schmidt (1879–1935, Estonia and
Germany). Optical instrument maker and inventor. Invented a telescope
which is named after him. It uses a spherical mirror (not a parabolical re-
flector), and employs a spherically shaped correcting plate at the telescope
aperture to compensate for spherical aberration; thus it is a combination of
reflector-refractor system.

The Schmidt-Cassegrain telescope is the most popular among amateur as-
tronomers because of its compact design and large aperture, and because the
optics are completely enclosed. The effect of the correcting plate was to elimi-
nate ‘coma’ (the optical distortion of focus away from the center of the image)
and thus to bring the entire image into a single focus.

Schmidt was born on the island of Naissaar near Tallin, Estonia. He lost
most of his right arm in a childhood experiment with gunpowder. He studied
engineering in Göteburg, Sweden, and at Mittweida in Germany (1901), where
he stayed making lenses and mirrors for astronomers. From 1926 he was
attached to the Hamburg Observatory. He worked on the mountings and
drives of the telescopes, as well as their optics. It was there that he perfected
his lens and built it into the observatory telescope, specifically for use in
photography (1932).

By replacing the parabolic mirror with a spherical one plus his correcting
lens, Schmidt could produce an image that was sharply focused at every point
on a curved photographic plate. In later models he used a second lens to
compensate for the use of a flat photographic plate.

Schmidt’s invention was of great importance to optical astronomy, as it
provided extremely fine image definition over a field of several degrees. The
best known Schmidt telescope is that on Mount Palomar, with an aperture
of 120 cm and a focal length of 300 cm, used for photographic survey of the
Northern sky (built, 1948).

electrons (with wavelengths of 0.05 Å or less, depending upon the voltage used

to accelerate them) instead of visible light (with wavelengths near 5000 Å), the

limitations on resolution imposed by diffraction effects can be largely overcome.

Since the de Broglie wavelength for electrons accelerated through a potential

difference V is h√
2meeV

, accelerating potentials from 30 kV to several MV

give extremely short wavelengths and also give the electrons sufficient energy to

penetrate specimens of reasonable thickness. The resolution that is achievable

by an electron microscope is limited by lens aberrations and by scattering in

the specimen, so it is somewhat poorer than predicted on the basis of diffrac-

tion effects. Nevertheless, a linear resolution of 5 to 10 Å is possible with a

50-kV instrument, and 2 Å is possible with special, high-voltage microscopes.

Magnifications range from about 103 to 105.
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The Schmidt-Cassegrain (or catadioptric) telescopes use a combination
of mirrors and lenses to fold the optics and form an image: Incoming light
enters through the aspheric Schmidt correcting lens, then strikes the spherical
primary mirror and is reflected back up the tube. The light is then intercepted
by a small secondary mirror which reflects the light out of an opening in the
rear of the instrument, where the image is formed at the eyepiece.

1929–1948 CE Carl Ludwig Siegel (1896–1981, Germany and U.S.A.).
A distinguished mathematician. Most of his contributions are in number the-
ory and functions of complex variable. Wrote books on Riemann matrices,
geometry of numbers, transcendental numbers, symplectic geometry and an-
alytic functions of several complex variables.

In 1929 Siegel extended Waring’s problem to algebraic numbers. He also
proved that if P (x) is a polynomial with integer coefficients, than the Dio-
phantine equation y2 = P (x) has at most a finite number of integer solutions
(x, y), if P (x) has at least 3 different complex roots. In 1932 he deciphered
and extended Riemann’s unpublished papers on the zeta function. This work
resulted in the Riemann-Siegel formula, which proved to be useful for the
computation of the zeroes of the Riemann zeta function.

Siegel was born in Berlin. He came to Göttingen in 1919 and left in 1940
for the United States, where he became a professor of mathematics at the
Institute of Advanced Study, Princeton, NJ.

1929–1952 CE Alexandr Osipovich Gelfond (1906–1968, Russia).
Mathematician. Originated basic techniques in the study of transcenden-
tal numbers and advanced the theory of interpolation and approximation of
functions of complex variable. In 1929 he conjectured that if an and bn

1 ≤ n ≤ m are algebraic numbers where {ln an} are linearly independent
over Q, then b1 ln a1 + b2 ln a2 + · · · + bm ln am �= 0 [proved in 1966 by
A. Baker]. In 1934 he proved the Gelfond theorem, which states that ab is
transcendental if a is an algebraic number (different from 0 and 1) and b is an
irrational algebraic number. This statement solves the 7th Hilbert problem687

(1900).

687 Thus it was finally shown that numbers such as 2
√

2, (
√

2)
√

2, e−π = (−)i are

transcendental.

An algebraic number α is a complex number that is a root of an algebraic equa-

tion f(x) = 0, where f(x) is a polynomial over the field Q of rational num-

bers. Examples: α = 1
2

+
√

11 is a root of 4x2 − 4x − 43 = 0; α = 2

1+ 3√
5

is a root of 3x3 − 3x2 + 6x − 4 = 0
[
all the roots are αk = 2

1+ρk
3√

5
where

ρk, k = 1, 2, 3, are the three roots of unity: ρk = exp
{

2πi
3

k
}]

.
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Gelfond was born in St. Petersburg to Jewish parents. He was a professor
of mathematics at Moscow State University from 1931.

It can be shown that if x is the root of a polynomial with algebraic coefficients,

then x is itself algebraic. A number that is not algebraic is called transcendental.

It satisfies no algebraic equation with integer coefficients. It is not immediately

clear that transcendental numbers exist. Liouville was first to construct some

explicitly, for example,
∑∞

n=1
1

2n! . Hermite (1873) was first to prove that e

is transcendental. Lindemann (1882) followed with the proof that π is tran-

scendental (which showed that the quadrature of the circle was impossible).

It follows from Gelfand’s theorem and Hermite’s result that for α �= 0, α and

eα cannot both be algebraic. Consequently the functions ex (for x �= 0) and

ln x (x �= 0, 1) have transcendental values for algebraic arguments x. This

result is proved with the aid of complex analysis, which was the method used

by Gelfond to show that eπ is transcendental. It is still not known whether

ee or (e + π) or the Euler-Mascheroni constant γ are transcendental.
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π, e and other transcendental numbers

Pi is transcendental.

The endless number cannot be expressed by any algebraic
equation.

No pattern has been found in its digits,

Yet it cannot be proven in a finite amount of time that no pattern
exists in an infinite number of digits.

Pi goes beyond our reality.

The nonexistence of humans would not preclude the existence
of pi.

For the circle will always exist

In the shape and orbit of a planet,

In the path of a wave.

And where there is a circle, there is pi

Intrinsically embedded in it.

Pi is mysterious;

It evades all attempts of capture.

It is a line of digits like an endless snake that you can keep pulling
at without ever reaching its tail.

Pi is perfect;

Each seemingly random digit is exactly where it belongs.

Whether a circle is as big as the universe,

Or as small as a quark,

Its diameter fits around its boundary exactly pi times.

Because pi is found in waves, every color, every sound is an
expression of pi.

Because pi is found in circles, the moon, the sun, every planet, and
every star is an expression of pi.

Because pi is found in each atom, pi is present in all physical
sensation.

Pi is absolute beauty.

Eve Andersson (sweetie pi@eveander.com)
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The above computer-poetry summarizes succinctly the value of π in
human culture. Yet one may still wonder why this number, representing the
constant ratio of a circumference of every circle to its diameter, rose to such
eminence? Clearly, it is the most famous ratio in mathematics – here on
earth, and probably for any advanced civilization in the universe. But its real
significance goes much deeper — Pi is fundamental to the way in which our
universe functions; practically everything is dependent on π at some basic
level: light, sound, energy, gravity, electromagnetic fields, matter itself... In
fact, π is so central that it can be seen as a symbol of our universe.

Humans like to think that we live in a rational world. We like to take the
often chaotic cosmos and discover or create order, so that we can understand
it. Notwithstanding, π transcends rationality, and in doing so, it disturbs
the order that we like to see. Even today, a small minority of people still try
to prove that π is rational, although Lambert was able to demonstrate the
irrationality of π in 1776.

In 1882 Lindemann proved that π is transcendental 688, finally putting
an end to 2500 years of speculation. This means that π cannot satisfy
any polynomial equation with rational coefficients. It further means that π
cannot be expressed in any finite series of arithmetical or algebraic operations;
using a fixed-size font, it cannot be written on a piece of paper as big as the
universe. Lindemann’s proof also showed the impossibility of squaring the
circle.

Lambert (1776) also proved the irrationality of e and Hermite (1873)
followed with the proof of its transcendentality. But it still remains unknown
whether π + e is transcendental. It is, however, known that πe is irrational
and that eπ is transcendental (Gelfond, 1934).

Other famous transcendental numbers of classical mathematics are:

• Euler-Mascheroni constant

γ = 0.577 215 · · · = lim
n→∞

[

1 +
1
2

+
1
3

+ · · · + 1
n
− ln n

]

.

(It was not proved to be transcendental, but is generally believed to be
so by mathematicians.)

688 A real or complex number z is called algebraic if it is the root of a poly-

nomial equation zn + an−1z
n−1 + · · · + a1z + a0 = 0, where the coefficients

a0, a1, . . . an−1 are all rational; if z cannot be a root of such an equation, it is

said to be transcendental. The number
√

2 is algebraic because it is a root of

the equation z2 − 2 = 0; similarly, i, a root of z2 + 1 = 0, is also algebraic.
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• Catalan’s constant

G =
∞∑

k=0

(−1)k 1
(1 + 2k)2

= 1 − 1
9

+
1
25

− 1
49

+ . . ..

(Not proven to be transcendental, but generally believed to be so by
mathematicians.)

• Special values of the Riemann zeta function, such as ζ(3).

• ln 2.

• Hilbert’s number 2
√

2; proven to be transcendental [Gelfond, 1934].

• eπ; proven to be transcendental [Gelfond, 1934].

• πe (Not proven to be transcendental, but generally believed to be so by
mathematicians.)

• ii ≡ e−π/2; proven to be transcendental [Gelfond, 1934].

1929–1954 CE Andrei Nikolaevich Kolmogorov (1903–1987, Russia).
Distinguished mathematician. Made important contributions to the axiomatic
foundations of probability theory through the use of the Lebesgue measure
(1929).

During (1931–1933), Kolmogorov’s research centered on analytical meth-
ods of probability theory: he formulated two systems of partial differential
equations that bear his name. They describe transition probabilities for
Markov processes in continuous time (forward and backward equations).
These Kolmogorov equations are used in many applications to obtain the re-
quired probability distribution, especially in diffusion processes (e.g. popu-
lation growth) and Brownian motion. This work marked a new phase in
the development of probability theory and its implementation in problems of
physics, chemistry, engineering and biology.

Kolmogorov made important investigations in topology (homological rings,
nabla operator, nabla groups, continuous maps, duality law), information the-
ory, function theory, functional analysis, turbulent flow of fluids and random
stationary processes.
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Kolmogorov was born in Tambov, Russia. In 1920 he started his studies at
the Moscow state university in the faculty of physics and mathematics. After
his graduation (1925) he stayed there as a research associate and was elected
professor in 1931. In 1933 he became director of the Institute of Mathematics
at the University. In 1939 Kolmogorov was elected an academician of the
Academy of Sciences of the U.S.S.R. and later, an academician-secretary of
the department of physical and mathematical sciences of the academy.

The KAM theorem

The combined work of Kolmogorov (1954), his student Vladimir I.
Arnol’d, and Jürgen Moser (1962–3) provided precisely defined mathe-
matical criteria for determining whether (and which) perturbations can push
a dynamical system into instability. The result is known as the KAM theorem.

From Poincaré’s work and that of his successors, mathematicians already
had some sense that the phase-spaces of physical systems containing three
or more bodies are characterized by an intricate interweaving of regular and
chaotic regions. Yet some simple systems, such as the two–body (Kepler)
problem is celestial mechanics, are integrable (admit closed–form solutions),
and their solutions are regular. In the solar system, for instance, one may
reasonably regard inter–planetary interactions as weak perturbations to the
(otherwise independent and Keplerian) motions of each planet about the sun.
The question that remained was whether the feeble perturbations of the plan-
ets, compared with sun’s overwhelming effect, are sufficient to lead to true
instability.

The KAM theorem assures us that motion in any dynamical system re-
mains for the most part regular, or quasi-periodic, if perturbations stay suffi-
ciently small. Applied to our solar system, it means that any of a large set of
initial conditions leads to quasi-periodic rather than chaotic orbits, provided
the masses of the planets are sufficiently small compared with the sun’s mass.

An integrable n-dimensional system is a system whose equations of motion
can be reduced to n uncoupled one-dimensional (and in general non-linear)
oscillators by means of a canonical transformation in 2n-dimensional phase
space is effected.
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The dynamics of a conservative, finite, lumped mechanical system can

be described by the canonical system of ODE’s (Hamiltonian equations of

motion):

ṗk = −∂H

∂qk
, q̇k =

∂H

∂pk
(k = 1, . . . , n),

where {qj} are generalized coordinates, {pj} are the corresponding canonically

conjugate momenta, and H is the Hamiltonian function, given by

H(p, q, t) =
n∑

j=1

pj q̇j − L

in terms of the Lagrangian L(q, q̇, t); {q̇j} as functions of {qk, pk} can also

be obtained by solving pk = ∂L
∂q̇k

for the generalized velocities {q̇k}.

Such a dynamical system is in general not integrable, that is, not explicitly

solvable in the form

pk = fk(t; p0, q0); qk = gk(t; p0, q0),

where p0 ∈ Rn, q0 ∈ Rn are the initial conditions. There are exceptions to

this general rule — among them the so-called integrable Hamiltonian systems.
A simple example of an integrable system occurs when the Hamiltonian is a

function only of the pk: H(p, q, t) = K(p) (p ∈ Rn), known as the normal
form. In this case

ṗk = −∂H

∂qk
= 0; q̇k =

∂K

∂pk
;

thus all the pk are constants, and we readily obtain the general solution in

the form

pk(t) = p0
k qk(t) =

[(∂K

∂pk

)

p=p0

]
t + q0

k,

so that we essentially have a generalized ‘free particle’ situation. Another

standard example of an integrable system is a collection of n harmonic oscil-
lators with unit masses:

H(p, q) =
n∑

k=1

1
2
(p2

k + ω2
kq2

k).

Then

ṗk = −ω2
kqk; q̇k = pk
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where ωk are the frequencies; this system admits the general solution

pk = Ak cos(ωkt + φk); qk =
Ak

ωk
sin(ωkt + φk)

q0
k = p0

k

tanφk

ωk
, Ak =

[(
p0

k

)2
+ ω2

k

(
q0
k

)2
]1/2

Upon changing variables to polar ‘action-angle’ variables (Ik, θk) via

pk =
√

2ωkIk cos θk, qk =
√

2Ik

ωk
sin θk,

the Hamiltonian simplifies to H(I, θ) =
∑n

k=1 ωkIk, which is the normal
form. In these variables, the solution is

Ik(t) = I0
k ; θk(t) = ωkt + θ0

k (k = 1, . . . , n).

Note that the angle variables θk are only defined modulo 2π, i.e.

θ′
k = θk + 2πmk (where for any k, mk = ±1,±2, . . . ) are all the same

point in phase space. If n = 2, the motion is in 4-dimensional phase

space, but it is restricted to a surface which satisfies the two conditions

p2
k + ω2

kq2
k = 2ωkIk (k = 1, 2). The parametric equations of this surface are

those of a 2-dimensional torus embedded in R4:

ωkqk = rk sin θk; pk = rk cos θk, k = 1, 2,
r1 =

√
2ω1I1, r2 =

√
2ω2I2, r1 > r2

There are two distinct possible types of trajectories which may occur on this

torus:

• (ω1, ω2) are rationally independent, that is, m1ω1 + m2ω2 = 0
(with mk : integers) has no solutions except m1 = m2 = 0 (example:

ω1 =
√

2; ω2 = 4). The motion is then quasi-periodic and the trajectory

is dense everywhere on the torus. These disjoint 2-tori (one per each

(I1, I2) ordered pair) are called invariant tori; their union is the entire

R4 space.

These frequencies are rationally dependent, i.e. m1ω1 + m2ω2 = 0 has

solutions for nonzero integers; e.g. ω1 =
√

2, ω2 =
√

18. The motion is

then periodic; The trajectory will not visit some regions of the 2-torus.

One can generalize this example to the case of the motions in a 2n-dimensional

phase-space which take place on disjoint, invariant n-tori.
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A third example of an integrable system is the ‘Kepler problem’ in Rn,
defined by the Hamiltonian

H =
1
2

n∑

k=1

p2
k −

(
n∑

k=1

q2
k

)−1/2

.

This system is invariant under n dimensional rotations and therefore has
n(n−1)

2 angular–momentum type constants of motion: κij = piqj − qipj

(1 ≤ i < j ≤ n).

The Kolmogorov-Arnold-Moser (KAM) theorem treats near-integrable sys-
tem, with a Hamiltonian

H = H0(I) + H1(I, θ) (I ∈ RN ),

where H1 is taken to be periodic [ i.e. H1(I, θ + 2πm) = H1(I, θ), m = {mk}
a vector of integers ] and is required, in some sense, to be “small enough” (i.e.
‖H1‖ � 1 for some norm). Hamilton’s equations are then

İi = −∂H1

∂θi
; θ̇i = ωi(I) +

∂H1

∂Ii
,

where ωi are the unperturbed frequencies, that is ωi = ∂H0
∂Ii

. For most initial
data (i.e. all except a set of small measure) Kolmogorov sketched a proof that
the motion remains predominantly periodic or quasiperiodic, that is, confined
to invariant tori; in other words the complement of the quasi-periodic motion
(i.e. chaotic motion) has as small a Lebesgue measure as desired, provided
H1 is small.

The KAM theorem is formulated by assuming that the Hamiltonian is
analytic in a complexified domain of phase space, and that the unperturbed
motion is non-degenerate; that is

det
(

∂ωi

∂Ij

)

= det
(

∂2H0

∂Ij∂Ij

)

�= 0.

Clearly, an integrable system, by definition, cannot be chaotic. In general,
when the perturbation H1 is large enough, the invariant tori are destroyed,
and most initial–conditions data sets results in trajectories not limited to
lower–dimensional submanifolds of 2n–dimensional phase space.
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1929–1956 CE Adolf Friedrich Johann Butenandt (1903–1995, Ger-
many). Biochemist. Isolated the first sex hormones (estrone, androsterone
and progesterone), and determined their structure. In 1939 he shared the
Nobel prize for Chemistry with Leopold Ruzicka (1887–1976), although he
was forbidden by the Nazi regime to accept it. He discovered the first in-
sect hormone, ecdysone (1956) and soon afterwards, bombykol — the scent
produced by female silkworm to attract the males.

Butenandt was born in Lehe, near Bremerhaven, and studied medicine,
biology and chemistry in Marburg and Göttingen. In 1936 he became head
of the Kaiser Wilhelm Institute of Biochemistry in Berlin.

The Discovery of Planet Pluto (1906–1930)

The name Pluto comes from Pluton, an alternate Greek name for Hades,
the god of the dead. The Romans borrowed and preserved without change
almost all the myths about Hades and his underworld kingdom.

Pluto is the most distant known planet from the sun689. Pluto and Neptune
are the only planets that cannot be seen without a telescope. Both planets

689 Mean distance from the sun: 5914.3 million km; diameter: ca 2300 km; length

of year: ca 248 earth years; rotation period: 6.4 earth days; inclination of

orbit to the ecliptic: i = 17 ◦; orbital eccentricity : e = 0.25; tilt of spin axis

to orbit: 177 ◦ (i.e. its north pole, defined by counterclockwise rotation, lies

below the plane of its orbit); density : ca 2 gm
cm3 (rocky material and ice).

A revolution in the understanding of Pluto began in 1978 when James W.

Christy discovered that Pluto has a large satellite, which he names Charon

(after his wife, not the Greek eponymous mythological figure that ferried the

souls of the dead to the underworld dominion of Pluto). It revolves around

the planet over a 6.4-day period, the same as Pluto’s known period of rotation.

Consequently, Pluto and Charon keep the same hemisphere facing toward each

other, just as in the earth-moon system – in both cases as a result of tidal

torques. The diameter of Charon was found to be 1186 km, while its orbital

radius (about the Charon–Pluto center of mass) is 19640 km. Measurements

of Charon’s orbit revealed that the total mass of the Pluto-Charon system is

about 1
400

the mass of the earth.

Shortly after Charon was discovered, astronomers realized that twice during
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were predicted mathematically prior to their actual discovery, based upon the
gravitational perturbation they cause.

In 1905, Percival Lowell (1855–1916, U.S.A.), an American astronomer,
made an elaborate mathematical study of the orbits of Uranus and Neptune.
He then attributed the perturbations in their motions to the presence of an
unseen planet beyond Neptune, and calculated its position. A systematic
search for the planet by the staff of his private observatory (Flagstaff, Arizona
— todays ‘Lowell Observatory’) failed to find it.

Fourteen years after his death, Clyde William Tombaugh (1906–1997;
born in Streator, Illinois, a year after Lowell’s own prediction) discovered
Pluto on photographic plates which he took with a more powerful telescope
at Lowell’s Observatory (February 18, 1930).

Lowell was born in Boston, a member of the distinguished Lowell family
of Massachusetts690. Until 1890 he devoted himself to literature and travel in

Pluto’s 248-year circuit about the sun, the alignment between the earth and

Pluto causes Charon’s orbit to be seen edge-on. At those times, Charon ap-

pears to pass in front of Pluto (transit) or behind it (occultation) at 3.2 day

intervals. These events are commonly known as eclipses. Fortunately for as-

tronomers, they occurred close to Charon’s discovery, in 1987. Due to the total

occultation of Charon behind Pluto it became possible to resolve the individual

spectra of the two bodies.

Careful timings of the transits and occultations can be translated into dimen-

sions of the objects, provided one knows the distance between Charon and Pluto.

This, combined with the new measurements of the total mass of the system,

yielded the above–quoted estimate of Pluto’s density.

A star occulted by Pluto in 1988 flickered before it vanished — revealing that

the planet has a thin, hazy atmosphere, composed of methane, argon, nitrogen,

oxygen and carbon monoxide. Pluto’s equatorial surface is at a temperature

of about 58 ◦ Kelvin; its surface is covered with frozen methane and a wispy

atmosphere that may periodically precipitate snow.

Calculations of Pluto’s orbital motion covering a period of 845 million years

[G.J. Sussman and J. Wisdom, Science, 22 July 1988] indicate that Pluto’s

orbit is chaotic over long periods. It is most likely that Pluto formed in the

outer solar system and that chaotic dynamics led to its current eccentric and

highly inclined orbit. It may thus be a relic from the formation of the solar

system.

Recently, (2000’s) there has been a trend among astronomers to “demote” Pluto

from the ranks of bona fide planets of Solar System.
690 His brother Abbott Lawrence Lowell (1856–1943) was president of Harvard

University (1909–1933). His sister Amy Lowell (1874–1925) was an American

poet and critic.
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the far east. Afterwards he became best known for his belief in the possibility
of life on Mars and the existence of canals there691. In 1894 he completed the
construction of his private observatory at Flagstaff, Arizona.

Tombaugh served at Lowell Observatory, and spent most of his academic
career at the New Mexico State University.

691 The canal theory was put to rest by data received from U.S. spacecraft Mariner 4

when it flew past Mars in July 1965. As to Martian life, the chemical and biolog-

ical analyses performed, via robotics, by the Viking I and II lander spacecrafts

(July 20, 1976 and Sept. 3, 1976), proved inconclusive. In 1996, an analysis

of a meteorite discovered (1984) in Antarctica, strongly suggested that it had

come from Mars, possibly bearing fossils of ancient organisms. Future missions

to Mars may finally settle the question whether life exists, or has ever existed

on the red planet.
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Exploration and Discovery of the Solar System692

(1610–2008 CE)

From the dawn of history until the beginning of the 17th century the
known universe consisted of only 7 heavenly bodies:693

Sun
Mercury
Venus
Moon
Mars
Jupiter
Saturn

plus the “fixed” stars with earth itself considered the universe’s center, in
accord with the Church–sanctioned Ptolemaic system.

692 For further reading, see:

• Caprara, G., The Solar System, Firefly Books, 2003, 255 pp.

• Ridpath, I., Stars and Planets, DK Publications, 1998, 224 pp.

• Watters, T.R., Planets – A Smithsonian Guide, Macmillan, USA, 1995,
256 pp.

• Moore, P., Philip’s Atlas of the Universe, Phillips, 2005, 288 pp.

• Gallant, R.A., Universe, National Geographic Society, 1995, 284 pp.

• Kump, L.R. et al., The Earth System, Prentice Hall, 1999, 351 pp.

• Rees, M. ed, Universe, DK Publications: New York, 2005, 512 pp.

693 In Genesis 37, 9 Joseph tells his brothers of a dream about “the sun and the

moon and the eleven stars...” If we discount the above list of naked-eye bodies,

Joseph must have included another naked-eye “fixed” stars. Candidates may

be chosen from the list of brightest stars in the Northern skies, namely: Sirius,

Canopus, α Centauri, Vega and Arcturus.
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In 1610, Galileo Galilei first pointed a telescope upon the heavens. By
the end of the 17th century, 9 new bodies had been discovered and the he-
liocentric theory of Copernicus was widely accepted. The total number of
known bodies had more than doubled, (now including planet earth) to 17.
The new additions were:

Callisto 1610 Galileo Galilei
Europa 1610 Galileo Galilei
Ganymede 1610 Galileo Galilei
Io 1610 Galileo Galilei
Titan 1655 Christiaan Huygens
Iapetus 1671 Giovanni Domenico Cassini
Rhea 1672 Giovanni Domenico Cassini
Dione 1684 Giovanni Domenico Cassini
Tethys 1684 Giovanni Domenico Cassini

Only 5 new bodies (not including comets) were discovered in the 18th century
(all by William Herschel), bringing the total to 22:

Uranus 1781 William Herschel
Oberon 1787 William Herschel
Titania 1787 William Herschel
Enceladus 1789 William Herschel
Mimas 1789 William Herschel

The number of known bodies in the solar system increased dramatically in the
19th century, with the discovery of the asteroids (464 of which were known
by 1899), but only 9 more “major” bodies were discovered. The number of
major bodies rose thereby to 31 (almost doubling the 17th century total):

Neptune 1846 Johann Gotfried Galle,
Urbain Jean Joseph Le Verrier

Triton 1846 William Lassell
Hyperion 1848 William Cranch Bond
Ariel 1851 William Lassell
Umbriel 1851 William Lassell
Phobos 1877 Asaph Hall
Deimos 1877 Asaph Hall
Amalthea 1892 Edward Emerson Barnard
Phoebe 1898 William Henry Pickering
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In the 20th century (up to 1990), 40 more major bodies (and thousands of
comets and asteroids) have been discovered (27 by the Voyager probes), more
than doubling the count again to 71:

Himalia 1904 C. Perrine
Elara 1905 C. Perrine
Pasiphae 1908 P. Melotte
Sinope 1914 S. Nicholson
Pluto 1930 Clyde W. Tombaugh
Carme 1938 S. Nicholson
Lysithea 1938 S. Nicholson
Miranda 1948 Gerard Kuiper
Nereid 1949 Gerard Kuiper
Ananke 1951 S. Nicholson
Janus 1966 Audouin Dollfus
Leda 1974 Charles T. Kowal
Charon 1978 J. Christy
Adrastea 1979 D. Jewitt & E. Danielson
Metis 1979 Stephen Synnott
Thebe 1979 Stephen Synnott
Epimetheus 1980 R. Walker
Atlas 1980 R. Terrile
Calypso 1980 Pascu et al.
Helene 1980 P. Laques & J. Lecacheus
Pandora 1980 S. Collins et al.
Prometheus 1980 S. Collins et al.
Telesto 1980 Reitsema et al.
Puck 1985 Voyager 2
Belinda 1986 Voyager 2
Bianca 1986 Voyager 2
Cordelia 1986 Voyager 2
Cressida 1986 Voyager 2
Desdemona 1986 Voyager 2
Juliet 1986 Voyager 2
Ophelia 1986 Voyager 2
Portia 1986 Voyager 2
Rosalind 1986 Voyager 2
Despina 1989 Voyager 2
Galatea 1989 Voyager 2
Larissa 1989 Voyager 2
Naiad 1989 Voyager 2
Proteus 1989 Voyager 2
Thalassa 1989 Voyager 2
Pan 1990 Mark Showalter
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Timeline

432 BCE Meton introduced his calendar in Athens.

c. 270 BCE Aristarchos of Samos estimated the distance and size of
the sun and proposed that earth goes around it.

c. 250 BCE Erathosthenes estimated the size of the earth.

c. 135 BCE Hipparchos discovered the precession of the equinoxes and
estimated the distance to the moon.

c. 46 BCE Julius Caesar commanded the reform of the Roman Calen-
dar.

c. 140 AD Claudius Ptolemaeus (Ptolemy) wrote “Megale Syntaxis
tes Astronomias” (known 1000 years later as “Almagest”),
proposing his world system.

1543 Nicolaus Copernicus published his theory of the solar sys-
tem.

1582 Pope Gregory the 13th commanded the reform of the cal-
endar.

1609 Galileo Galilei built the first astronomical telescope and
observed for the first time craters on the moon, satellites
around Jupiter and the moon–like apparent phases of Venus.

1609–1619 Johannes Kepler, using Tycho’s observations, formulated
his first two laws of planetary motion (1609), and the third
in 1619.

1686 Isaac Newton established the law of universal gravitation.

1781 William Herschel discovered planet Uranus with a mirror
telescope of his invention.

1801 Giuseppe Piazzi discovered main–belt–asteroid Ceres.

1807 Discovery of main–belt asteroid Vesta.

1838 Friedrich Bessel first measured the distance to a star (61
Cygni).
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1839 Invention of photography by L.J.M. Daguerre.

1846 Discovery of a new, theoretically predicted planet — Neptune.

1930 Discovery of planet Pluto.

1957 Soviet Union launched the first man-made satellite, Sputnik 1.

1961 Yuri Gagarin became the first human to orbit earth.

1969 United States lands a man on the moon (Apollo 11 mission)

1976 The U.S. Viking 1 soft-landed on Mars; took pictures and
searched for chemical signatures of life.

1977–1989 The U.S. Voyager 1 and Voyager 2 embark on a space
odyssey which takes them to encounters with Jupiter, Sat-
urn, Uranus, Neptune and beyond.

1989–1999 U.S. space probe Magellan sent on a mission to orbit Venus
and map it, using a radar imaging system.

1989–1991 U.S. craft Galileo (with some European sub–systems) sent on
a mission to orbit Jupiter and study its atmosphere, satellites
and surrounding magnetosphere.

1990–1994 U.S. (HST); launched the Hubble Space Telescope; it returned
high-resolution images of Mars and the other outer planets of
the Solar system as well as deep–space imagery; its surveys
of supernovae throughout the observable universe played a
key role in refining and confirming the Big Bang cosmological
theory, establishing the universe’s age (14Gy) and discovering
its residual dark energy (vacuum expansion). In 1994 the
HST photographed the spectacular collision of a fragments
of comet Schumacher–Levy with Jupiter.

1990–1995 U.S./European craft Ulysses sent on a solar fly-by mission
to study the poles of the sun and the interstellar space above
and below the poles. It used Jupiter for a gravity-assist boost
to swing out of the ecliptic plane and onwards to the poles of
the sun.
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1995 Europe and U.S. Solar Probe SOHO (Solar and Heliospheric
Observatory) was launched to study the sun’s internal struc-
ture, by observing velocity oscillations and radiance varia-
tions, and to look at the physical processes that form and
heat the sun’s corona and that give rise to the solar wind —
using imaging and spectroscopic diagnosis of the plasma in
the sun’s outer regions. SOHO was placed in a “halo orbit”
around the L1 Lagrangian point (a point 1.5 million km away
from us at which the gravitational pull of the earth balances
that of the sun).

1996 NASA made a startling discovery that points to the possibil-
ity that a primitive form of microscopic life may have existed
on Mars more than 3 billion years ago. As evidence, NASA
presented a potato-size stone (designated ALH84001), a rare
type of meteorite (recovered from Antarctica) that had its
genesis on the planet Mars. The stone’s Martian provenance
was determined by its isotope ratios; it was likely ejected from
Mars due to the impact of a asteroid, landing on earth thou-
sands of years ago. Over the course of the preceding 2 1

2 years,
a team of NASA researchers and outside collaborators used
sophisticated techniques of physical chemistry and optics to
minutely examine the meteorite; they uncovered mineralogi-
cal, chemical, and structural oddities which they interpreted
as evidence for biological activity in Mars’ distant past.

The stone’s journey began some 16 million years ago when an
asteroid slammed into Mars and hurled chunks of the planet
into space. About 13,000 years ago at least one of those pieces
plummeted onto the frozen wastes of Antarctica, where it was
found on Dec 27, 1984.

1996 U.S. Asteroid Orbiter NEAR (Near Earth Asteroid Ren-
dezvous) launched to the near–earth asteroid 433 Eros. The
spacecraft studied the asteroid for one year after entering or-
bit in Feb 1999.

1997 U.S. and Europe Saturn Orbiter and Titan Probe Cassini –
Huygens was launched to explore the whole Saturnian system
— the planet itself, its atmosphere, rings and magnetosphere,
and some of its moons. Titan is especially interesting because
its atmosphere is supposed to have properties very close to
those of the terrestrial atmosphere in its pre-biotic phase.
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1998–9 U.S. Mars Surveyor Project : spacecraft ‘98 Orbiter ’ (1998)
studied the planet from polar orbit for about 2 years, using a
variety of advanced instruments; ‘98 Lander ’ (1999) studied
the environment at the Martian south pole, seeking to un-
derstand the planet’s climate and soil. It was equipped with
meteorological equipment to study the weather, and a robotic
arm to dig trenches in the soil.

1999–2006 U.S. Comet Sample Return Stardust. Scheduled to ren-
dezvous with Comet P/Wild-2 in 2004, study the object and
collect material for analysis on earth. Capsule is scheduled
to return in January 2006.

2007 NASA launched the probe DAWN via Delta II ion–engine
rocket from Cape Canaveral (Sept 27). The DAWN will travel
5.1 × 109 km to asteroids Vesta and Ceres, reaching Vesta
sometime in August 2011.

1930 CE, Aug. 13 ca 12h:04m GMT (07h:04m LT). A mysterious explosion
over the Curucá River694, in the upper reaches of the Amazon, West Brazil
(near the border junction of Peru, Columbia and Brazil); ca 5 ◦S, 71.5 ◦W.

A glowing bolide arrived from a northerly direction and apparently ex-
ploded at low altitude (5–10 km) in the atmosphere over the Brazilian rain
forest. The earthquake generated by the impact of the main detonation-wave
was recorded at La Paz (1322 km away) at 07:05:03 LT, and the explosion
was heard in cities 240 km away (Atalaia do Norte and Esperanca). At the
source –

“. . . the sun turned blood red and a darkness spread overhead; a fine red
dust (ash) began to fall onto the forest and into the river; several ear-piercing
whistles then filled the air, becoming louder and louder; from the sky fell
large balls of fire like thunderbolts; there were three distinct explosions, each
causing tremors like earthquakes”.

Astronomers estimated a yield equivalent of about one megaton TNT

(about a tenth of the yield of the Tunguska event of June 30, 1908 in Central
Siberia). They believe that the bolide originated in the comet P/Swift-Tuttle
and that the fireballs were associated with its Perseid meteroid stream695.

694 A tributary of the Rio Yavari, itself a large tributary of the Amazon River.
695 Huyghe, P., Incident at Curucá, The Sciences, March/April 1966, pp. 14–17.
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Apart from the major Tunguska explosion (June 30, 1908) and the smaller
Brazilian explosion (Aug. 13, 1930), at least three other similar events, albeit
of smaller yield, are known to have happened over land:

British Guiana, Dec. 11, 1935
British Columbia, March 31, 1965
New Guinea, March 04, 1975.

Thus, it is quite feasible that bolide-earth encounters in the yield range 100–
1000 KT take place ten times more often than astronomers and geophysicists
had thought, with the earth subjected to 3–4 such events per century.

1930 CE • Superconductivity was discovered in lead-bismuth alloys by
W.J. de Haas and J. Voogd. This class of superconduc-
tors is called type II, and its members differ from type I su-
perconductors in their magnetic properties, which involve
Abrikosov Flux tubes penetrating the medium bulk.

• The photographic flashbulb was patented by a German in-
ventor, Johannes Ostermeir. A small filament in the
‘flash lamp’ heated to ignite foil inside the bulb, providing
a bright, smokeless, flash of light. This provided a much
safer and more practical means of photographic illumina-
tion than did previous methods, which employed flash pow-
der.

1930 CE Vannevar Bush (1890–1974, U.S.A.). Electrical engineer. De-
veloped and built the first mechanical analog computer (‘differential analyzer’)
designed to solve differential equations.

Bush was born in Everett, MA. He taught at Tufts University (1914–1917).
After conducting submarine-detection research for the U.S. Navy, he joined
the faculty of the Massachusetts Institute of Technology (MIT) at Cambridge
in 1919. From 1930 he worked with a team at MIT to build the differen-
tial analyzer. This machine foreshadowed the electronic computers developed
after WWII. During 1940–1948 he served as a high ranking government offi-
cial in charge of scientific research and development. His famous “unfettered
research” memorandum set the tone for generous U.S. government support
for “Big Science” basic research in the post–war are – a policy that greatly
benefited fields such as nuclear and particle physics, in particular.

1930 CE Ernest Orlando Lawrence (1901–1958, U.S.A.). Distinguished
physicist. Invented the circular particle accelerator (cyclotron). It was the
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first non-electrostatic accelerator to reach high energies (ca 12 MeV for pro-
tons).

The principle of operation of the cyclotron696: positive ions from a central
source are repeatedly accelerated by an alternating electric field applied across
the gap between two D-shaped half-circles (“dees”, diameter ca 90–230 cm).
These ions describe spiral paths in a perpendicular magnetic field (ca 20,000
gauss) and are finally directed by a deflector plate onto a target.

With the cyclotron, Lawrence produced technetium, the first artificially
produced element. He later contributed to chemistry, biology and medicine
by producing new artificial elements (e.g. radioactive phosphorus and iodine)
and also generated neutron beams used in cancer treatment. During WWII,
he worked in the Manhattan project, in which he was in charge of developing
the electromagnetic process for separating uranium-235 for the atomic bomb.
Lawrence also invented the color-television picture tubes. The Lawrence
Berkeley Laboratory at Berkeley; Lawrence Livermore National Laboratory
at Livermore, CA; and element 103, Lawrencium, were named in his honor.

Lawrence was born in Canton, South Dakota. He was an assistant pro-
fessor at Yale University (1921–1928) and became a full professor at the Uni-
versity of California, Berkeley, in 1930. He built the Radiation Laboratory at
Berkeley in 1936 and won the Nobel prize for physics in 1939.

696 In the non-relativistic approximation, the revolution frequency of a particle in

a uniform magnetic field is independent of its kinetic energy. As the particle

is accelerated via synchronized electric fields during short segments of its orbit,

it travels faster, experiencing a magnetic deflection force proportional to its ve-

locity. The centripetal acceleration is proportional to the square of its velocity;

Newton’s second law then becomes mv2

r
= Bev or mω2r = Beωr. In these

equations m is the mass of the accelerated particle, v its linear velocity, e its

charge, r is the radius of revolution, B the magnetic field, and ω = v
r

=
(

e
m

)
B

is the angular velocity which is independent of the speed or radius, and fixed for

a group of particles with fixed
(

e
m

)
ratio. The time of revolution t = 2π

B

(
m
e

)
is

thus also independent of the speed. If the frequency of the alternating potential

difference between the “Dees” (the D-shaped halves of the cyclotron) is cor-

rectly adjusted, the ions emerge from each dee after exactly one-half cycle and

are attracted into the opposite dee. The energy characteristic of the machine

is limited by the diameter 2R of the dees and the magnetic field strength B:

Elim = m
2

v2
lim = e2B2R2

2m
. Above 10 MeV for protons, the relativistic increase

in mass begins to de-synchronize the revolution frequency with the oscillator

frequency.
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Big Science I — Particle Accelerators697 (1930–1971)

High energy particle physics is the study of fundamental particles and
their interactions, transmutations and associated fields. This involves probing
short distances, which in turn is accomplished with probes of short de Broglie
wavelength, i.e. high momentum and energy (p = h

λ ). “High energy” varies
from a few keV (in the spectrometer of J.J. Thomson, in which he discovered
the electron in 1897) to 100 GeV (in the spectrometer where the Z0 particle
was discovered in 1983) and beyond — a range of more than 8 orders of
magnitude698 which will continue to grow as accelerator technology marches
on.

Particle accelerators are devices used to accelerate charged elementary
particles or ions to high energies. Particles are accelerated through their

697 For further reading, see:

• Sandin, T.R., Essentials of Modern Physics, Addison-Wesley Publishing Com-

pany: Reading, MA, 1989, 575 pp.

• Frauenfelder, H. and E.M. Henley, Subatomic Physics, Prentice-Hall: Engle-

wood Cliffs, NJ, 1974, 554 pp.

• Thornton, S.T. and A. Rex, Modern Physics, Saunders College Publishing,
2000, 556 pp.

• Rohlf, J.W., Modern Physics from α to Z0, John Wiley and Sons, Inc: New

York, 1994, 646 pp.

698 Energy scales in modern physics: a proton or electron accelerated through

1 Volt acquires a kinetic energy of 1 eV = 1.602 × 10−19 Joule. Thus:

keV = 103 eV, MeV = 106 eV, GeV = 109 eV, TeV = 1012 eV. The elec-

tron rest-mass energy is E0 = mec
2 = 0.511 MeV, while the proton rest-mass

energy is 938 MeV. The amount of rest–mass energy stored in 1 kg of matter

is 9 × 1016 Joule [at a cost of 10 cents per kilowatt-hour, the energy stored

in one kilogram of dirt – if it could be released – would be worth about 2.5

billion dollars!].

Energies of the order of eV are associated with outer electrons in atoms, keV

— with inner electrons in heavy atoms, MeV — with neutrons and protons

(nucleons) inside nuclei and released in fission, fusion and other nuclear reac-

tions; 102 MeV to GeV’s — with quarks inside nucleons, light quark-antiquark

hadrons, heavy-lepton production, and nucleon-antinucleon production. Ener-

gies of order 102 GeV resolve the weak nuclear forces’ range (via the uncertainty

principle) and produce their mediating particles.
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electromagnetic interactions. Only electrically charged particles that are rela-
tively stable against spontaneous decay may be readily accelerated. The only
particles that fit this description are the electron, the proton, and relatively
stable nuclei (heavy ions) plus their antiparticles. However, beams of charged
unstable weakly–decaying particles (such as the muon) can be accelerated,
stored and collided with targets and each other, since the highly relativistic
energies of such beams result in time–dilation factors that render them stable
enough699.

Particle accelerators today — along with their attendant peripheral equip-
ment, such as detectors, and stand–alone detectors designed to study cosmic
rays and exotic particles and decays — are some of the largest and most ex-
pensive instruments used by scientists. Accelerators all have three basic parts:
a source of charged particles, a tube pumped to a high vacuum in which the
particles can travel freely until they reach their target, and some means of
speeding up the particles. The vacuum is needed so that the particles are not
scattered by air molecules.

Due to many innovative technological advancements in the field of accel-
erators, the maximum achievable particle energy has grown by many orders
of magnitude over the decades since the early accelerators of 1930. Each
new accelerator technique has reached a limit in the maximum energy within
a few years, only to be overtaken by a new invention. The main stages of
development were as follows:

1. Electrostatic machines (1–10 MeV; 1927–1933)

The success of the nuclear model of the atom, proposed in 1911 by
Rutherford and developed by Niels Bohr and others, served to emphasize
the great difference in energy scale between atomic processes involving only
the extranuclear electrons and nuclear processes proper. During the first 20
years of the 20th century, the chief source of information about nuclei was
natural radioactivity, as exhibited by the chemical elements of highest atomic
and mass numbers.

699 Also, it is possible to form collimated secondary beams – composed of charged or

neutral particles, whether stable or not – through in–flight radioactive decays

of accelerator–produced collision products. Thus pion, kaon, neutrino, and

other secondary particle beams are routinely created in accelerators and fission

reactors, and used to induce further reactions.
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In 1919 Rutherford carried out some simple experiments to test whether
the positively charged nucleus of a light element could be disrupted by
bombardment with the alpha particles emitted from a radioactive prepara-
tion. This would require the alpha particles to penetrate the Coulomb field
of repulsion exerted by the charge of the light nucleus, and it was known
from scattering experiments that such penetration is unlikely. Nevertheless
Rutherford was able to show that the element nitrogen, under alpha-particle
bombardment, occasionally emitted protons, probably due to the reaction
14
7 N + 4

2He → 1
1H + 17

8 O.

This hypothesis was verified by Patrick (Maynard Stuart) Blackett
(1897–1974, England), who in 1925 started his experiments with colliding
atoms in a Wilson cloud chamber and took first photographs of nuclear reac-
tions. Many basic discoveries were made with radioactive sources, but it was
soon realized that particle accelerators would provide a much higher yield of
nuclear reactions under more controllable conditions.

Linear accelerators (linacs) accelerate charges along a straight line in an
evacuated tube. In the case of electrostatic linac, the acceleration results
from the force applied by a static electric field provided by a large potential
difference. A particle of charge e moving through a potential drop of V
can gain kinetic energy Ek = eV . The high voltage (up to 2 MV) may be
obtained by charging capacitors with a voltage multiplier circuit. In 1930, an
international race was underway to produce the first artificial disintegration of
the nucleus700. This goal was achieved at the Cavendish Laboratory, England:
a huge voltage divider was built and used to linearly accelerate protons to
kinetic energies of some 800, 000 eV.

In 1932 John Douglas Cockroft701 (1897–1967) and Ernest T. S. Wal-

700 Already in the late 1920s, study of the structure, excitation, and disintegra-

tion of the nucleus awaited new technology. Calculations by George Gamow

(1904–1968) based on the new wave mechanics, indicated that protons of rela-

tively low energy could penetrate barriers of light nuclei. This, in turn, encour-

aged Cockroft and Walton to achieve proton-induced disintegration of lithium

nuclei with a conventional voltage multiplier.
701 Cockroft studied at Manchester University under Horace Lamb. After

serving in WWI he continued his studies at Cambridge and then worked un-

der Rutherford in the Cavendish Laboratory, where he collaborated with P.

Kapitsa on the production of intense magnetic fields at low temperatures. In

1928 he returned to work on the acceleration of protons by high voltages with

E.T.S. Walton. He became professor of Natural Philosophy at Cambridge in

1939. In 1940 he was appointed Head of the Air Defense Research and Devel-

opment Establishment and in 1946 he became Director of the Atomic Energy

Research Establishment at Harwell.
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ton702 (1903–1995) in England were first to accelerate protons by means of an
electrostatic generator and demonstrate possibilities for production of many
types of reactions in light nuclei, such as

1
1H + 7

3Li → 2 4
2He + Q

with Q being the heat of (nuclear) reaction. For this feat of ‘atom splitting’
they were awarded the Nobel Prize in Physics for 1951. This provided also
the first experimental proof (1927) of Einstein’s equation E = mc2.

The maximum energy achievable in an electrostatic linac, of order 1 MeV,
is limited by electrical discharge. The brute force acceleration by direct cur-
rent (DC) high voltage was further improved with the development of the
Van de Graaff accelerator (1933).

The rectifier circuit of the Cockroft-Walton system was replaced with an
electrostatic charging belt. The effects of sparking were reduced by insulating
the accelerating tube with compressed gases. Van de Graaff accelerators can
produce kinetic energies of about 10 MeV. Since kinetic energies of particles
from nuclear decays are typically a few MeV, the machine can produce kinetic
energies that are larger than those available from natural radioactive decays.

2. RF Linear Accelerators (up to 50 GeV; 1928 to 1990s)

To reach very high energies, particles must be accelerated, stepwise, many
times over. Conceptually, the simplest system is a linear accelerator which
uses alternating electric fields of high magnitude to push particles along a
straight line.

To achieve this feat, particles pass through a line of hollow metal tubes
enclosed in an evacuated cylinder. An alternating electric field of constant
frequency [usually in the radio (RF) or microwave range] is timed so that a
particle is pushed forward each time it goes through a gap between two of
the metal tubes. Since the velocity increases at each gap, the cylinder lengths
must increase also. This new concept of RF acceleration was introduced in
1928 by the Norwegian physicist Rolf Wideröe (1902–1996, Norway and
USA) [but originated with Gustaf Ising (1883–1960) in 1924].

702 Ernest Thomas Sinton Walton went to the Belfast Trinity College (1922)

and later to the Cambridge Cavendish Laboratory (1927). He became professor

of Natural and Experimental Philosophy at Trinity College, Belfast (1947).
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In his pioneering apparatus Wideröe passed electrons across two gaps.
The voltage across both gaps was made to oscillate such that the electrons
arrive at each gap when the voltage difference across it is a maximum. The
electrons are accelerated in each of the two gaps. Let the gaps be separated by
a distance d under voltage difference Vmax. Then the total kinetic energy
of the electron after the first gap is E = mc2 + eVmax, its momentum p is

given by pc =
√

E2 − (mc2)2 and its velocity is v
c = pc

E . To be accelerated

in both gaps, the voltage oscillation frequency must be f = v
d . Substituting

d = 1 m, Vmax = 100 kV one finds f = 160 MHz — a radio frequency.
Since the energy gain from each gap is eVmax, the electron’s overall gain
in kinetic energy is 2eVmax. There is no limit in principle to the number of
acceleration gaps that can be added.

The RF acceleration technique is useful in practice largely because of a
phenomenon called longitudinal phase stability: in practice electrons travel
in bunches of finite length and are collectively accelerated. Consequently, all
particles do not arrive at the acceleration gap at the same time. Choosing the
accelerating voltage V0 to be smaller than the maximum voltage, particles
that arrive early are accelerated by a smaller voltage difference, while particles
that arrive late are accelerated by a larger voltage. Only particles in the center
of the bunch are accelerated by V0. But both late and early arrivals are always
synchronized with the center of the bunch.

The key ingredient in later improvements of the RF acceleration technique
was a novel high-frequency power source: the Klystron amplifier (1937–1940)
can provide several megawatts at a frequency of a few gigahertz. One refine-
ment of the RF technique is to accelerate relativistic particles using electro-
magnetic waves in a wave-guide cavity. Acceleration occurs in such a cavity
when the group velocity of the wave is equal to the particle velocity. The phase
and group velocities of the electromagnetic waves are adjusted by appropriate
geometric shaping of the wave-guide cavity.

Theoretically a linac of any energy can be built. However, RF technol-
ogy required the availability of large RF power sources for the acceleration,
and enormous technical problems had to be solved before linear accelerators
became useful machines.

The largest linac in the world, at Stanford University (Stanford Linear
Accelerator Center – SLAC), is 3.2 km long. It is capable of accelerating
electrons to an energy of 50GeV (50 billion, or giga, electron volts). Stan-
ford’s linac is designed to accelerate two beams of particle bunches (electrons
and positrons), which “surf” on regions of a traveling TM 01 waveguide mode
with oppositely-oriented longitudinal electric fields. The e+ and e− beams
are then separated magnetically, made to curve around, and collided.
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Early SLAC experiments (1960’s and early 1970’s), which established the
quark model, involved colliding linac-produced e− beams with stationary pro-
tons and other fixed–target nuclei (e.g. in a liquid hydrogen bubble chamber).

3. Cyclotron and Synchrocyclotron (1929–1952)

Uniform static magnetic bend charged particles around circular arcs, while
uniform electric fields speed them up. When a charged particle of mass m
and charge e is moving with velocity v along a circular path of radius
r perpendicular to the magnetic field B, Newton’s second law of motion

becomes evB = mv2

r , p ≡ mv = eBr; hence v = eBr
m . In practice, the tracks

are not simple circles, even if v is perpendicular to B, because the particle
loses energy and momentum via its accelerator-caused EM radiation; actual
tracks are inward–spiraling helices. The expression p = eBr shows that a
decreasing momentum leads to a decreasing radius about the magnetic–field
axis.

A 500-GeV RF linear accelerator would have to be about 75 km long,
with enormous construction, maintenance and power challenges and costs.
It thus makes more sense to magnetically guide the charged particles into
traversals of multiple closed, circular paths, along which their kinetic energies
can be gradually increased via the synchronized application of RF fields. This
required an altogether new approach, which eventually came in 1929 with
the invention of the cyclotron by E.O. Lawrence. It made use of the RF
technique pioneered by Rolf Wideröe (1928).

Lawrence’s idea was to accelerate ions or electrons stepwise, using a uni-
form magnetic field to move the particles in a spiral path which repeatedly
crosses an accelerating gap in the plane of the spiral. An applied, radio-
frequency electric field, synchronized in phase with the orbital frequency of
the ions, is used to accelerate the particles on each trip across the gap.

In 1930, Lawrence’s students, Niels Edlefsen (1893–1971) and Milton
Stanley Livingstone (1905–1986) built the first cyclotron: it was essentially
a linac wrapped into a tight spiral.

But instead of many tubes, the machine has only two flat D-shaped hollow
vacuum chambers (called dees), placed between the poles of a magnet (actually
a powerful electromagnet). The magnetic field is constant and is perpendicular
to the trajectory of the charged particle. This configuration makes the charged
particle move in semicircular paths within each dee. The dees are connected
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to a source of alternating voltage, is synchronized so that whenever a charged

particle is moving from dee 1 to dee 2, the electric field between the oppositely

charged dees is maximum in a direction that will accelerate the particle. One-

half cycle later, the charged particle is moving in the opposite direction from

dee 2 to dee 1 and the electric field has been reversed to again align itself with

the momentary direction of the particle’s motion, so as to give it a maximum

increase in speed.

When inside the metal dees, each charged particle is within a conductor

where the electric field is zero. As the beam particles gain energy and mo-

mentum from its trips between the dees, their orbital radius will increase,

according to p = eBr. As the particles gain energy, they will spiral out to-

ward the other peripheries of the accelerator dees, until they gain enough

energy to exit the accelerator.

If the maximum radius is R and if Ek � m0c
2 (m0 = charged

particle’s rest mass), then relativistic effects may be neglected and

Ek ≈ p2
max

2m0
= e2B2R2

2m0
. For example if B = 1.3 Tesla a singly–charged particle

species, and R = 11 cm, (the 1932 Lawrence-Livingstone machine) we find

the cyclotron frequency fcyc = ωcyc
2π = 20 MHz and Ek = 1.0 MeV for a

proton with m0 = 1.67 × 10−27 kg. Its rest energy is m0c
2 = 938 MeV.

In a cyclotron, the time (T ) between acceleration burst is the time for the

particle to make one-half of a revolution. For a particle traveling at a speed

v in a circle of radius r, T = πr
v . Therefore, the frequency (ωcyc) of the

oscillating voltage is chosen to be ωcyc = π
T = v

r , so that the voltage changes

sign each half-revolution. This frequency is called the cyclotron frequency.

For a non-relativistic particle the orbital frequency (ωorb) is a con-

stant (independent of particle energy), ωorb = ωcyc = v
r = veB

p = eB
m0

. Hence,

the particles may be accelerated each time they cross the gap by selecting

ωAC = ωcyc.

If, however, the particle’s kinetic energy begins to become an appreciable

fraction of its rest energy, the mass begins to increase significantly, in accor-

dance with STR. As a result, ωorb will decrease when the particle is speeded

up at a constant B field and the particle traversals of the dees will fall out

of phase with the accelerating electric field.

Indeed, Hans Bethe and M.E. Rose (1911–1967) showed that a fixed-

frequency cyclotron of the Lawrence-Livingstone design has a practical upper



3866 5. Demise of the Dogmatic Universe

energy limit of about 25 MeV (for protons), owing to the said relativistic

mass increase703.

703 For a relativistic particle, ωorb depends on the particle speed because

the momentum has Lorentz factor γ =
(
1 − v2

c2

)−1/2

via p = γm0v;

ωorb = veB
p

= eB
γm0

. Thus, if ωcyc is kept fixed, particles cannot be accelerated

to extreme relativistic energies because the γ factor becomes important.
This effect can be readily calculated; if

m0c
2(γ1 − 1) = 2eVmax

is the energy gained per revolution, the increase of γ after the first revolution
is δγ = γ1 − 1.

This increase in γ causes orbital oscillation to be out of phase with the cy-

clotron oscillation by (2π)δγ radians. In the next revolution, γ increases
further by (δγ) and the total phase difference of the orbital and cyclotron os-

cillations increases to 2π(1 + 2)δγ. After N revolutions the phase difference

is 2π 1
2

N(N + 1)(δγ) ≈ πN2(δγ) When the phase difference is π, the parti-
cles are no longer accelerated because they arrive at the gap when the voltage

has the wrong polarity. The maximum number of revolutions that the particles

make while still being accelerated is

Nc =

√
1

δγ
=

√
m0c2

2eVmax
,

while the corresponding kinetic energy after Nc revolutions is
Ek = Nc · δγ · m0c

2 =
√

m0c2 · 2eVmax.

For Vmax = 150 kV, the maximum kinetic energy for protons is about 17 MeV.

For electrons, the maximum kinetic energy is much smaller, so that the conven-
tional cyclotron is not useful for electron accelerations.

One may estimate the size of magnetic field and cyclotron frequency for any

desired energy. Let p be the maximum momentum and Ek the maximum
kinetic energy of the proton corresponding to a maximum radius R. Using the

relations

E = m0c
2 + Ek, pc =

√
E2 − (m0c2)2 ≈

√
2Ekm0c2

(for Ek 
 m0c
2), we find

B =
1

eR

√
2m0Ek, v =

√
2Ek

m0
, ωcyc =

v

R
=

c

R

√
2Ek

m0c2
.

Thus for Ek = 1 MeV and R = 22 cm, one obtains B = 0.65 Tesla,

fcyc = ωc
2π

≈ 10 MHz.
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A way to circumvent this limit was found (1945) independently by Edwin
McMillan (1907–1991) and Vladimir Veksler (1907–1966) who proposed
to sustain the resonance by frequency-modulating the electric field. Under
this arrangement, the RF oscillator that accelerates the particles around the
dees is automatically adjusted to stay in step with the accelerated particle; as
the particle gains mass, the RF frequency is lowered slightly to keep in phase
with the slightly more sluggish orbital traversals704.

This means that the frequency of the field is varied synchronously with
the inverse of the particle energy (γm0c

2). Such a device is called a syn-
chrocyclotron. Here there is no longer an advantage to having a very large
voltage per turn as in a conventional cyclotron; the acceleration per revolution
is usually chosen to be about 10 KeV per turn. Since there is a limit to how
large of a magnetic field can be produced, the maximum energy achievable
is limited by how big one can make the device: as the maximum energy of
the synchrocyclotron increases, so must its size, for particles must have more
space in which to spiral.

4. Betatron and beta-synchrotron

(up to 100 GeV; 1940–1947)

Electrons cannot be easily accelerated in a cyclotron, since the operating
principle of this latter device is based in the constancy of the ratio e/m of the
electron. The relativistic variation of the mass of an electron with velocity
becomes important at such low energies as to render the cyclotron useless
for accelerating these particles (e.g. already at a kinetic energy of 1 MeV,

704 Other remedies (suggested in the pre-WWII years) took advantage of the fo-

cusing action of inhomogeneous magnetic fields at the outer edge of the vac-

uum chamber, e.g. curvature of magnetic lines of force create a magnetic force

on particles away from the central plane directing them back into the central

plane. In 1938 Llewellyn Hilleth Thomas (1903–1992) suggested that the

magnetic field should be varied in azimuth, that is, around the perimeter of

the orbit, as well as in the radial direction. This “AVF” (azimuthally varying

field) concept has been realized in the spiral ridge cyclotron, where especially

strong magnetic-field regions were produced by spiral sectors built into the pole

face: the magnetic field strength increases radially everywhere inside the vac-

uum chamber and is designed to satisfy the fixed-frequency condition into the

relativistic region. At the same time the strong azimuthal field variations pro-

vide extra focusing action to overcome the defocusing affects of the radial field

variation.
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the electron has about 3 times as much inertia as an electron at rest). Even
conventional synchrocyclotrons cannot be adapted to make allowance for such

large increases in mass.

A machine whose operation is independent of relativistic considerations

was in order. This necessity was the mother of the invention of the betatron, a
special circular accelerator for electrons, by Donald William Kerst (1911–

1993) in 1940. The operation of the betatron involves simultaneously using

a static (DC) magnetic field to hold moving electrons in a stable orbit, while

the field also has an AC component that oscillates rapidly. The changing

flux results in a tangential electromotive force (EMF) that accelerates the
electrons along their orbit.

The particles are injected with a certain initial velocity distribution from

an electron “gun”, tangent to a horizontal circular orbit of fixed radius within

a ring-shaped vacuum chamber known as the “doughnut”. This chamber is

placed between the poles of a magnet whose field lines are approximately
at right angles to the plane of the orbit. The magnetic field has a static

component, known as the ‘guide field’, and a time-varying AC component (at

a fairly low frequency, e.g. 60 Hz) obtained by applying an alternating current

to an electromagnet.

The guide field keeps the electrons in a circular path, while the time-
varying field creates an induced electric field which accelerates the electrons

(over a certain range of each cycle) due to changing magnetic flux through

the orbit (Faraday’s law). The main condition for successful operation of the

betatron is the confinement of the orbital radius within strict limits despite
the large difference between the initial and final electron energies. This is

achieved by arranging for the magnetic field to vary radially in a suitable

manner.705

705 The static magnetic field exerts a centripetal force on the orbiting electrons.
From the time of injection the magnetic field varies. According to Faraday’s

law this results in a tangential electric field Et, causing the electrons to accel-

erate. The static ‘guide field’ must be made radially inhomogeneous in order to
force the electron into an orbit of approximately fixed radius R in spite of its

increasing momentum. To find the type of function B = B(R) required, we

write Faraday’s law in the form

−
∮

d� · E = 2πREt =
dΦ

dt
,

where Et is the clockwise tangental E-field component and Φ is the magnetic

flux through the radius-R orbit, and the EMF line integral is taken in the anti-

clockwise sense as viewed from above the doughnut. Hence the anticlockwise
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tangential accelerating force on an electron in a betatron is

dp

dt
=

d

dt
(mv) =

e

2πR

dΦ

dt
.

with p momentum and e the (positive) magnitude of an electron’s charge.

The condition that will ensure that the electrons pursue a circular path of fixed
radius R while being accelerated is

mv2

R
= evB ,

where m = m0/
√

1 − v2/c2 is the electron’s relativistic mass and B = B(R)

is the magnitude of the magnetic field at the circular path (of radius R).

Hence mv = eRB; combining with the EMF acceleration equation yield

eR ∂
∂t

B = e
2πR

dΦ
dt

. Integration w.r.t. time (recall R is by design t-independent)

yields B = 1
2πR2 Φ = Φ

2A
, with A = πR2 the area enclosed within the orbit.

The condition for a constant orbit of radius R, then, is that the magnetic field
at the position of the orbit should equal half the average field (magnetic flux

per unit area) through the orbit. This result is achieved by shaping the pole

pieces of the magnet so that the flux density decreases with distance from the
symmetry axis.

More extensive analysis shows that this orbit is stable, i.e. if electrons are dis-

placed away from it, restoring forces will arise to move them back to the orbit
(causing so-called betatron oscillations and phase oscillations). To extract the

electrons after their acceleration, the condition B = Φ
2A

may be violated by

momentarily adding or subtracting some auxiliary flux that will cause the elec-

trons to spiral in or out. While at a fixed radius R, the electron accelerated at
a way such that its Kinetic energy rises at a rate

dEk

dt
= v

d

dt
(mv) ≈ 2πR

T

dp

dt
=

2πR

T
|eEk |

where T is the time the electron takes to complete its current traversal of the

circle. Since v(t) increases asymptotically toward c after many traversals, T

decreases asymptotically toward 2πR/c.

A typical betatron that accelerates electrons to 100 MeV might have an orbit

of radius R = 1 m, and a magnetic field at that orbit which changes at a

rate of 100 Webers
m2·sec during the acceleration process. Hence the induced emf

is about 628 V. An electron in this betatron acquires 628 eV each time it

traverses a complete circle; it must take about 160, 000 revolutions before it

has an energy of 100 MeV! The non-relativistic limitation on particle speed

that affects the cyclotron, does not affect the betatron, since the electrons in

the latter are accelerated continuously and need not (indeed do not) make each

turn in precisely the same period of time.
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In the betatron, there are small displacements of the particles due to col-
lisions with the dilute gas inside the beam pipe. The accelerator must be
designed to have electromagnetic restoring forces so that particles slightly out
of orbit get pulled back into orbit. To this end a more general treatment
of the problem shows that, with radial field variations of the form B ∝ r−n

(0 < n < 1), the electron beam executes oscillations in both the radial di-
rection (‘phase oscillations’) and in the direction perpendicular to the orbit
(‘betatron oscillations’). These oscillations about the mean orbital radius are
important in synchrotrons as well as betatrons, because their amplitudes de-
termines the minimum size of the vacuum chamber. The machines have to
be designed in such a way that oscillations are of small amplitude throughout
the acceleration cycle, and this involves a proper choice of the index n.

The betatron principle applies to particles of all speeds, and it enables
electrons to be brought rapidly from the injection energy to energies of several
MeV. When the designed maximum energy is reached, the orbit is artificially
collapsed, usually by arranging for part of the magnetic pole assembly to
reach saturation. The electrons then spiral inwards to strike a target, which
commonly consists of a tungsten rod. At the end of each acceleration cycle
the target emits an intense burst of X-rays tangentially to the electron beam,
produced by the bremsstrahlung process706.

Since the electrons in a betatron reach speeds close to c (the speed of light
in vacuum) early in the acceleration cycle, they circulate at nearly constant
intervals of time during the major part of the cycle. It is then a compar-
atively simple matter to supply extra energy to the beam by applying an
electric field of fixed frequency, as is done in the beta-synchrotron. The beam
passes repeatedly through a tuned cavity forming part of the doughnut, and
RF power is switched on in this cavity at a suitable moment in the cycle.
Many electrons enter the cavity when it is at positive potential relative to
the grounded internal surface of the doughnut and these receive extra energy,
mainly expressed as a mass increase (their increase in speed is negligible). The
process is repeated for all electron bunches possessing phase stability, and the
final energy greatly exceeds the betatron limit.

One notable (and unavoidable) feature of electron accelerators of the cir-
cular type is the emission of electromagnetic radiation from the beam itself.

706 When the electron passes near a target nucleus, and is thus accelerated sideways

and radiates X-rays or gamma rays. At the quantum level, Quantum Electro-

dynamics (QED) describes the process via a Feynman diagram involving a

virtual photon exchange (between electron and nucleus) and the emission of a

(real) photon by the electron. If the latter is virtual, it can decay into a real

electron–positron pair – resulting in antimatter production, as routinely done

at e+e− colliders such as SLAC and DESY.
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Since the particles are continually accelerated toward the center of the orbit
(even when not accelerated tangentially), they radiate according to nearly
– classical laws, and an intense synchrotron radiation is seen. The energy
losses from this effect are not serious until the electron energy approaches
the GeV scale. Electromagnetic theory predicts that the energy radiated per
revolution707 by a particle of rest mass m0, charge e, velocity v ≈ c

(ultra–relativistic regime) and orbital radius r is ΔE ∼= e2

3ε0r

(
E

m0c2

)4

, with

ε0 the vacuum permittivity.

Synchrotron radiation places a practical limit on the maximum energy of a
betatron. A high energy electron machine is therefore made large (ΔE ∝ 1

r )
in order to reduce synchrotron radiation.

While merely a nuisance from the particle physicist’s standpoint,, syn-
chrotron radiation is nowadays being used as a well-controlled collimated X-
ray source, with wide applications in medicine, chemistry, biology, material
science, and condensed-matter physics. Thus old betatrons and storage rings
(see below), no longer useful as nuclear or particle-physics probes, are outfit-
ted with extra groups of magnets called “wigglers” to enhance synchrotron

707 Classical electromagnetic theory states that the power radiated by an orbit-

ing charge e as observed in the laboratory Lorentz frame is P = 2
3c3

e2a2

4πε0
,

(Larmor’s Law), where the acceleration is a = v2

r
(valid for a nonrelativis-

tic particle); while for an ultra-relativistic particle, the Lorentz–transformation
laws of radiated fields and power mean that the lab–frame energy lost per rev-

olution is ≈ 4πα
3

�c
r

γ4, where γ = (1 − β2)
−1/2

, α = e2

4π�c
(we work in an

electromagnetic unit system in which ε0 = 1). On account of their small rest
mass, synchrotron radiation is much more important for electrons than for pro-

tons, and must be taken into account in the design of the betatron.

Assuming r = 1 m, Ek = 300 MeV, we have for an electron (me = 0.511 MeV
c2

)

β ≈ 1; γ =
E

mec2
=

Ek + mec
2

mec2
≈ 588; ΔE = 730 eV

For the proton (m = mp) at the same kinetic energy, the exact version of the

above synchrotron radiation energy–loss formula (valid for any particle velocity)
yields:

γ =
E

mpc2
= 1.3; β ≡ v

c
=

√
γ2 − 1

γ
= 0.64; ΔE = 5×10−9 eV

The classical approximation we have been using for the synchrotron radiation

is valid as long as a typical radiated photon has energy �ωph 
 Ek in the lab-

oratory frame. This is usually the case for both electron and proton machines.
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radiation by decreasing the radius of curvature of the electron beam. The

word’s largest electron synchrotron is the Large Electron Project (LEP) at

CERN, which has a radius of about 4 km and energy of 100 GeV.

5. High Energy strong-focusing proton synchrotrons

(1000 GeV; 1952–1971)

By the last decades of the 20th century, accelerators could produce pre-

cisely timed and collimated, nearly ‘mono–energetic’ beams of charged parti-

cles with energies ranging from a few MeV to several hundred GeV. Intensities

can be as high as 1016 particles/sec (of order 109 per bunch), and the beams

can be concentrated onto targets of only a few square microns in area. The

particles that are most often used as primary projectiles are protons and elec-

trons.

Two tasks can be performed well only by accelerators, namely: the con-

trolled production of new particles and new quantum states, and the investi-

gation of the detailed structure of subatomic systems.

Only a very few stable and free particles exist in nature — the proton,

the electron, neutrinos, the photon and the graviton708. Only a limited num-

ber of nuclides are available in terrestrial matter, and they are usually in the

ground state. To escape the narrow limitations of what is usually available,

new, unstable particles and nuclear states must be produced artificially. To

create a state of mass m, we need at least the energy E = mc2; Very often,

considerably more energy is required, as well as high beam fluxes (luminosi-

ties). The expression p = eBr, valid for any circular accelerator, shows us

that increasing the momentum proportionally increases the trajectory radius,

for a given magnetic field. Therefore, high-energy circular accelerators, such

as the 1-TeV Tevatron accelerator (at the Batavia, Illinois Fermilab facility)

require a radius of about a kilometer. To increase the energy to 20 TeV will

require a radius of 13.5 km!

Obviously, no laboratory can afford a magnet having square kilometers

of pole areas. Therefore, huge-radius accelerators keep the curvature of the

charged particles path constant by utilizing dipole magnets placed at inter-

708 Of those, the proton may yet prove, and the three neutrino species oscillate into

each other over sufficiently long travel distances through vacuum or matter.
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vals709 along the path. Since B = mv
er , B must increase as both m and

v increase, for given r. The actual radii of these behemoth accelerators are
larger than that calculated from pmax = eBmaxr, because dipole bending
magnets alternate with quadrupole and other focusing magnets to keep the
particle beam from spreading.

Beam Optics

Beams of particles typically travel multiple traversals around circular ac-
celerators, with total distances exceeding 10, 000 km. Thus they must be
collimated by suitable “lens systems” that operate on charged particle beams
in analogy to optical lenses (this is true even in linacs, and “single pass col-
liders” such as the SLC at SLAC, Stanford). In light optics, the path of a
monochromatic light ray through a system of thin lenses and prisms can be
found easily by using geometrical optics:

Consider, for instance, the combination of a positive (converging) and a
negative (diverging) thin lens, with equal focal length f and separated by a
distance d � f . This combination is always focusing, with an overall focal

length given by fcomb ≈ f2

d .

In principle, one could use electric or magnetic lenses for the guidance
of charged particle beams. The electric field strength required for the effec-
tive focusing of high-energy particles is, however, impossibly high, and only
magnetic elements are used710. The deflection of a monochromatic (mono-
energetic) beam by a desired angle, or the selection of a beam of a desired
momentum, is performed with a dipole magnet (the optical analog is a prism).

709 This method was first realized in the construction of the first proton synchrotron

(1 GeV) in Birmingham, England by Marcus Laurence Edwin Oliphant

(1901–2000; England and Australia) and his collaborators (1947): The orbital

radius was kept nearly constant over a large part of the acceleration cycle, and

magnetic guidance was used only in the later stages of acceleration. Thus, ring-

shaped magnets represented the most efficient deployment of a given amount of

magnetic material.
710 However, electric quadrapole electrostatic lenses are routinely used in low–

energy (several eV ) mass spectrometer, which are used to measure minute

amounts of trace chemicals. In this case, the accelerated particle beams are

complex mixture of ionized or excited molecules. Due to the low particle ve-

locities involved (v 
 c), magnetic fields would not be effective at all, so AC

quasi–electrostatic multipole fields are used to guide and separate the different

molecular species.
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The radius of curvature, ρ, is obtained by equating the centripetal force

mv2

ρ = γ m0v2

ρ to the Lorentz force evB, where v is the particle velocity in

the plane of motion normal to the field B. This yields ρ = p
|e|B . Clearly,

an ordinary dipole magnet bends particles in only one plane; and even in
that plane, B must be non-uniform for focusing to be achieved (since ρ is
otherwise uniform for a mono-energetic beam). Such considerations lead to
the conclusion that no magnetic lens with properties analogous to that of an
optical focusing lens can be designed.

However, E.D. Courant, M.S. Livingstone, H.S. Snyder, and
N. Christophilos invented during 1950–1952 a system of magnets that can
effect a 3-D focusing (known as strong focusing711) such that focusing occurs
simultaneously in two planes perpendicular to each other. Strong focusing is
especially important in a large-radius (high energy) machine where the parti-
cle path length is very long and where one needs to keep the magnet aperture
as small as possible to reduce the costs of magnets.

In the strong focusing technique, oscillations are greatly reduced by the
introduction of magnets that alternately focus and defocus in the horizontal
and vertical planes containing the local beam line (i.e one magnet focuses in
one plane and de-focuses in the other, then the next exchanges the roles of the
two planes, and so on. The magnets can be combined to yield a net focusing
effect.

There are two ways of achieving this in practice: In the alternating gradient
synchrotron alternating magnet sections have the net effect similar to that of
a converging lens system in optics. This feature results in a large saving of
magnetic material (4000 tons as against 36,000 tons in the Dubna machine,
say) but it also necessitates extreme accuracy in the fabrication and alignment
of the magnetic sections.

A second option is the quadrupole doublet system: the magnet system is
composed of two quadrupole magnets, where one is rotated around the central
(beam) axis by 90◦ w.r.t. the other. This arrangement forms an essential
element of all modern particle accelerators, and also of beam lines that lead
from the accelerating machines to the experiment halls (where beams are
collided with fixed targets or each other). With the aid of focusing devices, a
beam can be transported over distances of many km with small intensity loss.

711 In contradistinction to the phase stability arrangement that is named weak fo-

cusing. In weak focusing, fringe magnetic fields, applying vertical and radial

restoring forces on a particle slightly out of orbit, are provided by shaping the

magnetic fields.
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In a proton synchrotron, the energy for fixed radius is limited by the field
strength of the bending magnets. Thus, a very high energy machine is made
with high-field magnets and a large radius.

6. Storage Rings and Colliding Beams Machines

(100 GeV; 1961–1971)

In order to collect a large number of accelerated particles, each output
beam pulse from an accelerator can be magnetically guided into a circular
ring, where the beam energy can be further increased via RF fields. This
ring, called a storage ring, contains magnetic dipole structures to keep the
particles moving in a circle. Large numbers of particles per bunch, and short
bunches, increase the probability of desired (and sometimes rare) interactions
occurring when two counter-rotating beams (of the same or different parti-
cle type) are magnetically deflected into interaction regions, usually spaced
regularly around the storage-ring perimeter.

The storage ring consists of a vacuum pipe passing through a ring of
dipole magnets that maintain a constant field, so that particles circulate con-
tinuously; other magnetic devices, also spaced along the ring, are responsi-
ble for focusing the beam or beams. The storage ring usually doubles as a
synchrotron, so that particles are both accelerated and stored in the same
machine.

Two storage rings that intersect at one or more places can be used to
study the collision of two stored beams. Particle-antiparticle collisions may be
studied with a single storage ring, with particles and antiparticles circulating
in opposite directions. (e.g. electrons and positrons – e+e− – or protons and
antiprotons).

For a colliding beam machine to work, the particles must be accumulated
and stored in stable orbits for durations on the scale of hours — compared to
the few seconds they typically spend in the synchrotron acceleration process
(hence the name ‘storage rings’). This requires an extremely high vacuum
compared to that needed in a synchrotron. In a storage ring, the magnets
are continuously operating, whereas in the normal operation of a synchrotron
they are pulsed briefly every few seconds. Also, the beams in a storage ring
must be focused to a small cross-sectional area and contain a large number of
particles.

A major increase in useful energy was achieved with the colliding beam ma-
chines: Two colliding ultra-relativistic protons, for instance (or an electron
and positron), each with energy E∗ � m0c

2, have the same center-of-mass
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energy as a particle of energy E = 2 (E∗)2

m0c2 colliding with a stationary coun-

terpart, where m0 is the proton or electron rest mass. Colliding beams are
therefore used to achieve the highest achievable center-of-mass COM collision
energies. In general, colliding beams of accelerated particles can yield more
COM-frame energy (for instance, to create new particles) than collisions in
which one particle is at rest. To understand this, we consider the classical
Newtonian (non-relativistic) completely inelastic collision of a particle of mass
m moving at speed v (relative to a fixed laboratory frame of reference) with
an identical particle at rest in the same frame. Conservation of linear mo-
mentum requires that the two particles move together after the collision with
a common velocity 1

2v. The law of conservation of energy then implies that
kinetic energy converted during the collision to other forms of energy (e.g.
heat, inelastic deformations, elastic vibrations etc.) is

1
2
mv2 − 1

2
(2m)

(v

2

)2

≡ 1
2

(
1
2
mv2

)

.

Thus, only one-half of the initial translational kinetic energy has been con-
verted to other forms of energy.

On the other hand, if two particles with equal and opposite momenta
collide and stick together, they are motionless after the collision and all the
initial translational kinetic energy is converted into other kinds of energy.
Consequently, if one wants to convert, say, 1 MeV of kinetic energy, there are
two options (classically):

• Hit a particle at rest with an equal-mass particle of 2MeV kinetic energy

• Effect a head-on collision of two equal-mass each with a kinetic energy
of 1/2 MeV particles

For the first option one needs a 2-MeV accelerator, but for the second
option one needs only a 1

2 -MeV accelerator, i.e. the counter-moving particles
in the colliding beams each need only 1

4 of the kinetic energy of the particles
bombarding a fixed target in the classical case. In the relativistic case, this
ratio decreases rapidly below 1

4 as the required energy increases – in fact it
is 1/γ, with γ being the time–dilation factor for each colliding–beam particle.
Therefore, existing accelerators have been altered, and new ones designed and
built, to provide head-on collisions.
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7. Use of accelerators in basic and applied science

In about twenty laboratories all around the globe, scientists operate vari-
ous linear and curved synchrotron–type accelerators, both to induce and study
inter–particle collisions and to generate powerful and precise pulses of radia-
tion in the X-ray range, using 3rd generation synchrotron X-ray sources. The
primary charged–particle beams and various secondary beams (produced from
them or independently) – the latter including, but not limited to, synchrotron
X-rays are used at experimental stations to perform novel experiments in five
disciplines:

• Fundamental Physics:

Accelerators are used to explore atomic nuclei and elementary particles,
thereby allowing nuclear and particle physicists to identify new elements, par-
ticles and interactions. Machines exceeding 1 GeV are used to study stable
and unstable fundamental particles and resonances. Several hundred of these
particles have been identified. High-energy physicists have discovered, and will
doubtless continue to discover, rules and principles that govern the classifi-
cation, inter-conversion, composition and interactions of subnuclear particles.
Such schema are as useful to nuclear and particle physics as the periodic ta-
ble of the chemical elements is to chemistry. They permit scientists to study
violent particle collisions that mimic the state of the universe a fraction of a
second after the Big Bang; and to elucidate the symmetries and invariances
governing the fabric of the universe at the smallest spacetime scales, as well
as study astrophysical objects and radiations. The collisions effected in such
research involve primary charged–particle beams from accelerators, as well
as: (charged and neutral) secondary beams from decays and collisions in ac-
celerators and nuclear reactors; laser beams; specially prepared bulk–matter
samples (used at targets); and cosmic rays and other (known and conjectured)
particles from space, such as neutrinos, gamma rays, WIMPs etc.

• Material Science and Molecular Structure:

Using synchrotron X-radiation from electron accelerators, studies are made
of the atomic structure of natural and artificial polymers using a variety of
X-ray techniques, such as spectroscopy, diffraction and imaging.

• Chemistry:

Chemistry relates atomic and molecular structure of matter with the transfor-
mations occurring when different substances are brought in contact, heated,
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pressurized, subjected to electric fields, etc. To go beyond the results of sta-
tic analysis before and after a chemical reaction, chemists apply synchrotron
techniques in absorption spectroscopy and diffraction as well as in surface scat-
tering in order to follow a chemical reaction as it happens. Here, X-rays yield
new insight into the kinetics of chemical reactions by obtaining time-resolved
structural information directly from the reaction zone (in situ investigation).

The highly monochromatic, collimated and brief X-ray pulses available
from synchrotron sources allow time-resolved studies of extremely small sam-
ples even for poorly interacting compounds. This approach has, for instance,
improved our understanding of the polymerization process of the supercon-
ducting polymer, polysulphur nitride. In another experiment, the use of hard
X-rays penetrating into the bulk of matter revealed details of the hydration
process of Portland cement that are of some technological importance.

Modern synchrotron radiation sources contribute to the progress of chem-
ical analysis, directly yielding information about the kinetics of chemical re-
actions whilst substantially extending the detection limits.

• Medicine:

Novel imaging techniques that overcome the limitations of conventional X-ray
sources. The small spotsizes of synchrotron X-ray beams allow Computed Mi-
cro Tomography (CMT) to be carried out. This non-destructive measurement
yields 3-dimensional reconstructions of human tissues with spatial resolution
in the micron range (10−6 m). In absorption mode, the technique was used
to image the diminution of bone structure with aging, while in-line holography
setups allowed the monitoring of coronary artery plaque and trombosis.

Also, X-ray based clinical research is performed in the fields of medical
imaging and radiation therapy.
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• Molecular Biology:

The basic principle of molecular biology is that the biological functions of

an organism are governed by large and complex molecules, such as proteins,

enzymes, lipids, nucleic acids, etc. To understand how these macro-molecules

govern the processes of life, the determination of their three-dimensional spa-

tial structures is essential.

The technique used for this purpose is X-ray diffraction. Scientists rou-

tinely perform structural analyses of biological molecules (e.g. the nucleosome
core particle or the Blue-tongue virus) and develop new techniques to study

structural modifications as a function of time (the biological movie, e.g. of

carbon monoxide photo-desorption from myoglobin).

Synchrotron-radiation studies at SSRL (Stanford Synchrotron Radiation

Laboratory, part of SLAC) have yielded important information about the

toxicity of various mercury compounds found in fish from polluted habitats.

1930 CE Woods Hole Oceanographic Institution chartered as a private,
non-profit organization devoted to scientific study of the world’s oceans. On
Dec. 31, its ship Atlantis was launched from the ship-building yards in Copen-
hagen, and sailed July 02, 1931.

1930–1931 CE Subrahmanyan Chandrasekhar (1910–1995, India and
U.S.A.). Distinguished astrophysicist. Shared the 1983 Nobel prize for physics
for his work on late evolutionary stages of massive stars. He calculated that
a white dwarf can exist only if its mass is less than 1.4 solar masses (Chan-
drasekhar limit).

Chandrasekhar was born in Lahore, India, a relative of Venkata Raman
(who won the Nobel prize for physics in 1930). Educated at the University
of Madras and Trinity College, Cambridge University. Joined the staff of
the University of Chicago (1938) and became a professor there in 1952. He
did important work on radiative energy transfer in stellar atmospheres and
convection on the solar surface.

1930–1941 CE Juliusz Pawel Schauder (1899–1943, Poland). Mathe-
matician. Made important contributions to topology and the links of topology
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with the theory of semilinear and quasilinear elliptic partial differential equa-
tions (PDE). Named after him are: Schauder fixed-point theorem712; Leray-
Schauder fixed point theorem; Riesz-Schauder theorem; Schauder basis in Ba-
nach space and Schauder energy inequality of PDE of hyperbolic type.

Schauder was born in Lvov to Jewish parents. He was drafted into the
Austro-Hungarian army (1917) and fought in Italy, where he was taken pris-
oner. He then joined the Polish army in France before returning to Lvov to
begin his university studies (1919). After obtaining his doctorate (1923) he
taught both in a secondary school and at the University of Lvov.

During 1932–1933 he studied at Leipzig and with Hadamard in Paris. In
1941 the German army entered Lvov and the systematic murder of its Jews
began. Schauder sent pleas for help to Hopf and Heisenberg saying that
he had many important results but no paper to write them on. He was shot
by the Gestapo in September 1943.

1930–1949 CE Kurt Friedrich Gödel (1906–1978, Austria and U.S.A.).
Mathematician and logician.

He discovered a theorem which states that within any rigid logical math-
ematical system rich enough to contain arithmetic, there either exist propo-
sitions that cannot be proved or disproved on the basis of the axioms within
that system, or the system’s basic axioms give rise to contradictions.713

712 Proved (1930) a major extension to Brouwer’s (1910) fixed-point theorem for

the case of infinite-dimensional topological space.
713 The precise assumptions that underline Gödel’s incompleteness theorem are

these: if a formed system is (1) finitely specified, (2) large enough to include

arithmetic, and (3) consistent — then it is incomplete.

Condition (1) means that there is a countable infinity of axioms, with a defi-

nite algorithmic procedure for listing them. We could not, for instance, choose

our system to consist of all the true statements about arithmetic, because this

collection cannot be finitely listed in this sense.

Condition (2) means that the formal system includes all the symbols and axioms

used in arithmetic. The symbols are 0, (‘zero’), S, (‘successor of’), +, ×, and =.

Thus, the number two is the successor of the successor of zero, written as the

term SS0, and ‘two plus two equals four’ is expressed as SS0 + SS0 = SSSS0.

It is instructive to see how these requirements might fail to be met. If we picked

a theory that consisted of references to (and relations between) only the first

ten non-negative numbers (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), then Condition (2) fails

and such a mini-arithmetic is complete. Arithmetic makes statements about

individual numbers, or terms (like SS0, above). If a system does not have in-

dividual terms like this but, like Euclidean geometry, makes statements only
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This “Gödel’s incompleteness theorem” put an end to Hilbert’s dream
of providing, for all of mathematics, a formal axiomatization that is both
complete and absolutely consistent.

This discovery was revolutionary in a negative fashion, similar to Ga-
lois’ proof of the impossibility of finite solvability for polynomials of degree
higher than 4, and Hamilton’s relinquishing of commutative multiplication
(for quaternions). But Gödel’s theorem is even more ‘destructive’, for it un-
dermines the very foundation of all pure mathematics714. Gödel’s so-called

about points, circles, lines etc., then it cannot satisfy Condition (2). Accord-

ingly, as Alfred Tarski first showed, Euclidean geometry is complete. There

is nothing magical about the flat, Euclidean nature of the geometry either: the

non-Euclidean geometries on curved surfaces are also complete. Similarly, if we

had a logical theory dealing with numbers that used only the concept of ‘greater

than’ without referring to any specific numbers, then it would be complete: we

can determine the truth or falsity of any statement about numbers involving

the ’greater than’ relationship. The simplest system of formalized mathemati-

cal logic – involving relations such as “p and (q or s)” (the symbols referring

to True or False statements) and axioms such as “(p and q) implies p”— has

likewise been proven to be complete.

Another example of a system that is smaller than arithmetic is arithmetic with-

out the multiplication, ×, operation. This is called Presburger arithmetic (the

full arithmetic is called Peano arithmetic, after the mathematician who first

expressed it axiomatically, in 1889). At first this sounds strange. In our every-

day encounters with multiplication it is nothing more than a shorthand way

of doing addition (for example, 2 + 2 + 2 + 2 + 2 + 2 = 2 × 6). But in the full

logical system of arithmetic, in the presence of logical quantifiers such as ‘there

exists’ or ‘for any’, multiplication permits constructions which are not merely

equivalent to a succession of additions.

Gödel showed, as part of his doctoral thesis work, that Presburger arithmetic

(M. Presburger, 1929) is complete: all statements about the addition of nat-

ural numbers can be proved or disproved; all truths can be reached from the

axioms. Similarly, if we create another truncated version of arithmetic which

does not have addition but retains multiplication, this is also complete. It is

only when addition and multiplication are simultaneously present that incom-

pleteness emerges. Extending the system further by adding extra operations

(such as exponentiation) to the repertoire of basic operations, makes no dif-

ference. Incompleteness remains, but no intrinsically new form of it is found.

Arithmetic is the watershed in complexity in mathematics.
714 On the other hand, it seems to safeguard the role of intuition in mathematics,

since the theorem shows that doing mathematics cannot be reduced to mechan-

ical symbol-manipulation.
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“meta–mathematical” result was made possible by a novel method, discov-
ered by him, of mapping statements about the mathematical axiomatic system
into arithmetic statements inside that system. Gödel’s theorem, with the es-
sential incompleteness of knowledge it entails, has been likened to Heisenberg’s
uncertainty principle in physics715.

Gödel’s monumental demonstration that formal systems of mathematics
have limits, gradually infiltrated the way in which philosophers and scientists
viewed the world and our quest to understand it. Superficially, it appears that
all human investigations of the Universe must be limited. Science is based
on mathematics; mathematics cannot discover all truths; therefore science
cannot discover all truths. Indeed, some scientists acknowledge that Gödel’s
incompleteness theorem places limits of our ability to discover the truths
of mathematics and science, and therefore acts as a fundamental barrier to
human understanding of the universe.

In 1938 Gödel demonstrated that one can safely assume Cantor’s contin-
uum hypothesis as an additional postulate in set theory, i.e. he proved that
the continuum hypothesis is consistent with the Zermelo-Fraenkel axioms.

In 1949, Gödel discovered a peculiar exact solution of Einstein’s gravita-
tional field equations716, which leads to a model dust-filled universe that is
homogeneous but anisotropic. In Gödel’s universe, space-time appears nor-
mal locally, but in any sufficiently large region of space-time there exist closed
timelike curves, which allow an event to affect its own causal past. Thus, in
his model universe, a person could kill one of his ancestors, in time to prevent
his own eventual birth! A number of such space-time solutions have since
been found, and physicists are still unsure as to their physical significance.
This circumstance highlights our as–yet incomplete understanding of gravity,
and especially how it should be unified with quantum mechanics.

Gödel collaborated for some time with Albert Einstein in an effort to
establish a unified field theory.

Gödel was born in Brünn (now Brno), Austria-Hungary, the second of the
two children of Rudolf and Marianne Gödel. His father was a director of a tex-
tile factory and his mother descended from a family of weavers. Neither Kurt
nor his brother enrolled in optional courses in the Czech language, and gave

715 One of Hilbert’s young students, Gerhard Gentzen (1900–1945) showed

(1940) that it was possible to circumvent Gödel’s conclusion and deduce all

the truths of arithmetic – provided one allows a more powerful form of mathe-

matical induction (transfinite induction) based upon Cantor’s ordinals.

716 Gödel’s universe: ds2 = −dt2 + dx2 − 1
2
e2

√
2ωxdy2 + dz2 − 2e

√
2ωxdydt, where

−Λ = ω2 = 4πρ; ρ is the proper mass density of the pressureless dust, Λ the

cosmological constant, and the natural (G = C = 1) system of units is used.
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up their Czech citizenship after WWI becoming students at the University of
Vienna.

Gödel enrolled there in 1924, intending to major in physics, but switched
into mathematics in 1926, receiving his doctorate degree in 1930. He was a
member of the faculty of the University of Vienna from 1930. He emigrated to
the United States in 1940, and from 1953 served as a professor at the Institute
of Advanced Study, Princeton, NJ.

Scientists on the consequences of Gödel’s Theorem

“One may speculate that undecidability is common in all but the most trivial
physical theories. Even simply formulated problems in theoretical physics
may be found to be provably insoluble.”

(Stephen Wolfram)

∗ ∗∗

“Gödel proved that the world of pure mathematics is inexhaustible; no fi-
nite set of axioms and rules of inference can ever encompass the whole of
mathematics; given any set of axioms, we can find meaningful mathematical
questions which the axioms leave unanswered. I hope that an analogous situ-
ation exists in the physical world. If my view of the future is correct, it means
that the world of physics and astronomy is also inexhaustible; no matter how
far we go into the future, there will always be new things happening, new in-
formation coming in, new worlds to explore, a constantly expanding domain
of life, consciousness, and memory.”

(Freeman Dyson)

∗ ∗∗
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“Clearly then no scientific cosmology, which of necessity must be highly
mathematical, can have its proof of consistency within itself as far as
mathematics goes. In the absence of such consistency, all mathematical
models, all theories of elementary particles, including the theory of quarks
and gluons... fall inherently short of being that theory which shows in virtue
of its a priori truth that the world can only be what it is and nothing else.
This is true even if the theory happened to account with perfect accuracy for
all phenomena of the physical world known at a particular time.

It seems on the strength of Gödel’s theorem that the ultimate founda-
tions of the bold symbolic constructions of mathematical physics will remain
embedded forever in that deeper level of thinking characterized both by the
wisdom and by the haziness of analogies and intuitions. For the speculative
physicist this implies that there are limits to the precision of certainty, that
even in the pure thinking of theoretical physics there is a boundary. An
integral part of this boundary is the scientist himself, as a thinker.”

(Stanley Jaki)

∗ ∗∗

“It is by no means obvious that Gödel places any straightforward limit upon
the overall scope of physics to understand the nature of the Universe just
because physics makes use of mathematics. The mathematics that Nature
makes use of may be smaller and simpler than is needed for incompleteness
and undecidability to rear their heads. Yet, within science, it is the smaller
individual problems that are at the mercy of computational intractability and
undecidability.”

(John D. Barrow, “Impossibility”, 1999)

1930–1956 CE Witold Hurewicz (1904–1956, Holland and USA). Math-
ematician. Contributed to set theory and topology:

His main topics of research were: topological embedding of separable metric
spaces into compact spaces of the same finite dimension (1930); dimension
theory (1941) which presents the theory of dimension for separable metric
spaces;

Discovered of higher homotopy groups (1935–1936) and exact sequences
(1941). His work led to homological algebra.
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Hurewicz was born in Lodz, Poland to Jewish parents. He was educated
at the Universities of Warsaw, and Vienna (Ph.D. 1926) and held positions at
the Universities of Amsterdam (1928–1936), Princeton, North Carolina (1939–
1944), and M.I.T. (1945–1956).

Hurewicz died falling off a ziggurat (a Mexican pyramid) at Uxmal, after
attending a conference outing at the International Symposium on algebraic
topology in Mexico.

1930–1960 CE Pier Luigi Nervi (1891–1979, Italy). Engineer and
architect. Influenced modern architecture through his imaginative use of
reinforced-concrete structures that combined economy with great clear span
structures. He experimented continually to find ways to push concrete con-
struction techniques to new limits.

Nervi believed that the process of creating form was identical for both the
technician and the artist.

During 1947–1961 Nervi was a professor of technology and construction in
the faculty of architecture at Rome University.



3886 5. Demise of the Dogmatic Universe

Condensed-Matter Physics717

— from antiquity to quantum electronics

Baryonic matter in the bulk718 — in macroscopic quantities that can be
directly sensed by us — is an aggregate of a very large number of atoms. On
earth, it appears in three basic states: gas, liquid and solid. In gases, the
average distance between molecules is much greater than the molecular sizes,
and intermolecular forces are on average much weaker than the forces which
hold the atoms together inside molecules. Thus in gases, the molecules largely
retain their individuality.

In a solid, atoms and molecules are tightly packed and held in more or less
fixed relative positions by electromagnetic forces. Consequently, the shape
and volume of a solid remain essentially constant under a range of physical
conditions characteristic of each particular specimen.

A liquid has intermediate properties; in it inter-molecular interactions are
important, and position of neighboring molecules are highly correlated, but
they can slide past each other, and far-away molecules are not correlated in
position or quantum state.

717 For further reading, see:

• Chaikin, P.M. and T.C. Lubensky, Principles of Condensed Matter Physics,
Cambridge University Press, 1997, 699 pp.

• Ziman, J.M., Principles of the Theory of Solids, Cambridge University Press,

2nd edition, 1972, 435 pp.

• Holden, A., The Nature of Solids, Dover Publications: New York, 1992,

241 pp.

• Epifanov, G.I., Solid State Physics, Mir Publications: Moscow, 1979, 333 pp.

• Harnwell, G.P. and W.E. Stephens, Atomic Physics, McGraw-Hill, 1955,

401 pp.

718 “Baryonic matter” is made up of protons, (optionally) neutrons, and electrons.

Most baryonic matter in the observable universe is in the form of neutral or

ionized atoms and molecules – including all known matter in our solar system.

Under extreme conditions (Big Bang, while dwarf stars, neutron stars, accel-

erator experiments) baryonic matter can break down into quarks, leptons and

other particles, or aggregate into star–sized atoms or even nuclei. Cosmology

indicates that only a small fraction of matter in the universe is baryonic.
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Solid state physics is the area of quantum physics which is concerned with
the mechanical, thermal, electrical, magnetic and optical properties of solid
matter; condensed matter physics is more general and covers liquids as well.
Sometimes the distinctions are blurred: glass is really a kind of liquid, and
the degenerate electron gases in a metal or white dwarf star, or the neutrons
in a neutron star are also liquids.

In most solids, each atom (or molecule) is mostly affected only by its
close neighbors. Moreover, the structure of solids usually exhibits (at least
mesoscopically, and excluding impurities, dislocations, interstitial atoms, etc.)
a regularity or periodicity due to a repetitive, three dimensional arrangement
of atoms or ions, known as a crystal lattice. Therefore, to understand the
structure of a solid, it is often necessary to study only the basic unit, or cell,
of the lattice.

In a sense, the solid can be regarded as a large molecule, the forces between
atoms being due to interaction between atomic electrons, and the structure
of the solid being determined by those arrangements of nuclei and electrons
which yields a quantum-mechanically stable system.719

The ways in which atoms are arranged in solid materials are determined
primarily by the strength and directionality of the interatomic bonds. Quali-
tatively, we can understand why an atomic bond is strong or weak, directional
or non-directional, from a knowledge of the energetics of the bonding electrons
and their orbital shapes with respect to the positively charged ion cores. The
more negative the bonding energy, the stronger the bond. Thus, a pronounced
lowering of the electron energies results in a strong, or primary bond; a slight
lowering of the energy results in a weaker, or secondary, bond.

Crystalline solids are classified according to five primary types of bond-
ing: molecular, ionic, covalent, metallic and pure semiconducting. One is
distinguished from another by the ways in which the bonding electrons are
localized in space. All secondary bonding may be viewed in terms of weak
dipole interactions.

Molecular solids (and liquids) consist of stable molecules or atoms that
are bound by weak Van der Waals attraction such that they retain much of
their individuality when brought into close proximity. The physical mecha-
nism involved here is an attraction between electric dipoles [because of the
fluctuating quantum-mechanical behavior of the electrons in a molecule, all
molecules have a fluctuating electric dipole moment, even though for many
of them, symmetry considerations require that it fluctuate about an average
value of zero; the interaction energy results from induced correlations between

719 Certain solids such as diamond really are one giant molecule — hence their

strength.
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moments of two molecules]. The resulting attraction energy is of the order of
10−2 eV, and the forces generally vary with the inverse 7th powers of the in-
termolecular separation. Many organic compounds, inert gases and ordinary
diatomic gases such as I2, O2, N2, H2 form molecular solids in the solid state.
The weak bonding makes molecular solids easy to deform, and the absence of
free electrons makes them very poor conductors of heat and electricity.

Ionic solids, such as NaCl (rock salt), consist of close regular 3-dimensional
array of alternating positive and negative ions having a lower energy (en-
thalpy) than the separated ions. The structure is stable because the binding
energy of the entire crystal due to the net electrostatic attraction exceeds
the sum of the binding energies of the individual, well-separated ionic mole-
cules. Ionic binding in solids is not directional because spherically symmetrical
closed-shell ions are involved. Hence the ions are arranged like close-packed
spheres with various packing schemes. The actual crystal geometry depends
on which arrangement minimizes the energy, and this in turn depends prin-
cipally on the relative sizes of the ions involved.

In the absence of free electrons to carry energy or charge from one part of
the solid to another, such solids are poor conductors of heat and electricity.
However, because of the strong electrostatic forces between the ions, ionic
solids are usually hard and have high melting points, although they can be
solvated – and often in almost ionic form – by polar solvent liquids such
as water. Lattice vibrations can be excited by far-infrared energies, so that
ionic solids show strong absorption properties in that spectral region, but are
mostly transparent to visible radiation.

In covalent solids, atoms are bound by shared valence electrons – as in
covalent bonds within molecules. The bonds are directional and determine
the geometrical arrangements of atoms in the crystal structure. The rigidity
of their electronic structure makes covalent solids hard and difficult to de-
form, and it accounts for their high melting points. Because there are no free
electrons, covalent solids are not good heat or electrical conductors, either.
Most covalent solids (diamond excepted) absorb in the visible spectrum and
are therefore opaque.

A metallic solid is a regular lattice of spherically symmetrical positive ions
arranged like close-packed spheres, through which the conduction and valence
electrons – those contributed from the outer shells of the individual atoms –
move (Bloch, 1928). This type of solid exhibits a bond that is a limiting
case of covalent binding, in which electrons are shared by all the ions in the
crystal. As a result, metals are good electric and heat conductors, strong, yet
ductile, and strongly reflect in the visible and radio parts of the spectrum.

A semiconductor is like a metal, except the number of shared valence
electrons per atom exactly fills the solid’s valence band, so its conduction
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band is empty. The energy gap between these bands, plus the Pauli exclusion
principle, thus render electronical and thermal conduction very dependent
upon impurity content.

There are solids whose binding is a mixture of the above principal types.
Such is the hydrogen bond, where a single hydrogen atom appears to be bonded
to two distinct atoms, although (because neutral hydrogen has only one elec-
tron) it should form a covalent bond with only one other atom. The hydrogen
bond is particularly important because its energy is only of order 0.1 eV (∼ 6
kcal/mole) and also because the hydroxyl group occurs so frequently in most
biological systems. It is especially important in molecular genetics by virtue
of controlling in part the possible pairings between the two strands of the
DNA molecule (F.H.C. Crick and J.D. Watson, 1954).

It is believed that the hydrogen bond is largely ionic in character. In the
extreme ionic form the hydrogen atom loses its electron to another atom in the
molecule and the bare proton forms the hydrogen bond. The small size to the
proton permits only 2 nearest-neighbor atoms, because the atoms adjacent to
the proton are so close that more than 2 of them would get in each other’s
way. Thus the hydrogen bond connects only two atoms (belonging to two
distinct molecules).

Together with electrostatic attraction between the electric dipole moments
of individual polar covalent–bonded molecules, the hydrogen bond is respon-
sible for the striking physical properties of water and ice.

Departures from ideal crystal structure, so-called lattice imperfections,
lead to many properties of solids which have practical consequences.

The history of man’s efforts to unveil the ‘mystery ’ of the solid state of matter
can be divided into 5 principal periods:

(1) DESCRIPTION AND CLASSIFICATION, 315 BCE–ca 1600 CE;

(2) RECOGNITION OF INTERNAL GEOMETRICAL FEATURES, 1665–
1800;

(3) OPTICAL, ELECTROMAGNETIC AND CHEMICAL PROPERTIES,
1801–1894;

(4) CLASSICAL ATOMIC MODELS, 1895–1931;

(5) QUANTUM-ELECTRONIC MODELS, 1930–present. We have grouped
the first four stages under the single heading of classical studies.
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A. Classical Studies (315 BCE–1931 CE)

Owing to their numerous applications for useful and decorative purposes,
minerals720 (especially crystals721 and gems) have attracted the attention of
mankind for several thousands of years. Egyptian paintings of 5000 years
ago show that minerals were used in weapons and jewelry, and in religious
ceremonies: The breastplate of the high priests of the ancient Israelites were
studded with four rows of gemstones (ca 1200 BCE).

The oldest existing treatise on minerals is that written about 315 BCE

by Theophrastos, a Greek philosopher. Pliny the Elder of Rome, in his
Historia Naturalis (77 CE), wrote about metals, ores, stones and gems.

Other early writings about minerals were produced by the German sci-
entists Albertus Magnus (De Mineralibus, 1262) and Georgius Agricola
(De Re Metallica, 1556). Andreas Libavius (1597), pointed out that salts
present in mineral waters crystallize upon evaporation.

The first important step in the study of crystals was made by Robert
Hooke in his Micrographia (1665), where he noticed the regularity of the
minute quartz crystals found lining the cavities of flints. Independently, the
Danish naturalist and physician Nicolaus Steno (Niels Stenson, 1631–1686)
described various gems, minerals and fossils enclosed within solid rocks in
his book De solido intra solidum naturaliter contento (Florence, 1669). He
was first to discover that the angles between the faces of quartz crystals were
the same even though the crystals had different shapes. At about the same
time, Erasmus Bartholinus (1625–1692, Denmark, 1669) and Christiaan
Huygens (1690) studied double refraction of calcite and Iceland-spar crystals.

720 Natural, inorganic, solid constituents of the earth’s crust. Most minerals also

have definite crystalline forms.

Common minerals and organic gems are: Sapphire, Ruby (Al2O3 — hexagonal);

Topaz (Al2F2SiO4 — orthorombic); Emerald [Al2Be3(SiO3)6 — hexagonal];

Opal (SiO2·nH2O — amorphous); Amethyst (SiO2 — hexagonal); Turquoise

[CuAl6{(OH)2PO4}4·4H2O — triclinic]; Malachite [Cu2CO3(OH)2 — mono-

clinic]; Azurite [Cu3(CO3)2(OH)2 — monoclinic]; Amber [C12H20O — amor-

phous]; Diamond (C — cubic); Lapis Lazuli [Na8(AlSiO4)6S2 — cubic]; Al-

abaster (CaSO4·2H2O); Ivory [Ca3(PO4)2]; Pearl [84–92% CaCO3 + organic

substances + water]; Coral (mainly CaCO3 — hexagonal).
721 The word crystal is of Greek origin, meaning clear ice. The name was also

applied to the clear transparent quartz (rock crystal) from the Alps, under the

belief that it had been formed from water by intense cold. It was not until the

17th century that the name was extended to other bodies. Quartz crystals from

crowns have been preserved since 768 CE in Japan.
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In 1695, Anton van Leeuwenhoek (1632–1723) observed under the mi-
croscope that different forms of crystals grew from solutions of different salts.
A French scientist, Jean-Baptist Louis Romé de l’Isle (1736–1790) sug-
gested in 1772 that Steno’s discovery could be explained only if the crystals
were composed of identical units stacked together in a regular way. He de-
scribed the process of crystallization, and classified crystals into six groups
according to their symmetry properties. About 1780, chemists began to de-
velop correct ideas about the nature of chemical elements and other sub-
stances. These ideas helped scientists understand the chemical makeup of
minerals, but did not remove the mystery about crystal shape and internal
structure.

The science of crystallography was founded in 1801 by René Just Haüy
(1743–1821, France) in his 4-volume treatise Traité de cristallographie. There
he showed that the arrangement of identical particles in a 3-dimensional peri-
odic array could account for the fact that the index numbers of the direction
of all faces of a crystal are exact integers (law of rational indices). During
the 19th century, most of the minerals known today were described, optically
studied and chemically analyzed.

The discovery of X-rays in 1895 provided physicists with the tool they
needed to study crystal structure, but it was not until June 8, 1912 that Max
von Laue and his assistants developed an elementary theory of diffraction of
X-rays by a periodic array of scatterers. They applied it to explain experi-
mental observations of X-ray diffraction in crystals, and thus obtained clues
to their internal structure. [At that time, scientists did not fully understand
either X-rays or crystals, and the work of von Laue demonstrated both the
wave nature of X-rays and that crystals are composed of a periodic array of
atoms.] The first determinations of crystal structures by X-ray diffraction
analysis were reported by W.L. Bragg in 1913.

While all this was going on, the pre-quantum physics of the solid state was
advancing along other avenues as well: In 1900, the physicist Paul (Karl
Ludwig) Drude (1863–1906, Germany) suggested for the first time that
electrical and thermal properties of metals might be correlated, by assuming
that metals contain free electrons in thermal equilibrium with atoms in the
solid. In his model, he introduced the concept of mean free path for collision
of the free electrons722 and furnished a classical microscopic explanation of

722 In a typical metal such as copper or silver, the atoms are arranged in a system-

atic array to form a crystal. The atoms are in such close proximity that the

outer, loosely bound electrons are attracted to numerous neighboring nuclei and,
therefore, are not closely associated with any one nucleus. These conduction

electrons are visualized as being free to wander through the crystal structure,

or lattice. At absolute zero temperature, the conduction electrons encounter no
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opposition to motion and the resistance is zero (assuming no crystal defects);

this fact is understood in quantum mechanics, but has no classical explanation.

At nonzero temperatures, the electron-deficient atoms (ions) possess kinetic
energy in the form of vibration about equilibrium positions in the lattice; this

vibrational energy is measured by temperature. There is a continual interchange

of energy between the vibrating ions and the free electrons in the form of elastic
and inelastic collisions. The resulting electron motion is random (for both ther-

mal and quantum reasons), there is no net motion, and the net current is zero.

Quantum – mechanically, the lattice vibrations are quantized into “quasiparti-
cles” called phonons (sound quanta), absent at 0 ◦K, and in a perfect crystal

electrons can only collide with phonons – they do not ‘see’ individual lattice ions.

If a uniform external electric field E is applied, the electrons are accelerated;
superimposed on the rapid random motion, there is a small component of drift

velocity along E. Classically, upon each inelastic collision with an ion, the elec-

tron loses most of its kinetic energy: it then accelerates again, gains a velocity
component along E, and loses its energy at the next inelastic collision. The time

between collisions is determined by the random velocity component – typically

much larger than the drift term – and the length of the mean free path. On
average, the electron gains a directed drift velocity that is directly proportional

to E.

Thus, the classical theory of metals, as expounded by Drude, assumes a model
in which some of the electrons are detached from their parent atoms and be-

come free to move in the material in much the same way as an electron gas.

When an electric field E is applied, these free electrons drift with an aver-
age velocity vd and give rise to a current density J = −envd where n is

the number of free electrons per unit volume, each of charge { −e}. In this

classical electron-gas model of conductors, an electron collides with the metal
ions, and between collisions moves in accordance with the force produced by

E, such that the electron’s velocity at time t after the most recent collision will

be v = v0 −
(

e
me

)
Et. Here me is the electron’s mass; vd is then the average

drift velocity between collisions. Since v0 is distributed randomly in direction,

〈v0〉 = 0 and vd = 〈v〉 = − eτ
2me

E, where angular brackets indicate averaging

over time and electrons, τ is the ‘mean free time’ between collisions, and the

factor 1
2

arises from the ‘saw-tooth’ shape of v(t). Substituting the expression

for vd into the equation for J , one obtains J = σE, where σ is known as

the conductivity and the resistivity ρ = 1
σ

= 2me
e2nτ

is inversely proportional to

τ , the average time between collisions (in copper τ = 5.4 × 10−14 sec at room
temperature, T = 273 ◦K).

Many metals obey the above linear relationship between J and E. For copper

with an atomic weight of 63.6 and a density of 8.9 g
cm3 , by Avogadro’s law,

the density of atoms per mole cu is 3 is

na =
6.022 × 1023

atoms/g–mole cu × 8.9 g/cm
3

63.6 g/g–mole cu
= 8.43 × 1022 electrons/cm3 .

Assuming there is one free electron per atom, and considering a current of I = 4
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Ohm’s law, still taught today (although supplanted by the quantum field
theory). The foundations of the classical theory of ionic crystals were laid
by Erwin Madelung (1881–1972, Germany) in 1909 and by Max Born in
1910. In these crystals (e.g. rock salt: NaCl) the binding depends on the
Coulomb electrostatic attraction between the singly charged ions (e.g. Na+

and Cl−), and equilibrium is achieved by a counteracting short-range repulsive
force.

In a classical model of the ideal rock salt crystal, the effective potential of

the forces acting between the Na+ and Cl− ions is U(r) = −0.29 e2

r + c
r9 .

Here c is a constant which is determined from the equilibrium condition
[(

∂U
∂r

)
r=r0

= 0
]
. The interaction potential then assumes the form

U(r) = −0.29
e2

r

[

1 − 1
9

(r0

r

)8
]

.

From this, one evaluates the lattice energy (the total energy per mole of
the crystal, equals to minus the energy per mole liberated upon forming the

Ampere in a copper conductor with a cross-sectional area of A = 1 mm2, we

find vd = I/A
nae

= 0.03 cm
sec .

The average drift velocity in a good conductor is thus very low compared to the

random thermal electron velocities which are of the order of 105 m/sec at room

temperatures. As temperature increases, random thermal motion increases,

the time between energy-robbing collisions decreases, mobility decreases, and

therefore conductivity decreases. It is characteristic of metal conductors that

resistance increases with temperature.

The relation σ = ne2τ
2me

can be put into a more useful form by defining a

measurable quantity, the mobility μ, given by the ratio of the drift velocity to

the applied field, i.e. μ = vd
|E| = eτ

2me
. Therefore σ = neμ. For conduction

by positive carriers as well as negative carriers, the conductivity is given by

σ = nqnμn + pqpμp, in which μn and μp are the mobilities of negative and

positive carriers, respectively qn and qp are their charges (absolute values), and

n and p are the numbers of these carriers per unit volume. The sign of the

charge of a species of electric current carrier in a metal can be determined from

measurements of the Hall effect. Measured values of the resistivity for copper

show a linear dependence on the temperature.

In general, the classical theory of metals is unable to predict correctly the linear

relationship between the resistivity ρ and the temperature T . However, calcu-

lations based upon modern quantum theory can account satisfactorily for this

linear dependence.
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crystal from widely separated Na+ and Cl− ions). To this end, one considers
that each Na+ ion in the lattice has 6 neighboring Cl− ions, each of which is
bound to it by the same spherically symmetric interaction U(r).

One mole of an NaCl crystal has L Na+ ions, from each of which bind-
ing forces extend to each of its 6 neighbors. Hence the lattice energy, com-
puted assuming an equilibrium distance r0 between adjacent constituents,

is E = 6LU(r0) = −1.74
(

8
9

e2

r0

)
, with L representing the Avogadro number.

This energy is negative because it is released if the crystal is formed from its
ions (stated otherwise — it is the energy needed to break the crystal apart
into a state of zero potential energy).

The lattice energy of any ionic crystal can be expressed by the general

formula E = C e2

a where a = 2r0 is the lattice constant. The constant
α = 1.74 that appears in the above expression for E is known as the Madelung
constant (1918) and is of central importance in the theory of ionic crystals; it

determines the constant c. It is defined via the relation α
r0

=
∑

j
(±)
rj

, where

rj is the distance of the jth ion from the reference ion and r0 is the nearest-
neighbor equilibrium distance. For an infinite line of ions of alternating signs,
with the negative ion as the reference ion and r0 as the distance between
adjacent ions,

α

r0
= 2

[
1
r0

− 1
2r0

+
1

3r0
− · · ·

]

=
2
r0

loge 2,

yielding

α = 2 loge 2 = 1.386 . . ..

In three dimensions, the summation is more involved: a direct summa-
tion leads to convergence problems unless one arranges to work with neutral
or nearly neutral groups of ions, by dividing an ion among different groups
and using fractional charges. [Physically, it is equivalent to grouping of ions
into units of higher electrical multipoles such as dipoles (potential ∝ r−2),
quadrupole (potential ∝ r−3), etc.]

In the sodium chloride structure, we obtain nearly neutral groups by con-
sidering the charges on cubes, counting charges on cubic faces as shared be-
tween two cells

(
+1

2

)
, on edges as shared between four cells

(
+1

4

)
, and on

corners as shared between eight cells
(
+1

8

)
. The first cube thus contributes

6
1
2

1
− 12

1
4√
2

+ 8
1
8√
3

= 1.46.
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Taking into account the next larger cube enclosing the original cube, the
next iteration yields α = 1.75, close to the accurate value of 1.747 565 for
NaCl.

When two species of atoms are bonded primarily with either ionic or co-
valent bonds, it is possible for them to form discrete molecules. When the
primary bonds are satisfied completely within a subunit, the subunits must
then be held together by a type of bond different from the primary bond.

In such molecular crystals, subunits are held together with weak, secondary
intermolecular forces. The largest class of molecular crystals is that in which
covalently bonded molecules have weak intermolecular bonding. When the
molecules are approximately spherical (because of molecular rotation), the
crystal is usually a close-packed array of these molecules held together by
non-directional forces. This occurs, for example, in crystals of CH4 and NH3

at low temperatures. To this class belong also crystals of the inert-gas atoms,
whose outer shells are complete (He, Ne, Ar, Kr, Xe).

All these solids are made of substances whose molecules are not polar.
Since all valence electrons in these molecules are paired, covalent bonds be-
tween atoms of different molecules (or, for the inert case, between any two
atoms) are essentially impossible, and the molecules retain their individuality.
They are bonded by the same intermolecular forces that exist between mole-
cules of a gas or liquid, known as Van der Waals force. They are weak, and
corresponds roughly to a force between two fluctuating, mutually-inducing
electric dipoles723. The interaction energy between the dipoles is always nega-
tive (i.e. attractive), varies as the mean square 〈p2〉 of the dipole moment of
the inducing molecule, and is inversely proportional to the 6th power of the
distance between the molecules.

A molecule whose electronic distribution is perfectly symmetrical will yield
a finite value for 〈p2〉 even though 〈p〉 is zero. That is, every possible
instantaneous position that the electrons of the molecule can occupy, will

723 Suppose that a given molecule possesses, at some instant, an electric-dipole

moment p1. This molecule will then be surrounded by an electric-dipole field

E = − grad
(p1·r

r3

)
= − p1

r3 + 3
(p1·r

r5

)
r. This field will induce an instantaneous

dipole moment p2 = kE in a second molecule, where k is the polarizabil-

ity (dipole moment per unit electric field) of the second molecule. The mu-

tual energy of interaction of the two dipoles, separated by displacement R, is

U(R) = −p2 · E = p1·p2
R3 − 3 (p1·R)(p2·R)

R5 . Using the above expression for p2, we

find U(R) = −k(1 + 3 cos2 θ)
p2
1

R6 , where (p1 · R) = p1R cos θ. This indicates

the existence of an attractive force between the two molecules varying as R−7.
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lead to a dipole moment of some size and orientation for the molecule as a
whole, and although these rapidly fluctuating instantaneous moments average
to zero, their mean square must have a finite, positive value.

In conclusion, two non-polar molecules should exhibit a characteristic r−7

attractive force (the gradient of their ∼ r−6 interaction potential). The
strength of this force in a given case depends both on the mean-square fluctu-
ation of the electric-dipole moment and on the polarizability of the molecules.
In general the range of variability of these parameters is narrow, and conse-
quently the Van der Waals’ interaction will be rather insensitive to the type
of molecule involved, though it tends to increase with molecular or atomic
geometric size.

B. The Quantum Physical Basis of Chemistry or

“What is a Molecule?” (1927–1937)

“Carbon gives biology, but silicon gives geology”.

Charles Kittel

Solid state physics is a natural extension of molecular physics and physical
chemistry, which in turn are concerned with the structure, properties and
interactions of molecules, so far as they are determined by physical methods.
In this sense, solid state physics is a logical continuation of atomic physics
proper.

Molecular physics is closely related to chemistry. The chemist attempts
to determine the composition of a compound and its structure. He is also
interested in certain characteristic quantities, such as the heat of formation of
the molecule and the energy freed by its decomposition into its elements, or the
rates at which reactions between molecules occur. Chemistry proper is not,
however, able to explain the valency, stability and bonds in molecules. Neither
can it answer questions such as: Why is NH3 pyramidally shaped? Why
does benzene (C6H6) have the form of a hexagon? Why can hydrogen atoms
join together to form the molecule H2, but never form H3? Why do carbon
atoms combine with 4 hydrogen atoms? Why are the spectra of molecules so
complex when compared with atomic spectra, ranging from microwaves up to
the ultraviolet?

These and many other questions could not be answered satisfactorily be-
fore quantum mechanics was developed. It was the development of this theory
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since 1927 that furnished a basis for answering such questions via the theory
of chemical bonding, molecular dynamics and spectroscopy, and other aspects
of physical chemistry.

Molecular physics determines the spatial geometry of the atoms in the
molecule, its modes of rotation and vibration, its dissociation energies, the
arrangement of the electrons in the orbitals of the molecule, the possibil-
ities of exciting electrons, the molecule’s interactions with EM radiation,
and the rapid rearrangements of electronic configurations attendant upon
inter-molecular collisions and reactions. The experimental methods used by
physicists to deal with these problems, such as spectroscopy, various forms of
molecular-scale microscopy and X-ray, neutron and electron diffraction are
now used also by chemists, with the result that the demarcation lines be-
tween molecular physics, modern inorganic and organic chemistry and physi-
cal chemistry have almost disappeared.

Moreover, contemporary physics, chemistry and biology meet on the mole-
cular level : molecular physics, chemical physics, theoretical chemistry and
molecular biology are but different aspect of one common reality.

During the first stage of this development, scientists were eager to use
the new quantum mechanics to establish the theory of the chemical bond.
The main contributors were W. Heitler and F. London (1927), M. Born
and R. Oppenheimer (1927), D.R. Hartree (1928), P.M. Morse (1929),
J.E. Lennard-Jones (1929), E.A. Hylleraas (1930, 1931), J.C. Slater
(1930), C. Zenner (1930), E. Teller (1930), Kronig and Penney (1931),
H.E. White (1931, 1937), J.H. Van Vleck (1933–1936) and L.C. Pauling
(1928–1937).

A molecule is a well defined collection of atoms that are attracted to each
other such that the whole collection may be thought of as a single, stable
dynamical and structural unit. The attractive interaction between two atoms
is called a chemical bond. Clearly, the chemical bond must be something more
specific than a simple attraction between atoms, or we would have to refer
to all the water in a glass as a single molecule. It is really only a question
of degree; but generally, if the attraction between two atoms is such that
an energy of at least 10 kcal/mole (≈ 1 eV per pair of atoms) is required
to move them an infinite distance apart – a chemical bond is said to exist
between these atoms, and they usually may be considered as belonging to the
same molecule.

Since electrons obey the laws of quantum mechanics, our understanding
of their behavior must be based on a knowledge of these laws (in addiction
to electrodynamics). The most important aspects of the quantum mechanical
nature of electrons, atoms and molecules, are: the Pauli exclusion principle,
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the uncertainty principle, the superposition principle, and the fact that nuclei
are much more massive than electrons (and thus move much more sluggishly
and can often be treated as semi classical masses holding each other via an-
harmonic “springs”).

When two or more atoms combine to form a molecule, the more tightly
bound, or inner, electrons of each atom (which fill complete shell of their re-
spective atoms) are practically undisturbed, remaining attached to their orig-
inal nuclei. Only the outermost, or valence, electrons in the unfilled shells are
affected, and they move under the resultant forces due to the ions (composed
of the nuclei and inner shells), as well as their mutual electrostatic repulsion,
the various quantum effects, and other (non-electrostatic and weaker) electro-
magnetic effects. These valence electrons are responsible for chemical bonding
and for most physical properties of the molecule (but not its mass).

In principle, the Schrödinger Equation (SE) and the postulates of quantum
mechanics are all that is required to calculate the properties of any molecule.
In practice, however, the exact analytical solution of the SE for complicated
molecules has not been achieved (and is probably impossible), and experi-
ments are required to determine the structure and behavior of molecules. Var-
ious analytical and numerical approximation schemes, though, lead to some
important valid conclusions.

Let the center of mass of the molecule be at rest, so its overall the transla-
tional kinetic energy is removed from consideration. The time-dependence of
any stationary solution for the molecular wave function is taken to be e−i E

�
t,

where E represents one of the permissible total energy values. Then, a sys-
tem of p different nuclei of masses Mα and q electrons of mass m is governed
by the following PDE for the complex spatial wavefunction Ψ({Rα}, {ri}):
(Rα and ri are nuclear and electronic positions, respectively)

p∑

α=1

1
2Mα

∇2
αΨ +

1
2m

q∑

i=1

∇2
i Ψ +

1
�2

(E − U)Ψ = 0,

where the overall potential energy is U(|Rα−ri|) if magnetic forces, external
EM fields and spontaneous emission of photons are ignored.

This represents a very complicated physical system, even if the potential
energies considered are limited to those of electrostatic origin. If magnetic
and electromagnetic forces are ignored, one can write

U = Uee + Unn + Une =
1
2

∑

k,k′

e2

rkk′
+

1
2

∑

α,α′

ZαZα′ e2

rαα′
−

∑

α,k

Zαe2

rkα
.

where
rkk′ = |rk − rk′ | ,
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rkα = |rk − Rα|

and

rαα′ = |Rα − Rα′ | .

Ordinary perturbation methods cannot be applied directly, because no solu-
tions of an equation simpler than but comparable to the above are known
(except in the single-atom case).

The best approximate method of dealing with the above is the Born-
Oppenheimer approximation (1927). At the foundation of this treatment
of molecular problems is the great disparity between electronic and nuclear
masses. This enables one to separate the SE, and with it the problem, in two
parts. First, the energy levels and the wave functions corresponding to the
outer electrons moving under the influence of stationary (“clamped”) protons
(and their closely bound electron shell) are found. These electrons move much
more rapidly than of the nuclei, and complete many cycles of their motion
(classically speaking) during an interval in which the nuclei move only slightly.

The second step entails treating the quantum mechanical dynamics of
the protons (and their rigidly attached closely bound inner electronic shells,
if any) in an effective potential determined by the electronic wavefunction
(treated as charge-density clouds). This potential consists of the electrostatic
and magnetic energies of the nuclei and their shells, and the electronic energy
obtained in the first (electronic) step of the approximation. This finally yields
the rotational and vibrational energy states of the molecule.

The simplest example of a chemical binding that occurs in nature is the
hydrogen molecule ion (also known as H+

2 molecule or ionized hydrogen mole-
cule) where a single electron is shared between two protons. No exact solution
to this ‘3-body problem’ has been found, but most of the salient features of
the molecular system can be established in an approximate way.

In the Born-Oppenheimer approximation we substitute Ψ = ψeψn into
the SE, where the electronic wave-function ψe(ri, Rα) [ri are the electron
position vectors and Rα are the position vectors of the nuclei] is the eigen-
function of

He = − �2

2m

∑

i

∇2
i + Uee + Uen,

and ψn(Rα) depends only on Rα.

The original SE then approximately decouples into the two equations

− �2

2

p∑

α=1

1
Mα

∇2
αψn + [Unn + Ee(Rα)] ψn = Eψn,
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and

− �2

2m

q∑

i=1

∇2
i ψe + (Uee + Uen)ψe = Ee(Rα)ψe,

where Ee is the total electronic energy (the ground-state eigenvalue of the
operator He). These equations reflect the approximation that the nuclei
move in a field of an effective potential which is composed of the electronic
energy , which varies adiabatically as a function of the internuclear distances,
plus the internuclear potential Unn(Rα).

Consider the special case of H+
2 : The SE for the electron reads

Heψe = − �2

2m
∇2ψe −

(
e2

ra
+

e2

rb

)

ψe = Eeψe

where ra, rb are the respective distances of the electron from proton a and
proton b, and Ee in the energy of the clamped-nuclei electron orbital.

It is convenient to scale all distances to the first Bohr radius (a0 = �2

me2 =
‘atomic unit’) and all energies to the Rydberg. The above equation then
becomes

Heψe = −1
2
∇2ψe −

(
1
ra

+
1
rb

)

ψe = Eeψe.

Thus Ee, ∇2, ra, rb and R are now dimensionless, and Ee is electronic

energy in units of
(

e2

a0

)
(in ε0 = 1

4π units). For fixed internuclear distance

R, the effective potential energy of the molecule is: Umol = 1
R + Ee. Using the

Rayleigh-Ritz variational method, the ‘trial energy’ Umol =
∫

ψeHeψedτ + 1
R

is minimized subject to the constraint
∫

ψ∗
eψedτ = 1 (dτ is an electron-

positron volume element).

As a ‘trial wave-function’ ψe, one uses a linear combination of the radially
symmetric trial eigenfunctions of two virtual hydrogen atoms

ψ = αψa + βψb, ψa =
γ3/2

√
π

e−γra , ψb =
γ3/2

√
π

e−γrb

(with γ dimensionless). We then have the normalization relations

∫

ψ∗
aψadτ =

∫

ψ∗
b ψbdτ = 1

and ∫

ψ∗
aψbdτ =

∫

ψ∗
b ψadτ = S
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(overlap integral). Straightforward substitution then yields two equations
involving α and β:

(α2 + β2) + 2αβS = 1,

Ee(R) = (α2 + β2)
∫

ψaHeψadτ + 2αβ

∫

ψbHeψadτ.

Since the Hamiltonian operator in the electronic sector is an even function
of the x, y, and z coordinates (components of r − 1

2 (ra + rb), the electron’s
position relative to the COM of the molecule), the energy eigenfunctions of
the system must all be even or odd functions of these coordinates. That is,
every nondegenerate energy eigenfunction must have the property that

ψn(x, y, z) = ±ψn(−x,−y,−z).

On the other hand, for degenerate energy eigenfunctions, arbitrary linear
combinations of even and odd functions of the coordinates are acceptable as
eigenfunctions. Thus, the hydrogenic wave functions in which the electron is
localized near one proton or the other, are good electronic wave-functions for
large proton separation, and these wave functions are approximately degen-
erate.

But when the nuclei separation decreases to a value where pure hydrogenic
wave functions are no longer a good approximation, the degeneracy is lifted,
and the correct electronic eigenfunctions must exhibit the required symmetry
or antisymmetry with respect to ra ↔ rb. One then constructs two solutions:
symmetrical

α = β =
1

√
2(1 + S)

; Ee =
∫

ψaHeψadτ +
∫

ψbHeψadτ

1 + S
;

and antisymmetrical

α = −β =
1

√
2(1 − S)

; Ee =
∫

ψaHeψadτ −
∫

ψbHeψadτ

1 − S
.

Of these, the symmetrical solution corresponds to the lower energy level , thus
leading to the ground state of the molecule.

Performing the necessary integrations, the explicit expression for Ee(R)
(the effective proton-proton Born-Oppenheimer potential) for the symmetrical
solution become

Ee(R) = −1
2
γ2 +

γ(γ − 1) − J + (γ − 2)K
1 + S

where
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S =
γ3

π

∫

dτe−γ(ra+rb) =
(

1 + ρ +
1
3
ρ2

)

e−ρ,

ρ = γR, J =
γ3

π

∫

dτ
e−2γra

r
b

=
1
R

[
1 − (1 + ρ)e−2ρ

]
,

K =
γ3

π

∫

dτ
e−γ(ra+rb)

rb
= γ(1 + ρ)e−ρ.

Here, J is the integral describing the Coulomb attraction of proton b and the
electron cloud centered about proton a. K is the exchange integral, having
no classical equivalent and being a consequence of the fact that the electron
in the molecular ground state is present near both protons (the same applies
to S). Note that K is appreciable only if ψa and ψb overlap substantially.

Since Ee depends on the two variables γ and ρ, a minimization w.r.t. these
two variables shows (numerically) that the energy minimum lies at the equi-

librium distance R0 = 2.08 atomic units (or 1.10 Å) and E0 = −0.5866 e2

a0
.

The corresponding dissociation energy of H+
2 → H + H+ is calculated to be

2.24 eV, as compared with the experimental value of 2.65 eV.

The Born-Oppenheimer approximation of fixed nuclei can be similarly
employed for the evaluation of the binding energy and equilibrium distance
of the neutral hydrogen molecule H2.

The Hamiltonian operator for the system can be divided into 3 parts: one
relating to the motion of the center of mass, one to the electronic motion for
a given proton separation, and the third to the relative motion of the protons
under an effective potential energy consisting of their own mutual Coulomb
energy and the electronic energy.

The Hamiltonian operator for the electronic motion is symmetrical in x
(the coordinate measured along the direction of the line joining the two pro-
tons) so that the electronic eigenfunctions will again have even or odd parity
w.r.t. x.

The case of the neutral H2 molecule differs from the case of the ionized
molecule in one important respect: the presence of two identical electrons in
the neutral molecule requires the application of the exclusion principle. The
electronic eigenfunctions must now not only exhibit either even or odd parity
w.r.t. their separate space coordinates, but must also be antisymmetric w.r.t.
an interchange of the space and spin coordinates of the two electrons .

Thus, the exclusion principle leads to a physical effect, namely an effec-
tive repulsion of the electrons if their spins are parallel (in addition to their
electrostatic repulsion).
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Let the two nuclei (protons) be denoted by a and b and the two electrons
by 1 and 2. We then have the following electronic Hamiltonian in atomic units
(after subtracting the motion of the center of mass):

He = −1
2
(∇2

1 + ∇2
2) +

1
r12

−
(

1
ra1

+
1

rb1
+

1
ra2

+
1

rb2

)

.

At large inter-nuclear distances R, the wave function should go over into
the product of the separate atomic eigenfunctions, either becoming of the
form f(ra1)f(rb2) if electron 1 forms an atom with nucleus a, and 2 with b,
or of the form f(rb1)f(ra2), if the two electrons are exchanged.

A reasonable approach at finite distance R will be to take a linear combi-
nation of two such products, and symmetry considerations lead to the choice
of the symmetrical solution

ψ(1, 2) = α [f(ra1)f(rb2) + f(rb1)f(ra2)]

for the ground state (with antiparallel electron spins, according to the Pauli
principle). We are again neglecting all spin dependent interactions, except
those resulting from the Pauli principle. The antisymmetric combination,
would lead to a larger energy with no attraction and no formation of a molecule
at all.

We apply the operation
∫

dτ1

∫
dτ2f

∗(ra1)f ∗(rb2) · · · to the equation

Heψ = Eeψ with the ansatz f = γ3/2
√

π
e−γr, and use the abbreviations:

S =
∫

dτ1f
∗(ra1)f(rb2) (overlap integral)

J =
∫

dτ1
1

rb1
|f(ra1)|2

J ′ =
∫∫

dτ1dτ2
1

r12
|f(ra1)|2|f(rb2)|2

⎫
⎬

⎭

classical interaction
integrals

K =
∫

dτ1
1

ra1
f ∗(ra1)f(rb1)

K ′ =
∫∫

dτ1dτ2
1

r12
f ∗(ra1)f(rb1)f ∗(ra2)f(rb2)

⎫
⎬

⎭

exchange
integrals

A =
∫

dτ1f
∗(ra1)

[

−1
2
∇2

1 −
1

ra1

]

f(ra1)

A′ =
∫

dτ1f
∗(ra1)

[

−1
2
∇1 −

1
rb1

]

f(rb1).



3904 5. Demise of the Dogmatic Universe

All the above integrals can be evaluated in terms of elementary functions.

The final result has the form

Ee = −P (ρ)γ + Q(ρ)γ2

where ρ = γR and P , Q are known functions of ρ. The energy minimum

is at Ee = −P 2

4Q . Numerical computations yield an equilibrium state at

R = R0 = 0.77 Å, against an experimental value of 0.742 Å. The energy is

then E = −1.139 e2

a0
as compared with 2E0 = − e2

a0
of two separate hydrogen

atoms in the ground state.

In polyatomic molecules, molecular orbitals are obtained by the superpo-

sition of the atomic orbitals. The situation becomes interesting when we mix

orbitals with different directionalities, such as s and p states. The principle of

superposition is based on the recognition that the addition of atomic orbitals

will be most effective (producing the greatest bond energy) when the overlap

of the electron wave-functions will be maximal. The process of mixing s- and

p-orbitals is called hybridization.

The most striking example of its significance occurs in carbon. This ele-

ment possesses 4 electrons in the L-shell, and since its valency is 4 we must

suppose that these electrons are distributed among the states defined by ψ(2s),
ψ(2px), ψ(2py) and ψ(2pz). The most stable configuration in this valence state

will occur when the respective molecular orbitals exhibit maximum overlap-
ping (Pauling, 1937).

It therefore follows that to study the possible hybrid orbitals, we need

only discover the conditions for maximum charge-cloud density in an assigned

direction. This occurs when wave functions are used which contain 4 equal

‘weights’ of the constituents. If we write

ψ = c1ψ(2s) + c2ψ(2px) + c3ψ(2py) + c4ψ(2pz),

then, since the separate wave-functions on the r.h.s. are mutually orthonormal,

the contributions to |ψ|2 are in the ratio of c2
1 : c2

2 : c2
3 : c2

4. When these are

equal we have c2
1 = c2

2 = c2
3 = c2

4 = 1
4 which renders (with any arbitrary phase

choice for c1)

c1 =
1
2
, c2 = ±1

2
,

c3 = ±1
2
, c4 = ±1

2
.
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Upon choosing c1 = 1
2 , there are four independent combinations of the re-

maining signs. These give the 4 wave functions

ψ1 =
1
2

[ψ(2s) + ψ(2px) + ψ(2py) + ψ(2pz)] ,

ψ2 =
1
2

[ψ(2s) + ψ(2px) − ψ(2py) − ψ(2pz)] ,

ψ3 =
1
2

[ψ(2s) − ψ(2px) + ψ(2py) − ψ(2pz)] ,

ψ4 =
1
2

[ψ(2s) − ψ(2px) − ψ(2py) + ψ(2pz)]

where (ignoring the common radial factors),

ψ(2s) = 1, ψ(2px) =
√

3 sin θ cosφ,

ψ(2py) =
√

3 sin θ sinφ, ψ(2pz) =
√

3 cos θ.

Now, the maximum of ψ1 occurs where

∂ψ1

∂θ
=

1
2

√
3{cos θ cosφ + cos θ sin φ − sin θ} = 0,

∂ψ1

∂φ
=

1
2

√
3{− sin θ sin φ + sin θ cosφ] = 0.

The solution is tanφ = 1
(
φ = π

4

)
, tan θ =

√
2 (θ = 54 ◦44′). Similarly,

the maxima of the remaining wave functions occur at φ = −π
4 , θ = 125 ◦16′

for ψ2, φ = 3π
4 , θ = 125 ◦16′ for ψ3, φ = 5π

4 , θ = 54 ◦44′ for ψ4.

The corresponding vectors in these directions will be

e1 = ex + ey + ez, e2 = ex − ey − ez,

e3 = −ex + ey − ez, e4 = −ex − ey + ez.

The angle between (say) e1 and e4 is given by cos θ14 = −1
3 , therefore

θ14 = 109 ◦28′. It is the angle between the lines joining the centroid (carbon)
to any two of the 4 H atoms bonded to the carbon; the 4 lines form the
vertices of a regular tetrahedron. The hybridization scheme just described
is known as sp3, because all three 2p orbitals of the central carbon atom
participate. The other possible hybridization schemes are: sp2 (trigonal
planar symmetry, as for the methyl radical CH3, linear shape, as for CO2

or acetylene C2H2), and schemes involving s, p and d orbitals (for 3rd-row
central atom, e.g. phosphor and sulfur).
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The simplest stable molecule is that of hydrogen, H2. If we start with two
ground state hydrogen atoms an infinite distance apart, electron 1 is in a 1s
orbital around proton a and electron 2 is in a 1s orbital around proton b. As
the distance between the two atoms decreases, we use a linear combination of
the 1s atomic orbitals to construct a molecular orbital for which each electron
is equally likely to be in the neighborhood of each proton.

There are only two possible combinations that satisfy the condition that
each electron be associated equally with each nucleus, one by taking the sum
and the other by taking the difference of the two 1s atomic orbitals. Addition
leads to constructive interference between the two wave functions in the region
between the two nuclei and results in increased electron density in this region.
This orbital is called the bonding molecular orbital.

In the opposite situation the two atomic orbitals undergo destructive inter-
ference in the region between the two nuclei, and the electron density is very
low in this region (it is zero on a nodal plane bisecting the inter-nuclear line
segment). This orbital is called the antibonding molecular orbital.

The electronic SE can now be used to calculate the energy Ee of the
hydrogen molecule, which depends on the internuclear distance. The arbitrary
fiducial zero of energy is taken to be the energy of the two hydrogen atoms
when infinitely far apart.

When the molecule is in the bonding state (1sa + 1sb) it will have an
energy less than that of the dissociated atoms, i.e. it will be a stable entity.
The molecule in this state has a dissociation energy E0 and a bond length
R0. The antibonding orbital (1sa − 1sb) yields a higher energy than that of
the dissociated atoms for all values of R.

Therefore, no stable molecule can exist in that state. In the bonding
orbital, there is high electron density between the two protons, meaning that
the electrons serve as the bonding agent. In the ground state, with both
electrons occupying the same molecular orbital, they must have opposite spins.

The electrons in a molecular orbital that has a high density in the region
between the two nuclei create a covalent bond, which results from an over-
lap of two atomic orbitals. A similar technique is used for diatomic molecules
(such as O2, N2) containing many valence electrons. In this type of bond,
known also as homopolar binding, two electrons in the ground state are
equally shared between two identical atoms in a manner described by a wave
function which is symmetric in the space coordinates of the two electrons,
but antisymmetric in the spins. Successive pairs of electrons (pooled from
both atoms) similarly occupy successively higher molecular orbitals — both
bonding and antibonding, in general. This “buildup” (aufbau) scheme holds
for molecules involving two different atoms as well, and even for multi-atomic
molecules.
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In diatomic molecules, electrons do not move in a central field of force,
and therefore the orbital angular momentum operator L of an electron does
not remain constant during its motion. However, because of the axial sym-
metry about the line (say, z axis) passing through the two nuclei, the com-
ponent of L in the z direction is conserved (except for spin-orbit and inter-
electron coupling effects), i.e. Lz = m��; here m� is, as usual, quantized to
m� = 0,±1,±2, . . . . The sign of m� determines the sense of rotation of the
electron about the z-axis, but since the energy is independent of this direction
one need only give the absolute value, |m�| = λ.

The different angular momentum states are denoted according to the fol-
lowing scheme: m� = 0, λ = 0 (σ states); m� = ±1, λ = 1 (π states);
m� = ±2, λ = 2 (δ states); m� = ±3, λ = 3 (φ states). Thus, except for
σ-states, all angular momentum states are doubly degenerate because of the
possible signs of m�. In addition, in each of the above states the electron
may have its spin up or down relative to the molecular axis. So, σ-states can
accommodate two electrons with opposite spins whereas the remaining states,
π, δ, φ can accommodate up to four electrons each, two with spin up and two
with spin down.

For molecular orbital states of the electron, one uses the notation λn
m�,
where n
 serves to indicate the atomic orbitals from which each of the molec-
ular orbitals has been formed by linear combination. Each of these molecular
orbitals corresponds to a different energy.

In the case of molecules composed of two identical nuclei, such as H2,
the aforementioned structural cylindrical symmetry is augmented by a fur-
ther symmetry (or antisymmetry) of the electron probability amplitude un-
der exchange. The shape of the molecular orbitals resulting from a linear
combination of atomic orbitals will depend on the atomic quantum numbers.

When the charges of the two nuclei composing the molecule are different,
the Coulomb interaction of each nucleus with its electrons is different and the
molecule no longer has a center of symmetry. In general, only the unpaired
electrons in the last unfilled shell in each atom will participate strongly in the
chemical bond.

In the case of NaCl, for example, these are the 3s electron in Na and one
of the 3p electrons in Cl. Since the Cl nucleus produces a stronger attractive
field and its atomic shells are closer to it, the Chlorine’s electronegativity is
bigger than that of the Na atom, which means that the electronic charge of the
bonding electron pair is displaced toward the Cl nucleus. This results in an
uneven charge distribution, and hence an electric dipole moment of the NaCl
molecule. The NaCl molecule may thus be considered as being composed of
two ions held together by their Coulomb attraction. We express this situation
by writing Na+Cl−.
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This type of molecular bonding is called an ionic bond; in it the classical
model yields an adequate approximation to the energetic state of the stable
bond.

For most heteronuclear diatomic molecules, the situation is intermediate
between pure covalent bond and pure ionic bond. The more ionic the bond,
the larger the electronic dipole moment of the molecule.

For molecules with more than two atoms, the geometry of the molecule is
determined quantum-mechanically. It was found experimentally that a bond
between any two of its atoms occurs in the direction in which the respective
atomic wave functions have maximum overlap.

Thus, consider the water molecule H2O: if for simplicity we ignore hy-
bridization, the active ingredients in the oxygen atom are the two unpaired
electrons, each with n = 2, 
 = 1, ms = 1

2 , m� = ±1, i.e. (say) one O elec-
tron in the px state and the other in the py state (the remaining 2p-electrons
of O are along the z-axis in pz state, with their spins paired). The other
active elements, [one (1s) per H atom] are located so that they couple with
maximum wave-function overlap to the two respective unpaired electrons in
O. The result is a molecule having, to the first approximation, a right-angle
shape. The presence of the H atoms polarizes the motion of the p elec-
trons of O such that the lobes nearer to the H atoms are larger than the far
lobes. Also, the angle between the O–H bonds increases from 90 ◦ to 104.5 ◦

because of the repulsion among the O atom’s two lone pairs (non-bonding
electron pairs) and the two O-H bonding pairs.724

Detailed calculations show that the hydrogen 1s-electrons are pulled to-
ward the O atom, so that the centroids of the negative and positive charges do
not coincide, producing a net electric dipole moment along the line bisecting
the bent H-O-H angle.

A similar situation occurs in the ammonia molecule NH3, where the in-
teraction is (again, ignoring the sp3 hybridization) between the 3 unpaired
(2px), (2py) and (2pz)-electrons in the N atom and the 3 (1s)-electrons of
the H atoms. The result is a trigonal pyramidal structure, with the N atom
at the apex and the H atoms forming the base (the angles at the vertex of
the pyramid between any two H atoms is 107.3 ◦).

The bonds of methane (CH4) can only be understood in terms of hy-
bridization. First a slightly excited state of carbon, consisting of one 2s and
three unpaired 2p-electrons, is mandatory to engage the four H atoms. But
these four bonds would not have the same energy and the same directionality
(2s is spherically symmetric).

724 The last two featured can also be understood in terms of an sp3 (tetrahedral)

hybridization of the oxygen orbitals.
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To account for the experimental results, which indicate 4 bonds of the
same energy and directionality, suitable solutions of the SE were found. By
making 4 linearly-independent linear combinations of the four wavefunctions
so-called hybridized wavefunction in the form

ψ1,2,3,4 =
1
2

[ψ(2s) ± ψ(2px) ± ψ(2py) ± ψ(2pz)]

we obtain suitable wave-functions with maxima pointing toward the vertices
of a tetrahedron, as explained above.

Clearly, since s and p wave functions correspond to different values of
the angular momentum, the hybrid wave-functions do not describe states of
well-defined electronic angular momentum.

C. Quantum Theory of Solids and The Semiconductor

(1930–1936)

The many and varied properties of solids have intrigued us for centuries.
Technological developments involving metals and alloys have shaped the
course of civilizations, and the symmetry and beauty of naturally occurring,
large single crystals have consistently captured our imagination. However, the
origins of the physical properties of solids were not understood at all until the
development of quantum mechanics. The application of quantum mechan-
ics to solids has provided the basis for much of the technological progress of
modern times.

Quantum mechanics provides a “technology” to analyze atomic systems,
in order to calculate their energy levels, shapes and interactions and to predict
the probability of transition from one state to another. When we consider the
properties of matter in bulk, new problems arise because of the complicated
interaction between atoms and molecules. Even in the gaseous state, inter-
molecular forces affect the behavior considerably, although it is possible to
describe deviations from the gas laws in terms of simple two-body interactions.
In the liquids and solid states, the close proximity of atoms gives rise to strong
forces affecting many particles.

At the same time, the fundamental rules of quantum mechanics become
important in dealing with vibrations of the crystal lattice and with condition
of electrons in metals. Despite intense mathematical difficulties, solid-state
physics has made great progress in accounting for several phenomena which
received no classical explanation. Moreover, its results have great practical
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significance and wide implications in many fields of physical research, includ-
ing deep and fruitful mathematical similarities to Quantum Field theories
(QFT) of particle physics and cosmology.

The quantum theory of solids includes the following topics:

• Crystal’s lattice vibrations — theory of phonons.

• Heat conduction, specific heats and thermal expansion coefficients.

• Metallic electric conductivity.

• Paramagnetism, diamagnetism, ferrimagnetism, and ferromagnetism.

• Band theory of solids and semiconductivity.

• Superconductivity.

The classical Drude model (1900) was based on concepts borrowed from
the kinetic theory, suggesting that electrons in a metal behave like molecules
of a gas (at ordinary temperatures) and participate in thermal equilibrium
according to the Maxwell-Boltzmann velocity distribution law. The greatest
success achieved by Drude’s theory consisted in the derivation of the Wiede-
mann-Franz law725, which states that the ratio of thermal conductivity to

electrical conductivity is given by the expression 3k2

e2 T .

Drude (1863–1906, Germany) was also able to derive an expression for
electrical conductivity, which is of some importance even today. However, a
theory that was adequate for Newtonian particles was not expected to accom-
modate electrons, which since the 1920’s were recognized as quantum entities,
obeying quantum laws.

Indeed, Drude’s theory soon ran into conflict with experimental results:
the hypothesis that every free electron should possess a mean kinetic energy
of 1

2kT per degree of freedom in a state of thermal equilibrium leads to a
corresponding electronic contribution to the molar heat capacity of 3

2R = 3
cal/mol deg which is in flat contradiction with the Dulong-Petit rule. This
and other difficulties disappear only if it is assumed ad hoc that the number
of free electrons is considerably smaller than that of atoms.

The first step toward the modification of Drude’s theory was taken (1928)
by Arnold Sommerfeld (1868–1951) with the new assumption that the elec-
tron gas in metals possesses the properties of a highly degenerate Fermi-Dirac

725 Gustav Wiedemann (1826–1899, Germany), Rudolf Franz (1827–1902,

Germany).
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gas. The SE for the free electron, ∇2ψ + 2m
�2 Eψ = 0, admits a de Broglie

plane-wave solution for the electron’s complex wave function ψ = cei(k·r),
where c is a complex normalization constant and k is the vector wavenum-
ber; � = h

2π is the reduced Planck constant and m denotes the electron
mass. The electron’s vectorial momentum operator is defined by p = −i�∇
and the SE yields pψ = −i�∇ψ = �kψ; in other words, the wavefunction

(Hilbert-space state vector) is a simultaneous eigenvector of the operators
px, py, pz with eigenvalues

p = �k = mV ,

where V is the velocity [in one dimension p = h
λ = �k].

A free electron has only a kinetic energy E, and its dispersion relation
(dependence of E on k) is the parabola

E(k) =
p2

2m
=

�2

2m
k2

(also, the Planck relation E = hν = �ω yields ω = p2

2m�
= �

2m k2). Since
|ψ|2 = c2 is a constant, the probability density of detecting the single free
electron is the same everywhere when it is in the pure k state Ψ. Note that
the energy is a continuous function of k.

However, the gas of shared electrons is not actually free: ignoring inter-
electron interaction (apart from the Pauli exclusion principle), the electrons
still interact with the metal’s lattice ions.

This causes the individual atomic valence orbitals to become spread over
the entire metallic bulk, via superposition, into gigantic, macroscopic, molec-
ular orbitals.

Identical atomic orbitals thus split into a very large (∼ Avogadro’s number
per mole) shared orbitals, which are for all intents and purposes a continuum
— called a band.

Since there is more than one atomic orbital involved, more than one elec-
tron band results. Bands are separated by finite energy gaps (band gaps);
within a band, the dispersion relation is not parabolic.

Next, we present a simple-minded model illustrating how such electron
bands arise. We begin by restricting the motion of a single electron to a
segment 0 ≤ x ≤ a. This can be thought of as a model for conduction electron
in a one-dimensional metal crystal lattice, where we neglect interactions of
these electrons with each other and with the positive ions and assume that
the height of the potential barrier is much above the electron’s kinetic energy.
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The electron can move freely inside each repetitive unit cell of the lattice,
assumed of size a, bouncing back and forth between the cell boundaries, but
cannot escape to a neighboring cell.

This simplified model is physically relevant to electron condition only when
a (possibly small) coupling is allowed between cells; such a coupling occurs
because an electron has a finite probability to tunnel across the inter-cell
potential barrier, so the conduction electrons — usually one or more per cell
— mix and propagate throughout the lattice.

The back and forth motion of an electron inside any given cell — ignoring
tunneling and the presence of other electrons — is accommodated by the
solution of the SE,

ψ = Aeikx + Be−ikx

with the approximate boundary conditions ψ(a) = ψ(0) = 0.

The probability amplitude (wavefunction) is thus no longer a propagating
wave, but rather a standing wave ψ = c sin kx where k, p, E may only range
over the sets of discrete values

kn = n
π

a
,

pn = �kn =
πn�

a
,

En =
p2

n

2m
=

n2π2�2

2ma2
.

Also, we may choose the wavefunction phase convention so that

ψn =

√
2
a

sin
(πnx

a

)

on account of the per-cell total probability normalization

∫ a

0

|ψn|2dx = 1.

The positive wavenumber (eikx) term in Ψ corresponds to an electron
moving in the positive x direction, while the e−ikx term corresponds to an
electron moving in the opposite direction. In accord with the superposition
principle, the electron is doing both at once. Other mobile valence electrons
have identical wavefunctions in other cells: ma ≤ x ≤ (m + 1)a, with
m ranging over . . . ,−2,−1, 0, 1, 2, . . .. It turns out that due to inter-cell
tunneling, each Ψn(x) in each cell m acquires a phase factor eiqx, where
q is the Bloch wavenumber for the n-th band; q is continuous (unlike kn)
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and ranges over −π
a ≤ q ≤ π

a , since Ψn(x; q + 2π
a ) is just Ψ(x; q) for a

different band.

The energy En of the electron is not entirely kinetic, as is the case of
the free electron, because of the potential energy due to the lattice ions and
the resulting inter-cell tunneling effects; En = En(q) depends on the Bloch
wavenumber q for each band n. The expression for the energy in terms of
q is complicated and depends on the geometry of the lattice. The important
general result is that the range of values of the n-th band energy En(q) has
discontinuities or gaps such that near q = 0 the shape of En(q) closely
resembles that of a free particle. Therefore, the lattice significantly affects the
motion of the non-bound electron only when q is close to nπ

a . At intermediate
values of q, the electrons move freely through the lattice.

The above one-dimensional treatment can easily be generalized to three di-
mensions. Thus, for crystals having a cubic repetitive unit-cell which is a cube
of side a, the single-cell electron wavefunction (before inter-cell transmission
is taken into account) is

Ψ =
(

2
a

)3/2

sin
πn1x

a
sin

πn2y

a
sin

πn3z

a

with energy levels E = n2π2�2

2ma2 , n2 = n2
1 + n2

2 + n2
3, and n1, n2, n3 are

positive integers.

When the cells are allowed to interact, Ψn1,n2,n3(x) and En1,n2,n3 again
become functions of a continuous Bloch wavenumber, q, which is now a
vector belonging to the reciprocal momentum-space unit cell: −π

a ≤ qj ≤ π
a ,

j = 1, 2, 3. En1,n2,n3(q) are periodic band dispersion relations, with approx-
imately parabolic shape near q = 0.

The simplest exactly-soluble quantum-mechanical model for electronic
bands in a crystal lattice is the Krönig-Penney periodic-potential model.

In the band, the dispersion relations are not exactly quadratic, and the
electronic energy levels do not fill the whole range 0 ≤ E < ∞, but only
certain bands in the range. However, when only a single, partially-filled band
is important, the free box approximation is useful, since the band is always
approximately quadratic near its bottom. The ‘effective’ electron mass is then
calculated from the reciprocal of the band’s curvature at the bottom, ∇2

qE,
and may differ from the electron’s physical (inertial and gravitational) mass.
We may call this the ‘quasi-free’ approximation for the conduction electrons.

For a small molecule, the molecular-orbital energy levels are widely spaced,
but for a very large lattice (as is the case for electrons in a metal) successive
levels are so close that they practically form continuous spectra (bands). We
ask: how many mobile-electron energy levels are there in a small energy range
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dE, when the lattice is very large? (For the time being we assume a quasi-free

dispersion relation.)

In k-space π
a (ξ, η, ζ), each point with ξ = n1, η = n2, ζ = n3 (positive

integers) represents an electron state. The total number of points lying inside

a surface of a sphere of radius k give the number of different states associated

with energies ≤ E. We evaluate first the total number of states (including a

factor of 2 for spin) in a volume of an octant of radius k,

N(E) =
2a3

π3

1
8

(
4
3
πk3

)

=
2a3

3�3π2
(2m3)1/2E3/2.

The number of states with energy between E and E + dE per unit volume

of the lattice (a3) is thus

1
a3

dN(E) = g(E)dE,

where

g(E) =
1

π2�3
(2m3)1/2E1/2

is the number of states per unit volume per unit energy interval, at the energy

E (since each level can accommodate two electrons with opposite spins, the

values of N(E) and g(E) were doubled).

If N , the total number of electrons per unit volume, is less than the total

available number of energy levels in the band, the electrons will occupy all

band energy levels up to a threshold level, called the Fermi level εF = E(N).
From

N =
2

3π2�3
(2m3)1/2ε

3/2
F

we derive

εF =
�2

2m
(3π2N)2/3.

[Example: silver, density = 10.5 g
cm3 and atomic weight 108 g/mole has one

free electron per atom. The total number of free electron per cm3 is thus

N =
6.02 × 1023 atom

mole × 10.5 g
cm3

108 g
mole

= 5.9 × 1022

free electrons/cm3. The Fermi energy is εF = 5.5 eV, taking the approxi-

mation that m is the physical electron mass.]
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We can estimate the relative number of conduction electrons in a metal
which are thermally excited to higher energy states; most of the excited elec-
trons are in a range ΔE above the Fermi energy ε

F
, where ΔE ∼= kT . As-

suming that kT � ε
F
, the number ΔN of excited electrons per unit volume

can be calculated from ΔN � g(εF )kT . The fraction of conduction electrons

that is thermally excited is small. Simple algebraic manipulations then lead
to the result

ΔN/N � kT/ε
F
.

At room temperature kT � 0.025 eV and typically ε
F
� 4 eV, so that

ΔN/N � 1/160. The absolute number of excited conduction electrons is,

however, very large.

An estimate can also be made of the relative number of electrons in the
conduction band of an insulator or semiconductors at temperature T . If in
the Fermi distribution n(E) we have E − εF � kT , then

n(E) =
1

exp [(E − εF )/kT ] + 1
� exp

(

−E − ε
F

kT

)

so that in such an energy range the Fermi distribution varies with energy like
the Boltzmann distribution.

We know that E − ε
F

= 1
2Eg at the bottom of the conduction band in

an insulator. Thus the condition E − εF � kT is met (Eg � kT for an
insulator), so we can take

n(E) = e− Eg
2kT

as the number of electrons per state in the conduction band of an insulator.

Since the Fermi distribution falls in value by an order of magnitude in
an energy range of about ΔE = 2kT , we get a good estimate of ΔN , the
number of conduction electrons, by evaluating those in the range 2kT above
the bottom of the conduction band. Since

ΔN = n(E)g(E)ΔE,

we must now evaluate g(E), the density of states. Because g(E) starts at
zero at the bottom of the conduction band, a typical value over the range
ΔE = 2kT is obtained by evaluating g(E) at E = kT . Hence,

ΔN � e− Eg
2kT g(kT )2kT .
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Using our earlier results for a metal, N = 2
3εF g(εF ) and

g(kT )/g(ε
F
) =

(
kT
ε
F

)1/2

, we have

ΔN/N �
(

kT

ε
F

)3/2

e− Eg
2kT .

This is the relative number of conduction electrons for an insulator. This

fraction is much smaller than the corresponding result kT
ε
F

for a metal,

partly because the density of states g(E) is smaller near the bottom of the
conduction band in an insulator than at the Fermi energy in a metal — but

principally because of the occupation fraction e− Eg
2kT . Let us take Eg = 6

eV as the gap in a typical insulator; at room temperature this factor is then

e− Eg
2kT = e−120 ≈ 10−52. Not only is the fraction ΔN/N insignificant, but

the absolute number of conduction electrons is also negligible for an insulator.

If, however, Eg = 1 eV, as for a semiconductor, then although e− Eg
2kT

.= 10−9

gives a very small fraction, the number of conduction electrons is no longer
insignificant.

On the basis of the Fermi-Dirac theory, Sommerfeld worked out the ther-
mal properties of an assembly of electrons, obtaining quite good agreement
with observations. In this sense, the Sommerfeld model was an

important step in the development of the theory of metals. It was, however,
less successful in explaining the electrical properties of metals: it failed to
explain why some elements are good electrial conductors and others are not.

The next important improvement in understanding the physical properties
of solids was the development of band theory. This theory is based on a careful
quantum analysis of the role of the atomic lattice centers in the solid. These
centers were found to be far more important than assumed in the previous
theories, in which they served only to balance electric charge and to act as
scattering sites for the free conduction electrons.

It was shown earlier that quantum theory provides the means for describ-
ing the energy levels of the electrons surrounding an atom. Mathematical
complications for systems involving many atoms and many electrons are so
great that they prevent a rigorous mathematical treatment. Nevertheless, the
use of approximation methods makes it possible to obtain considerable insight
into the behavior of complicated many-body systems.

It is of great interest, for example, to consider the behavior of many atoms
brought together to form a solid. A useful approximation which bears on the
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difference between conductors and insulators is the so-called band approxi-
mation, which was discussed earlier in connection with the solutions of the
SE.

It was shown that the SE exhibits band structure as a direct result of the
periodicity of the potential function (R. de L. Kronig and W.G. Penney,
1931). The qualitative existence of bands was first pointed out by M.J.O.
Strutt (1927). Band theory was further extended by F. Bloch (1928),
L. Brillouin (1930, 1931), C. Zenner (1934), N.F. Mott and H. Jones
(1936).

The ideas of these scientists can be summarized in the following qualitative
manner: An energy band in a one-dimensional crystal is made up of a large
number of waves of different energies moving with equal numbers in both
directions. Thus each energy level corresponds to two Schrödinger waves,
one traveling to the left and the other to the right. Since by the exclusion
principle any particular wave function can be shared by two electrons having
opposite spins, each energy level can accommodate two electrons (of opposite
spins) traveling to the left and two electrons (of opposite spins) traveling to
the right, and no more. Each energy level is thus a sort of two-way street by
means of which an electron can travel with a particular energy and speed to
the right or to the left with its spin either up or down.

Some crystals are insulators (nonconductors) of electricity; Absolutely
pure silicon and germanium held at very low temperatures are quite good
insulators. How can this be?

In insulators the energy bands lying above a certain energy are completely
empty. Obviously, no electric current can flow as the result of an empty energy
band. It turns out to be equally true that no current can flow as the result of
a completely filled energy band since there is an electron going to the right for
every electron going to the left. (If a very strong electric field were applied
to the material, an electron might jump from the highest filled band to the
lowest empty band and so become free to move.)

In conductors such as pure metals, a particular conduction band is only
partially filled with electrons. In lithium, for example, there is only one va-
lence electron per atom, so the lowest band is only half-full; the crystal should
therefore be a conductor. [In the case of diamond, which is an insulator, there
are 4 valence electrons per atom.]

When an electric field is applied to a conductor, some electrons going one
way can transfer to slightly higher empty energy levels and travel in the other
direction. Since more electrons will be traveling in one direction than in the
other, an electric field can cause a net electric current to flow.
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Metals are good conductors. Some substances obdurately remain insula-
tors. A third class of materials, called semiconductors, can conduct electricity
when they contain certain impurities in very minute quantities. Silicon and
germanium are semiconductors. The presence of small amounts of elements
such as phosphorus, antimony, and arsenic, adds electrons to the empty bands.
When there is no electric field applied, these electrons settle down four to a
level, two traveling to the right and two to the left726. But if a small electric
field is applied so as to force electrons towards the right (left), some electrons
which initially were traveling to the left (right) jump into vacant levels of a
shade higher energy and travel to the right (left).

Another group of substances, including boron and gallium, also make semi-
conductors. They take away electrons from a filled energy band, leaving the
band in an “almost filled” condition. When an electric field is applied, some
electrons traveling against the field will jump to vacant levels and travel in
the direction in which the electric field urges them to go. When the mathe-
matics of the “almost filled”energy band is worked out, it shows a behavior
exactly like that we would expect from positive charges (= absence of negative
charge) traveling through the crystal. Experiments confirms this mathemat-
ical picture.

Thus, there is a real reason to think of the conduction in this “acceptor”
type of semiconductors as due to holes in the “almost filled” band — holes
that act as free positive charges would act. The effective mass of holes is
found to differ from that of electrons.

Materials such as phosphorus, antimony, or arsenic, are called n-type im-
purities or donors because of the negative electrons they add. Materials such
as boron or gallium, removing electrons from filled bands and create holes that
behave like positive charges and are free to move, are called p-type impurities,
or acceptors.

Electrons will normally enter the conduction band either by thermal agi-
tation, or excitation via external bombardment by particles or radiation. The
energy gap between the valence and conduction bands in semiconductors is
no more than about 1 eV [1.14 eV for silicon and 0.67 eV for germanium].
Although the value of the Fermi distribution function (governing the relative
population of an energy states in the conduction and valence bands) is small
(since kT � 0.025 eV at room temperature), the number of available states
in the conduction band is high. Hence the thermal excitation from the valence
band into the conduction band occurs for a significant number of electrons,

726 In the three-dimensional case, there is an almost continuous shell of electron

momenta vectors sharing a single given energy (per given spin). This shell is

spherical for isotropic lattices.
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this number being the product of the mean number of electrons per quantum
state and the number of quantum states per relevant energy interval.

Furthermore, the conductivity of a semiconductor increases rapidly with
temperature; the number of excited electrons in silicon, for example, increases
by a factor of about 109 with a doubling of temperature from 300 ◦K to 600 ◦K.
Thus a semiconductor can be defined as a non-metallic covalent substance
which possesses measurable conductivities, dependent upon the temperature
and impurity levels.
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Photovoltaic (PV) cells — tapping solar energy

(1839–1999 CE)

Introduction

The sun’s energy is vital to life on earth, It determines the Earth’s surface
temperature and supplies virtually all the energy that drives natural global
systems and cycles. Although some other stars are enormous sources of energy
in the form of X-rays and radio signals, our sun releases 95% of its energy as
visible light. Yet, visible light represents only a fraction of the total radiation
spectrum; infrared and ultraviolet rays are also significant parts of the solar
spectrum.

The sun emits virtually all of its radiation energy in a spectrum of wave-
lengths that range from about 2 × 10−7 to 4 × 10−6 m. The majority of this
energy is in the visible region. Each wavelength corresponds to a frequency
and an energy; the shorter the wavelength, the higher the frequency and the
greater the energy (expressed in eV, or electron volts).

Photovoltaic cells convert light energy into electricity at the atomic level,
bypassing thermodynamic cycles and mechanical generators. Although first
discovered in 1839, the process of producing electric current in a solid mater-
ial with the aid of sunlight wasn’t truly understood for more than a hundred
years. Throughout the second half of the 20th century, the science has been
refined and the process has been more fully explained. As a result, the declin-
ing cost of these devices has put them into the mainstream of modern energy
producers. This was caused in part by advances in the technology, where PV
conversion coefficients have improved considerably.

Most commonly known as “solar cells”, PV systems are already an im-
portant part of our lives. The simplest systems power many of the small
calculators and wrist watches we use every day. More complicated systems
provide electricity for pumping water, power communication equipment, heat
our kitchen and bathroom waters, and even light our homes and run our ap-
pliances. In a surprising number of cases, PV power is the cheapest form of
electricity for performing these tasks.

Today, solar cells power virtually all satellites, including those used for
communications, navigation, defense, and scientific research. The computer
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industry, especially transistor semiconductor technology, also contributed to

the development of PV cells. Transistor and PV cells are made from similar
materials and operate on the basis of similar physical mechanisms. As a result,

advances in transistor research provide a steady flow of new innovations in

PV cell technology.

Photovoltaic cells are an up and coming alternative energy source. In the

1950s, when oil was thought to be able to last the world forever, scientists at

NASA began researching and developing photovoltaic cells for use in space

exploration. Power systems applications for earth were not explored until

the 1970s, during the oil crisis. At that time scientists also started research-

ing other forms of power systems in a race to find an economical and clean

alternative to coal – and oil – burning power plants.

The first person to observe the photovoltaic effect was Edmund Bec-

querel, a French physicist, in 1839. As time progressed, so did interest in

this newly discovered phenomenon. In the 1880’s photovoltaic cells built from

selenium were used to convert light into electricity, with a very poor efficiency

of about 1% to 2%.

The next remarkable development to affect photovoltaic technology was

the invention of techniques to produce highly pure crystalline silicon (Bell

Telephone Laboratories, 1954). Since then, other scientists have investigated

the properties of crystalline silicon and have used it to make photovoltaic cells

with acceptable efficiency levels. Early applications involved powering radio

systems on orbital satellites.

The benefits of solar energy speak for themselves. It has been estimated

that the solar energy available to be generated from the sun is nearly 10,000

times more than the total energy consumption of the world.

Advantages of photovoltaics also include:

• Low maintenance

• No moving parts

• High mobility

• Effective for a variety of applications

• Environmentally friendly

• Working life of 20 to 30 years
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The use of silicon crystals in Photovoltaic cells makes them expensive.
First of all, silicon crystals are currently assembled manually. Secondly, silicon
purification is difficult and a lot of silicon is wasted. In addition, the operation
of silicon cells require a cooling system, because performance degrades at high
temperatures.

Research is underway for new fabrication techniques, such as those used for
microchips. Alternative materials like cadmium sulfide and gallium arsenide
are at an experimental stage.

Underlying Physical Mechanisms

Free electrons can be generated near surfaces (of metals, insulators and
semiconductors) by four processes:

• The interaction of photons with matter may cause photon absorption
or scattering by either of three mechanisms: internal photoelectric effect,
Compton effect and electron-positron pair production.

In all three cases, an electron is moving after the effect, so the moving
electron can be used to detect the photon. At low energies the photoelectric
effect is very strong, but its probability drops off rapidly at high energies.
As photons increase in energy and momentum, the Compton effect becomes
more important in scattering them out of the beam. Pair production does not
begin until 1.022 MeV, but it becomes more and more effective after that.
In toto, the transmitted intensity I is related to the incident intensity I0

along an axis x, via the experimental absorption law I = I0e
−μx, where

μ = μphotoelectric + μCompton + μpair production.

The light absorbed in a semiconductor increases the total free carrier concen-
tration and causes the transport of electrons from the valence band into the
conduction band. The electron-hole pairs thereby generated are free quasi-
particles and can take part in the semiconductor’s conductivity [phototubes,
photodiodes, photocathodes].

• Secondary electron emission: If electrons impinge upon the surface of a
solid, a certain fraction is reflected, whereas the rest penetrate into the solid
and may cause emission of secondary electrons. This phenomenon is common
to metals, semiconductors and insulators.
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• Field-aided emission by applying an electric field to the surface.

• Thermionic emission: heating the surface until some electrons have
enough energy to escape the potential barrier [thermionic diodes].

Photoconductivity is the increase of conductivity due to a photon absorp-
tion, or otherwise stated — the decrease in electrical resistance when exposed
to light. The effect is particularly strong in selenium, in metal sulfides, ox-
ides and halides, as well as in germanium and silicon. The release of valence
electrons by photoabsorption is called internal photoelectric effect, in con-
trast to the external photoelectric effect, which is the release of electrons from
metal surfaces (Einstein 1905). The production of conducting electrons and
holes by photoabsorption is possible in all insulator or semiconductor crys-
tals. The majority of the good and practically important photoconductors,
however, are semiconductors. Electronic semiconductivity, photoconductiv-
ity, and phosphorescence are three closely related crystal phenomena.

The application of an external electric field to the material results in the
transport of both electrons and holes through the material and the consequent
production of an electric current in the electrical circuit of the detector.

A photoelectric cell is a device that converts light into electricity. Two
main types of photoelectric cell are in use today: the phototube and the
solid-state photodetector.

The phototube is an electron tube in which electrons, initiating an electric
current, originate through photoelectric emission. In its simplest form the
phototube is composed of a cathode coated with a photosensitive material
(known as a photocathode), and an anode. Light falling upon the cathode
causes the liberation of electrons, which are then attracted to the positively
charged anode, resulting in a flow of electrons (i.e., current) proportional to
the intensity of the light. Phototubes may be highly evacuated, or filled with
an inert gas at low pressure to achieve greater sensitivity.

In a modification called the multiplier phototube, or photomultiplier, a
series of metal plates are shaped and arranged so that the photoelectric emis-
sion is amplified by secondary electron emission. The multiplier phototube is
capable of detecting ionizing radiation of extremely low intensity; it is an es-
sential tool for nuclear and particle research, astronomy, and space guidance
systems.

Another important application is the image converter: The image of an ob-
ject which emits only infrared or X-ray radiation is projected onto an infrared-
or X-ray sensitive layer (photo-cathode). According to the varying intensity
of the incident radiation, a varying number of electrons are emitted from the



3924 5. Demise of the Dogmatic Universe

photo-cathode. These electrons are electrically accelerated and concentrated
on a fluorescent screen by means of electron optics. There, the electronic
image excites fluorescence and thus creates a visible image of the infrared or
X-ray object.

The second type of photoelectric cell, the solid-state photodetector, has
replaced the phototube for many applications because it is small, inexpen-
sive, and uses little power. The simplest type of solid-state photodetector is
the photoconductor — a semiconductor whose resistance changes when it is
exposed to light — that is, to a flow of photons.

More stable and precise than a simple photoconductor is the photodiode: it
is made by joining together an n-type and p-type semiconductors. In practice,
the two types are often single silicon crystals doped with donor impurities
on one side and acceptor impurities on the other. The region in which the
semiconductor changes from p-type to an n-type is called a junction. The
initial concentrations of electrons and holes on opposite sides of the junction
results in the diffusion of electrons across the junction from the n-side to the
p-side and of holes in the opposite direction, until equilibrium is established.
The result of this diffusion is a net transport of positive charge from the p-side
to the n-side.

Unlike the case when two different metals are in contact, the electrons can-
not travel very far from the junction region because the semiconductor is not
a particularly good conductor. The diffusion of electrons and holes therefore
creates a double layer of charge at the junction similar to that of a parallel-
plate capacitor. There is thus a potential difference across the junction which
tends to inhibit further diffusion. In equilibrium, the n-side with its net pos-
itive charge will be at a higher potential than the p-side with its net negative
charge. In the junction region, there will be very few charge carriers of either
type, so the junction region has a high resistance. The junction region is also
called the depletion region because it has been depleted of charge carriers.

A semiconductor with a p-n junction can be used as a simple diode rec-
tifier. When an external potential difference is applied across the junction
(by connecting a battery and a resistor to the semiconductor) such that the
positive terminal of the battery is connected to the p-side of the junction,
the diode is said to be forward biased. Forward biasing lowers the potential
across the junction, thus enhancing the diffusion of electrons and holes as they
attempt to reestablish equilibrium, resulting in current in the circuit.

If the positive terminal of the battery is connected to the n-side of the
junction the diode is said to be reverse biased. This tend to increase the
potential difference across the junction, thereby further inhibiting diffusion.
Essentially, the junction conducts only in one direction, similar to a vacuum-
tube diode.
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In a photodiode, in the absence of illumination, a negligible dark current
flows through the junction. When the p-n junction is illuminated, excess
carriers are generated and the current rises in proportion to the light intensity,
causing a voltage drop across the load resistor. Photodiodes are used as
an electric eye in operating burglar alarms, traffic-light controls, and door
openers. A light source (which may be infrared and invisible to the human
eye) at one end of the circuit falls on the photocell located some distant away.
Interrupting the beam of light breaks the circuit. This in turn actuates a
relay, which energizes the burglar alarm or other circuit. Other common uses
for photoconductors include light switching and dimming, and light meters
for cameras.

It is observed that as the reverse bias is increased and reaches an extreme
value, the current suddenly increases. In such large electric fields, electrons are
stripped from their atomic bonds and accelerated across the junction. These
electrons, in turn, cause others to break loose. This effect is called avalanche
breakdown. Although such a breakdown can be disastrous in a circuit where
it is not intended, the fact that it occurs at a sharp voltage value makes it of
use as a voltage regulator known as a Zenner diode.

“Avalanche” diodes are used to amplify the signal from a light source.
In these devices, a large reverse voltage is applied so that a photon-created
electron in the conduction band gains enough energy to bounce against atoms
in the semiconductor and thus liberate additional electrons. A large current
is therefore produced when light strikes the diode. Phototransistors are also
used to amplify light signals. Their construction is similar to conventional
transistors except that one of the transistor’s junctions is exposed to radiation.
In bipolar phototransistors, it is the base-emitter junction that is exposed to
radiation; in field-effect phototransistors it is the gate junction.

A solar cell (solar battery) is a photodiode working under conditions of
forward bias and converts radiant energy directly into electrical energy. It
consists of a thin layer of p-type silicon on an n-type silicon base. The n- and
p-regions are heavily doped so that the resistance of the cell is small. There
is an optimum thickness of the p-region (≈ 0.025 mm) so that as much as
possible light is absorbed near the junction. When a photon is absorbed in
the p- or n-region, it can create a hole-electron pair. Usually the hole and
electron quickly recombine, but in a solar cell the internal electric field in the
depletion layer at the p-n junction (directed from the n-side to the p-side) can
separate the hole and electron before they have a chance to recombine.

The separation of the carriers produces a forward voltage across the barrier
(forward, because the electric field of the photoexcited carriers is opposite the
built-in field of the junction). The appearance of a forward voltage across the
illuminated junction is called the photovoltaic effect.
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Thus, the two sandwiched semiconductors function as a battery, creating
an electric voltage at the surface where they meet (junction). It is this field
that causes the carriers to move from the semiconductor bulk toward the
surfaces and makes them available for the external electrical circuit. The
application of an external voltage and a local resistance in series with the
junction makes the charge carriers do work which has come directly from the
energy of the incident radiation.

The light-emitting diode (LED; or luminescent diode) is the reverse of a
solar cell: the passage of a forward current through the p-n junction involves
minority carrier injection of electrons into the p-region and holes into the
n-region. The injected carriers recombine with the majority carriers of the
respective region, their intensity decreasing with the distance from the p-
n junction. In many semiconductors the recombination is nonradiative, i.e.
the energy liberated in the recombination process is absorbed by the crystal
lattice, that is, turns eventually into heat. However, in such semiconductors
as SiC, GaAs, InAs, GaP and InSb the recombination is radiative: the energy
of recombination is liberated in the form of photons. Because of that, a
forward current flowing through the p-n junction made of such materials is
accompanied by the emission of light from the junction region. LED are used
in displays, and in flash lights.

A special type of photodetector is the Charge-coupled device (CCD). It
contains an array of light detectors, each registering variations of light inten-
sity as small changes of voltage. The unit has the form of a small capacitor,
composed of metal oxide and semiconductor layers, capable of both photode-
tection and memory storage. When the subtle change of voltage (created
by the photoconductive electrons) is applied to the metal layer (called the
‘gate’), electron-hole pairs created in the semiconductor are separated and
the electrons become trapped in the region under the gate. This trapped
charge represents a small piece of a digital image known as a pixel (picture
element). The complete image can be recreated by reading out a sequence of
pixels from an array of CCD’s.

Modern computer systems incorporate auxiliary optoelectronic devices in
their scanning and printing peripherals. Consider, for example, the principles
of operation of a scanner: As one presses the “scan” button on a typical hand-
held scanner, a light-emitting diode (LED) illuminates the image beneath the
scanner. An inverted, angled mirror directly above the scanner’s window
reflects the image onto a lens at the back of the scanner.

The lens focuses a single line of the image into a charge-coupled device
(CCD), which is a component designed to detect minute changes of voltage.
The CCD contains a row of light detectors. As the light shine onto these
detectors, each registers the local amount of light as a voltage level that
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corresponds to a grey-scale value (black/white or color components). The
voltages generated by the CCD are then sent to a specialized chip for gamma
correction, a process that enhances the black tones in an image so that the
eye, which is more sensitive to dark tones than to light ones, will have an
easier time recognizing the image (with some scanners, gamma correction is
performed as a software process).

The single line of the image now passes to an analog-to-digital converter
(ADC). In a grayscale scanner, the converter assigns 8 bits to each pixel,
which translates into 28 = 256 levels of gray in the final digitized image. The
A-D converter on a monochrome scanner registers only 1 bit per pixel (either
on or off), representing, respectively, black or white.

As the operator’s hand moves the scanner, a hard rubber roller (the main
purpose of which is to keep the scanner’s path straight) also turns a series of
gears that rotate the slotted disc. As the disc turns, a light shines through
the slits and is detected by a photomicrosensor on the other side of the disc.
Light striking the sensor throws a switch that sends a signal to the ADC
converter. The signal tells the converter to send the line of bits generated by
the converter to the PC. The converter clears itself of the data, and is ready
to receive a new stream of voltages from the next line of the image.
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Timeline

1839 Edmund Becquerel (France) discovered the photovoltaic
effect: he observed that shining light on an electrode in an
electrolytic cell increased the generation of electric current be-
tween the metal electrodes. His discovery, however, remained
a curiosity of science for the next 65 years.

1873 Louis May and Willoughby Smith (England) discovered
the photoconductivity of selenium.

1876 W.G. Adams and R.E. Day observed the photovoltaic ef-
fect in solid selenium.

1883–6 Charles Fritts (USA) described and developed the first solar
cells made from selenium wafers. Fritts envisioned that solar
cells may one day compete with the large electrical generating
plants (which were just then being established in the United
States), since solar cells were compact, self-sustaining and
their fuel, solar energy, is both without limit, and without
cost.

The fledgling solar cell industry of the 19th century, how-
ever, never developed as Fritts predicted. Most engineers at
the time felt that Fritts’ experiments violated the principle of
conservation of energy. This bias within inside the engineer-
ing community inhibited any serious large scale research and
development.

Fritts and other solar cell experimenters of the period could
not formulate a theoretical defense against their colleagues’
objections; they simply knew that these cells worked. Why
they worked (i.e., the photovoltaic effect), however, could not
be adequately explained by 19th century classical physics.

Researchers in photovoltaics were to remain the black sheep
of the scientific community until quantum mechanics (which
explained how solar cells worked) won general acceptance
among scientists and engineers.

1887 Heinrich Hertz (Germany) discovered that ultraviolet light
altered the lowest voltage capable of causing a spark to jump
between two metal electrodes.

Selenium PV cells were adopted in the emerging field of pho-
tography for use in light measuring devices.
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1890–1900 The photoelectric effect: By the year 1890 it was well-known
that an isolated polished metal surface becomes positively
charged when illuminated with ultraviolet light (UV). Pre-
sumably, the UV light somehow removed negative charges
from the surface, leaving it with positive charge. This phe-
nomena was named the photoelectric effect. Lenard (1900)
showed that the ejected negative charge consists of electrons
(discovered by J.J. Thompson in 1897).

1904 Wilhelm Hallwachs (Germany) discovered that a combi-
nation of copper and cuprous oxide was photosensitive.

1905 Albert Einstein explained the photoelectric effect in the
framework of quantum physics.

1910 Richard Willstätter worked out the structure of chloro-
phyll (C55H72MgN4O5). It is the substance of plant leaves
which, during photosynthesis, catalyzes the formation of car-
bohydrates from atmospheric CO2 and H2O through the
action of sunlight, thus converting light into chemical energy
— a living solar cell727.

727 Photosynthesis is a process by which the energy of sunlight is used to form
molecules such as glucose from CO2 and H2O:

energy + 6CO2 + 6H2O → C6H12O6 + 6O2

Because this reaction produces O2, a supply of oxygen built up in the at-
mosphere. This oxygen supply allowed primordial organisms to run the above

reaction backwards (in which direction it proceeds spontaneously !) and oxidize

the carbohydrates they devoured in order to obtain energy:

C6H12O6 + 6O2 → 6CO2 + 6H2O + energy

Those organisms who used the solar energy to change simple molecules into

more complex ones are the ancestors of modern plants; those who ate carbohy-

drates and burned them to obtain energy are the ancestors of modern animals.

As life evolved, it moved away from the above simple type of organic chemistry

toward a more complex type of chemistry called biochemistry, in which highly

specialized and complex molecules were “invented” by evolution to catalyze re-

actions, store and convert energy, build tissues, regulate structures and heredity ;

chlorophyll is an example of such an invented complex molecule.

The history of life also includes “inventions” in biological counterparts to fluid

dynamics, material science, electrochemistry, mechanical engineering, “com-

puter science”, acoustics, quantum optics and nanotechnology.
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1916 Jan Czochralski (1885–1953, Poland) developed a method
for growing single crystal metal needles. In 1952, scientists at
Bell Laboratories depended on Czochralski process to develop
the first crystalline silicon photovoltaic cell.

1931 Thomas J. Rhamstine (1893–1975, USA) was first to use
photovoltaic cell in photography, with the aim of measuring
the luminosity of the object to be photographed and adapt-
ing the time of exposure and the aperture of the lens to the
sensitivity of the film.

1933–1952 Clarence M. Zenner (1907–1993, USA) explained electrical
breakdown in insulators in terms of the quantum-mechanical
tunneling effect. Invented the Zenner diode voltage regulator
to protect dc output from both rapid variations in supply in-
put voltage and variation in load resistance. To avoid break-
down damage, a rectifying diode is connected with the load
resistance. In the Zenner breakdown voltage regime, small
changes in diode voltage are accompanied by large changes
in diode current, producing voltages that compensate for
changes in the voltage input and load resistance.

After the invention of the transistor, rectifying p-n junction
diodes were used as Zenner diodes. Here a small increase
in the reverse voltage in the breakdown range causes a sub-
stantial increase in the reverse current. Consequently, the
voltage across the load resistance remains practically con-
stant. Zenner’s avalanche breakdown mechanism is the basis
of avalanche diodes used for light amplification devices.

1938 Chester Carlson (USA) invented electrophotography or xe-
rography, a method of photocopying utilizing the internal
photoeffect in semiconductors.

A thin film of high resistivity metal oxide (usually ZnO) is de-
posited on a sheet of paper. Before the photographic process,
the film is negatively charged by a gas discharge. When
the image to be photographed is optically projected onto
such paper, the surface charges from the illuminated parts
leaks through the film much more readily than from the non-
illuminated parts, and accordingly, an electric image of the
object remains on paper after the exposition. To develop
the electrical image, the paper is sprayed by a weak spray
of special dry paint, or “toner”. The particles of the toner
are deposited on the negatively charged parts of the paper,
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thus developing the image. The image is fixed by heating the
paper to the temperature at which the toner particles melt
and adhere firmly to the paper.

The main advantage of electrophotography over normal pho-
tography is the exclusion of chemical development and fixa-
tion processes. This makes it possible to increase the speed
of photographic processes drastically, reducing the necessary
time to about a few seconds. However, electrophotography is
as yet inferior to normal photography in accuracy and reso-
lution.

1941 Russell Ohl (USA) invented a silicon solar cell. Its efficiency
is about 1%.

1947–8 Invention of the transistor at the Bell Laboratories (USA)
by John Bardeen (1908–1991), Walter Houser Brat-
tain (1902–1987) and William Bradford Shockley (1910–
1989).

1948–1956 The basic theory of the internal photoelectric effect, pho-
toconductivity, semiconductor-metal junctions and photo-
voltaic cells, was developed in the framework of semiconduc-
tor physics by Nevill Francis Mott (1905–1996, England)
and Walter Hans Schottky (1886–1976, Switzerland). In
particular, Schottky discovered that aluminum in contact
with an n-type material creates a rectifying contact, known as
the Schottky barrier diode. Since in the Al-n diode there are
only majority carriers (electrons in the n-region), switching
is very fast because there is no wait for the recombination
of injected minority carriers (holes in the n-region). Such
diodes have switching times of the order of 10−11 sec. This
makes them useful in radioelectronic pulsed circuits, and in
computer and automation circuits where there is a need for
high operational speeds.

The contact of aluminum with a p-type material creates an
anti-barrier metal-semiconductor junction used to provide
ohmic contact by means of which a semiconductor device is
connected into an electric circuit (flow of hole current is eas-
ily accomplished by recombination with electrons supplied by
the external circuit).
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1952 Gerald Pearson (USA) invented the alloy-junction diode,
thereby creating a p-n junction with controlled characteris-
tics. First to discover the Zenner breakdown in semiconduc-
tors.

1952 Bell Lab engineers G.K. Teal and J.B. Little adopted the
Czochralski process for producing highly pure germanium
single crystals.

1954 Paul Rappaport, J.L. Loferski and Dietrich A. Jenny
(RCA, USA) reported the PV effect in the element Cadmium.

Darryl Chapin, Carl Fuller and Gerald Pearson (Bell
Labs, US) developed the first crystalline silicon photovoltaic
cell. They refined the silicon solar cell, raising its efficiency to
6%, and then to 15%. This ushers an age of new solid state
technology that pervades our lives today. The foundations
have been laid for an industry of high-efficiency solar cells.

1958 The space race spurred improvement in solar cell design and
efficiency. The U.S. Vanguard space satellite carried a small
array of PV cells to power its radio. However, the drive to
make space-grade qualified solar cells efficient and lightweight
led to high costs, making them uneconomical for terrestrial
applications where low price is the main concern.

With electricity, natural gas and oil being so cheap, U.S. gov-
ernment hesitated to promote the development of cheaper and
more efficient cells; only few sensed the need for alternative
energy sources.

1958–1974 The American space program created and sustained a solar
cell industry; solar cells have powered every U.S. satellite
from the first Vanguard to Skylab.

1959 Explorer 6 was launched with a PV array of 9600 cells, each
only of 1 cm × 2 cm.

1960 Hoffman Electronics achieved 14% efficiency in PV cells.

1962 Development of the semiconductor laser. It operates much
the same way as the LED, except that the transitions are
stimulated instead of spontaneous; p-n boundary layers be-
tween highly doped p- and n-regions (e.g. GaAs) are used. If
a voltage of a few volts is applied for short periods in such a
way that the n-type region’s conduction electrons are lifted
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in energy and flow into the conduction band of the p-type
region, its occupation by electrons can become higher than
that of the p-type valence band (with a corresponding inver-
sion occurring in the n-type region due to hole injection from
the p-type side).

This process is called electric pumping728. Beyond a critical
current density of this electron flow from the n-type region
to the p-type region, induced transitions from the conduction
band to the valence band of the p-type region are possible
with emission of recombination radiation, since the electrons
from the conduction band recombine with the positive holes
of the valence band. Such an injection laser may consist of a
tiny GaAs cube with a planar pn junction; Two parallel end
faces of this cube carry electrodes for applying the pumping
voltage, whereas two perpendicular end faces are polished so
that they partly reflect, partly transmit the emitted radiation.

The photons of the recombination radiation are then partly
reflected from these end faces back into the crystal where they
induce further transitions until a narrow bandwidth, highly
collinear intense light beam finally leaves the Laser. The
efficiency of this transformation of electric energy into light
is extremely high. Theoretically, it might approach 100% if
incidental losses are neglected.

Semiconductor laser have evolved (1962–2004) into highly
complex marvels of material science and opto-electronic en-
gineering, involving engineering alloy crystal lattices, quan-
tum effects, built-in optical cavities and optical feedback,
thermo-electric cooling, advanced electrooptic modulation
techniques, and molecular deposition manufacturing tech-
nologies.

Infra-red laser chips — with optical fibers running through
them — are commonly used in the optical communication
industry.

1963 Japan installed a 242 W PV array on a lighthouse.

1964 The Nimbus spacecraft was launched with a 470 W PV array.

728 Other pumping mechanisms used in lasers are chemical and optical pumping.
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1965 Invention of the light-emitting diode (LED), the inverse of
the solar cell: electrical energy is fed into it to produce light
energy. It is essentially a pn-junction semiconductor with a
large forward bias, producing a large excess concentration of
electrons that move to the p side and holes that moved to the
n side of the junction. There they undergo radiative recom-
bination and light is emitted. Since E = hν, we can obtain
different frequencies of light by varying the energy difference
through which the electron falls. We can vary the energy
difference by using materials with different (even engineered)
energy gaps, or cause the transition to be made to defect
states within the forbidden energy gap.

Using different dopants and alloys, we can then obtain differ-
ent light frequencies. LEDs are commonly used as displays
for digital watches and calculators and in scanners; at higher
luminosities they are used as everyday efficient light sources.
The emitted radiation may be either invisible (infrared) or
in the visible spectrum. Visible solid state lamps are used
for long life indicator service. Infrared diodes have outputs
carefully matched to silicon photoreceivers. They are used in
conjunction with the receivers, for counting, sensing, and po-
sitioning applications. LEDs generally operate in the range
of 1 to 3 volts at currents of 10 to 100 milliamperes. Their
light output is not coherent as that of semiconductor lasers,
yet it is nonetheless relatively monochromatic, collimated and
bright.

1966 The Orbiting Astronomical Observatory was launched with
a 1-kW PV array.

1968 The OVI-13 satellite was launched with two CdS panels.

1969–1990 Carged-coupled device (CCD) was first demonstrated at Bell
Labs (1969), a solid-state chip which transforms light into
electricity. Arrays of CCD’s are used to capture images in
video and digital cameras.

1975–1999 Rising energy costs, sparked by a worldwide oil crisis, renewed
interest in making PV technology more affordable. Since 1975
the U.S. federal government, industry, and research organi-
zations have invested billions of dollars in research, develop-
ment, and production.
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1979 NASA completed a 3.5 kW PV system in Arizona — the
world’s first village PV system.

1980 A 105.6 kW PV system established in Utah.

1982 A 1-MW plant was established in California.

1983 Worldwide PV production sales exceed 250 million dollars.

1995 Price of photovoltaics dropped from 200 dollars/Watt during
the space program to 10 dollars/Watt or less.

1999 Commercial PV systems can convert from 7% to 17% of sun-
light into electricity. They are highly reliable and last 20 years
or more. The cost of PV-generated electricity has dropped
15–20 fold; PV modules cost about 6 dollars per Watt and
produce electricity for as little as 25–50 cents per kWh.

The Plateau Problem —

soap films and minimal surfaces

The theory of minimal surfaces was initiated by Lagrange as an ap-
plication of his studies in the calculus of variations (1760–1761). Monge,
Meusnier, Legendre, Bonnet, Riemann and Lie contributed to the the-
ory in the framework of differential geometry. It was Meusnier who discovered
in 1776 the second elementary minimal surface, the right helicoid (the first
one, the catenoid, which is the only curved minimal surface of revolution, was
discovered by Euler in 1744). Karl Weierstrass (1866) and H.A. Schwarz
developed the relationship between the theory of complex analytic functions
and the real minimal surfaces.

In the theory of capillarity the importance of minimal surfaces of least
potential surface energy was demonstrated by the experiments of Plateau
(1873), who dipped a wire in the form of a closed space curve into a soap
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solution. Owing to the action of surface tension, a film of liquid is in stable
equilibrium only if its area is a minimum. Plateau raised the mathematical
question: can every closed curve in space be spanned by at least one minimal
surface? This mathematical question became known as the Plateau problem.
Many famous mathematicians of the 19th and 20th centuries729 were intrigued
by this problem, but its solution appeared to be difficult.

Although the soap film shape is the solution to the corresponding physical
problem, pure mathematicians do not admit empirical evidence in lieu of proof
of mathematical existence. For a long time, all efforts to prove even the
existence of such a minimal surface for every preassigned boundary curve,
were unsuccessful. It was only in 1930–1931 that the existence of the solution
for the general case was proved.

In recent years the problem of minimal surfaces has been studied when not
only one but any number of contours is prescribed, and when, in addition, the
topological structure of the surface is more complicated. For example, the sur-
face might be one sided (non-oriented) or of genus different from zero. These
more general problems produce an amazing variety of geometrical phenomena
that can be exhibited by soap film experiments.

Consider for example soap bubbles; we know that out of all solids of a
given volume, the sphere has the smallest surface area. Physically, the sta-
ble equilibrium of the bubble indicates a state of minimal potential energy
(Bernoulli’s law of virtual work). However, a sphere is a figure of constant
mean curvature, i.e. not a minimal surface in the sense of the Plateau prob-
lem. (Inside the bubble the pressure is higher than outside it and the pressure
difference is related to the surface tension T and mean curvature H via the
Laplace equation p = TH.) Another example is a cylindrical soap bubble
between two coaxial rings. Beyond a certain critical separation of the rings,
the cylindrical film becomes unstable and will decompose into two separate
spherical bubbles of different sizes.

This phenomenon was discovered by Plateau. He also found that there
are exactly six different kinds of surfaces of constant mean curvature which
are also surfaces of revolution: the plane and the catenoid (mean curvature
zero), the sphere, the cylinder, the unduloid and the noboid (mean curvature

729 In the period 1975–1990, the number of published pages devoted to minimum

surface type problems reached many thousands. One thus sees that the appeal

of this problem to mathematicians has not diminished through the ages.

A relativistic Minkowski-space version of the problem turned out to be of some

relevance to String theories; there, the surface represents the world sheet of an

oscillating, fundamental string of typically Planck-scale sizes — the sheet being

the 4-D locus of the worldlines of all points along the string.
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nonzero). [Imagine the curve formed by one of the foci of the ellipse that rolls
on a straight line. When this curve is rotated it generates the unduloid. The
same setup with an hyperbola forms the noboid.]

The area of a surface z = z(x, y) over a region D of R2 spanned by a

given contour, is determined by the double integral
∫∫

D
dxdy

cos(n,ez) where n

is the unit normal to the surface and ez a unit vector in the direction of the
z axis. Since cos(n, ez) = (1 + z2

x + z2
y)−1/2, zx = ∂z

∂x , zy = ∂z
∂y , the area

functional is

J [z] =
∫ ∫

D

√
1 + z2

x + z2
y dx dy.

The Euler equation for the extremalization of a functional of a function of

two independent variables, J(z) =
∫∫

D
F (z, z; zx, zy) dx dy, is

∂F

∂z
− ∂

∂x

(
∂F

∂zx

)

− ∂

∂y

(
∂F

∂zy

)

= 0.

For the case under discussion we want to find the surface of least area
spanned by a given contour. Putting F = (1 + z2

x + z2
y)1/2 in Euler’s equa-

tion, we obtain the second-order PDE,

Q = zxx(1 + z2
y) − 2zxyzxzy + zyy(1 + z2

x) = 0.

This equation has a simple geometrical meaning since

H =
1
2
(κ1 + κ2) =

Q

F

is the mean curvature of the surface. This implies that the mean curvature
of the required surface equals zero. Surfaces with zero mean curvature are
called minimal surfaces. The PDE Q = 0 was discovered by Lagrange but
Euler showed by a different method that every minimal surface, not part of
a plane, must be saddle-shaped and that its mean curvature must be zero at
every point.

The mean curvature of a surface at a point is defined as follows: consider a
normal vector to the surface at the point and a plane containing this normal.
As this plane rotates about the normal, the curvature, κ, of the curve defined
by its intersection with the surface, varies. Half the sum of its principal values:
κ1 (minimum), κ2 (maximum) is the mean curvature at the point. In general,
the planes containing these extremal curvatures will be perpendicular to each
other. The Gaussian curvature κ = κ1κ2 is obviously negative for a minimal
surface.
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The nonlinear differential equation Q = 0, although it has been pursued
with remarkable success, has proven to be both cumbersome and essentially
inadequate. Surfaces are excluded if they cannot be globally represented by
a function z(x, y), while the geometrical minimum problem, formulated for
arbitrary surfaces, in no way permits such a restriction. Thus it is advan-
tageous to represent the minimal surface parametrically by a vector r(u, v)
with components (x1, x2, x3) which are themselves functions of the parame-
ters u, v.

The area is expressed by the functional

A(r) =
∫ ∫

D

w du dv

where

w =
√

EG − F 2, E =
∂r

∂u
· ∂r

∂u
=

3∑

k=1

(
∂xk

∂u

)2

,

G =
∂r

∂v
· ∂r

∂v
=

3∑

k=1

(
∂xk

∂v

)2

, F =
∂r

∂u
· ∂r

∂v
=

3∑

k=1

∂xk

∂u
· ∂xk

∂v

and D is the domain in the plane bounded by (u, v)-plane image of the closed
Jordan curve γ that spans the minimal surface.

Euler’s conditions for the functional w are a system of differential equa-
tions

∂

∂u

∂w

∂αk
+

∂

∂v

∂w

∂βk
= 0,

where αk = ∂xk

∂u , βk = ∂xk

∂v , k = 1, 2, 3. These equations express again

the fact that the mean curvature of the surface r(u, v) is zero.

Although the mathematical problem of proving the existence of a surface
r(u, v) that solves the preceding differential equations and is bounded by
a prescribed curve γ, has long defied mathematical analysis, the soap film
experiments of Plateau have exhibited surfaces of stable equilibrium, which
corresponds to a relative minimum area.

However, the general Plateau problem can accommodate contours bound-
ing unstable minimal surfaces, whose areas do not furnish relative minima.

During the 19th century the Plateau problem was solved for many specific
contours. Progress was made on the basis of one idea: taking advantage
of the freedom of choice of the parameters u and v, one can simplify the
nonlinear differential equations by introducing isometric parameters u, v such
that F = 0, E = G = w. The differential equation immediately becomes



1930 CE 3939

∇2r = 0 or ∇2xk = 0 and the corresponding surfaces are called Harmonic
surfaces.

Harmonic functions xk(u, v) may be considered as real parts of analytic

functions f(w) = xk + ix̃k of the complex variable w = u + iv, where x̃k

is the conjugate harmonic to xk. It then follows from the Cauchy-Riemann

relations that

φ(w) =
(

df1

dw

)2

+
(

df2

dw

)2

+
(

df3

dw

)2

=
3∑

k=1

(
∂xk

∂u
− i

∂xk

∂v

)2

= (E − G) − 2iF = 0.

This is known as the characteristic equation of the minimal surface.

As domain D for the variables u, v or for w = u + iv we may choose the

disc u2 + v2 ≤ 1. Plateau’s problem is to solve the equation ∇2r = 0 for D

under the additional conditions that φ(w) = 0 and that r maps the boundary

u2 + v2 = 1 onto the prescribed contour γ. After this simplification, the

nonlinear character of the problem remains only in the boundary condition

and in the condition φ(w) = 0.

A natural question that may be asked about a given contour is how many
minimal surfaces can it bound? It has long been known that planar curves

bound only one minimal surface, a planar one. A second result was found

(1932) by Tibor Radó730 (1895–1965, Hungary) who showed that if a contour

has a simple projection onto a convex curve in a plane, then it can bound only

one disc-type minimal surface. It was then shown that if a given contour has

a total curvature of less than 4π (a circle of radius 1 has a total curvature of

2π), then there can be only one disc-type minimal surface bounded by that

contour. If however, the total curvature of a curve is even slightly larger than

4π, then the curve can bound infinitely many disc-type minimal surfaces. An

algebraic formula relating the minimal surfaces that span a fixed contour was

derived by Marston Morse (1892–1977, USA) in 1936.

730 The disc version of the Plateau problem was solved simultaneously by Jesse

Douglas (1897–1965, USA) and Tibor Radó in 1930–1931.
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1931 CE Georges de Rham (1903–1990, Switzerland). Mathematician.
A leading topologist of the 20th century. Known especially for his “de Rham
Theorem”.

de Rham was born in Roche, Canton Vaud, Switzerland. He was educated
at the Universities of Lausanne (1921–1925) and Paris (Ph.D. 1921) and held
positions at the Universities of Göttingen (1930–1931), Lausanne (1932–1971)
and Geneva (1936–1973).

1931 CE, May 01 Empire State Building officially opened at 350 5th Av-
enue in New York City. The building has 102 stories and is 381 meters high.
It was the world’s tallest building until 1972.

It cost about 41 million dollars and houses about 10,000 tenants. The
building’s steel structure creaks slightly when heavy winds cause it to sway
and during winds of 160 km/hour, it yields a maximal sway of 3.7 cm from
center.

1931 CE, May Auguste Piccard (1884–1962, France). Physicist. As-
cended in his airtight gondola [which he attached to a huge hydrogen-filled
balloon] to a height of 15,880 meters, the first venture into the stratosphere.
In 1932 he ascended 16,800 meters and gathered information on cosmic rays
and radioactivity.

1931 CE, June The Yellow River (Huang-ho) in Honan Province, China,
overflowed, causing the worst flood in recorded history: over two million peo-
ple perished out of a total of 180 million affected by the flooding.

1931 CE, June Wiley Post and Harold Gatty. Americans; circled the
globe by airplane in 8 days, 15 hours elapsed time. In 1933 Wiley Post, alone,
circled the globe in 7 days, 18 hours.

1931–1933 CE Karl Guthe Jansky (1905–1950, U.S.A.). Radio engi-
neer. Discovered the cosmic radio waves — a radio emission from the Milky
Way.

Jansky was the first person to detect radio waves from outside the solar
system. His discovery led to the development of radio astronomy731 (a branch

731 The first radio telescope was built in 1937 by Grote Reber (1911–2002, U.S.A.

and Tasmania). This lone amateur was the only radio astronomer until 1946,

when wartime research provided a separate stimulus. A great opportunity was

lost during these years, for since then radio communications have grown so

rapidly that the longer wavelengths are all but closed to radio astronomy by

overwhelming man-made radio interference.
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of astronomy that studies radio waves from stars and other celestial objects).
In 1931 he was carrying out for Bell Laboratories a study of the noise level
to be expected when a sensitive short-wave radio is used with a directional
aerial system in long-distance communication. He wanted to track down the
source of inexplicable noises that were interfering with radio transmission
to ships at sea and across the Atlantic. He was expecting crackling noises
from thunderstorms but he heard only steady hissing sound, quite different
in character from the crackles of thunderstorms.

He then found that the noise level never decreased below a certain level
and that the greatest signal always occurred when the aerial pointed in a
certain direction in space, fixed relative to the stars and not relative to the
earth or even the sun. After extensive study, Jansky determined that the noise
came from the neighborhood of constellation Sagittarius, near the center of
the Milky Way galaxy. Thus, as often happens in science, Jansky discovered
something completely unexpected.

Had 1932 been a year of high sunspot activity, Jansky would undoubtedly
have found the radiation from the sun for which Edison had looked in vain.
As it was, the sun was quiescent, and instead the radio waves coming from
our galaxy were discovered.

Most technicians probably would not have spent much time fretting over
a peculiar hissing. It was so faint it hardly seemed of any consequence. But
Jansky would not let the puzzle rest. A frail, dedicated young man who
suffered from a chronic kidney disease, he examined every conceivable cause
for the ‘flaws’ in the antenna: disturbances by nearby power lines, electrical
storms or stray signals from radio transmitters in the vicinity. Nothing seemed
to explain the noise.

It was not until the 1950s’ that the Russian physicist and Nobel Laure-
ate (2003) V.L. Ginzburg, worked out the theory of synchrotron radiation,
which explains the observed radio spectrum. Synchrotron radiation results
from electrons moving at speeds close to the speed of light in magnetic fields.

Reber was born in Chicago. He received the B.Sc degree from the Illinois In-

stitute of Technology, Chicago (1933). In 1962 he received an honorary D.Sc.

degree from the Ohio State University, Columbus. In 1963 he received an Eliot

Cresson gold medal from Franklin Institute of Philadelphia, Pennsylvania.

In the 1950s, Reber sought a field that seemed neglected by most other re-

searchers and turned his attention to cosmic radio waves at very low frequencies

(1–2 MHz, or wavelength 150–300 meters). Waves of these frequencies cannot

penetrate the Earth’s ionosphere except in certain parts of the Earth at times

of low solar activity. One such place is Tasmania, where Reber lived for many

years. He died in Tasmania on December 20, 2002.
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Our galaxy is full of high speed charged particles, including electrons, known
as “cosmic rays”. We now believe that these particles were blasted into inter-
stellar space as a result of supernova explosions. This is the origin of most of
the radio radiation from the Milky Way that Jansky and Reber measured.

Jansky was born in Norman, Oklahoma and graduated from the University
of Wisconsin.

Chemical Bonds732 — from Kekulé to Pauling

(1858–1939)

Comparatively few substances (among them the noble gases and mercury
vapor) are composed of discrete atoms. More commonly, atoms combine
into larger aggregates: molecules (Cl2, H2O, CO2, O2, N2, H2, C8H18);
ionic solids [Na+Cl−, Ca++(F−)2]; metallic solids (Na, Cu, Fe); and covalent
crystals (giant molecules such as diamond or quartz).

The fundamental problem of chemistry is — which kind of forces cause
the binding of atoms, either like or unlike, in a molecule. One has to explain,
for example, why is there H2 and no H3, CO and CO2 but no CO3, H2SO4

and no HSO, etc. Any attempt to interpret the course of a chemical reaction,
such as the decomposition of nitrogen dioxide, 2NO2 → 2NO+O2, must
start with the intimate details of molecular structure. These include not only
(in this example) the strength of the N—O and O—O bonds, but also the
sizes and shapes of the molecules.

To date, molecular geometry (bond lengths, bond angles), has been de-
termined for thousands of molecules via a variety of techniques, including
microwave spectroscopy and electron and X-ray diffraction733. In principle, if

732 To dig deeper, see:

• Pauling, L., General Chemistry, Dover, 1988, 959 pp.

733 The gas-phase electron diffraction was developed in Germany in 1930 by

G. Mark and R. Wierl. They built the first electron diffraction unit and

studied the structure of several dozen simple molecules. Further work carried

out in the 1930’s and 1940’s revealed important patterns of molecular geometry.
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we know the structure of a molecule, all other properties, such as its melting
point, its boiling point, its viscosity as a liquid and as a gas, its hardness and
malleability as a solid, its solubility in other substances, and its color, should
be predictable.

Consequently, the physical and chemical properties of matter are related
to the molecular structure of its component parts and can best be understood
in terms of one of the most powerful and pervasive theories of science — the
theory of the chemical bond, which finalized the development of the electronic
theory of valence.

The theory of valence originated in the middle of the 19th century. With
the rapid development of organic chemistry, there arose the need for a unifying
structural theory of organic compounds. It was provided by A.S. Couper
and F.A. Kekulé (1858). Working independently, they both concluded that
carbon has a common valence of four, and that carbon atoms could link to
form chains. This theory culminated more than half a century of spectacular
advances in analytical and synthetical chemistry and was inextricably linked
to the simultaneous development of a rational scale of atomic weights. The
theoretical explanation of the periodic table was the first major achievement
of atomic physics for chemistry (1869). The valence theory was subsequently
given a 3-dimensional form by J.H. van’t Hoff and J.A. Le Bell who
showed independently (1874), that the 4-valence bonds of the carbon atom
are directed toward the corners of a regular tetrahedron; it deserves to rank
as one of the outstanding intellectual achievements of the 19th century.

Soon after the discovery of the electron by J.J. Thomson (1897), efforts
were made to develop a more detailed structural theory of valence; the general
ideas of electron transfer and electron sharing were developed at this time, but
detailed electronic structures could not be assigned with confidence because
of the lack of knowledge of the number of electrons in an atom and lack of
information about atomic structures in general.

The determination of the atomic numbers of the element by H.G.J.
Moseley (1913) and the development of an early quantum theory of the
atom by N. Bohr (1913), provided the basis for further progress. A most
important contribution was made by G.N. Lewis (1916), who pointed out
the significance of completed shells of 2 and 8 electrons. Lewis and Irving
Langmuir (1919) identified the covalent bond with a pair of electrons shared
by two atoms and jointly occupying an outer-shell orbital belonging to each
atom.

After the discovery of the theory of quantum mechanics (1925–1926), when
E. Schrödinger and W. Heisenberg were formulating the modern theory
of the hydrogen atom, and W. Pauli was discovering his exclusion principle
— a detailed quantitative theory of the covalent bond was developed. The
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physical explanation of chemical bonds in homopolar molecules, achieved by
the methods of quantum mechanics in 1927, completed the successful attempts
at understanding the basic features of chemistry from the property of atoms
and the matter-waves of electrons.

The chemical bond is the manifestation of the electrostatic interaction
between charged units such as atoms and molecules; together with quan-
tum effects. There is a binding force between atoms; consequently, there are
polyatomic molecules in nature. Similarly, there is a binding force between
molecules; consequently, there are inter-molecular forces and bonds, and ag-
gregated states of matter. Were it not for chemical bonds, all matter would
be gaseous and chemically inert, and compounds (let alone life) would not
exist.

Clearly, the chemical bond must be something more specific than a simple
attraction between atoms, or we would have to refer to all water in a glass as a
single molecule, or to a table top as a single molecule. This specific property is
really only one of degree, but generally if the attraction between two atoms is
such that an energy of at least 10 kcal/mole at room temperature is required
to break it, a chemical bond exists and that energy is called bond energy or
dissociation energy.

The idea of a chemical bond is an important and logical hypothesis that is
overwhelmingly supported by experimental evidence. The assumption that a
molecule of many atoms is a structure connected by bonds, each joining two
atoms, is an oversimplification, although it is usually justified. For example,
consider the water molecule, H2O. The chemist designates its structure by

O
� �

H H

where there is a single chemical bond between the oxygen atom and each of
the hydrogen atoms. Yet there is no bond between the two hydrogen atoms.

In principle, the Schrödinger equation and the postulates of quantum me-
chanics are all that is required to calculate all properties of any molecule. In
practice, however, the exact solution of the Schrödinger equation for compli-
cated molecules has not been achieved; analytical and numerical approxima-
tions, coupled with experiments, are required to determine the structure and
behavior of molecules. Although approximate methods of solution lead us to
important conclusions, the theoretical predictions seldom have a precision as
good as 10 percent. The difficulty is not in the theory; rather, it is a mathe-
matical problem. Even for the hydrogen molecule, the difficulty of solving the
fundamental equations of the theory is formidable, and tedious calculations
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are required. For other molecules, the mathematical difficulties preclude an
exact solution even with the aid of high-speed electronic computers.

The major conclusions of quantum mechanical analysis are generally in
agreement with the following experimental observations:

I. Except in special cases, electrons constituting a bond are localized to the
region of the bond and the two atoms it connects. Shifting of electrons
between bonds can be important but is generally a second-order effect.
The poor electrical conductivity of nonmetallic crystals such as diamond
is an experimental demonstration of this fact. It is this localization of
electrons that enables us to think of a chemical bond as something real.

II. Electrons in bonds are described by molecular orbitals. These orbitals
are one-electron wave-functions that are approximated by weighted sums
of atomic orbitals centered at the (two or more) atoms of interest. Such
molecular orbitals are extremely useful in developing a descriptive picture
of the nature of molecules. These sums, or linear combinations of atomic
orbitals are merely approximations, not exact representations.

Chemical bonds may be divided into two groups:

A. Intramolecular Bonds

From one point of view a molecule is a stable arrangement of a group of
nuclei and electrons. The exact arrangement is determined by electromagnetic
forces and the laws of quantum mechanics (Heisenberg’s uncertainty principle,
Pauli exclusion principle). This concept of a molecule is a natural extension
of the concept of an atom.

Another view regards a molecule as a stable structure formed by the as-
sociation of two or more atoms. In this view the atoms retain their identity.
In general, the structure and properties of molecules are best described as a
combination of both views.

When a molecule is formed from two atoms, the inner-shell electrons of
each atom remain tightly bound to its nucleus and are barely disturbed at
all. The outermost loosely bound electrons, however, are strongly disturbed
and are influenced by all the particles (ions + electrons) of the system. Their
wave functions are significantly modified when the atoms are brought together.
Indeed, it is this very interaction that leads to binding, i.e., to a lower total
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energy, when the nuclei or ions are close together. This bond, or interatomic
force, is of electromagnetic (mainly electrostatic) origin.

There are two principal types of intra-molecular binding, the ionic bond
and the covalent bond.

I. Ionic bond is caused by the Coulomb electrostatic attraction between
positively and negatively charged ions, and molecules thus bound can form
ionic crystal lattice. Each ion in the crystalline compound has as its nearest
neighbors, ions of the opposite sign; ions of the same sign are more distant
from each other. The crystal is held together by the relatively strong electric
attractions between the ions, the electrovalent bond. The cations and anions
exist as discrete, not paired, units. The strength of the bond accounts for
the high melting point, transparency, nonvolatility, hardness, brittleness and
generally high stability of these substances.

A typical example is common salt, Na+Cl−. The sodium atom has lost
its outer-shell electron (or valence electron) to the chlorine atom734. Since the
sodium atom has now 11 protons and 10 electrons it became electropositive,
while the chlorine atom now has 17 protons and 18 electrons, which makes it
electronegative. Moreover, the electronic configuration of the Na+ ion is the
same as that of an atom of neon, the noble gas preceding sodium; while the
electronic configuration of the Cl− ion is the same as that of an atom of argon,
the noble gas following chlorine. In many such ionic compounds the atoms
have the stable electronic configuration of noble gas atoms. Other examples
are: KBr, CaF2, AgCl, Ba(NO3)2, CaCO3.

Each ionic lattice is characterized by two fundamental entities: plan of the
elementary cell and the packing of the ions. Thus, in the NaCl crystal lattice,
we have a 3-dimensional checker-board arrangement in which each sodium
ion has 6 equivalent chlorine ions as nearest neighbors while each chlorine ion
similarly has 6 equivalent sodium ions as nearest neighbors. The edge of the
elementary cell, according to X-ray diffraction measurements, is 5.64 Å. It
was also possible to determine that the chlorine ion is approximately twice as
large as the sodium ion.

Each ion in the lattice has ions of opposite charge as nearer neighbors
and ions of like charge as more distant neighbors. The resultant effect is a
net attractive electrostatic configuration, with inter-ionic forces generally far
stronger than the Van der Waals forces between neutral molecules containing
comparable number of electrons. Consequently, ionic crystals, like covalent

734 More accurately, the electron is shared but spends more time in the chlorine

component of the superposition of single-atom orbitals.
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crystals, are far more stable physically than molecular crystals having molec-
ular weights of similar magnitude. Computations show that about 90 percent
of the total dissociation energy of NaCl (183 kcal/mole) is attributed solely
to electrostatic potential energy of Coulomb forces between ions; the balance
is attributed to Van der Waals interaction.

II. Covalent bond exists between two atoms that share an electron-pair,
jointly occupying an outer-shell orbital belonging to both of them. The atoms
in these molecules are held tightly together in a bond that is nearly universally
present in substances. It is conveniently represented by a connective line or
valency bond drawn between the two atoms. This device was introduced as
early as 1864 by the Scottish chemist Alexander Crum Brown (1838–1922)
long before G.N. Lewis interpreted each line as representing a shared pair
of electrons (1919).

The simplest example of a covalent molecule is the hydrogen molecule, in
which the two electrons are held jointly by the two nuclei, and enable a firm
attachment between them. This strong bond holds the nuclei at an average
distance of 0.74 Å apart (they oscillate with an amplitude of a few hundredths
of an Ångström at room temperature). A large energy of 103.4 kcal/mol is
required to break the bond.

In general, stable molecules (or complex ions) having covalent bonds have
structures such that each atom achieves a noble-gas electronic configuration
or some other stable configuration, the shared electrons being counted for
each of the bonded atoms. The exact solution of the SE, even for a molecule
as simple as H2, is not feasible and several approximate methods are used
instead. The valence bond method regards the molecule as made up of atoms,
slightly distorted to produce a bond. It is consistent with the traditional
chemical concept of localized bonds between atoms, a point of view supported
by the additivity of bond lengths and bond moments.

Another approximation, the molecular orbital method, considers the mole-
cule as a collection of nuclei and electrons, the individuality of the atoms
having largely disappeared. The bonding electrons belong to the molecule as
a whole and need not be regarded as localized between pairs of nuclei. The
interpretation of molecular spectra, for example, does not require any assump-
tions about localized bonds. This scheme is backed up mathematically by the
Born-Oppenheimer approximation (1927).

A covalent bond serves as a basis to a covalent lattice in which a network of
covalent bonds extends in fixed patterns throughout a crystal to form a single
giant molecule, such as diamond: the unit cell shows a cubic symmetry, each
atom having 4 equivalent nearest neighbors, located at positions outlining
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the corners of a regular tetrahedron about it. Since the carbon atom has
just 4 electrons and 4 vacancies in its valence shell, it seems clear that in
diamond the atoms are bonded to each other by covalent chemical bonds.
Since the diamond crystal shows exceptional physical stability and is one of
the hardest solids known, it is logical to regard the entire crystal as a single,
gigantic molecule. Silicon and germanium crystallize in the same manner.
Other examples are SiC (carborundum), SiO2 (quartz), BN (borazon).

As distinguished from the ionic bond, the covalent bond is often direc-
tional. The directional property is not present in the H2 molecule since the
probability density of the valence electron in each separated H atom is spheri-
cally symmetrical, so that the only defined direction in the H2 molecule is the
one connecting the two nuclei, and the covalent bond acts along that direc-
tion, whatever it may be. In a more typical case the probability of a valence
electron has its own directional dependence and certain preferred directions
for forming covalent bonds. The directional properties of covalent bonds are
manifested in the structural properties of covalently bonded molecules, and
so form the basis of organic chemistry.

The bond energies for single covalent bonds range (at 25◦C) from about 30
to 135 kcal per mole [e.g., C—H (99); N—H (93); H—H (104); H—F (135);
C—O (84); C—C (83)]. Double and triple bonds (with each bonding electron
pair represented by a line) may be higher [e.g., C——C (147); C——O (174);
C ——— C (194); N ——— N (226)].

Metallic solids exhibit a binding that can be thought of as a limiting case
of covalent bonding in which electrons are shared by all ions in the crystal.

III. Metallic bond exist between positive metal ions and mobile valence
electrons.

Although copper and argon atoms crystallize in precisely the same geomet-
ric pattern — a close-packed cubic structure — their physical properties are
entirely different. A typical metal, copper is opaque with a highly reflecting
surface. It is an excellent conductor of both heat and electricity. Its melting
point is rather high at 1083◦C and the liquid boils at 2582◦C. Argon crystals
are transparent, resembling Dry Ice in appearance. They are poor conduc-
tors of heat and electricity. The crystals melt far below room temperature at
−189.3◦C, and the liquid boils at −185.9◦C. The nature of the forces in the
two systems must therefore be totally different.

Consider the metals silver and copper: these have one valence electron per
atom which is responsible for the bonds to all neighbors in the lattice. Now,
most metals crystallize with an atomic arrangement in which each atom has
surrounded itself with the maximum number of atoms that is geometrically
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possible (cubic closest-packed structure, hexagonal closest-packed structure,
body-centered cubic structure, etc.). Thus, for a silver atom which is sym-
metrically surrounded by 12 nearest neighbors, only 1

6 of one electron is re-
sponsible for the bond between two neighboring atoms, in contrast to the 2
full electron charges between each two carbon atoms in diamond.

Quantum-mechanically, the wave-function describing the behavior of the
valence electrons is approximated by a linear combination of the wave func-
tions describing the 12 possible bonds to the 12 partners. This is as if one
“real” electron-pair rotates and successively form the individual bonds. What
counts in the final analysis is only the average electron density between the
atoms to be bound, due to the overlap of atomic orbitals. Therefore, the va-
lence electrons occupy a partially filled bond of delocalized molecular orbitals
with closely spaced energies. The relatively high concentration of shared va-
lence electrons in the regions between neighboring nuclei is associated with a
lowered electrostatic potential energy through screening of nuclear charges.

The overall effect is not unlike a covalent bond, except that there are vacant
molecular orbitals at energies slightly above the highest occupied ones. The
bonding electrons are therefore comparatively mobile: little energy is required
for them to transfer from one atom to another throughout the crystal.

The physical picture of metallic binding is thus a negatively charged free-
electron gas permeating a structure of positive ion cores. Their mobility
accounts for the high electric and heat conductivities of the metals. The
metallic bond per pair of nearest neighbor atoms is not as strong as ionic or
covalent bonds. Nevertheless, ordinary metals are quite strong because of the
large number of nearest neighbors.

B. Intermolecular Bonds

Molecular solids consist of molecules which are so stable that they retain
much of their individuality when brought in close proximity. The electrons in
the molecule are all paired so that atoms in different molecules cannot form
covalent bonds with one another.

One kind of intermolecular binding force is the weak Van der Waals attrac-
tion that is present between such molecules in the gaseous, liquid and solid
phases. This attraction is the result of the mutual interaction of the electrons
and nuclei of the molecules; it has its origin in the electrostatic attraction of
the nuclei of one molecule for the electrons of the other.
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At small distances (about 4 Å for argon, for example) this force of attrac-
tion is completely compensated (balanced) by a force of repulsion of electrons

by electrons and nuclei by nuclei due to interpenetration of the outer electron

shells of the molecules.

It is these intermolecular Van der Waals forces that enable substances

such as the noble gases, the halogens, etc., to condense to liquids and to

freeze into solids at sufficiently low temperature. The physical mechanism
involved in the Van der Waals attraction is an interaction between fluctuating
electric dipoles. Because of the fluctuating quantum mechanical behavior of

the electrons in a molecule735, all molecules have a fluctuating electric dipole
moment, even though for many of them symmetry considerations require that

it fluctuates about an average value of zero. At a time when a molecule has a

certain instantaneous electric dipole moment, the external electric field that it
produces will induce in the charge distribution of a nearby molecule a dipole

moment such that the resulting force between the inducing and the induced

electric dipole is always attractive.

The binding energies are of the order of 10−2 eV and the force, known

as London force (1930) generally varies approximately as the inverse seventh
power of the intermolecular separation at large distances. In the solid, succes-
sive molecules have electric dipole moments which alternate in orientation so

as to produce nearest-neighbor attractions between them. Many organic com-

pounds, inert gases, and ordinary molecular gases such as oxygen, nitrogen,

and hydrogen form molecular solids in the solid state.

The Van der Waals bond is the weakest form of binding, but it occurs with

all atoms. Only in the inert gas crystals (which solidify at temperatures of
only a few degrees above absolute zero) is it the predominant form of binding.

Inert gas atoms are closed shell, neutral atoms with strongly held valence

electrons. With no valence electrons about, their closed shells rule out the
other types of binding.

735 The Heisenberg uncertainty principle does not allow the centroid of the negative

charge distribution (the center of the electron cloud) to be at the same place

as the center of the positive charge distribution (the nucleus) all the time.

Therefore, at some instant of time, the plus and minus charge centers of atom 1

will be separated by some distance. This separation gives atom 1 an electric

dipole moment and sets up at atom 2 an electric dipole field centered at atom

1 which is proportional to r−3 (r is the separation of the centers of the atoms).

This field induces an average dipole moment ∼ r−3 in atom 2. Therefore the

electric binding energy due to this mechanism is proportional to r−6, and the

force to r−7.
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Because the binding is weak, solidification takes place only at very low
temperatures, where the disturbing effects of thermal agitation are very small.
The weak binding makes molecular solids easy to deform and compress, and
the absence of free electrons makes them very poor conductors of heat and
electricity. Intermolecular bonds of the Van der Waals type occur among:

I. Non-Polar molecules with the appropriate molecular composition
and symmetry such as Cl2, have the center of the positive charge halfway
between the nuclei, which is also the center of the negative charge. Yet,
a second order Van der Waals attraction is formed between the non-polar
covalent molecules. Other examples are CH4, CF4, CCl4, CI4, I2, Br2, H2,
CO2, C6H6, where the vector sum of all bond moments in the molecule
average to zero either due to linearity or spatial symmetry.

II. Polar molecules with non-zero vector sum of all dipole moments
in the molecule. Such is the HCl molecule, in which the electron pairs are not
shared equally in the covalent bond. Consequently, the centers of positive and
negative charge do not coincide. Between such molecules we may have either
a dipole-dipole interaction (which is either attractive or repulsive, depending
on the orientation of the two dipoles) or dipole-induced dipole interaction,
through which a molecule with a permanent dipole moment is able to induce
a dipole moment in neighboring molecule, which always results in an attractive
force between them. Other examples are: N2O5, P4O10, HNO3.

III. Hydrogen bond: The covalently bonded hydrogen is unique among
other atoms in chemical combination, because it has no inner shell of non-
bonding electrons partially screening the nucleus. Particularly when it is
bonded to one of the highly electronegative atoms (such as fluorine, oxygen
or nitrogen), the pair of shared electrons is closer to the other nucleus, causing
the whole molecule to become polarized.

Consider, e.g., the water molecule736 H—
··
O

··
—H; due to the covalent bond

between oxygen and hydrogen, an oxygen atom will form a 2-electron shared

736 For many purposes it is convenient to represent the outer-shell electronic con-

figuration succinctly by means of electron-dot formulas: The chemical symbol

for the element is written with as many dots around it as corresponds to the

number of valence electrons present in the outer shell , e.g.:

1. Neutral hydrogen has a positive proton in the nucleus and one valence elec-

tron in its outer shell; its symbol will be H ·

2. Neutral oxygen has 8 protons and 8 neutrons in its nucleus, two paired elec-

trons (opposite spins ↑↓) in its inner shell, and 6 electrons in its outer shell (2s

and 2p subshells), of which 4 are paired (↑↓, ↑↓) and 2 are unpaired. Its symbol
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pool with each hydrogen atom. But the oxygen atom, having the stronger

hold on valence electrons, will hold them more firmly, so to speak, in its

own outermost shell. These electrons will occupy the electron shells of the

hydrogen atom to a correspondingly lesser degree.

Since the oxygen atom has more than an equal share of the pooled (bonding
pair) electrons, it has more than an equal share of the negative charge of

those electrons. There will be therefore a fractional negative charge on the
oxygen atom. The hydrogen atom, deprived of its fair share, will have a small

balancing positive charge.

Two such molecules can thus attract each other, mainly by an electrosta-

tic interaction between a proton belonging to one and the unshared pair of

electron belonging to the other; for example, two molecules H—
··
F

··
: will join

into a dimer H2F2 by the hydrogen bond H—
··
F

··
: – – – H –

··
F

··
: , indicated by

a dashed line. Likewise, the molecule of ammonia

H—
··
N—H
|

H

is capable of joining another ammonia molecule through a hydrogen bond.

Most common hydrogen bonds are of medium energies between 3 and 7
kcal/mole (a few tents of eV per bond), which is about one tenth as strong as

a typical covalent bond. This fact is of crucial importance to the chemistry of

is :
·
O

··
·

3. Neutral fluorine has 9 protons in its nucleus, two paired electrons in its inner

shell, and 7 electrons in its outer shell, 6 of which are paired. Its symbol is

:
··
F

··
·

4. Neutral nitrogen has 7 protons in its nucleus, two paired electrons in its inner

shell, and 5 electrons in its outer shell, 2 of which are paired. It symbol is :
·
N

·
·

5. Neutral carbon has 6 protons in its nucleus, two paired electrons in its inner

shell, and 4 electrons in its outer shell, 2 of which are paired. Its symbol is
··
C

·
·

6. Neutral neon has 10 protons in its nucleus, two paired electrons in its inner

shell, and 8 electrons in its outer shell, all paired. Its symbol is :
··
Ne

··
:
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life737 because it allows for weak, but highly specific, intermolecular interac-

tions that can be altered without affecting the covalently bonded structures

of the molecules in question.

The fact that ammonia, water, and hydrogen fluoride are all capable of

hydrogen bonding to themselves has varied consequences and of great impor-

tance, especially for water. For example, the melting and boiling points of

these compounds are abnormally high relative to other hydrogen compounds

in the same groups. Without it water would be a gas at room temperature.

Most substances diminish in volume and hence increase in density, with

decrease in temperature. Water has the very unusual property of having

a temperature at which its density is maximum. This temperature is 4◦C.

With further cooling below this temperature the volume of a sample of water

increases somewhat. A related phenomenon is the increase in volume which

water undergoes on freezing. Without this anomaly, life in lakes and rivers

would not be possible during severe winter conditions, since they would freeze

(throughout — not just a surface layer, as actually occurs). All these unusual

properties of water are due to the hydrogen bond for the following reason: each

molecule has two attached hydrogen atoms and two unshared electron pairs

and hence can form 4 hydrogen bonds with its neighbors.

Indeed, X-ray diffraction studies of ice show that each oxygen atom is

surrounded by 4 other oxygen atoms located about it at the corners of a

regular tetrahedron. The hydrogen atoms presumably lie on the lines between

the centers of the oxygen atoms. This structure, in which each molecule is

surrounded by only 4 immediate neighbors, is a very open structure, and

accordingly ice is a substance with abnormally low density.

When ice melts, this tetrahedral structure is partially destroyed and the

water molecules are packed more closely together, causing water to have

greater density than ice. Many of the hydrogen bonds remain, however, and

aggregates of molecules with the open tetrahedral structure persist in water

above the freezing point. With increase in temperature, some of these ag-

gregates break up, causing a further increase in density of the liquid; only at

4◦C does the normal thermal expansion due to increase in molecular agitation
overcome this effect, and cause water to begin to show the usual decrease in

density with increasing temperature.

737 The hydrogen bonds in DNA can be “unzippered” open for replication of gene

structures, then closed again until needed. The hydrogen bond is also important

in certain ferroelectric and polymerization processes.
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A great many salts are soluble in water, whereas they are insoluble in most

other common solvents738. The high solubility of salts in water is the result

of two closely related properties of water:

(1) Water has an extremely high dielectric constant (80). This arises not

only from the polarity of the individual molecules, but also from the cor-

related mutual orientations of the molecules. So the force of attraction

between oppositely charged ions in water, as given by Coulomb’s law is

only 1
80 the force that would exist between them in vacuum (or in air).

Thus, a great many salts dissociate into ions upon contact with water.

(2) Water molecules have a large dipole moment
(1.86 D; 1 D(Debye) = 20.85 e · picometer), which interacts strongly

with the ions, especially the cations, to form hydrated ions. This process

is accompanied by release of thermal energy. Typical hydrated ions

are [Be · (H2O)4]
2+, [Mg · (H2O)6]

2+, [Al(H2O)6]
3+ in which the

relatively negative end of the water molecule (the oxygen) interacts with

the positive central ion.

This striking power of water to dissolve ionic substances is partly due to

its power to form hydrogen bonds739.

A few other liquids are ionizing solvents like water, resulting in salt solu-

tions that conduct electricity because of the mobile ions in the solution. Some

such liquids are hydrogen cyanide (HCN), hydrogen peroxide, liquid ammo-

nia (NH3) and liquid hydrogen fluoride (HF). They all have high dielectric

constants and large dipole moments, and are therefore called polar solvents.
Hydrogen bonding is the factor primarily responsible for solubility of organic

compounds in water.

738 If water were like most other liquids, the salt-like minerals would be practi-

cally insoluble in it and it would be far above its boiling point at the mean

temperatures of the earth’s surface. Therefore, life as we know it is completely

dependent on the peculiar physical properties of water.

739 In some cases, however, some hydration actually has the opposite effect, in-

creasing the stability of ionic solids or even allowing them to crystallize. Such

hydrated crystals spontaneously pulverize into powder at low enough ambient

humidity levels.
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The Mystery of Aqua Regia

The ancient metallurgists — as well as brewers, dyers, and potters – accu-
mulated much empirical knowledge that is now incorporated into the science
of chemistry. Thus, the resistance of gold to corrosion by atmospheric oxygen,
water, and acids has long been known. Indeed, Electrum, a natural mixture
of gold and silver, was used for the early coins minted in Lydia in the eighth
century BCE. Copper was added to coins by the Roman emperors to conserve
the more precious metals.740

Aqueous acids “dissolve” most of the free metals by oxidation. Though
none of the common laboratory acids are individually able to dissolve gold,
a combination of 4 parts of HCl to 1 part of HNO3 does it. This fact
was known already to medieval alchemists and the early chemists [e.g. Lully
(1305), Libau (1611), Van Helmont (1648)]. The mixture is known as aqua
regia, since gold was considered the “king of metals”. Gay-Lussac (1844)
tried to explain the phenomenon through the atomic theory known in his time.
It was not until the theory of oxidation-reduction reactions through electron
transfer became well-understood [G.N. Lewis (1916); I. Langmuir (1919);
G.A. Perkins (1921); W. Pauli (1925); L. Pauling (1931)] that chemists
finally resolved the aqua regia phenomenon.

740 Gold coins have long since been withdrawn from circulation in the United States,

and the silver coins are being replaced by sandwich alloys of nickel and copper.
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Table 5.7: Properties of the coinage metals

Cu Ag Au

Electron configuration [Ar]3d104s1 [Kr]4d105s1 [Xe]4f145d106s1

Atomic radius, 10−12 m 128 144 144

First ionization energy, kJ/mol 745 731 890

Electrode potential, V

M+(aq) + e− → M(s) +0.520 +0.800 +1.83

M2+(aq) + 2e− → M(s) +0.340 +1.39 —

M3+(aq) + 3e− → M(s) — — +1.52

Oxidation states +1, +2 +1, +2 +1, +3

The data in Table 5.7 helps us understand why this is so: The metal ions
are easy to reduce to free metals, which means that the metals are difficult to
oxidize.

In Mendeleev’s periodic table, the alkali metals (group 1) and the coinage
metals (group 11) appear together as group I. The only similarity between the
two subgroups, however, is that both have a single s electron in the valence
shells of their atoms. More significant are the differences between the group 1
and group 11 metals. For example, the first ionization energies for the group
11 metals are much larger than for the group 1 metals, and the standard
electrode potentials are positive for the group 11 metals and negative for the
group 1 metals.

Like the other transition elements that precede them in the periodic table,
the group 11 metals are able to use d electrons in chemical bonding. Thus
they can exist in different oxidation states, exhibit paramagnetism and color in
some of their compounds, and form complex ions. They also possess to a high
degree some of the distinctive physical properties of metals — malleability,
ductility, and excellent electrical and thermal conductivities.

Copper, silver, and gold – the coinage metals – are used in jewelry making
and the decorative arts. Gold, for instance, is extraordinarily malleable and
can be pounded into thin translucent sheets known as gold leaf. The coinage
metals are valued by the electronics industry for their ability to conduct elec-
tricity. Silver has the highest electrical conductivity of any pure element, but
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both copper and gold are more often used as electrical conductors because
copper is inexpensive and gold does not readily corrode. The most important
use of gold is as the monetary reserve of nations throughout the world.

The group 11 metals do not react with HCl(aq), but both Cu and Ag
react with concentrated H2SO4(aq) or HNO3(aq). The metals are oxidized
to Cu2+ and Ag+, respectively, and the reduction products are SO2(g) in
H2SO4 and either NO(g) or NO2(g) in HNO3(aq).

Au does not react with either acid, but it will react with “royal water”
– aqua regia. The HNO3(aq) oxidizes the metal and Cl− from the HCl(aq)
promotes the formation of the stable complex ion [AuCl4]−

Au(s)+4H+(aq)+NO−
3 (aq)+4Cl−(aq) → [AuCl4]−(aq)+2H2O(l)+NO(g).

1931–1946 CE Robert Jemison Van de Graaff (1901–1967, U.S.A.).
Physicist. Invented the electrostatic generator named after him, designed to
accelerate particles in the realm of ‘low energy ’ nuclear physics (below about
10 MeV).

Van de Graaff produced the first generator of this kind at the Massa-
chusetts Institute of Technology (MIT). In the generator, a continuous belt
composed of an insulating material moves past a source of negative electricity.
This source sprays electrons on the belt. The belt then goes into a hollow
metal dome were a fine metallic brush moves the electrons onto the dome
surface. When the charge at the top of the dome is high enough, electri-
cally charged particles are hurled at targets at the bottom of the generator.
The great merit of the Van de Graaff generator lies in its extremely steady
potential when it is suitably stabilized.

Van de Graaff was born in Tuscaloosa, Alabama. He graduated from the
University of Alabama in 1922 and did postgraduate work at the Sorbonne in
Paris and Oxford University in England. He joined M.I.T. in 1931. In 1946 he
helped found the High Voltage Engineering Corporation, where developments
led to the production of the “tandem” machine — which is effectively two
accelerators in series. Here, negative ions are first accelerated to the high-
voltage terminal, then stripped of their electrons and accelerated a second
time to the target.



3958 5. Demise of the Dogmatic Universe

Worldview XLIV: Paul Valéry741

∗ ∗∗

“One has to be a Newton to note that the moon is falling when everyone sees
that it does not fall.”

∗ ∗∗

“The science of mathematics is to a large extent, only a science of pure repet-
itive patterns. It grasps the mechanism of patterns and summarize it.”

∗ ∗∗

“All our inventions tend either to save our energies, or to save repetition”

∗ ∗∗

“Everything that requires no effort is a waste of time”

∗ ∗∗

“History will justify anything. It teaches precisely nothing, for it contains
everything and furnishes examples of everything.”

∗ ∗∗

“History is the science of things that do not repeat themselves.”

741 Paul Valéry (1871–1945, France). Thinker, poet and essayist. Born in France

of an Italian mother and a Corsican father. A rationalist who was deeply versed

in 19th century scientific ideas. He wrote on mathematics and physics from a

viewpoint of a philosopher-poet.
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∗ ∗∗

“The past is an entirely mental thing. It is nothing but images and beliefs.”

∗ ∗∗

“In 1887, the air was strictly reserved for the birds. Electricity has not yet
lost its wires. Solid bodies were still fairly solid. Opaque bodies were sill
quiet opaque. Newton and Galileo reigned in peace. Physics was happy and
its references absolute. Time flowed by in quiet days; all hours were equal
in the sight of the universe. Space enjoyed being infinite, homogeneous, and
perfectly indifferent to what went on in its august bosom. Matter felt that
it had good and just laws... Could the greatest scholar, the profoundest
philosopher of 1887 even have dreamed of what we know and see, after a mere
fifty-five years?”

∗ ∗∗

“Never has humanity combined so much power with so much disorder, so
much anxiety with so much playthings, so much knowledge with so much
uncertainty.”

∗ ∗∗

“Hitherto, all politics gambled on the isolation of events. History was made
up of events that could be localized. Any disturbance had at one point on
the globe as it were, a boundless medium in which to reverberate; its effects
were nil at a sufficient distance; everything went in Tokyo, as though Berlin
were at infinity. It was therefore possible (it was even reasonable) to predict,
to calculate, to act. There was room in the world for one or several great
policies well planned and carried out. That time is coming to an end – the
age of the finite world has began”

(1931)

∗ ∗∗

“One of man’s most extraordinary inventions is the invention of the past and
the future: by expanding the moment, by using imagination to generalize the
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present, man creates time; and in doing so he not only sets up perspectives
before and after his intervals of reaction but, what is more, he lives but very
little in the moment itself ... he continually feels the need of what does not
exist.”

(1932)

∗ ∗∗

“Nature is indifferent to individuals. If man prolongs or betters his life he is
acting against nature”

(1932).

∗ ∗∗

“Living is an essentially monotonous practice, based on the regular recur-
rence of a few reflexes ... Knowledge, on the other hand, tends to absorb the
particular and singular mundane into the general law”.

(1932)

∗ ∗∗

“Modern life tends to spare us intellectual effort just as it does physical effort;
for example, it replaces imagination by images, reasoning by symbols and
writings, or by machines ... and often by nothing. It offers us every short
cut for arriving at our goal without making the journey. It thus combines to
produce a certain diminution of value and effort in the realm of the mind.”
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elasticity, 2876, 3062, 3140, 3187,
3402, 4382, 4421, 4748, 4803

elastomer, 3140

Eleatics, 3278

electric car, 2886, 4138

electric charge, 2875, 3102, 3192,
3287, 3353, 3461, 3599, 3916,
4145, 4148, 4468, 4674, 4746,
4871, 4898

electric current, 3076, 3658, 3809,
3893, 3917, 3920, 3923, 3928,
4133, 4148, 4151, 4670, 4848

electric dipoles, 3887, 3895, 3950

electric eye, 3925

electric pumping, 3933

electrical conductivity, 2889, 3131,
3597, 3910, 3945

electrical discharges, 3197, 3628,
4780

electrical quadrupole moment, 4672

electrical resistance, 3193, 3796,
3923, 4136

electrocardiogram, 2976, 3268

electrochemistry, 2874, 3055, 3198,
4131–4134, 4145, 4148, 4161
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electrochromatography, 4466

electrode, 3145, 3599, 3756, 3928,
4129, 4134, 4137, 4146–4147,
4152, 4154, 4159, 4262, 4465,
4477, 4600, 4839

electrolysis, 2888, 3008, 3130, 3132,
3809, 4133, 4155, 4157, 4165,
4167, 4169, 4362

electrolytic cell, 3928, 4134, 4148,
4155–4157

electromagnet, 2903, 3864, 3868,
4518

electromagnetic field tensor, 3102

electromagnetic forces, 3634, 3670,
3691, 3706, 3811, 3836, 3886,
3945, 4484, 4894

electromagnetic pump, 3591

electromagnetic seismograph, 3059

electromagnetic waves, 3115, 3288,
3542, 3566, 3710, 3863, 4321,
4485, 4669, 4803, 4849, 4860–
4870

electromagnetism, 2889, 2968, 3024,
3028, 3089, 3096, 3207, 3233,
3322, 3328, 3353, 3364, 3463,
3502, 3650, 3812, 4131, 4616,
4758, 4801, 4849, 4873, 4923

electron diffraction, 3603, 3897,
3942, 4101

electron field, 4873, 4875, 4897

electron gas, 3892, 3910, 3949,
4837, 4843

electron microscope, 3130, 3269,
3591, 3598, 3836, 4784, 4809,
4851, 4856, 4912, 4916, 4948

electron sharing, 3943

electron spin, 3501, 3521, 3620,
3636, 3642, 3647, 3664, 3790,
4668, 4672

electron transfer, 3943, 3955, 4138,
4601

electron-pair bond, 3326

electron-positron pair, 3124, 4894,
4901

Electrophoresis, 4465

electrophotography, 3930

electroplating, 4134

elliptic curve, 3180

elliptic integrals, 4665

elliptic umbilic, 4387

elliptical orbits, 2876, 3333

embedding theorem, 3685

emission computed tomography,
3271

Empire State Building, 3940

endocrinology, 2969

endolymph, 3804

endothermic reaction, 4140

energy barrier, 4176, 4758, 4796

energy conservation, 3464, 3660,
4129, 4876
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energy density, 2828, 2941, 3331,
3351, 3611, 3660, 3676, 4849,
4858, 4930, 4933

energy flux vector, 3660

energy partition function, 3144

energy-momentum tensor, 3122,
3326, 3348, 3353, 3462

enthalpy change, 4160

entropy, 3055, 3320, 3591, 3703,
3720, 3825, 4141, 4500, 4605,
4734, 4737–4743, 4926

Entscheidungs problem, 4375

enzyme(s), 2975, 3015, 3017, 3183,
3243–3244, 3261, 3384, 3398,
3537, 4115, 4350, 4781, 4788,
4791, 4793, 4797, 4945, 4949,
4963

epicenter, 3145, 3597

epinephrine, 4798

equation of state, 3328, 3579, 4484

equilibrium point, 3386, 3389, 3393,
3433, 4364–4365, 4372, 4463

equilibrium state, 3402, 3813, 3904,
4098, 4370, 4382–4384, 4488,
4669, 4734, 4741

equilibrium surface, 4421

equipartition of energy, 2977, 3068,
3542, 3676

Erdös number, 4186

error-correcting codes, 4831

error-detection, 4832

Esaki diode, 3797

escape velocity, 2993, 2997, 3832,
4107, 4192

Escherichia coli, 3500

estradiol, 3613

estriol, 3613

estrogen, 2970

estrone, 3613, 3847

Ether, 3021, 3023, 3096, 4719,
4725, 4873, 4894

ethyl alcohol, 3140, 3426, 4789,
4795

ethylene glycol, 3141

Euclidean geometry, 2905, 2954,
3025, 3337, 3452, 3880, 4430

Euclidean space, 2912, 2914, 2926,
2959, 3066, 3072, 3089, 3103,
3112, 3262, 3266, 3318, 3330,
3336, 3349, 4439–4439, 4444,
4714, 4909

Euler angles, 3620, 3752

Euler’s constant, 3839, 3841

Euler-Maclaurin formula, 2885

Eustachian tube, 3800

eutrophication, 4780

evaporation, 3272, 3890, 4734,
4752, 4774

exchange force, 3670, 4875

exchange integral, 3673, 3902
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exclusion principle, 3590, 3604,
3620, 3634–3638, 3664, 3666–
3671, 3897, 3902, 3917, 3943,
3945, 4100, 4484

existentialism, 2943, 3127, 3757

exothermic reaction, 4140–4141

expanding-universe, 3239, 3464

exterior calculus, 2834, 2836, 3092

exterior derivative, 2839

exterior measure, 2957

F

facsimile, 3689, 4415

Faraday constant, 4148

Faraday’s law, 3130, 3768, 3868

Farey Series, 2907

Fast Fourier Transform, 4953

Feigenbaum number, 3437

Feldspar, 3132

Fenian Society, 2895

Fermat’s Last Theorem, 3178, 3180

fermentation, 2982, 3059, 3241,
3426, 3494, 3501, 4778, 4786,
4788, 4793, 4795, 4947

Fermi distribution, 3915, 3918

Fermi energy, 3636, 3914, 4128,
4838–4840, 4843

Fermi-Dirac statistics, 3590, 3634,
3638, 3670, 3786

Ferrel cell, 3573

ferromagnetism, 3075–3077, 3081,
3623, 3637, 3910, 4100

Feynman Diagrams, 4880, 4896

fiber bundle, 3092

fiber spaces, 4556

Fibonacci sequence, 3378

Fick’s law, 4366

field effect amplifier, 4837

Field-aided emission, 3923

fine structure constant, 4730

first ionization potential, 4838

first law of thermodynamics, 3320,
3578, 4140

first quantization, 4869, 4900

Fisher’s Equation, 3546

fission (see: nuclear fission)

fixation, 3184, 3500, 3931, 4754,
4780, 4781, 4853

fixed point, 2919, 3119, 3126, 3393,
3433, 3434, 3439, 3685, 3880,
4387, 4421, 4712

fluorescence, 3326, 3924

fluorine, 3258, 3683, 3951, 4473,
4747

flux density, 4323, 4738

focal plane, 4352
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Fokker-Planck equation, 3285

fossil fuel, 3006, 3631, 4142, 4163,
4166, 4172, 4474, 4703, 4773,
4776, 4780

fountain pen, 4470, 4472

Fourier coefficients, 2934, 4954

Fourier optics, 4532

Fourier series, 2950, 3152, 3195,
3283, 3632, 3747, 3784

Fourier transform, 2831, 2876,
3563, 3770, 4359, 4498, 4532,
4910, 4953–4955, 4956

fractal, 2923, 2977, 3144, 3150,
3289, 3426–3431, 3443, 3513,
4423

frame-dragging, 3364

France, 2825, 2827, 2832–2835,
2854, 2857, 2859, 2871, 2873,
2877, 2886, 2895, 2899, 2900,
2942, 2950, 2979, 2981, 2985,
2989, 3014, 3053, 3058, 3060,
3070, 3075, 3144, 3172, 3190,
3268, 3289, 3297, 3299, 3320,
3426, 3492, 3541, 3566, 3570,
3573, 3590, 3598, 3601–3603,
3688, 3708, 3723, 3756, 3891,
3928, 3940, 4099, 3880, 4134,
4303, 4369, 4413, 4424, 4507,
4521, 4532, 4536, 4556, 4691,
4706, 4732, 4749, 4860

Franco-Prussian War, 2990, 4691

Fraunhofer lines, 3284

Fréchet derivative, 3067, 3071

free energy, 3400, 3875, 4136, 4141,
4148, 4160, 4736, 4742, 4753,
4787, 4790

friction, 2948, 2987, 2999, 3004,
3005, 3059, 3192, 3205, 3306,
3365, 3573, 3681, 4120, 4325,
4381

fructose diphosphate, 3017

fuel cell, 4129, 4131, 4138, 4158–
4161, 4165, 4169

fumaric acid, 4793

function space, 2933, 3071

functional analysis, 2872, 2956,
3006, 3063–3065, 3067, 3586,
3684, 3747, 3842, 4389, 4437,
4604

functor, 4429

fundamental frequency, 4476

fundamental group, 4433, 4442–
4445

Fundamental Theorem of Algebra,
3126

Fundamental Theorem of Arith-
metic, 3170, 3174

fungus, 3014, 4754

fusion (see: nuclear fusion)

future light-cone, 3112

fuzzyball, 4823



4034 5. Demise of the Dogmatic Universe

G

galactic rotation, 3683

galaxy, 3315

Galilean covariance, 3022

Galilean transformation, 3021, 3095–
3097, 3114

gallium, 3015, 3918, 3922, 4173,
4842

galvanometer, 2976, 3060, 3288,
3606

game theory, 2878, 3125, 3616,
3724–3729, 3748, 4420, 4582

gamma correction, 3927

gamma rays, 3266, 3270, 3805,
4117, 4257

gas turbines, 2999

gasohol, 4144

gasoline engine, 2895

Gâteau derivative, 3072

gauge theories, 2968, 4462

Gauss’ divergence theorem, 2845,
3660

Gauss-Jordan elimination proce-
dure, 4816

Gaussian curvature, 3937, 4583

Gaussian curve, 3559

Gaussian distribution, 3560

Gaussian integrals, 4908

Geiger counter, 3144

Gelfond theorem, 3838

gene(s), 2960–2962, 2975, 3152,
3190, 3495, 3546, 3953, 4581,
4609, 4801, 4947

general ergodic theorem, 3274

general theory of relativity (GTR),
2834, 3018, 3027, 3335, 3338,
3356, 3816, 3823, 3830, 4414,
4933

generalized functions, 4390

generalized Stokes’ theorem, 2844

generating function, 2926, 3164,
3563, 4910

generator, 3000, 3074, 3105, 3204,
3240, 3429–3430, 3565, 3694,
3957, 4131, 4322, 4324, 4684

genetic code, 2904, 2929, 3382,
3799, 4607, 4754, 4961

genetic drift, 2961, 4104

genetic engineering, 4948, 4962

genetics, 2938, 2959, 2962, 3152,
3167, 3330, 3373, 3380–3383,
3500, 3546, 3777, 3889, 4104,
4514, 4725, 4946, 4961

genome, 3380, 4518

genotype, 2938, 2960, 3152

genus, 3584, 3682, 3936, 4583, 4774

geodesic, 3348, 3354, 3584, 3766,
3830
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geodetic precession, 3363

geological record, 3146, 3247, 3532,
4108

geology, 3006, 3189, 3235, 3259,
3317, 3525, 3530, 3600, 3896,
4924

geomagnetic reversal, 3058

geometrical optics, 3186, 3873,
4625

geostrophic wind, 3573, 3578, 4710

geothermal power, 3006, 3009

germanium, 3015, 3197, 3917–
3918, 3923, 3948, 4837, 4841

Germany, 2825, 2830, 2854, 2856,
2859, 2862, 2872, 2876, 2886–
2888, 2894, 2900, 2902–2905,
2906, 2924, 2930, 2938, 2942–
2946, 2960, 2962, 2965, 2967,
2979, 2982, 2987, 2990–2994,
2995–2998, 3000, 3004, 3010–
3012, 3015, 3026–3027, 3048,
3055, 3070, 3089, 3125, 3136,
3144, 3149, 3167, 3172, 3184–
3187, 3190, 3196, 3204, 3207,
3233, 3240, 3248, 3264, 3268,
3273, 3274, 3287–3289, 3295–
3302, 3320, 3323–3326, 3330,
3357, 3373, 3387, 3398, 3422,
3425–3426, 3445, 3449, 3457–
3460, 3471–3492, 3501–3508,
3520, 3523, 3529, 3534, 3536,
3541, 3544, 3548, 3571, 3574,
3585, 3591, 3599, 3606, 3623,
3649, 3651, 3678, 3688–3691,
3695, 3723, 3746, 3757–3760,
3767, 3778, 3780, 3796, 3809,
3799, 3836–3838, 3847, 3891,
3910, 3928, 3942, 4115, 4118,

4119, 4134–4137, 4178, 4182,
4251, 4261, 4350, 4367, 4369,
4413, 4416, 4421, 4429, 4462,
4471, 4475, 4481, 4486, 4504–
4507, 4518, 4521, 4522, 4530,
4536–4539, 4541–4545, 4553,
4624, 4649, 4744, 4749, 4831,
4847, 4940, 4851, 4856, 4915,
4946, 4952

Gessler tube, 2980

Gibbs free energy, 4141

Gibbs’-phenomenon, 2928

globular clusters, 3418, 3641, 3644,
3646

gluconeogenesis, 4792

glucose, 3136, 3185, 3261, 3398,
3426, 3929, 4142, 4350, 4778,
4785–4798, 4945

glutamic acid, 4117

glycerine, 3005

glycerol, 4789, 4791, 4796, 4949

glycogen, 3136, 3426, 4350, 4785,
4792, 4795, 4798

Gödel’s incompleteness theorem,
3881, 4428

golden ratio, 3291

Göttingen University, 2831, 2876,
2906, 2924, 2930–2932, 2935,
2939, 2943, 2968, 2987, 3005,
3029–3048, 3056, 3074, 3089,
3093, 3186, 3193, 3205, 3234,
3242, 3273, 3288, 3302, 3324,
3357, 3458, 3472, 3504, 3522,
3541, 3545, 3600, 3623, 3696,
3784, 3799, 3838, 3847, 3940,
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4121, 4180, 4428, 4463, 4481,
4486, 4507, 4518, 4540, 4556,
4624, 4691

Gram-Charlier series, 3151

gramophone, 2902, 4851

graph theory, 4186

graphite, 3209, 4149, 4552, 4841,
4916

Grassman algebra, 2837

gravitation, 3017, 3028, 3233, 3286,
3314, 3317, 3328, 3335, 3338,
3341–3349, 3353, 3355–3357,
3361–3363, 3379, 3382, 3463,
3502, 3634, 3650, 3700, 3763,
3772, 3788, 3816, 3823, 3853,
4172, 4920, 4930–4935

gravitational collapse, 3634, 4485

gravitational field, 2906, 2939,
2946, 3112, 3121, 3144, 3233,
3326, 3339–3341, 3344–3348,
3352, 3361, 3363, 3425, 3463,
3608, 4108, 4402, 4413, 4772

gravitational instability, 3303

gravitational lensing, 4402

gravitational mass, 3024, 3190,
3337, 3339, 3345

gravitational perturbations, 3644

gravitational redshift, 3338

gravitational self-energy, 2940

gravitational wave, 3355, 3359

gravity, 2832, 2940, 2946, 2990,
3062, 3095, 3121, 3273, 3313,
3322, 3328, 3335, 3340–3341,
3346, 3356, 3359, 3364–3377,
3448, 3463, 3502, 3530, 3633,
3644, 3683, 3700, 3781, 3816,
3823–3824, 3841, 3854, 3882,
4172, 4191, 4386, 4414, 4462,
4485, 4616, 4710, 4801, 4808,
4830, 4849, 4869, 4872, 4930

grazing incidence, 3208

Great Britain (see: England)

greenhouse effect, 3631

Greenwich, 3328, 3528, 4942, 4918

Gresham’s law, 4418

group isomorphism, 4445

group of transformations, 3692,
4366

group representations, 4390, 4604

group theory, 2835, 2965, 3170,
3472, 3519, 3556, 3692, 3723,
4378

group velocity, 3806, 4898

Gulf Stream, 4708, 4713, 4775

gunpowder, 2995, 3837

gyromagnetic ratio, 3620, 4672–
4674

gyroscope, 2876, 3194, 3363, 3540,
4861–4868
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H

Haar measure, 3186

Haber Colloquia, 3510

Haber process, 3149, 4780

Hadamard matrices, 2872

Hadamard transform optics, 2872

Hadamard variational formula, 2872

Hadamard’s inequality, 2872

Hadron, 2889, 4881

Hafnium, 3274

Halifax Explosion, 3331

Hall effect, 3893

hallucinogenic, 4479

Halting Problem, 4377, 4428

Hamilton’s equations, 3846, 4927

Hamilton’s principle, 3461

Hamilton-Jacobi equation, 3655

Hamiltonian operator, 3543, 3656,
3660, 3901–3902

Hamming bound, 4833

Hamming code, 4833

Hardy-Littlewood conjecture, 3162

Hardy-Littlewood constant, 3177

Hardy-Weinberg principle, 2961

harmonic analysis, 2959, 3186,
3431, 3556, 4654

harmonic oscillator, 3334, 4908

Harmonic surfaces, 3939

Hartley transform, 3770

Harvard University, 2827, 2959,
3048, 3057, 3326, 3419, 3556,
3566, 3757, 3771, 3824, 3848,
4119, 4296, 4304, 4428, 4463,
4480, 4486, 4504, 4506, 4556,
4579, 4623, 4637, 4658, 4744,
4812 4823, 4879, 4916

Hausdorff dimension, 3289, 3431

Hausdorff spaces, 4438

heart-beat equations, 3401

heat engines, 3008, 4132

heat of combustion, 4143, 4170

heat of reaction, 4139

Heaviside layer, 3605, 3810

heavy water, 3010, 3274, 4260

Hebrew, 2851, 2925, 3028, 3048,
3305, 3446, 3508, 3557, 3585,
3647, 3778, 4250, 4261, 4470,
4486, 4541

Heidelberg University, 3194, 3257,
3242, 3600, 4120, 4539

Heine-Borel theorem, 2878

Heisenberg uncertainty principle,
2939, 3950, 4874



4038 5. Demise of the Dogmatic Universe

helium, 3142, 3193, 3285, 3326,
3365, 3520, 3605, 3634, 3663,
3666, 3669, 3671, 3705, 3719,
3769, 3798, 3827–3831, 4107,
4120, 4164, 4171, 4474, 4481,
4483, 4612, 4729, 4848, 4878,
4881, 4916, 4920

hemoglobin, 3016, 3208, 3244,
3382, 3398, 4511–4513, 4748

Hensel’s lemma, 2921

Hermitian matrix, 3106, 3751

Hessian, 4384–4386

high-energy phosphate bond, 4117,
4744, 4791

Hilbert axiom, 2932

Hilbert base theorem, 2932

Hilbert class-field, 2932

Hilbert inequality, 2932

Hilbert invariant integral, 2932

Hilbert irreducibility theorem, 2932

Hilbert space, 2932–2934, 3540,
3719, 3710, 3726, 4437, 4444,
4604

Hilbert transform, 2932, 3622

Hilbert’s number, 3842

histamine, 3324, 3537

Holland, 2825, 2832, 2895, 2938,
2960, 2972, 2976, 3026, 3048,
3125, 3184, 3193, 3268, 3285,
3299, 3313, 3329, 3387, 3471,
3515, 3529, 3541, 3573, 3619,
3622, 3683, 3647, 3688, 3756,
3808, 3884, 4136, 4351, 4625,
4707, 4793, 4941, 4848

holography, 3748, 3878, 4851, 4853,
4855

homeomorphism, 4118, 4438–4440,
4714

Homo erectus, 3682

Homo sapiens, 3147

homological algebra, 3884, 4429

homology, 3538, 4118, 4434, 4443,
4579, 4725

homopolar binding, 3906

homotopy, 3884, 4429, 4433, 4443

homozygous, 2960

Hopf bifurcation, 4365, 4372

hormone, 2900, 2968–2972, 3613,
3847, 4524, 4948

Hubble constant, 3609, 3789, 4879

Hubble Space Telescope, 3854,
4402

Hubble’s law, 3608, 3766, 3832

Hull magnetron, 3417, 4322

human eye, 3230, 3925, 4731, 4874,
4912

human growth hormone, 4948

human populations, 2966, 3564

humoral theory, 2897

Huygens’ Principle, 3261

hybrid electron orbitals, 4101

hybridization wave-function, 3909

hydrated ions, 3954
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hydration process, 3878

Hydrocyanic acid, 4251

Hydrodynamics, 2827, 2872, 2893,
3005, 3074, 3422, 3574, 3581,
3582, 3725, 3746, 4259, 4600

hydroepiandrosterone, 3614

hydrogen bomb, 3520, 3726, 4164,
4171, 4626, 4638

hydrogen bond, 3889, 3951–3953,
4750

hydrogen molecule ion, 3899

hydrolysis, dehydrogenation, 4786

hydronium, 3596

hydropower, 3007, 4167

hydrosphere, 4773, 4776, 4778,
4783

hydrostatic equilibrium, 3327, 3577,
4484

hydrostatic pressure, 3818

Hygrometer, 3569, 3571

hyperbolic geometry, 3747

hyperbolic umbilic, 4387

hypercomplex numbers, 3548

hyperfine interaction, 3364

I

Ice Ages, 3143, 3245–3248, 3523–
3529, 3533–3535, 3584

iconoscope, 3597

icosahedron, 3380, 4810, 4822–
4823

id, 3440, 3755

ideal gas, 3129, 3604, 3680, 3720,
4141

ideal numbers, 3181

image formation, 3268, 4352, 4532,
4856

image reconstruction, 3269

immunology, 2898, 2966, 3055,
3500, 4961

impact crater, 3145

impedance, 3802, 4477

impetus, 2980, 3070, 3338, 3518,
3598, 4657

incompressible fluid, 2832, 2906,
3005

India, 4093, 2858, 2867, 2896,
2945, 2996, 3125, 3172, 3200,
3290, 3296, 3308, 3446, 3492,
3570, 3584, 3604, 3781, 3783,
3879, 4320, 4583

industrial revolution, 2855, 3006,
3316, 3500, 3524, 4173, 4471,
4659, 4703

inelastic collisions, 3287, 3892
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inert gas, 3630, 3923, 3950, 4779,
4916

inertial frames, 3021, 3025, 3095,
3098, 3337, 3343, 3345, 3425

inertial mass, 3337, 3339, 3352,
3747

infinite group, 4434

infinite series, 2884, 3165, 3294

infinite sets, 2954, 3611

infinite-dimensional topology, 4105

infinitesimal calculus, 3064, 3453

inflammation, 2898, 2900

Influenza, 4093, 2898, 3298, 3416,
4320

info-sphere, 4705

information theory, 3591, 3842,
4499, 4503, 4832

infrared radiation, 3646, 4757, 4776

inhibitor, 4368

insolation, 3532

insulin, 2973, 4524

integer, 2837, 2881, 2908, 2914,
2916, 2919, 2926, 2929, 2958,
3089, 3160, 3162–3165, 3167–
3170, 3173, 3179, 3294, 3296,
3333, 3457, 3620, 3675, 3838,
4187, 4372, 4378, 4432, 4445,
4825

integral closure, 4479

integral curvature, 4583

integral equation, 2930, 2932, 3064,
3205, 3563, 4834,

integral geometry, 4390

integrated circuit, 4659, 4836

interaction energy, 3673, 3887,
3895, 4100, 4671, 4689, 4730

interference, 3208, 3364, 3602,
3673, 3680, 3906, 3940, 4097,
4355, 4415, 4523, 4530, 4554,
4861, 4742, 4828, 4847, 4853–
4855, 4904, 4926

interferometer, 3231, 3284, 4950,
4950

interior measure, 2957

interior of a set, 3065

Internal energy, 3023, 3068, 3287,
3516, 3720, 4140, 4178, 4329,
4738

internal-combustion engine, 2886

intrinsic energy, 3110

intrinsic magnetic moment, 4672,
4730, 4893

intrinsic semiconductors, 4841

intrinsic spin, 3521, 3670, 3797,
4730

inverse operator, 3006

inversion layer, 3197

invertase, 3500

involution, 3835

ionic bond, 3908, 3946, 3948

ionic crystals, 3893, 3894, 3946
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5. Demise of the Dogmatic Universe
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State of Matter
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rice Fréchet 3071 · Paul Ehrenfest 3073 · Oswald Veblen 3074 · Harry

Bateman 3074 · Werner Alexanderson 3074 · Pierre Weiss 3075 · Lee

de Forest 3082 · Hermann Minkowski 3089 · Ernst Rutherford 3141 ·
Ellsworth Huntington 3142 · Jean Perrin 3144 · Wilhelm Geiger 3144 ·
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von Kármán 3204 · Charles Kettering 3204 · Max von Laue 3207 ·
Casimir Funk 3216 · Franz Kafka 3216 · Chaim Weizmann 3216 ·
Charles Wilson 3229 · Henrietta Swan Leavitt 3232 · Gunnar Nord-

ström 3233 · Alfred Wegener 3234 · Melvin Slipher 3239 · Eduard

Helly 3239 · Edwin Armstrong 3240 · Milutin Milankovich 3245 · Max

Wertheimer 3248 · Ludwig von Mises 3249 · Leonor Michaelis 3261 ·
Henry Moseley 3263 · Johann Radon 3264 · Elmer McCollum 3272 ·
Irving Langmuir 3272 ·George Birkhoff 3273 ·Georg von Hevesy 3274 ·
Igor Sikorsky 3277 · Bela Schick 3277 · Niels Bohr 3281 · Adrian

Fokker 3285 · Edgar Buckingham 3287 · James Franck 3287 · Ernest

Swinton 3289 · Felix Hausdorff 3289 · Srinivasa Ramanujan 3290 ·



1895–1950 CE 4075

Beno Gutenberg 3302 · Frederick Twort 3302 · Felix d’Herelle 3303 ·
Adolf Windaus 3324 · Harold Jeffreys 3324 · Thomas Bromwich 3329 ·
Willem de Sitter 3329 · Gerhard Hassenberg 3373 · D’Arcy Thomp-

son 3373 · Harlow Shapley 3418 · Tullio Levi-Cività 3419 · Hermann
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bor Radó 3632 · Edward Titchmarsh 3632 · John Bernal 3632 · Jan

Oort 3683 · Samuel Goudsmit 3647 · George Uhlenbeck 3647 · Erwin

Schrödinger 3649 · Salomon Bochner 3685 · Raymond Dart 3682 ·
Andrei Tikhonov 3684 · Vladimir Vernadsky 3686 · Robert God-

dard 3686 · John Logie Baird 3688 · Oscar Klein 3690 · Werner Heisen-

berg 3695 · Alexander Aitken 3722 · Eugene Wigner 3723 · John von



4076 5. Demise of the Dogmatic Universe

Neumann 3724 · Douglas Hartree 3746 · Eugène Freyssinet 3756 ·
Martin Heidegger 3757 · Georges Lemaitre 3763 · R.V.L. Hart-

ley 3769 · Bronislaw Malinowski 3770 · George Sarton 3770 · Bar-

bara McClintock 3777 · Otto Neugebauer 3778 · Ludwig Mies van

der Rohe 3778 · Abram Besicovitch 3779 · Alexander Fleming 3780 ·
Otto Diels 3780 · Venkata Raman 3781 · Jerzy Neyman 3784 ·
Jesse Douglas 3784 · Paul Adrien Maurice Dirac 3785 · Frank Whit-

tle 3795 · Felix Bloch 3796 · George Gamow 3797 · Georg von
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Arthur Erdélyi 4468 · Nahum Il’ich Akhiezer 4469 · Roy Plun-

kett 4472 · Hans Bethe 4473 · Russell Harrison Varian 4475 · Sig-

urd Fergus Varian 4475 · Chester Carlson 4479 · Oscar Zariski 4479 ·
Robert Oppenheimer 4484 · Otto Hahn 4487 · Claude Shannon 4498 ·
Robert Merton 4503 · M.M. Schiffer 4504 · B.W. Tuchmann 4505 ·
Lise Meitner 4506 · John Atanasoff 4508 · C.S. Draper 4509 · Carl

Rossby 4509 · Max Perutz 4511 · Hannes Alfvén 4515 · W.M. El-

sasser 4518 · Howard Florey 4522 · E.B. Chain 4522 · W.F. Fried-

man 4525 · David Kamen 4526 · Hedy Lamarr 4526 · Edwin McMil-

lan 4531 · Philip Abelson 4531 · A.S. Waxsman 4531 · Pierre-Michel

Duffieux 4532 · Yoel Racah 4532 · Alfred Hershey 4533 · Charles Ehres-

mann 4556 · Friedrich von Hayek 4577 · Bengt Edlen 4578 · William

Hanford 4579 · N.E. Steenrod 4579 · Salvador Luria 4580 · Charlotte

Auerbach 4580 · Oswald Avery 4581 · William Kolff 4581 · Abra-

ham Wald 4582 · Shichiro Tomonaga 4582 · Shiing-Shen Chern 4583 ·
B. Levich 4600 · M.A. Naimark 4604 · Howard Aiken 4623 ·
A.J.P. Martin 4623 · Richard Synge 4623 · Rudolff Luneburg 4624 ·
Henrik van de Hulst 4625 · Stanislaw Ulam 4626 · Gregory Pin-

cus 4636 · R.B. Woodward 4637 · Wilfred Thesiger 4648 · Alan

Hodgkin 4649 · Andrew Huxley 4649 · Werner von Braun 4649 · Pres-

per Eckert 4650 · Willard Libby 4690 · André Weil 4691 · Claude
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1931–1949 CE Lars Onsager742 (1903–1976, Norway and U.S.A.). The-
oretical physicist. Discovered certain symmetry relations, known as Onsager
reciprocal relations, which form the basis for the entire discipline of macro-
scopic irreversible thermodynamics. Onsager relations apply mostly to the
linear , near-equilibrium regime, i.e., as long as the changes (temporal and
spatial) of temperature, pressure, chemical potentials, etc. are small on the
molecular scale.

The reciprocity relations are rigorous consequences of the principle of mi-
croscopic reversibility, or alternatively the time-reversal invariance property
of the irreversible phenomena at the microscopic scale. Indeed, the principle
of microscopic reversibility hinges on time-symmetry of the mechanical equa-
tions of motion (classical or quantum-mechanical) of the individual particles
and fields of the system. It implies that fluctuations which take the system
away from equilibrium occur at the same rate as those taking it toward equi-
librium. However, microscopic reversibility in no way contradicts the fact
that in a macroscopic description physical systems exhibit irreversible behav-
ior (e.g., heat and material diffusion). Irreversible processes result from the
statistics of the 2nd law of thermodynamics, and (ultimately) from the nature
of the initial state — and have nothing to do with violations of time-reversal
invariance.

Consider the following ‘thought experiment’: a gas, originally occupying
a certain volume V2, is confined to a smaller box V1 at time t = 0. At time
t = t2 it is allowed to diffuse to all the available volume V2. It is clear that the
time-asymmetry crept in through the fact that we forced the gas to occupy the
smaller box at time t = 0, but allowed the gas to relax back to occupy the full
volume at later times. Had we waited for the equilibrium gas configuration to
spontaneously contract to the box and expand back again, there would have
been complete temporal symmetry, but the expected wait time would exceed
the age of the universe by many orders of magnitude.

In other words, the time asymmetry stems from the peculiar fact that we
are able to impose special initial conditions on the gas, but do not know how

742 For further reading, see:

• Reif, F., Fundamentals of Statistical and Thermal Physics, McGraw-Hill,
1965, 651 pp.

• Rumer, Yu.B. and M.Sh. Ryvkin, Thermodynamics, Statistical Physics, and

Kinetics, Mir Publisher: Moscow, 1980, 600 pp.

• Wannier, G.H., Statistical Physics, Dover, 1987, 532 pp.

• Rocard, Y., Thermodynamics, Pitman, 1961, 681 pp.
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to arrange (in advance) that at some future time the gas will be confined to
the box! Another way of saying it: all that asymmetry means is that the
conditional probability, given a gas volume V1 at t = 0, to achieve a volume
V2 at t = t2 > 0, is not a symmetric function of V1, V2. This in itself does
not contradict time-symmetry and the ensuing Onsager symmetry relation,
because that symmetry only says that the joint probability of V (0) = V1 and
V (t2) = V2 is indeed symmetric in V1 and V2. Thus the real mystery is
that we are able to impose macroscopic initial (but not final) conditions on a
system.

The simplest example of Onsager’s reciprocity is this: a system accom-
modates two simultaneous processes: a mass flow driven by a concentration
gradient force and a heat flow driven by a temperature gradient. This mixed
regime will then exhibit ‘cross influences’ in the form of a mass flow induced
by the temperature gradient and a heat flow induced by the concentration
gradient, in such a way that the coupling coefficients of these cross influences
are equal.

A molecule that moves by Brownian motion from position A to position
B in the direction of a concentration gradient, has as much probability of
moving from B to A against the concentration gradient, although the overall
macroscopic state for all molecules of the species in question spontaneously
evolves irreversibly in the direction of increasing global entropy (disorder). In
this case, therefore, diffusion occurs (a tendency for concentration to become
more uniform, and thus for their gradients to decrease).

Likewise, the random (thermal) component of molecular kinetic energy
tends, macroscopically, to spread more equally over the available volume.
The cross-influence coupling coefficients quantify how these two tendencies
interact.

The importance of the Onsager relations lies in their generality. It is imma-
terial, for instance, whether the irreversible processes take place in a gaseous,
liquid or solid medium. The reciprocity expressions are valid independently
of any model-dependent microscopic assumptions. Their validity showed, for
the first time, that nonequilibrium thermodynamics leads, as does equilibrium
thermodynamics, to general results independent of any molecular model.

The discovery of the reciprocity relations can be considered to have been a
turning point in the history of thermodynamics, as it marked a crucial point in
the shift of interest away from equilibrium toward nonequilibrium. Classical
thermodynamics alone does not make it possible to establish such relations,
since it either ignores the irreversible changes that the system undergoes, or
analyzes them indirectly (via changes of the state variables from an initial
to a final equilibrium state). Whenever we have a precise molecular model
which permits to set up a theory, then we have an exact expression for the
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coupling coefficients such that the symmetry implied by Onsager’s relations
holds.

Even before the development of the thermodynamics of irreversible
processes, a few linear phenomenological laws had been known for a long
time:

Fourier (1822) discovered the simple linear law relating the thermal flux
to the temperature gradient: Jq = −λ gradT where λ is the coefficient of
thermal conductivity in solids.

Fick (1856) established that the diffusive flux of matter is proportional to
the concentration gradient which generates the flux, Jd = −D grad c, where
c is the solute concentration (number of moles) per unit volume and D rep-
resents the diffusion coefficient of the dilute mixture.

In a thermodiffusion cell, a nonreacting dye (solute) of (possibly inhomoge-
neous) concentration c is dissolved in a tube containing water (solvent). The
tube is sealed and then subjected to a temperature gradients at its ends. The
temperature gradient generates a concentration flow, and vice versa; thus,
interference effects between the diffusion of matter and heat flow take place.
The system, therefore, operates under the combined influence of Fourier and
Fick laws and the cross-influences:

Jd = −D grad c − DT gradT , Jq = −λD grad c − λ gradT .

The two new phenomenological coefficients are:

λD =
Lqd

T

(
∂μ

∂c

)

T

(Dufour coefficient),

DT =
Lqd

T 2
+

Ldd

T

[(
∂μ

∂T

)

c

− μ

T

]

(Soret coefficient).

where μ = μ(c, T ) is the chemical potential743 of the solute. Setting also

D =
Ldd

T

(
∂μ

∂c

)

T

, λ =
Lqq

T 2
+

Lqd

T
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∂T

)

c

− μ

T

]

,

Xd = − grad
(μ

T

)
, Xq = grad

(
1
T

)

,

743 According to equilibrium thermodynamics, it is μ, rather than the concentra-

tion c, which tends to equalize between different samples in diffusional contact.

If the solution may be approximated as an ideal gas, μ ≈ k T ln
(

c
c0

)
, with k

Boltzmann’s constant and c0 an undetermined constant.
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the flux equations assume their Onsager form (d ≡ 1, q ≡ 2):

J1 = L11X1 + L12X2, J2 = L21X1 + L22X2.

The Onsager reciprocity relation L12 = L21 relates the coefficient which gives
the heat flux caused by a concentration gradient, to the coefficient yielding the
mass flux caused by a temperature gradient. This, as well as the numerous
other reciprocity relations when other gradients and flows interact, follows
from the fact that the microscopic dynamics are time-reversal invariants dis-
cussed above.

In certain situations — such as external magnetic fields, Coriolis forces or
certain types of weak nuclear interactions — microscopic reversibility breaks
down, and then the Onsager reciprocity relations may be invalid or require
modifications.

In general, if a system is subject to different flows and gradient “forces”,
every flow Ji is dependent to some degree on all other forces, Xj , and con-
versely, each force is dependent upon all flows appearing in the system:

Ji = Ji(X1, . . . , Xn) and Xi = Xi(J1, . . . , Jn).

Here n is the total number of forces (or fluxes). In general, the explicit
functional relationships between these quantities are not known. If the system
is in equilibrium, all forces and consequently all flows vanish. Therefore, it is
reasonable to assume that if we introduce weak forces (i.e. small gradients)
into the system, the ensuing flows will be proportional to the forces. Also, the
properties of the new nonequilibrium system are not drastically different from
those of the equilibrium state. The new system remains in the neighborhood
of the equilibrium state. As forces are weak in this regime, we may expand Ji

in a Taylor series around the equilibrium state, and consider only first-order
corrections:

Ji = (Ji)eq +
∑

k

(
∂Ji

∂Xk

)

eq

Xk + · · ·.

By definition all fluxes (Ji)eq vanish at equilibrium, and therefore

Ji =
∑

k

LikXk.

Onsager, in a general proof, assuming microscopic reversibility, established
that the coefficients Lik of the phenomenological equations are symmetrical,
provided Xi = ∇

(
∂s
∂ei

)
, with s the local entropy per unit volume, and ei

the local density of the extensive thermodynamic quantity, the flow (current
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density) of which is Ji.744 In that case, the symmetry (reciprocity) relations
read Lik = Lki, or alternatively:

(
∂Ji

∂Xk

)

=
(

∂Jk

∂Xi

)

.

It means that the increase in the flux Ji caused by a unit increase in the
force Xk (while the remaining forces are held fixed) is equal to the increase
of the flux Jk due to unit increase in the force Xi. For non-isotropic media,
each index i or k includes both a flow/force type index and a spatial index.

Long before 1931, the symmetry relations were suggested by experiments
on the conduction of heat in anisotropic crystals. Charles Soret (1854–
1904, France) noticed in 1893 that the conductivity exhibits a much greater
symmetry than exists in the crystal itself.

Indeed, the tensor relation (a generalization of Fourier’s law)

Ji =
3∑

k=1

Lik
∂T

∂xk
(i, k = 1, 2, 3)

with i, k spatial indices and Lik = Lki, expresses the fact that in a gen-
eral anisotropic crystal, the static equilibrium properties (elastic constants,
refractive index, etc.) do not have the symmetry of its dynamic irreversible
diffusive properties. An entirely analogous situation is exhibited by the elec-
tric conductivity of single crystals (H.B.G. Casimir, 1945).

The Onsager relations can be applied also to thermoelectric phenomena,
including the Seeback effect (1822), the Peltier effect (1834), and the Thomson
(Lord Kelvin) effect .

Since their formulation, Onsager’s reciprocal relations have been tested
for a wide range of flows and forces, and their validity seems to be universal
— to such an extent that they are sometimes labeled as the fourth law of
thermodynamics.

They apply to a gamut of systems, involving chemical reactions, heat con-
duction, viscous flow, electrical conduction, polarized matter, and nonlinear
dissipative systems which may be seen as prototypes for biological cells and
membranes. Although the validity range of Onsager’s relations is still a matter
of debate, his theory is a good approximation in the linear response region.

744 For chemical reactions the situation is slightly different: ei is the density of a

particular reagent of the reaction, Xi the reaction-causing variation δS per

δei = 1, and Ji the reaction-caused piece of ėi.
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Onsager’s other major contribution to theoretical physics was his solution
(1942–1949) of the two-dimensional Ising problem745, which was the first exact

745 In some metals, e.g., Fe and Ni, a finite fraction of the spins of the atoms

becomes spontaneously polarized in the same direction, giving rise to a macro-

scopic magnetic field. This happens, however, only when the temperature is

lower than a characteristic temperature known as the Curie temperature. The

transition from the non-ferromagnetic state to the ferromagnetic state is a phase

transition. The Ising model is a crude toy model in which each domain in a

ferromagnetic substance is replaced by a single microscopic magnet, of fixed

magnetic moment, which can point in either of two opposite directions. Its

main virtue lies in the fact that a two dimensional Ising model yields to an

exact treatment in statistical mechanics. The three-dimensional problem is al-

ready so difficult that it has so far defied an exact solution.

Consider a solid consisting of N identical atoms in a regular lattice. Each atom

has a net electronic spin S and associated magnetic moment m related to its

spin by m = gμ0S, where μ0 is the Bohr magneton and the g (the gyromag-

netic ratio) is of order unity. If no external magnetic field is present there are

two possible interactions between atoms:

(1) a magnetic dipole-dipole interaction, which is far two small to account for

ordinary ferromagnetism.

(2) an electrostatic interaction between the valence-electrons and cations of

neighboring atoms, including exchange interactions between electrons of neigh-

boring atoms which are a quantum-mechanical consequence of the Pauli exclu-

sion principle. Since the exchange interaction between two atoms depends on

the degree to which their electrons can overlap as to occupy approximately the

same region in space, this interaction is negligible except when the atoms are

sufficiently close to each other unlike the ordinary (non-exchange) electrostatic

inter-atomic interactions, the exchange forces mimic inter-atomic dipole-dipole

magnetic forces, except they are several orders of magnitude stronger. Thus

each atom will interact “pseudo-magnetically” only with its nearest neighbor

atoms. A two-atom exchange interaction Hamiltonian is written in the form

Hjk = −2J(Sj · Sk), where J is a parameter (depending on the separation be-

tween the atoms) which measures the strength of the exchange interaction.

To simplify the problem, the Ising model leaves the essential physical situa-

tion intact by adopting the approximation Hjk = −2JSjzSkz, where the x

and y terms of the scalar product have been neglected. The total Hamiltonian

representing the interaction energy between the atoms can be written in form

H ′ = 1
2

N∑

j=1

∑

k �=j

Hjk where J is the exchange constant for neighboring atoms

and the index k refers to atoms in the nearest neighbor shell surrounding the

j-th atom.
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solution of a nontrivial problem in the statistical mechanics of the equilibrium
between different phases of matter.

Onsager was born in Oslo, Norway, and was trained as a chemical engineer.
His work on electrolyte solutions (with P. Debye in Zürich) and his interest in
chemical reactions in solutions led him to ponder general issues in irreversible
thermodynamics. In 1928 he moved to the United States, where he spent the
rest of his career, mostly at Yale (1934–1972, professor from 1945). He was
awarded the Nobel Prize for chemistry in 1968.

1931–1951 Linus Carl Pauling (1901–1994, U.S.A.). Distinguished che-
mist. Applied quantum mechanics to the study of molecular structures and
chemical bonding , and showed (1931) how quantum mechanics could yield
results of broad chemical significance that went well beyond earlier theories
of valency. His book The Nature of the Chemical Bond (1939) is one of the
turning points in modern chemistry. He received the Nobel prize for chemistry
in 1954.

Pauling utilized X-ray diffraction, electron diffraction, magnetic effects
and the heat involved in forming chemical compounds for the calculation of
interatomic distances and angles between chemical bonds, and related inter-
molecular geometry to molecular characteristics and to interactions between
molecules.

He introduced the concepts of hybrid electron orbitals, covalent bonds
(atoms sharing electrons) and resonance hybrids (1931–1934) vital for the
understanding of the directional character of chemical bonding and the well-
defined shapes of bonded atomic aggregates. He thus proposed (1931) that
the phenomenon of resonance causes the stability of the benzene ring . In 1934
Pauling began to apply his knowledge of molecular structure to the complex
molecules of living tissues, particularly in connection with proteins, and be-
came interested in proteins involved in immunological reactions.

He recognized the importance of hydrogen bonding in protein structure and
the interaction between macromolecules. He suggested (1946) that enzymes
work by lowering the energy-barrier of a reaction through binding to a transi-
tional state as the atoms in a compound move from position to position about
the central core. This mechanism was later established for many enzymes.

From the observed shapes of amino acids and small peptide molecules,
Pauling and Robert Corey (1951) formulated a set of structural conditions
that any model of a polypeptide chain must satisfy. This led to the α-helix
structure of proteins.

Pauling was born in Portland, Oregon. He took his Ph.D. at the Cal-
ifornia Institute of Technology (Caltech), Pasadena, in physical chemistry
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(1925). He later worked under Sommerfeld in Münich, Bohr in Copen-
hagen, Schrödinger in Zürich and Bragg in London. He returned to Caltech
in 1927 and became a full professor there in 1931. He left Caltech in 1963 to
devote himself to the study of problems of war and peace.

1931–1953 CE The advent of industrial fiberglass: Fiberglass is glass746

in the form of fine fibers (threads). The fibers may be many times finer
than human hair, and may look and feel like silk. The flexible glass fibers
are stronger than steel and will not burn, stretch, rot, or fade. The ancient
Egyptians used coarse glass fibers for decorative purposes.

For a long time fiberglass was thought of as a curiosity without much
of a future. However, in experiments conducted from 1931 to 1939 by the
American firm Owens Illinois Glass Company, fiberglass material began to
be used on a large scale for its heat-insulation properties. It was first used
to make the entire bodywork of cars by the American firm Chevrolet (1953).
The construction of fiberglass streamlining quickly won over the pleasure boats
industry.

1931–1953 CE Henry John Kaiser (1882–1967, USA). Prominent in-
dustrialist, engineering administrator and innovator, master of creative entre-
preneurial improvisations, builder and founder of giant businesses in cement,
aluminum, magnesium, steel, tourism and health care. Known as the father
of modern shipbuilding.

His many projects put thousands to work during the Depression in
the 1930’s and his massive shipbuilding during WWII (The Liberty Ship
Project747) was a decisive factor in winning the war.

Kaiser was born in Sprout Brook, N.Y. He left school at 13 to go to work.
Later, he went to the Pacific Coast, where he became a road builder.

746 Glass is a complex network of silicon and oxygen atoms. Because of its irregular

arrangements of atoms, glass is not a bona fide crystalline solid. It is often

regarded as a supercooled liquid and has no definite melting point as crystalline

solids do but softens over a wide range of temperatures. Even at ordinary

temperature it will flow appreciably over long periods of time.
747 He ignored the usual methods of building from keel up, and used assembly-line

methods. His ships were built in separate sections and welded together in a

few days. During WWII, Kaiser yards constructed more than 1500 cargo ships:

The first ‘Liberty Ship’ took 196 days to deliver. Kaiser cut the time to 27

days and by 1943 he was turning one out every 10.3 hours! The concept he

developed for mass production of commercial and military ships are still used

today. The USNS tanker Henry J. Kaiser, built in 1986 (205 m long, 30 m wide;

deadweight tonnage 27,561 long tons), carried 180,000 barrels of JP-5 fuel.
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As one of the executants of the early New Deal, especially the TVA, he
had been outstanding not merely for thinking big but for producing an endless
succession of ingenious small ideas too — putting wooden tires on wheelbar-
rows and having them drawn by tractors, replacing petrol engines in tractors
and earth-shovels with diesels, and so on.

His major building and construction enterprises were:

• Organized the combine that built the Hoover Dam748 (1931).

• Built the piers for the Oakland – San Francisco Bay Bridge.

• Erected the Permamente cement plant, then the world’s biggest, in six
months; produced the cement for the Shasta Dam (1935).

• Built the West’s first steel plant, at Fontana, California, and when the
government demanded 50,000 aircraft, he constructed Kaiser Aluminum,
then Kaiser Magnesium in California. (It was a tragedy for the South
that it had no capitalist leader comparable to Kaiser: that is why its
own thrust into the modern world was delayed by nearly two decades.)

• Constructed one of the first commercially practicable geodetic domes.

• With Joseph W. Frazer founded the Kaiser-Frazer Corporation to build
automobiles (1946).

• Advanced medicine with the development of hospitals, medical centers,
clinics, and medical schools. Founded the largest American Health Main-
tenance Organization (now known as Kaiser Permamente). As founder
of a medical care program, he worked with partnerships of physicians
and established nursing schools and contributed to medical education.

• Built civic centers, roads, tunnels, housing industries.

• Spent much of his later years developing the urban landscape of Oáhu.

748 It was the biggest dam in the world, followed by three other linked dams: Parker,

Bonneville, and Grand Coulee. In building Grand Coulee, he had devised a

special trestle, costing $1.4 million, to pour 36 million tons of concrete. Its

cheap power made possible the vast manufacturing industries which flourished

in CA during WWII, and transformed the entire West Coast, enriching it still

further. Kaiser became chairman of the building consortium (1933). Federal

money paid for most of it.
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Since the 1930’s Kaiser, more than any other man, was building the eco-
nomic infrastructure of the modern Western USA, making the West the prin-
cipal supplier of mass-produced weaponry and advanced technology. Some of
his quotations reflect his personality, motives and achievements:

I always have to dream up there against the stars. If I don’t dream I will
make it, I won’t even get close.

∗ ∗∗

I make progress by having people around me who are smarter than I am and
listening to them. And I assume that everyone is smarter about something
than I am.

∗ ∗∗

Live daringly, boldly, fearlessly. Taste the relish to be found in competition
— in having put forth the best within you.

∗ ∗∗

Problems are only opportunities in work clothes.

∗ ∗∗

When your work speaks for itself, don’t interrupt.

∗ ∗∗

1931–1968 CE Sewall Wright (1889–1988, USA). Geneticist and statis-
tician. One of the founders of the mathematical theory of population genetics.
Helped modernize Darwin’s theory of evolution, using statistics to model the
behavior of population of genes; showed that within small isolated popula-
tions, certain genetic features may be lost randomly if the few individuals
possessing the genes happen not to pass the genes on to the next generation,
This is known as the Sewall Wright genetic drift effect (1945) that allows



1931 CE 4105

evolution to occur without the influence and involvement of natural selection
(Wright’s formula).

Wright was born in Melrose MA. He took his doctorate at Harvard, worked
at the US Department of Agriculture (1915–1925), where he conducted exper-
imental work in animal genetics, then became a professor at the universities
of Chicago (1926–1954) and Wisconsin (1955–1960).

Wright introduced stochastic processes to models of population structure
and evolution. He showed that when populations were small, chance could
play an important role in changing the frequency of genes in populations,
which is the essence of the evolutionary process. The phenomenon is known
as genetic drift. The extent, however, to which drift contributes to long-term
evolution depends upon whether alternative genes affect reproduction and
survival and are thus subject to natural selection, or whether they are neutral.
There is still substantial controversy on this point; while some genes are clearly
adaptive, many others appear to behave as though they were neutral.

The population structure of man, throughout most of human history, has
been ideally suited for drift effect with small population size and geographical
isolation, but it still remains problematic how important drift has been in
human evolution.

Wright’s major book is Evolution and the Genetics of Populations (1968).

1931–1968 CE Karol Borsuk (1905–1982, Poland). Mathematician. In-
troduced fruitful new ideas in metric differential geometry (1931) and the
notion of cohomotopy groups into topology (1936). He created the concept
of a divisor of a map (1936) and initiated shape theory (1968). Shape theory
grew at the same time as infinite-dimensional topology and the interaction
between the two fields was of great mutual benefit.

Borsuk was born in Warsaw and was educated at the University of Warsaw
(Ph.D. 1930). He held positions at the Universities of Warsaw (1931–1978),
Princeton (1946–47), Berkeley (1959–60), Madison (1963–64).
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Where did all the water come from? (1931–1951)

“And Steam would go up from the Earth and water the whole face of the
ground”.

Genesis 2, 6

“All the rivers run into the sea; yet the sea is not full”.

Ecclesiastes 1, 7

One of the first methods used to determine the age of the ocean was to
divide the total salt content of the world ocean by the annual increment of salt
discharged into the sea by rivers. This procedure was suggested by Edmund
Halley in 1715 but not implemented until 1899 when John Joly (1857–
1933, Ireland) made the first estimate using data on the abundance of sea salt
obtained by the Challenger expedition.

The result of several such computations of the salt age is somewhat less
than 100 million years. This period of existence is clearly too brief, because
marine organisms, as well as present-day species, have been found in early
Cambrian rocks of an age of the order of 500 million years. The source of
the discrepancy stems from a recycling mechanism through which part of the
salt leaves the ocean’s surface, only to return via the rivers of the world. It is
generally assumed that the oceans are at least as old as marine fossils.

Closely associated with the age of the world ocean is the question of the
origin of such a vast quantity of water (about 1 billion km3) and of the
salt (about 3%) that it contains. Early speculations were concerned with a
deluge. When James Hutton (1785) and John Playfair749 (1802) proposed
the uniformitarian doctrine, such ideas as the cataclysmic appearance of the
land and the sea were in general currency, partly due to the lingering influence
of religious dogma.

There are only two possible sources for the water. Either it is the residue
of a vast, dense primordial atmosphere and is almost as old as the earth, or

749 Scottish mathematician and geologist (1748–1819).
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else there was little or no ocean when the earth formed and it has since leaked
out from the interior. But it can be shown that at present temperatures the
atmosphere, fully saturated, can hold no more than some 13, 000 km3 of water
at any one time.

As water vapor over a molten earth (at perhaps 1200 ◦C), only 16% of
the present ocean volume would have remained in gaseous equilibrium. More-
over, if the earth had been much hotter during its early history than it is
at present, the velocity of escape750 of both molecular and dissociated water
would have been exceeded and the earth would have lost any volatiles origi-
nally accumulated. The depletion of noble gases751 suggests that the surface
of the earth must have been very much hotter than it is today. Thus, the

750 The earth’s retention of volatile components such as air and water depends on its

temperature. Because of their thermal motions, gases are continuously diffusing

outward, but this tendency is counteracted by the gravitational attraction of

the earth. In order to escape from the earth, a molecule, like a spaceship, must

have a velocity that is greater than the escape velocity from earth, namely 11.2
km
sec . The average kinetic energy of a gas molecule is given by 1

2
mv2 = 3kT

2

(T is the absolute temperature). Therefore v =
√

3kT
m

. Consequently, the

lighter the molecule, or the higher the temperature, the more likely it is that

gas can escape from the earth’s surface. Under present conditions, hydrogen

and helium are rapidly lost from the atmosphere while the heavier gases such

as oxygen and nitrogen are retained.
751 A clue to the early thermal history of the earth is offered by the relative abun-

dance of the noble gases on earth and in stars. These gases, unlike water, do

not combine chemically, and so have always been in a gaseous state. We must

compare the abundances of these permanent volatiles with those of elements

that are chemically bound in the solid matter of the earth, such as silicon, the

major metallic element in rocks.

Since the earth originally accumulated from stellar material, the original ratio

of the noble gases to silicon was probably similar to the ratio that is currently

observed in stars. If the material of the primitive earth was then heated, there

would be a loss of the volatile components resulting in a decrease in the ratio

of noble gases to silicon. The depletion of noble gases will be greatest for those

elements of low atomic weight, helium and neon, and less for those of increasing

atomic weight.

The data on the abundance of noble gases suggest that all the water in the

ocean and the gases of the atmosphere must once have been held within the

solid earth: The mantle of the earth has a volume of 1027cm3. Assuming a den-

sity of 4, this amounts to a mass of 4 × 1027 g, while the water of the ocean

has a mass of 1.4 × 1024 g. Thus the mantle must have lost 0.035 percent of its

weight in the form of water, on the average. We must compare this figure with
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atmosphere and the ocean cannot be a remnant of the primordial earth; these
gases must originally have been chemically combined within the solid earth;
they could have accumulated on the surface only since the earth cooled to
near its present temperature, perhaps by being released slowly within the
earth and at temperatures lower than that of molten rock.

In 1931, R.W. Goranson752 found that water dissolve readily in molten
silicate, basaltic and granitic rock. These are large constituents of volcanic
lava. Molten rock can contain approximately 5 percent of its weight as dis-
solved water under temperatures and hydrostatic pressures approaching those
supposed to exist in volcanic pipes and intrusive magmas within the crust of
the earth.

In 1951, W.W. Rubey753 showed that the geological record was incom-
patible with a primordial origin for the water, and that volatile substances,
including water, pour out of volcanoes in amounts much greater than are nec-
essary to form the ocean. Although it was later found that most of the water
emerging from volcanoes was recycled rain, Rubey’s theory remained valid;
geological time has been so long that only a miniscule amount of juvenile
water from each volcanic eruption would be sufficient to have produced the
ocean.

It thus seems that the water on the surface of the earth flowed out of the
interior along with volcanic rocks, but when and at what rate?

The simpler possibilities are that the flow was constant during geological
time, or faster than average to begin with, or faster than average recently. All

the average water content of the mantle. Although the mantle is not accessible

for sampling, meteorites offer us samples of mantle-like material.

Meteorites are fragments of a planet-like object in the solar system that broke

up. Pieces of this material are frequently captured by the earth’s gravitational

field. Some meteorites consists mainly of iron with a high nickel content and

are believed to resemble the material of the core of the earth. Others, the stony

meteorites, contain silicates and are believed to resemble the mantle. By ex-

amining the water content of the stony meteorites, we can therefore obtain an

estimate of the water content of the mantle.

The average water content is about 0.5 percent or 10 times as much as the loss

from the mantle that is required to account for the present ocean. Thus the

mantle could be an adequate source for the water in the ocean.
752 Goranson, R.W., The solubility of water in granitic magmas, Am. J. Sci. 22,

481–502, 1931.
753 Rubey, W.W., Geologic history of sea water, Bull. Geol. Soc. Am. 62, 1111–

1147, 1951.
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possibilities have been proposed. Rubey assumed a constant flow, essentially
on the philosophical grounds that it is the simplest possibility.

In conclusion, the Goranson-Rubey scenario is this: as the rock solidified,
the water were expelled as steam. The quantity of steam from the volcanoes
of a cooling earth can account for the volume of water in our oceans. Chemical
similarities between volcanic steam and ocean water indicate that this steam,
rising from a cooling earth, was very likely the source of our oceans and the
atmosphere.

Once water was present at the surface, weathering of crystalline rocks
could commence. As a result, crystalline rocks were transformed to sediments
and the salts of seawater. The dynamics of the lithosphere then led to the
formation of continental crust so that, as the volume of water at the surface
increased, the difference in elevation between the floor of the ocean and the
surface of the continents also increased.

Originally, the atmosphere was devoid of oxygen, and the ultraviolet irra-
diation of the sea surface led to the synthesis of complex organic molecules.
Life evolved from, and was originally nourished by, the organic matter pro-
duced by solar radiation near the surface of the sea. The evolution of the first
marine plants led to the biological emission of free oxygen and the gradual
oxidation of the surface environment. Eventually this led to the present oxy-
gen-containing atmosphere. Thus life processes have transformed the surface
environment of our planet.

1932 CE A Wonder Year for elementary particles:

• James Chadwick discovered the neutron

• Carl David Anderson discovered the positron

• Harold Clayton Urey discovered the deuterium

• New particle accelerator technology

• New nuclear physics

1932 CE James Chadwick (1891–1974, England). Physicist. Discovered
the neutron and determined its mass. In 1932 Chadwick observed that beryl-
lium, when exposed to bombardment by alpha particles, released an unknown
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radiation that in turn ejected protons from the nuclei of various substances.
Chadwick interpreted this radiation as being composed of particles of mass
approximately equal to that of the proton, but without electrical charge —
neutrons.

This discovery provided a new tool for inducing atomic disintegration,
since neutrons, being electrically uncharged, could penetrate undeflected into
the atomic nucleus.

Chadwick was born in Manchester and was educated at the Universities
of Manchester, Cambridge and Berlin. From 1923 he worked with Ernst
Rutherford in the Cavendish Laboratory, Cambridge, where they studied
the transmutation of elements by bombarding them with alpha particles and
investigated the nature of the atomic nucleus, identifying the proton, the
nucleus of the hydrogen atom, as a constituent of the nuclei of other atoms.
He won the Nobel prize for physics in 1935.

1932 CE August Dvorak (1894–1975, USA). Inventor and scholar. De-
signed a scientific, ergonomically designed typewriter keyboard that is twice
as fast, makes half the errors and enables the typists to move their fingers 20
times less for as with the QWERTY keyboard. Yet his revolutionary inven-
tion was never adopted ! The reason: the commitment to QWERTY of tens of
millions of typists, teachers, sales people, office managers, and manufactures.

Dvorak (born in Glenco, MN) was a professor of education at the Univer-
sity of Washington in Seattle and a distant relative of the Czech composer
Antonin Dvořak. Around 1914, Augustin’s brother-in-law, William Dealy,
attended some industrial efficiency seminars and watched slow-motion films
of typists, and reported what he saw to Dvorak. The brothers in law then
devoted two decades to enormously detailed studies of typing, typists errors,
hand physiology and function, and the relative frequencies of letters, pairs of
letters, and words in English. Finally they assembled all they had and in 1932
designed a new keyboard.

August died a bitter man: “I’m tired of trying to do something worthwhile
for the human race”, he complained. “They simply don’t want to change.”
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The ‘QWERTY’ Syndrome —

or: A Comedy of Errors

All human societies have many apparently arbitrary practices that persist
for centuries or even millennia — writing systems, counting systems, sets of
number signs, calendars, to name just a few examples. At one time there
existed alternatives to the system that was eventually adopted. Were some
of these alternatives better than others? Did we in fact end up committed to
the best ones? Are our alphabets, decimal counting, Arabic numerals, and
Gregorian calendar really superior to Chinese logograms, Babylonian base-60
counting, Roman numerals, and the Mayan calendar?

The origins of many other commitments are now lost in remote history.
How did China become committed to its hard-to-memorize writing system?
Chinese children can master pinyin (a Roman alphabet adapted to Chinese)
in one-tenth of the time required to learn the traditional writing system.

Why do Americans cling to the awkward English measuring system of
pounds, inches, and gallons? How did we become committed to decimal
counting and a 24-hour clock? These questions are tantalizing but perhaps
academic, because there is no prospect of our abolishing the 60 minute hour
or reverting to base-60 counting, even if such changes did prove advantageous.

In modern times, commitments have shaped the history of technology and
culture, often selecting which innovations become entrenched and which are
rejected. In the 19th century United States, for example, those who prof-
ited from canals, barges, stagecoaches, and the pony express resisted the con-
struction of railroads; In England, electric street-lighting spread slowly, partly
because of opposition from local governments with heavy investment in gas
lighting. Even today, commitments influence railroad gauges and television
technology, and whether we mark our rulers with centimeters or inches and
drive on the right or on the left.

The transistor was invented and patented in the United States in the 1940s,
but Japan today dominate the world market for transistorized consumer elec-
tronic products. The reason: the company that became Sony bought tran-
sistor licensing rights from Western Electric at a time when the American
consumer electronics industry was committed to churning out vacuum tube
models and reluctant to compete with its own products.

There is, however, one example which serves to demonstrate this absurdity
of conventions and commitments better than others because it is a comedy of
errors that keeps going on to the very present day — the curse of QWERTY. It



4112 5. Demise of the Dogmatic Universe

started in 1874 when Christopher Sholes designed the typewriter keyboard
to took like

Q W E R T Y U I O P

A S D F G H J K L ← ‘home row’
Z X C V B N M

����������
���������
�������

To overcome the problem of invisible jamming, Sholes applied antiengineering
principles with the goal of slowing down the typist and thus preventing the
second bar from jamming the falling first bar. The idea of eight-finger touch-
typing was still unknown. Typists rummaged around with one of two fingers
while looking at the keyboard, and Sholes was ecstatic if the resulting typing
rate reached 20 or 30 words per minute, the rate of writing by hand. To this
end he scattered the most common letters or letter combinations in English
texts as widely as possible over the keyboard.

Why did QWERTY prevail even after improvements in typewriter tech-
nology (reducing the jamming problem) and the demand for fast typing had
removed the original motivation for it? The reason was that its early head
start and success created a commercial dominance and hence a commitment
of its manufacturers (Remington) to the original layout.

When typing, one rests his finger on the ‘home-row’. The more typing
one can do without having to move the fingers from the home row, the faster
one is able to type, the fewer errors one will make and the less one strains his
fingers. Motion-picture studies prove that typing is fastest on the home row
and slowest on the bottom row.

When Augustin Dvorak started his detailed studies of typing (1914) he
immediately noticed the following shortcomings of QWERTY:

• Not more than 100 English words can be typed without leaving the
home row because QWERTY perversely puts the most common English
letters on the other rows: The home row nine letters include two of the
least used (J and K) but none of the three most frequently used (E, T
and O) and only one of the five vowels (A), even though 40 percent of
all letters in a typical English text are vowels. Thus, when typing the
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words pumpkin or minimum, ones fingers must not only reach from the
home row to the top or bottom but must at times hurdle completely
over the home row, moving directly from top to bottom and back again!
These awkward hurdles and reaches slow one down and introduce typing
errors and finger strain.

• In typing, whenever the left and right hands type alternative letters,
one hand can be getting into position for the next letter while the other
is typing the previous one. One can thereby fall into a steady rhythm
and type quickly. A good positioning of letters in the keyboard should
therefore strive to avoid typing strings of consecutive letters by the same
hand. The longer the string, the slower the typing and the more frequent
the errors. QWERTY typing tends to degenerate into long one-handed
strings of letters, especially strings for the weaker left hand.

More than 3000 English words utilize QWERTY’s left hand alone (e.g.
exaggerated, greatest; million, monopoly). The underlying reason for
this shortcoming is that most English syllables contain both vowels and
consonants, but QWERTY assigns some vowels (A and E) as well as
some common consonants (R, S, and D) to the left hand, and others (I,
O, and U plus H, L, and N) to the right hand. Hence for about half of all
digraphs (two consecutive letters) in a typical English text, QWERTY
allocates both letters to the same hand.

• Most people are right-handed with a weaker left hand. Yet QWERTY
allocates to the weaker hand the most common English letter (E), the
second common (T), and the 4th most common (A), thus making the left
hand perform more than half of all typing strokes (56 percent).

• On each hand the 5th finger (pinkie) is the weakest, and finger-strength
increases from the 5th to the 2nd (index). Yet QWERTY makes almost
as much use of our weakest finger (left 5th) as of our 2nd stronger (right
3rd).

• When one must type two successive strokes with the same hand, it’s
fastest to do so with two remote fingers, next fastest with two adjacent
fingers, slower with the same finger on the same row, and slowest of all
with the same finger on different rows. Yet with the QWERTY key-
board, 20 percent of all English digraphs are typed by adjacent fingers,
and more than 4 percent by the same finger.

The results of these shortcomings is that typing on a QWERTY keyboard
is unnecessarily tiring, slow, inaccurate, hard to learn and hard to remember.
The infinitely superior Dvorak keyboard, the end result of twenty years of an
arduous study, proposed the plan



4114 5. Demise of the Dogmatic Universe

P Y F G C R L

A O E U I D H T N S ← ‘home row’
Q J K X B M W V Z
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with the following merits and advantages over QWERTY:

• Devotes the home row 9 out of 12 most common English letters —
including all 5 vowels and the 3 most common consonants (T, H, N),
while the 6 rarest letters (V, K, J, X, Q, Z) are relegated to the bottom
row. As a result, 70 percent of tying strokes remain on the home row,
only 22 percent are on the upper row, and a mere 8 percent are on the
hated bottom row; thousands of words can be typed with the home row
alone; reaches are 5 times less frequent than in QWERTY typing, and
hurdles hardly ever happen.

• The Dvorak keyboard forces one to alternate hands. It does so by placing
all vowels plus Y in the left hand, but the 13 most common consonants
in the right. As a result, not a single word or even a single syllable can
be typed with the right hand alone, and only a few words can be typed
with the left hand alone.

• 56 percent of all strokes are given to the right hand. Only 2 percent of
all English digraphs are typed by adjacent fingers and only 1 percent by
the same finger.

In a normal workday a good typist’s fingers cover up to 30 km on a QWERTY
keyboard, but only 1.5 km on a Dvorak keyboard! and all this with twice the
speed and half the errors that QWERTY typists make.

Whatever the original reasons for adopting QWERTY, we now seem firmly
committed to it. The typewriter, and its successor the computer are among
the most widely used office machines in the world, and keyboard-related
repetitive-strain injuries are among the most common industrial accidents.
But if we were to overcome the fear of long-held commitments, millions of
people would be able to type with increasing speed, greatly lowered finger fa-
tigue, greater accuracy, and reduced sense of frustration — altogether ending
a bad marriage that has long outlived its original justification.
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1932–1935 CE Gerhard Domagk (1895–1964, Germany). Chemist,
pathologist and physician. Discovered the first of the sulfanilamide drugs
(Prontosil). In 1935 he used it successfully on his youngest daughter to pre-
vent her death from a streptococcal infection, the first use on a human being.

Following Ehrlich’s spectacular success with Salvarsan (1910), researchers
began to test virtually every substance that might be effective against infec-
tious diseases. Although there were some successes — antimalarial drugs and
those that fought protozoal infections such as amoebic dysentry — everything
else proved either as destructive to the patient as to the bacteria, or unable to
kill the germs once they had started to multiply. Scientists began to despair
of finding any more ‘magic bullets’.

However, in 1931, the American Bacteriologists René Jules Dubos
(1901–1982) and Oswald Theodore Avery (1877–1955), of the Rockefeller
institute, announced that they had discovered an enzyme derived from a soil
bacteria that could break down the capsule that protected one particular type
of pneumococcus. Although this proved too toxic for human use, the discovery
gave new life to the search for anti-bacterial drugs.

In 1927, Domagk was appointed research director of the German chemical
company, I.G. Farbenindustrie. Its main products were azo dyes used for color
textiles, and Domagk decided to find out whether they had any adverse effect
on streptococci. In 1932, he found that one azo compound — Prontosil red
— cured mice injected with a lethal doze of hemolytic streptococci.

Domagk won the Nobel prize for physiology or medicine in 1939, but was
prevented by the Nazis from accepting754, 755.

754 Carl von Ossietzky (1889–1938, Germany). German journalist and pacifist,

won the Nobel prize for peace (1935). He fought for Germany in WWI. In his

capacity as a staff member of Berliner Volks-Zeitung and later (1928) as the

editor of Weltbühne, he wrote vigorously in defense of pacifism, denouncing

Nazi rearming. Consequently he was imprisoned in a concentration camp on

charge of being an enemy of the state (1933–1936). He contracted tuberculosis

in prison and was in a sanitarium when the Nobel prize was announced. The

German government considered the award as a “challenge and an insult” and

prohibited Germans thenceforth from accepting such awards.
755 Domagk did not publish his findings until February 1935, and scientists were

surprised that even then, his report failed to mention sulphanilamide, the com-

ponent of Prontosil responsible for its bacteriostatic action. It is believed that

Domagk and his associates knew that sulphanilamide was unpatentable because

it had already been synthesized by a Viennese student, Paul Gelmo, who had

published his findings in his doctoral dissertation (1908).

It is surmised that Domagk spent the years between 1932 and 1935 in a vain
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Sulfanilamide possesses a rather simple chemical structure, and this, to-
gether with the later proof that it owed its action to a similarity to and
competition with an essential bacterial metabolite, was an immense stimulus
to pharmaceutical industrial research (sulphanilamide did not kill bacteria
like an antibiotic, but prevented them from multiplying).

1932 CE Harold Clayton Urey (1893–1981, U.S.A.). Chemist. Discov-
ered deuterium (heavy hydrogen). Awarded the Nobel Prize in chemistry
(1934).

1932–1933 CE Marian Rejewski756 (1906–1980, Poland). Cryptoan-
alyst and mathematician. A key figure in breaking the code of the German
Enigma machine, by taking advantage of repetition in the Enigma encryp-
tion (a message key was enciphered twice at the beginning of every message).
Applying certain theorems from the theory of permutations, he was able to
separate the effect of plugboard settings757 from those of the scrambler settings,
thus reducing the total number of possible keys from 1016 to 105, 456. This
eventually enabled the Polish team to find the day key in about two hours.

Rejewski studied mathematics at the University of Poznan. He was re-
cruited into the Biuro Szyfrów (Polish Cipher Office) in 1929.

The Poles successfully used Rejewski’s technique for several years. When
Herman Göring visited Warsaw (1934), he was totally unaware of the fact
that his communications were being intercepted and deciphered. As he and
the other German dignitaries laid a wreath at the Tomb of the Unknown
Soldier next to the offices of the Biuro Szyfrów, Rejewski could stare down
at them from his window, content in the knowledge that he could read their
most secret communications.

attempt to find a drug similar to but better than sulphanilamide and one that

could be patented. In the meantime, thousands of patients had suffered, and

some had died — all for the sake of profits. The integrity of Domagk was there-

fore called into question. He was, however, awarded the Nobel prize (1939)

despite the rumors about possible suppression of research results.
756 For further reading, see:

• Singh, S., The Code Book, Anchor Books, 1999, 411 pp.

757 Plugboard settings, i.e. number of ways of swapping, say, 6 pairs of 26 letters in

100, 391, 791, 500. But on its own, the plugboard would provide a trivial cipher,

because it would do nothing more than act as a monoalphabetic substitution

cipher, having no effect on the frequency of letters. The scramblers contribute

a smaller number of keys, but their setup is continually changing, which means

that the resulting ciphertext cannot be broken by frequency analysis.
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Rejewski received little monetary compensation for his efforts, not much in
the way of promotion, and only a minor Polish decoration. He merited, how-
ever, the highest accolade of all the Allied Nations. Perhaps his satisfaction
came from a job well done.

1932–1936 CE Carl David Anderson (b. 1905, U.S.A.). Physicist. Dis-
covered the positron (anti-electron), the first known particle of anti-matter
(1932), as predicted by P.A.M. Dirac in 1928.

In 1936 he participated in the discovery of the mu-meson in cosmic rays
at Pikes Peak, Colorado (an elementary fermionic particle about 207 times as
massive as the electron; at first erroneously thought to be the carrier of the
strong nuclear force) predicted by H. Yukawa (1935).

Carl Anderson was born in New York city and received his doctorate at the
California Institute of Technology, Pasadena (1930), where he spent his entire
career. In 1930 he began research on gamma rays and cosmic rays, utilizing
the magnetic cloud chamber. In 1932 Anderson discovered the positron in
the course of cosmic-ray studies, and one year later succeeded in producing
positrons by gamma irradiation. He shared the Nobel prize for physics in
1936.

1932–1937 CE Hans Adolf Krebs (1900–1981, England). Distinguished
biochemist. A pioneer of the field of bioenergetics: studied energy transfor-
mations of intermediate metabolic processes in living matter.

Discovered (1932) the cycle of reactions whereby urea is formed from am-
monia and carbon dioxide in the livers of ureotelic organisms (urea cycle).
This was the first biosynthetic pathway and metabolic cycle to be discov-
ered758. Formulated (1936–1937) the citric acid cycle (known as the Krebs
cycle), the final common pathway for the oxidation of all foodstuff.

Krebs’ cycle is one of the most important metabolic pathways and energy
producer in living organisms. It consists of a cyclic series of stepwise oxidation

758 The over-all reaction is: 2NH3+CO2 → NH2CONH2+H2O; but ammonia

is highly toxic and there is no ammonia to speak of anywhere in the body at

anytime. It was not until the 1950’s, however, that the details of the conversion

were worked out; the nitrogen-containing groups are added in the form of amines

obtained from amino acids. In going from ornithine to citrulline, glutamic

acid (one of the commonest amino acids) donates both the amino group and

the equivalent carbon dioxide. In doing so it must make use of a high-energy

phosphate bond obtained from ATP. In going from citrulline to arginine, another

amino acid, aspartic acid , donates an amine group, again at the expense of ATP.

Thus, the production of urea is an energy-consuming reaction. Each turn of the

urea cycle consumes two molecules of ATP.
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reactions that occur in mitochondria and represents the final phase in the
oxidation of nutrients to CO2 and H2O, with the release of large amounts of
energy.

All the major nutrients of cells, notably carbohydrates, fats, and proteins
ultimately pass through the Krebs’ cycle.

Awarded (with Fritz Lipmann) the Nobel prize for physiology or medi-
cine (1953).

Krebs was born in Hildsheim, Germany to Jewish parents. Following
the Nazi rise to power (1933), he was dismissed from his post at Freiburg
University and moved to England, where he became a naturalized citizen
(1939). He later became professor of biochemistry at Sheffield (1945–1954)
and Oxford (1954–1967).

1932–1939 CE Eduard Cech (1893–1960, Czechoslovakia). Mathemati-
cian. A foremost contributor to modern topology. Introduced (1932) the
topic which today is called Cech homology theory759.

Cech was born in Stracov, Bohemia (now Czech Republic). He studied
at the Charles University of Prague (1912–1920) and Turin (1921–1922) and
continued to work with Fubini in Turin (1922–1923). He then became a
professor at the University of Brno (1928–1945) and Prague (1945–1959).

759 Homology theory : If a closed curve C is the boundary of a region on a surface,

C is homologous to zero, which is symbolized by C ∼ 0. If motion on C are

orientable (clockwise and anticlockwise), then −C has a meaning. Since one

can go round and round a closed curve, ±nC also have a meaning (cycles).

Cycles may be added and subtracted. Thus C ± C′ have meaning too.

If one selects a convention concerning the bounded region (e.g. having the area

to the left of the bounding curves), then C − C′ bounds an annulus such that

C − C′ ∼ 0. In this case C is said to be homologous to C′, i.e. from the point

of view of homology, C and C′ are equivalent. If all cycles homologous to a

particular one are considered equivalent, then they can be classified as a single

type.

Thus homology is an equivalence relation for the classification of cycles, just as

homeomorphism is an equivalence relation for spaces. The number of types of

cycles, that is, the number of homology classes, on a manifold, is an invariant

of the manifold and the cycle types on a manifold form a commutative (abelian)

group w.r.t. the operation of addition. This is known as the Betti group.

The concept of cycles and their homologies can be extended to n-dimensional

manifolds. On higher dimensional manifolds one has not only closed curves but

also closed surfaces, etc.
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1932–1944 CE Alexander Yakovlevich Khinchin760(1894–1959, USSR).
An outstanding mathematician. Established the general theory of station-
ary random processes, their spectral representations and correlation functions
(Wiener-Khinchin theorem).

Studied the convergence of discrete Markov chains to continuous diffusion.
With Kolmogorov he founded the Moscow School of Probability Theory.

Khinchin was born in Kondrovo, Russia, to Jewish parents. He graduated
from Moscow University in 1916, and from 1927 onwards served as a profes-
sor of mathematics there. In 1944 he became an Academician of the Soviet
Academy of Sciences.

1932–1947 CE Edwin Herbert Land (1909–1991, U.S.A.). Inventor and
physicist. Invented the polaroid material (1932) and the polaroid Land camera
that takes and prints a finished picture in seconds (1947). Both inventions
resulted in numerous commercial, military and scientific applications.

The polaroid polarizes light through selective absorption by aligned submi-
croscopic crystals of iodoquinine-sulfate that are embedded in a sheet of plas-
tic. The molecules absorb light whose electric-field-vector is parallel to their
length, while they transmit light whose electric-field-vector is perpendicular
to their length. In 1963 Land began to use polaroid material in sunglasses
and other optical devices such as infrared filters, lightweight range finders,
night adaptation goggles and many others. In 1947, he invented a one-step
process for developing and printing photographs that produced a revolution
in photography unparalleled since the advent of the roll-film.

Land was born to a Jewish family in Bridgeport, CT. He attended Harvard
University, but never graduated. He nevertheless issued more than 500 patents
for his innovations in light and plastics, and won honorary degrees and awards
from numerous scientific institutions and organizations.

1932–1949 CE Karl Theodor Jaspers (1883–1969, Germany and
Switzerland). Philosopher and psychiatrist. His central idea is that Pure Be-
ing (existence) inevitably escapes our efforts at apprehension; Existence eludes
the conceptual intellect and all attempts at inclusive intellectual systemati-
zation must fail; man constantly tries to transcend his limitations through
science, religion and philosophy, but he experiences failure or “shipwreck”.

Jaspers believed that man learns most about himself in “limit situations”
such as death, guilt, suffering, conflict and failure. He held that philosophy is

760 For further reading, see:

• Khinchin, A., A course of Mathematical Analysis, Hindustan Publishing

Corp.: Delhi, 1960, 668 pp.



4120 5. Demise of the Dogmatic Universe

not a set of doctrines, but an activity trough which each individual can become
aware of the nature of his own existence: He was not primarily interested in
the philosophers’ conclusions, because he held that in philosophy all context
and all conclusions are unimportant.

Jaspers urged the study of other philosophers as a way to disturb and
stimulate us so profoundly that we would be compelled to engage in the
activity of philosophizing.

Jasper’s major work, Philosophy (1932), gives his view of the history of
philosophy and introduces his major themes. He identified philosophy with
philosophical thinking itself, not with any particular set of conclusions. His
philosophy is an effort to explore and describe the margins and limits of ex-
perience.

Jasper was born in Oldenburg, Lower Saxony. He began his intellectual
career as a medical student and went on to carry out research in a psychiatric
clinic (1916–1920). He then became a professor of philosophy at Heidelberg
(1920–1937). Dismissed by the Nazis and barred from teaching for having a
Jewish wife (1938–1945). In 1948 he accepted a professorship in philosophy
in Basel, Switzerland.

1932–1956 CE Lev Davidovich Landau (1908–1968, Russia). Among
the top-level physicists of the 20th century. A master of the modern the-
oretical physics techniques of his time. A major contributor to theories of
superfluidity761, superconductivity and phase-transitions. Created the quan-
tum Fermi-liquid theory (1956). Landau was awarded the 1962 Nobel prize
for his work on the superfluid properties of Helium II. Landau left his mark

761 Superfluidity of Helium 4 – the so-called Helium II phase was discovered by

P.L. Kapitsa in 1938. It is the property of flow without viscosity in narrow

capillaries or gaps. It was long thereafter believed that only one isotope of

Helium, He4, is a superfluid. But in 1972 it was discovered [D.M. Lee et

all] that liquid He3 also becomes a superfluid, at much lower temperatures (2

millikelvin, as opposed to 2.2 ◦K for He 4, at 1 atm pressure). Helium was the

last of the elements to be liquefied, and is the most remarkable of all liquids.

At temperatures other than absolute zero, Helium II behaves as if it were a

mixture of two different liquids. One of these is a superfluid, and moves with

zero viscosity along a solid surface. The other is a normal viscous fluid. No

friction occurs between these two parts of the liquid in their relative motion.

He 4 atoms each contain 2 electrons and 4 nucleons and therefore an even

number of fermions, and are thus bosons, and their Bose-Einstein condensation

is manifested as superfluidity. He 3 atoms are fermions which can pair up, with

each pair being a boson, at low enough temperatures; Superfluid He 3 is thus a

condensate of He 3-atom pairs.
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on a wide range of fields including low temperature, atomic, nuclear, plasma,
high energy and cosmic-ray physics. His contributions are partly reflected
in such terms as Landau diamagnetism762, Landau levels, Landau damping ,
Landau energy-spectrum, Landau cuts, Landau-Ginsburg potential, Landau-
Pomeranchuk-Migdal effect.

Landau suggested (1932), for the first time, the possibility of cold dense
stars, composed principally of neutrons. He later suggested (1938) that every
star has a neutron core. He gave a value for the limiting mass, above which
an ordinary star becomes a neutron star.

However, Landau maintained that some stabilizing effect prevents the
great mass of neutrons in the core to collapse indefinitely, and therefore he
did not accept the concept of a ‘black hole’. In his astrophysical work Landau
used Newtonian gravitational theory.

Landau was born in Baku, Azerbaijan, to Jewish parents. His father was
an engineer who worked in the Baku oil industry, and his mother a doctor
who had at one time done physiological research. Landau was graduated at
13 from the Gymnasium and, because he was too young for the university,
attended the Baku Economical Technical School. He matriculated in 1922
at Baku University, after studying physics and chemistry, and transferred in
1924 to the Leningrad State University, which at that time was the center of
Soviet physics. Graduating in 1927, he continued research at the Leningrad
Physico-Technical Institute.

At that time there were practically no outstanding senior theoretical physi-
cists in the Soviet Union, and, since the younger men had to teach themselves
and each other, it was important for them to go abroad and be in touch with
the western theoretical physics schools that were flourishing in such centers
as Copenhagen and Münich.

In 1929 Landau visited Göttingen and Leipzig and then stayed at Copen-
hagen’s Institute for Theoretical Physics, where he came under the influence of
Niels Bohr. After his stay in Copenhagen he visited Cambridge and Zürich,
before returning to the Soviet Union. Apart from short visits to Copenhagen
in 1933 and 1934, Landau spent the remainder of his life in his own country.

In 1932 Landau went to Kharkov to become the head of the Theoretical Di-
vision of the Ukrainian Physico-Technical Institute, a position he combined in
1935 with that of head of the Department of General Physics at the Kharkov

762 In addition to the spin paramagnetism, there is an orbital diamagnetism of free

electrons. This effect, unlike the paramagnetic spin susceptibility, is inversely

proportional to the effective electron mass, in simple cases. [It is especially

strong for Bismuth, where the electrons have abnormally low effective mass.]
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A.M. Gorky State University. In Kharkov Landau began to build a Soviet
school of theoretical physics, so that the city soon became the center of theo-
retical physics in the U.S.S.R. It was also in Kharkov that, with his friend and
former student E.M. Lifshitz, he started to write the well-known Course of
Theoretical Physics , a set of nine volumes that together span the whole of
the subject. His great interest in the teaching of physics is also shown in his
plans for a “Course of General Physics” and even a series entitled “Physics
for Everybody”.

Landau required that his students master all necessary mathematical tech-
niques before coming to him. After that he expected them to master the
so-called theoretical minimum, which included a basic knowledge of all the
domains of theoretical physics. Only the ablest of the students were able to
pass this minimum. In this way his students became proper physicists, rather
than narrow specialists.

In 1937 Pyotr Leonidovich Kapitsa (1894–1984, England and
U.S.S.R.), a low-temperature experimentalist, persuaded Landau to move to
Moscow and to head the Theory Division of the S.I. Vavilov Institute of Phys-
ical Problems, which had been created by the U.S.S.R. Academy of Sciences.

Landau’s attitude to physics and physicists was critical; he did not suffer
fools gladly. While always willing to help anybody, he hated pomposity. Peo-
ple either adored him or were his bitter enemies. He was imprisoned during
the Stalin era (1938) and only a personal intervention by Kapitsa freed him.

In 1937 Landau married K.T. Drobanzeva, and in 1946 they had a son,
Igor, who became an experimental physicist.

On Jan. 7, 1962, Landau was involved in a car accident. He was uncon-
scious for six weeks and was several times declared clinically dead, but he
somehow revived. Distinguished specialists from several countries helped to
save his life. After Landau had regained consciousness his faculties slowly
returned to him, but he was no longer able to perform creative work. His
physical condition never returned to normal, and he died six years later.
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The Landau School (1932–1962)

Landau envisioned theoretical physics as one indivisible science with its
own logic based on certain general principles. Later he converted this vision
into a course on theoretical physics he developed with Evgeni M. Lifshitz at
the Institute of Physical Problems at Kharkov University. The plan of the
course became the “theoretical minimum” for the students; it also involved
a number of mathematical problems which Landau regarded as indispensable
knowledge for every theorist. By imparting this philosophy to his students,
he set the tone of 20th century Soviet theoretical physics.

Virtually all his students and associates were tested on the theoretical min-
imum: The first exam Landau gave anyone eager to become his student was
in mathematics: the exam required the applicant to be able to calculate any
indefinite integral that could be expressed in terms of elementary functions,
to be able to solve any ordinary differential equation and to have knowledge
of vector analysis, tensor algebra and the principles of functions of complex
variable.

Landau believed that tensor analysis and group theory should be studied
together with the fields of theoretical physics in which they find application.
Only after passing this exam could the applicant move successively on to study
the seven sections of the “theoretical minimum”. This study demanded basic
knowledge of all fields of theoretical physics. Landau thought that all theo-
rists should master this basic knowledge, regardless of their eventual specialty
fields.

Of course, not everybody had the ability or the persistence to complete
the study of the theoretical minimum. All in all, 43 physicists have passed
the exam763.

Attendance in the ‘Landau seminar’ was compulsory of all Landau’s stu-
dents. There, articles from authoritative scientific journals were surveyed.

763 In a recent article (Amer. Math. Soc. Transl. (2), 212, 2004), S.P. Novikov

(Field Medalist, 1970) reviewed the declining state of higher education in Rus-

sia and the West. He stated

“I can clearly see that contemporary education cannot produce a theoretical

physicist capable of passing Landau’s theoretical minimum.

...The purely democratic evolution of education, when people freely choose

courses, works poorly in these sciences... physics and mathematics education is

not a democratic structure in nature; it is not like a free economy... Thus we

are entering the 21st century in a state of profound crisis.”
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Landau himself marked the articles he thought of particular interest, which
ranged over all fields, from solid-state physics to GTR. Presenting a report at
the seminar was very time consuming and required an extensive background.
One was to summarize the contents of the chosen paper based on a com-
plete understanding of the subject. This is where the training ensured by the
‘theoretical minimum’ manifested itself. Landau was grounded in all fields of
theoretical physics, and he required the same of his students and colleagues.

After the presentation Landau would give an evaluation of the results
obtained in the review article. If the results were outstanding, they were
inscribed into the “Golden Book”. If in the course of the discussion there
arose problems requiring further investigation, these were introduced into the
“Book of Problems”.

Some articles Landau denounced as “pathological”, which implied that
principles of scientific analysis were violated, either in the solution of the
problem or in its formulation. Landau himself did not read scientific journals,
and thus the seminar was converted into a “creative laboratory”, where Lan-
dau’s students, while feeding him scientific data, were taught his deep critical
analysis and understanding of physics.

Each physicist who passed the theoretical minimum acquired both rights
and duties. He acquired the right to be backed by Landau, but at the same
time, he made a commitment to give reports at the seminars. If a speaker
failed to give intelligible answers to the questions pertaining to the reviewed
material or could not clearly expound his thoughts, his situation was not en-
viable. Sometimes the unlucky fellow’s name was excluded from the list of
speakers, and he was deprived of the right to review articles from scientific
journals (this happened rather seldom). In Landau’s circle this measure was
regarded as capital punishment: Landau despised such a theorist and imme-
diately denied him backing.

Not all seminars were devoted to reviewing articles. Landau’s students
and physicists from other institutes and cities also made reports on original
work. As a rule Landau would acquaint himself with original papers before
the seminar; if he found a paper interesting, it would be presented. Landau
personally spoke on all his own works at the seminar.

It was difficult, but a great honor, to deliver a talk at the seminar. The
speaker was subjected to severe interrogation. The audience had the right
to interrupt. The presentation was more a dialogue between the speaker
and the audience (led by Landau) than a report. Often if the course of the
dialogue, errors, gaps of logic, discrepancies and points of disagreement on
basic assertions of the paper were brought to light. Landau was a man of
great critical intellect: His criticism always helped find the truth.
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If an author was a success at the seminar, he could be sure that his work
was not logically inconsistent and that he had new results. This is why theo-
rists were anxious to report their work at Landau’s seminar: They knew they
would always get an impartial, unprejudiced assessment of their work, and
that from the highest possible authority.

Critical analysis of research is important in any field of science, and par-
ticularly so in theoretical physics. Investigation in theoretical physics is a
chain of logical constructions that can sometimes be ruptured. In beginning
his work an author may make assumptions whose validity is not always con-
firmed at the end; often these assumptions are not explicit. At Landau’s
seminar it would sometimes happen that after exhausting all his arguments,
an author would unsuccessfully resort to his trump card: showing that his
results coincided with the observed experimental data. This argument invari-
able provoked only laughter in the audience, since no coincidence of theory
with experiment can justify logical gaps in the theorist’s work.

Landau’s working day always started with a visit to the experimental lab-
oratories on the ground floor of the Institute for Physical Problems. There
he rushed through the laboratories, found out the latest news and lingered on
in case anyone wanted his immediate theoretical assistance. Landau believed
the problems experimenters were currently solving had priority over the prob-
lems of theorists. He was always willing to cut short any activity whenever
an experimenter asked him for a calculation however minor. His cooperation
with experimenters gave rise to many of Landau’s outstanding works. Indeed,
his magnum opus — the formulation of the theory of superfluidity — was the
fruit of his close cooperation with the experimenter Kapitsa.

For the sake of “economy of thought” Landau would often employ fun-
damental general principles, rejecting anything that could not be confined
within these principles. But any new nontrivial result plunged him into deep
thought. In such a case, Landau would apply his methods to the problem,
either confirming or rejecting the result. It was in just this fashion that Lan-
dau became interested in the kinetic equation for elementary excitations in a
quantum liquid; soon he found its exact solution.

Landau never did for his pupils what he believed they should do them-
selves. Sometimes, after many unsuccessful attempts to solve a problem, a
student would ask Landau for help and hear the reply: “This is your problem.
Why should I do it for you?” After Landau’s flat refusal it become clear that
no outside help would arrive; if the student was lucky, enlightenment would
dawn and the problem would soon be solved. Neither did Landau formu-
late problems for his students, or supply thesis topics to his postgraduates:
They were responsible for these tasks themselves. He thus trained them to be
independent, educating them as future leaders of science.



4126 5. Demise of the Dogmatic Universe

Clear-cut logic and simplicity were characteristic of Landau’s work. He
thoroughly thought over his lectures and articles. He did not write his articles
himself: His associates — most often Lifshitz — were entrusted with this
respected task.

In mathematics, Landau always set greater store by methods that enable
one to solve concrete physical problems than he did by existence theorems. He
had however underestimated abstract mathematics which was not yet widely
adopted in physics.

He used to say in jest: “We know that the mathematics of the 21th cen-
tury is nothing but theoretical physics”. Yet, by the 1970’s, a growing list
of modern mathematical disciplines such as topology, algebraic geometry, al-
gebraic topology and differential geometry – have joined group theory and
19th-century applied mathematics at the forefront of modern physics.
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Superconductivity764

Lev Landau and Vitaly L. Ginzburg765 cast the phenomenology of
superconductivity in the language of quantum mechanics (1950); they in-
troduced a macroscopic wave-function (ψ) whose square modulus repre-

sents the Cooper-pair density (n): |ψ|2 = n. This wave-function satisfies

a Schrödinger-like equation called the Ginzburg-Landau equation, which may

be written in one dimension as d2 ψ
d x2 = 2m∗a

�2 ψ, where m∗ is the effective

mass of a Cooper-pair and a is a temperature-dependent real parameter. The

solution is in the form ψ = Ce−x/ξ, where C is a constant and ξ = �√
2m∗a

is a coherence length.

A microscopic theory of superconductivity was developed (1957) by John
Bardeen, Leon Cooper and Robert Schrieffer, known as the BCS theory.
It provided a major conceptual breakthrough in the quantitative understand-
ing of the mechanism of superconductivity. The central ingredient of the BCS
theory is that electrons form Cooper pairs. By interaction with the ionic
lattice, the conduction electrons develop a weak attraction for each other,
mediated by quanta of lattice vibrations (phonons). This may be thought of
in the following way: One electron passes through the lattice and the positive
ions are attached to it, causing a distortion in their nominal positions. The
second electron of the Cooper pair is then attracted by the clustered ions. The

764 To dig deeper, see:

• Kittel, C., Introduction to Solid State Physics, Wiley, 1986, 646 pp.

• Epifanov, G.I, Solid State Physics, Mir Publishers: Moscow, 1979, 333 pp.

• Sychev, V.V., Complex Thermodynamic Systems, Mir Publishers: Moscow,
1981, 240 pp.

• Rumer, Yu.B. and M.Sh. Ryvkin, Thermodynamics, Statistical Physics, and
Kinetics, Mir Publisher: Moscow, 1980, 600 pp.

• Feynman, R.P., Statistical Mechanics, Perseus Books, 1998, 354 pp.

765 Vitaly L. Ginzburg (b. 1916) was awarded the Nobel Prize in physics (2003)

with A.A. Abrikosov (b. 1928) and A.J. Leggett (b. 1930) for their pio-

neering contributions to the theory of superconductors and superfluids.
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Cooper pairs (each of which consists of electrons of anti-aligned momenta vec-
tors and spin states) behave like bosons and form a condensate analogously
to photons in a laser beam. The distance over which the electron pair is cor-
related is several thousand Å, much greater than the typical distance between
neighboring conduction electrons.

The attraction between the electrons is extremely weak. In spite of the
weakness of the interaction, the superconductivity phase transition occurs be-
cause the electrons close to the Fermi energy have a net attraction preventing
them from being scattered by lattice defects or thermal phonons.

At temperatures just above the critical temperature (Tc) the material is
in the normal (non-superconducting) phase. At temperatures just below Tc,
however, a small energy gap develops where there are no electronic states.
The energy gap is caused by the binding energy due to the formation of the
Cooper pair.

In this superconducting phase, whenever an electron hits a defect or
phonon, it is unlikely that its Cooper-pair partner – typically many lattice-
spacings away – would simultaneously encounter an identical obstruction; so
the attraction between these two electrons suffices to keep the pair from being
slowed down.

If external influences (e.g. electromagnetic fields) induce a current within
the superconductor, the momenta of a Cooper-pair’s electrons no longer can-
cel, but the energy gap still protects pairs from dissociation; the currents then
fail to dissipate and become permanent (provided a flow-circuit is available
within the superconductor).

The formation of the condensed Cooper pairs is hindered by the thermal
excitation of the electrons above the critical temperature, or by too-high cur-
rent densities and/or external magnetic fields even when T < Tc. As the
temperature is lowered beneath Tc, the number of electrons that can cross
the gap is significantly reduced, a greater number of Cooper pairs are formed,
and the energy gap becomes larger. At a temperature of zero Kelvin, all the
states below the gap are filled, and the total energy is lower than in the normal
state.

1932–1951 CE Allan Balcom Du Mont (1901–1965, USA). Engineer,
inventor and pioneer in the practical development of television. Invented the
first commercial television oscilloscope by perfecting the cathode-ray tube,
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devised the first TV guidance system for missiles, and invented the “tuning
eye”.

Du Mont was born in Brooklyn, NY and obtained a B.Sc. in electrical
engineering from Rensselaer Polytechnic Institute (1924). He founded the Du
Mont Laboratories (1931) in his garage with $1000 — half of it borrowed.
By 1939 he became the first television millionaire and by 1951 his company
was doing a gross business of about $75 million a year. Regular television
broadcasts were initiated on April 30, 1939.

1932–1959 CE Francis Thomas Bacon (1904–1992, England). Engineer
and inventor. Direct descendant of Francis Bacon (1561–1626). Developed
the first practical hydrogen-oxygen fuel cell, which convert air and fuel into
electricity through electrochemical processes.

Although William Grove discovered the principle of fuel cells in 1842,
they were considered a scientific curiosity until the early 1940’s, when Bacon
proposed their use in submarines.

Bacon was born in Billericay Essex, UK. He graduated from Eton College
and from Trinity College, Cambridge.

Bacon began experimenting with alkali electrolytes in the late 1930s, set-
tling on potassium hydroxide (KOH) instead of using the acid electrolytes
known since Grove’s early discoveries. KOH performed as well as acid elec-
trolytes and was not as corrosive to the electrodes. Bacon’s cell also used
porous “gas-diffusion electrodes” rather than solid electrodes as Grove had
done. Gas-diffusion electrodes increased the surface area in which the reac-
tion between the electrode, the electrolyte and the fuel occurs.

Also, Bacon used pressurized gases to keep the electrolyte from “flooding”
the tiny pores in the electrodes. Over the course of the following twenty
years, Bacon made enough progress with the alkali cell to present large scale
demonstrations.

He continued his research with the Anti-submarine Experimental Estab-
lishment, then returned to Cambridge (1946), where he demonstrated a suc-
cessful six-kilowatt fuel cell (1959). The first practical application of this
high-efficiency, pollution-free technology was in the Apollo space vehicles of
the United States, which used the alkaline fuel cells to provide in-flight power,
heat, and clean drinking water, the latter a by-product of the electrochemical
reaction.

Bacon sought new applications for fuel cells as a principal consultant to
National Research Development Corp. (1956–62), Energy Conservation Ltd.
(1962–71), and the U.K. Atomic Energy Authority (1971–73).
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By the end of the century, the technology was being developed interna-
tionally. He was made an Officer of the Order of the British Empire (1967),
elected a fellow of the Royal Society (1973), and awarded the first Grove
Medal (1991).

Electrochemical Technologies —

Origin, Legacy and Perspectives

A. Introduction

Aristotle postulated that all matter is comprised of four basic elements:
earth, water, air, and fire. The idea dominated science until the late 18th
century, when revolutionaries from rival nations transformed chemistry from
a jumble of medieval alchemy into a true science. The pace of discovery
accelerated rapidly as chemists on the frontiers of knowledge established the
theories and methodologies of modern science. Electrochemical systems have
played a determinant role in the history of mankind. They are an intrinsic
part of our evolution on this Planet.

The whole of electrical technologies is based on magnetic and electrical
phenomena and no history of the subject can ignore the origins of these two
groups, remote and sometimes uncertain as these origins may be. For many
centuries man has observed magnetic effects in natural minerals found in the
ground and electrical effects in lightning, the aurora borealis, St. Elmo’s fire,
the electric eel and the attraction of light objects by natural resins when
rubbed.

Some of these observations have been put to practical use from the very
earliest recorded times — the lodestone for navigation, the electric eel for
medicinal purposes — so that, if electrical engineering is the practical ap-
plication of electrical and magnetic science, there is a sense in which it has
not only its roots in the remote past but actually existed as a human ac-
tivity even in those far-off days. The two sides, magnetism and electricity,
however, remained quite apart until the beginning of the nineteenth century,
when the discovery of the close relationship between them brought the two
streams of thought together and opened the way to the establishment of their
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interrelationship. The great surge forward in understanding the foundations
of electromagnetism made modern electrical engineering possible.

Electrochemistry plays a dominant role in a vast number of research and
applied areas. This is basically a consequence of a unique combination of
different features of electrochemical reactions.

Today, electrochemical processes comprise a substantial part of chemical
industry and consume about seven percent of the industrial electricity use.
They are of increasing importance w.r.t. environmental protection, safety and
energy technology.

Electrochemical reactions are known for a wide range of materials such as
metals, semiconductors, polymers, and biological systems. Electrochemistry
currently plays a large role in a number of rather diverse areas such as prepar-
ative chemistry, analytical chemistry, energy storage, energy conversion, bio-
chemistry, solid state chemistry, materials science, and microelectronics.

At the beginning of the twentieth century, electrochemistry was mainly
dominated by studies of the transport of charged species and thermodynamic
considerations.

Kinetic aspects of electrochemistry have become more important in elec-
trochemical research since the middle of the twentieth century with an
increased understanding of the chemical and electronic structure of the
solid/solution interface. These studies have been accelerated by the appli-
cation of numerous in-situ and ex-situ spectroscopic techniques, which have
been combined with electrochemical experiments over the last thirty years.
Recently,the introduction of in-situ scanning probe techniques has allowed us
to follow electrochemical reactions on an atomic or molecular scale.

Based on theoretical and experimental results and methods gathered by
electrochemists for many decades, electrochemistry is now used in many fun-
damental fields, such as the study of new organic and inorganic compounds
biological systems. In more applied arenas, it is used to shape materials from
the macroscopic to the microscopic scale, to accurately analyze for chemical
impurities, to understand and prevent the corrosion of materials at low and
extremely high temperatures, to probe the functioning of living cells, and to
directly convert chemical energy into electricity.

Electrical energy does not exist naturally in any convenient form and it
must be converted from some other energy form when needed. Chemical
energy is the most practical source and is generally used in one of two ways.
Fuel can be burnt in a heat engine, such as a petrol or diesel engine, or a gas
turbine, which then drives an electrical generator. This process is inherently
inefficient. Alternatively, the fuel may be consumed in an electrolytic reaction
in a battery or fuel cell.
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For low power (less than 50 W) and short duration missions, batteries are
the logical choice. Engine generators and fuel cells are the preferred choices
for applications demanding greater than 500 W. The following list highlights
the salient points of each technology:

Diesel (or gasoline) generators produce electricity in a multi-step process.
The energy in the fuel is first converted into rotary mechanical energy in
the engine. Then, the rotary mechanical energy is converted to DC or AC
electrical energy by a generator.

As this is a multi-step energy conversion process, involving a heat engine
with moving parts and, thus, frictional losses, it is an intrinsically inefficient
method for producing electricity. Diesel generators typically have lower ef-
ficiencies, in the range of 20% to 30%. Gasoline generators usually exhibit
lower efficiencies, in the 10% to 15% range.

Diesel and gasoline generators are also characterized by a high operating
temperature, noise, air pollution, and their requirement for regular mainte-
nance. On the other hand, diesel and gasoline generators are inexpensive and
readily available. They are also easily, even continuously, refuelable. The
energy available from the generator is limited only by its supply of fuel.

A battery is an electrochemical energy conversion device. It converts the
energy in the fuel (active material of the electrodes) directly into DC electric-
ity. There is no combustion, no multi-step energy conversion, and no frictional
loss. The battery is intrinsically efficient, silent and non-polluting. In most
embodiments, the battery is also a low temperature device that produces power
immediately upon demand.

However, batteries suffer from the limitation that all the available fuel is
contained within the battery case. When a non-rechargeable (primary) bat-
tery has consumed its fuel, it is discarded and, with it, the energy conversion
device and the “fuel tank”. In a rechargeable (secondary) battery, one can
reuse the energy conversion device and the “fuel tank”, but one must wait for
several hours for the recharging process to be completed. One cannot operate
a battery continuously as one can operate the diesel generator.

The fuel cell is a device that converts fuel and an oxidant directly into
electricity by an electrochemical process. The fuel is not burned to produce
heat and the efficiency of energy conversion is not limited by the Carnot Cycle
limits placed upon heat engines. The fuel cell, like a battery, has no moving
parts in the energy conversion device, and thus suffers no frictional losses.

Realistic energy efficiencies in excess of 50% can be achieved with fuel cell
systems in generator set applications. Fuel cells combine the advantages of
both diesel generators and batteries, while eliminating the major drawbacks
of both. A fuel cell is essentially the electrochemical energy conversion device
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for the battery, engineered in such away that it is continuously refuelable, like
the diesel generator.

A fuel cell is intrinsically energy efficient, non-polluting, silent, and re-
liable. In some embodiments, it is a low temperature device that provides
power instantly upon demand, and exhibits a long operating life with mini-
mal maintenance.

B. Timeline History of Electrochemistry

1766 Henry Cavendish (1731–1810, England) studied the prop-
erties and the processes of preparation of hydrogen (without
knowing its elemental character) in great detail and gave it
the name “inflammable air”.

1781 Joseph Priestley (1733–1804, England) produced water by
igniting hydrogen in oxygen.

1783 Henry Cavendish observed combustion of hydrogen to pro-
duce water. Lavoisier repeated the experiments conducted by
Cavendish and realized that this was a new gas. He gave it the
name ‘hydrogen’ from the Greek Words for ‘water former’.

1791 Luigi Galvani (1737–1798, Italy). Discovered that an ani-
mal muscular tissue could be induced to twitch if two different
metals (later called ‘electrodes’) were brought into contact
with it. His experiments eventually laid the foundations for
the principle of storage batteries.

1800 Alessandro Volta (1745–1827, Italy). Discovered the prin-
ciple of electrolysis: the production of a chemical reaction by
passing an electric circuit through an electrolyte (a liquid that
conducts electricity as a result of the presence of positive or
negative ions, such as solutions of ionic salts).
Invented the first battery (the voltaic pile). He described two
arrangements that produced an electric current: one was a
pile of silver and zinc discs separated by cardboard moist-
ened with brine, and the other — a series of glasses of salty
or alkaline water in which bimetallic curved electrodes were
dipped; it enabled electric currents to be produced, and was
the first method of artificially producing a reasonable and
controllable electric current.
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1800 William Nicholson (1753–1815, England). Broke water
into its components hydrogen and oxygen through electrol-
ysis.

1800–1803 Johann Wilhelm Ritter (1776–1810, Germany). Invented
electroplating766 when he passed current through a copper-
sulfate solution (1800). Discovered that water consists of two
parts of hydrogen and one part of oxygen. Invented the ac-
cumulator or rechargeable battery.

1802 William Cruickshank (England) designed the first electric
battery capable of mass-production.

1807 Humphry Davy (1778–1829, England). Isolated potassium
and sodium through electrolysis. He thus established the use
of electrochemistry for isolating highly active elements which
had proved unresponsive to traditional chemical techniques.

1815–1828 William Hyde Wollaston (1766–1828, England) made
(1815) improvements to the voltaic pile. Further improve-
ments were made by Robert Hare (1781–1858, USA) dur-
ing 1820–1831, and in 1829 by Antoine-César Becquerel
(1788–1878, France).

1832 Michael Faraday (1791–1867, England) developed the
quantitative theory of electrochemistry. His basic laws are:

• The amount of a substance deposited on each electrode
of an electrolytic cell is directly proportional to the
quantity of electricity passed through the cell.

• The quantities of different elements deposited by a given
amount of electricity are in the ratio of their chemical
equivalent weights.

1836 John Daniell (1790–1845, England). Improved the voltaic
cell, replacing it with the Daniell cell which more reliably
produced a steady current.

766 The origins of electroplating go back to the alchemists of the 16th century:

an iron rod decomposed when soaked in blue-vitriol (CuSO4 · 5H2O). The

Parthians (250–224 BCE) may have used an electric battery to supply electricity

for a silver-plating process. This artifact was discovered in 1957 in the Baghdad

museum. Some Biblical scholars have speculated that the Ark of the Covenant

(I Sam 4, II Sam 6 ), was indeed a powerful high-voltage battery or a charged

capacitor.
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1837 Moritz Hermann Jacobi (1801–1874, Germany and Rus-
sia). Improved the process of electroplating; the object, a con-
ductor of electricity, was placed (as a cathode) in a bath in
which the electrolyte was the salt of a metal to be deposited.
His first undertaking was silverplating.

1839 William Robert Grove (1811–1856, England). Con-
structed the first fuel-cell through the reverse process of elec-
trolysis; he placed test tubes of hydrogen and oxygen gases
over two respective platinum stripes in a vessel containing a
dilute sulfuric acid with a connecting wire.

In such a device, the reactions producing the electric current
are obtained from substances contained outside and not inside
the casing. The chemical energy of a fuel is converted directly
into electric energy, i.e. the energy released in the oxidation
of a conventional fuel is made directly available in the form
of an electric current. It thus avoids the wasteful detour of
conventional, thermal power stations.

1841 Robert Wilhelm Bunsen (1811–1899, Germany). Re-
placed the expensive platinum electrode used in Grove’s bat-
tery with a carbon electrode.

1859 Gaston Planté (1834–1889, France). Invented the first prac-
tical accumulator or rechargeable battery.

1868 Georges Leclanché (1839–1882, France). Devised the dry-
cell with zinc alloy and manganese dioxide electrodes in an
ammonium chloride electrolyte. This is the type of battery
used in flashlights, radiosets etc. This cell was later improved
(1888) by Carl Gassner.

1870 Jules Verne predicted the use of hydrogen fuel in his science-
fiction book Mysterious Island. Verne describes a process
whereby “...water will one day be employed as fuel, that hy-
drogen and oxygen which constitute it, used singly or to-
gether, will furnish an inexhaustible source of heat and light,
of an intensity of which coal is not capable... Water will be
the coal of our future.”

1875–1879 Friedrich Kohlrausch (1840–1910, Germany) found that
Ohm’s Law also applies to dissolved electrolytes. Discovered
the law of the independent migration of ions, i.e.: each type
of migrating ion has a specific resistance no matter what its
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original molecular combination may have been, and therefore
a solution’s electrical resistance is due only to the migrating
ions of a given substance.

1877–1896 Svante August Arrhenius (1859–1927, Sweden), Fried-
rich Ostwald (1853–1932, Germany) and Jacobus Van’t
Hoff (1852–1911, Holland) expounded the theory of elec-
trolytic dissociation and conduction of dilute solutions of elec-
trolytes in the framework of general chemical kinetics.

1888–1906 Hermann Nernst (1864–1941, Germany). Elucidated the
theory of voltaic cells by assuming an electrolytic pressure
of dissociation (1889) which forces ions from electrodes into
solution and which is opposed to the osmotic pressure of the
dissolved ions.

He applied the principles of thermodynamics to the chemical
reactions proceeding in a battery and showed how the char-
acteristics of the current produced, could be used to calculate
the free energy change in a chemical reaction producing the
current. The Nernst Equation relates the cell’s voltage to its
chemical properties (1906). Nernst also invented the Nickel-
Cadmium battery (1899) and worked out the thermodynam-
ics of the ‘dry cell’ (1891).

1906 Joseph John Thomson (1856–1940, England) discovered
that a hydrogen atom has a single electron.

1923 Johannes Nicolaus Brönsted (1879–1947, Denmark) de-
veloped the donor-acceptor theory of acids and bases.

1923 John B.S. Haldane (1892–1964, England) presented a pa-
per to Cambridge University in which he proposed to meet
the increasing demand for energy by using wind energy to
electrolyze water into hydrogen and oxygen. The gases, first
liquefied, can be stored until needed. They can then be re-
combined in combustion motors or ‘oxidation cells’.

1929 Rudolf Erren (Germany) advanced the concept of inject-
ing hydrogen into the air-fuel mixture of combustion engines,
serving to heighten the output of the combustion process. He
converted buses, vans, rail cars, and even submarines to be
powered by hydrogen or any combination of hydrogen-fuel
mixtures.
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1930 James J. Drumm (1897–1974, Ireland ) invented the zinc-
nickel alkaline battery. The cell is an alkaline cell and the
only metals which enter into its construction are stainless
steel and pure nickel. Its mechanical strength is therefore
quite satisfactory. The positive-plate system consists of the
hydroxides of nickel mixed with nickel flakes. This electrode
was first developed by Edison (1905).

The negative plate is a grid of nickel gauze and the electrolyte
is a solution of zinc oxide in potassium hydroxide (potassium
zincate). During charge, zinc is plated on to the nickel grid,
and during discharge this zinc dissolves readily in the potas-
sium hydroxide.

1931 Hermann Honnef (Germany) designed huge wind-power
generators which could theoretically produce up to 100
megawatts of power, stored as hydrogen.

1932–1959 Francis Thomas Bacon (1904–1992, England). Invented
the first successful fuel-cell. He improved on the expensive
platinum catalysts employed by Ludwig Mond (1839–1909)
and Charles Langer (1889) with a hydrogen-oxygen cell us-
ing less corrosive alkaline electrolytes and inexpensive nickel
electrodes (1932). In 1959, Bacon and his coworkers were
able to demonstrate a practical 5-kilowatt system capable of
powering a welding machine.

1932 Harold Clayton Urey (1891–1981) discovered deuterium
(heavy hydrogen).

1934 Marcus Laurence Elwin Oliphant (1901–2000) discov-
ered tritium.

1938 Igor I. Sikorski (1889–1972, USA) suggested the use of liq-
uid hydrogen as an aircraft fuel.

1943 Samuel Ruben (1900–1988, USA) invented the Mercury-
oxide cell [Anode: Zn; Cathode: HgO; Electrolyte: KOH or
NaOH aqueous solution]. It revolutionized battery technol-
ogy by packing more capacity in less space and by being
durable enough for the harsh climates of wartime theaters like
North Africa and the South Pacific — places where ordinary
zinc-carbon batteries (used in flashlights, mine detectors, and
walkie-talkies) could not hold up. Ruben joined efforts with
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the P.R. Mallory company to manufacture millions of mer-
cury cells for the WWII war effort. Both Ruben and Mallory
then created the Duracell company.

1948–1955 R.O. King (Canada) and his associates at the University of
Toronto showed that combustion engines can be converted to
run on hydrogen, simply and cheaply.

1950’s The U.S. Air Force was using hydrogen fuel in experimental,
high-altitude, long-range reconnaissance aircraft.

1956–1965 Rudolph Arthur Marcus (USA). Established the mod-
ern theory of chemical kinetics, including theories of electron
transfer reactions, unimolecular reactions, electrode reactions,
semiclassical theory of collisions and bound states, intermole-
cular dynamics, solvent dynamics, and chemical reaction co-
ordinates.

Application of his theories include such phenomena as pho-
tosynthesis, electrically conducting polymers, chemilumines-
cence767 and corrosion. Awarded the Nobel Prize for Chem-
istry (1992).

1957 Carl Walton Lillehei (USA), a cardiovascular surgeon, de-
veloped the long-life miniature mercury battery.

1959–1980 Lew Urry (USA) and Karl Kordesch (USA) indepen-
dently developed the alkaline primary battery which replaced
the zinc-carbon flashlight batteries. In 1966, Kordesch devel-
oped a 150 kW Alkaline fuel cell. In 1970 he built an alkaline
fuel cell/battery hybrid electric car based on an A-40 Austin.
The fuel cell was installed in the trunk of the car and hydro-
gen tanks on the roof, leaving room for 4 passengers in the
4-door car.

1960’s • Lockheed (USA) was developing a high altitude super-
sonic spy plane to run on liquid hydrogen fuel.

• NASA (USA) developed the use of the hydrogen fuel-cell
for use in the Apollo missions to the moon. The fuel-
cells, utilizing expensive platinum electrodes, provided
on-board electrical power, as well as generating drinking
water for the crew’s consumption.

767 Photon emission of a substance resulting from a chemical reaction (such as slow

oxidation of phosphorus). The light emitted by the fire-fly or glow-worm, and

luminous combustion, are examples of this common phenomenon.
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• John O’M. Bockris at General Motors (USA), began
advancing the idea of ‘hydrogen economy ’. In this am-
bitious energy project, the cities of the United States
could be supplied with energy derived from the sun, and
the energy could be stored using hydrogen.

1960–1980 Allen J. Bard (USA). Fostered the development of electro-
analytical methods and instruments that deepened the funda-
mental understanding of electron-transfer reactions and elec-
trogenerated chemiluminescence.

1966–72 Roger Billing (USA) converted many late automobile mod-
els to run on hydrogen, using their internal combustion en-
gines.

1974 Joseph Lindmayer (USA) developed a silicon photovoltaic
cell for harnessing solar power.

1975 Alan J. Heeger (USA), Hideki Shirakawa (Japan) and
Alan G. MacDiarmid (USA) shared the 2000 Chemistry
Nobel Prize for the discovery and development of organic con-
ducting polymers (“synthetic metals”).

C. Thermochemistry

When a chemical reaction occurs some chemical bonds are broken and
others are formed. Thus, the energy associated with chemical bonds and
intermolecular attraction (chemical energy) changes, and some of this energy
change appears as the intake or release of heat, i.e.: microscopic kinetic energy
associated with random molecular motion.

A heat of reaction is the quantity of heat exchanged between a system and
its surrounding when a chemical reaction occurs within the system at constant
temperature (e.g.: heat combustion).

If reaction occurs in an isolated system (neither matter nor energy are
exchanged with its surroundings), the reaction produces a change in the ther-
mal energy of the system, accompanied by a change in temperature. An
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exothermic reaction produces a temperature increase in an isolated system
or, in a nonisolated system, gives off heat to the surrounding (negative heat
of reaction). The reverse is true for an endothermic reaction.

Internal energy, U is the total energy of a system (both kinetic and
potential) including:

• Translational, rotational and vibrational energy of molecules.

• Energy stored in chemical bonds and intermolecular interactions.

• Energy associated with the interaction of protons and neutrons in atomic
nuclei (unchanged in a chemical reaction).

Heat transfer and work are means by which a system exchanges energy
with its surrounding, and occur only during a change in the system.

The first law of thermodynamics dictates the relationship between heat
supplied (q), external work done (W ) and changes in internal energy:

ΔU = q + W

The convention followed is that energy entering the system carries a positive
sign. Thus, if heat is absorbed by the system, q > 0. If work is done on
the system, W > 0. Any energy leaving the system carries a negative sign.
Thus, if heat is given off by the system, q < 0. If work is done by the system,
W < 0.

If, on balance, energy enters the system, ΔU > 0. If more energy leaves
the system, ΔU < 0.

The state of a system is indicated by a complete set of state variables, such
as its temperature (T ), pressure (P ) and the types and amounts of substances
present.

One useful state variable is the enthalpy H = U + PV (V = volume).
If a process is carried out at a constant temperature and pressure,
ΔH = ΔU + PΔV . For example, the equation for the combustion of sucrose
is

C12H22O11 (solid) + 12O2 (gas) → 12CO2 (gas) + 11H2O (liquid)

for which

ΔH = −5.65 × 106 Joule/mole (heat is produced).

This reaction is exothermic. On the other hand, for the reaction

N2 (gas) + O2 (gas) → 2NO (gas)
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ΔH = +1.8 × 105 Joule/mole

and heat is absorbed from the surroundings (endothermic).

The exothermic ionic reaction

H+ (aq) + OH− (aq) → H2O (liquid), ΔH = −5.58 × 104 J/mole

describes the neutralization of a strong acid by a strong base.

It is useful to define the Gibbs free energy G = H − TS, where S is
the entropy function. For a process occurring at constant T , the free energy
change is ΔG = ΔH − T dS.

We might think that the quantity of energy available to do work in the
surroundings as a result of an exothermic chemical process as −(ΔH). This
would be the same as the quantity of heat that an exothermic reaction releases
to the surroundings (including any volume-changing mechanical work, if P is
held fixed). However, that quantity of heat must be adjusted for the heat
requirement in reversibly producing the accompanying entropy change in the
system (qrev = TΔS).

If an exothermic reaction is accompanied by an increase in entropy, the
amount of energy available to do work in the surroundings is greater than
−ΔH. If entropy decreases in the exothermic reaction, the amount of energy
available to do work is less than −ΔH. But in either case, this amount
of energy is equal to −ΔG. Thus, the amount of work that we are free to
extract from a chemical process is −ΔG, so the Gibbs function G is called
the free energy function.

Notice also that this interpretation of free energy allows for the possibility
of work being done in an endothermic process if TΔS exceeds ΔH768. We
will see next how the free energy change accompanying a reaction can be
converted to electrical work. In any case we must not think of free energy as
being “free” energy. Costs are always involved in tapping an energy source.

Because we cannot establish absolute values for G or H we must
refer these state variables to a certain standard cell, with standard potential
difference ΔE◦ (for an electrochemical process) and with corresponding
ΔH◦ and ΔG◦ (for any chemical reaction or process).

Now, we know that the entropy change for an isothermal expansion of one

mole of an ideal gas is simply ΔS = R ln Vf

Vi
(R the gas constant), where

Vf is its final volume and Vi is its initial volume. Since for an ideal gas

768 A reaction for which ΔG < 0 is called exergonic, whereas, if ΔG > 0, it is

referred to as endergonic.
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ΔH = ΔH◦ and ΔS = ΔS◦ − R ln Q, where Q is the reaction quotient769,
we obtain TΔS = TΔS◦ − RT ln Q and thus

ΔG = ΔH◦ − TΔS◦ + RT ln Q = ΔG◦ + RT ln Q.

Hence the Nernst Equation (1889):

ΔG = ΔG◦ + RT ln Q.

Fossil Fuels

Energy-source materials, called fuels, liberate heat through the process of
combustion. The bulk of Carnot cycle needs are met by petroleum, natural
gas and coal, so-called fossil fuels. These fuels are derived from remains of
plant and animal life from millions of years ago.

The original source of the energy locked into these fuels is solar energy; in
the process of photosynthesis, CO2 and H2O, in the presence of enzymes,
the pigment chlorophyll, and sunlight, are converted into carbohydrates which
are compounds with formulas Cm(H2O)n, where m and n are integers [e.g.
in sugar glucose m = n = 6, that is, C6(H2O)6 = C6H12O6. Its formation
through photosynthesis is an endothermic process, represented as

6CO2 (gas) + 6H2O (liquid)
chlorophyll−−−−−−−→
sunlight

C6H12O6 (solid) + 6O2 (gas),

ΔH = +2.8 × 106 Joules/mole of C6H12O6.

When this reaction is reversed (combustion of glucose), heat is produced in
an exothermic process.

The complex carbohydrate cellulose, with molecular masses ranging up
to 500, 000 amu, is the principal structural material of plants. When plant
life decomposes in the presence of bacteria and out of contact with air, O
and H atoms are removed and the approximate carbon content of the residue
increases in the progression (percentage by mass)

peat → lignite (32% C) → sub-bituminous coal (40% C) →
bituminous coal (60% C) → anthracite coal (80% C)

769 Q is defined as the product of nai
i for all reagents and products with ni the

molar concentrations, and ai = number of molecules of species i in the balanced

reaction (ai > 0 for products, ai < 0 for reagents).



1932 CE 4143

For this process to proceed all the way to anthracite coal may take about 300
million years. Coal, then, is a combustible organic rock consisting of carbon,
hydrogen, and oxygen, together with small quantities of nitrogen, sulfur, and
mineral matter (ash). (One proposed formula for a “molecule” of bituminous
coal is C153H115N3O13S2.)

Petroleum and natural gas have formed in a somewhat different way. The
remains of plants and animals living in ancient seas fell to the ocean floor,
where they were decomposed by bacteria and covered with sand and mud.
Over time, the sand and mud were stacked in layers and converted to sand-
stone by their own weight. The high pressures and temperatures resulting
from this overlying sandstone rock formation transformed the original organic
matter into petroleum and natural gas. The ages of these deposits range from
about 250 million to 500 million years.

A typical natural gas consists of about 85% methane (CH4), 10% ethane
(C2H6), 3% propane (C3H8), and small quantities of other combustible and
noncombustible gases. A typical petroleum consists of several hundred differ-
ent hydrocarbons that range in complexity from C1 molecules (CH4) to C40

or higher (such as C40H82).

One way to compare different fuels is through their heats of combustion:
In general, the higher the magnitude of the heat of combustion, the better
the fuel. Table 5.8 lists approximate heats of combustion for the fossil fuels.
These data show that biomass (living matter or materials derived from it —
wood, alcohols, municipal waste) is a viable fuel, but that fossil fuels yield
more energy per unit mass.

Table 5.8: Approximate Heat of Combustion of some Fuels

Fuel Heat of Combustion, kJ/gram

Municipal waste −12.7
Cellulose −17.5
Pinewood −21.2
Methanol −22.7
Peat −20.8
Bituminous coal −28.3
Iso-Octane −47.8
Natural gas −49.5

Methanol (methyl alcohol), CH3OH, can be obtained from coal by the reac-
tion

CO (gas) + 2H2 (gas) → CH3OH (liquid).
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It can also be produced by thermal decomposition (pyrolysis) of wood, ma-
nure, sewage, or municipal waste. The heat of combustion of methanol is
only about one-half that of a typical gasoline on a mass basis, but methanol
has a high octane number — 106 — compared with 100 for the gasoline hy-
drocarbon iso-octane and about 92 for premium gasoline. Methanol has been
tested and used as a fuel in internal combustion engines and is cleaner burning
than gasoline. Methanol can also be used for space heating, electric power
generation, fuel cells, and as a reactant to make a variety of other organic
compounds.

Ethanol (ethyl alcohol), C2H5OH, is produced mostly from ethylene,
C2H4, which in turn is derived from petroleum.

Ethanol production by fermentation is probably most advanced in Brazil,
where sugarcane and cassava (manioc) are the plant matter (biomass) used. In
the United States, ethanol fuel is used chiefly as a 90% gasoline–10% ethanol
mixture called gasohol. Ethanol admixture is also used to raise the octane
number of gasoline.

Another fuel with great potential is hydrogen. Its most attractive features
are the following:

• On a per gram basis, its heat of combustion is more than twice that of
methane and about three times that of gasoline.

• The product of its combustion is H2O, not CO and CO2 as with
gasoline.

Currently, the bulk of hydrogen used commercially is made from petroleum
and natural gas. (Alternative methods of producing hydrogen, and the
prospects of developing an economy based on hydrogen are current subjects
of research and development.)

Combustion reactions are only one means of extracting useful energy from
materials. An alternative, for example, is to carry out reactions that yield
the same products as combustion reactions in electrochemical cells called fuel
cells. The energy is released as electricity rather than as heat. Solar energy
can be used directly, without recourse to photosynthesis. Nuclear processes
can be used in place of chemical reactions.

Alternative energy sources, including those intended for automobiles, are
likely to become increasingly important in the twenty-first century.
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D. Electrochemistry
770

“A conventional gasoline-powered automobile is only about 25% efficient
in converting chemical energy into kinetic energy (energy of motion). An
electric-powered auto is about three times as efficient. Unfortunately, when
automotive technology was first being developed, devices for converting chem-
ical energy to electrical energy did not perform at their intrinsic efficiencies.
This fact, together with the availability of high-quality gasoline at a low cost,
resulted in the preeminence of the internal combustion automobile. Now, with
concern about long-term energy supplies and environmental pollution, there
is a renewed interest in electric-powered buses and automobiles.”

“Chemical reactions can be used to produce electricity and electricity can
conversely be used to drive chemical reactions. The practical applications of
electrochemistry are countless, ranging from batteries and fuel cells as electric
power sources, to the manufacture of key chemicals, the refining of metals,
and the methods of controlling corrosion. Also important, however, are the
theoretical implications. Because electricity involves flow of electric charge, a
study of the relationship between chemistry and electricity gives us additional
insight into reactions in which electrons are transferred in oxidation-reduction
reactions.”

A basic concept of electrochemistry is that of oxidation number. It is
a number related to the number of electrons that an atom loses or gains,
or otherwise appear to use in joining with other atoms in compounds. The
following (somewhat arbitrary) conventions or rules are assigned:

• In its compounds, hydrogen has an oxidation state (O.S.) of +1 , except

in metal hydride compounds, where it has O.S. of −1 .

• In its compounds, oxygen has an O.S. of −2 .

• The O.S. of an individual atom in a free element (uncombined with other

elements) is zero, 0 .

• The total oxidation states of all atoms in neutral species (isolated atoms,
molecules) is zero; In ions, the O.S. number is equal to the charge of the
ion.

770 Section D includes quotations and Figures (5.5, 5.6, 5.7, 5.8, 5.9) from ch.21 of:

Petrucci, R.H., W.S. Hardwood and F.G. Herring, General Chemistry, Prentice-

Hall, 2002, 1160 pp.
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A reagent which gains oxygen (O) atoms is said to undergo oxidation. A
reagent which loses oxygen (O) atoms is said to undergo reduction. An oxida-
tion and a reduction must always occur together and such a reaction is called
an oxidation-reduction or redox reaction.

In a broader sense: oxidation is a process in which the O.S. of some ele-
ment increases and in which electrons appear on the r.h.s. of a half-equation.
Accordingly, reduction is a process in which the oxidation number of some el-
ement decreases and in which electrons appear on the l.h.s. of a half-equation.
For example,

Zn (solid) + Cu2+ (aq) → Zn2+ (aq) + Cu (solid)

is rewritten as two half-equations that hold simultaneously:

oxidation Zn (s) → Zn2+ + 2e−

reduction Cu2+ (aq) + 2e− → Cu (s)

Explanation:

In the first half-reaction, Zn is oxidized — its oxidation state increases
from 0 to +2. This change corresponds to a loss of two electrons by
each zinc atom.

In the second half-reaction, Cu2+ is reduced — its oxidation state de-
creases from +2 to 0. This change corresponds to the gain of two elec-
trons by each Cu2+ ion.

Consider a strip of metal (called an electrode) immersed in a solution contain-
ing ions of the same metal. This combination is known as a half-cell. Two
kinds of interactions are possible between metal atoms in the electrode and
metal ions in solution (assuming the metal does not interact with the water
solvent):

1. A metal cation Mn+ from the solution may collide with the electrode,
gain n electrons from it, and be converted to a metal atom M. The ion
is reduced.

2. A metal atom M on the surface may lose n electrons to the electrode
and enter the solution as the ion Mn+. The metal atom is oxidized.

An equilibrium is quickly established between the metal and the solution,
which we can represent as

M(s)
oxidation−−−−−−→←−−−−−−
reduction

Mn+(aq) + ne−
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However, any changes produced at the electrode or in the solution as a
consequence of this equilibrium are not easily measured. Instead, our measure-
ments must be based on a combination of two different half-cells. Specifically,
we must measure the tendency for electrons to flow from the electrode of one
half-cell to the electrode of the other. Electrodes are classified according to
whether oxidation or reduction takes place there. If oxidation takes place, the
electrode is called the anode. If reduction takes place, the electrode is called
the cathode.

Fig. 5.7: Electrochemical cell

Example (Figure 5.7):

An electrochemical cell consists of two half-cells, one with Cu electrode
in contact with Cu2+ (aqueous), and the other with Ag and Ag+

(aqueous). The two electrodes are joined by wires and the solutions are
joined by a third solution in a U-tube called a salt-bridge. The ends of
the salt-bridge are plugged with a porous material that allows ions to
migrate but prevents the bulk flow of liquid.

Now, Cu atoms on the anode release electrons and enter the Cu(NO3)2
aqueous solution as Cu2+ ions. These electrons pass through the wires to the
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cathode, where they are gained by the Ag+ ions from the AgNO3 solution,
producing a deposit of metallic silver. Simultaneously, anions (NO−

3 ) from
the salt-bridge migrate into the copper half-cell and neutralize the positive
charge of excess Cu2+ ions; cations (K+) migrate into the silver half-cell and
neutralize the negative charge of the excess NO−

3 ions. The overall reaction
that occurs as the electrochemical cell spontaneously produces electric current
is

oxidation (at anode) Cu (solid) → Cu2+(aq) + 2e−

reduction (at cathode) 2
{
Ag+ (aq) + e− → Ag (solid)}

Overall Cu (solid) +2Ag+ (aq) → Cu2+ (aq) + 2Ag (s)

The reading of the voltmeter (0.460 V) is the cell voltage or the potential
difference between the two half-cells. The unit of cell voltage Volt (V) is an
energy per unit charge. Thus, a potential difference of one volt signifies a
energy of one Joule for every coulomb of charge passing through an electric
circuit. This voltage is the driving force for electrons through the circuit.

The cell described above which produces electricity as a result of a spon-
taneous (ΔG < 0, exergonic) chemical reaction is called voltaic or galvanic
cell. An electrochemical cell in which electricity is used to accomplish a non-
spontaneous chemical change (ΔG > 0, endergonic) is known as electrolytic
cell.

When a reaction occurs in a voltaic cell, the cell does electrical work. It
is the work of moving electric charges. The total work (Welec) done is the
product of three terms: (a) Ecell; (b) n, the number of moles of electrons
transferred between the electrodes; and (c) the electric charge per mole of
electrons, called the Faraday constant (F ). The Faraday constant is equal
to 96, 485 coulombs per mole of electrons (96, 485 C/mol e−). Because the
product Volt × Coulomb = Joule, the unit of Welec is joules (J). Thus

Welec = nFEcell

This expression applies only if the cell operates reversibly. The maximal
amount of available energy (work) that can be derived from a process is equal
to −ΔG, namely

ΔG = −nFEcell,

where G is the Gibbs free energy function. It then follows from
ΔG◦ = −nFE0

cell:

Ecell = E◦
cell −

RT

nF
lnQ,

which is the Nernst equation applied to electrochemistry.
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Batteries

A battery is a device that stores chemical energy for later release as elec-

tricity. Some batteries consist of a single voltaic cell with two electrodes and

the appropriate electrolyte(s); an example is a flashlight cell. Other batteries

consist of two or more voltaic cells joined in series fashion — plus to minus —

to increase the total voltage; an example is an automobile battery. We will

consider three types of cells and batteries.

• Primary batteries (or primary cells). The cell reaction is not reversible.

When the reactants have been mostly converted to products, no more

electricity is produced and the battery is dead.

• Secondary batteries (or secondary cells). The cell reaction can be re-

versed by passing electricity through the battery (charging). Such a

battery can be used through several hundred or more cycles of discharg-

ing followed by charging.

• Flow batteries and fuel cells. Materials (reactants, products, and elec-

trolytes) pass through the battery, which is simply a converter of chem-

ical energy to electric energy.

Batteries are vitally important to modern society: In developed nations, an-

nual production has been estimated at over 10 batteries per person per year.

The most common form of voltaic cell is the Leclanché cell, invented by the

French chemist Georges Leclanché (1839–1882) in 1868. Popularly called a

dry cell (because no free liquid is present) or flashlight battery, the Leclanché

cell is diagrammed in Figure 5.8. In this cell, oxidation occurs at a zinc

anode and reduction at an inert carbon (graphite) cathode. The electrolyte

is a moist paste of MnO2, ZnCl2, NH4Cl, and carbon black (soot). The

maximum cell voltage is 1.55 V. The anode (oxidation) half-reaction is simple:

Oxidation : Zn (s) → Zn2+ (aq) + 2e−

The reduction is more complex. Essentially, it involves the reduction of MnO2

to compounds having Mn in a (+3) oxidation state, for example,

Reduction : 2MnO2 (s) + H2O (l) + 2e− → Mn2O3 (s) + 2OH− (aq)
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Fig. 5.8: Leclanché (dry) cell

An acid-base reaction occurs between NH+
4 (the cation from the salt

NH4Cl) and OH−.

NH+
4 (aq) + OH− (aq) → NH3 (g) + H2O (l)

A buildup of NH3 (g) cannot be permitted to occur around the cathode

because it would disrupt the current by adhering to the cathode. That buildup

is prevented by a reaction between Zn2+ and NH3 (g) to form the complex

ion [Zn(NH3)2]2+, which crystallizes as a chloride salt.

Zn2+ (aq) + 2NH3 (g) + 2Cl− (aq) → [Zn(NH3)2]Cl2 (s)

The Leclanché cell is a primary cell; it cannot be recharged. This cell is

cheap to make, but it has some drawbacks. When current is drawn rapidly

from the cell, products such as NH3 build up on the electrodes, causing the

voltage to drop. Also, because the electrolyte medium is acidic, the zinc metal

slowly dissolves.

A superior form of the Leclanché cell is the alkaline cell, which uses NaOH
or KOH in place of NH4Cl as the electrolyte. The reduction half-reaction

is the same as that shown above, but the oxidation half-reaction involves the
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Fig. 5.9: Lead-acid cell

formation of Zn(OH)2 (s), which we can think of as occurring in two steps.

Zn (s) → Zn2+ (aq) + 2e−

Zn2+ (aq) + 2OH− (aq) → Zn(OH)2 (s)

Overall : Zn (s) + 2OH− (aq) → Zn(OH)2 (s) + 2e−

The advantages of the alkaline battery are that zinc does not dissolve as
readily in a basic (alkaline) medium as in an acidic medium and the battery
does a better job of maintaining its voltage as current is drawn from it.

The most common secondary battery is the lead-acid battery or storage
battery, used in automobiles since about 1915 (Figure 5.9). A storage battery
is capable of repeated use because it uses chemical reactions that are re-
versible. That is, the discharged energy can be restored by supplying electric
current to recharge the cell.

The reactants in a lead-acid battery are spongy lead packed into a lead
grid at the anode, red-brown lead (IV) oxide packed into a lead grid at the
cathode, and dilute sulfuric acid with about 35% H2SO4, by mass. In this
strongly acidic medium the ionization of H2SO4 does not go to completion.
Both HSO−

4 (aq) and SO2−
4 (aq) are present, but HSO−

4 predominates.
The half-reactions and overall reaction are
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PbO2 (s) + 3H+ (aq)

+ HSO−
4 (aq) + 2e− → PbSO4 (s) + 2H2O (l)

Pb (s) + HSO−
4 (aq) → PbSO4 (s) + H+ (aq) + 2e−

PbO2 (s) + Pb (s) + 2H+ (aq)

+ 2HSO−
4 (aq)

→ 2PbSO4 (s) + 2H2O (l)

Ecell = EPbO2/PbSO4 − EPbSO4/Pb = 1.74V − (−0.28V ) = 2.02V

When an automobile engine is started, the battery is at first discharging.
Once the car is in motion, an alternator powered by the engine constantly
recharges the battery. At times, the plates of the battery become coated with
PbSO4 (s) and the electrolyte becomes sufficiently diluted with water that
the battery must be recharged by connecting it to an external electric source.
This forces the (non-spontaneous) reverse of the above reaction:

2PbSO4 (s)+2H2O (l) → Pb (s)+PbO2 (s)+2H+ (aq)+2HSO−
4 (aq)

Ecell = −2.02 V

To prevent the anode and cathode from coming into contact with each
other and causing a short circuit, sheets of insulating material are used to
separate alternating anode and cathode plates. A group of anodes is con-
nected together electrically, as is a group of cathodes. This parallel connec-
tion increases the electrode area in contact with the electrolyte solution and
thus increases the current-delivering capacity of the cell. Several such cells
are then joined in a series fashion, positive to negative, to produce a battery.
The typical 12 V battery consists of six cells, each cell potential of about
2 V.

An important modern variant of the dry cell is the miniature button bat-
tery — the silver-zinc cell used in watches, hearing aid, cameras, and other
portable electronic equipment. In addition it fulfills the requirements of space
craft, satellites, missiles, rockets, torpedoes, underwater vehicles, and life-
support systems.

The cell diagram of a silver-zinc cell (Figure 5.10) is

Zn (s), ZnO (s) | KOH (satd) | Ag2O (s), Ag (s)

The half-reactions on discharging are
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Fig. 5.10: Silver-Zinc cell

Reduction: Ag2O (s) + H2O (l) + 2e− → 2Ag (s) + 2OH− (aq)

Oxidation: Zn (s) + 2OH− (aq) → ZnO (s) + H2O (l) + 2e−

Overall: Zn (s) + Ag2O (s) → ZnO (s) + 2Ag (s)

Because no solution species is involved in the overall cell reaction, the

quantity of electrolyte is very small and the electrodes can be maintained

very close together. The cell voltage is 1.8 V, and its storage capacity is six

times greater than that of a lead-acid battery of the same size.

Rechargeable Batteries

In the field, a battery that suddenly goes dead is unacceptable. Secondary

cells can be charged and discharged many times, making it economic to use,

but requiring a more costly construction.

The nickel-cadmium cell is commonly used in cordless electric devices,

such as electric shavers and handheld calculators. The anode in this battery

is cadmium metal, and the cathode is the Ni (III) compound NiO(OH) sup-

ported on nickel metal. The half-cell reactions for a nickel–cadmium battery
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Fig. 5.11: An electrolytic cell

during discharge are

Reduction:
2NiO(OH) (s)

+ 2H2O (l) + 2e− → 2Ni(OH)2 (s) + 2OH− (aq)

Oxidation: Cd (s) + 2OH− (aq) → Cd(OH)2 (s) + 2e−

Overall:
Cd (s) + 2NiO(OH) (s)

+ 2H2O (l)
→ 2Ni(OH)2 (s) + Cd(OH)2 (s)

This battery gives a fairly constant voltage of 1.4 V. When recharged by
connecting the battery to an external voltage source, the reactions above are
reversed. Nickel–cadmium batteries can be recharged many times because the
solid products adhere to the surface of the electrodes.

Note that assigning the terms anode and cathode is not based on the
electrode charges; it is based on the half-reactions at the electrode surfaces.
Specifically,

• Oxidation always occurs at the anode of an electrochemical cell. Because
of the buildup of electrons freed in the oxidation half-reaction, the anode
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of a voltaic cell is (−). Because electrons are withdrawn from it, the
anode in an electrolytic cell is (+). For either type of cell, the anode is
the electrode from which electrons exit the cell.

• Reduction always occurs at the cathode of an electrochemical cell. Be-
cause of the removal of electrons by the reduction half-reaction, the
cathode of a voltaic cell is (+). Because of the electrons forced onto
it, the cathode of an electrolytic cell is (−). For either type of cell, the
cathode is the electrode at which electrons enter the cell.

The following table summarizes the relationship between a voltaic cell and
an electrolytic cell. Note that the sign of each electrode in an electrolytic
cell is the same as the sign of the battery electrode to which it is attached.
(However, in electronics a battery’s anode is defined as “+”.)

Electrolysis

Until now, we have emphasized voltaic (galvanic) cells, electrochemical
cells in which chemical change is used to produce electricity. Another type
of electrochemical cell — the electrolytic cell — uses electricity to produce a
nonspontaneous reaction. The process in which a nonspontaneous reaction is
driven by the application of electric energy is called electrolysis.

When the Zinc-Copper cell functions spontaneously, electrons flow from
the zinc to the copper and the overall chemical change in the voltaic cell is
(Fig. 5.11)

Zn (s) + Cu2+ (aq) → Zn2+ (aq) + Cu (s) E◦
cell = 1.103 V

Now suppose we connect the same cell to an external electric source of voltage
greater than 1.103 V. That is, the connection is made so that electrons are
forced into the zinc electrode (now the cathode) and removed from the copper
electrode (now the anode). The overall reaction in this case is the inverse of
the voltaic cell reaction, and E◦

cell is negative.

Reduction: Zn2+ (aq) + 2e− → Zn (s)

Oxidation: Cu (s) → Cu2+ (aq) + 2e−

Overall: Cu (s) + Zn2+ (aq) → Cu2+ (aq) + Zn (s)

E◦
cell = E◦

Zn2+/Zn − E◦
Cu2+/Cu = −0.763 V − 0.340 V = −1.103 V
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Thus, by reversing the direction of the electron flow, we change the voltaic
cell into an electrolytic cell.

E. Fuel-Cell Technology

In 1839, the Welsh-born jurist-physicist William Robert Grove real-
ized that if electrolysis, using electricity, could split water into hydrogen and
oxygen, then the opposite could also be true, i.e.: combining hydrogen and
oxygen in a suitable way, would produce electricity. To test his reasoning he
indeed built a device that would do just that — the world’s first fuel-cell.
Grove’s work thus advanced the idea of energy’s conservation and reversible
conversion.

However, at that time, society was not intrigued with the fuel-cell and
had little grasp of its technological potential. In fact, interest in Grove’s
invention diminished as the dawn of cheap fossil fuels approached and the
soon to be discovered internal combustion engine captivated the late 19th
century populace; a larger segment of Western Society was enjoying a higher
standard of living through the utilization of cheap energy and machines to
do work. Against this background, Grove’s invention was little more than a
curiosity as the internal combustion engine and petroleum enthralled the age.

Fossil fuels and the internal combustion engine reigned supreme from
Grove’s day to the present and they probably will into the near term fu-
ture. However, looming on the horizon is the day when the world will run
out of fossil fuels. This event will threaten energy prices and energy security.
To avoid the turmoil a smooth transition to a hydrogen-based economy seems
necessary.

Let us briefly survey the evolution of the fuel-cell concept since its incep-
tion by Grove. Since then, a variety of visionaries have worked to develop
the technology to use hydrogen as an energy medium, and thus to create a
non-polluting, cold-combustion, hydrogen economy.

First articulated by the French science fiction master Jules Verne, this
vision has animated generations of engineers and scientists seeking a source
of hard energy that is renewable and non-polluting. Hydrogen, when burned,
yields water vapor energy; it is a viable replacement for the coal, petroleum
and methane that are causing a dangerous rise in the CO2 content of the
earth’s atmosphere.



4158 5. Demise of the Dogmatic Universe

Hydrogen is not a primary source, but rather an ‘energy carrier’ which
must be ‘broken’ from water using electrolysis or chemical processes and re-
combined to generate electricity, heat or mechanical energy. Solar, wind or
hot nuclear hydrogen fusion are candidates primary energy sources. If pri-
mary energy source is clean and cheap enough, a ‘hydrogen economy’ makes
sense, and adapting cars, aircraft, electrical generation and heating becomes
a manageable goal of commercial development engineering.

From 1889 until the early 20th century, many people tried to produce fuel
cells (FC) that could convert coal or carbon directly to electricity. These
attempts failed because not enough was known about metals or electricity. In
1932, Francis T. Bacon developed the first successful FC. He used hydrogen,
oxygen, an alkaline electrolyte, and nickel electrodes. In 1952, Bacon and a
co-worker produced a 5 kW fuel cell system.

The large boost to FC technology came from NASA; In the late 1950’s
NASA needed a compact way to generate electricity for space missions. Nu-
clear energy was deemed too dangerous, batteries too heavy, and solar power
too cumbersome. The answer was fuel cells.

There are presently five major fuel cell types:

• alkaline fuel cell (AFC),

• molten carbonate fuel cell (MCFC),

• phosphoric acid fuel cell (PAFC),

• polymer electrolyte fuel cell (PEFC),

• solid fuel cell (SOFC).

Both alkaline and polymer fuel cells have demonstrated their capabilities
in the Apollo, Gemini and Space Shuttle manned space vehicle programs. The
major efforts are presently focused on developing electric vehicles.

In order to provide an example of the electrochemical process that occurs
in a fuel cell we consider the proton exchange membrane fuel cell (PEMFC)
which uses one of the simplest reactions of any fuel cell:

The pressurized hydrogen gas molecules H2 (assumed to be available)
are fed into the anode side of the cell where it encounters a catalyst. The
catalyst is usually made of platinum powder very highly coated onto carbon
paper or cloth. It is rough and porous so that the maximum surface area of
the platinum can be exposed to the hydrogen. The platinum coated side of
the catalyst faces the Proton Exchange Membrane (PEM) which plays here
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the role of electrolyte. It is a specially treated material, which looks like
kitchen plastic wrap. The membrane blocks electrons and only conducts (lets
through) positively charged ions.

Now, when an H2 molecule comes in contact with the platinum of the
catalyst, it splits into two H+ ions and two electrons (e−):

2H2 −→ 4H+ + 4e−.

The electrons are conducted through the anode, where they make their way
through an external circuit doing useful work (such as: lighting a bulb, turning
a motor, etc) and return to the cathode side of the fuel cell. The hydrogen
ions (H+) travel through the electrolyte contained in the fuel cell until they
too reach the cathode. Meanwhile, on the cathode side of the fuel cell, oxygen
gas (O2) is being forced through the catalyst, where it forms two oxygen ions
(O−). Altogether, on the cathode side

O2 + 4H+ + 4e− −→ 4H+ + [2O2−
− 4e−] + 4e− −→ 4H+ + 2O2−

−→ 2H2O

The net reaction is therefore

2H2 + O2 −→ 2H2O (liquid)

The by-products of the electrochemical reaction that occurs in the cell are:
electricity, water vapor and heat. Theoretically, the water vapor can be re-
cycled to produce additional hydrogen. The waste heat can be utilized for
heating. Since this direct conversion of fuel (hydrogen) into electricity is not
limited by the Carnot’s law of thermodynamics, fuel cells can achieve sub-
stantially higher efficiencies then combustion. Fuel cells achieve efficiencies of
35 percent to 90 percent depending on whether the waste heat is employed.
These efficiencies are about 2 to 3 times higher than that of a combustion
engine which converts fuel to heat, then into mechanical energy and finally
into electricity.

Another popular fuel-cell is the direct methanol fuel-cell (DMFC), in which
the working fuel is not H2 but CH3OH (methanol). Here again the proton
exchange membrane is employed; a thin membrane covered on both sides
with a sparse layer of platinum based catalyst and sandwiched between two
electrodes. The methanol acts as an ideal hydrogen carrier because it readily
frees its hydrogen to react in the fuel cell.

How does the cell work? — A methanol/water solution is introduced to a
negatively charged anode electrode that spontaneously reacts by breaking the
methanol molecules apart. Once broken up, the carbon atoms combine with
the oxygen atoms from methanol and water at the negative electrode to form
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carbon-dioxide. At the same time the hydrogen atoms are further divided
into protons and electrons.

Altogether, the oxidation process at the anode yields

CH3OH + H2O � CO2 + 6H+ + 6e− Anode

Meanwhile, the hydrogen electrons are forced to flow to the positively charged
electrode (cathode), forming an electrical current, while the protons pass
through the membrane to the cathode.

The reduction process at the cathode is

3
2
O2 + 6H+ + 6e− � 3H2O Cathode

in which the two parts of the hydrogen atom are reunited and combine with
oxygen to produce water. The overall reaction is thus

2CH3OH + 3O2 → 2CO2 + 4H2O + waste heat.

The reaction takes place at temperatures in the range 50◦–85◦ C with an
efficiency of about 50 percent.

It can be seen that the overall cell reaction consumes 4 moles of methanol
(128 g) with 6 moles of oxygen to produce 4 moles of carbon-dioxide gas and 8
moles of water (144 g) with a transfer of 24 moles of electrons (24 faradays).
The potential of a single cell is 0.6 volts.

The theoretical maximum electric energy available in any electrochemical
cell is the free energy change for the cell reaction. The maximum thermal
energy release when a fuel (at fixed ambient temperature and pressure) is
burned is the enthalpy change, ΔH◦. One of the measures used to evaluate
a fuel cell is the efficiency value ε = ΔG◦/ΔH◦. For a hydrogen-oxygen
cell ε = −474.5 kJ/(−571.6 kJ) = 0.83. When methane (natural gas) is used,
ΔH◦ = −890 kJ, ΔG◦ = −818 kJ, ε = 0.92.

Air Batteries

In a fuel cell, O2 (g) is the oxidizing agent that oxidizes a fuel such as
H2 (g) or CH4 (g). Another kind of flow battery is known as an air battery,
because it uses O2 (g) from air. The substance that is oxidized in an air
battery is typically a metal.
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One heavily studied battery system is the aluminum-air battery. In this
battery oxidation occurs at an aluminum anode and reduction at a carbon-
air cathode. The electrolyte circulated through the battery is NaOH (aq).
Because it is in the presence of a high concentration of OH−, the Al3+ ions
produced at the anode forms the complex ion [Al(OH)4]

−. The half-reactions
and the overall cell reaction are

Reduction: 3{O2 (g) + 2H2O (l) + 4e− → 4OH− (aq)}

Oxidation: 4{Al (s) + 4OH− (aq) → [Al(OH)4]− (aq) + 3e−}

Overall:
4Al (s) + 3O2 (g)

+ 6H2O (l) + 4OH− (aq)
→ 4[Al(OH)4]− (aq)

The battery is kept charged by feeding chunks of Al and water into it.
A typical air battery can power an automobile several hundred miles before
refueling is necessary. The electrolyte is circulated outside the battery, where
Al(OH)3 (s) is precipitated from the [Al(OH)4]− (aq). This Al(OH)3 (s) is
collected and can then be converted back to aluminum metal at an aluminum
manufacturing facility.

The reaction in a single fuel cell produces only about 0.7 Volts. To get the
voltage up to a reasonable level, many separate fuel cells must be combined
to form a fuel-cell stock.

PEMFC’s operate at a fairly low temperature (about 80◦C), which means
they warm up quickly and do not require expensive containment structures.
Constants improvements in the engineering and materials used in these cells
have increased the power density to a level where a device about the size of a
small piece of luggage can power a car.

Since most households appliances operate on high-voltage AC power, a
final major compound of a fuel cell requires a converter from low-voltage DC
power into high-voltage AC power.

Certain fuel cells are renewable, that is, can accomplish the electrochem-
istry associated with both the production of electricity from fuel and oxidant
and the production of fuel and oxidant from water when supplied with electric-
ity, i.e. accomplishing both electrolysis and reverse electrolysis in the same cell.
This allows one to consider the completely renewable production of electricity
by using a renewable energy supply (e.g. solar, wind) to produce from water
hydrogen and oxygen which can subsequently be used to produce electricity
through the same fuel cell from the fuel and oxidant previously produced.
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A fuel-cell never ‘runs down’: it continues to produce electricity as long as
fuel is present. When a battery ‘runs down’, it has to undergo a lengthy
recharge time to replace the spent electricity. Depending on where the
recharging current originates, pollution, costs and efficiency problems are then
transferred from the batteries location to the central generating point.

When most people think of oil, they think of gasoline and other fuels. But
in fact, oil and its hydrocarbon products are intertwined with many things
we take for granted today. Plastics, chemicals, fertilizers and many other
common products are based on oil and its by-products. When utilizing a
finite, rapidly dwindling resource the question becomes: how can that resource
best be utilized?

The answer that comes to mind is: use it for the things where there is
no other substitute. In terms of chemicals, fertilizers and others there is
no substitute for oil as a raw material. Regarding energy, however, there
are alternatives. These alternatives include renewables, with hydrogen as
the energy carrier and storing medium, and domestically produced hydrogen
from natural gas or off-peak electricity. The largest hurdle for the hydrogen
economy to overcome is a lack of infrastructure. This problem is by no means
insurmountable with the proper investment by industry and government.

The United States is extremely dependent on other, politically unstable
and unfriendly, countries for its supply of oil. According to the US Department
of Energy (DOE) reports, the United States imports more than 50% of its
oil supply and this figure is expected to increase to 65% by 2020. The global
demand for oil is increasing at 2% per year.

The fuel flexibility inherent in fuel cells and the ability to produce hydrogen
domestically would result in a decline in the dependence on foreign energy
sources, greater national energy security, a reduction of the military forces
now poised to defend energy interests at a moment’s notice in the Persian
Gulf and a decrease in foreign trade debt.

Internationally, the demand for energy is expected to increase by 50% over
the next ten years. Fuel cells and distributed generation will allow developing
nations to undergo the “cellular phenomenon” when structuring their utility
grids. In many developing countries, phone lines are almost non-existent.
Instead, cell towers have been erected and people communicate via cell phone.
This allows phone system operators to avoid the staggering cost of running a
phone line to every residence and building.

Fuel cells could have the same effect by allowing developing countries the
opportunity to install smaller community and industrialized based energy gen-
eration sites. This avoids many of the costs associated with establishing a
large utility distribution and grid system (distributing hydrogen via pipeline
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has been estimated to be around 1
4 as expensive as transmitting an equal

amount of energy in the form of electricity over transmission lines) in addition
to elimination of the pollution associated with fossil fuel energy plants.

In conclusion, fuel cells and a potential hydrogen economy are riding some
powerful historical trends. Throughout history, mankind’s energy use has
moved towards a higher hydrogen ratio in chemical composition of fuel and
a reduction in the other components. Starting with wood, then to coal, oil
and natural gas, society’s shift in type of fuel is simply a movement along a
hydrocarbon chain.

As the form of the fuel changed, more of the carbon, from which a signif-
icant percentage of the pollution associated with fossil fuels originates, was
eliminated. Hydrogen fuel cells complete the process of eliminating the dirty
carbon and finish the task of employing pure, clean hydrogen. Aside from
historical forces, fuel cells and hydrogen are riding the momentum created by
an increased environmental awareness, the inevitable eventual extinction of
our fossil fuel reserves, and sound economic policy.

The forthcoming ‘Hydrogen Economy’ will eventually transform everyday
life; the future will bring:

• Reduced anthropogenic air pollution from fossil fuel combustion.

• Cell phones and laptops whose battery life is measured in days instead
of hours.

• Vehicles operating silently and emitting harmless water vapor.

• Individual homes generating their own electricity and heat independent
from the utility grid.

• Hydrogen power for sensitive electronic equipment, computer centers,
cellular towers, mining equipment, banks, schools, hospitals, jails, so-
phisticated manufacturing, entertainment complexes, communication
centers, navigation equipment, airports, road signs, defense installations,
hotels, urban transit systems, heavy trucks, personal vehicles and remote
sites requiring power.
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F. Hydrogen Power — From Science-Fiction to Science

Hydrogen is the lightest and most abundant element in the universe as
well as the ultimate source of virtually all energy-release processes known to
man, both in the solar system and beyond. Deep within the sun and stars,
nuclear fusion converts hydrogen into helium771. The energy that is released
when four hydrogen nuclei become a helium atom is the energy which lights
main-sequence stars and fuels all life. Evidence of the incredible amount of
energy contained within a hydrogen atom is the thermonuclear or hydrogen
bomb, which exploits nuclear fusion to release its destructive power.

In our natural environment, hydrogen exists primarily in chemical combi-
nation with other elements. In order for hydrogen to be useful as a chemical
fuel, it must exist as H2 or “free hydrogen”. H2 must therefore be produced,
unlike fossil fuels such as natural gas, coal and oil which can be directly mined
or extracted. In this sense, hydrogen is a secondary source of energy, analo-
gous to electricity.

The energy used to produce H2 is stored, after some losses, within the H2

molecule. This energy can then be kept in storage, used on-site, or transported
to a remote location for energy conversion. The fact that hydrogen must
be produced is a major consideration when examining its effectiveness as
an energy carrier, and is the biggest stumbling-block to widespread use in
commercial applications.

Free hydrogen exists at normal atmospheric conditions as an odorless,
colorless gas. It is stable and will co-exist harmlessly with free oxygen (O2)
until an input of energy drives the exothermic (heat-releasing) reaction which
forms water. This reaction from a higher energy state to a lower one generates
a positive output of energy.

For over a century it has been predicted that a system will be developed
in which hydrogen, extracted from pure water using energy derived from the

771 Once the amount of hydrogen in a star’s core become depleted enough, nuclear

fusion of hydrogen into helium can no longer sustain pressure required to oppose

gravitational collapse, and the latter forces other fusion processes; these produce

nuclei of all elements and isotopes (beryllium, carbon, oxygen, nitrogen, etc)

not initially produced in the Big Bang explosion. Latter-generations stars, such

as our sun, are assembled via gravitational collapse of interstellar gas and dust

enriched with elements produced in earlier stars. In some stars (but not our sun)

the nuclear conversion of hydrogen to helium is mostly indirect, catalyzed by

a series of intermediate processes involving carbon and other elements present

within the stellar core.
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sun, will be used as a fuel or as an “energy-carrier”, and will serve to provide
all of society’s power requirements. The beauty of the system being that
solar energy and water, the sources, are practically limitless and that the
resulting energy conversion is relatively pollution-free with the only waste
product being again pure water. A seemingly perfect cycle, beginning and
ending with energy and water.

Since the early 19th century, scientists have recognized hydrogen as a
potential fuel. Current uses of hydrogen are in industrial processes, rocket
fuel, and spacecraft propulsion. With further research and development, this
fuel could also serve as an alternative source of energy for heating and lighting
homes, generating electricity, and fueling motor vehicles. When produced
from renewable resources and technologies, such as hydro, solar, and wind
energy, hydrogen becomes a renewable fuel.

Unlike most other fuels, hydrogen cannot be produced directly by digging
a mine or drilling a well. It must be extracted chemically from hydrogen-rich
materials such as natural gas, water, coal, or plant matter. Accounting for
the energy required for the extraction process is critical in evaluating any
hydrogen use option. Production techniques now used include steam reform-
ing of natural gas, cleanup of industrial by-product gases, and electrolysis of
water. A number of other technologies are being studied, including several
that produce hydrogen from water or biomass using solar or other renewable
energy.

Hydrogen is the most abundant of all the elements in the universe, and
makes up more than three-quarters of the mass of the universe. Based on
the “Big Bang” theory of cosmology, it is believed that most of the heavier
elements were built up from hydrogen and helium inside stars, and that this
process is still ongoing. Hydrogen is found in our sun and other stars and
plays an important role in the reactions that account for their energy.

Hydrogen ranks ninth of all the elements in order of abundance on Earth,
and makes up about 0.76% of the weight of the Earth’s crust. The most
important naturally occurring compound of hydrogen is water, which is the
principal source of the element. In the quest for new and improved energy
sources and uses, interest has been aroused in employing hydrogen as an
energy currency.

It has been suggested that solar, wind, hydro, nuclear, or even coal con-
version could be used to produce hydrogen. The hydrogen would be stored
as a compressed gas or liquid and subsequently utilized in a fuel cell, or com-
busted to return the stored energy when needed. This is the basis for the
hydrogen economy, or hydrogen energy research carried out throughout the
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world. This research recognizes that fossil fuels will not last forever, and that
the hydrogen cycle is simple and non-polluting.

There are four processes which must be considered when developing a
hydrogen-fuel system. These processes are:

• Production

• Storage

• Transportation

• Energy conversion

There are many alternatives from which to choose when developing a hydro-
gen system. The factors based on which each alternative is evaluated, involve
efficiency, economic feasibility, and environmental impacts. How these factors
are weighted against each other is open for debate. Currently the prevailing
trend is to consider cost-effectiveness above all else. Recent trends in leg-
islature and public concern are shifting emphasis towards renewability and
pollution-free considerations as a priorities for development of hydrogen tech-
nology.

Hydrogen is a secondary source of energy, not a primary source like oil
or natural gas. Therefore, in order to be utilized hydrogen must first be
produced. There are many ways in which this can be done. Methods of
production include chemical, electrochemical, photochemical, biological, and
thermochemical processes.

The simplest method to produce hydrogen is to dissolve metals in acid.
For example, when zinc (Zn) is placed in a solution of hydrochloric acid, it
reacts to produce zinc chloride and hydrogen:

Zn + 2HCl → ZnCl2 + H2

This reaction can be reproduced simply in the laboratory, although the
amount of hydrogen produced is minimal. Still, this method was used to
a large extent during World War II when scrap aluminum was dissolved in
sodium hydroxide in order to generate hydrogen. The hydrogen was then
used to inflate unmanned balloons for weather observation and raising radio
antennas.

This method is relatively expensive, and is not considered suitable for
mass production (today, research is being done with scrap iron to produce
hydrogen, for use in transportation as a method of producing hydrogen on-
board vehicles). Small amounts of hydrogen can, however, be economically
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produced via this method to provide the needs of a small hydrogen-fuel sys-
tem.

The cheapest, and by far the most widely used method for producing
hydrogen is steam reformation. Steam, and a carbon-based feedstock (usually
methane or natural gas), are combined under high temperature and pressure
to produce carbon dioxide and hydrogen. It is estimated that 95% of the
hydrogen produced in the US is created by the steam methane reformation
method. Most of this hydrogen is used in industrial applications. Although
hydrogen can be produced in this manner for about $0.65 per kilogram, the
environmental consequences of the use of hydrocarbons are still a concern.

The production of carbon dioxide, a “greenhouse gas”, as well as nitrogen
oxides (NOx) contribute to the pollution of the earth’s atmosphere. Also,
the use of limited resources can only drive their costs up as the supplies of
fossil fuel sources decrease. A newly developing renewable option is the use
of biomass, or recycled carbonaceous material, as the feedstock in the steam
reformation process. The air pollution problems still exist, but it will be an
intelligent use of a waste product.

Another method for producing hydrogen is electrolysis. Electrolysis in-
volves the application of a small voltage (approx. 2 V DC) to pure water. The
electrical energy decomposes the water molecule into its constituent elements,
hydrogen and oxygen. This technique has the advantage of producing hy-
drogen directly from water, with none of the environmental drawbacks which
accompany processes using fossil-fuels. Still, the relatively low-efficiency (cur-
rently 60–65% with a theoretical maximum of 85%) of the process, and the
high cost of electricity make this an expensive option. The cost of producing
hydrogen via electrolysis is about $3.00 per kg.

The method of electrolysis is the most attractive for those interested in a
completely clean, renewable process using solar energy to produce the elec-
tricity. Photovoltaic cells, hydropower, and wind turbines are currently being
used to generate the electricity required to electrolyze water for hydrogen
production.

Other renewable options include geothermal, tidal, wave action, and ther-
mal gradients in the ocean. Although most of these processes do not produce
sufficient amounts of energy to provide hydrogen on a large scale, on-site
electricity production coupled with a small on-site electrolyzer can produce
enough energy to provide for the energy needs of a household, along with
fuel for the family automobiles. This allows hydrogen to be produced easily
without having to wait for an infrastructure to develop.

Other attempts at water-splitting have involved super-heating water to
temperatures high enough to liberate the hydrogen from the water molecule
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(thermochemical). The temperatures required are in the range of 5000◦–
6000◦ F. Adding chemicals such as sulfuric acid can lower the required tem-
perature but the bottom line is that the only feasible way of generating the
heat required is by way of a nuclear reaction. Nuclear power generation, need-
less to say, has severe environmental and safety implications. There is still
research being done on thermochemical production of hydrogen which doesn’t
require nuclear power plants.

An example would be solar power plants in which the sun’s infra-red ra-
diation focused into a tiny point where the heat accumulates, much like a
magnifying glass. Yet there are still environmental concerns due to the chem-
icals involved, and the nitrogen oxides which are formed from a heat reaction
in air (which has a high concentration of nitrogen).

Photoprocesses involve the use of light energy for the production of hy-
drogen. These methods in one way or another, attempt to mimic the natural
phenomena of photosynthesis. In plants, chlorophyll captures light energy
and uses it to produce complex sugar-phosphate compounds. The most as-
tonishing fact is that this chemical reaction, basically

CO2 + H2O + light energy → sugars + O2

occurs at room temperature! Much research has been done to reproduce
this feat. Photobiological techniques which coax photosynthetic plants, al-
gae, and bacteria into respiring hydrogen, photochemical techniques which
synthetically duplicate the photosynthetic process, and photo electrochemi-
cal techniques which use layers of semiconductors separated by water are all
being studied today. These are promising technologies, although still in the
experimental stage. If efficiency improves, then photoprocesses may play a
part in the future of hydrogen.

Storage and Transportation

Hydrogen is typically stored as a liquid, or gas. There are advantages and
disadvantages to each of these storage options, the choice depending upon the
ultimate use.

Hydrogen becomes a liquid at temperatures below −252.9◦C. Liquification
of hydrogen is very energy-intensive, with one third of the energy content of
the hydrogen used in the liquification process. This is offset by a reduction
of volume requirements for hydrogen storage, with much less storage space
required for a liquid than a gas. Less volume needed for storage, makes liquid
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hydrogen the preferred form of hydrogen used in the Aerospace industry with
NASA being one of the largest consumers of liquid hydrogen in the world.

Once in liquid form, hydrogen can be transported in pressurized tanks by
truck, barge, or rail. Due to the very low boiling temperature of hydrogen,
losses due to boil-off can be considerable. Insulation of the tanks is of utmost
importance to reduce these losses. If insulated properly, hydrogen can be
stored for as much as five years without significant losses.

Hydrogen can also be stored as a pressurized gas. It can then be trans-
ported via pipelines, using existing natural gas distribution lines. A concern
would be possible embrittlement of the lines due to absorption by the metal
fittings. Storage of hydrogen as a gas is the most economical method, but
due to the necessity for larger tanks, weight and space requirements can be
a problem. It is estimated that the mass of a pressure tank is 100 times the
mass of the hydrogen stored within it. Higher pressure means less volume
required, but the walls then need to be reinforced to withstand the greater
pressure. Although hydrogen is extremely light, the containers necessary to
store gaseous hydrogen can be heavy and bulky.

Another method of storing gaseous hydrogen involves metal hydrides. Cer-
tain metals such as magnesium, titanium, or iron, have an affinity for hydro-
gen. Under certain conditions, these metals will adsorb gaseous hydrogen,
and store it within its molecular structure. When the hydride is heated, the
hydrogen is released. Although energy is required to store and to release the
hydrogen, this option has proved attractive for use as a storage medium on-
board automobiles. The main reason is that it is much less energy-intensive
than the liquification process, although heat energy is required to release the
hydrogen. Also, safety and space concerns are reduced when metal hydride
storage is used in automobiles.

There are a variety of other methods being developed for hydrogen storage.
These include carbon adsorption, glass microspheres, onboard partial oxida-
tion reactors, and recyclable liquid carriers. Some of these options appear
promising, but they will still take some time to develop.

Power Conversion

There are two ways of using hydrogen to generate power. One is simple
combustion. The use of hydrogen in internal combustion engines has been
extensive. The other is the conversion of hydrogen into electricity in a fuel cell,
which is essentially electrolysis in reverse. Both of these have their advantages
and disadvantages.
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Internal combustion engines can be easily converted to run on hydrogen,
or a hydrogen-fuel mixture. The noxious emissions are greatly reduced, with
water being the only by-product if pure hydrogen and oxygen are used. Ni-
trogen oxides are still formed from the high heat of combustion, and are still
a source of air pollution.

Over the past two decades, most research has gone into the development
of the fuel cell. The operation of a fuel cell involves the combination of hydro-
gen (anode) and oxygen (cathode) in the presence of an electrolyte. Output
voltages range from 0.7 to 1.12V. The type of fuel cell varies depending on
the electrolyte used. Fuel cell types include the Phosphoric acid fuel cell, the
alkaline fuel cell, and the solid oxide fuel cell.

The most common type, the alkaline fuel cell, is still used by NASA on
board spacecrafts. Another type of electrolyte being developed is the proton-
exchange membrane which uses a solid polymer to facilitate the reverse elec-
trolysis process. This solid polymer, which is much like plastic kitchen wrap,
conducts protons, and is very conducive to the purpose of an electrolyte. Al-
though membrane costs are high, this type of fuel cell appears very promising,
and is currently being used in advanced research.

The use of hydrogen is at an all-time high. It is possible to convert any car
sitting in the driveway to run on hydrogen. It is being proven every day that
hydrogen can be used as a replacement not only for gasoline, but natural gas
in heaters and stoves in the home. Hydrogen could some day replace high-
voltage electrical power lines as the primary energy-carrier via high-voltage
power lines, being transported in pipelines and converted to electricity on-site.

Production of hydrogen is also becoming easy to do for any one with access
to about 2 V of DC electricity. Many homesteads generate enough electricity
using windmills and solar panels to supply the household’s needs and even sell
back some power to the regional utility company. A small electrolyzer added
to this system could easily produce enough hydrogen to fuel a vehicle. It is
clearly possible that anyone with a little ingenuity and skill can convert the
household to use hydrogen, convert the car to run on hydrogen, and generate
the electricity for hydrogen production using only solar energy, all for about
the cost of a mid-sized American sedan.

Any in-depth study of hydrogen reveals the vast array of possible system
configurations for hydrogen power. The bottom line is that any system which
utilizes hydrogen in any capacity is going to be better off for it. Harmful
emissions are reduced, efficiency is increased and water(the original source),
is reproduced. On a larger scale, it would seem possible that use of hydrogen
alone or in conjunction with other fuels would be a major step in the right
direction, and bring us a little closer to a more harmonious cycle of energy
use.
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G. Harnessing Solar Energy

The sun is an average main-sequence star with a mass equal to nearly
one-third of a million earths. It is made up of almost 80% hydrogen by mass
and is entirely gaseous and plasma-phase, although the gas near its center
is under such tremendous pressure that it behaves like a fluid. Because of
this gaseous state, the sun rotates unevenly. Its equatorial section turns on
its axis once every 25 days while the higher latitudes on the sun take over
27 days to rotate. The sun derives its energy from the fusion reaction of two
hydrogen nuclei joining together to make one helium nucleus. This is basically
the same nuclear reaction as that enabling the hydrogen bomb (although the
latter makes use of several hydrogen isotopes).

The fusion reaction began a few billion years ago as a result of the high
temperatures in the sun’s core, caused by the gravitational contraction of the
huge mass of gas and dust (mostly hydrogen) from which the sun formed. The
production of heat from the sun is quite small per unit of volume, because like
all large bodies, its surface is relatively small compared to its volume. Also,
the sun has had billions of years to heat up.

The sun’s relatively small core is very hot (approximately 14, 000, 000◦C)
and it is in the core that the fusion reaction occurs. Even though the sun’s
energy output is small compared to its huge size, it turns out energy on an
enormous scale by earth’s standards, some 5 million megatons of energy
per second. There is estimated to be enough hydrogen in the sun convertible
to helium to allow the sun to shine at its present rate for 5 billion years to
come.

Man sees only the glowing surface (photosphere) of the sun, which emits an
approximate blackbody radiation spectrum at 5, 800 ◦C. During solar eclipses
when the main disc of the sun is blotted out, one can also see the solar
atmosphere or corona. The corona is made up of ionized hydrogen, a hydrogen
atom with its one electron knocked off. However, the corona also contains all
of the elements common on earth. The corona is much more diffuse than the
rest of the sun and much hotter that the surface — 2, 000, 000◦C just above
the sun’s surface.

This corona is thought to extend in diffuse form to the outer limits of
the solar system. Even during quiet periods of the sun, there are coronal
streamers of very hot gas out to ten solar diameters. The sun’s diameter
is 1, 400, 000 km. The surface of the sun is covered with bright granules,
but the most noticeable features are the sun spots, darker and cooler regions
(4, 500 ◦C). Sun spots have tremendous local magnetic fields (3, 000 to 4, 000
Gauss compared with about one Gauss for the rest of the sun’s surface).
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Sun spots are believed to be places where doughnut-shaped magnetic field
knots emerge from the sun’s surface, and they usually occur in pairs of op-
posite magnetic polarity. At the maximum of solar activity in 1947, a sun
spot of five billion square miles was seen. The sun alternates from very quiet
to very turbulent and active, then back to quiet, over 11-year cycles. At the
peak of a cycle, numerous solar flares occur which throw out huge masses of
hot gas and energetic particles.

These masses of hot, ionized hydrogen hit the earth’s magnetic field, bend
it out of shape, disrupt radio communications, cause the aurora borealis, and
feed the Van Allen radiation belts. Flares are 1, 000 to 100, 000 times more
dense than the surrounding material on the solar surface; the corona around
the flares gets four times hotter than normal; and gas thrown out travels at
around 3, 600, 000 kmph.

The cause of solar flares is not known, but they are generally believed to
be related to sunspot magnetic fields. In addition to flares, the sun constantly
throws out ionized hydrogen in the solar wind. This material moves at nearly
1.6 million kmph and contains one to ten particles per cubic centimeter. This
is still more diffuse than the “hardest” vacuum yet made on earth.

The earth lives and feeds on energy from the sun, with little help from its
own radioactivity. In addition there is a contribution from its own gravitation
and the gravitation of the moon and the sun, (via tides) and a tiny component
of cosmic radiation from the rest of the universe. Of these, the flow of radiation
from the sun is paramount.

Over the lifetime of the earth this radiation has induced life in the earth’s
surface and that life has laid down a fossil record of the solar energy it once
received hundreds of millions of years ago as chemical energy stored in coal,
gas, oil and peat. At the present time, that fossilized solar radiation is our
civilization’s main source of exploitable energy. These fossil fuels are the life
savings of the earth. As it is used, much of the fossil energy, inevitably, is
lost as heat. But some is converted into metals, plastics, chemicals, electronic
crystals and buildings.

In combination with gravity and the earth’s rotation, solar energy drives
the hydrological cycle which is responsible for floods, atmospheric circulation,
hurricanes, thunderstorms, and other climatic and weather phenomena. Only
13 percent of the total solar energy available to earth is responsible for evap-
orating water (mostly in the tropics) needed to drive the hydrological cycle.

The rate of solar energy incident upon earth just outside the atmosphere is
1.35kW

m2 . This energy falls upon a circular disc of radius 6380 km which has
the area of 1.27 × 1014 m2. Hence the total rate over the daylight hemisphere
is 1.72 × 1011 megawatt. Of this 7.5 × 1010 megawatt is absorbed at the
surface, and 3.7 × 1010 megawatt is absorbed in the atmosphere.
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Radiation reaching the surface is mostly converted into heat, but a fraction
is used by vegetable life on land and sea to photosynthesize carbohydrates out
of CO2 and water, and a fraction could be used by man to generate electricity
in solar cells made out of semiconductors such as silicon or gallium arsenide.

A realistic covering of 0.1 percent of the earth with solar cells operating
at 10 percent efficiency would produce a power of 7.5 × 106 megawatt.

The power 7.5 × 1010 MW is the average rate of surface ground-level
absorption by the earth as a whole, and it corresponds to a continuous surface
flux of 590 Wm−2. A given location on the earth’s surface is not exposed to
this flux continually because of the earth’s rotation and because the incident
energy of solar radiation is spread over a hemisphere and not a disc. Rotation
alone causes the average flux to be halved since there is exposure to sunlight
during, on average, only 12 hours of the day.

Another factor of two is introduced by the curvature of the earth since the
area of a hemisphere is twice that of a disc of the same radius. Thus the global
average insolation at a point on the earth’s surface is 150 Wm−2 (roughly
300 Wm−2 during the day and zero at night). In Europe the average is about
120 Wm−2, in the U.S.A. it is 200 Wm−2, and in the Sahara 260 Wm−2.

We summarize the global solar energy flow:

Solar radiation, incident 1.72 × 1011 MW
absorbed in atmosphere 3.7 × 1010 MW
absorbed at surface 7.5 × 1010 MW

Atmospheric circulation 1 × 1010 MW
Photosynthesis (Land + Ocean) 3 × 108 MW

The tapping of solar energy

Humans have used sunlight to perform a variety of tasks for centuries, but
a serious scientific approach to the subject began in the wake of the industrial
revolution in Europe. The Swiss scientist Horace de Saussure invented
(1767) the world’s first solar collector. It was then used by John Herschel
to cook food during his expedition to Southern Africa (1830).

There are a variety of technologies that have been developed to take ad-
vantage of solar energy. These include:
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• Photovoltaic (solar cell) systems:
Producing electricity directly from sunlight.

• Concentrating solar systems:
Using the sun’s heat to produce electricity.

• Passive solar heating and day lighting:
Using solar energy to heat and light buildings.

• Solar hot water:
Heating water with solar energy.

• Solar heating and cooling
Industrial and commercial uses of the sun’s heat.

Solar thermal systems concentrate heat and transfer it to a fluid. The heat
is then used to warm buildings, heat water, generate electricity, dry crops or
destroy dangerous waste. Solar thermal collectors are divided into three cat-
egories:

Low-temperature collectors provide low grade heat, less than 43◦C, through
either metallic or nonmetallic absorbers for applications such as swimming
pool heating and low-grade water and space heating.

Medium-temperature collectors provide medium to high-grade heat (greater
than 43◦C, usually 60◦C–82◦C), either through glazed flat-plate collec-
tors using air or liquid as the heat transfer medium or through concentrator
collectors that concentrate the heat to levels greater than “one sun”. These
include evacuated tube collectors, and are most commonly used for residential
hot water heating.

High-temperature collectors are parabolic dish or trough collectors primarily
used by independent power producers to generate electricity for the electric
grid.

Concentrating Solar Thermal Systems use three different types of concentra-
tors:

Central receiver systems use heliostats (highly reflective mirrors) that track
the sun and focus it on a central receiver.

Parabolic dish systems use dish-shaped reflectors to concentrate sunlight on a
receiver mounted above the dish at its focal point.
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Parabolic trough systems use parabolic reflectors in a trough configuration to
focus sunlight on a tube running the length of the trough.

Technology Examples

Pool Heating — These systems can be as simple as water running through a
black hose and specially manufactured systems are more efficient modifications
on this concept.

Domestic Water Heaters — They come in a variety of styles but all of them
collect heat in some liquid, usually water or water mixed with an anti-freeze,
that runs through pipes in a box with glass on the front. The box helps keep
temperatures inside around the pipes higher, so more heat transfers to the
liquid. The hot liquid gives its heat to another loop of pipes through a heat
exchanger and this new loop is used for home hot water use or heating the
space with a radiator.

Commercial Scale Heaters — These can be designed to heat or cool a large
commercial space or to make steam which can turn a turbine to produce
electricity.

Photovoltaic systems

Solar electric or photovoltaic systems convert some of the energy in sun-
light directly into electricity. Their history dates back to 1839. Photovoltaic
(PV) cells are made primarily of silicon, the second most abundant element
in the earth’s crust, and the same semiconductor material used for computer
chips.

When the silicon is combined with one or more other materials, it exhibits
unique electrical properties in the presence of sunlight. Electrons are excited
by the light and move through the silicon. This is known as the photovoltaic
effect and results in direct current (DC) electricity. PV modules have no
moving parts, are virtually maintenance-free, and have a working life of 20–
30 years.

There are three basic categories of photovoltaic systems with several types
in each category.

Crystalline Photovoltaic Materials: flat plate collectors are the most devel-
oped and prevalent type in use today. These include single crystal silicon and
polycrystalline silicon which is either grown or cast from molten silicon and
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later sliced into its cell size. They are then assembled onto a flat surface; no
lenses are used.

Thin Film systems are inherently cheaper to produce than crystalline silicon
but are not as efficient. They are produced by depositing a thin layer of pho-
tovoltaic material to a substrate like glass or metal. This category includes
amorphous silicon like the kind found in calculators and watches.

Concentrators use much less of a specialized photovoltaic material and em-
ploy a lens or reflectors to concentrate sunlight on the photovoltaic cell and
increase its output. They can be produced more cheaply than either of the
other categories due to the reduced amount of expensive PV material required.
But they can only use direct sun light, so they must track the sun precisely
and do not work when it is cloudy.

Solar cells (Figure 5.12)

To understand the operation of a PV cell, we need to consider both the
nature of the material and the nature of sunlight. Solar cells consist of two
types of material, often p-type silicon and n-type silicon. Light of certain
wavelengths is able to ionize the atoms in the silicon and the internal field
produced by the junction separates some of the positive charges (“holes”)
from the negative charges (electrons) within the photovoltaic device.

The holes are swept into the positive or p-layer and the electrons are swept
into the negative or n-layer. Although these opposite charges are attracted to
each other, most of them can only recombine by passing through an external
circuit outside the material because of the internal potential energy barrier.

Therefore if a circuit is made, power can be produced from the cells under
illumination, since the free electrons have to pass through the load to recom-
bine with the positive holes. The amount of power available from a PV device
is determined by:

• The type and area of the material

• The intensity of the sunlight

• The wavelengths of the sunlight
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Fig. 5.12: Solar cell
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Single crystal silicon solar cells, for example cannot currently convert more
than 25% of the solar energy into electricity, because the radiation in the
infrared region of the electromagnetic spectrum does not have enough energy
to separate the positive and negative charges in the material. Polycrystalline
silicon solar cells have an efficiency of less than 20% at this time and amor-
phous silicon cells, are presently about 10% efficient, due to higher internal
energy losses than single crystal silicon.

A typical single crystal silicon PV cell of 100 cm2 will produce about
1.5 watts of power at 0.5 volts DC and 3 amps under full summer sunlight
(1000 Wm−2). The power output of the cell is almost directly proportional
to the intensity of the sunlight.

An important feature of PV cells is that the voltage of the cell does not
depend on its size, and remains fairly constant with changing light intensity.
However, the current in a device is almost directly proportional to light inten-
sity and size. When people want to compare different sized cells, they record
the current density, or amps per square centimeter of cell area.

The power output of a solar cell can be increased quite effectively by using
a tracking mechanism to keep the PV device directly facing the sun, or by
concentrating the sunlight using lenses or mirrors. However, there are limits
to this process, due to the complexity of the mechanisms, and the need to
cool the cells. The current output is relatively stable at higher temperatures,
but the voltage is reduced, leading to a drop in power as the cell temperature
is increased.

1933 CE Fritz Walter Meissner (1882–1974, Germany). Physicist. Dis-
covered that when a material is cooled into the superconducting phase in the
presence of an external magnetic field, the magnetic flux is completely ex-
pelled from the interior of the superconductor, provided that the magnetic
field is not too strong.

The phenomenon is called the Meissner effect. This is analogous to the
exclusion of an electric field from the interior of an ordinary conductor, where
charges in the conductor move and arrange themselves to create a component
of electric field inside the conductor that exactly cancels the contribution of
the external field. Similarly, an external magnetic field does not penetrate a
superconductor because eddy currents flow on the surface in such a manner
that the net magnetic field inside the superconductor is zero.
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1933–1946 CE Max Delbrück (1906–1981, Germany and USA). Physi-
cist and biologist. Founded molecular biology. Tested experimentally one of
the QED nonlinear processes, known as Delbrück scattering772 (1933). Joined
Salvador Luria (1943) to demonstrate that bacteria adopt to new conditions
(such as the presence of a virus) by Darwinian mechanisms, just as higher
forms do. They concluded that virus resistant mutants preexist in a popula-
tion, and are not induced by the selective agent (the virus) that is applied to
isolate the mutants. Their demonstration of adaptation established bacteria
as suitable objects for the study of genetic mechanisms, so that principles
applicable to all life could be discovered.

Delbrück and Luria believed that they could better understand genetic
mechanisms by studying one of nature’s simplest creatures: the bacteriophage
(or simply, phage). The phage is a virus that infects bacteria. Viruses repro-
duce in a living cell by using the cell’s apparatus for reproduction of their
DNA or RNA. By definition, viruses contain either DNA (deoxyribonucleic
acid: a large, string-like molecule found in living cells that carries genetic in-
formation), which acts to redirect the bacterium’s own biosynthetic systems to
make more virus phage, or RNA (ribonucleic acid: single- or double-stranded
molecules).

The final event in the infection process is usually a breakdown of the
bacterial wall (called lysis), which frees the newly reproduced phage particles.
Some phage are tadpole shaped, with a head containing DNA within a wall of
protein. The phage’s hollow tail, also made of protein, can attach to bacteria
and facilitate the transfer of DNA into them. Because of their simplicity,

772 A photon is scattered by the electric Coulomb field of the nucleus [in con-

tradistinction to the Compton scattering (1922) through which an electron (or

a proton, or a whole nucleus) absorbs and reemits a photon]. The Delbrück

scattering process is a succession of two virtual (where energy and/or momen-

tum are not conserved over short distances or small time intervals) quantum

processes:

(1) pair-creation in the nuclear Coulombic field (γ → e+ + e−);

(2) The inverse process (e+ + e− → γ) in the Coulombic field.

Note that the first process cannot occur as a real process (energy and momen-

tum conserved), even in the presence of the nuclear Coulombic field, unless the

photon energy is at least 2mec
2 � 1.02 MeV, but as a virtual process — there

is no energy threshold and it can occur at any energy of the photon. [In general

a stable particle cannot emit another particle, nor split into several particles –

nor can the reverse process occur – without either external influences or one of

the particles involved being virtual.]
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phages seemed ideal for studying how genetic material reproduces, mutates,
and expresses genetic information.

Delbrück was born in Berlin and did his Ph.D. in quantum mechanics
under Max Born at Göttingen (1930). He then went to Copenhagen (1931) to
work with Niels Bohr, who became his mentor. He returned to Berlin (1932)
to work with Lise Meitner. He left for the US (1937) on a Rockefeller
Fellowship to CalTech, and shortly after he left, Meitner discovered nuclear
fission. In the US Delbrück’s interests shifted to biology773. Following Bohr’s
line of thinking he thought perhaps new laws of physics may come out of
study of biological systems.

At Pasadena he met Emery Ellis, who introduced him to bacteriophage.
The phage appealed to Delbrück’s physics-talented mind — he likened it to
the hydrogen atom of biology, the simplest genetic system known.

Delbrück then took a faculty position at Vanderbilt University (1940–
1947). In 1941 he met Salvador Luria and they began to collaborate on
phage experiments. With Alfred Hershey, they discovered (1946) recombi-
nations of viral DNA and received the Nobel Prize for medicine and physiology
(1969). Delbrück moved back to CalTech and remained there (1947–1977).

1933–1956 CE Alfred Tarski (1902–1983, Poland and USA). Logician
and mathematician. Made important contributions to mathematical logic,
set theory, measure theory, model theory and general algebra.

Tarski was born in Warsaw and educated there. Excluded, as a Jew, from
a faculty university post, Tarski taught concurrently in a high school and at
Warsaw University until 1939. Fortunate to escape the holocaust, he came
to the US (1939) and joined the faculty of the University of California at
Berkeley (1942–1960).

A most notable achievement was his monograph (1933) “The concept of
truth in formalized languages”. This has been the starting point for all log-
ically serious discussions of the subject, ever since. In it Tarski rehabilitates
the classical correspondence theory of truth in contemporary logical guise.
His later work has served to legitimize semantic discourse about the relations

773 During 1932–1944 influential views of life have come from physicists rather than

biologists: Niels Bohr, in his essay “Light and Life” (1932), urged applying

the “complementarity” principle from quantum mechanics to biology. Erwin

Schrödinger in “What is Life” (1944) identified the crucial question of how

the cell is governed by a ‘code-script’ inscribed in the genes. The latter book

inspired Francis Crick and James Watson’s investigation of the molecular

structure of DNA.
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between language and the world. Tarski had much influence on contemporary
philosophers of science, especially Popper.

1933–1966 CE Sergei Pavlovich Korolev (1906–1966, The Soviet
Union). Aerospace engineer. Founder of the Soviet space program. Responsi-
ble for the development of the world’s first ICBM and artificial earth satellite
(SPUTNIK 1). A brilliant engineer and superb organizer, who possessed the
political cunning necessary to get his work done and protect his staff from a
government so paranoid, he was forced to work in anonymity (known only as
the ‘Chief Designer’) and kept under tight security almost until his death.

Korolev would go in the annals of aerospace technology to make these
space records:

• First man-made orbiting satellite (Oct 04, 1957)774.

• First man to orbit the earth.

• First craft to orbit the moon and photograph its back side.

• First craft to impact Venus.

Korolev was born in Zhitomir, Ukraine and became interested in aviation
since early age. He was educated at the Kiev Polytechnic Institute (1924–
1926) and the Moscow Bauman High Technical School (1926–1929), at that
time the best engineering college in Russia. In 1982, Korolev was appointed
chief of Jet Propulsion Research Group, one of the earliest state-sponsored
centers for rocket development in the USSR. In 1933, Korolev led the devel-
opment of cruise missiles and of a manned rocket-powered glider.

His work at that time culminated in designing Russia’s first rocket pro-
pelled aircraft.

Thus, he was involved in pre-World War II studies of rocketry in the USSR.

On June 27, 1938, at the height of Stalin’s purges, Korolev was arrested
and sent to the GULAG camps in Siberia. In March 1940, Korolev was
returned to Moscow and Imprisoned in the infamous Butyrskaya prison. On
July 10 the same year, a special commission chaired by Lavrenti Beria, chief
of Stalin’s secret police, sentenced Korolev to eight years in labor camps on
phony allegations of sabotage. “Fortunately” for Korolev, in September 1940,

774 During the Cold War, Americans were amazed that a culture, supposedly tech-

nologically inferior to the West, could excel where they lagged behind. Only

after the fall of the Soviet Union could the identity and biography of Korolev

be divulged.
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he was transferred to “sharashka” – an aviation design bureau in prison.
Officially called KB-29, Korolev’s sharashka was led by Andrei Tupolev,
also a GULAG prisoner.

On July 27, 1944, the authorities “paroled” Korolev and on Sept. 8, 1945,
Korolev traveled to Germany for evaluation and restoration of V-2 ballistic
missiles. In August 1946, while still in Germany, Korolev was appointed chief
of a department in the newly created NII-88 in Podlipki, northeast of Moscow.
This organization was made responsible for the development and industrial
production of missile technology based on German hardware.

In the following years, Korolev led the development of several generations
of ballistic missiles, launch vehicles, military and communications satellites,
interplanetary probes and manned spacecraft. He died at the height of his
career as a result of a botched surgical operation on January 14, 1966.

Due to secret nature of the Soviet space industry, Korolev’s contribution to
the space program was only recognized by the authorities after his death. For
several more decades, Korolev’s personality remained a subject of distortions
by the official Soviet press. Only in 1994, Yaroslav Golovanov, a Russian
journalist and historian, published the first uncensored biography of Sergei
Korolev.

His incredible energy, intelligence, belief in the prospects of rocket technol-
ogy, managerial abilities and almost mythical skills in decision-making made
him the head of the first Soviet rocket development center, known today as
RKK Energia. He deserves the most credits for turning rocket weapons into
an instrument of space exploration and making Russia the world’s first space-
faring nation.

1933 CE, Jan. 30 Adolf Hitler was appointed chancellor by German Pres-
ident Paul von Hindenburg. Brought into office by a right-wing coalition,
he rapidly disposed of his partners and liquidated all opposition to become
(1934) dictator (Führer) of Germany. With enthusiastic support from a ma-
jority of the German people he used the power of the state to gradually strip
Germany’s Jewish citizens of their livelihood, freedoms and human rights;
restored the country to a dominant position in Europe, repudiating the Ver-
sailles Treaty (1935), reoccupying the Rhineland (1936), forming the Rome-
Berlin axis (1936), intervening in the Spanish civil war (1936–38), invading
and annexing Austria775 (1938), occupying Czechoslovakia (1938), making a
pact with the USSR and invading Poland (1939).

775 The Anschluss of March 11, 1938 — when the nation that produced Bach an-

nexed the nation that produced Mozart.
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1933, March 02 CE One of the most energetic earthquakes of the 20th

century hit Japan. Its epicenter was at 39.25 ◦N, 144.5 ◦E and its submarine
fault unleashed a giant tsunami with a visual run-up of 23 m, killing some
3000 people in Sanriku, Honshu. The generating fault extended over an area
of 370 km × 100 km accompanied by a displacement of 7.4 m. The energy
release of this seismic event was equivalent to 150 Megatons of TNT having
a seismic moment of 1029 dyn-sec.

1933–1985 CE Hans Jonas (1903–1993, Germany and USA). Philo-
sopher. One of the most original and prominent thinkers of his generation.
Contributed to the philosophy of biology, anthropology, theology and prob-
lems of ethics in a technological age.

Jonas’ life spanned 90 years of the 20th century, and like few other Western
intellectuals he was able to see the deep and dramatic changes that have taken
place in the entire so-called civilized world. His most significant works are:
The Gnostic Religion (1934, 1958, 2001); The Imperative of Responsibility
(1979); The Phenomenon of Life (1966); Morality and Mortality (1979); On
Technology, Medicine and Ethics (1985).

Jonas was born to Jewish parents in Münchengladbach, Germany. He
studied in Freiburg (1921), Berlin (1921–1923) and Marburg (1924–1928) un-
der Husserl, Heidegger and R. Bultmann and received his Ph.D. in phi-
losophy (1928). After Hitler had come to power, he first emigrated (1933)
to England, then to the Hebrew University in Jerusalem (1934–1940) and fi-
nally to Canada (1949). There he taught for six years at McGill and Carleton
Universities, before settling down permanently in New York, teaching at the
philosophy department of the New School for Social Research.

The range of his topics was extremely wide — from early gnosticism to
the philosophy of biology, from ethics to social philosophy, from cosmology to
Jewish theology.

Shaped by his exile from Nazi Germany, the murder of his mother in the
Auschwitz extermination camp, his participation as a soldier in WWII (the
Jewish Brigade of the British Army) during 1940–1945 and the Israeli War
of Independence (1948–1949) — he set himself the task of uncovering the
intellectual origins of the crisis of Western civilization and proposing a new,
positive orientation for humanity.

Jonas’ work will become increasingly significant in the years ahead as we
face the problems produced by current developments in technology such as
biological engineering. Such issues were of particular interest to him, and he
was unique among his philosophical contemporaries in devoting attention to
them. His eloquent writings on these themes bring wisdom and common sense
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anchored in Jonas’ own historical and biographical experience of the fragility
of human life and the common good.

Worldview XLV: Hans Jonas

∗ ∗∗

“Modern technology, informed by an ever deeper penetration of nature and
propelled by the forces of market and politics, has enhanced human power
beyond anything known or even dreamt of before. It is a power over matter,
over life on earth, and over man himself; and it keeps growing at an accelerated
pace. Modern technology is marked by a radical departure from everything
previously known. It has disturbed the balance between humanity and nature
in ways that are long-range, cumulative, irreversible, and planetary in scale.
It has permanently altered the biosphere of the earth, it has challenged our
definitions of “life” and “death”. It has created a freedom without values.

Traditional ethics presumed that the effects of our actions are limited. All
this has changed with modern technology. In its view, nature is a machine,
not an end in itself. We may matter to ourselves, but there is no larger system
of values to which we belong. In the end humans become the objects of their
own fabrications, to be shaped according to the design of biotechnology.

As we are deprived of any consistent image of humanity, we are unable
to answer the fundamental ethical question: Why should we care about the
distant future of mankind on this planet?”

∗ ∗∗

“Care of the future of mankind, is the overruling duty of collective human
action in the age of technical civilization that has become ‘almighty’, if not
in its productive then at least in its destructive potential. This care must
obviously include care for the future of all nature on this planet as a necessary
condition of man’s own survival. We line in an apocalyptic situation, that is,
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under the threat of a universal catastrophe if we let things take their present

course. The danger derives from the excessive dimensions of the scientific-

technological-industrial civilization.

The danger of disaster through scientific technology arises not so much

from any shortcoming of its performance as from the magnitude of its success.”

∗ ∗∗

“The altered nature of human action calls for a change in ethics as well. All

previous ethical concepts had as their content the relationship between human

beings only. The good or bad of human actions was decided within the short-

term context of the here and now or the immediate foreseeable future.

All this has decisively changed: modern technology has introduced actions

of such novel scale, objects, and consequences that the framework of former

ethics can no longer contain them.

A new dimension of responsibility, never dreamt before, is forced upon

ethics. No previous ethics had to consider the global condition of human

life and the far-off future, even existence, of the race. Those are now an

issue and demand, in brief, a new conception of duties and rights, for which

previous ethics and metaphysics provide not even the principles, let alone a

ready doctrine.

In order to fulfill this new imperative of responsibility, a scientific futurol-

ogy is required. An imaginative heuristic of fear must tell us what is possibly

at stake and what we must beware of. The prophecy of doom must take

priority over the prophecy of bliss. As mankind has no right to suicide, the

existence of man must never be put at stake: mankind’s existence becomes

the First Commandment of a new ethical order.”

∗ ∗∗

The Imperative of Responsibility (1979)
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1933–1996 CE Paul Erdös776 (1913–1996; Hungary, USA and Israel).
Legendary mathematician. Contributed to: Analysis (including Ergodic The-
ory), Combinatorics (including Graph Theory, Combinatorial Algebra, Com-
binatorial Geometry and Theoretical Computer Science), Number Theory,
Probability Theory, and Set Theory.

He founded the field of discrete mathematics, which is the foundation
of computer science. One of the most prolific mathematicians in history,
publishing more than 1600 papers in which he collaborated with 507 people777

Erdös was regarded by fellow mathematicians as the most brilliant, if
eccentric, mind in the field, being a problem solver rather than a builder of
theories.

776 For further reading, see:

• Hoffmann, P., The Man Who Loved Only Numbers, Fourth Estate: London,

1999, 302 pp.

777 Around 1965, Casper Goffman concocted the idea of an ‘Erdös number’: If you

had written a joint paper with Erdös, your Erdös number was 1. If you had

written a joint paper with someone with Erdös number 1, your Erdös number

was 2, and so on. There is now an Erdös Number Project home page on the

web where one can see the results:

Erdös number 0 — 1 person
Erdös number 1 — 507 people

Erdös number 2 — 5713 people

Erdös number 3 — 26422 people
Erdös number 4 — 62136 people

Erdös number 5 — 66157 people

Erdös number 6 — 32280 people
Erdös number 7 — 10431 people

Erdös number 8 — 3214 people

Erdös number 9 — 953 people
Erdös number 10 — 262 people

Erdös number 11 — 94 people

Erdös number 12 — 23 people
Erdös number 13 — 4 people

Erdös number 14 — 7 people

Erdös number 15 — 1 person
Erdös number 16 — 0 people

Thus the median Erdös number is 5; the mean is 4.69, and the standard devia-

tion is 1.27.
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For more than 50 years, Erdös wandered the globe visiting mathemati-
cians, attending meetings, teaching and lecturing. He had become the center
of an enormous web of collaboration.

Erdös was the supreme problem poser and problem solver of modern times.
His interests were mainly in number theory and combinatorics, though they
ranged into topology and other areas of mathematics. He was fascinated by
relationships among numbers, and numbers served as the raw material for
many of his conjectures, questions, and proofs.

Paul Erdös was born in Budapest to Jewish parents, the original family
name being Engländer. Despite the restrictions on Jews entering universities
in Hungary, Erdös, as a winner of a national examination (1929), was allowed
to enter in 1930.

In 1933 he gave a simple proof to Bertrand’s conjecture778 (1845) [proved
by Tchebyshev, 1850]: for every positive integer n, there is a prime between
n and 2n.

He was awarded a doctorate in mathematics in 1934. He then held ap-
pointments at the universities of Manchester (1935–1938), Princeton (1939),
Madison (1940–1943), Purdue (1943–1948), Notre Dame (1952–1954) and
Jerusalem (1954–1964).

In 1949 he gave a proof (with Atle Selberg779) of the Prime Number The-
orem (= the number of primes less than or equal to the real positive number
x is asymptotically equal to x

log x ) that avoided using complex analysis.

Stooped and slight, often wearing socks and sandals, Erdös stripped him-
self of all the quotidian burdens of daily life: finding a place to live, driving a
car, paying income taxes, buying groceries, writing checks.

Concentrating fully on mathematics, Erdös traveled from meeting to meet-
ing, carrying a half-empty suitcase and staying with mathematicians wherever

778 News about his success was passed around Hungarian mathematicians, accom-

panied by the rhyme:

“Chebyshev said it, and I say it again;
There is always a prime between n and 2n”

779 Selberg and Erdös agreed to publish their work in back-to-back papers in the

same journal, explaining the work each had done and sharing the credit. But at

the last minute Selberg raced ahead with his proof and published first. The fol-

lowing year Selberg won the Fields Medal for his work. Erdös was philosophical

about the episode.
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he went. His colleagues took care of him, lending him money, feeding him,
buying him clothes and even doing his taxes. In return, he showered them
with ideas and challenges — with problems to be solved and brilliant ways of
attacking them.

He wrote no best-selling books, and showed a stoic disregard for worldly
success and personal comfort, living out of a suitcase for much of his adult
life. The money he made from prizes he gave away to fellow mathematicians
whom he considered to be needier than himself. “Property is a nuisance,” was
his succinct evaluation. The winners would often frame his checks without
cashing them. (Solving a $1000 problem would make you internationally
famous.)

During the Cold War, Erdös was persecuted by the US immigration and
the FBI because of his travels to mathematical conferences behind the Iron
Curtain and his correspondence with Chinese mathematicians.

Erdös won many prizes, including the $ 50,000 Wolf Prize of in 1983.

Paul Erdös – The man who loved only numbers

∗ ∗∗

“My mother said; ‘Even you, Paul, can be in only one place at one time.’
Maybe soon I will be relieved of this disadvantage.
Maybe, once I’ve left, I’ll be able to be in many places at the same time.
Maybe then I’ll be able to collaborate with Archimedes and Euclid.”

∗ ∗∗

“I am 2 billion years old because when I was in high-school I was taught that
the earth was 2 1

2 billion years old, but now we know that it is 4 1
2 billion

years old.”
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∗ ∗∗

On one occasion, Erdös met a mathematician and asked him where he was
from. “Vancouver,” the mathematician replied. “Oh, then you must know
my good friend Elliot Mendelson,” Erdös said.

The reply was: “I AM your good friend Elliot Mendelson.”

∗ ∗∗

A salesman was knocking on Erdös’ door. Paul, busy with the solution of a
mathematical problem, called from his table: “Please come some other time,
and at somebody else’s door.”

∗ ∗∗

He observed one day that the audiences at his talks had been getting larger
and larger, to the point where they filled halls so big that his old and feeble
voice could not be heard. Erdös speculated as to the cause of this.

“I think,” he said, “it must be that everyone wants to be able to say ‘I
remember Erdös; why, I even attended his last lecture!’ ”

∗ ∗∗

This is my vision of the ‘perfect death’: It would occur after a lecture, when
I have just finished presenting a proof and a cantankerous member of the
audience would have raised a hand to ask: “What about the general case?”
I would then reply: “I think I’ll leave that to the next generation,” and fall
over dead.

∗ ∗∗

“Mathematical truths are discovered, not invented.”
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Mathematicians on Paul Erdös

∗ ∗∗

“A mathematical genius of the first order, Paul Erdös was totally obsessed
with his subject — he thought and wrote mathematics for nineteen hours a
day until the day he died. He traveled constantly, living out of a plastic bag,
and had no interest in food, sex, companionship, art — all that is usually
indispensable to a human life.”

(Oliver Sacks)

∗ ∗∗

“One never knew where Erdös was, not even the country. However one could
be sure that during the year, Erdös was everywhere. He was the nearest thing
to an ergodic particle that a human being could be.”

(Richard Bellman)

∗ ∗∗

“Because he seemed to be in a state of Brownian motion, it was hard to locate
him at any given time.
With his death we have lost one of the great mathematicians and free spirits
of this century, and it is hard to imagine that we will see anyone like him
again. I feel fortunate to have the privilege of knowing him and working with
him.”

(Melvin Henriksen)

∗ ∗∗

“In our century, in which mathematics is so strongly dominated by ‘theory
doctors’, he had remained the prince of problem solvers and the absolute
monarch of problem posers, the Euler of our time.”

(Ernst Straus)



1933 CE 4191

∗ ∗∗

“Erdös’ driving force was his desire to understand and know. You could think
of it as his magnificent obsession. It determined everything in his life.”

∗ ∗∗

“He died with his boots on, in hand-to-hand combat with one more problem.
It was the way he wanted to go.”

(Ronald L. Graham)

∗ ∗∗

“He was always searching for mathematical truths. He had an ability to
inspire. He would take people who already had talent, that already had some
success, and just take them to an entirely new level. His world of mathematics
became the world we all entered.”

(Mark Spencer)

1933–1941 CE Fritz Zwicky (1898–1974, U.S.A.). One of the first to sug-
gest the existence of dark matter (1933) and Neutron stars (with W. Baade,
in 1934). Made valuable contributions to the theory and understanding of
supernovae.

Zwicky was born in Varna, Bulgaria. He received his doctorate in physics
from the Swiss Federal Institute of Technology in Zürich (1922) and served
on the faculty of the California Institute of Technology, Pasadena during
1925–1972. In 1933 he observed a group of galaxies orbiting one another and
estimated the gravity needed to keep the cluster from flying apart. From the
required gravitational pull and the size of the cluster, Zwicky could further
calculate the mass contained within the cluster: about 20 times what could
be generated by the visible stars and gas.
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For more than forty years, most astronomers tried to ignore the possibility
of dark matter. In 1934 he proposed that supernovae are a class of stellar ex-
plosions completely different from the ordinary novae, and occurring less often
(ca once every 500 years in our galaxy). From 1937 to 1941 he discovered 18
of them (about 12 had been recorded previously in the history of astronomy).

The neutron was discovered via laboratory experiments in 1932. Within
two years F. Zwicky and W. Baade developed a theory according to which
stars too massive to become white dwarves will collapse into a highly com-
pact ball of degenerate neutrons, a neutron star780. The degenerate neutron
pressure could support a stellar ‘corpse’ against further gravitational collapse.

This prophetic proposal was politely ignored by most scientists for many
years because a neutron star was considered a weird object — having, as
theory showed, nuclear density of order 1015 g/cm3, relatively small size (some
30 km in diameter) and an escape velocity equal to half the speed of light.
All these properties seemed so outrageous in 1934 that few astronomers paid
any serious attention to this theory, and the proposal was shelved until the
discovery of the first pulsar in 1967.

780 Neutrons, like electrons, obey the Pauli exclusion principle and can become

degenerate if crowded into a sufficiently small volume. At white-dwarf densities,

the electrons are degenerate, but not the nuclei. Thus, a star could collapse

into degenerate neutrons if, once its nuclear fuel has been exhausted, it is too

heavy to be stabilized by forming a white dwarf. In that case, the star’s self

gravity forces all electrons and protons (except in the star’s crust) to combine,

pairwise, into neutrons, which causes a massive neutrino burst (ca 1057 of them)

and leaves behind only degenerate neutrons. The neutrons in such a condition

cannot decay into protons and electrons for reasons of energetics — although

a free neutron is unstable. In a sense, a neutron star is one gigantic atomic

nucleus!
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Extreme Earth – Chronology of Events781

We address the subject of singular terrestrial events in recorded history
and their impact upon civilizations. Natural disasters have been the scourge
of mankind since time immemorial. We survey their history throughout the
past 6000 years, including such calamities as volcano eruptions, earthquakes,
floods, tsunamis, major storms, hurricanes, droughts, pandemics, collision of
earth with bolides, climatic changes and ecological collapses. Not only had
many of theses singular events changed the course of civilization, but they
have at the same time influenced both the advent and advance of science.
It is estimated that ca 500 million people were killed since 4000 BCE by all
catastrophes combined. This amounts to about 1.5 percent of all people who
ever lived since 4000 BCE. The total fatal energy unleashed on the earth’s
surface against its inhabitants throughout the said time window is estimated
at 2 × 107 MT.

The following consist of a chronological list of some 150 terrestrial events
which had the most significant impact (and consequences) on human civiliza-
tions, since 5000 BCE.

781 For further reading, see:

• Ben-Menahem, A., Extreme Earth – History, Chronology, and Energetics,

Keynote Address to the XXVI General Seismological Commission (ESC), Aug
23–28, 1998, Tel-Aviv, Israel.

• Robinson, A., Earth Shock, Thames and Hudson, 1993, 304 pp.

• Knauer, K. (ed.), Nature’s Extremes, Time, 2005, 138 pp.

• Simkin, T. and L. Siebert, Volcanoes of the World, Geoscience Press, Tucson
AZ, 1994, 349 pp.

• Watterau, B., The New York Public Library Book of Chronologies, Prentice-
Hall: New-York, 1990, 634 pp.

• Brooks, C.E.P., Climate Through the Ages, Dover, 1970.

• Cartwright, F.F., Disease and History, Dorset Press, 1991, 248 pp.

• Gutenberg, B. and C.F. Richter, Seismicity of the Earth., Princeton University
Press, 1954.
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Prehistory

4895 BCE Crater Lake (Oregon, U.S.A.; VEI=7=Volcanic Explosion
Index).

4400–4000 BCE Neoglaciation and severe climatic depressions on a global
scale: severe episodes of climatic deterioration manifest through glacial
advance, increased rainfall, decline of average temperatures, rise of a
sea-level and major flooding.

4350 BCE Kakai (Japan) volcano eruption (VEI=7).

3580 BCE Vesuvius (Italy) volcano eruption (VEI=6).

Ancient History

ca 3200 BCE

• Millennial-scale warming terminates with flooding in the lower lat-
itudes followed by drought. Survivors organize into centrally di-
rected and hierarchical culture.

• History begins at Sumer with the invention of the art of writ-
ing. Emergence of urban irrigation-based cultures centered on city-
states.

Sea-level changes.

Index of tree-ring narrowness corresponds to temperature changes.
Ice-core samples from Greenland (sulfate concentration, oxygen-
isotope ratio indicative of ambient temperature).

Flood-myths of most civilizations and many oceanic islands.

Ca 2920 BCE Black Peak (Alaska) volcano eruption (VEI=6).

Ca 2880 BCE Taupo (New Zealand) volcano eruption (VEI=6).

Ca 2297 BCE Massive rains burst the Hwang Ho (Yellow River), Wei and
Yangtze rivers, flooding almost the entire North China Plain and turning
it into a huge inland sea.

Ca 2180–2130 BCE Sharp climatic changes cause rise and fall of civiliza-
tions and mass-migration in Europe and Asia.
Failure of Nile annual floods; drought and famine in Egypt cause collapse
of central government and an ensuing chaos.
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Ca 2040 BCE Long Island (New Guinea) volcano eruption (VEI=6).

1855 BCE St.Helens volcano eruption (VEI=6).

ca 1800 BCE

• Seismo-volcanic upheaval in the Dead-Sea region. Biblical allu-
sions.

• Ecological collapse of city-state civilization in Southern Mesopotamia
due to salination of cultivated soils. Mass-migration. Age of bibli-
cal patriarchs.

1750 BCE Veniaminof (Alaska) volcano eruption (VEI=6).

May 1627 BCE Thera volcanic paroxysm; ca 100,000 people perish. Ash
identified as coming from the eruption has been found in coastal cities
as far away as Israel and Sardi in Anatolia. Climatic and economic
disruption of late Bronze-age Minoan civilization and Egyptian middle
kingdom. Subsequent impact on civilizations in the Eastern Mediter-
ranean. Event linked to myth of Atlantis and biblical account of Israel
in Egypt.

ca 1320 BCE Bolide fireball explosion over Apasa, Asia Minor.

ca 1250 BCE Possible visitation of a comet as “pillar of fire”during the
exodus of Israelites from Egypt.

ca 1200–850 BCE Sharp climatic changes – northward displacement of
arid zone at late Bronze-age cause mass southward migration in Eu-
rope and the Aegean zone. Indo-European invasion into Greece and
Asia Minor by sword-bearing people. Disruption of agriculture in Crete,
Greece and Eastern Mediterranean. Homeric wars, Sea-People in Egypt,
Cyprus, Israel and Italy. Decline of Mycenaen and Hittite civilizations.
Severe droughts in China (ca 1122 BCE, 842–771 BCE).

ca 950 BCE Hekla (Iceland) volcano eruption (VEI=6). Radiocarbon evi-
dence.

767 BCE First recorded pandemic in Europe and the Mediterranean world.

600–500 BCE Cooler weather, increase of rainfall and floodings in Europe
and the Middle-East.

430 BCE Decline and fall of Athens by the plague.

217 BCE Vesuvius (Italy) volcano eruption.

210 BCE Raoul (Kermades Is.) volcano eruption (VEI=6).
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44 BCE Etna volcano eruption.

50 CE Ambrym (New Hebrides) volcano eruption (VEI=6-7).

65 CE Bonna-Churchill (Alaska) volcano eruption (VEI=6).

79 CE, Aug. 24 Vesuvius (Italy) volcano eruption (VEI=6). Ruin of Pom-
peii, Herculanum and Stabiae.

ca 100 CE Climatic change forces the abandon of the formerly flourishing
(since 300 BCE) cities of Palmyra and Petra (now in the deserts of Syria
and Jordan respectively). In these cities vine and olive were cultivated
without much recourse to artificial irrigation. This implies higher water
table than now and a climate that supplied more dependable rain.

155 CE Ksudach (Kamchatka) volcano eruption.

250–594 CE Decline and fall of Roman Empire aided by severe climatic
changes causing droughts, plague and malaria.
Plague of Justinian (542); millions perish in Africa and Mediterranean
area.

260 CE Ilopango (El Salvador) volcano eruption (VEI=6).

536 CE Rabaul (New Britain) volcano eruption (VEI=6). The greatest
aerosol-producing eruption in recorded history.

550–600 CE Prolonged drought in the Peruvian Andes put an end to the
1000 year old Nazca Indian Culture, who in their great despair drew
impressive geoglyphs to implore their gods for rain.

Middle Ages

600–650 Dry period in Arabia preceded the great wave of Arab outburst
through the advent of Islam.

626 Volcano eruption in the Mediterranean region.

700 Bonna Churchill (Alaska) volcano eruption (VEI=6).

934 Eldgia (Iceland) volcano eruption.

1000 Collapse of the Andean Tiahuancco Empire due to a prolonged drought
lasting some 80 years.
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1006 Merapi (Java) volcano eruption destroyed Hindu-Javanese state of
Mataram and its unique civilization.

1022 Drought in India; population decimated.

1054 Baitoushan (China) volcano eruption (VEI=7).

1064–1072 7-year failure of Nile flooding; widespread famine.

1099 Sea flood in Thanes Estuary and Holland; 100,000 estimated drowned.

1104 Hekla (Iceland) volcano eruption (VEI=5).

1164 Floods in northwestern Germany; 100,000 estimated perished.

1200 Floods in Friesland (Holland); 100,000 estimated drowned.

1200–1250 Drought and moist conditions drive Mongols into China, Europe
and Middle-East. Decline of Islamic Empire.

1212 Floods in North Holland. Enormous loss of life: estimated 306,000
drowned.

1218–1287 Catastrophic floods in the Netherlands; 200,000 victims (coasts
of Holland sank 2 m since Roman times). Strong tides and storms in
the North Sea.

1258 A volcano eruption affects global weather.

1332 The Yellow River burst and drowned about 7 million people with
possibly a further 20 million dying of famine. The Black Death plague
appeared in China at the same time.

1332–1351 Black-Death Pandemic in India, China and Europe. History’s
greatest natural disaster; ca 50 million die in Europe and Asia (about
10 % of world’s population at that time). Parching drought with conse-
quential famine in Central Asia have caused rodent migration westward.
End of feudal system and advent of the Renaissance in Europe.

1400–1650 ‘Little Ace Age’ in Europe.
Floods in Holland (1421); 100,000 perish. Again: 50,000 die in 1530 and
100,000 in 1646.

1452 Kuwae (New Hebrides) volcano eruption (VEI=6).

Modern Era

1507–1595 Smallpox and typhus pandemics in the New World decimated
the native population of Inca and Aztec empires; ca 50 million die.
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1556, Jan. 23 Earthquake in Shensi (China); 830,000 perish.

1563 Bubonic Plague in London; 25% of the population perish.

1570, Nov. 02 Floods in the Netherlands; 400,000 perish.

1577 Apparition of the ‘Great Comet’ (0.63 au from earth). Turning point
in astronomy.

1580 Billy Mitchell (Bougainville) volcano eruption (VEI=6).

1600 Plague in Russia; ca 250,000 victims.
Huaynaputina (Peru) volcano eruption (VEI=6).

1630(1656) Plague in Venice (Naples); ca 250,000 (100,000) die.

1631 Vesuvius (Italy) volcano eruption; more than 4000 perish.

1641, Jan. 04 Parker (Philippines) volcano eruption (VEI=6).

1660 Long Island (New Guinea) volcano eruption (VEI=6).

1664 Plague in London; 100,000 die.

1669 Etna (Sicily) volcano eruption; 100,000 perish. Destruction of Cata-
nia, Sicily.

1672 Plague in Naples; 400,000 perish.

1693 Earthquakes hit Naples and Catania; 150,000 victims.

1703, Nov. 26 Sea-tempest in the British Channel; 8000 perish. Greatest
storm in 2000 years in the North Sea. Worst storm in British history.

1711 Plague in Germany and Austria; 500,000 die.

1717 Floods in Holland; 12,000 people drowned.

1730, Dec. 30 Earthquake hit Tokyo (Japan); 140,000 perish.

1737, Oct. 11 Cyclone at the mouth of the Ganges River at Calcutta (In-
dia); 300,000 die. Avachinsky (Kamchatka) volcano eruption. Great
tsunami.

1755, Nov. 01 The Lisbon earthquake; 60,000 killed. Advent of modern
seismology.

1766 Hekla (Iceland) volcano eruption (VEI=4).
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1769–1778 Drought causes famine in India; ca 6 million perish.

1780 Hurricane hits Cuba and Central America; 25,000 perish by floods.

1783, June 08 Laki (Iceland) volcano eruption; 10,000 die; ash fall-out
destroyed crops and livestocks causing famine and starvation.

1792 Unzen (Japan) volcano eruption; tsunami kills 14,300 persons.
Plague in Egypt; 800,000 die; pandemic spread to North Africa (1799)
and killed 300,000 more.

1799 Plague in North Africa; 300,000 die.

1803, Apr. 26 Meteor shower over the village of l’Aigle in France finally
established extraterrestrial nature of meteors.

1812–1813 Dysentery decimates the Napolean army in Russia; ca 400,000
die.

1815, Apr.10 Tambora (Sunda Is.) volcano eruption; perhaps the most
energetic single geophysical event in the past 5000 years (20,000 MT);
92,000 died from tephra, tsunami and starvation. Epicenter at Sumbawa
8◦15’S 118◦00’E. 150 km3 ash ejected into the atmosphere and affected
world climate. Caused extreme cold winters in many parts of the world;
1816 – the year without summer; famine.

1826–1837 Cholera pandemic in Asia and Europe; 900,000 perish in 1831
alone.

1829–1833 Malaria epidemic kills 150,000 Indians in the Pacific Northwest.

1835, Feb. 20 Major earthquake in Chile; witnessed by Darwin.

1837–1838 Drought in India; some 800,000 die.

1840–1894 Worldwide Cholera pandemic; mainly Eastern Europe and In-
dia (due to crop failures); fatalities in the millions.

1851–1855 Tuberculosis ravaged England; 250,000 die.

1857 Earthquake in Tokyo (Mar.21; 110,000 die) and Napoli (Dec. 16).
First attempts to describe source-mechanism; advent of instrumental
seismology.

1864 Hurricane in the Calcutta harbor.

1866 Drought-related famine in Bengal; 1.5 million die.
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1868 Earthquake shakes Ecuador, Colombia and Peru; 40,000 die.

1876 Tsunami at the Bay of Bengal; 215,000 perish in Calcutta; caused by
an earthquake in the Andaman Islands.

1876–1879 Prolonged drought in India and Northern China; 18 million per-
ish.

1881, Oct. 08 Typhoon hits Haiphong (North Vietnam); 300,000 die.

1883, Aug. 27 Krakatoa (Sunda Straits) volcanic eruption; E=200 MT;
tidal wave kills 36,000 people. First evidence of jet-stream circulation.
Explosion heard 5000 km away. Ejecta reached 80 km high, above the
ozone layer.

1887. Sept.–Oct. Floods of the Yellow River (Hwang Ho, China); 6 million
people reported lost; caused by rains. This river killed more people than
any other river in the world. Worst flood in recorded history.

1889–1890 Influenza pandemic in the world; millions die.

1891, Oct. 28 Earthquake in Mino-Owari (Japan); first documentation of
surface faulting; 7300 people die.

1892–1900 Drought, famine and plague in India and China; ca 8 million
perish.

1897, June 12 Earthquake in Assam (India); first observations of P, S, R
waves on seismograms.

1900, Sept. 08 Hurricane at Galveston (Texas, U.S.A.); 8000 killed. Wind
speed of 170 km

sec sent 5 m tidal wave through town.

1902, May 08 Peleé (Martinique) volcano eruption; 29,000 perish at
St.Pierre in 2 minutes by a fire-storm (nueé ardente).

1902, Oct. 24 Santa Maria (Guatemala) volcano eruption; ca 1500 perish.

1906, Apr. 18 Earthquake of San-Francisco; M=73
4 ; 700 killed; elastic re-

bound theory.

1908, June 30 The ‘Tunguska event’; asteroid explosion over Siberia; on
00:14:28 GMT, 60◦55’N, 101◦57’E a 100 m bolide mimicked a high-
altitude nuclear explosion with yield of ca 12 MT. It arrived with a
velocity of ca 40 km

sec , having an estimated mass of 50,000 ton. The
radius of total destruction was 2000 km2. The explosion was heard to
a distance of 1270 km, seen at distance 500 km; heat was felt 70 km
away and matter was burnt in a radius of 15 km. Had it arrived 4 hours
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and 27 minutes later it would hit Petrograd and may have changed the
course of history of the 20th century. Nuclear explosion may have been
triggered by neutron production as the heated object sped through the
atmosphere. Frequency of event – ca once every 300 years (over the
entire earth’s surface).

1908, Dec. 28 Earthquake of Messina (Italy); 160,000 killed in Calabria
and Sicily.

1911 Floods of the Yangtze River (China); 200,000 die.

1911, June 06 Katmai (Alaska) volcano eruption (VEI=6).

1912 Novarupta (Alaska) volcano eruption (VEI=6).

1916, Jan. 14 Sea-floods in Holland; 10,000 die.

1916–1919 Influenza pandemic; 80 million die worldwide, dwarfing the toll
of combat in WW1 (ca 10 million).

1920, Dec. 16 Earthquake in Kansu and Shensi Provinces (China);
100,000 perish.

1921–1930 Cholera and smallpox epidemic in India; 1,300,000 victims.

1923, Sept. 01 Earthquake in Yokohama and Tokyo; 100,000 killed by
shock and fire. Advent of earthquake-engineering.

1925, Mar. 18 ‘Tri-State-Tornado’ in U.S.A.; 43 billion $ damage; 700
dead.

1927, May 22 Earthquake in Nanshan (Kansu, China); 200,000 victims.

1928 Hurricane in Florida; 1800 die.

1930, Aug. 13 Bolide explosion over Curucá River (Brasilian Amazon;
5◦S, 71.5◦W; 12:04 MT). Yield =1 MT. A miniature ‘Tunguska’. Ex-
ploded about 9 km above ground. Explosion heard 240 km away and
seismic waves were recorded at La Paz, 1322 km away. Fine red ash fell
on the forest but nothing else reached ground level.

1931, June–Aug. Floods of the Yangtze River due to rain; more than mil-
lion people drowned, 180 million affected in Hoanan Province (China).

1932 Hurricane in Cuba; 2000 perish.

1933, Mar. 02 Seismic tsunami off coast Honshu (Japan); waves 23 m
high; 3000 perish.
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1933, Mar. 10 Long-Beach (U.S.A.) earthquake. Systematic study of the
effect of earthquakes on buildings begins.

1935, Sept. 04 ‘Labor-day Hurricane’ in the Florida keys; 400 die. Winds
320 km per hour. Barometer 669.3 mm.

1935, Dec. 11, 10:30 am LT Bolide explosion over British Guiana (now
Guyana); another “’mini Tunguska”.

1937 “Near miss” of asteroid Hermes (distance of 800,000 km from earth).

1938 Yellow River flooding; 1 million victims.

1956, Mar. 30 Bezymianny (Kamchatka) volcano eruption.

1960, May 22 Earthquake in Chile; experimental verification of propagat-
ing rupture of faults and the earth’s free oscillations.

1965, Mar. 31 Bolide explosion over British Colombia. Explosion heard
over 140 km. Estimated yield 4 KT.

1970, May 31 Earthquake in Peru; 66, 000 killed.

1970, Nov. 12 Tropical cyclone in Bay of Bengal (Bangladesh); 500,000
victims.

1974 Hurricane in Central America; 5000 perish by floods.

1975, Mar. 04 Bolide explosion over Western New Guinea (3◦42’S,
133◦17’E). Large area of jungle knocked down. Felled trees point away
from center.

1976, July 27 Earthquake in Tangshan (China); 655,000 victims (M=7.8).

1978 Bolide explosion over South Pacific; yield � 100 KT.

1980 St. Helens (Washington, U.S.A.) volcano eruption; yield = 5 MT.
El Cichón (Mexico) volcano eruption; more than 2000 die.

1985 Ruiz (Colombia) volcano eruption; 25,000 perish.

1988, Sept. 13 Hurricane ‘Gilbert’; strongest Atlantic cyclone on record.

1989, Mar. 23 Asteroid 1989FC with energy of 1000 MT nearly missed
the earth (2 moon-distances away).

1992, Dec. 12 Tsunami flooded the South Pacific volcanic islands of Flores
and Babi; 2000 killed. Waves, 25 m high swept ashore.

1995 Bolide explosion over Northeastern Brazil.
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1998 Great hurricane induced floods in Central America. 20,000 perish in
Honduras and Nicaragua. Million homeless and a third of all homes in
these countries destroyed.
Devastating floods in China.

Hazardous events – background and data

The chronology presented in the last section includes a variety of natural
disasters caused by the interaction of life-systems on earth with internal and
external dynamic environmental systems such as the earth’s crust, its oceans
and atmosphere and outer space. We divided these events into a number of
categories, each of which will be discussed in some detail. Table 5.10 lists
the most destructive catastrophes on earth during the second millennium CE,
with the corresponding estimates of human death-toll.
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Table 5.10: Most destructive geophysicalcatastrophes on earth

during the 2nd
millennium CE

Date Location Disaster
Estimated

death-toll

1139, Oct. 12 Syria, Aleppo Earthquake 230,000

1228 Netherland coast Flood 100,000

1290, Sept. 27 China, Chihili (Hope
Province)

Earthquake 100,000

1421 Netherland coast Flood 100,000

1530 Netherland coast Flood 100,000

1556, Jan. 26 China, Shansi Earthquake 830,000

1642 China, Yellow River Flood 300,000

1646 Netherland coast Flood 100,000

1693, Jan. 11 Italy, Naples and
Catania

Earthquake 153,000

1730, Dec. 30 Japan, Hokkaido Earthquake 137,000

1737, Oct. 11 India, Calcutta Cyclonic
storm

300,000

1815, Apr. 05 Indonesia, Tambora Volcano
eruption

92,000

1857, May 08 Japan, Tokyo Earthquake 107,000

1876 Bay of Bengal
(Bangladesh)

Seismic
tsunami

215,000

1882 India, Bombay Flood 100,000

1887 China, Yellow River Flood 2,000,000

1908, Dec. 28 Italy, Messina Earthquake 160,000

1911 China, Yangtze River Flood 200,000

1920, Dec. 16 China, Kansu Earthquake 200,000

1923, Sept. 01 Japan, Kwanto Earthquake 143,000

1927, May 22 China, Nanshan Earthquake 200,000

1931 China, Yellow and
Yangtze Rivers

Flood 3,000,000

1938 China, Yellow River Flood 1,000,000

1970, Nov. 12 Bay of Bengal
(Bangladesh)

Flood 500,000

1976, July 27 China, Tangshan Earthquake 655,000
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Earthquakes

Plate tectonics refers to the movement and deformation of segments of the
earth’s lithosphere (plates). There are seven major plates: North American,
South American, Nazca, Pacific, African, Indian-Australian and Eurasian.

There are three types of plate boundaries on the surface of the earth:

• Divergent boundaries: two plates which are moving away from each
other, leaving room for material from the mantle to seep into the space
and form new sea floor (e.g., Mid-Atlantic Ridge, at the rate of ca 1.5 cm

yr .
Such zones are characterized by active volcanism, shallow-focus earth-
quakes, tensile (stretching) stresses and high rates of heat flow.

• Convergent boundaries: two plates move toward each other, causing one
plate to submerge beneath the other (e.g., formation of the Himalayas
by the underthrusting of the Indian plate relative to the Eurasian plate).

• Transform boundaries: two plates slide past each other (e.g., along the
San-Andreas fault system in California at the borders of the North
American and Pacific plates), with neither creation nor destruction of
lithosphere. In general, each plate is bounded by some combination of
these three kinds of zones. The global sum of plate creation and con-
sumption is approximately zero: the plates form and disappear in size
and shape as they evolve.

Much of the earth’s landscape has been shaped by plate tectonics. As
oceanic plates have been created and subducted, and the continents have
collided and broken apart, mountains have been built, rift valleys formed,
ocean ridges and trenches created, and volcanoes constructed.

Plate tectonics is driven by convective cooling of earth’s interior: the con-
tinental lithosphere is made largely of rocks such as granite that are less dense
than the mantle. The continents thus stay afloat and remain at the surface,
although they have drifted together and broken apart many times. By 80
million years ago, most of the continents we know today were isolated and
had began moving toward their current positions.

The continents move about 5 to 10 cm per year and it takes millions
of years to build a mountain range. Around 250 million years ago, when
North America collided with Africa, the ensuing large-scale crustal shortening
generated the Appalacian Mountains. Erosion has worn them down, but they
were once comparable to the present-day Himalayas. The Himalayas, however,
were formed only about 35 million years ago, when India plowed into southern
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Asia. The large-scale horizontal shortening that resulted, built up the highest
mountains on earth.

Plates not only ‘collide’ with one another, they can also slip past each
other along a fault which is a thin boundary layer of crushed rock between
the two moving blocks. Here, stresses build up, the rock breaks. This sudden
slip shakes the earth, causing an earthquake. Thus, for example, the result
of the slip of the Pacific plate and the North American plate created the San
Andreas fault in California. It slices through California more than 1100 km
and its activity accounts for more than 10,000 earthquakes (most of them
minor) each year.

Deep earthquakes are associated with the subduction of oceanic plates.
Some have been detected at depths exceeding 600 km, indicating how far the
plates may plunge into the mantle.

Earthquakes may release enormous amounts of energy that travel along
the surface and through the interior to great distances. Much of what we
know about the earth’s interior, we have learned by studying how these waves
travel through the earth.

During earthquake episodes, plate-motions release stored elastic energy in
the earth’s crust and upper mantle up to depths of 700 km. Most of this
energy is expended, however, in the upper 70 km or so.
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Table 5.11: ‘Killer earthquakes’ during the 2
nd

millennium CE

(A) 1000–1800 CE (21,000 or more deaths)

Date Location Ms Comments
Approximate
death-toll∗

1038 China: Shensi 33,000
1042, Aug. 21 Syria: Palmyra 7.2 City ruined; felt

in Iran & Egypt
50,000

1042, Nov. 04 Iran: Tabriz 7.6 City ruined 40,000
1057 China: Chihli 25,000
1139, Oct. 12 Syria 7.4 Aleppo

destroyed
230,000

1157, Aug. 15 Northern
Dead-Sea Rift

7.3 Destruction in
Syria &
Lebanon

80,000

1202, May 30 Northern Israel 7.5 Macroseismic
area engulfs the
entire
Middle-East;
damage in
Israel, Lebanon
and Syria

30,000

1268 Turkey : Silicia 60,000
1290, Sept. 27 China: Hopeh 6.7 100,000
1293, May 20 Japan:

Kamakura
22,000

1444 Turkey 30,000
1455, Dec. 05 Italy : Naples 7.5 40,000
1458 Turkey :

Erzincan
7.6 32,000

1481, Mar. 04 Turkey :
Erzurum

7.7 30,000

1481 Egypt Felt in Israel,
Syria & Arabia

30,000

1498 Japan: Totomi 8.0 41,000
1522 Iran: Tabriz 70,000
1531, Jan. 26 Portugal :

Lisbon
30,000
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Table 5.11: (Cont.)

Date Location Ms Comments
Approximate

death-toll
1556, Jan. 23 China: Shensi Greatest

recorded
number of
people ever
killed by an
earthquake

830,000

1626, July 30 Italy : Naples 70,000
1641, Feb. 05 Iran: Tabriz 30,000
1662 China 300,000
1667, Nov. Caucasus:

Azerbaijan
6.9 80,000

1668, July 25 China:
Shandong

50,000

1693, Jan. 11 Italy : Naples &
Catania

153,000

1695, May 18 China 30,000
1703, Jan. 14 Italy : Norcia,

Aguila
40,000

1703, Dec. 31 Japan: Tokyo 200,000
1707, Oct. 28 Japan 30,000
1718, June 19 China 43,000
1727, Nov. 18 Iran: Tabriz 77,000
1730, Dec. 30 Japan:

Hokkaido
137,000

1731, Nov. 30 China: Beijing City destroyed 100,000
1739, Jan. 03 China 50,000
1754, Sept. Egypt: Cairo Half of city

dwellings
destroyed

40,000

1755, June 07 Iran: Tabriz 50,000
1755, Nov. 01 Portugal :

Lisbon
8.0 Great tsunami

(17 m);
epicenter ca
100 km offshore
Liston

70,000

1759, Nov. 25 Lebanon:
Baalbec

7.4 30,000

1773, June 07 Guatemala Santiago
destroyed

58,000
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Table 5.11: (Cont.)

Date Location Ms Comments
Approximate

death-toll
1778–1780 Iran: Tabriz 7.7 A series of

earthquakes
100,000

1783, Feb. 05 Italy : Calabria 30,000
1797, Feb. 04 Ecuador : Quito 40,000
1797, May 26 Italy : Calabria 50,000

* Magnitudes and death-tolls in this table were evaluated by Prof. Markus

B̊ath (1916–2000; Uppsala, Sweden).

(B) 1800–2002 CE (1500 or more deaths)

1805, July 26 Italy : Napoli 6500
1810, Feb. 16 Crete: Iraklion Tsunami 2000
1812, Mar. 26 Venezuela

Caracas
7.7 Heavy

destruction in
Caracas

26,000

1815, Oct. 23 China 13,000
1815, Nov. 27 Indonesia: Bali 10,250
1819, June 16 India: Kutch 8.05 Great damage;

ca 10,000
houses
destroyed

1540

1822, Aug. 13 Turkey :
Antioch,
Aleppo

7.2 Antioch
destroyed

20,000

1825, Mar. 02 Algeria: Blida 7000
1828, Dec. 28 Japan: Honshu 8.0 30,000
1829, Mar. 16 Spain 7.0 6000
1830 May 26 China:

Guangzho
6000

1830, June 12 China: Hebei 7000
1831, Aug. 11 Antilles:

Barbados
3000

1833, Sept. 06 China 6700
1835, Feb. 20 Chile:

Conception
8.0 Tsunami

observed by
Charles Darwin
during cruise of
the “Beagle”

thousands
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Table 5.11: (Cont.)

Date Location Ms Comments
Approximate

death-toll
1837, Jan. 01 Israel: Safed 6.8 Destruction in

Northern Israel
4100

1840, July 02 Armenia 6.8 2100
1842, May 07 Haiti :

Dominican
Republic,

Puerto Rico &
Jamaica

5000

1843, Feb. 08 Antilles 5000
1844, May 10 Iran 1500
1847, May 08 Japan: Zenkoji 7.4 34,000
1850, Sept. 12 China 20,650
1851, Aug. 14 Italy : Melfi 14,000
1851, Dec. 12 Albania 2000
1852, Feb. 22 Iran 2000
1853, May 04 Iran: Shiraz 12,000
1854, Dec. 23 Japan: Honshu,

Nankaido
8.0 31,000

1855, Feb. 28 Turkey :
Tayabas

6.7 1900

1855, Nov. 11 Japan: Tokyo 6.9 7000
1857, Dec. 16 Italy : Napoli 6.5 12,000
1859, Mar. 22 Ecuador : Quito 5000
1859, June 02 Turkey :

Erzurum
6.1 15,000

1861, Mar. 21 Argentina:
Mendoza

18,000

1868, Aug. 13 Chile, Peru,
Ecuador

8.3 Great damage
at Arequipa,
Quito, Ibarra,
Esmeraldas

85,000

1870, Apr. 11 China 6.7 2300
1872, Jan. 06 Iran 6.3 4000
1872, Apr. 03 Turkey :

Antioch
7.2 City destroyed 1800

1875, May 18 Colombia,
Venezuela

7.5 16,000

1879, Mar. 22 Iran: Ardabil 3200
1879, July 01 China: Kansu 10,400
1881, Apr. 03 Greece: Aegean

Sea
7.3 7880
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Table 5.11: (Cont.)

Date Location Ms Comments
Approximate

death-toll
1883, July 28 Italy :

Casamicciola
2300

1885, May 30 India: Srinagar 3000
1887, Dec. 16 China 6.8 2000
1891, Oct. 27 Japan:

Mino-Owari
8.0 Great damage 7270

1893, Nov. 17 Iran: Khorasan 6.6 18,000
1895, Jan. 17 Iran: Quchan 11,000
1896, June 15 Japan:

Riku-Ugo
7.6 Tsunami,

Sanriku leveled
27,120

1897, June 12 India: Assam 8.2 Flooding,
landslides;
Shillong ruined

1540

1898, Nov. 17 Turkmenistan 18,000
1899, Sept. 29 Indonesia 7.8 3860
1902, Apr. 19 Guatemala 7.4 2000
1902, Aug. 22 China:

Tien-Shan
7.6 2500

1902, Dec. 16 Kirgistan,
Turkestan

6.4 4500

1903, Apr. 28 Turkey :
Malazgirt

3560

1905, Apr. 04 India: Kangara 7.4 20,000
1905, Sept. 08 Italy : Calabria 2500
1905, Nov. 08 Greece:

Chalkidiki
6.8 2000

1906, Aug. 17 Chile 8.1 1500
1907, Oct. 21 Tajikistan,

Pamir
7.1 12,000

1908, Dec. 28 Italy : Messina,
Reggio

7.0 Cities leveled;
tsunami (11 m)

160,000

1909, Jan. 23 Iran: Silakor 5500
1912, Aug. 09 Marmara Sea,

NAFS
7.5 1950

1915, Jan. 13 Italy : Arezzano 6.8 29,980
1917, Jan. 21 Indonesia: Bali 15,000
1917, July 30 China: Sechuan 6.4 1800
1918, Feb. 13 China:

Guandong
7.2 10,000
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Table 5.11: (Cont.)

Date Location Ms Comments
Approximate

death-toll
1920, Jan. 04 Mexico:

Veracruz
4000

1920, Dec. 16 China: Kansu,
Shensi

8.1 200,000

1923, May 25 Iran:
Torbat-Haklari

5.8 5000

1923, Sept. 01 Japan: Kwanto,
Tokyo,
Yokohama

8.0 Destruction in
Tokyo and
Yokohama

143,000

1925, Mar. 16 China: Yunnan 6.9 Talifu destroyed 5000
1927, Mar. 07 Japan: Tanso 7.4 3020
1927, May 22 China:

Nan-Shan
7.7 Extreme

damage
320,900

1929, May 01 Iran: Shirwan 6.8 12,860
1930, May 06 Iran 2500
1931, Mar. 31 Nicaragua:

Managua
6.0 2450

1931, Apr. 27 Iran: Zangezur 2890
1932, Dec. 25 China: Kansu 7.5 70,000
1933, Mar. 02 Japan: Sanriku 8.2 Tsunami 3000
1933, Aug. 25 China: Sechuan 7.3 10,000
1934, Jan 15 India:

Bihar-Nepal
8.1 10,700

1935, Apr. 20 Taiwan 6.9 3270
1935, May 30 Pakistan:

Quetta
City destroyed 30,000

1935, July 16 Taiwan 6.5 2740
1939, Jan. 25 Chile: Chillan 7.6 Damage in

Conception and
Chillan

28,000

1939, Dec. 26 Turkey :
Erzincan

8.0 Macroseismic
area: 800,000
km2

32,700

1942, Nov. 26 Turkey : Havza 4000
1942, Dec. 20 Turkey : Niksar 7.1 3000
1943, Nov. 26 Turkey : NAFS 7.4 4000
1944, Jan. 15 Argentina:

San-Juan
7.0 8000

1944, Feb. 01 Turkey 7.2 5000
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Table 5.11: (Cont.)

Date Location Ms Comments
Approximate

death-toll
1945, Jan. 12 Japan: Mikawa 1900
1945, Nov. 27 Pakistan:

Makran
7.8 4000

1946, Nov. 10 Peru: Ancash 7.1 Great
destruction;
landslides;
L = 100 km,
U = 5 m

1500

1948, June 28 Japan: Fukui 7.1 5390
1948, Oct. 05 Turkmenia:

Kopet Dag
7.1 19,800

1949, Aug. 05 Ecuador 6000
1950, Aug. 15 India: Assam 8.3 Landslides,

floods; seiches
in Norway

1530

1957, Dec. 13 Iran 2000
1960, Feb. 29 Morocco:

Agadir
5.8 13,100

1960, May 22 Chile 8.5 Tsunamis,
floods, volcanic
activity. Visible
fault rupture
along 800 km;
active area
256,000 km2;
199 killed in
Hawaii by
tsunami

5900

1962, Sept. 01 Iran: Qazvin 6.9 Landslides,
rockfalls;
L = 100 km,
21,309 houses in
324 villages
destroyed

12,230

1966, Aug. 19 Turkey : Varto 6.9 2960
1968, Aug. 31 Iran:

Dasht-E-Baiaz
7.1 L = 27 km,

U = 4 m
20,000

1969, July 25 China:
Hong-Kong

5.9 3000
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Table 5.11: (Cont.)

Date Location Ms Comments
Approximate

death-toll
1970, May 31 Peru: Ancash 7.6 Landslides,

floods,
avalanches; 1.7
million
homeless; great
damage; 500
million dollars
damages

66,790

1972, Apr. 10 Iran: Zagros
Mts.

Landslides;
major damage

5370

1972, Dec. 23 Nicaragua:
Managua

6.2 80% of
Managua
ruined; fire; 800
million dollars
damage

10,000

1974, May 10 China: Yunnan,
Sechuan

6.8 20,000

1974, Dec. 28 Pakistan:
Polas, Patan

6.4 5300

1975, Feb. 04 China: Yingtao 7.2 10,000
1975, Sept. 06 Turkey : Lice 6.8 Lice destroyed 2700
1976, Feb. 04 Guatemala:

Montagua
7.5 Guatemala city

damaged;
landslides;
L = 200 km; 1.3
billion dollar
property
damage

22,830

1976, June 25 Indonesia: Irian
Jaya

Flooding,
landslides

6000

1976, July 27 China:
Tangshan

7.8 City leveled;
great economic
damage

655,000

1976, Aug. 16 Philippines:
Mindanao

7.8 Tsunami 8000

1976, Oct. 29 Indonesia: Irian
Jaya

6000

1976, Nov. 24 Turkey :
Muradiye

7.1 3620



1933 CE 4215

Table 5.11: (Cont.)

Date Location Ms Comments
Approximate

death-toll
1978, Sept. 16 Iran: Tabas 7.2 25,000
1980, Oct. 10 Algeria: El

Asnam
7.1 11,000

1980, Nov. 23 Italy 6.8 4580
1981, June 11 Iran: Golbart 6.8 3000
1981, July 28 Iran: Kerman 7.1 8000
1982, Dec. 13 Yemen:

Dhamar
6.0 300 villages

destroyed
2800

1985, Sept. 19 Mexico:
Michoaran,
Mexico City

8.0 30,000 injured;
tsunami; 3
billion dollars
damages in
Mexico City

9500

1988, Dec. 07 Colombia:
Armenia

6.8 25,000

1990, June 20 Iran: Qazvin 50,000
1990, July 16 Philippines:

Luzon, Baguio
1620

1991, Oct. 19 India 2000
1992, Dec. 12 Indonesia:

Flores
7.5 Tsunami ran

300 m inland;
25 m waves

2500

1993, Sept. 29 India 6.3 9740
1995, June 16 Japan: Honshu 6.9 Landslides 5502
1995, May 27 Sakhalin Is. 7.5 1980
1997, May 10 Iran 7.5 60,000

homeless; 4460
injured

1560

1999, Jan. 25 Western
Colombia

6.0 City of Armenia
badly damaged

2000

1999, Aug. 17 North-Western
Turkey : Izmit

7.4 17,110

1999, Sept. 20 Taiwan; Nantou 7.6 2100
2001, Jan. 26 India; Gujarat 7.7 339,000

buildings
destroyed

20,085
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Volcanoes

Volcanism occurs when magma (molten rock) beneath the surface of the
earth breaks through the surface. A volcano is thus a hole in the earth’s crust
which serves as a vent for magma and gases from below the earth’s surface.
The volcano forms from a buildup of ash and lava around the hole. Energy
is released during a volcanic eruption as heat, partly as explosive energy, and
partly in earthquakes. One example of volcanic land-form is a stratovolcano
(a cone shaped mountain built by alternating layers of lava and volcanic ash.)
Volcanic activity reflects ways in which heat is lost from the interior; ocean-
ridge volcanism creates new oceanic lithosphere. Convergence-zone volcanism
produces stratovolcanoes in plate margins. Interplate volcanism produces
shield volcanoes and flood basalt provinces in the interior of plates.

In convergence-zone volcanism, very steep stratovolcanoes are formed
when magma rises through the continental crust. The lava usually contains
large amounts of gases that are often released explosively, forming ash. Al-
ternating eruptions of lava and ash build a cone-shaped mountain with steep
slopes. In interplate volcanism, magma comes from hot spots in the mantle.
The basalt lava has only small amounts of gas and produces little ash. The
relatively free-flowing lava spreads widely, building a broad, domed mountain
with gentle slopes. Hot spots are also responsible for the flood basalt areas
on the continents. Magma from hot spots fractured the continental crust and
rose through it.

About 10,000 volcanoes have erupted in the past 10,000 years, and are
thus considered potentially active. Current activity is limited to 500–600
volcanoes, distributed nonuniformly on the plates. Most are found on plate
boundaries where lithosphere is being created or destroyed. Many are on the
margins of the Pacific plate, forming the so-called Ring of Fire. Interplate
volcanoes account for only a small number of the active volcanoes.

Volcanism has contributed enormous amounts of water, carbon dioxide,
and other gases to the atmosphere. Sunlight broke water molecules into its
components, hydrogen and oxygen. Photosynthesis by plants removed carbon
dioxide and added oxygen to the primitive atmosphere. Volcanism was also
an important factor in the growth of continents. The overall beneficial aspects
of volcanism can be summarized as follows:

• Outgassing the earth to produce the atmosphere and hydrosphere.

• Renewal of soil.

• Production of rich ore deposits by hydro thermal processes.
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• Enabling the tapping of geothermal energy.

The potency of volcanoes is graded on a scale known as the Volcanic
Explosivity Index (VEI). It is based on a number of parameters that can be
observed during an eruption.

There are six distinguished volcano eruptions that merit special mention,
because of the role they played in human history: (E = energy in units of one
megaton of TNT)

1. Yellowstone (USA) VEI = 8, E = 2 × 106MT.
The eruption cycle is ca 600,000 years. Last eruption occurred 640,000
years ago.

2. Toba (Sumatra) VEI = 8, E = 6 × 106MT.
Last eruption occurred 74,000 years ago. Lake Toba was discovered in
1949. It is surrounded by a vast layer of ignimbrite rocks. Rhyolite
ash, similar to that found around Toba, was discovered 3000 km away
in India. Oceanographers discovered a vast dusting of Toba ash on the
floor of the Eastern Indian Ocean and the Bay of Bengal. It is estimated
that the Toba eruption was perhaps the greatest since Yellowstone. The
eruption caused a great collapse to occur, forming a caldera filled with
water, creating a lake.

3. Thera (Santorini) VEI = 6-7, E = 103MT.
This titanic volcanic explosion (May 1627 BCE) contributed to the
downfall of the Minoan in the Eastern Mediterranean. Its echoes re-
sound in the literature of the ancient Hebrews and Greeks even 1200
years (50 generations!) after the event.

This event changed the whole course of civilization in the Eastern
Mediterranean. The Achaean civilization of the Greek mainland took
over the Minoan culture and power of Crete. Casualties were estimated
at 100,000, believed to be caused by a mega-tsunami. It was the greatest
volcanic tsunami to have occurred within the last few thousand years.
The ash fall-out due to this event may have been the cause of the great
total Eastern Mediterranean famine in the days of Jacob and Joseph,
described so vividly in the Old Testament Book of Genesis.

4. Vesuvius VEI = 6, Aug 24, 79 CE.
Mount Vesuvius is but 17,000 years old. It has been intimately involved
with mankind for at least 3000 years and is surrounded by the largest
population – 2 million people – ever to dwell in the immediate vicinity
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of an active crater. No other volcano played so definitive role in history,
or has so dramatized the perils that are visited by those who choose to
live among that flanks of an eruptive peak.

This mountain was so quiescent during ancient history that it was totally
ignored by the gods of Greece and Rome and, again, by chroniclers of
superstition during the Dark Ages. It did not achieve the full measure
of world fame until archaeologists uncovered the lost cities of Pompeii,
Herculaneum and Stabai during the 18th and 19th centuries.

5. Tambora VEI = 7, E = 2 × 104MT, April 05, 1815
Perhaps the greatest and deadliest eruption in recent times was that
of volcano Tambora on Lesser Sunda Is. In parts of Java, the blanket
of ash produced a daytime darkness more profound then the blanket of
nights (Exodus 10, 23). A total volume of 150 km3 (1.7 × 106 tons) of
ash were ejected into the atmosphere and the released energy reached
a value of 8.4 × 1026 erg. It affected world climate, causing extreme
cold winters in many parts of the world for 3 years (1816 — ‘the year
without a summer’).

6. Krakatoa VEI = 6, E = 200MT.
In 1883 (Aug. 26 and 27) the volcano island of Krakatoa in the Sunda
Straits, was blown to pieces. A volume of 20 km3 of material was emitted
during a paroxysmal eruption, unleashing an energy of about 1025 erg.
Material was shot 80 km high (above the ozone layer). Its global effects
lasted for 4 years.

Certain aspects of the destruction mechanisms of volcano eruptions were
clarified, on close scrutiny, only in the 20th century. One of these is the
fire-storm known as Nueé ardente that caused the death of some 30,000
people on May 08, 1902 at St. Pierre, near Mt. Peleé, Martinique: A hot
gas hurricane avalanche swept the city at a speed of 100 km/hr. The
hot gas was found to be composed of CO2, glass and dust at ambient
temperature of about 800 ◦C.
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Table 5.12: ‘Killer volcanic eruptions’ in the past two millennia

Date, CE Volcano Comments Death-toll
and cause

50 Ambrym, New
Hebrides

VEI=6.7

65 Bona Churchill,
Alaska

VEI=6

79, Aug. 24 Vesuvius, Italy Pompei
rediscovered
(1595)

ca 3360; Ash
flow and falls

155 Ksudach,
Kamchatka

VEI=6

186 Tampo, New
Zealand

Mountain
exploded

472 Vesuvius, Italy

536 Rabaul, New
Britain

VEI=6

626 Mediterranean

1006 Merapi, Indonesia VEI=7

1054 Baittoushan, China

1104 Hekla, Iceland VEI=5

1169 Etna, Sicily 50 nearby cities
destroyed

ca 15,000

1452 Kuwae, New
Hebrides

VEI=6

1471 Sakurajima, Japan

1477 Bardarbunga,
Iceland

1536 Etna, Sicily Thousands

1540 St. Helens, North
America

1580 Billy Mitchell, SW
Pacific
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Table 5.12: (Cont.)

Date, CE Volcano Comments Death-toll
and cause

1586 Kelut, Java ca 10,000;
Lahar

1591 Taal, Philippines Thousands

1593 Raung, Java

1600, Feb. 19–
Mar. 05

Huaynaputina,
Southern Peru

One of the
largest eruptions
in historic times.
Global weather
changes

1616 Mayon, Philippines Thousands

1631, Dec. 13 Vesuvius, Italy ca 18,000;
mud and lava
flows

1638 Raung, Java ca 1500;
Lahar

1640 Kamagatake,
Japan

ca 700;
tsunami

1641, Jan. 04 Parker, Philippines

1660 Long Island, New
Guinea

1669, Mar. 11–
July 15

Etna, Sicily 37.7 ◦N, 15.0 ◦E;
city of Catania
partially
destroyed

ca 10,000;
lava flows

1672 Merapi, Indonesia 7.54 ◦N,
110.44 ◦E

ca 300;
pyroclastic
flow

1673 Gamkonora,
Indonesia

1711 Awu, Indonesia ca 3200;
debris flow
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Table 5.12: (Cont.)

Date, CE Volcano Comments Death-toll
and cause

1739, Aug. Tarumai, Japan

1741 Oshima, Japan 1480;
tsunami

1741 Cotopaxi, Ecuador World’s 2nd

highest volcano
(5897 m);
villages below
destroyed

ca 1000;
avalanche of
lava and ice

1755 Etna, Sicily Conjunction
with earthquake

ca 36,000

1760 Maklan, Indonesia ca 1000;
Lahar

1766, Oct.
23–30

Mayon, Philippines ca 2000;
floods

1772 Papandijan, Java ca 3000; ash
flows

1783 Asama, Japan ca 1400; ash
and mud
flows

1783, Dec. Laki, Iceland Fifth of local
population
perish

9340;
starvation

1792, Apr. 01 Unzen, Japan 15,110;
volcano’s
collapse;
tsunami

1793 Miyi-Yama, Japan ca 50,000

1794 Tunquraohua,
Ecuador

ca 40,000

1814 Mayon, Philippines ca 1200; py-
roclastic flow
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Table 5.12: (Cont.)

Date, CE Volcano Comments Death-toll
and cause

1815, Apr. 05 Tambora,
Indonesia

Greatest known
eruption; world
climate affected;
temperature
dropped 2 ◦–4 ◦C
in Europe and
North America
for 3 years

ca 92,000;
tsunami and
starvation

1822, Oct. 08 Galunggung,
Indonesia

Over 1000
villages
destroyed

ca 4000;
pyroclastic
flow

1835, June 20 Cosiguina,
Nicaragua

1845 Nevado del Ruiz,
Colombia

ca 1000; mud
flows

1854, Feb. 17 Sheveluch, Russia

1856 Awu, Indonesia ca 3000;
pyroclastic
flow

1877 Cotopaxi, Ecuador Mud flow
traveled 240 km

ca 1000; mud
flows

1883, Aug. 27 Krakatau,
Indonesia

36,420;
tsunami

1888, July 15 Bandaisan, Japan ca 400

1888 Ritter, Papua, New
Guinea

ca 3000;
tsunami

1892 Awu, Indonesia 1530;
pyroclastic
flow

1902, May 07 Soufriere, St.
Vincent Is.,

100 km2 of the
island
devastated

1680; hot
mud and ash
flows
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Table 5.12: (Cont.)

Date, CE Volcano Comments Death-toll
and cause

1902, May 08 Mt. Peleé,
Martinique

City of St.
Pierre
demolished

ca 29,000;
ash flows

1902, Oct. 24 Santa Maria,
Guatemala

ca 6000;
tephra and
malaria

1911, Jan. 30 Taal, Philippines 13 villages
destroyed

1330; ash
flows;
tsunamis

1912, June 06 Katmai, Alaska More than
16 km2 of ash
and pumice were
ejected;
explosion heard
1600 km away;
darkness at
noon 160 km
away; ash flow,
gases and acid
rain; damage to
vegetation
600 km away

1914 White Is., New
Zealand

11; hot mud
flow

1919 Kelut, Java ca 5500;
water and
mud flows

1929 Vesuvius, Italy Destroyed
nearby villages

lava flow

1930 Merapi, Indonesia 15 km2 of land
and a number of
villages covered
with flowing
avalanche

ca 1300;
pyroclastic
flow
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Table 5.12: (Cont.)

Date, CE Volcano Comments Death-toll
and cause

1937 Rabaul, Papua,
New Guinea

ca 3000;
pyroclastic
flow; tephra;
tsunamis;
starvation

1943, June 10 Paricutin, Mexico ca 3500

1951 Merapi, Indonesia ca 1300

1951, Jan.
18–21

Lamington, Papua,
New Guinea

230 km2 covered
with

ca 3000; ash
flow glowing
avalanches

1951, Dec. 04 Hibok-Hibok,
Philippines

Red-hot
avalanche of gas
and dust

ca 500; ash
flows and
gases

1953 Ruapehu, New
Zealand

Mud flow
derailed the
Wellington-
Auckland
express

Several

1956, Mar.30 Bezymianny,
Kamchatka

Returned to
activity in 1955

1960, May
21–30

Chilean volcanoes In connection
with the great
earthquake of
May 22, 1960

ca 5700;
tsunamis

1963, Mar.
17–21

Agung, Indonesia Leaving 200,000
homeless; dust
and ash
produced red
sunsets in US

ca 1100; lava
flows

1968, July 29 Arenal, Costa Rica ca 80; Nuée
ardente

1973, Jan. 23 Helgafell, Iceland After 7000 years
of inactivity
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Table 5.12: (Cont.)

Date, CE Volcano Comments Death-toll
and cause

1979, Feb. 20 Sinila, Java 175; poison
gases

1980, May 18 St. Helens,
Washington, US

60;
asphyxiation
and blast

1982 El Chicon, Mexico ca 2000; ash
flows

1985, Nov. 13 Nevado del Ruiz,
Colombia

ca 25,000;
mud flows

1986, Aug. 21 Lake Nios,
Cameroon

ca 1750; toxic
gas

1991 Pinatubo,
Philippines

ca 800; Roofs
collapse and
disease
spreads.

Tsunamis

“This is what the Lord says: ‘See how the waters are rising in the north;
they will become an overflowing torrent. They will overflow the land and
everything in it, the towns and those who live in them. The people will cry
out; all who dwell in the land will wail at the sound of the hoofs of galloping
steeds, at the noise of enemy chariots and the rumble of their wheels. Fathers
will not turn to help their children; their hands will hang limp. For the day
has come to destroy all the Philistines and to cut off all survivors who could
help Tyre and Sidon. The Lord is about to destroy the Philistines, the remnant
from the coasts of Caphtor .”

Jeremiah 47, 2–4 (ca 625 BCE)



4226 5. Demise of the Dogmatic Universe

“. . . who calls for the waters of the sea and pours them out over the face
of the earth.”

Amos 9, 5–7 (ca 780 BCE)

It speeds across the sea as fast as a jet airplane. On reaching land, it can
suck all the water out of a harbor. Then the creature may grow more than
30 meters tall and flatten whole villages. This sea monster is a tsunami . They
are the most destructive waves in the ocean. Tsunamis, often wrongly called
tidal waves, are not caused by tides or even by the wind, but by underwater
earthquakes, landslides, volcanic eruptions, or worst of all — an asteroid
impact in the ocean. These disturbances cause the sea bed to move very
quickly, which shifts a large amount of water and disrupts the sea surface. A
train of waves is set in motion traveling away from the source of disturbance.
The resulting long waves can be devastating to low-lying coastal areas.

About four out five tsunamis happen within the “Ring of Fire”, a zone
of frequent earthquakes and volcanic eruptions roughly matching the borders
of the Pacific Ocean. Along the ring’s edges, giant slabs of the earth’s crust,
called tectonic plates, grind together. Sometimes the plates get stuck, and
pressure builds, causing the plates to suddenly come apart and slam into a
new position. This jolt causes an earthquake. If an earthquake lifts or drops
part of the ocean floor, the water above it starts moving, too, triggering a
tsunami.

A tsunami can race across the ocean at 800 km an hour. Oddly, in deep
water its waves are only a few feet high, but when the waves approach shore,
they increase in energy and height. Often before a tsunami hits, water is
sucked from harbors and beaches. People see the bare sea bottom littered
with flopping fish and stranded boats. That is because waves are made out
of crests, or high points, and troughs, or dips between crests. When a trough
hits land first, the water level drops drastically. Usually another wave blasts
ashore about 15 minutes later, then another and another, for two hours or
more.

The damage caused by a tsunami is due not just by a heavy wall of water
hitting things, but much more due to the solid debris carried by up the pow-
erful, churning deep water wave as it hits the continental shelf — the solid
debris rams and batters anything in its way.
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For example, the tsunami from the 1960 Chile earthquake created a deep
water wave of only 20 cm above sea level, but when it hit the shore it had
risen to an average height of ten times its ocean size — over 2 meters, and in
some places much higher (10 m).

It is not easy to determine the frequency of tsunamis in the world histori-
cally. Unusual debris has been found in high places in many parts of the world
which could be the result of a tsunami, though it is not easy to determine what
happened for sure and when, by the ordinary nature of the material. There
has been little effort to date to systematically assess the frequency and nature
of tsunamis well before the 20th century. Recorded history by civilizations
along the Atlantic Ocean has not noted major tsunamis. Yet, it has been
even speculated that the old stories of Atlantis, and even Noah’s Arc, may
have origins in some prehistoric tsunami which wiped out coastal settlements.

Searches for tsunamis in the geological record have mostly been started
only in the 1990’s. Of particular interest are tsunami along the Atlantic coast,
where earthquake-induced tsunami are rare, so that any detected tsunami
would probably be due to an asteroid. The results of these ongoing efforts
will shed some light on the frequency of asteroid hits into the oceans.

A mainstream scientific analysis currently estimates that a tsunami ex-
ceeding 100 meters in height along the entire coast probably occurs once every
few thousand years, which slightly exceeds written history in most of these
ocean coastal regions. Such a 100 meter tsunami would cause unprecedented
damage to low lying areas all along the U.S. east coast, and may totally sub-
merge vast areas in Europe such as in Holland and Denmark. A 100 meter
tsunami would travel inland about 22 km and a 200 meter tsunami would
travel inland about 55 km.

Tsunamis have killed more than 275,000 people since 1870. To save lives,
scientists established the Pacific Tsunami Warning System, based in Hawaii,
in the U.S.A. Its network of earthquake detectors and tide gauges detects
earthquakes that may cause a tsunami.

Table 5.13 lists some of the deadliest tsunamis that plagued the coasts of
the world since 1628 BCE.
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Table 5.13: Some notable seismic and volcanic tsunamis of the

world 1628 BCE–1964 CE

Date Source
region

Visual
run-up (m)

Location of
hit area

Comments

1628 BCE Thera
eruption

35 Crete Devastation
of Mediter-
ranean
coasts

1273 Japan 30,000 killed

1640 Japan Komogataka 1700 killed

1741 Japan Oshima 1500 killed

1755, Nov. 01 Eastern
Atlantic

5–10 Lisbon,
Portugal

30,000 killed

1792 Unzen
eruption

Japan 14,300 killed

1815, Apr. 10 Tambora
eruption

Indonesia

1837, Nov. 07 Chile 5 Hilo, Hawaii

1841, May 17 Kamchatka 4 Hilo, Hawaii

1854, July 09 Japan Hilo, Hawaii 2400
drowned

1868, Apr. 02 Hawaii
Island

2 Hilo, Hawaii

1868, Aug. 13 Peru,
Chile,
Ecuador

12 Arica, Peru Observed in
New
Zealand;
damage in
Hawaii

1876 Andaman
Ils.

Bay of
Bengal

215,000
killed
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Table 5.13: (Cont.)

Date Source
region

Visual
run-up (m)

Location of
hit area

Comments

1877, May 10 Peru,
Chile

2–6 Japan Destructive
in Iquique,
Peru

1883, Aug. 27 Krakatau
eruption

Java Over 30,000
drowned

1896, June 15 Honshu 24 Riku-Ugo,
Japan

About
27,000
drowned

1923, Feb. 03 Kamchatka 5 Waiakea,
Hawaii

1933, Mar. 02 Honshu 23 Sanriku,
Japan

3000 killed

1946, Apr. 01 Aleutians 10 Wainaka,
Hawaii

1952, Nov. 04 Kamchatka 4 Hilo, Hawaii

1957, Mar. 09 Aleutians 3 Hilo, Hawaii

1960, May 23 Chile 14 Waiakea,
Hawaii

1964, Mar. 28 Alaska 6 Crescent
City,
California

120 deaths
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Extreme Universe

There are about a hundred billion stars in the Milky Way galaxy. One
of these stars is the sun, which gives our earth the light and warmth that
it needs to sustain life. However, even though the time scales are long by
human standards, the galaxy is a dynamic, changing place, with new stars
being born and old stars evolving and eventually dying. New stars are born
out of collapsing clouds of gas and dust that float between the stars. Initially,
these clouds are cold, but as they contract, they heat up. The temperature at
the core of such as “protostar” eventually becomes so high that nuclear fusion
reactions set in. Hydrogen atoms are fused into helium atoms, releasing energy
which makes the newborn star shine. Once born, the life stories of the stars
are different depending on how much material they started out with at their
births.

Light-weight stars like our sun live a long and sedentary life. After 5
billion years, the Sun still generates light and heat from fusing hydrogen into
helium. Later in its life it will become a red giant star, fusing helium into
carbon. The higher temperatures in the core will cause the sun to puff up
to 100 or more times its current size, engulfing the earth; but that will not
happen for another 5 billion years! Finally, the nuclear reactions in the sun
will run down and it will become a white dwarf star. Without a power source
at its center, the sun will slowly cool and grow dimmer and dimmer. There
are many stars like our sun in the galaxy.

Massive stars, such as Wolf-Rayet stars, are rare and differ from our sun
in several important ways. These heavy-weight stars live relatively short but
very intense lives. They have very strong stellar winds, about 10 billion times
stronger than the solar wind. The solar wind can sometimes be noticed on
earth when it creates the Northern lights or disrupts radio communications,
but it has very little direct effect on the sun’s evolution. The winds from
massive stars are so substantial that matter from the stars is carried away by
the wind; they are evaporating as we watch.

Massive stars burn much hotter than the sun and are strong sources of UV
radiation. They are capable of fusing progressively heavier elements, such as
carbon, nitrogen, oxygen and so on up to iron after which nuclear fusion
becomes endothermic.782 If you have ever wondered where all the chemical
elements came from, the answer is that nearly all of them were made inside

782 The elements heavier than iron are thought to have been created in stellar

explosions, via endothermic nuclear reactions.
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of massive stars. The very material in our bodies was once inside of massive
stars, with the exception of hydrogen. We are all made of stardust!

The strong stellar winds of massive stars carry away so much material that
they peel away layer after layer from the star like the different layers of an
onion. Different chemical abundances become exposed at the surface of the
star, allowing us to study the material that was once inside it. At the ends of
their lives, massive stars explode as supernovas.

Thus, when massive stars die, they scatter their ashes back out into the
galaxy. This material mixes with gas and dust in interstellar space and pro-
vides the building materials out of which new and different stars, the next
generation of stars, may form.

During the past 70 years (1933–2003) great advances were made in both
physics and technology: the advent of relativistic cosmology, astrophysics
and astrochemistry, plasma physics and magnetohydrodynamics, quantum
physics, nuclear and elementary particle physics, solid state physics, rocket
and satellite technology, communication and guidance technology, nuclear
power technology and computer technology – all gave us new tools and ca-
pabilities to probe deep space and monitor a host of phenomena and events
extending to the edge of the observable universe. Data associated with the
birth and death of stars are unfolding daily before the ‘eyes’ of our telescopes
over the entire range of the electromagnetic spectrum783, enabling us to un-
derstand and reconstruct the complicated physical process that take place at
the core of galaxies, in exploding stars, and in previous cosmological epochs.

Among the bizarre astronomical objects that were thrusted upon as-
tronomers, astrophysicists and cosmologists in the course of the 20th century
are: neutron-stars, pulsars, black holes, white dwarfs, accretion discs, super-
novae, hypernovae, quasars and gamma-ray bursters. Let us briefly describe
these in chronological order:

Supernovae

Stars which are five times or more massive than our sun end their lives in
a most spectacular way; they go supernova. A supernova explosion will occur
when there is no longer enough fuel for the fusion processes in the core of the

783 As well as though the new window of neutrino astronomy and the imminent

one of gravitational-wave astronomy.
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star to create an outward pressure which balances the inward gravitational
pull of the star’s great mass.

First, the star will swell into a red supergiant, at least on the outside. On
the inside, the core yields to gravity and begins shrinking. As it shrinks, it
grows hotter and denser. A new series of nuclear reactions begin to occur,
temporarily halting the collapse of the core.

When the core contains essentially just iron, it has nothing left to fuse
(because of iron’s stable nuclear structure, it cannot fuse into heavier elements
without a net intake of energy). Fusion in the core ceases. In less than a
second, the star begins the final phase of gravitational collapse. The core
temperature rises to over 100 billion degrees as the iron atoms are crushed
together. The repulsive force between the nuclei overcomes the force of gravity,
and the core recoils out from the heart of the star in an explosive shock wave.
As the shock encounters material in the star’s outer layers, the latter is heated,
fusing to form new elements and radioactive isotopes. The shock then propels
the matter out into space. The material that is exploded away from the star
is now known as a supernova remnant.

The hot material, the radioactive isotopes, the free plasma moving in the
strong magnetic field of the neutron star — all of these produce X-rays and
gamma-rays.

All that remains of the original star is a small, super-dense core composed
almost entirely of a degenerate “Fermi sea” of neutrons –a neutron star; the
electrons and protons of the core were squeezed together to form neutrons
and neutrinos, the latter escaping out to interstellar space at essentially light-
speed. Or, if the original star was very massive indeed (say 15 or more times
the mass of our sun) even the neutrons cannot survive the core collapse, and
a black hole forms.

Another type of supernova involves the sudden explosion of a white dwarf
star in a binary star system. A white dwarf is the endpoint for stars of up
to about 5 times that of the sun. The remaining white dwarf has a mass of
about 1.4 times the mass of the sun, and is about the size of the earth.

A white dwarf star in a binary star system will draw material off its com-
panion star if they are close to each other. This is due to the strong gravita-
tional pull of an object as dense as a white dwarf.

Should the infalling matter from the companion star cause the white dwarf
to exceed a mass of 1.4 times that of the sun (a mass called the Chandrasekhar
limit after the scientist who discovered it) the white dwarf will have enough
mass to collapse and restart the fusion process. The oxygen and carbon nuclei
making up the star begin to fuse uncontrollably, resulting in a thermonuclear
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detonation of the entire star. Nothing is left behind, except a cloud of what-
ever elements were left over from the white dwarf or forged in the supernova
blast. Among the new elements is nickel, which then undergoes fission,
liberating huge amounts of energy, including visible light.

When a star goes supernova, it can be seen across the entire electromag-
netic spectrum — including visible light, radio waves, X-rays and gamma-rays.

Supernovae are extremely important for understanding our galaxy. They
heat up the interstellar medium. distribute heavy elements throughout the
galaxy, and accelerate cosmic rays.784

The Crab Nebula in Taurus is the remnant of a supernova whose light
reached earth in 1054 CE. The last one observed in our galaxy was seen by
Kepler in 1604. They probably occur in the Milky way at a rate of about 1
in 500 years.

In 1987, a supernova explosion just outside our galaxy — ca 105 LY away,
in the Large Magellanic Cloud — was observed; besides its electromagnetic
radiation, a synchronous burst of neutrinos was observed — the first such
neutron star formation signal ever intercepted by man.

Supernova in other galaxies are routinely observed.

784 Recently, the discovery of a mass-extinction event in the earth’s ocean(s) [ca 2

Myr ago] was correlated with unusual iron-isotope abundances. It is thought to

have been possibly caused by a supernova in our region of the Galaxy.

One must, therefore, add encounters with nearby supernovae to the list of po-

tential cosmic dangers and catastrophes. However, during the 1 to 2 million

years (Myr) that passed since the extinction event in question, the sun has

moved thousands of light years (LY) and acquired new stellar neighbors (at our

distance from the galaxy center, it takes the sun and nearby star clusters about

200 Myr to circumnavigate the galaxy’s axis).

Consequently, astrophysicists now believe that the solar system has been sur-

rounded by a ‘protective bubble’ of relative vacuum that protects the biosphere

(in addition to the protective ozone layer and the earth’s magnetic field).

More and more it seems that it is not accurate to say (as people like Carl Sagan

have been saying) that we sit in a very typical region of the galaxy. Like much

else (the fine-tuned constants of nature, the existence of the moon and key

events that led to the evolution of humans) it seems that our galactic environ-

ment and history have been unusually friendly and “presaged” our existence,

although that probably will not last.
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Neutron Star

The central star which is left behind after the supernova explosion is so
collapsed that it may become even denser than a White Dwarf. In such a case
it is called a neutron star, because the electrons and protons which would
normally be present in atoms are squashed together to form neutrons under
enormous pressure. The diameter of a neutron star is about 10 km, and its
density is that of the nucleus of an atom, around 1015 times higher than
the density of ordinary matter. Because of its small size and high density, a
neutron star possesses a surface gravitational field of order 1012 times that of
earth.

Neutron stars may appear in solitary supernova remnants or in x-ray bi-
naries with a normal star. When a neutron star is in an x-ray binary, as-
tronomers are able to measure its mass from the orbital dynamics. From a
number of such x-ray binaries, neutron stars have been found to have masses
of about 1.4 times the mass of the sun. Astronomers can often use this fact
to determine whether an unknown object in an x-ray binary is a neutron star
or a black hole, since black holes are more massive than neutron stars.

The energy released through a collapse forming a neutron star of mass M
and final radius R is (ignoring GTR corrections)

E ≈ 3GM2

5R
.

With G = 6.67×10−8 cgs, M = 1 solar mass = 2×1033 gram and R = 5 km,
we obtain E ≈ 3×1053 erg. About 99% of this energy is emitted as neutrinos
in the first few seconds of the collapse, and the observation of the expected
fraction of them from the 1987 supernova SN1987A helped confirm the theory
of gravitational collapse and pulsar/neutron-star formation. The rest appears
as visible and UV light, radio waves, X-rays and gamma rays from a supernova,
or is expended in the collapsed star’s vicinity (spin kinetic energy, magnetic
fields, plasma processes, nebula formation and excitation, etc.).

Black Holes

It is believed that the mass of a neutron star cannot exceed 2 solar masses.

Astrophysicists have calculated, using GTR, that a neutron star any heav-
ier than this will be crushed into an ever-decreasing volume by its own gravity.
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As the star shrinks, the surface gravitational field strength (g = GM/r2) con-
tinues to increase and so the escape velocity at its surface (v =

√
2GM/r)

gets larger (these formulae ignore GTR effects). Eventually the escape ve-
locity equals the speed of light. This has the intriguing consequence that
nothing whatever can escape from the collapsed star by any means. Such a
star is therefore totally invisible and is known as a black hole. It has been
suggested that a few binary star systems contain black holes; these particular
systems are very powerful X-ray sources.

Even back in Newton’s time, scientists speculated that such objects could
exist, even though we now know they are more accurately described using
Einstein’s General Theory of Relativity. According to GTR, black holes are
fascinating objects where space and time become so warped that time prac-
tically stops in the vicinity of the “event horizon” of a black hole (as viewed
by external observers), and even stranger things happen inside that horizon.

There is a great deal of observational evidence for the existence of three
types of black holes; those with masses of a typical star, those with masses
of a typical galaxy, and those at centers of galaxies (of order 106–107 solar
masses).

The first type have measured masses ranging from 4 to 15 suns, and are
believed to be formed during supernova explosions. The after-effects are ob-
served in some X-ray binaries known as black hole candidates.

On the other extreme, galaxy-mass black holes are found in Active Galactic
Nuclei (AGN). These are thought to have the mass of about 10 to 100 billion
suns. The mass of one of these supermassive black holes has recently been
measured using radio astronomy. X-ray observations of iron in accretion discs
may actually be showing the effects of such a massive black hole as well.

X-ray Binaries

Binary star systems contain two stars that orbit around their common
center of mass. Many of the stars in our galaxy are part of binary systems.

A special class of binary stars is that of X-ray binaries, so called because
they emit X rays. X-ray binaries are made up of a normal star and a collapsed
star (a white dwarf, neutron star, or black hole). These pairs of stars produce
X rays if the stars are close enough together such that material is pulled off
the normal star by the gravity of the dense, collapsed star. The X rays are
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emitted from the area around the collapsed star where the material that is
falling toward it is heated to very high temperatures (over a million degrees!).

Pulsars

Pulsars are rotating neutron stars. They were first discovered (1967) as
radio sources that blink on and off at a certain constant frequency.

The brightest pulsars are observable at almost every wavelength of light.

Pulsars are spinning neutron stars that have jets of particles moving almost
at the speed of light streaming out their two magnetic poles. These jets produce
very powerful beacons of EM radiation.

For a similar reason that “true north” and “magnetic north” are different
on earth, the magnetic and rotational axes of a pulsar are also misaligned.
Therefore, the beam of light from the jet sweeps around as the pulsar rotates,
just as the spotlight in a lighthouse does.

Wolf-Rayet stars (WR)

Observed Wolf-Rayet stars form a rare group of ≈ 200 supergiants with
spectacular emission line spectra. They have exceptional surface temperatures
approaching, in some cases, 100,000K, and about 50 solar masses. Although
very brilliant, they are all so remote that a telescope is needed to view them.
They suffer from a high mass loss through a turbulent atmosphere and show
very strong, broad emission lines of ionized He and O in addition to nitrogen
[WN type] and carbon [WC type] respectively. The Doppler broadening of
the lines is only evident at higher resolution.

These lines rise as bright ‘peaks’ above the star’s background spectral
continuum. Some of these stars are binaries and the relative intensity of the
emission lines is affected by the continuum contribution of the companion
star. A concentration of bright WR stars in Cygnus makes it the best site for
Northern Hemisphere observers

Wolf-Rayet stars are linked to hypernovae, which in turn are associated
with gamma-ray bursters.
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Quasars, Active galaxies and double radio sources

A quasar (or quasistellar object) is an object in the sky that looks like
a star but has a huge redshift corresponding (by the Hubble law) to a very
great distance from the earth.

To be seen from earth, a quasar must be very luminous – typically about
100 times brighter than an ordinary bright galaxy.

Relatively rapid fluctuations in the brightnesses of quasars indicate that
they are unlikely to be much larger in size than the diameter of our solar
system.785

An active galaxy is an extremely luminous galaxy that has one or more
unusual features: an unusually bright, star-like nucleus; strong emission lines
in its spectrum; extreme variations in luminosity; or jets or beams of radiation
emanating from its core.

Most double radio sources seem to have an active galaxy located between
the two radio lobes that distinguish this type of radio source.

The strong energy emission from quasars, active galaxies, and double radio
sources may be produced as matter falls toward a supermassive black hole at
the center of the object.

Gamma-Ray Burster stars (GRB)

Short-lived bursts of gamma-ray photons are associated with a special type
of supernovae — the explosions marking the death of especially massive stars
(“Gamma-Ray Bursters”, or GRBs).

Lasting anywhere from a few milliseconds to several minutes, gamma-ray
bursts shine hundreds of times brighter than a typical supernova making them
briefly the brightest source of cosmic gamma-ray photons in the observable

785 This is so because the time patterns of brightness variations at two quasar

points, a distance r apart, are unlikely to vary in phase unless they have a

common cause. This in turn makes it likely that r�ct, with c the speed of

light and t the typical fluctuation timescale.

This line of argument (which is admittedly model dependent) depends on the

local causality principle of STR.
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universe. GRBs are detected roughly once per day from wholly random di-
rections of the sky.

It is highly likely that GRB are not located within our galaxy, but are at
cosmological distances.

This makes them extremely interesting, because for them to be seen at
such large distances they must correspond to events in which as much as 100
times the energy of a supernova is being liberated in a short period in the form
of gamma rays. Furthermore, the mechanism producing the gamma rays must
be such as to allow the gamma rays to escape without too much interaction
with surrounding matter, because that interaction would convert the gamma
rays to radiation of longer wavelength.

Although the exact picture has not been worked out, astronomers think
the gamma-ray photons are probably produced inside the star. The explosion
originates at the center of these massive stars. While a black hole forms from
the collapsing core, this explosion sends a blast wave moving through the star
close to the speed of light. The gamma rays are created when the blast wave
collides with stellar material still inside the star. These gamma rays burst
out from the star’s surface just ahead of the blast wave. Behind the gamma
rays, the blast wave pushes the stellar material outward.

Erupting through the surface, the blast wave of stellar material sweeps
through space at nearly the speed of light, colliding with intervening gas and
dust to produce additional emission of photons. These emissions are believed
responsible for the “afterglow” of progressively less energetic photons, start-
ing with X-rays and then visible light and radio waves. (Whether additional
gamma rays are also produced in this “afterglow” phase is still not settled,
although some evidence indicates they are.)

The afterglow phase can last for days or even weeks. Under this model, we
detect both the GBR and the afterglow when the earth happens to lie along
or very near the axis of the blast. In general, there are many more GRBs
than are detected simply because we are not favorably aligned to see them.

Observations have allowed a distance to be estimated to the gamma ray
bursters because spectral lines and their Doppler shift have been observed in
the transients after the burst. Assuming these transients to be near the center
of the gamma ray burst and the Doppler shifts to be Hubble redshifts, these
observations have almost conclusively shown that gamma ray bursters are at
cosmological distances, rather than in the halo of the Milky Way galaxy.

The enormous amounts of energy implied by such large distances suggest
a gravitational source. Two popular candidate mechanisms are the merger of
two black holes or the merger of two neutron stars. However, although such
events might yield the required energy, it is not clear that they can be made
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consistent with all the observations. Thus, the source of gamma ray bursts
remains one of the most important mysteries in modern cosmology.

GRB may be linked to the mass extinction that occurred 444 million years
ago at the end of the Ordovician period. Such a cosmic explosion, a few thou-
sand light years away, could have altered the environment and extinguished
much of life on earth. In general, a supernova explosion could flood our planet
with deadly radiation if it happens within about 100 light years of us. (In
absolute power output, supernovae are mere firecrackers in comparison with
GRBs).

Water would protect marine organisms from the heat of a GRB, but not
from its other effects. Its gamma-rays would convert some nitrogen and oxy-
gen in the atmosphere into nitrogen dioxide, the brownish gas present in urban
smog.

Nitrogen dioxide would filter out sunlight, turning the skies dark. The
cooling effect could trigger an ice age – there is evidence of widespread glacia-
tion 440 million years ago. Nitrogen oxides also cause acid rain and destroy
the ozone layer, exposing earth to more of the sun’s harmful ultraviolet rays.

Ultraviolet radiation can penetrate tens of meters of water, so it could harm
marine organisms at these depths. Indeed shallow water dwelling species, or
those that spend their early lives in shallow water, seem to have suffered more
than deep species in the Ordovician extinction.

In short, a nearby GRB might first have showered harmful radiation onto
the exposed face of the planet, killing more or less indiscriminately, and may
then have exposed the other hemisphere to increased ultraviolet radiation,
damaging marine life decreasingly with increasing depth.

Table 5.14: Evolution of a massive star

Stage Radius Balance against

(approximation) gravitational collapse

Young star 106 km Radiation pressure from proton fu-
sion

White dwarf 104 km Electron degeneracy pressure (Pauli
Exclusion Principle)

Neutron Star 10 km Neutron degeneracy pressure (Pauli
Exclusion Principle)

Black hole 1 km None
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Table 5.15: Timetable of observations of outstanding

astrophysical and cosmological phenomena

130 BCE Hipparchos observed a few WR stars, but parallax was
insufficient for useful luminosity calibration. In 1989 CE, a
satellite of the European Space Agency, bearing his name,
was launched to survey the positions of more than 100,000
stars.

1867 CE C.J.E Wolf and G.A.P Rayet discovered the first three
‘WR stars’.

1871 CE The Italian astronomer Lorenzo Respighi (1824–1889)
was first to see the remarkable spectrum of the Southern
WR star Gamma Velorum, an interacting binary of magni-
tude 1.74786.

1884 CE The Astronomer-Royal of Scotland, Ralph Copeland
(1837–1905) led an expedition to Lake Titicaca (Peru, alti-
tude 4000 meters) to record the spectrum of Gama Velorum.
In his own words:

“Its intensely bright line in the blue, and the gorgeous group
of three bright lines in the yellow and orange, render its

786 Astrophysicists express the brightness of stars in visible light in two related

forms.

Apparent visible magnitude, mv, measures the light that actually reaches us on

earth. But that is not the true measure of a star or galaxy’s brightness because

distance makes objects appear dimmer. So, absolute magnitude – Mv – is used

to compare how bright stars would be if they all were 32.6 light years (10 parsecs)

away.

Bright stars are ranked first and are assigned the low numbers, followed by

dim stars with higher numbers (6th magnitude is the faintest that the naked

eye can detect; reaching mv = 25 requires extremely sensitive telescopes and

instruments). A few have negative magnitudes given when modern instruments

showed them to be brighter than the initial magnitudes given by astronomers

just using their unaided vision. A magnitude 1 object is about 2.5 times brighter

than the next dimmer magnitude. A 100-fold difference in brightness makes a

difference of 5 in magnitude.

At mv = −1.45, Sirius A has the greatest apparent magnitude of any star in

our sky. At Mv = +1.41, it’s still in the Top 20 for absolute magnitude. But

that parade is led by Deneb, a blue supergiant in Cygnus (the Swan) with a

whopping Mv = −7.3. The closest competitors are Antares and Mimosa (beta

Cruces) at Mv = −4.7
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spectrum incomparably the most brilliant and striking in the
whole heavens. To a great extent it was the extraordinary
beauty of this spectrum that led me to devote a considerable
part of my time to more or less systematic sweeps of the
neighborhood of the Milky Way.”

1918 CE H.D. Curtis discovered that the spiral nebula Andromeda
was far beyond the reaches of our galaxy.

1924–1928 CE Observation of light from distant galaxies showed systematic
red shifts, indicating that they are receding from us.

1929 CE Edwin Hubble discovered that the universe as a whole is
expanding isotropically and homogeneously like a 3D version
of a balloon surface.

1932 CE Karl Jansky (1905–1950) accidentally discovered radio
waves from the Milky Way.

1932 CE Bengt Edlen correctly identified the observed spectral lines
of Wolf and Rayet with laboratory spectra of highly ionized
carbon, nitrogen and oxygen. He also explained that the
Doppler broadening within strong stellar winds contributes
to line width. It was later found that not all of the broad-
ening could be attributed to this effect.

1933 CE F. Zwicky (1898–1974) and W. Baade (1893–1960) pre-
dicted the existence of neutron stars. This was verified in
1967 upon the discovery of pulsars.

1936 CE Albert Einstein and Rudolf W. Mandl proposed the
theory of gravitational lensing as a testable prediction of
GTR.

F. Zwicky stated (1937) that galaxies could act as gravi-
tational lenses.

1943 CE Carl Seyfert (1911–1960, USA) identified a small number
of galaxies whose nuclei show unusual spectra. Theses fea-
tures will be later associated with Quasars.

1960–1963 CE Alan Sandage and Maarten Schmidt observed Quasar
3C 48, a qusistellar radio source with X-ray luminosity of
1047 erg/sec, estimated to be located 5 × 109 LY away. It
was later suggested (1973) that a quasar is generated by a
supermassive black hole at the center of a galaxy.
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1967 CE Jocelyn Bell and Anthony Hewish discovered the first
pulsar (CP191), a radio source in the middle of the Crab
Nebula: now believed to be a rotating neutron star with
period 1.337 sec emitting beams of synchrotron radiation. It
is a remnant of the 1054 CE supernova explosion. Its total
energy rate in synchrotron radiation is 3× 1038 erg/sec [the
sun’s total EM emission is 4 × 1033 erg/sec].

1967 CE Gamma-ray bursts (GRB) discovered serendipitously by
U.S. military satellites which were on the lookout for So-
viet clandestine nuclear testing in the atmosphere.

1971 CE An X-Ray binary source known as Cygnus X-1 is identified
as a Black Hole.

1974–1978 CE Russel Hulse and Joseph Taylor discovered the first bi-
nary pulsar PSR 1913 + 16: a pulsar orbiting around a
companion star. Its behavior is in accordance of Einstein’s
GTR.

1979–1983 CE Dennis Walsh, Robert Carswel and Ray Weymann
discover a gravitationally lensed Quasar.

In 1980, an Einstein Ring, a gravitational lens distortion
effect, was observed for the first time.

In 1987, Roger Linds and Vahe Petrosian discovered an
image of a distant unseen galaxy that has been formed by a
gravitational lens. By 1993, the existence of compact dark
objects in our galaxy, was confirmed via their gravitational
lensing of more distant light sources.

1987 CE A supernova detected in the Large Magellanic Cloud, a
satellite of the Milky Way galaxy. The supernova was the
first in almost 400 years that could be seen without the aid
of a telescope.

1990 CE Hubble Space Telescope launched. The HST has produced
images of breathtaking clarity and has allowed astronomers
to see light from more distant objects than ever before.

1991 CE The Compton Gamma Ray Observatory (GRO), a satellite,
is launched by NASA to study the universe. It is more
sensitive than earlier gamma ray telescopes. By 1995, the
survey recorded about 3000 gamma-ray bursts isotropically
distributed, suggesting a cosmological distribution.
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1992 CE Felix Miraber and Luis Rodriguez discovered radio
sources near our galactic center that resemble quasars. One
of these sources, SS 433, shows signs of high-speed relativis-
tic jets.

1995–1996 CE Hubble Space Telescope (HST) images of quasar PKS2349
support the hypothesis that quasars occur in the cores of
galaxies. The images revealed that the environment sur-
rounding a quasar is far more complex than first suspected.
These new observations suggest galactic collisions and merg-
ers between quasars and companion galaxies can reignite the
supermassive black holes that drive quasars.

In 1996 HST recorded a Quasar a billion LY from earth.

1997 CE Japan’s institute of Space and Astronautical Sciences linked
a satellite in space with earth-based radio antennae to cre-
ate an effective telescope larger than earth, called the Very
Long Base Interferometry Space Observatory (VLBI). This
telescope’s resolving power is equivalent to reading a news-
paper headline in Tokyo from Los Angeles.

1997 CE, Feb 28 Beppo SAX, equipped with both gamma-ray and X-ray
detectors, spotted an X-ray afterglow signature associated
with the gamma-ray burst of event GRB 970228.787

787 Not until astronomers were able to make afterglow observations could they

develop a working hypothesis on what caused gamma-ray bursts. And while

the Compton Gamma Ray Observatory’s Burst And Transient Source Experi-

ment (BATSE) detector catalogued 2,704 GRBs during the observatory’s nine

year lifetime (1991 -2000), it was not equipped to make afterglow observations.

Furthermore, it had not been possible to get either a ground or space-based

telescope look up quickly enough to a spot where a GRB had been detected.

As a result, the first afterglow observation did not come until the Beppo SAX

satellite. Beppo SAX, an Italian satellite, was equipped with both a gamma

ray and an X-ray detector. It spotted the X-ray afterglow signature associated

with the gamma-ray burst on February 28, 1997.

Today a worldwide network called the Gamma-ray Burst Coordinates Network

(GCN) coordinates space-based observations and ground-based follow-through

observations of GRB afterglow. NASA satellites include the High Energy Tran-

sient Explorer (HETE) operated by the Massachusetts Institute of Technology,

and the Rossi X-ray Timing Explorer (RXTE). The European Space Agency

operates Integral, a new gamma-ray mission launched in 2002. And there is the

Interplanetary Gamma-Ray Burst Timing Network (IPN), which consists of a

group of space probes with gamma-ray detectors at different locations in the



4244 5. Demise of the Dogmatic Universe

1999 CE, Jun 27 ‘Blast from the past’: one of the most powerful cosmic explo-
sion ever recorded, bathed the earth in gamma rays. This
gamma-rays burst called GRB 990123 – was so intense that
its visible light could have been seen through common binoc-
ulars788. The duration of the event was about 110 seconds.
The redshift measurement implied that it took the signal
about 10 billion years to reach the earth.

For the first time, scientists have witnessed a burster’s visi-
ble light emitted at the same time as a gamma-ray burst.

2003 CE, Mar 29 NASA’s High energy Transient Explorer (HETE-II) de-
tected a very bright gamma-ray burst (designated GRB
030329) is a sky region within the constellation Leo.

Following identification of the “optical afterglow” by a 40-
inch optical telescope of the Siding Spring Observatory
(Australia), the redshift of the burst was determined as
0.1685 by means of a high-dispersion spectrum analyzer of
the UVES spectrograph of the 8.2 m telescope at Parnal
Observatory (Chile). The corresponding distance is 2650
MLY.

The optical spectrum was nearly identical to that of a su-
pernova, and X-ray observations also showed a signature
associated with oxygen heated to high temperature. Such a
pattern occurs when the supernova blast wave excites oxy-
gen atoms in the vicinity of the star.

All this evidence pointed to a connection between the GRB
and a “hypernova” explosion of a very massive, highly
evolved star.

This is caused by a very heavy star — presumably 25 times
heavier than the sun.

These observations therefore indicate a common physical
source of hypernova explosion and the associated emission
of strong gamma radiation.

Solar System.

By timing the arrival of gamma-ray photons at each satellite, the location of the

burst can be “triangulated”. The GCN sends out automatic notices by email

to astronomers worldwide; enabling both professional and amateur astronomers

to make follow-up afterglow observations.
788 The peak gamma-ray power was estimated at that of 1016 suns, namely 1050

erg/sec. This is 100 times more energetic than a supernova explosion and is

comparable to burning up the entire mass-energy of the sun in a few hours.
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Glossary of Cataclysmic events

Huge explosions and other sorts of cataclysmic events are a natural part
of the life-cycle of stars. Stars formed in swirling clouds of gas move along
the H-R diagram, incorporating such occurrences into their evolution and
forming in the process the elements needed to form new stars. The main ‘cast
of characters’ and the fundamental concepts in this drama are the subjects of
this small dictionary:

parsec The distance you would have to be from the solar system
for the angular separation between the earth and the sun
to be one arcsecond. That distance is

206, 265 AU = 3.1 × 1013 km = 3.26 light years.

Magnitude A system for classification of stars according to apparent
brightness. The human eye can detect stars with magni-
tudes up to 6 (the faintest). The Hubble space telescope
is capable of imaging a magnitude 30 star, which has
been compared to detecting a firefly at distance equal
to the diameter of the earth (ca 12,800 km).

Spectral

classification

A system for classifying stars according to their surface
temperatures.

Red dwarfs The most common stars, accounting for about 80 per-
cent of the star population in the universe.

Binaries Two-star systems, in which the stars orbit one another.
The way the companion stars move can tell astronomers
much about the individual stars, including their masses.
Visual binaries can be resolved from earth. Spectro-
scopic binaries are too distant to be seen as distant
points of light, but their relative motions can be stud-
ied with a spectroscope. In this case, a binary system
is manifested via Doppler shifting of spectral lines as
the stars receded and advanced along the line of sight.
Eclipsing binaries: periodic, sharp changes in light in-
tensity due to one star eclipsing the other. This yields
information about orbital motion, masses and radii.
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Core

hydrogen

burning

The principal fusion reaction process of a star. The hy-
drogen of the star’s core is fused into helium (sometimes
in nuclear reaction cycles catalyzed by carbon, nitrogen
and oxygen nuclei), producing enormous amounts of en-
ergy in the process.

Red giant The last stage in the evolution of stars about as mas-
sive as the sun. Its relatively low surface temperature
produces its red color.

White dwarf The remnant core of a red giant after it has lost its
outer layers as a planetary nebula. Since fusion has now
halted, the carbon-oxygen core is supported against fur-
ther collapse only by the degeneracy pressure supplied
by densely-packed electrons.
Their small size makes them relatively faint objects de-
spite their high surface temperatures.

Core-

collapse

supernova

The extraordinarily energetic explosion that results
when the core of a high-mass star collapses under its
own gravity.

Neutron star Superdense compact remnant of a massive star, one pos-
sible survivor of a supernova explosion. It is supported
by degenerate neutron pressure, not fusion. It is a star
with the density of an atomic nucleus.

Pulsar A rapidly rotating neutron star whose magnetic field
is oriented such that its synchrotron-radiation “search-
light” sweeps across earth with a regular period. When
pulsars were first detected (1967), their signals were so
regular that some astronomers suspected they might be
a sign of extraterrestrial intelligence. Further observa-
tions provided a more mundane explanation.

Stellar mass

black hole

The end result of the core collapse of a high-mass star.
It is an object from which no matter or even light can
escape (apart from negligibly feeble Hawking radiation).
Although space behaves strangely very close to a black
hole, at astronomical distances the black hole’s only sig-
nature is a normal Newtonian gravitational field, plus
an unusually broad EM spectrum emitted by infalling
matter in its accretion disc.
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Only main-sequence stars of at least 20–30 solar masses
will ever collapse into a black hole.
The Schwarzschild radius of any given mass is the ra-
dius it must be compacted to, to become a black hole
(although the precise quantitative measure is tricky, due
to the high GTR space curvature near that radius). The
event horizon is a surface (spherical for a non-rotating
black hole) whose radius is the Schwarzschild radius;
the escape velocity equals light speed on that surface.
No information of the events occurring within the event
horizon can be communicated to the outside.
A black hole will draw in matter that wanders too near
to the event horizon. With such accretion, the star’s
mass will increase, even as its collapse continues, causing
its Schwarzschild radius and event horizon to grow.

Singularity The infinitely dense remnant of a massive core collapse.

Emission

nebulae

Glowing clouds of hot, ionized interstellar gas, located
near young, massive stars.

Giant

molecular

clouds

Huge collections of cold (10 K to 100 K) gas that con-
tains mostly molecular hydrogen. The cores of these
clouds are often the sites of the most recent star forma-
tion.
The expanding shock wave of a nearby supernova explo-
sion might be sufficient to cause a cloud to collapse. A
ripple in a galaxy (called a density wave) could also be a
trigger. A fast-moving massive star, punching through
a molecular cloud, could also cause part of it to collapse.

Brown dwarf A failed star, i.e. a star in which the hydro-
thermodynamical forces reached equilibrium with its
self-gravity before the core temperature rose sufficiently
to trigger nuclear fusion.

Variable star A star that periodically changes its brightness.

Local group A galaxy cluster; a gravitationally bound group of galax-
ies which includes the Milky Way, Andromeda, and
other galaxies.
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Supercluster A group of galaxy clusters. The Local Supercluster con-
tains some 1015 solar masses.

Quasar Bright, distant, tiny objects, which produce luminosity
of 100 to 1000 galaxies within the size of a solar sys-
tem. The first quasars were detected at radio frequen-
cies, though most quasars do not emit large amounts
of radio energy. Quasars are among the most luminous
objects in the universe, having luminosities in the range
1045 − 1049 erg/sec. These numbers average out to the
equivalent of 1000 Milky Way Galaxies. (The sun has a
luminosity of 4×1033 erg/sec). Quasar’s brightness fluc-
tuations are explained by fluctuations in the accretion-
disc – the swirling disc of gas spiraling toward the black
hole.

Active

galaxies

Galaxies that have more luminous centers than normal
galaxies.

Seyfert

galaxies

A subset of spiral galaxies characterized by a bright cen-
tral region containing strong broad emission lines. Some
show violent activities in their cores.

Radio

galaxies

A class of active elliptical galaxies characterized by
strong radio emission, and in some cases, narrow jets
and wispy lobes of emission located hundreds of thou-
sands of light years from the nucleus. When radio-
emitting blobs are moving at high-velocity toward us,
there is an apparent superluminal motion (faster than
the velocity of light due to a well-understood STR kine-
matical effect).

Synchrotron

radiation

Arises when charged particles are accelerated by strong
magnetic fields. The emission from radio galaxies is
mostly synchrotron.
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Science Progress Report No. 15

The Bookburners

“Where they burn books, they end up burning people”.
Heinrich Heine789, 1848 (1797–1856)

411 BCE Public burning of the books of Protagoras in Athens, Greece.

213 BCE Science books and savants were burned in China.

48 BCE The Romans burn part of the Alexandria library.

53 CE The apostle Paul burns books of pagan lore in Ephesus.

70 CE The Romans burn the library of the Temple in Jerusalem.

273 CE The Romans damage the Alexandria library.

295 The Roman emperor Diocletian ordered the burning of all
books on the working of gold, silver and copper.

325 Constantine had the Arian writings burnt.

373 Roman emperor Valens ordered the burning of non-Christian
books.

391 Emperor Theodosius I ordered the burning of the remnants of
Alexandria library. Bishop Theophilus carries out the order.

431 Theodosius II burned the books of the Nestorians.

440 Valentinian III burned the books of the Manichaeans.

646 The Arabs (under caliph Omar) burn to ashes the remnant
of the Alexandria library.

1109 Crusaders burn over 100,000 Muslim books in Tripoli.

789 Indeed, the Nazi burned his books too. Since it was impossible to remove his

Lorelei — so great was its popularity — Heine’s name was obliterated and

replaced by the words “Author Unknown”.
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1204 Mass-burning of classical books by Crusaders in Constantino-
ple.

1242, Jun 17 Public burning of the Talmud and other Hebrew books in
Paris under the order of pope Gregory IX.

1244, Mar 09 Pope Innocent IV orders that the Talmud be burned.

1415 The Inquisition burned Jan Hus in Constance.

1481, Feb 06 First Auto-da-fe of the Spanish Inquisition.

1484 Grand Inquisitor, Tomas de Torquemada, burned Marranos
and their books in Toledo.

1507 Grand Inquisitor, Cardinal Ximenes, burned 24,000 Jewish
books in Granada.

1509, Aug 19 Maximillian I ordered the burning of Jewish books.

1528 The first auto-da-fe in America, held in Mexico City when
Jews and their books are burned on the stake. Additional
Jews are burned in the New World on 28/29 Feb 1574.

1553 Burning of the Talmud in Italy.

1559 Pope Paul IV burns 12,000 Jewish books in Cremona, Italy.

1562 The Bishop of Yucatan burned to ashes almost the entire
native literature of the Maya culture.

1600 The Inquisition burned Giordano Bruno in Rome.

1601, Jan 14 The Church burned Jewish books in Rome.

1635, Aug 11 Auto-da-fe in Lima, Peru for Marranos who escaped the
Spanish Inquisition.

1649 One hundred and nine Jews and their books burned in Mexico
City.

1682 Three Jews were publicly burned in Berlin as a result of a
blood libel.

1731, May 28 Pope Clement XII orders the confiscation and burning of all
Hebrew books in Papal States.
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1757, Nov 13 The Bishop of Kamenets-Podolski burned all copies of the
Talmud in his diocese.

1796, Oct 17 Tzar Paul I ordered censorship of Jewish books in Russia.

1836 Tzar Nikolai I decreed the burning of Jewish books. Most
Jewish printing presses were closed.

1933, May 10 Nazis burn books of Albert Einstein, Sigmund Freud and
other Jewish scientists in Germany. Later (1940–1945), the
Germans perpetrated an industrial genocide through which
they gassed790 and burned 6,000,000 Jews in special ovens in
Poland [German scientists developed an efficient mass-murder
technology ].

1966–7 Mao Tse-tung’s ‘Cultural Revolution’: ‘Red Guards’ march
across China burning books, libraries, museums, laboratories,
art galleries and university campuses. A cultural heritage
of 6000 years is destroyed. About 500,000 intellectuals are
murdered in the biggest witch-hunt in history.

1975–6 Khmer-Rouge communists under Paul Pot burn books and
exterminate 1,200,000 intellectuals in Cambodia.

790 Hydrocyanic acid (HCN) was discovered in 1782 by Carl Wilhelm Scheele

(1742–1786, Sweden).
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Salute to books — mankind’s noblest creation

What is a book? Part matter and part spirit; part thing and part thought
— however you look at it, it defies definition. Its outward form, essentially
unchanged in nearly 2000 years, is a design as functional as, say, the pencil or
the glove: you can’t improve on it. Yet, by its nature the book is loftier than
the common objects of this world. It is a vehicle of learning and enlightenment,
an open sesame to countless joys and sorrows. At a touch, our book springs
open, and we slip into a silent world — to visit foreign shores, to discover
hidden treasure, to soar among the stars.

Sometime ago, by a unanimous decision of its 128 member nations, the
United Nations Educational, Scientific and Cultural Organization (UNESCO)
designated 1972 as the first International Book Year. The fact that the ensuing
salutes were world-wide was only too appropriate, for the book is the end
product of a unique conjunction of endeavors, made independently in far-
flung corners of the globe. It is as if all mankind had conspired to create
it.

The Chinese gave us paper. Phoenicia brought forth our alphabet. To
Rome we owe the format of the book; to Germany, the art of printing from
movable type. Britain and the United States perfected book production.
Today, 15,000 finished books roll off high-speed presses in just one hour, and
we find it hard to visualize the bookless world of our forebears, hard to imagine
the enormous effort that lies behind the saga of the book.

In the beginning, there was only the spoken word. Then, to entrust his
thoughts to a more lasting medium than mere memory, man took to drawing
pictures representing things. Perhaps the oldest picture-script originated some
6000 years ago in Mesopotamia. Its images — bird, ox, ear of barley — were
scratched into soft clay tablets, which were then baked hard for preservation.

But such writing was a cumbersome affair, mainly used for priestly docu-
ments and public records. What “literature” there was — such as heroic po-
ems — depended almost totally on word-of-mouth transmission. The quick
Mediterranean mind, awakening to a new culture, demanded a better way
of harnessing the spoken language. Shortly before the 9th century BCE,
the Phoenicians — swift seafarers, sharp traders and good record-keepers —
began breaking spoken sounds into their basic elements, and shuffling the
resulting “letters” to form words.

When wandering among the ruins of the Phoenician port of Byblos — one
may still see the rudimentary inscription, hewn into the rock wall of a royal
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grave shaft, which stands as the world’s oldest known alphabetic writing.
Soon the alphabet was seized upon by the Greeks, who gave letters more
convenient shapes and added the still-missing vowels.

No sooner had man taught himself to spell than a new problem raised its
head. What to write on? Leather, tree bark, leaves and wax tablets had all
proved unsatisfactory. In Egypt, for some 2500 years before Year One, texts
had been inscribed on brittle sheets made from the pith of a Nile Delta water
plant, papyrus.

The use of this material gradually spread through the Mediterranean
world. Usually, several papyrus sheets were glued together to form a scroll that
could accommodate a lengthy text. (One 40 m scroll containing the picture-
script account of the deeds of Pharaoh Ramses III is still extant.) But what
a clumsy thing to read! The scroll, wrapped around a wooden stick, had to
be held in the right hand, while the left slowly unwound it to reveal the next
column of writing. Nevertheless, the royal library at Alexandria — destroyed
in the 4th century CE – is believed to have had no fewer than 700,000 scrolls.

Relatively fragile, papyrus invited rivalry. In wealthy Pergamum, on the
coast of Asia Minor, scribes wrote on specially prepared sheep, goat or calf
skins. This fine, pellucid stationery, tougher than papyrus and foldable, came
to be known as parchment. Shortly after Year One, an unknown Roman
scribe with a sense of compactness took a stack of thin parchment sheets,
folded them and fastened them together at the spine. Thus, the book was
born.

Likely as not, its earliest promoters were Rome’s Christians. To them, it
was essential to preserve the Scriptures in the most lasting medium — and
parchment didn’t wilt when handled. Moreover, when one wanted to hunt up
a reference, chapter and verse, a book was a lot handlier than a scroll.

So it came about that, all through Europe’s Dark Ages, an army of devoted
monks, ensconced behind monastery walls, hand-copied the torn and shredded
writings of the past on sturdy parchment sheets. Without their toil, the
literary glories of ancient Greece and Rome, along with vital texts that shaped
the Christian faith, might have been lost forever. It frequently took years to
finish copying a thick tome, and many a sore-eyed monk, before putting away
his goose quill, penned a sigh of relief on the final page: “Thank God I have
finished!”

Meanwhile, in distant China, tradition has it that a gentleman named Ts’ai
Lun, vexed at the wasteful use of costly silk as a writing material, reported
to Emperor Ho-ti that a far cheaper substance could be made by pounding
rags, tree bark and old fishing nets into a pulp, skimming thin layers off the
top, and drying them.
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Thus, in the year 105 CE, paper enters our story — to remain for six
centuries, a closely guarded secret of the East. It wasn’t until some Chinese
papermakers were captured by marauding Arabs that the pliant blossom-
white enduring marvel took the world by storm.

The Occident saw the next major breakthrough. In 1439, a stubbornly
determined German craftsman, Johann Gutenberg, began experimenting with
a substitute for hand-writing. If he could cast the letters of the alphabet in
reusable metal type, then arrange them, in a mirror pattern, into words, lines
and columns on an even-surfaced plate, an imprint taken from this plate would
make one page. In place of one painstakingly handwritten book, he would be
able to run off on his “press” as many imprinted books — exact copies of each
other — as he wished.

Laboriously, Gutenberg put together his first page plates, each one com-
posed of more than 3700 signs and letters. With the help of a hand-worked
wooden press that he had adapted from the wine press of his native Rhineland
(and which remained unchanged for the next 350 years), he started printing
in a rented workshop in Mainz.

It took three years to turn out some 190 copies of the Gutenberg Bible
of 1455. (Today 47 copies still survive, 14 of which are in the United States.
One of the finest, worth an estimated $3 million to $10 million, is on display
in the Library of Congress.)

Before the printed book, memory ruled daily life; The memory of indi-
viduals and of communities carried knowledge through time. For millennia,
personal memory reigned over entertainment, information, perpetuation and
perfection of crafts, the practice of commerce and the conduct of professions.
Memory was a faculty which everyone had to cultivate. Thus, the epics of
the Iliad and the Odyssey were perpetuated by word of mouth. Laws were
preserved by memory before they were preserved in documents. Rituals and
liturgy, too, were preserved by memory, of which priests were the special cus-
todians. By the time the printing press appeared, the arts of memory had
been elaborate into countless systems.

After Gutenberg, realms of everyday life, once valued and served by mem-
ory, would be governed by the printed page. Since then, the technology of
memory retrieval, played a much smaller role in the higher realms of reli-
gion, thought, and knowledge. Spectacular feats of memory became mere
stunts. The printed book, however, had its own drawbacks: it made it less
necessary to shape ideas and things into vivid images and then store them in
memory-places.

In the centuries after printing, interest has shifted from the technology of
memory to its pathology. By the late 20th century, interest in memory was
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being displaced by the interest in amnesia, hysteria, hypnosis and psycho-
analysis. Pedagogic interest in the arts of memory came to be displaced by
interest in the arts of learning, which were increasingly described as a social
process.

With Gutenberg’s remarkable invention, book prices dropped 80 percent
overnight, and learning to read became worthwhile. A mere half-century
after Gutenberg’s exploit, every major European country except Russia was
printing its own books. It was as if floodgates had been opened. Some 520,000
titles were published in the 16th century, 1.25 million in the 17th, two million
in the 18th and eight million in the 19th. Today, more than 500,000 titles
come off the presses in a single year, adding up to an estimated seven billion
individual books.

These eye-popping figures notwithstanding, there are those today who
predict the disappearance of the reading habit. Canadian professor and com-
mentator Marshall McLuhan, for one, has argued that mass media — films,
radio, television — involve us more completely, and hence impart their mes-
sage more directly, than the familiar lineup of black letters on the printed
page791.

Be this as it may, the book has shown considerable fighting spirit in the
face of the new threats. Book-club business has erupted into a stampede, and
paperbacks are bought off store shelves as fast as they are put there. Indeed,
exposure to the electronic media seems to have created a new desire to “curl
up with a good book.” And, as we turn its pages at our convenience, going
back in leisurely fashion over a passage we’ve especially enjoyed, or skipping
a little here, a little there, we are “involved” more intimately and completely
than we could be with any other medium yet invented.

Man’s thoughts and dreams, his knowledge and his aspirations, are stored
in books — wealth to be tapped by all who so desire. From the first wobbly
picture-script to quicker-than-the-eye offset presses, the book has come a long,
arduous way, propelled by the genius and persistence of many individuals and
nations, Indeed, all humanity has reason to be proud of the book, for it shows
us at our very best. Long live the book!

791 Indeed, the increasing role played by the digital media and the internet in the

domains of contemporary communication, education, business and entertain-

ment seem to fulfill the prophecies of McLuhan.
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1934 CE First Hetch-Hetchy water delivered to the city of San-Francisco. A
major engineering feat brought water (and electric power) along 240 km from
the Tuolumne River in east-central California to the city of San-Francisco.
The project called for a construction of a dam, built of concrete (277 m
long and 131 m high) with a reservoir capacity of 444 million cubic meters
of water. It is known as the O’Shaughnessy Dam after Michael Maurice
O’Shaughnessy (1864–1934), the SF city engineer who directed the original
construction. 444 miles of pipeline were laid to bring water from Sierra to SF
reservoirs and 40 km of tunnel through Coast Range was built (longest in the
world at that time). Cost (to 1934) was about $100 million and 89 men were
killed in construction accidents.

San-Francisco (SF) water supplies became inadequate as the city grew.
First water was shipped across the Bay or piped from local springs. By 1890
SF started to look for water sources in the Sierra. The Hetch-Hetchy Valley
in Yosemite National Park was picked as the best site for the Dam, but early
SF applications were turned down because site is in a national park. Civic
organizations and the SF Examiner (W.R. Hearst) supported the dam while
John Muir and the Sierra Club led the opposition. Gradually the dam
supporters gained more influence in the US Congress and in the cabinet and
in 1913 the project was passed by Congress. The O’Shaughnessy Dam was
finished in 1923.

1934 CE William Beebe (1877–1962, USA) and Otis Barton (USA) set
a depth record by diving to 1001 m below the ocean’s surface in a tethered
sphere called a bathysphere.

1934 CE Wallace Hume Carothers (1896–1937, U.S.A.). Chemist. Syn-
thesized nylon, a synthetic fiber stronger and more durable than silk. De-
pressed by the untimely death of his twin sister, he committed suicide 3 years
after his great invention.

1934–1937 CE Pavel Alexeevich Cherenkov (1904–1990, Russia).
Physicist. Discovered (experimentally) the ‘Cherenkov effect’792 at the Lebe-
dev Institute, Moscow. It may have been the last important basic phenomenon

792 The velocity of light in a medium c′ is expressed by the formula c′ = c
n
, where

n is the refraction index of the medium. Since n > 1, a high-energy particle

can move in the medium with velocity v such that it exceeds the speed of light

there, namely c > v > c′ = c
n
. This particle, if it carries a charge, will radiate

light even if it travels with a fixed velocity.

The wave front of the Cherenkov radiation is the envelope of spherical waves

emitted by the particle, and has the shape of a cone with its vertex at the
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in classical electrodynamics that remained to be discovered. When a charged
particle travels close to the speed of light through a transparent liquid or solid,
it emits light. This phenomenon occurs when the velocity of the particle is
greater than that of light in the dense medium (but still less than c, light’s
speed in vacuum).

Cherenkov was born near Voronezh, Russia and graduated from the Uni-
versity there in 1928. In 1930, after teaching in a high school, Cherenkov
moved to Leningrad and entered the Institute of Physics and Mathematics of
the Academy of Sciences of the U.S.S.R. as a postgraduate student. In 1932
he started his research under Sergei I. Vavilov on luminescence activated by
gamma rays in different liquids. When the Cherenkov effect was discovered,
the majority of Cherenkov’s colleagues did not show particular interest in his
results.

Nobody recollected the calculation by Arnold Sommerfeld (1905) of
the energy losses of an electron whose velocity exceeds the velocity of
light, or the incredible intuition of Oliver Heaviside, who actually pre-
dicted the Cherenkov effect in 1888! Even as distinguished a physicist as
Leonid Isaakovich Mandelstam (1879–1944) did not show much interest
in Cherenkov’s results, being quite sure that an electron moving with constant
velocity could not emit radiation. Only Cherenkov’s discovery of the asym-
metry of the radiation pattern made (partly by chance) in 1936 after several

particle. The situation is similar to that of water waves in the wake of a ship

or the shock waves generated in air by missiles or aeroplanes which exceed the

speed of sound.

The Cherenkov light is emitted forward such that the angle between the shock-

wave and the particle’s line of motion is given by cos θ = c
nv

. [In lucite n = 1.5,

the lowest electron energy for Cherenkov emission is 0.17 MeV and the lowest

proton energy is 320 MeV.] This simple formula is used to derive the particle’s

velocity, which is equivalent to the measurement of its energy.

A Cherenkov counter is a particle detector that employs the Cherenkov radiation

emitted in a thin conical layer at an angle θ to the direction of motion. The

counter usually consists of a lucite block shaped in such a way that the generated

light is sent forward and converges on to the cathode of a photomultiplier tube.

Since no light at all is produced for v
c

< 1
n
, these counters have a built-in

threshold discrimination, i.e. they are completely insensitive to low velocity

background radiation.

The Cherenkov technique is now an important tool for distinguishing particles

of different masses in accelerator experiments; the momentum of the particle is

measured by magnetic deflection and its velocity by using the angle or intensity

of the Cherenkov light.
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years of intense experimenting, assured him and his fellow researchers of the
reality of the phenomenon and gave them the key to understanding it. But
the acceptance of the effect did not come easy. In the middle of 1937, the ed-
itor of Nature declined to publish Cherenkov’s paper. Later in 1937 Physical
Review published the paper, and soon the phenomenon was confirmed and
accepted.

He shared the Nobel prize for physics in 1958 with Ilya M. Frank (1908–
1990) and Igor Y. Tamm (1895–1971) who worked out the theory of the
effect in 1937.

The Russians used the Cherenkov effect in making a cosmic-ray counter,
which their satellite Sputnik 3 carried around the earth. Today, Cherenkov
detectors are routinely used in the study of high energy particle collisions at
accelerator laboratories.

1934–1953 CE Igor Yevgenyevich Tamm (1895–1971, Russia). Out-
standing theoretical physicist. Made significant research in the fields of crystal
optics, quantum theory of diffused light in solids, theory of cosmic rays and
control of thermonuclear reactions. Developed (with I.M. Frank) the the-
oretical interpretation of the radiation of electrons moving through matter
faster than the speed of light in that matter (the Cherenkov effect). Worked
with his student Andrei D. Sakharov on the Soviet nuclear weapons pro-
gram.

Tamm was born in Vladivostok to Jewish parents. He graduated from
Moscow State University (1918), awarded the degree of Doctor of Physico-
Mathematical Sciences (1925); Professor (1930); Academician (1933). Ap-
pointed (1934) head of the theoretical division of the Lebedev Institute of
Physics of the USSR Academy of Sciences.

A decisive influence on his scientific activity was exercised by L. Mandel-
stam (1879–1944), under whose guidance he worked for a number of years,
and with whom he was closely associated since 1920.

Tamm was also a member of the American Academy of Arts and Sciences.

1934–1974 CE Ilya Mikhailovich Frank (1908–1990, Russia). Dis-
tinguished physicist. Made significant research on photoluminescence, pho-
tochemistry, gamma rays and neutron physics. Winner of the Nobel Prize
for physics (1958) jointly with Igor Yevgenyevich Tamm for the interpre-
tation of the Cherenkov effect, leading to the development of the Cherenkov
detector.

Frank was born in St. Petersburg (Leningrad) to Jewish parents. He
graduated from the Moscow State University (1930) and joined (1934) the
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Lebedev Institute of physics; D.Sc (1935); Professor (1944); Academician
(1946). He married Ella Abramovna Beilikhis (1937).

1934–1944 CE Geoffrey Ingram Taylor (1886–1975, England). Physi-
cist and hydrodynamicist. Introduced statistical mechanics into the analysis
of turbulence and diffusion of vortex motion (1935–1938), thus initiating the
statistical study of turbulence. His work was continued by A. Kolmogorov
(1941) and W. Heisenberg (1947).

Taylor contributed to the Manhattan Project (1944) by solving a problem
associated with the hydrodynamics of nuclear explosions. The problem was to
calculate the interaction of several shock waves as they evolve through time:
the so-called Rayleigh-Taylor instability, formed at the boundary between two
materials, causes the two materials to mix in way that is extremely difficult
to predict. This in turn made it difficult to predict the yield of the atomic
bomb793.

Taylor was born in London. Graduated from Trinity College, Cambridge
(1908). Except during the world wars, when he provided assistance to the
government, he was based at Cambridge throughout his career.

793 G.I. Taylor was able to deduce the yield of the first nuclear explosion from a

series of photographs of the expanding fireball in Life magazine. He realized

that he was seeing a strong shock expanding into an undisturbed medium. The

pictures gave him the radius as a function of time, r(t). All that could be

important in determining r(t) was:

• E, the initial energy release.

• ρ, the density of the undisturbed medium (air).

The radius, with the dimension of length, depends on E, ρ and t, and

he constructed the distance out of these quantities. Now, E and ρ had

to come in the form E/ρ to cancel the mass. But E/ρ has the dimension

(length)5/(time)2, so the only possible combination was r(t) ∝
(

E
ρ
t2)1/5 . A

log–log plot of r versus t (measured from the pictures) gave a slope of 2
5
,

which checked with the theory, and E/ρ could be obtained in any chosen unit

system from extrapolation to the value of log r when log t = 0. Since ρ was

known, E was determined to within a factor of order one. For the practitioner

of the art of dimensional analysis, the nation’s deepest secret had been published

in Life magazine. However, the energy release of the first nuclear device was

not obvious to every reader of Life magazine, not even to those who were aware

of the technique of dimensional analysis. The key success is to identify the

essential features of the problem, which can be hard to do until you have been

shown how.
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Taylor proposed (1934) the idea of dislocation in crystals (a form of atomic
misarrangement which enables the crystal to deform at a stress less than that
of a perfect crystal). His many original investigations on the mechanics of
fluids and solids were applied to meteorology, oceanography, aerodynamics
and the study of Jupiter’s Great Red Spot.

1934–1947 CE Marcus Laurence Elwin Oliphant (1901–2000, Eng-
land). Nuclear physicist. Discovered tritium794 (1934), the radioactive iso-
tope of hydrogen, by bombarding heavy water with deuterons. Built a 60
inch cyclotron particle accelerator (1937) and proposed the idea of proton
synchrotron already in 1943.

Oliphant was born near Adelaide, Australia. Received his Ph.D. from the
University of Cambridge, England (1929). He then worked under Rutherford

794 The deuteron is a bound state of one neutron and one proton with total spin
s = 1. The binding energy of the deuteron is 2.22 MeV. The atom made up

of a bound state of a deuteron and an electron is called deuterium (2H, or D).

Deuterium exists on earth with natural abundance of about 1.5 × 10−4 times
that of hydrogen. The deuterons that are found on earth (inside deuterium

atoms) were mostly made in nuclear reactions in the early universe during the

first 3 minutes following the Big Bang.

The rest-masses of the proton (mp), the neutron (mn) and deuteron (md)

are related by mp + mn − md = 2.22
c2

MeV = 3.95 × 10−27 g ∼= 2 × 10−3mp.

The heavy water molecule, D2O, has deuterium instead of hydrogen.

Tritium (3H) is an atom with a nucleus (triton) comprising a bound state of

two neutrons and a proton with an orbiting electron.

If two light nuclei are combined into a heavier nucleus (fusion), the sum of the

masses of the lighter nuclei is greater than the mass of the heavier nucleus.

Therefore energy is released when the heavier nucleus is formed. In the fusion
of deuterium and tritium

2H + 3H → 4He + n + 17.6 MeV;

This is a very important thermonuclear reaction. The Oliphant reaction is:

2H + 2H → 3H + 1H

and was effected by bombarding deuterated compounds with low-energy

deuteron beams. The half-life of the triton is 12.3 y; the first lower bound

was measured by E.M. McMillan (1936), and the first reasonably accurate

actual value was measured by A. Novick (1947).
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in the Cavendish Laboratory and became a professor at Birmingham Uni-
versity (1937). He worked on the Manhattan Project at Los Alamos (1943–
1945). After the war he was a professor at Canberra University (1950–1961)
and served as Governor of South Australia (1971–1976).

1934–1941 CE Rudolf Schoenheimer (1898–1941, USA). Biochemist
and physician. With his associates at Columbia University developed (from
1934) a technique of “tagging” molecules with radioactive isotopes to trace
paths of organic substances through plants and animals, thus revolutionizing
metabolic studies. Also studied relation of cholesterol to atherosclerosis.

Schoenheimer was born in Berlin to a Jewish family of physicians. He
studied medicine at the University of Berlin, where he received his M.D. degree
(1922). He then became interested in Biochemistry and taught at Freiburg
(1926–1933). There he encountered the idea of using isotopes through Georg
de Hevesy (1885–1966) who had applied radioactive isotopes as tracers in
botanical studies (1923) to observe the distribution of lead in bean plants.
But at that time few elements were available that could be used as isotopes
in biological research.

In 1933 he was forced to leave Germany and went to the United States,
joining the biochemistry department of Columbia University medical school.
Harold Urey’s discovery of deuterium (the isotope of hydrogen) at Columbia
University (1932) provided Schoenheimer an ideal opportunity to label or-
ganic compounds without changing their chemical properties. Soon after-
wards (1935), an isotope of nitrogen, 15N, became available.

With David Rittenberg (1906–1970), a physical chemist, he developed the
whole field in which stable isotopes were used as labels for the investigation
of many important reactions in intermediary metabolism. Schoenheimer’s
pioneer work and ideas left a profound impact on biochemistry, biology and
medicine.

In spite of his family assimilationist background Schoenheimer reacted
vigorously to the growing antisemitism in Germany by a proud identification
with his Jewish heritage. After WWI, in which he participated as a soldier he
became firmly convinced of the need to establish a Jewish homeland in Israel
and visited there in 1926. He intended to go there after WWII and help build
up science at the Hebrew University in Jerusalem.

1934–1955 CE Edmund Germer (1901–1987, Germany and USA).
Physicist, engineer and inventor. Invented and developed the fluorescent lamp
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(1935) and the high-pressure mercury-vapor lamp795 (1934).

Germer was born in Berlin and studied at the University of Berlin during
the 1920’s, earning a doctorate in light technology. His continued goal was
to invent a better light source with higher lumen output and lower energy
consumption compared to the incandescent lamp. After WWII he emigrated
to the United States.

The fluorescent lamp is a low pressure gas discharge source. It consists
of a tube that is coated on the inside with a fluorescent material (powder)
and filled with mercury vapor. An electric discharge in the vapor produces
ultraviolet light796, which in turn causes the coating to fluoresce. By adjusting
the coating, fluorescent lamps can be produced to give light with wavelengths
that are closer to natural sunlight than can be achieved with the incandescent
bulb.

The lamps were introduced commercially in 1938.

1934–1957 CE Karl (Raimund) Popper (1902–1994, England). Philo-
sopher of natural and social science. In his key work ‘The Logic of Discovery ’

795 The first practical mercury-vapor lamp was the Cooper-Hewitt lamp developed

by Peter Cooper Hewitt in 1901. This was a tubular source about 4 feet long

which produced light that was distinctly bluish green in color. The first high

pressure mercury lamps similar to the ones used today, were introduced in 1934

in the 400 watt size. Today available, mercury lamps range in size from 40 watts

to 1000 watts. Mercury lamps produce approximately 55–60 lumens per watt.

Operation: the arc tube of the mercury lamp has argon gas and a little pearl

of mercury as filling ingredients. Its electrodes are made of tungsten and carry

an emitter paste, e.g. a barium-yttrium compound, that reduces the ignition

voltage required to start the lamp. Within three to five minutes after ignition,

the mercury is completely vaporized and the characteristic blue-green spectrum

of the mercury discharge is emitted. It contains strong ultraviolet radiation at

wavelengths of 254 nm and 365 nm. Radiation in the red region of the spectrum

is virtually negligible. A mercury lamp’s color temperature ranges between 4000

K and 4500 K. Applying phosphor coatings to the outer bulb increases the light

output by 10 to 15 percent.
796 Thermal electrons, emitted by the filament of the negative electrode, are accel-

erated back and forth by an alternating voltage. Some of them collide with the

mercury vapor, releasing energy in the form of ultraviolet light. The ultravio-

let light causes the phosphorous coating to glow. Typically, a fluorescent lamp

must efficiently generate 253.7 millimicron ultraviolet radiation to excite the

phosphorous coating inside the tubular glass bulb. Modern fluorescent lamps

have an efficiency of about 65–80 lumen per watt.
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(1934) he criticized Francis Bacon’s inductive method of scientific reasoning.
He asserted that a statement is not necessarily scientific just because it can
be confirmed by experience; it is essential for such a statement to be capable
of being disproved by some possible event which, where it to occur, would
exemplify a possibility that the statement itself excludes. This means that
scientific theories can never be verified, only falsified, and that falsification is
the true aim of scientific endeavor. In other words: falsification rather than
verification is the true characteristic of science. It is this feature of falsifiabil-
ity , Popper claimed, that separates science from metaphysics.

Popper asserted that science advances by way of deductive hypotheses cre-
ated by man’s imagination and the eventual test of its particular predictions
through experiments and observations. According to this method, a scientist
seeks to discover an observed exception to his postulated rule. The absence of
contradictory evidence thereby allows tentative acceptance of his theory. Ac-
cording to Popper, such pseudo-sciences797 as astrology, metaphysics, Marxist

797 Theorists who insist that they must be right, that no experiment or data could

disprove the logic and grandeur of their hypothesis are pseudoscientists. One

of these was Immanuel Velikovsky, who developed a complex hypothesis that

the earth had undergone near-collisions with the planets Mars and Venus, that

these encounters could explain many of the narratives of the Bible and in other

ancient documents, and that our view of the solar system must be largely revised

to take account of his worlds in collision, planets wandering from what we take

to be stable orbits.

Velikovsky was not a scientist, for the simple reason that he was “always right”.

Indeed, his world view did not allow for the possibility of error on his part: He

could not, and did not, state the facts that would disprove his hypothesis if

discovered. He stood outside science, never being able to present his theories in

a way that allowed reasonable people to test them, and refusing to accept the

critical ability of science to refute some theories at the expense of others.

By constructing an environment — the world of science — in which theories

survive because they fit into the existing framework more successfully than

competing theories, scientists have created the potential for anyone within their

purview to make important advances in our collective knowledge.

Individuals make the theories; the social structure of science does the testing. He

who does not accept this principle, does not belong to the scientific community.

This does not mean that his ideas must be wrong, only that he and his ideas,

will not be taken seriously. No one guarantees that anybody’s ideas will always

receive serious considerations in any case, but there certainly is no hope if one

does not “think like a scientist”.
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history, Freudian psychoanalysis and creationism are not empirical sciences,
because of their failure to adhere to the principle of falsifiability798.

Velikovsky, besides being a pseudoscientist, was also dead wrong already in

1950, when he first published his theory; his scheme called for planets to have

wandered tens of millions of kilometers from their present orbits within the

past few thousand years, and for Mars and Venus to have been expelled from

Jupiter shortly before that. But by 1950 we already knew that astronomical

records from Mesopotamia showed that Venus must have had its present orbit,

or one close to it, before its alleged collision with earth, and our knowledge

of planets composition and motion dynamics, ruled out the careening motions

that Velikovsky demanded.
798 The importance of falsification was already made clear by the French biologist

Claude Bernard (1865). In real life, scientists often do not conform to this

formula for doing science and have rather an unstated set of criteria for choosing

one theory rather than another — and these encapsulate some of the main aims

of science: accordingly, for a subject to qualify as science it needs at least to

satisfy a number of criteria:

• deal satisfactorily with the phenomena it tries to explain;

• its ideas should be self-consistent;

• have as broad a scope as possible and so encompass a wide range of phe-

nomena, i.e., capable of being linked with other branches of science;

• it should be quantitative and its ideas expressible by mathematics;

• predict new relationships and offer scope for further development;

• be as simple as possible, with a minimum number of hypotheses (Ockham

Razor).

There are a number of excellent examples to show that neglect of falsifiability

was beneficial to science:

(I) Copernicus’ theory about the movement of planets had difficulties with the

phases of Venus, and these difficulties were resolved only with Galileo’s tele-

scope, more than fifty years later. Galileo considered it praiseworthy in Coper-

nicus that he had not permitted one unexplained puzzle to worry him.

(II) Around 1910 there arose a famous disagreement between Robert A. Mil-

likan in Chicago, and F. Ehrenhaft in Vienna: the latter had reported finding

charges of only a fraction of that expected to be carried by the electron. Mil-

likan indeed rejected data that did not fit his basic assumption, but justified it

on the basis of his experimental skills, and we know that he was right.

Thus falsification may fail as a criteria because experiments are sometimes

wrong. In this connection, one must keep in mind the remark of Francis Crick,
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In his philosophical and autobiographical work, Popper credits himself
for having invented the idea that we acquire knowledge by trial and error,
yet the relation between philosophy and psychology in Popper’s work is al-
ways fraught with tension. The earliest traces to Popper’s ‘searchlight theory’
of mind and knowledge are to be found in his unpublished dissertation Zur
Methodenfrage der Denkpsychologie (1928).

According to Michel ter Hark799 (2004), scrutiny of this manuscript re-
veals the formative influence of Otto Selz800 (1913). Indeed he claims that
Popper borrowed his crucially important ‘Searchlight theory’ from Selz, and
demonstrates that Popper’s philosophy of science, with its emphasis on the
method of trial and error, is largely based on the psychology of Otto Selz,
whose theory of problem solving and scientific discovery laid the foundation
for much of contemporary cognitive psychology. By arguing that Popper’s
famous defense of the method of falsification as well as his elaboration of an
evolutionary theory of knowledge are equally indebted to German psychology,
Michel ter Hark challenges the received view of the development of Popper’s
philosophy.

Popper was born in Vienna to converted Jewish parents. After studying
mathematics, physics and psychology at the University of Vienna, he taught
philosophy at Canterbury University College, New Zealand (1937–1945). He
was a professor of logic and scientific method during 1949–1969.

“A theory that fits all the facts is bound to be wrong as some of the facts will

be wrong”. In addition, falsification can itself be false; there is no guarantee

that the experimental falsification will not itself turn out to be flawed; for ex-

ample, the initial experiments carried to test the Weinberg-Salam theory (on

the unification of electromagnetism and weak nuclear forces) showed that the

theory was wrong. Only later experiments showed that the initial experiments

were themselves wrong and the theory was confirmed.

Falsifiability is therefore a necessary but not a sufficient criterion. It is just one

aspect of science.
799 Michel ter Hark:“Popper, Otto Selz and the Rise of Evolutionary Epistemol-

ogy”, Cambridge University Press 2004, 262 pp.
800 Selz, Otto: Über die Gesetze des geordneten Denkverlaufs Spemann, Stuttgart

(1913); Zur Psychologie des produktiven Denkens und des Irrtums, Friedrich

Cohen Bonn (1922).
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Modern and Modernistic Philosophy (1750–1930)

In the medieval world, original meaning was processed by authority (e.g.
the Catholic Church) and the individual was dominated by tradition. The
collapse of this worldview was caused by a variety of different factors:

• The perceived corruption of the Catholic Church hierarchy.

• The rise of market economy following the increase of wealth and power
of a new ‘merchant’ class.

• The new astronomical discoveries of Copernicus and Galileo.

• The new geographical discoveries of the Spanish, Portuguese, Dutch and
British voyagers.

All these played their part in undermining the religious and metaphysical foun-
dations of Christian Europe. With the scientific revolution, Europeans lost
faith in religion and found new hope in science and humanism. Both of these
seemed to offer more rational ways of achieving salvation. The new world was
to be governed by the truths of science, based on careful examination, ma-
nipulation and observation of nature within a mathematical epistemological
framework.

There was to be no place for philosophy in this new world of scientific
modernity. From now on, analysis, method and technique would be the new
gods, and the wonder and curiosity of the philosophers was to be replaced with
a new kind of question. The question “What is it?” was now subordinated
to the more technical question: “How does it work?”. So philosophy became
concerned with providing the metaphysical and epistemological supports for
the new secular order of modern technocracy.

The intellectual opposition to the medieval worldview began in the 15th

century, during the Renaissance, with the Humanist ideas of Desiderius
Erasmus (1466–1536), Niccolo Machiavelli (1469–1527), and Michel de
Montaigne (1533–1592). Each of these thinkers accepted the idea of Pro-
tagoras (c. 491–421 BCE) that our own human world is the only world in
existence, and that we can make of this world what we will.

At the start of the 16th century, the growing problems facing the Catholic
Church were further compounded by Martin Luther (1483–1546), who was
about to begin a personal crusade to reform Christianity. Luther added to
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this a new sense of individualism when he claimed that Christian belief was
a matter of personal faith rather than objective truth.

The “modern” era was boosted by the European Enlightenment and the
advent of the Industrial Revolution in England anchored in the development of
the steam-driven motor at ca 1750. Although historians have traced elements
of enlightenment back to the Renaissance, one can argue that Enlightenment
thinking begins with the 18th century.

The basic ideas of the Enlightenment are roughly the same as the basic
ideas of humanism. Its main premises are:

• Man’s self is knowable, rational, autonomous and universal. This self
knows itself and the world through reason, or rationality, posited as the
highest form of mental functioning, and the only objective form.

• The mode of knowledge produced by the objective rational self is sci-
ence, which can provide universal truths about the world, regardless of
the individual status of the knower. The knowledge provided by science
is truth, and is eternal. The knowledge produced by science will always
lead toward progress and perfection. All human institutions and prac-
tices can be analyzed by science and improved. Science thus stands as
the paradigm for any and all socially useful forms of knowledge. Science
is neutral and objective; scientists (those who produce scientific knowl-
edge through their unbiased rational capacities) must be free to follow
the laws of reason, and not be motivated by other concerns (such as
money or power).

• Reason is the ultimate judge of what is true, and therefore of what is
right and what is good (what is legal and what is ethical). Freedom con-
sists of obedience to the laws that conform to the knowledge discovered
by reason. In a world governed by reason, the true will always be the
same as the good and the right (and the beautiful); there can be no
conflict between what is true and what is right.

• Language, or the mode of expression used in producing and disseminat-
ing knowledge, must be rational also. To be rational, language must
be transparent; it must function only to represent the real (perceivable)
world which the rational mind observes. There must be a firm and ob-
jective connection between the objects of perception and the words used
to name them.

These tenets served to justify and explain virtually all social structures and
institutions, including democracy, law, science, ethics, and aesthetics. More-
over, the ensuing powerful and successful approach to nature and culture has
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come to dominate the modern university and our social, economic, moral, and
cognitive structures. Human reason, as exemplified in the deductive thought
of mathematics and physics, would come to replace the superstitious world-
views of religion and other forms of irrationality. Reason, science, technology,
and bureaucratic management would improve our knowledge, wealth, and
well-being through the rational control of nature and society.

The most important philosopher to emerge from the 18th century philo-
sophical movement known as the Enlightenment was Immanuel Kant (Ta-
ble 5.16). His philosophy tries to combine scientific rationalism (i.e. the
prerequisite that science be built upon rational principles with the notion
that the mind is actively involved in the objects it experiences. That is, it
organizes experience into definite patterns, creating its own world through the
powers of autonomous rational judgment.

In the wake of Kant’s philosophy came the romantics, who viewed both
mind and nature as unified and saw art and aesthetic interpretation as the
source of all true knowledge. For the romantics, such as Friedrich von
Schelling (Table 5.16) and the poet Friedrich Schiller (1759–1805) the
genuine bringer of knowledge was the artistic genius rather the experimental
scientist.

By the beginning of the 19th century, various philosophers made new at-
tempts to combine Rationalism and Romanticism into a new ‘higher order’
philosophy. The most famous attempt to achieve this new synthesis between
seemingly competing philosophies can be seen in the works of the German
philosopher Georg Wilhelm Friedrich Hegel (Table 5.16). Hegel accepted
Kant’s idealism and viewed reality as the product of the activity of a rational
mind. however, for Hegel mind was a kind of universal spirit (‘geist’) that
moved through time and space. Reason was viewed as the underlying princi-
ple that governed the movement of this spirit through history. According to
Hegel, history is a social process driven by contradictions between competing
systems of ideas. Historical changes produce new forms of knowledge via a
process of thesis, antithesis, and, finally, a new synthesis.
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Modernity is fundamentally about order, creating order out of chaos, and
about the pursuit of ever increasing levels of order. The more ordered a
society is, the better it will function. This inherent quest for order led to
search for fundamental base-superstructures in mathematical, physical, social
and biological systems. Indeed, Charles Darwin theory of evolution (1859)
presented a base-superstructure through which all ‘higher’ form of life are
necessarily based, in causative formation, on ‘lower’ forms of life, which are
all structured by hidden laws that are not self-evident.

Karl Marx (1867) introduces a base-superstructure in his discussion of
the fundamental economic laws of a society and the consequent social insti-
tutions and philosophies built upon that materialistic foundation.

Sigmund Freud (1904) also used a base-superstructure metaphor in his
explication of the foundational structures of the human psyche from which
the limits and possibilities of human life ensue.

Thus, just as science was able to prove much in nature that was coun-
terintuitive, like the earth moving around the sun, the new social sciences of
economics, psychology, anthropology, and sociology would unveil the true na-
ture of individual beliefs and social structures as causationally derived from
some foundational base.

The modernists were and are mostly hostile to religion, because it repre-
sents a form of immovable unreason and dangerous irrationality. They envi-
sion a world freed of religious superstition. This vision profoundly influenced
the culture of modern science and the secular university.

What began with Darwin, Marx and Freud, continued in the 20th cen-
tury intellectual history, as new disciplines and sub-disciplinary schools as-
serted their own foundational causative categories from which all else ensues.

In conclusion, modernity is equated with the enlightenment-humanist re-
jection of tradition and authority in favor of reason and natural science. This
was founded upon the assumption of the autonomous individual as the sole
source of meaning and truth – the Cartesian ‘cogito’. Progress and novelty
are valued in a ‘real’ world that evolves towards a state of increased objectiv-
ity. According to Sociologists, this new secular order began with the rise of a
market economy and the growth of a centralized bureaucratic state. Both of
these institutions had no need for philosophical wisdom as such. Instead, the
burgeoning state and market required accurate information and faster means
of communication and energy transport.

Friedrich Nietzsche was the first great philosopher after the revolution
in Western thought brought about by the work of Charles Darwin (1859),
who claimed that humans, rather than being created in God’s image, were the
evolutionary cousins of monkeys and apes. For Nietzsche this was devastating
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news and his whole philosophy can be seen as an attempt to answer this one
question: How do we live in a world without something (a God) that guarantees
that life has meaning?

Nietzsche was one of the chief prophets of the modern age. He accurately
predicted that life in the 20th century would be a Perilous time; in a world
without God, people would follow anyone or anything that offered them some
sense of personal worth in a universe increasingly perceived to be devoid of
significance. Nietzsche warned of the dangers that lay in the future, but
he harbored little faith in the moral abilities of the majority of ordinary
people. Unlike Marx he denied that any hope for a better future lay with
the proletariat. For Nietzsche, the 20th century would be the age of the
false prophet who offers salvation but merely manipulates people to their
doom. In the light of the atrocities committed by Hitler and Stalin, this is
a truly remarkable prediction. Nietzsche’s death in 1900 marked the end of
philosophical romanticism.

Sigmund Freud (1856–1939) accepted the romantic critiques of modern
society, but he believed that had found a scientific way of dealing with them.
What we need, he thought, was a new science of the mind (psychoanalysis)
that was more sensitive to hidden, irrational depths of the psyche. He believed
that the rationalists and empiricist had only offered models of the conscious
mind (ego) and had ignored the existence of the unconscious mind (id). Freud
saw the rational part of the psyche as a thin veneer covering an older and much
more unpredictable irrational part. For Freud, the unconscious represents the
‘animal’ within us: the part of us that is impulsive, instinctive, and demands
immediate gratification. According to Freud, the mind is in conflict with itself
and that all we can hope for is to accept the “demon within us” and bring it
under rational forms of control.

In his philosophical work: “Civilization and its Discontents” (1930) he
argues that our most basic desires can never be satisfied and that the Marxist
idea of an ideal communist society is nothing more than a silly wish; There
is no easy way to live with our unconscious desires and that every man must
find out for himself in what particular fashion he can be saved. Thus, in the
end, psychoanalysis became an odd kind of moral philosophy.

Freud’s ideas represent a technocratic answer to the problem raised by the
19th century. During part of the 20th century, this was the trend of much of
intellectual thinking, and many philosophers believed that science could meet
all the difficulties of modern life that the romantics had identified.

An important development in philosophy was stimulated by questions
about the foundations of mathematics: the system of logic laid down by Aris-
totle remained unaltered in its essentials until the 19th century. By that time
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logic had come to be thought of as consisting of laws that govern thought. The
works of Boole (1847), A. de Morgan (1847), Cantor (1872), C.S. Peirce
(1878) and Peano (1886) heralded the merger of logic and mathematics at
the fringes. Since the time of Kant, who had considered logic as complete,
great changes had occurred in the study of logical theory. In particular, new
forms of treating logical arguments by means of mathematical formulae had
been developed. The first systematic account of this new way of dealing with
logic in due to Frege (1892).

Many of Frege’s ideas were first transmitted by other people, including
Peano. As a founder of symbolic logic, Peano created his own logic notation
(as did Frege) and established the basic elements of geometric calculus. Peano
also invented his own international auxiliary language ‘Iterlingua’, which was
a fusion of vocabulary from Latin, French, German and English.

The axioms of Peano, for all their economy, were nevertheless unsatisfac-
tory from a logical point of view, for it seemed somewhat arbitrary that it
should be these rather than some other statements that were the basis of
mathematical science. Frege then set to exhibit the axioms of Peano as a
logical consequence of his symbolic system.

Frege is also one of the founders of linguistic philosophy (philosophy of
language802) which is the attempt to uncover the logical structure of all human
languages. The fundamental recognition here is that logical relationships are
independent of human thought, ergo: logical prepositions are objective truths,
the existence of which has nothing to do with any feature of human thinking.
Once all meaningful human languages could be reduced to logical formulas
(i.e. abstract symbolic expression that look something like algebra), human
language could be systematized, opening the way for the modern science of
languages (linguistics).

When this insight was applied to general philosophy it had momentous
consequences. Since Descartes, Western philosophy grappled with the ques-
tion: “What can I know?”. Theory of knowledge (epistemology) had been at
the center; and this was taken to mean that what went on in people’s minds
was the main subject of investigation. But Frege’s insight had the consequence
of de-psychologizing philosophy. If what is the case, and what followed from

802 Philosophy of language is the study of philosophical questions about language,

especially about meaning and truth (of words, phrases and sentences) in general.

Grammar, books and dictionaries only codify how we use language, but meaning

and truth of linguistic statements shape an entire view of the universe and our

place in it. Thus, in arriving at our present philosophical outlook, questions

about meaning play a centrally important role.
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What, are both independent of the human mind, then our attempts to un-
derstand the world cannot legitimately center on epistemology.

The clear implication is that philosophy ought to be logic-based, not
epistemology-based803. Indeed, Frege’s work precipitated changes in that di-
rection which continued unabated in many of the main areas of philosophy
throughout the 20th century.

The work of Frege was completely ignored for twenty years and in his own
country he long remained an obscure professor of mathematics. However, his
new philosophy of language would influence Bertrand Russell (1913) and
Ludwig Wittgenstein (1921).

Modernistic Philosophy

Modernism started as a movement in visual arts, music, architecture, lit-
erature and drama at the turn of the 20th century. It rejected the Victorian
standards of how art should be made, consumed and what it should mean.
Figures like Picasso, Proust, Kafka, Rilke and e.e. Cummings are some
of the founders of the 20th century modernism. From a literary perspective,
the main characteristics of modernism include:

• An emphasis on impressionism, subjectivity and on how seeing and per-
ception takes place rather than on what is perceived. A movement away
from the apparent objectivity provided by omniscient third-person nar-
rators, fixed narrative point of view, and clear-cut moral positions.

• A blurring of distinction between genres, so that poetry seems more
documentary and prose seems more poetic.

• An emphasis on fragmented forms, discontinuous narrative, and
random-seeming collages of different materials.

803 He helped to change the agenda of modern philosophy from the problem of

knowledge to the even more fundamental one of meaning. Frege stressed that

everyday grammatical language is not logical and that logic itself in independent

of psychology. Language itself has two different functions: First, it consists of

‘sense’ or meaning, that which we understand. Second, it ‘refers’ to things and

concepts. The sense of a language is a public phenomenon based on convention

and can change, but reference is to truth or falsehood. Frege went on to found

a complex system of logic based on this insight.
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• A tendency toward reflexivity, or self-consciousness, about the produc-
tion of the work of art, so that each piece calls attention to its own
status as a production.

The modernistic movement fed on socio-economical changes induced by
the major advancements made in physics and astronomy, WWI, monopoly
capitalism (associated with electric and internal-combustion-motor industries)
and the impact of Freud’s new psychoanalysis. Its manifestations in philoso-
phy came through the Analytic Philosophy founded during the period between
the two World Wars (1924–1937) in Western Europe.

The 20th century was the first since the Middle Ages in which all the
leading philosophers were academics. Partly as a result of this, there was a
growth of concern with analysis. In logical analysis and linguistic analysis
important development occurred. Otherwise the biggest advances were on
two fronts: one was a response to 20th century science, which compelled a
reappraisal of the nature of human knowledge as such. The other was an
attempt to understand the human condition in a universe no longer seen as
created by God, or as having any meaning or purpose of its own.

A revolutionary school of 20th century philosophy, rejecting traditional
points of view is that of Analytic Philosophy pioneered by Russell (1910–
1913) and Wittgenstein (1921). Its adherers contend that the entire busi-
ness of philosophy is that of analysis. As such, philosophy is devoid of con-
tent in the sense that it does not add to the scope of scientific knowledge,
but instead consists of linguistic activity designed to eliminate problems and
perplexities arising form intellectual confusion or misunderstanding and thus
to clarify knowledge which we already possess. It is no longer to be the task
of philosophy to search for ultimate or metaphysical truth; the metaphysi-
cal quest which originated with Descartes is to be replaced by the radically
different task of philosophical analysis undertaken by Analytic Philosophy as
a nonmetaphysical school of thought. Thus, Analytic Philosophy represents
a reaction against the Idealists’ synthesis and concepts of Absolute Reality
originating with Hegel.

Analytic Philosophy came close to dominate philosophy in the English-
speaking world for most of the 20th century. In the course of this time it took
different forms, but common to them all was the close analysis of propositions,
or of the individual terms and concepts they employed, or of their logical
implications both internal and external, with a view to bringing everything
that was hidden in them to the surface. The overall question always was:
“What are we really saying when we say so-and-so?”.

Among the groups that took up Russell’s approach and developed it was
one that came into existence in Vienna (1924–1936) and became known as
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the Vienna Circle. It consisted more of scientists and mathematicians than
philosophers, and its chief concern was to establish the philosophical founda-
tions of a scientific worldview. Theirs was a philosophy that became known as
Logical Positivism804. It considered that the true meaning of a statement was
uncovered when we asked ourselves: “What would we have to do to establish
the truth or falsehood of this statement?”. In other words, what observable
difference does its truth or falsehood make to the way things actually are?
Only statements that are empirically verifiable are empirically meaningful.

On the contrary – a statement that purports to be about reality but whose
truth or falsehood makes no observable difference to anything, has no mean-
ing805. They thus concluded that all philosophy, especially Hegelian idealism,
was metaphysical nonsense. They also thought that the “surface grammar” of
language had led philosophers into endless, unsolvable pseudo-debates about
imaginary entities like the “substances” of Spinoza and Leibniz.

Logical Positivists thought that there was no such thing as “philosophical
knowledge” – that road to real knowledge was only via science. Philosophy
could only be an analytic activity which clarifies concepts and cleared up
linguistic conclusions.

However, as a theory of meaning, the ‘verification principle’ of the Logical
Positivists collapsed fairly quickly, partly because a lot of modern science is
conceptual and untestable in a simple “look and see” way. Meaning also has
to be prior to testing, not a result of it. How can we test something if we
don’t understand it first?

With the rise of the Nazis to power in Austria and Germany, the members
of the Vienna Circle were scattered, mostly to the United States and Britain,
where they exercised a major influence over a whole generation.

In his later works, Wittgenstein set out to resolve the difficulty that the
Logical Positivism had with their ‘verification principle’. He showed (1951)
that the great 20th century search for ‘Meaning of Meaning’ is futile because
it is founded on the misconception that ‘Meaning’ is something separate from
language. Instead, meaning is the result of socially agreed convention pro-
duced by ‘forms of life’ and cannot possibly be established outside a language.

804 Otto Selz (1881–1943); Moritz Schlick (1882–1936); Otto Neurath (1882–

1945); Rudolf Carnap (1891–1970); Ludwig Wittgenstein (1889–1951);

Alfred Tarski (1902–1983); Kurt Gödel (1906–1978); Karl Menger (1902–

1985); Alfred Jules Ayer (1910–1989); Karl Popper (1902–1994).
805 So, “God is absolute and eternal” looks like sense, but is wholly untestable

and therefore gibberish. Assertions about God, souls, immorality, moral values,

aesthetic values, and universal substances (matter or spirit) cannot be accepted

as a valid or invalid, true or false. Science in the only form of knowledge.
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To him, philosophy is a critique of language — an activity which seeks the

‘logical clarification of thoughts’, the elucidation of propositions. Therefore,

he argued that the way in which a word is used, not its meaning as a name

for some object, gives language and statements their validity: “Don’t ask for
the meaning, ask for the use”.

A different solution to the ‘verification principle’ was suggested by the phi-

losopher of science Karl Popper (1902–1994) in his work Logic der Forschung
(The logic of Scientific Discovery, 1935); According to Popper, knowledge of

the natural world never advances by direct confirmation of scientific theories,

but only indirectly, through the systematic falsification of their alternatives

by reference to our experience. He defended a realistic epistemology in his

Objective Knowledge (1966).

In the wake of the Einsteinian revolution (1905–1917) that toppled the

Newtonian worldview, Popper realized that if the centuries of corroboration

received by Newtonian science had not proved it to be true, nothing was ever

going to prove the truth of a scientific theory. The so-called scientific laws

were not incorrigible truths about the world after all; they were theories, and

as such they were products of the human mind. If they worked well in their

practical application then that meant they approximate the truth, yet it was

always possible even after hundreds of years of pragmatic success, for someone

to come along with a better theory that was closer to whatever the truth was.

As Einstein himself put it: “only daring speculation can lead us further, and

not accumulation of facts”.

Popper developed this insight into a full-fledged theory of knowledge. Ac-

cording to him, physical reality exists independently of the human mind, and

is of a radically different order from human experience – and for that very

reason can never be directly apprehended.

It is impossible to prove, finally and forever, the truth of any scientific

theory. But a theory can be disproved, and this means that it can be tested.

Thus, although no number of observations, however large, will ever prove

the statement “All swans are white”, a single observation of a black swan

is enough to disprove it. So we can test general statements by searching for

contrary instances. This being so, criticism becomes the chief means by which

we do in fact make progress.

A statement that no potential observation would falsify cannot be tested,

and therefore cannot count as scientific, because if everything that could pos-

sible happen is compatible with its truth, then nothing can be regarded as
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evidence for it806 (e.g. the statement “God exists” is not a scientific state-
ment).

Postmodernism
807

In the second half of the 20th century (especially towards the mid 1980’s)
we witnessed the rise of an eclectic, nihilistic, irrational and anti-science move-
ment known as postmodernism. It is a cultural formation which accompanies
a particular stage of Capitalism, namely, consumer capitalism with its em-
phasis on marketing, selling and consuming commodities, not on producing
them.

While Modernism upheld the idea that works of science, art and literature
can provide unity, coherence, and meaning (which had been lost in modern
life), postmodernists claim that since the world is meaningless (to them), we
should not pretend that art and science can endow it with meaning.

Until 1945, science could be been as the friend of mankind (with the
exception of the ‘gas chambers’ annihilees, for whom chemistry was certainly
not a best friend). Moderns medicine brought about a great increase not only
in longevity but in the capacity to enjoy life physically. However, after the

806 But as a scientific method, falsificationism has its own problems. If our ob-

servations of the world are themselves always “theory-laden”, why should one

observation immediately invalidate a complex scientific theory? How do we

know which to trust? Scientific theories are complex and interdependent, so it

is not always easy to falsify them with a single observation. History also reveals

that scientists have often been very reluctant to jettison their pet theories be-

cause of one contradictory observation. Sometimes they have been quite right

to be stubborn – but not always.

At any rate, as Popper himself argued, “Science is perhaps the only human

activity in which errors are systematically criticized and in time corrected.”
807 Few scholars have attempted to reduce the term ‘Postmodernism’ to an ob-

jective definition for fear that such definition becomes the immediate tar-

get for a Postmodern critique. The evasiveness of the leaders of this move-

ment on this subject has been notorious: Pressed for an answer, one of

their proponents, Jacques Derrida, a leftist avant-garde French theorist,

said: “It is impossible to respond; I can only do something which will

leave me unsatisfied”. He was apparently following the advice of Wittgen-

stein: “Of what one cannot speak, one must remain silent.” .
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explosion of the first atomic bomb its evident capacity to destroy humanity
turned science into a potential enemy: for some, the prospect of a sudden
cataclysmic end to all human life has destroyed the hope, slowly engendered
through the 18th and 19th centuries, that science and research would bring a
progressive increase in happiness.

Most generally, Postmodernism is the abandonment of Enlightenment con-
fidence in the achievement of human knowledge through reliance upon reason
in pursuit of foundationalism, essentionalism, and realism. In philosophy,
antimodernists typically express grave doubt about the possibility of univer-
sal objective truth, reject artificially sharp dichotomies, and delight in the
inherent irony and particularity of language and life.

Starting in the 1960’s, computer technology emerged as a dominant force
in many aspects of social life: The advent of electronic computer technologies
began to revolutionize the modes of knowledge production, distribution and
consumption in our society. Social philosophers worried that anything which is
not able to be translated into a form recognizable and storable by a computer
(digitalizable) – will cease to be knowledge.

In this paradigm, the opposite of ‘knowledge’ is not ‘ignorance’, but rather
‘noise’. This attitude led eventually into a science phobia, with the rise of
religious fundamentalism in the Muslim world as one of its consequences.

The horrors of WWII, coupled to fears of a nuclear annihilation of
mankind, led certain philosophers (mostly European academicians) to the
viewpoint that culture in modern times no longer provided meaning and pur-
pose to people’s lives, and that the most serious offender is empirical science.
This attitude which took shape in the 1970’s might have just remained a
European academic fad, were it not for other successive developments which
gave it real substance:

(1) The emerging of chaos and complexity and their manifestation in nature.

(2) The new cosmology, quantum field theories and their aim – the Theory
Of Everything.

(3) The new progress in genetics, molecular biology, and neuroscience and
their aims – the Human Genome project, genetic therapy and engineering,
etc.

(4) The popularity of neo-conservatism and rise of the Respectable Right in
the U.S.A. in the 1970’s.

(5) The collapse of the Berlin Wall symbolizing the complete triumph of a
free market economy over a socialist command economy.

Items (1), (2) and (3) have come under attack by critics from the dis-
ciplines of sociology, philosophy and history. In the academic world, most
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professors of humanities are known to have little experience in mathematics,
theoretical physics and theoretical biology, and hence have no credibility in
passing judgment on highly specialized issues associated with physics, quan-
tum theory, cosmology, nonlinear dynamics, complexity, computer science,
molecular biology, etc.808

Nevertheless such non-scientist as T. Adorno809; G. Ryle (1900–1976);
J. Derrida; R. Barthes (1915–1980); J. Lacan (1901–1981); F. Lyothard
(1924–1996); M. Foucault (1926–1984), and J. Baudrillard, pompously
announced that the scientific method is little short of myth and that scientific
knowledge is in fact manufactured. Furthermore, the self-styled Dadaist Paul
Feyerabend claimed that science can be said to be in a condition of anarchy
(sic!)

No branch of human knowledge escapes from this radical, nihilistic and
irrational corrosive outlook, according to which science and logic are accused
of being “constructs” – merely interpretations of experience. There is no
timeless and universal reality, and no certain knowledge of it either.

It is obvious that the postmodern anti-science movement stands on feet of
clay and will eventually take its place in the dustbin of intellectual history.

Neo-Marxism

In the third quarter of the 20th century there arose a new trend in Western
philosophy which integrated into a comprehensive framework of social theory
and philosophy the following disciplines:

• German philosophical thought of Kant, Schelling, Hegel and
Husserl.

808 Today, the sheer mass of scientific knowledge is beyond individual comprehen-

sion, despite the far higher level of general education. We have to some extent

returned to the situations of primitive man who required myths and mysteries

as protection against forces which he could not fully understand or control.
809 Theodor Adorno (1903–1969, Germany), born Theodor Wisengrund in

Frankfurt, was a radical Marxist Jewish intellectual. He set up the Frankfurt

School for social research (1923). This school tried to blend Marxist philosophy

and Freudian philosophy into a critical theory of society. Adorno fully expected

a more free and just society to emerge from the economic ruins of 1930’s Ger-

many; the rise of Nazism both shocked and horrified him. After the Holocaust

his philosophy became very influenced by Judaism.
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• Marxist tradition as well as the critical neo-Marxist theory of the Frank-
furt School as expounded by Horkheimer, Adorno and Marcuse.

• The sociological theories of Weber and Durkheim.

• The linguistic philosophy of Wittgenstein and Searle.

• The American pragmatist tradition of Peirce and Dewey.

The proponent of this scheme was Jürgen Habermas (b. 1929), a social
philosopher at the Frankfurt School, who developed the concept and theory
of communicative rationality in his magnum opus, The Theory of Commu-
nicative Action (1981). It distinguishes itself from the rationalist tradition
by locating rationality in structures of interpersonal linguistic communication
rather than in the structure of either the cosmos or the knowing subject. He
carries forward the tradition of Kant and the Enlightenment and of demo-
cratic socialism through his emphasis on the potential for transforming the
world and arriving at a more humane, just, and egalitarian society through
the realization of the human potential for reason.

While postmodernists have “deconstructed” such long-treasured notions
as “reason” and “justice” [claiming that “reason” is a name the powerful
give to their rationales for holding power and “justice” is just an excuse for
the majority to impose its morality on the minority], neo-marxists such as
Habermas, disagree.

However, in the aftermath of 9/11, Derrida and Habermas established a
political solidarity by issuing together the book “Philosophy in a Time of
Terror” — a plan for common European foreign policy.

Modern Conservatism

Modern conservatism810 is a politico–economical philosophy rooted in the
economic theories of the libertarians Ludwig von Mises (1881–1973, Aus-
tria), Friedrich Hayek (1889–1992, Austria) and Milton Friedman (1912–
2006, USA).

810 To dig deeper, see:
• Kurtz, P.W. (Ed), American Philosophy in the Twentieth Century, Macmil-

lan, 1966.

• Brown, S. (Ed.), Biographical Dictionary of Twentieth–Century philosophers,

Routledge, 878 pp.
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It emerged from the rejection of social liberalism and the New Left counter-
culture of the 1960’s, developing in the works and thoughts of the Americans
intellectuals Leo Strauss (1899–1973), Ayn Rand811 (1905–1982), Barry
Goldwater812 (1909–1998) (who fused libertarianism with conservatism in

811 Ayn Rand (1905–1982, USA; born Alisa Rosenbaum) was an American nov-

elist and social philosopher; founder of objectivism. Immigrated from Russia

(1926).

The social philosophy evolved by Rand, and explicated in her novels and es-

says, became known as Objectivism, which prescribed individualism with secular

morality. It is a particularly pure form of small–government (minarchic) Liber-

tarianism, which extends beyond economics and the proper functions of demo-

cratic governance to encompass all aspects of the Social Contract (as Rousseau

called the contract among individuals that defines the State), and even aspects

of morality, ethics, aesthetics, epistemology (the theory of knowledge) and meta-

physics.

Rand emphasized the sanctity of the inviolate, rational mind of the individual ;

free individuals interact and form voluntary associations, in which they trade

their best intellectual and economic achievements to mutual profit and satisfac-

tion. There are also personal relationships of other kinds, of course – friendship,

family, love – in which what is being traded is less concrete. But in all cases,

enlightened, rational self–interest serves as a guide, and no person should be co-

erced by others (individually or collectively). Unlike most philosophers, Rand

was entirely and implacably opposed to religion and altruism, seeing no re-

deeming value in them. Altruism is merely a scheme for making individuals

into ‘sacrificial animals’, for various nebulous collective purposes (or to support

other individuals who prefer to live off their more capable, motivated or talented

fellows by inducing feelings of guilt).
812 Fascist and communist tyranny has been supported all during the past 75 years

by the modern left through its intellectuals and their newspapers, journals and

periodicals; The New York Times, the Guardian, The New Statesman and the

Daily Mail supported Stalin and are now calling for appeasement of Islamic

fascism. The Guardian even supported the Khmer Rouge.

Among the ardent supporters of Lenin, Stalin and the Soviet mass–killings and

purges: Pablo Picasso, G.B. Shaw, Eric Hobsbaum, Pablo Neruda,

Charles Chaplin, J-P Sartre, Graham Greene, Bertolt Brecht, and

many other leftist philosophers, intellectuals, journalists, writers and artists.

Clement Atlee praised Stalin’s Soviet Union in the 1930’s and Hobsbaum

supported Stalin’s invasion of Finland and the soviet crushing of the Hungarian

and Czech’s Revolutions.

Among the supporters of Hitler were Martin Heidegger, Knut Hamson,

Salvador Dali, Ezra Pound (actually worked for the fascists in WW2) and

Werner Heisenberg. In France J. Derrida bemoaned the end of Soviet occu-
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the 60’s and 70’s. His most famous quote: “Extremism in the defense of
liberty is no vice, and moderation in the pursuit of justice is no virtue.”),
William F. Buckley (1925–2008) and Allan Bloom (1930–1992). The
ideas of these thinkers influenced the administrations of President Ronald
Reagan and Premier Margaret Thatcher, representing a re-alignment in
Western politico–economical philosophy, and the defection of many liberals
to the right–hand side of the political spectrum.

One accomplishment was to make criticism from the Right acceptable
in the intellectual, artistic and journalistic circles, where conservatives had
long been regarded with suspicion. In the U.S, neo-conservatism emphasizes
foreign policy as paramount responsibility of government, seeing the need for
the U.S. acting as the world sole superpower as indispensable to establishing
and maintaining global order.

The Modern Left
813

The historical Left pioneered on social issues of civil liberties such as rights
for women, blacks, gays, atheists and other minorities. It opposed religious
and sexual censorship, and enabled sexual freedom. All this however is uncon-
troversial now, since most of the modern right agrees with this basic agenda.

pation of Eastern Europe, as did many other tenured academics living in comfort

in the free West. Harry Belafonte, Jesse Jackson, Norman Mailer and

Harold Pinter supported Cuban Communist dictatorship. Nelson Mandela

supported Libya and Cuba. Desmond Tuto attacked the democracies of Israel

and USA.
813 To dig deeper, see:

• Lilla, Mark, The Reckless Mind: Intellectuals and Politics, Review Books:

New York, 2001.

• Lilla, Mark, The Stillborn God: Religion, Politics, and the Modern West,
Knopf, 2007.

• Bloom, Allan, The Closing of the American Mind, Simon and Schuster, 1987,

392 pp.

• Mirsky, Y., From Fascism to Jihadism.

• Johnson, Paul, Modern Times.
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The main thing that defines the left in the modern world (new left) is its
approach to foreign policy, with the economy and crime being the lesser issues
that distinguished them.

The left in France (J.P. Sartre; M. Foucault; Barthes; A. Gide;
J. Derrida; M. Merleau; G. Genet; G. Marcel) was the cradle of late
20th century tyranny:

• The Khmer Rouge trace their intellectual origins to France: Khiew
Samphan and Pol Pot were both educated in France in the 1940s–
1950s.

• The Baath Arab Socialist party of Saddam Hussein in Iraq traces it
intellectual origins to France.

• The Iranian Islamist revolution traces its intellectual origin to human
rights intellectuals in France: Ayatolla Khomeini was granted exile in
France, where he openly denounced human rights and human freedom,
plotted the Islamic takeover of Iran, and from where he returned tri-
umphant in 1979.

• Ho Chi Minh learnt his Marxism in Paris, and was a member of the
French Communist Party.
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Worldviews XLVI–XLVIII: Poet-Philosophers of the
20th Century: Rilke, Pessoa, Cummings

∗ ∗∗

“Who twines green leaves, worthless as common clods,
To wreaths of honor that stay always fresh?
Secure Olympus and unites the gods?
The strength of man, in poets become flesh.”
(Goethe, Faust I, 154–157. Translated by Walter Kaufmann. Anchor Books,
1963)

∗ ∗∗

I: Rainer Maria Rilke (1875–1926). German language’s greatest poet of
the 20th century. His poetry is characterized by a dense, lyrical style and
startling images that portray the complexities of modern life and their effect
on human beings. It emphasizes human longing for completeness and for the
absolute in face of deficiency, transience and emptiness due to changing flux
of values and standards in an age of disbelief, solitude, and profound anxiety.

Rilke was born in Prague. His father, Josef Rilke (1838–1906), became
a railway official after an unsuccessful military career. His mother, Sophie
(“Phia”) Entz (1851–1931) came from a well-to-do Prague manufacturing
family (originally Jewish but later converted to Christianity to escape anti-
semitism). His maternal grandmother Caroline née Kinzelberger (1828–1927)
was also born in Prague814.

814 In his book: “Rilke-Sein Leben, seine Welt, sein Werk,” W. Leppmann states

that Caroline’s grandmother, Theresia Mayerhof, was Jewish, and lived in

Prague around 1775. We recall that all Jews were expelled from Prague in

1745 by Empress Maria Theresa, and Anti-Jewish riots broke again in 1848.

Some Jews, at that time, converted to Christianity to escape persecution (see

“A History of Habsburg Jews” by W.O. McCagg Jr.).

Rilke’s biographer, Ralph Freedman (“Life of a Poet: Rainer Maria Rilke,”

Northwestern University Press, 1996) pointed out that Rilke’s contradictory

relation to Jews was nurtured by a deeply prejudiced mother, with her pro-

German dogmatism and cloudy religiosity.
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Rilke attended a military academy (1886–1891) and studied literature and
philosophy in Prague and Munich. He traveled to Italy (1898), Russia (1899,
1900) and Paris (1902–1910). On these trips he met Leo Tolstoy and Paul
Cezanne, and worked as a secretary for the sculpture Auguste Rodin. He
married (1901) the sculptress Clara Westhoff (1878–1954) and they had a
daughter Ruth (1901–1972). He spent the greater part of WWI in Munich,
excluding six months of military service in Vienna.

To escape the post-war chaos, he settled in Switzerland, where he died in
1926 of leukemia.

Rilke separated from his wife already in 1902, and during 1900–1926 he
seeked intimate relations with many available free women. Some became his
lovers and other remained just beloved; yet all of them served to stimulate
and inspire his poetic creativity in one way or another.

[Lou Andreas-Salomé (1861–1937); Valeri von David-Rohnfeld (1871–
1946); Paula Modershon-Becker (1876–1907); Magda von Hattinberg (1883–
1959); Sidone Nadherny (1885–1950); Baladine Kossowska (1886–1969);
Claire Studer-Goll (1891–1977); Mariana Tsvetaeva (1892–1941); Nimet Eloui
Bey (1903–1943); Harriet Cohen (1895–1967); Loulou Albert-Lazard (1891–
1969); Nany Wunderly-Volkart (1878–1962); Regina Ullmann (1884–1961);
Ellen Delp (1890–1990); Marie Louise Dobrzensky (1889–1970); Helene von
Hostitz (1876–1944); Katherina Kippenberg (1876–1947); Manon Solms-
Laubach (1882–1975); Eva Solmitz-Cassirer (1884–1974); Yvone von Wat-
tenwyl (1891–1976); Adelmina Romanelli; Mia (Maria) Mattauch; Elia Maria
Nevar; Marthe Hennebert (b. 1887); Auguste (Gudi) Nölke; Jenny de Marg-
erie; Jean de Sepibus; Julie von Nordeck; Lily Ziegler; Margot Sizzo-Noris;
Key Ellen; Anna de Noailles; Clara Westhoff-Rilke; Maria von Thurn und
Taxis.]

∗ ∗∗

The only journy is the one within.

∗ ∗∗

Many of the women Rilke loved were Jewish and he was attracted by a Jewish

temperament and responded to it not only sexually but also intellectually. It

can therefore be rightly assumed that this ambivalence is due to an inner atavis-

tic conflict between two opposing elements of his personality — the Jewish and

the German.
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If your daily life seems poor, do not blame it; blame yourself that you are not
poet enough to call forth its riches.

∗ ∗∗

This is the miracle that happens everytime to those who really love: the more
they give, the more they possess.

∗ ∗∗

Live your questions now, and perhaps even without knowing it, you will live
along some distant day into your answers.

∗ ∗∗

There is more to marriage then four legs in a bed.

∗ ∗∗

The future enters into us, in order to transform itself in us, long before it
happens.

∗ ∗∗

God, with me goes your meaning too.

∗ ∗∗

In nature there are no loosers and winners — just survivors.

∗ ∗∗

He who does not at some time, with definite determination, consent to the
terribleness of life, or even exult in it, never takes possession of the inexpress-
ible fullness of the power of our existence, but walks on the edge and will,
sometime when the decision is made, have been neither alive nor dead.
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∗ ∗∗

God, are you the one who is living life?

∗ ∗∗

The beast is free and has its death always behind it and God before it, and
when it walks it goes toward eternity, as springs flow.

∗ ∗∗

There are no classes in life for beginners; it is always the most difficult that
is asked of one right away.

∗ ∗∗

Works of art are indeed always products of having been in danger, of having
gone to the very end in an experience, to where man can go no further.

∗ ∗∗

It is our fate to be opposite and nothing else, and always opposite.

∗ ∗∗

There is an ancient hatred between our normal life and the great work.

∗ ∗∗

Who speaks of victory — enduring is everything.

∗ ∗∗

This fleeting world keeps calling to us: once for each thing. Just once — no
more, just once — and never again.
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∗ ∗∗

In one of my poems that is successful, there is much more reality than in any
relationship or affection that I feel; where I create, I am true. . . . I may ask
and seek for no other realizations than those in my work; there my house is,
there are the women I need, and the children that will grow up and live a long
time.

∗ ∗∗

Only because we exclude death, when it breaks suddenly into our thoughts,
has it become increasingly a stranger, and because we have kept it an alien,
it has become an enemy. . . . It is conceivable that it is infinitely closer to us
than life itself. . . .

It has become more and more clear to me over the years that our effort
can only be directed toward presuming the unity of life and death. . . . Death
is a friend, our most intimate and only friend, who is never, never confused by
our attitudes and vacillations, especially at a time when we most passionately
and profoundly embrace earthly existence, activity, nature and love.

Life always says at the same time: Yes and No. He, death is the actual
yes-sayer. He only says yes. In the face of eternity.

∗ ∗∗

II: Fernando Antonio Nogueira Pessoa (1888–1935, Portugal). The

greatest Portuguese poet of the 20th century. Poet-philosopher Pessoa wrote
his poetry under his own name and under that of three heteronymous selves
whose biographies he invented. These heteronymous represent Pessoa’s voy-
age of discovery of himself in the course of which he realized that extraor-
dinary range of poetic values. Thus, his personality is diffused through the
heteronyms. The strength of his overall poetry rests in his ability to convey
a sense of loss, of sorrow for what can never be.

The work which many consider his masterpiece, Livro do Desassossego
(The Book of Disquiet) was not published until 1982, almost 50 years after
his death.
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Pessoa brings to mind the great solitaries: Kierkegaard, Rousseau,
Schopenhauer and Montaigne.

“Contradiction is the essence of the universe,” Pessoa once wrote. He
seems to have lived this apothegm. He was indeed a living contradiction. The
dramatic coherences were for Pessoa ultimately the means by which he gave
vent to the contradiction that was his life.

Pessoa was born in Lisbon, Portugal. He was descended from New Chris-
tians, i.e. Jews forcibly converted to Christianity in the 15th century. His
father died when he was five, a loss of lasting influence. In 1895 his mother
remarried, and the family moved to Durban, South Africa, where his step-
father was Portuguese consul. He matriculated at the University of Cape
Town, where he won the Queen Victoria Prize for English Essay. In 1905
he returned alone to Lisbon where he matriculated at the University. In
Portugal he continued to read and write in English, which was the language
of his youthful erotic verse. In 1918 he published in Lisbon his 35 Sonnets
and in 1922 the three parts of his English Poems, all composed many years
before. The Times Literary Supplement spoke of the ‘ultra-Shakespearian
Shakespearianisms’ of this Portuguese writer.

The rest of Pessoa’s life passed uneventfully in Lisbon. He earned a pit-
tance from a number of commercial firms, composing free-verse or classical
odes at the typewriter in the intervals of translating the firm’s foreign corre-
spondence. Many of the poems he wrote were published in literary reviews
such as Orfeu and Portugal Futurista. He also wrote much prose on questions
of aesthetics, and sketches for detective novels. The only book published in
his lifetime was Mensagem, a collection of poems on patriotic themes, which
won only a consolation prize in a national competition.

∗ ∗∗

Contradiction is the essence of the universe.

∗ ∗∗

Love is essential. Sex, mere accident.

∗ ∗∗



1934 CE 4295

To think about God is to disobey God, because he wanted us not to know.

∗ ∗∗

I do not have a philosophy; If I speak of nature, it is not because I know what
it is, but because I love it.

∗ ∗∗

Wise is he who enjoys the show offered by the world.

∗ ∗∗

Success consists in being successful, not in having a potential for success. Any
wide piece of ground is the potential site of a palace, but there’s no palace till
it’s built.

∗ ∗∗

No intelligent idea can gain general acceptance unless some stupidity is mixed
in with it.

∗ ∗∗

Could it think, the heart would stop beating.

∗ ∗∗

I have no ambitions or wants; to be a poet is not an ambition of mine. It is
way of staying alone.

∗ ∗∗

If, after I die, they should want to write my biography, there is nothing
simpler. I have just two dates — of my birth, and of my death; In between
the one thing and the other — all the days are mine.
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∗ ∗∗

After I was born, they locked me up inside me. But I left. My soul seeks me,
through hills and valley; I hope my soul never finds me.

∗ ∗∗

The light of the sun is worth more than the thoughts of all the philosophers
and all the poets.

∗ ∗∗

III: Edward Estlin Cummings (1894–1962, USA). American poet,
painter and essayist. His poetry often deals with themes of love and nature,
as well as the relationship of the individual to the masses and the world. He
wrote, however, in an unusual style, which includes unorthodox usage of both
capitalization and punctuation, in which unexpected and seemingly misplaced
punctuation sometimes interrupt sentences and even individual words.

He was born in Cambridge, Massachusetts and raised in a liberal family.
After graduating with a M.A. degree from Harvard (1916) he went to France
(1917) as a volunteer for the Ambulance Corps in WWI. During 1921–1931
he traveled throughout Europe (including the Soviet Union) and spent several
years in Paris.

After his father’s tragic death (1926) he began to focus on more important
aspects of life in his poetry.

Throughout 1919–1932 Cummings married and divorced three times. In
1952 Harvard University awarded him an honorary appointment as a guest
professor.

∗ ∗∗

It takes two to be serious.
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∗ ∗∗

Life is not a paragraph and death I think is no parenthesis.

∗ ∗∗

Tomorrow is our permanent address.

∗ ∗∗

I feel that (false and true are merely to know)
Love only has ever been, is, and will ever be, So.

∗ ∗∗

Now you are and I am now and we are a mystery that will never happen
again, a miracle which has never happened before.

∗ ∗∗

Time’s a strange fellow; more he gives than takes (and he takes all).

∗ ∗∗

It’s you are whatever a moon has always meant and whatever a sun will always
sing is you.

∗ ∗∗

A pretty girl who is naked, is worth a million statues.

∗ ∗∗

Never mind a world with its villains or heroes (for god likes girls and tomorrow
and the earth.
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∗ ∗∗

Life never grows old.

∗ ∗∗

Life and day are only loaned: whereas night and death are given.

∗ ∗∗

Greatness is alone.

∗ ∗∗

I like the thrill of under me you so quite new.

∗ ∗∗

Whenever men are right they are not young.

∗ ∗∗

Spring — you and I may not hurry it with a thousand poems my darling, but
nobody will stop it with all the policemen in the world.
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Science Progress Report No. 16

Pseudoscience, Antiscience, Nonscience,

Postmodernism, Scientific Illiteracy and

Superstition, or — the absence of evidence

is not evidence of absence

Science thrives on errors, cutting them away one by one. False conclu-
sions are drawn all the time, but they are drawn tentatively. Hypotheses are
framed so they are capable of being disproved. A succession of alternative
hypotheses is confronted by experiment and observation. Science gropes and
staggers toward improved understandings and disproof of scientific hypotheses
is recognized as central to the scientific enterprise.

Pseudoscience is just the opposite. Hypotheses are often framed precisely
so they are invulnerable to any experiment that offers a prospect of disproof,
so even in principle they cannot be invalidated. Practitioners are defensive and
wary. Skeptical scrutiny is opposed. When the pseudoscientific hypotheses
fails to catch fire with scientists, conspiracies to suppress it are imagined and
decried.

Perhaps the sharpest distinction between science and pseudoscience is that
science has a far keener appreciation of human imperfections and fallibility
than does pseudoscience. If we resolutely refuse to acknowledge where we are
liable to fall into error, profound mistakes will forever be our companions.

In ancient China and Rome, astrology was the exclusive property of the
emperor; any private use of this “potent” art was considered a capital offense.

In Russia, under the Tsars, religious superstition was encouraged, but sci-
entific and skeptical thinking (except for a few tame scientists) was ruthlessly
expunged.

Under Communism, both religion and pseudoscience were systematically
suppressed, except for the superstition of the state ideological religion —
which was advertised as scientific. Critical thinking — except by scientists in
hermetically sealed compartments of knowledge — was recognized as danger-
ous, was not taught in the schools, and was punished where expressed.

When the lid was finally lifted, the subterranean bubblings of pseudo-
science and superstition (as well as virulent ethnic hatreds) were exposed to
view.

The region is now awash in UFOs, poltergeists, faith healers, quack medi-
cines, magic waters, and old-time superstition. A stunning decline in life
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expectancy, increasing infant mortality, rampant epidemic diseases, submini-
mal medical standards, and ignorance of preventive medicine all work to raise
the threshold at which skepticism is triggered in an increasingly desperate
population.

In China, after the death of Mao tse-tung and the gradual emergence of
market economy, UFO’s, channeling and other examples of Western pseudo-
science emerged, along with such ancient Chinese practices as ancestor wor-
ship, astrology and fortune telling — a revival of feudal ideology in the Chinese
countryside. Individuals with “special powers” gained enormous followings815.

Asian Rhinos are being driven to extinction because their horns, when
pulverized, are said to prevent impotence; the market encompasses all of East
Asia.

Perhaps the most successful recent global pseudoscience (by many criteria,
already a religion) is the Hindu doctrine of transcendental meditation (TM).
This worldwide organization has an estimated valuation of three billion dol-
lars. For fee they promise to be able to walk you through walls, to make you
invisible, to enable you to fly. By thinking in unison they have, they say,
diminished the crime rate in Washington D.C., and caused the collapse of
the Soviet Union, among other secular miracles. No real evidence has been
offered for any such claims. Yet, TM sells folk medicine, runs trading compa-
nies, medical clinics and “research universities”, and has successfully entered
politics.

Pseudoscience in America is part of the global trend. Here, psychics ply
their wares on extended television commercials, personally endorsed by en-
tertainers. They have their own channel, the “Psychic Friends Network”; a
million people a year sign on and use such guidance in their everyday lives.

For CEOs of major corporations, financial analysts, lawyers and bankers
— there is a species of astrologer / soothsayer / psychic ready to advise on
any matter. Furthermore, TM seem to have attracted a large number of
accomplished people, some with advanced degrees in physics or engineering.

The continuum stretching from ill-practiced science, pseudoscience, and
superstition, all the way to respectable mystery religions, based on revelation,
is indistinct.

815 Some have claimed they can project the “energy field of the universe” out of their

bodies to change the molecular structure of a chemical 2000 kilometers away,

to communicate with aliens, or cure diseases. An amateur chemist claimed to

have synthesized a liquid, small amounts of which, when added to water, could

convert it to gasoline. For a time he was funded by the army and the secret

police, but when his invention was found to be a scam, he was imprisoned for

his unwillingness to reveal his “secret formula” to the government!
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Typical offerings of pseudoscience and superstition are:

• Astrology.

• The Bermuda Triangle.

• “Big Foot” and the Loch Ness monster.

• Ghosts.

• “Evil Eye”.

• Extrasensory perception (telepathy, precognition, telekinesis, “remote
viewing” of distant places).

• Triskaidekaphobia: a fear of the number 13 or the belief that 13 is an
“unlucky” number. This is the reason why so many no-nonsense office
buildings and hotels in America pass directly from the 12th to the
14th floors (why take chances?). No contract or treaty signed on the
13th day which falls on a Friday (14 times in 28 years).

• Crop circles816.

• The conviction that carrying the severed foot of a rabbit around with
you brings good luck.

• The prophecies of Nostradamus.

• The notion that more crimes are committed when the moon is full.

• Palmistry.

• Numerology.

• Polygraphy.

• Comets, tea leaves (plus the ancient divinations accomplished by view-
ing entrails, smoke, shadows, shape of flames and excrement) — as
harbingers of future events.

• “Photography” of past events (e.g. the crucifixion of Jesus).

• “Sensitives” who can blindfolded read books with their fingertips.

• Faith healing.

816 Scientists dismissed it as fraud on the basis that real extraterrestrials would

choose to exhibit something much more exciting than mere dull unimaginative

circles in wheat.
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• Water “remembering” which molecules used to be dissolved in it.

• Ouija boards.

• “Prophets”, sleeping and awake.

• Out-of-body (e.g. near-death) experiences interpreted as real events in
the external world.

• Telling character from facial features or bumps on the head (phrenol-
ogy).

• 3-cycle biorhythms.

• Perpetual motion machines.

• Professional “psychics” and their inept predictions.

• Jehovah’s Witnesses’ predictions.

• Dianetics and Scientology.

• Claims of finding the remaining of Noah’s Ark

Indeed, some claims are hard to test, e.g., if expedition fails to find the ghost
of the brontosaurus, allegedly crashing through the rain forests of the Congo
Republic, that does not mean it does not exist.

Astrology has been with us for more than 4000 years. The fraction of U.S.
school children believing in astrology rose from 40 percent to 59 between
1974 and 1984. Yet this takes place at an age when astrologers and scientists
alike are aware that astrology

• accepts the precession of the equinoxes in announcing an “Age of Aquar-
ius” while rejecting the precessing of the equinoxes in casting horoscopes;

• neglects atmospheric refraction;

• lists supposedly significant celestial objects that are mainly limited to
naked eye objects known to Ptolemy in the second century, but ignores
an enormous variety of new astronomical objects discovered since (e.g.
near-earth asteroids);

• Fails to pass the identical-twin test;

• inconsistently requires detailed information on the time as compared to
the latitude and longitude of birth;
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• ignores major differences in horoscopes cast from the same birth infor-
mation by different astrologers.

Science carries us toward an understanding of how the world is, rather
than how we wish it to be. When we shy away from it, we surrender the
ability to take charge of our future. We are disenfranchised.

This plight is perhaps demonstrated most vividly in the case of scientific
illiteracy. It is hard to believe that more than 450 years after Copernicus:

• About half of American and Chinese adults do not know that the earth
revolves around the sun and takes a year to do so.

• Most people on earth still think that our planet sits immobile at the
center of the universe, and we are profoundly “special”.

• Bright students at leading American universities did not know that stars
rise and set at night, or even that the sun is a star.

• In the US more money is spent on quack medicine than on all of medical
research.

• Only 9 percent of Americans accept the central findings of modern bi-
ology that human beings (and all other species) have slowly evolved by
natural processes from a succession of simpler organisms with no divine
intervention needed along the way.

• A quarter of Americans believe in reincarnation.

• Astrology seems more popular than ever. At least a quarter of all Amer-
icans “believe” in astrology. A third think sun-sign astrology817 is “sci-
entific”. There are perhaps ten times more astrologers than astronomers
in the United States. In France there are more astrologers than Roman
Catholic clergy.

1934–1971 CE George Wald (1906–1997, USA). Biochemist. Unrav-
eled the nature of light-sensing molecules found in photoreceptor cells and

817 The art of stereotyping people according to their time of birth and then using

this bit of information to place them in a small number of previously constructed

pigeonholes.
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discovered that vitamin A is a vital ingredient of the pigments in the retina
and, hence, important in maintaining vision.

With Ragnar Granit (1900–1991, Sweden) and Haldan K. Hartline
(1903–1983, USA) awarded the Nobel Prize in Physiology or Medicine (1967)
for his work on the chemistry of vision.

George Wald was born in New York, of immigrant parents. He received
his B.Sc. from the New York University (1927) and his Ph.D. in Zoology at
Columbia University (1932). He spent the next two years in Europe, doing
postgraduate research under Otto Warburg (Berlin), Paul Karrer (Zürich)
and Otto Meyerhoff (Heidelberg). It was there (1934) that Wald first iden-
tified vitamin A in the retina.

When Hitler came to power (Jan 1933), Germany was fast becoming a
hostile country, especially for Jews, and both Meyerhoff and Wald were Jew-
ish. He left Germany (Summer 1934) and came to Harvard University as a
tutor in Biochemistry, remaining there to the end of his career. He became a
Professor of Biology in 1948.

With his coworkers at Harvard he pioneered our understanding of the
molecules responsible for the first steps in the vision process. Wald’s group
was the first to elucidate the molecular structure of the rod cell’s functional
protein rhodopsin. Prior to his work, rhodopsin was thought to be a chunk
of molecular material. He determined that the protein consists of two molec-
ular parts: a colorless amino acid sequence called ospin and a yellow organic
chromophore called retinal.

When exposed to light, the rhodopsin releases retinal that is converted
into vitamin A818.

By the early 1950s Wald had succeeded in elucidating the chemical re-
actions involved in the vision process in the rods. In the late 1950s, with
Paul K. Brown, he identified the pigments in the retina that are sensitive
to yellow-green light and red light and in the early 1960s, the pigment sensi-
tive to blue light. Wald and Brown also discovered the role of vitamin A in
forming the three color pigments and showed that color blindness is caused
simply by the absence of one of them. Wald became professor emeritus at
Harvard in 1977.

818 S.T. Ball et all in Liverpool have shown (1946) that retinal is vitamin A

aldehyde.
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Timeline: the Physiology of vision (up to 1938)

ca 380 BCE Plato taught that the eye is the source of illumination.
i.e.: the viewer’s eye sent out emissions to the object,
and those emission enabled vision to occur.

ca340 BCE Aristotle put forward an alternative theory of human
vision: the object being looked at, somehow altered the
“medium” between the object itself and the viewer’s eye.
This alteration of the medium propagates to the eye,
allowing the object to be seen.

ca 170 CE Galen expounded and developed the visual ray theory,
using it for detailed description of the anatomy of the
eye. This theory was given credibility with Euclid’s
geometry (ca 280 BCE) and Ptolemy’s optics (ca 150
CE). The advantage of this theory was that its geomet-
rical analysis of the visual fields (i.e. a perspective cone
with its apex in the eye and its base on the object) pro-
vided a solution to the problem of the size and distance
of objects in relation to the eye. The principal organ of
vision was the crystalline lens.

ca 1000 CE Alhazen, through his experimental work, related geo-
metrical optics to the anatomy of the eye, but still
considered the lens as the sensitive part. Contested
Plato’s idealism which made the eye a source of illu-
mination, and appeared to have recognized the eye as
what we now call camera obscura. He seems to have
been well acquainted with the projection of images of
objects through small apertures, and to have been the
first to show that the arrival of the image of an object
at the retina, corresponds with the passage of light from
an object through an aperture in a darkened box. He
also investigated the problem of image-inversion and the
uprightness of the perceived object, placing binocular
vision in the common optic nerve.

ca 1250–1580 CE No major advance beyond Alhazen throughout the
Middle Ages and the Renaissance: the problems iden-
tified by him remained central in the investigations of
Roger Bacon (1214–1292), Witelo (1230–1275) and
Leonardo da Vinci (1452–1519).
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1583 CE The physician Felix Platter (1536–1614, Switzerland)
first promoted the idea that it was the retina and not
the lens which was sensitive to light. He argued that the
optic nerve ought to be viewed as the primary organ of
vision.

1604 CE Johannes Kepler offered the first theory of retinal
image and firmly established the inverted and reversed
point-by-point representation of the image on the retina
analogous to the camera obscura. Kepler argued that
the crystalline lens re-focused rays on the retina where
vision is made possible.

1619–1625 CE The astronomer Christopher Scheiner (1575–1650,
Germany) provided an experimental verification to Ke-
pler’s theory of retinal image.

1637 CE René Descartes (1596–1650) first suggested point-by-
point projection of retina onto brain.

1684 CE First microscopic observation of the retina: Leeuwen-
hock noticed structures now known to be the rods and
the cones.

1704 CE Isaac Newton (1642–1727), in his book ‘Optiks’, de-
veloped a theory of color vision.

1801 CE Based on Newton’s work, Thomas Young (1773–
1829), physicist and physician, proposed the trichro-
matic theory of color vision: nerve fibers in the retina are
capable of reacting to each of the three primary colors
(red, green, violet). This helped explain color-blindness.
Young carried out a number of studies on the eye that
resulted in an understanding of how the lens focused im-
ages onto the retina. He also showed that astigmatism
results from an improperly curved cornea.

1826–1856 CE Johann H. Müller (1801–1858, Germany) explained
(1826) structure and functions of the compound eye of
lower animals. He is regarded as the founder of modern
physiology. He noted visual purple in rods (1851) and
proved that photoreception occurs in rods and cones.

1856 CE H. von Helmholtz (1821–1894) conjoined the work of
Young and Maxwell in a comprehensive work on color
vision.
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1866 CE Biologist Max Schultze (1825–1874, Germany) discov-
ered that the retinal cones are the color receptors of the
eye and the retinal rods, while not sensitive to color, are
very sensitive to light at low levels (night-vision). He
was also one of the first to establish that the cells of
all organisms are composed of protoplasm and contain a
nucleus. His theory of vision was later amplified by the
physician Henri Parinaud (1844–1905, France) and by
the physiologist Johannes A. von Kries (1853–1920,
Germany), in 1905.

1876 CE The physiologist Franz Boll (1849–1879, Germany)
discovered the rod visual pigment.

1878 CE The physiologist Wilhelm Friedrich Kühne (1837–
1900, Germany) isolated the reddish-purple rod pig-
ment, termed visual purple, later to be called rhodopsin.
Kühne showed it to be a protein.

1938 CE The biophysicist Selig Hecht (1892–1947, USA)
showed that rods respond to single quanta, i.e.: the ab-
sorption of a single photon was sufficient to excite a rod.
This suggested that large amplification must occur when
rhodopsin is excited.

The Photobiochemistry of Vision, or – How do we see?

From time immemorial humans have tried to understand the phenomenon
of vision.

Vision is indeed a complicated process that requires numerous components
of the human eye and brain to operate in unison, and the accompanying
Timeline bears evidence to the lengthy, slow accumulation of scientific lore in
this field.

Although the microscope was first used in scientific research in the late
16th and early 17th centuries, both the tools and the techniques of its use
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reached a sufficient level of sophistication by the 19th century to make it
invaluable in examination of the structures of the eye.

During 1826–1878, several German physiologists used the microscope to
closely examine the retina. Through their observations, they discovered two
different cells in the retina: the rod cells and the cone cells, so named because
of their shapes as viewed in the microscope.

Additional research during 1866–1938 showed that the rod and cone cells
were responsive to light819.

During the 1800’s, the visual pigments were discovered in the retina. Sci-
entists, working by candlelight, dissected the retinas from frog eyes. When
the retinas were exposed to day light they changed color. These scientists
had discovered that the retina is photosensitive. They realized that the color
they were observing was due to presence of a visual pigment, which was given
the name rhodopsin. Later studies showed that rhodopsin is a protein that is
found in the discs of the rod cell membrane.

Pigments are also found in cone cells. There are three types cone cells,
each of which contains a visual pigment. These pigments are called the red,
blue or green visual pigment. The cone cells detect the primary colors, and
the brain mixes these colors in seemingly infinitely variable proportions so
that we can perceiver a wide range of colors.

The original theory of color vision was introduced by Thomas Young
around 1790, prior to the discovery of the cone cells in the retina. Young was
the first to propose that the human eye sees only the three primary colors,
red, blue and yellow and that all of the other visible colors are combinations
of these. It is now known that color vision is more complicated than this, but
Young’s work formed the foundation of color vision theory for the scientists
that followed. The photoreceptor proteins of the cone cells have not yet been
isolated. This may possibly be due to the difficulty in obtaining them. There
are many fewer cone cells than rod cells in the retina. Also many animals do
not have cone cells and hence do not see in color.

During the early part of the 20th century, work continued on the frontier
of research aimed at understanding vision. It was also around this time that

819 In the human eye there are many more rod cells in the retina than there are

cone cells. The number of rod cells and cone cells in animals is often related

to the animal’s instincts and habits. For example, birds such as hawks have a

significantly higher number of cones than do humans. This let them to see small

animals from a long distance away, allowing them to hunt for food. Nocturnal

animals, on the other hand, have relatively higher numbers of rod cells to allow

them better night vision.
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the relationship between vision and proper nutrition began being studied at
universities and agricultural schools. It had been shown during World War I
that a vitamin A deficiency caused night blindness. The link between vitamin
A and night blindness, however, did not become clear until George Wald
and his coworkers isolated vitamin A from the retina in 1933. Prior to this
finding the importance of vitamins was poorly understood. Additionally, the
complete role of vitamins in physiological processes was unknown. It is now
understood that the human body makes retinal from vitamin A through the
following process: Enzyme-catalized oxidation converts vitamin A (retinol)
into trans-retinal.

Trans-retinal is present in the light-receptor cells of the human eye, but
before it can fulfill its biological function, it has to be isomerized by an enzyme,
retinal isomerase, to give cis-retinal. This molecule fits well into the active
site of a protein called opsin (approximate molecular weight 38,000). Cis-
retinal reacts with one of the amine substituents of opsin to form the imine
rhodopsin, the light-sensitive chemical unit in the eye.

When a photon strikes rhodopsin, the cis-retinal part isomerizes extremely
rapidly, in only picoseconds (10−12 s), to the trans isomer. This isomerization
induces a tremendous geometric change, which appears to severely disrupt
the snug fit of the original molecule in the protein cavity. Within nanosec-
onds (10−9 s), a series of new intermediates form from this photoproduct,
accompanied by conformational changes in the protein structure, followed by
eventual hydrolysis of the ill-fitting retinal unit. This sequence initiates a
nerve impulse perceived by us as light. The trans-retinal is then reisomerized
to the cis form by retinal isomerase and re-forms rhodopsin, ready for another
photon. A schematic flow-diagram is shown in Fig. 5.13.

What is extraordinary about this mechanism is its sensitivity, which allows
the eye to register as little as one photon impinging on the retina. Curiously,
all known visual systems in nature, even though they might have a completely
different evolutionary history, use the retinal system for visual excitation.
Evidently, this molecule offers an optimal solution to the problem of enabling
organisms to see.

Thus, the photoreceptor neurons in the retina collect the light and send
signals to a network of neurons that then generate electrical impulses that
go to the brain. The brain processes those impulses and yields information
about what we are seeing. i.e., it decodes the retina images into information
that we known as vision.

Scientists continue to study the role and mechanisms of photoreceptors in
vision both to better understand the mechanism of human vision and to try
to understand and remedy eye disease and blindness. Additionally, studies on
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Fig. 5.13: When a photon strikes a rhodopsin

Scheme of the sequence of events that occurs following the absorption of a
quantum of light by the rod visual pigment, rhodopsin. Light initiates the
conversion of rhodopsin to retinal and opsin through a series of metarhodopsin
intermediates. Metarhodopsin II is the active intermediate leading to exci-
tation of the photoreceptor cell. Eventually, the chromophore of rhodopsin,
retinal, separates from the protein opsin and is reduced to vitamin A (retinol).
For the resynthesis of rhodopsin, the vitamin A must be isomerized from the
all-trans to the 11-cis form, and this isomerization takes place in the pigment
epithelium overlying the receptors. Vitamin A is replenished in the eye from
the blood.
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photoreceptors can lead to the development of better electronic and optical
devices, as well as improvements in the field of robotics and artificial sensing.

1934–1987 CE Emile Cioran (1911–1995, Romania and France). Phi-
losopher. Realized very early that the sense of existential futility can best
be cured by the belief in a cyclical concept of history, which excludes any
notion of the arrival of a new messiah or the continuation of techno-economic
progress.

Historical pessimism and the sense of the tragic are recurrent motives
in European literature. From Heraclitus to Heidegger, from Sophocles to
Schopenhauer, the exponents of the tragic view of life point out that the
shortness of human existence can only be overcome by the heroic intensity
of living. The philosophy of the tragic is incompatible with the Christian
dogma of salvation or the optimism of some modern ideologies. Many mod-
ern political theologies and ideologies set out from the assumption that “the
radiant future” is always somewhere around the corner, and that existential
fear can best be subdued by the acceptance of a linear and progressive con-
cept of history. It is interesting to observe that individuals and masses in our
post-modernity increasingly avoid allusions to death and dying. Processions
and wakes, which not long ago honored the postmortem communion between
the dead and the living, are rapidly falling into oblivion. In a cold and super-
rational society of today, someone’s death causes embarrassment, as if death
should have never occurred, and as if death could be postponed by a deliber-
ate “pursuit of happiness.” The belief that death can be outwitted through
the search for the elixir of eternal youth and the “ideology of good looks”, is
widespread in modern TV-oriented society. This belief has become a formula
for social and political conduct.

Born in Romania in 1911, Cioran very early came to terms with the old
European proverb that geography means destiny. From his native region
which was once roamed by Scythian and Sarmatian hordes, and in which
more recently, secular vampires and political Draculas are taking turns, he
inherited a typically “balkanesque” talent for survival.

Cioran’s political, esthetic and existential attitude towards being and time
is an effort to restore the pre-Socratic thought, which Christianity, and then
the heritage of rationalism and positivism, pushed into the periphery of philo-
sophical speculation. In his essays and aphorisms, Cioran attempts to cast
the foundation of a philosophy of life that, paradoxically, consists of total
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refutation of all living. In an age of accelerated history it appears to him
senseless to speculate about human betterment or the “end of history.”

“Future,” writes Cioran, “go and see it for yourselves if you really wish
to. I prefer to cling to the unbelievable present and the unbelievable past. I
leave to you the opportunity to face the very Unbelievable.”

Before man ventures into daydreams about his futuristic society, he should
first immerse himself in the nothingness of his being, and finally restore life
to what it is all about: a working hypothesis.

The feeling of sublime futility with regard to everything that life entails
goes hand in hand with Cioran’s pessimistic attitude towards the rise and fall
of state and empires. His vision of the circulation of historical time recalls
Vico’s corsi e ricorsi, and his cynicism about human nature draws on Spen-
gler’s “biology” of history. Everything is a merry-go-round, and each system
is doomed to perish the moments it makes its entrance onto the historical
scene.

One can detect in Cioran’s gloomy prophecies the forebodings of the Ro-
man stoic and emperor Marcus Aurelius, who heard in the distance of the
Noricum the gallop of the barbarian horses, and who discerned through the
haze of Panonia the pending ruin of the Roman empire. Although today the
actors are different, the setting remains similar; millions of new barbarians
have begun to pound at the gates of Europe, and will soon take possession of
what lies inside.

Cioran’s philosophy bears a strong imprint of Friedrich Nietzsche and
Hindu Upanishads. Although his inveterate pessimism often recalls Niet-
zsche’s “Weltschmerz”, his classical language and rigid syntax rarely tolerates
romantic or lyrical narrative, nor the sentimental outbursts that one often
finds in Nietzsche’s prose. Instead of resorting to thundering gloom, Cioran’s
paradoxical humor expresses something which in the first place should have
never been verbally construed.

When one reads Cioran’s prose the reader is confronted by an author who
imposes a climate of cold apocalypse that thoroughly contradicts the heritage
of progress. Real joy lies in non-being, says Cioran, that is, in the conviction
that each willful act of creation perpetuates cosmic chaos. There is no purpose
in endless deliberations about higher meaning of life. The entire history, be
it the recorded history or mythical history, is replete with the cacophony
of theological and ideological tautologies. Everything is “éternel retour,” a
historical carousel, with those who are today on top, ending tomorrow at the
bottom.

Cioran’s most important books are:
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• On the Heights of Despair 1934
• Tears and Saints 1937
• A Short History of Decay 1949
• The Temptation to Exist 1956
• History and Utopia 1960
• The Trouble with Being Born 1973
• The Bad Demiurge 1974
• Anathemas and Admirations 1987

In “The Trouble with Being Born” he explored how our troubles began
with the act of being born and the anguish that pure consciousness and lu-
cidity inflicts upon us.

In “A Short History of Decay,” Cioran explores man’s decay, the necessity
and futility of rebellion against God and life itself. How we should seek our
true hope in nothingness.

In “Tear and Saints” he equates religious fanaticism with ‘delirium of self-
aggrandizement hidden beneath meekness and the will to power masked by
goodness.’

Cioran was born as Octavian Goga in the village of Rasinari near Sibiu
(Austria-Hungary, present-day Romania), the son of an orthodox priest.
He studied philosophy and letters at the Universities of Bucharest (1928–
1932) and Berlin (1933–1935) and then worked as a high-school teacher at
Brasov (1935–1936). In 1928 he also began an association with the Iron
Guard , a nationalistic organization which he supported until the early years
of WWII. This enabled him to obtain a scholarship from the French Institute
in Bucharest, that brought him to Paris and he became a cultural councilor
at the Romanian Embassy there (1940–1945). He later renounced the organi-
zation and frequently expressed regret and repentance for his participation in
it. (Some critics have seen his remorse at his participation in the Iron Guard
as the source of pessimism which characterized his later work, although others
trace it back to events in his childhood820.)

From 1944 on, Cioran wrote exclusively in French. Sometimes during the
1950’s he met Simone Bouc, who became his lifelong companion.

He led a quite and solitary life of study and composition. Though he was
highly regarded by Parisian literary circles, he was not well known to the rest
of the world, and he sustained himself through his work as a translator or
reader for various publishing houses.

820 In 1935 his mother is reputed to have told him that if she had known he was

going to be so unhappy, she would have aborted him.
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He lived in the same small apartment in the Latin Quarter of Paris from
1960 on. In his later life, Cioran withdrew from social life and gave up writing
altogether in 1987. Alzheimer’s disease began slowly deteriorating his mind
in the 1990’s, just as his native country began rediscovering him after the fall
of Communism. He fell ill in 1994 and, after a yearlong battle, Emile Cioran
finally found his long sought bliss in nothingness.

Worldview XLIX: Emile Cioran821

∗ ∗∗

Life inspires more dread than death — it is life which is the great unknown.

∗ ∗∗

If, at the limit, you can rule without crime, you cannot do so without injus-
tices.

∗ ∗∗

In a republic, that paradise of debility, the politician is a petty tyrant who
obeys the laws.

∗ ∗∗

Life is possible only by the deficiencies of our imagination and memory.

821 The English translation in this section was done by Tomislav Sunic. His is also

the source of appreciation of Cioran’s philosophical life-work as quoted in our ar-

ticle.
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∗ ∗∗

Chaos is rejecting all you have learned, Chaos is being yourself.

∗ ∗∗

Man starts over again everyday, in spite of all he knows, against all he knows.

∗ ∗∗

We inhabit a language rather than a country.

∗ ∗∗

I’m simply an accident. Why take it all so seriously?

∗ ∗∗

I have no nationality — the best possible status for an intellectual.

∗ ∗∗

I have always lived with the awareness of the impossibility of living. And
what has made existence endurable to me is my curiosity as to how I would
get from one minute, one day, to the next.

∗ ∗∗

To act is to anchor in the imminent future.

∗ ∗∗

Isn’t history ultimately the result of our fear of boredom?

∗ ∗∗
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To want fame is to prefer dying scorned than forgotten.

∗ ∗∗

Pursued by our origins. . . we all are.

∗ ∗∗

For you who no longer possess it, freedom is everything, for us who do, it is
merely and illusion.

∗ ∗∗

To Live signifies to believe and hope — to lie and to lie to oneself.

∗ ∗∗

Glory — once achieved, what is it worth?

∗ ∗∗

What does the future, that half of time, matter to the man who is infatuated
with eternity?

∗ ∗∗

Knowledge subverts love: in proportion as we penetrate our secrets, we come
to loathe our kind, precisely because they resemble us.

∗ ∗∗

In most cases we attach ourselves to God in order to take revenge on life,
to punish it, to signify we can do without it, that we have found something
better, and we also attach ourselves to God in horror of men.
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∗ ∗∗

We understand God by everything in ourselves that is fragmentary, incom-
plete, and inopportune.

∗ ∗∗

A people represents not so much an aggregate of ideas and theories as of
obsessions.

∗ ∗∗

We are born to Exist, not to know, to be, not to assert ourselves.

∗ ∗∗

Knowledge, having irritated and stimulated our appetite for power, will lead
us inexorably to our ruin.

∗ ∗∗

Each of us must pay for the slightest damage he inflicts upon a universe
created for indifference and stagnation; sooner or later, he will regret not
having left it intact.

∗ ∗∗

Whenever I happen to be in a city of any size, I marvel that riots do not break
out everyday: Massacres, unspeakable carnage, a doomsday chaos. How can
so many human beings coexist in a space so confined without hating each
other to death?

∗ ∗∗

Utopia is a mixture of childish rationalism and secularized angelism.
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∗ ∗∗

That history just unfolds, independently of a specified direction, of a goal, no
one is willing to admit.

∗ ∗∗

Society becomes consolidated in danger and it atrophies in peace.

∗ ∗∗

Authority, not verity, makes the law.

∗ ∗∗

“What to think of other people? I ask myself this question each time I make
a new acquaintance. So strange does it seem to me that we exist, and that
we consent to exist.”

∗ ∗∗

“Existing is plagiarism.”

∗ ∗∗

“A self-respecting man is a man without a country. A fatherland is
birdlime. . . ”

∗ ∗∗

“Illusion begets and sustained the world; we do not destroy one without de-
stroying the other. Which is what I do every day. An apparently ineffectual
operation, since I must begin all over again the next day.”

∗ ∗∗
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History teaches us that: violence and destruction are the main ingredients of
history, because the world without violence is bound to collapse.

∗ ∗∗

In those places where peace, hygiene and leisure ravages, psychoses also mul-
tiply. Thus, not “peace and love” will determine the course of tomorrow’s
history. Unable to put up resistance against tomorrow’s conquerors, the fate
of Western Europe is doomed.

∗ ∗∗

“Suffering makes you live time in detail, moment after moment. Which is to
say it exists for you. For the others, the ones who don’t suffer, time flows, so
that they don’t live in time; in fact they never have.”

∗ ∗∗

I cannot excuse myself for being born. It is as if, when insinuating myself in
this world, I profaned some mystery, betrayed some very important engage-
ment, made a mistake of indescribable gravity.

∗ ∗∗

1935 CE Hideki Yukawa (1907–1981, Japan). Physicist. Proposed that
the exchange of virtual quanta (particles) of a hitherto unknown field (mesons,
meson fields) is the cause of the complex interactions among nucleons (pro-
tons and neutrons) in the atomic nucleus. [The name meson was coined by
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Homi Bhabha (India).] He predicted the rest-mass and spin of this class of
particles822, which were later discovered and named pions or π-mesons.

Upon graduating from Kyoto Imperial University in 1929, Yukawa became
a lecturer there. In 1933 he moved to Osaka Imperial University, where in
1938 he was awarded the doctorate. He rejoined Kyoto University as professor
of theoretical physics (1939–1950), held faculty appointments at the Institute
for Advanced Study in Princeton, NJ and at Columbia University in New York
city, and became director of the Research Institute for Fundamental Physics
in Kyoto (1953–1970). Yukawa was awarded the Nobel prize for physics in
1949.

1935 CE Arthur Jeffrey Dempster (1896–1950, U.S.A.). Physicist.
Built the first mass spectrometer (1918). Discovered uranium 235, an iso-
tope of uranium that would be used (1942) in producing the first sustained
nuclear chain-reaction. Born in Toronto, Canada; taught at the University of
Chicago (1919–1950).

1935 CE Wendell Meredith Stanley (1904–1971, USA). Biochemist.
Worked on purification and crystallization of viruses, thus demonstrating their
molecular structure; crystallized tobacco mosaic virus (1935); also studied in-
fluenza viruses, for which he developed a preventive vaccine. Corecipient, with
J.H. Northrop and J.B. Sumner of the 1946 Nobel Prize for Chemistry.

Stanley was born in Ridgeville, Indiana. Worked at the Rockefeller Insti-
tute for Medical Research (1932–1948) and became professor at the University
of California, Berkeley (1948–1971).

Stanley chose to work with the tobacco mosaic virus because it was not
dangerous to human beings and because characteristic infection could be
demonstrated easily and rapidly. From the juice squeezed out of a ton of
infected tobacco leaves, Stanley was able to isolate a few milligrams of a
crystalline material that appeared to him, at first, to be a protein.

822 The successful description of the electromagnetic force in terms of virtual pho-

tons suggested to him that the strong nuclear force might be accounted for in

a similar manner.

It was known that this force does not decrease gradually toward zero with in-

creasing distance; rather, its range ends abruptly at distance of order 10−13

centimeter. From this fact and the uncertainty principle, Yukawa concluded

that the particles whose virtual exchange was associated with the strong force

field should be all of one, finite mass, m ∼ �

(10−13 cm)c
∼ 100 MeV

c2
, of order two

hundred electron masses. Since particles having a mass intermediate between

the electron and proton were unheard of at the time this prediction was made,

it was received with considerable skepticism.



1935 CE 4321

The substance was a pure, homogeneous non-cellular material that could
be stored, apparently indefinitely, in a dry state; however, if even one millionth
of a milligram of the pure material was suspended in water and spread on
a living tobacco leaf, the mosaic disease was produced. Careful chemical
analysis of the pure virus showed that it was composed of 95 percent protein
and 5 percent ribonucleic acid, and nothing else.

Stanley’s discovery changed the course of biological thought and research.
The virus was not a small bacterium; it was a large molecule. Thus, the
problem of viruses fell within the domain of chemistry and physics as well as
biology.

The line of demarcation separating the living from the non-living became
cloudy, and a new group of scientists (including Max Delbrück, Alfred
Hershey and Salvador Luria) entered the field of virology. This new school
of virologists turned their attention to a group of viruses that attack bacteria,
celled bacteriophages.

Microwave Technology

In 1935, British scientists led by Robert Alexander Watson-Watt
(1892–1973), developed the first pulse-radar (Radio Detection and Ranging),
capable of detecting aircraft at ranges up to 27 km. Spurred by the grow-
ing threat of war, the British quickly recruited many of their best scientists
and developed PPI radar (Plane Position Indicator) and efficient multicavity
magnetrons to generate microwaves.

By the time WWII began in September 1939, the British had installed a
chain of large radar warning stations on their shores. They also developed
GCI (Ground Controlled Interception) radar and Airborne Interception radar
for night fighter planes. During the Battle of Britain, these radars enabled a
small force of British fighter planes and antiaircraft artillery to fight off the
massive German air attacks.

Magnetrons are vacuum tube devices which generate or amplify high-
frequency electromagnetic waves. In ordinary vacuum tubes the period of
the voltage or current cycle is long compared with the transit time required
for an electron to travel from cathode to anode. However, at frequencies of



4322 5. Demise of the Dogmatic Universe

the order of 100 MHz the transit time becomes comparable with the period
of the oscillations themselves. It then becomes dependent upon the space
charge, and hence modulated by the oscillations.

This effect, in conjunction with the effect of the interelectrode capacitance,
will tend to nullify the control action of the grid. Thus, if the frequency of
the signal is so high that the electric field experienced by an electron changes
significantly during the time of transit, ordinary vacuum tubes cannot be
used.

The magnetron (like the klystron and the traveling-wave tube) utilizes the
transit-time in their operation to sustain and amplify oscillations above 1000
MHz; in each of these devices, a stream of electrons is subjected to electric and
magnetic fields precisely arranged so that an exchange of energy occurs be-
tween the signal and the electrons. The net result is that power supplied by a
d–c source is converted to a–c power at the signal frequency and amplification
is obtained.

The Hull magnetron (1921) underwent two basic modifications on its way
from serving as a mere diode to becoming an efficient generator of microwave
radiation. In its first use as an oscillator, the anode of the valve was split
into two segments (1927) and a high-frequency resonant circuit was connected
between the anode segments. This was known as the ‘Split-Anode Magnetron’.
An electron emitted from the cathode at the center of the cylinder was then
subjected to 3 different fields:

(1) a d–c radial electric field E accelerating it toward the peripheral anode;

(2) a d–c axial magnetic field B > Bc, (Bc being a critical field value)
affecting radial and azimuthal motion in a plane perpendicular to the axis;

(3) intense high-frequency field across the gaps of the anode segments.

Assuming first that both segments of the anode are at the same potential
Vb and that the cathode is negligibly thin, each electron moves with an approx-

imately constant speed v =
√

2e
m Vb in a circular orbit of radius r = mv

eB and

period of revolution (‘transit-time’) τ = 2πr
v = 2πm

eB . Under these conditions
the electron neither gives nor takes energy from its surrounding.

Now suppose we activate the resonant tank circuit across the anode gaps;
since B > Bc, an incoming electron in its circular orbit nearly grazes the
anode. Depending on the polarity of the tank circuit, the incoming electron
will be either accelerated or decelerated by the momentary field across the
gap. If it is accelerated it will induce a current in the resonant circuit that
will extract energy from the circuit. If it is retarded at the gap, it will instead
induce a current which delivers energy to the tank circuit.
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If, when the electron approaches the gap again, the tank circuit has oscil-
lated through one cycle, then the electron is again retarded at the gap, and
the whole process is repeated. In successive cycles the electron approaches the
anode less closely, owing to its repeated losses of kinetic energy, and finally it
comes to rest somewhere between the anode and the cathode and is removed
by special arrangements.

Over time, the external circuit gains more AC energy from the electrons
which are retarded at the gaps than it losses to electrons which are accelerated
at the gap. The magnetron can therefore maintain oscillations in the tuned
circuit connected across its anode segments. The AC oscillation energy comes
from the high DC voltage supply, which sets up the radial accelerating field
near the cathode. As the electrons pass through this field, the current which
they induce flows between the cathode and the anode as a whole, resulting in
a transfer of energy from the battery to the electrons, which in turn transfer
part of this energy, at the frequency of the transit-time, to the tank circuit.

In the next stage in the development of the magnetron (1941), the tank
circuit was replaced by a cavity, or several cavities. The anode now consisted
of a solid block of copper, in which an even number of identical cylindrical
cavities were drilled, symmetrically arranged. In such a configuration, cavity
communicates by means of a slot, with a central cylindrical hole housing an
oxide-coated nickel cathode.

These cavities are capable of entering into resonance at the desired os-
cillation frequency; a coupling loop, inserted in one of the cavities, suffices
to energize a coaxial cable waveguide. Oscillations of the charge take place
around the inner circumference of the cylinder, and set up an intense electric
field over the narrow gap. The anode potential Vb is over 10,000 volts, and
the axial magnetic flux density B is about 1000 Gauss.

Under static conditions no electrons would reach the anode, and there
would be a cylindrical space-charge distribution of diameter less than the
inner diameter of the anode.

This space-charge would, in effect, circulate round the cathode with an
angular velocity depending on the anode potential and the magnetic flux den-
sity. But theory suggests that, when the cavity system produces a transient
oscillation, the electric field of the resonators draw out the space-charge into
a form rather like the spokes of a wheel. Then, the electrons swinging past
the gaps in the cavities interact with the electric fields across those gaps.

Under certain conditions of flux density and anode potential the resonators
gain energy from the electrons, and their oscillations grow to a steady ampli-
tude. Neighboring segments of the anode must be at potentials of opposite
sign at any given instant, each segment changing from maximum positive po-
tential to maximum negative potential, and back again, once per cycle; in
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other words — the configuration of the fields and currents rotates at
(
f/ 1

2N
)

revolutions per second, where f is the frequency and N the number of cavities.

The cavity magnetron is not suitable for producing an amplitude-
modulated signal, because the high anode voltage is fixed by the conditions
for oscillation. It was developed as a generator of pulses, for use in RADAR.
Each pulse lasts for a few microseconds, with wavelengths between 10 cm and
3 cm (frequencies between 3000 and 10,000 MHz). Typical peak power of 150
kilowatts at a pulse rate of 1000 per sec were attained during WWII.

Today, high operating efficiencies are possible and microwave tubes find
application in television transmission, satellite communication, industrial
heating , home cooking (e.g. microwave oven), medical imaging, radiation ther-
apy and high-energy physics.

1935 CE, Sept. 04 ‘Labor Day ’ Hurricane823 struck the Florida Keys. One
of the greatest storms to hit the United States in the 20th century. The
barometer fell to 669.3 mb, the lowest reading ever recorded in the Western
Hemisphere. More than 400 persons were killed in the storm. Winds reached
320 km/hr in the Florida Keys.

Violent Storms

As with many other natural catastrophes, hurricanes and tornadoes attract
a great deal of attention. Although these phenomena are relatively rare,
they command a fascination that ordinary weather events cannot provide.
Furthermore, because of the death and destruction that these storms leave

823 The Caribbean word huracan was introduced by the Portuguese, Spanish and

Dutch explorers of the 15th and 16th centuries into many European languages.
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in their wake824, they have been and continue to be an important focus of
atmospheric research.

Storms vary in areal size, wind velocity and total energy input:

• In a tornado, wind may exceed 650 km/hr. It is usually less than 2 km
wide and lasts for a few minutes. Its kinetic energy is typically 4 × 1017

erg, and its total energy is 10 to 100 times greater.

• In a hurricane (tropical cyclone), wind may be above 300 km/hr, its
areal size may be 800 km in diameter and it may last for as much as a
week or so. Its kinetic energy is about 4 × 1023 erg, and its total energy
may reach 4 × 1024 erg.

• A cyclone (nearly circular area of low pressure which commonly form
outside the tropics in the middle latitudes and slowly moves inland across
the coast) usually has winds below 80 km/hr, an areal size of more than
1500 km in diameter and duration of perhaps a week. Its kinetic energy
is on the average 4 × 1024 erg, while its total energy is about 4 × 1025

erg.

The major portion of the energy in atmospheric systems is expended in
overcoming the effects of friction and in heating the air inside and outside
the systems. Thus, the input energy of an average hurricane may be equiva-
lent to more than 10, 000 atomic bombs of the kind that destroyed Nagasaki
(10 KT).

There are various sources of energy for atmospheric vortices. Heat con-
tained in the air and earth’s surface, and the sinking of heavier air when
it moves over lighter air are important factors. But the major contribution
comes from heat released when water vapor condenses to form clouds825. In
hurricanes and cyclones there are indeed widespread areas of cloudiness and

824 Enormous amounts of destruction and damage can be caused by one tropical

cyclone, particularly in coastal areas. For example, on 12 November 1970 a

tropical cyclone moving up the Bay of Bengal hit the coast of Bangladesh,

sending a 6-meter surge ahead of it, which moved into a low-lying convergent

coastline at the time of high-tide. The resultant hurricane storm tide destroyed

the island of Bhola, over 500,000 people died and some 4.7 million people were

affected by the disaster.
825 In a single thunderstorm about 5 km in diameter, there may be 500,000 tons of

condensed water in the form of water droplets and ice crystals. In the course

of producing these particles, there would have been released about 3 × 1014

calories. This is equal to about 1022 erg.
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rainfall. They indicate the release of enormous amounts of heat of condensa-
tion (latent heat).

Tornadoes appear as pendent funnels which dip downward from the base
of existing clouds, and approach the ground in an irregular fashion. These
are intense centers of low pressure having a whirlpool-like structure of winds
rotating around a central cavity, where centrifugal forces produce a partial
vacuum. Pressures within the center of some tornadoes have been estimated
to be 100 millibars less than immediately outside the storm. Because of
such tremendous pressure gradients, it is estimated that wind speeds may
reach 650 km/hr or more. Air sucked into the vortex of the storm is rapidly
lifted and cooled adiabatically. The resulting condensation creates the pale
and ominous-looking funnel cloud, which may darken as it moves across the
ground, as it picks up dust and debris.

The most striking feature of the tornado is the velocity of the wind, which
in localized regions of the funnel may reach peak speeds close the speed of
sound. The circulation of these winds is always counterclockwise (dust-devils
usually spin clockwise!). The nearly total destruction wrought by tornadoes is
linked to the combined effects of the exceedingly strong winds and the partial
vacuum in the center of the storm. The winds may rip apart everything in
the path of the storm, and the abrupt pressure drop may cause some building
to literally explode826.

Although meteorologists still do not know how and why tornado funnels
form where they do, they can specify the conditions usually associated with
their development throughout the spring: continental Canadian polar air from
the arctic may still be very cold and dry, whereas maritime tropical air from
the Gulf of Mexico is very warm and moisture laden. The greater the contrast,
the more intense the storm. Since these two contrasting air masses are most
likely to meet in the central United States, it is not surprising that this region
generates more tornadoes than any other area in the country, and, in fact,
the world.

Tornado warning is effected by visual sightings, conventional radar and
recently by Doppler radar827 through which the frequency of the reflected

826 Tornado stories: in 1931 a tornado carried an 83-ton railroad coach and its 117

passengers 24 meters high through the air and dropped them in a ditch; The

force of the wind during a tornado in Clarendon, Texas, in 1970, was enough to

drive a wooden stick through a 4-centimeter metal pipe; Turkeys and chickens

were stripped clean of their feathers, but remained alive! Thin pieces of straw

were blown into three trunks or fence posts.
827 Nowadays, Doppler radar is used to detect the initial formation and subsequent

development of a mesocyclone, an intense rotating wind system in the lower
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signal is compared to that of the original pulse. These frequency changes are
then interpreted in terms of speed forward or away from the radar unit.

Tropical cyclones develop in very humid air with temperature over 26 ◦C,
so they happen mostly in the summer and early autumn, when the seas and
the air above them are at their warmest. First, the warm sea heats the air
above. A current of very warm, moist air rises quickly above the sea, creating
a center of very low pressure on the surface below. Trade winds rush in
towards this low-pressure center and whirl upwards. As they rise they cool,
and the huge amounts of water vapor they contain condense and form towering
cumulus and cumulonimbus clouds.

Hurricanes are whirling tropical cyclones having wind speeds reaching 320
km/hr — the greatest storms on earth. Out at sea they can generate 15-meter
waves capable of inflicting destruction hundred of kilometers from their source.
Should a hurricane smash into land, strong winds coupled with extensive
flooding can cause great loss of life and catastrophic damage. [These awesome
storms form in all tropical waters (except those of the south Atlantic) between
the latitudes 5 ◦ and 20 ◦, and are known in each region by a unique name:
in the western Pacific they are called typhoons, and in the Indian Ocean they
are called cyclones.]

Although hurricanes are most noted for their destruction, some parts of
the world, especially eastern Asia, rely on them for much of their precipita-
tion. (Consequently, while a resort owner in Florida dreads the coming of the
hurricane season, a farmer in Japan welcomes its arrival.)

Hurricanes average 600 kilometers in diameter and often extend 12 kilo-
meters above the ocean surface. From the outer edge of the hurricane to
the center, the barometric pressure on occasion drops 60 mb. This steep
pressure gradient generates the rapid, inward spiraling winds. As the inward
rush nears the core of the storm, it is deflected upward. Upon ascending
the air condenses, generating the cumulonimbus clouds that constitute the
doughnut-shaped inner structure of the hurricane called the eye-wall.

Near the top of the hurricane the airflow is outward, carrying the rising
air away from the storm center, thereby providing room for more inward flow
at the surface. At the center of the storm is the spectacular eye. Averaging
20 kilometers in diameter, this zone of calm and scattered cloud cover is

part of a thunderstorm that precedes tornado development. It can provide an

average warning time of 21 minutes before tornado touchdown, as compared to 2

minutes at most by visual observations. Doppler radar also helps meteorologists

gain new insights into thunderstorm development and air hazards that plague

aircraft.
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unique to the hurricane. The air within the eye slowly descends and heats by
compression, making it the warmest part of the storm.

A hurricane can be described as a heat engine that is fueled by the energy
liberated during the condensation of water vapor (latent heat). The enormous
amounts of energy involved in a single storm is evident when we consider that
it is equal to the total amount of electricity consumed in the United States
over a 6-month period.

The release of latent heat warms the air and provides buoyancy for its
upward flight. The result is to reduce the pressure near the surface — which
encourages a more rapid inward flow of air. To get this engine started, a large
quantity of warm, moisture-laden air is required and a continual supply is
needed to keep it going.

Hurricanes develop most often in late summer, when the water has reached
27 ◦C or more and is thus capable of providing the warm, moist air required.
This fact is thought to account for the fact that the coolest tropical ocean,
the South Atlantic, does not experience hurricanes.

For the same reason, hurricane formation is confined to the warm sectors
of the oceans, which are located not more than 20 degrees on either side of
the equator. On the other hand, hurricanes are not known to form within 5
degrees of the equator, because at low latitudes the Coriolis force is too weak
to initiate the necessary rotary motion.

Although the exact mechanism of formation is not completely understood,
it is known that smaller tropical storms initiate the process. These initial
disturbances are regions of low-level convergence and lifting. Many tropical
disturbances like these occur each year and move westward across the warm
oceans, but only few develop into full-fledged hurricanes. It is believed that
the upper-level airflow acts to further intensify selected storms by “pumping
out” the rising air as it reaches the top of the storm, thus encouraging influx
of warm moist air at the surface, which ascends and releases latent heat to
fuel the storm.

It seems that if the air is “pumped out” at the top faster than it is being
replaced at the surface, the storm intensifies. However, if the rising air is not
removed, the convergence at the surface will “fill” the storm center, equalizing
the pressure differences, and the storm will die. Whenever a hurricane moves
onto land, it loses its punch rapidly, for its source of warm water-laden air
is cut off. Also, the added frictional effect of land causes the wind to move
more directly into the center of the pressure low, helping to eliminate the
large pressure differences.

North Atlantic hurricanes develop in the trade winds, which generally
move these storms from east to west at about 25 km/hr. Then, hurricanes
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curve poleward and are deflected into the westerlies, which increase their
forward motion.

Damage caused by hurricanes can be divided into three categories:
(1) wind damage, (2) storm surge, and (3) inland fresh water flooding. Most
of the devastating damage is caused by the storm surge, which is a dome of
water 65 to 80 kilometers long that sweeps across the coast near the point
where the eye makes landfall. The torrential rains that accompany most hur-
ricanes represent a third significant threat — flooding: as it moves inland,
the storm can yield 30 centimeters of rain and drop 100 cubic kilometers of
rain water over a radius of some 200 kilometers.

One of the most awesome of natural atmospheric phenomena, similar in
many respects to the tornado, is the firestorm. This often develops when a for-
est wild fire becomes organized by a cyclonic circulation. The highly unstable
air (greatly exceeding the dry adiabatic rate828) pulls in the surrounding air
and develops a massive fire of terrifying proportions. An organized firestorm

828 Near the earth’s surface most processes are non-adiabatic, namely: heat is read-

ily exchanged between the ground and the air above. When the ground looses

heat during the night, the air in contact with it is cooled. When there is enough

moisture in the air, and there is little and no wind, the air temperature may be

lowered to the point where dew forms (the dew-point temperature).

If there is just enough air motion to produce gentle stirring, so that additional

air can be cooled by mixing or direct contact with the cold ground, the con-

densed moisture — fog — can attain a thickness of 100 m or more. However,

because air is a poor conductor of heat, this exchange is virtually nonexistent

above a few thousand meters. Thus, some other mechanism must operate dur-

ing cloud formation.

As an airmass rises, pressure in it decreases and in response it expands. The

expansion requires an expenditure of energy; since temperature is a measure of

internal energy, this use of energy causes the airmass temperature to drop; this

drop is 10 ◦C for each kilometer of ascent. A mass of rising air cools at this

rate, known as the dry adiabatic lapse rate (DALR).

Conversely, sinking air is compressed and warms at the same rate. This ac-

tivity determines the altitude at which a cloud will form or evaporate. When

water molecules in the gaseous state condense, they lose some of their kinetic

energies to the air; they release what is called latent heat. With water, this is

a large amount of energy — nearly 600 kilocalories for each kilogram of con-

densed water, depending on the temperature and increasing as the temperature

decreases.

Now, if air rises long enough, it will inevitably cool sufficiently to cause conden-

sation. From this point along its ascent, latent heat stored in the water vapor
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creates its own localized wind pattern which often becomes so violent as to
fell trees, tear burning limbs from them, and scatter ambers from the upper
levels of the convective column far and wide, thus starting new fires.

When an intensive low-level jet-stream is over the region, an extremely
dry subsiding air with a persistent wind velocity of 15–25 m/sec can initiate
a blowup. This may become a firestorm if a convective column develops and
generates its own inflow winds. This occurred, for example, in 1910 in western
Montana and eastern Idaho.

Forecasting the evolution and movement of these systems remains one of
the major unsolved problems of meteorology today.

will be liberated. Although the air will continue to cool after condensation

begins, the released latent heat works against the adiabatic process, thereby

reducing the rate at which air cools from 10 ◦C/km to the saturated lapse rate

(SALR). It may be as low as 6 ◦C/km, depending on the rate of release of la-

tent heat. These lapse rates are referred to as being adiabatic, which means

a temperature exchange process where there is no loss or addition of heat to

or from an element of air molecules by its surroundings. No exchange of heat,

momentum or water occurs with the environmental air molecules, and a parcel

of air will heat or cool at a rate which is predictable and independent of envi-

ronmental temperature.

For a vertical motion of air in the atmosphere, the temperature changes that

take place are approximately adiabatic, as air is a poor conductor of heat, and

diffusional mixing of a parcel with its surrounding is usually low. The air parcel

will therefore tend to retain its own thermodynamic identity, which distinguishes

it from the surrounding air.

The change of temperature of the environment with respect to the height is

referred to as the environmental lapse rate (ELR, measured in ◦C/km).

The atmosphere is said to be absolutely stable if ELR<max{DALR,SALR}, so

that the rising parcel of air is always cooler and heavier than the surrounding

air, and convection is suppressed.

On the other hand, the atmosphere is said to be absolutely unstable if

ELR>max{DALR, SALR}, so that any air parcel cooling at the DALR will

always be warmer and less dense than the surrounding air. Its buoyancy will

give it an upward impulse, so that convection is encouraged. This motion will

stop at a level of equilibrium where ELR=SALR.



1935 CE 4331

1935–1937 CE Nathan N. Rosen (1909–1992, USA and Israel). Theo-
retical physicist. Worked with Albert Einstein on the foundations of quantum
mechanics. Together with Boris Podolsky829 (1896–1966) they concocted
the ‘ Einstein-Podolsky-Rosen Paradox ’ (1935) based on an idea of Rosen. It
is a logically impeccable conclusion which casts a spotlight on some peculiar-
ities of quantum mechanics.

Behind the title of the EPR paper, Can the Quantum Mechanical De-
scription of Physical Reality Be Regarded as Complete?, is an attempt to
demonstrate that quantum mechanics represents only an incomplete descrip-
tion of physical reality and therefore is unable to get beyond the formulation
of statistical regularities.

Rosen was born in Brooklyn, New York, obtained his ScD at MIT (1932)
and was a member of the Institute of Advanced Study (1934–1935). He col-
laborated with Einstein on the singularity-free solutions of the combined
gravitational and electromagnetic field equations (1935), on the GTR two-
body problem (1936), and on gravitational lenses (1937).

829 Born in Taganrog, Russia. Emigrated to the United States (1913) and did his

Ph.D. at CalTech (1928). He was a member of the Institute of Advanced Study

(1934–1935) when the Einstein-Podolsky-Rosen collaboration took place. He

later became research professor at the Xavier University in Cincinnati.
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1935 CE ‘The Einstein–Rosen Bridge’830

Barely a few months after Einstein wrote down the field equations of
the General Theory of Relativity, the first exact solution was found by Karl
Schwarzschild (1916). He had shown that it is always possible to find a co-
ordinate system in which the most general spherically symmetric solution of
the vacuum field equation is obtained via the metric line element.

In relativistic units (c = 1),

ds2 =
(

1 − 2m

r

)

dt2 −
(

1 − 2m

r

)−1

dr2 − r2(dθ2 + sin2θ dϕ2) (1)

with
m = GM

Thus, if we interpret the Schwarzschild solution (SS) as due to a point particle
situated at the origin, then the constant m is simply the mass of the particle
in relativistic units. It is clear from (1) that m has the dimensions of length.

We notice that the SS becomes singular at r = rs = 2GM , known as
the Schwarzschild radius of the mass M .

830 To dig deeper, see:

• Schwarzschild, K., On the Gravitational Field of a Point Mass in Einstein’s

Theory, Proc. Prussian Academy of Science, 1916, 424.

• Einstein, A. and N.J., Rosen, The Particle Problem in the General Theory of

Relativity, Physical Review, 1935, 48, 73.

• Kruskal, M.D., Maximal Extension of Schwarzschild Metric, Physical Review,

1960, 119, 1743–1745.

• Fuller, R.W. and J.A., Wheeler, Causality and Multiply–Connected Space–

Time, Physical Review, 1962, 128, 919–929.

• Kerr, R.P., Gravitational Field of a Spinning Mass as an Example of Alge-

braically Special Metrics, Phys. Rev. Lett., 1963, II, 237–238.

• Hawkings, S. and R., Penrose, The singularities of Gravitationa; Collapse and

Cosmology, Proc. Roy. Soc.: London, 1970, A314, 529–548.

• Morris, M.S., K.S., Thorne and U., Yurtserer, Wormholes, time Machines,

and the Weak Energy Condition, Phys. Rev. Lett, 1988, 61, 1446.

• Visser, M., Lorentz Wormholes — From Einstein to Hawkings, AIP Press:

New York, 1995.
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Imagine a body so small and massive that the radius rs lies outside it,
in empty space. The SS then holds down to this radius and actually displays
a singularity. The question then arises as to whether this singularity is real
or just an artifice of the coordinate system used. Kruskal (1960) found
a coordinate system that allows us to avoid talking about a Schwarzschild
singularity, if we are willing to allow the world an unusual topology. To exhibit
this reinterpretation of the Schwarzschild singularity, he introduced a new set
of coordinates r′, θ, ϕ, t′, defined by

r′2 − t′2 = T 2
(

r
2G M − 1

)
e(

r
2G M )

2r′ t′/(r′2 + t′2) = tan h
(

t
2M G

)

}

(2)

where T is a arbitrary constant. The SS (1) then becomes

ds2 = F 2(dt′2 − dr′2) − r2(dθ2 + sin2θ d ϕ2); F 2 =
ϕr3

s

T 2 r
e− r

rs (3)

where r is now to be understood as a function of r′2 − t′2 defined by
(2). The metric is nonsingular as long as r′2 > t′2 − T 2 .

Hence, during the time interval 0 < t′ < T, the metric is a perfectly
smooth finite function of r′ for all real r′ . The space described by (3)
is therefore singularity–free, but consists of two identical sheets r′ > 0 and
r′ < 0, joined in a smooth way by a branch point at r′ = 0. When t′

reaches the time T , the two sheets detach from each other, and thereafter the
metric has a real singularity at r′ = ±

√
t′2 − T 2, that is, at r′ = 0. This

is unavoidable since the curvature becomes infinite at that point. However,
even so, the metric has no singularity at the radius r′ = t′ that corresponds
to the Schwarzschild radius r = 2 GM .

If we consider the submanifold t′ = 0 in the Kruskal solution (3), then
the line–element is given by ds2 = −F 2dx′2 − r2(dθ2 + sin2 θ d ϕ2). As we
move along the x′–axis from + ∞ to − ∞, the value of r decreases to a
minimum 2m at x′ = 0 and then increases again as x′ −→ −∞. We can
draw a cross–section of this manifold corresponding to the equatorial plane
θ > π

2 , in which case (3) reduces further to ds2 = −(f2dx′2 + r2 d ϕ2).

In their joint paper (1935), Einstein and Rosen showed that implicit in the
formalism of GTR is a curved–space structure that can join two distant regions
of space–time through a tunnel–like curved spatial shortcut. The purpose
of their paper was not to promote faster–than–light travel, but to attempt
to explain fundamental particles like electrons as space–tunnels threaded by
electric lines of force.

Kerr (1968) found an exact solution of Einstein equation describing a real-
istic dying star – a spinning black hole. Because of the conservation of angular
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momentum, as a star collapses under gravity it spins faster. A spinning star
could collapse like a particle into an infinitely thin disc which would remain
stable because of the intense centrifugal force pushing outwards, canceling the
inward force of gravity. The astonishing feature of such a black hole was that
if an object fell directly into the thin disc perpendicular to its axis it would
not be crushed but instead be sucked completely through the Einstein–Rosen
bridge to a parallel universe. However, it is not clear how safe it would be to
enter the bridge or how stable the doorway would be. Steven Hawking and
Roger Penrose have studied (1970) the effects of these strange Kerr black
holes. They have found, for example, that the neck of the Einstein–Rosan
bridge may actually bend around and come out somewhere else in the uni-
verse. Thus, if rockets are sent directly through the black hole, at right angles
to the disc, they would not emerge on the other side of the black hole, but
on the other side of the universe! In this sense, the bridge could serve as a
convenient passageway to the other side of space.

Special Relativity only applies locally. Wormholes allow superluminal
(faster–than–light) travel by ensuring that the speed of light is not exceeded
locally at any time. While traveling through a wormhole, subluminal (slower–
than–light) speeds are used. If two points are connected by a wormhole, the
time taken to traverse it would be less the time it would take a light beam
to make the journey if it took a path through space outside the wormhole.
However, a light beam traveling through the wormhole would always beat the
traveler.

However, it has never been proven that wormtails exist and there is no ex-
perimental evidence for them. They are currently more science–fiction than
they are science fact. Indeed, they play pivotal roles in science–fiction where
faster–then–light travel is possible though limited, allowing connection be-
tween regions that would be otherwise unreachable within conventional time-
lines.

Yet, one should always keep in mind that the wormhole idea came from
Einstein Theory of General Relativity using a spacetime coordinate system on
a highly curved space in the vicinity of a black hole (Schwarzschild geometry).
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‘Wormhole’ Timeline (1915–1988)

1915 Albert Einstein created his General Theory of Rela-
tivity.

1916 Karl Schwarzschild produced the first exact solution
of Einstein field equation for a non–rotating spherically
symmetric small mass (star) in empty space. His so-
lution exhibits two singularities: one at the mass’ cen-
ter (origin, r = 0) and the other at the critical radius
rs = 2G M

c2 . For many years this solution was thought
to apply only to ordinary stars and the critical radius
remained a mere mathematical curiosity in the minds of
most theorists. In retrospect, Schwarzschild’s solution
is now called ‘the Schwarzschild black hole’.

1916 Ludwig Flam (1885–1964, Austria) realized that Ein-
stein’s equations allowed (via the Schwarzschild solu-
tion) a second solution, now known as a white hole831

(a black hole running backwards in time just as a black
hole swallows thing irretrievably, so a while hole spits
them out).

1930 Subrahmanyan Chandrasekhar (1910–1995, USA)
discovered the Chandrasekhar limit — the minimum
mass above which a star will ultimately collapse into a
neutron star or a black hole. The ensuing prediction of
the inescapable collapse of massive stars lead eventually
to accept the concept of black holes and their associated
structures.

1935 Albert Einstein and Nathan Rosen (1909–1995,
USA and Israel) used Schwarzschild black hole solution
as a model for elementary particles (e.g., the electron).
In this way, they thought, GTR could be used to explain
the mysteries of the quantum world in the framework of
a unified field theory. They started with the standard

831 GTR is time–symmetric: it does not know about the second law of thermo-

dynamics, and it does not know about which way cause and effect go. The

white hole arises from the negative square root solution inside the horizon. The

negative square root solution outside the horizon represents another universe.
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black holes solution (Schwarzschild), which resemble a
large vase with a long throat. They then cut the throat,
and merged it with a another black hole solution that
was flipped over (a white hole). This smooth configu-
ration is free of the singularity at the origin and might
act like an electron. This concoction is known as the
Einstein–Rosen bridge.

While the Einstein–Rosen idea of representing an elec-
tron as a virtual black hole was not accepted, cosmolo-
gists today speculate that in theory the ‘Einstein–Rosen
bridge’ can act as a “tunnel” in space–time between
two different universes (inter–universe) or between two
remote points in the same universe (intra–universe).
These connecting passage are now called ‘wormholes’.832

832 The Kruskal metric does not have a direct physical meaning. The name “worm-

hole” comes from an analogy used to explain the phenomenon. If a worm is

traveling over the skin of an apple, then the worm could take a shortcut to the

opposite side of the apple’s skin by burrowing through its center, rather than

traveling the entire distance around, just as a wormhole traveler could take a

shortcut to the opposite side of the universe through a topologically nontrivial

tunnel.

In physics, a wormhole is a hypothetical topological feature of spacetime that

is basically a ‘shortcut’ through space and time. Spacetime can be viewed as a

2D surface, and when ‘folded’ over, a wormhole bridge can be formed. A worm-

hole has at least two mouths which are connected to a single throat or tube. If

the wormhole is traversable, matter can ‘travel’ from one mouth to the other

by passing through the throat. While there is no observational evidence for

wormholes, spacetimes-containing wormholes are known to be valid solutions in

General Relativity.

The term wormhole was coined by the John Wheeler in 1957. However, the

idea of wormholes was invented already in 1921 by the Hermann Weyl in

connection with his analysis of mass in terms of electromagnetic field energy.

Intra-universe wormholes connect one location of a universe to another loca-

tion of the same universe (in the same present time or unpresent). A worm-

hole should be able to connect distant locations in the universe by creating a

shortcut through spacetime, allowing travel between them that is faster than

it would take light to make the journey through normal space. Inter-universe

wormholes connect one universe with another. This gives rise to the specula-

tion that such wormholes could be used to travel from one parallel universe

to another. A wormhole which connects (usually closed) universes is often

called a Schwarzschild wormhole. Another application of a wormhole might be

time travel. In that case, it is a shortcut from one point in space and time
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The ‘wormhole’ joining the two separate universes is the
‘Einstein–Rosen bridge’.

The Einstein–Rosen work was disturbing to many physi-
cists of the time because such a ‘tunnel’ through space–
time, could in principle allow the transmission of infor-
mation faster then the speed of light in violation of one
of the key postulates of Special Relativity.

1960 Martin David Kruskal (1925–2006, USA) invented
Kruskal Coordinates, used in GTR to explain black holes
and lay out their complete space–time structure. Since
then, progress in the theory of black holes has been very
rapid and they are presently accepted as real phenomena
almost universally.

1962 R.W. Fuller and J.A. Wheeler has given a topo-
logical interpretation of the Einstein–Rosen metric and
shown that the Einstein–Rosen bridge space–time struc-
ture was dynamically unstable in field–free space. They
proved that if such a wormhole somehow opened, it
would close up again before even a single photon could
be transmitted through it, thereby preserving Ein-
steinian causality.

1963 R. Kerr found an exact solution of Einstein’s equations
describing a spinning black hole.

1988 K.S. Thorne and his associates suggested that tra-
versable wormholes could exist and that exotic833 forms
of energy threaded through a wormhole might keep it
open.

to another. In string theory, a wormhole has been envisioned to connect two

D-branes, where the mouths are attached to the branes and are connected by

a flux tube. Finally, wormholes are believed to be a part of spacetime foam.

There are two main types of wormholes: Lorentzian wormholes and Euclidean

wormholes. Lorentzian wormholes are mainly studied in General Relativity and

semiclassical gravity, while Euclidean wormholes are studied in particle physics.

Traversable wormholes are a special kind of Lorentzian wormholes which would

allow a human to travel from one side of the wormhole to the other.
833 Here “exotic” means that the stress energy must exceed the equivalent rest mass

energy density: for a specific gravity of unity, the required stress is a little over

13 × 1015 psi!



4338 5. Demise of the Dogmatic Universe

They also concluded that what is needed is a field with
negative equivalent mass density. This could be pro-
vided by employing the Casimir effect834. It remains,
however, unclear whether such arrangements are physi-
cally feasible.

834 Two identical, perfectly conducting spherical plates are placed one on each

side of the throat. Each carries a homogeneous electric charge, so that they

repel each other. According to the quantum–mechanical analysis of Casimir,

the phenomenon of virtual particle pair–production causes the time–averaged

energy density of the region between the plates to be negative.
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Quantum Mechanics – Conceptual problems,
Philosophical issues835

“I am convinced that quantum mechanics is not a final theory. I believe this
because I have never encountered an interpretation of the present formulation
of quantum mechanics that make sense to me. I have studied most of them
in depth and thought hard about them, and in the end I still can’t make real
sense of quantum theory as it stands.”

(Lee Smolin, 1997)

I. Introduction

Quantum Mechanics grew out of a series of anomalies in the picture of
matter and light offered by Newtonian classical physics – in particular as-
sociated with blackbody radiation, the photo-electric effect, and the need to
devise a model of the atom consistent with atomic spectra and the newly
discovered subatomic particles.

Important aspects of Quantum Mechanics include its inherently statisti-
cal nature, at the heart of which lie the uncertainty and complementarity
principles which sets limits on our knowledge of physical systems. Other key
aspects are:

835 To dig deeper, see:

• Pagels, H.R., The Cosmic Code, Bantam Books, 1990, 333 pp.

• Heisenberg, W., Physics and Philosophy, Prometheus Books, 1999, 206 pp.

• Blinder, S.M., Introduction to Quantum Mechanics, Elsevier, 2004, 319 pp.

• Rae, A., Quantum Physics: Illusion or Reality, Cambridge University Press,
1986, 123 pp.

• Polkinghorne, J.C., The Quantum World, Princeton University Press, 1985,

100 pp.

• Treiman, S., The Odd Quantum, Princeton Press, 1999, 262 pp.
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• the ability of particles and systems to behave in two or more classically-
contradictory ways (including e.g. “being in two places at the same

time”)836;

• a certain irreducible disturbance inflicted upon a system by observing it;

• very accurately reproducible values for certain observable dynamic vari-

ables (a curious counterpoint to the uncertainty principle); and

• high correlations between some observables that seem to (but do not)
contradict their high individual randomness.

The implications of the theory for the nature of reality have been and are much

discussed. Most quantum theorists accept an intrinsic element of probability

in the empirical predictions of fundamental physics; the need to see systems
as wholes rather than merely dissecting them into their simplest components;

and that not all of a quantum system’s classical dynamical variables actually

exist as numbers (even unknown numbers!) except if, where and when they

are actually measured.

The empirical basis for the development and acceptance of quantum

physics lies in such phenomena as blackbody radiation, the photoelectric ef-

fect, the specific heats of solids and the robustness and discreteness of the
structure and the emission spectra of atoms and molecules, chemical reac-

tions rates and energetics, condensed matter physics, and a host of other

phenomena whose ranks swells yearly. All of these remain unexplainable in

terms of classical physics.

In 1901, Max Planck solved the blackbody problem by proposing that

emitted or absorbed EM energy is quantized: it is released or taken up in

discrete, not continuous, amounts. The quantization of light as ‘photons’ by
Albert Einstein in 1905 explained the photoelectric effect, and the similar

quantization of elastic waves as “phonons” allowed him to use a blackbody-

like derivation to explain the specific heat of crystalline solids two years later.

Furthermore, the particle/wave duality introduced into electromagnetic the-

ory by this development — as well as the fact that photons move at the

speed of light and are thus inherently relativistic — precipitated the discov-

ery of both non-relativistic quantum mechanics and relativistic quantum field
theories.

836 When an experiment is actually performed to decide the issue, though, it is

resolved only at the price of destroying the original state and replacing it by a

stochastic ensemble of new states.
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In 1913 Niels Bohr predicted the emission spectrum for hydrogen with a
simple ‘planetary’ model of the atom in which the angular momentum of the
orbiting electron, and thus the sizes and energies of its orbits, are quantized.

In 1924, Louis de Broglie attributed wave-like behavior to material parti-
cles and showed how this can lead to Bohr’s quantization conditions. Based on
this idea, Erwin Schrödinger developed the wave equation which has proved
to be foundational for quantum mechanics; Werner Heisenberg formulated
the uncertainty principle (and an alternative, but mathematically equivalent
formulation to that of Schrödinger); and Wolfgang Pauli discovered the ex-
clusion principle. The empirical discovery and theoretical understanding of
the spin concept (Stern, Gerlach, Goudsmit, Uhlenbeck, Dirac, Landé
and others) extended quantum mechanics to internal (non-spacetime) degrees
of freedom.

By the end of the 1920’s (nonrelativistic) quantum mechanics was basi-
cally complete, and the 1930’s and 1940’s saw the development of Quantum
Electrodynamics (QED) – the first, and most successful, relativistic QFT
(Quantum Field Theory).

Still, almost a century later, major conceptual problems in interpreting
quantum mechanics stubbornly persist:

• The Schrödinger wave propagates continuously in time but ‘collapses’
discontinuously (in a process not described by the Schrödinger equa-
tion) when a few-particle quantum system interacts with a classical (i.e.
mesoscopic or macroscopic) system (often called ‘the measurement prob-
lem’);

• The Schrödinger equation describes the propagation of the wave func-
tion, but this is a complex variable; itself not directly measurable, whose
squared modulus represents statistical information about the quantum
system potentially obtained via interactions of a whole ensemble of iden-
tical quantum systems with a measuring device;

• A composite quantum system displays a holistic character entirely un-
like classical composite systems: once interacting, now vastly separated,
particles continue to act in some ways as though they remained part of
a single system — a feature underscored by the “EPR” paradox in the
1930s and Bell’s theorem in the 1960s and now referred to as “quantum
entanglement”;

• ‘Chance’ in quantum mechanics (i.e., quantum uncertainty and quantum
statistics) works in strikingly different ways from classical chance. It
actually gives rise, in a ‘bottom-up’ way, to the basic features of the
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classical world, including the robustness of atoms, the periodic table,
and other properties of matter, chemistry, optics, and life.

II. Historical Timeline of Quantum Mechanics 1925–1989

1926 While Shrödinger’s equation for the quantum wave function
serves admirably as a vehicle by which to predict the outcome
of laboratory experiments, the wave function itself has defied
all attempts to give it an interpretation in terms of physically
observable entities in a single (as opposed to an ensemble of
copies of a) quantum system. It remains today as much of an
ontological mystery as it was the day Schrödinger first wrote
his equation.

In fact, Schrödinger himself became so exasperated with Niels
Bohr’s persistent attempts to get him to admit that his wave
function had no physical interpretation that he once blurted
out, “I am sorry I ever started to work on atomic theory”
— strong words from the man who in 1933 was awarded the
Nobel Prize in Physics for “new insights into atomic theory.”

1930 Bohr’s Copenhagen Interpretation (CHI).

Probably the biggest mystery of the quantum world unveiled
by Schrödinger, Bohr, Heisenberg, Born, Wigner and
others in the 1920s is what we now call the quantum mea-
surement problem.

The values of attributes (position, momentum and spin) of
quantum objects such as photons, electrons, atoms, etc. are
all arguments of the Schrödinger wave function. But until a
measurement of one of these attributes is actually made, the
wave function describes merely the likelihoods of the possible
outcomes of such a measurement. Once a measurement is
actually taken, of course, the range of potential outcomes of
the corresponding attribute is replaced by a single outcome,
which we term the result of the measurement.837

837 Other attributes may remain “fuzzy”, and even the just-measured attribute

becomes progressively more fuzzy (uncertain) after the measurement.



1935 CE 4343

The problem here is that prior to the measurement, the wave
function exists as a kind of mathematical wave of probability.
Yet as soon as we make an observation, this wave “collapses”
to a single point with respect to the measured attribute – the
outcome of the measurement. The essence of the measure-
ment problem is to ask how this collapse comes about and
what it actually means in physical terms. In short, what’s so
special about the act of a measurement?

The CHI makes a distinction between the observer and the
observed; when no one is watching, a system evolves de-
terministically according to the Schrödinger wave-equation
(though its classical attributes are fuzzy, correlated via
classically-impossible quantum statistics, and do not usually
enjoy objective existence as numbers — even as unknown
numbers). When, however, someone838 is observing, the com-
plex waveform (state) of the system “collapses” to an ensem-
ble of other, observed states, which is why the act of observ-
ing changes the system. In this way the observer is accorded
a special status, not given to any other object in quantum
theory.

Quantum mechanics can be interpreted philosophically in a
variety of conflicting ways, and so far we know of no exper-
imental basis for choosing definitively between them. These
include ontological indeterminism (Heisenberg), ontologi-
cal determinism (Einstein, David Bohm), many worlds
(Everett), or as involving consciousness (von Neumann,
Eugene Wigner, Roger Penrose).

All of these interpretations challenge classical-physics ontol-
ogy, with its core concepts of waves, particles and locality, as
well as a critical realist philosophy of nature.

The Copenhagen Interpretation cannot explain the observer
itself, but it is now generally agreed that any large enough
(mesoscopic or macroscopic) sample of matter, while obeying
its own (vastly complicated) Schrödinger equation, interacts
with a few-particle (nanoscopic or sub-atomic) quantum sys-
tem as would the “ideal observer” of the Copenhagen Inter-
pretation.

838 The “observer” need not be sentient, or even a recording device. Any classically-

describable (i.e. many-mody) body which interacts with the “observed” quan-

tum system and is irreversibly affected by this interaction, qualifies as an ob-

server.
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1935 The EPR Paradox: Einstein and his colleagues claimed to
have demonstrated the existence of hidden variables (funda-
mental elements of reality) which quantum theory fails to take
into account, thus showing that the theory is incomplete.

At the basis of EPR is the notion that if two systems are in
isolation from each other for some time, then a measurement
on the first can produce no real instantaneous change of the
second (no causal influence travels faster than light). This is
Einstein’s ‘locality principle’ (separateness).

Bohr’s reply to this was that ‘locality’ was not allowed, i.e.
quantum mechanics does not permit an ontological separa-
tion between the observer and the observed, even after they
have separated. They are parts of a single system. In other
words, Bohr’s claim was that the EPR thought experiment
does not demonstrate the incompleteness of quantum the-
ory, but rather the naiveté of assuming local conditions in
atomic systems. Once connected (“entangled”), atomic sys-
tems never separate.

1952–1966 David Bohm (1917–1992, USA) developed a hidden vari-
able839 interpretation of quantum mechanics which works just
as well as the CHI, but gives a completely different view of
quantum theory. According to his view, particles always have
well-defined positions and velocities, but any attempt to mea-
sure these properties will destroy information about them by
altering the pilot wave associated with the particles. Thus,
measuring the position of an electron will immediately alter
the shape of the pilot wave everywhere, affecting the future
behavior of the electron.

Bohm further developed the idea that everything is connected
to everything else, and affected instantaneously by everything
that happens to everything else, through the pilot-wave.

In later developments of his idea, Bohm proposed that the ba-
sic underlying order of the world consists of a field made up
of an infinite number of overlapping waves, and that the over-
lapping of waves produces local effects which we perceive as
particles. These ideas are strongly reminiscent of Feynman’s

839 Hidden variables: A hidden level of deterministic dynamics as opposed to gen-

uinely intrinsic uncertainty. In recent years a number of key experiments have

been performed to test this point. They have confirmed that uncertainty is

indeed inherent in quantum systems.
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sum-over-histories (“path integrals”) approach to quantum
mechanics840.

1957 Hugh Everett III (1930–1982, USA) developed his ‘many-
worlds’ interpretation (MWI), which is a daring proposal to
reconcile the continuity of the Schrödinger equation with the
discontinuity of the quantum measurements process.

According to this interpretation, whenever multiple viable
possibilities exist for the results of the measurement of a par-
ticular attribute — whether the set of possibilities is finite,
discrete-infinite or continuum-infinite in its size — the world
– and in particular the measured and measuring systems –
splits into a multiplicity of worlds, one world for each different
possibility (in this context, the term “worlds” refers to what
most people call “universes”). In each of these worlds, every-
thing is identical, except they each have a distinct outcome
of the measurement of the attribute in question. Note that
the entangled quantum wavefunction of both observed and
observing system split individually, although their combined
(“holistic”) wavefunction continues to evolve continuously, in
accordance with its Schrödinger equations.

From the moment a given split occurs, the branch universes –
at least for ideal measurements – develop independently, and
no communication is possible between them, so the people

840 The formulation of quantum mechanics developed by Feynman in terms of path

integrals builds on the familiar Lagrangian concept of the action of a trajectory

in space and time and appears to be much closer to classical concepts than

the Schrödinger or Heisenberg formulations. In Feynman’s formulation, the

probability amplitude of any quantum-mechanical process can be represented as

a coherent superposition of contributions of all possible spatio-temporal paths

that connect the initial and the final state of the system. The weight of each

path is a complex number whose phase is equal to the classical action along the

path, divided by Planck’s constant. Even though this approach turned out to

be very useful in quantum mechanics and almost indispensable in quantum field

theory, it is nevertheless difficult to work with except in certain approximations

— due to mathematical and computational difficulties with the quantum version

of the Wiener measure (in path-space) which underlies path integrals.

Instead of saying that ‘the photon’ travels by every possible route to a mirror

and then up to the observer to make a reflected image, Bohm says that ‘the

pilot-wave’ travels by every possible route, and then ‘tells’ the photon which

path to actually follow.
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living in those worlds (and splitting along with them) may
have no idea that this is going on.

An advantage of the MWI is that it does away with the need
for either an intelligent observer or a measuring device ‘out-
side the system’ to collapse wave functions and make reality
real; indeed, the wave function of an observer (be it sentient
or mechanical) is entangled (continuously and in accordance
with the overall Schrödinger equation) with that of the ob-
served system, and their mutual entanglement appears to the
observer as a collapse of the observed system’s wavefunction
— and with the same probability distribution of the measure-
ment outcome as predicted by CHI (i.e., the squared modulus
of the relevant Hilbert-space projection of the observed sys-
tem’s wavefunction).

The MWI consists of two parts:

i. A mathematical theory which yields evolution in time of
the quantum state of the (single) universe.

ii. A prescription which sets up a correspondence between
the quantum state of the universe and our (sense-
perception and instrumental) experiences.

Part (i) is essentially summarized by the Schrödinger equa-
tion. It is a rigorous mathematical theory and is not problem-
atic philosophically although in practice it is always necessary
to make various approximations — due to the immense num-
ber of quantum degrees of freedom of any realistic measuring
device. Part (ii) involves, for any realistic case, a detailed
quantum-thermodynamical treatment of the irreversible mea-
surement process.

Everett demonstrated that observations in each world obey
all the usual conventional statistical laws predicted by the
probabilistic Born interpretation, by showing that the Hilbert
space’s inner product (and corresponding norm) has a spe-
cial property which allows us to makes statements about the
worlds where quantum statistics break down. The norm of
the vector of the subset of entangled worlds where experi-
ments contradict the Born interpretation (“non-random” or
“maverick” worlds) provides a measure of these worlds which
vanishes in the limit as the number of probabilistic trials goes
to infinity, as is required by the definition of probability.
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Thus we, as observers, are overwhelmingly likely to observe
the familiar, probabilistic predictions of quantum theory to
hold. Everett-worlds, where the Copenhagen Interpretation of
probability rules breaks down, are never realized — or rather,
are as likely to be realized as a tepid glass of teas is likely
to spontaneously re-heat at the expense of the ambient air’s
thermal fluctuations!

From the MWI viewpoint, the universe is like a tree that
branches and re-branches into myriads of new sub-branches
with every passing zeptosecond (zepto = 10−21), and each of
these new branch universes has a

slightly different sub-atomic “history”. Because an observer
happens to have followed one particular path through the di-
verging branches of this universe-tree, he never perceives the
splitting. Instead he interprets the resolution of the myriad
of possibilities into one particular outcome as a Copenhagen-
style collapse. But the observer plays no active role in the
splitting. Events at the quantum level, of course, must lead
to consequences in the every-day world, and one set of such
consequences happens to be the irreducible quantum random-
ness of the sequence of empirical measurements recorded by
our brains and instruments.

It seems that the majority of the opponents of the MWI re-
ject it because, for them, introducing a very large number
of worlds that we do not see is an extreme violation of Ock-
ham’s principle: “Entities are not to be multiplied beyond
necessity”.

However, in judging physical theories one could reasonably
argue that one should not multiply physical laws beyond ne-
cessity either (such versions of Ockham’s Razor has been ap-
plied in the past), and in this respect the MWI is the most
economical theory (since it avoids wavefunction collapse as a
separately-posited process). Indeed, it has all the laws of the
standard quantum theory, but without the collapse postulate.

It is commonly thought that Many-Worlds is an un-falsifiable
— and hence unprovable hypothesis, experimentally indistin-
guishable from the Copenhagen Interpretation.

1964–1966 John S. Bell (1928–1990, Ireland). Developed an ingenious
inequality principle to test the questions raised by the EPR
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paradox. The Bell inequality sets an upper limit upon the sta-
tistical correlations of certain observable pairs, each pair mea-
sured upon two quantum-entangled systems, instantaneously,
and once they are too far to classically interact.

To derive his inequality, Bell used certain facts and ideas on
which everyone could agree, except for Einstein’s condition
of locality, which he assumed to be true.841

Now, if experiments showed the inequality was violated, this
would mean that one of the premises in his derivation was
false. Bell chose to interpret this to mean that nature is non-
local if experiments would (as they did, starting in the 1980’s)
show the inequality to be violated; but his theorem also allows
the alternate interpretation, according to which a set of at-
tributes (dynamical variables) of a quantum system does not
always even exist as numbers in case they are not measured.
(This implies a violation of classical physical reality.)

The problem of the nature of locality, raised by EPR, clearly
demanded some form of empirical investigation. To bring it
into a form suitable for testing involves a modest degree of
reformulation. The basic principles are threefold:

1. Reality: Regularity of phenomena is due to an underly-
ing physical reality. This requires that regularity should
be the touchstone for telling reality from illusion.

2. Locality. This is what we are particularly keen to probe.
In accord with STR it states that any influence of A
upon B must not propagate between them faster than
the velocity of light.

3. Induction: It is possible to reach conclusions valid for
all systems of a given type from a consistent set of ob-
servations on a large sample of systems of that type.
Whatever may be the logical difficulties of a principle of
induction, as a methodological strategy it is essential for
science. Since we can never investigate all protons (say),
any general statement about them whatsoever must de-
pend upon a principle of this sort.

Note that the empirical violation of Bell’s inequality imply
that if one insists upon 1 and 3, quantum mechanical ex-
periments produce results that are inconsistent with classical
notions of causality.

841 A position with which Bohm et al. would disagree.
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1983 Alain Aspect and his collaborators in Paris, obtained ex-
perimental verification of the violation of Bell’s Inequality.
This could be interpreted to mean that in spite of the local
appearances of phenomena, the fabric of our world is actu-
ally supported by an invisible “infrastructure” of quantum
reality which is unmediated and allows communication faster
than light, even instantaneously. However, such communica-
tion is not necessarily capable of being used to send informa-
tion or otherwise effect causation faster than light-speed, and
communications of the latter two types can be proven to be
impossible in mathematically consistent relativistic Quantum
Field Theories842. No physical experiment to date – despite
occasional claims to the contrary, which are based on mis-
conceptions – has succeeded in configuring any causation at
super-luminal (faster than light) speeds.

1989 Steven Weinberg suggested an experiment that would
conclude whether or not there is a nonlinear term in the
Schrödinger equation; the experiment was performed, and
stringent upper bounds on the magnitude of such a term were
thence deduced.

1935–1939 CE Gerti Theresa Cori, nee Radnitz (1896–1957, U.S.A.)
and Carl Ferdinand Cori (1896–1984, U.S.A.). Biochemists. A Prague-
born American man-and-wife team. Studied carbohydrate metabolism and
discovered (1936) how cells use and convert food into energy — a process now
called the Cori cycle. Shared the Nobel prize in physiology or medicine (1947)
with B.A. Houssay.

Gerti Radnitz was born in Prague to Jewish parents. She entered the
Medical School of the German University of Prague and received her M.D.
in 1920. Carl Cori was also born in Prague. His father — Dr. Carl Cori,
was director of the Marine Biological Station in Trieste. His grandfather,
Ferdinand Lippioh was a professor of Theoretical Physics at Prague. Carl

842 Many physicists ask themselves: can we live with the preposterous concept of

action-at-a-distance — even if only correlation, not information transfer or event

causation, are involved?
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met Gerti when they studied medicine together. He also got his M.D. in 1920
and married Gerti in the same year.

The couple emigrated to the U.S. (1922). They were on the staff of N.Y.
State Institute for Study of Malignant Diseases (1922–1931), and then on the
faculty of Washington University (1931–1957).

They discovered (1936) a phosphated form of glucose, known as the Cori
ester; discovered (1938) the enzyme phosphorylase, and synthesized glycogen
(1939). Their most important discovery was that glycogen in the body is not
hydrolyzed (breaking the chemical bond by the addition of the elements of
water), but is instead broken down by the use of phosphoric acid (phospho-
rolysis)

1935–1945 CE Konrad Zuse (1910–1995, Germany). Mechanical and
civil engineer. Pioneer digital computer builder, who worked with electro-
mechanical relay machines (having no electronic components). Because of his
war-time isolation and his own reluctance to publish his work he was, for a
long time, largely unknown.

Thus, his early machines had essentially no influence on the field although
they included, in an elementary way, many of the features of modern comput-
ers. Throughout his life he received little understanding and support from the
German government, industry, or academia. Not until 1960 (when it finally
became clear to German leaders in the field that computing machinery was
important) was he recognized as Germany’s chief claim to fame in the modern
history of computing.

Zuse was born in Berlin-Wilmersdorf to the family of a Prussian civil
servant. He entered (1927) the Technical College in Berlin-Charlotterburg,
majoring in both mechanical and civil engineering (1935).

During 1935–1938 he built two successive machines. The first, Z1, had the
size of a large dining-room table, including metal sheets, glass plates, crank
arms, gear-wheels and a program-cylinder — the first program-controlled com-
puting machine. The second, Z2, was built with electromagnetic relays. In
working with these machines, Zuse was able to develop and test in both the-
ory and practice the basic laws of switching techniques, and his concepts of
the design of a computer. During WWII he was developing remote-controlled
flying bombs.

His first machine that really worked, the Z3, was completed in 1941. It
was based on 2064 relays, used a 22-bit word and was controlled via an
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8-track punched-celluloid film tape843. Input was through a keyboard and
output was displayed on a lamp strip including a binary point. Its speed was
approximately 3 sec for multiplication, division, or taking the square root
of a number. The machine was demonstrated but never put into continuous
operation. It was destroyed in a 1944 air raid. Zuse reconstructed it in 1960.

In his book Calculating Space (1969), Zuse proposed that the physical laws
of the universe are discrete by nature, and that the entire universe is just an
output of a giant deterministic cellular automaton.

1935–1948 CE Frits (Frederik) Zernike (1888–1966, Holland). Physi-
cist. Invented the method of phase contrast and applied it in the optical
phase-contrast microscope. The method is used to render visible a transpar-
ent object whose index of refraction differs slightly from that of a surrounding
transparent medium. Phase contrast is particularly useful in microscopy for
examination of living organisms; sections of biological materials examined
under an optical microscope are often almost, or totally, transparent844.

843 The same ideas were occurring at the same time to other pioneers who were

making similar plans and inventions, e.g. H.H. Aiken (1937–1944 USA), Stib-

itz (1940) and Atanasoff (1942, USA).
844 Because they do not absorb any of the indecent light. An object can be “seen”

because it stands out from its surroundings — it has a color, tone, or lack of

color which provides contrast with the background. This kind of structure is

known as an amplitude object because it is observable by dint of variations which

it causes in the amplitude of light waves. The wave which is either reflected

or transmitted by such an object becomes amplitude modulated in the process.

In contradistinction, it is often desirable to “see” phase objects, i.e., ones which

are transparent, thereby providing practically no contrast with their environs

and altering only the phase of the detected wave. The optical thickness of such

objects generally varies from point to point (periodically or otherwise) as either

the refractive index or the actual thickness, or both, vary.

As such materials have almost no effect on the amplitude on the light that passes

through them, and since the eye (or any similar observing instrument) only dis-

tinguishes changes in intensity, such objects are invisible. (Strictly speaking,

some details of the phase structure are always seen due to the finite size of the

aperture. These can even be enhanced by a slight defocusing of the instrument.)

This is the problem which led biologists to develop techniques for staining trans-

parent microscope specimens, thereby converting phase objects into amplitude

objects. But this approach is unsatisfactory in many respects as, for example,

when the stain kills the specimen whose life processes are under study, as is all

too often the case.
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A direct method for distinguishing between regions of different optical
thickness (and therefore different biological compositions) is by phase contrast
microscopy, for which Zernike was awarded the Nobel prize for physics in 1953:

The phase contrast microscope changes the phase between the light waves
passing through the specimen and those not passing through it. This action
turns phase objects into amplitude objects. Consequently some parts of the
specimen appear brighter and the other parts darker than normal. Thus, the
parts of a transparent object that vary in thickness or have different refractive
index (or both), can be seen.

Zernike was born in Amsterdam. During 1915–1920 he was assistant as-
tronomer at the University of Groningen, and afterwards a professor of physics
there.

In 1938, Zernike gave a significant augmentation of the theory of partial
coherence for quasi-monochromatic fields.

Theoretically, the phase-contrast method is a special case of Abbe’s theory
of image formation in paraxial optical systems. According to Abbe, the object
acts as a diffraction grating, so that not only every element of the aperture of
the objective, but also every element of the object must be taken into account
in determining the complex disturbance at any particular point in the image
plane.

Expressed mathematically, the transition from object to image involves
two Fraunhofer-type integrations. The first over the area A of the object
plane (x, y) covered by the object:

U(ξ, η) = C1

∫ ∫

A

F (x, y)e−ik[ ξ
f x+ η

f y] dx dy,

where F is the given transmission function of the object, U is the diffraction
pattern over the back focal plane of the objective, f is the distance of this
focal plane from the objective lens, and C1 is a constant. Every point in
the focal plane may be considered to be a center of a coherent secondary
disturbance, whose strength is proportional to the amplitude at that point.
The light waves that proceed from these secondary points will then interfere
with each other and will give rise to the image V (x′, y′) of the object in the
image plane of the objective, whose typical coordinates are (x′, y′). The
image is given by the double Fourier integral

V (x′, y′) = C2

∫ ∫

B

U(ξ, η)e−ik
[

x′
D′ ξ+ y′

D′ η
]

dξ dη.

Here B is the object’s aperture in the focal plane, while D′ is the distance
between the focal and image planes. The approximation

F (x, y) = eiΦ(x,y) = 1 + iΦ(x, y) + O[Φ2]
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leads to U = U0 + U1, where U0 = C1

∫∫
A

e− ik
f (ξx+ηy)dxdy represents the

light distribution that would be obtained in the focal plane if no object were
present, whilst U1 = C1

∫∫
A
(F − 1)e− ik

f (ξx+ηy)dxdy represents the effect of
diffraction (i.e. the interaction of the light with the object under study).

Now, the direct light U0 corresponds to the central order of diffraction,
and will be concentrated only in a small region B0 in the focal plane around
the axial point ξ = η = 0. On the other hand, a very small fraction of the
diffracted light will, in general, reach this region, most of it being diffracted
to other parts of the plane.

Suppose that the region B0 (through which the direct light passes) is
covered by a phase plate (a thin transparent material by means of which
the direct wave is retarded or advanced by one quarter of a period rela-
tive to the diffracted spectra). The effect of this plate may be described
by a transmission function h = aeiα, where a = 1 for a non-absorbing
plate and a < 1 for an absorbing plate. Consequently, the new form of U
will be U ′(ξ, η) = hU0(ξ, η) + U1(ξ, η) and V (x′, y′) = V0(x′, y′) + V1(x′, y′)
where

V0 = hC2

∫ ∫

B

U0(ξ, η)e− ik
D′ (x′ξ+y′η)dξdη,

and

V1 = C2

∫ ∫

B

U1(ξ, η)e− ik
D′ (x′ξ+y′η)dξdη.

Now, the aperture B greatly exceeds in size the region B0, and U0 is
practically zero outside B0. Thus both V0 and V1 may be given infinite
integration limits, with U0 = 4π2C1δ

(
k
f ξ

)
δ
(

k
f η

)
. Therefore V0 = Ch;

V1 = C
[
F

(
x′

M , y′

M

)
− 1

]
on the strength of the Fourier integral theorem,

with C = C1C2f
2 4π2

k2 . Finally, since f
D′ = − 1

M (M = magnification be-
tween object plane and image plane) we find V1 = C [F (x, y) − 1]. Inserting
F (x, y) − 1 ≈ iΦ(x, y), it follows that the intensity in the image plane is given
by

I(x′, y′) = |V |2 ≈ |Ch + V1|2 ∼ |C|2
[
a2 + 2aΦ(x, y) sin α

]
.

For a phase plate α = ±π
2 , and hence I(x′, y′) = |C|2

[
a2 ± 2aΦ(x, y)

]
. The

intensity changes are directly proportional to the phase variations of the ob-
ject. With a plate that absorbs a fraction a2 of the direct light, the ratio of
the second term to the first term has the value ±2Φ

a , so that the contrast of
the image is enhanced.
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In general, when the phase of the central order is retarded w.r.t. the dif-
fraction wave, regions of the object which have greater optical thickness will
appear brighter than the mean illumination. When the phase of the central
order is advanced, regions of greater optical thickness will appear darker.

Optical Coherence845 (1865–1938)

Light from a real physical source is never strictly monochromatic, since
even the sharpest spectral line has a finite width. Moreover, a physical source
is not a point source, but has a finite extension consisting of many elementary
radiators (atoms); because of the quantized nature of the radiation process,
light is emitted via electron transitions in the form of individual photons,
which for our present purpose can be represented by finite wave trains.

Moreover, since the atoms are in random thermal motion, the frequency
spectrum will be broadened by the Doppler effect. In addition, the atoms
suffer collisions, which interrupt the wave trains and again tend to broaden
the frequency distribution. The total effect of all of these mechanisms is that
each spectral line has a bandwidth Δν rather than one single frequency. The
temporal extent of the pulse is of the order Δt ∼ 1

Δν and is referred to as the
coherence time. The associated length Δx = cΔt is the coherence length846.

In an ideal monochromatic wave field the amplitude of the vibration at any
point is constant, while the phase varies linearly with time. A real source can

845 To dig deeper, see:

• O’Neill, E.L., Introduction to Statistical Optics, dover, 1992, 179 pp.

• Baldwin, G.C., An Introduction to Nonlinear Optics, Plenum Press, 1969,
155 pp.

• Beran, M.J. and G.B. Parrent, Jr., Theory of Partial Coherence, Prentice-

Hall, 1964, 193 pp.

846 White light has a frequency range from 0.4 × 1015 Hz to about 0.7 × 1015

Hz, that is, a bandwidth of about 0.3 × 1015 Hz. The coherence time is then

roughly 3 × 10−15 sec, while the coherence length is 9 × 10−5 cm — a spatial

extent only a few wavelengths long.
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be visualized in the time domain as being composed of wave packets, bearing
random phase relation to each other. In general, the Fourier spectrum of a
single packet will differ from that of the light beam composed on N wave
packets, because in the latter the amplitude and phase undergo irregular
fluctuations. If, however, we restrict the time interval of the observed pulse to
be small compared to the reciprocal of the effective width of the spectrum (i.e.
the coherence time), then, within such a time interval the amplitudes of the
spectral components will remain substantially constant; in this time interval
the light behaves like a monochromatic wave with the mean frequency. This
will happen whenever the source is quasi-monochromatic, i.e. if the bandwidth
is small compared to the mean frequency. In effect, the coherence time is
loosely the temporal interval over which we can reasonably predict the phase
of the light wave at a given point in space.

The same characterization can be viewed somewhat differently. Imagine
that we have two separate field points P1 and P2 to which light arrives from
a quasi-monochromatic point source. If the coherence length Δx = cΔt is
much larger than the longitudinal separation between the points, the distur-
bances at P1 and P2 will be highly correlated. On the other hand, if this
longitudinal separation were very much greater than the coherence length,
many wave trains, each with an unrelated phase, would span the gap between
P1 and P2. In that case, the disturbance at the two points in space would
be independent at any given time. The degree to which a correlation exists
is sometimes spoken of alternatively as the amount of longitudinal coherence.
Whether we think in terms of coherence time (Δt) or coherence length (cΔt),
the effect still arises from the finite bandwidth of the source.

The idea of spatial coherence is most often used to describe effects arising
from the finite extent of ordinary light sources.

The theory of optical interference is based on the principle of linear su-
perposition of electromagnetic vector fields. According to this principle,
the electric field E produced at a point in empty space jointly by several
different sources is equal to the vector sum E = E(1) + E(2) + E(3) + · · ·,
where E(j) are the fields produced at the point in question separately by
the different sources. The same is true for magnetic fields. Consider the
monochromatic, linearly polarized plane waves with corresponding fields
E(1) = E1e

i(k1·r−ωt+ϕ1), E(2) = E2e
i(k2·r−ωt+ϕ2) etc. Here the quantities

ϕ1 and ϕ2 have been introduced to allow for any phase differences between
the sources of the two waves, so that Ej are real.

If the phase difference ϕ1 − ϕ2 is constant, the two sources are said to be
mutually coherent. The intensity of radiation at a point between two sources
is proportional to the square of the amplitude of the light field at the point
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in question. Therefore, the intensity of the interference pattern between two

sources is proportional to

I = |E|2 = E · E∗ = (E(1) + E(2)) · (E∗
(1) + E∗

(2))

= |E1|2 + |E2|2 + 2E1 · E2 cos θ = I1 + I2 + 2E1 · E2 cos θ;

θ = k1 · r − k2 · r + ϕ1 − ϕ2.

Since θ depends on r, periodic spatial variations in intensity occur. These

variations are the familiar interference fringes that can be seen when two

mutually coherent beams of light are combined. If the sources of the two

waves are mutually incoherent, then the quantity ϕ1 − ϕ2 varies with time

in a random fashion. The result is that the mean value of cos θ is zero,

and there is no interference. (This will also happen if the polarizations are

mutually orthogonal, i.e. E1 · E2 = 0.)

The classical experiment that demonstrates interference of light from a

point source was first performed by Thomas Young in 1802. In his 2-slit ex-

periment θ � −kyh
x , where h = slit separation, x = slit-screen distance, and y

= coordinate of a point on the far screen. If |E1|2 = |E2|2 = I0, we shall have

I = 2I0

[
1 + cos

(
kyh
x

)]
with bright fringes maxima at y = 0, λx

h , 2λx
h , · · ·

where λ = 2π
k = wavelength.

In order to adequately describe a wave field produced by a finite poly-

chromatic source, it is desirable to introduce some measure for the correlation

that exists between the vibrations at different points in the field. We must

expect such a measure to be closely related to the sharpness of the interference

fringes which would result on combining the vibrations from the two points.

We expect sharp fringes when the correlation is high (e.g. when light arrives at

two separate field points from a very small source of narrow spectral range),

and no fringes at all in the absence of correlation.

We describe these situations by the terms coherent and incoherent respec-

tively. In general, neither of these situations is realized and we may speak

of vibrations which are partially coherent. In this case, the amplitudes and

phases usually vary with time such that the instantaneous light intensity at a

given point fluctuates rapidly. It would then seem meaningful, to define the

intensity as a time average.

In the case of two fields E1 and E2, the intensity I can accordingly be

expressed as

I = 〈E · E∗〉 = 〈(E1 + E2) · (E∗
1 + E∗

2)〉 = 〈|E1|2 + |E2|2 + 2Re(E1 · E∗
2)〉.
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The angular brackets denote the time average 〈f〉 = limT →∞
1

2T

∫ T

−T
f(t)dt.

It will be assumed that all quantities are stationary (time average is indepen-
dent of the origin of time). Also, for convenience, the optical fields will be
assumed to have the same polarization so that their vectorial nature can be
ignored. Then I = I1 + I2 + 2Re〈E1E

∗
2 〉, where I1 = 〈|E1|2〉, I2 = 〈|E2|2〉.

Consider the general problem of coherence at some given field-point be-
tween waves from two source-points x1 and x2 emitted at different times.
Then, define the mutual coherence function (Zernike, 1938)

Γ12(τ) = Γ12(x1, x2, τ) = 〈E1(x1, t) · E∗
2 (x2, t + τ)〉,

where E1 is the optical disturbance at the point x1, E2 the optical disturbance
at the point x2, and τ = t2 − t1 is given by Δ
/c (where Δ
 is the optical
path difference between the two beams and c is the speed of light in vacuum).

A special case of interest arises when Young’s experiment is repeated with
a partially coherent source (say, quasi-monochromatic with a spectral width
Δν that is very small compared to the mean frequency ν, and also such that
Δx � c/Δν). In this case one can consider two fields arriving from the same
point x1 = x2) over different optical paths, which makes E1 different from
E2.

Defining the self-coherence functions

Γ11(τ) = 〈E1(x1, t) · E∗
1 (x1, t + τ)〉,

Γ22(τ) = 〈E2(x1, t) · E∗
2 (x1, t + τ)〉

as the complex autocorrelation of the fields due to the two beams, we find
Γ11(0) = I1, Γ22(0) = I2. Therefore,

I = I1 + I2 + 2
√

I1I2Re{γ12(τ)}

where

γ12(τ) =
Γ12(τ)

{Γ11(0)Γ22(0)}1/2

is known as the complex degree of coherence (in general, an approximately
periodic function of τ). In terms of |γ12(τ)|, we have the following types of
coherence: |γ12| = 1, complete coherence; |γ12| = 0, complete incoherence;
0 < |γ12| < 1, partial coherence (by the Cauchy–Schwarz inequality we always
must have 0 ≤ |γ12| ≤ 1).

Michelson (1890) introduced the concept of visibility of the interference
fringes — defined as the ratio

V =
Imax − Imin

Imax + Imin
.
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In terms of the degree of coherence it is equal to 2
√

I1I2
I1+I2

|γ12|. In particular,
if I1 = I2, then V = |γ12|, i.e., the fringe visibility is equal to the degree of
coherence, and the latter is then simply measurable.

For the Young experiment, one can specify the analytic form of the fields
E1 and E2 as: E1 = K1V1

(
t − r1

c

)
, E2 = K2V2

(
t − r2

c

)
, where K1 and

K2 depend on the size of the slits and r1 and r2 are the respective
distances from slits S1 and S2 to the field-point P , and V1(t), V2(t) are
stationary random functions which describe the light oscillations at S1 and
S2 respectively. Using the previous definitions, the intensity at P is given by

I(P ) = 〈
∣
∣
∣K1V1

(
t − r1

c

)
+ K2V2

(
t − r2

c

)∣
∣
∣
2

〉 = I1 + I2 + 2
√

I1I2|γ12| cos Φ12,

where

Φ12 = arg [Γ12(0)] +
2π

λ
(r1 − r2).

Because of the stationarity condition; γ12 depends only on τ = r1
c − r2

c and
not on r1

c and r2
c explicitly.

Also, since only quasi-monochromatic light is being considered, the exper-
iment is restricted to small path differences r1 − r2 � c

Δν .

When Young’s experiment is performed with very narrow-bandwidth ex-
tended sources, spatial coherence effects will predominate. The optical distur-
bances at the slits S1 and S2 will differ, and the fringe pattern will depend
on Γ12(0). By examining the region about the central fringe where r1 = r2,
γ12(0) can be determined. In this case, spatial coherence results primarily
from angular source size considerations. Thus, Γ12(0) plays a central role
in the measurement of stellar diameters. On the other hand, Γ11(τ) is a
measure of temporal coherence.

The first investigations which had a close bearing on the subject of partial
coherence appear to be due to Emile Verdet (1865 to 1869), who demon-
strated that the light from 2 pinholes in a screen illuminated by the sun will
interfere in Young’s experiment if the separation of the pinholes is less than
about 1

20 mm. Laue (1907) gave a quantitative measure for partial coher-
ence. Theoretical interest in this subject lay dormant until it was revived in
the 1930’s by P.H. van Cittert (1934, 1939) and Zernike (1938).

These authors determined the theoretical complex degree of coherence
γ12(P1, P2; τ = 0) for two points P1 and P2 on a planar screen illuminated
by an extended quasi-monochromatic primary source, having the shape of a
portion of a plane σ parallel to the screen. Assuming that the medium be-
tween the source and the screen is homogeneous, that the linear dimensions
of σ are small compared to the source-screen distance, and that the angular
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dimensions of the source as seen from any point on the screen are small, it is
found that

γ12(P1, P2; τ = 0) =
1

√
I(P1)I(P2)

∫

σ

I(S)
eik(r1−r2)

r1r2
dS,

where

I(P1) =
∫

σ

I(S)
r2
1

dS, I(P2) =
∫

σ

I(S)
r2
2

dS.

Here k is the average wave-number in the medium, I(S) is the intensity flux
per unit area (flux) of the source, and r1, r2 are the respective distances
between a typical source point S and the points P1 and P2 on the screen.
The above result also incorporate the assumption that the coherence time
from all point sources is larger than the time difference for all paths between
the source and the points of observation.

It can be shown that γ12 is the spectral amplitude diffraction-pattern at
P1 (centered on P2) when we replace the source by a diffraction aperture in
an opaque screen of the same size and shape as the source (Huygens-Fresnel
diffraction).

This result is known as the van Cittert-Zernike theorem847. Establishing a
coordinate system O(ξ, η) at the source S, and a parallel one O′(x, y) on
the screen, the above integral can be reduced to the form

γ12 ≈
∫∫

σ
I(ξ, η)e−ik(pξ+qη)dξdη
∫∫

σ
I(ξ, η)dξdη

eiΨ,

where

p =
x1 − x2

r
, q =

y1 − y2

r
, Ψ � k(OP1 − OP2);

r = OO′; P1 = (x1, y1); P2 = (x2, y2).

For a uniform circular source of diameter d, we find γ12 ≈ 2J1(v)
v eiΨ, J1

being the Bessel function of the first kind and first order, and v = π
λ

d
r P1P2.

847 Apart from its theoretical significance, the theorem is particularly important

from a computational point of view because the coherence calculation is nor-

mally more difficult than the calculation of the corresponding diffraction pat-

tern. Note that the theorem ties up two Fourier transform pairs, namely, the

coherence-intensity pair (visibility-brightness) to the diffraction pattern-aperture

pair .
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The function
∣
∣
∣
2J1(v)

v

∣
∣
∣ decreases steadily from the value of unity when

v = 0 to the value zero when v = 3.83; thus, as the points P1 and P2

are separated more and more, the degree of coherence steadily decreases and
there is a complete incoherence when P1 and P2 are separated by the distance

P1P2 = 1.21 λ
(d/r) . For the sun d

r ∼ 0 ◦32′ ∼ 0.009 radian, and consequently

P1P2 = 0.06 mm, as found by Verdet (1869) for λ = 5500 Å.

1935–1952 CE Alan Mathison Turing848 (1912–1954, England). Math-
ematician and logician. One of the founders of modern automata theory,
computer logic and artificial intelligence.

During 1935–1937, Turing developed theories for an idealized computing
device which can be considered as the theoretical prototype of present day
digital computers (known today as a Turing machine). His specifications
were:

(1) The machine has a finite, discrete set of different internal states.

(2) The input data is not restricted in size, i.e. no limit is placed on the
amount of information that the machine can process.

(3) The calculational procedure (algorithm) is the same finite set of instruc-
tions no matter how big the data stream.

(4) The machine must be allowed to call upon an unlimited external storage
space for its calculations849. [The question of whether the storage space
be regarded as internal or external is just a technicality. The internal
part could be the hardware and the external part the software.]

(5) The device ‘reads’ a tape with marks on it. These marks comprise a
linear sequence of squares. Each square is either blank or a single mark
(say, the symbols ‘1’ and ‘0’). The machine reads one square at a time,

848 For further reading, see:

• Hodges, A., Alan Turing, The Enigma, Simon and Schuster: New York, 1983,

587 pp.

849 The marvels of modern computer technology have provided us with electronic

storage devices which can be treated as unlimited for most practical purposes.
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and after each operation moves just one square to the right or left (as
determined by the algorithm).

(6) The device could also place new marks on the tape where required and
could obliterate old ones. The tape will keep running back and forth
through the device so long as further calculations need to be performed.
When the calculation is finally completed, the device comes to a halt and
the answer to the calculation is displayed on that part of the tape which
lies to one side of the device.

Problems that could be solved by the machine, were called by Turing
‘computable’.

In 1936 Turing solved Hilbert’s 23d problem by showing that there is no
unique way to prove or disprove all logical statements.

In 1952 Turing originated the mathematical theory of morphogenesis, the
development of pattern and form in living organisms. The main goal was
to show how a uniform and symmetric structure could evolve, through a
combination of diffusion and chemical reaction, into a strongly asymmetrical
structure with a definite pattern. Though this work was left unfinished, it
is a major contribution to mathematical biology. Through his equations850,
Turing introduced the concept of diffusion-driven instability (known today
as Turing instability). He showed that the presence of diffusion induces small
spatial perturbations into a uniform-mixture steady state. It is this instability
that eventually determines how the pattern or mode are selected. His work,
however, went unnoticed by the embryologists and chemists of his time.

In 1953, Turing suggested a new method for the determination of the
number of zeros of the Riemann zeta function in a given range.

Alan Turing was born in London, the son of a British member of the Indian
Civil Service who was away from his children during most of their childhood.
Turing was educated at King’s College, Cambridge. He completed his Ph.D.
at Princeton University (1938). During WWII he played a significant role in
breaking the German “Ultra” codes.

In 1945 he joined the staff of the National Physical Laboratory to lead the
design, construction, and use of a large electronic digital computer that was
named the Automatic Computing Engine (ACE). In 1948 he became deputy
director of the Computing Laboratory at the University of Manchester, where
the Manchester Automatic Digital Machine (MADAM, as referred to by the
press), the computer with the largest memory capacity in the world at that

850 A.M. Turing, The chemical basis for morphogenesis, Phil. Trans. Roy. Soc.

Lond. B 237, 37–72, 1952.
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time, was being built. His efforts in the construction of early computers and
the development of early programming techniques were of prime importance.

He also championed the belief that computers could be constructed that
would be capable of thought, and even proposed that machine thought could
more closely resemble human thought if a random element could be intro-
duced. Turing’s papers on this subject are widely acknowledged as the foun-
dation of research in artificial intelligence.

Turing was arrested for violation of British homosexuality statutes in 1952.
He died of potassium cyanide poisoning while conducting electrolysis exper-
iments. An inquest concluded that it was self-administered but it is now
thought by some to have been an accident.

Chemical Patterns, Clocks and Waves851

“Has it a clock? Or is it a clock?”

Collin S. Pittendrigh (1957)

Nonlinear systems, that is, systems governed by a set of nonlinear equa-
tions (algebraic, functional, ordinary differential, partial differential, integral,
stochastic or a combination of these) are used to describe a great variety of
phenomena, in the social and life sciences, as well as the physical sciences and
engineering. The theory of nonlinear systems has applications to problems
of economics, population growth, ecosystems, the propagation of genes, the
physiology of nerves, the regulation of heart-beats, chemical reactions, phase

851 For further reading, see:

• Nicolis, G. and I. Prigogine, Self–Organization in Nonequilibrium Systems,
Wiley, 1977, 491 pp.

• Prigogine, I., From Being to Becoming, W.H. Freeman, 1980, 272 pp.

• Prigogine, I. and I. Stengers, Order Out of Chaos, Bantam Books, 1984,
349 pp.
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transitions, elastic buckling, the onset of turbulence, celestial mechanics, earth
sciences, electronic circuits and many other phenomena.

Nonlinear system display certain characteristics that differ radically from
those of linear systems. One finds, in particular, that as a parameter changes
slowly a solution may change either slowly and continuously or abruptly and
discontinuously. In many applications of the theory of nonlinear systems
we are interested in enduring rather than transient phenomena, and so in
steady states. Thus, steady solutions of the governing equations are of special
importance.

Of these steady solutions, only the stable ones, (i.e., those which, when
slightly disturbed, are little changed afterwards), correspond to states which
persist in practice, and so are usually the only ones observable. It follows
that a state may change abruptly not only if it ceases to exist but also if it
becomes unstable as parameters change.

Another general phenomenon associated with nonlinearity is that as a re-
sult of an instability, a small cause may have a large effect — in the sense that
a small disturbance at a given instant may grow and become significant, to the
extent that after a long time the behavior of the system depends substantially
on the nature of the disturbance, however small it was.

For example, a spherical pendulum with the bob finely balanced directly
above its point of suspension, may be destabilized by a gentle breath on
it; further, the direction and timing of the ensuing motion of the pendulum
depend strongly on the very small disturbance of the unstable position of
equilibrium852.

A bifurcation occurs where the solutions of a nonlinear system change their
qualitative character as a parameter changes. In particular, bifurcation theory
is about how the number of steady solutions of a system depends on parame-
ters. The theory of bifurcations, therefore, concerns all nonlinear systems and
thus has a great variety of applications. Bifurcations of a nonlinear system
and the onset of instability of a solution usually occur at the same critical
value of a parameter governing the system.

The word bifurcation was coined by J.H. Poincaré (1885). In the study of
self-gravitating spinning fluids (relevant to planetary formation) he found that
a sequence of pear-shaped figures of equilibrium branches off the sequence of
Jacobi ellipsoids, just as Jacobi ellipsoids branch off the Maclaurin spheroids.
However, the significance of bifurcations first came to be recognized in the

852 E.N. Lorenz described this in a metaphor in which an unstable prairie at-

mospheric condition might be triggered by the flutter of the wings of a butterfly

in a distant jungle, and thereby a devastating tornado might arise.
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18th century. The work of L. Euler (1744) on the equilibrium and buckling
of an elastic column under load, and the work of J. le Rond d’Alembert
(1747) on the figures of equilibrium of a rotating mass of self-gravitating fluid,
are the foundations of bifurcation theory.

The ideas of bifurcation theory arose slowly and imperceptibly at first, be-
ing almost as old as algebra itself. At the simplest, we may view the quadratic
equation x2 − a = 0 as an example. If we examine the real solutions of this
equation as a function of the parameter a (real), we find that there are two for
a > 0, one for a = 0 and none for a < 0. This situation can be visualized
by a drawing of a parabola in the (x, a) plane (bifurcation diagram). The
point a = 0 is a bifurcation point, since there the qualitative character of the
solutions change (in this case, the number of solutions).

A less trivial example is the ODE dx
dt = a − x2, where the number and

character of the solutions depend critically both on a and on the initial value
x(0) = x0.

If we define an equilibrium point (or steady-state point) as that point in
the (a, x0) plane for which x(t) is time-independent, then these points lie on
the parabola x2 = a. The branch x = +

√
a, a > 0 corresponds to stable

solutions, while the branch x = −
√

a, a > 0 consists of unstable solutions.
The point (0, 0) is unstable. It is obvious from the explicit expression

x(t) =

⎧
⎪⎨

⎪⎩

x0+
√

a tanh(t
√

a)
1+x0 tanh(t

√
a)/

√
a

, a > 0
x0

1+x0t , a = 0
x0−

√
−a tan(t

√
−a)

1+x0 tan(t
√

−a)/
√

−a
, a < 0

that the solution may become infinite after a finite time, and the value of t
at the singularity will depend on x0 as well as on a. The point (0, 0) is a
bifurcation, since the number of steady solutions and their character changes
as a increases through zero.

The previous equation can be generalized into the form dx
dt = F (x). In

the case where the variable x represents a position, the latter equation may
be considered as an appropriate expression of the second law of dynamics in
the presence of very high damping. Similar equations are often encountered in
the thermodynamics of irreversible processes and in this case the term F (x)
is often called a ‘generalized force’.

If an explicit form of the potential function V (x) can be found such that

F (x) = −dV
dx , then the stability can be determined from the sign of d2V

dx2 .

For example, F (x) = −Kx − K1x
3 (K1 > 0) corresponds to the potential

V (x) = K
2 x2 + K1

4 x4. If K > 0, the origin x = 0 will be a point of stable
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equilibrium. If, however K < 0, the origin will be unstable, and two new

stable points will be located at x
(1,2)
0 = ±

√
|K|
K1

. Clearly, there is a bifurcation

at K = 0 of the single stable solution into two stable and one unstable
solutions.

An important branching of a time-periodic solution from a steady state
is known as a Hopf bifurcation (E. Hopf, 1942). For example, the system
ẋ = −y + (a − x2 − y2)x, ẏ = x + (a − x2 − y2)y, is stable at its steady-state
solution x = 0, y = 0 provided a < 0. The exact solution of this system is

r2(t) =

⎧
⎨

⎩

ar2
0

r2
0+(a−r2

0)e−2at , a �= 0
r2
0

1+2r2
0t

, a = 0

where x + iy = reiθ, θ = θ0 + t, and r = r0, θ = θ0 at t = 0. The solution
is written as x(t) = r(t) cos(t + θ0), y(t) = r(t) sin(t + θ0). For a ≤ 0,
all solutions vanish as t → ∞. However, for a > 0 the origin becomes
an unstable focus while a new stable periodic solution x =

√
a cos(t + θ0),

y =
√

a sin(t + θ0) arises as a increases through zero. Such a solution is called
a limit cycle, because it is a periodic solution approached by other solutions in
the limit as t → ∞. It is represented by a closed curve, in this case the circle
x2 + y2 = a, in the phase plane of the orbits. Thus, the periodic solutions
bifurcate from the null solution as a increases through zero.

Suppose that ẍ = f(x, λ), represents the equation of motion of a unit
mass under the influence of a force f , where x is the displacement of the
particle and λ is a parameter. Equilibrium points of the mass are given by
f(x, λ) = 0. If there exists a function V (x, λ) such that F (x, λ) = −∂V

∂x
for each value of λ, then V (x, λ) is the potential energy of the system and
equilibrium points correspond to stationary values of the potential energy.

We expect a minimum of the potential to correspond to a stable equilib-
rium point, and other stationary values (the maximum and points of inflexion)
to be unstable. In fact, V is a minimum at x = x1 if ∂V

∂x changes from neg-
ative to positive on increasing through x1; this implies that f(x, λ) changes
sign from positive to negative as x increases through x = x1. Hence the curve
f(x, λ) = 0 in the (λ, x) plane is the locus of all equilibrium points.

Suppose we shade the entire domain in which f(x, λ) > 0. If a segment
of the curve has shading below it, the corresponding equilibrium points are
stable, since for fixed λ, f changes from positive to negative as x increases. Bi-
furcation points mark transition from stable to unstable points on f(x, λ) = 0.
As λ varies through such points, the equilibrium point may split into two or
more equilibrium points, or several equilibrium points may merge into a single
one.
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Bifurcation points are therefore diagnostic of the dynamic behavior of a
parameter-dependent system in which both the number and stability of equi-
librium points may vary with the parameter(s).

Bifurcation is often associated with what is called symmetry breaking. A
symmetry of a nonlinear system manifests itself as invariance of the set of
all solutions under some group of transformations, but it does not necessarily
follow that each solution is itself invariant. Symmetry is broken at a bifur-
cation if all solutions are symmetric where a parameter is greater (or less)
than a critical value but some are asymmetric when the parameter is less (or
greater) than that value.

Also, oscillations occur in many applications, so periodic solutions and
their stability are important too. Further, unsteady solutions may occur which
are seemingly random functions of time with stationary statistical properties;
these are chaotic solutions or, more precisely, strange attractors. A chaotic
solution also may be stable in the sense that it persists even (with changed
detailed behavior but unchanged statistical properties) when the solution is
perturbed slightly at some time.

The observed patterns and ordered structures of living organisms have
long been a puzzle to biologists and were crying out for an explanation based
on the physicochemical laws of nature.

A nonlinear partial differential equation of major importance in mod-
ern theoretical biology and nonequilibrium thermodynamics is the reaction-
diffusion equation. The equation of conservation of matter for the flux of
material J , concentration c and sources f , reads

∂c

∂t
+ div J = f(c, r, t).

Substituting J = −D grad c (Fick’s law), we find an equation for c(r, t):

∂c

∂t
= f + D∇2c

for fixed diffusivity D. This equation is referred to as the reaction-diffusion
equation.

Such a mechanism was proposed as a model for the chemical basis of
morphogenesis by Turing (1952), and has been widely studied since 1970.
Examples for its application will be discussed next. They involve the complex
behavior of those chemical systems exhibiting self-organization phenomena,
such as the formation of stationary spatial structures or periodic oscillatory
states.
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• Spatial pattern formation. Morphological order is the most conspicuous
attribute of living species. Leaves, branches, skin, hair, legs, all appear with a
well-defined order and relationship with respect to each other. Moreover, this
morphological order and its sequential unfolding in space and time is engraved
in the tiny seeds and minute fertilized eggs.

Whatever pattern one chooses to focus on in the animal or plant worlds, it
is almost certain that the process that produced it is unknown. Although
the mechanism must be genetically controlled, the genes themselves cannot
create the pattern. They only provide a blueprint, or recipe, for the pattern
generation. The problem is then to discover how genetic information is phys-
ically translated into the necessary pattern and form as manifested in the
phenotype.

H.A.E. Driesch (1867–1941, Germany), a biologist and philosopher, pro-
posed (1895) that morphogenesis (the birth of forms) is the consequence of
the onset of various gradients of unspecified nature in the developing embryo.
In order to substantiate these ideas, Turing (1952) suggested that during
stages in the development of an organism, chemical constituents generate a
prepattern that is later interpreted as a signal for cellular differentiation. In
other words, cells are pre-programmed to react to chemical concentration so
that the cell can read out its position in the coordinates of chemical concen-
tration and differentiate, undergo appropriate cell shape change, or migrate
accordingly. Such chemical substances have been called morphogens.

According to Turing, the prepattern is generated through the processes of
reaction and diffusion such as to produce a steady state heterogeneous spatial
patterns.

Consider two chemicals with the respective concentrations C1(r, t) and
C2(r, t). Let R1(C1, C2) be the generally nonlinear rate of production of
C1, R2(C1, C2) the rate of production of C2, and {D1, D2} the respective
diffusion coefficients of the chemicals.

The governing system of equations is then of the form

∂C1

∂t
= R1(C1, C2) + D1∇2C1,

∂C2

∂t
= R2(C1, C2) + D2∇2C2.

Turing explained why this system is expected to form spatial patterns: If in
the absence of diffusion (D1 = D2 = 0) C1 and C2 tend to a stable uniform
steady state

(
∂C1
∂t = ∂C2

∂t = ∇C1 = ∇C2 = 0
)
, then this equilibrium may

be disturbed by the addition of the diffusion terms, provided D1 �= D2 and
certain other conditions hold. This instability, driven by diffusion, is precisely
the cause of the formation of the spatial patterns.
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To see intuitively how this pattern is formed due to diffusion, it is sufficient

to consider the one-dimensional case and with the simplest form of R1 and

R2, namely R1 = aC1 + bC2, R2 = cC1 + dC2; i.e.,

∂C1

∂t
= aC1 + bC2 + D1

∂2C1

∂x2
,

∂C2

∂t
= cC1 + dC2 + D2

∂2C2

∂x2
.

Assume small deviations from equilibrium: C1 = C10 + U , C2 = C20 + V .

Clearly, if at time t = 0, U = V = 0 for all values of x, then U and V will

continue to be zero. If this equilibrium is disturbed, then for most values of

the constants {a, b, c, d, D1, D2} equilibrium will be restored and {U, V } will

tend to zero everywhere as t increases. Consequently, no spatial pattern will

emerge.

Surprisingly, however, there are values of the constants for which the ho-

mogeneous equilibrium is unstable: Let a > 0, c > 0, b < 0, and D2 > D1.

These inequalities will guarantee the following traits: if the concentration U

rises above its equilibrium level, the rate of synthesis of both U and V will

rise; if the concentration of V rises, it leads to destruction of U ; V diffuses

faster than U .

Suppose now that the homogeneous equilibrium is disturbed by a small

local rise in U . This will lead to further rises in both U and V , but V has
diffused out further. At those new regions where V has penetrated, but U

hasn’t yet, C1, will be reduced and fall below its equilibrium value (U < 0).

This in turn will lead to destruction of morphogen V , so that a ‘trough’ will

developed on either side of the initial peak.

These troughs will cause the developments of further peaks, and so on un-

til a standing wave has developed, whose ‘chemical wave-length’ will depend

on the values of the constants defining the rates of reaction and diffusion. The

morphogen C1 is known as activator, while C2 is the inhibitor. A reaction-

diffusion system thus exhibits diffusion-driven instability or Turing instability
if the homogeneous steady state is stable to small perturbations in the ab-

sence of diffusion but unstable to small spatially varying perturbations when

diffusion is present. A particular pattern will depend on the analytical form

of R1(C1, C2) and R2(C1, C2).

For the case of boundary conditions enforcing spatial periodicity with pe-

riod Δx = 1, Turing gave an explicit general solution to the one-dimensional
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linear PDE set ((X0, Y0) are concentrations at uniform equilibrium);

∂X

∂t
= a(X − X0) + b(Y − Y0) + Mx

∂2X

∂x2
,

∂Y

∂t
= c(X − X0) + d(Y − Y0) + My

∂2Y

∂x2
,

in the form of an infinite Fourier-series

X(x, t) = X0 +
∞∑

n=− ∞
(Anepnt + Bnep′

nt)einx,

Y (x, t) = Y0 +
∞∑

n=− ∞
(Cnepnt + Dnep′

nt)einx

where {pn, p′
n} are the roots of the quadratic

(p − a + Mxn2)(p − d + Myn2) = bc

and

An(pn − a + Mxn2) = bCn,

Bn(p′
n − a + Mxn2) = bDn.

The Fourier coefficients can be considered as the spectral amplitudes of the
standing wave pattern, and depend on the six parameters {a, b, c, d, Mx, My}.

• Chemical clocks. In 350 BCE an officer in the army of Alexander the Great
noted that the leaves of certain plants were open during daytime and closed
at night. Until the 1700’s such rhythms were viewed as passive responses to
a periodic environment, i.e., the succession of light and dark cycles due to
the natural day length. In 1729, the astronomer Jean Jacques d’Ortous
de Mairan (1678–1771, France) conducted experiments with a plant and re-
ported that its periodic behavior persisted in a total absence of light cues.
Although his results were disputed at first, further demonstrations and ex-
periments by the botanist Wilhelm Friedrich Philipp Pfeffer (1845–1920,
Germany), during 1875–1915, gave clear evidence in support of the observa-
tions that many physiological rhythms are endogenous (independent of any
external environmental influences).

We now know that most organisms have innate ‘clocks’ that govern peaks
of activity: seasonal periodicities of plants, heart-beat of animals and circa-
dian rhythms (periodic phenomena which appear with a period of approxi-
mately one day), and menstrual cycles are familiar manifestations of temporal
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organization in nature. These large-scale rhythmic behaviors require the co-
operation of a great many cells.

In the last decades of the 19th century, a mathematical formalism for the
description of self-organized states was developed for the study of planetary
motion by J.H. Poincaré (1881 to 1889); A.M. Lyapunov (1892 to 1906),
and I. Bendixon853 (1901). Concurrently, interest grew in the study of non-
linear differential equations that originated in the fields of engineering and the
applied sciences [G. Duffing (1918), B. van der Pol (1922), V. Volterra
(1926)].

Until the beginning of the 20th century, all laboratory chemical reactions
were performed in closed systems: Various reactants were combined in a ves-
sel, forming a closed thermodynamic system, in such proportions as to keep
the reaction initially very far from equilibrium. In such conditions the quan-
tity of the new-formed products increased gradually until the mass action law
is satisfied at an equilibrium state. However, in 1916 T.H. Morgan, while
experimenting with a reaction medium that contained hydrogen peroxide,
formic acid, and sulfuric acid, observed a periodic release of carbon monoxide.

Earlier (1910), A.J. Lotka suggested a theoretical reaction which ex-
hibits damped oscillations. Indeed, W.C. Bray (1921) discovered decaying
oscillations in the concentrations of iodine in a hydrogen peroxide – iodate
ion (IO−

3 ) reaction. This interesting and important work was dismissed and
widely disbelieved since, among other criticisms, it was mistakenly thought
to violate the second law of thermodynamics.

Thus, these few ‘abnormal’ oscillating chemical reactions went almost un-
noticed by most chemists until the 1960’s, when a few oscillatory biochemical
processes were discovered that operate on the cellular level. For example, the
synthesis of some proteins by cells follows an oscillatory pattern.

The development by Prigogine (1947) of the thermodynamics of far-
from-equilibrium processes was a great leap forward in our understanding of
biological systems. It showed that thermodynamic methods can predict the
onset of spatio-temporal order in an open chemical system. Moreover, such
systems must necessarily evolve according to nonlinear kinetics, and therefore
must be described by nonlinear coupled partial differential equations of the
type that produces limit cycles.

Therefore, the fact that a great number of chemical processes in living
organisms produce the observed spatio-temporal order is in complete accord
with the macroscopic laws of nonequilibrium thermodynamics.

853 Ivar Otto Bendixon (1861–1935, Sweden). Mathematician. His important

memoir (1901) supplemented some of Poincaré earlier work.
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The fact that predator-prey type equations hold for certain autocatalytic
chemical reactions, leads to the conclusion that chemical ‘clocks’ must exist.
However, in the Lotke-Volterra model, the period of oscillation is a function of
the initial prey and predator populations, and therefore essentially arbitrary
(because it is amplitude dependent). The oscillation frequency of any clock
worthy of the name, must be independent of the externally determined initial
conditions and is, rather, self-determined by the intrinsic characteristics of
the system itself.

The initial conditions may only influence the behavior of the system dur-
ing the transient which precedes the establishment of the oscillating state.
Periodic oscillations, when they correspond to a limit cycle behavior, may be
considered as self-organization phenomena.

One mathematical model of reactions which exhibited an oscillatory be-
havior corresponding to a limit cycle is the so-called Brusselator (Prigogine
and Lefever, 1968). This trimolecular model is the most widely known theoret-
ical model of chemical instability phenomena, although it does not represent
a actual chemical reaction. It corresponds to the scheme of reaction in four
steps:

A
k1−→X, B + X

k2−→Y + D, 2X + Y
k3−→3X, X

k4−→E,

where the k’s are rate constants.

The concentrations of the initial and final products (A, B, D and E) are
kept constant, whereas the two components X and Y have concentrations
that change with time, and also have different observable properties (e.g.,
colors). Since A + B → D + E in the complete process, X and Y have the
role of intermediates. Their only function is that of mediating the conversion
of the reagents A and B into the products D and E without undergoing any
permanent transformation at the end of the reaction cycle.

Note that the third step is a trimolecular autocatalytic step which is nec-
essary for oscillatory behavior. In the above scheme, the reverse reactions
were ignored because the conditions of irreversibility are realized by holding
the concentrations of A, B, D, E far from their equilibrium values.

The reaction-diffusion equations corresponding to the above scheme are
(t being ordinary time)

∂X

∂t
= D1∇2X +

{
k1A − (k2B + k4)X + k3X

2
Y
}

,

∂Y

∂t
= D2∇2Y + {k2B X − k3X

2
Y }.
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With the scalings t = k4t, X =
√

k3
k4

X, Y =
√

k3
k4

Y , B = k2
k4

B,

A = k1
k4

√
k3
k4

A D1 = 1
k4

D1, D2 = 1
k4

D2, the reaction-diffusion equations

acquires the nondimensional form

∂X

∂t
=

{
A − (B + 1)X + X2Y

}
+ D1∇2X,

∂Y

∂t
= {BX − X2Y } + D2∇2Y.

These equations are first investigated without the diffusion terms (‘well-
stirred ’ Brusselator). It is then found that the system has only one stationary

state at X0 = A, Y0 = B
A . This steady state becomes unstable (via a Hopf

bifurcation) for B > 1 + A2, provided that B remains fairly close to 1 + A2.

Thus, for A = 1, B = 2, the equilibrium point
(
A, B

A

)
is stable. However,

as soon as B is increased to 2.2 it is seen that this point is unstable, a limit

cycle appears, and a chemical oscillation develops.

As B is further increased to the value 3, the limit cycle is still present

although its form has changed. The period of the Brusselator in the vicinity

of the bifurcation (B ≈ 1 + A2) is 2π
A .

In the presence of one-dimensional diffusion (unstirred Brusselator), in the

x direction say, it can be shown that instability may arise in different ways:

In addition to the above Hopf bifurcation there is the possibility of a Turing
bifurcation in which a pattern of a standing wave arises. Finally, the limit

cycle may also be space dependent and lead to a traveling concentration wave[
B ≥ 1 + A2 + (D1 + D2)π2 m2

L2 where m is an integer and L is the length of

the system ].

As a chemical clock (absent diffusion), the Brusselator mimics the ex-

perimentally observed chemical oscillations in a somewhat more complicated

system, found by B.P. Belousov and A.M. Zhabotinsky (1958, 1964).

Their system shows a spectacular oscillatory change of colors from red to

blue. Since chemical reactions are at the foundations of biological events, this

model may offer also an understanding of the action of biological clocks (such

as the control mechanism of the heart).

Indeed, a biochemical clock which seems to behave like a limit cycle oscil-

lator occurs in glycolysis and is readily studied in yeast cells. The question of

whether these and other rhythms, such as opening and closing of plants, are

limit cycles or harmonic oscillations has not been resolved yet.
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• Chemotaxis: The diffusion-reaction equation is also adequate to model
natural phenomena of chemical signaling that occurs on all levels of the living
world (insects, animals, leukocyte cells, single-cell amoebae, etc.). The chem-
ically directed motion of cells up the gradient of concentration of a chemical
is known as chemotaxis. For example, a large number of insects and animals
rely on an acute sense of smell for conveying information between members of
the species. When a bacterial infection invades the body it may be attacked
by movement of cells toward the source as a result of chemotaxis.

Let n(r, t) be the concentration of the moving cells, and a(r, t) the
concentration of an attractant chemical which gives rise to the cell motion up
its gradient. We start from the conservation equation for n(r, t), namely
∂n
∂t + divJ = f(n), where f(n) represents the growth term for the cells, and
J = D gradn + nχ(a) grad a is the total flux of the cells: it has the ordinary
diffusion contribution {D gradn}, plus the extra chemotactic flux due to the
presence of the attracting chemical that increases with the number of cells,
with the gradient of the chemical attractant concentration and with a factor
χ(a) that is a function of the attractant concentration.

Since the attractant is a chemical, it also diffuses and is produced, par-
tially perhaps, by the moving cell itself (amoebae, say). It obeys the equation
∂a
∂t = g(a, n) + div(Da grad a), where Da is the diffusion coefficient of a and
g(a, n) is the source term. The combined set of equations for n and a define
a diffusion-chemotaxis process. The balance between the stabilizing diffusion
term and the destabilizing chemotaxis term could result in some steady-state
spatial patterns in n and a, and in some unsteady wave-like spatially hetero-
geneous structures.
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Turing Machines, or —

What is a Computation?

Although people have been computing for millennia, it has only been since
1936 CE that we have possessed a satisfactory answer to the above title ques-
tion. Along with the development of modern computers, has emerged a new
branch of applied mathematics — theory of computation: the application of
mathematics to the theoretical understanding of computation. The founda-
tions of this theory were laid by Emil Post (1920), Alan Turing (1935) and
Alonzo Church (1936).

There are many different styles of mathematics. At one extremity is the
pure existence proof, asserting that an object with certain properties must
necessarily exist, but giving no method to find it. This is part of dialectic
mathematics — a rigorously logical science, where statements are either true
or false and where entities either do or do not exist. It is an intellectual game
played according to rules about which there is a high degree of consensus.
Dialectic mathematics invites contemplation and generates insight. It origi-
nated with the Greeks. Throughout most of the 19th century, mathematics
has been existence-oriented.

At the other end is algorithmic mathematics854 — a tool for solving prob-
lems by means of a perfectly definitive procedure guaranteed to calculate

854 Algorithm: a step-by-step recipe (instruction set) for performing some kind

of calculation: e.g. the algorithmic solution to the equation x2 = 2 is

xn+1 = 1
2

(
xn + 2

xn

)
, n = 1, 2, . . .. The corresponding dialectic solution uses

the function y = x2 − 2. Since f(1) = −1 and f(2) = 2, as x moves contin-

uously from 1 to 2, y moves continuously from negative to positive values.

Hence, somewhere between 1 and 2 there is an x = x0 such that y = 0,

i.e. x2
0 = 2.

The details of the argument are supplied by the properties of the real number

system and of continuous functions defined on that system. The first significant

algorithm is to be found in Euclid’s Book Seven where he taught us how to

calculate the highest common factor of two numbers.

For some particularly simple Diophantine equations (Diophantos of Alexan-

dria, ca 250 CE), there are known algorithms (e.g. for linear and quadratic

equations in at most two unknowns). The name algorithm is associated with

Al-Khowarizmi, who outlined (ca 825 CE) the rules for performing basic

arithmetic operations, using numbers expressed in the Hindu decimal notation

that we use today.
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exactly what is required, if and only if one waits long enough. The rules of

the game may vary according to the urgency of the problem at hand (we never

could have put a man on the moon if we had insisted the trajectories should

be computed with dialectic rigor). Algorithmic mathematics invites action
and generates results. The mathematics of Babylon and the ancient orient

was all of the algorithmic type.

Between the two extremes are constructive techniques which provide a

more explicit description of the desired results or objects then in pure existence

proofs.

The problem of transcendental numbers illustrates all three styles well.

Cantor’s existence proof exhibits not a single transcendental. It merely ob-

serves that since there are more reals than algebraic numbers, transcendentals

must exist. At the intermediate level are transcendence proofs for specific
numbers, such as: π, e, 2

√
2. An algorithm for transcendence would be a

general method of deciding, for any number whatsoever, whether it does or

does not satisfy an algebraic equation. No such technique is known.

There have been extensive philosophical arguments about the value and

nature of these types of result. Does a pure existence proof really convey any

useful information? One school of modern mathematics, the Constructionism,

take a very restrictive position and refuses to consider any non-constructive

arguments at all. Others believe that in order to calculate something, it is

useful to know in advance that it exists.

Throughout most of the 19th century, mathematics has been existence-

oriented. Then, at the turn of the 20th century (and especially since 1936)

there occurred a partial shift back to constructive, or algorithmic, points of

views.

Indeed, David Hilbert (1928) proposed a problem (known as the

“Entscheidungs problem” — the decision problem) as a fundamental prob-

lem of the newly developing field of mathematical logic. It can be stated as

follows: a finite list of statements called premises is given together with an

additional statement called the conclusion. The logical structure of the state-

ments is to be explicitly exhibited in terms of “not”, “and”, “or”, “implies”,

“for all” and “there exists”.

Hilbert wanted a computing procedure (algorithm) for testing whether or

not the conclusion can be deduced (using the rules of logic) from the premises.

Hilbert regarded this problem as especially important because he expected
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that its solution would lead to a purely mechanical technique for settling the

truth or falsity of the most diverse mathematical statements. (Such state-

ments could be taken as the conclusion, and an appropriate list of axioms

as the premises to which the supposed computing procedure could be ap-

plied). The end result of his programme would thus lead to a rigorous proof

of the consistency of systems such as: logic; logic combined with set theory;
or arithmetic.

However, research during 1930–1936 showed that there are problems that
had no algorithmic solution! First, Gödel (1930) showed that there are true

statements in arithmetic that can never be proved. In other words — one

cannot prove that arithmetic is consistent. At about the same time, Alan

Turing was working in mathematical logic, with a view to clarifying the

notion of computability. He discovered that certain very natural questions

have no answer whatsoever, i.e. — there is no solution using any method

available to human beings.

Turing based his precise definition of computation on an analysis of what

a human being does when he computes. Such a person is following a strict

set of rules which can be carried out in a completely mechanical manner.

In this process (be it long division, algebraic manipulations or steps in

solving a calculus problem) there are irrelevant parts which are logically un-

necessary and are included only to speed up specific operations. Turing de-

scribed an idealized computer (Turing machine) with the most rudimentary

structure possible.

Imagine an infinite tape (one dimensional paper) divided into square cells,

passing under a head which can be in a finite number of initial states. The

head can read what is on the tape, and optionally write symbols 0 and 1
on it. Only 0 and 1 are required since any information can be encoded

using just 0s and 1s (e.g. a Morse code with 0 representing a dot and 1
a dash).

The machine behavior is controlled by a kind of computer program (Tur-
ing-Post program). This consists of a sequence of numbered steps, each step

being one of seven instructions:
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Instruction Programming Language Statement

Write the symbol 1 PRINT 1

Write the symbol 0 PRINT 0

Move the tape forward one cell GO RIGHT

Move the tape backward one cell GO LEFT
{

Observe the symbol currently scanned
and choose the next step accordingly

GO TO instruction i IF 1 IS SCANNED

GO TO instruction j IF 0 IS SCANNED

Stop STOP

In order that a particular Turing-Post program begin to calculate, it must
have some “input” data. That is, the head begin scanning at a specific square
of a tape already containing a sequence of zeros and ones. The machine
processes the data according to the program, and then stops.

Turing showed that anything a computer can calculate, can also be com-
puted by a Turing machine. Moreover, he showed (1936) how to construct
a universal machine capable of simulating the action of any program in any
Turing machine. This is equivalent to saying that any computer, given enough
time and memory, can be programmed to simulate any other computer. So,
for theoretical purposes, we may think of all computers as capable of being
emulated by Turing machines [Church-Turing thesis]. This also implies that
there exists a single Turing-Post program which can compute everything that
is computable.

At this point we may define an algorithm to be a Turing-Post program
that eventually halts no matter what input is presented to the Turing machine
who runs it. Clearly, an important property of an algorithm is that it should
eventually stop with a definite answer. A calculation that may go on forever
is not of much use. However, a Turing-machine may, in principle go on forever
(e.g. ‘move right looking for 1s’ will not stop if there are no 1s’ to the right
of the head).

In light of this possibility there arises the Halting Problem for a particular
Turing-Post program: to distinguish between initial inputs which lead to the
program’s eventually halting and initial inputs which lead the program to run
forever. In other words, is there a method for determining in advance which
input data leads the program to halt and which do not.

The answer is no. The halting problem is unsolvable (undecidable). Turing
proved this in 1936 indirectly by reductio ad absurdum. Thus, a problem is
undecidable if there exists no algorithm to solve it, and the undecidability of
the Halting Problem places definite limits on the applicability of algorithms.
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Another problem which proved to be unsolvable was the ‘word problem’
of Axel Thue (1908): Is there an algorithm for deciding, for any given al-
phabet and a set of production rules, whether or not any given two words are
equivalent855? Emil Post proved (1947) that the unsolvability of the halting
problem leads to the existence of an unsolvable word problem. Work on un-
solvable word problems has turned out to be extremely important, leading to
unsolvability results in different parts of mathematics such as group theory
and topology.

Yet another problem that eventually turned out to be unsolvable first ap-
peared as the 10th in a famous list of 23 problems posed by David Hilbert
in 1900: he challenged to determine whether or not any given Diophantine
equation has integer solutions856. Here the name refers to any algebraic equa-

855 Any string of letters is called a word of the alphabet. Given two arbitrary words

on the alphabet, the problem is of determining whether one can be transformed

into the other by a sequence of substitutions that are legitimate using the given
rules. Unsolvability means here that no computational process exists for deter-

mining whether or not two words can be transformed into one another using

the given rules.

Example: given an alphabet of three symbols a, b, c, and three rules encoded

by the equations ba = abc; bc = cba; ac = ca, we can obtain other equations
by substitution such as

bac = abcc

bac = bca = cbaa = cabca = acbca = cabca = cabac = cabca

= cacbaa

(the letter strings in boldface type are the symbols about to be replaced). In
this context questions can be raised such as: Can we deduce from the three

equations listed above that

bacabca = acbca?

856 Examples: The equation 4x − 2y = 3 has no solution in integers because the

l.h.s. would have to be even while the r.h.s. is odd. On the other hand the

equation 4x − y = 3 has infinitely many solutions in integers (e.g. x = 1,

y = 1; x = 2, y = 5). The Pythagorean equation x2 + y2 = z2 has also

infinitely many integer solutions, but xn + yn = zn for n > 2 has none. Like-

wise x2 + y2 = 2, considered as a Diophantine equation, has only 4 solutions

(1, 1); (1, −1); (−1, 1); (−1, −1). If we change the equation just slightly, say

to x2 + y2 = 3 there are no integer solutions at all. Thus, a Turing machine

might work forever on this equation without producing any solution. From the

point of view of a computer — the equation is unsolvable.
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tion in one or more variables, with integer coefficients (the adjectival use of
the word Diophantine refers not to the equation so much as to the kind of
solution which is sought). The problem stayed open until 1970, when Yuri
Matijasevich used the Fibonacci numbers to prove that there cannot be an
algorithm of the kind requested by Hilbert.

There is perhaps no better example of the limited computability by com-
puters than a mathematical problem [raised by Karl Menger857(1930)] which
has resisted all attempts at a general solution via traditional methods. It is
known as the Traveling Salesman Problem (TSP): given a network of cities
and roads, find a tour that takes the salesman (tourist) to each city exactly
once such that the total distance traveled is minimized. The order in which
the cities are visited is of no importance (sometimes it is required that the
tour begins and ends at the same location).

The only known algorithm for solving the problem is the laborious unin-
sightful one of trying every possibility, and a computer can be easily pro-
grammed to do just that. To date, no faster algorithm has been found, not
even a theory, except for special cases. Nor has anyone been able to prove
the impossibility of a faster algorithm (this field of endeavor is known as
complexity theory).

But the listing of all possible routes is practical only for a modest number of

locations; If there are N locations to visit, then there are N ! ≈
(

N
e

)N √
2π N

possible different itineraries, which will obviously lead to an exponential-time
algorithm858. Already for N = 10 there are 3, 628, 800 possible routes. This
can be achieved by a modern computer, but when we go up to N = 25, the

857 (1902–1985, Austria and USA). Mathematician. Born in Vienna and completed

his Ph.D. on dimension theory (1924). Forced by the Nazis (1938) to leave

his chair of geometry at the University of Vienna and immigrated to US. Even

after the war, the ex-Nazis at the University of Vienna told him that he was

unwanted there... He worked at the University of Notre Dame (1938–1948) and

then spent the rest of his career at the University of Illinois.
858 An algorithm (a Turing-machine program) is said to run in polynomial time if

there are fixed integers A and k such that for input data of length n, the

computation is complete in at most Ank steps (for any value of n). For ex-

ample: the addition of two numbers, each with n
2

digits (input data of length

n), involves exactly n steps (allowing for carries). Thus the above definition is

valid with A = k = 1. In the multiplication of two n
2
-digit numbers there are

n2

4
basic digit multiplications, n2

4
carry–and–add operations, and the finally

n − 1 3 digits addition steps as encountered in an addition problem; this add

up to n2

2
+ n − 1 steps in all. Since n2

2
+ n − 1 < n2, the above definition

holds with A = 1, k = 2.
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number of routes to consider mounts to 16 × 1025 while for N = 100, of or-
der 3×10161 single–digit decimal arithmetic calculations must be performed
for all possible tours, requiring of order 10145 years on today’s fastest super-
computers. While a tour of 25 cities is quite realistic for a real-life salesmen,
not many salesmen need to visit 100 cities, yet the TSP is important because
it has far wider applications859 than just in the travel industry.

Algorithms which require nn or n! steps to handle data of length n (say, the

number of cities in the TSP) are exponential time algorithms.

For an algorithm to be efficient (fast), it should run in polynomial time, pro-

vided of course that A and k are modest (values like A = 1010 and k = 100

are hardly likely to be ‘efficient’ in any real sense). Assuming that a computer

performs one basic operation in 10−6 sec, the dependence of the computation

time on the data size for a number of exponential and polynomial time models

is roughly as follows:

Size
of data:

Run times for given computation complexity formula:

n n n2 n3 2n 3n

10 10−8 s 10−7 s 10−6 s 10−6 s 5.9 · 10−5 s

20 2 · 10−8 s 4 · 10−7 s 8 · 10−6 s 10−3 s 3.5 s

30 3 · 10−8 s 9 · 10−7 s 2.7 · 10−5 s 1 s 57 hours

40 4 · 10−8 s 1.6 · 10−6 s 6.4 · 10−5 s 18.3 m 389 years

50 5 · 10−8 s 2.5 · 10−6 s 1.25 · 10−4 s 13 days 23 My

60 6 · 10−8 s 3.6 · 10−6 s 2.16 · 10−4 s 36.6 years 1.4 trillion
years

Note that 1.4 × 1012 years exceeds by about three order of magnitude the

current estimate of the age of the universe.
859 For example, electronic circuit board manufacturers have to drill as many as

65, 000 holes on their boards using laser drills. Finding the best way to drill

the holes turns out to be a TSP, since it involves finding the shortest tour that

visits each hole exactly once. And in fact, a team of academic and industrial

researchers recently established a record for the TSP by finding the exact mini-

mal distance path for visits of 3038 cities, where the “cities” were indeed holes

drilled on a printed circuit board.
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So, arriving at a solution by listing all the possibilities is obviously out of
the question except when a small number of locations are involved. Modern
computers, however, were able to solve specific instances of the problem using
special ad-hoc methods. Thus, a smart algorithm (1970) needed to exam-
ine only 61 relevant cases out of a vast number of 33 × 1049 possibilities.
Another specific problem was solved (1979) for 318 locations.

The Catastrophe Paradigm (1937–1972)860

Classical physics is essentially a theory of smooth behavior according to
Newton’s laws of motion. This is certainly manifested in the awe-inspiring
stable motion of the planets in their courses around the sun. However, in
our daily experience here on earth we meet other phenomena: water suddenly
boils, ice melts, the earth quakes, bridges collapse, buildings fall, hearts fail,
stock markets crash, wars erupt. The back of a camel is stable, we are told,
under the load of n straws, but breaks suddenly under a load of n + 1.

All these are sudden changes caused by smooth alterations in the situation.
Such changes are far more difficult to predict and analyze than the stars in
their courses and the sciences (from physics to economics and psychology) are
still developing the analytical techniques to handle such abrupt behavior.

There are numerous kinds of “jump” phenomena. There are forces that
build up until friction can no longer hold them: when friction gives way an
earthquake results. There is a critical population density below which certain
creatures grow up as grasshoppers, above which as locusts: this is why locusts,
when they do occur, do so in a huge swarm.

860 To dig deeper, see:

• Poston, T. and I. Stewart, Catastrophe Theory and Its Applications, Dover,

1996, 491 pp.

• Woodcock, A. and M. Davis, Catastrophe Theory, Avon, 1980, 151 pp.
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A cell suddenly changes its reproductive rhythm and doubles and redou-

bles, cancerously. In engineering, for example, the gradual buildup strain on

the structure of a bridge can eventually result in a sudden collapse. These phe-

nomena occur also in economical and psychological events. They are named

catastrophes861, to convey the feeling of abrupt and dramatic changes, and the

subject has (since 1973) become known as catastrophe theory.

It is an attempt to describe those situations in which small gradually

changing forces lead to large abrupt changes, or otherwise stated — the treat-

ment of a continuous action producing a discontinuous result. It is capable of

dealing with evolution of many natural phenomena that proceed by a series of

gradual changes that are triggered by, and in turn trigger, large-scale changes.

Consider the potential function of a system having two variables
V (x, y; α, β), where α, β are some parameters which characterize the strengths

of interaction between various parts of the system (properties of materials,

amount of heat being supplied or extracted, etc.).

For fixed values of α, β, an equilibrium state of the system is determined

by the equation gradV = 0 (i.e. ∂V
∂x = ∂V

∂y = 0) and by the behavior of

the scalar Δ = ab − h2, where a = ∂2V
∂x2 , b = ∂2V

∂y2 , h = ∂2V
∂x∂y at the

equilibrium point(s). In the regular case (Δ �= 0) there are two possibilities:

either the system stays near equilibrium and the potential V increase from its

equilibrium state for every conceivable tiny change in x, y (Δ > 0, ∂2V
∂x2 > 0;

stable) or there is no increase in V for some small alternation to x, y and the

system tends to move away from equilibrium (Δ �= 0, ∂2V
∂x2 < 0 or Δ < 0;

unstable).

861 The word’s overtones of disaster are, for most applications, misleading.

‘Catastrophe theory’ is in fact a model (paradigm), not yet an explanation.

It is, in fact, an assemblage of mathematical and physical ideas.

‘Catastrophe theory’ is not the first mathematical method capable of treating

divergent phenomena. The buckling of a beam one way or the other as stress

increases is just such a phenomena, and was first analyzed by Euler (1744).

Many similar problems of elasticity were well understood in their own terms

by engineers long before ‘catastrophe theory’ was proposed, and for these we

cannot expect the new mathematics to render new practical information —

only a reformulation. ‘Catastrophe theory’ will, however, shed light on more

complicated cases.
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Choosing (without loss of generality) the origin at equilibrium,

V (0, 0) = Vx(0, 0) = Vy(0, 0) = 0,

the Taylor-series expansion for V near the origin will take the form

V =
1
2

(ax2 + 2hxy + by2)+ higher order terms.

Now, it is well known that the curve ax2 + 2hxy + by2 = F , where F is

constant, is a conic section. If Δ = ab − h2 > 0 then it is either an ellipse

(if aF > 0) or has no real points (if aF < 0). If Δ = ab − h2 < 0 then it

is a hyperbola, with the sign of aF determining which of the two principal
axes is the transverse axis. By considering the intersections of the surface
z = V (x, y), with planes z = ±ε, where |ε| is small, the above conditions
follow.

In the neighborhood of a non-degenerate critical point (Δ �= 0), the func-
tion of one variable can be closely approximated by a parabola, opening up-
wards for a minimum or downwards for a maximum. The generalization for a
function of two variables is that near a non-degenerate critical point it can be
closely approximated either by an elliptic paraboloid (Δ > 0, for a maximum
or a minimum) or a hyperbolic paraboloid (for saddle point, Δ < 0).

Consider, however, the physical situation where the parameters α, β are
not fixed any longer: A slight adjustment in the environment will result in
small deviations of α, β from their original values. Now, there are two pos-
sibilities; either the state of the system will be modified a little, or it will
be transformed dramatically. In the latter case a catastrophe occurs and the
set of values for which this happens is said to be the catastrophe set. In the
former case the state may be called regular because it is not affected much by
small perturbations.

Let this state of equilibrium be perturbed by a small variation of the
parameters α → α + δα, β → β + δβ, and let the corresponding induced
disturbance in the variables at the equilibrium state shift the system to a new
equilibrium state x → x + δx, y → y + δy. A Taylor expansion then yields:

∂

∂x
V (x + δx, y + δy; α + δα, β + δβ)

=
∂

∂x
V (x, y; α, β) + δx

∂2

∂x2
V (x, y; α, β) + δy

∂2

∂x∂y
V (x, y; α, β)

+ δα
∂2

∂α∂x
V (x, y; α, β) + δβ

∂2

∂β∂x
V (x, y; α, β) + higher order terms;
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∂

∂y
V (x + δx, y + δy; α + δα, β + δβ)

=
∂

∂y
V (x, y; α, β) + δx

∂2

∂y∂x
V (x, y; α, β) + δy

∂2

∂y2
V (x, y; α, β)

+ δα
∂2

∂α∂y
V (x, y; α, β) + δβ

∂2

∂β∂y
V (x, y; α, β) + higher order terms.

The first term on the r.h.s. of each equation vanishes on account of the equi-
librium condition. The new equilibrium will be worthy of its name if in each
equation, the sum of the remaining terms will vanish for the given changes δα
and δβ. This leaves us with a set of two equations in the two unknowns δx
and δy in terms of δα and δβ (higher terms in the Taylor expansion being
neglected),

δx
∂2V

∂x2
+ δy

∂2V

∂x∂y
= −δα

∂2V

∂α∂x
− δβ

∂2V

∂β∂x
, and

δx
∂2V

∂x∂y
+ δy

∂2V

∂y2
= −δα

∂2V

∂α∂y
− δβ

∂2V

∂β∂y
.

If the determinant of the coefficients matrix Δ =
∣
∣
∣
∣
Vxx Vxy

Vxy Vyy

∣
∣
∣
∣ on the l.h.s.

(known as the Hessian) is non-zero, there is a unique solution of the above
system: δx = a11δα + a12δβ, δy = a21δα + a22δβ, where aij are constants.
Thus, the smaller the perturbations δα and δβ, the smaller δx and δy, and
the equilibrium state is regular. In contrast, if Δ = 0, a general solution
of the above system contains an arbitrary element which does not depend on
δα, δβ, because it satisfies the homogeneous system of equations. Hence δx,
δy cannot be forced to go to zero with δα, δβ and there is a catastrophe.

Thus, an equilibrium state is catastrophic or regular according as the
Hessian of the potential function does or does not vanish. The points for
which Δ = 0 therefore have an inherent structural instability, since there
will be functions arbitrarily close to them with Δ > 0 and with Δ < 0 and
these will be in general of different type.

Now, Δ can vanish for two quite distinct reasons: first, all three second
order partial derivatives may be zero at the origin, and it is then clear that
V (x, y) is degenerate in both the x-direction and the y-direction. Second,
we could have Δ = 0 because VxxVyy = (Vxy)2 but not all the derivatives

vanish separately. In that case |ax2 + 2hxy + by2| is a perfect square, which

allows us to write

V (x, y) = ±1
2
(px + qy)2 + higher order terms,

where p =
√
|a|, q =

√
|b|.
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The form of the expansion suggests that we rotate the axes, transforming

to new coordinates u, v given by u = px+qy√
p2+q2

, v = qx−py√
p2+q2

. In the u,

v system V (u, v) = ±1
2 (p2 + q2)u2 (parabolic cylinder). Consequently, the

values of the first and second partial derivatives at the origin are

∂V

∂u
=

∂V

∂v
=

∂2V

∂u∂v
=

∂2V

∂v2
= 0,

∂2V

∂u2
= ±(p2 + q2) �= 0.

Thus, V has either a minimum or a maximum in the u direction.
In any other direction w = u sin θ + v cos θ, we have at the origin

dV
dw = sin θ ∂V

∂u + cos θ ∂V
∂v = 0 and

d2V

dw2
= sin2 θ

∂2V

∂u2
+ 2 sin θ cos θ

∂2V

∂u∂v
+ cos2 θ

∂2V

∂v2

= sin2 θ
∂2V

∂u2
= ± sin2 θ(p2 + q2).

Hence V has the same behavior in the w-direction as in the u direction, pro-
vided that θ �= 0. Thus, the problem has been reduced, by a single coordinate
transformation, to the study of a function of one variable only.

This result can be extended to a potential depending on n variables and k
parameters V (x1, . . . , xn; α1, . . . , αk) with a critical point at the origin. We
make an expansion in terms of the state variables near equilibrium

V = V0 +
∑

i

aijxixj +
∑

i,j,�

bij�xixjx� +
∑

i,j,�,m

cij�mxixjx�xm

correct to the 4th order. The coefficients aij , bij�, cij�m will depend on
α1, . . . , αk in general. It can be shown that the axes can be rotated until
only the squares among the quadratic terms are left. (There are standard
techniques for doing so based on matrices, the details of which are not of
immediate concern.) After the rotation

V = V0 +
n∑

i=1

λiX
2 +

∑

i,j,�

Bij�XiXjX� +
∑

i,j,�,m

Cij�mXiXjX�Xm

where λ1, λ2, . . . , λn are known as eigenvalues. The number of non-zero

eigenvalues depends on the rank of the Hessian matrix of V , namely
[

∂2V
∂xi∂xj

]
.
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If the rank is n (i.e. its determinant does not vanish), then all λi �= 0 and V
is structurally stable.

If, on the other hand, the rank of the Hessian is n − r for some r > 0,
then there exists a coordinate transformation which permits us to write V in
the form V = λr+1x

2
r+1 + λr+2x

2
r+2 + · · · + λnx2

n+ higher order terms. The
structural instability is confined to the variables x1, x2, . . . , xr and can be
analyzed in terms of these variables alone. The remaining variables can be
ignored. The number r, known as the corank of the Hessian, is the number of
directions in which the function is degenerate. It also denotes the number of
kinds of catastrophes which can occur.

It can be shown that when only one of the eigenvalues vanishes, the po-
tential near equilibrium is reducible in most cases to one of four canonical
potentials:

V = c1x + x3 (fold)862;

862 Example: Equilibrium of a picture frame. A rectangle of width 2a and depth

2h is suspended by an inextensible string of length 2� (with � > a) attached to
its upper corners and passing over a smooth pin c. Since the only force which

does any work is gravity, the potential energy of the frame is determined by the

depth of the frame’s center of gravity below the suspension point.

Hence the potential energy

V (x, θ; a, �, h) = −mg

{[
√

�2 − x2

√

1 − a2

�2
+ h

]

cos θ + x sin θ

}

,

where x is the distance of the center of side 2a (facing the suspension point c)

from the perpendicular passing through the suspension point on this side, and

θ is the angle at c between this perpendicular line and the vertical; m is the mass of

the frame and g is the acceleration of gravity. There are two state variables x

and θ because each can be varied independently of the other.

From the equilibrium equation ∂V
∂x

= 0, ∂V
∂θ

= 0 we deduce that equilibrium is

reached whenever sin θ = 0 or
√

1 − x2

	2
= h

a2

√
�2 − a2. The condition sin θ = 0

implies that x = 0, which is the expected symmetrical configuration where the

frame is horizontal.

The second condition can be realized only if h
√

�2 − a2 ≤ a2. Then there are

two configurations, one on either side of the vertical. There are, therefore, 3 posi-

tions of equilibrium. It can be proved that the side positions, whenever they exist,

are stable, but the central position is stable only when there are no side positions

(h
√

�2 − a2 > a2). When h
√

�2 − a2 = a2, the Hessian determinant vanishes for

the central position and a fold catastrophe ensues.
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V = c1x + c2x
2 ± x4 (cusp);

V = c1x + c2x
2 + c3x

3 + x5 (swallow-tail);
V = c1x + c2x

2 + c3x
3 + c4x

4 + x6 (butterfly).

If two eigenvalues can pass through zero, three additional catastrophes can
occur:

V = x3 + y3 + axy + bx + cy (hyperbolic umbilic);
V = x3 − 3xy2 + a(x2 + y2) + bx + cy (elliptic umbilic);
V = x2y + y4 + ax2 + by2 + cx + dy (parabolic umbilic).

When three eigenvalues disappear, a further four catastrophes can be present
— but when more than three can vanish, unlimited possibilities become avail-
able.

Thus, Catastrophes are bifurcations between different equilibria, or fixed
point attractors. Due to their restricted nature, catastrophes can be classified
based on how many control parameters are being simultaneously varied. For
example, if there are two controls, then one finds the most common type,
called a “cusp” catastrophe. If, however, there are more than five controls,
there is no classification.

The foregoing ideas had their origin at the end of the 19th century, when
Henri Poincaré (1881 to 1895) linked calculus and topology (then called
“analysis situs”, analysis of location) to create qualitative dynamics and then
applied it to unsolved problems of planetary motion. This may seem strange;
after all, dynamics had been a firmly quantitative field since Newton. But
Newton’s methods yielded explicit solutions only for the interaction of two
bodies — for example, the sun and the earth, or the earth and the moon.
When three or more bodies are involved, the equations of motion cannot
be solved directly, and even approximate solutions require tedious, complex
procedures. Around 1800 Pierre Simon de Laplace had tried at length
— but without success — to show that all the two-body attractions of the
solar system added up to a stable dynamic system, a grand perpetual-motion
machine that would run forever.

Poincaré set out to show that even if quantitative solutions were impos-
sible, it was still possible to make progress on important questions: does a
complex, many-body system return periodically to the same arrangement?
Does a slight perturbation simply “nudge” the whole system, or does it lead
eventually to qualitatively different behavior, such as a planet spiraling into
the sun or colliding with another planet? Though he did not fulfill Laplace’s
earlier hopes, Poincaré inaugurated a valuable new approach.
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His fellow mathematicians saw its value, but thought it arbitrary because
it was adapted to a particular physical problem rather than being part of a
general method. Indeed, as late as 1937 E.T. Bell, a historian of mathematics,
summed up the state of the art in the words: “. . .few have mastered his
weapons, and some, unable to bend his bow, insinuate that it is worthless in
a practical attack”.

But in the very same year the mathematicians A.A. Andronov and L.S.
Pontryagin built on Poincaré’s ideas in their general definition of structural
stability. They made mathematical questions out of Poincaré’s physical ones.
Given the equations describing any dynamical system, they said, the crucial
question was how the stable solutions for these equations were distributed
topologically. Was a stable state of the system part of a continuous range,
or an “island” surrounded by instability? Would a small quantitative change
alter the solutions slightly, or produce very different new ones, or perhaps
leave none at all?

At about the same time, Marston Morse was renewing the topological
approach to the calculus of variations, making it possible to find the maxima
and minima of whole family of curves.

Interestingly enough, the ideas of Poincaré found fertile ground in biol-
ogy. Conrad Hall Waddington (1905–1975, England) was the first scien-
tist of stature to acclaim catastrophe theory (1930). He came to these ideas
through his exploration of the evolution of embryos before birth863. He studied
processes of morphogenesis that transform an apparently uniform ball of cells
into a layered structure of differentiated tissues. These investigations revealed
much about the chemical signals of morphogenesis, including the surprising
discovery that many substances — even some not normally found in organisms
— can act as triggers for the same complex sequence of events. Waddington
suggested (1940) the desirability of a theory of a generally topological kind,
which would be appropriate to biological forms. Such a theory was eventually
developed by René Frédéric Thom864; he used it to illuminate singularities
of differentiable mappings.

863 As early as 1917, D’Arcy Thompson had shown that the shape of a fish or of

an animal’s skull, drawn on a rectilinear grid, could be altered by a continuous,

smooth transformation to that of a related fish or skull in the animal’s evolution-

ary predecessor. Although Thompson did not develop quantitative mathematics

for this visual relationship, he exerted pervasive influence on three generations

of scientists.
864 French mathematician (b. 1923). Developed the theory (1966) and expounded

it in his book “Structural stability and Morphogenesis” (1972). It has attracted

publicity as well as some controversy.
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Catastrophe theory is a special branch of dynamical systems theory. It
has been applied to widely differing situations such as embryo development,
stability of ships at sea and social interactions between human beings and ani-
mals. Although catastrophe theory was intended primarily as a mathematical
language for biology, it turned out to be an efficient mathematical tool that
also provides a common language for physical and psychological processes.

1935–1972 CE Israel Moiseyevich Gelfand (b. 1913, Russia). Math-
ematician. Generalized and extended classical mathematics by the use of
infinite dimensional, yet geometric ideas.

Gelfand was born to Jewish parents in Krasnye Okny, near Odessa, in
the Ukraine. He went to Moscow at the age of 16, before completing his
secondary education. There he took a variety of different jobs (such as a
door keeper at the University library). In 1932 he was admitted as a research
student under Kolmogorov and presented his thesis (1935) on abstract func-
tions and linear operators. He became a professor at Moscow State University
(1943). In 1990 he emigrated to the United States, becoming Distinguished
Visiting Professor at Rutgers University.

His achievements:

• Developed (1938) the theory of commutative normed rings which are
of crucial importance in functional analysis and modern physics. Re-
vealed close connections between Banach’s general functional analysis
and classical analysis.

• Developed the representation theory of locally compact groups865, im-
portant in relativity theory and quantum mechanics (e.g. the Lorentz
groups). His work in this area unifies the treatment of classical Lie
groups (ubiquitous in physics) with their analogues in algebraic geome-
try. In particular, his work has led to essential mathematical methods
in the study of symmetries of fundamental particles.

865 For further reading, see:

– Gelfand, I.M., R.A. Minlos and Z.Y. Shapiro, Representation of the
Rotation and Lorentz Groups and their Applications, Pergamon Press:

New York, 1963.
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• Contributed to the life sciences through his mathematical studies of
neuro-physiology and cell biology.

• Developed integral geometry, which studies in geometric terms transfor-
mations by integrals of functions on a given space.

• Worked (with Naimark) on non-commutative normed rings and the the-
ory of representations of non-commutative groups. He later advanced
the theory of group representations and the cohomology of infinite di-
mensional Lie Algebras.

• Contributed to the theory of generalized functions (used in solving dif-
ferential equations of mathematical physics).

1935–1973 CE Leo Strauss (1899–1973; Germany and USA). Political
philosopher. Created the ‘Straussian’ school of political science. No other
conservative thinker has inspired a following remotely comparable, in size,
continuity, and influence, to that of Leo Strauss. This school has its own
interests, ideas, and purposes, which are clearly distinct from mainstream
conservatism. His extraordinary influence as a leader has been demonstrated
by his many students who have succeeded him in the field of political philos-
ophy.

Strauss was born in Kirchheim, Hesse, Germany. He was brought up in an
orthodox home, where the ‘ceremonial’ laws were rather strictly observed, but
where there was little Judaic knowledge. Further identification as a Jew came
early to Strauss, when refugees from the Russian Pogroms passed through his
village.

In the Marburg Gymnasium (1905–1916) he was exposed to the message of
German Humanism and read Schopenhauer and Nietzsche. He was exposed
to political Zionism in 1917. During 1917–1918 he was conscripted into the
German Army. He then studied philosophy, natural science and mathemat-
ics (1919–1921) at the Marburg University under the guidance of Husserl,
Heidegger and Hermann Cohen, and received his Ph.D. there (1921). In
1932 he left Germany and eventually came to the United States. He taught
at the new New-York School for Social Research during 1938–1949, then at
the University of Chicago from 1949 to 1967, Claremont Men’s College in
1968–69, and St. John’s College until his death in 1973. Leo Strauss was
the Robert Maynard Hutchins Distinguished Service Professor Emeritus in
Political Science at the University of Chicago.

Strauss is the author of fifteen books, in which he set himself to investi-
gating the fundamental problems of political philosophy. Among them: Phi-
losophy and Law (1935); Natural Right and History (1953); What is Political
Philosophy (1959); Liberalism Ancient and Modern (1968).
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Strauss, an ethnic Jew and refugee from Nazi Germany, looked at the
regnant liberalism of mid-century America, and saw the Weimar Republic:
morally weak, incapable of self-preservation. His prophecy was fulfilled by the
ignominious collapse of the liberal establishment, both political and academic,
in the face of the New Left.

In the Straussian view, philosophy inadvertently exposed men to certain
hard truths, truths too hard for them to bear: that there are no gods to
reward good or punish evil; that no one’s patria is really any better than
anyone else’s; that one’s ancestral ways are merely conventional. This leads
to nihilism, epitomized by the listless, meaningless life of bourgeois man, or
to dangerous experiments with new gods – gods like the race and the Fuehrer.

Straussianism poses questions that need to be asked: what is the relation
of nature to culture? Can society be founded on rational principles? Has
Enlightenment brought about its own fall? How did this happen? What can
be salvaged from the wreck?

Strauss’ own answers are:

(1) A return to treating old books seriously, reading them carefully and
with an effort to understand them as their authors did, rather than as
History does.

(2) A recognition of the political nature of philosophy, that most philoso-
phers who wrote did so with a political purpose.

(3) A recognition that the greatest thinkers often wrote both exoteric and
esoteric teachings, either out of fear of persecution or a general desire
to present their most important teachings to those most receptive to
them. This leads to an attempt to discern the esoteric teachings of the
great philosophers from the clues they left in their writings for careful
readers to find.

(4) A recognition of the dangers that historicism, relativism, eclecticism,
scientism, and nihilism pose to philosophy and to Western culture gen-
erally, and an effort to steer philosophy away from these devastating
influences through a return to the seminal texts of Western thought.

(5) Careful attention paid to the dialogue throughout the development
of Western culture between its two points of departure: Athens and
Jerusalem. The recognition that Reason and Revelation, originating
from these two points respectively, are the two distinct sources of knowl-
edge in the Western tradition, and can be used neither to support nor
refute the other, since neither claims to be based on the other’s terms.
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(6) A constant examination of the most drastic of philosophic distinctions:
that between the Ancients and the Moderns. An attempt to better
understand philosophers of every age in relation to this distinction, and
to learn everything that we as moderns can learn about ourselves by
studying both eras.
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Worldview L: Leo Strauss

∗ ∗∗

“The philosopher who, transcending the sphere of moral or political things,
engages in the quest for the essence of all beings, has to give an account of
his doings by answering the question ‘why philosophy?’ That question cannot
be answered but with a view to the natural aim of man which is happiness,
and in so far as man is by nature a political being, it cannot be answered but
within a political framework.”

∗ ∗∗

“But let us hasten back from these awful depths to a superficiality which,
while not exactly gay, promises at least a quiet sleep . . . ”

∗ ∗∗

“Because mankind is intrinsically wicked, he must be governed. Such gover-
nance can only be established, however, when men are united — and they
can only be united against each other.”

∗ ∗∗
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Worldview LI: Allan Bloom

∗ ∗∗

“As it now stands, students have powerful images of what perfect body is and
pursue it incessantly. But deprived of literary guidance, they no longer have
any image of a perfect soul, and hence do not long to have one. They do not
even imagine that there is such a thing.”

∗ ∗∗

“The substance of my being has been informed by the books I learned to care
for.”

∗ ∗∗

“Education is the movement from darkness to light.”

∗ ∗∗

“The most successful tyranny is not the one that uses force to assure unifor-
mity but the one that removes the awareness of other possibilities, that makes
it seem inconceivable that other ways are viable, that removes the sense that
there is an outside.”

∗ ∗∗

“Music is the medium of the human soul in its most ecstatic condition of won-
der and terror. Nietzsche, who in large measure agrees with Plato’s analysis,
says...that a mixture of cruelty and coarse sensuality characterized this state...
Music is the soul’s primitive and primary speech... without articulate speech
or reason. It is not only not reasonable, it is hostile to reason.”

∗ ∗∗
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“Rock music has one appeal only, a barbaric appeal, to sexual desire - not
love, not eros, but sexual desire undeveloped and untutored.”

∗ ∗∗
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Straussianism vs. Liberalism

The modern world is held to be the deliberate creation of the modern
philosophers – namely, the Enlightenment, which gave birth to both scientific-
technological progress and the liberal ideology of social-political progress.

The Enlightenment argued that instead of hiding philosophy, philosophers
should reform society to make it more hospitable to philosophy: in particular,
by undertaking the project of modern science, by which reason masters nature
and provides material gratifications (safety, health, wealth) to common men;
Thus, physical science and technology would provide the know-how, while
liberalism would provide the conditions of liberty and equality enabling men
to pursue their self-interest.

The great significance of Strauss for mainstream conservatives is that his
is the deepest philosophical analysis of what is wrong with liberalism. Tech-
nocratic, legalistic, and empirical criticism of liberalism are all very well, but
it is not enough. He believes that contemporary liberalism is the logical out-
come of the philosophical principles of modernity, taken to their extremes. In
some sense, modernity itself is the problem. Strauss believed that liberalism,
as practiced in the advanced nations of the West in the 20th century, contains
within it an intrinsic tendency towards cultural and moral relativism, which
leads to nihilism. He first experienced this crisis in his native Germany’s
Weimar Republic of the 1920s, in which the liberal state was so ultra-tolerant
that it tolerated the Communists and Nazis who eventually destroyed it and
tolerated the moral disorder that turned ordinary Germans against it.

Strauss believed that America is founded on an uneasy mixture of classi-
cal (Greco-Roman), Biblical, and modern political philosophy. Conservatives
have not failed to note that a significant part of the mischief of liberalism con-
sists in abandoning the biblical element; this story has been told many times
and is well represented in Washington. Where Strauss comes in is that he is
the outstanding critic of the abandonment of the classical element. His key
contribution to fighting the crisis of modernity was to restore the intellectual
legitimacy of classical political philosophy, especially Plato and Aristotle.

Strauss’ first move, which came as a stunning shock to a 1950s academic
world sunk in scientism and desirous of making “political science” substitute
for political philosophy, was to reactivate the legitimacy of ancient philoso-
phy as real political critique. It is hard to overstate how unlikely this seemed
at the time, it having been a casual article of faith since ancient philosophy
had no more to say about modern political problems than ancient physics
about modern engineering. Nevertheless he succeeded. When leftists today
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feel obliged to denounce Great Books curricula, it is because they know, con-
sciously or unconsciously, that classical thought is very much alive and is a
real threat to them.

The holy grail of Straussian scholarship has been to understand the an-
cient philosophers not from a modern point of view but from their own. The
implication is that we then become free to adopt the ancient point of view
towards modern political affairs, freeing us from the narrowness of the modern
perspective and enabling us to step back from the distortions and corruptions
of modernity. Strauss contends that the modern view of politics is artificial
and that the ancient one is direct and honest about the experience of political
things.

Strauss was not ignorant of the reasons modern political philosophy had
come about. He saw it as a grand compromise made when the demands of
virtue made by ancient political philosophy seemed too high to be attain-
able. Modern political philosophy provides no rational basis for higher hu-
man achievement, but it provides a very solid basis for the moderate human
achievement of stability and prosperity.

Strauss not only believed that the great thinkers of the past wrote
Straussian texts, he approved of this. It is a kind of class system of the intel-
lect, which mirrors the class systems of rulers and ruled, owners and workers,
creators and audiences, which exist in politics, economics, and culture. He
views the original sin of modern political philosophy, which hundreds of years
later bears poisonous fruit in the form of liberal nihilism, to be the attempt
to abolish this distinction. It is a kind of Bolshevism of the mind.

The key hidden step in the Machiavellian view, a bold intellectual move
that is made logically rigorous and then politically palatable by Thomas
Hobbes and John Locke, is to define man as outside nature. Strauss sees
this as the key to modernity. Man exists in opposition to nature, conquer-
ing it to serve his comfort. Nature does not define what is good for man;
man does. This view is the basis for the modern penchant to make freedom
and comfort the central concerns of political philosophy, whereas the ancients
made virtue the center. Once man is outside nature, he has no natural tele-
ology or purpose, and therefore no natural virtues. Since he has no natural
purpose, anything that might give him one, like God, is suspect, and thus
modernity tends towards atheism. Similarly, man’s duties, as opposed to his
rights, drop away, as does his natural sociability. The philosophical price
of freedom is purposelessness, which ultimately gives rise to the alienation,
anomie, and nihilism of modern life.

Strauss’ elitist view of the ‘good society’ is strikingly similar to the view
cultivated for centuries by the Catholic and Orthodox Churches and by Or-
thodox Judaism, not to mention other religions: there is a small number of
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men who know the detailed truth; the masses are told what they need to know
and no more.

What is then the answer to nihilism? Does the restoration of classical po-
litical philosophy really re-establish convincing values? Are Aristotle’s virtues
really virtues? Is Plato’s critique of democracy true?

Strauss believed that the great competitor of philosophy is revealed reli-
gion. He believed that reason and revelation cannot refute each other. He
believed that religion was the great necessity for ordinary men. For him, re-
ligion is in essence revealed law, and he took his native Judaism to be its
paradigm. Strauss had an ambivalent attitude towards Christianity. On the
one hand, Christianity is the only practicable religion for America. On the
other hand, Christianity has troubling strands within it, like St. Aquinas’
claim that reason and revelation are compatible, for him the precise opposite
of the most important truth. It is a commonplace that Christianity is a syn-
thesis of Greek philosophy with biblical theism; Strauss rejects the idea that
such a synthesis is possible. For him, religion is at bottom simply dogmatic
and unapologetic about it.

Although Strauss was a critic of the natural-right teachings on which the
US society is based, he only criticizes modern natural-rights because he thinks
it destroys itself and becomes untenable. As Strauss says, “just because we
are friends of liberal democracy does not entitle us to be flatterers of lib-
eral democracy.” In his public utterances on contemporary politics he was
a conventional conservative patriot who backed the United States against
Nazi Germany in WWII and Soviet Russia in the Cold War. He was boldly
anti-Communist at a time when most Western intellectuals were dangerously
equivocal, if not outright sympathetic.

What is undeniable is that he did see the United States as the most ad-
vanced case of liberalism and therefore the most susceptible to the nihilism
he dedicated his life to fighting. But he also saw the United States as partly
founded on the classical and Biblical political wisdom that offered an answer.
There is no doubt that he saw the United States as the world’s only hope. One
of the lessons we can draw from him is that the essence of liberal modernity
is so problematic that America cannot afford for its essence to adopt liberal
modernity, whether that liberalism takes Lockean, classical (in the sense of
the 19th century) or postmodern form.

Strauss held that ‘globalism’ (the liberal project of modernity of a universal
society consisting of free and equal nations, each consisting of free and equal
men and women, with all these nations fully developed as regard to their
power of production, thanks to science) is not the inevitable culmination of
modernity, as its proponents believe, but a perversion which would first make
nations unfree and then abolish them outright.
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He believed that world citizenship is impossible, as citizenship, like friend-
ship, implies a certain exclusivity, and universal love is a fraud. (If it exists, it
is the province only of God.) Good men are patriots or lovers of their patria
or fatherland, which must by definition be specific. The United Nations has
failed in its fundamental mission: to prevent war.

Strauss’ work was extended by his pupil Allan David Bloom (1930–1992,
USA), social philosopher, humanities scholar and academic educator. His
seminal work, The Closing of the American Mind866 (1987) is an open sharp
criticism of the leftish analytic philosophy as a movement that originated
in post WWII American Universities. To a great extent, Bloom’s criticism
revolves around the devaluation of the Great Books of Western Thought as a
source of Wisdom. However, Bloom’s critique extends beyond the university
to speak to the general crisis in American Society. Closing of the American
Mind draws analogies between the United States and the Weimar Republic.

Bloom saw these social and cultural developments as stemming from a
wholesale importation (by European intellectuals that arrived on American
shores as emigres and refugees) of the latter day, nihilistic stages of Ger-
man idealistic philosophy, ultimately traceable to Hegel, Nietzsche, Marx,
Freud and Heidegger. The anti-democratic pessimistic and nihilistic ideas
of Nietzsche and Heidegger were transformed and ‘laundered’ by J.P. Sartre
and the New Left. When combined with Freud’s shallow pseudo–scientific
theory of the mind (which forever seeks to explain higher, noble impulses and
achievements as repressions and sublimations of lower urges), the result was a
worldview and society that would have horrified both Nietzsche and the ratio-
nalist Enlightenment philosophers who created modernity to begin with. This
hybrid post WWII worldview of the West was made possible by a paradoxical
combination of:

• Advancing and indiscriminate democracy.

• Eroding stature of the ideals of the Enlightenment.

• An alliance of the revolutionary Left and the old, authoritarian Right –
both of which despised that epitomy Democratic Man – the Bourgoise.

866 Bloom was born in Indianapolis to Jewish parents. He entered the University

of Chicago (1946) and earned his Ph.D. there (1955) under Leo Strauss. He

later taught at the Universities of Yale, Cornell (1963), Tel-Aviv and Toronto

(1978) before returning to Chicago. After Blooms passing, Saul Bellow, his

associate at the University of Chicago, implied that Bloom was gay and died of

complications of AIDS.
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Since the average Everyman is the ultimate ruler in a democracy, he needs
to be flattered. And so the Nietzschean right to “kill God”, create new gods,
and dispense with ordinary right and wrong, morality and cultural standards –
rights that Nietzsche meant to reserve for the “inner directed” superior man
– were now, in an ironic twist, copiously bestowed upon every person who
wanted to rebel against society’s ‘values’ (formerly described with adjectives
such as ‘right’, ‘wrong’, ‘just’, ‘noble’, ‘learned’ etc.) and ‘do his own thing’.
People were encouraged to ‘find themselves’, ‘speak truth to power’, etc. –
anything but be boring Bourgoise, i.e. a ‘cog in the machine’. When they
follow their untutored whims they are said to be “creative”; every and any
predilection that is not at present criminal or contrary to the secular fetish or
moralism of the day, is merely “a lifestyle choice” – and the pressure is on to
extend compassion, legality or even full societal sanction to “lifestyles” that
were formerly merely tolerated – up to and including ideological terrorism
(provided, of course, its perpetrators are some flavor of accepted ‘Other’ !).

This bizarre deification of the undeserving also explains, in Bloom’s view,
the phenomenon of Rock music — a way for savvy business moguls to tap
the immense disposable income–resources adolescents are able to syphon from
their parents, by offering a low art form whose drumbeats appeal directly to
youngster’s tribalism and untutored sexual awakening. Like drugs, much of
this music offers a pale simulacrum of the ‘highs’ normally earned by great
and noble achievements. Yet these satisfactions, delivered with the electronic
and digital technology achieved by humanity’s best thinkers and true rebels
over a period of centuries, are readily available to anyone.

And the worst aspect of this European cultural brew, according to Bloom,
is that the mental universe of most Americans has come to be delimited by
the loan concepts enshrined in the above words. The people who coined
these terms and imported them hither were familiar with their Greek, Judeo–
Christian and Enlightenment origins, but today’s Americans by and large
are not. So their intellectual horizons have narrowed. In America’s ultra–
democracy, the utterances of Rock stars, basketball players, or purveyors of
the latest environmental, atheistic or multicultural fads are treated on par
with the greatest intellectual canons of Western tradition. Someone raised
in this America and schooled in its universities, finds it exceedingly difficult
to read the words of Plato, Aristotle, Plutarch, Shakespeare, Locke or Kant
and absorb their meaning directly. Rather, they become filtered through the
mental fog created by the neologisms of the later German nihilists and their
disciples. The deification of any and every individual and his or her rights,
development and pleasures in our society, at the expense of common projects
(whether a cultural heritage or raising a family), led to inevitable problems in
married life – and high divorce rates. That, in combination with the easy, early
and consequence–free availability of sexual intimacy, which becomes separated
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from eros and the cultural longings with which it was formerly associated has
– in Blooms experience as a teacher of the young – completely changed the
college. It made many students duller and more cynical human beings.

Bloom hewed to the Straussian approach to social and political philos-
ophy, which contrasted the views of the ancients with those of modernity
– and traced the latter to the Enlightenment. In antiquity, the roots of the
West’s religions (revealed truth, justice, piety and morality) sprouted in Judea
(Moses, Samuel, Elijah, Amos, Hillel, Ben Zakai, Jesus); while rational philos-
ophy (logico-mathematical, scientific, aesthetic, moral, economic and socio–
political) came into being in Greece, Ionia and the Hellenistic world (Euclid,
Pythagoras, Thales, Socrates, Aplaton, Protagoras, Aristotle, Archimedes,
Aristarchos, Heron, Ptolemy and the rest).

When the Church achieved supremacy in Europe, it borrowed logico-
rhetorical tools from Aristotle and the Neo–Platonists to codify its theology,
but forbade any further independent thinking. The Enlightenment natural
and social philosophers adopted ancient Greek rationality and science as their
own, further developing them. While their democratic inclinations and moral-
ity were Christian (and thus, ultimately, Judaic) in origin, they rebel against
the Church’s Aristotle-fortified and ossified authority – but not against Aris-
totle himself (though his theories of physics turned out to be wrong). These
thinkers were avowed rationalists; and while they argued and remonstrated
with their ancient colleagues (Francis Bacon replacing the new republic for
Plato’s republic), they had no quarrel with the basic Greek approach. Thus,
according to him, the Enlightenment was a gigantic, multi–century project to
diminish clerical power and educate the European political elites in the ways
of democracy.

Over time, however, several things went awry in this program. The Univer-
sity, which the rationalists converted from theological strongholds to bastions
of the liberal arts and sciences, did manage to stand up to the aristocracy
and Church. Yet later, it became too eager to please its new master – the
common man – to the point where its properly elitist role gradually eroded.
And along with it, so did the kind of liberal education that used to produce
thoughtful, responsible national leaderships. Indeed, rationality itself came
to be viewed as merely one point of view. And what is worse, many shallow
sociological, economic, political and even pseudo-scientific ‘theories’ came to
be spawned, adopted and championed by nominal rationalists. They defend
these notions as fervently as their predecessors-in-spirit would champion a
religious dogma867.

867 As Bloom points out, a rationalized dogma is the only tool that can root out

reason itself.
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1936 CE Gravitational lensing: In the December 04, 1936 issue of Science,
Albert Einstein published a note entitled “Lens-like Action of a Star by the
Deviation of Light in the Gravitational Field”. In it he predicted a General-
Relativistic phenomenon, the observation of which in 1979 provided a new
experimental test of GTR. Moreover, it helped astrophysicists and cosmol-
ogists to estimate Hubble’s constant and determine the amount of invisible
matter in the universe (1998). It thus took almost half a century before the
cosmos known to us finally reached the dimensions (in the wake of the dis-
covery of quasars), and astrophysics the technical sophistication, to render
gravitational lensing an observable reality.

According to General Relativity, an object in space that is sufficiently
massive acts as a lens for light coming from more distant objects in the same
line of sight with respect to observers on earth. If the configuration of these
background and foreground objects is right, the lens effect could produce two
or more identical images of the more distant object or even distort its image
into an arc or complete ring about the foreground object’s image.

The first actual optical gravitational lens was discovered in 1979 by a
British astronomer, Dennis Walsh. The lens in this case is a giant elliptical
galaxy, and it produces a double image of a more distant quasar, since the
light of the quasar is deflected to either side of the galaxy located between
us and the quasar, thereby producing two point images. Both quasar images
have the same spectral lines and redshifts, as predicted by GTR. The angular
separation between the two quasar images is 6 seconds of arc.

A few other such phenomena have since been observed, including the 1998
discovery of an “Einstein ring” produced by a perfect alignment of nearer and
farther objects. Astronomers used a network of radio telescopes in Britain
and the Hubble Space Telescope (HST) to discover the Einstein ring. This
radio telescope array, called MERLIN, found the ring, and the HST produced
an image of it. The ring occurs because two distant galaxies happen to line
up almost perfectly with Earth. The closer galaxy’s gravitational lens spreads
out the light of the more distant galaxy into a complete circle. Vast luminous
arcs, or imperfect rings, have also been observed.

Astronomers can use gravitational lenses to determine the amount of mat-
ter in a galaxy by measuring how much the galaxy’s gravitational field distorts
the light of a more distant galaxy behind it. By comparing the gravitational
effect of the nearer galaxy with the amount of visible matter in the same
galaxy, astronomers can estimate the amount of invisible matter, or dark
matter, that the nearer galaxy must hold.
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The idea was not new: firstly, it is based on Einstein’s own second test
of GTR, namely the deflection of light by a massive star. Secondly, on his
meeting with the astronomer Freundlich in Berlin (April 1912), Einstein
discussed with him the possibility of a gravitational lensing effect (notes from
that period, including his early conclusions on the subject, were indeed found).

Einstein, however, did not publish anything on the subject because he
believed that there was no hope in observing this phenomenon. Indeed, the
universe, as known to astronomers in the 1910’s, essentially consisted of our
own galaxy. Under these conditions, the observability of gravitational lensing
was, per theory, almost impossible.

Nevertheless, there soon appeared precursor discussions of the idea in pub-
lished works by others, among them Oliver Lodge (1919), Arthur Edding-
ton (1920), and O. Chwolson (1924). Yet, Einstein himself was reluctant
to publish his calculations, and did so only after much hesitation and under
persistent badgering by the amateur scientist Rudi W. Mandl (1936).

1936 CE, summer First regular television broadcasts were made by NBC
in the United States and the BBC in England. FM broadcasts from the
Olympic games in Berlin. These constitute the first radio messages from
planet earth that made their way past the ionosphere and into outer space
(due to their high frequency). By the year 2000, they would reached receivers
(if any) 64 light-years away (a distance of ca 6 × 1014 km).

Gravity’s Lens – or, the triumph of an amateur’s
fantasy

In early April 1936, Rudolf W. Mandl, an engineer from the Czech
Technical University and amateur astronomer (and a Jewish immigrant
refugee from Nazi Europe) walked into the offices of the Science Service in
the building of the National Academy of Science in Washington DC. He came
with a new idea — a proposed new test of GTR, based on observations during
eclipses of stars.

He was looking for someone to help him publish his ideas and persuade
professional astronomers to take up the investigation of his proposal. He was
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then invited to plead his case before professor Einstein himself: if the latter

found his ideas worthwhile, he could return and seek further help from the

NAS.

Mandl indeed visited Einstein in Princeton on April 17, 1936, presenting

him with a quaint combination of ideas from GTR, optics and astrophysics.

He proposed a simple model according to which a sufficiently massive astro-

physical object could act as a lens for light coming from a more distant object

along the same line of sight w.r.t observers on earth. He speculated that

the effects of such a focusing might already have been observed, though not

hitherto recognized as such.

Among the possible effects that Mandl took into consideration were the

recently discovered annular shaped nebulae — which he interpreted as gravi-
tational images of distant stars.

The basic GTR consequence that Mandl pointed out to Einstein was that

if an observer is perfectly aligned with a both ‘near’ and a ‘far’ star, then he

will observe the image of the far star as an annular ring, resulting from the

bending of its light by the near star.

Though Mandl’s idea was daring, at its core was a valid insight that would

eventually (several decades later) become not only an astrophysical confirma-

tion of GTR but an “applied GTR” tool of astrophysics and cosmology.

To grasp the key idea, there is no need to use GTR proper, if one wishes to

obtain a quantitative result up to a constant of order unity. In fact, one may

employ the same arguments used by Soldner (1804) to derive the deflection

of light by a massive star, using only classical Newtonian gravitational the-
ory and treating light as consisting of Newtonian non-relativistic corpuscles

(“photons”).

Consider a distant point light–source, emitting a beam of earth–directed

photons that travel along almost parallel trajectories (rays) with velocity c.

Between this lensed object and the observer on earth (eye or telescope) there

is a mass M (lensing mass) that bends the rays and focuses them toward

the observer. Assume the lensing mass to have the shape of a sphere, with a

mass density distribution possessing axial symmetry along the observer’s line

of sight to the distant mass.

Assume further that the angles of deflection are small enough such that

their tangents can be replaced by the angles themselves (measured in radians).

Let: (see Fig. 5.14)
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Fig. 5.14: Geometry of a ‘gravitational lens’

Z = distance from center of the lensing mass M to
observer on earth;

ρ = asymptotic pre-bending distance from unper-
turbed central ray to a particular bent ray
outside the lensing mass (called the “impact
parameter” in scattering theory);

Ap =
GMρ

(ρ2 + ξ2)3/2
= instantaneous transverse gravitational acceler-

ation component (toward the axis of symme-
try) per unit photon mass;

δVp = photon’s impulse (change of transverse mo-
mentum) per unit photon mass due to gravi-
tational bending;

ξ = variable spatial distance of central ray photon
from center of lensing mass.

In figure (5.14) light rays from a distant object in the background strike a
lensing mass in the foreground. The bent rays refers to a cone extrapolated
back into asymptotic past. The ring is the image seen by the observer.

In this ‘Newtonian approximation’ there is no dispersion because accord-
ing to the Galilean version of the Equivalence Principle, ray deflections are
independent of the photon energy, assuming868 (as we must) that all photons

868 A GTR version of this calculation, ignoring optical diffraction effects (permis-

sible since λlight 
 ρ), would show that the ray’s deflection is independent of

its frequency, which is to say, of its wavelength λlight. In this calculation, each
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move at speed c. It then follows that (in the impulse approximation, i.e.
integrating along an undeflected ray):

δVp =

∞∫

− ∞

Apdt ≈
∞∫

− ∞

1
c
Apdξ =

2GM

c

∞∫

0

ρdξ

(ρ2 + ξ2)3/2
=

2GM

ρc
.

Since the angular deflection is

θEin ≈ δVp

c
≈ 2GM

ρc2
≈ ρ

Z
,

we have in this approximation:

θEin =

√
2GM

Zc2
, ρ =

√
2GMZ

c2
.

In his GTR, Einstein had already predicted in 1911 that

θEin ≈ 4GM

ρc2
, ρ =

2
c

√
GMZ

showing that the Newtonian value for θ is in error by a factor of
√

2 ≈ 1.4.

The above results show that there is just one ray, having one angle and one
distance ρ, that bends into the observing instrument on earth for any given
value of the azimuth angle. Hence the rays reaching the observer appear to be
coming from a circle in the lensing–mass plane (known as the Einstein ring)
with radius ZθEin. It can be shown that in the general case, when the distant
light source is not a point but has some angular extent (and need not be
axially symmetric) and rays penetrating through the lensing–mass periphery
are considered, the lens creates either a finite-width ring image or two or more
separate distorted images, on various sides of the source.

Now, since θEin ∝ 1
ρ , the angle of deflection θ0 for light rays just grazing

the edge of a deflecting object of radius ρ0 (Fig. 5.14) is related to θ and ρ
for a general ray as follows:

θEin ≈ θ0
ρ0

ρ
≈ ρ

Z
,

ray’s spacetime trajectory is a light-like geodesic in the curved metric induced

by the foreground (lensing) mass.
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and consequently

θEin ≈
√

θ0ρ0

Z
=

√
θ0θs, (1)

where θs ≈ ρ0
Z is the apparent angular radius of the lensing mass as it appears

to an earthbound observer. Note that the fiducial grazing ray will not reach
earth unless θ0 = θs = θEin, which only holds when the lensing object is at
distance Z = ρ0/θ0 from earth.

Mandl, who knew from Einstein’s GTR result (1911) that θEin ∝ 1/ρ, now
suggested to Einstein to use (1) as a new independent test of GRT, provided
of course that θEin, θ0, ρ0 and Z be determined from observations.

Clearly, θEin could in principle be determined from the radius of the ob-
served Einstein ring and θ0 (the deviation of the grazing ray) could perhaps
be determined during an eclipse of the lensing mass (assumed to be a star),
as done by Eddington in 1919 for the sun869.

In his 1936 note, Einstein was rather skeptic about the experimental con-
firmation of ‘Mandl’s equation’ on the ground that

“... θEin being of the order of magnitude of one second of arc, the angle
ρ0/Z is much smaller. Therefore, the light coming from the luminous circle
can not be distinguished by an observer as geometrically different from that
coming from the star, but simply will manifest itself as increased apparent
brightness of the lensing star”.

Mandl, however, did not yield. His idea was that the lensing effect by
the foreground star would result in a considerable brightness increase of the
background star’s light at the locus of the terrestrial observer, despite the fact
that – unlike the case of a common optical lens – gravitational deflection by
a massive star does not (even approximately) collect parallel light rays in one
single focal point, but rather smears them out along a focal line.

Einstein obliged, and set forth to calculate this intensification. To this
end he placed the observer not on the axis of symmetry, but a small dis-
tance x away from it. It can be shown by simple geometrical arguments

869 But then the distant light source used to determine θ0 cannot, in general, be

along the same line–of–sight as are the lensing star and the distant star used

to measure θEin. If M and ρ0 are known for the lensing star in question, one

could also calculate θ0 from GTR: θ0 ≈ 4G M
ρ0 c2

.

In modern astrophysics, ρ0 and/or M are often deduced from measurements

of magnification and luminosity changes as the lensing mass – sometimes not

optically visible at all – passes through earth’s line of sight to a distant object

(e.g a quasar or galaxy).
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that in this case the observer will not see a ring but, instead, two point-
like images. The amplification factor will then be approximately (assuming
x/Z << 1, ρ0/Z << 1) proportional to 1/x, and hence cause infinite inten-
sity on the system’s axis of symmetry itself (still assuming the lensed object
to be infinitely far away, and ignoring wave optics). Furthermore, Einstein
noted the curious effect that the amplification at a given point x increased
with the increasing distance from the lensing star.

Einstein’s published note became the classical starting point for the offi-
cially recorded research of gravitational lensing. He opened it with the words:

“Some time ago, R.W. Mandl paid me a visit and asked me to publish the
results of a little calculation, which I had made at his request...”

In the final section Einstein concluded:

“Therefore, there is no great chance of observing the phenomenon...”

This is the peculiar story of Einstein’s double encounter with the idea of
gravitational lensing (1911, 1936), and of Mandl’s role in the second episode.
Einstein’s note triggered a number of other papers which further developed
the idea, taking it much more seriously than Einstein himself had done.

However, the next major step came a year later, when Fritz Zwicky, then
at CalTech, published (1936) two notes in the Physical Review.

Referring specifically to Mandl’s idea, he claimed that “extragalactic neb-
ulae, as a consequence of their masses and apparent dimensions, were much
more likely candidates for observation of gravitational lenses” and further-
more: “Present estimates of masses and dimensions of cluster nebulae are
such that the observability of gravitational lenses effects among the nebulae
would be seen”870.

In retrospect, Mandl’s role in establishing this subject was crucial since he
had helped turn gravitational lensing into a theoretical reality long before it
became an observed one. What Mandl achieved, in the end, was to introduce
a single idea into the canon of accepted scientific knowledge, an idea which

870 Zwicky’s “extragalactic nebulae” means, in today’s parlance, galaxies outside

our sun’s own (milky way) galaxy. By the end of the 20th century, gravitational

lensing became a routine tool of “applied GTR”. It is used to better observe

distant galaxies via the lensing of their light by foreground objects (including

brightness and shape changes and magnification), as well as to survey dark

matter in our galaxy (by the lensing of background stars which they cause),

and other applications.
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was rejected before only because the effect was deemed to be inaccessible to
observations.

It thus happened that Mandl’s initiative, persistence871 and vision, to-
gether with the fact that Einstein lent prominence to it with his 1936 publi-
cation, stimulated a broad discussion among astronomers and astrophysicists,
and this discussion lasted until the effect was eventually confirmed by obser-
vations.

Mandl’s success was a victory of both theory and fantasy, since Einstein’s
publication stimulated his contemporaries to imagine the strange world of
gravitational lensing, and thus to take the effect seriously and explore the
conditions under which it might be observable, after all.

Furthermore, this episode shows that science develops not only by the
exclusive combination of outstanding scientists working under the auspices of
institutions of professional learning. In addition to – and often preceding –
specialized theories, it may receive impetus from elementary ideas supplied
by non-professionals outside this system.

Mandl’s role in the history of gravitational lensing illustrates that innov-
ative explorations in the natural sciences is not necessarily the privilege of a
few distinguished scientists and other team members, and that even amateurs
can sometimes contribute. After all, Mandl’s expectations about the promise
of gravitational lensing to provide new observational confirmations of GTR,
have obviously been amply fulfilled.

871 There is evidence that Mandl rather obsessively attempted to enlist professional

scientists to his cause. Among them were William Francis Gray Swann,

director of a center of cosmic ray studies; the Nobel laureate physicist Arthur

Holly Compton and Robert Andrews Millikan; V.K. Zworykin, research

scientist at the Radio Corporation of America (RCA) and one of the inventors of

the first all-electronic television system. Some of them reacted with interest and

gave Mandl’s ideas some brief consideration, while others excused themselves

pleading lack of time or understanding. None of them, in any case, pursued the

matter seriously.
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1936 CE

• ‘Penguin Books’ introduced the first paperback.

• Fluorescent lighting was introduced.

1936 CE The first Fields Medal 872 was awarded at a World Congress in
Oslo. It is regarded as mathematics’ closest analogue to the Nobel Prize873

(which does not exist for this field), and awarded every four years by the
international Mathematical Union to one or more outstanding researchers.
Up to four medals could be awarded at each congress. A prize of 15,000
Canadian dollars goes with the Medal.

The Fields Medal is made of gold, and features the head of Archimedes
(287–212 BCE) together with a quotation attributed to him (in Latin rather
than his own Greek):

“TRANSIRE SUUM PECTUS MUNDO QUE POTIRI”

(“Rise above oneself and grasp the world”)

The following table summarizes Field Medals winners during 1936–2002.
An asterisk indicates a mathematician of Jewish origin.

872 For further reading, see:

• Monastyrsky, M., Modern Mathematics in the Light of the Fields Medal, AK

Peters LTD: Wellesley, Massachusetts, 1997.

• Devlin, K., The Millennium Problems, Basic Books, 2002, 237 pp.

873 Alfred Nobel did not create a prize in mathematics because he believed only in

inventions or discoveries of great practical benefit to mankind. It is commonly

stated, however, that Nobel decided against a Nobel Prize in mathematics be-

cause of anger over the romantic attention of the Swedish mathematician Gosta

Mittag-Leffler to a woman in his life (perhaps his Viennese mistress, Sophie

Hess). There is no historical evidence to support this anecdote.
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Table 5.17: Field Medalists (1936–2002)

Mathematician Year Country Life-span

Jesse Douglas∗ 1936 USA 1897–1965
Lars Ahlfors 1936 USA 1907–

Laurent Schwartz∗ 1950 France 1915–
Atle Selberg 1950 USA 1917–

Jean-Pierre Serre∗ 1954 France 1926–
Kunihiko Kodaira 1954 USA 1915–

Klauss Friedrich Roth∗ 1958 GB 1925–
René Thom 1958 France 1923–

Lars Hörmander 1962 Sweden 1931–
John Milnor 1962 USA 1931–

Stephen Smale 1966 USA 1930–
Paul Cohen∗ 1966 USA 1934–
Alexander Grothendieck∗ 1966 France 1928–
Michel F. Atiyah 1966 GB 1929–

Alan Baker 1970 GB 1939–
Sergei P. Novikov 1970 USSR 1938–
John Thompson 1970 GB 1932–
Heisuke Hironaka 1970 USA 1931–

David Mumford 1974 USA 1937–
Enrico Bombieri 1974 Italy 1940–

Pierre Deligne 1978 France 1944–
Danil Quiller 1978 USA 1940
Grigorii A. Margulis∗ 1978 USSR 1946–
Charles Fefferman∗ 1978 USA 1949

Alain Connes 1983 France 1947–
William Thurston 1983 USA 1946–
Shing Tung Yau 1983 USA 1949–
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Table 5.17: (Cont.)

Mathematician Year Country Life-span

Simon K. Donaldson 1986 GB 1957–
Gerd Faltings 1986 Germany 1954–
Michael Freedman∗ 1986 USA 1951–

Vladimir G. Drinfeld∗ 1990 USSR 1954–
Edward Witten∗ 1990 USA 1951–
Vaughan Jones 1990 USA 1952–
Shinfumi Mori 1990 Japan 1951–

Jean Bourgain 1994 France 1954–
Pierre-Louis Lions 1994 France 1956–
Jean C. Yoccoz 1994 France 1957–
Efim Zelmanov∗ 1994 Russia 1955–

Richard E. Borcherds 1998 USA 1959–
Timoty W. Gowers 1998 GB 1963–
Maxim Kontsevich∗ 1998 Russia 1964–
Curtis T. McMullen 1998 USA 1958–

Laurent Lafforgue 2002 France 1966–
Vladimir Voevodsky 2002 Russia 1966–
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1936 CE Heinrich Karl Johann Focke (1890–1973, Germany). Aircraft
designer. Developed the first practical airworthy helicopter, FW 61. Began
building aircraft (1908); built monoplanes (1919–1920).

1936–1939 CE The Spanish Civil War. The prelude to WWII. Started as
an internal conflict between a ‘popular front’ of Socialists, Syndicalists and
Communists (known as Republicans) against the traditionally pro-monarchist
forces — clergy, army and aristocracy (known as Nationalists). Had the
Spaniards been left alone, the war would hardly have been the major tragedy
it turned out to be. But intervention by other countries followed appeals for
help by both sides and the war was not to remain a purely Spanish affair:
Germany and Italy supported the Nationalists and seized the opportunity to
test weapons and men in the field.

The Soviets, in turn, gave materiel and ideological support to the Repub-
licans, but were incapable of matching the aid supplied by the fascists. To
assure the survival of the Republicans, the wholehearted cooperation of the
democracies was needed. Although public opinion in general supported the
Republicans, the governments of France, England and the United States were
not willing to risk a general war and remained neutral. (The U.S., for exam-
ple, prohibited export of arms and munitions to either side in the conflict.)
Volunteers from 50 countries did, however, join on the side of the Republicans,
but supplies from Germany and Italy finally tipped the scales.

The war lasted almost three years: much of Spain lay in ruins and more
than 700,000 died. The war did work for the Nazis in Germany as a diversion
to cover their bloodless expansion in central Europe: WWII broke out five
months after the Spanish Civil War ended. The big winner of the war was of
course El Caudillo himself whose dictatorship lasted for nearly 40 years.

1936–1941 CE Leopold L. Infeld (1898–1968; USA, Canada and
Poland). Theoretical physicist. Collaborated with Albert Einstein at
Princeton (1936–8) on the N -body problem in GTR, and with Max Born on
non-linear corrections to Maxwell’s equations in the presence of strong fields.

Infeld was born in Cracow, Poland, and received his Ph.D. in 1921. He
came to Princeton’s Institute of Advanced Study in 1936, on a scholarship,
after a few months in Edinburgh, Scotland, where he worked with Max Born.
He later became a professor at the University of Toronto (1938–1950) and
Warsaw (1950–1968).

In his work with Albert Einstein and Banesh Hoffmann (1906–1986) on
the N -body problem, the gravitational field is no longer treated as an external
field. Instead, it and the motion of its sources are treated simultaneously.
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Newtonian celestial mechanics in its axiomatic structure consists of two
clearly separate parts: the law of motion, and the law of gravity, which gives
rise to the forces that keep the heavenly bodies in their orbits. The two parts
stand alongside each other, unconnected. This separation into two strictly
distinct sets of laws had not been overcome even by Einstein’s initial treatment
of motion in the general theory of relativity.

However, by the early 1920s investigations by Lorentz, Eddington, and
Levi-Civita suggested that in the general theory of relativity these two sets
are not really separate. After two years’ work (1938) Einstein, Hoffmann, and
Infeld were able to show, in a voluminous publication, that the field equations
do in fact contain everything — not only the generation of the gravitational
field as spacetime curvature caused by energy-momentum distribution, but
also the motions and evolutions of this distributions in response to the gravi-
tational fields.

This obviated the earlier separate “law of motion”, according to which
masses follow spacetime geodesics in the absence of non-gravitational forces;
this former axiom of GTR henceforth became merely an approximation. Thus
the general theory of relativity now described not only space, time, and grav-
itation, but also, for the first time, the dynamics of matter in response to
gravitational fields.

The equations derived by EHI are widely used in analyses of planetary
orbits in the solar system.

In the same year as this publication, there also appeared, in April 1938, a
book by Einstein and Infeld, The Evolution of Physics. This work, reflecting
the history of a discipline through the eyes of its greatest representative, owed
its genesis not to Einstein’s desire to communicate, but to economics at the
Institute for Advanced Study.

“Infeld is a splendid fellow. We’ve done a very pretty thing together,”
Einstein reported after six months of joint research, but despite his fervent
support the institute would not extend Infeld’s modest scholarship. “The
Institute has treated him badly. But I’ll help him prevail here.” Einstein,
who felt he too had been badly treated by the refusal of a scholarship for his
esteemed collaborator, wanted to defray the small sum from his own pocket.

But Infeld, who was embarrassed by that suggestion, had an original idea:
How about writing a book together for a wide readership? With Einstein
as one of the two authors, it could not fail, so that Infeld’s share in the
proceeds would secure his livelihood. Infeld found a publisher who paid him
an advance, while Einstein planned the contents and the basic structure of
the book, which eventually helped Infeld financially.
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1936–1944 CE Advent of information transmission by coaxial cables. Bell
Telephone engineers Lloyd Espenshied and Herman A. Affel invented
the coaxial cable. The first line connected New York to Philadelphia (1936).
Since 1944, the coaxial cable has been widely used for information transmis-
sions such as long-distance telephone lines, coded, typed, or handwritten infor-
mation, facsimile (maps, pictures, charts), television programs and computer
data. Vast transcontinental and international networks were established874.

A coaxial cable contains from 8 to 20 coaxials. A coaxial contains a cop-
per tube with a copper wire held in the tube’s center by plastic insulators. The
tube (about 1 cm in diameter) shields the signal from outside electrical inter-
ference and prevents the signal from losing strength. The coaxial is wrapped
with steel tape for strength, protection, and electrical shielding. The cable
includes serial insulated wires, as well as the coaxials. The wires are used
for control and maintenance. Amplifiers that strengthen the signals may be
placed about 3 km apart. Coaxials may work in pairs: one carries signals in
one direction, while the other handles signals in the other direction. In 1975,
a fully equipped 20-tube cable could carry 32, 400 two-way conversations
simultaneously.

1936–1946 CE John Maynard Keynes (1883–1946, England). Econo-
mist. Most influential world figure in economics since Adam Smith, Ricardo
and Marx. His General Theory of Employment, Interest, and Money (1936)
ranks among the most important books on economics. It changed economic
theory and policy, and is the basis of the economic policies of most nations
today. His ideas helped to shift emphasis away from laissez faire, the clas-
sical capitalist economic theory that maintains that government should not
interfere in economic affairs.

The basis of Keynesian economics is this: the level of economic activity
depends on the total spending of consumers, business, and government. If
business expectations are poor, investment spending will be cut, causing a
series of reductions in total spending. Consequently, the economy will be
led into a depression and stay there. To avoid depression, Keynes surged in-
creased government spending and easy money (lower interest rates and making
money more available for loans). These actions he argued, would encourage
investment, increase employment, and enable consumers to spend more. The

874 Early undersea cables could transmit telegraph signals, but they could not carry

the wide frequency range that make up speech. Coaxial cables with built-in

amplifiers made long-distance telephony by cable possible. In the US, coaxial

cable’s reach extended coast to coast in 1951. The first transatlantic coaxial

telephone cable was laid in 1956. It stretched 3621 km from Clarenville,

Newfoundland, to Oban, Scotland.
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analysis showed that high levels of demand were essential for both full em-
ployment and economic growth.

Keynes was born in Cambridge, England and studied at Cambridge Uni-
versity. He served in the British Treasury (1915–1919) and became a member
of the British Peace delegation after WWI (1919). During 1920–1922 he
launched a polemical attack on the attitudes and approach of the Victorious
Allies, especially in the matter of German reparations875. His books on the
subject have encouraged appeasement policy pursued by the UK government
towards Germany in the 1930s.

Between the world wars Keynes was a financial adviser in London and
a professor at Cambridge. He played a large part in the formulation of UK
economic strategy during WWII. After the war he helped create a new basis
for international monetary and economic cooperation. The outcome was the
establishment of the ‘World Bank ’.

Today he is best known for the Keynesian revolution: the economic the-
ory that recovery from recession is best achieved by a government-sponsored
policy of full employment. The integrated economic scheme — based on
aggregate demand, short-run relationships among the markets for labor, con-
sumption goods, capital goods and money — is known as macroeconomics.

The flip side of Keynes’ formula–tightening government spending (includ-
ing payrolls and social welfare programs) to curb inflationary pressures and
stabilize currencies, and tax cuts to stimulate the private sector and saving,
which in turn can actually increase the tax base – have also been practiced
quite effectively, both by international bodies such as the IMF (International
Monetary Fund) in developing countries, and – most dramatically – in the
UK and the USA starting in the 1980s.

Many Keynsians have blames the 1929 Stock Market Crash and subsequent
Great Depression on too much laisez faire. However, the initial late–1920s
market correction was healthy as long as it affected mainly speculative invest-
ment. That it spread to fundamentally solid stocks – and caused widespread
hardship and unemployment – may be attributed to both the protectionist
tariff polices then in vogue in the U.S, and the pre–Keynsian policies of the
US Federal Reserve and the Bank of England. In a series of secret meetings in

875 Germany’s total obligations were fixed at 29 billion dollars. The total amount of

reparation paid was about 6 billion dollars. In return Germany had received a

far larger amount in foreign loans. The history of reparations has been compared

to a merry-go-round: Germany borrowed American funds to pay reparations to

the Allies, who used the money to repay their debts to the United States, who

lent the money back to Germany.
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Long Island, these institutions formulated a policy of wage and price freeze,
which may have vastly exacerbated the market correction.

Furthermore, the New Deal policies of the Roosevelt administration were
mainly psychological in their ameliorative impact in the US; it was only the
outbreak of WWII – a decade after the crash and seven years after Roosevelt
became president – that rallied Wall Street again and began to ramp up
employment.
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Mathematics and Economy876

Economy877 is a study of mankind in the ordinary business of life. Economy
can also be defined as the study of human wants and their satisfaction or as
the science of wealth and welfare.

Economics describes the nature of behavior of an economic system. The
economic system consists of the rules, principles878 and customs, which gov-
ern the operation of an economy (e.g. capitalistic system, socialistic system
etc.). Economics investigates economic problems with the object of offering
solutions. Such problems are the questions and situations arising from the
operation of the system, e.g.: labor problems, the problem of taxation, etc.

The social sciences have an uneasy relationship with mathematics: To
some extent, they seek a Newtonian goal of quantification and prediction.
Yet the human and environmental variables they must deal with are so many
and varied, the possibility of meaningful experiment so limited, and the data
so questionable, that the greatest achievements of economics so far are chiefly
descriptive rather than analytic. In addition, any theory in the social sciences
faces a special problem: the widespread fear that if knowledge is power, then

876 For further reading, see:

• Wilmott, P. et al., The Mathematics of Financial derivatives, Cambridge Uni-

versity Press, 1999, 317 pp.

877 Derived from the Greek oikos (house) + nemien (to manage) and means

literally: ‘household management’.
878 Examples of economic laws:

• Gresham’s law (1553): ‘Bad coin drives out good coin’; if someone has two
coins of equal face value and debt-paying power, but one is full-bodied and the

other a debased coin, the owner’s inclination will be to hoard the full-bodied

coin and pass on the debased coin. This was how Chancellor Thomas Gresham
explained to Queen Elizabeth I why only bad coins remain in circulation

whereas newly issued good coins quickly disappeared.

• Principle of diminishing returns: If more of one factor (e.g. labor in this case)

is increased, while other factors (e.g. capital) are held constant, eventually

the marginal product of that factor (labor) in this case must fall.
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knowledge in the social sciences could reinforce the power of those who may
already have too much.

The most widely used mathematical tools in economy are statistical, and
the prevalence of statistical methods has given rise to abstract and hugely
complicated theories. Statistical theories usually assume that the behavior of
large number of people is a smooth, average “summing-up” of behavior over
a long period of time.

It is difficult for them to take into account the sudden, critical points of
important qualitative change. The statistical approach leads to models that
emphasize the quantitative conditions needed for equilibrium — a balance of
wages and prices, say, or of imports and exports. These models are ill suited
to describe qualitative change and discontinuity.

Thus, economists of the 19th century believed that in a system of goods
and of demand for those goods, prices will always tend toward a level at
which supply equals demand. In short, the negative feedback from the sup-
ply/demand relationship to prices leads to a stable equilibrium. Little, how-
ever, is said about how equilibria are actually attained.

Recently, however, economists have argued that is not at all the way the
real economy works. Rather, they claim, what we see more often is positive
feedback in which the price equilibria are unstable. Economic examples of this
situation879 show how paradoxical, unpredictable and surprising behavior can

879 Example:

When video cassette recorders (VCRs) started becoming a household item, the

market began with two competing formats — VHS and Beta — selling at about

the same price. By increasing its market share, each of these formats could ob-

tain increasing returns since, for example, large numbers of VHS recorders would

encourage video stores to stock more prerecorded tapes in VHS format.

This in turn would enhance the value of owning a VHS machine, leading more

people to buy machines of that format. So by this mechanism a small gain in

market share could greatly amplify the competitive position of VHS recorders,

thus helping that format to further increase its share of the market. This is

the characterizing feature of positive feedback — small changes are amplified

instead of dying out.

The feature of the VCR market that led to the situation described above is

that it was initially unstable. Both VHS and Beta systems were introduced at

about the same time and began with approximately equal market shares. The

fluctuations of those shares in the early stages were due principally to things

like “luck” and corporate maneuvering.

In a positive-feedback environment, these seemingly random factors eventually
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emerge even in simple systems when the components of the system interact
in ways that we don’t fully understand. Sometimes the complex behavior is
due to nonlinearities in which the outcome is disproportional to the input;
sometimes the problem lies with inherent, hidden instabilities in the system.
Unlike the behavior of physical and biological systems, the awareness of the
participants in the system of the rules of the game, itself influences the system
in a very fundamental way, introducing nonlinearities and instabilities.

To cope with these difficulties, mathematicians during the second half of
the 20th century began to view economic processes from new angles, applying
methods of the newly developed game theory, catastrophe theory and deter-
ministic chaos theory.

Consider a system such as the national economy. Suppose we’re monitor-
ing some measure of the performance of the economy, say the gross national
product (GNP). This observed output of the economic system is determined
by many factors — interest rates, employment levels, productive capacity and
the like. We can think of the economy as a kind of machine; we feed in the
value of each of these input quantities and the machine then produces a level
of GNP as its output.

Since the economy is a dynamical process, it’s reasonable to consider the
level of GNP as being a fixed-point attractor of the economic process. Thus
for every set of values of the inputs, the economy moves to a particular level
of GNP, which can be envisioned as a point in the state-space of the economy.
And since every setting of the inputs produces such a point, there is a whole
surface of GNP points that the economy may produce — at least one for
every level of interest rates, money supply, production facilities and all the
rest. Catastrophe theory is designed to study the geometrical structure of this
surface in an overall effort to quantify the stability of changes in the systems.

Generally speaking, if we change the inputs just a bit, the corresponding
level of GNP will also shift by only slightly. But occasionally we will encounter
a combination of input values such that if we change them by only a small
amount, the corresponding output will shift discontinuously to an entirely new
region of the GNP surface. Such a value of the inputs is called a catastrophe

tilted the market toward the VHS format until it acquired enough of an ad-

vantage to take over essentially the entire market. But it would have been

impossible to predict at the outset which of the two systems would ultimately

win out. The two systems represented a pair of unstable equilibrium points in

competition, so that unpredictable chance factors ended up shifting the balance

in favor of VHS. In fact, if the common claim that the Beta format was tech-

nically superior holds any water, then the market’s choice did not even reflect

the best outcome from an economic point of view.
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point. In colloquial terms, we might think of the catastrophe points as the
straws that break the economy’s back.

As it turns out, these catastrophe points arise at just those input levels
where there is more than one possible fixed point to which the system can
be attracted. And the jump discontinuity is a reflection of the system’s “de-
ciding” to move from the region (attraction basin) of one attractor to that
of another. Catastrophe theory shows that there are only a small number of
inequivalent ways in which these jumps can take place, and it provides a stan-
dard picture for each of the different geometries that the surface of attractors
can display.

Another example is the problem of competition and prices: if production
is cheaper in large quantities, the industry tends to be dominated by one
company (monopoly) or by a few (oligopoly). Oligopoly can adopt one of the
three strategies. Firstly, it can form a cartel (production and prices deter-
mined by negotiation) which as far as the consumers are concerned, acts like
a monopoly.

Second, one or more firms can initiate a round of predatory price-cutting
to force weaker companies out of the market.

Third, in some circumstances, firms can merge, reducing the level of com-
petition to the benefit of the remaining members. Even when these strategies
are employed, manufacturers are generally unable to raise prices indefinitely
since prices are affected by the elasticity of demand too, and prices depend
simultaneously on competition between producers and elasticity of demand.
The dependence of the price on the elasticity of demand and number of pro-
ducers is mathematically represented by an equilibrium surface displaying a
bifurcation set of the ‘cusp’ type.

The most interesting feature of this model880 is its prediction of two price
ranges, one high and one low, in conditions of low to moderate elasticity of
demand and moderate competition. Transitions between these ranges would
be dramatic in cases of very low elasticity of demand (e.g. when alternative

880 An example in which the formation of an oligopoly had a dramatic impact on

price was the establishment of OPEC (association of oil producing and exporting

countries). These nations had previously sold their oil competitively, but in 1973

they began to set prices in concert as an oligopoly. The price of crude oil went

from $2.12 per barrel in January 1973 to $7.61 per barrel a year later, and

to $10.50 per barrel by January 1975. Consumption fell by 14 percent in

Belgium and the Netherlands, 10 percent in West Germany, and 3.5 percent

in the United States. But the elasticity of demand for oil, in the short run at

least, was low, and the merchants of OPEC had little difficulty in selling all

they chose to produce.
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source of energy becomes readily available). A more complex model, one based
on the ‘butterfly’ catastrophe surface, would be needed in order to describe
the interaction of monopolies and oligopolies.

A third economical example concerns inflation and unemployment, which
is inevitably bound up with politics: Empirical studies have suggested that
there is a trade-off between these levels, and political parties accuse each other
of sacrificing those out of work to the goal of lowered inflation, or conversely
of sacrificing economic stability to the goal of full employment.

More recently, both economists and politicians have recognized that the
expectation of future inflation is an important factor. If a high level of infla-
tion is the norm, then workers begin to demand higher wages to offset the
increased cost of living they believe will come during the period of contract.
These higher wages themselves have an inflationary impact. This phenom-
enon suggests that a qualitative model for inflation should include the expected
inflation rate as one control factor and unemployment as the other. We meet
again the ‘cusp’ bifurcation set, which predicts a dramatic drop in inflation
rate under conditions of a drastic increase of unemployment coupled with high
inflation rate.

Catastrophe theory is also useful in assessing the “fine tuning” of quan-
tities such as money supply (which affects inflation via loan rates) and the
government’s expenditure for goods and services (which increases employment
by raising total demand). The value of models based on this theory lies in its
indication that the sequence in which the control factors are altered can, at
any given moment, be at least as important as their quantitative levels.

The above examples serve to show that there is an enormous gulf between
the highly simplified static economists’ models and the complex world to which
they are applied.

Another important problem concerns the interpretation of price – fluctu-
ations: When analyzing prices of commodities, securities, or financial instru-
ments in a variety of markets, a commonly used assumption is that many of
the fluctuations observed in the market prices (known as “noise”) are the re-
sult of purely stochastic (i.e. random) processes. One recognizes, of course, the
effects on prices of external influences such as political developments, weather
(especially important in commodities markets), and a variety of macroeco-
nomic factors. In addition, there are other well-understood, time-dependent
influences such as time to delivery of a future contract. But aside from these
effects, the prevailing wisdom can be represented by a stochastic process; once
the underlying trends are subtracted out, the remaining price fluctuations of-
ten appear to be random.

Furthermore, there was a conviction that small, transient changes had
nothing to do with large, long-term changes: small-scale ups and downs during
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a day’s transactions are just noise, unpredictable and uninteresting; long-term
changes are determined by deep macroeconomic forces, such as the trends of
war and recession. Yet, that dichotomy was found to break down in many
cases881. Evidence was found that tiny changes and grand ones were bound
together across all scales and that within the most disorderly realms of data
lurked an unexpected kind of order.

A simple example serves to show how chaos may enter an economic sys-
tem: suppose we have a simple market with just one commodity with time-
dependent price p(t) such that

p(t + 1) = Ap(t) − Ap2(t).

This is the well-known logistic map, which for A > Ac ≈ 3.57 renders p(t)
chaotic882 except in isolated A-intervals. For A > 4, the iteration of the map
diverges for most initial conditions. This behavior can easily be mistaken for
randomness, for even if we apply some sophisticated statistical methods to
the iterations of this map, we are not assured of finding any structure! Many
chaotic systems pass as random under common statistical tests883.

881 Bachelier (1900) claimed that successive price changes are statistically inde-

pendent and follow, in the first approximation, the one-dimensional Brownian

motion.

Mandelbrot (1963) analyzed cotton price data at the New York City Cotton

Exchange, 1880–1940, and interpreted this data as having a fractal structure

with dimension D = 1.7, thus bearing the first evidence for scaling in eco-

nomic, i.e. curves of daily changes and monthly price changes corresponded

perfectly! Moreover, the degree of variation had remained constant over a tu-

multuous period of 60 year period that saw two world wars and a depression.
882 The discretization of the first-order differential equation

.
x = F (x) leads to a

first-order difference equation xn+1 = F (xn, c). In this form, the dynamics can

be equally well viewed as a sequence of mapping F : xn → xn+1. The dynamics

of the difference equation is much richer than the first-order ODE because it

is free from the continuity restrictions of differential equations; xn can ‘jump

around’ on the real axis, whereas a non-periodic x(t) can only pass a point

once if
.
x = F (x). This freedom makes it possible for the difference equation

to exhibit several interesting types of bifurcation sequences, leading to various

forms of coherent or ‘chaotic’ behavior, depending on the magnitude of the

control parameter c.
883 A simple test, though, will help to differentiate between randomness and deter-

ministic chaos in the case of the logistic map; we construct a two-dimensional

graph of p(t + 1) against p(t) for a set of integer t-values in a given interval.

If the values of p(t) were really random, then our 2-dimensional plot would

look like a scatter of points. On the other hand, a plot constructed from a lo-
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Thus, depending on the value of A, the nonlinear regularity mechanism
(i.e., the term −Ap2(t) in the equation) could create all kinds of interesting
price movements as a function of time, even random-looking ones.

It may be that in a nonlinear market, the price movement may not be
solely due to the new information affecting the market but may result partly
from the nonlinear dynamics of the market itself, and these may indeed be
vastly more complicated than that of the simple logistic map.

To complicate matters still more, the environment in which a market exists
is not static. Changes take place in societies and economies on all time scales,
from seconds to millennia. A financial market, coupled to other markets and to
the society at large, will, in some enormously complex way, reflect in its prices
all these changes over all time scales. These markets have exquisitely intricate
self-regulatory mechanisms, reflecting the effects of human psychology, social
behavior and, to some extent, rational thought.

A final example involves an economic system which defies any mathemat-
ical formulation:

Consider the curve y = axα(100 − x)β which purports to relate the per-
centage tax-rate x to the government’s revenue y (known as the Laffer
Curve). If there is too much taxation, people will not work as hard for a
salary and look for other non-cash benefits, so the revenue will drop. How-
ever, data for the U.S. economy over the past 50 years reveals a ‘neo-Laffer
curve’ which resembles the former only near the trivial points x = 0, 100,
but looks totally chaotic in between these points.

These results show that there is no Tax Rate – Government Revenue map,
because there is no causal connection; human nature is presumably too com-
plicated for such a connection to be deterministic. What is indeed fortunate,
and often amazing, is that some complicated systems do appear to have dy-
namics which can be approximated by simple first order models, and we often
do not have any profound physical understanding as to why this occurs.

1936–1949 CE Eugène Louis Felix Néel (1904–2000, France). Physi-
cist. Predicted a fourth type of magnetism — antiferromagnetism (in addition

gistic map will render a parabola! A fair number of financial and economic data

series have been analyzed using these methods, and there is significant evidence

for the existence of underlying nonlinear processes in economics and finance.
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to dia- , para- , and ferromagnetisms). He argued for a crystal model in which
two lattices having their magnetic fields acting in opposite directions are in-
terlaced. Their opposite magnetic fields would cancel, leaving the crystal with
little observable magnetic field. His predictions were verified by experiment
(1938), and further confirmed by neutron diffraction techniques (1949).

Later, Néel successfully predicted magnetization configurations in thin
films and near surfaces. He also explained the strong magnetism found in
ferrite materials such as magnetite (1948), demonstrating that if the mag-
netic field of one of the two lattices (mentioned above) were stronger than
the other, there would be an observable magnetic field (ferrimagnetism). His
work on ferromagnetic materials saw great application in the coating of mag-
netic tape, as well as in the processing of permanent magnets for motors and
of magnetic storage media used by computers. He was awarded the Nobel
Prize for Physics jointly with Alfven.

Néel was born in Lyons and graduated from the Ecole Normale Supérieure.
He was later Professor of Physics at Strasbourg University (1937–1940) and
Grenoble (1940).

1936–1949 CE Matvei Petrovich Bronstein (1906–1938, Soviet
Union), Jacques Solomon (1908–1942, France) and Carl Bryce Selig-
man DeWitt (1923–2004, Belgium) — theoretical physicists and pioneers of
quantum gravity, made the first approaches to quantize general relativity in
an overall effort to unify gravity with quantum theory.

Bronstein entered Leningrad University (1926), graduated (1929) and
joined the Leningrad Physico-Technical Institute (1930), where he worked
with Ioffe, Frenkel, Fock, Tamm and Landau. In 1935 he presented his
Doctoral Thesis on “Quantizing Gravitational Waves”, to Vladimir Fock and
Igor Tamm. In 1936, the work was published in Russian884, as well as in a
condensed German version885.

On Aug 6, 1937, Bronstein was arrested in Kiev on the charge of “active
involvement in a Leningrad counterrevolutionary organization” and was ex-

884 Bronstein, M.P., “Kvantovanie gravitatsionnykh voln [Quantization of gravita-

tional waves]”, Zhurnal Eksperimentalnoy i Teoreticheskoy Fiziki G, pp. 195–

236, 1936.

885 Bronstein, M.P, “Quantentheorie schwacher Gravitationsfelder”, Physikalishe

Zeitschrift der Sowjetunion, 9, pp. 140–157, 1936.
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ecuted by a Soviet NKVD firing squad on Feb 18, 1938886,887. His grave is
unknown and references to his name disappeared from the annals of Soviet
physics for several decades. Only 20 years later did his widow, the writer
Lydia Chukovskaya, learned the exact date of his death.

Bronstein was first to claim that there is an essential difference between
quantum electrodynamics and the quantum theory of the gravitational field.
He indeed showed that general relativity and quantum theory are fundamen-
tally difficult to unify. In that he disagreed with Pauli and Heisenberg
(1929) who believed that the gravitational field could eventually be easily
quantized along the lines of QED.

Indeed, Bronstein realized the intrinsic difference: in QED, an infinite
charge density in the test body is, in principle, conceivable, whereas in the
case of gravitation, the test body’s gravitational radius should not exceed its
real linear dimensions. Bronstein then derived [long before Wheeler (1955)]
the intrinsic limitations of the quantization of the gravitational field, related
to Planck’s scales888.

886 Gorelik, G.E. and V. Frenkel, “M.P. Bronstein and Soviet Theoretical Physics

in the Thirties”, Birkhauser Verlag Basel/Boston, 1994.
887 Gorelik, G.E., Matvei Bronstein and quantum gravity: 70th anniversary of the

unsolved problem, Physics – Uspekhi, 48(10), pp. 1039–1053, 2005.
888 In his doctoral thesis (1935), Bronstein carried out the quantization of the lin-

earized Einstein equations by the Fermi method, developing the quantum ana-

logue of Einstein’s quadrupole radiation formula, and deducing the Newtonian

law of attraction from the interchange of longitudinal gravitational quanta. He

then proceeded to some critical reflections on the physical significance of his

results.

He carries out an analysis of the measurability of the (linearized) Christoffel

symbols, which he takes to be the components of the gravitational field. By

analogy with the then-recent Bohr-Rosenfeld analysis of the measurability of

the electromagnetic field components, he shows that there are limitations on

the measurability of the gravitational field components implied by the uncer-

tainty relations between position and momentum of a test body, the acceleration

of which is used to measure the gravitational field. But he notes that there is an

additional gravitational complication, which has no electromagnetic analogue:

To measure the components of the electromagnetic field, it is permissible to in-

troduce electrically neutral test bodies, which have no effect on the field being

measured. But in the gravitational case, due to the universality of gravita-

tional interactions, the effect of the energy-momentum of the test bodies on

the gravitational field cannot be neglected — even in the linear approximation.

Bronstein derives an expression for the minimum uncertainty in a measurement

of a component of the Christoffel symbols that depends inversely on the mass
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At least one physicist outside the Soviet Union acknowledged, and indeed
extended, Bronstein’s views. In 1938 the French physicist Jacques Solomon
after summarizing Bronstein’s argument concluded:889

“In the case when the gravitational field is not weak, the very method of
quantization based on the superposition principle fails, so that it is no longer
possible to apply a relations such as [the equation setting a lower limit on the
measurability of the linearized field strength] in an unambiguous way. . . Such
considerations are of a sort to put seriously in doubt the possibility of recon-
ciling the present formalism of field quantization with the non-linear theory of
gravitation.”

In one of the many tragic ironies of history, both of these pre-war ad-
vocates of the need for a radically different approach to quantum gravity
perished prematurely. Jacques Solomont was a Communist militant active in

density of the test body, just as Bohr-Rosenfeld’s corresponding result does on

the charge density r of the test body. He then states what he sees as the crucial

difference between the two cases:

“Here we should take into account a circumstance that reveals the fundamen-

tal distinction between quantum electrodynamics and the quantum theory of the

gravitational field. Formal quantum electrodynamics that ignores the structure

of the elementary charge does not, in principle, limit the density of ρ. When it is

large enough we can measure the electric field’s components with arbitrary preci-

sion. In nature, there are probably limits to the density of electric charge. . . but

formal quantum electrodynamics does not take these into account. . .The quan-

tum theory of gravitation represents a quite different case: it has to take into

account the fact that the gravitational radius of the test body (kρV ) must be less

than its linear dimensions kρV < V 1/3.

. . . The elimination of the logical inconsistencies connected with this result re-

quires a radical reconstruction of the theory, and in particular, the rejection of

a Riemannian geometry dealing, as we have seen here, with values unobservable

in principle, and perhaps also rejection of our ordinary concepts of space and

time, modifying them by some much deeper and nonevident concepts.”

In summary, he raised the problem of the measurability of the quantized grav-

itational field, arguing that, in addition to limits imposed by the uncertainty

principle, in general relativity there is an ‘absolute limit’ to the accuracy with

which the components of the linearized affine connection within a given vol-

ume can be measured. He suggested that the application of the formalism of

quantum field theory might not yield the desired fusion of quantum theory and

gravitation, calling for ‘a radical reconstruction of the theory’.
889 Solomon, Jacques, “Gravitation et Quanta”, Journal de Physique et de Radium,

9, pp. 479–485, 1938.
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the underground resistance to the German occupation of France. He was ar-
rested together with his wife, Helene Langevin, in March 1942 and was killed
by the Germans on May 23, 1942; she was sent to Auschwitz, but survived
the war.

Between them, Stalin and Hitler saw to it that the post-World-War-II
discussion of quantum gravity took place without what could have been two
significant voices.

Carl Bryce Seligman (1923–2004, USA) (changed his name to DeWitt
in the 1950’s) was a theoretical physicist best known for formulating canonical
quantum gravity. It was one of the first approaches to quantizing general rel-
ativity890; for formulating the Wheeler-deWitt equation for the wavefunction
of the universe. He is also known for advancing the formulation of the Hugh
Everett’s many-worlds interpretation of quantum mechanics.

Seligman was born to Jewish parents in Dinuba, CA. He received his bach-
elor’s, master’s and doctoral degrees from Harvard University. Afterwards he
worked at the Institute for Advanced Study, the University of North Carolina
at Chapel Hill and the University of Texas at Austin.

1936–1956 CE Alonzo Church (1903–1995, USA). Mathematical logi-
cian. Made important contributions in mathematical logic and theoretical
computer science. Published the first precise definition of a calculable func-
tion, thus advancing the systematic development of the theory of algorithms.
The mathematical analysis of computation is generally credited independently
to Alan Turing and Alonzo Church. The Church Theorem (1936) extends the
work of Gödel (1930) by showing that there is no decision procedure for arith-
metic, i.e., there is no algorithm for a class of quite elementary arithmetical
questions. In this sense, Church’s theorem connects the Turing halting prob-
lem in computer science to Gödel’s incompleteness theorem. The Church-
Turing Thesis (not yet proved false or true) maintains that all computers are
equally powerful problem solves (notwithstanding the fact that some com-
puters will be able to solve problems faster than others). Thus, the Church-
Turing thesis says that, given sufficient resources (time and memory), there
is nothing that one computer can do, that any other can not (eventually).

Church was educated in Princeton and remained there for 40 years (Ph.D.
1927). He spent a year at Harvard (1925) and another year at Göttingen,

890 Seligman [DeWitt], C.B., “The Theory of Gravitational Interactions and the

Interaction of Gravity with Light”, Thesis, Harvard University, December 1949.
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Germany (1926). He created the λ-calculus891 (1930), which today is an
invaluable tool for computer scientists, and then showed that any other com-
putational scheme could be described in terms of it.

1936–1956 CE Samuel Eilenberg (1913–1998, Poland and USA). Math-
ematician. A leading topologist in the 20th century. Introduced the concepts
of functor (1942), category (1945), homological algebra (1956) and contributed
to the theories of homotopy groups and fiber bundles (1952).

Eilenberg was born in Warsaw to Jewish parents. He was educated at the
University of Warsaw (Ph.D. 1936). He left Poland for the United Stated
(1939) and held positions at the universities of Princeton, Michigan, Indiana
and Columbia (1947–1998).

The New Geometry —

Algebraic and Differential Topology892 (1900–1970)

(a) Overview

Topology is an area of pure mathematics that deals with those properties
of objects which are not affected by continuous deformation. This discipline is

891 A logical language used to formalize the very general concept of a function. It

is a formal mathematical system to investigate functions, function application

and recursions. It has influenced many programming languages and has a good

claim to be the prototype programming language (‘denotational semantics’).
892 To dig deeper, see:

• Flegg, H.G., From Geometry to Topology, Dover, 2001, 186 pp.

• Stewart, I., Concepts of Modern Mathematics, Dover, 1995, 339 pp.

• Henle, M., A Combinatorial Introduction to Topology, Dover, 1994, 310 pp.

• Arnold, B.H., Intuitive Concepts in Elementary Topology, Prentice-Hall,

1963, 182 pp.

• Alexandroff, P., Elementary Concepts of Topology, Dover, 1961, 57 pp.
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also called “rubber sheet geometry” since the properties that are of interest to
a topologist are those that would be invariant on a stretchable rubber sheet.

Thus, geometric properties such as length and local curvature are not of
interest to a topologist, but the number of holes in an object is a topological
property.

In ordinary Euclidean geometry, one may move objects around, rotate and
flip them over, but one is not allowed to stretch or bend them. This leads to
the concept of ‘congruence’ in that geometry. Two objects in plane geometry
are congruent if one can be laid on top of the other such that they match
exactly.

In projective geometry (invented during the Renaissance to understand
perspective drawing), two objects are considered the same if they are both
views of the same object. For example, if one looks at a plate on a table from
directly above the table, the plate looks round like a circle. But if one walks
away a few feet and looks at it, it looks elongated, like an ellipse893. The
ellipse and circle are projectively equivalent.

In topology, any continuous change which can be continuously undone is
allowed. So a circle is the same as a triangle or a square, because you just
‘pull on’ parts of the circle to make corners and then straighten the sides, to
change a circle into a polygon. Then you just ‘smooth it out’ to turn it back
into a circle. These two processes are continuous in the sense that during each
of them, nearby points at the start are still nearby at the end.

The circle is not topologically the same as a figure 8, however, because
although one can squash the middle of a circle together to make it into a figure
8 continuously, when one tries to undo it, one has to break the connection in
the middle and this is discontinuous: a set of points that are all infinitesimally
near the center of the 8 end up split into two branches, on opposite sides of
the circle, a finite distance apart.

Another example: a plate and a bowl are the same topologically, because
one may just flatten the bowl into a plate. At least this is true if one uses clay
which is still soft and has not been fired yet. Once they are fired they become
Euclidean rather than topological, because one cannot flatten the bowl any
longer without breaking it.

893 This is one reason it is hard to learn to draw. The eye and the brain work

projectively. They look at the elliptical plate on the table, and think it’s a

circle because they know what happens when one looks at things at an angle.

To learn to draw, one has to learn to draw an ellipse even though the brain is

saying ‘circle’, so one can draw what one really sees, instead of ‘what one knows

it is’.
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Thus, what distinguishes different kinds of geometry from each other are
the types of transformations that are allowed before one considers that some-
thing has changed.

In two dimensions, topologists imagine that figures can be stretched and
pulled as though they were drawn on an infinitely thin, infinitely stretchable
material that can be deformed in any way (not including tearing, perforating,
or gluing). Some properties that are important in Euclidean geometry such
as distance, measurement of angle, or straightness, have no topologically in-
variant meaning. Other properties, such as whether lines intersect or whether
figures are closed (like the letter “O”) or open (like the letter “U”) remain
important.

In order to deal with these problems that don’t rely on the exact shapes
of objects, one must be clear about just which properties these problems do
rely on. From this need arises the notion of topological equivalence. In two
dimensions, a triangle, a square, and a circle are all topologically equivalent.

In three dimensions, the surfaces of a cube, a pyramid, and a sphere are
topologically equivalent. A stretchable “skin” that covers any one of them
can be readjusted to cover any of the others. The surfaces of a doughnut and
a coffee mug are topologically equivalent — each is a three-dimensionally em-
bedded, closed oriented (2-sided) surface with a single hole in it (the doughnut
hole or mug handle).

Indeed, a topologist is sometimes said to be a person who does not know
the difference between a coffee mug and a doughnut, since if these are made
out of plastic clay, either of them can be continuously deformed into the other
without tearing apart contiguous regions or pinching together disjoint regions:
the hole in the handle of the mug corresponds to the hole in the doughnut,
while the cupped part can be flattened and rounded.

Similarly, the set of all possible positions of the hour hand of a clock is
topologically equivalent to a circle (i.e., a one-dimensional closed curve with
no intersections – which can be embedded in two-dimensional space); the
set of all possible positions of the hour and minute hands taken together
is topologically equivalent to the surface of a torus (i.e., a two-dimensional
surface that can be embedded in three-dimensional space by sweeping a circle
such that its center traces along a closed curve), and the set of all possible
positions of the hour, minute, and second hands taken together is topologically
equivalent to a closed three-dimensional manifold (the three-torus).

Topologists do not limit themselves to the two- and three-dimensional
worlds with which we are familiar via direct sense-perception. Many of the
concepts and theorems in topology deal with multi-dimensional manifolds
which may exist only in the imagination, or as formal mathematical con-
structs.
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Topologists, then, are interested in a variety of surfaces and, more gen-
erally, “hyper-surfaces” (and their intrinsically-defined versions, manifolds).
They try to understand exactly what it is that distinguishes one hypersur-
face from another, and to understand the relationships that a hypersurface
can have with the higher-dimensional (“host-” or “target-”) space that it is
embedded in. The mathematical study of knots is a branch of topology.

Topology is relevant to the study of spatial objects such as curves, surfaces,
maps, electrical or neural circuits, organizational or flow charts, configurations
of electromagnetic fields, fluid flow patterns, the space we call our universe,
the spacetime of general relativity, fractals, knots, manifolds (smooth intrinsic
spaces that can be continuously patched from regions of a Euclidean space),
configuration and phase spaces that are encountered in physics (such as the
space of hand-positions of a clock or the space of possible positions and veloc-
ities of a system of stars and planets), symmetry groups such as the collection
of ways of rotating a rigid body, etc.

Topology is divided into several (overlapping) parts, including graph the-
ory (or, more generally, combinatorial topology); general point-set topology
(including real analysis); measure theory; and the topology of manifolds. The
latter is further subdivided into algebraic topology and differential topology,
and low-dimensional topology. In algebraic topology, tools from abstract al-
gebra are used to study the global property of manifolds.

One of the strengths of algebraic topology has always been its wide applica-
bility to other fields. Nowadays that includes physics, differential geometry,
algebraic geometry, and number theory.

As an example of this applicability, we present a simple topological proof
that every non-constant polynomial p(z) with complex coefficients has at
least one complex zero. Consider a circle of radius R and center at the origin
of the complex plane. The polynomial function transforms this into a closed
curve in the complex plane. If this image curve ever passes through the origin,
we have our zero. Otherwise, suppose the radius R is very large. Then the
highest power of p(z) dominates and hence p(z) transforms the circle into
a curve (the image curve) which winds around the origin the same number of
times as the degree of p(z).

This is called the winding number of the image curve around the origin.
It is always an integer and it is defined for every closed curve which does not
pass through the origin. Winding numbers of closed curves form an additive
group; if we concatenate two closed curves, their winding numbers add to yield
that of the resultant curve. This is an example of how abstract algebra gave
Algebraic Topology its name.
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If we deform the image curve subject to this last constraint, the winding
number has to vary continuously but, since it is constrained to be an integer, it
cannot change and must be a constant – unless the curve is deformed through
the origin. The above argument thus shows that if p(z) has no root (zero),
the winding number of the image curve equals the degree of p(z) for any finite
value of R. Now deform the image curve, by shrinking the radius R to zero
and suppose again that the image never passes through the origin, that is to
say we never hit a zero of the polynomial.

The image curve becomes very small and if, as R → 0, it tends to a (non-
origin) point, it must have winding number 0 around the origin, in that limit.
If the image curve does shrink to the origin, the origin is a zero of p(z). If
not, the winding number is 0 for sufficiently small R. Combining this fact
with the large-R limit treated above, we deduce that the polynomial must
have degree 0, in other words it is a constant. We have thus used algebraic
topology to prove, by contradiction, that a polynomial of nonzero degree must
have at least one zero (root) in the complex plane.

The winding number of a curve illustrates two important principles of al-
gebraic topology. First, it assigns to a geometric object, the closed curve, a
discrete-valued invariant, the winding number, which in this case is an integer.
Second, when we deform the geometric object subject to certain constraints,
the winding number does not change; hence it is called an invariant of defor-
mation or, synonymously, an invariant of homotopy.

Modern algebraic topology is the study of the global topological properties
of spaces (especially manifolds) by means of abstract algebra. Poincaré was
the first to link the study of spaces to the study of algebra by means of his
fundamental group. This is a generalization of the concept of winding number
which applies to any manifold.

To get an idea of what algebraic topology is not about, consider the fact
that we live on the surface of a sphere (namely the earth), but locally this
is difficult to distinguish from living on a flat plane. One way of telling that
we live on a sphere is to measure the sum of the three angles of a triangle,
the vertices of which are 3 points (loci) on the earth’s surface, and the sides
of which are segments of great circles (shortest-length curves) between the 3
possible pairs among these vertices. For a small triangle on earth’s surface,
this sum is slightly more than 180 degrees. For a large triangle, it is much
more. This tells us that we live on a surface with what is called positive cur-
vature. But, since we can use arbitrarily small triangles to measure curvature,
it is a local property, not a global one. It properly belongs to the field known
as differential geometry.

Algebraic topology is concerned with the whole surface, and starts with
the obvious fact that the surface of a sphere is a finite area with no boundary,
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while the flat plane does not have this property. It expresses this fact by
assigning various deformation-invariant groups to these and other spaces.

One class of such groups consists of homotopy groups; another kind com-
prises homology groups894. These groups are all discrete, and they are invariant
in the sense that they do not change if the space is continuously deformed.

One of the homotopy groups assigned to a sphere is an infinite Abelian
group which corresponds to the topologically distinct ways in which a sphere
can be wound about another sphere. The corresponding group for a plane,
for example, is the trivial group (consisting of the identity element alone).
Other homotopy groups have elements representing the various (deformation
invariant) distinct ways in which an n-dimensional hypersphere (the n-sphere
– denoted Sn) can wrap around the manifold in question.

The fact that these discrete groups may be different for different topolog-
ical spaces, tells us that the spaces are globally different. Algebraic topology
includes, but is not confined to, the study of spaces of dimensions two or
three. It includes, for example, the contemplation of the shape of the three
dimensional universe itself, or of the shape of the four dimensional space-
time of General Relativity, or whether two closed curves (or other embedded
manifolds) can “link” each other in n dimensions; or the shape of the group
manifold of all rotations in Rn; the global study of phase-space trajectories
of nonlinear dynamical systems; etc.

The concept of continuous deformation can be illustrated by the following
examples. Consider again a coffee cup (with a handle) and a doughnut. If
they are both made of some pliable substance like modeling clay, they can be
deformed continuously (without ripping) one into the other. This is reflected
in the fact that they have the same homotopy and homology groups, that is,
their homotopy groups and homology groups are topological invariants. On

894 For a manifold M of dimension n, there are n + 1 additive homology groups,

denoted Hm(M, Z)(m = 0, ..., n), with Z the ring of integers (signed or zero);

Z is sometimes replaced with a different ring or field (e.g. the rationals or re-

als). Hm consists of a set of m-dimensional closed and oriented submanifolds

of M , for which group addition is defined in the sense of set union. The addi-

tive inverse of a submanifold is the same submanifold, but with its orientation

reversed; the zero (unit) element of the additive group Hm is represented by

any m-dimensional submanifold continuously deformable to infinitesimal neigh-

borhoods of a point in M . Two-m-submanifolds are considered equivalent if

their difference is the boundary of some (m+1)-dimensional submanifold; thus

the elements of each homology group Hm are actually equivalence classes of

m-submanifolds.
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the other hand, a doughnut cannot be continuously deformed into a sphere.
This means that their homotopy and/or homology groups are different.

(b) History
895

Topology as a subject began to take shape between 1850 and 1900 in the
works of these mathematicians: G.F.B. Riemann (1826–1866), J.B. List-
ing (1808–1882), A.F. Möbius (1790–1868), E. Betti (1823–1892), C. Jor-
dan (1838–1922), Gustav Roch (1839–1866), F. Klein (1849–1925) and
H. Poincare (1854–1912).

Although concepts that we now consider part of topology, were expressed
and used by these mathematicians, algebraic topology as a part of rigorous
mathematics (i.e., with precise definitions and correct proofs) only began
in 1900 with the works of: M. Fréchet (1878–1973), M. Dehn (1878–
1952), H. Lebesgue (1875–1941), E. Cartan (1869–1951) and F. Haus-
dorff (1868–1942).

At first, algebraic topology grew very slowly and did not attract many
mathematicians; until 1920 its applications to other parts of mathematics
were very scant and often shaky. This situation gradually changed with
the introduction of more powerful algebraic tools, and the vision of Poincare
(1895) of the fundamental role topology should play in all mathematical the-
ories began to materialize. The main characters in this saga were: O. Ve-
blen (1880–1960), L.E.J. Brouwer (1881–1966), S. Lefschetz (1884–1972),
H. Weyl (1885–1955), J.W. Alexander (1888–1971), L. Vietoris (1891–
2002), M. Morse (1892–1977), K. Reidemeister (1893–1971), E. Cech
(1893–1960), H. Hopf (1894–1971), P.S. Alexandrov (1896–1982), K. Ku-
ratowski (1896–1980), P. Uryson (1898–1924), J. Schauder (1899–1943),
O. Zariski (1899–1986), K. Menger (1902–1985), W. Hodge (1903–1975),

895 Some enlightening statistics:

(i) A remarkable longevity among topologists: of 36 men born between 1878–

1911, nine (25 percent) reached age above 92 and one reached the ages of

110!

(ii) Of the 56 ‘top topologists’ listed here, at least 12 are European Jews. Haus-

dorff and Schauder were murdered by the Nazis (1942–3) and Hurewicz fell
from atop a Mexican pyramid (1956). Thus, the advice “be a good topologist

and live longer” must be heeded with caution.
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B.L. van der Waerden (1903–1996), G. de Rham (1903–1990), H. Car-
tan (b. 1904), J.W.C. Whitehead (1904–1960), W. Hurewicz (1904–

1956), H. Freudenthal (1905–1990), C. Ehresmann (1905–1979), K. Bor-

suk (1905–1982), J. Leray (1906–1998), J.A.D.E. Dieudonné (1906–1992),

A. Weil (1906–1998), K. Seifert (1907–1996), H. Whitney (1907–1989),

L. Pontryagin (1908–1988), C. Chevalley (1909–1984) and N. Steenrod

(1904–1960).

Since 1945, the growth of algebraic and differential topology and its ap-

plications has been exponential and shows no sign of slackening. Some of the

leading exponents were (are): S. MacLane (b. 1909), S.S. Chern (b. 1911),
S. Eilenberg (1913–1998), K. Kodaira (1915–1997), E.S. Spanier (1921–

1996), A. Borel (b. 1923), R. Thom (1923–2002), J.P. Serre (b. 1926),

A. Grothendiek (b. 1928), S. Smale (b. 1930) and J.W. Milnor (b. 1931).

The growth of general point-set topology, which we review next, has been

largely driven by the ever-deepening studies of the real-number system start-

ing in the 19th century. This field is an indispensable foundation of measure
theory — which in turn is needed in defining and generalizing the concept of

integration, as well as in the various branches of Functional Analysis. Mea-

sure theory also underlies the theory of probability and stochastic processes.

Point-set topology underlies the topology of manifolds, as well as: the theory
of function spaces, transforms, differential and integral equations and linear

operators — as well as the rest of Functional Analysis.

(c) Basic Concepts

Topological spaces are structures which enable the formalization of intuitive

concepts such as convergence, connectedness and continuity.

Formally, a topological space is a set X together with a set T of so-called

open subsets of X satisfying these axioms:

1. The union of any collection of open sets an element of T is also an

element of T .

2. The intersection of any finite set of elements (sets) in T is also in T .

3. X itself and the empty set are in T .



1936 CE 4437

The set T is also called a topology on X. The sets in T are referred
to as open sets, and their complements in X are called closed sets. Roughly
speaking, open sets are thought of as neighborhoods of points; two points are
considered “close” in a pre-metric sense if there are “many” open sets that
contain both of them.

A function (also called a map) between topological spaces is said to be
continuous if the inverse image of every open set is open. This definition is
an attempt to capture & generalize the intuition that points which are “close
together” get mapped to points which are likewise “close together”.

Examples of topological spaces:

• The set (also algebraic field) of real numbers R: its open sets are unions
of (possibly infinitely many) open intervals. This is in many ways the
most basic topological space, and the one that guides most of our human
intuition.

• More generally, every interval in R is a topological (sub) space, and so
are the product Euclidean spaces Rn.

• The set (field) of complex numbers C: the open sets are (finite or
infinite) unions of open discs.

• Any metric space can be turned into a topological space if we define
a set to be open if and only if it is a (possibly infinite) union of open
balls. This applies to Rn, but also to such useful infinite dimensional
spaces as Banach spaces and Hilbert spaces studied in functional analy-
sis. Such infinite-dimensional spaces are very important in both classical
and quantum physics.

• Manifolds (whether intrinsic or embedded); in particular, surfaces.

• A simplex – a type of convex object that is very useful in computational
geometry. In 0, 1, 2 and 3 dimensional spaces the simplices are,
respectfully: the point, line segment, triangle and tetrahedron.

• Simplicial complexes. A simplicial complex is made up of simplices.
Many geometric objects can be modeled by simplicial complexes, and
such discretizations are a cornerstone in the computerized numerical
simulation of mechanical, quantum-mechanical, electromagnetic, ther-
mal, and chemical behavior of physical systems on all scales of space
and time, from sub-nuclear to cosmological.
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In topology, two geometrical objects (or “spaces”) are called homeomor-
phic if, roughly speaking, each may be reversibly deformed into the other by
a sequence of stretching and bending operations; cutting is also sometimes
allowed, but only if the two parts are later glued back together along exactly
the same cut. For example, a square and a circle are homeomorphic. A par-
tially hollowed solid ball containing a smaller solid ball is homeomorphic to a
hollowed cube with a solid cube (or ball) embedded inside of it.

If two objects are homeomorphic, there exists a continuous, one-to-one
function (also called a map, mapping or transformation) which maps points
from the first object to corresponding points of the second object, such that
every point in the 2nd (“target”) object is reached (an onto map) and the
inverse map is continuous as well. Such a function is called a homeomorphism;
intuitively, it maps points in the first object that are “close together” to points
in the second object that are close together, and points in the first object that
are not close together to points in the second object that are not close together.

Topology is the study of those properties of objects that do not change
when homeomorphisms are applied.

For a formal definition, suppose X and Y are topological spaces, and
f is a function from X to Y . Then f is a homeomorphism iff all the
following hold:

1. f is a bijection (i.e. one-to-one and onto),

2. f is continuous,

3. the inverse function f −1 also is continuous.

If there exists a homeomorphism f : X → Y , then Y is said to be
homeomorphic to X (or to be a homeomorph of X). In this case, Y is
also homeomorphic to X, since f −1 is a homeomorphism as well — and
we say that X and Y belong to the same homeomorphism class.

Topological spaces can be broadly classified according to their degree of
connectedness, their degree of compactness and the degree of separability of
their points.

A space is metrizable if it is homeomorphic to a metric space. A space is
locally metrizable if every point has a metrizable neighborhood.

Metric spaces were defined and investigated by Fréchet in 1906, and
Hausdorff spaces by Felix Hausdorff in 1914, and the current concept of
topological space was described by Kuratowski in 1922.
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An n-dimensional manifold is a topological space that is locally home-
omorphic to the “ordinary” space Rn. An example is the surface of the
ordinary two-dimensional sphere, which modern mathematicians often refer
to as the 2-sphere (denoted S2). It is topologically distinct from a plane,
although simply–connected open patches of it are homeomorphic to R2. To
make precise the notion of “locally homeomorphic” one uses overlapping lo-
cal coordinate systems or charts, as will be described in detail below. Every
manifold has a dimension — the number of coordinates needed in every local
coordinate system.

The (partially) overlapping local charts on a manifold are assumed to be
compatible in certain senses; in consequence one can talk about directions,
tangent spaces, curves, submanifolds, differentiable functions and tensors on
that manifold — as well as other optional attributes such as orientation, met-
ric, metric signature, complex- and spin-structures, connections, etc. Mani-
folds on which directions and differentiable tensors exist are called differen-
tiable. In order to measure lengths and angles, to parallel-transport a tensor
or to define intrinsic curvature, a metric tensor is needed and one defines
Riemannian manifolds.

Differentiable manifolds are used in mathematics to describe geometrical
objects and geometrical (or other dynamical) degrees of freedom; they are also
the most natural and general setting in which to study differentiability. In
physics, examples of differentiable manifolds are the configuration and phase
spaces in classical mechanics, four-dimensional pseudo-Riemannian manifolds
used to describe spacetimes in the General Theory of Relativity (GTR), and
fiber bundles with spacetime manifolds as their bases. Fiber bundles — of
which more below — are differentiable manifolds, and they are also the nat-
ural topological and geometric frameworks for describing the space of possi-
ble field configurations in space and time — e.g. in GTR; QED (Quantum
Electrodynamics); adiabatically evolving quantum-mechanical systems; and
in quantum field dynamics of Non-Abelian Gauge Theories (important in
sub-nuclear physics and Big-Bang cosmology).

Manifolds inherit many of the local properties of Euclidean space. In par-
ticular, they are locally path-connected, locally compact896, and locally metriz-
able. The idea of the n-dimensional manifold was introduced by Riemann in

896 A manifold is locally compact iff every open cover of an open neighborhood

homeomorphic to Rn can be replaced with a finite open cover. An “open cover”

of a neighborhood N is a collection of open sets Uα, α ∈ I, whose union covers

N ; i.e. N is a subset of this union. The finite open cover in question must be

a finite subset of {Uα }, i.e. a set {Uα1 , . . . , Uαk } with k ≥ 1 a finite integer and

αj ∈ I for j = 1, 2, . . . , k.
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1854. He also introduced the topological concept of connectivity (1851, 1857)
in the context of Riemann surfaces.

In order to discuss differentiability of functions, one needs more structure
than a topological manifold provides. We start with a topological manifold
M without boundary. An open set of M together with a homeomorphism
between that open set and an open ball in Rn is called a coordinate chart897.
A collection of charts which cover M is called an atlas of M . Suitably
composing the defining homeomorphisms of two overlapping charts in the
intersection of their open sets provides a transition map from a subset of Rn

to some other subset of Rn. If all these maps are k times continuously
differentiable, then the atlas is termed a Ck atlas.

Example: The unit two-dimensional sphere S2 (commonly embedded in
R3) can be covered by two charts: the complements of the north and south
poles898 with their associated coordinate maps — stereographic projections
centered at the south and north pole, respectively.

Two Ck atlases are called equivalent if their union is also a Ck atlas.
This is an equivalence relation, and a Ck manifold is defined to be a manifold
together with an equivalence class of Ck atlases. If all the transition maps
are infinitely differentiable, then one speaks of a smooth or C∞ manifold; if
they are all analytic, then the manifold is an analytic manifold.

A smooth atlas provides local coordinate systems such that the change-
of-coordinate functions (within chart overlaps) are smooth. These coordinate
systems allow one to define differentiability and integrability of functions on
M (e.g. maps from M into R, or C, or any Rn899).

On differentiable manifolds per se, there are no notions of length, volume
or angle. In order to introduce these, one needs a way to measure the lengths

897 In most definitions of charts, the homeomorphism is between an open set of M

and all of Rn. This is equivalent: many open subsets of Rn, including all

open balls, are themselves homeomorphic to the full Rn. Thus for instance,
the open interval (0, 1) in R1 = R can be mapped onto all of R via

x → f(x) = ln x +
1

1 − x
,

and f is one-to-one, onto, continuous, and its inverse is also continuous.
898 By the complement of a pole we mean the (open) set of all points of S2 except

for that pole.
899 Manifolds “locally looks like” Euclidean space Rn and are therefore inherently

finite-dimensional objects. To allow for infinite dimensions, one may consider

Banach manifolds which locally look like Banach spaces; or Fréchet manifolds,

which locally look like Fréchet spaces.
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and angles of and between tangent vectors of curves on M . A Riemannian
manifold is a differentiable manifold (at least C3) on which the tangent spaces
are equipped with inner products in a differentiable fashion.

In differential geometry, one attaches to every point P of a differentiable
manifold a tangent space: a real vector space (denoted Tp) which intuitively
contains the possible “directions” in which one can pass through the given
point. For example, if the given manifold is a 2-sphere embedded in R3, one
can picture the tangent space at a point as the plane which touches the sphere
at that point and is perpendicular to the sphere’s radius through the point. In
general, as in this example, all the tangent spaces have the same dimension,
and it equals the manifold’s dimension. However, the definition just provided
for tangent spaces is inadequate since it is non-intrinsic — i.e. it relies on
a particular embedding of the manifold. The following intrinsic definition is
thus used instead: Tp is the n-dimensional vector space of linear differential
operators (directional derivatives), acting on any differentiable function f :
M → R on a chart to which the point p ∈ M belongs. It can be shown
that the local tangent-spaces, thus defined, do not depend upon the particular
chart or atlas used.

Once the local tangent spaces of the differentiable manifold have been in-
troduced, one can define vector fields900, which are abstractions of the velocity
field of hypothetical particles moving on the manifold. A vector field attaches
to every point of the manifold a vector from the tangent space at that point,
in a smooth manner. Such a vector field serves to define (in any given chart) a
system of first-order (and in general nonlinear) ordinary differential equations
on the manifold: a particular solution to such a system is a differentiable
curve on the manifold, g : R → M , such that for any differentiable function
f : M → R, the ordinary derivative of the composite function f ◦ g : R → R

at a given argument t ∈ R, (f ◦ g)′(t), is the above-mentioned element of
Tp, where p = g(t). While the system of differential equations defining the
intersection of the curve with a given coordinate-chart is chart-dependent, the
curve itself does not depend on the atlas or its charts.

900 Vector fields, in turn, can be used to define a general tensor field on the differen-

tiable manifold, with arbitrary numbers of covariant and contravariant indices.

If the manifold is Riemannian, any covariant (subscript) index can be raised

into a contravariant (superscript) index by using the metric tensor, and vice

versa. A vector field is a particular case of a tensor field with a single, con-

travariant index. A skew-symmetric (i.e. completely antisymmetric) with m

covariant indices (0 ≤ m ≤ n = dim M) is called an m-form; Cartan’s exterior

calculus deals with these forms, as do the cohomology theory of de Rham and

Hodge theory. A 0-form is simply a scalar field (a mapping ϕ : M → R).
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The ordered pairs of manifold points p and corresponding tangent spaces
Tp for all points p ∈ M , can be “glued together” to form a new differentiable
manifold of twice the dimension: the tangent bundle of the manifold. This
is an example of a vector fiber bundle. The original manifold M is called
its base while Tp are its fibers. A given vector field is a particular section
of the tangent bundles. More generally, any type of tensor field is a section
of the corresponding tensor bundle — a vector fiber bundle over the base
manifold (M), whose fiber is again a vector space. The tangent bundle can
be constructed for any differential manifold, whether or not it is Riemannian
(i.e. endowed with a metric); if a metric exists, it can be viewed as an internal
product in each tangent space. The tangent bundle — or indeed any other
fiber bundle — can be endowed with a connection, by which is meant a rule
specifying how to glue together (in a smooth manner) the fibers erected above
neighboring base-manifold points. A connection provides atlas-independent
definitions of how to parallel-transport and covariantly differentiate a vector
(or any other tensor) field. For a Riemannian base-manifold M , one possible
connection on a bundle is the Christoffel connection, constructed from the
metric tensor.

Differential geometry is the study of Riemannian manifolds and manifolds
with additional or alternative local geometrical structures (e.g. fiber bundles).
Differential geometry deals with metrical notions on manifolds, while differ-
ential topology deals with those nonmetrical, global attributes of manifolds
which are expressible in terms of local entities (including connections and
metric–tensor related quantities, when those exist).

Differential topology and differential geometry are both intimately linked
to the theory of differential equations.

The fundamental group, also called the Poincaré group or the first ho-
motopy group, (Poincare, 1895) is one of the basic concepts of algebraic
topology.

To grasp the general idea, take some manifold and some point in it, and
consider all the loops at this point — directed paths which start at this point,
wander continuously about the manifold, and eventually return to the starting
point. Two loops can be combined together in an obvious way: travel along
the first loop, then along the second. The set of all the loops with this method
of combining them forms the fundamental group, provided we consider two
loops to be the same if one can be deformed into the other without breaking.

Thus, each element in the fundamental group is an equivalence class of
loops. It is an additive group, with the “sum” of two loops being their com-
bination (composition) as described above. The unit (zero) group element
is the class of loops that can be continuously shrunk to the starting point
(base-point).
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Although the fundamental group in general depends on the choice of base-
point, it turns out that, up to an isomorphism, this choice makes no difference
if the manifold X is path-connected.

In many spaces, such as Rn, there is only one homotopy class of loops,
and the fundamental group is therefore trivial. A path-connected space with
a trivial fundamental group is said to be simply connected.

A more interesting example is provided by the circle. It turns out that
each loop homotopy class of the circle consists of all loops which wind around
the circle a given number of times (which can be zero, positive or negative,
depending on the direction of winding). The sum (composition) of a loop
which winds around m times and another that winds around n times is a
loop which winds around the circle m + n times. So the fundamental group
of the circle is isomorphic to Z, the additive group of integers. Knowledge
of the fundamental group of the circle can be used to provide a topological
proof of the Fundamental Theorem of Algebra, as sketched above.

Unlike many of the other groups associated with a manifold or other topo-
logical space, the fundamental group need not be Abelian. An example of a
space with a non-Abelian fundamental group is a figure 8 (two circles joined
at one point). The fundamental group of a figure 8 is just the free group with
two generators — roughly speaking, each loop of the 8 corresponds to one
of the generators. The figure 8 is not a manifold (there is no chart containing
the intersection point at which the two loops meet); but the closely related
2-torus (the direct product of two circles), which is a manifold, has the same
non-Abelian fundamental group as does the figure-8 space.

It can be shown that the Abelianization of the fundamental group of a
nonempty path-connected space is isomorphic to the first homology group of
the space — which is another important concept in algebraic topology. Thus,
the first homology group of the figure 8 space (or the 2-torus) is isomorphic
to the direct product Z × Z, i.e., the additive group of integer-coordinate
square lattice points in the plane.

A topological group G is a group which is also a topological space such
that the group multiplication

G × G → G

and the taking of inverses
G → G−1

are continuous maps. Here, G × G is viewed as a topological space by using
the product topology – in which the direct product of two open sets of G is
defined as an open set of G × G.
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Examples:

The real numbers R, together with addition as group operation and its
ordinary topology, form a topological group. More generally, the Euclidean
n-space Rn with addition and standard topology is a topological group.
More generally still, all topological vector spaces, such as Banach spaces or
Hilbert spaces, are topological groups.

The above examples are all Abelian. Important examples of non-Abelian
topological groups are given by most Lie groups (topological groups that are
also manifolds), for instance the group GL(n, R) of all invertible n-by-n
matrices with real entries. The topology on GL(n, R) is defined by viewing
GL(n, R) as a subset of the Euclidean space Rn×n.

All the examples above are Lie groups (if one views the infinite-dimensional
vector spaces as infinite-dimensional “flat” Lie groups). An example of a
topological group which is not a Lie group is the rational numbers Q under
addition. This is a countable space and it has the discrete topology. For a non-
Abelian example, consider the subgroup of rotations of R3 generated by two
rotations by rational multiples of 2π about two different axes, or the group
of allowed operations on a Rubick’s Cube (for which the generating rotations
on any one of the cube’s 6 faces are by angles that are integer multiples of
π
2 ).

In mathematics, an isomorphism is a type of bijective (onto and one-to-
one) mapping between two abstract structures, in a manner such as to preserve
the structure (whether group or algebra operations, internal products, etc).901

If there exists an isomorphism between two structures, we call the two
structures isomorphic. Isomorphic structures are essentially the same; they
are equivalent, in the abstract sense.

For example, if one object consists of a set X with an ordering ≤ and the
other object consists of a set Y with an ordering !, then an isomorphism
from X to Y is a bijective902 function f : X → Y such that

f(u) ! f(v) iff u ≤ v.

Such an isomorphism is called an order isomorphism.

Or, if on these sets the binary operations ∗ and ◦ are defined, respec-
tively, then an isomorphism from X to Y is a bijective function f : X → Y
such that

f(u) ◦ f(v) = f(u ∗ v)

901 If the one-to-one hypothesis is relaxed, one speaks of a homomorphism.
902 i.e. one-to-one and onto — the latter means every element in Y is f(x) for

some x in X.
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for all u, v in X. When the objects in questions are groups, such an
isomorphism is called a group isomorphism.

In 1904, H. Poincare put forward the Poincare Conjecture: Any compact
orientable 3-dimensional manifold with trivial fundamental group must be
homeomorphic to a sphere S3.

The conjecture admits a natural extension to n dimensions for any positive
integer n. For n ≥ 5, this conjecture was proved by Stephen Smale (1959)
and for n = 4 by Michael Freedman (1981). Simon Donaldson proved
(1982) that R4 admits more than one differentiable structure (i.e. it admits
non-equivalent Ck atlases for some k ≥ 1). Donaldson’s result is of interest
to physicists, as it sheds light on the possible structures of 4-dimensional
spacetime.

(d) Global Analysis (1828–1968)

Differential geometry studies the local properties (e.g. curvature) of
smooth manifolds. Differential topology studies the global properties of mani-
folds by reducing them to local properties. The study of differential operators
on a smooth manifold reveals deep relationships between the geometry and
the topology of the manifold on the one hand; and the (local and global)
solutions of differential equations on this manifold, on the other.

Global analysis studies the global nature of differential equations on Rie-
mannian manifolds (including infinite-dimensional manifolds and manifolds
with singularities). In addition to local tools from ordinary and partial differ-
ential equation theory, global techniques include the use of fiber bundles and
topological spaces and mappings, as well as optimization procedures. Analysis
here means the study of ordinary and partial differential operators on vector
bundles over differentiable manifolds.

The ideas of global analysis evolved over more than a century, from Green’s
theorem (1828), Gauss’ divergence theorem (1839) and Stokes’ theorem903

903 Given an oriented surface S bounded by a directed curve C encircling S in
a positive (counter-clockwise) sense, and a vector field F ,

∫∫

S

n · curl FdS =

∫

C

F · dr

ds
ds =

∫

C

F · dr,

where n is a unit vector normal to S and r(s) is a parametric representation

of C.
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(Kelvin, 1850; Stokes, 1854) to the Atiyah-Singer index theorem (1963–1968
and later works), through the intermediary steps of:

• Cauchy’s residue theorem (1831).

• Gauss-Bonnet theorem for the Euler characteristic of surfaces (Bonnet
1848; Chern’s generalization, 1943–1945).

• Riemann-Roch theorem904 for algebraic curves (Roch, 1864) and its gen-
eralization by F. Hirzebruch in his Signature theorem (1954) and by
A. Grothendieck (1957) to arbitrary projective varieties in n dimen-
sions.

• The Betti connectivity numbers (1870).

• The Poincare topological theory of nonlinear differential equations
(1881).

• The Brouwer fixed-point theorem (1907).

• The Lefschetz fixed-point905 theorem (1927).

• The Pontryagin906 abstract harmonic analysis of functions defined on
locally compact groups (1934).

• The Hodge index theorem and theory of harmonic integrals (W.V.D.
Hodge 1903–1975; 1935).

904 Riemann-Roch theorem (1864): deals with functions on a Riemann surface of

genus p. Essentially, the theorem determines the maximal number of linearly

independent meromorphic functions on the surface that have at most a specified

finite set of poles. It thus links complex analysis with algebraic geometry.
905 A fixed point of a mapping F : X → X from a set X to itself is a point

x ∈ X for which F (x) = x. Proofs of the existence of fixed points and methods

for finding them are important mathematical problems having applications in

physics and engineering. Depending on the structures defined on X, and the

properties of F , there arise various fixed-point principles. Of greatest interest

is the case when X is a topological space and F is continuous.
906 Lev Semenovich Pontryagin (1908–1988, Russia). Blinded by accident at

the age of 14, his mother Tatyana Andreevna Pontryagina dedicated her life to

help him became a mathematician. She worked as his secretary, reading sci-

entific works to him. The contingent development of mathematics depends on

a wide array of influences, other than the talents of the mathematicians them-

selves — such as economic and social factors and the acts of non-mathematicians

such as Tatyana Andreevna.
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Topological invariants in two dimensions

A 2D cell is a figure in two dimensions that is topologically equivalent
to a discs. Figures that can be constructed from cells by gluing and pasting
them together along their edges are called complexes. In this way, compli-
cated figures can be built from simple ones. Clearly, the number of cells that
constitute a given figure is not uniquely determined: e.g., a spherical surface
can be built from just two cells, for instance the northern and southern hemi-
spheres of a globe or (alternatively) two hourglass-shaped cells such as those
sewn together to make a baseball; or alternatively by eight cells, each having
the shape of a quarter of a hemisphere.

We call a cell a polygon when a finite number of points on its boundary
are chosen as vertices. The vertices on a polygon’s boundary partition it into
edges. A polyhedron is a 3D complex that is topologically equivalent to a ball
(interior of a 2-sphere). Given a polyhedron, let F stand for the number
its 2D cells (faces), E the number of distinct edges, and V the number of
distinct vertices. Euler’s formula for polyhedra then states that V −E+F = 2
(Descartes 1639, Euler 1751). This formula states that no matter how a
sphere may be divided into polygons, the sum V − E + F always equals 2.
This number is a topological property of the sphere and is called its Euler
characteristic. Clearly, this applies to any connected map on a sphere that
has V vertices, E edges and F faces. If a map on a sphere with p handles
has V vertices, E edges and F faces, and if each face is simply connected,
then the above formula becomes: V − E + F = 2 − 2p.

If we remove one of the faces of a polyhedron, the remainder is topologically
equivalent to a 2D cell (disc) and so may be flattened into a plane. By
removing one face and leaving edges and vertices intact, the sum (V −E +F )
has been decreased by one; and it can be proved in general for a complex
equivalent to a disc that V − E + F = 1.

Both the sphere and the torus can be triangulated, i.e., covered with a
finite number of topological triangles (cells with 3 edges and 3 vertices each)
which fit together along their edges. (It does not matter topologically that
the triangles are not flat, or that the edges are not straight.) More generally, a
surface (2D manifold) is a topological space which is triangulable, connected,
compact and without any boundary, i.e. it has no edge belonging to only
a single triangle. (Examples: sphere, torus, Klein bottle, projective plane.)
The Möbius strip is not a surface in this sense, because it has an edge. The
plane is not a surface, because it is not compact — i.e. it cannot be built
up from a finite number of triangles. On any compact surface we can draw
maps (partitions into polygonal cells) and we can count its faces, edges, and
vertices. For a given surface S the number V − E + F can be shown to



4448 5. Demise of the Dogmatic Universe

Fig. 5.15: The Möbius strip

be independent of the map we choose. It is known as the Euler (or Euler-
Poincaré) characteristic of the surface, and is denoted by χ(S). It is a
topological invariant because it is the same for all topologically equivalent
spaces.

In particular, for any polyhedron homeomorphic to a sphere χ = 2. For
closed orientable surfaces χ = 2 − 2g, where g is the genus.

For closed Riemannian orientable manifolds of even dimension, the Euler
characteristic can also be found by integrating a scalar constructed from the
curvature tensor, via the Gauss-Bonnet theorem for the 2-dimensional case
and its generalization for higher dimensions.

Other topological invariants for closed (boundary-less) surfaces are:

• First Betti number (b1): The maximum number of simultaneous cuts
that can be made without dividing a surface into disjoint pieces. This
number — just one of the Betti numbers — can be defined for manifolds
of any dimension, and is related to the homology and cohomology groups
of algebraic topology & differential topology. The following surfaces
have the corresponding first Betti numbers: plane lamina (0); sphere
(0); cylinder (1); Möbius strip (Fig. 5.15) (1); projective plane (1); torus
(2); Klein bottle (2).

Note that b = h − 1, where h is the connectivity,

• genus (g): for a connected orientable surface it is equal to the number
of handles (e.g., sphere has g = 0 and a torus has g = 1).

• orientability.
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Extensions to higher dimensions.

The building blocks of 3-dimensional complexes are points, edges, polygons
and polyhedral solids. The latter is any subset of 3-dimensional space that is
topologically equivalent to a spherical ball and whose boundary surface has
been divided into faces, edges and vertices (i.e., the boundary surface of a
polyhedron). A 3-dimensional complex is a topological space made up of
polyhedral solids glued together along faces. The concept of complex can
similarly extended iteratively to any higher dimension.

It can then be shown that Euler’s formula V − E + F = 1, valid for
an open region of disc topology in two dimensions, can be generalized to an
n- dimensional manifold having the ball topology; it then becomes the Euler-
Poincaré formula,

F0 − F1 + F2 − · · · ± Fn = 1,

where Fm is the number of m-dimensional ‘faces’ of the complex (map) into
which the manifold has been partitioned. Thus, in 3 dimensions

χ = V − E + F − S = 1

where S = F3 is the number of polyhedral solids in the complex. For a
tetrahedron we have:
V = F0 = 4, E = F1 = 6, F = F2 = 4, S = F3 = 1.

The Euler-Poincaré characteristic and Betti numbers

Another, related expression for the Euler characteristics of an n-
dimensional manifold — one that does not depend on the segmentation of
the manifold into a complex — relates χ to the manifold’s n + 1 Betti num-
bers bm(o ≤ m ≤ n). These non-negative integers are, like the Euler–Poincaré
index χ, topological invariants of the manifold.

bm is the cardinality of two isomorphic groups — the m-th homology
group and its m-th cohomology group. It can be shown that

χ = b0 − b1 + · · · + (−1)n
bn

This applies to any boundary-less and oriented manifold of dimension n.
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Gauss-Bonnet Theorem and its generalizations (1848–1943)

This theorem in differential geometry and differential topology is an impor-

tant statement about surfaces which connects their intrinsic geometry (local

curvature) to their topology (Euler characteristic).

Let M be a compact, orientable two-dimensional Riemannian manifold

with boundary ∂M . Denote by K the Gaussian curvature at a general point

on the surface, and by Kg the geodesic (extrinsic) curvature at a general

point on ∂M . Then

∫

M

KdA +
∫

∂M

Kgds = 2πχ(M) (1)

where dA is an area-element on M, ds is an arc element on ∂M, and χ(M)
is the Euler characteristic of M . If the manifold does not have a boundary,

the integral
∫

∂M

Kgds can be omitted. Thus, the integral curvature of a closed

orientable surface M of genus g does not depend on the shape of the surface

and is equal to ∫

M

KdA = 4π(1 − g). (2)

This result makes it possible to express topological properties of the surface —

in this case the genus g (which remains invariant under arbitrary continuous

deformations) — in terms of quantities of differential geometry (here, the

integral curvature).

If M is open (i.e. has a boundary), the geodesic (extrinsic) curvature at

a given point along the (closed) curve ∂M is the reciprocal of the radius of

curvature of ∂M at that point, in a locally flat 2D coordinate system. Thus,

Kg ≡ 0 if ∂M is a geodesic of the Riemann surface M . For example, if M

is a portion of a unit-radius sphere defined by 0 ≤ θ ≤ α < π
2 (in spherical

polar coordinates), ∂M is the circle of latitude θ = α (not a geodesic);

Kg = cotα uniformly on ∂M , and K = 1 uniformly on M. We thus have

in this case
∫

M

dA = 2π(1−cos α),
∫

∂M

ds = 2π sin α. Thus, the Gauss-Bonnet

theorem for this open surface yields:

∫

M

KdA +
∫

∂M

Kgds = 2π(1 − cos α) + 2π sin α · cot α = 2π = 2πχ(M).

And indeed, since M is topologically equivalent to a disc, its Euler charac-

teristic is χ(M) = 1.
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If one bends or deforms the manifold M , its Euler characteristic will not
change, while its curvature at given points will. The theorem then requires,
somewhat surprisingly, that the integral of all curvatures will remain the same.

In 1943, Carl B. Allendoerfer and André Weil generalized the Gauss-
Bonnet theorem to n-dimensional spaces. Also in that year, it was further
generalized by S.S. Chern for a closed Riemannian manifold of dimension
2n. He presented the Euler characteristic as an integral of a certain formal
polynomial derived from its Riemann curvature tensor:

∫

M

Pf(Ω) = 2nπnχ(M), (3)

where Pf(Ω) is the Pfaffian polynomial907 of Ω and Ω is the curvature
2-form matrix (in Cartan’s exterior calculus). For n = 1 (2 dimensions)

Ω =
[

0 K
−K 0

]

ω, Pf

[
0 Kω

−Kω 0

]

= Kω,

where ω =
√

det g dx1
∧

dx2 is the volume 2-form, g the surface’s metric
tensor, (x1, x2) coordinates in the local chart, and “

∧
” the Cartan wedge

907 The determinant of a skew-symmetric square matrix X with elements xij

can always be written as the square of a polynomial of degree n in the variables
xij . This polynomial is called the Pfaffian of the matrix, and denoted Pf(X).

The Pfaffian is non vanishing only for 2n × 2n skew-symmetric matrices.

Thus

det(X) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 x12 x13 · · · x1n

−x12 0 x23 · · · x2n

−x13 −x23 0 · · · x3n

...
...

...
...

−x1n −x2n −x3n · · · 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

{
[Pf(X)]2 n even

0 n odd

For example:

Pf

[
0 x12

−x12 0

]

= x12;

Pf

⎡

⎢
⎢
⎣

0 x12 x13 x14

−x12 0 x23 x24

−x13 −x23 0 x34

−x14 −x24 −x34 0

⎤

⎥
⎥
⎦ = x12x34 − x13x24 + x23x14
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product (dx2
∧

dx1 = −dx1
∧

dx2). Since
∫

M
Kω =

∫
M

KdA in standard
(non-Cartan) notation, we recover equation (1).

Atiyah-Singer Index Theorem (ASIT)

In the beginning, mathematics was used to count (arithmetic), e.g. for
bookkeeping, planning and trade; or to describe shapes (geometry), e.g. for
measuring a plot of land, for cutting out fabric for a dress, or for build-
ing a bridge. Modern applications of mathematics are often concerned with
modeling — and thereby predicting — the evolution over time of complex,
composite systems, such as oil and gas flow in porous rocks under the North
Sea, how queues of text messages in a cellular network can best be resolved,
or what the weather will be like this weekend.

Since the time of Newton and Leibniz, these mathematical models have
often been described by systems of differential equations. To use mathematics
for the intended application, one seeks to find the solutions of such systems.
The Atiyah-Singer Index Theorem (ASIT) is a fundamental insight that es-
sentially says that we can find out how many solutions the system has by just
knowing some simple pieces of information about the geometry of the space
being modeled. Thus although the index theorem is a purely mathematical
result, which links together analysis and topology, it can be used as a tool in
many applications of mathematics.

The subject of mathematics can coarsely be divided into four areas: al-
gebra, analysis, topology/geometry, and logic. Mathematics is a diverse lan-
guage that can describe, discuss and model many different objects, processes
and problems, and the four areas tend to focus on different aspects of these
objects. Nonetheless, there are no clear boundaries between them.

In analysis, an entity is studied by first partitioning it into small pieces,
and thereafter reassembling them (synthesis). Emphasis is put on the limiting
case when the pieces become arbitrarily small, and simultaneously arbitrarily
numerous. Keywords: differentiation, integration and calculus.

In topology and geometry one studies how an object can have a shape,
or a spatial aspect. In particular, in topology one emphasizes properties of
the whole global shape and properties unchanged under continuous, reversible
deformations, rather than the local or deformation-sensible attributes of the
object. If the shape is described by some notion of distance, angle, straightness
etc., then we usually talk about geometry.

The Index theorem (actually a class of related theorems) marked the birth
of the mathematical field of global analysis. One reason for seeking such a
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theorem was the attempt to unify all the aforementioned types of concepts
into one formula. Such a formula had been conjectured earlier (1960) by
Israel Gelfand in the context of the homology invariance of the index of a
Fredholm operator. Given the examples from Hodge theory, Cauchy-Riemann
operators in several variables, and the topologists’ work on the Riemann-Roch
Theorem at the time, the required concepts were perhaps ‘in the air’ by 1960.

Thus for instance, from 1946, Salomon Bochner (1899–1982) and his
colleagues & students found novel connections between homology & coho-
mology theories on the one hand, and the local differential geometry of the
corresponding manifold on the other.

For example, Bochner proved that if a smooth Riemannian manifold M
has a positive-semidefinite Ricci curvature scalar which is positive at a point,
then the manifold’s first Betti number, b1, vanishes. This has two implications.
From the homology point of view, b1 = 0 means there is no closed curve along
which the manifold M can be cut while remaining connected. From the (de
Rham) cohomology viewpoint, b1 is the number of linearly independent 1-
forms on M that are closed modulo exact forms. In other words, in Cartan’s
exterior calculus, b1 is the dimension of the vector space of 1-forms V that are
closed (i.e. satisfy dV = 0), provided we regard two solutions V1, V2 of this
differential equation as identical if their difference is exact - i.e. V1 −V2 = dφ
for some scalar (0-form) φ.

Before launching into technical examples of the use of ASIT in contempo-
rary mathematical physics, we define a few necessary general concepts. We
also provide the reader with a very simple and easily visualized example that
will set the stage for what follows.

A brief statement of the simplest version of ASIT is:
Let E(f) = 0 be an elliptic system of differential equations, defined over a
closed, smooth, oriented n-dimensional manifold M . Then

analytical index (E) = topological index (E)

where the analytical index is

analytical index (E) = dimension of the kernel of E
− dimension of co-kernel of E

and the topological index of E is an explicit expression that characterizes the
topology of the manifold.

In formulating the theorem we start with two vector bundles over the base
manifold M , and an elliptic operator E mapping smooth sections of one vec-
tor bundle into smooth sections of the other vector bundle. If the sections
are tensor fields then the fibers of the corresponding bundles are related to
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the local tangent-spaces of M , as discussed above. But, in general, a bun-
dle’s fiber need not have anything to do with its base manifold. Thus, for
instance, in particle-physics applications, the electromagnetic or chromody-
namic field tensors are curvature 2-forms in bundles whose fibers are internal
(non-spacetime) spaces, acted upon by (Abelian or non-Abelian) Lie-group
symmetries. The elliptic property of E is expressed in terms of its symbol —
an algebraic entity derived from the coefficients of the highest-order deriva-
tives in the operator E. Thus, if E is a generalized Laplacian, its symbol is
a positive-definite quadratic form. The symbol is itself a section of a fiber
bundle and is required to be non-singular.

The differential (or pseudo-differential) operator E is a Fredholm opera-
tor. As such it has an index (called its analytical index above). This is the
difference between two integers. The first is the dimension of the kernel (or
null-space) of E — i.e. the number of linearly independent solutions of the
system of differential equations Ef = 0, where f is a section of the first bun-
dle. This integer is denoted as dimker(E). (The solutions f can be viewed as
generalized harmonic functions.) The second integer, denoted dim coker(E),
is the dimension of the vector space of linear constraints on sections g = Ef
of the second bundle, where f is now an arbitrary section of the first bundle.

The index problem is the following: compute the index of E using only
the symbol s and topological data derived from the manifold and the vec-
tor bundles. The Index Theorem solves this problem. Its precise statement
requires K-theory, as well as a background in functional analysis and pseudo-
differential operators in the manifold setting (global analysis).

A simple case is illustrated by a famous paradoxical etching of M.C.
Escher, “Ascending and Descending” (Fig. 5.16), where the people, always
going uphill along the parapet, still manage to circle the castle courtyard.
The index theorem would have told them this was impossible.

To see this, we follow a hooded walker as he goes around, up or down
the square staircase. Here the spatial (base) manifold M is a square, while
the walker trajectory (section of the first vector-bundle) is a function f(x)
that equals the height above ground at each point x along M . The square
M is parameterized by a coordinate x (at least two charts are needed, and
we may choose 0 ≤ x < 2π in one of them). The operator E is taken to be
differentiation: Ef = df/dx = f ′(x). The differential equation Ef = 0 then
has the 1-dimensional space of solutions f(x) = C, with C an arbitrary real
constant; thus dim ker(E) = 1. On the other hand, dim coker(E) also equals
1, since the differential equation g(x) = f ′(x) imposes the single constraint
∫ 2π

0
g(x)dx = 0 (this followed from the fact that f : M → R is a single-valued

function along the square). Thus, the analytical index of E is 1 − 1 = 0; and
it can be shown that the corresponding topological index vanishes as well. In
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Fig. 5.16: M.C. Escher’s “Ascending and Descending”
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particular, the wanderer cannot ascend nor descent all the time, since that

would imply f ′(x) > 0, contradicting the constraint
∫ 2π

0
f ′(x)dx = 0.

Michael Francis Atiyah (b. 1929) and Isadore M. Singer (b. 1924)
shared the Field Medal (2004) for their discovery. They brought together
topology, geometry and analysis and built new bridges between mathematics
and theoretical physics.

The ASIT is a topological formula for the Fredholm index of a linear, ellip-
tical pseudo-differential operator (e.g. a “Dirac Operator”) in terms of char-
acteristic classes (differential-topological invariants) of the underlying bundle.
The ASIT covers all the particular cases mentioned above, by means of specific
choices of the linear operator and associated fiber bundle.

In the particular case of the Dolbeault Operator on complex manifolds this
is the theorem of Riemann-Roch; while for the Chern-Gauss-Bonnet formula,
the ASIT is applied to a vector bundle of smooth differential forms, with the
(Dirac) operator being the square-root of the Hodge Laplacian.

We have seen that for an even-dimensional, closed (boundary-less), ori-
ented, smooth and compact Riemannian manifold M, the manifold’s Euler
characteristic, χ(M), can be expressed as an integral over M of an n-form
constructed from the matrix curvature 2-form, where n = dimM.908 On the
other hand, we have seen that χ(M) can also be expressed as an alternating
sum of the manifold’s Betti numbers. The equality of these two expressions
for χ(M) is one of the many useful consequences of the Atiyah-Singer Index
Theorem — as we now proceed to discuss. The mathematical framework
for this particular application of ASIT is the theory of exterior forms (skew-
symmetric covariant tensors) and their cohomology classes on Riemannian
manifolds, as developed by Cartan, de Rham, and Hodge.

We will describe how ASIT works for this case, presenting more details
for the 2-dimensional (Gauss-Bonnet) case. We will follow the more recent
heat-kernel approach to proving ASIT, which utilizes ideas from physics. (The
original proof of the Atiyah-Singer and related Index Theorems relied on K-
theory and the theory of characteristic classes).

The Cartan exterior derivative operator, denoted “d”, maps the vector
space of m-forms into that of (m + 1)-forms; Thus for instance, if φ : M → R
is a scalar field (0-form), then dφ is a 1-form (in any particular chart dφ =
∂φ
∂xk dxk where the summation convention is understood). Or, if φ1, φ2 are two
0- forms, then φ1dφ2 is a 1-form and we have d(φ1dφ2) = dφ1

∧
dφ2, a 2-form.

Here we have used the fact that the operator d2 vanishes identically (which,

908 The requirement that M be compact can be relaxed if the metric is chosen such

that its deviation from the Euclidean case has compact support on M.
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in ordinary vector calculus in flat 3-D space, yields the well-known results:
div curl = 0 and curl grad = 0).

Another key mapping defines the Hodge dual. If V is an m-form (0 ≤ m ≤
n), then its Hodge dual ∗V (an (n − m)-form) is defined so that V → ∗V is
a linear map at any point p ∈ M and ∗(dx1 ∧ dx2 ∧ . . . ∧ dxm) = dxm+1 ∧
. . . dxn in any positive-orientation chart for which the metric is Euclidean
at p. (Such a chart can be added to any atlas for any point p, since M
is orientable and Riemannian). This Hodge duality (or star)operation, like
exterior differentiation, is chart-independent, and thus they are covariant (and
truly geometric) operations. They can be combined to yield a third important
operation (map), the δ derivative, defined as follows: if W is an m-form, δW
is an (m − 1)-form and

δW = (−1)mn+n+1 ∗d(∗W ).

It is easily shown that ∗(∗W) = (−1)m(n−m)W and therefore, δ2 vanishes
identically (just as d2 does).909

Hodge duality is also used to define an internal product on exterior forms:
if V, W are two forms, 〈V, W 〉 = 0 unless they have the same rank (i.e. they
are both m-forms for some m); and if they do,

〈V, W 〉 ≡
∫

M

V ∧ ∗W,

where ∧ denotes the Cartan wedge-product. (Here the integrand V ∧ ∗W is
an n-form; only n-forms can be integrated on an n-dimensional manifold). It
is easy to prove that δ is the adjoint of the operator d relative to this internal
product.

For any m-form V, 〈V, V 〉 ≡ ‖V ‖2 ≥ 0, and vanishes iff V = 0.
The Hodge Laplacian is defined as follows:

Δ = (d + δ)2 = dδ + δd

Acting on any smooth m-form, it yields another such form. For any m-form
V910, we have (using that d, δ are each other’s adjoint):
〈V, ΔV 〉 = 〈dV, dV 〉 + 〈δV, δV 〉 = ‖dV ‖2 + ‖δV ‖2. Therefore, due to the
properties of the norm listed above, Δ is a positive semi definite elliptic op-
erator, and any harmonic m-form V (i.e. satisfying ΔV = 0) also satisfies

909 d acting on an n-form yields 0, as it must since no (n + 1)-forms, exist – and

for a similar reason, δφ = 0 for any 0-form (scalar) φ.
910 From now on all forms and the metric will be assumed smooth.
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dV = δV = 0911. If the manifold M is compact, it can be shown that the
spectrum of Δ (i.e. the set of its eigenvalues λj ; j = 0, 1, . . .) is discrete and
infinite. If nonzero harmonic form(s) exist for any m then the lowest eigen-
value is λ0 = 0. Since Δ is self-adjoint, any two of its m-forms eigenfunctions
V, W are orthogonal (〈V, W 〉 = 0) if they correspond to distinct eigenvalues.
And the m-form eigenfunctions having the same eigenvalue (if more that one)
can also be rendered mutually orthogonal, via the familiar Gramm-Schmidt
procedure.

The mathematical tools just described readily lead to some powerful re-
sults. The Hodge decomposition theorem guarantees that any m-form U can
be written as U = dV +δW +U0, where V, W are an (m−1)- and (m+1)-form
respectively, and U0 is a harmonic m-form.912 This, in turn, can be used to
show that bm, the m-th Betti number of M (an integer topological invariant
which counts the generators of the m-th homology group), is also the number
of linearly-independent harmonic m-forms.

In order to apply the ASIT to the Betti numbers, we must first select the
operator E and the (first) vector bundle it acts upon. We erect this bundle
upon the base manifold M , with its fiber being the vector space of formal
sums of all types of even rank forms (0-, 2-, . . . through n-forms, if n = dim M
is assumed even). And we choose: E = d + δ.

E maps any section of the above-defined bundle into a formal sum of odd-
rank forms; thus, if v is a 4-form, Ev is the formal sum of a 3-form and
a 5-form. E is a type of generalized Dirac operator, and is (in a sense) the
“square root” of the Hodge Laplacian operator Δ. E maps the above–defined
bundle (whose sections are formal sums of even-rank forms) into a second
bundle which the ASIT requires: namely, the vector bundle whose sections
are formal sums of odd-rank forms (1-forms, 3-forms, . . . (n − 1)-forms).
The adjoint of E, which we denote E†, is also d + δ, but it acts on sums of
odd-rank forms to yield even-rank forms.

As noted above (from here on we assume n = dim M to be even),

χ(M) = b0 − b1 + . . . + bn =
n/2∑

k=0

b2k −
n/2−1∑

k=0

b2k+1 ≡ beven − bodd

911 Any form satisfying dV = 0 is called closed ; any m-form V which can be

written V = dW for some (m − 1)-form W is said to be exact. All exact forms

are closed, since d2 = 0 as noted above.
912 In flat 3-D space this implies the Helmholtz theorem – familiar from ordinary

vector calculus – according to which any vector field vanishing at infinity is the

sum of a curl and a grad.
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Here beven is the number of linearly-independent, even-rank harmonic forms;
while bodd is the same for odd-rank harmonic forms. Since Δ = E2, it is easily
shown that:

beven = dim ker E, bodd = dim cokerE,

and we thus conclude that the Euler characteristic χ(M) is the analytical
index of the generalized Dirac operator E:

χ(M) = analytical Index(E)

It remains to express the RHS in terms of a topological index – in this case,
the Euler-Poincaré characteristic of the tangent bundle T (M) of the base
manifold; this characteristic , in turn, is an integral over M of an n-form built
from the Riemann-curvature matrix 2-form, as we saw earlier.

We conclude with a demonstration of how the Heat Kernel method
(E.Getzler 1983) can be used to express the analytical index of E as an
integral over a curvature-dependent n-form. To that end, we restrict our at-
tention to n = 2, i.e. M is a closed, compact, 2-D orientable surface; in this
case the ASIT should reduce to the Gauss-Bonnet theorem for the boundary-
less case.913

A well-known theorem in 2-D differential geometry guarantees that an
atlas exists on M such that, in each chart, the metric tensor is

gij = eϕ(ξ,η)δij 1 ≤ i ≤ 2, 1 ≤ j ≤ 2

where δij is the Kronecker delta and ϕ is a function (assumed smooth) of the
chart’s two coordinates:

x1 ≡ ξ, x2 ≡ η.

We then have det g = exp(2ϕ), and the local Ricci scalar is

R = e−ϕ

(
∂2ϕ

∂ξ2
+

∂2ϕ

∂η2

)

Now, it can be shown914 that for any number t > 0,

Analytical Index(E) = Tr(e−tE†E) − Tr(e−tEE†
), (4)

913 Versions of the ASIT for manifolds with boundary have also been proven; for

instance, the Atiyah–Singer–Patodi theorem.
914 Eq. (4) follows from the fact that the nonzero spectra of the operator E†E and

EE† are positive and identical, so all contributions to the two traces cancel ex-

cept the zero-eigenvalue (i.e. harmonic) terms. These terms are t-independent,

and thus the RHS of (4) is also t-independent.
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Where the trace of any matrix-differential operator A acting on vector func-

tions vj(ξ, η) (i, j = 1, . . . s for some integer s ≥ 1), is

Tr(A) =
∞∑

k=0

〈
Ψk, AΨk

〉
. (5)

Here Ψk(k = 0, 1, . . .) is an infinite, orthogonal basis of scalar function on the

chart:
∞∑

k=0

Ψk(ξ, η)Ψk(ξ′, η′) =
I√

det g
δ(ξ − ξ′)δ(η − η′), (6)

with δ() the Dirac delta-function.

Now, for any vector function vj(ξ, η) (a section of the first bundle over the

given chart), the vector

wj(ξ, η|t) ≡
∑

j′

(e−tE†E)jj′ vj′ (ξ, η)

solves the following parabolic PDE (generalized heat equation):

(
∂

∂t
+ Δ)wj(ξ, η|t) = 0 (7)

with the initial condition: wj(ξ, η|0) = vj(ξ, η). (Here Δ = dδ + δd is the

Hodge Laplacian. A similar PDE results for the second term on the RHS of

(4).)

For a flat chart (ϕ = 0) Eq. (7) is the standard heat equation (in two

dimensional space). But a general surface need not be flat (in any chart); in

that case, (7) reduces — for each m-form component of the vector bundle — to

a heat equation with inhomogeneous heat conductivity. Such PDE’s do not, in

general, admit exact closed-form solutions. Fortunately, however, the RHS of

(4) — and thus the sought-after index formula — does not depend on t; so the

heat kernel method consists of finding small-t asymptotic expansions in t for

the solutions of (7), and then taking the t → 0+ limit — in which the leading

few terms in the asymptotic expansion become exact! Using these techniques,

it can be proven without too much difficulty that the Gauss-Bonnet formula

is indeed reproduced915:

915 Eq. (7) is solved for initial conditions vj(ξ, η) that are Dirac delta-functions at

a point P on M ; and then the trace operation (5), together with (6), results in

an integral over P — as seen in Eq. (8).
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χ(M) = b0 − b1 + b2 = beven − bodd =
1
2π

∑

charts

∫

chart

(
∂2ϕ

∂ξ2
+

∂2ϕ

∂η2

)

dξdη

=
1
2π

∑

charts

∫

chart

R
√

det g dξ ∧ dη =
1
2π

∫

M

kdA,

(8)

where k(P ) is the Gaussian curvature at a point P of the surface M , and
the sum over charts is done in such a manner as to compensate for multiple
counting where charts overlap.

However, it is important to notice that the ASIT is much more general
than all the more specialized theorems above. For example, a typical corollary
which is not contained in the previous results is the index theorem for the
spinor Dirac operators on the spin bundle of a curved spacetime manifold in
the presence of electromagnetic (and other gauge) fields. This index theorem
and the others mentioned above are of key importance in particle physics,
Quantum Field Theory (QFT), quantum gravity and string theory.

Nowadays there are several extensions of the ASIT in many different di-
rections. But index theorems are not the only object of research in global
analysis. For example: scattering theory on noncompact manifolds, holomor-
phic torsion, trace formulas and analysis on locally symmetric spaces are all
active fields of research. Applications of global analysis can be observed in al-
most all fields of pure mathematics, theoretical physics and equilibrium theory
in microeconomics.

(e) Physics and Topology

In the 1970’s and 1980’s, theoretical physics underwent a significant trans-
formation: the traditional tools of mathematical physics (real and complex
analysis), which deal with space-time configurations and phase-space mani-
folds mainly locally, were supplemented by topological approaches (more pre-
cisely, methods from differential and algebraic topology), that account for the
global (holistic) structure of spacetimes, configuration and phase-spaces, func-
tion spaces, and other manifolds based upon spacetime (such as e.g. fiber
bundles, whose local differential geometry also became important in physics,
and whose fibers often involve non-spacetime (“internal”) spaces). This trend
was seen in:

• Geometrical phases in adiabatic Quantum Mechanics.

• The rise of Non Abelian Gauge theories.
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• Solitons, instantons, path integrals, functional differential equations,
symmetry breaking and gauge-fixing and anomalies in gauge theories
and condensed-matter systems.

• Theory of defect-mediated phase-transition in condensed matter, QFT
(Quantum Field Theory) and the particle-physics era in early-universe
cosmology.

• Kaluza-Klein theories (microscopic extra dimensions and geometriza-
tion of non-gravitational forces), supergravity theories, and string and
superstring theories.

• Attempts to develop Grand Unified QFT’s and a theory of Quantum
gravity.

• Nonlinear dynamics and chaos theory.

As before, mathematicians forged the tools for the new physics. Thus, for
example, De Rham’s theorem in cohomology (1931) and the work of Chern
on characteristic classes and fiber-bundles (1943), became an important tools
for understanding non-Abelian gauge theories (Yang-Mills theories) and quan-
tized fields in curved spacetime. The work of E. Calabi (1954) on Kähler
manifolds with Ricci flat metric and vanishing first Chern class became of
importance in superstring theory.

While most of the algebraic, differential-geometric and topological tools
adapted for use in quantum physics are classical in nature, some — such
as Quantum Groups (Hopf algebras), Virasoro and Kac-Moody algebras, and
the so-called graded Lie algebras of supersymmetry and supergravity — are
inherently quantum-mechanical insofar as their relevance to physics goes.

1936–1960 CE Hans Adolph Rademacher (1892–1969, Germany and
USA). Mathematician. Made significant contributions to analysis and number
theory. His most famous result (1936) is his derivation of an explicit asymp-
totic formula for the growth of the partition function (the number of represen-
tations of a number as a sum of natural numbers). This answered questions
posed by Leibniz and Euler and followed results obtained by Hardy and
Ramanujan. In addition he derived other important results in measure the-
ory, complex analysis, geometry and numerical analysis.
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Rademacher was born in Wandsbeck (near Hamburg) and was a student of
Carathéodory and Landau at Göttingen (Ph.D. 1916). He then held academic
appointments in Berlin, Hamburg and Breslau. Because of his pacifist views he
was forced by the Nazis out of his professorship in Breslau and left Germany
(1934). He spent the rest of his life in the United States, mostly at the
University of Pennsylvania.

1936–1962 CE Harold Marston Morse (1892–1977, USA). Mathemati-
cian. Established connections between topology and equilibrium points in
the calculus of variations, and applied such ideas to minimal surfaces. Con-
tributed to what is now called Global Analysis, i.e. the study of differential
equations, ordinary and partial, from a topological point of view. This devel-
opment owes much to the calculus of variations since the problems of this field
have an especially global character from the outset. Morse function, Morse
Lemma, Morse equality and Morse theory are named after him.

Marston Morse was born in Waterville, Maine, and educated at Colby Col-
lege (B.A., 1914) and Harvard (Ph.D., 1917). He taught at Harvard briefly
before entering military service in World War I and again immediately there-
after. He then held positions at the universities of Cornell (1920–1925) and
Brown (1925–1926). In 1926 he returned to Harvard, where he remained un-
til his appointment to the Institute for Advanced Study in 1935. In 1962 he
was appointed Emeritus Professor at the Institute and in 1965–1966 served
as Visiting Professor at the Graduate Center of City University of New York.

Euler’s relation for polyhedra inscribed in a sphere is V − E + F = 2
(V = number of vertices; E = number of edges; F = number of faces). For
the hemisphere (topologically equivalent to a sphere with one hole) we have
V − E + F = 1 (e.g. for a three-sided pyramid that is missing its base V = 4,
E = 6, F = 3). On the other hand Morse discovered that for a hemispherical
bowl with n equilibrium points {P1, P2, . . . , Pn} with the corresponding char-
acteristic numbers916 {λ1, λ2, . . . , λn} we have

∑n
i=1(−1)λi = 1 (Morse’s

Equation).

Morse connected this equation with the existence of n minimal surfaces
(surfaces of locally-minimal area) that span a given contour. First, he assigned
to each of the minimal surfaces a characteristic number λi analogous in
meaning to the characteristic numbers in the bowl, in such a way that λi = 0
corresponds to a stable minimal surface with minimal area. A consequence

916 Characteristic number of an equilibrium point is equal to the maximal number

of mutually perpendicular directions in which the height from equilibrium point

diminishes. Thus, for example, a stable point (minimum potential energy) has

λ = 0, while a saddle point has λ = 1.
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of Morse’s equation is that the existence of n minimal surfaces of minimal
area that span a given contour implies that there must be another (n − 1)
unstable minimal surfaces bounded by the same contour.

The relation
∑

i(−1)λi = V − E + F reflects a profound statement that
connects topology with the concept of equilibria in the calculus of variations.
Morse’s equation is forced upon us by some mathematical structure hidden
within the topological nature of the bowl.

1936–1965 CE Max Horkheimer (1895–1973, Germany and USA). So-
cial philosopher. Regarded philosophy as culture criticism and maintained
that the enlightened spirit of modern man destroys itself by striving for a
pleasant and fair existence. Accordingly, the ills of modern society are caused
by the misuse and the misunderstanding of reason. If people use true rea-
son to critique their societies, they will be able to identify and solve their
problems.

Horkheimer was born in Stuttgart to an assimilated Jewish family. He
left High School (1911) to work in his father’s factory and then participated
(1917–1918) in WWI. He enrolled in the University of München (1919) and
studied philosophy and psychology, obtaining his Ph.D. degree in 1925. There
he struck a lasting friendship with Theodor Adorno with whom he collab-
orated throughout his life. In 1930 he founded, with Herbert Marcuse the
Frankfurt (Main) Institute for Social Research, and was appointed the full
professor for social philosophy. The Nazis closed the institute (1933) and
Horkheimer emigrated to the USA via Switzerland. In 1949 he returned to
Frankfurt, where the Institute was reopened (1950). He returned to America
to lecture at the University of Chicago (1954–1959). He died in Nürnberg
(1973). His most important publications are

• Authority and the Family (1936).

• Traditional and Critical Theory (1937).

• Eclipse of Reason (1947).

• The Dialectic of Enlightenment (1947).

• Critique of Instrumental Reason (1967).

The last book deals with the concept of “reason” within the history of
Western philosophy. Horkheimer defines true reason as rationality. He details
the difference between objective and subjective reason and states that we
have moved from the objective to the subjective. Objective reason deals with
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universal truths that dictate that an action is either right or wrong. Subjective
reason takes into account the situation and social norms. Actions that produce
the best situation for the individual are “reasonable” according to subjective
reason. The movement from one type of reason to the other occurred when
thought could no longer accommodate these objective truths or when it judged
them to be delusions. Under subjective reason, concepts lose their meaning.
All concepts must be strictly functional to be reasonable. Because subjective
reason rules, the ideals of a society, for example democratic ideals, become
dependent on the “interests” of the people instead of being dependent on
objective truths.

Horkheimer’s programmatic essay on ‘Traditional and Critical Theory’
(1937) enshrined the ambitions of the Institute. It described the necessity
of integrating philosophy and social science, and of developing a relation-
ship of integrity between critical theory and political practice. In later years,
Horkheimer’s vision became increasingly dark and gloomy. His later writings
evince the difficulty — even the impossibility — of fulfilling the original ambi-
tion and programme of the Frankfurt School917. The result is an increasingly
sharp critique of ‘enlightened’ reason and Western rationality. The Dialectic
of Enlightenment (1947), written in collaboration with Adorno, was the first
and most powerful statement of this theme.

1937 CE Arne Wilhelm Kaurin Tiselius (1902–1971, Sweden). Bio-
chemist. Developed new methods of separation of colloids though elec-
trophoresis918 and used it for studying proteins.

917 The “Frankfurt School” aimed to put philosophical ideas to the task of diag-

nosing social problems. It was comprised extraordinarily by a distinguished

collection of leftists, mostly Jewish, philosophers and social thinkers that gath-

ered in the Institute of Social Research at the University of Frankfurt. After

the war, when most of its members returned from exile, the institute was led

by Theodor Adorno and Max Horkheimer. Horkheimer’s chair was given

to Jurgen Habermas (1964).
918 Electrophoresis: A technique for the analysis and separation of colloids, based

on the movement of charged colloidal particles in an electric field. There are

various experimental methods. In one the sample is placed in a U-tube and a

buffer solution added to each arm, so that there are sharp boundaries between

buffer and sample. An electrode is placed in each arm, a voltage applied, and

the motion of the boundaries under the influence of the field is observed. The

rate of migration of the particles depends on the field, the charge on the par-

ticles, and on other factors, such as the size and shape of the particles. More

simply, electrophoresis can be carried out using an adsorbent, such as a strip of

filter paper, soaked in a buffer with two electrodes making contact. The sample

is placed between the electrodes, and a voltage applied. Different components of
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Tiselius was born in Stockholm. He studied at the University of Uppsala
(1925–1930), specializing in chemistry under Svedberg (Ph.D. 1930). He was
a professor at Uppsala, 1938–1968. Awarded the Nobel Prize for chemistry
(1948) for his studies concerning the nature of serum proteins.

Electrophoresis became widely developed in the 1940s and 1950s when the
technique was applied to molecules ranging from the largest proteins down to
amino acids or even inorganic ions.

1937–1940 CE George Robert Stibitz (1904–1995, USA). Mathemati-
cian, computer scientist and inventor. Father of the modern digital computer.
Designed and built the Complex Number Calculator, the world’s first electri-
cal digital computer. The design began in April 1939 and the end product
first ran on January 08, 1940. Its “brain” consisted of 450 electromechanical
telephone relays and 10 cross-bar switches, and it could find the quotient of
two eight digit complex numbers in about 30 seconds. Three teletypewriters
provided input to the machine.

Born in York, PA, Stibitz earned a Ph.D. in applied mathematics (1926)
and a Ph.D. in physics from Cornell University (1930). He then joined Bell
Telephone Laboratories (1930), serving as a mathematical consultant. Stib-
itz’s interest in computers arose from an assignment to study the magneto-
mechanics of telephone relays; he turned his attention to the binary circuits
controlled by the relays, to the arithmetic operations expressible in binary
form, and, in November 1937, to the construction of a two-digit binary adder
based on relays, flashlight bulbs, and metal strips cut from tin-cans.919

In 1940, Stibitz performed a spectacular demonstration at the Dartmouth
(NH) meeting of the American Mathematical association: Leaving his com-
puter in New York City, he took a teleprinter to the meeting and proceeded
to connect it to his computer via telephone — the world’s first demonstration
of remote computing. During WWII he designed program-controlled calcula-
tions for the military, but these were soon to be outmoded by the development
of electronic digital computers.

the mixture migrate at different rates, so the sample separates into zones. The

components can be identified by the rate at which they move. This technique

has also been known as electrochromatography.

Electrophoresis is used extensively in studying mixtures of proteins, nucleic

acids, carbohydrates, enzymes, etc. In clinical medicine it is used for determin-

ing the protein content of body fluids.
919 The machine, called “Model K” (because most of it was constructed on his

kitchen table), worked on the principle that if two relays were activated, they

caused a third relay to become active, where this third relay represented the

resultant of a binary operations.
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Thereafter he developed a precursor of the electronic digital microcom-
puter (1954) and eventually applied computer systems development to a wide
variety of topics in biomedicine. He became professor of physiology at the
medical school of Dartmouth College (1966).

1937–1944 CE Isidor Isaac Rabi (1898–1988, U.S.A.). Experimental
physicist. Perfected the technique of molecular beams and made it into a
potent tool for measuring magnetic properties of molecules and atomic nuclei
with great accuracy . For this he was awarded the Nobel prize for physics
(1944).

Rabi was born in Rymanov, Poland, to Jewish parents and was brought
at the age of one year to the United States. He studied at Cornell and then at
Columbia University (Ph.D. 1927). Rabi spent the next two years in Europe,
including some time in the laboratory of Otto Stern, where he acquainted
himself with the technique of molecular beams. In 1929 he joined the faculty
at Columbia. From 1940 to 1945 he was associate director of the M.I.T.
Radiation Laboratory . He returned to Columbia after WWII.

Rabi and his collaborators introduced for the first time the induction of
radio-frequency resonance in magnetic moment measurements. In their orig-
inal experiments on nuclear moments, the beam was first deflected in an
inhomogeneous field BA and a particular component was selected by passing
the beam through a slit.

This component then traversed a homogeneous field B
B
, which introduced

no deflection, and was finally deflected back to the axis of the apparatus by
a third field BC , which was inhomogeneous with the gradient opposed to
that of BA . A beam detector was placed to record the arrival of atoms
which traversed the three fields with their spin and magnetic moment fixed
throughout .

A small magnetic field oscillating with a high frequency was then imposed
on the beam in the homogeneous field region (BB ) and the frequency was
varied until the beam signal showed a sharp “resonance” dip. This dip was
due to defocusing of the beam and indicated that the spin orientation was
significantly affected in the B

B
region.

1937–1949 CE William Webster Hansen (1909–1949, USA). Physicist.
Co-inventor920 of the Klystron tube and founder of microwave electronic tech-
nology. Contributed to developments on Doppler radar, aircraft blind-landing
systems, electron acceleration (SLAC), and nuclear magnetic resonance.

920 With the Varian brothers. Edward Leonard Ginzton (1915–1998, USA)

applied the Klyston in satellite communications, airplane and missile guidance

systems, telephone and television transmission, and other important applica-

tions (1942–1959). He succeeded Hansen in the Directorship of the Stanford
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Hansen was born in Fresno, California. He received his doctorate in physics
from Stanford University (1933) and joined the faculty there (1934). Hansen
was a professor of physics and Director of the Microwave Laboratory at Stan-
ford (1939–1949).

He invented the high-quality cavity resonator on which the linear elec-
tron accelerator depends. During WWII he worked in New York on defense
applications of physics and electronics, including radar.

1937–1955 CE Emilio Gino Segrè921 (1905–1989, Italy and USA). Ex-
perimental nuclear physicist. Discovered the first synthetic element tech-
netium (1937), the new element astatine (1940) and the antiproton (1955).

Segrè was born in Tivoli, near Rome, and educated at Rome University,
studying engineering and then physics (Ph.D. 1928). He remained at the
university, working with Fermi until 1936, when he became a professor at
Palermo. But in 1938 he was dismissed from this post and forced into exile
by the Fascist government.

Apart from wartime research at Los Alamos on the Manhattan Project
he worked from 1938 at the University of California at Berkeley, where he
became professor (1947). In that year Segrè started work on proton-proton
and proton-neutron interaction, using a cyclotron accelerator at Berkeley.
This was how he created and detected the antiproton (antiparticle of the
proton with identical mass but negative electric charge), which reconfirmed
the relativistic quantum theory of Paul Dirac. He shared the 1959 Nobel Prize
for Physics with his co-worker Owen Chamberlain (b. 1920).

1937–1964 CE Arthur Erdélyi (1908–1977, U.S.A. and England). Math-
ematician. A leading figure in American mathematics in the post-war devel-
opment of the subject. Contributed to many fields in mathematical analysis.
Among them: special functions922, operational calculus, asymptotic expan-

Microwave Laboratory (1949–1959). Under Ginzton’s supervision, the prelimi-

nary design of the SLAC accelerator was completed in 1961.
921 Segre (also Segri) — an Italian Jewish family of rabbinical scholars since

the 14th century. Members of the family in modern times include: Corrado

Segre (1863–1924, Mathematician); Arturo Segrè (1874–1928, Historian);

Beniamino Segrè (1903–1977, Mathematician).
922 He derived (1937) the integral representation of a multipole spherical eigenfunc-
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sions, integral equations and integral transform theory. Headed an interna-
tional team of applied mathematicians that issued the encyclopedic source
books on Higher Transcendental Functions and Integral Transforms (five vol-
umes), which summed up all the accumulated lore in that field since Euler.

Erdélyi was born in Budapest, Hungary to Jewish parents. He then con-
tinued his studies in Brno, Czechoslovakia. The German occupation put him
in mortal danger, but thanks to Edmund Whittaker, he was able to come
to Edinburgh in 1939. In 1949 he moved to the California Institute of Tech-
nology, where he directed the famous Bateman project. He returned to the
University of Edinburgh in 1964.

1937–1966 CE Nahum Il’ich Akhiezer (1901–1980, Russia). Math-
ematician. Made important contributions to function theory and approxima-
tion theory. Created the Kharkov school of mathematics.

Akhiezer was born in Cherikov, Belarus, to a Jewish family. He graduated
(1924) from Kiev University an taught there until 1933. He then moved to
the Kharkov Polytechnic Institute (1941–1956). From 1956 till the end of his
life he worked at Kharkov State University.

1938 CE Ladislau and Georg Biro (Hungary) patented the ball-bearing
point pen.

History of Writing Instruments —

from the bamboo reed to the ball-point pen

(3100 BCE–1938 CE)

ca 100,000 BP Early humans developed symbolic thinking manifested in lin-
guistic speech capacity.

ca 3100 BCE First fully developed system of word-writing : Sumerians in
Mesopotamia used split bamboo reed as stylus to write words
and numbers on wet clay tablets. Only a few hundred words
were used.

ca 3000 BCE Advent of pictographic writing on papyrus in Egypt; soot
mixed with water served as ink.
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ca 2700 BCE Tien-Lcheu (China) invented “Indian Ink” — a mixture of
soot from pings smoke, lamp oil mixed with gelatin of donkey
skin and musk.

ca 2200 BCE Oldest extant document written on papyrus.

ca 1500 BCE Origin of the oldest phonetic alphabet in the Sinai peninsula.

ca 1313 BCE The Phoenician Cadmus invented the Phoenician alphabet
and the written letter.

ca 1300 BCE Chinese’s pictographic language has a vocabulary of ca
50, 000 words.

ca 1200 BCE Ink becomes common in China.

ca 600 BCE Final stages of current Hebrew alphabet and writing.

ca 530 BCE A library in Greece.

ca 400 BCE Development of Greek alphabet. They employed a writing
stylus made of either metal, bone or ivory to place marks
upon wax-coated tablets. These tablets were made in hinged
pairs that could be closed to protect the scribe notes.

Chinese write on silk.

ca 300 BCE Greeks created the calamos (καλαμoς): a reed pen suitable
for parchment and ink. They converted bamboo stems (of
marsh grasses) into a form of fountain pen, cutting one end
into a form of pen nib or point. A writing fluid (ink) was
poured into the stem, then the reed was squeezed, forcing
fluid to the nib.

ca 200 BCE Parchment developed in the city of Pergamum (now in
Turkey); a superior writing material made of animal skin.

ca 50 BCE Men discovered that the sharpened goose quills (large feath-
ers) made excellent writing instruments. [The word pen
comes from the Latin penna which means feather.]

ca 79 AD A bronze pen in Pompei.

ca 100 AD Wood-fiber paper invented in China.
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ca 400 AD A stable form of ink was developed — a composite of iron
salts, nut-galls and gum; this basic formula was to last for
centuries.

ca 600 AD Books printed in China.

ca 700–711 Chinese wood-fiber paper became known in Japan (700 CE);
brought to Spain by the Arabs (711 CE).

ca 700 AD Quill-pen introduced in Europe; it was to remain predominant
for over a thousand years.

The strongest quills were those extracted from living birds
in the spring – from the five outer left-wing feathers (carved
outwards and away when used by right-handed writer). Birds
used were: goose, swan, eagle, owl, hawk, turkey. Quill-pens
lasted for only a week before it was necessary to replace them.

The early European parchment was made from animal skin,
which required much scraping and cleaning.

During the centuries that followed, metal points, often called
nibs, were added to the quill. The nib-tips did not wear out
as fast as quill-tips.

ca 765 AD Picture books printed in Japan.

ca 1000 AD Mayas in Yucatan, Mexico, make writing paper from tree
bark.

1436 AD Invention of the printing press with replaceable wooden or
metal letters by Johannes Gutenberg (Germany).

1565 AD Invention of the pencil.

1650–1685 Some pens were made entirely out of metal, sometimes with
precious stones as the tip.

ca 1700 AD Advent of fountain pens.

1750–1850 The Industrial Revolution heralded the doom of the quill-
pen. It began with steel nibs that could be inserted into
a holder (1750). Then, the whole pens were made in the
form of a metal tube or barrel (1809); machine-made pens,
gold-pens (1810–1820); In 1822 horn and tortoise-shell were
patented to the formation of pen-nibs, the points of which
were rendered durable by small pieces of diamond or ruby, or
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by attaching small piece of thin gold sheet over the end of the
tortoise-shell. By 1850, pen manufacturers were using alloys
of rhodium, osmium and iridium to make very hard tips.

1884 AD Lewis Edson Waterman (US) patented one of the first
practical fountain pens. The pen was filled with ink squeezed
from an eyedropper.

1886 AD John Loud (US) invented a ball-point pen.

1913 AD W.A. Sheaffer (US) developed a lever-fill fountain pen.

1927 AD Disposable ink cartridges for fountain pens were developed.

1938 AD Ladislau and Georg Biro (Hungary) patented the ball-
bearing point pen.

1945 AD First commercially successful ball-point pens.

1951 AD Marker pens.

1938 CE Roy J. Plunkett (1910–1994, USA). Engineer at Du Pont,
U.S.A., accidentally invented Teflon923 (or PTFE), a polymer of tetra-fluoro-
ethylene924 (Poly-Tetra-Fluoro-Ethylene) that does not occur in nature. Plun-

923 The name Teflon is derived by combining the chemists’ name for tetrafluo-

roethylene — tef — with an arbitrary suffix — lon — that Du Pont chose for

its products, as in nylon, orlon, etc.
924 Tetrafluoroethylene is prepared in the following manner:

CHCl3 + 2HF → CHClF2 + 2HCl;

2CHClF2
heat−→

F F

� �

C —— C + 2HCl

� �

F F

.

Polimerization yields n(CF2 —— CF2)

catalyst
pressure

heat−−−−−→ (CF2CF2)n.
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kett had been looking for a new kind of refrigerant, a gas to be used in air
conditioners, to suck out the heat. He thought he was mixing together a batch
of tetrafluoroethylene and freon (CCl2F2). But instead of finding the gas in
his steel reactor bottle as expected, he found a white powder; inside the tank
the gas molecules had formed into long chains.

Teflon became known to the public only in 1946 because it had been kept
as a military secret during WWII; scientists working on the first nuclear bomb
— the Manhattan Project — needed it for making gaskets that could resist
the corrosive uranium hexafluoride (UF6), used in the separation of uranium
isotopes.

Teflon is an unusual plastic, which is extremely resistant to flames, oxida-
tion and strong acids or bases. Its chemical and thermal stability (−240 ◦C to
260 ◦C) can be traced to two features. One is the considerable strength of the
C——C and C—F bonds, which keeps the molecules from decomposing even
when moderately heated. The second feature is the match between the sizes
of the fluorine and carbon atoms, which result in the fluorine atoms form-
ing an almost continuous sheath around the carbon atom chain, protecting it
from chemical attack. In effect, the fluorine atoms act as chemical insulation
around the carbon-atom “wire”.

PTFE consist of very long chains, composed of about 50,000 {— CF2 —}
groups each, with very little cross-linking between them. As a result, the
molecules pack together to give a dense, compact solid with a high melting
point. Grease and oil do not form bonds with PTFE, so surfaces coated in
it are “nonstick” and PTFE feels slippery to the touch. Its molecules pack
together so densely that the solid does not absorb water, and hence it is an
excellent electrical insulator.

The chemical industry uses Teflon in corrosion-resistant gaskets, valve
packing, cable insulation, bearings, fry pan coating, clothing and artificial
body parts.

1938 CE, Oct 24 Wages and Hours Law became operative in the United
States of America. It provided for humane wages, an 8 hours working day and
a maximum of 40 weekly hours in industries affecting interstate commerce.
It also prohibited child labor.

1938–1939 CE Hans Albrecht Bethe (1906–2005, U.S.A.). Physicist.
Proposed a new theory for the energy production mechanism, important in
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some main-sequence stars: the nuclear fusion of hydrogen into helium, cat-
alyzed by carbon nuclei925. This theory was confirmed by a combination
of laboratory nuclear collision experiments and astrophysical observations.
Moreover, it is believed today that nuclear reactions in the interior of very
hot stars are the source of continual heavy-element build up; once the star’s
hydrogen is all fused into helium, 4H nuclei proceed to fuse into Beryllium,
Carbon and heavier elements.

Bethe also applied classical mathematical methods to the calculation of
electron densities in crystals, the order-disorder states of alloys, the opera-
tional conditions of reactors and the ionization processes in shock waves.

925 Our sun is a nuclear furnace that turns mass into energy. Every second it

converts over 657 million tons of hydrogen into 653 million tons of helium.

The missing 4 million tons of mass are discharged into space as radiant energy.

The earth receives only about one two-billionths of this. It has been estimated

that in 15 minutes our sun radiates as much energy as mankind consumes in

all forms, during an entire year. Solar fusion of 1H into 4He is mostly direct,

with Bethe’s CNO (Carbon-Nitrogen-Oxygen) cycle accounting for only a few

percent of fusion reactions; but the CNO mechanism dominates in hotter main-

sequence stars.

The sun is approximately 150 × 106 km from earth, 1.392 × 106 km in

diameter and has a mass of approximately 2 × 1030 kg. It is an ‘average’ star

in size, brilliance and age. There are more than 1011 stars in our sun’s own

galaxy, the Milky Way. Light energy, with a temperature of about 5800 degrees

Kelvin is received on earth, from the sun. It takes light 8.3 min to travel from

sun to earth. Supposing no major change in the sun’s stability will occur until

about 10−3 of its present total mass has melted away in nuclear reactions,

it could keep going for 1.7 × 1010 years at the present rate of generating

radiation. However, astrophysical theory predicts a gradual increase in solar

power output, which will wreak havoc with earth’s biosphere as early as 109 y

from now. It also predicts that solar-core hydrogen will run out ca 5×109 y from

now, leading to a collapse that will cause hydrogen in outer shell into fusion,

followed by a dramatic expansion and cooling of the sun, and core burning of

helium. In this red giant phase (starting ca 7 × 109 y from now) the expanding

sun will engulf and incinerate the inner planets, possibly including earth. The

present power output of the sun is 3.6 × 1023 kilowatts. The upper limit of the

solar power available on the surface of the earth is about 1.6 × 1014 kilowatts.

Solar power alone should thus be sufficient, in principle, to satisfy the energy

requirements of man for the foreseeable future. In fact, most of our present

energy consumption, whether in the form of hydroelectric power, food, lumber,

or fossil fuels, can be traced back to solar energy.
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Bethe was born in Strasbourg. He was educated at the Universities of
Frankfurt and Münich, where he obtained his Ph.D. in 1928. He worked with
Fermi in Rome (1931) and lectured on physics at the University of Tübingen
(1933). Because his mother was Jewish, he was forced to leave Germany at
the beginning of the Nazi regime. After a stay in Manchester, he emigrated
to the United States in 1935 and settled at Cornell University, where he was
a professor from 1937 to 1975, and a professor emeritus thereafter.

During 1943–1946 he headed the Division of Theoretical Physics of the
Manhattan Project in Los Alamos, NM, and made important contributions
to the development of the theory of the atomic nucleus and nuclear reactions.
He received the Nobel prize for physics in 1967.

1938–1939 CE Russell Harrison Varian926 (1898–1959, U.S.A.) and his
brother Sigurd Fergus Varian (1901–1961, U.S.A.). Physicists. Invented
the klystron for the generation and amplification of microwaves, during their
research into RF electronics at Stanford University. Russell and Sigurd were
born in Washington, D.C. and Syracuse, N.Y., respectively; Russell became
president of Varian Associates (1948–1959).

926 For further reading, see:

• Varian, Dorothy, The Inventor and the Pilot, Pacific Books, 1983, 314 pp.
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The Klystron927

Two separate principles are combined in the klystron oscillator: the veloc-
ity modulation of an electron beam, and the use of cavity resonators as tuned
circuits. When the wavelength to which a circuit is tuned is not much greater
than the physical dimensions of the circuit, a coil and a condenser arrangement
becomes impracticable, and must be replaced by a length of transmission line
in a coaxial-line triode. At still shorter wavelengths even quarter-wave lines
become awkwardly small and, in their turn, are replaced by cavity resonators.
In general the wavelength corresponding to the fundamental mode of a cavity
is of the order of magnitude of its linear dimensions.

A resonant cavity is a high frequency descendant of the parallel resonant
LC circuit. Such an LC circuit will resonate at a very high frequency ω0 if the
inductance L and capacitance C are very small since ω0 = 1√

LC
. A relatively

high frequency LC circuit might consist of two parallel plates joined by a single
inductive turn of wire.

In order to reduce the inductance, more turns may be added in parallel .
The closed surface may be thought of as an infinite number of turns in parallel
and represents a minimum value of inductance. The resulting cavity is a region
of space surrounded by conducting walls.

The high-frequency currents in a cavity flow effectively only in a narrow
layer of the inner surface, the width of which is known as the skin depth. (At
10,000 MHz the skin depth is of the order of 10−4 cm for copper.) The energy
is stored in the electric and magnetic fields within the cavity. Unlike an LC

circuit, a cavity may have many resonant frequencies, each associated with
a different mode of oscillation. These frequencies are functions of the cavity
geometry, as are the fundamental frequency and harmonics of an acoustic
organ pipe.

The electromagnetic energy involved in the excitation of a mode of oscilla-
tion, oscillates between energy stored in the magnetic field and energy stored
in the electric field. The oscillating fields induce currents in the cavity walls,
which may dissipate energy in the form of heat since the walls are resistive. In
a steady-state condition, the supply of exciting energy must be equal to the

927 To dig deeper, see:

• Hemenway, C.L. et. al., Physical Electronics, Wiley, 1962, 396 pp.

• Parker, P., Electronics, Edward Arnold: London, 1950, 1050 pp.
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power lost in the cavity walls. The ratio of the stored energy to the energy
dissipated in a cycle of oscillation is called the Q of the circuit. The Q’s of
cavities have typical values of 104. A high Q value also means a sharp tune
or narrow bandwidth response.

Coupling of electromagnetic power into and out of resonant cavities is
sometimes achieved by means of a small loop of wire, which couples with the
magnetic field within the cavity and joins to an external coaxial transmission
line.

When an electron beam passes near an electrode connected to an im-
pedance, a current may flow through the impedance only if the velocity of
the electrons, as they pass near the electrode, is time dependent (modulated).
This is so because an electron beam is equivalent to a current, and a d–c
current delivers no a–c power by induction.

Velocity modulation is achieved by impressing a small a–c component of
velocity on a d–c electron beam. This may be done by allowing the beam
to pass through two grids across which a small a–c voltage is applied. As
the electrons leave the modulating grids, the faster electrons move away from
the slower electrons behind and overtake the slower electrons ahead. The
numerical density of electrons further along the beam is no longer uniform, and
the beam is said to be bunched . Because of this bunching the beam current
has acquired an a–c component. Thus, the velocity modulation imparted to
the beam in passing through the grids gives rise to current modulation further
along the beam.

A–c power may be extracted from the current-modulated electron beam by
allowing it to pass through a second pair of grids connected to an external load
impedance. The beam induces currents in the impedance and loses energy.
In klystrons, the grids and impedances have the physical form of resonant
cavities, in order to velocity – modulate an electron beam and extract useful
a–c power at high frequencies.

Details of the mechanism are as follows: An electron gun sends a beam
of electrons into a tube connecting of two resonant cavities. The cavities are
separated by a region called the drift space. The ends of the reentrant parts
of the cavities may be wire grids. The cavity nearer to the gun is called the
input or buncher cavity . The signal couples to the RF magnetic field of the
input cavity by means of a coaxial line, which has its center conductor joined
to a small loop within the cavity. The input signal appears as an a–c voltage
between the grids of the buncher cavity, and velocity-modulates the beam.

Let us suppose that the electrons, upon entering the input cav-
ity have been accelerated through a potential V0 and that a small a–
c voltage V1 cosωt is established between the grids and the cav-
ity. The velocity v of the electrons as they emerge from the cavity is
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given by v =
√

2ηV =
√

2η(V0 + V1 cosωt)1/2 ≈ v0

(
1 + V1

2V0
cosωt

)
, where

v0 =
√

2ηV0, η = e/me and V1 � V0 is assumed, provided the time for the
electron beam to pass between the grids is small compared with a period of
an a–c cycle.

In the drift space, bunching occurs: faster electrons start to pass slower
ones, with the result that the beam current reaches a large value once each
cycle. But the current is not sinusoidal and contains many harmonics. For
that reason, the position of the maximum a–c current of the fundamental
mode is not located at the position of maximum bunching.

The modulated beam passing through the output cavity induces a net
a–c current on the inside surface of the cavity walls. This induced current
initiates the oscillations of the cavity when the modulation is first turned on.
The amplitude of the output cavity oscillations builds up at the expense of the
electron’s d–c kinetic energy. In a steady-state condition, the energy lost by
the electrons equals the sum of the power delivered to the load and the energy
dissipated in the cavity walls.

The relative phase is such that when the number of electrons crossing the
gap is largest, the oscillating electric field of the cavity retards the electrons
and extracts energy from the beam. On the average, power is delivered to the
output cavity because more than half the electrons pass through the cavity
when the phase of the electric field is such as to decelerate the electrons
and less than half the electrons pass through the cavity when the field is
accelerating .

To summarize, the klystron is an energy converter: The d–c kinetic energy
of the electrons is converted to the a–c energy of the electromagnetic fields
in the cavity. [In contradistinction, the magnetron converts the d–c potential
energy of electrons to a–c energy.] Power amplification in the klystron is
achieved because only a small amount of a–c power is required to velocity
modulate the electrons, and a large amount of output power is supplied by
the kinetic energy of the electrons. The power amplification of a klystron can
reach the order of 1000 or greater.

The output cavity is connected to a load impedance by means of a coaxial
line so that when the cavity is excited, a–c power is delivered to the load
impedance. A collector electrode, maintained at output cavity potential, in-
tercepts the beam as it emerges from the output cavity. Both cavities generally
have the same resonant frequency.
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1938–1943 CE Swiss chemists Albert Hoffmann and Arthur Stoll dis-
cover and name (1938) lysergic acid diethylamide, or LSD. Hoffman discovered
(1943) that LSD is hallucinogenic. LSD became widely used as hallucinogen
in the 1960’s.

1938–1947 CE Chester Carlson (1906–1968, U.S.A.). Physicist and in-
ventor. Invented xerography — an electrostatic process for copying printed
material, using photo conductive materials (e.g. selenium compounds) to form
an image. Carlson was born in Seattle, Washington.

By the age of 14, Carlson was supporting his invalid parents, yet he man-
aged to earn a college degree from the California Institute of Technology,
Pasadena, in 1930. After a short time spent with the Bell Telephone Com-
pany, he obtained a position with the patent department of P.R. Mallory
Company, a New York electronics firm.

Plagued by the difficulty of getting copies of patent drawings and specifi-
cations, Carlson began in 1934 to look for a quick, convenient way to copy line
drawings and text. Since numerous large corporations were already working
on photographic or chemical copying processes, he turned to electrostatics for
a solution to the problem. Four years later he succeeded in making the first
xerographic copy.

Carlson obtained the first of many patents for the xerographic process in
1940, and over the next four years tried unsuccessfully to interest someone in
developing and marketing his invention. More than 20 companies turned him
down. Finally, in 1944, he persuaded Battelle Memorial Institute, Columbus,
Ohio, a non-profit industrial research organization, to undertake developmen-
tal work. In 1947 a small firm in Rochester, NY, the Haloid Company (later
the Xerox Corporation), obtained the commercial rights to xerography, and
11 years later Xerox introduced its first office copier. Carlson’s royalty rights
and stock in Xerox Corporation made him a multi-millionaire.

1938–1979 CE Oscar (Ascher) Zariski928 (1899–1986, U.S.A.). Math-
ematician. Developed an abstract theory of algebraic geometry; abandoning
topological and analytical methods he turned to modern algebra as a means
of elucidating basic geometric ideas, introducing the notions of valuation, in-
tegral closure and saturation. He found strong links between the algebra of
polynomials and the geometry of curves.

928 For further reading, see:

• Parikh, C., The Unreal Life of Oscar Zariski, Academic Press: New York,

1991, 264 pp.
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Zariski was born in Kobrin, White Russia, son of a Jewish Talmudic scholar
in what was then known as the Pale of Settlement. He spent his first eleven
years in a traditional, almost exclusively Jewish society. During 1914–1918 he
attended the gymnasium (high school) in Chernigov and from 1918 to 1920
he was a student at the University of Kiev.

In 1921 he moved to the University of Rome, Italy, which was at that
time the most important center of algebraic geometry in the world. There
he came under the influence of the algebraic geometers Guido Castelnuovo
(1865–1952), and Federigo Enriques (1871–1946) [Enriques, brother-in-law
of Castelnuovo, was a descendant of Spanish Jews, whose ancestors were ex-
pelled from Spain in 1492].

In 1926 Zariski received a Rockefeller foundation fellowship929, but the
rise of Fascism in Italy forced him to leave Rome. He applied to Zürich and
Jerusalem, but both universities hired older men. On the recommendation
of S. Lefschetz he joined in 1927 the faculty of mathematics of the John
Hopkins University of Baltimore, U.S.A. In 1940 he moved to Harvard, where
he remained for the rest of his life.

Zariski was a man caught up in many of the central conflicts of the 20th

century. He was torn between an allegiance to an intellectual world that
ignored the politics of race and his emotional need to find safety for those
members of his family who escaped the Nazi Holocaust. Intellectually, he was
torn between a love of the free-spirited, creative Italian vision of geometry
and his appreciation of the need for strict logical rigor which he found in
the Bauhaus-like school of the abstract German algebraists. Zariski called
geometry “the real life” and he lived intensely in the world of mathematics.
This commitment led him safely through the turbulence of his ‘unreal life’.

929 A member of the Harvard Mathematics Department, G.D. Birkhoff, had been

asked by the Rockefeller Foundation to stop in Rome to discuss the work of the

fellows. Zariski remembered, however, that their discussions were not confined

to mathematics:

“Is it difficult for a Jew to become a student at Harvard?” Zariski asked one

evening. “No, not at all”, Birkhoff replied with no trace of embarrassment, “al-

though of course we naturally keep a certain proportion. The Jewish population

is about 3% and we admit only 3%”. “Then you must have very large classes”,

said Zariski, but Birkhoff didn’t smile.
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Sources of Stellar Energy – the Advent of Nuclear
Astrophysics930 (1939–1957)

The main problem that baffled all astrophysicists concerned with stellar
structure and evolution in the 1920’s and the 1930’s, was the unknown source
of stellar energy. It was generally agreed that energy is derived from trans-
formation of mass into energy, according to Einstein’s law E = mc2, where
E is the amount of energy released, m is the mass transformed, and c is the
velocity of light in vacuum. However, the actual process involved was not
known. In 1919, Jean Perrin put forward the notion that the synthesis of
Helium from hydrogen is capable of supplying the quantity of energy that is
required for the permanent radiation of the sun.

In 1927, A. Eddington showed that the temperatures near the center of
the sun must be much greater than had previously been thought. Yet Ed-
dington rejected the transmutation of elements as a possible source of stellar
energy. As research into stellar structure and nuclear processes progressed,
the alternative rejected by Eddington was shown to be feasible.

When a gas is heated to temperatures of the order of 107 to 108 degrees
Kelvin, its particles gain (according to the Maxwellian energy distribution)
so much energy that the collisions of nuclei can initiate thermonuclear reac-
tions. Such temperatures occur in the interior of the sun and other stars, as
astrophysicists have found. Indeed, George Gamow (1904–1968, U.S.A.),
Robert d’E Atkinson (England) and Fritz Houtermans (1903–1966, Ger-
many)931 hypothesized already in 1929 that thermonuclear processes produce

930 To dig deeper, see:

• Shirokov, Yu.M. and N.P. Yudin, Nuclear Physics, Mir Publication: Moscow,

1982, Vols I-II (445 pp. + 303 pp.)

• Harwit, M., Astrophysical Concepts, Wiley, 1973, 561 pp.

931 All three met at Göttingen in 1928: Gamow arrived from Leningrad, Atkinson

was a young British physicist and Houtermans had finished his Ph.D. thesis in

1927 under James Franck. In their joint 1929 paper, Atkinson and Houter-

mans put forward the idea that nuclear reactions are the source of stellar energy,

namely, that near the sun’s center, hydrogen nuclei might fuse together to pro-

duce helium nuclei in a reaction that would convert a tiny amount of mass into

a very large amount of energy.

Houtermans’ own account of the denouement: ‘That evening, after we had fin-

ished our essay, I went out for a walk with a pretty girl. As soon as it grew
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the heat and light from the sun. A more detailed account was given by Carl
von Weizsäcker (b. 1912, Germany) in 1936.

dark the stars came out, one after another in all their splendor. “Don’t they

shine beautifully?” cried my companion. But I simply stuck out my chest and

said proudly: “I’ve known since yesterday why it is that they shine”’.

Friedrich Georg Houtermans was born in Zoppot, near the then-German

Baltic port of Danzig. He was reared in Vienna as an only child by his mother,

who was half-Jewish. Fleeing Nazi Germany in 1933, he went to England. Soon,

driven by idealism, he emigrated to the Soviet Union (1933), but fell victim to

one of Stalin’s purges (1934). He spent a couple of years in prison, where the

NKVD had knocked out all his teeth and kept him in solitary confinement for

months; his wife, with their two small children, managed to escape to the U.S.A.

When Germany made its temporary pact with the Soviet Union in 1939, it in-

cluded an exchange of prisoners, and Houtermans was handed to the Gestapo.

Max von Laue, one of the few German scientists with the prestige and courage

to stand up to the Nazis, managed to free Houtermans and arrange for him

to work with a wealthy German inventor, Baron Manfred von Ardenne,

who had studied physics and who maintained a private laboratory in Lichter-

felde, outside Berlin. Ardenne was pursuing uranium research independently

of Heisenberg and the War Office. To raise funds for the work, he had ap-

proached the German Post Office, which commanded a large unused budget for

research. The Minister of Posts, imagining himself handing Hitler the decisive

secret weapon for the war, had funded the building of a million-volt van de

Graaff and two cyclotrons, all under construction in 1941. Until they came on

line, Houtermans turned his attention to the theory of nuclear chain reactions.

By August 1941, he had independently worked out all the basic ideas necessary

to create a bomb. He discussed them in a 39-page report, “On the question of

unleashing chain reactions”, that considered fast-neutron chain reactions, crit-

ical mass, U235, isotope separation, and element 94, which the Americans had

already secretly named “plutonium”. Houtermans discussed his ideas privately

with von Weizsäcker and Heisenberg, but kept his report out of reach of

the War Office, for whom Heisenberg was working on the very same problem!

However, Houtermans redeemed himself from Heisenberg’s fate by making sur-

reptitious contact with the Fermi group in Chicago. Long before completing

the first nuclear reactor in December 1942, the Chicago group received a cable

from Switzerland sent by someone at Houtermans’ direction. “Hurry up”, it

said tersely. “We are on the track”.

After the war, physics research in Germany was severely hindered by the Al-

lied Control Commission. These restrictions went so far as to decree an upper

limit of 109 ohm on resistors. In 1952 Houtermans became a professor at the

University of Bern.
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From the equation 1
2mv2 = 3

2kT , it is seen that the average kinetic en-
ergy of a nucleus at the sun’s center (T � 1.4 × 107 K) is equivalent to only
2000 eV. In spite of the corresponding low value of the mean particle energy,
as compared with the millions of eV of particles accelerated in laboratories,
protons at that temperature can still initiate a sufficient number of nuclear
reactions per second, for three reasons. Because of the Maxwellian distribu-
tion, there is always a small fraction of particles with kinetic energy far higher
than the mean thermal energy. Furthermore, the very large volumes of stellar
cores lead to such a high number of collisions that even reactions with a small
probability occur with sufficient frequency. And – last but not least – when
two hydrogen-isotope nuclei collide, quantum tunneling has a finite probability
of occurring: this is a process via which, even if the nuclei’s relative speed is
insufficient for them to classically overcome their mutual Coulomb potential
barrier, the uncertainty principle sometimes allows them to “borrow” the req-
uisite kinetic energy for a brief time. Once safely past the Coulomb repulsion
barrier, the nuclei’s short-range nuclear attraction forces take over and allow
the exothermic fusion reaction to proceed. Two protons fuse into a deuteron
hydrogen isotope (with a positron and neutrino emitted), as well as other
stellar nuclear fusion reactions.

Two strongly exothermal nuclear reactions were definitely established.
The balance of the first reaction cycle results in the fusion of 4 protons to a
4
2He nucleus with the simultaneous emission of 2 positrons and 2 neutrinos:

41
1H → 4

2He + 2e+ + 2νe.

Energy is released since the mass of four protons is 4 × 1.00723 = 4.02892
atomic mass units, which is larger by 0.02741 than the mass of the product
4He nucleus (4.00151). Therefore, in this reaction, an energy of about 25 MeV
per helium nucleus is liberated, which corresponds to 1.5 × 108 kCal/gram or
6 × 108 kCal/mole. The neutrinos released during the reaction are responsible
for about ten percent of the energy flux from the sun.

The next step was the realization that only reactions with capture of pro-
tons by light nuclei play a notable part in the interior of stars. The final
insight was supplied by H.A. Bethe (1939). He showed that the most im-
portant source of energy in the heaviest and hottest main-sequence stars is
the so-called “carbon-nitrogen-oxygen cycle”, in which carbon, nitrogen and
oxygen serve as catalysts for the conversion of four hydrogen atoms into one
helium atom.

The CNO cycle occurs in our sun, but is negligible there due to the sun’s
core temperature, which is low enough to favor direct fusion of hydrogen into
helium. But the CNO-catalyzed fusion rate increases extremely rapidly with
core temperature, and thus is dominant for main-sequence stars somewhat
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hotter than the sun. There are several variants of the CNO cycle; they all
occur in stars with relative rates determined by core temperatures. One com-
mon CNO cycle proceeds as follows:

12
6 C + p → 13

7 N, 13
7 N → 13

6 C + e+ + νe,

13
6 C + p → 14

7 N, 14
7 N + p → 15

8 O,

15
8 O → 15

7 N + e+ + νe,
15
7 N + p → 12

6 C + 4
2He,

with the overall reaction being again

4p → 4He + 2e+ + 2νe .

In addition to dominating helium production in many stars, the CNO
mechanism also plays a role in nova explosions, and in the production of
heavier elements in post-main-sequence stars.

The presence of these elements in the sun and stars was proved spectro-
scopically.

1938–1939 CE Robert Julius Oppenheimer (1904–1967, U.S.A.). The-
oretical physicist and scientific administrator. Laid the foundation for a
‘general-relativistic’ theory of stellar structure and gave first concrete descrip-
tion of a ‘black hole’.

With his graduate student Robert Serber (1909–1997, U.S.A.) he stud-
ied the relative influence of nuclear and electromagnetic forces in neutron stars
(1938).

With his graduate student George M. Volkoff (b. 1914, U.S.A.) he put
forward (1938) a model of a static spherical star consisting of an ideal high-
density ‘Fermi fluid’ of neutrons932. He found that the star is stable whenever
its mass is not greater than one-third of the solar mass [present day value is 0.7
solar masses, known as the Oppenheimer-Volkoff limit]. The model incorpo-
rated an equation of state with the GTR equation of hydrostatic equilibrium.

With his graduate student Hartland Snyder (1913–1962, U.S.A.), he
initiated the study of black-hole physics (1939). They formulated the process

932 Neutrons, like electrons, when closely packed into a sufficiently small volume,

resist further compression because of the Pauli exclusion principle.
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of gravitational collapse of a neutron star and showed that when all thermonu-
clear sources of energy are exhausted, a sufficiently heavy neutron star will
reach a state where its weight will overcome the sum of all opposing forces
[centrifugal force due to fast spin, radiation and degeneracy pressures, thermal
motion and blast-off of outer material].

On the other hand, the increasing density reduce the energy carried off
by escaping radiation due to Doppler period-lengthening caused by the in-
ward motion of collapse, gravitational red-shift due to increased gravity and
bending of light rays seeking to escape933.

An outside observer perceives the collapse as slowing down when the
Schwarzschild radius

(
RS = 2GM

c2

)
is approached934. As perceived by such

an observer, the collapse virtually comes to a standstill — a state of equilib-
rium. For an observer riding the collapsing surface, however the whole mass
will shrink to a point at the center in finite time. No message or object sent
by him, even via electromagnetic waves, is capable of ever reaching outside of
the sphere r = RS , if he is already inside that sphere when sending it [such
a sphere in GTR is known as an event horizon].

933 Two months before Oppenheimer and Snyder submitted their paper on stellar

collapse (Phys. Rev. 56, 455, 1939), Einstein submitted a paper (translated)

“On a stationary system with spherical symmetry consisting of many gravitat-

ing masses” (Ann. Math. 40, 922, 1939), in which he sought to prove, using his

own GTR, that black holes were impossible.

His belief in the inadmissibility of singularities was so deeply rooted that it drove

him to show that “the Schwarzschild singularity at r = 2GM
c2

does not appear

[in nature] for the reason that matter cannot be concentrated arbitrarily. . . be-

cause otherwise, the constituting particles would reach the velocity of light”.

Ironically, the modern study of black holes, and more generally, that of collaps-

ing stars, builds on a completely different aspect of Einstein’s legacy-namely,

his invention of quantum-statistical mechanics.

Without the effects predicted by Fermi–Dirac quantum statistics, every astro-

nomical object would eventually collapse into a black hole, yielding a universe

that would bear no resemblance to the one we actually live in.

After 1939, Oppenheimer never worked on the subject of black holes again. In

1947 Oppenheimer became the director of the Institute for Advanced Study in

Princeton, NJ, where Einstein was still a professor. There is no record of their

ever having discussed black holes. Further progress would have to await the

1960s, when discoveries of quasars, pulsars and compact X-ray sources reinvig-

orated thinking about the mysterious fate of stars.
934 As always in GTR, care must be taken to identify which coordinate system is

meant, when coordinate values are specified.
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As perceived by an external observer (r > RS), the comoving observer’s
fall is infinitely slowed down as he approaches the Schwarzschild radius. Any
matter or radiation that becomes trapped inside r = RS , simply increases
the mass of the resulting black hole935.

Oppenheimer was born in New York, the son of a Jewish emigrant from
Germany, who had made his fortune by importing textiles. His mother, a
painter and teacher, died when he was 9 years old. He was a child prodigy.
After graduating from Harvard University (where he excelled in Latin, Greek,
physics, chemistry and oriental philosophy) in 1925, he continued his studies
at Cambridge and Göttingen.

In 1927 he received his doctorate at Göttingen, where he met Niels Bohr
and Paul Dirac. He then accepted professorial positions at the University of
California at Berkeley and the California Institute of Technology at Pasadena.
Oppenheimer was a brilliant teacher, intense and dedicated — reading no
newspapers, owning no radio, and learning Sanskrit as a diversion. In 1939
he began to seek a process for the separation of the isotope uranium-235 from
natural uranium and the determination of the critical uranium mass required
to make a nuclear bomb.

He became director at Los Alamos in 1943. There, a joint effort of out-
standing scientists culminated in the first nuclear explosion on July 16, 1945.
It was detonated at Alamogordo, NM, when Germany had already surren-
dered. In October 1945 he resigned as director of Los Alamos, and in 1947
became director of the Institute of Advanced Study at Princeton (1947–1966).
He also served (1947–1952) as chairman of the General Advisory Committee
of the Atomic Energy Commission (AEC), and in October 1949 opposed de-
velopment of the hydrogen, thermonuclear, bomb.

After a heated debate with physicist Edward Teller and the AEC chair-
man Lewis Strauss, his security clearance was canceled in 1954 because of his
early association with communists in the late 30’s and delaying the naming of
Soviet agents. A security hearing declared him not guilty of treason, but ruled
that he should not have access to military secrets. He retired from Princeton
in 1966 and died the following year of throat cancer.

Isadore Rabi said of him:

“If he had studied the Talmud and Hebrew, rather than Sanskrit, he
would have been a much greater physicist. I never ran into anyone who
was brighter than he was. But to be more original and profound, I
think, you have to be more focused.”

935 The term ‘black hole’ was coined in 1967 by John Archibald Wheeler

(b. 1911, U.S.A.).
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1938–1939 CE Otto Hahn (1879–1968, Germany), Lise Meitner (1878–
1968) and Fritz Strassmann936 (1902–1980, Germany), using chemical tech-
niques, collaborated in the discovery of ‘nuclear fission’.

The history of fission reads like a first-class adventure story:
Soon after the discovery of the neutron (1932), Fermi began systematic stud-
ies of reactions induced by the bombardments of heavy nuclei with neutrons
(1934). However, these experiments, especially those where uranium was used,
gave puzzling results. Thus, when bombarding uranium atoms with neutrons,
isotopes of lighter elements, such as barium and krypton, were detected in the
products of the reaction.

In the experiment of Hahn and Strassmann at the Kaiser Wilhelm Institute
for Chemistry in Berlin, uranium was bombarded with neutrons, and it broke
into two parts, or “fissioned”. In the process it released extra neutrons, but
the experimenters did not understand the mechanism of the process.

In 1939, Lise Meitner937and Otto Frisch, working in Sweden, explained
the results of Hahn and Strassmann as being due a splitting of the heavy ura-
nium atom into two roughly equal parts938. They predicted that the fission

936 Fritz Strassmann, physical chemist. His mastery of analytical chemistry con-

tributed to the team’s recognition of the lighter elements that resulted from

uranium splitting. From 1945 to 1953 he was the director of the chemistry

department at the Max Planck Institute for Chemistry.
937 In November 1945, three months after the end of WWII, a narrow margin of the

members of the Swedish Academy of Sciences decided to award the 1944 Nobel

Prize in Chemistry to Otto Hahn for the discovery of nuclear fission. Hahn’s
Berlin colleagues, the chemist Fritz Strassmann and the physicist Lise Meitner,

were excluded. Probably Strassman was ignored because he was not a senior

scientist. Meitner’s exclusion, however, points to other flaws in the decision
process, and to four factors in particular:

• difficulty of evaluating an interdisciplinary discovery;

• a lack of expertise in theoretical physics;

• Sweden’s scientific and political isolation during the war;

• a general failure of the evaluation committees to appreciate the extent to

which German persecution of Jews skewed the published scientific record.

The subsequent effort by prominent physicists to reward Meitner and Frisch with

the Nobel Prize in Physics, failed.
938 One of the possible reactions is:

n + 235U → 236U → 139La + 95Mo + 2n
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would release large amounts of binding energy. [A heavy nucleus is held to-
gether by nuclear forces and its stability against deformation is a result of
its tendency to keep its surface area to a minimum. However, the electric
charges carried by the protons repel one another, and thus tend to magnify
any distortion of the nucleus that may occur. In a sufficiently heavy nucleus,
the disruptive effects of the Coulomb repulsion may overcome the surface ten-
sion, and the nucleus then spontaneously splits into smaller fragments. In a
nucleus that is somewhat less heavy than this critical value, splitting may be
induced artificially by letting it absorb a slow neutron.]

Hypothetically, when free nucleons are brought from infinity (fiducial level
of zero energy) to form a nucleus, the total energy of the system must decrease
by a positive amount ΔE, which is radiated away as photons and/or nuclear
fragments. This energy deficit, known as the binding energy of the nucleus, is
equivalent, by STR, to a mass deficit ΔE/c2. Upon fission, a similar process
takes place: the sum of the rest energies of the two fragments is less than
that of the original nucleus. This energy deficiency ΔE, about 200 MeV, is of
such size that 1 kg of ordinary uranium is equivalent in its heating effect to
2.5 million kg of coal, and the cost of fuel is about 400:1 in favor of uranium.

Another important property of fission is that the resulting fragments are
relatively rich in free neutrons. On the average, 2 or 3 neutrons are actually
emitted, which makes possible a chain reaction involving fissionable materials.
The neutrons emitted in the fission of U235 have an average energy of 2 MeV,
which corresponds to a velocity of ∼ 2 × 109 cm/s. Therefore, the time
that elapses between the emission of a neutron and its capture by a new
fissionable nucleus is very small, and the process of multiplication of neutrons
in a fissionable substance is quite rapid.

The theoretical understanding of the fission process was advanced by
N. Bohr and J.A. Wheeler in their ‘liquid-drop model ’ (1939). On his
visit to the US (1939), Bohr bore the momentous news that fission of ura-
nium had been demonstrated in Berlin and confirmed in Sweden. The news
also reached Leo Szilard, who already in 1933 developed the idea of a nu-
clear ‘chain reaction’ and the concept of a ‘critical mass’ to create it. (He even

The 235U captures a neutron, and the compound nucleus 236U is formed.

In the ground state 236U is essentially stable; it has a half-life of 2.4 × 107

yr. Such a nucleus can perform vibrations about its equilibrium state without

fissioning. However, when 235U captures a neutron, the compound nucleus
236U is excited, and the amplitude of the vibration can became so large that

the nucleus separates into two. The Coulomb force between the two fission

products then drives them apart with considerable energy; part of it contributes

to the fragment nuclei’s own kinetic energy and part goes to evaporate some

neutrons.
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patented these concepts in 1934, without specifying the element capable of
effecting such a reaction!) Szilard immediately realized the military potential
of fission for the creation of a nuclear bomb, and from that moment on started
feverish activities to convince both scientists and politicians to develop the
bomb ahead of the Germans.

This eventually led to the Manhattan Project. In the summer of 1939
Szilard collaborated with Fermi to design the first nuclear reactor and in Dec
2, 1942 he put into operation, with Fermi, the world’s first chain-reaction
atomic “pile” (reactor) of their design.

Indeed, already in 1939, Leo Szilard (1898–1964, U.S.A.) and Walter
Zinn (1907–2000, U.S.A.) had confirmed that fission reactions can be self-
sustaining.
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Table 5.18: Timeline of Nuclear Reactors and Weapons

1934 Leo Szilard patented in London the idea of an atomic
bomb.

1934 Ida Noddack suggested the idea of nuclear fission
(which attracted scant attention).

1934 Enrico Fermi discovered induced radioactivity by slow
neutrons.

1936 Niels Bohr proposed the liquid-drop model of the
atomic nucleus.

1936 Aston proposed energy production by conversion of hy-
drogen to helium.

1938–1939 Uranium nuclear fission after irradiation of uranium 235
by slow neutrons: Otto Hahn, Lise Meitner, Fritz
Strassmann and Otto Frisch; Idea of nuclear reac-
tor(Pile) by Enrico Fermi and Leo Szilard (1939).

1939 Hans Bethe’s theory of energy production in stars.

1942 First self-sustaining nuclear chain reaction in Chicago,
headed by E. Fermi.

1945 • July 16, 05:29:45 GMT : First atomic bomb ex-
plosion test at Alamogordo New Mexico, USA
(“TRINITY”). Yield = 18.6 kilotons of TNT.

• Aug 06 08:16:45 : bombing of Hiroshima; Yield
= 12.5 kilotons of TNT, from 60 kg of uranium
235. Bomb’s gross weight = 4 tons; 140,000 civilian
citizens were killed.

• Aug 09 11:02:00 : bombing of Nagasaki; Yield
= 22 kilotons of TNT, using 8 kg of plutonium;
Bomb’s gross weight = 4.5 tons; 70,000 civilian cit-
izens were killed.

1949, Aug 29 The Soviet Union explodes an atomic bomb – (an im-
plosion type plutonium bomb) at Semipalatinsk.
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1950 USA explodes a megaton atomic bomb at Eniwetok atoll.

1952 Nov 01 USA explodes first H-bomb; Yield = 10.4 MT. Gross
weight 65 tons. Elugelop island at Eniwetok disap-
peared.

1954, Jan 21 USA launched Nautilus, a nuclear-powered submarine.

1964, Oct China exploded an atomic bomb at Lop Nor.

1973 USA developed miniature nuclear warhead; Yield 50
tons TNT.

1977 USA decided to develop neutron bomb. It differs from
standard nuclear weapons insofar as its primary lethal
effect come from the radiation damage caused by neu-
trons it emits.

1983 USA exploded to date 1051 nuclear bombs including 204
secret small scale (below 20 kT) underground tests.

1986, Mar 26 Chernobyl nuclear power-plant disaster.

1995 Nuclear warhead stockpile totaled 9000: 7000 in USA;
480 in Europe; 1500 with submarines.

1996 Nuclear explosion tests on earth have totaled 1452.

Nuclear Power (1932–1945)

Soon after the discovery of the neutron (1932), E. Fermi, E. Segré, and
others began systematic studies of reactions induced by the bombardment of
heavy nuclei with neutrons (1934). Since experiments with uranium showed
the presence of β particles, researchers thought that they have produced el-
ements with Z (number of protons) > 92. However, In 1938, O. Hahn and
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F. Strassmann detected barium after the reaction, indicating that elements
with far smaller atomic number than uranium are produced. L. Meitner
and O.R. Frisch suggested (1939) that the uranium nucleus, after neutron
capture, must divide itself into two nuclei of roughly equal size, and borrowed
the name fission from biology. They also pointed out the analogy between the
fission process and the division of a small liquid drop into droplets. Further
theoretical understanding of the fission process was provided by N. Bohr939

and J.A. Wheeler (1939).

The discovery of fission was missed, for various reasons940, by quite a few
scientists. When it was finally confirmed, the news was carried to the United
States by Niels Bohr, and it sparked feverish activity in many laboratories.

When the proton and neutron are well separated from each other, they are
completely unbound. However, when they are together in a single nucleus,
they are both parts of a bound system; in the case of the deuteron (nucleus of
the hydrogen isotope 2H = D), the nucleus comprises just one proton and
one neutron. The sum of the potential and kinetic energies (w.r.t. infinite
separation at rest) of any bound system is negative. Therefore the energy
of the deuteron is less than the energy of the separated proton and neutron.
Because of the relativistic mass-energy equivalence E = mc2, less energy
means less mass.

The binding energy, B is defined as the minimum energy released when
a system becomes bound. It is also the minimum energy needed to break a
bound system into its constituent parts.

The parts of a nucleus are its Z protons and N neutrons. Therefore,
conservation of mass-energy tells us that

MNc2 + B = Zmpc
2 + Nmnc2. (1)

Here, MN is the mass of the nucleus, mp is the rest mass of the proton, and mn

is the mass of the neutron. For practical reasons it is customary to recast (1)
in terms of atomic941 and not nuclear masses, where the atomic mass includes

939 Previously, C.F. von Weizsäcker (1935) and N. Bohr (1936) patterned one

of the early nuclear models after liquid drops which led to an understanding of

the dependence of binding energies on atomic number, and consequently gave

a physical picture of the fission process.
940 L. Fermi “Atoms in the Family”, University of Chicago Press, Chicago, 1954.
941 The unit of atomic mass has been defined to be 1/12 of the mass of the atom

12C; it is called atomic mass unit and abbreviated a.m.u.

In terms of MeV and gram (g), u is given by

1 amu = 931.5 MeV/c2 = 1.66043 × 10−24 g.
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the mass of all electrons. So we can add the Z electron masses to Z proton
masses to obtain Z 1

1H atomic masses (ignoring the relatively small electron
binding energy). Thus we arrive at the binding energy equation

B = [(ZMH + Nmn) − MA(Z, N)]c2 (2)

where B is now the total binding energy of the entire nucleus; MH is the
mass of a neutral 1

1H atom (1.007825 u); mn is the mass of the neutron
(1.008665 u); MA is the mass of the neutral A

ZE atom942, where A = Z + N
and c2 = 931.5 Mev/u in the units used. Eq. (2) then states:

“The binding energy equals the sum of the mass of the parts minus the mass
of the whole, all times c2”.

The binding energy per nucleon, B/A, is an important quantity in the
theory of fission.

To describe the fission process in a simplified model, we consider one pos-
sible fission reaction943

1
0n + 235

92 U143 → 236
92 U144 → 144

56 Ba88 + 89
36Kr53 + 3 1

0n. (3)

Here the 235U nucleus captures a low-energy neutron, and the composite
nucleus 236U is formed. In the ground state, 236U is essentially stable; it
has a half-life of 2.4× 107 y. Such a nucleus can perform vibrations about its
equilibrium state without fissioning.

However, when 235U captures a neutron, the compound nucleus 236U
is highly excited (not at ground state), and the amplitude of vibrations can

942 A semi-empirical formula for the calculation of MA in terms of A, mn, mH ,

and Z was given by von Weizsäcker (1935) and H. Bethe (1936), and known

as the Bethe-Weizsäcker relation.
943 A nuclide is a particular nuclear species with a given number of protons and

neutrons; Isotopes are nuclides with the same number of protons (Z); isotones

are nuclides with the same neutron number (N); and isobars are nuclides with

the same total number of nucleons (nucleon = neutron or proton). Atoms built

around isotopes behave the same way chemically, since chemical reactions are

determined by the numbers of electrons filling the electron shells, which in turn

are determined by the number of protons.

We use the notation A
ZEN (E for ‘element’) where A = Z + N (atomic mass

number) is the nucleon number, Z is the proton number and N is the neutron

number. Z, which is also the number of electrons in a neutral normal atom

(atomic number), identifies the chemical element in the periodic table of ele-

ments.
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become so large that the nucleus separates into two parts. The Coulomb force
between the two fragments drives them apart with considerable energy. Not
all the available energy goes into kinetic energy; some is stored as internal
(excitation) energy of the two fragments. This energy is released primarily
by evaporation of neutrons. The main products of the fission process are
therefore two roughly equal nuclei and a few neutrons.

An estimate of the energy Q released in fission is made through eq. (2),
with MA for each nucleus calculated via the Bethe-Weizsäcker semi-empirical
relation, yielding944

Q (in MeV ) ≈ −4.5A2/3 + 0.26Z2A−1/3. (4)

For 235U , Q ≈ 180 MeV.

One can get the same result also by considering the binding energy per
nucleon (B/A) which is about 7.8 MeV/nucleon for the heavy elements such as
uranium. It increases to about 8.5 MeV/nucleon for the medium-mass fission
fragments. Therefore, with 236 nucleons involved, the reaction (3) increases
the total binding energy by about

(236 nucleons) × (8.5 − 7.6)
MeV

nucleon
≈ 200 MeV .

But an increase in the binding energy means that the total potential energy
of the system has decreased. Thus, the internal energy of the nuclides has
decreased by about 200 MeV per fission, thereby releasing 200 MeV of kinetic
energy for each fission. About 85 percent of this energy goes to the kinetic
energy of the fission fragments. The remaining 15 percent is divided among
the neutrons and the electrons, antineutrinos, and γ rays of the radioactive
decays of the two heavy fission fragments.

A chemical reaction (e.g. a combustion: hydrocarbon +O2 → CO2+H2O)
involves the valence electrons of the atoms, and cannot release more than the
energy changes of the valence electrons, so a release of 20 eV per molecular

944 The first term in (4) is the surface tension term in the liquid-drop model, pro-

portional to the nucleus’ area (rnucleus ∝ A1/3 is roughly true empirically, as

determined by nuclear scattering cross-sections). This term is negative since

surface tension helps to hold a nucleus together.

The second term in (4) is due to the Coulomb repulsion between protons, and

is proportional to (Ze)2/rnucleus. This repulsion helps to destabilize a nucleus,

which is why this term is positive. The liquid-drop model is a reasonable ap-

proximation because inter-nucleon forces are short-range, fairly non-directional

and allow a nucleon freedom of movement — quite similar to inter-molecular

forces in a liquid.
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reaction would be considerable. However, about 200×106 eV per fission yields
107 times the energy output per reaction! This explains the immense energy
output of fission processes from a relatively small amount of material.

On average, 2.5 neutrons are produced in every slow neutron-induced fis-
sion of 235U . The neutrons in one fission process may go on to be absorbed,
causing more fissions in what is called a chain reaction. The average number
of neutrons from one fission that actually cause another fission is called the
multiplication factor. For example, if on average, less than 1 of the 2.5 neu-
trons produces another fission, the chain reaction will eventually die out. If
so, we call the system subcritical.

If the multiplication factor is exactly 1, the reaction will continue at a
constant rate. We then call the system critical. Finally, if the multiplication
factor is greater than 1, the reaction rate increases and we call the system su-
percritical. A nuclear fission bomb (the “atom bomb”) is a terrifying example
of a deliberately caused supercritical reaction.

A self-sustaining critical reaction requires that 1.5 of the 2.5 neutrons be
removed from the reactions for 235U fission. Some neutrons will simply leak
out of the boundary surface of the bulk fissile material. Because of this loss,
a certain minimum mass, called the critical mass, must be present for a self-
sustaining critical reaction. The critical mass depends on the fissible material
mix and its geometry. Other neutrons will be absorbed within the system in
nonfission reactions.

A nuclear reactor is a system in which chain reactions can be initiated
and controlled. Most present-day reactors in the United States utilize fission
of 235U . The fission cross-section of 235U increases as the speed and kinetic
energy of the bombarding neutrons decrease. Slow-moving neutrons therefore
have the best chance of causing fission before they escape or cause nonfission
reactions.

Let us consider a sphere composed of a pure fissile (fissionable) material
235U , 233U , or 239Pu, unstable with respect to the capture of neutrons. If the
diameter of this sphere is larger than the mean free path of the neutrons set
free by nuclear fission, a single slow neutron or one spontaneous fission process
will initiate an explosion. Namely, two or three neutrons are released on
average by each fission process of a 235U nucleus, and each of these neutrons
may activate another nucleus to fission, which again releases two or more
neutrons, and so on. Such a sequence of reactions is called a chain reaction.
The product neutrons initiate further reactions so that the fission reaction
spreads through the total fissionable mass by an avalanche-like multiplication.
We emphasize that fission in the uranium bomb occurs by fast neutrons in
contrast to reactors, where controlled nuclear fission in general is caused by
thermal neutrons.
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Now the fission of one 235U nucleus liberates

200 × 1.6 × 10−6 erg = 3.2 × 10−4 erg.

When this quantity is multiplied by the Avogadro number, the product gives
the energy released in the fission of all nuclei in one gram-atom (235 grams of
235U), and is equal to 1.93 × 1020 ergs. The energy liberated by a complete
fission of 1 kg of 235U would therefore be 8.21 × 1020 ergs, which is roughly
equivalent to the energy released in the explosion of 20,000 tons of TNT.

The first task in developing the nuclear bomb was computation of the im-
portant nuclear data and the mean free path of the neutrons in the “bomb
material” in order to obtain the correct dimensions for a bomb made from
uranium 235 or plutonium. The bomb material, of course, is not actually
pure at all, and the computations were based on experimental data which
were sparse and obtained from very small quantities of material. Heisen-
berg estimated the critical radius in 235U to be 8.4 cm in his “Theorie des
Atomkerns” (1949). Without the application of neutron reflectors, this value
would require a minimal mass of about 50 kg 235U for a nuclear bomb. The
critical mass actually seems to be considerably smaller.

The second condition for the production of an uranium bomb was the
isolation of the fissionable 235U , previously achieved only in microscopic
quantities. This 235U , which represents only 0.72% of natural uranium,
had to be separated from the dominant 238U isotope. The expenditures
in equipment, development work electric energy, and money necessary for
this task were enormous. The official reports945 give an idea of the problems
and their actual solution in the USA, where the first bomb was exploded by
Robert Oppenheimer and co-workers on July 16, 1945 near Alamogordo
in the desert of New Mexico.

A further problem was how to prevent with certainty the self-ignition of
the bomb before the planned moment. For an explosion of the total fission
mass must occur automatically as soon as the critical mass necessary for an
explosion is united at any spot, since uranium nuclei can split spontaneously
and a sufficient number of neutrons is always present, for instance from cosmic
radiation.

Thus, self-ignition can only be prevented if the fissionable material in the
bomb before its ignition is kept spatially separated in the form of several parts

945 Glasstone S., ed. The effect of Nuclear Weapons, Government Printing, Wash-

ington D.C., 1964.

Smyth, H.D. Atomic Energy for Military Purposes, Princeton University Press,

1946.
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of subcritical size. The ignition is then initiated by the sudden mechanical
union of the subcritical parts to one piece of supercritical size.

This mechanical union must be done so rapidly and completely that as
many nuclear fissions occur as possible before the bomb explodes mechanically
due to its large internal energy production – a process that would interrupt
the chain reaction.

To this end bombs consist946 of a relatively large number of subcritical
masses, which are brought together in the ignition process by the explosion
(actually implosion) of appropriately shaped explosive “lenses” acting con-
centrically toward the center. Since the continuously multiplying number of
fission processes in the bomb material is stopped by the mechanical explosion
of the bomb, its effect is the greater the faster the fission processes follow one
another.

In order to avoid the capture of neutrons by non-fissionable nuclei, ex-
tremely pure material is used and the bomb proper is surrounded by a shield
of a suitable material of high density. This reflector is made to scatter back at
least part of the neutrons that would normally leave the fissionable material
toward the outside.

According to official reports, during the explosion proper about 3% of the
total energy released by a bomb is emitted as γ-radiation and another 3% as
fast neutrons. This nuclear radiation emitted by the nominal bomb would kill
the majority of people exposed to it at any distance less than 1 km. But its
effect declines rapidly with increasing distance from the center of the explosion
(assumed to occur in free atmosphere) so that the primary nuclear radiation
would not be an essential danger at a distance of more than 2 km.

An additional 85% of the total energy of the bomb appear as kinetic energy
of the fission products and thus serve to heat up the central vapor mass that
originally comprised the bomb. The temperature obtained in this way is said
to be of the order of 107 ◦K. This means that nuclear physicists actually have
manufactured a real although short-lived small “star” as far as characteristic
core temperatures are concerned. After the end of the explosion proper, this
fireball, very small in the beginning, expands very rapidly so that the radiating
surface increases quickly and at the same time cools off. The maximum of the
bomb’s heat radiation will therefore be reached after a few tenths of a second,
when the surface temperature of the fireball, now having a diameter of over
100 m, has decreased to 7000 ◦K, comparable to the surface temperature of
the sun.

946 Rhodes, R. The Making of the Atomic Bomb, Simon and Schuster Inc., New

York, 1986.
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Depending on the transmittance of the atmosphere, this radiation may
cause extremely dangerous burns at distances up to several kilometers, i.e.,
far beyond the range of the direct nuclear radiation. The absorption of γ-
radiation and neutrons as well as that of the short-wavelength part of the heat
radiation spectrum may initiate in the surrounding atmosphere a large number
of photochemical effects such as dissociation of molecules and ionization of
gases.

The remaining 9% of the energy released by the explosion of a typical
fission bomb becomes liberated some time after the explosion proper in the
form of β-radiation and γ-radiation of radioactive fission products. Together
with the radioactive decay of the radionuclides produced by (n, γ)-processes
in the immediate vicinity of the explosion center, this radiation causes the
dangerous after-effects of a nuclear bomb explosion that are rightly dreaded
by mankind.

1938–1949 CE Claude Elwood Shannon (1916–2001). Pioneer of the
mathematical theory of communication and of modern digital technology. He
was born in Gaylord, MI, educated at the University of Michigan and at the
Massachusetts Institute of Technology, and then joined the Bell Telephone
Laboratories (1941–1972).

His work, A symbolic analysis of relay and switching circuits (1938) is
a founding document of the mathematical theory of information. In it he
applied symbolic logic to relay circuits, helping transform circuit design from
an art into science. In 1948 he published a classic paper: The mathematical
theory of communication, seeking therein to render a coherent treatment of all
forms of information transmission systems947, whatever their physical nature.

947 Shannon’s Sampling Theorem (1949) is an important theorem on transmission

of information. It states that if the Fourier transform of a function f(t) is zero

above a certain frequency ωc, F (ω) = 0 for |ω| > ωc, then f(t) can be uniquely

determined from its sampled values fn = f
(
n π

ωc

)
at a sequence of equidistant

time points. In fact, f(t) is then given by f(t) =
∑∞

n=− ∞ fn
sin(ωct−nπ)

ωct−nπ
. The

corresponding sampling theorem in the frequency domain is as follows: if a

function f(t) is time-limited, f(t) = 0 for |t| > T , then its Fourier transform

F (ω) can be uniquely determined from its values F
(
n π

T

)
at a sequence of

equidistant points, F (ω) =
∑∞

n=− ∞ F
(
n π

T

) sin(ωT −nπ)
ωT −nπ

.
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Developed further in a series of papers, Shannon’s work is fundamental to all
modern communication systems.

Shannon’s theorem was first proved by the mathematician J. Whittaker
(1935), before being applied to communication theory by Shannon in 1948.
The theorem asserts that if the range of frequencies of a signal is zero through
f , then the signal can be represented with complete accuracy by measuring
its amplitudes 2f times a second. This is really a remarkable theorem con-
sidering that ordinarily a continuous curve can be only approximately charac-
terized by stating any finite number of points through which it passes, and an
infinite number would in general be required for complete information about
the curve. But if the curve is band-limited (composed of a limited range of
frequencies) — it can be reproduced exactly from a finite number of samples.

The result, which follows directly from Fourier analysis, has enormous
consequences for the transmission and processing of information. It was no
longer necessary to reproduce an entire analog signal — a limited number
of samples suffices. E.g. the range of frequencies transmitted by a telephone
is about zero to 4000 cycles per second. In a digital system, at least one
voice sampling is thus performed 8000 times a second. Reproducing music
with fidelity on a compact discs requires about 44, 000 samples a second.
Measuring the signal more often,, or reproducing it continuously (as with
old-fashioned records) does not gain anything.

Another important consequence is that high frequencies must be samples
more often than low frequencies (audio frequency doubles every time one goes
up an octave). The sampling theorem opened the door to digital technology:
a sampled signal could be expressed as a series of digits.

Although communication theory grew out of the study of electrical com-
munication, it attacks problem in a very abstract and general way. It provides,
in the bit948, a universal measure of amount of information in terms of choice
or uncertainty. Specifying or leaving the choice between two equally probable
alternatives, for a portion of a data stream to be transmitted, involves one bit
of information. Communication theory tells us how many bits of information

Shannon acknowledged that Leo Szilard’s paper (1929) had proposed the basis

for his new field of study. Indeed, the key elements of information theory, which

Szilard first wrote about in 1922, were even transmitted to John von Neumann

during his interaction with Szilard in Berlin in the late 1920s. Physicist Leon

Brillouin, in turn, learned of Szilard’s 1929 paper only in 1951, hearing about

it from Warren Weaver at the Rockefeller Foundation.
948 A contraction of binary digit. One “bit” refers to a choice between two alterna-

tives (for a computer, 0/1, or a circuit that is off or on). The word was coined

by John Tukey. Eight “bits” make a “byte”.
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can be sent per second over perfect and imperfect communication channels in
terms of a rather abstract description of the properties of these channels.

In 1949, Shannon built the first chess-playing machine at the Massa-
chusetts Institute of Technology.

Communication and Information949 (1894–1948)

The range of problems involving the concepts of message and information
is very broad. They have long been drawing close attention from physicists,
engineers, mathematicians, linguists, and philosophers.

Communication, in the human sense, includes all the procedures by which
one mind may affect another. This encompasses not only written and oral
speech, but also music, the pictorial arts, the theater, the ballet, and in fact
all human behavior. In the 20th century the concept has been broadened to
include the procedures by means of which several mechanisms may exchange
state-modifying instructions.

Shannon’s work harks back to an observation of Ludwig Boltzmann in
some of his works on statistical physics (1894) that entropy is related to miss-
ing information, inasmuch as it is related to the number of alternatives which
remain possible to a physical system after all the macroscopically observable
information concerning it has been recorded. Shannon’s work connects more
directly with certain ideas developed by H. Nyquist and R.V.L. Hartley
in the late 1920’s.

Communication theory is also indebted to Norbert Wiener for much of
its basic philosophy, but while Shannon has been especially concerned with
applications to engineering communication, Wiener has been more concerned
with applications related to or inspired by biology (central nervous system
phenomena, cybernetics, etc.).

949 To dig deeper, see:

• Pierce, J.R., An Introduction to Information Theory, Dover, 1980, 305 pp.

• Woodward, P.M., Probability and Information Theory, McGraw-Hill, 1957,

128 pp.
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Communication problems can be viewed on three levels. Thus it seems
reasonable to ask:

• How accurately950 can the symbols of communication be transmitted?
This is the technical problem, involving only the engineering details of
good design.

• How well do the transmitted symbols convey the desired meaning? This is
a semantic problem, concerned with the faithfulness of the interpretation
of meaning by the receiver, as compared with the intended meaning of
the sender.

• How effectively does the received meaning affect conduct in the desired
way? This is an effectiveness problem, concerned with the success with
which the meaning conveyed to the receiver leads to the desired conduct
on its part. In the human sphere, this aspect involves aesthetic consid-
erations in the case of the fine arts. In the case of speech, written or
oral, it involves considerations which range all the way from the mere
mechanics of style, through all the psychological and emotional aspects
of propaganda theory, to those value judgments which are necessary to
give useful meaning to the words success and desired mentioned earlier.

There is overlap between all of the suggested categories of the problem.
Shannon’s mathematical theory of the engineering aspects of communication
applies only to the first level. But any limitations discovered in the theory
at the first level necessarily apply to the other two levels, and in this sense
Shannon’s theory affects the other levels as well.

The overall operation of a communication system on the first level is as
follows: The information source selects a desired message out of a set of
possible messages. The selected message may consists of written or spoken
words, or of pictures, music, etc.

950 In the exact sciences, a measurement has a high accuracy if it has small sys-

tematic errors. If a measurement has small random errors we say that it has

high precision. Systematic errors are errors associated with the particular in-

strument or technique of measurement, and are usually caused by biased or

improperly calibrated instruments.

Random errors are produced by a large number of unpredictable and unknown

variations in the experimental situation. They can result from small errors of

judgment on part of the observer, unpredictable fluctuations in temperature,

line voltage, etc.; or indeed from any kind of parametric fluctuation in the

equipment. Since such random errors are frequently distributed according to a

known statistical law, they can be dealt using statistical methods.
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The transmitter changes this message into a signal which is actually sent
over the communication channel from transmitter to receiver [e.g.: in oral
speech, the information source is the brain, while the transmitter is the voice
mechanism producing the varying sound pressure (the signal) which is trans-
mitted through the air (the channel). In radio, the channel is simply the air
or vacuum, and the signal is the electromagnetic wave which is transmitted].

The receiver is a sort of inverse transmitter, changing the transmitted sig-
nal back into a message, and handing this message on to its destination [e.g.:
the ear and the auditory nerve in vocal communication]. During transmis-
sion, unwanted additional signals, known as noise, distort the signal. The
kinds of questions which one seeks to quantify and answer concerning such a
communication system are:

(1) How does one measure amounts of information;

(2) How does one measure the capacity of a communication channel951;

(3) What are the characteristics of an efficient coding process (the action of
the transmitter in changing the message into the signal according to a
specific pattern known only to the transmitter and the receiver);

(4) What are the general characteristics of noise? How does noise affect the
accuracy of the message finally received at the destination? How can one
minimize the undesirable effects of noise?

(5) If the signal being transmitted is continuous (as in oral speech or music)
rather than formed of discrete symbols (as in written speech, telegraphy,
binary bits, etc.), how does this affect the problem?

The word information in this context must not be confused with meaning,
and the semantic aspects of communication are irrelevant to the engineering

951 Let Nt denote the number of possible message sequences of duration t. Shannon
defined the capacity C of the channel as

C = lim
t→∞

[
log2 Nt

t

]

,

where log2 denotes the logarithm to base 2. The rationale behind the definition

is this: if a single selection is to be made from a number of equally probable

alternatives, and if information is transmitted which reduces the number of

alternatives by a factor of 2, then this amount of information is 1 bit , the unit

of information. Thus, the logarithm to base 2 of the number of alternatives Nt

varies in steps equal to the amount of information transmitted; division by time

elapsed yields the rate of information transmittal (bits/second).
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aspects (two messages, one of which is heavily loaded with meaning and the
other of which is pure nonsense, can be exactly equivalent, from the present
viewpoint, as regards information). But this does not mean that the engi-
neering aspects are necessarily irrelevant to the semantic aspects.

The word information in communication theory relates not so much to
what you do say, as to what you could say, i.e., information is a measure of
one’s freedom of choice when one selects a message.

In 1949, just one year after Shannon published his work establishing the
field of information theory, linguist Georg Zipf published the book Human
Behavior and the Principle of Least Effort. In this volume, Zipf announced
an empirical rule specifying how the frequency of occurrences of a word in a
long stretch of text varies with the word’s ranking (suitably defined) for given
total vocabulary used. This relationship, now termed Zipf law, is very closely
related to the principles laid down by Shannon.

Mathematically

f(r) ≈ 1
r log2[1.78R]

where r is the word rank and (1.78R) is the vocabulary size952.

1938–1972 CE Robert King Merton (1910–2003, U.S.A.). Historian
and sociologist of science. His work suggested important innovations, both
theoretical and empirical, in the study of science as a social process. In his
doctoral dissertation (1938): “Science, Technology and Society in Seventeenth

952 Example: Conan Doyle’s The Hound of the Baskervilles contains a total word

vocabulary of
∑

k tk = 59, 498 words of which R = 6307 are different, yielding
a vocabulary size of 1.78R ∼= 10, 000 words. The breakdown according to rank

is
r = rank word tk (times of occurrence)

1 the 3328
2 and 1628

5 to 1429

10 in 911
20 for 420

50 would 192

500 hours 13
5000 galleries 1



4504 5. Demise of the Dogmatic Universe

Century England” he has shown the need for a marriage between history
of science and sociology, and has established the sociology of science as a
discipline in its own right.

Merton’s work took up the thesis of the sociologist Max Weber (1846–
1920, Germany), on the relationship between Protestantism and Capitalism,
by examining the explosion of scientific activity in 17th-century England as
a central part of social and cultural change. He showed that those sciences
justifiable in terms of their utility in mining, navigation and warfare were
more vigorously supported and pursued than others. For instance, technical
problems relating to the drainage and ventilation of mines required for their
solution extensive improvements in the knowledge of aerostatics and hydro-
statics. The preoccupations and rhetoric of men of science reflected the high
values placed upon useful application. Merton quantitatively analyzed papers
offered to the Royal Society of London during the 17th century, claiming to
confirm the preponderance of scientific topics directly or indirectly related to
capitalist and military technical requirements.

Secondly, Merton argued for significant positive links between Puritan
forms of English Protestantism and the institutionalization of science. Re-
jecting the Victorian tradition of seeing science and religion in ‘conflict’, Mer-
ton showed that men of science justified their activities in terms of accepted
Puritan values, such as their demonstration of God’s existence and attributes
from the study of nature, and their suggestion that natural knowledge was
ultimately useful. The Puritanism-science link was supported by the cor-
relation found between membership in the Society and Puritan sentiments.
Merton concluded that Puritan values were congenial to scientific culture and
that religion provided resources by which the pursuit of 17th-century England
science was ‘positively sanctioned’.

In other national settings, the ‘functional role’ of providing social legiti-
macy for science may have been performed by different cultural constellations,
or not performed at all.

Merton was born in Philadelphia, Pennsylvania to poor Jewish parents
as Mayer Schkolnick. In 1924, he changed his name to Robert King Mer-
ton to enhance his chances to acquire higher education. After finishing high
school he studied at the Temple University, founded for poor boys and girls
of Philadelphia. Then he went to Harvard University in Cambridge, MA,
obtaining his Ph.D. in 1936.

1938–1985 CE Menahem Max Schiffer (1911–1997; Israel and USA).
Mathematician. His work opened up the possibility of applying variational
methods in a systematic way to geometric problems in complex analysis. The
‘Schiffer variation’ is named after him. Made important contributions to the
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study of eigenvalue problems, to PDE, and to the variational theory of ‘domain
functionals’ that arise in many classical boundary value problems.

Schiffer was born in Berlin to Jewish parents. He entered (1930) the
Friedrich-Wilhelm University with the intention of becoming a physicist
and studied physics under Max von Laue, Walther Nernst and Er-
win Schrödinger and mathematics under Issai Schur. Schrödinger finally
pushed him to become a mathematician. As a result of Nazi Persecutions,
the Schiffer family emigrated to Israel and Menahem continued his studies at
the Hebrew University in Jerusalem (MA, 1934; Ph.D. 1938). In 1952 he set-
tled as a professor of mathematics at Stanford University and remained there
thereafter. He was famous worldwide for his remarkable lectures in applied
mathematics and mathematical physics: each lecture was a perfect set piece
– no pauses, no slips, and no notes.

1938–1988 CE Barbara Wertheim Tuchman (1911–1989, The United
States). Historian and author. Wrote eleven books about men of war and on
brink of war. Of these, the most influential are:

• Bible and Sword (1956), about English involvement in the Middle East
over the centuries.

• The Guns of August (1962), covering the outbreak of WWI and the
events leading to that war.

• A Distant Mirror (1978), on the calamitous 14th century: a time of
ferocity, plague and spiritual agony when a world plunged into chaos.

• The March of Folly (1984), a meditation on un-wisdom as a force in his-
tory (wisdom = “the exercise of judgment acting on experience, common
sense, and available information”).

Her central themes are:

• Meaning in history emerges not from preconceived design, but from the
aggregation of details and events that fall into a pattern; In this process,
good is often crushed or subverted.

• The psychology of governing classes is often fatally flawed and the power
to command frequently causes failure to think.

• Holders of high office act contrary to the way reason points and enlight-
ened self-interest suggests. Consequently, intelligent mental processes
seem often not to function.
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Barbara Tuchman was born in New York to an illustrious Jewish fam-
ily; her uncle, Henry Morgenthau Jr. was secretary of the Treasury under
President Franklin D. Roosevelt.

She received a B.A degree from Radcliff College (1933) and in 1937 went
to Madrid to report on the Spanish Civil War (which she saw as the end
of the liberal world). In 1939 she married Dr. Lester R. Tuchman, a New
York Internist, and they had three daughters. In her later years she was a
lecturer at Harvard University and the U.S. Naval War College. In 1979 she
was appointed the chairperson of the American Academy of Arts and Letters.

1939 CE Elements de Mathematique, by Nicholas Bourbaki, pseudonym
for a group of young mathematicians at the Ecole Normale in Paris, is begun.
This extended set of works aims to set down in writing, on a formal, abstract
and rigorous footing, the established branches of modern mathematics.

1939 CE FM radios are sold commercially for the first time.

1939–1940 CE Bitterly cold weather killed 500, 000 Russian soldiers
invading Finland.

1939 CE Lise Meitner953 (1878–1968, Austria and Sweden). Physicist.
Born in Vienna as one of the eight children of a Jewish Viennese lawyer. She
studied at Vienna University under L. Boltzmann and was one of the first
women in Austria to earn a doctorate degree at that University (1906). In
1907 she moved to Berlin University and worked for some time with Max
Planck. In 1913, she began research into radioactive substances with Otto
Hahn (1879–1968) and in 1918 they discovered the element protactinium.
Her major achievement at that time was the determination of the relationship
between β and γ radiation of radioactive materials.

Lise Meitner was one of the first women to become a professor at the
University of Berlin (1926). From 1917 on, she served for over 20 years as
head of the physics department in the Kaiser Wilhelm Institute for chemistry
in Berlin.

953 For further reading, see:

• Sime, R.Lewin, Lisa Meitner: A Life in Physics, University of California Press,

Berkeley, 1996.

• Rife, P., Lise Meitner and the Dawn of the Nuclear Age, Birkhäuser, 1999.
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After the Anschluss in 1938, she escaped954 from Germany and settled in
Stockholm, working on the staff of the Nobel Institute. There she received a
letter from Hahn describing his discovery with Fritz Strassmann that, when
an uranium atom absorbed a neutron, an atom of barium was sometimes
produced thereby.

While vacationing near Gothenburg in December 1938, she discussed this
with her nephew, Otto Frisch (b. 1904) who was working in Denmark with
Niels Bohr. The two physicists immediately realized the significance of the
discovery, which meant that the uranium atom was split into roughly equal
parts, accompanied by a tremendous release of energy955. Frisch called this
“fission”, a term borrowed from biology. Lise Meitner visited the United
States after 1945, but returned to Sweden and became a citizen there in 1949.
Both before and after WWII she received many honors. She eventually retired
to Cambridge, England, where she died.

1939 CE, March Frederick Joliot Curie (Paris, France) and Enrico
Fermi (New York) discover the nuclear chain-reaction956: An uranium nu-
cleus (U235 isotope), when split by a neutron, releases (as a rule) two or more
neutrons.

Joliot-Curie’s second paper in Nature (April 22, 1939) triggered two ini-
tiatives in Germany. A physicist at Göttingen alerted the Reich Ministry
of Education. That led to a secret conference in Berlin on April 29, which
led in turn to a research program, a ban on uranium exports and provisions

954 On June 16, 1938 she was forbidden to leave. With the aid of Bohr, Dirk Coster,

Adriaan Fokker, Hahn, Max von Laue and Paul Rosbaud (a scientific publisher)

she escaped by train, on July 12, 1938 across the Dutch border to freedom.
955 Hahn won the 1944 Nobel prize in chemistry for splitting the atom (nuclear

fission). Meitner’s share in this discovery was at least as great as his, but her

contribution was discredited because she was a woman and a Jew. The two

were working together on the fission experiment when Lise had to flee Nazi

Germany. The fission occurred while she was away, but even so she gave the

correct physical explanation of the result.

Hahn, however, dissociated himself from their partnership, and took all the

credit for himself.
956 The theory of chemical chain-reactions was established by the physical chemist

Max Bodenstein (1871–1942, Germany) in 1913. Bodenstein was born in

Magdeburg to a Jewish family and perished in the Nazi Holocaust.
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for supplies of radium from the Czechoslovakian mines at Joachimsthal. The
same week, a young physicist working at Hamburg, Paul Harteck, and his
assistant Wilhelm Groth jointly wrote a letter to the German War Office:

“We take the liberty of calling your attention to the newest development
in nuclear physics, which, in our opinion, will probably make it possible
to produce an explosive many orders of magnitude more powerful than
the conventional ones... That country which makes use of it has an
unsurpassable advantage over the others.”

The letter was delivered to Hans Geiger. Geiger recommended pursuing the
research and the War Office agreed. In June 1940, Paul Harteck in Hamburg
tried to measure neutron multiplication in an arrangement of uranium oxide
and dry ice (frozen CO2), but was unable to convince Heisenberg to lend
him enough uranium to guarantee unambiguous results.

1939 CE John Vincent Atanasoff (1903–1995, USA). Father of the elec-
tronic digital computer. Inventor, electrical engineer and mathematical physi-
cist. Invented and built the world’s first operational prototype electronic
digital computer, known as the ABC (Atanasoff Berry Computer). It used
vacuum tubes957 to perform mathematical and logical operations and em-
ployed binary numbers that were stored in capacitors mounted on a rotating
drum. Data were entered via punched cards. The cost of the entire project
was about 1000 dollars. He was assisted by his graduate student Clifford
Berry.

Atanasoff saw others take credit for his discovery: many of his ideas were
used in the design of the ENIAC which is falsely considered by most people
as the world’s first electronic digital computer. A long trial ensued and it was
not until 1973 that Dr. Atanasoff was given the recognition he deserved.

When Atanasoff invented the computer, he could not imagine the impact
it would have on people’s lives; the electronic age is a direct result of the
invention of the computer. Never before has an invention mushroomed so
quickly as the computer. Within the last 60 years, its speed and power has
grown at an exponential rate.

John Vincent Atanasoff was born in Hamilton, New York to a family of
Bulgarian immigrants. He graduated from the University of Florida (1925),

957 He recognized the usefulness of the fact that a vacuum tube could be turned on

and off in about a millionth of a second — thousands of times faster than the

sluggish relay.
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and received his Ph.D. in theoretical physics at the University of Wisconsin
(1930). He became an associate professor of mathematical physics at Iowa
State College (1936–1942), and it is there that he built the ABC computer.
During 1942–1952 Atanasoff worked in the U.S. Naval Ordnance Lab. He
never made money off his invention.

1939 CE Charles Stark Draper (1901–1987, USA). Aeronautical engi-
neer and inventor. Developed the first inertial guidance system for launching
long-range missiles based on his earlier gyroscopic systems that stabilized and
balanced gunsights and bombsights (1939). Draper subsequently developed
the SPatial Inertial Reference Equipment (SPIRE) system for automatic aero-
nautical navigation — a system. He later refined and miniaturized it for use
in the Polaris submarine missile system.

Draper was born in Windsor, Missouri. He obtained a D.Sc. from M.I.T.
(1938), becoming a professor there. He continued to be a pace-setter in the
space age as head of MIT’s Department of Aeronautical and Astronautical en-
gineering. His Instrumentation Lab was awarded the Apollo project contract
for guiding spacecraft to the moon.

1939–1957 CE Carl Gustav Rossby (1898–1957, Sweden). Oceanogra-
pher and meteorologist. Provided the ideas and leadership necessary for the
progress of synoptic and dynamic meteorology in the 40’s and 50’s.

After early work on the dynamics of ocean currents, he began to make
fundamental contributions to meteorology, notably in studies of long circum-
polar waves and the jet stream958, on the application of the vorticity equation
of cyclonic development, and on the barotropic model atmosphere for use
in numerical forecasting. His name is perpetuated in meteorology by means
of the Rossby diagram in thermodynamics, Rossby waves959, and the Rossby
number.
958 The atmospheric layer between 8–13 km in altitude, with temperature between

−45 ◦C and −65 ◦C and pressures of about 100 mb, accommodates the jet

stream. These winds move with velocities above 100 km/hr, reaching in ex-

treme cases even 500 km/hr. Commercial jet aircraft today fly in this layer,

and even when they travel at an average speed of 800–900 km/hr, jet streams

play a decisive role as far as navigation, flying time, and convenience are con-

cerned.
959 Near-barotropic wavy nature of the upper troposphere flow: the upper wester-

lies propagate around both hemispheres in a series of long waves (4000–6000

km). These waves change only slowly in number and amplitude compared with

surface systems, and they travel more slowly than the winds blowing through
them. There are normally some 3 to 6 long waves around the northern hemi-

sphere on any given day.

Rossby waves were determined by the trajectory of a balloon launched from
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Rossby was born in Stockholm. He developed three outstanding university
departments of meteorology — at M.I.T. in the 1930’s, at Chicago (1941–
1947), and at Stockholm from 1947.

New Zealand on 30 March 1966. It drifted at an altitude of 12 km, with mean
speed of over 110 km/hr and for 49 days, in the upper westerlies. The movement

of the balloon (tracked by satellite) traced out the shape of Rossby waves at

a latitude range 30 ◦–50 ◦S during this 7-week period. On average, there were
about 4 long waves per revolution, although the trough positions changed with

time.

The existence of Rossby waves follows directly from the basic equations of in-
viscid atmospheric fluid dynamics in an earth–co–rotating frame:

Du

Dt
− fv +

1

ρ

∂p

∂x
= 0;

Dv

Dt
+ fu +

1

ρ

∂p

∂y
= 0,

which arise from approximation in which gravity, sound waves, and vertical
motion are excluded. One then makes the additional assumptions:

• Regarding the atmosphere as an incompressible and horizontally homoge-

neous fluid
(

∂ρ
∂x

= ∂ρ
∂y

= 0
)
.

• Waves travel in the x direction, v is y-independent and u is constant
(u = u; ∂f

∂y
= β = constant = Rossby parameter).

Here f = 2Ω sin θ where Ω = 7.29 × 10−5 rad/sec is the angular frequency of

the earth’s rotation, and θ = latitude. Under these conditions, the equations

of motion reduce to
∂2v

∂x∂t
+ u

∂2v

∂x2
+ βv = 0,

with the harmonic wave solution

v = Aeik(x−ct), c = u − β

k2
, k = 2π/wavelength =

ω

c
.

The waves are dispersed, since their phase velocity c depends on their wave-

length. The transverse-horizontal motion of the Rossby waves is thus estab-

lished. Such solutions were contained implicitly in the theory of tides of Laplace

(1774), but Rossby was first to recognize their meteorological importance and

to isolate them in pure form.

In contrast to sound and gravity waves, Rossby waves are always propagated

westward relative to the medium, and travel at speeds that depend on their

wavelength. They also travel relatively slowly: for wavelengths of 4500 km,

their speed relative to the medium is of order 15 km/hr. In addition, their

associated horizontal speeds are at least 100 times greater than their vertical

speeds.
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1939–1968 CE Max Ferdinand Perutz (1914–2002, Austria and Eng-
land). Biochemist. Determined the atom-by-atom structure of hemoglobin.
Introduced (1939) a technique of adding an atom of heavy element (such as
gold) to an organic molecule to improve the X-ray diffraction pattern of the
molecule and this method was used by him to obtain the hemoglobin struc-
ture (1960). Perutz predicted the presence of the alpha helix in hemoglobin
(1951).

Perutz was born in Vienna to a Jewish family. After graduating at Vienna
University, he emigrated to Cambridge, England. He became Director of the
Medical Research Council (MRC) Unit for Molecular Biology (1947–1962)
and after 1962 was Director of the MRC Laboratory for Molecular Biology.

Shared the 1962 Nobel Prize for Chemistry with John Cowdery
Kendrew (1917–1997, England) who determined, by X-ray crystallography,
the structure of the muscle protein myoglobin.

The shape of Hemoglobin (1960)

Hemoglobin is the protein in red blood cells that carries oxygen from the
lungs to the tissues, and also helps transport carbon dioxide on its return trip.
Obviously, it plays an extremely important role in the body. Abnormalities
in its structure can lead to such life-threatening diseases as sickle cell anemia
or thalassemia.

Besides being important, hemoglobin is also one of the most plentiful pro-
teins in vertebrates. In the human bloodstream some 5 billion red blood cells,
each containing 280 million molecules of hemoglobin, can be found in each
milliliter of blood.

To decipher the structure of this enormous molecule, Max Perutz had
to determine the positions of 10,000 atoms, each one located in space by
three coordinates. The 574 amino acids formed by these atoms were strung
together in four separate, but connected, polypeptide chains. Perutz grew
his own crystals of hemoglobin, took his own X-ray pictures, and did millions
of computations without the help of a computer, looking for some regular
underlying features that would simplify his problem. He thought the molecule
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might have four straight layers, each layer being a polypeptide chain. But he
never found anything that clear-cut.

His first break came in 1953 when he and his colleagues invented a method
that has been called the “Rosetta Stone” for interpreting X-ray diffraction
patterns of large proteins: the use of certain “heavy” metal atoms, which
are added to the hemoglobin crystals to serve as atomic markers. These
metal atoms are called heavy because they have an extremely large number
of proteins, neutrons, and electrons, and the advantage of using them is that
they scatter X-ray beams very strongly.

Perutz realized that if atoms of mercury or other heavy metals were added
to the protein before it was crystallized, they would attach themselves to
specific sites in the hemoglobin molecule and produce measurable differences
in the intensities of the spots in the X-ray diffraction pattern. By comparing
the X-ray patterns of hemoglobin with and without these heavy atoms, he
could more precisely determine the intensity and angle of the X-ray reflections.
This would allow him to analyze the molecule in three dimensions for the first
time.

Six more years of effort were required to make the method work. Finally,
all the pieces came together and Perutz stood before the completed structure
of the hemoglobin molecule — a bizarre mass of twisted chains with four
separate pockets, each one containing the dark red, iron-bearing component
called heme that is essential for the binding of oxygen and gives blood its
color.

Shocked by the result of his labors, Perutz puzzled about its meaning.
“Could the search for ultimate truth really have revealed so hideous and
visceral-looking an object?” he wondered.

John Kendrew, who had joined Perutz in Cambridge in the 1940’s, had
a similar reaction after deciphering the structure of a smaller protein, myo-
globin, 2 years earlier. Kendrew had chosen to study myoglobin in the hope
that it would have a fairly simple structure, but to his surprise the molecule
turned out to have a complex, asymmetrical shape.

Myoglobin’s job is to take oxygen from the red cells in the bloodstream
and store it in muscle tissue until needed. This storage occurs by the binding
of an oxygen molecule to the iron atom at the center of myoglobin’s heme
group. Since diving birds and mammals that spend much time underwater
have abundant supplies of myoglobin in their muscles, Kendrew worked with
myoglobin from sperm whales. After Perutz devised the heavy-metal method
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of X-ray crystallography, Kendrew succeeded in solving myoglobin’s structure.

This was the first three-dimensional model that showed the full complexity of

a protein molecule.

At first there seemed to be neither rhyme nor reason to myoglobin’s shape,

but when Perutz determined the structure of hemoglobin the obvious simi-

larities between the two models began to offer some clues to the significance

of their design. Myoglobin has one pocket for a heme group; hemoglobin,

four times its size, has four. Each of hemoglobin’s four subunits looks like

one molecule of myoglobin. And the interior of all these units consists al-

most entirely of hydrophobic (water-avoiding) amino acids. This allows the

iron atoms in the buried heme group to bind with oxygen without becoming

oxidized (rusted).

In 1962, Perutz and Kendrew won the Nobel Prize in chemistry for de-

veloping the heavy-metal method of X-ray diffraction and for solving the

structures of hemoglobin and myoglobin.

Since this achievement, scientists have deciphered the three-dimensional

atomic structure of well over 500 additional proteins. In fact, the structures

of most of the proteins that scientists have succeeded in growing into crystals

for study by X-ray diffraction are now known. But only a fraction of proteins,

which normally exist in solution, crystallize like sugar or salt when the sur-

rounding water is removed. The others either form an amorphous gel, with

their molecules pointing in different directions, or turn into a powder. Little

is known about the shapes of these tens of thousands of proteins that do not

crystallize, although a new technique called 2-D NMR may soon come to the

rescue.

Although the amount of data on protein sequences is increasing at an as-

tounding rate because of advances in molecular biology, the folding problem

remains a major challenge to scientists. Being able to predict the detailed

three-dimensional structure of a protein from a given sequence of amino acids

is “the most fundamental problem at the chemistry-biology interface,” ac-

cording to a report by the National Academy of Sciences, “and its solution

has the highest long-range priority.”
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Science Progress Report No. 17

Martyr of Genetics

“We shall go to the pyre, we shall burn, but we shall not renounce our
conviction.”

(Nikolai Ivanovich Vavilov, 1940)

Joseph Stalin hated the idea that fate (even the fate of a fruit-fly eye) was
determined by biology. It behooved his political system to claim that by
changing the environment it is possible to do anything. He thus declared total
war on “The capitalistic plot of bourgeois Mendelism–Morganism”. Under his
direct orders, his Director of Agriculture, T.D. Lysenko, started (1939) a hate
campaign against genes and chromosomes.

It went a long way; the entire Soviet agriculture was planned on the false
theory that exposing parents to a new environment (e.g. a cold spring in
Siberia) meant that the offspring would inherit the ability to cope with icy
water. This was an expensive disaster for both farming and genetics. So-
viet biology thus fell into the hands of the fanatical eccentric Lysenko, who
preached a theory of inherited acquired characteristics and what he called
‘vernalization’ (the transformation of wheat into rye, pines into firs, and so
on) — essentially medieval stuff.

All in all, Soviet science went back to the Middle Ages; thousands of intel-
lectuals lost their jobs. Thousands more went to the notorious Siberian slave
camps. Their places were taken by creatures still more pliable, cranks and
frauds960. Stalin in person edited in advance Lysenko’s presidential address
of 31 July 1948 to the Academy of Agricultural Science, which launched the
witch-hunt in biology. Scientific genetics was savaged as a ‘bourgeois pseudo-
science’, ‘anti-Marxist’, leading to ‘sabotage’ of the Soviet economy: those
who practiced it had their laboratories closed down. But all this was not
enough; the Communist party needed a public show to terrorize the masses
and close the lid on all potential dissidents. They needed a ‘traitor’.

He soon materialized in the form of Nikolai Ivanovich Vavilov (1887–
1943), a Soviet plant geneticist whose research into the origins of cultivated
plants (1916–1933) won him a world acclaim.

960 In medicine, a woman called O.B. Lepeshinskaya preached that old age could

be postponed by bicarbonate of soda enemas — an idea that appealed to Stalin.
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Vavilov was born in Moscow and graduated at the Agricultural Academy
at Petrovsko-Razumovskoe, and later studied under W. Bateson at Cambridge
University and at the John Innes Horticultural Institution in London (1913–
1914). Returning to Russia, he became professor of botany at the University
of Saratov (1917–21), and then head of what was finally called the Lenin
All-Union Academy of Agricultural Sciences.

Vavilov made a comprehensive study of the origin of cultivated plants and
proposed that there were several world centers of origin at which the greatest
concentration of diversity in cultivated plant species occurred. He made ex-
peditions to many parts of the world, including Iran, Afghanistan, Ethiopia,
China, and Central and South America, amassing an immense collection of
cultivated plants intended to be used for further study and the breeding of
new varieties. He brought to the Soviet Union, for further study and breeding,
samples of 50,000 varieties of wild plants and 31,000 wheat specimens961.

Observations made during Vavilov’s world-wide studies led him to postu-
late that a cultivated plant’s center of origin would be found in the region in
which wild relatives of the plant showed maximum adaptiveness. These con-
clusions were summarized in The Origin, Variation, Immunity and Breeding
of Cultivated Plants (Eng. trans. by K.S. Chester, 1951). In 1920 he expanded
the theory, stating that the region of greatest diversity of a species of plant
represents its center of origin. He eventually proposed 12 world centers of
plant origin.

From this prodigious labor emerged a new synthesis of the origin of culti-
vated plants, the first great advance since de Candolle962.

Vavilov was arrested (1940) for opposing the views of Lysenko. After hours
of interrogation Vavilov was found guilty in a five-minute trial of “belonging
to a rightist conspiracy, spying for England, and sabotage of agriculture”. He
was sentenced to death and died in the Magadan labor-camp, Siberia, on Jan
26, 1943 of starvation and maltreatment by prison guards. The man who had
done more than any other to feed Russia, died of starvation. He may have
never known of his election as a foreign member of the Royal Society in 1942.

1939–1968 CE Hannes (Olof Gösta) Alfvén (1908–1995, Sweden). As-
trophysicist. First to bring plasma physics into astronomy, and a pioneer

961 Sadly, all those collections were eaten during the siege of Leningrad in WWII.
962 Augustin-Pyrame de Candolle (1778–1841, Switzerland).
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in the study of plasmas in magnetic fields, known as magnetohydrodynamics
(MHD)963. Won the 1970 Nobel prize in physics for his work on the behavior
of ionized gas in the solar magnetic field, through which he explained the puz-
zling phenomenon that the sun’s photosphere is cooler than its chromosphere
and corona. Explained the origin of the cosmic rays and introduced the new
concepts of Alfvén velocity and Alfvén waves.

Alfvén suggested that antimatter may power the quasars and the violent
explosions in the cores of galaxies [matter and antimatter collide and annihi-
late each other, thus releasing all of their rest-mass energy content].

Cosmic Rays (1899–1945)

Cosmic rays were first detected by Elster and Geitel (1899) and C.T.R.
Wilson (1900). In measuring the rate of discharge of a carefully shielded
electroscope, they found that pure, dry air possesses a small conductivity,
which presumably resulted from the presence of ionizing radiation in the lab-
oratory or in the air (assumed to be caused by small amounts of radioactive
substances).

However, in 1911 Hess showed that the ionizing radiation is entering the
earth’s atmosphere from above, and these rays must have great penetrating
power, since their effects have been detected underground and in deep lakes.
It is possible to arrange Geiger counters in coincidence arrays and to show
that the detected rays travel predominantly in the vertical direction. Similar
techniques reveal the occurrence of cosmic-ray showers, that is, groups of
particle trajectories covering a large horizontal area within a short period of
time.

It is also found that the numbers of rays reaching ground level depends on
the magnetic latitude; hence the earth’s magnetic field must affect the trajec-
tories of the original or “primary” particles entering the upper atmosphere.
It is believed that most of the primary particles are protons, but there are
also heavier particles in the primary rays, as shown by the heavy-ion tracks

963 Energy is transferred via hydromagnetic waves from the magnetic field (lines of

force) to electrons and ions that spiral along them.
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produced in photographic emulsions flown to a great height. Measurements
have proved that primary cosmic-ray particles with a kinetic energy up to
1020 eV (corresponding to 1011 times the rest mass of the nucleon) occur, far
greater than the energies achievable in any man-made accelerator.

The cosmic rays observed at sea level are produced almost entirely by col-
lisions and disintegrations occurring in the atmosphere following the entry of
primary particles; most of these primary particles possess high energy, spread
subsequently over a large number of particles. Most of the particles produced
by the complex high-energy reactions are either intrinsically unstable, or are
capable of producing new particles in “cascade” processes.

One important component of cosmic rays is called the “soft” component,
because it is easily absorbed in lead, and this consists of electrons of both signs
(electrons an positrons) as well as high-energy protons. A single, high-energy
electron can generate photons in the presence of matter by the Bremsstrahlung
process, and high-energy photons impinging upon nuclei may in turn produce
electron-positron pairs, which may then cause further emission of photons.

Thus the soft component forms showers of the cascade type, and a single
shower may spread over a wide area at sea level. The total energy found in
some showers is of the order 1017 eV, all of which must have come from a
single primary particle entering the atmosphere.

In addition to the soft component, cosmic rays contain a component which
can penetrate several feet of lead and which consists of charged particles
of both signs. These particles do not lose appreciable amounts of energy
by the Bremsstrahlung process, but, at the same time, they are much more
penetrating than massive particles like the proton.

Calculations of the energy losses by fast particles in matter suggest that
moat of the penetrating particles must be intermediate in mass between the
electron and the proton. In 1938 C.D. Anderson and S.H. Neddermeyer
published evidence strongly suggesting the existence of such mesons, with rest
mass about 200 times that of the electron.

During the years 1939–1945, theoretical physicists tried to reconcile the
cosmic-ray data with the meson theory of nuclear forces, despite the many
difficulties which attend a rigorous theory of strong interactions. Slowly it
became clear that the mesons observed in cosmic rays could not be responsible
for nucleon-nucleon forces, since their interaction with nucleons is too weak.
Today, the penetrating meson of Anderson and Neddermeyer are known to
be the muon — a heavier analog of the electron, which has its own species of
neutrino.

The mesons thought to mediate the strong nuclear force, on the other
hand, are known as pions or pi-mesons. These latter were predicted by
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H. Yukawa (1935), and the confusion arose because pions and muons have
similar masses.

Later in the 20th century, it became clear that pions, like nucleons, are
composed of quarks, and that a more accurate description of strong nuclear
forces – of both nucleon and pions, as well as their heavier “cousins” – is via
exchange of “gluons” between quarks and anti-quarks.

1939–1987 CE Walter Maurice Elsasser (1904–1991), Germany and
USA). Physicist and ‘biological philosopher’. Produced the ‘dynamo model’
to account for the earth’s magnetic field (1939), and pioneered analysis of the
earth’s past magnetic fields patterns, now ‘frozen’ in rocks. He also foresaw
the fact that the genome does not encode all the information that goes into the
biology and functionality of an organism (‘Physical Foundation of Biology ’,
1958).

Elsasser was born to a Jewish family in Manheim and educated at
Göttingen. He left Nazi Germany (1933) for the Paris Sorbonne and then
emigrated to the USA (1936). He worked at Caltech (1936–1941) and for
the US Signal Corps in war research on radar (1941–1946). He subsequently
held professorships at the Universities of Pennsylvania, Utah, Princeton and
Maryland until 1974.

Considering the earth as a having a core of molten iron above the Curie
temperature (and therefore no longer able to retain any permanent mag-
netism), Elsasser suggested that the earth’s rotation sets up eddy currents in
the liquid core, causing it to behave as an electromagnet. This theory provides
an explanation of the terrestrial permanent magnetic field and the presence
of secular variations.

In a series of books: Atom and Organism (1965), The Chief Abstractions
of Biology (1975) and Reflection on a theory of Organisms (1987), Elsasser
expounded his biological thoughts and general philosophy.

All of his biological writings refer to the immense complexity of the or-
ganism based on the number and types of atoms in a cell and the number
of possible bonds connecting the atoms in organic molecules. Complexity is
taken as an intrinsic aspect of the living state. Another important considera-
tion is the near reversibility of most biochemical reactions with their relatively
small energy changes.
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Furthermore, the closeness of energy exchange in biochemical reactions
to thermal noise is necessary for the decision-making ability of the organism,
allowing it to choose between available states without need for more than a
minimal supply of energy. This condition enables the system to respond with
large-amplitude changes to small perturbations, and is also characteristic of
the processes involved in the development and differentiation of the organism.
These thoughts led Elsasser to formulate a set of principles to represent the
living state:

• The principle of ordered heterogeneity : Combinatorial analysis shows that
the number of structural arrangements of atoms in a cell is immense; that
is, much greater than 10100, a number that is itself much larger than the
number of elementary particles in the observable universe (1080). But biol-
ogy also manifests regularity in the large, in addition to heterogeneity in the
small.

• The principle of creative selection: Nature, through processes compatible
with the laws of physics (but not uniquely determined by them!) makes a
choice among the immense number of possible patterns inferred from the first
principle. However, no mechanism can be specified by the operations of which
the selected patterns differ from those not selected. The selection of a rela-
tively small number of organisms from the immerse number964 of possibilities
allowed by quantum mechanics, physics and chemistry is a primary expression
of biological order.

• The principle of holistic memory : It provides the criterion of choice not
expressed in the second principle. The organism chooses patterns that re-
semble earlier patterns. This holistic “memory” secures the stability of infor-
mation in time. It is dynamic memory without stable storage which secures
transmission of morphological features through time without a dedicated ma-
terial memory device.

• The principle of operative symbolism: a material carrier of information
(namely DNA) acts as a releaser for the capacity of the whole organism to

964 The number of different patterns is also immense in the physical science of

statistical mechanics, but in that case the variation of structure from pattern to

pattern averages out. The patterns of inorganic systems are either fully random

or else repeat themselves over and over again ad infinitum, while those of each

organism are unique and evolving.
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reconstruct a complete message that characterizes the adult of the next gen-
eration.

These principles are not scientific laws in the usual sense since they are not
derivable from the fundamental laws of physics, and therefore not determined
directly by atomic and molecular physics. The basic assumption in this holis-
tic interpretation is that an organism (or a cell) is a source of causal chains
which cannot be traced beyond a terminal point because they are lost in the
complexity of the organism.

1940 CE, Nov. 07, ca 10 am The catastrophic collapse of the Tacoma
Narrows suspension bridge (near Seattle, State of Washington, U.S.A.) due to
twisting motion induced by gusting winds. The bridge, with the third longest
span in the world (853 m), collapsed only four months after its inauguration.
One of the surprising facts of the accident was the relatively low speeds of the
winds causing it, only 67 km

hr (19 m
sec ) at the moment of collapse. Excluding

tornadoes, the worst storms on land may reach 160 km
hr , but 120 km

hr winds
are observed frequently enough even in Europe).

Startling scenes of rippling pavements, featured in a classic film that cap-
tures this event, rank among the most dramatic and widely known images in
science and engineering. This staple of most elementary physics courses, has
left an indelible impression on countless students over the years.

The technique of suspension bridges started with the development of met-
allurgy at the turn of the 19th century. Trial and error taught the method
of calculation and indicated possible modes of construction, but several ac-
cidents restrained the builders. To begin with, there was the collapse of
bridges induced simply by excessive amplitudes of vibration under an im-
posed alternating load in resonance with one of the natural frequencies. For
instance, a small bridge erected in 1829 at Broughton near Manchester (Eng-
land) collapsed due to troops marching in step (1831); a French bridge over
the Loire also broke down under a battalion of infantry marching in step;
several decades later (1886), an Austrian bridge over the river Ostrawitza col-
lapsed under charging cavalry although the static load (26 soldiers, 16 horses,
2 carts) was very light.

Orders to break step prevented recurrence of these accidents and bridge
engineers were led to think that only the properties of the steel used for the
suspension cables would limit the possibilities of suspension bridges: Evi-
dently, if the length of the span increases indefinitely, the weight of the cable
grows more rapidly than the weight of the roadway it supports, and finally
even without a roadway the cable becomes unable to support itself. Between
1900 and 1910 the mechanical properties of the available metals seemed to
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permit a maximum span of 3 km under these conditions; in 1953 a much
greater length appeared admissible.

Nevertheless, experience has shown that the wind imposes other limita-
tions: the 10 suspension bridges that have failed in gales965 during the 19th

century illustrate the relentless regularity of these accidents and their appar-
ent independence of technical progress.

Textbooks usually attribute the above events to the phenomenon of res-
onance. In the case of the Tacoma Narrows bridge, so the explanation goes,
the wind blowing past the bridge generated a train of vortices that produced
a fluctuating force in tune with the bridge’s natural frequency, steadily in-
creasing the amplitude of its oscillation until the bridge finally failed.

Recently966, however, a new analysis challenged this common explanation.
According to the new theory, large scale oscillations are caused by the inher-
ent nonlinearity of suspension bridges, through which a bridge could go into
large oscillations as a result of a single gust and at other times remain mo-
tionless even at high winds. The new theory also explains how large vertical
oscillations could rapidly change into twisting motion.

965 Dryburgh Abbey (Scotland, 1818); Union (England, 1821); Nassau (Germany,

1834); Brighton Chain Pier (England, 1836); Montrose (Scotland, 1838); Menai

Straits (Wales, 1839); La Roche-Bernard (France, 1852); Wheeling (U.S.A.,

1854), Niagara-Lewiston (U.S.A., 1869); Niagara-Clifton (U.S.A., 1869).
966 Linear theory predicts that if you stay away from resonance, then in order to

create a large motion, you need a large exciting force. Nonlinear theory says

that for a wide range of initial conditions, a given push can produce either small

or large oscillations. Nonlinear theory predicts that a suspension bridge can

respond to a whole range of forcing frequencies. Also, the nonlinear equations

yield mathematical solutions of waves traveling up and down a bridge’s roadbed .

Such waves were indeed observed on windy days on roadbeds of a number of

large suspension bridges.

According to the model of Alan C. Lazer and P. Joseph McKenna (Science

News 137, 344–346), gusts of winds initially act as a random buffeting force on a

suspension bridge, causing the towers and main cable to go into a high-frequency

periodic motion. That motion initiates low-frequency, vertical oscillations that

ripple the roadbed. This may be followed by sudden transition to a twisting

mode.

Thus an impact, due either to an unusually strong gust of wind or a minor

structural failure, may provide sufficient energy to send the bridge from one-

dimensional to torsional modes of oscillation. The resulting twisting destroys

the bridge.
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Suspension bridges built or remodeled after 1940, including the Golden
Gate bridge, are unlikely to suffer the same fate as the Tacoma Narrows bridge.
Civil engineers responded to the Tacoma disaster by stiffening existing bridges
and building new bridges heavy and rigid enough to resist wind-induced mo-
tion. Because such bridges naturally flex very little, a linear analysis suffices.
Only when flexibility becomes an issue and a bridge moves so much that it
start loosening does the nonlinear theory come into play.

An earthquake, however, is precisely the sort of energy source that may
push a suspension bridge into the nonlinear mode. (Indeed, during the 7.1
magnitude Loma Prieta earthquake, the Golden Gate bridge oscillated for
about a minute. The stays connecting the roadbed to the main cables were
alternatively slackening and tightening — a sign that the bridge was in a
nonlinear stage. Fortunately, the bridge did not start twisting, because the
earthquake wave hit it head-on rather than obliquely.)

1940 CE Howard Walter Florey (1898–1968, England), pathologist, and
Ernst Boris Chain, biochemist (1906–1979, England) isolated and purified
penicillin967 as the first powerful antibiotic.

Florey was born in Australia. Professor at Sheffield University (1931–
1935), Oxford (1935–1962).

Chain was born in Germany. Researcher at Charité Hospital, Berlin
(1930–1933). Fled to England (1933) on account of Nazi persecution of the
Jews; Cambridge University (1933–1935), Oxford University (1935–1948), Im-
perial college, London (1961–1973).

Both were awarded the Nobel prize for physiology or medicine (1945).

Louis Pasteur noted (1877) that some bacteria give off substances that
kill other bacteria. It was not until 1939 that this observation was put to use

967 Penicillin:
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R may be any of a number of hydrocarbon groups, as there are different types

of penicillin.
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when René Jules Dubos (1901–1982, U.S.A.) discovered two antibiotics in
a substance produced by soil bacterium.

The details of antibiotic action are poorly understood; it is presumed that
in general they block some vital metabolic process of the bacterial organism.

Certain phenomena make the use of antibiotics something less than a
panacea for bacterial diseases:

• All antibiotic drugs are capable of producing a wide variety of allergic
reactions.

• All antibiotics upset the ecological balance existing among microorgan-
isms present in the human body, which can result in overproduction of
particularly resistant bacteria and fungi. These secondary infections can
on occasion be worse than the original one.

Bacteria may adjust to the presence of the antibiotic by devising an alter-
native metabolic pathway, where there is less interference from the antibiotic.
In other cases a mutant strain of bacteria develops, which has greater resis-
tance to the drug.

Advent of Modern Pharmacology968 (1800–1940)

1805 Friedrich Sertürner isolated the first alkaloid from opium.

1821 Francois Magendie (1783–1855) isolated alkaloids such as

emetine and strychnine.

968 From the Greek pharmakos=medicine or drug. Pharmacology studies the effects

of drugs and how they exert their effects. In actual use, however, its meaning

is limited to the study of action of drugs (how they operate).
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1847 Pharmacology emerged as a separate science when the first
university chair was established. This occurred when Rudolf
Buchheim (1820–1879) was appointed professor of pharma-
cology at the University of Dorpat in Estonia (then a part
of Russia). Buchheim is credited with turning the purely de-
scriptive and empirical study of medicines into an experimental
science.

1869–1912 Oswald Schmiedenberg (1838–1921, Germany), a student
of Buchheim, is recognized as the founder of modern pharma-
cology. Introduced urethane as a hypnotic (1885). He was
largely responsible for the preeminence of the German phar-
maceutical industry up to WWII.

1897–1926 John Jacob Abel (USA). Trained under Schmiedenberg and
went to John Hopkins University. Isolated epinephrine from
adrenal gland extracts (1897) and histamine from pituitary
extract (1919). Also prepared pure crystalline insulin (1926).

1897–1912 Paul Eherlich’s (1854–1915) chemotherapy, immunotherapy
and ‘side-chain theory’ have influenced 20th century pharma-
cology.

1899–1941 The discoveries of aspirin (1899), vitamins (1912–1922), hor-
mones (1902–1931) and antibiotics (1941) have revolutionized
the pharmaceutical industry.

1932 Gerhard Domagk (1895–1964) discovered the first of the sul-
fanilamide drugs (1899).
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1940 First color television broadcast in the United States using a system
developed by Peter Goldmark (1906–1977).

1940 Igor I. Sikorsky flew the first practical single-rotor helicopter at
Stratford, CT.

1940–1947 William (Wolfe) Frederick Friedman (1891–1969; USA).
Cryptography pioneer. U.S. Army Intelligence Colonel and Chief Cryptoan-
alyst of the War Department in Washington D.C. (1941–1947). Led the U.S.
Army team (Special Intelligence Service) which broke the Japanese code in
1940 (Purple Code) and subsequently remained a key member of the Oper-
ation Magic teams which decoded Japanese ciphers and enabled U.S. mil-
itary commanders to read Japanese intercepts on Japanese military move-
ments.

Magic was the code name for the joint Army and Navy operation, first
set up in 1939, to break Japanese diplomatic and military codes. Magic pro-
vided the U.S. military and political chiefs with much important intelligence
throughout the war and its contribution to major Allied operational successes
has until recently been largely underestimated. The Navy Special Intelli-
gence Unit, Communications Security Unit, with a staff by 1942 of about
300, worked with Army Signals Intelligence Section (SIS), deciphering and
relaying enormous amounts of traffic in coded messages sent by the Japanese
government to their agencies worldwide and by Imperial Headquarters to their
commanders at sea and in the field.

Probably the most important contribution made by Magic to the U.S.
victory in the Pacific was the decoding of ciphers that revealed the Japanese
attack plan for the Battle of Midway in mid-1942. Informed in advance of the
Japanese objectives, Admiral Nimitz was able to preempt Japanese strategy
and fight off a superior Japanese force, decisively halting the thrust of the
Japanese offensive in the Pacific.

Friedman was born in Kishinev (now Chisinau, capital of Moldova). The
following year, the family emigrated to the United States to escape increasing
persecution of the Jews in Russia. The family settled in Pittsburgh (1893).
After graduating from Cornell University, Friedman became interested in the
study of codes and ciphers and during WWI became a cryptographic officer
with the U.S. War Department in Washington.

Friedman introduced mathematical methods into cryptology and produced
training material used by several generations of pupils. His work affected for
the better both signals intelligence and information systems security, and
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much of what is done today at NSA may be traced to Friedman’s pioneering
efforts.

He was buried in Arlington National Cemetery, and his wife, Elisabeth
Smith Friedman (1892–1980), a gifted codebreaker in her own right, is buried
with him.

Friedman coined the term “cryptoanalysis”.

1940–1948 Martin David Kamen (1913–2002, USA). Discovered car-
bon-14, a radioactive isotope of carbon with half-life of about 5700 years, and
used it to study primary processes in photosynthesis.

Kamen was born in Toronto, Canada and studied in Chicago. In 1960 he
was appointed Professor of Biochemistry at the University of California, San
Diego. He pioneered the application of several radio-isotopes in a diversity of
biochemical, particularly bacterial, systems. Confirmed the hypothesis that
all the oxygen released in photosynthesis comes from water and not from
CO2.

He determined (1945) the initial state of ‘fixed’ CO2 in photosynthe-
sis; showed that bacteria, which carry out the photosynthetic conversion of
CO2 to carbohydrate (without oxygen release) require the presence of re-
ducing substances (such as hydrogen sulfide); and that illumination increases
phosphorus turnover in photosynthesis (1948).

1940–1942 Hedy Lamarr (1913–2000, Austria and USA). Movie star
and inventor. Incepted the revolutionary idea of frequency-hopping, namely
of sending radio signals without being detected, deciphered or jammed by sim-
ply modifying the carrier frequency according to random preassigned scheme
(code) of frequencies, synchronized at both the sending and receiving ends.
This she first suggested to apply to submarine torpedoes controlled by radio
signals969.

Hedy Lamarr’s invention eventually influenced, impacted, and changed the
field of communications. Originally intended to protect U.S. radio-guided tor-
pedoes from interception, jamming, and miscalculated ocean drift, it ended up
catalyzing a world-wide wireless revolution utilizing radio frequencies. Used in
such devices as traffic signals, cellular phones, pagers, wireless Internet, and
the Milstar Defense Satellite, it allows communications to be more secure,

969 In order to reconstruct the original message, there is a need for a frequency-

synthesizer, able to perform fast-hopping over the carrier frequencies. The faster

the “hopping-rate”, the higher the processing gain.
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quicker, and cheaper than ever before. Radio frequencies were once thought
to be a limited resource, but spread spectrum technology effectively allows
simultaneous use by multiple users sharing several frequencies.

One of the most fascinating chapters in Lamarr’s life and career had noth-
ing to do with her film career and everything to do with her brain power.
How many movie stars can you name, who hold the patent on a significant
technological breakthrough? It’s a story even Hollywood couldn’t have in-
vented.

At the age of 84, Hedy Lamarr was finally honored for her invention from
the 1940’s. She received an award for her and George Antheil’s invention.

In 1997 Hedy received an award at the Computers, Freedom, and Privacy
conference for “blazing new trails on the electronic frontier.”

All that and brains too — the birth of

spread-spectrum technology

Silver Screen actress Hedy Lamarr (1914–2000) enjoyed one of the more
memorable careers in Hollywood. Her name still ranks among the brightest
lights in the history of the movies. But what many people do not know is
that in 1941, as a 27 year-old this glamorous Hollywood star created an idea
that revolutionized communication technology into the 21st century.

She was born as Hedwig Eva Maria Kiesler in Vienna, Austria on Novem-
ber 9, 1914. The daughter of a bank director and a concert pianist, she had
been well groomed in her native Vienna: Instructed by private tutors, who
taught her three languages as well as ballet and piano. She then received her
finishing touches at a private boarding school in Switzerland.

She made her first film in 1931 as an extra. In the 1932 Austrian produc-
tion, Ecstasy, her teenage nudity made her world-famous and set standards
for erotic pictures for decades to come. The film was extremely daring for
its time and won her the Grand Prize in the 1934 Vienna Film Festival. The
part also won her a millionaire husband, Fritz Mandl (1933), one of Europe’s
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largest armament manufacturers, who supplied Benito Mussolini with arms for
his invasion of Abyssinia (1936), and later sold bombs, bullets and airplanes
to Hitler. Mandl was also conducting research in weapons control systems,
being especially interested in radio-controlled torpedoes. Radio signals, how-
ever, had a serious flaw: enemies could access the same radio-wave frequency
and jam it. As Mandl’s wife, Lamarr was exposed to military technology
ideas, being at his side during business meetings. Although she had no formal
technical education, she possessed a mind capable of understanding what she
heard.

In 1937, Lamarr fled her husband to London, where she came in contact
with Louis B. Mayer of MGM, who arranged for her to come to the U.S. On
the voyage across the Atlantic, Mayer gave her the name “Hedy Lamarr”, in
part inspired by the sea! In Hollywood, the beautiful actress found success,
and had the world at her feet970. But she anticipated the perils of Nazism,
and as WWII was brewing in Europe she was determined to do something to
help the war effort; recalling the ‘Torpedo Problem’, it occurred to her that
jamming could be avoided if the frequency of the radio carrier wave could be
quickly changed, taking on values in a prearranged discrete random sequence,
synchronized at both the sending and receiving ends. Thus, the simple but
revolutionary idea of frequency-hopping was born.

To realize this idea technically, Lamarr had to solve the synchronization
problem. To this end she engaged (1941) the ultramodern experimental Holly-
wood composer George Antheil (1900–1959) who had a good deal of exper-
tise with sound synchronization. Antheil proposed controlling the frequencies
for the transmitter and receiver with paper rolls, perforated with a pseudo-
random pattern to delineate the frequency path: two rolls with the same
pattern would be installed in the transmitter and receiver; if the two rolls
were started at the same time, and one stayed at the launch point while the
other launched with the torpedo, and if there existed good rotary stability in
the motors driving the paper rolls, one could maintain the synchronization
right on down to where the torpedo hit the ship. The two inventors designed
their system to use 88 frequencies — exactly the number of keys on a piano.

970 Hailed as the “Modern Eve”, she looked stunning in all of her 26 films (1929–

1958), most notably in Algiers (1938), in which she became the most alluring

lady in American films; Tortilla flat (1942), as a Mexican beauty; and Samson

and Delilah (1950), in which Cecil B. De Mille had the inspired idea of using her

sex-appeal straight, and the public loved her as an elegant, cool and adventurous

woman — the world’s most renowned seductress. Unfortunately, she turned

down many good film roles (Ingrid Bergman got most of them) and had little

understanding of how best to advance her own career.
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On June 10, 1941 Lamarr and Antheil received Patent No. 2, 292, 387 for
their invention of a classified communication system that was especially useful
for submarines. It was based on radio frequencies changed at irregular periods
that were synchronized between transmitter and receiver: signals could be
transmitted without being detected, deciphered or jammed — an unbreakable
code!

Rather than develop the patent commercially, they gave it away to the
government for the war effort. Despite the fact that they stood to gain finan-
cially by holding onto the patent, they were both committed to helping defeat
the Nazis.

The Navy, however, refused to take the Secret Communication System
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seriously. Technologists questioned whether the paper rolls would hold with-
out breaking, whether the rotary motor that synchronized the rolls would be
accurate enough, and whether the paper rolls could be made small enough to
fit inside a torpedo. Despite the inventors’ active lobbying and insistence that
the US Navy needed the invention to compete with Germany’s sophisticated
military technology, the Secret Communication System was never used during
WWII971. Not only was the invention rebuffed, but so were Lamarr’s efforts to
contribute her considerable technical abilities to the task of defeating Hitler.
When she offered to come to Washington, D.C. and work at the National
Inventors Council, she was told she’d be of greater service to the war effort
by remaining in Hollywood and using her star status to raise war bonds. She
obeyed, selling $7 million worth of bonds in a single day by offering kisses,
at $50,000 a kiss. After the patent expired (1958), the government began to
use it972, but Hedy Lamarr received neither money nor recognition for her
accomplishments. In the Cold War era, the military expanded its use of fre-
quency hopping technology, relying on it to secure communications during
the Cuban missile crisis (1962), but the idea was not yet widely known in
the civilian world. In the mid 1980s, the US military declassified the use of
frequency-hopping, also known as spread-spectrum technology, and the com-
mercial sector began to develop it for consumer electronics.

By the 1990s, as telecommunications became a bigger part of everyday life,
interest in frequency-hopping grew as it became one way to enable multiple
users to share a single radio frequency — an important spectral-efficiency
measure as more and more pagers, cellular phones and other devices crowd
into limited airwave spectra.

Hedy Lamarr’s life is a remarkable story of survival, adventure973 and
achievement. Her invention was 50 years ahead of its time.

971 The Navy’s reticence was due to an anti-cultural bias: In their patent Lamarr

and Antheil attempted to better elucidate their mechanism by explaining that

certain parts of it worked like the fundamental mechanism of a player piano.

The top military brass in Washington who examined the invention read no

further than the words ‘player piano’. “My God,” they said, “we shall have to

put a piano in a torpedo...”
972 E.g. the Sonubuoy was designed for the US Navy (1955); it is a device which had

a two-way radio and antenna and was dropped from an airplane and floated on

the surface of the ocean. It allowed airplanes to communicate with each other.

With the use of Hedy Lamarr’s invention of frequency hopping, the planes were

able to communicate without interference and in complete security.
973 She became famous for other things besides films, including a sizzling autobi-

ography (Ecstasy and Me: Life as a Woman), over which she sued her col-

laborators for $21 million; six husbands, most of them millionaires; and a

widely-publicized shoplifting incident. She had been short of money through-
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The next time you pick up a cellular phone, give a brief thought to the
improbable woman who first patented some of its underlying technology —
“the most beautiful girl in the world”, actress Hedy Lamarr.

1940–1951 CE Edwin Mattison McMillan (1907–1991, U.S.A.). With
Philip Hauge Abelson (b. 1913) discovered neptunium (June 08, 1940),
element 93, the first known transuranium element; exposed uranium to ac-
celerated neutrons; some of the neutrons stuck to the uranium nucleus and
then underwent beta-decay (changing from neutrons to protons by emitting
an electron and an anti-neutrino).

Later that year they showed that a similar process also produced element
94, plutonium. Exhausting the supply of planets beyond Uranus as names,
later elements would be named for places and persons [americium, curium,
berkelium, californium, einsteinium and fermium — elements 95 to 100; all
of those were created by adding protons to the nuclei of previously existing
elements]. Off all these, only plutonium was found to be a fissible (fissionable)
element and suitable for making nuclear weapons.

In 1945 McMillan [and independently, Soviet physicist Vladimir I. Vek-
sler (1907–1966) invented the synchrocyclotron, an accelerator that produces
particle energies in excess of 20 million electron volts. Overcoming the limi-
tations of the cyclotron (1932), they worked out the theory of phase stability
which guided the design of all future high-energy accelerators.

Awarded (1951) the Nobel prize for Chemistry, with Glenn T. Seaborg
(1912–1999) for their discovery of plutonium and research on transuranium
elements.

1940–1958 CE Abraham Selman Waksman (1888–1973, USA).
Microbiologist. Awarded the Nobel Prize in physiology or medicine, 1952, for
his discovery of streptomycin, the first antibiotic effective against tuberculosis.

Waksman was born in Priluka, Ukraine (near Kiev) to Jewish parents. He
received his early education primarily from private tutors, obtained his high-
school diploma as an extern in Odessa (1910) and left for the US immediately
afterwards. There he studied at Rutgers (B.Sc. 1915; M.Sc. 1916) and at
the University of California (Ph.D. in Biochemistry 1918). He returned to

out the years: she told police she had jewels stolen but they were found; she

filed false rape charges to gain money.
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Rutgers University, where he became Professor of microbiology (1930), Head
of the Department (1940) and Director of the Institute of Microbiology (1949).

He had isolated, together with his students and associates, a number of
new antibiotics, including actinomycin (1940), streptothricin (1942), strepto-
mycin (1943), neomycin (1948) and others. Of these, the last two have found
extensive application in the treatment of numerous infectious diseases of men,
animals and plants.

He has published more than 400 scientific papers and has written, alone
or with others, 18 books.

1940–1962 CE Pierre-Michel Duffieux (1891–1976, France). Physicist.
Originator of the field of Fourier optics (1940). Concepts such as “frequency
response function”, “transmission function” and “transfer function” of an
optical system are associated with his name. Those concepts put on a broader
foundation some ideas which J.C. Maxwell (1856), Ernst Abbe (1873) and
Lord Rayleigh (1879) had conceived much earlier in connection with the
resolving power of optical systems and the theory of optical imaging.

Duffieux showed, however, that the role of the Fourier transform is not
confined to image formation, but that it is also an indispensable tool in image
post-processing, whether the technique employed be analogue or digital.

With the aid of the Fourier transform one tries to simulate a kind of
“reverse path”, canceling some of the unwelcome features of the image forming
process along the way, with a view to restoring the original image function. His
theory was of major importance in the development of optical communication
in the last third of the 20th century.

Duffieux was born in Saint-Macaire (Gironde), studied at Bordeaux and
received a D.Sc. from the Ecole Normale Superieure (1915). He then held
academic positions at Marseilles (1916–1927), Rennes (1927–1929), Grignon
(1941) and became a professor of physics at the University of Besancon (1945–
1962).

1940–1965 CE Giulio Yoel Racah (1909–1965; Italy and Israel).
Physicist and mathematician. Made important contribution in the fields
atomic spectroscopy. Named after him are: Racah’s symbol, Racah’s V-
coefficient, Racah’s W-coefficient, Racah-Wigner calculus. A crater on the
moon was named after him. Wrote (with U. Fano)974: “Irreducible Tensorial
Sets” (1959).

974 Ugo Fano (1912–2001, Italy and USA). Atomic physicist. Since 1937 – at the

University of Chicago with E. Fermi. Son of the mathematician Gino Fano

(1871–1952).
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Born in Florence, Italy, he took his Ph.D. from the University there
(1930), and later studied under E. Fermi in Rome. Emigrated to Israel
(1939) and appointed professor of Theoretical physics at the Hebrew Univer-
sity, Jerusalem. Published (1941–1949) three seminal papers on energy levels
in many-electron atoms.

Died in Florence, on a way to the Zeeman centennial celebration in Ams-
terdam, as a result of a gas leak in an old heating installation.

1940–1969 CE Alfred Day Hershey (1908–1997, USA). Bacteriolo-
gist. Confirmed through experiments that DNA, not protein was the genetic
material.

In one of the most famous experiments in 20th century biology, Hershey
and his assistant, Martha Cowels Chase975 (1927–2003) marked bacterio-
phages with radioactive isotopes and then were able to trace protein and DNA
to determine which is the molecule of heredity.

He was born in Owosso, Michigan and received his B.S. in chemistry at
Michigan State University in 1930 and his Ph.D. in bacteriology in 1934,
taking a position shortly thereafter at the Department of Bacteriology at
Washington University in St. Louis.

He began performing experiments with bacteriophages with Italian-
American Salvador Luria and German Max Delbrück in 1940, and ob-
served that when two different strains of bacteriophage have infected the same
bacteria, the two viruses may exchange genetic information.

975 Hershey and Chase announced their results in a paper: A.D. Hershey and M.

Chase, 1952. Independent functions of viral protein and nucleic acid in growth

of bacteriophage. Journal of General Physiology 36: 39–56.

The experiment inspired American researcher James D. Watson, who along

with England’s Francis Crick figured out the structure of DNA at the

Cavendish Laboratory of the University of Cambridge the following year.

Hershey shared the 1969 Nobel Prize in Physiology or Medicine with Salvador

Luria and Max Delbrück. Chase, however, did not reap such rewards for

her role. A graduate of The College of Wooster in Ohio (she had grown up in

Shaker Heights, Ohio), she continued working as a laboratory assistant, first at

the Oak Ridge National Laboratory in Tennessee and then at the University of

Rochester before moving to Los Angeles in the late 1950s. There she married

and earned her Ph.D. in 1964 from the University of Southern California. A

series of personal setbacks through the 1960s ended her career in science. She

spent decades suffering from a form of dementia that robbed her of short-term

memory. She died in 2003.
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He moved to Cold Spring Harbor, New York, in 1950 to join the Carnegie
Institution of Washington’s Department of Genetics, where he performed the
famous Hershey-Chase blender experiment with Martha Chase in 1952.
This experiment provided additional evidence that DNA, not protein, was
the genetic material.

He became director of the Carnegie Institution in 1962 and was awarded
the Nobel Prize in Physiology or Medicine in 1969, shared with Luria and
Delbrück for their discovery on the replication of viruses and their genetic
structure.
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The Helicopter

In the helicopter [from the Greek: ελiξ (helix) = screw, πτερoν (pteron)
= wing], a large propeller (rotor), rotating horizontally, provides the lift that
holds up the craft.

When the lift is exactly equal to its weight, the helicopter hovers motion-
less. If the pilot wants to go forward, he causes the blades to tilt forward at an
angle. Then, the reaction of the air on the blades has a vertical component to
counterbalance the weight, and a horizontal component to provide a forward
motion.

The power-driven rotors serve the helicopter in lieu of fixed wings and a
propeller. The helicopter is able to take off and land vertically, to move in
any direction, or to remain stationary in the air. The lift is determined both
by the rotary speed and angle of attack (pitch) of the blades. For a certain
speed, the generated lift will counterbalance the weight of the craft.

The rotation of the rotors causes the fuselage of the aircraft to rotate in
the opposite direction. To prevent this, a single-rotor helicopter is provided at
its tail with a small vertical propeller that produces a counteracting sideways
thrust. Alternatively, the helicopter may have two rotors which revolve in
opposite directions and thus counterbalance each other976.

976 The shape of the blade is such that the air streaming above it moves faster than

the air below it. This difference creates a pressure gradient that lifts the wing.

The helicopter has three controls:

Collective Pitch Stick : controls the main rotor blades to make the helicopter

hover and fly straight up or down. To fly upward , the pilot pulls the stick up to

increase the pitch of all the blades. To fly downward , he pushes the stick down

to decrease the pitch of the blades. To hover , he sets the blades at a medium

pitch. The collective pitch stick also increases the power sent to the rotor for

upward flight, and decreases power for downward flight.

Cyclic Pitch Stick: controls the main rotor blades to make the helicopter fly

forward , backward , or sideways. The pilot pushes the stick in the direction he

wants to fly. The stick continuously and periodically changes the pitch of each

blade to make it rise highest at a spot directly opposite the direction of flight.

For example, to drive the helicopter forward, the blades rise highest at the rear.

The blades get their greatest pitch one-fourth of a revolution ahead of the spot

where they rise highest.

Tail Rotor Pedals: control the pitch of the tail rotor blades to turn the helicopter
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The idea of the helicopter first appeared in the notebooks of Leonardo
da Vinci (ca 1500), who drew sketches of a flying machine of this type. At
about the same time the Chinese made toys that flew like helicopters.

The earliest attempts to build model helicopters that flew were made by
two Frenchmen, M. Launoy and M. Bienvenu, in 1784. The British in-
ventor George Cayley designed a steam-powered model in 1843. Another
British inventor, W.H. Phillips, built in 1842 a steam-powered model heli-
copter, the rotor of which was driven by jets of steam coming from the tips
of the rotor blades.

In 1878, Enrico Forlanini (1848–1930, Italy) built a steam-driven heli-
copter model which hoisted to about 12 m above the ground, and stayed up
for 20 sec.

The first manned helicopter flight was achieved (1907) by Paul Cornu
(1881–1944, France) and Louis Bréguet (1880–1955, France). Both of these
machines made short flights, but neither was practical. They were unstable
(wobbly) and their flights could not be controlled.

During and after WWI, helicopter designers gradually began to solve the
problems of stability and control. In 1937, a two-rotor helicopter built by
Heinrich Focke (1890–1979, Germany) flew for more than an hour at an
altitude of 2400 meters. Sikorsky promoted the development of a big heli-
copter industry in the United States, which proved its value in WWII and the
Korean War. Helicopters rescued countless wounded and trapped troops and
brought water, food, ammunition and medical equipment to the fighting men.

right or left . For straight flight, the pitch of the tail rotor is set to prevent the

helicopter’s body from turning to the right as the main rotor turns to the left.

The pilot pushes the left pedal to increase the pitch of the tail rotor and turn

the body to the left. He pushes the right pedal to decrease the pitch of the tail

rotor and turn the body to the right.
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Science Progress Report No. 18

World-War II (Sep 01, 1939 – Sep 02, 1945)

“In the arts of life man invents nothing; but in the art of death he outdoes
Nature itself ”

George Bernard Shaw, the Devil’s words to Don Juan, 1903 (1856–1960)

“There occur from time to time in the course of history, men who have a
special genius for conquest and destruction. Think of Alexander the Great,
Attila (properly named flagellum Die = “the scourge of God”), Ghingiz Khan,
Hulagu (who sacked Baghdad in 1258). The methods of these men were very
much the same “Blitzkrieg” accompanied by ruthlessness. Of course, these
monsters did not think of themselves as ‘destroyers’ but of builders of a “new
order”. They did establish a kind of order, for when their work was done,
there ruled in their dominion the order of exhaustion and death. We may
apply to them the incisive words which the British chieftain Calagus applied
to the Romans: ‘To plunder, butcher, steal — these things they misname
empire; they make a desolation, and they call it peace”’.

George Alfred Léon Sarton, 1948 (1884–1956)

“Science in the 20th century was doubly warned by history: the First World
War and the coup de grace of the second World War with its associates,
genocide and vile totalitarianism”.

Anon

A. Forerunner — the decline of science in Germany

The main trend in German science at the turn of the century became one of
ever-increasing nationalism. In 1914 a manifesto was issued, signed by 93 em-
inent German scientists and scholars, including such men as Ehrlich, Haber,
Ostwald and Planck, which accused the contemporary British and French
scientists of plagiarism, and claimed that the priority of German scientists
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to a number of discoveries had not been acknowledge outside Germany. A
number of eminent German-speaking scientists did not associate themselves
with the manifesto, notably Einstein, but they were in the minority.

From 1930 on, German nationalism began to weaken German science, and
the decay in the quality of German science was an inevitable consequence
of the degeneration of German culture under the Nazi regime. First, there
was the “brain-drain” of Jewish and anti-Nazi scientists who left Germany
for Britain, the United States and other countries. No less serious was the
infusion of national-socialism into German science. Nevertheless, the theories
of science kept contradicting the tenants of national socialism: In physics there
was a postulate of the equivalence of all observers of nature (no privileged
race!) whilst the findings of biologists and anthropologists did not agree with
the racial pseudoscience.

The spirit of national socialism gradually infected German scientists, and
there appeared a tendency toward self-glorification both on the national and
personal levels. With the rise of Germany’s military power came the decline
of fundamental research and its applications.

From 1933 on, Germany and with it all of central Europe was gradu-
ally emptied of its best mathematicians, physicists, biologists and chemists
(Einstein, Bohr, Franck, Stern, Schrödinger, Born, Wigner, Teller,
Noether, Weyl, Courant, Gödel, von Neumann, Bloch, Brauer,
Artin, Ulam, Neugebauer, Wald, Neyman, Eilenberg, Chain, Krebs,
Haber, Delbrück, Hertzberg, Lipmann, Meyerhof and others).

In toto, about 1150 Jewish scientists, many of them of great brilliance and
in high positions, left Germany between 1933 and 1935 — a clear indication of
the major role played by the Jews in German science before the rise of Hitler.

This exodus of intellectuals from Europe was mostly directed towards the
U.S., which was very fortunate to be able to integrate the European scientific
heritage into the ranks of its growing young sciences977. Most of the refugees

977 The growth of the number of Jewish students in the American Ivy League uni-

versities during the 1920’s was viewed with alarm by the WASP leadership of

these institutions. At Harvard, for example, president A.L. Lowell struggled

with his faculty to institute formal quotas for entering undergraduates. His

policies resulted in a sizable reduction of the proportion of Jewish students,

from 25–27% in the 1920’s to 10–16% in the 1930’s. Thus, for example, Nor-

bert Wiener was black-listed by George Birkhoff. Harvard’s concern over

what Lowell termed “the Jewish problem” was not unique. When M.I.T. made

trouble over the appointment of Norman Levinson to an assistant professorship,

G.H. Hardy, who was visiting M.I.T. that year (1932), threatened Vannevar

Bush, then M.I.T. president, to spread the news that M.I.T. stood for the
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were Jews. They belonged to that part of the population that contributed

about 30 percent to overall German achievements in the sciences during 1800–
1933.

The physics brain-drain was accompanied by the rise to power of two

strongly antisemitic physicists978, Johannes Stark (1874–1957) and Philipp

Lenard (1862–1947). They considered the whole field of atomic physics as

a Jewish fraud979. Quantum theory and relativity were for them “Jewish”

physics, in contrast to “German” (or “Aryan”) physics. German physicists

who accepted and taught Jewish physics were called “white Jews”. The detri-

mental effects on physics in Germany were obvious.

In the biological sciences, those who had inspired the greatest develop-

ments in the field had left Germany and were to die in exile: Fritz Haber,

Richard Willstätter, Otto Meyerhof, Carl Neuberg, Max Bergmann

and Rudolf Schoenheimer.

During the 1933 business meeting of the Mathematische Reichsverband

(MR) [Reich Mathematical Association], the ‘leader’ principle was accepted,

and the former chair and now ‘leader ’ of the group, Georg Hamel, made the

Massachusetts Institute of Theology.

The influx of European scholars during the 1930’s boosted the xenophobia in

academic circles to unprecedented levels; in his address to the AMS in 1938,

on the occasion of its 50th anniversary celebration, G.D. Birkhoff warned his

audience that eminent researchers from abroad were reducing the number of

available positions for young Americans with “the attendant probability that

some of them will be forced to become ‘hewers of wood and drawers of water’.”

Four years earlier, on 18 May 1934, the same Birkhoff had written a letter to

R.G.D. Richardson to discourage the candidacy of Solomon Lefschetz for pres-

ident of AMS: “I have a feeling that Lefschetz will try to work strongly for his

own race. They are exceedingly confident of their own power and influence in

the good old U.S.A.. . . He will get very racial and use the Annals as a good deal

of racial perquisite. The racial interests will get deeper as Einstein’s and all

of them do”. In spite of Birkhoff’s antisemitic opposition, however, Lefschetz

became the first Jewish president of the AMS in 1934.

Eventually, the great influx of European talent had transformed academic and

artistic life in America.
978 On Lenard’s office door in Heidelberg was a note: “Entrance to Jews not per-

mitted”.
979 In 1945, Stark and Lenard must have considered themselves very lucky that the

fraudulent Jewish device was dropped on Hiroshima in lieu of Berlin.
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following statement: “We want to cooperate sincerely and loyally in accor-
dance with the total state. Like all Germans, we place ourselves uncondition-
ally and happily in the service of the National Socialist movements, behind
the Führer”.

The expulsion of mathematicians from their positions began with the “Law
for the Restoration of Civil Service” of 7 April 1933. Richard Courant, Ed-
mund Landau, Felix Hausdorff, and Otto Toeplitz were among the victims980.
In 1937, the “New Official’s Law” affected even those who were “related to
Jews by marriage” like Erich Kamke or Emil Artin. By 1938 more than
one-fourth of the 227 mathematics instructors in German universities were
expelled981. These loses could hardly be replaced. Of the 7319 students of
physics and mathematics in 1931, only 1270 remained by 1939.

In 1934, the secretary of the Deutsche Mathematiker-Vereinigung (DMV )
[German Mathematicians Union], Ludwig Bieberbach, who became the Nazi
ideologue of mathematics, extended the Nazi racial theory into the realm
of mathematics. Justifying the student boycott against Landau he divided
mathematics into Jewish and Aryan mathematics. The former he character-
ized as “mental arrogance”, devilish cleverness, “juggling with concepts” and
the “cunning of Jewish mathematicians like Jacobi”.

In 1934, David Hilbert was sitting next to the Nazis’ newly appointed
minister of education, at a banquet. When asked: “And how is mathematics
in Göttingen, now that it has been freed of the Jewish influence?” Hilbert
replied: “Mathematics in Göttingen, there is really no such thing any more”.

Most German scientists considered public expression of any political alle-
giance to be inconsistent with the dignity of their profession. Einstein was
exceptional in his open avowal of socialism and pacifism, as were Lenard and
Stark in their vociferous devotion to the ‘Führer’. The German universities,
however, both staff and students, had been the strongest supporters of an-
tisemitism, and the Weimar Republic had few friends among the professors.

980 After the purge of the Göttingen Mathematical Institute from all of its eminent

Jewish mathematicians, the Nazis appointed in 1934 one of their devoted mem-

bers, Helmut Hasse (1898–1979) to succeed Richard Courant as head of the

institute. By irony of fate, the spirit of what the Nazis called Jewish mathemat-

ics continued to live in the works of Hasse, who learned all he knew from his

Jewish teachers Kurt Hensel, Edmund Landau and Emmy Noether and

propagated their ideas in his own papers during the pre-Nazi period 1923–1931.

After the exodus, his contributions to mathematics became rather mediocre and

some of his conjectures in number theory have now even proven wrong.
981 This program was overseen by the virulent Nazi mathematician Oswald Te-

ichmüller (1913–1943) who perished on the eastern front.
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As early as 1930, the University of Jena appointed the virulently antisemitic
Hans Gunther as Professor of Racial Science (Rassenkunde) and his inaugural
address was wildly cheered by the students.

Several efforts were made to persuade Max Planck to make a public protest
against the Nazi dismissals of Jewish and socialist professors. Otto Hahn
asked him to support a statement by a dozen eminent physicists, but Planck
refused. Marie-Elisabeth Lüders, a former member of the Reichstag and old
family friend, twice visited Planck in January, 1933, and asked him to support
a protest in which scientists would withdraw from all teaching and research.
In later years (1963) she recalled their last meeting:

“I hoped that this general strike of the intellect would tear from the eyes
of millions half-blinded the veil behind which the Nazis concealed their dan-
gerous abyss toward which they were leading Germany. I left Planck with
the dreadful knowledge that there was no way to stop the coming downfall of
German Science, and no remedy against the disgraceful readiness of so many
to sell out teaching and research. Planck himself felt that what was to come,
must come. After a long silence, he went to his grand piano and played a
Bach chorale, then he offered me his hand, and I left”.

In fact, Planck, in a way, cooperated with the Nazi regime: he uttered
“Heil Hitler” and raised his arm in the Nazi salute whenever required of him.
He even signed his letters to the minister of education with a “Heil Hitler”. In
his lectures and seminars he refrained from mentioning Einstein’s name982,983

Planck’s personal situation was so prestigious that he could have spoken
against some of the excesses of the regime without fear of reprisals, but he
chose to remain silent.

Years after the Second World War Einstein told a friend who was going to
visit Germany: “Give my regards to Laue”; “And Planck?”, the friend asked.
Einstein shook his head sadly.

There is no known instance in which a professor of physics or chemistry
without any Jewish family ties ever made an open protest against Nazi activ-
ities. During 1933 and 1934, the scientific establishment, led by Max Planck
and Walther Nernst, washed its hands of the growing terror and concentrated
on defending its own special privileges.

982 In contradistinction, Laue was teaching relativity theory in his seminars, always

assuring his students that it had originally written in Hebrew!
983 Yet, the Nazis reciprocated in their own satanic way: On July 23, 1944, three

days after the failure of the plot to assassinate Hitler, Planck’s son Erwin was

arrested on charges of friendship with some of the conspirators. He was then

executed on January 23, 1945.
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On the 25th anniversary of Kaiser Wilhelm Gesellschaft, in 1936, Planck
was able to send a telegram to Hitler thanking him for his “benevolent pro-
tection of German science”.

The only notable German scientist who was conspicuous in his disapproval
of the Nazis was Max von Laue, and even his actions were taken within the
physics establishment and not in open criticism of the regime. Laue tried
without success to persuade Heisenberg to help resist the worst Nazi excesses.

This unbroken record of collaboration had its hues and shades: Many were
merely opportunists who welcomed the chance to advance their careers by tak-
ing the positions of dismissed Jews, while the more eminent were either mildly
anti-Nazi like Planck and Hahn, or moderately pro-Nazi like Heisenberg.

During the war (1939–1945) the Nazis have systematically and scientifi-
cally exterminated in Poland 6 × 106 Jews from all over Europe. Among them
were many thousands of talented potential scientists, most of which vanished
anonymously into oblivion. The ashes of the Auschwitz ovens must have been
permeated with the remnants of the brains of future geniuses984.

Unpardonable were also the crimes of omission: The allies and most of the
democratic world did very little to offer refuge and save those who could be
saved; thus, the allies refused to bomb the gas chambers at Auschwitz and the
railroads leading to it during the war.985 During the years between 1933 and

984 Example: Ela Chaim Cunzer (pronounced Tsunzer) was born on June 6, 1914

in Lubcz, a small town near Wilno (present day Vilnius, capital of Lithuania).

During 1932–1937 he studied for his master degree in mathematics under An-

toni Zygmund (1900–1992) at the Stefan Batory University, Wilno, Poland. His

master’s thesis was On convex and subharmonic functions (1937).

After the Nazi occupation of Wilno (June 1941), many Jews were murdered

in Ponar, peaceful woods outside Wilno. Cunzer, then working on his Ph.D.

thesis, was herded, with others, into the Wilno ghetto. There, in the face of

day-to-day treat of death by starvation, disease and violence, he continued in

unimaginably crowded and squalid quarters to work on his doctoral thesis.

When asked by his cousin whether studying mathematics under such horri-

fying conditions did not make him feel crazy, he replied: “I would go insane if

I did not do it”.

Cunzer was deported from the Wilno ghetto to a concentration camp where he

perished during the winter of 1943–1944.

His thesis was found intact in 1993 in the archives of the Vilnius University.
985 The American President Franklin Delano Roosevelt (1882–1945) and the

British Premier Winston S. Churchill (1874–1965) refused to do it, despite

the fact that Allied bombers were regularly dropping bombs in military targets

in the vicinity of the death camps. It is incomprehensible how such an enormous
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1948, of all the nations in the Western world, Canada had the worst record
in providing sanctuary to European Jewry. In fact, Canada was hermetically
closed to the Jews of Europe. After 1945, however, Canada opened its gates
to... Nazi war criminals (!) who settled there by the thousands.

It is a story summed up best in the words of a Canadian official who
when asked how many Jews would be allowed into Canada after the war,
replied: “None is too many”986. Had Canada been admitting European Jews,
her cultural record could have looked better. But it is a matter of record
that no Canadian won the Nobel prize for Physics, Economics, Chemistry or
Literature during the entire 20th century until 1971, and very few afterwards.

The behavior of the ‘neutral’ countries in Western Europe did not fare
better: they were willing to accept blood money for economic advantages.
This was particularly true of Switzerland987.

moral crime could have been perpetrated by Christian men deeply versed in the

ancient Biblical tenet: “Thou shalt not stand against the blood of thy neighbor:

I am the Lord.” (Leviticus 19, 16).

Ironically, Roosevelt’s mother, Sara Delano (1855–1941) was of Jewish origin

(de-Leone) and his ancestors (who arrived from Holland in 1649) were also

Jewish (Rosenfeld).
986 “NONE IS TOO MANY”: Canada and the Jews of Europe 1933–1948, by Irving

Abella and Harold Troper, Lester and Orpen Dennys, Publishers Toronto, 1983,

285 pp.

From 1933 to 1945, the United Kingdom opened its doors only to 70,000, and

allowed another 125,000 into British-administered Palestine. Argentina took

50,000, Brazil 27,000 and Australia 15,000, The United States took only 200,000

Jews, including the select of European intellectual, cultural and scientific life.
987 The majority of Americans, when referring to Switzerland, think of exquisite

chocolates, fine timepieces and visions of Heidi chasing goats across alpine mead-

ows. Nonetheless, Switzerland was a much different nation during the 1940’s

despite that idyllic view. While the legend of the fierce Swiss neutrality lives on,

it is more of myth considering Swiss policy during WWII was balanced heavily

in favor of the Nazis. Much of Switzerland’s complicity with the Nazis has only

recently (1997) come to the forefront from the efforts of President’s Clinton

action regarding the return of the gold of the holocaust victims, allegedly held

in the cellars of the Union Bank of Switzerland.

In Aug 1938, The Federal Council of Switzerland petitioned the Nazi govern-

ment in Berlin to affix a “J” stamp on all passports for Jews in order to make it

easier for their border guards to turn away Jews. Over 30,000 Jewish refugees

were thus turned away. In August 1942, the Federal Council passed an addi-

tional law to seal the border to Jewish refugees. At the same time Switzerland

made fortunes in dealing with the Nazis: Swiss manufacturers provided the
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A fact that transcends all others is that the Jews of Europe were not
so much trapped in a whirlwind of systematic mass murder as they were
abandoned to it. The Nazis planned and executed the Holocaust, but it
was made possible by an indifference to the suffering of the victims which
sometimes bordered on contempt. The Nazis read rejection of the Jews by
the democracies and the Catholic Church988 as tacit approval of their policies.
If no one wanted them, then the Nazis felt free to offer their own solution.
The Holocaust followed.

B. The military conflict: Sept. 1, 1939–Sept. 2, 1945

More than 50 countries, representing the majority of world population took
part in the war, which caused previously unheard of human misery. It killed
more persons, cost more money, damaged more property, affected more people
than any other war in history. It heralded the atomic age and brought about

Nazis with ball-bearings, timers, locomotives, arms, ammunition, aluminum,

electric power and other manufactured goods used in the production of war

equipment. Credit Suisse and Union Bank supplied the Nazis with foreign cur-

rency. In return the Nazis deposited in Swiss Banks large amounts of looted

gold, gems and art objects.
988 Neither the Vatican nor its German prelates even condemned the foul principles

and practices of the Nazi Government. On the contrary, both Pius XI and Pius

XII helped Hitler to attain power and made repeated and increasing efforts to

contact an alliance with him. In fact, Pius XII was the ideal Pope for Hitler’s

unspeakable plan. In his book: ‘Hitler’s Pope’ (Viking, 1999), John Cornwell

(a practicing Catholic) asserted that Eugenio Pacelli, alias Pope Pius XII (1876–

1958), the Pope during World War II, brought lasting shame on the Catholic

Church by failing to denounce the Final Solution. According to Cornwell, Pacelli

was “a ruthless cynic and a secret anti-semite who was more interested in the

Vatican’s stockholdings, than the fate of the Jews.” Cornwell charges that the

pope was so intent on signing the Reich Concordant that he facilitated Hitler’s

rise to power, suppressed the Catholic Center Party in Germany, gulled Catholic

resistance to Nazism, refused to support the Allies against Hitler, kept silent

when by speaking out he could have saved European Jews, allowed Nazis to send

Roman Jews to concentration camps and supported the Nazi puppet regime in

Croatia.

Similar accusations were made by Rolf Hochhuth’s drama ‘Der Stellvertreter’

(The Deputy, 1963).
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sweeping changes in warfare and geopolitics, as well as science, technology
and their relation to society.

The cost of the war and its damages totaled 1600 billion dollars. Ca. 75
million servicemen fought on either side, of which 16 million were killed989,
10 million were wounded and 3 million were missing. In addition, about 20
million civilians were killed990.

Scientific inventions and discoveries helped shorten the war. Among them:
radar991, guided missiles, jet engines, early computers, and the atomic bomb.

Germany surrendered on May 7, 1945. It took two atom bombs (Hi-
roshima, Aug. 6, 1945; Nagasaki, Aug. 9, 1945) to bring about Japan’s sur-
render on Sept. 2, 1945.

C. German Secret Weapons

Between 1936 and 1944, Germans mere achieving a quite revolutionary level
of design and development in aeronautical science. Although both Britain
and the United States achieved great success during pre-war and war years
in designing and developing fighters and bombers of an entirely conventional
type (the Spitfire, Flying Fortress, Lancaster, Mosquito and P-51 Mustang),
equal or superior of their German equivalents — Germans built and flew
the first practical helicopter (the Focke-Achgelis FW-61), the first turbo-jet
aircraft (the Heinkel He 179), the first cruise missile (the FZG-76 or V-1) and
the first extra-atmospheric rocket (the A-4 or V-2).

It was an astonishing achievement, largely conducted in complete secrecy.
Only the small size of Germany’s industrial base, compared to that of the
United States, prevented it from dominating the skies during WWII. Of all
four achievements: helicopter, jet aircraft, cruise missile, rocket, the develop-
ment of the V-2 was by far the most impressive.

989 Weather vicissitudes also played an important role in WWII: In 1941, a million

German soldiers invading Russia succumbed to the winter, thus changing the

course of the war. On Dec 13, 1944, the U.S. Pacific 3rd fleet under Admiral

Halsey lost 3 destroyers with 7 more damaged, 100 aircraft and 800 men during

a typhoon — one of the worst losses of the U.S. Pacific fleet during the war.
990 Russia claimed to have lost 27 million of its citizens. Of these 300,000 soldiers

were killed during the battle of Berlin.
991 British historians maintain that “The atomic bomb ended the war but radar

won it.” This reflects the opinion that radar decided the 1940–1941 ‘Battle of

Britain’.
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Honors in the V-weapons campaign, if that word can be used about a
method of making war on civilians, go to the Germans. Both the V-1, the
first cruise missile, and the V-2, the direct technical ancestor of all extra-
atmospheric missiles and of the space rockets, were far in advance of any
aeronautical weapon produced by their enemies in 1939–45. Wernher von
Braun, who was to become an American citizen and to be celebrated as
“the father of the space programme,” was a scientific genius. The men who
produced the V-1 were aeronautical technicians of the first class. Had Hitler
had the vision to devote a proportion of Germany’s scientific effort similar
to that given to other weapon programmes to nuclear weapons, it is possible
that, with the V-weapons, he could have won the war.

Let us go in some more technical detail into the V-weapons: up to 1940, the
Germans made good progress in the fields of aerial radio navigation, radar,
tank technology and underwater warfare. These developments were mani-
fested in the following weapon-systems, graded in ascending order of impor-
tance:

• The anti-ship glider bomb (the HS 293)

• The acoustic torpedo (“Zaunkönig”)

• The rocket-propelled shell (V-2, father of the ballistic missile; developed
by the German Army)

• The Flying bomb (FZG-76 or V-1; father of the modern cruise missile,
known as Flakzielgerät; developed by the German Airforce)

The V-1 had the shape of cylinder, pointed at the nose, containing a ton
of high explosives and was detonated by an impact fuse. Two short wings
were attached at the point of launch. At the rear, mounted above the tail
assembly, was the tube for a pulse-jet, fueled by low-grade petrol fed from an
on-board tank. A shutter system caused the injected fuel to burn in regular
bursts, giving the missile a speed over 640 km

hr , its characteristic drone and a
range of 240− 320 km. A single cut-out device shut off the fuel at a selected
point, leaving it to dive vertically to earth.

It was either launched from a mother aircraft or from a ramp. It was
reliable and cheap, costing about 150 sterlings in 1944 values.

Had it been given priority, and been mass-produced in large numbers dur-
ing 1943, it would have caused terrible damage to London and other southern
British cities; it might have disrupted shipping in British southern ports as
to have set back the June 1944 invasion.

But its production schedule (16,000 units during Jan-Sept. 1944) was not
met because the V-2 programme diverted most of the secret weapons efforts.



1940 CE 4547

The V-2 was expensive (12,000 sterling in 1944 values), complex (65,000
separate modifications had to be carried out before reliable performance was
achieved), too difficult to mass-produce, and delivered too small a warhead
to achieve decisive results. Its development was plagued by guidance system
failures, disintegration of rocket body and explosion of the fuel.

However, it needed no elaborate launching system, it achieved stability
without rotation, it had on board an autonomous guidance system, it was
liquid-fueled and was single-stage — a truly revolutionary weapon.

D. The Breaking of the German and Japanese Codes

∗ ∗∗

“Amid the torrent of violent events one anxiety reigned supreme. Battles
might be won or lost, enterprises might succeed or miscarry, territories might
be gained or quited, but dominating all our power to carry on war, or even
keep ourselves alive, lay our mastery of the ocean routes and the free approach
and entry to our ports.”

Winston Churchill

∗ ∗∗

Two words describe the German WWII fighting machine successes: or-
ganization, and communication. Their lightning “blitzkrieg,” which allowed
them to roll over Europe almost unopposed, was a well-coordinated operation
employing panzers (tanks) and Stukas (dive bombers). At sea, their efforts
were aimed at cutting England’s supply line from North America by well-
directed submarine “wolf pack” attacks on convoys. For communications, the
Germans relied almost entirely on messages sent by radio. These messages
could be heard, of course, by anyone equipped with a receiver.

To ensure that the enemy would not intercept vital information, they used
an electro-mechanical device called Enigma to encode the data. They believed
that even if the enemy were to capture a machine, it would be useless unless
both sender and receiver were also in possession of the same “key” which
described how the message was encoded.
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The Germans used different radio frequencies and keys for messages sent to
their various units. This ensured that messages meant for the Luftwaffe (Air
Force) were not readable by the Kriegsmarine (Navy). By assigning different
keys to different units, communication could be directed to the appropriate
unit. Not only would there be no point in a submarine decoding a message
meant for a panzer unit, but some ultra-secret messages (for example to the
SS) were confidential.

Scherbius’ Enigma, in a modified and improved form, was later used
widely throughout the German armed forces as the standard method of en-
crypting messages prior to radio transmission.

The British ULTRA and the American MAGIC are names applied to Allied
Intelligence obtained from cryptoanalysis. It played a decisive role in many
of the major battles in the European, Mediterranean, Atlantic and Pacific
theaters. Most of ULTRA was derived from German traffic, after the Poles
(1933) and the British (1940) have broken the Enigma Code. Likewise, most
of MAGIC came after American cryptoanalysts breached the Japanese ‘RED’
and ‘PURPLE’ codes in 1940.

Had the Enigma Code not been broken, the Battle of Britain and the Bat-
tle of the Atlantic might have been lost, and England forced to capitulate992.

992 Prior to the outbreak of hostilities, England had established a balance of trade

with the Western hemisphere. Manufactured goods were traded for raw ma-

terials such as oil, iron and grain. With the outbreak of war, this balance

shifted. Imports increased while exports decreased as manufacture moved to

the production of weapons. This excess of imports over exports was paid for

by transferring England’s gold reserves to the West. But those reserves, not

unlimited, were rapidly becoming exhausted. German submarines were taking

a fearful toll of merchant shipping. Prime Minister Winston Churchill realized

that England’s only salvation was to involve the United States in the conflict.

Franklin D. Roosevelt, President of the United States, was sympathetic to the

British cause, but his hands were tied by the complexities of American politics.

It was a delicate situation — how could America supply vital war materiel to

Great Britain and, at the same time, maintain its neutrality?

Roosevelt knew that America’s involvement in the global conflict was inevitable,

but the country was in no mood for another war. Furthermore, there was no

guarantee that England would not be defeated. Roosevelt not only had to face

an isolationist Congress, but worried that he would not be elected to a third

term, realizing that switching national leaders on the eve of war would be most

unwise.

The Irish Free State (Republic of Ireland, or Eire) had been established in 1921,

leaving Northern Ireland still closely tied to Great Britain. As part of the settle-

ment, some naval bases in the Irish Republic were occupied by the British. At
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The Americans would have been denied a staging ground for the invasion of
Europe. The War might have been dragged on for another two years, with
many more millions of lives lost. Far worse, given this respite, Hitler might
have developed the atomic bomb, and, most unthinkably, mated it to a 3-stage
intercontinental ballistic missile capable of crossing the Atlantic.

So, already by 1940, the Allies were reading their enemy’s mail on a reg-
ular basis and by the end of the War, some 10,000 people with sophisticated
computers were decoding Axis messages, which they never could without the
pioneering work of the master-codebreakers Marian Rejewski (1906–1980,
Poland), Alan Turing (1912–1954, UK) and William F. Friedman (1891–
1969, USA).

Cryptology, the science of ciphers, has applied since the very beginning
some mathematical methods, mainly the elements of probability theory and
statistics.

the start of World War II, the Irish Republic flatly refused to become involved

unless the whole island was united under their rule. The British declined, and

relinquished their bases. However, they still maintained facilities in Northern

Ireland, which guarded the vital Atlantic approaches. (The Republic of Ireland

managed to stay neutral throughout World War II.)

In view of this, it was not surprising that Irish-Americans resisted the United

States siding with the British. Irishman Joseph Kennedy, America Ambassador

to Great Britain, was convinced that England could not hold out much longer.

Some industrialists were looking forward to lucrative sales to a Nazi domi-

nated Europe. Other Americans holding anti-British sentiments were German-

Americans and American Communists (in view of Germany’s non-aggression

pact with Russia). Irishman John L. Lewis of the powerful United Mine Work-

ers Union, controlled 5 million anti-Roosevelt votes. Besides, if England’s fall

was a foregone conclusion, why send military aid that would only fall into Ger-

man hands?

Finally the U.S. arms embargo was modified to allow a “Cash and Carry” pol-

icy, declaring certain arms “surplus,” which Britain could purchase for cash.

There were other ways to get around the arms embargo; in September, 1940,

fifty American four-stacker destroyers were traded for the U.S. use of British

bases.

As British supplies of U.S. dollars and gold reserves were rapidly depleted, tech-

nology was traded for credit. The magnetron, an essential radar component,

had been invented by the British, but was traded to the U.S. for arms.

Nov. 5, 1940, Roosevelt was elected to a third term, the first ever for a U.S.

President, his hands now free to send vitally needed aid to Great Britain. On

Jan. 10, 1941, the “Lend Lease” program was instituted. By War’s end 30

billion dollars had been lent to Great Britain.
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Mechanical and electromechanical ciphering devices, introduced to prac-
tice in the 1920s, broadened considerably the field of applications of mathe-
matics in cryptology. This is particularly true for the theory of permutations
(substitutions), developed in the second half of the 19th century. Its applica-
tion by Polish cryptologists enabled, during 1932–1933, to break the German
Enigma cipher, which subsequently exerted a considerable influence on the
course of WWII (1939–1945).

In the period between the World Wars, all the major powers and some
of the minor ones were routinely decoding each other’s messages. The Polish
Cipher Bureau was among the best, and in 1932 embarked on a determined
mission to break Enigma.

They were assisted by documents passed to them by the French stolen
by Hans-Thilo Schmidt, an avaricious German cipher clerk with the chilling
codename ASCHE (Ashes). Schmidt was arrested, interrogated and shot for
his treachery in 1943.

At the Cipher Bureau, three university mathematics students, Mar-
ian Rejewski (1906–1980), Henryk Zygalski (1906–1978) and Jerzy W.
Rozycki (1909–1942), succeeded in breaking the Enigma in 1933. In one
of the greatest-ever feats of cryptoanalysis, Rejewski deduced the internal
wiring of the Enigma’s rotors and Umkehrwalze. Zygalski invented a crypt-
analytical method using perforated sheets which exploited the German pro-
cedural error of repeating the encipherment of the message-setting. Rózycki
devised the clock method which was sometimes able to determine which of
the Enigma’s rotors was in the fast position. The Poles invented two rotary
electro-mechanical machines, the cyclometer and the bomba, to assist in their
work.

Prior of the invasion of Poland by the Nazis, the Poles handed to the
British cryptoanalysts the gear they developed for cracking the Enigma mes-
sages, and during the autumn of 1939, the scientists and mathematicians
at Bletchley learned the intricacies of the Enigma cipher and rapidly mas-
tered the Polish techniques. The Bletchley group was a bizarre combination
of mathematicians, scientists, linguists, classicists, chess grandmasters and
crossword addicts. A figure, who deserves to be singled out of this group
was Alan Turing, who identified Enigma’s greatest weakness and ruthlessly
exploited it993.

993 Turing focused on what would happen if the German military changed their sys-

tem of exchanging message keys. Bletchley’s early successes relied on Rejewski’s

work, which exploited the fact that Enigma operators encrypted each message

key twice (for example, if the message key was YGB, the operator would enci-

pher YGBYGB). This repetition was supposed to ensure that the receiver did
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Yet, Bletchley still failed to crack the Naval Enigma and the Allies had
no idea of the location of the German U-boats. Between June 1940 and June
1941 the Allies lost an average of 50 ships each month, and there was also
a terrible human cost. (50,000 Allied seamen died during the War.) Britain
was in danger of losing the Battle of the Atlantic, which would have meant
losing the war.

Thus, an alternative strategy for cracking the Naval Enigma depended on
stealing keys. Combined with the Rejewski-Turing techniques, the German
Naval Code was finally breached.

The most valuable intelligence produced by the British intelligence services
during WWII was derived from the interception and decryption of enciphered
enemy signals.

By December 1940, with the help of recently acquired IBM card-sorting
machines, Friedman’s group at the SIS broke the Japanese diplomatic traffic
enciphered on the “Purple machine.” This machine was designed to achieve
the same effect as Enigma. It was less mechanical, having no rotors, but
instead a set of telephonic switches, connected to two typewriters. The first
was used to input the text, the second to print out the encipherment for
transmission. In between, the switches moved the incoming electrical current
to achieve alphabetic substitutions.

not make a mistake, but it created a chink in the security of Enigma. British

cryptanalysts guessed it would not be long before the Germans noticed that the

repeated key was compromising the Enigma cipher, at which point the Enigma

operators would be told to abandon the repetition, thus confounding Bletchley’s

current codebreaking techniques. It was Turing’s job to find an alternative way

to attack Enigma, one that did not rely on a repeated message key.

As the weeks passed, Turing realized that Bletchley was accumulating a vast

library of decrypted messages, and he noticed that many of them conformed

to a rigid structure. By studying old decrypted messages, he believed he could

sometimes predict part of the contents of an undeciphered message, based on

when it was sent and its source. For example, experience showed that the Ger-

mans sent a regular enciphered weather report shortly after 6 a.m. each day.

So, an encrypted message intercepted at 6:05 a.m. would be almost certain to

contain wetter, the German word for “weather.” The rigorous protocol used

by any military organization meant that such messages were highly regimented

in style, so Turing could even be confident about the location of wetter within

the encrypted message. For example, experience might tell him that the first six

letters of a particular ciphertext corresponded to the plaintext letters wetter.

When a piece of plaintext can be associated with a piece of ciphertext, this

combination is known as a crib.
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E. The Manhattan project (1942–1945)

The magnitude of the potential technical revolution introduced by the dis-

covery of nuclear fission, (especially its potentialities as a weapon in the face

of the imminence of WWII), drove Eugene Paul Wigner (1902–1995) and

Leo Szilard (1898–1964, U.S.A.) to seek the help of Albert Einstein, then

at the Princeton Institute for Advanced Study.

The events that followed heralded the nuclear age: Einstein agreed to

write a letter to U.S. President Franklin D. Roosevelt (1882–1945), in which

he suggested that the fission of uranium could be used to produce an atomic

bomb (Aug. 2, 1939).

The result of this letter was the establishment of the Manhattan project
by the U.S. Government for the production of an atomic bomb. The work

started in 1942. It was the largest single enterprise in the history of science

and technology, and also the costliest single weapons project.

It comprised 37 installations in 19 states and Canada, and employed

43, 000 people with an overall budget of 2.2 billion dollars. A large num-

ber of physicists, among them famous scientists who had fled totalitarian

Europe, such as Niels Bohr, Enrico Fermi and Leo Szilard, joined the

project. New cities sprouted in the wake of the project: Oak Ridge, TN, for

the gaseous diffusion plant for the separation of U235 from U238 (p. 79,000),

and Hanford, WA, for the nuclear reactors that transformed U238 to Pu239

(p. 60,000). The fissionable material was shipped to Los Alamos, NM where

Robert J. Oppenheimer directed the design and assembly of the bomb

itself.

At 3 : 20 pm on Dec. 2, 1942, Fermi and his co-workers at the University

of Chicago succeeded in producing the first man-made chain reaction, in an

uranium and graphite pile set on the floor of a squash court. As soon as

this happened, Arthur Compton sent the cryptic message, “The Italian
navigator has landed in the new world”, to other American scientists working

on nuclear research.

The bomb was finally tested on July 16, 1945, at a secret site near Alam-

ogordo, NM. A later War Department news release described the resulting

phenomenon in those words: . . . “the whole country was lighted by a searing

light with an intensity that of the midday sun. It was golden, purple, vio-

let, grey, and blue. It lighted every peak, crevasse, and ridge of the nearby

mountain range with a clarity and beauty that cannot be described . . . The

explosion was followed by the strong, sustained, awesome roar which warned
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of doomsday, and made us feel that we, puny things, were blasphemous to
dare tamper with the forces reserved for the Almighty”994.

The Germans underrated the value of science in general during World War
II, and drafted many of their young scientists into the armed forces.

They did not appreciate the value of ‘operational research’, the use of
scientific methods for ascertaining the most effective way of deploying limited
military resources, a development which brought about a great saving of men
and materials on the allied side.

No one in Germany (apart from a few individuals who were ignored) ap-
pears to have thought of an atomic bomb composed of an element heavier than
uranium, until very near the end of the war. The possibility of developing a
bomb composed of the light uranium isotope of mass 235 was suggested, but
the idea was dropped, as the German scientists thought that the separation
of the uranium isotopes was impossible. However, the separation was carried
out in America, and so too was the preparation of elements heavier than ura-
nium, by means of the uranium pile. The German scientists conceived only
of an uranium pile for use as a source of energy. By mid-1945 they had not
yet constructed such a pile, that is, they had not reached the stage attained
in America by the end of 1942.

In addition, the Nazi nuclear research programme was dissipated between
too many research organizations. There was no von Braun, no Peenemm̈unde
and never enough money. The world, nevertheless, had a very narrow escape.

It is remarkable that the atomic bomb was mainly created (both theoreti-
cally and experimentally) by Jewish scientists from Europe and the USA, who
were motivated by their desire to win the nuclear race with Nazi Germany.
Many of them were deeply disappointed when the allies decided to drop it
instead on Japan and later use it as a threat in the Cold War against the
Soviets.

In the field of radar, the German did not go beyond the generation of
radio waves of the order of a meter995. In Britain, the development of the
magnetron rendered waves of few centimeters or so in wavelength, affording

994 Incidentally, Robert Andrews Millikan (1868–1953) along with the scientific

advisers of Harry S Truman and Winston S. Churchill did not believe that the

bomb would explode. Even Albert Einstein had his doubts; to a question of

a reporter of the Pittsburgh Gazette (Dec 29, 1934) whether the huge amounts

of energy corresponding to his formula (E = mc2) might be released by bom-

barding an atom, he replied: “It is as unpromising as firing at birds in the dark,

in a neighborhood that has few birds.” Leo Szilard knew better.
995 The Germans had set up their own radar stations, but employed them in anti-

shipping operations. German radar operated on a much shorter wavelength



4554 5. Demise of the Dogmatic Universe

much greater precession in the location of objects and less interference from
extraneous sources.

F. Aftermath

WWII boosted the development of American applied science much more than
WWI. Out of WWII came not only atomic energy, computers and radar, but
many other advances:

WWII brought an end to the development of the airplane as had been
conceived by Orville and Wilbur Wright. War-stimulated propulsion advances
in the form of turbojet and rocket engines, brought manned flight beyond the
speed of sound within man’s reach. Continued development of rocket-powered
airplanes for aerodynamic research led the technology of manned flight to
the threshold of space, at altitudes above atmospheric densities which allow
sufficient lift to airfoils.

Because of wartime shortages, American chemists worked to produce var-
ious substitute materials, such as plastics and synthetic rubber996. Many of

(1 1
2

meters to 50 cm) than the British (an unbelievable 10 meters!) and was

transmitted from bowl-shaped parabolic antennas. To determine if the British

had radar, the Graf Zeppelin (a large dirigible) made several flights up the

coastline, listening for signals. The British were tracking the largest blip they

had ever seen on their radar scopes. The Germans found nothing and concluded

there was no British radar, which would cost them dearly once they started their

attacks. They had been searching for the wrong wavelength! They had observed

British coastal installations sporting some rather old-looking antennas, none of

which were bowl-shaped, and decided they couldn’t possibly be connected with

radar. Besides, they were difficult to attack. This was to be their downfall in

the Battle of Britain.
996 The importance of rubber in warfare had been demonstrated by the Germans

in World War I. The Germans had been cut off from their foreign rubber supply

by the British blockade. Without rubber their trucks ran out of tires while the

troops did not have enough boots. In an effort to salvage the situation Germany

began experimenting with synthetic rubber. However they could never find a

formulation that worked well enough or could be produced in large enough

quantities.

In World War II, Japan rapidly captured rubber producing lands in the far

east, depriving America of 90% of its natural rubber sources. Suddenly America

found itself in the same undesirable position that had confronted the Germans

a generation before.
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these proved superior to the material they replaced. In metallurgy, when
imports of tungsten from China had been cut off during the war, molybde-
num was successfully substituted for hardening steel. Because of its enormous
contributions, American science seemed finally to have overcome the Govern-
ment’s established reluctance to support basic research. In 1950 Congress es-
tablished the National Science Foundation (NSF), the first U.S. Government-
supported body created to sponsor basic research. It was small compared
to such giants as the Atomic Energy Commission (AEC) and the Defense
Development, which together accounted for 3/4 of the Research and Devel-

However, due to their new educational emphasis, American chemical engineers

were in a position to make great contributions to the synthetic rubber effort.

The unit operations concept, combined with mass and energy balances and ther-

modynamics (which had been stressed in the 30’s), allowed the rapid design,

construction, and operation of synthetic rubber plants. Chemical engineers now

had the training to build industries from the ground up. With funds from the

government, the chemical industry was able to increase synthetic rubber pro-

duction over a hundred fold. This synthetic rubber found uses in tires, gaskets,

hoses, and boots, all of which contributed to the war effort.

As German tanks and bombers swept across Europe using Blitzkrieg tactics, it

became evident that World War II would be a highly mechanized conflict. The

Allies needed tanks, fighters, and bombers, all supplied with large quantities of

high quality gasoline. In supplying this fuel the American petroleum industry

was stretched to its limit.

However, the development of Catalytic Reforming in 1940 by the Standard Oil

Company had given the Allies an advantage. The reforming process produced

high octane fuel from lower grades of petroleum (and it also made Toluene for

TNT). Because of the performance edge given by better fuel, Allied planes could

compete with better designed German fighters.

During World War II, American chemical engineers where called on to build

and operate many new facilities, some never before conceived. After the war,

Germany’s massive chemical industry lay in ruins while the Americans were

still operating at full production. Nevertheless, the United States Government

still feared the German chemical complex. They therefore dismantled Hitler’s

enormous I.G.Farben and out of it, three new companies where created: BASF,

Bayer, and Hoechst.

With America firmly leading the world in chemical technology, chemical engi-

neering education began to change. Suddenly, the best way to discover the latest

events in chemical technology was not to pick up a German technical journal,

but instead to make those discoveries for yourself. Chemical engineering was

becoming more focused on science than on engineering tradition.
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opment (R&D) budget at that time. The R&D budget covered such elements
as weapons developments by the AEC and the DOD.

WWII terminated the dominance of European science, and the center of
science moved west to the United States.

In February 1950, Washington learned that for seven crucial years (1942–
1949) Klaus Fuchs, a Soviet nuclear spy, passed along secret information to
the Soviet Union, on the basis of which they could explode their own fission
bomb on Sept 22, 1949.

Military research after 1930 led to inventions which were incorporated
into decoding machines, analog computers and eventually stored-programme
digital computers. British work took place at Manchester, Cambridge and the
Natural Physical Laboratory. German work was done in Berlin, while in the
USA work centered at Harvard and Princeton.

1941–1975 CE Charles Ehresmann (1905–1979, France). Mathemati-
cian. One of the creators of differential topology. Participated in the creation
and development of current view of fiber spaces, manifolds, foliations and jets.
After 1957 he became a leader in category theory and structures defined by
atlases, and germs of categories.

Ehresmann was a native of Alsace997. He studied at the Ecole Normale
Supérere (1924–1927), and the universities of Göttingen (1930–1931), Prince-
ton (1932–1934) and Paris where he was awarded his Ph.D. (1934). From there
on, his career was associated with the University of Strasbourg (1939–1955)
and the University of Paris, where he held the chair of topology (1955–1975).

997 Alsace, which was originally French, had come under German rule in 1871 but

by 1902 had effective self-government. After 1911 it had its own constitution

and progress was made toward Germanization in the region. After 1919 it was

returned to France. The Germans invaded Alsace in 1940 and occupied it until

1945, whereupon it returned to the French again.
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Science Progress Report No. 19

From the Cross to the Swastika

(1543–1943)

∗ ∗∗

“First, their synagogues should be set on fire998, and this ought to be done for
the honor of God and of Christianity... Secondly, their homes should likewise
be broken down and destroyed... we ought to drive the rascally bones out of
our system: drive them out of the country for all time... so that you may be
free of this insufferable devilish burden – the Jews.”

(Martin Luther, 1543)

∗ ∗∗

“If the international Jewish financiers in and outside Europe should succeed
in plunging the nations once more into a world war, then the result will be
the annihilation of the Jewish race in Europe!”

Adolf Hitler, Reichstag speech (Jan. 30, 1939)

∗ ∗∗

“How evil are these Jews? They are responsible not just for the blood of Jesus
and the blood of all his messengers but also for the blood of all the righteous
men who were ever murdered. . .

998 On Nov 10, 1938, on Luther’s birthday, Jewish synagogues burned through-

out Germany (“Kristallnacht”). On that very day, from his Church’s pulpit,

Bishop Martin Sasse of Thuringia, a leading Protestant Churchman, said:

“The German people ought to heed these words of the greatest antisemite of his

time, the warner of his people against the Jews.”

In the light of the eliminationist antisemitism that pervaded the Protestant

churches, it is no great surprise that even many prominent Church leaders threw

their moral weight behind anti-Jewish measures that were still more radical than

those of Kristallnacht.
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These people produce idea after idea for the benefit of the World, but
whatever it takes up becomes poisoned, and all that it ever reaps is con-
tempt and hatred because ever and anon the world notices the deception and
revenges itself in its own way.”

(Martin Niemöller999, “Here Stand I,” 1937)

∗ ∗∗

“The German State would be justified in taking steps to ward off the calami-
tous influence of one race on the national community. Wherever they were,
Jews caused trouble for the host nation. The Jews had harmed Germany and
a solution is necessary that would prevent future harm to Germans. . . . In the
future perhaps it would be possible to allow Jews back into Germany because
the number of Jews surviving and returning to Germany will not be so large
that they could still be regarded as a danger to the German Nation.”

(Dietrich Bonhoeffer1000, “Proposals for a Solution
to the Jewish Problem in Germany,” 1943)

∗ ∗∗

999 Martin Niemöller (1892–1984) was a Protestant minister and an opponent

of Nazism. As did many who were opponents of Nazism, despite his hatred of

the regime, he concurred with the Nazi view of the world in one foundational

respect: the Jews were eternally evil. However, by the time of his imprisonment

in the Sachsenhausen concentration camp in 1939, he had overcome his anti-

semitism.
1000 Dietrich Bonhoeffer (1906–1945) was a Protestant theologician who joined

the unsuccessful wartime conspiracy to assassinate Hitler (hanged on 9 April

1945).
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German ‘Faustian’ Ideology since Luther

There is a continuity in German ideology over a period of four centuries1001.
Luther, who had sown the seed of hatred that reached its horrible climax in
the Third Reich, gave legitimation to the absolute evil. In 1517 he exempted
the ‘good Christian’ from the need to make good deeds which, a-la-Luther,
do not lead to redemption. Man’s soul, he preached, is not affected by his
deeds – it remains pure whatever he does. (No wonder that the Nazi leaders
at the Nuremberg trials insisted that their conscious was clear!).

Goethe (1808) adopted a character, created in Luther’s time, and ren-
dered full legitimation to its crimes – Faust is never punished; on the contrary,
it is received into Heaven!

Faust, the archetype “everyman” figure, was accepted by all; we all identify
with him and his unattainable goal. In that, Goethe gave legitimation to
absolute evil; the Devil is the legitimate ruler of the real world. While all
other European cultures set limitations to absolute freedom by means of laws,
Germans since Luther were taught to create their own destiny, irrespective of
an external binding law, bowing only to authority.

Kant (1781) spoke of absolute freedom; man alone determines the laws
and his own destiny. There is no external measure for morality. Consequently,
the Germans held any external pragmatic morality in total contempt. Kant
also introduced the concept of “People’s Will”, thus granting a philosophical
foundation to the will of the people1002.

This tradition continued to flow through the teachings of Fichte (1762–
1814), Hegel (1770–1831), Bauer1003 and Daumer1004, in each of whom
the anti-Jewish elements became more pronounced and more virulent, until
reaching its climax in Nazi Germany.

1001 Rivka Shechter: “Cosmic Enemy”, Jerusalem, 1979.

Hyam Maccoby: “A Pariah People”, Constable: London, 1966, 236 pp.
1002 In Nazi Germany, the will of Hitler and his cohorts was the will of the German

people. The German War Criminals justify claimed that they carried out

orders according to the general will.
1003 Bruno Bauer (1809–1882). Leader of the Hegelian Left. In his ‘Die Juden

Frage’ (1843) radically criticized Judaism in the spirit of Voltaire.
1004 Georg Friedrich Daumer (1800–1875). Vitriolic in his most-influential at-

tacks on Judaism and Jews.
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Gloom and Doom – Annihilation of the Jews

in Western and Central Europe (1939–1945)

Toward the end of the 19th century we come face to face for the first time
with a unique phenomenon which, more than any other single factor, has in-
fluenced the course of European history since 1850. This is the phenomenon
of anti-Semitism which together with nationalism and racism created the bar-
barism of our age: some 9 million people died in Nazi-controlled concentration
camps during 1934–1945; six million of them were Jews. To the earnest Nazi,
the Jew was a non-man.

Before it was institutionalized by the Nazis, antisemitism usually figured
not as an active treat but as a dull, throbbing annoyance, casual and anony-
mous – an ugly possibility, rearing its head when least expected.

Already in 1922 Hitler declared that if he gained power “the annihilation
of the Jews will be my first and foremost task”. In Mein Kampf (1925–
1926) Hitler openly announced his political program: “might is right”, racial
supremacy of the Aryans and specifically the German people as a ‘master
race’ (Herrenfolk) with a natural right to living space (Lebensraum) at the
expense of inferior races as the Slavs, and the total elimination of the Jews.

From the start the racial policies of the Third Reich were applied with
equal ferocity to all Jews: orthodox and the assimilated, bankers and beggars,
Nobel laureates, department-store clerks and school children; to the president
of the Academy and to the German women’s fencing champion (who won
two Olympic medals for Germany); to the 100,000 Jewish veterans, many of
them wounded or crippled, who had fought for Germany during WWI and
had earned their 31,500 iron crosses as bravely as the next man.

At the same time, the Nazis proceeded with the willful destruction of
everything that had to do with the Weimar Renaissance. During the early
years of the regime, the world was treated to the unusual spectacle of a whole
nation deliberately committing cultural suicide. In the prevailing mindless
frenzy to follow – the Führer, the mere possession of intellect became grounds
for suspicion, and “Aryans” who persisted in trying to exercise it were de-
nounced in the Nazi press as weisse Juden (white Jews).

Nazism from the first had been essentially a revolt of the Know-Nothings:
as a cultural revolution it aimed at nothing less than the annihilation of the
German intelligentsia. It was as if the Nazis could hardly wait to get their
hands on the machinery of state so that they could begin smashing works of
art and burning books.

Indeed, within months after taking over the central government of the
Reich, they had succeeded in paralyzing the literary and scientific life of the
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nation. More than 1100 “non-Aryan” faculty members of universities and
technical institutes lost their jobs in the initial purge.

A traveling exhibition that made the rounds of German schools at the
same time displayed Einstein’s picture in the form of a “wanted” poster that
identified him as an exiled subversive who remained at large and “still un-
hanged”. The refugee intellectuals1005 constituted the greatest intellectual
migration in history.

During the World-War that followed (1939–1945), Hitler ruthlessly real-
ized his campaign to ‘eliminate’ the Jews from German life, which led to the
deliberate premeditated and methodical extermination of more than six mil-
lion Jewish people. The pseudobiological ideology behind this holocaust was
not new. Hitler’s originality lay in the literal mindedness with which he was
prepared to put these ideas into effect.

Part of the Jewish mathematicians in Europe were fortunate to reach
safe havens in England, the United States, or South America. Many, how-
ever, perished in the Holocaust. Notably, Alfred Tauber (1866–1942); Fe-
lix Hausdorff (1868–1942); Alexander Rajchman (1890–1940); Juliusz
P. Schauder (1899–1943); Stanislaw Saks (1897–1942) and Ela Chaim
Cunzer (1914–1942).

1005 Among them the non-Jews Heinrich and Thomas Mann, Robert Musil,

Erich Maria Remarque, Paul Hindmith, Walter Gropius, Erwin

Schrödinger, Paul Klee, Bela Bartok, Max Beckmann, Fritz and Adolf

Busch and many others.
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Contribution of the Jews to Modern Science

and Western Culture

During the 165 years that elapsed from their Emancipation (1778) up
to the German Holocaust (1943), Jews played a major role in the service of
world culture; They helped extend the frontiers of mathematics, logic, physics,
chemistry, biology, medicine, economy, psychology, to name just the leading
sciences.

They became viceroys, prime ministers, statesmen, generals, explorers,
historians, chess-champions, composers, soloists, conductors, painters, sculp-
tures, educators – an avant-garde intellectuals who helped shape the map of
Europe and chart the course of world history. All this in spite of the fact that
the European non-Jews had a head-start of more than 300 years, in spite of
the fact that the Jews in Central and Western Europe constituted about one
percent of the total population, and in spite of adverse conditions of growing
anti-semitism.

Indeed, in spite of all that, 22.5 percent of all Nobel prize winners in
the Science in the 20th century are of Jewish origin! Among the ten great-
est physicists born during 1879–1918 [Einstein, Born, Bohr, Schrödinger,
de-Broglie, Pauli, Fermi, Heisenberg, Dirac, Feynman], five are Jews.
Among the ten greatest mathematicians born during 1777–1887 [Gauss,
Abel, Jacobi, Hamilton, Galois, Riemann, Cantor, Hilbert, Hardy,
Ramanujan], two are Jews.

However, the contribution of the Jews to modern mathematics was much
more decisive: During the activity period 1850–1950, 57 percent of the
world’s leading mathematicians were Jews, while their minuscule percentage
in the combined populations of Europe and North America was less than
one percent. All this was taking place at a time when Jewish Scholars were
severely discriminated in Western Europe, Russia and the United States.

Not less impressive is their contribution to the nascent of the modern life-
sciences: Botanist Ferdinand Julius Cohn (1828–1898) became the founder
of bacteriology; Paul Ehrlich (1854–1915) produced the first practical form
of chemotherapy; Julius Sachs (1832–1897) was the creator of modern plant
physiology and experimental botany; Leopold Auerbach (1828–1897) was
a pioneer in the domain of cellular biology and histology. Eduard Adolf
Strassburger (1844–1912) was a pioneer of the emerging science of cell biol-
ogy; Robert Remak (1815–1865) pioneered neurology, embryology and his-
tology. Julius Cohnheim (1839–1884) opened the field of modern pathology.

Apart from the above-mentioned luminaries, the Jews produced during the
post-emancipation era, many distinguished contributions in all active domains



1941 CE 4563

of Western culture. We list below the most prominent among them born
between 1778 and 1955:

1. Mathematics and Logic

James Joseph Sylvester 1804–1851
Siegfried Aronhold 1819–1884
Leopold Kronecker 1823–1891
Gothold Max Eisenstein 1823–1852
Antonio Cremona 1830–1903
Julius Richard Dedekind 1831–1916
Rudolph Lipschitz 1832–1903
Lazarus Immanuel Fuchs 1833–1902
Julius Weingarten 1836–1910
Paul A. Gordan 1837–1912
Giulio Ascoli 1843–1896
Moritz Pasch 1843–1930
Amandus K.H. Schwartz 1843–1921
Georges-Henri Halphen 1844–1889
Georg Cantor 1845–1918
Cesare Arzela 1847–1912
Alfred Pringsheim 1850–1941
Salvatore Pincherle 1853–1936
Arthur M. Schönflies 1853–1928
Adolf Hurwitz 1859–1919
Vito Volterra 1860–1940
Kurt Hensel 1861–1941
Corrado Segré 1863–1924
Hermann Minkowski 1864–1909
Guido Castelnuovo 1865–1952
Jacque Solomon Hadamard 1865–1963
Alfred Tauber (H) 1866–1942
Felix Hausdorff (H) 1869–1942
Emanuel Lasker 1868–1941
Gino Fano 1871–1952
Boris Galerkin 1871–1945
Ernst Steinitz 1871–1928
Tullio Levi-Civita 1873–1941
Issai Schur 1875–1941
Edmund Landau 1877–1938
Max Dehn 1878–1952

(H) H = perished in the Holocaust.
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Guido Fubini 1879–1943
Sergei Bernstein 1880–1968
Frigyes Riesz 1880–1956
Lipot Fejer 1880–1959
Otto Toeplitz 1881–1940
Emmy Noether 1882–1935
Harry Bateman 1882–1946
Ernst Hellinger 1883–1950
Richard Von Mises 1883–1953
Eduard Helly 1884–1943
Solomon Lefschetz 1884–1972
Alfred Haar 1885–1933
Marcel Riesz 1886–1969
Hugo Steinhaus 1887–1972
George Polya 1887–1985
Harald Bohr 1887–1951
Louis Joel Mordell 1888–1972
Richard Courant 1888–1972
Hermann Kober 1888–1973
Alexander Rajchman (H) 1890–1940
Abram Besicovitch 1891–1970
Hans A. Rademacher 1892–1969
Avraham Halevi Fraenkel 1891–1965
Alexander Ostrowski 1893–1986
Jerzy Neyman 1894–1981
Heinz Hopf 1894–1971
Alexander Khinchin 1894–1959
Nobert Wiener 1894–1964
Tibor Rado 1895–1965
Gabor Szegö 1895–1985
Jesse Douglas 1897–1965 FM
Emil L. Post 1897–1954
Pavel Samuilovich Uryson 1898–1924
Oscar Zariski 1899–1986
Otto Neugebauer 1899–1990
John von Neumann 1903–1957
Alfred Tarski 1902–1983
Stanislaw Saks (H) 1897–1942
Juliusz P. Schauder (H) 1899–1943
Avraham Plessner 1900–1961
Antoni Zygmund 1900–1992

FM = Field Medal.
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Richard Brauer 1901–1977
Nahum I. Akhiezer 1901–1980
Reinhold Baer 1902–1979
Abraham Wald 1902–1950
Kurt Mahler 1903–1988
Benjamino Segré 1903–1977
Withold Hurewicz 1904–1954
Olga Taussky-Todd 1906–1995
Andŕe Weil 1906–2000
A.O. Gelfond 1906–1968
Max Zorn 1906–1993
Mark Krein 1907–1989
Arthur Erdelyi 1908–1977
M.A. Naimark 1909–1978
Stanislaw Ulam 1909–1984
Fritz John 1910–1994
Joseph L. Doob 1910–
Manahem Max Schiffer 1911–1997
Norman Levinson 1912–1975
L.V. Kantorovich 1912–1986
Paul Erdös 1913–1996
Samuel Eilenberg 1913–1998
I.M. Gelfand 1913–
George B. Danzig 1914–2005
Ela Chaim Cunzer (H) 1914–1943
Marc Kac 1914–1984
Laurent Schwartz 1915–2002 FM
Avraham Robinson 1918–1974
Vladimir Rokhlin 1919–1984
Benoit Mandelbrot 1924–
Klaus F. Roth 1925– FM
Martin David Kruskal 1925–2006
Jean-Pierre Serre 1926– FM
Alexander Grothendieck 1928– FM
Kenneth Appel 1932–
Paul Cohen 1934– FM
Grigorii Margulis 1946– FM
Charles Fefferman 1949– FM
Michael Freedman 1951– FM
Edward Witten 1951– FM
Vladimir Drinfeld 1954– FM
Efim Zelmanov 1955– FM



4566 5. Demise of the Dogmatic Universe

2. Physical Sciences (Physics, Chemistry, Engineering)

Heinrich Gustav Magnus 1802–1870
Siegfried Marcus 1831–1898
Jacob Philipp Reis 1834–1874
Adolph von Baeyer 1835–1917 NP
David Schwarz 1845–1897
Gabriel Jonas Lippmann 1845–1921 NP
Otto Wallach 1847–1931 NP
Victor Meyer 1848–1897
Eugen Goldstein 1850–1931
Emile Berliner 1851–1926
Henry Moissan 1852–1907 NP
Abraham Albert Michelson 1852–1933 NP
Heinrich Hertz 1857–1894
Ernst Pringsheim 1859–1917
Charles Proteus Steinmetz 1865–1923
Fritz Haber 1868–1931 NP
Max Bodenstein (H) 1871–1942
Richard Willstätter 1872–1942 NP
Karl Schwarzshild 1873–1916
Leonor Michaelis 1875–1949
Lise Meitner 1878–1968
Albert Einstein 1879–1955 NP
Paul Ehrenfest 1880–1933
Theodore von Karman 1881–1963
James Frank 1882–1964 NP
Max Born 1882–1970 NP
Niels Bohr 1885–1962 NP
George de Hevesy 1885–1966 NP
Gustav Hertz 1887–1975 NP
Victor Moritz Goldschmidt 1888–1947
Alexander Friedmann 1888–1925
Otto Stern 1888–1969 NP
Mikhail Gurevich 1889–1973
Leopold Infeld 1893–1968
Mariette Blau 1894–1970
Peter Kapitsa 1894–1984 NP
Igor Tamm 1895–1971 NP
Leo Szilard 1898–1964
Isaac Isidor Rabi 1898–1988 NP

NP = Nobel Prize Winner.
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Wolfgang Pauli 1900–1958 NP
Dennis Gabor 1900–1079 NP
Fritz London 1900–1954
Hyman Rickover 1900–1986
Eugene P. Wigner 1902–1995 NP
Emilio Segré 1905–1989 NP
Felix Bloch 1905–1983 NP
Hans A. Bethe 1906–2005 NP
Rudolf Peierls 1907–1995
Lev Landau 1908–1968 NP
Ilya M. Frank 1908–1990 NP
Giulio Racah 1909–1965
Melvin Calvin 1911–1997 NP
William H. Stein 1911–1980 NP
Herbert C. Brown 1912–2004 NP
Max F. Perutz 1914–2002 NP
Robert Hofstadter 1915–1990 NP
Vitali Lazarevich Ginzburg 1916– NP
Cristian B. Anfinsen 1916–1995 NP
Ilya Prigogine 1917–2003 NP
Herbert A. Hauptman 1917– NP
Richard Feynman 1918–1988 NP
Julian Schwinger 1918–1994 NP
Jerome Karle 1918– NP
Frederick Reines 1918–1998 NP
Morton Kaplon 1921–2002
Arthur Schawlow 1921–1999 NP
Jack Steinberger 1921– NP
Leon M. Lederman 1921– NP
Walter Kohn 1923– NP
Rudolph A. Marcus 1923– NP
Georges Charpak 1924– NP
Ben Roy Mottelson 1926– NP
Donald A. Glaser 1926– NP
Paul Berg 1926– NP
Aaron Klug 1926– NP
Martin L. Perl 1927– NP
George A. Olah 1927– NP
Alexi Abrikosov 1928– NP
Murray Gell-Mann 1929– NP
John Polanyi 1929– NP
Leon Cooper 1930– NP
Jerome Friedman 1930– NP
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Zhores Alferov 1930– NP
David Lee 1931– NP
Burton Richter 1931– NP
Sheldon Glashow 1932– NP
Melvin Schwartz 1932– NP
Walter Gilbert 1932– NP
Claude-Cohen Tannoudji 1933– NP
Steven Weinberg 1933– NP
Arno Penzias 1933– NP
Alan Heeger 1936– NP
Roald Hoffmann 1937– NP
Sidney Altman 1939– NP
Harold Kroto 1939– NP
Jean-Marie Lehn 1939– NP
Brian Josephson 1940– NP
Douglas Osheroff 1945– NP

3. Biochemical Sciences (Physiology, Medicine, Biochemistry,

Bacteriology, virology, Immunology)

Jacob Henle 1809–1885
David Gruby 1811–1898
Gottlieb Gluge 1812–1898
Robert Remak 1815–1865
Moritz Schiff 1823–1896
Natanael Pringsheim 1823–1894
Leopold Auerbach 1828–1897
Ferdinand Julius Cohn 1828–1898
Samuel von Basch 1837–1919
Julius Chonheim 1839–1884
Eduard Strassburger 1844–1912
Elie Metchnikoff 1845–1916 NP
Paul Ehrlich 1854–1915 NP
Sigmund Freud 1856–1939
Waldemar Haffkine 1857–1930
Rudolf Schoenheimer 1858–1941
Oscar Minkowski 1858–1931
Georges Fernand Isidore Widal 1862–1929
Wilhelm Weinberg 1862–1937
August von Wassermann 1866–1925 NP
Karl Landsteiner 1868–1943 NP
Aaron Phoebus Levene 1869–1940
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Alfred Adler 1870–1956
Alex Bersredka 1870–1940
Otto Loewi 1873–1961 NP
Gustav Emden 1874–1933
Joseph Erlanger 1874–1965 NP
Robert Bárány 1876–1936 NP
Bela Schick 1877–1967
Carl Neuberg 1877–1956
Max Wertheimer 1880–1943
Otto Warburg 1883–1970 NP
Casimir Funk 1884–1967
Otto Fritz Meyerhoff 1884–1951 NP
Herbert Spencer Gasser 1888–1963 NP
Abraham Selman Waksman 1888–1973 NP
Herman Joseph Muller 1890–1967 NP
Gerty T. Cori 1896–1957 NP
Tadeus Reichstein 1897–1996 NP
Rudolf Schoenheimer 1898–1941
Fritz Albert Lipmann 1899–1986 NP
Georg von Bekesy 1899–1972 NP
Charlotte Auerbach 1899–1994
Hans Krebs 1900–1981 NP
Andre Lwoff 1902–1994 NP
Gregory Godwin Pincus 1903–1967
Ernst B. Chain 1906–1979 NP
George Wald 1906–1997 NP
Rita Levi-Montalcini 1909– NP
Bernard Katz 1911–2003 NP
Konrad Bloch 1912–2000 NP
Salvador E. Luria 1912–1991 NP
Julius Axelrod 1912–2004 NP
Robert F. Furchgott 1916– NP
Arthur Kornberg 1918–2007 NP
Gertrude B. Elion 1918–1999 NP
Francois Jacob 1920– NP
Baruch Benacerraf 1920– NP
Edmond Fischer 1920– NP
Rosalyn Yalow 1921– NP
Stanley Cohen 1922– NP
Joshua Lederberg 1925– NP
Paul Greengard 1925– NP
Baruch Blumberg 1925– NP
Martin Rodbell 1925–1998 NP
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Andrew V. Schally 1926– NP
Marshall W. Nirenberg 1927– NP
Cesar Milstein 1927–2002 NP
Sydney Brenner 1927– NP
John Vane 1927– NP
Daniel Nathans 1928–1999 NP
Gerald M. Edelman 1929– NP
Eric R. Kandel 1929– NP
Howard Temin 1934–1994 NP
David Baltimore 1938– NP
Harold Varmus 1939– NP
Joseph Goldstein 1940– NP
Alfred Gilman 1941– NP
Michael Brown 1941– NP
Stanley Prusiner 1942– NP
Richard Axel 1946– NP
Herbert Horvitz 1947– NP

4. Economics, Finance, Law, Journalism, Government, Peace

David Ricardo 1778–1823
Adolphe Isaac Cremieux 1796–1880
Lionel Nathan Rothschild 1808–1879
Paul Julius von Reuter 1816–1899
Karl Marx 1818–1883
Ferdinand Lassalle 1825–1864
Tobias Michael Asser 1838–1913 NP
Louis Brandeis 1856–1941
Theodor Herzl 1860–1904
Daniel Isaacs (1st Marquis of Reading) 1860–1935
Maximilian Harden 1861–1927
Alfred Fried 1864–1921 NP
Paul Hymans 1865–1941
Walter Rathenau 1867–1922
Benjamin Cardozo 1870–1938
Maxim Litvinov 1876–1951
Leon Trotzky 1879–1940
Felix Frankfurter 1882–1965
Otto Bauer 1882–1938
Emmanuel Shinwell 1884–1986
Ivan Maisky 1884–1975
Rene Samuel Cassin 1887–1976 NP



1941 CE 4571

Lazar Moiseyevich Kaganovich 1894–1991
Leslie Hore-Belisha 1896–1957
Simon Kuznets 1901–1985 NP
Wassily Leontief 1906–1999 NP
Milton Friedman 1912–2006 NP
Leonid Vitaliyevich Kantorovich 1912–1986 NP
Paul A. Samuelson 1915– NP
Herbert A. Simon 1916–2001 NP
Franco Modigliani 1918–2003 NP
John C. Harsanyi 1920–2000 NP
Lawrence R. Klein 1920– NP
Kenneth J. Arrow 1921– NP
Merton H. Miller 1923–2000 NP
Robert M. Solow 1924– NP
Robert W. Fogel 1926– NP
Harry M. Markowitz 1927– NP
Gary Becker 1930– NP
Reinhard Selten 1930– NP
Daniel Kahneman 1934– NP
George Akerlof 1940– NP
Myron Scholes 1941– NP
Joseph Stiglitz 1943– NP
Robert C. Merton 1944– NP

5. Literature (Poets, Writers, Philosophers, Critics, Philolo-

gists)

Heinrich Heine 1799–1856
Berthold Auerbach 1812–1882
Paul von Heyse 1830–1914 NP
Georg Brandes 1842–1927
Ludwig Lejzer Zamenhof 1859–1917
Peter Altenberg 1859–1919
Edmund Husserl 1859–1938
Henri Bergson (H) 1859–1941 NP
Italo Svevo 1861–1928
Arthur Schnitzler 1862–1931
Richard Baer-Hoffmann 1866–1945
Felix Salten 1869–1945
Else Lasker-Schüler 1869–1945
Marcel Proust 1871–1922
Jacob Wassermann 1873–1934
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Hugo von Hofmansthal 1874–1928
Robert Walser 1878–1956
Otto Weininger 1880–1903
Emil Ludwig 1881–1948
Stefan Zweig 1881–1942
Franz Kafka 1883–1924
Georges Duhamel 1884–1966
Lion Feuchtwanger 1884–1958
André Mauroit 1885–1967
Franz Rosenzweig 1886–1929
Fernando Pessoa 1888–1935
Shmuel Yosef Agnon 1888–1970 NP
Ludwig Wittgenstein 1889–1951
Franz Werfel 1890–1941
Boris Pasternak 1890–1960 NP
Nelly Sachs 1891–1970 NP
Herbert Marcuse 1898–1979
Karl R. Popper 1902–1994
Eric Hoffer 1902–1983
Isaac Bashevis Singer 1904–1991 NP
Ayn Rand (Alice Rosenbaum) 1905–1982
Simone Weil 1905–1943
Elias Canetti 1905–1994 NP
Samuel Beckett 1906–1989 NP
Eugene Ionesco 1909–1994
Alfred Ayer 1910–1989
Saul Bellow 1915–2006 NP
Nadine Gordimer 1923– NP
Imre Kertész 1929– NP
Jacques Derrida 1930– NP
Joseph Brodsky 1940–1996 NP

6. Psychology, Sociology, Anthropology

Joseph Popper-Lynkeus 1838–1921
Sigmund Freud 1856–1939
Emile Durkheim 1857–1917
Georg Simmel 1858–1918
Franz Boas 1858–1942
Alfred Adler 1870–1937
Max Wertheimer 1880–1943
Otto Selz 1881–1943
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Edward Sapir 188?–1939
Erich Fromm 1900–1980
Bruno Bettelheim 1903–1969
Theodor Adorno 1903–1969
Viktor Frankl 1905–1997
Claude Levi-Strauss 1908–
Robert King Merton 1910–2003

7. World Chess Champions

Wilhelm Steinitz 1836–1900 (1886–1894)
Emanuel Lasker 1868–1941 (1894–1921)
Mikhail Botvinnik 1911–1995 (1948–1957; 1958–1960; 1961–1963)
Vasily Smyslov 1921– (1957–1958)
Mikhail Tal 1936–1992 (1960–1961)
Boris Spassky 1937– (1969–1972)
Robert Fisher 1943– (1972–1975)
Garry Kasparov 1963– (1985–2000)
Vladimir Kramnik 1975– (2000–)

8. Prime Ministers (1868–1991)

Benjamin Disraeli (1868–1880) 1804–1881 England
Julius Vogel (1873–1876) 1835–1899 New Zealand
Luigi Luzzatti (1910–1911) 1841–1927 Italy
Sydney Sonnino (1906–1910) 1847–1922 Italy
Kurt Eisner (1918–1919) 1867–1919 Bavaria
Leon Blum (1936–1938; 1946–1947) 1872–1950 France
Bela Kun (1919) 1886–1937 Hungary
Matyas Rakosi (1952–1953) 1892–1971 Hungary
René Mayer (1953) 1895–1972 France
Pierre Mendes-France (1954–1955) 1907–1982 France
Roy Welensky (1958–1963) 1907–1991 Rhodesia
Bruno Kreisky (1970–1988) 1911–1990 Austria
Michel Debre (1959–1962) 1912–1996 France
Joshua Hassan (1964–1987) 1915–1997 Gibraltar
Petre Roman (1889–1991) 1946– Romania
Laurent Fabius (1984–1986) 1946– France
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9. Explorers

Herman Vambery 1832–1913
Emin Pasha 1840–1892
Marc Aurel Stein 1862–1943
Sven Hedin 1865–1952

10. Painters

Camille Pissarro 1830–1903
Lionel Feininger 1871–1956
Franz Marc 1880–1916
Amadeo Modigliani 1884–1920
Jules Pascin 1885–1930
Marc Chagall 1887–1985
Man Ray (Emmanuel Radnitzky) 1890–1976
Moise Kisling 1891–1953
Chaim Soutine (H) 1894–1943
Ben Shan 1898–1969

11. Composers

Giacomo Jacob Meyerbeer 1791–1864
Jacques Eli Halevy 1799–1862
Johann Strauss Sr. 1804–1829
Felix Mendelssohn 1809–1847
Jacques Offenbach 1819–1880
Carl Goldmark 1830–1915
Henryk Wieniawski 1835–1880
Gustav Mahler 1860–1911
Paul Dukas 1865–1935
Oscar Strauss 1870–1954
Arnold Schönberg 1874–1951
Fritz Kreisler 1875–1962
Reinhold Glière 1875–1956
Ernst Bloch 1880–1959
Emmerich Kalman 1882–1953
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Jerome Kern 1885–1945
Irving Berlin 1888–1989
Arthur Honegger 1892–1955
Oscar Hammerstein 1892–1955
Darius Milhaud 1892–1968
Wolfgang Korngold 1897–1957
George Gershwin 1898–1937
Kurt Weill 1900–1950
Aaron Copland 1900–1990
Richard Rodgers 1902–1979
Morton Gould 1913–1996

The Social and Political Context of Science (1925–1950) –
or, the road from exceptional prominence to prominent

exception

The 1944 Nobel Prize for chemistry went to the German Otto Hahn for

“his discoveries in atomic fission.”

The 1946 Nobel Prize for physiology medicine went to the American Her-

mann Joseph Muller for “his discovering that X-rays can produce mutations.”

The 1950 Nobel Prize for physics went to the Briton Cecil Frank Powell

for “his photographic method of studying atomic nuclei.”
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Yet, Lise Meitner1006 (1878–1968), mother of nuclear shell physics,
played a crucial role in the experiments that led to the fission discovery in
December 1938. But she had to escape secretly to Holland on 13 July 1938.
She was not included as a coauthor in Hahn and Strassman’s publication (po-
litically that would be impossible in Nazi Germany) — and, as a result, her
part in the discovery was not recognized.

Her exclusion from the fission discovery itself damaged her reputation,
casting doubt on the work she had done before. Adding to the damage,
Hahn was afraid to admit to his ongoing collaboration with a “non-Aryan”
in exile and soon began to claim that Meitner and physics had contributed
nothing to the discovery. Those who did not understand the science or the
political situation concluded that the chemists had discovered fission while the
physicists had merely explained it, and in 1945 the Nobel Prize in chemistry
for 1944 was awarded to Hahn alone. With that, Meitner largely lost her
place in the history of science.

As president of the newly formed Max-Planck-Gesellschaft, Hahn was the
spokesman for the postwar rehabilitation of German science. Himself a “pure”
scientist, a Nobel laureate, and a non-Nazi, Hahn projected an image of science
as inherently excellent and untouched by the Nazi regime. Hahn never set
the record straight with respect to Meitner, and for decades a chorus of his
associates and other scientists, none of them close to the discovery, echoed
his contention that Meitner had done nothing for the fission discovery except,
perhaps, to impede it. Their stridency suggests a political motivation. A fair
examination of the circumstances of the discovery would have called attention
to the racial prosecution, political oppression, and moral compromises that
permeated the scientific establishment, including Hahn’s own institute, and
that was just what Hahn and much of his generation were trying to suppress
and forget.

Mariette Blau (1894–1970) did pioneering work in the photographic
method of studying particle tracks. She created emulsions with characteristic
and development conditions that allowed for observations and measurement
of proton tracks. She was the first physicist to show that proton tracks could

1006 For further reading, see:

• Sime, Ruth Lewin, Lise Meitner: A Life in Physics, University of California

Press.

• Galison, Peter L., Marietta Blau: Between Nazis and Nuclei, Physics Today,

5, 42, 1997.

• Biographical Memoirs of the Fellows of the Royal Society, London, 1995

(Charlotte Auerbach).
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be separated from α-particle tracks in emulsions. She was first to use nuclear
emulsions to detect neutrons by observing recoil protons. All this she did dur-
ing 1925–1942, years ahead of Powell. She must have been deeply frustrated
that he was awarded the Nobel Prize for a discovery using her method.

She was nominated several times for the Nobel Prize by Erwin Schrödinger,
Born and Einstein, but to no avail.

She was a prominent scientist who had the misfortune to live in a hostile
environment, a victim of a sick society.

Charlotte Auerbach (1899–1994). Founded the science of mutagenesis
— the study of gene mutation by chemicals — ahead of Muller. But, the Nobel
committee, blinded by political considerations and social discrimination, did
not consider this Jewish refugee woman worthy of the prize she deserved.

1941–1979 CE Friedrich August von Hayek (1899–1992, Austria, Eng-
land). Economist and political philosopher. A philosopher of freedom. Made
major contributions to scientific methodology, psychology and the history of
ideas. Largely concerned with the problem of individual values in a world of
increasing economic controls. Argued the case for an economic system based
on free markets and a political system granting individual freedom within the
law. The importance of prices in controlling the functioning of the economy
has been a constant theme in his works.

Hayek was born in Vienna, where he was a civil servant and a teacher
(1921–1931); Professor of economics at London University (1931–1950). Natu-
ralized British citizen (1938); Professor of social and moral sciences at the Uni-
versity of Chicago (1950–1962) and Professor at the Universities of Freiburg
(1962–1968) and Salzburg (1968–1977). Nobel Prize for economics (1974).
His major works: The Pure theory of Capital (1941); The Road to Serfdom
(1944); Law, Legislation and Liberty (3 vols, London 1973–1979).

Hayek’s name is virtually synonymous with the cause of libertarianism,
the modern successor to the political liberalism of the 19th century. Through
analysis of the relationships between economic and social factors he sought
an answer to the question: “Is social justice feasible within the framework of
the capitalistic economy?”

1942 CE, Nov 25 A small article appeared on page 10 of the New York
Times reporting the first official news that up to then, two million Jews had
been killed in Europe.
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1942 CE The beginning of the modern development of radio astronomy.
During WWII, over the period February 26–28, 1942, British radars were
being jammed and it was discovered that storms of radio-emission from the
sun were responsible. At the time it was considered a top secret project,
but in 1946 it was reported by J.S. Hey in Nature (156, 47–48). Bracewell
(1956) succeeded in mapping the regions of emitted microwave radiation from
the sun’s disc by a tomographic method.

1942 CE Bengt Edlen (1906–1993, Sweden). Astrophysicist. Resolved
the identification of certain lines in spectra of the solar corona1007 that had
misled scientists for the previous 70 years.

During the eclipse of 1869, astronomers recorded unexpected spectral lines
in the sun’s corona that they ascribed to the presence of a new element which
they called ‘coronium’. Similar lines were later discovered to originate nearer
the earth; these were attributed to ‘geocoronium’.

In the early 1940s, Edlen showed that, if iron atoms are deprived of many
of their electrons, they can produce spectral lines like those of ‘coronium’.
Similarly ionized atoms of nickel, calcium, and argon produced even more
lines. It was determined that such high stages of ionization would require
temperatures of about 1,000,000 ◦C and when, in the 1950s, it was verified
that such high temperatures did indeed exist in the solar corona, it became
accepted that ‘coronium’ did not exist.

The lines thought to be caused by ‘geocoronium’ were found to be pro-
duced by atomic nitrogen emitting radiation in the earth’s upper atmosphere.

Edlen was born in Gusum in Ostergotland, south-eastern Sweden. He was
educated at Uppsala University. In 1944 he became Professor of Physics at
Lund University, a post which he held until 1973.

1007 During a total eclipse of the sun, when for a few minutes the moon completely

covers the sun’s face, a glow appears around the darkened sun – the solar

corona, the sun’s outermost atmosphere.

Structures visible in the corona at such times suggest that they are shaped by

magnetic fields, and therefore that the corona consists of plasma. For instance,

short “plumes” rising from the polar regions of the sun look very much like

field lines coming out of the end of a bar magnet, and they therefore suggest

that the sun, in addition to the intense fields of sunspots, also has a global

magnetic field like the earth’s.

Structures observed in the corona above sunspots often have horseshoe-shaped

outlines, again suggesting that they follow magnetic field lines. From the tops

of such “arches” long streamers may extend, to distances of the sun’s diameter

or even more, looking like pulled taffy, as if some process was pulling material

away from the tops of the arches into space.
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The most remarkable aspect of the corona is its high temperature. Much of
that is sunlight scattered by coronal dust, but some light is also produced by
the corona itself, in narrowly defined colors (“spectral lines”) characteristic of
its emitting atoms. In the 19th century, some of the spectral lines of sunlight
did not match the lines of any substance on Earth, and it was proposed that
they came from a new unknown chemical element, named helium (from the
Greek helios = sun). Later, in 1895, Norman Ramsey actually discovered
helium on earth.

The source of the corona’s heat remains a puzzle. It is almost certain
that its energy comes from the sun’s internal furnace, which also supplies the
rest of the sun’s heat. However, as a rule, temperatures are expected to drop
the further one gets from the furnace, whereas the million-degree corona lies
outside the surface layer where sunlight originates, whose temperature is less
that 6000 C.

The space station Sky lab (1973–1974) observed soft X-rays emitted by the
corona. The corona in such pictures appears quite uneven. It is brightest near
sunspots, whose arched field lines apparently hamper the outflow of solar wind
which carries away energy and helps cool the corona. It is darker in “coronal
holes” in between, where field lines apparently extend out to distant space,
making it easier for the solar wind to escape.

1942 CE William Edward Hanford (1908–1996, USA) and Donald
Fletcher Holmes (1910–1980, USA). Chemists. Invented a process for mak-
ing and modifying polymeric products. This method is today the basis for
manufacture of all polyurethanes.

Flexible polyurethane foam is used as an upholstery material, and the rigid
foam is commonly used as heat-insulating material in homes and refrigerators.
Polyurethane is also used in life-saving artificial hearts, as safety padding in
modern automobiles, and in carpeting.

Hanford was born in Bristol, Pennsylvania and received his B.S. from the
Philadelphia College of Pharmacy (1930). Holmes received his B.S. in Organic
Chemistry from Amherst College (1931). Both received their Ph.D. degrees
from the University of Illinois and teamed up at the Dupont company.

1942–1952 CE Norman Earl Steenrod (1910–1971, USA). Mathemati-
cian. One of the leading topologists of the 20th century. Codified and solid-
ified the theories of homology and cohomology in the framework of algebraic
topology and played a crucial role in the development of the theory of fiber
bundles. Named after him are: ‘Steenrod algebra’, ‘Steenrod volumes’.

Steenrod was born in Dayton, Ohio and was educated at the Universities
of Michigan (1932), Harvard (1934) and Princeton (Ph.D., 1936). He held
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positions at the University of Chicago (1939–1942), Michigan (1942–1947)
and Princeton (1947–1971). His books: “Topology of Fiber Bundles” (1951),
“Foundations of Algebraic Topology” (1952, together with Samuel Eilenberg).

1942–1969 CE Salvador Edward Luria (1912–1991, Italy and USA).
Biologist. Pioneer in molecular biology, especially the genetic structure of
viruses1008. Awarded the Nobel Prize for Physiology or Medicine (jointly
with Delbrück and Hershey, 1969) for his discoveries related to the role of
DNA in bacterial viruses.

Luria was born in Turin, Italy to a Jewish family. He graduated in medi-
cine at Turin University. He left Fascist Italy (1938), and went to the Radium
Institute in Paris to study medical physics, radiation and techniques of work-
ing with bacteriophage, the bacterial virus. When Italy entered WWII, Luria
emigrated to the USA (1940), where he taught at Indiana University. In 1959
he became professor at MIT.

Luria obtained the first good electron photographs of a bacteriophage
(1942). He then showed (1945) that the same spontaneous mutations occur
in bacteriophages and in the bacteria on which the phages prey, suggesting
that the genetic material of the phage gets mixed into the genetic material of
the bacteria.

1942–1976 CE Charlotte Auerbach (1899–1994, Scotland). Geneticist.
Founded the science of mutagenesis — study of gene mutation by chemicals.

1008 Viruses that attack bacteria are called bacteriophages. This word means: bac-

teria eater. Bacteria, like plants, have tough cell walls. To penetrate these

walls, most bacteriophages have a structure that resembles a hypodermic nee-

dle and works in a similar manner. This structure consists of a sphere-shaped

head that contains nucleic acid, and a hollow, rod-shaped tail made of protein.

When a bacteriophage enters a bacterium, the tail first penetrates the cell wall.

Then the nucleic acid in the head moves through the tail and into the cell.

Viruses are such simple organisms that scientists can easily study them to gain

more knowledge about life itself. Thus, research on bacteriophages has helped

biologists understand genes, DNA, and other basic cell structures. In general,

studies of the biological properties of bacteriophages contributed greatly to our

understanding of the chemical and biological interactions of viruses and living

cells.
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She was born in Berlin into a learned scientific and artistic Jewish fam-
ily1009. During 1919–1924 she studied biology, chemistry and physics at the
Universities of Berlin, Wurtzburg and Freiburg. She fled Nazi Germany (1933)
and joined the Institute of Animal Genetics at Edinburgh as a Ph.D. student.
In 1942 she discovered (with A.J. Clark and J.M. Robson) that mustard gas (a
highly toxic substance that had been used in trench warfare), caused genetic
mutation in fruit flies (Drosophila). She was awarded Ph.D. (1935) and D.Sc.
(1947) by the University of Edinburgh. Elected FRS (1957) and received
the Darwin Medal (1977). Published: Mutation (1962), Mutation Research
(1976).

Her approach was biological rather than chemical in that, while she ac-
knowledged that mutation took place in the chemistry of the gene, she adhered
to the idea that it was the biological interaction that gave the process its com-
plexity. She used Drosophila, and later, microorganisms such as Neurospora
and yeasts to test the mutagenic properties of other agents (mustard gas had
proved too dangerous). From this she pursued several lines of inquiry: the
patterns of combinations called mosaics (mutant and non-mutant cells), that
increased mutation occurred in delayed or stored genes affected by a muta-
gen, ‘replicating instabilities’, i.e., that mosaics produced more mosaics in
later generations, and that in ‘specificity’ — parts of the gene were affected
differently by mutagenesis.

In 1947, she published a book of fairy stories titled Adventures with Ros-
alind under the pen-name of Charlotte Austen.

1943 CE Oswald Theodore Avery (1877–1955, U.S.A.). Biochemist.
Announced the chemical nature of the gene, showing that hereditary charac-
teristic could be induced by pure DNA, without a protein involved. Working
at the Rockefeller institute with his colleagues Colin M. MacLeod and
Maclyn McCarty, they were able to show that the gene was nucleic acid
— and only nucleic acid. Moreover, they were able to transform one strain
of bacteria into another by using a solution of the nucleic acid without any
protein at all. They thus proved that the DNA, a hitherto unexplained sub-
stance, in the nucleus of living cells, was the very material of the gene, i.e. —
that DNA is the hereditary material that carries the genetic information for
almost all living organisms.

1943 CE Willem J. Kolff (b. 1911, Netherlands and USA). Physician and
inventor. Invented the kidney dialysis machine (1943). Headed a team which
invented and tested an artificial soft shell mushroom shaped heart.

1009 She was the grandchild of Leopold Auerbach (1828–1897), the neuro-

anatomist and discoverer of Auerbach’s plexus, and the daughter of the chemist,

Friedrich Auerbach (1870–1925).
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Kolff was born in the Netherlands and received his M.D. in Leiden (1938)
and a Ph.D. degree from the University of Groningen (1946). Since 1967 he
has been professor of surgery and head of the Division of Artificial Organs at
the School of Medicine of the University of Utah.

1943 CE Shin-ichiro Tomonaga (1906–1979, Japan). Physicist. Devel-
oped (parallel to R.P. Feynman and J.S. Schwinger) a renormalizable,
covariant quantum electrodynamics (QED), for which he shared with the
aforementioned the Nobel prize for physics in 1965. In establishing this the-
ory he had resolved the inconsistencies of the old QED theory of Heinsenberg,
Pauli and others, without making any drastic changes and in a manner fully
consistent with the special theory of relativity.

Tomonaga was born in Kyoto, Japan. He became professor of physics
at Tokyo in 1941. His work, completed in 1943, came to the attention of the
West only in 1946, since he was isolated from Western scientists during WWII.

1943–1950 CE Abraham Wald (1902–1950, USA). Mathematician.
Originated the powerful optimization method of dynamic programming1010,
to address an array of questions arising in optimal control theory, game the-
ory, production and scheduling processes.

Developed a new statistical method of quality control1011 known as sequen-
tial analysis (1947), in response to the demand for more efficient methods of

1010 The extension of linear programming to nonlinear optimization problems. One

class of such problems concerns the passage of people or information rather

than commodities – for example, when people move from one part of a network

to another at minimal cost — either in time, money, energy, or some other

resource (routing problems that are reflected in the way airline ticket prices

are set nowadays). Optimal control processes, like getting a satellite into orbit

with minimal energy, problems with random influences such as investments

with risky payoffs, “minimax” methods of game theory — are all within the

purview of the theory.
1011 Quality control methods permit us to regulate product quality by testing; A lot

of items is sampled according to a scheme guaranteed to reject a good lot with

probability α (“supplier’s risk”) and to accept a defective lot with probability

β (“consumer’s risk”).

A lot is considered good if the parameter that negatively characterizes its qual-

ity does not exceed a certain limiting value and defective if this parameter has

value not smaller than another limiting value. There are different methods of

control: single sampling, double sampling and sequential analysis. The sequen-

tial Wald analysis for a variable sample size n and a random value of the

controlled parameter in the sample, the likelihood coefficient γ, is computed

and the control lasts until γ leaves the limits of the interval (B, A) where
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industrial quality control during WWII. In this connection he also developed
the topic of decision functions.

Wald was born to a Jewish family in Kolozsvár, Hungary (now Cluj, Ro-
mania) and studied at Vienna. After the Nazis occupied Austria (1938) he
fled to the USA, the only survivor of his family, who perished in the gas cham-
bers of Auschwitz. Wald and his wife were later both killed in a plane crash
in India.

1943–1960 CE Shiing-Shen Chern (1911–2004, USA). Mathematician.
Made significant contribution to global differential geometry.

The now named ‘Chern characteristic classes in fiber spaces’ are important
not only in pure mathematics but also in mathematical physics.

Introduced the key concepts of Secondary Invariants, Fiber Bundles,
Sheaves and Foliated Leaves. Gave a new proof to the Gauss-Bonnet for-
mula1012. A large share of the credit for transforming differential geometry
into a major subject in mathematics belongs to him.

Chern was born in Jiaxing, Zhejiang province, China. Received his D.Sc.
from Hamburg University (1936) and studied under Cartan in Paris (1936–
1937). Worked under Weyl, Veblen and Lefschetz at Princeton, USA
(1943–1945). Held the chair of geometry at the University of Chicago (1949–
1960) and then went to the University of California, Berkeley (1960–1980).

B = β
1−α

; A = 1−β
α

; if γ ≤ B, then the lot is accepted, if γ ≥ A, the lot is

rejected, and for B < γ < A the test continues.
1012 For a closed orientable surface S of genus g,

Integral curvature =

∫∫

S

K dA = 4π(1 − g),

where K is the Gaussian curvature. [E.g. g = 0 (sphere), g = 1 (torus),

g = 2 (pretzel).]
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The Mathematics of Europe and USA (1850–1950):
Fusion of Geometry, Algebra nd Analysis

Moritz Cantor’s history of mathematics, which terminates with the end
of the eighteenth century, consists of four large volumes averaging almost a
thousand pages each.

It has been conservatively estimated that if the history of the mathematics
of the nineteenth century should be written with the same detail, it would
require at least fourteen more such volumes!

No one has yet hazarded an estimate of the number of such volumes needed
for a similar treatment of the history of the mathematics of the twentieth cen-
tury, which is by far the most active era of all. Little of this additional material
could be properly appreciated by the ordinary undergraduate; indeed, an un-
derstanding of much of the material would require the deep background of a
mathematical expert.

The almost explosive growth of mathematical research in modern times is
further illustrated by the fact that prior to 1700 there were only 17 periodicals
containing mathematical articles. In the eighteenth century there were 210
such periodicals, in the nineteen century 950 of them, and the number has
increased enormously during the first half of the twentieth century.

Furthermore, it was not until the nineteenth century that there appeared
journals devoted either primarily or exclusively to mathematics. Very few of
the present-day articles can be read by anyone but the specialist.

Table 5.19 lists the leading mathematicians born between 1842 and 1919,
158 in number. The biographies of most them are included in chapters 4 and
5 of our Encyclopedia. The table includes the major contributions, life-span
and national affiliation of the individuals.

The ethno-national affiliation of each biography are part and parcel of the
person’s origin, milieu, background and the grand scheme of the historical
evolution of mankind.

In this day and age, where the history of diversity of the human species
and its impact on genetics are the subject of intense research1013, it is of
great interest to weave human history, culture, and language in one grand
sweep, and discover the hidden connectivity of scientific creativity and the
ethno-cultural background of the individual scientists.

1013 e.g. L.C. Cavalli-Sforza and F. Cavalli-Sforza: “The Great Human Dias-

poras”, Addison Wesley, Reading, Mass. USA, 1995; 300 pp.
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Table 5.19: Leading Mathematicians born between 1842–1919

Name Nat.
∗

Life-span Major Contribution

Gaston J. Darboux F 1842–1917 Differential geometry of
curves and surfaces;
Algebraic manifolds;
‘repermobile’; Darboux
Theorem.

Moritz Pasch J 1843–1930 Axiomatic projective
geometry.

Amandus K.H.
Schwartz

J 1843–1921 Theory of functions; minimal
surfaces; conformal mapping
calculus of variations.

Erhard Schmidt G 1845–1921 Functional analysis.

Georg Cantor J 1845–1918 Set theory; transfinite
numbers.

Alfred Pringsheim J 1850–1941 Analysis.

William Burnside E 1852–1927 Finite order group theory,
Burnside Lemma (1897).

A.M. Schönflies J 1853–1928 Crystallographic
point-groups.

Salvatore Pincherle J 1853–1936 Functional analysis; Abstract
linear spaces.

R.H. Mellin S 1854–1933 Mellin transform.

A.A. Markov R 1856–1922 Theory of linked probability;
Markov process and chain.

Walther F.A. von
Dyck

G 1856–1934 Group theory (group
representation); topology;
potential theory.
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Table 5.19: (Cont.)

Name Nat. Life-span Major Contribution

Luigi Bianchi I 1856–1928 Differential geometry and
tensor analysis (‘Bianchi
Identity’).

Karl Pearson E 1857–1936 Modern statistics: Standard
Deviation; chi-square.

Adolf Hurwitz J 1859–1919 Special functions; Modular
functions; ODE; number
theory.

Vito Volterra J 1860–1940 Theory of functionals;
Integro-differential
equations.

Ivar O. Bendixon S 1861–1935 ODE near singularities:
‘Poincare-Bendixon
Theorem’.

Kurt Hensel J 1861–1941 p-adic arithmetic
(non-Archimedean
mathematics)

David Hilbert G 1862–1943 Algebraic number theory;
Foundation of geometry;
Calculus of variations;
Integral equations.

Axel Thue S 1863–1922 Diophantine equations (Thue
Theorem).

Stanislaw Zaremba P 1863–1942 PDE, Potential Theory.

Abram G. Miller J 1863–1951 Combinatorics.

Paul Painleve F 1863–1933 Nonlinear ODE in the
complex plain.
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Table 5.19: (Cont.)

Name Nat. Life-span Major Contribution

Hermann Minkowski J 1864–1909 Geometrical theory of
numbers; 4D relativistic
space-time.

Guido Castelnuovo J 1865–1952 Algebraic geometry.

Jacques S.
Hadamard

J 1865–1963 Prime Number Theorem;
Functions of complex
variable; Theory of
determinants; Functional
analysis; Integral equations;
Theory of variations; Theory
of matrices.

Ivar E. Fredholm S 1866–1927 Modern Integral equations
theory.

Alfred Tauber J 1866–1942 Tauberian Theorems for the
operational calculus.

Felix Hausdorff J 1868–1942 Topological and metrical
spaces (Hausdorff’s
dimension; Forerunner of
concept of ‘fractal
dimension’).

Emanuel Lasker J 1868–1941 Algebraic number fields and
Ideals.

Eli J. Cartan F 1869–1951 Calculus of differential forms;
Spinors; GTR with torsion;
finite continuous groups;
theory of subalgebras.

Helge N.F. von Koch S 1870–1924 Koch ‘snowflake’ curve
(1906).

Frederigo Enriques J 1871–1946 Algebraic geometry.
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Table 5.19: (Cont.)

Name Nat. Life-span Major Contribution

Ernst Steinitz J 1871–1929 Algebraic geometry; Theory
of polyhedra; Theory of
fields.

Emil E.J. Borel F 1871–1956 Measure of set points;
Summability; Functions of
real variable.

Ernst F.F. Zermelo G 1871–1953 Axiomatic set theory; Axiom
of choice; well-orderness.

Tullio Levi-Civita J 1873–1941 Absolute differential
calculus: parallel transport,
intrinsic derivative;
Differential geometry of
generalized spaces; n-body
problem.

Rene Louis Baire F 1874–1932 Real functionals;
semicontinuity; Baire
functions.

Gerhard Hassenberg G 1874–1925 Tensor analysis; Foundation
of geometry.

Thomas J.I.
Bromwich

E 1875–1929 Operational calculus; Infinite
series.

Henry L. Lebesgue F 1875–1941 Measure theory;
Generalization of Riemann
Integral.

Issai Schur J 1875–1941 Number theory; Compact
groups; Matrices; Schur
Lemma.

William S. Gosset E 1876–1937 Small-sample statistics;
Student t-distribution;
t-ratio
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Table 5.19: (Cont.)

Name Nat. Life-span Major Contribution

Luther P. Eisenhart US 1876–1965 Non-Riemannian geometry.

Edmund Landau J 1877–1938 Analytic number theory;
Theory of functions;
Distribution of primes;
Prime Ideals.

G.H. Hardy E 1877–1947 Analytic number theory;
Diophantine analysis;
Divergent series; Inequalities;
Distribution of primes;
Riemann Zeta function.

Maurice R. Frechét F 1878–1973 Geometry of abstract metric
spaces; Functional calculus.
Functional derivative.

Max W. Dehn J 1878–1952 Foundations of geometry;
Theory of groups; Topology.

Jan Lukasiewicz P 1878–1952 Mathematical logic; 3-value
propositional calculus.

J.L. Fatou F 1878–1929 Fractal geometry (1917).

Hans Hahn J 1879–1934 Pioneer in set theory and
functional analysis
(Hahn-Banach theorem,
1922).

Leopold Fejer J 1880–1954 Fourier series at a
discontinuity; Fejer theorem.

Oscar Perron G 1880–1975 Continued fractions;
Differential equations.

Sergi N. Bernstein J 1880–1968 Probability; approximation
of functions (B. Polynomial).

Frigyes Riesz J 1880–1956 Functional analysis.
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Table 5.19: (Cont.)

Name Nat. Life-span Major Contribution

Oswald Veblen US 1880–1960 Non-Riemannian geometry;
Differential and projective
geometry; Topology.

L.E.J. Brouwer D 1881–1967 Topology; ‘Fixed-point
theorem’ (B. Theorem).

Otto Toeplitz J 1881–1940 Functions of infinitely many
variables; quadratic forms;
Integral equations; Theory of
matrices.

Lewis Fry
Richardson

E 1881–1953 Forerunner of fractal
geometry; Integration of the
Navier-Stokes equations
(weather prediction).

Emmy Noether J 1882–1935 Founder of modern algebra:
greatest woman
mathematician ever:
non-commutative algebra,
hyper-complex numbers and
systems; general theory of
Ideals.

J.H.M. Wedderburn US 1882–1948 Division rings; semi-simple
algebras; finite projective
geometries; Matrix theory.

Harry Bateman J 1882–1946 Special functions; Integral
and partial differential
equations.

Waclaw Sierpinski P 1882–1969 Set theory; Number theory.

Richard M.
von Mises

J 1883–1953 Probability, statistical
functions; elasticity;
aerodynamics.
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Table 5.19: (Cont.)

Name Nat. Life-span Major Contribution

Ernst David
Hellinger

J 1883–1950 Integral equations.

Eduard Helly J 1884–1943 Functional analysis.

George David
Birkhoff

US 1884–1944 Ergodic Theorem.

Solomon Lefschetz J 1884–1972 Algebraic topology; stability
of non-linear control systems.

Leonida Tonelli I 1885–1946 Functional analysis.

Alfred Haar J 1885–1933 Topological groups; H.
measure; H. wavelet basis.

John E. Littlewood E 1885–1977 Theory of numbers; Theory
of functions; Fourier series;
Inequalities; Summability of
series.

Hermann Weyl US 1885–1955 Non-Riemannian geometry;
Continuous groups.

Paul P. Levy J 1886–1971 Functional analysis.

George Polya J 1887–1985 Random walks;
Combinatorics; Number
theory; Probability theory.

Johann Radon G 1887–1956 Measure Theory; The Radon
Transform.

Srinivasa
Ramanujan

H 1887–1920 Most original mathematician
since Jacobi, Lagrange and
Euler; Theory of numbers;
Infinite sums, products and
Integrals; Continued
fractions; modular equations
and elliptic functions.



4592 5. Demise of the Dogmatic Universe

Table 5.19: (Cont.)

Name Nat. Life-span Major Contribution

Albert T. Skolem S 1887–1963 Mathematical logic;
axiomatic set theory; lattice
and modal theories;
Diophantine equations.

Harald A. Bohr J 1887–1951 Almost periodic functions.

Stefan Mazurkiewicz P 1888–1945 Point-set topology; locally
connected spaces.

Paul Bernays J 1888–1977 Foundation of Mathematics.

Richard Courant J 1888–1972 Analysis and numerical
analysis (finite element
method).

Herman Kober J 1888–1973 Functional analysis (K.
Theorem); Approximation
theory.

Louis Joel Mordell J 1888–1977 Number theory (M.
Conjecture).

James W. Alexander US 1888–1971 Topology.

H. Nyquist US 1889–1976 Information theory (N.
Criterion).

R.V.L. Hartley US 1890–1970 Information theory (capacity
of message); ‘Hartley
Transform”.

Ronald A. Fisher E 1890–1962 Statistical inference; test of
significance.
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Table 5.19: (Cont.)

Name Nat. Life-span Major Contribution

Walter A. Shewhart US 1891–1967 Statistical methods for
Quality Control.

Avraham Halevi
Fraenkel

J 1891–1965 Set theory.

Abram S.
Besicovitch

J 1891–1970 Theory of fractals
(‘Hausdorff - Besikovitch
dimension’).

John R. Kline US 1891–1955 Foundations of geometry.

L. Vietoris G 1891–2002 Topology; Fourier series.

Stefan Banach P 1892–1945 Functional analysis;
Topological vector spaces;
Theory of measure and
integration.

Hans A.
Rademacher

J 1892–1969 Number theory (partition
functions); R. functions.

Harold M. Morse US 1892–1977 Functional topology;
variational theory: (’Morse
theory’).

Gaston M. Julia F 1893–1979 Fractal geometry.

Eduard Cech G 1893–1960 Topology; Homology theory.

Alexander M.
Ostrowski

J 1893–1986 p-adic numbers; Algebraic
geometry; Quasi-analytic
functions. (O. Theorem).
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Table 5.19: (Cont.)

Name Nat. Life-span Major Contribution

Norbert Wiener J 1894–1964 Cybernetics (Control
mechanisms and
transformation of
information); Set theory,
group theory, probability;
Mathematical logic; The
Fourier integral link of
statistics and analysis;
Stochastic processes;
Prediction of stationary
time-series; Brownian
motion. W. Integral.

Jerzy Neyman J 1894–1981 Statistics; quality control;
confidence intervals.

Paul Finsler G 1894–1970 Generalized Riemannian
geometry. (F. metric).

A.Y. Khinchin J 1894–1959 Stationary random processes.

Heinz Hopf J 1894–1971 Algebraic topology;
Cohomology.

Tibor Rado J 1895–1965 Algebraic topology;
Integration theory; Calculus
of variations.

Gabor Szegö J 1895–1985 Orthogonal polynomials;
Extremal problems (limit
theorems).

Joseph Leonard
Walsh

US 1895–1973 Binary orthogonal systems:
W. functions; W. series,
Walsh-Hadamard transform.

R.H. Nevanlinna S 1895–1980 Harmonic measure: Theory
of value distribution.
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Table 5.19: (Cont.)

Name Nat. Life-span Major Contribution

Pavel S. Alexandrov R 1896–1982 Algebraic topology;
Homological theory of
dimensions.

Carl L. Siegel US 1896–1981 Number Theory; functions of
complex variable; geometry
of numbers.

Emil L. Post J 1897–1954 Automata theory (P.
machine); Mathematical
logic; Modern proof theory;
Recursive functions.

Jesse Douglas J 1897–1965 Minimal surfaces (‘Plateau
Problem’).

Francesco C.
Tricomi

I 1897–1978 Differential and integral
equations; functional
transforms; probability
theory.

Stanislaw Saks J 1897–1942 Theory of real functions.

Pavel S. Uryson J 1898–1924 Topology; Normal spaces
(metrization theorems); U.
Lemma.

Emil Artin US 1898–1962 Class field theory;
non-commutative rings;
Algebra of associative rings;
braids; algebraic number
theory.

Oscar Zariski J 1899–1986 Algebraic geometry.

Juliusz P. Schauder J 1899–1943 Topology; fixed-point
theorem; semilinear and
quasilinear elliptic PDE.
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Table 5.19: (Cont.)

Name Nat. Life-span Major Contribution

Otto Neugebauer J 1899–1990 History of ancient
mathematics and astronomy.

M.A. Lavrentev R 1900–1980 Quasi-conformal mapping;
Non-linear waves.

Antoni Zygmund J 1900–1999 Harmonic analysis;
Trigonometric series.

Nahum I. Akhiezer J 1901–1980 Function theory;
Approximation theory.

Abraham Wald J 1902–1950 Modern statistics: sequential
analysis, quality control and
non-linear optimization.

Alfred Tarski J 1902–1983 Mathematical logic; set
theory; measure theory.

Karl Menger J 1902–1985 Dimension theory.

W.V.D. Hodge E 1903–1975 Algebraic geometry.

Georges de Rham SW 1903–1990 General theory of manifolds
(de Rham theorem).

Alonso Church US 1903–1995 Mathematical logic;
Theoretical computer
science.

Andrei N.
Kolmogorov

R 1903–1987 KAM Theory; Topology;
probability; Information
theory; functional analysis;
random stationary processes.

John von Neumann J 1903–1957 Game theory; Computer
science; topology groups;
logic; set theory; ergodic
theory; operator theory; C
and C∗ algebras.
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Table 5.19: (Cont.)

Name Nat. Life-span Major Contribution

Charles Ehresmann F 1905–1979 Fiber bundles; differential
geometry of groups;
topology.

André Weil J 1906–1998 Abstract algebraic geometry;
Algebraic topology; Abelian
varieties.

Jean Leray F 1906–1998 Algebraic topology and
PDE; turbulence; functional
analysis.

Jean A.E.
Dieudonné

F 1906–1992 Topological vector spaces;
Algebraic geometry;
Abstract analysis; Invariant
theory; group theory.

A.O. Gelfond J 1906–1968 Transcendental numbers;
Interpolation and
approximation of functions
of complex variables.

A.N. Tikhonov R 1906–1993 Topology and functional
analysis (embedding
theorem);
Infinite-dimensional spaces;
Fixed-point theorem for
continuous maps.

Max Zorn J 1906–1993 Infinite set theory (Zorn’s
Lemma).

Olga Taussky-Todd J 1906–1995 Matrix theory; Number
Theory.

Raymond Paley US 1907–1933 Fourier-series and integrals;
quasi-analytic functions.
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Table 5.19: (Cont.)

Name Nat. Life-span Major Contribution

Arthur Erdélyi J 1908–1977 Special functions;
operational calculus;
asymptotic expansions; dual
integral equations.

Stanislaw M. Ulam US 1909–1984 Monte-Carlo method
(statistical sampling
method).

M.A. Naimark J 1909–1978 Theory of group
representations; functional
analysis.

Claude Chevalley F 1909–1984 Class field theory; local
rings; semi-simple algebraic
groups, algebraic geometry.

Joseph Leo Doob J 1910– Stochastic processes.

Norman E. Steenrod US 1910–1971 Algebraic topology;
‘Steenrod Algebra’.

Nathan Jacobson J 1910–1999 Division rings; Lie Algebras
(‘Jacobson Radical’).

S.C. Chern US 1911– Global differential geometry:
fiber bundles; sheaves.

Alan M. Turing E 1912–1954 Modern automata theory;
Computer logic; Artificial
Intelligence (‘Turing
Machine’). Non-linear PDE:
diffusion driven instability.

Norman Levinson J 1912–1975 Linear and non-local
differential equations.
Inverse scattering. Analytic
number theory.
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Table 5.19: (Cont.)

Name Nat. Life-span Major Contribution

L.V. Kantorovich J 1912–1986 Mathematical economy
(Nobel Prize, 1975).

Paul Erdös J 1913–1996 Number theory; Graph
theory; Combinatorics.

Samuel Eilenberg J 1913–1998 Topology: homology and
cohomology theory.

Jan G. Mikusinski P 1913– Modern operational calculus
(algebraic approach).

I.M. Gelfand J 1913– Commutative normal rings;
locally compact groups;
Integral geometry;
generalized functions.

Georg B. Danzig J 1914– Linear programming;
simplex method; operational
research.

Ela Chaim Cunzer J 1914–1943 Subharmonic functions.

Kunihiko Kodaira N 1915–1997 Algebraic geometry; sheaves.

Laurent Schwartz J 1915–2002 Theory of distributions;
Stochastic differential
calculus.

Kiyosi Ito N 1915– Stochastic calculus.

Richard W.
Hamming

US 1915–1998 Error-detecting and
error-correcting codes for
computer systems; digital
communication and data
storing.
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Table 5.19: (Cont.)

Name Nat. Life-span Major Contribution

John W. Tukey US 1915–2000 Fast Fourier Transform;
Mathematical statistics.

Claude E. Shannon US 1916–2001 Father of modern digital
signal–processing technology;
Mathematical theory of
communication. Symbolic
analysis of switching circuits.

Avraham Robinson J 1918–1974 Non-standard
(non-Archimedean) analysis;
Mathematical logic;
aerodynamic wing theory.

Julia B. Robinson US 1919–1985 Number theory (Hilbert’s
10th problem); recursive
functions.

∗ Nat. (Nationality)

D=Dutch I=Italian R=Russian
E=English J=Jewish S=Scandinavian
F=French N=Japanese SW=Switzerland
G=German P=Polish US=American
H=Hindu

1943–1962 CE Benjamin Levich (1917–1987, Russia and USA). Physi-
cist. Opened the new field of physicochemical hydrodynamics which refers to
phenomena governed by the interaction of fluid mechanics, heat and mass
transfer, and chemical reactions. In particular, he studied electrochemical ki-
netics. An equation describing the current at a rotating disc electrode1014 is
named after him.
1014 During 1945–1960 Levich collaborated with the electrochemist Alexander

Naumovich Frumkin (1895–1976, Russia). The latter studied the funda-
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Levich was born in Kharkov, Russia. He became a pupil of Lev Landau
(1937) and worked with him on interfacial phenomena. He emigrated (1979)
to the USA, where he established the Institute of Applied Chemical Physics
at the New York City College.

1943–1968 CE Jean-Paul Sartre (1905–1980, France). Philosopher and
political leader. Absorbed and amalgamated the existentialist ideas of the
German philosophers Hegel, Marx, Nietzsche, Husserl, Heidegger and
Jaspers into a form that fitted the political millieau of post WW2 world.
Then, spent much of his literary life attempting to reconcile these existentialist
views1015 about free will with communist principles.

Existentialism tends to focus on the question of human existence – the
feeling that there is no purpose at the core of existence. Finding a way to
counter this nothingness, by embracing existence, is the fundamental theme
of existentialism, and the root of the philosophical name.

Through the wide dissemination of the postwar literary and philosophical
output of Sartre and his associates – existentialism became identified with
a cultural movement that flourished in Europe during 1945–1970. Among
the major philosophers identified as existentialists were Karl Jaspers, Martin
Heidegger, Ortega y Gasset and Miguel de Unamuno. the 19th century
philosophers Soren Kierkegaard and Friedrich Nietzsche, came to be
seen as precursers to the movement.

Existentialism was as much a literary phenomenon, and a very diverse
coterie of writers and artists linked under the term: Dostoevsky1016, Ib-
sen, Kafka1017, André Gide, Andre Malraux, Samuel, Albert Camus,

mental theory of electrode reactions, considering the influence of the structure

of the electrode/solution interface on the rate of electron transfer.
1015

• Satre J.-P., Being and Nothingness (L’Etre at al n’eant), 1948

• Satre J.-P., Existentialist is a Humanism (L’Existentialisme est un Human-

isme), 1946

• Satre J.-P., Critique of Dialectical Reason (Critique de la raison dialectique),

1960

1016 Kafka created often surreal and alienated characters who struggle with hope-

lessness and absurdity.
1017 Many of Dostoevsky’s novels covered issues pertinent to existential philosophy.
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Samuel Beckett, Knut Hamson, Eugene Ionesco, Alberto Giacom-
neti and Emil Cioran.

Sartre himself failed to write a great novel, or remarkable play, but used
his novels and plays to transmit his political and social messages.

According to the existential view neither scientific nor moral inquiry can
fully capture what it is that makes me myself, my ownmost self. Thus, a
further set of categories is needed to grasp human existence. These categories
are characterized by flight from the iron cage of reason. Thus, existential
philosophy cannot be practiced in the disinterested manner of an objective
science. Indeed, all themes popularly associated with existentialism – dread,
boredom, alienation, the absurd, freedom1018, commitment, nothingness, and
so on – find their philosophical significance in the context of the search for a
new categorical framework.

As a culture movement, existentialism belongs to the past. As a philo-
sophical inquiry it has continued to play an important role in contemporary
thought1019, often bringing it into confrontation with more recent movements
such as structurism, deconstruction, hermeneutics and feminism.

Sartre was born in Paris. His mother, of Alsatian origin, was the cousin
of Albert Schweitzer. He graduated from the Ecole Normal Superieur
(1929) with a doctorate in philosophy, drafted into the French army (1935)
and held by the German as a war prisoner in Nancy and Trier (1940). He
was released and given a civilian status (1941) and then settled in Paris and
found a position at the Lucée Condorcet, replacing a Jewish teacher who was
forbidden to teach by Vichy law.

Sartre’s lack of political commitment during the German occupation and
his further struggles for liberty was considered by his critiques as an attempt
to redeem himself. According to Camus Sartre was “a writer who resisted,
not a resistor who wrote”.

1018 Existentialism generally postulates the absence of a transcendental force (such

a God). It means that the individual is entirely free, and, therefore, ultimately

responsible. It is up to humans to create an ethos of personal responsibility

outside any belief system. Personal articulation of being is the only way to

rise above humanity’s absurd condition of much suffering and inevitable death.

Existentialism is a reaction against traditional philosophies, such as rationalism

and empiricism.
1019 To dig deeper, see

• Kaufmann, W., Existentialism from Dostoevsky to Sartre, Cleveland Meridian

Books, 1968.

• Hayman, R., Sartre: a life, Simon and Schuster: New York, 1987.
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Until 1944, when Sartre was almost forty, he had to earn his living as
a schoolteacher. When the war ended he established a monthly literary and
political review, and started writing full-time as well as continuing his political
activism.

At that time France was a political quagmire; it was torn, radicalized
by war and occupation; the movement of colonial liberation was spreading
and the world was soon to split by the Cold War. The time was ripe for a
socio–political upheaval in France and history put Sartre in the right place
at the right time. He soon found himself famous and existentialism was the
philosophy to study.

Curiously, as existentialism grew in popularity – to a point of becoming a
pop–culture term – Sartre slowly left the philosophy that had brought him to
fame and claimed a conversion to Marxism (1953).

As the Cold War developed, Sartre adhered to the Stalinist French Com-
munist Party and became an orthodox Stalinist, ending up as a servant of
one of the most oppressive regimes of all time. He accepted, at face value, the
claims of the Soviet Union to be a peace–loving, democratic and socially just
society. – a philosopher in service of totalitarism.

Jean-Paul Sartre also supported Mao, Castro and Che Guevara. He took
prominent role in the struggle against French rule in Algeria and became an
ardent supporter of the FLN in the Algerian War.1020 By the 1970’s, Sartre
was reduced to being an apologist for tyranny and terror1021.

The events in Cambodia in the 1970’s, in which between 1
5 and 1

3 of the
nation was starved to death or murdered, were entirely the work of a group
of intellectuals who were for the most part pupils and admirers of J–P Sartre.

Paris university students rebelled in 1968, calling for various reforms.
Sartre’s support of the students caused him problems with both the left and
the right in France. The Beat Generation owes a great deal to him.

Sartre political views and activities present, at best, the philosopher’s
lack of consistency: after making his philosophical debut as an impassioned
advocate of individual freedom, denouncing Marxism as deterministic and
Communism as undemocratic, he aligned himself with Marxism and relegated
Existentialism as being a mere ideology. Marxism, he declared, was the only
valid philosophy for our time. But in the seventies he announced that he was
no longer a Marxist. Indeed, his Marxism had really shrunk back within the

1020 He had an Algerian mistress (Arlette Elkayam) who became his adopted daugh-

ter (1965).
1021 He justified the massacre of the Israeli Olympic team by the PLO in Munich

(1972) as well as killing of European civilians by FLN in Algeria.
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confines of the traditional hatred of the affluent capitalist West. The working–
class Marxists still thought about surplus value but French intellectuals were
obsessed by culture and found themselves without a proletariat.

1943–1976 CE Mark Aronovich Naimark (1909–1978, Russia). Math-
ematician. Contributed to functional analysis and the theory of group rep-
resentations. Proved (1943) the Gelfand-Naimark theorem on self-adjoint al-
gebras of operators in Hilbert space and generalized von Neumann’s spectral
theorem to locally compact Abelian groups. Made a detailed analysis of the
infinite-dimensional representation of the semi-simple Lie groups and wrote
with Gelfand a treatise on irreducible representations of the classical matrix
groups (1950). This work formed the basis for later work on representations
of semi-simple Lie Groups.

Naimark also contributed to the theory of Banach spaces. He wrote books
entitled Normed Rings (1956) and Theory of group representations (1976).

Naimark was born in Odessa to Jewish parents. He was educated at the
Odessa State University (1933) and received his doctorate from the Steklov
Mathematical Institute of the USSR Academy of Sciences, Moscow (1941).
Appointed professor at the Moscow Physical-Technical Institute (1954).
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Life and the Laws of Physics1022 — or,

why are we here now?

(The Anthropic Principle)

“Life feeds on negative entropy”1023.

Erwin Schrödinger, 1943 (1887–1961)

1022 For further reading, see:

• Barrow, J.D. and F.J. Tipler, The Anthropic Cosmological Principle, Oxford

University Press, 1990, 706 pp.

• Goldsmith, D. and T. Owen, The Search for Life in the Universe, Addison-

Wesley, 1992, 530 pp.

• Bartusiak, M. (ed.), Archives of the Universe, Vintage Books, 2004, 695 pp.

• Resenberger, B., Life Itself, Oxford University Press, 1996, 290 pp.

• Barrow, J.D., The Universe that Discovered Itself, Oxford University Press,
2000, 448 pp.

• Hoyle, Fred and C. Wickramasinghe, Evolution from Space, A Touchstone
Book, 1981, 176 pp.

• Davies, Paul, The 5th Miracle, Simon and Schuster, 1999, 304 pp.

• Gribbin, J. and Martin Rees, Cosmic Coincidences, Bantam Books, 1989,
302 pp.

• Cohen-Tannoudji, G., Universal Constants in Physics, McGraw-Hill, 1993,
116 pp.

• Rees, M., Just Six Numbers, Basic Books, 2000, 195 pp.

• Davies, Paul, The Accidental Universe, Cambridge University Press, 1993,
139 pp.

1023 This statement has a very profound meaning: contrary to popular belief, the

essential purpose of eating, drinking and breathing is not merely to provide

energy for vital body functions, but also to rid the system of the entropy it

cannot avoid producing while being alive.

Since negative entropy may be considered as a measure of order, it is legitimate

to say that an organism maintain a steady state by continually extracting order

from its surroundings.
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∗ ∗∗

“We exist only in portions of the universe where the energy levels in carbon
and oxygen nuclei happen to be correctly placed.”

Fred Hoyle, 1965 (1915–2001)

Although the nature of living things has concerned natural philosophers
since antiquity, ‘life’ as a general concept emerged in the early 1800’s. Its
emergence coincided with the introduction of biology as a new scientific field
and with the growing conviction that the essential nature of animals and
plants was the same, lying in their organization rather than in their visible
structures.

18th and 19th century investigators attempted to identify common prop-
erties of living beings that distinguished them from inanimate objects.

Scientists divided into two groups: Vitalists insisted that the phenom-
ena of life cannot be explained adequately without ascribing to living organ-
isms properties neither physical nor chemical. Among them were Francois-
Xaviar Bichat (1771–1802), Georges Cuvier (1769–1832) and Justus von
Liebig (1803–1873).

In contrast, mechanists and reductionists believed that the phenomena of
life can be potentially explained by ordinary physical and chemical laws and
that only physicochemical forces were at work in living organisms.

Such were e.g. Helmholtz (1813–1894) and Karl Ludwig (1816–1895).
Others, such as Claude Bernand (1813–1878) and Rudolf Virchow (1821–
1902) held intermediate views. Thus Bernard denied that living bodies were
distinguished from non-living bodies by their physicochemical properties, how-
ever complex these might be. Rather, he held that the distinguishing feature
of the living organism was the ‘definite idea’ directing its development.

Virchow insisted that the cell was the ultimate locus of life and also disease.
Others soon suggested that life might be a property of something less than

In the case of human beings and other higher animals it is clear how this

process is realized. Food stuffs consisting of highly organized (entropy-poor)

organic molecules are taken in by the body, their energy partly utilized, and

finally returned to the environment in a highly disorganized, or entropy rich

form.



1943 CE 4607

the cell, namely protoplasm [e.g. T.H. Huxley (1868)]. The first physicists
to expound influential views of life were Niels Bohr (1932), Max Delbrück

(1943) and Erwin Schrödinger (1943).

In February 1943, at a bleak moment in the history of mankind, the physi-

cist Schrödinger (then exiled from the Nazi Third Reich) gave a course of

lectures at Trinity College, Dublin, Ireland. The lectures were published in

a little book with the title What is Life? This book addressed the question:

“How can the events in space and time which take place within the spatial
boundary of a living organism be accounted for by physics and chemistry”? In

short: is life based on the laws of physics? Schrödinger’s own conclusion was

that from all we know about the structure of living matter, it functions in a

manner that cannot be reduced to the ordinary laws of physics. This meant

that the laws already discovered in the analysis of matter were not enough in

themselves and that new laws had to be found. Schrödinger’s own conviction

was that living organisms do involve other laws of physics, hitherto unknown.

He described heredity in terms of molecular structure, inter-atomic bonds and

thermodynamic stability.

His message was clear — to continue investigation on the structure and

function of living matter, biology must change its historical course and co-

operate closely with physics and chemistry. Thus, his vision and prophecy

opened the floodgates of molecular biology: the quest for these ‘new laws’

fired the enthusiasm of young physicists and later led (1962) to the breaking

of the genetic code by J.D. Watson, F.H. Crick and M.H.F. Wilkins.

Consequently, it is now possible to understand something of the mechanism

of evolutionary change at the molecular level.

In Darwin’s theory, evolution is driven by random mutation and natural
selection; mutations occur when genes, which are groups of molecules that

can be studied directly, become randomly rearranged within an organism’s

DNA. Natural selection is the process whereby, in the continual struggle for re-

sources, badly adapted individuals or groups (mutants or not) compete poorly

and tend to die out. Thus organisms which are better suited to their envi-

ronment are more likely to survive and reproduce than their less well-adapted

competitors.

Although scientists do not doubt the fact of evolution — the adequacy of

the Darwinian mechanism (i.e., random mutation and natural selection) has

been questioned.

First, the principle of natural selection is essentially tautological (‘Those

organisms better suited to survive will survive better’). Also problematic is
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the claim that evolutionary change is driven by random fluctuations1024. Some
of the objections raised are:

• How can an incredibly complex organism, so harmoniously organized
into an integrated functioning unit, perhaps endowed with exceedingly
intricate and efficient organs such as eyes and ears, be the product of a
series of pure accidents?

• How could random events have successfully maintained biological adap-
tation over millions of years in the face of changing conditions?

• How can chance alone be responsible for the emergence of completely
new and successful structures, such as nervous system, brain, eye, etc. in
response to environmental challenge?

• How could life have been started on earth by a series of random chemical
reactions when simple minded probabilistic estimates show that there was
not enough time for random reactions to get life going as fast as the fossil
record shows that it did1025?

1024 In spite of the complexity of individual proteins, often containing specific com-

binations of as many as 300 individual amino acids, there are several proteins

that appear in most forms of life in nearly-identical forms. This equivalence is

strong evidence for a single source of all life forms.

It is implausible that this similarity arose by chance: There are 20 different

types of amino acids used in forming proteins. The probability of random du-

plicating of two identical protein chains, each with 100 amino acids, is one in

20100 ∼ 10130.

Since there are of order 1018 seconds in the (approximately) 14 billion years

that elapsed since the Big Bang, we would need 10112 trials each second since

the start of time just to reach a condition allowing a single protein to arise by

chance with reasonable probability.

With these odds, it is impossible to explain the existence of similar proteins in

bacteria and humans as due to mere chance.
1025 Metaphor : Consider the likelihood that a troupe of monkeys, hammering away

at typewriters, will eventually reproduce Shakespeare’s 18th sonnet, that ends

with the lines:

SO LONG AS MEN CAN BREATH OR EYES CAN SEE,

SO LONG LIVES THIS, AND THIS GIVES LIFE TO THEE.

There are 488 letters in the sonnet. Neglecting the spacing between the words,

the chance of randomly typing the 488 letters to reproduce this one sonnet is

one in 26488 ∼ 10690. Even with all the monkeys (plus every other animal)

on earth typing away on typewriters over a period of time that exceeds that
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And how about accidental copying errors during reproduction? The more
intricately and delicately a complex system is arranged, the more vulnerable
it is to degradation by random changes (even a tiny error in the blueprint of
an aircraft or spacecraft might well lead to disaster!)

Thus, one would suppose that random mutations in biology would tend to
degrade, rather than enhance, the complex and intricate adaptedness of or-
ganisms. Yet, it is still asserted that random ‘gene shuffling’ is responsible for
the emergence of eyes, ears, brains, and all the other marvelous paraphernalia
of living things. How can this be?

The above considerations suggest that biological evolution may require
additional organizing principles if the existence of the plethora of complex
organisms on earth is to be satisfactorily explained.

Schrödinger’s ideas also impacted the ill-formulated Darwin’s principle of
evolution by natural selection. During the second half of the 20th century
many attempts have been made to prove evolution by natural selection on
the basis of mathematical models and physical laws. Although it has been
accomplished in a few idealized cases, these share a common deficiency —
scant physical input and lack of control over the range of values of many
phenomenological parameters involved in their description.

elapsed since the Big Bang (1018 seconds) – still the probability of a sonnet

appearing would be vanishingly small.

At one random try per second, with even a simple sentence having only 16 let-

ters, it would take 2 million billion years to exhaust all possible combinations.

This calculation is based on the premise that the monkeys type independently

of each other and that typewriters and monkey-groups do not evolve.

Hence the following caveats in the ‘typing-monkeys’ paradigm:

• Group of monkeys may evolve cooperative strategies.

• Typewriters may themselves evolve and become programmable (Turing Ma-

chine), thus enabling a monkey to reproduce a whole sensible word (e.g. ‘Men’)

with a single key-stroke-like a key of the computer keyboard — having once

programmed this key by accident.

• The environment could differentially reward literary outputs of varying

quality (‘selective pressure’), e.g. one could imagine an editor rewarding a

monkey ‘best-seller’ by copious supplies of bananas or mates.

• Hierarchies could naturally evolve with some monkeys assuming manage-

rial positions. In effect, such monkey-bosses are equivalent to higher order

programmers.

Each of these points has its counterpart in molecular biology, where e.g. the

sole task of some genes is to supervise complex patterns of activation and

deactivation of lower-level genes (and similarly for neurons).
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Another approach is based on the assumption that natural selection has
led to the optimization of living beings according to various criteria of merit,
which one tries to identify based on theoretical and experimental information.
Several criteria of optimization have been proposed, such as maximal ‘average
fitness’, maximal efficiency in resource utilization, minimum metabolized en-
ergy per unit biomass, etc. Of greater interest are the attempts to characterize
fitness in thermodynamic terms. A fundamental tendency of non-equilibrium
systems towards stationary states of maximal organization and minimal dis-
sipation constitutes a potentially solid bridge between thermodynamics and
Darwin’s principle.

This has a direct bearing on the problem of the origin of life, namely: how
does non-life beget life. The sort of conditions under which life is believed
to have emerged were far from equilibrium and under these circumstances
highly non-random behavior is expected. Quite generally, matter and energy
in far-from-equilibrium open systems have a propensity to seek out higher and
higher levels of organization and complexity. Thus, the primeval soup could
have undergone successive leaps of non-random self-organization bifurcations
along a very narrow pathway of chemical development. It could perhaps be
that there are as yet unknown organizing principles operating in prebiotic
chemistry that greatly enhance the formation of complex organic molecules
relevant to life.

Is life a rare accident, an irrelevant fluke in a mindless and hostile cosmos?

Stellar lifetimes are a straightforward consequence of the physical laws and
constants; biological evolution, on the other hand, is an immensely complex
multistage process. There seems no conceivable reason why these times should
be closely comparable. In typical cases, even if biological evolution got started
on a planet, it might not have proceeded very far before that planet’s star
died.

Indeed, life as we know it is so special, so complexly organized and so frag-
ile that it can flourish only within the narrowest finely-tuned environmental
conditions; The continuation of life on earth and its successful development
from the simple forms that we find in 3.3 billion-year-old fossils to the complex
organisms of today — reflect the earth’s extraordinarily suitable conditions
for life. It is as if the earth were especially made for life’s eventual appearance
and maintenance1026.

1026 James E. Lovelock (1975) has introduced a concept known as ‘Gaia (the

Greek earth goddess). Accordingly, planet earth is viewed as a holistic self-

regulating system, in which the activities of the biosphere cannot be untangled

from the chemical and physical processes that take place in the solid earth, its

oceans and its atmosphere.
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Carbon, oxygen and hydrogen are required in abundance to form the intri-
cate and varied molecules of life. Yet neither carbon nor oxygen is abundant

Moreover, the Gaia hypothesis suggests that life acted in such a way as to

maintain the conditions needed for its own survival and progress. It provides

an illustration of how a highly complex non-linear feedback system can display

stable modes of activity in the presence of drastic external perturbation. It

seems as if the earth “seeks” an optimal physical and chemical environment

for life on this planet.

Example: Over the earth’s history the internal structure of the sun changed

due to its burn-up of hydrogen fuel. This, in turn, affected its luminosity,

which increased by about 30 percent over the earth’s history. In spite of this,

the temperature of the earth’s surface has remained remarkably constant over

this time – since we know that the oceans have neither completely frozen, nor

boiled [the very fact that life has survived over the greater part of the earth’s

history is itself testimony to the equability of conditions].

How has the earth’s temperature been regulated? The primeval atmosphere

contained large quantities of carbon dioxide, which acted as a blanket and

kept the earth warm in the relatively weak sunlight of that era. With the

appearance of life, however, the CO2 in the atmosphere began to decline as

the carbon was synthesized into living material.

In compensation, oxygen was released. As the sun grew hotter, so the CO2

was gradually eaten away by life. On the other hand the oxygen produced an

ozone layer in the upper atmosphere that blocked out the dangerous ultravio-

let rays. With this ozone protection life was no longer restricted to the oceans,

but could flourish in the exposed conditions on land.

The perturbations mentioned above do not necessarily include man-made al-

terations of some of the planet’s major chemical cycles due to an ever increas-

ing industrialization: we have increased the carbon cycle by 20 percent, the

nitrogen cycle by 50 percent, and the sulphur cycle by 100 percent! We have

increased the flow of toxins into air, water, and food chains. We have reduced

the planet’s green cover, while our factory outpourings reach the upper at-

mosphere and far into the oceans.

In the words of James Lovelock (1988): “We shall have to tread warily to

avoid the cybernetic disasters of a runaway positive feedback or of sustained

oscillation between two or more undesirable states. We could wake one morn-

ing to find that we have landed ourselves with a lifelong task of planetary

maintenance engineering. Then at last, we should be riding in that strange

contraption, Spaceship Earth.

People sometimes have the attitude that ‘Gaia will look after us’. But that’s

wrong. If the concept means anything at all, Gaia will look after herself. And

the best way for her to do that might well be to get rid of us”.
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in the universe, nor were they produced in the Big Bang. To nurture life, the
Universe needed the nuclear alchemy that would change the primeval building
blocks of hydrogen and helium into the heavier elements employed by life.

Following WWII, a group of physicists at the California Institute of Tech-
nology created a new field called Nuclear Astrophysics, which is the study of
nuclear processes in stars. It seeks to learn how stars produce their energy,
how the stars evolve, and how the stars produce the particular distribution
of chemical elements throughout the universe.

The specific nuclear reaction that is needed to make carbon is a rather
improbable one: it requires 3 nuclei of helium to come together to fuse into a
single nucleus of carbon. It was soon recognized (Hoyle, 1952) that making
carbon in stars by this process was difficult: first, it were difficult to get three
alpha-particles to meet, and then, even if this was accomplished, the fruits of
their liaison might be short-lived, since all carbon could quickly get consumed
by interacting with another alpha-particle to create oxygen.

Hoyle realized (1954) that the only way to explain why there was a sig-
nificant amount of carbon in the universe was to posit that the production
of carbon went much faster and more efficiently than had been envisaged, so
that the ensuing burning to oxygen did not have time to destroy it all.

There was only one way to achieve this carbon boost. A nuclear reaction
may occasionally experience a special circumstances where its rate is dramat-
ically increased. It is said to be ‘resonant’ if the sum of the energies of the
incoming reacting nuclei is very close to a natural excited energy level of a new
heavier nucleus. When this happens the nuclear reaction rate can be greatly
enhanced, especially if the resonance is weakly damped (i.e. narrow1027).

Hoyle saw that the presence of a significant amount of carbon in the uni-
verse would be possible only if the carbon nucleus possessed a natural energy
level at about 7.65 MeV above its ground state (i.e. 0.07% heavier). Only
if that was the case could the cosmic carbon abundance be explained, Hoyle
reasoned. Unfortunately no energy level was known in the carbon nucleus at
the required place.

Hoyle decreed, in effect, “Since we exist, then carbon must have an energy
level at 7.65 MeV!”.

In 1957, William Fowler led a team of nuclear physicists in search of the
energy level that Hoyle was proposing, persuading himself that all the past

1027 Resonances in classical physics are tuned to particular frequencies. Due to

Planck’s relation E = hν, quantum mechanical resonances are tuned to both

frequency and energy. And by dint of STR this implies a tuning of mass as

well (E = mc2).



1943 CE 4613

experiments could have missed the 7.65 MeV level. The result was dramatic:
there was a new energy level in the carbon nucleus at 7.656 MeV, just where
Hoyle had predicted it would be.

The whole sequence of events for the production of carbon by stars then
looked delicately balanced (fine tuned): Three helium nuclei (alpha-particles)
have to interact at one place

3 4
2He → 12

6 C + 7.656 MeV. (1)

This reaction proceeds in two steps: first, two α-particles fuse for a very short
time (≈ 10−16 sec) into an unstable beryllium 8

4Be isotope nucleus

(99 ± 6)keV + 4
2He + 4

2He → 8
4Be. (2)

Fortunately, beryllium has a peculiarly long lifetime, ten thousand times
longer than the time required for two helium nuclei to interact; and so it stays
around long enough to have a good chance of combining with another helium
nucleus to produce a carbon nucleus and two gamma-ray photons:

4
2He + 8

4Be → 12
6 C + 2γ. (3)

The 7.656 MeV energy level in the carbon nucleus lies just above the
energies of the beryllium plus helium (which are equivalent to an excitation
of 7.3667 MeV), so that when the thermal energy of the inside of the star
is added, the nuclear reaction can become resonant and abundant carbon is
produced (in some stars and in some stages of their lives). But that is not
the end of the story. The next reaction threatening to burn up all the carbon
is

12
6 C + 4

2He → 16
8 O + γ. (4)

Once reactions (1) and (4) have been completed the core of the star will
be made up of carbon ( 12

6 C isotope) and oxygen ( 16
8 O isotope).

Clearly, if reaction (4) should turn out to be resonant as well, then all
the rapidly produced carbon would disappear and the carbon resonance level
would have been to no avail.

Remarkably, this last reaction just fails to be resonant. The oxygen nucleus
has an excited energy level at 7.1187 MeV that lies just below the total energy
of carbon plus helium at 7.1616 MeV. So even when the extra thermal energy
in the star is added, the oxygen-producing reaction can never be resonant and
the carbon survives.

Hoyle recognized that his finely balanced sequence of apparent coinci-
dences was what made carbon-based life a possibility in the Universe.
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The positioning of the nuclear energy levels in carbon and oxygen is the
result of a very complicated interplay between nuclear and electromagnetic
forces that could not be calculated easily when the discovery of the carbon
resonance level was first made.

Today, it is possible to make very good estimates of the contributions of
electromagnetic and nuclear forces to the levels concerned. One can see that
their positions are a consequence of the fine structure constant and strong nu-
clear force (QCD) coupling constant taking the values that they do, and that
slight departure from these values would cause a “cosmic carbon bottleneck”
and make carbon-based life impossible anywhere in the universe!

If the fine structure constant, that governs the strength of electromagnetic
forces, were changed by more than 4 per cent or the strong-interaction cou-
pling constant by more than 0.4 of one per cent then the production of carbon
or oxygen would be reduced by factors of between 30 and 1000.

Geoffrey and Margaret Burbidge, Fred Hoyle and William Fowler
coauthored (1957) the paper: “Synthesis of the Elements in the Stars”. In it
they showed that all the elements from carbon to uranium could be produced
by nuclear processes in stars, starting only with the hydrogen and helium
produced by the Big Bang.

Yet another fine tuning of the fine-structure and nuclear coupling constant
involves the cosmological production of helium itself during the first three
minutes after the Big Bang. Were the strong nuclear force slightly weaker,
deuterium nuclei would not exist — and the early-universe production of
helium from hydrogen depends on deuterium as an intermediate state. And
were the strong nuclear force strong enough for a diproton (a two-proton
nucleus) to exist, again (almost) no deuterium would be produced, and very
little helium — and thus no carbon.

Water in its liquid state is needed as the medium within which the reac-
tions of life are to occur (at least, this is so for terrestrial life). Yet liquid
water exists only within a narrow range of temperatures and pressures. A
long-term source of energy with constant output for billions of years is nec-
essary to warm the water and to fuel the development of life from the simple
to the complex. Such a long-term energy source can probably only originate
with a star, but accompanying the warming stellar light is the devastating
flux of ultraviolet and cosmic radiation. The potential abode of life required
a window that allows light to enter but keeps out the ultraviolet radiation.
This same home must have an umbrella that effectively deflects the continual
shower of lethal cosmic radiation.
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Earth’s average distance from the sun is approximately 150 million kilome-
ters. Venus is only 30 percent closer than we are but the difference is crucial;
typical surface temperatures on Venus are about 500 ◦C. At this temperature,
zinc and lead melt, wood burns spontaneously and glass is almost soft putty.
There is not much chance for life under these conditions.

The annual variation in distance from earth to the sun is only 4.5 million
kilometers, that is, only 3 percent of the total distance. (We are 3 percent
closer in January.) This small annual variation means that the earth’s orbit
is almost circular. The orbit of Mars is quite elliptical, causing a variation in
the distance to the sun of 50 million kilometers during the year. If the earth
had such variance, our crust would deep-fry each January.

In fact, if our distance from the sun were only 10 million kilometers less (a
change of less than 7 percent), the increased solar heat would prevent water
vapor from condensing. There would be neither rain nor oceans. Ultraviolet
radiation is able to penetrate only a few millimeters of water. This gave life a
chance to develop within the oceans prior to the presence of oxygen (and thus
UV-blocking ozone) in the atmosphere. Oxygen produced by aquatic algae
formed the initial ozone screen. Life could then emerge from its protected
berth in water and populate the land.

The fine balance of the earth’s composition is made manifest by another
characteristic of the planet we inhabit: its radioactivity. The young earth
contained enough radioactivity to have heated and melted it during its early
development. Evidence of this internal heating is the increasing temperature
experienced as we dig into the earth.

Because of the decrease in radioactivity over time, the earth now has a
solid crust, but still a molten core. The motion of the molten iron mass within
the earth’s core produces the magnetic field with which we are familiar. The
Lorentz forces due to this field divert much of the potentially lethal ionizing
cosmic radiation that reaches the vicinity of the earth. We live under a literal
magnetic umbrella. Were this cosmic radiation not deflected, it would bathe
the surface of the earth with a continual shower of life-devastating ionization.

These constraints deal with the macroscopic characteristics of the universe
required at life’s abode. At the subatomic level, the demands of life are equally
rigorous.

The forces that bind protons and neutrons into nuclei of atoms must be
sufficiently strong to form the stable units we refer to as the elements, but
weak enough to allow the spontaneous fission of some of the nuclei of the
heavier among elements. The radioactivity caused by this fission supplied the
heat that fueled the volcanoes that released trapped vapors and gases which
formed the biosphere, the thin film of water and air in which all of life thrives.



4616 5. Demise of the Dogmatic Universe

Electromagnetism, which binds electrons to nuclei and repels them from
each other and thus defines the properties of atoms — including all of chem-
istry, material science, optics and molecular biology — is also finely balanced.
It must be weak enough to free electrons for occasional passage through and
into neighboring atoms, yet strong enough to organize and join these adjacent
atoms into ions and molecules, the basis for the solid and liquid structures of
matter.

Gravity, the most enigmatic of the four fundamental forces of the universe,
is the weakest of the four. Yet on large scales (planets, stars, galaxies and
the universe as a whole) it is the most powerful force. As such it shapes
the macrostructure of the universe and through gravitational instabilities and
collapse, forms galaxies, stars and planets. If gravity were significantly more
powerful, the life-times of the stars would be too short to allow life to flour-
ish. Increasing or decreasing gravity, which binds planets, stars and galaxies
in their flight through space, would result in unstable orbits, with planets
spiraling toward, or away from their star; it also changes planets’ sizes and
chemical compositions.

To see this, we briefly summarize the, so-called coincidence of large num-
bers, first exploited by Arthur Eddington (1921), Paul Dirac (1937) and
Robert Dicke (1961).

Eddington believed that he could create a theory that would weave to-
gether the macroscopic world of astronomy and cosmology with the sub-
atomic world of protons and electrons. To this end he used the experimental
values of his day to choose four dimensionless numbers:

• The ratios of the masses of the proton and electron

mp/me ≈ 1840. (5)

• The inverse of the fine-structure constant

2ε0hc

e2
≈ 137, (6)

(h = Planck’s constant; c = velocity of light in vacuum, e = charge of
the electron).

• The ratio of the electromagnetic force to the gravitational force between
an electron and a proton

e2

4πε0Gmpme
≈ 2 × 1039. (7)
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• The number of protons in the visible universe

NEdd ≈ 1080. (8)

Note that since e2 ≈ 2ε0
137hc, we may use (5) to recast (7) in the form

�c

Gm2
p

≈ 1.5 × 1038; � =
h

2π
. (9)

Eddington then concocted a numerological derivation of the quadratic
equation

10m2 − 136m + 1 = 0, (10)

which has two roots, the ratio of which is 1847.6. This equation thus ties
up the first two of his constants (since m is interpreted as

mp

me
, and the

coefficient 136 = 137 − 1 is related to the fine-structure constant in his
derivation). Then he claimed that

√
NEdd ≈ 1040 ≈ e2/4πε0

Gmpme
is justified on the

premise that the ratio of the electric force to the gravitational force between
two protons was a statistical fluctuation of a collection of N particles, given
by the square root of N .

Eddington’s attempt to produce a unified explanation for the constants
of nature attracted few adherents. The great physicists of his day, such as
Einstein, Dirac, Bohr and Born, found it useless and politely confessed
that they could not understand it. Yet, his efforts drew the attention of
physicists and created a new frontier to strive for.

Unpersuaded by Eddington’s numerological approach to dimensionless
constants and the presence of large numbers amongst the constants of na-
ture, Dirac (1937) nonetheless argued that very large dimensionless numbers
taking values like 1040 and 1080 are most unlikely to be independent; He then
expounded the new conjecture: ‘Any two very large dimensionless numbers
occurring in nature are connected by a simple mathematical relation, in which
the coefficients are of the order of unity’.

The large numbers that Dirac marshalled to motivate this daring new
hypothesis drew on Eddington’s work and were three in number: (t = present
age of universe; modern, 1990’s value used)

N1 = (size of the observable universe)/(classical electron radius)
= ct

e2/4πε0mec2 ≈ 5 × 1040 (11)

N2 = electromagnetic-to-gravitational force ratio between
proton and electron

= e2

4πε0Gmemp
≈ 2 × 1039

(12)
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N = number of protons in the observable universe1028

= c3t/Gmp ≈ 1080. (13)

It then follows from (11)–(13) and Dirac’s hypothesis that

N1 ≈ N2 ≈
√

N ∝ t (14)

which implies
e2

4πε0Gm2
p

∝ t (15)

at any cosmological epoch. Dirac chose to accommodate (15) by abandoning
the constancy of Newton’s gravitation constant, G. He suggested that it was
decreasing in direct proportion to the age of the Universe over cosmic time
scales, as

G ∝ 1/t (16)

Thus in the past G was bigger and in the future it will be smaller than it is
measured to be today. One now sees that the huge magnitude of the three
Large Numbers is a consequence of the great age of the universe: they all get
larger as time wears on.

We define a nuclear time tN as the travel time of light across the Compton
wavelength of the proton

tN =
1
c

(
h

mpc

)

=
h

mpc2
. (17)

Combining (5), (11) and (17) we obtain for t = tnow

tnow

tN
≈ 1041, (18)

meaning that the age of the universe bears about the same numerical relation
to tN (up to a factor ≈ 50) as the electric force between a proton and electron
in the hydrogen atom bears to their gravitational attraction.

One of the earliest specific demonstrations that biology can be used to
explain the coincidence of large numbers is due to Robert Henry Dicke
(1916–1997, USA). In 1961 he declared that both Eddington and Dirac had
been misguided in searching for new fundamental principles of physics to
explain the apparent coincidences (14).

Clearly, the present age of the universe is defined by the recent nascence
of the human technological society, occupying a minute fraction of its life-
span. Dicke reasoned that tnow is not a randomly selected instant of time,

1028 Assuming a spatially closed and flat universe with no cosmological constant.
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but intimately connected with the timescales of certain physical processes in
the universe that are themselves prerequisites for the existence of intelligent
life, and hence technology.

One could imagine a variety of such prerequisites, but the one chosen
by Dicke concerns the existence of elements heavier than hydrogen. Life on
earth is based on the element carbon, while nitrogen and oxygen are also
vital. These elements did not exist in the primeval universe. Their presence
in reasonable abundance is attributed to the nucleosynthesis which occurs
inside stars.

Dicke presented these ideas (1961) in a more quantitative and cogent form
specifically geared to explaining (in part) the large-number coincidences: The
heavier elements are synthesized in the late stages of stellar evolution and are
spread through the universe by supernovae explosions which follow the main-
sequence evolution of stars. Only universes of roughly the main-sequence
stellar age could produce the heavy elements, like carbon, upon which life is
based. Only those universes could evolve ‘observers’.

Quantitatively, the argument shows that the main-sequence stellar lifetime
is roughly

tms =

⎛

⎝
nuclear energy
available from

hydrogen fusion

⎞

⎠

⎛

⎝
nuclear-released energy
trapped within a star
at any given moment

⎞

⎠

·

⎛

⎝
time for radiation
to diffuse out of

the star

⎞

⎠ .

Now, the mean free path for photon diffusion is λ ≈ 1
σn , with n the hydrogen

atom stellar density and σ the Thomson cross section ∼ e2/4πε0mec
2; the

available fusion energy per hydrogen nucleus is of order of the nuclear self-
Coulomb energy ∼ e2/4πε0λc, with λc = h/mpc the proton Compton
wavelength; while the thermal nuclear-derived energy inside the star at any
moment is of order of its self-gravity potential energy. Thus

tms ≈
(

hc

Gm2
e

)(
h

mpc2

)

α3 ≈ 4 billion years,

with α = e2/4πε0�c the fine structure constant.

We could not expect to be observing the universe at times significantly in
excess of tms, since all stable stars would have expanded, cooled and died (i.e.
all stars would be white dwarves, neutron stars and black holes). Nor would
we be able to see the universe at times much less than tms because we could
not exist! (i.e., no late-life stars, nor heavy elements like carbon).
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Living beings are therefore most likely to exist when the age of the universe
is roughly equal to tms, with t = 0 designating the Big Bang. Thus
the value of Dirac’s Large Number N(t) is by no means random. It must
have a value close to the value taken by N(t) when t = tms. At that time
we must inevitably observe the Dirac coincidence N1 ≈ N2 to hold. It is
a prerequisite for our existence, and no hypothesis of varying constants is
necessary to explain it.

Indeed, at time tms after the beginning of the expansion of the universe it
is inevitable that we observe N1 to have the value

N1 ≈ 4πε0
mec

3

e2
tms ≈

(
hc

Gm2
e

)(
me

mp

)

2πα2 ≈ (2π)2αN2 ≈ N2. (20)

All that Dirac’s coincidence is saying is that we live at a time in cosmic history
after the stars have formed and before they die. This is not surprising. Dicke
is telling us that we could not fail to observe Dirac’s coincidence: it is a
prerequisite for life of our sort to exist.

Note that since N1N2 = N identically, Dicke’s argument also explains
the other Dirac coincidence, N2 ≈

√
N .

There is no need to give up Einstein’s theory of gravitation by requiring G
to vary, as Dirac implicitly required, nor do we need to deduce some numero-
logical connection between the strength of gravity and the number of particles
in the universe as Eddington had thought. The Large Number coincidence is
no more surprising than the existence of life itself. Nevertheless, Dicke’s argu-
ment does not explain why gravity is so weak, nor why the universe is so old
now that we exist — it only reflects the two facts. The separate explanation
of either one may lie in grand-unified or string theories of particle physics,
through the so-called “running coupling constant” phenomenon. If so, then
physics will eventually explain why the timescale tms of stars is so huge in
units of molecular interaction times — a fact that allowed life enough time to
evolve.

Dirac’s response, his first written remarks about cosmology for more than
twenty years, to this unusual perspective upon cosmological observations was
rather bland:

‘On Dicke’s assumption habitable planets could exist only for a limited pe-
riod of time. With my assumption they could exist indefinitely in the future
and life need never end. There is no decisive argument for deciding between
these assumptions. I prefer the one that allows the possibility of endless
life.’
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Although he was willing to admit that life would be unlikely to exist before
the stars had formed he was unwilling to concede that it could not continue
long after they had burnt out. With Dirac’s idea of varying G the coincidences
would continue to be seen at all times but on Dicke’s hypothesis would only
be seen near the present epoch.

Dirac didn’t think there was any problem with having habitable planets in
the far future on his theory. However, if gravity is getting weaker it is not clear
that stars and planets would be able to exist in the far future. At the very
least, other constants would need to vary to maintain the balance between
gravity and the other forces of Nature that make their existence possible.

Dirac’s hypothesis, however, did not survive for long. Other notable cos-
mologists did not believe that any ‘Fundamental Theory’ a-la Eddington could
possible hope to explain coincidences between large numbers precisely because
the large numbers involved the present age of the universe.

Since there was nothing special about the present time we were living at
(apart from our existence), no theory of physics could predict it or pick it
out so it could explain the coincidences. Yet, Dicke’s arguments strikingly
support the notion that the observable universe must be at least ten billion
years old. Since it is expanding, it must be at least of order ten billion light
years in size. We could not exist in a universe that was significantly smaller.

Thus, modern cosmology provide an illuminating response to the question
why we are here at the time and place that we are.

Furthermore, the blend of the natural laws of the universe, along with the
relative strength of the fundamental forces that operate among matter and
energy, cannot vary by much if the universe is to develop such complicated
things as multibillion-year-old stars and living cells.

The Anthropic Principle seeks to link aspects of local and global structure
of the universe to those conditions necessary for the arousal and existence of
living observers.

The expulsion of Man from his self-assumed position at the center of nature
owes much to the Copernican principle that we do not occupy a privileged
position in the universe. Although we do not regard our position in the
universe to be central or special in every way, this does not mean that it
cannot be special in any way.

This led Brandon Carter (1974) to limit the Copernican dogma by an
Anthropic Principle, to the effect that our spacetime location in the universe
and perhaps the very laws of nature, are necessarily privileged to the extent
of being compatible with our existence as observers.
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In other words: the measured values of many cosmological constants and
physical quantities that define our universe (and our location and epoch
therein) are circumscribed by the necessity that we observe from a site
and time where conditions are appropriate for the occurrence of biological
evolution and at a cosmic epoch exceeding the astrophysical and biological
timescales required for the development of life-supporting environments and
biochemistry1029.

Put another way, the Anthropic Principle states that the structure of the
universe is restricted by the fact that we are observing this structure; by the
fact that, so to speak, the universe is observing itself. These ideas are phrased
in the definition of the Weak Anthropic Principle (WAP):

The observed values of all physical and cosmological quantities are not
equally probable but they take on values restricted by the requirement that
there exist sites where carbon-based life can evolve and by the requirement
that the universe be old enough for it to have already done so.

The existence of a number of a priori unlikely coincidences and fine-tunings
between dimensionless numbers (some of them of enormous magnitude) that
are, superficially, either completely independent or determined from some life-
unrelated mathematical principles, and the further fact that these unlikely
relations appear essential to the existence of carbon-based observers in the
universe – led some scientists to propose a stronger version of the WAP,
namely the strong Anthropic Principle (SAP):

The universe must have those properties which allow life to develop
within it at some stage in its history.

This is clearly a more metaphysical and less defensible notion, it implies that
the constants and laws of nature must be such that life can exist. This spec-
ulative teleological hypothesis admits a number of distinct interpretations of
a radical nature:

• Nature organizes itself in such a was as to make the universe self-aware.

• There exists a restricted set of possible universes ‘designed’ with the
goal of generating and sustaining ‘observers’.

1029 The observer’s scale is privileged too: the mass of an adult human (ca 60 kg)

is roughly the geometric mean of a stellar mass (ca 1030 kg) and an atomic

mass (ca 10−27 kg). And the size of a living cell is about the geometric mean

of the size of the observable universe (ca 1010 LY ≈ 1028 cm) and the Planck

length (≈ 10−33 cm)!
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• Observers are necessary to bring the universe into being.

• Intelligent information-processing must come into existence in the uni-
verse, and, once it comes into existence, it will never die out (known as
the Final Anthropic Principle or FAP).

While FAP and SAP are quite speculative, WAP is just an extension of the
well-established principle of science that it is essential to take into account the
limitations of one’s measuring apparatus when interpreting one’s observations.

Note that the SAP can be regarded as a meta-principle of organization,
because it arranges the fundamental laws themselves so as to permit complex
emergent organization to arise.

1944 CE Howard Hathaway Aiken (1900–1973, U.S.A.). Mathemati-
cian. Built one of the first automatic electro-mechanical digital calculating
machine (1944) dreamed up by Babbage in 1833.

In 1937, Aiken had the idea of using the techniques and components de-
veloped for punched-card machines to produce a fully automatic calculating
machine. At that time he was a graduate student at Harvard, and getting fed
up with the tedious calculations required for his Ph.D. thesis. To implement
his idea he approached the I.B.M. Corporation, one of the largest manufac-
turers of punched-card machinery. The result of their collaboration was the
Automatic Sequence Controlled Calculator (A.S.C.C.), also known as Mark I,
which was completed in 1944 and presented to Harvard University in August
of that year.

In 1940, Aiken had his attention called to Babbage’s pioneering efforts.
When he read Babbage’s charge to his successors he felt that Babbage was
speaking directly to him from the past.

When the Harvard Mark I was in operation, it sounded “like a roomful
of ladies knitting”. The muted clicking noises were made by thousands of
electromechanical relays opening and closing. Unlike most modern comput-
ers, the Mark I included electro-mechanical counters, descendants of those
designed by Pascal.

1944 CE Archer John Porter Martin (1910–2002, England) and
Richard Lawrence Millington Synge (1914–1994, England). Biochemists.
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Developed paper chromatography, a new tool in identifying organic compounds
using absorbent paper1030. They were awarded the Nobel prize for Chemistry
(1952).

In this technique, a drop of mixture (amino acids, say) is placed at one
end of a piece of very porous paper and is allowed to dry. The amino acid
molecules remain firmly bound to a thin and invisible film of water on the
paper. Now, an organic liquid such as butyl alcohol is allowed to creep up the
paper, by capillary action. As the alcohol passes the dried mixture of amino
acids, each amino acid moves at a different rate and is found at a different
spot on the paper. In this way the individual components of even a very
complex mixture can be separated and analyzed individually.

By this method, the amino acid analysis of a number of different proteins
was carried through. For instance, the albumin of human blood plasma was
found to be made of 510 proteins, each composed of 19 amino acids. This
method is of course incapable of revealing the order in which the amino acids
appear1031 in the original protein molecules.

Their technique revolutionized analytical biochemistry and enabled rapid
separation of small amounts of complex mixtures of biochemicals not possible
by ordinary chemical methods.

1944 CE Rudolf Karl Luneburg (1902–1949, Germany and USA). Math-
ematician. Accomplished a systematic and fundamental development of ray
and diffraction optics from Maxwell’s equations.

Luneburg was born in Volkersheim, Germany. Received his doctorate from
Göttingen University (1930) and was a Research Associate in Mathematics
there (1930–1933). Emigrated to the United States (1935), holding a series
of short term university appointments and worked for the American Optical
Company during 1938–1945. His book: Mathematical Theory of Optics, pub-

1030 Thus extending the chromatography of Willstäter. Martin and Synge used

ninhydrin to reveal the position of the amino acids. The developed strip is

called a chromatogram.

1031 Nevertheless, Frederick Sanger (b. 1918) was able (1953) to determine the

order in which amino acids compose the molecule of insulin. The number of

possible arrangements for these amino acids is greater than 10100. For this he

was awarded the Nobel Prize for Chemistry in 1958, and a second one in 1980

for work on the chemical structure of genes.
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lished posthumously, was based on notes of lectures given in 1941 at Brown
University.

He was killed in an automobile accident in Montana.

The chief contribution Luneburg made through his theory lies in having
shown how the two main mathematical disciplines of instrumental optics,
namely geometrical optics and scalar-diffraction optics, may be developed in
a systematic manner from the basic equations of Maxwell’s electromagnetic
theory.

Prior to Luneburg’s work these two disciplines were treated as self-
contained fields, with little or no contact with each other and less with elec-
tromagnetic theory. The starting point of Luneburg’s investigation was the
observation of the formal equivalence of the basic equation of geometrical op-
tics (the eikonal equation) and the equation that governs the propagation of
discontinuous solutions of Maxwell’s equations (the equation of characteris-
tics).

By identifying the geometrical optics field with the electromagnetic field on
a moving discontinuity surface, Luneburg was led to a complete formulation
of geometrical optics as a particular class of exact solutions of Maxwell’s
equations. This formulation is by no means based on traditional ideas; for
traditionally geometrical optics is regarded as the short wavelength limit of
the monochromatic solution of the wave equation.

Luneburg was, of course, aware of this more traditional viewpoint, and he
devoted considerable time to the interrelation between the two approaches.
Some of his ideas became the nucleus from which a systematic theory of as-
ymptotic series solutions of Maxwell’s equations has gradually been developed.

1944–1951 CE Hendrik Christoffel van de Hulst (1918–2000, Hol-
land). Astronomer. Suggested that interstellar hydrogen must emit radio
waves at wavelength 21.2 cm (the key to mapping the spiral arms of our
galaxy).

The ground state of the hydrogen atom is split by the hyperfine magnetic
interaction of the electron and proton spins into two quantum states, with
separation 0.047 cm−1 in inverse wavelength. In one of the states the spins
of the electron and the proton are parallel, in the other antiparallel. When a
spin reversal occurs in a ground-state atom due to an external disturbance,
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a photon of wavelength 21.2 cm is eventually emitted1032, thus relaxing the
atom back to its ground state spin configuration.

Even though in any individual excited interstellar atom, such emission
(and accompanying spontaneous reversal) occurs, on the average, once in 11
million years, the cumulative effect of the large number of hydrogen atoms in
interstellar space might be observable.

Confirmation of van de Hulst’s prediction was provided on March 25, 1951,
by the first observation of the interstellar hydrogen absorption line by Harold
Ewen (U.S.A.) and Edward Mills Purcell (1912–1997, U.S.A.). An ex-
tremely important line of investigation has resulted from this discovery, en-
abling astronomers for the first time to map with some success the structure
of the Milky Way.

1944–1952 CE Stanislaw Marcin Ulam (1909–1984, Poland and USA).
Mathematician. Solved the problem of how to initiate fusion in the hydrogen
(thermonuclear) bomb1033. Devised the ‘Monte-Carlo method’ (1945) which

1032 This is in the radio region, and corresponds to a transition between two levels,

10−17 ergs apart in energy. Ewen and Purcell showed, in a laboratory exper-

iment, that it is possible to stimulate the transition in a beam of hydrogen

atoms, and thereby to measure the corresponding radio frequency 1420.403

Mc/sec, giving a wavelength of just over 21 cm.
1033 An important thermonuclear reaction between the hydrogen-isotope nuclei is

Deuterium + Tritium → (α-particle) + neutron + 17.4 MeV.

But tritium is radioactive with a half-life of 12 years and would be a trou-

blesome permanent ingredient of a bomb, generating unwanted heat with the

necessity of frequent replenishment.

The use of 6LiD (Lithium deuteride with the isotope lithium-6) solved two

crucial problems at once: as a chemical molecule it holds the deuterium in

solid form without the need for refrigeration, and at the instant of detonation

the 6Li present provides the tritium needed for the D + T (i.e., 2
1H1 + 3

1H2)

reaction through the reaction 6Li + n → α + T + 5 MeV.

It is because this reaction has a larger cross-section than the corresponding
7Li reaction, that the separated isotope 6Li is used in the lithium deuteride.

So this design produces more tritium to increase the intensity of the ther-

monuclear reaction. Since lithium is cheap and tritium is expensive, this has

economic as well as technical advantages.

We may think of an H-bomb as consisting mainly of an A-bomb (fission nuclear

bomb) surrounded by, or close to, a mass of 6LiD. When the A-bomb trig-

ger explodes, and instantaneously before it has a chance to blow the H-bomb

ingredients apart, it emits a very intense burst of neutrons that bombard the
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searches for solutions to mathematical problems using a statistical sampling
method with pseudo–random numbers. Invented the concept of cellular au-
tomata at the Los Alamos laboratory (1948).

Ulam was born in Lemberg, Poland (now Lviv, Ukraine) to Jewish par-
ents. He obtained his Ph.D. from his hometown Polytechnic Institute (1933).
A common interest in set theory led to contact with von Neumann, who in-
vited him to the USA (1936) and later involved him in the atomic bomb
project at Los Alamos (1944). From 1946 he collaborated with Edward Teller
in the design of the hydrogen bomb. His work required massive calcula-
tions; Ulam utilized existing calculation machines and applied probabilistic
(so-called ‘Monte Carlo’) methods.

After WWII, Ulam continued to pursue his interest in using machines to
solve mathematical and scientific problems, and held several professorships.
At the time of his death he was a professor of biomathematics at the University
of Colorado (from 1965).

6Li to produce the tritium needed, mixed with the deuterium already there,

so that the heat produced by the A-bomb can detonate the D + T reaction.

This in turn gives off more heat to speed up this and other reactions and at

the same time makes more neutrons to hit 6Li nuclei and make more tritium,

further speeding up the D + T reaction.

All these interactions amongst the reactions conspire to make the explosion

proceed very suddenly and to render a high energy yield, using up a consider-

able part of the materials present before the explosive expansion proceeds far

enough to stop the reaction.
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Cellular Automata1034

“God has put a secret art into the forces of Nature so as to enable it to fashion
itself out of Chaos into a perfect world system.”

(Immanuel Kant, 1781)

“If we wish to understand the nature of the universe, we have an inner hidden
advantage: we are ourselves little portions of the universe and so carry the
answer within us.”

(Jacques Boivin, 1988)

The idea of living organisms as machines has proven irresistibly attractive
to scientists and philosophers since the time of Aristotle.

The evolution of science up to the middle of the 20th century has taught
us that the human mind, when aided by numbers and symbols, is capable of
expressing and understanding concepts of great complexity. Yet, expression
of complicated relations and equations is one thing; — insight gleaned from
these relations is quite another.

Today, powerful computers with advanced graphics can be used to pro-
duce representations of observed, processed and simulated multi-dimensional
data from a number of perspectives, and to characterize and elucidate natural
phenomena and mechanisms (man-made or naturally occurring) with increas-
ing clarity and usefulness — thus vastly aiding the human mind in generating
insights. Indeed, cellular automata – classes of simple mathematical systems
with exotic behavior – are not only at the core of the inner workings of comput-
ers, but are also beginning to show promise as models for a variety of physical
processes. Though the rules governing the dynamics of these systems are sim-
ple, the patterns they produce are complicated and often pseudo-random, like
a turbulent flow or the output of a cryptographic system. Cellular automata

1034 For further reading, see:

• Shatten, A., Cellular Automata, Vienna University of Technology, Vienna,

1997.

• Wolfram, S. (ed), Theory and Applications of Cellular Automata, World Sci-

entific Press, Singapore, 1986.
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are characterized by the fact that they operate in a discrete state space (or
grid) as opposed to a continuum.

The history of cellular automata (CA) began in 1947, when the mathemati-
cian Stanislaw Ulam was interested in the evolution of graphic constructions
generated by simple rules. The basis for his construction was a 2-dimensional
space divided into “cells”, a sort of grid. Each of these cells has two possible
states: ON and OFF.

Starting from a given pattern, the pattern of the following “generation”
was determined according to a neighborhood-based majority rule: e.g. if a
cell was adjacent to two or more “ON” cells, it would switch to become ON
too; otherwise it would switch OFF.

Note that in this scheme, the state transitions are local in both space and
time. This means that the next value of a given cell depends only upon the
current value of that cell and the values of cells in an immediately adjacent
neighborhood. So there are no fundamental time-lag effects, nor are there any
direct nonlocal spatial interactions affecting the state transition.

Another property is homogeneity: each cell of the system is the same as
any other cell, in the sense that they can each take on exactly the same set
of possible values (on and off) at any moment, and each change their state
in accordance with the same set of formal (deterministic and/or stochastic)
rules.

Ulam, who used one of the first computers, quickly noticed that this mech-
anism permitted the generation of complex and graceful figures and that these
figures could, in some cases, self-reproduce: copious and repetitive application
of extremely simple rules resulted in the emergence of very complex patterns.

Let us give here a few examples. Consider first the simplest CA – an
infinite string of cells changing values according to a given rule. Let this
system be specified by two numbers k and R at each cell, together with a
rule determining the next value at each cell. The first number, k, specifies
how many values are possible for each cell, while R refers to the range of the
neighborhood used to compute the next value of a cell. So, for example if
k = 2, R = 1, there are two possible states per cell (say 0 and 1), and a
cell’s neighbors are defined as the two cells on either side of it. A cell and its
two neighbors form a neighborhood of 3 cells, so there are 23 = 8 possible
patterns for any given neighborhood at time t, namely

111, 110, 101, 011, 100, 010, 001, 000

A possible rule, known as the ‘mod 2 rule’, determines the central cell value
of each neighborhood by adding the values of its two neighbors, dividing that
number by 2, and keeping the remainder. The central cell of the above octet
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will then have the values {0, 1, 0, 1, 1, 0, 1, 0}. Each time the rule is applied to
the whole line, a new generation is produced.

The behavior of some one-dimensional CA can be quite complicated. It
has been shown (Wolfram, 1980) that, depending on the rule chosen, the
long-term behaviors of a CA are counterparts in discrete time and space
of continuous-time patterns exhibited by dynamical systems exhibiting fixed
points, limit cycles, strange attractors and patterns exhibited by quasi-periodic
orbits.

These kinds of simple CA have been used to model a bewildering variety
of processes — ranging from the sequences of nucleotide bases on a strand of
DNA to the dynamics of both human and computer languages.

In the late 1960s, Dutch biologist Aristid Lindenmayer proposed a CA
model for the development of filamentous plants, such as the blue-green algae
Anabaena. His model contains the novel feature that the number of cells is
allowed to increase with time according to a recipe laid down by the state-
transition rule. In this way the model “grows” in a manner mimicking the
growth of a filamentous plant.

Another example is a 2-dimensional cellular grid, say, an infinite sheet
of graph paper, where each square is a cell. Let each cell have two possible
states (say, black and white), and the neighborhood of a cell consist of itself
and the 8 squares touching it. Then there are 29 = 512 possible patterns
for a cell and its neighbors. The transition rule for this CA could be given as
a table. For each of the 512 possible patterns, the table would state whether
the central square will be black or white in the next time step.

A special case of this example is known as the Game of Life (J.H. Con-
way, 1970). This automaton too uses two colors: black and white, with these
rules:

• A cell that is white at one instant becomes black at the next if it has
precisely 3 black neighbors.

• A cell that is black at one instant stays black at the next iff it has either
2 or 3.

In all other cases, cells maintain their color.

Finally we present a simple CA known as the Langton ant, after its inven-
tor. An ant moves either north, south, east or west on a square grid of black
and white cells, following three simple rules:

• If it is on a black cell it makes a 90◦ turn to the left.

• If it is on a white cell it makes a 90◦ turn to the right.
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• As it moves to the next square, the one that it is on changes color from
white to black, or the reverse.

You may think that Langton’s ant must be a remarkably simple animal, but
such is not the case. In fact, it poses a problem that is currently baffling
mathematicians.

Suppose you start the ant in an eastward direction on a completely white
grid. Its first move takes it to a white square, and the square it started from
turns black. Because it is on a white square, the ant’s next move is a right
turn, so that it is then facing south. That takes it to a new white square, and
again the square it has just vacated turns black. After a few such moves it
starts to revisit earlier squares that have previously turned black. If you try
out the rules you’ll find that the ant’s motion gets quite complicated — and so
does the ever-changing pattern of black and white squares that trails behind
it. Every so often during the first few hundred moves, the ant produces a nice,
symmetrical pattern. Then things get rather chaotic for about ten thousand
moves. After that, the ant gets locked into a cycle that repeats the same
sequence of 104 moves, whose net result is to move it two squares diagonally.
It continues like this indefinitely, systematically building a broad diagonal
“highway.”

This behavior is curious enough, but computer experiments suggest some-
thing even more striking: If you scatter any number of black squares around
the grid before the ant sets off, then it still ends up building a highway. For
example, when the ant starts inside a particular solid rectangle, it builds a
“castle” with straight walls and complicated crenelations at the corners. It
keeps unbuilding and rebuilding these structures in a curiously “purposeful”
way until it gets distracted and wanders off . . . building a highway. The prob-
lem that is baffling mathematicians is that nobody can prove that the ant
always ends up building a highway, for any initial configuration of (finitely
many) black squares.

Cellular automata are often simulated on a finite grid rather than an
infinite (i.e. infinitely extensible) one. In two dimensions, the universe would
then be a rectangle instead of an infinite plane. The edges are usually handled
with a toroidal arrangement: when you go off the top, you come back in at
the corresponding position on the bottom, and when you go off the left edge
you come back in on the right (This essentially simulates an infinite periodic
tiling). This can be visualized as taping the left and right edges together
to form a tube, then taping the top and bottom edges of the tube together
to form a torus (doughnut shape). Universes of other dimensionalities are
handled similarly. This is done in order to eliminate complications due to
boundary conditions.
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Returning to the historical evolution of these ideas, it was John von
Neumann (1948) (relying on A. Turing’s work) who first asked the ques-
tion: “What kind of logical organization and functional activities would an
object have to posses, to be able to build a copy of itself?” Thus, von Neu-
mann wanted to abstract from the processes of self-replication in nature the
logical form of the reproduction process — independent of its realization in
any particular material structure. This “recipe” could then be fed into an
automaton which von Neumann named “kinematon”. Such a machine was
supposed to be able to reproduce (replicate) any machine described in its
program, including a copy of itself.

Ulam then suggested to von Neumann to use what he named “cellular
space” to build his self-replicating machine. They succeeded in proving that
an abstract pattern could create a copy of itself by following a set of fixed
rules.

In fact, von Neumann created a mathematical blueprint for a universal
Turing machine consisting of a two-dimensional CA having 29 states per cell.
His idea was to represent the initial machine as a particular pattern in this
CA array. Self-replication would then be said to have occurred if a rule of
state transition (using 5-cell von Neumann neighborhood) could be found that
would cause the initial pattern to be duplicated elsewhere in the array.

Von Neumann showed that his 29-state CA could be capable of universal
construction, from which self-replication follows as a special case when the
machine described on the constructor’s input is the constructor itself.

There was yet another difficulty that von Neumann had to surmount:
suppose we have succeeded in building a universal constructor. We then feed
the plans for the constructor back into it as input, and it will then replicate
itself. But it will not reproduce the instructions describing how to build itself.
Without these the reproduction will not perpetuate and will be a useless model
for living cells.

How, then, do we arrange it so that the blueprint, as well as the construc-
tor, are faithfully reproduced?

Von Neumann’s way out of the “blueprint dilemma” was to build a su-
pervisory unit into the constructor. This unit functioned in the following
manner: Initially the blueprint is fed into the constructor as before, and the
constructor reproduces itself. At this point the supervisory unit switches its
state from construction-mode to copy-mode and proceeds to copy the blue-
print as raw, uninterpreted data. The copy is then appended to the previously
produced constructor (which includes a new supervisory unit), and the self-
reproducing cycle is complete. The key element in this scheme is to prevent
the description of the constructor from becoming a part of the constructor
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itself (i.e. the blueprint is located outside the machine and is then appended
to the machine at the end of the construction phase by the copying operation
of the supervisory unit).

The crucial point to note about von Neumann’s solution is the way infor-
mation on the input blueprint is used in two fundamentally different ways.
It’s first treated as a set of instructions to be interpreted. These instructions,
when executed, cause the construction of a machine somewhere else on the
CA grid. Thereafter, the blue print information is treated as uninterpreted
data, which must be copied and attached to the new machine. These two
different uses of information are also found in biological self-reproduction:
the interpreted instructions correspond to the process of genetic translation,
while the blind copying of the uninterpreted data corresponds to the process
of genetic replication. The separation of these two types of processes prevents
an infinite regress of self-referential instructions.

These are exactly the processes involved in the operation of every living
cell, and it’s worth noting that von Neumann came to discover the need for
these two different uses of information several years before their discovery
by biologists working on the mysteries of DNA. The only difference between
the way von Neumann set things up and the way nature does it is that he
arbitrarily chose to have the copying process carried out after the construction
phase, whereas nature copies the DNA early on in the cellular reproduction
process.

In conclusion: a von Neumann machine is a cellular automaton capable of
automatically replicate itself. When provided with a blueprint, it can build
anything and replicate indefinitely, like a living cell, including a new copy of
the blueprint itself as an “attachment” in each successive CA “generation”.

It turns out that the automaton invented by Conway (described earlier)
has much simpler rules and is able of doing the same kind of thing. Suppose
that in this Game of Life one starts with an object made up of black cells,
and the rest of the board white. Then you follow the rules and watch how
that object changes. For example, a 2× 1 block dies out at the first move. A
2×2 block doesn’t do anything, so it survives indefinitely. More interesting is
a simple shape called a glider: It moves. It changes shape in a four-step cycle,
after which it has moved one cell diagonally. More complicated shapes, termed
“spaceships”, move horizontally or vertically. A “glider gun,” which changes
through a fixed cycle of thirty shapes, fires an endless stream of gliders.

Conway’s Life evolves in a reductionist and deterministic universe, which
really does have a Theory of Everything, namely Conway’s rules. Given a
starting shape, its future is completely determined by those rules. But in
practice it may be very hard to predict what will happen, even though it’s
all implicit in the rules. Big shapes can collapse, small ones can grow, and
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there are always surprises. Three of the features that emerge from Life are
programmability, undecidability, and replication.

First, Conway proved the existence of an initial configuration that acts
like a programmable computer, using pulses of gliders instead of electrical
impulses to carry and manipulate information.

From this he deduced that the outcome of the game is inherently unpre-
dictable, in the following sense: There is no way to decide in advance whether
a given object will survive indefinitely, or disappear entirely. He did this
by appealing to a theorem in mathematical logic which states the following:
There cannot exist a computer program that can decide in advance whether
any given program, when run on a given machine, will go on forever, or will
stop. The only way to find out is to run the program and watch. If it stops,
you know; if it keeps going, you have no idea whether it will continue going,
or whether it’s just about to stop as soon as you give up and go away. The
theorem is called the undecidability of the halting problem, and the proof was
discovered by Alan Turing.

Once you have programmable computers, it’s not hard to pinch von Neu-
mann’s trick and design self-reproducing machines. So Life – a two-state cel-
lular automaton with only three rules – has implicit within it, self-reproducing
computers. Given that, you could set up self-reproducing “animals” with “ge-
netic programs” that interact with each other (just program the Life computer
to simulate such a system). You could “irradiate” the board with gliders to
cause random mutations. Then you could sit back and watch evolution at
work.

Cellular automata applications are diverse and numerous: Fundamentally,
CA constitute completely known ‘universes’. Our universe is subject to the
laws of physics. These laws are partly known and appear to be highly complex.
In a cellular automaton laws are simple and completely known. One can then
apply the concepts of CA to gain a better understanding of the global behavior
of a simplified universe, of elementary particles, of complex chemical molecules
and perhaps the organization of living organisms.

Indeed, CA are being used for the following purposes, inter alia:

(1) Simulation of gas behavior: A gas is composed of a set of molecules
whose behavior depends on neighboring molecules (“lattice gas”).

(2) Study of ferromagnetism according to the Ising model: this model (1925)
represents the ferromagnetic – domain crystal lattice as a network in
which each node is in a given magnetic state. This state is binary
– representing the two possible quantum orientations of the spin of a
radical or molecule – and the probabilities of any spin value being “up”
or “down” depends self-consistently on the state of neighboring nodes.
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(3) Simulation of percolation processes.

(4) Simulation of forest-fire propagation.

(5) Numerical solutions of partial differential equations.

(6) Configuration of massive parallel computers.

(7) Simulation and study of urban development.

(8) Simulation of crystallization processes: studies have shown that, starting
from one occupied cell (which may be thought of as a single defect, or
a nucleation center) in a lattice, the pattern will continue to “grow” in
size as time progresses. In some experiments, two different background
lattices with adjacent boundaries were used, and the defect propagated
from its beginning point in a centered rectangular lattice through the
interface of the second lattice.

Adding a defect to these two-phase systems bears some similarity to
seeding supersaturated solutions and watching the crystallization process
grow and “hit” the boundary of a solution with a different composition.

(9) Used as graphics generators.

(10) Investigations of ornaments and decorations of various cultures by con-
sideration of their symmetry groups. Indeed, from a purely artistic
standpoint, some of the figures produced by CA’s are reminiscent of
Persian carpet design, ceramic tile mosaics, Peruvian striped fabrics,
brick patterns from certain Mosques, and the symmetry in Moorish or-
namental patterns. This artistic resemblance is due to the complicated
symmetries produced by algorithms.

(11) Study of complicated and ordered structures arising spontaneously from
“disordered” states, such as snowflakes, patterns of flow in turbulent
fluids, and biological systems (e.g. patterns of schools of fishes and flocks
of birds).

(12) Game theory.

(13) Artificial Intelligence.

(14) Economics (automata may be used to simulate “agents” seeking to max-
imize individual advantage through mutual trade and commerce).

(15) Non-linear dynamics.
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(16) Emergence phenomena in studies of artificial life:

The notion of emergence first appeared with general system theory. It
states that the global behavior is more than the sum of the behaviors of
the individual parts. In other words — complex association of elements
induces the appearance of new phenomena and mechanisms. It implies
that novel, hard–to–predict and complex behavior results from simple
interactions among a system’s component parts. Thus, the property of
emergence is linked to complexity.

At each level (of the prebiotic, biotic and social evolution) of life, new
properties appear that cannot be explained by the properties of each
part that constitutes the whole. The increase in the diversity of el-
ements, and in the number of links between these elements, and the
nonlinear interactions lead to unpredictable behaviors.

The so-called “global” emergence then characterizes the properties of a
system that are new in the framework of the properties of its isolated
components. Life is undoubtedly such an emergent phenomenon, as are
intelligence and social organization.

In 1983 Stephen Wolfram published the first of a series of papers sys-
tematically investigating cellular automata. The unexpected complexity of
the global behavior stemming from simple rules — and the failure of math-
ematical methods to meaningfully describe them — led Wolfram to suspect
that complexity in nature may be due to similar mechanisms, and that it,
too, might not be amenable to traditional mathematical analysis.

1944–1960 CE Gregory Goodwin Pincus (1903–1967, USA). Physiol-
ogist. Developed the oral contraceptive pill [with John Rock (1890–1984)
and Min Chueh Chang (1908–1991)], using synthetic hormones to inhibit
ovulation in mammals; the hormones mimic the condition of pregnancy in
women, thus effectively preventing impregnation.

Pincus was born in Woodbine, NJ to Jewish parents and studied at Cornell
and Harvard. In 1944 he co-founded the Worcester Foundation for Experi-
mental Biology in Shrewsbury, MA. There he began his research on steroid
hormones, which was encouraged by birth-control pioneer Margaret Louise
Sanger (1883–1966, USA).

Synthetic hormones became available in the 1950s, and Pincus organized
field trials of their anti-fertility effects in Haiti and Puerto Rico in 1954. The
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results were successful and oral contraceptives (‘the pill ’) have been widely
used since their first marketing in 1960, despite concern over some side effects.

Their success is a pharmaceutical rarity; synthetic chemical agents do not
usually show nearly 100 per cent effectiveness in a specific physiological action,
or have such remarkable social effects.

1944–1971 CE Robert Burns Woodward (1917–1979, U.S.A.). Organic
chemist. Known especially for work in determining structures of complex or-
ganic compounds. Synthesized Quinine (1944), Penicillin (1945), Strychnine
(1947), Cortisone and Cholesterol (1951), Lysergic acid (1954), Reserpine
(1956), Chlorophyll and Oleandomycin (1960), Tetracycline (1962), Vitamin
B12 (1971).

Woodward was born in Boston, MA. Entered M.I.T. at the age of 16 and
received his Ph.D. there at the age of 20. He went to Harvard (1937) and
remained there for the rest of his life. Received the Nobel prize in chemistry
(1965) for his contribution to organic synthesis.

Woodward made fundamental contributions to organic chemistry covering
structural elucidation, total synthesis, biosynthesis and reaction mechanism.
His work was based on meticulous attention to detail, a logical and highly
analytical approach, a profound understanding of the electronic and stereo-
chemical behavior of molecules and a prodigious memory. During his work on
vitamin B12 he recognized the role of orbital symmetry in the determination
of the stereospecifity of concerted reactions1035. The generality of these ideas
(1971) represents one of the fundamental advances in organic chemistry since
WWII.

1945 CE First radar signals reflected from the moon by U.S. Army Signal
Corps.

1945 CE, July 16 First successful test of the atomic bomb, near Alam-
ogordo, NM.1036

1035 Together with Ronald Hoffman (Nobel prize for chemistry, 1981) he extended

the range of applicability of simplified quantum-mechanical calculations to

cover all organic molecules — the Woodward-Hoffman rules which explain why

some reagents react easily while other pairs do not do so at all. The basis

for the rules lies in the symmetry properties of the molecules concerned, and

particularly in the disposition of their electrons. New chemical bonds are

formed when the electrons involved form a complete circuit.
1036 For further reading, see:

• Rhodes, R., The Making of the Atomic Bomb, Simon and Schuster: New
York, 1986, 886 pp.
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Table 5.20: Destructive power — man vs. nature

(1 kT = 4.2 × 1019 erg, 1 MT = 4.2 × 1022 erg)

Event Yield

First atomic bomb, July 16, 1945 19 kT

Device exploded over Hiroshima 13 kT

All explosive of WWII, combined 2 MT

Hydrogen bomb 10 MT

Nuclear arsenal of the world, combined 105 MT

Thunderstorm 1 kT

Tunguska bolide explosion (1908) 10 MT

Hurricane (average kinetic energy) 10 MT

Magnitude 8 earthquake 100 MT

Cyclone (average kinetic energy) 100 MT

Tambora volcanic Explosion (1815) 2 × 104 MT

Tuba volcanic Eruption (73,500 BCE) 6 × 105 MT

Yucatan asteroid impact (65 million years ago) 2 × 106 MT
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1945 CE First atomic bomb dropped on Hiroshima, Japan (Aug. 6, 8 : 15
AM; nuclear fission bomb based on uranium-235). By sudden incineration
and lingering death some 200,000 people died. A plutonium-based fission-
bomb was exploded over Nagasaki (Aug. 9). This bomb killed only 70,000
because hills deflected the blast and radiation. Its yield was about 20 kT
of TNT. This marked the end of the military engagement with Japan; the
economic conflict would, however, enter a new phase.

Paradoxically, the adoption of Shewhart’s philosophy and practice of
quality control of industrial processes by the Japanese during the five decades
after WWII, hampered American economic supremacy.

Before the war, Japan’s vital export markets had accepted the shoddy
products supplied. But only few Japanese understood the productive strength
of the US. Thus, the Japanese High Command could not foresee that the US
overwhelming productive capacity and its progressive management techniques
would be a major factor in winning the war.

However, the Japanese surrender aboard the USS Missouri (2 September
1945) had only marked the end of military hostilities. Before this (in mid-
August 1945), secret discussions were taking place at ministerial level in Tokyo
about a recovery strategy that would, in the words of the Foreign Minister
Shigeru Yoshida, ensure that:

“we could indeed rebuild Imperial Japan out of this way of defeat... sci-
ence will be advanced, business will become strong with the introduction
of American capital, and in the end our Imperial country will be able to
fulfill its true potential. If that is so, it is not so bad to be defeated in
this war.”

With General MacArthur’s acceptance of Japan’s surrender, there arose
the imminent need to enable the defeated people of Japan to support them-
selves at a time when the occupation powers had removed the 1, 500 or
so top managers of the powerful traditional zaibatsu (vertical groupings) of
industry (by imprisonment or enforced retirement). It was then necessary
for the middle managers to take over and rebuild their companies along new,
more efficient, lines. But management training was non-existent in the years
immediately following the end of the war.

An American electronics engineer, Homer Sarasohn, in his late twen-
ties and fresh from wartime service with MIT Radiation Labs and Raytheon
(where he had distinguished himself in rapidly converting experimental elec-
tronic equipment into production-line ready hardware) established (1946) in
Tokyo a radio receiver industry so that the occupation powers could broadcast
to the Japanese people.
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By the end of the forties his efforts had so impressed MacArthur that he
supported Mr Sarasohn’s recommendation that, together with another engi-
neer, Charles Protzman, they set up a university level management training
programme so as to spread their experience further into Japan’s slowly reviv-
ing economy. This course drew upon the work of Shewhart in ensuring that
only reliable and successful products were produced.

Thus did two young but insightful engineers shape the early course of post-
war economic history by passing on simply and clearly what they had been
taught during the war by the Western Electric training programme. Little
did they realize that their efforts would slowly undermine American economic
supremacy.

Indeed, just 50 years later the chairman of the world’s largest manufac-
turing company, GM, formally admitted defeat to the superior economic and
manufacturing practices of the now globally dominant Japanese companies
(such as Toyota, NT&T and Matsushita) and modern vertical groupings, or
keiretsu, (such as Matsui, C Itoh and Mitsubishi).

Table 5.20 lists yields of natural vs. man-made events.

From Atomic theory to Nuclear Technology

(460 BCE–1945 CE)

ca 450 BCE Leucippos of Miletos introduced the idea of the atom —
an indivisible unit of matter.

ca 420 BCE Democritos of Abdera stated that all matter is made of
indivisible particles called atoms.

The Greeks gave much to the development of physics by developing the basis
of fundamental modern principles such as the conservation of matter, atomic
theory, and the like. Very few new developments occurred for about 22
centuries.
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1473 Lucretius’ De rerum natura (on the nature of things) is
translated back into Latin, making the atomic theory of Dem-
ocritos and Leucippos known to scholars in the West.

1649 Pierre Gassendi’s study of Epicuros Syntagma philosophice
Epicuri, asserts that matter is made up of atoms.

1666 Robert Boyle’s The origine of formes and qualities contains
his view that everything is built up of atoms and reflects his
mechanical view of nature.

1781 Planet Uranus discovered by William Herschel.

1789 Element Uranium discovered by Martin Klaproth.

1803 John Dalton’s atomic theory of matter: since chemicals
combine only in integral proportions, atoms must exist.

1812 Jöns Jacob Berzelius asserted that atoms have electrical
charges. This is based on the assumption that electrical and
chemical forces are identical.

1828 Element Thorium discovered by Berzelius.

1872 James Clerk Maxwell maintained that atoms remain in
the precise condition in which they first began to exist.

1874 George Stoney developed a theory of the electron and es-
timated its mass: He proposed that electricity was made of
negatively charged particles he called “electrons”.

1881 Hermann Ludwig von Helmholtz showed that the elec-
trical charges in atoms are divided into definite integral por-
tions, suggesting the idea that there is a smallest unit of elec-
tricity.

1890 Hendrik Antoon Lorentz proposed that atoms may con-
sist of charged particles that produce visible light by oscillat-
ing.

1896 Henri Becquerel discovered radioactivity.

1897 Joseph John Thomson discovered the electron, the first
known particle smaller than an atom.
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1898 Marie and Pierre Curie discovered and separated the ra-
dioactive elements Radium and Polonium.

1905 Albert Einstein proved the equivalence of mass and en-
ergy: E = mc2, within the framework of the special theory
of relativity.

1911–1914 Ernst Rutherford established experimentally that the atom
was made of a very small dense nucleus, positively charged,
surrounded by electrons (1911). Discovered the proton
(1914).

1913 Niels Bohr constructed a planetary model theory of atomic
structure based on quantum ideas.

1919 Francis William Aston discovered the existence of isotopes.

1925 Patrick Blackett made the first photograph of nuclear re-
actions mediated by neutrons.

1931 James Chadwick discovered the neutron.

1933 Leo Szilard concocted the first idea of nuclear chain reaction
mediated by neutrons.

1935 Hideki Yukawa initiated the meson theory of nuclear forces.

1942–1945 The Manhattan Project.

July 16, 1945 First successful test of the atomic bomb, near Alamogordo
NM.

1945 First atomic bomb dropped on Hiroshima (Aug 6). A second
dropped on Nagasaki (Aug 9).
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Science Progress Report No. 20

The Gas Centrifuge Story, or — Stealing the Fire1037

(1945–2002)

Fission (exothermic splitting of a heavy nucleus, such as uranium, into
two fragments of comparable size) as a natural process is very rare. Thus,
the uranium isotopes 235

92 U and 238
92 U that we find in uranium ores have been

sitting for billion of years, their nuclei securely held by the surface tension
and without enough energy to vibrate and become long enough to go over the
fission barrier.

The usual method of producing fission artificially is to excite the nucleus.
The threshold (minimum activation energy) required for fission of a heavy
nucleus is from 4 to 6 MeV. One of the most effective means of inducing
fission is by neutron capture. This is, for example, the case of the nucleus
235
92 U , which undergoes fission after capturing a slow (or thermal) neutron.

For other cases, in order for fission to take place, the neutrons must have
some kinetic energy – of the order of 1 MeV – in addition to the binding
energy. This is what occurs with 238

92 U , which fissions only after capturing
a fast neutron. The reason for this different behavior lies in some details of
the structure of the different nuclei. The nucleus 235

92 U is even-odd, with 143
neutrons, and when a neutron is captured, an even-even nucleus, 236

92 U , is
formed. The captured neutron is paired with the last odd neutron of 235

92 U ,
releasing the additional pairing energy δ ∼ 0.57 MeV. On the other hand,
238
92 U is an even-even nucleus, with 146 neutrons, all paired, and when a neu-
tron is captured, an even-odd nucleus, 239

92 U , results, with no extra pairing
energy available. For the same reason 239

94 Pu, with 145 neutrons, undergoes
fission by slow neutron capture.

Thus it is much easier to cause fission in 235
92 U than in 238

92 U and the
former in the more valuable isotope for producing nuclear weapons1038. Un-
fortunately from the standpoint of producing power, but perhaps fortunately

1037 John S. Friedman and Eric Nadler, film documentary, Oct 2002.
1038 The fact that for each neutron absorbed in order to produce one fission, more

than two new neutrons are emitted (on the average) suggests the possibility

of a chain reaction. That is, if things are arranged in such a way that, after

each fission, on average more than one of the new neutrons produces another

fission, and of the neutrons released in this fission, again more than one pro-

duces a fission, and so on, then a self-sustaining exponential process, or chain

reaction, results. (Chain reactions are very common in chemistry. Combustion
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for the interim stability of world politics, the more useful isotope is much
more rare: uranium in nature occurs as 0.7 percent 235

92 U and 99.3 percent
238
92 U . There are also some exceptions1039.

We now come to the question of separating the two isotopes of uranium
from one another or at least obtaining uranium that is richer in the rare isotope
than the uranium occurring in nature. The main point here is to appreciate
the enormous difference between the case of separating elements in chemical
reactions and the difficulty of separating isotopes of the same element that all
behave almost the same way chemically because they have the same number
of electrons. Because of their different number of electrons, most atoms of
different chemical elements are easily separated from one another, many of
them in large-scale industrial processes in which are prepared many of the
substances used in everyday life.

The separation of isotopes is much more costly and difficult. However,
separation is less difficult for light elements than for heavy elements. The
usual separation processes depend on the fact that a light molecule moves

is a chain reaction. Burning requires that a molecule have a certain activa-

tion energy so that it can combine with an oxygen molecule. But once the

first molecules are excited and combine with oxygen, the energy liberated is

enough to excite more molecules of the fuel, and burning results.) If in each

stage of the process more than one neutron per fission produces a new fission,

the number of fissions increases exponentially and a divergent chain reaction

results. This is what happens in a nuclear fission bomb. But if, on the average,

only one neutron of each fission produces a new fission, a steady chain reaction

is maintained under controlled conditions. This is what happens in a nuclear

reactor.

In fast nuclear reactors the neutrons are used at the same energies (1 to 2

MeV) at which they are released in the fission process. But in a thermal nu-

clear reactor the neutrons are first slowed down by allowing them to collide

with the nuclei of some other substance, called a moderator, until they come

to thermal equilibrium with the substance. The neutrons are then called ther-

mal. The moderator must be a substance which has small mass number and a

small neutron capture cross section. Water, heavy water, and graphite are the

substances most used as moderators.

The energy released in a nuclear reactor is extracted by means of a circulating

fluid called a coolant. In power reactors this energy is used for heating or for

the generation of electric power. In research reactors the neutrons are used for

different kinds of experiments, or for isotope production.
1039 Natural mineral veins with 70 percent of 235

92 U were found (1972) in the mines

of Oklo in the Central African country of Gabon, as well as significant amounts

of Plutonium-239 in natural state.
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about more quickly and easily than a heavy molecule. When two kinds of
molecules are mixed together in a gas at a given temperature, they have the
same average kinetic energy, 1

2mv2 which means that the ones with the larger
m have smaller v.

Originally, isotopes were studied for the sake of increasing our knowledge
of the structure of matter. Today, isotopes are an indispensable aid to indus-
try as well as to molecular physicists, chemists, and biologists, for isotopes are
being used for identifying and tracing individual atoms among a large num-
ber of chemically similar ones. Therefore, science and technology are greatly
interested in obtaining pure isotopes, i.e., in separating as completely as pos-
sible the various isotopes of an element. This interest was strongly stimulated
by the modern utilization of nuclear energy.

The best method of separation, though suited only for small quantities, is
that of mass spectroscopy. For this purpose, mass spectrographs are used with
large high-intensity ion sources and with collectors for the various isotopes.
Some tenths of 1 gram of pure isotopes can be produced per hour in such
“electromagnetic separators”.

For technical purposes however, relatively pure isotopes are needed in ton
quantities. To satisfy this need, methods of enrichment by numerous repeated
steps are applied. Each of these steps produces a relatively small change in the
relative abundance of isotopes; but sufficiently numerous repetitions lead to
high enrichment of the desired isotope. In this way it was possible to produce
the technically very important heavy water, D2O, in a concentration of better
than 99.8%.

Essentially, 3 different methods of separation are used.

• Ultra-centrifuge: in a high-rpm centrifuge, the heavy isotope is moving
outwards, the lighter one toward the axis. This method is used, e.g. for
separating gaseous uranium hexaflouride (UF6)

• Pore-diffusion: through filters with very small pores, light isotopes dif-
fuse better than heavy ones. In the thermal-diffusion method an iso-
tope mixture streams along a temperature gradient. Gustav Hertz
(Germany)conducted the first experiment (1932) on separation of neon
isotopes by the pore-diffusion method.

With uranium the problem is much more difficult because the two iso-
topes differ in mass by only a little over 1 percent, about 238 nucleon
masses for 238U as compared with about 235 for 235U . In this case
the difficult separation is carried out in an enormous and very expen-
sive gaseous diffusion plant that also uses a great deal of electric power.
The first large-scale plant using pore-diffusion was built in Oak Ridge,
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Tennessee1040, during World War II and others have been built since in
the US (at Paducah, Kentucky, and Portsmouth, Ohio) as well as in
France and China. The fact that these plants are extremely costly and
sophisticated has been an important obstacle to the easy dissemination
of nuclear bomb-making capability to various nations.

• The electromagnetic method consists of accelerating molecular ions and
sending them between the poles of a magnet. This requires using gases at
extremely low pressures which makes it difficult to handle large amounts
of material. For this reason, this method is usually used only for further
concentration or complete separation of the concentrated output from
the gaseous diffusion plant.

The Centrifuge Timeline

1940 German physicist Fritz Lange (1899–1987) conducted the
first experiment with centrifuges. His centrifuge was a mam-
moth structure, weighting about a ton. Because the future
applications for Lange’s centrifuge were unclear, all centrifuge
research in Germany was suspended during the WWII years
1940–1945.

1941 Jesse Wakefield Bears (1898–1977; USA), pioneered cen-
trifuge method for separation of uranium at the University
of Virginia. There he conducted with his colleagues the first
known separation of 235

92 U and 238
92 U using a gas centrifuge: the

slightly heavier 238-isotope containing molecules in the UF6

gas are forced closer to the inside wall of the rotor than the
235-isotope. The radial separation factor is proportional to the
absolute mass difference between the two isotopes.

1040 As a commentary on the way government institutions can work, it is inter-

esting that the diffusion plant at Oak Ridge was built in the period 1942–44

with almost half a billion dollars that was appropriated by Congress without

Congress knowing anything about it or about the highly secret atomic bomb

project of which it was part. The whole atomic project involved expenditure

of two billion dollars during the war and was hidden in the even larger general

military budget under the distracting code name “Manhattan District” of the

United States Army Corps of Engineers.
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1946–1956 Austrian physicist Gernot Zippe (1917– ) the German physi-
cist Max Steenbeck (1904–1981) and the German physicist
Manfred von Ardenne (1907–1997) built for the Soviets a
light-weight inexpensive gas-centrifuge. They were captured
by the Russians in Germany (1945) and brought to Sukhumi
with a group of about 300 German scientists1041 to help the
Soviets built an atomic bomb. The Zippe–Steenbeck machine
reached a 30 percent degree of enrichment1042.

1956–1958 On Zippe’s return form Russia, the CIA immediately snatched
him to work on US centrifuge technology with Jesse Beams.

1957 Zippe returned to West Germany and signed up to do cen-
trifuge work with Degussa1043 (Deutsch Gold-Und Silver-
Scheide Anstalt). He conceived a large array of high-speed

1041 Among the leading German scientists who worked in Russia (1945–1955)

on the first Russian bomb were: Nikolaus Riehl, Gustav Hertz, Max

Vollmer, Peter Thiessen, Wilhelm Menke, Reinhold Reichmann,

Gerhard Krueger, Heinz Barwich, Werner Schuetze, Gunther Wirths

and Robert Doepel.
1042 One of Germany’s most important contributions to the Soviet bomb program

was the uranium confiscated from Germany. It greatly accelerated the pace

of the Soviet nuclear project: Despite all its efforts, the Soviet Union was

catastrophically short of uranium for its nuclear project (10 kg of metallic

uranium and 300 kg of uranium oxide and nitrate). The Germans had large

amounts of uranium, including some acquired from the Belgian Congo: 300

tons of uranium oxide and other uranium compounds were brought to the

USSR from Germany.

In conclusion, while the Soviets did not need the Germans to built a nuclear

weapon, their contributions certainly accelerated the Soviet’s push to become a

nuclear weapons state: The Soviets benefited considerably from German tech-

nology, expertise, and raw materials. The German contributions undoubtedly

accelerated the program by several years and enhanced the Soviet’s stature on

the world’s stage.
1043 Degussa was a large German firm engaged in metal refining and production of

chemicals including Zyklon-B cyanide tablets used by the Nazis to liquidate

millions of Jews in the gas chambers. Degussa was also the company that

supplied the uranium for the Nazi atomic bomb project. Degussa held an

exclusive contract with the Nazis for re-smelting items taken from the Jews

in the concentration camps including dental gold. Degussa built a smelter at

Auschwitz, where the daily yield of gold at the camp was 12 kg. While looting

the Holocaust victims of their gold and silver, Degussa supplied the poison gas

to the concentration camps used to annihilate the owners of these metals.
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centrifuges, each feeding the next with gas that is successively

richer in uranium-235. Since 1958 his centrifuges remain the

primary means for obtaining uranium-235. As the technology

improved both power production and bomb-making got easier.

1994 Trial of Karl-Heinz Schaab in Munich for treason. Accused

and convicted for illegal selling of stolen classified blueprints

of the Zippe ultracentrifuge to Iraq. The first person in the

world convicted of ‘nuclear espionage’ in an open trial in the

past 50 years. Schaab was linked to Degussa and Leybold, a

Degussa subsidiary. He received an extremely light sentence

upon conviction of 100,000 German marks fine and 5 years’

probation. In 1990, Degussa was fined $ 800,000 for illegally

re-exporting nuclear weapons-related material to North Korea.

If Iraq had not invaded Kuwait, it could have managed to

build a gas centrifuge facilities by the mid-1990s. The Scud-B

technology Iraq used in the Gulf-War was 90 percent German

and its nuclear technology was 60 percent German.

1945–1950 CE Wilfred Thesiger (b. 1910–2003, England). Explorer of
the Arabian desert. Mapped the Empty Quarter and other areas (over a total
distance of 16, 000 km) between Yemen and Oman, never before explored
by a European. In his book Arabian Sands (1958), Thesiger recorded the
many journeys he has made by camel through and around the parched sands
of Arabia’s Empty Quarter.

Following in the tradition of Richard Francis Burton (1821–1890),
Charles Montagu Doughty (1843–1926), Thomas Edward Lawrence
(1888–1935), Harry St. John Bridger Philby (1885–1960) and Bertram
Thomas (1892–1950), Thesiger is perhaps the last of the Great British ex-
plorers of the terra incognita.

Thesiger was born in Addis Ababa and educated at Eton and Oxford,
spending the WWII years in the Sudan. Since the war he traveled in Southern
Arabia, Kurdistan, the Marshes of Iraq, the Hindu Kush, the Karakorams,
Morocco, Abyssinia, Kenya and Tonganaika, always on foot or with animal
transport.
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1945–1952 CE Alan Lloyd Hodgkin (1914–1998, England) and An-
drew Fielding Huxley1044 (b. 1917). Biophysicists. Described the ionic
mechanism by which neurons transmit electrical impulses1045(1952). Awarded
the Nobel prize for medicine (1963). Their model relates the response of the
action potential to the changes in membrane permeability that accompany a
change in voltage. The model does not explain why the membrane perme-
ability changes; it relates the shape and conduction velocity of the impulse to
the observed changes in membrane permeability. Nonetheless, the work was
a triumph.

Most of their experiments were carried out on the giant axon of the squid.
This is single cell , several cm long and 0.5 mm in diameter. The removal of
axoplasm from the preparation and its replacement by electrolytes has shown
that the critical phenomena all take place in the membrane.

Hodgkin and Huxley were educated at Trinity College, Cambridge. They
started their work in 1939, but it was interrupted by WWII. Hodgkin was
first to implant electrodes into squids’ giant nerve fibers. Their Nobel prize
was shared with John Carew Eccles (1903–1997, Australia) who developed
techniques for intracellular recording from fine neurons.

1945–1972 CE Wernher von Braun (1912–1977, Germany and USA).
Rocket engineer. Directed teams that built the rockets that sent the first
American into space (1961) and made possible man’s first landing on the
moon (1969).

Von Braun was born in Wirsitz, Germany (now Wyrzysk, Poland). He
became advisor in the rocket program of the German Army (1932), and played
a major role in developing the V-2 rocket, with which Nazi Germany bombed
Allied cities during WWII. In particular, he was technical director of the
German test facility at Peenemünde (1936–1945) that launched V-2 rockets
into London1046.

1044 The Huxley “tribe”: Thomas Henry Huxley (biologist; 1825–1895) was

the father of Leonard Huxley (editor and author; 1860–1933). Leonard’s

first wife was Julia Arnold. Their sons were: Julian Sorell Huxley (neo-

Darwinist zoologist; 1887–1975) and Aldous Leonard Huxley (novelist and

critic; 1894–1963). Leonard’s second wife, Rosalind Bruce, begot him Andrew

Fielding Huxley. Someone said of them: “Not a dynasty, nor a clan, but an

élite.”
1045 Hodgkin, A.L. and A.F. Huxley, A quantitative description of membrane cur-

rent and its applications to conduction and excitation in nerve, J. Physiol.

117, 500–544, 1952.
1046 He was quoted as saying: “I aim at the stars, but sometimes I hit London”.
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In 1945 von Braun surrendered (with 116 other scientists) to the Ameri-
can Forces and was sent to the US to work on guided missile systems. His team
developed ballistic missiles for the army, including the four-stage Jupiter-C
rocket that launched Explorer I, the first United States earth satellite.

Another of the group’s rockets, the Redstone, launched the flight of Amer-
ica’s first astronaut, Alan B. Shepard Jr. (1961).

Other von Braun projects included the Saturn rockets. In 1969, a Saturn
V rocket launched the astronauts who made man’s first landing on the moon.
In 1970, NASA (National Aeronautics and Space Administration) appointed
von Braun deputy associate administrator for planning.

1946 CE John Prosper Eckert (1919–1995) and John William
Mauchly (1907–1980) at the University of Pennsylvania built the ENIAC

(Electronic Numerical Integrator and Computer). It was based on ideas bor-
rowed from the world’s first digital electronic computer, the ABC, built in
1939 by John Vincent Atanasoff.

The ENIAC used 18,000 vacuum tubes, was programmable, but programs
could not be stored in a memory. In 1952, its successor, the EDVAC (Elec-
tronic Discrete Variable Computer) incorporated ideas of John von Neu-
mann, such as program storage memory. It processed binary numbers serially,
and its functioning was based on Boolean logic.

Algorithmic Vs. Dialectic Mathematics

The mathematics of Egypt, of Babylon, and of the ancient Orient was all
of the algorithmic type. The Babylonian, for example, found (ca 1700 BCE)
an excellent approximation for

√
2 in their base-60 notation, which is

equivalent to
√

2 = 1.414 212 963 in decimals.

Dialectic mathematics — strictly logical, deductive mathematics — orig-
inated with the Greeks. But it did not displace the algorithmic variety.
Pythagoras (550 BCE) was perplexed by the existence of

√
2 as the diag-

onal of the unit square on one hand, and by its non-existence as a fraction
on the other. In the work of Euclid, the role of dialectics is to justify a
construction — i.e., an algorithm.
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It is only in modern times that we find branches of mathematics with little
or no algorithmic content, which we could call purely dialectic.

One of the first investigations to exhibit a predominantly dialectic spirit
was the search for the roots of a polynomial of degree n. For 300 years, math-
ematicians searched in vain for algorithms that would render closed formulae
for n > 4. The theorems proved by Gauss (1799) and Galois (1829) are
dialectic, providing no algorithm for the actual location of the roots. Since
then, until WWII, pure mathematics has been existence-oriented rather than
algorithm-oriented.

However, the advent of electronic computers has led since the 1970s, to
renewed interest in and need for numerical algorithms and their mathematical
analyses within the framework of the new computer science, as well as in new
computer-driven branches of applied mathematics.

The intrinsic features of each approach could be summarized as follows:

dialectic mathematics

• Rigorously logical, state-
ments are either true or
false, objects with specified
properties either do or do
not exist.

• An intellectual game
played according to rules
about which there is a high
degree of consensus.

• Invites contemplation.

• Generates insight

algorithmic mathematics

A tool for solving prob-
lems.

The rules of the game vary
according to the urgency of
the problem at hand and
the computing equipment
available.

Invites action.

Generates results.
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Annals of Computers (1642–1950)

Man’s first conscious mathematical operations probably involved only sim-
ple counting: the number of faces in a tribe, the number of cattle in the herd,
etc. When the numbers involved exceeded the number of fingers (or perhaps
toes), some new form of reckoning had to be invented. Piles of sticks and
stones and marks in the sand or on cave walls would have been logical calcu-
lating aids for primitive man. Addition and subtraction could be carried out
merely by adding and erasing symbols from the crude tally sheets. (Today,
modern electronic digital computers count in this same simple way. The cave
wall is replaced by arrays of iron rings strung on wires or magnetized do-
mains on a rotating disc or electrical activity in circuits. Instead of drawing
or crossing out a mark on the wall, we now magnetize metalic domains or
change currents and voltages in semiconductor devices.

One method of proceeding beyond the anatomical limit of hands, said to
be still in use in Africa, is to enlist the aid of a second man. The first counts
the units up to ten on his fingers, while his partner counts the numbers of
groups of ten so formed. The next major step, taken by the first civilizations
of Egypt and the Asian river valleys, was to represent numbers by means of
pebbles arranged in heaps of ten. This in turn led to the development of the
abacus, or counting frame.

The abacus was in use in so many widely separated cultures that many
authorities believe it was invented independently in several centers.

Man’s mathematics has progressed far beyond the simple notion of count-
ing to algebra and the calculus. The electronic digital computer, moreover,
with counting as its only stock in trade, has followed closely behind math-
ematical advances. It seems that any calculational problem, whether it is
figuring the best move in a chess game or checking airline seat reservations,
can be reduced to counting alone.

Simple counting is not the only way to compute. One can measure too.
Surely early man must have noticed how the shadows of trees swung slowly
around as the sun moved across the sky. The passage of time could be mea-
sured by the progress of shadows on such natural sundials. With no trains
to catch, primitive people needed no refinements. Later, of course, early civ-
ilizations developed more accurate natural clocks. The arrangement of huge
stones at Stonehenge, England, for example, told the ancient priests when
Midsummer’s day, eclipses, and other key events of religious significance were
about to occur.
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The basic idea behind sundials, modern clocks, slide rules, thermometers,
and automobile speedometers is the measurement of some secondary quantity
whose variations mimics or simulates the thing we wish to know. Thus, dis-
tance around the rim of a sundial simulates time, and the height of mercury
in a thermometer is the analog of temperature.

Two families of computers, the analog and digital machines, have evolved
from the simple concepts of measuring and counting, respectively. The word
computer is commonly reserved for a digital computer.

By the beginning of the 17th century the victory of the Arabic system of
enumeration — for both calculation and recording — was complete in most
of Europe. As a result the abacus went out of use in the countries west
of Russia. It was a long time, however, before even the basic processes of
calculation became either commonly understood or widely practiced. Even
in the second half of the 17th century, multiplication and division of large
numbers required the skill of professional mathematicians!

The blockage was cleared by two inventions — one quite minor and the
other of the very first importance — which effectively reduced all arithmetical
calculations to addition and subtraction. Both these inventions are due to
John Napier of Murchiston, near Edinburgh.

His minor invention (1617) was a simple mechanical device known collo-
quially as ‘Napier’s Bones’. It was just an improvement of an old method that
had been in use in the East for multiplication of large numbers. Napier’s ma-
jor achievement, which really took the sting out of multiplication and division,
was the invention of logarithms (1614). The importance of Napier’s inven-
tion was immediately recognized by the practicing human computers of his
day and within a few years the first steps were being taken to mechanize the
process. Logarithms were plotted along a straight line and multiplications and
divisions were performed by adding or subtracting the corresponding lengths
with the aid of a pair of dividers. Since numbers are represented on the slide
rule by lengths on a certain scale (on a logarithmic scale), the device is an
analog computer1047.

An analog machines is restricted in the kind of calculation it does. This is
true even of the versatile slide rule — which cannot help much with addition or

1047 Applying Ohm’s law in electricity, a simple electrical circuit can be used as

an analogue of multiplication. According to this law, the difference in electric

potential (in volts) between two points on a wire is the product of the resistance

(in ohms) between the points and the current (in amperes) flowing along the

wire. Thus we could obtain the product of two numbers (x and y) by arranging

for a current of x amperes to flow through a resistance of y ohms, and measuring

the voltage difference.
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subtraction. The more complicated analog machines are even more restricted;
most of them are designed to deal with specialized calculations such as arise
in science and engineering — for example, harmonic analysis or the solution of
certain types of differential equations. Digital machines, on the other hand,
since they operate directly on numbers in the same way as does a human
being when he calculates with pencil and paper, can be used for any kind of
computation which can be broken down into arithmetical or logical steps.

The first mechanical calculating machine was completed in 1642 by the
French philosopher and mathematician Blaise Pascal (1623–1662). Some of
his models are preserved in Paris. He conceived the design at the age of seven-
teen in order, so the story has it, to assist his father, who was a tax collector.
Pascal’s machine is digital, decimal and operated with a stylus1048. Numbers
are carried to adjacent wheels by gears inside the machine. It was essen-
tially an adding (and subtracting) device; multiplication had to be treated as
repeated addition, the number to be added at each step being set separately.

The next major advance was due to G.W. Leibniz (1646–1716), the
famous philosopher and mathematician and co-inventor (with Newton) of the
calculus. He took the next logical step and mechanized multiplication. His
first machine was constructed about 1671. The crucial feature of the whole
design was the stepped wheel1049, an elegant device which is still used in the

1048 One of the fundamental problems of the machine designer is that of arranging

for carry from one digital position to the next, more significant position. This

can be done in several ways, one of the simplest being the method adopted

for recording domestic gas consumption – i.e.through the direct gearing of

successive shafts with gear ratios of ten to one. Another possible scheme is the

stripped gear method for carrying: a gear with 20 teeth all round its edge is

engaged with another wheel of equal size that is stripped of all but two of its

teeth. Each time the stripped wheel makes a complete revolution, the 20-teeth

wheel turns through 1/10 of a revolution.
1049 The Leibniz stepped wheel consists of a cylindrical drum containing nine teeth

of graduated lengths. A smaller pinion wheel engages a varying number of

teeth, depending on its position. The two wheels are mounted on parallel axles

and the pinion wheel can be displaced along its axle by means of a pusher. We

may assign a length of 9 units to the longest tooth on the cylinder, 8 units to

the next longest, and so on, in decreasing sequence. Thus one revolution of

the cylinder will cause the pinion wheel to engage 0, 1, 2, etc., up to 9 teeth,

depending on its axial position as determined by the pusher. We have in effect,

therefore, a gearwheel containing a variable number of teeth.

The ‘wheels of multiplication’ consist, then, of a set of Leibniz stepped wheels

mounted on a common axle; the digits of the multiplicand are set by moving

the pushers associated with the appropriate pinion wheels. Each stepped wheel
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form Leibniz left it, in some contemporary calculating machines.

The crucial steps were taken, then, by Pascal and Leibniz in the 17th cen-
tury. Since then the story has been one of continuous improvement in detailed
design to give greater convenience of use, increased speed and improved relia-
bility. During the 18th century, many attempts were made to design a machine
that could be mass-produced, but the degree of mechanical precission needed
was beyond the capabilities of the production engineering techniques of that
time. It was not until 1810 that the first successful commercial machine was
made by Charles Thomas of Colmar, Alsace.

Some 1500 machines which embodied the Leibniz stepped wheel mecha-
nism, are believed to have been made over a period of about 60 years. A
variant of the Leibniz wheel was patented by F.J. Baldwin in 1875, and a
number of machines using Baldwin’s device were made by W.T. Odhner a
little later. A vast number of Odhner type machines have been made in many
countries since then.

The first man to put forward detailed proposals for an automatic all-
purpose calculating machine was Charles Babbage (1792–1871). The vari-
ous calculating devices discussed hitherto are non-automatic in the sense that
they require the frequent attention of a human operator. An automatic cal-
culating machine is able to carry out extensive calculations without human
intervention.

Babbage was born into an England where mathematics (during the cen-
tury since Newton’s death), had all but stagnated. The few who were liter-
ate could not, for the most part, figure sums accurately. Financial accounts
were snarled, logarithm tables were full of errors, and insurance data were

is connected to the corresponding ‘wheel of addition’. It is clear that multipli-

cation by an arbitrary multiplier can be achieved with this device by rotating

the stepped wheels, for each digit of the multiplier, a number of times corre-

sponding to that digit, axially offsetting any two consecutive stepped wheels

such as to effective add one more tooth at each digital stage. This procedure

is, in fact, adopted in most of the simpler calculating machines today.

Leibniz went a step further, in the direction of fully automatic operation, by

adding a third set of nine wheels, ‘the wheels of the multiplier’. The mecha-

nism is so contrived that the result of multiplying the complete multiplicand

by any digit of the multiplier can be transferred to the result register (i.e.,

the set of ‘wheels of addition’) by means of a single turn of the appropriate

multiplier wheel. To multiply by more than one digit requires only a single

shift-and-turn operation for each digit of the multiplier. The final answer is

obtained as the sum of various partial products, just as in a pencil-and-paper

calculation.
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grotesquely jumbled. Babbage was incensed at this state of affairs and re-
solved to correct it — using computing machines instead of people.

He surmised that machines can be built which can add and subtract large
numbers at high speeds, and he set himself to the task of building them.

Babbage completed his ‘Difference Engine’ in 1822. It was specially de-
signed to compute polynomials for the preparation of mathematical tables.
It was essentially a collection of gears and levers, similar to mechanical desk
calculators of the mid 20th century, accurate to 6 places. With this success,
Babbage tried to construct a better Difference Engine, accurate to 20 places.
He even talked the British government into contributing 17, 000 pounds (an
enormous sum in those days) to the project probably, because of the mili-
tary value of a device to prepare good ballistic tables. This project, however,
quickly became mired in manufacturing problems.

The metal-working industry in the early 1800’s could make smooth-bore
cannons and good plowshares, but it wasn’t competent for the precision gears
and linkages described in Babbage’s marvelously detailed drawings. So the
project died, but not before Babbage had conceived of a new dream — and
not before he had trained a few machinists to make metal parts with more pre-
cision and detail than the world had ever seen (some of those Babbage-trained
men later founded machine-tool companies that made important contribution
to England’s industrial capability).

Charles Babbage called his new dream the ‘Analytical Engine’ (1833). It
was designed to do all kinds of computations with the flexibility of a modern
electronic computer. A vast assemblage of cogs, levers, and gears would be run
by steam power (electricity was still a laboratory curiosity). The Analytical
Engine memory was to consist of banks of wheels engraved with the ten digits.
One thousand 50-digit numbers would be available upon demand by the ‘mill’,
where the arithmetic was done.

Answers were to be automatically printed out just as computers do today.
And, even more prophetically the Analytical Engine was to control itself inter-
nally by punched cards. (The punched card idea came from the mechanized
loom of the Frenchman Joseph Marie Jacquard (1805), in which punched
cards controlled the pattern-wearing apparatus.) It was all a beautiful idea,
but it was born a hundred years too soon. Despite his ingenuity and the
investment of his personal fortune, Babbage could not leapfrog the century of
industrial development still ahead.

A name associated with Babbage is that of Lady Augusta Ada Lovelace,
Lord Byron’s daughter, who was the first computer programmer (1842–1843)
and the chief chronicler of Babbage’s exploits.
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Our story now moves to America, where the next major advance was made
about twenty years after Babbage’s death. In 1890, Herman Hollerith, a
statistician on the staff of the U.S. Bureau of the Census, invented the electro-
mechanical punched-card calculating machine1050. During the first half of the
20th century, punched-card equipment has been extensively applied to the ever
increasing mass of clerical work in commerce, industry, and administration —
and to a lesser extent, to scientific and technical calculations.

The next advance, this time in the field of analog computers, was made at
M.I.T. by Vannevar Bush and his associates. As in Babbage’s time, much
of the impetus for this project was military in origin. Bush had started work
on analog computers in 1925. The idea was to simulate a physical quantity,
like shell velocity, with an easily measurable analog, such as the angle through
which a gear rotates, just as clock hands simulate time. By present standards,
these early analog computers were slow, only about 100 times faster than a
human operator using a desk calculator.

By 1930, Bush’s computer, known as the differential analyzer1051was busy
spinning out artillery firing tables. The analyzer was mainly used to obtain

1050 A typical punched-card installation consists of a number of self-contained ma-

chines, each of which can perform a single type of operation. Information to

be processed is first converted into pattern of holes in standard cards. When a

card is fed into any punched-card machine, the hole pattern is converted into

a pattern of timed electric currents: The exact time at which the circuit corre-

sponding to a particular column is completed determines the row, and hence

the digital value, of a hole punched in that column. The machine then re-

sponds according to its design and to the way it has been set for the particular

problem.
1051 The principle of the differential analyzer was proposed by William Thom-

son (later Lord Kelvin) in a paper in the Proceedings of the Royal Society for

1876. It was stimulated by his brother’s interest in the mechanical integrator.

The proposal was unfortunately neglected.

The central portion of the differential analyzer is, in principle, merely an elab-

orate gearbox in which shafts and other items can be installed, to suit the

problem to be solved. The longitudinal shaft can transmit rotations from one

end of the machine to the other, or as far as necessary, and carry the gears and

differential gears demanded by the problem. It may contain integrators, torque

amplifiers, helical gears, motors, relays etc. The operation of differentiation is

awkward to deal with in mechanical computers and is avoided whenever pos-

sible. Furthermore, the problems are set up on the machine by building up

mathematical expressions term by term, which is hardly a process of analysis.

On both counts, the name ‘differential analyzer’ is a misnomer.
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solutions of ordinary differential equations. The need to develop a more versa-
tile calculating machine, free from the limitations of the differential analyzer,
drove H.H. Aiken to realize Babbage’s dream. Thus, in the late 30’s, while
Bush worked on his analog computers at M.I.T., only a few miles away the
young Harvard graduate student was planning his future Mark I automatic
(non-electronic) digital computer. To speed his work up, he first invented
(1937) a series of small, very specialized digital computers. He soon noticed
that all his machines had common logical operations and many other similar
features, such as memories and control units. In short, Aiken began plowing
the same field Charles Babbage had tilled a century earlier. Aiken, however,
was more fortunate in having electrical gadgets, like relays, to help him.

Independently, Konrad Zuse, a German engineer working in Berlin, built
an electromechanical digital computer, the Z3 (completed 1941). Unaware
of the achievements of Aiken and Atanasoff in the USA, he created a fully
automated, program-controlled, and freely programmable computer for binary
floating-point calculations.

The first electronic digital computer, the ABC, was invented and built by
John Vincent Atanasoff (1939) at Iowa State College. The term electronic
computer implies that the storage and manipulation of numbers inside the
machine, and also the control of the sequence of operations, were done by
means of electronic circuits. Indeed, apart from the input and output mech-
anisms, the machine had no moving parts. The use of electronic techniques
enabled the operating speed to be increased enormously.

The second electronic digital computer, the ENIAC, was completed by
1946 by J.P. Eckert and J.W. Mauchly at the Moore School of Electrical
Engineering of the University of Pennsylvania. Although the ENIAC was a
completely ‘universal machine’, it was primarily designed to meet a specialized
military need; the calculation of trajectories of bombs and shells.

With the success of the ENIAC the victory of the thermionic valve over the
relay and the counter wheel became almost complete. Nearly all the automatic
computers built since 1950 have been electronic, although the valve has since
been ousted in its turn by the more reliable and compact transistor.

The year 1946 may thus be taken as marking the end of the pioneer stage
of automatic computer development.

Computer theory was pioneered by Emil L. Post (1920–1949). A.M.
Turing (1935–1937), A. Church (1936–1956) and John von Neumann
(1942) followed. Turing gave a theoretical description of a universal machine
(Turing machine), and contributed to the construction of early computers and
the development of early programming techniques. Von Neumann contributed
to the design and construction of digital computers. The idea of instructions,
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Table 5.21: Timeline of the evolution of the computer 1943–2008

Year Hardware Software

1943 relay machines — 2000 relays

1946 ENIAC operational — 18,000 electron tubes stored program
concept

1947 invention of the transistor

1949 EDSAC, Cambridge UK — first stored-
program computer

1951 UNIVAC I, first commercial machine (sold to
the US Bureau of Census)

the first assembler
(UNIVAC I)

1953 invention of core memory

1954 Fortran program-
ming language
(IBM)

1956 introduction of hard disc (IBM) LISP (functional
language)

1959 IBM 7090 — first commercial transistor ma-
chine (20,000 transistors)

COBOL

1960 Algol 60

1961 First integrated circuit — “the second indus-
trial revolution”

1964 CDC-66 — large-scale scientific computer
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Table 5.21: (Cont.)

Year Hardware Software

1972 C: general-purpose
programming

1976 Cray-1 supercomputer

1976 Local Area Networks: Ethernet (Xerox)

1977 first commercial microcomputer Apple II, us-
ing 8-bits microprocessors

1980 Motorola 68000 processor: 68,000 transistors
on a single chip

1981 Introduction of the IBM PC; first commercial
application of windows with mouse-based in-
teraction

1984 Apple Macintosh

1990 Connection Machine Parallel computer with
64,000 basic processors

1991 Cray Y-MP parallel supercomputer

1992 DEC Alpha processor: 1.7 million transistors
on a single chip

1993 Alpha, Power PC, Pentium: 32-bits micro-
processor

2020 a chip will have 1011 components (comparable
to number of neurons in the human brain)
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as distinct from data, to be stored in the computer’s memory was von Neu-
mann’s landmark idea. It became a reality when a computer using internally
stored instructions was built at the Institute of Advanced Study at Princeton,
N.J., in 1952.

The evolution of computer technology since the ENIAC was dramatic:
Before 1945, the word ‘computer’ had the meaning of ‘a human performing
computations’, whether or not using mechanical equipment. The ENIAC was
built to do the same kind of work, but faster and without human interven-
tion. It was programmable, and it featured a very high logical complexity as
compared to earlier information-processing machines, including those of Zuse
and Aiken. Table 5.21 lists milestones in the history of the computer.

The computer revolutionized the modalities of scientific research: prior
to 1945, physical scientists did not have computers at their disposal (even
Jules Verne did not contemplate the computer!). This compelled them to
delve deeper into matters, and thus identify underlying operative principles.
Whereas, had they lived after 1945, they might be tempted to simulate rather
than cogitate.

The 10-Billionth Hexadecimal Digit1052 of π is 9

There has been a drive to compute π to more and more decimal places.
This drive has been going on for thousands of years. The direct utility to
problems of measurement or engineering of ultra-accuracy computations of π

1052 For further information, see:

• Beckmann, P., A History of π (PI), St. Martin’s Press, 1971, 200 pp.

• Posamentier, A.S. and I. Lehmann, pi, Prometheus Books, 2004, 324 pp.
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is nil1053. What therefore, is behind the drive? Many things; not the least of
which is the fact that there are many people in this world who like to break
records, and many who love to compute just for the sake of computing.

There is, however, a more profound reason. Symbolically, π’s irrationality
represents an irrationality to the universe that we do not like. Pi represents
an omniscience which we can never possess, but that we can approach ever
closer. Calculating π is a quest parallel to trying to fully understand our
universe. It is for this reason that we wish to calculate π to millions of places
and beyond.

1053 The ten digits (3.141 592 654) that are built into most scientific calculators

are sufficient for nearly any real-world calculations: one can calculate the cir-

cumference of the earth’s orbit around the sun, and be off by less than 100

meters! Even extremely precise scientific work never requires more than 20

decimal places. Clearly, hundreds of thousands of digits of π have no practical

value.

Some argue that by calculating many digits of π mathematicians can empir-

ically verify theoretical ideas about π.

One theory that mathematicians were trying to prove empirically is that the

statistical distribution of the digits of π is uniform. That is, the frequency

of each digit (0, 1, ..., 9) approaches 1/10 as the number of sampled digits

approaches infinity.

As early as 1960 this was shown to be the case for the first 16, 000 digits of

π, up to expected statistical uncertainties. Since then the growing number of

known digits of π have passed this test every time it has been run.
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Five thousand digits of pi.
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Table 5.22: Milestones in the π-Race
1054

Act I

ca 2000 BCE Babylonian used π = 3 1
8 = 3.1250

Egyptians used π =
(

16
9 )2 = 3.1605

ca 1150 BCE Chinese used π = 3

ca 950 BCE Hebrews used π = 3(I Kings; 1, 23)

ca 250 BCE Archimedes established 3 10
71 < π < 31

7

and used π = 3.14163

ca 450 CE Tsu Chung-Chi established 3.141 592 6 < π < 3.141 592 7

ca 150 CE Ptolemy used π = 377
120 = 3.14166 . . .

ca 1420 Al-Kashi of Samarkand calculated π to 14 decimals

Act II

1593 Adriaen van Roomen 15 correct decimals
1596 Ludolph van Ceulen 32 ” ”
1621 Snell 35 ” ”
1705 Sharp 72 ” ”
1706 Machin 100 ” ”
1719 de Lagny 127 ” ”
1794 Vega 137 ” ”
1844 Strassnitzky and Dase 201 ” ”
1853 Rutherford 441 ” ”
1855 Richter 500 ” ”
1873 Shanks 527 ” ”
1947 Ferguson (desk calculator) 808 ” ”

Act III

1949 ENIAC computer 2036 ” ”
1955 NORC computer 3089 ” ”
1959 Genuys and Felton 10,000 ” ”
1961 Shanks and Wrench 100,000 ” ”
1976 Gilloud and Bouyer 1,000,000 ” ”
1982 Tamura and Kanada 4,194,293 ” ”

(2h, 53m)
1991 David and Gregory 1,000,002,260 ” ”

Chudnovsky (U.S.A.)
1995 Bailey, the Borweins and 10,000,000,000 ” ”

Plouffe (Canada)
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But there have been more theoretical reasons for computing high-accuracy

approximations to π. Prior to 1766, when Lambert established that π is an

irrational number, a reason for computing π to many figures was the hope

that such a calculation might show periodic patterns of its decimal digits and

hence its fractional form would stand revealed.

In recent years, many mathematicians have interested themselves in the

distribution of the decimal digits of π. Statistical analysis of the many digits

of π produced by computers tends to confirm the conjecture that the digits

are random. Table 5.22 records some milestone in the π-race throughout the

past 4000 years.

Traditionally, computations of π during 1706–1982 have employed

trigonometric formulas such as:

π = 16 tan−1
(

1
5

)
− 4 tan−1

(
1
70

)
+ 4 tan−1

(
1
99

)
,

π = 24 tan−1
(

1
8

)
+ 8 tan−1

(
1
57

)
+ 4 tan−1

(
1

239

)
,

π = 48 tan−1
(

1
18

)
+ 32 tan−1

(
1
57

)
− 20 tan−1

(
1

239

)
,

π = 32 tan−1
(

1
10

)
− 4 tan−1

(
1

239

)
− 16 tan−1

(
1

515

)
,

π = 12 tan−1
(

1
4

)
+ 4 tan−1

(
1
20

)
+ 4 tan−1

(
1

1985

)
,

with

tan−1 x = x − 1
3
x3 +

1
5
x5 − 1

7
x7 +

1
9
x9 − · · ·

With such formulas, one million decimals were calculated by 1976 with the

aid of the CDC–7600 electronic computer.

The tradition of ‘arctangent formulas’ was broken with the discovery of a

new method (1976) of computing π using an iterative algorithm derived from

the works of Legendre and Gauss in the early 19th century. This algorithm,

based upon the arithmetic-geometric mean, and related to the theory of elliptic
integrals, is extraordinarily rapidly convergent. Here, the nth approximant to

π is

πn =
4a2

n+1

1 −
∑n

j=1 2j+1(a2
j − b2

j )

1054 For further information, see:

• Blatner, D., The Joy of π, Walker Publishing Company, 1997.
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with

an =
1
2
(an−1 + bn−1), bn =

√
an−1bn−1

a0 = 1, b0 =
1√
2
.

Then
π = lim

n→∞
πn

and

|π − πn| <

[
π22n+4

(agm)2

]

e−(π2n+1), agm = lim
n→∞

an.

The number of correct decimals is essentially doubled at each iteration. Here,
agm = arithmetico-geometrico mean (Gauss).

With such iterative methods, coupled to the rapid improvement of the
speed and memory capacity of electronic computers, the number of calculated
digits of π passed the billion mark in 1991. If the numbers were typed, they
would stretch more than 5000 kilometers. Had we stored these digits in books,
each containing 400 pages, with 5000 digits per page, this would have formed
a library of 500 such books.

Quite recently, a 4000-year quest changed direction: a totally new for-
mula for π was discovered1055, remarkable in its simplicity and deadly in its
precision:

π =
∞∑

k=0

(
1
16

)k( 4
8k + 1

− 2
8k + 4

− 1
8k + 5

− 1
8k + 6

)

.

One of the charms of mathematics is that it is possible to make elementary
discoveries about objects that have been studied for millennia.

Up to now, it was generally believed that to compute the nth digit of a
transcendental number like π was as difficult as calculating the first n digits.
This is not true. The new algorithm can easily be implemented, does not need
multiple precision arithmetic, requires virtually no memory, and features run-
times that scale linearly with the order of the digit desired. This makes it
feasible to compute, for example, the 10-billionth digit of π on a modest work
station in a few days of run-time.

To prove the above identity, one first shows that

∞∑

k=0

(
1

bnk

n∑

i=1

ai

nk + i

)

=
n∑

i=1

aib
n

∫ 1

0

xi

bn − xn
dx

1055 D. Bailey, P. Borwein and S. Plouffe, “On the rapid computations of various

polylogarithmic constants”, Mathematics of Computation, 1996.
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by expanding the right-side using the geometric series formula. Then, one
evaluates the integral on the right side using the complex roots of bn − xn,
which come in conjugate pairs.

In 1976, Kenneth Appel (U.S.A.) and Wolfgang Haken1056 (U.S.A.),
after years of intense work and 1200 hours of computer time, were finally able
to announce that they had proven the 4-color conjecture. Large and crucial
parts of their argument were carried out by a computer, using ideas which had
themselves been formulated as a result of computer-based evidence. So great
was the amount of computing required that it was not feasible for a human
mathematician to check every step. This means that the whole concept of a
mathematical proof had suddenly changed.

Something that had been threatening to occur ever since electronic com-
puters were first developed in the early 1950s had finally happened: the com-
puter had taken over from the human mathematician part of the construction
of a real mathematical proof. Until then, a proof had been a logically sound
piece of reasoning by which one mathematician could convince another of
the truth of some assertion. By reading a proof, a mathematician could be-
come convinced of the truth of the statement in question, and also come to
understand the reasons for its truth.

The use of the computer in this case is in principle quite different from its
uses in applied mathematics and in number theory.

In applied mathematics, the computer serves to calculate an approximate
answer, when theory is unable to give us an exact answer. We may try to
use our theory to prove that the computed answer is in some sense close to
the exact answer. But in no way does the theory depend on the computer for
its conclusions; rather, the two methods, theoretical and mechanical, are like
two independent views of the same object.

In the study of distributions of primes or similar number-theoretical prob-
lems, the computer serves to generate data. But by studying these data, the
mathematician may be able to form a conjecture, such as the prime number
theorem. The rigorous mathematics of the proof remains uncontaminated
by the machine. The latter helps us to decide what to believe, and even
how strongly to believe it, but it still does not affect what is proved. In the
Haken-Appel 4-color theorem, the situation is totally different: the computer

1056 To dig deeper, see:

• Wilson, R., Four Colors Suffice, Princeton University Press, 2002, 262 pp.
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became absolutely essential and in order to accept the proof one has to believe
that the computer program used, does what the authors claim of it.

From the philosophical point of view, the use of a computer as an essential
part of the proof involves weakening of the standards of mathematical proof.
It introduces grounds for skepticism and involves a certain act of faith; since
the reader’s belief in the proof of the 4-color theorem depends, not only on his
confidence in his own ability to understand and verify mathematical reasoning,
but also his belief that computers work and do what they are supposed to do.
This is a belief of a totally different order.

A mathematician may view the matter in a different light: to him, the
fallibility of reason is such a familiar fact of life that he might welcome the
computer as a more reliable calculator than he himself can hope to be.

Magnetic Resonance (1946)

Introduction

Certain dynamical magnetic effects are associated with the quantum me-
chanical spin angular momentum of nuclei and of electrons. By magnetic
resonance one usually means resonant absorption and emission of electro-
magnetic radiation by electrons or atomic nuclei in the presence of a certain
magnetic field configuration. The principles of magnetic resonance are applied
in the laboratory to analyze the atomic and nuclear properties of matter.

The principal relevant phenomena are often identified by their acronyms,
such as: NMR (nuclear magnetic resonance); NQR (nuclear quadrupole reso-
nance); EPR or ESR (electron paramagnetic, or spin resonance); FMR (ferro-
magnetic resonance); SWR (spin wave resonance); AFMR (antiferromagnetic
resonance); CESR (conduction electron spin resonance).

The information that can be obtained about solids by resonance studies
may be categorized thus:

• Electronic structure of single defects in crystals, as revealed by the fine
structure of absorption spectra.
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• Motions of a spin or of its surroundings, as revealed by changes in the
spectral line width.

• Internal magnetic fields sampled by the spin, as revealed by the position
of the resonance line.

• Collective spin excitations.

Nuclear magnetic resonance is used to measure nuclear magnetic dipole
moments, which characterize magnetic behavior of specific nuclei. Because
these values are significantly modified by the immediate chemical environ-
ment, however, nuclear magnetic resonance measurements provide informa-
tion about the molecular structure of various solids and liquids.

NMR techniques have had a great impact in organic chemistry and bio-
chemistry, where they provide a powerful tool for the identification and struc-
ture determination of complex molecules. A very important medical appli-
cation is NMR tomography, which utilizes spatially varying magnetic fields
and RF electromagnetic pulses to enable the resolution in 3D of abnormal
growths, configurations, and reactions in the whole body.

The fundamentals of physics required to understand the principles of NMR

will next be presented. A rigorous derivation of the underlying theory requires
the use of quantum mechanics, but acceptable models of the process can be
built using classical electrodynamics.

NMR is based on the measurement of radio-frequency electromagnetic
waves as a nucleus returns to its equilibrium spin-orientation state. Any
nucleus with an odd number of particles (protons and neutrons) has a mag-
netic moment, and, when the atom is placed in a strong magnetic field, the
magnetic moment of the nucleus tends to line up with the field.

If the atom is excited by an external magnetic field, it emits a radio-
frequency signal as the nucleus returns to its equilibrium state. Since the
frequency of the signal is dependent not only on the type of atom but also the
magnetic field present, the position and type of each nucleus can be detected
by combining a spatially inhomogeneous magnetic field with appropriate sig-
nal processing.

A more detailed elaboration of this basic idea runs as follows: In quantum
mechanics the magnitude of the orbital angular momentum L has the allowed
values L =

√

(
 + 1) �, where the integer 
 is the orbital angular momentum

quantum number1057. Moreover, the z component of L along any fixed axis,

1057 The relation |L| = L =
√

�(� + 1) � agrees with experimental results, whereas

the semiclassical Bohr assumption L = n� with integer n, does not.
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namely Lz, is Lz = m��, where m� (known as the orbital magnetic quantum
number) can have values from −
 to +
 in steps of 1.

Consider a particle (say an electron) of charge (−e) and mass m in a closed
orbit due to a central force field. In classical physics, its angular momentum is
given by L = 2mA

T , where A is the vectorial area swept during one orbital
period of T sec. On the other hand, its average magnetic dipole moment
is μ = iA, and i = − e

T is the equivalent orbital electric current. The
elimination of A/T yields μ = − e

2mL. The vectors μ and L are in opposite
directions because the electron has a negative charge.

A quantum-mechanics derivation gives the corresponding result

μ� = |μ�| =
e�

2m

√

(
 + 1),

showing that the orbital magnetic moment (μ�) of the electron is also quan-
tized. Taking the z-component of the corresponding vector equation, we find
Lz = m��, μ�z = − e�

2mm�. The constant e�
2me

is called the Bohr magne-
ton1058, μB . Clearly, μ� = μB

√

(
 + 1) and μ�z = −μBm�.

From classical physics, we know that applying a magnetic field B to a
magnetic dipole causes a torque on the dipole, T = μ × B. Taking the z-
axis to coincide with the direction of B, and recalling that T = dL

dt and that
μ is proportional to L, the magnetic field is seen to cause the magnetic dipole
to precess about the z-axis. For an electron, both μ and L (anti–parallel
vectors) precess about B. In quantum physics, this precession results in our
inability to determine exactly either μ�x or μ�y, for a state of the electron
for which we have measured μ�z. However, (μ2

�x + μ2
�y) = μ2

l − μ2
lz can be

determined.

The energy of interaction of the magnetic dipole and the magnetic field is

U = −μ · B = −μB cos θ = −μzB = +μBm�B,

and is the change of the energy of the system caused by the interaction. Since
m� can have (2
 + 1) distinct values, the application of a magnetic field to
an orbital state of a given 
 splits the state into (2
 + 1) different energy
levels; the maximum value of m� (e.g., +2 for the 
 = 2, d state) occurs
when L is parallel to B (μ� and B antiparallel), and this corresponds to the
highest-energy split level. In the lowest energy state (m� = −2, 
 = 2) μ�

and B are parallel.

1058 Since � = h
2π

= 1.0546 × 10−34 J·sec = 6.582 × 10−16 eV·sec one finds

that μB = 9.274 × 10−24 J/T = 9.274 × 10−21 erg/gauss where J = Joule;

1T = 1 Tesla = 1Wb/m2 = 104 gauss; eV = electron Volt.
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In the state m� = 0, μ� and B are perpendicular, corresponding to null

interaction energy U = 0. Since any system tends, if possible, to inhabit its

lowest energy state, μ� tends to line up with B much as a compass needle

tends to line up with the earth’s magnetic field.

In quantum physics, we can calculate the probability that a transition from

one state to another will occur. Quantum mechanics shows that some types

of transitions are very improbable under normal conditions. These are called,

with some exaggeration, forbidden transitions. The more favorable transi-

tions are called allowed transitions, and occur when certain quantum–number

selection rules hold. These rules are obtained from probability calculations,

which involve integrals that include both the original state and the final state

wave functions.

For example, these integrals will be small or zero under normal conditions

unless Δ
 = ±1 and Δm� = 0 or Δm� = ±1. Thus, when a magnetic field

B is applied to a d state (
 = 2), three possible energies are allowed for the

photon emitted during the transition: ΔE = ΔE0 (Δm� = 0), the emitted

photon energy in the absence of magnetic fields; ΔE = ΔE0 − μ
B
B (when

Δm� = +1); and ΔE = ΔE0 + μ
B
B (when Δm� = −1). Even in strong

magnetic fields one usually has μ
B
B � ΔE0.

Nevertheless, the frequency ν0 = ΔE0/h splits into three lines. For

Δm� = 0,±1, respectively, the frequencies of the three lines will be ν0,

ν0 ∓
μ

B

h B (normal Zeeman effect). The corresponding change in wavelength
is

Δλ ≈ ±λ2
0

eB

4πmc
.

Every electron has, in addition to its orbital angular momentum, an in-

trinsic spin angular momentum, S, which has no classical analog. This was

first suggested by Goudsmit and Uhlenbeck (1925) to explain experimental

results. Spin involves two further quantum numbers, s, and ms, of which s

is fixed at 1/2 in the case of electrons, and ms takes the values −1
2 or 1

2 .

The number ms is called the spin angular momentum magnetic quantum
number.

For electrons s = 1
2 , ms = ±1

2 and therefore

S =
√

s(s + 1) � =
√

3
2

�,

Sz = ms� = ±1
2

�.
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The electron state with spin parallel to the z-axis is often called spin up(
ms = +1

2

)
, while the state with spin antiparallel to the z-axis is called spin

down
(
ms = −1

2

)
1059.

In analogy to the relation μ� = −
(

e
2m

)
L for the orbital vectors, it was

found experimentally and from relativistic quantum theory, that the spin
magnetic dipole moment, μs is related to its spin angular momentum by
μs = −ge

e
2mS, where, again, μs and S are antiparallel because of the nega-

tive charge of the electron. The factor ge is called the gyromagnetic ratio of
the electron.

The experimental value for gs is 2.0023193044, but for most practical

purposes we can take gs = 2. Using
( √

3
2

)
� as the magnitude of S, we then

have μs = μB

√
3. In a similar manner μsz = ∓(1.00116)μB ≈ ∓μB . Thus,

the z component of the spin magnetic dipole moment is only about a tenth
of a percent greater than the Bohr magneton (in absolute value).

The Schrödinger wave equation is consistent with, but does not predict the
electron spin in its solutions, while Dirac’s relativistic wave equation predicts
for gs exactly 2, not 2.00232 . . . [The part of quantum physics that predicts
the minute correction (gs − 2) is quantum electrodynamics (QED).]

When we apply an external magnetic field, there will be a torque on the
spin magnetic dipole moment of the electron. This torque will cause precession
of S and μs about the z-axis (the direction of the magnetic field B). The
corresponding change of energy will be

ΔUs = −μszB ≈ +2msμB
B.

The fundamental mechanical properties of a nucleus can be listed as:
mass, size, binding energy, and spin. Its main electromagnetic properties
are: charge, magnetic dipole moment, and electrical quadrupole moment.

Pauli (1924) suggested that the hyperfine structure in atomic spectra
might be explained by a small magnetic moment of the nucleus. The interac-
tion of this magnetic dipole with the motion of the electrons would produce
a hyperfine multiplet of energy levels in a similar way as a (fine structure)
multiplet is produced by interaction of the intrinsic (spin) magnetic moment
of the electron with the magnetic field due to its orbital motion. The intro-
duction of the electron spin concept (1925) made it possible to explain many

1059 One of the bizarre aspects of quantum mechanics is that Sz and Lz have the

same discrete set of allowed values no matter which spatial direction is selected

to be the z axis.
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hitherto mysterious details of the spectra of hydrogen and other atoms, ions
and molecules.

It thus appeared appropriate to connect the magnetic moment of the nuclei
too, with rotating charges and to attribute to the nucleus a mechanical spin,
known as nuclear spin. It is designated by I. Both protons and neutrons, like
electrons, have intrinsic spin 1

2 . In addition, protons and neutrons possess
orbital angular momentum associated with their motion in the nucleus. The
resultant nuclear intrinsic angular momentum (spin) is obtained by combining,
in a proper way, the orbital angular momenta and the spins of the nucleons
(protons and neutrons) composing the nucleus.

The nuclear spin is designated by the quantum number I such that the
magnitude of the nuclear spin is

√
I(I + 1) �. The component of the nuclear

spin in a given direction is Iz = mI �, where mI = ±I, ±(I − 1), . . .. There
are thus 2I + 1 possible orientations of the nuclear spin1060. The values of
I are integers (if the mass number A is even) or half-integers (if A is odd).

It has been noted that practically all even-even nuclei (i.e., nuclei that
have an even number of neutrons and of protons) have I = 0, which indi-
cates that identical nucleons tend to pair their angular momenta in pairs of
opposite directions. This is called the pairing effect. Even-odd nuclei (i.e.,
nuclei that have an odd number of either protons or neutrons) all have half-
integral angular momenta, and it is reasonable to assume that the nuclear
spin coincides with the angular momentum of the last or unpaired nucleon, a
result which seems to hold in many cases.

Odd-odd nuclei have two unpaired nucleons (one neutron and one proton)
and the experimental results are a little more difficult to predict, but their
angular momenta are integers, since there is an even total number of fermions.

Consider next the internal orbital magnetic dipole moment of the nucleus:
Obviously neutrons have no charge and do not have an orbital magnetic dipole

moments. For the case of protons μ� =
(

e
2mp

)
L, and the component of the

magnetic moment along the z-axis is μ�z =
(

e
2mp

)
Lz =

(
e�

2mp

)
m� = μ

N
m�.

The constant μ
N

= e�
2mp

= 5.0504 × 10−27 JT−1 = 5.0504 × 10−24 erg/gauss

is called a nuclear magneton.

If a particle of charge q and mass m has spin S, it also has a spin mag-
netic moment q

2mgsS, where gs is a constant characteristic of the particle,

1060 Ix and Iy are quantum-uncertain for a state in which I and Iz are known with

certainty; thus, each “orientation” of I is actually a cone of possible classical

orientations.
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called its spin gyromagnetic ratio. The value for its proton is gs,p = +5.5855,
indicating that μs is parallel to S.

The magnetic moment of the proton is quite different from that expected
by substitution of the protons mass in Dirac’s formula for the magnetic mo-
ment of the electron. The difference is thus known as the anomalous magnetic
moment.

It has been observed (1939) that the neutron, although it has no net
electric charge, has a spin magnetic moment corresponding to gs,n = −3.8263.
The negative sign1061 indicates that μs is antiparallel to S.

The resultant magnetic dipole moment of a nucleus can be written as

μ = gI

(
e

2mp

)
I, where gI is the nuclear gyromagnetic ratio. The component

of the resultant magnetic dipole moment of a nucleus along a given direction

may be expressed by μz = gI

(
e

2mp

)
Iz. Since Iz = mI �, it follows that

μz = μ
N

g
I
m

I
.

Nuclear magnetic moments are listed as multiples of μ
N

, and for m
I

= I
(the maximum value of mI ),

μz

μ
N

= gI I.

Taking into account the selection rule: Δm
I

= ±1 or 0, the change in
energy due to a transition between two nuclear energy levels belonging to the

1061 The quark model tells us that the neutron’s magnetic moment is not zero, and

also that the proton’s gyromagnetic ratio is not the Dirac value of 2. Our

understanding of QCD (Quantum Chromodynamics: the current quantum-

field theory for strong interactions) is not yet good enough to compute these

numbers. However, the naive quark model gives a ratio of − 3
2

for the quo-

tient proton magnetic moment/neutron magnetic moment against the observed

value of −1.46.

A neutron is made of one ‘up’ quark, of charge + 2
3

(in electronic units), and

two ‘down’ quarks with charge − 1
3

each. Since two of the three quarks must

have their spins aligned one way, and the third has its spin aligned the other

way, the procedure to compute the neutron’s overall moment is simply to add

the quark spins’ z components weighted by the corresponding quark charges,

and then compute an expectation value in the simplest three-quark wave func-

tion. We must take into account that quarks come in three distinct “colors”

inside each nucleon, that the nucleon is “color neutral” (a result of QCD) and

that quarks obey the Pauli exclusion principle.

The result is nonzero, because the moments of the positively-charged quarks

do not cancel those of the negatively charged quarks. (The quarks themselves

are assumed to have the Dirac values for their gyromagnetic ratios). A similar

calculation yields the non-Dirac moment of the proton.

Even before the advent of the quark model, it was realized that nucleons were

not point-like.
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same Zeeman multiplet, is given by ΔU = ±gI μN B0, where B0 is the ap-
plied magnetic field. A quantum energy hν0 can therefore resonantly excite
transitions between energy levels if it has the same energy as the level spac-
ing: hν0 = ΔU ≈ gI μN B0, where ν0 is the frequency of the electromagnetic
radiation supplying or absorbing the quantum of energy.

For a proton, with g
I

= 5.58 and an applied field of B0 = 5000 gauss,
the resonance frequency ν0 turns out to be 21.3 MHz, which is in the radio
frequency band. The corresponding photon energy is of the order 10−7 eV.
Although this energy is too small to induce electronic, rotational or vibrational
transitions in atoms or molecules, it is sufficient to affect the magnetic moment
and spin of the nuclei of atoms, so that resonant absorption of radio-frequency
radiation by the nucleus occurs when atoms are placed in a magnetic field
and irradiated with properly tuned radio waves. A spectrum is produced by
observing resonances for a compound as the magnetic field or radio frequency
is scanned.

Now, in order to excite the said resonant transitions, it is necessary to
supply radiation in such a way that its magnetic vector is polarized in a plane
perpendicular to the steady magnetic field B0. To understand this, we show
that this requirement of circular polarization is just what one would expect
by classical argument in the case of conventional optical atomic spectroscopy
(Zeeman effect).

If a magnetic dipole μ is placed in a magnetic field B0, the dipole precesses
about the direction of the applied field, where the rate of precession is given
by the Larmor angular frequency1062 ω0 = γB0 (γ = magnetogyric ratio of
the dipole = μ

I = gI μN ).

Suppose now that an additional small oscillating magnetic field B1 is ap-
plied at right angles to B0. The dipole will experience a torque T = (μ × B1)
tending to change the angle θ between μ and B0. If the small field B1 is
made to rotate about B0 in synchronism with the precession of the dipole, this
torque will cause the angle θ to resonantly increase, leading to a reorientation
of the vector μ.

In quantum-mechanical language the effect will be described as an EM

transition between two energy levels. If, however, B1 and the dipole rotate
in different directions, or if they do not rotate with the same frequency, the

1062 Note that the frequency of precession depends on the magnitude of the external

field B0 and, through the magnetogyric ratio γ, on the chemical binding of the

atom, since γ can change slightly due to the induces magnetic field contributed

by electrons within the chemical environment of the given nucleus. These small

changes in γ are known as chemical shifts and are used in NMR spectroscopy

to identify the compounds in a sample.



4676 5. Demise of the Dogmatic Universe

torque will soon get out of phase and after a short time interval change its
sign, so that the average effect over many Larmor periods will be small.

We thus see that as with quantum theory, so also classically, a condition for
optimal observation of the resonance is that the electromagnetic radiation be
circularly polarized with the magnetic vector rotating in a plane perpendicular
to the steady (DC) magnetic field1063.

Experimental basis

C.J. Gorter (1936) was first to point out how the phenomenon, described
above, could be used to detect nuclear magnetism. The first successful ex-
periment, however, was performed by I. Rabi (1939) using a molecular beam
technique1064; a magnetic dipole experiences a force when placed in an in-
homogeneous magnetic field. Atoms or molecules which possess a magnetic
moment are therefore deflected on passing through such a field. The beam
method was powerfully improved upon by Rabi and his colleagues by the

1063 It is usually much simpler to provide a linearly oscillating field; it may be

regarded as the superposition of two rotating fields in opposite senses, each

with half the amplitude of the linear oscillator. Resonance will be obtained

with the component which has the correct sense, the other component having

a negligible effect.

Conventionally, the z-axis is chosen along the axis of the static magnetic field

B0 used to align the magnetic moments (Iz = I before the RF pulse is

applied). Let the radio-frequency magnetic field pulse be applied for tp seconds

in the x direction: B1 = [2B1 cos ω0t] ex, where ω0 = γB0 is the resonance

frequency.

The degree of tipping (nutation) that occurs is θ = γB1tp. Generally, B1 and

tp can be varied so that the moment can be tipped to any desired angle. By

tipping the moment 90 ◦ the maximum signal is obtained as the system returns

to equilibrium (θ = 0), while a 180 ◦ flip will change the sign of the moment.
1064 This technique was used with great success in the experiments of Stern and

Gerlach (1921, 1924) to prove experimentally that the measurable values of

the component of an atomic magnetic moment do not form a continuous range.

Instead they form a discrete set corresponding to the spin quantization of a

valence electron of the atom in the magnetic field. From the magnitude of the

deflection of the beam these workers were able to evaluate the atomic magnetic

moment.



1946 CE 4677

introduction of the resonance method: Molecules evaporated from a furnace
pass through some diaphragms to define a beam.

The beam is split in the inhomogeneous field of a first magnet, passes
through a homogeneous field B0, and is refocused onto a detector by another
inhomogeneous field (of opposite gradient), which deflects it in the opposite
direction. The refocusing condition is fulfilled only if no reorientation of the
nuclear spin occurs in the zone of the homogeneous field.

But if in addition to the homogeneous field B0 a radio-frequency magnetic
field is applied, perpendicular to B0, and either the radio frequency or B0 is
slowly scanned, the current reaching the detector will pass through a minimum
when the above resonance condition is fulfilled: at the resonance frequency
the beam is subjected to electromagnetic radiation of just the right amount
as to induce transitions between their quantized energy levels by a process of
absorption or stimulated emission of quanta of energy.

If the nuclear spin number is I, each energy level is split by the steady
magnetic field into (2I + 1) approximately equally spaced sublevels. If the
maximum measurable components of the nuclear magnetic moment is μ, the
separation between the lowest and the highest sublevels is 2μB0; roughly
speaking, these two levels correspond respectively to alignments of the nuclear
moments with and against the magnetic field. The separation between two
successive sub-levels is therefore 2μB0

2I , with the corresponding frequency
μB0
Ih .

At this frequency there is a sharp reduction in the number of molecules
reaching the detector, since molecules that suffer a change of energy (and
thus of magnetic moment) do not have the correct deflection in the second
inhomogeneous magnetic field. The resonances are usually sharp, and enable
the magnetic moment of nuclei to be obtained with an accuracy of a few parts
in 104. Gyromagnetic ratios of many nuclei have been measured in this way.

A special and independent application to neutrons was made by Bloch
and Alvarez (1940).

The resonant exchange of energy between the (2I + 1) energy levels of
a nuclear magnetic moment in a magnetic field is not restricted to matter in
the form of molecular beams, but should also occur for matter in its ordinary
solid, liquid or gaseous states. The first successful nuclear magnetic reso-
nance experiments with bulk matter were carried out independently at the
end of 1945 by Purcell, Torrey and Pound (1946) and Bloch, Hansen
and Packard (1946).

While in the beam method each particle can be considered as free, in the
case of solids, liquids and gases the interaction between the nuclei and their
surroundings cannot be neglected. They are, in fact, essential. To see this we
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consider matter in its normal physical and chemical states, where the nuclei
are present in their usual role as central particles in atomic systems.

The material in which the nuclear magnets are embedded is generally re-
ferred to as the ‘lattice’, whether it be solid, liquid, or gas. For simplicity we
will assume that the nuclear spin number is I = 1

2 and ignore the interac-
tion between the nuclei, and so take the energy levels discussed above for an
isolated nucleus as those for each nucleus in the assembly. At the same time
some coupling between the nuclei has to be assumed so that the assembly
may be considered to be in thermal equilibrium at temperature Ts.

Since I = 1
2 , each nucleus has two possible energy levels separated by a

gap 2μB0. If we now apply EM radiation at the resonant frequency, transi-
tions between the two levels take place. From the simple theory of the Einstein
coefficients (1917) we know that the probability per unit time of transitions
upwards by absorption, per given RF radiation flux, is equal to the probability
per unit time of transitions downwards by stimulated emission. In comparison
with these probabilities, the probability of transitions downwards by sponta-
neous emission is quite negligible. If the number of nuclei in each energy level
were equal, the average rate of transitions up and down would therefore be
equal, and there would be no net effect on the system.

Actually, however, since the nuclear spins are in equilibrium at some tem-
perature Ts, the population of the lower level (n1) exceeds that of the upper
level (n2) by the Boltzmann factor e(2μB0/kTs), where k is the Boltzmann
constant. At room temperature (≈ 300 ◦K), for protons in a field of 3000
gauss, this factor has the value

e(2μB0/kTs) � 1 +
2μB0

kTs
≈ 2.0 × 10−6,

or n1−n2
n1

= 2.0 × 10−6. On account of this typically small, but finite, excess
of population in the lower energy state, there is a net absorption of energy
from the radio frequency field.

Moreover, a difference in population of 2 parts in a million is detectable,
a result which reveals the high sensitivity of the NMR technique. It is more
sensitive than chemical techniques, for example, in identifying magnetic im-
purities in a crystal. Principally, however, it enables us to use the nucleus as
a probe to get information about solids, much as radioactive tracers are used
in biological systems.

The absorption of energy corresponds to the transfer of some of the excess
population in the lower level to the upper level. If there were no interaction
between the system of nuclear spins and the lattice, the fractional excess of
population, 2μB0/kTs, would steadily dwindle. Consequently, the tempera-
ture Ts of the spin system would steadily rise.
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This, however, is avoided due to the weak, but finite, thermal interaction
between the lattice and the spin system. Such interaction tends to bring both
into thermal equilibrium at the same temperature. This common temperature
is almost identical with the lattice temperature on account of the latter’s much
greater heat capacity (except at extremely low temperatures). Thus, while
the radio frequency radiation is reducing the excess population in the lower
energy state, the interactions with the lattice tend to restore the excess to its
original value.

Relaxation

Clearly, the power absorption by the sample would stop as soon as the
two magnetic sublevels are equally populated (corresponding to an infinite
nuclear-spin temperature!). If the nuclei were isolated from their surround-
ings, they would remain in such a state for a long time. However, the tem-
perature of the surrounding (the lattice) is finite, and the nuclei tend try to
reestablish thermal equilibrium by interaction with the lattice. This interac-
tion will lower the infinite spin temperature and slightly raise the temperature
of the lattice.

The time-characteristic of this spin-lattice relaxation can be measured in
various ways, for instance by determining the time it takes the protons to re-
turn to thermal equilibrium after the external rf power has been turned off.
The spin-lattice relaxation time depends, for instance, on the chemical bind-
ing, and relaxation techniques have therefore become indispensable analytical
tools of physical chemistry. The semi-classical theory of relaxation theory will
next be described.

Consider an assembly of identical, weakly interacting nuclei of spin number
I, in thermal equilibrium at a spin temperature Ts in a steady magnetic field
B0. Nuclei having magnetic quantum number m = mI are found in the energy
level −mgI μN B0.

The population of the level is therefore weighted by the Boltzmann factor

e
−mg

I
μ

N
B0

kTs ≈ 1 + −mg
I

μ
N

B0

kTs
. Hence the population, N(m), of each level

(per cm3, say) is

N(m) ≈ N

2I + 1

(

1 +
mg

I
μ

N
B0

kTs

)

,
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with the proviso that
∑I

m=−I N(m) = N = total populations in all (2
 + 1)
levels.

The total magnetic moment per cm3, namely the magnetization Mz, is
therefore approximated by

Mz =
I∑

−I

mg
I
μ

N
N(m) =

N(gI μN )2B0 I(I + 1)
3kTs

.

The static susceptibility is therefore given by

χ0(Ts) =
Mz

B0
=

N g2
I
μ2

N
I(I + 1)

3kTs
.

If we define Mz = N〈μz〉, where 〈μz〉 is the average nuclear magnetic
moment, the above calculations yield

〈μz〉 =
g2

I
I(I + 1)
3kTs

B0μ
2
N

.
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Bloch equations

A remarkable result of quantum mechanics is that the expectation value
of the magnetic moment of an otherwise free spin precessing in an external
magnetic field obeys the classical vector equation d

dt 〈μ〉 = γ [〈μ〉 × B], with γ

the spins’ magnetogyric ratio. Multiplying by N we obtain dM
dt = γ(M × B),

valid for both steady and time-dependent magnetic fields. But this equation
needs modification to include the changes in M which occur because of effects
other than the magnetic field. Suppose that in the absence of the rotating
(RF) magnetic field and with the spin system and the lattice in thermal
equilibrium, M is aligned with B = B0 along the z direction such that
Mz = M0 = χ0B0.

If the spin system and lattice are not in thermal equilibrium, then in the
absence of a radio-frequency field, Mz approaches M0 exponentially with some
characteristic time τ1 . In this case the z component of the equation of motion
is dMz

dt = M0−Mz

τ1
, where τ1 is termed the longitudinal relaxation time.

The transverse components Mx and My represent the rotating components
of the precessing magnetization vector M . Local irregularities of the magnetic
field cause the individual precessing nuclei to get out of phase with each other
in a relaxation time, τ2, of the order of the spin-spin interaction time . In
absence of a radio-frequency magnetic field, any phase coherence of the nuclear
spins’ precession would be destroyed in a time of the order τ2 , thus bringing
Mx and My to zero.

It is then reasonable to assume that the approach to zero is exponential,
with characteristic time τ2 . In the absence of either static magnetic field or
the RF field (i.e., if Bx = By = Bz = 0), we then have

dMx

dt
= −Mx

τ2

,
dMy

dt
= −My

τ2

.

τ2 is known as the transversal relaxation time. Assuming an applied field
of the form Bx = B1 cosωt, By = −B1 sin ωt, Bz = B0, the semiclassical
equations obeyed by the magnetization vector components (often referred to
as the Bloch equations) are:

dMx

dt
= γ[MyB0 + MzB1 sin ωt] − 1

τ2

Mx,

dMy

dt
= γ[−MxB0 + MzB1 cos ωt] − 1

τ2

My,

dMz

dt
= γ[−MxB1 sin ωt − MyB1 cosωt] +

1
τ1

(M0 − Mz).
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These equations may be solved to give the power absorption per sample unit

volume from the rotating magnetic field, P (ω) = ωγM0τ2
1+(ω0−ω)2τ2

2
B2

1 , where

as before ω0 = γB0 and we assume γ2B2τ1τ2 � 1. The half-width of the
resonance at half-maximum power is (Δω)1/2 = 1

τ2
. The Bloch equations are

plausible, but not exact. They do not describe all spin phenomena, yet this
semi-macroscopic and semiclassical theory is broadly consistent with quantum
mechanics.

Note that the transformation

Mx = u cosωt + v sin ωt,

My = −u sin ωt + v cosωt

reduces the above Bloch equations into a system of three linear ODE’s with
constant coefficients in the variables (u, v, Mz):

du

dτ
+ βu + δv = 0,

dv

dτ
+ βv − δu − Mz = 0,

dMz

dτ
+ αMz + v = αM0,

with the abbreviations

b = γB1, δ =
ω − ω0

b
, τ = bt, α = (bτ1)

−1, β = (bτ2)
−1.

The precession of an individual nuclear spin is modified by its interaction with
the fluctuating magnetic field due to neighboring nuclei and the electrons in
paramagnetic atoms. From the point of view of quantum mechanics, changes
in spin state can be either by absorption of a photon at approximately the
Larmor frequency ω0 or emission of such a photon, depending on whether the
interaction manifests itself in increase or decrease of energy, respectively.

Emission can be either spontaneous or stimulated by the presence of other
photons at the Larmor frequency. The relative probabilities can be calculated
using quantum mechanics. (Stimulated emission or absorption is much more
probable than is spontaneous emission in the case of NMR.) If the random
magnetic field at the nucleus changes rapidly enough due to molecular motion,
it will have Fourier components at the Larmor frequency which can induce
transitions that cause Mz to change.

To get an idea of the strength of the spin-spin interaction, consider the
field at one proton in a water molecule due to the other proton. The field due
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to a magnetic dipole μ along the z axis is given by

Br =
(μ0

4π

)(
2μ

r3

)

cos θ, Bθ =
(μ0

4π

)( μ

r3

)
sin θ, Bφ = 0,

where (r, θ, φ) are the spherical coordinates of one proton relative to the
other. The order of magnitude of either Br or Bθ is about 3 × 10−4 Tesla.
When the water molecule tumbles, as in liquid or gas, the field changes with
time through θ(t).

In this case, the fluctuating magnetic fields are best described by their
autocorrelation functions. The simplest assumption one can make is that
the autocorrelation function of each magnetic field component is of the form
φ11(τ) ∝ e− |τ |/τc and that each field component has the same correlation
time τc. In this case one can show that

1
τ1

=
Cτc

1 + ω2
0τ2

c

, C = 5.43 × 1010 sec−2.

The general solution of the Bloch equations for arbitrary external fields in-
volves a rather complicated dynamics. Special cases of interest are:

• B1 = 0; no relaxation (τ1 = τ2 = ∞), B0 = B0ez, Mz(0) = M0,
My(0) = 0, Mx(0) = M⊥, ω0 = γB0 (Larmor frequency). The solution yields
just the Larmor precession

Mx = M⊥ cos(ω0t), My = −M⊥ sin(ω0t), Mz = M0.

The vector M rotates around B0 (z-axis) such that its z-component is fixed,
and its projection on the x–y plane rotates with frequency ω0. If M⊥ = 0,
the vector always remains parallel to B0.

• B1 = 0, B0 = B0ez, Mz(0) = 0, My(0) = 0, Mx(0) = M0. The solution
describes a relaxation motion about a static field:

Mx = M0e
−t/τ2 cos(ω0t), My = M0e

−t/τ2 sin(ω0t), Mz = M0(1 − e−t/τ1 ).

Thus, M starts at t = 0 on the x-axis and then its tip spirals about the
z-axis such that it aligns itself with the direction of B0 at asymptotic times.

• B1 = [B1 cos(ω1t)] ex, B0 = B0ez, relaxation neglected. In this case,
the precessional motion due to the static field B0 can be “transformed away”
by describing the motion of M in a new coordinate system (x′, y′, z′) co-
rotating about the z-axis ez with the Larmor frequency ω0. In this rotating
frame there is no static magnetic field.
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If ω1 �= ω0, the motion is complicated, but averaged over many Larmor
periods, the r.h.s. of each equation vanishes, and consequently the net effect
is {M ⊥}average = 0.

If, however, ω1 = ω0, and if in addition M(0) = M0ez, the solution will
be:

Mx′ = 0, My′ = M0 sin Ωt, Mz′ = M0 cosΩt,

where Ω = γB1.

Choosing the duration Δt of the applied oscillating pulse to be such that
ΩΔt = π

2 , the end orientation of M in the rotating frame will be (0, M0, 0).
If, on the other hand, we take Ωt = π, the vector M will flip over into
(0, 0,−M0). It may seem strange that an oscillating magnetic field, pointing
along the x-axis, which is fixed in the laboratory frame, causes motion about
the x′ axis, which is fixed in the rotating frame. The reason is that B1 is
also oscillating at the Larmor frequency, so that its amplitude changes in just
such a way as to change M appropriately.

Another interesting solution is one for which the initial value of M is
not along the z-axis but in the x–y plane: Mz′ = 0, Mx′ (0) = M0 cosα,
My′ (0) = M0 sin α. The solution for this case is:

Mx′ (t) = M0 cos α,

My′ (t) = M0 sin α cosΩt,

Mz′ (t) = −M0 sin α sin Ωt.

• Suppose now that a small sample under examination, initially magne-
tized along the z direction, is placed at the origin and subjected for a time
Δt to the combined effects of B0 = B0ez, and a coil in the y–z plane
[B1 = B1 cos(ω0t)ex] which generates magnetization My′ = M0 sin(ΩΔt);
Let Δt = π

2γB1
. This arrangement rotates the magnetization of the sample

into the x–y plane. If the generator is then turned off, the same coil can be
used to detect the relaxation motion about the static field, that is, the voltage
induced by the ensuing change of flux through the coil.

It then follows from the above examples that the resulting voltage signal
V is an exponentially damped sine wave, known as the free induction decay,
V = v0e

−t/τ2 sin(ω0t). It remains to find v0. To this end we first calculate
the magnetic flux through the coil, which is the flux through a hemispherical
cap bounding the coil (radius a):

Φ = a2

∫ 2π

0

dϕ

∫ π/2

0

sin θdθBr (r = a),
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in spherical coordinates in which the z direction is replaced with the x di-

rection. Substituting our previous result Br = μ0
4π

(
2μx

a3

)
cos θ (since the

y-component of μ contributes no net flux through the coil), the flux for a

magnetic moment μx = MxΔV (where Mx = M0e
−t/τ2 sin Ωt) is

Φ =
(μ0

4π

)(
2πM0ΔV

a

)

e−t/τ2 sin ω0t.

The induced voltage, by Faraday’s law, is
{
−∂Φ

∂t

}
, which under the condition

1
τ2

� ω0 simplifies to

V ≈ −
(μ0

4π

)(ω0

a

)
2πM0ΔV e−t/τ2 cos Ωt.

The value of M0 is that calculated previously as

Mz = N〈μz〉 =
Nγ2�2I(I + 1)

3kTs
B0.

Therefore, for I = 1
2 , we have the approximate result

V ≈ −
(μ0

4π

)(
πNΔV γ3�3B2

0

2kTsa

)

e−t/τ2 cosω0t.

Here (NΔV ) is the total number of nuclear spins in the sample, B0 is the

static field along the z axis, and a is the radius of the coil that detects the free
induction decay (FID) signal. If the sample fills the coil, as in most laboratory

spectrometers, then the sensitivity is proportional to a. Note that FID signals

are proportional to the density of the magnetic moment M . If1065 τ2 � 2π
ω0

,

the FID signal can be written as V (t) � AM(x, y, z) cos ω0t, where A is some

constant.

• Bloch’s equations can be extended to include the effect of diffusion of the

molecules carrying the nuclear spin in an inhomogeneous external magnetic

field. Let B0 = (B0 + Gzzz)ez. If the processes are linear, this diffusion can

be added to the other terms in the Bloch equations.

In the rotating system (ω0 = γB0) there is no precession and the motion

is affected only by relaxation, diffusion and the gradient of B0. Therefore,

1065 In tissues the typical times for τ1 and τ2 are 0.5 s and 50 ms, respectively,

whereas 2π
ω0

≈ 5 × 10−8 sec.
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the ordinary Bloch differential equations are replaced by a system of coupled
partial diffusion-reaction type equations:

∂Mx′

∂t
= γGzzzMy′ − Mx′

τ2

+ D∇2Mx′ ,

∂My′

∂t
= −γGzzzMx′ − My′

τ2

+ D∇2My′ .

In the absence of diffusion, the system is solved by

Mx′ = Mx(0)e−t/τ2 cos(γGzzzt),

My′ = −My(0)e−t/τ2 sin(γGzzzt).

NMR Spectroscopy

The practice of NMR began in 1946; a spectrum is produced by observing
resonances for a compound as the static magnetic field or the radio frequency
is scanned. In analytical chemistry, NMR spectroscopy detects the shape
and structure of molecules. Molecules containing hydrogen atoms have the
strongest effect, and most instruments are designed to produce NMR spectra
of hydrogen atoms. Both qualitative and quantitative information is provided,
since each different type of bond of the hydrogen atom gives its own unique
resonance.

NMR became of vital importance in scientific laboratories as the first com-
mercial spectrometer, appearing in 1953, was followed by a number of other
instruments. Some of these are quite complex and designed for research, while
other, simpler systems are used for routine analytical work.

In conventional NMR spectroscopy, the specimen is homogeneous from a
macroscopic point of view. It may be a pure crystal, powder, liquid, or gas.
A small sample of the specimen is placed in a very uniform magnetic field
(the uniformity may be one part in 109 over the sample). The excitation is
achieved by a short RF pulse, at the resonant frequency, which is applied to
the coil surrounding the sample in such a way as to create a magnetic field
perpendicular to the constant field B0.

When the deexcitation (decay or relaxation) occurs, the emitted radiation
can be detected by the voltage induced in the receiver coil, which may be
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the same coil used to cause the initial excitation. If the specimen is not uni-
form and has heterogeneous internal structure, the NMR spectrometer gives
a superposition of the properties of the various materials.

To see what can be learned from even a simple proton NMR spectrum,
consider the case of ethyl alcohol (CH3–CH2–OH). The power spectrum of
this molecule shows three distinct groups: a single line for OH, a split line
with two small side lobes for CH2 and a triple line for CH3. Three features
can be discerned:

(1) The ratio of areas under the three groups is 1: 2 : 3, indicating the
number of protons in each group.

(2) The protons in the three groups are not equivalent; their frequencies are
slightly different. The reason is the NMR chemical shift: The external RF
magnetic field induces electron–orbital currents in the molecule. These
currents in turn produce magnetic fields at the proton sites. In general,
the induced fields will be opposed to the external one and the resulting
field at a proton will be smaller than the applied one. The size of this
effect permits conclusions concerning the electronic surrounding .

(3) Where two or three protons are in the same group, the NMR line is split.
The splitting is caused by the spin-spin interaction between the protons
in the same group; the magnetic field of one proton at the site of another
can either add to or subtract from the external field. In the above example
the magnetic dipole interaction does not act directly between the protons
but is instead mediated by the electrons of the carbon atom that lies
between the hydrogen atoms.

In many molecules, the dominant splitting is not caused by magnetic inter-
action (Zeeman-type) but is rather due to electric field gradients; p electrons
can produce very large electric field gradients at a nuclear site. The proton
resonance is not sensitive to such field gradients, because the proton has no
electric quadrupole moment. Nuclides with quadrupole moment such as 35Cl,
79Br, and 127I, experience a splitting of the nuclear ground state due to field
gradients of the atomic and molecular electrons.

The quadrupole-split spectrum can be explored in essentially the same way
as the magnetically split one. If the quadrupole moment is known, conclusions
about the nature of the chemical bond and the symmetry class of the site can
be obtained.

In the absence of atomic motion in rigid lattices (crystals), NMR makes
it possible to determine molecular structures not observable by other means.
In many solids, even at low temperatures, there occur atomic diffusion and
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rotation of groups of atoms. These movements affect the shape of the NMR

absorption peak. A study of these effects as a function of temperature can
supplement other physical measurements.

In metals, the nuclei are influenced by an interaction between the spins of
the conduction electrons (electrons, not bound to atoms, which move freely
through the metal) and the applied field. This condition results in a shift of
the resonant frequency from the value observed for the same nucleus when it
is present in an insulator.

These so-called metallic shifts provide important information on the mag-
netic susceptibility, the quantum mechanical wave functions that describe
energy states, and the density of states of conduction electrons in the metal.
In superconductors, the shape of the NMR spectral peaks provide detailed in-
formation on the penetration and internal distribution of the magnetic field.

In ferromagnets or antiferromagnets (crystals in which not all atomic elec-
trons are paired), the NMR is influenced by the internal magnetic fields pro-
duced by the array of ordered electronic spins. In ferromagnets the shift is a
measure of the lattice magnetization; in an antiferromagnet there are at least
two shifts that give the magnetization of each antiferromagnetic sublattice
separately, a result unattainable by conventional magnetic measurements.

High-resolution nuclear magnetic resonance has become one of the most
prized tools in the fields of organic chemistry and biochemistry. On the ex-
perimental side, the requirements to be met by the equipment are severe.
The applied magnetic fields must have a relative stability and homogeneity
throughout the sample better than one part in 108.

Special magnets that give uniform, stabilized fields, devices that twirl
samples in order to smooth out the magnetic inhomogeneity, and sophisti-
cated radio-frequency detection equipment are commercially available. The
trend toward higher fields (over 100 kilogauss), resulting from superconduct-
ing solenoids, improves the resolution by increasing the chemical shift split-
tings and the signal-to-noise ratio.

The measurement of the precession frequency of proton spins in a magnetic
field can yield the value of the field with high accuracy and is widely used for
that purpose. For low fields, such as the earth’s magnetic field, the NMR signal
is expected to be weak because the nuclear magnetization is small, but special
devices can enhance the signal 100 or 1000 fold. Incorporated in existing
portable magnetometers, these devices make them capable of measuring fields
to an accuracy of about one part in 1, 000, 000 and detecting field variations
of about 10−8 gauss.

Apart from the direct measurement of the magnetic field on earth or in
space, these magnetometers prove to be useful whenever a phenomenon is
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linked with vibrations of magnetic field in space or in time, such as anomalies
arising from submarines, skiers buried under snow, archaeological remains, or
mineral deposits.

ESR (Electron-Spin-Resonance)

In elements with unfilled inner electronic shells [e.g., free radicals (molec-
ular fragments), metals, and various paramagnetic defects and impurity cen-
ters], the relevant total interaction energy includes:

(1) the energy of coupling between magnetic moments due to the electron
spins and the external magnetic field, and

(2) the electrostatic energy between the electronic shells and the ligand field,
which is independent of the applied magnetic field.

The energy levels give rise to a spectrum with many different resonance
frequencies (fine structure).

Another important feature of electron-spin resonance results from the in-
teraction of the electronic magnetization with the nuclear moment, causing
each component of the fine-structure resonance spectrum to be further split
into many so-called hyperfine components.

If the electronic magnetization is spread over more than one atom, it
can interact with more than one nucleus; and, in the expression for hyperfine
interaction energy (Hamiltonian), the hyperfine coupling of the electrons with
a single nucleus must be replaced by the sum of the coupling with all the nuclei.
Each hyperfine line is then further split by the additional couplings into what
is known as superhyperfine structure.

ESR differs from NMR in one essential point: the resonance frequencies in
NMR are in general shifted from those of bare nuclei by very small amounts
because of the influence of conduction electrons, chemical shifts, spin-spin
couplings, and so on.

However, the ESR frequencies in bulk matter may differ greatly from those
of free spins or free atoms, because the unfilled subshells of the atom are easily
distorted by the interactions occurring in bulk matter.

A model that has been highly successful for the description of magnetism
in bulk matter is based on the effect of the crystal lattice on the magnetic
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center under study. The effect of the crystal field, particularly if it has little

symmetry, is to reduce the magnetism caused by orbital motion. To some ex-

tent the orbital magnetism is preserved against ligand fields of low symmetry

by the coupling of the spin and orbital moments.

The key theoretical challenge in electron-spin resonance is, on the one

hand, to construct a mathematical description of the total energy of interac-

tion in the ligand field plus the applied magnetic field and on the other hand,

to deduce the parameters of the theoretical expression from an analysis of the

observed spectra.

The comparison of the two sets of values permits a detailed quantitative

test of the microscopic description of the structure of matter in the compounds

studied by ESR.

1946 CE Willard Frank Libby (1908–1980, U.S.A.). Chemist. Discov-
ered carbon-14 (radiocarbon)1066 and found a way to use it for dating ancient
objects such as prehistoric plant and animal remains. Awarded the Nobel
prize in chemistry (1960).

1946 CE The first synchro-cyclotron was built at the University of Califor-
nia at Berkeley. It produced α-particles with kinetic energy of 380 MeV.

1066 Carbon-14 (14C) is a rare radioactive isotope that occurs naturally in the

atmosphere and in living plants and animals. Its half-life of 5730 years is so

low that 14C has not been generally measurable in organic material older than

about 40,000 years. No existing 14C is primordial since its half-life is too short.

Instead, it is continually being created in the upper atmosphere (at altitudes

of about 15 km) as a by-product of cosmic-ray bombardment. In the relevant

nuclear reaction, an atmospheric 14N nucleus absorbs a neutron, emits a proton

and changes to 14C. The newly created carbon isotope is quickly incorporated

into CO2, and thus is assimilated into earth’s carbon cycle.

The age of carbon-bearing material is determined from the ratio of 14C to all

other carbon in the sample. The method depends on the special assumptions

(1) that the rate of 14C production in the upper atmosphere is nearly constant

and (2) that its rate of assimilation into living organism is rapid relative to its

rate of decay. These assumptions appear to be valid.
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1946–1950 CE André Weil (1906–1998, France). A leading mathemati-
cian and member of the Bourbaki1067 group. Contributed mainly to the fields
of algebraic geometry and algebraic topology. Developed (1946) a theory of
polynomial equations in any number of indeterminates and with coefficients
in an arbitrary field. In a paper bearing the title The Future of Mathematics
(1950) he specified important unsolved problems and incompletely developed
subjects of pure mathematical research. Therein he said: “Great mathemati-
cians of the future. . . will solve the great problems which we shall bequeath to
them, through unexpected connections, which our imagination will not have
succeeded in discovering, and by looking at them in new lights1068”.

Weil made a number of conjectures concerning algebraic topology that
were eventually proven true. [The last of these conjectures was proven (1974)
by the Belgian mathematician Pierre Deligne; it concerns a generalized
version of the Riemann hypothesis (1857) which in itself remains unconfirmed.]

Weil was born in Paris to Jewish parents. He studied in Paris, Rome and
Göttingen.

The war was a disaster for Weil who was a conscientious objector and
so wished to avoid military service. He fled to Finland as soon as war was
declared in an attempt to avoid becoming forced into the army, but it was
not a simple matter to escape from the war in Europe at this time. He was
sent from Finland back to France where he was put in prison.

Weil was certainly in great danger at this time, partly because he was
Jewish, partly because he had a sister, Simone Weil (1909–1943), who was
a mystic philosopher and a leading figure in the French Resistance. The
dangers of his predicament made Weil decide that being in the army was a
better bet and he was able to argue successfully for his release on the condition
that indeed he did join the army.

1067 A pseudonym for a group of 10–20 French mathematicians who started (1939)

to publish a survey of mathematics called Elements de mathématique which

emphasizes logical structure and an axiomatic approach. Throughout the 25

Bourbaki volumes that have appeared thus far, axiomatics and the Hilbertian

spirit prevail. The facts presented are not new discoveries, but the method of

presentation is highly original.

Charles Bourbaki (1816–1897) was the son of a Greek colonel and in 1862 re-

fused the offer of the Greek throne. After graduation from St. Cyr he joined the

French Foreign Legion and later commanded Algerian troops in the Crimean

War, eventually participating in Franco-Prussian War (1871).
1068 His other famous saying is: “God exists since mathematics is consistent, and

the Devil exists since we cannot prove it” (1977).
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Having used the army as a reason to get out of prison, Weil had no inten-
tion of serving any longer than he possibly could. As soon as the chance to
escape to the United States came, he took it at once. In the United States he
went to Pennsylvania where he taught from 1941 at Haverford College and at
Swarthmore College. In 1945 he accepted a position in Sao Paulo University,
Brazil, where he remained until 1947.

In 1947 Weil returned to the United States and was appointed to the
faculty of the University of Chicago, a position he continued to hold until
1958. From 1958 he worked at the Institute for Advanced Study at Princeton
University. He retired in 1976, becoming Professor Emeritus at that time.

Algebraic geometry developed from the theory of algebraic curves and
surfaces and the n-dimensional geometry of the Italian school. The first con-
tribution to the theory of plane algebraic curves were made by Isaac Newton
(1643–1727), Colin Maclaurin (1698–1746), Leonhard Euler (1707–1783)
and Gabriel Cramer (1704–1752). The founder of algebraic geometry in the
strict sense was Max Noether (1844–1921). The Italian geometers, prin-
cipally Corrado Segre (1863–1924), Francesco Severi (1879–1961) and
Federigo Enriques (1871–1946) brought this discipline to complete devel-
opment. In the 20th century an investigation of the foundations of the subject
from the algebraic point of view was undertaken by the German school, par-
ticularly by Emmy Noether (1882–1935).

1946–1979 CE Claude Levi-Strauss (1908– , France). Anthropologist.
Known for his development of structural anthropology1069 (1958), which gave
the scholar the opportunity to come into contact with the lives of men of
different cultures, rather than just Western cultures.

Levi-Strauss was born in Belgium into an intellectual French Jewish family.
He studied law and philosophy at the Sorbonne in Paris. During 1935–1939
he visited the University of Sao Paulo, Brazil, conducting periodic research
forays into the Amazon Rainforest. He returned to France in 1939, but after
France capitulated to the Germans, Levi-Strauss fled to New York where he
spent most of the war years. He returned again to France (1948), receiving
his doctorate from the Sorbonne.

1069 Structuralism – a method of understanding human society and culture. Levi-

Strauss maintains that the structure of any cultural organization has the

specifics of a language. He thus insists that myth is a language because it

has to be told in order to exist. He asked: “Why do myths from different

cultures from all over the world seem so similar?” In general, structuralism

emphasizes the underlying structure of relationship between the elements of a

story rather than focusing on the content of the story itself.
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He assumed the chair of Social Anthropology at the Collège de France in
1959. His published books are (English translations):

• Structural Anthropology (1958–1978).

• Totemism (1962).

• The Savage Mind (1966).

• Mythology (1970–1979).

In Structural Anthropology, Levi-Strauss considers culture as system of
symbolic communication. His war-time sojourn in New York introduced him
not only to structural linguistics but also to the pioneering work in cybernetics
and information theory of Shannon. Levi-Strauss then combined the new
insight of the mathematical theory of communication with the principles of
the linguistics of Saussure and applied the result to the comparative study of
societies and cultures. This was a creative synthesis that made a generalized
‘structuralism’ possible. However, for all the originality of his approach his
work has always lain in the heartland of traditional social anthropology.
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Worldview LII: Claude Levi-Strauss

∗ ∗∗

“By underrating the achievements of the past, we devaluate all those which
still remain to be accomplished.”

∗ ∗∗

“Just as the individual is not alone in the group, nor any one in society among
the others, so man is not alone in the universe.”

∗ ∗∗

“The scientist is not a person who gives the right answers, he is one who asks
the right questions.”

∗ ∗∗

“The world began without man, and it will complete itself without him.”

∗ ∗∗

“Nothing exists except through language.”

∗ ∗∗

“History does not belong to us; we belong to it.”



1946 CE 4695

1946–1968 CE Eric Hoffer (1902–1983, USA). Social philosopher.
One of the most incisive thinkers of his time who wrote some of the most
insightful commentary on our society and trends in the world. Self-taught
and independent thinker. Best known for his critical analysis of fanaticism
and mass-movement psychology.

Hoffer was born to Jewish parents in New York city and grew up in the
Bronx. His childhood was a blighted one. By the age of 7 he lost his eyesight
in an accident and remained blind for 8 years. His mother died in 1909.
Having spent several years in blindness when most other children were in
school, Hoffer could do only manual labor after he regained his eyesight, but
was determined to educate himself through avid reading. After the death of
his father (1920) he moved to the West Coast seeking a living as a migrant
farmworker, dishwasher and lumberjack, eventually becoming a stevedore on
the waterfront of San-Francisco (1941) and doing the most difficult types of
manual labor during the next 25 years.

During that time he both worked and published a number of books, the
most influential being ‘The True believer’ (1951). In this work he portrayed
political fanatics as people who embrace a cause to compensate for their feel-
ings of guilt and inadequacy; a potent analysis of the temptation to submerge
the disappointed self in a ‘larger’ somehow – ennobling cause or movement.

His work was not only original, it was completely out of step with dom-
inant academic trends. In particular, it was completely non-Freudian, at a
time when almost all American psychology was confined to the Freudian par-
adigm. In avoiding the academic mainstream, Hoffer managed to avoid the
straitjacket of established thought.

Hoffer was among the first to recognize the central importance of self-
esteem to psychological well-being. While most recent writers focus on the
benefits of a positive self-esteem, Hoffer focused on the consequences of a lack
of self-esteem. He finds in self-hatred, self-doubt, and insecurity the roots of
fanaticism and self-righteousness. He finds that a passionate obsession with
the outside world or with the private lives of other people is merely a craven
attempt to compensate for a lack of meaning in one’s own life.

Contrary to the prevailing assumptions of his time, Eric Hoffer did not
believe that revolutionary movements were based on the sufferings of the
downtrodden. “Where people toil from sunrise to sunset for a bare living,
they nurse no grievances and dream no dreams,” he said. He had spent years
living among such people and being one of them.

Hoffer’s insights may help explain something that many of us have found
very puzzling – the scions of wealthy families spending their lives and their in-
herited money backing radical movements. He said: “Unlimited opportunities
can be as potent a cause of frustration as a paucity or lack of opportunities.”
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Worldview LIII: Eric Hoffer

∗ ∗∗

“Absolute faith corrupts as absolutely as absolute power.”

∗ ∗∗

“A preoccupation with the future not only prevent us from seeing the present
as it is but often prompts us to rearrange the past.”

∗ ∗∗

“To be engaged in a desperate struggle for food and shelter is to be wholly
free from a sense of futility.”

∗ ∗∗

“Some, when they are alone, cease to exit.”

∗ ∗∗

“The game of history is usually played by the best and the worst over the
heads of the majority in the middle.”

∗ ∗∗

“It is easier to love humanity than to love your neighbor.”

∗ ∗∗

“A savior who wants to turn men into angels is as much a hater of humans
as the totalitarian despot who wants to turn them into puppets.”
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∗ ∗∗

“No one has a right to happiness.”

∗ ∗∗

“To most of us nothing is so invisible as an unpleasant truth. Though it is
held before our eyes, pushed under our noses, rammed down our throats – we
know it not.”

∗ ∗∗

“The beginning of thought is disagreement – not only with others but also
with ourselves.”

∗ ∗∗

“Power corrupts the few, while weakness corrupts the many.”

∗ ∗∗

“The new barbarism of the 20th century is the echo of words bandied about
by brilliant speakers and writers in the second half of the 19th.”

∗ ∗∗

“It is the fate of every great achievement to be pounced upon by pedants and
imitators who drain it of life and turn it into an orthodoxy which stifles all
stirrings of originality.”

∗ ∗∗

“Propaganda does not deceive people; it merely helps them to deceive them-
selves.”

∗ ∗∗
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“There is sublime thieving in all giving. Someone gives us all he has and we

are his.”

∗ ∗∗

“The monstrous evils of the 20th century have shown us that the greediest

money grubbers are gentle doves compared with money-hating wolves like

Lenin, Stalin and Hitler, who in less than three decades killed or maimed

nearly a 100 million men, women, and children and brought untold suffering

to a large portion of mankind.”

∗ ∗∗

“A mass-movement attracts and holds a following not because it can satisfy

the desire of self-advancement, but because it can satisfy the passion for self-

renunciation.”

∗ ∗∗

“Take man’s most fantastic invention – God. Man invented God in the image

of his longing, in the image of what he wants to be, then proceeds to imitate

that image, vie with it, and strive to overcome it.”

∗ ∗∗

“Where freedom is real, equality is the passion of the masses. Where equality

is real, freedom is the passion of a small minority.”

∗ ∗∗

“A man is likely to mind his own business when it is worth minding. When

it is not, he takes his mind off his own meaningless affairs by minding other

people’s business.”
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1946–1968 CE Herbert Marshall McLuhan1070 (1911–1980, Canada).
Educator, philosopher and commentator on communication technology. One
of the greatest intellectual pioneers since Freud. Probed into the moral and
psychological impact of contemporary Western means of communication. He
held that technology is an extension of the human nervous system and that
technological changes, by imperceptibly altering patterns of perception, create
new environments of sense and feeling.

According to McLuhan, electronic communications had created a world of
instant awareness to which the categories of perspective space and sequential
time were irrelevant and in which a sense of private identity was untenable
(‘Global village’). McLuhan virtually established a new academic field with
his theories about the impact of the media on our perception.

McLuhan was born in Edmonton, Alberta, Canada and was educated at
the Universities of Manitoba and Cambridge (UK). He was a member of the
Department of English at the University of Toronto (1946–1977).

1070 For further reading, see:

Marchand, P., Marshall McLuhann, The Medium and the Messenger, Ticknor

and Fields: New York, 1989, 320 pp.
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Worldview LIV: Marshall McLuhan

∗ ∗∗

“The medium is the message.”

∗ ∗∗

“Facts and truth don’t really have to do with each other.”

∗ ∗∗

“The only way you can reach people, whether you are a preacher or a professor,
is to hurt them.”

∗ ∗∗

“The invention of the print effected a profound transformation in the psyche
of Western man, leading to an emphasis on the visualization of knowledge and
the subsequent development of rationalism, mechanistic science and industry,
capitalism, nationalism and so on.”

∗ ∗∗

“Enemies were to be cherished because they functioned as superb PR agents,
indirectly promoting one’s work far more effectively than friends did.”

∗ ∗∗

“When this circuit learns your job, what are you going to do?”

(1967)

∗ ∗∗
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“Violence is the unfailing remedy for those deprived of their identities. It is
one method, often futile but always available, of grasping for the meaningful.”

∗ ∗∗

“Human artifacts turn human beings into “servo-mechanisms” of those arti-
facts.”

∗ ∗∗

“Capitalist industrialism is distorting human life and sexuality.”

∗ ∗∗

“The content of any medium or technology is its user.”

∗ ∗∗

“The name of a man is a numbing blow from which he never recovers. A
person’s name was a medium in itself, and it carried its own message.”

∗ ∗∗

“The 16th century had been sparked by the interplay between the old man-
uscript culture and the emerging print culture. The electronic media created
a total field of instant awareness.”

∗ ∗∗

“A single English word is more interesting than the entire NASA space pro-
gram.”

∗ ∗∗

“The decay of philosophy and religion, the pervasive North American Dar-
winian approach to success, and commercial and materialistic values had re-
duced adults to a kind of emotional and mental delinquency. In this state
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they were extremely vulnerable to the crude daydreams fostered by the mass
media. The violent sensationalism, the sadism and masochism reflected by
cartoon figures like Superman were an essential ingredient of these daydreams.
The educational system was helpless against the powerful onslaught of such
daydreams, that children received their real education from the media and
not from their schoolteachers.”

∗ ∗∗

“If something occurred to me, sooner or later it would occur to others – and
then would come to pass.”

∗ ∗∗

“Anyone who truly perceives the present, could also see the future, since all
possible futures are contained in the present.”

∗ ∗∗

“Words are most potent and unfathomable of all human artifacts.”

∗ ∗∗

“If the world really did seem to be dismal, it was perhaps because all of us
were very far from perceiving it as it really existed.”

∗ ∗∗

“Fulton’s steamboat anticipated the mini-skirt; we don’t have to wait for the
wind anymore.”

∗ ∗∗

“Whereas earlier technologies had extended one sense or one part of the body
– the wheel extending the foot, for example – the new electronic technologies
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extended the entire human nervous system. The very movement of informa-
tion in these new technologies corresponds to the movement of the human
mind.”

∗ ∗∗

“I don’t necessarily agree with everything I say.”

The emergence of the ‘Global Village’ civilization

As late as the French Revolution, Europe drew most of its energy from
an estimated 14 million horses and 24 million oxen, as well as the natural
power sources of wind, sun, water flow and human muscles. These energy
sources were renewable: Nature could eventually replenish the forest they cut
and the wind that filled their sails and the rivers that turned their paddle
wheels. Even animals and people were replaceable “energy slaves”.

During the Industrial Revolution, societies began to draw their energy
from coal, gas and oil — from irreplaceable fossil fuels. This revolutionary
shift, coming after T. Newcomen invented a workable steam engine (1712),
meant that for the first time a civilization was eating into nature’s capital
rather than merely living off the interest it provided. And from that day to
our own, nations built towering technologies and economic structures on the
assumption that cheap fossil fuels would be endlessly available.

On this technological base a host of industries sprang up: at first coal, tex-
tiles, and railroads; then came steel, auto manufactures, aluminum, chemicals,
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and appliances. Huge factory cities sprang into existence and from these in-
dustrial centers poured endless millions of identical products — shirts, shoes,
automobiles, aeroplanes, watches, toys, soap, shampoo, cameras, machine
guns, and electric motors.

The new technology powered by the new energy system opened the flood-
gate of mass production. Thus, custom distribution gave way to the mass
distribution and mass merchandising that became a central component of all
industrial societies.

All societies (primitive, agricultural, or industrial) use energy: they make
things and distribute them. In all societies the energy system, the production
system, and the distribution system are interrelated parts of the techno-sphere,
and it has a characteristic form at each stage of social development.

Thus, in the industrial techno-sphere, non-renewable energy sources were
directly plugged into a mass production system which, in turn, spewed goods
into a highly developed mass distribution system. This techno-sphere needed
a socio-sphere to accommodate it — a radical new form of social organization.

Before the industrial revolution, when agriculture held sway, people tended
to live in large, multigenerational house, all working together as an economic
production unit.

As economic production shifted from the field to the factory, key functions
of the family were parceled out to new specialized institutions: Education of
the child was turned out to schools, care of the aged turned over to old-aged
homes and workers began to follow jobs from place to place.

Torn apart by the migration to the cities, battered by economic storms,
families stripped themselves of unwanted relatives, grew smaller, more mobile,
and more suited to the needs of the techno-sphere. The so-called nuclear
family — father, mother, and a few children, became the standard, socially
approved model in all industrial societies.

Another central structure of the individual society was the mass education
in factory-style institutions called schools. As work shifted out of the fields
and the home, children had to be prepared for factory life through a covert
curriculum teaching punctuality, obedience and repetitive work.

Built on the factory model, mass education taught (from ca 1850 on)
basic reading, writing, arithmetic, a bit of history etc. This machined young
people into a pliable, regimented work force of the type required by electro-
mechanical technology and the assembly line. Taken together, the nuclear
family and the factory-style school formed part of a single integrated system
for the preparation of young people for roles in industrial society.
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A third institution arose, extending the social control of the first two — the
invention known as the corporation: the new technology required giant pools
of capital — more than a single individual or even a small group could provide.
To encourage investment, the concept of limited liability was invented.

By 1901, the world’s first billion-dollar corporation — United States Steel,
appeared on the scene. By 1919 there were half a dozen such behemoths.
Indeed, large corporations became a built-in feature of economic life in all
industrial nations. Together these three (the nuclear family, the factory-style
school, and the giant corporation) became the defining institutions of the
industrial age.

Around these three core institutions, a host of other organizations sprang
up: government, ministries, sport clubs, churches, chambers of commerce,
trade unions, professional organizations, political parties, academic institu-
tions and many others, creating a complicated organizational ecology. The
common denominator of all these units, whether schools, hospitals, prisons or
government bureaucracies — was its division of labor, its hierarchical struc-
ture and its metallic impersonality.

But a civilization is more than simply a techno-sphere and a matching
socio-sphere. All civilizations also require an info-sphere for producing and
distributing information, which in turn depends on person-to-person commu-
nication.

During the pre industrial era, channels of communication were reserved
for the rich and powerful only (e.g. the ‘pony express’ service of the House of
Taxis). In the industrial era, technology and mass production required mas-
sive movements of information that the old channels could no longer handle.

The first wide open channel for industrial-era communications was pro-
vided by the post office. By 1837, the British Post Office was carrying some
88 million pieces of mail a year. By 1960 that number had already climbed
to 10 billion.

But the information needs of industrial societies could not be met by
writing alone. Thus the telephone and telegraph were invented in the 19th
century to carry their share in the ever-swelling communication load. By
1960 Americans were placing some 256 million phone calls per day (over 93
billion a year) and even the most advanced telephone systems and networks in
the world were often overloaded. Postal services could carry the same message
to millions, but not quickly. Telephones could carry messages quickly, but not
to millions of people simultaneously.

This gap came to be filled by the mass media: newspapers, radio, movies
and television and finally e-mail, cellular phones and the internet. Here we find
again an embodiment of the basic principle of the factory: stamping identical
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messages into millions of brains, standardized, mass-manufactured products
flow from a few concentrated image-factories out to millions of consumers.

Thus there sprang up an elaborate info-sphere — communication channels
through which individual and mass messages could be distributed as efficiently
as goods or raw materials. This info-sphere serviced the techno-sphere and
the socio-sphere.

1946–1970 CE Jean Alexandre Eugène Dieudonné (1906–1992,
France). Mathematician. Contributed to many areas of abstract analysis,
Lie groups, algebraic geometry, general topology, topological vector spaces,
invariant theory and classical groups.

As a founder of the Bourbaki group, his ideas on the representation
of mathematics, laying great emphasis on precise abstract formulation and
elegance, have marked out a distinctive French school of mathematics whose
influence has lasted for some 50 years.

Dieudonné was born in Lille. He studied at the École Normale Superieure
receiving his doctorate in 1931. He then held chairs in Rennes, Nancy, Sao
Paulo (Brazil), Michigan and Northwestern Universities (USA, 1952–1959),
Paris and finally Nice (1964–1970).

1946–1973 CE Hyman George Rickover (1900–1986, USA). Father of
the Nuclear Navy. Planned, developed and supervised the construction of the
first nuclear-powered submarine, the Nautilus (1954).

Rickover was born in Makow, Russia to Jewish parents and emigrated to
the USA (1906). He studied at the U.S. Naval Academy (1918–1922) and
Columbia University (1929–1933). In 1946 he was assigned to the Atomic
Energy Commission laboratory at Oak Ridge, Tennessee. He later became
chief of the National Reactors Branch of the U.S. Atomic Energy Commission
and head of the Nuclear Power Division of the U.S. Navy.

Rickover was promoted to the rank of Admiral in 1973 and retired from
the US Navy in 1981, after over 63 years of service under 13 presidents. His
name is memorialized in the attack submarine USS Hyman G. Rickover (SSN
709) and he is buried in Arlington National Cemetery.
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Evolution of Submarine Design

1578 The first submarine design was drafted by William Borne
but never got past the drawing stage. Borne’s submarine
design was based on ballast tanks which could be filled to
submerge and evacuated to surface — these same principles
are in use by today’s submarines.

1620 Cornelis Drebbel, a Dutchman, conceived and built an
oared submersible. Drebbel’s submarine design was the first
to address the problem of air replenishment while submerged.

1776 David Bushnell builds the one-man human powered Turtle
submarine. The Colonial Army attempted to sink the British
warship HMS Eagle with the Turtle, albeit unsuccessfully.
The Turtle was the first submarine to dive, surface and be
used in Naval combat.

1798 Robert Fulton builds the submarine Nautilus which incor-
porates two forms of power for propulsion — a sail while on
the surface and a hand-cranked screw while submerged.

1870 French novelist Jules Verne brought submarines to full pub-
lic consciousness with “20,000 Leagues Under the Sea”.

1895 John P. Holland introduces the Holland VII and later the
Holland VIII (1900). The Holland VIII with its petroleum
engine for surface propulsion and electric engine for sub-
merged operations served as the blueprint adopted by all the
world’s navies for submarine design up to 1914.

1904 The French submarine Aigette is the first submarine built
with a diesel engine for surface propulsion and electric engine
for submerged operations. (Diesel fuel is less volatile than
petroleum and is the preferred fuel for current conventionally
powered submarine designs.)

1943 The German U-boat U-264 is equipped with a snorkel mast.
This mast which provides air to the diesel engine, allows
the submarine to operate the engine at a shallow depth and
recharge the batteries.
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1944 The German U-791 uses Hydrogen Peroxide as an alternative
fuel source.

1954 The U.S. launches the USS Nautilus — the world’s first nu-
clear powered submarine. Nuclear power enables submarines
to become true “submersibles” — able to operate underwater
for an indefinite period of time. The development of the Naval
nuclear propulsion plant was the work of a team Navy – gov-
ernment and contractor engineers – led by Hyman G. Rick-
over.

1958 The U.S. introduces the USS Albacore with a “tear drop”
hull design to reduce underwater resistance and allow greater
submerged speed and maneuverability. The first submarine
class to use this new hull design is the USS Skipjack.

1959 The USS George Washington is the world’s first nuclear pow-
ered ballistic missile firing submarine.

1946–1979 CE Jule Gregory Charney (1917–1981, U.S.A.). Meteorol-
ogist. Made major advances in numerical weather prediction, bypassing prob-
lems which had previously proved intractable. Made notable contributions to
the theory of the Gulf Stream, hurricane formation, and the large-scale ver-
tical propagation of energy in the atmosphere. During the 1960’s and 1970’s
Charney played a leading role in the formulation and experimental design of
the Global Atmospheric Research Programme and the 1978–9 Global Weather
experiment. Charney was born in San Francisco to Jewish parents.
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Numerical Weather Prediction

The reawakening of interest in the problem of dynamical weather predic-
tion began soon after WWII as a direct result of the wartime expansion of
weather services, and the development of high-speed electronic computers;
Meteorological data were collected regularly from a dense network of stations
covering a very large geographical area, and were extended upward through
the widespread use of radiosonde equipment. Thus, for the first time, ade-
quate data were available for detailed studies of the atmosphere’s behavior on
a macroscopic scale.

These studies strongly indicated that many aspects of general behavior
of all fluids are not essential to the operation of the atmosphere’s weather-
production mechanism and this, in turn, has suggested how the general hy-
drodynamical equations might be specialized or simplified, without sacrificing
their essential meteorological content.

By 1946, there were several electronic computing machines in various
stages of design and construction, all of them capable of carrying out nu-
merical computations at about 10, 000 times the speed of a trained human
computer operating a desk calculator. With the realization that computations
on the scale of Richardson’s now could be carried out in a matter of hours,
rather than months, a number of theoretical meteorologists turned their at-
tention and effort to formulating the problem of dynamical weather prediction
for high-speed computation.

Thus, an organized research movement started in 1946 at The Princeton
Institute for Advanced Study under the leadership of John von Neumann
(1903–1957) and Jule Charney (1917–1981). Within a few years, this ini-
tial stimulus was followed by the establishment of similar research groups in
Europe and Japan. Aside from approximative errors in the hydrodynamic
equations, there appeared to be two serious defects in Richardson’s method
(1922):

(1) The atmosphere is always very close to a state of mechanical equilib-
rium; i.e., the horizontal pressure-gradient force is almost exactly in bal-
ance with the Coriolis force, and the vertical force of buoyancy is almost
exactly balanced by the virtual gravitational force (the resultant of the
earth’s centrifugal force and pure gravitational forces). Thus, the large-
scale accelerations of air are very much smaller than the individual forces
per unit mass, generally at least 10 times less. From the standpoint
of computing, this implies that the accelerations or time derivatives of
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velocity are small differences between large terms of the same sign. Ac-
cordingly, since the individual forces per unit mass must be computed
independently, each must be computed to within 1 percent accuracy in
order to compute the accelerations to within 10 percent accuracy. Need-
less to say, winds and pressure gradients are not measured or reported
to 1 percent accuracy. This difficulty alone was enough to guarantee the
failure of Richardson’s method;

(2) In equations of the hyperbolic type (such as the wave equation), the
increment of time over which the data are extrapolated must be less than
a time of order that required for a wave or impulse to traverse the distance
between adjacent points in the finite difference grid. Otherwise, certain
bands in the spectrum of random error are amplified and the computation
“blows up”, i.e., the solution of the finite-difference equation will not
converge toward the solution of the corresponding differential equation.

This phenomenon of computational instability may arise, for example, in
the integration of the equation for the propagation of pure sound waves, a
special form of the hydrodynamic equation. A fortiori, therefore, it will also
arise in the integration of the general hydrodynamic equations. Thus, if one
chooses the mesh size of the grid to be 100 km, the finite difference integration
would have to be carried out in time stages of 10 min or less, and a 24-hr
prediction would involve making 144 successive 10-min forecasts. To meteo-
rologists, this seems an unnecessary price to pay for computational stability.
Thus, for practical reasons it may not be desirable to use the hydrodynamical
equations in their exact form.

Since the mere existence of sound waves and other fast-moving distur-
bances can have little effect on the course of meteorological events, it was
necessary to reformulate the basic equations such that high-speed waves are
excluded, leaving solutions corresponding to large-scale weather disturbances
intact.

This task was accomplished by Charney (1948) who discovered that dis-
criminate introduction of the geostrophic and hydrostatic approximations had
precisely the effect of excluding the solutions corresponding to sound and
gravity waves. It turned out that, under somewhat idealized conditions, the
modified hydrodynamical equations had the same form as the equations for
a “model” atmosphere in which the density is uniform, the motion is purely
horizontal, and whose initial state is identified with real atmospheric condi-
tions at a height of about 6100 meters. Density changes and vertical motions
being absent, such a model fluid is obviously incapable of supporting waves
whose existence depends on compressibility or gravitational restoring forces.
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Solutions of the equations governing this model were first computed in 1950
by Charney and von Neumann, using the ENIAC electronic computer. The
results showed that the large-scale motions of the atmosphere could indeed
be predicted from the field equations in their inexact form. They also showed
that the theoretical approach to the prediction problem, coupled with high-
speed computing technique, is a practical and a feasible one.

However, since the above model atmosphere is governed by the principle
of vorticity conservation, it implied that the number and intensity of cyclonic
and anticyclonic vortices in this model cannot change and, accordingly, that
method based on the equations of this simple model cannot predict the for-
mation and growth of new disturbances. Since 1951, improved models capable
of accounting for the transformation of disturbances, have been developed.

In 1961, Edward N. Lorenz devised a computer model of 2-dimensional
convection in the atmosphere. He discovered that small changes in the initial
conditions may lead to instability of the corresponding solutions of the gov-
erning equations (chaos), a fact which makes weather prediction inherently
difficult.

From Balloons to Weather Satellites (1950–1990)

The development of modern climatology has been accelerated by the ca-
pability of 20th century technology to monitor the global atmosphere. In par-
ticular, data derived from the radiosonde, weather radar, aircraft and weather
satellites have provided valuable new information on world weather on a vari-
ety of spatial scales. The analysis of this and more conventional data has been
facilitated and considerably improved by the advent of high-speed computers.

In the 1930s the development of the radiosonde balloons allowed the 3-
dimensional structure of the atmosphere to be monitored on a regular basis in
terms of temperature, pressure, wind and humidity. Reconnaissance aircraft
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flying through and around weather systems (particularly frontal depression,
tropical cyclones and thunderstorms) have provided new information on their
3-dimensional structure.

In the mid-fifties, cloud-structure photographs were taken from jet aircraft
flying in the lower stratosphere. Even before this use of high-altitude aircraft
became common, flights of a number of V-2 rockets, fitted with cameras and
launched in New Mexico in the early fifties, provided a preview for later
technological advances.

With the development of modern rockets, satellites and space platforms
put into orbit, a new dimension has been added to the observation of the
atmosphere, its clouds and the precipitation they produce.

The field of meteorology entered the space age on April 01, 1960, when
the United States launched the first artificial satellite equipped to provide
photographs of the earth’s weather conditions. Its two television cameras
transmitted both broad and detailed pictures of the earth’s cloud cover. Since
this satellite rotated for stability, for nearly 15 percent of the time its cam-
eras were pointed away from the earth. Nevertheless, in its short life span
of only 79 days, TIROS 1 radioed back thousands of pictures to the earth.
A year before the 9th and last TIROS was launched in 1965, the 1st of the
second-generation Nimbus satellites was orbiting the earth. The later Nim-
bus satellites were equipped with infrared cameras capable of detecting cloud
coverage at night.

In 1963, the World Meteorological Organization approved a plan for map-
ping the weather around the globe. The plan, known as World Weather
Watch, called for artificial satellites and thousands of land and sea stations
to gather weather information.

Two types of weather satellites were placed in orbit: The polar satellites
travel around the earth in a polar orbit in about 110 minutes. By properly
orienting the orbits, these satellites drift about 15 degrees westward per orbit
over the earth’s surface. Thus they are able to obtain photo coverage of
the entire earth twice a day and have constant surveillance over the daily
patterns of planetary waves, cyclonic storms, hurricanes, and other large-scale
weather patterns. This information is highly useful for short-range weather
forecasting.

By 1966, geostationary satellites were positioned at an altitude of 35, 880
km over the equator. These satellites ‘hover’ over a fixed point on the earth’s
surface, sending to earth images of large sectors of the planet every 30 minutes
or so.

Thus, climatologists have had, since 1966, the facility of complete global
cover of the world’s weather by satellite imagery, offering new insights into
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circulations, particularly in areas where conventional meteorological data are

either scarce or absent (such as the oceanic areas of the world — where many

significant weather systems are spawned).

During 1980–1990, the observational capabilities of satellites (particularly

in terms of direct and indirect measurements of radiation, vertical temperature

profiles, wind and precipitation), image quality (in terms of resolution and

sampling frequency), and the processing of satellite imagery, have all improved

dramatically. Weather satellite data have provided climatologists with a more

complete and detailed view of global weather systems and circulations over

both land and sea than has ever before been possible.

The weather reconnaissance satellites are equipped with highly sophisti-

cated telemetry devices that relay signals to ground stations. These are then

used to produce photographs. By obtaining simultaneous photographs of the

earth at 5 or 6 specific wavelengths, variations in signals are obtained that

can be converted to differences in radiative temperature of the various sur-

faces.

This provides a wealth of geophysical information that, when properly

interpreted, helps to differentiate between cirrus clouds, lower and warmer

clouds, snow, lakes, sea ice, and such special features as the boundaries of the

warm waters of the Gulf Stream, which often produce clouds when the colder

air from Polar regions flows over them. The geostat A.T.S. Satellites (Ap-

plication Technology Satellite) also provide the time-lapse cloud photography
routinely displayed on television weather programs.

Satellite photographs of clouds and weather patterns show that they are

all parts of a continuous global system. They are not random occurrences

but rather are part of an energy interplay between solar radiation, night-time

cooling, seasonal changes and the pressure patterns that develop from these

interactions (the cloud patterns develop from large- and small-scale rising air

motions that bring about cooling, and cause tongues of moisture to undergo

condensation).

Finally, the availability of modern, high-speed electronic computer tech-

nology permits large quantities of meteorological data to be analyzed and

mapped both accurately and speedily: it can be used to test and develop new

models and theories of atmospheric circulations, and to produce short- and

long-range weather forecasts.
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Knot theory — from Kelvin’s atom (1867) to the

DNA molecules (1982), statistical mechanics (1987)

and Quantum Theory (1989).

A. Basic concepts — Knots, Links and Braids

The mathematical theory of knots originated in the 19th century, but knots
have been of interest since ancient times. Knots appear in illuminated man-
uscripts, sculpture, painting and other art forms from all over the world. As
early as human beings used any kind of rope, they probably began inventing
knots, and sailors and scouts alike can attest to their variety and usefulness.

A ‘mathematical’ knot is just slightly different from the knots that we see
and use every day. Mathematicians envision knots as closed (boundary-less)
loops. It is as though the two free ends of tangled rope have been spliced
together. When knots are drawn or projected on paper, the places where the
rope crosses itself are shown as a broken line and a solid line. The intent is
to show that the part of the rope represented by the broken line is passing
under the part represented by the solid line.

So, by definition, a knot is simply a closed piecewise curve in 3-dimensional
Euclidean space. Its projection on a plane is known as the knot diagram. Thus,
the same knot may have different projections. If we make a knot out of a wire,
we obtain a 3-dimensional configuration that defines a certain boundary of
a surface in space, and this surface can be used to study the knot. If one dips
the wire in a bubble-solution, the form of the stretched and twisted soap-film
is called a Seifert Surface.

Knots have been catalogued in order of increasing complexity. One measure
of complexity that is often used is the crossing number, or the number of self-
intersection points in the simplest planar projection of the knot. There is
only one knot with crossing number three (ignoring mirror reflections), the
trefoil or cloverleaf knot. The figure-8 knot is the only knot with a crossing
number of four. There are two knots with a crossing number of five, three
with a crossing number of six, and seven knots with a crossing number of
seven. From there on the numbers increase dramatically. There are 12,965
knots with 13 or fewer crossings in a minimal projection and 1,701,935 with
16 or fewer crossings.

Knot theory is a branch of algebraic topology where one studies the em-
bedding of one topological space into another (the ‘Placement problem’). Two
knots are considered equivalent if one can be smoothly deformed into the other,
or equivalently, if there exists a homeomorphism on R3 which maps the image
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of the first knot onto the second. Cutting the knot or allowing it to pass
through itself are not permitted.

It is not too difficult to see (but slightly more difficult to prove) that the
trefoil is not equivalent to the unknot (i.e. trivial loop). Also, the right and
left handed versions of the trefoil are only equivalent if the homeomorphism
mapping one into the other includes a reflection (other knots, such as the
Figure-8 knot, which are equivalent to their mirror images, are known as
achiral knots.

A knot is a mathematical object, just like number is, and mathematicians
ask many of the same questions about knots as they ask about numbers. One
of these questions is: “Are two given knots equal?”

Fig. 5.17 shows all knots with seven crossing or less. The notation Nk

means that there are N crossings and k different knots of the N th class.
Here 01 is known as the unknot, alias a trivial knot. It is the simplest of all
knots. Next comes the trefoil knot 31 (tre = three; foil = leaf). Its mirror
image (its reflection) is a different knot, and no matter how one twists or
deforms one of them, it cannot be made to look like the other unless one cuts
and reties it.

Not all knots are different from their mirror image: 41, known as the
8-figure knot is the mirror-image of itself. Note that the two versions of the
trefoil knot differ only in the over/under placement of the strands.

The mathematical proof of the unequivalence of the left and right trefoil
knots is far more complicated than the pair appears to be. It was given by
Reidemeister in 1926.

In Fig. 5.18 we see two 6-knots known as the ‘reef’ and the ‘granny’, which
cannot be transformed into each other.

The difficulty of demonstrating equivalence is illustrated by the 4 pairs of
knots in Fig. 5.19: with some effort it is possible to deform the r.h.s. knot
in (1) to appear untangled. On the other hand, no amount of effort seems
sufficient to unknot the two knots in (2). However, some clever manipulation
of the l.h.s. knot could transform it to look like the r.h.s.

The two knots in (3) were assumed to be distinct. Yet, in 1974 K. Perko
discovered a deformation that turns one into the other.

The central problem of knot theory is distinguishing between various knots
and classifying them. A special case of this problem is one of the fundamental
questions of Knot Theory: Given a knot, is it the unknot?

When we actually start trying to untangle and rearrange knots to look
like one another we begin what can seem like a very complicated process.
Mathematicians were perplexed at the seemingly unending number of ways a
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knot could be shaped and transformed. What was needed was a simple set
of rules for working with knots. And indeed, in 1926 Kurt Reidemeister
proved that if we have different presentations (or projections) of the same
knot, we can get one to look like the other using just three simple types of
moves.

First, we must “simplify” the knot as much as possible. This means we
use the Reidemeister moves to get as few crossings in the knot as possible.
Once we simplify the knot so that we cannot remove any further crossings,
the knot is classified by the number of crossings that remain. For example,
the trefoil knot is classified by its fewest number of crossings — three.

The Reidemeister moves are the following:

1. Take out (or put in) a simple
twist in the knot:

2. Add or remove two crossings (lay
one strand over another):

3. Slide a strand from one side of a
crossing to the other:

We can change the way a knot looks so much that it can be hard to tell
what we started with. So, what stays the same about a knot in different
projections?

Knots have some properties that depend only on the knot itself and not
on how it appears in any particular projection. These properties are called
invariants of the knot.

One invariant is the minimal crossing number. The minimal crossing num-
ber of a knot is the least number of crossings that appear in any projection
of the knot. For example, the unknot has a minimal crossing number of 0.
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The trefoil knot has a minimal crossing number of 3. No matter how much

we tangle a knot (without cutting), it can always be simplified to its minimal

number of crossings using the Reidemeister moves.

Another invariant is the unknotting number. The unknotting number is

the least number of crossing changes necessary to turn a knot into the unknot.

By “crossing changes” we mean changing the orientation of two strings where

they cross.

Similarly to how we think of counting numbers as being prime or compos-

ite, we use the same terms to refer to types of knots.

A composite knot is a knot which can be formed by the composition (join-

ing) of two or more nontrivial knots. When we join knots to form a composite

knot, the process can be referred to as a connected sum — we have combined

two or more knots by connecting them. The knots that make up a composite

knot are called factor knots.

If a knot is not composite, meaning it cannot be expressed as the connected

sum of two other nontrivial knots, we call it a prime knot. The trefoil knot is

a prime knot.

For example, the square knot (Fig. 5.20) is an example of a composite

knot. It can be formed by cutting one side of two trefoil knots and joining the

loose ends of each knot to the other. This forms what is known as a connected

sum.

Note that the zero knot (the unknot whose crossing number is zero) is so

named, not just because it looks like zero, but also because it behaves like the

number zero: when one adds the zero knot to another knot, there is a little

bit more rope, but the knot itself is unchanged.

What are the basic knot building blocks? Knot addition shows us how two

knots can be added together to make a more complex knot. How does this

work in reverse? Can you always break a complicated knot into two simpler
ones that add together to form it? Of course the answer to that question

implies that we know what complex and simple knots are!

This question is analogous to thinking about prime numbers. All num-

bers that are not prime can be produced by multiplying together a unique

combination of prime numbers. Is the same thing true with knots? Indeed,

numerous prime knots exist. Determining whether a given knot is equivalent

to a connected sum of smaller building blocks is not always easy.
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Links

A link is a collection of knots. Individual knots which make up a link
are called components of the link. A specific link is known as the Borromean
Rings (Fig. 5.21).

It can be proved that no deformation will separate the components. Note,
however, that if one of the two components is removed, the remaining two
can be split apart. Such a link is called Brunnian.

Just as mathematicians try to untangle knots to form the unknot, they
try to separate links to form the “unlink”. A link is referred to as splittable if
the component loops can be separated without cutting.

In order to turn a link into two or more separate (un-linked) knots, you
have to cut the rope. The number of times you would have to cut the rope to
do this is called the link number. The link number can be thought of as the
measure of how “linked up” the knots are.

Braids

A braid is a system of curves, which start from a straight line of points
and points on end at a parallel line, but winding round each other on the way
(Fig. 5.22). Depending on how the ends are spliced together, braids can be
made into knots or links.

Braids are equivalent if you can deform one continuously into the other,
just like knots and links; but now the curves have ends, and the ends have to
stay fixed; moreover, one is not allowed to push curves over the ends and undo
them. They have to stay between the two parallel lines. The new feature is
that two braids can be combined, by joining the end of the first to the start
of the second.

It turns out that braids form a group under this operation. The identity
braid consists of parallel curves, not twisted in any way; and the inverse to a
given braid is the same braid upside down. Notice that you only get a group if
deformations of a given braid count as the same braid: the way to cancel out
a braid is to combine it with its inverse and then straighten out the curves.

Artin found a complete symbolic description of the braid group. Suppose,
for example, that the braids have four strands. Every braid can be built up
from elementary braids s1, s2 and s3 which just swap adjacent points
(sj swapping strands j and j + 1). Their inverses are the same braids
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turned upside down: they look just the same except that overpasses become
underpasses.

We can symbolically express any braid as a sequence of powers of the s’s,
using negative powers for inverses: s3

1s
4
2s

7
1s

5
3s

−8
2 and so on.

Braids, like knots, may be topologically the same even though they look
different, and Artin captured this in the defining relations of his braid group,
satisfied by ‘adjacent’ elementary braids:

s1s2s1 = s2s1s2

and so on.

He proved that these relations correspond precisely to topological equiv-
alence of braids. That is, suppose two braids are represented as symbol se-
quences. Then they are topologically equivalent if and only if you can pass
from one symbol sequence to the other by applying the defining relations over
and over again.

Every knot is a closed circular braid (theorem). This means that no matter
how twisted, complex and entangled a knot might be, no matter how many
crossings it has, the strands of rope can be rearranged into a single braided
coil. When the knot is arranged this way and you follow the strand of rope all
the way around, it will make a series of circles that cross over and under each
other’s strands. Every circle has the same center, there is no backtracking,
and there are no extra loops.

Because every knot is a closed circular braid, it is possible to describe any
knot by listing the braid components, telling the order of their appearance,
and telling how the ends are joined.

The mathematical theory of knots has made major advances in recent
years. One of the most exciting developments has been the discovery of deep
connections between knot theory and the branch of physics that studies the
fundamental particles and forces that are the building blocks of the universe.
It has also been found that DNA is sometimes knotted, and knots may play
a role in molecular biology.

B. Historical survey

Kelvin proposed (1867) that the atom of each chemical element should
have unique signature based on how the element knotted up the ether sur-
rounding it. He stated that the chemical properties of the elements were
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Fig. 5.17 Knots with seven crossings or less and their corresponding ‘Alexan-
der Polynomials’
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31 t2 − t + 1

41 t2 − 3t + 1

51 t4 − t3 + t2 − t + 1

52 2t2 − 3t + 2

61 2t2 − 5t + 2

62 t4 − 3t3 + 3t2 − 3t + 1

63 t4 − 3t3 + 5t2 − 3t + 1

71 t6 − t5 + t4 − t3 + t2 − t + 1

72 3t2 − 5t + 3

73 2t4 − 3t3 + 3t2 − 3t + 2

74 4t2 − 7t + 4

75 2t4 − 4t3 + 5t2 − 4t + 2

76 t4 − 5t3 + 7t2 − 5t + 1

77 t4 − 5t3 + 9t2 − 5t + 1

Fig. 5.17: (Cont.)
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Fig. 5.18 Some basic knots and links
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(1)

(2)

(3)

(4)

Fig. 5.19 4 pairs of equivalent knots
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Fig. 5.20 The composite square knot

Fig. 5.21 The ‘Borrumean ring’

(a) A braid. (b) Combining two braids to get a third.
(c) Elementary braid with a single crossing.

(d) Converting a braid into a link.

Fig. 5.22 Braids
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related to knotting that occur between atoms, implying that insight into chem-
istry would be gained with an understanding of knots. This led many scientists
to theorize that they could understand the elements by simply studying the
knots, so mathematicians the world over began to construct tables of knots
and their pictures.

However, soon enough the theory of the ether was dismissed, and mathe-
maticians were left alone in pursuit of Knot theory for almost a century.

In the 1980’s, biologists and chemists studying genetics found that deoxyri-
bonucleic acid (DNA) can sometimes become tangled. Experiments suggested
that how a DNA strand knots might have an impact on the properties of the
resulting strand after replication.

Once geneticists became interested in knots, other scientists joined in
again, as well. The fact that genetics is such a young and extremely in-
teresting field of inquiry has led to a renewal of interest in studying Knot
Theory from an applied mathematical perspective.

Motivated by Kelvin’s idea, P.G. Tait prepared (1877–1900) the enumera-
tion of knots with 10 crossings or less. Tait viewed two knots as equivalent, or
of the same type, if one could be deformed to appear as the other, and sought
enumeration that included each knot type only once. When Tait began his
work, the formal mathematics needed to address the study was unavailable,
and the evidence that his listed knots are distinct was empirical.

James Clerk Maxwell wrote several papers (1868) on knots and links
and set out the basic problem of the classification of knots and links. He, in
fact, had defined the Reidemeister moves (!) which would be shown to be the
fundamental moves in modifying and composing knots (1926).

Work at the turn of the 20th century placed the subject of topology on firm
mathematical ground, and it became possible to define the objects of knot
theory precisely, and to prove theorems about them. In particular, algebraic
methods were introduced into the subject, and these provided the means to
rigorously established which pairs of knots were actually distinct.

Poincaré (1895) introduced the algebraic entities known as fundamental
groups and homology groups that can be associated with topological spaces in
such a way that if two topological spaces differ w.r.t. any of these groups,
then one can say for sure that these spaces are not equivalent (i.e., cannot be
deformed into one another).

Max Dehn (1914) proved that the two simplest-looking knots, the right-
and left-handed trefoils, represent distinct knot types; that is, there is no way
to deform one to look like the other. He stated the Dehn Lemma:
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“If a knot is indistinguishable from the trivial knot using algebraic meth-
ods, then the knot is in fact trivial”

J.W. Alexander (1923) discovered a polynomial invariant of a knot. It is
essentially a method of associating to each knot a polynomial (now called the
Alexander polynomial), such that if one knot can be deformed into another,
both will have the same associated polynomial.

This invariant proved to be a powerful tool in the subject, but it has its
limitations: it cannot distinguish handedness [e.g., both left- and right-handed
trefoils have the same polynomial (t2 − t + 1)]. In addition it is not always
unique: 8 out of 87 knots with 9 or fewer crossings share polynomials with
others on the list.

Alexander’s initial definitions and arguments were combinatorial, depend-
ing only on a study of the diagram of a knot, without reference to the algebra
that had already proven successful.

Kurt Reidemeister (1893–1971) proved (1926) that if we have different
plane projections of the same knot, we can get one to look like the other using
just 3 simple types of moves (enumerated above). He showed, for example,
that the trefoil is not equivalent to an unknotted loop (circle). He did this
by breaking up any deformation of a knot into a series of standard moves,
and finding a property of the trefoil that is preserved by each such more, but
which fails to hold for any ordinary circle. Reidemeister wrote the first book
on knot theory (‘Knotentheorie’, 1932).

Emil Artin invented (1925) the braid theory, entering algebra in a big
way into topology of knots. To begin with, everything was geometric. This
was followed by modular arithmetic and combinatorics.

Finally knot theory became part of algebraic topology. It turned out that
braids form a group under the operation of joining the line of ends of one
braid to the line of beginnings of another braid. The identity braid consists
of parallel curves, not twisted in any way; and the inverse to a given braid is
the same braid upside down. One only gets a group if deformations of a given
braid count as the same braid. Artin found a complete symbolic description
of the braid group.

In 1934, Herbert Seifert (1907–1996) demonstrated that if a knot is the
boundary of a surface in 3-dimensional space, then that surface can be used to
study the knot; he also presented an algorithm to construct a surface bounded
by any given knot.

This approach was certainly of practical importance, as it gave efficient
means for computing many of the known invariants. Thus, using knots made
out of wire, one can see what happens when they are dipped into a bubble
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solution. The form of the stretched and twisted soap film is called a Seifert
surface.

In 1936, W. Burau discovered how to find matrices that obey Artin’s
defining relations. It was found that the Alexander polynomial of a knot is
related to the Burau matrix of the corresponding braid. Thus, the Alexander
polynomial can be computed algebraically from the braid group.

In 1917, H. Schubert proved that any knot can be decomposed uniquely
as the ‘connected sum’ of prime knots.

Unlike the problem of distinguishing knots, the problem of developing gen-
eral means for proving that one knot can be deformed into another remained
untouched. But in 1957, C. Papakyriakopoulos proved Dehn’s Lemma,
and it soon became the centerpiece of a series of major developments in the
subject.

In 1968, F. Waldhausen proved that two knots are equivalent iff certain
algebraic data associated to the knots are the same. The interplay between
algebra and geometry was essential to this work, and the connection was
provided by Dehn’s Lemma.

The late 1950’s through the 1970’s were also marked with by an extensive
study of the classical knot invariants, and in particular, how properties of
the knot were reflected in the invariants. For instance, K. Murasugi (1958)
proved that if a knot can be drawn so that the crossings alternate from over
to under, then the coefficients of its Alexander polynomial alternate in sign.
Marasugi’s work (1971) also detailed relationships between knot invariants
and symmetries of knots, another major topic in the subject.

In a completely different direction, the investigation of higher dimensional
knots (such as knotted 2-spheres in 4-space), became a significant topic.
By 1970 it had become a well-developed area of topology.

Since 1970, knot theory has progressed at a tremendous rate: In 1970,
John Conway discovered a quick way to calculate Alexander polynomials,
totally different from any classical method.

In 1984, Vaughan Jones discovered a new knot polynomial invariant that
distinguishes handedness. In 1991, Doll and Hoste discovered the HOMFLY
polynomial that generalizes both the Alexander and the Jones polynomials.

During 1971–1989, knot theory had been applied to fields of theoreti-
cal physics and biology. It began in 1971, when H.N.V. Temperley and
E.H. Lieb linked knot diagrams to statistical-mechanics models via certain
von-Neumann matrix algebras. In 1987 Louis Kauffman interpreted the
Jones’ polynomials in statistical-mechanics terms.
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In 1982, geneticists discovered that DNA molecules can form knots and
links. Thus, topology of knots became an important practical issue in biology.

When most of us think of deoxyribonucleic acid (DNA), we picture some-
thing like the neat, tidy double helix. In reality, this double helix consists of
two very long curves intertwined millions of times. The DNA strand is only
a few molecules wide, but several centimeters long, tightly coiled inside the
nucleus of every cell in our bodies.

To give a more accurate picture of what real DNA looks like, imagine the
nucleus of a cell scaled up to the size of a basketball. The DNA strand then
scales to the width of thin fishing line about 200 km in length — packed inside
our basketball nucleus. On this tremendous scale, we can easily imagine that
the DNA strand could become tangled and knotted in such a cramped space.

In reality, that is exactly the case. The problem comes when it is time for
the DNA to replicate to form another cell. Then the double helix of DNA
has to split in two to complete the process of cell division. When the strand
becomes knotted, the DNA cannot separate intact at crossings in the knot.

In order for the DNA to separate, replicate, and recombine, special en-
zymes in the nucleus actually “cut” the DNA strand so replication can occur
and then reattach the loose ends once the crossing is resolved.

The particular fascination in this process for geneticists is the fact that
chemical changes occur in the DNA strand as a result of this process. Changes
in the DNA structure due to the actions of these enzymes have required
geneticists to use knot theory in their study of molecular biology.

By understanding knot theory more completely, scientists are becoming
more able to comprehend the massive complexity involved in the life and
reproduction of the cell. More knowledge of knots and their properties may
hold one of the keys unlocking the mystery of DNA in the new millennium.

In 1982, Simon Donaldson proved that there is a topological space which
is topologically equivalent to R4 and which is a differentiable manifold. It
is particularly interesting because space-time is 4 dimensional.

In 1989, E. Witten applied topological ideas to Quantum Field Theory
in such a way as to:

• give physical interpretation to Donaldson’s work on 4-space

• find an intrinsically 3-D approach to Jones’ polynomials

• generalize the Jones polynomials to knots that are tied in an arbitrary
3-D manifold.



1947 CE 4729

1947 CE, Oct. 14 Charles Elwood Yeager (b. 1923, U.S.A.). Pilot.
Broke the “sound-barrier” in the Bell X-1 rocket-powered plane by flying faster
than the speed of sound (Mach one) at Muroc Air Force Base in California
soaring 96 km above the earth. He then set another record on Dec. 12, 1953
by flying 2 1

2 times the speed of sound in a Bell X-1A.

1947 CE Willis Eugene Lamb (1913–2008, U.S.A.). Physicist. Measured
slight deviations from the predictions of Dirac’s theory for the spectroscopy
of the hydrogen atom. This Lamb shift boosted the development of Quan-
tum Electrodynamics (QED). Lamb shared the Nobel prize in physics with
Polykarp Kusch (1911–1993, U.S.A.) who arrived at the same discovery,
independently.

In the Schrödinger equation for hydrogen, the only electromagnetic effect
included is the Coulomb interaction between the proton and the electron. But
the electron, when in an excited state, is a source of radiation. Furthermore, in
any energy level (even the ground state), the electron may temporarily emit
a virtual photon, and then re-absorb it. Furthermore, the virtual photon
mediating the Coulomb interaction, may split into a virtual electron-positron
pair, which quickly annihilate each other to become the virtual photon again.
These effects produce a further splitting of energy levels, which are degenerate
according to the fine structure (Dirac) formula.

Thus, this type of splitting (Lamb shift) is to be sought in the details
of interactions between the real electron and the fluctuating electromagnetic
and electronic quantum fields. Unfortunately, the latter interactions always
leads mathematically to an infinite electron and photon self-energies (related
to the infinite radiation reaction in pre-quantum electron theories), due to
short-distance effects and the infinite number of high-frequency modes of the
EM and electron fields.

In the scheme of QED, the infinite energy terms are systematically sub-
tracted from the interaction and it is found that certain small finite terms
remain. This small effect accounts for the Lamb-shift almost exactly, not
only for hydrogen but also in deuterium and ionized Helium (He+). One can
think of these finite residual effects as due to perturbations to electron orbital
states due to vacuum polarization (caused by virtual electron-positron pairs)
and due to fluctuations in the real electron’s motion due to its interactions
with virtual fluctuations in the electromagnetic field.

Very similar effects are found for the motion of the electron in a mag-
netic field. Here again, the electron’s virtual radiation can react back on the
electron, and produce corrections to the electron’s magnetic moment. Calcu-
lations within the framework of QED, to order α6, (with α = e2

4πε0�c � 1
137

the fine structure constant), predict a small change in the electron’s intrinsic
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magnetic moment from the Dirac value of one Bohr magneton. These calcula-
tions are in complete agreement with experiment to within observational and
theoretical uncertainties.

According to quantum mechanics as applied to Maxwell’s theory of radi-
ation, the interaction of electrons with the EM field occurs via the emission
and absorption of photons. The probability for emission, which is a measure
of the strength of the interaction, is proportional to the fine structure constant
α — the dimensionless quantity which is constructed from the basic physi-
cal constants e, h and c. Maxwell’s theory satisfies the postulates of Special
Relativity, this quantum theory of radiation is a relativistic quantum theory.
Dirac (1928) has modified the Schrödinger equation for the hydrogen atom,
such as to make it too consistent with STR. He showed that the requirements
of relativity as imposed on the quantum theory of the hydrogen atom, have
the following consequences:

(1) The electron has intrinsic spin angular moment of h
4π .

(2) The interaction energy of the atom with a weak external magnetic field
reveals an electron gyromagnetic ratio twice that predicted by classical
magnetism (thus the Dirac intrinsic magnetic moment of the electron is
one Bohr magneton rather then on half a magneton).

(3) There are ‘fine structure’ corrections to the Bohr (En) formula for the
hydrogen energy levels: each level previously specified by the quantum
number n, splits into n different levels with the corresponding energies

Enj = En

[

1 +
α2

n

(
1

j + 1/2
− 3

4n

)]

,

where the total electron angular momentum j can take the values
j = 1

2 , 3
2 , . . . , n − 1

2 and the orbital angular momentum is 
 = j ± 1
2 .

(4) There is a positively charged counterpart to the electron — the positron.

Results (1) and (2) were known previously, but had been semiempiri-
cally grafted onto the non-relativistic theory to obtain agreement with ex-
periment. The Dirac equation shows that both results arise due to funda-
mental reasons. The fine structure formula had been derived already in 1916
by A. Sommerfeld on the basis of the Old Quantum Theory (but with
incorrect interpretation of the quantum numbers). Result (4) was a novel
prediction.

In spectroscopic notation, four quantum numbers are specified for each
electron in an atom. In particular, a one-electron atom can have the following
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states: n = 1, 
 = 0, j = 1
2 (1S1/2); n = 2, 
 = 0, j = 1

2 (2S1/2); n = 2,

 = 1, j = 1

2 (2P1/2); 
 = 1, j = 3
2 (2P3/2); etc.

The Dirac theory predicts a difference in energy between levels of different
j for the same value of n (fine structure), due to the spin-orbit coupling and
other relativistic effects. Thus, for the hydrogen atom (Z = 1), the spin-orbit
splitting between the n = 2 j = 1

2 and j = 3
2 levels is

E(2P1/2) − E(2P3/2) �
mec

2α4

32
= 4.53 × 10−5 eV = h × 10960 MHz.

However, Dirac’s theory predicts that the states 2S1/2 and 2P1/2 are
degenerate. But in 1947 Lamb and Rutherford measured the transition
2P3/2 − 2S1/2 as a function of an applied magnetic field. In the limit of
zero field, the observed frequency value was approximately 1060 MHz lower
than what could be expected from the above fine structure interval.

A more recent (1976) experimental value for the Lamb shift1071 was

(ΔE)Lamb = E(2S1/2) − E(2P1/2) = 1057.862 MHz.

A corresponding theoretical value (1975) [which takes into account vacuum
polarization and the fluctuations in the electron’s propagation in the Coulomb
field due to emission and absorption of virtual photons, as well as nuclear
recoil, effects of a finite nuclear radius and higher order so-called radiative
corrections] yielded 1057.864 ± 0.024 MHz.

Since this figure is accurate to 10−1 MHz, theory and observations are in
agreement to one part in 10−10 of the ground state binding energy.

1947 CE Mount Palomar Astronomical Observatory (California; altitude
1725 m) equipped with a 200 inch reflector telescope. It can collect 1 million
times as much light as the human eye.

1947 CE The Dead Sea Scrolls were discovered in earthen jars in a cave
near Khirbet Qumran (Israel). These scrolls contain religious texts offering
insight into ancient Judaism and early Christianity.

1071 For further reading, see:

• Park, D., Introduction to Quantum Theory, Dover, 2005, 601 pp.

• Itzykson, C. and Z-B. Zuber, Quantum Field Theory, McGraw-Hill, 1980,
705 pp.
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1947–1949 CE The rebirth1072 of Israel; The establishment of a Jewish
home in the Land of Israel was the result of a British government decision
made in 1917. Britain ruled the country under mandate from the League of
Nations. The United Nations decided on 29 November 1947 to establish an
independent Jewish state. On May 14, 1948 the British mandate came to
an end, and the Jews, under the leadership of David Ben-Gurion, proclaimed
the state of Israel. The same day Arab armies from Egypt, Lebanon, Syria,
Jordan, Iraq, Saudi Arabia and Morocco invaded and attacked Israel who beat
off the invaders. Armistice agreements were signed in 1949.

1947–1949 CE Cecil Frank Powell (1903–1969, England). Physicist.
Discovered (with coworkers) a new subatomic particle: the charged pi-meson
(or pion), denoted as π± (the positively charged π+ and the negative π−

are each other’s antiparticle) the first true meson to be discovered. It was
detected in cosmic rays in the Bolivian Andes. The particle was predicted by
Hideki Yukawa (1935). In the interim period it was believed that the muon
was the Yikawa meson, although theoreticians in 1942 and 1946 independently
concluded that there must be two mesons.

Powell was a professor at the University of Bristol (1948–1963). Awarded
the Nobel prize in physics (1950). Discovered the modes of decay of kaons
(K-mesons).

1947–1960 CE Robert Gaston André Maréchal (b. 1916, France).
Optical physicist. A pioneer in photographic image enhancement (optical
processing for quality improvement) by the use of coherent spatial filtering
techniques. His success with these techniques was to provide a strong motiva-
tion for future expansion of interest in the optical data information-processing
field.

Maréchal regarded undesired defects in photographs as arising from corre-
sponding defects in the optical system that produced them. He then combined
absorbing and phase-shifting filters to reconstitute the detail in badly blurred
photographs. These filters are transparent coating deposited on optical plates
so as to retard the phase of various portions of the spectrum. His work led to
the eventual replacement of the photographic stages, in increasingly many ap-
plications, by real-time electro-optical devices (e.g.: array of ultrasonic light
modulators forming a multichannel input).

1072 The first Commonwealth of Israel was established by King Saul in ca 1025 BCE

and stabilized by King David in 990 BCE. It lasted until 586 BCE. The second

Commonwealth was established by Sheshbatsar in 537 BCE in the wake of

the Cyrus Declaration, and ended in 70 CE with the Roman destruction of

Jerusalem.
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Maréchal was born in La Garenne and educated at the University of Paris.
He was a professor at the Paris Institute of Optics (1955–1985).

Nonequilibrium Thermodynamics

Thermodynamics can be divided into three distinct parts, the study of
which corresponds to three successive stages in its development:

Equilibrium thermodynamics (ET)

Also known as thermostatics, zero-order thermodynamics or classical ther-
modynamics. It describes the end state of thermodynamic evolution in an
isolated system, when processes reach quasi-permanent states of equilibrium,
and when the corresponding matter and energy fluxes vanish (e.g., chemical
equilibrium of all reactions, thermal equilibrium, pressure equilibrium, etc.).
Sequences of such states adequately describe both reversible and many types
of irreversible phenomena1073. These sequences obey the first and second law
of thermodynamics. Reversible sequences conserve both the entropy and inter-
nal energy of the isolated system, while irreversible sequences conserve energy
but increase the entropy.

The concept of equilibrium is central to all aspects of thermodynamic
formalism: Even when a system undergoes a finite and continuous change,
we may describe the phenomenon by a succession of a great number of quasi-
equilibrium states, provided the rate of change is not too high.

Furthermore, for a reversible sequence, the process does not furnish an
“arrow of time”; that is to say, the time-reversal of a reversible process, is
also an allowable reversible process (just as is the case in a classical mechan-
ical or electromagnetic system with no dissipative effects, or in a quantum
system between measurements and not involving the weak nuclear forces).
ET generally yields an accurate description only for reversible processes or
slow irreversible ones — an idealization which real processes can at best only
approximate, in the limit in which they occur with infinite slowness.

1073 Only sufficiently slow irreversible phenomena are describable as sequences of

equilibrium states.
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Yet, ET provides a satisfactory explanation for a plethora of physicochem-
ical and biochemical phenomena in a variety of systems: Thermodynamic
methods are thus a daily tool for engineers, physicists, chemists, biologists
and material scientists, as well as in other fields of the scientific endeavor.

Equilibrium thermodynamic was an achievement of the 19th century, and
the first response of physics to the problem of natural complexity. During
that century irreversible processes were viewed as nuisances — as being not
worthy of study. They were obstacles to obtaining maximum yield in thermal
engines. Therefore, the aim of engineers constructing thermal engines has
been to minimize losses due to irreversible processes.

The interest in irreversible processes started when it was recognized that
most systems are not in thermal, mechanical or chemical equilibrium, and that
the majority of events in biological systems operate under action of nonequili-
brated forces which in turn produce fluxes (of concentrations, heat, volumes,
charges, etc).

Nonequilibrium thermodynamics (NT) encompasses unidirectional time
phenomena over a wide range — from simple irreversible processes like heat
conduction, or the evaporation of an open perfume bottle, to complicated
processes involving self-organization. A system in thermal equilibrium is dead
(or immortal, depending on one’s point of view); it is timeless and lacks
history. Its fate, however, may be avoided with the help of external forces,
that keep the system away from thermodynamic equilibrium.

Near-equilibrium thermodynamics (NET)

In the equilibrium state, entropy of an isolated system is at a maximum and
is a function of any complete set of state variables, and is spatially uniformly
distributed1074 within each of the media comprising the system. There is no
need to know how this maximum value was reached, and the only changes in
entropy result from an interaction with the surrounding during a reversible
or irreversible (either slow or of finite duration) process.

However, in systems which are not in thermodynamic equilibrium it is
no longer justified to assume spatial or temporal homogeneity, and entropy,
like any other thermodynamic variable, becomes a field function of space and
time, obeying its own continuity equation.

In fact, the presence of forces, fluxes and chemical rate – imbalances in
nonequilibrium systems imply that these systems are spatially non-uniform

1074 As all other extensive and intensive state variables.
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and/or undergo net chemical processes1075. Therefore, for the most general
cases the compositions and all other state variables of the system may be
time- and space-dependent. We assume, however, that at each point of the
nonequilibrium system, i.e., for each infinitesimal volume element, and during
each infinitesimal time interval, thermodynamic state variables are the same
functions of each other as in the equilibrium state of the medium in question
(concept of local equilibrium).

Ilya Prigogine (1946) showed that within the range of validity of On-
sager’s relations, the entropy production of a nonequilibrium system not far
from equilibrium takes its minimum value at steady states (Theorem of mini-
mum entropy production). The system thus evolves toward a stationary state
compatible with the constraints imposed on the system by the boundary con-
ditions. (They may, for instance, correspond to two points in the system kept
at different temperatures, or to a flux of matter that continuously supports a
reaction and eliminates its products.)

During its evolution the system transfers entropy to the outside world, and
the particular stationary state toward which the system tends is the one in
which the transfer of entropy to the environment is as small as is permitted
by the boundary conditions. Thus, when the boundary conditions prevent the
system from achieving equilibrium it evolves to a state as close to equilibrium
as possible

(
∂S
∂t =minimal; S = entropy ). However, as in ET, the initial

conditions are “forgotten” by the system. Whatever they were, the system
will finally reach the state determined by the imposed boundary conditions.

When fluctuations shift the system away from the minimum, the second
law of thermodynamics imposes the return toward the attractor. Like in ET,
the system follows an evolution that leads it to a stationary situation that is
established once for all (up to small fluctuations).

For both ET and NET, some aspects of the dynamics and distribution
of the fluctuations can be estimated from the equilibrium (or steady-state)
theory itself.

Nonlinear thermodynamics — far from equilibrium

In NET there is a linear relation between forces and fluxes, the forces are
weak, and the system reaches and remains in a state of least dissipation of

1075 Here “forces” is meant in a generalized sense: mechanical forces, concentration

gradients, heat sources and sinks, electromagnetic fields, etc.



4736 5. Demise of the Dogmatic Universe

free energy. Such restrictions exclude most chemical reactions and all bio-
logical systems. When the system is far from equilibrium, the dependence of
fluxes upon forces is very complex and difficult to evaluate. In general, the
magnitude of forces, and therefore the corresponding fluxes are large. Conse-
quently, linear relationships are not available and the results derived for NET

cannot be used. Yet, in spite of all these difficulties, evolutionary criteria can
be derived: Prigogine1076 has developed methods for describing systems far
from equilibrium which can evolve into stable dissipative states, that may show
a variety of interesting behavior — including spatial and temporal oscillations.
Prominent examples are:

• The transition from laminar flow to turbulence. Although turbulent mo-
tion appears irregular or chaotic on the macroscopic scale, it is highly
organized on the mesoscopic scale. The multiple space and time scales
involved in turbulence correspond to coherent behavior of numerous mole-
cules. Part of the energy of the system, which in laminar motion resides
in the thermal motion of molecules, is now transferred to macroscopic
organized motion.

• Bénard instability: Bénard1077 (1900, 1901) experimented with a thin
layer of liquid with a free surface and heated from below, and observed
a hexagonal convection pattern.

Consider a fluid layer maintained between two horizontal plates with
separation h. The top plate is held at a constant and uniform temperature
Tc, while the bottom plate is held at a constant and uniform temperature
TH > Tc. At steady state the constant force X = 1

h (TH − Tc) = grad T
generates a constant heat flux, and there is also a linear relationship

1076 Ilya Vicomte Prigogine (1917–2003, Moscow) came to Brussels, Belgium in

1927; Ph.D., Free University of Brussels (1942) under Theophile de Donder

(1893–1957, Belgium; a pioneer in the field of nonequilibrium thermodynam-

ics). Prigogine has built up there, since WWII, one of the leading schools of

statistical mechanics and thermodynamics. For more than 40 years his own

contribution, for which he was awarded the Nobel prize for chemistry (1977),

has been the extension of irreversible thermodynamics, and its application to

physical and biological systems.
1077 Bénard, H. and D. Brunt, The cellular vortices in a liquid sheet, Ann. Chem.

Phys. (7) 23, 62–144, 1901. This problem was also studied by Lord Rayleigh

(1916), H. Jeffreys (1926) and L. Prandtl (1929). The unexpected result

was obtained that with sufficiently large values of viscosity and thermal con-

ductivity the cellular steady–state observed by Bérnard may be thoroughly

stable. But at that time, no satisfactory mathematical treatment of the onset

of the Bénard cells could be given. The phenomenon occurs in meteorology.
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between the force and the flux via Fourier’s law. One gradually and

slowly increases ΔT = TH − TC such that the fluid may adjust at each

moment to the given constraint.

It is then observed that for a critical value (ΔT )c, the linear flux-force re-

lation is no longer valid and the system enters a nonlinear regime. Below

(ΔT )c, the fluid is at rest and featureless, but at (ΔT )c the stationary

state of heat conduction becomes unstable and convection sets in; a small

increase in the gradient ‘organizes’ the fluid into regular convection cells

of macroscopic size (the Bénard cells).

This convection, corresponding to a coherent motion of ensembles of

molecules in the cells, increases the rate of heat transfer from the bot-

tom to the top of the fluid. At the molecular level, a complex spatial

organization of immense numbers of molecules move coherently. Correla-

tions between molecules extend over distances of the order of centimeter,

whereas intermolecular attraction forces act only over distances of the

order of 10−8 cm. Similarly, the time scales are different — they corre-

spond not to molecular times (such as periods of vibration of individual

molecules, of the order of 10−15 sec) but to macroscopic times: seconds,

minutes, or hours.

For a given fluid and at (ΔT )c, a wide variety of patterns (square, or

hexagonal cells) may arise. As ΔT is increased beyond (ΔT )c, new self-

organized phenomena appear.

The Bénard system is a dissipative structure in which viscous forces away

from equilibrium play a basic role. For given values of the constraints (the

gradient of temperature), the entropy production of the system is increased,

in contrast with the theorem of minimum entropy production valid for NET.

The phenomenon of Bénard instability is a striking example of how disorder

may essentially contribute to the creation of organization and order1078.

1078 In a uniform fluid, all points of the system are equivalent. However, adjacent

cells rotate in opposite directions, indicating that, locally, the symmetry of

the fluid had been broken. This is therefore a symmetry-breaking instability

which results from the energy dissipation in the system. Moreover, the motion

of the fluid – cell clockwise or anticlockwise (w.r.t. a particular observer), is

unpredictable, as the experimental apparatus is completely symmetric w.r.t.

the two alternatives. The ‘decision’ depends upon random fluctuations, which

first occur as the critical surface in parameter space [in this case, the point

(ΔT )c] is reached.
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In classical thermodynamics, as formulated by Gibbs (1876), the funda-
mental equation which relates the changes in extensive variables is (per unit
volume)

dU = TdS − pdV +
∑

j

μjdNj , (1)

where S is the entropy, T the absolute temperature, U the internal energy,
p the pressure, μk the chemical potential of the kth chemical species, and Nk

the corresponding number of moles. Under the assumption of the principle of
local equilibrium, Eq. (1) is also valid for nonequilibrium states which are not
too far from equilibrium.

This assumption is based on the idea that the macroscopic evolution of
the system takes place over times which are long w.r.t. those necessary to
establish an equilibrium in a very small portion of the system and that the
spatial variation of the quantities considered is small over molecular mean free
path.

This is equivalent to assuming that the functional dependences amongst
p, T , S, U , V and Nj is the same as in thermostatics, even though we are
now dealing with functions that vary with time and space.

For an isolated system which exchanges neither energy nor matter with
the exterior, the second law of thermodynamics states that dS/dt ≥ 0 where
S is the total entropy of the system. In the case of non-isolated systems,
it is assumed that the total change of entropy is the sum of two terms
dS = deS + diS, where deS describes the change of entropy in the system
caused by interaction with the environment and is of indefinite; sign, whereas
diS describes internal dissipative processes (diS ≥ 0).

In a stationary state, dS = 0 this then implies that dSe = −diS < 0,
i.e., the system transfers entropy to the outside world. Therefore, at the
stationary state the system’s activity continuously increases the entropy of its
environment.

Thus where there is an exchange of entropy between the system and the
exterior, we can think of entropy as a fluid that can be destroyed or produced.
In other words, we can talk about the entropy source density σ (entropy
production per unit volume per unit time), the entropy flux density JS

(lies
along the direction of entropy flow with a magnitude of entropy flow per unit

area per unit time, i.e.
∣
∣
∣ S
area×time

∣
∣
∣), and the entropy density s (entropy per

unit volume). All these entities are connected via a continuity equation

∂s

∂t
+ div J

S
= σ, (2)
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where s, JS and σ are functions of position and time. Clearly, mass, molecular
species populations and energy have similar conservation laws of their own.
Eq. (2) can be considered as a differential formulation of the second law,
adapted to open systems.

We must next specify σ. It can arise from three different sources: ther-
mal, material and chemical. Upon using Eq. (1), and the vector identity
−B div b ≡ −div(Bb) + b · ∇B and summoning the laws of conservation of
mass, energy and electric charge for a single type of reaction1079, we are able,
via Eq. (2), to identity J

S
and σ as follows

σ = Jq · grad
1
T

−
∑

J j · grad
μj

T
− Je · grad

φ

T
+ Jchem

Af

T
(3)

J
S

=
1
T

[Jq −
∑

μjJ j − Jeφ], (4)

where Jq is the density of heat flow, J j the densities of material flow, Je

the density of electric current, φ the electrochemical potential, Jchem the
chemical reaction rate per unit volume, and the affinity Af is the ‘driving
force’ of the reaction, which tends to zero when local chemical equilibrium is
reached.

Eq. (3) can be recast in the compact form σ =
∑

(Jk · Xk) where Xk are
generalized forces. In general, every single flow Jk may depend upon all the
generalized forces present: Jk = Jk(X1, X2, . . . , XN ). The simplest forms
for the individual flows are governed by the empirical laws: Jq = −λ grad T
(Fourier), J j = −D gradμj (Fick), Je = −γ gradφ (Ohm).

Consider, for instance, a system in which only heat flow takes place, i.e.,
σ = Jq · grad

(
1
T

)
. Substituting for Jq its value from Fourier’s law, one ob-

tains σ = λ(grad T )2/T 2 ≥ 0. This illustrates the general fact that the en-
tropy generated locally cannot be negative irrespective of whether the system

1079 Conservation of mass for each component, per unit volume, is
∂nj

∂t
= − div Jj ,

where Jj is the mass flux density for the jth component and the concen-

tration is nj =
Nj

V
. Conservation of energy is given by ∂u

∂t
= − div Jq,

where u = U
V

and Jq is the heat flux density. To take account of the flow

of electricity and the occurrence of chemical reactions, we define the total

specific charge per unit volume e =
∑

njej , and add to μj the electro-

chemical potential times the charge ej : φej . Gibbs’ equation will then read

dU = TdS − pdV +
∑

μjdeNj + φde + AfdNr, where deNj stands for the

part of dNj that is due to ions or molecules entering or leaving the unit volume

under consideration, while dNr is the number of molecular chemical-reaction

events (assumed to be of a single type) which occur. Conservation of charge

reads ∂e
∂t

= − div Je, Je being the charge flux density. Here Af is the affinity

of the chemical reaction.
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is isolated or not, and irrespective of whether the process under consideration
is irreversible or not.

In the general case, we integrate Eq. (2) over the volume V of the system
and substitute therein J

S
from Eq. (4). The result is dS = deS + diS where

diS = dt

∫

V

σdV ; deS = −dt

∫

A

1
T

n · {Jq −
∑

μjJ j − Jeφ}dA, (5)

and n is the unit normal to the surface A of the open system.

The interpretation of this result is as follows: the entropy increase of an
open system is composed of a part deS due to the exchange of heat, matter,
and charge between the system and its environment, and a part diS, which
arises from processes occurring inside the system. (In the special case of a
closed system deS = dQ

T ). We now postulate that diS ≥ 0 is valid for an
arbitrary volume, however small. It then follows from Eq. (5) that σ ≥ 0.
Thus, the assertion that the overall entropy produced in any process is zero
or positive is expressed both in its global and local forms.

This statement constitutes one of the basic postulates of irreversible ther-
modynamics. In a quasi-equilibrium process, diS ≈ σ = 0 and dS

dt ≈ deS
dt ,

confirming that in such processes, the only way that a system’s entropy may
change is for it to cross the boundaries of the system. If we isolate the system
from external entropy flux (deS = 0), we are left with dS

dt = diS
dt ≥ 0, which

is compatible with our knowledge that the entropy of an isolated system may
only increase.

Next, consider the case of two fluxes Jq and Je. These vector functions
may be expanded in a Taylor series about the state (Xq = 0, Xe = 0).
In this expansion, one can dispense with the zero-order terms Jq(0,0) and
Je(0,0), because the flows of heat and electricity vanish when the gradient
vectors Xq and Xe become zero; One is thus left with

Jq(Xq, Xe) ≈ Xq ·
[

∂Jq

∂Xq

]

0,0

+Xe ·
[

∂Jq

∂Xe

]

0,0

and a similar equations for Je. If Xq and Xe are small, products of their
component may be neglected and the result of the approximation applies to
near-equilibrium thermodynamics. In this linear region the components of
Jq, and Je are linear functions of the components of Xq and Xe. This can
be written in the abbreviated notation, in the general case of n simultaneous
fluxes:

Ji =
n∑

j=1

LijXj , Lij =
(

∂Ji

∂Xj

)

. (6)
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The corresponding entropy production function is

σ =
∑

i

JiXi =
∑

i

∑

j

LijXiXj ≥ 0. (7)

The above equations are readily amenable to analysis of stationary states of
thermodynamic systems. A system is said to be in a stationary state if its
macroscopic parameters — such as temperature, pressure, composition, and
entropy — do not depend on the time (although these parameters may still
vary from point to point in the system).

Thus, if heat is added at a constant rate to one end of a metal bar and
withdrawn at an equal rate from its other end, the temperature at each point
of the bar approaches a time-independent value. All the same, the tempera-
ture varies along the length of the bar, and entropy is produced continually
as a result of heat conduction.

In an isolated system, or a system in contact with a uniform environment,
the stationary state degenerates into a subclass of an equilibrium state where
the macroscopic variables depend neither on time nor on position.

Nonequilibrium stationary states cannot endure unless the entropy-
producing processes are sustained by a continual flux of energy, matter or
both, between the system and its surroundings.

Consider a system characterized by n independent forces X1, X2, . . . , Xn,
and let k of them, say X1, X2, . . . , Xk, be kept at fixed values through
the operation of external constraints. It is then found empirically that the
remaining forces will also become constant with the passage of time.

The stationary state reached by this method is known as a stationary state
of order k. It turns out that when the stationary state of order k is established,
the fluxes Jk+1, Jk+2, . . . , Jn, conjugate to the unconstrained forces, are
individually zero. In the special case that no forces are held fixed (k = 0) the
system will continue to evolve until all fluxes and forces have vanished. Thus
a stationary state of order zero is just a state of thermodynamic equilibrium.

These observations are readily interpreted with the aid of Eq. (7). Accord-
ing to this formula, σ is a positive definite quadratic form in the forces Xi,
that is, σ is zero when all Xi are zero, and positive otherwise. Therefore, by
keeping k forces fixed the function σ displays a minimum when the remaining
Xi assume values satisfying the equations

0 =
∂σ

∂Xi
= 2

∑

j

LijXj = 2Ji, (i = k + 1, k + 2, . . . , n; j = 1, . . . , n),

where use has been made of the Onsager reciprocity relations Lij = Lji.
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This result asserts the vanishing of the fluxes corresponding to the forces
which are not held fixed. Therefore, in the domain of the validity of linear
thermodynamics of irreversible processes, the steady states are characterized
by a minimum entropy production. Consequently, the system reaches and
remains in a state of least dissipation of free energy (Prigogine, 1947; de
Groot, 1951).

Any stationary state represents a stable situation, that is to say, if a
transient interference has caused perturbation of the stationary state, the
system will return to its initial stationary condition. This can be shown
with the aid of Eq. (7). Assume that the system reached a stationary
state for which the forces X1, X2, . . . , Xk were held fixed. Apply a vir-
tual perturbation δXm to one of the unconstrained forces (m > k). The
flux Jm =

∑
LmjXj , which is zero in the unperturbed state, will assume

the nonzero value δJm = Lmm(δXm) in the perturbed state.

Since σ =
∑∑

LijXiXj ≥ 0, we see that the coefficient Lmm > 0, so
that δσ ≈ (δJm)(δXm) = Lmm(δXm)2 > 0. Thus, the above principle of min-
imum entropy production will force (δXm) to decrease. Then, the flux (δJm)
will tend to nullify the perturbation δXm which caused it, and eventually re-
store the unperturbed stationary state.

This is exactly the principle of le Châtelier (1888) for thermostatic equi-
librium (k = 0); It was extended to k = 1 by Prigogine (1947) and for
arbitrary k by de Groot (1951).

The application of some of the above ideas to biological phenomena started
already in 1932, when L. von Bertalanffy advanced the hypothesis that living
organisms and cells should be treated as open thermodynamic systems. A
similar notion was expounded by E. Schrödinger (1943), who drew attention
to the fact that biological organisms only survive by continuously exchanging
matter with their surroundings.

Therefore, living structures need not necessarily follow the law of increas-
ing disorder. But in order to perform vital tasks, cells must generate non-
equilibrium conditions in their environment.

Prigogine’s theory1080 (1946) accounted for several features of life which
previously appeared to be inconsistent with the laws of physics, and for which

1080 For further reading, see:

• Babloyantz, A., Molecules, Dynamics and Life, Wiley, 1986, 345 pp.

• Nicolis, G. and I. Prigogine, Self-Organization in Nonequilibrium Systems,

Wiley, 1977, 491 pp.
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explanation was sought in terms of ideas foreign to physical science. More-

over, the theory of open systems provided quantitative laws regulating basic

biological phenomena, such as metabolism and growth.

Like some inanimate matter (planets, for example), but much more so,

the growth of living organisms and their cells is characterized by transitions

leading to states of ever greater order and increasing differentiation; and once

the adult stage is reached, the organism reverts to gradual decay to the state

of equilibrium (a.k.a. death).

The apparent conflict between the principles governing the behavior of

animate and inanimate bodies may be easily resolved if one treats a living

organism as an open system, which exchanges both energy and matter with

its environment. For a system of this kind, an increase in the entropy s (per

unit volume) may be avoided by an importation from outside of the negative
amount of entropy (Schrödinger, 1943), with des

dt exceeding in absolute value

the inescapable positive production of entropy σ = dis
dt inside the living

object.

The main contribution to the local entropy production σ arises from

metabolism, that is, from the chemical and physical changes continuously

occurring in living organisms and cells. Metabolism comprises processes by

which assimilated food is built up into protoplasm and broken down into

simpler substances or waste matter.

During the period of growth
∣
∣des

dt

∣
∣ >

∣
∣dis

dt

∣
∣ and since des

dt < 0 their sum
ds
dt < 0. This decrease in the organism’s entropy s manifests itself in improved

organization and greater differentiation of the protoplasmic structure. The

withdrawal of negative entropy from the environment is a device whereby a

living organism succeeds in keeping alive, or postponing the final state of

equilibrium which is the fate of inanimate matter in isolation.

Life is therefore an extreme case of a nonequilibrium process. Living

species evolve toward states of minimum internal entropy production (Pri-

gogine, 1946), or minimum metabolism (thus in particular ∂σ
∂t → 0, not to be

confused with the steady state ∂S
∂t = 0). This hypothesis is supported by the

following observations among animals resembling one another closely: (1) the

intensity of metabolism per unit mass diminishes as the size of the animal

increases; (2) migrant animals usually settle in environments allowing them

to function with a minimum of metabolism.

All these aspects of thermal physics were completely overlooked by classi-

cal thermodynamics.
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1947–1948 CE John Bardeen (1908–1991, U.S.A.), Walter Houser
Brattain (1902–1987, U.S.A.) and William Bradford Shockley (1910–
1989, U.S.A.) invented the point-contact transistor. In 1948, Shockley devel-
oped the theory of the junction transistor. The three received the Nobel prize
for physics in 19561081.

1947–1951 CE Fritz Albert Lipmann (1899–1986, U.S.A.). Biochemist.
Opened the way to current understanding of bioenergetics and clarified the
relationship between energy use and its storage in metabolism. Discovered
the coenzyme A, a key substance in the human body metabolism.

Suggested that there were two types of phosphate bonds; the ordinary kind,
such as existed in a sugar phosphate, was a “low-energy phosphate bond”,
while the pyrophosphate link was an example of a “high-energy phosphate
bond”. Proposed that the high-energy phosphate bond, and its transfer to and
from ATP and other molecules, was a ‘common currency’ of energy transfer
in biology.

Lipmann was born in Königsberg, Germany, to Jewish parents. Emigrated
to the United States (1939). Professor at Harvard University (1941–1957) and
at Rockefeller University (1957–1970). Awarded the Nobel prize for physiol-
ogy or medicine (1953).

1081 John Bardeen was twice a Nobel Prize winner (1965, 1972) as were Marie

Curie, F. Sanger and L.C. Pauling.
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The Chemistry of Life–
From Magendie to Lipmann (1816–1951)

Biochemistry is the study of the chemistry of living matter and the chem-
ical changes that matter undergoes. Life in its many forms, whether plant
or animal, is made up of (usually microscopic) units known as cells. A living
organism may be the single cell of bacteria, or it may be a complex organism
such as man. Compounds present in every cell can be classified as carbohy-
drates, fats and proteins. Vitamins, enzymes, hormones, and nucleic acids are
also present but in smaller quantities.

Man gets his fuel supply primarily from sugars, cereal grains, vegetables,
fruits, nuts, and to a lesser degree from animal sources.

1. History

Until the end of the 19th century, most advances in the chemistry of biolog-
ical processes came from physiologists. Much of their biochemical discoveries
were incidental to their major work. These physiologists were mainly con-
cerned with the mechanics of bodily organs and to a lesser extent they inves-
tigated chemical processes, so an overall view of the biochemical functioning
of the body was not obtained.

The most important early result of the development of organic chemistry,
from the viewpoint of biochemistry, was the demonstration that natural or-
ganic compounds are subject to the same laws as inorganic substances. The
urea synthesis of Friedrich Wöhler (1828) and the subsequent advances in
organic syntheses by Marcellin Berthelot (1860) totally undermined the
support for the vitalistic hypothesis that a special force controlled living mat-
ter.

Many important discoveries were made in the 19th century, but they were
like isolated pieces of a jigsaw puzzle. The science was called physiological
chemistry at this period, since it was used to help understand specific physi-
ological problems.

It was only at the end of the 19th century that the pieces began to fit
together so that a unified picture of the chemical changes in the cells and
their significance for the body as a whole could be obtained. The borderline
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between physiology and chemistry then became a science in its own right, espe-
cially after the seminal discoveries of Julius von Sachs (1865) and Richard
Willstätter (1910) in the field of photosynthesis.

By about 1920, biochemistry possessed the basic principles upon which it is
still developing. The chemical nature of the body constituents was fairly well
understood, the nutritional requirements could be seen, and the enzymatic
and hormonal mechanisms by which metabolic processes are enabled were at
least known to exist.

2. The chemical elements of life

Of the 92 naturally occurring elements, 24 elements have been shown to be
essential for the growth of young animals (Tables 5.23, 5.24). The background
of the selection of these particular elements is as follows.

Three characteristics of the biosphere or of the elements themselves appear
to have played a major part in establishing the chemistry of living forms
and directly influenced the evolutionary selection of the elements essential for
life:

• The ubiquity of water (Table 5.25), the solvent base of all life on earth.
Water is a unique compound; its stability and boiling point are both
unusually high for a molecule of its simple composition. Many other
compounds essential for life derive their usefulness from their response
to water: whether they are soluble or insoluble, whether or not (if they
are soluble) they carry an electric charge in solution and, not least, what
effect they have on the viscosity of water.

Nearly all physical properties of water are either unique or are at the
extreme end of the range of a property. Its extraordinary physical prop-
erties, in turn, endow it with a unique chemistry. The main physical
characteristics of water from which follows its biological importance, are:

I. Water remains a liquid within the temperature range most suited
to life processes. Water ice in the temperature range 0 ◦C–4 ◦C
will float on top of liquid water. The fact that water freezes from
the surface downward rather then from the bottom upward has
important biological significance.
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Table 5.23: The chemical elements of life

Element A (%)1 (%)2 Comments

Hydrogen H 1 (10) (63) Required for water and organic
compounds.
The most abundant cosmic element.
Significant in plants.

Boron B 5
Carbon C 6 (18) (9.5) Required for organic compounds.

Due to its high valency and small
radius is a constituent of many
molecules.

Nitrogen N 7 (3) (1.4) Required for many organic com-
pounds.

Oxygen O 8 (65) (25.5) Required for water and organic
compounds.

Fluorine F 9 Constituent of teeth and bones.
Growth factor.

Sodium Na 11 (.15) (.03) Principal extracellular cation.
Magnesium Mg 12 (.05) (.01) Required for activity in many

enzymes; in chlorophyll.
Aluminum Al 13
Silicon Si 14 Structural unit of diatoms.
Phosphorus P 15 (1.0) (.22) Essential for biochemical synthesis

and energy transfer.
Sulfur S 16 (.25) (.05) Required for proteins and other

biological compounds.
Chlorine Cl 17 (.15) (.03) Principal cellular and extracellular

anion.
Potassium K 19 (.35) (.06) Principal cellular cation.
Calcium Ca 20 (1.5) (.31) Major component of bone. Required

for some enzymes. (Lipid digestion.)
Vanadium V 23 Essential in lower plants. Certain

marine animals.
Chromium Cr 24 Essential for higher animals. Action

of insulin.
Manganese Mn 25 Required for activity of several

enzymes. (Pyruvate metabolism.
Urea formation.)
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Table 5.23: (Cont.)

Element A (%)1 (%)2 Comments

Iron Fe 26 (.004) Most important transition metal
ion. Essential for hemoglobin and
many enzymes.

Cobalt Co 27 Required for activity of several
enzymes; in vitamin B12.
(DNA biosynthesis. Amino acid
metabolism.)

Nickel Ni 28
Copper Cu 29 Essential in enzymes and hemocyanin.

(Elasticity of aortic walls. Skin
pigmentation. Photosynthesis.)

Zinc Zn 30 Required for activity of many
enzymes. (Alcohol metabolism.
Protein digestion. CO2 formation.)

Selenium Se 34 Essential for liver function.
Bromine Br 35
Strontium Sr 38
Molybdenum Mo 42 Required for activity of several

enzymes. (Purine metabolism.
Nitrate utilization.)

Rubidium Ru 44 Bacteria and algae.
Cadmium Cd 48
Tin Sn 50 Function unknown.
Iodine I 53 Essential constituent of the thyroid

hormones.
Barium Ba 56

A = Atomic number = number of protons in the nucleus of an atom or the

number of electrons around the nucleus.

(%)1 = Percentage of weight of adult

(%)2 = Percentage of total number of atoms of human body

Percentage data is incomplete.



1947 CE 4749

Table 5.24: Discoverers of the Elements (up to 1886)

(arranged chronologically according to date of discovery)

Atomic
Element Symbol Discoverer Country Datenumber

Carbon C 6 Known to the ancients Isaiah 54, 16
Sulfur S 16 Known to the ancients Genesis 19, 24
Iron Fe 26 Known to the ancients ca 4000 BCE

Copper Cu 29 Known to the ancients ca 4000 BCE

Tin Sn 50 Known to the ancients ca 4000 BCE

Phosphorus P 15 Hennig Brand Germany 1669
Cobalt Co 27 Georg Brandt Sweden 1737
Hydrogen H 1 Henry Cavendish England 1766
Nitrogen N 7 Daniel Rutherford Scotland 1772
Oxygen O 8 Joseph Priestley England 1774

Carl Scheele Sweden 1774
Chlorine Cl 17 Carl Scheele Sweden 1774
Manganese Mn 25 Johann Gahn Sweden 1774
Molybdenum Mo 42 Carl Scheele Sweden 1778
Strontium Sr 38 A. Crawford Scotland 1790
Chromium Cr 24 Louis Vauquelin France 1797
Sodium Na 11 Humphry Davy England 1807
Potassium K 19 Humphry Davy England 1807
Calcium Ca 20 Humphry Davy England 1808
Boron B 5 Humphry Davy England 1808

J.L. Gay-Lussac France 1808
Magnesium Mg 12 Humphry Davy England 1808
Barium Ba 56 Humphry Davy England 1808
Iodine I 53 Bernard Courtois France 1811
Cadmium Cd 48 Friedrich Stromeyer Germany 1817
Selenium Se 34 Jöns Berzelius Sweden 1817
Silicon Si 14 Jöns Berzelius Sweden 1823
Aluminum Al 13 Hans C. Oersted Denmark 1825
Bromine Br 35 Antoine Balard France 1826
Vanadium V 23 Nils Sefström Sweden 1830
Rubidium Ru 44 Robert Bensen Germany 1861

Gustav Kirchhoff Germany 1861
Flourine F 9 Henri Moissan France 1886
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II. Water has (almost) the highest specific heat among known liquids
(the ability to store heat energy for a given increase in temper-
ature). The same is true of water’s latent heat of vaporization,
which is a major energizer of the atmosphere.

Its high specific heat means that, for a given rate of energy input,
the temperature of a given mass of water will rise more slowly
than the temperature of most other materials. Conversely, as en-
ergy is released, its temperature will drop more slowly. This slow
warming and cooling, together with other important factors, af-
fects yearly, daily and even hourly changes in the temperature of
oceans and lakes, which are quite different from the corresponding
changes in the temperature of land.

III. Water has the greatest thermal conductivity of all liquids.

IV–V. The dielectric constant of water, with the exception of few other
solvents, is greater than for any other substance. A related prop-
erty is that (even distilled) liquid water is an ionic solution and
one that always contains some hydrogen ions. Water’s hydrogen
bond1082 structure is also responsible for the water having the
greatest surface-tension of any liquid known (mercury excluded).

1082 The forces between water molecules are very strongly directional : they arise

from the interaction between electron-deficient hydrogen atoms in one molecule

and electron-rich oxygen atoms in another. (The hydrogen bond, Pauling,

1931). In the solid state (ice) this hydrogen bonding leads to a very open

structure in which every molecule of water is surrounded symmetrically (in the

form of a regular tetrahedron) by 4 other water molecules. As the temperature

is raised, the mean distance between molecules increases. There is thus a small

decreasing in density with increasing temperature as with all ‘normal’ solids.

At the melting point, however, the tetrahedral structure is partly destroyed ,

and the water molecules are packed more closely together, causing the water

to have greater density than ice; with rising temperature this effect increases,

but ceases at 3.98 ◦C when the tetrahedral lattice structure has been fully

destroyed.

A further increase of temperature beyond 4 ◦C causes normal expansion closely

related to an overall increase in mean distance between molecules by molecular

agitation.

The abnormally large dielectric constant of water, which is responsible for the

striking power of water to dissolve ionic substances, is also closely related to its

power to form hydrogen bonds. But water is not just a collection of individual

molecules; it is a cluster of mutually attracted molecules.
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Water is involved in photosynthesis, the basis of all life on earth, in two
ways: in transit (as part of the transpiration stream) and in residence
(as its hydrogen is chemically bound into the plant structure).

• The chemical properties of carbon, which evolution selected over silicon
as the central building block for constructing giant molecules. Silicon is
146 times more plentiful than carbon in the earth’s crust and exhibits
many of the same properties. Silicon is in the same column and directly
below carbon in the periodic table of the elements: like carbon it has the
capacity to gain 4 electrons and form 4 covalent bonds.

Yet, the unusual stability of CO2 (readily soluble in water and always
remains a single molecule) and the unique ability of carbon to form long
chains and stable rings with 5 or 6 members (this versatility of the carbon
atom is responsible for the millions of organic compounds found on earth)
— are the crucial differences that led to the preference by life for carbon
compounds over silicon compounds. It may very well be that carbon
chemistry is the only possible basis for life.

• Atomic sizes and charge density: The four most abundant atoms in living
organisms — hydrogen, carbon, oxygen and nitrogen — have atomic
numbers of 1, 6, 8 and 7. This preponderance seems attributable to
their being the smallest and lightest elements that can achieve stable
electronic configurations by adding one to four electrons.

The ability to add electrons by sharing them with other atoms is the first
step in forming chemical bonds leading to stable molecules. Many other
elements are excluded on the basis of being too radioactive, too inert,
unavailable or toxic.

Besides the three major classes of foodstuffs, the body needs the mineral
elements listed in Table 5.23. While these elements do not provide energy,
they are necessary for metabolism and other body processes. Over 96 percent
of the human body is composed of O, C, H and N which make up the water
and organic constituents of the body. The other elements are present in the
form of inorganic salts. The general functions of inorganic salts are:

• Maintain the rigid structure of the body.

• Build and repair tissues.

• Maintain the normal contractility of muscles and the irritability of nerves.

• Act as buffers and help maintain body neutrality.

• Maintain a constant osmotic pressure.

• Supply material for the production of digestive juices.
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Table 5.25: Physical properties of water

Compared to other
Property Discovered by

substances

Specific heat Black (1760) Highest of all substances
(ca 1 cal/g. ◦C at 1 atm except liquid NH3

and between 0 ◦C and 100 ◦C)

Significance: Prevents extreme climatic temperature changes. Tends to
maintain uniform body temperature.

Latent heat of fusion Black (1761) Highest except NH3

(79.71 cal/g at 0 ◦C
and 1 atm)

Significance: At freezing-point causes thermostatic effect due to release of
absorption heat.

Latent heat of Black (1761) One of the highest of all
vaporization substances. The volume of
(539 cal/g at 1 atm) water evaporated per unit

of energy input is less than
it would be for any other
liquid

Significance: Aids in heat transfer between water and land. Aids in control
of body temperature through evaporation of water as in perspiration.
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Table 5.25: (Cont.)

Compared to other
Property Discovered by

substances

Dielectric constant Davy (1812) Surpassed only by liquid
(dissolving tendency) HCN, H2O2

(ε0 ∼ 80 at 23 ◦C)

Significance: All living cells depend on dissolved substances for nutrition.

Surface tension Jurin (1719) Greatest than any known
(water/air) Von Segner (1751) liquid (except mercury)
73(×10−3 N/m at 20 ◦C)

Significance: Water uses its free energy to lift itself into the porous and
cellular systems of soil and plants. In the soil, more liquid can be retained as
water because of its high surface tension.

Hydrogen bond Pauling (1931) Water forms an angular
(3–6 Kcal/mol) molecule because the

4 electron pairs (2 bonding
and 2 nonbonding) repel
each other. The protons
serves as an intermolecular
glue between the strongly
electronegative oxygen
atoms

Significance: Ubiquitous in all living cells. The relative weakness of the
hydrogen-bond as compared with the intra-molecular covalent bond (20 times
energetically weaker) makes it important in living tissues. Enzymes, genes and
protoplasm are relatively unstable due to the weak hydrogen-bond.
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• Act as cofactor of certain enzymes.

In plants, the three elements C, H, O enter mainly as CO2 and H2O; all of

the other required elements must be in a water-soluble salt or ionic form in the

soil solution, being taken up with the water that all living cells require. These

minerals originate in the soil as it formed from rock, and they are normally

replaced in the soil as plants and animals decay. Small amounts arrive as rain

washes down particulate matter suspended in the air.

Thus there are mineral cycles in which a molecule of, say, potassium phos-

phate moves from soil to plant to animal (in bacterium or fungus) and then

back to soil. If the cycle is broken when a plant is harvested, a need to

replenish the soil is established. Some minerals are present in such large con-

centrations that artificial renewal is rarely necessary; Ca, S, Na and Cl (as

table salt) may sometimes present in excess.

Of the required minerals, nitrogen is frequently limited in supply. Al-

though 78% of air is nitrogen gas (N2), elemental nitrogen must be trans-

formed into ionic form (ammonium ion NH+
4 or nitrate ion NO−

3 ) before

plants can absorb and use it.

Natural fixation of the element into ions can occur with lightning, but the

bulk of nitrogen is fixed by the biochemical activities of free-living bacteria
and blue-green algae, or by bacteria in the root nodules of legumes and a

few other plants. In all living cells, nitrogen atoms and ammonium ions are

constituents of thousands of different compounds. In order to make a protein

macromolecule, several thousand nitrogen-containing amino acids are linked

together; 16% (by mass) of protein is nitrogen.

Complex rings of oxygen and nitrogen atoms form the purine and pyrim-
idine constituents of nucleic acids; the genetic code is a nitrogen-containing

molecular arrangement; alkaloids, vitamins, and many other chemical con-

stituents of life are either nitrogen-containing or have their synthesis and

degradation controlled by proteinaceous enzymes. Cellular growth and devel-

opment is thus directly limited by the supply of nitrogen.

The phosphorus atom has 5 electrons in its outer shell. It can share each

of three of its electrons with other atoms, accepting a share in three of theirs,

so that a stable configuration of 8 (a complete 2s+2p shell) is obtained. The

unshared pair can be donated to an atom that happens to be short of two

electrons to make up the total of 8 that it requires, e.g., oxygen with only 6
electrons in its outer shell. This is known as a coordinate bond. The valence

situation for phosphorus is thus 3 covalent plus one coordinate.
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The most important compound of phosphorus is the phosphoric acid in
which all four bonds of the phosphorus atom are attached to oxygen atoms
(arrow indicates a coordinate-bond),

O—H
|

H—O—P→O
|
O—H

This molecule is (H3PO4) denoted in shorthand as H—O—©P . When

combined with adenosine it will yield upon condensation (the reaction of two
or more molecules to form larger molecules with or without the elimination
of small molecules, such as water)

R—O—H + H—O—©P ⇒ R—O—©P + H2O.

Here R—O—©P is adenosine monophosphate. The addition of another

phosphate yields adenosine diphosphate (ADP) which is a high-energy phos-
phate bond. This molecule is similar to a wound-up spring toy; as the spring is
unwound, the energy is released. The addition of a third phosphate bond leads
to adenomine triphosphate (ATP; C10H12O13N5P3) which has two energy-rich
bonds.

Such compounds play an important role in energy transfer within the
body and in the powering of biochemical reactions. They are also much used
in the metabolism of foods and in the construction of proteins from the DNA

template.
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The structural formula of the ATP molecule (some carbons and hydrogens not la-
beled) is

Fig. 5.23: Adenosine 5-triphosphate (ATP)

It is formed from three components. The central part is a sugar molecule
(ribose) in the form of a five-member ring resembling one form of the fructose
molecule. Attached to this are the two other components. One is the adenine
base consisting of linked five- and six-member rings of carbon and nitrogen
atoms. The combination of the ribose and the base make up a unit called a
nucleoside. Another atom of the ribose ring is attached to a string of three
phosphate groups, and this string is where the “action” is.

3. The strength of chemical bonds

and chemical criteria for life

Heat makes a molecule vibrate, rotate and move randomly; the proba-
bility that a molecule will come apart at temperature T , is proportional to
{e−E/kT }, where E is the binding energy and k is Boltzmann’s constant; the
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Table 5.26: Chemical bond energies

Bond Bond strength at 15 ◦C

eV/molecule Kcal/mol

O—O 1.44 33.12
N—N 1.66 38.18
C—N 3.02 69.46
C—C 3.60 82.80
C—O 3.64 83.72
C—H 4.28 98.44
H—H 4.51 103.73
N——N Nitrogen 4.90 112.70
O——O Oxygen 2.58 59.34
H—OH Water 5.16 118.68
O——CO Carbon dioxide 5.50 126.50
H—CH3 Methane 4.51 103.73
H—NH2 Ammonia 4.77 109.71
N—CHO Formaldehyde 3.77 86.71

higher the temperature, the greater the amplitude of the random motions,
and thus the more likely the components of the molecule are to dissociate.
However, the rate of dissociation will also depend upon the frequency of the
exciting vibration. A resonance occurs when the wavelength λ of the driving
oscillator is equal to the bond-length. If one takes λ = 10−8 cm, c (velocity)
= 105 cm

sec (sound wave in solid), one finds that f = c
λ = 1013 Hz, what

is just the order of frequency of infrared radiation that is observed to excite
vibrational modes in molecules.

If the binding energy is E = kT , the dissociation probability is ∼ 1
3 ,

namely, a life time of about 3 oscillations – corresponding to a dissociation
rate of just over 1012 sec−1, or to a lifetime of just under one picosecond
(10−12 sec). The lifetime reaches about a second when E = 30 kT, and
roughly one year when E = 47 kT. A typical covalent bond binding energy
is of order 100kT, as can be deduced from Table 5.26.

Another way of looking at the thermal stability of bonds is radiatively.
At room temperature kT is about 0.025 eV; the wavelength at the maxi-
mum of the blackbody emission at this temperature is in the infrared, with
λm = 100, 000 Å. This corresponds to a photon energy of 0.12 eV. It is thus
clear that any atomic structures held together by binding energies less than a
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few tenths of an electron vole (about 7 Kcal/mol) are going to be unstable at
ordinary temperature. Not surprisingly, the strength of the chemical bond in
materials commonly found in animate and inanimate matter, is significantly
greater than this (Table 5.26).

The rate of chemical reactions between two molecules will depend upon
all sorts of factors. Most important will be the frequency of collisions, for it is
only when the molecules are close together that a chemical reaction can occur.
The collision frequency will depend upon molecular concentrations and how
fast molecules move around. Molecules in a solid may be present in extremely
high concentrations but usually cannot move around, so chemical reactions
within solids are virtually ruled out. In gases, molecules can move around
very easily but are present in low concentration, whereas in liquids movement
is impeded but the concentration is high. Chemical reactions in biology occur
mostly in liquid states.

Not all collisions result in chemical reaction. There is sometimes a barrier
to overcome before atoms can be exchanged between, or added to molecules.
If this energy barrier is very large compared with the energy involved in the
collision, which itself is determined by the temperature, reaction will be very
rare.

If the environment is to be chemically active, the prevailing temperature
must not be so high that few stable molecules can exist, nor so low that chem-
ical reactions are inhibited. Outside of this temperature range chemically-
based life cannot exist. This range is largely determined by the quantum me-
chanical forces of electromagnetism, which determine the strength of chemical
bonds.

To creatures for whom a microsecond is an age or for whom a thousand
years is a mere moment, the problem would look very different. But to us,
and our fellow life-forms, with our circadian, monthly and annual rhythms,
our common carbon chemistry and our dependence, directly or indirectly, on
solar energy, it seems necessary that molecules remain stable for a matter of
years, but are to indulge in reactions as rapidly as perhaps a 1000 times per
second.

With these parochial criteria the dissociation rate must not greatly exceed
10−7 sec−1, and the reaction rate must not fall much below 1000 sec−1. With a
binding energy of, say, E = 3 eV, the dissociation rate constraint corresponds
to an upper temperature of 500 ◦C. If we relax our stability criterion by a
factor of 100, so that a molecule with a binding energy of 3 eV is stable
over a day rather than a year, the upper limit rises to about 750 ◦C. But we
cannot push the lower limit down much below, say −20 ◦C, on the grounds
that very few bulk aggregates of polyatomic molecules remain liquid, and
chemical reactions between solids occur only very slowly. A temperature of
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−73 ◦C, which is just above the points at which CO2 and NH3 become solids,
is about the lower limit.

On the other hand, even if we relax the condition that molecules can last at
least a day or so, chemically-based life cannot exist under conditions in which
the dissociation rate equals the reaction rate; taking again E = kT = 3 eV,
we obtain T = 6000 ◦K. Thus, if we predicate the possibility of life upon
the possibility of chemical processes, we see that the environment must offer
a temperature range between about 200 ◦K and 6000 ◦K. Since the latter is
of the order of the surface temperature of our sun and many other stars, it
is probable that life (at least the chemistry-based category) can only exist on
planets, and only on those warmed to at least 200 K by their local star and/or
their geochemistry.

This theoretical temperature range seems large, but it is narrow compared
with the range from near 3 ◦K in deepest space to over 109 K in the interior
of massive stars. This cosmically narrow range, so important for life, is a re-
markable consequence of electromagnetic interaction combined with quantum
mechanics.

4. The Molecular Structure Of Life

A. CARBOHYDRATES

Sugars, starches, and cellulose are carbohydrates. Sugars and starches serve
as energy sources for cells; cellulose is the main structural component of the
walls that surround plant cells. Carbohydrates contain carbon, hydrogen,
and oxygen atoms in a ratio of approximately one carbon to two hydrogens to
one oxygen (CH2O)n. The term carbohydrate, meaning “hydrate (water) of
carbon,” reflects the 2:1 ratio of hydrogen to oxygen the same ratio found in
water (H2O). Carbohydrates contain one sugar unit (monosaccharides), two
sugar units (disaccharides), or many sugar units (polysaccharides).

Monosaccharides typically contain from three to seven carbon atoms. In
a monosaccharide, a hydroxyl group is bonded to each carbon except one;
that carbon is double-bonded to an oxygen atom, forming a carbonyl group.
If the carbonyl group is at the end of the chain, the monosaccharide is an
aldehyde; if the carbonyl group is at any other position, the monosaccharide
is a ketone. (By convention, the numbering of the carbon skeleton of a sugar
begins with the carbon at or nearest the carbonyl end of the open chain.)
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The large number of polar hydroxyl groups, plus the carbonyl group, gives a
monosaccharide hydrophilic properties.

The simplest carbohydrates are the three carbon sugars (trioses): glycer-
aldehyde and dihydroxyacetone. Ribose and deoxyribose are common pen-
toses, sugars that contain five carbons; they are components of nucleic acids
(DNA, RNA, and related compounds). Glucose, fructose, galactose, and other
six-carbon sugars are called hexoses. (Note that the names of carbohydrates
typically end in -ose.)

Glucose (C6H12O6), The most abundant monosaccharide, is used as an
energy source in most organisms. During cellular respiration, cells oxidize
glucose molecules, converting the stored energy to a form that can be readily
used for cell work. Glucose is also used as a component in the synthesis of
other types of compounds such as amino acids and fatty acids. Glucose is
so important in metabolism that mechanisms have evolved to maintain its
concentration at relatively constant levels in the blood of humans and other
complex animals.

Glucose and fructose are structural isomers: They have identical molecular
formulas, but their atoms are arranged differently. In fructose (a ketone) the
double-bonded oxygen is linked to a carbon within the chain, rather than to a
terminal carbon as in glucose (an aldehyde). Because of these differences, the
two sugars have different properties. For example, fructose, found in honey
and some fruits, tastes sweeter than glucose.

Glucose and galactose are both hexoses and aldehydes. However, they are
mirror images (enantiomers) because they differ in the arrangement of the
atoms attached to asymmetrical carbon atom 4.

Molecules are not 2-D; in fact, the properties of each compound depend
largely on its 3-D structure. Thus, 3-D formulas are helpful in understanding
the relationship between molecular structure and biological function. Mole-
cules of glucose and other pentoses and hexoses in solution are actually rings,
rather that extended straight carbon chains.

Glucose in solution (as in the cell) typically exists as a ring of five carbons
and one oxygen. It assumes this configuration when its atoms undergo a
rearrangement, permitting a covalent bond to connect carbon 1 to the oxygen
attached to carbon 5. When glucose forms a ring, two isomeric forms are
possible, differing only in orientation of the hydroxyl (—OH) group attached
to carbon 1. When this hydroxyl group is on the same side of the plane of
the ring as the —CH2OH side group, the glucose is designated beta glucose
(β-glucose). When it is on the side (with respect to the plane of the ring)
opposite the —CH2OH side group, the compound is designated alpha glucose
(α-glucose). Although the differences between these isomers may seem small,
they have important consequences when the rings join to form polymers.



1947 CE 4761

A disaccharide (two sugars) contains two monosaccharide rings joined by a
glycosidic linkage, consisting of a central oxygen covalently bonded to two car-
bons, one in each ring. The glycosidic linkage of a disaccharide generally forms
between carbon 1 of one molecule and carbon 4 of the other molecule. The
disaccharide maltose (malt sugar) consists of two covalently linked α-glucose
units. Sucrose, common table sugar, consists of a glucose unit combined with
a fructose unit. Lactose (the sugar present in milk) consists of one molecule
of glucose and one of galactose.

A polysaccharide is a macromolecule consisting of repeating units of simple
sugars, usually glucose. The polysaccharides are the most abundant carbo-
hydrates and include starches, glycogen, and cellulose. Although the precise
number of sugar units varies, thousands of units are typically present in a
single molecule. A polysaccharide may be a single long chain or a branched
chain. Because they are composed of different isomers and because the units
may be arranged differently, polysaccharides vary in their properties. Those
that can be easily broken down to their subunits are well suited for energy
storage, whereas the macromolecular 3-D architecture of others makes them
particularly well suited to form stable structures.

Starch, the typical form of carbohydrate used for energy storage in plants,
is a polymer consisting of α-glucose subunits. These monomers are joined by
α 1—4 linkages, which means that carbon 1 of one glucose is linked to carbon
4 of the next glucose in the chain. Starch occurs in two forms: amylose and
amylopectin. Amylose, the simpler form, is unbranched. Amylopectin, the
more common form, usually consists of about 1000 glucose units in a branched
chain.

Plant cells store starch mainly as granules within specialized organelles
called amyloplasts; some cells, such as those of potatoes, are very rich in
amyloplasts. Virtually all organisms have enzymes that can break α 1—
4 linkages. When energy is needed for cell work, the plant hydrolyzes the
starch, releasing the glucose subunits. Humans and other animals that eat
plant foods also have enzymes to hydrolyze starch.

Glycogen (sometimes referred to as animal starch) is the form in which
glucose subunits, joined by α 1—4 linkages, are stored as an energy source
in animal tissues. Glycogen is similar in structure to plant starch but more
extensively branched and more water soluble. Glycogen is stored mainly in
liver and muscle cells.

Carbohydrates are the most abundant group of organic compounds on
earth, and cellulose is the most abundant carbohydrate; it accounts for 50%
or more of all the carbon in plants. Cellulose is a structural carbohydrate.
Wood is about half cellulose, and cotton is at least 90% cellulose. Plant cells
are surrounded by strong supporting cell walls consisting mainly of cellulose.
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Cellulose is an insoluble polysaccharide composed of many glucose mole-
cules joined together. The bonds joining these sugar units are different from
those in starch. Recall that starch is composed of α-glucose subunits, joined
by α 1—4 glycosidic linkages. Cellulose contains β-glucose monomers joined
by β 1—4 linkages. These bonds cannot be split by the enzymes that hy-
drolyze the α linkages in starch. Because humans, like other animals, lack
enzymes that digest cellulose, we cannot use it as a nutrient. The cellulose
found in whole grains and vegetables remains fibrous and provides bulk that
helps keep our digestive tract functioning properly.

Some microorganisms digest cellulose to glucose. In fact, cellulose-
digesting bacteria live in the digestive systems of cows and sheep, enabling
these grass-eating animals to obtain nourishment from cellulose. Similarly, the
digestive systems of termites contain microorganisms that digest cellulose.

Cellulose molecules are well suited for a structural role. The β-glucose
subunits are joined in a way that allows extensive hydrogen bonding among
different cellulose molecules, and they aggregate in long bundles of fibers.

Many derivatives of monosaccharides are important biological molecules.
Some form important structural components. The amino sugars galac-
tosamine and glucosamine are compounds in which a hydroxyl group (—OH)
is replaced by amino group (—NH2). Galactosamine is present in cartilage, a
constituent of the skeletal system of vertebrates. N-acetyl glucosamine (NAG)
subunits, joined by glycosidic bonds, compose chitin, a main component of
the cell walls of fungi and of the external skeletons of insects, crayfish, and
other arthropods. Chitin forms very tough structures, such as the shell of a
lobster, are further hardened by the addition of calcium carbonate (CaCO3,
an inorganic form of carbon).

Carbohydrates may also combine with proteins to form glycoproteins, com-
pounds present on the outer surface of cells other than bacteria. Some of these
carbohydrate chains allow cells to adhere to one another, whereas others pro-
vide protection. Most proteins secreted by cells are glycoproteins. These in-
clude the major components of mucus, a complex protective material secreted
by the mucous membranes of the respiratory and digestive systems. Carbo-
hydrates combine with lipids to form glycolipids, compounds on the surface
of animal cells that allow cells to recognize and interact with one another.
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B. LIPIDS

Unlike carbohydrates, which are defined by their structure, lipids are a het-
erogeneous group of compounds that are categorized by the fact that they are
soluble in nonpolar solvents (such as ether and chloroform) and are relatively
insoluble in water. Lipid molecules have these properties because they con-
sist mainly of carbon and hydrogen, with few oxygen-containing functional
groups. Hydrophilic functional groups typically contain oxygen atoms; there-
fore lipids, with little oxygen, tend to be hydrophobic. Among the biologi-
cally important groups of lipids are fats, phospholipids, carotenoids (orange
and yellow plant pigments), steroids, and waxes. Some lipids are used for
energy storage, other serve as structural components of cellular membranes,
and some are important hormones.

The most abundant lipids in living organisms are triacylglycerols. These
compounds, commonly known as fats, are an economical form of reserve fuel
storage because, when metabolized, they yield more than twice as much en-
ergy per gram as do carbohydrates. Carbohydrates and proteins can be trans-
formed by enzymes into fats and in some seeds and fruits of plants.

A triacylglycerol molecule (also known as a triglyceride) consists of glycerol
joined to three fatty acids. Glycerol is a three-carbon alcohol that contains
three hydroxyl (—OH) groups, and a fatty acid is long, unbranched hydro-
carbon chain with a carboxyl group (—COOH) at one end. A triacylglycerol
molecule is formed by a series of three condensation reactions. In each reac-
tion, the equivalent of a water molecule is removed as one of the glycerol’s
hydroxyl groups reacts with the carboxyl group of a fatty acid, resulting in
the formation of a covalent linkage known as an ester linkage. The first re-
action yields a monoacylglycerol(monoglyceride); the second, a diacylglycerol
(diglyceride); and the third, a triacylglycerol. During digestion triacylglyc-
erols are hydrolyzed to produce fatty acids and glycerol. Diacylglycerol is an
important molecule for sending signals within the cell.

About 30 different fatty acids are commonly found in lipids, and they
typically have an even number of carbon atoms. For example, butyric acid,
present in rancid butter, has four carbon atoms. Oleic acid, with 18 carbons,
is the most widely distributed fatty acid in nature and is found in most animal
and plant fats.

Saturated fatty acids contain the maximum possible number of hydrogen
atoms. Palmitic acid, a 16-carbon fatty acid, is a common saturated fatty
acid. Fats high in saturated fatty acids, such as animal fat and solid veg-
etable shortening, tend to be solid at room temperature. This is because
even electrically neutral, nonpolar molecules can develop transient regions of
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weak positive charge and weak negative charge. This occurs as the constant
motion of their electrons causes some regions to have a temporary excess
of electrons, whereas others have a temporary electron deficit. These slight
opposite charges result in attractions, known as van der Waals interactions,
between adjacent molecules. Although van der Waals interactions are indi-
vidually weak, they can be strong when many occur among long hydrocarbon
chains.

Unsaturated fatty acids include one or more adjacent pairs of carbon atoms
joined by a double bond. Therefore they are not fully saturated with hy-
drogen. Fatty acids with one double bond are monounsaturated fatty acids,
whereas those with more than one double bond are polyunsaturated fatty acids.
Oleic acid is a monounsaturated fatty acid, and linoleic acid is a common
polyunsaturated fatty acid. Fats containing a high proportion of monounsat-
urated or polyunsaturated fatty acids tend to be liquid at room temperature,
This is because each double bond produces a bend in the hydrocarbon chain
that prevents it from aligning closely with an adjacent chain, thereby limiting
van der Waals interactions.

Food manufacturers commonly hydrogenate or partially hydrogenate cook-
ing oils to make margarine and other foodstuffs, converting unsaturated fatty
acids to saturated fatty acids and making the fat more solid at room tem-
perature. This process makes the fat less healthful because saturated fatty
acids in the diet are known to increase the risk of cardiovascular disease.
The hydrogenation process has yet another effect. Note that in the natu-
rally occurring unsaturated fatty acids oleic acid and linoleic acid, the two
hydrogens flanking each double bond are on the same side of the hydrocarbon
chain (the cis configuration). When fatty acids are artificially hydrogenated,
the double bonds can become rearranged, resulting in a trans configuration.
Trans fatty acids are technically unsaturated, but they mimic many of the
properties of saturated fatty acids. Because the trans configuration does not
produce a bend at the site of the double bond, trans fatty acids are more solid
at room temperature and, like saturated fatty acids, they increase the risk of
cardiovascular disease.

At least two unsaturated fatty acids (linoleic acid and arachidonic acid)
are essential nutrients that must be obtained from food because the human
body cannot synthesize them. However, the amounts required are small, and
deficiencies are rarely seen. There is no dietary requirement for saturated
fatty acids.

Phospholipids belong to a group of lipids, called amphipathic lipids, in
which one end of each molecule is hydrophilic and the other end is hydropho-
bic. The two ends of a phospholipid differ both physically and chemically. A
phospholipid consists of a glycerol molecule attached at one end to two fatty



1947 CE 4765

acids, and at the other end to a phosphate group linked to an organic com-
pound such as choline. The organic compound usually contains nitrogen. The
fatty acid portion of the molecule (containing the two hydrocarbon “tails”)
is hydrophobic and not soluble in water. However, the portion composed
of glycerol, phosphate, and the organic base (the “head” of the molecule) is
ionized and readily water soluble. The amphipathic properties of phospho-
lipids cause them to form lipid bilayers in aqueous (watery) solution. Thus
they are uniquely suited to function as the fundamental components of cell
membranes.

The orange and yellow pigments called carotenoids are classified with
the lipids because they are insoluble in water and have an oily consistency.
These pigments, found in the cells of all plants, play a role in photosynthe-
sis. Carotenoid molecules, such as β-carotene, and many other important
pigments, consist of five-carbon hydrocarbon monomers known as isoprene
units.

Most animals convert carotenoids to vitamin A, which can then be con-
verted to the visual pigment retinal. Three different groups of animals — the
mollusks, insects, and vertebrates — have eyes and use retinal in the process
of light reception.

Notice that carotenoids, vitamin A, and retinal all have a pattern of double
bonds alternating with single bonds. The electrons that make up these bonds
can move about relatively easily when light strikes the molecule. Such mole-
cules are pigments; they tend to be highly colored because the mobile electron
cause them to strongly absorb light of certain wavelengths and reflect light of
other wavelengths.

A steroid consists of carbon atoms arranged in four attached rings; three of
the rings contain six carbon atoms, and the fourth contains five. The length
and structure of the side chains that extend from these rings distinguish one
steroid from another. Like carotenoids, steroids are synthesized from isoprene
units.

Among the steroids of biological importance are cholesterol, bile salts, re-
productive hormones, and cortisol and other hormones secreted by the adrenal
cortex. Cholesterol is an essential structural component of animal cell mem-
branes, but when excess cholesterol in blood forms plaques on artery walls,
it leads to an increased risk of cardiovascular disease. Plant cell membranes
contain molecules similar to cholesterol. Interestingly, some of these plant
steroids are able to block the intestine’s absorption of cholesterol. Bile salts
emulsify fats in the intestine so they can be enzymatically hydrolyzed. Steroid
hormones regulate certain aspects of metabolism in a variety of animals, in-
cluding vertebrates, insects, and crabs.
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Animal cells secrete chemicals to communicate with each other or to reg-
ulate their own activities. Some chemical mediators are produced by the
modification of fatty acids that have been removed from membrane phos-
pholipids. These include prostaglandins, which have varied roles, including
promoting inflammation and smooth muscle contraction. Certain hormones,
such as the juvenile hormone of insects, are also fatty acid derivatives.

C. PROTEINS

Proteins, macromolecules composed of amino acids, are the most versatile
cell components. Scientists have succeeded in sequencing virtually all the
genetic information in a human cell, and the genetic information of many other
organisms is being studied. Some people might think that the sequencing of
genes is the end of the story, but it is actually only the beginning. Most
genetic information is used to specify the structure of proteins, and it has
been predicted that most of the 21st century will be devoted to understanding
this extraordinarily multifaceted group of macromolecules that are of central
importance in the chemistry of life. In a real sense, proteins are involved
in virtually all aspects of metabolism because most enzymes (molecules that
accelerate the thousands of different chemical reactions that take place in
an organism) are proteins. Proteins are assembled into a variety of shapes,
allowing them to serve as major structural components of cells and tissues.
For this reason, growth and repair, as well as maintenance of the organism,
depend on proteins. As shown in Table 5.27, proteins perform many other
specialized functions.

The protein constituents of a cell are the clues to its lifestyle. Each cell
type contains characteristic forms, distributions, and amounts of protein that
largely determine what the cell looks like and how it functions. A muscle cell
contains large amounts of the proteins myosin and actin, which are responsible
for its appearance as well as its ability to contract. The protein hemoglobin,
found in red blood cells, is responsible for the specialized function of oxygen
transport.

Amino acids, the constituents of proteins, have an amino group (—NH2)
and a carboxyl group (—COOH) bonded to the same asymmetrical carbon
atom, known as the alpha carbon. Twenty amino acids are commonly found in
proteins, each uniquely identified by the variable side chain (R group) bonded
to the α carbon. Glycine, the simplest amino acid, has a hydrogen atom as
its R group; alanine has a methyl (—CH3) group.

Amino acids in solution at neutral pH are mainly dipolar ions. This is
generally how amino acids exist at cell pH. Each carboxyl group (—COOH)
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Table 5.27: Major classes of proteins and their functions

Protein Class Functions and Examples
Enzymes Catalyze specific chemical reactions
Structural proteins Strengthen and protect cells and tissues (e.g., collagen

strengthens animal tissues)
Storage proteins Store nutrients; particularly abundant in eggs (e.g.,

ovalbumin in egg white) and seeds (e.g., zein in corn
kernels)

Transport proteins Transport specific substances between cells (e.g.,
hemoglobin transports oxygen in red blood cells);
move specific substances (e.g., ions, glucose, amino
acids) across cell membranes

Regulatory proteins Some are protein hormones (e.g., insulin); some con-
trol the expression of specific genes

Motile proteins Participate in cellular movements (e.g., actin and
myosin are essential for muscle contraction)

Protective proteins Defend against foreign invaders (e.g., antibodies play
a role in the immune system)

donates a proton and becomes ionized (—COO−), whereas each amino group
(—NH2) accepts a proton and becomes —NH3

+. Because of the ability of
their amino and carboxyl groups to accept and release protons, amino acids
in solution resist changes in acidity and alkalinity and therefore are important
biological buffers.

Amino acids classified as having nonpolar side chains tend to have hy-
drophobic properties, whereas those classified as polar are more hydrophilic.
An acidic amino acid has a side chain that contains a carboxyl group. At cell
pH the carboxyl group is dissociated, giving the R group a negative charge.
A basic amino acid becomes positively charged when the aminogroup in its
side chain accepts a hydrogen ion. Acidic and base chains are ionic at cell pH
and therefore hydrophilic.

In addition to the 20 common amino acids, some proteins have unusual
ones. These rare amino acids are produced by the modification of common
ones after they become part of a protein. For example, after they have been
incorporated into collagen, lysine and proline may be converted to hydroxyly-
sine and hydroxyproline. These amino acids can form cross links between the
peptide chains that make up collagen. Such cross links produce the firmness
and great strength of the collagen molecule, which is a major component of
cartilage, bone, and other connective tissues.

With some exceptions, bacteria and plants synthesize all their needed
amino acids from simpler substances. If the proper raw materials are avail-
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able, the cells of animals can manufacture some, but not all, of the biologically
significant amino acids. Essential amino acids are those an animal cannot syn-
thesize in amounts sufficient to meet its needs and must obtain from the diet.
Animals differ in their biosynthetic capacities; what is an essential amino acid
for one species may not be for another. The essential amino acids for humans
are isoleucine, leucine, lysine, methionine, phenylalanine, threonine, trypto-
phan, valine, and histidine. For children arginine is added to the list because
they do not synthesize enough to support growth.

Amino acids combine chemically with one another by a condensation re-
action that bonds the carboxyl carbon of one molecule to the amino nitrogen
of another. The covalent carbon-to-nitrogen bond linking two amino acids
together is a peptide bond. When two amino acids combine, a dipeptide is
formed; a longer chain of amino acids is a polypeptide. A protein consists of
one or more polypeptide chains. Each polypeptide has a free amino group at
one end and a free carboxyl group (belonging to the last amino acid added to
the chain) at the opposite end. The other amino and carboxyl groups of the
amino acid monomers (except those in side chains) are part of the peptide
bonds.

A polypeptide may contain hundreds of amino acids joined in a specific
linear order. The backbone of the polypeptide chain includes the repeating
sequence
N—C—C—N—C—C—N—C—C
plus all other atoms except those in the R groups. The R groups of the amino
acids extend from this backbone.

An almost infinite variety of protein molecules is possible, differing from
one another in the number, types, and sequences of amino acids they contain.
The 20 types of amino acids found in proteins may be thought of as letters
of a protein alphabet; each protein is a very long sentence made up of amino
acid letters. The polypeptide chains making up a protein are twisted or folded
to form a macromolecule with a specific conformation, or 3-D shape. Some
polypeptide chains form long fibers. Globular proteins are tightly folded into
compact, roughly spherical shapes. There is a close relationship between a
protein’s conformation and its function. For example, a typical enzyme is
a globular protein with a unique shape that allows it to catalyze a specific
chemical reaction. Similarly, the shape of a protein hormone enables it to
combine with receptors on its target cell (the cell the hormone acts on). Sci-
entists recognize four main levels of protein organization: primary, secondary,
tertiary, and quaternary. The sequence of amino acids, joined by peptide
bonds, is the primary structure of a polypeptide chain. This sequence is spec-
ified by the instructions in a gene. Using analytical methods investigators
can determine the exact sequence of amino acids in a protein molecule. The
primary structures of thousands of proteins are known. for example glucagon,
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a hormone secreted by the pancreas, is a small polypeptide, consisting of only
29 amino acids.

Primary structure is always represented in a simple, linear, “beads-on-
a-string” form. However, the overall conformation of a protein is far more
complex, involving interactions among the various amino acids that comprise
the primary structure of the molecule. Therefore, the higher orders of struc-
ture — secondary, tertiary, and quaternary — ultimately derive from the
specific amino acid sequence (the primary structure).

Some regions of a polypeptide exhibit secondary structure, which is highly
regular. The two most common types of secondary structure are the α-helix
and the β-pleated sheet; the designations α and β refer simply to the order in
which these two types of secondary structure were discovered. An α-helix is a
region where a polypeptide chain forms a uniform helical coil. Each hydrogen
bond forms between an oxygen with a partial negative charge and a hydrogen
with a partial positive charge. The oxygen is part of the remnant of the
carboxyl group of one amino acid; the hydrogen is part of the remnant of
the amino group of the fourth amino acid down the chain. Thus 3.6 amino
acids are included in each complete turn of the helix. Every amino acids in
an α-helix is hydrogen bonded in this way.

The α-helix is the basic structural unit of some fibrose proteins that make
up wool, hair, skin, and nails. The elasticity of these fibers is due to a combi-
nation of physical factors (the helical shape) and chemical factors (hydrogen
bonding). Although hydrogen bonds maintain the helical structure, these
bonds can be broken, allowing the fibers to stretch under tension (like a tele-
phone cord). When the tension is released, the fibers recoil and hydrogen
bonds reform. This is why you can stretch the hairs on your head to some
extent and they will snap back to their original length.

The hydrogen bonding in a β-pleated which takes place between different
polypeptide chains, or different regions of a polypeptide chain that has turned
back on itself. Each chain is fully extended, but because each has a zigzag
structure the resulting “sheet” has an overall pleated conformation (much like
a sheet of paper that has been folded to make a fan). Although the pleated
sheet is strong and flexible, it is not elastic. This is because the distance
between the pleats is fixed, determined by the strong covalent bonds of the
polypeptide backbones. Fibroin, the protein of silk, is characterized by a
β-pleated sheet structure, as are the cores of many globular proteins.

It is not uncommon for a single polypeptide chain to include both α-helical
regions and regions with β-pleated sheet conformations. The properties of
some complex biological materials result from such combinations. A spider’s
web is composed of a material that is extremely strong, flexible, and elastic.
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Once again we see function and structure working together, as these prop-
erties derive from the fact that spider silk is a composite of proteins with
α-helical conformation (providing elasticity) and others with β-pleated sheet
conformations (providing strength).

The tertiary structure of a protein molecule is the overall shape assumed by
each individual polypeptide chain. This 3-D structure is determined by four
main factors that involve interactions among R groups (side chains) belonging
to the same polypeptide chain. These include both weak interactions (hydro-
gen bonds, ionic bonds, and hydrophobic interactions) and strong covalent
bonds.

(1) Hydrogen bonds form between R groups of certain amino acid subunits.

(2) An ionic bond can occur between an R group with a unit of positive
charge and one with a unit of negative charge.

(3) Hydrophobic interactions result from the nonpolar tendency of R groups
to be excluded by the surrounding molecules and therefore to associate
in the interior of the globular structure.

(4) Covalent bonds known as disulfide bonds or disulfide bridges (—S—S—)
may link the sulfur atoms of two cysteines molecules; the two hydrogens
are removed, and the two sulfur atoms that remain become covalently
linked.

Many functional proteins are composed of two or more peptide chains,
interacting in specific ways to form the biologically active molecule. Quater-
nary structure is the resulting architecture of these polypeptide chains, each
with its own primary, secondary, and tertiary structure. The same types of
interactions that produce secondary and tertiary structure also contribute
to quaternary structure; these include hydrogen bonding, ionic bonding, hy-
drophobic interactions, and disulfide bridges.

A functional antibody molecule, for example, consist of four polypeptide
chains joined by disulfide bridges. Disulfide bridges are a common feature of
proteins secreted from cells, such as antibodies. These strong bonds stabilize
the molecules in the extracellular environment.

Hemoglobin, the protein in red blood cells responsible for oxygen trans-
port, is an example of a globular protein with a quaternary structure.
Hemoglobin consists of 574 amino acids arranged in four polypeptide chains:
two identical chains called alpha chains and two identical chains called beta
chains.

Collagen, mentioned previously, has a fibrous type of quaternary structure
that allows it to function as the major strengthener of animal tissues. It
consists of three polypeptide chains wound about each other and bound by
cross links between their amino acids.
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D. NUCLEIC ACIDS

Nucleic acids transmit hereditary information and determine what proteins a
cell manufactures. Two classes of nucleic acids are found in cells: ribonucleic
acid and deoxyribonucleic acid. Deoxyribonucleic acid (DNA) comprises the
genes, the hereditary material of the cell, and contains instructions for making
all the proteins, as well as all the RNA the organism needs. Ribonucleic acid
(RNA) participates in the complex process in which amino acids are linked
to form polypeptides. Some types of RNA, known as ribozymes, can even act
as specific biological catalysts. Like proteins, nucleic acids are large, complex
molecules. The name nucleic acid reflects the fact that they are acidic and
were first identified, by Friedrich Miescher in 1870, in the nuclei of pus
cells.

Nucleic acids are polymers of nucleotides, molecular units that consist of
(1) a five-carbon sugar, either deoxyribose (in DNA) or ribose (in RNA); (2)
one or more phosphate groups, which make the molecule acidic; and (3) a
nitrogenous base, a ring compound that contains nitrogen. The nitrogenous
base may be either a double-ring purine or a single-ring pyrimidine.

DNA commonly contains the purines adenine (A) and guanine (G), the
pyrimidines cytosine (C) and thymine (T), the sugar deoxyribose, and phos-
phate. RNA contains the purines adenine and guanine, and the pyrimidines
cytosine and uracil (U), together with the sugar ribose, and phosphate.

The molecules of nucleic acids are made of linear chains of nucleotides,
which are joined by phosphodiester linkages, each consisting of a phosphate
group and the covalent bonds that attach it to the sugars of adjacent nu-
cleotides.

Note that each nucleotide is defined by its particular base and that nu-
cleotides can be joined in any sequence. A nucleic acid molecule is uniquely
defined by its specific sequence of nucleotides, which constitutes a kind of
code. Whereas RNA is usually composed of one nucleotide chain, DNA con-
sists of two nucleotide chains held together by hydrogen bonds and entwined
around each other in a double helix.

In addition to their importance as subunits of DNA and RNA nucleotides
perform other vital functions in living cells. Adenosine triphosphate (ATP),
composed of adenine, ribose, and three phosphates, is of major importance
as the primary energy currency of all cells. The two terminal phosphate
groups are joined to the nucleotide by covalent bonds. These are traditionally
indicated by wavy lines, which indicate that ATP can transfer a phosphate
to another molecule, making that molecule more reactive. In this way ATP
is able to donate some of its chemical energy. Most of the readily available
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chemical energy of the cell is associated with the phosphate groups of ATP.
Like ATP, guanosine triphosphate (GTP), a nucleotide that contains the base
guanine, can transfer energy by transferring a phosphate group and also has
a role in cell signaling.

A nucleotide may be converted to an alternative form with specific cellular
functions. ATP, for example, is converted to cyclic adenosine monophosphate
(cyclic AMP) by the enzyme adenylyl cyclase. Cyclic AMP regulates certain
cell functions and is important in the mechanism by which some hormones
act. A related molecule, cyclic guanosine monophosphate (cGMP), also plays
a role in certain cell signaling processes.

Cells contain several dinucleotides, which are of great importance in
metabolic processes. For example, nicotinamide adenine dinucleotide has a
primary role in biological oxidation and reduction reactions in the cells. It
can exist in an oxidized form (NAD+) that is converted to a reduced form
(NADH) when it accepts electrons (in association with hydrogen). These
electrons, along with their energy, are transferred to other molecules.

5. The cycle of matter on earth; the Biosphere

For the last 4 × 109 years, terrestrial matter has existed under rather soft
and easy conditions, far from cosmic extremes:

• The terrestrial gravitational field is much weaker than that of any star,
especially the very dense ones such as neutron stars or black holes. On
the other hand it is not as weak as that prevailing in dust-gas clouds.

• Temperatures are not as high as in the stars and not as low as in the
interstellar clouds.

• Age of the planet is not as great as the age of the galaxies, but is long in
comparison with the half-life of many radionuclides.

The atmosphere shields the earth’s biosphere from harmful solar radiation;
it is the most important carrier of heat energy in two directions — horizontally
across the continents and oceans and vertically from the surface to cosmic
space; it contains the elements most important for life: hydrogen (in the form
of water), oxygen (in water, free molecules of O2 and C)2 gas), carbon (in
CO2), and nitrogen (in free molecular form).
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The biosphere is defined as that part of the earth in which life exists. It is
a region in which liquid water can exist in substantial quantities, it receives
an ample supply of energy from an external source (sun), and within it there
are interfaces between the liquid, solid and the gaseous states of matter.

All actively metabolizing organisms largely consist of elaborate systems
of organic macromolecules dispersed in aqueous medium. The energy of so-
lar radiation can enter the biological cycle only through the photosynthetic
production of organic matter by chlorophyll-bearing organisms, namely green
and purple bacteria, blue-green algae, phytoplankton and the vast and varied
population of higher plants.

From the standpoint of the day-to-day running of the biosphere what is
important is the continual oxidation of the reduced part, living or dead, by
atmospheric oxygen to produce CO2 (which can be employed again in pho-
tosynthesis) and a certain amount of energy (which can be used for physical
activity, growth and reproduction). The production of utilizable fossil fuels
is essentially an accidental imperfection in this overall reversible cycle, one
upon which we have come to depend all too confidently.

In addition to H2O and CO2, the movement of material through living
organisms involves many more elements (Table 5.23); if the biosphere is to
continue in running order, the biologically important materials must undergo
cyclical changes so that after utilization they are put back, at the expense of
some solar energy, into a form in which they can be reused .

The rate at which this happens is quite variable:

• The rate of circulation of organic matter of terrestrial organisms (de-
rived from CO2 of the atmosphere) is measured in decades. The rates of
circulation of carbon and nitrogen are of this order.

• CO2 itself, respired by animals and plant cells, enters the atmosphere
and is fixed again by plant cells after an average atmospheric residence
time of about 300 years.

• Oxygen, generated in the process of the biosphere exchange with the
atmosphere and hydrosphere, is recycled in about 4000 years.

• All the earth’s water is split by plant cells and reconstituted by animal
and plant cells about every 2,000,000 years.

• Calcium is carried from continental rocks in rivers as calcium bicarbon-
ate [Ca (HCO3)2] and precipitates as calcium carbonate [CaCO3] in the
open ocean largely in the form of tiny shells of foraminifera. Most of the
replacement is due to the movement of the ocean floors toward coastal
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mountain building belts. This rate of replacement is measured in hun-
dreds of millions of years. Phosphorus behaves in a similar way.

Without taking too seriously any of the estimates that have been made of
the expectation of the life of the sun and the solar system, it is evident that
the biosphere could remain habitable for a very long time1083, many times
the estimated length of the history of the genus Homo (which might be a few
million years old).

The water cycle

Water is the most abundant cosmic compound. It is the medium of life
processes, and the source of their hydrogen. It flows through living matter
mainly in the stream of transpiration: from the roots of plant through its
leaves. It is by far the most abundant single substance in the biosphere.
The earth, oceans, ice caps, glaciers, lakes, rivers, soils and atmosphere con-
tain 1.5 × 109 km3 of water in one form or another. Since each year some
5.13 × 105 km3 of water are vaporized, the residence-time of water in the
ocean is 2670 years. Roughly calculated, the amount of heat required for the
overall vaporization is 1.26 × 1024 Joule per year or 4.08 × 1016 watts. This
is found to correspond to 1

3 of the solar energy absorbed by the earth.

In a nutshell, the water cycle is stated as follows: water in the atmosphere
condenses in the air and falls to earth as rain or snow. Warmed by the sun,
water evaporates back into the atmosphere1084.

In fact, the process is somewhat more complex: First, the cycle requires
that worldwide evaporation and precipitation be equal; hydrogen losses to
space are presumably replaced by juvenile water; ocean evaporation, however,

1083 At present, the artificial injection of some elements in a mobile form into the

ocean and atmosphere is occurring much faster than it did in preindustrial

days; new cycles have come into being that may distribute very widely (and in

toxic quantities) compounds such as lead and mercury , as well as fairly stable

elements such as insecticides and defoliants. Consequently, some environmen-

tal scientists are concluding that the expected future life of the biosphere as

an inhabitable region for organisms is to be measured in decades!
1084 This cycle was already recognized by the ancients as is evident from Ecclesiastes

1, 7: “All the rivers run into the sea; yet the sea is not full; unto the place

from whence the rivers come, thither they return again”.
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is greater than return precipitation; the reverse is true on land. Excess land

precipitation may end up in ice caps and glaciers that contain 75 percent

of all fresh water and may also replenish supplies taken from the water by

transpiring plants, or may enter lakes and rivers, eventually returning to the

sea as runoff. Once in the air, water vapor may circulate locally or become

part of the general circulation of the atmosphere.

The general circulation is one of three important ways of moving water

across the earth. Major ocean currents and the discharge of rivers comprise

the remaining routes. Both have substantial effects on the biosphere: the

ocean currents carry energy surpluses or deficits over great distances1085; the

rivers of the world are not only long-distance movers of water but also serve

as conduits for dissolved and suspended material. Because of its chemical and

physical properties, water is a very efficient erosive agent: erosion, transport
and deposition have to be recognized as geological processes associated with

water motion in the biosphere.

The carbon cycle (von Liebig, 1840)

This process is a chain directly related to the flow of energy in the biosphere

and technosphere.

The main cycle is from CO2 to living matter and back to CO2. Some of the

carbon, however, is removed by a slow epicycle that stores huge inventories

in sedimentary rocks.

In this cycle, CO2 is consumed through photosynthesis by plants and cer-

tain microorganisms. In this process, CO2 and water react to form carbo-

hydrates, with the simultaneous release of free oxygen, which enters the at-

mosphere. Some of the carbohydrates are directly consumed to supply plants

with energy; the CO2 so generated (by respiration in the absence of light) is

released through the plant’s leaves or through its roots. Part of the carbon

fixed by the plants is consumed by animals (herbivorous), which also respire

and release CO2.

1085 If the cold Labrador Current had replaced the Gulf Stream, the history of

civilization would have been very different!
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Plants and animals die and are ultimately decomposed by microorganisms
in the soil1086. The carbon in their tissues is oxidized to CO2 and return to
the atmosphere. A similar carbon cycle takes place within the sea, where it
takes at least 1000 years for the water in the deepest basins to completely
replenish the CO2 by deep ocean circulation.

Only a few tenths of a percent of the immense amount of carbon at or
near the surface of the earth (ca 2 × 1016 tons) is in rapid circulation in the
biosphere (atmosphere + hydrosphere + upper portions of earth’s crust +
biomass). The overwhelming bulk of near-surface carbon consists of inor-
ganic deposits (chiefly carbonates) and organic fossil deposits (oil-shale, coal,
petroleum) that required hundred of millions of years to reach their present
levels1087.

The living world has profoundly altered the primordial lifeless earth, grad-
ually changing the composition of the atmosphere, sea and top layers of the

1086 We can get an approximate idea of the rate at which organic matter in the

soil is being transformed by measuring its content of the radioactive isotope
14C: At the time carbon is fixed by photosynthesis, its ratio of 14C to the

non-radioactive isotope 12C is the same as the ratio in the atmosphere, but

after an organism’s death 14C decays and becomes less abundant w.r.t. 12C.

Measurements of this ratio yield rates for the oxidation of organic matter in the

soil, ranging from decades in tropical soils to several hundred years in boreal

forests.
1087 Since around 1850 man has inadvertently been conducting a global geochem-

ical experiment by burning large amount of fossil fuel and destroying forests,

thereby returning carbon to the atmosphere that was fixed by photosynthesis

hundreds of millions of years ago.

At present the total amount of carbon available in the atmosphere is

7 × 1014 kg. The total carbon release to the atmosphere is 7.5 × 1012 kg/year

with a current (2004 CE) CO2 content of 400 ppM (by volume). It is expected

that during the next 100 years of fossil fuel burning the amount of carbon in

the atmosphere could be doubled, increasing the concentration to 800 ppM.

One of the most significant results of the increase in CO2 level is the reduction

in the transparency of the atmosphere to infrared radiation, which is a critical

feature of the heat balance of the globe; the mean global temperature could

rise by two or three degrees, enough to cause polar-ice melting and rise of ocean

levels. Much will depend on the capacity of the oceans to absorb CO2. But

a new equilibrium in the biosphere will be reached that will gradually affect

the deep oceans. These, with their turnover time of 1000 years, will become

involved and their rate of exchange with bottom sediments will control the

ultimate partitioning of carbon.
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solid crust both on land and under the ocean. Thus, a study of the car-
bon cycle in the biosphere is fundamentally the study of the overall global
interactions of living organisms and their physical and chemical environment.

The engine for the organic processes that reconstructed the primitive earth
is photosynthesis. Regardless of whether it takes place on land or in the sea,
it can be summarized by the single reaction:

CO2 + 2H2A + light =⇒ CH2O + H2O + 2A + energy .

The formaldehyde molecule

H
|

H—C——O

is one of the simplest organic compounds. The reaction stores energy in
chemical form. H2A is commonly water (H2O), in which case 2A symbolizes
the release of free oxygen (O2). There are however bacteria that can use
compounds in which A stands for sulfur (S), for some organic radical or for
nothing at all.

There are organisms that are able to use CO2 as their sole source of carbon
(autotrophs); others use light energy for reducing CO2 (phototrophic); still oth-
ers use energy stored in inorganic chemical bonds, such as nitrates and sulfates
(chemolithotrophics). Most organisms however, require preformed organic
compounds for growth (heterotrophs). The non-sulfur bacteria are an unusual
group that is both phototrophic and heterotrophic. Chemoheterotrophic or-
ganisms (e.g., animals) obtain their energy from organic compounds without
need for light.

An organism may be either aerobic or anaerobic regardless of its source
of carbon or energy. Thus some anaerobic chemoheterotrophes can survive in
the deep ocean and deep lakes in the total absence of light or free oxygen.

The oxygen cycle

When free oxygen began to accumulate in the atmosphere 1.8 billion years
ago, it was originally put there by plants. Hence the early plants made pos-
sible the evolution of higher plants and animals that require free oxygen for
their metabolism. Yet, since the high rate of energy associated with oxygen
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metabolism was potentially destructive to early forms of carbon-based life1088,

the origin of life and its subsequent evolution was contingent on the develop-

ment of systems that shielded it from, or provided chemical defenses against

ordinary molecular and atomic oxygen [oxygen-breathing life is more energy-

efficient; e.g., fermentation of glucose yields only 50 Kcal per mole against

686 Kcal/mole obtained by direct oxidation].

The oxygen cycle is complicated because oxygen appears in so many chem-

ical forms and combinations, primarily as molecular oxygen (O2), in water and

in organic and inorganic compounds.

Free oxygen is an extremely active element and reacts with almost all other

elements. How can such an active element be so abundant in the atmosphere?

Why is it not removed by chemical reactions? The total amount of free oxygen

at present is 1.8 × 1018 kg, which is equivalent to 20.96 mol percent of the

total atmosphere.

This oxygen content has remained stable in measurements made over the

last 70 years in spite of the increase in amounts of fuel, oil and coal burned

in the technosphere. In addition to this technosphere activity, other chemi-

cal processes consume O2 in the lithosphere and hydrosphere (e.g., oxidation

of iron oxide in ores and elemental sulfur to the sulphate ion). To this we

must add, of course, the biological oxidation of molecules such as carbohy-

drates [e.g., CH2O+O2 ⇒ CO2+H2O+energy] and the oxidation of volcanic

emissions1089 (O2 + 2CO⇒ 2CO2).

Against this oxygen-depletion processes there are oxygen-producing

processes such as

1088 Molecular oxygen reacts spontaneously with organic compounds and other re-

ducing substances. This reactivity explains the toxic effects of oxygen above

tolerable concentrations. Louis Pasteur discovered that very sensitive organ-

isms such as obligate anaerobes cannot tolerate oxygen concentrations above

about 2 percent of the present atmospheric level. Recently the cells of higher

organisms have been found to contain organelles called peroxisomes, whose

major function is thought to be protection of cells from oxygen; the peroxi-

somes contain enzymes that utilizes H2O2 (hydrogen peroxide), as a hydrogen

acceptor in the oxidation of lactic acid. The rate of reduction of oxygen by per-

oxisomes increases proportionally with an increase of oxygen concentration, so

that an excessive amount of oxygen in the cell increases the rate of its reduction

by peroxisomes.
1089 It could have led to massive oxygen decrease during great volcanic episodes in

the remote past.
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• photolysis of water molecules by solar ultraviolet radiation in the upper
atmosphere

water + solar ultraviolet =⇒ hydrogen + oxygen.

The hydrogen molecule is dissipated into space due to its low mass but
oxygen remains;

• photosynthesis

water + solar light =⇒ hydrogen + oxygen.

The hydrogen is bonded by CO2 to form formaldehyde
[2H2 + CO2 ⇒ CH2O + H2O] and oxygen remains. The net amount of
oxygen produced by photosynthesis is 2.07 × 1014 kg/year. This cor-
responds to an annual net production of 1.72 × 1014 kg of dry organic
matter through a net absorbed solar energy of 2.9 × 1021 Joule/year.
Since this annual production rate of oxygen is equivalent to 2.6 × 10−4

parts per years of the total atmospheric free oxygen, a full recycling time
of oxygen is estimated at 3800 years1090.

Compared to the total amount of oxygen in the atmosphere, the annual
rate of consumption of oxygen in the technosphere (ca 2.3 × 1013 kg/year,
needed to burn 7.5 × 1012 kg of oil and coal) is only 19 ppM. At the present
rate, only after 50, 000 years will all the atmospheric oxygen be burned by
technological processes.

The nitrogen cycle (von Liebig, 1840)

Nitrogen exists in the atmosphere in molecular form (N2) and is a rather inert
gas, except to the few organisms that have the ability to convert the element
to a combined form. Approximately 79 out of every 100 molecules in the
atmosphere (that is 75.5% by weight) are nitrogen. It would appear to be
merely a dilutant for the active agents of the atmosphere: oxygen, CO2, water
vapor etc., but this is not so.

Each living organism on this planet is made up of proteins, which play an
essential role in the processes of life. The proteins are polymers, built from

1090 This relatively fast recycling rate prompted some biogeochemists to say that

“The next breath you inhale will contain atoms exhaled by Jesus of Nazareth

or by Adolf Hitler of Münich”.
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20 different monomers, the amino acids; each amino acid consists of at least
one amino group, NH2. There is no “life” without nitrogen.

The transmutation of the inert molecular nitrogen to the life-carrying
amino acid group is one of the greatest wonders of the biosphere. Each year
about 70 billion kg of nitrogen are involved in biogenic processes. A further
8 billion kg are fixed1091 by electrical discharges in the atmosphere.

Whereas in the case of the carbon cycle man’s activity is influential in
one direction only (combustion of fossil fuels which transfers carbon from
the earth’s crust to the atmosphere), in the case of the nitrogen cycle man’s
impact is in the other direction — the industrial fixation of nitrogen from the
atmosphere by means of synthesis of ammonia from atmospheric molecular
nitrogen (Haber process, 1909; N2 + 3H2 ⇒ 2NH3). Presently it runs at levels
of some 60 billion kg of nitrogen per year, compared with approximately 54
billion kg of nitrogen fixed by biological activity and a further 8 billion kg
by electrical discharge. This technological contribution is unsurpassed in the
other material cycles; here man’s activity1092 is equal to that of the biosphere!

The essential features of the nitrogen cycle are as follows: Nitric acid
(HNO3) is formed by electrical discharges in the atmosphere, and is washed
down by rain; only a small amount of this falls on fertile soil, and is utilized by
plants. Besides the HNO3 produced by electric discharges (which is absorbed
by the soil in the form of nitrates by plants), leguminous plants can take up
atmospheric nitrogen which is converted into organic nitrogen by the agency of
micro-organisms which occur in nodules on the root. Algae, fungi, mosses and
bacteria, present in the soil, are also capable of utilizing elementary nitrogen.

The organic nitrogen compounds elaborated by plants serve as food for
herbivorous animals, and the proteins of the latter are utilized in turn by
carnivora.

When the bodies of animals and plants decay, decomposing bacteria pro-
duce ammonia. In the soil this ammonia is oxidized by nitrosifying bacteria to
nitrites1093, and these by the nitrifying bacterium to nitrates, the latter again
serving for the nourishment of plants. A portion of the nitrogen, however, is

1091 By “fixed” is meant nitrogen incorporated in a chemical compound that can

be utilized by plants and animals.
1092 Clearly, it benefits mankind through enhanced food production arising from

the use of nitrogen fertilizers, but it also damages the flora and fauna of lakes,

rivers and estuaries caused by the influx of these same fertilizers because of

eutrophication (deficiency in oxygen).
1093 Nitric acid = HNO3; its salts are nitrates, e.g., KNO3, NaNO3, etc. Nitrous

acid = HNO2; its salts are nitrites, e.g., KNO2, NaNO2, etc.
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again returned to the atmosphere by the action of denitrifying bacteria in the
soil (these bacteria carry the nitrogenase enzyme complex).

Nitrogen is able to play its complicated role in life processes because it
has an unusual number of oxidation levels (valences). An oxidation level
indicates the number of electrons that an atom in a particular compound has
“accepted” or “donated”. In plants and animals most nitrogen exists either
in the form of the ammonium ion or the amino (−NH2) compounds. In either
case it is highly reduced: it has acquired three electrons by its association
with three other atoms and thus is said to have a valence of ©−3 .

At the other extreme, when nitrogen is in the highly oxidized form of
the nitrate ion (the principal form it takes in the soil), it shares 5 of its
electrons with oxygen atoms and has a valence of ©+5 . To convert nitrogen

as it is found in the ammonium ion or amino acids to nitrogen as it exists
in the soil nitrates involves a total valence change of 8, or the removal of 8
electrons. Conversely, to convert nitrate nitrogen into amino nitrogen requires
the addition of 8 electrons.

By and large the soil reactions that reduce nitrogen (or add electrons to it)
release considerably more energy than the reactions that oxidize nitrogen (or
remove electrons from it). Thus, for almost every reaction in nature where
the conversion of one compound to another yields an energy of at least 15
kcal/mole, some organism has arisen that can exploit this energy to survive.

The fixation of nitrogen requires an investment of energy. Before nitrogen
can be fixed it must be activated, which means that molecular nitrogen must
be split into two atoms of free nitrogen. This step requires at least 160 kcal
per mole of nitrogen (28 grams). The actual fixation step, in which two atoms
of nitrogen combine with three molecules of hydrogen to form two molecules
of NH3, releases 13 kilocalories.

Whether nitrogen-fixing organisms actually invest this much energy, how-
ever, is not known: Reactions catalyzed by enzymes involve the penetration of
activation barriers and not a simple change in energy between a set of initial
reactions and their product.

Sulfur and phosphorus cycles

Although the biosphere is mainly composed of {O, C, H, N} other ele-
ments are essential constituents of living matter. Notable among them are
phosphorus and sulfur. Together they comprise the essential six .
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Table 5.28: Chemical abundance of the elements

in the earth’s crust (by weight in one ton crustal rocks)

Element Z Kg Element Z Grams

Oxygen 8 466 Nickel 28 72
Silicon 16 277.3 Zinc 38 80
Aluminum 13 81.3 Copper 29 55
Iron 26 50 Cobalt 27 28
Calcium 20 36.3 Nitrogen 7 20
Sodium 11 28.3 Lead 82 10
Magnesium 12 27.7 Boron 5 10
Potassium 19 16.8 Tin 50 1.5
Titanium 22 8.6 Uranium 92 2.4 –4
Hydrogen 1 1.4
Phosphorus 15 1.1
Sulfur 16 0.3
Carbon 6 0.2

The biosphere is mainly wood, not protein but the carbohydrate cellulose.
Nitrogen, a major constituent of protein, seems surprisingly scarce — about
5 parts per 1000 by weight. The rest, 12 parts per 1000 of the total, contain:
{Ca, K, Si, Mg}, elements of important biochemical function: One atom of
magnesium, for instance, lies at the center of every molecule of chlorophyll.
The 9th and 11th place in the abundance list of the biomass (Table 5.28) is
occupied by sulfur {S} and phosphorus {P}. Yet no protein can be made
without sulfur. In fact, sulfur is the “stiffening” in protein: A protein cannot
perform its function unless it is folded and shaped in a particular way. This 3-
dimensional structure is maintained by bonds between sulfur atoms that link
one segment of a protein molecule to another. Without these sulfur bonds a
protein would coil randomly, like a carelessly dropped rope.

How is sulfur recycled? It has been known for many years that rocks
containing the element in sulfate form deliver it to the oceans via the world
rivers. The waste of industrial sources takes the same route. Sulfur is recycled
back from the sea to the land via of the atmosphere. Furthermore, industrial
sulfur-dioxide pollutes the atmosphere and is washed down in rain as sulfate.
A certain bacterium metabolizes the sulfates in sea water and releases the
sulfur as H2S.
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Our model of the biosphere has been constructed on two explicit assump-
tions:

• the biosphere necessarily contains the five elements {O, C, H, N, S};
• all five are both soluble and volatile.

If we now add phosphorus as a sixth necessary element, we can safely
assume its solubility in water. However, phosphorus is unknown in the
atmosphere; none of its ordinary compounds has any appreciable vapor
pressure. It therefore tracks the hydrologic cycle only partway, from the
lithosphere to the hydrosphere.

6. The cell
1094

Cells are dramatic examples of the underlying unity of all living things.
This idea was first expressed by two German scientists, botanist Matthias
Schleiden in 1828 and zoologist Theodor Schwann in 1839. Using their
own observations and those of other scientists, these early investigators used
inductive reasoning to conclude that all plants and animals consist of cells.
Later, Rudolf Virchow, another German scientist, observed cells dividing
and giving rise to daughter cells. In 1855, Virchow proposed that new cells
form only by the division of previously existing cells.

The work of Schleiden, Schwann, and Virchow contributed greatly to the
development of the cell theory, the unifying concept that (1) cells are the
basic living units of organization and function in all organisms and (2) that
all cells come from other cells. About 1880 another German biologist, August
Weismann, added an important corollary to Virchow’s concept by pointing
out that the ancestry of all the cells alive today can be traced back to ancient

1094 The relative size of chemical and organismic levels are as follows:

(1nm = 10−9m = 10−7cm = 10−3μm)

atom ∼ 0.1nm = 1Å (1Å = 10−8cm)

aminoacid ∼ 1nm = 10Å
protein ∼ 2–10nm

virus ∼ 50–100nm

small bacteria ∼ 200nm
typical bacterium ∼ 8μm

red blood cell ∼ 10μm

human egg cell ∼ 0.13mm. (Approximately the size of the period at the end of this

sentence.)
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times. Evidence that all living cells have a common origin is provided by the
basic similarities in their structures and in the molecules of which they are
made. When we examine a variety of diverse organisms, ranging from simple
bacteria to the most complex plants and animals, we find striking similarities
at the cell level. Careful studies of shared cell characteristics help us trace
the evolutionary history of various groups of organisms and furnish powerful
evidence that all organisms alive today had a common origin.

Each cell is a microcosm of life. It is the smallest unit that can carry out all
activities we associate with life. When provided with essential nutrients and
an appropriate environment, some cells can be kept alive and growing in the
laboratory for many years. By contrast, no isolated part of a cell is capable of
sustained survival. Composed of a vast array of inorganic and organic ions and
molecules, including water, salts, carbohydrates, lipids, proteins, and nucleic
acids, most cells have all the physical and chemical components needed for
their own maintenance, growth, and division. Genetic information is stored in
DNA molecules and is faithfully replicated and passed to each new generation
of cells during cell division. Information in DNA codes for specific proteins
that in turn determine cell structure and function.

Cells exchange materials and energy with the environment. All living cells
need one or more sources of energy, but a cell rarely obtains energy in a form
that is immediately usable. Cells convert energy from one form to another,
and that energy is used to carry out various activities, ranging from mechan-
ical work to chemical synthesis. Cells convert energy to a convenient form,
usually chemical energy stored in adenosine triphosphate, or ATP. Although
the specifics vary, the basic strategies cells use for energy conversion are very
similar. The chemical reactions that convert energy from one form to another
are essentially the same in all cells, from bacteria to those of complex plants
and animals.

Cells are the building blocks of complex multicellular organisms. Although
they are basically similar, cells are also extraordinarily diverse and versatile.
They can be modified in a variety of ways to carry out specialized functions.

Every complete cell has a small inner portion, the nucleus, marked off
from the rest of the cell (the cytoplasm) by a thin membrane. The primary
concern of the nucleus is in cell reproduction and in the accurate transfer of
the genes controlling chemical characteristics from mother to daughter cells.
The nucleus is an anaerobic system, and thus cannot be involved in energy
production.

In 1898, a German cytologist, C. Benda discovered in the cytoplasm
small granules which he called mitochondria (Greek for ‘cartilage-threads’).
Electron microscopy later revealed that mitochondria were bodies only one to
three microns in diameter (Albert Claude, 1945).
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Suspensions of mitochondria were found to catalyze all the reactions of the
Krebs’ cycle. It became clear that the mitochondria are the “powerhouses”
of the cell; that their membranes are actually conglomerations of all enzymes
and coenzymes needed for catabolizing foodstuffs and producing high-energy
phosphate bonds. It has been estimated that an individual mitochondria may
contain as many as 10, 000 separate assemblies; each ripping off hydrogen
atoms and producing higher energy phosphate-bonds.

7. Carbohydrates and biochemical energetics

Living cells require chemical energy to synthesize the molecules necessary
for their growth. Since cell division is the process necessary for the propaga-
tion of life, the synthesis of the molecules of life is a continuous process.

Life, when viewed as a vast and fabulously intricate system of ongoing
chemical reactions, is a thermodynamically spontaneous process, so the net
free energy change associated with cell-growth and division must be negative.
Common sources of chemical energy for sustaining life are the carbohydrates.
Glucose (C6H12O6) is a typical example. Cells ranging from simple bacteria
to human cells utilize glucose as a source of both carbon and energy.

Carbohydrates are classified as monosaccharides, disaccharides and
polysaccharides. The most important monosaccharides are glucose, galac-
tose and fructose, having the same molecular formula C6H12O6, but different
structural formulas. Glucose (or dextrose) is found in fruits and honey. It
is the sugar of the blood. A disaccharide is formed when two molecules of
monosaccharide join together with the loss of a molecule of water. The most
important member of this group (C12H22O11) are sucrose, maltose, and lac-
tose. Polysaccharides (C6H10O5)n, like starch, dextrin, glycogen and cellulose
— are essentially polymers of glucose. In the formation of these polymers,
a molecule of water is split off from C6H12O6 as each unit adds to form the
long polymer unit (C6H10O5)n.

The energy source for most cells is the oxidation of glucose, fatty acids from
fats, and amino acids from proteins. In simple combustion, rapid oxidation
is simply a direct reaction with oxygen in which heat and light are released.
In the cells, some of the energy that might be converted to heat must be
retained for other uses such as building chemical bonds and controlling muscle
contraction; heat energy is produced as a by-product.

Heat energy is not the only need of the body. Other mechanisms must
be able to channel some of the heat to other forms of energy. For example,
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some of the energy can be used to synthesize molecules of high energy such as
adenosine triphosphate (ATP), which is found in all cells.

The carbohydrates include the sugars, starches, cellular and other closely
related substances. These compounds are named as they are because they
were initially thought to be hydrates of carbon, since besides carbon, they
contain hydrogen and oxygen in the ratio of two to one, as in water. (There
are, however, some sugars that do not fit this general formula and a wider
definition must be used.)

Carbohydrates are formed in cells of plants from CO2 in the air and water
in the ground. In the presence of sunlight and chlorophyll (the magnesium-
containing pigment of leaves), these two compounds react to form carbohy-
drate (represented by C6H12O6 in the equation) and oxygen,

6CO2 + 6H2O
sunlight

chlorophyll−−−−−−→ C6H12O6 + 6O2.

This process by which plants transform radiant energy of the sun into chemical
energy stored in food material is called photosynthesis. It is actually a series
of complicated reactions. Photosynthesis is regarded as the most important
chemical reaction on earth because it returns oxygen to the air as well as
manufacturing and storing food material.

The most important chemical reactions of carbohydrates are: hydrolysis,
dehydrogenation and fermentation.

Hydrolysis

As far as hydrocarbons are concerned, hydrolysis is a reaction through which
complex organic compounds will react with water to form a simpler com-
pound, e.g.

C12H22O11 + H2O −→ C6H12O6 + C6H12O6

sucrose glucose + fructose

In hydrolysis (from the Greek: “to loosen with water”), water break the chem-
ical bond of the carbohydrate while its elements H and OH, attach themselves
to the split parts.
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Dehydrogenation (oxidation)

Oxidation occurs if a substance either gains oxygen atoms, loses hydrogen
atoms (dehydrogenation) or else loses electrons. The complete combustion of
one mole (180 grams) of glucose liberates 686 kcal of heat

C6H12O6 + 6O2 −→ 6CO2 + 6H2O + 686 kcal/mole.

This is the well known respiration process through which stored energy is
released and carbon dioxide and water are liberated (the reverse of photosyn-
thesis).

Most biological oxidations are better described as dehydrogenation
processes in which a compound is oxidized by the removal of two hydrogen
atoms; oxygen’s role is indirect. In other words, oxidation processes do not
need to have oxygen as the direct oxidizing agent associated with it. Consider,
for example, the oxidation of lactic acid during respiration: C3H6O3 + 3O2 ⇒
3CO2 + 3H2O+energy). We write this as the virtual sum of two half-reactions,
each of which is balanced electrically,

oxidation half-reaction C3H6O3 + 3H2O ⇒ 3CO2 + 12H+ + 12e−

reduction half-reaction 3O2 + 12H+ + 12e− ⇒ 6H2O

sum C3H6O3 + 3O2 ⇒ 3CO2 + 3H2O + energy.

In the oxidation stage, lactic acid is dehydrogenized by removing from it all
its hydrogen atoms1095. The water molecules are also split to serve as sources

1095 Hydrogen atoms never actually exist free in the cell but are transported by

specific carriers. Molecules which serve as hydrogen acceptors are proteins
called coenzymes. One important example is nicotinamide adenine dinucleotide

(NAD) made out of sugar, phosphoric acid and an organic base. Thus, the

biochemical oxidation, with only the main characters present, is written as

H

|
CH3 — C — COOH + NAD =⇒ CH3 — C — COOH + NADH2,

| ‖
OH O

where NADH2 is the hydrogen removing agent that stores (temporarily) the

released free energy.

The free energy stored in the reduced components NADH2 and FADH2 (another
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of oxygen and additional hydrogen. The second half-reaction emphasized the
reduction of oxygen through its combination with the hydrogens of the first
stage and the recombination of water. A total of 12 electrons are transferred
between reactants in the oxidation of lactic acid. In the real process this
oxidation occurs in six steps (two electrons at a time) in a stepwise oxidation
process known as the Krebs’ cycle.

It is the dehydrogenation step that produces the energy released by the
reaction (and utilized by the body in metabolism). The mere elimination of
CO2 from the compound does not produce the energy necessary for the for-
mation of high-energy phosphate bonds. Consequently, it can be said that the
body obtains its energy by burning hydrogen and that the burning of carbon is
only incidental. This is not surprising since the burning of hydrogen liberates
far more heat per unit weight than does the burning of carbon.

Fermentation

In fermentation (from the Latin: “to boil”), the degradation of the carbohy-
drate is done by means of anaerobic microorganisms (yeast) which secretes
the enzyme zymase, e.g.

C6H12O6
enzymes−−−−−→ 2C2H5OH + 2CO2

glucose alcohol

This schematic equation represent a much more complex process: The fer-
mentation of glucose can be considered to occur in two stages. In the first
stage, one molecule of sugar is broken down into two molecules of pyruvic
acid

CH3—C—COOH
‖
O

biochemically important oxidizing agent) is used by the cell in the formation

of ATP from ERAP, a process called oxidative phosphorylation. ATP is a high-

energy compound that plays a key role in many metabolic processes. Thus,

in anaerobic glycolysis, a molecule of glucose is converted to two molecules of

lactic acid with the net production of two higher energy phosphate bonds in

the ultimate form of ATP. It is the lactic acid now that must be catabolized

further with the formation of additional high-energy phosphate bonds.
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and the equivalent of 4 hydrogen atoms (hydrogen atoms never actually exist
free in the cell, but are transported by specific carrier molecules).The formation
of pyruvic acid from glucose actually entails at least ten distinct and sequential
reactions. Each of these reactions is catalyzed by a specific enzyme. The
enzymes work in tandem to produce two pyruvic acid and two ATP molecules
for each glucose molecules consumed. All this is written symbolically as

glucose + 2ADP =⇒ 2ATP + 2 pyruvic acid + 4H . (A)

The second stage consists of the addition of hydrogen to pyruvic acid in one
or more steps. The specific way in which these constituents are metabolized
depends on the cells in which metabolism takes place:

• Some anaerobic microorganisms add the hydrogen directly to pyruvic
acid to produce lactic acid (C3H6O3):

2 pyruvic acid + 4H =⇒ 2

H
|

CH3 — C — COOH
|

OH

(B)

(The same process takes place in muscle cells during anaerobic glycolysis).

• Yeasts first split off CO2 from the pyruvic acid and then add the hydrogen
to form ethyl alcohol (the basis for the making of wine and beer)1096

2 pyruvic acid + 4H
yeast
=⇒ 2 ethyl alcohol (C2H5OH) + 2CO2. (C)

• Cells that are able to accommodate the process of respiration, burn pyru-
vic acid all the way to CO2 and water.

• Other microbes convert the pyruvic acid to acetic acid, glycerol, butyl,
alcohol, etc.

When processes (A) and (B) are added together, the result is the net
process of anaerobic glycolysis:

glucose
enzymes−−−−−→ 2 lactic acid + 36 kilocalories per mole, (D)

which it is a spontaneous exergonic process (ΔG < 0); i.e. it proceeds
spontaneously. In anaerobic glycolysis lactic acid is a metabolic “dead

1096 Note that the muscle “could” have converted lactic acid further to ethyl alcohol

and CO2 as in yeast fermentation, and thus liberate further energy for its use.

But alcohol is more toxic to the body than lactic acid and its discharge into

the bloodstream would be harmful to the body.
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end”. However, in the presence of oxygen, aerobic cells (those requiring
oxygen for life) are able to utilize a much larger portion of the original
free energy of the glucose by respiration

lactic acid + 3O2 =⇒ 3CO2 + H2O + 320 kcal per mole. (E)

If, however, no oxygen is available, the anaerobic glycolisis of (D) con-
tinues in two steps:

lactic acid =⇒ pyruvic acid + 2H+ + 2e− (D − 1)

pyruvic acid + H2O =⇒ acetic acid (CH3COOH)

+ CO2 + 2H+ + 2e− (D − 2)

In the first step, lactic acid is virtually oxidized by a removal of two
hydrogen atoms (dehydrogenation). In the second step known as oxidative
decarboxylation, both CO2 and two more atoms of hydrogen are removed
from the pyruvic acid, producing acetic acid. It is the dehydrogenation
step that produces the energy utilized by the body.

8. Metabolism; intermediate steps, sequences and cycles

Metabolism refers to the chemical changes that the absorbed products of
digestion undergo in the tissues of the living body. The resulting products of
digestion enter the various cells via the bloodstream.

Two main types of metabolism are:

• Anabolism (from Greek: “to throw upward”) comprises building-up
processes whereby simple products of digestion are assembled into com-
plex molecules, such as proteins and nucleic acids, to form new tissue,
repair old tissue, store food supplies, and synthesize enzymes, pigments,
hormones, etc. Anabolism requires energy.

• Catabolism (Greek: “to throw downward”) is a breaking-down process in
which absorbed products of digestion and worn-out tissues are reduced
to simple waste products such as CO2, water and urea, with the simul-
taneous release of energy. In some cells the metabolites may undergo a
variety of transformations whereby some of available free energy may be
channeled into muscular activity and other functions inside the body.
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Specific metabolic processes take place in or on specific intracellular struc-
tures. The main respiratory centers of the cells are the mitochondria, which
contain many interacting oxidative enzymes. Only the mitochondria are ca-
pable of respiratory oxidation, which involves converting pyruvic acid to CO2,
H2 and energy to form high energy phosphate bonds. For this reason, each
mitochondrion is considered to be a functioning metabolic machine with a
highly ordered pattern of enzyme molecules, and each of these minute mito-
chondria contain all of the enzymes required in the respiratory cycle.
Metabolic patterns have evolved to satisfy fundamental requirements:

(a) Well-organized balance of anabolism and catabolism.

(b) Step-wise oxidation with the release of energy in small quantities.

(c) The ability to transfer released energy to high-energy storage compounds
known as ATP. Every time a cell needs energy, a high-energy phosphate
bond is broken in an ATP molecule, and about 8000 calories per mole are
liberated.

If glucose were oxidized to CO2 in one step, little if any of the large amount
of released free energy could be used efficiently, and most of the energy would
be lost as heat. The oxidation of glucose in the body occurs in a number
of steps. ADP molecules absorbs the energy produced by the oxidation of
glucose to form ATP molecules. Later, at another location, at the demand of
an enzyme, the ATP can be hydrolized back to ADP, and the energy made
available for a variety of purposes such as to produce the desired muscular
activity,

relaxed muscle + ATP =⇒ contracted muscle + ADP.

The muscle contraction is caused by the tendency of ATP to undergo a change
to reduce the number of high-energy bonds by forming ADP and a phosphate
ion. Thus muscle contraction consumes ATP, and the body then regenerates
the ATP by oxidizing glucose units.

Digestion is enzyme-catalyzed hydrolysis. It converts the unabsorbable
foodstuffs into absorbable structural units. (The foodstuffs in all their com-
plexity are not absorbed.)

Each organism has its own variety of carbohydrates, lipids and proteins
— differing in small details from other organisms. Thus, in the human body,
foreign carbohydrates in food are broken into glucose to build up human
carbohydrates. Foreign lipids are broken down to glycerol and fatty acids to
build up human lipids. Then, glucose and fatty acids must undergo further
catabolic changes to the still simpler CO2 and water. The amino acids must
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be catabolized to CO2 and urea in the urine, while water is exerted via breath,
urine and perspiration.

When a meal high in carbohydrates is digested (catabolism), we obtain
a supply of glucose that exceeds our immediate needs. It is carried by the
blood into the liver, where it is stored as the polymer glycogen1097 (anabolism)
to answer our future needs. The blood emerges from the liver with normal
concentration levels of glucose, which is absorbed by body cells, where it is
broken down to CO2 and water (catabolism) for energy use in the muscles.

This drain of blood glucose is signaled to the liver, which begins the reverse
process — the breaking down, bit by bit, of its stored glycogen (catabolism).
This is done in just sufficient quantities to replenish the blood with glucose1098.
The glucose balance is maintained by the hormones insulin and glucagon.

Aerobic glucose metabolism (respiration)

If 180 grams of glucose are burned in a calorimeter to CO2 and water, a net
heat energy in the amount of 686 kcal is released. The body, however, to

1097 The highly branched structure of glycogen make it possible for several glucose

residues to be released at once to meet energy needs, rather than one at a

time as would be the case with a linear polymer. This feature is useful to an

organism in meeting short-term demands for energy by increasing the glucose

supply as quickly as possible. It has been shown by mathematical modeling

that the structure of glycogen is optimized for its ability to store and deliver

energy quickly and for the longest amount of time possible. The key to this

optimization is the average chain length of the branches. If the average chain-

length were much greater or much shorter, glycogen would not be as efficient

as a vehicle for energy storage and release on demand. Experimental results

support the conclusions reached from the mathematical modeling.
1098 The process is known as the Cori cycle: It involves the complementary

processes of glycolysis in the muscle and gluconeogenesis in the liver. In the

first, lactate (lactic acid) is formed from glucose in the muscle. It is transported
by the blood to the liver. In the second stage of the cycle the lactate ions are

converted back to glucose, which can be carried back to the muscles by the

blood. Glucose can be converted to glycogen in the liver and the muscle with
the aid of insulin by a process known as glycogenesis. The reverse process in

the liver through which glycogen is degraded, with the aid of adrenalin, back

to glucose is named glycogenolysis. All four processes are multistage reactions
with many intermediate stages involving enzymes and the phosphate ion. In

the Cori cycle there is a division of labor between liver and muscle, with dif-

ferent reactions and different enzymes in the different organs.
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its own advantage, has developed an alternative metabolic route composed of
three steps:

• Aerobic metabolism of glucose to pyruvic acid and acetyl coenzyme A (a
sequence of at least 10 enzyme-catalyzed steps).

• Aerobic metabolism of acetyl coenzyme A (the citric acid cycle or Krebs
cycle1099).

• ‘Burning’ hydrogen atoms from the first two stages and storing part of
this energy in ATP molecules (oxidative phosphorylation).

In the first step, which is common to both fermentation and respiration,
sugar is converted to pyruvic acid. In respiration, however, pyruvic acid is
further broken into a pair of hydrogen atoms and two-carbon molecules, the
acetyl group

O
��

CH3—C
�

,

which is the only one that can enter the citric acid cycle.

In the second stage this two-carbon molecule combines with another cellu-
lar product that contains 4 carbon atoms, forming a 6-carbon product, citric
acid. Citric acid is then broken down in a series of reactions with the step-wise

The overall reaction in anaerobic glycolysis may be summarized by the follow-

ing equation:

OH

|
C6H12O6 + 2ADP + 2H3PO4 =⇒ 2 CH3 — C — COOH + 2ATP + 2H2O

glucose |
H

lactic acid

1099 This cycle was formulated in the early 1940s from biochemical data obtained

primarily by two refugees of the Hitler regime, Albert Szent-Györgi (1893–

1986, Hungary, Holland, U.S.A.) and Hans Krebs (1900–1981; England).

Szent-Györgi was awarded the Nobel prize for physiology or medicine (1937)

for his discoveries in connection with cellular energy metabolism (oxidation

of tissues), vitamin C and fumaric acid. Later he became interested in the

biochemistry of the muscle and discovered the protein actin.
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release of 4 pairs of hydrogen atoms and two CO2 molecules, which can then
again combine with the 2-carbon molecule and start the cycle all over.

The two principal benefits that the cell derives from the Krebs cycle are
the creation of building blocks and the production of energy.

Some of the compounds formed during this cycle can be used to manufac-
ture amino acids and other essential cellular components. For example, the
amino acid aspartic acid (C4H7O4N) is made by the enzyme-controlled addi-
tion of ammonia (NH3) to C4H4O4, an intermediate compound. In general,
the Krebs cycle serves as the hub of the cell. Intermediate products can be
siphoned off at different points in the cycle and utilized to form the variety
of building blocks needed for biosynthesis; conversely, molecules that are not
needed as building blocks can be fed into the cycle at different places, thus
allowing the cell a greater diversity of usable foodstuffs.

With the Krebs cycle the aerobic conversion of glucose is not yet complete;
a third stage of oxidative phosphorylation1100 is needed. Hence the coenzyme
bound hydrogen atoms released in stages 1 and 2 go through a series of
interlocking cyclic reactions in which they combine with oxygen to form water
and liberate energy.

It is now possible to compute the total number of ATP molecules formed
for each molecule of glucose consumed. In the first step, the conversion of
glucose to pyruvic acid, two ATP molecules and two pairs of hydrogen atoms
are formed. When the two pyruvic acid molecules are burned into CO2 via the
Krebs cycle, ten pairs of hydrogen are produced, making a total of two ATP

and twelve pairs of hydrogen atoms. Since each pair of hydrogens yields three
ATP, a grand total of 38 ATP molecules are manufactured for each glucose
that is oxidized into CO2 and water.

A mole of ATP can be experimentally shown to liberate 8 kcal of energy as
it forms ADP. Since 38 ATP are formed by the oxidation of a mole of glucose,
304 kcal are liberated. This represents 45 percent of the total of 686 Kcal
available as a result of the complete combustion of glucose; the remainder is
liberated as heat (Note that since a mole contains 6.023 × 1023 molecules, a
molecule of ATP liberates the puny amount of 1.32 × 10−20 cal.)

1100 The importance of the oxidative phosphorylation chain to living organisms

is demonstrated by the lethal effect of two well-known poisons, CO (carbon

monoxide) and HCN (cyanide). Both toxic materials exert their effects by

combining with carrier molecules used in the oxidative phosphorylation chain,

thus preventing transfer of hydrogens and interrupting the chain. This results

in an immediate halt in ATP production, and unless the poison is removed,

death ensues.
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Anaerobic glycolysis

Under conditions in which oxygen is not available, glucose can still be used
as an energy source. However, much less energy is released and far fewer ATP

molecules are made, because oxidative phosphorylation is not occurring.

As in fermentation, pyruvic acid is formed to begin with, but instead of
being converted to acetyl coenzyme A, it breaks down to either lactic acid or
ethyl alcohol, depending on the organism.

All cells in animals receive sufficient oxygen for aerobic glycolysis while the
animal is at rest. However, in muscles undergoing strenuous exertions, the
muscle cells may not receive an adequate supply of oxygen and so must use
anaerobic glycolysis as a source of energy; lactic acid (instead of acetylcoen-
zyme A) will then be formed from pyruvic acid, which loses two hydrogen
atoms by reduction.

Clearly, muscular work (contraction and expansion) is done at the expense
of the energy liberated by the conversion of glucose to lactic acid.

The rising level of lactic acid causes fatigue and muscular ache, stopping
muscular motion altogether. Eventually, when further breakdown of glucose
to lactic acid is no longer possible, oxygen is brought in by the bloodstream
to produce the needed energy and make up for the “oxygen debt”, which
accumulated by using the less efficient process.

As the muscle rests, oxidative metabolism is resumed in all cells. In gen-
eral, 4

5 of the lactic acid formed during anaerobic glycolysis in the contracting
muscle is carried by the blood back to the liver where it is reconverted to
glycogen (the Cori cycle). The remaining 1

5 is reconverted in the muscle into
pyruvic acid, which is again ready to enter the Krebs cycle.

An aerobic conversion of glucose to CO2 and water produces much more
free energy than the anaerobic use of glucose. When glycolysis is anaerobic
and lactic acid is produced, only 56 kcal of energy are released. This repre-
sents 56

686 × 100 percent of the energy released when glucose is completely
oxidized. Anaerobic glycolysis produces 2ATP moles (per mole of glucose),
which liberates 16 kcal of energy as they are converted to ADP. The efficiency
of energy use is 16

56 × 100 = 29 percent compared to 45 percent for the aer-
obic system. Anaerobic glycolysis therefore not only released far less energy
than aerobic glycolysis but its efficiency is lower1101.

1101 The incomplete metabolism of glucose without oxygen has important evolu-

tionary consequences. The early forms of life on earth developed an anaerobic

glycolitic system because there was no oxygen in the atmosphere. Eventually

oxygen accumulated as it was produced in photosynthesis from water by simple

plant life.
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Metabolism of fats and proteins

This process produces twice the amount of energy per gram than yielded by
either carbohydrates or proteins. Fats consist of triester glycerol and three
fatty acids. The glycerol and fatty acids are metabolized by different routes
to acetyl coenzyme A, which then enters the Krebs cycle.

The mechanism of breakdown of the fatty acids make up a stepwise process
that sequentially releases acetyl coenzyme A molecules until the fatty acid is
completely broken down. Acetyl coenzyme A holds an important position
in metabolism: In addition to its central role in intermediary metabolism of
glucose, fatty acids and certain amino acids, it serves as the essential building
units in many biosynthetic reactions.

Proteins are not normally metabolized to produce energy. However, there
are metabolic pathways for the interconversion of amino acids and carbohy-
drate and fat metabolism.

9. Metabolic role of enzymes and hormones

Enzymes: A biochemical reaction takes place under two principal condi-
tions:

• The overall process is energetically favorable, i.e., the total free energy of
the reaction is greater than the total free energy of the products, therefore
leading to a more stable state.

• A significant percentage of the reacting molecules have an average energy
greater than the rest; they have become activated, and can now cross some
energy barrier [if there were not an energy barrier, every reaction that
could happen, would happen!]

Consequently, to secure control, selectivity and specificity, there are energy
barriers to be bridged and a measurable energy of activation is needed to bring
reactants to the top of the barrier, after which they can then spontaneously
slide downhill to yield products, without any further assistance.

Consider a reaction in which substance AB reacts with substance C, pro-
ducing new reaction products. One such example is the reoxidation of NADH2
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to pyruvate in muscle cell

H
|

NADH2 + CH3 — C — COOH =⇒ NAD + CH3 — C — COOH.
‖ |
O OH

There is some transition state that describes the condition of the reacting
molecules at the top of the energy barriers. The model for the reaction would
involve a complex of AB and C molecules

AB + C � [AB· · ·C ] =⇒ A + BC .

The transition state complex, perched precariously at the summit of the en-
ergy curve, can fall apart in two ways; it can reverse itself, sliding back down
the slope into a mixture of reactants, or it can role down the other side of the
energy barrier, yielding products. The rates of these two alternative outcomes
depends on the population of active molecules in the transition state. The
rate of the forward reaction can be enhanced either by temperature increase
or by catalysts who effectively lower the energy barrier, thereby making it
possible for greater number of molecules to get to the top of the transition
state and then over to the other side.

The burning of glucose with oxygen without the necessary enzymes, will
literally burn it up, losing all specificity and control along the way. However,
the presence of an enzyme catalyst lowers the activation energy barrier such
that the same reaction proceeds at physiological temperatures. Not only are
enzymes catalysts specific, but they are speedy and efficient. It is not uncom-
mon for a typical enzyme molecule to catalyze a million reactions per minute.
Some enzymes are single proteins; others are very complicated structures in-
volving metal ions and other smaller proteins called coenzymes.

Glucose reacts with the enzyme-rich ATP molecule in the very first stage
in glycolysis, resulting in phosphorylation. The reaction is catalyzed by the
enzyme hexokinase and takes place on the surface of a specific protein catalyst.
Further, there is a 3-dimensional fit of all the pieces of the puzzle. Molecular
shapes and bonding sites allow only the right pieces to be correctly oriented.
Schematically (‘S’ represents the substrate)

glucose glucose-6-phosphateE + � [E. . .S] → E +and ATP and ADP
reactant transition

enzyme products
molecules complex state

where the enzyme catalyst is regenerated for continued use.
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Hormones: The principal hormones that affect carbohydrates metabolism
are:

• Insulin is produced by the pancreas; it facilitates the transfer of glucose
into the cell; it removes glucose from the bloodstream by hastening the
conversion of glucose to glycogen in the liver and muscle (glycogenesis),
by speeding up the oxidation of glucose in the tissues, by inhibiting the
breakdown of liver glycogen, and by promoting the formation of fat from
glucose [isolated 1921 by Frederick Grant Banting (1891–1941, Eng-
land)].

• Adrenalin (epinephrine) is produced by the adrenal glands and discharged
into the bloodstream when the individual is under stress. It accelerates
the conversion of liver glycogen to glucose (glycogenolysis) thereby in-
creasing the blood sugar level and providing quick energy to help the
body meet an emergency. Its action is antagonistic to that of insulin.

• Glucagon is produced by the pancreas and, like adrenalin, causes a break-
down in liver glycogen and a rise in blood sugar levels.

Machines and their Ghosts:

Reductionism vs. holism, vitalism, dualism,

emergence, teleology and all the rest

Science has shown that the behavior of a macroscopic body can be re-
duced to the states and motion of its constituent atoms, ions, molecules and
subatomic particles and fields, all evolving in accordance with the quantum-
mechanical and relativistic extensions of Newton’s mechanistic laws. The
procedure of breaking down physical systems into their elementary compo-
nents and looking for an explanation of their behavior at the lowest level is
called reductionism, and it has exercised a powerful influence over scientific
thinking.
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So deeply has reductionism penetrated physics that the ultimate goal of
the subject remains the identification of the fundamental fields (and associ-
ated particles) and their dynamical behavior in interaction. Indeed, in the
second half of the 20th century there has been spectacular progress toward
this goal1102.

Until the middle of the 20th century, there had been a strong belief among
theologians, philosophers and many biologists that life was not reducible to
the laws of physics and chemistry, that there was a “vital force” that made the
difference between living things and inanimate matter. The world’s religions
were invoked: God breathed life, soul-stuff, into inanimate matter.

There are two main aspects of reductionism:

(1) Ontological reduction (ontology = study of the nature of being) claims
that every phenomenon is capable of being described (at least in prin-
ciple) by physics, i.e.: the “stuff” comprising reality is, at its most
basic level, nothing but forces and particles studied by physics. Such
reductionism is not a mere human construct but actually a property
of nature, independent of human culture. It is a claim about the way
things actually are.

(2) Epistemological reduction (epistemology = a theory of the nature of
knowledge) holds that theories and experimental laws in some fields of
science can always be shown to be special cases of laws formulated in
other areas of science. This is a claim not about nature itself but about
the way human being see the world; e.g. the approximate reduction of
classical thermodynamics to the level of statistical mechanics of atoms.
We say that the Second Law is valid “at a higher level” of analysis; we
use the Second Law because it generally gives correct answers without
the vastly more complicated calculations which would be required if we
used the lower-level theories (statistical mechanics). In the 20th century,
chemistry has been epistemologically reduced to physics.

1102 Technically speaking, the aim of the theorist is to provide a Lagrangian density

for the given system under study; for the particle theorist or quantum cosmol-

ogist, this system is the universe at large or its local ground state, the vacuum,

which contains virtual excitations of all possible particles and fields. Once this

action functional is known, it accounts for all the observed fields and particles,

as well as all composite structures, from hadrons and atoms to galaxy clusters.

The implication is that given such a universal Lagrangian, theoretical physics

would have reached its culmination, leaving only technical elaboration: The

world will be explained.
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Vitalism is an old idea which assigns to human life, particularly conscious-
ness, a special quality which must forever remain outside conventional science.
Vitalism is usually associated with an anti-reductionist stance, the view being
that life cannot be reduced to mere physics and chemistry and that a more
holistic approach is required.

While there is a genuine problem abut how to relate different levels of
organization (such as atomic, chemical, cellular and organistic) to each other,
and about which level is the most appropriate on which to tackle a particular
set of problems, this was not what the anti-reductionists and vitalists had in
mind. Any philosophy that is at its core holistic must tend to be anti-science,
because it precludes studying parts of a system separately, or isolating some
parts and examining their behavior without reference to everything else.

If every process were crucially dependent upon its embedding as part of
a larger whole, then science could not have succeeded. We can study cells
outside the body and particular biochemical reactions outside of cells. Indeed,
the success of biochemistry is due to just such isolation of parts. That does
not to deny the importance of also studying systems as a whole.

The unwillingness of holists to consider explaining life in terms of molecular
biology and their desire to invoke some special life-force, effectively restores
the concept of the soul and renders the concept of an afterlife conceivable.

Joseph Priestley (c. 1776) tried to find the “vital force”. He weighed a
mouse before and just after it died; it weighed the same. All such attempts
have failed. If there is soul-stuff, it is not made of matter.

Helmholtz (1847), together with Karl Ludwig (1816–1895), Ernst von
Brücke (1819–1892) and Emil du Bois-Reymond (1818–1896) initiated
a plan for a research programme to elevate physiology to equal rank with
physics. Rejecting vitalism, this group proposed to analyze processes such
as urine secretion or nerve conduction in physicochemical terms. Although
the programme was naively optimistic (as the four subsequently recognized),
modern biochemical science is still reductionist in intent.

Claude Bernard (1813–1878) rejected German reductionism and Louis
Pasteur (1822–1895) always attributed unique functions to living cells.

Vitalists [e.g. Henri Bergson (1859–1941)] stated that life is an au-
tonomous function controlled by its own laws of physics and chemistry. Vi-
talism maintains that the laws of physics and chemistry will never adequately
explain life, for the reason that life is not material.

Furthermore, reason itself is unable to explain life processes because its
rational activity cannot go beyond the mechanistic explanations based on
physicochemical laws, whereas life and consciousness, being independent of
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physicochemical laws, cannot be completely understood by means of logical,
scientific, or mathematical analyses.

The chief constituent quality of living organisms is (á la Bergson) a vital
impulse (élan vital) — a quality which can be understood only by means of
man’s intuition. However, the continuity between atomic physics, molecular
biology and the nature of reproduction, heredity, metabolism, respiration, and
other biological functions – even aspects of brain functionality – have by now
been established.

And no new principle of science needed to be invoked anywhere in this
vast, multi-scale programme!

It looks as if there are a small number of simple facts that can be used
to understand the enormous variety and intricacy of living things. Thus, the
discovery of the molecular structure of the gene achieved what Bergson and
most geneticists only 30 years previously had thought impossible.

Reductionism is even better established in physics and chemistry. We
have known for centuries that a handful of comparatively simple laws not only
explain but quantitatively and accurately predict a variety of phenomena, not
just on earth but throughout the entire observable universe.

We detect and identify light from distant quasars only because the laws
of electromagnetism are the same ten billion light-years away as here. The
spectra of those quasars are recognizable only because the same chemical
elements are present here and there. The motion of galaxies around one
another follows familiar Newtonian gravity. Gravitational lenses and binary
pulsar spin-down reveal general relativity in the depths of interstellar and
intergalactic space, just as Mercury’s orbit and the behavior of light rays and
radar beams skirting the sun reveal its working in our own solar system.

All in all, the greater part of Western science has been founded on the
method of reductionism, whereby the properties of a complicated system are
understood by studying the behavior of its component parts1103.

That the universe is ordered, seems self-evident. Everywhere we look,
from far-flung galaxies to the deepest recesses of the atom, we encounter
regularity and intricate organization. We do not observe matter or energy
to be distributed chaotically. They are arranged instead in a hierarchy of
structure: atoms and molecules, condensed matter, crystals, living things,

1103 Example: there is probably nobody who understands all the systems of a

Boeing 747 airliner, but every part of it is understood by somebody. Thus, the

airliner behavior as a whole is understood, because we believe that an airliner

is just the sum of its parts.
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planetary systems, star clusters, and so on. Moreover, the behavior of physical

systems is not haphazard, but lawful and systematic.

We can distinguish between different sorts of order; first there is the order
of simplicity, seen for example in the regularities of the solar system, or the

periodic oscillations of a pendulum. Then there is the order of complexity,
such as the arrangement of gases in the swirling atmosphere of Jupiter, or the

complex organization of a living creature. This distinction emphasizes two

different approaches: reductionism versus holism.

Reductionism seeks to uncover simple elements within complex structures,

while holism directs attention to the complexity as a whole. The order of com-

plexity suggests to many an element of purpose, in which all the component

parts of a system fit together harmoniously in a cooperative way to achieve

some particular end.

The world abounds with complex structures that amalgamate regularity

and irregularity: coastlines, forests, mountain chains, ice sheets, star clusters.

Matter is manifested in a seemingly limitless variety of forms. How does one

go about studying them scientifically?

A fundamental difficulty is that, by their very nature, complex forms have

a high degree of individuality. We recognize a snowflake as a snowflake, but

no two of them are the same. Conventional science attempts to explain things

exactly, in terms of general principles. Any sort of explanation for the con-

tingent shape of a particular snowflake or a coastline could not be of this

kind.

The Newtonian paradigm, which is rooted in that branch of mathematics

— the differential calculus — that treats change as smooth and continuous,

is not well adapted to deal with irregular things. The traditional approach

to complicated, irregular systems is to model them by approximation to reg-

ular systems. The more irregular the real system is, the less satisfactory

this modeling becomes. For example, galaxies are not distributed smoothly

throughout space, but associate in clusters, strings, sheets and other forms

that are often tangled and irregular in form. Attempts to model such features

using Newtonian methods involve enormous computer simulations that take

many hours even on modern machines.

When it comes to very highly organized systems, such as a living cell, the

task of modeling by approximation to simple, continuous and smoothly vary-

ing quantities is hopeless. Belatedly attempts by sociologists and economists

to imitate physicists and describe their subject matter by simple mathemati-

cal equations are rarely convincing.
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Generally speaking, complex systems fail to meet the requirements of tra-
ditional modeling in four ways. The first concerns their formation. Com-
plexity often appears abruptly rather than by slow and continuous evolution.
There are many examples of this. Secondly, complex systems often (though
not always) have a very large number of components (degrees of freedom).
Thirdly, they are rarely closed systems; indeed, it is usually their very open-
ness to a complex environment that drives them. Finally, such systems are
predominantly nonlinear in their dynamics.

A wide range of physical systems can be satisfactorily approximated as
regular, continuous or linear. A linear system is one in which cause and effect
are related in a proportionate fashion. An elastic string is a simple example. If
the string stretches by a certain length for a certain pull, it stretches by twice
that length for twice the pull. This is called a linear relationship because if a
graph is plotted showing the length of the string against the pulling force it
will be a straight line. The line can be described by the equation y = ax + b,
where y is the length of the string, x is the force, and a and b are
constants.

If the string is stretched too much, its elasticity will start to fail (onset of
plasticity) and the proportionality between force and stretch will also cease.
The graph deviates from a straight line as the string stiffens; the system
becomes nonlinear. Eventually the string snaps, a highly non-linear response
to the applied force.

A great many physical systems are described by quantities that are approx-
imately linearly related. An important example is wave motion. A particular
shape of wave is described by the solution of some equation (mathematically
this would be a partial differential equation, which is typical of nearly all dy-
namical systems). The equation will possess other solutions too; these will
correspond to waves of different shapes. The property of linearity concerns
what happens when we superimpose two or more waves. In a linear system
one simply adds together the amplitudes of the individual waves.

Most waves and oscillations encountered in physics are linear to a good
approximation, at least as long as their amplitudes remain small. In the case
of sound waves, musical instruments depend for their harmonious quality
on the linearity of vibrations in air, on strings, etc. Electromagnetic waves
such as light and radio waves are also approximately linear, a fact of great
importance in telecommunications. Oscillating currents in electric circuits are
often linear too, and most electronic equipment is designed to operate linearly.
Non-linearities that sometimes occur in equipment can cause distortions in the
output, although carefully controlled non-linearities are sometimes crucial to
circuit functionality.
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A major discovery about linear systems was made by the French mathe-

matician and physicist Jean Fourier. He proved that any periodic mathemat-

ical function can be represented by a (generally infinite) series of pure sine

waves, whose frequencies are exact multiples of each other. This means that

any periodic signal, however complicated, can be analyzed into a sequence

of simple sine waves. In essence, linearity then means that wave motion, or

any periodic activity, can be decomposed into simple signals and put together

again without distortion.

Linearity is not a property of waves and oscillations alone; it is approx-

imately possessed by electric and magnetic fields, currents, voltages, weak

gravitational fields, stresses and strains in many materials, heat flow, diffusion

of gases and liquids and much more. The greater part of natural phenomena

and technology stems directly from the fortunate fact that so much of what

is of interest and importance in natural phenomena involves linear systems.

Roughly speaking, a linear system is one in which the whole is simply the

algebraic sum of its parts.

Thus, however complex a linear system may be it can always be understood

as merely the conjunction or superposition or coexisting simple elements that

are present together but do not ‘get in each other’s way’.

Such systems can therefore be decomposed, analyzed or reduced to their

independent component parts. It is not surprising that the major burden of

scientific research so far has been towards the development of techniques for

studying and controlling linear systems.

But by and large, non-linear systems have been largely neglected, although

this has been gradually changing in recent decades. In a non-linear system

the whole is much more than the sum of its parts, and it cannot be reduced

or analyzed in terms of simple subunits acting independently. The result-

ing properties can often be unexpected, complicated and mathematically in-

tractable.

There is a tendency to think of complexity in nature as a sort of annoy-

ing aberration which holds up the progress of science. Only very recently

has an entirely new perspective emerged, according to which complexity and

irregularity are seen as the norm, and smooth regularities the exception.

The new approach treats complex or irregular systems as primary in their

own right. They simply cannot be ‘chopped up’ into lots of simple components

yet still retain their distinctive qualities.
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We might call this new approach synthetic or holistic, as opposed to ana-
lytic or reductionist, because it treats systems as wholes1104. Just as there are
idealized simple systems (e.g. the hydrogen atom, Keplerian orbits, etc.) to
use as building blocks in the reductionist approach, so one must also search
for idealized complex or irregular systems to use in the holistic approach. Real
systems can then be regarded as approximations to these idealized complex
or irregular systems.

Reductionist biologists take the position that once the basic physical mech-
anisms operating in a biological organism have been identified, life has been
explained as ‘nothing but’ the processes of ordinary physics. They argue that
because each component of a living organism fails to reveal any sign of pe-
culiar forces at work, life has already effectively been reduced to ordinary
physics and chemistry (and chemistry itself reducible to physics).

Since animate and inanimate matter experience exactly the same sorts
of microscopic forces and changes, and since many of life’s processes can be
conducted in a test tube (in vitro), any outstanding gaps in knowledge are
attributed solely to technical limitations. As time goes on, it is claimed, more
and more details of the workings of organisms will be understood within the
basic mechanistic paradigm.

It is worth pointing out that the claim that animate and inanimate matter
are both subject to the same physical forces is very far from being fully tested
in practice. What the biologist means is that he sees no reason why the sort
of molecular activity he studies should not be consistent with the operation
of normal physical forces, and that should anyone decide to investigate more
closely, the biologist would not expect any conflict with conventional physics
and chemistry to emerge,

Let us nevertheless grant that the biologist may be right on this score. It
is still far from being the case, however, that life has then been ‘explained’
by physics. It has, rather, simply been defined away. For if animate and
inanimate matter are indistinguishable in their behavior under the laws of
physics then wherein lies the crucial distinction between living and non-living
systems?

The mystery of life, then, lies not so much in the nature of the dynamics
that govern the individual molecules that make up an organism or their lo-
cal, microscopic interactions but rather in how the whole assemblage operates
collectively in a coherent and cooperative fashion. Biology will never be truly

1104 However, in this “scientific holism” complex phenomena are actually still re-

duced to simpler sub-processes and are – in principle if not always in practice

– further reducible to simple, microscopic degrees of freedom.
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reconciled with physics until it is recognized that each new level in the hierar-
chical organization of matter may bring into existence new qualities that are
simply irrelevant at the lower (smaller) scales of the hierarchy.

In recent years scientists have come to recognize more and more systems
that must be understood holistically (in the above-defined, scientific sense);
these systems are usually highly nonlinear and characterized by abrupt (ran-
dom or pseudo-random) relationships among quantities. It may thus be an
accident of history that the first scientists were preoccupied with linear phys-
ical systems, such as simple harmonic oscillations or low-amplitude waves, or
else such simple, predictable nonlinear systems as two-body systems, atoms
and small molecules, laminar fluids, equilibrium thermodynamics, etc., which
are especially amenable to analytical techniques and a reductionist approach.

Reductionism has been under attack from yet another quarter: already the
rise of quantum physics in the 1920s put paid to the idea of the universe as a
deterministic machine. But the more recent work on chaos, self-organization,
and nonlinear system theory has been more influential. These topics have
forced scientists to think more and more about open systems, which are not
rigidly determined by their component parts because they can be influenced
by their environment. This makes their behavior unpredictable, bestowing
upon them a type of “freedom”.

What has come as a surprise is that open systems can also display ordered
and law-like behavior in spite of being indeterministic and at the mercy of
seemingly random outside perturbations.

There appear to exist general organizing principles that supervise the be-
havior of complex systems at many organizational levels, principles that exist
alongside the laws of physics (which operate at the bottom level of individual
particles and/or coherent, predictable field patterns). These organizing prin-
ciples are consistent with, but cannot be reduced to or derived from, the laws
of physics; they point to a state of contingent order.

Thus nature is attributed a sort of freedom (in the philosophical sense of
free will) which was absent in the clockwork universe of Newton and Laplace.
This freedom may arise through partial sacrifice of reductionism; the world
is – in effect if not in principle – more than the sum of its parts, and a
physical system, while “merely” a collection of atoms, has emergent collective
dynamical qualities that bear no simple mapping to its microscopic degrees of
freedom. We must recognize the existence of many different levels of structure.

A human being, for example, certainly is a collection of atoms, but there
are many higher levels of organization that are not easy to deduce from this
microscopic description yet which are essential for defining what we mean by
the word “person”.
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By viewing complex systems as a hierarchy of organization levels, the sim-
ple “bottom-up” view of causality in terms of elementary particles and fields
interacting with each other must be replaced by a more subtle formulation in
which higher levels can act downward upon lower levels too.

This serves to introduce elements of teleology, or purposive behavior, into
the affairs of nature.

The multi-level emergence of structure in biological organisms may be
viewed either as a temporal process, the creation of novelty through growth
or evolution, or non-temporally, as a thing possessing properties not possessed
by any of its parts. [The smell of ammonia, for example, is neither present in
hydrogen nor nitrogen, nor easily predictable from the laws of chemistry.]

While the “emergenist” approach acknowledge the genuine novelty in na-
ture at successive level of organization and pure reductionism maintains that
nothing really new can emerge at higher levels, there are those who take the
middle road. To them, the higher form is new and different, not a mixture or
a compounding of lower forms, and yet it is understandable in terms of them;
one might say that the higher form actualizes the potentiality of lower forms.

For example, the form of sodium chloride can be understood by refer-
ring to the form of sodium and the form of chlorine. It does not have the
same properties that they do, but its properties are based on theirs and are
developments of them at a new level.

Thus, the emergence of table salt from the union of sodium and chlorine
is neither hollow nor irrational. The salt is a genuinely novel substance and
yet eminently intelligible. Likewise, the form of sodium is intelligible in terms
of the potentialities of protons, neutrons, and electrons.

These principles are readily applied to living things. The organism is best
understood if seen as the culmination of a long hierarchy of natural forms.

In the progression from subatomic particles to elements, to molecules, to
compounds and minerals, to viruses, and to full-fledged organisms, we notice
(as we proceed from small to large) that there arises more actuality, more
stability, more perfect agency, and greater variety of kinds at each successive
stage.

For example, in the standard model of particle physics, all ordinary matter
and energy comprises of electrons, six “flavors” of quark (each in 3 colors),
two heavy copies of the electron (muon and tau-lepton), three neutrinos, and
antiparticles of all the above; as well as the graviton, photon, 8 gluons, three
massive gauge bosons, and one or more scalar massive bosons. These do not
grow or reproduce. They do not have an “inside,” and like all nonliving things,
they act only when they are acted upon from without. Their sphere of agency
is severely limited though within it great power is available.
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Stars exploit this power source and through thermonuclear combustion
produce light and heat with heavy elements as by-products.

Astronomers speak of the “life cycle” of stars, but a star’s “life” is strictly
determined by the amount of matter it begins with.

A cloud of hydrogen with a mass of one-twentieth or less of the sun’s
mass coheres but its internal gravity is too weak to generate pressures and
temperatures sufficient to trigger thermonuclear combustion.

This results in a failed star like the planet Jupiter which generates more
energy than it receives from the sun but falls short of the conditions needed
to set off nuclear reactions. A star cannot truly grow or reproduce itself. It
is more an aggregate than a unity.

The interaction of subatomic particles produces the nearly hundred natu-
rally occurring elements which exhibit far more variety and agency than the
protons, neutrons and electrons of which they are composed. At a higher
level of organization we find compounds, organic molecules, and minerals,
each with its own special properties and powers. On the large scale, quantum
uncertainty disappears, resulting in more stability.

By virtue of its structure, a complex organic molecule has an “inside” of
sorts, as well as a wider range of activities; and sometimes (as in the case of
enzymes) it can interact with other molecules without losing its identity.

Crystals increase in size by mere addition from the outside, involving no
transformation of substance as in plant and animal growth. Also, a crystal
requires the same spatial pattern to be repeated as the crystal grows. It is a
regular arrangement of atoms from the bulk to the surface. Being inaccessible,
the interior of the structure has no function. The crystal can develop only by
the addition of components to its surface. It does not reproduce.

Crystals are made up of exceedingly small structural units, repeated, side
by side, indefinitely in all directions. A perfect crystal is a homogeneous body.
Any small bit of it is just like any other small bit.

Finally, the structures of crystals are limited in number, dictated by geom-
etry. Mathematics states that there are only thirty-two possible classes of
crystal symmetry. The 230 types of crystal structures that occur in nature
each fall into one of them.

Viruses represent a much higher level of organization. About a thousand
times larger than a protein molecule, the average virus is visible only through
the techniques of electron microscopy. Viruses prefigure certain life functions
and are considered by some to be rudimentary living things. Closer inspection,
however, indicates otherwise.
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Viruses carry out no true life activities. After the particles are formed they
do not grow. They do not ingest food nor carry on any metabolic processes.
So far as can be told by use of the electron microscope and by other methods
of investigation, the individual particles of the virus are identical with one
another, and show no change with time — there is no phenomenon of aging,
of growing old.

The virus particles seem to have no means of locomotion, and seem not to
respond to external stimuli in the way that larger living organisms do. Viruses
have no cell membrane to receive materials selectively from without, no way
to assimilate food, and no way to produce energy — all functions of even the
simplest cell. Hence, the virus is closed in on itself.

It seems that reproduction is the only living activity viruses perform. But
here also it is not genuine reproduction as found in animals and plants where
the parent, without self-destruction, produces another being like itself, either
by changing itself as when a paramecium divides into two, or by producing a
seed or egg that can independently develop into an adult of the same species.

Viruses have no eggs or seeds, and they do not multiply by division. They
are necessarily parasitic. Because they have no metabolism, viruses have no
control over themselves and therefore cannot replicate themselves outside of
a living cell.

The process of replication occurs not by the virus devouring the cell and
changing its materials into more viruses. On the contrary, the virus, or at
least its nucleic acid, is absorbed into the cell whose materials and energy
sources the foreign nucleic acid commandeers. And, unlike reproduction in
plants and animals, replication in viruses requires the disintegration of the
“parent” virus.

If we require that living organisms have the property of carrying on some
metabolic reactions, then the plant viruses would be described simply as mole-
cules (with molecular mass of the order of magnitude of 10, 000, 000) that
have such a molecular structure as to permit them to catalyze a chemical
reaction, in a proper medium, leading to the synthesis of molecules identical
with themselves.

Thus, viruses are nonliving nanorobots. They have the machinelike capac-
ity of being reassembled without loss. The form of the virus is determined by
the requirements of physics and chemistry. In contradistinction, true growth
in animals and plants produces forms not determined by known physical laws
alone.

Viruses, like machines, are constructed from the outside. Living things
grow from within as does, even the simplest bacterium.
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It is easily demonstrated that only things that have grown from within can
incorporate the kind of fivefold symmetry found in starfishes and sea urchins.
Such symmetry is geometrically impossible for anything that increases from
without.

Viruses take on mathematically predictable shapes. On geometrical and
energetic grounds a viral coat of identical particles can be constructed in
either of two arrangements: a cylinder having helical symmetry or a self-
closing shell. Thus the adenovirus that infects the human respiratory tract is
an icosahedron, while the tobacco mosaic virus is a helix of RNA protected
by about 2, 000 identical protein subunits.

Viruses, then, fall just short of life. They are too small to incorporate
life functions, and they do not have a sufficient diversity of parts. Thus in
biology, as in physics, a quantum principle obtains: below a certain degree of
organization, life cannot exist.

Life’s unique kind of organization is widely recognized.

Activity is closer to the essence of life than structure, since structure exists
for the sake of activity. The key to the living thing is the excellence of its
agency. An organism can change itself; it can act or not act on its own
initiative, not as determined by outside forces.

The animal or plant is not always growing or reproducing, even when food
is abundant. Nonliving things do not have control over their activities; they
are either always in action or are put into action from the outside. No machine
turns itself on. It must be switched on, or plugged in, or at least put into
contact with its energy source. Even mechanisms with built-in thermostats
and timers must be set in advance, either by the manufacturer or by the user.

One of the striking things about living creatures is that they do no more
(but also no less) than is required. Unlike most machines, they do not have
to be switched on and off by an outside manipulator; something is built into
them that does this at the proper time.

With the organism, acting or not acting, however conditioned by outside
circumstances, comes from within. Living things move themselves, not merely
with local motion of parts but by producing qualitative changes in those
parts. Animals and even plants display a surprising degree of self-regulation
regarding temperature, for example.

Inanimate objects simply take on the temperature of the environment.
Living things, on the other hand, show their autonomy by balancing metabolic
heat with evaporative cooling to suit their own requirements. A living thing
can change itself and thus exert control over its actions in ways never found
in the inanimate world. Even the lowliest living being, is able to direct its
own operations from within.
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In sum, the organism can reproduce itself without destruction. It can

grow — that is, increase in quantity — while retaining its characteristic form.

It can grow new diversity of parts. It can change other things into its own

substance without losing its identity.

All these actions — reproduction, growth, self-regulation, nutrition —

demonstrate the organism’s agency. In a very real way, even the plant is a

master of the material world, utilizing physical laws and inorganic powers to

achieve its own goals. The animal is superior to the plant since the animal

moves itself, not only through growth but through local motion directed by a

sense of self awareness of the world around it.

For these reasons, among all natural objects, the organism is the highest.

What then is life? To the physicist, the two distinguishing features of living

systems are complexity and organization. Even a lowly bacterium reveals a

complex network of function and form. It may interact with its environment in

a variety of ways, propelling itself, attacking enemies, moving towards or away

from external stimuli, exchanging material in a controlled fashion. Its highly

organized internal working resemble a vast city in complexity of structure and

form.

Much of the control inheres within the cell nucleus, wherein is also con-

tained the chemical blueprint that enables the bacterium to replicate. The

chemical structures that control and direct this activity may involve mole-

cules with as many as 106 atoms strung together in a complicated yet highly

specific way.

Although a biological organism is made from perfectly ordinary atoms,

a multi-component system may collectively possess qualities that are absent

for individual components, without invoking concepts such as vitalism and

holism. Atoms do not need to be ‘animated’ to yield life, they simply have to

be arranged in appropriate complex ways.

Life itself may have arisen purely from the random self-organization of
complex organic molecules. It is not hard to envisage a prebiotic soup con-

taining all the necessary ingredients of biology, driven by outside disturbance

into interlocking self-organizing, self-reinforcing “feedback’ loops, thereby fan-

tastically increasing the odds in favor of crossing the life threshold.
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1947–1972 CE Donald Olding Hebb (1904–1985, Canada). Psychol-
ogist. Pioneer of physiological psychology and a founder of modern neuro-
science. His theory prefigured modern mathematical models of neural net-
works, both in the actual brain and in artificial neural nets designed to solve
engineering problems. Made an ambitious attempt to account in neurological
terms for many of the phenomena of perception, learning and thinking. He
taught that there is spontaneous brain activity which modifies and interacts
with incoming stimuli.

On the neurological level, elemental neural patterns known as cell assem-
blies develop as a result of experience, and then combine to form a more
complicated neural structure known as a ‘phase sequence’.

Hebb’s interest in mental processes led him to reject behaviorism. Behav-
iorists maintained that ideas, and thus mentalism, had no place in scientific
psychology. Hebb showed that ideas could have just as firm a physical basis
as muscle movements. They could consist of learned patterns of neuronal
firing in the brain, initially driven by sensory input but eventually acquiring
autonomous status.

He was first to claim that random neural nets could organize themselves
to store and retrieve information. Hebb’s studies culminated in 1949 with the
publication of The Organization of Behavior . Although this work was not
firmly grounded in physiology, it became possible later, as knowledge of the
brain grew, to frame his ideas in more concrete neural terms.

Hebb was born in Chester, Nova Scotia. He graduated in English from
Dalhousie University (1925). He wanted to become a novelist; to this end he
set out to travel across Canada to see life, and later (1928) became a student
of psychology at McGill University. Certain developments in his personal
life made him leave Montreal for Chicago (1934) to continue his doctoral
research under Karl S. Lashley (who, in 1930, had become convinced that
memories could not be stored in a single region of the brain but must be
spread throughout).

Hebb received his Ph.D. from Harvard (1936) and returned to McGill
(1937) to work with Wilder Penfield, a surgeon who established the Mon-
treal Neurological Institute. Hebb finally found a permanent position at
Queen’s University in Kingston, Ontario.

A turning point in his work came when he read about the work of Rafael
Lorente de Nó, a neurophysiologist at the Rockefeller Institute for Medical
Research, who had discovered neural loops, or feedback paths, in the brain.
Hebb recognized that Lorente’s looping paths were just what he needed to
develop a more realistic theory of the mind.
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1947–1963 CE George Bernard Dantzig (b. 1914, USA). Mathemati-
cian. Forged novel tools to solve linear optimization problems1105 (linear pro-
gramming) in the fields of economics, natural sciences and technology. Central
to his work is an algorithm, known as the simplex method1106. His computa-
tional procedures laid the foundation for much of the field of system engineer-
ing and is widely used in the managerial sciences and in operations research.

Danzig was born in Portland, Oregon to Jewish parents of illustrious rab-
binical ancestry from Eastern Europe. He was educated at the Universities
of Maryland and Michigan. During WWII he was attached to the Statistical
Control Headquarters of the US Air Force. He was later research mathe-
matician with the Rand Corporation at Santa Monica, CA (1952–1966) and
Stanford University (1967–1979).

1105 Problems that involve an optimal allocation of some sort of resource (energy,

money, materials) that is limited in supply; hence there are resource constraints

that must be satisfied by any solution.
1106 An n-dimensional simplex is the geometrical figure consisting of (n + 1)

points (or vertices) and all their interconnecting line segments, polygonal faces,

etc. In 2 dimensions, a simplex is a triangle. In 3 dimensions it’s a tetra-

hedron (not necessarily regular). The simplex method of linear programming

also makes use of the geometrical concept of a simplex. Otherwise the latter

is completely unrelated to the algorithm that is associated with it.
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Mathematics for the Social Sciences:

Linear Programming and the Simplex Method

Optimization problems were already formulated by Euclid (ca 400 BCE),
but only with the development of the differential calculus and the calculus of
variations in the 17th and 18th centuries was a mathematical tool forged for
the solution of such problems.

By means of the classical calculus, the recipe for finding local extrema1107

is well-known: for functions of a single variable, one sets the first derivative
to zero and then finds the root of this equation, yielding the position of the
minima, maxima and other points with horizontal tangents. For functions
of two variables or more, one finds candidate non-boundary local maxima
and minima points by setting the gradient vector to zero and solving. Here,
functions often display peculiar behavior [e.g. f(x, y) = y2 − 3x2y + 2x4] and
many apparently simple problems have no mathematically defined minimum
values.

Frequently, it is required to minimize a function of m variables, where
there are k constraints among the variables.

In principle the k constraint equations can be solved for k of the
variables xi and these can be used to eliminate those variables from the
original function y = f(x1, x2, . . . , xm).

In practice this is apt to be impossible to carry out, and an ingenious trick
known as the method of Lagrange multipliers1108 can be used instead.

1107 An extremum (maximum or minimum point) can be either global (truly the
highest or lowest function value) or local (the highest or lowest in a finite

neighborhood). Although some standard heuristics are used, virtually nothing

is known about finding global extrema in general. The analytical algorithms
for finding local extrema are subjected to two assumptions:

• the function and its derivatives are continuous (no cusps)

• the extreme values do not occur on the boundary

Both assumptions are significant in practice. Local extrema that do lie on

the boundary can be found by restricting the function to that boundary and

(unless the boundary is a union of discrete points) repeating the procedure for

the restricted-domain function.
1108 For example, the values of the points (x1, x2, . . . , xm) may be required to lie

on the surface of a sphere φ = x2
1 + x2

2 + · · · + x2
m − a2 = 0. It is then shown

that the problem reduces to optimizing the new function L = f + λφ as a
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There, is, however a wide class of optimization problems where this method
will fail: namely, problems in which some of the constraints are inequalities.
Thus, let it be required to minimize the linear function f(x) =

∑N
i=1 cixi

subject to the linear constraints
∑N

i=1 aijxi − bj ≥ 0, j = 1, . . . m. These
are called linear programming problems, and they are important because of the
enormous variety of application which they have found in practical situations.
We work out a specific example: determine

x1 ≥ 0 x2 ≥ 0

so that
z = 10x1 + 11x2

is a maximum, and so that

3x1 + 4x2 ≤ 9; 5x1 + 2x2 ≤ 8; x1 − 2x2 ≤ 1.

It is evident that the set of points satisfying all five constraints (inequalities)
lie in the first quadrant of the x1–x2 plane, and inside or on the boundary
of a convex polygon of 5 sides bounded by the 5 lines:

x1 = 0; x2 = 0; 3x1 + 4x2 = 9; 5x1 + 2x2 = 8; x1 − 2x2 = 1.

These lines intersect at the vertices of the polygon, namely at

O(0, 0); A(1, 9); B(1.5, 0.25); C(1, 1.5) D(0, 2.25).

The problem now is to select from the above 2-dimensional continuum of
points in and on the polygon the one point which renders z maximum. This

function of the xi with λ as an additional variable. One then obtains m + 1
equations:

∂f

∂xi
+ λ

∂φ

∂xi
= 0, i = 1, 2, . . . , m; φ(x1, x2, . . . , xm) = 0

in the m + 1 variables (x1, x2, . . . , xm; λ).
As an illustration consider the problem of finding the maximum rectangular

block that will fit inside the ellipsoid φ = x2

a2 + y2

b2
+ z2

c2
− 1 = 0. The volume

to be maximized is V = 8xyz subject to the constraint of the point (x, y, z)

lying on the ellipsoid.
Here L = V + λφ and straightforward analysis yields

x =
a√
3
, y =

b√
3
, z =

c√
3
,

with a maximum volume of V = 8

3
√

3
abc.
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task can be readily accomplished by plotting a family of parallel straight lines
representing 10x1 + 11x2 = constant and watching for that particular line
which renders the highest value of the constant and still includes points of the
polygon or its interior.

Starting from a line which passes through (0, 0), the value of the con-
stant steadily increases until its extreme value is obtained at the vertex
C(x1 = 1, x2 = 1.5). Hence z = 10 × 1 + 11 × 1.5 = 26.5 is the sought ex-
treme value.

The polygonal area is known as the feasible region; a little thought will
make it intuitively clear that the solution of a linear program lies on the
boundary of the feasible region, usually on a vertex, but sometimes along one
segment of a constraint line.

The algebraic counterpart of the above geometric scheme is as follows: one
first converts the constant inequalities into corresponding equations:

3x1+4x2+x3 = 9
5x1+2x2 +x4 = 8
x1−2x2 +x5= 1

where {x3, x4, x5} are additional, so called slack variables. Clearly all five
variables are non-negative: xi ≥ 0 i = 1, 2, . . . , 5. The above three equa-
tions involve five unknowns and, therefore, have an infinite number of solu-
tions.

However, if we arbitrarily assign the value zero to two of the five variables
and solve for the other three, then there are 10 possible choices, of which
five yield negative values of some variables and are therefore not feasible.

The remaining five are called basic feasible solutions, since they satisfy all
constraints. They also have a one-to-one correspondence to the five vertices
of the polygonal domain. It remains to choose out of these five options, the
optimal solution that maximizes z = 10x1 + 11x2.

In general, when the number of variables and equations is large, the
graphical-geometrical method presented earlier becomes useless and other
methods must be used. Of the several computational schemes available,
Dantzig’s simplex method is the most widely used. It is basically a numerical
algorithm employing the Gauss-Jordan elimination procedure for preparing
what is known as a simplex tableau.

In a nutshell it amounts to starting at some vertex (basic feasible point)
and, by a sequence of exchanges, proceed systematically to other such points
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in a way which steadily reduces (or increases) the value of f(x) until a

solution point is found1109.

Linear programming applies to solutions of 2-person games. Let the payoff

matrix, consisting of positive numbers aij , be

A =

⎡

⎣
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤

⎦

by which we mean that when player R has chosen a row i of this matrix

and player C has (independently) chosen column j, a payoff of amount aij

is made from R to C. This constitutes one play of the game. The problem

is to determine the best mixed strategy for each player in the selection of rows

or columns. Let C choose one of three columns with probabilities (p1, p2, p3)
respectively. Then

p1, p2, p3 ≥ 0 and p1 + p2 + p3 = 1.

Depending on R’s choice of row, C now has one of the following three

1109 Because of the enormous number of possible paths around the edges of a poly-

tope, the simplex algorithm is known to be, in theory, an exponential time

algorithm, but when used in practice (on problems involving hundreds or even

thousands of variables) it works extremely well, homing in on the optimal ver-

tex in a relatively small number of steps.

The indications are that it tends to run in linear time. [Indeed, Dantzig (1962)

was able to solve a problem with 32, 000 constraints and 2 million variables

in justifiable computer time.]

A group of Russian mathematicians (1976) used a modification of the simplex

method, known as the ellipsoidal method, in which the direction of the path to

be followed across the interior of the polytope is determined with the aid of a

sequence of ellipsoids drawn to ‘approximate’ the polytope.

Yet, although the ellipsoidal method runs theoretically in polynomial time, the

simplex method proved to be superior when applied to real-world problems.

A new polynomial-time linear programming algorithm was developed by

Narenda Karmarker (1984, USA) which outperformed the simplex method

on many occasions. In his method the sophisticated geometrical ideas of the

simplex method are suppressed in favor of a series of arithmetic operations on

matrices. In the case of dynamic programming, allocated computer resources

grow exponentially as the problem size increases.
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quantities for his expected winnings:

P1 = a11p1 + a12p2 + a13p3;

P2 = a21p1 + a22p2 + a23p3;

P3 = a31p1 + a32p2 + a33p3.

Let P be the least of these three numbers. Then, no matter how R plays,
C will have expected winnings of at least P on each play and therefore asks
himself how this amount P can be maximized. Since all numbers involved
are positive, so is P ; and we obtain an equivalent problem by letting x1 = p1

P ,

x2 = p2
P , x3 = p3

P and minimizing F = x1 + x2 + x3 = 1
P .

The various constraints may now be expressed as

x1, x2, x3 ≥ 0

a11x1 + a12x2 + a13x3 ≥ 1

a21x1 + a22x2 + a23x3 ≥ 1

a31x1 + a32x2 + a33x3 ≥ 1

Looking at things from R’s point of view, we maximize

G = y1 + y2 + y3 =
1
Q

under the constraints,

y1, y2, y3 ≥ 0

a11y1 + a21y2 + a31y3 ≤ 1

a12y1 + a22y2 + a32y3 ≤ 1

a13y1 + a23y2 + a33y3 ≤ 1

y1 =
q1

Q
, y2 =

q2

Q
, y3 =

q3

Q

where (q1, q2, q3) = probabilities with which R chooses the three rows.

Thus for instance with A =

⎡

⎣
0 1 2
1 0 1
1 2 0

⎤

⎦, the simplex method yields

p1 = 1
2 , p2 = 1

6 , p3 = 1
3

q1 = 1
6 , q2 = 1

2 , q3 = 1
3
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If either player uses the optimal strategy for mixing his choices, the average

payoff will be 5
6 .

A second example illustrates the usefulness of the simplex method in solv-

ing real-life problems: A university department has a faculty of N members

and a yearly budget B, for salary increases. The chairman must decide how

this money is to be distributed among the faculty. He sets up a committee

through which all members are subjected to peer evaluation; each professor

is ranked in three categories of activity: research, service and teaching and is

labeled outstanding (O), strong (G) or satisfactory (S) in each of the activity

categories, implying that each of the faculty are placed in one of 33 = 27
overall categories.

Let the serial number of a category be denoted by k and let the number

of faculty in the k-th category be denoted by nk; k ranges over 1, 2, ..., 27 and

N =
∑

nk.

Further, let the classification O, G, and S be labeled through the index

i as i = 1, 2, 3 respectively and let the classification research, service and

teaching be labeled through the index j as j = 1, 2, 3 respectively.

Construct a 3 × 3 merit matrix, M , whose integer elements are achieve-
ment factors:

M =

⎡

⎣

Res. Ser. Teach.

m11 m12 m13

m21 m22 m23

m31 m32 m33

j = 1 j = 2 j = 3

⎤

⎦
O i = 1
G i = 2
S i = 3

The chairman has decided to solve the allocation problem by paying each

faculty member an additional νj dollars for every unit of achieve-

ment factor in the j-column. Since each value of k defines a map-

ping i = i(k, j) where i, j = 1, 2, 3, a faculty-member in category k

will receive a total salary increase Sk =
∑3

j=1 mi(k,j)jνj [e.g. if cat-

egory k = 9 is {S, O, O} (satisfactory in research and outstand-

ing in both service and teaching), then S9 = m31ν1 + m12ν2 + m13ν3].

Clearly, B =
∑27

k=1 nkSk = β1ν1 + β2ν2 + β3ν3 is the budget constraint,

where {β1, β2, β3} are constants calculable from nk and mij .
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Defining uj = νj

B , the normalized budget constraint assumes the form

β1u1 + β2u2 + β3u3 = 1,

which can be replaced with the two inequalities,

3∑

j=1

βjuj ≤ 1 and

3∑

j=1

βjuj ≥ 1 .

The chairman next puts constraints on the relative magnitudes of the νj

according to what he thinks are the best interests of the department [e.g. if he

is concerned about the departments research activity, he would like to provide

an incentive to excel in it, etc.]. These considerations will be manifest in the

constraints

1
λ

ν1 ≤ ν2 ≤ λν1,
1
λ

ν1 ≤ ν3 ≤ λν1,
1
λ

ν2 ≤ ν3 ≤ λν2

where λ > 1; λ quantifies the maximal acceptable disparities between pay-

raise incentives for the three activities.

A further necessary constraint guarantees a minimum amount of in-

crease that a professor can receive (for the sake of department morale!) i.e.

ν1 + ν2 + ν3 ≥ εB where ε is a small number. Combining all the relevant

equations, the mathematical formulation takes the form of a linear program:

find u = (u1, u2, u3), which maximizes J(u) =
∑3

j=1 m1juj (the frac-

tion of allocated salary-increase budget going to a professor ranked “outstand-

ing” in all activity categories) subject to uj ≥ 0,
∑3

j=1 aijuj ≤ bi, where

{aij , bi} are given real numbers, and i = 1, 2, ..., 9. The maximized function

is the salary increase to professors in category (O,O,O), as a fraction of B.

The solution will depend on the values preassigned to the parameters λ

and ε.

The previous examples shows that linear programming provide a mathe-

matical model of a real-life problem in which something needs to be maximized
(e.g. profit or security) or minimized (e.g. costs or risks).

The required optimization is achieved by a suitable choice of the values of

a number of variables.
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Both the factor to be optimized and some or all the variables (parameters)
will be subject to one or more constraints1110. For example, optimization
problems in economics are extreme value problems with auxiliary conditions,
which are often characterized by the fact that the number of variables is very
large and that non-negative solutions are sought.

The investigation of such problems began to enter the mathematical con-
sciousness as a recognizable discipline during the latter part of the 1930s,
gaining considerable visibility and attention during and immediately after
WWII.

Many types of business and military questions involving things like the
best way to schedule aircraft maintenance, allocate money to investments or
process parts in an assembly-line operation, came to be part of a field now
called operational research.

A fundamental problem in economics is the optimum allocation of scarce
resources among competing activities — a problem that can be expressed in
mathematical form. Linear optimization can be applied to that problem, as
well as to many areas of natural sciences and technology.

1947–1967 CE Richard Buckminster Fuller (1895–1983, USA). Engi-
neer, inventor, humanist and visionary. A creative maverick figure. Solved
many design problems in such diverse fields as automobile designs, city plan-
ning, and architectural engineering. Best known for the design of huge 3-D
structures which he developed to achieve maximum spans with minimum use
of material.

Fuller sought to expand man’s ability to control larger areas of his environ-
ment and still have close relationship with nature according to his principle:
“Maximum gain of advantage from minimal energy input”.

1110 There are, however, unconstrained optimization problems such as the Traveling

Salesman Problem and the nonlinear Gropius Housing Problem. Nonlinear op-

timization problems are solved within the framework of dynamic programming

(Abraham Wald, 1950).
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His ideas show the influence of such natural molecular structure as the
tetrahedron1111 and the truncated icosahedron. He became a guru to genera-
tions of architectural students because of his irrepressible optimism and his
belief in technology as a tool for improving the quality of life.

Fuller was born in Milton, MA. After WWI he spent several years work-
ing for industry before producing his first important design, the dymaxion
house1112 (1927).

His dymaxion house was meant to be a high technology response to the
chronic housing shortage of the depression era. This idea initiated the prefab-
ricated housing market. The dymaxion car (1932) and the dymaxion air-ocean
city (1943) followed.

He is best known, however, for his geodetic dome1113 (1947), a huge struc-
ture approximating a spherical sector and composed of light, strong triangular
parts. (There are now more than 200, 000 geodetic domes around the world,
the most famous one at Epcot Center, Disney world, Florida.)

2500 years after Pythagoras and Plato, Fuller revived the connection
between polyhedra and the natural world. Indeed, the C60 carbon mole-
cule1114 (1991, named after him) has the shape of a truncated icosahedron
(Fig. 5.24).

1111 For a given surface area S0, the sphere encloses the greatest volume

Vmax = S
3/2
0 /6

√
π. For a given volume V0, the sphere has the least sur-

face area Smin = V
2/3
0

{
3
(

4π
3

)1/3
}
. Of all polyhedra with a given surface

area S0, the tetrahedron has the least volume Vmin = S
3/2
0 /6

√
6 4

√
3, and of

all polyhedra with a given volume V0, the tetrahedron has the greatest surface

area Smax =
(
6 · 3

1
6

)
V

2/3
0 .

1112 Dymaxion = Dynamic plus maximum efficiency.
1113 Since the sphere has the least surface area for a given volume, the geodetic

dome both creates a great amount of internal space and minimizes heat loss

because of its decreased outer skin surface. The geodetic dome has the property

that its strength need only increase as the log of its size; its weight is only

about 10 kg per m2 of covered area. In this connection, Fuller coined the

word tensegrity = tension + integrity.
1114 Known as buckminsterfullerene, fullerene, or simply the buckyball : A unique

molecular oddity, discovered (1991) by Richard E. Smalley, at Rice Univer-

sity, Houston, USA. The molecule is composed of 60 atoms of carbon, linked
together to form a truncated icosahedron having 12 regular pentagons and

20 regular hexagons, looking like a soccer ball. It has the following properties:

• The largest possible symmetric (“rounded”) molecule.

• Does not bond readily to other atoms or molecules, yet because it is hollow

on the inside, all elements of the Periodic Table could fit inside. [However,
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The icosahedron itself appears as one of the geodetic forms of viruses (e.g.:
bacteriophage M52; Polio virus; Herpes virus; the AIDS virus HTLV-1; the
K-virus, etc.].

Fuller was a research professor at Carbondale, Southern Illinois University
(1959–1968). In 1968 he became a university professor and retired in 1975.

Twice expelled from Harvard University, business disasters and the death
of his four year old daughter brought him close to suicide. However, he re-
covered and decided to devote himself to proving that technology could save
the world from itself, provided it is properly used.

C60H60, the hydrogenated buckyball is generated from C60 by adding

hydrogen atoms — it is known as the “fuzzyball”.]

• Spins at a rate of 108 times per second; has 174 different modes of oscil-

lations.

• When compressed to 70% of its original size becomes more than twice as

hard as diamond. This compressibility points to its possible use as a shock

absorber.

• Can withstand slamming into a stainless steel plate at a speed of 6 km
sec

. This

resilience could be an asset in creating rocket fuels, as they must undergo
extreme pressure; another possible use of the buckyball, involving its pressure

resistance, is in the armor industry.

• Can serve as a conductor, insulator, semiconductor or superconductor.

• Exhibits ferromagnetic properties.

• Can be made into a battery by stripping away electrons from the buckyball.

Other fullerene molecules have been synthesized by capping a carbon nanotube

(rolled graphite sheet, a few nanometers across and 100’s of nm long) with a
half-buckeyball at either end.
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Fig. 5.24: Geometry of the molecule C60
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Mathematics and Architecture —

from the Pyramids to the Geodetic Dome

Historically, architecture was part of mathematics, and in many periods
of the past, the two disciplines were indistinguishable. In the ancient world;
mathematicians were architects, whose constructions — the pyramids, ziggu-
rats, temples, stadia, and irrigation projects — we marvel at today.

In Classical Greece and ancient Rome, architects were required to also be
mathematicians. When the Byzantine emperor Justinian wanted an archi-
tect to build the Hagia Sophia as a building that surpassed anything ever built
before, he turned to the two geometers Isidoros and Anthemios, to do the
job. This tradition continued into the Islamic civilization. Islamic architects
created a wealth of two-dimensional tiling patterns centuries before western
mathematicians rendered a complete classification of such patterns.

Some historians of science believe that the concept of the Golden ratio[
1
2 (1 +

√
5) = 1.618 033 . . .

]
had been used in the construction of the Giza

pyramid of King Khufu (2575 BCE). There is, however, no proof that sophis-
ticated geometry lies behind the construction of the Pyramids.

The first definite mathematical influence on architecture is that of
Pythagoras and his Pythagoreans. The discovery that beautiful harmonious
sounds depend on ratios of small integers led to architects designing buildings
using ratios of small integers. This, in turn, led to the use of a module, a basic
unit of length for the building, where the dimensions were now small integer
multiples of the basic length.

To Pythagoras, numbers also had geometrical properties. The Pythagore-
ans spoke of square numbers, oblong numbers, triangular numbers etc. Geom-
etry was the study of shapes and shapes were determined by numbers.

But more than this, the Pythagoreans developed a notion of aesthetics
based on proportion. In addition geometrical regularity expressed beauty and
harmony and this was applied to architecture with the use of symmetry.

To a mathematician today, symmetry suggests an underlying action of a
group on a basic configuration, but it is important to realize that the word
comes from the ancient Greek architectural term “symmetria” which indicated
the repetition of shapes and ratios from the smallest parts of a building to the
whole structure. It should now be clear what the belief that “all things are
numbers” meant to the Pythagoreans and how this influenced ancient Greek
architecture.



4826 5. Demise of the Dogmatic Universe

Let us look briefly at the dimensions of the Parthenon to see how its lengths
conform to the mathematical proportion principles of the Pythagoreans. In
480 BC the Acropolis in Athens was totally destroyed by the Persians in the
Second Persian War. This was about the time of the death of Pythagoras.

After the Greek victory over the Persian at Salamis and Plataea, the
Greeks did not begin the reconstruction of the city of Athens for several years.
Only after the Greek states ended their fighting in the Five Years’ Truce of
451 BC did the conditions exits to encourage reconstruction.

Pericles, the Head of State in Athens, set about rebuilding the temples
of the Parthenon in 447 BC. The architects Ictinos and Callicrates were
employed, as was the sculptor Phidias.

In the construction of the Athena Parthenos, ratios of small numbers were
used in the following way:

The ratio 2 : 3 and its square 4 : 9 were fundamental to the construc-
tion. A basic rectangle of sides 4 : 9 was constructed from three rectangles
of sides 3 and 4 with diagonal 5. This form of construction also meant
that the 3 : 4 : 5 Pythagorean triangle could be used to good effect to
ensure that right angles in the building were accurately determined.

The length of the temple is 69.5 m, its width is 30.88 m and the height
at the cornice is 13.72 m. To a fairly high degree of accuracy this means that
the ratio width: length = 4 : 9 while also the ratio height: width = 4 : 9.
The greatest common divisor of these measurements leads to the ratios

height : width : length = 16 : 36 : 81

which gives a basic module of length 0.858 m.
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The length of the temple is then 92 modules, its width 62 modules and
its height 42 modules. The module length is used throughout; for example
the overall height of the temple is 21 modules, and the columns are 12
modules high.

The naos, which in Greek temples is the inner area containing the statue
of the god, is 21.44 m wide and 48.3 m long which again is in the ratio
4 : 9. One may note that the columns are 1.905 m in diameter and the
distance between their axes is 4.293 m; again the ratio 4 : 9 is being used.

Plato was much influenced by the ideas of Pythagoreans. He saw math-
ematics as providing the most fundamental of all ideas and therefore main-
tained that buildings, which last longer than life-forms, should be designed
on mathematical principles.

We may learn about the mathematical methods of ancient architects
through the work De architectura by the Roman engineer and architect Vit-
ruvius, written shortly before 27 BCE. He was in charge of building projects
in Rome during the reign of Octavianus. The ten books of his treatise are

1. Principles of architecture.

2. History of architecture, and architectural materials.

3. Ionic temples.

4. Doric and Corinthian temples.

5. Public buildings, theaters, music, baths, and harbors.

6. Town and country houses.

7. Interior decoration.

8. Water supply.

9. Dials and clocks.

10. Mechanical engineering with military applications.

It is interesting (particularly given the details above on how the Temple
of Athena on the Parthenon was constructed) to look at what Vitruvius says
in Book 3 on designing temples.

The book begins with an essay on symmetry and then describes the use
of symmetry and proportion in the design of temples. For Vitruvius the
proportions of the human body were fundamental in achieving beauty and he
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says that the proportions of the temple should follow these human proportions.
He suggests that the circle and the square are perfect figures for generating
architectural designs because they approximate the geometry of the spread-
eagled human body.

There is a religious significance here, since Vitruvius believed that the
human body was made in God’s image and was therefore perfect. Of course
many have argued that the golden number can be found in the proportions of
the human body, so it may be that the evidence found today for the golden
number in ancient Greek temples is explained by its relation to human pro-
portions.

In Book 5 Vitruvius explains sound as a displacement of air in waves which
he compares with the waves that can be observed on the water’s surface when
a stone is thrown into a pond. What is more remarkable was Vitruvius’
application of the wave theory to architectural acoustics. The wave theory of
sound was Greek, while its application to the acoustics of a hall was typically
Roman.

Vitruvius analyzes the acoustics of a theater and the phenomena that may
spoil it, which today we call interference, reverberations and echoes.

In Book 10 Vitruvius describes hoisting machines, engines for raising wa-
ter, water wheels and water mills, water screws, Ctesibios’ pump, water organs
and odometers, and passes from civil engineering to engines of war, catapults
and scorpions, ballistae, stringing and tuning of catapults, siege engines and
tortoises for filling ditches.

In Europe there was little further progress in mathematics and architecture
until the 14th and 15th Centuries. Architecture was modeled on the teach-
ings of Vitruvius and on the classical architecture which was still plentiful,
particularly in Greece and Italy.

The next person we want to mention is Brunelleschi (1377–1446) who
was trained as a goldsmith. There were really no professional architects at
this time and Brunelleschi learnt his skills in architecture by visiting Rome.

He made drawings of a great many ancient buildings, including baths,
basilicas, amphitheaters, and temples, particularly studying the construction
of architectural elements, such as vaults and cupolas. The object of his ar-
chitectural researches, however, was not to learn to reproduce Roman archi-
tecture, but to enrich the architecture of his own time and to perfect his
engineering skills.

Brunelleschi made one of the most important advances with his discovery
of the principles of linear perspective. Classical scholars had understood some
of the principles of perspective but no text seems to have been written on the
topic.
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We think of an understanding of perspective as being essential for a realis-
tic two dimensional representation of a three dimensional scene when painting
on a canvass. However Brunelleschi’s understanding of perspective was used
in his design of buildings as he created his designs to ensure that the visual
effect he wanted was visible from all possible positions of the observer.

Following the rules of proportion and symmetry of the ancients was im-
portant to Brunelleschi but he also wanted these mathematical principles of
beauty to be those seen by all observers. In some sense he was trying to
achieve a certain invariance of proportion, independent of the angle of view,
and to ensure that it was the apparent proportion which was right rather than
the actual proportion.

Many of the famous mathematicians from the time of Brunelleschi on,
made contributions to architecture. Alberti (1404–1472) wrote a text on
the topic, as well authoring an important text on perspective in which he
wrote down Brunelleschi’s discoveries for the first time. He was one of a
number of mathematicians to develop a general theory of proportion which
was motivated by his architectural studies.

The great Leonardo da Vinci (1452–1519) was fascinated by mathe-
matics. Architecture was another of his specialities and he learnt about it,
in particular the mathematical principles behind it, from studying Alberti’s
texts.

Leonardo was a man of wide ranging abilities and interests and, at one
stage in his career, earned his living advising the Duke of Milan on archi-
tecture, fortifications and military matters. He was also well regarded as a
hydraulic and mechanical engineer and worked for Cesare Borgia as a military
architect and general engineer. Later the French King Francis I appointed him
first painter, architect, and mechanic to the King.

Another mathematician from Renaissance times was Rafael Bombelli
(1526–1572) who was taught by Pier Francesco Clementi, himself an en-
gineer and architect. With this training Bombelli was soon working on his
own as both engineer and architect, employing his mathematical skills both
in his work and in his investigation of complex numbers.

Another to combine his skills in both mathematics and architecture was
the painter Leonaert Bramer (1596–1674, Delft) who was employed di-
recting constructions of fortifications and castles. He published a work on the
calculation of sines, prompted by the practical work in which he was involved.

He followed Alberti (1435), Dürer (1525) and Bürgi (1604) when in 1630
he constructed a mechanical device that enabled one to draw accurate geo-
metric perspective.
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La Faille (1597–1652) was a contemporary of Bramer who taught math-
ematics and military engineering. He worked as an architect advising on
fortifications, and wrote an architectural treatise as well as important works
on mechanics1115.

Later in the 17th century lived the English architect C. Wren, in many
ways the best known architect in English history. A well-rounded scientist,
he solved a number of important mathematical problems before taking up
architecture as a profession. Although he is better known as an architect than
as a mathematician he was considered one of the leading mathematicians of
his day by Newton.

It was clear that Wren saw mathematics as being a subject which had
applications to a wide variety of scientific disciplines and his mathematical
skills played an important role in his architectural achievements.

One of the architects with whom he worked, Robert Hooke, is better
known as a mathematician and scientist than as an architect. Again, that
mathematics and architecture were closely related disciplines was considered
natural at this time.

Another 17th century mathematician was Philippe de La Hire (1640–
1718) whose interest in geometry arose from his study of architecture. In 1687
he was appointed to the chair of architecture at the Academie Royale. His
interest in geometry arose from his study of perspective and he went on to
make important contributions to the theory of conic sections.

In the 18th century Giovanni Poleni (1683–1761) made contributions to
hydraulics, physics, astronomy and archaeology. He held university chairs in
astronomy, physics and mathematics as well as working as an architect.

The nineteenth century saw a change of attitude which led to a separation
in people’s minds of the scientific and the artistic. From this period on, the
roles of mathematician and architect were seen as distinct in a way they were
not in previous centuries. This is not to say that the connections between
mathematics and architecture vanished, just that the scientific and artistic
aspects were seen as complementary skills not to be found in the same person.

Of course there were still those who did excel in both mathematics and
architecture; it was only perceptions which had changed.

An example of a person who excelled in architecture and mathematics was
Siegfried Heinrich Aronhold (1819–1884, Germany) who taught at the
Royal Academy of Architecture at Berlin from 1851. Aronhold was appointed
professor there in 1863. He made outstanding contributions to geometry.

1115 He was first (1632) to determine the center of gravity of the sector of a circle.
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Others from this period who combined the two skills include Francesco

Brioschi (1824–1897, Italy) and Ludwig Christian Wiener (1826–1896,

Germany).

From 1852 to 1861 Brioschi was professor of applied mathematics at the

University of Pavia. There he taught mechanics, architecture and astronomy.

Wiener studied engineering and architecture at the University of Giessen

from 1843 to 1847. With this training he went on to become a teacher of

physics, mechanics, hydraulics and descriptive geometry at the Technische

Hochschule in Darmstadt.

There were a number of late 19th century and 20th century mathematician

who began their careers as architects before turning to mathematics, for ex-

ample the Frenchman Jules Joseph Drach (1871–1941) and the American

Samuel Stanley Wilks (1906–1964).

Drach worked as an architect before becoming a mathematician.

Wilks studied architecture at North Texas State Teachers College, receiv-

ing a B.A. in architecture in 1926. However his eyesight was poor, and he

feared that this would be a handicap if he pursued architecture as a profession;

he thus decided upon a career in mathematics.

Two unique talents from the 20th century were Escher and Buckminster

Fuller.

Escher was never a mathematician, despite his fascination with the sub-

ject and the deep mathematical ideas which underlay his art. He trained at

the School of Architecture and Decorative Arts in Haarlem, Holland, and only

at age 21 did he give up architecture in favor of art.

Buckminster Fuller was an engineer, mathematician and architect who

applied geometric principles to introduce a totally new concept in building

design during the second half of the 20th century. He made an art out of

structural purity, using simple geometric forms for aesthetic as well as func-

tional purposes.

1947–1977 CE Richard Wesely Hamming (1915–1998, USA). Math-
ematician. Invented and applied error-detecting and error-correcting codes
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(ECC)1116 for computer systems, digital communication and data storage
(1947–1950) thereby launching a new subject within information theory.

1116 In the transmission of digital information errors are likely to occur due to noise
in the information channel. This noise might be inherent in the physical na-

ture of the channel, or due to technical failures or negligence on the part of the

sender or receiver. In coding theory it is assumed that errors occur randomly
and independently; it is equally likely for a bit (= binary digit) of value 0

to be incorrectly received as bit 1 and vice versa. In this basic setup there

is no malicious adversary acting on purpose. The overall purpose of coding
theory is to introduce redundance in such a way that even if errors occur in

the transmission, the received message can still be correctly interpreted with

very high probability. Of course, some assumption has to be made concerning
the expected rate of errors; no amount of redundancy is sufficient to always

correct any number of errors.

Coding theory and cryptography have opposite aims. In coding theory one tries
to write the message in such a form that reasonably many errors can be toler-

ated in the transmission. In this sense the clarity of the message is increased.

In cryptography, on the other hand, one tries to decrease the clarity in order to

make the message incomprehensible to an eavesdropper, but in such a manner
as can be deduced by a legitimate recipient with privileged knowledge of the

coding/decoding procedures.

Because of these opposite aims it is difficult to combine the two approaches,
although it would be very important to translate messages into a form pro-

tected both against eavesdroppers and random noise.

When we wish to store, search for, or send information electronically in the
presence of noise, efficiently and with least error — sophisticated coding op-

erations are required in order to achieve efficiencies as close as possible to the

theoretical bounds. One must first distinguish between error-detection and
error-correction:

Consider a binary code which consists of a set of codewords, each being a string

of n bits.

Suppose we wish to send the messages north, south, east, west which are coded

as follows:

north south east west

code C1 00 01 10 11

code C2 000 101 011 110

The code C1 requires transmission of only two bits, but this code cannot

detect any errors, since if errors occur in either or both bits, then an incorrect
message is received. For example, if 01 (south) is sent and there is a trans-

mission error in the first bit so that 11 is received, then this is interpreted as

west.



1947 CE 4833

He also worked on numerical analysis and automatic coding system.
Named after him are: Hamming distance; Hamming bound; Hamming code;
Hamming spectral window (used in computation for smoothing data before
Fourier-analyzing it).

Hamming was born in Chicago and received his Ph.D. in mathematics
(1942) from the University of Illinois. He joined the Manhattan project at Los
Alamos (1945–1946) and worked at the Bell Telephone Laboratories through-
out the major part of his academic career (1946–1976). He then accepted a
chair of computing science at the Naval Postgraduate School at Monterrey,
California.

In 1947, Hamming was one of the earliest users of primitive computers
at Bell Laboratories. Frustrated by their lack of fundamental reliability, he
therefore puzzled over the problem of how a computer might check and cor-
rect its own results. Within several months Hamming discovered that extra
bits could be added to the internal binary numbers of the computer to re-
dundantly encode numerical quantities. This redundancy enabled relatively
simple circuitry to identify and correct any single bit that was bad within the
encoded block of bits (typically one word of data).

The second code C2 can detect any single error. For example if 101 is sent

and an error occurs in a single bit, then either 001, 111 or 100 is received.
None of these is a codeword, so the receiver is aware of a transmission error.

Although this code cannot correct errors, it reveals how redundancy can be

added to the original message, in the form of extra bits, in such a way that
transmission errors can be detected. Clearly, a code which detects, but does

not correct errors is only useful if the receiver can obtain a repetition of the

message in which an error has been detected.

Assume, for example, that a message consists of a single bit, 0 or 1 (‘Yes’

or ‘No’). The repetition code of length 3 simply consists of transmitting the

message three times

Message 0 1
Codeword 000 111

If, for example, 100 is received (assuming that at most one error has occurred

in transmission), we deduce that 000 was sent. By considering all the other

7 cases of possible received messages, it can be shown that this code corrects

all single errors.

The field of error-correcting codes was stimulated by Shannon, when he

showed that error-free transmission is possible in principle. People then began

to ask: “How can we achieve it?”
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This encoding scheme, now known as Hamming Code, also detects the
condition of any two bits in the encoded block that fail simultaneously.

Hamming’s achievement enormously improved the practical application
of early computers by substantially increasing their reliability. But it is even
more remarkable that many modern computers still use Hamming’s techniques
to correct errors in main memory.

Although modern computers have very reliable fundamental components,
the huge number of such components, e.g. the bits in a computer’s main
memory, means that the probability of an erroneous result would be significant
without Hamming Codes and similar codes that he inspired.

It is not an exaggeration to say that modern graphical computing, which
requires large main memories, would be impractical without his invention.
Furthermore, computers in critical control applications cannot be allowed to
have any significant probability of an erroneous result.

1948–1956 CE Jan G. Mikusinski1117 (1913–1987, Poland). Mathemati-
cian. Developed an operational calculus that casts a new light on Laplace
transform methods, in effect freeing it from considerations of convergence in-
troduced by the improper integral

∫ ∞
0

e−ptf(t)dt, and bringing the essential
theory into the realm of algebra1118, 1119.

1117 To dig deeper, see:

• Mikusinski, J.G., Operational Calculus, Pergamon Press, 1959.

• Erdelyi, Arthur, Operational Calculus and Generalized Functions, Holt, Rine-
hart and Winston, 1962, 103 pp.

• Hoskins, R.F., Generalized Functions, Ellis Horwood: Chichester, England,
1979, 192 pp.

• Jones, D.S., Generalized Functions, McGraw-Hill, 1966, 482 pp.

• Lighthill, M.J., Introduction to Fourier Analysis and Generalized Functions,
Cambridge University Press, 1962, 79 pp.

1118 The first papers (1949) of Mikusinski were: Sur le calcul opératoire, C̆asopis

Pest. Mat. Fys. 74, 89–94; Sur le fondaments du calcul opératoire, Studia

Math. 11, 41–70.
1119 One of the drawbacks of the Laplace transform method is that the rules for

transforming derivatives presuppose properties of a function which in actual

practice are not known in advance; for the function to be transformed is often

the unknown solution of a differential or an integral equation.

Mikusinski accomplished this change of approach by setting up a commutative
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1948 CE Introduction of the atomic clock (see Table 5.27).

From Cathode Rays to Transistors (1869–1947)

The history of electronics starts with the discovery of cathode rays. While
Hittorf and Crookes were studying cathode rays (1869), Maxwell was de-
veloping his mathematical theory of electromagnetic radiation. Soon after
Edison observed electronic conduction in vacuum (1886), Hertz demon-
strated (1888) the existence of radio waves predicted by Maxwell. At the
time of J.J. Thomson’s discovery of the electron and measurement of its
charge–to–mass ratio e

m (1897), Marconi was becoming interested in wire-
less communication and succeeded in spanning the Atlantic (1901).

While Einstein was explaining the photoelectric effect, J.A. Fleming
was busy inventing the first electron tube (1904), a sensitive diode detector
utilizing the Edison effect. De Forest’s invention of the triode (1906) made

ring in which the elements are the class C of continuous real- or complex-valued

functions over the interval 0 ≤ t < ∞, in which the operations are the addi-

tion and convolution of functions.

Thus from the functions a and b we obtain by addition and convolution the

functions a + b and ab: (a + b)(t) = a(t) + b(t), ab(t) =
∫ t

0
a(x)b(t − x)dx.

Under these operations the set of functions form a commutative ring (an alge-

braic system closed under two operations).

The absence of divisors of zero in this convolution ring in conjunction with the

existence of a convolution inverse to any nonzero ring element, enables one to

extend the ring to a field Q, whose elements are convolution quotients which

are sometimes functions and sometimes operators.

Thus functions form a special class of operators.

The field Q of operators a/b contains numerical operators, continuous and

discontinuous functions, the integral operator hf(t) =
∫ t

0
f(x)dx, and the dif-

ferential operator p = 1
h
, pf(t) = f ′(t). That these diverse entities may be

handled from the same point of view and with common rules of operation is

an important virtue of Mikusinski’s operational calculus.
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it possible to amplify signals electronically and led to Armstrong’s sensitive
regenerative detector (1912) and the related oscillator.

The invention by Zworykin of the picture tube (1928) and the idea
of Watson-Watt for radio detection and ranging (radar), were developed
rapidly under the pressure of WWII. Postwar demands and increased knowl-
edge of semiconductor physics, led to the invention of the transistor by Shock-
ley, Bardeen, and Brattain (1947) and of the silicon solar cell by G. Pear-
son (1954). The invention of the integrated circuit (1958) by J.S. Kilby (b.
1923) permitted placing a complete network containing many semiconductor
devices on a single monolithic chip.

Conduction occurs in a vacuum if free electrons are available to carry
charge under the action of an applied field. In an ionized gas positively charged
ions, as well as electrons, contribute to the conduction process.

The multielectrode vacuum tube, as exemplified by the pentode and the
cathode-ray tube, is a versatile means for precisely controlling electron flow.
Such tubes have been widely used since 1904 in a host of applications. How-
ever, the high power necessary for thermionic emission and the large surfaces
required for practical operation are important disadvantages. In contrast,
semiconductor electronic devices require no cathode power and their dimen-
sions are very small. As a result, the vacuum tube has been displaced from
many applications in which it was formerly preeminent by semiconductor
devices based on electron conduction in solids, where electron motion is influ-
enced by the fixed ions of a crystal to which doping atoms were added.

The use of impurity semiconductors in electronics is based upon four ba-
sic devices: the rectifier (1936), the transistor (1947), the solar cell (1954),
and the tunnel diode (Leo Esaki, 1958). These devices, coming under the
common generic name of transistors, are all about us: The 109 or so tran-
sistors in a large electronic computer enable it to carry out operations that
would have been impractical with vacuum tubes. Transistors have increased
the performance of long-distance telephone transmission and are an indispens-
able part of communication satellites. They are used in radios, television sets,
cell phones, calculators, PDA’s, laptop, cars, and other electronic devices. A
transistor can be so small that manufacturers are able to put millions of them
on a flat chips no larger than a postage stamp.

Electronic equipment has been revolutionized by transistors, and almost
all such equipment made today uses them instead of vacuum tubes. Without
transistors, manufacturers could not make pocket calculators, or high-speed
computers. Battery-operated radios and TV sets would be much larger and
cost more to operate.

Both ideas and technology were necessary for the invention of the transis-
tor. Theoretical understanding of the behavior of semiconductors was needed,
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and only quantum mechanics could provide this. Indeed, N.F. Mott and
H. Jones (1936) published a book “Properties of Metals and Alloys” which
contained most of the quantum ideas needed to understand the transistor.

A second essential was extremely pure semiconducting materials, in which
free negative electrons and positive charges (holes) could coexist together for
appreciable lengths of time. The radar receivers of WWII used silicon or
germanium “crystal detectors”, and during and after the war methods were
worked out for producing extremely pure silicon and germanium. (In impure
semiconductors opposite charges quickly recombine.)

The third requirement for the invention of the transistor was the applica-
tion of able and inquiring minds to grapple with the dual problem of making a
new type of amplifier and understanding the puzzling and peculiar phenomena
encountered.

At the beginning of the search, the investigators were armed with the
new understanding provided by quantum mechanics, with materials of un-
precedented purity and with one idea of how an amplifier might be made1120.
During the search, the investigators encountered and then understood the
transistor effect, and so invented an amplifier quite different in principle from
that which they were seeking.

To grasp the modus operandi of the transistor, the modern atomic view
of electric conduction must be first surveyed:

The classical Drude model supposes that the thermal and electric proper-
ties of a metal can be calculated by considering the free electrons to constitute
a “gas” that obeys the Maxwell–Boltzmann (M–B) distribution law. The
results obtained with this model are typically in error by a factor of 100 or
so, although in some cases (e.g., thermal conductivity) acceptable predictions
result from fortuitous cancellations.

During the early decades of the 20th century, the achievements of the
Drude model were accompanied by considerable confusion.

The great success of the kinetic theory in explaining the properties of gases
led to the attempt to apply the similar free electron gas model to the case
of electron conductivity. Kinetic theory is successful because the atoms and
molecules in a gas (at ordinary temperatures) behave very much like New-
tonian particles. Electrons, however, are definitely not Newtonian particles
in solids (although they do behave like ones in cathod-ray tubes and other
vacuum tubes). During the 1920’s it was finally realized that electrons are
quantum entities exhibiting particle-wave duality, and obey quantum mechan-
ical rules.

1120 This sort of amplifier was finally realized as the field effect amplifier.
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As a result, the gas of free electrons does not obey the Maxwell-Boltzmann
distribution law; instead these electrons are described by the drastically dif-
ferent Fermi–Dirac (F–D) distribution law. In 1928, Arnold Sommerfeld
modified the Drude theory of metals accordingly1121.

The electrons in an isolated, electrically neutral atom are bound to that
atom by the electric attraction of the positive nuclear charge. Each elec-
tron in the atom occupies a discrete, well-defined energy state (provided the
inter-electron coulombic and Pauli exclusion repulsions are treated as a per-
turbation). Bound electrons in an atom all have negative total energies with
respect to a zero of energy defined for an infinite separation of an electron
from the atom.

In the case of the copper atom, the minimum energy that must be supplied
to the atom to remove the least bound electron (first ionization energy) is
Ua = 7.72 eV; this removal creates a Cu+ ion.

The copper atoms in bulk matter have a separation between their nuclear
centers of approximately 2.5 Å. When two neighboring atoms have this sepa-
ration, the sum of the two individual atomic potential energy functions is the
effective potential that acts on their valence electrons. We then say that this
electron is shared by the two atoms. However, the potential just outside the
surface of the material remains at the normal (zero) level.

Thus, a potential barrier is formed which acts to confine the electron gas
within the conductor. The energy E

B
measures the surface barrier height

relative to the minimum energy in the conduction band. The least energy
required to remove a conduction electron from the conduction band is Eφ,
called the work function of the material. Evidently Eφ = EB − εF .

1121 According to the F–D distribution law, the number of electrons per unit volume

that have kinetic energies between E and E + dE is dN(E) = CeE
1/2dE,

E < εF , where Ce = 8π
h3

√
2m3

e and the energy εF is the electronic chemical

potential or Fermi energy εF = 3.65 × 10−19N2/3eV (N is the overall conduc-

tion electron density, measured in m−3). The expression for dN(E) is strictly

true at 0 ◦K, but it also closely describes the distribution for room tempera-

tures. The Fermi energy εF is the maximum electron energy at a temperature

of 0 ◦K, measured relative to the bottom of the conduction band. At the Fermi

energy, one-half of the states with an energy εF will be occupied (on average).

According to the M–B distribution law, the average energy of the electrons

is 〈E〉M = 3
2
kT , whereas according to the F–D distribution law, this energy

is 〈E〉F = 3
5
εF = 3

5
kTF where TF (the Fermi temperature) is approximately

81600 ◦K for copper. Thus, at room temperature (293 ◦K), the ratio of the

root-mean-squared speeds for the two distributions in the case of copper is
Urms(D)
Urms(B)

=

√
2T

F
5T

= 10.6.
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When two dissimilar metals are placed in contact, there develops between

them a contact potential difference, typically of the order of a Volt; it arises

as a direct result of the difference in the work functions of the two metals1122.

At very high temperatures, the high energy tail of the F–D energy dis-

tribution may contain a significant number of electrons with energies greater

than the barrier energy E
B

= ε
F

+ Eφ. These thermionic electrons are able

to escape from the conductor surface. A nearby electrode that is maintained

at a positive potential w.r.t. the conductor will collect the liberated electrons.

The current so produced is called the thermionic current.

This thermionic effect is used in electron guns, where the electrons are

emitted from an electrically heated filament. (To enhance the thermionic

emission, these filaments are often coated with a metal that has a particularly

low work function, such as cesium.)

The Sommerfeld model was an important step in the development of the

theory of metals, but it left a number of problems only partially resolved. The

model was quite good for the alkali metals (Li, Na, K, Rb, Cs), but had low

accuracy for the noble metals (Cu, Ag, Au) and for the alkali earths, Be, Mg,

Ca, Sr and Ba. The most glaring deficiency of the model was that it failed to

explain why some elements are good electric conductors while others are not.

Why, for example, is aluminum a good conductor, whereas boron, which

is one row higher in the same column of the periodic table, is an electric

insulator?

The next important improvement in understanding the physical properties

of solids was the development of band theory: When NV (N per unit volume,

V = volume) atoms of a metal are collected together to form a bulk sample,

the discrete energy states of an isolated atom are broadened into bands. The

1122 Let the work function Eφ1 of metal 1 be less than that of metal 2; that is, the

electrons at the top of the conduction band in metal 1 have higher energies

than the corresponding electrons in metal 2. Consequently, when the met-

als are brought into contact, electrons in metal 1 seek lower energy states by

transferring to metal 2. This transfer lowers the Fermi level in metal 1 while

raising it in metal 2.

The number of electrons actually transferred in this process is exceedingly

small compared with the total number of electrons present; consequently, the

values of Eφ and εF for each metal remain approximately unchanged. When

equilibrium is reached, with as many electrons per unit time crossing the junc-

tion in one direction as in the other, the Fermi levels coincide. Clearly, the

contact potential difference is given by δφ = 1
e
(Eφ2 − Eφ1).
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degeneracy1123 of each band is just NV times the degeneracy of the corre-
sponding atomic energy state. That is, each band actually consists of NV
states crowded into a narrow range of energies.

Because NV is very large for a sample of bulk matter (1023 or so), the
spacing between the states is so small that the band represents an essentially
continuous distribution of energies. In a bulk sample the shared electrons
can possess only energies that fall within the allowed energy bands; all other
energies are forbidden. The highest fully occupied band is called the valence
band.

1123 In an isolated lithium atom, for example, 2 electrons completely fill the lowest

energy level (the 1s orbital) so that the third valence electron must occupy a

state in the second lowest energy level (the 2s orbital). The maximum number

of electrons that can occupy a given energy level is the degeneracy of that level.

The level 1s is full, the level 2s is half-filled and the third level 2p is empty.

The respective degeneracies are 2, 2, and 6.

The 1s and 2s bands form because the atomic orbitals of neighboring atoms

overlap, allowing the electrons in these levels to hop between atoms throughout

the lattice. Thus hopping causes the degenerate atomic energy levels (1s or

2s) to broaden into bands, for the same reason that coupling a row of identical

tuning forks creates a dense band of eigenfrequencies (becoming a continuum

in the limit of infinitely-many forks). Different energy levels within a given

band (1s or 2s) can be thought of as electrons moving at different speeds in

their hopping motions. The filled 1s band is called a valence band, while the

partially-full 2s band is the conduction band.

This energy is negligible in comparison with the energy separation between

the 1s and 2s bands (ca 48 eV). Because the 1s band is completely filled, no

energy state within the band is available for the promotion (that is, movement

to a higher state) of a lower energy electron. The minimum energy that a 1s

electron can absorb is an energy that would lift it to the unfilled portion of the

2s (conduction) band; this energy is unlikely to be acquired in a collision with

a conduction electron, and even if it happens, the 1s and 2s electrons would

merely trade places. Thus, the 1s electrons remain attached to their parent

atoms and do not contribute to the current flow in the sample.

The 2s band, on the other hand, is only half filled. At low temperatures

(�2000 ◦K) the 2s electrons occupy the lowest available energy states in the

band. The spacing of the unoccupied energy states just above the Fermi energy

εF is ΔE = 2
3NV

εF which is ΔE = 6.8 × 10−23 eV for a 1–cm3 sample of

lithium. Therefore, 2s electrons can easily be promoted by collisions into the

numerous vacant energy states above the Fermi energy. These electrons are

the conduction electrons that participate in the current flow.
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All good electric conductors have the feature that the highest occupied
energy band is only partially filled (it is then called the conduction band, the
band just beneath it being the valence band). However, in a poor conductor
(or insulator) the highest occupied energy band is completely filled (valence
band) and there is a substantial energy gap between this filled band and the
nearest unfilled band. Thus, in diamond (a crystalline form of carbon), the
lowest three bands (1s and the band-broadened bonding molecular orbitals
formed from each carbon atom’s sp3-hybridized 2s and 2p orbitals) are com-
pletely filled.

The minimum energy required to promote an electron from this filled band
into an unoccupied state in the lowest empty (antibonding sp3-hybridized 2s
and 2p) band is equal to the gap energy Eg, which is 5.5 eV for diamond.
Any realistic applied electric field is totally inadequate to impart this amount
of energy to an electron. Thus, electric conduction of the type discussed so
far does not occur, and diamond is not a conductor.

However, in graphite (another crystalline form of carbon), in which the
atoms have geometric arrangement and spacing different from that in dia-
mond, the gap energy is reduced almost to zero. Electrons can be promoted
across the gap into the empty conduction band by thermal effects1124.

When an electron is promoted from the valence band into the conduction
band, it leaves behind an unoccupied hole in the valence band. When another
valence electron moves in to occupy this hole, it creates a hole at its previous
site. Thus, a hole can “move” and act as a carrier of positive charge. Both
holes and electrons contribute to the current flow when an external electric
field is applied.

The conductivity of an intrinsic semiconductor depends on the density
of thermally excited negative and positive charge carriers1125 (electrons and
holes).

1124 The F–D distribution contains a high-energy tail of the order kT that extends

above the Fermi energy εF . At room temperature kT = 0.0252 eV. Thus, if the

energy gap Eg is small enough, (�kT ) some of the electrons in the valence band

will be thermally excited into the empty conduction band. Those elements that

have small energy gaps (Eg ≤ 2eV ) are called intrinsic semiconductors.
1125 One of the results of the theory is that at an absolute temperature T

the number density (per cm3) of these carriers is given approximately by

N+ = N− � (4.83 × 1015 cm−3)T 3/2exp (−εg/2kT ). The gap energy for the

intrinsic semiconductor germanium is 0.67 eV. Thus, at room temperature, we

find for germanium N+ = N− � 4.1 × 1013 cm−3. For copper, on the other

hand, the number density of conduction electrons is N = 8.5 × 1022 cm−3.

When the different electron mean free paths (and thus mobilities) for two cases

are taken into consideration, the ratio of the resistivity values of germanium
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However, thermal excitation is not the only way to enhance the conduc-
tivity of a semiconductor material:

Real semiconductors can be very pure, but none are perfect crystals. De-
fects include missing atoms (vacancies), atoms in noncrystalline sites (inter-
stitials), and impurity atoms anywhere in the crystal. These defects may
result in extra electrons, missing electrons, or no change at all in the number
of electrons.

An important type of defect is the substitutional impurity, an impurity
atom that replaces a regular atom in the solid. The tremendous advances in
solid state electronics are largely the result of our ability to selectively add
various amounts of impurity atoms to create different extrinsic semiconductor
regions. The process of adding the impurities is called doping.

For example, silicon has 4 valence electrons (as do carbon and germanium)
and forms a diamond-like crystalline lattice in which each atom is connected
to 4 other atoms by covalent bonds. Now, suppose that an arsenic (As) atom,
which has 5 valence electrons, is substituted for one of the silicon atoms in the
lattice. Four of the arsenic electrons are used to duplicate the silicon bonds,
and there is one surplus electron left over.

Thus, the crystal contains an As+ ion, and an extra electron is so loosely
bound (by about 0.05 eV) to the arsenic ion that it can be readily released
by thermal excitation. In effect, the arsenic impurity atom has donated a
negative charge carrier (an electron) to the material. When introduced into
silicon, arsenic is a donor atom, and the result is referred to as an n-type
(negatively doped) material.

On the other hand, if an element with 3 valence electrons, such as gallium
(Ga), is introduced into a silicon crystal, each dopant atom lacks one electron
to complete the bonds to the four neighboring silicon atoms.

to copper at room temperature is found to be approximately 3 × 107.

The resistivity of a semiconductor depends strongly upon the temperature.

The usual increase in resistivity with temperature due to lattice vibrations is

completely obscured by the increase in the number of charge carriers due to

the rapidly changing exponential factor in the above expression for N±.

The number density of charge carriers at room temperature in diamond (no

impurities) is (with Eg = 5.5 eV) N+ = N− � 9.8 × 10−29 cm−3. Thus, an

increase in the gap energy from 0.67 eV (germanium) to 5.5 eV (diamond)

results in a decrease in the density of charge carriers by a factor of about 1042.

Diamond is a very good insulator indeed!

(In substances like diamond, conduction actually takes place by the diffusion

of ions through the solid.)
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To compensate for this deficiency, a gallium atom “steals” an electron from
a silicon atom, thereby becoming a Ga− ion. This leaves an Si+ ion or hole,
which then acts as a positive charge carrier. The gallium impurity is called an
acceptor atom, and the material is a p-type (positively doped) semiconductor.

When p-type and n-type crystals are brought into contact (p–n junction),
some interesting physical phenomena take place. Some of the ‘hole gas’ from
the p side diffuses1126 into the n side, while at the same time, some of the
electron gas from the n side diffuses into the p side; thus the p side of the
junction acquires a negative charge.

An electron diffusing into the p side finds many holes to fall into (recombine
with), and a hole diffusing into the n side soon recombines with an electron.

At equilibrium, some of the results of these diffusions processes are:

• A built-in electric field is set up in the region of the junction, directed
from the n side (+) to the p side (−). This field creates a built-in voltage.
The force on an electron acts opposite to the direction of the electric field.
Therefore, to move an electron from the n side to the p side now requires
external work. An electron’s potential energy is raised as it travels from
the n side to the p side – an “energy-hill” has been set up.

• The p side energy is raised and the n side energy is lowered until the
Fermi energy is constant across the junction.

• The recombination process leave the junction region depleted of charge
carriers compared to the remainder of the material. The diffusion of
electrons and holes across the junction because of the initial concentration
gradient followed by recombination result in a recombination current .

• The electron-hole pairs constantly being generated in the junction region
by thermal processes, are separated and swept out of this region by the
built-in field. The result is a generation current .

• At equilibrium, the recombination and generation currents are equal and
opposite.

Now, suppose that a battery is connected across a p–n junction such that
its (+) terminal is connected to the p side and its (−) terminal to n side.
This arrangement creates a forward bias voltage V across the junction. The

1126 Not unlike the diffusion of two gases into each other when the barrier that

separates them (in a container) is removed. In both cases, the diffusion results

from an initial concentration gradient of either gas between the two parts of

the container.
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doped semiconductor material is a reasonably good conductor, except in the
depleted region of the p–n junction. There the battery sets up a strong electric
field which opposes the built-in electric field. The vector sum of the two fields
is smaller than before the battery was connected, and so is the new ‘energy
hill’.

The smaller electric field and the smaller energy hill do not greatly affect
the rate at which electrons and holes are thermally generated in the junction
region (assuming constant temperature).

Therefore the generation current with a potential difference V is approxi-
mately the same as with no potential difference. But now, the electrons and
hole gases do not have to climb as high an energy hill to diffuse (electrons
into the p side, holes into the n side).

Thus, the two (still equal) diffusion rates increased by the lowering
ΔE = −eV of the energy hill, will change by the Boltzmann factor
e−ΔE/kT = eeV/kT . It can be shown that the total current through the p–n
junction is i = is(eeV/kT − 1), with is V -independent.

Had we instead connected the (+) battery terminal to the n side of the
junction and its (−) terminal to the p side, a reverse bias would be created.
The energy hill is then increased by ΔE = eV , and the recombination current
is decreased by the corresponding Boltzmann factor – whereas the generation
current will hardly change.

The total current through the junction in this case is again

i = is(eeV/kT − 1),

except that V and i are now negative (reverse bias). Since the resistance R
equals V/i, the forward resistance becomes small for large forward currents,
while the reverse resistance becomes very large for large reverse voltages1127.
A p–n junction with two terminals that is used to provide a small forward
resistance and a large reverse resistance is called a junction diode.

The property of allowing current to flow easily in the forward direction
while almost stopping the current in the reverse direction gives the junction

1127 The physical explanation is as follows: Forward bias drives holes in the p side

and electrons in the n side toward the p–n junction. There the electrons can

easily fall into the holes (recombine), and the forward resistance is low.

However, reverse bias pulls electrons and holes in the opposite direction, or

away from the junction. For the current to continue, electrons must be contin-

ually pulled out of holes at the p–n junction — a hard thing to do, requiring

an expenditure of energy. Therefore a large reverse resistance is created.
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diode an application as a rectifier1128. A semiconductor rectifier has many
advantages over a diode vacuum-tube rectifier, including longer life and much
smaller size.

Like the vacuum-tube diode, the p–n junction is a non-ohmic element, the
current-voltage relation being nonlinear. Unlike a vacuum tube, there is no
need for a power-consuming filament in the semiconductor device, so that its
efficiency is greater.

A pnp junction transistor is formed with a thin (< 0.1 mm) and lightly
doped n-type region, known as base, placed between two more heavily doped
p-type regions, known as emitter and collector.

The base is so lightly doped that most (typically, > 98 percent) of the
holes from the emitter diffuse right across the base to the collector.

Although typically fewer than 2 percent of the holes from the emitter
recombine with electrons in the base, the quantity is enough to quickly drive
the base positive, thereby setting up a strong electric field to repel any further
hole current from the emitter.

Thus, the hole current will be cut off quickly unless the positive charge
in the base portion of the pnp transistor is somehow neutralized. This can
be achieved by adding electrons from an external source to the base. Con-
sequently, a small current from the base will allow a large emitter-collector
current to flow. Hence, a transistor can be used to switch electric currents.

Suppose that one p-type region (emitter) was connected to a battery ter-
minal positive relative to the base, while the other p-type region of the pnp
transistor (the collector) is connected to the negative terminal. The emitter-
base p–n junction is thus forward biased and therefore has a small resistance.
The base-collector p–n junction, however, is reverse biased and therefore has
a large resistance.

Now, connect an a–c source in series with the battery in the emitter circuit.
When the source then produces a small change in voltage ΔVin, the emitter
current will change by Δi. As this current change will also pass through the
base-collector junction, the large R of this junction will yield a large ΔVout;

1128 Suppose that the saturation current of a junction diode is is = 10μA. At

room temperature kT = 1
40

eV. Applying forward and reverse biases of 0.20

V, we find:

R(forward) =
|V |

is(ee|V |/kT − 1)
= 6.7 ohm,

R(reverse) =
|V |

is(1 − e−e|V |/kT )
= 20, 000 ohm
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consequently a small input voltage change gives a large output voltage change;
a transistor can thus be used to amplify a–c signals.

Toward the Absolute Zero1129 (1898–1995)

The absolute zero represents that state of matter at which all random
microscopic motion has ceased. By ‘motion’ is meant all mechanical and
molecular motion, as well as electronic motion. Not included, however are
large-scale organized motion (e.g. fluid flows, rigid motions or electric cur-
rents) or the quantum mechanical “zero-point motions”; the latter cannot be
stopped without destroying the assembly of molecules and their constituent
atoms. The absolute zero can never be reached in any actual experiment, but
it has been approached to within a few billionths of a degree.

All the random microscopic motions taking place within matter (over and
above the core zero-point motions) are called thermal motions. They are not
visible as such to a macroscopic observer (except via Brownian motion), but
the extent of these motions determines the numerous temperature-dependent
properties of matter.

The science of cryogenics1130 is the study, attainment and use of very
low temperatures. It may be concerned with practical engineering problems,
such as producing lots of liquid oxygen for manufacturing high-quality steel
or burning rocket fuel.

It may be used to quick-freeze a surgical tissue specimen for a medical
researcher or to freeze-dry a lightweight dinner for a mountaineer. Or it may
help physicists study some of the most basic properties of matter.

Cryogenic researchers work with temperatures down to within several bil-
lionth of a degree of the absolute zero (273.16 degrees below zero on the
Centigrade scale or −459.72 degrees on the Fahrenheit scale).

1129 For further reading, see:

• Zemansky, M.W., Temperatures Very Low and Very High, Van Nostrand,
1964, 127 pp.

1130 From the Greek kruos = frost.
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Modern cryogenics originated in 1898 with the first liquefying of hydro-

gen by J. Dewar, using the Joule-Thomson effect and a counterflow heat

exchanger. The next breakthrough occurred in 1926 with the invention of

magnetic cooling via adiabatic demagnetization, by Giauque and Debye,

which allowed the lowering of the temperature threshold to within a fraction

of a degree away from the absolute zero.

In 1956, Franz Eugen Francis Simon1131 (1893–1956, Germany and

England) and N. Kurti conducted the first nuclear cooling experiment, using

adiabatic demagnetization at the nuclear level in a paramagnetic salt, to reach

a temperature of 10−5 ◦
K. In 1960, N. Kurti applied nuclear cooling methods

to reach a record low1132 of 3 × 10−6 ◦
K.

We now know that at ordinary temperatures the atoms, molecules and

electrons in all matter are in a constant state of random motion or agitation.

This motion often masks the fundamental interactions between atoms, nuclei,

and electrons. Lowering the temperature usually reduces the interference

caused by this motion.

Thus, low-temperature studies have contributed greatly to our understand-

ing of the forces between atoms and molecules, of the mechanisms by which

electric currents are carried in metals and in semiconductors, and of the nature

of that well-known, yet still mysterious force – magnetism.

Cryogenics has also been essential in the discovery of two completely un-

expected phenomena, superfluidity and superconductivity. Since 1925, almost

1131 A pupil of Walther Nernst. Fled Nazi Germany in 1933 and established a

flourishing laboratory of low temperature research in Oxford. He used to say,

rather wryly, that he was probably the only man who had both an Iron Cross

of Imperial Germany and a Knighthood of the British Empire.
1132 A temperature of 3 × 10−6 ◦

K represents a fraction of room temperature

(300 ◦K) equal to 10−8. Cryogenics has therefore enabled us to get to one-

hundred-millionth of room temperature. The surface temperature of the sun,

6000 ◦K, is only 20 times room temperature, and the temperature in the interior

of the hottest star, about 3 × 109 ◦
K, is ten million times room temperature.

1960 cryogenics is still ahead by a factor of ten! and by the 1990’s, laser-

cooling of monoatomic gases was combined with magnetic and RF techniques

to produce MOT’s (magneto-optical traps) capable of cooling tiny samples of

some gases to tens of nK (nano-kelvins), at which temperatures they form a

novel state of matter – the Bose-Einstein Condensate (BEC), probably found

nowhere else in nature. By 2004 the lowest BEC temperature achieved crossed

below the 500 pK (pico-Kelvins)!
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every theoretical physicist of note has struggled to explain these ‘super’ prop-
erties, yet it was only during 1955–1965 that consistent answers have been
formulated to the questions they pose.

The explanation for superfluidity and superconductivity can be given only
in the abstract language of quantum mechanics, although both scientists and
engineers make daily practical use of these amazing properties: At ordinary
temperatures it would be unbelievable if a liquid ran uphill or flowed freely
through virtually airtight barriers, yet this is just what superfluid helium does,
at the extremely low temperatures achievable via cryogenics.

It would be equally amazing if an electric current kept flowing through
an electric circuit after all contacts with the power source had been broken,
yet this is what happens in a superconductor. These unusual motions are
nonetheless very natural and comprehensible, albeit surprising, phenomena
associated with low temperatures.

The large-scale industrial technology of cryogenics resulted mainly from
the exigencies of WWII and the space-exploration program. Just as the study
of nuclear physics had led to the development of nuclear medicine, nuclear
electric power plants, and the study of solid state physics to transistor televi-
sion sets and radios, personal computers, digital telecommunications and the
rest of the microelectronics revolution, so today’s cryogenic research may lead
to tomorrow’s engineering marvels and even to new kind of consumer goods.

Cryogenic techniques are now employed to produce ultra-high vacuums.
Cryogenic computers and cryogenic high-field magnets for high-energy particle
physics and controlled thermonuclear fusion research are also in use. One
application of cryogenic research in space technology is the possible future
use of superconducting magnets as shields for the protection of spacecraft
from space radiation.

Still another important future use of supermagnets may be in magneto-
hydrodynamic (MHD) electric generators, which operate by passing a hot
ionized gas, or plasma, rapidly through a magnetic field, thus converting the
heat energy to electricity without the necessity of a boiler or turbogenerator.

1948 CE Hendrick Brugt Gerhard Casimir (1909–2000, Holland).
Physicist. Predicted the Casimir effect — a small attractive force which acts
between two close parallel uncharged conducting plates. It is due to quantum
virtual vacuum fluctuations of the electromagnetic field.
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In the 1930s, Paul Dirac proposed that the vacuum actually teems with
virtual electromagnetic waves – a quantized-field version of the zero point en-
ergy already familiar then from non-relativistic quantum mechanics1133. This
energy would be contained in virtual photons, or light particles that are con-
stantly winking in an out of existence, making the electromagnetic energy
fluctuate in time and space. When external energy is supplied, the virtual
light quanta can materialize as real (actual) photons – as happens when an
excited bound (or virtual free) electron emits a real photon. Dirac’s elec-
tron theory also led to the realization that the vacuum seethes with virtual
electron-positron pairs.

Casimir proposed an ingenious way to observe the virtual-photon energy
directly: Two perfectly reflective metal plates are placed a micrometer apart
forming, in effect, a narrow channel in the electromagnetic ‘ocean’ that al-
lows only certain wavelengths of light, and their respective virtual photons to
exist there. But the ‘ocean’ outside the channel would have virtual photons
of all wavelengths. This would create an ever-so-slight discrepancy between
the energy density inside and that outside the channel, causing a tiny force
pushing the plates together.

In fact, only those virtual photons1134 (between the plates) whose half-
wavelengths fit a whole number of times into the gap should be counted when
calculating the vacuum energy.

1133 Both types of zero-point fluctuations represent nonthermal energy, most evi-

dent as the ambient temperature approaches absolute zero.
1134 Virtual particles other than the photon also contribute a small effect but only

the photon force is measurable. All Bosons such as photons produce an at-

tractive Casimir force while Fermions make a repulsive contribution. If elec-

tromagnetism was supersymmetric there would be fermionic photinos whose

contribution would exactly cancel that of the photons and there would be no

Casimir effect. The fact that the Casimir effect exists shows that if supersym-

metry exists in nature it must be a broken symmetry.

According to the theory of QED the total zero point energy density in the

vacuum is infinite when summed over all possible photon modes. The Casimir

effect comes from a difference of energies in which the infinities cancel. The

energy of the vacuum is a puzzle in theories of quantum gravity since it should

act gravitationally and produce a large cosmological constant (much larger

than actually observed) which would cause space-time to curl up to tiny di-

mensions. The solution to the inconsistency is expected to be found in an

eventual theory of quantum gravity (perhaps some version of ‘string theory’).

The Casimir effect is primarily a low frequency (long wavelength), nonrela-

tivistic effect, and it shows that the changes in the zero point energy of the

electromagnetic vacuum (which is infinite in extent) can be finite and observ-

able.
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The energy density decreases as the plates are moved closer, which implies
there is a small force drawing them together.

This force per unit area of a plate can be calculated to be F = − π2�c
240d4 ,

where d is the separation between the plates1135. It amounts to about one
billionth of a newton for two plates, each a square mm in area separated
by d = 1 micron1136. The tiny force was measured in 1996 by Steven
Lamoreaux, and his results were in agreement with the theory to within the
experimental uncertainty of 5 per cent.

Other contributions of Casimir are:

• Introduced the phenomenological theory of superconductivity (1934).

• Contributed to the theories of paramagnetic relaxation, irreversible ther-
modynamics and quantum mechanics (Casimir operators, 1931).

Casimir was born in the Hague. He studied physics at Leiden University
beginning in 1928 and received his Ph.D. there in 1931. During that period
he also spent some time in Copenhagen with Niels Bohr.

After receiving his Ph.D., Casimir worked as an assistant to Wolfgang
Pauli at Zürich, but returned to Leiden until 1942 when he joined the Re-
search Laboratories of the Phillips Company. He became a co-director of these
laboratories in 1946 and a member of the board of directors of the company
in 1956. He retired from Phillips in 1972.

1135 This formula ceases to be valid when d is of the order of intermolecular dis-

tances (ca 1
3

nm)
1136 Example: the force per unit area between two large square parallel perfectly

conducting plates of size L at distance d 
 L apart is

F = − π2

240

�c

d4
= − 0.013

[d(micron)]4
dyn

cm2

and its signs corresponds to attraction. The existence of this force has been

demonstrated experimentally (1958) by M.J. Sparnay.

Another example of a Casimir-like effect is furnished by Van der Waals forces

among tiny, yet macroscopic aggregates of neutral atoms or molecules. It

is believed that Casimir type vacuum-fluctuation forces are responsible for

the existence of the cosmological constant in GTR cosmology, and that the

cosmological constant today (a.k.a. dark energy) comprises most of the energy

density of the observable universe.
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1948 CE Denis Gabor (1900–1979, Hungary and England). Electrical
engineer, physicist and inventor. Won the Nobel prize for physics in 1971
for his invention of holography. This is a technique which he developed while
seeking to improve the electron microscope during his work at the Research
Laboratory of the British Thomson-Houston Company. It made possible the
recording of 3-dimensional photographic images without a lens.

The image itself, a hologram, appears as an unrecognizable pattern of
stripes and holes until illuminated by coherent light. Gabor’s proposal was of
limited practical interest until the development of lasers in the early 1960s
made possible the widespread application of holography in medicine, print-
making, communications and computer technology.

Gabor was born to Jewish parents in Budapest. His father inspired him
with stories about Thomas A. Edison and other inventors. Gabor graduated
from the Technical College in Berlin in 1924. He fled to England as a refugee
from Nazi Germany in 1934 and worked in industry, becoming a British sub-
ject in 1946. His invention of holography was followed by a move to Imperial
College, London (1949–1967), where he became professor of applied electron
physics in 1958. He later moved to the CBS Research Laboratories in Stam-
ford, CT, U.S.A.

1948 CE Peter Carl Goldmark (1906–1977, Hungary and U.S.A.).
Physicist and inventor. Developed at the Columbia Broadcasting Systems,
U.S.A. the first 30-cm wide long-playing (33 1

3 rpm) record. The playing
time of each side had changed from about 5 minutes for the large 78 rpm
records to 25 minutes and the sound quality was considerably improved. The
78 rpm records vanished quickly from the market.

The arrival of the long-playing record in 1948 followed much technical
and theoretical experimentation. In 1931 the Americans H.C. Harrison and
H.A. Frederick proved that the sound quality could be improved by using
a softer recording material and a lighter cartridge.

This discovery, however, entailed an unwelcome commercial upheaval, for
all the equipment for recording and reproducing sound, including the discs,
then had to be replaced; due to the crisis resulting from the Wall Street Crash
(1929), people were unwilling to spend money on this type of commodity, and
the tens of millions of records already on the market were liable to be made
obsolete. In addition, the radio was competing ever more strongly with the
gramophone.

In 1933, the Americans F.V. Hunt, J.A. Pierce and W.D. Lewis made
progress toward the long-playing record, demonstrating the advantage of very
fine grooves (ca 100 per radial centimeter), as well as of a light cartridge and
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a much more delicate stylus which rested on the edges rather than the bottom
of the groove.

Goldmark, who came to the U.S. in 1933, became president of CBS (1972).
He demonstrated the first color television system in 1940.

Holography1137

An ordinary photograph records the amount of light reflected or scattered
from each point of an object to the camera lens and thence to the photo-
graphic film (or, in the case of a digital camera, the recording takes place
opto-electronically on a CCD chip).

During exposure, only the distribution of the mean square amplitude (in-
tensity) of the electromagnetic field of a light wave is recorded, and that in a
2-dimensional projection of the object onto the plane of the photograph1138.

1137 For further reading, see:

• DeVelis, J.B. and G.O. Reynolds, Theory and Applications of Holography ,

Addison-Wesley Publishing Company, Reading, MA, 1967, 196 pp.

• Ostrovsky, Yu.I., Holography and its Applications, Mir Publishers: Moscow,

1977, 267 pp.

• Lizuka, K., Engineering Optics, Springer-Verlag: New York, 1987, 489 pp.

• Fowles, G.R., Introduction to Modern Optics, Dover: New York, 1975, 328 pp.

• Goodman, J.W., Introduction to Fourier Optics, McGraw-Hill: New York,

1968, 287 pp.

• Steward, E.G., Fourier Optics, Ellis Horwood, Wiley, 1987, 269 pp.

1138 In analog (non-digital) photography, the recording of this projection is effected

by a photographic emulsion consisting of silver halide particles suspended in

a gelatin base. This emulsion is applied to a glass substrate or an acetate

film. When light falls on a silver halide particle, it creates centers of reduced

silver. In the developing process, particles containing this reduced silver are

converted to metallic silver. In regions devoid of reduced-silver centers, the

particles remain in halide form.
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After developing, the recorded image provides an approximately linear map-
ping of this intensity into amplitude transmittance. The information con-
cerning the phase of the wave is lost in this process. Thus, a photograph
conveys only partial information about the object. In particular, there is no
information about the distances of various parts of the object from the photo-
graphic plate. For this reason, when examining the photograph from various
directions, we do not obtain new angles of approach, and we cannot see, for
example, what is happening behind objects in the foreground.

By contrast, if both amplitude and phase of the original wavefronts em-
anating from the object could somehow be reconstructed, the resulting light
field (assuming the frequencies are the same) would be indistinguishable from
the original. This means that we would then see (and could photograph from
various angles) the re-formed image in perfect 3-dimensionality, exactly as if
the object were there before us, actually generating the waves.

Such a process, known as holography1139, has in fact been invented. It
records the interference between coherent light wave-trains striking a film
directly, and the corresponding secondary wave-trains which are (almost) si-
multaneously scattered from the object being photographed (or rather “holo-
graphed”). No lens is needed in front of the film. Every section of the film
records information from the entire non-occluded portion of the object. The
coherent light is usually provided by a laser; it must be intense enough to
expose the film in a time short enough so that vibrations do not disturb the
relative positions of light source, object, and film.

The resulting photograph (hologram) displays a picture that appears un-
intelligible when viewed with ordinary light. What has been recorded is an
interference pattern containing information about both amplitude and phase
differences between light scattered from the object and light that reached the
same mesoscopic regions of the film directly.

During the process of fixation that follows development, silver halide particles

are removed and the plate contains metallic silver only, in small particles which

form dark spots on the plate. These particles comprise the negative image.

On a logarithmic scale, the density of plate blackening is approximately

Q = Γ log10

(
E
E0

)
, where Γ and E0 are characteristic of the photographic ma-

terial, and E is the product of the exposure time t and the light intensity

I. After development, the amplitude transmittance of the plate has the form

τ = τ0

(
E
E0

)−Γ

.

1139 From the Greek word holos meaning the whole — to indicate that it contains

the whole of the information about the object, through amplitude and phase

of the light reflected or scattered from it.
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Both types of information are “scrambled” together and converted to in-
tensity variations for recording purposes, since all recording media available
respond only to light intensity. This photographic record (hologram) bears
little resemblance to the object, and upon visual observation contains a seem-
ingly meaningless jumble of diffraction patterns.

If, however, the hologram is viewed with transmitted coherent light from
a laser (or even with nearly coherent light from a strong point source), the
original scene is approximately reconstructed and can be seen as a real image
on the near side of the film, or as a virtual image on the far side1140. The

1140 The basic mathematical theory of the wave-front reconstruction process is as

follows: Set up a Cartesian coordinate system (x, y) in the plane of the pho-
tographic plate. A reference plane wave (laser beam) of complex amplitude

U0(x, y) = a0e
i(μx+νy) is scattered from an object onto the plate, where a0 is a

real constant, and (μ, ν) are the spatial frequency components of the reference
beam in the xy plane. They are given by μ = k sin α, ν = k sin β, in which

k is the wavenumber
(
= ω

c

)
of the laser light, and the angles (α, β) specify

the direction of the beam. Let U(x, y) = a(x, y)eiφ(x,y) denote the complex

amplitude of the scattered wavefront in the xy plane, where a(x, y) is real.

The intensity I(x, y) that is recorded by the photographic plate is thus given
by the expression (∗ = complex conjugation)

I(x, y) = (U + U0)(U + U0)
∗ = a2 + a2

0 + 2aa0 cos [φ(x, y) − μx − νy].

This is an interference pattern. It contains information in the form of (rela-

tively slowly-varying) amplitude and phase modulations of the spatially peri-

odic reference beam — analogous to the impression of temporal information

on the higher-frequency radio carrier wave by means of amplitude and phase

modulation.

In the above expression for I(x, y) it is assumed that the scattering of the

secondary wave U is neglected (Born’s first approximation), and that U is of

the same frequency as the incident wave — i.e. one ignores Raman scattering,

Doppler effect, and other frequency (color) conversion mechanisms.

In the reconstruction stage, the developed hologram (called the positive holo-

gram) is illuminated by the coherent background U0 alone. The resulting trans-

mitted wave UT (x, y), which goes through the hologram and reaches the eye,

will be approximately proportional to U0 times the transmittance of the holo-

gram at the point (x, y). The transmittance, in turn, will be approximately

proportional to I(x, y). Hence, except for a constant proportionality factor

that we ignore, UT (x, y) = U0I(x, y) = (a2 + a2
0)U0 + a2

0U + U −1U2
0 a2, where

the negative exponents signify phase reversal (since U ∗ = a2U −1).

The hologram acts somewhat like a diffraction grating . It produces a zeroth-

order direct beam (a2 + a2
0)U0 ≈ a2

0U0, and two first-order diffracted beams
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light reaching the eye has been influenced by the interference pattern, with
more light passing through where there was destructive interference and less
where there was constructive interference. The resulting light forms an inter-
ference pattern between the hologram — which is itself a frozen interference
pattern1141 — and the illuminating light. This new pattern is almost exactly
proportional to the one that would have formed had one been looking directly
at the object in the first place (at least through the solid angle allowed by the
geometry of the holography process).

Furthermore, this pattern is different in the left eye from what it is in the
right eye just as it would have been if one had viewed the 3-dimensional object
directly. Hence one sees the object in 3 dimensions. By moving one’s head
with respect to the illuminated hologram within some solid angle determined
by the geometry of the recording procedure, one can look around the object
to the same extent that one could if one had been in that position looking at
the object directly.

One way to understand why such a two-stage interference procedure allows
us to see the original object is to analyze the interference pattern produced by
a very simple geometry. Suppose that the object being photographed is a long
rod. The coherent light from an incident coherent plane wave scatters from the
rod, interferes with the plane wave striking the film directly. The resulting
interference pattern is a series of variably-spaced opaque and transparent
bands covering the entire film.

If a positive transparency is made of the film and is then illuminated with
the original plane wave of coherent light, the cylindrical wave fronts originat-
ing from the transparent bands on the film will produce virtual reinforcement
maxima at a distribution of points approximating the original rod’s light-
scattering centers. The waves diverging from these points will look as if they

on either side of the direct beam: The term a2
0U reproduces the scattered light

from the object and forms the virtual image (reconstructed wave). On the

other hand, the term U −1U2
0 a2 has the same amplitude as the reconstructed

wave but with reversed phase; it may be regarded as being due to a fictitious

object of similar nature as the true object, but situated in a different plane

(real image).
1141 If plane-wave light is used and the interference recorded at a far screen (Fraun-

hofer diffraction), a diffraction pattern of a diffraction pattern is the original

source pattern! Thus, a diffraction pattern of a pinhole is a series of alternating

dark-light concentric circles. The diffraction pattern of this configuration is a

point image. The diffraction pattern of a single slit furnishes another example.

Mathematically, this is simply because the 2D Fourier transform is its own

inverse.
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had come from the original rod. Another set of wave crests converge from the
film to form a real image of the original illuminated rod on the same side of
the film as the viewer.

Note that the information about the rod is not localized on the film but
is distributed over its entirety; thus, the position of the rod is determined by
the spacing of the light and dark fringes. If the rod is close to the film, the
spacing is large at first and then decrease rapidly. If the rod is far away from
the film, the spacing is almost uniform.

Thus, holography has succeeded in removing a drawback of conven-
tional photography through recording on a photographic plate (or any other
medium) an image of the whole field (amplitude and phase).

Already at the beginning of the 19th century, Young, Fresnel and Fraun-
hofer had sufficient knowledge to formulate the fundamental principles of
holography. Moreover, many scientists in the second half of the 19th cen-
tury and the beginning of the 20th century — Kirchhoff, Rayleigh, Abbe,
Lipmann, W.L. Bragg, M. Wolfke (1883–1947, Poland, 1920), and Hans
Boersch (1909–1986, Germany, 1938) were very close to discovering the prin-
ciples of holography.

The invention of holography in 1948 by D. Gabor stemmed from his
work on improving the quality of images obtained in electron microscopy. In
the 1940s the results obtained with electron microscopes (invented in 1929)
were disappointing because although a 100-fold improvement on the resolving
power of the best light-microscope had been obtained, the resolution fell far
short of the theoretical limit. The fast electrons used in electron microscopy
have a de Broglie wavelength of about 1

20 Å, so that atoms should in principle
have been resolved; but the practical limit at that time was approximately
12Å.

A major reason for the shortfall was the presence of aberrations associ-
ated with the electromagnetic electron lenses used1142. It was in thinking
about how to solve that problem that Gabor devised the technique he called
wavefront reconstruction. His inspiration came partly from the principles in-
volved in W.L. Bragg’s microscopy. He reasoned that if he could record the
phases as well as the intensities in an electron microscope image, then per-
haps he could complete the image formation in an optical system which at
the same time could be designed to correct the aberrations in the electron
optics.

1142 Mainly spherical aberrations that result from the fact that the focal points of

rays far from the optic axis of a spherical lens (or mirror) are different from

the focal points of rays of the same wavelength passing near the axis.
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He was also influenced by Zernike’s successful use of a coherent background
wave in phase-contrast microscopy. However, Gabor’s light-optics results were
bedeviled by the inadequate coherence length (only about 0.1 mm) of the light
from the high pressure mercury vapor lamp that was used, and by the low level
of illumination available after the introduction of a small pinhole (3 microns
in diameter) to secure adequate spatial coherence.

For these and a number of other reasons, the envisaged application to
electron microscopy was unsuccessful, and so holography went into hiberna-
tion. It was not until 1962 that the modern revolution in holography began.
Emmet N. Leith and Uris Upatnieks recognized the similarity of Gabor’s
wavefront reconstruction process to their theoretical results on ‘side-looking ’
radar.

Lasers (1917–1969)

A laser (acronym: Light Amplification by Stimulated Emission of Radia-
tion) is a device that emits highly monochromatic, well-collimated beams of
coherent light. In other words, the light waves from a laser have only a small
variation about a single frequency or wavelength, the waves do not spread out
in space much more than the minimum dictated by the diffraction limit, and
the wave trains retain their phase coherence with one another.

Photons can be absorbed by electrons in atomic, molecular or band or-
bitals, exciting them to higher-energy state. Once an electron is excited, it
can naturally return to a lower state in a random exponentially-distributed
process with an average characteristic lifetime. This natural decay is called
spontaneous emission; light from common sources such as electric bulbs, flu-
orescent lamps, and the sun belong to this category. The resulting radiation
is highly irregular, namely: polychromatic, incoherent and multidirectional.
The excited electron can also be induced to return to a lower state in a shorter
time e.g via collisions with other atoms or molecules.
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In stimulated emission, photons of energy hν = ΔE (where ν is close to
the frequency of some spontaneous emission of the excited state) pass through
the excited atom and, because of a resonance effect (also interpretable as due
to the Einstein-Bose statistics of photon gases), stimulate transition to a state
with lower energy. This transition yields the emission of a further photon of
almost the same energy and frequency as the incident photons. In short, N
photons go in but N + 1 photons come out. Therefore the light’s energy will
be progressively amplified, which is the basis for operation of the laser.

The theoretical mechanism of stimulated emission was given by Einstein
already in 1917, based on the old quantum theory and before quantum me-
chanics had been discovered. By considering a gas of photons in dynamic equi-
librium with a gas of atoms, Einstein was able to show that the probability
of a stimulated transitions is directly proportional to the average population
of electron per state in the initial excited level, as well as to the intensity (or
photon density) of the pre-existing radiation field.

Consider two levels of energies E1 < E2, occupied by N1 and N2 atoms
respectively. Let A21 represent the spontaneous emission transition proba-
bility per unit time from level 2 to level 1. If radiation of a frequency range
including overlapping the emission/absorption band surrounding the resonant
ν0 = (E2 − E1)/h is present and its intensity spectral density is I(ν)dν, ab-
sorption transitions from E1 into E2 are produced.

Let B12 be the absorption transition probability per unit time and unit
intensity of radiation, and B21 the stimulated emission transition probability
per unit time and unit intensity of radiation.

When radiation and matter are in thermal equilibrium, no net absorption
or emission occurs (the total number of absorption and emission transitions
per unit time is the same).

Einstein used this fact to derive the blackbody-radiation law, but his argu-
mentation also contributed to the discovery of Bose-Einstein statistics (which
applies in particular to a gas of photons).

Although the induced (stimulated) absorption probability rate may be
smaller than the spontaneous transition probability, absorption can match
emission because of the larger population of the lower level at thermal equi-
librium. In the general case, in which radiation interacts with matter without
necessarily being in equilibrium, we have

Emission rate

Absorption rate
=

[A21 + B21 I(ν0)]N2

B12 I(ν0)N1
=

(

1 +
A21

B21 I(ν0)

)
N2

N1
,

where use has been made of time-reversal symmetry: B12 = B21.
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If the energy difference E2 − E1 is sufficiently small, so that the ratio
hν/kT is very small (as occurs, for example, in the microwave region at room
temperature), A21/B21I(ν) is shown to be negligible compared with unity
for ambient radiation at or above the classical Rayleigh-Jeans (thermal equi-

librium) spectral distribution. In this case, we may write Emission rate
Absorption rate ≈ N2

N1
.

If the substance is in thermal equilibrium, N2 is smaller than N1 and the
emission rate is smaller than the absorption rate. But if, by some means, the
relative population of the excited and ground levels is inverted, so that N2 is
larger than N1, making the ratio N2/N1 larger than 1, then the emission
rate is larger than the absorption rate.

In other words, if electromagnetic radiation of energy density E(ν) passes
through this system, the radiation that comes out has more photons of fre-
quency ν0 than the incident radiation — resulting in an “amplification”
of the radiation at that frequency. This is only true, of course, if 1143

E2 − E1 = hν0 ≈ hν. Since more atoms are de-excited than excited, the up-
per level begins to be depleted, so that the amplification is decreased until
thermal equilibrium is re-established.

Thus, to sustain a steady–state amplification, it is necessary to continu-
ously replenish the atoms in the upper level, or to remove atoms from the
lower level by some other means.

Several means have been devised to overpopulate the upper level in a
steady fashion. All these methods require some expenditure of energy, and
the efficiency of a maser (microwave laser) or (optical) laser is the ratio be-
tween the energy output and the energy input. One typical method is optical
pumping, in which light energy is supplied, either continuously or in bursts, to
excite the atoms to higher energies. Electrical or chemical pumping schemes
are also in use

In masers and lasers the stimulated, coherent, monochromatic radiation is
very intense, in comparison with the spontaneous incoherent radiation, which
is treated as noise in these devices.

Due to the strong predominance of induced transitions, the noise is rela-
tively smaller in masers and lasers than in conventional amplifiers and os-
cillators. Maser amplifiers are used whenever very low noise is of prime
importance, such as in radioastronomy work, satellite communication, and
microwave spectrometry.

1143 More precisely, the spectral band of ambient radiation must overlap the spec-

tral band of the two-level transition under consideration. The bandwidth of the

latter is the natural (isolated atom) linewidth, plus environmental broadening

terms due to pressure, collisions and thermal Doppler shifts.
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Basic parts of the laser include a power source and a light-amplifying
(lasing) substance. Stimulated emission results when energy from the power
source pumps a majority of atoms in the substance into excited states. In the
case of the ruby crystal laser a powerful flash tube sends intense light through
the ruby.

The atoms excited thereby radiate light as their electrons drop back to
low-energy orbitals. Part of this light travels along the axis of the ruby as
laser light. This light is reflected back and forth by mirrors and stimulates
other excited atoms into releasing their energy, which amplifies the laser light
manifold.

Alfred Kastler (1902–1984, France; Nobel prize for physics, 1966), de-
veloped (1950) optical pumping, a system using light or radio waves to excite
atoms, which then emit coherent electromagnetic waves (a precursor to the
laser).

Charles Hard Townes (b. 1915, U.S.A.; Nobel prize for physics, 1964)
first proposed the idea of the maser (Microwave Amplification by Stimulated
Emission of Radiation) in 1953. The idea of the laser first occurred to Gordon
Gould in 1957, then a graduate student at Columbia University.

It was independently conceived by Arthur L. Schawlow (b. 1921, U.S.A.;
Nobel prize for physics, 1981) and C.H. Townes in 1958. In 1960, Theodore
Harold Maiman (b. 1927, U.S.A.) developed and constructed the first laser,
in which synthetic ruby was the light-amplifying substance. Semiconductor
lasers were first operated in 1962. The first liquid laser was operated in 1966.

In 1969, astronauts on the Apollo 11 lunar mission placed a cubic-mirror
laser reflector on the moon. Scientists used this device to measure precisely
the distance between the earth and the moon, by measuring the time required
for the laser beam to travel to the reflector and back.
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History of Gyroscopic Phenomena and Technologies, II
(1913–2001)

Gyroscopes have traditionally relied on the spinning of a mass and the
fact that a fast spinning mass points toward a fixed direction in space unless
disturbed by a force. This makes the gyroscope a very important navigation
instrument.

It can also be used to determine the angular rate of change in the direction
of the vehicle on which it is mounted. Thus, gyroscopes (or gyros) are used for
guidance, navigation, and stabilization of the carrying vehicle. They are used
for guidance and orientation of aircraft and missiles, tracking the deviation
of flights from set patterns, to determine the bearing of automobiles as they
turn on streets, etc.

Optical gyros

Optical gyros depend upon the Sagnac effect (1913) to detect any rotation.
The effect manifests itself in an experimental setup called ring interferometry.
It hinges upon Einstein’s STR principle that the speed of light in vacuum
is independent of the motion of the source and is equal to c in all frames of
reference. Sagnac discovered that if two identical beams of wavelength λ travel
in opposing directions along a closed path undergoing rotation at an angular
speed Ω rad/sec, then the light beam traveling in the same direction as the
rotation takes a longer time to travel around the path than the other beam.
This results in a change in the interference pattern between the counter–
rotating beams. The phase shift Δφ produced is given by1144

1144 The effect is best explained in the framework of Special Relativity: Let the
beams traverse a circular path of radius R. In a local instantaneous rest frame

at any point the light-conducting fiber (if any), moves with speed c
n
, with n

the refractive index (n = 1 if only mirrors are used to bend beams along their
paths).

Therefore, if one could define a global co-rotating Lorentz frame, there will be

no phase-shift.
However, unlike the Michelson-Morely effect, one cannot have a globally rotat-

ing frame for the following reason: the rotating-frame angle-time coordinate

(θ′, t′) would be related to the laboratory-frame’s (θ, t) via the angular Lorentz
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Δφ ≈
(

4πAN

λc

)

Ω(radians); Δφ =
2πc

λ
Δt′

where A is the area enclosed by the beams path and N is the number of times
the beam has gone around the path. The term in parenthesis is called the
scale factor of the gyro. Clearly, the larger the area enclosed by the beams,
the better the performance.

Although Sagnac and other scientists demonstrated the concept in the
laboratory, it was not until 1963, with the advent of the laser beam with its
unique properties, that the principle could be used in a practical gyroscope.

The key properties of the laser that make the gyroscope possible are the
laser’s coherent light beam, its sharply–tuned frequency, its small amount of
spreading, and its ability to be easily focused, split, and deflected. With ad-
vances in solid-state technology (detectors, modulators, etc.), optical gyros
have now become highly reliable and compact.

transformation (θ, θ′ in radians):

θ′ =
θ − Ωt

√
1 − Ω2R2

c2

; t′ =
t − ΩR2

c2
θ

√
1 − Ω2R2

c2

,

which are transcribed form the one-dimensional Lorentz transformation equa-

tions with x → Rθ, v = ΩR.

Such a globally rotating frame (θ′, t′), however, cannot be globally defined be-
cause the laboratory coordinate θ undergoes a discontinuity in some arbitrary

direction θ = 0, which therefore causes a discontinuity in the time assignment

t′. In other words, no matter where the angular discontinuity is chosen, there
will be some space-time events for which the t′ coordinate will be ambiguous

– like the international date line, but not avoidable by using the Greenwich

Mean–Time!
The jump in t′ upon completing the circular circuit around the fiber is (with

Δt = 0, Δθ = 4π – not 2π since one is comparing two counter-rotating beams):

Δt′ =
4ΩπR2

c2

√
1 − Ω2R2

c2

≈ 4ΩπR2

c2
. (1)

Note that this derivation implies that the Sagnac effect is purely due to the

topology of the Minkowski space-time. Note also that Δt′ is independent of

the refractive index n, which makes (1) applicable for fiber optic gyros.
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Optical gyros include the ring laser gyros (RLG) and the fiber optic gyros
(FOG). Both are inertial rotation sensors using the Sagnac effect.

Ring gyro configuration

The device consists of a three- or four-sided block which defines a closed optical
cavity. The light path is defined by mirrors mounted on corners. Light travels
through holes in the block. The cavity is filled with a gas, usually a helium-
neon mixture which lases when excited. Thus there is no need for an external
laser (as in the fiber gyros).

The laser light propagates clockwise and counterclockwise in the cavity.
We now have two beams in the cavity with an optical path of ∼ 8cm to 40cm.
The counter–rotating beams interfere and a detector quantifies any changes
in the interference pattern.

In the above discussion, the platform rotation mentioned is rotation with
respect to an inertial reference frame. Since this experiment does not involve
a relativistic velocity the results are valid both in the context of classical
electrodynamics and special relativity.

The Sagnac effect is the electromagnetic counterpart of the dynamics of
rotation. A spinning gyroscope that is mounted on appropriate gimbals can
be used to measure the rotation of the mounting, and likewise, a Sagnac
interferometer measures its angular velocity with respect to the local inertial
frame.

Note that the phase-difference of the Sagnac effect given above, can be in-
terpreted as a frequency-difference that arises between counter-rotating modes
when the whole system is rotating: the co-rotating mode shifts its frequency
to the red, while the counter-rotating node shifts its frequency to the blue
(a Doppler shift). Measuring the frequency difference renders the rotation
rate. Thus,

Δφ =
2πPΔf

c
=

4AΩ
λc

∴ Δf =
4AΩ
2πλP

, (2)

where P is each beam’s path-length and λ is the vacuum wavelength.1145

1145 Δf is known as the beat frequency. One may interpret the Sagnac effect as due

to an interference of two wave systems: one is a standing wave, stationary w.r.t.

the fixed stars, and another rotating with the earth. They create beats that

are λ
2

apart. Thus, for a rotation angle of λ
2R

radians, one beat is recorded.
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The idea of a ring laser was put to test by W. Macek of Sperry-Rand in
1963 using a square ring. Further theoretical investigations (1986–1993) have
shown that large rings have basically the potential to detect earth rotation
variations. With A = 0.75m2, a beat frequency of Δf = 17Hz results from
this rotation.

Fiber optic gyros (FOG)

In fiber optic gyros, the optical wave-propagation takes place within an optical
fiber coil, which could be as long as 2km. Two beams of laser light are sent
in opposite directions around the coil. Because the speed of the laser light is
constant, the motion of the optic ring itself, the laser, and the detector, have
no effect on the individual light beams. An interference effect is created when
the two counter-rotating laser beams are recombined at the detector. Imagine
a FOG sensor that is rotating clockwise as seen from the top. A solid-state
laser creates a single laser beam. The laser light is split into two beams, one
going clockwise, and one counter-clockwise. After traveling through the fiber
optic loops, the laser beams are recombined at the detector. The beam going
clockwise will have to travel a little farther in going from the laser to the
detector, because the detector has rotated away from it some; the beam going
counterclockwise travels a little less from the laser to the detector because
the detector has rotated into it. The difference in distance traveled creates a
phase shift between the two beams.

FOG rate sensor have extremely low levels of bias drift with time or tem-
perature. Solid-state laser diodes provide a very stable source of laser light
at a constant frequency. This translates into very stable operation.

FOG sensors have all of the advantages of reliable solid-state technology
over mechanical gyroscopes:

• no moving parts;

• high stability over time;

• high stability over a temperature range;

• reliability;

• low sensitivity to environmental factors (vibration, shock, acceleration).

For a fixed angular velocity Ω radians
sec

one sees Ω
λ/2R

beats/second, or Hertz.

This beat frequency Δf can then be written as Δf = 2RΩ
λ

= 4AΩ
λP

, P = 2πR,

A = πR2.
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These advantages endear FOG to military users, to whom accuracy, long-term

stability, low cost, high reliability, low maintenance, high tolerance to accel-

erations and vibrations, small size, light weight, and low power requirements

are important.

One of the significant attributes of the laser gyro is its use of very few

moving parts. Indeed, it is theoretically possible to build laser gyros without

any moving components. Unlike the conventional spinning gyroscope with

its gimbals, bearings, and torque motors, the laser gyroscope uses a ring

of laser light, together with rigid mirrors and electronic devices. Thus the

laser gyroscope is more rugged than conventional gyros, offering the obvious

advantages of much greater reliability and lower maintenance requirements.

Typically, laser gyros have a mean-time between failures about twice that

found in conventional gyros. Not only does the greater reliability of the laser

gyro mean lower life-cycle costs, but such gyros potentially could be less costly

to produce in the first place. Current technological efforts are under way to

get production costs down. Indeed, some of the advanced work on very small

solid-state devices portends substantial reduction in cost and increases in

reliability. The miniature laser gyros that may result could be used in such

applications as low-cost tactical missiles and even a “guidance” system issued

to the individual foot soldier to replace his compass.

Because the laser gyro uses solid-state components and “massless” light,

it is insensitive to variations in the earth’s magnetic and gravity fields. Like-

wise, shock and vibration have little impact. The laser gyros are especially

attractive for high-performance aircraft, remotely piloted vehicles, and mis-

siles. High-speed turns, dives, and jinking maneuvers do not represent a real

problem to a laser gyro. Unlike a conventional gyro that requires a finite time

for wheels to spin up and bearings to come up to operating temperatures, the

laser gyro is essentially ready instantaneously when turned on. Again, be-

cause of the absence of moving parts and its solid-state components, a typical

laser gyro has much lower power requirements than a conventional gyro and

requires half as much cooling.

In regard to the important matter of accuracy, the laser gyro has the poten-

tial to provide accuracy equivalent to that offered by mechanical gyroscopes,

even up to the accuracy levels required for ballistic missile guidance.

In an actual application, such as an aircraft autopilot, three laser gyro-

scopes would be used to sense changes in pitch, roll, and yaw. In addition,

three accelerometers are used to measure longitudinal, lateral, and vertical

motion.
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Fig. 5.25: Mass-spring system – vibrating MEMS gyroscope operating prin-
ciple

Micromachined-Electro-Mechanical-System gyros (MEMS)

MEMS gyroscopes make use of vibrating mechanical elements to sense ro-

tation. They are fabricated by using micromachining techniques in silicon

or piezoelectric materials. In these gyroscopes a resonant primary excited

mode contributes, together with Coriolis accelerations produced by the plat-

form rotation, to a secondary resonant mode which gives the measure of the

rotation.

The operating principle of vibrating gyros is the same for the different

kinds of devices. In particular, those gyros can be modeled by a mass-spring

system as shown in Fig. 5.25.

The elementary sensing unit is represented by a particle A and the spring

represents the elasticity of the particle-supporting structure. The particle has

two degrees of freedom; at any time instant its movement is defined by the

displacements x′ along the x-axis and y′ along the y-axis. A rotation of the

plane xy, the reference frame, around an orthogonal z-axis is characterized

by an angular rate. To measure it, a vibration of the particle along the x-

axis must be first induced; the vibration amplitude has to be constant. This

oscillation is indicated as the primary motion of the gyroscope, or drive mode.
The vibration is produced by a feedback control system, which excites the

particle at its resonant frequency while maintaining the vibration amplitude

at a set value.

When the gyroscope rotates, the particle experiences a Coriolis force, Fc,

which has an amplitude proportional to the applied rotation rate ω, and
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its direction is, in the rotation frame, perpendicular to the primary motion
direction:

Fc = 2mv × ω,

where m is the vibrating mass and v is the velocity in the direction of the
primary motion.

The Coriolis force will induce a particle vibration along the y-axis, indi-
cated as the secondary motion of the gyroscope or sense mode. A measure-
ment of its amplitude allows estimation of the angular velocity of the reference
frame. The Coriolis acceleration is proportional to the primary velocity, so
the amplitude and frequency of the drive oscillation have to be as large as
possible. At the same time, it has to be ensured that the frequency and
the amplitude remain constant; the amplitude control is accomplished by an
automatic gain control loop while frequency stability is obtained by a phase
locked loop.

The angular rate of the frame can be measured by means of a closed-loop
control over the secondary motion. The measurement is used to generate a
control force able to annul the motion along y-axis; the control force magni-
tude represents a measure of the rotation rate.

A large number of vibrating gyroscopes has been proposed whose configu-
rations are rather complicated. They can be broadly classified with reference
to their structure as follows: (a) vibrating beams (prismatic, triangular);
(b) tuning forks (single, dual, multi-tone); (c) vibrating shells (hemispher-
ical, ring, cylinder); (d) vibrating plates (linear disc, angular disc, linear
plate).

Vibrating shells with hemispherical and cylinder configurations are macro-
sized devices while vibrating beam, tuning fork, ring and plate gyroscopes are
micro-sized devices manufactured from silicon or quartz.

Neutron Interferometry and the Sagnac Effect (1988–1994)

A neutron interferometer is an interferometer capable of diffracting neutrons,
allowing the wave-like nature of neutrons to be explored. Like X-ray inter-
ferometers, neutron interferometers are typically carved from a single large
crystal of silicon, often 10 to 30 or more centimeters in diameter and 20 to
60 or more in length. Modern semiconductor technology allows large single-
crystal silicon boules to be easily grown. Since the boule is a single crystal,
the atoms in it are precisely aligned, to within small fractions of a nanometer
or an angstrom, over the entire boule. The interferometer is created by carv-
ing away all but three slices of silicon, held in perfect alignment by a base.
Neutrons impinge on the first slice, where, by diffraction from the crystalline
lattice, they separate into two beams. At the second slice, they are diffracted
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again, with two beams continuing on to the third slice. At the third slice, the
beams recombine, interfering constructively or destructively, completing the
interferometer.

Around 1988, physicists began to investigate the interference phase-shift
induced by the rotation of a neutron interferometer. The result consisted of a
Sagnac term, which is due to the coupling of the orbital angular momentum of
the neutron with the rotation of the frame, and a new term which arises from
a similar coupling because of the neutron spin. The latter effect is generally
smaller than the Sagnac phase-shift by the ratio of de Broglie wavelength of
the neutron to the dimension of the interferometer.

Experiments (1994) involving the interference of neutron de Broglie waves
(λ ∼ 2Å), extending over distances of order 10cm, were conducted in a rotat-
ing frame, establishing the existence of the Sagnac effect.

Quantum Field Theory1146

Non-relativistic quantum mechanics elucidates the relation between ob-
servable particles (e.g., electrons) and their corresponding probability wave-
field; it has been so successful that the results of a vast range of possible
experiments could be predicted and explained in an unambiguous way. Thus,

1146 For further reading, see:

• Itzykson, C. and J-B. Zuber, Quantum Field Theory, McGraw-Hill, 1980,

705 pp.

• Chang, S.J., Introduction to Quantum Field Theory, World Scientific, 1990,

382 pp.

• Penrose, Roger, The Road to Reality, Alfred A. Knopf: New York, 2005,

1099 pp.
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the wave-particle duality (part of the complementarity principle) was clarified
and confirmed.

However, quantum mechanics in its initial form proved unsuitable for clar-
ifying a similar duality relation between an electromagnetic field and the pho-
tons which correspond to it in the particle concept.

Let us compare two closed stationary systems: the hydrogen atom and a
rectangular 3D cavity with ideally reflecting walls, which may be filled with
radiation. For the first system, Schrödinger and Heisenberg showed that only
certain discrete modes of the electron’s probability-amplitude complex wave
function (the eigenfunctions or eigenstates of the electron in the atom) with
corresponding discrete eigenvalues (energy levels) are compatible with the
boundary conditions (which are the requirement of a localized normalized
bound state).

For the second example, the radiation-filled cavity, the boundary condi-
tion requires that only such waves occur for which each cavity dimension
is an integral multiple of one-half the wavelength (spatial period) along the
corresponding direction.

With the help of the relation E = hν, quantum mechanics then yields the
energy of the associated photons from the frequencies of the stationary waves.
But this analogy does not tell us anything about the number of photons which
populate a given cavity eigenmode having a given frequency. Furthermore,
the modal wave functions are of the EM fields, which are real, observable
quantities – not complex probability amplitudes like the Schrödinger wave
functions. A comparison with the first example shows that something is still
missing. This ‘missing link’ turns out to be the quantization of the electro-
magnetic field1147. Since we have associated the wavelength (or frequency)
of the quantized electromagnetic cavity modes with the energy of the corre-
sponding photons, we expect the second property of the cavity waves, i.e.,
their amplitude, to correspond to the number of photons.

We thus come to the conclusion that the amplitudes of the individual dis-
crete modal waves of the cavity must also be quantized (so-called second quan-
tization), so that the electric and magnetic field vectors at each spatial cavity

1147 Also known as ‘2nd quantization’: ‘first quantization’ applies to nonrelativistic

particles. The second quantization is associated with quantum mechanics of

particles and fields; It is consistent with STR (once the electron’s Dirac field is

also quantized) and the number of particles (quanta) is variable (dynamical).

The so-called ‘3rd quantization’ applies to a putative quantum field theory

which would quantize spacetime (GTR in quantum gravity) and in which the

number of universes is variable.
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point become hermitian Hilbert-space Heisenberg operators, just like a parti-
cle trajectory in ordinary quantum mechanics. To describe this situation in
a “Schrödinger picture”, we need a Schrödinger equation whose solutions are
complex wave functionals, i.e. complex numbers depending upon the cavity
field:

Ψ [E0(r)|t] ,

where |Ψ|2 is a probability density (in some suitable functional measure) that
measuring E(r, t) will yield a field pattern within an infinitesimal neighbor-
hood of E0(r). In this language, there is an uncertainty relation precluding

exact knowledge of both E(r, t) and B(r, t); the wave functional Ψ̃ {B0(r)|t}
is thus an infinite-dimensional Fourier-transform of Ψ {E0(r)|t} just as the

momentum wavefunction in the 1st-quantized case, Ψ̃(p|t), is a 3D Fourier
transform of Ψ(r|t), the spatial Scrödinger wave function.

Indeed, field strength and number of photons prove to also be comple-
mentary to one another in the sense of the uncertainty and complementarity
principles, since E and B belong to the wave concept, whereas the number
n of the photons belongs to the particle picture. This is in addition to the
just-mentioned complementarity between, E and B, and yet another com-
plementarity between the phase of a light wave and the number of photons
it comprises. It is most interesting that the theory leads to the same result
that had been postulated by Planck in 1900 when he tried to describe theo-
retically the black-body radiation and thus initiated the entire development
of quantum theory1148.

The stationary electromagnetic modes of the cavity (which may or may
not be a black body) behave exactly like linear oscillators. Consequently,
their energy (apart from the zero-point energy 1

2hν0)
1149 can only be a dis-

crete integral multiple of hν0 if ν0 is the eigenfrequency of the corresponding
stationary wave. In the particle picture, a cavity eigenvibration of excitation
energy nhν0 thus corresponds to n photons of energy hν0 in each.

The differences between quantum-theoretical computation and classical
computation diminish with increasing quantum number n. Thus, if the mean

1148 It is also interesting that Einstein was able to give a theoretical derivation

of Planck’s heuristic result (1917) before even first-quantized Quantum Me-

chanics was developed. These adumbrations can be traced to the fact that the

blackbody law follows from just the wave/particle duality of light, the exis-

tence of atomic energy levels and general thermodynamical principles. It does

not require the full machinery of quantum field theory.
1149 It is precisely the sum of zero-point energies of all the infinity of cavity modes –

the vacuum (ground state) virtual-fluctuations EM energy – that is responsible

for the Casimir effect.
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squared amplitude of a certain cavity vibration is associated to a large quan-
tum number n via field quantization or in the particle language, if there are
many photons with the corresponding energy hν in the cavity, then no sub-
stantial deviations from the classical theory are expected, and none are found.
This holds true, for instance, for the long EM waves (down to the visible-light
waves), where the energy hν of the individual photons is small compared to
the typical radiation energies recorded in radiation measurements, and where
most phenomena can be described satisfactorily without making use of quan-
tum theory. In the ultraviolet and yet shorter wavelengths, however, the
energy of the individual photon is often large enough that considerable devi-
ations from the classical theory are to be expected since individual photons
may be measured here1150. Indeed, it is known that the earlier formula for the
spectral energy distribution of the black-body radiation (Rayleigh–Jeans)
agrees satisfactorily with measurements in the regime of waves long relative
to the (temperature-dependent) Wien’s Law value, but results in discrepan-
cies which become larger and more fundamental the shorter the wavelength
of the radiation is. Of course these are generalities: X-ray beams could exist,
for instance, and conversely, in some detectors, radio waves are absorbed one
photon at a time (and thus non-classically).

A tiny grain of sand, perhaps 10−3 cm across, behaves in almost every
way like an object of the large scale world. But in the realm of atoms (10−8

cm) particles arrange themselves in smeared-out, yet discretely denumerable
configurations; observable changes often occur in abrupt quantum jumps and
even the modified laws of motion determine only the probabilities of events,
not the individual events themselves. These profound changes in behavior
are due primarily to differences in the relative size of objects and their de
Broglie waves; large and multi-atom objects are enormous compared to their
associated matter waves; atoms and their waves are similar in size at low
enough temperatures and/or for light enough atoms; and electron waves are
vastly bigger than the electron particle itself.

As we descend to the scale of subatomic particles1151 (10−13 cm and
smaller), the de Broglie relation between wavelength and momentum, to-

1150 Individual photons are sometimes measured for longer wavelengths. Rhodopsin

molecules in the human eye detect single visible-band photons.
1151 Subatomic particles include the photons, leptons, hadrons , non-Abelian gauge

bosons and other, more exotic species. The photon mediates the electromag-

netic interaction, despite the fact that it has no electric charge. Thus, for

instance, photons are emitted by accelerated charges.

Neutrinos, electron, muon and tau-leptons and their anti-particles, are grouped

together under the name ‘leptons’. All leptons have weak interactions. The

charged leptons, in addition, are also subject to the electromagnetic force.

Strongly interacting particles, including all nuclei, are hadrons, and their be-
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gether with the short range of strong and weak nuclear forces, implies that
large values of energy, brief interaction times and relativistic velocities become
the norm. Therefore, particle phenomena are necessarily rapid and violent —
so violent that matter and energy interconvert freely, and matter loses the
stability it displays under less drastic conditions.

Molecular, atomic and subatomic phenomena (as well as many bulk-matter
phenomena, especially in solids) are successfully dealt with by the methods of
quantum mechanics. The theoretical methods dealing with particles that may
move with velocities close to the velocity of light require, in addition, relativis-
tic considerations1152. One of the great syntheses of 20th century physics was
the incorporation into quantum mechanics (QM) of special relativity (STR);
and some of the surprising conclusions of this synthesis were that:

• Every particle species either has a distinct antiparticle or is its own an-
tiparticle.

• Interactions can create and destroy particles and/or antiparticles.

• Even the vacuum is thus a many-body system, seething with zero-point
virtual particles and particle-antiparticle pairs.

The powerful combination of STR and QM gave rise to Quantum Field
Theory (QFT) which are concerned with the relations between quanta and
fields and between matter and fields. The 4 known interaction classes in na-
ture have been described (albeit incompletely thus far) via QFT: the strong
and weak nuclear forces, the electromagnetic interactions (EM) and gravita-
tion. Of these, the quantum theory of gravity is the least well understood at
present. The current, makeshift QFT incorporating the other three classes of
interactions, as well as the leptons, quarks, gauge particles and some other
auxiliary particles and fields, is called the Standard Model of particle physics
and consists of QED; QCD (the Yang-Mills gauge theory of quarks, gluons

havior is governed by the strong, the electromagnetic, and the weak interac-

tions. Hadrons are subdivided into mesons and baryons, and are composed of

quarks. The lightest of the hadrons is the pion. All particles are affected by

the gravitational force.
1152 Since light particles (photons) move at the speed of light, it is now obvious

why the quantum field theory (QFT) of the EM field is necessary to under-

stand atomic transitions. QED (Quantum Electro Dynamics) is an extension

of this QFT, in which the Dirac field is also quantized, allowing description of

relativistic electrons, electron-positron pair production/annihilation, vacuum

polarization (resulting e.g. in the Lamb shift) and other effects.
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and the strong nuclear forces); and the unified electroweak QFT gauge theory,
of which QED actually forms a subset.

The sub-theory describing the EM interactions of photons, electrons and
positrons, is known as quantum electrodynamics (QED). This discipline ex-
plains properties of these particles and their interactions in terms of fields
(the ‘fermionic’ electron field and the ‘bosonic’ EM field, both quantized) and
results from the union of classical electrodynamics and quantum mechanics,
modified to be compatible with the principles of relativity. The three parti-
cles with which it deals, are well suited to theoretical treatment because they
are point-like, stable, their properties are well understood, and they interact
mainly through the familiar electromagnetic force and are, to the limits of
present-day empirical precision, found to have no internal structure1153.

To physicists of the mid 19th century, fields meant a condition of strain
in the ether, a tenuous elastic “jelly” filling all space. These strains were
thought to produce the forces acting upon electric charges. There was also the
luminiferous ether, possibly different from the electric and magnetic ethers,
which transmitted oscillatory strains as light waves.

In his synthesis of electromagnetism and optics, Maxwell (1864) erected
the electromagnetic theory of light (in which light appears as oscillating elec-
tric and magnetic fields propagating together through space) with no mention
of the ether model. The ether was finally banished from physics by Einstein
(1905).He showed that the idea of an entity filling all space and acting as a
stationary reference frame, relative to which all motions could be described
in an absolute manner, is untenable, and that only the relative motions of
objects have meaning (absent accelerations).

Yet fields, in particular the traveling electromagnetic fields of light and
radio waves, still retained a measure of reality. These carried energy and
momentum and could cause electric charges to oscillate. (“A tension in the
membrane, but without the membrane” as Steven Weinberg put it.) Again,
it was Einstein (1905) who robbed them of these trapping of reality by pos-
tulating the photon.

It was, however, quantum field theory that has wrought a revival in the
status of fields. Although they are still largely mathematical conceptions, they

1153 QED has been applied heavily (and with striking success) to atomic physics,

with nuclei treated as point-particles. Nuclei are hadronic, have a messy in-

ternal structure and are not ideally suited for tests of QED.

Fortunately, however, nuclei are much smaller than atoms, and they can mostly

be replaced, for atomic (and molecular) physics purposes, by classical, non-

relativistic point particles possessing only mass, charge and a few EM multi-

poles.
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have acquired strong overtones of reality. In fact, this theory (or rather, class
of theories) asserts that fields alone are real, and that particles are merely
the momentary manifestations of interacting fields. Thus, the solutions of the
quantum field equations lead to quantized energy levels which manifest all
the properties of particles. The dynamics of the fields can seem particle-like
because quantized fields may be localized and interact very abruptly and in very
minute regions of space and time.

The interactions of the electromagnetic fields, whose energy is carried by
photons, and the electron fields, which manifest themselves as electrons (and,
at high energies or very short distances and durations, also as positrons) is
already familiar in the production of photons by the quantum transition of
atomic electrons. It is, however, not apparent how photons, which travel
through space with the highest possible velocity, might be involved in static
electric fields such as those which bind electrons to the atomic nucleus.

Here a new concept is needed, that of virtual photons. Their existence
is due (in a remarkable, yet logical manner) to the Heisenberg uncertainty
principle. One form of this principle asserts that the uncertainty ΔE in the
energy possessed by a system and the uncertainty Δt in the time during which
it has this energy are related by the formula: ΔE × Δt ≥ �.

Because of the relativistic correspondence between energy and mass, this
relation applies as well to the uncertainty Δm in mass, which is ΔE/c2.
Applied to an electron, this means that its mass, in effect, does not maintain
one precise value; rather, it fluctuates, the magnitude of the fluctuations being
in inverse proportion to the time interval during which they persist.

In general, the uncertainty principle allows, for short durations, processes
which violate classical (but not quantum) energy-momentum conservation.
Free electrons may thus emit photons, but these exist only on the sufferance
of the uncertainty principle.

When their time Δt is about up, they must be re-absorbed, e.g. by an
electron (the emitter or another) or by a nucleus1154. They cannot leave the
electron permanently, carrying off energy-momentum, nor can they deliver
energy to any detection device, including the human eye. It is impossible for
them to be seen or detected; therefore they are called virtual, not real. Yet
theories in which they are postulated yield results in agreement with experi-
mental observation. In the language of quantum field theory the interaction
of the electron and photon fields brings about a condition in which, by per-
mission of the uncertainty principle virtual photons are continually created
and destroyed.

1154 It is an elementary result in classical, special-relativistic kinematics that a free

electron cannot emit a true (propagating) photon and itself remain free.
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Virtual photons of greater energy and momentum exist for shorter times
and travel shorter distances before they are annihilated; those of lesser energy
reach out farther. In fact, they travel a distance of order the length of their
associated waves (radio waves, light waves and others), which may vary over
the whole range of values from zero to infinity. This swarm of short-lived
borrowed-energy virtual photons darting outward from the central electron
in all directions constitutes the quantum EM fields surrounding the electron.
They can also be thought of as the local modification made by the electron
(or positron) to the zero-point quantum fluctuation of the E and B fields
discussed above – a single-electron version of the Casimir effect.

Calculations based on this concept show that the field is strongest close to
the electron and drops off in inverse proportion to the square of the distance,
in agreement with Coulomb’s law of electric force. Virtual photons are the
quanta of all classical electrostatic fields. For large charged objects, the virtual
photons are so numerous that they produce a sensibly smooth and continuous
effect, identical with the classical field.

Two electrically charged objects exchange virtual photons. Furthermore,
the virtual photon mediating the Coulomb interaction, may split into a vir-
tual electron-positron pair, which quickly annihilate each other to become
the virtual photon again. This makes the vacuum behave like a polarizable
(dielectric) medium near an electron (or nucleus), giving rise e.g. to the Lamb
shift in hydrogen-atom spectroscopy. These virtual e+e− pairs can also pro-
duce an exchange force between two photons (virtual or real), a result which
follows directly from the principles of quantum electrodynamics — but which
unfortunately has no analog in classical physics and cannot be visualized in
terms of familiar experience. But these photon-photon interactions have been
observed (e.g. Delbrück-scattering of gamma rays by atomic nuclei).

There are, however, further complications. The virtual photons, produced
by the electron, interact with the electron field in the nearby vacuum to pro-
duce virtual electrons and positron, which in turn yield virtual photons, and
so on. Thus the theory, starting with one electron, ends up with an infinite
number of virtual electrons, positrons and photons – each of which can be
made real (propagating) if external energy and momentum are suitable sup-
plied. Fortunately, the magnitudes of the successive steps in this sequence
drop off rapidly, so that the results of all this complex virtual activity can be
calculated very precisely1155 via asymptotic (albeit diverging) power expan-
sions in the fine structure constant α = e2/4πε0�c.

1155 This fortuitous circumstance arises since the fine-structure constant is small:

α = 1
137

. Things are much more complicated for some other Quantum Field

Theories, notably QCD (= Quantum Chromodynamics), which is believed to

describe the strong nuclear forces, and for which the expansion parameter is

of order 1 for some processes.
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For situations in which sufficient energy or momentum is made available,

some of the virtual photons, electrons or positrons surrounding an electron

may be “promoted” to real ones. This explains real photon emission when

atoms release energy by making transitions to lower energy states or, when

an electron passes near a heavy nucleus (‘bremsstrahlung’). It also explains

e+e− pair production by a gamma ray photon passing by a heavy atomic

nucleus, the production of two or three gamma rays when an e+e− “atom”

(positronium) annihilates, and other effects.

According to the principles of quantum field theory, particles are asso-

ciated fields extending throughout space, which means that fields exist even

where there are no permanent particles, that is, where there is a vacuum. From

these principles it follows that a vacuum is not an empty space. Rather, it is a

seat of continuous activity, with virtual particles (or alternatively described,

virtual field fluctuations) of many kinds winking in and out of existence.

Physicists thus speak of a physical vacuum as distinct from the bare vac-
uum of classical physics. Although these vacuum phenomena briefly violate

classical mass-energy-momentum conservation, they are in accord with the

many other conservation laws of charge, spin, baryon number and all the rest,

and also obey the quantum version of energy and momentum conservations

(no ‘perpetuum mobile’ here!)

QED is an extremely successful theory: It resolves many of the problems

that led to the downfall of classical physics at the turn of the century, explains

atoms (except nuclear structure) and their spectra, and in principle accounts

for all of chemistry1156, condensed matter and even life and brain function.

QED also gave rise to the unforeseen concepts of antimatter and vacuum

structure. It is the best tested and most accurate theory devised by man, and

its validity is still being verified to ever increasing precision and over a span

of distance scales ranging from astronomical to subnuclear. Thus, it has been

applied with fantastic success over a photon-wavelength range of 24 orders

of magnitude, from 10−15 cm out to an outer limit of about 80 earth radii

(∼ 5 × 1010 cm).

It gives precise answers to questions involving the interactions between

leptons and photons; and in the framework of the partially unified standard
model, has been verified down to even smaller distances [although not to the

spectacular levels of accuracy as for pure or almost-pure QED effects, such

as the Lamb shift, the electron gyromagnetic ratio, and the spectrum and

1156 Through quantum mechanics, physics has finally established a primacy over

chemistry.
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lifetime of positronia (metastable bound states of an electron-positron pair)].
Problems remain, but they are much deeper and lie outside the framework of
QED or even the Standard Model of particle physics:

• Why is charge quantized?

• What determines the charge and mass of the electron?

• Why are there three charged leptons? Why only three?

Questions of this type will probably have to await deeper insight into the
nature of all interactions, the presumed GUT (Grand Unified Theory) or
even Quantum Gravity.

1948–1964 CE Imre Lakatos (1922–1974, Hungary and England). Philo-
sopher of science and mathematics, and avid campaigner for academic values.
Argued that a formalist presentation of mathematics obscures the real nature
of living mathematical discovery and invention, which is a quasi-empirical
process involving conjectures, the discovery of counter-examples, concept-
stretching, and the search for more discriminating proofs.

In connection with the empirical sciences he developed his methodology
of scientific research programmes (MSRP): the basic units of appraisal are
competing programmes, rather than theories, a programme being character-
ized by a hard core of fundamental assumptions and an associated heuristic
which indicates how the protective belt of subsidiary assumptions should be
progressively modified in a content-increasing way that generates novel pre-
dictions.

MSRP called for a more penetrating kind of historiography for science,
involving case-studies to identify the competing research programmes at work
and to assess their relative progress.

Lakatos was born as Imre Lipschitz into a Jewish family in Debrecen,
Hungary. His life would be dominated by the chaos that resulted from Nazi
rise to power and WWII1157. He fled to England after the Hungarian uprising

1157 More than 550, 000 of Hungary’s 750, 000 Jews were murdered by Nazis

during the war, including Imre’s mother and grandmother who both died

at Auschwitz. To avoid the gas chambers, Imre changed his name to Imré

Molnár. After the war, being an active communist, he changed his name to

Imre Lakatos. In 1950 he was arrested and served three years in a Stalinist

prison.
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(1956) and taught at the London School of Economics (1960), becoming a
professor of logic (1969). Lakatos published Proofs and Refutations (1963–4),
a work based on his doctoral thesis at Cambridge University (1961).

1948–1968 CE Alexander Il’ich Akhiezer (1911–2000, Russia).
Theoretical physicist. One of the pioneers of many-body quantum theory.
Contributed to the theory of resonance nuclear reactions, beam instability
in plasma physics, stability criteria for MHD waves, interacting magnetrons
in solid state physics, microscopic theory of magnetic relaxation, magneto
acoustical resonance, and absorption of ultrasound in metals. Initiated the
field of electron acoustics.

Akhiezer was born in Cherikov, Belarus to Jewish parents (younger brother
of the mathematician Nahum Il’ich Akhiezer). After graduating from Kiev
Polytechnic Institute (1934), he began graduate research with Lev D. Lan-
dau in Kharkov. With Alexander S. Kompaneets, Evgeny M. Lifshitz
(1915–1985), Isaak Ya. Pomeranchuk (1913–1966) and Laszlo Tisza
(b. 1907), Akhiezer formed the first generation of Landau’s Jewish students
who passed the demanding Theorminimum exam and established the core of
the famous Landau School of theoretical physics. Distinguished by its strong
esprit de corps, style and universality of approaches to problems arising in
diverse areas in physics, the Landau School exerted great influence on the
discipline of 20-th century theoretical physics.

Akhiezer received his Ph.D. (1936) and D.Sc. (1940) at Kharkov. In 1937,
when Landau fled the city to escape Stalinist purges, a bulk of Landau’s
students also relocated to Moscow, except Akhiezer who remained in Kharkov.
He stayed there for the rest of his life, producing groundbreaking studies in
QED, as well as solid-state, plasma, and nuclear theories.

1948–1972 CE Yakov Borisovich Zeldovich1158 (1914–1987, Russia).
Astrophysicist. A pioneer of Quantum Cosmology.

During the 1940s he investigated the problems of flame propagation and
gas dynamics. In the 1950s he turned to cosmology and studied the production
of primordial hydrogen-to-helium ratio and the degree of isotropy in the early
universe.

1158 For further reading, see:

• Zel’dovich, Ya.B., Stars and Relativity, Dover, 1996, 522 pp.

• Zel’dovich, Ya.B., Higher Mathematics for Beginners, Mir Publishers:
Moscow, 1973, 494 pp.

• Zel’dovich, Ya.B. et al., The Almighty Chance, World Scientific, 1990, 316 pp.
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In 1959 he postulated the existence of parity-nonconserving weak inter-
actions involving neutral currents and parity violation in atomic transitions
(which were experimentally demonstrated two decades later).

He predicted that it would be possible to find black holes associated with
X-ray emitting binary stars.

In 1972 he discovered how the total energy carried by the Cosmic Mi-
crowave Background Radiation (CMBR) could be increased as it passes
through the medium between the galactic clusters. This effect has impor-
tant cosmological applications and can be used to independently estimate the
Hubble constant (which measures the manner in which the expansion rate of
the universe varies with distance scale).

Zeldovich was born to Jewish parents in Minsk. He graduated from the
University of Leningrad (1931) and moved to the Soviet Academy of Sciences,
becoming a full Academician in 1958.

1948–1988 CE Julian Seymour Schwinger (1918–1994, USA). Distin-
guished theoretical physicist. One of the formulators of modern Quantum
Electrodynamics.

Calculated the theoretical Lamb shift and the anomalous magnetic mo-
ment of the electron (1948). named after him: Schwinger action principle;
Schwinger model for QED in one space dimension and one time dimension;
Schwinger terms in current algebra.

Schwinger was born in New York City to Jewish parents. He earned his
B.Sc. (1936) and Ph.D. (1939) from Columbia University; worked at Berkeley
(1939–1941) under J.R. Oppenheimer, and later joined the faculty of Harvard
University (1945–1972) and UCLA (1972–1994).

Working independently of R.P. Feynman and S. Tomonaga, he developed
modern Quantum Electrodynamics — the relativistic, quantum mechanical
theory of electrons, positrons and EM fields. He was a joint winner of the
Nobel Prize for Physics (1965) for his fundamental work in QED.

1948–1988 CE Richard Phillips Feynman1159 (1918–1988, U.S.A.).
Distinguished theoretical physicist.

1159 For further reading, see:
• Feynman, R.P., Lectures on Computation, Perseus Publishing: Cambridge

MA, 1999, 303 pp.

• Feynman, R.P., QED: The Strange Theory of Light and Matter, Princeton

University Press: Princeton, NJ, 1985, 158 pp.

• Feynman, R.P., Quantum Electrodynamics, Addison-Wesley Publishing Com-

pany: Reading, MA, 1961, 198 pp.
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A key figure in the development of modern Quantum Electrodynam-
ics (QED) and the taming of its divergences through renormalization1160.
Introduced a universal diagrammatic description of fundamental quantum
processes1161 (Feynman diagrams, 1949) applicable in both particle physics
and condensed matter physics.

Developed (1942) the path-integral approach1162 to quantum mechanics (a
useful alternative to the canonical operator approaches).

• Feynman, R.P., Statistical Mechanics, Perseus Books, 1998, 354 pp.

• Feynman, R.P., R.B. Leighton and M. Sands, The Feynman Lectures on
Physics, 3 Volumes, Addison-Wesley Publishing Company: Reading, MA,

1963–1965.

• Feynman, R.P., The Pleasure of Finding Things Out, Penguin Books, 1999,

270 pp.

• Feynman, R.P., The Character of the Physical Law , BBC Corporation: Lon-
don, 1965, 173 pp.

• Feynman, R.P., Surely You’re Joking, Mr. Feynman!, W.W. Norton, 1997,

350 pp.

• Feynman, R.P., What Do You Care What Other People Think?, W.W. Nor-
ton, 1988, 255 pp.

• Mehra, J., The Beat of a Different Drum, Oxford University Press, 1996,

630 pp.

• Gleick, J., Genius — The Life and Science of Richard Feynman, Pantheon

Books: New York, 1992, 531 pp.

1160 Renormalization = redefinition of the original parameters of the theory, in

order to absorb infinities, so that physical [observable] quantities be finite; e.g.

the ‘bare’ charge e0 of the electron is taken negatively infinite, so that the

effective charge e one sees at large distances (|e| < |e0| due to screening by

vacuum polarization) is finite.
1161 Early attempts in this direction were made by the Swiss physicist Ernst

Stückelberg (1941).
1162 In contrast to the Schrödinger equation, which is a differential equation de-

termining the properties of a quantum state at a given time from its known

properties at an infinitesimally earlier time, path integrals yield the quantum

mechanical amplitudes in a global approach involving the superposed pseudo-

classical histories of a system over a finite interval of time.

Thus, in contradistinction to the operator formalism of quantum mechanics

and quantum statistics, which may not always lead to the most transparent
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Provided a quantum mechanical underpinning for Landau’s theory of He-
lium superfluidity (1953–1957). Participated in establishing the universal V–A
(parity-violating superposition of Vector and Axial terms) structure of the
four-Fermi weak interaction (1958).

Originated the parton picture of hadron structure (1969) to account for
the scaling observed in deep inelastic scattering experiments at the Stanford
Linear Accelerator Center (SLAC).

Feynman’s name is also associated with the advent of nanotechnology,
reversible computing and quantum computing.Feynman shared the 1965 Nobel
prize in physics for his work on QED and Feynman diagrams.

Richard Feynman was born in Far Rockaway, a town on the outskirts of
New York City, to Jewish parents: Melville and Lucille Feynman. His father,
a sales manager for a uniform manufacturer, was interested in the natural
sciences, and encouraged Richard’s inquisitiveness. The young Feynman set
up a makeshift laboratory at home, earned pocket money by repairing radios,
and utilized simple chemical principles in neighborhood magic shows.

Feynman attended Far Rockaway high school, where he displayed a fond-
ness for solving puzzles and an ability to solve mathematical problems in
unconventional ways. After graduating from high school in 1935 he enrolled
at M.I.T., where he earned a B.Sc. in physics in 1939. While at M.I.T., he
became aware of the most pressing theoretical challenge of that period —
the conceptual and computational problems besetting the nascent theory of
quantum electrodynamics, or QED.

In 1939 Feynman began graduate studies at Princeton University, under
J.A. Wheeler1163. He published his dissertation, “The Principle of Least Ac-
tion in Quantum Mechanics” and received his Ph.D. in 1942. Thereupon,

understanding of quantum phenomena, the path-integral formalism offers an

equivalent method in which operators are avoided by the use of infinite dimen-

sional (functional) integrals.
1163 During Feynman’s schooldays at Princeton, nuclear physicists, quantum the-

orists, and even pure mathematicians were consumed by the lawn sprinkler

mystery : What would happen if this familiar device were placed under water

and made to suck water instead of spewing it out? Would it spin in the reverse

direction (because the direction of the flow was now reversed, pulling rather

than pushing), or would it spin in the same direction (because the same twist-

ing force was exerted by the water, on the curved sprinkler pipes whichever

way it flowed, as it was bent around the pipes’ S-shaped curve)?

When Wheeler was asked for his own verdict he said that Feynman had ab-

solutely convinced him the day before that it went around backward; that

Feynman had absolutely convinced him today that it went around forward;
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he joined a select group of Princeton scientists in isotope-separation work, as
part of the Manhattan Project. During 1942–1945 he was a group-leader un-
der Hans A. Bethe at the project’s Los Alamos installation, while continuing
to work on QED in his spare time1164. His years at Los Alamos brought him to
contact with such physics luminaries as Niels Bohr, Enrico Fermi and Robert
J. Oppenheimer.

After the end of WWII, Feynman accepted an offer by Bethe and came to
Cornell University as an associate professor of theoretical physics (1945–1949).
Following a sabbatical in Brazil (1949–1950), he moved to the California In-
stitute of Technology in Pasadena, where he spent the rest of his career. After
an unsuccessful marriage to Mary Louise Bell (1952–1954) he married (1960)
Gweneth Howarth (1934–1989). Of this marriage he had a son (Carl, b. 1962),
and an adopted daughter (Michelle, b. 1968).

Feynman was a unique figure in his generation: a master calculator, an
acclaimed lecturer and an unconventional mind obsessed with originality1165;
he had to always create from first principles. He read almost nothing, resented
art and melody, rejected tradition, religion, history, and literature.

Unlike his great faith – sake Albert Einstein, he completely turned his back
on his own ethnic and cultural heritage: Judaism, Zionism, the Holocaust and
the revival of the Jewish homeland in Israel meant nothing to him. Even the
gentle Reform Judaism of his parents left him cold. Feynmann left his own
indelible personal mark on 20th century physics.

He lived his life in the search for truth about nature through physics, and
he was a physicist’s physicist.

and that he did not yet know which way Feynman would convince him the

next day. [Years later, a friend of Feynman said to him “It was clear to me at

first sight”, to which Feynman shot back: “It was clear to everybody at first

sight. The trouble was, some guy would think it was perfectly clear one way,

and another guy would think it was perfectly clear to him the other way”.]

When no consensus could be reached, Feynman resorted to experiment. The

experiment revealed that the sprinkler does not turn at all , which is the correct

answer.
1164 Feynman was married to his high-school sweetheart Arlene H. Greenbaum in

1941. She contracted T.B., and during much of his stay at Los Alamos he

would visit her, when possible, at the nearby sanatorium. She died in 1945.
1165 This is best demonstrated through Feynman’s work on the Space Shuttle Chal-

lenger investigation. There, his masterful detective work zeroed in on the brit-

tleness of frozen O-rings that led to the disaster. Then already dying of cancer,

he single-handedly and doggedly dug at the truth until it became evident to

all.
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Worldview LV: Feynman

∗ ∗∗

“If you believe that atoms are like little solar systems, then you are back in
1910.”

∗ ∗∗

“I think it is safe to say that no one understands quantum mechanics. Do not
keep saying to yourself : ‘But how can it be like that?’ because you will go
into a blind alley from which nobody has yet escaped. Nobody knows how it
can be like that.”1166

∗ ∗∗

“In mathematics, everything can be defined, and then we do not know what
we are talking about. In fact, the glory of mathematics is that we do not have
to know what we are talking about.”

∗ ∗∗

“Any simple idea is approximate; as an illustration, consider an object. . .
what is an object? Philosophers are always saying, ‘well, just take a chair for
example’. The moment they say that, you know that they do not know what
they are talking about any more. . . To define a chair precisely, to say exactly
which atoms are chair, and which atoms are air, or which atoms are dirt is
impossible.

1166 Some physicists believe that quantum mechanics should be viewed principally

as a computational artifice, the justification of which rests mainly on its success,

rather than on underlying ontological content. There is a general agreement

that quantum mechanics is correct as a mathematical system, but its physi-

cal basis is obscure. This opinion was shared by Albert Einstein and Erwin

Schrödinger.
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It says in some books that any science is an exact subject, in which everything
is defined. If you insist upon a precise definition of force, you will never get
it! First, because Newton’s Second Law is not exact, and second, because
in order to understand physical laws, you must understand that they are all
some kind of approximation.”

∗ ∗∗

“Newton’s ideas about space and time agree with experiment very well, but in
order to get the correct motion of the orbit of Mercury, which was a tiny, tiny
difference, the difference in the character of the theory needed was enormous.”

∗ ∗∗

“The physicist is always interested in the special case; he is never interested in
the general case. He is talking about something. He is not talking abstractly
about anything.”

∗ ∗∗

“I always find it mysterious, and I do not understand the reason why it is
that the correct laws of physics seem to be expressible in such a tremendous
variety of ways.”

∗ ∗∗

“Mathematics is a language plus reasoning; it is like a language plus logic.
Mathematics is a tool for reasoning.”

∗ ∗∗

“When you speak about only the most overall general qualities of nature,
the topic has a tendency to become too philosophical. A person talks in
generalities such that everybody could understand him. It is then considered
to be some deep philosophy.”

∗ ∗∗
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“Physics is the most fundamental and all-inclusive of the sciences, and has had
a profound effect on all scientific development. It is the present day equivalent
of what used to be called natural philosophy, from which most of our modern
science arose.

Mathematics is not a science from our point of view, in the sense that it is
not a natural science. The test of its validity is not experiment.

If a thing is not a science, it is not necessarily bad. For example, love is not
a science.”

∗ ∗∗

“It always bothers me that, according to the laws as we understand them
today, it takes a computing machine an infinite number of logical operations
to figure out what goes on in no matter how tiny a region of space, and no
matter how tiny a region of time. How can all that be going on in that tiny
space? Why should it take an infinite amount of logic to figure out what one
tiny place of space/time is going to do?”

∗ ∗∗

“It’s impossible to learn very much by simply sitting in a lecture, or even by
simply doing problems that are assigned. The best teaching can be done only
when there is a direct individual relationship between the student and the
good teacher — a situation in which the student discusses the ideas, thinks
about the things and talks about the things.”

∗ ∗∗

“Scientific knowledge is an enabling power to do either good or bad — but it
does not carry instructions on how to use it.”

∗ ∗∗

“The imagination of nature is far, far greater than the imagination of man.”

∗ ∗∗
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“Scientific knowledge is a body of statements of varying degrees of certainty
— some most unsure, some nearly sure, but none absolutely certain.”

∗ ∗∗

“Our freedom to doubt was born out of a struggle against authority in the
early days of science.”

∗ ∗∗

“Throughout all ages of our past, people have tried to fathom the meaning of
life. They have realized that if some direction or meaning could be given to
our actions, great human forces would be unleashed. So, very many answers
have been given to the question of the meaning of it all. . . If we take everything
into account — not only what the ancients knew, but all of what we know
today that they did not know, then I think we must frankly admit that we do
not know the meaning of the mystery of our existence.”

∗ ∗∗

“The electron does anything it likes. It just goes in any direction at any
speed, forward or backward in time, however it likes, and then you add up
the amplitudes and it gives you the wave function.”

∗ ∗∗

“Falling in love with a theory, like falling in love with a woman, is only possible
if you do not know much about her, so you cannot see her faults. . .

So, what happened to the old theory that I fell in love with as a youth? Well,
I would say it’s become an old lady, that has very little attractive left in her
and the young today will not have their hearts pound when they look at her
anymore. But, we can say the best we can for any old woman, that she has
been a good mother and she has given birth to some very good children.”

∗ ∗∗

“It’s enough of a miracle that there are laws at all, but what’s really a miracle
is to be able to find them.”
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∗ ∗∗

“Those are atoms! This is religion. You shouldn’t be asking questions, you
should look at the pictures. You don’t have to say anything. Just look at it.
That’s God you know! Atoms right there.”

(On looking at the images of atoms in the scanning
tunneling microscope)

∗ ∗∗

“In fundamental physics, the thing that doesn’t fit is the thing that’s the most
interesting – the part that doesn’t go according to what you expected.”

∗ ∗∗

“There are two ways of doing physics: the Babylonian way and the Greek
way. The Greeks were very logical and worked on things from first principles,
form axioms, where one thing depended on the other. The Babylonians just
related one thing to the other. I am a Babylonian.”

∗ ∗∗

“The real work in a field is always done by a limited number of people.”

∗ ∗∗

“Artists are lost: they don’t have any subject! They used to have religious
subjects, but they lost their religion and now they haven’t got anything. They
don’t know anything about the beauty of the real world – so they don’t have
anything in their heart to paint.”

∗ ∗∗

“The problem is not to find the best or most efficient method to proceed to
discovery, but to find any method at all. Theories of the known which are
described by different physical ideas may be equivalent in all their predictions
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and hence scientifically indistinguishable. However, they are not psychologi-
cally identical when trying to move from that base into the unknown.”

∗ ∗∗

“You can recognize truth by its beauty and simplicity. Nature has simplicity
and therefore a great beauty.”

∗ ∗∗

“I can live with doubt and uncertainty. I think it’s much more interesting to
live not knowing than to have answers which might be wrong.”

∗ ∗∗

“What I am going to tell you about is what we teach our physics students in
the third or fourth year of graduate school... It is my task to convince you not
to turn away because you don’t understand it. You see my physics students
don’t understand it... That is because I don’t understand it. Nobody does.”

∗ ∗∗

“I am interested not so much in the human mind as in the marvel of a nature
which can obey such an elegant and simple law as this law of gravitation.
Therefore our main concentration will not be on how clever we are to have
found it all out, but on how clever nature is to pay attention to it.”

∗ ∗∗

“Nature uses only the largest threads to weave her patterns, so each small
piece of her fabric reveals the organization of the entire tapestry.”

∗ ∗∗

“There is plenty of room at the bottom.”
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∗ ∗∗

“We have a habit in writing articles published in scientific journals to make
the work as finished as possible, to cover up all the tracks, to not worry about
the blind alleys or describe how you had the wrong idea first, and so on. So
there isn’t any place to publish, in a dignified manner, what you actually did
in order to get to do the work.

∗ ∗∗

“Equilibrium is when all fast things have happened and the slow ones have
not.”

∗ ∗∗

“It is scientific only to say what is more likely and what is less likely. Science
proceeds by informed guesses whose implications are compared with experi-
ment.”

∗ ∗∗

“Fundamental theoretical chemistry is really physics.”

∗ ∗∗

“Principles of physics, as far as I can see, do not speak against the possibility
of maneuvering things atom by atom. It is not an attempt to violate any
laws; it is something, in principle, that can be done; but in practice, it has
not been done because we are too big.”

∗ ∗∗

“There is enough room on the head of a pin to put all of the Encyclopedia
Britannica.”

∗ ∗∗
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“There is nothing that I can see in the physical laws that says the computer
elements cannot be made enormously smaller than they are now.”

∗ ∗∗

“How many times when you are working on something frustratingly tiny like
your wife’s wrist watch, have you said to yourself: “If I could only train an
ant to do this!”

∗ ∗∗

“Small automobile would only be useful for the mites to drive around in, and
I suppose our Christian interests don’t go that far.”

∗ ∗∗

“The problem of chemistry and biology can be greatly helped if our ability
to see what we are doing, and to do things on the atomic level, is ultimately
developed – a development which I think cannot be avoided.”

∗ ∗∗

“I offer a prize of $ 1,000 to the first guy who can take the information on the
page of a book and put it on an area 1/25,000 smaller in linear scale in such
manner that it can be read by an electron microscope.”

∗ ∗∗

“I offer another $ 1,000 to the first guy who makes an operating electric motor
– a rotating electric motor which can be controlled from the outside and, not
counting on lead-in wires, is only 1/64 inch cube.”

∗ ∗∗

“Philosophers say a great deal about what is absolutely necessary for science,
and it is always, so far as one can see, rather naive, and probably wrong.”
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∗ ∗∗

“For a successful technology, reality must take precedence over public rela-
tions, for Nature cannot be fooled.”

∗ ∗∗

“I believe that a scientist looking at nonscientific problems is just as dumb as
the next guy.”

∗ ∗∗

“I was born not knowing and have had only a little time to change that here
and there.”

∗ ∗∗

“There are 1011 stars in the galaxy. That used to be a huge number. But
it’s only a hundred billion. It’s less than the national deficit! We used to call
them astronomical numbers. Now we should call them economical numbers.”

∗ ∗∗

“We are at the very beginning of time for the human race. It is not unrea-
sonable that we grapple with problems. But there are tens of thousands of
years in the future. Our responsibility is to do what we can, learn what we
can, improve the solutions, and pass them on.”

∗ ∗∗

“You can know the name of a bird in all the languages of the world, but when
you’re finished, you’ll know absolutely nothing whatever about the bird... So
let’s look at the bird and see what it’s doing – that’s what counts. I learned
very early the difference between knowing the name of something and knowing
something.”
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Quantum Electrodynamics (QED)1167

QED was initially developed around 1930, largely through the work of
Paul Dirac. It describes the relativistic behavior of electrons, positrons and
photons – virtual and real – and of the vacuum – under the stimulus of a given
externally applied electromagnetic field. The theory yielded two important
results: it showed that the electron has an alter ego, the positron, and it gave
the electron its spin in a manner arising naturally from the union of quantum
mechanics and STR. (Previously it had to be arbitrarily grafted into the
theory.) Also, as the first Quantum Field Theory (QFT) to be developed,
QED cast the vacuum as the ground state of all that can be, and pointed
the way towards developing a host of other QFT’s, including the empirically
successful QCD and electroweak sectors of the standard model.

When QED was applied to the old problem of the fine structure of the
hydrogen spectrum (the small differences between the observed wavelengths
and those given by the Bohr theory), it produced improved values in good
agreement with existing measurements.

Nevertheless, the theory in its original form suffered from lack of mani-
fest Lorentz (relativistic) covariance, and was plagued by mathematical di-
vergences, appearing in such physical quantities as the effective charge and
mass of the electron, and by inelegant and often ambiguous mathematical
procedures.

At Princeton (1939–1942), while experimenting with various mathemati-
cal and physical approaches to both classical and quantum electrodynamics,
Feynman strove to eliminate the bothersome short-distance infinities of the
theory.

One particularly imaginative approach sought to eliminate the infinite self-
action of the electron by replacing the standard delayed electrodynamic field

1167 For further reading, see:

• Power, E.A., Introductory Quantum Electrodynamics, Longmans, 1964,

147 pp.

• Feynman, R.P., QED, Princeton University Press, 1988, 158 pp.

• Sokolov, A.A. et al., Quantum Electrodynamics, Mir Publishers: Moscow,
1988, 335 pp.
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emanating from it, by a suitable linear combination of delayed and advanced
fields. To preserve causality and the arrow of time, Feynman posited a cos-
mological absorbing shell at a large distance. The effect is to restore the
purely delayed action of one point charge on another, while retaining both
advanced and retarded actions of an electron on itself, needed to eliminate
the divergence.

While spurious, this work illuminates the mode of thought that later led
Feynman to his propagators, which can project backwards as well as forward
in time.

Meanwhile QED was facing empirical challenges, thanks to advances in
atomic spectroscopy and the new microwave technology spawned by the war.
Thus, in 1947, Willis E. Lamb and Robert Retherford made highly pre-
cise measurements of the small differences in two hydrogen energy-levels, pre-
dicted by the Dirac theory to be degenerate (i.e., to have the same energy).
They used the quanta of radio waves, which are needed to induce the requi-
site low-energy transitions, and discovered the Lamb shift. Similar techniques
were used by P. Kusch in a precision measurement of the intrinsic magnetic
moment of the electron.

In both cases, small deviations from the Dirac values were found1168. These
results stimulated renewed theoretical efforts; the QED of that period did con-
tain the physical mechanisms that account for these deviations from Dirac’s
theory, but due to the theoretical problems mentioned above, this was unclear
at the time. These mechanisms are basically two:

(I) An electron (or positron) occasionally emits a virtual photon, thus enter-
ing a short-lived virtual state as an electron-photon composite, until the
photon is reabsorbed (by the same, or different, charged particle). Since
the electron has a finite probability at any time to be such a composite
system, its EM properties – including, inter alia, its magnetic moment
and its hydrogen-atom orbitals – are not those of a point particle; and

1168 The anomalous magnetic moment of the electron – deviation of its gyromag-

netic ratio (magnetic moment divided by intrinsic spin) from the Dirac value

of 2 – was measured to be on the order of a tenth of a percent. Ever more

refined measurements of this entity continue to furnish high-precision tests of

QED which it has, to date, passed with flying colors. Some of these tests in-

volve other (non-EM) subnuclear interactions, since virtual quantum processes

result in the creation, for brief periods of time, of quarks, pions, muons, nucle-

ons, etc., along with their respective anti-particles, nearby the single electron

under study.
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this accounts in part for the anomalous magnetic moment and the Lamb

shift.

(II) The virtual photons, whose exchange between electron and proton hold

them together to form the hydrogen atom, occasionally create a short-

lived virtual electron-positron pair out of the vacuum1169.

Thus, in QED, the vacuum is not structureless, but is rather a medium!

Since this medium consists of positive and negative charges (virtual positrons

and electrons), it is polarizable (“vacuum polarization”), and partially screens

the classical electromagnetic forces between electron and proton in hydro-

gen1170. Effects (I) and (II) (in the context of Dirac’s relativistic electron

quantum mechanics) suffice, in principle, to account for the Lamb shift.

1169 These creation-annihilation processes, like the virtual emission-absorption of

a photon by the electron, cannot by themselves be real processes, since this

is forbidden by the STR conservation of energy and momentum: at least one

electron, positron or photon in a fundamental QED vertex event must be

virtual. But if one of the participating particles is “anchored” to another

charged system, or if more than one real photon is involved, such processes

can be real. Even if not ‘real’, however, virtual processes indirectly give rise

to observable results, as is also true in ordinary quantum mechanics. Thus,

virtual excitations of an electron in an atom or molecule contribute to bulk

refractive indices of material, even when no actual absorption of light occurs.

Several QED examples of real multi-stage processes mediated by virtual events:

annihilation e+ + e− → 2γ (predicted by Dirac, 1930); the inverse process:

γ + γ → e+ + e− (Dirac, 1931); pair creation by a gamma ray falling on a

nucleus (Oppenheimer, 1933); e+ + e− → γ, where the electron is bound to

a nucleus (Fermi and Uhlenbeck, 1933). The scattering of a real photon by an

atomic nucleus’ electrostatic field (Delbrück scattering) is, like the Lamb shift,

an example of an observable effect of virtual e+e− pairs and virtual photons.
1170 Unlike the Ether, this medium is Lorentz invariant and does not furnish a

preferred inertial frame. In the vicinity of matter and energy, however, the

QED vacuum becomes ‘anchored’ to these particles and fields, and gives rise
to covariant modifications of Maxwell’s equations in vacuo – including a field-

dependent refractive index and dispersion. Like a normal dielectric medium,

the QED vacuum can also undergo electric breakdown – albeit at a much higher
critical field (the Schwinger field), of order

Esch =
m2

ec
3

e�
≈ 1.3 × 1018 V olt/meter.
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Although understood in principle, these theoretical mechanisms were dif-
ficult to treat in the pre-Feynman “messy QED”. This was due to two main
reasons:

(A) The field quantization procedure was not manifestly Lorentz covari-
ant: even though Maxwell’s and Dirac’s equations are covariant, the
Schrödinger equation (for the wave-functional of the quantized EM and
Dirac fields) is not – for, time plays a special role there. One symptom
of the lack of manifest covariance is that transitions to virtual interme-
diate states were still described as conserving momentum but not energy
(“old-fashioned perturbation theory”) — just as in non-relativistic quan-
tum mechanics.

(B) The summation over all virtual states, mandated by the rules of quan-
tum mechanics, includes an integral over the total energy of these states,
which typically diverges at high energy (ultraviolet divergences). (A) it-
self is merely an inconvenience, as covariance should still be retained,
albeit hidden by the formalism. But point (B) renders the mathemat-
ics meaningless. And to add insult to injury, the all-important quantum
gauge invariance – tied to relativistic causality, local charge conservation,
Lorentz covariance and unitarity (essentially the principle that probabil-
ities of quantum events add up to unity) – is also vulnerable to the
divergences1171.

Such was the state of QED in 1947, when Feynman strode upon its stage.
Aided by Bethe’s pioneering work at Cornell, he continued to tackle these
fundamental problems, but entered a period of stagnation. Soon enough,

1171 Gauge invariance – an elegant mathematical curiosity related to local charge

conservation and of limited significance in classical electrodynamics – is cru-

cial and nontrivial in QED, since it is the unobservable, gauge-variant vector

potential that enters the interaction Hamiltonian in a natural way, rather than

the observable, gauge invariant E and B fields. This is dramatically illus-

trated in the empirically-verified Aharonov-Bohm effect, in which an electron

2-slit diffraction pattern is shifted by the vector potential of a current solenoid

located just behind and between the slits, even though no electron ever enters

the magnetic field region. The extension of the gauge-invariance principle to

local conservation of a vector of charges (“isospin”) in the 1950’s led theorists

to a class of QFT – termed Yang-Mills or Non-Abelian Gauge Theories – that

turned out (in the 1970’s) to explain all thus–far known non-gravitational in-

teractions (Standard Model of particle physics). The gauge principle, like the

general covariance of GTR, is also related to deep principles of differential

geometry and topology.
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however, his mental vigor was restored and in 1948–49 his reformulation of
QED1172 came to fruition.

It cast any process as a sum of progressively smaller complex contributions
from an infinite number of (progressively more complicated) discrete networks
of space-time points (interaction vertices), connected by lines (propagators).
A propagator represents the quantum amplitude for a free particle’s worldline
connecting two given spacetime interaction points. Positive-energy modes of
the electron and photon quantum fields, which are physical particles, travel
forward in time, whereas negative-energy modes travel to the past — which
does not violate causality, since negative-energy modes are interpreted as
positive-energy anti-particles moving forward in time.

Thus, the photon is its own anti-particle, but an electron propagator may
represent either an electron or a positron, depending on whether the propa-
gator points forward or backwards in time. In the latter case, the positron
travels forward in time, as a physical particle should.

At each vertex, two electron lines and one photon line meet. Depending on
their time directions, the vertex may represent pair creation, pair annihilation
or the emission (or absorption) of a photon by an electron (or by a positron).

Since these Feynman Diagrams treat time and space on equal footing,
by describing a quantum amplitude through its space-time history, they are
easier to represent and compute in a manifestly covariant way. Thus, in this
approach, both energy and momentum are conserved during virtual processes.

1172 Feynman also, at this time, developed an alternative formulation of quantum

mechanics to add to the pair of formulations produced by Schrödinger and

Heisenberg. He defined the probability amplitude as a functional integral over

possible classical histories (paths).

Probability amplitudes were normally associated with the likelihood of a par-

ticle or a system arriving at a certain place, or a certain state (momentum, or

orbital, etc.) at a certain time. Feynman associated the probability amplitude

with the entire motion of a particle (or, more generally, a system of quantum

particles and/or quantum fields) along a path. He stated the central principle

of his formulation of quantum mechanics: The probability of an event which

can happen in several different ways is the absolute square of the sum of com-

plex contributions, one from each alternative history path.

These complex amplitudes were written in terms of the classical action. He

showed how to calculate the action for each path as a certain integral, and

how to integrate over all paths via a functional (Wiener-type) integral. He

established that this approach was mathematically equivalent to the standard

Schrödinger wave functions. Feynman’s path-integral view of nature, his vision

of a “sum of histories” was, in essence, the principle of least action reborn.
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But since we know that these processes are kinematically impossible, some-
thing must give; and indeed, it develops that in the Feynman theory, Ein-
stein’s relation between mass, energy and momentum, namely pμpμ = m2c4,
is violated for virtual states (“off-shell particles”).

The new QED was developed, almost simultaneously, by Feynman,
Tomonaga and Schwinger, who jointly received the 1965 Nobel prize for
this feat. Using the revamped theory, Feynman could account for all the
order-α corrections1173 to QED known then — including the Lamb shift and
anomalous magnetic moment.

In accord with second (field) quantization, the electron field (now not a
wavefunction but an operator in Hilbert space) obeys the covariant Dirac
equation, while the photon quantum field (i.e. the EM 4-vector potential, or
alternatively, the EM fields themselves), also an operator, obeys Maxwell’s
equations – with source charge-density and current density operators that are
bilinear in the electron’s Dirac field. However, the grand “wave-functional”
of the entire system – which depends on a (mutually commuting) subset of
these fields as well as upon time – still obeys a Schrödinger equation (SE).

We now review the history of attempts to render the SE Lorentz invariant,
since it is these attempts that led to Dirac’s relativistic electron equation, field
quantization, QED, and indeed the entire framework of QFT’s and the modern
theory of particles and fields. At the time when Schrödinger developed his
nonrelativistic wave equation, he also proposed a charge-flow form of it. He
defined a probability currents density: corresponding to the time-dependent
SE

i�
∂ψ

∂t
= − �2

2m
∇2ψ + V (r)ψ,

there is a complex conjugate SE equation

−i�
∂ψ∗

∂t
= − �2

2m
∇2ψ∗ + V (r)ψ∗,

assuming the potential to be real. Multiplying the first equation by ψ∗,
the second by ψ, subtracting one from the other and integrating over some
arbitrary volume, yields:

i�
∂

∂t

∫

ψ∗ψ dr = − �2

2m

∫

(ψ∗∇2ψ − ψ∇2ψ∗) dr

= − �2

2m

∫

div [ψ∗∇ψ − ψ∇ψ∗] dr.

1173 α is the dimensionless QED coupling constant, α = e2

4πε0�c
≈ 1

137
.
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We now define the probability current density j = �
2mi (ψ

∗∇ψ − ψ∇ψ∗) and
note that

ψ∗ψ = |ψ|2 = ρ = probability density.

With these definitions, we obtain
∫ (

∂ρ
∂t + div j

)
dr = 0, which leads to the

Lorentz-invariant law of local conservation of probability density:

∂ρ

∂t
+ div j = 0

If this equation were to be multiplied by the charge e of a particle, it would
be describing a relationship between an electric charge density (eρ) and an
electric current density, ej. The probability interpretation tells us only that
a quantum-mechanical charged particle can be thought of as a smeared-out
charge distribution.

Such a picture is consistent with the uncertainty principle. For a plane
wave ψ = Aeik·r, we can calculate j using the above definition:

j =
�

2mi
× 2ik|A|2 =

�k

m
|A|2 = V g|A|2

where V g is the group velocity of a corresponding wave-packet. On the
other hand, ρ = ψψ∗ = |A|2, and so j = V gρ for any plane-wave solution
– as expected in a classical flowing, charged medium. Note, however, that the
SE is not Lorentz covariant, nor do (ρ, j) transform as a four-vector.

The Dirac theory, unlike the SE, is relativistically covariant. It describes
the behavior of electrons and also their positron antiparticles, either free or
under the stimulus of a given externally applied electromagnetic field. The
wave-function ψ had to be replaced by an operator ψ in Hilbert space (the
quantum Dirac field), because otherwise paradoxes plagued the theory — e.g.,
an extended EM field could cause probabilities to flow back in time, or to not
add up to unity; electrons can have arbitrarily-large negative energies and
thus be unstable, etc. These problems were solved by quantizing the Dirac
field, which now described both electrons and positrons. But the EM fields in
the Dirac theory were still classical, external fields. However, it is well known
that electrons are themselves the principal contributors to such fields.

In particular, an electron which undergoes acceleration in an electromag-
netic field radiates real photons by virtue of this acceleration, and the EM
radiation of excited atomic systems is brought about by the dynamics of the
electronic charge cloud.

Thus if we could find, as a complement to the Dirac quantized-field equa-
tion, an equation which describes the behavior of the quantized (operator)
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electromagnetic fields under the stimulus of given quantum electronic mo-
tions, these two sets of equations should provide a quite broad description of
the behavior of electrons and radiation1174.

The natural way is to begin with Maxwell’s equations in terms of the
4-vector potential Aμ in a Lorentz gauge,

∇2Aμ − 1
c2

∂2Aμ

∂t2
= −Jμ. (1)

In this expression the 4-current Jμ — which is the source of the field — must
be evaluated in terms of the Dirac field which encodes the quantum motions
of relativistic electrons (and positrons). Classically, the current density j due
to a charge distribution ρ moving at velocity v is

j = ρv. (2)

However, in a quantum field theory, the charge of an electron is “smeared out”
into a operator–valued density eψ∗ψ, while its current density is similarly
smeared into the operator Ji = ψ∗viψ.

Here ψ is the Dirac field operator and vi, i = 1, 2, 3 are constant matrices
acting on the Dirac index a = 1, 2, 3, 4.

Thus the proper expressions for the charge and current density operators
are

(a) ρ = eψ∗ψ

(b) Ji = eψ∗viψ. (3)

In terms of the four-component electron field of the second-quantized Dirac
theory, ψ∗

a(x) is no longer the complex conjugate of a number, but rather
the hermitian adjoint of an operator field; and (3) becomes

1
c
J0 = ρ = eψ∗ψ = e(ψ∗

1ψ1 + ψ∗
2ψ2 + ψ∗

3ψ3 + ψ∗
4ψ4) (4)

and
J i = ecψ∗αiψ, i = 1, 2, 3 (5)

where we have used the relation vi = cαi from Dirac theory [note that (J0, J
i)

are a contravariant four-current in the Dirac theory]. Inserting these into Eq.

1174 A simple thought-experiment, devised by Heisenberg in the 1930’s, demon-

strates that the electric and magnetic fields must obey an uncertainty (and

hence complementarity) principle analogous to that obeyed by position and

momentum. Thus, the EM fields must be quantized!
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(1) and appending the Dirac field equations themselves, we obtain the opera-
tor field equations of quantum electrodynamics (Heisenberg representation):

(a)

[

cα ·
(

�

i
∇ − eA

)

+ βm0c
2 + eφ

]

ψ = −�

i

∂ψ

∂t

(b) ∇2A − 1
c2

∂2A

∂t2
= −ceψ∗αψ (6)

(c) ∇2φ − 1
c2

∂2φ

∂t2
= −eψ∗ψ.

In the above equations m0 = me is the electron rest–mass; {β; αi} (also de-
noted {γ0; γ0γi}, respectively) are the Dirac (4 × 4) matrices, and ψ is the
4-component Dirac-spinor electron field operator. Equations (6) must be aug-
mented by appropriate canonical commutation relations1175 (CCR) between
ψ and ψ∗ and between A and Ȧ. These CCR establish the relevant parti-
cle statistics (Fermi-Dirac for electrons/positrons; Bose-Einstein for photons).
They also embody the uncertainty principle obeyed by the quantized Dirac
and Maxwell fields.

Unlike in 1st-quantized quantum mechanics – in which time is a numeri-
cal label but spatial positions are time-dependent Heisenberg operators – the
spacetime coordinate (x, t) upon which all the quantum fields in (6) de-
pend, are all numerical, classical labels – no longer operators. Because of
the nonlinearity and mathematical complexity of Eqs. (6), coupled with the
operator nature of the fields and the commutation and anti-commutation re-
lations obeyed by them, it is not possible to write down exact solutions even
for simple cases. And in any event, particular solutions are irrelevant in solv-
ing quantum-mechanical operatorial (as opposed to Schrödinger) equations of

1175 EM-field CCR in Coulomb gauge:

Aj(x)Ȧk(y) − Ȧk(y)Aj(x) = � i δ⊥
jk(x − y) ,

Ψa(x)Ψ∗
b(y) − Ψ∗

b(y)Ψa(x) = δab δ(x − y) ,

when x0 = y0. Here j, k are spatial indices; a, b Dirac indices; δab the
Kronecker delta; δ(x) the 3D Dirac delta function; and

δ⊥
jk(x) =

(

δjk − ∇j ∇k

∇2 δ(x)

)

1

∇2 δ(x) =
1

4π|x|
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motion such as (6). Instead, it has so far proved necessary to solve these equa-
tions by techniques involving successive approximations (usually some variant
of perturbation theory). And even this involves quite formidable mathemat-
ics.

An electromagnetic (EM) field (classical or quantum) may produce virtual
electron-positron pairs as a consequence of quantum effects. This means that
the dynamics of an effective classical EM field contain quantum corrections to
the Maxwell equations, even in empty space.

One may define an effective Lagrangian density Leff = L0 + δL, where
L0 includes the classical field-quadratic terms while δL includes the quan-
tum corrections; the latter can be expanded perturbatively as a joint Taylor

expansion in α = 1
4πε0

e2

�c (fine-structure constant), eE and eB.

Heisenberg and H. Euler have derived (1936) an analytical approxima-
tion to the nonlinear correction term – valid to all orders in eE, eB but
only to zeroth order in α (at fixed eE, eB). To lowest (4th order) in the
fields, δL has the form (in “absolute” units in which � = c = 1):

δL =
2α2

45m4
e

[
(E2 − B2)2 + 7(E · B)2

]

Their approximation applies only for EM field wavelengths which are much
longer than the electron’s Compton wavelength1176. The correction becomes
non-negligible only at field strengths of the order of the Schwinger critical
field,

m2
ec3

e�
∼ 1016 Volt

cm .

The latter quantity is named after Julian Schwinger, since he re-
analyzed (1951) the problem using his elegant functional method. The non-
quadratic correction δL to the classical Lagrangian results, to lowest order
in α and to all orders in eE and eB, from the virtual production and anni-
hilation of a single virtual electron-positron pair in the external EM field.

Three examples of observable physical effects which result from the Euler-
Heisenberg correction are: ‘light by light’ scattering (the collision of two γ

1176 The electron’s (reduced) Compton wavelength

λcompton

2π
=

�

mec
,

has the interesting property that if an electron or positron is confined to a

box having a size of this order or less, its zero-point motional energy suffices to

create new e+e− pairs. Thus, measuring an electron’s position to that accuracy

renders not only the electron’s momentum uncertain, but even the number of

electrons!
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rays); The Delbrück effect (1933 – scattering of a photon by the Coulomb field
of the nucleus); and photon splitting (into several longer-wavelength photons)
in a strong magnetic field (S. Adler, 1971 – not yet confirmed empirically).

The fundamental reason that QED engenders nonlinear corrections to the
Maxwell empty-space equations is this: the coupled Maxwell-Dirac operatorial
field equations (6) are themselves nonlinear. Even in the absence of physical
(‘on shell’) electrons or positrons, the vacuum itself has a finite quantum
amplitude to occasionally produce virtual {e+, e−} pairs for short periods
of time (of order �

mec2 ∼ 10−21 sec).

Upon integrating out and averaging over these electronic vacuum fluctu-
ations, the nonlinearity of the original Maxwell-Dirac equations is manifested
as effective nonlinear corrections to the purely EM sector of the theory.

At the classical level, Maxwell’s equations in vacuo thus receive nonlinear
corrections. At the level of quantized EM fields, the nonlinearities result in
effects such as the three mentioned above.

We note in passing that the nonlinear modifications to classical EM theory
are not all quantum in origin. The minimal framework needed to encompass
both Maxwell’s theory and Einstein’s GTR is that of the Maxwell-Einstein
coupled field equations, which are nonlinear and yet completely classical in
origin.
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Feynman’s Formulation of Wave Mechanics:

Path Integrals1177

Some 20 years after it was first discovered, Feynman proposed (1948) an

alternative formulation of wave (quantum) mechanics. Although his formula-

tion can be shown to be identical to Schrödinger’s (1925) and Heisenberg’s,

it gave the theory a new, attractive physical picture. Furthermore, the QFT–

sums over histories of field configurations – has proven very useful in finding

non-perturbative (large field) effects, and in verifying the quantum versions

of gauge symmetries in the standard model, of particle physics, and in Can-

didate Grand Unified Theories. The QFT version of Feynman’s approach,

also called path integrals, has proven useful in taking the tentative first steps

toward a theory of quantum gravity.

If we are given the values of a wave-function at any possible spatial point

xa at the time ta, the SE in one dimension enables us to find the value

of the wave function at a point xb at another time tb since by means

of a differential equation we may proceed with infinitesimal increments to

neighboring points in space and time.

If we were interested in the corresponding classical problem [that is —

given the initial state of a system at (xa, ta) to find the path by which it

reaches the point (xb, tb)], we would say that the system will proceed along

a path for which the integral action
∫ tb

ta
L dt will be a extremal. This is the

classical principle of least action, and we note that the path of the particle is

unequivocally determined.

Feynman’s formulation of quantum mechanics says that there is a contri-

bution to the probability amplitude ψ(xb, tb) from all possible paths that can

be drawn between (xa, ta) and (xb, tb). The contribution from each path is

weighted by a factor proportional to exp
[

i
�

∫ tb

ta
L dt

]
taken along the path

1177 To dig deeper, see:

• Feynman, R.P. and A.R. Hibbs, Quantum Mechanics and Path Integrals,

McGraw-Hill, 1965, 365 pp.

• Schulman, L.S., Techniques and Applications of Path Integrals, Wiley, 1981,

359 pp.
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in question1178. We can write the contribution Δψ(xb, tb) to ψ(xb, tb) due
to a particular path integral as

Δψ(xb, tb) = Aψ(xa, ta)e
i
�

∫ tb
ta

L dt,

where A is some constant. The value of ψ(xb, tb) is given then by

ψ(xb, tb) = A

∫

all

paths

ψ(xa, ta) exp
[

i

�

∫ tb

ta

L dt

]

D[x(t)].

This integral is symbolic: it is a formal expression to be taken over all possible
paths, including different initial positions xa at the fixed time ta. It cannot
be carried out in the conventional manner until we find a method for charac-
terizing the paths. This is usually done by discretizing time t, then carefully
taking the limit Δt → 0.

For any given xa value in the above path integral, the particle moves
along path which – when the semiclassical (WKBJ) approximation holds – do
not much differ from the classical path given by the principle of least action
between x(ta) = xa and x(tb) = xb. The weighting function, an imaginary
exponential function, is generally an oscillating functional of its argument,
the trajectory history {x(t)}.

If the action integral is large compared to �, the net effect of most of
the paths is to cancel each other out. The configurations (histories) that will
contribute most are the ones in whose vicinity all exponentials will contribute
in approximately the same phase and will therefore add. But this is the case

1178 The appearance of the real action in the standard phase factor eiS/� of the

path integral (which stems from the unitarity of the SE evolution operator)

ensures that the stationary – phase (i.e. extremal action) path, or paths –

subject to the boundary conditions x(ta) = xa, x(tb) = xb – is the strongest

contributor to the probability of transition between initial and final states, if

such a path exists.

Non-stationary – phase paths will also contribute to the probability of

a quantum process, but with decreasing magnitude the more they devi-

ate from the stationary path – due to the increasingly rapid fluctuations

in exp
[

i
�
(S − Sstationary)

]
. This leads to destructive interference, unless

|S − Sstationary| is of order �. In some cases, complex solutions of the action’s

Euler-Lagrange equations dominate the path integral (an infinite-dimensional

version of saddle-point integration!). Such complex “classical solutions” are

called instantons, and are important in path-integral evaluation of quantum

tunneling problems – in both the 1st–quantized and QFT versions of Feyn-

man’s formulation.
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for classical motion — the path that contributes most is the path of extremal
action.

Classical motion, therefore, is along that path for which the variations
of the action integral are zero when the path is varied to neighboring paths.
Extreme wave-mechanical properties are found from contributions along paths
where the calculated deviations of the action integral from its classical – path
value is � � in magnitude, or when there are several (or none) of those paths.

Feynman invented a new method for the quantization of classical systems:
given a classical system described by a Lagrangian, which is a function of ve-
locities and coordinates only, a description of a quantum mechanical version of
the system may be written down directly, without working out a Hamiltonian.
The Lagrangian method can easily be expressed relativistically, on account of
the action function being a relativistic invariant.

Feynman then proceeded to derive the Schrödinger wave-equation using
his action–based path integral. His argument is as follows:

The trajectory of a particle, moving in one dimension, can be specified by
mean of a function x(t). If a particle at an initial time ta starts from the
point xa and arrives at a final point xb at a later time tb, we shall say that
the particle goes from a to b.

In quantum mechanics we shall associate to such a transition an amplitude
G(a, b) to get from the spacetime point a to the spacetime point b. It will
be the integral (over all the trajectories that go between the end points a
and b), properly weighted, of the contributions from each.

This is to be contrasted with the situation in classical mechanics in which
there is only one specific and particular trajectory which goes from a to
b, the so-called classical trajectory. Thus in quantum mechanics we have to
specify how each trajectory contributes to the total amplitude to go from a
to b.

The phase of the contribution from a given path is the action S for that
path in units of the quantum of action �. That is, the probability P (b, a)
to go from point xa = x(ta), at time ta to the point xb = x(tb), at time
tb is the squared magnitude P (b, a) = |G(b, a)|2 of an amplitude G(b, a)
to go from a to b. This amplitude is the sum of the contributions ψ[x(t)]
from each path

G(b, a) =
∑

over all paths from
a to b

ψ[x(t)],

where the contribution of each path has a phase proportional to the action S:

ψ[x(t)] = const · exp
{

i

�
S[x(t)]

}

.
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The action is that for the corresponding classical system. The constant is
chosen to properly normalize the probabilities.

Thus, we shall write the sum over all paths [which go through the specified
points (xi, ti)] as

G(b, a) =
∫ b

a

e
i
�

S(b,a) Dx(t),

which we shall call a path integral.

In three dimensions the differential is written as

D[r(t)] = Dx(t) Dy(t) Dz(t)

and the path integral for a particle in a field with potential V (r, t) will have
the form ∫

D[r(t)] exp
{

i

�

∫ tb

ta

dt

[
1
2
mṙ2 − V (r, t)

]}

.

A special case of interest arises when a particle goes between two

points separated by an infinitesimal time interval t2 − t1 = ε = (tb −ta)
N .

It then follows from the definition of the action integral that

S =
∫ t+ε

t
L[ẋ(t), x(t), t] dt ≈ εL, correct to first order in ε. Consequently

G(x2, t2; x1, t1) ≈
1
A

exp
[
iε

�
L

(
x2 − x1

ε
,
x2 + x1

2
,
t2 + t1

2

)]

,

where A is a (possibly complex) normalization factor.

We know that if the above formal path integral is defined as a standard
Riemann multiple integral

∫ N −1

j=1

πd(xj) ,

where x0 = xa, xN = xb and xj = x(tj) t0 = ta + j ε, then recursion
on N yields the equation

ψ(x2, t2) =
∫ ∞

− ∞
G(x2, t2; x1, t1)ψ(x1, t1) dx1

expressing the wave function at a time t2 in terms of the wave function at a
time t1. Using the above approximation for G, we have

ψ(x, t + ε) =
∫ ∞

− ∞

1
A

exp
[

ε
i

�
L

(
x − y

2
,
x + y

2
, t

)]

ψ(y, t) dy
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We shall now apply this to the special case of a particle moving in a potential

V (x, t) in one dimension, for which L = 1
2mẋ2 − V (x, t).

In this case the quantity (x−y)2

ε appears in the exponent due to the first

(kinetic energy) term of L.

Here ε is assumed very small, so unless y is near x this factor oscillates

rapidly and the integral over y will give a very small value, because of the

smooth behavior of the other factors.

For this reason we make the substitution y = x + η, with the expectation

that appreciable contributions to the integral will occur only for small η (of

order
√

ε). We obtain

ψ(x, t + ε) ≈
∫ ∞

− ∞

1
A

exp[
imη2

2�ε
] · exp[− iε

�
V (x +

η

2
, t)]ψ(x + η, t) dη

The phase of the first exponential changes by the order 1 radian when η is

of the order
√

ε�
m , so that most of the integral is contributed by values of η

of this order. We may expand the LHS in a power series, keeping only terms

of order ε. Expanding the l.h.s. to first order in ε and the r.h.s. to first

order in ε and second order in η, we obtain

ψ(x, t) + ε
∂ψ

∂t
≈

∫ ∞

− ∞

1
A

e
imη2
2�ε

[

1 − iε

�
V (x, t)

] [

ψ(x, t) + η
∂ψ

∂x
+

1
2
η2 ∂2ψ

∂x2

]

dη

where the error in this equation tends to zero faster then order ε as ε → 0.

Comparing terms of the same order of ε on both sides, and using two known

(Fresnel) integrals, we obtain A =
√

2πi�ε
m and a differential equation for ψ:

−�

i

∂ψ

∂t
= − �2

2m

∂2ψ

∂x2
+ V (x, t)ψ,

which is recognized as the ID Schrödinger equation for a particle moving in a

general potential.

It is likewise possible to start with this time–dependent Schrödinger equa-

tion (SE) and derive the path integral representation of the quantum ampli-

tude, by evolving the solution to the SE over a succession of short time–steps,

which one then allows to become infinitesimal.
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When using a Feynman path integral, one can never be sure that it
converges – or even well-defined until it is worked out either exactly using
Fresnel–type integrals, or (as happens far more often) as an asymptotic ex-
pansion1179.

In contradistinction, the Wiener path integrals are free from this diffi-
culty, since their convergence is secured1180. Nevertheless, physicists have
used Feynman’s integrals widely and successfully.

1179 A few examples of exact evaluation of some simple path integrals are instructive

at this point. The simplest path integrals are those in which all the variables

appear up to the second degree in an exponent. We shall call them Gaussian
integrals. In quantum mechanics this corresponds to the case in which the

action functional S involves the path x(t) up to and including the second

power.

Consider the one-dimensional Lagrangian of the form:

L(ẋ, x, t) = a(t)ẋ2 + b(t)xẋ + c(t)x2.

We wish to determine

G(b, a) =

∫ b

a

Dx(t) exp

[
i

�

∫ t2

t1

L(ẋ, x, t) dt

]

For a free particle V = 0, L = 1
2
mẋ2 and the path integral reduces exactly

to [
m

2πi�(tb − ta)

]1/2

exp

{
im(xb − xa)2

2�(tb − ta)

}

which is identical with the Green’s function of the Schrödinger equation for a
free particle

∂ψ0

∂t
=

i�

2m

∂2ψ0

∂x2
.

For a harmonic oscillator the Lagrangian is L = 1
2
mẋ2 − mω2

2
x2, and the

result is

G(b, a) =
[ mω

2πi� sin ωT

]1/2

exp
{ imω

2� sin ωT

[
(xa + xb)

2 cos ωT − 2xaxb

] }
,

where T = tb − ta. It coincide, of course, with the result obtained through

more traditional means.
1180 Wiener path integrals are encountered in classical stochastic processes and

are equivalent to the Ito calculus. Their convergence in secured by rigorous

theorems; they are integral over function–spaces of possible trajectories, with

the integrand being a real functional (rather then a complex phase as in the

quantum case).
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The pioneering work of Feynman and his successors brought to light the
close mathematical and physical analogies between quantum mechanics (QM)
on the one hand, and (classical or quantum) equilibrium statistical mechan-
ics on the other. Specifically, the sum over histories (or ‘Path Integral’) of
a quantum system is directly analogous to the partition sum in statistical
mechanics.

A key difference is that in QM, one sums a complex phase, eiS/�, where
S is the classical action for a given history of the system and � is Planck’s
(reduced) constant; whereas in statistical mechanics, the partition sum is

Z =
∑

microscopic states e−E/kT , a sum over real numbers, with E the micro-

scopic state energy.

Mathematically, however, it is rather straightforward to relate the two via
a suitable analytical continuation. (This procedure is technically known as a
Wick rotation; it involves an analytical continuation of real physical time into
imaginary time).

This transformation is similar to that used in STR to recast real, pseudo–
euclidean Minkowski space as a four dimensional euclidean space with imag-
inary time; in fact, the two are the same in the case of the path integral of
relativistic QFT’s. In consequence, versions of QM (with or without quantized
fields) utilizing statistical-mechanics like partition sums are often referred to
as euclidean time versions.

In contemporary physics, when a quantum system (whether in a known
state or a statistical-mechanical ensemble), or a classical statistical-mechanics
system, has an infinity of degrees of freedom, its mathematical description usu-
ally belongs to the class of Quantum Field Theories (QFTs, for short). (The
most celebrated, and empirically successful, example of a QFT is Quantum
Electrodynamics, the theory of electrons, positrons and quantized electromag-
netic fields.)

By employing the above-mentioned mathematical mapping – as well as
various versions of Feynman’s mapping between a Schrödinger equation and a
path integral or partition sum – great advances were made in the understand-
ing of physical phenomena in condensed matter physics (especially critical
phenomena) using the machinery of QFT and vice versa.

In a zero-temperature, zero chemical potential QFT, the basic unperturbed
state is the vacuum — which, far from being nothing at all, is the seat of all
possible quantum processes.

These processes are virtual, however — i.e. do not result in observable
changes — except in two cases: when a suitable external disturbance (‘source’)
is applied, or when the initial vacuum state is metastable (as is thought to
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have occurred in the evolution of the Universe, a fraction of a second after
the Big Bang).

The (complex) quantity corresponding to the partition sum in this case is
the so-called vacuum persistence amplitude, expressed as the following path
integral:

W{J} =
∫

[dφ]ei(S{φ}+
∫

d4xJ(x)φ(x))/�

This definition is a functional version of the Fourier transform. In it, J(x)
represents an external ‘source’ distribution (which can be viewed as either a
current or field) at the spacetime point x; the classical path is {φ(x)},
with the spatial distribution φ(x) = φ(x, t) for all x at given t, being
one point of this path; S{φ} is the classical action functional of the vacuum
for a particular field configuration; and

∫
d4xJ(x)φ(x) is the additional

action term reflecting the interaction of the vacuum with the given external
source. W{J} and S{φ} are functionals, i.e. ‘functions of functions’, while
the notation

∫
[dφ] implies functional integration over all possible spacetime

configurations of the field φ, while the symbol
∫

d4x represents ordinary
Riemann integration over four dimensional spacetime.

QFTs are also routinely studied in other dimensions; in lower dimensional
space times because the theory is easier to solve there (or because certain con-
densed matter systems, and a string “world-sheet” in string theory, do “live”
in lower dimensional spaces); and in higher dimensions because some theories
of particle physics envision our familiar four dimensional spacetime as hav-
ing arisen from ‘compactification’ of more fundamental, higher-dimensional
spaces.

Indeed, there are condensed matter mechanisms that effectively take place
in two spatial dimensions — such as degenerate electron systems in two-
dimensional layers; solid-on-solid interfaces; quantum wells; et cetera – or
even one dimensional (quantum wires).

The current J(x) need not be an actual external source; it is often used
as an auxiliary field. W{J} is then merely a generating function(al); that
is, it encodes all possible physical processes in the given vacuum, through its
all-order functional (Frechet) derivatives at J(x) = 0.

In addition, the persistence amplitude W{J} is mapped into Z(H), the
partition sum of a statistical mechanics system in the presence of an external
field.

Mathematically, there are only two differences between the two cases:

(A) H is a uniform field, while J(x) has an arbitrary spacetime dependence;
(although variable external fields are sometimes treated in classical sta-
tistical mechanics, too).
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(B) W and Z are related by analytical continuation.

Just as W encodes all possible physical processes in a given vacuum (and
even decays from metastable to more stable vacua!), so Z (as a functional
of suitable external sources) contains information on all possible responses of
a condensed matter system to external macroscopic stimuli – even the onset
of phase transitions and the nucleation of more stable matter phases.
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Feynman and Molecular Nanotechnology (1959–2008)

Nanotechnology1181 is a term used to describe a wide array of approaches
to engineering tiny1182 machines. Everything from devising microscopes to re-
solve atomic-scale distances or displacements, to envisioning molecular robots
that could swim through our bloodstream and fight disease, falls within its
purview. Physicists, chemists, material scientists, molecular biologists, math-
ematicians, engineers and programmers around the world are working in the
fields collectively called nanotechnology.

People working in this field today are also be divided into:

• Those working from the “bottom up”, mostly chemists attempting to
create structures by connecting molecules.

• Those working from the “top down” — taking existing devices, such
as transistors, and making them smaller. Top-down or mechanical nan-
otechnology — which itself involves many disciplines – chemistry, optics,
material science, charged–particle beams electrical engineering, Com-
puter Assisted Design (CAD) etc. — will have the greatest impact on
our life in the near future.

Biology already involves both modalities of nanotechnology, but works al-
ready! Photosynthesis, after all, involves a molecular scale solar energy collec-
tion device, while enzymes are essentially nanosize factories; microbial flagella
and red–blood–cell hemoglobin molecules are intricate new–machines, actu-
ated and powered by difference of solution pH (acidity) values; the various
electrochemical signals and clocks regulating life’s processes involve molecu-
lar kinetics of picogram samples. The challenge for nanotechnologists is to

1181 Nano from the Greek word for dwarf ;

1 nanometer = 10−9m = 10−6mm = 10−3 micron

= 1 millimicron = 10Å � 3 − 5 atoms

1 virus size � 100 nanometers ∼ 0.1 micron

1182 The characteristic dimensions in nanotechnology are less than about

1000 nanometers = 1 micron = 10−3mm.

The human eye can resolve about 0.2mm and an electron microscope can

resolve about 10Å = 10−6mm.
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learn to design and control such processes. Once they do, huge advances in
everything from microelectronics to chemical engineering will be possible.

Manufactured products are made from atoms. The properties of those
products depend on how those atoms are arranged. If we rearrange the atoms
in coal we can make diamond; if we rearrange the atoms in sand (and add a
few other trace elements) we can make computer chips. If we rearrange the
atoms in dirt, water and air we can make potatoes. The atoms and molecules
making up plants and minerals, could be reshuffled to render optical fibers,
plastics and audio tapes; and so on.

Today’s manufacturing methods are very crude at the molecular level.
Casting, grinding, milling electroplating and chemical reactions, and even
plasma, Uv, X-ray or acid etching and lithography, all move atoms in great
thundering statistical herds.

In the future we will be able to snap together the fundamental building
blocks of nature easily, inexpensively and in almost any arrangement that we
desire. This will be essential if we are to continue the revolution in computer
hardware beyond the first few decades of the 21st century, and will also let
us fabricate an entire new generation of products that are cleaner, stronger,
lighter, and more precise.

For example, continued improvements in lithography have resulted in
integrated–circuit strip widths that are several tents of nanometers. Sub-
micron lithography is clearly very valuable, but it is equally clear that lithog-
raphy will not let us build semiconductor devices in which individual dopant
atoms are located at pre-specified lattice sites. Many of the exponentially
improving trends in computer hardware capability have remained steady for
the last 50 years. There is fairly widespread confidence that these trends (in
memory, speed, power–consumption reduction, logic–gate density) are likely
to continue for at least another ten years, but then lithography starts to reach
its fundamental limits.

If we are to continue these trends we will have to develop a new “post-
lithographic” manufacturing technology, which will let us inexpensively build
computer systems with mole quantities of logic elements that are molecular
in both size and precision — and are interconnected in complex and highly
idiosyncratic patterns. Nanotechnology will let us do this, it seems.

It should allow engineers to:

• Get essentially every atom in the right place.

• Produce almost any structure which is consistent with the laws of
physics and chemistry and that can be specified in atomic detail.
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• Incur manufacturing costs not greatly exceeding the cost of the required
raw materials and energy.

There are two main automation concepts commonly associated with nanotech-
nology:

• Positional control.

• Self replication.

Indeed, attainment of the above three desiderata seems difficult without using
some form of atomic–scale positional control (to get the right molecular parts
in the right places) and some form of self replication (to keep the costs down).

The need for positional control implies an interest in molecular robotics,
e.g., robotic devices that involve both sensor and actuator components and
are molecular both in size and in terms of spatiotemporal and spectral pre-
cision. These molecular–scale positional devices are likely to resemble very
small versions of their everyday macroscopic counterparts. Positional control
is frequently used in normal macroscopic manufacturing today, and provides
tremendous advantages. The idea of sensing manipulating individual atoms
and molecules is still new; yet a rudimentary version of it already exists
in STM’s (scanning tunneling microscopes) and AFM’s (atomic force micro-
scopes). And devices have been built which can control even electrons and
photons one particle at a time (e.g. in carbon nanotubes, quantum dots,
few-qbits quantum computers, or RF–cavity QED experiments).

We need to apply at the molecular scale the concept that has demonstrated
its effectiveness at the macroscopic scale: making parts go where we want by
putting them where we want!

The requirement for low cost creates an interest in self–replicating manu-
facturing systems, studied by von Neumann in the 1940’s. Such systems are
able both to make copies of themselves and to manufacture useful products.
If we can design and build one such system, the manufacturing costs for more
such systems and the products they make (assuming they can make copies of
themselves in some reasonably inexpensive environment) will be very low.
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Timeline

1959 The science of building small was first introduced by Richard
P. Feynman. At that time, most scientists were thinking big
— about interplanetary spacecraft and ever larger telescopes
and particle accelerators – to probe both the cosmos and the
subnuclear. Feynman awakened them to the possibilities of
controlling single molecules, or even atoms and electrons, and
creating nanoscopic machines with them.

1980 Heinrich Rohrer and Gerd Binnig (Switzerland and Ger-
many) invented the scanning tunneling microscope (STM)
which can produce images of individual atoms on the sur-
face of a conducting solid material.

With a magnification factor of 108 it can resolve a distance
of 10−2Å = 10−3 nanometer. This device works by holding a
fine conducting probe to the surface of a sample. The probe’s
tip tapers down to a single atom. As electrons tunnel between
the metallic sample and the probe, the probe’s raster–scan
movement, actuated electronically via piezoelectric motors,
yields a contour map of the surface1183.

1990 Don Eigler used an STM and AFM (Atomic Force Micro-
scope) at IBM’s Zurich Research Laboratory to reposition
35 individual Xenon atoms on a nickel surface at tempera-
ture 4K◦ thus producing the world’s smallest graffiti — the
initials IBM spelled out in atoms. The STM was then used to
image the result.

1995 • Nadrian Seeman (USA) built cubes (7 nanometers
across) and more complex structures, out of synthetic DNA,

1183 The tunneling current is an extremely short-range and sensitive function of

the tip’s distance to the surface, so it is used as the position–sensing element

in a feedback loop to control the tip’s variable vertical displacement as it

scans. The electronic control circuit, maintaining constant current, causes

the probe’s tip to faithfully follow the sample “atomic terrain” — producing a

digital false-color contour map, representing the electron density at the metallic

surface; this density is determined by the interaction of conduction orbitals and

electronic wave-functions pinned to surface impurity atoms.
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attempting to create building blocks of molecular mechanical
devices and super-resistant ‘smart’ molecules.

• Engineers at Cornell University (USA) built a nanoguitar :
a guitar 10 microns long (0.01 mm), about as big as a hu-
man white blood cell — the perfect size for a bacterial rock
star. Each of its 6 silicon strings is 100 atoms wide. It
cannot be seen without an electron microscope — let alone
strummed.

1996 • An IBM team, led by James K. Gimzewski, built the
world smallest abacus, each bead having a diameter of less
than 1 nanometer. The finger used to move each bead is the
ultrafine tip of an AFM.

• George Whitesides, a chemist at Harvard (USA),
patented computer-chip circuits just 30 nanometer wide.
His circuits could give a single chip the ability to perform
at speeds exceeding 1 teraflop (1012 floating point operations
per second).

• Chemist James Tour at the University of Southern Cali-
fornia (USA) and his team created the first quantum wire —
a single molecular chain that completed a circuit between a
gold leaf surface and the tip of an STM. They were testing a
molecular transistor.

• Richard E. Smalley discovered “Buckminister Fuller-
enes” (named after the architect who invented the geodesic
dome). These soccer – ball shaped pure carbon molecules,
dubbed “buckyballs”, and their cylindrical quantum–wire
counterparts named “nanotubes” (essentially tightly–rolled
graphite sheets with different discrete–valued helical pitches)
are likely to be the strongest (highest tensile strengths) sub-
stances in existence. Nanotubes are created by vaporizing
carbon with a laser and then letting it reassemble in an in-
ert gas such as Helium. Aside from creating super-strong
polymers that could replace the graphite used in everything
from tennis racquets to airplanes, nanotubes could be used as
circuits elements in the nanoelectronic devices of the future.
It is foreseen that aggregates of nanometer sized solar cells
could be built to provide the world’s energy needs in the year
2050.
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1997 The NASA – Ames nanotechnology group modeled molecu-
lar gears that could be powered by a laser. The gears, which
exist only in computer designs (but are physically possible)
would rotate at 100 billion turns per second. Because the
devices lofted into space must be light, consume very little
power and be immune to cosmic radiation, nanoelectronics
and nanomachinery may be vital to future NASA programs.

1999 Intel’s Pentium processor already has parts measuring just

350 nanometers ∼=
1

2850
mm

Images of Time1184

I. Measures of physical time1185 (see Table 5.28)

Time is one of the deepest mysteries known to man. No one can say exactly
what it is. Yet the ability to measure time makes man’s way of life possible.

1184 For further reading, see:

• Eddington, A., The Nature of the Physical World, 1928.

• Jeans, J., The Universe Around Us, 1929.

• Weinberg, S., Dreams of a Final Theory, Vintage, 1993, 260 pp.

• Whitrow, G.J., The Natural Philosophy of Time, Oxford University Press,

1990, 399 pp.

1185 This English word comes from the root ti , to stretch. The early word for

everyday time was tide. As tide took on its more limited application to the

ebb and flow of the oceans, back came time into the more general sense. Time

is not directly related to the Latin tempus. The Greek word for time was

chronos. The Latin Aeon evolved from the Greek aion = age.
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Many of his activities involve groups of people acting together in the same
place and at the same time. People could not do this if they did not all
measure time in the same way. Thus, time is not an article of faith but a
datum of observation and experience. Indeed, this utilitarian approach is
found already in the opening chapter of the Hebrew Bible:

“And God said, let there be lights in the firmament of the heaven to
divide the day from the night; and let them be for signs, and for seasons,
and for days, and for years” (Genesis 1, 14).

Indeed, the principle of measuring physical, external time by means of suc-
cessive phenomena1186, recurring at regular intervals, has not changed through
the entire history of technology, up to the present day.

The most striking astronomical phenomenon which rigorously fulfills this
condition — the apparent daily revolution of the celestial sphere caused by
the rotation of the earth — has from remotest antiquity been employed as a
measure of time.

The problem of determining the exact time at any moment is practically
identical with that of determining the apparent position of any known point
on the celestial sphere with regard to one of the fixed (imaginary) great circles
appertaining to the observer’s station: the meridian or the horizon. The point
selected is either the sun or one of the (so–called “fixed”) stars.

A sequence of times thus determined serves to calibrate the rate of the
clock, chronometer, or watch employed and also to estimate its error.

In 1884, World-time was standardized in terms of the mean solar day.
Thus the mean solar second, representing the basic unit of time, was defined
as

(
1
60

) (
1
60

) (
1
24

)
of a mean solar day. Time that is referenced to the rotation

of the earth about its axis is called universal time (UT). It is defined as the
mean solar time of the Greenwich meridian and is reckoned on a twenty-
four hour basis starting at midnight. [In practice, a telescope is pointed at
the local zenith. The time intervals between successive passages of a given
distant galaxy through the center of the telescope field of view, are averaged
over one year to yield one unit (1 day) of UT.]

Another measure of time is the time interval between two successive north
to south earth crossings of the plane of motion of Jupiter about the sun. [The

1186 The activities of many plants and animals are timed to the cycle of day and

night. These natural rhythms are called circadian rhythms. The most obvious

example is the sleep cycle.

Many plants and animals are sensitive to other natural time cycles: e.g., some

sea animals time their activities to the changing tides.
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earth crosses that plane twice per orbit, but only once from north to south.]
This is known as ephemeris time (ET) and the unit is one year.

The atomic clock was developed at the National Bureau of Standards,
Washington, D.C. in 1948 under the direction of Willard Frank Libby
(1908–1980, U.S.A.). The clock consists of a precise radio-frequency source
which serves both to excite a population of atomic or molecular resonators in
a cavity, and measure their frequency very accurately, by giving rise to slow
beats that can easily be determined. Time measured in this way is denoted
as atomic time (AT).

With the aid of atomic clocks it has been possible to determine that the
rotation of the earth about its axis is slowing down – its period lengthening
by the amount of 1.8–3.2 milliseconds/day. Thus, the availability of atomic
clocks of unprecedented accuracy led scientists to abandon the rotation of the
earth as the fundamental measure of time.

Accordingly, in 1967, the second was redefined as the time required by
a cesium atom to emit 9,192,631,770 cycles of microwave electromagnetic
radiation1187. It was later found that the earth’s rotation slowed down since
1967, such that it was occasionally necessary to add a ‘leap second’ to the
atomic-clock year, to let the earth catch up.

The new standard has the distinct advantage of being “indestructible”
and widely reproducible. In addition, being based upon a radio frequency, it
has the advantage of being transmittable by radio to any place where there is
a suitable receiver. Its accuracy is ±1 sec per 100, 000 years. Atomic clocks
have both short–term–noise errors – which can be reduced (up to a point) by
averaging over many cycles – and longer – term drifts.

Modern UT – called UTC (Universal Time Coordinated) – is obtained by
averaging AT’s of a worldwide ensemble of atomic clocks. Apart from UT,

1187 One second = time required for a cesium-133 atom to undergo 9, 192, 631, 770

vibrations (wavelength ≈ 3 cm). The physics behind this device is as follows:

A cesium atom has a heavy nucleus surrounded by a number of full electronic

shells. But the outermost shell has only a single electron with its quantum spin

(but no orbital) angular momentum. The nucleus, having an odd number of

nucleons (protons and neutrons), also has spin and there are two possibilities:

the electron may spin in the same sense as the nucleus, or in the opposite

sense. By supplying RF electromagnetic waves at the above–quoted resonant

frequency, the electron may absorb a photon and flip its spin relative to that of

the cesium nucleus (a hyperfine transition). When the valence electron’s spin

eventually flips back again, the energy difference [corresponding to a transition

between two hyperfine levels of the ground state] is reemitted as an RF photon,

again at the above frequency (ca 9.2 GHz).
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ET and AT there exists another measure of time: measuring the amount of
tritium (3H) that beta-decays into the helium isotope 3He. If the tritium is
kept at temperature about 10 ◦K, the helium will diffuse out as it is formed.
The tritium is weighed. When the mass has dropped to half its initial value,
we say that the time is one unit of nuclear time (NT), equal to about 12 mean
solar years. A clock can be set that strikes each time the remaining mass is
reduced by a factor of two.

The basic difference between the various methods are: NT uses the weak
nuclear interaction as its basic mechanism. AT uses an electromagnetic
process, UT uses the earth’s rotation and ET makes use of the law of uni-
versal gravitation.
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II. Absolute time

Time has the peculiar quality which makes us feel intuitively that we under-
stand it perfectly so long as we are not asked to explain what we mean by
it1188.

The first question to consider is the origin of the idea that time is a kind of
linear progression measured by clock and calendar. In modern civilization this
conception of time so dominates our lives that is seems to be an inescapable
necessity of thought.

The first serious attempt to define time is due to Aristotle (ca 340 BCE).
This he achieved through the association of time with the motion of bod-
ies. The time of which Aristotle speaks is physical time (or, external time),
susceptible to quantification via periodic kinematic phenomena (such as the
apparent daily revolution of the celestial sphere).

Aristotle’s notion, however, was devoid of mathematical formulation, and
totally innocent of the concept of acceleration. His concept of physical time
remained in limbo until the 17th century, when motion could be properly for-
mulated with the aid of the differential calculus and Newtonian dynamics1189.

The invention of the first successful pendulum clock by Huygens (1656),
and the progressive increase in the precision, stability and portability of time-
keeping that followed, fostered the image of a mechanical and predictable side
of nature. The technological development of clocks disentangled time from

1188 The story is told of the Russian poet Samuel Marshak (1887–1964), that when

he first visited London in 1912 and did not know English, he went up to a

man in the street and asked: “Please, what is time?” The man looked up very

surprised and replied: “But that’s a philosophical question. Why ask me?”

We are all familiar with the feeling that time has a qualitative character about

it. While the Newtonian view of time as a regular oscillation of some giant

pendulum in the sky seems to work well in classical physics, everyday life is

filled with far more subjective aspects to our perception of time than Newton

ever conceived of. Quantum Mechanics does not really change this Newtonian

concept; even the theories of Relativity (STR and GTR) retain it in their

concept of (albeit locality – and observer dependent) inertial frames.
1189 The Greeks sought forms of nature derived solely from uniform motion and

simple spatial geometries, whereas classical Newtonian physics looked for forces

and accelerated motion. The failure of Greek mathematics to recognize or

measure accelerations is matched by a practical handicap: sundials, water-

clocks and even sand-clocks are inadequate for precise measurement of short

time intervals.
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human events and helped to create belief in an independent world of science
(The Clockwork Universe).

We can trace the birth of a truly scientific concept of time back to New-

ton. The time incorporated in his equations was absolute time, measured by
the apparent motion of the celestial bodies, as well as by terrestrial clocks.

His absolute time was an ideal scale of time that made the laws of mechanics

simplest, and its discrepancy with apparent time was attributed to such things
as irregularities in the motions of the earth.

Insofar as these motions were explained by Newton’s mechanics, the entire

procedure was vindicated. All of the physical universe was imbued with the

same temporal element, as Newton said in his Principia: “Absolute, true, and
mathematical time of itself and from its own nature. . . flows equably without

relation to anything external”.

For any given initial conditions, Newton’s equations can in principle be
integrated backwards and forwards in time to any desired point in the past

or the future. Moreover, since his equations are (absent dissipative processes)

invariant w.r.t. the transformation t → −t, they fail to decide which direction
of time constitutes the actual past and future of any system governed by these

equations, including the universe at large; i.e. time is stripped of its sense of
direction1190. In this deterministic world past and future are preordained (or

postordained!).

This naive deterministic dream was sharpened by Laplace’s conjecture,
according to which everything would be predictable if only we would know
the positions and velocities of all particles in the universe at any single instant

of time.

Since Newton’s mechanical equations have no intrinsic arrow of time, there

is no reason to choose one direction in time in preference to the other. But
things are worse still; there is a theorem due to Poincaré which shows that,

given a long enough interval of time, any (classical) isolated, non–dissipative
system of masses (e.g., the universe itself ) will return to its initial state to

1190 This symmetrical time could, for example, be highlighted with a hypothetical

film of planetary motion taken by, say, the Voyager 2 space probe, which

was launched to explore the outer solar system in 1977; the film would be

approximately consistent with Newton’s laws of celestial mechanics whether

we run the film forwards or backwards. The main “breaking” (violation) of

this past–future symmetry would stem from tidal friction within the planets

and their moons – which cause slow secular variations in their orbits and spin

rates (such as the gradual lengthening of the solar day noted above).
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any given level of accuracy (again, assuming no dissipative forces1191). In
fact, given an unlimited duration of time, it will do so an unlimited number
of times (“Poincaré recurrences”).

Clearly, for many systems of interest to us there is such a large number
of particles (e.g., atoms, molecules) present, that this recurrence time, is
inconceivably larger than the present age of the universe (∼ 1010 years).

Nonetheless, these endless almost cyclic recurrences undermine the essen-
tial notion of time’s arrow, and negates the concept of evolution. The concept
of ‘Poincaré return’or recurrence, in spite of its limitations, has proven to be
one of the most potent paradigms in the mind of theoretical physicists.

The notion of space and time as absolute metaphysical entities (among
his “categories”) formed an important part of the philosophy of Immanuel
Kant, who came to the conclusion that time is one of the forms of our ‘intu-
ition’. By this he meant that time does not characterize external objects but
has do to with subjective phenomena or processes in the brain.

Consequently, Kant believed that the idea of scientific, linear time is an
automatic consequence of the fact that we are rational creatures. (This line
of thought later led some scientists to believe that the arrow of time, as
manifested in the Second Law of Thermodynamics, is an illusion.)

Newtonian mechanics, as studied in the 18th century, was largely con-
cerned with reversible systems – often periodic; even when irreversible, they
could be wound up and prepared anew, and their motions repeated, at any
time. Particularly notable was the proof of the stability of the solar system
that was formulated by Laplace.

The motion of heavenly bodies was now predictable. God, most learned
people believed, had set the cosmic “clockwork” in motion at the beginning
of time, and no further divine intervention was required. Indeed, it was by no
means clear that there had been any beginning of time.

The 19th century introduced conflicting views on the nature of time:
The advent of electromagnetism which culminated with the discovery of
Maxwell’s field equations (1873), led to technological applications which her-
alded the end of local time, which depended on the accuracy of local solar
and mechanical timekeeping, and the beginning of national and international
time, a worldwide sense of ‘now’ and of the uniform flow from ‘earlier’ to
‘later’.

1191 Poincare’s theorem applies even to dissipative effects, such as friction, provided

they can be described as reversible classical processes at the microscopic level

as indeed they are, except effects such as weak nuclear radioactive decays.
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Radio waves could be used to synchronize the time given by many clocks
spread across the globe. Furthermore, electromagnetic devices contributed to
the ever-increasing precision of clocks. But, as with Newton’s equations of
motion, Maxwell’s field equations are time-symmetric and make no distinction
between the past and the future that precludes the interchanging of their roles.

Yet it is clear that many electromagnetic phenomena, have a temporal di-
rection: (as do everyday dissipation – riddled phenomena and, most notably,
life itself). One never sees light waves converging from a brightened room
onto the filament of a lamp where they are all absorbed, nor is light emitted
from our eyes and absorbed by the sun or other conventional source – although
such so–called “advanced wave” pattern are just as much solutions of the elec-
tromagnetic equations as are the standard (and observed) “retarded–wave”
patterns.

This strange duality (time–symmetric equations, time–asymmetric solu-
tions of only one type observed) was reinforced by yet another idea that took
hold among growing intellectual circles: biological evolution. As a result of
the theories of Lyell (1830) and Darwin (1859), interest grew in systems
that evolve through time. So, in contrast with the symmetric time of New-
tonian physics, there was now also the unidirectional time of geological1192

and biological systems.

III. Time’s arrow

While classical mechanics portrayed the universe as a perfect machine, ther-
modynamics appears to imply that the machine is running down toward com-
plete disorganization. [It seems to contradict Darwin’s theory of evolution

1192 The question of just how many years are represented by rock layers in the

stratigraphic time scale has been around for at least 2500 years: Xenophanes

of Colophon (ca 530 BCE) was the first of the early philosophers to recog-

nize the significance of fossils as remnants of former life on the sea bottom.

Herodotos (ca 450 BCE) estimated the Nile delta to be many thousands of

years old.

When modern geology started gathering momentum, through the works of

Hutton and others, it was recognized that rocks are very old, and the earth

much older. During the 19th century the estimated age of the earth rose

steadily from 75,000 (Buffon) to 75 million years (Helmholtz, Kelvin). Fi-

nally the discovery of radioactivity (1895) enabled geologists to make more

accurate determinations and put the age of the earth at about 4.6 billion

years.
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which tends to show that life1193 has become more — not less — organized
through time, as simple creatures evolved into more complex ones – though
the work of Prigogine and others in the 20th century established that there is
no contradiction.

These gross violations of temporal symmetry (‘Time’s Arrow ’) that are
apparent in the observable world were first analyzed by Boltzmann (1878)
who attempted to explain the asymmetry in terms of atomic and molecular
behavior and give the Second Law of Thermodynamics a statistical–mechanics
interpretation.

One obvious asymmetry is that there are traces of the past (footprints, fos-
sils, tape recordings, memories) and not of the future. There are spontaneous
mixing processes in molar physics but no comparable spontaneous unmixing
processes: milk and tea easily combine to give a whitish brown liquid, but
it requires ingenuity, energy and complicated apparata to separate the two
liquids again.

A cold saucepan of water on a hot brick will soon become a tepid saucepan
on a lukewarm brick; but the heat energy of a tepid saucepan never sponta-
neously flows into the warm brick to produce a cold saucepan and hot brick.

Even though the relevant laws of nature are assumed to be time symmetri-
cal at the atomic level it is possible to explain these asymmetries by means of
suitable boundary conditions — which, however, themselves want explaining.

Another striking temporal asymmetry on the macroscopic level, mentioned
earlier, is the absence of time-reversed (advanced–wave) electromagnetic radia-
tion1194. Electromagnetic phenomena are covered by the statistical Boltzmann

1193 Conventional, quasi–equilibrium thermal physics views any macroscopic

change as a necessary regression, as devolution toward equilibrium or tem-

porary steady-state. Here on earth, our planet derives nearly all its supply of

free energy (a thermodynamically defined entity) from the sun, in the form

of electromagnetic radiation. After 5 billion years, it should be quite close to

steady state, its temperature constant, all chemical reaction halted — like the

moon – or at least uniformized. However, under the influence of life, earth

has moved steadily away from steady state; energy and entropy flow patterns

on earth have become more complex, organized and out–of–equilibrium over

time.
1194 Waves moving outward from a source but backward in time would be precisely

equivalent to waves that moved inward (advanced potential field) to meet their

source in the future. The two descriptions are nothing more than two different

ways of looking at the same thing. It is no more possible to distinguish be-

tween them than it is to distinguish (in Feynman’s Quantum Electrodynamics)

between a positron that moves forward in time and a negative-energy electron
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principle of the increasing entropy of photons and the atoms and molecules
that emit and absorb them; and so this arrow of time is not really different
from the previously discussed asymmetry1195.

These considerations also provide some justification for the common-sense
idea that the cause-effect relation is a temporally unidirectional one, even
though the laws of nature themselves allow for retrodiction no less than for
prediction.

A third striking asymmetry on the macroscopic level is that of the cos-
mological mutual recession of galaxy clusters, which can be deduced from
the red shifts observed in their spectra. It is still not clear whether, or to
what extent, this asymmetry can be reduced to the two asymmetries already
discussed, though some suggestions have been made. This cosmological ex-
pansion (along with other observed data) is well explained by the Big Bang
theory, in which the universe – or part of it – began as a super–hot and
super–dense soup of elementary particles and their fields; from there on, the
thermodynamic arrow suffices. But the ultimate cause for these cosmic initial
conditions is still at large (it could have its root in Quantum Gravity).

A fourth time arrow is furnished by certain types of weak nuclear inter-
actions, as manifested e.g. in the rare two-particle decay of the neutral K

L

meson, which exhibits a minute violation of time-reversal symmetry even at
the microscopic level1196.

that moves backward. We cannot observe motion into the past.

From our point of view, the past is already gone. All that we can see is be-

havior that looks as though it were taking place in a film or a videotape that

was being run in the wrong direction. If we do see something like this, it is

always possible to interpret it in two different ways, depending upon whether

we want to view matters in our habitual forward-in-time way or adopt the op-

posite viewpoint. Another way of stating this is to note that any such observed

anomaly – e.g. observing a lightbulb suck in light from a room, or pieces of

a broken vase bounce up from the floor and reassemble on a shelf – would be

evidence for the coexistence of opposite arrows of time. No such phenomena

were ever seen.
1195 There exists another possible explanation of the origin of the electromagnetic

time arrow, which has nothing to do with thermodynamics or with probabili-

ties: Feynman and Wheeler (1945) put forward a theory according to which

we do not see advanced-potential radiation because emission and absorption

processes by a future absorber cause it to be canceled out by destructive in-

terference. Their theory is based on the assumption that electromagnetic ra-

diation in the present is always emitted symmetrically in both time directions.
1196 As originally discovered by A. Sakharov, this weak–force violation of time
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A fifth arrow of time is furnished by the measurement process in quantum
mechanics – which seems (at least in the Copenhagen interpretation) to irre-
versibly collapse the entangled wave-functions of “observe” and “observing”
systems. This time arrow is probably closely connected with the thermody-
namic and electromagnetic arrows, although some researchers have suggested
it is independent and stems from quantum gravity effects.

It is also possible that the thermodynamic, electromagnetic, quantum-
measurement and cosmological time-arrows will all be eventually understood
in terms of quantum gravity.

A sixth arrow of time, the psychological one, is associated with man’s
cognitive reaction to temporal order in his life; the distinction between past,
present, and future is basic to our experience of consciousness — we are
conscious in the now, we remember the past, but we cannot know the future.
It also is central to our idea of free will, for it implies that our actions in the
present affect the future, that the past is immutable but the future can be
changed.

The nature of the relationships among the five arrows of time (thermo-
dynamic, cosmological, weak interactions, and electromagnetic) defined by
physics is a topic that has been the object of considerable controversy. How-
ever, the relationship between these five “objective” arrows of physics and the
psychological arrow of time, with its subjective durations and ‘moving now’,
is even more mysterious. It is so mysterious that some philosophers have been
led to conclude that time does not really exist.

How is it then, that all the microscopic equations of physics relevant to
macroscopic observations (apart from some tiny weak interaction effects) are
symmetrical in time, and can be used equally well in one direction of time
as in the other — future and past seemingly on completely equal footing?
Newton’s laws, Hamilton’s and Lagrange’s equations, Maxwell’s equations,

symmetry, in conjunction with the cosmological and thermodynamic time ar-

rows, could explain the mysterious surplus of matter over antimatter in our

universe – to which we owe the existence of galaxies, stars, planets and peo-

ple. This mechanism also explains minute microscopic violations of other sym-

metries, such as the distinction and mirror symmetry between particles and

antiparticles. Modern theories of particle physics – and observations of neu-

trino oscillations and rare meson decays at laboratories such as Kamiokonde

(Japan) and SLAC (USA) – indicate that Sakharov–type mechanisms may well

succeed in explaining the matter surplus. Thus, it now appears that the cos-

mological, thermal and weak–interaction time–arrows are at least partially tied

to each other, as well as to other baffling and subtle violations of symmetries

in physics.
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Einstein’s general relativity, Dirac’s equation, the Schrödinger equation —
are all covariant under reversal of the direction of time.

Time-symmetry extends into modern physical theories. The laws of quan-
tum mechanics (both 1st-quantization and quantum field theories) are time-
reversible for the electromagnetic and strong–nuclear interactions as well as
for the dominant weak–nuclear effects; they define no unique direction of time.
In relativity theory, for example, time is simply the 4th dimension — there
is not much more difference between past and future than between left and
right; and all the equations would look the same if time were reversed. Yet
the following subtle points must be considered:

• STR does not contradict ordinary ideas of causality : the temporal order
of events along a time-like or light-like worldline is Lorentz-invariant,
and therefore no observer, in any state of motion, will ever describe
a nail as being driven into a piece of wood before it was struck by a
hammer.

• In STR, the “time” at which a distant event takes place is dependent
upon the state of motion of the observer. Thus “time” cannot be defined
in an unambiguous way throughout all of space. Since different times
will be computed by different observers, the concept of absolute time is
really inapplicable. If we look at time in subjective terms, we can say
that “now” does not extend beyond “here”.

• Rapidly moving objects exhibit a time dilation effect. This effect is
real, not illusory, as the “twin paradox” (confirmed in laboratory ex-
periments) demonstrates.

• If two events, A and B, are so close in time or so widely separated in
space that no signal traveling even at the speed of light can possibly get
from one to the other before the latter event takes place (i.e. if A and B
are space-like in their separation), then their time ordering is ambiguous
— some observers will conclude that even A happens first, while other
will conclude that event B took place earlier in time.

• Whereas Einstein had banished the notion of absolute time, independent
of the observer, he has not imagined a physical system’s causal history
reversing its course, nor does STR allow this any more than Newtonian
physics. GTR does allow some solutions with “closed time-like curves”,
but in the absence of a theory of quantum gravity, it is impossible at
present to ascertain whether such solutions are spurious or not.

• It is widely believed that black holes emit a thermal-like Hawking radi-
ation, and some have argued that this is a new, quantum-gravity arrow
of time, closely related to the cosmological arrow.
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• The above-mentioned “weak–nuclear arrow”, in conjunction with the
cosmological and thermal arrows, are believed to be necessary enabling
conditions that allowed matter to avoid total annihilation into radiation
in the first instants after the Big Bang (the “matter surplus” discussed
above).

In all, nothing in the fundamental laws of physics (except certain subnu-
clear processes of doubtful influence upon to the arrow of time, though they
interact with it) seems to mandate a distinction between past and future.

And what of the present? We are all aware of the subjective “flow” of time.
We are conscious of a moment we call “now” that seems to move inexorably
toward the future. But physics has no need of the concept of “now”. Its
laws deal only with the continuum of time and event–defined instanced along
it, and say nothing about the present moment. In other words, there is no
“flow” of time in physics; all that physics really tells us about it is that some
videotape recordings of physical reality represent impossible (or extremely
unlikely) chain of events when they are played backwards.

If we were to introduce the idea of a “flow” of time into physics, we
would immediately encounter problems. Physics can answer questions about
how an object moves in time, but to the question of how fast does a “now”
move, physics has no answer. In physics, time is a dimension with only minor
privileges over the other dimensions, and there is no objective description of
time as a moving “now”.

Indeed, according to relativity, there is not really such a thing as a ‘now’
that extends beyond ‘here’: as we saw before, the ‘now’ according to one
observer would not agree with that for another. STR emphatically states that
whatever time is, it does not flow at an even rate throughout the universe.

Faced with the apparent conflict between the time-symmetry of the rel-
evant basic physical laws and the six (partially interconnected) time-arrows
specified above, we must look elsewhere to find where the distinction between
past and future must lie.

A clue is afforded when we consider the evolutionary view1197 of the uni-
verse; all complicated forms of matter and energy, without exception, evolved
from a simple state in the early universe.

1197 The evolutionary view is commonly held by various civilizations: all the in-

numerable ‘things’ in the present Universe are held to have evolved from a

primordial “one”. The evolutionary view resolves the old “paradox” of which

comes first, the chicken or the egg; according to the evolutionary view this

question is pointless, for neither the chicken nor the egg was there in the be-

ginning; they both evolved gradually from simpler things.
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Thermodynamics without gravity leads to a thermal death (maximal en-
tropy) doomsday scenario. Thus, only gravitation and thermodynamics to-
gether can accommodate a process of evolution that avoids thermal death.
Indeed, without gravity, the sun and other stars would not even exist; there
could be no shining stars at all without the gravitation, that is needed in or-
der to hold its material together and to provide the temperature and pressure
that are needed for nuclear ignition in stellar cores. There would be a cold,
uniform and diffuse gas in place of the sun and its retinue of planets, and of
course — no life!

The deep significance of time must therefore be somehow linked to the
thermodynamics of the expanding universe. Let us consider the following sim-
plified model of an adiabatically expanding, radiation-dominated universe1198;
there is no heat exchange with the ‘exterior’ because no other system exists
outside the universe, and there is no difference between any typical region and
its exterior – on account of the overall uniformity.

Under these conditions dE = −PdV where E, P , V are the energy,
pressure and volume of a radius – R region, respectively. In the above equation
we set V = 4π

3 R3, P = 1
3 εr, (thermodynamic equation of state of pure

radiation), Er = V εr where εr = c2ρr is the radiation energy density and
Er is the total radiation energy in a sphere of radius R; ρr is the equivalent
mass density. A simple differential equation is thus obtained, the solution
of which is εr ∝ 1

R4 . But since εr ∝ T 4
r by Stefan–Boltzmann law, we

find Tr ∝ 1
R where Tr, the temperature of the radiation, falls in inverse

proportion to the scale factor R as the universe expands. We now re-introduce
particulate matter, assume a matter-dominated universe (as exists today) and
use a similar method to discuss the thermal behavior of the matter (electrons,
protons, neutrons, etc.) constituents in any finite–volume subsystem.

For simplicity, we assume only a single species of matter particles. Let
Pm be the pressure of the (nonrelativistic) particulate matter; it obeys the
ideal gas law, Pm = nkTm, where n is the number density of the particles,
Tm the temperature and k the Boltzmann constant. Let the particle energy
density be εm = c2ρm = nmc2 + 3

2nkTm (as for a monotonic gas), with m
the particle rest–mass.

1198 The Big Bang theory tells us that the universe was radiation–dominated until

about 300,000 years after the initial singularity and approximately matter–

dominated thereafter. This time is reckoned in local inertial frames in which the

microwave background radiation – originating in that same “recombination”

transition – appears approximately isotropic.
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We then obtain from the above adiabatic energy equation

d(R3εm) = −Pmd(R3),

which together with the above equations of state and the law of conservation

of total particle number d
(

4π
3 R3n

)
= 0 [from which n ∝ R−3], yields the

following result: 3
2

dTm

Tm
= −d(R3)

(R3) . This leads us to the solution Tm ∝ 1
R2 .

Consequently, as the universe expands the particle temperature Tm decreases,
but the manner of decrease is inversely proportional to the square of the scale
factor R (as opposed to T ∼ 1

R for the radiation–dominated era).

Thus, even if at the beginning we have Tr = Tm, after a period of expan-
sion we must have Tr > Tm (assuming the co-extensive matter and radiation
have decoupled after matter became gravitationally dominant).

Now, if the time required to achieve uniform temperature after the decou-
pling is longer than the time scale of the cosmic expansion, then there will
never again be thermal equilibrium between radiation and particles, and both
components are separately in thermal quasi-equilibrium1199.

Thus, cosmic expansion saves the universe from thermal death. Since the
expansion of the universe is linked in an essential way to the gravitational
interaction, we may say that the combination of gravitation and thermody-
namics can produce a possible mechanism to avoid thermal death and explain
the evolution from the simple to the complex.

Let us next explore this hypothesis in the context of a smaller-scale sys-
tem, namely — the solar system: A planet of mass m moves in a circular

orbit of radius r around the sun of mass M � m. From GMm
r2 = mv2

r we

find v =
√

GM
r for the planet’s orbital velocity. Since its potential energy

is U = −GMm
r and its kinetic energy T = 1

2mv2 = 1
2

GMm
r , the total New-

tonian energy of the planet is T + U = −1
2

GMm
r . This energy is negative

1199 After the Recombination Era, the left–over radiation bath–initially near the

visible but now in the millimeter–wave RF spectrum–fell out of equilibrium

even with itself, and only retains a spatially–uniform temperature (∼ 2.7 ◦K

today) thanks to free–streaming adiabatic expansion (cosmological red shifts).

Meanwhile, Tm is so low now that matter thermodynamics is completely

dominated by local astrophysics. The last (especially stars) produced photons

at all wavelengths, but these – though crucial for astronomy – are negligible

in numbers compared with the CMBR photons. There are, on average, ∼ 1010

CMBR photons per proton in the observable universe in our present era.
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because work must be invested to remove the planet away to infinity, freeing

it from the influence of the sun.

Suppose that we had a mechanism through which we could inject orbital

kinetic energy into the planet (e.g. giant nuclear–powered rockets attached

to its soil at various carefully chosen positions). This will manifest itself

kinematically in an immediate increase of its orbital radius, followed by an

eventual decrease in its orbital velocity, on account of the relation v =
√

GM
r .

Now, from a thermodynamic point of view, planetary energy is synony-

mous with heat (provided one views planets and stars as microscopical parti-

cles). By the same token (velocity)2 is proportional to the temperature. The

“translation” then yields: Add heat (ΔQ > 0) to the solar system and the
temperature of the system will be lowered (ΔT < 0). Extract heat from the
solar system — and the temperature of the system is raised .

In brief, the heat capacity ΔQ
ΔT of the solar system is negative.

This startling conclusion applies not only to the solar system but to all
systems maintained by gravitation: the thermal capacity of all self-gravitating

systems is negative.

It can easily be shown that, as long as self-gravitating systems are present,

a stable thermal equilibrium cannot exist because the existence of systems

with negative thermal capacity is thermodynamically destabilizing1200.

To see this we consider a system comprised of a body A with a positive

heat capacity and a body B with a negative heat capacity. In the beginning,

the system is in thermal equilibrium and the temperatures of A and B are

equal; the equilibrium is a dynamic one, that is, energy emitted by A is

absorbed by B, and vice versa. The two flows cancel out and equilibrium is

maintained.

There always are, however, small fluctuations about an equilibrium. For

example, the radiation that flows from A to B may be temporarily slightly

larger than that from B to A, and so B absorbs a small net energy.

1200 Indeed, according to Hawking’s theory, a GTR black hole emits quantum radi-

ation at a effective blackbody temperature that varies inversely with its mass.

As it radiates and loses mass–energy, then, the black hole heats up! This

is a runaway thermodynamic process which, theoretically, should lead to an

explosion after a finite time. Thus a hypothetical primordial black hole of

mountain–size (∼ 1015 gram) mass and packed within a nuclear–sized event

horizon (∼ 10−15 meter), is predicted to explode after several billions of years.



1948 CE 4933

If B had a positive heat capacity, then B’s temperature would rise, its
radiation output increasing thereby, soon canceling out the excess absorption
of energy and returning the system to equilibrium.

However, since B was actually assumed to have a negative heat capacity,
then an excess in the energy it absorbs will lower its temperature, and its
radiation output will become weaker — making its net energy absorption
even higher. In the resulting runaway process, B’s temperature will keep
getting lower while that for A will also be lowered. If body A is large enough,
it is easy to see that TA − TB will keep increasing in a runaway reaction; the
original equilibrium is destroyed – it was unstable.

When, to the contrary, the fluctuation is such that B absorbs a little
less energy, then the outcome is an ever-increasing temperature of B, again
destroying the original equilibrium.

Thus, systems in which gravitation plays a decisive role cannot be in a
state of stable equilibrium and thus tend to leave thermal equilibrium; they
spontaneously become far–from–equilibrium thermodynamical systems.

One of the immediate important consequences of this state of affairs is that
it provides for a mechanism for the formation of spatio–temporal structures
in the universe: We already know that in an isolated non-gravitating system,
the evolution of the distribution of matter and energy is from non-uniform
to uniform (or structured to structureless) on account of the second Law of
Thermodynamics.

In a system with gravitational interaction, however, we have just the op-
posite scenario; as soon as some local region acquires some slightly higher
energy (matter densities) through fluctuations, its orbital speeds tend to be
reduced, while its gravitational attraction increases. The system thus attracts
more exterior mass–energy, and the process reinforces itself.

Likewise, if the density in some region is slightly lowered by fluctuation,
its gravitation is weakened, its internal orbital speeds increased, and still
more mass–energy will escape, forming a still lower density. In short, a small
fluctuation will completely destroy the homogeneous state and its direction
of evolution will be from structureless (uniform) toward a structured (non-
uniform) state.

Throughout the universe, gravitation1201 is the dominant large-scale force.
Therefore, even if the initial universe is uniform and structureless, it will spon-

1201 In this context, gravitation is governed by the Einstein equations of the general

theory of relativity ; When we reach the truly vast distances which arise at the

scale of the whole universe, the Newtonian picture of gravity breaks down.

Although the average density of matter of the universe is extremely low (and

thus, so is the average curvature of spacetime), the distances involved are
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taneously generate a non-uniform and structured state. Clusters of galaxies
of various scales owe their formation to this process of inhomogenization, as
does the geological stratification of the earth.

Gravitation is therefore responsible for the universe being so structurally
and thermally complex, ordered and out of equilibrium.

In the eventual cosmology (the one which will include a correct description
of quantum gravity – including the so-called ‘Planck Era’, that is, the first
10−43 seconds or so after the big Bang, during which one needs a Schrödinger
wave function of the entire universe to understand its evolution), the thermal
state of the hot big bang will somehow have to be explained in terms of a
pure (non-ergodic) initial wave-function.

In such a theory of quantum gravity the thermodynamic time arrow —
which may be thought of as a peculiar initial condition having very weak
correlations between microscopic degrees of freedom — will be understood in
terms of the cosmological arrow of time.

But even while we are still ignorant of what the link between these two
arrows is, the following is clear: at an epoch much later than the Planck Era,
namely the epoch in which stars and planets formed, gravity continued to
play an important role vis a vis the arrow of time because:

• Instabilities in a homogeneous Dust Universe naturally lead to accretion
of galaxies (the Jeans instability) and stars; i.e., to the formation of
‘order out of chaos’. Even on a planetary scale, gravity was the agent
that heated the early earth and provided for differentiation of its layers.

so enormous that curvature effects become of overriding importance. GTR

enabled physicists, for the first time, to consistently probe the behavior of our

world on the grandest of all scales and to think in a scientific manner about

the origin of the Universe.

However, close to the moment of the big bang singularity we are dealing with

a scenario in which Einstein’s theory must fail; for there are certain built-in

suppositions in GTR which are known to be incorrect at very short distances.

According to Einstein’s equations, the present age t0 of a flat (zero spatial

curvature) universe model (that is — time since the Big Bang) is related to the

present mass density ρ0 via the relation t0 = 1√
6πGρ0

, where G = 6.67 × 10−8

cm3s−2g−1 is Newton’s gravitational constant.Thus, a present mass density of

ρ0 ≈ 3 × 10−30 g cm−3 (about two hydrogen-atom masses per cubic meter) is

compatible with an age of order 15 billion years in this simple model – close

to the observed value.
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• The nuclear ignition of main–sequence stars (and, to some small extent,
slow radioactive decay, within planets) provides suitable planets with a
constant flow of energy, over billions of years; this creates Prigogine’s
‘open thermodynamic system far from equilibrium’. In this regime there
occur bifurcations, limit cycles, spontaneously emerging spatial structure,
and, perhaps, life itself .

To summarize: gravitation influences arrows of time at several different
levels, and some of these influences are more speculative than others; but
even if it turns out that gravity is not the ultimate ‘culprit’ in creating the
thermodynamic arrow, it is almost certainly the agent that caused, indirectly,
through stars (including supernovae) and planet accretion, the establishment
of the biological arrow of time.

But the biological arrow is dependent for its continuation on the mainte-
nance of thermodynamic non-equilibrium; i.e., if one removes the sun (hauling
it away to alpha centauri, say), life and evolution on earth will cease. And
since astrophysics teaches us that all stars eventually expand, explode or oth-
erwise become unsuitable for sustaining life – and new materials for new stars
eventually run out – earth’s biosphere, in its present form, cannot continue for
more than ca another 5×109 years. However, human volition and intelligence
should also entered into the equation. We know, for example, that man’s
intervention has already modified the thermodynamics of our planet to some
small, and perhaps significant, extent. It is not unreasonable to expect that
our descendants of the remote future will be able to protect the biosphere
against ice ages, the aging of our star, an even – perhaps by altering earth’s
orbit – against the sun’s death.

If intelligent life is capable of spreading or arising spontaneously through-
out the observable universe, it could conceivably alter the fate of the entire
universe by some suitable (planned or unplanned) action! Thus, intelligent
life can represent a new arrow, apart from mere life, that will modify the
cosmology we live in.

IV. Chronons

Quantum field theorists routinely investigate models where space and/or time
are rendered discrete, for computational ease. Many of the difficulties in
achieving a consistent theory of quantum gravity are due to the continuity
of spacetime. It is expected that at the Planck scale (∼ 10−43 sec, or 10−33

cm), wild fluctuations in spacetime topology render geometry (whether 3D
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or 4D) meaningless. In view of all that, it is tempting to conjecture that the
spacetime continuum may be a mere coarse–grained approximation.

In antiquity, the idea of indivisible atoms of time may have been advocated
by Zenocrates, a pupil of Plato, as well as by Indian philosophers in the 2nd

century BCE.

In the Middle Ages the atomicity of time was maintained by various
thinkers, notably by Maimonides (1190 CE) who postulated an indivisible
unit of 5 × 10−15 sec. Descartes (1641) adopted this view and postulated
that temporal existence was like a line composed of separate dots, a repeated
alternation of the state of being and the state of non-being. Descartes’ con-
temporary Torricelli also regarded time as ‘granular’, a succession of discrete
segments which he calls ‘instants’.

The idea of temporal atomicity does not necessarily imply that there must
be gaps between successive instants. The essential criterion for atomicity is
that there is a limit to the division of any duration into constituent parts:
time would be like a line which can be divided into a denumerable sequence
of adjacent segments with no intervals between them. It would mean that,
from the temporal aspect, there are minimal processes in nature, no process
occurring in less than some shortest unit of time, or chronon.

Most speculations concerning the chronon have often been related to the
idea of a smallest natural length. This may e.g. be given by the effective
diameter of the proton, that is to say, at most of order 10−13 cm. If this
were a minimal natural length scale and we divided it by the fastest possible
speed, that of light in vacuo (3 × 1010 cm/sec), the resulting interval of time
would be about 10−23 sec. However, empirical data on dynamical short–range
processes (collisions, decays etc.) at such scales is explained quite well by the
so-called Stanford Model, a quantum field theory predicted upon a continuous
spacetime. Current empirical knowledge thus implies that the chronon, if it
exists, must correspond to a duration of less then 10−25 seconds. A time of this
order characterizes the normal weak-interaction virtual quantum fluctuations
responsible for radioactive beta-decay (although the half-lives of these decays
are usually many orders of magnitude larger); strong nuclear interactions half-
lives are of order 10−24 sec or so.

A purely theoretical unit of time much shorter than 10−25 sec can, however,
be constructed from the three fundamental constants G, h and c. The Planck

Length is
√

Gh
c3 , and is of the order 10−33 cm. If this is divided by the

velocity of light, it gives a time of the order of the Planck time, i.e., 10−43

sec, which might be the a candidate for the chronon scale.

Feynman noted that a discrete structure of spacetime would imply an
anisotropic speed of light, which can be accepted in principle, provided it is
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not too large (modern precision experiments utilizing atomic clocks have put
stringent bounds upon any possible anisotropy).

Until there is general agreement concerning the chronon (or any other
non-continuous theory of time), the concept of mathematical time underlying
physical science, including microphysics, will continue to be based on the
hypothesis of continuity (or infinite divisibility) of both the spatial dimensions
and of time.

In our quest for understanding as to why time seems to flow in just one
direction and not the other, we have had to travel to the very beginnings of
time, and look at both the rarest of quantum processes and those that probe
the spacetime manifold at the highest resolutions. At such epochs and scales,
the very notions of space and time might well dissolve away. We have learned
that our theories are not yet adequate to provide answers to the question,
‘what is time?’1202

1202 Apart from our scientific ideas about time (physical time, biological time, ge-

ological time and cosmological time), this concept has occupied the minds of

philosophers, poets, psychologists and thinkers from antiquity to the present,

throughout the entire history of human culture. The ultimate efforts of the hu-

man spirit to comprehend the meaning of time is best reflected in the writings

of the Hebrew Bible, the Greek Tragedies, the plays and sonnets of Shake-

speare and, during the 20th century in the novel of Marcel Proust (1871–

1922, France) Remembrance of Things Past (1908–1918). To Proust, reality

remains elusive. It is constantly changing, because the passing of time alters

not only his only perspective, but also the nature of what is perceived. He fi-

nally recognizes that reality is not external but something stored in the depths

of man’s unconscious memory. There it is preserved from the changes of time,

but is accessible only in rare and happy moments. On this view, artists can

reveal reality to mankind because their sensitivity enables them to dig deeply

into their own unconscious memory. But Plato, in his cave metaphor, has

warned us against the distortions of the human mind – a theme that Francis

Bacon built upon in his Novum Organum. And, as the poet William Blake

wrote:“The mind, altering, alters all”.
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Table 5.29: Horology — from Sundials to Atomic Clocks
1203

c. 3500 BCE Gnomon1204 — the first system for telling the time; Shadow
clock. It consisted of a horizontal surface with a vertical pillar
stuck into it, the shadow of which indicated the movement of
the sun. In the morning the clock was pointed east into the
sun, and in the afternoon it was turned around to point west;
known to exist in Egypt 2000 BCE.

c. 2000 BCE Early sand-timers, the earliest timekeeper independent of the
celestial bodies. Inefficient for measuring more than a limited
duration.

1500–1451
BCE

Thutmosis III erected the ‘Needle of Cleopatra’; its shadow
was used to calculate the time, seasons and solstices.

c. 1400 BCE Egyptians construct crude water clocks (clepsydras = wa-
ter stealer; water trickled trough a hole in the bottom of a
stone bucket; the time was indicated by the level of the water
against a scale marked on the inside. It had the advantage
of continuing to indicate time after sunset. The length of
the hours changed according to the length of the day (longer
summer hours) and the temperature.

c. 750 BCE Gnomons in Egypt were improved to become the proper sun-
dial : on its base it had 6 divisions, each corresponding to
an hour.

c. 520 BCE Sundial was introduced into Greece by Anaximander.

c. 300 BCE Further improvements of the sundial by the Babylonian
Berosos, the Greek Apollonios of Perga and Ptolemy
of Alexandria made this clock more accurate during day-
time. These measures, however, did not enable the difference
between average midday and true midday to be established.
Rome’s first sundial was established in 190 BCE, when a Sam-
nite clock was captured in war.

1203 Horology: From the Greek horolegein (= that which tells the time). Hence the

word hour.
1204 Latin; from the Greek gignoskein = to know; i.e. one who knows = indicator.
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c. 270–50
BCE

Greeks and Romans improve the water clock. Romans im-
proved the flow of water by installing larger tanks. Then
they invented a mechanism for reading the hour, consisting
of a float equipped with a toothed stem connected to a pawl
wheel: the lowering of the float engaged the wheel, which it-
self had a needle to designate the corresponding hour on a
graduated dial.

This mechanism described by Vitruvius was already in use
by the 1st century BCE and so the principle of the modern
analog clock display, the reading of a dial, can be said to date
back to that time. Earlier (c. 270 BCE) the Greek Ctesi-
bius of Alexandria developed improved water clocks using
a siphon system to replenish the reservoir automatically.

Clearly, water clocks were incapacitated in freezing condi-
tions.

c. 100 CE Romans used sandglass clocks: when the sand in the top bulb
had emptied into the bottom one, it meant that a fixed time
had elapsed.

725–1092
CE

Earliest known mechanical clock, with escapement mecha-
nism, was built in China by I-Hsing (Yi Xing ca 725 CE).
It was derived from the water-clock (i.e. its driving power was
hydraulic) but it was more precise than the holed vessel. It
consisted of a wheel with strictly identical paddles into which
the water flowed; each time a paddle filled up, it rotated the
wheel a 36th of an arc.

A huge gearing system (the clock was about 10 m high)
caused the rotation of a celestial sphere around which the sun
and moon were represented, so that there was one complete
rotation of the sun every 365 days and one complete rotation
of the moon after slightly more than 29 days.

The level of a part representing the horizon also enabled the
exact hours of sunrise and sunset to be determined, as well
as the dates of the new and full moons and the hours and
quarter-hours, which were read and announced by bell and
drumbeats.

A later version (976 CE) by Chang Su-Hsun (Zhang Xu
Xun), using a chain-drive, showed the movements of the five
then-known planets, the Pole star and the Great Bear.
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A third version, designed by Su Sung and built in 1092,
showed the movement of the stars and certain special days
and hours.

c. 850 CE Candle clock was reputedly invented in England by King Al-
fred the Great: A candle marked with hours. As it burned
the time could be read off the scale.

1310–1319
CE

The first weight-driven mechanical clock appeared in Europe;
it had no hands and was used only to mark proper time for
ringing church bells. Its invention is attributed to Gerbert
(c. 1000 CE). The principle of this clock probably arrived in
the West from China in the form of descriptions or drawings.
It constitutes the first model of the escapement system in
Europe, which was later improved in the form of cylinder
escapement or verge escapement. (In China, however, water
was still used as a power source.)

c. 1335 CE First public clock that struck hours was put up in Milan,
Italy.

c. 1354 CE Mechanical clock at the Strasbourg Cathedral.

c. 1370 CE Clock faces with a single hand, to show hours, appeared in
Western Europe.

c. 1400 CE First small, weight-driven clock for use in household appeared
in Europe. Continent is soon taken with novelty of timekeep-
ing.

c. 1470 CE The mainspring (a spiral whose gradual unwinding powers a
clock) was invented in Germany. Adoption of this principle
makes it possible to construct more compact mechanisms,
and indeed it paved the way for the portable timepiece, but
demanded a device to compensate for the diminishing force
of the spring as it uncoiled; this problem did not arise with
weight-driven mechanisms, as the force exerted by the weight
at the end of the descent is the same as that at the beginning.

The necessary compensation was effected by the fusee, essen-
tially a conical drum with helical groove so cut in it that as
the spring uncoiled the connecting cord exerted the same mo-
ment on the shaft carrying the fusee (Leonardo da Vinci left
us a sketch of such a mechanism in his 1490 notebook).
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1494 CE Leonardo da Vinci made a drawing of a clock with a pen-
dulum.

1504 CE Peter Henlein (Germany) made the first domestic spring-
driven clocks, with a horizontal dial on top and a single hand,
the one which indicates the hours. He used a coiled steel
mainspring to drive them. It was the first watch. Being too
large for the pocket, it were frequently hung from the girdle.

1533 CE Gemma Frisius was first to point out that by knowing the
correct time according to a mechanical clock and comparing
it with the sun — time can be used to find the local longitude.

1615 CE Marine Mersenne pointed attention to the geometrical
properties of the cycloid curve; it is later used by C. Huy-
gens in his pendulum clock.

1656 CE Christian Huygens (Holland) build the first pendulum clock
by applying the pendulum theory of Galileo (1583) to the ex-
isting cylindrical balance escapement, thus ushering in a new
era of precision timekeeping. He also developed a cylindri-
cal pendulum clock, the period of which is independent of the
amplitude.

1658 CE Robert Hooke (England) invented the anchor or recoil es-
capement which had the particular advantage of being able
to transfer some of its energy to the pendulum. Also, it re-
stricted the swing of the pendulum to a small arc, improving
accuracy.

1670 CE William Clements (England) added the minute hand to
the pendulum clock.

1704 CE Nicolas Fatio de Duiller used gems for bearings in clocks.

1735–1759
AD

John Harrison (England) constructed the first practical
marine chronometer which enabled sailors to calculate lon-
gitude accurately. With the work of Harrison, the problem of
finding the longitude at sea was finally solved. It was accurate
to within 0.1 second a day.

1754 CE Thomas Mudge (England) introduced the lever escape-
ment, used by most mechanical clocks and watches today.

1790 CE Earliest known wristwatch made in Switzerland.
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1799 CE Post-revolution French astronomers define the solar second
as 1

86400 of a mean solar day.

1841 CE Alexander Bain (Scotland) made the first electric watch,
where the electric energy served only to move the pendulum.

1875 CE About 21
2 million people in the world own pocket watches.

1884 CE International conference in Washington D.C. divided the
world into 24 Time Zones, changing then-current practice
of each locality keeping its own time. This act was motivated
by the rapid growth of railroads. The mean solar time at
Greenwich Observatory (England) became Greenwich Mean
Time (GMT).

1904 CE Radio stations began broadcasting time signals to ships at
sea to aid navigation.

1929 CE W. Marrison (Canada) produced the first Quartz crystal
clock. The mineral quartz (silicon dioxide; in hydrate form,
SiO2 · nH2O) exhibits a piezoelectric effect. A quartz slab
acts as a high-Q stable tuned oscillator, when excited by an
AC electromagnetic field. These resonant vibrations are then
used to electromagnetically control the speed of an electric
motor which drives the clock hands. A quartz clock can keep
time with accuracy of about 0.1 sec/day.

1948 CE The atomic clock was introduced; the steady coherent oscil-
lations of a superposition of two quantum states of a single–
species population of atoms (e.g.: caesium) or molecules (e.g.:
ammonia, NH3) in a tuned resonance cavity, are harnessed
to regulate clocks with accuracy much greater than that of
quartz clock. The principle was worked out by W. Libby
(USA) in 1946. In 1969, the US Naval Research Laboratory
built the first ammonia atomic clock, accurate to within one
second per 1, 700, 000 years.

1956 CE The fundamental time standard — the second – is redefined
to represent (31, 556, 925.974 7)−1 of the time it takes the
earth to orbit the sun (solar second). Before 1956, the second
was defined as

(
1
60

) (
1
60

) (
1
24

)
of a mean solar day, where

a solar day is the year–averaged interval between successive
meridional crossings.
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1962 CE Telstar became the first satellite used to synchronize time
internationally (to an accuracy of 1 microsecond), between
the USA and Britain.

1967 CE The atomic second replaces solar second as fundamental time
standard: The International Bureau of Weights and Measures
redefined the second as the time that microwaves (emitted
by RF–excited caesium-133 atoms) execute 9, 192, 631, 770
oscillations.

The Seiko Company (Japan) produces the first electronic
quartz wristwatch.

1972 CE Electronic wristwatches were equipped with liquid-crystal dig-
ital display.

1948–1967 CE Andrei Dmitrievich Sakharov (1921–1989; Soviet
Union). Distinguished nuclear physicist and most ardent and unrelenting
champion of human rights and freedoms. Regarded as “father of the Soviet
hydrogen bomb”. Suggested (1948) a new principle for a thermonuclear de-
vice, and proposed the idea of the Tokamak thermonuclear reactor (1950).
In a pioneering paper he suggested (1967) an explanation for the mysterious
asymmetry of matter in the universe (surplus of matter over antimatter) in
terms of a combination of three effects in the early universe: baryon–number
nonconservation, time–reversal asymmetry in the weak nuclear force, and out–
of–equilibrium thermodynamic processes.

Sakharov was born and educated in Moscow. In 1938 he enrolled in the
physics department of Moscow University where he was quickly recognized
to be an outstanding student. In June 1948 he was recruited to work on the
Soviet nuclear weapons program by his professor Igor Tamm (1895–1971).
During the same year they outlined a principle for the magnetic isolation
of high-temperature plasma, and their subsequent work led directly to the
explosion of the first Soviet hydrogen bomb (1953).

By 1950 they also formulated the theoretical basis for controlled ther-
monuclear fusion – which could also be used for the generation of electricity
and other peaceful ends.

In the early 1960’s, Sakharov was instrumental in breaking biologist
Trofim Lysenko’s hold over Soviet science.

While contributing more than anyone else to the military might of the
USSR, he gradually became one of the regimes most courageous critics, a
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defender of human rights and democracy. He could not be silenced, and
helped bring down one of history’s most powerful dictatorships.

Unlike his American colleague Robert Oppenheimer, Sakharov did not
feel physicists had “learned sin” by working on nuclear weapons. Nor was he
like Edward Teller, proud to have persuaded political leaders of the necessity
of building the hydrogen bomb (Soviet leaders did not need any persuasion).

Sakharov was awarded the Nobel Peace Prize in 1975.

1949 CE Erwin Chargaff (1905–2002, Austria and USA). Biochemist.
First to discover an important clue to DNA structure1205.

Revealed the very striking diversity in chemical composition of nucleic
acids from different sources and suggested that nucleic acid could function as
genetic material. Four years later his findings were shown to follow from the
double-helix structure of DNA.

He was born in Czernowitz (now in the Ukraine) to a Jewish family and
studied in Vienna and at Yale (1928–1930). He went to Berlin (1930–1933)
and came to Columbia University (1935), where he was appointed professor
(1952).

1949–1961 CE Melvin Calvin (1911–1997, USA). Chemist. Major con-
tributor to elucidation of the chemistry of plant life. Using carbon-14 as a
tracer, he determined the biochemical processes of photosynthesis, in which
green plants use chlorophyll to convert CO2 and H2O into sugar and O2.
Awarded the Nobel Prize in Chemistry (1961).

Calvin was born in St Paul, Minnesota to Russian immigrant Jewish par-
ents and studied at the University of Minnesota. He joined UCLA (1937)
where he became professor of chemistry and head of the Lawrence Radiation
Laboratory (1963–1980).

1205 He showed that the number of adenine molecules in DNA equals the number

of thymidine molecules, and that the number of guanine equals the number

of cystosine. This is now understood as a simple mathematical relationship

between the proportions of molecules that connect the two strands of the DNA

molecule.

When J. Watson and F. Crick published their seminal work on the double

helix (1953), they claimed to have been unaware of Chargaff’s work. This

illustrated once more that “what counts in science is to be not so much the

first as the last”. (Chargaff, Science, 1971).
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Calvin started to investigate the process of photosynthesis in the single-
celled alga chlorella and showed that there is a cycle of reactions (now called
the Calvin cycle1206) involving an enzyme as catalyst.

Science Progress Report No. 21

The Great Soviet Encyclopedia (GSE)

It was published in 1949 in the Soviet Union. Through it, the ex-seminarist

Joseph Vissarionovich Dzhugashvili (Stalin) stage-managed his own apotheo-

sis as the embodiment of human wisdom. It was full of gems e.g.:

“In 1751–2, Leonty Shamshugenkov, a peasant in the Nizhny-Novgorod

province, constructed a self-propelled vehicle operated by two men.”

Stalinist “historians”, who contributed to the GSE claimed that many

discoveries made by Russians were plagiarized by foreign capitalist scientists.

For example:

• The steam engine was not invented by Watt, but by a Siberian laborer

named Polzonov.

• The electric bulb was not invented by Edison but by the Russian

Yablochkov.

• The first successful flight in a power-driven, heavier-than-air machine

was not made by the Wright brothers in 1903 but by the Russian engineer

Mozaisky.

1206 When Chlorella was exposed to radioactive CO2 in the dark, radioactivity

was transferred to succinate, fumerate, malate and other compounds before

being found in glucose.

A brief spell of illumination caused the radioactivity to appear in the triose

phosphates and sugar phosphates that are now associated with the pentose

phosphate pathway. This led to the elucidation of the Calvin cycle, whereby

CO2 interacts with ribulose diphosphate giving (via several reactions)various

sugar phosphates and regenerating ribulose diphosphate, ready to repeat the

cycle. The pathway occurs in all photosynthesizing organisms.
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In fact, according to GSE, whatever was not invented by Russians in the
20th century, had already been invented by Mikhail Lomonosov in the 18th

century.

In this perverse pseudo-science manifesto of Soviet Cultural Revolution,
theoretical physics, cosmology, chemistry, genetics, medicine, psychology and
cybernetics were all systematically presented as a capitalistic plot against
Communism.

Relativity theory was condemned not (as in Nazi Germany) because Ein-
stein was a Jew but for equally irrelevant reasons: Marx had said the universe
was infinite, and Einstein had got some ideas from Mach, who had been pro-
scribed by Lenin.

Behind this lay Stalin’s suspicion of any ideas remotely associated with
Western or bourgeois values. It was an attempt to change fundamental human
attitude over the whole gamut of knowledge by the use of naked police power.

1949 CE Derek Harold Richard Barton (1918–1988, England). Or-
ganic chemist. First to demonstrate that chemical properties of complex or-
ganic molecules depend strongly on their 3-D shape; showed that the biological
activity of natural compounds often depends on positions and orientation of
key functional groups.

Barton studied (Harvard, 1949) the different rates of reaction of certain
steroids and their triterpenoid isomers (substances with the same composition
but differing in the way their atoms are joined and arranged in space).

He deduced that the difference is spatial orientation of their functional
groups accounts for their behavior, and so developed a new field in organic
chemistry which became known as conformational analysis. He then went on
to examine many natural products, concluding that the structures of many
phenols and alkaloids could be explained and predicted.

Barton was born in Gravesend Kent, and studied at Imperial College,
London. Professor at the University of London from 1978. He shared the
Nobel Prize for Chemistry (1969).
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Biotechnology Chronicles II

III From genes and proteins to DNA 1900–1953

The end of the nineteenth century was a milestone of biology. Microor-
ganisms were discovered, Mendel’s work on genetics was accomplished, and
institutes for investigating fermentation and other microbial processes were
established by Koch, Pasteur, and Lister.

Biotechnology at the beginning of the twentieth century began to bring
industry and agriculture together — a result that, in many areas of Europe
and North America, irreversibly changed the face of the land. Even before
WWI, cancer-causing viruses were discovered, and bacteria were used for the
first time to treat sewage1207.

During WWI, fermentation processes were developed that produced ace-
tone from starch and paint solvents for the rapidly growing automobile indus-
try.

Vitamins were identified as key growth factors and Sutton coined the
term “gene”. The first chemotherapeutic agents were employed medically and
Thomas Hunt Morgan commenced work on the fruit fly — an animal which
has been indispensable in unraveling the fundamental mechanisms of heredity.

In 1912, Bragg reported the use of X-rays as a method for studying
molecular structures of simple crystalline substances. During the war years
(1914–18), industrial processes were used for the mass production of chemical
weapons, and the existence of bacterial phages proposed.

1207 In 1918, this process was used to clean the River Seine in Paris. This river

was an open-air sewer, the stench from which suffocated the city dwellers: it

was caused by the disposal of the excrement and waste water directly into

the river, a situation made worse by the increasing population. This increase

was a result of an increase in human life expectancy, which was partly due to

medical advances. The Seine did not begin to be odor-free again until around

1920. From that time onwards it was possible to have a picnic on the banks

of the Seine without fainting. A sewage treatment processes toxic domestic

and industrial waste into less harmful materias, i.e. H2O and sludge: Organic

wastes are degraded by the action of a complex community of microbes. Sewage

treatment facilities provide an optimized environment for the organisms to

process the waste, while at the same time allowing containment and monitoring

of the process.
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In 1920 H.M. Evans (1882–1971) and J.A. Long (1879–1953) discovered
human growth hormone and throughout that decade, plant hybridization was
practiced with significant gains being made in the agricultural sector. In 1928
Flemming discovered the first antibiotic — penicillin, still in use to this day.

The first controlled reproduction of a cultured animal — a teleost — was
reported in the same year and Linus Pauling finally elucidated the physical
laws governing the arrangement of atoms in 1935.

Between 1940–1945 the large-scale production of penicillin became real-
ity, cortisone was manufactured in large quantities and Sanger described
a method for examining the amino acid sequence of bovine insulin —
chromatography.

In 1941, a Danish researcher coined the phrase “genetic engineering”.

Throughout the period 1940–1950, agricultural practice went through the
transition from animal to machine power, jumping genes were recorded and
artificial insemination of livestock was accomplished.

Between 1951–1960, the electron microscope came into its own, and Wat-
son and Crick elucidated the double-stranded helical nature of DNA.

The “cold war” years were dominated by work with microorganisms in
preparation for biological warfare, as well as work on antibiotics and fermen-
tation processes.

The following timetable summarizes the milestones of progress in biotech-
nology during the first half of the 20th century.
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Table 5.30: Milestones in the progress of biotechnology

1910–1953

1910: Thomas H. Morgan Proved that genes are carried on chromosomes.
“Biotechnology” term coined

1918: Germans use acetone produced by plants to
make bombs

Yeast grown in large quantities for animal and
glycerol

Using activated sludge for sewage treatment
process

1920: Boom or rayon industry

1927: Herman Mueller Increased mutation rate in fruit flies by expos-
ing them to X-rays

1928: Alexander Fleming Discovered antibiotic properties of certain
molds

1920–1930: Plant hybridization

1938: Proteins and DNA studied by X-ray crystal-
lography

Term “molecular biology” coined

1941: George Beadle Proposed “one gene, one enzyme” hypothesis

Edward Tatum

1943–1953: Linus Pauling Described sickle cell anemia calling it a molec-
ular disease. Cortisone made in large amounts

DNA is identified as the genetic material

1944: Oswald Avery Performed transformation experiment with
Griffith’s bacterium

1945: Max Delbrück Organized course to study a type of bacterial
virus that consists of a protein coat containing
DNA

Mid-1940’s: Penicillin produced

Transition from animal power to mechanical
power of farms

1950: Erwin Chargaff Determined that there is always a ratio 1 : 1
adenine to thymine in DNA of many different
organisms

Artificial insemination of livestock

1952: Alfred Hershey
Margaret Chase

Used radioactive labeling to determine that it
is the DNA, not protein, which carries the in-
structions for assembling new phages

1953: James Watson Determined the double helix structure of DNA

Francis Crick
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1949–1958 CE Robert Hanbury Brown (1916–2002, England and Aus-
tralia). Radio Astronomer. Invented a new type of stellar interferometer
(known as intensity or correlation interferometer) capable of measuring the
angular diameter of stars with a resolution of 0.000 1 seconds of arc.

The principle of the intensity interferometer was then applied successfully
by Hanbury Brown and his collaborators to optical astronomy.

In this field, measurements of correlation were not significantly affected by
atmospheric turbulence which was a serious handicap in Michelson’s method
for measuring stellar diameters (1890).

The theory of the optical intensity interferometer (Hanbury Brown and
Twiss, 1958) is complicated by the quantum nature of the photoelectric effect.

Brown was born in England and educated at the University of London.
He worked at the Air Ministry (1936–1945), University of Michigan (1949–
1964) and then became professor of astronomy at the University of Sydney,
Australia (1964–1981).

Due to their enormous distance, the angular diameter of stars are ex-
tremely small, of the order of hundredths of a second of arc, even for nearby
stars.

Michelson was the first to determine stellar diameters by interferometry.
He employed mirrors to increase the optical path between the slits. One of
the largest stars, Betelguese, was found to have an angular diameter of 0.047
seconds (the disc of this red giant was optically resolved by the Hubble space
telescope in the 1990’s). From the known distance, this corresponds to a linear
diameter of about 280 times that of the sun.

Hanbury Brown’s method makes it possible to determine much smaller
stellar angular diameters than those measurable by Michelson’s method.

The essential features of his intensity interferometer are as follows: Parallel
light rays are collected by two curved searchlight mirrors of diameter 1.56 m
and a variable baseline up to 14 m.

The light of each mirror is focused onto photocells the outputs of which
are proportional to the instantaneous intensities |E1|2 and |E2|2 at the two
mirrors. The signal from one mirror is fed into a variable delay line to meet
the other undelayed signal from the second mirror in an electronic multiplier
and integrator, the output of which is proportional to the time-average of the
product: |E1|2|E2|2.

This quantity is known as the second-order coherence function of the two
fields. It can be shown that for a distant extended source, a measurement
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of the second-order coherence between two receiving points yields the lateral
coherence width and hence, the angular diameter of the source1208.

The main advantage of the method of intensity interferometry is that high
quality optical components and rigid mountings are not necessary.

1949–1966 CE Avraham Robinson (1918–1974, Israel and USA). Lo-
gician and mathematician. Invented nonstandard analysis (1966). Also did
pioneering work in model theory and the metamathematics of algebraic sys-
tems.

Nonstandard analysis, a new branch of mathematics, marks a new stage
of development in several famous ancient paradoxes. At its kernel is a revived
notion of the “infinitesimal” which has roots stretching back to antiquity.

An infinitesimal is defined as a number that has zero as a limit i.e. infinitely
small in absolute value yet greater than zero.

Leibniz had thought of them as being infinitely small positive or negative
numbers that still had “the same properties” as ordinary numbers of mathe-
matics.

On its face the idea seems self-contradictory. If infinitesimals have the
same “properties” as ordinary numbers, how can they have the “property” of
being positive yet smaller than any ordinary positive number?

It was by using a formal language that Robinson was able to resolve the
paradox.

He showed how to construct a system containing infinitesimals that was
identical with the system of “real” numbers w.r.t. all those properties express-
ible in a certain formal language.

Naturally the “property” of being positive yet smaller than any ordinary
positive number will turn out not to be expressible in the language although
the formal language can be “enlarged” to accommodate this novel new prop-
erty – thereby escaping the paradox1209.

1208 Let λ be the wave-length, L the distance earth-star, D the star’s diameter and

a the base-line separation. Then, the method of intensity interferometry is

valid if λL ∼ Da. If λ = 5000Å, D = 106 km, L = 50 LY , we must have

a � 200 m [1 LY=9.46 × 1012 km].
1209 The situation is familiar to users of computer machines; A computer accepts as

input only symbols from a certain list that is given in advance to the user, and

the symbols must be used in accordance with certain given rules. Computers

are “stupid” because unlike humans they work in a formal language with a

given vocabulary and a given set of rules. In contradistinction, humans work

in a natural language, with rules that have never been made fully explicit.



4952 5. Demise of the Dogmatic Universe

Thus Robinson elevated the method of infinitesimals from the heuristic to
the rigorous level.

The approach of formal logic succeeds by totally evading the question that
excited Berkeley and all the other controversialists of former times, that is,
whether or not infinitesimal quantities really exist in some objective sense.

From the viewpoint of the working mathematician, the important thing is
that he regains certain methods of proof and certain lines of reasoning that
had been fruitful since before Archimedes.

The notion of an infinitesimal neighborhood is no longer a self contra-
dictory figure of speech but a precisely defined concept, as legitimate as any
other in analysis, and the cumbersome limit procedure can be eliminated from
many formal proofs.

Nonstandard approaches spread to almost all mainstream disciplines of
mathematics:

• Non-Euclidean geometry and topology

• Non-Archimedean arithmetic and analysis (p-adics)

• Version of set theory where the axiom of choice or the continuum hy-
pothesis, or both, are suppressed

• Nonstandard analysis where infinitesimal are actual numbers rather
than limits

• Fuzzy (or quantum) logic

Robinson was born in Waldenburg, Germany to Jewish parents and em-
igrated to Israel (1933) on account of Nazi persecution. He studied mathe-
matics in Jerusalem under A.A. Fraenkel and Jacob Levitzki (1904–1956).
Went to the Sorbonne (1939) but was forced to flee when Germany invaded.

He reached England on one of the last small boats to evacuate refugees,
and worked on aerodynamics during WWII.

After the war he attended London University and received there his Ph.D.
(1949). He then held professorial appointments in Toronto (1951–1956),
Jerusalem (1957–1965), Princeton (1966) and Yale (1967–1974), where he
died of cancer at the age of 55.

1949–1973 CE John Wilder Tukey (1915–2000, USA). Mathematician.
One of the most influential statisticians of the second half of the 20th century.
Contributed to mathematical statistics, with an emphasis on its computa-
tional aspects.
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Introduced modern technique for the estimation of spectra of time se-
ries and is particularly known (with J.W. Cooley) for the important Fast
Fourier Transform algorithm (1965), known as FFT. Coined the words ‘bit ’
and ‘software’.

Tukey was born in New Bedford, MA. Received his doctorate from Prince-
ton University (1939) and joined the AT&T Bell Laboratories (1945). He then
spent decades as both a professor at Princeton and a researcher at the Bell
Labs. Tukey was awarded the US National Medal of Science (1973).

FFT is one of the most frequently used mathematical tools for digital
signal processing.

One can immediately see from a table of Fourier transforms that only a
limited number of functions can be transformed into closed analytical forms.
When a transform is not available in analytic form, it must be estimated by
numerical computation.

The numerical approximation to the Fourier Transform integral, is time
consuming even when a high speed computer is used. The algorithm of Tukey
and Cooley reduces the computation time by decreasing the number of com-
putations necessary to compute a one-dimensional Fourier Transform of a
signal with n values from n2 to order n log n.

For instance an 8192 point discrete Fourier transform, which takes about
30 minutes of computer time when conventional integration programming is
used, can be computed in less than 5 seconds with the algorithm.

As often happens, it appears to have been discovered a number of times
before that, with the idea going back to Gauss! (1805), predating Fourier1210

Analysis itself (Fourier, 1807).

1210 For further reading, see:

• Titchmarsh, E.C., Introduction to the Theory of the Fourier Integrals, Oxford

University Press, 1948, 394 pp.

• Sneddon, I.N., Fourier Transforms, McGraw-Hill, 1951, 542 pp.

• Booth, A.D., Fourier Technique in X-Ray Organic Structure Analysis, Cam-

bridge University Press, 1948, 106 pp.

• Carslaw, H.S., An Introduction to the Theory of Fourier’s Series and Integrals,

Dover, 1950, 368 pp.

• Papoulis, A., The Fourier Integral and its Applications, McGraw-Hill, 1962,

318 pp.

• Lighthill, M.J., Fourier Analysis and Generalized Functions, Cambridge Uni-

versity Press, 1962, 79 pp.
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The FFT transformed entire industries, as well as areas of research (e.g.
crystallography) that rely heavily on the Fourier Transform.

The Fast Fourier Transform

Even with the sampling theorem, the number of samples in realistic phys-

ical signals is such that the calculation of the Fourier coefficients by direct

methods is time-consuming even when electronic computers are used. To

address this problem, J. Cooley and J. Tukey introduced the Fast-Fourier-
Transform (FFT) (1965). With it, calculations could be done in seconds that

previously were too costly to do at all.

The key to FFT is an algorithm that reduces the number of computations

necessary to compute a Fourier transform of a signal with n values from n2

to n log n. The idea goes back to Gauss (1805), predating Fourier analysis

itself (1807).

The Fourier transform of a time signal g(t) is G(ω) =
∫ ∞

− ∞ g(t)e−iωt dt.

With ω = 2πf , we have the pair

G(f) =
∫ ∞

− ∞
g(t)e−2πift dt, g(t) =

∫ ∞

− ∞
G(f)e2πift df.

Because a digital computer works only with discrete data, the numerical

computation of the Fourier transform requires discrete sampled values of g(t),
which we call gk. In addition, a computer can compute the transform G(f)
only at discrete value of f , that is, it can provide discrete samples of the

transform, Gl.

• Wiener, N., The Fourier Integral and Certain of its Applications, Dover, 1958,
201 pp.

• Byerly, W.E., Fourier Series, Dover, 1959, 287 pp.
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If g(kT ) and G(lf0) are the kth and lth samples of g(t) and G(f),
respectively, and M is the number of samples in a signal of length L, then
one defines

gk = T0g(tk) =
L

M
g(kT0), Gl = G(lf0), f0 =

1
L

.

The Discrete Fourier Transform (DFT) is then defined as

Gl =
M −1∑

k=0

gkwkl, w = e− 2πi
M , l = 0, 1, 2, 3, . . . , M − 1 (1)

gk =
1
M

M −1∑

l=0

Glw
−kl, k = 0, 1, 2, 3, . . . , M − 1 (2)

Since the sum has to be performed for every 0 ≤ l < M − 1 and each sum
has length M , the direct summation requires at least M2 multiplications.
But this is not actually necessary, due to the redundancy in the values of the
rotating unit vector (in the complex plane) wkl = exp(−2πi kl

M ).

We can see this in either of the two following ways. First, algebraically (in
case M is even)

Gl =
M −1∑

k=0

e− 2πikl
M gk

=

M
2 −1∑

k=0

e−2πi(2k) l
M g2k +

M
2 −1∑

k=0

e−2πi(2k+1) l
M g2k+1

=

M
2 −1∑

k=0

e−2πi(2k) l
M g2k + wl

M
2 −1∑

k=0

e−2πi(2k) l
M g2k+1

= Geven
l + wlGodd

l

(3)

Thus, in order to perform a Fourier transform of length M , one needs to do
two Fourier transforms: Geven and Godd of lengths M

2 , on the even and
odd elements, respectively.

These two, so called subtransforms can then be combined with the appro-
priate factors wl to give the desired Fourier transform G.

Note that in (3), the index l may be restricted to the interval
0 ≤ l ≤ M

2 − 1, because Geven
l and Godd

l are periodic in l with length M
2 .

Now, by a reapplication of this principle, the two transforms are themselves
a sum of two transforms of length M

4 .
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Finally, a recursive scheme reduces the problem down to successive even
and odd subdivisions of the data, until reaching the one-point transform.

It can be shown that in one dimension the FFT requires M log2 M op-
erations (multiplications) as compared to M2 by the direct FT.

In two dimensions an array of M1M2 points requires (M1M2) log2(M1M2)
for the FFT as compared to (M1M2)(M1 + M2) for the DFT. For an array
of 1024 × 1024 this represents a speed gain of 50, 000!

An alternative way to show the same thing goes back to Gauss (1805) [in
the matrix notation of Cayley (1858)]. It hinges on the simple observation
that (1) can be recast as the linear transformation

⎡

⎢
⎢
⎢
⎢
⎢
⎣

G0

G1

G2

...
GM −1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

w0 w0 w0 . . . w0

w0 w1 w2 . . . wM −1

w0 w2 w4 . . . w2(M −1)

...
...

...
...
...
...

...
w0 wM −1 w2(M −1) . . . w(M −1)(M −1)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

g0

g1

g2

...
gM −1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4)

or
[GM ] = [FM ][gM ] (5)

If there are only M sampled points, then there are only M spectrum points.
It thus seems, at first sight that the generation of all M coefficients GM −1

requires at least M2 multiplication. But this is not the case; all elements
of the matrix FM in (4) have a peculiar character which can be used for
simplification of the matrix.

Indeed, considering wkl = exp(−2πi kl
M ) as a rotating unit vector in the

complex plane, and choosing M = 2N , the redundancy of wkl for all per-
missible values of k and l leads to the factorization

F2N =
[
I2N −1 D2N −1

I2N −1 −D2N −1

] [
F2N −1 0

0 F2N −1

] [

shuffle

]

(6)

where F2N −1 is the matrix in (4), I2N −1 is the unit matrix with 2N −1

elements in its diagonal, [shuffle] is a column vector with shuffled components

of g2N −1 , and D2N −1 is a diagonal matrix of order 2N −1 with diagonal

values of (w0, w1, w2, . . . , w2N −1
), w = e−2πi s

2N , s = 0, 1, 2, . . . , 2N −1.

This factorization cuts the work of computing a Fourier transform almost
in half. But F2N −1 can again be factorized in the same way, giving new
submatrices with 2N −2 elements in each, which themselves can be factorized.
At the end, this systematic reduction of the number of multiplication leads
to M log2 M basic multiplications.
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1949–1978 CE Michael James Lighthill (1924–1998, England). Mathe-
matician. A prominent applied mathematician of the 20th century. A pioneer
in supersonic aeronautics, in oceanographic studies and astrophysics.

He created the field of bio-fluid-dynamics (the study of how animals move
through air or water), as well as the study of the fluid mechanics of the
cardiovascular system.

Lighthill won a scholarship to Trinity College, Cambridge when he was
just 15.

After WWII he went to teach at Manchester University, where he became
a professor. He soon became known for his theoretical work on jet engines,
discovering the Lighthill law which states that the acoustic power radiated by
a jet is proportional to the 8th power of the jet speed.

In 1953 he became a fellow of the Royal Society and in 1959 moved to be
Director of the Royal Aircraft Establishment at Farnborough for five years.
There, his work in wind-tunnels was to prove critical to the development of
the Concorde.

During 1969–1979 he served as Lucasian Professor of Mathematics at Trin-
ity College, Cambridge, continuing to publish on fluid dynamics (particularly
the theory of waves in ocean and atmosphere) and on chaos theory and the
unpredictability of large systems. In 1979, Lighthill became a provost of Uni-
versity College, London.

He died on July 17, 1998 while swimming around the Channel Island of
Stark.

1950–1980 CE Heinz Kohut (1913–1981, USA). Psychoanalyst and psy-
chiatrist. Developed Self–Psychology1211, a school of thought within psycho-
analytic theory that transformed the modern practice treatment approach.
Veering away from the psychoanalysis dogma, he submitted a new idea that
went beyond Freud’s conceptualization.

In the aftermath of WWII and the Holocaust, Freudian analysis was too
focused on individual guilt and failed to reflect the emotional interests and

1211

• Kohut, H., The Analysis of Self, 1971

• Kohut, H. and A., Goldberg, How Does Analysis Care?, 1984
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needs of people struggling with issues of identity, meaning, ideas, and self–
expression. Though he initially tried to remain true to the traditional analytic
viewpoint with which he had become associated and viewed the self as a
separate but coexistent to the ego, Kohut later rejected Freud’s structural
theory of the id, ego, and superego. He then developed his ideas around what
he called the tripartite self.

According to Kohut, this three-part self can only develop when the needs
of one’s self states, including one’s sense of worth and well–being, are met
in relationships with others. In contrast to traditional psychoanalysis that
focused on drives (instinctual motivations of sex and aggression), internal
conflicts and fantasies, self psychology thus placed a great deal of emphasis
on the vicissitudes of relationships.

Kohut expanded on his theory during the 1970’s, a time in which aggressive
individuality, overindulgence, greed, and restlessness left many people feeling
empty, fragile and fragmented.

A key concept in Kohut’s psychology is abstract empathy. By that he
meant the role of empathy in defining the science of psychoanalysis. According
to Kohut, any science is defined by an object of study and a method by which
the data of that science is collected.

For example, the physical sciences have as their object of study the dis-
cernible world that can be observed via the senses and those instruments that
enhance the senses.

On the other hand, psychoanalysis has as its object of study the inner life
of man (the data of human experience) while the method by which the analyst
makes his observations is introspection into oneself and vicarious introspection
or empathy into another.

In other words, empathy is nothing more than the “tool” or “instrument”
that permits psychoanalysts to collect their data, which over time can be
translated into explanations in the clinical setting and abstract constructs in
the theoretical realm. It was this methodology that made it possible for Freud
to discover transference, countertransference, defenses, and resistance.

As Freud moved away from the empathic mode of data collecting, he
introduced constructs and assumptions that belong to other sciences.

One example is that of the “drive”, which was assumed to be on the border-
land between the psyche and the soma. Thus “drive theory” psychoanalysis
could no longer be viewed as a pure psychology but rather as an amalgam of
psychology and biology, that is, a psycho-biology or bio-psychology.

By the operational definition of empathy Kohut is referring to the clinically
relevant definition of empathy as “the capacity to think and feel oneself into
the inner life of another person”.
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Derived from the German term Einfühlung, empathy evolved in its mean-
ing to connote “feeling into” or “searching one’s way” into the experience of
another.

For Kohut, empathy is simply what allows an individual to know another’s
experience without losing one’s objectivity.

In other words, empathy is experience-near observation and nothing more.

By selfobject Kohut (1971, 1984) means the experience of another – more
precisely, the experience of impersonal functions provided by another – as
part of the self.

Selfobject transference, therefore, is the patient’s experience of the analyst
as an extension or continuation of the self, that is as fulfilling certain vital
functions that had been insufficiently available in childhood to be adequately
transformed into reliable self structure.

Because of its positive, open, and emphatic stance on human nature as
a whole as well the individual, self psychology is considered one of the “four
psychologies” (the others being Drive Theory, ego psychology, and object
relations); that is, one of the primary theories on which modern dynamic
therapists and theorists rely.

Though dynamic theory tends to place emphasis on childhood develop-
ment, Kohut believed that the need for such self–object relationships does
nor end at childhood but continues throughout all stages of a person’s life.

Kohut was born to Jewish parents and received his M.D in neurology at
the University of Vienna. He fled the Nazi occupation of Austria and settled
in Chicago as a member of Chicago Institute of Psychoanalysis.

1951–1973 CE Leonard Bernstein (1918–1990, USA). Distinguished
musician and scientific musicologist. An influential figure in the history of
classical and 20-th century music. In “The Unanswered Question-six lectures
at Harvard” (1973), he used contemporary linguistics to analyze and compare
musical construction to language. His other important publications are: “The
Joy of Music” (1959), “The Infinite Variety of Music” (1966) and “Young Peo-
ple’s Concerts” (1969).

Bernstein was born in Lawrence MA to a Russian Jewish family. He stud-
ied music at Harvard University and the Curtis Institute of Music in Philadel-
phia. At the age of 25 he was already an assistant conductor of the New York
Philharmonic Orchestra. He later conducted the Vienna Philharmonic (1970),
the Israel Philharmonic (1978) and the Berlin Philharmonic (1979) and was
appointed professor at Harvard University (1973).
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1951–2008 CE Martin Deutsch (1917–2002, USA). Physicist. Discov-
erer of Positronium. Measured and confirmed the existence of a substance
composed of a pair of electron and positron (positronium) whirling about
each other.1212

Deutsch was born to Jewish parents in Vienna. He moved to Zurich (1934)
and then to Cambridge MA (1935) where he enrolled at MIT. He received his
Ph.D. there (1941) and joined the Manhattan Project in Los Alamos, N.M
(1943). In 1946 he joined the physics faculty at MIT, retiring in 1987.

Positronium is a bound state of an electron and a positron which is formed
when these two particles are brought together at low enough relative speed.
They attract and orbit each other in a “dance of death”.

This metastable quasi–atom exists for a fraction of a second before the
e+e−–pair annihilate into γ rays; its two possible decay modes are 2γ and
3γ, depending on the orbital and spin of the initial positronium state. Math-
ematically, the positronium is exactly equivalent to an ideal hydrogen atom
(no nuclear structure) with two differences:

• The electron mass in all formula (Rydberg, Dirac etc.) is replaced by
the reduced mass of the e+e− pair; since the electron and positron have
equal masses, their reduced mass is exactly 1

2me

• The hyperfine splitting is much stronger than in hydrogen, because the
gyromagnetic ratio of both particles involves the Bohr magneton (no
nuclear magneton).

Since the dynamics of Positronium involve only QED phenomena (no nu-
cleus!), Positronium physics is an ideal test of QED. Its discovery and study
thus played a key role in the verification of modern QED theory of Feynman
et al.

Positronium has two important analogues: (1) the charmonium mesons
(composed of a mutually orbiting pair of charmed and anticharmed quark),
which decays into 2 or 3 gluons; (2) an exciton – a metastable state of an
electron and hole in a semiconductor; The two annihilate to produce one or
more lattice phonons.

1212 Positronium’s properties were predicted by Carl D. Anderson of Caltech in

1932.
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History of Biology and Medicine, V – The 20th century

In the 20th century, the rediscovery of Mendel’s work led to the rapid
development of genetics by T.H. Morgan and his students. By the 1930’s,
the combination of popular genetics and the natural selection hypothesis let
to the ‘neo-Darwinian synthesis’ and the rise of the discipline of evolution-
ary biology. New biological disciplines developed rapidly, especially after the
discovery of the DNA structure.

Following the cracking of the genetic code, biology has split between or-
ganizational biology (consisting of ecology, ethology, systematics, paleontology,
evolutional biology, developmental biology and other disciplines that deal with
whole organisms or groups of organisms) — and the constellation of disciplines
related to molecular biology (including: cell biology, biophysics, biochemistry,
neuroscience, immunology, and many other overlapping subjects).

In about 1902, the chromosome was identified as being the site of the genes,
and its central position in heredity and development was finally realized. By
the end of the 19th century all of the major pathways of drug metabolism
had been discovered. In the early decades of the twentieth century, minor
components of foods in human nutrition, the vitamins, began to be isolated
and synthesized. Then in the 1920’s and 1930’s the metabolic pathways of
life, such as the citric acid cycle and glycolysis, finally began to be worked
out by biochemists. This work continued to be very actively pursued for the
rest of the century and into the next. During 1939–1941 Fritz Lipmann
showed that ATP is the universal carrier of energy in the cell, and in the
mid-1950’s the power generators of the cell, the mitochondria, also began to
be understood.

Oswald Avery conclusively showed in 1943 that DNA was the genetic
material of the chromosome, not its protein. By 1953 James D. Watson
and Francis Crick showed that the structure of DNA was a double helix
and showed its probable connection to replication. The nature of the genetic
code was unraveled experimentally starting with the work of Nirenberg,
Khorana and others in the late 1950’s.

The history of molecular biology begins in the 1930’s with the convergence
of various, previously distinct and unrelated branches of biology: biochemistry,
genetics, microbiology, and virology. Numerous physicists and chemists also
took an interest in this new material.

As its name indicates, this new branch of biology attempts to explain the
phenomena of life starting from the macromolecular properties that gener-
ate them. Two categories of macromolecules in particular are the focus of the
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molecular biologist: 1) nucleic acids, among which the most famous is deoxyri-
bonucleic acid (or DNA), the constituent of genes, and 2) proteins, which are
the active agents of living organisms. The scope of molecular biology therefore
is to characterize the structure, function and relationships between these two
types of macromolecules. This relatively limited definition will suffice to allow
us to establish a date for the so-called “molecular revolution”, or at least to
establish a chronology of its most fundamental developments.

In 1940, George Beadle and Edward Tatum demonstrated the exis-
tence of a precise relationship between genes and proteins. In 1944, Oswald
Avery, working at the Rockefeller Institute of New York, demonstrated that
genes are made up of DNA. In 1952, Alfred Hershey and Martha Chase
confirmed that the genetic material of the bacteriophage, the virus which in-
fects bacteria, is made up of DNA. In 1953, James Watson and Francis
Crick discovered the double helical structure of the DNA molecule. In 1961,
Francois Jacob and Jacques Monod hypothesized the existence of an inter-
mediary between DNA and its protein products, which they called messenger
RNA. Between 1961 and 1965, the relationship between the information con-
tained in DNA and the structure of proteins was determined: there is a code,
the genetic code, which creates a correspondence between the succession of
nucleotides in the DNA sequence and a series of amino acids in proteins. At
the beginning of the 1960’s, Monod and Jacob also demonstrated how certain
specific proteins, called regulative proteins, latch onto DNA at the edges of
the genes and control the transcription of these genes into messenger RNA;
they direct the “expression” of the genes.

The chief discoveries of molecular biology took place in a period of only
about twenty-five years. Another fifteen years were required before new and
more sophisticated technologies, united today under the name of genetic engi-
neering, would permit the isolation and characterization of genes, in particular
those of highly complex organisms.

If we evaluate the molecular revolution within the context of biological
history, it is easy to note that it is the culmination of a long process which
began with the first observations through a microscope in the 18th century.
The aim of these early researchers was to understand the functioning of living
organisms by describing their organization at the microscopic level. From the
end of the 18th century, the characterization of the chemical molecules which
make up living beings gained increasingly greater attention, along with the
birth of physiological chemistry in the 19th century, developed by the German
chemist Justus von Liebig and following the birth of biochemistry at the
beginning of the 20th, thanks to another German chemist Eduard Buchner.
Between the molecules studied by chemists and the tiny structures visible
under the optical microscope, such as the cellular nucleus or the chromosomes,
there was an obscure zone, “the world of the ignored dimensions,” as it was
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called by the chemical-physicist Wolfgang Ostwald. This world is populated
by colloids, chemical compounds whose structure and properties were not well
defined.

The development of molecular biology is also the encounter of two disci-
plines which made considerable progress in the course of the first thirty years
of the twentieth century: biochemistry and genetics. The first studies the
structure and function of the molecules which make up living things. Be-
tween 1900 and 1940, the central processes of metabolism were described: the
process of digestion and the absorption of the nutritive elements derived from
alimentation, such as the sugars. Every one of these processes is catalyzed
by a particular enzyme. Enzymes are proteins, like the antibodies present in
blood or the proteins responsible for muscular contraction. As a consequence,
the study of proteins, of their structure and synthesis, became one of the
principal objectives of biochemists.

The second discipline of biology which developed at the beginning of the
20th century is genetics. After the rediscovery of the laws of Mendel through
the studies of Hugo de Vries, Carl Correns and Erich von Tschermack
in 1900, this science began to take shape thanks to the adoption by Thomas
Hunt Morgan, in 1910, of a model organism for genetic studies, the famous
fruit fly (Drosophila melanogaster). Shortly after, Morgan showed that the
genes are localized on chromosomes. Following this discovery, he continued
working with Drosophila and, along with numerous other research groups,
confirmed the importance of the gene in the life and development of organ-
isms. Nevertheless, the chemical nature of genes and their mechanisms of
action remained a mystery. Molecular biologists committed themselves to the
determination of the structure, and the description of the complex relations
between, genes and proteins.

The development of molecular biology was not just the fruit of some sort
of intrinsic “necessity” in the history of ideas, but was a characteristically
historical phenomenon, with all of its unknowns, imponderables and contin-
gencies: the remarkable developments in physics at the beginning of the 20th

century highlighted the relative lateness in development in biology, which be-
came the “new frontier” in the search for knowledge about the empirical world.
Moreover, the developments of the theory of information and cybernetics in
the 1940’s, in response to military exigencies, brought to the new biology a
significant number of fertile ideas and, especially, metaphors.

The choice of bacteria and of its virus, the bacteriophage, as models for
the study of the fundamental mechanisms of life was almost natural — they
are the smallest living organisms known to exist — and at the same time
the fruit of individual choices. This model owes its success, above all, to the
fame and the sense of organization of Max Delbrück, a German physicist,
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who was able to create a dynamic research group, based in the United States,
whose exclusive scope was the study of the bacteriophage: the School of the
Phage.

The geographic panorama of the developments of the new biology was con-
ditioned above all by preceding work. The US, where genetics had developed
the most rapidly, and the UK, where there was a coexistence of both genetics
and biochemical research of highly advanced levels, were in the avant-garde.
Germany, the cradle of the revolutions in physics, with the best minds and
the most advanced laboratories of genetics in the world, should have had a
primary role in the development of molecular biology. But history decided
differently: the arrival of the Nazis in 1933 — and, to a less extreme degree,
the rigidification of totalitarian measures in fascist Italy — caused the emi-
gration of a large number of Jewish and non-Jewish scientists. The majority
of them fled to the US or the UK, providing an extra impulse to the scientific
dynamism of those nations. These movements ultimately made molecular
biology a truly international science from the very beginnings.
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Table 5.31: Notable Biologists, Biochemists and Men of Medicine

(1895–1950)

Key:

BI = Biochemistry P = Physiology PG = Population Genetics
BP = Biophysics IM = Immunology EM = Embryology
CR = Crystallography M = Medicine PA = Pathology
BO = Botany BA = Bacteriology PC = Physical Chemistry
B = Biology H = Heredity MB = Mathematical Biology
S = Surgery N = Neuroscience BT = Biotechnology
CY = Cytology V = Virology MB = Molecular Biology
A = Anatomy PA = Paleontology EN = Endocrinology
NU = Nutrition C = Chemistry EP = Epidemics

PR = Pharmacology

Name fl. specification NP

Edward Buchner 1892–1901 Fermentation C 1907

W.C. Röntgen 1895 X-rays M, BP 1901

C.S. Sherington 1895–1930 Neuron,
synapse

N 1932

M. von Gruber 1896 M, BA

Walter Reed 1896–1902 Yellow Fever S, M

J.B.V. Bordet 1898–1919 BA, IM 1919

H. Dresser 1899 Aspirin

Jacque Loeb 1899–1913 B

Carl Correns 1900 Heredity BO, G

Eric von Tschermak 1900 Heredity BO, G

Hugo de Vries 1900–1907 BO, G

Karl Landsteiner 1901–1940 Blood types IM, PA

W.S. Sutton 1902–1903 M, G, H

A.E. Garrod 1902 M, BI, G

W.M. Bayliss 1902–1908 Hormones P

E.N. Starling 1902–1908 Hormones P

W. Einthoven 1903 Electro-
cardiograph

M, P 1924

Robert Barany 1903–1910 Inner ear P, M 1914

Carl Neuberg 1903–1911 M, B, BI

Arthur Harden 1905 BI
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Table 5.31: (Cont.)

Name fl. specification NP

R.M. Willstätter 1905–1925 Photosynthesis BI 1915

Alexis Carrel 1905 Heat Surgery B, S

Herman Nernst 1906 ‘Nernst
Equation’

PC, N

Emil Hermann Fischer 1907 Peptide bond C, BI

Axel Holst 1907 Scurvey NU, BI

Theodore Frölich 1907 Scurvey NU, BI

G.H. Hardy + W.
Weinberg

1908 M, PG

W.L. Johannsen 1908–1909 Gene P, H

Aaron Levene 1909–1929 RNA, DNA BI

Hans Fischer 1910 Chlorophyll;
hemin

P 1930

T.H. Morgan 1910–1917 H, G 1933

Casimir Funk 1912 Vitamin BI

F.G. Hopkins 1912 Vitamin BI

O.H. Warburg 1912 CY, BI

A.V. Hill 1913 P 1922

L. Michaelis 1913 P

E.V. McCollum 1913–1922 BI, M

George de Hevesy 1913–1935 Radioactive
tracing

M, BP 1943

Bela Schick 1913–1942 M, IM

Clement von Pirquet 1913 Allergy M, IM

E.C. Kendall 1914 BI 1950

Adolf O.R. Windaus 1915–1938 Cholesterol BI 1928

F.W. Twort 1915–1917 Bacteriophage BA

Felix d’Herelle 1915–1917 Bactoriophage BA

D. da Roche Lima 1916 BA

H.T. Ricketts 1916 BA

O.F. Meyerhof 1918 M, B, P, BI 1922

B.A. Houssay 1919–1943 Pituitary
gland

P, EN 1947

Karl Ereky 1919 Biotechnology BT

E.D. Adrian 1919 M, P 1932
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Table 5.31: (Cont.)

Name fl. specification NP

A.J. Lotka 1920 MB

Herbert M. Evans 1920 Human
growth

hormone

BI, P

Otto Loewi 1920–1929 Neurobiology N 1936

Henry H. Dale 1920–1929 Neurobiology N 1936

Joseph Erlanger 1921–1935 Neurobiology N 1944

H.S. Gasser 1921–1935 Neurobiology N 1944

F.G. Banting + J.J.R.
Macleod

1921 Insulin M, P 1923

R.A. Fisher 1921–1942 G

E.B. Harvey 1924 Induction B, EM

Hans Spemann 1924 Induction B, EM 1935

J.B.S. Heldane 1924 Induction B, EM 1935

J.D. Bernal 1924–1968 X-ray crys-
tallography

CR, BP, MD

Hans Berger 1924–1929 EEG P, N

A.I. Oparin 1924–1957 Origin of Life BI

Reymond Dart 1925 Origin of
Man

A, PA

Vito Volterra 1926–1931 MB, PG

Vladimir Varadansky 1926 Biogeo-
chemistry

BI

Hermann J. Muller 1927 X-ray, gene-
mutation

G 1946

Bernhard Zondek 1927 Sex hormones P, M, G

W.O. Kermack 1927 EP

A.G. McKendrick 1927 EP

Barbara McClintock 1927–1950 ‘Jumping
Genes’

G 1983

Alexander Fleming 1928–1940 Penicilin M, BA 1945

Ernst Boris Chain 1928–1940 Penicilin M, BA 1945

Howard W. Florey 1928–1940 Penicilin M, BA 1945

Georg von Bekesy 1928–1960 Physiology of
hearing

P, BP 1961
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Table 5.31: (Cont.)

Name fl. specification NP

W.C. Rose 1930 Essential
amino acids

BI, P

Adolf Butenandt 1931–1934 Sex hormones 1939

Edward A. Doisy 1931–1934 Sex hormones

L. Ruzicka 1931–1934 Sex hormones 1939

Linus Pauling 1931–1946 Hydrogen
bond

C 1954

Sewell Wright 1931–1968 PG

Rene J. Dubos 1931–1939 Enzymes,
antibiotics

BI, BA

Oswald T. Avery 1931–1943 Enzymes,
gene, DNA

BI, BA

Gerhard Domagk 1932 Prontosil M, PA 1939

Walter B. Cannon 1932 Homeostasis P

H.A. Krebs 1932–1937 Krebs’ cycle BI 1953

Fritz Lipmann 1932–1937 Coenzyme A M, P 1953

Ragnar Granit 1932–1956 Vision P 1967

Haldan K. Hartline 1932–1956 Vision P 1967

N. Reshevsky 1933–1946 MB

Max Delbruck 1933–1946 Molecular
Biology

MB, B, P 1969

Rudolf Schoenheimer 1934–1941 M, BI

George Wald 1934–1971 Vision BI 1967

Albert Györgi 1935 Cellular
energy

metabolism

P, BI

W.M. Stanley 1935 Enzymes BI 1946

J.H. Northrop 1935 Enzymes BI 1946

J.B. Summer 1935 Enzymes BI 1946

Gerti and Carl Cori 1935 Cori cycle BI 1947

A.N. Belozersky 1935–1939 DNA BI

Arthur Tansley 1935 Ecosystems B

F.C. Bawden 1937 RNA BI

A.W.K. Tiselius 1937 Serum
proteins

BI 1948
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Table 5.31: (Cont.)

Name fl. specification NP

Selig Hecht 1938 Vision BP

Max F. Perutz 1939–1968 Hemoglobin BI 1962

M. David Kamen 1940 Carbon 14 BI

Abraham S.
Waksmann

1940 Streptomycin MI, M 1952

George Beadle 1940 Genes and
proteins

BI, G 1958

Edward Tatum 1940 Genes and
proteins

BI, G 1958

Dorothy M. Hodgkin 1942–1945 X-ray crys-
tallography

BI, CR 1964

S.E. Luria 1942 BI, M 1969

W.J. Kolff 1943 Kidney
machine

M

A.J.P. Martin 1944 Paper chro-
matography

BI 1952

R.L.M. Synge 1944 Paper chro-
matography

BI

G. Pincus 1944 Contraceptives M

A.L. Hodgkin 1945–1952 Neurobiology N 1963

Andrew F. Huxley 1945–1952 Neurobiology N 1963

Julius Axelrod 1945–1965 Neurobiology PR 1970

Bernard Katz 1945–1965 Neurobiology BP 1970

F.A. Lipmann 1947 Bioenergetics BI 1953

A.R. Todd 1947 ADP, ATP BI

Arthur Kornberg 1947–1953 DNA BI 1959

Severo Ochoa 1947–1953 RNA BI 1959

Tadeus Reichstein 1948 Hormones BI 1950

P.S. Hence 1948 Hormones BI 1950

E. Chargaff 1949 DNA BI

Melvin Calvin 1949 Calvin’s cycle BI 1961

Peter Medawar 1949–1957 Imm.
tolerance

Z, IM 1960

Alick Isaacs 1951–1957 Interferon V

Jean Lindemann 1951–1957 Interferon V
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Table 5.31: (Cont.)

Name fl. specification NP

Robert B. Woodward 1951 Cortisone C 1965

Charles B. Huggins 1951 Hormones S, P 1966

Alfred Hershey 1952 DNA BA 1969

Martha C. Chase 1952 DNA B

Ulf von Euler 1952 Neurobiology PR 1970

F. Sanger 1953 Insulin BI 1958

Frederick Hopkins Vitamins 1929

Carl von Voit Caloric
energy

P

Max Rubner Caloric
energy

P

Christiaan Eijkman Vitamins M, P 1929
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Zürich, 1985.

Gillispie, C.C. (ed), Dictionary of Scientific Biography , 15 Volumes, Charles
Scribner’s Sons: New York, 1970.

World Book Encyclopedia, 22 Volumes, Field Enterprises Educational Cor-
poration: Chicago, 1977.
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Baldwin, F.J., 4655

Ballard, Robert, 3207

Ballot, Christoph Buys, 3573

Balmer, Johann Jakob, 3281, 3541

Bamberger, Eugen, 3133

Banach, Stefan, 3065, 3071, 3239,
3556, 3586, 3685, 3880, 4389,
4437, 4444, 4604

Banting, Frederick Grant, 2973,
4798

Bard, Allen J., 4139

Bardeen, John, 3197, 3931, 4127,
4744, 4836

Barkhausen, Heinrich Georg, 3079,
3501

Barnes, Ernest William, 2893, 3196

Barrow, John D., 3884

Bartholinus, Erasmus, 3890

Barton, Derek Harold Richard,
4946

Barton, Otis, 4256

Bateman, Harry, 3074, 3601, 4469

Bateson, William, 3167, 4515

Bayliss, William Maddock, 2968

Beadle, George, 4962

Beck, Adolf, 3606

Becquerel, Antoine-César, 4134

Becquerel, Edmund, 3921, 3928

Becquerel, Henri, 2874, 4641

Beebe, William, 4256

Begun, Joseph, 2903

Behring, Emil von, 3500

Beijerinck, Martinus Willem, 2896
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3008, 4132, 4142, 4159

Carothers, Wallace Hume, 3136,
4256

Carrel, Alexis, 3053

Carrier, Willis Haviland, 2975

Carroll, Lewis, 3021
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Goursat, Édouard Jean Baptist,
2834

Grassmann, Hermann Günther, 3338

Green, George, 2836, 2844

Greenleaf, J.E., 3271
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3607

Hale, William, 2993, 2996

Hall, Asaph, 2854, 3851

Hall, Edwin Herbert, 3893
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4462, 4538
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Harkins, William Draper, 3520
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2920–2923, 4540

Henson, William Samuel, 2986,
2988, 3051

Heraclitos, of Ephesos, 3306, 3707

Hermite, Charles, 2835, 3296, 3839,
3841
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Herschel, John, 3151, 3284, 4173
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3151, 3284, 3424, 3640

Hershey, Alfred Day, 4180, 4321,
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Hippodamos, of Miletos, 2851

Hire, Philippe de La, 4830

Hittorf, Johann Wilhelm, 3809,
4835

Hodge, W.V.D., 4435, 4446, 4456

Hodgkin, Alan Lloyd, 3208, 4649

Hodgkin, Dorothy Crowfoot, 2975,
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Hoffer, Eric, 4274, 4695

Hoffman, Albert, 4479

Hoffman, Felix, 2898

Hoffman, Ronald, 4637

Hoffmann, Banesh, 4413

Hoffmann, Ernst Theodor Amadeum,
2856

Hölder, O.L., 2882

Hölderlin, Friedrich, 3758, 4270

Holland, John Philip, 2895
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Hooke, Robert, 3096, 3314, 3495,
3570, 3890, 4830, 4941

Hooker, Joseph, 3639

Hopf, E., 4365, 4372

Hopf, Heinz, 4435

Hopkins, Frederick Gowland, 3216
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Horkheimer, Max, 4464, 4464–
4465
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Hurwitz, Adolph, 2931
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Husserl, Edmund, 2943, 3759, 4284

Hutchinson, Miller Reese, 3801

Hutton, James, 3316, 3523, 4106,
4924

Huxley, Aldous Leonard, 4649

Huxley, Andrew Fielding, 4649

Huxley, Julian Sorell, 4649

Huxley, Leonard, 4649

Huxley, Thomas Henry, 4649
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3851, 3855, 3890, 4359, 4941,
4921

Hyatt, John Wesley, 3137
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I-Hsing (see: Xing, Yi)

Icaros, 2851
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Infeld, Leopold L., 3029, 3124,
3352, 3354, 3650, 4413
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Jansky, Karl Guthe, 3940
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Johnson, S.A., 3271
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Kaluza, Theodor Franz Eduard,
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Karmarker, Narenda, 4817

Kastler, Alfred, 4860

Kauffman, Louis, 4727

Kaufmann, Walter, 2889
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Kellerman, Bernhard, 2862
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Kennely, Arthur, 3605, 3810
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3126, 3295
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Pénaud, Alphonse, 2987

Penfield, Wilder, 4812

Penney, William G., 3673, 3897,
3913, 3917

Penrose, Roger, 3356, 3830, 4334

Penzias, Arno, 3799

Perkins, G.A., 3955

Perko, K., 4715

Perraudin, Jean Pierre, 3523

Perret, Frank Alvord, 2966

Perrin, Jean Baptiste, 3019, 3098,
3130, 3144, 3559, 4481

Perutz, Max F., 3208, 3633, 4511

Pessoa, Fernando Antonio Nogueira,
2870, 4273, 4293–4296, 4572

Petit, Alexis Thérèse, 3069, 3184,
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3014

Scarpa, Antonio, 3801

Schauder, Juliusz Pawel, 3540,
3685, 3879, 4435

Schawlow, Arthur L., 4860

Scheele, Carl Wilhelm, 3571, 4251,
4749

Scheiner, Christoph, 3529

Scherrer, Paul Hermann, 3416

Schiaparelli, G.V., 2862

Schick, Bela, 3277

Schiele, E., 3298, 3551

Schiff, Leonard I., 3363

Schiffer, Menahem Max, 4504,
4565

Schimper, Karl, 3523

Schleiden, Matthias, 4783

Schlick, Moritz, 3549, 3612

Schmeidler, Werner, 3458

Schmidt, Bernhard Voldemar, 3837

Schmidt, Erhard, 3065

Schmidt, Maarten, 3362

Schmiedenberg, Oswald 4524

Schoenheimer, Rudolf, 4261, 4539

Schönbein, Christian Friedrich, 3137

Schönberg, Arnold, 3551

Schottky, Walter Hans, 3931

Schouten, Jan A., 3330

Schrieffer, Robert J., 4127

Schrödinger, Erwin, 2833, 3234,
3334, 3510, 3542, 3620, 3635,
3649, 3650–3656, 3658, 3660–
3663, 3667, 3672, 3680, 3686,
3688, 3690, 3695, 3712, 3715,
3710, 3782, 3786, 3790, 3697,
3898, 3917, 3943, 4102, 4127,
4273, 4538, 4577, 4605, 4609,
4672, 4729, 4742, 4869, 4880,
4883, 4895–4897, 4903, 4907,
4908, 4928, 4934

Schroeder, Gerhard, 2830, 3149

Schubert, H., 3552, 4727

Schur, Issai, 2965, 3458

Schuster, Arthur, 2871



Name Index 5015

Schwann, Theodor Ambrose Hum-
bert, 4783

Schwarz, David, 2991

Schwarz, Karl Hermann Amandus,
2908, 3935, 4357

Schwarzschild, Karl, 2905, 2906,
2931, 3048, 3117, 3273, 3298,
3327, 3351, 4485, 4335

Schwinger, Julian Seymour, 3124,
3650, 3691, 4582, 4879, 4897

Sciama, D.W., 3464

Scott, E.L., 2973

Scott, Robert Falcon, 2902, 2964,
3052

Seaborg, Glenn Theodore, 4531

Seabury, Richard W., 3137

Searle, John, 3248, 4285

Secchi, Pietro Angelo, 3048

Seeback, Thomas Johann, 4099

Seeliger, Hugo von, 3151, 3318

Sefström, Nils, 4749

Segner, Johann Andreas von, 4753
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Wüst, Georg Adolf, 3574

X

Xenophanes, of Colophon, 4924

Xing, Yi, 4939

XuXun, Zhang, 4939

Y

Yalow, Rosalyn Sussman, 2975

Yeager, Charles Elwood, 4729

Young, Thomas, 2902, 4356–4358,
4856



Name Index 5023

Yukawa, Hideki, 4117, 4319, 4642,
4732

Z

Zagier, Don, 3169

Zariski, Oscar (Ascher), 3274, 4435,
4479
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fountain pen, 4470, 4472

Fourier coefficients, 2934, 4954

Fourier optics, 4532

Fourier series, 2950, 3152, 3195,
3283, 3632, 3747, 3784

Fourier transform, 2831, 2876,
3563, 3770, 4359, 4498, 4532,
4910, 4953–4955, 4956

fractal, 2923, 2977, 3144, 3150,
3289, 3426–3431, 3443, 3513,
4423

frame-dragging, 3364

France, 2825, 2827, 2832–2835,
2854, 2857, 2859, 2871, 2873,
2877, 2886, 2895, 2899, 2900,
2942, 2950, 2979, 2981, 2985,
2989, 3014, 3053, 3058, 3060,
3070, 3075, 3144, 3172, 3190,
3268, 3289, 3297, 3299, 3320,
3426, 3492, 3541, 3566, 3570,
3573, 3590, 3598, 3601–3603,
3688, 3708, 3723, 3756, 3891,
3928, 3940, 4099, 3880, 4134,
4303, 4369, 4413, 4424, 4507,
4521, 4532, 4536, 4556, 4691,
4706, 4732, 4749, 4860

Franco-Prussian War, 2990, 4691

Fraunhofer lines, 3284

Fréchet derivative, 3067, 3071

free energy, 3400, 3875, 4136, 4141,
4148, 4160, 4736, 4742, 4753,
4787, 4790

friction, 2948, 2987, 2999, 3004,
3005, 3059, 3192, 3205, 3306,
3365, 3573, 3681, 4120, 4325,
4381

fructose diphosphate, 3017

fuel cell, 4129, 4131, 4138, 4158–
4161, 4165, 4169

fumaric acid, 4793

function space, 2933, 3071

functional analysis, 2872, 2956,
3006, 3063–3065, 3067, 3586,
3684, 3747, 3842, 4389, 4437,
4604

functor, 4429

fundamental frequency, 4476

fundamental group, 4433, 4442–
4445

Fundamental Theorem of Algebra,
3126

Fundamental Theorem of Arith-
metic, 3170, 3174

fungus, 3014, 4754

fusion (see: nuclear fusion)

future light-cone, 3112

fuzzyball, 4823
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G

galactic rotation, 3683

galaxy, 3315

Galilean covariance, 3022

Galilean transformation, 3021, 3095–
3097, 3114

gallium, 3015, 3918, 3922, 4173,
4842

galvanometer, 2976, 3060, 3288,
3606

game theory, 2878, 3125, 3616,
3724–3729, 3748, 4420, 4582

gamma correction, 3927

gamma rays, 3266, 3270, 3805,
4117, 4257

gas turbines, 2999

gasohol, 4144

gasoline engine, 2895

Gâteau derivative, 3072

gauge theories, 2968, 4462

Gauss’ divergence theorem, 2845,
3660

Gauss-Jordan elimination proce-
dure, 4816

Gaussian curvature, 3937, 4583

Gaussian curve, 3559

Gaussian distribution, 3560

Gaussian integrals, 4908

Geiger counter, 3144

Gelfond theorem, 3838

gene(s), 2960–2962, 2975, 3152,
3190, 3495, 3546, 3953, 4581,
4609, 4801, 4947

general ergodic theorem, 3274

general theory of relativity (GTR),
2834, 3018, 3027, 3335, 3338,
3356, 3816, 3823, 3830, 4414,
4933

generalized functions, 4390

generalized Stokes’ theorem, 2844

generating function, 2926, 3164,
3563, 4910

generator, 3000, 3074, 3105, 3204,
3240, 3429–3430, 3565, 3694,
3957, 4131, 4322, 4324, 4684

genetic code, 2904, 2929, 3382,
3799, 4607, 4754, 4961

genetic drift, 2961, 4104

genetic engineering, 4948, 4962

genetics, 2938, 2959, 2962, 3152,
3167, 3330, 3373, 3380–3383,
3500, 3546, 3777, 3889, 4104,
4514, 4725, 4946, 4961

genome, 3380, 4518

genotype, 2938, 2960, 3152

genus, 3584, 3682, 3936, 4583, 4774

geodesic, 3348, 3354, 3584, 3766,
3830
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geodetic precession, 3363

geological record, 3146, 3247, 3532,
4108

geology, 3006, 3189, 3235, 3259,
3317, 3525, 3530, 3600, 3896,
4924

geomagnetic reversal, 3058

geometrical optics, 3186, 3873,
4625

geostrophic wind, 3573, 3578, 4710

geothermal power, 3006, 3009

germanium, 3015, 3197, 3917–
3918, 3923, 3948, 4837, 4841

Germany, 2825, 2830, 2854, 2856,
2859, 2862, 2872, 2876, 2886–
2888, 2894, 2900, 2902–2905,
2906, 2924, 2930, 2938, 2942–
2946, 2960, 2962, 2965, 2967,
2979, 2982, 2987, 2990–2994,
2995–2998, 3000, 3004, 3010–
3012, 3015, 3026–3027, 3048,
3055, 3070, 3089, 3125, 3136,
3144, 3149, 3167, 3172, 3184–
3187, 3190, 3196, 3204, 3207,
3233, 3240, 3248, 3264, 3268,
3273, 3274, 3287–3289, 3295–
3302, 3320, 3323–3326, 3330,
3357, 3373, 3387, 3398, 3422,
3425–3426, 3445, 3449, 3457–
3460, 3471–3492, 3501–3508,
3520, 3523, 3529, 3534, 3536,
3541, 3544, 3548, 3571, 3574,
3585, 3591, 3599, 3606, 3623,
3649, 3651, 3678, 3688–3691,
3695, 3723, 3746, 3757–3760,
3767, 3778, 3780, 3796, 3809,
3799, 3836–3838, 3847, 3891,
3910, 3928, 3942, 4115, 4118,

4119, 4134–4137, 4178, 4182,
4251, 4261, 4350, 4367, 4369,
4413, 4416, 4421, 4429, 4462,
4471, 4475, 4481, 4486, 4504–
4507, 4518, 4521, 4522, 4530,
4536–4539, 4541–4545, 4553,
4624, 4649, 4744, 4749, 4831,
4847, 4940, 4851, 4856, 4915,
4946, 4952

Gessler tube, 2980

Gibbs free energy, 4141

Gibbs’-phenomenon, 2928

globular clusters, 3418, 3641, 3644,
3646

gluconeogenesis, 4792

glucose, 3136, 3185, 3261, 3398,
3426, 3929, 4142, 4350, 4778,
4785–4798, 4945

glutamic acid, 4117

glycerine, 3005

glycerol, 4789, 4791, 4796, 4949

glycogen, 3136, 3426, 4350, 4785,
4792, 4795, 4798

Gödel’s incompleteness theorem,
3881, 4428

golden ratio, 3291

Göttingen University, 2831, 2876,
2906, 2924, 2930–2932, 2935,
2939, 2943, 2968, 2987, 3005,
3029–3048, 3056, 3074, 3089,
3093, 3186, 3193, 3205, 3234,
3242, 3273, 3288, 3302, 3324,
3357, 3458, 3472, 3504, 3522,
3541, 3545, 3600, 3623, 3696,
3784, 3799, 3838, 3847, 3940,
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4121, 4180, 4428, 4463, 4481,
4486, 4507, 4518, 4540, 4556,
4624, 4691

Gram-Charlier series, 3151

gramophone, 2902, 4851

graph theory, 4186

graphite, 3209, 4149, 4552, 4841,
4916

Grassman algebra, 2837

gravitation, 3017, 3028, 3233, 3286,
3314, 3317, 3328, 3335, 3338,
3341–3349, 3353, 3355–3357,
3361–3363, 3379, 3382, 3463,
3502, 3634, 3650, 3700, 3763,
3772, 3788, 3816, 3823, 3853,
4172, 4920, 4930–4935

gravitational collapse, 3634, 4485

gravitational field, 2906, 2939,
2946, 3112, 3121, 3144, 3233,
3326, 3339–3341, 3344–3348,
3352, 3361, 3363, 3425, 3463,
3608, 4108, 4402, 4413, 4772

gravitational instability, 3303

gravitational lensing, 4402

gravitational mass, 3024, 3190,
3337, 3339, 3345

gravitational perturbations, 3644

gravitational redshift, 3338

gravitational self-energy, 2940

gravitational wave, 3355, 3359

gravity, 2832, 2940, 2946, 2990,
3062, 3095, 3121, 3273, 3313,
3322, 3328, 3335, 3340–3341,
3346, 3356, 3359, 3364–3377,
3448, 3463, 3502, 3530, 3633,
3644, 3683, 3700, 3781, 3816,
3823–3824, 3841, 3854, 3882,
4172, 4191, 4386, 4414, 4462,
4485, 4616, 4710, 4801, 4808,
4830, 4849, 4869, 4872, 4930

grazing incidence, 3208

Great Britain (see: England)

greenhouse effect, 3631

Greenwich, 3328, 3528, 4942, 4918

Gresham’s law, 4418

group isomorphism, 4445

group of transformations, 3692,
4366

group representations, 4390, 4604

group theory, 2835, 2965, 3170,
3472, 3519, 3556, 3692, 3723,
4378

group velocity, 3806, 4898

Gulf Stream, 4708, 4713, 4775

gunpowder, 2995, 3837

gyromagnetic ratio, 3620, 4672–
4674

gyroscope, 2876, 3194, 3363, 3540,
4861–4868
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H

Haar measure, 3186

Haber Colloquia, 3510

Haber process, 3149, 4780

Hadamard matrices, 2872

Hadamard transform optics, 2872

Hadamard variational formula, 2872

Hadamard’s inequality, 2872

Hadron, 2889, 4881

Hafnium, 3274

Halifax Explosion, 3331

Hall effect, 3893

hallucinogenic, 4479

Halting Problem, 4377, 4428

Hamilton’s equations, 3846, 4927

Hamilton’s principle, 3461

Hamilton-Jacobi equation, 3655

Hamiltonian operator, 3543, 3656,
3660, 3901–3902

Hamming bound, 4833

Hamming code, 4833

Hardy-Littlewood conjecture, 3162

Hardy-Littlewood constant, 3177

Hardy-Weinberg principle, 2961

harmonic analysis, 2959, 3186,
3431, 3556, 4654

harmonic oscillator, 3334, 4908

Harmonic surfaces, 3939

Hartley transform, 3770

Harvard University, 2827, 2959,
3048, 3057, 3326, 3419, 3556,
3566, 3757, 3771, 3824, 3848,
4119, 4296, 4304, 4428, 4463,
4480, 4486, 4504, 4506, 4556,
4579, 4623, 4637, 4658, 4744,
4812 4823, 4879, 4916

Hausdorff dimension, 3289, 3431

Hausdorff spaces, 4438

heart-beat equations, 3401

heat engines, 3008, 4132

heat of combustion, 4143, 4170

heat of reaction, 4139

Heaviside layer, 3605, 3810

heavy water, 3010, 3274, 4260

Hebrew, 2851, 2925, 3028, 3048,
3305, 3446, 3508, 3557, 3585,
3647, 3778, 4250, 4261, 4470,
4486, 4541

Heidelberg University, 3194, 3257,
3242, 3600, 4120, 4539

Heine-Borel theorem, 2878

Heisenberg uncertainty principle,
2939, 3950, 4874
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helium, 3142, 3193, 3285, 3326,
3365, 3520, 3605, 3634, 3663,
3666, 3669, 3671, 3705, 3719,
3769, 3798, 3827–3831, 4107,
4120, 4164, 4171, 4474, 4481,
4483, 4612, 4729, 4848, 4878,
4881, 4916, 4920

hemoglobin, 3016, 3208, 3244,
3382, 3398, 4511–4513, 4748

Hensel’s lemma, 2921

Hermitian matrix, 3106, 3751

Hessian, 4384–4386

high-energy phosphate bond, 4117,
4744, 4791

Hilbert axiom, 2932

Hilbert base theorem, 2932

Hilbert class-field, 2932

Hilbert inequality, 2932

Hilbert invariant integral, 2932

Hilbert irreducibility theorem, 2932

Hilbert space, 2932–2934, 3540,
3719, 3710, 3726, 4437, 4444,
4604

Hilbert transform, 2932, 3622

Hilbert’s number, 3842

histamine, 3324, 3537

Holland, 2825, 2832, 2895, 2938,
2960, 2972, 2976, 3026, 3048,
3125, 3184, 3193, 3268, 3285,
3299, 3313, 3329, 3387, 3471,
3515, 3529, 3541, 3573, 3619,
3622, 3683, 3647, 3688, 3756,
3808, 3884, 4136, 4351, 4625,
4707, 4793, 4941, 4848

holography, 3748, 3878, 4851, 4853,
4855

homeomorphism, 4118, 4438–4440,
4714

Homo erectus, 3682

Homo sapiens, 3147

homological algebra, 3884, 4429

homology, 3538, 4118, 4434, 4443,
4579, 4725

homopolar binding, 3906

homotopy, 3884, 4429, 4433, 4443

homozygous, 2960

Hopf bifurcation, 4365, 4372

hormone, 2900, 2968–2972, 3613,
3847, 4524, 4948

Hubble constant, 3609, 3789, 4879

Hubble Space Telescope, 3854,
4402

Hubble’s law, 3608, 3766, 3832

Hull magnetron, 3417, 4322

human eye, 3230, 3925, 4731, 4874,
4912

human growth hormone, 4948

human populations, 2966, 3564

humoral theory, 2897

Huygens’ Principle, 3261

hybrid electron orbitals, 4101

hybridization wave-function, 3909

hydrated ions, 3954
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hydration process, 3878

Hydrocyanic acid, 4251

Hydrodynamics, 2827, 2872, 2893,
3005, 3074, 3422, 3574, 3581,
3582, 3725, 3746, 4259, 4600

hydroepiandrosterone, 3614

hydrogen bomb, 3520, 3726, 4164,
4171, 4626, 4638

hydrogen bond, 3889, 3951–3953,
4750

hydrogen molecule ion, 3899

hydrolysis, dehydrogenation, 4786

hydronium, 3596

hydropower, 3007, 4167

hydrosphere, 4773, 4776, 4778,
4783

hydrostatic equilibrium, 3327, 3577,
4484

hydrostatic pressure, 3818

Hygrometer, 3569, 3571

hyperbolic geometry, 3747

hyperbolic umbilic, 4387

hypercomplex numbers, 3548

hyperfine interaction, 3364

I

Ice Ages, 3143, 3245–3248, 3523–
3529, 3533–3535, 3584

iconoscope, 3597

icosahedron, 3380, 4810, 4822–
4823

id, 3440, 3755

ideal gas, 3129, 3604, 3680, 3720,
4141

ideal numbers, 3181

image formation, 3268, 4352, 4532,
4856

image reconstruction, 3269

immunology, 2898, 2966, 3055,
3500, 4961

impact crater, 3145

impedance, 3802, 4477

impetus, 2980, 3070, 3338, 3518,
3598, 4657

incompressible fluid, 2832, 2906,
3005

India, 4093, 2858, 2867, 2896,
2945, 2996, 3125, 3172, 3200,
3290, 3296, 3308, 3446, 3492,
3570, 3584, 3604, 3781, 3783,
3879, 4320, 4583

industrial revolution, 2855, 3006,
3316, 3500, 3524, 4173, 4471,
4659, 4703

inelastic collisions, 3287, 3892
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inert gas, 3630, 3923, 3950, 4779,
4916

inertial frames, 3021, 3025, 3095,
3098, 3337, 3343, 3345, 3425

inertial mass, 3337, 3339, 3352,
3747

infinite group, 4434

infinite series, 2884, 3165, 3294

infinite sets, 2954, 3611

infinite-dimensional topology, 4105

infinitesimal calculus, 3064, 3453

inflammation, 2898, 2900

Influenza, 4093, 2898, 3298, 3416,
4320

info-sphere, 4705

information theory, 3591, 3842,
4499, 4503, 4832

infrared radiation, 3646, 4757, 4776

inhibitor, 4368

insolation, 3532

insulin, 2973, 4524

integer, 2837, 2881, 2908, 2914,
2916, 2919, 2926, 2929, 2958,
3089, 3160, 3162–3165, 3167–
3170, 3173, 3179, 3294, 3296,
3333, 3457, 3620, 3675, 3838,
4187, 4372, 4378, 4432, 4445,
4825

integral closure, 4479

integral curvature, 4583

integral equation, 2930, 2932, 3064,
3205, 3563, 4834,

integral geometry, 4390

integrated circuit, 4659, 4836

interaction energy, 3673, 3887,
3895, 4100, 4671, 4689, 4730

interference, 3208, 3364, 3602,
3673, 3680, 3906, 3940, 4097,
4355, 4415, 4523, 4530, 4554,
4861, 4742, 4828, 4847, 4853–
4855, 4904, 4926

interferometer, 3231, 3284, 4950,
4950

interior measure, 2957

interior of a set, 3065

Internal energy, 3023, 3068, 3287,
3516, 3720, 4140, 4178, 4329,
4738

internal-combustion engine, 2886

intrinsic energy, 3110

intrinsic magnetic moment, 4672,
4730, 4893

intrinsic semiconductors, 4841

intrinsic spin, 3521, 3670, 3797,
4730

inverse operator, 3006

inversion layer, 3197

invertase, 3500

involution, 3835

ionic bond, 3908, 3946, 3948

ionic crystals, 3893, 3894, 3946
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ionic lattice, 3193, 3946

Ionic solids, 3888, 3942

ionium, 3004

ions, 3015, 3055, 3131, 3183, 3209,
3229, 3245, 3266, 3324, 3509,
3537, 3596, 3637, 3665, 3719,
3809, 3858–3860, 3864, 3887,
3892–3894, 3898, 3907, 3911,
3945–3948, 3954, 3957, 4127,
4133, 4135, 4145, 4147, 4159,
4422, 4466, 4516, 4616, 4739,
4750, 4754, 4797, 4836, 4842

Ireland, 2895, 2896, 3275, 3501,
3633, 3651, 3653, 4106, 4137,
4347, 4548, 4607

iridium, 4472

Iron, 2858, 2990, 2993, 2995, 3014–
3016, 3058, 3075–3080, 3132,
3149, 3238, 3241, 3320, 3492,
3501, 3630, 3637, 3719, 3797,
4108, 4134, 4166, 4169, 4188,
4471, 4518, 4615, 4652, 4748,
4778, 4782, 4847

irrational number, 2912, 2955, 3439,
4665

irreducibility, 2932, 2965, 3442,
3707, 4604

irregular primes, 3181

irreversible thermodynamics, 4095,
4101, 4736, 4740, 4850

Ising model, 3623, 4100

Ising problem, 4100

isobaric spin, 3705

isolated system, 3708, 4139, 4733,
4740

isomorphism, 2923, 2943, 3073,
4443–4445

isoperimetric problem, 2826

Isotope, 3004, 3016, 3111, 3237,
3247, 3262, 3268, 3271, 3274,
3280, 3525, 3529, 3533, 3591,
3747, 4120, 4260, 4320, 4482,
4486, 4526, 4553, 4626, 4690,
4776, 4882, 4920

isotopic spin, 3705

Italy, 2826, 2853, 2866, 2877, 2967,
2972, 2990, 2995, 2998, 3006,
3010, 3048, 3242, 3297, 3300,
3313, 3384, 3419, 3445, 3450,
3492, 3519, 3569, 3590, 3600,
3603, 3809, 3885, 3880, 4133,
4250, 4413, 4468, 4480, 4536,
4580, 4828, 4940

Israel, 4094, 2891, 2965, 2982,
3028, 3048, 3216, 3245, 3307,
3545, 3568, 3647, 3717, 3778,
3890, 4183, 4186, 4193, 4195,
4207, 4210, 4261, 4331, 4389,
4504, 4532, 4731, 4732, 4882,
4951, 4952

J

Jacobi ellipsoids, 4363

Jacobi elliptic theta-functions, 2926

Jacobian, 2839, 3072, 3394
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Jeans’ equations, 3684

Jeffreys-Bullen Tables, 3325

Jerusalem, 2925, 2982, 3048, 3509,
3647, 3778, 4183, 4187, 4249,
4261, 4391, 4480, 4505, 4533,
4559, 4732, 4952

Jewish (Jew, Judaism), 2868, 2873,
2887, 2891, 2892, 2894, 2904,
2906, 2907, 2908, 2931, 2943,
2944, 2945, 2962, 2982, 3006,
3011, 3012, 3028, 3036, 3055,
3056, 3073, 3074, 3093, 3149,
3150, 3185, 3190, 3204, 3205,
3218, 3239, 3242, 3248, 3250,
3261, 3274, 3278, 3283, 3288,
3289, 3290, 3298, 3299, 3302,
3331, 3387, 3422, 3426, 3444,
3458, 3460,3491, 3520, 3537,
3538, 3539, 3541, 3545, 3550,
3591, 3600, 3622, 3623, 3651,
3681, 3685, 3696, 3724, 3726,
3747, 3759, 3760, 3769, 3778,
3779, 3785, 3796, 3809, 3839,
3880, 3885, 4118, 4119, 4120,
4121, 4180, 4182, 4183, 4250–
4251, 4258, 4261, 4265, 4290,
4294, 4304, 4349, 4389, 4399,
4410, 4428, 4429, 4435, 4467,
4468, 4469, 4475, 4480, 4482,
4486, 4487, 4504, 4507, 4511,
4518, 4522, 4531, 4538, 4539–
4543, 4553, 4557–4575, 4577,
4580, 4583, 4602, 4604, 4627,
4636, 4647, 4691, 4692, 4695,
4706, 4708, 4731, 4732, 4744,
4813, 4851, 4877, 4878, 4879,
4881, 4944, 4946, 4952, 4959,
4964

Jordan-Brower separation theorem,
3538

Joukowski transformation, 3205

Joule-Thomson Effect, 4847

Julia set, 3426, 3443

jumping genes, 3777, 4948

junction diode, 3932, 4844

junction transistor, 4744, 4845

Jupiter (planet), 2831, 2854, 2997,
3148, 3239, 3284, 3314, 3530,
3850, 3853, 4260, 4264, 4650,
4802, 4808, 4918

K

Kaiser-Wilhelm Institutes, 3233

Kakeya problem, 3780

KAM theory, 3843

Kármán-Howarth theory, 3205

Kármán-Polhausen equation, 3205

Kármán-Tsien approximation, 3206

Kepler problem, 3846

Kerr black hole, 3349

Kerr effect, 3060

Keynesian revolution, 4416

Killing vectors, 3464

kinematic density wave, 3644

kinematoscope, 2825, 2978
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kinescope, 3598

kinetic energy, 2976, 3009, 3023,
3110, 3131, 3144, 3238, 3287,
3561, 3634, 3638, 3830, 3858–
3861, 3863, 3865, 3876, 3892,
3898, 3911, 4107, 4139, 4145,
4323, 4325, 4478, 4483, 4517,
4638, 4931

kinetic theory, 2828, 3018, 3062,
3129, 3566, 3910, 4837

kinetoscope, 2980

Klein-Gordon Equation, 3690, 3786,
3791

Klystron tube, 4467

knot theory, 3539, 4432, 4714–
4725, 4725–4728

Koch curve, 3429

Kolmogorov equations, 3842

Kutta-Joukowski condition, 2949

L

lactic acid, 3261, 3426, 4778, 4787–
4790, 4792, 4795, 4818

Laffer curve, 4424

Lagrange expansion, 2885

Lagrange multipliers, 4814

Lagrange’s Theorem, 3170

Lagrangian, 3117–3120, 3123, 3662,
3787, 3791, 3844, 3855, 4799,
4901, 4905, 4908

Lamb shift, 4729, 4897

laminar flow, 4736

Lanchester-Prandtl wing theory,
3005

Landau cuts, 4121

Landau diamagnetism, 4121

Landau-Ginsburg potential, 4121

Lande factor, 3077

Laplace transform, 2891, 4834

Laplace’s conjecture, 4922

Larmor precession, 2896

latent heat, 4326, 4328–4330, 4750,
4752

lateral coherence width, 4951

latitude (geographical), 3245–3247,
3532, 3540, 3560, 3570, 3572,
3582, 3756, 4171, 4302, 4325,
4327, 4516

lattice constant, 3209, 3894

lattice energy, 3893

lattice imperfections, 3889

lattice vibrations, 2833, 3888, 3910,
4842

law of charge conservation, 3658

law of conservation of energy, 3023,
3621

law of conservation of parity, 3724
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Overview

The roots of the evolutionary progress of mathematics, physics and tech-
nologies based upon applied science during the second half of the 20th century
are anchored in the early days of the Industrial Revolution.

Science interacted strongly with political, economic and other social
changes in Western society since the Industrial Revolution in the middle of the
18th century. Major events such as the advent of modern industrialization in
England (1749–1760) and the consequent rise of the first British Empire, the
nascence and rise of the United States from British North America (18th cen-
tury on), the French Revolution (1793), the Unification of Germany (1871),
WWI (1914–1918) and WWII (1939–1945), impacted science and were im-
pacted by it in return.

In 1700, England was still chiefly a rural land – there were no big towns
except London, and the economy was primarily based on agriculture. Pre-
viously, the revocation (1685) of the edict of Nantes (1598) caused extensive
emigration of French Huguenots and their dispersal in various countries, en-
riching these with their talents. The ensuing industrialization was partly a
result of the oppression of the Puritans. Until 1800, science in England was
the business of gentlemen and noblemen, mostly occupied with Evolution and
Geology. Science and philosophy were empirical. At the turn of the 19th

century British science as a whole became more theoretical again: Thomas
Young (1773–1829) revived the wave theory of light (1801) and John Dalton
(1803) introduced atomic theory into chemistry.

In France, during 1740–1819, philosophers sowed the seeds of a rationalist
revolt which, inter alia began the French Revolution. In a complementary
way, the French then became more empirical, spurred on to experimental and
applied science by the needs of the Napoleonic Wars.

German science, with its metaphysical roots, influenced by the philosophy
of Kant1 (1781) and G.H.F. Hegel (1817), began to blossom in the first half
of the 19th century and reached its peak during 1870–1930.

The industrial revolution had changed the status of science and scientists:
in the first place it caused scientists to be considered as representatives of
radicalism (i.e. progressive). Then it shifted the emphasis towards the ap-
plied side of science: The rapid growth of applied mathematics in the wake

1 Berkeley and Kant in turn were influenced by D. Hume while Berkeley influ-

enced Mach and Einstein.
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of the industrial revolution called for the establishment of a discipline of ap-
proximations through which algorithms could be systematized and developed
methodically to answer the growing needs of the exact sciences.

Above all, since J.C. Maxwell and Hertz, science began to become a
dominant force in Western society, in times of peace as well as war.

The 19th century was rushing toward its close, propelled by steam and
electricity. The railroad, the steamship, the telegraph, the telephone, the
phonograph, photography, radio and the internal combustion engine took their
places in human life in bewildering succession.

It had been a magnificent century for mathematics; most of the mathe-
matical tools later needed for GTR and quantum mechanics were forged by
19th century mathematicians. In fact, 20th century physics is essentially based
on 19th century mathematics! Thus GTR is based on Riemannian geometry
and tensor analysis; Quantum mechanics and quantum field theory are based
upon abstract algebra and functional analysis – and specifically the theories of
matrices, Lie algebras and Lie groups, differential geometry, differential and
algebraic topology, as well as Hilbert spaces and c∗–algebras. Many of these
mathematical fields also supported Nonlinear Dynamics.2

The 20th century was an epoch of Revolutions in Physics and Biology.
Physics was the first of the natural sciences to become fully modern and
highly mathematical. Chemistry followed in the wake of physics, but biology,
the retarded child, lagged far behind. Even in the time of Newton and
Galileo, men knew more about the moon and other heavenly bodies than
they did about their own.

It was not until the late 1940’s that this situation changed. The postwar
period ushered in a new era of biological research.

World-War I made chemistry respectable (even Ernest Rutherford of-
ten presented himself as a chemist). World-War II made physics respectable
(Atomic bomb, Radar, Rockets, Jet planes, Computers).

During 1916–1928 there emerged the two most revolutionary physical the-
ories ever – the General Theory of Relativity and Quantum Mechanics, neither

2 Nonlinear Dynamics – a field of applied mathematics that started in the 19th

century by the advent of computer simulations in the second half of the 20th

century. And all of these fields, of course, benefited from 19th century work

on differential and integral equations, integral transforms and complex analysis.

The needs of 20th century developments in technology and in the natural and

social sciences also spurred many extensions and ramifications of pre-existing

mathematical fields – e.g. the theory of stochastic processes (from probability

theory), algorithms and computational complexity, index theorems, etc.
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of which had been adumbrated by any scientist, philosopher or even science-
fiction writer. In terms of breadth of applicability and accuracy of predictions,
Quantum Mechanics (augmented by STR in the 1930’s and 1940’s to become
QFT) proved itself the most fruitful theoretical framework ever developed by
man.

After WWII the USA emerged as a political, military, economic, techno-
logical and scientific superpower. It supported the largest scientific establish-
ments in the history of mankind (accelerators, Manhattan Project, NASA).
New discoveries are constantly being made, and many of these discoveries
have important political, economical and social overtones.

But the 20th century left in its wake an overcrowded, polluted and dan-
gerous world – disillusioned by global wars and conflicts, and with the very
concepts of progress and individual responsibility that gave rise to it; a morally
rudderless world stricken by major environmental problems, social disorders
and the rise of a new barbarism.

Perhaps, no words are more becoming then those of Leonard Bernstein
in his succint ‘Requiem-like’ summation of the 20th century (1973):

“Ours is the century of death: the end of faith. Why is our century so
uniquely death-ridden? Couldn’t we say this of other centuries as well? Yes,
true: all human histories have been a long record of the struggle to survive,
to deal with the problem of mortality. Yes; but never before has mankind
been confronted by the problem of surviving global death, total death, the
extinction of the whole human race. In fact, all the truly great works of art,
music and literature have been born of despair and protest or refuge from
death: think of Tolstoy, Rilke, Kafka, Sibelius, Mahler, Picasso, Sartre and
Camus.

The 20th century has been a badly written drama from the beginning:
Greed and hypocracy leading to genocidal world – wars, totaliterianism, post-
war hysteria, existentialism, galloping technology, the flight into outer space,
the doubting of reality, sub cultures and counter – cultures, new religions
movements – all under the aegis of planetary death.”
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Front-lines of Science 1950–2001

Mathematics

• Continuation of Abstraction and Unification of Pure Math-

ematics:

– Combinatorial Geometry;

– Pure topology and graph theory (e.g. 4-color Theorem);

– Abstract Algebra and Group Theory; Affine Lie Algebras; classifi-
cation of finite groups;

– Functional Analysis; Categories, Functors;

– Fusion of Differential Geometry, Algebraic Topology and Algebraic
Geometry; K-theory; Homotopies, Homologies and Cohomologies;
Knot Theory, Topology of Smooth 4-manifolds; Fiber Bundles
and Non-abelian Gauge Theories; Complex and almost-complex
structures on manifolds; Spinors on manifolds and spin structures;
sheaves; Cobordism; characteristic classes and index theorems;

– Modular Functions and analytic Number Theory; Elliptic Curves;

– Logic, Set Theory, Foundations of Mathematics and the genesis of
Computer Science (Halting problem, foundations of mathematics,
meta-mathematics proofs, Axiom of Choice, Continuum Hypothe-
sis);

– p-adic Analysis;

– Non-standard Analysis: ‘emancipation’ from infinitesimals.

• Discrete Mathematics and the Ubiquitous Algorithm.

– Digital Signal Processing.

• Computation Beyond Algorithms:

– Soft Decisions and Fuzzy Logic;

– Bayesian Inference;

– Artificial Neural Networks;

– Genetic Algorithms;

– Simulated Annealing.
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• Nonlinearity, Stochasticity, Optimization, Multiple Scales

and the Science of Complexity:

– Nonlinear Dynamics, Chaos and Fractals, Self-Organizing Critical-
ity and Cellular Automata;

– Algorithmic Complexity;

– Optimization and Control Theories;

– Integrable Systems, Invariant Tori and the KAM Theorem;

– Nonlinear Diffusion and Wave Propagation; Turbulence; Reaction-
Diffusion-Advection equations;

– Queuing Theory;

– Homogenization, Multiscale Analysis and Singular Perturbation
Theory;

– Theory of Stochastic Processes and Measure Theory;

– Ito Calculus and Stochastic Differential Equations.

• Mathematization of the Biological, Environmental and So-

cial Sciences:

– Game Theory and Microeconomics;

– Macroeconomics and Stochastic Processes;

– Population Dynamics and Population Genetics;

– Morphogenesis; Epidemiology; Neuronal and Brain Modeling;

– Modeling of Protein Folding and Molecular Biology.

• Abstract Algebra and group theory in modern Theoretical

Physics:

– Groups (Discrete, Continuous, finite, infinite) in Quantum Me-
chanics, Chemistry, Crystal lattices, Quantum Field Theories, Par-
ticle Physics; Classification of all Finite Groups;

– Global vs. Local (gauge) symmetry groups;

– Spontaneous symmetry breaking;

– C∗-Algebras applied to QFT, condensed matter and string theory;

– Affine Lie Algebras;

– 2-D Conformal field theory;

– Current Algebras;

– Quantum Groups and Braid Groups;

– Operator-product expansions.
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Physics

• Particle physics and the Coming of Gauge:

– Weak and Strong Nuclear Forces;

– Quantum Field Theory beyond QED;

– The 8-Fold way, the Quark model and Current Algebra;

– Non-Abelian (Yang-Mills) Gauge Theories and Differential Geom-
etry of Fiber Bundles;

– Path Integrals, Fiber Bundles and the Quantization of Gauge The-
ories;

– Partons, Quarks, Gluons, Quantum Chromodynamics, Scaling,
Confinement and Asymptotic Freedom;

– Heavy-Ion Collisions and the Quark-Gluon Plasma;

– Phase Transitions and Spontaneous Symmetry Breaking, Nambu-
Goldstone Modes and the Higgs Mechanism;

– The Standard Model of Particle Physics;

– Solitons and Instantons in Quantum Field Theories;

– Supersymmetry, Supergravity and Grand Unified Theories;

– Quantum Effects in Background Gravitational Fields;

– Extra Dimensions, Kaluza–Klein models and String Theories;

– Attempts at a Quantum Theory of Gravity;

– Non-Accelerator Experiments and Indirect Evidence.

• The New Cosmology: Whence, Whither and Why?

– The Big Bang Theory and Hubble’s Constant;

– Cosmic Microwave Background Radiation, Large Scale structure,
and “Precision Cosmology”;

– Dark Matter, Dark Energy and the Cosmological Constant;

– The Early Universe as a Hot Quanta Soup;

– CP violation and Baryogenesis in the Early Universe;

– The “First Three Minutes” and Nucleosynthesis;

– The Recombination Era;

– The “Dark Ages”, re-ionization and first Stars and Galaxies;

– The Planck Era and the Question of Initial Conditions;
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– Stellar and Galactic Models, Pulsars, Neutron Stars, Black Holes,
Quasars, Active Galactic Nuclei and Gamma Ray Bursters, Brown
Dwarves, Dark Matter Surveys and Candidates, the Intergalactic
Medium;

– New Windows to the Heavens: Infrared, Ultraviolet, X-ray,
Gamma Ray, Neutrino and Gravitational Wave, Gravitational
Lensing of Light Astronomies.

• General Relativity Matures and Meets Particle Physics, As-

trophysics and Quantum Mechanics:

– The Unmanageable Infinities of Quantum Gravity;

– Singularity Theorems and self-limitations of GTR;

– Quantum Field Theories in Curved Background Metrics;

– Radiation from Black Holes;

– Supergravity and Models of Hidden Dimensions;

– Strings, Branes and “M-Theory”;

– Gravitational Lensing and Advent of “Applied GTR”;

– The evolution of theories of fundamental strings from Dual Reso-
nance Models to Theories Of Everything;

– Effective (non fundamental) strings in QFT, Astrophysics and Cos-
mology;

– New Tests of GTR: Pound-Rebka experiment, Shapiro’s radar-
ranging, atomic clocks, the binary pulsar, orbiting gyroscope,
LISA, and LIGO;

– Gravitational Waves from Astrophysical Cataclysms and from
Early Universe Phase Transitions.

Biochemistry

• Biochemistry of Nature and Man:

– Cell Structure and Signaling;

– Chemical and Morphological Logic of Life;

– Molecular Biology;

– Non-Equilibrium Thermodynamics in Physical Chemistry and the
Biosphere;
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– Neuroscience and functioning of the Mind;

– The Human Information and Storage systems: Genome, Immune
System and Brain.

Technology and Engineering

• Quantum Technology:

– Semiconductors; superconductors, superfluids, lasers and hologra-
phy; advances in Magnetics, Ferroelectricity, Quantum Optics and
Electrooptics;

– Quantum Electronics, Optronics and Photonics;

– Quantum Metrology (precision physical measurements using quan-
tum effects);

– Quantum Computing, cryptography and Teleportation;

– Reversible Computing;

– Ultra-low Temperatures; Magneto-Optical Traps and the Bose-
Einstein Condensate (BEC) technology, and the slowing and freez-
ing of light waves;

– Electromagnetics of a single atom or particle in an RF cavity, cavity
QED, observation of single-atom decays and the Quantum Zeno
effect;

– Microdevices and Nanotechnology;

– Designer’s Atoms and Materials: Quantum Dots, Wires and Wells,
and Quantum Hall Effect, Superlattices and heterostructures;

– Advances in Atomic Clocks;

– Few-Quanta experiments, Quantum Entanglement and empirical
tests of the foundations of Quantum Mechanics;

– Electromagnetically Induced Transparency, “Dark States” and
Lasing without population inversion;

– Carbon nanotubes and Buckeyballs;

– Optical ponderomotive forces: optical tweezers and ratchets; Light
Lattices and Laser Molasses;

– Role Reversal: Control of Material Object with Light Structures.
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• RF Engineering: Electron guns, Klystrons, Waveguides and

Junctions and Particle-accelerator Technology; Charged

Particle Traps; Magnetic focusing and guidance of Parti-

cles beams.

• Worldwide Sensing, Communication and Information Tech-

nology:

– Recording and Reproduction of Light and Sound; Television and
Video Technology;

– Sonar, Radar and Laser Ranging, Satellite Telemetry and Recon-
naissance, Remote Sensing;

– Optronics: Diode Lasers and detectors, Electro-optical chips, Op-
tical Fibers and Optical Amplifiers, Optical Isolators and Polar-
ization Dependence, Interferometers, AO (Acousto-Optic, devices)
and SAW filters, Digital Optical Fiber and HFC (Hybrid Fiber
Coax) Networks;

– Client-Servers, Routers; Cable, optical, twisted – wire and wireless
Networks; GPS;

– Computer Based Communication Systems and the Rise of the In-
ternet;

– RFID (Radio Frequency ID) tags for tracking goods and national
security;

– Geosatellites in service of Telecommunication.

• Modern Microscopy and Telescopy:

– Microscopes: Field Emission; Scanning Electron; Transmission
Electron; Scanning Tunneling; Atomic Force; confocal; FRET
(Fluorescent Resonant Energy Transfer); Near-field Optical (to
resolve distances much smaller than a wavelength); TPM (Two-
Photon Microscopy);

– Telescopes: Spaceborne; computerized; Terrestrial and Space-
borne Interferometers; Detection of planets of other stars; with
adaptive optics; with charge coupled devices; Hubble; Observing
the Universe via Infrared, ultraviolet, X-ray, Gamma-ray, radio and
Neutrino radiations; Gravitational-wave telescopes (LIGO and oth-
ers).

• The Klystron and Particle Accelerator Technology:

– Application to particle-physics experiments, X-ray sources, mater-
ial science, medical imaging, time-resolved spectroscopy in physical
chemistry.
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• Material Science:

– Metals, ceramics, plastics and composite materials;

– Research on Smart Materials;

– Doping in Electronics and photonics;

– Rare-Earth Magnets;

– Designer’s Atoms and Superlattices.

• Computer-Related and Computer-Enabled Technology:

– The Microchip;

– Electro-Optical and Microwave chips; MEMS (Micro Electro Me-
chanical Systems);

– Robotics and Control, Machine Vision, Machine Learning and AI;

– Applications of Abstract Algebra, Number Theory, Topology and
other branches of mathematics: Error Correction Codes and Cryp-
tography; Wavelet Transform and Multiresolution Compression,
Signal Processing and Pattern Recognition; Dynamic Topology of
Computer Networks; Computer design.

• Computer Simulation – the Third Mode of Science:

– Monte Carlo Simulations;

– Finite Element, Finite Difference and Particle-In-Cell Simulations;

– Computerized Symbol Manipulation;

– Special-Purpose Computer architectures;

– Computers as an integrative tool of Science Research.

• ‘Big Science’:

– The Age of Accelerators and the Particle Physics Frontier;

– Observatories and Detectors for Exotic Particles from Space, Ex-
otic Particle Decay Modes, and Gravitational Waves;

– NASA and the Manned and Unmanned exploration and Observa-
tion of the Solar System and Beyond;

– Satellites, Rockets and Missiles;

– Mapping the Human Genome;

• Biomedical Informatics, Radiology, Imaging, Molecular

Medicine and Biotechnology:

– MRI (Magnetic Resonance Imaging) and fMRI (functional MRI);
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– PET (Positron Emission Tomography) scans;

– CAT (Computer Assisted Tomography) scans;

– Nuclear medicine;

– Particle-beam radiology and therapy;

– Ultrasound Imaging and Therapy;

– Stem-cell research, gene therapy, telomerase research, cloning, and
genetically modified crops;

– DNA Markers and Retinal Scans for identification; individual
genome sequencing for health care;

– Prions and abnormal protein folding;

– Bioinformatics, genomics and proteomics (the study and quantifi-
cation of gene expression);

– Remote and sensor-assisted surgery;

– Analysis of microscopic tissue samples using optics, microfluidics,
gene chips, tagging, and digital processing.
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The Trees of Knowledge and Life – New Trends in

Contemporary Science

Certain trends in mathematics, the natural sciences and technology are
apparent:

1. Inward-bound progress

Great progress in the “inward” direction. In Physics this is manifested
as ever deeper, more unified and more aesthetic mathematical principles un-
derlying physical reality – matter, energy, space and time. This “inward”
direction points both to the very small (in spatial and temporal extents) and
the large (large energy concentrations at the high temperatures achieved in
particle accelerators and inferred for the early epochs after the Big Bang, and
large scales of time and space in Cosmology).

In material science and the biological sciences this “inward” trend is al-
ways towards smaller scales of space and mass (and sometimes of time and/or
of temperature as well), and is manifested by dramatic improvements in small-
scale imaging (of cells and their constituents, microscopic lifeforms, molecules,
and individual atoms). It is also manifested by indirect elucidation of micro-
scopic structures, as in the sequencing of genomes, identification of proteins,
and molecular-dynamics computer simulations of physical, chemical and bio-
logical processes at the smallest scales.

In material science and the biological sciences, the “inward” journey in-
volves no new fundamental principles of nature, but merely newly-discovered
interplays of known physical principles.

All these feats of analysis, imaging, simulation and deduction usually in-
volve computerization, in addition to analog scientific hardware and mathe-
matical theories and models. Here ‘computerization’ refers to various inter-
faces with digital sensing, actuating, memory and computation circuits and
devices – whether embedded within the hardware, controlling it, interfacing
externally with it, or used for offline analysis of data.



1950–2008 CE 5101

2. Outward-bound progress – the Aegis of ‘Complexity’

Impressive progress also in the “outward” direction – the study of com-
plex phenomena and structures in all the natural sciences (including popu-
lation dynamics, evolution, ecology, the new fields of mathematical biology
and bioinformatics, neuroscience and neuronal modeling, epidemiology, con-
tinuum mechanics, material science, meteorology and geophysics) as well as
in traditionally humanistic fields (economics, sociology, etc.); and the study
of complexity itself as a new branch of applied mathematics.

This “outward” progress is largely driven by the computing and informa-
tion revolution, but also involves experimentation, observations and mathe-
matical modeling, as do all other scientific endeavors. The aegis of “com-
plexity” covers such phenomena as chaos and fractals that were found to be
ubiquitous in complex systems.

New mathematical tools, as well as older ones, were pressed into service to
help ferret out, model and understand complex structures; examples of such
tools are nonlinear dynamics, multiscale analysis, wavelets, artificial neural
networks, reaction-diffusion partial differential equations and stochastic dif-
ferential equations.

3. Bridges and Unifications

The forging of a robust web of bridges between different structural and
functional levels of description in different sciences, resulted in a powerful
trend towards convergence of our disparate “islands of knowledge” of nature.

Thus, for instance, modern research in biology tends to gradually reduce
biotic structures and functions to physical and chemical ones, organized at
all scales (including the so-called nanoscale); all this new knowledge is placed
in computerized, online databases which are then mined via sophisticated al-
gorithms (the new field of bioinformatics) for the purpose of developing new
drugs and treatments, identifying new genes and their locations, sequences
and functions, identifying new proteins, elaborating the “tree of life” (i.e.,
maps of where each organism that ever lived is placed in the tree of evolving
DNA), et cetera.

We see that science at the start of the 21st century is on an inexorable
trend toward unification of the growing “tree of knowledge” with the “tree of
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life” – a trend with incalculable potential effects on human lifespan, health,
cognitive powers, and material and mental well being.

4. New Mathematical Structures

The demarcations between our chapters 4, 5 and 6 were largely driven by
developments in the natural sciences and technology. Pure mathematics has
its own intrinsic dynamics; although it undergoes dramatic new developments
in response to impetus from the sciences, it then typically continues to hone
and develop the resulting structures for very long periods of time – often
generating, in the process, new tools that are then adopted for modeling
physical reality.

As an example, the revolutionary theories of 20th century physics – quan-
tum mechanics and the theories of relativity – used pre-existing mathematical
structures that are properly classified as belonging to the “Abstraction and
Unification” phase of mathematics, even if the discovery of these structures
is listed by us in both chapters 5 and 6. And in turn, work by physicists on
relativity and quantum theory led to new types of mathematical structures.

There are many other instances that illustrate this type of two-way influ-
ence between mathematicians and scientists working on the two sides of the
“Math-Science divide”.

In view of the above, it should now be clear that the mathematics of the
second half of the 20th century can be roughly divided into two endeavors
(with, however, interactions and hybrids abounding):

(A) The continuation of the “Abstraction and Unification” themes of chap-
ters 4 and 5 in such fields as analytic number theory, differential geometry,
abstract algebra, topology, algebraic geometry, algebraic topology, functional
analysis and the foundations of mathematics.

(B) The development of new, computer-driven branches of mathematics, in-
cluding studies of complexity (as outlined above) and of computer science itself
(algorithms for data processing within and by computers). These computer-
driven branches are just as rigorous as the older ones, but they tend to deal
with discrete objects and processes (a representative paradigm being that of
“cellular automata”).
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5. Man outdoing Nature

In addition to the ongoing and novel trends listed above, there appears a
new feature of modern science: the growing capability of human technology
to outdo nature itself in certain respects.

We do not, as yet, have the technology to shift stars from their courses,
create new planets and stars, or create galaxies and quasars; nor to create life
from non-life, or sentience from non-sentience. We simply cannot compete
with inanimate nature at extremes of high energy, large size or long duration,
at least not in the foreseeable future. Nor are we anywhere near to computing,
as engineers, with Life’s devices in terms of density, adaptivity, plasticity,
miniaturization, 3-D packing and multiscale structure and function. However,
we are already able, on some specific fronts, to outdo both life and inanimate
nature.

The philosophical conclusion drawn from this observation can be stated as
follows: In the sense of the Strong Anthropic Principle, sentient beings (which
themselves presumably arose spontaneously from inanimate matter via mole-
cular and biological evolution) are, in a sense, nature’s vehicle for developing
in certain directions that are extremely unlikely to occur without the agency
of such beings. Nature’s way of enabling this option was achieved by endow-
ing man with intelligence and consciousness which he acquired through the
process of evolution.

Let us now specify those directions along which human technology outdid
nature:

(A) Low Temperatures: Using Magneto-Optical Traps (MOT) and Gravito-
Magnetic Traps – a combination of magnetic fields, gravitation, laser
beams and radio waves – physicists (since the 1990’s) routinely cool
small samples (several million atoms each) of various species of atoms
down to temperatures as low as several nanodegrees kelvin or even below
a nano-kelvin. At such low temperatures, the de Broglie wavelengths
at the atoms’ quantum wave-functions become larger than inter-atomic
separation, in effect turning the entire mesoscopic sample into a single,
coherent quantum probability wave.

Quite apart from the rich scientific and technological implications of
the attainment of these so-called ‘Bose-Einstein Condensates’ (BEC),
we note that as far as is known, such low temperatures and state of
matter have never before existed in nature – neither in the depths of
intergalactic space, nor on any planet, nor in the remote reaches of our
universe or in its early history – save, perhaps, in the laboratories of
some other, non-human civilization of sentient beings.
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(B) Symbolic representation, recording, transmission and processing: since
the dawn of human culture, people have been using physical manifesta-
tions (cuneiform etchings, ink marks, et cetera) to represent ideas and
convey information in a symbolic manner. As far as is known to science,
inanimate nature never does that.

Now, this particular direction in physical parameter space does not re-
quire hi-tech or even intelligence – bees, ants and many other low orders
of animals and plants (and even individual cells) convey symbolic infor-
mation, by means chemical, electric, optical and acoustical; and indeed,
any form of life whatever on earth does so by means of the genetic code.
Nonetheless, we note that the information technology revolution of the
late 20th century has introduced on our planet such complex mazes
of symbolic information storage, retrieval, transmission and processing
(mainly electromagnetic) as to rival – and, by many measures, to sur-
pass – the main three information processing/storage facilities in the
human body (genome, immune system, brain – in order of increasing
storage capacity).

The latter three systems, while ‘natural’ (i.e. not devised by humans),
are once again hallmarks of animate matter. Inanimate matter does not
seem to have any uses for storing and manipulating information in a
symbolic manner.

Granted, the physical laws which govern all matter and energy are, ar-
guably, a sort of highly condensed logico-mathematical symbolic code;
but this code is not physically stored anywhere (except again, in the
writing and minds of human beings – and presumably in those of other
advanced sentient beings in the cosmos, if they exist).

(C) Efficient information processing: granted that symbolic information
processing/storage/transmission does not seem to exist outside the
realm of life and its products and artifacts (such as genomes, brains,
cuneiform tablets, abaci and computer hard-discs), the trends in mod-
ern computer technology also point to ever increasing efficiency of such
symbolic manipulations.

This enhanced efficiency either already exceeds, or will before too long,
what animate, yet pre-technological, nature has wrought – in several di-
rections in physical parameter space. These directions are high density
(bits per volume), high speed (access and processing speeds in bits per
second), low energy cost (Joules per bit processed), and efficient parti-
cle usage (low number of elementary particles whose quantum state is
affected by each bit change). We note, though, that the entire human
genome (several Gigabytes of digital data, not counting partially-analog
epigenetic information) is packed within almost each cell of the human
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body – indeed, most of it within the cell’s nucleus; human technology

cannot yet achieve such information storage densities.

(D) Design optimization: At its most fundamental, we know that nature’s

laws may invariably be cast as optimum principles (principles of least

time, least action, etc). At the biological level, nature optimizes at a

different level – efficient use of wax in honeycombs; optimizing paths of

ants and birds; survival strategies of species at both the genomic and

population levels; and so forth.

This latter type of optimization is opportunistic and a rigorous ‘global

optimum’ is almost certainly never achieved. Humans, however, are

capable of modeling problems mathematically, and the resulting opti-

mizations – especially when computers are utilized – may well be far

more comprehensive than pre-technological nature is able to achieve.

And even without advanced mathematical models, various engineering

solutions to practical problems (such as streamlined design of vehicles

and furniture) can easily exceed the efficiency found in animate, pre-

technological nature. (However, nature seems at present to be better

at optimizing at the ‘systems level’ – witness the self-inflicted ecological

problems humanity is grappling with!)

(E) Composite and smart materials: Advances in material and computa-

tional sciences – and even more importantly, the convergence of the two

(the emerging branches of engineering sometimes referred to as nan-
otechnology) – are enabling another form of optimization: at the level

of the organization of atoms into macroscopic matter.

Thus, “designers’ materials” can be planned and fabricated, taking the

process of technological optimization [discussed in section (D)] to new

heights. While human technology has already outstripped inanimate
nature along these directions in physical parameter space, it is still lag-

ging behind what animate nature has accomplished (even a single living

cell represents a far more sophisticated feat of ‘natural nanotechnology’

than any fashioned in a human lab).

However, there is every reason to believe we will surpass even biology

in these directions. This is even more apparent when one considers that

molecular genetics (and the burgeoning biotechnology based upon it) is

enabling humanity to ‘co-opt’ various naturally occurring biochemical

and biophysical mechanisms, rearranging them almost at will – either

with one another, or in conjunction with inanimate human technology

(such as in the so-called “gene chips”).
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(F) Quantum Computing: Almost all of today’s computers are based on
simple Turing Theory and employ Boolean logic based on binary math-

ematics. Even “parallel” computers are really complex Turing engines
employing multiple computing modules which deal with pieces of incom-

ing and internally-generated data (digitized acquired data, instructions,
etc). There has been some research into biological computing using en-

zymes or large-molecule systems as memory, shift registers, etc, but this
has not yet proven to be very practical.

Quantum Computing is based on a different physics than ordinary digi-
tal computing. Instead of having two (or three) states per element: off,

on, or in between (‘hung’), quantum computers consist of elements each

of which may at any given moment be in a superposition of “on” and
“off” states. An eight bit digital computer can exist in only one of 256

states at a time while an eight bit quantum computer can exist in all
256 states at a time and theoretically, work on 256 calculations at once

(quantum parallelism). Each of the 256 numbers in this 8-bit example
has an equal probability of being measured, so that a quantum processor

functions, in effect, as a random number generator. The actual register
represents all these combinations of bit-values at once, but a single 8-bit

value output only occurs at measurement.

While a classical digital computer would have to operate on each number

from 0 to 255, a quantum computer requires only one pass through the

“processor” — radically reducing calculation time. Of course, the larger
the register size, the larger the reduction factor – even a simple 10-bit

quantum computer could make a supercomputer pale in comparison.

Where the digital computer uses binary digits (bits), the quantum com-

puter uses qubits (“quantum bits”), but qubits are extremely difficult
to generate. A quantum switch may not be disturbed by anything – a

single photon of light, a single impinging molecule, or ambient fields –
for the proper operation of a quantum computer depends on the interac-

tion of the various qubits without any outside influence (measurements
included). When disturbed, the qubit temporarily “collapses” into a

conventional 1-bit register.

A quantum computer can perform an arbitrary reversible classical com-
putation on all its qubit data registers simultaneously, and also has some

ability to produce interference, constructive or destructive, between var-
ious different computational paths. By doing a computation on many

different input data-sets at once, then interfering the results to get a
single answer, a quantum computer has the potential to be much more

powerful than a classical computer of the same size.
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The most famous example of the extra power of a quantum computer
is an algorithm for factoring large numbers. Factoring is an important
problem in cryptography; for instance, the security of public key cryp-
tography depends on factoring being a hard problem. Despite much
research, no efficient classical factoring algorithm is known.

There are many proposals for how to build a quantum computer, with
more being made all the time. The 0 and 1 of a qubit might be repre-
sented by the ground and excited states of an atom in a linear ion trap3;
they might be represented by polarizations of photons that interact in
an optical cavity; they might even be represented by the excess of one
nuclear spin state over another in a liquid sample in an NMR machine.
As long as it admits of a way to put the system in a quantum super-
position and there is a way to store, couple and occasionally measure
multiple qubits, a physical system can potentially be used as a quantum
computer.

In order for a system to be a good choice, it is also important that many
operations may be performed before losing quantum coherence. It may
not ultimately be possible to make a quantum computer that can do a
useful calculation before decohering, but if we can get the error rate low
enough, we can use a quantum error-correcting code to protect the data
even when a certain fraction of the individual qubits in the computer
decohere.

In conclusion: As of the 1990’s, quantum and computer technologies
reached the ability to produce states of matter and energy that (barring other

3 Here, the charges, voltages and magnetized domains which represent data bits

in conventional digital computers, are replaced with photons and ions trapped

by electromagnetic fields. Because they are encased in these fields, the ions are

in a coherent state for fractions of a second. The obstacle in using ions is that

they may lose their quantum coherence too quickly to be useful as a computing

resource. Los Alamos researchers have been able to apply a single laser pulse to

a single ion in an electromagnetic trap.

From their demonstration, the researchers said that as many as 100,000 logic op-

erations could be applied to registers that consist of up to 50 trapped ions. It

would take but a few microseconds for a register to complete a single operation.

Although it is smaller and faster than any silicon-based device, quantum com-

puters are not expected to replace desktop PCs or supercomputers, at least not

at first. Instead, these machines would be dedicated to specialized tasks such as

generating keys for strong cryptography, an operation that requires a computer

to factor very large numbers.
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intelligent species) could almost certainly never be produced in nature out-
side of human laboratories. These frontier states can be grouped into three
classes:

• Low-temperature frontier (BEC)

• Mesoscopic quantum coherence frontier (e.g. Quantum Computing)

Nature finds it hard, if not impossible, to reach these niches in physical
parameter-space (as well as the niches described in (B), (C), (D) and (E)
above) except through the agency of sentience. By the anthropic principle,
we exist, as part of nature, to enable nature to accomplish such tasks.

6. “Lest he take also of the tree of life” (Gen: 3, 22)

The current state of development of the theory of stochastic processes,
as well as our ability to realistically simulate the dynamics of complex biotic
macromolecules, is too primitive to compute with any reliability the proba-
bility of the spontaneous arousal of living from non-living molecules.

But we have HINTS such as:

• I. Prigogine’s theory (1947) of far-from-equilibrium chemical processes,

• The Jacob-Monod theory (1961) of the operon mechanism (genes con-
trolling other genes),

• Knowledge about various chemical pathways and point mutations in
biology,

which indicate that naive probability models may be completely useless in
estimating the probabilities and likely timescales involved in a spontaneous
genesis of life.

Thus, Prigogine’s models show that complex spatiotemporal structures
can arise from homogeneous mixtures in open thermodynamic systems far
from equilibrium.

The evidence from molecular biology (such as the operon mechanism)
illustrates that, since the proverbial typewriting monkeys can sometimes ac-
cidentally learn to program a sequence of keystrokes into a single keypunch,
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and since this process is hierarchical, the expected time for a homogeneous
mixture of pre-biotic molecules (under primordial-earth conditions) to pro-
duce living organisms – might be drastically shorter than what the simplest
(Hoyle-like) combinatorial arguments would suggest.

No single example better illustrates the primitive state of our bio-
stochastic modeling and simulation tools than the humbling fact that present-
day (2008) optimization algorithms (whether stochastic or deterministic) and
current computing power, are unable even to predict the correct shapes of
folded proteins of known amino-acid sequences in aqueous solutions – a prob-
lem that nature herself “integrates empirically” (as Albert Einstein would
say) in a matter of minutes!
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Science vs. Technology

Science may be loosely defined as the well-ordered, systematic and pro-
grammatic gathering of positive knowledge concerning the universe and our-
selves. The history of science, therefore, is concerned with the story of gradual
unveiling of objective truths and the conquest of matter, energy, space and
time by mind; it also describes an age-long and endless struggle for freedom
of thought – freedom from violence, intolerance, error and superstition. This
process of gathering and explanation of systematized positive knowledge is
the only human activity which is truly cumulative and progressive.

Science is also the systematic attempt to understand and comprehend the
deep principles, hidden order, complex structures and beauty of operation that
lies behind all natural phenomena. It aims to discover the true facts about,
and the rational relationships between, observable phenomena in nature, and
to establish theories that serve to organize these facts and relationships in the
language of mathematical symbolism.

The scope of science is not just the external world, but ourselves as well –
our bodies, perceptions, thoughts, imaginings, emotions and actions. Science
deals with ideas and is a curiosity-driven, abstract, cultural activity, but unlike
philosophy – it always concerns itself concrete phenomena, within which the
general, abstract principles and patterns are reified. It is motivated primarily
by intrinsic interest, not by utility.

Science flourishes best under special conditions of society, under which
there is freedom to exercise to the full the two aspects of the scientific method:
on the one hand, creative imagination aided by rigorous logic must seek to
build and examine hypotheses extending beyond existing knowledge; on the
other hand, experimental investigation must subject these hypotheses to the
most rigorous empirical testing, employing the most elaborate scientific in-
struments available to the scientist. Yet, in the end, no matter how complex
the apparatus is, the information that it delivers has to be observed by a sci-
entist, who must examine it critically in relation to his hypotheses, and then,
perhaps, reformulate his hypotheses.

Technology (or Applied Science, as it is sometimes called) is an effort to
apply empirical scientific knowledge to some useful purpose. It is science
applied to the business of life. It deals with tools, techniques and procedures
that people use for utilizing the findings of science.

There are technologists in many countries where there are no scientists.
In fact, all countries have technologists; even counties in the Stone Age, for
example, had experts in the manufacture of stone axes.
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Technologists (who, however, are sometimes also scientists) are respon-
sible for all the marvelous inventions that have transformed the conditions
of our life. Think of the spectrum of revolutions in the means of communi-
cation, in the materials for all purposes, and in electronics; think of all the
new inventions relating to medical practice, to agriculture and food, to the
chemical industry, and to computers. This human activity is quite different
from that of science, although it utilizes and exploits discoveries of science
and, in turns, aids scientific research. Of course, a technologist has to have
wide-ranging knowledge, imagination, and high intelligence, just as does a
scientist.

Faraday’s laws of electricity and magnetism are science. Marconi invented
wireless technology. Clausius contributed to the science of thermodynamics.
Watt invented the modern steam engine. It was science that clarified the na-
ture of nuclear binding energy; but it was technology that, in an astonishingly
short time, converted it to a weapon of unimaginable power.

Whereas the first clear records of scientific concerns date back to about
600 BCE, the history of technology is much older. There is evidence that
toolmaking goes back as far as one million years. Invention that produced
technology did not require scientific reasoning until relatively modern times.

Progress in technology was an important component of natural selection
as our human ancestors learned to cope with recurrent ice ages and other
conditions hardly conducive to creative contemplation. By the time of the
apparently abrupt appearance of scientific thought, a considerably sophisti-
cated technology was at hand: fire; wheels; metalworking; agriculture; weights
and measures; elements of arithmetic, algebra and geometry; an astronomical
data base; navigation; land surveying; medicine and surgery; calendars.

The history of science is constantly interwoven with the history of tech-
nology and it is impossible to fully separate one from the other, especially in
recent centuries: industrial requirements are always putting new questions to
science while the progress of science continually gives birth to new industries
or brings new life to old ones. Let us review some examples:

Science has been progressing at breakneck speed during the last century,
allowing us to regard the universe from a much loftier vantage point than
had ever been possible before. Thus viewed, it is infinitely greater, infinitely
more complex and yet amenable to a more unified description; infinitely more
harmonious, more beautiful, and yet much more mysterious. Although not
all veils have been lifted, many have been during the past decades.

On the other hand, the very progress of science created new riddles, stirred
up new contradictions, which seem more difficult than ever to explain. One
revolutionary discovery after another seemed to put everything into question.
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The natural sciences have made enormous strides in discerning and in-
tuiting the fundamental laws of nature, as well as in explaining a myriad of
complex structural and operational mechanisms (both artificial and naturally-
occurring) predicated upon these laws.

The riddles cracked, or in the process of being cracked, by science – a
relatively new human activity – are extremely diverse, ranging over some many
tens of orders of magnitude in terms of space, time, mass and energy. Thus,
physics – the most fundamental of sciences – directly explain atoms, stars,
and galaxies, and provide us – through a sub-discipline dubbed cosmology –
with an embryonic theory of the universe on the largest possible scale.

Furthermore, physics also explains (either on its own or through successive
layers of emergent disciplines, such as chemistry and the life sciences) a good
deal of what we observe on scales intermediate between those of elementary
particles and the universe as a whole.

Microbes and DNA, salt crystals, quasicrystals and critical opalescence,
flowers and hurricanes, brains and ecosystems have all become subjects of
meticulous examination under the mental microscope of the scientific enter-
prise. Perhaps surprisingly, some of the most complex (and thus most difficult
of disentangling) systems known to us lie at comfortably human scales of dis-
tance and time – well away from the extremes of the observable universe on
the one hand (about 1028 cm), or the Planck length (10−33 cm) on the other.

Indeed, the human brain – a marvel of complexity and function – occupies
rather ‘mundane’ dimensions (circa 10 cm). The consideration of complex
systems could thus be a compensation of sorts for a humanity that has been
rudely evicted from any semblance of centrality in the cosmic scheme of things,
by successive scientific discoveries. But beyond such comforts, it points to
an essential duality in the nature of science: it seeks to analyze all objects
and systems down to their basic components and underlying principles. And
having analyzed them, it then strives to assemble the pieces back again, and
explain how composite systems may arise (or be engineered) from its building
blocks.

The scope, activity and growth of a scientific field can be evaluated from
the size of the population of scientists who work in it or from the number of
scientific publications that describe their research results.

In 1910 all the German and British physicists and chemists put together
amounted to perhaps 8000 people. By 1990 the number of scientists and
engineers actually engaged in research and development in the world was
estimated at 10 million, of whom almost 2 million were in the USA, a slightly
larger number in the states of Europe, and about 3 million in Russia. Statistics
shows that, by the above measures, science as a whole now doubles every 20
years.
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It follows that at the end of a professional career of about 40 years, an aging
scientist finds that there are 4 times as many scientist and scientific books
and journals as when he was a student. In subjects such as molecular biology,
particle physics, oceanography, and few other fields, there is a doubling every
4 years! During a professional career there are thus 10 doublings, which is to
say, a 1000-fold expansion.

The scientist nowadays is always surfing up the swelling wavefront, just
trying to keep his head above a flood of scientific literature. This enormous
expansion cannot continue forever, but it does not yet appear to be slackening.
This is because it is constantly refueled by revolutionary scientific discoveries
and by the need for additional information as an exploding human population
exploits nature.
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Discovery vs. Invention

An invention is the design and creation of a teleonomic (i.e., purpose-
oriented) device or procedure:

The purpose of an invented device or procedure can be anything desired
by the inventor, including e.g. labor-saving, entertainment, edification, or
assistance in achieving some other human goal. The terms “design” and
“creation” refer to a key characteristics of an invention that distinguished it
from a discovery – namely, that an invention is a pattern of energy, matter,
information and/or organization that cannot be naturally thought of as having
existed “out there” before it was brought into being by its inventors.

Thus, a statue hewn of rock cannot be said to have existed within the
original slab of rock; nor is it reasonable to regard a newly-fabricated Lexus
automobile as having been somehow “discovered” in the patterns of the plas-
tics, metals, chemicals and composite materials of which it consists. (In fact,
many of those components are themselves quite elaborate inventions – plastic
polymers, new materials, electronics, hydrocarbon fuels, etc.) Even some-
thing as abstract as a computer algorithm qualifies as an invention, provided
it is complex enough, arbitrary (contingent) enough, and sufficiently oriented
towards and informed by a specific purpose.

If it doesn’t fulfill these conditions, the algorithm might be regarded as
a ‘discovered fact’ of mathematics (an example is the Euclidean algorithm
ubiquitous in number theory and abstract algebra). And this brings us to the
concept of discovery – often confused with invention.

A discovery is the elucidation of a physical pattern, structure or effect in
nature, or of a mathematical pattern, structure or fact (theorem) within some
set of axioms. Unlike an invented device or procedure, a discovered fact or
effect is neutral vis-a-vis any possible application – i.e., it is not inherently
teleonomical.

Furthermore, a “discovery” has the essential hallmark suggested by the
word itself: to wit, it emerges from the basic fabric of reality (or from a
given set of mathematical axioms) in a manner sufficiently natural and non-
arbitrary that it can be regarded as being in some sense “out there” (covered,
as it were) in the universe before its discovery. (Thus, the Pythagorean the-
orem, the irrationality of the number

√
2, or any of the laws of mechanics,

electromagnetism, or the rest of physics and chemistry, cannot be reasonably
viewed as having been invented by the persons who happened to first realize
or demonstrate them.)
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With regard to strictly mathematical discoveries, one must add the caveat
that the theory (a set of hopefully-consistent axioms) within which the dis-
covery is made, is itself the arbitrary creation of the human mind – and this
circumstance seems prima facia to preclude the assignment of any a priori
existence to a discovered mathematical theorem.

But anyone who has had sufficient experience with pure and applied math-
ematics would agree that “interesting” mathematical theories are those that
keep coming up and interconnecting in novel and unexpected ways; these in-
terconnections are “inside” and “amongst” the mathematical theories them-
selves, and also between these theories and physical reality. Branches of “in-
vented” mathematics that lack this kind of connectivity do not seem to last
very long or draw the interest of many practitioners.

Likewise, discovered laws of nature – if they withstand the test of time –
are invariably seen to be gradually refined and forged into general principles
of great aesthetic appeal, which are also deeply interrelated with those mathe-
matical theories having the above-mentioned enhanced-connectivity property.

Finally, we note that inventions are often thought of as not having been
realized in the natural world before humans conceived of and reified them;
discoveries, on the other hand, are commonly thought of as being realized in
nature quite apart from humanity’s (or other sentient civilizations) endeavors.

But this is not always the case! For instance, life – with its intricate,
teleonomic mechanisms, patterns and structures – clearly qualifies, by our
definition above, as a vast trove of “inventions” – although modern science
realizes that there were likely no inventors of these inventions; rather, they
arose through random interactions of molecular assemblies, incessantly pruned
by the mathematical patterns of nonlinear reaction-diffusion-advection partial
differential equations.

Thus, life is a striking example of natural laws and patterns of physics,
chemistry and mathematics – “discovered” facts – giving rise to spontaneous,
“inventorless inventions”, including human beings and their brains.

And just as blind natural forces can “invent” (thus forms of heavier-than-
air flight and symbolic processing of information were instantiated in biology
long before humans and their technology) so is the converse true: many physi-
cal effects that qualify as having been “discovered” (in the sense defined above)
are thought never to have actually been instantiated during the universe’s life-
time, outside of human-devised laboratories (or those of other sentient beings
elsewhere).

Examples of discoveries in this category are legion: the Mössbauer effect
and the Bose-Einstein condensation of weakly-interaction clouds of Alkaline
atoms are two likely examples. Such effects or laws of nature were, of course,
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always in existence – but only as unrealized potential phenomena; it took
sentient, biotic beings (“invented” by inanimate nature!) to reify these effects
and principles into actual, material reality.

Invention characterizes the living being; it attests to an effort of adaptation
to the environment. Therefore it is found in the animal kingdom as well as
in humankind. In Africa monkeys have been seen to use a stick to get at
food which is out of reach: they have invented a tool. This ability is not
restricted to mammals: birds can be watched dropping thick shells on rocks
in order to break them and then eating the mollusks inside. Perhaps the
Californian mosquito shows proof of invention too, as it increases by 200
times its production of the gene which enables it to synthesize the enzyme
antagonistic to an insecticide.

Animal inventions are limited, however, and traditionally the history of
inventions starts with the emergence of Homo sapiens sapiens. Hardly had
he appeared but Homo sapiens sapiens not only adapted to the environment
but also adapted the environment to himself.

Early humans were at the mercy of hostile predators and the climate.
Without their ability to invent, it is doubtful whether our relatively weak and
slow ancestors would have survived for long. Spears with fire-hardened points
served first of all as hunting weapons and then for building fences.

Some eight thousand years BCE human populations were no longer content
with hunting, fishing and gathering. They captured wild animals which they
domesticated: horses for draught and for riding, dogs for protection, sheep for
meat and poultry for eggs and meat; they also selected crops to cultivate, and
therefore founded settled communities. So agriculture and farming began.

The countryside changed drastically, through the burning of the woodlands
and then by repeated cultivation. Man invented pottery, affixed shaped flints
onto shafts of wood, and made different tools according to his needs, such as
the scraper, axe, pruning knife and adze.

At approximately the same time the settlers in Anatolia and on the banks
of the Danube invented a rational organization of their shelters which were
to become permanent. The food stores were wisely situated in the middle of
the communities. Such was the origin of town planning.

During the Copper, Bronze and finally Iron ages, in the 5th, 3rd and 1st

millennia BCE respectively, the techniques and consequently the inventions
began to diversify.

One or more unknown persons invented successively the technique for
working iron, then iron with carbon to make steel, then how to make nee-
dles, then metal wheels, armour, and cooking utensils which could withstand
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high temperatures. The historical age, very roughly taken as starting in the
5th century BCE, took over from the prehistoric ages.

Then great waves of invasion and commercial trading played a role in
the spreading of inventions, comparable to that of swarms of insects in the
pollination of plants. The conqueror and the tradesman placed instruments
and products from one end to the other of the ancient continents, Africa and
Eurasia.

Tables 1–3 summarize man’s major inventions up to the 9th century CE.
It was around this time that northwestern Europe began to climb to an as-
cendancy in technology that it has held to for centuries since. The poorer
climate of this region, combined with the need to develop a new form of agri-
culture, was responsible for the emergence, around the 8th century, of the crop
rotation methods still used today.

The technologies which have had the most profound effects on human life
are usually simple. A good example of a simple technology with profound
historical consequences is hay. Nobody knows who invented hay, the idea of
cutting grass in the autumn and storing it in large enough quantities to keep
horses and cows alive through the winter. This technology was unknown to
the Romans but was known to every village of medieval Europe. It was a
decisive event which moved the center of gravity of urban civilization from
the Mediterranean basin to Northern and Western Europe. The Roman Em-
pire did not need hay because in a Mediterranean climate the grass grows
well enough in winter for animals to graze. North of the Alps, great cities
dependent on horses and oxen for motive power could not exist without hay.
So it was hay that allowed populations to grow and civilizations to flourish
among the forests of Northern Europe.

In Northwestern Europe, the wind was put to use in both sea-going ves-
sels and land-based mills. The region grew more populous and, by the 11th

century, Northern Europeans were extending their influence into the Mediter-
ranean and Middle East.

With few exceptions, most inventions made until the 16th century are
anonymous. But even later, despite the work of historians and documenters,
it is impossible to compile a complete history of inventions dating from ancient
times to the end of the 19th century, for the following three reasons:

• No large-scale control of production existed until well into the 19th cen-
tury; the work of each inventor was carried out to fill his own needs and
wishes and so did not resemble that of anyone else. (Thus, hundreds of
types of lifting instruments have existed throughout the centuries, and
one just gets lost in speculation as to the one which was used in the
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building of the fabulous Colossus of Rhodes in the 3rd century BCE,
which was 35 m high.

• Many inventions which were designed on paper, were never realized, so
the principle of selection cannot be applied to unrealized inventions.

• Many inventions are undoubtedly lost forever and other have been lost
and found again, or reinvented. For example, not all the works of the
inventors of the famous Alexandrian School are known. Before printing,
the only documents describing inventions were manuscripts, of which
often only a very few copies existed.
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The Ultimate Machine

At first all machines were mechanical, whatever their motive power; me-
chanical design requires strict specifications of parts’ dimensions, material
properties, relative positions, and mechanical contact, rolling, sliding etc. be-
tween parts. This can be thought of as the initial stage in the evolution
of engineering – a stage in which machine functionalities and structure are
very tightly correlated with the physical properties and configuration of the
machine’s parts.

Later, when electromagnetic theory was put on a sure footing, electrical
circuitry and their standardized electronic components were developed (ca-
pacitors, resistors, inductances, batteries, vacuum tubes, transistors, and a
variety of thermal, mechanical and optical transduction devices). This al-
lowed the modular design and hookup of devices in which functionality and
structure was partially liberated from the tyranny of geometry and mechanics;
instead, function and structure tended to inhere to a large extent in circuit
connectivity.

In the middle of the 20th century, analog electronic circuits were for the
first time used to perform digital (i.e. discrete logical) functions; thus was
born the field of digital design. The ubiquitous digital computer is an extreme
case of a machine whose entire function (except actuators and transducers
interfacing with peripheral equipment) is to manipulate digital information;
but digital components have since been interwoven into many other machines
types as well (automobiles, wristwatches, camcorders, stereo systems, televi-
sions, telescopes, microscopes...).

Digital design is even more flexible than analog-electric one, because in
addition to being liberated from geometric and physical constraints, it is also
tolerant (up to a point) of major distortions of the electrical wave-forms and
signals themselves (a signal representing the bit “1” can be recognized as such
even after undergoing significant distortion from its original shape – much as
human handwriting can be recognized across a fairly wide spectrum of indi-
vidual penmanship, orthographic styles, font types, script size, orientations,
etc).

Digital design need not be implemented electronically, of course – or even
electrically; thus, an old fashioned, Pascal-type calculating machine is a digi-
tal computer implemented mechanically or electro-mechanically, while a pre-
digital telephone exchange performs rudimentary digital computations via
analog electric circuitry and electromechanical switches.
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In the second half of the 20th century, electronic circuits became increas-

ingly miniaturized – especially digital computation circuits, but also to a

certain extent analog circuits, and even some electromechanical devices). In

such miniaturized devices, individual components are crammed together in

dense configurations – which demands close attention to issues of heat dissi-

pation, distributed analog electromagnetic effects and, of course, mechanical

design and material science. This trend culminated (thus far!) in the VLSI sil-

icon chip, and extended to electro-optical and optronic devices (“photonics”),

Field Programmable Gate Arrays (FPGAs), Acousto-Optical (AO) devices,

Micro Electro-Mechanical devices (MEMs), a variety of high-density digital

memory devices, miniaturized RF devices, etc.

Despite the fact that shrinking chip sizes re-introduce physical and geo-

metric constraints, once a batch of chips is successfully manufactured – and

assuming chip operation is reasonably resistant to thermal, chemical, mechan-

ical and external electromagnetic disturbances and stresses – the chips can be

treated as if they were simple electronic components with known logic func-

tionality and assembled onto motherboards to render machines whose overall

(digital and analog) functionality is, once again, flexible and modular.

Looking ahead into the coming decades, advances in photonics, electronics,

material science and nanotechnology promise to both continue the miniatur-

ization trend, and allow machine functionalities to be controlled by light alone,

or by a combination of photons and electrons – in some cases, only one photon

or electron at a time – as opposed to the millions of electrons whose motion

states must change to flip a single bit from ‘0’ to ‘1’ in present-day computer

chips.

This raises the further issue of how robust can a machine be when con-

trolled by a single quantum particle! Even contemporary chips are susceptible

to random bit-flips due to stray cosmic rays, natural radioactivity or external

electromagnetic interference; this problem is customarily resolved via error
correction codes (the modern mathematical theory of which involves abstract

algebra and Galois fields!).

There are further challenges ahead to digital robustness, stemming from

quantum uncertainties and superpositions of states; researchers have already

begun to tackle those, extending standard computer science into the new

uncharted waters of quantum computing.

Nanoscopic, and even quantum-coherent, machines now being contem-

plated – in which the “gears” are single quanta, atoms or molecules – mark

man’s final efforts (so far) in his long way of emancipating structure and

functionality from physical and geometrical constraints of matter and energy.
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The Iterative Nature of Scientific Knowledge

The manner in which Kepler used the empirical astronomical data avail-
able to him (consisting of antiquity’s accumulated lore plus Tycho Brahe’s
observations) is an instructive case study in how science’s knowledge of laws
of nature is actually abstracted from experience – through sequences of in-
teractive, iterative and convergent interplays between empirical investiga-
tions on the one hand, and theoretical speculations and modeling on the
other.

Various (sometimes conflicting) misapprehensions about how this process
operates are rampant among the general lay public and certain types of histo-
rians and sociologists of science: on the one hand, one often hears that laws of
nature are discovered by painstaking accumulation of empirical observations,
followed by suitable generalizations; then further experiments are carried out
to verify new predictions of the generalized laws; and so on. (This is the
view of the “Scientific Method” whose earliest formal champion was Francis
Bacon.)

But on the other hand, some modern philosophers and academics in the
social sciences are of the opinion that general laws of nature are “under-
determined” by empirical data, and are thus (in part or even wholly) cul-
tural constructs – which these scholars then, of course, gleefully rush to
deconstruct (a term enjoying unfortunate ubiquity in today’s best universi-
ties).

But both these schools of thought are simply wrong; the actual progress
of our understanding of how the universe works is a far more interesting –
and more robust – process than “dreamed of in their philosophies”. And the
resulting laws of nature – though always subject to eventual re-interpretation
and modification from the vantage point of the next, deeper-level round of
understanding – are real, not culturally-relative, and are never “repealed” or
“go out of style” as, say, do legislations or dress fashions or styles of musical
composition and architecture.

Thus, Newton’s theory of gravitation was not repealed by the newer,
deeper understanding furnished by Einstein’s theory of General Relativity –
only its range of validity was circumscribed; after all, the Newtonian theory
is still the coin of the realm in NASA’s computations of satellite orbits, deep-
space probe trajectories and the like.
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Nor do we cease to apply Newtonian mechanics to the modeling of aircraft
flight, mechanical gears, engines, water spouts, golf-ball physics and all other
manner of macroscopic machinery and motion, just because this theory breaks
down for very small or very fast (or large or massive) objects – in which
regimes, we now know, it must be replaced by quantum mechanics and (special
and general) relativistic physics, respectively.

There is an iterative, back-and-forth interplay between theory and exper-
iment in science which always seems to converge sooner or later! This is an
amazing fact, given the ever-increasing length of the logical chains used by
science in deciphering Nature.

These long chains of reasoning, deductions and modeling used to “inter-
polate” between experimental data points are necessitated by the limitations
imposed upon humans by many constraints: their size, duration, particular
location in the universe; by the limited spatial and temporal resolution of
their sense-perception apparata; and by their limited ability to process and
interpret concepts and data.

These limitation are, of course, vastly compensated for by human-invented
technology, which itself benefits greatly from scientific discovery – thus in-
troducing another element into the dynamics of theory/experiment iterative
interplay.

Not least among humanity’s technological aids to scientific research are
those enabling it to summarize, record and propagate to subsequent genera-
tions its ever-increasing storehouse of data, theories, models and conclusions.
Among such technologies are writing, printing, and (of late) electronic data
storage; even the university may be viewed as such an invention – for it per-
petually trains new cadres of scientists who can process, add to, and (where
necessary) modify the accumulated knowledge and understanding of the ages).



Chronological Lists of Inventions

Table INV-1: Up to 3000 BCE

Table INV-2: 3000 BCE–300

Table INV-3: Far East 400 BCE–1400

Table INV-4: Europe 800–1750

Table INV-5: Europe and USA 1750–1900

Table INV-6: 20
th

century

Table INV-7: Notable cultural structures on

earth since 5000 BCE
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Footnotes in tables

4 Hans Dehmelt developed the Penning trap, with which electrons and
ions – and (later) positrons, baryons and antibaryons, and even anti-
hydrogen atoms – are confined by DC and AC electromagnetic fields to a
small apace for long periods of time, during which the properties of the
trapped particles can be studied. In 1973 Dehmelt succeeded in isolat-
ing a single electron in such a device. This feat enabled high-precision
measurements of electron attributes such as the mass magnetic moment
and the fine structure constant. The electron (and positron) gyromag-
netic ratio was measured to an accuracy of a few parts in a trillion. Its
comparison with QED theoretical predictions, within experimental and
theoretical uncertainties, represents the the best quantitative success yet
of any scientific theory. The Penning trap was also used to measure
mass ratios and EM multipole moments of the positron, muons, protons
and antiprotons and neutrons, and the neutron lifetime. It was used
to measure atomic spectral frequencies and observe individual quantum
jumps. A similar electromagnetic trap, the Pauli trap, was developed
by Wolfgang Pauli in the 1950s.

5 In 1995 J. Prestage et al., at CalTech, by comparing precise Hg+ (pos-
itive ion of mercury) ion-trap atomic clock with hydrogen-maser clock,
derived an empirical upper bound of 0.07 parts per trillion annual varia-
tion of the dimensionless fine structure constant. Less stringent bounds
were obtained from studying Samarium isotope ratios in a natural 2×109

(2 billion) year old fission reactor in Oklo mine, Gabon, and from spec-
troscopy of high-redshift cosmological objects.
In 2004, scientists at NIST (National Institute of Standards and Tech-
nology, formerly NBS) have unveiled a miniature cesium atomic clock.
The heart of the clock is about the size of a grain of rice, capable of
being mass-produced on semiconductor wafers using existing technol-
ogy. The entire package, including external electronics, can be as small
as a cubic centimeter. The device consumes less than 75 mW (and
thus can be battery-powered). In this chip-scale clock, the difference
between two infrared-laser frequencies is resonantly tuned to a cesium
RF transition frequency, producing a “dark state” in which the cesium
atoms cease absorbing and emitting light. This defines the atomic RF
frequency standard, relative to which an external oscillator is then sta-
bilized. This miniature atomic clock is not yet as accurate as standard
atomic clocks, which are much larger (of order 1 meter) as well as ex-
pensive and power-guzzling. Chip-scale atomic clocks potentially offer a
1000 fold improvement in long-term timing precision as compared with
quartz crystal oscillators.
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Introduction

In 1844, four years after Samuel F.B. Morse proved that he could send
coded messages along electrical wires, he managed to persuade the U.S.
congress to appropriate $30,000 to build a telegraph line between Washington
and Baltimore. It was on the opening of that earliest line that Morse sent his
historic telegram6 – “What hath God wrought” (Numbers 23, 23). With that
Morse opened the age of telecommunications and triggered one of the most
dramatic commercial developments of the 19th century. He started a powerful
process that is still unfolding in our time.

Because so much business now depends on getting and sending informa-
tion, companies around the world have been rushing to link their employees
through electronic networks. These networks – which today are digital and of-
ten have computers as nodes – form a key infrastructure of the 21th century,
as critical to business and national economic development as the railroads
were in Morses’ era.

Some of these networks are “local area networks” (LAN), which merely
hook up computers in a single building or complex. Other are globe-girdling
nets that connect people the world over. For example, IBM alone connects
400,000 terminals around the world through a system called VNET, which in
1997 handled an estimated 20 trillion characters of data. By itself, a single
part of that system, called PROFS, saved IBM the purchase of 10 million
envelopes, and IBM estimated that without PROFS it would need nearly
50,000 employees to perform the same work. Networking has spread to the
smallest businesses. With some 150 million PCs in use in the United States,
many companies now advertise over the Internet.

Companies grow more dependent by the day on their electronic nets – for
billing, ordering, tracking, and trading; for the exchange of design specifica-
tion, engineering drawings, and schedules.

Regarded as purely administrative tools, networked information systems
are increasingly seen as strategic assets, helping companies protect established
markets and attack new ones.

The race to build these networks has taken on some of the urgency that
accompanied the age of railroad construction in the 19th century, when nations

6 The first telegraph message, sent on May 24, 1844 from the Supreme Court Room

of the U.S. Capitol to the Mount Claire Station of the Baltimore and Ohio Rail-

road, Baltimore, Maryland.
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became aware that their fates might be tied to the extensiveness of their rail
systems.

The networks of Morse (telegraph), Bell (telephone) and others were un-
intelligent. Common sense taught that a straight line is the shortest distance
between two points. So engineers sought this straight line, and messages sent
from one city to another were always sent over this pathway. As this first-
stage network expanded, it was discovered that in the world of networks this
is not necessarily the best way to get a message from one place to the other.

Thus, when a network began to monitor its own performance it could inject
“intelligence” into the system and become, as it were, “self-aware”. Crisscross-
ing the entire planet with wires running into hundreds of millions of homes,
and incorporating complex switching systems and transmission, these second-
stage networks, constantly improved, and endowed with ever more intelligence,
were among the true marvels of the industrial age.

Nowadays, as millions of computers, from giant Crays to tiny laptops,
are linked to form a dense interconnected mesh, a still higher level of intel-
ligence or “self-awareness” is needed to process the incredibly vast volumes
of information pulsing through them. As a result, researchers are racing to
make network even more intelligent. Their goal is the third-stage neural net-
works. These will not only route and reroute massages, but actually learn
from their own past experience, forecast where and when heavy loads will be,
and then automatically expand or contract sections of the networks to match
the requirements.

Yet even before this major effort comes to fruition, another, even more
gigantic leap is being taken. We are moving not into a fourth–stage system
but to another kind of intelligence altogether.

Until now, even the smartest networks, including the hoped-for neural
networks, had only what might be called “intra-intelligence” – with all its
smartness aimed inward. It is akin to the intelligence embedded in our own
autonomic nervous system, which regulates the involuntary operations of the
body, such as heartbeat and hormonal secretion.

One could, however, reach beyond intra-intelligence toward networks that
do not just transfer data, but analyze, combine, repackage, or otherwise alter
messages, sometimes creating new information along the way.

Thus enhanced, what comes out the other end in such a network would
be different from what is fed in – changed by software embedded in the net-
work. These are termed “Value Added Networks” (VAN); they are “extra-
intelligent”.

Combined with the third-stage neural-networks capacity, the advent of
VANs would give communication networks not only self-awareness and the
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ability to change themselves, but also the ability to intervene directly in our

lives, beginning first with our businesses. If this comes to pass, networks will

take on revolutionary new roles in business and society.

I. The electromagnetic telegraph (1800–1902)

During the 16th, 17th and 18th centuries, steady but slow progress in the

study of magnetic and electrical phenomena was recorded. Already William

Gilbert (1600) suggested a link between electricity and magnetism. However

what progress occurred between 1600 and 1800 is nevertheless negligible when

compared with the strides made between 1800 and 1840.

The rapid advance which then occurred was not precipitated by any man-

ufacturing process in which electricity or magnetism played a direct role. It

was chiefly fostered by a rapidly growing interest in theoretical chemistry dur-

ing the rise of chemical manufacture and thus benefited form the outlook of

new industrial leaders eager to exploit new discoveries.

For example, the chemist Stephan Gray, while experimenting with insu-

lators and conductors (1729), transmitted static electrical charges (generated

by an electrostatic friction-type generator) along a brass wire 100 meter long.

On the other hand, experiments with frogs (1780) led the biologist-

physician Luigi Galvani to observations which quickly culminated with the

discovery of the cell or battery, which later became the electrical energy source

powering the telegraph.

1800 Alessandro Volta (Italy) invented the voltaic pile (prim-

itive battery).

1816 Joseph Henry (USA) proposed a single-wire telegraph.

Francis Ronalds (1788–1873, England) demonstrated

such a device but the verdict of the British Admiralty was

(1832): “Telegraphs of any kind are wholly unnecessary”.
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1820–1821 Hans C. Oersted (Denmark), Ampère (France) and
Michael Faraday (England) created the science of elec-
tromagnetism.

[Oersted discovered that an electric current creates a mag-
netic field; Faraday discovered that a changing magnetic
field creates an electric current; and Ampère formulated
some of the basic laws of electrodynamics.]

1825 William Sturgeon (England) built the first electromagnet
for practical technological use.

1830–1833 Gauss and Weber (Germany) developed a small scale
working telegraph system in Göttingen (3-km line). In the
U.S., Joseph Henry experimented with a closed circuit in
which a source of current activates an electromagnet which
in turn activates a bell at a distance.

1836–1837 John Daniell and Charles Wheatstone (England) im-
proved the voltaic cell, creating a stable current source.

1837–1844 Samuel Morse (USA) invented the practical telegraph.
He set up a 60 km telegraph line between Washington DC,
and Baltimore (1844).

1838 Carl August von Steinheil (1801–1870; Germany) dis-
covered the possibility of using the earth for a return con-
ductor in telegraphy (grounding).

1851 First telegraph cable laid across the English Channel.

1855 David Edward Hughes (England and USA) invented a
keyboard telegraph with rotating type-wheel printer that
grew into the modern telex industry.

1865 A telegraph system established between India and England.
It took on average 6 days to telegraph a message overland
between the two countries.

1866 First successful transatlantic telegraph cable laid. Pro-
moted by the financier Cyrus West Field (1819–1892,
USA) and Lord Kelvin (1824–1907, England).

1884 Emile Baudot (1845–1903, France), J.B. Stearns (USA)
and Michael Pupin (USA), independently invented a mul-
tiplex system – a time sharing device to increase transmis-
sion speeds along the telegraph cable.
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1902 First pacific telegraph cable between Canada and New-
Zealand.

With the advent of railroads, the telegraph became one of
the causes and one of the consequences of the industrial
revolution. It changed the face of international commerce,
opening the door to worldwide communications and accel-
erating the flow of information.

II. The Telephone – adventure of mass communication

(1854–1991)

Mark Twain had a weakness for new inventions; he was fascinated by
them, and over the years he lost more than half a million dollars investing in
various contraptions.
Once, after a series of bad investments had temporarily tempered his enthusi-
asm for technology, he was approached by a tall young man with a mysterious
device under his arm.
Mark Twain listened politely to what the young man had to say, but explained
that he had been burnt once too often and was not interested.

“But I’m not asking you to invest a fortune”, said the young man.
“You can have as large a share as you want to for $500.”

The author shook his head and the tall, stooped figure started away. Mark
Twain, saddened by the sight of his pathetic young man, called after him.
“What did you say your name was again?” “Bell”, was the reply. “Alexander
Graham Bell.”

Telephone changed almost everything about business. It permitted op-
erations over a greater geographical area. Top executives could now speak
directly with branch managers or salesmen at distant regional offices to find
out, in details, what was going on. Voice communication conveyed far more
information, through intonations, inflection, an accent, than the emotionless
dash-dots of Morse Code ever could.

The telephone made big companies bigger. It made centralized bureau-
cracies more efficient. Phones helped integrate the industrialized economy.
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Capital markets became more fluid; commerce easier. Deals could be struck
swiftly, with a confirming letter as a follow-up. Phones accelerated the pace
of business activity, which, in turns, stepped up the rate of economic devel-
opment in the more technically advances nations.

People did not lie awake through the centuries dreaming of making a call.
Telephone history did not proceed in a straight line; it was a series of events
– mostly technological, some accidental – that made the telephone possible.

As the electrical telegraph was making its way around the world, especially
with the laying of the first transatlantic cable in 1866, a new technology was
being developed. It was first called the “talking telegraph”. Many scientists
have conceived the telephone:

1854 Charles Bourseul (France), a Belgian telegraph agent,
discovered that the vibration of the human voice could be
transmitted: a flexible plate would vibrate in response to
a varying pressure of the air and used to open or close an
electric circuit; a similar plate at the receiving station would
be acted on electromagnetically, and thus produce as many
pulsation as there are breaks in the current. His idea met
with skepticism, and he never built a telephone.

1855–1861 Philip Reiss (Germany) Constructed a talking machine
based on the ideas of Bourseul and called it das Telephon.
He could not, however, reproduce the human voice with
sufficient clarity. It was the first non-talking telephone.

1876–1877 Alexander Graham Bell (USA) and Elisha Gray
(USA) independently invented the telephone. The system
was based on the principle of the electromagnetic induc-
tion [Faraday 1831]: human speech caused a membrane
to vibrate, which modulated the magnetic flux threading
through an electric circuit and generated by a magnet situ-
ated in front of the membrane; the modulated magnetic flux
in turn, generated alternating electric currents. At the re-
ceiving end, the sound was reproduced by a reverse process.
Bell accidentally discovered the principle of the telephone
when trying to improve telegraphy.

Bell’s telephone represented a powerful threat to the vested
interest of the telegraph companies. This led Western
Union to call in Edison to develop an alternative instru-
ment. Since Edison’s microphone turned out to be a more
efficient transmitter of sound while Bell had the more ef-
ficient receiver, the situation was resolved when Western
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Union assigned their rights on Edison’s device to the Bell
Company.

1877–1878 David Edward Hughes (England and USA) invented the
carbon microphone [the word microphone was coined by
Charles Wheatstone in 1827]. Edison (USA) and Emile
Berliner (Germany and USA) hit upon the same idea at
about the same time. All three arrived at the invention by
way of their efforts to improve the telephone transmitter.
Indeed, the device played a critical role in the development
of the telephone by increasing its transmission capacity.

1878 The first commercial telephone exchange opened in New
Haven, CT.

1880 The first UK national phone directory.

1891–1892 Almon B. Stowager (USA) patented the automatic ex-
change dial system, the first electromechanical switching
system, which made possible the extension of the tele-
phone network. By 1892, the Bell Telephone Company had
240,000 subscribers in the US.

1893 Oliver Heaviside (England) solved the problem of the
electrical transmission line, enabling engineers to construct
transoceanic cables and realize long-distance telephony.

1894 Michael Pupin (USA) invented the ‘Pupin coil’: he de-
vised a means of greatly extending the range of distant
telephone communication by placing loading coils at pre-
determined intervals along the transmission wire. It made
long-distance telephony practical by amplifying the signal
at intervals along the line without distortion.

1903 3,278,000 telephones in the United Sates. By the 20th cen-
tury, the telephone had become the symbol of modern soci-
ety. It was ubiquitous in most businesses and had impacted
both urban and rural life.

1904–1912 The advent of vacuum tubes: rectifiers (Fleming; 1904),
amplifiers (Lee de Forest, 1906) and feedback oscillators
(Edwin H. Armstrong, 1912).

Tubes improved telephone and radio communications and
led to US national phone services.

1914 9.7 telephone per 100 people in US.
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1915 First transcontinental telephone line opened between New

York and San Francisco.

1916–1931 The first teleprinter (which made it possible to send mes-

sages over the telephone line) was invented in the US. A

teleprinter system becomes operational in 1928 and was

extended nationally by Bell Labs (1931) under the name

telex (= teleprinter exchange).

1924–1941 Pulse code modulation (PCM), invented and completely

worked out by Paul M. Ramey. It is the basis of dig-

ital audio and used in voice transmission and reproduction.

It incorporates the three stages of Sampling, quantization
and coding. But this groundbreaking work was then ap-

parently forgotten. The idea was reinvented in 1939 by

A.H. Reeves, forgotten again and finally resurrected dur-

ing WWII by Bell Labs during research into methods of

encoding phone conversation.

1929 H.A. Affel and L. Espenschied of the AT&T/Bell Labo-

ratories (US) patented a coaxial telephony system: the wide

bandwidth enabled large number of telephone channels to

be assembled in frequency division multiplexing – impor-

tant for meeting the ever increasing telephone traffic. As

an added bonus, the outer conductor of the cable screened

the signals from interference of radio stations and power-

lines.

1947 First microwave relay station for long-distance telephone

communication was adopted between Boston and New

York. It eliminated the need for expensive trunk lines.

1948 Claude Shannon created Information Theory, containing

the basis for data compression (source encoding), error de-
tection and correction (channel encoding), and estimation

of data channel capacity.

1950 Richard Hamming’s work on error detection and correc-
tion codes.

1950 First terrestrial microwave telecommunication system, in-

stalled to support 2400 telephone circuits.
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1956 First transatlantic telephone cable laid. It consisted of 7242
km of coaxial cable, laid in waters up to 4 km deep. The
complete system provided 35 high-quality telephone circuits
from London to New York (29) and Montreal (6).

1963 First push-button telephones were introduced.

1965 First commercial electronic telephone exchange brought
into service by AT&T. It embodied for the first time the
principle of stored program control, which gave greatly in-
creased flexibility in the services provided by the exchange
and better maintenance.

1966 First successful transatlantic direct-dial phone calls are
made.

1971 Regular direct-dial phone call began from New York to
Paris and London.

1976 High capacity transatlantic cable went into service; it car-
ried 4000 conversations simultaneously.

1975–1985 First cellular telephone system launched in Sweden (1975)
by the Ericsson Company. Within five years, some 200,000
Scandinavians were using these mobile phones. A cellular
(cell) phone is essentially a portable analog or digital ra-
dio transmitter and receiver; cell phones are linked via mi-
crowave radio to base transmitter and receiver stations that
connect the user to conventional telephone networks. They
operate in the 829–949 MHz frequency band (wavelength
at 900 MHz is 33 cm) or the 1850–1990 MHz band. The
geographic region served by a cellular system is subdivided
into areas called cells, each cell using frequencies different
from those used by its surrounding cells. When the phone
carrier moves from one cell to another, the telephone call
is transferred from one base station (and its frequency) to
the next using a computerized switching system. Cellular
phone networks in Japan (1980) and the US (1983). Cellu-
lar phone went into cars (1985).

1983 565 million telephones in the world.

1985 A single optical fiber carries the equivalent of 300,000 si-
multaneous phone calls in a Bell Labs test.
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1987 AT&T completed digitization of all its long-distance facil-
ities. Voice transmission signals are converted into com-
pressed digital computer codes for more efficient transmis-
sion trough lines, then ‘decompressed’ at the receiving end.

1991 The total annual volume of international telephone traffic
is estimated at 35 billion telephone minutes, globally aver-
aging about 6 telephone-minutes per person per year.

III. Wireless communication and the birth of Radio

(1864–1961)

Maxwell’s research into electrodynamics began a few weeks after his grad-
uation from Cambridge (1854), and ended just before his death (1879). By
1864 he had established both a dynamical theory of the electromagnetic field
and the electromagnetic theory of light, accounting for the phenomenon of
electromagnetic waves, propagating in vacuo or in a medium at the velocity
of light. With this discovery he opened the way for a future technological
civilization in which electromagnetic effects play cardinal roles – including
the propagation of electromagnetic waves which enables radio, cell phones,
television, radar, and optical fiber communications. The first experimental
confirmation of Maxwell’s theory was rendered by Heinrich Hertz (1887)
who produced and detected the first man-made radio wave signals7.

7 Certain amateurs allegedly transmitted wireless signal before Hertz or even trans-

mitted voice signals before Marconi.

Their results, however, are not true Hertzian radiation effects but rather

induction–field phenomena. One such person was Malcolm Loomis (1826–1886,

USA), a dentist by trade; At the close of the Civil War in 1865, he flew two kites,

carrying wires, from mountain tops 23 km apart. The wire from one kite was

attached to ground through a telegraph key; the other kite wire was grounded

trough a galvanometer that could measure very small currents. When he operated
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1874–1906 Evolution of wave detectors: Karl F. Braun (1874, Ger-
many) discovered ‘one way conduction’ properties in metal
sulfide crystals. [In 1901 he introduced the use of a crystal
detector as part a wireless receiver.]

History of the Crystal Radio

The crystal radio receiver is a very simple kind of radio
receiver. It needs no battery or power source except the
power received from radio waves by a long outdoor wire
antenna.

Simple crystal radios are often made with a few hand made
parts, like an antenna wire, tuning coil of copper wire, crys-
tal detector and earphones. Because crystal radios are pas-
sive radio receivers, they are technically distinct in many re-
spects from ordinary radios containing active powered am-
plifiers. This is because they must receive and preserve
as much electrical power as possible from the antenna and
convert it to sound power whereas ordinary radios amplify
the weak electrical energy “signal” from the radio wave.

A crystal radio receives programs broadcast from radio sta-
tions. Radio stations convert sound into radio waves and
send out the waves everywhere. Radio waves travel across
the crystal radio antenna all the time. Radio waves make
radio wave electricity flow between the antenna wire and
the ground wire. This electricity is connected to the crys-
tal radio by the antenna and ground wire. The crystal radio
uses a tuner to tune the electricity to receive just one sta-
tion. Then it uses a crystal detector to convert this radio

the key, detectable changes of current occurred in the other kite wire. He was

granted a patent on his system in 1872, but no known attempt was made to make

commercial use of this phenomenon.

It is believed that Loomis merely interrupted current in the antenna resulting

from flying an antenna into a cloud, transmitting information between two points

by conduction or induction but not via far-field electromagnetic waves.

Another, equally obscure experimenter lurking in the shadows of the early history

of radio was Nathan Stubblefield (1858–1928, USA) a mendicant Kentucky

melon farmer and telephone repairman who could allegedly send messages on a

wireless telephone over a distance 800 m (1892–1902). It is assumed that he, too,

was relying on the electromagnetic induction field
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wave electricity back to sound electricity. It uses earphones
to convert the sound electricity to sound you can hear.

Crystal radio was invented by a long, partly obscure chain
of discoveries in the late 1800s that gradually evolved into
more and more practical radio receivers in the early 1900s;
and constitutes the origin of the field of electronics. The
earliest practical use of crystal radio was to receive dot and
dash coded radio signals transmitted by early amateur radio
experimenters using very powerful spark-gap transmitters.
As electronics evolved, the ability to send voice signals by
radio caused a technological explosion in the years around
1920 that evolved into today’s radio broadcasting industry.

Early radio telegraphy used spark gap and arc transmit-
ters as well as high-frequency alternators running at radio
frequencies. At first a primitive detector called a Branley
Coherer was used to indicate the presence (or absence) of a
radio signal. However, these lacked the sensitivity to con-
vert weak signals.

Around 1906, researchers discovered that certain metallic
minerals, such as galena, could be used to detect signals.
These devices were called “crystal detectors”. Greenleaf
Whittier Pickard on August 30, 1906 filed a patent for
a silicon crystal detector, which was granted on November
20, 1906. Pickard’s detector was revolutionary in that he
found that a fine pointed wire known as a “cat’s whisker”,
in delicate contact with a mineral produced the best semi-
conductor effect. A crystal detector includes a crystal, a
special thin wire that contacts the crystal and the stand
that holds the components in place. The most common
crystal used is a small piece of galena. Several other min-
erals also performed well as detectors. Another benefit of
crystals was that they could demodulate amplitude modu-
lated signals. This mode was used in radiotelephones and
to broadcast voice and music for a public audience. Crystal
sets represented an inexpensive and technologically simple
method of receiving these signals at a time when the em-
bryonic radio broadcasting industry was beginning to grow.

In 1922 the (then named) U.S. Bureau of Standards re-
leased a publication entitled, Construction and Operation
of a Simple Homemade Radio Receiving Outfit. This arti-
cle showed how almost any family having a member handy
with simple tools could make a radio and tune in to weather,
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crop prices, time, news and the opera. More than any
other system, the design contain therein, was responsible
for bringing radio to the general public.

While there were a number of earlier experiments with radio
broadcasts to the general public, some historians consider
the Autumn of 1920 to be the beginning of radio broadcast-
ing for entertainment purposes. Pittsburgh, PA, station
KDKA, owned by Westinghouse, received its license from
the United States Department of Commerce just in time to
broadcast the Harding-Cox presidential election returns. In
addition to reporting on special events, broadcasts to farm-
ers of crop price reports were an important public service,
in the early days of radio.

In 1921, factory-made radios were very expensive. Many of
them cost more than $2,000 USD (in year 2005 equivalent
dollars), and less affluent families could not afford to have
one. Newspapers and magazines in many countries urged
readers interested in radio to acquire one of the inexpensive
crystal sets or build their own. To minimize the cost, many
of the plans suggested winding the tuning coil on an empty
cylindrical oatmeal box. For years afterwards, home ex-
periments used oatmeal boxes as coil forms for homemade
radios. Even the crystal itself could be made by mixing
powdered sulfur into molten lead to form the lead sulfide
“crystal”. The crystal radio did not require batteries, but
it did require the user to purchase a commercially made set
of headphones (or telephone receivers as they were called in
those days), since that accessory was not suitable for home
construction.

“Carbon amplifier” consisting of a carbon microphone and
an electromagnetic earpiece sharing a common membrane
and case. This was used in the telephone industry and
in hearing aids nearly since the invention of both compo-
nents and long before vacuum tubes. This could be readily
bought or handcrafted from surplus telephone parts for use
with a crystal radio. Unlike vacuum tubes, it could run
with only a flashlight or car battery and had an almost
infinite lifetime.

In the early 1920s Russia, devastated by civil war, young
scientist Oleg Losev was experimenting with applying
voltage biases to various kinds of crystals, with purpose
to refine the reception. The result was astonishing – with
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a zincyte (zinc oxide) crystal he gained amplification. This
was negative resistance phenomenon, decades before the
tunnel diode. After the first experiments, he built regener-
ative and superheterodyne receivers, and even transmitters.
However, this discovery was not supported by authorities
and soon forgotten and no device was produced in mass
quantity beyond a few examples for research. This was
partly due to the low education and overall ignorance of
leadership, and partly due to the totalitarian nature of the
USSR regime.

The USSR opposed freedom of information, and registered
all radio receivers until 1962, typewriters and copy ma-
chines until its demise. Crystadine was produced in primi-
tive conditions; it can be made in a rural forge – unlike vac-
uum tubes and modern semiconductor devices. It was an
unwanted discovery to the authorities, and was consigned
to obscurity. Oleg Losev died 1943 in besieged Leningrad,
abandoned and nearly forgotten.

When Allied troops were halted near Anzio, Italy, during
the spring of 1944, personal portable radios were strictly
prohibited, as the Germans had radio detecting equipment
that could detect the local oscillator signal of superhetero-
dyne receivers. Some resourceful GIs found that a crude
crystal set could be made from a coil made of salvaged
wire, a rusty razor blade and a pencil lead for a diode.
By lightly touching the pencil lead to spots of blue on the
blade, or to spots of rust, they formed what is called a
point contact diode and the rectified signal could be heard
on headphones or crystal ear pieces. The idea spread across
the beachhead, to other parts of the war, and to popular
civilian culture. The sets were dubbed “foxhole receivers”
by the popular press, and they became part of the folklore
of World War II.

In some Nazi occupied countries there were widespread con-
fiscations of radio sets from the civilian population. This
led to particularly determined listeners building their own
“clandestine receivers” which frequently amounted to little
more than a basic crystal set. However anyone doing so
risked imprisonment or even death if caught and in most
parts of Europe the signals from the BBC (or other allied
stations) were not strong enough to be received on such a
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set. However there were places such as the Channel Islands
where it was possible.

While it never regained the popularity and general use that
it enjoyed at its beginnings, the circuit is still used. The Boy
Scouts (who emerged as the unofficial custodians of crystal
radio lore) kept construction of a set in their program since
the 1920s. A large number of prefabricated novelty items
and simple kits could be found through the ‘50s and ‘60s,
and many children with an interest in electronics built one.

Building crystal radios was a craze in the 1920s, and again
in the 1950s. Recently, hobbyists have started designing
and building sophisticated examples of the instruments. As
much effort goes into the visual appearance of these sets as
well as their performance, and some outstanding examples
can be found. Annual crystal radio DX contests and build-
ing contests allow these sets to compete with each other
and help form a community of interest in the subject.

The long wire type antennas often used with crystal radios
are monopoles. To receive signals from this type of an-
tenna, a ground reference is needed to provide a place for
the antenna signal electricity to flow into and out of. Be-
cause crystal radios have no other source of power than the
electrical power they receive from the antenna, the grounds
for crystal radios must be much better than those used by
amplified radios. Amplified radios use energy detectors and
as such do not need to take much raw power from the an-
tenna and need little or no physical ground. Crystal radios
rely on power detection and need to encourage as much an-
tenna current as possible to flow. This requires effective
grounding.

A crystal set is the simplest radio receiver. There are a va-
riety of circuit designs available. A common design consists
of a long-wire antenna, a variable inductor and a variable
capacitor forming a tuner or tank circuit to select the de-
sired radio signal frequency, and a detector consisting of a
diode demodulator usually consisting of a sharp wire called
a cat’s whisker pressing against a sensitive point on a min-
eral crystal in a holder.

A semiconducting mineral crystal, typically lead sulfide
(galena) is fixed inside a brass cup and the radio opera-
tor finds the loudest signal by touching the cat’s whisker to
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various points on the surface of the crystal. Alternately, a
discrete semiconductor diode can replace a makeshift cat’s
whisker diode. The most expensive part can be the length
of antenna wire.

The detector extracts the amplitude modulation from the
radio signal by rectifying it, and provides an audio output
in proportion to the strength of the signal coming from the
antenna. The entire set is passive, requiring no external
power. Because no electrical amplification is used, sensitive
earphones are required. These sets have no way to control
the audio volume.

Temistocle Calzechi Onesti (1853–1922, Italy) observed
that the electric resistance of a container packed with
metal granules is decreased upon the passage of electro-
magnetic waves. This so called ‘coherer’ acts like a kind of
a macroscopic semiconductor; the device was later devel-
oped into a detector of radio waves by Edouard Eugene
Desire Branly (1844–1940, France) in 1890 and by Oliver
Joseph Lodge (1851–1940, England) in 1894. [Lodge was
also the first to suggest in 1894 that the sun might be a
source o radio waves; this was confirmed in 1942.]

Greenleaf Whittier Pickard (1877–1956, USA) discov-
ered (1899) that a contact between a fine metallic wire (“cat
whisker”) and the surface of a certain crystalline material
(notably silicon) rectifies and demodulates high-frequency
radio waves. He patented such a device in 1906 and it be-
came an essential component of the crystal radio set. The
point-contact rectifier was the forerunner of the transistor
(1948). E.G Acheson first produced carborundum (silicon
carbide) in 1891. In 1906 N.C. Dunwoody observed that
carborundum could be used as a radio detector.

1897 Improvement of the Hertz oscillator by Augusto Righi
(1850–1920, Italy) and Adolf Slaby (1849–1913, Ger-
many). Righi designed the ball discharger (spark gap)
which could generate stable electromagnetic waves with
wavelengths as short as 2.5 cm (12,000 MHz). In Germany
Slaby transmitted radio signals to a distance of 21 km using
as a transmitter a spark coil connected to an antenna wire.
At the receiving end the signal was picked by another an-
tenna, passing through a coherer which in turn activated a
bell. Thus, Morse-key pressed at the transmitting end was
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‘heard’ at the receiver. Slaby was assisted by George Wil-
helm von Arco (1869–1940). The first antenna was used
by A.S. Popov who devised it but never used it himself
for radio communications.

1901 Marconi developed the first practical wireless telegraph sys-
tem. He was the last in the long line of contributors dur-
ing 1884–1901. He combined the Ruhmkorff induction-
coil, the 3-spark Augusto Righi oscillator, the Onseti-
Branly-Lodge coherer and the Popov antenna into a
workable system that could transmit coded Morse signals
over great distances. Finally in Dec 1901 he succeeded in
broadcasting a signal over the Atlantic from Poldhu (Eng-
land) to Glace-Bay Newfoundland, over a distance of some
3400 km.

Human speech was first transmitted via radio waves by
R.A. Fessenden (US).

1902 Wilhelm Schlömilch (1870–1969, Germany) invented an
electrolytic detector.

Discovery of a radio-wave reflection layer in the upper at-
mosphere.

First radio chess-match: passengers on the American liner
Philadelphia and the Cunard liner Campania, 70 miles away
in the Atlantic, played the first match by radio, transmit-
ting their moves via wireless operators aboard the ships.

Valdemar Poulsen (Denmark) transmitted human voice
via radio waves over a distance of 200 m.

1904–1911 Advent of the ‘crystal set’ receiver based on the crystal de-
tector of Karl F. Braun (1901) and Pickard (1906). Am-
ateurs could from now on build their own wireless receivers
and hear early radio broadcasts. It was popular until the
crystal detector was superseded by the vacuum-tube radio.

1904–1914 High frequency alternators, vacuum tubes, amplitude mod-
ulation, feedback and heterodyne systems ushered in mod-
ern radio and improved reception: J.A. Fleming (Eng-
land) and Arthur Wehnelt8 (1871–1944, Germany) intro-
duced the thermionic rectifier valve (1904).

8 Wehnelt invented the oxide cathode; it consists of a metal wire or sheet which

is coated with a mixture of metal oxides and is heated to incandescence directly

or indirectly. Its thermal electron emission is by many orders of magnitude larger
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R.A. Fessenden (Canada and US) made the first AM ra-
dio broadcast (Dec 24, 1906): sound waves of speech modu-
late the amplitude of a transmitted radio-frequency carrier
wave, creating a band of transmitted radio frequencies. The
modulated wave is then demodulated by the receiver to re-
cover the original sound wave9.

Lee de Forest (1906, USA) and Robert von Leiben
(1878–1913, Germany) invented the triode amplifier tube.
De Forest (1907) began regular radio music broadcasts.

Edwin H. Armstrong designed (1912, USA) the feedback
oscillator vacuum-tube. It was used (1913) by Alexan-
der Meissner (1883–1958, Germany) to generate a radio-
frequency signal carrying a spoken conversation between
Berlin and Nauen.

R.A. Fessenden had suggested (1900) that an alterna-
tor [a device that converts direct current into alternating
current capable of producing continuous radio-frequency
waves] could generate electromagnetic waves capable of car-
rying sound and music. He uses a spark generator to send
a human voice to a distance of about 1600 m. In his
1906 broadcast he used the alternator invented by E.F.W.
Alexanderson (1906)

1910 First successful radio communication from airplane to
ground station.

1911 Method for locating a radio source by direction finding was
developed.

1912 The 63 kW spark-transmitter distress call of the Titanic is
received by the liner Carpathia 93km away.

1913 The first trans-Atlantic two-way radio-telegraph service is
lunched by Marconi between Nova Scotia and Ireland.

than that of pure metals of the same temperature. We know today that this

empirical fact agrees well with semiconductor physics, But this was unknown to

Wehnelt at the time.
9 Already in 1899, G.W. Pickard had transmitted spoken message from the Blue

Hills observatory (Milton, MA) over a distance of 15 km using this “cat whisker”

receiver to receive audible signals that had been impressed upon (modulated) a

radio-frequency wave.
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William David Coolidge (US) invented a hot-cathode
X-ray tube and introduced the tungsten filament into the
incandescent lamp.

Irving Langmuir (US) made the first gas-filled lamp at
atmospheric pressure.

1915 Physicist Manson Benedicks (USA) discovered that a
germanium crystal can rectify ac current.

First major demonstration of long-distance voice commu-
nication (radio telephony) from Arlington, VA to Paris.

1918 Development of the superheterodyne radio receiver.

1919 Development of the short-wave radio.

1920 First commercial radio station (KDKA) in Pittsburgh, PA
began broadcasting.

1921–1925 Experiment revealing advantage of short-wave radio trans-
mission for long–distance voice communication.

1922–1926 Oleg Vladimirovich Losev (1903–1942, Russia) devel-
oped novel kinds of crystal radio sets (with new crystals he
fabricated himself) and was the first to study the effects
of bias voltage upon the functioning of crystal diodes in
circuits, essentially discovering “negative resistance” before
the tunneling diode, as well as a pre-ATT version of the
transistor and associated amplifiers. He then constructed
completely solid-state radios that function up to 5 MHz, a
quarter of a century before the transistor.

1922 Edwin H. Armstrong built the first portable radio,
known as ‘Operadio’.

U.S. President Harding had a radio installed in the White
House. The Ford T-Model car was equipped with a radio.

1922–1924 E.A. Appleton (1892–1965, England) confirmed the ex-
istence of the ‘ionosphere’, a region of partially ionized air
surrounding the earth at a height of 130–320 km. This acts
like a great mirror, reflecting radio waves back to the earth,
which also acts as a reflector. In consequence, medium and
short-wave radio signals bounce back and forth between
sky and earth in a two dimensional “channel” thousands
of kilometers in lateral extent, enabling long-distance radio
telecommunication.
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AM band was assigned; it spans 550–1550 kHz. More than
1000 radio stations operating in the US

1925 Advent of short–wave radio broadcasts in the US.

1927 The Pentode, a vacuum tube with 5 electrodes, was in-
troduced by H.S. Black of Bell Laboratories (US) who
conceived the idea of ‘negative feedback’. It is later found
to be one of the most significant inventions in electronics
and communications. It took 10 years for the patent to be
approved.

First commercial radio-telephone service operated between
the US and Britain.

1928 Crystal radio sets were being gradually replaced by home
radio sets with vacuum tubes, loudspeakers and connection
to main. A combined radio-gramophone appeared on the
market.

1929 Edwin H. Armstrong, in collaboration with Michael
Pupin, invented the Frequency Modulation (FM) method
of radio broadcasting. According to this method, the trans-
mitted signal is made to modulate the frequency of the car-
rier wave. This means that FM is static-free and capable
of high-frequently sound reproduction. Despite its advan-
tages, FM did not get off the ground until after WWII.

1932 Automatic Volume Control (AVC) was introduced.

Abraham Esau (1844–1955) increased the radio band to
include ultra short waves.

Karl Jansky invented the radio telescope.

1937 Grote Reber invented the parabolic disc antenna

1944 57 million radio sets in the US.

1945 Arthur C. Clarke suggested using satellites to relay radio
broadcasts.

1952 U.S. President Harry S Truman created National Security
Agency (NSA), a part of the Department of Defense. It
is an organization that monitors the telephone, radio and
other communications of both friends and adversaries of the
United States. Surreptitiously, it reads the world’s mail.
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1952 The first appearance of the Sony pocket sized radio tran-
sistor.

1958 First monolithic integrated circuit (‘microchip’) was demon-
strated by Jack St.Clair Kilby and co-inventor Robert
N. Noyce (1927–1990, USA). It revolutionized the design
and manufacture of electronic components in radio and tele-
vision.

The first integrated circuit consisted of a slice of Germa-
nium on which were formed a transistor, a capacitor and 3
resistors, constituting a simple phase-shift oscillator. The
components where linked by fine gold wires and the con-
nections embedded as a part of a manufacturing process.
The integrated circuit put entire systems of tiny transistor
switches, capacities, resistors, diodes and other electronic
devices on one tiny microchip. Made chiefly of silicon, alu-
minum and oxygen – the three most common substances
in the earth’s crust – the microchip eventually reduced the
price of electronic circuits by a factor of order one million.

1961 FM stereo broadcasting was authorized in the US. Stereo
radio systems became available.

1962 The first commercial satellite goes into orbit.

1963 James B. Gunn discovered the Gunn effect: a nonlinear
deviation from Ohm’s law in gallium arsenide. The pres-
ence of a negative differential conductivity region on the
current-voltage characteristics of the GaAs crystal makes
it possible to devise ultra–high frequency oscillator, knows
as Gunn diodes. In 1966 a first commercial UHF generator,
working at a frequency of 2–3 GHz with power output of
approximately 100 W in pulsed operation, was produced. It
was used (1968) in radar technology to measure the speeds
of moving objects. These radars were small enough to be
carried by hand.

1985 Sony built a radio the size of a credit card.

1987 Leo Esaki invented the tunneling diode, based on a quan-
tum mechanical effect whereby electrons can travel through
a region of electrostatic potential that they would be unable
to penetrate classically. Consequently electrons are able to
‘tunnel’ from one region of a semiconductor to another (by
their Schrödinger waves passing through a classical barrier),
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causing resistance to decrease rather then increase with in-
creasing current. This results in a negative differential re-
sistance which permits oscillations. The tunnel diode is
thus used as a very high frequency oscillator at low voltage
and power (ca. 100 MHz).
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IV Facsimile (1842–1980)

Smoke and drum signals are believed to have been the earliest form of
rapid, long-range communications by humans.

We owe the development of the fax to a Scottish inventor, Alexander
Bain (1842). Even now, after the advent of electronics and computerized
digital communications, Bain’s original concept is still the basis of modern
facsimile machines.

Facsimile (fax) is a method of encoding data, transmitting it over telephone
lines or radio broadcast channels, and receiving hardcopy text, line drawings,
or even photographs.

A modern, digital fax machine scans an image, whether it be text, pictures
or mixed, by reading a very small area of the image at a time. The fax machine
decides whether the area it is reading is light or dark and assigns the area
a number such as “0” for white and “1” for dark. Then the fax transmits
the number to a remote facsimile receiver (usually via telephone lines). The
receiver makes a mark on paper corresponding to the area on the original
image.

This process continues as the transmitting machine scans a series of small
areas horizontally across the image, and transmits that information to the
remote receiver. The transmitting fax then scans the next lower line and
so on until the entire image has been scanned, digitized, and transmitted.
(In today’s computerized fax machines, the scanned texts are often stored
and queued for later transmission.) Facsimile telegraph is one of the oldest
telegraph techniques.

Bain’s invention was improved by six generations of scientists and engi-
neers, the most important of which are:

1847 Frederick Collier Bakewell (England). Physicist. The
(analog) images were transmitted and received on cylinders
that rotated at a uniform rate by means of a clock mecha-
nism. A demonstration took place in 1851 at the World’s
Fair in London.
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1862 Giovanni Caselli (1815–1891, Italy) Physicist. Improved
on Bakewell’s version. His pantelegraph used two extremely
accurate clocks and made the synchronization timers in-
dependent of the current relayed by the telegraphic line
itself. He could send handwritten messages as well as pho-
tographs. The first commercial facsimile service run be-
tween Paris and Lyon. He transmitted nearly 5,000 faxes
in 1865.

Giovanni Caselli was born in Siena in 1815; he studied lit-
erature and science. From 1841 to 1849 he lived in Modena
as tutor of the sons of Marquis of San Vitale, but as he took
part in the riots for the annexation of the Duchy of Mod-
ena to Piedmont, he was expelled from the Duchy. He spent
all the money he had saved during his Modenese period in
experiments which eventually led to his Pantelegraph.

1877–1880 Constantin Senlecq de Ardres (1842–1934, France).
Physicist. Made use of the photoconductive properties of
selenium. The transmitted image was first focused onto
a glass plate of a Camera Obscura. Then, the image was
traced line by line with a selenium stylus which converted
the amount of light at each spot on the image to an electric
current. The electrical signals were sent by wires to the
receiver where they magnetically controlled a pencil that
re-recorded the document. In 1880 de Ardres published a
book entitled “The Telectroscope”, and in 1881 he outlined
photo-telegraphy.

1881 Shelford Bidwell (England). Demonstrated a device that
transmitted silhouettes using both selenium and a scanning
system. It was called phototelegraph.

1895 Ernest A. Hummel (USA). Watchmaker in St. Paul,
Minnesota.

His system used synchronized rotating 8-inch drums, with
a platinum stylus used as an electrode in the transmit-
ter. The original image was drawn on tin foil using a non-
conducting ink made from shellac mixed with alcohol. The
image was received on carbon paper wrapped between two
sheets of blank paper. When the electrode touched the
tin foil in the transmitter the circuit was closed; when it
touched the shellac the circuit was opened.
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The system was known as the Telediagraph, one of several
fax-line devices sending pictures via telegraph lines.

The first machines were installed in the office of the New
York Herald in 1898. By 1899, Hummel had improved the
machines, and they were in use in the offices of the Chicago
Times Herald, the St. Louis Republic, the Boston Herald,
and the Philadelphia Inquirer.

1902–1907 Arthur Korn (1870–1945, Germany). Physicist. Father
of telephotography (1902): sent photos on telephone lines
over a distance of 1000 km from Munich to Nuremberg. In
1907 he sent the first wire photos from the continent to
England. In 1922, May 06, he wired a picture from near
Rome to Berlin, whence it was radioed across the Atlantic
to a Navy radio station in Maine in about forty minutes.

Korn put a sheet of photographic film on a revolving glass
drum. Light scattered off the picture, traversed both film
and glass, went through a prism and was projected on a
selenium cell connected with a battery. The ensuing current
were then transmitted by wire to the distant receiver, where
it was decoded.

Korn was born in Germany and was appointed professor
of Physics at the university of Munich (1903–1908). From
1914–1936 he was professor of Electro-Physics at the Berlin
Institute of Technology. Emigrated to the United States in
1939. Korn’s idea of scanning the object and transform-
ing light signals into electronic signals, preceded the first
meaningful research into television by just two years.

1921 Eduard Belin (1876–1963, France). Engineer. First
transatlantic transmission of photos by radio. His system,
known as belinograph, is based on Korn’s idea, but is auto-
matic while the previous transmissions were manual.

1922 RCA provided the first transatlantic facsimile service.

1927 First commercially available equipment for phototelegra-
phy goes into operation. Radio transmission of pictures
becomes an important tool for press news reporting and
weather services around the world.
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Photo 1: Picture transmitted in the 1920s by electric telegraph

1939–1945 John Logie Baird used television for facsimile transmis-
sion of maps and written material in WWII.

1958 Slow-Scan Television (SSTV).

1971 First prototype of laser fax.

1980 Public international fax services.

1984 Japanese introduce high-quality facsimile.
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V. Recording and Reproducing of Sound

and Light (1796–1990)

(Photography, Audio and Video recording and playback,
analog and digital methods, cinematography)

1796 The Music Box was invented in Geneva by the watchmaker
A. Favre.

1839 Louis Jacques Daguerre (France) announced his process
of making photographs (a silver image on a copper plate),
known as the daguerreotype. William Talbot (England)
invented photographic paper for making negatives

Edmund Becquerel discovered the electrochemical effects
of light: the photovoltaic effect; he observed that shining
light on an electrode in an electrolytic cell increased the
generation of the electric current between the electrodes.
His discovery, however, remained a curiosity of pure science
for the next 65 years.

1840–1856 Joseph Max Petzval (Hungary, 1840) and Phillipp
Ludwig von Seidel (Germany, 1856) lay the foundation
for the design and construction of aberration-free objective
lenses with large aperture and wide fields. It had great
impact on the design of modern cameras and telescopes.

1855–1857 Leon Scott de Martinville (France) developed a device
that produces a graphical image of sound - the Phonauto-
graph. It enables people to “see” sound. The system used
a mouthpiece horn and a membrane fixed to a stylus that
recorded sound waves on a rotating cylinder with smoked
blackened paper. It could not play the ‘record’ back.

1856 The first aerial photos of Paris taken by the French photog-
rapher Cespard Felix Touranchon (1820–1910), from a
balloon.

1873 Louis Joseph May (England) and Willoughby Smith
(1828–1891, England) discovered electrical photoconductiv-
ity of selenium, thus enabling the transformation of visual
images into electrical signals. They found that the electri-
cal conductively of a bar of the element selenium changes
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when it is exposed to light such that the ensuing current is
proportional to the amount of light hitting the bar. May
then used selenium to send a signal through the Atlantic
telegraph cable.

1875 John Kerr (Scotland) discovered the electro-optical Kerr
effect (1875) through which intensive electric fields cause
certain isotropic amorphous substances to become doubly
reflecting (anisotropic). In 1876 he discovered the magneto-
optic Kerr effect.

1877–1878 Werner Siemens (1877) and Oliver Joseph Lodge
(1878, England) independently patented the loudspeaker;
music had yet to be converted into electrical signals that
would enable a speaker to work.

1877 Thomas A. Edison and John Kruesi (USA) made the
first recording of a human voice – the “talking machine”,
alias the ‘tinfoil cylinder phonograph’. Edison then (1878)
recorded sound onto discs and cylinders.

In the same year, Charles Cros (1842–1888, France) de-
veloped a gramophone record from which, through a pho-
togalvanoplastic process, the sound could be reproduced.

W.G. Adams and R.E. Day observed the photovoltaic
effect in solid selenium. Made the first selenium cell.

1880 Constantin Selencq de Ardres (France) announced his
method of telegraphic transmission of images via his Telec-
troscope.

1880–1904 Charles Summer Tainter (England) constructed the
first system that utilized a selenium cell to convert sound
into light signals (1880).

The first practical photocell was devised by Julius Elster
and Hans Geitel in Germany (1900–1904). They patented
a system for “recording and reproduction of sound”, using
a magnetic induction sensing device (1886). This was a
precursor of Berliner’s Gramophone.

1881 Clement Ader (France) built an ultra-sensitive micro-
phone and with it discovered the stereo effect. He used
12 of these microphones to transmit sounds of the Paris
Opera, via lines laid through the Paris sewers, to the Exhi-
bition Hall at the “Palais de l’Industrie”. Up to 48 listeners



1950–2008 CE 5203

could hear the opera using two receivers each, one for each
ear.

1883 Charles Fritts (US) described the first solar cell made
from selenium wafers.

1886 Louise Aimé Augustine Le Prince (1842–1890) devel-
oped in Leeds, England, the first camera and projector sys-
tem suitable for cinematography. Mysteriously disappeared
in Sep. 1890 on the train from Dijon to Paris, and was never
found.

1887–1901 Emile Berliner (Germany and USA) introduced the mod-
ern gramophone with the groovy audio discs, the needle,
and the mechanical loudspeaker horn (1887). He later in-
vented (1897) the shellac disc that could be mass-produced.

1887–1905 Heinrich Hertz discovered the photoelectric effect. Hertz
found that electric sparks pass more readily between elec-
trodes illuminated by ultraviolet light given off by another
spark (i.e. light altered the lowest voltage capable of caus-
ing a spark to jump between two metal electrodes).

Wilhelm Hallwachs (1859–1922, Germany) discovered
that a combination of copper and cuprous oxide is pho-
tosensitive.

Augusto Righi (1850–1920, Italy) related (1897) the pro-
portionality of the current of liberated particles to the in-
tensity of the incident light.

Phillipp Lenard (1902) found experimentally that the
maximum velocity of the released electrons is independent
of the intensity of the incident light but gave a wrong in-
terpretation within the framework of classical physics.

Albert Einstein (1905) opened the floodgates of modern
quantum physics, arguing from Planck’s blackbody radia-
tion law that the maximum energy of the released electrons
is proportional to the frequency of the incident light.

1887 Charles Cros (France) innovated the essential ideas be-
hind a disc-based audio recording and playback system. He
also developed the idea behind the duplication system in
the manufacture of records today. He was, however unable
to construct his own machines because of the cost.
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1888 Oberlin Smith (1840–1926, USA) was first to suggest the

use of permanent magnetic impressions for sound recording.

According to his plan, cotton or silk in which steel dust (or

short clippings of fine wire) were suspended, will serve in

the role of particle to be magnetized in accordance with the

undulatory current delivered from a microphone. Thus, he

reckoned, a magnetic pattern will be established which is a

replica of the microphone current. Smith never built such

an instrument.

1895 Auguste and Louis Lumiéré (France) invented a camera

and projector system later patented and known as the Cin-
ematographe. The first public showing to an audience of

invited specialists was on March 22, at 44 Rue des Rennes,

Paris.

1898–1901 Valdemar Poulsen (Denmark) developed the first practi-

cal magnetic sound recorder and reproducer, the telegraphon.

It recorded (on a magnetized steel piano-wire), the varying

magnetic fields induced by the sound, and played it back

in a reverse process.

William Bu Bois Duddell (England) and E. Ruh-

mer (Germany) independently suggested the photographic

recording of sound. Their progress, though incomplete, in-

spirited further development by Lee de Forest (1920),

whose work, in turn, served as a basis for the ‘talkies’ of

the cinematography industry.

1902 Enrico Caruso recorded his voice on a Berliner gramo-

phone disc.

1907 Henry Joseph Round (1881–1966, England) discovered

the phenomenon of electroluminescence (emission of light

from a semiconductor diode: after the application of a po-

tential of ten volts between two points on a crystal of Car-

borundum, the crystal gave out a yellowish bright light).

1913 Beethoven’s Fifth symphony was recorded in its entirety

on a gramophone disc; The performance was by the Berlin

Philharmonic Orchestra under the baton of Arthur Nick-

ish. It is the first full recording of a symphonic piece ever.
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1920 Lee de Forest (USA) pioneered a process of optical sound
recording: First, sound waves were recorded on magnetic
tape which in turn produced an electrical waveform with
corresponding amplitude variation. The electrical impulses
were then transformed into mechanical vibration of a mir-
ror. A source of light shone a beam of light on the vibrating
mirror which then fell through a slit on an exposed mov-
ing sound track film. The pattern of light falling on the
film was a transcript of the original sound. To play back,
light from another lamp was controlled into a beam that
shone through the sound track and then struck a photo-
electric cell, converting the modulated beam into electric
impulses. These reconstructed impulses were then ampli-
fied and fed into a loudspeaker behind the screen. The
sound track could be synchronized with an accompanying
motion picture.

In a few years this method served as a basis for the ‘talkies’
of the cinematography industry. For the next 59 years,
optical sound recording was used only in cinema. Then
numerous inventors endeavored to apply it to music records.

1924 C.W. Rice and E.W. Kellog (US) introduced the modern
loudspeaker.

1927 Oleg Vladimirovich Losev (1903–1942, Russia). Discov-
ered what we now know as LED (Light Emitting Diode)
and foresaw its use in telecommunications. His discovery
languished for half a century before being recognized in the
late 20th century and early 21th century. Losev published
his results in Phil. Mag, 6, 1024–1044 (1928) and issued a
Soviet Patent #12191 in 1929.

In 1962, four research groups in the US simultaneously re-
ported a functioning LED semiconductor laser based on
gallium arsenide crystals, thus opening the field of solid-
state optoelectronics.

1927 J.A. ONeill (USA) replaced Poulsen’s wire (1898) with a
magnetically coated ribbon. John Logie Baird (England)
first recorded TV pictures on shellac discs.

Fritz Pfleumer (1897–1945, Germany) built the Magne-
tophone, the first magnetic tape–recorder, using paper tape
coated with steel-powder. The all-electric record-player
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with electronic amplifier and built-in loudspeaker went on

sale.

W.L. Carlson and G.W. Carpenter (USA) invented the

“a-c biasing” method, the next great milestone in magnetic

recording.

End of the silent film; The enormous success of the movie

The Jazz Singer (starring Al Jolson), introduced the era of

talking motion pictures with the projection of synchronized
sound.

1928 Warner Brothers in Hollywood adopt the Movietone: the

direct photographic recording and reproduction of sound on
film:

Sound is picked up by a microphone, amplified, and the cur-

rent from the power amplifier is passed through a gas dis-

charge tube, which emits an amount of light proportional

to the current. The light is focused into a narrow beam

perpendicular to a rolling film, marking upon it a track of

constant width but variable density. In the reproducer, a

tungsten filament emits a narrow beam of light at right an-

gles to the sound track, and after passing through the track

the light is focused upon the cathode of a photocell. The

current through the cell is proportional to the pressure of

the original sound wave. The photo-current is then passed

through a receiver and sets up across it a potential differ-

ence, whose fluctuations have the waveform of the original

sound. The potential difference is amplified and used to

drive a loudspeaker.

1929 Ten million gramophone records are sold in Germany alone.

1930–1935 With the advent of the electric amplifier and a-c bias-

ing it became possible to make quite satisfactory magnetic

records and play them back at the desired volume. At that

time however, the motion-picture industry was the main

client, using magnetic records as a sound-recording medium

for talking pictures. Magnetic sound recording was also

used in dictating machines and recorders of phone conver-
sations. Thus the magnetic recorder went under the guise

names Dailygraph, Telegraphone and Textophone.
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1931 Alan D. Blumlein (1903–1942, England) Produced the
first stereophonic record and patented the stereo sound sys-
tem. Bell Telephone Laboratories (USA) also produced
stereo recordings for experimental use.

RCA Victor USA introduced coarse groove discs that ran at
33 1

3 rpm, but these failed to replace popular 78 rpm discs.
The first such record: Beethoven’s Fifth was conduced by
Leopold Stokowski. For the first time a complete orches-
tral piece was issued on a standard long-playing record.

1935 Development of the Tweeter and Woofer in loudspeaker
technology to reduce distortion.

1936 Eduard Schüller (1904–1976, Germany) produced a com-
mercial version of the first true magnetic tape recorder.

1937 German Telefunken Company issued the first electromag-
netic light-weight tone-arm with a sapphire stylus.

Alec Reeves (England) reinvented the principle of pulse
code modulation (PCM) of digitally encoded signals. It later
revolutionize the transmission, recording and processing of
voice, fax, data and video signals. PCM protects signals
against noise and interference. By using a defined digital
format it enables differing types of signals to be assembled
into a common multiplex, i.e. an integrated services digital
network (ISDN).

C.N. Nickman (Bell Telephone, USA) demonstrated a
magnetic tape recorder of excellent quality, with a tape
speed of 40 cm/sec and a recording medium called Vical-
loy. It marks the true beginning of the modern period in
magnetic recording.

1938 Chester Carlson (1906–1968, USA) invented Xerography,
the first method of photocopying.

George Harold Brown developed the vestigial sideband
filter for use in television transmission, doubling the hor-
izontal resolution of television picture at any given band-
width.

1940 Hans-Joachim von Braümuhl (1900–1980, Germany)
and Walter Weber (1907–1944, Germany) introduced the
method of high-frequency premagnetization and ac bias of
tapes for better sounding tape recording.
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1941 Russell Ohl (USA) invented the silicon solar cell.

1947 Peter C. Goldmark (1906–1977, Hungary and USA) de-
veloped the first long-playing high-frequency record (33 1

3
rpm) with 23 min per side capacity [compared to 5m of
the 78 rpm records]. In the new LP vinylite record sound
quality was considerably improved. The old records soon
disappeared from the market.

Dennis Gabor (1900–1979, Hungary and England) pio-
neered holography.

Edwin H. Land (USA) launched the first Polaroid Cam-
era on the US market. It weighted 2.7 kg and took 8 prints
per film pack, developing each picture in 60 seconds.

Invention of the transistor at Bell Laboratories, USA by
William B. Shockley, John Bardeen and W. Brat-
tain.

1948 Claude Shannon (USA) founded information theory.

1958 LP stereo records and record players10 reached the market.

1958–1964 First video recorders developed by Ampex (1958) for use by
television stations. It is a device to read pictures and sound
signals from a television camera onto a magnetic tape. First
domestic video recorder was produced by Sony (1964).

1963 First compact audio cassette (Phillips).

Ray Dolby (US) developed his noise-suppressing technique.

10 LP stereo sound reproduction: The stylus, mounted in a cartridge, follows the

molded contours of the record. These contours are analog representations of the

sound waveform. The pickup converts the movement of the stylus (imparted to

it by the groove) into corresponding electrical signals in the form of alternating

voltage.

In a magnetic pick up (most commonly used) the electrical output is induced

by the relative motion of a magnetic field and a coil (or 2 coils in the case of

a stereophonic pick up) located in the field. The movable system in the pickup

must be mounted so that the stylus can follow every rapid change of direction

of the groove, virtually without resistance. For the same reason the mass of the

moving parts must be as small as possible to reduce groove wear. The stylus

must have a rounded tip suited to the cross-sectional dimensions of the groove,

so as to assure that the tip is maintained in contact with the sloping sidewalls of

the groove and clear of the bottom. The wavy pattern of the groove determines

both the frequency and the amplitude of the sound vibration.
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1965 James T. Russell invented the digital compact disc. It has
since then become an essential component of audio, video
and computer systems.

1969 Klass Compaan (Holland) conceived the idea of a digitally
encoded disc.

James Fergason (USA) invented liquid crystal display
(LCD). It completely redefined many industries, such as
computer displays, medical and industrial devices, and a
vast array of consumer electronics.

LCDs were originally based on a concept which used a large
amount of power, provided a limited lifetime, and provided
a poor visual contrast. Fergason overcame these obstacles
in 1969 with his discovery of the twisted nematic field effect,
which forms the basis of modern LCDs.

Digital watches were among the first consumer items to
use LCDs. Other items included calculators and computer
displays. LCDs are used in over five billion items a year.

1969–1975 VCR (video cassette recorder) was produced by Phillips.
The type of domestic video recorder most used now is
the VHS (video home system) format, launched by JVC
(Japan) in 1975.

1969–1990 Charged-coupled device (CCD) was first demonstrated at
Bell Labs (1969). It is a solid-state chip which transforms
light into electricity and decomposes an optical image into
pixels, whose gray-scale values are then digitized. The CCD
contains a bank of light detectors, each registering variation
of intensity as small changes in voltage.

It has the form of a small capacitor, composed of metal
oxide and semiconductor layers, capable of both photode-
tection and memory storage. When the subtle changes in
voltage (created by the photoconductor electrons) are ap-
plied to the metal layer (called the ‘gate’), electron-hole
pairs created in the semiconductor (by absorption of pho-
tons) are separated by an electric field, and the electrons
become trapped in the region under the gate. This trapped
charge represents a small piece of the image known as a
pixel (picture element).

The complete image can be recreated by reading out a se-
quence of pixels from an array of CCD’s. These arrays
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are used to capture images in video and digital cameras
included in telescopy and microscopy.

1972 First domestic videodisc demonstrated by Phillips.

1975 First laser printer introduced by IBM.

1979 Videodisc read by laser in Holland.

1981 Hologram technology improved; now in video games

1982–1984 The Camera-Recorder combination (camcorder): first cou-
pling of the camera and tape (Japan).

1982 Kodak camera used film on a disc cassette.

1983 First audio compact discs (CD’s) marketed in the UK and
the US. It is a plastic disc, 12 cm in diameter, that can hold
on a single side over an hour’s worth of digitally encoded
sound recording, stored as a succession of pits and plateaux
in tracks. The disc is coated with a reflective material (usu-
ally aluminum) which either scatters or reflects back into
the photoelectronic detector a laser beam used to ‘read’ the
encoded sound when the disc is rotated at a high constant
linear speed. The advantage of the compact discs over the
LP records is its freedom from surface blemishes, so that it
can approach perfection in sound reproduction.

The CD player became available from Sony and Phillips,
who collaborated in both research and production. The
optical sound reading in compact discs differed from the de
Forest process (1920) in that sound was no longer in analog
form, but instead it was coded in a digital (binary) form;
the micro-hollows on the disc were processed at a rate of 4
million per second. Consequently it produces much better
clarity of sound than the microgroove.

The invention of the compact disc, launched in 1982, was
the direct result of research on the videodisc, also invented
by Phillips and marketed in 1980.

1990 28% of U.S. homes own CD players; sales total 9.2 million
players and 288 million compact discs in the US alone.

1990–91 The lossy compression standard JPEG (Joint Photographic
Experts Group) is set, and commercial applications based
upon it begin to appear.
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1990’s Digital cameras, digital scanners, storage of photos and
movies on PC’s, and email transmission of imagery become
widespread among the general public in developed coun-
tries.

VI. Sonar, Radar and Satellite Radionavigation

Systems (1887–1971)

Communication using electromagnetic radiation (except for light) began
early in the 20th century, and most early practical systems used very long
wavelengths which traveled great distances. Eventually, electronics were de-
veloped, including the vacuum tube (valve), which allowed controlled frequen-
cies and modulation schemes. This led to the use of higher carrier frequencies,
many channels, and commercial and industrial radio. During the 1930’s and
1940’s, various experimenters discovered that higher frequencies could bring
other advantages to communications. Some of these experimenters worked
for government agencies and the military, some were at universities and some
were private individuals. Quantitatively, the high frequency bands divide as
follows: (λ = wavelength):

Television and FM radio 50–600 MHz λ = 6 m–50 cm
Cellular Phones 800–900 MHz λ = 37.5 cm–33.3 cm
Microwaves (Radar) 1000–300,000 MHz λ = 30 cm–1 mm
Cordless Phones multi-GHz: 2.4 GHz, etc.

Thus every communication service uses a part of the spectrum that is
suitable for its needs. Microwaves, for example are easier to control than



5212 6. Deep Principles – Complex Structures

longer wavelengths because small antennas could direct the waves very well
(i.e. the diffraction limit is less constraining). One advantage of such control
is that the energy could be easily confined to a tight beam (expressed as
narrow beam width). This beam could be focused on another antenna dozens
of miles away, making it very difficult for someone to “eavesdrop” on the
conversation. Another characteristic is that because of their high frequency,
greater amounts of information could be put on them (expressed as increased
modulation bandwidth). Both of these advantages (narrow beamwidth and
modulation bandwidth) make microwaves very useful for radar.

All of these qualities led to the use of microwaves by the telephone compa-
nies. They placed towers every 30 to 60 miles, each with antennas, receivers
and transmitters. These would relay voice conversations across the country.
The ability to modulate with a wide bandwidth permitted a large number
of conversations on just one signal, and the reduction in beamwidth reduced
interference and hampered casual eavesdropping.

Amateur radio interests in microwaves have mostly been for the challenge
of working with such esoteric frequencies that require specialized techniques
in design, fabrication and testing. Furthermore, in order to reach beyond
LOS (line-of-sight) amateurs have spent countless hours carefully measuring
propagation phenomena. Amateurs have carried on conversations using 10
GHz well over 1,000 miles, and have bounced signals at that frequency off the
moon.

Radar (Radio Detection and Ranging) is an instrument for object detection
based on the principle of electromagnetic wave reflection: locating an object
at a distance and studying its echo.

It helps airplanes, ships and ground stations detect other objects before
they can be visually identified. Radar can be used for military and civilian
purposes.

It works by using a radio transmitter and a receiver. The transmitter
sends out a high frequency radio wave. If the radio wave hits a metallic or
other conducting object (such as a ship), some of it will reflect back to the
receiver. By measuring the time it takes for the wave to return and the power
of the scattered radio waves which are picked up by the receiver, the position
and size of the plane or ship can be estimated and projected onto a radar
screen. If a lot of the signal is bounced back then the object is close; if only a
little bit of the signal is bounced back then the radar is far from the object,
and/or the object is small. The distance is simply derivable from the round
trip signal time, since the radio waves in air travel essentially at the speed
of light in vacuum. This process is similar to a bat’s use of echo-location to
locate insects in the dark. The only difference is that echo-location uses sound
waves as opposed to the radio waves sent out by the radar.
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Radar can “see” through great distances despite fog, rain, snow, clouds
or darkness: It can find and accurately locate missiles, aircrafts, ships, sub-
marines, cities, rainstorm and mountains.

Radar also prevents planes from crushing into runways, control towers,
and other planes, and is an essential tool for analyzing and predicting the
weather.

Microwave radar, as well as LIDAR (Light Detection And Ranging) are
routinely used for communications and to measure atmospheric pollution.

Radar was developed for military use in the 1930’s by several countries.
The invention of radar just prior to WWII changed forever the nature of
warfare. Radar eliminated many of the limitations that were imposed on the
human ability to see. It virtually eliminated the possibility of sneak attack
by enemy aircraft. For those and many other reasons, radar has grown in
prominence, so that today it is an absolute necessity.

During WWII radar was used widely on planes and ships. Battles were
won by the side that was first to spot enemy airplanes, ships, and submarines.
To give the Allies an edge, British and American scientists developed radar
technology to “see” for hundred of kilometers, even at night. The research
that went into improving radar helped set the stage for post-war invention of
the transistor. During the war, radar was tremendously useful for:

• Precision bombing of targets under conditions of poor visibility.

• Enhancing defense of convoys against German submarines in the At-
lantic battles of 1943. Subs were detected by airborne radar and subse-
quently destroyed from the air.

• Communication between aerial defense headquarters and planes
equipped with airborne radar receivers.

Had it not been for radar, England might have been invaded by the Ger-
mans and Allied bombers would not have been able to attack Germany suc-
cessfully. Indeed, it was radar that turned the tide of the war. Winston
Churchill was quoted as saying: “The atomic bomb ended the war, but radar
won it”.

Sonar is an acronym for SOund Navigation And Ranging. It is a detec-
tion and ranging system based on the reflection of underwater sound waves.
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A typical sonar system emits ultrasonic pulses by using a submerged radi-
ating device. It listens with a sensitive microphone for reflected pulses from
potential obstacles or submarines.

Modern submarines rely on sonar for detecting the presence of enemy
vessels. The most advanced system, called a towed array, uses long cable
to which microphones are attached, and the submarine drags this trailing
cable far behind as it travels through the sea. Airplanes are used to deploy a
different sonar. This system uses a device called a sonobuoy, consisting of a
microphone mounted in a floating buoy. It is designed so that when a sound
such as that of a submarine engine is picked up, the detector can transmit
signals to patrolling antisubmarine planes.

Some animals use sonar to locate their prey and also for navigation. Thus,
bats are equipped with a biotransmitter in the frequency range 15–40 kHz
[wavelength 20 mm–3 mm], emitting ultrasonic squeaks that bounce back
from obstacles. Dolphins also use sonar. Human sonars generally use sound
frequency in the range 5–25 kHz.

In peacetime sonar can be used to determine water depths, or to locate
fish schools. The signals are generated by a transmitter within the ship. A
transducer changes the electric signals to sound waves and sends them through
the water. These waves strike a target and are reflected back (or scattered) to
the ship, where they are transformed again into electric signals which activate
the indicator that calculates the target’s range, direction and size. Scanning
sonar employs a rotating beam for rapid search.

The Global Positioning System (GPS) is a space-based radio-navigation
system, consisting of 24 satellites and ground support. GPS provides users
with accurate information about their position and velocity, as well as the
time, anywhere in the world and in all weather conditions.

GPS Satellites fly in circular orbits at an altitude of 10,900 miles (17,500
km) and with a period of 12 hours. The orbits are tilted to the earth’s equator
by 55 degrees to ensure coverage of polar regions. Powered by solar cells, the
satellites continuously orient themselves to point their solar panels toward the
sun and their antennae toward the earth. Each satellite contains four atomic
clocks.

There are often more than 24 operational satellites, as new ones are
launched to replace older satellites. The satellite orbits repeat almost the
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same ground track once each day (as the earth turn beneath them). The or-
bit altitude is such that the satellites repeat the same track configuration over
any point approximately each 24 hours (4 minutes earlier each day). There are
six orbital planes [with nominally four space vehicles (SV) in each, equally
spaced (60 degrees apart) and inclined at about 55 ◦ w.r.t. the equatorial
plane. This constellation provides the user with between 5–8 SVs visible from
any point on earth.]

Precise positioning is possible using GPS receivers at reference locations,
providing corrections and relative positioning data for remote receivers. Sur-
veying, geodetic control, and plate tectonic studies are examples of applica-
tions of GPS.

Time and frequency dissemination, based on the precise clocks on board
the SVs and controlled by the monitor station, is another use for GPS. Astro-
nomical observatories, telecommunications facilities and laboratory standards
can be set to precise time signals or controlled to accurate frequencies by spe-
cial purpose GPS receivers.

GPS determines location by computing the difference between the time
that a signal is sent and the time it is received. GPS satellites carry atomic
clocks that provide extremely accurate time. The time information is placed
in the coded broadcast by the satellite so that a receiver can continuously
determine the time the signal was broadcast. The signal contains data that
a receiver uses to compute the locations of the satellites and to make other
adjustments needed for accurate positioning. The receiver uses the time differ-
ence between the time of signal reception and the broadcast time to compute
the distance, or range, from the receiver to the satellite. The receiver must
account for propagation delays, or decreases in the signal’s speed caused by
the ionosphere and the troposphere. With information about the ranges to
three satellites and the location of the satellites when the respective signals
were sent, the receiver can compute its own three-dimensional position.

An atomic clock synchronized with GPS is required in order to compute
ranges from these three signals. However, by taking a measurement from a
fourth satellite, the receiver avoids the need for an atomic clock. Thus, GPS
is available in two basic forms: the standard positioning service (SPS) and the
precise positioning service (PPS). The atomic-clock time measured on board
the GPS satellites is so precise, that the software must correct for STR and
GTR effects (!), which amount to about 38 μs per day.
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Timeline

1886 Heinrich Hertz (Germany) conducted experiments on re-
flection of electromagnetic waves in the microwave region
(around 500 MHz with a wavelength of about 60 cm, and
around 2 GHz, corresponding to a wavelength of 15 cm).
Yet he did not see its potential application.

1895 Guglielmo Marconi (Italy) experimented with transmis-
sion of microwave radio signals.

1900 N. Tesla (USA) was first to describe the possibility of lo-
cating a moving object using continuous radio-wave echoes.
However, technology at that time was insufficient to imple-
ment this detection system.

1904 Christian Huelsmeyer (Germany) patented a radio de-
tector based on Tesla’s principle. This engineer proposed
the use of radio echoes in a detecting device to avoid colli-
sions in marine navigation.

1915 First sonar invented during WWI by British, American and
French scientists. It was used to locate submarines and
icebergs via passive listening devices. The first submarine
to be sunk after being detected by hydrophone was the
German U-boat UC-3 in the Atlantic (1916). Active sonar,
using a pinging device, was developed by Paul Langevin
(France; 1918). It was installed in submarines and ships to
detect underwater objects by echo sent and received by a
transducer. The beam spread out until it detected an object
and then reflected (or scattered) back an image echo to the
ship. The reflected waves were then converted into electric
pulses that formed an image of the object on a screen.

1921 Albert Wallace Hill (US) The Magnetron diode – an elec-
tron tube that produced microwaves. It underwent two
basic modification (1927, 1941) to become an efficient gen-
erator of microwave radiation power.

1922 G. Marconi (Italy), A.H. Taylor (US), and L.C. Young
(US) suggested detection of a moving object using pulsed
waves to facilitate the determination of the times of emis-
sion and reception of echoes.
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1924 Edward Victor Appleton (England) used radio echoes
to determine the height of the ionosphere (an ionized layer
of the upper atmosphere that reflects longer radio waves).
It was the first successful radio range-finding experiment.

1925–1935 Great efforts by scientists around the world to find a prac-
tical method of detecting and locating objects by radio
echoes. Most of this research was motivated and sponsored
by the military.

1927 Split-anode magnetron was introduced in Japan.

1931 W. Butement and P. Pollard (England) built the first
experimental radar system to measure the range of ships
from shore.

1934–1937 British scientists, led by Robert Alexander Watson-
Watt developed a working radar system and succeeded in
detecting radio waves reflected from a flying aircraft (1935).
At the time, Watson-watt suggested linking together radio-
detection stations to a fighter-control network. His work
was vital in developing radar for use in the Second World
War in Britain. German scientists, working independently,
had already tested their radar system successfully in 1934.

The equipment used by Watson-Watt in 1935 consisted of
a high-voltage radio pulse generator (thermionic valves) and
a cathode-ray tube display. However, since the initial beam
could not be strongly focused11, the echo thrown back from
the surface of the water or the earth sometimes overshad-
owed the much weaker echo from the target. Satisfactory
focalization was achieved only in 1936 when Watson-Watt
employed a magnetron with an electron gun installed in the
cathode emission tube and an electronic amplifier for the
echoes. In 1937 he was able to erect a chain of 20 radar
station along the British east coast.

1938–1940 Telefunken in Germany built a 560 MHz radar system for
the Luftwaffe. Over 8 military research centers and 200
German institutes were working on improving the radar,
under the somewhat vague direction of Göring. In 1940,

11 The size and shape of the antenna depends on its function: e.g. a vertical antenna

is used to find the height of aircraft, etc.
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however, Hitler banned all electronic research, however fun-
damental it was, under the pretext that electronics was a
‘Jewish science’. His total lack of scientific education and
antisemitic zeal cost him the war.

1938–1939 Russel Harrison Varian and Sigurd Fergus Varian
(US) invented the klystron tube for the generation and am-
plification of microwaves. It basically converts the dc ki-
netic energy of cathode-emitted electrons into UHF elec-
tromagnetic energy. The klystron played a crucial role as
part of radar systems during WWII. The invention spawned
a whole new microwave industry, and came to play a key
role in particle accelerators, used for high-energy funda-
mental physics research and to collimate x-ray synchrotron
radiation for applied research.

1940 John T. Randall and Howard A.H. Boot (England)
invented the multi-cavity magnetron. This tube is capable
of generating high-frequency (microwave) radio pulses at
high power levels in the wavelength band around 1 cm. In
fact, the magnetron allowed a 20-fold increase in radiated
power over the existing electron-valve system. Ground ex-
periments in 1940 demonstrated that detection ranges of
order 10 km were possible.

The first radar stations used aerials over 100 m in height
to produce a directional beam of radio waves. But if aer-
ial were much smaller and could be steered, they would be
much more useful. However, to make smaller aerials meant
using radio waves of shorter wavelengths. The cavity mag-
netron was created to generate such waves. It converted the
dc kinetic energy of electrons, accelerated by a dc potential
difference, into UHF electromagnetic energy.

In the magnetron, the tank circuit of the valve oscillator
was replaced by a cavity or several cavities. It generated
pulses for the radar, each pulse lasting for a few microsec-
onds with wavelengths of 1–10 cm and corresponding fre-
quencies of 3,000–30,000 MHz, and typical peak power of
150 kW at a pulse rate of 1000 sec−1 were attained during
WWII. [The magnetron has found applications in television
transmission, satellite communication, industrial heating,
home cooking (microwave oven), medical imaging, radia-
tion therapy and asteroid tracking.]
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The British had an excellent ground-based-radar system
using the magnetron transmitters, but these were too heavy
and big to be fitted into an aircraft. A compromise was
sought in mounting only the radar receiver in an aircraft,
tuned to the same frequency as a ground radar to hopefully
pick up reflected radar echoes. By 1940, when the Germans
switched to night bombing, the British equipped their night
fighters with klystron radar as part of their airborne radar,
which helped win the Battle of Britain.

The Germans had developed a ground-based radar which
was rather bulky but essentially worked well for their de-
fense purposes. However, they payed little attention to the
klystron know-how (found in their military archives after
the war), depending instead on their V-2 rockets to defeat
England.

1940–1945 Establishment (1940) of the MIT Radiation Laboratory
(US) which became the center for most radar develop-
ments during WWII. In this Lab, United States and British
radar scientists cooperated closely. American scientists
gave the British the klystron generator and the duplex
switch, and the British gave the United States the mul-
ticavity magnetron. The Allied scientists scored a big
achievement by developing receivers, high-power transmit-
ters, and microwave antennae. This made it possible to
develop narrow-band, highly accurate radars with small
antennae for aircraft, ships and mobile ground stations.
The new equipment enabled detection of submarines in the
Atlantic (1943), development of long-range navigation sys-
tems, early warning radar, and radar for night bombing of
remote targets.

Radar became so effective in aiming anti-aircraft guns that
each side tried to jam the other’s radar. Allied bombers
carried radios to send signals that confused or blanked out
enemy radar. They also dropped tons of aluminum foil
strips that reflected false echoes to enemy radar screens.
In the Pacific Ocean, radar gave the US Navy superiority
over Japanese forces in night naval battles. In the Atlantic,
airborne radar enabled the Allies to inflict crippling losses
on the German submarine fleet.

The research that went into improving radar helped set the
stage for the post-war invention of the transistor: radar
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systems used a semiconductor crystal rectifier diode. These
crystals often could not adjust to the quickness and inten-
sity of a rapidly fluctuating radar signal, and they would
frequently burn. A number of institutions including Purdue
University, Bell Labs, MIT and the University of Chicago
joined forces to build better crystals.

1942 Seymour Benzer at Purdue University (US) discovered
that Germanium crystals made the best detectors. Germa-
nium was used to make the first working transistor 5 years
later. Scientists also learned new technique on how best
to grow and dope the crystals. Within the decade, this su-
perb understanding of crystal growth would pay dividends
in unexpected areas, not the least of which were the in-
sights necessary to allow the solid state researchers at Bell
Labs to grow the germanium semiconductors that were at
the heart of the first transistors.

1943–1945 Radar operators continually saw on their radar screens im-
ages of precipitation (like rain and snow). Scientists then
realized, for the first time, that radar would be sensitive
enough to detect precipitation. After the war radar become
an essential tool for analyzing and predicting the weather.

1945–1989 Advances in sonar technology (used for tracking and iden-
tification of nuclear submarines) during the Cold War.

1953 Invention of the ammonia maser (Microwave Amplification
by Stimulated Emission of Radiation). It emits ultra-short
wave beams at the frequency 23,900 MHz and wavelength
1.3 cm.

1960 The US Navy, using the moon as a reflector, sent a radio
messages from Pearl Harbor to Washington DC in a pio-
neering communication experiment.

1968 Asteroid 1566 Icarus tracked by radar.

1970 Pulsed ultrasonic Doppler used for blood-flow sensing.

1971 Doppler radar is used by meteorologists to study storm sys-
tems.
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VII. Television technology – or “A picture is better

than ten thousand words” (1817–1990)

The possibility of vision at a distance had occupied scholars’ minds long

before the idea of sound broadcasting. Webster’s dictionary defines television

as “the process of transmitting images by converting light to electrical signals

and then back again”. Television is constructed of two elements – video and

audio. Video comes from the Latin word “I see” and audio is derived from

the Latin word “I hear”. Historically, no single person or invention is credited

with the development of television.

The modern day television set can be traced back to the discovery of se-
lenium in 1817 by Jons Berzelius (Sweden). Television is based on photo-

electric technology. Television’s initial developments were linked to pioneering

attempts to improve the transmission of still images down a telegraph wire. In

the mid 1800’s, sending still images by telegraph wire was an electrochemical

process. The concepts of synchronized scanning and the use of photoelectric

technology evolved over a fifty year period.

The idea of sending still images via the telegraph traces its roots to 1839.

At that time Edmond Becquerel, a French physicist interested in the study

of light, found that when two pieces of metal were immersed in an electrolyte,

an electrical charge developed when one of the pieces was illuminated. Al-

though Becquerel had discovered the electrochemical effects of light he did

not offer any practical suggestion for its use.

In 1842, Alexander Bain proposed a facsimile telegraph transmission

system based on Becquerel’s discovery. Bain proposed that metallic letters of

the alphabet could be illuminated in solution, and the resulting modulated

voltages scanned and transmitted electrically. The electrified metal letters

could be scanned by a pendulum device and reproduced at the other end of

the telegraph wire by a synchronized pendulum contacting a piece of chemical
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paper, which is stained at appropriate positions by the transmitted electric
signal; the letter shapes are thereby reproduced.

Historians normally associate Bain’s idea’s with the modern day facsimile
(fax) machine. Bain is also credited with the idea of scanning an image, so
it can be broken up into small parts for transmission. His invention drew
attention to the need for synchronization between the transmitter and the
receiver in order for the transmission system to work.

In 1847, F. Bakewell of Great Britain patented a chemical telegraph.
Bakewell improved Bain’s proposal by replacing the pendula with synchro-
nized rotating cylinders. Later, in 1861, Bakewell’s system was improved by
an Italian priest, Giovanni Caselli. Caselli wrapped tin foil around the
rotating cylinders and was able to use it to send handwritten messages and
photographs.

In 1873, Louis May, a British telegrapher, discovered what we consider
today to be the basics of photoconductivity. He found that a selenium bar,
when exposed to light, was a strong conductor of electricity. He also noted
that the conduction of electrical current would vary depending on the amount
of light hitting the selenium bars.

The final links between telegraphs and television fell into place with
M. Senlacq de Ardres (France) in 1878. He proposed that selenium could
trace documents. He proposed that the changes in electrical voltage produced
by selenium scanning a document, could magnetically control a pencil at the
receiving end of the transmission. By 1881, British pioneer Shelford Bid-
well successfully transmitted silhouettes using both selenium and a scanning
system. He called the device the scanning phototelegraph.

1873 Photoconductivity of selenium discovered.

1878–1880 Early notions of television Scanning – the breaking down
of an image into picture elements which are then reassem-
bled on the screen of a receiver: Carlo Peresino (1879,
Italy); W.E. Sawyer (1880, USA); Maurice Leblanc
(1880, France). Leblanc first proposed ‘photoelectric scan-
ning’ to transmit moving pictures at a distance.

1878 William Crookes (England) developed the cathode-ray
tube.

1884 Paul Nipkow (Germany) proposed the sequential scan-
ning disc: a rapidly rotating spirally perforated disc is
placed between the object and a light-sensitive selenium
element, thus progressively revealing the image to the sen-
sor. It is believed that a working model was never built.
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1885–1900 Improvements of Nipkow’s disc: Henry Sutton (1856–
1914, Australia) devised the Telephane system (1885) – the
first real television proposal involving scanning, synchroniz-
ing, a light sensitive cell and a control valve but no vision
signal amplifiers.

Lazare Weiller (France) replaced Nipkow’s disc by a mir-
rored drum (1889); As the drum spun, a light beam aimed
at the drum’s mirrored surface (each mirror being tilted
slightly more than its predecessor) was reflected to progres-
sively trace a path across the object to be ‘televised’. In
receiver node, the light beam was reflected onto the drum,
which in turn reflected the beam in a raster-scan fashion
onto a selenium screen. The resolution of the scanned im-
age was directly related to the number of angled mirrors,
just 30 lines per scan.

1887 Heinrich Hertz (Germany) discovered electromagnetic
waves.

1891 Paul Eduard Liesegang (1838–1896, Germany) intro-
duced the concept of ‘television’.

1895 Julius Elster (1854–1920) and Hans Geitel (1855–1923,
Germany) produced the first practical photoelectric cell.

1897 J.J. Thomson (England) discovered the electron.

Karl F. Braun (Germany) invented the Cathode-ray tube
(CRT), the ancestor of the television picture tube.

1900 Constantin Persky (Russia) coined the word ‘Television’
when presenting a paper at the Paris International Elec-
tricity Congress (Aug 25).

1902 Otto von Bronk (1872–1951, Germany) suggested a scan-
ning method for transmitting colored pictures.

1904 Arthur Rudolf Wehnelt (1871–1944) introduced a cylin-
drically shaped glow-cathode with oxide layering to improve
the electron stream bundling and hence the overall perfor-
mance of the Braun CRT.

1906 Lee de Forest (US) developed the ‘Audion’, a three-
element vacuum tube (triode). This made possible ampli-
fication of video signals created by photoconductivity and
photoemission.
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1907–1911 Early attempts to combine mechanical scanning with
cathode-ray tube by Boris Lwowitsch Rosing (1869–
1933, Russia) and Alan Archibald Campbell-Swinton
(1863–1930, England). Rosing (1907) used a rotating mir-
ror drum for scanning and Braun’s tube to reproduce tele-
vision images. Swinton (1908–1911) utilized cathode ray
tube as image converter for transmission, designing in ef-
fect, the first electronic camera tube.

1922–1927 Philo Taylor Farnsworth (1906–1971, USA) first in-
vented the all-electronic television (1922). Produced (1927)
the first successful television transmission by wholly elec-
tronic means.

1923–1935 John Logie Baird (1888–1946, England) developed a
working electromechanical television system based on Nip-
kow disc. First to harness television for military uses.

1925–1929 Herbert Eugene Ives (1882–1952, US), Charles Fran-
cis Jenkins (1867–1934, US) and Dénes von Mihàly
(1894–1953, Hungary) improve on the transmission of tele-
vision images.

1926–1928 Kálmán Tihanyi (1897–1947, Hungary and USA). Patent-
ed a fully electronic television on the basis of continuous
electron emission with accumulation and storage of released
secondary electrons during the entire scanning cycle.

1926 Kenjito Takayanagi (Japan) operated a working elec-
tronic television system, using a CRT to transmit an image
of Japanese writing.

1927 Early attempts by AT&T (US) to combine the television
and the telephone into a system of videophone with no spe-
cific additional equipment.

1928–1935 Vladimir Kosma Zworykin (1889–1982, Russia and
USA). Constructed a complete all-electronic television sys-
tem composed of the iconoscope (an electronic tube that
converts light rays into electric signals and acts as a tele-
vision camera suitable for broadcasting, 1923) and the ki-
nescope (the picture tube used in television receivers).

By 1933 the system reached a resolution of 240 lines per
inch. His television provided the final impetus for the de-
velopment of modern television as an entertainment and
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educational medium. He also developed a color television
system (1928).

1929–1931 René Bartholemy (1889–1954, France) developed a me-
chanical television scanner (using 30-line scanning) with a
disc receiver. He gave two demonstrations (1931).

1934–1936 Isaac Schoenberg (England) developed a camera tube
similar to the iconoscope (1934).

Advent of public television in Germany (1935) and Eng-
land. The BBC employed a regular 405-line monochrome
TV service using Schoenberg’s Emitron camera tube, which
converted light from a scene in a studio into a television
signal (1936). The Nazis in Germany built a TV station in
order to broadcast the Berlin Olympic games. But in both
countries, mass-market manufacture of television receivers
was halted when WWII broke out.

A videophone service is set up in Germany with overhead
cables between Berlin-Witzleben, Leipzig, Nuremberg and
Hamburg. Transmission took place using the Nipkow me-
chanical scanning system; the image to be transmitted was
imaged by 90 objective lenses in 1/25-th of a second and
consisted of 180 lines at reception.

1938 Sideband filter used in television broadcasting is developed
for doubling resolution of pictures.

1940 Peter Carl Goldmark (Hungary and USA) demonstrated
a color television system of his invention. CBS broadcasted
the world’s first color TV signals.

One million television sets in the United States alone.

1956 The Ampex Company (US) demonstrated the first viable
video recording12 of television.

12 Video recording: In the early days, film was the only medium available for record-

ing television programmes. Owing to the specific needs of American television

networks, however (broadcasting at different times on the Atlantic and Pacific

coasts) researchers were led to investigating more flexible systems. Thoughts

turned to magnetic tape,which was already being used for sound, but the greater

quantity of information carried by the television signal demanded new studies.

During the 1950s, a number of American companies began investigating the prob-

lem. In April 1956, the Ampex company demonstrated the first viable product.
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1956 Robert Adler (USA) invented the television remote con-
trol.

1958 Silicon controlled rectifier (SCR) introduced by General
Electric (US). This semiconductor device was about to rev-
olutionize dimming applications for theater and television
lighting around the world. Previous to this time, dimming
systems were large, generally inefficient and mechanically
very complex.

The SCR allowed the design of compact remote controlled
dimming systems – with no moving parts in the dimmer.
The typical modem SCR dimmer employs two PNPN semi-
conductor devices commonly known as silicon control rec-
tifiers, or thyristors, connected in inverse parallel and in
series with the lamp load. A signal applied to the control
gates of these devices is utilized to control their conduction
period. The dimmer thereby controls the effective power
dissipated in the lamp load, and thus the intensity of the
lamps. The dimmer is completely inert and requires no
maintenance.

1961–1967 Development of color television in Europe.

In 1961, Henri de France put forward the SECAM system
(Sequentiel Couleur à Memoire) in which the two chromi-
nance components are transmitted in sequence, line after

It recorded in black and white. Its rival RCA followed suit in 1957, with equip-

ment designed for color. The mechanical principle adopted was the same and

was to remain in use for a long time. The system had four heads on a disc

rotating obliquely across the width of the tape, thus tracing an oblique track

pattern. The tape was 50.8 mm (2 inches) wide. With the development of edit-

ing equipment, the initial “delayed broadcasting” function gradually gave way

to “production” functions. The first all-electronic editing equipment avoiding

the need for splicing tape was introduced in the late 1960s. Slow-motion and

variable-speed playback techniques were impossible with the “four head” system.

The situation changed with the advent of helical-scan video recorders (Toshiba,

1959) which at last provided editing facilities analogous to those of film. Helical

scanning is now used in all video recorders: each track contains one entire field

(or a major part of it), and the tape can be “read” at different speeds, even

when it is stationary. The magnetic tape is 25.4 mm (1 inch) wide. In 1986 the

first digital video cassette recorder meeting the international digital television

standards was presented by the Sony Corporation.
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line, using frequency modulation. In the receiver, the in-
formation carried in each line is memorized until the next
line has arrived, and then the two are processed together
to give the complete color information for each line.

In 1963, Walter Bruch (Germany) proposed a variant of
the American NTSC system, known as PAL (Phase Al-
ternation by Line). It differs from the NTSC system by
the transmission of one of the chrominance components in
opposite phase on successive lines, thus compensating for
phase errors automatically. Both solutions found applica-
tion in the color television services launched in 1967 in Eng-
land, Germany and France, successively.

1964–1971 Picture-phone system, combining television and telephone,
was exhibited by AT&T but failed commercially.

1964 Marshall McLuhan (Canada) foresaw the impact of tele-
vision on man’s social behavior; Television aims at our most
immediate perception. Pictures are to see, almost to feel;
they present the whole world before us. TV offers us en-
tertainment games, sports and news. It offers something of
everything for everybody.

Our senses are assailed every day by the attraction of the
visual message – “The medium is the message” as McLuhan
succinctly put it. Its all-pervasiveness and instantaneity are
tuned to our way of thinking, and vice versa. We expect
from it effortless pleasure and hot news. But the stupefac-
tion takes its toll and we thirst for more. Images pour over
us in a never-ending torrent.

Television has already modified our social behavior. It fos-
ters, for example, our taste for things visual through the
impact of the picture and its colors. It encourages in us
a yearning for the big spectacle and the forthright decla-
ration. The effect can be seen in the way we react to one
another and in the world of advertising.

But television cannot yet be said to have enriched our civ-
ilization, mainly because it has not yet become interactive.

Television cannot, on its own, serve as an instrument of
culture. It must be appreciated that it is not well suited
for detailed analysis or in-depth investigation. The way
it operates and its hi-tech infrastructure are such that it
cannot do justice to the words of the poet.
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In the flood of images from the silver screen the less good
accompanies the best, just as in the cinema or literature.
The factor which distinguishes television from the cinema
and books, however, is that the full quality range, down to
the very worst, is offered to us round the clock, in our own
homes. Unless we take particular care to preserve our sense
of values, we let it all soak in. We have not yet become
“diet conscious”, as regards our intake of television fare.
Without this self-control our perception becomes blurred
and the lasting impression we have ceases to be governed
by a strict process of deliberate reflection.

However, by the end of the 20th century, TV seems destined
to merge with the internet (if not be replaced by it alto-
gether). The return path in cable television networks, and
VOD (Video On Demand) services – as well as commer-
cial movie-download online databases and the World Wide
Web itself – suggest that TV, or its replacement, will be as
interactive as the internet.

1964 Color television sets become popular in the United States.

1967 There are in the US 3,895 AM stations, 1,336 FM stations
and 770 television stations.

BBC and ITV began regular color TV transmissions.

1970–1980 High-definition television (HDTV) developed by Sony in
Japan.

1972 Digital13 TV operating in US laboratories.

13 Digital television: The values of the brightness or color signals (luminance and

chrominance respectively) of picture elements along a television line can be rep-

resented by a series of numbers. If these are expressed in base 2, each value can

be transformed into a sequence of digital (binary) electrical pulses.

The conversion from the “analog” world to the “digital” world comprises two

stages:

• sampling: in which the pixel values are measured at regular intervals

• quantization: in which each measurement is converted into a binary number.

The last operation is carried out by an Analogue to Digital Converter (ADC).

The series of “1” and “0”s obtained after quantization can be modified (i.e.

coded) to counteract more effectively the disturbances the signal will undergo

during transmission.

Digital television technology is an extension of computer and image processing

technology. Advantages are high fidelity, easy storage and great scope for image
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1977 Renewed efforts to establish a low-cost videophony by digi-
tal transmission of images via telephone lines using optical
fibers and image compression methods: the image is broken
into pixels (= Picture Elements), as for television, each
pixel being defined by one numerical value of luminance
and two for chrominance (color). In order not to exceed
the transmission capacity of optical fibers at that time, the
image resolution was limited to 34 megabits per second.

1978 Rapid expansion of Cable Television systems.

1979 300 million television sets in the US.

1982 Japanese introduced wristwatch-size television with 3 cm
screen.

1983 600 million television sets in the world.

1985 Sony produces a television set with a screen size of 24 m ×
48 m.

1991 BBC World System Television is launched via satellite.

1993–1995 America’s first high-power Direct Broadcast Satellite (DBS)
is launched. It is followed by another in the same year and
a third in 1995.

1976–1990 Advent of CNN television worldwide news network.
1976 – Ted Turner delivered nationwide TV in the U.S. via
satellite.
1980 – 24-hour news channel.
1990 – Domination of worldwide news coverage.

1990 • 1446 Television stations broadcasting in the United
States.

• There are more television sets in the world than there
are telephones.

• In Belgium, the average time spent watching television
by children from 10 to 13 years was 210 minutes per
day.

processing.

Each picture element is isolated and can be called up independently.
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VIII. Fiber Optics (1870–1988)

1870 John Tyndall (UK) demonstrates that light can travel
along a curved transparent waveguide by total internal re-
flection.

1876 Alexander Graham Bell (USA) invented the photo-
phone, an instrument for transmitting sound by its mod-
ulation of a beam of light.

1880 William Wheeler (USA). Engineer in Concord, MA.
Patents a system of internally reflective pipes to guide light
through a building.

1887 Charles Vernon Boys (1855–1944, England) describes
the concept of guiding light through glass fibers.

1893 Edward Drummond Libbey (USA) introduced fiber-
glass, a material made of very thin strands of glass. The
fibers may be many times finer than human hair, and may
look and feel like silk. The flexible glass fibers are stronger
than steel, and will not burn, stretch, rot or fade.

1917 Albert Einstein developed the theory of stimulated emis-
sion of radiation, a process by which an incoming photon
beam can be amplified by stimulated emission of photons
of the same frequency.

1931–1939 Experiments conducted by the Owens Illinois Glass Com-
pany and the Corning Glass Works, led to development of
practical methods of making fiberglass commercially.

1927 John Logie Baird (UK) experimented with light prop-
agation along strands of flexible glass. A pioneer in fiber
optics.

1955 Narinder S. Kapany (UK). The father of optical fiber
communication. First to develop the theory of light propa-
gation by total internal reflection in transparent glass fibers
which contain a core encased in a cladding of lower refrac-
tive index. Tests begin to demonstrate communication via
fiber optics.
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1957 Basil Isaac Hirschowitz (South Africa) first used a new
kind of an endoscope – the fiberscope: a flexible tube, made
of an optical fiber, to explore the inside of a human body.

1957–1960 Creation of the LASER (Light Amplification by Stimu-
lated Emission of Radiation) by Gordon Gould, Charles
Townes, Arthur Schawlow and Theodore H. Maiman
(USA).

The characteristic peculiar to the laser effect is that the
photons are emitted exactly in phase with the stimulat-
ing beam. This coherence means that the laser beam is as
directed (non divergent) as allowed by the theoretical dif-
fraction limit, and can deliver considerable power to a point
of microscopic dimensions. (The name laser was coined by
Gould.)

1966 Charles Kao and G. Hockham of Standard Telecom
Labs (UK) presented design principles of fiber-optic cables
instead of copper wires to carry telephone conversations,
using laser light and lossless hair-thin glass fibers. This
concept was still a ‘leap of faith’ since at that time losses in
the glass exceeded 10 db/km. At transmission a modula-
tor transforms the electric signals into light signals, and at
reception these are transformed by photo-diodes back into
electrical signals.

Optical fibers carry signals with much less energy loss than
twisted copper-wire pairs or coaxial copper cables, and with
much higher bandwidth. This means that fibers can carry
more channels of information over longer distances and with
fewer repeaters required. Optical fibers are much lighter
and thinner than copper wires with the same bandwidth.
This means that much less space is required, per unit band-
width, in underground cable ducts. They are immune to
electromagnetic interference from radio signals, car ignition
system, lightning etc. They can be routed safely through
an explosive or flammable atmosphere.

1970 Corning Glass researchers Robert Maurer, Donald
Keck and Peter Schultz designed and produced the first
optical fiber with optical losses low enough for wide use in
telecommunications (1 db/km). Their fiber-optic wire was
capable of carrying 65,000 times more information than
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conventional copper wire. This technology would revolu-
tionize communications in coming decades, replacing cop-
per wires with cheaper and less bulky glass fibers. Normal
electrical wiring limits the amount of telephone, television
and computer traffic that can be carried by wire. But, in
theory, a single laser beam should be able to carry all radio,
television and telephone conversation of the entire world.

1975–1977 Transmission of video signals by optical fibers in UK and
USA. Bell Telephone System installed the first working
laser cable system beneath the streets of downtown Chicago
(1977). It was the first to carry phone calls, computer data
and video signals on pulses of light.

1985–1986 AT&T’s Labs achieve the equivalent of sending 300,000 si-
multaneous telephone conversations (or 200 high-resolution
TV channels) at once over a single optical fiber; optical fiber
attenuation is reduced to a loss of 0.154 db/km, close to the
0.13 db/km silica theoretical limit.

1988, Dec 14 World’s first trans-Atlantic optical fiber system. It extends
5800 km and has a capacity to carry 40,000 telephone con-
versations simultaneously, doubling trans-Atlantic cable ca-
pacity in a stroke.

Because the information-carrying capacity of a signal in-
creases with frequency, the use of laser light offers many
advantages, and therefore fiber-optic laser systems are cur-
rently being used in military communications networks, ca-
ble television, and other applications.

One advantage of optical fiber systems is the long distances
that can be maintained before signal repeaters are needed to
regenerate signals. These are currently separated by about
100 km, compared to about 1.5 km for electrical systems.
Newly developed optical fiber amplifiers can extend this
distance even farther.

Optical fiber networks also offer a more private transfer
of data, as it is quite difficult to ‘tap’ into a fiber, even
compared to a ‘private’ phone line.
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IX. Computer-based Communication Systems

(1922–1998)

A. First Generation (1822–1959): Principle of programmable

computer; mechanical, electromechanical and vacuum-tube based

calculating machines; punched card and paper input/output,

stored program, machine and assembler languages, high-level

language.

1943 The earliest programmable digital Electronic Computer
runs for the first time in Britain. It contained 2400 vacuum-
tubes (“electron valves”) for logic, and was called the Colos-
sus. It was built by Thomas Flowers to crack the German
coding ‘Enigma’ machines and used at Bletchly Park dur-
ing WWII. It translated 5000 characters a second and used
punched tape for input.

1944 H.A. Aiken and Grace Hopper created the Harvard
MARK 1 computer.

1946 ENIAC (Electronic Numerical Integrator and Computer):
the first totally electronic, electron-valve driven, digital
computers. Development started in 1943 and finished in
1946 at the Ballistic Research Laboratory by John W.
Mauchly and John P. Eckert. ENIAC weighed 30 tons
and contained 18,000 electronic valves, consuming around
25 kW of electric power. It could do around 100,000 calcu-
lations a second and was used for calculating ballistic tra-
jectories and testing theories behind the hydrogen bomb.

1947 Norbert Wiener (US) published Cybernetics.

William B. Shockley, John Bardeen and Walter H.
Brattain (US) invent the transistor at Bell Laboratories.
This invention greatly impacted the history of computers.
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1949–1952 EDVAC (Electronic Discrete Variable Computer), the first
computer to use magnetic tape. Proposed by John von
Neumann and completed (1952) at the Institute of Ad-
vanced Study, Princeton, USA.

1950 Yoshiro Nakamata invented the Floppy Disc at the Im-
perial University in Tokyo. The sales license for the disc
was granted to IBM, who introduced it only in 1971.

1951 UNIVAC 1, the first commercially available electronic com-
puter designed to handle both numeric and textual infor-
mation. Designed by John P. Eckert and John W.
Mauchly.

1953 There are about 100 computers in the world.

1957 The development of FORTRAN (Formula Tanslation)
completed by John Backus and his team at IBM – the
first scientific computer programming language.

1958 Jack St.Clair Kilby (at Texas Instruments) and Robert
N. Noyce invented the integrated circuit (‘microchip’).

B. Second Generation (1959–1965): Advent of transistors, mag-

netic tape, printed circuit, high-level languages, resulting in

much smaller, more powerful and ‘user friendly’ computers.

1960 About 6000 computers are in operation in the US.

1963 The first PDP-8 minicomputer built.

1965 Fuzzy Logic designed by Lofti Zadeh at the University
of Berkeley. BASIC (Beginners All-Purpose Symbolic
Instruction Code) developed at Dartmouth college, USA
by T.E. Kurtz and J. Kemeny. Not implemented on
minicomputers until 1975.

James T. Russell (USA) created the compact disc (CD)
– the optical digital recording and playback process which
has become an essential component of computer systems.
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C. Third Generation (1965–1971): Integrated circuits, monitors

and keyboards, mouse and windows, hypertext, operating sys-

tems, families of computers (IBM 360 series etc).

1965–1968 Douglas Engelbart of SRI (US), invented the computer
mouse and Windows; pioneered work in the creation and
design of modern interactive computer environments. His
NLS (oN-Line-System) introduced two-dimensional com-
puterized text editing using the mouse (to position a pointer
into the text on the screen), a keyboard, a word process-
ing program and a hypertext system. The mouse was con-
ceived in 1965 but did not become popular until 1983 with
the Apple computers, and was adopted by IBM only by
1987.

The first supercomputer, the Control Data CD6660, was
developed (1965).

ARPA Sponsored a study on ‘cooperative networks of time-
sharing computers’ (1965). It then asked for bids to build a
prototype link of 4 host computers in California and Utah
(1968–1971).

Theodor Holm Nelson coined the term ‘hypertext’ to
describe nonsequential writing-text that branches and al-
lows choices to the reader; best used at an interactive
screen.

The first supercomputers were first used for cryptography
and nuclear physics, but have come into use for highly com-
plex physical and mathematical computations in fields in-
cluding oil and mineral prospecting, analysis of subatomic
an subnuclear physics, studying the earth’s ozone layer and
simulating processes including weather systems and nuclear
reactions.

1967 First construction of a computer with parallel processor is
proposed.

1969 • Bubble-memory system for computers was invented; it
retains information even after computer is turned off.

• Work began on the ARPAnet, grandfather to the In-
ternet. Computers began to talk to each other.
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1969–1971 Advent the microprocessor – a computer on a chip: Mar-
cian Hoff (US) proposed (at Intel) that a single chip
general-purpose computer known as Central Processor Unit
(CPU), would be programmed to perform most of the cal-
culator function.

Further refinement in architecture and logic design were
made by Stanley Mazor and Frederico Faggin. The
first microprocessor, the 4004 was released in 1970. It
contained the equivalent of about 2300 transistors and
was capable of about 60,000 operations per second, run-
ning at a clock rate of 108 kHz. This single chip
had as much computing power as the first computer,
ENIAC (1946) which filled a room! The microproces-
sor is one of the most important developments of the
second half of the 20th century. It is now found virtu-
ally in every automobile, household appliance, and com-
puter.

1970–1971 Development of the UNIX operating system started by
Ken Thomson and Dennis Ritchie. It was cre-
ated at Bell Laboratories (US) for multi-user comput-
ers. It can run on a variety of different comput-
ers and thus rapidly became a worldwide standard, es-
pecially in universities and research institutions. It
also speeded the development of Unix to Unix com-
puter communication via phone and high-speed data
lines.

Intel 1103 – the first available dynamic RAM chip. (RAM
= Random Access Memory.)

1970–1999 From ARPANET to INTERNET – story of the ‘Informa-
tion superhighway’.

A military network called ARPAnet (Advanced Research
Project Agency) was formed. It became open to non-
military users in 1979–1980 when Academia was allowed
to connect. Its name was then changed to INTERNET
(1979) and many universities and large businesses went “on-
line”. The number of linked host computers increased ex-
ponentially during the years: 1969 (4); 1971 (23); 1981
(213); 1984 (1000), 1987 (10,000); 1988 (100,000); 1990
(300,000); 1992 (1,000,000); 1996 (10,000,000). Signifi-
cant milestones in the development of the INTERNET
are:



1950–2008 CE 5237

• In the first International Conference on Computer Com-
munication at Washington DC (1972) the ARPANET
was in the public eye for the first time.

• The engineer Ray Tomlinson (US) sent the first elec-
tronic mail between two computers at Cambridge, MA
(1972). His software was rapidly incorporated into
ARPANET’s file-transfer protocol (‘ftp’) to facilitate
communication via e-mail. He also created the @ sym-
bol in the e-mail address to separate the user’s name
from that of his or her machine or domain.

• ARPANET became international with the first inter-
national link to University College, London (1973).

• BITNET (= ‘Because It’s Time’ Network) launched
(1981) as a cooperative network of the City University
of New York (CUNY). It used e-mail. One of the first
wide-area networks.

• The term INTERNET used for the first time in 1982.
It has grown to be an international network of net-
works.

• World Wide Web (WWW) was launched in 1992.

• INTERNET encompassed 13,000 regions and national
networks; there are some 10 terabytes of publicly avail-
able data (1993).

• NETSCAPE browser 1.0 (1994).

• NETSCAPE ‘NAVIGATOR’ 2.0 (1996).

• 150 countries are connected to the INTERNET
(1996).

1971 The Floppy disc is reintroduced by Alan Shugart at IBM
for storing data used by computers. It is a 20 cm disc coated
with iron oxide.

D. Fourth Generation (1972– ): magnetic disc, microcomput-

ers, LSI ( = Large Scale Integration) based on microprocessors,

typically 500 or more components on a chip; VLSI (Very Large

Scale Integration), typically 10,000 components on a chip.
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Modern chips may now contain millions of components. This has led to
very small, yet incredibly powerful computers. The fourth generation is gener-
ally viewed as running right up to the present time, since although computing
power has increased, the basic technology has remained virtually the same.
By the late 1990’s people began to suspect that this technology has built-
in limitations, and that further miniaturization could only proceed so much.
Thus, 64 megabit RAM chips have circuit so small that it can be measured in
atoms. Circuits this small pose many technical problems – notably the heat
created, but they are also very susceptible to influence by temperature and
radiation.

1972 C programming language developed.

First electronic pocket calculator (Texas Instruments).

Alan Kay conceived the laptop computer (introduced by
1981).

1973 the microcomputer was born in France.

1974 The first computer with parallel architecture.

1975–1981 First personal (consumer) computer (PC), the Altair 8800
is introduced in kit form in the US (1975). It has 256
bytes of memory. About 100 computers connected to the
ARPANET. IBM launches the 5100 portable computers.

Apple computer, Inc. founded (1976). Designed by
Stephen Wozniak and Steve Jobs.

Apple II, the first personal computer available in assembled
form, was introduced (1976). In 1978, Apple brought out
the first disc hard drive used in personal computers. In
1981, IBM announced their 5150 PC.

Its operating system soon became an industry-standard
Disc Operating System (DOS) with 64 kB of RAM and
40 kB of ROM.

1973 Robert Metcalfe at Xerox (US) created the Ethernet – a
local area network for connecting computers within a build-
ing, using hardware running from machine to machine. The
patent described it as “multinet data communication sys-
tem with collision detection”. It differs from the Internet
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which connect remotely located computers by telephone
line, software protocol and some hardware.

1976–1992 CRAY 1, the first commercially developed supercomputer,
built by Seymour Cray (US). It contained 200,000 in-
tegrated circuits and was freon-cooled. It could perform
150 million floating-point operations per second. The cir-
cuits of CRAY 2 (1992) featured gallium arsenide instead of
silicon chips, and were submerged in a cooling bath of liq-
uid fluorocarbon to prevent heat from the gallium arsenide
from melting the machine. It could do about 250 million
floating-point operations per second.

1979 Advent of word processors.

1980 More than 1 million computers are in use in the US.

1981 Microsoft’s MS-DOS operating system.

1983–1985 The CD-ROM (Compact Disc Read Only Memory) is devel-
oped by Phillips (1983) and marketed by Sony (1985). It is
an extension of audio CD technology for use in computers.

Apple’s Lisa brings the old mouse (1965) and pull-down
menu to the PC (a mouse is a devise that moves the cursor
on the screen as a result of moving the mouse on a hard
surface; pressing the button (or one of the buttons) on the
mouse sends a command to the computer, depending on
where the cursor is located).

IBM’s PC-XT is the first PC with a hard-disc drive built
into it – a magnetic memory device then capable of storing
10 MB of information. By 2001 PC disc drives would hold
many tens of gigabytes.

1984 Apple Macintosh released (16 MB (megabytes) of RAM).

1984 Optical discs for storage of computer data were introduced.

1985–1998 Microsoft Windows launched (1985); it was followed by
Windows 3.0 (1990), Windows 95 (1995), Windows 98
(1998), and later versions.

1987 A bandgap-engineered Heterojunction Bipolar Transistor
made of epitaxial SiGe (Silicon-Germanium) alloys was
demonstrated for the first time. Because the band struc-
ture and transport properties of electrons and holes can be
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engineered in these alloys, cutoff frequencies can be made
larger than in devices based on doped Silicon alone; by
2004, unity-gain cutoff frequencies well above 200 GHz have
been achieved for SiGe devices. SiGe HBT’s can be used in
electronic circuits for RF applications, as well as in high-
speed optical networks.

1987–1988 Massive Connection Machine: a supercomputer which in-
stead of integration of circuits operates up to 64,000 fairly
ordinary microprocessors (using parallel architecture) at the
same time. It can perform about 2 billion operations per
second.

1988–1990 First optical chip, the optical computer developed by
AT&T; it uses light (photons) instead of electricity (elec-
trons) to carry data and can potentially reach calculation
speed orders of magnitude faster than existing electronic
computers.

1989 World Wide Web, invented by Tim Berners-Lee (at
CERN, the European particle-physics laboratory). He saw
the need for a global information exchange that would al-
low physicists to collaborate on research and exchange text,
visual and other files interactively. The Web was a result of
the integration of hypertext (coded in ‘HTML’: Hypertext
Mark-up Language) and the internet.

1992 First U.S. website launched at SLAC (Stanford Linear Ac-
celerator Center).

1993–1998 Pentium chip released (1993). The 166 MHz version con-
tains the equivalent of 3.3 million transistors. The 1995
version of Pentium Pro achieved a clock speed of 200 MHz
and contained 5.5 million transistors. In 1998, Intel pro-
duced the 333 MHz Pentium II processor.

1996 Texas Instruments announced they can now pack 125 mil-
lion transistors into a single silicon chip the size of a thumb-
nail.
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E. Fifth Generation: CD-ROM, optical discs, photonic comput-

ers.

1985 CD-ROM can put 275,000 pages of text on a single CD
record.

1997 Seiko Epson Japan invented a hand-cranked PC. When the
battery starts to fade, a red-alert message alerts the user
to crank the main spring.

1998 Sales of Personal Computers (percentage of all US homes):
1995 (27%), 1997 (43%), 1998 (50%); Driven by strong sales
of lower-priced PC (ca 2100 dollar per unit), half of all
US households have a PC. The PC is rapidly becoming a
standard household appliance.

1998 Internet details:

• The total world wired population is 150 million people.

• The number of computer hosts in the global network
is 36 million.

• Internet provides electronic mail, file transfer, a dy-
namic document distribution and presentation system
(WWW). It is the greatest information and intellec-
tual resource in the world, has a growing presence in
entertainment, commerce, chats and other social in-
teractions, and is the most visible manifestation of the
information society.

2004 The Intel corporation released the LGA775 platform for
the Pentium-4 chip. Its clock speed is 3.6 GHz, it packs 1
MB (MegaByte) of L2 cache, and the width of its circuit
strips is 90 μm (900 Angstrom – one-sixth the wavelength of
yellow light!). Chips based on bandgap-engineered devices
– e.g. utilizing SiGe (Silicon-Germanium alloys) – could
enter later generation CPU chips, because they will enable
clock speeds of hundreds of GHz.
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X. Artificial Intelligence (AI) (1917–1997)
(inter = between; legere = to choose; Intelligence = to choose between)

1917–1921 Karel Capek (1890–1938, Czechoslovakia) coined the

term ‘Robot’ (robota = forced labor in Czech) to de-

scribe the mechanical people in his science fiction story,

R.U.R. His intelligent machines, intended as servants for

their human creators, end up taking over the world and

destroying all mankind. “Robot” is defined as an au-

tomatic, autonomous device that performs functions nor-

mally ascribed to humans, or a machine in the form of

humans.

1928 John von Neumann (USA) discovered the minimax the-
orem central to Game Theory.

1937 Alan Turing (England) introduced the abstract Turing
Machine.

1941 Konrad Zuse (Germany) completed the world’s first fully

programmable digital computer.

1942 Isaac Asimov (1920–1992, US), Science Fiction author,

introduced his fictional ‘three laws of robotics’.

1943 Warren McCulloch and Walter Pits discuss neural-
network architectures for intelligence.

1946 John P. Eckert (US) and John W. Mauchly (US) de-

veloped ENIAC, the world’s first fully electronic, program-

mable digital computer.

1947 Norbert Wiener (US) published Cybernetics, a seminal

book on information and control theory.
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1947 The field of Artificial Intelligence (AI) began as the first
computers were developed. It is often defined as a mul-
tidisciplinary field encompassing computer science, neuro-
science, philosophy, psychology, robotics, and linguistics. It
attempts to reproduce with machines the methods and re-
sults of human reasoning, speech and other brain activities.

1949 Maurice Wilkins (US) built EDSAC, the world’s first
stored-program computer.

1950 Alan Turing described a criterion for determining whether
a machine is intelligent (the Turing Test).

Claude E. Shannon proposed a computer chess program.

1956 Stanislaw Ulam (US) wrote MANIAC 1, the first com-
puter program to beat a human being in a chess game.

The first use of the term Artificial Intelligence was given by
John McCarthy and Claude Shannon, at a computer
conference at Dartmouth College, US.

1956 D. Devol and J.F. Engelberger (US): the first industrial
robot ‘Unimate’. It was later installed at a General Motors
plant to work with heated die-casting machines.

1957 Allen Newell, Herbert Simon and J.C. Shaw (US) de-
veloped their Logic Theorist program, one of the first AI
programs that allow a computer to reason abstractly (it
could, for example, prove theorems in the ‘Principia Math-
ematica’ of Russell and Whitehead.

1959 Arthur Samuel of IBM wrote a checkers-playing program
that performs as well as some of the best players at that
time.

1962 Engelberger’s ‘Unimation’ company began marketing in-
dustrial robots.

1963 Marvin Minsky (US) published “Steps Toward Artificial
Intelligence”.

1964 Marshall McLuhan (Canada) in his book ‘Understand-
ing Media’, foresaw electronic media as creating a ‘global
village’ in which “the medium is the message”.
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1966 The SRI (Standard Research Institute) robot represents
an attempt to combine learning programs, pattern recog-
nition programs, problem-solving programs and programs
that represent information about the outside world.

1969 First man landed on the moon.

1971 The first microprocessor was introduced in the US.

1974 The first computer-controlled industrial robot was devel-
oped.

1977 Voyagers 1 and 2 launched.

1980 Philosopher John R. Searle (USA) criticized computa-
tionalism and the pretensions of the strong Artificial Intel-
ligence program. He maintains that computers cannot think
because a system’s behaving as if it had mental states is in-
sufficient to establish that it does in fact have these states.
Moreover, he claims that there is no fact intrinsic to the
physics of computers that makes their operations syntactic
or symbolic: rather, the ascription of syntax or symbolic
operations to a computer program is a matter of human
interpretation.

1982 Second-generation robots were built, with the ability to
precisely effect movements with 5 or 6 degrees of freedom.
They are used for industrial welding and spray painting.

Defense robots used by Israel in Lebanon.

1984 Waseda University in Tokyo completed Wabot-2, a 100 kg
robot that reads sheet music through its camera eyes and
plays organ with its ten fingers and two feet.

Marvin Minsky published The Society of Mind, in which
he presents a theory of the mind in which intelligence is
seen to be the result of proper organization of a very large
number of simple mechanisms, each of which is by itself
unintelligent.

1986 Third-generation robots with limited intelligence and some
vision and tactile sensing.

Dallas police used a robot to break into an apartment. The
fugitive ran out in fright and surrendered.
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1986 ‘Optical character recognition’ (OCR) technology is grow-
ing.

New medical imaging systems are creating a revolution in
medicine.

The university of Pennsylvania developed a robotic ping-
pong player that wins against human beings.

1988 Population of industrial robots has increased from a few
hundred (1970) to several thousand, most of them in Japan.

1992– Military strategies of the leading industrial nations in-
creasingly rely on flying smart weapons which incorporate
electronic copilots, pattern-recognition techniques, and ad-
vanced technologies for tracking, identification, homing and
destruction.

A multi-hundred-billion-dollar computer and information-
processing industry is emerging, together with a generation
of ubiquitous machine intelligence that works intimately
with its human creators.

Reliable person identification, using pattern-recognition
techniques applied to visual and speech patterns, replace
locks and keys in many instances.

AI technology is of greater strategic importance than man-
power, geography, and natural resources.

1997, May 11 The IBM computer DEEP BLUE wins 3 1
2 : 2 1

2 against
the world chess champion Garry Kasparov; first machine
of human-competitive intelligence created by man. A com-
puter is the world chess champion. The machine will be
able to handle (ca 2000 CE) 1 billion nodes per second and
will have a chess master rating of 3,400, about 500 points
higher than the world’s best human player.
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XI. Geo Satellite in the service of

telecommunication (1945–1996)

1945 Arthur C. Clarke proposed the idea of communication
satellite that would appear to hover motionless over a single
point on earth; called synchronous satellite (or satellite in
a geosynchronous orbit). They became the principal means
of intercontinental communication starting in 1965. New-
tonian physics predicts a 24 hour period for a mass 35,880
km above the equator. Clarke also recognized that a net
of three such satellites, suitably placed, could provide ra-
dio relays between any points on earth (except regions very
close to the poles).

1957, Oct 4 Soviet satellite Sputnik 1 (“fellow traveler”) was launched:
a little steel ball weighing 83.6 kg, containing a radio trans-
mitter and batteries, transmitting a steady series of beeps,
but doing nothing more.

1958, Jan 31 First US satellite Explorer 1 was launched: a two meter
long body, 15 cm in diameter, weighing 14 kg. It carried a
Geiger-Mueller counter to detect cosmic rays. It detected
the Van Allen radiation belt girdling the earth.

1960, Apr The weather satellite Tiros 1 (military, in civilian guise)
discovers the beginnings of a tropical storm in the South
Pacific. It sent back nearly 23,000 photographs of earth’s
cloud cover.

On Aug 12, NASA launched ECHO 1, a spherical balloon
with a metalized skin. Once in orbit the balloon was in-
flated until it reached its intended diameter of 30 m, and it
was then used as a reflector to bounce radio signals across
the oceans – simply a radio mirror in the sky.

1962, July 10 US “Telstar 1” was launched, the first commercially devel-
oped true communications satellite. It was a multifaceted
sphere just under 1 m in diameter and weighing about 77
kg. It was able to receive messages from the ground, am-
plify them and then retransmit them immediately. This
made it possible to send high-quality data, for instance tele-
vision pictures, from place to place. On July 23 Telstar 1
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carried a TV program between USA and Europe that was
watched by 200 million viewers. It ceased to function in
March 1963.

1964, Aug 19 US launched “Syncom 3” into a geostationary orbit; the
first successful demonstration of the principle of a geosta-
tionary communication satellite; It was used with great ef-
fect to broadcast the coverage of the 1964 Olympic games
from Japan. It was a cylindric satellite with a built-in
rocket motor. Upon reaching the altitude of 35880 km it
fired its motor to circularize the orbit at that height and
become geostationary.

1964, Aug 20 The formation, by 11 countries, of INTELSAT (Inter-
national Telecommunications Satellite Organization) with
headquarters in Washington DC (119 members in 1990).
Tokyo Olympic Games are replayed to North America.

1965, April 6 INTELSAT 1 (or Early Bird) launched and placed in geo-
stationary orbit over the Atlantic Ocean. It went into ser-
vice on June 28 – the world’s first commercial communica-
tion satellite. Early Bird was a cylinder, 72 cm wide and
52 cm high, with solar cells around its circumference. It
was spun around the axis to provide stability in space. It
could relay 24 telephone lines or one television channel and
remained in service for 3 1

2 years.

1967–1991 INTELSAT developed bigger and bigger satellites in re-
sponse to continuing increase in demand for services: IN-
TELSAT 2 (1967) weighed 86 kg. INTELSAT 3 (1968)
weighed 150 kg, could carry 1200 telephone circuits or four
Television channels (or a combination of both) and its an-
tenna could point continually toward the earth.

INTELSAT 4 (1971) weighed 720 kg with an overall height
(including extended antennas) reaching 5 m. It was able to
carry 6000 telephone circuits and color television channels.

INTELSAT 5 (1980) weighed 1000 kg and was able to trans-
mit 12,000 telephone channels plus color television. It was
kept stable about all 3 axes by gas jets, and had a pair of
large solar wings to generate electricity. This system al-
lowed all the solar panels to be exposed to sunlight all the
time and produced more power, which in turn increased the
capabilities of the satellite.
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INTELSAT 6 (1989–1992), weighed 2500 kg (11.7 m high),
and could relay 24,000 telephone lines plus 3 television
channels. It was launched into orbit by a commercial Titan
rocket.

1969 First live television broadcast from the moon, by the US
Apollo 11 moon-landing mission, is transmitted to some 600
million viewers worldwide by satellite feed. The worldwide
linkup cost $ 55 billion and involved some 40,000 TV tech-
nicians and personnel in 49 nations. Sophisticated trans-
mitting and receiving equipment was part of the compact
VHF communication system on board the Apollo command
and lunar modules.

1972–1984 Landsat 1 (formerly named ERTS 1), dubbed ‘eye-in-the-
sky’, was launched on 23 July, 1972, by a Delta rocket as
part of a project to observe the earth, monitoring such prob-
lems as crop disease, flooding, icebergs and pollution. It
was followed by Landsat 2 (1975), Landsat 3 (1978), Land-
sat 4 (1982), Landsat 5 (1984) and Landsat 6 (1992).

Landsat 1 weighed 891 kg. It was placed at an altitude of
900 km in a polar orbit, from which it could observe the
same area every 18 days. Landsat 4 and 5 weighed 2000 kg
each. Since 1985, Landsat data have been marketed, sup-
plying users with photographs or electronic images suitable
for display and image processing on desktop computers.

1977 Eutelsat links the telecommunication networks of the Eu-
ropean countries via communication satellites.

1987 Soviet radar satellite (weighing 20 tons) was launched. It
has applications in map-making, oceanography, crop pre-
dictions, ice monitoring and prospecting for minerals.

1993 NASA’s Advanced Communications Technology Satellite
(ACTS) is launched from the Shuttle Discovery during Mis-
sion STS-51 on Sept 12. ACTS is a testbed for future com-
munications satellite technology, such as multi-beam anten-
nae and advanced signal handling.

1995 World Wide Web has become big business as NETSCAPE
Communications goes public. About 6.6 million computers
are connected to the INTERNET.
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1996 13 million host computers on the INTERNET.

The INTERNET includes by now 18 satellites in orbit.

XII. Is Anyone out There? – Spacebound Odyssey in

Search of Extraterrestrial Intelligence

(1959–1989)

(a) Introduction

Until very recently, man’s ancient dream to free himself of the chains of
gravity and fly away from earth in search of other worlds, materialized only
in myth, literature, and science fiction.

However, the rapid development of aeronautical science, nuclear physics,
solid state physics, computer technology and fuel chemistry in the wake of
WWII, to which the cold war added a strong element of competition – pushed
the science of rocketry to the verge of realization.

In 1944, within two years of the historic first self-sustaining nuclear chain
reaction (Dec. 2, 1942), Stanislaw Ulam and Frederick de Hoffman
mused at Los Alamos that the power of the atomic explosion might somehow
be controlled to launch space vehicles. Ulam and de Hoffman were following
the thoughts of the great master of science fiction, Jules Verne, who, in his
1865 novel, De la Terre la Lune, wrote that the Baltimore Gun Club fired
a manned projectile to the moon from a huge cannon emplaced near Cape
Canaveral, now Cape Kennedy, Florida.

But ideas rarely come to fruition unless a practical need beckons; near the
close of WWII, German V-2 rockets had proved they could carry some 750 kg
of amatol explosives 360 km from Nazi-held territory in Europe to London.
What if the V-2’s had carried atomic bombs? The thought was unsettling.
Soon designs for Intercontinental Ballistic Missiles (ICBMs) began to take
shape on drawing boards around the United States. Some of these big rocket
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design were nuclear at both ends – they had nuclear warheads and nuclear
engines. Secret reports issued in July 1946 by North American Aviation,
Inc., and Douglas Aircraft Company are landmarks in the history of nuclear
rockets. The reports underlined the great promise of the “heat transfer”
nuclear rocket, noting its high exhaust velocity14, its attainment of very high
temperatures, and its high rate of heat transfer.

The military rocket work was naturally classified as secret by the U.S.

14 Chemical rocket engines, jet engines, automobile engines – in fact, most of
mankind’s engines – extract heat from a fuel and turn it into macroscopic motion

through the expansion of hot gases. The nuclear rocket also creates hot high-

pressure gas and turns it into reaction thrust. The higher the propellant velocity,
the more thrust we get from each kilogram of gas that roars out the nozzle each

second. We want to have a high exhaust velocity for good rocket performance,

because we can thereby accomplish a space mission with less propellant.
The nuclear rocket produces about twice the exhaust velocity of the best chem-

ical rocket, for the following reason: the exhaust velocity V of any rocket is

proportional to
√

T
M

, where T is the temperature of the hot gases just before

they enter the nozzle throat, and M is the average molecular weight of the ex-

haust gases. Now, chemical rockets already operate at temperatures close to
3000 ◦K; nuclear rocket reactors operate at the same general temperature level.

However, chemical rocket exhaust velocities are limited by the high molecular

weight of the combustion products [water (M = 18), methane (M = 16), ammo-
nia (M = 17)] whereas a nuclear rocket, where combustion is not required, can

make use of a propellant with low molecular weight, such as molecular hydrogen

(M = 2). [Fissile-material nucleus release kinetic energy without chemical stim-
ulation, and the propellant is not an engine fuel but a separate substance that is

heated by the fissioning nuclei in a nuclear reactor.] With M = 2 (instead of 18

as in hydrogen-oxygen chemical engines), the nuclear rocket exhaust velocity will
be more than double that of the best chemical rocket for the same temperature.

Using the equations: thrust = dm
dt

V , power = 1
2

dm
dt

V 2, we see that if the thrust is

held fixed and exhaust velocity V is doubled, propellant flow dm
dt

will be halved,
but the power required will double. The price of increasing the exhaust velocity

is the need for increased power production by the engine. From this relationship

arises another important advantage of the nuclear rocket: The great reservoir of
energy contained in its nuclear fuel can be turned into high exhaust velocity.

The three basic facts about nuclear rockets are:

• They convert fission-generated heat into the kinetic energy of rocket propel-

lant.

• Chemical combustion is not needed, and so they can use lower molecular
weight propellant to attain high exhaust velocities.

• Their reactor fuel has a more potential energy packed into it.
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Air Force. However, at the Applied Physics Laboratory of the John Hopkins
University in Maryland a group of engineers, who were unaware of the ICBM
work and did not have access to the secret reports, innocently proceeded to
duplicate all the important findings of North American and Douglas. Their
unclassified report was published in January 1947. It was obvious that any
competent with a slide rule and a few scraps of paper could discover the
essentials of the nuclear rocket without much help.

In 1948 and 1949, two British space enthusiasts, A.V. Cleaver and L.R.
Shepherd, again duplicated most of the secret nuclear rocket fundamentals in
a classic series of papers published in the Journal of the British Interplanetary
Society. Not long before the English report appeared, the American-educated
Chinese scientist H.S. Tsien had reported his studies on the application of
nuclear energy to rockets and other “thermal jets” at a M.I.T. seminar. The
basic principles of the nuclear rocket could no longer be concealed. [It is
interesting that Shepherd went on to become a key man in Britain’s atomic
energy program, and Tsien later returned to China where he was a principal
figure in the development of the Beijing government’s atomic bomb.]

A nuclear rocket engine is considerably more than a heater of hydrogen.
It is true that the engine is built around the reactor core, the wellspring of
energy, but in addition hydrogen propellant must be transported from tank
to reactor; heat must be partially converted to thrust. The engine, in fact,
has five major segments:

• The nuclear reactor heat source.

• The pump that pulls liquid hydrogen from its tanks and forces it through
the reactor.

• The nozzle, which transforms heat to thrust.

• The structure that physically holds the pieces together.

• The controls that force all engine components to march in step at the
command of the spacecraft pilot.

In a nuclear rocket engine intended for space travel inside the solar system,
the reactor must generate at least 5000 megawatts of thermal power (more
than the output of 50,000 V.W. cars or 160,000 home-heating furnaces), and
still not encumber the rocket with too much inertia.

Four requirements control reactor design:

• The need to attain a critical mass (i.e., the smallest mass of fissionable
material that will sustain a chain reaction).
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Photo 2: Elsewhere in the Universe (courtesy of Steve Satushek)
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• The need to remove all generated heat.

• The need to raise the power level at will, or control the reactor.

• The need to maintain structural integrity at high temperatures and
under the forces exerted by the high thrust.

Attainment of a critical mass is a matter of “neutron economics”, be-
cause it is the cloud of invisible neutrons coursing through the reactor that
stimulates nuclear fission and thus power production. Each fissioned atom of
uranium-235 produces 21

2 new neutrons, on the average. If the rate at which
fission occur (and consequently the power level) is to remain constant, exactly
one of these 2 1

2 neutrons (on average) has to go on and cause another fission.
Reactor “criticality” occurs at just this point. This balance sheet leaves 1 1

2
neutron per fission, each of which may either escape the reactor altogether or
be absorbed in nonfission nuclear reactions. To prevent too many neutrons
from escaping, a material is placed around the reactor to reflect some errant
neutrons back into the core.

Excessive neutron absorption can be avoided by using core and reflector
materials that have little appetite for neutrons; fortunately, graphite has just
such a low neutron absorption cross section. Naturally, enough uranium-235
atoms must be dispersed throughout the graphite core so that the neutrons
can find and fission them. Core design requires a balancing of all these con-
siderations, plus one more.

Almost all the energy released by uranium is first incorporated in the
kinetic energy of two large fission fragments that fly off in opposite directions
as the nucleus splits. In a few millionths of a second, the kinetic energy
of the heavy fragments is transferred to the nearby atoms and molecules,
setting them in motion. A heat pulse flows outwards to the boundary of the
nuclear fuel (uranium carbide dispersed throughout the graphite), where it
heats the hydrogen propellant. If this heat is not removed, core temperatures
will quickly rise beyond the sublimation point of the fuel. The reactor core,
therefore, has to be designed in such a way that all this fission-generated heat
is transferred to the hydrogen gas that is to be driven through the reactor
by the pump. This means that the reactor must be perforated with holes
that carry the hydrogen (serving here as a reactor coolant) through and past
the hot fuel to the nozzle. Coolant holes are coated with niobium carbide to
prevent chemical corrosion of graphite by the hot hydrogen.

To raise or lower the reactor power, the neutron economy must be upset,
or altered. Control drums help perform this task. These are cylinders covered
on one side with neutron “poison”, i.e. materials whose nucleus readily absorb
neutrons at the typical speeds they acquire in the reactor. Boron is one such
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element. When all the drums’ absorbing faces are turned inward, neutron
that would otherwise be reflected back into the core to cause new fissions are
absorbed by the poison instead. To start the reactor, motors slowly rotate the
control drums, moving the poison away from the core regions, thus giving the
neutron economy a boost. Unless the drums are returned to the exact point
where criticality occurs, reactor power will rise exponentially. Because neu-
tron generations are only milliseconds apart, neutron “population explosion”
(and thus reactor power changes) can come about very quickly.

A small portion of the hot hydrogen stream is “bled” off, diluted with a
little cold hydrogen and directed through the turbine that powers the pump.
This pump must raise the pressure of liquid hydrogen by about 94 atmospheres
while delivering about 8 tons of it per minute to the reactor.

The hydrogen leaving the hot end of the nuclear rocket reactor is laden
with the thermal energy that first must be converted into gas kinetic energy
and then into rocket kinetic energy. This is the job of the nozzle. A con-
striction called the nozzle “throat” starts the process. First the throat speeds
up the hydrogen velocity until it is traveling at the speed of sound (Mach
1). Beyond the throat, the nozzle opens up into a carefully contoured diver-
gent section. Here, the hydrogen expands and cools rapidly as heat energy is
converted to gas velocity (kinetic energy). The hydrogen, now traveling at su-
personic velocities, pushes against the divergent sides of the nozzle, thrusting
the rocket in the opposite direction through airless space. The expansion of
hot gas in the nozzle is analogous to gas expansion against a piston or a tur-
bine blade. To achieve a high exhaust velocity, the exit area of the divergent
section must be as large as possible in comparison to the throat area. This
ratio (100: 1) is limited only by the length and weight of the nozzle. Powerful
forces act on the nozzle because it has to carry the entire thrust load up to
the rocket body proper. What material can withstand such stresses in the
presence of super-hot hydrogen rushing past it at supersonic speeds?

The solution is a high temperature alloy such as stainless steel, covered by
a solid phalanx of cooling tubes that keep the nozzle temperatures well below
the melting point of the alloy. The coolant that is pumped through these
tubes is the supercooled liquid hydrogen which is returned to reactor’s core.
Without this cooling the nozzle would not survive more than a few seconds.

Besides the system unity imposed by the structure and controls, the engine
parts have to fit together thermodynamically. To breath “life” into a nuclear
rocket there must be a starter, like that in an automobile, intrinsic in the
system. The engine must “catch”, become self-sustaining, and generate useful
power. For this to happen, two energy sources must be found: One to start the
engine and another to power the pump that keeps propellant flowing through
the engine.
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In a nuclear rocket, the heavy reactor replaces the empty combustion
chamber of the chemical rocket. Heavy though the nuclear engine may be, it
is still but a small appendage on a much larger structure consisting mainly of
the huge propellant tank.

The doubled exhaust velocity of the nuclear rocket in comparison with
the chemical rocket, means that the nuclear rocket uses only half as much
propellant each second of operation. Thus, the nuclear rocket’s great economy
in propellant consumption make it superior for missions in which most of the
spacecraft weight is allotted to propellant. This is subject to the condition
that the payload (anything carried that is not necessarily for the flight of the
vehicle) is not a great deal smaller than the weight of the nuclear engine itself;
manned expeditions to Mars, or the ferrying of supplies to the moon, are right
down the nuclear rocket’s alley. Generally speaking, the more ambitious the
mission, the better the nuclear rocket looks.

On Oct. 04, 1957, the Soviet Union launched the first artificial satellite,
SPUTNIK (Russian: fellow traveler). It was a metal sphere with diameter
of ca 58 cm, circling the earth with a velocity ca 29,000 km/h, once every
95 minutes15. Its remains fell to earth on Jan. 04, 1958. In 1959, a Russian

15 Let a mass m be fired off a planet of mass M and radius R. To achieve orbit,

the initial speed should exceed the first cosmic velocity, V1:

mV 2
1

R
= mg = G

mM

R2
, ∴ V1 =

√
GM

R
=

√
gR

For earth V1 = 7.9 km/sec.
Second cosmic velocity (=escape velocity):

1

2
mv2

2 =
GmM

R
∴ V2 =

√
2GM

R
=

√
2gR

For earth V2 = 11.3 km/sec. Above, G is the universal gravitational constant

and g is the surface gravity.

For a mass m orbiting the said planet at radial distance r > R, Newton’s

2nd law, GMm
r2 = mV 2

r
, yields V =

√
GM

r
. The period of revolution is

T = 2πr
V

= 2π
√

r3

GM
, namely T 2 ∝ r3 (Kepler’s third law). Substituting

GM = gR2, we find
(

r
R

)3
= gT2

4π2R
. If T is chosen to be the planet’s own

period of rotation about its axis, we obtain for the earth r = 6.618 R, or altitude

= r − R = 5.618 R = 35, 890 km. This is the suitable altitude for a synchronous
communication satellite.
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space probe televised the first pictures of the dark side of the moon hidden
from earth. On April 12, 1961, the Russians launched Yuri Gagarin, the first
man ever in space, on the spacecraft Vostok I. He circled the earth in 1h48m.

The United States responded to the Soviet challenge in space by estab-
lishing the National Aeronautics and Space Administration (NASA) in 1958
to conduct and coordinate the U.S. nonmilitary research into problems of
flight within and beyond the earth’s atmosphere. It has more than 10,000
scientists, engineers and technicians. Its installations include the John F.
Kennedy Space Center (Cape Canaveral, FA), the Lyndon B. Johnson Space
Center (near Houston, TX), the Goddard Space Flight Center (Greenbelt,
MD), the George C. Marshall Space Flight Center (Huntsville, AL), Flight
Research Center (Edwards AFB, CA), Jet Propulsion Laboratory (Pasadena,
CA) and other centers.

The results of this gigantic effort culminated in the first lunar landing of
Apollo 11 on July 20, 1969. On that day (10:56 UT pm), after 4 days of
travel at an average speed of 4000 km/h, Neil A. Armstrong set foot on
the rocky plain of the moon’s Sea of Tranquility.

The commitment to land the first man on the moon, successfully fulfilled
in 1969, again boosted scientists onto the crest of a wave of popularity. Caught
up in the excitement of the space race, no fewer than 20 U.S. Federal agencies
were supporting research and development in the 1960’s.

This multiplicity of funding sources produced spectacular results. It
yielded exciting new knowledge about the nature of the planets and of our
place in the universe. Fundamental physics, astronomy, electronics and com-
puter technology have benefited, as well as chemistry, material science and
the life sciences. Not only did the U.S. decisively win the race to the moon,
but it has acquired new and better electronic and medical services that owe
their existence, at least in part, to the needs of the space exploration.

On March 03, 1972, Pioneer 10 was launched from Cape Canaveral, FL.
The 260 kg craft made its way safely through the asteroid belt, a region
between the orbits of Mars and Jupiter littered with rocky debris. It flew
within 130,000 km of Jupiter’s cloudtops on Dec. 02, 1973, returning the first
close-up images of the sun’s largest planet. It proceeded to traverse the orbits
of Saturn, Uranus, Neptune and Pluto. On June 13, 1983, Pioneer became
the first spacecraft to depart the realm of the known planets.

Note that the net energy of the orbiting mass (kinetic plus potential) is

1

2
mV 2 − GmM

r
=

1

2
m

GM

r
− GmM

r
= − 1

2

GmM

r
< 0.

It becomes more negative, the closer the mass is to the planet.
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Radio messages from Pioneer tell us that it moves in cold, dark and empty

space. ‘Solar wind’ particles, moving with speeds of 1.5 million km/h, blow

at its tail while cosmic rays race inward past it. It may be able to detect

gravitational waves or locate the putative Planet X perturbing Uranus and

Neptune. As the years go by, its radio will go dead and its guidance sensors

will lose sight of the sun. It will then cruise on, mankind’s first emissary

to the universe. About 10,506 years from now it will pass within 3.8 LY of

Barnard’s star. In 862,063 years Pioneer will approach the vicinity of Altair,

a star nine times brighter than the sun. In case Pioneer is intercepted by

intelligent beings, it carries a plaque with images of a man and a woman,

a diagram of the solar system and other symbols that might enable ‘others’

to locate the origin of the little craft. Five billion years from now, Pioneer

should be wandering about the outer rim of the Milky Way galaxy. The sun

is expected to burn out and die in 5 billion years, and with it the earth.

At the turn of the 21th century, the engineering problems encountered in

the design of interstellar space vehicles seem to present a number of apparently

insurmountable obstacles. It is nevertheless quite interesting to examine the

feasibility of interstellar travel from the point of view of the theory of relativity.

The interstellar distances involved are of the order of a few light years

(≈ 1016 m) to the nearest star, of order 104 light-years (� 1020 m) to the

center of our own galaxy, and of order 106 light-years (≈ 1022 m) to the

nearest neighboring galaxies. In all cases the limited lifetime of the crew

requires either space vehicles capable of attaining speeds close to the speed of

light, or a multi-generational (‘space ark’) ship.

Supposing one can solve the engineering problem of constructing a vehicle

that can accelerate (as measured by the crew) at the rate a = g ≈ 10 m/sec2

for the entire duration of the trip, then the velocity reached by the vehicle

after a time t has elapsed in an inertial frame stationary w.r.t. the earth is,

according to a standard relativistic calculation,

v =
gt

√
1 + (gt/c)2

and as seen from earth it will have traveled the distance

d =
c2

g

⎛

⎝

√

1 +
(

gt

c

)2

− 1

⎞

⎠ .
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The crew benefits, however, from the time dilation effect. One finds for the
time t′ elapsed, as measured by the crew during earth time t, the expression

t′ =
c

g
ln

⎡

⎣gt

c
+

√

1 +
(

gt

c

)2
⎤

⎦ .

Assuming the crew wants to land at a distance D from earth, the ideal
way of traveling would consist of accelerating at rate g up to d = 1

2D and
then decelerating at that rate over the other half of the total distance, so that
the total traveling time will be T = 2t in earth time, and T ′ = 2t′ in crew
time. By applying the formulae given above to this case one finds:

Distance Traveling time Traveling time
traveled as measured on as elapsed for
D = 2d earth, T = 2t crew, T ′ = 2t′

2 × 1016 m 3.6 yr 2.7 yr
2 × 1020 m 2.2 × 104 yr 20 yr
2 × 1022 m 2.2 × 106 yr 29 yr

Clearly, because of the relativistic time dilation effect, one cannot rule
out absolutely the feasibility of interstellar or even intergalactic travel within
a single current human lifetime, even without cryogenics-assisted suspended
animation for the crew.

Besides nuclear-powered impulse rockets of the kind described here, other,
even more revolutionary designs have been proposed and studied for inter-
planetary and interstellar space missions. Among these:

• ion rocket (tested in a 1998 NASA experiment)

• antimatter engines (power and/or thrust via annihilation of stored an-
timatter with matter and subsequent particle production)

• photon rocket (shining backward – propagating light beams for thrust)

• ramjet engine based on nuclear fusion fueled by scooped interstellar
hydrogen
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(b) Timeline

Scientists have been sending regular radio waves out into space since 1920.
All of our radio, TV, satellite, and radar signals are currently spreading out,
slowly sweeping through the ca. 1011 (100 billion) stars of the Milky Way
Galaxy.

1959 The birth of SETI (acronym for the Search for ExtraTerres-
trial Intelligence) – the science of searching the skies for
signals from alien civilizations using radio and optical tele-
scopes. Incepted with a paper in Nature by Giuseppe
Cocconi and Philip Morrison in which detection by ra-
dio waves was suggested as the earliest method of commu-
nication.

1960–1990 Frank Drake (radio astronomer, US) embarks on Project
Ozma: a search for extraterrestrial intelligence in the form
of radio signals from other civilizations. With an antenna
diameter of 25 m he listened, at the edge of the “spectral wa-
ter hole”, at frequency 1420 MHz (the natural frequency of
the 21 cm – wavelength hyperfine – splitting line of atomic
hydrogen). In 1975, Drake and Carl Sagan (1934–1996,
US astronomer) listened by means of an antenna with di-
ameter 300 m in the frequency range 1420–2380 MHz. An
ongoing SETI program has been privately funded since the
1980s. So far, no alien signals have been detected. Con-
sidering that there are millions of frequency bands to sift
through and the relatively short period of listening, it may
be that we just have not yet looked at the right place at
the right time.

1972–1973 The first space probes Pioneer 10 (launched March 02,
1972) and Pioneer 11 (launched 05 April 1973) to leave the
solar system. Each carries a plaque that will allow whoever
finds them to trace them back to earth, using pulsars as as-
tronomical signposts in time and space. Each plaque, 155
mm × 229 mm in size, is of gold-anodized aluminum plate,
into which is etched a diagram of the solar system, a pulsar
map and a picture of man and a woman. The plaques are
mounted in a position on the spacecraft’s antenna mount
which is expected to protect them from erosion by interstel-
lar dust for at least 100 million years. By 1974 the Pioneers
coasted Jupiter and by 1994 they were 9 billion km from
the sun – far beyond the Solar system.



5260 6. Deep Principles – Complex Structures

1977–1989 Voyager 1 (Sept. 05) and Voyager 2 (Aug 20) sent from
USA to explore the edge of the solar system.

Voyager 1 arrived at Jupiter (spring 1979), Saturn (Nov
1980) and its largest satellite Titan.

Voyager 2 flew by Jupiter (July 1979), Saturn (Aug 1981),
past Uranus (1986), Neptune (Aug 1989) and Neptune’s
largest moon, Triton. On Nov 05 2003, Voyager 1 reached
90 AU and is the first human-built craft to explore and re-
port back on the interstellar medium, with Voyager 2 close
on its heel.

1990’s–early 2000 Over 120 exoplanets (planet around other nearby stars)
discovered indirectly. Indirect methods include:

• Radial Doppler shifts (periodical shifts in a star’s spec-
trum caused by the wobble of the star about the COM
of its planetary system).

• Precision astrometry (minute movements of a star per-
pendicular to its line-of-sight from earth, again due to
planet-caused wobble).

• Photometric detection of the effects of exoplanet tran-
sits upon the parent star’s spectrum.

• Single-star gravitational lensing.

• Space-based interferometry.

Numerous exoplanet-hunting space missions are in the
works, scheduled to be launched during the first two
decades of the 21th century. Some of them will try to look
directly at exoplanets, by either dimming their star’s disc
or looking in the infrared.

Most of the exoplanets thus far found are gas giants, and all
are either too cold or too hot to be likely harbors of life. It
is hoped that some of the planned missions will be able to
identify earth-like exoplanets, and even analyze their chem-
istry (and possible biochemistry!) via their atmospheric
spectroscopy.
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A Timeline of Discoveries in Particle Physics

Bubble tracks are left in a bubble chamber by tiny electrically charged sub-
atomic particles as they travel through the chamber’s depressurized cryogenic
fluid. The ions left along the track nucleate bubbles because the chamber’s
rapid de-pressurization – synchronized with the arrival of the primary (pro-
jectile) particle beam – renders the fluid superheated.

The bubble chamber functions as both a target for the projectile particles
(furnished by the liquid’s nuclei-protons in the case of liquid hydrogen) and
as a detector for all charged particle tracks, whether projectiles or reaction
products.

Bubble chamber images have the topology of branched trees: tracks
(prongs) successively branch off at interaction vertices.

An electrically neutral particle leaves no bubble tracks, but its path can be
reconstructed between the vertex which created it (if any) and the vertex at
which it ceased to exist. An ambient magnetic field bends the charged tracks;
the curvature is used to calculate the particle’s momentum and charge. The
charged particle’s energy affects its rate of energy and momentum loss along
the track, and can thus be deduced from the bubble track’s appearance. From
a track’s momentum p and energy E, the corresponding particle’s rest mass
can be deduced via the special-relativistic formula:

m2
0c

4 = E2 − p2c2.

Particle physicists thus have to decode cascades (vertex-track-vertex trees)
– captured in bubble chamber images and other types of detectors arrayed
around mammoth particle accelerators – in order to deduce basic informa-
tion about the observed particles, such as electric charge, particle spin, mass,
lepton number, baryon number, parity and other quantum numbers that turn
out to be useful in describing the elementary particle side of nature.

Before the invention of the bubble chamber, particle tracks were traced
and interpreted via other means, such as photographic emulsions and cloud
chambers. The latter is based on an inverse principle to that of the bubble
chamber: the charged particle is allowed to enter a super-saturated vapor
chamber, and its ionized track furnishes nucleation centers for liquid drops
(instead of bubbles), which can then be photographed and the resulting visible
tracks interpreted.
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Here is a short history of elementary particle observations, which began
with the discovery of the electron in 1897:

1896 X rays and other forms of radioactivity were observed.

1897 The electron was discovered. Electrons (e−) were first called
cathode rays by their discoverer.

1899 Alpha particles were discovered, and later shown to be he-
lium nuclei consisting of two neutrons and two protons.

1911 Nuclear model of the atom, with heavy nucleus in the center
and light electrons orbiting around it, was proposed, and
became accepted. C.T.R. Wilson (Cambridge, England)
observes for the first time the tracks of ionizing particles
(alpha and beta particles) in a cloud chamber, a device he
had invented already in 1896. The cloud chamber played
an important role in early nuclear and particle physics.

1911 Electron charge measured in an oil drop experiment indi-
cates that all electrons carry the same electric charge.

1932 The neutron directly observed for the first time.

1932 The positron (e+), predicted by Paul A.M. Dirac in 1928,
was discovered by Carl D. Anderson in a mountain-top
cloud chamber tracks.

1934 Radioactive nuclei were produced in the laboratory.

1937 The muon (μ+), a charged lepton16 like the electron (only
about 200 times heavier and unstable), was observed.

16 Lepton, meson and baryon are Greek-derived neologisms meaning, respectively:

light (small), intermediate, and heavy (large). The muon was originally clas-

sified as a meson, as were the “pions” (charged and neutral π mesons), since

they are all intermediate in mass between the electron and the nucleons (proton

and neutron). Nowadays, the classification is based on quantum numbers and

interaction types, not mass. The electro; muon; tau lepton; plus their neutrinos,

and the antiparticles of all these, comprise the 12 leptons; mesons are particles

made of a valence quark and antiquark; and a baryon has 3 valence quarks. An

anti-meson is still a meson, while the anti-baryon is a distinct category. A hadron

is a meson, baryon or anti-baryon.
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1947 Two charged π mesons, with positive and negative charge,
were discovered.

1950 The neutral π meson was discovered.

1952 Invention of the bubble chamber charged-particle track de-
tector by D. Glaser.

1953 The lambda baryon and K meson were discovered.

1956 The existence of the electron neutrino (νe) and its antipar-
ticle (ν̄e), predicted by weak-interaction theory in 1930,
was confirmed by experiments in which the missing neu-
tral track form the vertex of a weak nuclear decay (such as
beta decay,

n (neutron) → p (proton) + e− + ν̄e

creates a vertex at which an inverse process occurs (e.g.
ν̄e + p → n + e+).

1950s–60s Many baryons and mesons were discovered, and their prop-
erties recur in regular patterns that look as if baryons and
mesons were made of smaller building blocks.

1961 The muon neutrino was discovered and shown to be a dif-
ferent particle from the electron neutrino..

By the mid-1960’s, physicists realized that their previ-
ous understanding, whereby all matter is composed of the
fundamental protons, neutrons, and electron, was insuffi-
cient to explain the myriad new particles being discovered.
Quark theory solved these problems. Over the last forty
years, the theory that is now called the Standard Model
of particle physics has gradually emerged and gained in-
creasing acceptance with new evidence from new particle
accelerators.

1964 Murray Gell-Mann and George Zweig tentatively put
forth the idea of quarks. They suggested that baryons and
antibarions are respectively composed of 3 quarks and 3 an-
tiquarks of types called up, down, or strange (u, d, s) with
spin 1/2 and electric charges (in units of proton’s charge)
2/3, -1/3, -1/3, respectively; mesons consist of quark-
antiquark pairs. Since fractional charges had never been
observed, the introduction of quarks was treated more as
a mathematical explanation of patterns of particle masses,
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decays and reactions than as a postulate of actual physical

objects. Later theoretical and experimental developments

allow us to now regard quarks as real physical objects, even

though they cannot be isolated.

1968 Particle physicist G. Veneziano (Italy, Israel) used the

Euler beta function to create a class of models of the strong

nuclear interactions called Dual Resonance Models (DRM).

These models are at first heuristic, but exhibit a duality of

high-energy scattering amplitudes which is in accord with

experiments. The duality property is between unstable ex-

cited hadrons resonantly produced during collisions on the

one hand, and virtual particles exchanged during scatter-

ing, on the other. Work by L. Susskind, Y. Nambu and

others in the late 1960’s showed that DRM’s can be ex-

plained if hadrons are viewed as relativistic strings. But

the high-energy interactions of hadrons with leptons, stud-

ied experimentally at accelerators at SLAC, Brookhaven,

CERN and other labs, failed to agree with string theories,

and they were abandoned in the 1970’s in favor of local

non-abelian (Yang-Mills type) gauge quantum field theories
of the strong, weak and electromagnetic interactions.

Meanwhile, however, Michael Green, John Schwartz

and other researchers noted that some string theories pre-
dict a spin-2 massless particle which couples to the energy-

momentum 4-tensor – the graviton! These workers thus

suggested that string theories might be related to grand
unification and quantum gravity. These ideas were not then

embraced by the particle physics community. But starting

in 1984, another reversal occurred. Many classes of string

theories with several curled-up (Kaluza-Klein) spatial di-

mensions were found to be mathematically consistent, and

even free of the short-distance divergences that plague all

quantum field theories.

From that time on, various versions of String Theory have

been viewed as leading contenders for an ultimate “Theory

of Everything”, although mathematical difficulties and lack

of data at high enough energies has so far (2008) prevented

this very active field of theoretical research from making

any direct contact with experimental physics.
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1968–1970s Deep inelastic electron-proton scattering experiments re-
vealed more of the quark structure inside protons and other
hadrons, and that quarks’ strong nuclear interactions de-
crease with decreasing distance (asymptotic freedom).

1974 A fourth flavor of quark (beyond u, d and s) – named charm
– was detected in a newly discovered meson, confirming a
theoretical prediction. The Glashow-Salam-Weinberg the-
ory, unifying Quantum Electrodynamics (QED) with the
weak nuclear forces in the framework of a spontaneously
broken, Non-Abelian Gauge Theory, was shown to be math-
ematically consistent (‘renormalizable’).

Another, unbroken, non-abelian gauge theory – called
Quantum Chromodynamics (QCD) – was shown to account
for accelerator experiment result such as ‘asymptotic free-
dom’, leading to increasing acceptance of QCD as the the-
ory of the strong nuclear force. QCD predicts that each
quark flavor comes in three ‘colors’, but that only colorless
combinations can exist as separate, free particles.

The Glashow-Salam-Weinberg theory and QCD theories to-
gether compose the Standard Model.

1975 The tau lepton was discovered, marking a third generation
of leptons after the electron generation (e−, νe and their
antiparticles) and the muon generation (μ−, νμ and an-
tiparticles). The tau neutrino would only be observed in
2000.

1979 A fifth flavor of quark, named bottom, was found in the
newly discovered Upsilon meson. This pattern leads par-
ticle physicists to believe they will find a sixth and final
flavor of quark. This predicted last flavor of quark is called
top and would only be detected experimentally in 1995.

1982 The massive gauge bosons that carry the weak nuclear
force, called the W+, W − and Z0, were discovered and
their masses measured, confirming key predictions of the
Glashow-Salam-Weinberg model.

1989 The lifetime of the Z0 weak nuclear gauge boson was mea-
sured, and agrees precisely with the existence of only three
kinds of neutrinos.
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1995 The top quark was finally directly observed and measured,
confirming the predictions of theorists that there are six
flavors of quarks, as described in the current version of the
Standard Model.

Future The search goes on for the Higgs boson (the only particle
predicted by the Standard Model that hasn’t been seen yet),
for supersymmetric particles predicted by some extensions
of the Standard Model, for proton decay and for magnetic
monopoles predicted by Grand Unified Theories, and for
new kinds of exotic particles.
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Timeline History of Quantum Theory

At the start of the twentieth century, scientists believed that they under-
stood the most fundamental principles of nature. Atoms were solid building
blocks of matter; people trusted Newtonian laws of motion; most of the prob-
lems of physics seemed to be solved.

However, starting with Einstein’s theory of relativity which replaced New-
tonian mechanics, scientists gradually realized that their knowledge was far
from complete. Of particular interest was the growing field of quantum me-
chanics, which completely altered the fundamental precepts of physics.

1900 Max Planck suggested that radiation as emitted and ab-
sorbed by atoms is quantized (it comes in discrete amounts
of energy proportional to the frequency of the radiation).

1905 Albert Einstein, one of the few scientists to take Planck’s
ideas seriously, proposed a quantum of light (later named
the photon) which behaves like a particle carrying energy,
momentum and angular momentum. Einstein’s other the-
ories explained the equivalence of mass and energy, the
particle-wave duality of photons, the equivalence principle,
and special relativity.

1909–1911 Johannes Geiger and Ernest Marsden, under the su-
pervision of Ernest Rutherford, scattered alpha particles
off a gold foil and observe large angles of scattering, sug-
gesting that atoms have a small, dense, positively charged
nucleus.

1912 Albert Einstein explained gravitation as the curvature of
space-time.

1913 Niels Bohr succeeded in constructing a provisional theory
of atomic structure based on quantum ideas.

1919 Ernest Rutherford found the first evidence for a proton.

1921 James Chadwick and E.S. Bieler concluded that some
strong forces holds the nucleus together.
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1923 Arthur Compton discovered the quantum (particle) na-
ture of X rays, thus confirming photons as particles.

1924 Louis de Broglie proposed that matter has wave proper-

ties.

1925(Jan) Wolfgang Pauli formulated the exclusion principle for

electrons.

1925(April) Walther Bothe and Johannes Geiger demonstrated

that energy and mass are conserved in atomic processes.

1926 Erwin Schrödinger developed wave mechanics, which de-
scribes the behavior of quantum systems in terms of a

matter-wave equation which reduces to Newtonian dynam-
ics in the short-wavelength limit.

Max Born gave a probability interpretation of quantum
mechanics.

G.N. Lewis proposed the name “photon” for a light quan-

tum.

1927 Certain materials had been observed to emit electrons (nu-
clear beta decay). Since both the atom and the nucleus have

discrete energy levels, the observed continuous spectrum of
emitted electrons implies that another, invisible particle is
emitted as well.

1927 Werner Heisenberg formulated the uncertainty principle,
which may be roughly formulated as follows: the more you

know about a particle’s location, the less you know about
its momentum (and vice versa).

1928 Paul A.M. Dirac combined quantum mechanics and spe-

cial relativity to describe the electron, and his new the-
ory predicts the positively-charged positron, e+ (the anti-
electron).

1930 Quantum mechanics and special relativity are well estab-
lished. There are thought to be just three fundamental

particles: protons, electrons, and photons.

Max Born, after learning of the Dirac equation, said,
“Physics as we know it will be over in six months.”
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1930 Wolfgang Pauli suggested the neutrino to explain the con-
tinuous electron spectrum for beta decay.

Carl D. Anderson discovers the positron (e+) in cosmic-
ray tracks left in a magnetic cloud chamber atop a mountain
(Pike’s Peak, Colorado).

1931 James Chadwick discovered the neutron. The mecha-
nisms of nuclear binding and decay become primary prob-
lems of modern physics.

1933–1934 Enrico Fermi put forth a theory of beta decay that in-
troduces the weak (nuclear) interaction. This is the first
theory to explicitly incorporate neutrinos and what would
later be called flavor-changing charged currents, which play
the role that electric currents do in classical and quantum
electrodynamics.

1933–1934 Hideki Yukawa combined relativity and quantum theory
to describe nuclear interactions by an exchange of new par-
ticles (mesons called “pions”) between protons and neu-
trons. From the size of the nucleus and the uncertainty
principle, Yukawa concluded that the mass of the conjec-
tured particles (mesons) is about 200 electron masses. This
was the beginning of the meson theory of nuclear forces.

1937 A particle with mass about 200 electron masses was duly
discovered in cosmic rays. While at first physicists thought
it was Yukawa’s pion, it was later discovered to be a muon,
the second-generation charged lepton.

1938 E.C.G. Stuckelberg observed that protons and neutrons
do not decay into any combination of electrons, neutrinos,
muons, or their antiparticles. The stability of the proton
cannot be explained in terms of energy or charge conser-
vation; he proposes that heavy particles (what are now
called baryons) are endowed with an independently con-
served quantum number.

1941 C. Moller and Abraham Pais introduced the term “nu-
cleon” as a generic term for protons and neutrons.

1946–1947 Physicists realize that the cosmic ray particle thought to be
Yukawa’s meson is instead a “muon,” the first particle of the
second generation of matter particles to be found. This dis-
covery was completely unexpected – I.I. Rabi comments
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“who ordered that?” The term “lepton” was introduced
to describe objects that do not interact via the strong nu-
clear force but do interact via the weak interactions (elec-
trons and muons are both leptons, as well as their then-
hypothetical associated neutrinos and the antiparticles of
all these. Later (1975) the tau particles (τ ±) and the corre-
sponding neutrino ντ and antineutrino, ν̄τ , would complete
the list of known leptons).

1947 A meson that does interact strongly was found in cosmic
rays, and is determined to be the pion.

1948 Willis Lamb used molecular beam and RF technology to
measure the small split (Lamb Shift) between the 2S1/2

and 2P1/2 energy hydrogen levels (transition frequency:
1058 MHz). This splitting results from QED “radiative
correction” effects involving virtual electrons, positrons
and photons in the atomic vacuum. Lamb’s measurement
spurred physicists to reformulate QED (Quantum Elec-
trodynamics) in order to circumvent its inherent short-
distance divergencies and extract unambiguous predictions
for such radiative corrections. Their final version of QED
not only agreed with Lamb’s measured shift, but also led
to other, extremely high precision predictions (such as for
the electron-positron gyromagnetic ratio) that were found
to be in agreement with increasingly accurate experiments
ever since.

1948 Physicists R. Feynman, Julian Schwinger and S.
Tomonaga developed procedures to calculate electromag-
netic properties of electrons, positrons, and photons. Intro-
duction of Feynman diagrams.

1948 The Berkeley synchro-cyclotron produced the first artificial
pions.

1949 Enrico Fermi and C.N. Yang suggested that a pion is a
composite structure of a nucleon and an anti-nucleon. This
idea of composite “elementary” particles was quite radical.

1949 Discovery of K+ (charged strange meson) via its weak nu-
clear decay.

1950 The neutral pion was discovered.
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1951 Two new types of particles are discovered in cosmic rays.
They were discovered by looking at V-like tracks and re-
constructing the electrically-neutral object that must have
decayed to produce the two charged objects that left the
tracks. The particles were named the Λ (lambda) and the
K0 (neutral K meson).

1951 Erwin Wilhelm Mueller (Germany) developed the field
ion microscope.

1952 Discovery of particle called Δ: there were four similar par-
ticles with different electric charges (Δ++, Δ+, Δ0, and
Δ−.)

1952 Donald Glaser invented the bubble chamber.

The Brookhaven Cosmotron, a 1.3 GeV accelerator, started
operation.

1953 The beginning of a “particle explosion” – a proliferation of
“elementary” particles.

1953–1957 Scattering of electrons off nuclei revealed a charge density
distribution inside protons, and even neutrons. Description
of this electromagnetic structure of protons and neutrons
suggested some kind of internal structure to these objects,
though they were still regarded as fundamental particles.

1954 C.N. Yang and Robert Mills developed a new class of
nonlinear field theories called non-abelian gauge theories
by combining ideas from differential geometry, electrody-
namics and general relativity. Although not realized at the
time, this type of theory now forms the basis of the Stan-
dard Model, underlying both the weak and strong nuclear
forces.

1956 C.N. Yang (USA) and T-D Lee (USA) discovered that
parity is not conserved for week interactions.

1957 C.G. Wu (China and U.S.A.) verified the Yang-Lee the-
ory of parity violation in weak nuclear decay.

She did this by detecting a spatial asymmetry in beta par-
ticle (electron) emission during the radioactive decay of a
Cobalt-60 nucleus, and establishing that this asymmetry
depends upon the nuclear spin in the precise manner pre-
dicted by the theory.
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1957 Julian Schwinger proposed the unification of weak and
electromagnetic interactions.

1957 John Bardeen (USA), L.N. Cooper (USA) and J.R.
Schrieffer (USA) explained the phenomenon of supercon-
ductivity, first observed by Kamerling Onnes (1911), us-
ing a quantum mechanical theory. Accordingly, the super-
conducting current is carried by electron pairs (“Cooper
pairs”) weakly bound together through lattice vibration
quanta (phonons). At low enough temperatures, these
pairs’ kinetic energy cannot be dissipated through scatter-
ing (the usual mechanism for electrical resistance in con-
ductors).

1957–1959 Julian Schwinger, Sidney Bludman, and Sheldon
Glashow, in separate papers, suggested that all weak inter-
actions are mediated by charged heavy bosons (later called
W+ and W −) and augmented by the neutral Z. Actually it
was Hideki Yukawa who first discussed bosons exchange
twenty years earlier, but he proposed the pion as the medi-
ator of the strong nuclear force.

1961 As the number of known particles keep increasing, a mathe-
matical classification scheme to organize the hadrons helps
physicists recognize patterns of particle types and proper-
ties.

1961 Robert Hofstadter (USA) discovered the inner structure
of protons and neutrons.

1967 Steven Weinberg (USA), Abdus Salam (England) and
Sheldon Glashow (USA) developed a theory of unifica-
tion of the weak force and the electromagnetic force.

1975 Gravitational physicist Stephen W. Hawking (Cam-
bridge, England) investigates a quantized field in the back-
ground of a Schwartzschield spacetime metric. His theoret-
ical calculations predict that, due to the uncertainty princi-
ple and quantum causality violations near the event horizon
of a black hole, black holes are in fact not black; they should
be sources of thermal radiation, with effective temperature
proportional to the inverse of the black hole mass. Since
the mass gradually decreases due to this Hawking radia-
tion, the temperature increases as the black hole shrinks
and evaporates (negative specific heat!), finally resulting in
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an explosion when the black hole mass is reduced to order
10 micrograms (the Planck mass). Actual black hole candi-
dates thus far observed by astronomers (at galactic centers
and remnants of heavy-star supernova explosions) glow for
other reasons – infalling matter from companion stars and
ambient dust and gas – and their predicted Hawking ra-
diation is many orders of magnitude weaker than the EM
radiation due to this infall; thus Hawking radiation has not
yet been observed, and is not expected to until we either
find a much smaller primordial black hole, or develop tech-
nology to manufacture one ourselves.

Hawking’s result does not depend upon the details of the
(as yet unknown) theory of Quantum Gravity, and thus is
a very robust prediction which should constrain any such
theory, including string theories.

Hawking’s calculation confirmed the earlier (1973–74) ideas
of J. Bekenstein (Israel), who used a purely classical
argument – the increase of total black hole horizon area
when two black holes merge – to suggest an analogy with
the second law of thermodynamics, with the event-horizon
area playing the role of entropy. Hawking’s field-theoretical
model indeed revealed that the entropy of the thermal radi-
ation is proportional to the event horizon area – suggesting
that bits of information are stored on the horizon at a den-
sity of order one bit per square Planck length (one bit per
about 10−66 cm2!). Black hole entropy remains an active
field of (thus far only theoretical) research in string theories.

1980 Klaus Von Klitzing (Germany) discovered the quantum
Hall effect: A plate kept in a transverse magnetic field near
absolute zero shows changes in transverse (Hall) impedance
in discrete steps instead of continuously. It is one of the few
examples of quantum behavior that is directly observed.

1984 String theory was accepted by the mainstream of the the-
oretical particle physics community as a candidate for a
theory unifying quantum mechanics the Standard Model
and gravity.

1986 A team of physicists from the US National Bureau of Stan-
dards observed individual quantum jumps in individual
atoms.
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1986–1987 Alex K. Müller and George J. Bendorz developed ma-
terials that become superconductive at substantially higher
temperature then liquid Helium. The new materials are
ceramics that display superconductivity between 90 ◦ and
120 ◦ K, above the boiling point of liquid nitrogen.

1995 At the Stanford Linear Accelerator Center (SLAC), a
high power compressed-pulse laser beam (multi-TeraWatt
peak power) is made to collide almost head-on with the
50 GeV (Giga-electron-Volts) electron beam. The peak
transverse electric fields experienced by electrons in their
rest frame are of order the Schwinger critical field (1.3×1018

Volt/meter). Such high fields result in coherent produc-
tion of multiple back-scattered gamma-ray photons and
electron-positron pairs, and probe non-perturbative nonlin-
ear quantum electrodynamics.
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Photo 3

Astronomer by Candlelight (1658 CE)

by

Geritt Dou (1613–1675, Holland)

Working by candlelight an astronomer measures the distance between two
points on a celestial globe.

The preeminent candle and the hourglass are traditional symbols of the
brevity of life, suggesting that the astronomer symbolizes the vanity of human
ambition seeking to comprehend the infinite.

Dou was Rembrandt’s first student. Always admired for his nightscenes
and his depicting of figures in niches, the artist combined the two genres in
this meticulously executed painting.
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Relativistic Astrophysics and Cosmology

History and Structure of the Universe

As far as we can tell, the expansion of the universe started ca 14 billions
of years ago from a very hot and dense state of uniform elementary-particle
plasma, too hot for even nuclei to exist. From that initial state, it mushroomed
and evolved into the universe we know today. Cosmologists call that process
of expansion the Big Bang because in some phases, especially in the beginning,
the process was rather like an explosion.

Much of understanding of the Big Bang is based on extrapolating between
knowledge of particle physics today, and projections from the mathemati-
cal model of an expanding universe in general relativity. The Einstein field
equations give us a mathematical model for calculating how fast the univer-
sal expansion would be accelerating or decelerating at a given age (epoch),
given the energy density and equation of state of matter and radiation at that
time. We base our estimates about the matter and radiation density of the
early universe on ancient light and radio waves reaching us from the past and
collected in telescopes, and what we have learned about elementary particle
physics, through theory and experiment.

The history of the universe divides roughly into three regimes which reflect
the status of our current understanding:

• Standard cosmology

• Particle cosmology

• Quantum cosmology

The standard cosmology is the most reliably elucidated epoch, spanning the
epochs from about 1

100 of a second after the Big Bang through to the present
day. The composition of the universe during this stage evolved from a soup
of neutrons, protons, electrons, positrons, photons and neutrinos, through
nucleosynthesis (formation of light nuclei) and positron annihilation, through
the recombination era (ca 300,000 yr after the Big Bang) when the universe
became transparent and the formation of stars and galaxies. The standard
model for the evolution of the universe during this epoch has successfully faced
many stringent observational tests, including the 2.7◦K blackbody cosmic
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microwave background radiation and the abundances of hydrogen, helium,
deuterium and lithium.

Particle cosmology builds a picture of the universe prior to this, but at
temperature regimes which still lie within known physics. For example, high
energy particle accelerators at CERN and Fermilab allow us to test physi-
cal models for processes which would occur only 10−11 seconds after the Big
Bang. This area of cosmology is more speculative, as it involves at least some
extrapolation from the Standard Model of particle physics, and often faces in-
tractable calculational difficulties. Many cosmologists argue that reasonable
extrapolations can be made to times as early as a grand unification phase
transition (temperatures of order 1027 or 1025 ◦K, a time ca 10−23 sec after
the Big Bang). This stage in the evolution of the universe includes the baryo-
genesis epoch, during which a symmetry developed between the abundances
of matter and antimatter.

Quantum cosmology considers questions about the origin of the universe
itself, including the spacetime manifold in which it is embedded. It endeavors
to describe quantum processes at the earliest times that we can conceive of in
a classical space-time, that is, the Planck epoch at ca 10−43 sec after the Big
Bang. Given that we do not as yet have a theory of quantum gravity, this
area of cosmology is extremely speculative.

The four key observational successes of the standard Hot Big Bang model
are the following:

• Expansion of the universe

• Origin of the cosmic background radiation

• Nucleosynthesis of the light elements

• Formation of galaxies and large-scale structure

The Big Bang model makes accurate and scientifically testable predictions
in each of these areas, and the remarkable agreement with the observational
data gives us considerable confidence in the model.

Expansion of the Universe

The universe began about 14 billion years ago in a violent explosion, at
temperatures in excess of 1030 ◦K and correspondingly high mass-energy den-
sities. The fact that galaxies are receding from us in all directions is a con-
sequence of this initial explosion, and was first discovered observationally by
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Hubble. There is now excellent evidence for Hubble’s law, which states that
the recessional velocity v of a galaxy is proportional to its distance d from us,
that is, v = Hd where H is Hubble’s constant17. Projecting galaxy trajecto-
ries backwards in time means that they converge to a high density state – the
initial fireball.

The cosmological principle states that the universe appears the same in
every direction from every point in space. It amounts to asserting that our
position in the universe – with respect to the largest scales – is in no sense
preferred. There is considerable observational evidence for this assertion, in-
cluding the measured distributions of galaxies and faint radio sources. The
best evidence comes from the near-perfect isotropy of the relic cosmic mi-
crowave background radiation (microwave photons detected by us now, were
redshifted from near-visible photon emitted by hydrogen atoms during the re-
combination era, 3×105 yr after the Big Bang). This means that any observer
anywhere in the universe will enjoy much the same view as we do, including
the observation that galaxies are moving away from them, in accordance with
Hubble’s law.

The fact that the universe is expanding – about every point in space –
can be a difficult concept to grasp. The analogy of an expanding balloon may
be helpful: Imagine residing in a curved flatland on the surface of a balloon.
As the balloon was inflated, the geodesic distance between any two points
grew; the two-dimensional universe grew but there was no preferred center.
For many decades it was unclear whether the universe is topologically closed
(a 3D version of the flatland balloon surface), or open (albeit curved). Data
collected by observatories in the 1990’s, including the Hubble Space Telescope,
indicates that the universe we inhabit is open, i.e. infinite in spatial extent
and in (future) temporal extent, too.

Origin of the cosmic background radiation

About 300,000 years after the Big Bang, the temperature of the Universe
had dropped sufficiently for electrons and protons to combine into hydrogen
atoms (“recombination era”). From this time onwards, the matter in the uni-
verse came to gravitationally dominate over radiation and the hydrogen-filled

17 This simple law requires nonlinear corrections due to gravitational, relativistic

and time-delay effects; these corrections are computable, within a given cosmo-

logical model, from GTR.



1950–2008 CE 5279

universe became largely transparent to electromagnetic radiation (decoupling
of matter and radiation). The last photon emitted in that era have propagated
freely ever since, while constantly losing energy and increasing in wavelength
because its wavetrains are stretched by the expansion of the universe. At the
recombination decoupling, the radiation temperature was about 3000 degrees
Kelvin, whereas today it has fallen to only 2.7 ◦K.

Observers detecting this radiation today are able to see the universe at a
very early stage on what is known as the ‘surface of last scattering’. Photons
in the cosmic microwave background radiation (CMBR) have been traveling
towards us for over 13 billion years.
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Timeline – History

1576 Thomas Digges modified the Copernican system by re-
moving its outer edge and replacing the edge with a star-
filled unbounded space.

1610 Johannes Kepler uses the darkness of the night sky to
argue for a finite universe.

1720 Edmund Halley also formulated an early form of Olbers’
paradox.

1744 Jean Philippe de Cheseaux also formulated an early
form of Olber’s paradox.

1862 Heinrich Olbers enunciated Olbers’ paradox: If stars are
distributed throughout the universe they must have been
shining for a finite time interval, or else our night sky on
earth, here and now, would be uniformly ablaze with the
brightness of the sun’s disc.

By the beginning of the 20th century, it was generally ac-
cepted that our galaxy was disc-shaped and isolated. But
what about spiral nebulae like M31 (Andromeda) – were
they inside or outside the Milky Way? Immanuel Kant
had speculated that they were ‘island’ universes.

1912 Vesto Slipher measured spectra from spiral nebulae,
showing that many were Doppler-shifted. That is to say:
the wavelengths of the observed line spectrum from many of
them stretched (scaled up) relative to laboratory-observed
spectra of the corresponding atoms, or relative to the sun’s
spectrum. And these wavelength stretchings were consis-
tent with Doppler red shifts due to motions of the nebulae
away from the solar system, at various speeds (different
nebulae receding at different speeds). Such electromag-
netic Doppler shifts are well known from Maxwell’s theory,
and are routinely encountered in the laboratory, satellite
telemetry, traffic enforcement, meteorology, etc. The opti-
cal Doppler effect is analogous to the way the pitch of a
train’s whistle or a car’s sound is modulated by its velocity
relative to the listener.
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1915–1917 Albert Einstein created the General Theory of Relativity.
It became the cornerstone of massive stars’ astrophysics
and of all future studies of the large scale structure of the
universe.

1917 Willem de Sitter derived from Einstein’s GTR equations
an isotropic static cosmology with a cosmological constant
as well as an empty expanding cosmology with a cosmolog-
ical constant.

1918 A key advance in cosmology came with the development of
means to measure the distance to these nebulae. Harlow
Shapley used Cepheid variables, bright stars which pul-
sate at regular intervals ranging from a few days to about
a month. The period of their variation is correlated with
their absolute luminosity, which he calibrated in the nearby
Large Magellanic Cloud. Comparison of nebulae’s appar-
ent and absolute luminosities then gave him their distances
from earth.

1922 Vesto Slipher summarized his findings on the spiral neb-
ulae’s systematic redshifts.

1922 Alexander Friedmann found a solution to the Einstein
field equations which suggests the general expansion of
space.

1923–1929 Edwin Hubble was able to resolve Cepheid variable stars
in M31 (The Andromeda nebula or galaxy) with the 100′ ′

telescope at Mt. Wilson. He developed a new distance
calibration method using the brightest stars in more dis-
tant galaxies (as the nebulae now recognized as external to
the Milky Way galaxy were now increasingly referred to).
He correlated these measurements with Slipher’s nebulae to
discover a proportionality between velocity v and distance d,
that is, Hubbles law v = Hd. The constant of proportional-
ity H is called Hubble’s constant (it was significantly over-
estimated by Hubble himself). He than concluded (1929)
that the universe is expanding.

1927 Georges-Henri Lemâıtre discussed the creation event of
an expanding universe governed by the Einstein field equa-
tions.



5282 6. Deep Principles – Complex Structures

1928 Harold Robertson briefly mentioned that Vesto Slipher’s
redshift measurements combined with brightness measure-
ments of the same galaxies indicate a redshift-distance re-
lation.

1933 Edward Milne named and formalized the cosmological
principle.

1934 Georges-Henri Lemâıtre interpreted the cosmological
constant as due to a “vacuum” energy with an unusual,
perfect fluid equation of state.

1938 Paul A.M. Dirac presented a cosmological theory where
the gravitational constant slowly decreases so that the age
of the universe divided by the time light takes to traverse
the atomic nucleus is of order the ratio of the electric and
gravitational forces between a proton and electron.

1948 Ralph Alpher, Hans Bethe, and George Gamow ex-
amined element synthesis (nucleosynthesis) in a rapidly ex-
panding and cooling universe and suggested that the ele-
ments were produced by rapid neutron capture.

1948 Herman Bondi, Thomas Gold, and Fred Hoyle pro-
posed steady state cosmologies based on the perfect cos-
mological principle, i.e. one in which the average isotropy
and uniformity of the universe to observers in any galaxy
is augmented by a time invariance (static universe).

1960 Robert V. Pound (USA) and Glen A. Rebka (USA)
made a laboratory measurement of the change in frequency
of gamma-ray photons as they fall in a gravitation field
[gravitational ‘Red Shift’ of light], reconfirming the first of
Einstein GTR predictions. Thus began the renaissance of
interest in GTR.

1960 Rudolph L.B. Minkowski (USA). Using the 200 inch
Palomar telescope, obtained spectra for a cluster of galax-
ies, receding at nearly half the speed of light. This would
put their distance at some 7 billion light years. At this point
the range to which galaxies could be observed is about, or
somewhat less than, half the estimated “radius” (reckoned
via light time-of-flight distance coordinate) of the observ-
able universe.
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1960 Thomas Mathews (USA) and Allan Sandage (USA),
at Palomar, examined radio source 3C48 and discovered a
‘quasar’. This discovery thrusts GTR to the forefront of
astronomy. This quasar recedes with 1

3 the speed of light
and its brightness is 100 times that of our galaxy.

The source of this power was suggested as gravity, which is
the strongest force on a cosmic scale. The source has to be
very compact; Since the source was varying coherently over
a period of one hour, it could not be much longer then the
distance traveled by light in one hour, in order for one side
of the source to ‘know’ what the other side is doing, and
thus behave in unison.

A strong gravitational field requires a very dense mass con-
fined to a space with a diameter of the orbit of Jupiter.

1961 Reflection (echo) of radar pulses from Venus (at time of
‘inferior conjunction’ (closest to earth)), enabled a precise
determination of the average distance of the sun from earth:
149,500,000 km. This ended a 2250 year pursuit after the
scale of the solar system from Aristarchos and Hippar-
chos through the parallax-seekers Richer-Cassini (1671),
J.F. Encke (1835) and the international team of 1931.

1963–1965 R. Kerr discovered a family of exact solutions to Einstein’s
vacuum field equations; these solutions describe uncharged,
rotating black holes, and reduce to the Schwartzschield so-
lution as a special case.

The charged generalization was found as a solution of the
Einstein-Maxwell field equations by E.T. Newman et al.
(1965). Only later was the connection of theses mathemat-
ical solutions to black holes recognized.

The Kerr-Newman geometry described by these solutions
provides a unique and complete description of the external
gravitational and EM fields of a stationary, rotating black
hole.

1963 Maarten Schmidt (USA) discovered that absorption lines
in the spectra of object 3C273 were ‘red shifted’ by an ex-
traordinary amount. This ‘red shift’ corresponds to a re-
cession velocity of 47400 km/sec and constitutes the first
recognition of quasars. It opened a new field of relativistic
astrophysics.
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1965 Arno Penzias (USA) and Robert Wilson discovered the
cosmic microwave background radiation (CMBR), a radio-
wave remnant of the ‘Big-Bang’ previously suggested by
George Gamow.

1965 Martin Rees and Dennis Sciama analyzed quasar source
count data and discover that the quasar density increases
with redshift.

1965 Edward Harrison resolved Olber’s paradox by noting the
finite lifetime of stars.

1966 Stephen W. Hawking and George Ellis showed that
any plausible general relativistic cosmology is singular.

1966 Jim Peebles showed that the Hot Big Bang predicts the
correct helium abundance in the universe.

1967 Andrei Sakharov derived, from first principles, the
requirements for cosmological generation of a baryon-
antibarion asymmetry in the universe. Such an symmetry,
is necessary to explain the universe in the present epoch, in
which antimatter is very rare.

1967 John Bahcall, Wal Sargent, and Maarten Schmidt
measured the fine-structure splitting of spectral lines in ob-
ject 3C191 and thereby showed that the fine-structure con-
stant does not vary significantly with time.

1967 Jocelyn Bell (England) and Anthony Hewish (Eng-
land) discovered the first pulsar (CP1919) in the middle
of the Crab Nebula. It is recognized as a neutron star ro-
tating with period t = 1.3373011 sec and emitting beams of
synchrotron radiation (coherent regular pulses, in this case
in the radio wavelength region of the EM spectrum). Co-
herence and pulse-rate indicate a source small compared to
normal stars. The theorized emission mechanism involves a
scenario of synchrotron radiation emitted by charged par-
ticles near the star’s magnetic poles: neutrons near the
star’s surface decay into protons and electrons and these
are driven by powerful radial electric fields on the star’s
surface, along the curved intense magnetic field lines, with
relativistic velocities.

Thus strong directional beams in the direction tangential
to the charged particles’ motion are radiated. As the star
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rotates, the narrow beams sweeps around the galaxy like a
searchlight. If the earth happens to lie in the path of the
beams, the pulsar can be detected every time it passes the
earth. The star loses angular momentum during radiation.
Hence its rotation and pulsation rates slow down [CP1919
increases its period by 42 × 10−9 sec/year]. Thus, pulsars
are cosmic lighthouses with rotating beacons of radio waves
(and in some cases of visible light, X-rays and gamma rays).

The Crab Nebula pulsar has a period of 0.033 sec. It was
formed in the 1054 CE supernova explosion.

1968 Brandon Carter speculated that perhaps the fundamen-
tal constants of nature must lie within a restricted range to
allow the emergence of life – first use of the weak anthropic
principle.

1968 Joseph Weber (USA) made pioneering efforts to detect
gravitational waves in the laboratory by means of a bar an-
tenna. These experiments stimulated a worldwide search
for this weak and elusive radiation. Improvement in sensi-
tivity of detectors by several orders of magnitude will likely
be needed before this goal is achieved.

1970 Stephen W. Hawking (England) and Roger Penrose
(England) showed that the equations of GTR in their clas-
sical form (without allowing for quantum effects) absolutely
require that there was a singularity at the birth of the uni-
verse. Hence, there is no way around the singularity prob-
lems within the framework of GTR. If singularities are to be
avoid in the real universe, the only hope is to improve Gen-
eral Relativity theory by including the effects of quantum
theory and developing a quantum theory of gravity.

The singularity theorem assumes, in addition to the validity
of GTR, that the following 4 conditions are met:

(1) The mass density and pressure of early cosmological
matter never became negative.

(2) There are no closed time-like or light-like curves in
the universe (i.e. it is impossible to visit one’s own past,
such as in Gödel’s universe solution of GTR).

(3) The universe is either closed or there is enough matter
in the universe to refocus light via ‘light bending’.

(4) A reasonable mathematical condition is satisfied.
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1972–1979 Radio-wave deflection experiments (1972), lunar laser-
ranging results (1976), radio wave time-delay results that
came in through the missions of Mariner 6, 7, 9 (1975–1978)
and finally the Viking mission (1975) – all sided decisively
with Einstein’s GTR and against the rival Brans-Dicke the-
ory.

1973–1974 USA astronauts made observations with a large telescope
mounted on the Skylab space station.

1973 Edward P. Tyron (USA) suggested that the entire uni-
verse may have been created from absolutely NOTHING as
a result of the probabilistic laws of quantum mechanics: an
allowable fluctuation in a quantum vacuum could result in
the creation of energy.

The great medieval Hebrew philosopher-poet Shlomo Ibn-
Gabirol (Avicebron) (1021–1058, Spain) expounded the
vision of the creation of the universe ex-nihilo in his meta-
physics poem The Royal Crown, in the following words
(1050 CE):

“Calling unto the void and it was cleft,

And unto existence and it was urged,

And to the universe and it was spread out.”

1974–1978 Russell A. Hulse (USA) and Joseph A. Taylor discov-
ered the first binary pulsar PSR 1913+16 at the Arecibo
Radio Telescope, Puerto Rico. The system consists of a
neutron star pulsar, in orbit about a companion dark star,
of nearly equal mass and probably also a neutron star. Its
discovery opened up a new area for experimental relativity.

After four years of observation it was concluded that the
source consisted of two neutron stars, each of mass near
the Chandrasekhar limit (1.42 solar masses). They move in
elliptical orbits about their common center of mass. Only
one of them beams its pulses toward earth, while the other’s
radiation is beamed elsewhere, if at all. The intrinsic pulse
period is 0.05902 99952 71 sec, increasing at the rate of
0.273 × 10−9 sec/year. The orbital period was 27906.98163
sec (sept 01, 1974) and the estimated distance of the sys-
tem from earth is 16,000 LY. The radio frequency of the
observations was 430 megahertz.
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Since the individual masses of the pulsars can not be mea-
sured independently , observations could not be used as a
direct test of GTR. However, assuming the validity of GTR,
all observed quantities could be explained and reconciled
with known results.

On account of the precision of the pulsar’s period, rela-
tivistic effects can be measured with great accuracy. Thus,
the periastron advance of the orbit, 4.2263 ◦/year, is some
36,000 times larger than the perihelion advance of Mercury!
Other effects are:

(1) Ordinary Doppler-shift of pulsar’s period (affects 5th

decimal place).

(2) Special-relativistic time dilation: pulsar’s clock run slow
(as seen by us) on account of its velocity. Because the or-
bital speed varies during the motion (being maximal at pe-
riastron and minimal at apoastron), the amount of slowing
down will be variable but repeat itself each new orbital pas-
sage. (affects 8th decimal).

(3) Gravitational red shift (equivalence principle). The pul-
sar moves in the gravitational field of its companion, while
we observe it at great distance. Consequently the pulsars
period is red-shifted (lengthened). However, this length-
ening varies with the distance between the pulsar and its
companion as the system changes from periastron to apoas-
tron, and also repeats itself each orbital passage. The com-
bined effect of (2) and (3) results in a periodic up and down
variation of the pulsars period, by at most 58 × 10−9 sec.

(4) GTR predicts a decrease of the orbital period at a rate
of 75 × 10−6 sec/year. Using data through Aug 1983, Tay-
lor and Colleagues reported in 1984 an observed value of
(76 ± 2) × 10−6 sec /year.

The predicted decrease could be a result of continual en-
ergy loss due to gravitational wave emission, which in turn
results from the orbital acceleration. This loss would mani-
fest itself in the speed-up of the two bodies and decrease in
their orbital separation. The combined effect of these two
changes will cause the time required for a complete orbital
period to decrease.

In 1978, Taylor announced what he claims to be the discov-
ery of gravitational radiation, on the strength of the fit of
the observed orbital decay compared with the theoretical
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prediction of GTR. Although the agreement seemed im-

pressive, alternative mechanisms have not been ruled out,

candidates including tidal friction, presence of other stars,

or the possible invalidity of the linear approximation in the

process of emission of gravitational waves. Thus, one could

envisage the possibility that the agreement is purely co-

incidental, resulting from a conjunction of nonlinear grav-

itational wave ‘back reaction’ combined with tidal effects

involving the observed pulsar and its companion.

1974 Robert Wagoner, William Fowler, and Fred Hoyle
showed that the Hot Bing Bang predicts the correct deu-

terium and lithium abundances.

1975–1977 Vera Rubin (USA) and Kent Ford (USA) established the

anisotropy of the universe over a scale of 400 million LY. It

is detected by measurements of different recession velocities

for distant galaxies in different directions. The amplitude

of this deviation from large scale uniformity amount to at

most 10 percent of the Hubble recession velocity. Over

larger scales, the astronomical evidence suggests isotropy.

Rubin and Ford discovered that the net velocity of the

Milky Way galaxy relative to the cosmological reference

frame (as determined by the cosmic microwave background

radiation) is about 600 km/sec [the velocity of the earth rel-

ative to the background radiation is 39 km/sec; the earth’s

motion around the sun is at 30 km/sec; the solar motion

around the galactic center is 250 km/sec, and the motion

of the Milky was galaxy toward the Andromeda Galaxy is

100 km/sec. A vector addition of these velocities will yield

the above-quoted velocity of the Milky Way relative to the

local CMBR frame].

1976 A.I. Shlyakhter used samarium ratios from the primor-

dial natural fission reactor in Gabon to show that some

laws of physics have remained unchanged for over two mil-

lion years.

1977 Gary Steigman, David Shramm, and James B. Gunn

examined the relation between the primordial helium abun-

dance and number of neutrino types, and deduced that at

most five lepton families can exist.
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1980 Alan H. Guth (USA) proposed a new cosmological model
of the birth of the universe, called inflationary universe.
Accordingly, the universe expanded exponentially rapidly
for a very short epoch during the early part of the “particle
cosmology” stage of expansion following the Bing Bang.18

1985 Mark Morris (USA) discovered at the center the Milky-
Way galaxy a number of strong string-shaped radio sources,
candidates for low-energy ‘cosmic strings’ . These are long
thin remnants of the original energy of the Bing-Bang.
These ‘cosmic strings’ could supply part of the ‘missing
mass’ needed to form the observed nearly-flat universe.

1986 A team of Astronomers discovered that our galaxy cluster
(the local group), and other components of the local super-
cluster of galaxies, move toward the ‘Great Attractor’ - a
point in the direction of the Southern Cross.

1986 Deep redshift galaxy surveys demonstrated the existence of
huge bodies, filaments and sheets on scales from 25 Mpc
to over 100 Mpc. Subsequent galaxy surveys are providing
detailed information about the distribution of large-scale
structures. Radio galaxy and quasar surveys indicate that
homogeneity (or uniformity) is approached only on scales of
several hundred Mpc (that is, nearly a billion light years).

18 Inflationary cosmology was motivated by several previously unexplained obser-

vations:
• The high degree of isotropy of the CMBR, in apparent

violation of causality (“horizon problem”).

• Why has the universe’s spatial curvature, ever since the

late “particle cosmology” era, been so small? (“flatness

problem”).

• How can the observed upper bound on the abundance of

magnetic monopoles, predicted by many Grand Unification
extensions of the Standard Model of Particle Physics, be

so low? (“monopole problem”).

The exponentially rapid expansion predicted by inflationary models – perhaps

by a factor of ca. 1050 – explains all three puzzles. GTR predicts that inflation

would occur if the expanding vacuum is initially trapped in a metastable “false

vacuum” quantum state; the subsequent release of vacuum energy when the

vacuum “rolls” to its lowest-energy state created a temporarily large cosmological

constant, which caused the inflationary expansion. The “standard cosmology”

stages of Big Bang cosmology are largely unaffected by inflation.
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1987 Francisco Paresce and Christopher Burrows discov-
ered a disc of protoplanets (gas, dust and debris around the
star Beta Pictoris, 53 light years away) that will eventually
crash into each other and coalesce to form planets.

1987 Roger C. Lynds and Vahe Petrosian discovered in Abell
370 an image of a far-distant unseen galaxy; the image is
believed to have been formed by gravitational lensing, an
effect predicted by GTR.

1987 Neutrinos from a supernova explosion 1987A in the Large
Magelanic Cloud reached earth (150,000 LY away).

1992 In April 1992, the COBE satellite team announced the dis-
covery of anisotropies in the cosmic microwave background
radiation at the level of one part in 100,000. These are
thought to be a snapshot, at t = 300, 000 years after the
Big Bang, of the primordial fluctuations that led to galaxy
formation. This map of the sky is also the best evidence
for the high degree of isotropy (or spherical symmetry) of
the universe.

1992, Feb The Hubble Space Telescope (HST) revealed a black hole in
Galaxy M-87, in Virgo, at distance R = 52 million light
years away.

1995–1996 The Hubble Space Telescope (HST) was able to resolve
Cepheid variable stars in the Virgo cluster, ensuring a much
better calibration of cosmological distance measures. This
has allowed more accurate estimates to be made of Hubble’s
constant H, and thus, of the age of the universe. Early
galaxies and quasars have also been observed by the HST,
raising serious doubts about current structure formation
models.
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Modern Microscopy

A microscope (Greek: micron = small, scopos = aim) is an instrument for
viewing and magnifying very small, close objects, too small to be seen by the
unaided eye. The first to be invented was the optical microscope, containing
one or more lenses that produce an enlarged image of an object placed in the
focal plane of the lens(es).

The principle of the simple microscope (uses only one lens for magnifica-
tion) was known already to the Romans in the form of water–filled glass bowls
(1st century CE).

Microscopy is the technical field of using microscopes to view samples or
objects. There are three well-known branches of microscopy: optical, electron
and scanning probe microscopy.

Optical and electron microscopy involve the diffraction, reflection, or re-
fraction of electromagnetic radiation incident upon the subject of study, and
the subsequent collection of this scattered radiation in order to build up
an image. This process may be carried out by wide field irradiation of the
sample (for example standard light microscopy and transmission electron mi-
croscopy) or by scanning of a fine beam over the sample (for example confocal
microscopy and scanning electron microscopy). Scanning probe microscopy
involves the interaction of a scanning probe with the surface or object of in-
terest. The development of microscopy revolutionized biology and remains an
essential tool in that science, along with many others.

Optical microscopy techniques include:

• Bright field optical microscopy

• Dark field optical microscopy

• Phase–contrast optical microscopy

• Differential interference contrast microscopy

• Fluorescence microscopy
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• Confocal laser scanning microscopy

• Bright field optical microscopy

• Deconvolution microscopy

• X–ray microscopy

For light microscopy, the wavelength of light limits the resolution to around
0.2 micrometers (2000 Å). In order to gain higher resolution, the use of an
electron beam width for smaller wavelength is used in electron microscopes.

• Transmission electron microscopy (TEM) is principally quite similar to
the compound light microscope, by sending an electron beam through
a very thin slice of the specimen. The resolution (2005) is around 0.05
nanometer (0.5 Å).

• Scanning electron microscopy (SEM) visualizes details on surfaces of
cells and particles and gives a 3D view.

• The atomic de Broglie microscope uses neutral Helium atoms as probe
particles, could provide a resolution at nanometer scale and be ab-
solutely non-destructive.

Scanning probe microscopy is a sub-diffraction technique. It includes:

• The atomic force microscope (AFM)

• The scanning tunneling microscope (STM)

• The photonic force microscope (PFM)

All such methods imply a solid probe tip in the vicinity (near field) of an
object, which is supposed to be almost flat.
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Modern Telescopy

By 2004, old mothballed Mount Wilson Observatory – which was used
to revolutionize our understanding of the cosmos in the first half of the 20th

century – was refurbished with some 21st century technology. On that year,
the Georgia State University (USA) began to operate CHARA (Center for
High Angular Resolution Astronomy) array. It uses optical interferometry to
combine signals from six one-meter telescopes for a combined angular reso-
lution (in IR) of 5 × 10−4 arc-sec. The largest single terrestrial optical tele-
scopes are presently the twin Keck telescopes (Mauna Kea, HI; ten meters
diameter each; 1993, 1996). Each of their mirrors comprises 36 hexagonal
segments, constantly realigned – via computerized control – to an accuracy of
four nanometers. Both Keck telescopes are equipped with adaptive optics to
cancel atmospheric turbulence-caused blurring. When operating together as
the Keck-Interferometer, the twin telescopes can achieve an angular resolution
of 5 × 10−3 arc-sec at a wavelength of 2.2 micron.
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Timeline – History

1267 Roger Bacon described experiments with hand-held mag-
nifying glasses.

1608–1609 Hans Janssen and his son Zacharias Janssen (1588–
1630), Dutch lens grinders and spectacle makers, invented
the first compound microscope. In its simplest form (as
used by Robert Hooke) it would have a single glass lens
of short focal length for the objective, and another single
glass lens for the eyepiece or ocular. Galileo Galilei de-
veloped (1609) a compound microscope with a convex and
a concave lens. Christiaan Huygens developed a simple
2-lens ocular system (late 1600’s) that was achromatically
corrected.

1610 Johannes Kepler invented the modern compound micro-
scope.

1674 Anton von Leeuwenhoek was first to bring the simple
microscope to the attention of biologists. His microscopes
consisted of a single, small, convex lens mounted on a plate
with a mechanism to hold the biological specimen. With
a magnification of about 270, he was able to see highly
detailed images. Thus, he was first to describe cells and
bacteria.

18th century – Several technical innovations make microscopes better
and easier to handle, which leads to microscopy becoming
more and more popular among scientists. An important
discovery is that lenses combining two types of glass could
reduce the chromatic effect, with its disturbing halos re-
sulting from differences in refraction of light.

1826 Dames Smith (ca 1800–1870, England) constructed a mi-
croscope with much reduced chromatic and spherical aber-
rations.

1830 Joseph Jackson Lister reduced the problem with spher-
ical aberration by showing that several weak lenses used
together at certain distances gave good magnification with-
out blurring the image.



1950–2008 CE 5295

1878 Ernst Abbe formulates a mathematical theory correlat-
ing resolution to the wavelength of light. Abbes formula
(sine condition) make calculations of maximum resolution
in microscopes possible. The company of Carl Zeiss ex-
ploited this discovery and became the dominant compound
microscope manufacturer of its era.

Modern microscopes of this kind are usually more com-
plex, with multiple lens components in both objective and
eyepiece assemblies. These multi-component lenses are de-
signed to reduce aberrations, particularly chromatic aber-
ration and spherical aberration. In modern microscopes the
mirror is replaced by a lamp unit providing stable, control-
lable illumination.

1903 Richard Adolf Zsigmondi (1865–1929, Austria) invented
the ultramicroscope, for seeing small particles in a colloidal
solution. Improved by Joseph Barnard (1870–1949, Eng-
land) in 1912.

1932 Frits Zernike (1888–1966, Holland) invented the phase–
contrast microscope that allows the study of colorless and
transparent biological materials.

1933 Ernst A.F. Ruska (1906–1988, Germany) built the first
electron–microscope, using de Broglie (1924) electron
waves: electrons are emitted from heated metal and ac-
celerated through a vacuum. They are then focused by
powerful magnets onto the specimen. The magnified im-
age appears on a screen. Ruska obtained a magnification
of 12,500. Modern electron microscopes can reach a mag-
nification of 1 million.

1936 Erwin Wilhelm Mueller (1911–1977, Germany and
USA). Invented the field–emission19 microscope (FEM). It
is a type of electron microscope in which a high negative
voltage is applied to a metal tip emitter, placed in an evac-
uated vessel some distance from a detector: a glass screen

19 The emission of electrons from cold metals by electric fields. In order to build

up sufficiently large electric fields, the metal is usually shaped to a sharp needle

point. Field emission is an example of the “tunnel effect” in quantum mechanics,

with an electron in the metal being in a potential barrier. In field emission

the probability of tunneling, which can be calculated using the “semiclassical

approximation” is related to the “work function” of the metal.
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with a fluorescent coating. The tip produces electrons by

“field emission”. The emitted electrons form an enlarged

pattern on the fluorescent screen, related to the individual

exposed planes of atoms. Since the resolution of the instru-

ment is limited by the vibrations of the metal atoms, it is

helpful to cool the tip in liquid helium.

Although the individual atoms forming the point are not

displayed, individual absorbed atoms of other substances

can be, and their activity is observable.

1948 Paul Kirkpatrick (1894–1992, USA) and Albert Baez

developed X-ray reflection microscope.

1955 Erwin Wilhelm Mueller developed the field–ion micro-
scope (FIM). The first instrument that can picture individ-

ual atoms. It is, again, a type of electron microscope that is

similar in principle to the “field–emission microscope”, ex-

cept that a high positive voltage is applied to the metal tip,

which is surrounded by a low pressure gas (usually helium)

rather than a vacuum.

The image is formed in this case by field ionization: ion-

ization at the surface of an unheated solid as a result of a

strong electric field creating positive ions by electron trans-

fer from surrounding atoms or molecules. The image is

formed by ions striking the fluorescent screen. Individual

atoms on the surface of the tip can be resolved and, in

certain cases, absorbed atoms may be detected.

1955 George Nomarski published the theoretical basis of Dif-
ferential interference contrast microscopy.

1969 Manfred von Ardenne (1907–1997, Germany) built the

first Scanning electron microscope (SEM).

In contradistinction to the transmission electron microscope
(Ruska) the beam of primary electrons scans the specimen,

and those electrons that are reflected, together with any

secondary electrons emitted, are collected. This current is

used to modulate a separate electron beam in a TV monitor,

which scans the screen at the same frequency, consequently

building up a picture of the specimen.



1950–2008 CE 5297

1981 Gerd Binnig and Heinrich Rohrer invented the scan-
ning tunneling microscope that gives 3-dimensional images
of objects down to the atomic level. The surface of the
specimen is scanned by measuring a current between a very
small tip and the specimen. Individual atoms can thus be
detected.

1986 Gerd Binnig and colleagues invented the atomic force mi-
croscope: a small probe, consisting of a tiny chip of dia-
mond, is held on a spring–cantilever in contact with the
surface of the sample. The probe is moved slowly across
the surface and the tracking force between the tip and the
surface is monitored. The probe is raised and lowered so
as to keep this force constant, and a profile of the surface
is produced. Scanning the probe over the sample gives a
computer generated contour map of the surface. The in-
strument is similar to the “scanning tunneling microscope”,
but uses mechanical forces rather than electrical signals. It
can resolve individual molecules and, unlike the scanning
tunneling microscope can be used with nonconducting sam-
ples, such as biological specimens.

1987 Arthur Rich and James van Hoch develop the positron
microscope, using positrons emitted from a radioactive
source.
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“Many worlds might have been botched and bungled, throughout an eternity,
ere this system was struck out; much labor lost: Many fruitless trials made:
And a slow, but continued improvement carried on during infinite ages in the
art of world-making.”

David Hume, 1779
∗ ∗

∗

“If it could be demonstrated that any complex organ existed which could not
possibly have been formed by numerous, successive, slight modifications – my
theory would absolutely break down.”

Charles Robert Darwin
∗ ∗

∗

“No theory of evolution can be formed to account for the similarity of mole-
cules, for evolution necessarily implies continuous change, and the molecule
is incapable of growth or decay, of generation or destruction.
None of processes of Nature, since the time when Nature began, have produced
the slightest difference in the properties of any molecule.
. . . They continue this day as they were created – perfect in number and
measure and weight; and from the ineffaceable character impressed on them we
may learn that those aspirations after accuracy in measurement, and justice in
action, which we reckon among our noblest attributes as men, are ours because
they are essential constituents of the image of Him who in the beginning
created, not only the heaven and the earth, but the materials of which heaven
and earth consist.”

James Clerk Maxwell, 1873
∗ ∗

∗

“The eternal mystery of the world is its comprehensibility.”

Albert Einstein, 1915
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∗ ∗
∗

“As a result of a thousand million years of evolution, the Universe is becom-
ing conscious of itself, able to understand something of its past history and
its possible future. This cosmic self-awareness is being realized in one tiny
fragment of the universe – in a few of us human beings... ”

Julian Huxley
∗ ∗

∗

“The probability of life originating at random is so utterly miniscule as to
make it absurd.”

Francis Crick
∗ ∗

∗

The match between our intelligence and the intelligibility of the world is no
accident. Nor can it properly be attributed to natural selection, which places
a premium on survival and reproduction and has no stake in truth or con-
scious thought. Indeed, meat-puppet robots are just fine as the output of a
Darwinian evolutionary process.

William A. Dembski



Contents

• Preface

• Introduction

• Life at the Molecular Level (Molecular Biology)

I
(∗)

Biophysics and Biochemistry

II Molecular Genetics — from Gene to Genome

III
(∗)

Structural Biology — the Architecture of Life

IV Biotechnology and Bioinformatics

• Life at the Cellular Level (Cell Biology)

I Circulatory Fluid Systems — Body’s Internal Trans-

port System

II The Immune System — Body’s Internal Defense

III The Nervous System — Body’s Communication Network

IV The Endocrinal System — Body’s Messengers and Reg-

ulators

• Life at the Organism Level (Developmental and Evolutionary

Biology)

I Botany and Zoology

II Dietetics, Hygiene, Metabolism, and Nutrition

III Evolutionary Biology

IV Ecology — Living Organisms and their Environments

• Timeline Histories

• Life Prospects on a Hazardous Planet

(∗) These two rubrics are relevant at both cellular and organism levels



5304 6. Deep Principles – Complex Structures

Preface

The following monograph is a bold attempt to present a compact and lucid
outline of the vast field of biology and biological history in just 160 pages.

This is, no doubt, a pretentious and somewhat perilous undertaking
through which important details are sometimes sacrificed for the sake of over-
simplified generalizations.

Yet, this unavoidable pitfall, notwithstanding such an effort carries its own
hidden benefits:

First, the attentive reader never looses temporal and spatial perspective of
his field of view, and is seldom consumed with overwhelming details. He may
always complete the missing information regarding a specific mechanism or
particular substance (molecule, protein etc.), using a proper textbook, article
or a computer database.

Second, I explicitly narrate the accomplishments of some 300 scientists,
who during the past 2300 years since Aristo, have created and developed the
medical and biological sciences to its present state.

It is hoped that with a constructive feedback flowing from our readers and
reviewers, we would be able to improve this outline in the future.
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Introduction

Biology is the branch of science dealing with the study of life. It encom-
passes a broad spectrum of fields that together address phenomena related
to living organisms over wide range of scales. It is thus concerned with the
characteristics, classification, and function of organisms, how species come
into existence, and the interactions they have with each other and with the
environment.

At the molecular scale, life is studied in the disciplines of molecular

biology, biochemistry and molecular genetics.

At the next level, that of the cell, it is studied in cell biology. At the mul-
ticellular scale, it is examined in physiology, anatomy, and histology.

Developmental biology studies life at the level of individual organ-
ism’s development (ontogeny).

Moving up the scale towards more then one organism, ethology con-
siders the behavior of groups of organisms. Population genetics operates
at the level of an entire population, and systematics considers multi-species
scale of lineages. Independent populations and their habitats are examined
in ecology and evolutionary biology. This last discipline is concerned with
the origin and descent of species, as well as their change over time.

Evolutionary biology is mainly based on paleontology, which searches
for evidence in the fossil record.

The two major traditional taxonomically-oriented disciplines are botany

and zoology. Botany is the scientific study of plants. Botany encompasses
a wide range of scientific disciplines that study the growth, reproduction,
metabolism, development, diseases, and evolution of plant life. Zoology in-
volves the study of animals, including the study of their physiology within the
fields of anatomy and embryology.

Biology is subjected to the same physical laws operating in branches of
science (such as the laws of chemical thermodynamics and conservation of
mass). Yet, because of the inherent complexity of most biological systems
a straightforward application of the physics and mathematical physics is not
always feasible. Nevertheless, the biological sciences are characterized and
unified by several major underlying principles and concepts: universality,

evolution, diversity, continuity, genetics, homeostasis, and inter-

actions.
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Some striking examples of biological universality include life’s carbon-
based biochemistry and its ability to pass on characteristics via genetic ma-
terial, using a DNA and RNA based genetic code with only minor variations
across the range of living things.

Another universal principle is that all organisms (that is, all forms of life
on Earth except for viruses) are made of cells. Similarly, all organisms share
common developmental processes. For example, in most animals, the basic
stages of early embryonic development share similar morphological character-
istics and include similar genes.

The central organizing concept in biology is that all life has a common ori-
gin ancestor and has changed and developed through the process of evolution.
This is thought to have led to the observed similarity of processes.

Charles Darwin established evolution as a viable scenario by articulat-
ing its driving force, natural selection. Genetic drift was embraced as an
additional mechanism of evolutionary development in the modern synthesis
of the theory.

The evolutionary history of a species — which describes the characteristics
of the various species from which it descended — together with its genealogical
relationship to every other species is called its phylogeny. Widely varied
approaches to biology generate information about phylogeny. These include
the comparisons of DNA sequences conducted within molecular biology or
genomics, and comparisons of fossils or other records of ancient organisms in
paleontology.

Despite its underlying unity, life exhibits an astonishingly wide diversity
in morphology, behavior, and life histories. In order to grapple with this di-
versity, biologists attempt to classify all living things. Scientific classification
seeks to reflect the evolutionary trees (phylogenetic trees) of the organism
being classified. Classification is the province of the disciplines of systematics
and taxonomy. Taxonomy places organisms in groups called taxa, while sys-
tematics seeks to define their relationships with each other. This classification
technique has evolved to reflect advances in cladistics and genetics, shifting
the focus from physical similarities and shared characteristics to phylogenet-
ics.

Classification systems generally begin with the three-domain system: Ar-
chaea, Bacteria, Eukaryote. These domains reflect whether the cells have
nuclei or not, as well as differences in the cell exteriors. Further, each king-
dom is broken down continuously until each species is separately classified.

The hierarchy is: 1) Kingdom, 2) Phylum, 3) Class, 4) Order, 5) Fam-

ily, 6) Genus, 7) Species. The scientific name of an organism is obtained
from its Genus and Species. For example, humans would be listed as Homo
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sapiens. Homo would be the Genus and Sapiens is the species. Whenever
writing the scientific name of an organism it is proper to capitalize the first
letter in the genus and put all of the species in lowercase; in addition the
entire term would be put in italics. The term used for classification is called
Taxonomy.

There is also a series of intracellular parasites that are progressively “less
alive” in terms of metabolic activity: Virus, Viroid, Prions.

Up into the 19th century, it was commonly believed that life forms could
appear spontaneously under certain conditions. This misconception was chal-
lenged by William Harvey’s dictum that “all life [is] from [an] egg” (from
the Latin “Omne vivum ex ovo”), a foundational concept of modern biology.
It simply means that there is an unbroken continuity of life from its initial
origin to the present time.

A group of organisms is said to share a common descent if they share a
common ancestor. All organisms on earth are thought to have descended from
a common ancestor or an ancestral gene pool. This last universal common
ancestor of all of today’s organisms is believed to have appeared about 3.5
billion years ago. Biologists generally regard the universality of the genetic
code as definitive evidence in favor of the theory of universal common descent
(UCD) for all bacteria, archaea, and eukaryotes.

Homeostasis is the ability of an open thermodynamical system to regulate
its internal environment to maintain a stable condition by means of multiple
dynamic equilibrium adjustments controlled by interrelated regulation mech-
anisms. All living organisms, whether unicellular or multicellular, exhibit
homeostasis. Homeostasis manifests itself at the cellular level through the
maintenance of a stable internal acidity (pH); at the organismic level, warm-
blooded animals maintain a constant internal body temperature; and at the
level of the ecosystem, as when atmospheric carbon dioxide levels rise and
plants are theoretically able to compensate by removing more of the gas from
the atmosphere. Tissues and organs can also maintain homeostasis.

Every living thing interacts with other organisms and its environment.
One reason that biological systems can be difficult to study is that so many
different interactions with other organisms and the environment are possible,
even on the smallest of scales. A microscopic bacterium responding to a local
sugar gradient is responding to its environment as much as a lion is responding
to its environment when it searches for food in the African savanna. For any
given species, behaviors can be co-operative, aggressive, parasitic or symbiotic.
Matters become more complex when two or more different species interact in
an ecosystem. Studies of this type are the province of ecology.

Whether we study a single one-celled organism or the world of life as a
whole, we can identify a hierarchy of biological organization:
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• Atoms join to form molecules of varying size, including very large macro-
molecules such as proteins and DNA.

• Atoms and molecules form organelles, such as cell nuclei and mitochon-
dria (the site of energy transformations).

• Many organelles work together to perform the various functions of the
cell.

• Cells associate to form tissues, such as bone marrow, skin, etc.

• Tissues form organs, such as bones, heart, liver, etc, that in turn com-
prise organ systems.

• The skeletal system and other structural systems work together to make
up the functioning organism.

• A population of different species that inhabit a particular area make up
a community, which together with the nonliving environment form an
ecosystem.

• Those parts of earth’s atmosphere, bodies of water and crust that sup-
port life, together with all its ecosystems, constitutes the biosphere.

That aspects of the natural sciences whose methodologies aim at structures
by studying their parts is known as reductionism. However, the whole is more
then the sum of its parts. Each level of structural scale & description reveals
emergent properties — characteristics not found at lower levels.

Table 6.8 correlates the characteristic spatial size of each organizational
level with the corresponding subfield of Biology which aims to study phenom-
ena at this level. It spans 15 orders of magnitude (10−9m – 106m).
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Table 6.8: Life’s Hierarchy

Level of

Organiza-

tion (entities
or system)

Typical

linear size

Subfield

Molecular
Biology

Molecule
(protein,
enzyme, sugar,
fatty acid,
nucleic acid,
solutes, etc.)

2–10nm Biochemistry,
Biophysics,
Molecular genetics,
Molecular evolution

Virus 20–400nm Virology

Chromosome 300–700nm
(unfolded)

Bacterium 200–8000nm Bacteriology,
Microbiology

Living cell 1–50μm Origins of Life,
cell-Biology
(cytology), Mycology,
Immunology

Organizational
Biology

Multicellular
systems

Histology, Physiology,
Anatomy, Nuclear
Medicine

Individual
organism or
organ

1mm–30m Botany, Zoology,
Paleontology,
Anatomy,
Medicine, Systematics

Ecosystems
and
Populations

1m–1000kn Ecology and animal
behavior (Ethology),
Biogeography,
Population genetics,
Evolutionary Biology,
Developmental
Biology
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Life at the Molecular Level (Molecular Biology
20
)

Molecular biology is the study of biology at the molecular level. The
field overlaps with other areas of biology and chemistry, particularly genetics
and biochemistry. Molecular biology chiefly concerns itself with understand-
ing the interactions between the various systems of a cell, including the in-
terrelationship of DNA, RNA and protein synthesis and, learning how these
interactions are regulated.

Biochemistry is the study of the chemical substances and thermody-
namic processes occurring in living organisms.

Genetics is the study of the physico-chemical properties, variations, mu-
tations, combinations, heredity and expression of genetic materials & the
information & instructions they encode. Gene expression involves the extent
and manner in which individual genetic differences affect individual organism
(via protein synthesis). Often this can be inferred by the absence of a normal
component (e.g. one gene). Genetics includes the study of “mutants” – or-
ganisms which lack (or posses an extra) one or more functional or structural
components with respect to the so-called “wild type” or normal phenotype.
Genetic interactions such as epistasis can often confound simple interpreta-
tions of such “knock-out” studies.

Molecular biology is the study of molecular underpinnings of the process of
replication, transcription and translation of the genetic material. The central
dogma of molecular biology holds that genetic material is transcribed into
RNA and then translated into protein, with each gene coding for a single
& unique protein. This “dogma”, despite being an oversimplified picture of
molecular biology, still provides a good starting point for understanding the
field. This picture, however, is undergoing revision in light of emerging novel
roles for RNA.

Much of the work in molecular biology is quantitative, and recently much
work has been done at the interface of molecular biology and computer science

20 The term was first coined by Warren Weaver (1938).
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in bioinformatics and computational biology. As of the early 2000s, the study
of gene structure and function, molecular genetics, has been amongst the most
prominent subfields of molecular biology.

Increasingly many other fields of biology focus on molecules, either di-
rectly studying their interactions in their own right such as in cell biology and
developmental biology, or indirectly — as when the techniques of molecular
biology are used to infer historical attributes of populations or species, as in
evolutionary biology, population genetics and phylogenetics. There is also a
long tradition of studying biomolecules “from the ground up” in biophysics.

Since the late 1950s and early 1960s, molecular biologists have learned to
characterize, isolate, and manipulate the molecular components of cells and
organisms. These components include DNA, the repository of stored genetic
information; RNA, a close relative of DNA whose functions range from serv-
ing as a temporary working copy of DNA to actual structural and enzymatic
functions as well as a functional and structural part of the translational ap-
paratus; and proteins, the major structural and enzymatic type of molecule
in cells.

The successes of molecular biology derive from the exploration of
that unknown world via the new technologies & methodologies developed by
chemists, physicists & mathematicians during the 20th century; these studies
revealed the structure and function of biotic macromolecules (as well as higher-
level structures).
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The salient technologies and methodologies are:

Chromatography 1901 (M.S. Tsvet)

X-ray crystallography 1912 (L. Bragg)

Ultracentrifugation 1925 (T. Svedberg)

Electron microscopy 1932 (Knoll and Ruska)

Electrophoresis 1933 (Arne Tiselius)

Radionuclide imaging 1938 (Glenn Seaborg)

Ultrafast Laser spectroscopy 1960 (T. Maiman); 1987 (Steven Chu)

Single-photon emission tomogra-
phy

1964

CT Scanning 1972 (Godfrey Hounsfield)

NMR Spectroscopy 1973 (Paul Lauterbur)

Atomic force microscopy 1986 (Gerd Binnig et al.)

Optical trapping nanometry

Scanning tunneling electron mi-
croscopy

1989

Optical trapping interferometry 1993

Cryo-electron microscopy 2000

Two-photon microscopy

FRET (Fluorescent Resonance
Energy Transfer) microscopy

Fluorescence microscopy using
chromophores

Microarray chips & microfluidics

Statistical methods (to recon-
struct genome sequences from
oligonucleotide fragments)
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I. Biophysics and Biochemistry

Biophysics

Biophysics (also biological physics) is an interdisciplinary science that ap-
plies the theories and methods of physical sciences, especially those of physics,
to questions of biology.

Biophysics research today comprises a number of specific lines of biological
studies, which don’t share a unique identifying factor, or admit of clear-cut
and concise definitions. This is the result of biophysics’ relatively recent
appearance as a scientific discipline. The studies included under the umbrella
of biophysics range from sequence analysis through fluid mechanics (e.g. to
study blood flow) to neural networks.

In the recent past, biophysics included creating mechanical limbs and
nanomachines to regulate biological functions. Nowadays, these are more
commonly referred to as belonging to the fields of bioengineering and nan-
otechnology respectively. We may expect these definitions to further refine
themselves. Traditional studies in biology are conducted using statistical en-
semble experiments, typically using femto- to micro-molar concentrations of
macromolecules.

Because the molecules that comprise living cells are so small, techniques
such as PCR amplification, gel blotting, fluorescence labeling and in vivo
staining are used so that experimental results are observable with an unaided
eye or, at most, optical magnification. Using these techniques, biologists
attempt to elucidate the complex systems of interactions that give rise to the
processes that make life possible.

By drawing knowledge and experimental techniques from a wide variety of
disciplines, biophysicists are able to indirectly observe or model the structures
and interactions of individual molecules or complexes of molecules.

In addition to things like solving a protein structure or measuring the ki-
netics of single molecule interactions, biophysics is also understood to encom-
pass research areas that apply models and experimental techniques derived
from physics (e.g. electromagnetism and fluid dynamics) to larger systems
such as tissues or organs (hence the inclusion of basic neuroscience as well as
more applied techniques such as fMRI).

The interdisciplinary nature of biophysics is manifested in the wide range
of biological fields in which these researchers are active:
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• Biology and Molecular biology (gene regulation, single protein
dynamics, bioenergetics, biomechanics).

The effectiveness of these techniques has perhaps been best demonstrated
in the field of molecular motors, particularly with the use of optical trap-
ping techniques in conjunction with nanometer-precision position detection
schemes (optical trapping nanometry). An optical trap is produced by highly
focused laser light, and can be used to grab, move, and exert measurable forces
(typically of order pico-Newtons) on micron-sized (and smaller) objects, such
as dieletric microspheres. A microsphere, chemically coupled to a molecule
of interest, provides a means of measuring the molecule’s position and the
force that it exerts. Previously, when single kinesin molecules were observed
to have a step-size of 8 nm, it became clear that optical trapping nanometry
had great potential to probe the molecular mechanisms of motor proteins.

Further demonstration came from the subsequent observation of forces and
displacements produced by single myosin molecules using feedback-enhanced
optical traps. Since then, optical trapping nanometry has revolutionized the
field of molecular motors, and has become the technique of choice for many
researchers in this field.

A number of single-molecule manipulation techniques exist, including opti-
cal trapping nanometry, magnetic bead, microneedle, micropipette, and some
scanning probe microscopies. These techniques differ in their precision of po-
sition detection (∼ 1 Å to tens of nanometers) and force regimes (∼ 0.1–10000
pN).

• Structural biology - angstrom-resolution structures of proteins, nu-
cleic acids, lipids, carbohydrates, and complexes thereof.

• Biochemistry and chemistry - biomolecular free energy, reaction
kinetics and structure, siRNA, nucleic acid structure, structure-activity
relationships.

• Computer science - molecular simulations, sequence alignment,
neural networks, databases.

• Mathematics - graph/network theory, population modeling, dynami-
cal systems, phylogenetical analysis.

• Medicine and neuroscience - tackling neural networks experimen-
tally (brain slicing, EMG, EKG, EEG & motor-control studies) as well
as theoretically (computer models), membrane permittivity, gene ther-
apy, understanding tumors.
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• Pharmacology and physiology - channel biology, biomolecular in-
teractions, cellular membranes, polyketides.

• Physics - biomolecular structures and dynamics, protein folding, sto-
chastic processes, surface dynamics.

Related fields are:

• Animal locomotion

• Cellular biophysics

• Molecular biophysics

• Channels, receptors and transporters

• Electrophysiology

• Cell membranes

• Bioenergetics

• Molecular motors

• Muscle and contractility

• Nucleic acids

• Photobiophysics and biophotonics

• Proteins

• Signaling

• Supramolecular assemblies

• Spectroscopy, imaging, etc.

• Systems neuroscience

• Neural encoding

• Bionics

• Polysulphur membranes

• Biosensors and Bioelectronics
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Of these, the fields of cellular biophysics, molecular motors, protein un-
folding, biopolymer mechanics and receptor-ligand interactions have been very
active in the past. Indeed, the advent of biophysical techniques for the ma-
nipulation of single biological molecules has made possible a large number of
significant breakthroughs in biology.

Biochemistry

During the 21st Century “big 4” of X-ray, radionuclide imaging, ultrasound
and MRI continue to dominate, in their many variants, but many other in-
teresting developments in other techniques are occurring, especially when we
consider “imaging” to include microscopic as well as macroscopic biological
structures (thermal imaging, electrical impedance tomography, scanned probe
techniques, etc.) In addition, the emphasis in the future will increasingly be
on obtaining functional and metabolic information simultaneously with struc-
tural (image) information. This can already be done to some extent with
radioactive tracers (e.g. PET) and magnetic resonance spectroscopy.

Biochemistry then, is the science dealing with the chemical constitutions
of living systems and the dynamics of living chemical processes (metabolism).
Although the word “biochemistry” was coined by F. Hoppe-Seyler (1877),
the full-fledged and institutionalized discipline emerged only in 1903. It was
formed from:

• chemist’s animal and vegetable chemistry

• biologists, cytologists and physicians physiological, zoological or biolog-
ical chemistry.

It rapidly also formed a base for immunologists, nutritionists and chemists
working on fermentation.

Biochemistry interfaces with biology and chemistry and is concerned with
the chemical processes that take place within living cells. Modern biochem-
istry developed out of and largely came to replace what in the nineteenth and
early twentieth centuries was called physiological chemistry, which dealt more
with extracellular chemistry, such as the chemistry of digestion and of body
fluids. Biochemistry as such is largely, though not exclusively, a twentieth-
century discipline.
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Molecular biology, on the other hand, has come to mean the study of the
function and the three-dimensional structure of such biologically important
macromolecules as proteins and nucleic acids. Molecular biology is as much an
interface of biology with physics as of biology with chemistry. In many respects
biochemistry and molecular biology represent the realization of the dream
of early twentieth-century mechanistic biologists, who were convinced that
the most fundamental biological processes could ultimately be understood in
terms of the laws of physics and chemistry.

Researchers in biochemistry use specific techniques native to biochemistry,
but increasingly combine these with techniques and ideas from genetics, mole-
cular biology and biophysics. There has never been a hard-line between these
disciplines in terms of content and technique, but members of each discipline
have in the past been very territorial; today the terms molecular biology and
biochemistry are nearly interchangeable.

Biochemical research is involved in three main fronts:

• Components of cells: structure and function

• Energetics and metabolism

• Working of the genetic code

Living organisms, and even the individual cells of which they are com-
posed, are enormously complex and diverse. Nevertheless, certain unifying
features are common to all things that live. All make use of the same types of
biomolecules, and all use energy. As a result, organisms can be studied via the
methods of chemistry and physics. The belief in “vital forces” (forces thought
to exist only in living organisms) held by 19th-century biologists has long since
given way to awareness of an underlying unity throughout the natural world.

Disciplines that appear to be unrelated to biochemistry can provide an-
swers to important biochemical questions. An example is the discovery, made
by physicist in the early 20th century, that x-rays can be diffracted by crys-
tals. The resultant experimental method of x-ray crystallography led to the
elucidation of the three-dimensional structures of molecules as complex as pro-
teins and nucleic acids. Biochemistry is a field that draws on many disciplines,
and its multidisciplinary nature allows it to use results from many sciences
to answer questions about the molecular nature of life processes. Enormously
important applications of this kind of knowledge are made in medically related
fields; an understanding of health and disease at the molecular level leads to
more effective treatment of illnesses of all sorts.

The activities within a cell are analogous to the transportation system of
a city. The cars, buses, and taxis correspond to the molecules involved in
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reactions (or series of reactions) within a cell. The routes traveled by these
vehicles are likewise comparable to the reaction & transport pathways that
occur in the life of the cell. Note particularly that many vehicles travel more
that one route — for instance, cars and taxis can go anywhere — whereas
other, more specialized modes of transportation such as subways and street-
cars are confined to single paths.

Similarly, some molecules play multiple roles, whereas others take part
only in specific series of reactions. And in terms of spatial transport, each
cell’s cytoplasm is criss-crossed by a complex 3-D network of myriad mi-
crotubules — nearly invisible “subway tunnels” along which molecules are
pushed and pulled (between the membrane & interior of the cell) by molecular
nano-motors. Also, all the routs (both spatial transport paths and chemical
pathways) operate simultaneously.

The fundamental similarity of cells of all types makes it interesting and
illuminating to speculate on the origins of life. Even the structures of compar-
atively small biomolecules consist of several parts. Large biomolecules such
as proteins and nucleic acids have complex structures, and living cells are
enormously more complex.

Even so, both molecules and cells must have arisen ultimately from very
simple molecules such as water, methane, carbon dioxide, ammonia, nitrogen,
and hydrogen21. In turn, these simple molecules must have arisen from atoms.
The way in which the universe itself, and the atoms of which it is composed,
came to be, belongs to the discipline of cosmology.

Since, life-forms alive today are believed to have descended from the same
common ancestor, they certainly have similar biochemistries, even in matters
which would appear to be essentially arbitrary, such as the genetic code or
handedness of various biomolecules. It is unknown whether alternate bio-
chemistries are possible or practical.

Biochemistry is the study of the structure and function of cellular com-
ponents, such as proteins, carbohydrates, lipids, nucleic acids, and other bio-
molecules. Chemical biology aims to answer many questions arising from
biochemistry by using tools developed within synthetic chemistry.

Although there are a vast number of different biomolecules, they tend to be
composed of the same repeating subunits (called monomers), in different or-
ders. Each class of biomolecules has a different set of subunits. Recently, bio-
chemistry has focused more specifically on the chemistry of enzyme-catalyzed
reactions, and on the properties of proteins.

21 The biochemistry of all life-forms on earth is carbon and water based.
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The biochemistry of cell metabolism and the endocrine system has been
extensively described. Other areas of biochemistry include the genetic code
(DNA, RNA), protein synthesis, cell membrane transport, and signal trans-
duction.

Originally, it was generally believed that life was not subject to the laws
of science the way non-life was. It was thought that only living beings could
produce the molecules of life (from other, previously existing biomolecules).
Then, in 1828, Friedrich Wöhler published a paper about the synthesis of
urea, proving that organic compounds can be created artificially. The dawn of
biochemistry may have been the discovery of the first enzyme, diastase (today
called amylase), in 1833 by Anselme Payen.

Eduard Buchner contributed the first demonstration of a complex bio-
chemical process outside of a cell in 1896: alcoholic fermentation in cell ex-
tracts of yeast. Although the term biochemistry seems to have been first
used in 1882, it is generally accepted that the formal coinage of biochemistry
occurred in 1903 by Carl Neuberg.

Since then, biochemistry has advanced, especially since the mid-20th cen-
tury, with the development of new techniques such as chromatography, X-ray
diffraction, NMR spectroscopy, radioisotopic labeling, electron microscopy
and molecular dynamics simulations. These techniques allowed the discov-
ery and detailed analysis of many molecules and metabolic pathways of the
cell, such as glycolysis and the Krebs cycle (citric acid cycle).

Today, the findings of biochemistry are used in many areas, from genetics
to molecular biology and from agriculture to medicine.

In the 1940s, following up on Griffith’s experiment, Avery, MacLeod
and McCarty definitively identified deoxyribonucleic acid (DNA) as the
“transforming principle” responsible for transmitting genetic information. In
1953, Francis Crick and James D. Watson published their famous paper
on the structure of DNA, based on the research of Rosalind Franklin and
Maurice Wilkins. These developments ignited the era of molecular biology
and transformed the understanding of evolution by enabling a description of
it as a molecular process: the mutation of segments of DNA.

During this era of molecular biology, it also became clear that a major
mechanism for variation within a population, once again, is mutations of DNA.
In the mid-1970s, Motoo Kimura formulated the neutral theory of molec-
ular evolution, firmly establishing the importance of genetic drift as a major
mechanism of evolution. The theory sparked the “neutralist-selectionist” de-
bate, partially solved by the development of Tomoko Ohta’s nearly neutral
theory of evolution.
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II. Molecular Genetics — from Gene to Genome (1859–2008)

Genetics is the study of genes on all levels: from the level of molecules up
to the level of populations.

It is the science of genes, heredity, and the variation of organisms. In
modern research, genetics provides important tools in the investigation of the
function of a particular gene, or the analysis of genetic interactions. Within
organisms, genetic information generally is carried in chromosomes, where it
is represented in the chemical structure (such as base sequences) of particular
stretches of the DNA molecule.

Genes encode the information necessary for synthesizing proteins, which in
turn play a large role in influencing (though, in many instances, not completely
determining) the final phenotype of the organism.

Heredity and Genetics

In about 1902, the chromosome was identified as being the site of the
genes, and its central position in heredity and development were finally re-
alized. Linkage of genes and the crossing over of chromosomes during cell
division were explored, particularly in Thomas Hunt Morgan’s fly lab in
Columbia University. Early in the twentieth century, a unification of the
idea of evolution by natural selection with Mendelian genetics to produce the
modern synthesis occurred. These ideas continued to be developed in the
discipline of population genetics and in the second half of the century began
to be applied in the new discipline of the genetics of behavior, sociobiology,
and, especially in human’s, evolutionary psychology.

By the end of the 19th century all of the major pathways of drug
metabolism had been discovered. In the early decades of the twentieth cen-
tury, the role of minor components of foods in human nutrition, the vitamins,
began to be isolated and synthesized. Then in the 1920s and 1930s, the
metabolic pathways of life, such as the citric acid cycle, glycogenesis and gly-
colysis finally began to be worked out by biochemists.This work continued to
be very actively pursued for the rest of the century and into the next. During
1939–1941 Fritz Lipmann showed that ATP is the universal carrier of en-
ergy in the cell, and then in the mid-1950’s the power generators of the cell,
the mitochondria, also began to be understood.

Oswald Avery conclusively showed in 1943 that DNA was the genetic
material of the chromosome, not its protein. By 1953 James D. Watson and
Francis Crick had shown that the structure of DNA was a double helix, and
its probable connection to replication. The nature of the genetic code was
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unraveled experimentally starting with the work of Nirenberg Khorana
and others in the late 1950’s. This discovery and others — gave rise to the
vigorous science that we know today as molecular biology.

The largest, most costly single biological study ever undertaken, the Hu-
man genome project, began in 1988 under the leadership of James D. Watson,
and a first draft of the human DNA sequence announced in 2000. By 2003,
99% of the genome had been sequenced to an accuracy of one part in ten
thousand. The HapMap project to determine patterns of differences in the
human genome began in 2002 and by 2005 completed its first phase work.

The advent of whole-genome sequencing and surveys of their variation in
different populations (races), together with new statistical methods, permitted
researches by 2006 to systematically identify candidate loci for recent natural
selection during evolution in humans. Some of these genes were also shown
to be ancestry-informative markers which came to be used in genealogical
studies and to understand ancient human migrations.

The study of organisms, their reproduction, and the functions of their
organs had increasingly become the study of molecules. Reductionism was
triumphant. Even the methods of scientific classification of organisms, es-
pecially cladistics, began in the last quarter of the century to use RNA and
DNA sequences as characters. By the mid 1980’s even the overall division
of the tree of life into three domains (as opposed to the classical two), the
Archaea, the Bacteria, and the Eukaria, became generally accepted in the
scientific community.

While cloning in plants was known for millennia it was only in 1951 that
the first animal, the tadpole, was cloned by nuclear transfer. Within a few
years, several other animals, including dogs, cats, horses and cattle were
cloned by similar methods.

In 1965 it was shown that normal cells in culture divide only a fixed
number of times. Then aged and died. About the same time, stem cells
were shown to be exceptions to this rule and began to be studied in earnest.
Toward the end of the century, stem cells came to be recognized as crucial for
the understanding of developmental biology and raised hopes for new medical
applications.

In 1983 the unity of much of the morphogenesis of organisms from fertilized
egg to adult began to be unraveled, first in fruit fly, then in other insects and
animals, including man.
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Genetic Engineering (GE)

Genetic engineering, genetic modification (GM) and gene splicing are
terms the process of manipulating genes, usually outside the organism’s nor-
mal reproductive process.

It involves the isolation and reintroduction of DNA into cells or model
organisms, usually to express a protein. The aim is to introduce new char-
acteristics or attributes physiologically or physically, such as making a crop
resistant to herbicide, introducing a novel trait or producing a new protein or
enzyme.

Since a protein is specified by a segment of DNA called a gene, future
versions of that protein can be modified by changing the gene’s underlying
DNA. One way to do this is to isolate the piece of DNA containing the gene,
precisely cut the gene out, and then reintroduce (splice) the gene into a dif-
ferent DNA segment. Daniel Nathans and Hamilton Smith received the
1978 Nobel Prize in physiology or medicine for their isolation of restriction
endonucleases, which are able to cut DNA at specific sites. Together with
ligase, which can join fragments of DNA together, restriction enzymes formed
the initial basis of recombinant DNA technology.

The first Genetically Engineered drug was human insulin, approved by the
USA’s FDA in 1982. Another early application of GE was to create human
growth hormone as replacement for a drug that was previously extracted from
human cadavers. In 1986 the FDA approved the first genetically engineered
vaccine for humans, for hepatitis B. Since these early uses of the technology
in medicine, the use of GE has expanded to supply many drugs and vaccines.

One of the best known applications of genetic engineering is the creation
of genetically modified organisms (GMOs).

Although there has been a tremendous revolution in the biological sci-
ences in the past twenty years, there is still a great deal that remains to be
discovered. The completion of the sequencing of the human genome, as well
as the genomes of most agriculturally and scientifically important plants and
animals, has increased the possibilities of genetic research immeasurably. Ex-
pedient and inexpensive access to comprehensive genetic data has become a
reality with billions of sequenced nucleotides already online and annotated.
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Human Genome Project (HGP)

In biology the genome22 of an organism is its whole hereditary information
and is encoded in the DNA (or, for some viruses RNA). This includes both
the genes and non-coding sequences of the DNA.

More precisely, the genome of an organism is a complete DNA sequence of
one set of chromosomes; for example, one of the two sets that a diploid individ-
ual carries in every somatic cell. The term genome can be applied specifically
to mean the complete set of nuclear DNA (i.e., the “nuclear genome”) but
can also be applied to organelles that contain their own DNA, as with the
mitochondrial genome or the chloroplast genome.

When people say that the genome of a sexually reproducing species has
been “sequenced,” typically they are referring to a determination of the se-
quences of one set of autosomes and one of each type of sex chromosome,
which together represent both of the possible sexes.

Even in species that exist in only one sex, what is described as “a genome
sequence” may be a composite from the chromosomes of various individuals.
In general use, the phrase “genetic makeup” is sometimes used conversation-
ally to mean the genome of a particular individual or organism. The study
of the global properties of genomes of related organisms is usually referred to
as genomics, which distinguishes it from genetics which generally studies the
properties of single genes or groups of genes.

Most biological entities more complex than a virus sometimes or always
carry additional genetic material besides that which resides in their chromo-
somes. In some contexts, such as sequencing the genome of a pathogenic
microbe, “genome” is meant to include this auxiliary material, which is car-
ried in plasmids. In such circumstances then, “genome” describes all of the
genes and non-coding DNA that have the potential to be present.

In vertebrates such as sheep and other various animals however, “genome”
carries the typical connotation of only chromosomal DNA. So although human
mitochondria contain genes, these genes are not considered part of the genome.
In fact, mitochondria are sometimes said to have their own genome, often
referred to as the “mitochondrial genome”.

Comparison of different genome sizes is shown in Table 6.9

22 The term coined in 1920 by Hans Winkler (Germany) as a portmanteau of the

words GEN e and chromosOME.
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Table 6.9: Comparison of different genome sizes

Organism Genome
size (base
pairs)

Note

Virus, Phage -X174 5386 First sequenced
DNA-genome

Virus, Phage λ 5 × 104

Archaeum, Nanoarchaeum
equitans

5 × 105 Smallest non-viral
genome Dec, 2005

Bacterium, Buchnera
aphidicola

6 × 105

Bacterium, Wigglesworthia
glossinidia

7 × 105

Bacterium, Escherichia coli 4 × 106

Amoeba, Amoeba dubia 6.7 × 1011 Largest known genome,
Dec 2005

Plant, Arabidopsis thaliana 1.2 × 108 First plant genome
sequenced, Dec 2000

Plant, Fritillaria assyrica 1.3 × 1011

Plant, Populus trichocarpa 4.8 × 108 First tree genome,
Sept 2006

Yeast, Saccharomyces
cerevisiae

2 × 107

Nematode, Caenorhabditis
elegans

9.8 × 107 First multicellular animal
genome, December 1998

Insect, Drosophila
melanogaster aka Fruit Fly

1.3 × 108

Mammal, Homo sapiens 3 × 109

Note: The DNA from a single human cell has a length of 1.8 m (but at a
width of 2.4 nanometers).
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Genomes are more than the sum of an organism’s genes and have traits
that may be measured and studied without reference to the details of any
particular genes and their products. Researchers compare traits such as chro-
mosome number (karyotype), genome size, gene order, codon usage bias, and
GC-content to determine what mechanisms could have produced the great
variety of genomes that exist today.

Duplications play a major role in shaping the genome. Duplications may
range from extension of short tandem repeats, to duplication of a cluster of
genes, and all the way to duplications of entire chromosomes or even entire
genomes. Such duplications are probably fundamental to the creation of ge-
netic novelty.

The information generated by the human genome project is expected to
be the source book for biomedical science in the 21st century and will be
of immense benefit to the field of medicine. It will help us to understand
and eventually treat many of the more than 4000 genetic diseases that af-
flict mankind, as well as the many multifactorial diseases in which genetic
predisposition plays an important role.
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III. Structural Biology — the Molecular Architecture of Life

(1853–2008)

Structural biology is a branch of molecular biology concerned with the
study of the architecture and shape of biological macromolecules – proteins
and nucleic acids in particular – and what causes them to have the structures
they have. This subject is of great interest to biologists, because macromole-
cules carry out most of the functions of a cell, and because typically it only
is by coiling into a specific three-dimensional shape that they are able to per-
form their functions. This shape, which is called the “tertiary structure” of a
molecule, depends in a complicated way on the molecule’s basic composition,
or “primary structure.”

Biomolecules are too small to see in detail even with the most advanced
light microscopes. The methods that structural biologists use to determine
their structures generally involve measurements on vast numbers of identical
molecules at the same time. These methods include crystallography, NMR,
ultra fast laser spectroscopy, electron microscopy, electron cryomicroscopy
(cryo-EM), and circular dichroism. Most often researchers use them to study
the static “native states” of macromolecules. But variations on these methods
are also used to watch nascent or denatured molecules assume or re-assume
their native states.

Proteins are amino acid chains, made up from 20 different amino acids
that fold into unique 3-dimensional protein structures. The shape into which
it folds is determined by its sequence of amino acids (aa). Below about 40
aa the term peptide is frequently used. A certain amount of aa is necessary
to perform a particular biochemical function, and about 40–50 aa appear to
be the lower limit for a functional domain size. Protein sizes range from this
lower limit to several thousand aa in multi-functional or structural proteins.
However, the current estimated for the average protein length is about 300
aa.

A third approach that structural biologists take to understanding struc-
ture is bioinformatics to look for patterns among the diverse sequences that
give rise to particular shapes. Researchers often can deduce aspects of the
structure of membrane proteins based on the membrane topology predicted
by hydrophobicity analysis.

In the past few years it has become possible for highly accurate physical
molecular models to complement the study of biological structures. Rapid
prototyping technologies such as those used by 3D Molecular Design, or the
creation of molecular models in glass, are examples of recent advances in this
field.
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Some of the 20 standard proteinogenic amino acids are called essential
amino acids because the human body cannot synthesize them from other
compounds through chemical reactions, but therefore must be obtained from
food. Histidine and arginine are generally considered essential only in children,
because the metabolic pathways that synthesize these amino acids are not fully
developed in children.

Structural biology aims to explain the activity of biological important
molecules in terms of their atomic structure – and to use this knowledge to
design new therapies or vaccines.

When scientists understand the precise structure of some components of
the surface of cancer cells, for instance, they may be able to tailor new drugs
to fit these components as accurately as a key in a lock. With a really tight fit,
very low doses of drugs could kill the cancer cells effectively without harming
the normal cells nearby.

Similarly, researchers are trying to understand the three-dimensional
structure of some natural chemicals that attach themselves to the genetic ma-
terial DNA. These chemicals selectively control the activity of specific genes
at specific times and in specific places. Deciphering their structure could lead
to laboratory-made chemicals that do exactly the same thing.

Structural biologists use information gathered from chemistry, physics,
genetics, cell biology, and mathematics, plus supercomputers and other highly
specialized equipment. In recent years these scientists have relied increasingly
on the use of computer graphics to visualize how various subunits of molecules
fit together or move.

They have made rapid strides in the analysis of proteins (the extraordi-
narily varied molecules that do most of the work of the body); nucleic acids
(DNA and a related molecule, RNA); carbohydrates (sugars and starches);
lipids (fats); and the complex combinations of these substances.

Structural biology burst upon public attention for the first time in 1953,
when Francis H.C. Crick and James D. Watson announced that they
had deciphered the structure of DNA – work for which they later won the
Nobel Prize. Their model, the famous double helix, paved the way for many
advances in genetics, including the development of recombinant DNA tech-
nology, which allows scientists to cut and splice together pieces of DNA from
different sources.

According to this model, DNA is a twisting ladder made up of different
sequences of four components called nucleotides. Each rung of the ladder
consists of a pair of nucleotides (which can pair only in certain ways). The
specific sequence of these pairs contains all the information necessary for the
development and survival of an organism such as a human being. The model
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explained for the first time how genetic information is transferred from the
parent archive of DNA to daughter strands of nucleic acid: the nucleotide
pairs separate in the middle of the rung, as if a zipper had opened, making
two complementary strands, and each of these strands participates in forming
a new, complete double helix.

The structures of many other biologically important molecules have been
revealed since then, particularly the structures of those marvelously versatile
substances called proteins.

Nonscientists tend to think of proteins as just something we eat. But in
fact we depend on tens of thousands of different proteins in our bodies to
keep us alive. Each protein is a complex biochemical machine with its own
specialty. The reason we eat proteins from plants or animals in order to make
proteins of our own.

Some of the proteins we depend on are enzymes that increase the speed
of chemical reactions up to a million times, without themselves undergoing
any change. In this way, enzymes control the pathways and the timing of
billions of chemical operations. They regulate our growth from a single cell
to a mature organism. They make our cells differentiate into eyes, blood, or
brain cells. They deftly break down or build up other proteins.

There are other proteins that sit on the surface membranes of our cells,
where they receive messages from distant cells, or control the flow of molecules
into or out of the cell. The surfaces of cancer cells are dotted with proteins
that play a large role in cells’ runaway growth. The coats of viruses are made
up largely of proteins.

Some of the neurotransmitters that carry urgent massages from one nerve
cell to another are also proteins. So are many of the hormones that regulate
our growth, sex drive, and reactions to stress.

The thousands of antibodies that recognize and fight foreign substances
such as viruses and bacteria are proteins. The chemicals that interact with
DNA that turn specific genes on or off are proteins. One protein, hemoglobin
has the key job of transporting oxygen throughout the body via the blood-
stream.

Different kinds of proteins act as structural materials, making up our skin,
hair, nails, muscles, tendons, and bones. They also maintain the inner struc-
ture of the millions of cells in our bodies.

Some proteins are relatively small and compact; others are bulky con-
glomerates. Some are globular; other are long and narrow. But all of these
different types of proteins are polymers, substances composed of many smaller
units linked in chains. The subunits of proteins are 20 different amino acids,
which can be linked together in any order. Thus, for any protein made up
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of 100 amino acids there can be a huge number of possible structures. But
each protein has a specific order, and one protein can be distinguished from
another by the order of its amino acids.

Difficult as it was to “solve” the structure of DNA, protein structures are
far more difficult to decipher – not only because proteins have more subunits,
but because they have irregular shapes. DNA structures tend to be more
regular, although variations can still occur. By contrast, each type of protein
molecule has a different shape, which determines its function. This shape de-
fines what other molecules will bind to the protein and what chemical activity
will take place.

All proteins are constructed in accordance with instructions coded by the
DNA inside our cells.

Nevertheless, we have only begun to understand how proteins function.
The toughest problem has been to decipher their 3-D structure, which holds
the key to their normal or abnormal activity.

Analyzing the structures of proteins and nucleic acids down to the pre-
cise arrangement of their atoms, and trying to understand the basis of each
protein’s activity, are major goals of structural biology. For a while these
goals seemed very distant, but now the field is in a period of great excitement
because of the new possibilities opened up by several recent developments:

• Recombinant DNA technology is allowing scientists to obtain large quan-
tities of specific proteins or nucleic acids for study. In the past, research was
severely limited by the shortage of experimental material.

• Researchers can now determine the sequence of subunits of these sub-
stances – for example, the sequence of amino acids in specific proteins, or the
sequence of nucleotides on specific stretches of DNA – without an extraordi-
nary expenditure of time and effort.

• Major improvements in X-ray crystallography, nuclear magnetic reso-
nance (NMR) spectroscopy, and other techniques are enabling researchers to
decipher the 3-D structures of large molecules more precisely and rapidly.

• Faster and less expensive computers are giving scientists new powers to
handle enormous quantities of data and – through computer graphics – to
visualize the structures and movements of proteins.

The coming together of these separate developments has made structural
biology ready for a major leap forward. So promising is this work that many
research laboratories in universities and drug companies are rushing into the
field.

DNA and protein molecules are called “macro”, or “large”, in comparison
with molecules of water, fats, nucleotides,or amino acids, which consist of
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fewer that 50 atoms. A smaller protein molecule has about 1,000 atoms,
while a more complex protein such as hemoglobin may have roughly 10,000
atoms. Some very large proteins contain as many as 100,000 atoms. Towering
above them, an average molecule of human DNA has as many as 4.4 billion
atoms.

But in fact, even these molecules are still exceedingly small – so small
that their images appear weak and fuzzy under the most powerful electron
microscope. How can one determine the structure of anything so tiny?

The main sources of information have been the laws of chemistry that
bear on the strength and geometry of the chemical bonds between atoms, and
data from instruments developed by physicists. Some of the most useful data
have come from X-ray crystallography, a technique based on the fact that the
atoms in a crystal are arranged in a definite pattern that is repeated regularly
in three dimensions.

As early as 1912, Max von Laue, realized that the wavelengths of X-rays
– 3,000 to 4,000 times shorter than those of visible light – were just about the
same size as the spaces between atoms in a crystal. Therefore, he reasoned,
X-rays that were passed through a crystal should be affected by the regularly
spaced layers of atoms in just the same way as light waves are affected by
the slats of a metal grid. Von Laue’s idea proved correct: crystals scattered
X-rays in specific patterns. But he mistakenly thought that some peculiarities
in these patterns were the result of peculiarities in the X-rays.

At about the same time, William Lawrence Bragg, looked at the same
patterns and concluded instead that their peculiarities were vital clues to the
arrangement of atoms in the crystal. He realized that the orderly array of
atoms scattered the X-rays in a orderly way, and that this caused a repeating
series of overlapping circles of waves. When intercepted by a photographic
plate, the peaks and troughs of these waves reinforced each other at some
points and canceled each other out at other points, producing a pattern of
spots of varying intensity – an interference pattern that could be translated
into information about the structure that produced it.

Bragg rapidly worked out equations with which scientists could get an
image of the arrangement of atoms in a crystal from the X-rays diffracted by
a particular axis of the crystal. If one keeps realigning the crystal so that a
different axis of the crystal is parallel to the X-ray beam each time, one can
make a set of photographs which, with the aid of Bragg’s equations, allow one
to deduce the 3-D arrangements of the molecules in the crystal.

Bragg soon tried out his technique on crystals of sodium chloride (ta-
ble salt) and potassium chloride and succeeded in working out their atomic
structures.
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He thus invented X-ray crystallography and “solved” the first structures
of crystals.

In order to do X-ray diffraction studies of a biological substance, one must
get the molecules neatly aligned to form straight planes that can reflect the
X-ray beams. This generally means that the substance must take the form
of a crystal. But in some cases the fibers of substance will naturally be so
neatly aligned that they behave as though they were well-ordered crystals.
Fortunately, this is what happened in some of the first experiments with X-
ray diffraction of DNA.

DNA is an extremely long, thin, and fragile thread that scientists have had
great difficulty in extracting from cell nuclei in pieces that are large enough
to study. While working with a highly viscous solution of DNA extracted
from calf thymus cells in 1950, Maurice Wilkins noticed that every time
he touched this solution with the tip of a glass rod and then drew the rod
away, he “had spun a very thin fibre of DNA, almost invisible, like a filament
of spider web.” The fibers seemed highly uniform, so Wilkins took them to
a graduate student for X-ray crystallography. These first X-ray diffraction
pictures of DNA offered many clues to its structure.

Very little was then known about DNA’s vital statistics – its diameter,
length, density, chemical bonds, or the angle at which it twisted. About
the only information one could rely on came from X-ray diffraction patterns.
These showed the distance between the nucleotides in DNA and pointed to a
large repeated structure of some kind. But the X-ray patterns did not reveal
how many strands of nucleotides the DNA molecule contained, nor whether
the backbone of the structure was on the inside or outside of the strands.

On the basis of these X-ray diffraction pictures, James Watson and
Francis Crick built models of what the DNA molecule might look like and
then testing these models. Did every precisely scaled piece of the model fit
what was known from the X-ray data? Did it obey standard rules about
chemical bonds?

Their first models failed the tests. But eventually – after learning more
about DNA from some new X-ray pictures taken by Rosalind Franklin at
King’s College – they devised a double helix whose basic structure repeated
itself every 34 hundred-millionths of a centimeter (34 angstroms), exactly
10 times the distance between one nucleotide and the next. They put two
backbones on the outside and had the nucleotides meet in the center.

While shifting around cardboard cutouts of nucleotide bases (key compo-
nent of nucleotides), Watson realized that one of these bases, adenine (A),
could form two hydrogen bonds with another one, thymine (T). Moreover,
the bond lengths were correct for the model. Another base, guanine (G),
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could make similar hydrogen bonds with the fourth base, cytosine (C). When
Watson compared the two cardboard pairs (A with T and G with C), they
turned out to form nearly identical shapes that could fit snugly inside the
backbones. This conformed with – and explained – a finding made 3 years
earlier by Erwin Chargaff of Columbia University that number of A bases
in DNA was equal to that of T bases, while the number of G bases was equal
to that of C bases.

From the way the bases attached to the backbones, which consisted of
chains of sugars and phosphates, Crick then saw that the two chains must run
in opposite directions. The bases could appear in any order on one strand of
DNA, but this order determined the sequence of the complementary bases on
the other strand. He also saw a built-in means of replication. Prior to the
cell’s duplication, the hydrogen bonds (connecting the base pairs) are broken,
and the two chains unwind and separate. Each chain then acts as a template
for the formation on to itself of a new companion chain, so that eventually we
shall have two pairs of chains, where we only had one before. Moreover, the
sequence of the pairs of bases will have been duplicated exactly.

The precise sequence of the bases is the code which carries the genetical
information. This meant that the four bases were a kind of alphabet – a small
set of “letters” with which an infinite number of instructions could be written.

The instructions contained in DNA sequences tell the cell how to manufac-
ture the thousands of enzymes and other proteins on which life depends. But
these instructions are not transmitted directly. The DNA remains safely in
the nucleus, somewhat like the printing block in a printing press. Meanwhile
a copy of one strand of DNA is made in the nucleus, leaves it, and directs the
production of proteins in other parts of the cell. This “working copy” of the
DNA is a nucleic acid called RNA.

The language in which the DNA’s and RNA’s instructions are transmitted
– the genetic code – was deciphered by Marshall W. Nirenberg and H.G.
Khorana. The code is based on triplets of nucleotides, or “codons”, which
are read in sequence. Each codon specifies either one of 20 amino acids or a
signal to start or stop constructing an amino acid chain. Each gene consists of
a series of codons that contain the instructions for building a specific protein,
which influences a specific trait, or that make the RNA used to carry out the
DNA’s instructions.

For years scientists had thought that nucleotides occurred in regular, re-
peating sets. Watson and Crick’s model made it clear that nucleotides occur
in infinitely varied sequences. There are 3 billion pairs of nucleotides in the
DNA of a typical human cell, and each person’s genetic material has a unique
nucleotide sequence, duplicated only in identical twins.
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The sequence of nucleotides in a piece of DNA can now be determined
through increasingly efficient techniques, some of which are being automated.
Scientists know that these sequences contain the instructions for making pro-
teins. They can “read” these instructions. They can also know how to de-
termine the sequence of amino acids in a given protein. But to date nobody
understands precisely how the sequence of amino acids leads to the remarkably
complex and irregular three-dimensional structures of proteins.

IV. Biotechnology and Bioinformatics (1950–2008)

Biotechnology23 can be defined as the manipulation of organisms to do
practical things and to provide useful products.

Early cultures also understood the importance of using natural processes
to breakdown waste products into inert forms. From very early nomadic tribes
to pre-urban civilizations it was common knowledge that given enough time
organic waste products would be absorbed and eventually integrated into the
soil. It was not until the advent of modern microbiology and chemistry that
this process was fully understood and attributed to bacteria.

The most practical use of biotechnology, which is still present today, is
the cultivations of plants to produce food suitable to humans. Agriculture
has been theorized to have become the dominant way of producing food since
the Neolithic Revolution. The processes and methods of agriculture have
been refined by other mechanical and biological sciences since its inception.
Through early biotechnology farmers were able to select the best suited and
high-yield crops to produce enough food to support a growing population.

Other uses of biotechnology were required as crops and fields became
increasingly large and difficult to maintain. Specific organisms and organ-
ism byproducts were used to fertilize, restore nitrogen, and control pests.
Throughout the use of agriculture farmers have inadvertently altered the ge-
netics of their crops through introducing them to new environments, breeding
them with other plants, and by using artificial selection. In modern times
some plants are genetically modified to produce specific nutritional values or
to be economical.

23 The word “biotechnology” was first used by the agricultural engineer Karl

Ereky (1919).
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The process of Ethanol fermentation lead to one of the first forms of
biotechnology. Cultures such as those in Mesopotamia, Egypt, and Iran de-
veloped the process of brewing which consisted of combining malted grains
with specifics yeasts to produce alcoholic beverages. In this process the car-
bohydrates in the grains were broken down into alcohols such as Ethanol.
Later other cultures produced the process of Lactic acid fermentation which
allowed the fermentation and preservation of other forms of food. Fermenta-
tion was also used in this time period to produce leavened bread. Although
the process of fermentation was not fully understood until Louis Pasteur’s
work in 1857, it is still the first use of biotechnology to convert a food source
into another form.

Combinations of plants and other organisms were used as medications in
many early civilizations. Since as early as 200 BC people began to use dis-
abled or minute amounts of infectious agents to immunize themselves against
infections. These and similar processes have been refined in modern medicine
and have lead to many developments such as antibiotics, vaccines, and other
methods of fighting sickness.

One can distinguish between:

• Red biotechnology is applied to medical processes. Some examples are the
designing of organisms to produce antibiotics, and the engineering of genetic
cures to cure diseases through genomic manipulation.

• White biotechnology, also known as grey biotechnology, is biotechnology
applied to industrial processes. An example is the designing of an organism
to produce a useful chemical. White biotechnology tends to consume less in
resources than traditional processes when used to produce industrial goods.

• Green biotechnology is biotechnology applied to agricultural processes.
An example is the designing of transgenic plants to grow under specific en-
vironmental conditions or in the presence (or absence) of certain agricultural
chemicals. One hope is that green biotechnology might produce more en-
vironmentally friendly solutions than traditional industrial agriculture. An
example of this is the engineering of a plant to express a pesticide, thereby
eliminating the need for external application of pesticides. Whether or not
green biotechnology products such as this are ultimately more environmen-
tally friendly is a topic of considerable debate.

• Blue biotechnology is used to describe the marine and aquatic applica-
tions of biotechnology.

Traditional pharmaceutical drugs are small molecules that treat the symp-
toms of a disease or illness - one molecule directed at a single target. Biophar-
maceuticals are large biological molecules known as proteins and these target
the underlying mechanisms and pathways of a malady; it is a relatively young
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industry. They can deal with targets in humans that are not accessible with
traditional medicines. A patient typically is dosed with a small molecule via
a tablet while a large molecule is typically injected.

Small molecules are manufactured by chemistry but large molecules are
created by living cells: for example, - bacteria cells, yeast cell, animal cells.

Modern biotechnology is often associated with the use of genetically al-
tered microorganisms such as E. coli or yeast for the production of substances
like insulin or antibiotics. Genetically altered mammalian cells, such as Chi-
nese Hamster Ovary (CHO) cells, are also widely used to manufacture phar-
maceuticals. Another promising new biotechnology application is the devel-
opment of plant-made pharmaceuticals.

Biotechnology is also commonly associated with landmark breakthroughs
in new medical therapies to treat diabetes, hepatitis B, hepatitis C, cancers,
arthritis, haemophilia, bone fractures, multiple sclerosis. Cardiovascular as
well as molecular diagnostic devices than can be used to define the patient
population. Herceptin, is the first drug approved for use with a matching
diagnostic test and is used to treat breast cancer in women.

A more recent field in biotechnology is that of genetic engineering. Genetic
modification has opened up many new fields of biotechnology and allowed the
modification of plants, animals, and even humans on a molecular level.

Informatics24 is defined as the study of the structure, behavior, and in-
teractions of natural and artificial computational systems. It encompasses
the study of systems that represent, process and communicate information,
including all computational, cognitive and social aspects. The central notion
is the transformation of information – whether by computation or communi-
cation, whether by organisms or artifacts. In this sense, informatics can be
considered as encompassing computer science, cognitive science, artificial in-
telligence, information science and related fields, and as extending the scope of
computer science to encompass computation in natural, as well as engineered,
computational systems.

24 In 1957 the Karl Steinbuch (1917–2008) published a paper called “Informatik:

Automatisch Informationsverarbeitung” (i.e. “Informatics: automatic informa-

tion processing”).

The term was coined as a combination of “information” and “automation”, to

describe the science of automatic information processing. The morphology —

informat-ion + -ics — uses “the accepted form for names of sciences, as conics,

linguistics, optics, or matters of practice, as economics, politics, tactics”, and

so, linguistically, the meaning extends easily to encompass both the science of

information and the practice of information processing.
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Informatics includes the science of information the practice of information

processing.

Informatics studies the structure, behavior, and interactions of natural

and artificial systems that store, process and communicate information. It

also develops its own conceptual and theoretical foundations. Since com-

puters, individuals and organizations all process information, informatics has

computational, cognitive and social aspects.

Used as a compound, in conjunction with the name of a discipline, as in

medical informatics, bioinformatics, etc., it denotes the specialization of infor-

matics to the management and processing of data, information and knowledge

in the named discipline.

Informatics is broader in scope than: information theory — the study

of a particular mathematical concept of information; information science —

a field primarily concerned with the collection, classification, manipulation,

storage, retrieval and dissemination of information in human society; artificial

intelligence — the study and engineering of intelligent behavior, learning, and

adaptation, in machines; or computer science — the study of the storage,

processing, and communication of information using engineered computing

devices.

Bioinformatics and computational biology involve the use of techniques

including applied mathematics, informatics, statistics, computer science, ar-

tificial intelligence, chemistry, and biochemistry to solve biological problems

usually on the molecular level. Research in computational biology often over-

laps with systems biology. Major research efforts in the field include sequence

alignment, gene finding, genome assembly, protein structure alignment, pro-

tein structure prediction, prediction of gene expression and protein-protein

interactions, and the modeling of evolution.

The terms bioinformatics and computational biology are often used in-

terchangeably. However bioinformatics more properly refers to the creation

and advancement of algorithms, computational and statistical techniques, and

theory to solve formal and practical problems inspired from the management

and analysis of biological data.

Computational biology, on the other hand, refers to hypothesis-driven in-

vestigation of a specific biological problem using computers, carried out with

experimental or simulated data, with the primary goal of discovery and the

advancement of biological knowledge. Computational biology also includes

lesser known but equally important subdisciplines such as computational bio-

chemistry and computational biophysics.
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A common thread in projects in bioinformatics and computational biology
is the use of mathematical tools to extract useful information from data pro-
duced by high-throughput biological techniques such as genome sequencing.

Life at the Cellular Level (Cell Biology)

Cell biology (also called cellular biology or cytology, from Greek kytos,
“container”) is an academic discipline that studies cells. This includes their
physiological properties, their structure, the organelles they contain, interac-
tions with their environment, their life cycle, division and death. This is done
both on a microscopic and molecular level. Cell biology research extends to
both the great diversity of single-celled organisms like bacteria and the many
specialized cells in multicellular organisms like humans.

Knowing the composition of cells and how cells work is fundamental to
all of the biological sciences. Appreciating the similarities and differences be-
tween cell types is particularly important to the fields of cell and molecular
biology. These fundamental similarities and differences provide a unifying
theme, allowing the principles learned from studying one cell type to be ex-
trapolated and generalized to other cell types. Research in cell biology is
closely related to genetics, biochemistry, molecular biology and developmen-
tal biology.

Every cell typically contains hundreds of different kinds of macromolecules
that function together to generate the behavior of the cell. Each type of
protein is usually sent to a particular part of the cell. An important part of
cell biology is the investigation of molecular mechanisms by which proteins
are moved to different places inside cells or secreted from cells.
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I. Circulatory fluid systems — Body’s Internal Transport

System

There are two main fluid systems in the body: blood and lymph. The

blood and lymph systems are intertwined throughout the body and they are

responsible for transporting the agents of the immune system.

The Blood System

The 5 liters of blood of a 70 kg (54 lb) person constitute about 7% of the

body’s total weight. The blood flows from the heart into arteries, then to

capillaries, and returns to the heart through veins.

Blood is composed of 52–62% liquid plasma and 38–48% cells. The plasma

is mostly water (91.5%) and acts as a solvent for transporting other materials

(7% protein [consisting of albumins (54%), globulins (38%), fibrinogen (7%),

and assorted other proteins (1%)] and 1.5% other stuff). Blood is slightly

alkaline (pH = 7.40±.05) and somewhat heavier than water (density = 1.057±
.009).

All blood cells are manufactured by stem cells, which live mainly in the

bone marrow, via a process called hematopoiesis. The stem cells produce

hemocytoblasts that mature into three types of blood cells: erythrocytes (red

blood cells or RBCs), leukocytes (white blood cells or WBCs), and thrombo-
cytes (platelets).

The leukocytes are further subdivided into granulocytes (containing large

granules in the cytoplasm) and agranulocytes (without granules). The gran-

ulocytes consist of neutrophils (55–70%), eosinophils (1–3%), and basophils

(0.5–1.0%). The agranulocytes are lymphocytes (consisting of B cells and T

cells) and monocytes. Lymphocytes circulate in the blood and lymph systems,

and make their home in the lymphoid organs.

There are 5000–10,000 WBCs per mm3 and they live 5–9 days. About

2,400,000 RBCs are produced each second and each lives for about 120 days

(they are trapped by the spleen. Once there, that organ scavenges usable

proteins from their carcasses). A healthy male has about 5 million RBCs per

mm3, whereas females have a bit fewer than 5 million.
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Normal Adult Blood Cell Counts are:

Red Blood Cells 5.0 ∗ 106/mm3

Platelets 2.5 ∗ 105/mm3

Leukocytes 7.3 ∗ 103/mm3

Neutrophil 50–70%
Lymphocyte 20–40%
Monocyte 1–6%
Eosinophil 1–3%
Basophil < 1%

The proteins on RBCs are responsible for the usual ABO blood grouping,
among other things. The grouping is characterized by the presence or absence
of A and/or B antigens on the surface of the RBCs. Blood type AB means
both antigens are present and type O means both antigens are absent. Type
A blood has A antigens and type B blood has B antigens.

Some of the blood, but not red blood cells (RBCs), is pushed through the
capillaries into the interstitial fluid.

History

As the most extensive visible fluid in the body, blood assumes major med-
ical and symbolic significance. In many societies its shedding, both natural
(as in menstruation) and deliberate, is unclean, impious and unlucky except in
particular solemn and ritual circumstances. Blood is attributed responsibility
not only for thought and sensation but also for life itself.

Greek medical writers confusingly considered it both one of the four hu-
mors and the fluid in which the humor blood predominated. It was the source
of nutrient for many parts of the body, but any excess, plethora, either of it
as humor or of one of its constituent humors was highly dangerous and might
require phlebotomy (bloodletting).

The discovery of the circulation of the blood by Harvey (1578–1657)
established its primacy and many 18th-century authors attributed to it alone
all the properties formerly associated with the other humors. From the end
of the 18th century, physiological investigations concentrated more upon its
constituent parts and assigned properties to them, and, although modern
reliance on blood tests and transfusions has emphasized its role in diagnosis
and therapy, it is now viewed primarily as a carrier and transmitter of other,
more important, chemical substances around the body, e.g. hormones.

It was traditionally observed that blood (one of the humors) was not a
homogeneous substance, settling into a red clot and a colorless fluid (‘plasma’)
separated by a thin white region non-clotting inside the living body often
attributed to vitalism (e.g. by John Hunter (1728–1793)).
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Microscopists like Jan Swammerdam (1637–1680) and M. Malpighi
(1628–1694) described red blood ‘particles’, the larger ‘corpuscles’ (leuko-
cytes) being studied by Hunter’s pupil William Hewson (1739–1774). The
much-smaller platelets were described (1842) by Alfred Donné (1801–1878),
their role in clot formation elucidated (1882) by Giulio Bizzozero (1846–
1901).

From the 1830s, the cell theory provided a sharper framework, J.H. Ben-
nett (1812–1875) and Rudolf Virchow (1821–1902) describing a patholog-
ical increase in leukocytes (leukemia), and Thomas Addison (1793–1860)
observed pathological decrease in red blood cells (anemia). Paul Ehrlich’s
(1854–1915) staining techniques showed several different kinds of leukocytes,
important in inflammation and defense mechanisms. The erythrocytes’ func-
tion in respiration was uncovered from the 1850s, and the complicated cellular
and chemical events in blood coagulation was studied by many, including G.
Hayem (1841–1933) and W.H. Howell (1860–1945).

The Lymph System

Lymph is an alkaline (pH > 7.0) fluid that is usually clear, transparent,
and colorless. It flows in the lymphatic vessels and bathes tissues and organs
in its protective covering. There are no RBCs in lymph and it has a lower
protein content than blood. Like blood, it is slightly heavier than water
(density = 1.019 ± .003).

The lymph flows from the interstitial fluid through lymphatic vessels up to
either the thoracic duct or right lymph duct, which terminate in the subclavian
veins, where lymph is mixed into the blood. (The right lymph duct drains the
right sides of the thorax, neck, and head, whereas the thoracic duct drains
the rest of the body.)

Lymph carries lipids and lipid-soluble vitamins absorbed from the gas-
trointestinal (GI) tract. Since there is no active pump in the lymph system,
there is no back-pressure produced. The lymphatic vessels, like veins, have
one-way valves that prevent back-flow. Additionally, along these vessels there
are small bean-shaped lymph nodes that serve as filters of the lymphatic fluid.
It is in the lymph nodes where antigen is usually presented to the immune
system.

The human lymphoid system has the following:

• primary organs: bone marrow (in the hollow center of bones) and the
thymus gland (located behind the breastbone above the heart), and

• secondary organs at or near possible portals of entry for pathogens: ade-
noids, tonsils, spleen (located at the upper left of the abdomen), lymph nodes
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(along the lymphatic vessels with concentrations in the neck, armpits, ab-
domen, and groin), Peyer’s patches (within the intestines), and the appendix.

History

Ancient writers (e.g. Herophilos, fl 290 BCE) probably noted the
lacteals (abdominal lymphatics) and Gaspare Aselli (1581–1625) definitely
described them as ending in the liver. Jean Pecquet (1622–1674) noted
the thoracic duct in 1647, its connection to the lacteals established (1652) by
Olaf Rudbeck (1630–1702). Francis Glisson (c1597–1677) suggested they
carried fluid lubricating the body cavities back to the blood vessels.

Lymph glands’ (nodes) were described by M.A. Severino (1580–1656)
and Johann Peyer (1653–1712), and associated with the lymphatic system
by Marcello Malpighi (1628–1694). Claims for priority in establishing the
absorbent functions of smaller lymph vessels (through injection experiments)
were contested by William Hunter (1718–1783) and Alexander Monro
secundus (1733–1817). The role of the lymphatic system in the body’s de-
fense mechanisms has been elucidated by modern immunology.

II. The Immune System — Body’s Internal Defense

Introduction

The immune system, our internal defense system, protects the body
against disease-causing organisms and certain toxins. Disease-causing organ-
isms, or pathogens, include certain viruses, bacteria, fungi, and protozoa.
Pathogens enter the body with air, food, and water; during copulation; and
through wounds in the skin. The immune system recognizes pathogens and
toxins and responds to eliminate them. Derived from the Latin for “safe”, the
word immune refers to the early observation that when a person recovered
from smallpox and other serious infections, they were safe from contracting
the same illnesses again. Immunology, the study of internal defense systems of
humans and other animals, is one of the most rapidly changing, challenging,
and exciting fields of biomedical research today.

For more than 50 years, immunologists based their work on the hypothesis
that internal defense depends on the animal’s ability to distinguish between
self and nonself. Such recognition is possible because each individual is bio-
chemically unique. Cells have surface proteins different from those on the cells
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of other species or even other members of the same species. An animal’s im-
mune system recognizes its own cells and can identify those of other organisms
as foreign. Thus when a pathogen invades an animal, its distinctive macro-
molecules stimulate the animal’s defensive responses. A single bacterium may
have from 10 to more than 1000 distinct macromolecules on its surface.

Immunologists are aware of several limitations of the self-nonself hypoth-
esis. For example, the immune system does not typically respond to foreign
molecules that are harmless. In 1994, the U.S. National Institutes of Health,
proposed the danger model, which hypothesizes that the immune system does
more than distinguish between self and nonself. It responds to danger signals
from injured tissues, such as proteins released when cell membranes are dam-
aged.

Most immunologists now agree that internal defense relies on a combi-
nation of factors, including the ability to identify foreign molecules and to
respond to chemical clues from injured tissues. The immune system is a col-
lection of many types of cells and of tissues scattered throughout the body.
Immune responses require communication among cells, or cell signaling. Cells
of the immune system communicate directly by means of their surface mole-
cules and indirectly by releasing messenger molecules. Understanding the
complex signaling systems of the immune system is a major focus of research.

Sometimes pathogens overcome the body’s internal defenses, resulting in
disease. Some diseases, as well as certain genetic mutations, prevent or com-
promise immune function. HIV, the retrovirus that causes AIDS, infects T
cells, an important component of the immune system. The immune system
may overfunction, as in allergic reactions, or it may respond in ways that are
clinically important, such as in Rh incompatibility or the destruction of the
cells of organ transplants. In about 5% of adults in highly developed coun-
tries, certain immune responses are directed against self tissues, resulting in
autoimmune disease.

Among the greatest accomplishments of immunologists are the develop-
ment of vaccines that prevent disease, and techniques for successful tissue
and organ transplantations. Sophisticated research tools, such as gene trans-
fer, have enabled immunologists to expand their knowledge of the cells and
molecules that interact to generate immune responses, and to develop new ap-
proaches to the prevention and treatment of disease. Much has been learned,
and many challenges lie ahead.

An immune response is the process of recognizing foreign or danger-
ous macromolecules and responding to eliminate them. Two main types of
immune responses protect the body: nonspecific and specific. Nonspecific
immune responses, or innate immunity, provide general protection against
pathogens, parasites, some toxins and drugs, and cancer cells.
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Nonspecific immune responses prevent most pathogens from entering the
body and rapidly destroy those that do penetrate the outer defenses. For
example, the cuticle or skin provides a physical barrier to pathogens that
come in contact with an animal’s body. Phagocytosis, another nonspecific
defense, destroys bacteria that invade the body.

Some of the molecules important in nonspecific immune responses recog-
nize and attack certain pathogen- associated molecular patterns, which are
shared by whole groups of viruses, bacteria, or fungi.

Specific immune responses, also referred to as adaptive or acquired im-
munity, are highly specific. Any molecule that cells of the immune system
specifically recognize as foreign is called an antigen. Proteins are the most
powerful antigens, but some polysaccharides and lipids can be antigenic.

Antibodies are highly specific proteins that recognize and bind to specific
antigens. Specific immune responses are directed toward particular antigens
and typically include the production of antibodies. In complex animals, an
important characteristic of specific immune responses is immunological mem-
ory, the capacity to respond more effectively the second time foreign molecules
invade the body.

All invertebrates species that researchers have studied demonstrate the
ability to distinguish between their own cells and those of other species. For
example, sponge cells have specific glycoproteins on their surfaces that enable
them to recognize their own species. When cells of two different species are
mixed together, they reassort according to species. When two different species
of sponges are forced to grow in contact with each other, tissue is destroyed
along the region of contact. Cnidarians (such as corals), annelids (such as
earthworms), arthropods (such as insects), and echinoderms (such as sea stars)
reject tissue grafted from other animal, even from the same species.

Invertebrates have very efficient nonspecific immune mechanisms. For ex-
ample, many invertebrates (cnidarians, annelids, and mollusks) are covered
by mucus that traps and kills pathogens. Tough external skeletons, such as
shells or cuticles, shield the body of many invertebrates. Most invertebrate
coelomates (animals with a coelom) have amoeba-like phagocytes that engulf
and destroy bacteria and other foreign matter. In mollusks, substances in the
hemolymph (blood) enhance phagocytosis.

Researches have identified antimicrobial peptides in all eukaryotes (includ-
ing plants) that have been studied, suggesting an early common origin of these
molecules. More than 800 of these peptides that inactivate or kill pathogens
have been described! When researches inject an antigen into an insect, as
many as 15 antimicrobial peptides are produced within a few hours. Antimi-
crobial peptides are very effective because of their small size (a dozen or fewer
amino acids), which facilitates their rapid production and diffusion.
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What stimulates an animal to produce antimicrobial peptides and other
immune defenses? Animal cells have receptors that recognize certain types
of pathogen molecules, and then signal the cell to produce antimicrobial pep-
tides.

One important family of these signaling receptors, the Toll group, is a focus
of current research. Immunologists first identified the Toll group in the fruit
fly Drosophila. Toll receptors recognize some common molecular features of
classes of pathogens called pathogen-associated molecular patterns, or PAMPs.
Examples of PAMPs include the double-stranded RNA of certain viruses and
peptidoglycan in Gram-positive bacteria.

Certain cnidarians, arthropods, some echinoderms and simple chordates
(such as tunicates) appear to remember antigens for a short period. As men-
tioned earlier, immunological memory enables the body to respond more effec-
tively when it encounters the same pathogens again. Although certain inver-
tebrates demonstrate some specificity and memory, their immune responses
are primarily nonspecific.

A specialized lymphatic system, including lymphocytes, (white blood cells
specialized to carry out immune responses), evolved in the vertebrates. The
lymphatic system performs the sophisticated specific immune responses of
vertebrates.

The Immune System: Cellular Aspects

A major component of the immune system is the class of white blood cells
called lymphocytes. Like all blood cells, they arise from common precursor
cells (stem cells) in the bone marrow. Unlike other blood cells, however, they
can leave the blood vessels and circulate in the lymphatic system. Lymphoid
tissues such as lymph nodes, (as spleen, and, above all, the thymus gland)
play important roles in the working of the immune system.

Two kinds of lymphocytes can be distinguished: T cells and B cells. T
cells develop primarily in the thymus gland and B cells primarily in the bone
marrow, accounting for their names. Much of the cellular aspect of immunity
is the province of the T cells, whereas much of the molecular aspect depends
on the activities of the B cells.

T cells can have a number of functions. As T cells differentiate, each be-
comes specialized for one of the possible functions. The first of these possibili-
ties, that of killer T cells, involves surface receptors that recognize and bind to
antigens, the foreign substances that trigger the immune response. The anti-
gens are present to the T cell by other white blood cells called macrophages.
The macrophages ingest and process antigens, and then present them to T
cells.
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T cells that bind to a given antigen, and only to that antigen, grow when
these conditions are fulfilled. Note the specificity of which the immune system
is capable. Many substances, including ones that do not exist in nature, can
be antigens. The remarkable adaptability of the immune system in dealing
with so many possible challenges is another of its main features. The process
by which only those cells that respond to a given antigen grow in preference
to other T cells is called clonal selection. The immune system can thus be
versatile in its responses to the challenges it meets.

As their name implies, killer T cells destroy antigen-infected cells. They do
so by binding to them and by releasing a protein that perforates the plasma
membrane of the infected cell. This aspect of the immune system is par-
ticularly effective in preventing the spread of viral infection by killing virus-
infected host cells. In a situation such as this, the antigen can be considered
to be all or part of the coat protein of the virus. When the infection subsides,
some memory cells remain, conferring immunity against later attacks from
the same source.

The Immune System: Molecular Aspects

Antibodies are Y-shaped molecules, consisting of two identical heavy
chains and two identical light chains, held together by disulfide bonds. They
are glycoproteins, with oligosaccharides linked to their heavy chains. Each
light chain and each heavy chain has a constant region and a variable region.
The variable region (also called the V domain) is found at the prongs of the
Y and is the part of the antibody that binds to the antigen. The binding sites
for the antibody on the antigen are called epitopes.

Most antigens have several such binding sites, so that the immune system
will have several possible avenues of attack of naturally occurring antigens.
Each antibody can bind to two antigens, and each antigen usually has several
binding sites for antibody, giving rise to a precipitate that is the basis of
experimental methods for immunological research. The constant region (the
C domain) is located at the hinge and the stem of the Y; it is this part of
the antibody that is recognized by phagocytes and by the complement system
(the portion of the immune system that destroys antibody-bound antigen).

How does the body produce so many highly diverse antibodies to respond
to essentially any possible antigen? The number of possible antibodies is
virtually unlimited, as is the number of words in the English language. In
a language, the letters of the alphabet can be arranged in countless ways
to give a variety of words, and the same possibility for enormous numbers
of rearrangements exists with the gene segments that code for portions of
antibody chains.
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Each B cell (and each progeny plasma cell) produces only one kind of anti-
body. In principle each such cell should be a source of a supply of homogeneous
antibody by cloning. This is not possible in practice because lymphocytes do
not grow continuously in culture. In the late 1970s Georges Köhler and
César Milstein developed a method to circumvent this problem, a feat for
which they received the Nobel Prize in physiology or medicine in 1984.

The technique requires fusing lymphocytes that make the desired antibody
with mouse myeloma cells. The resulting hybridoma (hybrid myeloma), like
all cancer cells, can be cloned in culture and produces the desired antibody.
Since the clones are the progeny of a single cell, they produce homogeneous
monoclonal antibodies. In this way it is possible to produce antibodies to
almost any antigen in quantity. Monoclonal antibodies can be used to assay
for biological substances that can act as antigens. A striking example of their
usefulness is in testing blood for the presence of HIV; this procedure has
become routine to protect the public blood supply.

We have been considering active immunity, immunity that develops fol-
lowing exposure to antigens. Active immunity can be naturally or artificially
induced. If someone with chickenpox sneezes near you and you contract the
disease, you develop active immunity naturally.

Active immunity can also be artificially induced by immunization, that is,
by exposure to a vaccine. When an effective vaccine is introduced into the
body, the immune system actively develops clones of cells, produces antibod-
ies, and develops memory cells.

The first vaccine was prepared in 1796 by British physician Edward Jen-
ner against vaccinia, the cowpox virus. The term vaccination was thus de-
rived. Jenner’s vaccine provided humans with immunity against the deadly
disease smallpox. Jenner had no knowledge of microorganisms or of immunol-
ogy, and it remained for French chemist Louis Pasteur to begin to develop
scientific methods for preparing vaccines 100 years later. Pasteur showed
that inoculations with preparations of attenuated (weakened) pathogens could
be used to develop immunity against the virulent (infectious) form of the
pathogen.

However, not until 20th century advances in immunology – for example,
Burnet’s clonal selection theory in 1957 and the discovery of T and B cells in
1965 – did scientists gain a modern understanding of vaccines. Effective vacci-
nation stimulates the body to launch an immune response against the antigens
contained in the vaccine. Memory cells develop, and future encounters with
the same pathogen are dealt with rapidly.

Microbiologists prepare effective vaccines in a number of ways. They
can attenuate a pathogen so it loses its ability to cause disease. When
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pathogens are cultured for long periods in non-human cells, mutations adapt
the pathogen to the nonhuman host so that they no longer cause disease in
humans. This is how the Sabin polio vaccine and the measles vaccine are
produced.

Whooping cough and typhoid fever vaccines are made from killed
pathogens that still have the necessary antigens to stimulate an immune re-
sponse. Tetanus and botulism vaccines are made from toxins secreted by the
respective pathogens. The toxin is altered so that it can no longer destroy
tissues, but its antigenic determinants are still intact.

Most vaccines consist of the entire pathogen, attenuated or killed, or of a
protein from the pathogen. Researches are investigating several approaches
that would reduce potential side effects. For example, they are developing
DNA vaccines (or RNA vaccines), made from a part of the pathogen’s genetic
material. The DNA of the pathogen is altered so that it transfers genes that
specify antigens. When injected into a patient, the altered DNA is taken up
by cells and makes its way to the nucleus. The encoded antigens are manu-
factured and stimulate both cell-mediated and antibody-mediated immunity.
Several DNA vaccines, including vaccines to prevent and treat HIV infections,
are in clinical trials.

Specific Immune Responses

An antibody molecule, also called immunoglobulin (Ig), has two main func-
tions: It combines with antigen, and it activates processes that destroy the
antigen that binds to it. For example, an antibody may stimulate phagocy-
tosis. Note that an antibody does not destroy an antigen directly; rather, it
labels the antigen for destruction.

The basic structure of the immunoglobulin molecule was clarified by Rod-
ney Porter, of the University of Oxford in England, and Gerald Edelman,
of Rockefeller University in New York, during the 1960s. Porter used the plant
enzyme papain, a protease, to split Ig into fragments. Based on his findings,
Porter developed a working model of the structure of the Ig molecule and was
the first to suggest that it is Y-shaped. These researchers then constructed an
accurate model of the antibody molecule. Porter and Edelman won the 1972
Nobel Prize in Medicine for their contributions.

Two fragments of the antibody molecule bind antigen and are referred to
as Fab fragments (Fab stands for antigen-binding fragment). The fragment
that interacts with cells of the immune system is the Fc fragment (c indicates
that this fragment crystallizes during cold storage). Many cells of the immune
system have Fc receptors.
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A typical antibody is a Y-shaped molecule in which the two arms of the
Y (the Fab portions) bind with antigen. This shape enables the antibody
to combine with two antigen molecules and allows the formation of antigen-
antibody complexes. While the arms of the Y bind to antigen, the tail of the Y,
the Fc portion, interacts with cells of the immune system, such as phagocytes,
or binds with molecules of the complement system.

The antibody molecule consists of four polypeptide chains: two identical
long chains called heavy chains, and two identical short chains called light
chains. Each chain has a constant region and a variable region. In the constant
(C) region, of the heavy chains, the amino acid sequence is constant within a
particular immunoglobulin class. One can think of the C region as the handle
portion of a door key. Like the pattern of bumps and notches at the part of
a key that slides into a lock, the variable (V) region has a unique amino acid
sequence. The variable region of the immunoglobulin extends outward from
the B cell, whereas the constant region anchors the molecule to the B cell.

At its variable regions, the antibody folds three-dimensionally, assuming
a shape that enables it to combine with a specific antigen. When they meet,
antigen and antibody fit together somewhat like a lock and key. They must
fit in just the right way for the antibody to be effective. A given antibody
can bind with different strengths, or affinities, to different antigens. In the
course of an immune response, higher-affinity antibodies are generated.

In an antigen, specific sequences of amino acids make up an antigenic
determinants, or epitope. These sequences give part of the antigen molecule a
specific shape that is recognized by an antibody or T cell receptor. Usually, an
antigen has many different antigenic determinants on its surface; some have
hundreds.

How can the immune system recognize every possible antigen? In 1956,
the clonal selection hypothesis was developed which proposes that before a
lymphocyte ever encounters an antigen, the lymphocyte has specific receptors
for that antigen on its surface. When an antigen bins to a matching receptor
in a lymphocyte, it activates the lymphocyte, which then gives rise to a clone
of cells with identical receptors. A major problem with this hypothesis was
its suggestion that our cells must contain millions of separate antibody genes.
Since each human cell has a large amount of DNA, it is not enough to provide
a different gene to code for each of the millions of possible specific antibody
molecules.

In 1976, immunologists demonstrated that three separate families of genes
code for immunoglobulins and that each gene family contains a large number
of DNA segments that code for V regions. Recombination of these DNA seg-
ments during the differentiation of B cells is responsible for antibody diversity.
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Note that rearrangement of these DNA segment produces an enormous
number of potential combinations! Millions of different type of B (and T)
cells are produced. By chance, one of those cells may produce just the right
antibody to destroy the pathogen that invades the body.

Before 1975, the only method for obtaining antibodies for medicine and
research was immunizing animals and collecting their blood. Then, immu-
nologists developed monoclonal antibodies – identical antibodies produced by
cells cloned from a single cell.

There are three memory systems in the human body:

• Central nervous system memory, located in the brain.

• Immunological memory, located in nonlymphatic tissues including the
lung, liver, kidney, and intestine.

• Genetic memory.

Immunological memory manifest itself in “memory B cells” that continue
to live and produce small amounts of antibody long after the body has over-
come an infection. If the same pathogen enters the body again, the antibody
immediately targets it for destruction. At the same time, specific memory cells
are stimulated to divide, producing new clones of plasma cells that produce
the same antibody.

III. The Nervous System — Body’s Communication Network

I. Introduction

Neurobiology is the study of cells of the nervous system and the organiza-
tion of these cells into functional circuits that process information and mediate
behavior. It is a subdiscipline of both biology and neuroscience. Neurobiology
differs from neuroscience, a much broader field that is concerned with any sci-
entific study of the nervous system. Neurobiology should also not be confused
with other subdisciplines of neuroscience such as computational neuroscience,
cognitive neuroscience, behavioral neuroscience, biological psychiatry, neurol-
ogy, and neuropsychology despite the overlap with these subdisciplines.
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Neuroscience is an interdisciplinary program of study that provides an
interconnectedness of the sciences and requires the synthesis and integra-
tion of different focal areas of investigation such as, neuroanatomy, neu-
roimaging, neuropsychopharmacology, neurophysiology, molecular neurobiol-
ogy, neuroendocrinology, and how brain structures function to regulate be-
havior.

The integrative nature of neuroscience requires the tools provided by expe-
rience and training in general biology, genetics, physiology, molecular biology,
chemistry (general, organic and biochemistry), physics, psychology (behavior,
memory, cognition, sensation & perception) and research design and analysis.

More information has been discovered about the brain in the last ten years
of investigative study than has ever been known before, in part, due to the fact
that the 1990s were proclaimed as the “Decade of the Brain.” Neuroscience
is one of the most exciting and rapidly expanding fields of study that is only
limited by the boundaries of the advancements in technology.

Below, are listed some of the most notable discoveries and achievements in
Neuroscience in the 20th century.

Neuroscience subfields: Neurobiology, Cognitive Neuroscience, Compu-
tational Neuroscience, Neural Engineering, Neuroanatomy, Neurochemistry,
Neuroimaging, Neurolinguistics, Neurology, Neuropharmacology, Neurophys-
iology, Neuropsychology, Psychopharmacology, Systems Neuroscience.

II. Neural signaling

An organism’s ability to survive and to maintain homeostasis25 depends
largely on how effectively it detects and responds to stimuli — changes in the
environment. Stimuli within the body include internal signals such as hunger
or lowered blood pressure. Stimuli from the outside world include changes in
temperature, or light, an odor, or movement that may indicate the presence
of a predator or of prey.

In all animals except the sponges, responses to stimuli depend on cell
signaling by networks of nerve cells, or neurons. These cells are specialized
for transmitting propagating and receiving electrochemical impulses, electrical
signals and chemical messages. In the human brain alone, there are over 1011

(a hundred billion) neurons.

25 The capacity of an organism to maintain internal stability of equilibrium. Coined

(1926) by W.B. Cannon (1871–1945). Much modern physiological work on

homeostasis concerns itself with bio-feedback mechanisms which are controlled

by the autonomic nervous system.
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In most animals, neurons and supporting cells are organized as a nervous
system that, like a computer takes in information, integrates it, and responds.
Just how animals respond to stimuli depends on how their neurons are orga-
nized and connected to one another. A single neuron in the vertebrate brain
may be functionally connected to thousands of other neurons. The endocrine
system works with the nervous system to regulate many behaviors and phys-
iological processes. The endocrine system generally provides relatively slow
long-lasting regulation, whereas the nervous system typically permits more
rapid, but brief, responses.

Neurobiology is one of the most exciting areas of biological research. Many
investigations are studying neurotransmitters, the chemical messengers used
by neurons to signal other neurons, and the receptor that bind with the neu-
rotransmitters.

Another active area of research is the role of glial cells in the nervous sys-
tem. These cells support and protect the neurons and have many regulatory
functions. The glial cells provide glucose for neurons and also help regulate
the composition of the extracellular fluid in the brain and spinal cord. Neuro-
biologists recently demonstrated that astrocytes induce and stabilize synapses
(connections between neurons) in the brain. Although astrocytes can generate
weak electrical signals, they communicate with one another and with neurons
mainly with chemical signals.

A nerve consist of many parallel, independent signal paths, each of which
is a nerve cell or fiber. Each cell is capable of transmitting signals in only
one direction; separate cells carry signals to or from the brain. Each cell has
an input end, a long conducting portion or axon, and an output end. It is
these ends that give the cell its unidirectional character. The input end may
be a transducer (stretch receptor, temperature receptor, etc.) or a junction
(synapse) with another cell. A threshold mechanism is built into the input
end; when an input signal exceeding a certain level is received, the nerve fires
and an impulse of fixed size and duration travels down the axon. There may
be several inputs at the synapse which may either aid or inhibit each other,
depending on the nature of the synapse.

The axon is a long tail on the nerve cell that transmits the impulse without
change of shape. It may be more than a meter in length, extending in the
human, for example, from the brain to low in spinal cord or from the spinal
cord to a finger or toe. Bundles of axons constitute what we usually think of
as a nerve. The output end of the axon branches out in fine nerve endings,
which appear to be separated by a gap from the next nerve or muscle cell
which they drive.

The long, cylindrical axon has properties similar to those of an electric
cable. Its diameter may range from less than a micron to 500 μm for the giant



5352 6. Deep Principles – Complex Structures

axon of a squid; in humans, the upper limit is about 20 μm. Pulses travel
along it with speeds ranging from 0.6 ms−1 to 100 ms−1, depending, among
other things, on the diameter of the axon. The axon core may be surrounded
by either a membrane (for an unmyelinated fiber) or a much thicker sheath
of fatty material (myelin), wound on like electrical tape. A myelinated fiber
has its sheath interrupted at intervals and replaced by a short segment of
membrane similar to that on an unmyelinated fiber. These interruptions are
called the nodes of Ranvier.

The axon may be removed from the rest of its cells and still will conduct
nerve impulses. Its conduction properties depend on the membrane; the inte-
rior fluid (axoplasm) has been squeezed out of squid giant axons and replaced
by an electrolyte solution without altering appreciably the propagation of the
impulses. The axoplasm does contain chemicals essential to the long-term
metabolic requirements of the cell.

Most animal cells have a difference in electrical charge across the plasma
membrane — a more negative electrical charge inside the cell compared with
the electrical charge of the extracellular fluid outside. The plasma membrane
is said to be electrically polarized, meaning that one side, or pole, has a
different charge from the other side. When electrical charges are separated
in this way, a potential energy difference exists across the membrane. This
difference in electrical charge across the plasma membrane gives rise to an
electrical voltage gradient.

The voltage measured across the plasma membrane is called the membrane
potential. If the charges are permitted to come together, they have the ability
to do work. Thus the cell can be thought of as a biological battery. In
excitable cells, such as neurons and muscle cells, the membrane can transmit
signals to other cells.

The membrane potential in a resting (not excited) neuron or muscle cell is
its resting potential. The resting potential is generally expressed in units called
millivolts (mV). (A millivolt equals one thousandth of a volt.) Voltage is the
force that causes charged particles to flow between two points. Like other cells
that can produce electrical signals, the neuron has a resting potential of about
70 mV. By convention this is expressed as −70 mV because the cytosol close
to the plasma membrane is negatively charged relative to the extracellular
fluid.

Biologists cam measure the potential across the membrane by placing one
electrode inside the cell and a second electrode outside the cell, and connect-
ing through a very sensitive voltmeter or oscilloscope. If one places both
electrodes on the outside surface of the neuron, no potential difference be-
tween them is registered. (All points on the same side of the membrane have
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the same charge.) However, once one of the electrodes penetrates the cell, the
voltage changes from zero to approximately −70mV.

Two main factors determine the magnitude of the membrane potential: (1)
differences in the concentrations of specific ions inside the cell compared with
the extracellular fluid, and (2) selective permeability of the plasma membrane
to these ions. The distribution of ions inside neurons and in the extracellu-
lar fluid surrounding them is like that of most other cells in the body. The
potassium ion (K+) concentration is about 10 times greater inside than out-
side the cell. In contrast, the sodium ion (Na+) concentration is about 10
times greater outside than inside. This asymmetric distribution of ions across
the plasma membrane at rest is brought about by the action of selective ion
channels and ion pumps. In vertebrate neurons (and skeletal muscle fibers),
the resting membrane potential depends mainly on the diffusion of ions down
their concentration gradients.

Ions cross the plasma membrane by diffusion through ion channels that
are formed by membrane proteins. Net movement of ions occurs from an area
of higher concentration of that ion to one of lower concentration. Typically,
these channels allow only specific types of ions to pass.

Neurons have three types of ion channels: passive ion channels, voltage-
activated channels, and chemically activated ion channels. Passive ion chan-
nels permit the passage of specific ions such as Na+, K+, Cl−, and Ca2+.
Unlike voltage-activated and chemically activated ion channels, passive ion
channels are not controlled by gates.

Potassium channels are the most common type of passive ion channel in
the plasma membrane, and cells are more permeable to potassium than to
other ions. In fact, in the resting neuron, the plasma membrane is up to 100
times more permeable to K+ than to Na+. Sodium ion pumped out of the
neuron cannot easily pass back into the cell, but K+ pumped into the neuron
easily diffuse out.

Potassium ions leak out through passive ion channels following their con-
centration gradient. As these positively charged ions diffuse out of the neu-
ron, they increase the positive charge in the extracellular fluid outside the
cell relative to the charge inside the cell. The resulting change in the electri-
cal gradient across the membrane influences the flow of ions. This electrical
gradient forces some of the positively charged potassium ion back into the
cell.

At the input end of a nerve cell, the response to chemicals from a synapse
is often an increase in membrane permeability to sodium ions, which causes
an increase in the interior potential. In other cases the interior potential
becomes more negative and firing is inhibited. If the potential becomes high
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enough (that is, more positive or less negative), the regenerative action of the
membrane takes over and the cell initiates an impulse.

If the input end of the cell acts as a transducer, the interior potential
rises as the cell is stimulated. If the input is from another nerve, the signal
may cause the nerve to fire, or it may cause the potential to increase by a
subthreshold amount so that two or more stimuli must be received simultane-
ously to cause firing, or it may decrease the potential and inhibit stimulation
by another nerve at the synapse. Comparison of the axoplasm with the inter-
stitial fluid surrounding each axon shows an excess of potassium and a deficit
of sodium and chloride ions within the axon.

A typical axon might have a radius of 5 μm = 5000 nm If the axon is not
myelinated, the thickness of the cell membrane might be 5–10 nm; a myelin
layer might be 2000 nm thick, with nodes of Ranvier spaced every 1–2 mm.

The inside of the cell has an electrical potential about 70 mV less than
outside the cell.

As the pulse passes by, the potential at a fixed point on the axon rises in a
millisecond or less to about +40 mV. Then it falls back to about –90 mV and
finally recovers slowly to the resting value of –70 mV. The membrane is said to
depolarize and then repolarize. The regenerative action that produces these
sudden changes of membrane potential is caused by changing permeability of
the membrane to sodium and potassium ions.

At the end of a nerve cell the signal passes to another nerve cell or to
a muscle cell across a synapse or junction. There are gaps of 10–20 nm
between presynaptic and postsynaptic nerve cells and gaps of 50–100 nm of
the neuromuscular junction. In some cases such as the heart, the transmission
may be electrical; yet in many cases the signal is carried by chemicals.

At most vertebrate neuromuscular junctions, the nerve impulse is followed
by an electrical impulse which propagates throughout the muscle fiber and ini-
tiates contraction. There is good experimental evidence that acetylcholine is
released by the nerve endings when the nerve fires. It increases the perme-
ability of the nearby muscle membrane to sodium, which then leaks in and
depolarizes the membrane.

III. Mathematical Models

Neuron physiology describes the electrical properties of nerve cell mem-
brane. Models of nerves are based on the Nernst equation (W.H. Nernst,
1864–1941) that determines a cell membrane’s potential from the ion concen-
trations near it. A neuron consists of dendrites that receive signals, a cell
body that synthesized incoming signals and generates new ones, an axon that
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transmits new signals away from the cell body, and a synapse that transmits
the signals to other cells. The structure and function of synapses play im-
portant roles in this study. Neurotransmitters (chemical molecules) released
at synapses in response to changes in membrane voltage communicate these
changes to the neuron’s environment.

Attempts to describe a nerve cell’s electrical behavior have been based on
electrical circuit analogies and their mathematical models.

The Hodgkin-Huxley model of nerve membrane (1952), was based on ob-
servations of neural signals propagating in the nerve axon of a giant squid.
While it does not accurately describe all aspects of membrane behavior, it has
been instrumental in suggesting and promoting understanding of a variety of
important experiments.

An electrical potential is established across a cell’s membrane by having
different concentrations of electrically charged chemical species inside and
outside of a semipermeable membrane separates two regions of space that
have concentrations of ions, e.g. C1 and C2, inside and outside, respectively,
then Nernst equation states that the resulting potential E is given by E =
(RT

q ) log(C1
C2

), when R is a gas constant, T is the absolute temperature. This
shows how to compute the membrane potential once the ion concentrations
inside and outside are known.

The ions most important to the cell membrane potential are sodium (Na+)
and potassium (K+). Each ionic species has associated with it a membrane
potential that is maintained by a pump in the equilibrium, the Nernst equation
shows that

ENa = (
kT

q
) log(

CNa
0

CNa
i

) = 55mV,

EK = (
kT

q
) log(

CK
0

CK
i

) = −75mV.

These are referred to as the sodium and potassium resting potentials.

The main parts of interest in the neuron are the dendrites, which receive
signals from impinging axons, the cell body that can generate electrical ac-
tivity, usually in the from of a voltage pulse called an action potential, the
axon, which carries an action potential from the cell body to the synapse, and
the synapse, which causes chemical signals to be released outside the cell in
response to the arrival of an action potential.

Chemical signals are molecules called neurotransmitters. These diffuse
across the synaptic gap to a dendrite and cause an electrical potential to
be created across the dendrite’s membrane. Eventually, this either causes
the cell body to fire (i.e., creates an action potential) or inhibits it from
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firing. Neuron membranes at rest are impermeable to (Na+). Therefore, the
observed potential is near EK . When excited, (Na+) channels open rapidly
and the membrane potential approaches ENa. The (K+) channels opens more
slowly, but eventually returns the membrane potentials to near EK .

The mechanisms that control these channels remain unknown, although
many models of membrane potentials and currents have been derived and
used effectively to suggest experiments and to interpret data.

Action potentials arriving at a synapse, called presynaptic potentials,
cause vesicles containing chemical neurotransmitters to migrate to the synapse
membrane and release their contents into the synaptic gap.

The neurotransmitters diffuse across the synaptic gap, though some are
lost from the gap. The molecules that arrive at the postsynaptic membrane
interact with it to modify its membrane potential. If c(t) denotes the con-
centration of neurotransmitter in the gap at time t, this increases in response
to the arrival of action potential and decreases because of chemical binding
with the postsynaptic membrane and diffusion out of the gap. These chemical
kinetics are modeled by the equation

dc/dt = −kdif c − kpost c + S

Basically the axon is a long cylindrical tube which extends from each
neuron and electrical signals propagate along its membrane, about 50–
70 Ångströms thick. The electrical pulses arise because the membrane is
preferentially permeable to various chemical ions with the permeabilities af-
fected by the currents and potentials present. The key elements in the system
are potassium (K+) ions and sodium (Na+) ions. In the rest state there is
a transmembrane potential difference of about −70 millivolts (mV) due to
the higher concentration of (K+) ions within the axon as compared with the
surrounding medium.

The deviation in the potential across the membrane, measured from the
rest state, is a primary observable in experiments. The membrane perme-
ability properties change when subjected to a stimulating electrical current
I : they also depend on the potential. Such a current can be generated, for
example, by a local depolarization relative to the rest state.

Let us take the positive direction for the membrane current, denoted by I,
to be outwards from the axon. The current I(t) is made up of the current due
to the individual ions which pass through the membrane and the contribution
from the time variation in the transmembrane potential, that is the membrane
capacitance contribution. Thus we have

I(t) = C
dV

dt
+ Ii, (1)
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where C is the capacitance and Ii is the current contribution from the
ion movement across the membrane. Based on experimental observation
Hodgkin and Huxley (1952) took

Ii = INa + IK + IL,

= gNam3h(V − VNa) + gKn4(V − VK) + gL(V − VL), (2)

where V is the potential and INa, IK and IL are respectively the sodium,
potassium and “leakage” currents: IL is the contribution from all the other
ions which contribute to the current. The g’s are constant conductances
with, for example, gNam3h the sodium conductance, and VNa, VK and VK

are constant equilibrium potentials. The m, n and h are variables, which are
determined by the differential equations

dm

dt
= αm(V )(1 − m) − βm(V )m,

dn

dt
= αn(V )(1 − n) − βn(V )n, (3)

dh

dt
= αh(V )(1 − h) − βh(V )h,

where the α and β are given functions of V (again empirically determined by
fitting the results to the data). αn and αm are qualitatively like (1+tanh V )/2
while αh(V ) is qualitatively like (1 − tanh V )/2, which is a “turn-off” switch
if V is moderately large.

If an applied current Ia(T ) is imposed the governing equation, using (1),
becomes

C
dV

dt
= −gNam3h(V − VNa) − gKn4(V − VK) − gL(V − VL) + Ia (4)

The system (4) with (3) constitute the 4-variable model which was solved
numerically by Hodgkin and Huxley (1952).

If Ia = 0, the rest state of the model (3) and (4) is linearly stable but
is excitable. That is, if the perturbation from the steady state is sufficiently
large there is a large excursion of the variables in their phase space before
returning to the steady state. If Ia �= 0 there is a range of values where
regular repetitive firing occurs; that is – the mechanism displays limit cycle
characteristics. Both types of phenomena have been observed experimentally.

Because of the complexity of the equation system, various simpler mathe-
matical models, which capture the key features of the full system, have been
proposed, the best known and particularly useful one is the FitzHugh-Nagumo
model (FitzHugh 1961, Nagumo et al. 1962).
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The time scales for m, n and h in (3) are not all of the same order. The
time scale for m is much faster than the others, so it is reasonable to assume
it is sufficiently fast such that it relaxes immediately to its value determined
by setting dm/dt = 0 in (3). If we also set h = h0, a constant, the system
still retains many of the features experimentally observed. The resulting 2-
variable model in V and n can then be qualitatively approximated by the
dimensionless system

du

dt
= f(u) − ω + Ia,

dv

dt
= bu − γv,

(5)
f(u) = v(a − u)(u − 1), (6)

where 0 < a < 1 and b and γ are positive constants. Here u is like the
membrane potential V , and v plays the role of all three variables m, n and h
in (3).

It can be shown that this system of equations governs the existence of
traveling pulses which only propagate if a certain threshold perturbation is
exceeded. By a pulse here, we mean a wave which represent an excursion
from a steady state and back to it – like a solitary wave on water.

If in (5) we assume Ia = 0 (no applied current) and allow spatial diffusion
in the transmembrane potential

du

dt
= f(u) − v + D

∂2u

∂x2
,

dv

dt
= bu − γv,

(7)
f(u) = u(a − u)(u − 1), (8)

Here, u is directly related to the membrane potential V and v plays the role
of several variables associated with terms in the contribution to the membrane
current from sodium, potassium and other ions. The “diffusion” coefficient D
is associated with the axial current in the axon. The parameters 0 < a < 1,
b and γ are all positive.
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IV. The Endocrine System — Body’s Messengers and Regulators.

Introduction

A caterpillar becomes a butterfly. A crustacean changes color to blend with
its background. A young girl develops into a woman. An adult copes with
chronic stress. These physiological processes and many other adjustments
of metabolism, fluid balance, growth and development, and reproduction are
regulated by the endocrine system. This system works closely with nervous
system to maintain homeostasis, the steady state of the body.

The endocrine system is a diverse collection of cells, tissues, and organs,
including specialized endocrine glands that produce and secrete hormones,
chemical messengers responsible for the regulation of many body processes.
Hormones excite, or stimulate, changes in specific tissues.

Endocrine glands have no ducts; they secrete hormones directly into the
interstitial fluid or blood. Hormones are typically transported by the blood
and produce a characteristic response only after they reach target cells and
bind with specific receptors. Target cells, the cells influenced by a particular
hormone, may be another endocrine gland or in an entirely different type of
organ, such as a bone or the kidney. Target cells may be located far from the
endocrine gland. For example, the vertebrate thyroid gland secretes hormones
that stimulate metabolism in tissues throughout the body. Several types of
hormones may be involved in regulating the metabolic activities of a particular
type of cell. In fact, many hormones produce a synergistic effect in which the
presence of one hormone enhances the effects of another.

Endocrinologists extract the suspected compound from the endocrine tis-
sue of one animal and inject it into an experimental animal from which the tis-
sue producing the compound has been removed. Deficiency symptoms should
be relieved by replacing the suspected hormone. Researchers then isolate
the active compound and determine its chemical structure. Finally, the com-
pound is synthesized in the laboratory and injected into experimental animals.
If its effects are those predicted, the researchers have data to support their
hypothesis.

Using such procedures, endocrinologists have identified about 10 discrete
endocrine glands. More recently investigators have identified specialized cells
in the digestive tract, heart. kidneys, and many other parts of the body that
also release hormones. In addition, some neurons release hormones. As a
result of these discoveries, the scope of endocrinology has been broadened
to include the production and actions of chemical messengers produced by a
wide variety of organs, tissues, and cells.
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One active focus of research is the study of the mechanisms of hormone
action, which includes characterizing receptors and identifying the molecules
involved in signal transduction. Some endocrinologists now use a reverse
strategy for discovering new hormones and signaling pathways within the
cell. They focus on “orphan” nuclear receptors, those for which ligands (the
molecules that bind with them) are not yet known. Some of these “orphan”
receptors are receptors for hormones that have not yet been identified. Using
this strategy, researchers have identified intracellular signaling pathways for
steroids, fatty acids, and several other compounds.

Cell signal one another with neurotransmitters, hormones, and local reg-
ulators. Some chemical compounds function as all three of these types of
signals. Thus a neuron, endocrine gland, or some other cell type all may
secrete the same chemical message. However, the same message can have
different meanings for various target cells.

Pheromones are chemicals messengers that animals produce for commu-
nication with other animals of the same species. Because pheromones are
generally produced by exocrine glands and do not regulate metabolic activ-
ities within the animal that produces them, most biologists do not classify
them as hormones.

Endocrine glands differ from exocrine glands (such as sweat glands and
gastric glands) that release their secretions into ducts. Endocrine glands have
no ducts, and secrete their hormones into the surrounding interstitial fluid or
blood. Typically, hormones diffuse into capillaries and are transported by the
blood to target cells. biologists have discovered that in addition to the discrete
classical endocrine glands, specialized cells in many tissues and organs (such
as kidneys and heart) also release hormones or hormone-like substances.

The complexity of animal physiology challenges simplistic definitions. As
new chemical signals and their modes of action have been discovered, the
traditional definition of a hormone as a substance secreted by an endocrine
gland and transported by the blood has become inadequate.

Certain neurons, known as neuroendocrine cells, are an important link
between the nervous and endocrine systems. Neuroendocrine cells produce
neurohormones that are transported down axons and released into the in-
terstitial fluid. they typically diffuse into capillaries and are transported by
the blood. invertebrate endocrine systems are largely neuroendocrine. In
vertebrates, the hypothalamus produces several neurohormones that link the
nervous system with the pituitary gland, an endocrine gland that secretes
several hormones.

A local regulator is a signaling molecule that diffuses through the inter-
stitial fluid and acts on nearby cells. Certain chemical compounds that are
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indisputably hormones because they are typically transported by the blood,
under some conditions acts as local regulators. In autocrine regulation, a hor-
mone, or other regulator, acts on the very cells that produce it. For example,
the female hormone estrogen, which functions as a classical hormone, may
also exert an autocrine effect that stimulates additional estrogen secretion.
Estrogen can also act on nearby cells, a type of local regulation known as
paracrine regulation.

Local regulators include local chemical mediators such as histamine,
growth factors, and prostaglandins.

Histamine is stored in mast cells and is released in response to allergic
reactions, injury, or infection. Histamine causes blood vessels to dilate and
capillaries to become more permeable. More than 50 growth factors, typically
peptides, stimulate division and normal development in specific types of cells.
Growth factors have autocrine or paracrine effects. Nitric oxide (NO), another
local regulator, is produced by many types of cells, including those lining blood
vessels. It relaxes nearby smooth muscle fibers, dilating the blood vessel.

Prostaglandins are modified fatty acids released continuously by the cells
of most tissues. Biologists have grouped them into nine different classes. Al-
though present in very small quantities, these local regulators affect a wide
range of body processes. Prostaglandins are paracrine regulators that act on
cells in their immediate vicinity. They modify cyclic adenosine monophos-
phate (cAMP) levels and interact with other hormones to regulate various
metabolic activities.

The major prostaglandin target is smooth muscle. Some prostaglandins
stimulate smooth muscle to contract, whereas others cause relaxation. Thus
some reduce blood pressure, whereas others raise it. Prostaglandins synthe-
sized in the temperature-regulating center of the hypothalamus cause fever.
In fact, nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin and
ibuprofen reduce fever and decrease inflammation by inhibiting prostaglandin
synthesis.

Because prostaglandins are involved in the regulation of so many metabolic
processes, they have great potential for a variety of clinical uses. Physicians
use them to induce labor in pregnant women, to induce abortion, and to
promote the healing of ulcers in the stomach and duodenum. Prostaglandins
may someday be used to treat a wide variety of illnesses, including asthma,
arthritis, kidney disease, certain cardiovascular disorders, and some forms of
cancer.

Although hormones are chemically diverse, they generally belong to one
of four different chemical groups: (1) fatty acid derivatives, (2) steroids, (3)
amino acid derivatives, or (4) peptides or proteins.
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The endocrine system provides an electrochemical connection from the
hypothalamus of the brain to all the organs that control the body metabolism,
growth and development, and reproduction.

There are two types of hormones secreted in the endocrine system:
steroidal and non-steroidal, or protein based hormones. Signal transduction
of some hormones with steroid structure involves nuclear hormone receptor
proteins that are a class of ligand activated proteins that, when bound to
specific sequences of DNA serve as on-off switches for transcription within
the cell nucleus.

These switches control the development and differentiation of skin, bone
and behavioral centers in the brain, as well as the continual regulation of
reproductive tissues. They also bind to receptor sites, and activate second
messenger systems for more rapid responses. Nonsteroidal hormones bind to
receptor sites on the external surface of the cell membrane and use a second
messenger method of altering internal cell functions, by altering the pathways
already existing in the cells, by activating or deactivating enzymes which
modify existing proteins.

The endocrine system regulates its hormones through negative feedback.
Increases in hormone activity decrease the production of that hormone. The
immune system and other factors contribute as control factors also, altogether
maintaining constant levels of hormones.

There are three different kinds of hormones based on their chemical com-
position:

Amines

Amines, such as norepinephrine, epinephrine, and dopamine, are derived
from single amino acids, in this case tyrosine. Thyroid hormones such as
3,5,3’-triiodothyronine (T3) and 3,5,3’,5’-tetraiodothyronine (thyroxine, T4)
make up a subset of this class because they derive from the combination of
two iodinated tyrosine amino acid residues.

Peptide and Protein

Peptide hormones and protein hormones consist of three (in the case
of thyrotropin-releasing hormone) to more than 200 (in the case of follicle-
stimulating hormone) amino acid residues and can have molecular weights as
large as 30,000. All hormones secreted by the pituitary gland are peptide hor-
mones, as are leptin from adipocytes, ghrelin from the stomach, and insulin
from the pancreas.

Steroid

Steroid hormones are derived from cholesterol and are subdivided into
those with an intact steroid nucleus (gonadal and adrenal steroids) and those
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with a broken steroid nucleus (vitamin D). Steroid hormones include estrogen
and progesterone from the ovary, testosterone from the testes, and cortisol
and aldosteron from the adrenal gland.

Table 6.10 lists the human endocrine glands and their hormones.

Table 6.10: Endocrine Glands and Their Hormones

A = Amino acid derivatives
S = Steroids
P = Polypeptides

Gland Hormone Target Tis-

sue

Principal Ac-

tions

Hypothalamus Releasing and
inhibiting hor-
mones

Anterior lobe
of pituitary

Regulate secre-
tion of hormones
by the anterior
pituitary

Posterior pitu-
itary

Oxytocin (P) Uterus Stimulates con-
traction

Mammary
glands

Stimulates ejec-
tion of milk into
ducts

Antidiuretic hor-
mone (ADH)

Kidneys (col-
lecting ducts)

Stimulates re-
absorption of
water

Growth hormone
(GH)(P)

General Stimulates growth
of skeleton and
muscle

Prolactin Mammary
glands

Stimulates milk
production

Thyroid-
stimulating hor-
mone (TSH)(P)

Thyroid gland Stimulates secre-
tion of thyroid
hormones

Adrenocortico-
tropic hormone
(ACTH)(P)

Adrenal cortex Stimulates secre-
tion of adrenal
cortical hormones
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Table 6.10: (Cont.)

Gland Hormone Target Tis-

sue

Principal Ac-

tions

Gonadotropic
hormones
(follicle-
stimulating hor-
mone[FSH](P);
Luteinizing hor-
mone[LH](P))

Gonads Stimulates gonad
function and
growth

Thyroid gland Thyroxine (T4)
and triiodothyro-
nine (T3)

General Stimulates
metabolic rate;
regulate energy
metabolism

Calcitonin Bone Lowers blood-
calcium level

Parathyroid
glands

Parathyroid hor-
mone

Bone, kidneys,
digestive tract

Regulates blood-
calcium level

Pancreas Insulin(P) General Lowers blood glu-
cose concentration

Glucagon(P) Liver, adipose
tissue

Raises blood glu-
cose concentration

Adrenal
Medulla

Epinephrine and
Norepinephrine(A)

Muscle; blood
vessels; liver;
adipose tissue

Help body cope
with stress; in-
crease metabolic
rate; raise
blood glucose
level;increases
heart rate and
blood pressure

Adrenal cortex Mineralocorti-
coids (S)

Kidney tubules Maintain sodium
and potassium
balance
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Table 6.10: (Cont.)

Gland Hormone Target Tis-

sue

Principal Ac-

tions

Glucocorticoids
(S)

General Help body cope
with long-term
stress; raise
blood-glucose
level

Pineal gland Melatonin Hypothalamus Important in bio-
logical rhythms

Ovary Estrogens(S) General;
uterus

Develop and
maintain sex
characteristics in
female; stimulates
growth of uterine
lining

Progesterone Uterus; breast Stimulates devel-
opment of uterine
lining

Testis Testosterone General; re-
productive
structures

Develops and
maintains sex
characteristics in
males; promotes
spermatogenesis
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Life at the Organizational Level (Developmental

and Evolutional Biology)

The complicated reconciliation of Darwinian natural selection with
Mendelian genetics involved contributions from naturalists, experimentalists
and population geneticists. Naturalists, intimately acquainted with adapta-
tion, geographic variation and speciation, helped promote the idea of species
as populations rather than ideal types. Experimentalists provided the im-
portant distinction between genotype and phenotype, showed that mutations
could be small and inherited in a Mendelian fashion, and demonstrated, that
selection could work on continuous variations to modify the characters of a
population. Population genetics constructed mathematical models demon-
strating how mutations, selection, migration and other factors could affect
the frequencies of genes in populations.

The genetic analysis of natural populations, pioneered in Russia by Sergei
Chetverikov (1880–1959), was developed in the West by his student, Theo-
dosius Dobzhansky (1900–1975). With Dobzhansky, Julian Huxley
(1887–1975), Ernst Mayr (1904–2005), and George Gaylord Simpson
(1902–1984), the modern, “synthetic” theory of evolution took shape. This
synthetic or “neo-Darwinian” theory of evolution sees natural selection, work-
ing on small, Mendelian variations produced by mutations and recombination,
as the major agent in evolutionary change.

Thus, in the early 20th century, the rediscovery of Mendel’s work led
to the rapid development of genetics by Thomas Hunt Morgan and his
students, and by the 1930s the combination of population genetics and natural
selection led to the “neo-Darwinian synthesis” and the rise of the discipline of
evolutionary biology. New biological disciplines developed rapidly, especially
after Watson and Crick discovered the structure of DNA in 1953.

Following the cracking of the genetic code and the establishment of the
Central Dogma, biology was largely split between organismal biology – con-
sisting of ecology, ethology, systematics, paleontology, evolutionary biology,
developmental biology, and other disciplines that deal with whole organisms
and groups of organisms – and the constellation of disciplines related to mole-
cular biology – including cell biology, biophysics, biochemistry, neuroscience,
immunology, and many other overlapping subjects.

Developmental biology studies the process by which organisms grow and
develop. Originating in embryology, today developmental biology studies the
genetic control of cell growth, differentiation and “morphogenesis,” which is
the process that gives rise to tissues, organs and anatomy. Model organisms
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for developmental biology include the round worm Caenorhabditis elegans, the
fruit fly Drosophila melanogaster, the zebrafish Brachydanio rerio, the mouse
Mus musculus, and the weed Arabidopsis thaliana.

Molecular data regarding the mechanisms underlying development started
to accrue quickly during the 1980’s and ’90’s. As scientists began to compare
the developmental mechanisms in different organisms, they realized that these
mechanisms are conserved through deep evolutionary time. By combining
the disciplines of phylogenetics, paleontology and comparative developmental
biology, scientists try to infer the way in which early organisms developed,
thus spawning the new discipline of “evo-devo.”
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I. Botany and Zoology

Botany is the scientific study of plantlife. As a branch of biology, it is
also sometimes referred to as plant science(s) or plant biology. Botany cov-
ers a wide range of scientific disciplines that study the structure, growth,
reproduction, metabolism, development, diseases, ecology and evolution of
plants.

As with other life forms in biology, plant life can be studied from differ-
ent perspectives, from the molecular, genetic and biochemical level through
organelles, cells, tissues, organs, individuals, plant populations, and commu-
nities of plants. At each of these levels a botanist might be concerned with the
classification (taxonomy), structure (anatomy and morphology), or function
(physiology) of plant life.

Historically, botany covers all organisms that were not considered to be
animals. Some of these “plant-like” organisms include fungi (studied in mycol-
ogy), bacteria and viruses (studied in microbiology), and algae. Most algae,
fungi, and microbes are no longer considered to be in the plant kingdom.
However, attention is still given to them by botanists, and bacteria, fungi,
and algae are usually covered in introductory botany courses.

The study of plants has importance for a number of reasons. Plants are
a fundamental part of life on Earth. They generate the oxygen, food, fibres,
fuel and medicine that allow higher life forms to exist. Plants also absorb
carbon dioxide, a significant greenhouse gas, through photosynthesis. A good
understanding of plants is crucial to the future of human societies as it allows
us to:

• Feed the world

• Understand fundamental life processes

• Utilize medicine and materials

• Understand environmental changes

Virtually all of the food we eat comes from plants, either directly from
staple foods and other fruit and vegetables, or indirectly through livestock,
which rely on plants for their nutrition. In other words, plants are at the
base of nearly all food chains, or what ecologists call the first trophic level.
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Understanding how plants produce the food we eat is therefore important to

be able to feed the world and provide food security for future generations, for

example through plant breeding. Not all plants are beneficial to humans, some

weeds are a considerable problem in agriculture and botany provides some of

the basic science in order to understand how to minimize their impact.

However, other weeds are pioneer plants which start an abused environ-

ment back on the road to rehabilitation, underlining that the term ‘weed’ is a

very relative concept and that, broadly defined, a weed is simply a plant which

is too successful. Ethnobotany is the study of this and/or other relationships

between plants and people.

Plants are convenient organisms in which fundamental life processes (like

cell division and protein synthesis for example) can be studied, without the

ethical dilemmas of studying animals or humans. The genetic laws of inher-

itance were discovered in this way by Gregor Mendel, who was studying

the way pea shape is inherited. What Mendel learnt from studying plants has

had far reaching benefits outside of botany.

Additionally, Barbara McClintock discovered ‘jumping genes’ by study-

ing maize. These are a few examples that demonstrate how botanical re-

search has an ongoing relevance to the understanding of fundamental biolog-

ical processes.

Many of our medicinal and recreational drugs, like cannabis, caffeine, and

nicotine come directly from the plant kingdom. Aspirin, which originally

came from the bark of willow trees, is just one example. There may be

many novel cures for diseases provided by plants, waiting to be discovered.

Popular stimulants like coffee, chocolate, tobacco, and tea also come from

plants. Most alcoholic beverages come from fermenting plants such as barley

malt and grapes.

Plants also provide us with many natural materials, such as cotton, wood,

paper, linen, vegetable oils, some types of rope, and rubber. The production

of silk would not be possible without the cultivation of the mulberry plant.

Sugarcane and other plants have recently been put to use as sources of biofuels,

which are important alternatives to fossil fuels.

Plants can also help us understand changes in on our environment in many

ways:

• Understanding habitat destruction and species extinction is dependent

on an accurate and complete catalog of plant systematics and taxonomy.
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• Plant responses to ultraviolet radiation can help us monitor problems
like the ozone depletion.

• Analyzing pollen deposited by plants thousands or millions of years ago
can help scientists to reconstruct past climates and predict future ones,
an essential part of climate change research.

• Recording and analyzing the timing of plant life cycles are important
parts of phenology used in climate-change research.

• Lichens, which are sensitive to atmospheric conditions, have been ex-
tensively used as pollution indicators.

In many different ways, plants can act a bit like the ‘miners canary’, an
early warning system alerting us to important changes in our environment. In
addition to these practical and scientific reasons, plants are extremely valuable
as recreation for millions of people who enjoy gardening, horticultural and
culinary uses of plants every day.

A considerable amount of new knowledge today is being generated from
studying model plants like Arabidopsis thaliana. This mustard weed was one
of the first plants to have its genome sequenced. The sequencing of the rice
genome have made rice the de facto cereal/grass/monocot model. Another
grass species, Brachypodium distachyon is also emerging as an experimental
model for understanding the genetic, cellular and molecular biology of tem-
perate grasses. Other commercially important staple foods like wheat, maize,
barley, rye, millet and soybean are also having their genomes sequenced. Some
of these are challenging to sequence because they have more than two haploid
(n) sets of chromosomes, a condition known as polyploidy, common in the
plant kingdom.

The “Green Yeast” Chlamydomonas reinhardtii (a single-celled, green
alga) is another plant model organism that has been extensively studied and
provided important insights into cell biology.

History of Zoology — from Aristotle to Darwin

Zoology is the scientific study of animals. The word is derived from ζωoγ
= a living thing.
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Throughout history, man has always lived with animals and sought to un-
derstand them. Early cave paintings from before the Ice Age depict antelopes,
bison, giraffes, and other animals, some of which are now extinct. Ancient
Egyptians were fascinated by animals and treated them with religious rever-
ence. It was not until Aristotle (382–322 BC) created his History of Animals
that zoology became a science. In his work, he collected all the known facts
about approximately 500 animals, and devised the first known classification
system. Aristotle’s system divided the animals kingdom between animals with
blood (4-footed animals that bear their young; 4-footed animals that lay eggs;
Birds; Fish) and animals without blood (Mollusks; Crabs; Insects).

Other Greek writers such as Ctesias of Cnidos (fl. ca. 480 BCE) and
Herodotos (c.485–425 BCE) also contributed to the knowledge of animals
in their writings. In Roman times, the main writer about natural history was
Pliny the Elder (23–79 CE), the author of Historia Naturalis.

After the fall of the Roman Empire, Christianity dominated the culture
of western civilization. There was a focus on the Bible and the afterlife,
rather than on science and the secular world. Nevertheless, a book called
the Physiologus became extremely widespread. It was written in Greek by
an unknown source probably around 200–300 CE in Egypt, This book along
with the Bible and the works of Aristotle and Pliny, was the source of many
medieval bestiaries, in which stories about fictional creatures were widely
spread. The Physiologus was widely used for more than a thousand years,
with the hand written copies being made up to 1724.

Stories of fictional beasts were added to as Europeans began to explore
the world. For example, the travels stories of Marco Polo (1254–1324) and
John Mandeville (fl.1320–1370).26

In the 1400’s, universities began to form, and there was a renewed interest
in science and knowledge as the Renaissance began. Leonardo da Vinci
(1452–1519) contributed by conducting autopsies on humans.

Scientific zoology really started in the 16th century with the awakening
of the new spirit of observation and exploration, but for a long time ran a
separate course uninfluenced by the progress of the medical studies of anatomy
and physiology.

26 The medieval attitude towards both plants and animals hold no relation to real

knowledge, but was part of a peculiar and in itself highly interesting mysticism. A

fantastic and elaborate doctrine of symbolism existed which comprised all nature;

witchcraft, alchemy and medicine were its practical expressions. Animals as well

as plants were regarded as “simples” and used in medicine, and a knowledge of

them was valued from this point of view.
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The active search for knowledge by means of observation and experiment
found its natural home in the universities. Owing to the connection of medi-
cine with these seats of learning, it was natural that the study of the structure
and functions of the human body and of the animals nearest to man should
take root there; the spirit of inquiry which now for the first time became gen-
eral, showed itself in the anatomical schools of the Italian universities of the
16th century, and spread fifty years later to Oxford.

The discovery of the microscope in the 1500’s contributed a lot to the
study of biology. In 1555, Conrad Gesner wrote the first of a series of
several books called Historia Animalum, which became the new standard for
the next two hundred years. During this time there were also number of
books about specialized topics, such as birds, fish, and others. Gesner, and
other writers like Thomas Browne (1605–1682) and Ulisse Aldrovandus
(1522–1602) began to subject biology and zoology to scientific scrutiny.

In the 17th century the investigators of nature by means of observation
and experiment, banded themselves into academies or societies for mutual
support and intercourse. The first founded of surviving European academies,
the Academia Naturae Curiosorum (1651)27 especially confined itself to the
description and illustration of the structure of plants and animals; eleven
years later (1662) the Royal Society of London was incorporated by royal
charter, having existed without a name or fixed organization for seventeen
years previously (from 1645).

A little later the Academy of Sciences of Paris was established by Louis
XIV. The influence of these great academies of the 17th century on the
progress of zoology had the effect of bringing together of the museum-men
and the physicians or anatomists, which was just what needed for further
development.

As the amount of knowledge grew quickly, it was necessary to develop
a classification system. Carl Linnaeus (1707–1778) created a classification
system that used two Latin names – the species, and the genus. This is the
system that is still used today. But it still took many years for scientists to
understand how systems of biology and zoology worked.

Whilst the race of collectors and systematizers culminated in the latter
part of the 18th century in Linnaeus, a new type of student made its appear-
ance in such men as John Hunter and other anatomists, who, not satisfied
with the superficial observations of the popular “zoologists”, set themselves
to work to examine anatomically the whole animal kingdom, and to classify
its members by aid of the results of such profound study.

27 The Academia Secretorum Naturae was founded at Naples in 1560, but was

suppressed by the ecclesiastical authorities.
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Under the influence of the touchstone of strict inquiry set by the Royal
Society, the marvels of witchcraft, sympathetic powders, and other relics of
medieval superstition disappeared like a mist before the sun, whilst accu-
rate observations and demonstrations of a host of new wonders accumulated.
Among these which were numerous contributions to the anatomy of animals,
and none perhaps more noteworthy than the microscope observations, of
Leeuwenhoek, (1683).

It was not until the 19th century that the microscope, thus early applied
by Leeuwenhoek, Malpighi, Hooke, and Swammerdam to the study
of animal structure, was perfected as an instrument, and accomplished for
zoology its final and most important service.

The perfecting of the microscope led to a full comprehension of the great
doctrine of cell structure and the establishment of the facts —
(1) that all organisms are either single cells of living material (microscopic
animalcules, etc.) or are built up of an immense number of such units;
(2) that all organisms begin their individual existence as a single unit or
corpuscle of living substance, which multiplies by binary fission, the products
growing in size and multiplying similarly by binary fission; and
(3) that the life of a multicellular organism is the sum of the activities of
the corpuscular units of which it consists, and that the processes of life must
be studied in and their explanation obtained from an understanding of the
chemical and physical changes which go on in each individual corpuscle or
unit of living material or protoplasm.

Paleontology is a newer science than zoology. Some ancient Greek writers
believed that fossils were from prehistoric creatures, but Aristotle thought
they were merely formed by a mud slide. For hundreds of years, nobody
understood fossils, and thought they were freaks of nature. Paleontology did
not become a science until the early 1800’s when George Cuvier (1769–1832)
founded comparative anatomy and brought about a synthesis of anatomy and
physiology. This science studied the development, functions, and structure of
internal organs, and allowed scientists to identify and understand fossilized
remains.

Meanwhile the astronomical theories of development of the solar system
from a gaseous condition to its present form, put forward by Kant and by
Laplace, had impressed men’s minds with the conception of a general move-
ment of spontaneous progress or development in all nature.

The science of geology came into existence, and the whole panorama of
successive stages of the earths history, each with its distinct population of
strange animals and plants (unlike those of the present day and simpler in
proportion as they recede into the past) was revealed by Cuvier, Agassiz,
and others.
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The history of the crust of the earth was explained by Lyell as due to a
process of slow development, with no cataclysmic agencies and no mysterious
forces differing from those operating at the present day.

Thus he carried on the narrative of orderly development from the point
at which it was left by Kant and Laplace – explaining by reference to the
ascertained laws of physics and chemistry the configuration of the earth, its
mountains and seas, its igneous and its stratified rocks, just as the astronomers
had explained by those same laws the evolution of the Sun and planets from
diffused gaseous matter of high temperature. The suggestion that living things
must also be included in this great development was obvious.

The delay in the establishment of the doctrine of organic evolution was
due, not to the ignorant and unobservant, but to the leaders of zoological and
botanical science.

Knowing the almost endless complexity of organic structures, realizing
that man himself with all the mystery of his life and consciousness must be
included in any explanation of the origin of living things, they preferred to
regard living things as something apart from the rest of nature, specially cared
for, specially created by a Divine Being.

Thus it was that the so-called “Natur-philosophen” of the last decade of
the 18th century, and their successors in the first quarter of the 19th, found
few adherents among the working zoologists and botanists.

Lamarck, Treviranus, Erasmus Darwin, Goethe, and Saint-Hilaire
preached to deaf ears, for they advanced the theory that living beings had de-
veloped by a slow process of transmutation in successive generations from
simpler ancestors, and in the beginning from simplest formless matter, with-
out being able to demonstrate any existing mechanical causes by which such
development must necessarily be brought about.

They were met by the criticism that possibly such a development had
taken place; but, as no one could show as a simple fact of observation that it
had taken place, nor as a result of legitimate inference that it must have taken
place, it was quite as likely that the past and present species of animals and
plants had been separately created or individually brought into existence by
unknown and inscrutable causes. It was held that scientific man would refuse
to occupy himself with such fancies facts.

In 1859, Charles Darwin (1809–1882) placed the whole theory of organic
evolution on a new footing. Indeed, he gave a new direction to morphology
and physiology, by uniting them in a common biological theory: the theory
of organic evolution. The result was a reconstruction of the classification of
animals upon a genealogical basis, fresh investigation of the development of
animals, and early attempts to determine their genetic relationships.
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Moreover, he discovered a mechanical cause actually existing and demon-
strable by which organic evolution must be brought about.

After publication of the Origin of the Species, Darwin became interested
in the animal and plant mechanism that confer advantages to individual mem-
bers of a species.

Darwin’s evolutionary theory resolved many zoological problems, not least
because he established definite connections between extinct organisms (fossils)
and those of today.

Darwin upset the theological vision of the “economy of nature”28, stimu-
lating the development of disciplines like biogeography, ecology and ethology.

Nowadays, zoology is particularly important for genetic investigations (ge-
netic code, mutation, recombination) and for population studies.

28 Linnaeus’ (1707–1778), Oeconomia Naturae (1749) suggested that each crea-

ture has its allotted place in nature, having been assigned its peculiar food and

geographic range. Competition with other creatures was thereby avoided, ensur-

ing harmony and plenty. Different creatures were linked together in elaborate

food chains: the excess of one species sustaining another. Thus, predation and

high reproductive rates amongst prey species were functional to maintain a just

proportion between all species (no competitive struggle for existence).
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II. Dietetics, Hygiene, Metabolism and Nutrition

Dietetics29 is the systematic control of food and drink in order to conserve
health and combat disease.

Metabolism is the chemical process within an organism, whereby new sub-
stances are synthesized (anabolism) or broken down (catabolism) for purposes
such as regulational (homeostasis), growth, tissue repair and energy supply.

Nutrition is the body of science that seeks to explain metabolic and phys-
iologic responses to diet. To this end it studies the relationship between diet,
health and disease. It is thus concerned with the process of eating, digest-
ing and using food and the determination of an optimal diet for purposes of
health, body building and other purposes.

Hygiene encompasses theories and activities for preserving individual,
communal and public health discussed under prevention of disease.

With advances in molecular biology, biochemistry, and genetics, nutrition
is additionally developing into the study of integrative metabolism, which
seeks to connect diet and health through the lens of biochemical processes.

The human body comprises chemical compounds such as water, amino
acids (proteins), fatty acids (lipids), nucleic acids (DNA/RNA), and carbo-
hydrates (e.g. sugars). These compounds in turn consist of elements such as
carbon, hydrogen, oxygen, nitrogen, and phosphorus, and may or may not
contain minerals such as calcium, iron, and zinc. Minerals ubiquitously occur
in the form of salts and electrolytes. All of these chemical compounds and
elements occur in various forms and combinations (e.g. hormones/vitamins,
phospholipids, hydroxyapatite), both in the human body and in organisms
(e.g. plants, animals) that humans eat.

The human body necessarily comprises the elements that it eats and ab-
sorbs into the bloodstream. The digestive system, except in the unborn fetus,
participates in the first step which makes the different chemical compounds
and elements in food available for the trillions of cells of the body. In the
digestive process of an average adult, about seven liters of liquid, known as

29 Already Hippocrates (450–370 BCE), Asclepiades (13–140 BCE) and their

followers elaborated a philosophy of living based on moderation, instructing on

diet, exercise, massage, sex, dress, bathing etc. Ancient philosophers (e.g. Plato

(427–347, BCE), the Pythagoreans, Stoics) were also concerned with rules of con-

duct and living. Early Christians eventually integrated Greek Hygienic precepts

with Old and New Testament Instructions.
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digestive juices, exit the internal body and enter the lumen of the diges-
tive tract. The digestive juices help break chemical bonds between ingested
compounds as well as modulate the conformation and/or energetic state of
the compounds/elements. However, many compounds/elements are absorbed
into the bloodstream unchanged, though the digestive process helps to release
them from the matrix of the foods where they occur. Any unabsorbed mat-
ter is excreted in the feces. But only a minimal amount of digestive juice is
eliminated by this process; the intestines reabsorb most of it; otherwise the
body would rapidly dehydrate.

The body requires amino acids to produce new body protein (protein re-
tention) and to replace damaged proteins (maintenance) that are lost in the
urine. In animals, amino acid requirements are classified in terms of essential
(an animal cannot produce them) and non-essential (the animal can produce
them from other nitrogen containing compounds) amino acids. Consuming
a diet that contains adequate amounts of essential (but also non-essential)
amino acids is particularly important for growing animals, which have a par-
ticularly high requirement.

Mineral and/or vitamin deficiency or excess may yield symptoms of di-
minishing health such as goiter, scurvy, osteoporosis, weak immune system,
disorders of cell metabolism, certain forms of cancer, symptoms of prema-
ture aging, and poor psychological health (including eating disorders), among
many others.

As of 2005, twelve vitamins and about the same number of minerals are
recognized as “essential nutrients”, meaning that they must be consumed and
absorbed - or, in the case of vitamin D, alternatively - to prevent deficiency
symptoms and death. Certain vitamin-like substances found in foods, such as
carnitine, have also been found essential to survival and health, but these are
not strictly “essential” to eat because the body can produce them from other
compounds. Moreover, thousands of different phytochemicals have recently
been discovered in food (particularly in fresh vegetables), which have many
known and yet to be explored properties including antioxidant activity (see
below). Other essential nutrients include essential amino acid, choline and
the essential fatty acids.

In addition to sufficient intake, an appropriate balance of essential fatty
acids – omega-3 and omega-6 fatty acids – has been discovered to be crucial
for maintaining health. Both of these unique “omega” long-chain polyun-
saturated fatty acids are substrates for a class of eicosanoids known as
prostaglandins which function as hormones. The omega-3 eicosapentaenoic
acid (EPA) (which can be made in the body from the omega-3 essential
fatty acid alpha-linolenic acid (LNA), or taken in through marine food
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sources), serves as building block for series 3 prostaglandins. The omega-
6 dihomo-gamma-linolenic acid (DGLA) serves as building block for series 1
prostaglandins, whereas arachidonic acid (AA) serves as building block for
series 2 prostaglandins.

Both DGLA and AA are made from the omega-6 linoleic acid (LA) in the
body, or can be taken in directly through food. An appropriately balanced
intake of omega-3 and omega-6 partly determines the relative production
of different prostaglandins, which partly explains the importance of omega-
3/omega-6 balance for cardiovascular health. In industrialized societies, peo-
ple generally consume large amounts of processed vegetable oils that have
reduced amounts of essential fatty acids along with an excessive amount of
omega-6 relative to omega-3.

Because different types and amounts of food eaten/absorbed affect insulin,
glucagon and other hormones to varying degrees, not only the amount of
omega-3 versus omega-6 eaten but also the general composition of the diet
therefore determine health implications in relation to essential fatty acids,
inflammation and mitosis.

Obesity can unfavorably alter hormonal and metabolic status via resis-
tance to the hormone leptin, and a vicious cycle may occur in which in-
sulin/leptin resistance and obesity aggravate one another. The vicious cycle
is putatively fueled by continuously high insulin/leptin stimulation and fat
storage, as a result of high intake of strongly insulin/leptin stimulating foods
and energy. Both insulin and leptin normally function as satiety signals to
the hypothalamus in the brain; however, insulin/leptin resistance may reduce
this signal and therefore allow continued overfeeding despite large body fat
stores. In addition, reduced leptin signaling to the brain may reduce leptin’s
normal effect to maintain an appropriately high metabolic rate.

Antioxidants are another recent discovery. As cellular metabolism /energy
production requires oxygen, potentially damaging (e.g. mutation causing)
compounds known as radical oxygen species or free radicals may form. For
normal cellular maintenance, growth, and division, these free radicals must
be sufficiently neutralized by antioxidant compounds, some produced by the
body with adequate precursors (glutathione, Vitamin C in most animals) and
those that the body cannot produce may only be obtained through the diet
through direct sources (Vitamin C in humans, Vitamin A, Vitamin K) or
produced by the body from other compounds (Beta-carotene converted to
Vitamin A by the body, Vitamin D synthesized from cholesterol by sunlight).

Different antioxidants are now known to function in a cooperative network,
e.g. vitamin C can reactivate free radical-containing glutathione or Vitamin
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E by accepting the free radical itself, and so on. Some antioxidants are more
effective than others at neutralizing the free radicals. Some cannot neutralize
certain free radicals. Some cannot be present in certain areas of free radical
development (Vitamin A is fat-soluble and protects fat areas, Vitamin C
is water soluble and protects those areas). When interacting with a free
radical, some antioxidants produce a different free radical compound that is
less dangerous or more dangerous than the previous compound.

Since the Industrial Revolution some two hundred years ago, the food
processing industry has invented many technologies that both help keep foods
fresh longer and alter the fresh state of food as they appear in nature. Cool-
ing is the primary technology that can help maintain freshness, whereas many
more technologies have been invented to allow foods to last longer without
becoming spoiled. These latter technologies include pasteurization, autoclava-
tion, drying, salting, and separation of various components, and all appear to
alter the original nutritional contents of food.

Pasteurization and autoclavation (heating techniques) have no doubt im-
proved the safety of many common foods, preventing epidemics of bacterial
infection. But some of the (new) food processing technologies undoubtedly
have downfalls as well.

Modern separation techniques such as milling, centrifugation, and press-
ing have enabled up-concentration of particular components of food, yielding
flour, oils, juices and so on, and even separate fatty acids, amino acids, vita-
mins, and minerals. Inevitably, such large scale up-concentration changes the
nutritional content of food, saving certain nutrients while removing others.
Heating techniques may also reduce food’s content of many heat-labile nutri-
ents such as certain vitamins and phytochemicals, and possibly other yet to
be discovered substances.

Because of reduced nutritional value, processed foods are often “enriched”
or “fortified” with some of the most critical nutrients (usually certain vita-
mins) that were lost during processing. Nonetheless, processed foods tend to
have an inferior nutritional profile than do whole, fresh foods, regarding con-
tent of both sugar and high GI starches, potassium/sodium, vitamins, fibre,
and of intact, unoxidized (essential) fatty acids. In addition, processed foods
often contain potentially harmful substances such as oxidized fats and trans
fatty acids.

A dramatic example of the effect of food processing on a population’s
health is the history of epidemics of beri-beri in people subsisting on polished
rice. Removing the outer layer of rice by polishing it removes with it the essen-
tial vitamin thiamine, causing beri-beri. Another example is the development
of scurvy among infants in the late 1800s in the United States. It turned out
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that the vast majority of sufferers were being fed milk that had been heat-
treated (as suggested by Pasteur) to control bacterial disease. Pasteurization
was effective against bacteria, but it destroyed the vitamin C.

As mentioned, lifestyle- and obesity-related diseases are becoming increas-
ingly prevalent all around the world. There is little doubt that the increasingly
widespread application of some modern food processing technologies has con-
tributed to this development. The food processing industry is a major part of
modern economy, and as such it is influential in political decisions (e.g. nutri-
tional recommendations, agricultural subsidizing). In any known profit-driven
economy, health considerations are hardly a priority; effective production of
cheap foods with a long shelf-life is more the trend. In general, whole, fresh
foods have a relatively short shelf-life and are less profitable to produce and
sell than are more processed foods.

Thus the consumer is left with the choice between more expensive but nu-
tritionally superior whole, fresh foods, and cheap, usually nutritionally inferior
processed foods. Because processed foods are often cheaper, more convenient
(in both purchasing, storage, and preparation), and more available, the con-
sumption of nutritionally inferior foods has been increasing throughout the
world along with many nutrition-related health complications.

History of Dietetics, Hygiene, Metabolism and Nutrition

Humans are believed to have evolved as omnivorous hunter-gatherers over
the past 250,000 years. Early diets were primarily vegetarians with infrequent
game meats and fish where available.

Agriculture developed about 10,000 years ago in multiple locations
throughout the world, providing grains such as wheat, rice, and maize, with
staples such as bread and pasta. Farming also provided milk and dairy prod-
ucts, and sharply increased the availability of meats and the diversity of veg-
etables. The importance of food purity was recognized when bulk storage
led to infestation and contamination risks. Cooking developed as an often
ritualistic activity to strict recipes and procedures, and also contributed to
demands for food purity and consistency (e.g. the laws of ceremonial purity
and dietary restrictions given in the Old Testament book of Leviticus chap-
ters 11–16, which were established ca 1300 BCE and written down in the days
of King Hezekiah, ca 710 BCE).

The first recorded nutritional experiment is found in the Bible’s Book of
Daniel. Daniel and his friends were captured by the king of Babylon during an
invasion of Israel. Selected as court servants, they were to share in the king’s
fine foods and wine. But they objected, preferring vegetables and water in
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accordance with their Jewish dietary restrictions. The king’s chief steward
reluctantly agreed to a trial. Daniel and his friends received their diet for 10
days and were then compared to the king’s men. Appearing healthier, they
were allowed to continue with their diet.

The idea that changes that we now call chemical, occur in the human body
is very old. According to Aristotle (384–322 BCE) and Galen (129–200),
food entering the alimentary tract undergoes processes resembling fermenta-
tion and through it turn into blood. This theory was generally accepted for
more than 20 centuries. On its basis, numerous diets designed to make easier
food transformations into blood and provide it with higher nutritive proper-
ties were developed for healthy and sick subjects. According to this classical
tradition alimentation was one of the exterior forces which acted upon the
human body.

Considered from the therapeutic point of view the proper regulation of
these forces was subsumed under the general Greek term diaita meaning “way
of life” or regimen. Foodstuffs were classified in terms of their qualities of
hotness, coldness, moistness and dryness in accordance with the dominant
humoral theory of physiological action. As a consequence of their particular
qualities foods might be purgative, constipating, strengthening or weakening.
Their role in the production of the humors was also a major consideration.

With their increasing search for chemical mechanisms, the iatrochemists of
the 16th and 17th centuries tried to explain body functions by purely chemical
reactions such as the neutralization of acids and bases. Nevertheless, ideas of
chemicophysiological mechanisms remain vague and disorganized even while
Vesalius (1514–1564) was describing in a scientific manner the details of
anatomy, and the physicomechanical details of physiology were developing
toward the discovery of the circulation of the blood by William Harvey
(1578–1657).

In 1747, Dr. James Lind (1716–1794), a physician in the British navy,
discovered that lime juice saved sailors (who had been at sea for years) from
scurvy30, a deadly and painful bleeding disorder. The discovery was ignored

30 Ascorbic acid, or Vitamin C, was discovered after scientists had searched cen-

turies for a cure for the disease known as scurvy. The name Ascorbic acid comes

from word “anti-scurvy” acid, because it was known to dramatically cure this

disease. This disease was caused by a serious deficiency of Vitamin C, and it

caused its victim’s small blood vessels to rupture, bones to weaken, and joints to

swell, among other symptoms. These symptoms were due to the fact that with-

out a source of Vitamin C one developed severe problems concerning the body’s

connective tissues, which is found in bones, skin, muscles, teeth, blood vessels,

and cartilage. This disease would eventually lead to death if it went untreated,
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for 40 years. The essential Vitamin C within the lime juice would not be
recognized by scientists until the 1930’s.

During the 18th century, classical dietary theories began to be superseded
by ideas derived from the new chemistry. Qualitative grades tended to be
replaced by such considerations as “acidity or alkalinity”. In 1770, Antoine
Lavoisier (1743–1794), the “Father of Chemistry” discovered the details of
metabolism, demonstrated that oxidation of food is the source of body heat.
In 1790, George Fordyce (1736–1802) recognized, that calcium was neces-
sary for fowl survival.

Early 19th-century scientists distinguished “animals” and plants as com-
plementary, the former only breaking down material synthesized by plants.
From the middle of the 19th century, the chemistry of food and biochemistry
started to develop successfully.

In the early 1800s, the elements carbon, nitrogen, hydrogen and oxygen
were recognized as the primary components of food, and methods to measure
their proportions were developed.

In 1816, Francois Magendie (1783–1855) discovers that dogs fed only
carbohydrates and fat lost their body protein and died in a few weeks, but
dogs fed also protein survived, identifying protein as an essential dietary com-
ponent.

In 1840, the German chemist Justus Liebig (1803–1873) discovered the
chemical makeup of carbohydrates (sugars), fats (fatty acids) and proteins

and was not uncommon, especially during the winter months of the year. The

disease often plagues armies, explorers, and crusaders, since these men’s diets

normally consisted of biscuits and salted meat that could easily be stored and

kept unspoiled on a ship.

Lind published his findings as Treatise on the Scurvy in 1753, and as a result,

in 1795 daily doses of lime juice were prescribed to all the sailors in the British

navy and Scurvy quickly vanished. However, the British were the only people

who accepted the idea that Scurvy was the result of a dietary deficiency, and

Great Britain was the only place where there was a decline in the cases of Scurvy.

In America, during the Civil war, many men on both sides of the war died from

this disease due to the lack of a source of Vitamin C in their diet.

In 1907 Axel Holst and Theodore Frolich, proved that Scurvy’s symptoms

could be produced in a guinea pig when denied certain foods, and that these

symptoms would vanish when the food was restored. However, even on into the

early 20th century, explorers were still dying of Scurvy. One example was Robert

Scott’s expedition to the South Pole, when he and his crew were affected by the

lack of Vitamin C containing foods in their diets, not the harsh conditions and

temperatures.
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(amino acids). In 1842 he applied a “black-box” model to animal metabolism,
analyzing intake of food (e.g. protein, sugar) and excretion (urea, carbon
dioxide) and assuming a simple one-way path from one to the other.

In the 1860’s, Claude Bernard (1813–1878) discovered that body fat can
be synthesized from carbohydrate and protein, showing that energy in blood
glucose can be stored as glycogen.

His discovery of glycogen synthesis and breakdown by the liver showed
animal metabolism to be rather complicated. This induced further research
of metabolism parameters by Carl von Voit (1831–1908), Max von Pet-
tenkofer (1818–1901), T.L.W. von Bischoff (1807–1882), Max Rub-
ner (1854–1932) and others. Edward Frankland (1825–1899), F.K.A.
Stohmann (1832–1887) and others established accurate calorific values for
many foods and the discovery of “cell-free” fermentation by Eduard Buch-
ner (1860–1917) implicated intracellular metabolic processes, regulated by
enzymes.

Controlled dietary studies by T.B. Osborne (1859–1929), L.B. Mendel
(1872–1935) and E.V. McCollum (1879–1967) showed that some amino
acids (the building blocks of proteins) could not be synthesized by animals
and were essential components of the diet, as were the vitamins.

Modern biochemistry and molecular biology have elucidated many molec-
ular mechanisms, including anabolic and catabolic pathways and the genetic
control of enzyme synthesis (‘one gene – one enzyme hypothesis’). The study
of inherited metabolic disorders was pioneered by A.E. Garrod’s (1857–1936)
in 1909.

Thus, from the second half of the 19th century dietetic theory took new
forms based on an understanding of the role of food substances in body
metabolism.

The following timeline summarizes the progress made during 1800–1950:

• 1816 Francois Magendie (1783–1855, France). Physiologist. Showed
for the first time that nitrogenous foods were needed for life.

• 1819–1820 Henri Braconnot (1781–1854, France). Naturalist. Ob-
tained glucose (1819) from sawdust, linen and bark of trees. Studied and
isolated the first amino acid (1820). [Earlier (1812), Gottlieb Sigis-
mund Constantin Kirchhoff (1764–1833, Russia), chemist, produced
glucose by heating starch with a small amount of sulfuric acid as catalyst.]
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• 1824 Joseph Louis Gay-Lussac (1778–1850, France). Wrote the
chemical equation for glucose fermentation.

• 1827 William Prout (1785–1850, England). Chemist. Classified food
components into fats, carbohydrates and proteins.

• 1835 Anselm Payen (1795–1871, France). Chemist. Isolated and
studied the first plant enzyme diastase from grain. It catalyzes the break-
down of starch.

• 1836 Theodor Schwann (1810–1882, Germany). Discovered and iso-
lated pepsin, a digestive enzyme in the human stomach.

• 1843 Carl Schmidt (1822–1894, Germany). Physiological chemist.
Coined the name carbohydrates. Found that blood contains small quan-
tities of glucose.

• 1840 Justus von Liebig (1803–1873, Germany). Published “Die Or-
ganische Chemie und ihre Anwendung auf Agrikultur und Physiologie”,
explaining his theory of the exchange of carbon and nitrogen in plants
and animals — the first crude model of the carbon and nitrogen cycles
in the biosphere.

• 1843–1856 Claude Bernard (1813–1878, France). Physiologist. Dis-
covered (1843) that the liver serves as a source of blood sugar by con-
verting glycogen to glucose. Coined the word glycogen. Isolated glycogen
from the liver (1856). [This was done independently in the same year by
Viktor Hensen (1835–1924, Germany).]

• 1856 Louis Pasteur (1822–1895, France). Discovered that fermenta-
tion is caused by microorganisms (yeast).

• 1868–1902 Carl von Voit (1831–1908, Germany). Physiologist.
Showed (1868) that energy conversion in the body takes place through
intermediary substances which are formed from the original food before fi-
nal union with oxygen occurred. Discovered (1891) that various ingested
sugars are converted to glycogen in the body for storage until needed.

• 1870 Friedrich Miescher (1844–1895, Switzerland) first identified nu-
cleic acid in the nuclei of puss cells.

• 1871 Ernst Hoppe-Seyler (1825–1895, Germany). Physiologist and
chemist. Discovered invertase, an enzyme that speeds up conversion of
sucrose into glucose and fructose.

• 1884–1894 Max Rubner (1854–1932, Germany). Physiologist. Dis-
covered that the body gets energy from carbohydrates, fats and proteins
after stripping away nitrogen for other uses. Voit and Rubner, in-
dependently measured caloric energy expenditure in different species of
animals, applying principles of physics in nutrition.
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• 1889 Oskar Minkowski (1858–1931, Germany), physiologist, and
Joseph von Mering (1849–1908, Germany), physician, discovered
that the pancreas supplies a hormone (insulin) essential to glucose
metabolism.

• 1890–1907 Emil Hermann Fischer (1852–1919, Germany). Chemist.
First to synthesize a simple protein molecule (1907) and demonstrate
the peptide-bond. Pioneered in understanding nitrogen metabolism. Pro-
posed the theory of lock and key to explain stereospecific interaction of
enzyme with substrate.

• 1896 Eugen Baumann (1846–1896, Germany) discovered that the
thyroid gland is rich in iodine.

• 1897 Eduard Buchner (1860–1917, Germany). Chemist. Demon-
strated that alcoholic fermentation of sugars is due to action of enzymes
contained in yeast. That meant that enzymes extracted from yeast are
effective in converting sugar into alcohol. Awarded the 1907 Nobel Prize
for chemistry.

• 1897 Christiaan Eijkman (1858–1931), a Dutch physician in Java
cured natives of beriberi by feeding them brown rice. Over two decades
later, nutritionists learned that the outer rice bran contains vitamin B1,
also known as thiamine. Together with biochemist Frederick G. Hop-
kins (1861–1947) he was awarded the 1929 NP for Physiology or Medi-
cine.

• 1897–1901 Jokichi Takamine (1854–1922, Japan), physiologist and
John Jacob Abel (1857–1938, U.S.A.), physiological chemist, independ-
ently isolated adrenaline.

• 1905 Arthur Harden (1865–1940, England). Chemist. First to detect
and identify inorganic phosphate in metabolic intermediates.

• 1906 F.G. Hopkins (1861–1947, England) recognized “accessory food
factors” other than calories, protein and minerals, as organic materials
essential to health but which the body cannot synthesize.

• 1912 Casimin Funk (1884–1967, Poland) coined the term vitamin, a
vital factor in the diet, from the word “vital” and “amine”, because
the unknown substances preventing scurvy, beriberi, and pellagra, were
thought then to be derived from ammonia.

• 1913 Elmer V. McCollum (1879–1967) discovered the first vitamins,
fat soluble vitamin A, and water soluble vitamin C (as the then-unknown
substance preventing scurvy). In 1922 he discovered vitamin D in cod
liver oil, which prevents rickets.
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• 1913 Archibald Vivian Hill (1886–1977, England). Physiologist.
Discovered that muscle cells use oxygen after contraction is finished in
anaerobic glycolysis.

• 1918 Otto Fritz Meyerhof (1884–1951, Germany and U.S.A.). Bio-
chemist. Showed that muscular activity involves anaerobic conversion of
glucose glycogen (glycolysis). During muscle rest, lactic acid combines
with oxygen to restore glycogen level. First to note that metabolic path-
ways of all organisms are essentially similar.

• 1921 Frederick Grant Banting (1891–1941, Canada). Physician.
Isolated the hormone insulin.

• 1922 H.M. Evans (1882–1971, USA) and K.S. Bishop discovered
vitamin E in green leafy vegetables.

• 1926 James Batcheller Sumner (1887–1955, U.S.A.). Biochemist.
Proved that the enzyme urease was indeed a protein. It quickly became
apparent that all enzymes are proteins.

• 1927 Adolf O.R. Windaus (1876–1959, Germany) synthesized vita-
min D (NP 1928).

• 1928–1935 Albert Szent-Györgi (1893–1986, USA). Physiologist and
biochemist. Isolated ascorbic acid (1928) and proved that it is vitamin C
(1932). Discovered fundamental processes in cellular energy metabolism.
Concurrently elucidated much of the citric acid cycle. (NP 1937).

• 1929 Albert Lipmann (1899–1986, Germany and USA), biochemist,
and K. Lohmann isolated adenosine triphosphate (ATP) from muscle
tissue.

• 1931–1939 William C. Rose (1887–1985, USA) identified essential
amino acids, necessary proteins which the body cannot synthesize.

• 1931 Linus Pauling (1901–1994, U.S.A.). Discovered the hydrogen
bond.

• 1932–1937 Hans Adolf Krebs (1900–1981, England). Biochemist.
Discovered the most important metabolic pathway and energy producer
in living organism (Krebs’ cycle), the second stage in the aerobic glucose
metabolism.

• 1933 Walter N. Haworth (1883–1950, England) and Tadeus Re-
ichstein (1897–1996, Poland and Switzerland) synthesized vitamin C,
becoming the first vitamin to be artificially made. Haworth won the NP
in 1937 jointly with Paul Karrer (1889–1971, Switzerland). Reichsten
won his NP in 1950.
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• 1935 E.J. Underwood (1905–1980, England) and H.R. Marston
(1900–1965, England) independently discover the necessity of cobalt .

• 1936 Gerty and Carl Cori (1896–1957, 1896–1984, U.S.A.). Bio-
chemists. Discovered the Cori cycle of carbohydrate metabolism: the
complementary process of glycolysis in the muscle and gluconeogenesis in
the liver and the process of phosphorolysis; showed that glycogen in the
body is broken down by the use of phosphoric acid.

• 1938 Erhard Fernholz discovered the chemical structure of vitamin E.

• 1938 Paul Karrer (1889–1971) synthesized vitamin E.

• 1946 Linus Pauling suggested that enzymes work by lowering the
energy-barrier of a reaction.

• 1947 Alexander Robertus Todd (1907–1997, England). Biochemist.
Synthesized ADP and ATP.

• 1947–1951 Albert Lipmann discovered the coenzyme A, a key sub-
stance in human body metabolism which is involved in the control of energy
in cells. Proposed that the high-energy phosphate-bond and its transforma-
tion to and from ATP was a ‘common currency’ of energy transfer in biology
(1947). Discovered acetylcoenzyme A, an essential part of body chemistry that
is especially important in breaking down carbohydrates, fats and proteins to
obtain energy for cells (1951).
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III. Evolutionary Biology

(a) Introduction

Evolutionary biology is a sub-field of biology concerned with the origin
and descent of species, as well as their change, multiplication, and diversity
over time. One who studies evolutionary biology is known as an evolutionary
biologist, or less formally, an evolutionist.

Evolutionary biology is an interdisciplinary field because it includes scien-
tists from a wide range of both field and lab oriented disciplines. For example,
it generally includes scientists who may have a specialist training in particu-
lar organisms such as mammalogy, ornithology, or herpetology, but use those
organisms as case studies to answer general questions in evolution.

It also generally includes paleontologists and geologists who use fossils to
answer questions about the tempo and mode of evolution, as well as theoreti-
cians in areas such as population genetics.In the 1990s developmental biology
made a re-entry into evolutionary biology from its initial exclusion from the
modern synthesis through the study of evolutionary developmental biology.

Its findings feed strongly into new disciplines that study mankind’s socio-
cultural evolution and evolutionary behavior. Evolutionary biology’s frame-
works of ideas and conceptual tools are now finding application in the study
of a range of subjects from computing to nanotechnology.

Artificial life is a sub-field of Bioinformatics that attempts to model, or
even recreate, the evolution of organisms as described by evolutionary biology.
Usually this is done through mathematics and computer models.

Historically, when Mendel’s work was “rediscovered” in 1900, it led to a
conflict between Mendelians and biometricians, who insisted that the great
majority of traits important to evolution must show continuous variation that
was not explainable by Mendelian analysis.

Eventually, the two models were reconciled and merged, primarily through
the work of the biologist and statistician R.A. Fisher. This combined ap-
proach, applying a rigorous statistical model to Mendel’s theories of inheri-
tance via genes, became known in the 1930s and 1940s as the modern synthesis
of Darwin’s theory.

Evolutionary biology as an academic discipline in its own right emerged
as a result of the modern evolutionary synthesis in the 1930s and 1940s. It
was not until the 1970s and 1980s, however, that a significant number of
universities had departments that specifically included the term evolutionary
biology in their titles. In the United States, as a result of the rapid growth
of molecular and cell biology, many universities have split (or aggregated)
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their biology departments into molecular and cell biology-style departments
and ecology and evolutionary biology-style departments (which often have
subsumed older departments in paleontology, zoology and the like).

Microbiology has recently developed into an evolutionary discipline. It was
originally ignored due to the paucity of morphological traits and the lack of
a species concept in microbiology. Now, evolutionary researchers are taking
advantage of our extensive understanding of microbial physiology, the ease
of microbial genomics, and the quick generation time of some microbes to
answer evolutionary questions. Similar features have led to progress in viral
evolution, particularly for bacteriophage.

Notable contributors to evolutionary biology include:

Pierre Louis Maupertuis 1698–1759
Jean-Baptiste Lamarck 1744–1829
Charles Darwin 1809–1882
Alfred Russel Wallace 1823–1913
August Weismann 1834–1914
Ernst Haeckel 1834–1919
Sewall Wright 1889–1988
R.A. Fisher 1890–1962
J.B.S. Haldane 1892–1964
Theodosius Dobzhansky 1900–1975
Ernst Mayr 1904–2005
Gustave Malécot 1911–1998
James F. Crow 1916–
John Maynard Smith 1920–2004
Motoo Kimura 1924–1994
George C. Williams 1926–
Carl Woese 1928–
Edward Osborn Wilson 1929–
Richard Lewontin 1929–
Allan Wilson 1934–1991
W.D. Bill Hamilton 1936–2000
Danil Janzen 1939–
Stephen Jay Gould 1941–2002
Robert Trivers 1943–
Niles Eldredge 1943–
Richard D. Alexander 1948–
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(b) Molecular Evolution and Population Genetics

Mendel (1866) cross-pollinated purebred pea plants RR with purebred
wrinkled pea plants (rr). The first filial generation peas were all round (Rr),
but those in the next generation included RR (round), Rr (round), Rr (round)
and rr (wrinkled). Thus, the genotype Rr produced the phenotype round peas.

This work of Mendel and later geneticists has shown that the development
of the individual organism is controlled by hereditary regulation known as
genes. Genes are constructed of the nucleic acid called DNA (deoxyribonucleic
acid) and are normally located in the cell nucleus, where they are organized
into larger, paired, thread-like units called chromosomes, each of which may
contain thousands of genes.

The number of chromosomes is usually constant for each species, but varies
between species, ranging from as few as one pair to as many as several hundred
pairs. The usual number is between 5 and 30 pairs. Man, for example, has 23
pairs. When a cell divides during normal growth, the chromosomes reproduce
themselves exactly to give, in the two new cells, the same number and kinds
of chromosomes as in original parent cell. This process of exact chromosome
reduplication is called mitosis. In organisms with sexual reproduction, a more
specialized kind of cell division called meiosis takes place in the organs where
gametes (specialized reproductive cells, such as eggs and sperm) are produced.

In this second process there are two cell divisions. In the first the chromo-
some pairs are divided in a random fashion so that each of the two new cells
receives one number of each original pair, or exactly half the number of chro-
mosomes found in the original cell. Then these two cells reproduce themselves
exactly, each of which carries half the number of chromosomes necessary for
the final organism.

When two gametes meet in the process of fertilization, a new organism
is produced, one that receives half of its chromosomes from each of the two
parents. Thus, meiosis and subsequent fertilization provide a means of in-
terchanging genetic material between organisms, whereas mitosis provides a
means of exactly duplicating cells within an individual organism. In man, all
cell divisions are achieved by mitosis except those in the testes of the male
and ovaries of the female where sperm and eggs are produced by meiosis.

The chromosomes are the larger units of heredity, but it is the smaller genes
that ultimately determine the nature of the individual organism. Genes may
exist in different expressions, called alleles, each of which leads to a different
hereditary result in the adult organism. In man, for example, blue eyes are
the result of one eye-color allele, whereas brown eyes result from another.
Recall that chromosomes normally occur in pairs. It is a fundamental fact of
heredity that paired chromosomes have analogous sets of genes that control
the development of the same structures in the adult organism.
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Cells produced by mitosis therefore have two complete sets of genes, one
set contained in each member of the paired chromosomes. Such cells are
called diploid cells. In meiosis, on the other hand, only one member of each
chromosome pairs is transmitted to the daughter cell, which thus has only half
as many chromosomes as the diploid parent cell. Such cells are called haploid
cells. Haploid cells contain one complete set of genetic instructions, whereas
diploid cells contain two complete sets. Diploid cells, with their double set of
chromosomes, may have the same or different alleles for a particular gene in
each set. In man, for example, an individual may have the blue-eye allele in
both chromosomes of the pair which contains the eye-color gene, or he may
have the brown-eye allele in both chromosomes, or, finally, he might have the
brown-eye allele in one chromosome and the blue-eye in the other.

If both chromosomes contain the same allele, then all gametes produced
by dividing the pairs during meiosis will also have the same eye-color allele.
Individuals with the same allele on both chromosomes thus produce only one
kind of gamete and are said to be homozygous for that particular gene. When
the two chromosomes of a pair contain different alleles, the gametes produced
by dividing the pairs will be mixed; half will contain the blue-eye allele and
half the brown-eye allele. In this case the individual is said to be heterozygous
for that particular gene.

Note that each character of the adult organism is not always controlled by
a single gene. Some few characters, such as human eye color, are inherited in
this simple way, but most characters are determined by the combined effects
of many genes. As the eye-color example shows, predictions about the effects
of differing combinations of alleles on the next generation are easily made
when only a single gene is responsible for a character, but predictions become
increasingly difficult when more genes, each with differing alleles, are involved.

We now return to our evolutionary theme and consider the actual causes
if the variations found among individuals of the same species. Such variations
are of two kinds: those due to heredity, and those due to environmental
influences operating during the lifetime of the individual. In man, differences
in eye color are hereditary variations, whereas the differences in muscle size
between an athlete and an office worker of comparable physical build would
be an example of variation caused by environmental influences.

Only those variations caused by hereditary differences are important in
evolution, for they alone can be passed on to the next generation. The children
of the athlete will inherit their eye color from him, but they will not have his
physique if they choose to become office workers.

Inherited variations, in turn, result from two interrelated processes: mu-
tation and genetic recombination. Mutation is the sudden, spontaneous ap-
pearance of a new allele for a particular gene or group of genes. Apparently,
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mutations are continuously taking place in all organisms, but normally they
occur at a very low rate. In the fruit-fly genus Drosophila, which has long
been a favorite animal group for genetic study, there is about one gene mu-
tation for every 20 gametes produced. Because each gamete includes about
20,000 genes, the rate of mutation is only about one per 400,000 genes. Mu-
tations may have little or no effect on the adult organism; some, however,
are lethal, while others lead to small but advantageous changes. The causes
for mutations are obscure, but in most organisms the rate of production can
be changed (usually accelerated) by artificial exposure to certain kinds of ra-
diation (gamma, ultraviolet, cosmic), to various chemicals, or to changes in
temperature. Apparently, these agents alter the chemical structure of the
DNA which makes up the genes, thus producing new alleles.

Mutations are the only source for new alleles but are too rare to be directly
responsible for most of the constantly appearing variation found in individ-
uals of the same species. These variations result from simple recombination,
during meiosis and fertilization, of the alleles already present in the parent
organisms. Because the chromosomes of most kinds of organisms contain tens
of thousands of genes, each of which may have several alleles, there are al-
most limitless possibilities for recombination of alleles to produce individuals
with differing genetic patterns. It is these differing patterns that lead to the
variations seen in adult organisms of the same species.

The genotype of any organism is total makeup of its genetic material, i.e
the particular set of genes it possesses. Two organisms whose genes differ
at even one position of their genome are said to have different genotypes.
The term “genotype” refers, then, to the full hereditary information of an
organism.

The phenotype of an organism, represent its actual physical properties,
such as height, weight, hair color, and so on.

Mendelian genetics has shown that because of the dominance of some
characters, organism with the same phenotype may have different genotypes.
Only by studying their offsprings can we distinguish between them. Likewise,
organisms with identical genotype differ in their phenotypes (e.g identical
twins).

Biological evolution seems to violate our common sense awareness that
in general, disorder tends to increase as time passes. All around us, we see
configurations of matter move from order to disorder, from improbable states
to more probable ones. Paint weathers; rocks crumble; iron rusts; wood
decays; stars radiate away their energy. But here on Earth, life continues to
combine elements into specific molecules and monomers into lengthy polymers,
making ever-greater complexity and order from simplicity and disorder.
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A single DNA molecule, which may be a million times longer than it is
wide, represents an exceedingly nonrandom bit of matter. Such molecules
store the tremendous amounts of information needed to carry out life’s ac-
tivities, information that can be preserved undamaged through thousands of
replications. Hence, a great degree of order is required to keep matter alive.
This order not only persists but has actually increased as life has evolved to
ever more complex forms on earth.

How can we explain this apparent contradiction – the maintenance, and
even the increase, in the order and complexity of life in a universe that is
inexorably evolving toward increasing disorder? The resolution lies in a con-
sideration of the total system, of which life is just one part.

Life on earth does not form a closed system. Instead, life can maintain its
highly improbable configuration only at the expense of its environment; that
is, life can become highly organized only by increasing the disorganization
of its surroundings. The disorder of the total system increases, while the
disorder of living creatures within it decreases. Here “disorder” refers not to
pollution but to the way that life acquires the energy it needs.

Molecular evolution is the process of evolution at the scale of DNA, RNA,
and proteins. Molecular evolution emerged as a scientific field in the 1960’s
as researchers from molecular biology, evolutionary biology and population
genetics sought to understand recent discoveries on the structure and function
of nucleic acids and protein. Some of the key topics that spurred development
of the field have been the evolution of enzyme function, the use of nucleic acid
divergence as a “molecular clock” to study species divergence, and the origin
of non-functional or junk DNA.

Recent advances in genomics, including whole-genome sequencing, high-
throughput protein characterization, and bioinformatics have led to a dra-
matic increase in studies on the topic. In the 2000s, some of the active topics
have been the role of gene duplication in the emergence of novel gene function,
the extent of adaptive molecular evolution versus neutral drift, and the iden-
tification of molecular changes responsible for various human characteristics
especially those pertaining to infection, disease, and cognition.

Mutations are permanent, transmissible changes to the genetic material
(usually DNA or RNA) of a cell. Mutations can be caused by copying errors
in the genetic material during cell division and by exposure to radiation,
chemicals, or viruses, or can occur deliberately under cellular control during
the processes such as meiosis or hypermutation. Mutations are considered
the driving force of evolution, where less favorable (or deleterious) mutations
are removed from the gene pool by natural selection, while more favorable
(or beneficial) ones tend to accumulate. Neutral mutations do not affect the
organism’s chances of survival in its natural environment and can accumulate
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over time, which might result in what is known as punctuated equilibrium; the
modern interpretation of classic evolutionary theory.

There are four known processes that affect the survival of a characteristic;
or, more specifically, the frequency of an allele;

• Mutation

• Genetic drift describes changes in gene frequency that cannot be as-
cribed to selective pressures, but are due instead to events that are
unrelated to inherited traits. This is especially important in small mat-
ing populations, which simply cannot have enough offspring to maintain
the same gene distribution as the parental generation.

• Gene flow: or gene admixture is the only one of the agents that makes
populations closer genetically while building larger gene pools.

• Selection, in particular natural selection produced by differential mortal-
ity and fertility. Differential mortality is the survival rate of individuals
before their reproductive age. If they survive, they are then selected
further by differential fertility – that is, their total genetic contribution
to the next generation. In this way, the alleles that these surviving indi-
viduals contribute to the gene pool will increase the frequency of those
alleles. Sexual selection, the attraction between mates that results from
two genes, one for a feature and the other determining a preference for
that feature, is also very important.

The production and redistribution of variation is produced mostly by three
of the four agents of evolution: mutation, genetic drift, and gene flow. Nat-
ural selection, in turn, acts on the variation produced by these agents. One
important goal is to understand (using both data from molecular biology and
theory from population genetics) the main force driving molecular evolution.

Currently, three main positions are defended. (1) Neutralism and near-
neutralism (Kimura, 1983), where neutral or nearly-neutral mutations, along
with random genetic drift and purifying selection, explain most of evolution.
(2) Selectionism, where balancing selection is considered the main force, and
finally, (3) mutationism, where mutational input and random genetic drift
are thought to be more important.

Population genetics is the study of changes in gene allele frequency dis-
tribution within interbreeding populations under the influence of the four
evolutionary forces: natural selection, genetic drift, mutation, and migration.
It also takes account of population subdivision and population structure in
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space. As such, it attempts to explain such phenomena as adaptation and spe-
ciation. Population genetics was a vital ingredient in the modern evolutionary
synthesis, its primary founders were Sewall Wright, J.B.S. Haldane and
R.A. Fisher, who also laid the foundations for the related discipline of quan-
titative genetics.

What was perhaps the most significant discovery concerning such changes
was made independently in 1908 by G. Weinberg, a German geneticist,
and G.H. Hardy, a British mathematician, and has come to be known as
the Hardy-Weinberg law. Hardy and Weinberg demonstrated by simple al-
gebra that the relative proportion of alleles within a randomly interbreeding
population will remain constant unless outside forces work to change it. In-
tuitively, one would assume that rare alleles would gradually be lost from
the population, and that common would tend to become more common. In-
stead, Hardy and Weinberg showed that there is a natural genetic equilibrium
which can preserve even the least common alleles in a randomly interbreeding
population. Only through nonrandom processes, such as nutation or selective
reproduction, can the proportion of rare alleles be increased or the proportion
of common alleles decreased.

This discovery was particularly significant in re-establishing natural se-
lection as an evolutionary mechanism, because, as you will recall, the basis
of natural selection is nonrandom reproduction. Not every individual, but,
on the average, more of the better fitted, will survive to produce the next
generation. Natural selection is therefore an ideal mechanism for explaining
changes in allele frequency and shift away from genetic equilibrium.

Building on the Hardy-Weinberg law, modern population geneticists have
developed a body of refined mathematical models, often devised with help
of high-speed computers, to stimulate changes in gene frequencies by natural
selection in populations that differ in such features as selection pressures, size,
original allele ratios, reproductive habits, mutation rates, migration rates,
and recombination patterns. In addition to these mathematical formulations,
there is now a large body of observational and experimental evidence that
confirms the importance of natural selection as a means of changing gene
frequencies.

(c) Non–Darwinian Evolution; Genetic Drift (1968–1983)

In order to follow the changes in life through billions of years, one must
look more closely at the property of life that are most distinctive: the capacity
to reproduce and to evolve. At the molecular level, life’s ability to reproduce
begins with the replication of DNA, during which two new spirals are created
that are exact replicas of the origin molecule.
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Sometimes a change in the sequence of nucleotide bases, called a mutation,
occurs in the DNA polymer. Such changes arise basically at random, some-
times from the impact on the DNA molecules of high-energy gamma rays or of
cosmic-ray particles, or from exposure to various chemical agents called mu-
tagens, or even from rare errors made by cell’s own DNA-coping machinery.
We do not know which of these processes predominates in causing mutations
throughout the history of life on earth. When a mutation arises in a part of
the DNA where information for a protein is encoded, it can cause a different,
“incorrect” amino acid to be inserted into the protein under construction.

Many mutations are neither helpful nor hurtful. They are simply called
“neutral” mutations. If the new protein does its cellular job poorly, the or-
ganism may be less fit for survival and reproduction, or it might not survive
at all. On other occasions, mutations may actually change a protein in such
a way that it does its job better than the original protein did. The lucky
organism with this mutation would have some advantage over its fellows –
perhaps it can replicate its DNA more quickly, swim more rapidly, sense food
more efficiently, have more brightly colored feathers, or smell predators at a
greater distance.

Such advantages would give the organism greater reproductive success
than its fellows: Because they are healthier, more resistant to cold, prettier,
better at escaping from predators, or superior for some other reasons, the more
fit organisms will (by definition) produce more surviving offspring than their
less fit relatives. As a result, organisms carrying favorable mutations will,
over time, come to predominant in a population. “Differential reproduction”
– the greater or lesser success that organisms achieve in producing offspring
– lies at the heart of the process called natural selection.

Differential reproduction determines whether a given mutation becomes
established, or “fixed” in the general population. Thus natural selection,
operating through differential reproductive success, causes the characteristics
of a species gradually to change when advantageous, or “adaptive”, mutations
sweep through the population. In this way, differential reproduction allows
one species to evolve into a new species.

Sometimes groups within a species become isolated from each other for
many generations. When this happens, different mutations, appearing at ran-
dom, become fixed in the separated populations. Gradually, the populations
differ more and more from each other. When populations differ significantly
(usually, when they can no longer interbreed to produce fertile offspring) we
call them two separate species.

In 1839, Charles Darwin noticed such changes among bird species in
the Galápagos Islands. Darwin studied populations of birds resembling, but
not identical to, those that he knew well from his native England. He found
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different species and subspecies of finches on the different islands that he
visited, and his speculations about how the differences arose led to his theory
of evolution, first published in 1859. In this epochal work, Darwin identified
what we have called natural selection (differential reproductive success) as the
driving force that makes new species on earth.

During the past 40 years much progress in understanding the process of
evolution has resulted from combining Darwin’s mechanism of natural selec-
tion with the discoveries of geneticists concerning the inheritance of individual
variations. Because of the renewed emphasis on natural selection, this mod-
ern synthesis is often referred to as Neo-Darwinism. A fundamental theme
of Neo-Darwinism has been the study of inheritance not merely in individual
organisms, but in populations, which are interbreeding groups of individuals
of the same species. It is now recognized that mutation, recombination, and
natural selection can lead to evolutionary change only as they act on such
groups of individuals; this emphasis has given rise to the science of popula-
tion genetics, a subject that has been responsible for many of the advances of
Neo-Darwinism.

The size of a population has important effects on allele frequencies because
random events, or chance, tend to cause changes of relatively greater magni-
tude in a small populations. If a population consist of only a few individuals,
an allele present at a low frequency in the population could be completely
lost by chance. Such an event would be unlikely in a large population. For
example, consider two populations, one with 10,000 individuals and one with
10 individuals. If an uncommon allele occurs at a frequency of 10%, or 0.1,
in both populations, then 1900 individuals in the large population have the
allele.31 That same frequency, 0.1, in the smaller population means that only
about two individuals have the allele.32 From this exercise, it is easy to see
that there is a greater likelihood of losing the rare allele from the smaller
population than from the larger one. Predators, for example, might happen
to kill one or more individuals possessing the uncommon allele in the smaller
population purely by chance so these individuals would leave no offspring.

The production of random evolutionary changes in small breeding popu-
lations is known as genetic drift. Genetic drift result in changes in allele fre-
quencies in a population from one generation to another. One allele may be
eliminated from the population purely by chance, regardless of whether that
allele is beneficial, harmful, or of no particular advantage or disadvantage.
Thus, genetic drift decreases genetic variation within a population, although
it tends to increase genetic differences among different populations. Because

31 2pq + q2 = 2(0.9)(0.1) + (0.1)2 = 0.18 + 0.01 = 0.19; 0.19 × 10, 000 = 1900
32 0.19 × 10 = 1.9
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of fluctuations in the environment, such as depletion in food supply or an
outbreak of disease, a population may rapidly and markedly decrease from
time to time. The population is said to go through a bottleneck during which
genetic drift can occur in the small population of survivors. As the popu-
lation again increases in size, many allele frequencies may be quite different
from those in the population preceding the decline.

Scientists hypothesize that genetic variation in the cheetah was consider-
ably reduced by a bottleneck at the end of the last Ice Age, some 10,000 years
ago, Cheetahs nearly became extinct, perhaps from overhunting by humans.
The few surviving cheetahs had greatly reduced genetic variability, and as a
result, the cheetah population today is so genetically uniform that unrelated
cheetahs can accept skin grafts from one another. (Normally, only identical
twins accept skin grafts so readily.)

Whereas natural selection describes the tendency of beneficial alleles to
become more common over time (and detrimental ones less common), genetic
drift refers to the fundamental tendency of any allele to vary randomly in
frequency over time due to statistical variation alone, so long as it does not
comprise all or none of the distribution.

Genetic drift may be modeled as a stochastic process that arises from the
role of random sampling in the production of offspring. The genes of each
new generation are not a simple copy of the genes of the successful members
of the previous one, but rather a sampling, which includes some statistical
error. Drift is the cumulative effect over time of this sampling error on the
allele frequencies in the population.

By definition, genetic drift has no preferred direction. A neutral allele may
be expected to increase or decrease in any given generation with equal proba-
bility. Given sufficiently long time, however, the mathematics of genetic drift
predict the allele will either die out or be present in 100% of the population,
after which time there is no random variation in the associated gene. In this
regard, genetic drift tends to sweep gene variants out of a population over
time, such that all members of a species would eventually be homozygous for
this gene. Genetic drift is opposed in this regard by genetic mutation which
introduces novel variants into the population according to its own random
processes.

Like selection, genetic drift acts on populations, altering the frequency
of alleles (gene variations) and the predominance of traits. Drift is observed
most strongly in small populations and results in changes that need not be
adaptive.

Similarly, in a breeding population, if an allele has a frequency of p, prob-
ability theory dictates that (if natural selection is not acting) in the following
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generation, a fraction p of the population will inherit that particular allele.
However, allele frequencies in real populations are not probability distribu-
tions; rather, they are a random sample, and are thus subject to the same
statistical fluctuations.

When the alleles of a gene do not differ with regard to fitness, on average
the number of carriers in one generation is proportional to the number of
carriers in the previous generation. But the average is never tallied, because
each generation parents the next one only once. Therefore the frequency of
an allele among the offspring often differs from its frequency in the parent
generation. In the offspring generation, the allele might therefore have a
frequency p’, slightly different from p. In this situation, the allele frequencies
are said to have drifted. Note that the frequency of the allele in subsequent
generations will now be determined by the new frequency p’.

The size of the breeding population (the effective population size) governs
the strength of the drift effect. When the effective population size is small,
genetic drift will be stronger.

Drifting alleles usually have a finite lifetime. As the frequency of an allele
drifts up and down over successive generations, eventually it drifts until fixa-
tion – that is, it either reaches a frequency of zero, and disappears from the
population, or it reaches a frequency of 100% and becomes the only allele in
the population. Subsequent to the latter event, the allele frequency can only
change by the introduction of a new allele by a new mutation.

The lifetime of an allele is governed by the effective population size. In a
very small population, only a few generations might be required for genetic
drift to result in fixation. In a large population, it would take many more
generations. On average, an allele will be fixed in 4Ne generations, where Ne

is the effective population size.

According to the Hardy-Weinberg Principle, which holds that allele fre-
quencies in a gene pool will not change over time, a population must be
sufficiently large to prevent genetic drift from changing allele frequencies over
time. This is why the law is unstable in a small population.

Genetic drift and natural selection rarely occur in isolation from each other;
both forces are always at play in a population. However, the degree to which
alleles are affected by drift and selection varies according to circumstance.

In a large population, where genetic drift occurs very slowly, even weak
selection on an allele will push its frequency upwards or downwards (depending
on whether the allele is beneficial or harmful). However, if the population is
very small, drift will predominate. In this case, weak selective effects may
not be seen at all as the small changes in frequency they would produce are
overshadowed by drift.
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Drift can have profound and often bizarre effects on the evolutionary his-

tory of a population. These effects may be at odds with the survival of the

population.

In a population bottleneck, where the population suddenly contracts to

a small size (believed to have occurred in the history of human evolution),

genetic drift can result in sudden and dramatic changes in allele frequency

that occur independently of selection. In such instances, many beneficial

adaptations may be eliminated even if population later grows large again.

Similarly, migrating populations may see founder’s effect, where a few

individuals with a rare allele in the originating generation can produce a

population that has allele frequencies that seem at odds with natural selection.

Founder’s effects are sometimes held to be responsible for high frequencies of

some genetic diseases. The mathematical foundation of the neutral theory
of evolution was first promulgated in 1968 by Motoo Kimura (1924–1994,

Japan). It challenged the notion that natural selection was the sole directive

force in evolution. Arguing that mutations and random drift account for

variations at the level of DNA and amino acids, Kimura advanced a theory

of evolutional change. The crux of his theory is in the motion that most

genetic diversity is there because it makes no difference, not because it has

been picked by natural selection for a purpose. Mutation pumps a continual

stream of genetic changes that do not affect anything into the gene pool, and

that they are gradually purged again by genetic drift – a random change. So

there is constant turnover without adaptive significance.

According to Kimura, when one compares the genomes of existing species,

the vast majority of molecular differences are selectively “neutral.” That

is, these differences do not influence the fitness of either the species or the

individuals who make up the species. As a result, the theory regards these

genome features as neither subject to, nor explicable by, natural selection.

This view is based in part on the degenerate genetic code, in which sequences

of three nucleotides (codons) may differ and yet encode the same amino acid
(GCC and GCA both encode alanine, for example). Consequently, many

potential single-nucleotide changes are in effect “silent” or “unexpressed”

Such changes are presumed to have little or no biological effect. However,

it should be noted that the original theory was based on the consistency in

rates of amino acid changes, and hypothesized that the majority of those

changes too were neutral.

A second assertion or hypothesis of the neutral theory is that most evolu-

tionary change is the result of genetic drift acting on neutral alleles. A new

allele arises typically through the spontaneous mutation of a single nucleotide
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within the sequence of a gene. In single-celled organisms, such an event im-
mediately contributes a new allele to the population, and this allele is subject
to drift.

In sexually reproducing multicellular organisms, the nucleotide substitu-
tion must arise within one of the many sex cells that an individual carries.
Then only if that sex cell participates in the genesis of an embryo and off-
spring, does the mutation contribute a new allele to the population. Neutral
substitutions create new neutral alleles.

Through drift, these new alleles may become more common within the
population. They may subsequently decline and disappear, or in rare cases
they may become “fixed” – meaning that their substitution becomes a uni-
versal feature of the population or species. When an allele carrying one of
these new substitutions becomes fixed, the effect is to add a substitution to
the sequence of the previously fixed allele. In this way, neutral substitutions
tend to accumulate, and genomes tend to evolve.33

The process of change of the frequency of a gene over time in a large
random-mating population can be treated as a stochastic process and ap-
proximated by a diffusion process. Kimura modeled the dynamic process
of gene frequency change over time under different models for mutation and
selection by making use of diffusion theory.

Consider a large random-mating population; two alleles exist at a locus
with a selectively advantageous allele with frequency p0 at generation 0. The
probability density that the frequency of the favored allele is x at generation
t, denoted by φ(x, t|p0), satisfies the Kolmogorov forward equation.

The average change of allele frequency per generation under selection (with
selection coefficient s > 0) is approximately sx(1 − x) according to a diffusion
approximation if there is no dominance. The variance of the change of gene
frequency due to random drift is 1

2N x(1 − x) and φ(x, t|p0) can be obtained
by solving the following PDE,

33 As of the early 2000s, the neutral theory is widely used as a “null model” for so-

called null hypothesis testing. Researchers typically apply such a test when they

already have an estimate of the amount of time that has passed since two species

or lineages diverged – for example, from radiocarbon dating at fossil excavation

sites, or from historical records in the case of human families. The test compares

the actual number of differences between two sequences and the number that

the neutral theory predicts given the independently estimated divergence time.

If the actual number of differences is much less than the prediction, the null

hypothesis has failed, and researchers may reasonably assume that selection has

acted on the sequences in question. Thus such tests contribute to the ongoing

investigation into the extent to which molecular evolution is neutral.
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4N

∂2[x(1 − x)φ(x, t|po)]
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− ∂[sx(1 − x)φ(x, t|po)]
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with boundaries x = 0, and x = 1 where N is the population size. Kimura

obtained the explicit separation of variables solution,
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The explicit solution of probability of fixation, or loss, of an allele by gener-

ation t, given the initial frequency p0, can be derived by means of (1) and

shown to be
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respectively. This is the solution to a genetic situation of selection without

dominance complicated by random sampling. Kimura gave also an explicit

solution to the problem of random drift only (s = 0).34 To sum up, the neutral

theory says that, through the history of life from beginning to end, random

34 To dig deeper, see:

• Bharucha–Reid, A.T., Elements of the Theory of Markov Processes and Their
Applications, McGraw-Hill Book Company: New York, 1960
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statistical fluctuations have been more important than Darwinian selection
in causing species to evolve. Evolution by random statistical fluctuation is
called genetic drift. Kimura maintains that genetic drift drives evolution more
powerfully than natural selection.

According to F. Dyson (1985) Genetic drift and natural selection are
both important, and there are times and places where one or the other may
be dominant. In particular it is reasonable to suppose that genetic drift
was dominant in the very earliest phase of biological evolution, before the
mechanism of heredity had become exact.

We know almost nothing about the origin of life. We do not even know
whether the origin was gradual or sudden. It might have been a process of
slow growth stretched out over millions of years or it might have been a single
molecular event that happened in a fraction of a second. As a rule, natural
selection is more important over long periods of time and genetic drift is more
important over short periods. If one thinks of the origin of life as being slow,
one must think of it as a Darwinian process driven by natural selection. If one
thinks of it as being quick, then the Kimura picture of evolution by statistical
fluctuation without selection is appropriate. In reality the origin of life must
have been a complicated process, with incidents of rapid change separated by
long periods of slow adaptation. A complete description needs to take into
account both drift and selection.

If one wishes to examine seriously the double-origin hypothesis, the hy-
pothesis that life began and flourished without the benefit of exact replication,
then it is natural to imagine that genetic drift remained strong and natural
selection remained relatively weak during the early exploratory phases of evo-
lution. But this is not to say that Darwinian selection had to wait until life
learned to replicate exactly. Darwinian selection is not logically dependent
on exact replication. Indeed, Darwin himself knew nothing of exact replica-
tion when he invoked the idea of natural selection. Darwinian selection would
have operated to guide the evolution of living creatures even at a time when
those creatures may have lacked anything resembling a modern genetic appa-
ratus. All that is necessary for natural selection to operate is that there be
some inheritance of chemical constituents from an organism to its progeny.
The inheritance need not be exact. It is sufficient if a cell splitting into two
daughter cells transmits to each of its daughters with a high probability a
population of molecules capable of continuing its own pattern of metabolism.
Statistical inheritance, as Darwin well knew, can be good enough. Darwinian
selection is unavoidable as soon as inheritance begins, no matter how sloppy
the mechanism of inheritance may be.

Lewontin (1974) outlined the theoretical task for population genetics.
He imagined two spaces: a “genotypic space” and a “phenotypic space”. The
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challenge of a complete theory of population genetics is to provide a set of
laws that predictably map a population of genotypes (G1) to a phenotype
space (P1), where selection takes place, and another set of laws that map
the resulting population (P2) back to genotype space (G2) where Mendelian
genetics can predict the next generation of genotypes, thus completing the
cycle. Even leaving aside for the moment the non-Mendelian aspects revealed
by molecular genetics, this is clearly a gargantuan task. Visualizing this
transformation:

G1 →T1 P1 →T2 P2 →T3 G2 →T4 G
′

1 → . . .

T1 represents the genetic and epigenetic laws, the aspects of functional
biology, or development, that transform a genotype into phenotype. We will
refer to this as the “genotype-phenotype map”. T2 is the transformation due
to natural selection, T3 are epigenetic relations that predict genotypes based
on the selected phenotypes and finally T4 the rules of Mendelian genetics.

In practice, there are two bodies of evolutionary theory that exist in par-
allel, traditional population genetics operating in the genotype space and the
biometric theory used in plant and animal breeding, operating in phenotype
space. The missing part is the mapping between the genotype and pheno-
type space. This leads to a “sleight of hand” (as Lewontin terms it) whereby
variables in the equations of one domain, are considered parameters or con-
stants, where, in a full-treatment they would be transformed themselves by
the evolutionary process and are in reality functions of the state variables in
the other domain. The “sleight of hand” is assuming that we know this map-
ping. Proceeding as if we do understand it is enough to analyze many cases
of interest. For example, if the phenotype is almost one-to-one with genotype
(sickle-cell disease) or the time-scale is sufficiently short, the “constants” can
be treated as such; however, there are many situations where it is inaccurate.

(d) Panspermia and the Anthropic Principle

Panspermia is the theory that life on earth was seeded by microbial life
from space.There are several variations on this theme held by many historical
advocates, including the Greek philosopher, Anaxagoras (500–428 BCE),
Hermann von Helmholtz (1821–1894), and William Thomson (1824–
1897).

More recently, Svante Arrhenius promulgated the theory of radio-
panspermia, wherein microbes from space are transported by light pressure.
Fred Hoyle and Chandra Wickramasinghe have advocated that DNA
arrived on earth via meteorites (ballistic panspermia) or by comets (modern
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panspermia). Francis Crick has advocated the theory of directed pansper-
mia, wherein RNA was transported by unmanned spaceships, or the space
probes of intelligent extraterrestrial civilizations. He was led to argue for
Panspermia by his belief that the chances of life accidentally originating on
Earth were very low.

Crick argued that the universality of the genetic code can only be explained
by an “infective” theory of the origin of life. In this theory, life on earth would
be a “clone” derived from a single set of organisms. Crick’s radical theory of
directed panspermia suggests that RNA was the first replicator molecule on
earth in an early biological era.

The anthropic principle is based on a biological argument: the minimum
time required for the evolution of “intelligent observers.” In this scheme, a
billion years is required for the evolution of intelligence; therefore, a star must
have been stable for at least that long. The anthropic timescale argument
allows that the types of processes allowed in the Universe must be of such an
age that “slow evolutionary processes will have had time to produce intelligent
beings from non-living matter.”

Interestingly, the contemporary advocates for the existence of extrater-
restrial intelligent life are primarily astronomers and physicists, while most
leading experts in evolutionary biology contend that the earth is probably
unique in harboring intelligence, and that human beings are alone in the uni-
verse because Darwinian evolution has told us so: intelligence was never there
beforehand and can only be gotten through an incremental succession of steps
involving pure random luck – an earth-based anomaly.

(e) Cosmology and Darwinian Evolution

The origin of life is one of the few scientific problems which is broad enough
to make use of ideas from almost all scientific disciplines: E. Schrödinger
(1887–1961) brought his ideas from physics; J. von Neumann (1903–1957)
from mathematical logic; M. Eigen (b. 1927) and L. Orgel (b. 1927) from
chemistry; L. Margulis (b. 1938) from ecology, and M. Kimura (1924–1994)
from population biology.

Recently35, Darwinian evolution was also linked to cosmology.

35 Lee Smolin (b. 1955) “The Life of the Cosmos”, Oxford University Press, New

York, 358 pp. 1997. A succinct popular account was given by John Gribbin in

Prospect magazine, issue 19, May 1997.
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If the universe began in the hot fireball of a big bang some 15 billion years
ago, how did it evolve to produce galaxies and stars, planets and people?

The Big Bang theory does not provide a satisfying account for why the
flying debris of the primordial blast congealed into stars and galaxies, and
galaxies of galaxies – a hierarchy of structure. It is more likely that the
universe would have turned out to be utterly random, a featureless fog.

More miraculous till is that the Big Bang seems to have produced a uni-
verse perfectly designed to support life. It is often argued that if gravity or
electromagnetism were a little stronger or a little weaker, or if the nuclear
forces were not precisely as they are, there would be no stars. And without
stars, which cook hydrogen and helium into carbon and other complex atoms,
there would be no chemistry, no biology, no complexity, no life. The question
is “Why is the universe so interesting?”, and the answer, given by Lee Smolin
(1997) is:
“Since evolution so successfully explains why the biosphere is the way it is,
why not apply the theory of Darwinian evolution by natural selection to the
entire creation? – The universe is perfectly tuned to life because it evolved
that way.”

Smolin’s thesis is then that the way the universe works can best be under-
stood not simply by applying the rules of physics worked out by Newton and
Einstein, but by taking account as well of the rules of evolution worked out
by Darwin – the theory of natural selection.

The universe itself, and its main components (notably galaxies such as our
own Milky Way) may have evolved through natural selection from a simpler
state to produce the complexity we see around us. To take literally the equa-
tions of GTR, the big bang itself emerged from a point of infinite density,
known as a singularity. There is, however, another place where singularities
are known to occur – at the heart of black hole.

Indeed, as Roger Penrose and Stephen Hawking proved in the 1960’s,
the expanding universe is described by exactly the same equations as a collaps-
ing black hole, but with opposite direction of time.

If all the complexity of galaxies, stars, planets and organic life has emerged
from the singularity in which our universe was born within a black hole, could
not something similar be happening to the singularities at the heart of other
black holes?

The most basic view of what might happen to a collapsing singularity to
turn it into the kind of expanding singularity that we see in our universe is that
there is simply a “bounce,” turning collapse into expansion. Unfortunately,
that will not do as an explanation. A singularity forming from a collapse
within our three dimensions of space and one of time cannot turn itself around
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and explode back outwards in the same three dimensions of space and one of
time.

But in the 1980s relativists realized that there is nothing to stop the mater-
ial that falls into a singularity from being shunted through a kind of spacetime
warp and emerging as an expanding singularity in another set of dimensions
— another spacetime.

Mathematically, this “new” spacetime is represented by a set of four di-
mensions (three of space and one of time), just like our own but with all of the
new dimensions at right angles to all of the familiar dimensions of our own
spacetime. Every singularity, on this picture, has its own set of spacetime
dimensions, forming a bubble universe within the framework of some “super”
spacetime, which we can refer to simply as “superspace.”

One way to picture what this involves is to use the old analogy between
the three dimensions of expanding space around us and the two-dimensional
expanding surface of a balloon that is being steadily filled with air. The anal-
ogy is not with the volume of air inside the balloon, but with the expanding
skin of the balloon, stretching uniformly in two dimensions, but curved around
upon itself in a closed surface.

Imagine a black hole as forming from a tiny pimple on the surface of the
balloon, a small piece of the stretching rubber that gets pinched off, and starts
to expand in its own right. There is a new bubble, attached to the original
balloon by a tiny, narrow throat – the black hole. And this new bubble can
expand away happily in its own right, to become as big as the original balloon,
or even bigger, without the skin of the original balloon (the original universe)
being affected at all. There can be many bubbles growing out of the skin
(the spacetime) of the original universe in this way at the same time. And,
of course, new bubbles can grow out of the skin of each new universe, ad
infinitum.

The dramatic implication is that many – perhaps all – of the black holes
that form in our universe may be the seeds of new universes. And, of course,
our own universe may have been born in this way out of a black hole in another
universe. This means that the universe may not be unique. Instead, it may
be one of a population of universes, interconnected by what physicists call
wormholes. The key element that Smolin has introduced into the argument
is the idea that every time a black hole collapses into a singularity and a
new baby universe is formed, the basic laws of physics are altered slightly
as spacetime it-self is crushed out of existence and reshaped. The process is
analogous (perhaps more than analogous) to the way mutations provide the
variability among organic life forms on which natural selection can operate.
Each baby universe is, says Smolin, not a replica of its parent, but a slightly
mutated form.
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The original, natural state of such baby universes is to expand out to only
about the Planck length, before collapsing once again. But if the random
changes in the workings of the laws of physics-the mutations-happen to allow
a little bit more expansion, a baby universe will grow a little larger. If it
becomes big enough, it may separate into two, or several, different regions,
that each collapse to make a new singularity, and thereby trigger the birth
of a new universe. Those new universes will also be slightly different from
their parents. Some may lose the ability to grow much larger than the Planck
length and will fade back into the quantum foam. But some may have a
little more inflation still than their parents, growing even larger, producing
more black holes and giving birth to more baby universes in their turn. The
number of new universes that are produced in each generation will be roughly
proportional to the volume of the parent universe. There is even an element of
competition involved, as the many baby universes are in some sense vying with
one another, jostling for spacetime elbow room within superspace. Heredity
is an essential feature of life, and this description of the evolution of universes
works in a similar manner to living systems.

On this picture, universes pass on their characteristics to their offspring
with only minor changes, just as people pass on their characteristics to their
children with only minor changes. Universes that are “successful” are the
ones that leave most offspring. Provided that the random mutations are
indeed small, there will be a genuinely evolutionary process favoring larger
and larger universes.

Once universes start to be big enough to allow stars to form, in succeeding
generations of universes there will be a natural evolution, a drift in the laws
of physics, to favor the production of the kinds of stars that will eventually
form black holes.

The end product of this process should be not one but many universes
which are all about as big as it is possible to get while still being inside a
black hole, and in which the parameters of physics are such that the forma-
tion of stars and black holes is favored. Our universe exactly matches that
description.

This explains the otherwise baffling mystery of why the universe we live in
should be “set up” in what seems, at first sight, such an unusual way. Just as
you would not expect a random collection of chemicals to suddenly organize
themselves into a human being, so you would not expect a random collection
of physical laws emerging from a singularity to give rise to a universe such as
the one we live in.

To sum up, universes evolve in favor of the production of black holes. It
is a theory of the origin of universes by means of natural selection. Smolin’s
answer to the question as why our universe is the way it is (i.e, the value of
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its parameters) is: the parameters have the values we observe, because these
make the formation of black holes much more likely than most other values.
Hence, our universe is a product of mutation and selection analogous to the
evolution of species described by Charles Darwin (1859).

Cosmologists are now having to learn to think like biologists and ecologists,
and to develop their ideas not within the context of a single, unique universe,
but in the context of an evolving population of universes. Each universe starts
from its own big bang, but all the universes are interconnected in complex
ways by black hole “umbilical cords,” and closely related universes share the
“genetic” influence of a similar set of physical laws.

But the realization that our universe is just one among many, that it
is alive and that no supernatural influences need be invoked to explain its
existence, is still not the most dramatic conclusion we can draw from the new
cosmology. Although it is now clear that the universe has not been set up for
our benefit, and that the existence of organic life forms on Earth is a minor
side effect of an evolutionary process involving universes, galaxies and stars,
nevertheless it is clear that the existence of life forms such as ourselves is an
inevitable side effect of those greater evolutionary processes.

The same laws of physics apply throughout our universe and throughout
many other universes besides. Organic (carbon based) material occurs in
profusion between the stars of a spiral galaxy such as our Milky Way. This
carbon-rich material seems to be crucially involved in the processes which
allow gas clouds to cool and new stars to form, so a universe that is good at
making black holes will also be good at making carbon based compounds. Those
compounds will undoubtedly seed any earth-like planet that forms with each
new generation of stars.

Astronomers calculate that there may be as many as 1020 planets suitable
for life forms such as ourselves in our universe. We see the components of
organic life everywhere in the universe, and the chances are that most of
those 1020 planets actually are carriers of our kind of life, in the same way
that earth is a carrier of life. The birth of the living universe inevitably gave
rise to the birth of living planets. Which still leaves physicists the task of
explaining just how complexity arose in a hot universe expanding out of a big
bang.

Note that in principle, life and Cosmological Natural Selection could be
independent of each other. There are two reasons for this:

• On the one hand there may be universes full of black holes were life as
we know it couldn’t evolve. For example it might be possible that there
are only short-lived giant stars which collapse quickly into black holes,
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or that there are universes dominated either by helium or by neutrons
(corresponding to the neutron/proton mass difference being either zero
or negative), or that there are universes with many (more) primordial
black holes and maybe without stars at all. Such universes might be very
reproductive because of their giant stars or primordial black holes but
are not able to produce earth-like life.

• On the other hand we can conceive a universe without black holes at all
(if supernova lead to neutron stars only, or if there are not stars above a
critical mass limit) but which could be rich in earth-like life nevertheless.

Thus, there is not a (logically) necessary connection between black holes and
life, unless, perhaps, black holes could be advantageous to life, or vice versa.

If Smolin is right, the implications for our view of nature would be enor-
mous. Our universe would be only a grain of sand on the incredible large
beach of the Multiverse. And it would be in no way special.

According to the Cosmological Principle, our universe is homogeneous
and isotropic on the large scale, that is, it appears the same at all places and,
from any one place, looks the same in all directions. If Smolin is right, we
could accept a truly Perfect Cosmological Principle, that is, the Multiverse is
literally “full” of universes like our own universe.

It has often been said that the Copernican revolution has catapulted the
earth and hence, mankind, out of the center of the universe. In the twentieth
century it became clear that neither the earth, nor the sun, nor the milky
way, nor the local supercluster of galaxies are at the center of the universe,
because there is no center at all. Nor does the baryonic matter of which we
consist dominate the universe, i.e. in comparison with the assumed particles
of dark matter even the material we are made of is quantitatively negligible.

This dramatic widening of our horizon and diminution of our role in the
universe led to a radical cosmic expulsion. Our position in space-time is
completely irrelevant, providing no evidence for a universal meaning or a
cosmic value of mankind, nor a protection against contingency and absurdity.

In recent decades, some interpretations of the Anthropic Principle and
the alleged fine-tuning of the physical parameters have been examples for a
tendency to reverse this development. But the idea of the Multiverse made out
of many different universes, which implies an Observational Selection effect,
is once again sufficient to wipe out any romantic dreams of anthropocentrism.

But in this picture at least our life-bearing universe might still be special.
In Smolin’s account however, our universe has most properties in common
with all other universes. It would be a very ordinary world indeed. Thus, if
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Smolin is right, there is no reason to believe that (human) life is unique or
that the constants of nature have a singular status.36

(f) Critique of Evolutionary Biology (1978–2008)

Darwin’s theory of evolution basically states that life on earth began with
single-celled life-forms, which evolved into multicellular life-forms, which over
countless aeons evolved into higher life-forms, including man – all as a result
of the chance process of random mutation of desirable attributes followed by
natural selection, without guidance or assistance from any intelligent entity.
Thus, for example, evolution holds that the human eye came into existence
purely by accident.

However, Darwin knew nothing of DNA and the vastly complex systems
studied by molecular biologists, such as the information processing, storage,
and retrieval in DNA.

Moreover, until recently, scientists did not know what the inside of a cell
looked like: the cell was a mysterious “black box”.

Michael Behe37 (1996) used discoveries in microbiology to cast serious
doubts upon Darwinism: for example, a bacterial motor, that propels bacteria

36 To dig deeper, see:

• Schrödinger, E., What is Life, Cambridge University Press, 1944

• Jacob, Francois, The Possible and the Actual, Pantheon Books: New York,

1982

• Hoyle, Fred, The Intelligent Universe, 1983

• Dyson, F., Origins of life, Cambridge University Press, 1985

• Barrow, J.D. and F.J. Tipler, The Anthropic Cosmological Principle, Oxford

University Press: New York, 1986

• Kimura, M., The Neutral Theory of Molecular Evolution, 1986

• Smith, J. Maynard, The Theory of Evolution, 1997

• Rees, Martin, Just Six Numbers, Basic Book: New York, 2000

37 Michael J. Behe (b. 1952, USA), biochemist. Advocates the idea that some

structures are too complex at the biochemical level to be adequately explained

as a result of evolutionary mechanisms and that these systems could not, even

in principle, have evolved by natural selection. This is because the calculated
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and sperm, called a flagellum, depends on the coordinated interaction of 30–

40 complex protein parts. The absence of almost any one of the parts would

render the flagellum useless. Likewise, an animal cell’s whiplike oar, called a

cilium, is composed of about 200 protein parts.

Now, it does not matter if 200 mutations happened a once or over a billion

years. All 200 mutations would have to (1) occur, (2) be the “most fit”, (3)

survive long enough to exist at the same time and place, in order to (4)

assemble themselves into a working cilium. The cell is as complicated as the

entire city of New York. Natural selection has never been demonstrated to

change anything fancier than the shape of a bird’s beak.

Behe then argued that it is extremely unlikely for all 30 parts of the

flagellum (or 200 parts of the cilium) to have been brought together by nu-

merous, successive, slight modifications primed by natural selection. He then

concluded that life at the molecular level is a “loud, clear, piercing cry of

design”.

Hence the contention that natural processes of mutation and natural se-

lection cannot explain the complexity of living things.

In fact, the more we know about molecules, cells and DNA, the less plau-

sible Darwin’s theory of natural selection becomes. Indeed, Darwin himself

probabilities of mutations required for evolution to succeed are too small. He

termed this concept “irreducible complexity” [Darwin’s Black Box, Free Press,

1996]. He argues that the eye, or the bacterial flagellum are nanotechnological

machines and cannot have evolved by any number, however large, of small mu-

tations that each confer reproductive advantage.

Behe’s claims about the irreducible complexity of key cellular structures are

strongly contested by the community of Darwin followers, and his claims about

“intelligent design” have been characterized as pseudoscience. His adversaries

have also pointed out that he offered no design theory, or attempted to model

the design process, and in general failed to offer an alternative to evolution.

However, Behe’s critics themselves tend to evade his (quite reasonable) statistical

arguments; Furthermore, adducing an alternative theory is not a precondition

for pointing out potentially fatal flaws in a widely accepted theory or dogma.

The truth is that both sides in this debate have not the slightest idea how to

compute the relevant probabilities; and that the neo-Darwinian synthesis is not

really a quantitative scientific theory-since it consists entirely of non-refutable,

non-quantitative scenarios (what the Harvard scientist R. Lewontin has duffed

“just-so stories”).
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noted the difficulty of explaining the eye in The Origin of the Species, admit-
ting he could not do it.38

In his book “The Design Inference” (Cambridge University Press, 1998)
William A. Dembski (b.1960) added his doctrine of Specified Complexity
to Behe’s assertion that irreducibly complex systems cannot evolve gradually.
Again, Dembski’s work was strongly criticized within the scientific commu-
nity, who argued that there were a number of major logical inconsistencies
and evidential gaps in Dembski’s hypothesis. His writings were labeled as
pseudoscience.39

Evolutionary biologists argue that material mechanisms suffice to account
for biological complexity, while intelligent design advocates reject this claim.
Both sides are trying to determine the truth of some definite matter of fact –
whether life is the result of mindless material mechanisms or whether, to the
contrary, it demonstrably points to a designing intelligence.

A prominent critic of Evolutionary Biology from inside the scientific estab-
lishment is Richard Charles Lewontin (b. 1929, USA), Alexander Agassiz
Professor at Harvard. In “Biology and Ideology” (1991), Lewontin argued
that while traditional Darwinism has portrayed the organism as passive re-
ceiver of environment influences, a correct understanding should emphasize

38 Darwin hypothesized that the eye might have begun as a patch of light- sensitive

cells upon which natural selection could then work its magic, making gradual

improvements - creating an eye socket and slowly increasing focus and perspec-

tive and so on – until these special cells became a full – fledged eye. But this

“explanation” explains nothing – it is just a story about how something might

have happened: for light sensitive cells to work the cells would have to have the

capacity to initiate an electric signal, a nerve capable of carrying the electric

signal to a brain, and a brain capable of processing the signal and using it to

emit other electric signals. No one disputes that organisms can develop small

improvements on something that already exist. The interesting question is: How

did the “light sensitive cells” come to exist in the first place?
39 The mark of a pseudoscience is not that it is false but, in the words of physicist

Wolfgang Pauli, that it is “not even false”. In other words, with a pseudo-

science there is no way to decide whether it is true or false.

Recently, many physicists and mathematicians have accused string theory of hav-

ing become a pseudoscience. Psychoanalysis is doubtless in this category; and

so is the so-called neo-Darwinian synthesis.

At present, the latter tells us various often-shifting, verbal, qualitative stories,

albeit buttressed by results from exact sciences such as biochemistry & mole-

cular genetics (as well as much less precise findings from fossil records). It is

conceivable that one day evolution will truly merit the term “theory”.
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the organism as an active constructor of its environment. Niches are not pre-
formed, empty receptacles into which organisms are inserted, but are defined
and created by organisms.

Lewontin has also been a critic of traditional neo-Darwinian approaches to
adaptation: he emphasized the need to give an engineering characterization of
adaptation separate from measurement of number of offspring. This grew out
of his recognition that the fallacies of sociobiology reflect fundamentally flawed
assumptions of adaptiveness of all traits in much of the modern evolutionary
synthesis.

Along with others, Lewontin has been a persistent critic of some themes
in neo-Darwinism such as sociobiology and evolutionary psychology, which
attempt to explain animal behavior and social structures in terms of evolu-
tionary advantage or strategy.

Darwin thought that “the mind of man developed from a mind as low as
that possessed by the lowest animal”. But if our abilities “evolved to let us get
along in the cave, how can it be that they permit us to obtain deep insight
into cosmology, elementary particles, molecular genetics, number theory?”
asks molecular biologist and physicist Max Delbrück.

None of these abstract enterprises has any direct relation to survival. In-
deed, mans possession of such traits as morality, consciousness of morality,
religion, or the ability to create & appreciate art – let alone his capacity to
develop such intellectual constructs as relativity and quantum theory, does
not seem likely to be the result of gradualistic evolution.

Darwinists and neo-Darwinists believe that humans evolved from bacteria.
But for these who believe in intelligent design, this challenges our ideas of
individuality, independence and the alleged uniqueness of human intelligent
consciousness.

When Darwin first published The Origin of the Species (1859), his most
virulent opponents were paleontologists, for there was absolutely nothing in
the fossil record to support his claims. Far from showing gradual change with
one species slowly giving way to another, as Darwin hypothesized, the fossil
record showed vast numbers of new species suddenly appearing out of nowhere,
remaining largely unchanged for millions of years, and then disappearing.

Darwin blamed the absence of fossil support for his theory on the extreme
imperfection of the geological record, but was sure that paleontologists will
soon produce the necessary evidence.

However, after 150 years of intense looking, the geologic record still does
not yield a finely graduated chain of slow and progressive evolution!
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If mutations are utterly random, as Darwinism claims, there ought to be
an infinite variety of transitional animals with small mutations that eventu-
ally led to a new attribute (like a wing or a lung). But we do not have fossils
connecting the extinct to the extant along fine graduated steps. What the fos-
sil record shows is sudden bursts of all manner of animals, modest change, and
then sudden and total extinction. Dinosaurs appeared, lived for 150 million
years, and then disappeared, only to be quickly replaced with mammals.

We don’t have fossils for the vast quantity of hapless creatures that ought
to have died out in the survival-of-the fittest regime! If each one of the
incremental mutations is more “fit” than what preceded it (which it had
to be in order to survive), those transitional mutations should have stayed
around long enough to appear in the fossil record, before mutating their way
to something even better. But in the course of millions and millions of years,
all we see are slight variations on the final product.

Indeed, Darwinian evolution is supposedly the completely accidental
process that created butterfly wings, bat radar, the human brain, and the
millions of species alive today. The theory of evolution requires millions of
mutations just to create an eye. A process that is supposed to have trans-
formed an amoeba into Wolfgang Amadeus Mozart or Albert Einstein by
“random mutations” must have produced some spectacular failures. Why
can’t we find any of them?

For over a hundred years, evolutionists proudly pointed to the same sad
birdlike animal, archaeopteryx, as their lone transitional fossil linking di-
nosaurs and birds. Discovered a few years after Darwin published The Origin
of Species, Archaeopteryx was instantly hailed as the transitional species that
proved Darwin’s theory. This unfortunate creature had wings, feathers, teeth,
claws, and a long, bony tail. If it flew at all, it didn’t fly very well. Alas, it is
now agreed that poor Archaeopteryx is no relation of modern birds. It’s just
a dead end. It transitioned to nothing.

But could Archaeopteryx be our one example of bad mutations eliminated
by natural selection? Archaeopteryx can’t fill that role either, because it seems
to have no predecessors. The fossils that look like Archaeopteryx lived millions
of years after Archaeopteryx, and the fossils that preceded Archaeopteryx look
nothing at all like it. The bizarre bird is just an odd creation that came out
of nowhere and went nowhere.

The more advances paleontologists make in uncovering the fossil record,
the more absurd the evolution fable becomes.Most nettlesome for evolution-
ists is the Cambrian period, showing a vast quantity of plants and animals
appearing on the scene in the blink of an evolutionary eye more than 500
million years ago. In a period of less than 10 million years, there is a sudden
explosion of nearly all the animal phyla we have today. It is as though they
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were just planted there, without evolutionary history. Darwin himself referred
to the great difficulty of explaining the absence of “vast piles of strata rich in
fossils” before the Cambrian explosion.

In 1984, Chinese paleontologists discovered fossils just preceding the Cam-
brian era. The discovery showed that the dramatic transformation of life from
primeval single-cell organisms to the complex multicellular precursors of mod-
ern fauna was sudden, swift and widespread within a mere 5 to 10 million
years. Even the famously difficult-to-evolve eye appeared at the beginning of
the Cambrian period. And there were no light-sensitive pits.

It seems now that traditional Darwinian evolution is a conjecture about
how species might have arisen that is contradicted by the fossils record and
by nearly everything we have learned about molecular biology since Darwin’s
day.

To ‘save the phenomenon’, modern revisionists of the Darwinian “the-
ory” have concocted a sophisticated scheme called “punctuated equilibrium”
(Stephen Jay Gould and Niles Eldredge, 1993): Instead of gradual
change occurring by random mutation and natural selection choosing the
most “fit” to survive and reproduce, evolution could also happen really fast
and then stop happening at all for 150 million years – all this occurring com-
pletely by chance!

Darwinian evolution theory also run into other difficulties. To begin with,
there is not a single observable example of one species evolving into another
by the Darwinian mechanism of variation and selection.

Then, there is the problem of establishing progress via mutation and nat-
ural selection: the successive appearance of more complex species does seem
to show something that looks like progress. But that has nothing to do with
the Darwinian mechanism of natural selection. The appearance of progress
hardly establishes mutation and natural selection as the engine of change. To
the contrary, the similarities, look more like the progress of a designed object
than the result of a series of lucky accidents. Far from the competition of
dog-eat-dog struggle to survive, we see a fossil record that reveals a rather
clean, well-organized sequence.

Fossils do not reveal a parent/descendal relationship. We certainly do
not know whether any particular mammal descended from any particular
reptile. But more important, the apparent progress from simple animals to
more sophisticated higher animals – with no transitional species – looks more
like planned, deliberate progress than a series of random mutations.

In this connection, another nasty question can be asked: if all species
evolved from the same single-celled organism beginning in the same little
mud puddle, why hasn’t the earthworm made a little more progress? Was
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it never, ever desirable in any of the worm’s many dirt holes to mutate eyes
or legs or wings or a brain? How could one clump of cells starting in the
same little puddle become a human being while others never make it past the
amoeba stage?

In 1835, Darwin counted 13 species of finches on the Galapagos Islands.
He then hypothesized that species evolved from one species.

Today, after more than 170 years of wild variation in the environment,
mutation, and “natural selection”, there are still 13 species – not one more.
The finches beaks have moved back and forth in shape and nothing more.

In her book “Godless” (2006), Ann Coulter succinctly summarized the
many setbacks, hoaxes, pranks, fakeries and frauds that beset the theory of
evolution: “Finches on Galapagos Islands with deeper beaks begin to outnum-
ber finches with shallower beaks during a drought – and then the population
of shallow beaks finches immediately rebounds after a rainy season. Bacteria
develop a resistance to antibiotics and viruses develop resistance to antivi-
ral medication – but nothing new is ever created. A bacterium remains a
bacterium, a virus remains a virus, a finch remains a finch”...

“Human breeders have not been able to produce one biologically novel
structure in the laboratory – much less a new animal species – even under
artificial conditions. No such demonstrations exists; none has ever been pro-
vided. The fruit fly has been abused, mutilated, and stressed over the course
of thousands and thousands of generations. The poor dumb creature remains
what it has always been, a fruit fly in the first instance, dumb in the second.
This negative result is perfectly consistent with the long history of breeding
experiments, which demonstrate beyond question that species may be changed
only within very narrow margins of variability. No practical breeder imagines,
for example, that he will ever succeed in creating a chicken with antennae or
pig with a dorsal fin.

Amid this dismal record, there have been a few exciting developments for
the Darwinians. There was the discovery of a manlike ape that looked like a
transitional fossil between ape and man – the long-sought after “missing link”.
There were drawings of embryos demonstrating that vertebrates all looked
alike in the earliest stages of development. There was the peppered moth that
became darker – allegedly to better camouflage itself from predatory birds
– when industrial air pollution blackened the trees in England. It wasn’t
terribly impressive in terms of “evidence,” but it filled out a few pages in
biology textbooks claiming evolution was a FACT.

And then, one by one, each of these pillars of evidence for evolution was
exposed as s fraud. (Ironically, each appeared to have been an intelligently
designed prank.) It’s difficult to imagine that any other “scientific” theory
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has been beset with as many hoaxes as the theory of evolution – always a
good sign of a serious scientific endeavor.”...

“The only time “radiocarbon dating” was used in connection with the
theory of evolution was the time it was used to expose the Piltdown Man as
a hoax being pawned off as proof of evolution. It was one of the greatest
scientific frauds of all time, right up there with the Pepsi challenge and that
commercial where ordinary laundry detergent gets red wine out of a white
blouse.

For half a century, Piltdown Man constituted a major piece of evidence
for Darwin’s theory. After decades of being embarrassed by the fossil record’s
stubborn refusal to come to Darwin’s aid, in 1912 the Piltdown Man mirac-
ulously appeared in a gravel pit in Sussex, England. Amateur paleontologist
Charles Dawson claimed to have discovered a skull with a human-like cra-
nium and an apelike jaw in Piltdown Quarry. It was a creature that was not
quite ape, not quite man, but a transitional species between the two, rather
like the actor Pauly Shore. This Pauli Shore-like fossil wouldn’t have proved
evolution, but it would have given evolutionists a possible link between apes
and man on their imaginary “tree of life.”

It was almost uncanny how precisely Piltdown Man matched what pre-
vailing scientific theory predicted the “missing link” would look like. The
New York Times headline for the article on the Piltdown Man proclaimed,
“Darwin Theory Is Proved True.”

The Piltdown fossil was “peer-reviewed” – so we know it would pass
muster with the editors of Scientific American, still flush with success af-
ter triumphantly exposing the “Ohio flight hoax.” Experts confirmed the age
and origin of the bones. Indeed, the Piltdown Man received the approval of
Arthur smith Woodward, the leading geologist at the British Museum (Nat-
ural History). Eoanthropus dawsoni was born.

Dawson was showered with praise, fame, and awards. If only Vanity Fair
had been around, Dawson could have been photographed in his Jaguar and
hailed for “speaking truth to power.” He was made a fellow of the Geological
Society and a fellow of the Society of Antiquaries. (He was even offered a
position writing editorials for Scientific American.)

For more than forty years, the Piltdown Man was taught as scientific fact.
Then, in 1953, it was exposed as a complete and utter fraud – in part through
the process of radiocarbon dating.”

In conclusion, anti-Darwinists claim that Darwinism is a nondisprovable
conjecture, and certainly not a science. In that sense it belongs to the same
category as “String Theory” and psychoanalysis.
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IV. Ecology — Living Organisms and their Environment

The science of ecology – the study of the interrelationships among the
biological and physical components in the natural world – has emerged as
a distinct discipline only in the twentieth century. While naturalists from
ancient times to the late nineteenth century noted the interdependence among
organisms and the adaptations of organisms to their environment, the attempt
to study those interactions as part of a larger natural system has occurred –
only recently.

Ecology is a multi-disciplinary science. Because of its focus on the higher
levels of the organization of life on earth and on the interrelations between or-
ganisms and their environment, ecology draws heavily on many other branches
of science, especially geology and geography, meteorology, pedology, chem-
istry, and physics.

Thus, ecology studies the distribution and abundance of living organisms,
and interactions among organisms and between organisms and their environ-
ment. The environment of an organism includes both its habitat, which can
be described as the sum of local abiotic factors such as climate, and geol-
ogy, as well as the other organisms that share its habitat. Ecological systems
are studied at several different levels, from individuals and populations to
ecosystems and the biosphere.

Ethology studies animal behavior (particularly of social animals such as
primates), and is sometimes considered a branch of zoology. Ethologists have
been particularly concerned with the evolution of behavior and the under-
standing of behavior in terms of the theory of natural selection. In one sense
the first modern ethologist was Charles Darwin, whose book ‘The Expression
of the Emotions in Animals and Men’ influenced many ethologists.

Biogeography studies the spatial distribution of organisms on the earth, fo-
cusing on topics like plate tectonics, climate change, dispersal and migration,
and cladistics.

Agriculture, fisheries, forestry, medicine and urban development are
among human activities that would fall within the definition of ecology.

Ecology is a broad discipline comprised of many sub-disciplines. A com-
mon, broad classification, moving from lowest to highest complexity, where
complexity is defined as the number of entities and processes in the system
under study, is:

• Physiological Ecology (or ecophysiology) and Behavioral ecology examine
adaptations of the individual to its environment.
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• Population ecology (or autecology) studies the dynamics of populations
of a single species.

• Community ecology (or synecology) focuses on the interactions between
species within an ecological community.

• Ecosystem ecology studies the flows of energy and matter through the
biotic and abiotic components of ecosystems.

• Landscape ecology examines processes and relationship across multiple
ecosystems or very large geographic areas.

Ecology can also be sub-divided according to the species of interest into
fields such as animal ecology, plant ecology, insect ecology, and so on. Another
frequent method of subdivision is by biome studies, e.g., Arctic ecology (or
polar ecology), tropical ecology, desert ecology, etc. The primary technique
used for investigation is often used to subdivide the discipline into groups such
as chemical ecology, genetic ecology, field ecology, statistical ecology, theoret-
ical ecology, and so forth. Note that these different systems are unrelated and
often applied at the same time; one could be a theoretical plant community
ecologist, or a polar ecologist interested in animal genetics.

Biosphere

For modern ecologists, ecology can be studied at several levels: population
level (individuals of the same species in the same or similar environment),
biocoenosis level (or community of species), ecosystem level, and biosphere
level.

The outer layer of planet earth can be divided into several compartments:
the hydrosphere (or sphere of water), the lithosphere (or sphere of soils and
rocks), and the atmosphere (or sphere of the air). The biosphere (or sphere
of life), sometimes described as “the fourth envelope”, is all living matter on
the planet or that portion of the planet occupied by life. It reaches well into
the other three spheres, although there are no permanent inhabitants of the
atmosphere. Relative to the volume of earth, the biosphere is only the very
thin surface layer which extends from 11,000 meters below sea level to 15,000
meters above.

It is thought that life first developed in the hydrosphere, at shallow depths,
in the photic zone. (Recently, though, a competing theory has emerged, that
life originated around hydrothermal vents in the deeper ocean.) Multicellular
organisms then appeared and colonized benthic zones. Photosynthetic organ-
isms gradually produced the chemically unstable oxygen-rich atmosphere that
characterizes our planet. Terrestrial life developed later, after the ozone layer
protecting living beings from UV rays formed.



1950–2008 CE 5421

Diversification of terrestrial species is thought to be increased by the conti-
nents drifting apart, or alternately, colliding. Biodiversity is expressed at the
ecological level (ecosystem), population level (intraspecific diversity), species
level (specific diversity), and genetic level. Recently, technology has allowed
the discovery of the deep ocean vent communities. This remarkable ecological
system is not dependent on sunlight but bacteria, utilizing the chemistry of
the hot volcanic vents, are at the base of its food chain.

The biosphere contains great quantities of elements such as carbon, nitro-
gen, hydrogen and oxygen. Other elements, such as phosphorus, calcium, and
potassium, are also essential to life, yet are present in smaller amounts. At
the ecosystem and biosphere levels, there is a continual recycling of all these
elements, which alternate between the mineral and organic states.

While there is a slight input of geothermal energy, the bulk of the func-
tioning of the ecosystem is based on the input of solar energy. Plants and pho-
tosynthetic microorganisms convert light into chemical energy by the process
of photosynthesis, which creates glucose (a simple sugar) and releases free
oxygen. Glucose thus becomes the secondary energy source which drives the
ecosystem. Some of this glucose is used directly by other organisms for en-
ergy. Other sugar molecules can be converted to other molecules such as
amino acids. Plants use some of this sugar, concentrated in nectar to entice
pollinators to aid them in reproduction.

Cellular respiration is the process by which organisms (like mammals)
break the glucose back down into its constituents, water and carbon dioxide,
thus regaining the stored energy the sun originally gave to the plants. The
proportion of photosynthetic activity of plants and other photosynthesizers
to the respiration of other organisms determines the specific composition of
the earth’s atmosphere, particularly its oxygen level. Global air currents mix
the atmosphere and maintain nearly the same balance of elements in areas of
intense biological activity and areas of slight biological activity.

Water is also exchanged between the hydrosphere, lithosphere, atmosphere
and biosphere in regular cycles. The oceans are large tanks, which store water,
ensure thermal and climatic stability, as well as the transport of chemical
elements thanks to large oceanic currents.

Ecosystems

Each living organism has an ongoing and continual relationship with every
other element that makes up its environment. An ecosystem can be defined
as any situation where there is interaction between organisms and their envi-
ronment.
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The ecosystem is composed of two entities, the entirety of life, the bio-
coenosis and the medium that life exists in, the biotope. Within the ecosys-
tem, species are connected by food chains or food webs. Energy from the sun,
captured by primary producers via photosynthesis, flows upward through the
chain to primary consumers (herbivores), and then to secondary and tertiary
consumers (carnivores), before ultimately being lost to the system as waste
heat. In the process, matter is incorporated into living organisms, which re-
turn their nutrients to the system via decomposition, forming biogeochemical
cycles such as the carbon and nitrogen cycles.

The concept of an ecosystem can apply to units of variable size, such as
a pond, a field, or a piece of deadwood. A unit of smaller size is called a
microecosystem. For example, an ecosystem can be a stone and all the life
under it. A mesoecosystem could be a forest, and a macroecosystem a whole
ecoregion, with its drainage basin.

The main questions when studying an ecosystem are:

• Whether the colonization of a barren area could be carried out,

• Investigation the ecosystem’s dynamics and changes,

• The methods of which an ecosystem interacts at local, regional and global
scale,

• Whether the current state is stable,

• Investigating the value of an ecosystem and the ways and means that
interaction of ecological systems provide benefit to humans, especially in
the provision of healthy water.

Ecosystems are often classified by reference to the biotopes concerned.
The following ecosystems may be defined:

• As continental ecosystems, such as forest ecosystems, meadow ecosystems
such as steppes or savannas), or agro-ecosystems

• As ecosystems of inland waters, such as lentic ecosystems such as lakes
or ponds; or lotic ecosystems such as rivers

• As oceanic ecosystems

Another classification can be done by reference to its communities, such
as in the case of an human ecosystem.
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Ecosystems are not isolated from each other, but are interrelated. For
example, water may circulate between ecosystems by the means of a river
or ocean current. Water itself, as a liquid medium, even defines ecosystems.
Some species, such as salmon or freshwater eels move between marine systems
and fresh-water systems. These relationships between the ecosystems lead to
the concept of a biome.

A biome is a homogeneous ecological formation that exists over a large
region as tundra or steppes. The biosphere comprises all of the earth’s biomes
– the entirety of places where life is possible – from the highest mountains to
the depths of the oceans.

Biomes correspond rather well to subdivisions distributed along the lati-
tudes, from the equator towards the poles, with differences based on to the
physical environment (for example, oceans or mountain ranges) and to the
climate. Their variation is generally related to the distribution of species ac-
cording to their ability to tolerate temperature and/or dryness. For example,
one may find photosynthetic algae only in the photic part of the ocean (where
light penetrates), while conifers are mostly found in mountains.

Though this is a simplification of more complicated scheme, latitude and
altitude approximate a good representation of the distribution of biodiversity
within the biosphere. Very generally, the richness of biodiversity (as well for
animal than plant species) is decreasing most rapidly near the equator and
less rapidly as one approaches the poles.

The biosphere may also be divided into ecozones, which are very well
defined today and primarily follow the continental borders. The ecozones are
themselves divided into ecoregions, though there is no agreement on their
limits.

In an ecosystem, the connections between species are generally related to
food and their role in the food chain. There are three categories of organisms:

• Producers – plants which are capable of photosynthesis.

• Consumers – animals, which can be primary consumers (herbivorous), or
secondary or tertiary consumers (carnivorous).

• Decomposers – bacteria, mushrooms which degrade organic matter of all
categories, and restore minerals to the environment.

These relations form sequences, in which each individual consumes the
preceding one and is consumed by the one following, in what are called food
chains or food network. In a food network, there will be fewer organisms at
each level as one follows the links of the network up the chain.
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These concepts lead to the idea of biomass (the total living matter in a
given place), of primary productivity (the increase in the mass of plants during
a given time) and of secondary productivity (the living matter produced by
consumers and the decomposers in a given time).

These two last ideas are key, since they make it possible to evaluate the
load capacity – the number of organisms which can be supported by a given
ecosystem. In any food network, the energy contained in the level of the
producers is not completely transferred to the consumers. Thus, from an
energy – and environmental – point of view, it is more efficient for humans
to be primary consumers (to subsist from vegetables, grains, legumes, fruit,
cotton, etc.) than as secondary consumers (from eating herbivores, omnivores,
or their products, such as milk, chickens, cattle, sheep, etc.) and still more
so than as a tertiary consumer (from consuming carnivores, omnivores, or
their products, such as fur, pigs, snakes, alligators, etc.). An ecosystem(s) is
unstable when the load capacity is overrun and is especially unstable when a
population doesn’t have an ecological niche and overconsumers.

The productivity of ecosystems is sometimes estimated by comparing three
types of land-based ecosystems and the total of aquatic ecosystems:

• The forests (1/3 of the earth’s land area) contain dense biomasses and are
very productive. The total production of the world’s forests corresponds
to half of the primary production.

• Savannas, meadows, and marshes (1/3 of the earth’s land area) contain
less dense biomasses, but are productive. These ecosystems represent the
major part of what humans depend on for food.

• Extreme ecosystems in the areas with more extreme climates – deserts
and semi-deserts, tundra, alpine meadows, and steppes – (1/3 of the
earth’s surface) have very sparse biomasses and low productivity.

• Finally, the marine and fresh water ecosystems (3/4 of Earth’s surface)
contain very sparse biomasses (apart from the coastal zones).

Humanity’s actions over the last few centuries have seriously reduced the
amount of the earth covered by forests (deforestation), and have increased
agro-ecosystems (agriculture). In recent decades, an increase in the areas
occupied by extreme ecosystems has occurred (desertification).
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Dynamics and Stability

Ecological factors which can affect dynamic change in a population or
species in a given ecology or environment are usually divided into two groups:
abiotic and biotic.

Abiotic factors are geological, geographical, hydrological and climatologi-
cal parameters. A biotope is an environmentally uniform region characterized
by a particular set of abiotic ecological factors. Specific abiotic factors include:

• Water, which is at the same time an essential element to life and a milieu

• Air, which provides oxygen, nitrogen, and carbon dioxide to living species
and allows the dissemination of pollen and spores

• Soil, at the same time source of nutriment and physical support

• Soil pH, salinity, nitrogen and phosphorus content, ability to retain water,
and density are all influential

• Temperature, which should not exceed certain extremes, even if tolerance
to heat is significant for some species

• Light, which provides energy to the ecosystem through photosynthesis

• Natural disasters can also be considered abiotic

Biocenose, or community, is a group of populations of plants, animals,
micro-organisms. Each population is the result of procreations between indi-
viduals of same species and cohabitation in a given place and for a given time.
When a population consists of an insufficient number of individuals, that pop-
ulation is threatened with extinction; the extinction of a species can approach
when all biocenoses composed of individuals of the species are in decline. In
small populations, consanguinity (inbreeding) can result in reduced genetic
diversity that can further weaken the biocenose.

Biotic ecological factors also influence biocenose viability; these factors are
considered as either intraspecific and interspecific relations.

Intraspecific relations are those which are established between individuals
of the same species, forming a population. They are relations of co-operation
or competition, with division of the territory, and sometimes organization in
hierarchical societies.

Interspecific relations – interactions between different species – are numer-
ous, and usually described according to their beneficial, detrimental or neutral
effect (for example, mutualism (relation ++) or competition (relation –). The
most significant relation is the relation of predation (to eat or to be eaten),
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which leads to the essential concepts in ecology of food chains (for example,
the grass is consumed by the herbivore, itself consumed by a carnivore, itself
consumed by a carnivore of larger size).

A high predator to prey ratio can have a negative influence on both the
predator and prey biocenoses in that low availability of food and high death
rate prior to sexual maturity can decrease (or prevent the increase of) popu-
lations of each, respectively.

Selective hunting of species by humans which leads to population decline
is one example of a high predator to prey ratio in action. Other interspecific
relations include parasitism, infectious disease and competition for limiting
resources, which can occur when two species share the same ecological niche.

The existing interactions between the various living beings go along with
a permanent mixing of mineral and organic substances, absorbed by organ-
isms for their growth, their maintenance and their reproduction, to be finally
rejected as waste. These permanent recyclings of the elements (in particular
carbon, oxygen and nitrogen) as well as the water are called biogeochemi-
cal cycles. They guarantee a durable stability of the biosphere (at least when
unchecked human influence and extreme weather or geological phenomena are
left aside).

This self-regulation, supported by negative feedback controls, ensures the
perenniality of the ecosystems. It is shown by the very stable concentrations
of most elements of each compartment. This is referred to as homeostasis.
The ecosystem also tends to evolve to a state of ideal balance, reached after
a succession of events (for example a pond can become a peat bog).

Ecological crisis

Generally, an ecological crisis occurs when the environment of a species or
a population evolves in a way unfavorable to that species survival.

It may be that the environment quality degrades compared to the species
needs, after a change in an abiotic ecological factor (for example, an increase
of temperature, less significant rainfalls). It may be that the environment
becomes unfavorable for the survival of a species (or a population) due to an
increased pressure of predation (for example overfishing). Lastly, it may be
that the situation becomes unfavorable to the quality of life of the species (or
the population) due to a rise in the number of individuals (overpopulation).

Ecological crises may be more or less brutal (occurring between a few
months to a few million years). They can also be of natural or anthropic



1950–2008 CE 5427

origin. They may relate to one unique species or on the contrary, to a high
number of species.

An ecological crisis may be local (as an oil spill) or global (a rise in the
sea level related to global warming).

According to its degree of endemism, a local crisis will have more or less
significant consequences, from the death of many individuals to the total
extinction of a species. Whatever its origin, disappearance of one or several
species often will involve a rupture in the food chain, further impacting the
survival of other species.

In the case of a global crisis, the consequences can be much more signif-
icant; some extinction events showed the disappearance of more than 90%
of existing species at that time. However, it should be noted that the dis-
appearance of certain species, such as the dinosaurs, by freeing an ecological
niche, allowed the development and the diversification of the mammals. An
ecological crisis thus paradoxically favored biodiversity.

Sometimes, an ecological crisis can be a specific and reversible phenomenon
at the ecosystem scale. But more generally, the crises impact will last. Indeed,
it rather is a connected series of events, that occur till a final point. From
this stage, no return to the previous stable state is possible, and a new stable
state will be set up gradually.

Lastly, if an ecological crisis can cause extinction, it can also more simply
reduce the quality of life of the remaining individuals. Thus, even if the diver-
sity of the human population is sometimes considered threatened, few people
envision human disappearance at short span. However, epidemic diseases,
famines, impact on health of reduction of air quality, food crises, reduction
of living space, accumulation of toxic or non degradable wastes, threats on
keystone species (great apes, panda, whales) are also factors influencing the
well-being of people.

During the past decades, this increasing responsibility of humanity in some
ecological crises has been clearly observed. Due to the increases in technology
and a rapidly increasing population, humans have more influence on their own
environment than any other ecosystem engineer.

Some usually quoted examples as ecological crises are:

• Permian-Triassic extinction event 250 million of years ago

• Cretaceous-Tertiary extinction event 65 million years ago
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• Global warming related to the greenhouse effect. Warming could involve
flooding of the Asian deltas, multiplication of extreme weather phenom-
ena and changes in the nature and quantity of the food resources.

• Ozone layer hole issue.

• Deforestation and desertification, with disappearance of many species.

• The nuclear meltdown at Chernobyl in 1986 caused the death of many
people and animals from cancer, and caused mutations in a large number
of animals and people. The area around the plant is now abandoned
because of the large amount of radiation generated by the meltdown.
Twenty years after the accident, the animals have returned.

Human Ecology

Human ecology began in the 1920s, through the study of changes in vege-
tation succession in the city of Chicago. It became a distinct field of study in
the 1970s. This marked the first recognition that humans, who had colonized
all of the earth’s continents, were a major ecological factor. Humans greatly
modify the environment through the development of the habitat (in particu-
lar urban planning), by intensive exploitation activities such as logging and
fishing, and as side effects of agriculture, mining, and industry.

Besides ecology and biology, this discipline involved many other natural
and social sciences, such as anthropology and ethnology, economics, demog-
raphy, architecture and urban planning, medicine and psychology, and many
more. The development of human ecology led to the increasing role of eco-
logical science in the design and management of cities.



Timelines
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Timeline of Biophysics

1780–1794 Luigi Galvani (1737–1798, Italy) discovered bioelectricity
(causing muscular contraction in a frog’s leg by application
of static electricity). Pioneer of electrophysiology.

1847–1894 Herman von Helmholtz (1821–1894) First to measure
the speed of nerve impulses. Studied human hearing and
vision.

1856 Adolf Eugen Fick (1829–1901, Germany) Developed fun-
damental laws of diffusion in living organisms; discovered
Fick’s law of diffusion.

Efforts to capture visions beyond the range of the human
eye have long engaged scientists and engineers. By the mid-
1880s George Eastman had improved upon celluloid and
at the turn of the 20th century used it with his new camera,
the Brownie. That boxy little contraption is still remem-
bered by many adults today, even as digital cameras record
the world around us by harnessing electrons. The discovery
of X-rays was only the first of many achievements leading
to the development of imaging devices that today support
all manner of endeavors in the medical sciences.

1900 George Eastman introduces the Kodak Brownie Camera.

1895 Wilhelm Conrad Röntgen discovered X-rays.

1903 Willem Einthoven founded electrocardiography (EKG)

1913 William David Coolidge invented the hot cathode x-ray
tube, using a thermionic tube with a heated cathode elec-
tron emitter to replace the cold, or gas, tube. All modern
x-ray tubes are of the thermionic type.

1913 Albert Solomon, a pathologist in Berlin, uses a con-
ventional x-ray machine to produce images of 3,000 gross
anatomic mastectomy specimens, observing black spots at
the centers of breast carcinomas. Mammography, the re-
sulting imaging, has been used since 1927 as a diagnostic
tool in the early detection of breast cancer.
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1926 Hermann J. Miller discovered that X-rays cause muta-
tion in living cells.

1928 Georg von Békésy (1899–1972) expounded the physical
mechanism within the Cochlea of the inner ear.

1932 Max Knoll and Ernst A.F. Ruska developed the trans-
mission electron microscope. It can magnify objects one
million times.

1945 Bernard Katz discovered how synapses work.

1945 Alan Lloyed Hodgkin (1914–1998) and Andrew Field-
ing Huxley (1917-) described the ionic mechanism by
which neurons transmit electron pulses.

1952 Rosalind Franklin and Maurice Wilkins pioneered
DNA crystallography.

1953 First application of positron emission tomography for med-
ical diagnosis of brain tumor by Gordon Brownell and
William Sweat.

1953 Max Perutz (1914–2002) and John Kendrew (1917–
1997) pioneered protein crystallography (Hemoglobin).

1954 David Kuhl introduced radionuclide emission tomogra-
phy.

1950s Russel Morgan, Edward Chemberlain and John W.
Coltman, perfect a method of screen intensification that
reduces radiation exposure and improves fluoroscopic vi-
sion. Their image intensifier is used in medical fluoroscopy.

1959 Ian Donald developed practical technology and applica-
tions of ultrasound as a diagnostic tool in obstetrics and
gynecology. Ultrasound displays images on a screen of tis-
sues or organs formed by echoes of inaudible sound waves at
high frequencies (20 KHz or more) beamed into the body.

1960 Powell Richards and Walter Tucker invented a short
halflife radionuclide generator that produces technetium-
99m for use in diagnostic imaging procedures in nuclear
medicine – a branch of medicine that uses radioisotopes for
research, diagnosis, and treatment of disease. [Technetium-
99m was discovered in 1939 by Emilio Segré and Glenn
Seaborg]
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1964 Single-photon emission computerized tomography (SPECT)
methods become capable of yielding accurate information
similar to PET.

1972 Godfrey Hounsfield and Alan Cormack invented Com-
puter Assisted Tomography (CT scanners).

1973 Paul Lauterbur adapted Magnetic Resonance Imaging
(MIR) for medical purposes, using high speed computers.

1974 J.E. Greenleaf and S.A. Johnson developed ultrasound
computer tomography.

1974 Mikhail Volkenshtein (1912–1992) developed Quantum
Biophysics: a quantum-mechanical model of enzyme catal-
ysis, supporting a theory that enzyme catalysis depends on
quantum-mechanical effects such as tunneling.

1977 Peter Mansfield developed the Echo-planar imaging
(EPI) technique to produce movie of a single cardiac cy-
cle.

1978 Emission Computer tomography (ECT) by means of ra-
dionuclide imaging.

1981 Gerd Binnig and Heinrich Rohrer designed and built
the first scanning tunneling microscope (STM) with a small
tungsten probe tip, about one or two atoms wide.

1986 Gerd Binnig, Cal Quate and Cristoph Gerber intro-
duced the atomic force microscope (AFM) which is used in
microbiology and cellular biology.

1993 EPI is used (with functional MRI) in mapping regions of
the brain responsible for thought and motor control.

1986 Benoit Roux investigated dynamics and function of bi-
ological macromolecular systems (receptors, protein ki-
nases); functioning of biological systems at the molecular
level.

Carlos Bustamante (1951– ) used novel methods of
single-molecule visualization, such as scanning force mi-
croscopy to study structure & function of nucleoprotein as-
semblies. Used methods of single-molecule manipulations
(such as optical tweezers) to characterize the elasticity of
DNA, to induce mechanical unfolding of individual protein
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molecules and to investigate the machine-like behavior of
molecular motors.

Steven Chu (1948– ) helped develop techniques for cool-
ing and trapping atoms using laser light.

Steven Block (1952– ) and Arthur Ashkin pioneered
the use of optical tweezers to study the motion of enzymes
(kinesin and RNA polymerase) at a single-molecule level.

Howard Berg characterized properties of bacterial chemo-
taxis.
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Timeline of Genetics

Ca 1300 BCE The Bible (Leviticus 18, 6–17 forbids one to mate with
one’s relatives.)

470–322 BCE The Greek philosophers Hippocratos, Aristotle and
Plato wrote about the inheritance of human traits. They
observed that certain traits are passed from parent to child.
Although they did not understand the exact contribution of
the male and female parent to the offspring, they believed
that semen is in some way responsible for passing on traits.

1814 CE Joseph Adams published “A Treatise on the Supposed
Hereditary Properties of Diseases”, stating therein that
there is some intrafamilial correlation of diseases.

1839 Matthias Schleiden and Theodore Schwann suggested
that cells with nuclei are the fundamental units of life.

1855 Rudolph Virchow hypothesized that new cells can only
be formed by the division of existing cells.

1859 Charles Darwin published “On the Origin of Species”,
proposing evolution by natural selection. His key premise
was that evolution occurs through the selection of inher-
ent and transmissible (rather than acquired) characteris-
tics between individual members of a species. Darwin did
not specify the means by which characteristics are inherited
and the mechanism of heredity had not been determined at
that time.

1865 Gregor Mendel discovered the fundamental laws of in-
heritance. He deduced that genes come in pairs and are
inherited as distinct units, one from each parent. Mendel
tracked the segregation of parent genes and their appear-
ance in the offspring as dominant or recessive traits. He
recognized the mathematical patterns of inheritance from
one generation to the next.
Mendel’s results were not appreciated until 1900, when they
were rediscovered. Today he is widely considered founding
father of modern genetics. Moreover, his work eventually
helped to partly explain Darwin’s concept of evolution.
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1869 Johann F. Miescher isolated DNA (first called “nuclein”)
as an acidic substance found in cell nuclei of white blood
cells (puss). We now know that he had discovered the ma-
terial basis of heredity, but it took another 80 years before
nuclein was shown to be DNA (it become known as nucleic
acid after 1874, when Miescher separated it into a protein
and an acid molecule. It was suspected of exerting some
function in the heredity process.)

1819–1882 Walther Flemming used new staining techniques to see
tiny threads within the nucleus of cells in salamander lar-
vae that appear to be dividing. In so doing he discovered
chromosomes.

1889 August Weissman theorized that the material basis of
heredity is located on the chromosomes.

1900 • The science of genetics was finally born when G. Mendel’s
work was rediscovered by Hugo de Vries, Erich von
Tshchermak and Carl Correns.

• Major outbreaks of disease in overloaded industrial
cities led to the introduction of large-scale sewage purifi-
cation system based on microbial activity (first time in
Manchester, England, 1911).

• It was first shown that key industrial chemicals (glycerol,
and butanol) could be synthesized using bacteria.

1901–1912 Scientists suggested that food contains ingredients essential
to life that are not proteins or carbohydrates: E. Wildiers
(1901) discovered a new substance – a growth-factor indis-
pensable for the development of yeast; Frederick Hopkins
and C.A. Pekelharing (1906) discovered such substances
in rice and citrus. In succeeding years they came to be
called vitamins (Casimir Funk, 1912).

1902 The term ‘immunology’ first appeared.

1902–1912 Scientists identified chromosomes as carriers of heredity.
Walter Sutton (1902) stated that chromosomes are paired
and that genes are carried by chromosomes. He argued that
each egg or sperm contains only one of each chromosomes
which accounts for the random factor in heredity and ac-
cords with Mendel’s theory. He thus pointed out the inter-
relationships between cytology and Mendelism, closing the
gap between cell morphology end heredity.



5436 6. Deep Principles – Complex Structures

Theodor Boveri reached the same result independently
(1903). Edmund Wilson and Nettie Stevens indepen-
dently described the behavior of sex chromosomes: XX de-
termines female; XY determines male.

1903–1909 First experiments on quantitative traits in broad beans by
Wilhelm Johanssen and in wheat by Herman Nilsson-
Ehle.

1905 The word “genetic” as coined by William Bateson. pro-
posed the idea that separate X and Y chromosome deter-
mine sex.

1905–1908 William Bateson and Reginald Punnett demonstrated
that action of some genes modify action of other genes: The
first time gene regulation was demonstrated.

1908 Hardy – Weinberg law was derived.

1908–1909 Archibald Garrod proposed (1908) that some human dis-
eases are due to inborn errors of metabolism that result
from lack of specific enzyme40. He is now considered the
founder of biochemical genetics. In 1909 he proposed that
genes dictate phenotypes through enzymes that catalyze
specific processes in the cell.

1909 Wilhelm L. Johannsen coined the words gene, genotype,
phenotype.

1909–1929 A. Levene discovered that the sugar ribose is found in
some nucleic acids, those we now call RNA (1909). He
discovered (1929) deoxyribose in nucleic acids that do not
contain ribose, those known today as DNA.

1910 Thomas H. Morgan (1907–1911) proved that chromo-
somes have a definite function in heredity, established mu-
tation theory, and led to a fundamental understanding of
the mechanisms of heredity. He explained the separation
of certain inherited characteristics that are usually linked

40 In 1929, Richard Schönheimer studied a patient with hepatomegaly due to

massive glycogen storage and suggested that this disorder may by due to an

enzyme deficiency. It was not until 1952 that Cori and Cori found glucose-6-

phosphatase to be deficient in “von Gierke disease”; (glycogen storage disease

type I). This observation marks the first time that an inborn error of metabolism

was attributed to a specific enzyme deficiency.
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as caused by breaking of chromosomes during the process
of cell division, and began to map the positions of genes
on chromosomes of the fruit fly. Morgan proved that the
genes responsible for the appearance of a specific phenotype
were located on chromosomes and that some genetically–
determined traits are sex-linked. He also found that genes
on the same chromosome do not always assort indepen-
dently.

Morgan suggested that the strength of linkage between
genes depended on the distance between them on the chro-
mosome. The nearer two genes lie on a chromosome, the
greater the chance of being inherited together. Likewise
the farther away they are from each other, the more is the
chance of being separated by the process of crossing-over.
The genes are separated when a crossover takes place in the
distance between the two genes during cell division.

One of his students, Calvin Bridges, in 1913, established
that genes are located on chromosomes. In the same year,
another student of Morgan’s, Alfred Sturtevant, deter-
mined that genes are arranged on the chromosomes in a
linear fashion, much like beads on a necklace. Moreover,
Sturtevant demonstrated that the gene for any specific trait
is in a fixed location or locus. Yet another Morgan student,
Herman J. Muller, in 1926 discovered methods for artifi-
cially producing mutants in fruit flies by ionizing radiation
and other mutagens. In so doing, he discovered the origin of
new genes by mutations, a theory first proposed by Hugo
de Vries in the early 1900s.

1912 Lawrence Bragg discovered that X-rays can be used to
study the molecular structure of simple crystalline sub-
stances. This discovery led to the development of X-ray
crystallography, which made it possible to further explore
the 3-dimensional structure of acids and proteins.

While two World Wars killed millions and pushed medicine
to new limits, various fields of science began to converge
to explore the mechanism of reproduction – the nature
and structure of the heredity-carrying materials (eventu-
ally found to be DNA molecules).

1915 Frederick W. Twort discovered phages, viruses that prey
on bacteria.
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1918 R.A. Fisher publishes “The Correlation Between Rela-
tives on the Supposition of Mendelian Inheritance” the
modern synthesis of genetics and evolutionary biology
starts. (See population genetics.)

1920’s Nucleic acid found to be a major component of the chro-
mosomes, but it was not considered good candidate for a
carrier of genetic information.

1927 Physical changes in genes are called mutations.

1928 Frederick Griffith discovers that hereditary material
from dead bacteria can be incorporated into live bacteria.
(See Griffiths experiment.)

1930 W.C. Rose discovered essential amino acids.

1930’s Chemical nature of nucleic acids was investigated. The
ubiquitous presence of nucleic acid in the chromosome was
generally explained in purely physiological or structural
terms.

1931 Crossing over is identified as the cause of recombination.

1933 Arne Tiselius introduced electrophoresis, a new technique
for separating proteins in solution.

1935–1939 Andrei Nicolaevitch Belozersky isolated DNA in its
pure state for the first time (1936). Showed (1939) that
both DNA and RNA are always present in bacteria.

1937 Frederick C. Bawden discovered that tobacco mosaic
virus contains RNA.

1938 • The term ‘molecular biology’ was coined.

• Proteins and DNA were studied in various labs with the
aid of X-ray crystallography.

early 1940s Nucleic acid still viewed as a uniform polymer unaffected
by its biological source. Hereditary information commonly
thought to reside in the chromosomal proteins.

1941 George Beadle and Edward Tatum show that genes
code for proteins: they performed experiment that suggest
that one gene codes for one enzyme.

1941 The term ‘genetic engineering’ was first used.
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1942 The electron microscope was used to identify a bacterio-
phage

Barbara McClintock discovered transposable genetic ele-
ments: c.e. genes can move on chromosome and jump from
one chromosome to another. Her findings were greeted with
initial skepticism until the 1970’s when molecular biologists
confirmed the existence of an enzyme that enables jump-
ing genes to hop around on the DNA. At age 81 (1983) she
was awarded the NP. Scientists now think such transposons
may be linked to some genetic disorders such a hemophilia,
leukemia and breast cancer. They also think that trans-
posons have played a crucial role in evolution.

1944–1959 Oswald T. Avery, Colin MacLeod and Maclyn Mc-
Carty continued the work of Frederick Griffith and
demonstrated that DNA is the material of genes, i.e. the
molecule of genetic information. Most people were skeptical
of these findings until 1952.

1946 Joshua Lederberg and Edward Tatum showed that ma-
terial can be transferred laterally between bacterial cells,
c.e: bacteria can exchange genetic material directly through
conjugation.

1950 Erwin Chargaff discovered a one-to-one ratio of adenine
to thymine and guanine to cytosine in DNA samples from
a variety of organisms. DNA rather then protein carry ge-
netic information.

1951 The first animal, the tadpole was cloned by nuclear transfer
(cloning in plants was known for millennia).

1952 Alfred Hershey and Martha Chase show in bacterio-
phage labeling experiments that DNA is the molecule of
heredity.

1952 Rosalind Franklin and Maurice Wilkins perform X-ray
crystallography studies of DNA, providing sharp diffraction
photographs that led to the elucidation of the structure of
DNA. These diffraction patterns of the DNA molecule re-
vealed the helical structure and the location of the phos-
phate sugar on the DNA molecule.

• Jean Brachet suggested that RNA, a nucleic acid, plays
a part in the synthesis of proteins.
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1953 Francis Crick and James D. Watson proposed, on the
basis of Franklin’s data, the double-stranded, helical, com-
plementary, anti-parallel model for DNA.

They determined that deoxyribonucleic acid (DNA) is a
double strand helix of nucleotides. Each nucleotide con-
sists of deoxyribose sugar molecule to which is attached a
phosphate group and one of four nitrogenous bases: two
purines (adenine and guanine) and two pyrimidines (cyto-
sine and thymine). The nucleotides are joined together by
covalent bonds between the phosphate of one nucleotide
and the sugar of the next, forming a phosphate-sugar back-
bone from which the nitrogenous bases protrude. The two
strands are linked by selective hydrogen bonds: the purin
adenine bonds only with the pyrimidine thymine, and the
purine cytosine only with the pyrimidine guanine.

DNA replication is possible through the complementary na-
ture of the two strands. The chemical complexity of the
molecule is thought to be sufficient to store the requisite
information.

The precise manner in which the information in the DNA
is activated to build an organism is still very poorly under-
stood; what is firmly demonstrated is that so-called struc-
tural genes manufacture the proteins for living tissues.

1955–1959 Biologists work out the mechanism by which DNA func-
tions to make protein. They hypothesized that the DNA
sequence specifies the amino acid sequence in a protein and
that genetic information flows only in one direction, from
DNA to messenger RNA to protein. The replication mecha-
nism of DNA is demonstrated [Francis Crick and George
Gamow, 1957; Arthur Kornberg, 1958].

1956 Jo Hin Tjoi and Albert Levan established the correct
chromosome number in humans to be 46.

1957 Crick and Gamow worked out the “Central Dogma” to ex-
plain protein synthesis from DNA; the DNA sequence codes
for amino acid sequences and genetic information flows in
one direction — from DNA to mRNA to protein.

1958 The Meselson – Stahl experiment demonstrates that
DNA is semiconservatively replicated.
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1961–1967 Marshall Nirenberg, Har Gobind Khorana, Heinrich
Mathaei and Severo Ochoa cracked the Genetic Code.
They demonstrated that a sequence of 3 nucleotide bases, a
codon, determines each of the 20 amino acids. This means
that there are 64 combinations possible for 20 amino acids.
Nirenberg and Philip Leder found that there are extra
redundant codons that serve as stop signs for RNA synthe-
sizing protein.

1965 Leonard Hayflick (1928– ) observed that cells dividing
in cell culture divided about 50 times before dying. The
human limit is around 52.41

1961 Francois Jacob (1920– , France) and Jacques Monod
(1910–1976, France) advanced the OPERON MECHA-
NISM theory for controlling enzyme activities in the cell.

41 This is known as the Hayflick limit. It has been linked to the shortening of

telomeres, a region of DNA at the end of chromosomes.

The only known way of circumventing the Hayflick limit is with the enzyme

telomerase, which regenerates telomeres during DNA replication.

Stem cells, by definition, have not yet been fully differentiated, and therefore

many of these cells may continue to regenerate new cells for the entire lifespan

of the organism, without limit, thus constituting a notable exception to the

Hayflick limit in humans and other organisms. While the manifestations of the

constant regenerative effects of stem cells is most easily seen in tissues which

must constantly produce replacements for existing cells, such as skin and blood

cells, stem cells of one form or another are found in every tissue of the human

body, even if only as dormant stem cells known as “spore-like cells”.

Cancer cells constitute the other main exception to the limits on cell division.

It is believed that the Hayflick limit exists principally to help prevent cancer.

If a cell becomes cancerous and the Hayflick limit is approaching, the cell will

only be able to divide a certain number of times. Once it reaches this limiting

number of divisions, the formed tumor will no longer be able to reproduce and the

cells will die off. Cancers become problems after having reactivated telomerase-

encoding genes. Cells that have found a way around the limit are referred to as

“immortal”. Such immortal cells may still die, but the group of immortalized

cells produced from cell division of an immortal cell has no limit as to how many

times cell division might take place among the cells that constitute such a group

of immortalized cells.

It is believed by some that some or all cancers start off as stem cells that become

genetically damaged over their long lives. This would mean they already aren’t

limited by the Hayflick limit and can easily metastasize into the pool of cells in

their final cell type destination.
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The experimental system used by them was the common

bacterium E. Coli. They discovered in these cells a class

of genes that control the activity of other genes. If for some

reason, the controlling genes function improperly, the other

genes may get out of control and damage the cell. This ba-

sic regulatory concept is fundamental to cellular regulation

for all organisms.

Lac operon is a DNA sequence that governs the production

of enzymes for metabolizing lactose (milk sugar) in bacteria

such as E. Coli. The key idea is that E. coli does not bother

to waste energy making such enzymes if there is no need to

metabolize lactose, such as when other sugars like glucose
are available.

1967 • Mary Weiss and Howard Green found a technique

for combining human cells with mouse cells in one culture

(somatic cell hybridization).

• W.M. Fitch and E. Maroliash set up the first evolu-

tionary trees from protein sequences.

1968 Gerold Edelman (1929– ) and Rudney Porter isolated

the first DNA ligase.

1970’s Important discoveries were made that led to modern tech-

niques for studying genetics:

1970 Howard Temin and David Baltimore discovered how

viruses affect the genes of cancer cells: Their work de-

scribed how viral RNA that infects a host bacterium uses

an enzyme to integrate its message to the host’s DNA. This

discovery allow scientists to create clones

1970 Hamilton Smith, Daniel Nathans and Kent Wilcox

isolated first restriction enzyme that could cut DNA mole-

cules within specific recognition sites. The restriction en-

zymes were discovered in studies of a bacterium and were

used to cut-up foreign DNA from invading organisms such

as viruses (NP 1978).

1972 Paul Berg isolated and employed a restriction enzyme to

cut DNA. He also used ligase to paste two DNA strands
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together to form a hybrid circular molecule. This was the

first recombinant DNA molecule42. (NP 1981)

1973 Scientists for the first time successfully transferred DNA

molecules from one life form into another: Stanley H.

Cohen, Annie Chang and Herbert Boyer used a re-
striction enzyme to cut sections of viral DNA and bacterial

DNA, “spliced” them together and inserted this recombi-

nant molecule into the DNA of the bacterium Eschericia

Coli, thereby introducing the first recombinant-DNA or-

ganism; this is the beginning of genetic engineering.

1973–1977 Frederick Sanger invented a DNA sequencing technique.

1975 Cesar Milstein discovered how to fuse cells together to

produce monoclonal antibodies.

1976 • Michael J. Bishop and Harold Varmus showed that

oncogenes appear on animal chromosomes, and alterations

in their structure can result in cancerous growth.

• Martin F. Gellert discovered the enzyme gyraze that

caused DNA to form supercoils (larger helix).

1977 • Advent of the Age of Biotechnology: The production of

the first human protein manufactured by a bacteria (human

growth hormone – releasing inhibitory factor). For the first

time, a synthetic recombinant gene was used to clone a

protein.

• The first genetic engineering company (Genentech) is

founded, using recombinant DNA methods to make med-

ically important drugs.

• Walter Gilbert and Allan Maxam devised a procedure

for rapidly sequencing long sequences of DNA.

• Bacteriophage FX-174 was the first complete genome

(DNA) to be sequenced.

42 Beng realized the risks of his experiment and temporarily terminated it before

the recombinant DNA molecule was added to E.coli, where it would have been

quickly reproduced. He proposed a one-year moratorium on recombinant DNA

studies while safety issues were addressed.
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1978 • Genetic engineering techniques used to produce rat in-
sulin.

• Scientists show it is possible to introduce specific muta-
tions at specific sites in a DNA molecule.

• Scientists successfully transplanted mammalian gene.

•Yuel Wai Kan, Andree-Marie Dozy and David
Botstein discovered restriction-fragment-length polymor-
phisms.

Individual humans differ one basepair in every 500 nu-
cleotides or so. The most interesting variations for ge-
neticists are those that are recognized by certain enzymes,
called restriction enzymes. These enzymes, each of which
cut DNA only when they see a specific sequence, for in-
stance GAATTC in case of the restriction enzyme EcoR1.
This sequence is called a restriction site. The enzyme will
bypass the region if it has mutated to GACTTC. Thus,
when a specific restriction enzyme cuts the DNA of differ-
ent people, it may produce fragments of different lengths.

These DNA fragments can be separated according to size
by making them move through a porous gel in an electric
field. Since the smaller fragments move more rapidly than
the larger ones, their sizes can be determined by examin-
ing their positions in the gel. Variations in their lengths
are called restriction-fragment-length polymorphisms, or
RFLPs.

1980 Swiss researchers introduced a gene for human interferon
into bacteria and then cloned millions of cells to produce
an inexpensive and abundant supply of this previously rare
protein. This was the first big success story in the commer-
cial production of drugs by genetic engineering.

1980–1986 • Kary B. Mullis invented the polymerase chain reaction
(PCR), a method for rapidly and easily cloning of DNA
fragments: this method for multiplying DNA sequences in
vitro uses heat and enzymes to make unlimited copies of
genes and gene fragments. It later becomes a major tool in
biotech research and product development worldwide.

The purpose of PCR is to make a high number of copies of
a specific DNA fragment, a gene for instance. This method
amplifies fragments of DNA million of times to make suffi-
cient quantities available for DNA sequence analysis.
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1980 • Researchers introduced a human gene (one that codes for
the protein interferon) into a bacterium.

1981 • Three independent research teams announced the discov-
ery of human oncogenes (cancer genes).

• Human mitochondrial DNA sequenced.

• Scientists produced the first transgenic animals by trans-
ferring genes from other mammals to mice.

1982 • Human insulin drug produced by genetically-engineered
bacteria (using recombinant DNA methods) for the treat-
ment of diabetes.

• A human cancer gene ( isolated from bladder cancer cells)
is cloned in Eschericia coli. The base sequence of the cancer
gene is found to differ from the same locus in a normal cell
by a single base pair, which causes a substitution of an
amino acid in the resulting protein.

1983 • The first artificial chromosome was created.

• Discovery of the homeobox genes in the fruit fly.

• First genetic modified plant is created; a tobacco plant
resistant to an antibiotic.

1980–1993 The work of Stuart Orkin in 1986, Lou Kunkel in 1987,
Jim Gusella and Nancy Wexler in 1982 and Mary-
Claire King in 1991, led to the birth of modern clinical
genetics.

1984 Alec Jeffreys introduced a technique for DNA fingerprint-
ing to identify individuals: it is based on identification of
certain core sequences of DNA unique to each person. It is
to be used for establishing family relationships.

• Scientists cloned and sequenced the entire genome of the
HIV virus.

• The first genetically engineered vaccine was developed.

• successful cloning of sheep producing genetically identical
animals. It is done by separating an embryo into separate
cells and introducing a cell’s nucleus into sheep ova that
have had their nuclei removed: the altered eggs (ova) are
then implanted in female sheep for development into fetuses
and consequent birth.
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• British scientists mixed goat and sheep embryo cells and
implanted them into a surrogate animal. This led to the
birth of the first chimera, a cross between a goat and a
sheep.

• McGinnis discovered homeotic (Hox) regulatory genes,
responsible for the basic body plan of most animals. In sub-
sequent work, his team demonstrates that a single mutation
in a Hox gene suffices to suppress all limb development in
the thoracic region of fruit flies.

1985 • Genetically engineered plants resistant to insects, viruses,
and bacteria were field-tested for the first time.

• Lap-Chee Tsui working in Massachusetts mapped the
gene for cystic fibrosis to the long arm of chromosome 7.

1986 • Applied Biosystems introduced the first automated DNA
fluorescence sequencer.

• The Environmental Protection Agency (USA) approves
the release of the first genetically engineered crop: a herbi-
cide resistant tobacco plants.

1986 • The first genetically engineered human vaccine – recom-
binant HB – was approved as a treatment for prevention of
hepatatis B.

• Peter Schultz described how to combine antibodies and
enzymes (creating “abzymes”) to create pharmaceuticals.

• Scientists and technicians at CalTech invented an auto-
mated DNA fluorescence sequencer .

1988 • A US National Center for Biotechnology Information
(NCBI) founded at NIH/NLM.

U.S. Congress funded the Human Genome Project, a mas-
sive effort to map and sequence the human genetic code as
well as the genomes of other species. All human DNA was
to be mapped and sequenced by 2005 CE. The program was
launched in 1990 with an estimated cost of $13 billion.

1989 Scanning tunneling electron microscope is used to obtain,
for the first time, a direct images of pure DNA. Eventually,
this method may be used to observe active viruses or the
action of molecules on the cell surface.



1950–2008 CE 5447

1989 Francis Colins and Lap-Chee Tsui identified the gene
coding for the cystic fibrosis transmembrane conductance
regulator protein (CFTR) on chromosome 7 that, when mu-
tant, causes cystic fibrosis.

1990 The U.S. Human Genome Project launched at estimated
cost of 13 billion dollars. The project started as a 15-year
effort co-ordinated by the U.S. Department of Energy and
the National Institutes of Health. The project goals were
to:

1) identify all the genes in human DNA,
2) determine the sequences of the 3 billion chemical base
pairs that make up human DNA, store this information in
databases,
3) improve tools for data analysis,
4) transfer related technologies to the private sector, and
5) address the ethical, legal, and social issues (ELSI) that
may arise from the project.

To help achieve these goals, researchers also are studying
the genetic makeup of several nonhuman organisms. These
include the common human gut bacterium Escherichia coli,
the fruit fly,the nematode Caenerhabditis elegans, the rat
and the mouse.

1990’s DNA fingerprinting, gene therapy and genetically modified
foods come onto the scene.

1990 The first transgenic dairy cow was created. It was used to
produce human milk proteins for infant formula.

1992 The Institute for Genome Research (TIGR), associated
with plans to exploit sequencing commercially through gene
identification and drug discovery, was formed. Mel Simon
introduced the use of BACs for cloning.

1993 The Sanger Centre, a genome research institute with the
purpose to further the knowledge of genomes, was crated
in Hinxton, UK
The EMBL European Bioinformatics Institute, the center
for research and service for bioinformatics was established
in Hinxton, UK

1993 FlavrSavr tomatoes, genetically engineered for longer shelf
life, were marketed.
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1993 The first gene therapy took place on a 4-year-old girl with

an immune-system disorder called ADA deficiency. The

therapy appeared to work.

1993 Scientists in Paris produced a rough map of all 23 pairs of

human chromosomes.

1993 Dean Hamer and colleagues reported at least one gene

related to homosexual orientation that appears to reside

on the X chromosome and is inherited from the mother.

1994 The FDA approved the commercial use of bovine somat-

ropin, also known as bovine growth hormone. This hor-

mone increases the production of milk in cows, and became

one of the first genetically engineered products available to

farmers.

1994 • A multitude of genes, human and otherswise, were identi-

fied and their function determined [e.g a gene predisposing

to obesity, a breast cancer susceptibility gene, a gene asso-

ciated with apoptosis (programmed cell death)].

• Linkage studies identify genes for a variety of ailments in-

cluding: melanoma, hearing loss, dyslexia, thyroid cancer,

sudden infant death syndrome.

1995 • Further evidence is found to support the idea that RNA

was the central molecule in the origin of life.

• Gene therapy, immune system modulation and genetically

engineered antibodies enter the clinic in the war against

cancer.

1995 Duke University researchers announced the transplant of

hearts from genetically altered pigs into baboons.

1995–2000 First completed sequences of the following genomes:

• Bacteria Haemophilus influenza (1995)

• Yeast and E.Coli (1996)

• Soil Nematode Caenerhabditis (1998)

• Fruit fly Drosophila melanogaster (1999)

• Arabidopsis (2000)
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1996 • Sottish scientists clone identical lambs from early embry-
onic sheep.

• Scientists sequenced the complete genome of baker’s yeast
– more than 12 million base pairs of DNA.

• The discovery of a gene associated with Parkinson’s dis-
ease.

• Sequencing the genome of ancient microorganisms, ar-
chaea, found in inhospitable climates deep in thermal vents
under the sea – a step in understanding of the evolution of
life on earth.

1996 Genzyme Transgenics announced the birth of a goat carry-
ing BR-96 monoclonal antibodies to be used experimentally
to deliver conjugated anticancer drugs to humans.

1997 • Artificial human chromosomes created for the first time.

• Clock, the first gene providing the circadian rhythm of
mammalian life, identified.

• Using a bit of DNA and some commonplace laboratory
techniques, researchers engineered the first DNA computer
“hardware” ever: logic made of DNA43.

• A new DNA technique combined PCR, DNA chips, and
computer programming, thus providing a new tool for the
search for disease - causing genes.

1997 Hunt Willard and others working at Case Western Re-
serve created the first artificial human chromosome, open-
ing the door to designer babies.

1997 Stanley Prusiner earned the Nobel Prize for his pioneer-
ing work on prion diseases such as Bovine Spongiform En-
cephalopathy, which is thought to have caused the outbreak
of mad cow disease in Britain and Creutzfeldt-Jakob dis-
ease.

1997 A sheep named Dolly was cloned.

1998 Dolly gave birth to Bonnie, a lamb conceived by conven-
tional means. The birth offered reassurance that cloned
animals like Dolly can develop into healthy animals capa-
ble of reproducing.

43 It is not a general purpose computer, thought: it is tailored to solve just a single

mathematical problem (the traveling salesman problem).
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1998 A rough draft of the human genome map was produced,
showing the locations of more than 30,00 genes.

2000 The Human Genome Project presents its preliminary re-
sults: each of the body’s 100 trillion cells contains some
3.1 billion nucleotide units. Only 1% of these are thought
to be transcriptional, clustered in possibly as few as 30,000
genes. An accurate chemical map of the genome tells us
surprisingly little about how it functions. Targeted experi-
mentation is now possible.

2002 Presentation of human genome by Celera Genomics and
the collaborating group of laboratories supported by public
foundation.

2003 (14 April) Successful completion of Human Genome Project
with 99% of the genome sequenced to a 99.99% accuracy.
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Timeline History of Structural Biology

1910 Albrecht Kossel (1853–1927) discovered the amino acids
Histidine (1896), thymic acid and agmatine (1910) in the
cell.

1925 Theodor Svedberg (1884–1971) developed the ultracen-
trifuge that could spin its samples with a force of over
100,000 g.

1932 Invention of the electron microscope. All electron micro-
scopes suffer from a serious drawback: since no specimen
can survive under their high vacuum, they cannot show the
ever-changing movements that characterize a living cell.

1949–1956 Christian de Duve (1917– ), Albert Claude (1899–
1983) and George E. Palode (1912– ) discovered and
elucidated the subcellular biochemical structure and func-
tion of organelles in biological cells.

1953 James D. Watson (1928– ), and Francis Crick (1916–
2004) discovered the structure of the DNA molecule.

1955 Microscopists and biochemists began to communicate: the
microscopists discovered that the biochemists’ particles
matched what they had seen under their microscopes, and
the biochemists learned that the microscopists could actu-
ally see what they had been analyzing. The result was an
avalanche of discoveries about the world within the cells.

1959 Max Perutz (1914–2002) and John Kendrew (1917–
1997) determined the molecular structure of the protein
hemoglobin.

1961 Christian Anfinsen (1916–1995) first discovered the fold-
ing of protein molecules. (These molecules begin their bio-
logical activity (life) only after having folded into intricate,
convoluted shapes.) Once the protein has folded, its shape
determines its physical and chemical properties and partic-
ularly its active sites.
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1964 Cyrus Levinthal (1922–1990) and Robert Langridge
(1933– ) developed the first system that showed biological
molecules on a computer screen.

1965 Alex Novikoff (1913–1987), first to show that lysosomes
(their enzymes can digest substances) exist in eukaryotic
cells.

1972 Michael S. Brown (1941– ) and Joseph Goldstein
(1940– ) elucidated the genetic defects and role of the LDL
(Low Density Lipoprotein) receptor in Familial
Hypercholesterolemia. These studied led to development of
a drug to treat FH.

1982 Thomas Coch (1947– ) and Sydney Altman (1939– )
discovered that the nucleic acid RNA can act as enzyme
because it can cut and splice itself.

1985 Michael Rossmann (1930– ) mapped the structure of
human common-cold virus – the first animal virus to be
seen at atomic resolution.

1989 Researches reported using scanning electron microscopy to
obtain, for the first time, direct images of pure DNA. This
method is used to observe living viruses, or the action of
molecules on the cell’s surface, and enables scientists to
see the tiniest details of cell structure and activity in ways
undreamed of a few years ago.

1995 J.M. Hogle, David Filman and Marie Chow reported
the structure of the polio virus at atomic resolution.
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Timeline History of Immunology

1796 Smallpox vaccination; Edward Jenner (1749–1823) dis-
covered that cowpox induces protection against smallpox.
Jenner had no knowledge of microorganisms or of immunol-
ogy. This had to wait for Pasteur some 100 years later.

1857 Louis Pasteur (1822–1895) noted the existence of sub-
stances capable of exerting antimicrobial effects.

Phase I: 1879–1910

Most of the major components of the immune response were
described.

1879 Louis Pasteur developed attenuated vaccines of chicken
cholera, anthrax and rabies. He showed that inoculation
with preparations of weakened pathogens could be used to
develop immunity against infectious forms of the pathogen.
(However, not until some 80 years later, did scientists gain
a modern understanding of vaccines!)

1883 Eli Metchnikov (1845–1916), pioneer of immunology, es-
tablished a cellular theory of vaccination, (NP 1908).

1888 Emil Roux (1853–1933) and Alexandre Yersin (1863–
1943) proved that diphtheria bacilli produced a toxin which
can be separated from the bacterial cells (antitoxin is the
specific antibody capable of neutralizing the pathogenic
toxin).

1890 Emil von Behring (1854–1917), pioneer of immunology,
discovered that serum could be used to treat diphtheria
(NP 1901); explained that diphtheria immunity depended
on the capacity of the cell-free blood serum to neutralize
the toxic substance produced by the diphtheria bacilli.
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1897 Paul R. Ehrlich (1854–1915) laid the chemical theory ac-
counting for the molecular basis of antibody–antigen reac-
tions. Father of modern immunology, (NP 1908). Con-
ceptualized the interactions between cells, antibodies and
antigens as essentially chemical responses. Shared the 1908
NP with Metchnikov for their contributions to immunity
and serum therapy.

1901 Karl Landsteiner (1868–1943) used the specific antibody–
antigen reaction to identify major human blood groups A,
B, AB, and O.

Phase II: 1910–1938

Knowledge was increasingly applied in preparation of
immune sera and diagnostic reagents for infection dis-
eases: First vaccine for Diphtheria (1923), Pertussis (1926),
Tetanus (1927), Yellow Fever (1935), Polio (1652, 1962);
Measles (1964); Mumps (1967); Rubella (1970); Hepatitis B
(1981).

1928 Alexander Fleming (1881–1955) discovered Penicillin.

1932 Gerhard Domagk (1895–1964) found the sulfonamide
prontosil to be effective against streptococcus. This was
the first drug effective against bacterial infections. Sulfon-
amides became a revolutionary weapon at the time, but
were later replaced by penicillin, which showed both better
effects, and fewer side effects. (Kidney stones and changes
in bone marrow). Domagk’s work on sulfonamides eventu-
ally led to the development of the antituberculosis drugs.

Phase III: 1938–1988:

Cellular and molecular aspects of the immune-system.

Immunology has benefited from the techniques and theories
of molecular biology. The lymphocytes of the blood have
become an important focus of study and clonal selection
theory had dominant research.
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1938 John Marrack expounded the antigen-antibody binding
hypothesis.44

1949–1957 Peter Medawar (1915–1987) and Frank M. Burnet
(1899–1985) discovered how the immune system rejects or
accept organ transplantation, thus creating a platform for
developing methods of transplanting solid organs (Immuno-
logical Tolerance hypothesis). (NP 1960).

1953–1978 Michael Heidelberger (1888–1991) The father of mod-
ern immunology. Together with Oswald Avery showed
that polysaccharides of pneumococcus are antigens, en-
abling him to show that antibodies are proteins.

1956 Niels K. Jerne, David Talmage and Frank M. Bur-
net developed clonal selection hypothesis; it proposes that
before a lymphocyte ever encounters an antigen, the lym-
phocyte has specific receptors for that antigen on its surface.

1956–1961 Baruj Benacerraf (1920– ), Jean Dausset (1916– ),
and George D. Snell (1903–1996) discovered genetically–
determined structures on the cell surface that regulate im-
munological reactions. (NP 1980).

1957 Alick Isaacs (1921–1967) and Jean Lindenmann
(1924– ) discovered interferon.45

44 Antibodies are Y-shaped molecules, two arms of which are identical and have the

ability to bind to certain proteins called antigens. The binding takes place by

van der Waals forces. Because these forces are very short range, there must be a

close fit between the atoms in the arm of the antibody and those in the antigen,

and the bonding is very specific. An inactive part of the antibody can be tagged

with fluorescein isothiocyanate. Antigens to which these tagged antibodies have

become attached can then be identified by their green fluorescence when exposed

to ultraviolet light. A high-energy photon is absorbed by the atom, which then

loses energy in two or more successive steps. If the high-energy photon is in

the ultraviolet, one or both of the lower-energy photons my be in the visible

range. Typical lifetimes for the decay of the excited atoms are 10−9 to 10−7 s; if

the decay is much longer than this, the phenomenon is called phosphorescence.

Lifetimes can range up to hours.
45 Its effects were noticed earlier (1954) by the Japanese virologists Yasuichi

Nagano (1906–1998) and Yasuhiko Kojima. Interferons are a class of natural

proteins produced by cells of the immune system of most animals in response to

challenges of foreign agents such as viruses, bacteria, parasites and tumor cells.

Interferons belong to the large class of glycoproteins known as cytokines.



5456 6. Deep Principles – Complex Structures

1958–1962 Gerald M. Edelman (1929– ) and Rodney R. Porter
(1917–1985) discovered human leukocyte antigens and an-
tibody structure, thymus involvement in cellular immunity
and T and B cell cooperation in immune response. (NP
1972).

1965–1972 Elvin A. Kabat (1914–2000) elucidated structure and ge-
netic basis for specificity of antibodies. First to demonstrate
that antibodies are γ-globulins.46

1966 Kimishige Ishizaka (1925– ) discovered a new type of
immunoglobulin IgE that develops allergy and elucidated
the mechanism of allergy at molecular and cellular levels.
Following this discovery, S.G.O. Johansson found an IgE
myeloma, confirming Ishizaka’s discovery. This achieve-
ment contributes to the clinical diagnosis and treatment
of allergic diseases.

1974 Rolf M. Zinkernagel (1944– ) and Peter C. Doherty
(1940– ) discovered how the immune system recognizes
virus-infected cells. (NP 1996).

1975 Cesar Milstein (1927–2002), Georges J.F. Köhler
(1946–1995) and Niels K. Jerne (1911–1994) developed
theories concerning the specificity in development and con-
trol of the immune system and the discovery of the principle
for production of monoclonal antibodies. (NP 1984). This
discovery led to an enormous expansion in the exploitation
of antibodies in science and medicine.

1976 Susumu Tonegawa (1939– ) discovered a genetic princi-
ple for generation of antibody diversity.47 (NP 1987).

46 Memory B cells are a B cell sub-type that are formed following primary infec-

tion. When a B cell is activated, by recognizing a specific antigen, it proliferates

to form antibody producing plasma cells and long-lived memory B cells. The

memory B cells are specific for the antigen that first stimulated their produc-

tion. If this antigen is encountered again, memory B cells can recognize it and

quickly proliferate. This forms a new generation of antibody-producing plasma

cells. This means that the antibody response is much more rapid in subsequent

infections, than primary infection, reducing the chance of symptom development.

This is the principle behind vaccination.
47 To achieve the diversity of antibodies needed to protect against any type of

antigen, the immune system would require millions of genes coding for different
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1983 Discovery of HIV.

antibodies, if each antibody was encoded by one gene. Instead, as Tonegawa

showed in a series of experiments beginning in 1976, genetic material can re-

arrange itself to form the vast array of available antibodies. Comparing the

DNA of B cells (a type of white blood cells) in embryonic and adult mice, he

observed that genes in the mature B cells of the adult mice are moved around,

recombined, and deleted to form the diversity of the variable region of antibodies.
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Timeline History of Neurobiology

1873–1880 Camilo Golgi (1843–1926), pioneer of modern neurophys-
iology. Discovered dendritic nerve cells called “Golgi cells”
and “Golgi tendon spindle” (NP 1906)

1889–1928 Santiago Ramón y Cajal (1852–1934), pioneer of mod-
ern neurophysiology. First to formulate the neuronal theory
(based on the individuality of the nerve cell. NP 1906)

1895–1932 Charles Scott Sherrington (1857–1952) formed the sci-
entific basis of modern neurology; coined the terms neuron
and synapse. Outlined the nature of communication be-
tween nerves and between nerves and muscles. (NP 1932)

1903–1912 Robert Barany (1876–1936) pioneered in the study of the
human inner ear’s balancing organ. (NP 1914)

1913–1928 Edgar Douglas Adrian (1889–1977). Pioneering stud-
ies of the electrophysiology of the brain and the nervous
system. (NP 1932)

1920–1929 Otto Loewi (1873–1961) and Henry Hallett Dale
(1875–1968) independently isolated acetylcholine, the sub-
stance released by the vagus nerve, thus providing evi-
dence for chemical transmission of nerve impulses across
the synapse. (NP 1936)

1921–1935 Joseph Erlanger (1874–1965) and Herbert Spencer
Gasser (1888–1963) analyzed fundamental properties of
neural conduction impulses and discovered that the veloc-
ity of the impulse was proportional to the diameter of the
nerve fiber. (NP 1944)

1928–1960 Georg von Békésy (1899–1972). Discovered physical
mechanisms of stimulation within the cochlea of the inner
ear. (NP 1961)

1932 Walter B. Cannon (1871–1945, USA) coined the term
homeostasis.
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1932–1956 Ragnar Granit (1900–1991), Haldan K. Hartline
(1903–1983) and George Wald (1906–1997), share the
1967 Nobel Prize for their discoveries in the neurophysi-
ology of vision.

1945–1952 Alan Lloyed Hodgkin (1914–1998, England), John
C. Eccles (1903–1997) and Andrew Fielding Huxley
(1917– , England) described the ionic mechanism by which
neurons transmit electrical impulses. (NP 1952)

1945–1965 Julius Axelrod (1912–2004), Bernard Katz (1911–2003)
and Ulf Svante von Euler (1905–1983) share the 1970
Nobel Prize for their work on electrical simulation of nerves
and the processes of neuromuscular transmission.

1965–1977 David Hunter Hubel (1926– ) and Torsten Nils
Wiesel (1924– ), followed on from the work of Granit
and Hartline to study the way in which the brain processes
visual information. They demonstrated that there is a hi-
erarchical processing pathway, of increasingly sophisticated
analysis of visual information by nerve cells from the retinae
to the cerebral cortex. Shared the NP in 1981.

1968–1981 Stanley H. Cohen (1917– ) and Rita Levi-Montalcini
(1909– ) awarded the Nobel Prize (1986) for their work on
the control of nerve cell growth.

1976–1986 Erwin Neher (1944– ) and Bert Sakmann (1942– ).
Revolutionized cell physiology with the invention of the
“patch–clamp” recording technique which made it possible
to record the electrical activity of very small areas of mem-
brane, by eliminating the membrane’s electrical noise. This
improved the sensitivity of previously available methods by
a factor of a million. This was done by touching a cell
membrane with the tip of a glass pipette filled with saline
solution, and by applying suction through the pipette, cre-
ating a seal which isolated a small section of the membrane.
This method was then applied to the study of nerve impulse
propagation along axons.

1969–1985 Alfred G. Gilman (1941– ) and Martin Rodbell (1925–
1998), discovered G-proteins and the role of these proteins
in signal transduction in cells. (G-proteins are a vital in-
termediary between the activation of receptors on the cell
membrane and actions within the cell). NP 1994.
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Arvid Carlsson (1923– ), Paul Greengard (1925– )
and Eric Kandel (1929– ) share the 2000 NP for their
discoveries concerning signal transduction in the nervous
system.

1973 Solomon H. Snyder (1938– ). Discovered the presence
of opiate receptors in nervous tissues.
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Timeline History of Endocrinology

1902 William Bayliss (1860–1924) and Ernest H. Starling
(1866–1927) discovered secretin, the hormone secreted by
the duodenum that stimulates pancreatic secretions. Pre-
viously, the process had been considered (e.g., by Ivan
Pavlov) to be regulated by the nervous system. Starling
and Bayliss demonstrated that injected duodenal extract
into dogs rapidly increased pancreatic secretions, raising
the possibility of a chemical messenger.

1905 William B. Hardy (1864–1934), a Cambridge physiolo-
gist coined the word “hormone” and suggested its use to
Starling.

1911 Bernardo Houssay (1887–1971) discovered the part
played by the hormone of the anterior pituitary lobe in the
metabolism of sugar (NP 1947)

1921 Frederick Grant Banting (1891–1941) and John J.R.
Macleod discovered the hormone Insulin. (NP 1923)

1927 Bernard Zondek (1891–1966) discovered the sex hormone
gonadotrophine and developed the first reliable hormone
pregnancy test.

1929 Edward Doisy (1893–1986) discovered the sex hormones
oestrone, oestriol and oestradiol. (NP 1943 for discovering
the chemical nature of vitamin K)

1930 Adolf F.J. Butenandt (1903–1995). Discovered the sex
hormones androsterone and oestriol (NP 1939; Zondek
should have shared it, but at that time he was a refugee
in Palestine, driven out of Nazi Germany in 1933)

1935 Karoly G. David isolated pure crystalline testosterone
from testicles.

1948 E.C. Kendall (1886–1972), Tadues Reichstein (1897–
1996) and P.S. Hench (1896–1965), discovered the struc-
ture and biological effects of the hormones of the adrenal
cortex. (NP 1950)



5462 6. Deep Principles – Complex Structures

1951 Robert Woodward (1917–1979) synthesized cortisone.
(NP 1965)

1951 Charles Brenton Huggins (1901–1997) won the Nobel
Prize (1966) for his hormonal treatment of prostate cancer.

1951 Frederick Sanger (1918– ) determined the exact sequence
of amino acids comprising the insulin molecule. (NP 1958)

1960 Rosalyn Sussman Yalow (1921– ) received the Nobel
Prize for the development of radioimmunoassays for insulin
(1977).

1960–1976 Sune K. Bergström (1916–2004), Bengt I. Samuelsson
(1934– ) and John R. Vane (1927–2004) won the NP for
1982 for discoveries concerning prostaglandins and related
biologically active substances.

1942–1969 Dorothy Crowfoot Hodgkin (1910–1994) determined
the spatial conformation of the insulin molecule by means
of X-ray diffraction studies.[She has been awarded earlier
in 1964 the NP in chemistry for the development of crys-
tallography in 1954].

1970 Roger Guillemin (1924– ) and Andrew V. Schally
(1926– ) discovered the peptide hormone production of
the brain. (NP 1977)
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Timeline History of Ecology

Ecology is generally spoken of as a new science, having only become promi-
nent in the second half of the 20th Century. Nonetheless, ecological thinking
at some level has been around for a long time, and the principles of ecology
have developed gradually, closely intertwined with the development of other
biological disciplines.

354–322 BCE One of the first ecologists may have been Aristotle or per-
haps his student, Theophrastos, both of whom had inter-
est in many species of animals. Theophrastos described in-
terrelationships between animals and between animals and
their environment as early as the 4th century BCE.

75–79 CE Pliny the Elder (23–79 CE) writes: “Natural History”

1555 CE Georg Bauer (Agricola, 1490–1555, Germany) writes:
“De re Metallica”

Throughout the 18th and the beginning of the 19th cen-
tury, the great maritime powers such as Britain, Spain, and
Portugal launched many world exploratory expeditions to
develop maritime commerce with other countries, and to
discover new natural resources, as well as to catalog them.
At the beginning of the 18th century, about twenty thou-
sand plant species were known, versus forty thousand at the
beginning of the 19th century, and almost 400,000 today.

1789–1804 Ecology blossomed due to the new discoveries of Antoine
Lavoisier (1743–1794, France) and de Saussure (1767–
1845, France), notably – the nitrogen cycle.

1789 James Hutton (1726–1797) considered the earth to be
a super-organism and that its proper study should be by
physiology. He was thus the first to coin the term ‘geo-
physiology’.

1798 Thomas Malthus (1766–1834, England) writes: “Essay
of the Principle of Population Theory”.

The above-mentioned expeditions were joined by many sci-
entists, including botanists, such as the explorer:
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1802–1807 Alexander von Humboldt (1769–1859, Germany). He
is often considered a father of ecology.

He was the first to take on the study of the relationship
between organisms and their environment. He exposed the
existing relationships between observed plant species and
climate, and described vegetation zones using latitude and
altitude, a discipline now known as geobotany.

In 1804, for example, he reported an impressive number
of species, particularly plants, for which he sought to ex-
plain their geographic distribution with respect to geologi-
cal data. One of Humboldt’s famous works was “Idea for a
Plant Geography” (1805).

1852 David Thoreau (1817–1862, USA), first to coin the term
ecology.

1858 Charles Darwin (1809–1882, England) published “The
Origin of species”. Ecology passed from a repetitive, me-
chanical model to a biological, organic and hence evolution-
ary model.
Alfred Russel Wallace (1823–1913, England), contem-
porary and competitor to Darwin, was first to propose a
“geography” of animal species. Several authors recognized
at the time that species were not independent of each other,
and grouped them into plant species, animal species, and
later into communities of living beings.

1866 Ernst Haeckel (1834–1919, Germany) recoined the
term oekologie. The word derives from the Greek
oikos=“household” and logos=“study”. It meant to the
Greek – the study of nature.

The word “ecology” is often used in common parlance as a
synonym for the natural environment or environmentalism.
Likewise “ecologic” or “ecological” is often taken in the
sense of environmentally friendly.

1875 Eduard Suess (1831–1914, Austria) proposed the name
biosphere for the conditions promoting life, such as those on
earth, which induces flora, fauna, minerals, matter cycles,
etc. The need for this term followed his observation that
life developed only within strict limits of each compartment
that makes up the atmosphere, hydrosphere and lithosphere.
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1879–1914 John Muir (1838–1914, USA), explorer, naturalist and
ecologist. Campaigned for the forest conservation in the
United States. Founded the Sierra Club which became a
leading conservation organization.

1899 Henry Chandler Cowles (1869–1939, USA). Ecological
Pioneer. Invented the concept Ecological succession as a
process by which a natural community moved from a sim-
pler level of organization to a more complex community.

1926 Vladimir Vernadsky (1863–1945, Russia). Founder of
modern biogeochemistry. Detailed the idea of the biosphere
in his work “The biosphere” (1926) and described the fun-
damental principles of the biogeochemical cycles. He thus
redefined the biosphere as the sum of all ecosystems.

First ecological damages were reported in the 18th century,
as the multiplication of colonies caused deforestation. Since
the 19th century, with the industrial revolution, more and
more pressing concerns have grown about the impact of
human activity on the environment. The term ecologist
has been in use since the end of the 19th century.

Over the 19th century, botanical geography and zoogeog-
raphy combined to form the basis of biogeography. This
science, which deals with habitats of species, seeks to ex-
plain the reasons for the presence of certain species in a
given location.

1935 Arthur Tansley (1871–1955, England) coined the term
ecosystem, the interactive system established between the
biocoenosis (the group of living creatures), and their
biotope, the environment in which they live. Ecology thus
became the science of ecosystems.

1951–1962 Rachel Carson (1907–1964, USA). Zoologist and marine
biologist. Her book “Silent Spring” launched the global
environmental movement. In the United States it spurred
a reversal in national pesticide policy.

1953 Eugene P. Odum (1913–2002, USA). Known for his pi-
oneering work on ecosystem ecology. Explored how one
natural system can interact with another. Believed that
homeostasis and stability in ecosystems was a result of evo-
lutionary processes.
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1971 Ecology became a central part of the World’s politics as
UNESCO launched a research program called Man and
Biosphere, with the objective of increasing knowledge about
the mutual relationship between humans and nature. A few
years later it defined the concept of Biosphere Reserve.

1972 The United Nations held the first international conference
on the human environment in Stockholm. This conference
was the origin of the phrase “Think Globally, Act Locally”.

1979 James Lovelock (1919– , England). Researcher and envi-
ronmentalist. Proposed the ‘Gaia Hypothesis’, in which he
postulated that the earth functions as a kind of superorgan-
ism. He popularized the term “geophysiology” (foreshad-
owed by James Hutton (1789) and Huxley (1825–1895)).
While the Gaia Hypothesis was readily accepted by many
in the environmental community, it has not been fully ac-
cepted within the scientific community. Critics point out
that since natural selection operates on individuals, it is
not obvious how planetary-scale homeostasis can evolve.

1992 Earth Summit in Rio de Janeiro; The concept of the
biosphere was recognized by the major international organi-
zations, and risks associated with reduction in biodiversity
were publicly acknowledged.

1997 The dangers the biosphere was facing were recognized from
an international point of view at the conference leading to
the Kyoto Protocol. In particular, this conference high-
lighted the increasing dangers of the greenhouse effect –
related to the increasing concentration of greenhouse gases
in the atmosphere, leading to global changes in climate. In
Kyoto, most of the world’s nations recognized the impor-
tance of looking at ecology from a global point of view, on
a worldwide scale, and taking into account the impact of
humans on the earth’s environment.
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Life Prospects on a Hazardous Planet

Cycles of matter and energy on earth, caused both by internal and ex-
ternal agents, have always been accompanied by catastrophes hazardous to
life. The energy sources and energy content of the various natural processes
are well known: In general, the combination of the internal heat flow and
gravity results in plate tectonic movements and the associated earthquakes,
volcanism, mountain uplift as well as forming a few types of tsunami. The
combination of the sun’s energy and gravity results in all weathering, erosion
and mass wasting phenomena including rain-floods, blizzards, hurricanes, tor-
nadoes, lightning, hail, avalanches, mudflows, waves, landslides and associated
tsunami.

During the early history of the earth, interior energy sources were con-
tributed by:

• Bolide impacts48: these helped raise the temperature of the early earth
and some of that heat was left over as the internal heat of the earth.

• Gravity: gravitational collapse of the earth raised the interior tempera-
tures.

48 Up to 1970’s, there was little interest in asteroids, including near earth asteroids.

They were considered low class astronomical objects. Indeed, the small asteroid

which destroyed hundreds of square kilometers in remote Siberia in 1908 was an

event little known to the general public. A small asteroid which skimmed the

upper atmosphere in the 1970’s, as detected by a U.S. military satellite, received

little publicity.

In the 1970’s, things started to change. A small but increasing number of as-

tronomers interested in asteroids began to realize the abundance of asteroids

which passed close to earth, by instituting processes to catalog asteroids acci-

dentally seen on telescopic plates and previously not recorded.

Theoretical computer models revealed that the gravity of the planets caused

a sizable number of asteroids from the Main Belt between Mars and Jupiter to

cascade down into lower orbits approaching or crossing earth’s. Further, a signif-

icant fraction of comets passing through the inner solar system would be diverted

into orbits near earth due to gravitational encounters with the inner planets. As

a result of these discoveries, the estimated number of near-earth objects dra-

matically expanded by about 1000 times. Finally, new telescope technology,

emerging around 1900, increased the discovery rate of all asteroids. It is now

estimated that there are about 300,000 near-earth asteroids which are over 100

m in diameter, and about 2000 over 1 kilometer in diameter.
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• Radioactivity: it continues to create tremendous heat in the earth, al-

though more heat was generated earlier. Radioactivity allows for precise

age dating of rock strata.

Exterior energy sources49are due to solar energy which surpasses heat flow

from the interior by a factor of 5300; 30 percent of the sun’s energy is reflected

as short wavelength radiation, 47 percent is absorbed and re-radiated as long

wavelength radiation (infrared) and 23 percent evaporates water (mostly in

the tropics) to begin the hydrological cycle. The hydrological cycle in com-

bination with gravity results in waterfalls, rivers, floods, atmospheric circula-

tion, hurricanes, thunderstorms, lightning, tornadoes, mass movement, waves

and landslide induced tsunami.

Another exterior energy source is impact energy of asteroids and comets

with solar system velocities ranging from 11 to 70 km
sec . Temperatures of at

least 10,000 degrees are produced during impact. These events have also been

proposed to have produced global devastation and mass extinctions.

Terrestrial catastrophism via bombardment episodes by ‘cosmic bullets’

impacted the mind of man since times immemorial: the same basic story

repeated itself in many ancient cultures. The Bible, for example, tells us of

darkness, pillar of cloud by day and fire by night, hail and fire dropped on

earth, winged serpents in the sky, huge burning stars falling from heaven, dust

from impact, earthquakes, large ecological upsets, tsunamis – all recognizable

symptoms of asteroid collision with earth.

These phenomena, although faithfully observed by prehistoric people,

could not have been documented prior to the invention of writing in ca 3200

BCE and certainly could not be understood before the advent of modern

science in the early 16th century.

Natural disasters may be classified into the following categories:

49 Earth receives from the sun the total of 1.75 × 1017 watt (Joule
sec

) which amounts

to an average flux of 1367 watt
m2 . Of this only 1.25 × 1017 watt is absorbed by

the atmosphere, hydrosphere and surface (69%). The average total solar flux

on the earth’s surface amounts to 168 watt
m2 . The non-solar geothermal energy

release (radioactive decay + primordial heat) reaches a level of 6.6 × 1013 watt

= 6.6 × 1020 erg
sec

= 2.07 × 1028 erg
year

= 5 × 105 MT
year

. This energy flow feeds

continental drift, earthquakes, volcanoes and hot springs. Direct solar energy

feeds atmospheric circulation and all accompanying meteorological processes.

Appreciable global changes occur at the level of one percent of the solar input.
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• Climatic changes and ecological collapses; return of a severe glacial
epoch50.

• Collision of earth with asteroids, mini-planets51 and comets.

• Volcanic eruptions and earthquakes.

• Floods, tsunamis, mega-tsunamis and major storms.

• Droughts, famines.

• Pandemics.

• Supernova explosion52.

Collision with Earth of Asteroids and Comets

How do asteroids arrive at earth? Detailed scenarios for the formation
and transport of meteorites and other near-earth asteroids were clarified only

50 The frightening aspect of this ‘option’ is that the sun’s smallest tantrum can

influence our climate significantly in spite of the vast distance of 150 million km

separating it from earth. Sunspots correspond to changes in solar activity: times

of greatest activity correspond to warm periods on earth. In the middle of the

20th century observations showed a great density of sunspots while recorded air

temperatures were noticeably higher. In contrast, between 1430 to 1850, the sun

seems to have gone through a calm period and sunspots were practically absent.

This period coincided with a decrease in temperatures.
51 With diameter> 1 km.
52 A supernova explosion could completely extinguish life on earth by high-energy

gamma-ray bursts and particles from the explosion, provided it explodes within

200 light-years from the solar system. Among the 100,000 closest stars we expect

one supernova to explode in a time-scale of roughly a billion years – of the order

of the time interval during which life has thus far existed on earth!

The last one seen in our galaxy was Kepler’s, in 1604. In general, supernovas

derive their energy from the gravitational collapse of the central core of a heavy

enough star: the core, having a mass of order that of the sun, collapses into a

neutron star and thereby liberates enormous amounts of energy (ca 1053 erg).

Other known supernova explosions are the Crab Nebula explosion (1054 CE) and

the 1987A explosion in the large Magellanic Cloud.
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recently. The basic idea goes back to Kirkwood (1866), who identified gaps
in the distribution of asteroids at distances from the sun at which their or-
bital periods would be commensurable with Jupiter’s period (such as 5.93
years), forming ratios of small whole numbers. Kirkwood proposed that the
gaps arose as a consequence of perturbations caused by Jupiter: the effect
of Jupiter’s mass would be to force any asteroid that appeared in one of
the asteroid-free zones into another orbit, with the result that it would im-
mediately leave the zone (according to Kepler’s law, a period of 5.93 years
corresponds to a semimajor axis of 3.28 AU).

It has been shown that such ‘resonances’ (as they are called) could raise
asteroids’ orbital eccentricities to a point that bodies swept away from the gaps
could reach Mars. Scientists demonstrated that material could reach earth
through chaotic dynamics at the 3:1 resonance. It was reported that numerous
weak resonances and interactions among the resonances cause chaotic behavior
capable of raising main-belt eccentricities to allow for a Mars crossing. Objects
then break away from the resonances when they have close encounters with
Mars and subsequently evolve as Mars crossers, until they become near-earth
asteroids.

This scenario is sped up by a series of minor resonances that yield fairly
chaotic evolution, lasting a few times 107 years, during which a reasonable
fraction is likely to hit earth. In short — several resonances provide the
escape route from the main belt and allow bodies to reach earth in a few tens
of million of years.

The most energetic – and best-documented – encounter with the earth
of an earth-crossing body produced a great fireball over the Podkamennaya–
Tunguska River region of Siberia on the morning of June 30, 1908. Travel-
ing from southeast to northwest, the bolide nearly passed over the town of
Kirensk; the endpoint of the trajectory was about 60 km northwest of the
remote trading post of Vanovara, over a very sparsely inhabited part of the
Siberian taiga.

The bolide was observed from distances as great as 600–1000 km from the
endpoint; the atmospheric shock was audible at a distance of 1270 km and
heat was felt at a distance of 70 km. Trees were knocked down at distances
up to 40 km from the endpoint, and circumstantial evidence suggests that dry
timber was ignited by thermal radiation from the fireball at distances up to
15 km from the endpoint.

Intensive investigation by expeditions carried out over many decades has
shown that the Tunguska bolide disintegrated in the atmosphere; it deposited
most of its kinetic energy at an estimated altitude of ∼8.5 km (A. Ben-
Menahem, 1975). Only microscopic spheres of glass and magnetite, formed
by ablation, reached the ground.
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Long-period atmospheric gravity and acoustic waves excited by the at-
mospheric shock were well recorded on weather-station barographs in Siberia
and southern England; the passage of these waves in both the direct and re-
verse paths was recorded on a barograph at Potsdam, Germany. Coupling of
the air wave to the ground near the endpoint produced seismic waves detected
at Irkutsk, Tashkent, Tiflis, and Jena; local coupling of the air wave to the
ground as it passed over some seismic stations was also recorded.

On the basis of a thorough study of the seismic and acoustic records,
Ben-Menahem (1975) estimated the released energy at 12.5 ± 2.5 megatons.
The distance to which trees were felled near the endpoint is consistent with a
∼13-megaton explosion at an altitude of ∼8 km and scaling from the effects of
nuclear weapons; the ignition of wood by the thermal radiation also suggests
an energy of the order of the same yield.

E. Shoemaker (1983) has shown that the ‘best estimate’ of the frequency
of a 12-megaton encounter with earth is about once every 150–600 years. The
explosion of the world’s entire nuclear arsenal (ca 105 MT ; see Table 6.12)
could not match the energy released when a kilometer-size asteroid hits the
earth.

Stimulated by the renewed interest of scientists in the Tunguska explosion,
Alvarez et al. (1980) hypothesized that the major dinosaur (and other fauna)
extinction event at the Cretaceous-Tertiary boundary (65 My) was the result
of an enormous impact of an asteroid or a comet. The heat from the impact
caused forest fires, and lofted huge amounts of dust from the impact crater
into the atmosphere. The smoke and ash from the fires and the dust parti-
cles together blocked the sun for at least several months. The temperature
decreased since the sunlight was partially blocked from reaching the earth’s
surface.

Without sunlight and in the cold, plants began to die since they could
not obtain nutrition. This in turn affected the plant-eating dinosaurs; lacking
their source of food they too began to die. Since the plant-eating dinosaurs
were dying, there was a lack of food for the meat-eating dinosaurs, and they
perished as well. In other words, the effects of the impact caused the ecosystem
to collapse. It is speculated that this impact led to the extinction of 75 percent
of the species alive on earth during that time.

Such a ‘relatively common’ event would not show up much in geological
records on a global scale. There have been many local tsunamis and brief
climate changes in recorded history without any plausible explanation (e.g.,
Amos 9, 5–7).

If an asteroid of size 1 kilometer hit earth, its impact would wipe out life
within proximity of the impact site. However, more serious is how it would
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affect the whole world in indirect ways. The dust and/or vapor cloud created
by an impact to either the land or the ocean could be big enough to create a
“nuclear winter” like mini-ice age, and disrupt climatological wind patterns,
adversely affecting major food-growing regions of the world, thus straining
world food supplies, governments and civilization. This is comparable to
what caused the dinosaur extinction, as well as other major extinctions of
smaller creatures over geologic time scales.

Earth’s atmosphere gives protection against the vast majority of small
asteroids which hit. Asteroids hit the atmosphere at typical speeds in excess
of 10 km/sec — an average of about 20 km/sec for asteroids whose entire orbits
reside within the inner solar system (with exact relative speed depending upon
their angle of approach) and with speeds over 50 km/sec common for small
cometary objects making a pass from the outer solar system. At such speeds,
they usually break up due to severe shock pressures, and burn up due to
friction with the atmosphere.

For asteroids coming in at 20 km/sec, it is generally thought that to pen-
etrate the atmosphere and cause major damage by tsunami, an iron asteroid
must be around 40 to 60 meters in diameter, and a stony asteroid 200 meters
in diameter. However, a stony asteroid 60 meters in diameter can cause signif-
icant damage by airbursts. The exact damage caused by an asteroid or comet
depends upon a number of factors: size, speed, composition, and whether it
hits land or ocean.

For a land impact, it can be said in general that an object of roughly
75 meters in diameter can destroy a city, a 160 meter object can destroy a
large urban area, a 350 meter object can destroy a small district or state, and
a 700 meter object can destroy a small country.

For an ocean impact, the destruction is much greater. Smaller objects can
cause far more widespread damage. The effects of an ocean impact are felt
much further away than the effects of an airburst due to the more effective
propagation of water waves, and the fact that human populations and assets
are largely concentrated in coastal cities which historically became established
due to water transport (i.e., shipping and trade) and the ports that serve it.

For example, the earthquake-induced tsunami in Chile in 1960 produced
waves in Hawaii, 10,600 km away, of height up to over 10 meters, and up to
5 meters in Japan 17,000 km away with an average height of 2 meters, causing
heavy damages and loss of lives.

The effects of an airburst are far more localized because the intensity of
the phenomenon decreases with the inverse square of the distance, whereas
the height of a water wave decreases only with the inverse of the distance, i.e.,
as the first inverse power, due to its circular, two-dimensional nature.
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On March 23, 1989, an asteroid with a kinetic energy of over 1000 one-

megaton hydrogen bombs (i.e., about 5000 times more powerful than the bomb

dropped on Hiroshima) was recorded to have passed very close to earth, using

new equipment recently deployed. Named 1989FC, this asteroid was detected

well after its point of closest approach, and astronomers found out it had

passed so close only after calculating backwards its orbital path having once

realized its nearness. This was a key event that brought near earth asteroids

into the political arena.

Later, the new Spacewatch Camera in Arizona, using the latest technology

in electronic sensors and computerized automated detection, discovered four

asteroids that came closer to the earth than the moon (actually within half

the distance of the moon) in 1991–94.

It is thought that the very massive asteroid Geographos, a cigar-shaped

body of 5.1 kilometers by 1.8 kilometers which passed near earth in 1969

and again in 1994, could collide with earth in the not too distant future.

It is probably an iron or stony iron asteroid. It would make the Tunguska

meteorite look like a trivial impact. Geographos would cause a global ice age

for several years from the dust it would kick up. But it will not impact in the

next few hundred years, at least. We can not project Geographos’ orbit in the

far future with enough precision to determine if it will impact earth or the

moon, or whether it will have a close encounter which will fling it elsewhere.

Table 6.11 lists forthcoming close approaches to earth of certain minor

planets and comets.

The regional and global effects from an impact of an asteroid of diameter

d > 1km are as follows:

• Massive earthquake with magnitude M ≥ 13 (Richter scale).

• Global winter syndrome: dust pumped into the atmosphere blocks in-

coming solar radiation, producing darkness and temperature depression
for months. Disruption of ecosystems by diminished photosynthesis.

• Greenhouse gases H2O and CO2 are formed if impact occurs in the

oceans. Warming effects are created for many years after cooling.

• Giant tsunamis, 1–3 km high, flood the interior of continents.

• Shock waves in the atmosphere produce nitrogen oxides (Nitrogen +

Oxygen). Combined with water, nitric acid is formed, and precipitates

as Acid Rain.
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Figure 6.1 exhibits the evidence concerning the dependence of the cumu-
lative frequency distribution of earth-bolide encounter on the energy released
during impact. It tells us that:

1 – year event has the energy equivalence of 10 KT

10 – 100 KT

100 – 3 MT

1,000 – 50 MT

10,000 – 1,000 MT

100,000 – 20,000 MT

1,000,000 – 6 × 105 MT

10,000,000 – 107 MT

100,000,000 – 108 MT
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Fig. 6.1: Estimated cumulative frequency distribution of kinetic energy of
bodies colliding with the earth
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Table 6.11: Predicted minor-planet and comet encounters with

earth to within 0.05 AU (Astronomical Unit = ca 150 million

km) during 2005–2031. At 40 km/sec, an object covers a distance

of about 3.5 × 106
km per day

Object
Date of

encounter
Distance

(AU)
1992 UK4 Aug. 08, 2005 0.0404

(4450) Pan Feb. 19, 2008 0.0408

(1620) Geographos Mar. 17, 2008 0.1251

Aug. 12, 2026 0.1704

1991 VH Aug. 15, 2008 0.0458

1998 CS1 Jan. 17, 2009 0.0286

1994 CC June 10, 2009 0.0169

1998 HE3 May 10, 2012 0.0340

1998 KJ17 May 27, 2012 0.0355

1988 TA May 09, 2013 0.0411

1998 FW4 Sept. 27, 2013 0.0075

(2340) Hathor Oct. 21, 2014 0.0482

(5604) 1992 FE Feb. 24, 2017 0.0336

(3122) Florence Sept. 01, 2017 0.0472

1991 VG Feb. 11, 2018 0.0471

1998 HL1 Oct. 25, 2019 0.0416

1997 BQ May 22,2020 0.0416

1993 BX3 Jan. 17, 2021 0.0473

(3361) Orpheus Nov. 21, 2021 0.0386

Nov. 19, 2025 0.0379

(7335) 1989 JA May 27, 2022 0.0269

(6037) 1988 EG Aug. 23, 2023 0.0407

1998 KY26 June 01, 2024 0.0309

1997 QK1 Aug. 03, 2025 0.0304

1997 NC1 June 27, 2026 0.0171

1990 MU June 06, 2027 0.0309

1998 ML14 Aug. 03, 2028 0.0307

1997 XF11 Oct. 26, 2028 0.0064

1994 WR12 Nov. 26, 2030 0.0180
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Energetics

The energy sources and energy content of the various natural disasters are
well known. Prominent features of energy conversion processes are:

• Internal heat flow and gravity are responsible for the generation of earth-
quakes, volcanism and certain types of tsunamis.

Internal heat flow due to radioactivity, gravitational collapse (when ob-
jects move closer to earth’s center by falling, slipping, sinking – kinetic
energy is released) and bolide impact (especially during early history)
helped raise earth’s temperature.

• Exterior energy sources are mainly due to solar energy. In conjunction
with gravity and earth’s rotation this drives the hydrological cycle which
is responsible for floods, atmospheric circulation, hurricanes, thunder-
storms, lightning, tornadoes, waves, and certain tsunami.

• Only 23% of total solar energy is available for evaporating water (mostly
in the tropics) to drive the hydrological cycle.
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Table 6.12: Energy content of singular natural phenomena

(1 KT = 4.2 × 1019
erg; 1 MT = 4.2 × 1022

erg)

(a) Single Events (BP = Before Present, KE = Kinetic Energy)

Thunderstorm 1 KT

Atomic bomb (Hiroshima) 10 KT

St. Helens (1980; VEI=5) 5 MT

Hydrogen bomb 10 MT

Tunguska (1908) 10 MT

Hurricane (average KE) 10 MT

Barringer asteroid (diameter=50 m) 20 MT

Earthquake (total seismic wave energy; Ms = 8.1) 100 MT

Cyclone (total KE) 100 MT

Krakatoa explosion (1883; VEI=6) 200 MT

Thera (1500/1600 BCE) ca 1000 MT

Asteroid 1989 FC (close encounter in 1989), KE 1.0 × 103 MT

Asteroid impact d = 570 m; crater diameter=10 km 1.0 × 104 MT

Tambora (1815; VEI=7) 2.0 × 104 MT

Crater Lake eruption (4895 BCE; VEI=7) 5.0 × 104 MT

World nuclear arsenal (10,000 warheads; 10 MT each) 1.0 × 105 MT

Tuba volcano, Indonesia (73,500 BP; VEI=8) 6.0 × 105 MT

Total seismic energy release over the past 6000 years 7.0 × 105 MT

Yellowstone, Wyoming (2My BP; VEI=8) 2.0 × 106 MT

Yucatan (Chicxulub) asteroid (∼ 65 × 106 years BP) 108 MT

Hephaistos asteroid (d�10 km), KE 108 MT
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Table 6.12: (Cont.)

(b) Average global energy flow

Erg/sec MT/year

Volcanic eruptions 3.3 × 1016 25

Earthquakes 1.6 × 1017 120

Thunderstorms 3.0 × 1018 2400

Total tidal dissipation per year 3.3 × 1019 26,000

Atmospheric circulation 1.0 × 1023 80,000,000

(c) Available terrestrial energy (MT/year)

Geothermal 5.0 × 105

Solar 8.4 × 108

Estimated Human Death-toll

Table 6.13 renders estimated cumulative death tolls since 4000 BCE due
to all natural disasters combined, on the background of the evolution of world
population Table 6.13.

In this connection it is of interest to estimate the total number of
people who have ever lived: One begins by determining the mean pop-
ulation size for a birth-death stochastic process (i.e., the average be-
havior of a population whose size varies stochastically, growing over
time due to random occurrence of births and deaths). One then as-
sumes a starting population of two persons 1.5 million years ago and di-
vides the total time span into a number of smaller subintervals by us-
ing times for which estimates of world population have been made (e.g.,
N (8000 BCE) = 5 × 106; N (0 BCE) = 250 × 106; N (1750 CE) = 800 × 106;
N (1825 CE) = 109; N (1930) = 2 × 109; N (1960) = 3 × 109;
N (1980) = 4.4 × 109). The total number of people who ever lived since 1.5
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million years before present is then found to range from 50 to 100 billion
(1011).

In the second category of Table 6.13, flood is by far the worst of natural
disasters, claiming some 40% of all deaths caused world-wide by acts of nature
(epidemics excluded).

Table 6.13: Estimated human death toll since 4000 BCE

Earthquakes and volcanoes and their immediate aftereffects 30 × 106

Floods, storms, tsunamis and droughts 100 × 106

Epidemics 370 × 106

Total: ca 500 × 106

Table 6.14: World population growth (in units of 106
person)

2000 CE 6000
1991 5400
1960 3000
1930 2000
1800 1000
1750 800
1200 400
1000 250
500 210
0 250
-500 140
-1000 120
-1500 100
-2000 50
-8000 5
-12,000 4
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Conclusion

Natural disasters have been the scourge of mankind since times immemo-
rial.

It is estimated that ca 500 million people were killed since 4000 BCE by
all catastrophes combined. This amounts to about one percent of all people
who have ever lived since 4000 BCE. The total fatal energy unleashed on the
earth’s surface against its inhabitants throughout the said time window is
estimated at 2 × 107 MT.

The direct effect of this onslaught on man’s survival on earth was mani-
fested through

• Decimation and mass migration of populations.

• Destruction of habitat, agriculture and water systems on at least a re-
gional scale.

However, the interaction between nature and man is certainly ambivalent
and not always unidirectional.

We know that life changed a primordial reducing atmosphere into one
rich in oxygen. On the other hand, comets could have brought an abundant
amount of water to the early earth, and volcanic outgassing resulted in the
formation of the primitive atmosphere and oceans. Mass extinctions due to
asteroid encounters changed the course of evolution, promoting the eventual
emergence of Homo Sapiens.

Even today, nature’s agents of destruction are at the same time a blessing
in disguise. Take hurricanes, for example – one of the most powerful engines
of death and destruction on earth. These storms are products of the tropical
ocean and atmosphere: powered by heat from the sea, steered by the Easterly
trades and temperate Westerlies, and their own fierce energy. But they are
major source of rain and may have other hidden benefits as well for the planet.

In fact, Humans are now changing the planet in such a way that is already
causing a wave of extinction on a scale unparalleled since the demise of the
dinosaurs.

When we use the words ‘Natural disaster’ we are taking the narrow an-
thropocentric point of view. But in the grand scheme of things what is bad
for us is not necessarily bad for the earth and its environment. In this wider
context we should remember that although mankind had survived so far, there
is no such guarantee for the remote future.
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Cosmology and Biological Evolution: a Speculative

Connection
53

At the current stage in the development of mathematics, biochemistry and
computer technology, Science is still far from being able to answer even the
simplest questions regarding the feasibility of Darwinian evolution. Our level
of understanding of stochastic processes, and our knowledge of the chemistry
of macro-molecules, are insufficient to derive realistic estimates of the prob-
abilities involved in a population of self-replicating biotic molecules arising
in any given inanimate thermodynamic environment. We posses only the
vaguest theoretical insights (and almost no empirical evidence) as to how Na-
ture “invented” the genetic code; nor do we even know whether replication
and metabolism preceded the advent of this code. And if our understanding
of molecular evolution is so rudimentary, it goes without saying that we have
almost no clue as to how (or indeed whether) random mutations pruned by
natural selection can transform one species into another, or allow organisms
of a given species to change their body plan or grow new organs.

However, as pointed out by the late astronomer Fred Hoyle, such naive
probability estimates as we are able to derive, indicate that the timeline of
terrestrial biological evolution, as outlined by evolutionary biologists, is almost
miraculously compressed, especially in the period immediately following the
onset of the so-called “Cambrian Explosion” (the emergence of virtually all
presently-existing organism body plans, about 0.5 Gy ago, within the space
of a few million years).

Indeed, Hoyle has pointed out that not only life and its molecules, but
even the existence of carbon atoms (surely a prerequisite for life as we know
it on Earth to emerge) seems a priori to have an extremely low probability of
occurring within the framework of the currently accepted theories of cosmic
origins and stellar evolution. Indeed, Hoyle adduced the cosmic abundance
of carbon as a posteriori evidence that the constants of Nature – governing

53 This essay explains how particle physics and cosmology might play a role in

enabling biological evolution, partly aided (perhaps) by intelligent design (but

not necessarily). These ideas are highly speculative, of course – no one has

actually SEEN the constants of particle physics mutating, or one universe spawn

baby-universes through narrow spacetime “necks”, etc. But then again, it is

important to keep in mind that no one has actually seen evolution happen,

either (in either real time, the fossil record or even mathematical simulations).
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elementary particle physics, their four types of fundamental interactions and
the very structure of spacetime – have somehow been “rigged” (fine-tuned)
to allow life and sentient beings to emerge. Other physicists have pointed out
other apparent coincidences pointing to possible fine-tuning of the constants
of nature. As an example, the following three large dimensionless numbers
are all roughly ten to the power 40:

(A) The ratio of the electrostatic force between a proton and electron to the
corresponding gravitational force;

(B) The square-root of the number of hydrogen atoms in the observable uni-
verse; and

(C) The ratio of the age of the universe to the time it takes light to traverse
a proton54.

Another example involves the cosmological constant (“dark energy”),
which governs the innate tendency of empty space to expand (a form of “anti-
gravity”). Observations performed in the 1990s with the aid of the Hubble
Space Telescope revealed that this constant, while very small (of order 10 to
the negative 120th power!) on the natural scale provided by particle physics,
is nonetheless not zero, and is causing a slight acceleration of the (Big-Bang
caused) expansion of our universe.

It has been calculated that if this tiny constant were only ten times larger,
the local “antigravity” effect it would cause would prevent galaxies from ac-
creting, and thus possibly prevent life from emerging – although we cannot
be sure about that last inference, since our knowledge about how, why and
with what likelihood life emerges is so scant at present.

Two other unexplained coincidences which seem crucial to the emergence
of life are: the longevity of the universe (sixty orders of magnitude longer
than the Planck timescale!), and the longevity of current-generation main-
sequence stars. The latter longevity is due to a fine balance (involving all four
fundamental forces of Nature!) between the nuclear forces, tending to explode
stars, and their self-gravitation, which tends to collapse them. A long-lived
universe containing stable, long-lived stars is probably an important enabling

54 One of the two mathematical relations expressing these coincidences is equivalent

to the statement that the total (gravitational plus kinetic) energy of the observ-

able universe is approximately zero; or, in other words, that the Schwarzschild

radius of the observable cosmos is of the order of its actual radius. Since this

is also a property of black holes, this coincidence bears an intriguing similarity

to the conjecture, discussed below, that our observed universe might have been

spawned by the gravitational collapse of a relatively small and light lump of mass

in a “parent” universe.
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condition in the long (and still poorly understood) chain that gave rise to life
(at least on our Earth).

Al these coincidences need not have been “engineered” by some intelligent
super-being, although we lack sufficient knowledge to rule that possibility out.
There are other logical possibilities, one of which (involving a Darwinian-like
evolution of multiple universes and their natural constants) we now describe.
Theorists attempting to develop a theory of quantum gravity have discovered
that Einstein’s General Theory of Relativity, in conjunction with Quantum
Mechanics, may allow one universe to spawn others via gravitational collapse
– the same phenomenon that forms black holes.

Such a “daughter universe” would appear, to beings in the parent universe,
as a relatively small and light black hole; yet any observer that manages to
safely “glide” into the daughter universe, would find himself in a vast, new
universe which expands in accordance with its own “Hubble Law”, and may
eventually produce its own stars, galaxies and even life and intelligence.

The spacetime manifolds of the two universes are connected through a
slender “neck”, and the geometry of this neck explains the curious fact that
in such solutions of Einstein’s field equations, the daughter universe appears
to have a more or less fixed event horizon from the parent-universe side, while
undergoing cosmological expansion as viewed by observers on the other side
of the neck (i.e., within the daughter universe).

Theorists have argued that such “reproduction” of universes may occur
naturally, but also that daughter universes could be designed by intelligent
beings in the parent universe. A universe may differ from those of its parent
– depending, perhaps, on physical conditions (electromagnetic fields, temper-
ature, spatial curvature, etc.) in the region of the parent universe in which
the daughter was created.

Theorist Lee Smolin as argued that this combination of ensemble of repro-
ducing universes and (possibly random) mutations in their natural constants
might amount to a form of Darwinian evolution – in which universes play
the roles of living organisms, while their natural constants are analogous to
genomes!

However, in order for this meta-cosmology of mutating and spawning uni-
verses to undergo evolution in the Darwinian sense, a further ingredient is of
course needed – namely, natural selection.

Now, what does it mean that a given universe in this ensemble is “fit”?
Smolin’s answer is simple: the more fecund a given universe is at producing
daughter universes, the universes will be added to the ensemble which have
constants of nature close to those of the given universe (assuming that a
daughter universe’s constants are not very different from those of its parent).
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And since universe-spawning is mediated via gravitational collapse, it follows
that in Smolin’s scenario, a universe in which the probability of black hole
formation is higher, will on average produce more universes similar to it.

Smolin further argues that a universe’s rate of black-hole formation is
positively correlated with its probabilities of developing life (and possibly
intelligence), although of course (as with all such arguments) the last inference
is the least sound. This is simply because – as emphasized above – our existing
scientific knowledge does not allow us to derive any estimates, whatever, of
the local constants of nature and other environmental factors.

Peering ahead into the far future of human science, we may speculate that
some day, our computing technology, in addition to advances in pure and
applied mathematics and in physics and chemistry, will allow us to reliably
estimate such probabilities. When that stage is reached, we may finally be
able to determine whether our existence is inevitable, or whether (to the
contrary) many universe had to live and die in order that one allowing the
likes of us to emerge, happened to be spawned. Or, in the prescient words of
the British empiricist philosopher David Hume:

“But were this world ever so perfect a production, it must still remain
uncertain, whether all the excellences of the work can justly be ascribed to
the workman. If we survey a ship, what an exalted idea must we form of
the ingenuity of the carpenter who framed so complicated, useful, and beau-
tiful a machine? And what surprise must we feel, when we find him a stupid
mechanic, who imitated other, and copied an art, which, through a long suc-
cession of ages, after multiplied trials, mistakes, corrections, deliberations,
and controversies, had been gradually improving?

Many worlds might have been botched and bungled, throughout an eter-
nity, ere this system was struck out; much labor lost, many fruitless trials
made; and a slow, but continued improvement carried on during infinite ages
in the art of world-making. In such subjects, who can determine, where the
truth; nay, who can conjecture where the probability lies, amidst a greater
which may be imagined?”
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Epilogue

In the 20th century, a revolution occurred, one beyond the boldest dream
of earlier scientists and engineers. In that century, science revolutionized
technology to a degree that completely changed the daily life of man, society
as a whole and in fact, the fate of mankind.

For three hundred years Western science pictured the world as a giant
clock or machine, in which knowable causes produced predictable effects. It
was a deterministic and totally ordered universe which, once set in motion,
rendered all subsequent events meritable.

If this were an accurate description of the real world, the initial conditions
of any process would determine its outcome — a machine-like universe set in
motion by a Prime Mover, divine or otherwise.

If, on the other extreme, events were entirely random in an entirely ac-
cidental universe of completely random processes, there would be no law,
regularity and predictability, and nature would have been nothing more than
an endless series of random events, each with random consequences. It is
unlikely that life, with its intricately regular processes, could ever arise – or
indeed survive – in such a universe.

We now know that ours is a universe that combines both chance and
necessity, chaos and order. Indeed, in accordance with the ideas of the 18th-
century British empiricist philosopher David Hume, our free will and ability
to detect causal relationships in the world around us, are both made possible
by this dualistic nature of the universe we inhabit.
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Table 6.15: Philosophers of Nature

fl. Name Life-span

585 BCE Thales of Miletos (624–548 BCE)

560 BCE Anaximander of Miletos (611–547 BCE)

500 BCE Heraclitos of Ephesos (540–475 BCE)

470 BCE Parmenides of Elea (504–456 BCE)

450 BCE Philolaos of Tarentum (480–420 BCE)

420 BCE Democritos of Abdera (460–370 BCE)

375 BCE Plato (427–347 BCE)

350 BCE Aristotle (384–322 BCE)

50 BCE Lucretius ( 94–55 BCE)

50 CE L.A. Seneca (4 BCE–65 CE)

1260 Roger Bacon (1214–1292 CE)

1610 Francis Bacon (1561–1626 CE)

1640 René Descartes (1596–1650 CE)

1660 Baruch Spinoza (1632–1677 CE)

1685 Isaac Newton (1642–1727 CE)

1770 Immanuel Kant (1724–1804 CE)

1800 Johann Wolfgang von Goethe (1749–1832 CE)

1810 Jean de Lamarck (1744–1829 CE)

1860 Charles Darwin (1809–1882 CE)

1890 Henri J. Poincare (1854–1912 CE)

1920 Albert Einstein (1879–1955 CE)
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Table 6.16: Mathematicians

Name Life-span

Pythagoras (580–500 BCE)

Eudoxos (408–355 BCE)

Euclid (330–260 BCE)

Archimedes (287–212 BCE)

Bhaskara (1114–1185 CE)

P. Fermat (1601–1665 CE)

I. Newton (1642–1727 CE)

G.W. von Leibniz (1646–1716 CE)

L. Euler (1707–1783 CE)

J. Lagrange (1736–1813 CE)

Laplace (1749–1827 CE)

C. Gauss (1777–1855 CE)

F. Abel (1802–1829 CE)

C.G.J. Jacobi (1804–1851 CE)

Hamilton (1805–1865 CE)

Galois (1811–1832 CE)

B. Riemann (1826–1866 CE)

G. Cantor (1845–1918 CE)

D. Hilbert (1862–1943 CE)

Hardy (1877–1947 CE)

Ramanujan (1887–1920 CE)
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Table 6.17: Number-Theorists

fl. Name Life-span

535 BCE Pythagoras (580–500 BCE)

300 BCE Euclid (330–260 BCE)

250 CE Diophantos (206–290 CE)

1640 P. Fermat (1601–1665 CE)

1750 L. Euler (1707–1783 CE)

1780 J. Lagrange (1736–1813 CE)

1800 A. Legendre (1752–1833 CE)

1810 C. Gauss (1777–1855 CE)

1830 C.G.J. Jacobi (1804–1851 CE)

1860 B. Riemann (1826–1866 CE)

1910 Hardy (1877–1947 CE)

1917 Ramanujan (1887–1920 CE)
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Table 6.18: Physicists
55

Name Life-span

Democritos (460–370 BCE)

Aristarchos (310–230 BCE)

Archimedes (287–212 BCE)

Eratosthenes (276–194 BCE)

Hipparchos (180–110 BCE)

Ptolemy (85–165 CE)

N. Copernicus (1473–1543 CE)

Galileo (1564–1642 CE)

J. Kepler (1571–1630 CE)

C. Huygens (1629–1695 CE)

I. Newton (1642–1727 CE)

C. Coulomb (1736–1806 CE)

J. Lagrange (1736–1813 CE)

W. Herschel (1738–1922 CE)

Laplace (1749–1827 CE)

Ampère (1775–1836 CE)

M. Faraday (1791–1867 CE)

Carnot (1796–1832 CE)

Hamilton (1805–1896 CE)

J. Maxwell (1831–1879 CE)

J.W. Gibbs (1839–1903 CE)

Boltzmann (1844–1906 CE)

M. Planck (1858–1947 CE) NL 1918

55 Including greatest astronomers of antiquity and the Middle Ages.

NL = Nobel Laureate
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Table 6.18: (Cont.)

Name Life-span

M. Curie (1867–1934 CE)

A. Einstein (1879–1955 CE)

M. Born (1882–1970 CE)

N. Bohr (1885–1962 CE)

E. Schrödinger (1887–1961 CE)

E. Hubble (1889–1953 CE)

L. de-Broglie (1892–1987 CE)

W. Pauli (1900–1958 CE)

E. Fermi (1901–1954 CE)

W. Heisenberg (1901–1976 CE)

P. Dirac (1902–1984 CE)

R. Feynman (1918–1988 CE)
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Table 6.19: Chemists
56

(1665–1965)

Name Life-span

Robert Boyle (1637–1691 CE)

Joseph Priestly (1733–1804 CE)

C.W. Scheele (1742–1786 CE)

Nicolas Le Blanc (1742–1806 CE)

A.L. Lavoisier (1743–1794 CE)

A. Volta (1745–1827 CE)

C.L. Berthollet (1748–1822 CE)

John Dalton (1766–1844 CE)

A. Avogadro (1776–1856 CE)

Humphry Davy (1778–1829 CE)

J.L. Gay–Lussac (1778–1850 CE)

J.J. Berzelius (1779–1850 CE)

F. Wöhler (1800–1882 CE)

C. Goodyear (1800–1860 CE)

J. von Liebig (1803–1873 CE)

Thomas Graham (1822–1869 CE)

Louis Pasteur (1822–1895 CE)

Joseph Lister (1827–1912 CE)

A. Kekulé (1829–1896 CE)

D.I. Mendeleev (1834–1907 CE)

J.W. Hyatt (1837–1920 CE)

W.H. Perkin (1838–1907 CE)

H. Chardonnet (1839–1924 CE)

W.K. Röntgen (1845–1923 CE) NL 1901

56 NL = Nobel Laureate
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Table 6.19: (Cont.)

Name Life-span

H.L. Le Chatelier (1850–1936 CE)

H. Becquerel (1851–1908 CE) NL 1903

Emil Fischer (1852–1919 CE) NL 1902

J.J. Thomson (1856–1940 CE) NL 1906

Svante Arrhenius (1859–1927 CE) NL 1903

L.H. Baekeland (1863–1944 CE)

W.H. Nernst (1864–1941 CE) NL 1920

Marie Curie (1867–1934 CE) NL 1911

F. Haber (1868–1924 CE) NL 1918

E. Rutherford (1871–1937 CE) NL 1908

Gilbert N. Lewis (1875–1946 CE)

F.W. Aston (1877–1945 CE) NL 1922

Hans Fischer (1881–1945 CE) NL 1930

Irving Langmuir (1881–1957 CE) NL 1932

Hermann Staudinger (1881–1965 CE) NL 1953

Alexander Fleming (1881–1955 CE) NL 1945

Henry Moseley (1887–1915 CE)

Frederick Banting (1891–1941 CE) NL 1923

James Chadwick (1891–1974 CE) NL 1935

H.C. Urey (1893–1981 CE) NL 1934

W. Carothers (1896–1937 CE)

E.O. Lawrence (1901–1958 CE) NL 1939

W.F. Libby (1908–1980 CE) NL 1960

F.H.C. Crick (1916–2004 CE) NL 1962

R.W. Woodward (1917–1979 CE) NL 1965
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Table 6.20: Biologists and Men of Medicine (400 BCE–1950 CE)

Name Life-span

Hippocrates of Cos (460–377 BCE)

Aristotle (384–322 BCE)

Pliny the Elder (23–79 CE)

Galen (129–200 CE)

Alhazen (965–1039 CE)

Paracelsus (1493–1541 CE)

Vesalius (1514–1564 CE)

William Harvey (1578–1657 CE)

Anton van Leeuwenhoek (1632–1723 CE)

Carolus Linnaeus (1707–1778 CE)

Edward Jenner (1749–1823 CE)

Matthias J. Schleiden (1804–1881 CE)

Charles Darwin (1809–1882 CE)

Rudolf Virchow (1821–1902 CE)

Louis Pasteur (1822–1895 CE)

Gregor Johann Mendel (1822–1884 CE)

Jean–Henri Fabre (1823–1915 CE)

Joseph Lister (1827–1912 CE)

Robert Koch (1843–1910 CE) NL 1905

Walther Flemming (1843–1905 CE)

Camillo Golgi (1843–1926 CE) NL 1906

Ilya Mechnikov (1845–1916 CE) NL 1908

Charles L.A. Laveran (1845–1922 CE) NL 1907

Luther Burbank (1849–1926 CE)

Martinus Beijernick (1851–1931 CE)
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Table 6.20: (Cont.)

Name Life-span

Santiago Ramon y Cajal (1852–1934 CE)

Emil von Behring (1854–1917 CE) NL 1901

Paul Ehrlich (1854–1915 CE) NL 1908

Sigmund Freud (1856–1939 CE)

Charles S. Sherrington (1857–1922 CE) NL 1932

Thomas Hunt Morgan (1868–1945 CE) NL 1933

Karl Landsteiner (1868–1943 CE) NL 1930

Jules Bordet (1870–1961 CE) NL 1919

Leonor Michaelis (1875–1949 CE)

Karl von Frisch (1886–1982 CE) NL 1973

Selman Waksman (1888–1973 CE) NL 1952

Sewall Wright (1889–1988 CE)

Ronald Fischer (1890–1962 CE)

Alexander Oparin (1894–1980 CE)

Gerhard Domagk (1895–1964 CE) NL 1939

Gerta F. Cori (1896–1957 CE) NL 1947

Carl F. Cori (1896–1984 CE) NL 1947

Howard W. Florey (1898–1968 CE) NL 1945

Hans Adolf Krebs (1900–1981 CE) NL 1953

Andre Lwoff (1902–1994 CE) NL 1965

Gregory G. Pincus (1903–1967 CE)

Max Delbrück (1906–1981 CE) NL 1969

George Wald (1906–1997 CE)

Jacques Monod (1910–1976 CE) NL 1965
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Table 6.20: (Cont.)

Name Life-span

Salvador Luria (1912–1991 CE) NL 1969

Jonas Salk (1914–1995 CE)

Max F. Perutz (1914–2002 CE) NL 1962

John C. Kendrew (1917–1997 CE) NL 1962

Rosalind Franklin (1920–1958 CE)

François Jacob (1920– CE) NL 1965

Christiaan Barnard (1922–2001 CE)

Motoo Kimura (1924–1994 CE)
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Table 6.21: Mathematical Economists and Statisticians (S)

fl. Name Life-span

1817 David Ricardo (1772–1823)

1838 Antoine Cournot (1801–1877)

1840 Adolph Quetelet (S) (1796–1874)

1870 William Jevons (1835–1882)

1880 Francis Edgeworth (1845–1926)

1880 Wilhelm Lexis (S) (1837–1914)

1880 Leon Walras (1824–1910)

1890 Vilfredo Pareto (1848–1923)

1890 Alfred Marshal (1842–1924)

1900 Carl Pearson (S) (1857–1936)

1900 William Gosset (S) (1876–1937)

1920 Ludwig von Mises (1881–1973)

1920 Irving Fisher (1867–1947)

1920 George U. Yule (S) (1871–1951)

1925 Ronald Fisher (S) (1890–1962)

1935 John M. Keynes (1883–1946)

1950 Ragnar Frisch (1895–1973)
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Table 6.22: Historians of Science and Mathematics (M)

fl. Name Life-span

325 BCE Eudemos of Rhodes (M) (360–300 BCE)

70 CE Pliny the Elder (23–79 CE)

340 CE Pappos of Alexandria (M) (290–350 CE)

435 CE Maritanus Capella (390–455 CE)

520 CE Severinus Boethius (480–524 CE)

1835 CE William Whewell (1794–1866 CE)

1835 CE Auguste Comte (1798–1857 CE)

1890 CE Moritz Cantor (M) (1829–1920 CE)

1890 CE Agnes Mary Clarke (1842–1907 CE)

1900 CE Jules Tannery (M) (1848–1910 CE)

1935 CE George Sarton (1884–1956 CE)

1950 CE Otto Neugebauer (M) (1899–1980 CE)
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Table 6.23: Earliest Known Use of Mathematical Symbols

Symbol Meaning, Name, Use Date Inventor

Introduced

Zero as a placeholder ca 1000 BCE Meso
Americans

Greek
Letters

Lettering of points, lines,
planes

ca 440 BCE Hippocrates of
Chios

Zero as blank space on
counting board

ca 350 BCE Chinese

‖ Parallelism ca 150 CE Heron, Pappos

o (omicron) Zero as a placeholder ca 150 Ptolemy

Greek
Letters

As variables ca 250 Diophantos

© (circle) Zero, both as a number
and a placeholder

ca 505 Hindus

e.g.
2
3

Horizontal fraction bar ca 1200 Al-Hassar

+, – Plus and Minus 1486 J. Wideman

√ Square root 1525 C. Rudolff

Multiplication by
juxtaposition

1544 M. Stifel

[ ] Brackets 1550 R. Bombelli

( ) Parentheses 1556 N. Fontana

= Equals 1557 R. Recorde

tangent,
sine, cosine

Trigonometric functions 1583 Thomas
Finck(e)

· Decimal point 1592 G.A. Magini
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Table 6.23: (Cont.)

Symbol Meaning, Name, Use Date Inventor

Introduced

{ } Braces 1593 F. Viéta

> Greter than 1631 Thomas Harriot

< Less than 1631 Thomas Harriot

· Multiplication (dot)
[p=posthumously]

1631 (p) Thomas Harriot

× Multiplication 1631 W. Oughtred

∠ Angle 1634 Pierre Herigone

⊥ Perpendicularity 1634 Pierre Herigone

AB Multiplication by
juxtaposition

1637 R. Descartes

a1, a2, a3, . . . Exponents (positive
integers only)

1637 R. Descartes

x, y, z Letters for unknown
quantities

1637 R. Descartes

a, b, c Letters for known
quantities

1637 R. Descartes

AB Line segment 1647 B. Cavalieri

log Logarithm 1647 W. Oughtred

∞ Infinity 1655 J. Wallis

a−1, a1/2,... Negative and fractional
exponents

1656 J. Wallis

÷ The Obelus sign for
division

1659 John Rahn
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Table 6.23: (Cont.)

Symbol Meaning, Name, Use Date Inventor

Introduced

∴ Therefore 1659 John Rahn

cot Trigonometric cotangent 1674 J. Moore
∫

Integral sign 1675 G.W. von
Leibniz

dx, dy,
dy

dx
Infinitesimals and
derivative

1675 G.W. von
Leibniz

an for any real number, n 1676 I. Newton

∼ Geometrical similarity 1679 G.W. von
Leibniz

� Congruence 1679 G.W. von
Leibniz

: Double-dot for both ratio
and division

1698 G.W. von
Leibniz

π Ratio of circumference to
diameter of circle

1706 W. Jones

/ Diagonal fraction bar 1718 Thomas
Twining

e 2.718 281 828 149 045... 1728 L. Euler

A.S Arcsine 1729 D. Bernoulli

f(x) The function of x 1734 L. Euler

≤ Less than or equal to 1734 P. Bouguer

≥ Greater than or equal to 1734 P. Bouguer

�= Not equal 1740 L. Euler
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Table 6.23: (Cont.)

Symbol Meaning, Name, Use Date Inventor

Introduced

sh, ch Hyperbolic functions 1750 Vincento
Riccati

∑
Summation 1755 L. Euler

Ψ′ dΨ
dx

1770 J.L. Lagrange

∂ Partial derivation 1770 A.N. Caritat

sinh, cosh Hyperbolic function 1771 J. Lambert

i
√

−1 1777 L. Euler

∼= Approximately 1777 J.F. Häseler
⎛

⎝ n

r

⎞

⎠ Combination 1778 L. Euler

∂u

∂x
Partial derivative 1786 A.M. Legendre

lim Limit 1786 S.A.J.
L’Huuilier

f ′(x), f ′ ′(x) First and second
derivatives of f(x)

1797 J.L. Lagrange

Dxy Derivative of y(x) w.r.t. x 1800 L.F.A.
Arbogast

φ(m) Euler φ function 1801 C.F. Gauss

≡ Congruence of numbers 1801 C.F. Gauss

n! Factorial 1804 C. Kramp

Γ(n) Gamma function 1811 A.M. Legendre

sin−1 inverse sine function 1813 J.F. Herschel
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Table 6.23: (Cont.)

Symbol Meaning, Name, Use Date Inventor

Introduced

b∫

a

Limit of integration 1822 J.B. Fourier

δ − ε In proofs 1823 A.L. Cauchy

∇ Nabla 1837 W.R. Hamilton

grad Gradient operator 1860 J.C. Maxwell

B Beta function 1839 P.M. Binet

| | Determinant 1841 A. Cayley

|x| Absolute value function
of x

1841 K. Weierstrass

a2 + b2 Norm of a + ib 1842 L. Dirichlet

J Bessel function 1843 P.H. Hansen

y = mx + b,
x

a
+

y

b
= 1

Equations of a line in
analytic geometry

1848 G. Salmon

ζ Zeta function 1857 B. Riemann

R Rationals 1872 R. Dedekind

div Divergence 1875 W.K. Clifford

[x] Signum function (sign of
x)

1878 L. Kronecker

Rho Radian 1881 G.B. Halstead

∇2 Laplacian operator 1883 R. Murphy

∩, ∪ Intersection, union 1888 G. Peano

ln Natural logarithm 1893 I. Stringham
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Table 6.23: (Cont.)

Symbol Meaning, Name, Use Date Inventor

Introduced

ℵ0 Aleph null 1893 G. Cantor

σ Standard deviation 1894 K. Pearson

O Big O 1894 P. Bachmann

ε Membership 1894 G. Peano

N, n Positive integer, integer 1895 G. Peano

∃ Existence 1897 G. Peano

nCr Combination 1899 G. Chrystal

· Dot product 1902 J.W. Gibbs

× Vector product 1902 J.W. Gibbs

o Little o 1909 E. Landau

π(x) Number of primes less
than x

1909 E. Landau

φ Golden ratio 1914 Theodore Cook
∮

Integral around closed
path

1917 A. Sommerfeld

Z The set of integers 1930 E. Landau

μ Mean of normal
distribution

1936 A. Fisher

C Complex number 1939 N. Jacobson



5506 6. Deep Principles – Complex Structures

Table 6.24: Earliest Known Mathematical Terminology

Year Word Mathematician

ca 1550 BCE Pyramid Ahmes Papyrus

ca 585 BCE Geometry Thales

ca 533 BCE Odd, even and Prime
numbers

Pythagoras

ca 380 BCE Harmonic Mean Archytas of Tarentum

ca 350 BCE Axiom Aristotle

ca 340 BCE Logic, Number Theory Xenocrates of Chalcedon

ca 300 BCE Diameter, polygon,
polyhedron, cube,
trapezium

Euclid

ca 250 BCE Helix Archimedes

ca 230 BCE Cylinder, asymptote,
ellipse, parabola,
hyperbole

Apollonios of Perga

ca 100 CE Diagonal, Torus Hero of Alexandria

ca 370 Analysis Theon of Alexandria

ca 510 Radius, progression Severinus Boethius

ca 550 Rational, irrational
(numbers)

Cassiodorus

ca 630 Negative number Brahmagupta

ca 825 Algebra Al-Khowarizmi

ca 1145 Sinus (sine) Robert of Chester

1202 Factor (noun),
nominator, denominator,
plus, minus

Fibonacci
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Table 6.24: (Cont.)

Year, CE Word Mathematician

ca 1235 Product Albertus Magnus

ca 1350 Zero —

1386 Degree (angle) G. Chaucer

1484 Natural number N. Choquet

1543 Arithmetic and geometric
progressions

M. Stifel

1557 Subtract, digit (number
under 10)

Robert Recorde

1570 Vertex, discrete John Dee

1571 Axis, orthogonal, convex Thomas Digges

1580 Polynomial, coefficient F. Viéta

1583 Secant, tangent
(trigonometry)

Thomas Finck(e)

1594 Great circle John Davis

1595 Trigonometry B. Pitiscus

1596 Cosecant Rheticus

1599 Cycloid

1604 Focus (of an ellipse) Johannes Kepler

1605 Pure Mathematics Francis Bacon

1608 Operation (algebraic) C. Clavius

1614–1617 Logarithm, decimal point John Napier

1619 Isocahedron,
dodecahedron (truncated)

Johannes Kepler
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Table 6.24: (Cont.)

Year, CE Word Mathematician

1620 Cosine, cotangent Edmund Gunter

1637 Real and imaginary
numbers

René Descartes

1651 Spherical trigonometry N. Mercator

1655 Continued fraction J. Wallis

1657 Series John Collins

1667 Convergent and divergent
series

J. Gregory

1671–1672 Polar coordinates,
ellipsoid

Isaac Newton

1673 Evolute C. Huygens

1673–1694 Function (1673);
Differential equation
(1676); Calculus (1680);
Differential calculus
(1684); Algorithms (a
systematic technique for
solving a problem; 1684);
Transcendental (1684);
Differential (noun; 1690);
Abscissa (1692);
Coordinate (1692);
Combinatorial (1694);
Ordinate (1694); Variable
(1694); Constant (1694)

G.W. von Leibniz

1685 Harmonic (conic) Philippe de la Hire

1690 Integral calculus,
Exponential function

Jakob Bernoulli

1694 Combination Blaise Pascal
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Table 6.24: (Cont.)

Year, CE Word Mathematician

1696 Normal E. Scarburgh

1704 Vector —

1706 Order (degree) H. Ditton

1730 Degree —

1738 Potential function Daniel Bernoulli

1742 Binomial theorem Colin Maclaurin

1753 Radius-vector
(astronomy)

—

1756 Calculus of variations L. Euler

1770 Statistics W. Hooper

1779 Analytic geometry S. Horley

1789 Conformal mapping F.T. Schubert

1796 Formula Richard Kirwan

1797 Analytic function,
singular integral

J.L. Lagrange

1800 Definite integral S-F. Lacroix

1801 Congruence (modular
arithmetic)

C.F. Gauss

1811 Radix (base of a number
system)

Peter Barlow

1812 Determinant A.L. Cauchy

1814 Implicit function —

1814 Commutativity,
distributivity

F.J. Servois
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Table 6.24: (Cont.)

Year, CE Word Mathematician

1820 Coordinate geometry Matthew O’Brien

1821 Conjugate (a ± ib) A.L. Cauchy

1824 Algebraic number N.H. Abel

1825 Torsion L.T. Vallee

1825 Elliptic function A.M. Legendre

1831 Separable variables J.R. Young

1831–1840 Complex number, norm,
potential function (1840)

C.F. Gauss

1839 Radius vector J.R. Young

1840 Characteristic equation,
absolute convergence

A.L. Cauchy

1843 Associative, Cartesian
coordinate, vector, scalar,
versor

W.R. Hamilton

1844 Inner product, outer
product, vector space

H.G. Grassmann

1845 Linear transformation A. Cayley

1846 X-axis B. Peirce

1847 Topology J.B. Listing

1848 Factor (verb) J. Ray

1850 Geodesic Joseph Liouville
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Table 6.24: (Cont.)

Year, CE Word Mathematician

1851–1853 Invariant (1851);
Canonical form (1851);
Discriminant (1852);
Jacobian (1852);
Covariant (1853)

Joseph Sylvester

1854 Orthogonal matrix Charles Hermite

1854 Bessel function O.X. Schlömilch

1857 Order of Magnitude I.T. Danson

1858 Field R. Dedekind

1861–1863 Group theory,
X-component etc (1863)

Joseph Sylvester

1870 Curl J.C. Maxwell

1871 Radian James Thomson

1871 Ideal (number theory) R. Dedekind

1872 Limit point
(accumulation point)

G. Cantor

1877 Covariant derivative G. Ricci, T. Levi-Civita

1878 Vector product, scalar
product, cross-ratio (of 4
point), divergence (of
vector field)

W.K. Clifford

1878 Base of a vector space,
rank of matrix

F.G. Frobenius

1878 Extremum, integral
equation

P. Du Bois-Reymond

1878–1883 Graph (older sense,
noun), latent root (1883)

Joseph Sylvester
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Table 6.24: (Cont.)

Year, CE Word Mathematician

1879 Numerical analysis S. Realis

1882 Abelian group
(commutative)

H. Weber

1882 Isomorphism W. Dyck

1883 Set (menge), closed set G. Cantor

1884 Dyad J.W. Gibbs

1885 Cofactor W. Johnson

1888 Correlation, correlation
coefficient

F. Galton

1890 Automorphic function Felix Klein

1893 Circle of convergence,
Integrand

John Harkness, F. Morley

1893 Standard deviation Karl Pearson

1896 Group character F.G. Frobenius

1896 Domain —

1897 Gradient Horace Lamb

1898 Tensor W. Voigt

1900 Chi-square Karl Pearson

1900 Class field Teji Takagi

1901 Dot product J.W. Gibbs

1901 Improper definite integral E.H. Moore

1902 Adjoint of a matrix L.E. Dickson
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Table 6.24: (Cont.)

Year, CE Word Mathematician

1904 Kernel (as integral),
Eigenvalue

David Hilbert

1904 Axiom of choice E. Zermelo

1905 Positive definite J. Pierpont

1906 Compactness M.R. Fréchet

1907 Convergence in the mean Ernst Fischer

1909 Cross product (vectors) J.W. Gibbs

1911 Binomial distribution G.U. Yule

1913 Hilbert space F. Riesz

1916 Tensor Analysis A. Einstein

1917 Stochastic L.J. Bortkiewicz

1918 Gauge H. Weyl

1919 Time Series W.M. Person

1919 Central limit theorem R. von Mises

1922 Saddle point G.N. Watson

1922 Functional analysis
(analytic properties of
functionals)

Paul Levy

1923 Fourier transform —

1927 Random number —

1933 Convolution N. Wiener

1934 Random variable A. Winter

1942 Algebraic topology Solomon Lefschetz
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Table 6.24: (Cont.)

Year, CE Word Mathematician

1946 Bit J.W. Tukey

1949 Programming G.B. Dantzig

1956 Byte W. Buchholtz

1975 Chaos J.A. Yorke

1975 Fractal B. Mandelbrot
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Photo 4: Laplace (1749–1827)
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Photo 5: Gauss (1777–1855)
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Photo 6: Hamilton (1805–1865)
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Photo 7: Sylvester (1814–1897)
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Photo 8: G. Stokes (1819–1903)
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Photo 9: A. Cayley (1821–1895)
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Photo 10: B. Riemann (1826–1866)
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Photo 11: Maxwell (1831–1879)
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Photo 12: Lord Rayleigh (1842–1919)
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Photo 13: Hertz (1857–1894)
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Photo 14: Minkowski (1864–1909)
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Photo 15: Schrödinger (1887–1961)
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Photo 16: Einstein (1879–1955)
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Photo 17



Appendices 5529

Photo 18
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Photo 19
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List of Abbreviations and Acronyms

Å Ångström unit (= 10−8 cm)
ABC American Broadcasting Corporation
AC, ac Alternating current
AFM Atomic Force Microscopy
AFMR Anti-Ferromagnetic Resonance
AI Artificial Intelligence
am (AM) ante meridian (= before noon)
APFIM Atomic Probe Field Ion Microscopy
ATP Adenosine 5-TriPhosphate
au astronomical unit (ca 150 million km)

b. born
BA Bachelor of Arts
BBC British Broadcasting Cooperation
BCE Before the Christian Era
BCS Bardeen-Cooper-Schrieffer
BEC Bose-Einstein Condensates
BEEM Ballistic Electron Emission Microscopy
BeV Billion electron-volt
BMNH British Museum of Natural History
BS, BSc Bachelor of Science

c velocity of light (ca 300,000 km/sec)
◦C degrees Celsius
CA California
CALTECH California Institute of Technology
CBI Cosmic Background Imager (telescope in Chile)
CBS Columbia Broadcasting Service
CBS Columbia Broadcasting System
CCD Charged-Coupled Device
CD Compact Disc
CE Christian Era
CERN Conseil Europeen pour Recherches Nucleaires
c.g.s. centimeter, gram, second (system of units)
cm centimeter
CMB Cosmic Microwave Background
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CNN Cable News Network (Cellular Neural Network)
COBE Cosmic Background Explorer
COM Center of Mass
CPU Central Processing Unit
CRT Cathode-Ray Tube
CT Computed Tomography

d. died
2D two-dimensional
3D three-dimensional
DALR Dry Adiabatic Lapse Rate
DASI Degree Angular Scale Interferometer (at Antarctica)
db decibel
DBS Direct Broadcast Satellite
DC, dc Direct Current
deg. degree
DNA Deoxyribo Nucleic Acid
DVD Digital Video Disc

e charge of the electron
E East
ECG Electrocardiogram
ECT Emission Computed Tomography
ed. editor
EDSAC Electronic Delay Storage Automatic Computer
EM ElectroMagnetic
EMS Electron Momentum Spectroscopy
ENIAC Electronic Numerical Integration and Calculation
EPFA Erbium-doped Fiber Amplifier
EPR Electron Parametric Resonance
EPR Einstein-Podolsky-Rosen
eq. equation
eV electron-volt (atomic energy unit)

◦F degrees Farenheit
FC Fermat’s Conjecture (last theorem)
FEL Free Electron Laser
FEM Field Emission Microscopy
FFT Fast Fourier Transform
fig figure
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FIM Field Ion Microscopy
fl. flourished
FLT Fermat Little Theorem
FMR Ferromagnetic Resonance
FRS Fellow of the Royal Society

g gram (unit of mass or weight)
G Newton’s universal gravitational constant
GB Giga Byte
GB Great Britain
gcd = greatest common divisor
GMT Greenwich Mean Time
Gr. Greek
GTR General Theory of Relativity

h hour
� = h

2π (h = Planck’s constant)
H0 Present-day value of the Hubble Constant
hcf = highest common factor (= gcd)
HTML Hypertext Markup Language

IBM International Business Machines
ICBM Intercontinental Ballistic Missile
IRT Infrared Reflecting Telescope
ISS Ion Scattering Spectroscopy
IT Information Technology

Jr Junior

◦K degrees Kelvin
kg kilogram (= 103 gram)
km kilometer (= 103 m = 105 cm)

L Length
laser light amplification by stimulated emission of radiation
LCD Liquid Crystal Display
lcm = lowest common multiplier
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LED Light-Emitting Diode
LEP Large Electron Positron Collider
LHC Large Hadron Collider (at CERN)
l.h.s. left hand side (of an equation)
LIDAR Light Detection and Ranging
LIGO Laser Interferometer Gravitational-wave Observatory
LINEAC Large Linear Electron Accelerator
LISA Laser Interferometer Space Antenna
log10 logarithm to base 10
loge, ln logarithm to base e (natural logarithm)
LSP Lightest Supersymmetric Partner
LY = light year ≈ 1013 km

m meter, minute
MA Master of Arts
MACHO Massive Compact Halo Object
MAP Microwave Anisotropy Probe (satellite, 2001)
maser microwave amplification by stimulated emission of radiation
MB Mega Byte
MD Doctor of Medicine
MeV million electron-volt
MFM Magnetic Force Microscopy
mg milligram (= 10−3 g)
MHD MagnetoHydroDynamics
MIR Multiple Internal Reflection
MIT Massachusetts Institute of Technology
ml milliliter
mm millimeter ( = 10−3 m = 10−1 cm)
mμm millimicron ( = 10−9 m = 10−7 cm = 10Å)
mod modulus
MOKE Magneto-Optic Kerr Effect
MOND Modified Newtonian Dynamics
MOSFET Metal-Oxide-Semiconductor-Field-Effect-Transistor
MOT Magneto-Optical Traps
MRI Magnetic Resonance Imagining
Ms Surface-wave magnitude of earthquakes
MT Megaton of TNT (Energy)
M-theory An eleven-dimensional unification of Superstring Theory
My Megayear (106 years)
MYA, Mya millions years ago
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N North
NAFS North Anatolian Fault System
NASA National Aeronautics and Space Administration
NBC National Broadcasting Corporation
NBS National Bureau of Standards (renamed NIST)
nm nanometer (=mμm)
NMR Nuclear Magnetic Resonance
NSOM Near-Field Scanning Optical Microscopy
NY New York

ODE Ordinary Differential Equation
ORT Optical Reflection Telescope

P Seismic Compressional Waves
PAL Phase Alternating by Line
PC Personal Computer
PCR Polymerase Chain Reaction
PDE Partial Differential Equation
PEEM Photo Emission Electron Microscopy
PEP Positron-Electron Project
PET Positron Emission Tomography
pH Potential of Hydrogen (level of acidity)
Ph.D. Doctor of Philosophy
pixel Picture Element
pp. pages
PST Pacific Standard Time
PV PhotoVoltaic

QCD Quantum ChromoDynamics
QED Quantum ElectroDynamics
QFT Quantum Field Theory
QM Quantum Mechanics

R Seismic Rayleigh Waves
RADAR Radio Detection and Ranging
RAM Random Access Memory
RCA Radio Corporation of America
ref. reference
RF, rf radio frequency
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RHIC Relativistic Heavy Ion Collider (at Brookhaven N.Y.)
r.h.s. right hand side (of an equation)
RIA Radio Immuno Assay
RNA RiboNucleic Acid
ROM Read-Only Memory
rpm revolutions per minute
RSA Rivest-Shamir-Adelman (Public Key Cryptography)
RT Radio Telescope
R.V. Revised Version

S South
S Seismic Shear Waves
SDI Space Defense Initiative
SE Schrödinger’s Equation
sec. second (unit of time)
SECAM Sequenced Color and Memory
SEM Scanning Electron Microscopy
SF Science Fiction
SLAC Stanford Linear Accelerator Center
SLC Stanford Linear Collider
SLT The Second Law of Thermodynamics
SNCF Societé Nationale de Chemins de Fer (France)
SONAR Sonic Navigation and Ranging
SORT Schmidt Optical Reflecting Telescope
SPECT Single Photon Emission Tomography
Sr Senior
SRT Steerable Radio Telescope
SSRL Stanford Synchrotron Radiation Laboratory
STM Scanning Tunneling Microscopy
S.T.P. Standard Temperature and Pressure
STR Special Theory of Relativity

tanh hyperbolic tangent
TGV le Train à Grand Vitesse (France)
TNT Tri-Nitro-Toluene (explosive)
TPM Two-Photon Microscopy
TV Television

u (or amu) Atomic mass-unit (1/12 of the mass of an atom of Car-
bon 12)
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U Displacement on fault
UFD Unique Factorization Domain
UHV Ultra High Vacuum
UK United Kingdom
USA (US) United States of America
USSR Union of the Soviet Socialist Republics
UT Universal Time

VCR Video Cassette Recorder
VEI Volcanic Explosivity Index
VLBI Very Long Baseline Interferometry
VLSI Very Large Scale Integration
VR Virtual Reality

W west
WIMP Weakly Interacting Massive Particle (a prime candidate for

the Exotic Dark Matter in the universe)
WKBJ Wentzel-Kramers-Brillouin-Jeffreys
w.r.t. with respect to
WWI World War I
WWII World War II

ya years ago

μm micron (= 10−6 m = 10−4 cm = 10−3 mm)

[x] = greatest integer not exceeding x (e.g. [7.61] = 7)

micro = 10−6 = μ mega = 106 = M
nano = 10−9 = n giga = 109 = G
pico = 10−12 = p tera = 1012 = T
femto = 10−15 = f peta = 1015 = P
atto = 10−18 = a exa = 1018 = E
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Algebra

Z ring of all integers {...−2, −1, 0, 1, 2, 3,...}

Z+ set of all positive integers {1, 2, 3,...} (natural numbers)

N set of all non-negative integers {0, 1, 2, 3,...}

Q field of all rational numbers

Q[
√

d] quadratic field over rational numbers (d ∈ Z, not a perfect
square)

R field of all real numbers

Ln(R) vector field of real functions of a real variable over the real

field, with the norm
∞∫

− ∞
dx|f(x)|n

Rn vector field of real n-tuples

Z[
√

−1] a complex number of the form a + b
√

−1, where a, b ∈ Z

(Gaussian integer)

Z[
√

d] quadratic ring of all numbers of the form a + b
√

d, where
a, b ∈ Z and d is any integer other than a perfect square

C field of all complex numbers a + b
√

−1, where a, b ε R

Sn n-dimensional Riemannian manifold embedded in Rn+1 by

means of the surface equation
n+1∑

i=1

x2
i = 1

En = Rn with the Euclidean norm

Cn(R) vector-space of n times differentiable real-valued functions
of real variable over the real field

GL(n, R) group of n × n real non-singular matrices

O(n, R) group of n × n orthogonal real matrices (subgroup of GL)
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SO(n, R) subgroup of O(n, R) consisting of those elements that have
a unit determinant

SU(n) group of unitary n×n complex matrices of unit determinant

U(n) group of all unitary n × n complex matrices

SL(n, C) group of all n × n complex matrices of unit determinant

All six groups are infinite, continuous, and are simultaneously groups and
Riemannian manifolds and therefore called Lie groups. To every Lie group
there correspond a Lie algebra, denoted by lower case letters outside the
parenthesis, e.g., the Lie algebra corresponding to the Lie group GL(n, R)
is gl(n, R). Any Lie algebra is isomorphic to the tangent vector space of the
corresponding Lie group at any point (= element of the Lie group). Any
element of a Lie algebra can be represented as a differential operator on the
corresponding Lie group manifold, and this differential operator is a Lie deriv-
ative.
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Introduction

Latin and Greek were the two common languages of Western scholars
well into the 1800’s. Much of this was influenced by the Catholic church
which kept Latin alive in its ceremonies and in its illumination of the biblical
scriptures. Ancient texts like the gospels and Greek myths were written in
Greek and later translated into the Latin Vulgate by Church scholars and
scribes. It was a natural place for those early scientists to go for a rich source
of new descriptive words. Along with most any scholar, poets and other icons
of literature up to the 20th century, were commonly schooled in Latin and
Greek. They read in the great works of the ancients: Aristotle, Plato, Homer,
Pythagoras, Lucretius, Marcus Aurelius in their original languages. Even
well into the 20th century, a learned person was to some extent marked by
his command of Latin and Greek.

Figure 6.2 shows the family tree of the Indo–European languages that
includes Greek, Latin, French, English and German.

Table 6.25 lists the major historical events during 1750 BCE–1755 CE that
triggered the gradual symbiosis of Greek and Latin with the English language.

Table 6.26 lists the leading progenitors of the Greco–Roman literary cul-
ture.
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Fig. 6.2: The family of the Indo–European Languages relevant to Greek,
Latin, English, German and French
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Table 6.25: Man, Language and History

Date Event

c.1750 BCE Appearance of the Semitic alphabet

c.1450 Earliest writings in the Hebrew Bible

953 Consecration of Solomon’s Temple in Jerusalem

776 First Olympic games in Greece

c.770 Latin first brought to Italy by migrants from the
north

753 Alleged founding of Rome in Latium by Romulus

750–585 Age of hebrew prophets: Amos, Isaiah and
Jeremiah

c.750 Homer’s Iliad and Odyssey in Greek writing ar-
rived in Greece

500–400 The Golden Age of Athenian democracy

440–322 Age of the Greek philosophers: Socrates,
Aplaton and Aristoteles

323 Death of Alexander the Great

285–250 Jewish scholars first translated the Torah into Greek
(Septuagint)

200–100 Rome extends its power in the Mediterranean

146 Greece becomes a Roman colony
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Table 6.25: (Cont.)

Date Event

100 BC–200 CE The age of “classical latin” of the roman

literati: (Cicero, Lucretius, Cato, Vergil, Ho-
race, Ovid, Seneca, Quintilian, Lucan, Mar-
tial, Tacitus, Marcus Aurelius, Juvenal)

55–54 Julius Caesar raids Britain

c.7 Jesus of Nazareth born in the land of Israel

43 CE Romans conquer Britain

122 Hadrian’s Wall built

300–900 The Age of “Late Latin”

328 Constantinople becomes the capital of the Eastern
part of the Roman Empire

390–405 Jerome (Hieronymus) translated the Hebrew
Bible into Latin. The translation is known as the
Vulgate

410 Romans leave Britain

476 “Official” collapse of the Western Roman Empire

400–600 The Saxons, Jutes and Angles invade Britain,
bringing the anglo–saxon language with them

597 Augustine brings a new wave of christianity to
Britain

711 The Moors invade Spain, bringing their Arab

translations of Greek books
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Table 6.25: (Cont.)

Date Event

900–1300 Age of “Medieval Latin”

1066 The Normans invade Britain, bringing Norman
French with them

1265–1374 end of “Medieval Latin:” the poets Dante and
Petrarch

1266 Roger Bacon publishes: “opus majus” in Latin

1300–1600 Age of “Renaissance Latin”

1453 The Turks sack Constantinople

1492 Columbus crossed the Atlantic and heralds the col-
onization of the Americas

1500–1650 Belated “renaissance” in Britain: rediscovery of
the Roman civilization

1543 Andreas Vesalius published: “de humani cor-

poris fabrica”

1543 Copernicus published “de revolutionibus or-

bium coelestium” in Latin

1600–1900 Age of “New Latin”

1609–1621 Kepler’s publications: “astronomia nova”
(1609), “harmonice mundi” (1619) and
“mysterium cosmographicum” (1621) in Latin

1610 Galileo’s publication: “sidereus nunicus” in
Latin



The Greco–Latin Origins of Scientific Terminology 5547

Table 6.25: (Cont.)

Date Event

1611 Publication of the King James version of the Hebrew
Bible

1616 Death of William Shakespeare

1620 Francis Bacon published: “novum organum” in
Latin

1644 René Descartes published: “principia

philosophiae” in Latin

1675 Baruch Spinoza completed his “ethica ordine

geometrico demonstrata” in Latin

1687 Isaac Newton published: “principia mathemat-

ica” in Latin – the last great scientific work to be
written in this language; Advent of the Scientific
Revolution

1755 Samuel Johnson published his dictionary of the
English language

1776 The motto “E Pluribus Unum” (“Out of Many
— One”) was proposed for the first Great seal of
the United States by John Adams, Benjamin
Franklin and Thomas Jefferson. This phrase of-
fered a strong statement of the American determina-
tion to form a single nation from a collection of States
and from people of many different backgrounds and
beliefs
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Table 6.26: Timeline of the leading progenitors and torchbearers

of the Greco–Roman literary culture during 750 BCE–550 CE

I. Poets

1. Homer c. 8th century BCE Greek

2. Hesiodos fl. c. 700 BCE Greek

3. Archilochos mid 7th century BCE Greek

4. Pindaros c. 518–438 BCE Greek

5. Accius c. 170–86 BCE Latin

6. Lucretius c. 99–55 BCE Latin

7. Catullus c. 84–54 BCE Latin

8. Vergil c. 70–19 BCE Latin

9. Horace c. 65–8 BCE Latin

10. Ovid c. 43 BCE–17 CE Latin

11. Lucan c. 39–65 CE Latin

12. Martial c. 40–103 CE Latin

13. Statius c. 45–96 CE Latin

14. Juvenal c. fl. 127 CE Latin

15. Claudian c.350–404 CE Latin
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II. Thinkers (Philosophers57, Natural philosophers, mathematicians)

1. Thales c. 624–546 BCE Greek phil.

2. Anaximander c. 610–546 BCE Greek phil.

3. Anaximenes c. 585–525 BCE Greek phil.

4. Pythagoras of Samos c. 582–507 BCE Greek phil. and
mathematician

5. Xenophanes of Colophon c. 570–480 BCE Greek phil. and
mathematician

6. Heraclitos c. 535–475 BCE Greek phil. and
mathematician

7. Parmenides of Elea c. 515–450 BCE Greek phil. and
mathematician

8. Anaxagoras of Clazomenae c. 500–428 BCE Greek phil. and
mathematician

9. Empedocles of Acragas c. 490–430 BCE Greek phil. and
mathematician

10. Zeno of Elea c. 490–430 BCE Greek phil. and
mathematician

11. Leucippos c. 480–420 BCE Greek phil. and
mathematician

12. Antiphon c. 480–411 BCE Greek phil. and
mathematician

13. Protagoras c. 480–420 BCE Greek phil. and
mathematician

57 The Hellenistic schools of thought included: Cynicism, Epicureanism, Hedonism,

Eclecticism, Neo-Platonism, Skepticism, Stoicism, Sophism.

In Europe, the spread of Christianity through the Roman world marked the end

of the Hellenistic philosophy and ushered in the beginning of Medieval philosophy.
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II. Thinkers (cont.)

14. Hippocrates of Chios c. 470–410 BCE Greek phil. and
geometer

15. Philolaos c. 480–405 BCE Greek phil.

16. Socrates c. 469–399 BCE Greek phil.

17. Democritos c. 460–370 BCE Greek phil.

18. Plato (Aplaton) c. 428–347 BCE Greek phil.

19. Diogenes of Sinope c. 400–325 BCE Greek phil.

20. Stilpo c. 380–330 BCE Greek phil.

21. Aristotle 384–322 BCE Greek phil.

22. Epicuros 341–270 BCE Greek phil.

23. Pyrrho c. 365–275 BCE Greek phil.

24. Zeno of Citium c. 333–263 BCE Greek phil.

25. Euclid c. 325–265 BCE Greek phil.

26. Chrysippos c. 287–212 BCE Greek phil. and
mathematician

27. Eratosthenes c. 276–194 BCE Hellenistic
astronomer

28. Panaetios c. 185–110 BCE Greek stoic and
Neo-Platonic
phil.

29. Posidonios c. 153–50 BCE Stoic phil. and
Historian

30. Cicero 106–43 BCE Roman states-
man and phil.
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II. Thinkers (cont.)

31. Philo Alexandrius 30 BCE–45 CE Jewish philo-
sopher

32. Seneca 4 BCE–65 CE Roman stoic
phil.

33. Epictetus c. 55–135 CE Roman phil.

34. Claudius Ptolemy c. 85–165 CE Greek
astronomer

35. Marcus Aurelius 121–180 CE Roman emperor
and phil.

36. Plotinus c. 205–270 CE Greco-Roman
phil.

37. Augustine of Hippo 354–430 CE Church theolo-
gian

38. Hypatia of Alexandria c. 370–415 CE Alexandrian
mathematician

39. Proclus Diadochus 411–485 CE Greco-Roman
phil.

40. Boethius 472–524 CE Christian phil.

III. Prose authors (Historians, biographers, writers, playwrights)

a. Historians and Biographers

1. Herodotos 480–428 BCE Greek hist.

2. Thucydides c. 460–399 BCE Greek hist.

3. Xenophon c. 430–354 BCE Greek hist.
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4. Cato the Elder c. 234–149 BCE Roman hist.

5. Polybius c. 230–118 BCE Greek hist.

6. Julius Caesar c. 100–44 BCE Roman Emperor and
writer

7. Cornelius Nepos c. 100–25 BCE Roman biographer

8. Sallust 86–35 BCE Roman hist.

9. Strabo 64 BCE–c.30 CE Greco-Roman geogra-
pher and hist.

10. Diodoros Siculus fl. 60–30 BCE Sicilian Greek hist.

11. Titus Livius (Livy) 59 BCE–17 CE Roman hist.

12. Josephus c. 37–100 CE Jewish hist.

13. Plutarch c. 45–128 CE Greco-Roman hist.

14. Tacitus c. 56–117 CE Roman hist.

15. Pliny the Younger c. 63–113 CE Roman historian

16. Suetonius c. 71–135 CE Roman biographer

17. Dio Cassius c. 150–235 CE Roman hist.

18. Ammianus Marcellinus 4thcentury CE Roman hist. and
biographer

19. Eusebius c. 260–340 CE Greek-Christian hist.
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b. Orators and Rhetoricians

1. Demosthenes 384–322 BCE Greek

2. Cicero 106–43 BCE Roman

3. Cato the Younger 95–46 BCE Roman

4. Quintilian 35–100 CE Roman

5. Aelius Aristeides 117–189 CE Greek

c. Writers and playwrights

1. Aesop c. 620–560 BCE Greek writer

2. Aeschylus c. 525–456 BCE Greek playwright

3. Sophocles c. 496–406 BCE Greek playwright

4. Euripides c. 480–405 BCE Greek playwright

5. Aristophanes c. 450–385 BCE Greek playwright

6. Terence c. 190–158 BCE Roman playwright

7. Varro c. 116–27 BCE Roman writer

8. Publilius Syrus first century BCE Roman writer

9. Tertullian c. 160–240 CE Roman writer

10. Vegetius fl. 380–400 CE Roman writer
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The Greek language has contributed to the English vocabulary directly as
an immediate donor and, indirectly, through other intermediate languages,
mainly Latin and French. In a typical English dictionary of 80,000 words,
which corresponds very roughly to the vocabulary of an educated English
speaker, about 5 percent of the words are borrowed from Greek directly, and
about 25 percent indirectly.

Since the living Greek and English languages were not in direct contact
until modern times, borrowings were necessarily indirect, coming either via
Latin (through texts or various vernaculars), or from ancient Greek texts, not
the living Language.58

More recently, a huge number of scientific, medical and technical neolo-
gisms have been coined from Greek roots.

Until the 16th century, the few Greek words that were absorbed into Eng-
lish came through their Latin derivatives. Most of the early borrowings are
for expressions in theology for which there were no English equivalents. In
the late 16th century an influx of Greek words were derived directly in the
new science.

In the 19th and 20th centuries a few learned words and phrases were intro-
duced using more or less direct transliteration of Ancient Greek rather than
the traditional Latin-based orthography (e.g. nous, hoi polloi).

Many English words and word elements (roots, prefixes, suffixes) can be
traced back to the ancient Greek language. For example: Demon, Lexicon,
Colon, Stigma, scheme, bishop, priest, metaphor, mathematica, encyclope-
dia, hemoglobin, edema, dynamo, kinematica, physics, mechanics, electron,
hadron, galaxy, optics, acoustics, thermodynamics – are of Greek origin.

Tables 6.27–6.29 present a glossary of Greek numerals, prefixes and general
vocabulary used in the vernacular of scientists and other scholars. Table 6.30
shows some common Greek phrases and epigrams used today in the scientific
and the general literature.

58 Moreover, Greek culture and language had a direct major influence on Roman

art, literature and science; Indeed, the seven Greek Muses [Clio (history), Ura-

nia (astronomy), Calliope (epic poetry), Melpomene (tragedies), Euterpe

(harmony), Erato (lyric and love poetry), Terpsichore (dancing), Thalia

(comedy), and Polyhymnia (music)] were so absorbed by the Romans that

Quintilian was prompted to say: “Satura quidem tota nostra est” (At least

satire is completely ours).
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Table 6.27: Greek Numerals

Ordinals Cardinals

protos – first Hen – one

deuteros – second Dyo – two

tritos – third Treis, tria – three

tetratos – fourth Tettara (tetra) – four

Pente – five

Hex – six

Hepta – seven

Octo – eight

Emea – nine

Deka (deci) – ten

Hendeka – eleven

Dodeka – twelve

Hekaton (hecto) – one hundred

Chilioi (Kilo-) – one thousand

Myrioi – ten thousand, innumerable (myriad)
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Table 6.28: Greek Prefixes

Prefix Meaning Examples

A-, an- not, without, lack of atom, anemia, achromatic,
atypical, amoral, anesthesia,
analgesic

Amphi- around, about, both,
in two ways

amphibious, amphitheater

Ana-, ano- up, back, anew, again,
throughout, against

analysis, anion, anamnesis, an-
abolism

Anti against, opposed to,
resisting

antibalistic,antitoxin, antisep-
tic, antiacid, antifreeze

Ante before, in front of antecedent

Apo- away from, separation,
lack

aphelion, apostasis, apogee,
apologize

Arche-, archi- first, chief, primitive
(ancient)

archetype, architecture, arche-
ology

Cata-, Kata-, Cath- down, lower, under,
complete, across

catastrophe, cathode, catar-
sis, catabolism, catatonia,
catoptrics, catapult

Di- twice, twofold, double diatomic, dilemma

Dia- through, across, apart,
thoroughly

diameter, diagnosis, diabetes,
diarrhea, diuretic

Dicha- in two, double, asunder dichotomy

Dys- bad, difficult, hard,
disorder, painful

dysentery, dystrophy, dyslexia

Ecto- outer, outside ectoplasm, ectozoa

Ek-, ex- out from, outside, out
of

eccentric, exit
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Table 6.28: (Cont.)

Prefix Meaning Examples

En-, em- in, within, among endemic (demos = people), em-
bolism, enthusiasm

Endo-, Ento- within endocrine, entoplasm

Epi-, eph- upon, on ephemeral, eponym, epidemic,
epidermis

Eso- inward, within esoteric

Eu- well, good, normal,
easy

eugenics, eulogy

misos bad, hate miscarriage, misanthropic,
misogyny

Exo- outside, outward,
outer

exothermal, exogamy, exodus
(gamos= marriage), exonerate

Hemi- half, partly hemisphere, hemin

Hyper- above, over, excessive hyperactive, hypersensitive

Hypo- under, below, defi-
cient, in bottom

Hippopotamus, hypothesis,
hypoglycemia, hypodermic

Meta-, meth- after, among, beyond,
behind, change, trans-
formation

metabolism, metaphysics,
metamorphosis

Pali(n)- back, again, once
more, backwards

palindrome

Para- by the side of, near, ac-
cessory, abnormal, pre-
vented, beside

paranoia, paraxial, paragraph,
paradigm

Peri- all around, near perimeter, periphery, peri-
cardium, periscope
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Table 6.28: (Cont.)

Prefix Meaning Examples

Pre-,pro- before, in front of, for-
ward

prognosis, prophylactic, pre-
cede, progress

Syn-, Sym-, Sy- with, together sympathy, symbiosis, sym-
phony, syndrome, synagogue,
synapsis

Table 6.29: Greek General Vocabulary

Greek Word English Meaning Examples

Agora bringing together; as-
sembly

category

Aither the upper air ether

Akouein to hear acoustic

Algos, algesis pain, sense of pain analgen, neuralgia

Alos, allelon, al-
lotrios

other, different, exter-
nal, foreign, of each
other, another’s

allergy, allotropic, parallelism

Aner, andros a man, male android, androgen

Anthropos man, a human being philanthropy, anthropoid, mis-
anthrope

Arthron joint, juncture of bones arthritis

Aster, astra star astronomy

Atmos air, breath, vapor,
steam

atmosphere
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Table 6.29: (Cont.)

Greek Word English Meaning Examples

Autos self, by itself automatic, autopsy, autism,
autobiography

Bakterion a little staff, rod, bac-
teria

bacteria

Baros, barys weight, pressure,
heavy

barometer, isobaric, baryon

Bathys, bathos deep, inner, depth bathysphere

Bios, biosis a living, way of living,
life

biology, microbe, symbiosis

Bromos stench bromid

Brachys short brachistochrone

Breyin to be full, swell embriology

Chamai on the ground chameleon

Charakter to sharpen, engrave character

Chloros green, yellowish chlorine, chlorophile

Chole bile, gall, bitter, anger cholic, cholera

Choreia dancing choreography

Chromatos, chroma color of the skin, color chromium, monochrome, chro-
mosome

Cyclo, gyro round gyroscope, cyclone, cycloid

Chronos time chronic, synchronism, chroni-
cle, chronology

Crypto, kryptos hidden cryptanalysis
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Table 6.29: (Cont.)

Greek Word English Meaning Examples

Daimon a divine power, demon demoniac

Demos country, land, people
of a country

democracy, endemic, epidemic,
demagogue

Deuteros second, next deuterium

Dexios right (side) dexterity

Diaita life, way of living diet

Dosis a giving, dose dose, antidote

Dromos a running, course syndrome, hypodrome

Dynamis power, active force hydrodynamics, dynamo-
mometer

Eidsos, idea (id = to
see)

appearance, thought,
mental impression

idea

Eikon, eikonos image, likeness icon

Elektron amber, electricity electron

Enteron that within, the intes-
tine

dysentery

Eos morning red, dawn, an
early age

eocene, eon

Ergon work, functioning erg, energy, allergy, synergic

Ethnos race, nation ethnic

Gala, galactos milk galaxy, galactose

Ge earth geode, geography, geology
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Table 6.29: (Cont.)

Greek Word English Meaning Examples

Gen, genesis, genos to become, be born,
coming into, being,
origination, birth

gene, genesis, glycogen, halo-
gen, genetics, genealogy

Gigas, gigantos giant giant

Glykis, glykeros sweet, sugar glucose, glycogen

Gnonai, gnosis to know, judge, knowl-
edge

gnostic, diagnosis, prognosis

Graphein, gramma to draw, write, in-
scribe, record, some-
thing written down

monograph, graphic, telegram,
cardiogram

Gymnos naked gymnasium, gymnasitcs

Gyros circle, ring, turn gyrate, gyroscope

Haima, haimatos,
hemo

blood anemia, leukemia, ischemia,
hemoglobin

Helios sun helium, heliocentric

Hemera day ephemeral

Heteros other, different from heterogenous

Hodos road, way, path hodograph

Holos entirely, all, whole hologram, holistic

Homos, homoios like, the same as, equal homosexuality, homeopathy

Hormon setting in motion,
arousing, exciting

hormone

Hydor, hydatos water, fluid hydrogen, hydrostatic, hydrate
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Table 6.29: (Cont.)

Greek Word English Meaning Examples

Hygros wet, moist, fluid hygrometer, hygroscopic

Hypnos sleep hypnosis

Hystera womb, uterus hysteria

Idios one’s own, peculiar idiosyncrasy

Isos equal isomorphism, isomer

Kakos bad, distorted, abnor-
mal

cacophonia

Kalos beautiful calligraphy, calisthenics

Kausos, kaustos burning, heat, burnt caustic

Kephale, enkephalon head, the brain encephalic

Kineein to move Kinematics, cinema

Klimax ladder clima, climate

Klinein, klisis,
klinikos

to bent, turn, slope,
make recline, lean, lie
down, pertaining to
bed

clinic, inclination

Kolla glue collagen, colloid

Koma, komatos deep sleep, coma comatos

Kranion cranium, skull migrain

Krinein, krisis to separate, distin-
guish, decide, emit,
secrete, point of
decision

crisis, critical
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Table 6.29: (Cont.)

Greek Word English Meaning Examples

Kryos, kristallos ice-cold, frost, clear ice crystal, cryogen

Kyanos dark blue cyanamide

Kyklos circle, ring, wheel cyclic, cyclotron, epicycle

Leon, leontos lion leopard

Leptynein to make thin, thin, del-
icate

lepton, lepidoma

Lethe, lethargos oblivion, forgetfulness,
drowsiness

lethe, letharge

Leukos white leukemia, leucite

Lexis, legein to speak, speech, word,
phrase, diction, read-
ing

lexicon, dyslectic

Lipos fat, oily lipids, lipoma

Lithos stone Lithosphere, neolithic

Logos, -logy word, speech, thought,
reason, treatise, body
of knowledge

biology, hematology, mono-
logue, travelogue

Makros long, large macroscopic

Mania madness, frenzy, en-
thusiasm

maniac, egomania, kleptoma-
nia

Megas, megalou large megalopolis, megalomaniac

Meion less, smaller miosis, miocardia

Melas, melanos black, dark melancholia, melanin
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Table 6.29: (Cont.)

Greek Word English Meaning Examples

Men, menos,
meniskos

month, semi-lunar menopause, menstruation,
meniscus

Meros part, segment, parti-
tion

isomer,polymer

Mesos middle, intermediate meson, mesopotamia

Metron measure, measuring in-
strument

geometry, kilometer, perime-
ter, parameter

Mikros small, little microbe, micron, microscope,
microcosmos

Mnaesthai, mneme to remember, memory amnesia, mnenothecnic

Monos alone, single, one monotonic, monolith,
monotheism, monograph,
monosyllable, monocrome,
monopoly, monoplane

Moros dull, sluggish, stupid moron

Morph form, shape, figure amorphous, morphology

Myein to close, shut myopia, myosis

Nanos dwarf, billionth nanosecond

Narke numbness, stupor narcosis, narcomania

Naus, nautes ship, sailor nausea, aeronautic

Nekros dead body, dead necrophil

Neos new, young, recent neodymium, neophyte, neona-
tal

Neuron nerve, tendon, sinew neuralgia, neurosis
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Table 6.29: (Cont.)

Greek Word English Meaning Examples

Nomos law, ordering autonomic, economy, taxon-
omy

Noos (nous), noema mind, thought paranoia

Nosos disease, sickness nosogenic, neuronosis

Oikos house, dwelling economy, ecology

Oligos few, small, scanty oligarchy

Onoma, onomatos name eponymic, onomatopoeia,
anonymous

Optikos, optos (op =
to see)

pertaining to vision or
the eye

optical, optics, cataoptrics

Organ, ergon something that does
work, instrument, tool,
organ of the body

organism, organic

Orthos straight, correct, nor-
mal

orthopedics, orthonormal, or-
thogonal

Osmos thrusting, pushing osmosis

Oxys sharp, swift, quick,
sour, acid

oxygen, oxymoron, dioxide,
paroxysm, anoxia

Palaios old, ancient paleontology

Pas, pantos, pan all, entire panacea, pancreatic, pan-
demic, panorama, pantheon

Pathein, pathos to be affected, experi-
ence, suffer feeling, dis-
ease

sympathy, telepathy, empathy,
pathology

Peiraein to attempt, try, test empiric
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Table 6.29: (Cont.)

Greek Word English Meaning Examples

Phagein to eat, devour bacteriophage, phagocyte

Phain, phasma to bring to light, show,
appear, apparition

fantasy, phantom

Phanai, phon to speak, speech, voice,
sound

phone, telephone, phonetics,
cacophony

Pherein, phoros to bear, carry, bring euphoria, periphery

Philein, philia to love, affinity for philosophy, philanderer, phil-
anthropy, philharmonic

Phlegein, phlegma to burn, became hot,
heat, flame

phlogiston, flame

Phlogos inflammation phlogosis

Phobos fear, flight hydrophobia, xenophobia

Phos, photos light phosphorous, photograph

Phyein, physis to be by nature, arise,
grow

physics, physical

Planos, planktos wandering plankton

Plasscin, plastos to form, mold plastic, plasma

Polys much, many, more that
usual

polygonal, multiply, polymer,
polystyrene

Pragma, praxis,
praktikos

a thing done, deed,
fact, practical, fit for
doing

pragmatism, practice

Protos, proteins first, primitive, simple,
primary

protocol, protein, proton, pro-
tozoan, prototype
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Table 6.29: (Cont.)

Greek Word English Meaning Examples

Pseudeo false, imaginary pseudoscalar, pseudoscience,
pseudonym

Psyche spirit, soul, mind psychic, psychotic, psychiatry

Pyros fire, heat, fever pyrotechnics, pyromania

Rheein, rhema flow, stream, current rheology, diarrhea, gonorrhea

Rhythm rhythm, measure arrhythmia

Sakcharon sugar sacchrine

Sarx, sarkos flesh sarcoma

Seirein, seismos to shake, earthquake seismology

Sepsis, sapros rotting, decayed, pu-
trid

asepsis, antiseptic, saprophyte

Skopeein to look at, view stethoscope, microscope

Skotos darkness scotoma

Soma, somatos body psychosomatic

Sphaira sphere, ball, globe spheroid, spherula

Sta, stasis to cause to stand, set,
fix, arresting

ecstasy, apostasis

Steno narrow stenographer

Stereo solid stereogeometry, cholesterol

Sthenos strength calisthenics

Stizein, stigma to prick, puncture,
brand, dot, mark

stigma
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Table 6.29: (Cont.)

Greek Word English Meaning Examples

Tachys swift, quick, rapid tachion, tachycardia

Tauto the same tautology

Taxis arrangement, order syntactic, taxonomy

Techne art, skill, craft technic, technique

Tele far off, at a distance telepathy, television, tele-
phone, telemetry

Thenai, thesis to put, place, set down,
a proposition

thesis, synthesis

Theos God theist, theology

Therapeuein to take care of therapy

Therapeia to heal, treat medically physiotherapy

Thermos, therme hot, warm, heat thermodynamics, diathermy

Tomos, tome cutting, a segment anatomy, atom

Topos place, region, spot topology, isotopes

Trephein, trophe nourish, nourishment atrophy

Tropein to turn, bend allotropic

Xanthos yellow xanthophyll

Xenos, xenia foreign, stranger, host,
guest, hospitality

xenophobia

Zoon something living, an
animal

zoology, protozoon

Zone girdle, belt, zone

Zyme a ferment, fermenta-
tion

enzyme, zymase
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Table 6.30: List of Greek Phrases and Epigrams

(1) Ageōmetrētos mēdeis eisitō
(Let no-one without knowledge of geometry enter)
Motto over the entrance to Plato’s Academy

(2) Aei ho theos geōmetrei (Plato)
(God always geometrizes)

(3) Anthrōpos metron (Protagoras)
(Man is the measure of all things)

(4) Andrōn epiphanōn pasa gē taphos (Thucydides: Periclés Funeral
Oration)
(For illustrious men have the whole earth for their tomb)

(5) Ariston men hudōr (Pindar)
(Greatest however is water)

(6) Gnōthi seauton [Noce te ipsum]
(Know Thyself)
Inscribed in the forecourt of the Temple of Apollo at Delphi. Attributed
to at least six Greek sages: Heraclitos, Chilon of Sparta, Thales of Mile-
tos, Socrates, Phytagoras, Solon of Athens.
The saying “Know thyself” may refer by extension to the ideal of under-
standing human behavior, morals, and thought, because ultimately to
understand oneself is to understand other humans as well. However, the
ancient Greek philosophers thought that no man can ever comprehend
the human spirit and thought thoroughly, so it would have been almost
inconceivable to know oneself fully. Therefore, the saying may refer to a
less ambitious ideal, such as knowing one’s own habits, morals, tempera-
ment, ability to control anger, and other aspects of human behavior that
we struggle with on a daily basis.
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(7) Diairei kai basileue
(Divide and rule)

(8) Dōs moi pā stō, kai tan gān kināsō (Archimedes)
(Give me a place to stand and I will move the earth)

(9) Hen oida hoti ouden oida (Socrates)
(I know one thing, that I know nothing)

(10) Heurēka! (Archimedes)
(I found it)

(11) Ē tan ē epi tas
(Either with your shield, or upon it)
Spartan mothers to their sons before they went to battle

(12) Lathe biōsas
(Live in obscurity) (Epicurean phrase)

(13) Métron áriston
(moderation is the best thing)

(14) Mē mou tous kyklous taratte (Archimedes)
(Do not disturb my circles)

(15) Mē cheiron vēltiston
(The least bad (choice) is the best)
When there is no good option one should pick the one that does the least
harm.
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(16) Mēden agan (“Ne quid nimis” – st. Jerome)
(Nothing in excess)
A carving from the temple of Apollo at Delphi

(17) Molōn labe!
(Come take them!)
King Leonides of Sparta, in response to King Xerxes of Persia’s demand
that the Greek army lay down their arms before the battle of Thermopy-
lae.

(18) Hoper edei deixai
(Quod Erat Demonstrandum – Q.E.D.)
Used by early mathematicians including Euclid and Archimedes to sig-
nify the proof as complete.

(19) Outis emoi ǵ onoma
(My name is Nobody)
Odysseus to Polyphemos when asked what his name was.
(Homer, Odyssey)

(20) Pistis, elpis, agapē (1 Corinthians 13,13)
(Faith, hope, (and) love).

(21) Rhododaktulos Ēōs
(Rosy-fingered dawn)
Occurs frequently in the Homeric Poems.

(22) Speude bradeōs
(Latin: festina lente = less haste, more speed)

(23) Ta Panta rhei kai ouden menei (Heraclitos)
(Everything flows, nothing stands still)
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(24) • What is hard? — to know yourself.
• What is easy? — to advise others.
• What is quite common? — Hope.
(When all is gone, there is still hope)

• What is the fastest? — mind; it travels through all media.
Thales

(25) Phobou tous Danaous kai dōra pherontas
(Quidquid id est) timeo Danaos et dona ferentes
(Beware of the Danaans (Greeks), even bearing gifts)

Virgil, “Aneid”

(26) Khalepa ta kala (Plato)
(The good things are hard to attain)

(27) Oh stranger, tell the Spartans that here we lie, obedient to their laws.
(Epigram by Simonides at Thermopylae)

(28) Hōi pollōi (“Plebs urbanus” in Latin)
(The many)

(29) Hoi āristoi
(The aristocracy)

(30) Kalōs kīndyons
(A beautiful risk)

(31) Melēt e tō pān
(Practice is everything; practice makes perfect)
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(32) Nike Somen
(We shall overcome)
Said by the Greeks before battle.

(33) Ou pollā, allā polȳ (Multum, non multa)
(Not quantity, but quality)
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History

When we delve into the etymology of the English language we soon dis-
cover its affinity to the classical vernaculars of Latin. Just open Webster’s
Encyclopedic Dictionary under the word vocal to see how from the single
Latin root Vocare (to call) there evolved twenty English words:

advocate
avocation
convocation
convoke
equivocate
evocation
evocative
evoke
invocation
invoke
irrevocable
provocateur
provocation
provocative
provoke
revocation
revoke
unequivocal
vocable
vocabulary
vocal
vocation
vocalist
vocalize
vociferous

Latin (lingua Latina) is the language of ancient Rome and the ancestor
of the modern Romance languages: Italian, French, Spanish, Portuguese, Ro-
manian, Catalan and so on.

Half of the English vocabulary comes from ancient Rome, and everyday
communications are peppered with Latin phrases like et cetera, per capita and
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cui bono? (Who benefits?). Scientific literature abounds with Latin words,
roots, prefixes, suffixes, prepositions, conjunctions and the like.

Indeed, signs of the Zodiac and names of the planets are of Latin origin.
Mathematical terms like: Plus, minus, Q.E.D., matrix, invariant, divergence,
calculus, derivative, maximum, minimum, residuum, covariant, curvature, in-
trinsic, genus are of Latin origin. So are the physical and chemical terms:
Valence, oxygen, solid, liquid, momentum, longitude, latitude, equilibrium,
flux, quanta, altitude, peninsula, and many others.

English used many Latin words without any change in spelling or any
significant change in meaning. Many other Latin words involve the change of
only a few letters. Here are some examples:

Latin English

innera inner

hydan hide

donwel do well

succedere succeed

concelare conceal

interior interior

defendo defend

signum sign

copiosus copious

memento remember

gladiator gladiator

senator senator

consul consul

schola school

modor mother
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Latin English

saed sad

hete hate

miser miserable

imbibere imbibe

maternus maternal

radix root

heah high

waeccan wake (watch)

drincan drink

mercator merchant

cantus chant

taberna tavern

elevare elevated

observare observe

accelerare accelerate

descendre descend

spowan speed

As the Romans conquered most of Europe, the Latin language spread
throughout the region.

In 1066 England was conquered by William, duke of Normandy, which
is northern France. For several hundred years after the Norman invasion,
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French was the language of court and polite society in England, It was during
this period that many French words were borrowed into English. Linguists
estimate that some 60% of our common everyday vocabulary today comes
from French. Thus many Latin words came into English indirectly through
French.

Many Latin words came into English directly, though, too. Monks from
Rome brought religious vocabulary as well as Christianity to England be-
ginning in the 6th century. From the Middle Ages onward many scientific,
scholarly, and legal terms were borrowed form Latin.

Moreover, many of the early scientists spoke Latin or had learned it as
part of their education. During the Dark Ages, the sciences and culture
were segregated inside the monasteries where the spoken language was Latin.
Thus, science started out using Latin as its universal language. Since the
only real connections between countries through the Dark Ages were through
the Roman Catholic Church, Latin became the standard lingual link between
countries using different languages.

During the 17th and 18th centuries, dictionary writers and grammarians
generally felt that English was an imperfect language whereas Latin was per-
fect. In order to improve the language, they deliberately made up a lot of
English words from Latin words. For example, fraternity, from Latin frater-
nitas, was thought to be better than the native English word brotherhood.

Latin is a member of the family of Italic languages, and its alphabet, the
Latin alphabet, emerged from the Old Italic alphabets, which in turn were
derived from the Greek and Phoenician scripts (Table 6.31).

The Italic subfamily is a member of the Centum branch of the Indo-
European language family. It includes the Romance languages (among others:
French, Italian, Spanish, Portuguese, Romanian), and a number of extinct
languages.

Latin was first brought to the Italian peninsula in the 9th or 8th century
BCE by migrants from the north, who settled in the Latium region, specifically
around the River Tiber, where the Roman civilization first developed. Latin
was influenced by the Celtic dialects in northern Italy and the non-Indo-
European Etruscan language in Central Italy, and by Greek in southern Italy.

Although surviving Latin literature consists almost entirely of Classical
Latin, an artificial, highly stylized and polished literary language from the 1st

century BCE, the actual spoken language of the Roman Empire was Vulgar
Latin, which significantly differed from Classical Latin in grammar, vocabu-
lary, and eventually pronunciation. Also, although Latin remained the main
written language of the Roman Empire, Greek came to be the language spo-
ken by the well-educated elite, as most of the literature studied by Romans
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was written in Greek. In the eastern half of the Roman Empire, which became
the Byzantine Empire, the Greek Koine of Hellenism remained current and
was never replaced by Latin.
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Fig. 6.3: Approximate distribution of languages in Iron Age Italy during the
sixth century BCE
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We may divide the age of Latin into seven epochs:

–75 BCE Old Latin

75 BCE–200 CE Classical Latin

300–900 Late Latin

900–1300 Medieval Latin

1300–1600 Renaissance Latin

1600–1900 New Latin

1900–present Recent Latin

Old Latin (also called Early Latin or Archaic Latin) refers to the period of
Latin texts before the age of Classical Latin.

Classical Latin is the form of the Latin language used by the ancient
Romans in what is usually regarded as “classical” Latin literature. Its use
spanned the Golden Age of Latin literature – broadly the 1st century BCE
and the early 1st century – possibly extending to the Silver Age – broadly the
1st and 2nd centuries.

What is now called “Classical Latin” was, in fact, a highly stylized and
polished written literary language selectively constructed from Old Latin, of
which far fewer works remain. Classical Latin is the product of the reconstruc-
tion of early Latin in the prototype of Attic Greek. Classical Latin differs from
the earliest Latin literature, such as that of Cato the Elder, Plautus, and to
some extent Lucretius.

The spoken Latin of the common people of the Roman Empire, especially
from the 2nd century onward, is generally called Vulgar Latin. Vulgar Latin
differed from Classical Latin in its vocabulary and grammar, and as time
passed, it came to differ in pronunciation as well.

The golden age of Latin literature, in Latin Latinitas aurea, is a period
consisting roughly of the time from 75 BCE to 14 CE, covering the end of
the Roman Republic and the reign of Augustus Caesar. Many Classicists
believe that this period represents the peak of Latin literature, and that its
usage of the artificial and heavily stylized literary language known as Classical
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Latin represents the ideal norm which other writers should follow. Classical
Latin continued to be used into the Silver Age of Latin literature, 1st and 2nd

centuries.

In reference to Roman literature, the Silver age covers the first two cen-
turies CE directly after the Golden age (which was the first century BCE,
and the start of the first century CE). Literature from the Silver age has
traditionally, perhaps unfairly, been considered inferior to that of the Golden
age. Silver Latin itself may be subdivided further into two periods: a period
of radical experimentation in the latter half of the first century CE, and a
renewed Neoclassicism in the second century CE.

Under the reigns of Nero and Domitian, writers like Seneca the Younger,
Lucan and Statius pioneered a unique style that has alternately delighted,
disgusted and puzzled later critics. Stylistically, Neronian and Flavian liter-
ature shows the ascendance of rhetorical training in late Roman education.
The style of these authors is unfailingly declamatory – at times eloquent, at
times bombastic. Exotic vocabulary and sharply-polished aphorisms glimmer
everywhere, though at times to the detriment of thematic coherence.

Thematically, late 1st century literature is marked by an interest in terrible
violence, witchcraft, and extreme passions. Under the influence of Stoicism,
the gods recede in importance, while the physiology of emotions looms large.
Passions like anger, pride and envy are painted in almost anatomical terms
of inflammation, swelling, upsurges of blood or bile.

By the end of the 1st century, a reaction against this form of poetry had
set in, and Tacitus, Quintilian and Juvenal all testify to the resurgence of
a more restrained, classicizing style under Trajan and the Antonine emperors.

Vulgar Latin (in Latin, sermo vulgaris) is a blanket term covering the ver-
nacular dialects of the Latin language spoken mostly in the western provinces
of the Roman Empire until those dialects, diverging still further, evolved into
the early Romance languages – a distinction usually assigned to about the
ninth century.

This spoken Latin differed from the literary language of classical Latin in
its pronunciation, vocabulary, and grammar. Some features of Vulgar Latin
did not appear until the late Empire. Other features are likely to have been
in place in spoken Latin, in at least its basilectal forms, much earlier. Most
definitions of “vulgar Latin” mean that it is a spoken language, rather than a
written language, because the evidence suggests that spoken Latin broke up
into divergent dialects during this period. Because no one transcribed pho-
netically the daily speech of any Latin speakers during the period in question,
students of vulgar Latin must study it through indirect methods.
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Romance languages, a major branch of the Indo-European language family,
comprise all languages that descended from Latin, the language of the Roman
Empire. The Romance languages have more than 600 million native speakers
worldwide, mainly in the Americas, Europe, and Africa, as well as in many
smaller regions scattered through the world.

All Romance languages descend from Vulgar Latin, the language of sol-
diers, settlers, and slaves of the Roman Empire, which was different from the
Latin of the Roman literati. Between 200 BCE and 100 CE, the expansion
of the Empire, coupled with administrative and educational policies of Rome,
made Vulgar Latin the dominant native language over a wide area spanning
from the Iberian Peninsula to the Western coast of the Black Sea. During
the Empire’s decadence and after its collapse and fragmentation in 5th cen-
tury, Vulgar Latin began to evolve independently within each local area, and
eventually diverged into dozens of distinct languages. The oversea empires
established by Spain, Portugal and France after the 15th century then spread
Romance to the other continents – to such an extent that about 2/3 of all
Romance speakers are now outside Europe.

Medieval Latin refers to the Latin used in the Middle Ages, primarily as a
medium of scholarly exchange and as the liturgical language of the medieval
Roman Catholic Church. It is therefore largely synonymous with the term
Ecclesiastical Latin (sometimes called Church Latin), which refers to the Latin
language as used in documents of the Roman Catholic Church and in its Latin
liturgies.

Renaissance Latin is a name given to the Latin written during the Euro-
pean Renaissance in the 14th–16th centuries, particularly distinguished by the
distinctive Latin style developed by the humanist movement.

Ad fontes was the general cry of the humanists, and as such their Latin
style sought to purge Latin of the medieval Latin vocabulary and stylistic
accretions that it had acquired in the centuries after the fall of the Roman
Empire. They looked to golden age Latin literature, and especially to Cicero
in prose and Virgil in poetry, as the arbiters of Latin style. They abandoned
the use of the sequence and other accentual forms of metre, and sought instead
to revive the Greek formats that were used in Latin poetry during the Roman
period. The humanists condemned the large body of medieval Latin literature
as “gothic” – for them, a term of abuse – and believed instead that only ancient
Latin from the Roman period was “real Latin”.
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Fig. 6.4: Romance languages in the world: Blue – French; Green – Spanish;
Orange – Portuguese; Yellow – Italian; Red – Romanian

The humanists also sought to purge written Latin of medieval develop-
ments in its orthography. They insisted, for example, that ae be written out
in full wherever it occurred in classical Latin; medieval scribes often wrote
e instead of ae. They were much more zealous than medieval Latin writ-
ers that t and c be distinguished; because the effects of palatalization made
them homophones, medieval scribes often wrote, for example, eciam for etiam.
Their reforms even affected handwriting; Humanists usually wrote Latin in
a script derived from Carolingian minuscule, the ultimate ancestor of most
contemporary lower-case typefaces, avoiding the black-letter scripts used in
the Middle Ages. Erasmus even proposed that the then-traditional pronunci-
ations of Latin be abolished in favor of his reconstructed version of classical
Latin pronunciation.

The humanist plan to remake Latin was largely successful, at least in ed-
ucation. Schools now taught the humanistic spellings, and encouraged the
study of the texts selected by the humanists, to the large exclusion of later
Latin literature. On the other hand, while humanist Latin was an elegant
literary language, it became much harder to write books about law, medicine,
science or contemporary politics in Latin while observing all of the Human-
ists’ norms about vocabulary purging and classical usage. Because humanist
Latin lacked precise vocabulary to deal with modern issues, their reforms ac-
celerated the process of turning Latin from a workday language to an object
of antiquarian study. Their attempts at literary work, especially poetry, often
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have a strong element of pastiche. Their efforts turned Latin from a classi-
cal, but still useful language, into a truly extinct language. Latin vocabulary
continued to be used by the creators of New Latin, but extensive discourses
on contemporary subjects in Latin gradually ceased to be written during this
period.

New Latin (or Neo-Latin) is a post-medieval version of Latin, now used
primarily in International Scientific Vocabulary cladistics and systematics.
The term came into widespread use towards the end of the 1890s among
linguists and scientists.
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Table 6.31: Latin Prepositions and Conjunctions

Alieni another’s

Aut either, or

Cam with

Cum since

Circa about, approximately

Donec until

Dum while

Enim, nam for

Ergo, igitur therefore

Et and

Etiam, quoque also

Ibi there

Iuxta next to

Modo, tantum only

Neque nor

Ob, propter because, because of

Prope near

Postquam after that

Que and

Quod because
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Si if

Sed but

Sine without

Tanem, autem however

Tandem at last

Ubi where

Ut so that

Utinam may it happen

Sui one’s own

Table 6.32: Latin Numerals

Ordinals Cardinals

Primus – first (primary) Unus – one (union, uniform,
unit, univalent)

Secundus – second Duo – two (duplex, duplicate)

Tertius – third (tertiary, trident) Tres, tri – three

Quartus – fourth Quattuor – four

Quadrus – fourfold

Quintus – fifth Quinque – five

Sextus – sixth Sex – six
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Ordinals Cardinals

Septimus – seventh (September) Septen – seven

Octavius – eight (octavo) Octo – eight (octave)

Nonus – ninth (Novembers) Novem – nine

Decimus – tenth (December) Decem – ten

Undecimus – eleventh Undecima – eleven

Duodecimus – twelfth Duodecim – twelve (duodocimal)

Vicesimus – twentieth Viginti – twenty

Centesimus – hundredth Centum – one hundred

Millesimus – thousandth Mille – one thousand

Semi, demi – 1/2 (semicircle,
semifinal)

plus – more

Sesqui – 3/2 minus – less

Bi, bis, bin – twice, twofold, dou-
ble (bicycle, biped, binaural)

equ – equal (equidistant, equilib-
rium)

Table 6.33: Roman Lengths

cubit : from the Latin cubitum (elbow). The unit represents the
length of a man’s forearm from his elbow to the tip of his
outstretched middle finger (c. 52.35 cm)

foot : from the Latin pes naturalis. Based directly on the length
of the human feet (31.3 cm). The modern foot (c. 30.5 cm)
may have been the invention of Henry I (1100–1135)
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inch : from the Latin uncia (twelfth part). Defined as the width
of man’s thumb at the base of the nail.

Pace : from the Latin passus (step). The distance between two
successive falls of the same foot (c. 1.5 m).

mile : from the Latin milia or mille (a thousand paces): the dis-
tance a Roman legion could march in thousand paces. It’s
the measured distance between surviving milestones of Ro-
man roads (close to 500 feet). Roman had set their mile
equal to 8 stadia (c. 202.3 yards).

league : from the Latin leuga or leuca; it was intended to represent,
roughly, the distance a person could walk in an hour (c. 1 1

2
Roman miles)

Table 6.34: Latin Negation Prefixes

Prefix English Meaning Examples

In-, il-, ir-,
im-

not, beyond belief infallible, impossible, immisci-
ble, invalid

Un- not undo

Non- not non-portable, nonsense, nonstop

Contra- against contradict, contravene, con-
trarevolution

Anti- against, opposed to,
resisting

antiwar, antithesis, antisymmet-
rical, antibacterial, antitoxin,
antiseptic

Mis- badly, ill miscast, misanthrope

Mal- bad malcontent, malpractice

De- draw or remove from,
down

devalue
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Table 6.34: (Cont.)

Prefix English Meaning Examples

Dis- apart, away from, not
any

disport, dissect, dissonant, dis-
belief, discharge, disable

Ab- from, away abduct, abjured, aberrant

A-, an- not, without, lack of atom, anomaly, anoxia, amnesia,
anemia, analgesic, anesthesia

Ex- out of export, exorbitant, ex officio, ex-
patria

Ob-, o-, op- against, in the way obovate

Table 6.35: Latin Spatial and Positional Prefixes

Prefix English Meaning Examples

Super-, sur- above, over, exces-
sively

supervise, supernatural, superre-
alistic

Extra- beyond, outside, outer,
is addition to

extracurricular

Dia- through, between diameter, diaphanous

Sub-, sup- under, below, near
somewhat

submarine, suffix, subway

Hypo- under hypodermic, hypothesis

De- down, off, from, undo-
ing

descend, dementia, defrost, de-
part

Epi- upon, beside, on epidermis, epitome
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Table 6.35: (Cont.)

Prefix English Meaning Examples

Trans- across, beyond,
through

transport, transformation

Ambi- about, on all sides ambition, ambidextrous, am-
bivalent

Circum- around circumnavigate, circumvent, cir-
cumpacific

Peri- around perimeter, perigee, pericardium

Inter- between intercom, internecine, interstate,
intercourse, interatrial

Ante- in front of, forward anteroom

Ultra- beyond ultrasound

Endo- within endoscopy

Supra- above, upon, upper suprapelvic

Se- apart, free from secretion, segregation

Retro- backward, behind,
back

retrogress

Re- again, back, backward refraction, return, reappear, re-
frigerate, regurgitate

Co-, com-,
con-

together with cohesion, concert, coauthor,
congress, coequal, conjugate,
conspiracy, continue, cognate,
colloquy, convene, concise,
conduit, contravene

A-, ad- at, to, toward, near adhesion, admix, allegation, ad-
dict, ablate, abstract, annotate
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Table 6.35: (Cont.)

Prefix English Meaning Examples

In-, im-, ir-,
il-

in, into, on, against,
onto

immerse, illicit, intangible, im-
bibe, irruption

Infra- below, lower infrared, infrastructure

Intro- within, inward introspect

Intra- within, inside intravenous

Juxta- beside, near to juxtaposition

Pro-, pur- in front of, front part
of, in favor of

prodigal, purport, protract,
prospect

Per-, pel- throughout, thor-
oughly, excessively,
complete

pervade

Sym-, syn- with, together syntax, synthesis, syndicate

Table 6.36: Latin Temporal Prefixes

Prefix English Meaning Examples

Post- after, behind postmortem, postpone, postna-
tal

Pre- before prepared, presume, prehistory,
premeditated
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Table 6.37: Latin Suffixes

Suffix Connotation Examples

-or the agent which does vector (vehera, vectum = carry)

-io, -ura condition resulting
from action

ligatio (ligare = tie), tensio (ten-
dere = stretch)

-men,
-mentum

action resulting from
action

sedimentum (sedera = sit),
tegmen (tegere = stand)

-culum,
-ulum

instrument, means of
action

curriculum, mandibula (man-
dare = chew)

-ra, -itas, -or quality, condition,
state

dementia (demens = out of one’s
senses), magnitudo (magnus =
large)

-arium,
-orium, -ium

place, apparatus, area
for work

aquarium, sanatorium, audito-
rium, planetarium

-ueas, -culus,
-ellus, -illus

small (diminutive) calculus, globulus, capsula, ven-
triculus, flagellum, lamella

-ilib, -bilis ability, capability, ca-
pacity

facilis, fissilis, fragilis

-idus in a state of fluidus, rigidus

-eus, -ius made of, like, having
the nature of

virilis, senilis

-anus, -enus place, origin, belong-
ing to

americanus, africanus

-osus, -lentus full of fibrosus, corpulentous

-ate put into action, per-
form

elaborate, radiate
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Table 6.37: (Cont.)

Suffix Connotation Examples

-sc to begin an action calescence, deliquesce

-ad in the direction of, to-
ward

ectad, retrad

-ase enzyme oxidase

-ose carbohydrate dextrose

-ate salt sulphate

-ite salt sulphite

-id (ide) a compound of two el-
ements

ferric oxide

-ol alcohol or phenol glycerol

-duc to lead, bring deduce, produce, reduce

-dict to say contradict, edict, predict, dictate

-gress to walk progress, digress, transgress

-ject to throw eject, inject, project, reject, sub-
ject

-pel to drive compel, impel, repel

-pend to hang append, depend

-port to carry deport, export, import, report,
support

-tract to pull, drag, draw attract, contract, extract, retract

-vert to turn convert, divert, invert, revert
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Table 6.38: Latin Terms, Phrases and Abbreviations

Mathematics is an ancient discipline, and consequently it has picked up a
good deal of terminology over the years that is not commonly used in ordi-
nary discourse. Phrases and terms from Latin make up a large part of this
terminology, and reading mathematical texts - especially more advanced ones
– is made easier if one is equipped with knowledge of these terms in advance.

We review below the Latin terms most commonly used in mathematics,
and follow with a more extensive list of such terms and phrases as one may
run into more rarely or in other contexts.

Note that when Latin or other non-English words are used in writing, they
should be italicized except where they are abbreviated as single letters.

ab initio From the beginning.

accessit Honorable mention.

a.d. See anno domini.

ad cautelem for safety sake: to be on the safe side.

ad hoc For the immediate purpose. An ad hoc committee is
appointed for some specific purpose.

ad hominem “To the man.” An argument is ad hominem when
it attacks the opponent personally rather than ad-
dressing his arguments.

ad infinitum Literally, “to infinity,” indicates that a process or
operation is to be carried out endlessly.

ad nauseam Something continues ad nauseam when it goes on so
long you become sick of it.

ad rem to the point.

a fortiori “With stronger reason.” If every multiple of two is
even, then a fortiori every multiple of four is even.

alias also known as (at another time).
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alibi elsewhere.

alma mater Your alma mater is the university or college which
granted your degree.

alumnus/alumna An alum, as it is sometimes shortly said, is a former
member/student of a university or college. (The “us”
ending is masculine, the “a” ending feminine. The
plurals are alumni and alumnae, respectively.)

agenda things that have to be done.

a.m ante meri-
diem

(before noon)

anno domini “In the year of Our Lord.” Indicates that a date is
given in the Western or Gregorian calendar, in which
years are counted roughly from the birth of Christ.

annus mirabilis a wonderful year.

a posteriori “From effect to cause.” A thing is known a posteriori
if it is known from evidence or empirical reasoning.

a priori A thing is known a priori if it is evident by logic alone
from what is already known.

arguendo for the sake of argument; hypothetically.

ars perdita a lost art.

B.A. Baccalaureus Artium

bona fide “In good faith.” One’s bona fides are documents or
testimonials establishing one’s credentials or honesty.

B.Sc. Baccalaureus Scientiae

carpe diem “Seize the day.” A motto which says to live in the
now, and/or to not waste time or opportunity.

ceteris paribus other things being equal.
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cf. See confer.

circa Approximately. Used with dates, abbreviated as c or
ca.

confer “Compare.” Usually abbreviated cf. and often used
in footnotes, this indicates that one should compare
the present passage or statement with the one re-
ferred to.

cum laude “With praise.” Used on degree certificates to indi-
cate exceptional academic standing.

de facto “In reality.” Used to indicate that, whatever may be
believed or legislated, the reality is as indicated here.

de jure “In law.” Contrast to de facto.

dixi That settles it. Literally, “I have spoken.”

e.g. See exempli gratia.

emeritus (feminine: emerita) Indicates someone who has
served out his or her time and retired honorably.

ergo Therefore.

erratum/errata Literally, “error/errors,” this term in fact refers to
the corrections included in a paper or book after it
is published to correct minor errors in the text.

et al. Abbreviation of et alia, meaning “and others.” Used
to indicate an unstated list of contributing authors
following the main one, for instance.

et cetera And so forth.

exempli gratia “For example.” Usually abbreviated to “e.g.” and
often confused with “i.e.”

ex paritate by analogy.

ex post facto “From what is done afterward.”
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fac simile make a copy (fax).

grand nimis too great.

hic of nunc here and now.

ibid. See ibidem.

ibidem “In the same place.” Used in footnotes to indicate
that the reference is the same as the preceding one(s).

id est Literally, “that is.” Usually abbreviated “i.e.” and
often confused with “e.g.” The decision whether
to use “i.e.,” or “e.g.” should be based on whether
“that is” or “for example” is what is wanted in the
sentence.

i.e. See id est.

in extenso in full.

in globo globally.

in re “In regards to.” Often used to head formal corre-
spondence. When only re is written, it should be
translated as “regarding”, or “concerning”.

inter alia Among other things.

in toto Entirely.

in vacuo Literally, “in a vacuum.” Should be taken to mean
“in the absence of other conditions or influences.”

in vitro taking place in the laboratory test tube, artificial.

in vivo taking place in a living organism.

ipso facto Literally, “by that very fact.”

lapsus calami a slip of the pen.

LL.D. Legum Doctor
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loc. cit loco ci-
tato

in the place quoted

M.A. Magister Artium

magna cum laude With great praise. See cum laude.

magnum opus a masterpiece

M.D. Medicinae Doctor

modus operandi Manner or method of work characterizing a particu-
lar person’s professional habits.

M.Sc. Magister Scientiae

mutatis mutandis With necessary changes. “Mutatis mutandis, this
proof applies in more general cases.”

n.b. See nota bene

non sequitur “Not following.” Used to indicate a statement or
conclusion that does not follow from what has gone
before.

nota bene Literally, “note well.” Usually abbreviated “n.b.”,
this is a way of saying, “take note of this.”

para avis a rare bird.

passim everywhere.

per impossibile “As is impossible.” Qualifies a proposition that can-
not be true.

per se “In and of itself.” Example: “This argument does
not force the conclusion per se, but with this added
premise the result would follow.”

Ph.D. Philosophia Doctor

plusve minusve more or less.
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p.m. post meri-
diem

after noon

post hoc, ergo
propter hoc

“After, therefore because of.” A common fallacy in
reasoning, in which causality is ascribed to preced-
ing conditions which were in fact irrelevant to the
supposed effect.

post scriptum “Written after.” Indicates an afterword or footnote
to a main text, and is often used in written corre-
spondence (where it is abbreviated p.s.).

prima facie “On its face.” Indicates that a conclusion is indi-
cated (but not necessarily proved) from the appear-
ance of things.

pro forma “For form’s sake.” E.g., “It was a pro forma in-
terview – the decision to hire her had already been
made.”

Q.E.D See quod erat demonstrandum.

Q.E.F See quod erat faciendum.

qua “In the capacity of.”

quod erat demon-
strandum

“That which was to have been proved.” Tradition-
ally placed at the end of proofs, the QED is now
usually indicated by a small square.

quod erat facien-
dum

“That which was to have been shown.” Abbreviated
QEF, it was traditionally used to mark the end of a
solution or calculation. It is rarely used now.

quod vide Usually abbreviated q.v., this is a scholarly way of
directing the reader to a reference.

q.v. See quod vide.

R.I.P. requiescat
in pace

Rest In Peace
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semper idem always the same.

sic! wrong, but that was how the original speaker said or
wrote it.

sine qua non “That without which nothing.” Indicates an essen-
tial element or condition.

stet (editorial) let it stand.

summa cum laude With greatest praise. See cum laude.

summum opus his greatest work.

s.v. sub voce under that word

tabula rasa “Blank Slate.” Often refers to a person who has not
yet formed prejudices or preconceptions on a given
matter.

temp tempore in the period of

terra incognita unknown land.

vade mecum “go with me” – a favorite book, guidebook.

verbatim Word-for-word. Indicates a precise transmission of a
phrase, discussion, or text.

via by way of.

videlicet Usually abbreviated viz., this is translated as
“namely” or “in other words”, or “that”, or “to say”.

viz. See videlicet.

vs. versus against
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Table 6.39: Selected Latin Epigrams, Maxims and Proverbs

While the majority of the entries in this Table date back to the classical
times, some came into use in the Middle Ages.

One principle of selection was the inherent wisdom reflected in the thought.
Another was the insight into a civilization implicit in a thought; Indeed, one
is struck by the universality of people’s problems throughout the ages and
the satisfying solutions afforded, despite the often contradictory nature of
these solutions. Finally, some of the entries have an inherent poetic beauty
(and sadness!) of their own, reminiscent of the greatness of Biblical pas-
sages and lines from Shakespeare. To this category belong most of these
epigrams.

1. In necessariis unitas, in dubiis libertas, in omnibus caritas.

(In necessary things – unity;
in dubious things – liberty;

in all things – charity)

[st. Augustine]

2. Sic transit gloria mundi

(at times of deep human shortcomings, we realize the transitory nature of
grand projects)

[Thomas à Kempis]

3. Ave Imperator: morituri te salutamus!

(Hail emperor: we who are about to die salute you!)

[quoted by Suetonius]
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4. Fame in magnis, dignitas autem in homilitate habitat.

(Fame lives in great things, but dignity lives in humility)

[Cicero]

5. Ingenita levitas et erudita vanitas.

(Frivolity is inborn, conceit acquired by education)

[Cicero]

6. Longumeque illud tempus cum non ero magis me movet quam
hoc exiguum, quod mihi tamen longum videtur.

(That long time to come when I shall not exist has more effect on me than
this short present time, which nevertheless seems endless)

[Cicero]

7. Utinam tam facile vera invenire possem quam falsa convincere.

(I only wish I could discover the truth as easily as I can expose falsehood)

[Cicero]

8. Universus hic mundus sit una civitas communis deorum atque
hominum existimanda.

(We must conceive of this whole universe as one commonwealth of which
both gods and men are members)

[Cicero]
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9. Philosophic est ars vitae

(Philosophy is the art of life)

[Cicero]

10. Prospeae res et in plebem ac vilia ingenia deveniunt; at
calamitates terroresque mortalium sub iugum mittere proprium
magni vivi est.

(Success comes to the common man, and even to commonplace ability;
but to triumph over the calamities and terrors of mortal life is the part of a
great man only)

[Seneca]

11. Magna servitus est magna fortuna.

(A great fortune is a great slavery)

[Seneca]

12. Labor optimos citat.

(Toil summons the best men)

[Seneca]

13. Quicquid bene dictum est ab ullo, meum est.

(Whatever is well said by anyone is mine)

[Seneca]
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14. Non potest constare liberates. Hanc si magno aestimas,
omnia parvo aestimanda sunt.

(Liberty cannot be gained for nothing. If you set a high value on liberty,
you must set a low value on everything else)

[Seneca]

15. Dum spiro spero.

(While I breath I hope)

[Cicero]

16. Ipsa scienta potestas est.

(Knowledge is power)

[Francis Bacon]

17. Rex regnat sed non gubernat.

(The king rules but does not govern)

18. Aut viam inveniam aut faciam.

(I’ll either find a way or make one)

19. Dum vivimus, vivamus.

(While we live, let us really live)

[motto of the Epicureans]
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20. Poeta nascitur, orator fit.

(A poet is born but an orator is manufactured)

[Publius Annius Florus]

21. Primum viveri diende philosophari

(Live before you philosophize)

22. Forsan et hae olim meminisse iuvabit.

(Some day perhaps it will be pleasing to remember these things too)

[Vergil]

23. Vivitur ingenio, caetera mortis erunt.

(Intelligence lives on, the rest eventually dies)

[Vesalius]

24. Omnia mea mecum porto.

(all that is mine, I carry with me)

25. Homo vitae comodatus non donatus.

(Man is loaned to life not given to it)

[Publilius Syrus]



5610 6. Deep Principles – Complex Structures

26. Vivere disce, cogita mori

(Learn to live; Remember death)

27. Vox audita perit, littera scripta manet

(The spoken word vanishes but the written letter remains)

28. Verba docent, exempla trahunt.

(Words instruct, examples lead)

29. Sutor, ne ultra crepidam.

(Shoemaker, do not go further than the shoes)

[quoted by Pliny]

30. Jacio en aleam, librumque scribo, seu praesentibus, seu pos-
teris legendum, nihil interest; expectet ille suum lectoremper an-
nos centum; si Deus ipse perannorum sena millia contemplatorem
praestolatus est.

(The die is cast, and I am writing this book – whether to be read by
my contemporaries or by posterity matters not. Let it wait its reader for a
hundred years, if God Himself has been ready for his contemplator for six
thousand years)

[Johannes Kepler, 1619]
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31. Ubi materia, ibi geometria.

(Where there is matter, there is geometry)

[Johannes Kepler]

32. Non nobis solum nati sumus.

(We are not born just for our own sake)

[Cicero]

33. Qui non profit – deficit.

(He who does not gain – loses)

34. Non multa sed multum

(Not many but much)

35. Vulturum non capit muscam.

(The eagle does not catch flies)

36. Qui desiderat pacem, praeparet bellum.

(Whoever desires peace, should prepare for war)

[Varro]
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37. Amare et sapere vix deo conceditur.

(Even a god can scarcely love and be wise at the same time)

[Publilius Syrus]

38. Qui usque tandem abutere, Catalina, patienta nostra?

(How long, then, Cataline, will you abuse our patience?)

[Cicero]

39. Vita sine libris mors est.

(Life without books is death)

40. Nullus est instar domus.

(There is no place like home)

41. Esse quam videri

(To be rather than to seem)

42. Docent omnia.

(Everything teaches)

[Seneca]

43. In silvan ne ligna feras

(Don’t carry logs into the forest)
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44. In medio tutissimus ibis

(You will go safest in the middle)

[Ovid]

45. Homo sum, humani nil a me alienum puto.

(I am a man; nothing human is alien to me)

[Terrence]

46. Per angusta ad augusta.

(Through difficulties to great things)

47. Quieta non movere

(Don’t move quiet things; “Let sleeping dogs lie”)

48. Ubi bene, ibi Patria

(Where you feel good, there is your home)

[Pacuvius]

49. Non semper ea sunt qua videntur.

(Things are not always what they seem to be)

50. Nulla dies sine linea.

(Not a day without something done)

[Pliny the Elder]
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51. Facilis descensus averni

(Easy is the road to evil)

[Vergil]

52. Non est vivere sed valere vita est.

(Life is not just to live but to be of value)

53. Per ardua ad astra

(Through perils to the stars)

54. Docendo discimus

(By teaching we learn)

[Seneca]

55. Oderint dum metuant

(Let them hate, as long as they fear)

[Caligula]

56. Non omnis moriar

(I shall not completely die)

[Horace]



The Greco–Latin Origins of Scientific Terminology 5615

Table 6.40: Latin Root Groups

Indication Root English

meaning

Examples

Physical ac-
tion

Vocare call vocation, revoke, vociferous

Tractere draw, pull tract, tractor, attractive, pro-
tracted

Spectere see, look spectator, spectacles, aspect,
spectrum

Cedere go, move,
yield

cede, precede, acede, prece-
dent

Loqui talk, speak loquacious, oblique, soliloquy

Vertere turn divert, revert, aversion

Capere take, seize capture, captivate, captious

Facere do, make factory, fraction, factitious

Tenere hold tenant, tenacious, tentative

Sentire feel sensation, sensual

Currere run, happen current, cursory, precursor

Ponere put, place component, posit

Cadore fall cadence, decadence, cascade

Ferre carry, bear ferry, inference, defer, toler-
ate

Jecere throw reject, eject, projectile, deject



5616 6. Deep Principles – Complex Structures

Table 6.40: (Cont.)

Indication Root English

meaning

Examples

Pellere push, drive dispel, repel, expel, propeller,
impel

Caedere cut excise, cadaver, incision, inci-
dence, decadence

Saltare leap, jump insult, salient, result,
resilience

Mittere send emit, commit

Ducere lead duct, conductor, educe,
induce

Venere come convened, advent

Tangere touch tangent, tangible, contiguous

Activities of
the intellect

Anima mind,
breath, soul,
equanimity

animation, magnanimous

Cognoscere to know cognizant, recognize

Quaerere ask, seek inquest, query, acquisitive,
exquisite

Judicare judge judicial, judicious, dictum,
adjudge

Credere believe credo, credit, credulity, cre-
dentials
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Table 6.40: (Cont.)

Indication Root English

meaning

Examples

Scribere write prescribe, scribe, ascribe, cir-
cumscribe

Nomen name nomenclature, nominal, nom-
inative

Dicere talk diction, dictum

Monere warn monitor, admonish

Videre see video, envision

Philos love philosophy, bibliophile

Cantere sing cantor

Psych mind psychology

Gnos know agnostic

Graph write graphology, autograph,
graphite

Lagos the study of logic

Growth,
Change and
movement

Genus birth, kind genesis, eugenics, engender

Natura nature supernatural, cognate, innate

Novus new novel, novice, innovation

Crescere grow, in-
crease

crescendo
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Table 6.40: (Cont.)

Indication Root English

meaning

Examples

Stare stand distance, static

Gradus step graduate, gradation, gradient

Movere move promote, mobile, motile

Jungere join junction, junta, enjoined,
conjugal

Frangere break fracture, fragile

Torquere twist torsion, torque

Plicere fold complicated, complicity, im-
ply

Fluere flow effluent, affluent, confluence,
fluent

Mortis dead mortal, morbid

Table 6.41: Dictionary of Greco-Latin Origins

[(*) used in modern Hebrew]

Root Core Meaning English Words

acer
(acris)

acri sharp, bitter acrimony, acrid
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Table 6.41: (Cont.)

Root Core Meaning English Words

acere eas, jac,
ject, jet

to lie, to
throw

jet, trajectory, jettisoned, adja-
cent, object, conjecture, reject,
objective, injection, ejecta, sub-
ject, adjective, abject, deject,
eject, project, projectile, projec-
tion, projector

aedes edif a building,
temple

edifice

aequus level, equal equality, equal, equilib-
rium,equivalence

aevum ev age primeval, medieval, longevity,
eternity

ager gri field peregrine, pilgrim, agriculture

agere act(actum)do, act,
drive, set
in motion,
function

action, active, actual, actuate,
enact, redact, reactor, transact,
actuary, exact, agent, reaction

agere gate castigate, divagate, expurgate,
fumigate, fustigate, navigate, ob-
jurgate, variegate, levigate, liti-
gate, mitigate

agere gen cogent, agendum, agency, exi-
gent, intransigent

agere gi, gu ambiguity, agility, agitate, cogi-
tate, assay, putge

agora (*) gor marketplace category, agora, agoraphobia
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Table 6.41: (Cont.)

Root Core Meaning English Words

akademia academ park near
Athens

academy, academic

akros acro a point, top-
most

acrobat, acronym, acrostic, acme

albus alb white albatross, albumen, album,
auburn, albino, albedo, albion

Alere al to feed,
nourish,
grow

alimentary, coalition, alimony,
coalesces, albuminus

altus alt high altitude, altimeter, alt (voice)

allos alle other allegory, parallel, allergy

amare ama,
amo

to love amateur, amour, enamored

amicus ami friend amity, amigo, amiable, (enemy)

amplus ampl large, wide amplifier, amplitude, ample

angelos angel messenger angel, evangelist, archangel

angulus ang angle triangle

animus anim mind, soul animal, unanimous, equanimity,
anima, magnanimous, animated,
animosity, animalcule

annus anni,
annu,
enni

year annual, perennial, anniversary,
centennial, millenium, annuity,
annals

anthos ant a flower anthology
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antiquus antiqu ancient antique, antiquity, antiquarian

aristos best aristocrat

arkhein arch rule, begin,
ancient, first

monarch, oligarchy, anarchy,
archetype, archaic, patriarch,
matriarch, hierarchy, archbishop,
architect, archipelago, archives,
archaeology, archduke

arctos a bear arctic ocean

astron astro,
aster

star astronomy, astrology, disaster,
asterix, asteroid, astronaut

atavus atav ancestor atavism

athlon athl a prize athlete, decathlon, pentathlon,
triathlon, decathlon

audire audi to hear audible, auditory

aura air, breath aura

ballein blem, bol to throw emblem, symbol, hyperbole,
parabola, parabolic, hyper-
bolic, matebolism, anabolism,
problem, diabolic

bassus (*) base,
bass

low, short bass, bassoon, base, abase, de-
base

battuere bat to beat battery, battalion, battle, battle-
ment, combat, batten, abate, de-
bate

bellum bell war rebel (revel), bellicose, belliger-
ent, duell, casus belli
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bene,
bonus

bene,
beni

good, well benediction, benevolent, benign,
beneficent, benefactor, benefit

bibere bib to drink imbibe, bibulous, beverage, beer

biblion bibli,
biblio

book, pa-
pyrus, scroll

bible (from Byblos, a phoeni-
cian city from which papyrus was
exported), bibliophile, bibliogra-
phy, bibliotheca

bombos bomb a booming,
humming,
sound

bomb, bombard, bombastic

brev brev short abbreviation

calx (cal-
cis)

cal limestone,
pebbles

calculus

capere cip, cup anticipate, emancipate, incipi-
ent, municipal, participate, per-
cipient, participle, principal, re-
cipient, recipes, principle, oc-
cupy, occupation, preoccupy,
prince, cable

carus cheri,
chari

dear cherish, charity, caress

cavus cave hollow care, concave

censere cen asses, judge censuse, recension, censor

chronos chron time chronism, chronicle, chronology,
chronological, chronometer

civis cit, civ citizen civilization, civil, city, citizen,
civic
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citare cit arouse, moti-
vate

excite, excitation

clamere claim,
clam

to call out,
shout

claim, exclaim, declaim, reclaim,
proclaim, acclaim, disclaim, cla-
mant, clamor, acclamation

claudere clos,
clude,
clus

to shut, close conclude, disclose, exclude, en-
close, foreclose, include, oc-
clude, preclude, recluse, se-
cluded, closet, cloister, claustro-
phobia

colare col strain, filter percolate, coulee

coquere coc, cot cook precocious, apricot, concoct, ri-
cotta

corpus body corpse, corporal, corpulent, cor-
puscle

caballus caval horse cavalry, cavalier, cavalcade

cadere cad, cas,
cid

to fall accident, cadaver, causality,
case, cascade, cadenza, ca-
dence, caducity, escheat, chute,
parachute, coincide, decadence,
incidence, occasion, occident,
recidivation

calere cal, cha to be warm,
hot

caldron, chafing, nonchalant,
chafe, chaff, calory

calvi cal, chal to deceive calumny, challenge

canere cant,
chant

to sing chant, cantata, cantor, canto, re-
cant, accent, enchanting, incen-
tive
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capere cap, capt to seize, con-
tain, lay hold
of

capable, capacity, capsule, ca-
pacitate, capstan, captive, cap-
tion, capture

capere cas, chas case, cassette, purchase, en-
case, cash, cashier, caskets, cask,
chase

captere ceit, ceiv conceive, receive, deceive, per-
ceive, conceit

captere cept accept, concept, deception, ex-
ceptional, inception, intercept,
percept, precept, susceptible, re-
ceptionist

cosmos order,
arrange-
ment

cosmetics, cosmonaut, cos-
mopolitan

credere cred to believe credit, credible, credulous,
credulity, accredit, discredit,
creed

dare dat, dit give date, dative, datum, data, ad-
dendum, add, edit, edition, tra-
dition, perdition, traitor, render,
rent, rendezvous

decem,
deka

dec ten December, decade, decimate, de-
cathlon

derma derm skin epiderm, dermatology

dexter dext on the right
side

dexterity, ambidextrous, dexter,
dextrose

dicare dic, dict to tell, to say abdicate, benedict, addict
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dicere dedication, dictate, dictator,
contradict, dictum, edict, dic-
tionary, indicator, indices, in-
dicative, indict, interdict, ju-
dicially, judiciary, predicament,
predicate, prejudice, vindicate,
valediction, digit, predict

didonai dos, dot to give antidote, dose, overdose

digitus digit finger, toe digit, digital

discere disci to learn discipline, disciple

docere doc to teach doctor, doctorate, document,
documentary, indoctrinate,
docile, docent

dokein dox to seem.
think

dogma, dogmatism, orthodox,
heterodox, paradox

dolere dol to feel pain,
grieve, suffer

condole, condolence, doleful, do-
lorous, indolent, dolor

dominus domin master dominate, dominant, domin-
ion, domineering, dame, madam,
madonna, don (*), domino,
donna, anno domini, dominique,
domingo, condominium

donare don to give pardon, condone, donation,
donor

dromein drome to run aerodrome, hippodrome, syn-
drome, palindrome

dunamis dyna force, power,
strength

dynamite, dynamo, dynamic,
dynasty
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duo dou, dub two doubt, dubious, doublet

duo, dup duplicate, duplicity, duplex, dou-
bloon, dual, duel, duet

durare dur hard, con-
tinue to
exist

endure, durable, duration,
duress, indurate, obdurate,
predurate

edere edi to est edible

ego ego I egoist, egotist, egocentric, ego-
mania

eidos ido form idol, idolatrous, kaleidoscope

eikon (*) icon image, like-
ness

icon, iconoclast

ergon erg, urg work erg, ergomania, allergy, energy,
liturgy, surgeon, metallurgy

errare err to wander err, error, erratum, aberrant, er-
roneous, aberration

esse sen, sent to be, exist absence, absentia, essence, en-
tity, essential, quintessential,
present, presentation, represent

eus eu good, well euphoria, euphony, eulogies, eu-
genics, euthenics, euthanasia,
Eunice, Eugene

facree fac, face to make, do fact, factory, faction, factor,
manufacture, benefactor, facto-
tum

facere feat, feas feature, defeat, defeasance, feasi-
ble
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facere fect affect, effect, affectionate, con-
fection, disaffect, defect, defec-
tive, infect, infection, perfect,
prefect

facere feit, fit comfit, profit, benefit, counter-
feit, forfeit, surfeit

facere fic, fice aficionado, artifice, beneficiary,
deficit, deficient, difficult, effi-
cient, edifice, magnificent, mu-
nificent, office, officer

figere fix to fasten,
pierce, fix

affix, fix, fixture, fixative, fixer,
prefix, suffix, infix, transfix, fix-
ation, idee fix, crucifix

fluere flu to flow affluent, confluent, effluent, efflu-
via, fluorescent, fluoride, flush,
influence, influenza, superflous,
superfluid, fluid, flux, fluctuate,
fluent

forma form shape conform, reform, conformist, for-
malist, formation, deform, defor-
mity, form, formal, format, infor-
mal, formality, formula, forma-
tion, informer, information, dis-
inform, transform, transformer,
uniform, proforma

fortis fort strong comfort, comfortable, comforter,
effort, force, enforce, reinforce,
fort, fortress, fortifications, for-
titude, pianoforte, fortissimo

fortuna fort luck fortune, fortuitous, misfortune,
unfortunate
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fallere fal, fail,
faul

to deceive false, falsification, falsetto, fal-
lacy, fallible, fail, failure, fault,
default, faulty, faucet

felix feli happy, lucky Felix, felicity, felicitation,
felicitous

femina femin woman feminine, femininity, femme
fatale

fendere fen to ward off offence, offensive, offend, de-
fence, fencing, fender

ferre,
ferere

fer to bear,
bring, carry,
produce

aquifer, confer, conference, de-
fer, different, difference, differ,
indifference, differential, differ-
entiate, fertile, infer, offer, pre-
fer, proliferate, refer, referen-
dum, suffer, referee, insufferable,
sufferance, transfer, vociferate,
vociferous, fertile, ferry

fervere ferv to boil, be
hot

fervent, fervid, fervor, fervency,
ferment, effervescence

fidere fid to trust confide, fiance, affiance, con-
fidence, defiance, diffident, fi-
delity, fiduciary, affidavit, infidel,
perfidy, perfidious

gamos gam,
gamy

marriage bigamy, monogamy, polygamy,
allogamy, autogamy, cryptogram

gemin twin, paired,
born to-
gether

gemini
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genus,
(generis)

gen race, kind,
class, origin

general, generalize, generation,
engender, generate, generator,
degenerate, regenerate, gener-
ous, generic, genre, genus, gen-
der, misce generation, gene

gignoskein gnos to know gnosis, gnosticism, gnostics, ag-
nosticism, agnostic, prognosis,
diagnosis

gladius sword gladiator

globus glob ball, sphere globule, hemoglobin, globus

glossa gloss tongue glossary, gloss

gnoscere cogn,
gnor,
noti

to get to
know

cognitive, cognizance, recogni-
tion, precognitive, cognoscenti,
ignorance, ignoramus, ignore,
incognito, notice, notion, notice-
able, reconnoiter, notify, recon-
naissance

gradi (*) grad,
gress

to go, step,
walk

egress, congress, digress, ingress,
progress, regress, retrogress,
transgress, aggression, grade,
graduate, gradual, gradation,
gradient, degrade, retrograde

grandum gran grain, seed pomegranate, granary, granules,
granite, granulate

gratus grac,
grat,
gree

beloved,
dear, pleas-
ing

grace, disgrace, gracious, grate-
ful, gratitude, gratify, gratu-
itous, gratuity, ingratiate, in-
grate, agree, agreement, dis-
agree, disagreeable, gratis
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gravis grav,
griev

heavy, seri-
ous, weighty

gravity, gravitation, grave, ag-
gravate, grievance, grieve, ag-
grieve

gregare,
grex
(gregis)

greg to herd, flock gregarious, congregation, segre-
gate, aggregate, egregious, gre-
garious, segregation

gustus gust a tasting disgust, gusto, gustation

haerere
(haesum)

her, hes to stick, to
cling

adhesion, coherent

helios sol, helio sun Helliocentric, solar, parasol, in-
solation, solstice, helium

hepta hepta seven heptagon, heptathlon, heptahe-
dron

heres heir, heri on heir heir, inherit, heritage, inheri-
tance, disinherit

hodos od way, journey period, periodic, episode,
method, synod, exodus

horrere horr to bris-
tle, dread,
shudder

abhor, horrendous, horrific, hor-
rible, horror, horrid

hostis hostil enemy,
stranger

hostility, hostile

humor
(humidis)

hum liquid, mois-
ture, damp,
moist

humidity, humoral

identi identi same identical, identity
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insula sola, sula island peninsula, insulation, isolate, in-
sular, isolation

intimus to be close,
private,
within

intimate

ire (itum) it to go ambition, circuit, initiate, cir-
cuitous, initial, initiative, con-
comitant, exit, coition, itinerary,
itinerate, obit, obituary, transi-
tory, seditious, transit, transitive

jugum jug yoke jugular, conjugate, subjugate

jungere join,
junct

to join adjoin, join, adjunct, conjoin,
conjunction, enjoin, injunction,
disjoin, joint, junction, junc-
ture, rejoin, subjoin, subjunc-
tive, conjunctive

jurare jur, jus,
juris

to swear, law adjure, conjure, injure, objur-
gate, perjury, juridical, jurisdic-
tion, jurist, jury, just, justify,
justice

juvenis juv young juvenile, rejuvenation

kaiein cau to burn caustic, holocaust

kamara cam,
cham

vault chamber, camarade, camera,
chambermaid, chamberlain

kosmos cosm order, the
world, the
universe

cosmopolitan, cosmic, cosmol-
ogy. cosmonaut, cosmetic, mi-
crocosm



5632 6. Deep Principles – Complex Structures

Table 6.41: (Cont.)

Root Core Meaning English Words

krinein crit distinguish,
separate

criterion, critic, criticism, criti-
cal, hypocrite, criticize

kyklos cycl cycle, wheel cycle, recycle, cyclotron, ency-
clopedia, cyclone, cycloid, cy-
clop, cyclic, recycle, motorcycle,
tricycle, unicycle

labor labor labor, exer-
tion, toil

labor, laborious, laboratory, col-
laboration, elaborate, laborious

lacuna small pit,
gap

lacuna

latus
(dilata-
tus,
lateris)

lat carried,
borne, wide,
broad, ex-
panded,
side

ablate, collate, collateral, cor-
relate, dilate, elate, oblate, re-
late, relation, relative, superla-
tive, translate, lateral, latitude,
legislator, dilatation, bilateral

laudare laud to praise laud, laudatory, cum laude

legare lega,
lege, legi

to bind,
choose, send

alleged, allegation, allegedly, col-
lege, collegial, legate, delegation,
legation, legacy, relegate

legein lexi, log,
logue

to gather,
speak

lexicon, lexicographer, dyslexia,
catalog, dialog, monolog, deca-
logue, analog, prolog, epilog,
travelog

levare lev to lighten,
lift, raise

alleviate, elevate, elevator, eleva-
tion, lever, leverage, levant, lev-
ity, levitation, levy, levigate, rel-
evant irrelevant

lex leg law legal, legitimate, illegal, ille-
gitimate, legislative, legislature,
privilege
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liber lib free liberty, liberate, liberation,
liberal,

limen
(liminis)

treshold elimination, subliminal

lingua lingu tongue, lan-
guage

linguist, bilingual, linguistics,
lingua franc.

liquere liqu flow, be liq-
uid

liquid, liquidity, liquidate,
liquify, liqueur, liquor

lithos lith stone monolith, megalith, paleolithic,
neolithic, mesolithic, lithogra-
phy, lithology, lithium

littera liter letter of the
alphabet

illiteracy, literally, literary, lit-
erature, alliteration, obliterate,
literati

locare
(locus)

loca to place,
place

local, locate, allocate, collocate,
dislocate, location, loci, localize

logos log, logy word logic, logical, logistics, sylo-
gism, logo, analogous, apolo-
getic, apologia, eulogy, biology,
tautology, anthology, etymology,
seismology

longus long long longevity, longitude, prolong,
elongation, oblong, longueur,
longanimity

loqui locu,
loqu

to speak colloquium, grandiloquence, lo-
quacious, ventriloquist, solilo-
quy, somniloquy, eloquence, in-
terlocutor, locution, obloquy
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lucere lumen,
luc, lum

to shine,
light

luminous, lucid, elucidate, il-
lumination, illuminati, lucubra-
tion, luminosity, lucent, luminif-
erous

luna,
selena

luna the moon lunatic, lunacy, lunar, lunation

magister mas, mis a master master, mastermind, master-
piece, mister, mistress, magis-
trate, masterwork

magnus magn,
maj

great, large,
big

majority, majesty, major, mayor,
magnate, Magna Carta, mag-
nifico, magniloquent, magnitude,
magnificent, majestic, magnani-
mous

malleus mall hammer mall, mallet, pall mall

malus mal,
mali,
male

bad, evil malignant, malevolent, maledic-
tion

mandare mand,
mend

to order commandment, commander,
commandant, commando,
commandeer, commend, recom-
mend, commendation, demand,
demanding, mandate, manda-
tory, remand

manere man to remain mansion, manor, immanent, per-
manent

manus man hand manual, manage, manager, man-
agement, manure, maneuver,
manner, mannerism, mannered,
emancipate, manufacture, man-
ifest, manifesto, manipulate,
manicure
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mappa napkin, cloth map, napkin, apron

margo
(margi-
nis)

marg edge, border margin

mater mat,
metro

mother maternal, matrimony, matron,
maternity

medius medi middle mediate, immediate

meter matriarch, matrix, matricu-
late, alma mater, metropolis,
metropolitan, metrodome, metro

merx merc goods, trade,
traffic

gramercy, mercy, merci, merce-
nary, mercantile, merchant, com-
merce, mercury, mercurial, mer-
cer

mikros micro small microwave, microphone, micro-
scope, micrometer, microbe, mi-
crocosmos, microorganism, mi-
crofilm

mole mole mass molecule

movere
(motum)

motio to move emotion, motion, locomotion,
motile

mutare
(muta-
tum)

mut to change mutation, commute, permute

miscere misc,
mix

to mix miscellany, mix, mixture, in-
termix, admix, promiscuous,
promiscuity, miscegenation, mis-
cible
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mittere mise,
miss,
mit, mitt

send admit, admissible, admission,
admittance, admittedly, commit,
commitment, commissar, com-
missary, commission, compro-
mise, demit, demise, dismiss,
demit, emit, emission, emissary,
intermittent, intermission, mis-
sion, missioner, missive, mis-
sile, omit, omission, permit, per-
missible, permission, permissive,
premise, promise, remit, remiss,
remittal, remission, unremitting,
submit, submissive, submission,
surmise, transmit

misein misa,
miso

to hate misanthrope, misandry, misogy-
nism, misogamist, misoneism

nasci nat to be born cognate, nature, native, natu-
ralization, naturally, nation, na-
tionalist, natal, international

naus (*) nau ship nausea, nautical, astronaut

negativus nega,
negl

no, negative negate, neglect, negative, negli-
gible

nekros necro corpse necrology, necrophilia, necro-
mancy

nepos neptis grandson,
nephew,
niece

nepotism, nephew

nocere noka,
noc, nox

to harm innocent, innoxious, innocuous,
noxious, obnoxious
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nomen,
nominare

nom name, to
name

misnomer, nomenclature, nom-
inate, nominator, denominator,
ignominy, nominal, nominee,
nom de plunc

norm norm measure,
standard,
pattern

normal, abnormal, normalization

novus nov, novi new novel, novella, novelist, innova-
tor, novelty, renovate, novice,
novitiate, nova, nouveau

nox noct night nocturnal, nocturne, noctilucent,
equinoctial

numerus numer number numerate, enumerate, numeral,
numerical, numeration, innumer-
able, numerology, innumerate

oculus oc eye pinochle, inoculate, monocle,
oculist, ocular, binoculars

odium no hatred annoy, noisome, annoying

offici(um) fic official, orifice, proficient, pontif-
icate, sacrifice, significant, spe-
cific, suffice, sufficient, superfi-
cial, beatific, honorific, pacific,
soporific, prolific

oikos eco house ecology, economy, parochial, ec-
umenical, economize

omnis omni all, every omnibus, omnipotent, omnivo-
rous
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onoma onum a name anonym, pseudonym, eponym,
antonym, toponym, anony-
mous, heteronym, homonym,
metonymy, onomatopoeia,
patronym, synonym

orbis orb circle, wheel orbit, orbital

ordo ord order order, disorder, ordinary, or-
dained, ordination, ordinarily,
ordinance, ordinate, coordinate,
inordinate, subordinate, insub-
ordination

pais ped child pediatrics, pediatrician, pe-
dodontics, encyclopedia, ped-
agogue, pedant, pedantry,
pederasty, pedophile

par par equal, peer compare, par, parity, disparity,
disparage, comparative, au pair,
parlay, peer, at par, comparable

parere par give birth,
come in sight

parents, parental, parenthood,
transparent, apparent, appari-
tion, oviparous, viviparous

paschein path to suffer pathetic, pathos, pathology,
pathogen, apathy, antipathy,
sociopath, psychopath, empathy,
sympathy, telepathy, homeopa-
thy, osteopathy, allopathy

pater patri, pa-
tro

father patronize, patronage, patriot,
compatriot, expatriate, pater,
patricians, patrimony, patriarch,
patronymic, paternity, perpe-
trate
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pax pac,
peace

peace peace, pacification, pacifist, pa-
cific, pacifier

peccare pecca stable, sin peccable, peccant, impeccable

pecus pecu cattle, prop-
erly

pecuniary, impecunious, pec-
ulate, peculiar, peculation,
peculiarity

pellere pel, pul to drive appeal, appellation, appellant,
compel, compulsion, compulsive,
compulsory, expel, expulsion,
impel, impulse, impulsive, pro-
pel, propeller, propulsion, re-
pel, repulse, repellant, repulsion,
pelt, pulsate, pulse

pendere pen,
pend,
pens,
pond

weigh, hang,
pay

ponder, perpend, preponder-
ate, ponderous, append, ap-
pendage, appendix, appendant,
penthouse, appendectomy, com-
pensate, depend, dependable,
dependence, independence, dis-
pense, dispensable, dispensary,
dispensation, expend, expense,
expenditure, expensive, impend,
impending, pendant, pendulant,
pending, penchant, propensity,
pendular, pendulum, perpendic-
ular, pension, equiponderance,
spend, suspend, suspense

penis pen tail penicilin

penna pen feather pen, pennant
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pes ped foot impend, expedite, impediment,
expedition, expedient, pedal,
pedometer, pedicure, pedestal,
centipede, millipede, pedigree,
bipeds, quadruped, pedestrian

pius pi devoted pieta, pious, piety, pity, pittance

plebes,
demos

pleb,
dem,
demo

the people demagogue, plebiscite, plebeian,
endemic, epidemic, pandemic,
democracy, democrats, demotic

pleetere
(plexum)

plex to plait, in-
terweave

complex, plexus

plenus full plenty, plenary, replenish

planetes a wanderer planet

polis poli city politics, political, polity, polit-
buro, politic, apolitical, acropo-
lis, metropolis, police, megalopo-
lis, cosmopolitan

porcus por hog, pig porcupine, porpoise, porcelain,
pork

portare port to carry sport, sportsmanship, porter,
portmanteau, portfolio,
portable, comportment, de-
portment, comport, import,
export, importance, importu-
nate, importune, port, portly,
purport, report, rapport, sup-
port, transport

potentis,
potensi

potent having
power

potent, potential
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pungere pun,
punc

to point,
stab

punctuate, punctilious, punctu-
ation, punctual, pungent, com-
punctions, expunge, pun

quaerere quest,
quir, quis

to seek quest, inquire, questionable,
question, inquest, inquiry,
conquest, request, acquire,
acquisition, acquirement, ac-
quisitive, disquisition, exquisite,
inquisitive, inquisition, requisite,
prerequisite

qualis qual of what kind quality, qualify, qualitative

quantus qualt how many,
how much

quantify, quantity, quantum,
quantitative

qui,
quam,
quom

who, how,
when

quibble, quorum, quasi, quasar,
quondam

quid,
quies

qui what, some-
thing, quiet,
rest

quid, pro quo (something for
something), acquiesce, acquies-
cence, acquit, quiet, quiescence,
quit, quite, requiem, requite

quot how many quota, quotient, quotidian,
quotation

radere ras to scrape rascal, rash, abrasion, abrasive,
eraser, razor

radius radi rod, spoke,
ray, beam

irradiation, radial, radiology,
radium

radix radi a root radix, radish, eradicate, radical
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Table 6.41: (Cont.)

Root Core Meaning English Words

regere,
rectum

rect keep straight erectile, rectum

rete
(retis)

ret net, network retina

rex reg, roy king royal, regal, royalist, royalties,
Regina, regalia, regale, viceroy,
regnant, regulus, regicide, reg-
num

ridere rid, ris to laugh derision, ridicule, deride, deri-
sive, ridiculous, risible

rigor rig stiffness rigidity, rigorous

rodere,
rosum

ro, ros to gnaw erosion, corrosion, erode, cor-
rode, rodents

rogare gat, gate to ask Roguery, abrogate, arrogance,
derogate, interrogate, peroga-
tive, supererogation, surrogate,
subrogate

rota rot wheel rotator, rotunda

ruber
(rubris)

rub red bilirubin, rubella

rumpere rupt to break abrupt, bankrupt, corrupt, dis-
rupt, interrupt, erupt, irrupt,
rupture

salire sal, sult,
xult

to leap,
spring for-
ward

insult, desultory, exult, result,
resilience, somersault, salient,
salacious, salmon, saltant, salta-
tion



The Greco–Latin Origins of Scientific Terminology 5643

Table 6.41: (Cont.)

Root Core Meaning English Words

salus salu health salute, salud, salutation, salu-
tary, salubrious

salvus sal safety,
health

salvage, salve, salvation, savior,
save, salutary, salubrious

sanguis sang blood sanguine, sangria

sacer sac sacred, holy sacerdotal, sacred

sapere sav to taste, to
be wise

savant,unsavy, savory, savor

scala scal ladder escalade, escalator, upscale, es-
calate

scandere scen,
scend

climb, leap ascend, descend, ascent, ascen-
dance, descendant, condescend,
transcend

scire
(scitum)

sci to know science, conscience, unconscious,
self-conscious, subconscious,
plebiscite, omniscient, prescient,
nescient, scientific, sciolism

scribere scri to write scribe, manuscript, scripture,
script, scribbler, postscript, in-
scription, inscribe, transcribe,
descriptive, prescript, transcript,
proscribe, circumscribe, ascribe,
conscript, conscription, subscrip-
tion, prescribe, describe, pre-
scription, description, nonde-
script, indescribable

secare
(segmen-
tum)

seg, sect,
sex

to cut, part,
segment

segment, secant, bisect, dissect,
sex, section
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Table 6.41: (Cont.)

Root Core Meaning English Words

sedere sed, sess,
sid

to sit, settle preside, president, reside,
resident, residence, residue,
residuum, residual, assess, as-
siduous, sessions, assize, obsess,
possess, dispossess, repossess,
sedate, sedative, sediment,
sedentary, subside, subsidiary,
subsidy, dissident, superseded,
insidious, sedulous

semen semin seed seminary, seminal, insemination,
semination, dissemination

senex sen old, old man senator, senior, senile, senescent

sequor secu,
xeco,
sequ,
suit

to follow consequence, consequential, con-
sequently, inconsequent, obse-
quencious, sequel, subsequently,
sequence, sequential, sequitur,
nonsequitur, sequested, consec-
utive, execute, executive, per-
secute, prosecute, lawsuit, suit-
able, unsuited, pursuit, suite

signum sign a mark, seal,
sign, indica-
tion

sign, signature, signal, signify,
significance, signet, insignia, as-
sign, designate, assignment, con-
sign, design, designate, designer,
ensign, resign, resignation

similis simul,
sembl,
simil

like, at the
same time,
alike

assemble, assembly, assimilate,
assimilation, similar, ensemble,
resemble, semblance, simu-
lacrum, verisimilar, similitude,
simile, facsimile, simulation,
simulcasts, simultaneous, dis-
similar
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Table 6.41: (Cont.)

Root Core Meaning English Words

sinister sin on the left sinistral

skhizein schiz to split schizophrenic

skopein scope see, look at scope, microscope, telescope,
horoscope, periscope, kaleido-
scope, spectroscope

solus sol alone solo, solitude, solist, desolate, so-
lifidian, sole, solipsism, soliloquy,
solitaire, solitary

solvere solu, solv to loosen absolute, resolute, solution, reso-
lution, irresolute, unresolved, re-
solve, dissolve, soluble, insolvent,
insoluble, dissolute, absolve, ab-
solution

sonare
(sonatum)

son,
sound

to make a
sound

sonnet, sonata, sound, sonorous,
resound, resonant, resonance,
assonance, consonant, conso-
nant, dissonant, sonic, super-
sonic, transonic

spargo sper to scatter be-
sprinkle

aspersions, asperse, disperse,
sparse, intersperse, dispersion

spondere spond,
spons

to pledge respond, respondent, corre-
spond, correspondent, irrespon-
sible, responsibility, responsive,
sponsor, despondent

stare
(statum)

stat, stet to stand status, substitution, obstetrics

stinguere stinct,
stingu

pierce,
quench

instinct, distinct, distinction,
distinctive, distinguish, indis-
tinct, indistinguishable
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Table 6.41: (Cont.)

Root Core Meaning English Words

struere
(struc-
tum)

stru,
struct

construct,
build,
arrange

construct, construction, con-
strue, misconstrue, destruction,
indestructible, instruct, instru-
ment, obstruct, structure, in-
frastructure, struma

tacere tacit to be silent taciturn, tacit

tangere
(tactum)

tact,
tang, tag

to touch contact, tangent, contagious

tardus tard slow retard, retarded, tardy

tekhne techn art, craft,
skill

technique, technician, technical,
polytechnic, technicality, tech-
nology, technocracy

tellus
(telluris)

tel the earth tellurian

temnein tom,
tomy

to cut atom, epitome, dichotomy,
anatomy, tome, vasectomy,
mastectomy,

temperare temper to regulate,
mix, moder-
ate

temper, temperament, temper-
ate, temperance, temperature
tempera

tempus
(tem-
puris)

temp time temporary, temporal, tempo,
tempestuous, extemporaneous,
extempore, contemporary, con-
temporaneous

terere tri, trit rub, wear
away

attrition, contrition, contrite,
detriment, detrimental, tribula-
tion, trite, triturate
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Table 6.41: (Cont.)

Root Core Meaning English Words

terra terr,
terra

earth, land territory, terrain, terrace, ter-
ritorial, mediterranean, subter-
ranean, terrestrial, extraterres-
trial, parterre, terriers

theos the god theology, theocracy, atheist, pan-
theism, pantheon, apotheosis,
Theo, Theodosius, Theodoric,
Theodora, Theodore

terrere terr frighten terror, terrible

tithenai thes put, place thesaurus, thesis, antithesis, syn-
thesis, hypothesis, parenthesis,
prosthesis

topos top a place utopia, dystopia, topography, to-
ponymy, topic, topical

torquere tor, tort to twist, turn torch, contort, torture, distort,
extort, extortion, torment, tor-
tious, torsion, torque, tortoise,
tortes, retort, distortion

torrere toast,
torr

to parch toast, torrential, torrid, torrent

totus tot all, entire total, totalitarian

trahere
(trac-
tum)

tract to draw extract, tract, traction, contract

tremere trem to tremble,
shake, quiver

tremor
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Table 6.41: (Cont.)

Root Core Meaning English Words

tropos trop a turn trophies, tropics, tropical, en-
tropy, trope

tupos type a blow, im-
pression

type, archetype, phototype,
typeset, stereotype, typecast,
typewriter, stenotype, logotype

turbane
(turba-
tum)

turb to stirr, dis-
turb

turbid, turbine

ultra ult beyond ultimate, penultimate, ultra, ul-
terior, ultimatum

umbra umbra shadow umbrage, umbra, penumbra, ad-
umbra

unda und wave, billow abound, abundance, inundation,
redundant, surround, undulation

uti uti to use utilize, use, useful, utile, utility,
abuse, misuse, peruse, abusive

vacare
(vacuus)

vac, void to be empty vacant, avoid, vacous, vacuity,
unavoidable, void, vacuum, va-
cate, devoid evacuate

valere val to be strong,
be well

equivalent, valence, invalid, biva-
lent

varius vari,
vario

bent,
changeable,
crooked,
diverse,
manifold
speckled,
different

various, variety, vary, variance,
variation, variant, variegated
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Table 6.41: (Cont.)

Root Core Meaning English Words

vehere vec to carry vector, convect, vehicle, convex,
convey, advect

verbum verb word verbal, verbiage, verbose, ver-
batim, verb, adverb, proverb,
proverbial

venire
(ventum)

vent to come circumvent, intervention

verei revere to fear, feel
awe

revere, reverence, reverent, irrev-
erence

vertere
(versum)

vert to turn version, vertebra, pervert, invert

vertex
(verticis)

vert summit, top vertex, vertical, vertigo

verus ver true veracity, veritable, veracious,
verification, very, verify

vestis vest garment vest, vesture, invest, invest-
ment, divest, transvestite, trav-
esty, revest

vestus vet old, long-
standing

veterinary, vet, veteran, veterate

via via, vio,
vium

way, road trivia (trivium = three ways,
crossroad), trivial, obviously,
pervious, impervious, deviate,
deviant, devious, previous, obvi-
ate, obvious, viaduct

vicis vic change,
instead of

vicar, vicissitudes, vicarious, vice
versa
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Table 6.41: (Cont.)

Root Core Meaning English Words

videre
(visum)

to see vision, television

vigilare vig, veil to watch vigil, vigilant, vigilantes, surveil-
lance, reveille

villa villa farmhouse villa, village, villain

vir vir man, manli-
ness, virtue,
strength

virtue, virility, virtual, triumvi-
rate, virtuoso, virtual

virus virus potent juice,
poison

virulent, virus

vita,
vivere

vit, via,
viv

life, to live vital, vitamin, viable, convivial,
vivacious, revive, revitalize, re-
vivify, revival, survive, victual,
viviparous, vita, vitals, vitality,
viva, vivid, vivacity, vivify, vivi-
section

vitrum vit glass vitrina, vitriol, vitreous

vocare vox, voc,
vok

to call, voice advocation, vocation, pro-
voke, evoke, revoke, vociferous,
provocative, evocative, convoke,
invoke, invocation, revoca-
tion, irrevocable, advocate,
equivocate, unequivocal

volvere vol to roll volume, voluble, revolve, revolu-
tion

vovare vor to devour,
oat

voracious, carnivorous, herbivo-
rous, omnivorous, insectivorous
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Table 6.41: (Cont.)

Root Core Meaning English Words

vovere vot, vow to vow, wish,
pledge

vote, votary, devotee, vow, vo-
tive, devote, devotion

vulgare vulg publish,
make com-
mon

vulgate, vulgar, divulge

xenos xeno foreign,
strange

xenophobe, xenon

zelos zeal, jeal ardor jealous, jealousy, zeal, zealot,
zealous

zoion zoo animal zoology, zoo, zoolatry



Quotations
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Preface

The following collection of over 1000 aphorisms, maxims, say-
ings,truisms, dictums, adages, mottoes and anecdotes, was au-
thored by some 430 persons during the past 2600 years or so,
among them philosophers, scientists, scholars, sages, savants,
statesmen artists, musicians, poets and lay people with a keen
open mind, eye and heart.

My overall purpose in presenting this treasury of wit and wis-
dom has been to set down within the final volume of my Encyclo-
pedia, an assembly of well–phrased thoughts and flashes of insight
on scientific topics that I came across during a long course of read-
ing and study.

It seems appropriate that this historical display of the develop-
ment of science will conclude with man’s critical self examination
of his relation to nature and mankind.



Content

1. Nature, Universe and Man

2. The Quantum World

3. Life, Evolution and Reductionism

4. Time, History and Man

5. On Mathematics, Zero and Infinity

6. Truth, Error, Probability and Statistics

7. Philosophy, Philosophers and Man

8. Science, Engineering and Technology:

Ideas, Discoveries and Inventions

9. Mind, Brain and the Computer

10. Science and Scientists — the Lighter Side;

They Died Unconvinced
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1. On Nature, Universe, and Man

∗ ∗
∗

“What is man, that thou art mindful of him? And the son of man, that
thou visitest him? For thou hast made him a little lower than God, and hast
crowned him with glory and honor. Thou madest him to have dominion over
the works of thy hands...”

Psalms 8, 5–7 (ca 1000 BCE)

∗ ∗
∗

“And now, rejoicing in the prosperous gales,
With beating heart Ulysses spread his sails:
Placed at the helm he state, and mark’d the skies,
Nor closed in sleep his ever-watchful eyes.
There view’d the Pleiads, and the Northern Team,
And great Orion more refulgent beam,
To which, around the axle of the sky,
The Bear, revolving, points his golden eye:
Who shines exalted on the etheral plain,
Nor baths his blazing forehead in the main.
Far on the left those radiant fires to keep
The nymph directed, as he sail’d the deep”

Homer, Odyssey V, 270–276 (ca 800 BCE)

∗ ∗
∗

Nature does not hurry, yet everything is accomplished

Lao Tzu, 4th century BCE
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∗ ∗
∗

And the Lord answered Job out of the Whirlwind, and said,
“...
Where wast thou when I layed the foundation of the earth?... Who hath laid
the measured thereof... Whereupon are the foundations thereof fastened? Or
who laid the corner stone thereof?... Or who shut up the sea with doors, when
it brake forth...? Hast thou commanded the morning...? Where is the way
where light dwelleth?... Canst thou bind the sweet influences of Pleiades, or
loose the bands of Orion? Canst thou bring forth Venus in his season? Or
canst thou guide Arcturus with his sons?...”

(Job 38), ca 600 BCE

∗ ∗
∗

“What profit is there in my blood,
When I go down the pit?
Shall the dust praise thee?
Shall it declare thy truth?”

Psalms 30, 10

∗ ∗
∗

“It is the glory of God to conceal a thing; but the honor of king is to search
out a matter.”

Proverbs 25, 2
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∗ ∗
∗

“He hate made everything beautiful in his time: also he hate set the world in
their heart, so that no man can find out the work that God maketh from the
beginning to the end.”

Ecclesiastes, 3:11

∗ ∗
∗

“Opinions say hot and cold, but the reality is atoms and empty space.”

“Everything existing in the Universe is the fruit of chance and necessity.”

Democritos (ca 460–370 BCE)

∗ ∗
∗

“Even God cannot change the past.”

Agathon (448–400 BCE)

∗ ∗
∗

“Do you think it a matter worthy of lamentation that when there is such a
vast multitude of them (universes), we have not yet conquered one?”

Alexander the Great (356–323 BCE)
Wept when told by Anaxarchos of Abdera

that there exist an infinity of worlds.
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∗ ∗
∗

“Nature does nothing uselessly.”

Aristotle (384–322 BCE)

∗ ∗
∗

“The laws of nature are but the mathematical thoughts of God.”

Euclid (ca 300 BCE)

∗ ∗
∗

“The universe is not bounded in any direction. If it were, it would have a limit
somewhere. But clearly a thing cannot have a limit unless there is something
outside to limit it... It makes no odds in which part of it you make take your
stand: whatever spot anyone may occupy, the universe stretches away from
him just the same in all directions without limit.”

Lucretius (ca 99–55 BCE)

∗ ∗
∗

“Nothing which we can imagine about nature is incredible.”

Pliny, the Elder (23–79 AD)
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∗ ∗
∗

“Nothing is difficult for nature, especially when she rushes to destroy herself.
At the beginning of things she uses her strength sparingly and apportions
herself out in imperceptible increases. For destruction she comes suddenly
with all her violence. A long time is needed so that a child, once conceived,
may come to be born. The tender infant is reared only with great toil. The
frail body finally develops only with diligent nurture. But how with no effort
it is all undone!
It takes an age to establish cities, an hour to destroy them. A forest grows
for a long time, becomes ashes in a moment. Great safeguards may exist and
all things may be flourishing, but quickly and suddenly they all fall apart.”

“The day will come when diligent research over long periods will bring to light
the mysteries of nature which now lie hidden. A single lifetime, even though
totally devoted to the sky, would not be enough for the investigation of so
vast a subject... And so this knowledge will be unfolded only through long
successive ages. The day will yet come when our descendants will be amused
that we did not know things that are so plain to them... Many discoveries are
reserved for ages still to come, when memory of us will have been perished.
Our universe is a sorry little affair unless it has in it something for every age
to investigate...
Nature does not reveal her mysteries once and for all.”

“Any deviation by nature from the existing state of the Universe is enough
for the destruction of mankind.”

“What else is nature but God?”

Lucius Annaeus Seneca (4 BCE–65)

∗ ∗
∗

“The rational soul goes about the whole universe and the void surrounding it
and traces its plan and stretches forth into the infinitude of time.”

Marcus Aurelius, “Meditations”, 11,1,2
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∗ ∗
∗

“Opened Rabbi Tanhuma and said: “He hate made everything beautiful in
his time” – the world was created at the right time, for it was unworthy to
be created earlier. Followed Rabbi Abbahu and said: Hence that the Lord
was creating universes and destroying them, recreating and destroying them
again, until he made the present universe.”

(Genesis Rabba, 9 ca 450 CE)

∗ ∗
∗

“Thou art wise, and from Thy wisdom
Thou hast set apart Thy appointed purpose,
Like a craftsman and an artist
To draw up the films of Being from Nothingness
As light is drawn that darteth from the eye:
Without bucket from the fountain of light
Thy workman drawn it up,
And without tool hath he wrought,
Hewing, graving, cleansing, refining.
Calling into the void – and it was cleft,
And unto existence – and its was urged,
And to the universe – and it was spread out.”

Shlomo Ibn-Gabirol (1021–1070)

∗ ∗
∗

Do there exist many worlds, or is there but a single world? This is one of the
most noble and exalted questions in the study of nature.

Albertus Magnus (ca 1200–1280)
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∗ ∗
∗

If a man in the heavens ... could see the earth distinctly ... it would appear
to him that the earth was moving in daily motion, just as to us on earth it
seems as though the heavens are moving.
...One could then believe that the earth moves and not the heavens.

Nicole Oresme (ca 1325–1382)

∗ ∗
∗

“Nature never breaks her own laws.”

“The genius of man will never discover a more beautiful, a more economical,
or a more direct one that nature’s, since in her inventions nothing is wanting
and nothing is superfluous.”

“Oh God, you sell all things to men at the cost of their effort, but life is short
for this kind of commerce!”

“Natura semper agit per vias brevissimas.”

Leonardo da Vinci (1452–1519)

∗ ∗
∗

“A dark flame issued forth from the innermost hiddenness, from the mystery
of the infinite...”

The Zohar (13th century)
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∗ ∗
∗

“Pluritas non est pondera sine necessitate.” (‘It is in vain to do with more
than can be done with less.’)

William of Ockham (1285–1349)

∗ ∗
∗

“Let us permit nature to have her way. She understands her business better
than we do.”

Michael de Montaigne (1533–1592)

∗ ∗
∗

“The laws of nature ultimately are more important then nature.”

René Descartes (1596–1650)

∗ ∗
∗

“Time and space are of the same essence.”

Yehudah Liwa of Prague (1512–1609)
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∗ ∗
∗

“Man can only conquer nature by obeying her.”

“Nature is often hidden, sometimes overcome, seldom extinguished.”

“God never wrought miracle to convince atheism, because his ordinary works
convince it.”

Francis Bacon (1561–1626)

∗ ∗
∗

“Ubi materia – ibi geometria.”

Johannes Kepler (1571–1630)

∗ ∗
∗

“One touch of nature makes the whole world kin.”

“Thou, Nature, art my goddess;
To thy law my services are bound.”

William Shakespeare, ‘King Lear’, Act I, Scene II (1564–1616)

“I could be bounded in a nut-shell, and count myself a king of infinite space.”

William Shakespeare, ‘Hamlet ’ (1564–1616)
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∗ ∗
∗

“Nature hath no goal though she hath law.”

“A fountain breaks out in the wilderness, but that fountain cares not, whether
any man may come to fetch water, or no; a fresh and fit gale blows upon the
sea, but it cares not whether the mariners hoist sail or no; a rose blows in
your garden, but it calls you not to smell it.”

John Donne (1572–1631), ca 1620

∗ ∗
∗

“Beautiful are the things we see; More beautiful those we understand; But
the most beautiful are those we do not understand.”

Niels Steno (1638–1685)

∗ ∗
∗

“Nature has set no end before herself, and all final causes are nothing but
human fictions.”

“Space and matter are not really different.”

“I believe that a triangle, if it could speak, would say that is eminently tri-
angular, and a circle, that the divine nature is eminently circular; and thus
would every one ascribe his attributes to God.”

Baruch Spinoza (1632–1677)
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∗ ∗
∗

“The ethernal silence of these infinite spaces frighten me.”

“Man is equally incapable of seeing the nothingness from which he emerges
and the infinity in which he is engulfed.”

“The fabric of Nature has its center everywhere and its circumference
nowhere.”

Blaise Pascal (1623–1662)

∗ ∗
∗

“Nature does nothing in vain, and more is in vain when less will serve; for
Nature is pleased with simplicity, and affects not the pomp of superfluous
causes.”

Isaac Newton (1642–1727)

∗ ∗
∗

“... I should think that anyone who considered it more reasonable for the
whole universe to move in order to let the Earth remain fixed would be more
irrational than one who should climb to the top of your cupola just to get a
view of the city and its environs, and then demand that the whole countryside
should revolve around him so that he would not have to take the trouble to
turn his head.”

“I did not feel obliged to believe that the same God who has endowed us with
senses, reason and intellect has intended us to forego their use.”

Galileo Galilei (1654–1642)
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∗ ∗
∗

“Accuse not Nature, she hath done her part; Do thou but thine.”

John Milton, ‘Paradise Lost’ (1608–1674), 1667

∗ ∗
∗

“Prior to the creation of the universe time did not exist. Time started at the
moment of creation.”

Jonathan Eibshitz (1690–1764)

∗ ∗
∗

It seems not very likely, that a most Wise Agent should have made such vast
bodies, as the sun and the fixed stars ... only or chiefly to illuminate a little
globe.

Robert Boyle (1627–1691), 1688

∗ ∗
∗

“Men argue, Nature acts.”

Voltaire (1694–1778)
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∗ ∗
∗

“All nature is but art unknown to thee;
All chance, direction which thou canst not see;
All discord, harmony not understood;
All partial evil, universal good;
And, spite of pride, in erring reason’s spite,
One truth is clear, Whatever IS, is RIGHT.”

Alexander Pope (1688–1744)

∗ ∗
∗

“The enormous and the minute are interchangeable manifestations of the eter-
nal.”

“To see a World in Grain of Sand
And a Heaven in a Wild Flower,

Hold Infinity in the palm of your hand,
And Eternity in an hour.”

William Blake (1757–1827)

∗ ∗
∗

“Give me matter, and I will construct a world out of it.”

Immanuel Kant (1724–1804)
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∗ ∗
∗

“Nature has neither kernel nor shell; she is everything at once.”

“Nature goes her own way, and all that to us seems an exception is really
according to order.”

“Nature! We are surrounded by her and locked in her clasp: powerless to
leave her, and powerless to come closer to her. Without asking us or warning
us she takes us up into the whirl of her dance, and hurries on with us until
we are weary and fall from her arms.”

“Nature alone knows what she wants.”

“Every moment Nature starts on the longest journey, and every moment she
reaches her goal.”

“The difficulty in nature is to see the law where it is concealed from us, and
not to be misled by phenomena that contradict our senses. For in nature
there is much that contradict our senses and nevertheless true. That the
sun stands still, that he does not rise and set, but that the earth performs a
diurnal revolution with incredible swiftness, contradicts to senses as much as
anything; but yet no well-informed person doubts that this is the case.”

“I love him who yearns for the impossible.”

Johann Wolfgang von Goethe, ‘Faust II ’ (1749–1832)

∗ ∗
∗

“Space is the stature of God.”

Joseph Joubert (1754–1824)
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∗ ∗
∗

“After your death you will be what you were before your birth.”

Arthur Schopenhauer (1788–1860)

∗ ∗
∗

“Deep into the darkness peering, long I stood
there, wondering, fearing,

Doubting, dreaming dreams no mortal ever
dared to dream before.”

Edgar Allan Poe (1809–1849)

∗ ∗
∗

“When Man thinks, it is Nature which is thinking itself.”

Arthur Schopenhauer (1788–1860)

∗ ∗
∗

“Nature is visible thought.”

“So we keep asking, over and over,
Until a handful of earth
Stops our mouth –
But is that an answer?”

“Like a great poet, Nature knows how to produce the greatest effects with
the most limited means.”

Heinrich Heine (1797–1856)
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∗ ∗
∗

“Nature is not embarrassed by difficulties of analysis.”

Augustin Fresnel (1788–1827)

∗ ∗
∗

“We are a sign that is not read.”

Friedrich Hölderlin (1770–1843)

∗ ∗
∗

“God hides in the minute details of Nature but is manifested in its grand
design.”

Alphonse de Lamartine (1790–1869)

∗ ∗
∗

“I believe in the incomprehensibility of God.”

Honore de Balzac (1799–1850)

∗ ∗
∗

“I would rather believe that God did not exist than believe that He was
indifferent.”

George Sand (1804–1876)
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∗ ∗
∗

“The decisive events of the world take place in the intellect.”

Henri Frédéric Amiel (1821–1881)

∗ ∗
∗

“The chess-board is the world; the pieces are the phenomena of the universe;
the rules of the game are what we call the laws of Nature. The player on the
other side is hidden from us. We know that his play is always fair, just, and
patient. But also we know, to our cost, that he never overlooks a mistake, or
makes the smallest allowance for ignorance.”

T.H. Huxley (1825–1895)

∗ ∗
∗

“Nature teaches more than she preaches. There are no sermons in stones. It
is easier to get a spark out of a stone that a moral.”

“Nature is not benevolent; Nature is just, gives pound for pound, measure
for measure, makes no exceptions, never tempers her decrees with mercy, or
winks at any infringement of her laws.”

John Burroughs (1837–1921)

∗ ∗
∗

“When we try to pick out anything by itself, we find it is tied to everything
else in the universe.”

John Muir (1838–1914)
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∗ ∗
∗

“The God whom science recognizes must be a God of universal laws exclu-
sively, a God who does a wholesale, not a retail business. He cannot accom-
modate his processes to the convenience of individuals.”

William James (1842–1910)

∗ ∗
∗

“Nature, in her indifference, makes no distinction between good and evil.”

“Chance is the pseudonym of God when he did not want to sign.”

Anatole France (1844–1924)

∗ ∗
∗

“The true mystery of the world is the visible, not the invisible.”

Oscar Wilde (1854–1900)

∗ ∗
∗

“Repetition is the only form of permanence that nature can achieve.”

George Santayana (1863–1952)

∗ ∗
∗

“To believe in God is to desire His existence, and what is more, to act as
though He existed.”

Unamuno, y Jugo de Miguel (1864–1936)
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∗ ∗
∗

“The bee intentionally seeks for a method of economizing wax.”

D’Arcy Wentworth Thompson (1860–1948)

∗ ∗
∗

A man said to the universe:
“Sir, I exist”.
“However”, replied the universe,
“The fact has not created in me
A sense of obligations”.

Stephen Crane (1871–1900)

∗ ∗
∗

“The history of thought may be summed up in these words: it is absurd by
what it seeks, great by what it finds.”

“God made everything out of nothing. But the nothingness shows through.”

Paul Valéry (1871–1945)

∗ ∗
∗

“The Universe is full of magical things patiently waiting for our wits to get
sharper.”

“God, why did you make the evidence for your existence so insufficient.”

Bertrand Arthur William Russell (1872–1970)
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∗ ∗
∗

“The true return to nature is the definitive return to the elements – death.”

André Gide (1869–1951)

∗ ∗
∗

“Seek simplicity, and distrust it.”

“The aim of science is to seek the simplest explanation of complex facts.”

Alfred North Whitehead (1861–1947)

∗ ∗
∗

“ Say something to us we can learn
By heart and when alone repeat.

Say something! And it says “I burn”.
But say with great degree of heat.

Talk Fahrenheit, talk centigrade.
Use language we can comprehend.
Tell us what elements you blend.
It gives us strongly little aid,
But does tell something in the end.”

Robert Lee Frost (1874–1963)
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∗ ∗
∗

“Rerum natura nullam nobis dedit cognitionem finitum.” (‘Nature has given
to us no knowledge of the end of things.’)

Winston Churchill (1874–1965)

∗ ∗
∗

“In nature there are neither rewards nor punishments – there are
consequences.”

Robert G. Ingersoll (1839–1899)

∗ ∗
∗

“Who speaks of victory, survival is all.”

“What will you do, When I die?
When I, your pitcher, broken lie?
When I, your drink, go stale or dry?
I am your garb, the trade you ply,
You lose your meaning, losing me.”

Rainer Maria Rilke (1875–1925)

∗ ∗
∗

“The universe is not hostile, nor yet is it friendly. It is simply indifferent.”

John Haynes Holmes (1879–1964)
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∗ ∗
∗

“Everything should be made as simple as possible, but not simpler.”

“The eternal mystery of the world is its comprehensibility. The fact that it is
comprehensible is a miracle.”

“The most incomprehensible thing about the universe is that it is comprehen-
sible.”

“Nature hides her secrets because of her essential loftiness, but not by means
of ruse.” (“Die Natur verbirgt ihr Geheimnis durch die Erhabenheit ihres
wesens, aber nicht durch List.”)

“Die Natur hat es nicht angelegen sein lassen, uns die Auffindung ihrer Gesetze
bequem zu machen.”

“Nature did not deem it her business to make the identification of her laws
comfortable for us.”

“Out yonder there is a huge world, which exists independent of us human
being and which stands before us like a great, eternal riddle, at least partially
accessible to our inspection and thinking. The contemplation of this world
beckons like a liberation.”

“God is subtle but he is not malicious.”

“What I’m really interested in is whether God could have made the world in
a different way; that is, whether the necessity of logical simplicity leaves any
freedom at all.”

“For the rest of my life I will reflect on what light is!”

Albert Einstein (1879–1955)
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∗ ∗
∗

“The God within creates the God in nature.”

Arthur Stanley Eddington (1882–1944)

∗ ∗
∗

“Today there is a wide measure of agreement . . . that the stream of knowledge
is heading towards a non-mechanical reality; the universe begins to look more
like a great thought than a great machine.”

“The history of physical science in the twentieth century is one of progressive
emancipation from the purely human angle of vision.”

“The Universe can be pictured, although still very imperfectly and inade-
quately, as consisting of pure thought, the thought of what for want of a
wider word, we must describe as a mathematical thinker.”

James Jeans (1877–1946)

∗ ∗
∗

— “ ‘Never will you draw the water out of the depths of this well’.
What water? What well?
— ‘Who is asking?’
Silence.
— ‘What silence?’ ”

“Man’s fundamental weakness lies by no means in the fact that he cannot
achieve victory, but in the fact that he cannot exploit his victory.”

Franz Kafka (1883–1924)
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∗ ∗
∗

“I respect the idea of God too much to hold it responsible for a world as
absurd as this one is.”

George Duhamel (1884–1966)

∗ ∗
∗

“Many people find that modern science is far removed from God. I find, on
the contrary, that it is much more difficult today for the knowing person to
approach God from history, from the spiritual side of the world, and from
morals; for there we encounter the sufferings and evil in the world which it
is difficult to bring into harmony with an all-merciful and all-mighty God.
In this domain we have evidently not yet succeeded in raising the veil with
which our human nature covers the essence of things. But in our knowledge
of physical nature we have penetrated so far that we can obtain a vision of
the flawless harmony which is in conformity with sublime reason.”

Hermann Weyl (1885–1955)

∗ ∗
∗

“To believe in God means to see that life has a meaning.”

Ludwig Witgenstein (1889–1951)

∗ ∗
∗

“The universe is not only stranger than we imagine; it is stranger than we
can imagine.”

John Burdon Sanderson Haldane (1892–1964)
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∗ ∗
∗

“The universe was dictated but not signed.”

Christopher Morley (1890–1957)

∗ ∗
∗

“Everything you’ve learned in school as “obvious” becomes less and less ob-
vious as you begin to study the universe. For example, there are no solids in
the universe. There’s not even a suggestion of a solid. There are no absolute
continuums. There are no surfaces. There are no straight lines.”

“God is a verb.”

“Humanity is acquiring all the right technology for all the wrong reasons.”

“Nature is trying very hard to make us succeed, but nature does not depend
on us. We are not the only experiment.”

Richard Buckminster Fuller (1895–1983)

∗ ∗
∗

“Nature always has the last word.”

John Stewart Collis (1900–1984)
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∗ ∗
∗

“Atoms are not things. . . . When we get down to the atomic level, the objec-
tive world in space in time no longer exists, and the mathematical symbols of
theoretical physics refer merely to possibilities, not to facts.”

Werner Heisenberg (1901–1976)

∗ ∗
∗

“The notion of structure is comprised of three key ideas: the idea of wholeness,
the idea of transformation, and the idea of self-regulation.”

Jean Piaget (1896–1980)

∗ ∗
∗

“The Lord is a weak left-hander, but he still appears to be left-right symmetric
when he expresses himself strongly.”

Wolfgang Pauli (1900–1976)

∗ ∗
∗

“By getting to smaller and smaller units, we do not come to fundamental
units, or indivisible units, but we do come to a point where division has no
meaning.”

Werner Heisenberg (1901–1976)
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∗ ∗
∗

“The views of space and time which I wish to lay before you have sprung
from the soil of experimental physics, and therein lies their strength. They
are radical. Henceforth, space by itself, and time by itself, are doomed to fade
away into mere shadows, and only a kind of union of the two will preserve an
independent reality.”

Herman Minkowski (1864–1909), 1908

∗ ∗
∗

“Human destiny is bound to remain a gamble, because at some unpredictable
time and in some unforeseeable manner nature will strike back.”

Rene Dubos (1901–1982)

∗ ∗
∗

“I am not interested in proofs, only what nature does.”

Paul Dirac (1902–1984)

∗ ∗
∗

“Laws of nature could not exist without principles of invariance.”

Eugene Wigner (1902–1995)



Quotations 5683

∗ ∗
∗

“We must expect the ice that retreated some 10,000 years ago to come back
again.”

George Gamow (1904–1968)

∗ ∗
∗

“The universe is like a safe to which there is a combination. But the combi-
nation is locked up in the safe.”

Peter de Vries (1910–1993)

∗ ∗
∗

“Matter has reached the point of beginning to know itself . . . [man is] a star’s
way of knowing about stars.”

“It would be a poor thing to be an atom in a universe without physicists, and
physicists are made of atoms. A physicist is an atom’s way of knowing about
atoms.”

George Wald (1906–1997)
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∗ ∗
∗

“In man’s brain the impressions from outside are not merely registered; they
produce concepts and ideas. They are the imprint of the external world upon
the human brain. Therefore, it is not surprising that, after a long period
of searching and erring, some of the concepts and ideas in human thinking
should have come gradually closer to the fundamental laws of the world, that
some of our thinking should reveal the true structure of atoms and the true
movements of the stars. Nature, in the form of man, begins to recognize
itself.”

Victor Frederick Weisskopf (1908–2002)

∗ ∗
∗

“Biology occupies a position among the sciences at once marginal and cen-
tral. Marginal because — the living world constituting but a tiny and very
“special” part of the universe — it does not seem likely that the study of
living beings will ever uncover general laws applicable outside the biosphere.
But if the ultimate aim of the whole science is indeed, as I believe, to clarify
man’s relationship to the universe, then biology must be accorded a central
position. . . ”

“Man at last knows that he is alone in the unfeeling immensity of the universe
. . . Neither his destiny nor his duty have been written down.”

Jacques Monod (1910–1976)

∗ ∗
∗

“Cosmologists are often in error, but never in doubt.”

Yakov Borisovich Zeldovich (1914–1987)
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∗ ∗
∗

“We could have lived in a Universe with different laws in every province, but
we do not. We might have lived in a Universe in which nothing could be
understood by a few simple laws, in which Nature was complex beyond our
abilities to understand, in which the laws that apply on earth are invalid
on a distant quasar. But the evidence proves otherwise; Luckily for us we
live in a Universe in which much can be “reduced” to a small number of
comparatively simple laws of Nature. Otherwise we might have lacked the
intellectual capacity to comprehend the world.”

Carl Sagan (1934–1996)

∗ ∗
∗

“Basic laws are simple only in their first approximation.”

Martin Gardner (1914– )

∗ ∗
∗

“My suspicion is that the universe is not only queerer than we suppose, but
queerer than we can suppose.”

J.B.S. Haldane (1892–1964), 1927
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∗ ∗
∗

“Nature is not economical of structures — only of principles.”

Abdus Salam (1926–1996)

∗ ∗
∗

“If you ask what is needed to work out the full consequence of the laws of
physics, the answer is:

— Nothing less than the whole universe. —

It is not too much of a guess to say that is just what the universe is.

This explains the problem that has puzzled theologians, philosophers and
scientists alike: “Why is there a universe at all?” The theologian, with his
belief in an all powerful God, wanders why God did not simply perceive the
universe. Why bother actually to have it?

The answer is that the universe is the simplest way of perceiving it.”

Fred Hoyle (1915–2001), 1994

∗ ∗
∗

“Thirty seconds after the explosion came, first the air blast pressing hard
against people and things, to be followed almost immediately by the strong,
sustained awesome roar which warned of doomsday and made us feel that
we puny things were blasphemous to dare tamper with the forces heretofore
reserved to the Almighty.”

Thomas Farrell (1944– ), official report
on the first atom bomb test,

Alamogordo, New Mexico, July 16, 1945
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∗ ∗
∗

“The is a rhythm and a pattern between the phenomena of nature which is not
apparent to the eye, but only to the eye of analysis; and it is these rhythms
and patterns which we call Physical Laws.”

“The burden of (this) lecture is just to emphasize the fact that it is impossible
to explain honestly the beauties of the laws of nature in a way that people
can feel, without their having some deep understanding of mathematics.”

“I think that it is much more likely that the reports of flying saucers are the
results of the known irrational characteristics of terrestrial intelligence than
of the unknown rational efforts of extra-terrestrial intelligence.”

“Physicists like to think that all you have to do is say, these are the conditions,
now what happens next?”

“One does not, by knowing all the physical laws as we know them today,
immediately obtain an understanding of anything much.”

Richard Feynman (1918–1988)

∗ ∗
∗

‘The very scale of the universe – more than a hundred billion galaxies, each
containing more than a hundred billion stars – speaks to us of the inconse-
quentiality of human events in the cosmic context. We see a universe simul-
taneously very beautiful and very violent. We see a universe that does not
exclude a traditional Western or Eastern god, but that does not require one
either.”

“The universe forces those who lie in it to understand it.”

Carl Sagan (1934–1996), 1979
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∗ ∗
∗

“Man is a complex thing: he makes desert bloom and lakes die.”

Gil Stern

∗ ∗
∗

“The best (scientific) data we have are exactly what I would have predicted
had I nothing to go on but the five books of Moses, the Psalms, the Bible as
a whole. . . . What we have . . . is an amazing amount of order; and when we
see order, in our experience it normally reflects purpose.”

Arno Penzias (1933– )

∗ ∗
∗

“The ability to reduce everything to simple fundamental laws does not imply
the ability to start from those laws and reconstruct the universe.”

Philip W. Anderson (1923– )

∗ ∗
∗

“There is no reason that the universe should be designed for our convenience.”

John D. Barrow (1952– )

∗ ∗
∗

“Every snowflake is an avalanche pleads not guilty.”

Stanislaw Lec (1909–1966)
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∗ ∗
∗

“Atoms of our body, were once part of stars.”

“As astronomers you can’t say anything except that here is a miracle. . . . Can
you go the other way, back outside the barrier and finally find the answer to
the question why is there something rather than nothing? No, you cannot,
not within science.”

Allan Sandage (1926– )

∗ ∗
∗

“Why is it that the world is structured in such a way that we can know
something without knowing everything? If we could not understand limited
parts of the universe without understanding the whole, science would be a
hopeless enterprise.”

“If science demonstrated an infinitely old universe, science could disprove a
Creator, because an infinitely old universe would never have been created!
On the other hand, in a universe of infinite extent, anything that is possible
must happen somewhere by pure chance. Obviously, we will find ourselves
just where that fantastic happening has occurred.”

“As the universe is slowly choked to death by its own entropy, will God die
too?
The alternative — gravitational collapse to a singularity, resulting in the total
obliteration of the physical universe — seems even less promising.
Only a universe of the cyclic or steady-state varieties, would appear to offer
scope for a natural God to be both infinite and eternal.”

“A universe that came from nothing in the big bang will disappear into noth-
ing in the big crunch, its glorious few zillion years of existence not even a
memory.”

Paul Davies (1946– )
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∗ ∗
∗

“If you see a formula in the Physical Review that extends over a quarter of a
page, forget it. It’s wrong. Nature isn’t that complicated.”

Matthias Berndt (1918–1980)

∗ ∗
∗

“No purported inconsistency with the General Theory’s predictions has ever
stood the test of time. No logical inconsistency in its foundations has ever been
detected. No acceptable alternative has ever been put forward of comparative
simplicity and scope.”

John Archibald Wheeler (1911–2008)

∗ ∗
∗

“Gods are born and die, but the atom endures.”

“Walking in space, man has never looked more puny or more significant.”

Alexander Chase

∗ ∗
∗

“As we look out into the Universe and identify the many accidents of physics
and astronomy that have worked together to our benefit, it almost seems as
if the Universe must in some sense have known that we were coming.”

“If it should turn out that the whole of physical reality can be described by a
finite set of equations, I would be disappointed. I would feel that the Creator
had been uncharacteristically lacking in imagination.”

Freeman Dyson (1923– )
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∗ ∗
∗

“I do not pretend to have all the answers. But the questions themselves are
worth talking about.”

“There is no reason to assume that the universe has the slightest interest in
intelligence – or even in life. Both may be random accidental by-products of
its operations like the beautiful patterns on a butterfly’s wings. The insect
would fly just as well without them.”

“Sometimes I think we’re alone in the universe, and sometimes I think we’re
not. In either case, the idea is quite staggering.”

Arthur C. Clarke (1917–2008)

∗ ∗
∗

“The world began without man, and it will end without him.”

Claude Lévi-Strauss (1908– )

∗ ∗
∗

“Einstein’s postulate that the laws of nature should appear the same to all
freely moving observers was the foundation of the theory of relativity, so called
because it implies that only relative motion is important.”

“Why does the universe go to all the bother of existing?”

“We may now be near the end of the search for the ultimate laws of nature.”

Stephen Hawking (1942– )
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∗ ∗
∗

“Astronomers discover God!”

Headlines in a well-known periodical (1982)

∗ ∗
∗

“The Strong Anthropic Principle
Because there appear to exist such a large number of remarkable and appar-
ently disconnected ‘coincidences’ which conspire to allow life to be possible
in the universe, the universe must give rise to observers at some stage in its
history (i.e. the universe must be such as to admit the creation of observers
within it at some stage).”

“The Weak Anthropic Principle
The observed values of all physical and cosmological quantities take on values
restricted by the requirement that there exist sites where carbon-based life
can evolve and by the requirement that the universe be old enough for it to
have already done so (i.e. what we can expect to observe must be restricted
by the conditions necessary for our presence as observers).”

“The universe must be such as to admit the creation of observers within it.”

Brandon Carter (1942– )

∗ ∗
∗

“Has it a clock? Or is it a clock?”

Colin S. Pittendrigh (1918–1996), 1957
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∗ ∗
∗

“The improbable is bound to happen one day.”

(Anon)

∗ ∗
∗

“The familiar idea of a god who is omniscient (someone who knows every-
thing) does not immediately ring alarm bells in our brains; it is plausible
that such a being could exist. Yet, when it is probed more closely one can
show that omniscience of this sort creates a logical paradox and must, by the
standards of human reason, therefore be judged impossible or be qualified in
some way. To see this consider this test statement:

This statement is not known to be true by anyone.

Now consider the plight of our hypothetical Omniscient Being (‘Big O’). Sup-
pose first that this statement is true and Big O does not know it. Then Big
O would not be omniscient. So, instead, suppose our statement is false. This
means that someone must know the statement to be true; hence it must be
true. So regardless of whether we assume at the outset that this statement is
true or false, we are forced to conclude that it must be true! And therefore,
since the statement is true, nobody (including Big O) can know that it is
true. This shows that there must always be true statements that no being
can know to be true. Hence there cannot be an Omniscient Being who knows
all truths. Nor, by the same argument, could we or our future successors, ever
attain such a state of omniscience. All that can be known is all that can be
known, not all that is true.”

John D. Barrow (1952– )

∗ ∗
∗

“Why is there something rather than nothing at all?”

(Anon)
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∗ ∗
∗

“It is not so much that you are in the universe, as that universe is in you.”

Meher Baba (1894–1969)

∗ ∗
∗

“We can never tell whether the hand of God was at work in the moment of
creation. . . . In the searing heat of the first moment, all the evidence needed
for a scientific study of the cause of the great explosion was melted down and
destroyed.”

Robert Jastrow (1925–2008)

∗ ∗
∗

“It is the most persistent and greatest adventure in human history, this search
to understand the universe, how it works and where it comes from. It is
difficult to imagine that a handful of residents of a small planet circling an
insignificant star in a small galaxy have as their aim a complete understanding
of the entire universe, a small speck of creation truly believing it is capable
of comprehending the whole.”

Murray Gell-Mann (1929– )

∗ ∗
∗

“The more the universe seems comprehensible, the more it seems pointless.”

“Maybe nature is fundamentally ugly, chaotic and complicated. But if it’s
like that, then I want out.”

Steven Weinberg (1933– )
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∗ ∗
∗

“Laws of science (physical laws), are at best approximation of the truth; they
are inaccurate. Laws of Nature are some other laws (statements, principles),
doubtless more complex (which are literally true), which govern the natural
phenomena of the world. These are factual truths, not logical ones. They are
true for every time and every place in the universe, are universal or statistical
claims.”

(Anon)

∗ ∗
∗

“The whole of science is nothing more than a refinement of everyday thinking.”

(Anon)

∗ ∗
∗

“Only daring speculation can lead us further, and not accumulation of facts.”

(Anon)

∗ ∗
∗

“Scientific knowledge is the most reliable and useful knowledge that human
being possess.”

(Anon)
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∗ ∗
∗

“Nature does not care for the survival of individuals, only survival of species.”

(Anon)

∗ ∗
∗

“The bluebird carries the sky on his back.”

Henry David Thoreau (1817–1862)

∗ ∗
∗

“In order to see birds it is necessary to become a part of the silence.”

Robert Lynd (1879–1949)

∗ ∗
∗

“A bird thinks nothing of its flying or it would fall.”

Leslie Sahler (1952– )
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2. The Quantum World

∗ ∗
∗

“Without mysticism man can achieve nothing great.”

André Gide (1869–1951)

∗ ∗
∗

“We have seen the truth, and the truth makes no sense.”

Gilbert Keith Chesterton (1874–1936)

∗ ∗
∗

“Anyone who is not shocked by Quantum Theory has not understood it.”

“There is no quantum world. There is only an abstract quantum physical
description. It is wrong to think that the task of physics is to find out how
nature is. Physics concerns what we can say about nature.”

Niels Bohr (1885–1962)

∗ ∗
∗

“The electron is not as simple as it looks.”

Lawrence Bragg (1890–1971)
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∗ ∗
∗

“Undoubtedly a piece of definitive truth – but not the whole truth, let alone
the definitive truth.”

“Gott würfelt nicht.” (God casts the die, not the dice)

“The more success the quantum theory has, the sillier it looks.”

“Quantum physics formulates laws governing crowds and not individuals.”

“The statistical interpretation of quantum theory has led to important suc-
cesses, but I still believe in the possibility of producing a model of reality
which shall represent events themselves and not merely the probability of,
their occurrence.”

“There is no doubt that quantum mechanics has seized hold of a beautiful
element of truth and that it will be a touchstone for a future theoretical
basis in that it must be deducible as a limiting case from that basis, just
as electrostatics is deducible from Maxwell equations of the electromagnetic
field or as thermodynamics is deducible from statistical mechanics. I do not
believe that quantum mechanics will be the starting point in the search for
this basis, just as one cannot arrive at the foundations of mechanics from
thermodynamics or statistical mechanics.”

“All these fifty years of conscious brooding have brought me no nearer to the
answer to the question ‘what are light quanta?’ Nowadays every Tom, Dick
and Harry thinks he knows it, but he is mistaken.”

Albert Einstein (1879–1955)

∗ ∗
∗

“Complementarity is a thoughtless slogan. If I were thoroughly convinced
that Bohr is honest and really believes in the relevance of his – I do not say
theory, but – sounding word, I shall call it intellectually wicked.”

Erwin Schrödinger (1887–1961)
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∗ ∗
∗

“Only metaphysics can inspire the hard work of theoretical physics.”

“I don’t like it, and I’m sorry I ever had anything to do with it.”

Erwin Schrödinger (1887–1961)

∗ ∗
∗

“By getting to smaller and smaller units, we do not come to fundamental
units, or indivisible units, but we do come to a point where division has no
meaning.”

Werner Karl Heisenberg (1901–1976)

∗ ∗
∗

“The theory of quantum electrodynamics describes nature as absurd from the
point of view of common sense. And it agrees fully with experiment. So I
hope you can accept nature as she is – absurd!”

“If people say they understand quantum mechanics they’re lying.”

“If you believe that atoms are like little solar systems, then you are back in
1910.”

“I think it is safe to say that no one understands quantum mechanics. Do not
keep saying to yourself: ‘But how can it be like that?’ because you will go
into a blind alley from which nobody has yet escaped. Nobody knows how it
can be like that.”

Richard Phillips Feynman (1918–1988)
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∗ ∗
∗

“All of modern physics is governed by that magnificent and thoroughly con-
fusing discipline called quantum mechanics invented more than fifty years ago.
It has survived all tests. We suppose that it is exactly correct. Nobody un-
derstands it but we all know to use it and how to apply it to all problems:
and so we have learned to live with the fact that nobody can understand it.”

“Niels Bohr brainwashed a whole generation of physicists into believing that
the problem of the interpretation of quantum mechanics had been solved fifty
years ago.”

Murray Gell-Mann (1929– )

∗ ∗
∗

“When we are dealing with things as small as atoms and electrons, the ob-
server or experimenter cannot be excluded from the description of nature. The
laws of subatomic physics cannot even be formulated without some reference
to the observer.”

Freeman Dyson (1923– )

∗ ∗
∗

“I dreamt I died and went to heaven, and Saint Peter led me into the presence
of God. And God said ‘You won’t remember me, but I took your Quantum
Mechanics Course in Berkeley in 1947’.”

Robert Serber (1909–1997)
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∗ ∗
∗

“God not only plays dice. He also sometime throws the dice where they cannot
be seen.”

Stephen William Hawking (1942– ), 1975

∗ ∗
∗

“The basic concept and methods of quantum field theory are becoming more
and more mathematical.”

N.N. Bogoliubov (1909–1992)

∗ ∗
∗

“Scientists have come to accept some pretty bizarre notions. The most precise
theory ever created, quantum electrodynamics, starts with one of its funda-
mental postulates being a statement of uncertainty. We deal with concepts of
curved space, of a vacuum that is rich in physical properties, and of pointlike
particles that have a radius equal to zero but which, without embarrassment,
carry spin, electric charge, mass and a plethora of other endowments.”

Leon M. Lederman (1922– )

∗ ∗
∗

“Most of the mathematics needed for quantum mechanics was forged in the
19th century, but quantum mechanics itself was never predicted.”

Shahar Ben-Menahem
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3. Life, Evolution and Reductionism

∗ ∗
∗

“The tree of life in the garden and the tree of knowledge of good and evil.”

(Genesis 2, 9)

∗ ∗
∗

“It is remarkable that the stupidest ape differs so little from the wisest man,
that the surveyor of nature has yet to be found who can draw the line between
them.”

Carl Linnaeus (1707–1778)

∗ ∗
∗

“As many more individuals of each species are born than can possibly sur-
vive... it follows that any being, if it vary ever so slightly in a manner prof-
itable to itself... will have a better chance of survival, and thus be naturally
selected.”

Thomas Malthus (1766–1834)
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∗ ∗
∗

“Life, as manifested to us, is a function of the asymmetry of the universe
and of the consequences of this fact. The universe is asymmetrical; for, if
the whole of the bodies which compose the solar system moving with their
individual movements were placed before a glass, the image in the glass would
not be superposed upon the reality. Even the movement of solar light is
asymmetrical... Terrestrial magnetism, the opposition which exists between
the north and the south poles in a magnet and between positive and negative
electricity, are but resultants of asymmetrical actions and movements... Life is
dominated by asymmetrical actions. I can even imagine that all living species
are primordially, in their structure, in their external functions, functions of
cosmic asymmetry.”

Louis Pasteur (1822–1895), 1874

∗ ∗
∗

“To suppose that the eye with all its inimitable contrivances for adjusting the
focus to different distances, for admitting different amounts of light, and for
the correction of spherical and chromatic aberration, could have been formed
by natural selection, seems, I confess, absurd in the highest degree.”

Charles Darwin (1809–1882)

∗ ∗
∗

“The difference between a piece of stone and an atom is that an atom is highly
organized, whereas the stone is not. The atom is a pattern, and the molecule
is a pattern, and the crystal is a pattern; but the stone, although it is made
up of these patterns, is just a mere confusion. It’s only when life appears
that you begin to get organization on a larger scale. Life takes the atoms and
molecules and crystals; but instead of making a mess of them like the stone,
it combines them into new and more elaborate patterns of its own.”

“The great end of life is not knowledge but action.”

Thomas Henry Huxley (1825–1895)
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∗ ∗
∗

“Nothing in life is to be feared; It is to be understood.”

Marie Curie (1867–1934)

∗ ∗
∗

“Analogies from chemical experience will not, of course, any more than the
ancient comparison of life with fire, give a better explanation of living organ-
isms than will the resemblance, often mentioned, between living organisms
and such purely mechanical contrivances as clockworks. An understanding of
the essential characteristics of living beings must be sought, no doubt, in their
peculiar organization, in which features that may be analyzed by the usual
mechanics are interwoven with typically atomistic traits in a manner having
no counterpart in inorganic matter.”

Niels Bohr (1885–1962)

∗ ∗
∗

“An organism has an astonishing gift of concentrating a ‘stream of order’ on
itself and thus escaping decay into atomic chaos – of ‘drinking orderliness’
from a suitable environment.”

Erwin Schrödinger (1887–1961)

∗ ∗
∗

“The amoeba and the paramecium are potentially immortal. From time to
time each divides itself into two, but... no new individual is ever produced-
only fragments of the original individuals, whose life has thus been continuous
back to the time when life itself was first created.”

Joseph Wood Krutch (1893–1970)
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∗ ∗
∗

“It is selection, not mutation, that determines the direction of evolution... No
mutant gene has the slightest chance of maintaining itself against even the
faintest degree of adverse selection.”

Gavin de Beer (1899–1972)

∗ ∗
∗

“Nothing in Biology makes sense except in light of evolution.”

T.G. Dobzhansky (1900–1975), 1973

∗ ∗
∗

“To us as mammals, the insects seem to belong to some topsy-turvy world
almost outside the reach of our understanding. They have the skeleton on the
outside of the body, the main nervous system below the digestive tract... and
use blood (body fluid) only for the transport of food materials.”

Marston Bates (1906–1974)

∗ ∗
∗

“Life is a cosmic event – so far as we know, the most complex state of orga-
nization that matter has achieved in our cosmos.”

George Wald (1906–1997)
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∗ ∗
∗

“The apparent cause of illnesses is often an infection, an intoxication, nervous
exhaustion, or merely old age. But actually a break-down of the hormonal
mechanism seems to be the most common ultimate cause of death in man.”

Hans Selye (1907–1982)

∗ ∗
∗

“Strange though it may sound, it was a combination of Judeo-Greek ideas,
amalgamated within the medieval church itself, which were to form part of
the foundation out of which finally arose, in the eighteenth and nineteenth
centuries, one of the greatest scientific achievements of all time: the recovery
of the lost history of life.”

Loren Eiseley (1907–1977)

∗ ∗
∗

“Elements and stars, Planets and time, air and water – what would these
things be without intelligent life to illuminate them with perception and
insight?”

Preston Cloud (1912–1991)

∗ ∗
∗

“The programming of a plant’s form is based on the speed and direction of
growth. To take a very simple example, the apple is round because growth
continues equally in all directions as it matures; but a pear grows faster along
its long axis than its radial one.”

Anthony Huxley, 1974
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∗ ∗
∗

“Scrutiny of the organization of shells of many viruses with the electron mi-
croscope proves that their protein molecules are assembled according to well-
known principles of solid geometry, the same ones employed by roof builders
to construct quasi-spherical shells of maximum strength using uniform build-
ing elements. The shells of viruses bear close resemblance to Buckminster
Fuller’s domes.”

“The perfect geometric shape of virus shells is in its way as remarkable as the
symmetrical shape of a starfish or a sea urchin. But the shape of these animals
and of all complex organisms is achieved through an elaborate process of
development, involving cellular interactions whose complex mechanism is not
yet understood. The shape of a virus is simply the outcome of the assembly
of protein molecules tending, like all molecular structures, to reach a state of
minimal energy.”

Salvador Luria (1912–1991)

∗ ∗
∗

“As far as the meaning of life in general, or in the abstract, as far as I can
see, there is none. If all of life were suddenly to disappear from earth and
anywhere else it may exist, or if none had ever formed in the first place, I think
the Universe would continue to exist without perceptible change. However, it
is always possible for an individual to invest his own life with meaning that he
can find significant. He can so order his life that he may find as much beauty
and wisdom in it as he can.”

Isaac Asimov (1920–1992)
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∗ ∗
∗

“I feel that it is the very process of creating so many species which leads to
evolutionary progress... Without speciation, there would be no diversifica-
tion of the organic world, no adaptive radiation, and very little evolutionary
progress.”

“Attempts at a ‘reduction’ of purely biological phenomena or concepts to
laws of the physical sciences has rarely, if ever, led to any advance in our
understanding. Reduction is at best a vacuous, but more often a thoroughly
misleading and futile, approach... System always have the peculiarity that
the characteristics of the whole cannot (not even in theory) be deduced from
the most complete knowledge of the components, taken separately or in other
partial combination. The appearance of new characteristics in wholes has
been designated emergence: Species, competition, territory, migration, and
hibernation are examples of organismic phenomena for which a purely physical
description is at best incomplete and usually biologically irrelevant.”

Ernst Mayer (1901–1952)

∗ ∗
∗

“Biology can neither reduced to physics, nor do without it.”

“It is not inconceivable that in the future the thousands of chemical species
contained in the bacterial cell may be synthesized one by one. But there
is no chance of seeing all these compounds being assembled correctly and a
bacterium emerging fully armed from a test-tube.”

“It is natural selection that gives direction to changes, orients chance, and
slowly, progressively produces more complex structures, new organs, and new
species. Novelties come from previously unseen association of old material.
To create is to recombine.”

Francois Jacob (1920– ), 1977
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∗ ∗
∗

“The greatest mystery is why there is something instead of nothing, and the
greatest something is this thing we call life.”

Allan R. Sandage (1926– )

∗ ∗
∗

“Large, widespread, and successful species tend to be especially stable. Hu-
mans fall into this category, and the historical record supports such a predic-
tion. Human body form has not altered appreciably in 100,000 years.”

Stephen Jay Gould (1941–2002)

∗ ∗
∗

“Consider the difference in size between some of the very tiniest and the
very largest creatures on Earth. A small bacterium weighs as little as
0.00000000001 gram. A blue whale weighs about 100,000,000 grams. Yet
a bacterium can kill a whale... Microbes, not macrobes, rule the world.”

Bernard Dixon

∗ ∗
∗

“Darwinism is not a theory of random chance. It is a theory of random
mutation plus non-random cumulative natural selection.”

“There is enough information capacity in a single human cell to store the
Encyclopedia Britannica, all 30 volumes of it, three or four times over.”

Richard Dawkins (1941– )
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∗ ∗
∗

“Chaos brings new challenge to the reductionist view that a system can be
understood by breaking it down and studying each piece. This view has been
prevalent in science in part because there are so many systems for which the
behavior of the whole is indeed the sum of its parts. Chaos demonstrates,
however, that a system can have complicated behavior that emerges as a
consequence of simple, nonlinear interaction of only a few components. The
problem is becoming acute in a wide range of scientific disciplines, from de-
scribing microscopic physics to modeling macroscopic behavior of biological
organisms. For example, even with a complete map of the nervous system of
a simple organism, the organism’s behavior cannot be deduced.
Similarly, the hope that physics could be complete with an increasingly de-
tailed understanding of fundamental physical forces and constituents is un-
founded. The interaction of components on one scale can lead to complex
global behavior on a larger scale that in general cannot be deduced from
knowledge of the individual components.”

James P. Crutchfield

∗ ∗
∗

“One of the striking things about living creatures is that they do no more
than is required. Unlike most machines, they do not have to be switched on
and off by an outside manipulator; Something is built into them that does
this at the proper time.”

Niko Tinbergen (1907–1988)

∗ ∗
∗

“Continuously dancing bees can even reproduce from memory the distance
and the angle of these sites to the sun... I think that in this capacity for
making delicate responses to the environment and keeping them in mind, lies
a clue to the origins of intelligence and creative awareness.”

Lyall Watson (1939– ), 1976



Quotations 5711

∗ ∗
∗

“The twenty-four-hour cyclical process is so basic from an evolutionary point
of view that all plant and animal cells possess a basic metabolic circadian
rhythm... The whole organism, in a sense, is the clock.”

John E. Orme

∗ ∗
∗

“The capacity to blunder slightly is the real marvel of DNA. Without this
special attribute, we would still be anaerobic bacteria and there would be no
music.”

Lewis Thomas (1913–1993)

∗ ∗
∗

“Left for themselves, things lead to disintegrate and must reach a state of
chaos.”

(The Second Law of Thermodynamics)



5712 6. Deep Principles – Complex Structures

4. Time, History and Man

∗ ∗
∗

“Very few things happen at the right time, and the rest do not happen at all;
the conscientious historian will correct these defects.”

Herodotos (ca 484–425 BCE)

∗ ∗
∗

“The sun also ariseth, and the sun goeth down, and hasteth to his place where
he arose. The wind goeth toward the south, and turneth about unto the north;
it whirleth about continually, and the wind returneth again according to his
circuits. . . The thing that hath been, it is that which shall be; and that which
is done is that which shall be done; and there is no new thing under the
sun. . . There is no remembrance of former things; neither shall there be any
remembrance of things that are to come. . .”

Ecclesiastes 1, 5–11

∗ ∗
∗

“And I heard, but I understood not:
then said I, ‘O my Lord, what shall be
the end of these things?’
And he said, ‘Go thy way, Daniel:
for the words are closed up and sealed

till the time of the end’ ”.

Daniel 12, 8–9, (ca 165 BCE)
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∗ ∗
∗

“To be ignorant of what occurred before you were born is to remain always a
child. For what is the worth of human life, unless it is woven into the life of
our ancestors by the records of history?”

Cicero (46 BCE)

∗ ∗
∗

“Nothing is ours except time.”

Seneca (4 BCE–65)

∗ ∗
∗

“What, then, is time? If no one asks me, I know; if I want to explain it to
someone who does ask me, I do not know.”

“The world was made, not in time, but simultaneously with time.”

Aurelius Augustinus (354–430)

∗ ∗
∗

“The moving Finger writes; and, having writ,
Moves on: nor all thy Piety nor Wit
Shall lure it back to cancel half a Line,
Nor all thy Tears wash out a Word of it.”

Omar Khayyam (ca 1100)
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∗ ∗
∗

“The most precious thing in life is its uncertainty.”

Yoshida Kenko (ca 1340)

∗ ∗
∗

“What’s past is prologue.”

William Shakespeare (1564–1616), ‘The Tempest’

“When I do count the clock that tells the time
And see the brave day sunk in hideous night,
When I behold the violet past prime
And sable curls all silvered o’er with white,
When lofty trees I see barren of leaves,
Which erst from heat did canopy the herd,
And summer’s green, all girded up in sheaves,
Borne on the bier with white and bristly beard:
Then on thy beauty do I question make
That thou among the wastes of Time must go,
Since sweets and beauties do themselves forsake
And die as fast as they see others grow;

And nothing ’gainst Time’s scythe can make defense
Save breed, to brave him when he takes thee hence.”

William Shakespeare (1564–1616), Sonnet 12

“O time! thou must untangle this, not I;
It is too hard a knot for me to untie!”

William Shakespeare (1564–1616), ‘Twelfth Night’ 3, (II)
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∗ ∗
∗

“Coming events cast their shadow before.”

Thomas Campbell (1777–1844)

∗ ∗
∗

“Prior to the creation of the universe, time did not exist. Time started at the
moment of creation.”

Jonathan Eibshitz (1690–1764)

∗ ∗
∗

“To prevent an effect from occurring at all requires a force equal to the cause
of that effect, but to give it a new direction often requires only something
very trivial.”

George Christoph Lichtenberg (1742–1799)

∗ ∗
∗

“Greek civilization depended essentially on slave-labor but could not progress
without the harnessing of natural forces to labor-saving machines. Only the
free man, not a slave, has a disposition and interest to improve implements
or to invent them. Accordingly, in the devising of a complicated machine, the
workmen employed upon it are generally co-inventors. The eccentric and the
governor, most important part of the steam-engine, were devised by labor-
ers. The improvement of established industrial methods by slaves, themselves
industrial machines, is out of question.”

Justus von Liebig (1803–1873)
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∗ ∗
∗

“In analyzing history, do not be too profound, for often the causes are quite
superficial.”

Ralph Waldo Emerson (1803–1882)

∗ ∗
∗

“Ideas have consequences.”

F. Dostoyevski (1821–1881)

∗ ∗
∗

“There is one thing stronger than all the armies in the world: and that is an
idea whose time has come.”

Victor Hugo (1802–1885)

∗ ∗
∗

“Biography is the only history: The history of the world is but the biography
of great men.”

“Speech is of time, silence is of eternity.”

Thomas Carlyle (1795–1881)
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∗ ∗
∗

“Anybody can make history. Only a great man can write it.”

Oscar Wilde (1854–1900)

∗ ∗
∗

“An idea isn’t responsible for the people who believe in it.”

Don Marquis (1878–1937)

∗ ∗
∗

“If you want work well done, select a busy man – the other kind has no time.”

Elbert Hubbard (1856–1915)

∗ ∗
∗

“Time is neutral; but it can be made the ally of those who will seize it and
use it to the full.”

Winston Churchill (1874–1965)

∗ ∗
∗

“Time is the stuff life is made of .”

Benjamin Franklin (1706–1790)
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∗ ∗
∗

“With me goes your meaning too.”

“Das ist der Sinn von allem, was einst war,
dass es nicht bleibt mit seiner ganzen Schwere,
dass es zu unserm Wesen wiederkehre,
in uns verwoben, tief und wunderbar.”

“How can the least thing happen,
unless all future fullness,
time’s completed sum,
move to meet us half-way?”

“The free animal
has its decease perpetually behind it
and God in front, and when it moves, it moves
into eternity, like running springs.”

“The future enters into us, in order to transform itself in us, long before it
happens.”

Rainer Maria Rilke (1875–1925)

∗ ∗
∗

“Nothing has really happened until it has been recorded.”

Virginia Woolf (1882–1941)

∗ ∗
∗

“The oldest of the old follows behind us in our thinking, and yet it comes to
meet us.”

Martin Heidegger (1889–1976)
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∗ ∗
∗

“We physicists work with time every day, but don’t ask me to tell you what
time is; it is too complicated to be thinking about it.”

Richard Phillips Feynman (1918–1988)

∗ ∗
∗

“Everything is a matter of chronology.”

“In theory one is aware that the earth revolves, but in practice one does not
perceive it. So it is with time in one’s life.”

Marcel Proust (1871–1922)

∗ ∗
∗

“For the tribal man space was the uncontrollable mystery. For technological
man it is time that occupies the same role.”

Herbert Marshall McLuhan (1911–1980), (1951)

∗ ∗
∗

“Time is in fact the hero of the plot. What we regard as impossible on the
basis of human experience is meaningless here. Given so much time, the
‘impossible’ becomes the possible, the possible probable, and the probable
virtually certain. One has only to wait: time itself performs the miracles.”

George Wald (1906–1997), (1954)
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∗ ∗
∗

“Money-making, social achievements, family and posterity are nothing but
plain nature, not culture. Culture lies outside the purpose of nature.”

“The essence of culture is continuity and conservation of the past.”

C.G. Jung (1875–1961)

∗ ∗
∗

“Space and time are modes of our thinking and not conditions of our life.”

“I never think of the future. It comes soon enough.”

“Michael left this strange world just before me. This is of no importance.
For us, devout physicists, the distinction between past, present and future
signifies only an obstinate illusion.”

Albert Einstein (1879–1955), (1955)

∗ ∗
∗

“Time is a fluid condition which has no existence except in the momentary
avatars of individual people.”

William Faulkner (1897–1962), 1958

∗ ∗
∗

“The invention of the mechanical clock was one of a number of major advances
that turned Europe from a weak, peripheral, highly vulnerable outpost of
Mediterranean civilization into a hegemonic aggressor.”

David Landes (1924– ), 1980
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∗ ∗
∗

“Our knowledge of time and space owes more to the labors of mathematicians
and physicists than to those of professed philosophers.”

Charles Broad

∗ ∗
∗

“History is the study of the bones of civilizations that failed, as the pterodactyl
and the dinosaur failed.”

Colin Wilson (1931– )

∗ ∗
∗

“Civilizations die of suicide not murder.”

Toynbee (1889–1975)

∗ ∗
∗

“Ideas shape the course of history.”

John Maynard Keynes (1883–1946)

∗ ∗
∗

“In the last 3421 years of recorded history only 268 have seen no war.”

Will Durant (1885–1981)
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∗ ∗
∗

“A study of history shows that civilizations that abandon the quest for knowl-
edge are doomed to disintegration.”

Bernard Lovell (1913– )

∗ ∗
∗

“Great events do not necessarily have great causes.”

“All changes in history, all advance, comes from the non-conformists. If there
had been no troublemakers, no dissenters, we should still be living in caves.”

A.J.P. Taylor (1906–1990)

∗ ∗
∗

“There is no such thing as history, there are only historians.”

Walter Benjamin (1892–1940)

∗ ∗
∗

“Civilizations rise and fall on ideas.Thus, the “Sturm und Drang” philosophy
of Goethe, Kant, Hegel, Rousseau ad Blake, which was essentially a reaction
to rationalism, later ruined Europe and is now undermining the United States.
The Liberal-Left understands this, but the Right has nothing to offer except
religion.”

Alan Bloom (1930–1992)
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∗ ∗
∗

“When the anonymous masses enter history, it is chiefly to be slaughtered in
battle, to die of famine or privation – to illustrate the failures of their betters.
. . . We have the mighty pyramids, but no firsthand account of the feelings of
the wretches who built them.”

Herbert J. Muller (1905–1980)

∗ ∗
∗

“Man is the only animal to be troubled by time, and from that concern comes
much of his finest art, a great deal of his religion, and almost all his science.
First was the temporal regularity of nature — the rising of sun and stars, the
slower rhythm of seasons — which led to the concept of law and order and in
turn to astronomy, the first of all sciences. Changeless environments like in
the deep ocean or the cloud-wrapped surface of Venus provide no stimulus to
intelligence and in such places it may never be able to arise.”

Arthur C. Clarke (1917–2008)

∗ ∗
∗

“The genius of Einstein leads to Hiroshima.”

Pablo Picasso (1881–1973)

∗ ∗
∗

“There is never time to do it right, but there is always time to do it over.”

(Anon)
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∗ ∗
∗

“You are never given enough time or money.”

(Anon)

∗ ∗
∗

“What happens first is not necessarily the beginning.”

(Anon)

∗ ∗
∗

“Throughout all great adventures of men, the cowards stayed behind, the weak
perished on the way, only the strong survived and reached their destination.”

(Anon)

∗ ∗
∗

“The Protestant families which were exiled from the Catholic countries of Eu-
rope during the sixteenth and seventeenth centuries and even during the eigh-
teenth, have given birth to an extraordinarily high number of distinguished
scientists. This is not to be wondered at. These people who preferred the
misery of exile to moral servitude were certainly above the average in their
conscientiousness and earnestness.”

(Anon)
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5. On Mathematics, Zero and Infinity

∗ ∗
∗

“All things are numbers.”

Pythagoras (580–506 BCE)

∗ ∗
∗

“When the Greek philosophers found that the square root of 2 is not a rational
number, they celebrated the discovery by sacrificing 100 oxen.”

Herodotos (ca 484–424 BCE)

∗ ∗
∗

“In fact, everything that can be known has number. For it is not possible to
conceive of, or to know, anything that has not.”

Philolaos of Croton (ca 480 BCE)

∗ ∗
∗

“The mathematical sciences particularly exhibit order, symmetry and limita-
tion; and these are the greatest forms of the beautiful.”

Aristotle (384–322 BCE)
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∗ ∗
∗

“God ever geometrizes.”

“He is unworthy of the name of man who is ignorant of the fact that the
diagonal of a square is incommensurable with its side.”

“How did Thales measure the height of the Pyramide of Cheops? — he
measures the length of its shadow when a man’s shadow was equal to his
height.”

“ Let no one ignorant of geometry enter here.”(Inscribed over the door of the
Academy, ca 387 BCE)

Plato (427–347 BCE)

∗ ∗
∗

“If we can approach the Divine only through symbols, then it is most suitable
that we use mathematical symbols, for these have an indestructible certainty.”

Nicolas of Cusa (1401–1464)

∗ ∗
∗

“Nothing can be created from nothing.”

Lucretius (ca 99–55 BCE)

∗ ∗
∗

“Beauty — the adjustment of all parts proportionately so that one cannot
add or subtract or change without impairing the harmony of the whole.”

Leon Battista Alberti (1404–1472)



Quotations 5727

∗ ∗
∗

“There is no royal road to Geometry.”

“The laws of nature are but the mathematical thoughts of God.”

Euclid (323–283 BCE)

∗ ∗
∗

“But let us remember that we are dealing with infinities and indivisibles, both
of which transcend our finite understanding: the former on account of their
magnitude, the latter because of their smallness. In spite of this, men cannot
refrain from discussing them, even if it must be done in a roundabout way.”

“The universe stands continually open to our gaze but it cannot be understood
unless one first learns to comprehend the language and interpret the characters
in which it is written. It is written in the language of mathematics.”

“The book of Nature is written in mathematical symbols.”

Galileo Galilei (1564–1642)

∗ ∗
∗

“No human investigation can be called real science if it cannot be demon-
strated mathematically.”

Leonardo da Vinci (1452–1519)

∗ ∗
∗

“Ubi materia — ibi geometria.”

Johannes Kepler (1571–1630), 1609
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∗ ∗
∗

“The mathematicians who are merely mathematicians reason correctly, but
only when everything has been explained to them in terms of definitions and
principles. Otherwise they are limited and insufferable, for they only reason
correctly when they are dealing with very clear principles.”

“All that transcends geometry transcends our comprehension.”

Blaise Pascal (1623–1662)

∗ ∗
∗

“The imaginary number is a fine and wonderful recourse of the divine spirit,
almost an amphibian between being and not being.”

“Music the pleasure the human mind experiences from counting without being
aware that it is counting.”

“Datis ordinatis etiam sunt ordinata.”

Gottfried Wilhelm von Leibniz (1646–1716)

∗ ∗
∗

“Eadem mutata resurgo.”

Engraved on the tombstone of Jakob Bernoulli (1654–1705)
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∗ ∗
∗

“I could be bounded in a nutshell and count myself a king of infinite space.”

William Shakespeare (1564–1616), “Hamlet”

∗ ∗
∗

“What is man in nature? Nothing in relation to the infinite, everything in
relation to nothing, a mean between nothing and everything.”

“When I consider the small span of my life absorbed in the eternity of time,
or the small part of space which I can touch or see engulfed by the infinite
immensity of spaces that I know and that know me not, I am frightened and
astonished to see myself here instead of there... now instead of then.”

Blaise Pascal (1623–1662)

∗ ∗
∗

“An infinitesimal is the spirit of a departed quantity.”

George Berkeley (1685–1753)
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∗ ∗
∗

“Mathematics was born and nurtured in a cultural environment. Without the
perspective which the cultural background affords, a proper appreciation of
the content and state of present-day mathematics is hardly possible.”

“Mathematics knows no races or geographic boundaries; for mathematics, the
cultural world is one country.”

“Mathematicians have tried in vein to this day to discover some order in the
sequence of prime numbers, and we have reason to believe that it is a mystery
into which the human mind will never penetrate.”

Leonhard Euler (1707–1783)

∗ ∗
∗

“Algebra is generous: she often gives more than is asked for.”

“A quantity is something or nothing; if it is something, it has not yet vanished;
if it is nothing, it has literally vanished. The supposition that there is an
intermediate state between these two is chimera. ”

Jean le Rond d’Alembert (1717–1783)

∗ ∗
∗

“As long as algebra and geometry proceeded along separate paths, their ad-
vance was slow and their applications limited. But when these sciences joined
company, they drew from each other fresh vitality and thenceforth marched
on at a rapid pace towards perfection.”

Joseph Louis Lagrange (1736–1813)
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∗ ∗
∗

“Nature laughs at the difficulties of integration.”

“At bottom, the theory of probability is only common sense expressed in
mathematical language.”

“All the effects of nature are only mathematical consequences of a small num-
ber of immutable laws.”

“...a profound and important idea which appears so simple to us now that we
ignore its true merit. But its very simplicity and the great ease which it lent
to all computations put our arithmetic in the first rank of useful inventions.”

“It is India that gave us the ingenious method of expressing all numbers by
means of ten symbols, each symbol receiving a value of position as well as an
absolute value; a profound and important idea which appears so simple to us
now that we ignore its true merit, but its very simplicity, the great ease which
it has lent to all computations, puts our arithmetic in the front rank of useful
inventions; and we shall appreciate the grandeur of this achievement when we
remember that it escaped the genius of Archimedes and Apollonios, two of
the greatest men produced by antiquity.”

Pierre Simon de Laplace (1749–1827)

∗ ∗
∗

“There is no branch of mathematics, however abstract, which may not some
day be applied to phenomena of the real world.”

Nikolai Lobachevsky (1792–1856)

∗ ∗
∗

“The mathematician is only complete insofar as he feels within himself the
beauty of the true.”

Johann Wolfgang von Goethe (1749–1832)
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∗ ∗
∗

“The enormous and the minute are interchangeable manifestations of the eter-
nal.”

William Blake (1757–1827)

∗ ∗
∗

“Nature is not embarrassed by difficulties of analysis.”

Augustin Fresnel (1788–1827)

∗ ∗
∗

“The profound study of nature is the most fertile source of mathematical
discoveries.”

Jean Baptiste Joseph Fourier (1768–1830)

∗ ∗
∗

“It is difficult to say which of Fourier results is most to be praised: their
uniquely original quality, their transcendently intense mathematical interest,
or their perennially important instructiveness for physical science.”

“Mathematics is the only good metaphysics.”

Lord Kelvin (1824–1907)
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∗ ∗
∗

“It is not knowledge but the act of learning, not possession but the act of
getting there, which grants the greatest enjoyment. When I have clarified and
exhausted a subject, then I turn away from it in order to go into darkness
again.”

“Important propositions, with the impress of simplicity on them, are often
easily discovered by induction, and yet are of so profound a character that we
cannot find the demonstrations till after many vain attempts; and even then,
when we do succeed, it is often by some tedious and artificial process, while
the simple methods may long remain concealed.”

“Pauca Sed Matura.”

“All the measurements in the world are not the equivalent of a single theorem
that produces a significant advance in our greatest of sciences.”

Carl Friedrich Gauss (1777–1855)

∗ ∗
∗

“Fourier’s book is a great mathematical poem.”

J.C. Maxwell (1831–1879)

∗ ∗
∗

The success of Fourier “It was, no doubt, partially because of his very disre-
gard for rigor that he was able to take conceptual steps which were inherently
impossible to men of more critical genius.”

Rudolph Langer
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∗ ∗
∗

“Looking back, we can see Fourier’s memoir as heralding the surge of new
mathematical methods and results which were to mark the new century. His
ideas are built into the commonsense of our society.”

T.W. Körner, 1988

∗ ∗
∗

“Fourier’s book was of paramount importance in the history of mathematics
and pure analysis perhaps owed it even more than applied mathematics.”

Poincare (1854–1912), 1895

∗ ∗
∗

“I have had my results for a long time: but I do not yet know how I am to
arrive at them.”

“I protest against the use of an infinite quantity as an actual entity; this is
never allowed in mathematics. The infinite is a manner of speaking, in which
one properly speaks of limits to which certain ratios can come as near as
desired, while others are permitted to increase without bound.”

“Mathematics is concerned only with the enumeration and comparison of
relations.”

“The higher arithmetic offers an inexhaustible wealth of interesting truths,
which are not isolated but stand in intimate relationship with each other, and
which reveal, as the science develops, ever new, even unexpected, connexions.”

Carl Friedrich Gauss (1777–1855)
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∗ ∗
∗

“Between Analysis and Number Theory, which have long been held to be
quite separate disciplines, one has discovered, in recent times, with increasing
frequency, interconnections which are often unexpected. A rich source of such
connections, and one which will long remain unexhausted, is the analysis of
elliptic functions.”

“The theory of elliptic functions is a vast subject of research, which in the
course of its development embraces almost all algebra, the theory of definite
integrals, and the science of numbers.”

“The deduction of these arithmetical theorems from developments in Analy-
sis not only increases the supply of methods of proof in arithmetic, but the
theorems themselves are found to acquire a new and striking form.”

“God ever arithmetizes.”

“Man muss immer generalisieren.”

“For Gaussian rigor, we have no time.”

“Problems of number theory are just as important as problems from the real
world. The honor of the human spirit is at stake.”

C.G.J. Jacobi (1804–1851)

∗ ∗
∗

“There is no study in the world which brings into more harmonious action all
the faculties of the mind then mathematics. It seems to raise them, by suc-
cessive steps of initiation, to higher and higher states of conscious intellectual
being.”

“The object of pure physics is the unfolding of the laws of the intelligible
world; the object of pure mathematics is that of unfolding of the laws of
human intelligence.”

James Joseph Sylvester (1814–1897)



5736 6. Deep Principles – Complex Structures

∗ ∗
∗

“The moving power of mathematical invention is not reasoning but imagina-
tion.”

Augustus de Morgan (1806–1871)

∗ ∗
∗

“Time was when all the parts of the subject were dissevered, when algebra,
geometry, and arithmetic either lived apart or kept up cold relations of ac-
quaintance confined to occasional calls upon one another; but that is now
at an end; they are drawn together and are constantly becoming more and
more intimately related and connected by a thousand fresh ties, and we may
confidently look forward to a time when they shall form but one body with
one soul.
The world of ideas which it [mathematics] discloses or illuminates, the con-
templation of divine beauty and order which it induces, the harmonious con-
nection of its parts, the infinite hierarchy and absolute evidence of the truths
with which it is concerned, these, and such like, are the surest grounds of
the title of mathematics to human regard, and would remain unimpeached
and unimpaired were the plan of the universe unrolled like a map at our feet,
and the mind of man qualified to take in the whole scheme of creation at a
glance.”

J.J. Sylvester (1814–1897), 1869

∗ ∗
∗

“I see it but I do not believe it.”

“In re mathematica ars proponendi questionem pluris facienda est quam sol-
vendi.”

Georg Cantor (1845–1918)
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∗ ∗
∗

“The teacher should let science develop before the eyes of his pupil.
As it develops and takes form in the mind of the mature thinker, out of his
fundamental ideas, so shall he present it, merely adjusting it to the youthful
power of understanding.”

“It is true that a mathematician who is not also something of a poet, will
never be a perfect mathematician.”

Karl Theodor Wilhelm Weierstrass (1815–1857), 1883

∗ ∗
∗

“The integer numbers have been made by God, everything else is the work of
man.”

Leopold Kronecker (1823–1891)

∗ ∗
∗

“In eternity, I plan to spend eight million years on mathematics.”

Mark Twain (1835–1910)

∗ ∗
∗

“In most sciences one generation tears down what another has built, and what
one has established another undoes. In mathematics alone, each generation
builds a new story to the old structures.”

Hermann Hankel (1839–1873)
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∗ ∗
∗

“A mathematician may say anything he pleases, but a physicist must be at
least partially sane.”

“Mathematics is a language.”

Josiah Willard Gibbs (1839–1903)

∗ ∗
∗

“Among the minor, yet striking characteristics of mathematics, may be men-
tioned the fleshless and skeletal build of its propositions; the peculiar difficulty,
complication, and stress of its reasonings; the perfect exactitude of its results;
their broad universality; their practical infallibility.”

“The one [the logician] studies the science of drawing conclusions, the other
[the mathematician] the science which draws necessary conclusions.”

“...mathematics is distinguished from all other sciences except only ethics, in
standing in no need of ethics. Every other science, even logic, especially in its
early stages in danger of evaporating into airy nothingness, degenerating, as
the Germans say, into an arachnoid film, spun from the stuff that dreams are
made of. There is no such danger for pure mathematics; for that is precisely
what mathematics ought to be.”

Charles Sanders Peirce (1839–1914)

∗ ∗
∗

“One cannot escape the feeling that these mathematical formulae have an
independent existence and intelligence of their own, that they are wiser than
we are, wiser even than their discoverers, that we get more out of them than
was originally put into them.”

Heinrich Rudolf Hertz (1857–1894)
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∗ ∗
∗

“Geometrical properties are characterized by their invariance under a group
of transformations.”

“When I was a student, Abelian functions were, as an effect of the Jacobian
tradition, considered the uncontested summit of mathematics and each of us
was ambitious to make progress in this field. And now? The younger genera-
tion hardly knows Abelian functions. How did this happen? In mathematics,
as in other sciences, the same process can be observed again and again. First
new questions arise, for internal or external reasons, and draw researchers
away from the old questions. And the old questions, just because they have
been worked on so much, need ever more comprehensive study for their mas-
tery. This is unpleasant, and so one is glad to turn to problems that have
been less developed and therefore require less foreknowledge — even if it only
a matter of axiomatics, or set theory, or some such thing.”

Felix Christian Klein (1849–1925)

∗ ∗
∗

“I know mathematical processes that I have used with success for a very long
time, of which neither I nor anyone else understands the scholastic logic. I
have grown into them, and so understand them that way.”

“Shall I refuse my dinner because I do not fully understand the process of
digestion? No, not if I am satisfied with the result.”

“Euclid is the worst. It is shocking that young people should be addling
their brains over mere logical subtleties, trying to understand the proof of
one obvious fact in terms of something equally obvious.”

Oliver Heaviside (1850–1925)
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∗ ∗
∗

“With the introduction of the infinitely small and infinitely large, mathemat-
ics, usually so strictly ethical, fell from grace. The virgin state of absolute
validity and irrefutable proof of everything mathematical was gone forever;
the realm of controversy was inaugurated, and we have reached the point
where most people differentiate and integrate not because they understand
what they are doing, but from pure faith, because up to now it has always
come out right.”

Friedrich Engels (1820–1895)

∗ ∗
∗

“...without mathematical infinity, there would be no science at all, because
there would be nothing general.”

“It has been said that geometry is the art of applying good reasoning to bad
diagrams. This is not a joke but a truth worthy of serious thought. What do
we mean by a poorly drawn figure? It is one where proportions are changed
slightly or even markedly, where straight lines become zigzag, circle acquire
incredible humps. But none of this matters.
An inept artist, however, must not represent a closed curve as if it were open,
three concurrent lines as if they intersected in pairs, nor must he draw an
unbroken surface when the original contains holes.”

“One geometry cannot be more true than another; it can only be more con-
venient. Geometry is not true, it is advantageous.”

“Mathematics is the art of giving the same name to different things.”

“If we wish to foresee the future of mathematics, our proper course is to study
the history and present conditions of the science.”

Henri Jules Poincaré (1854–1912)
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∗ ∗
∗

“The mathematician, carried along on his flood of symbols, dealing apparently
with purely formal truths, may still reach results of endless importance for
our description of the physical universe.”

Karl Pearson (1857–1936)

∗ ∗
∗

“The mathematician has reached the highest rung of the ladder of human
thought.”

Havelock Ellis (1859–1939)

∗ ∗
∗

“The perfection of mathematical beauty is such...that whatsoever is most
beautiful and regular is also found to be most useful and excellent.”

D’Arcy Thompson (1860–1948)

∗ ∗
∗

“The first comment I would make after waking at the end of a thousand year
sleep would be: ‘Is the Riemann hypothesis established yet’?”

“As long as a branch of science offers an abundance of problems, so long is it
alive; a lack of problems foreshadows extinction or the cessation of indepen-
dent development.”

“From time immemorial the infinite has stirred men’s emotions more than
any other question. Hardly any other idea stimulated the mind so fruitfully.
Yet no other concept needs clarification more than it does.”

David Hilbert (1862–1943)
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∗ ∗
∗

“Do not work within two hours of a substantial meal; blood cannot be in two
places at once.”

“Any identity, once verified, is trivial.”

John Edensor Littlewood (1885–1977)

∗ ∗
∗

“Oriental mathematics may be an interesting curiosity, but Greek mathe-
matics is the real thing. The Greeks first spoke a language which modern
mathematicians can understand; as Littlewood said to me once, they are not
clever schoolboys or ‘scholarship candidates’, but ‘Fellows of another college’.
So Greek mathematics is ‘permanent’, more permanent even than Greek liter-
ature. Archimedes will be remembered when Aeschylus is forgotten, because
languages die and mathematical ideas do not. ‘Immortality’ may be a silly
word, but probably a mathematician has the best chance of whatever it may
mean.”

“Here is to pure mathematics, may it never find an application.”

“The ‘seriousness’ of a mathematical theorem lies, not in its practical con-
sequences, which are usually negligible, but in the significance of the mathe-
matical ideas which it connects. We may say, roughly, that a mathematical
idea is ‘significant’ if it can be connected, in a natural and illuminating way,
with a large complex of other mathematical ideas. Thus a serious mathemat-
ical theorem, a theorem which connects significant ideas, is likely to lead to
important advances in mathematics itself and even in other sciences.”

“Sometimes one has to say difficult things, but one ought to say them as
simply as one knows how.”

Godfrey Harold Hardy (1877–1947)



Quotations 5743

∗ ∗
∗

‘If insight is the essential element in intelligent problem-solving, fixation is
its archenemy. Fixation is overcome and insight attained by a sudden shift
in the way the problem or the objects involved in it are viewed. The work
described in this article has pointed to some of the factors that necessitate this
sudden shift, but precisely what brings it about is still unknown. It remains
the central problem of problem-solving.”

George Polya (1887–1985)

∗ ∗
∗

“Mathematics is the most powerful technique for the understanding of pat-
terns and for the analysis of the relations of patterns.”

“In the year 1500 Europe knew less than Archimedes who died in the year
212 BCE.”

“ I will not go so far as to say that to construct a history of thought without
profound study of the mathematical ideas of successive epochs is like omitting
Hamlet from the play which is named after him. . . But it is certainly analogous
to cutting out the part of Ophelia. This simile is singularly exact. For Ophelia
is quite essential to the play, she is very charming – and a little mad.”

“The science of pure mathematics may claim to be the most original creation
of the human spirit.”

Alfred North Whitehead (1861–1947)

∗ ∗
∗

“Deepest interrelationship in analysis are of an arithmetical nature.”

Hermann Minkowski (1864–1909)
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∗ ∗
∗

“Rigor merely sanctions the conquests of the intuition.”

Jacques Solomon Hadamard (1865–1963)

∗ ∗
∗

“A barber is presumed to shave each man in his town who does not shave
himself, but not to shave anyone else. Does the barber shave himself ?”

“Physics is mathematical not because we know so much about the physical
world, but because we know so little: it is only its mathematical properties
that we can discover.”

“It must have required many ages to discover that a brace of pheasants and
a couple of days were both instances of the number two.”

“Mathematics, rightly viewed, possesses not only truth, but supreme beauty
— a beauty cold and austere, without appeal to any part of our weaker nature,
without the gorgeous trappings of painting or music, yet sublimely pure, and
capable of a stern perfection such as only the greatest art can show.”

“A good notation has a subtlety and suggestiveness.”

“Mathematics is the science in which we do not know what we are talking
about, and do not care whether what we say about it is true.”

“Mathematics is, I believe, the chief source of the belief in eternal and exact
truth, as well as in a super-sensible intelligible world.”

Bertrand Russell (1872–1970)
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∗ ∗
∗

“Mathematics may explore the forth dimension but the Czar can be over-
thrown only in the third dimension.”

Vladimir Ilyich Lenin (1870–1924)

∗ ∗
∗

“I don’t believe in mathematics.”

“Mathematics offers the exact natural sciences certain measure of security
which, without mathematics, they could not attain.”

“Pure mathematics is, in its way, the poetry of logical ideas.”

“Mathematics are well and good but nature keeps dragging us around by the
nose.”

“Since the basic equations of physics are nonlinear, all the mathematical
physics will have to be done over again.”

“How can it be that mathematics, being after all a product of human thought,
independent of experience, is so admirably adapted to the objects of reality?”

“As far as the laws of mathematics refer to reality, they are not certain; and
as far as they are certain, they do not refer to reality.”

“God does not care about our mathematical difficulties. He integrates empir-
ically.”

Albert Einstein (1879–1955)
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∗ ∗
∗

“Egyptian pyramids, Doric temples, and Gothic cathedrals are mathematics
in stone.”

Oswald Spengler (1880–1936)

∗ ∗
∗

“Proof, as pure mathematicians understand it, is really quite uninteresting
and unimportant. No one who is really certain that he found something good
should waste his time looking for a proof .”

“I know passages written in mathematical symbols which in their sublimity
might vie with a sonnet of Shakespeare.”

Arthur Stanley Eddington (1882–1944)

∗ ∗
∗

“There is a certain loose continuity in all mathematics, clear back to Babylon
and Egypt, but the interesting and fruitful points on the curve of progress are
the discontinuities that appear when the curve is closely analyzed.”

Eric Temple Bell (1883–1960)

∗ ∗
∗

“God is a mathematician.”

James Hopwood Jeans (1887–1946)
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∗ ∗
∗

‘Zero’ is the absolute negations of all attributes.
‘Infinity’ is the totality of all possibilities, manifested in a reality that is
inexhaustible.
The product of infinity and zero supplies the while set of finite numbers.
Each act of creation could be symbolized as a particular product of infinity
and zero. From each such product could emerge a particular individual of
which the appropriate symbol was a particular finite number.

“An equation for me has no meaning unless it expresses a thought of God.”

“As soon as I heard the problem it was clear that the solution should obviously
be a continued fraction; I then thought, which continued fraction? And the
answer came to my mind.”

S. Ramanujan (1887–1920)

∗ ∗
∗

“Mathematics is the art of problem solving.”

“When you have satisfied yourself that the theorem is true you start proving
it.”

“If you cannot solve a problem, then there is an easier problem you can’t
solve: find it.”

George Polya (1887–1985)

∗ ∗
∗

“There are easier ways to make money than by proving Fermat’s Last Theo-
rem.”

Louis Joel Mordell (1888–1972)
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∗ ∗
∗

“Empirical evidence can never establish mathematical existence — nor can the
mathematician’s demand for existence be dismissed by the physicist as useless
rigor. Only a mathematical existence proof can ensure that the mathematical
description of a physical phenomenon is meaningful.”

Richard Courant (1888–1972)

∗ ∗
∗

“When feeling burdened or downcast,... the human mind will gladly turn to
the realms of Mathematics, where a lucid and precise grasp of objectivities
is obtained and insight is gained so pleasantly through appropriate concept
formation. Here the human spirit feels at home.”

Paul Bernays (1888–1977)

∗ ∗
∗

“Mathematics itself is only a particular formulation of the mathematical.”

Martin Heidegger (1889–1976)

∗ ∗
∗

“To be a scholar of mathematics you must be born with talent, insight, con-
centration, taste, luck, drive and the ability to visualize and guess.”

Paul Halmos (1916–2006), 1985
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∗ ∗
∗

“When I am working on a problem, I never think about beauty. I think only
how to solve the problem. But when I have finished, if the solution is not
beautiful, I know it is wrong.”

Richard Buckminster Fuller (1895–1983)

∗ ∗
∗

“Greek pure mathematics covers a very short time indeed, beginning in the
time of Plato (Theaetetos and Eudoxos, ca 400 BCE), condensed in the Ele-
ments and appearing for the last time in the works of Archimedes and Apol-
lonios (200 BCE). The main reason for this early interruption of pure math-
ematics can be found in the purely geometric type of expression which was
adopted in order to gain the higher degree of generality which the geometrical
magnitudes represent, in contrast to the field of rational numbers, which was
the exclusive concern of oriental mathematics and astronomy. This geometri-
cal language, however, very soon reached such a degree of complication that
development beyond the theory of conic sections was practically impossible.
As a result, the development of theoretical mathematics ended two centuries
after its beginning.
I think that the influence of this Greek pure mathematics on the general
standard of mathematics in antiquity has been very much overestimated. Even
Euclid’s own works, other than the Elements, are on a very different level; this
can be simply explained by the remark that the Elements are concerned with
very special group of problems, mainly concentrated on the theory of irrational
numbers where the exactitude of definitions and conclusions is the essential
point of the discussion.
The main part of mathematical literature, however, was less rigorous and rep-
resented the direct continuation of Babylonian and even Egyptian method.
The Babylonian influence is, for instance, mainly responsible for the general
character of other groups of Greek mathematical literature, as, e.g., the work
of Diophantos (ca 300 CE). This situation in the field of mathematics corre-
sponds very much to the general character of the Hellenistic culture, with its
mixture of very contradictory elements from all parts of the ancient world.”

Otto Neugebauer (1899–1990)
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∗ ∗
∗

“The mathematician plays a game in which he himself invents the rules while
the physicist plays a game in which the rules are provided by Nature, but as
time goes on it becomes increasingly evident that the rules which the mathe-
matician finds interesting are the same as those which Nature has chosen.”

“In science one tries to tell people, in such a way as to be understood by
everyone, something that no one ever knew before. But in poetry, it’s the
exact opposite.”

“If there is a God, he’s a great mathematician.”

“Sensible mathematics involves neglecting a quantity when it is small – not
neglecting it because it is infinitely great and you do not want it!”

“If there is a God, he’s a great mathematician.”

“It seems to be one of the fundamental features of nature that fundamental
physical laws are described in terms of mathematical theory of great beauty
and power, needing quite a high standard of mathematics for one to under-
stand it. You may wonder: Why is nature constructed along these lines?
One can only answer that our present knowledge seems to show that it is so
constructed. We simply have to accept it. One could perhaps describe the
situation by saying that God is a mathematician of a very high order, and
He used very advanced mathematics in constructing the universe. Our fee-
ble attempts at mathematics enable us to understand a bit of the universe,
and as we proceed to develop higher and higher mathematics we can hope to
understand the universe better.”

“I am not interested in proofs, only what nature does.”

“Mathematics is the tool specially suited for dealing with abstract concepts
of any kind and there is no limit to its power in this field.”

Paul Adrien Maurice Dirac (1902–1984)
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∗ ∗
∗

“If people do not believe that mathematics is simple, it is only because they
do not realize how complicated life is.”

“In mathematics you don’t understand things. You just get used to them.”

“It is only proper to realize that language is largely a historical accident. The
basic human languages are traditionally transmitted to us in various forms,
but their very multiplicity proves that there is nothing absolute and neces-
sary about them. Just as languages like Greek or Sanskrit are historical facts
and not absolute logical necessities, it is only reasonable to assume that log-
ics and mathematics are similarly historical, accidental forms of expression.
They may have essential variants, i.e. they may exist in other forms than the
ones to which we are accustomed. Indeed, the nature of the central nervous
system and of the message systems that it transmits indicate positively that
this is so. We have now accumulated sufficient evidence to see that whatever
language the central nervous system is using, it is characterized by less logical
and arithmetical depth than what we are normally used to. The following is
an obvious example of this: the retina of the human eye performs a consid-
erable reorganization of the visual image as perceived by the eye. Now, this
reorganization is effected on the retina, or to be more precise, at the point
of entry of the optic nerve by means of three successive synapses only, i.e.
in terms of three consecutive logical steps. The statistical behavior of the
message system used in the arithmetics of the central nervous system and
its low precision also indicate that the degeneration of precision cannot pro-
ceed very far in the message system involved. Consequently, there exist here
different logical structures from the ones we are ordinarily used to in logic
and mathematics. They are characterized by less logical and arithmetical
depth than we are used to under otherwise similar circumstances. Thus logic
and mathematics in the central nervous system, when viewed as languages,
must structurally be essentially different from those languages to which our
common experience refers.”

John von Neumann (1903–1957)
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∗ ∗
∗

“The zero is the most important digit. It is a stroke of genius, to make
something out of nothing by giving it a name and inventing a symbol for it.”

Bartel Leendert van der Waerden (1903–1996)

∗ ∗
∗

“The problem is, when we try to calculate all the way down to zero distance,
the equation blows up in our face and gives us meaningless answers – things
like infinity. This caused a lot of trouble when the theory of quantum electro-
dynamics first came out. People were getting infinity for every problem they
tried to calculate.”

“Mathematics is a tool for reasoning. It is not a science from our point of
view, in the sense that it is not a natural science. The test of its validity is
not experiment.”

“I love only nature, and I hate mathematicians.”

Richard Feynman (1918–1988)

∗ ∗
∗

“God exists since mathematics is consistent, and the Devil exists since we
cannot prove it.”

Andre Weil (1906–1998)
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∗ ∗
∗

“The danger of the mathematician making mistakes is an unavoidable corol-
lary of his power to hit sometimes upon an entirely new method. This seems
to be confirmed by the well-known fact that the most reliable people will not
usually hit upon new methods.”

Alan Mathison Turing (1912–1954)

∗ ∗
∗

“When the answer to your question is ‘yes’ then you have asked the wrong
question.”

Fritz John (1910–1994)

∗ ∗
∗

“The genesis of the majority of mathematical theories is obscure and difficult.
Often, today’s presentation of a classical topic, will be much more accessi-
ble and concise than it could even have been when it was developed. Any
scientist’s work, can only be understood within its contemporary scientific
framework.”

Walter K. Bühler (1944– )

∗ ∗
∗

“Probability is a simple subject; all the answers are between zero and one.”

Byron Goldstein
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∗ ∗
∗

“From long experience, all working mathematicians know that there is a pre-
liminary period of rapid advancement in ideas without worrying about exact
definitions and proofs, after which there is very hard work to go from that
level of accuracy to finished mathematics, where the bugs in definitions and
proofs are gone, and concepts are quite clear. A lot of things change in the
process. This is the essence of finishing mathematical work.”

Anil Nerode

∗ ∗
∗

“Mathematics is the science of order. Its object is to find, describe, and
understand the order that underlies apparently complex situations. The prin-
cipal tools of mathematics are concepts which enable us to describe order.
Precisely because mathematicians have been searching for centuries for the
most efficient concepts for describing obscure instances of order, their tools
are applicable to the outside world: for the real world is the very epitome of
a complex situation in which there is a great deal of order.”

Andrew Gleason (1921– )

∗ ∗
∗

“It has been said that World War I was the chemist’s war, World War II was
the physicist’s war, World War III (may it never come) will be the mathe-
maticians’ war.”

(Anon)

∗ ∗
∗

“The infinite is the mathematician’s paradise.”

(Anon)
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∗ ∗
∗

Q: What’s the difference between a mathematician and a physicist?
A: A mathematician thinks that two points are enough to define a strait line
while a physicist wants more data.

(Anon)

∗ ∗
∗

“The equation eπi = −1 has been called the eutectic point of mathematics,
for no matter how you boil down and explain this equation, which relates four
of the most remarkable numbers of mathematics, it still has a certain mystery
about it that cannot be explained away.”

(Anon)

∗ ∗
∗

“An applied mathematician loves the theorem. A pure mathematician loves
the proof .”

(Anon)

∗ ∗
∗

“The trouble with integers is that we have examined only the very small ones.
Maybe all the exciting stuff happens at really big numbers, ones we can’t even
begin to think about in any very definite way. Our brains have evolved to get
us out of the rain, find where the berries are, and keep us from getting killed.
Our brains did not evolve to help us grasp really large numbers or to look at
things in a hundred thousand dimensions.”

Ronald L. Graham (1935– )
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∗ ∗
∗

“Mathematics has beauties of its own – a symmetry and proportion in its
results, a lack of superfluity, an exact adaptation of means to ends, which
is exceedingly remarkable and to be found only in the works of the greatest
beauty. When this subject is properly ... presented, the mental emotion
should be that of enjoyment of beauty...”

J.W.A. Young

∗ ∗
∗

“Hiding between all the ordinary numbers was an infinity of transcendental
numbers whose presence you would never have guessed unless you looked
deeply into mathematics.”

Carl Sagan (1934–1996)

∗ ∗
∗

“Nature does not count nor do integers occur in nature. Man made them all,
integers and all the rest, Kronecker to the contrary notwithstanding.”

Percy William Bridgman (1882–1961)

∗ ∗
∗

“The problem with linear theory is that it is not nonlinear.”

John A. Adam (1735–1826)
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∗ ∗
∗

“Zero is powerful because it is infinity’s twin. They are equal and opposite,
yin and yang. They are equally paradoxical and troubling. The biggest ques-
tions in science and religion are about nothingness and eternity, the void and
the infinite, zero and infinity. The clashes over zero were the battles that
shook the foundations of philosophy, of science, of mathematics, and of reli-
gion. Underneath every revolution lay a zero – and an infinity.
Zero was at the heart of the battle between East and West. Zero was the cen-
ter of the struggle between religion and science. Zero became the language of
nature and the most important tool in mathematics. And the most profound
problems in physics – the dark core of a black hole and the brilliant flash of
the big bang, are struggles to defeat zero.
Yet, through all its history, despite rejection and exile, zero has always de-
feated those who opposed it. Humanity could never force zero to fit its philoso-
phies. Instead, zero shaped humanity’s view of the universe – and of God.”

Charles Seife

∗ ∗
∗

“The mathematical description of the world depends on a delicate interplay
between continuity and discontinuous, discrete phenomena. The latter are
perceived first. ‘Functions, just like living beings, are characterized by their
singularities’. Singularities, bifurcations and catastrophes are different terms
for describing the emergence of discrete structures from smooth, continuous
ones.”

Vladimir Igorevich Arnol’d (1937– )

∗ ∗
∗

“Mathematics is the grammar of science and order.”

Lancelot T. Hogben (1895–1975)
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∗ ∗
∗

“We should now place the operational calculus with Poincaré discovery of
automorphic functions and Ricci’s discovery of the tensor calculus as the three
most important mathematical advances of the last quarter of the 19th century.
Applications, extension, and justifications of it constitute a considerable part
of the mathematical activity of today.”

Edmund Taylor Whittaker (1873–1956), 1928

∗ ∗
∗

“The whole form of modern mathematical thinking was created by Euler. It
is only with the greatest difficulty that one is able to follow the writings of any
author preceding Euler, because it was not yet known how to let the formulae
speak for themselves. This art Euler was the first to teach..”

F. Rudio (1857–1929)

∗ ∗
∗

“Mathematics is an exciting, dynamic field that continues to generate provoca-
tive ideas and novel concepts. Some notions quickly find their way into ap-
plications; others rest on their intrinsic beauty; still others occupy a modest
place in the growing structure of mathematics itself.”

Ivar Peterson

∗ ∗
∗

“The mathematician is simultaneously a revolutionary and a conservative; a
deep–rooted skeptic and an avowed optimist.”

Max Dehn (1878–1952)
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∗ ∗
∗

“When, after a thousand-year stupor, European thought shook off the effect
of the sleeping powders so skillfully administered by the Christian Fathers,
the problem of infinity was one of the first to be revived.”

“In the history of culture, the discovery of zero will always stand out as one
of the greatest single achievements of the human race.”

Tobias Dantzig (1884–1956)

∗ ∗
∗

“Perhaps the most surprising thing about mathematics is that it is so sur-
prising. The rules which we make up at the beginning seem ordinary and
inevitable, but it is impossible to foresee their consequences. These have
only been found out by long study, extending over many centuries. Much of
our knowledge is due to a comparatively few great mathematicians such as
Newton, Euler, Gauss, Cauchy or Riemann; few careers can have been more
satisfying than theirs. They have contributed something to human thought
even more lasting than great literature, since it is independent of language.”

E.C. Titchmarsh (1899–1963)

∗ ∗
∗

“I like mathematics because it is not human and has nothing particular to do
with this planet or with the whole accidental universe - because like Spinoza’s
God, it won’t love us in return.”

Bertrand Russell (1872–1970), 1912
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∗ ∗
∗

“Geometry, however, supplies sustenance and meaning to bare formulas.
Geometry remains the major source of rich and fruitful intuitions, which in
turn lend creative power to mathematics. Most mathematicians think in
terms of geometric schemes, even though they leave no trace of that scaffold-
ing when they present the complicated analytical structures. One can still
believe Plato’s statement that geometry draws the soul toward truth.’
Mathematics is a marvelous invention, but the marvel lies in the human mind’s
capacity to construct understandable models of complex and seemingly in-
scrutable natural phenomena and thereby give man some enlightenment and
power. Mathematics may be the queen of the science and therefore entitled to
royal prerogatives, but the queen who loses touch with her subjects may lose
support and even be deprived of her realm. Mathematicians may like to rise
into the clouds of abstract thought, but they should, and indeed they must,
return to earth for nourishing food or else die of mental starvation. They are
on safer and saner ground when they stay close to nature. As Wordsworth
put it “Wisdom oft is nearer when we stoop than when we soar.”

“The tantalizing and compelling pursuit of mathematical problems offers men-
tal absorption, peace of mind amid endless challenges, repose in activity, battle
without conflict, ‘refuge from the goading urgency of contingent happenings,’
and the sort of beauty changeless mountains present to sense tried by the
present-day kaleidoscope of events.”

Morris Kline (1908–1992)

∗ ∗
∗

“Mathematics was born and nurtured in a cultural environment. Without the
perspective which the cultural background affords, a proper appreciation of
the content and state of present-day mathematics is hardly possible.”

R.L. Wilder (1896–1982)
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∗ ∗
∗

“After having spent years trying to be accurate, we must spend as many more
in discovering when and how to be inaccurate.”

Ambrose Gwinett Bierce (1842–1914)

∗ ∗
∗

“Occupation with the study of mathematics is the best remedy against the
lusts of the flesh.”

Thomas Mann (1875–1955)

∗ ∗
∗

“I had a feeling once about mathematics — that I saw it all. Depth beyond
Depth was revealed to me — the Byss and the Abyss. I saw a quantity passing
through infinity and changing its sign from plus to minus. I saw exactly how
it happened and why the tergiversation was inevitable — but it was after
dinner and I let it go.”

Winston Churchill (1874–1965)

∗ ∗
∗

“The solution of problems is one of the lowest forms of mathematical research,
...yet its educational value cannot be over estimated. It is the ladder by which
the mind ascends into higher fields of original research and investigation.
Many dormant minds have been aroused into activity through the mastery of
a single problem.”

Benjamin Finkel (1865–1947), 1894
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∗ ∗
∗

“Mathematics is the language of the possible.”

(Anon)

∗ ∗
∗

“Topologist – a man who cannot tell the difference between a cup and a
doughnut.”

(Anon)

∗ ∗
∗

“Mathematics knows no races or geographic boundaries; for mathematics, the
cultural world is one country.”

(Anon)

∗ ∗
∗

“Part of the charm in solving a differential equation is in the feeling that we
are getting something for nothing. So little information appears to go into
the solution that there is a sense of surprise over the extensive results that
are derived.”

(Anon)

∗ ∗
∗

“Black holes result from God dividing the universe by zero.”

(Anon)
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∗ ∗
∗

“The infinite! No other question has ever moved so profoundly the spirit of
man.”

(Anon)

∗ ∗
∗

“The true spirit of delight, the exaltation, the sense of being more than Man,
which is the touchstone on the highest excellence is to be found in mathematics
as surely as in poetry.”

(Anon)

∗ ∗
∗

“The Theory of Groups is a branch of mathematics in which one does some-
thing to something and then compares the result with the result obtained
from doing the same thing to something else, or something else to the same
thing.”

(Anon)

∗ ∗
∗

“I’m sorry to say that the subject I most disliked was mathematics. I have
thought about it. I think the reason was that mathematics leaves no room
for argument. If you made a mistake, that was all there was to it.”

(Anon)
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∗ ∗
∗

“What is it that constitutes value or importance in mathematical research?
To put it another way: Wherein lies the difference between valuable research
and laborious trifling? Or, again, it may be asked: How is valuable research
to be distinguished from the construction of examination questions or from
mathematical recreations? The distinction is recognized to exist. It is
recognized that some kinds of work are better worth doing than others. . . It is
easy to note certain qualities by which valuable research work is characterized.

One of these qualities is novelty. In any valuable research this element of
creation or novelty cannot be absent. The new thing, or the created thing,
may be a new idea, or a new method, or a new result, or a new proof of
a known result. . . It seems that the progress of mathematics needs many
kinds of work. A worker who introduces a new idea may be compared with
the exploring prospector who discovers that there is gold in a country; one
who invents a new method, with the mechanician who devises the processes
and perfects the tools by which the gold can be extracted; one who obtains
new results, with the miner who extracts the gold; one who obtains new
proofs of known results, with the metallurgist who refines the gold and uses
it for making beautiful objects. Few of us can hope to play the part of the
prospector or the mechanician, but their efforts would be fruitless without
the work of the miner and the metallurgist.

After this all-important character of novelty, or artistic creation, we may
note other qualities which valuable research must possess. One of these, which
is not very easy to define, I propose to call “relevancy”. A piece of work, to be
valuable, must be a branch of the tree of knowledge; it must stand in a proper
relation to the state of mathematical knowledge existing at the time when it is
produced. If it is isolated or has no such relation, it is irrelevant. A proposition
may be new and true and difficult to prove and yet it may be irrelevant. Let
me give an example. Prof. Hobson, in his little book on the Squaring of
the Circle, has given us a series of most interesting surveys of the state of
knowledge in regard to this problem existing at various periods. Anyone who
should now spend time on developing new series for calculating approximate
values for π, after the fashion of Gregory’s series for the inverse tangent, or
Newton’s series for the inverse sine, would be doing work that might have
been valuable in the seventeenth century but would be irrelevant now. This
example is rather extreme, but the quality of relevancy or irrelevancy attaches
in greater or less degree to all original work in mathematics.
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Another quality which characterizes valuable original research may be
named “definiteness”. A piece of research work should aim at giving a
definite answer to a definite question. For example, the most famous work
of Galois aimed at answering the question: What algebraic equations can
be solved by means of radicals? We observe in regard to this question that
when asked it was supremely relevant. . .

We have noted three qualities as characteristic of valuable research in
mathematics: novelty, relevancy, definiteness, I would add to this catalogue a
fourth: generality. The best work is never parochial, it is never restricted to
a narrow outlook. The quality of generality may seem to be opposed to the
quality of definiteness, but generality must not be confused with vagueness.
As an example of a piece of work which shows conspicuously the mark of
generality, I would cite Gauss’ famous memoir on the hypergeometric series.
At the time when this was published it could be said of it that it included the
theory of almost all the functions which up to that time had been investigated
by analysts. But there is nothing indefinite or vague about Gauss’ work. . .
Is there then such a thing as excessive generality? A story is told concerning
a certain variety of roses which were in great demand among the makers of
bouquets, not only on account of their beauty, but especially because the
stalks were very long and stiff. The growers took steps to increase the length
of the stalk, and were very successful, producing blooms with stalks as much
as seven feet long. But unfortunately as the stalk lengthened the bloom
dwindled, indeed most of the very long stalks bore no flowers at all. It may
be treading on dangerous ground to suggest that there is such a thing as
excessive generality, though even so convinced an analyst as Picard is not
without misgivings on the subject. Yet it can sometimes be wished that
writers who develop general theories at great length would pause to inquire
how far they are available for the solution of special problems. . .

Finally, to revert to the aspect of mathematics as a creative art, I would
urge that an essential element in the equipment of an investigator is a literary
education, or, if you prefer it, a training in the means of expression. It is
necessary to be articulate, but more than this is desirable. It is desirable
to be mathematically articulate, to be able to express mathematical ideas
in such a way that they can be comprehended easily by those who have the
requisite training. Some great work is marred by obscurity. This charge has
been brought against even so great an originator as Abel. Others, such as
Laplace, are models of lucidity. There is such a thing as style in mathematics,
and it is worth cultivating. The mathematician is an artist; and every artist,
we have been told by Mr. Bernard Shaw, must grow his own style out of
himself. But there are points of style to which it is desirable to attend, such
as clearness, arrangement, rigor, avoidance of haste, conciseness, notation. It
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is desirable to say exactly what one means, neither less nor more. It is de-
sirable to introduce new ideas, or new relations, one at a time, so that each
one seems to arise naturally just at the place where it makes its appearance
in a piece of written work. No trouble is too great to secure rigor, if it can
be secured. We have all heard how Newton kept back the publication of the
work, which was ultimately embodied in the Principia, until he had obtained
a conclusive proof that spheres attract as if their masses were condensed at
their centers. If absolute rigor has occasionally to be sacrificed, it should be
made perfectly clear at what points it is absent. A memoir should not bear
marks of hurry; the argument should be developed in a straightforward fash-
ion from the premises to the conclusion. On the other hand, it should not
waste time, as, for instance, by undue restriction of conditions in the main
argument, with the object of excluding exceptional cases, or by overloading
the main argument with details; it should always be possible to distinguish
the wood from the trees. The choice of notation is not to be despised; it may
make all the difference to the ease with which a piece of work can be assimi-
lated, or a new idea applied to new questions. It may be necessary to rewrite
a memoir more than once or twice if these advantages are to be secured. It is
worth while.”

Augustus Edward Hough Love (1863–1940), 1914
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6. Truth, Error, Probability and Statistics

∗ ∗
∗

“It is never possible to step twice into the same river.”

Heraclitos

∗ ∗
∗

“Everything existing in the Universe is the fruit of chance and necessity.”

Democritos of Abdera (ca 460–370 BCE)

∗ ∗
∗

“The probable is what usually happens.”

Aristotle (384–322 BCE)

∗ ∗
∗

“Probability is the very guide of life.”

“Probabilities direct the conduct of the wise man.”

Marcus Tullius Cicero (ca 50 BCE)

∗ ∗
∗

“The only certainty is that there is nothing certain.”

Pliny the elder (23–79 CE)
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∗ ∗
∗

“Time and chance happeneth to them all.”

Ecclesiastes 9, 11

∗ ∗
∗

“Truth emerges more readily from error than from confusion.”

“If a man will begin with certainties he shall end in doubts; but if he will be
content to begin with doubts he shall end in certainties.”

Francis Bacon (1561–1626)

∗ ∗
∗

“When it is not in our power to determine what is true, we ought to follow
what is probable.”

René Descartes (1596–1650)

∗ ∗
∗

“One can have three principle objects in the study of truth: to discover it
when one searches for it, to prove it when one possesses it and to distinguish
it from falsity when one examines it”.

“Contradiction is not a sign of falsity, nor the lack of contradiction a sign of
truth.”

Blase Pascal (1623–1662)
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∗ ∗
∗

“Almost all human life depends on probabilities.”

Voltaire (1694–1778)

∗ ∗
∗

“The finite mind cannot attain to the full truth about things through simi-
larity. For the truth is neither more or less, but rather indivisible. What is
itself not true can no more measure the truth than what is not a circle can
measure a circle. Hence reason, which is not the truth, can never grasp the
truth so exactly that it could not be grasped infinitely more exactly. Reason
stands in the same relation to the truth as the polygon to the circle; yet even
when the number of vertices grows infinite, the polygon never becomes equal
to a circle, unless it becomes a circle in its true nature. The real nature of
what exists, which constitutes its truth, is therefore never entirely attainable.
It has been sought by all the philosophers but never really found.”

Nicolas of Cusa (1401–1464), 1440

∗ ∗
∗

“I cannot get over my amazement as to the mental inertia of our astronomers
in general who, like credulous women, believe what they read in the books,
tablets, and commentaries as if it were the divine and unalterable truth; they
believe the authors and neglect the truth. It is necessary to keep the stars
doggedly before one eyes, and to rid posterity from ancient tradition.”

Regiomontanus (1436–1476)

∗ ∗
∗

“There is no isolated truth.”

Jean-Francois Millet (1814–1875)
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∗ ∗
∗

“It is easier to perceive error than to find truth, for the former lies on the
surface and is easily seen, while the latter lies in the depth, where few are
willing to search for it.”

Johann Wolfgang von Goethe (1749–1832)

∗ ∗
∗

“The most important questions of life are, for most part, really only problems
of probability.”

“But since he has unnecessarily complicated the method by the considerations
of diagrams, I shall present it here in its simplest analytical form.”

“It is remarkable that a science which began with the consideration of games
of chance should have become important object of human knowledge.”

Pierre Simon de Laplace (1749–1827)

∗ ∗
∗

“Everyone wishes to have truth on his side, but not everyone wishes to be on
the side of truth.”

Richard Whately (1787–1863)

∗ ∗
∗

“All the compliments that I have received from Arago, Laplace and Biot
never gave me so much pleasure as the discovery of a theoretical truth, or the
confirmation of a calculation by experiment.”

Augustin Jean Fresnel (1788–1827)
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∗ ∗
∗

“In the field of observation, chance favors the prepared mind.”

Louis Pasteur (1822–1895)

∗ ∗
∗

“When you can measure what you are speaking about, and express it in
numbers, you know something about it.”

Lord Kelvin (1824–1907)

∗ ∗
∗

“It is the customary fate of new truths to begin as heresies and to end as
superstitions.”

Thomas Henry Huxley (1825–1895)

∗ ∗
∗

“Truth is stranger than fiction, but it is because fiction is obliged to stick to
probabilities; Truth isn’t.”

Mark Twain (1835–1910)

∗ ∗
∗

“Don’t be consistent, but be simply true.”

Oliver Wendell Holmes (1841–1935)
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∗ ∗
∗

“Great men’s errors are to be venerated as more fruitful than little men’s
truths.”

Nietzsche (1844–1900)

∗ ∗
∗

“If a million people believe a foolish thing, it is still a foolish thing.”

Anatole France (1844–1924)

∗ ∗
∗

“He uses statistics as a drunken man uses lamp posts — for support rather
than illumination.”

Andrew Lang (1844–1912)

∗ ∗
∗

“The Gaussian distribution — physicists think that it is a mathemati-
cal theorem while mathematicians believe that physicists have verified it
experimentally.”

Gabriel Lippman (1845–1921)

∗ ∗
∗

“Man can believe the impossible, but can never believe the improbable.”

“The pure and simple truth is rarely pure and never simple.”

Oscar Wilde (1854–1900)
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∗ ∗
∗

“A new scientific truth does not triumph by convincing opponents and making
them see the light, but rather because its opponents eventually die, and a new
generation grows up that is familiar with it.”

Max Planck (1858–1947)

∗ ∗
∗

“If your experiment needs statistics, you ought to have done a better
experiment.”

Ernest Rutherford (1871–1937)

∗ ∗
∗

“You can only find truth with logic if you have already found truth without
it.”

G.K. Chesterton (1874–1936)

∗ ∗
∗

“Man occasionally stumble over the truth, but most of them pick themselves
up and hurry off as if nothing happened.”

Winston Spencer Churchill (1874–1965)

∗ ∗
∗

“Faith — an illogical belief in the occurrence of the impossible.”

Henry Louis Mencken (1880–1956)



5774 6. Deep Principles – Complex Structures

∗ ∗
∗

“The conception of chance enters into the very first steps of scientific activity
in virtue of the fact that no observation is absolutely correct. I think chance
is more fundamental concept than causality; for whether in a concrete case,
a cause-effect relation holds or not can only be judged by applying the laws
of chance to the observation.”

Max Born (1882–1970)

∗ ∗
∗

“Truth exists, only falsehood has to be invented.”

Georges Braque (1882–1963)

∗ ∗
∗

“To call the statistician after the experiment is done may be no more than
asking him to perform a postmortem examination: he may be able to say
what the experiment died of.”

R.A. Fisher (1890–1962)

∗ ∗
∗

“If an effect is really there, it shouldn’t take a statistician to bring it out.”

Harold Jeffreys (1891–1989)

∗ ∗
∗

“Facts do not cease to exist because they are ignored.”

Aldous Huxley (1894–1963)
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∗ ∗
∗

“The progress of science implies not only the accumulation of knowledge, but
its organization, its unification, and this involves the periodical invention of
new syntheses, coordinating existing knowledge, and of new hypotheses, which
give us methods of approaching the unknown. Science is essentially a system,
but instead of being, as it was for the schoolmen, a closed system, it is never
closed, but always subject to revision or even to complete discard. The true
scientist considers his theories not as perfect and permanent, but as essentially
incomplete and precarious; he is ever ready to abandon any part or the whole
of them, should new experimental facts make it necessary. There are scientific
methods; there are no scientific dogmas; there is no scientific orthodoxy. Of
course this does not mean that there are no scientific doctrines; there are at
any time many of them which are binding as long as they have not been shown
to be erroneous, but not a moment longer; an orthodoxy as mobile as that is
not a real orthodoxy as theologians understand it. Nor does it mean that men
of science are never dogmatic, for being men, they are necessarily frail. In
this sense, we might say that men of science are essentially heterodox. Their
heterodoxy is not restricted to this or that doctrine; it extends potentially to
every doctrine. We would never think of saying that a genuine man of science
is loyal to this or that theory as he would be loyal to his church or country;
he knows no such scientific loyalty; his only loyalty is to truth,a loyalty which
causes him to abandon his most cherished opinions as soon as they are in-
validated. This has been proved repeatedly during the last thirty years, for
a number of revolutionary discoveries have put his scientific conscience into
the crucible. For example, the discovery of radioactivity, the introduction of
quanta, and the theories of relativity have obliged every physicist and che-
mist to change radically his ways of thinking about essential things; they have
done it as soon as their conviction was completed, if not without reluctance
(it is not easy, especially for older men, to change the intellectual habits of
a lifetime), at least without struggle and without rancor. As for the younger
men, the more revolutionary the theories, the more exhilarating; it gave them
the impression of being the witnesses of a new revelation, of a new beginning.
Science is not a being, but a becoming. Thus the love of science is not the love
of this or that system, which is bound sooner or later to be superseded by a
better one, but simply the love of truth.”

George Sarton (1884–1956)
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∗ ∗
∗

“It must always be kept in mind that “true” values are unknown and must
remain unknown; so that the errors being deviations from an unknown value,
are likewise unknown. True values must be estimated by appropriate substi-
tutes, namely, “best” or optimal values, and errors by the deviations of the
observed from the optimal values.”

Alexander Craig Aitken (1895–1967)

∗ ∗
∗

“It is not so much important to be rigorous as to be right.”

A.N. Kolmogorov (1903–1987)

∗ ∗
∗

“Error can often be fertile but perfection is always sterile.”

A.J.P. Taylor (1906–1990)

∗ ∗
∗

“There is no part of mathematics that is intimately connected with every-
day experiences than the theory of probability, and recent developments in
mathematical physics have emphasized the importance of this theory in every
branch of science. Knowledge of probability is required in such diverse fields
as quantum mechanics, kinetic theory, the design of experiments, and the
interpretation of data. Operations analysis applies probability methods to
questions of traffic control, allocation of equipment, and the theory of strat-
egy. Cybernetics, another field of recent origin, uses the theory to analyze
problems in communication and control.”

I.S. Sokolnikoff
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∗ ∗
∗

“Statisticians have an understandable penchant for viewing the whole of the
history of science as revolving around measurement and statistical reasoning.
This view, which stops very short of insisting that science is only measurement,
is not entirely parochial.”

Stephen M. Stigler

∗ ∗
∗

“Statistics are like a bikini. What they reveal is suggestive, but what they
conceal is vital.”

A. Levenstein

∗ ∗
∗

“An error doesn’t become a mistake until you refuse to correct it.”

Orlando A. Battista

∗ ∗
∗

“If you don’t make mistakes, you are not working on hard enough problems,
and that is a big mistake.”

Frank Wilczek (1951– )
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∗ ∗
∗

“The human being is an incurable optimist: he believes he has a pretty good
chance to win a lottery prize, but that there is scarcely the slightest chance
of his getting killed in a traffic accident.”

(Anon)

∗ ∗
∗

“Everyone believes that the Gauss distribution describes the distribution of
random errors: Mathematicians — because they think physicists have veri-
fied it experimentally, Physicists — because they think mathematicians have
proved it theoretically.”

(Anon)

∗ ∗
∗

“Every scientific truth is an approximation.”

(Anon)

∗ ∗
∗

“Truth is not determined by majority vote.”

(Anon)
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Some vital statistics :

• Only one out of 10,000 women have the classical measures of 35–25–35
or 36–25–36.

• 200,000 babies are born daily in the world (1993).

• A man of 60 has spent 20 years in bed and over 3 years in eating.

• Mathematicians publish more than 200,000 theorems every year.

• 40,000 persons die yearly of snake bites (mostly in India, from Cobra
bites); only 12 them in the USA (1993).

• There are 37 million dogs in American homes. 5 million of them are
turned each year to be annihilated (1993).

• 2 million people in the USA are in prison.

• More then a million American teen-agers get pregnant each year.

• About 100,000 people in the USA die of physician’s errors each year.

• 1.2 billion people in the world are overweight and 1.2 billion are under-
weight.

• Close to 17,00 stores are selling and renting video cassettes in the USA.
The x-rated biz has become a home and hearth industry. It finally took
sex out of the theaters and put it back in the bedroom, where it belongs.

• There are 30 million singles over 40 in the US (2006).

• There are 100,000 people older then 100 years in the world (2000).

• An average US family earns $ 35,000 per year, to be spent as follows:
Household (9,000), Insurance (4,800), Taxes (6,500), Payments (13,500),
Savings (1,200).

• There are 27 million functionally illiterate Americans.

• An estimated 10–30 percent of American and British babies are illegit-
imate. The seducer usually proves to be the male next door.

• There are about 500,000 physicians in the US.

• In the US, a woman is raped every 6 minutes.

• There are 8,000 different words in King’s John version of Bible, but
34,000 words in Shakespeare.
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• There are 60,000 homeless people in New York city. They sleep in the
streets. Many die in winter.

• There are one million millionaires in the US; every 39 minutes another
millionaire is made there.

• In American homes, television sets are on an average of 42.7 hours per
week.

• 5,000 young people commit suicide every year in the US.
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7. On Philosophy, Philosophers and Man

∗ ∗
∗

“Composite things decay. Drive diligently”

Buddha (ca 563–483 BCE)

∗ ∗
∗

“All is foreseen and free will is given.”

Rabbi Akiva Ben Yosef (ca 50–ca 135 CE)

∗ ∗
∗

In 330 BCE Aristotle taught as that a human being is a creature whose
distinguishing feature and chief survival mechanism is its ability to consider
the world rationality. In the end reason will sway emotion

∗ ∗
∗

Immanuel Kant declared science incapable of solving the three fundamental
problems of metaphysics: God, freedom of will, and immortality. He thus
contended that physics can never determine if God exists, if we have free will,
or if God will grant us immortal life.
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∗ ∗
∗

David Hume maintained that since divinity and metaphysics do not contain
any abstract reasoning concerning quantity or number it does not contain any
experimental reasoning concerning matter of fact.

∗ ∗
∗

“Man is measure of all things; of those which are – that they are, of those
which are not – that they are not.”

Protagoras of Abdera (ca. 490–420 BC)

∗ ∗
∗

“The unexamined life is not worth living”.

Socrates (470–399 BCE)

∗ ∗
∗

“The ultimate purpose of philosophy is to lead man to the good life of true
happiness.”

Epicurus (341–270 BCE)

∗ ∗
∗

“Philosophy is the science which considers truth”.

Aristotle (384–322 BCE)
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∗ ∗
∗

“Of all existing things – some are in our power, and other are not. In our
power are: thought, desire, will to chose and will to avoid, and, in a word,
everything which is our own doing. Things not in our power include the body,
property, reputation, office, and, in a word, everything which is not our own
doing. Things in our power are by nature free, unhindered, untrammeled;
things not in our power are weak, servile, subject to hindrance, dependent on
others.”

“All philosophy lies in two words, sustain and abstain.”

Epictetos (ca. 55–ca. 135)

∗ ∗
∗

“Astra inclinat, non trahunt”
(Stars impel, but they do not compel)

Latin maxim

∗ ∗
∗

“Mankind must pray to God for fortune but obtain wisdom for themselves.”

Marcus Tullius Cicero (106–43 BCE)

∗ ∗
∗

“Philosophy – molds and constructed the soul, guides our conduct, shows us
what we should do and what we should leave undone; it sits at the helm and
directs our course as we waver amid uncertainties. Without it, no one can
live fearlessly or in peace of mind”.

Lucius Annaeus Seneca (4 BCE–65 CE)
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∗ ∗
∗

“But there was never yet philosopher that could endure the toothache
patiently.”

“Much Ado About Nothing”

“Hang up philosophy!
Unless philosophy can make a Juliet,
Displant a town, reverse a prince’s doom,
It helps not, it prevail not, talk no more.”

“Romeo and Juliet” 3, 3

“There are more things in heaven and earth, Horatio, than are dreamt of in
your philosophy.”

William Shakespeare (1564–1616), “Hamlet” 1-5, 191-2

∗ ∗
∗

“Things do not pass for what they are but for what they seem.”

Baltasar Gracián

∗ ∗
∗

“Esse is percipi”
(nothing exists unless it is perceived by some mind)

George Berkeley
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∗ ∗
∗

“Is God willing to prevent evil, but not able? – Then he is impotent.
Is he able but not willing? – Then he is malevolent.
Is he both able and willing? – Whence then is evil.”

David Hume (1711–1776)

∗ ∗
∗

“Know thyself.”? If I knew myself, I’d run away.”

J.W. von Goethe (1749–1832)

∗ ∗
∗

“There are two kinds of truths: those of reasoning and those of facts. The
truths of reasoning are necessary and their opposite is impossible.
The truths of fact are contingent and their opposites are possible.”

Leibniz (1646–1716)

∗ ∗
∗

“Life can only be understood backwards, but it must be lived forwards.”

Søren Kierkegaard (1813–1855)
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∗ ∗
∗

“The philosopher is not interested in truth, but only in “my truth”.”

“There is more wisdom in your body than in your deepest philosophy.”

“All ethics begins when the individual is taken to be of infinite importance – in
contrast to nature, which behaves cruelly and playfully toward the individual.”

F.W. Nietzsche (1844–1900)

∗ ∗
∗

“Physics is what you know, philosophy is what you don’t know.”

Bertrand Russel (1872–1970)

∗ ∗
∗

“Life is at the same time freedom and fatality: we accept the fatality and
within it we decide on a destiny.”

Jose Ortega y Gasset (1883–1955)

∗ ∗
∗

“Philosophy is not a theory but an activity.”

Ludwig Wittgenstein (1889–1951)
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∗ ∗
∗

“If Napoleon had been as intelligent as Spinoza, he would have lived in a
garret and written four books.”

Anatole France (1844–1924)

∗ ∗
∗

“Chemistry emerged from alchemy as astronomy from astrology and physics
from philosophy.”

“Every man of science somewhat of a cynic, because he does not accept words
and conventions at their face value, and of a skeptic, because he refuses to
believe anything without adequate proof.”

George Sarton (1884–1956)

∗ ∗
∗

“Where there is the necessary technical skill to move mountains, there is no
need for the faith that move mountains.”

Eric Hoffer (1902–1983)

∗ ∗
∗

“Philosophy: unintelligible answers to insoluble problems.”

Henry B. Adams (1803–1873)
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∗ ∗
∗

“It is easy to build a philosophy. It doesn’t have to run.”

C.F. Kettering (1876–1958)

∗ ∗
∗

“Die Logic ist zwar unerschüterlich, aber einem menschen, der leben will,
widersteht sie nicht.”

Franz Kafka (1883–1924)

∗ ∗
∗

“Faith – an illogical belief in the occurrence of the impossible.”

“There is no record in human history of a happy philosopher.”

H.L. Mencken (1880–1956)

∗ ∗
∗

“To believe in God is to desire his existence, and what is more, to act as
though he existed.”

Miguel de Unamuno (1864–1936)

∗ ∗
∗

“Logic does not apply to the real world.”

M.L. Minsky
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∗ ∗
∗

“That which enters the mind through reason can be corrected.
That which is admitted through faith – hardly ever.”

Santiago Ramón y Cajal (1852–1934)

∗ ∗
∗

“ ‘Thinkers’ are people who re-think; who think that what was thought before
was never thought enough.”

Paul Valéry (1871–1945)

∗ ∗
∗

“Truth is the object of philosophy, but not always of philosophers.”

John Churton Collins (1848–1908)

∗ ∗
∗

“What pride to discover that nothing belongs to you – what a revelation.”

Emile M. Cioran (1911–1995)

∗ ∗
∗

“Nothing matters very much, and very few things matter at all.”

A.J. Balfour (1848–1930)
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∗ ∗
∗

“Idealism is what precedes experience; cynicism is what follows.”

David T. Wolf (1943– )

∗ ∗
∗

“Once there were philosophers – today there are only professors of philosophy.”

(Anon)

∗ ∗
∗

“Without discipline there is no knowledge and without philosophy there is no
purpose.”

(Anon)

∗ ∗
∗

“No real problem has a solution.”

(Anon)

∗ ∗
∗

“If God is dead, everything is permitted.”

Jean-Paul Sartre (1905–1980)
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∗ ∗
∗

Napoleon: “Why, in your entire treatise Celestial Mechanics, you had not
once mentioned God?”
Laplace: “Sir, I had no need for that hypothesis.”

∗ ∗
∗

“The philosopher-mathematician Bernard Russell was once asked why he did
not believe in God.
He replied: “Not enough evidence”.

∗ ∗
∗

“In his congressional testimony (1987), Steven Weinberg asked for money to
build the SSC, a $10 billion device to be constructed in Texas (funding has
since been cut off). A congressman asked Weinberg if the SSC would enable
us to find God, and Weinberg (unlike Laplace) declined to answer.”
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8. On Science, Engineering and Technology59

∗ ∗
∗

“It is easy to distinguish those who argue from fact and those who argue from
notions. . . The principles of every science are derived from experience: thus it
is from astronomical observations that we derive the principles of astronomical
science.”

Aristotle (384–322 BCE)

∗ ∗
∗

“Science liberates man from the terror of the gods.”

Lucretius (ca 99–55 BCE)

∗ ∗
∗

“Entia non sunt multiplicanda praeter necessitatem.” (Entities should not be
multiplied unnecessarily.)

“Pluritas non est ponendra sine necessitate.”

William of Ockham (1285–1349)

59 Technology : from the Greek techne – practical skill. The Greeks relegated skills

to a lower sphere; the ideal of a free man was leisure (schole), and the pursuit

of wisdom which it permitted. Only in the modern world was techne made into

a prodigious instrument for scientific investigation and material progress.
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∗ ∗
∗

“In dealing with a scientific problem, I first arrange several experiments, since
my purpose is to determine the problem in accordance with experience, and
then to show why the bodies are compelled so to act. That is the method
which must be followed in all researches upon the phenomena of Nature. . .
We must consult experience in the variety of cases and circumstances until
we can draw from them a general rule that is contained in them. And for
what purpose are these rules good? They lead us to further investigations of
Nature and to creation of art. They prevent us from deceiving ourselves, or
others, by promising results to ourselves which are not to be obtained.”

“There is no certainty in science where one of the mathematical sciences
cannot be applied.”

“Science is the observation of things possible.”

Leonardo da Vinci (1452–1519)

∗ ∗
∗

“Science is not a belief to be held but a work to be done.”

Francis Bacon (1561–1626)

∗ ∗
∗

“In matters of science, the authority of a thousand does not stand against the
humble opinion of one.”

Galileo Galilei (1564–1642)
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∗ ∗
∗

“It (my book) may wait a century for a reader, as God has waited six thousand
years for an observer.”

Johannes Kepler (1571–1630)

∗ ∗
∗

“The world is my country, science is my religion.”

Christiaan Huygens (1629–1695)

∗ ∗
∗

“I wish to direct all sciences to one end and aim, so that we may attain to have
supreme human perfection which we have named; and, therefore, whatsoever
in the sciences does not serve to promote our object will have to be rejected
as useless.”

Baruch Spinoza (1632–1677)

∗ ∗
∗

“The first man of science was he who looked into a thing, not to learn whether
it furnished him with food, or shelter, or weapons, or tools, or armaments, or
playwiths but who sought to know it for the gratification of knowing.”

Samuel Taylor Coleridge (1772–1934)



Quotations 5795

∗ ∗
∗

“I have had my results for a long time: but I do not yet know how I am to
arrive at them.”

Carl Friedrich Gauss (1777–1855)

∗ ∗
∗

“Science says the first word on everything, and the last word on nothing.”

Victor Hugo (1802–1885)

∗ ∗
∗

“In science one must search for ideas. If there are no ideas, there is no science.
A knowledge of facts is only valuable in so far as facts conceal ideas: facts
without ideas are just the sweepings of the brain and the memory.”

Vissarion Belinskii (1811–1848)

∗ ∗
∗

“Only a misguided mind tries to introduce religion into science. More mis-
guided still, is he who attempts to introduce science into religion, because he
entertains greater respect for the scientific method.”

Louis Pasteur (1822–1895)
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∗ ∗
∗

“Accurate and minute measurements seem to the non-scientific imagination
a less lofty and dignified work than looking for something new. But nearly
all the grandest discoveries of science have been but the rewards of accu-
rate measurements and patient long-continued labors in the minute sifting of
numerical results.
I often say that when you can measure what you are speaking about, and
express it in numbers, you know something about it; but when you cannot
express it in numbers, your knowledge is of a meager and unsatisfactory kind:
it may be the beginning of knowledge, but you have scarcely, in your thoughts,
advanced to the stage of science, whatever the matter may be.”

“In science there are no paradoxes.”

Lord Kelvin (1824–1907)

∗ ∗
∗

“Science is meaningless because it gives no answer to our question, the only
question important for us: ‘What shall we do and how shall we be?’ ”

Lev Nikolayevich Tolstoy (1828–1910)

∗ ∗
∗

“Science is for those who learn; poetry for those who know.”

Joseph Roux (1834–1886)

∗ ∗
∗

“There is something fascinating about science. One gets such wholesale re-
turns of conjecture out of such a trifling investment of fact.”

Mark Twain (1835–1910)
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∗ ∗
∗

“Do you believe that the sciences would ever have arisen and become great if
there had not beforehand been magicians, alchemists, astrologers and wizards,
who thirsted and hungered after abscondite and forbidden powers?
Indeed, infinitely more had to be promised than could ever be fulfilled in order
that anything at all might be fulfilled in the realms of knowledge.”

Friedrich Nietzsche (1844–1900), 1886

∗ ∗
∗

“In science the credit goes to the man who convinces the world, not to the
man to whom the idea first occurs.”

Francis Darwin (1848–1925), 1914

∗ ∗
∗

“Science is always simple and always profound. It is only the half-truths that
are dangerous.”

George Bernard Shaw (1856–1950)

∗ ∗
∗

“Thus I saw that most men only care for science so far as they get a living by
it, and that they worship even error when it affords them a subsistence.”

Johann Wolfgang von Goethe (1749–1832)
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∗ ∗
∗

“Science is the knowledge of many orderly and methodically digested and
arranged so as to become attainable by one.”

A.F.W. Herschel

∗ ∗
∗

“Culture is one thing and varnish is another.”

Ralph Waldo Emerson (1803–1882)

∗ ∗
∗

“Culture is to know the best that has been said and thought in the world.”

Mattew Arnold (1822–1888)

∗ ∗
∗

“There are no such things as applied science, only applications of science.”

“In the field of observation, chance favors the prepared mind.”

Louis Pasteur (1822–1895), 1872
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∗ ∗
∗

“Science has founded the only true religion. Science is the only redemption
of this world.”

Robert G. Ingersoll (1833–1899), 1906

∗ ∗
∗

“An experiment is a question which science poses to Nature, and a measure-
ment is the recording of Nature’s answer.”

“A new scientific truth does not triumph by convincing opponents and making
them see the light, but rather because its opponents eventually die, and a new
generation grows up that is familiar with it.”

“Scientists don’t change their minds, they just die.”

“Science cannot solve the ultimate mystery of nature. And that is because,
in the last analysis, we ourselves are part of nature and therefore part of the
mystery we are trying to solve.”

“Science is a mountain from which we can see far and wide into the surround-
ing terrain, but the mountain itself, is not visible.”

Max Planck (1858–1947)

∗ ∗
∗

“Every great advance in science has issued from a new audacity of
imagination.”

John Dewey (1859–1952)
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∗ ∗
∗

“Scientific principles and laws do not lie on the surface of nature. They are
hidden, and must be wrested from nature by an active and elaborate technique
of inquiry.”

John Dewey (1859–1952), 1920

∗ ∗
∗

“One machine can do the work of fifty ordinary men. No machine can do the
work of one extraordinary man.”

Elbert Hubbard (1856–1915), 1923

∗ ∗
∗

“Science is nothing but trained and organized common sense.”

T.H. Huxley (1825–1895)

∗ ∗
∗

“It is of the highest importance in the art of detection to be able to recognize
out of a number of facts which are incidental and which are vital. . . .I would
call your attention to the curious incident of the dog in the night-time.” “The
dog did nothing in the night-time.” “That was the curious incident.”

“It is a capital mistake to theorize before one has data. Insensibly one begins
to twist facts to suit theories instead of theories to suit facts.”

Arthur Conan Doyle (1859–1930)
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∗ ∗
∗

“The aims of scientific thought are to see the general in the particular and
the eternal in the transitory.”

Alfred North Whitehead (1861–1947)

∗ ∗
∗

“Science is a cemetery of dead ideas.”

Miguel de Unamuno (1864–1936)

∗ ∗
∗

“In science we must be interested in things, not in people.”

Marie Curie (1867–1934)

∗ ∗
∗

“. . .the problem of all natural philosophy is to drive out qualitative concep-
tions and to replace them by quantitative relations.”

Robert Millikan (1868–1953)
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∗ ∗
∗

“Nothing is more vulnerable and ephemeral than scientific theories, which are
mere tools and not everlasting truths.”

“Science is not the summa of life. It is only one of the forms of human
thought.”

Carl Gustav Jung (1875–1961)

∗ ∗
∗

“Although this may seem a paradox, all exact science is dominated by the
idea of approximation.”

“In art nothing worth doing can be done without genius; in science, even a
very moderate capacity can contribute to a supreme achievement.”

“Science is what you know, philosophy is what you don’t know.”

“Man has existed for about a million years. He has possessed writing for
about 6000 years, agriculture somewhat longer, but perhaps not much longer.
Science, as a dominant factor in determining beliefs of educated men, has
existed for about 300 years. In this brief period it has proven itself as an
incredibly powerful revolutionary force. When we consider how recently it
has risen to power, we find ourselves forced to believe that we are at the very
beginning of its work in transforming human life.”

“The science have developed in an order the reverse of what might have been
expected. What was most remote from ourselves was first brought under the
domain of law, and then, gradually, what was nearer: first the heavens, nest
the earth, then animal and vegetable life, then the human body, and last of
all (as yet very imperfectly) the human mind.”

Bertrand Russell (1872–1970)
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∗ ∗
∗

“Scientists should be on top, but not at the top.”

“Science, which now offers us a golden age with one hand, offers at the same
time with the other the doom of all that we have built up inch by inch since
the Stone Age and the dawn of any human annals. My faith is in the high
progressive destiny of man. I do not believe we are to be flung back into
abysmal darkness by those fiercesome discoveries which human genius has
made. Let us make sure that they are servants, but not our masters.”

“The Dark Ages may return on the gleaming wings of Science.”

Winston Spencer Churchill (1874–1965)
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∗ ∗
∗

“The most beautiful thing we can experience is the mysterious. It is the source
of all true art and science.”

“There are no eternal theories in science, nearly every great advance in science
arises from a crisis in the old theory, through an endeavor to find a way out
of the difficulties created.”

“No amount of experimentation can ever prove me right; a single experiment
can prove me wrong.”

“Science is the attempt to make the chaotic diversity of our sense-experience
correspond to a logically uniform system of thought.”

“ Once the Teutonic barbarians had destroyed Europe’s ancient culture, a new
and finer cultural life slowly began to flow from two sources that had somehow
escaped being altogether buried in the general havoc — the Jewish Bible and
Greek philosophy and art. The union of these two sources, so different one
from other, marks the beginning of our present cultural epoch, and from that
union, directly or indirectly, has sprung all that makes the true values of our
present-day life.”

“Science without religion is lame, religion without science is blind.”

“A theory is more impressive the greater the simplicity of its premises is, the
more different kinds of things it relates, and the more extended its area of
applicability.”

“The whole of science is nothing more than a refinement of everyday thinking.”

“No great discovery was ever made in science except by one who lifted his
nose above the grindstone of details and ventured on a more comprehensive
vision.”

“The grand aim of all science is to cover the greatest number of empirical facts
by logical deduction from the smallest number of hypotheses or axioms.”

Albert Einstein (1879–1955)
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∗ ∗
∗

“The scientist describes what is: the engineer creates what never was.”

Theodor von Kármán (1881–1963)

∗ ∗
∗

“The moment man cast off his age-long belief in magic, Science bestowed
upon him the blessings of the Electric Current.”

Jean Giraudoux (1882–1944)

∗ ∗
∗

“Culture is the system of vital ideas by which the age lives. It borrows from
science what is vitally necessary for the interpretation of our existence. There
are entire portions of science which are not culture, but pure scientific tech-
nique. And vice versa, culture requires that we posses a complete concept
of the world and of man: it is not for culture to stop, with science, at the
point where the methods of absolute rigor happen to end. Life cannot wait
until science may have explained the universe scientifically. We cannot put off
living until we are ready. The most salient characteristic of life is its coercive-
ness: it is always urgent, ‘here and now’ without any possible postponement.
Life is fired at us point-blank. And culture, which is but its interpretation,
cannot wait any more than can life itself. Science is not something by which
we live. The internal conduct of science is not a vital concern; that of culture
is. Science is indifferent to the exigencies of our life, and follows its own neces-
sities. Accordingly, science grows constantly more diversified and specialized
without limit, and is never completed. But culture is subservient to our life
here and now, and it is required to be, at every instant, a complete, unified,
coherent system — the plan of life.”

José Ortega y Gasset (1883–1955)
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∗ ∗
∗

“Science is ‘the only human activity which is truly cumulative and progres-
sive’.”

“Science is more than an accumulation of facts; it is not simply positive
knowledge, but systematized positive knowledge; it is not simply unguided
analysis and haphazard empiricism, but synthesis; it is not simply a passive
recording, but constructive activity.”

George Alfred Léon Sarton (1884–1956)

∗ ∗
∗

“Modern science is not relevant to the search for the underlying metaphys-
ical and moral truths by which one lives. They must be intuitively, almost
mystically arrived at.”

“Every second of our lives is saturated with the physical consequences of
science or, as we could say, with excrements from the progress of research.”

“Modern science may be as far from revealing the underlying laws of the
natural universe as was the science of ancient Greece.”

Erwin Schrödinger (1887–1961)

∗ ∗
∗

“Physical models are as different from the world as a geographical map is
from the surface of the earth.”

Leon Brillouin (1889–1969)
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∗ ∗
∗

“Don’t confuse hypothesis and theory. The former is a possible explanation;
the latter, the correct one. The establishment of theory is the very purpose
of science.”

“Facts are not science — as the dictionary is not literature.”

Martin H. Fischer (1879–1962)

∗ ∗
∗

“The fantastic advance in the field of electronic communication constitute a
greater danger to the privacy of the individual.”

Earl Warren (1891–1974)

∗ ∗
∗

“Science is not technology, it is not gadgetry, it is not some mysterious cult,
it is not a great mechanical monster! Science is an adventure of the human
spirit. It is essentially an artistic enterprise, stimulated largely by the universe,
served largely by disciplined imagination, and based largely on faith in the
reasonableness, order, and beauty of the universe of which man is part.”

Warren Weaver (1894–1978)

∗ ∗
∗

“It is my belief that if a scientist cannot talk simply about his subject, he has
not got to the bottom of it himself .”

Edward Victor Appleton (1892–1965)
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∗ ∗
∗

“Technology: the invention, manufacture, and use of tools.”

Arnold J. Toynbee (1889–1975), 1961

∗ ∗
∗

“In science the credit goes to the man who convinces the world, not to the
man to whom the idea first occurs.”

William Osler (1849–1919)

∗ ∗
∗

“Science is out of the reach of morals, for her eyes are fixed upon eternal
truthes. Art is out of the reach of morals, for her eyes are fixed upon things
beautiful and immortal and ever-changing. To morals belong the lower and
less intellectual spheres.”

Oscar Wilde (1854–1900), 1891

∗ ∗
∗

“The simplest schoolboy is now familiar with truths for which Archimedes
would have sacrificed his life.”

Ernest Renan (1823–1892)
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∗ ∗
∗

“Science is built of facts the way a house is built of bricks; but an accumulation
of facts is no more science than a pile of bricks is a house.”

Henry Poincaré (1854–1912), 1905

∗ ∗
∗

“In chess, if you make one wrong move you are finished whereas in science if
you can do one thing right, you are famous.”

Norbert Wiener (1894–1964)

∗ ∗
∗

“Watch out for the engineers — they begin with sewing machines and end up
with the atomic bomb.”

Marcel Pagnol (1895–1974)

∗ ∗
∗

“Whether we choose to call it pure or applied, the story of science is not
something apart from the common life of mankind. What we call pure science
only thrives when the contemporary social structure is capable of making full
use of its teaching, furnishing it with new problems for solution and equipping
it with new instruments for solving them. Without printing there would have
been little demand for spectacles, without spectacles neither the telescope
nor microscope, without these the finite velocity of light, the annual parallax
of the stars, and the micro-organisms of fermentation processes and disease
would never have been known to science. Without the pendulum clock and the
projectile there would have been no dynamics nor theory of sound. Without
the dynamics of the pendulum and projectile, no Principia. Without deep-
shaft mining in the sixteenth century, when abundant slave labor was no longer
to hand, there would have been no social urge to study pressure, ventilation
and explosion. Balloons would not have been invented, chemistry would have
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barely surpassed the level reached in the third millennium and the conditions
for discovering the electric current would have been lacking.”

Lancelot Hogben (1895–1975)

∗ ∗
∗

“I do not hesitate to assert that I consider astronomy as the most important
force in the development of science since its origin sometime around 500 BCE.”

Otto Neugebauer (1899–1990)

∗ ∗
∗

“Atomic energy bears that same duality that has faced man from time im-
memorial, a duality expressed in the Book of Books thousands of years ago:
“See, I have set before thee this day life and good and death and evil . . .
therefore choose life.”

David E. Lilienthal (1899–1981)

∗ ∗
∗

“The danger of the past was that men became slaves. The danger of the
future is that men may become robots.”

Eric Fromm (1900–1980)

∗ ∗
∗

“A theory is not an absolute truth but a self-consistent analytical formulation
of the relations governing a group of natural phenomena.”

Julius Adams Stratton (1901–1994)
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∗ ∗
∗

“In science one tries to tell people, in such a way as to be understood by
everyone, something that no one ever knew before. But in poetry, it’s the
exact opposite.”

Paul Dirac (1902–1984)

∗ ∗
∗

“It is his intuition, his mystical insight into the nature of things, rather than
his reasoning which makes a great scientist.”

“Every truly scientific theory necessarily has to be couched in a form capable
of being disproved.”

Karl Raimund Popper (1902–1994)

∗ ∗
∗

“The spiritual and intellectual decline which has overtaken us in the last thirty
years . . . [may be due] to the diversion of all the best brains to technology.”

Kenneth Clarke (1903–1983)

∗ ∗
∗

“To ask in advance for a complete recipe would be unreasonable. We can
specify only the human qualities required: patience, flexibility, intelligence.”

John von Neumann (1903–1957)
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∗ ∗
∗

“In the first-instance the work of science is co-operative; a scientist takes his
colleagues as judges, competitors and collaborators.”

Robert Oppenheimer (1904–1967)

∗ ∗
∗

“Many civilizations invented different technologies, but science was invented
only once.”

Loren Eiseley (1907–1977)

∗ ∗
∗

“Modesty befits the scientist, but not the ideas that inhabit him and which
he is under the obligation of upholding.”

“In science, self-satisfaction is death. Personal self-satisfaction is the death
of the scientist. Collective self-satisfaction is the death of the research. It is
restlessness, anxiety, dissatisfaction, agony of mind that nourish science.”

Jacques Monod (1910–1976)

∗ ∗
∗

“There is not a ‘pure’ science. By this I mean that physics impinges on
astronomy, on the one hand, and chemistry and biology on the other. And
not only does each support neighbors, but derives sustenance from them. The
same can be said of chemistry. Biology is, perhaps, the example par excellence
today of an ‘impure’ Science.”

Melvin Calvin (1911–1997)
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∗ ∗
∗

“Technology — the knack of so arranging the world that we don’t have to
experience it.”

Max Frisch (1911–1991)

∗ ∗
∗

“No scientist is admired for failing in the attempt to solve problems that
lie beyond his competence. The most he can hope for is the kindly contempt
earned by the Utopian politician. If politics is the art of the possible, research
is surely the art of the soluble. Good scientists study the most important
problems they think they can solve. It is, after all, their professional business
to solve problems, not merely to grapple with them.”

Peter Medawar (1915–1987)

∗ ∗
∗

“I am sorry to say that there is too much point to the wisecrack that life
is extinct on other planets because their scientists were more advanced than
ours.”

John Fitzgerald Kennedy (1917–1963)

∗ ∗
∗

“This is one of the obvious things that take a very long time to notice . . . ”

“In scientific practice, the onus of the proof is always on the advocate of the
more complicated hypothesis.”

H. Jeffreys (1891–1989)
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∗ ∗
∗

“If it keeps up, man will atrophy all his limbs but the push-button finger.”

Frank Lloyd Wright (1867–1958)

∗ ∗
∗

“Space isn’t remote at all. It’s only an hour’s drive away if your car could go
straight upwards.”

Fred Hoyle (1915–2001), 1979

∗ ∗
∗

“Science may be described as the art of systematic over-simplification.”

Karl R. Popper (1902–1994), 1982

∗ ∗
∗

“The engineer is the key figure in the material progress of the world. It is his
engineering that makes a reality of the potential value of science by translating
scientific knowledge into tools, resources, energy and labor to bring them into
the service of man ... To make contributions of this kind the engineer requires
the imagination to visualize the needs of society and to appreciate what is
possible as well as the technological and broad social age understanding to
bring his vision to reality.”

Sir Eric Ashby (1904–1992), 1958
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∗ ∗
∗

“The scientist is not a person who gives the right answers, he’s one who asks
the right questions.”

Claude Levi-Strauss (1908– ), 1964

∗ ∗
∗

“It is a medium of entertainment which permits millions of people to listen
to the same joke at the same time, and yet remain lonesome.”

T.S. Eliot (1888–1965)

∗ ∗
∗

“Science has promised us truth – an understanding of such relationships as
our minds cam grasp; it has never promised us either peace or happiness.”

Gustav Le Bon (1841–1931)

∗ ∗
∗

“Technology means the systematic application of scientific or other organized
knowledge to practical tasks.”

“We are becoming the servants in thought, as in action, of the machine we
have created to serve us.”

John Kenneth Galbraith (1908–2006)
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∗ ∗
∗

“ Both science and art have to do with ordered complexity.”

Lancelot Law White (1896–1972)

∗ ∗
∗

“The planet and mankind are in grave danger of irreversible catastrophe...
wars of mass destruction, overpopulation, pollution, and the depletion of
resources.”

Richard A. Falk

∗ ∗
∗

“The true men of action in our time, those who transform the world, are
not the politicians and statesmen, but the scientists. Unfortunately, poetry
cannot celebrate them, because their deeds are concerned with things, not
persons and are, therefore, speechless.”

Wystan Hugh Auden (1907–1973)

∗ ∗
∗

“The medium is the message. This is merely to say that the personal and
social consequences of any medium ... result from the new scale that is
introduced into our affairs by each extension of ourselves, or by any new
technology.”

Marshall McLuhan (1911–1981)
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∗ ∗
∗

“The danger always exists that our technology will serve as a buffer between
us and nature, a block between us and the deeper dimensions of our own
experience.”

Rollo May (1909–1994)

∗ ∗
∗

“The ideal engineer is a composite ... He is not scientist, he is not a mathe-
matician, he is not a sociologist or a writer; but he may use the knowledge and
techniques of any or all of these disciplines in solving engineering problems.”

N.W. Dougherty, 1955

∗ ∗
∗

“A first-rate theory predicts; a second-rate theory forbids; and a third-rate
theory explains after the event.”

A.I. Kitaigorodskii (1914–1985)

∗ ∗
∗

“Modern technology
Owes ecology
An apology.”

Alan M. Eddison
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∗ ∗
∗

“Almost all aspects of life are engineered at the molecular level, and without
understanding molecules we can only have a very sketchy understanding of
life itself.”

Fracis Crick (1916–2004)

∗ ∗
∗

“What was once thought can never be unthought.”

Friedrich Dürrenmatt (1921–1990)

∗ ∗
∗

“Any sufficiently advanced technology is indistinguishable from magic.”

Arthur C. Clarke (1917–2008)

∗ ∗
∗

“Science is wonderfully equipped to answer the question “how?” but it gets
terribly confused when you ask the question “why?”.”

Erwin Chargaff (1905–2002)

∗ ∗
∗

“It is scientific only to say what is more likely and what is less likely: the
existence of flying saucers was not impossible, just very unlikely.”

Richard Phillips Feynman (1918–1988)
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∗ ∗
∗

“That which today calls itself science gives us more and more information, an
indigestible glut of information, and less and less understanding.”

Edward Abbey (1927–1989)

∗ ∗
∗

“Science is far more exciting than science fiction, far more intricate, far more
subtle, and science has the additional virtue of being true.”

Carl Sagan (1934–1996)

∗ ∗
∗

“The probability of success is difficult to estimate, but if we never search, the
chance of success is zero.”

Giuseppe Cocconi (1914– ) and Philip Morrison (1915–2005)

∗ ∗
∗

“Electronic machines can solve problems which the man who made them can-
not solve; but no government subsidized commission of engineers and scientists
could create a worm.”

Joseph Krutch (1893–1970)

∗ ∗
∗

“I’ve given up trying to be rigorous. All I’m concerned about is being right.”

Stephen J. Hawking (1942– )
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∗ ∗
∗

“Science is really the search for simplicity. William of Occam, a fourteenth-
century philosopher made the dictum. . . “Entities should not be multiplied
beyond necessity.” This principle of parsimony . . . means that no more forces
or causes should be postulated than are necessary to account for the phenom-
enon observed.”

Claude A. Villee (1917–2003)

∗ ∗
∗

“The development of science is unlike the smooth and monotonically progres-
sive path which one would hope for. Gains are so easily followed by loss; and
what one generation builds, another tears down. And yet all is not lost. Man
still by nature desires to know; and if he will but appreciate that the preser-
vation of knowledge is just as important as its acquisition, the spiral course
of science may yet be directed always upward.”

Carl B. Boyer (1906–1976)

∗ ∗
∗

“If nature attempts to conceal her tiny secrets, science bares them publicly
with magnifications of five million fold. Neither the porcupine nor the mos-
quito can keep its love life to itself any longer. Scientists peep into their private
familiarities and delight in detailed descriptions in lectures, papers and books.
If God’s molecular gifts are too bulky for human utility, science chops them
into little pieces of useful chemicals. If the natural bits are too small, science
joins them together into larger units. If the Thanksgiving turkey is too large,
a small one is bred. If seeds are not wanted in fruits, seedless varieties are de-
veloped. Not satisfied with man’s mundane three-dimensional world, science
conjures up four- and six-dimensional phantasms. The curiosity of science
and her bent on innovation seem uncontrollable. She pries into every heav-
enly nook and earth cranny. She respects neither the ancient sanctity of tombs
nor the caressing intimacies of boudoirs. Science speeds on unabashed!”

R.G.H. Siu
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∗ ∗
∗

“Innovation occurs for many reasons, including greed, ambition, conviction,
happenstance, acts of nature, mistakes, and desperation. But one force above
all seems to facilitate the process. The easier it is to communicate, the faster
changes happens. Every time there is an improvement in the technology with
ideas and people come together, major changes ensues:

• The Greek alphabet have birth to philosophy, logic and the democratic
process.

• The printing press generated the entire Scientific Revolution.

• The telegraph brought modern business methods into existence and held
empires together.

Today, supercomputers and fiber-optic networks, with their ability to make
unimaginable amounts of data instantly accessible to millions of people, are
accelerating the process of change by many orders of magnitude. The tidal
wave of the Information Age will soon break upon us.”

James Burke (1936– )

∗ ∗
∗

“No good model ever accounted for all the facts since some data was bound
to b misleading if not plain wrong.”

James Watson (1928– )

∗ ∗
∗

“It would be a poor thing to be an atom in a universe without physicists, and
physicists are made of atoms. A physicist is an atom’s way of knowing about
atoms.”

George Wald (1906–1997)
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∗ ∗
∗

“Western society has accepted as unquestionable a technological imperative
that is quite as arbitrary as the most primitive taboo: not merely the duty to
foster invention and constantly to create technological novelties, but equally
the duty to surrender to these novelties unconditionally, just because they are
offered, without respect to their human consequences.”

Lewis Mumford (1895–1990)

∗ ∗
∗

“Science is not one success after another; it is one success in a desert of
failure.”

“You must swim ahead; science goes where you imagine it.”

Yehuda Folkman (1933–2008)

∗ ∗
∗

“Despite the dazzling success of modern technology and the unprece-
dented power of modern military systems, they suffer from a common and
catastrophic fault. While providing us with a bountiful supply of food, with
great industrial plants, with high-speed transportation, and with military
weapons of unprecedented power, they threaten our very survival.”

Barry Commoner (1917– )
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∗ ∗
∗

“Contrary to popular belief, what is important in science is as much its spirit
as its product: it is as much the open-mindedness, the primacy of criticism,
the submission to the unforeseen, however upsetting, as the result, however
new that may be. Ages ago, scientists gave up the idea of an ultimate and
intangible truth, the exact image of a “reality” waiting around the corner
to be unveiled. They now know they must be satisfied with the incomplete
and the temporary. This approach goes against the natural inclination of
the human mind, which calls for unity and coherence in its representation of
the world under the most varied aspects. In fact, this conflict between the
universal and the local, the eternal and the temporary, reappears at regular
intervals in certain controversies — for example, in the debate between the
advocates of creation and those of evolution, where arguments already used
more than a hundred years ago between Huxley and Wilberforce, Agassiz
and Gray, are being used again.

Scientists have come under increased attack in recent years. They are
accused of being heartless and conscienceless, of not caring about their fellow
humans, even of being dangerous people who do not hesitate to discover new
means of destruction and coercion and to use them. That is giving them
too much credit. In any population sample there is a constant proportion
of stupid people and of crooks, be it among scientists or insurance agents,
writers or peasants, priests or politicians. And in spite of Dr. Frankenstein
and Dr. Strangelove, catastrophes in history have been caused more often by
priests and politicians than by scientists.

For people do not kill each other only for material benefit but also for
reasons of dogma. Nothing is more dangerous than the certainty that one is
right. Nothing is potentially so destructive as the obsession with a truth one
considers absolute. All crimes in history have been the result of fanaticism
of one type or another. All massacres have been carried out in the name of
virtue, of true religion, of legitimate nationalism, of proper policy, of right
ideology: in short, in the name of the fight against somebody else’s truth, of
the fight against Satan. The coldness and objectivity so often held against
scientists are perhaps more suitable than fervor and subjectivity when it
comes to dealing with some human matters. For scientific ideas do not
generate passion. It is rather passion that exploits science to support its
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cause. Science does not lead to racism and hatred. It is rather hatred that
calls upon science to justify its racism. One can hold against scientists the
ardor with which they sometimes champion their ideas. But no genocide has
yet been committed for the triumph of a scientific theory. At the end of the
twentieth century, it should be clear to each of us that no single system will
ever explain the world in all its aspects and detail. The scientific approach
has helped to destroy the idea of an intangible and eternal truth. This is not
the least of its titles to fame.”

Francois Jacob (1920– )

∗ ∗∗

“Science deals with ideas and is a curiosity-driven, abstract, cultural activity.
Technology deals with tools and other things that people use. Faraday’s
laws of electricity and magnetism are science. Marconi invented wireless
technology. Clausius contributed to the science of thermodynamics. Watt
invented the steam engine. It was science that clarified the nature of nuclear
binding energy; but it was technology that, in an astonishingly short time,
converted it to a weapon of unimaginable power. Whereas the first clear
records of scientific concerns date back to about 600 BCE, the history of
technology is much older. There is evidence that toolmaking goes back
as far as one million years. Invention that produced technology did not
require scientific reasoning until relatively modern times. The progress in
technology was an important component of natural selection as our human
ancestors learned to cope with recurrent ice ages and other conditions hardly
conductive to creative contemplation. By the time of the apparently abrupt
appearance of scientific thought, a considerably sophisticated technology was
at hand: fire; metal working; agriculture; weights and measures; elements
of arithmetic, algebra and geometry; an astronomical data base; navigation;
land surveying; medicine and surgery; calendars. It is a matter for detailed
historical scholarship to determine how much of the technology that was
available in the 7th century BCE came about by curiosity and those drives
that we now associate with pure research. If modern experience is any
guide, a substantial component did come from the dreamers; it is hard to
believe that stellar navigation, for example, was discovered by lost seamen
desperately trying to find their way home on a dark night in the Aegean.

Twentieth-century technology is essentially all derived from the results
of science. There is an intimate interweaving and mutual enhancement of
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these two disciplines that, in the past century, accounts for the ever-escalating
pace of both: science begets technology, science uses technology to create
more science. More science begets more technology.

This litany deserves illustration:

1. Science begets technology; for example, the quantum theory of solids
leads to the transistor.

2. Science uses technology to create more science. The transistor provides
fast, low-cost digital computers and electronic circuitry for data acquisi-
tion, controls and analysis. Electronic controls and computer guidance
vastly improve the performance of electron accelerators and not only do
research in particle physics but also produce synchrotron radiation.

3. More science begets more technology. The synchrotron X rays are used
for lithographic etching of integrated circuits for more powerful applica-
tion of transistors to the making of super-computers.”

Leon M. Lederman (1922– )

∗ ∗
∗

“One has to look out for engineers – they begin with sewing machines and
end up with the atomic bomb.”

Marcel Pagnol (1895–1974)

∗ ∗
∗

“What is the origin of the urge, the fascination that drives physicists, math-
ematicians, and presumably other scientists as well? Psychoanalysis suggests
that it is sexual curiosity. . . This explanation is somewhat irritating and there-
fore probably basically correct.”

David Ruelle (1935– )
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∗ ∗
∗

“Science cannot solve the ultimate mystery of nature. And that is because,
in the last analysis, we ourselves are part of nature and therefore part of the
mystery that we are trying to solve.”

(Anon)

∗ ∗
∗

“Impossible only means that you haven’t found the solution yet.”

(Anon)

∗ ∗
∗

“Scientists do the work of God, engineers do the work of man.”

(Anon)

∗ ∗
∗

“The interactions between science and religion have often had an aggressive
character. There has been, most of the time, a real warfare. But, as a matter
of fact, it is not a warfare between science and religion — there can be no
warfare between them — but between science and theology. It is true that the
man in the street does not easily differentiate between religious feelings and
faith, on one side, and dogmas, rites and religious formalism, on the other. It
is true also that the theologians, while affecting that religion itself was aimed
at when they alone were criticized, have not ceased from aggravating these
misunderstandings.”

(Anon)
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∗ ∗
∗

“In the 18th century, science expounded the dynamics of ordered simplicity.
In the 19th century, statistical mechanics expounded the science of disordered
complexity.
In the 20th century, foundations were laid for the science of ordered complex-
ity.”

(Anon)

∗ ∗
∗

“Until the Scientific Revolution of the seventeenth century, meaning flowed
from ourselves into the world; afterward, meaning flowed from the world to
us.”

(Anon)

∗ ∗
∗

“Technology is the science of arranging life so that one need not experience
it.”

(Anon)

∗ ∗
∗

“Through the telephone you loose privacy and the charm of distance.”

(Anon)
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∗ ∗
∗

“Here men from the planet Earth first set foot on the moon, July 1969 A.D.
We came in peace for all mankind.”

Anonymous (American). Plaque marking the spot on the moon where the
historic event took place

∗ ∗
∗

“In Scientific practice, the onus of the proof is always on the advocate of the
more complicated hypothesis.”

(Anon)

∗ ∗
∗

“Experimentalists observe things that cannot be explained and theoreticians
explain things that cannot be observed.”

(Anon)

∗ ∗
∗

“Television brought the brutality of war into the comfort of the living room.”

(Anon)
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∗ ∗
∗

“A theory can be proved by experiment; but no path leads from experiment
to the birth of a theory.”

(Anon)

∗ ∗
∗

“What is now proved was once only imagined.”

(Anon)
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Ideas, Discoveries and Inventions

∗ ∗
∗

“I haven’t failed; I’ve found 10,000 ways that don’t work.”

Benjamin Franklin (1706–1790)

∗ ∗
∗

“There is one thing stronger than all the armies in the world; and that is an
idea whose time has come.”

Victor Hugo (1802–1885)

∗ ∗
∗

“The origin of an original work is always the pursuit of a fact which does not
fit into accepted ideas.”

Claude Bernard (1813–1878)

∗ ∗
∗

“After previous investigation of the problem in all directions, happy ideas
come unexpectedly without effort, like an inspiration.”

Hermann von Helmholtz (1821–1894)
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∗ ∗
∗

“Ideas have consequences.”

Dostoevsky (1821–1881)

∗ ∗
∗

“In the field of observation, chance favors the prepare mind.”

Louis Pasteur (1822–1895)

∗ ∗
∗

“Choose one definite objective and drive ahead toward it. You may never
reach your goal, but you will find something on the way.”

Felix Klein’s advice to a perplexed student (1849–1925)

∗ ∗
∗

“Say what you know, do what you must, come what may.”

Sonja Kovalevsky (1850–1891)

∗ ∗
∗

“An idea that is not dangerous is unworthy of being called an idea at all.”

Oscar Wilde (1854–1900)
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∗ ∗
∗

“It is through science that we prove, but through intuition that we discover.”

Henri Poincare (1854–1912)

∗ ∗
∗

“In the realm of thought, momentous discoveries and solution of problems are
possible only to an individual, working in solitude.”

Sigmund Freud (1856–1939)

∗ ∗
∗

“The earth is the cradle of the mind, but one cannot live forever in a cradle.
To set foot on the soil of the asteroids, to lift by hand a rock from the moon,
to observe Mars from a distance of several tents of kilometers, to land on its
satellite or even on its surface, what can be more fantastic?
From the moment of using rocket devices, a new great era will begin in as-
tronomy: the epoch of the more intensive study of the firmament.”

Konstantin Eduardovitch Ziolkowski (1857–1935)

∗ ∗
∗

“It requires a very unusual mind to undertake the analysis of the obvious.”

Alfred North Whitehead (1861–1947)



Quotations 5833

∗ ∗
∗

“Young man, you can be grateful that my invention is not for sale, for it would
undoubtedly ruin you. It can be exploited for a certain time as a scientific
curiosity, but apart from that it has no commercial value whatsoever.”

Auguste Lumière (1862–1954). French chemist. On the motion-picture
camera he invented in 1895

∗ ∗
∗

“It is obvious that invention or discovery, be it in mathematics or anywhere
else, takes place by combining ideas.”

Jacques Hadamard (1865–1963)

∗ ∗
∗

“Learning the secret of flight from a bird was a good deal like learning the
secret of magic from a magician. Once you know the trick and know what to
look for, you see things that you did not notice.”

Orville Wright (1871–1948)

∗ ∗
∗

“It isn’t that they can’t see the solution. It is that they can’t see the problem.”

G.K. Chesterton (1874–1936)
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∗ ∗
∗

“The scientist takes off from the manifold observations of predecessors, and
shows his intelligence, if any, by his ability to discriminate between the impor-
tant and the negligible, by selecting here and there the significant stepping
stones that will lead across the difficulties to new understanding. The one
who places the last stone and steps across to the terra firma of accomplished
discovery gets all the credit.”

Hans Zinsser (1878–1940)

∗ ∗
∗

“It is the lone worker who makes the first advance in a subject: the details
may be worked out by a team, but the prime idea is due to the enterprise,
thought and perception of an individual.”

Alexander Fleming (1881–1955)

∗ ∗
∗

“Masterpieces are not single and solitary births; they are the outcome of many
years of thinking in common, of thinking by the body of the people, so that
the experience of the mass is behind the single voice.”

Virginia Woolf (1882–1941)

∗ ∗
∗

“All excellent things are difficult as they are rare.”

“Ideas in science come into being as a response to new and better-phrased
questions.”

John R. Pierce (1910–2002)
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∗ ∗
∗

“We forget it but too often, and our histories are full of injustice, because
we are almost always too generous toward those who made the last steps and
reaped the result of all antecedent efforts, and too little generous to those who
made the first and least profitable steps.”

“A deeper study of almost any discovery reveals that what we call the dis-
covery is only the final clinching of an argument developed by many men
throughout a long period of time.”

George Sarton (1884–1956)

∗ ∗
∗

“The task is not so much to see what no one has yet seen; but to think what
nobody has yet thought, about that which everybody sees.”

Erwin Schrödinger (1887–1961)

∗ ∗
∗

“Discovery consists in seeing what everyone else has seen and thinking what
no one else has thought.”

“A discovery is said to be an accident meeting a prepared mind.”

Albert Szent-Gyorgi (1893–1986)

∗ ∗
∗

“Discoveries are not made by the rules of logic, but by guesswork and creative
intuition.”

Vladimir A. Fock (1898–1974)
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∗ ∗
∗

“Reason is man’s faculty for grasping the world by thought. Intelligence is
man’s ability to manipulate the world with the help of thought.”

Erich Fromm (1900–1980)

∗ ∗
∗

“Don’t worry about people stealing your ideas. If your ideas are any good,
you’ll have to ram them down people’s throats.”

Howard Aiken (1900–1973)

∗ ∗
∗

“The machine, the genie that man has thoughtlessly let out of its bottle and
cannot put back again.”

George Orwell (1903–1950)

∗ ∗
∗

“What counts . . . in science is not so much the first as the last.”

Erwin Chargaff (1905–2002)

∗ ∗
∗

“Scientific discoveries and ideas are produced by the intuition, creativeness
and genius of a man. Dollars of themselves don’t produce this any more than
they could be expected to produce another Mona Lisa.”

Harry Hess (1906–1969)
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∗ ∗
∗

“The technological breakthroughs leading to great inventions usually come
from totally unrelated areas. For instance, if a queen of ancient Crete had
launched a Minoan Manhattan Project to achieve mass literacy through im-
proved printing, she would never have thought to emphasize research into
cheese, wine and olive presses — but those presses furnished prototypes for
Gutenberg’s most original contribution to printing technology. Similarly,
American military planners trying to build powerful bombs in the 1930’s
would have laughed at suggestions that they finance research into anything
so arcane as transuranic elements.

We picture inventors as heroes with the genius to recognize and solve a soci-
ety’s problems. In reality, the greatest inventors have been tinkerers who loved
tinkering for its own sake and who then had to figure out what, if anything,
their devices might be good for. The prime example is Thomas Edison, whose
phonograph is widely considered to be his most brilliant invention. When he
built his first one, in 1877, it was not in response to a national clamor for
hearing Beethoven at home. Having built it, he wasn’t sure what to do with
it, so he drew up a list of 10 uses, like recording the last words of dying peo-
ple, announcing the time and teaching spelling. When entrepreneurs used his
invention to play music, Edison thought it was a debasement of his idea.

Our widespread misunderstanding of inventors as setting out to solve society’s
problems causes us to say that necessity is the mother of invention. Actually,
invention is the mother of necessity, by creating needs that we never felt
before. (Be honest: did you really feel a need for your Walkman CD player
long before it existed?) Far from welcoming solutions to our supposed needs,
society’s entrenched interests commonly resist inventions. In Gutenberg’s
time, no one was pleading for a new way to churn out book copies: there were
hordes of copyists whose desire not to be put out of business led to local bans
on printing.

The first internal-combustion engine was built in 1867, but no motor vehi-
cles came along for decades, because the public was content with horses and
railroads. Transistors were invented in the United States, but the country’s
electronics industry ignored them to protect its investment in vacuum-tube
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products; it was left to Sony in bombed-out postwar Japan to adapt tran-
sistors to consumer-electronics products. Manufacturers of typing keyboards
continue to prefer our inefficient qwerty layout to a rationally designed one.

All these misunderstandings about invention pervade our science and technol-
ogy policies. Every year, officials decry some areas of basic research as a waste
of tax dollars and urge that we instead concentrate on “solving problems”:
that is, applied research. Of course, much applied research is necessary to
translate basic discoveries into workable products — a prime example being
the Manhattan Project, which spent three years and $2 billion to turn Otto
Hahn and Fritz Strassman’s discovery of nuclear fission into an atomic bomb.
All too often, however, the world fails to realize that neither the solutions
to most difficult problems of technology nor the potential uses of most ba-
sic research discoveries have been predictable in advance. Instead, penicillin,
X-rays and many other modern wonders were discovered accidentally — by
tinkerers.

So forget those stories about genius inventors who perceived a need of society,
solved it single-handedly and transformed the world. There has never been
such a genius; there have only been processions of replaceable creative minds
who made serendipitous or incremental contributions. If Gutenberg himself
hadn’t devised the better alloys and inks used in early printing, some other
tinkerer with metals and oils would have done so. For the best invention of
the millennium, do give Gutenberg some of the credit — but not too much.”

Jared Diamond (1937– )

∗ ∗∗

“A theory has only the alternative of being right or wrong. A model has a
third possibility: it may be right, but irrelevant.”

Manfred Eigen (1927– )

∗ ∗∗

“The greatest discovery of the 19th century was that the equations of nature
were linear, and the great discovery of the 20th century is that they are not.”

T.W. Körner
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∗ ∗
∗

“After developing retractable landing gear, flaps, navigation devices, autopi-
lots, and active controls to provide stability for unstable vehicles, people re-
alized that birds had been doing these things for 100 million years.”

Paul MacCready (1925–2007)

∗ ∗
∗

“To invent the automobile is easy; a really good science fiction would predict
the traffic jam.”

Frederick Pohl (1889–1991)

∗ ∗
∗

“The four ‘laws’ of discovery:

• Discoveries are rarely attributed to the correct person.

• Nothing is ever discovered for the first time.

• Everything of importance has been said before by someone who did not
discover it.

• All great discoveries are made by mistake.”

Arthur Bloch (1948– )

∗ ∗
∗

“Nothing was ever achieved by a reasonable man.”

Anon
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∗ ∗
∗

“If we can really understand the problem, the answer will come out of it,
because the answer is not separate from the problem.”

Anon
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9. Mind, Brain and the Computer

∗ ∗
∗

“Generally, and device that can perform numerical calculations – even an
adding machine, an abacus, or a slide rule – may be called a computer. Cur-
rently, however, the term usually refers to an electronic device that can use
a list of instructions, called a program, to perform calculations or to store,
manipulate, and retrieve information.”

L.R. Shannon

∗ ∗
∗

“One ought to know that on the one hand pleasure, joy, laughter, and games,
and on the other, grief, sorrow, discontent, and dissatisfaction arise only from
the brain. It is especially by it that we think, comprehend, see, and hear,
that we distinguish the ugly from the beautiful, the bad from the good, the
agreeable from the disagreeable...”

Hippocrates of Cos (460–377 BCE)

∗ ∗
∗

“The Analytical Engine has no pretensions whatsoever to originate anything.
It can do whatever we know how to order it to perform.”

Augusta Ada Byron (1788–1824)

∗ ∗
∗

“As machine get to be more and more like men, men will come to be more
and more like machines.”

Joseph Wood Krutch (1893–1970)
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∗ ∗
∗

“The complexity of the nerve-structures for vision is even in the insect some-
thing incredibly stupendous... The intricacy of the connections defies descrip-
tion. Before it the mind halts, abased.”

“As long as our brain is a mystery, the universe – the reflection of the structure
of the brain – will also be a mystery.”

Santiago Ramón y Cajal (1852–1934)

∗ ∗
∗

“The brain is wider than the sky

For, put them side by side,

The one the other will contain

With ease, and you beside.

The brain is deeper than the sea,

For, hold them, blue to blue,

The one the other will absorb,

As sponges, buckets do.

The brain is just the weight of God,

For, heft them pound for pound,

And they will differ, if they do,

As syllable from sound.”

Emily Dickinson (1830–1886)
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∗ ∗
∗

“Computers are useless. They can only give you answers.”

Pablo Picasso (1881–1973)

∗ ∗
∗

“How could a mechanism composed of some 1010 unreliable components func-
tion reliably while computers with 104 components regularly fail.”

John von Neumann (1903–1957)

∗ ∗
∗

“Just as the electron does not have a precise position and motion, I believe
that consciousness has no location.”

George Wald (1906–1997)

∗ ∗
∗

“Computers are circumscribed by their binary, yes or no, mode of operation,
by their ‘two-bit wit’. Subtleties such as yes and no, are beyond them.”

Marshall McLuhan (1911–1980)

∗ ∗
∗

“The Christian notion of the possibility of redemption is incomprehensible to
the computer.”

Vance Packard (1914–1996)
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∗ ∗
∗

“The real danger is not that computers will begin to think like men, but that
men will begin to think like computers.”

Sydney J. Harris (1917–1986)

∗ ∗
∗

“Computers make it easier to do a lot of things, but most of the things they
make easier to do don’t need to be done.”

Andy Rooney (1919– )

∗ ∗
∗

“Part of the inhumanity of the computer is that, once it is competently pro-
grammed and working smoothly, it is completely honest.”

Isaac Asimov (1920–1992)

∗ ∗
∗

“No, I’m not interested in developing a powerful brain. All I’m after is just a
mediocre brain, something like the president of the American Telephone and
Telegraph Company.”

“I propose to consider the question, ‘Can Machine Think?’ ”

Alan Mathison Turing, 1936
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∗ ∗
∗

“You, your joys and sorrows, your memories and your ambitions, your sense
of personal identity and free will are in fact no more than the behavior of a
vast assembly of nerve cells and their associated molecules.”

Francis Crick (1916–2004)

∗ ∗
∗

“There is nothing that I can see in the physical laws that says the computer
elements cannot be made enormously smaller than they are now.”

Richard Feynman (1918–1988)

∗ ∗
∗

“My fundamental premise about the brain is that its workings – what we
sometimes call ‘mind’ – are a consequence of its anatomy and physiology and
nothing more.”

Carl Sagan (1934–1996)

∗ ∗
∗

“Can mental states and processes be reduced to brain (neurobiological) states
and processes? Can one be a reductionist?”

Patricia Churchland (1943– ), 1986
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∗ ∗
∗

“I regard a human as nothing but a particular type of a machine, the human
brain as nothing but an information processing device, the human soul as
nothing but a program being run on a computer called the brain. Further,
all possible types of living things, intelligent or not, are of the same nature,
and subject to the same laws of physics as constrain all information processing
devices. A human being is a quantum mechanical object which can be exactly
described by a computer program coding 1045 bits of information.”

Frank J. Tipler (1947– ), 1994

∗ ∗
∗

“The brain is a three-pound mass you can hold in your hand that can conceive
of a universe a hundred-billion light years across.”

Marian Diamond

∗ ∗
∗

“One can search the brain with a microscope and not find the mind and can
search the stars with a telescope and not find God.”

Gustav J. White

∗ ∗
∗

“I’m struck by the insidious, computer-driven tendency to take things out
of the domain of muscular activity and put them into the domain of mental
activity. The transfer is not paying off. Sure, muscles are unreliable, but they
represent several million years of accumulated finesse.”

Brian Eno (1948– ), 1999
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∗ ∗
∗

“The question of whether computers can think is just like the question of
whether submarines can swim.”

Edsger W. Dijkstra (1930–2002)

∗ ∗
∗

“There is no way that an unassisted human brain, which is nothing more than
a dog’s breakfast, three and a half pounds of blood-soaked sponge, could have
written Beethoven’s Ninth Symphony.”

Kurt Vonnegut (1922–2007)

∗ ∗
∗

“The great thing about a computer notebook is that no matter how much
you stuff into it, it doesn’t get bigger or heavier.”

“E-mail is a unique communication vehicle for a lot of reasons. However
e-mail is not a substitute for direct interaction.”

Bill Gates (1955– )

∗ ∗
∗

“ ‘Out of sight, out of mind’, when translated into Russian (by computer),
then back again into English, became ‘invisible maniac’ ”.

Arthur Calder–Marshall (1908–1992)
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∗ ∗
∗

“There is no reason for any individual to have a computer in their home.”

Ken Olsen (1926– ), 1977

∗ ∗
∗

“If you can make a machine that contains the contents of your mind, then
that machine is you... Even if it doesn’t last forever, you can always dump
it onto tape and make backups... Everyone would like to be immortal... I’m
afraid, unfortunately, that I am the last generation to die.”

Gerald Jay Sussman

∗ ∗
∗

“Mankind is a catalyzing enzyme for the transition from a carbon-based to a
silicon-based intelligence.”

Gérard Bricogne

∗ ∗
∗

“The brain and the satellite glands have now been probed to the point where
no possible site remains that can reasonably be supposed to harbor any phys-
ical mind.”

Edmund O. Wilson (1929– )
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∗ ∗
∗

“If the brain were so simple we could understand it, we would be so simple
we couldn’t.”

Lyall Watson (1939– )

∗ ∗
∗

“Video won’t be able to hold onto market it captures after the first six months.
People will get tired of staring at a plywood box every night.”

Darryl F. Zanuck (1902–1979), 1940s

∗ ∗
∗

“The computer is no better than its program.”

Elting E. Morison (1910–1995), 1966

∗ ∗
∗

“Nobody predicted the computer – not even Joule Verne.”

“The fact that prior to 1945 physical scientists did not have computers at their
disposal compelled them to delve deeper into matters, and then come up with
the ‘pearl in the midst of the oyster’, i.e. to identify underlying operative
principles; whereas, had they lived after 1945, they might be tempted to
simulate rather than cogitate.”

Shahar Ben-Menahem
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∗ ∗
∗

“I think there is a world market for maybe five computers.”

Thomas J. Watson (1874–1956)

∗ ∗
∗

“The intelligence of the computer is syntactic whereas human intelligence is
semantic (i.e. assigns meaning to concepts).”

(Anon)

∗ ∗
∗

“Where a calculator on the ENIAC is equipped with 18,000 vacuum tubes and
weighs 30 tons, computers in the future may have only 1,000 vacuum tubes
and perhaps weigh 1.5 tons.”

(Anon)

∗ ∗
∗

“Someday, computers may not only be able to beat human beings at chess,
but also at tennis and ice hockey and volleyball. Someday, computers may be
able to marry Brooke Shields.”

(Anon)

∗ ∗
∗

“Computers have lots of memory but no imagination.”

(Anon)
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∗ ∗
∗

“• Brain cause minds.

• Syntax is not sufficient for semantics.

• Computer programs are entirely defined by their formal, or syntacti-
cal, structure.

• Minds have mental contents; specifically, they have semantic contents.

Conclusion: No computer program by itself is sufficient to give a system
a mind. Programs are not minds, and they are not by
themselves sufficient for having minds.”

“The computer, in contradistinction to the brain, has no self-consciousness,
self-awareness – it does not know that it is a computer, it cannot think.”

“For a long time many biologists and philosophers thought it was impossible,
in principle, to account for the existence of life on purely biological grounds.
They thought that in addition to the biological processes some other element
must be necessary, some élan vital must be postulated in order to lend life to
what was otherwise dead and inert matter. It is hard today to realize how
intense the dispute was between vitalism and mechanism even a generation
ago, but today these issues are no longer taken seriously. Why not? I think it
is not so much because mechanism won and vitalism lost, but because we have
come to understand better the biological character of the processes that are
characteristic of living organisms. Once we understand how the features that
are characteristic of living beings have a biological explanation, it no longer
seems mysterious to us that matter should be alive. I think that exactly
similar considerations should apply to our discussions of consciousness. It
should seem no more mysterious, in principle, that this hunk of matter, this
grey and white oatmeal-textured substance of the brain, should be conscious
than it seems mysterious that this other hunk of matter, this collection of
nucleo-protein molecules stuck onto a calcium frame, should be alive. The
way, in short, to dispel the mystery is to understand the processes. We do not
yet fully understand the processes, but we understand their general character,



5852 6. Deep Principles – Complex Structures

we understand that there are certain specific electro-chemical activities going
on among neurons or neuron-modules and perhaps other features of the brain
and these processes cause consciousness.”

“By ‘mind’ I just mean the sequence of thoughts, feelings and experiences,
whether conscious or unconscious, that go to make up our mental life.But
the use of the noun ‘mind’ is dangerously inhabited by the ghosts of old
philosophical theories.”

“On the traditional account of the brain, the account that takes the neuron as
the fundamental unit of brain functioning, the most remarkable thing about
brain functioning is simply this. All of the enormous variety of inputs that
the brain receives – the photons that strike the retina, the sound waves that
stimulate the ear drum, the pressure on the skin that activates nerve endings
for pressure, heat, cold, and pain, etc. – all of these inputs are converted
into one common medium: variable rates of neuron firing. Furthermore, and
equally remarkably, these variable rates of neuron firing in different neuronal
circuits and different local conditions in the brain produce all of the variety
of our mental life. The smell of a rose, the experience of the blue of the sky,
the taste of onions, the thought of a mathematical formula: all of these are
produced by variable rates of neuron-firing, in different circuits, relative to
different local conditions in the brain.”

John Searle, 1984

∗ ∗
∗

“One machine can do the work of fifty ordinary men. No machine can do the
work of one extraordinary man.”

Albert Hubbard, 1948
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10. Science and Scientists — the Lighter Side

∗ ∗
∗

Justus von Liebig (1803–1873) was approached one day by his assistant who
all excited informed him that he had just discovered a universal solvent. Liebig
asked: “And what is a universal solvent?” Assistant: “One that dissolves all
substances.” Liebig: “Where are you going to keep that solvent, then?”

∗ ∗
∗

At a session of the Academy of Sciences of the (former) USSR, the notorious
agronomist Lysenko gave a talk on the inheritance of acquired traits. When
his report was over, the famous physicist Landau asked: – So, you argue
that if we will cut off the ear of a cow, and the ear of its offspring, and so on,
sooner or later the earless cows will start to be born? – Yes, that’s right. –
Then, how can you explain that virgins are still being born?

∗ ∗
∗

When asked for his latest results, Edison said: “Results! Why, man, I have
gotten a lot of results. I know several thousand things that won’t work.”

∗ ∗
∗

On a paper submitted by a physicist colleague, Pauli said: “This isn’t right.
This isn’t even wrong.”
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∗ ∗
∗

The 67th Mersenne number 267 − 1, claimed by Mersenne to be prime, was
proven to be non-prime in 1903 by F.N. Cole (1861–1927). In the October
meeting of the AMS, Cole announced a talk “On the Factorization of Large
Numbers”.
He walked up to the blackboard without saying a word, calculated by hand the
value of 267, carefully subtracted 1. Then he multiplied two numbers (which
were 193707721 and 761838257287). Both results written on the blackboard
were equal. Cole silently walked back to his seat, and this is said to be the first
and only talk held during an AMS meeting where the audience applauded.
There were no questions.
It took Cole about 3 years, each Sunday, to find this factorization.

∗ ∗
∗

Theorem:
All positive integers are interesting.

Proof:
Assume the contrary. Then there is a lowest non-interesting positive integer.
But, hey, that’s pretty interesting! A contradiction.
QED

(Anon)

∗ ∗
∗

Dirac was working on an equation on the board. Turning around to a silent
audience he asked for any questions. A person in audience raised a hand and
said “I do not understand such-and-such equation”. To which Dirac replies,
“That’s not a question, it’s a statement.”
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∗ ∗
∗

Ernst Eduard Kummer (1810–1893) was rather poor at arithmetic. When-
ever he had occasion to do simple arithmetic in class, he would get his students
to help him. Once he had to find 7 × 9. “Seven times nine,” he began, “Seven
times nine is er – ah – ah – seven times nine is...” “Sixty-one,” a student
suggested. Kummer wrote 61 on the board. “Sir,” said another student, “it
should be sixty-nine.” “Come, come, gentlemen, it can’t be both,” Kummer
exclaimed. “It must be one or the other.”

Another version:
Kummer said to himself: “Hmmm, the product cannot be 61, because 61 is
prime, it cannot be 65, because 65 is a multiple of 5, 67 is a prime, 69 is too
big – Only 63 is left.”

In one of his lectures, Richard Feynman said:
“This is the third of four lectures on a rather difficult subject – the theory of
quantum electrodynamics – and since there are obviously more people here
tonight than there were before, some of you haven’t heard the other two
lectures and will find this lecture incomprehensible. Those of you who have
heard the other two lectures will also find this lecture incomprehensible, but
you know that that’s all right: as I explained in the first lecture, the way we
have to describe Nature is generally incomprehensible to us.”

∗ ∗
∗

What is set theory?

When there are five people in the room and seven are leaving, two have to
enter the room, so it is empty.

Paul Erdös
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∗ ∗
∗

“Fast cars, fast women, fast algorithms... what more could a man want?”

Joe Mattis

∗ ∗
∗

An MIT student cornered the famous John von Neumann in the hallway:

Student: “Er, excuse me, Professor von Neumann, could you please help me
with a calculus problem?”

John: “Okay, sonny, if it’s real quick – I’m a busy man.”

Student: “I’m having trouble with this integral.”

John: “Let’s have a look.” (insert brief pause here) “Alright, sonny, the
answer’s two-pi over 5.”

Student: “I know that, sir, the answer’s in the back – I’m having trouble
deriving it, though.”

John: “Okay, let me see it again.” (another pause) “The answer’s two-pi over
5.”

Student (frustrated): “Uh, sir, I know the answer, I just don’t see how to
derive it.”

John: “Whaddya want, sonny, I worked the problem in two different ways!”
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∗ ∗
∗

“Two trains 200 miles apart are moving toward each other; each one is going
at a speed of 50 miles per hour. A fly starting on the front of one of them
flies back and forth between them at a rate of 75 miles per hour. It does this
until the trains collide and crush the fly to death. What is the total distance
the fly has flown?

The fly actually hits each train an infinite number of times before it gets
crushed, and one could solve the problem the hard way with pencil and paper
by summing an infinite series of distances. The easy way is as follows: Since
the trains are 200 miles apart and each train is going 50 miles an hour, it
takes 2 hours for the trains to collide. Therefore the fly was flying for two
hours. Since the fly was flying at a rate of 75 miles per hour, the fly must
have flown 150 miles. That’s all there is to it.

When this problem was posed to John von Neumann, he immediately
replied, “150 miles.”

“It is very strange,” said the poser, “but nearly everyone tries to sum the
infinite series.”

“What do you mean, strange?” asked Von Neumann. “That’s how I did it!””

∗ ∗
∗

A student in Rutherford’s lab was very hard-working. Rutherford had no-
ticed it and asked one evening:
– Do you work in the mornings too?
– Yes, – proudly answered the student sure he would be commended.
– But when do you think? – amazed Rutherford.



5858 6. Deep Principles – Complex Structures

∗ ∗
∗

“The traditional mathematics professor of the popular legend is absent-
minded. He usually appears in public with a lost umbrella in each hand.
He prefers to face the blackboard and to turn his back to the class. He writes
a, he says b, he means c; but it should be d. Some of his sayings are handed
down from generation to generation.
“In order to solve this differential equation you look at it till a solution occurs
to you.”
“This principle is so perfectly general that no particular application of it is
possible.”
“Geometry is the science of correct reasoning on incorrect figures.”
“My method to overcome a difficulty is to go round it.”
“What is the difference between method and device? A method is a device
which you used twice.”

George Polya (1887–1985)

∗ ∗
∗

Niels Bohr once commented on someone’s lecture:
“His theory is crazy... but it’s not crazy enough to be true.”

∗ ∗
∗

“I aim at the stars, but sometimes I hit London.”

Werner von Braun (1912–1977)
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∗ ∗
∗

David Hilbert was invited to give a talk on any subject he liked during the
early days of air travel. His subject:

The Proof of Fermat’s Last Theorem

Needless to say, his talk was eagerly anticipated. The day arrived, the talk
was given, and it was brilliant – but it had nothing at all to do with Fermat’s
Last Theorem.
After the talk, someone asked Hilbert why he had picked a title that had
nothing to do with the talk. His answer: “Oh, that title was just in case the
plane crashed.”

∗ ∗
∗

Hilbert has accepted an invitation to deliver a keynote address to a large
engineering convention. The organizers subsequently learned that Hilbert
was known for rather acerbic attitude towards engineering. Greatly concerned
they decided to go back and talk to him.

After beating around the bush for a while they managed to convey to him
that they are worried that he may offend some people, and if he could sort of
hold back during his speech.

When Hilbert realized what they were asking he grinned broadly and said,
“You don’t have to worry about that at all. How could I possibly offend any-
one, for mathematics and engineering have absolutely nothing in common”.
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∗ ∗
∗

J.E. Littlewood (1885–1977) read in the proof sheets of Hardy on Ramanu-
jan: “As someone said, each of the positive integers was one of his personal
friends.” His reaction was, “I wonder who said that; I wish I had.” In the
next proof-sheets he read (what now stands), “It was Littlewood who said...”

∗ ∗
∗

Hungarian mathematician Frigyes Riesz needed two assistants for his lec-
tures: one was reading aloud his (Riesz’s) book, the second one was writing
everything on the board, while Riesz was standing next to the board nodding.

∗ ∗
∗

When Edmund Landau was asked for a testimony to the effect that Emmy
Noether was a great woman mathematician, he said:
“I can testify that she is a great mathematician, but that she is a woman, I
cannot swear.”

∗ ∗
∗

In the period that Einstein was active as a professor, one of his students
came to him and said: “The questions of this year’s exam are the same as
last years!” “True,” Einstein said, “but this year all answers are different.”
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∗ ∗
∗

“Do you realize the tremendous strategic importance of machines of this sort?
They could be an effective straightjacket for that noisy shopkeeper Harry
Truman. We must go ahead with it, comrades. The problem of the creation
of transatlantic rockets is of extreme importance to us.”

Premier I.V. Stalin, at a meeting of the Politburo (1947)

∗ ∗
∗

“Give me a one-handed economist! All my economists say, on the one hand...
on the other.”

Harry S. Truman (1884–1972)

∗ ∗
∗

“During the Paris peace negotiations between the Allies and some Eastern
European countries, a Hungarian woman journalist came to me and wanted
an interview. She asked me what I thought was the greatest progress in
aviation in the last decade. I told her: ‘Propulsion by reaction’. She said to
me: ‘Professor, could you express this in some other way? I cannot write in
a progressive paper that progress is accomplished by reaction!’ ”

“Young students with athletic ability may have brilliant minds and still believe
that to jump two inches farther than anybody else is an important contribu-
tion to human progress.”

Theodore von Kármán (1881–1963)
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∗ ∗
∗

Theodore von Kármán was a showman in the higher sense of the natural
raconteur and purveyor of honest entertainment. his story-telling skills were
enhanced by a rich and mysterious Hungarian accent that was so thick it
provoked the late Dr.Hugh Dryden, Deputy Administrator of NASA, to com-
ment jokingly that it must have been fabricated for “commercial reasons.”
Von Kármán’s charming accent, coupled with hand gestures that carried ex-
traordinary editorial comment, were enough to captivate any audience. He
knew how to make a lasting effect. Like Bernard Baruch, von Kármán also
carried an ornate hearing aid which he surreptitiously turned off whenever
the conversation grew boring. He once confided to a friend that he thought
his deafness since youth had been one of his most important assets because
it enabled him to concentrate.

He was also a master of the “squelch”, which he used at times with withering
effect. On one early occasion at the University of Aachen, the owner of a small
tool factory came to him expressing concern about a problem of vibration. It
seemed that one of the machines was in danger of shaking itself to destruction.
Nobody could find the cause. Would the eminent Herr Professor take a look?

Von Kármán agreed and found the trouble in a few minutes. It was a small
dislocation and he suggested turning a gear ninety degrees. When this was
done, the vibration miraculously disappeared. The factory owner was over-
joyed.

However, a few days later, he again sought out the professor. This time it
was von Kármán’s bill. “How can I pay so much money,” the owner cried,
“for making just a ninety-degree turn of the gear?”

“Very well,” said von Kármán, “turn the gear ninety degrees back and I will
tear up the bill.”
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∗ ∗
∗

There is a story about the student who wanted to know, “Can one prove
the Mandelstam representation from field theory?” He went to Weisskopf
who responded, “Field theory, what is field theory?” Then he sought out
Wigner who said, “Mandelstam, who is Mandelstam?” Finally, our persistent
student found his way to Chew, repeated the question, and heard, “Proof,
what is proof?”
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Scientists Reflect on the World and Themselves

∗ ∗
∗

“If I have been able to see further, it was because I stood on the shoulders of
giants.”

“I do not know what I may appear to the world; but to myself I seem to have
been only like a boy playing on the seashore, and diverting myself in now and
then finding a smoother pebble, or a prettier shell than ordinary; whilst the
great ocean of truth lay all undiscovered before me..”

Isaac Newton (1643–1727)

∗ ∗
∗

“When the storm rages and the state is threatened by shipwreck, we can do
nothing more noble then to lower the anchor of our peaceful studied into the
ground of eternity.”

Johannes Kepler (1571–1630)

∗ ∗
∗

“I do not feel obliged to believe that the same God who has endowed us with
sense, reason, and intellect has intended us to forego their use.”

Galileo Galilei (1564–1642)
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∗ ∗
∗

“I am truly a lone traveler and have never belonged to my country, my home,
my friends, or even my immediate family, with my whole heart; in the face of
all these ties, I have never lost a sense of distance and a need for solitude.”

“Great spirits have always encountered violent opposition from mediocre
minds.”

“The trite objects of human efforts – possessions, outward success, luxury —
have always seemed to me contemptible.”

A. Einstein (1879–1955)

“The works of Archimedes are without exception, monuments of mathemat-
ical exposition; the gradual revelation of the plan of attack, the masterly
ordering of the propositions, the stern elimination of everything not imme-
diately relevant to the purpose, the finish of the whole, are so impressive in
their perfection as to create a feeling akin to awe in the mind of the reader.”

Thomas Heath (1861–1940), 1921

∗ ∗
∗

“One cannot read Archimedes’ complicated accounts of his quadratures and
cubatures without saying to oneself, “How on earth did he imagine those
expedients and reach those conclusions?”

George Sarton (1884–1956), 1952

“The greatest change in the axiomatic basis of physics — in other words, of
our conception of the structure of reality — since Newton laid the foundation
of theoretical physics, was brought about by Faraday’s and Maxwell’s work
on electromagnetic phenomena.
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Before Maxwell people conceived of physical reality as material points,
whose changes consist exclusively of motions, which are subject to total differ-
ential equations. After Maxwell they conceived physical reality as represented
by continuous fields, not mechanically explicable, which are subject to partial
differential equations. This change in the conception of reality is the most
profound and fruitful one that has come to physics since Newton.”

Albert Einstein60 (1879–1955), 1931

∗ ∗
∗

“From a long view of the history of mankind there can be little doubt that
the most significant event of the 19th century will be judged as Maxwell’s
discovery of the laws of electrodynamics. Even the American Civil War,
will pale into provincial insignificance before this more powerful event of the
1860’s.”

Richard Feynman (1918–1998), 1964

∗ ∗
∗

In a letter written near the end of his life (dated February 24, 1918) he recalled
how he first learned of Maxwell’s work one day while in a library:
“I remember my first look at the great treatise of Maxwell’s when I was a young

man. Up to that time there was not a single comprehensive theory, just a few scraps;

I was struggling to understand electricity in the midst of a great obscurity. When

I saw on the table in the library the work that had just been published (1873), I

browsed through it and I was astonished! I read the preface chapter, and several

bits here and there; I saw that it was great, greater and greatest, with prodigious

possibilities in its power. I was determined to master the book and set to work. I

was very ignorant. I had no knowledge of mathematical analysis (having learned

only school algebra and trigonometry which I had largely forgotten) and thus my

work was laid out for me. It took me several years before I could understand as

much as I possibly could. Then I set Maxwell aside and followed my own course.

And I progressed much more quickly.”

Oliver Heaviside (1850–1925)

60 Maxwell died in 1879, the year that Einstein was born.
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∗ ∗
∗

Von Kármán’s fabulously rich and varied life would be hard to duplicate
in today’s age of superspecialization. He was not modest or humble about
his accomplishments. He followed Goethe’s advice: “Nur die Lumpen sind
Bescheiden” (“Only the loafers are modest”).

In science he saw himself among the immortals. Once he was asked to rate
himself among the great scientists of the century. “If you define a great
scientist as a man with great ideas,” he replied, “then you will have to rate
Einstein first. He had four great ideas. In the history of science perhaps only
Sir Isaac Newton is ahead of Einstein, because he had five or six ideas. All
the other major scientists of our age associated with just one, or at the most
two, great ideas. In my case I have had three great ideas. Maybe more. Yes,
perhaps three and a half great ideas.”

Historians of science may assess von Kármán on a different scale. Obviously
even “great ideas” are not “great” on the same level. Some scientists of our
century, such as Bohr, Planck, Fermi, Dirac, and Schrödinger, have opened
up vistas in physics whose impact on scientific thought may be far longer
lasting, far more responsible for changing the future of civilization, than von
Kármán’s contribution to the conquest of air and space. But this impact is
in part related to the social use being made of scientific discovery, such as the
control of nuclear energy. In any evaluation of scientific genius as it deals in
an inspired way with the apparently insoluble problems of the universe, there
is no doubt that von Kármán rates a place among the first ten scientific minds
of this century.

∗ ∗
∗

“One never noticed what has been done; one can only see what remains to be
done. . . ”

Marie Curie (1867–1934), 1894
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They Died Unconvinced

∗ ∗
∗

“Inventions have long since reached their limit, and I see no hope for further
development.”

Julius Sextus Frontinus (40–103 CE)

∗ ∗
∗

“The new astrologer wants to prove that the earth moves and revolves, instead
of the sky, the sun and the moon. Just as if somebody moving in a carriage
might hold that he was sitting still, at rest, while the earth and trees walked
and moved. Ridiculous!”

Martin Luther (on Copernicus) (1483–1546)

∗ ∗
∗

“To tell if a given number of 15 to 20 digits is prime or not, all time would
not suffice for the test.”

Marin Mersenne (1588–1648)

∗ ∗
∗

“Alchemy is the only Art which might be able to complete and bring to light
not only medicine but also a universal Philosophy.”

Isaac Barrow (1630–1677)
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∗ ∗
∗

“There is no likelihood man can ever tap the power of the atom.”

Robert Millikan (1868–1953), 1923

∗ ∗
∗

“That one body may act on another through a vacuum, without the media-
tion of anything else, by and through – which their action and force may be
conveyed from one to another, is to be so great an absurdity, that I believe
no man who has in philosophical matters a competent faculty of thinking can
ever fall into it.”

Isaac Newton (1643–1727)

∗ ∗
∗

“Atoms are the figment of a weak imagination.”

Leibniz (1646–1716)

∗ ∗
∗

“What, sir, you would make a ship sail against the wind and currents by
lighting a bonfire under her decks. I pray you excuse me. I have no time to
listen to such nonsense.”

Napoleon, to Robert Fulton, who unsuccessfully tried
to interest the emperor in his idea to build a steamship, 1800
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∗ ∗
∗

“Paltry and unsubstantial papers... destitute of every species of merit... His
theory have no other effect than to check the progress of science and renew
all those wild phantoms of the imagination which Newton put to flight from
her temple.”

The London Royal Society, regarding Thomas Young’s
epoch-making papers describing the wave nature of light; 1802

∗ ∗
∗

“I could more easily believe that two Yankee professors would lie than that
stones would fall from heaven.”

Thomas Jefferson, on a report on a meteorite shower
which fell in Weston, Connecticut in 1807

∗ ∗
∗

“The laws of mechanics are identical with those of Nature.”

René Descartes (1596–1650)

∗ ∗
∗

“It is quite impossible that the noble organs of human speech could be replaced
by ignoble, senseless metal.”

Jean Bouillaud, member of the French Academy, before
viewing a demonstration of Edison’s phonograph; 1877.

After the demonstration, Bouillaud called Edison’s
invention a fake and attributed the demonstration he had

seen to “ventriloquism”
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∗ ∗
∗

“Such startling announcements as these should be deprecated as being un-
worthy of science and mischievous to its true progress.”

William Siemens, England’s most distinguished electrical
engineer on Edison’s electric light bulb; 1879. Siemens had been

unsuccessfully working on electric light bulbs for a decade.

∗ ∗
∗

“His claims are so manifestly absurd as to indicate a positive want of knowl-
edge of the electric circuit and the principles governing the construction and
operation of electrical machines.”

Edwin Weston, a respected specialist in arc lighting on
Edison’s electrical light bulb; 1879.

∗ ∗
∗

“Edison’s ideas are good enough for our transatlantic friends... but unworthy
of the attention of practical or scientific men.”

Committee set up by the British Parliament to look into
Edison’s work on the incandescent lamp, c. 1878.

∗ ∗
∗

“If the whole of the English language could be condensed into one word, it
would not suffice to express the utter contempt those invite who are so deluded
as to be disciples of such an imposture as Darwinism.”

Francis Orpen Morris, British ornithologist (1810–1893)
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∗ ∗
∗

“Heavier-than-air flying machines are impossible.”

1895

“X-rays are an elaborate hoax.”

1896

“We find something at every turn to show the utter futility of Darwin’s
philosophy.”

William Thomson (Kelvin) (1824–1907)

∗ ∗
∗

“I am tired of all this thing called science... We have spent millions on that
sort of thing for the last few years, and it is time it should be stopped.”

Senator Simon Cameron, demanding that the funding of the
Smithsonian Institution be cut off, 1861

∗ ∗
∗

“...in a few years, all great physical constants will have been approximately
estimated, and the only occupation which will be left to men of science will
be to carry these measurements to another place of decimals.”

James Clerk Maxwell (1831–1879)
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∗ ∗
∗

“How can he [Thomas Edison] call it a wonderful success when everyone ac-
quainted with the subject will recognize it as a conspicuous failure, trumpeted
as a wonderful success. A fraud upon the public.”

Henry Morton, Professor of Physics and President of the
Stevens Institute of Technology, on Edison’s Incandescent

light bulb, in The New York Herald, December 18, 1879

∗ ∗
∗

“The abdomen, the chest, and the brain will be forever shut from the intru-
sions of the wise and humane surgeon.”

John Erichsen (1818–1896)

∗ ∗
∗

“All true scientific progress ceased around 1900.”

Joseph Larmor (1857–1942)
(steadfastly opposed the new relativity and quantum theories)

∗ ∗
∗

“Attempting to fly a heavier-than-air aircraft is simply absurd.”

Rear-Admiral George Melville, chief engineer, US Navy, 1902
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∗ ∗
∗

“Heavier-than-air powered human flight is utterly impossible. Any form of
powered flight require the discovery of an entirely new force.”

Simon Newcomb, Professor of mathematics and astronomy at
John Hopkins University; 1903, just a few weeks before the airplane flew.

∗ ∗
∗

“Atoms cannot be perceived by the sense; like all substances, they are things of
thought. Furthermore, the atoms are invested with properties that absolutely
contradict the attributes hitherto observed in bodies. However well fitted
atomic theories may be to reproduce certain groups of facts, the physical
inquirer who has laid to heart Newton’s rules will only admit those theories
as provisional helps, and will strive to attain, in some more natural way, a
satisfactory substitute.
The atomic theory plays a part in physics similar to that of certain auxiliary
concepts in mathematics; it is a mathematical model for facilitating the mental
reproduction of facts. But these mental expedients have nothing whatsoever
to do with the phenomenon itself.”

“This conclusion, that heat consists in mechanical processes, in motion, has
spread over the whole cultivated world like wildfire. There is a huge mass
of literature on this subject, and now people are everywhere eagerly bent
on explaining heat by means of motions. They determine the velocities, the
average distances, and the paths of the molecules, and there is hardly a single
problem which could not, people say, be completely solved in this way by
means of sufficiently long calculations. If, then, we are astonished at the
discovery that heat is motion, we are astonished at something which has
never been discovered. It is quite irrelevant for scientific purposes whether we
think of heat as a substance or not.”

“I can accept the theory of relativity as little as I can accept the existence of
atoms and other such dogmas.”

Ernst Mach (1838–1916)
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∗ ∗
∗

“Atoms are only hypothetical things.”

Friedrich Wilhelm Ostwald (1853–1932)

∗ ∗
∗

“...merely statistical validity of the Second Law is not good enough; irre-
versibility is a fundamental property of natural processes, and any molecular
hypothesis – or perhaps all conceivable molecular hypotheses based on New-
tonian mechanics – that permits any exception, must be wrong.”

Ernst Zermelo (1871–1956), 1906

∗ ∗
∗

“The popular mind often pictures gigantic flying machines speeding across
the Atlantic carrying innumerable passengers. It seems safe to say that such
ideas must be wholly visionary. Even if a machine could get across with one
or two passengers, it would be prohibitive to any but the capitalist who could
own his own yacht.”

William Pickering (1910–2004), 1913

∗ ∗
∗

“Everything that can be invented has been invented.”

Charles H. Duell, commission of the US Patent Office, in a letter
to President William McKinley, urging him to close the office, 1899.
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∗ ∗
∗

“By 1940 the relativity theory will be considered a joke.”

George Francis Gillette, 1929

∗ ∗
∗

“The energy produced by the atom is a very poor kind of thing. Anyone who
expects a source of power from the transformation of these atoms is talking
moonshine.”

Ernest Rutherford, The New York Herald Tribune,
September 12, 1933

∗ ∗
∗

“Professor Goddard does not know the relation between action and reaction
and the need to have something better than a vacuum against which to react.
He seems to lack the knowledge ladled out daily in the high schools.”

editorial in The New York Times, 1921, dismissing Robert Goddard,
who proposed that someday rockets could reach the moon.

∗ ∗
∗

“There is no likelihood man can ever tap the power of the atom... Nature has
introduced a few foolproof devices into the great majority of elements that
constitute the bulk of the world, and they have no energy to give up in the
process of disintegration.”

Robert Andrews Millikan (1868–1953), 1923
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∗ ∗
∗

“We can surely never hope to see the craft of surgery made much more perfect
than it is today. We are at the end of a chapter.”

Berkeley George Moynihan (1865–1936), 1930

∗ ∗
∗

“There is not the slightest indication that [nuclear] energy will ever be ob-
tainable. It would mean that the atom would have to be shattered at will.”

Albert Einstein (1879–1955), 1932

∗ ∗
∗

“Fortunately; uranium bombs cannot at once be adapted for war, as the
apparatus needed is very heavy and also very delicate, so it cannot at present
be dropped from an airplane”

J.B.S. Haldane (1892–1964), 1940

∗ ∗
∗

“Real mathematics has no effect on war: No one has yet discovered any warlike
purpose to be served by the theory of numbers or relativity, and it seems very
unlikely that anyone will do so for many years.”

G.H. Hardy (1877–1947), 1940
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∗ ∗
∗

“That is the biggest fool thing we have ever done... The (atomic) bomb will
never go off, and I will speak as an expert on explosives.”

Admiral William Leahy to President Harry Truman, 1945

∗ ∗
∗

“Man will never reach the moon regardless of all future scientific advances.”

Lee De Forest (1873–1961), 1957

∗ ∗
∗

“Further investigation and experimentation have confirmed the findings of
Isaac Newton in the 17th century, and it is now definitely established that
a rocket can function in a vacuum as well as in an atmosphere. The Times
regrets the error.”

editorial in The New York Times, July 17, 1969

∗ ∗
∗

“There is no reason for any individual to have a computer in their home.”

Ken Olsen, President of Digital Equipment Corporation, USA, 1980
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∗ ∗
∗

“If one believes in science, one must accept the possibility – even the prob-
ability – that the great era of scientific discovery is over... Further research
may yield no more great revelations or revolutions, but only incremental,
diminishing returns.”

John Morgan (1806–1871), 1996

∗ ∗
∗

“The use of small quantities [of uranium], sufficient, say, to operate a car or an
airplane, so far is impossible, and one cannot predict when it will be achieved.
No doubt, it will be achieved, but nobody can say when.”

Albert Einstein (1879–1955), 1945

∗ ∗
∗

“I think we are not quite yet fit for Flying Machines and therefore there will
be none.”

Ralph Waldo Emerson (1803–1882), 1843

∗ ∗
∗

“I do not hesitate to forecast that atomic batteries will be commonplace long
before 1980.”

David Sarnoff (1891–1971), 1955
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∗ ∗
∗

“The best way to teach that one should be suspicious of everything one holds
dear is through the study of brilliant people of the past, who by modern
standards are so wrong, and where it is easy to see that their errors were the
result of cultural biases of their day.”

Stephen Jay Gould (1941–2002), 1993

∗ ∗
∗

“The ideas of Freud were popularized by people who only imperfectly under-
stood them, who were incapable of the great effort required to grasp them
in their relationship to larger truths, and who therefore assigned to them a
prominence out of all proportion to their true importance.”

Alfred North Whitehead (1861–1947)

∗ ∗
∗

“It may be that the stars of heaven appear fair and pure simply because they
are so far away from us, and we know nothing of their private life.”

Heinrich Heine (1797–1856), 1833

∗ ∗
∗

“The certain proof that intelligent life exists elsewhere in the Universe is that
no one has bothered yet to make contact with us.”

(Anon)
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∗ ∗
∗

“You know why there are so many whitefish in the Yellowstone River? Because
the Fish and Game people have never done anything to help them.”

Russell Chatham (1939– ), 1978

∗ ∗
∗

“With classical thermodynamics, one can calculate almost everything crudely;
with kinetic theory, one can calculate fewer things, but more accurately; with
statistical mechanics, one can calculate nothing.”

Eugene Wigner (1902–1995)

∗ ∗
∗

“First law of thermodynamics: You cannot win.
Second law of thermodynamics: You cannot break even.
Third law of thermodynamics: You cannot get out of the game.”

(Anon)

∗ ∗
∗

“Astronomers discover God!”

Headlines in a well-known periodical (1982)
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∗ ∗
∗

“The question is not so much whether there is life elsewhere in the universe
as whether it will continue to be possible to live on earth.”

(Anon)

∗ ∗
∗

“If you want to see comets that are comets, you’ve got to get outside our solar
system – where there’s room for them.”

“There is something fascinating about science. One gets such wholesale re-
turns of conjecture out of such a trifling investment of fact.”

Mark Twain (1835–1910)

∗ ∗
∗

“Comets are the nearest thing to nothing that anything can be and still be
something.”

(Anon)

∗ ∗
∗

“We owe a lot to Thomas Edison – if it wasn’t for him, we’d be watching
television by candlelight.”

Milton Berle (1908–2002)
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∗ ∗
∗

“No one has ever complained of a parachute not opening.”

(Anon)

∗ ∗
∗

“Statistics prove that 50 per cent of the married people in the United States
are women.”

(Anon)

∗ ∗
∗

“My great-grandfather looked at him severely. ‘My man,’ he said, ‘don’t you
know that very few people ever die after the age of 99? Statistics prove it!’ ”

(Anon)

∗ ∗
∗

“Never try to walk across a river just because it has an average depth of four
feet.”

Martin Friedman (1962– )
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∗ ∗
∗

“Amoebas at the start
Were not complex;
They tore themselves apart
And started Sex.”

Arthur Guiterman (1871–1943)

∗ ∗
∗

“When you have excluded the impossible, whatever remains, however improb-
able, must be the truth.”

“You know my method. It is founded upon the observance of trifles.”

“It has long been an axiom of mine that the little things are infinitely the
most important.”

“You see, but you don’t observe.”

‘Is there any point to which you would wish to draw my attention?’
‘To the curious incident of the dog in the night-time.’
‘The dog did nothing in the night-time.’
‘That was the curious incident,’ remarked Sherlock Holmes.

Arthur Conan Doyle (1856–1930)

∗ ∗
∗

“That theory is worthless. It isn’t even wrong!”

Wolfgang Pauli (1900–1958)
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∗ ∗
∗

“The guy who invented the first wheel was an idiot. The guy who invented
the other three, he was a genius.”

Sid Caesar (1922– )

∗ ∗
∗

“If it weren’t for Philo T. Farnsworth, inventor of television, we’d still be
eating frozen radio dinners.”

Johnny Carson (1925–2005)

∗ ∗
∗

Louise: “how did you get there?”
Johnny: “Well, basically, there was this little dot, right? And the dot went
bang and the bang expanded. Energy formed into matter, matter cooled,
matter lived, the amoeba to fish, to fish to fowl, to fowl to frog, to frog to
mammal, the mammal to monkey, to monkey to man, amo amas amat, quid
pro quo, memento mori, ad infinitum, sprinkle on a little bit of grated cheese
and leave under the grill till Doomsday.”

∗ ∗
∗

“No committee could ever come up with anything as revolutionary as a camel
— anything as practical and as perfectly designed to perform effectively under
such difficult conditions.”

Laurence J. Peter (1919–1990)
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∗ ∗
∗

“Physics is becoming so unbelievably complex that it is taking longer and
longer to train a physicist. It is taking so long, in fact, to train a physicist
to the place where he understands the nature of physical problems that he is
already too old to solve them.”

Eugene Wigner (1902–1995)

∗ ∗
∗

“An expert is someone who knows some of the worst mistakes that can be
made in his subject and how to avoid them.”

Werner Heisenberg (1901–1976)

∗ ∗
∗

“An expert is a man has made all the mistakes, which can be made, in a very
narrow field.”

Niels Bohr (1885–1962)
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Von Kármán, T. (1881–1963), 5805

Von Neumann, John (1903–1957),
5751, 5811, 5843, 5856, 5857

Vonnegut, Kurt (1922–2007), 5847

W

Wald, George (1906–1997), 5683,
5705, 5719, 5821, 5843

Warren, Earl (1891–1974), 5807

Watson, James, 5821

Watson, Lyall (1939– ), 5710, 5849

Watson, T.J. (1874–1956), 5850

Weaver, Warren (1894–1978), 5807

Weierstrass, K.T.W (1815–1857),
5737

Weil, Andre (1906–1998), 5752

Weinberg, Steven (1933– ), 5694,
5791

Weisskopf, Victor Frederick (1908–
2002), 5684, 5863

Weston, Edwin, 5871

Weyl, Hermann (1885–1955), 5679

Whately, Richard (1787–1863), 5770

Wheeler, J.A. (1911–2008), 5690

White, Gustav J., 5846

Whitehead, A.N. (1861–1947), 5675,
5743, 5801, 5832, 5880

Whittaker, E.T. (1873–1956), 5758

Wiener, Norbert (1894–1964), 5809

Wigner, Eugene (1902–1995), 5682,
5881, 5886

Wilczek, Frank (1951– ), 5777

Wilde, Oskar (1854–1900), 5673,
5717, 5772, 5808, 5831

Wilder, R.L. (1896–1982), 5760

William of Ockham (1285–1349,
5663, 5792

Wilson, Colin (1931– ), 5721

Wilson, E.O. (1929– ), 5848

Witgenstein, Ludwig (1889–1951,
5679

Wolf, D.T. (1943– ), 5790

Woolf, Virginia (1882–1941), 5718

Wright, F.L. (1867–1958), 5814

Wright, Orville (1871–1948), 5833

Y

Yehuda Liwa of Prague (1512–
1609), 5663

Young, J.W.A., 5756



Name Index 5901

Z

Zanuck, D.F. (1902–1979), 5849

Zeldovich, Y.B. (1914–1987), 5684

Zermelo, E. (1871–1956), 5875

Zinsser, Hans (1878–1940), 5834

Ziolkowski, K.E. (1857–1935), 5832



Bibliography



5904 6. Deep Principles – Complex Structures

∗ ∗
∗

In creating this treatise I have borrowed information and data from various
source-media such as books, articles and Internet data bases. References to
these sources have been placed in four distinct locations:

• In the text proper (name of books, articles, historical events, quotations,
etc.)

• Footnotes at the bottom of the pages.

• At the end of each chapter.

• A comprehensive bibliography (some 900 entries) at the end of chapter 6.

The following bibliography is divided here into ten categories:
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Wideröe, Ralph, 5156

Wieman, Carl, 5162

Wiener, Norbert, 5152, 5233, 5242,
5513

Wiesel, Torsten Nils, 5459

Wilbrand, J., 5135

Wildiers, E., 5435

Wilkins, Maurice, 5149, 5243, 5431,
5439

Wilkinson, John, 5129

William of Ockham, 5792

Williams, Frederick, 5150

Wilsdorf, Hans, 5163

Wilson, Edmund, 5436

Wilson, Robert, 5284

Winter, A., 5513

Wittle, Frank, 5140

Wollaston, William, 5134

Woodward, Robert, 5147, 5462

Wozniak, Stephen, 5151, 5238

Wren, Christopher, 5166

Wright brothers, 5140

Wu, C.G., 5151, 5271

X



5986 6. Deep Principles – Complex Structures

Xenocrates of Chalcedon, 5506

Y

Yale, Linus, 5132

Yalow, Rosalyn, 5155

Yang, C.N., 5270, 5271

Yersin, Alexandre, 5453

Yorke, J.A., 5514

Young, J.R., 5510

Young, Thomas, 5089

Yukawa, Hideki, 5269, 5272

Yule, George U., 5498, 5513

Z

Zadeh, Lofti, 5151, 5234

Zeilinger, Anton, 5163

Zeiss, Carl, 5295

Zeppelin, Ferdinand von, 5140

Zermelo, E., 5513

Zernike, Frits, 5152, 5295

Ziegler, H.J., 5160

Zinkernagel, Rolf M., 5456

Zondek, Bernard, 5461

Zsigmondi, Richard Adolf, 5295

Zuse, Konrad, 5150

Zworykin, Vladimir, 5143


	Cover Page
	Title Page
	Why Study the History of Science
	Guide to the Reader
	toc
	toc
	5000 Collision Events and Geological History
	toc
	5000 Climatic Changes in the Earth's History
	toc
	5000 The Gaia Hypothesis
	5000 Post-glacial world - the dawn of civilization

	The Beginning of Science
	The Beginning of Science
	The Sumerian Heritage
	Climate and Civilization
	Origins of the Egyptian Civilization
	Egyptian mathematics
	Mathematics and Astronomy in Mesopotamia
	The Scribes
	The Hittites
	The Iron Age
	The Greeks
	The Hebrews and their Bible
	Origins of Philosophy and Metaphysics
	Ancient Eastern Philosophy
	Myth and Number - Our Pythagorean Heritage
	The Earth as a Sphere
	The Sophists

	Monasteries and Monks or,- the case of the ignorant copyists (529-1100)
	Monasteries and Monks or,- the case of the ignorant copyists (529-1100)
	The great Hindu mathematicians (500 BCE-1400 CE)
	The Translators
	The Hebrew Golden Age of Reason (900-1600)
	The Viking Invasions in the Medieval Warm Period (787-1066)
	Rise of the European Universities (1050-1582)
	The Friars (ca 1200)

	Beyond the Greeks - The Emergence of Modern Science
	Beyond the Greeks - The Emergence of Modern Science

	Abstraction and Unification
	Demise of the Dogmatic Universe
	Deep Principles – Complex Structures


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




